Title Seismic base isolation using natural materials - experimental and numerical verification : doctoral dissertation
Title (english) Seizmička izolacija osnove građevine uporabom prirodnih materijala - eksperimentalna i numerička provjera : disertacija
Author Ivan Banović
Mentor Jure Radnić (mentor)
Committee member Alen Harapin (predsjednik povjerenstva)
Committee member Boris Trogrlić (član povjerenstva)
Committee member Damir Varevac (član povjerenstva)
Granter University of Split Faculty of Civil Engineering, Architecture and Geodesy (Department of Concrete Structures and Bridges) Split
Defense date and country 2021, Croatia
Scientific / art field, discipline and subdiscipline TECHNICAL SCIENCES Civil Engineering Supporting Structures
Universal decimal classification (UDC ) 624/625 - Civil and structural engineering. Civil engineering of land transport. Railway engineering. Highway engineering
Abstract The problem under consideration is the earthquake impact on structures. The subject of the performed research is the efficiency of seismic base isolation using layers of predominantly natural materials below the foundation, as well as the development of a numerical model for seismic analysis of structures with such isolation. The aseismic layers below foundation are made of limestone sand - ASL-1, stone pebbles - ASL-2, and stone pebbles combined with layers of geogrid and geomembrane - ASL-3. The experimental research methodology is based on the use of shake-table and other modern equipment for dynamic and static testing of structures. Experiments were conducted on the basis of detailed research plan and program. Efficiency of the limestone sand layer - ASL-1 was tested on cantilever concrete columns, under seismic excitations up to failure, varying the sand thickness and intensity of seismic excitation. Influence of several layer parameters on the efficiency of stone pebble layer - ASL-2 was investigated. For each considered layer parameter, a rigid model M0 was exposed to four different accelerograms, with three levels of peak ground acceleration (0.2 g, 0.4 g and 0.6 g), while all other layer parameters were kept constant. On the basis of test results, the optimal pebble layer was adopted. Afterwards, the optimal ASL-2 efficiency was tested on various model parameters: stiffness (deformable models M1-M4), foundation size (small and large), excitation type (four earthquake accelerograms), and stress level in the model (elastic and up to failure). In the ASL-3 composite aseismic layer, the optimal ASL-2 is combined with a thin additional layer of sliding material (geogrid, geomembrane above limestone sand layer), in order to achieve greater efficiency of this layer than that of the ASL-2. A total of eleven different aseismic layers were considered. To determine the optimal ASL-3, the M0 model was used, like for the ASL-2. On the basis of test results, the optimal ASL-3 layer was adopted (one higher strength geogrid at the pebble layer top). The optimal ASL-3 is tested on various model parameters, analogous to the optimal ASL-2. A numerical model for reliable seismic analysis of concrete, steel, and masonry structures with seismic base isolation using ASL-2 was developed, with innovative constitutive model for seismic isolation. The model can simulate the main nonlinear effects of mentioned materials, and was verified on performed experimental tests. In relation to the rigid base - RB without seismic isolation, model based on the ASL-1 had an average reduction in seismic force and strain/stress by approximately 10% at lower PGA levels and approximately 14% at model failure. Due to the effect of sand calcification over time, the long-term seismic efficiency of such a layer is questionable. It was concluded that the aseismic layers ASL-2 and ASL-3 are not suitable for models of medium-stiff structure M3 and soft structure M4. In relation to the RB without seismic isolation, the M1 (very stiff structure) and M2 (stiff structure) based on the ASL-2 had an average reduction in seismic force and strain/stress by approximately 13% at lower PGA levels and approximately 25% at model failure. In relation to the RB without seismic isolation, the M1 and M2 based on the ASL-3 had an average reduction in seismic force and strain/stress by approximately 25% at lower PGA levels and approximately 34% at model failure. In relation to the RB without seismic isolation, the ASL-2 and ASL-3 did not result in major M1 and M2 model displacements, which was also favourable. It is concluded that the ASL-2 and especially ASL-3 have great potential for seismic base isolation of very stiff and stiff structures, as well as small bridges based on solid ground, but further research is needed. In addition, it was concluded that the developed numerical model has great potential for practical application. Finally, further verification of the created numerical model on the results of other experimental tests is needed, but also improvement of the developed constitutive models.
Abstract (croatian) Problem koji se razmatra je utjecaj potresa na građevine. Predmet istraživanja je efikasnost seizmičke izolacije osnove građevine uporabom prirodnih materijala, kao i razvoj numeričkog modela za dinamičku analizu konstrukcija s predmetnom seizmičkom izolacijom. Aseizmički slojevi ispod temelja izrađeni su od vapnenačkog pijeska - ASL-1, kamenih oblutaka - ASL-2 i kamenih oblutaka u kombinaciji s geomrežama i geomembranom - ASL-3. Metodologija eksperimentalnih istraživanja temelji se na korištenju potresne platforme i ostale moderne opreme za statička i dinamička ispitivanja konstrukcija. Eksperimenti su provedeni prema detaljnom planu i programu ispitivanja. Efikasnost sloja ASL-1 testirana je na konzolnim armiranobetonskim stupovima izloženim seizmičkom djelovanju do sloma, gdje je varirana debljina sloja pijeska i intenzitet seizmičke pobude. Istražen je utjecaj više parametara sloja oblutaka ASL-2 na njegovu aseizmičku efikasnost. Za svaki razmatrani parametar model krute zgrade M0 izložen je djelovanju četiriju različitih akcelerograma, s tri razine vršnog ubrzanja (0.2 g, 0.4 g i 0.6 g), dok su ostali parametri sloja nepromjenjivi. Na temelju rezultata testova odabran je optimalni sloj ASL-2. Potom je efikasnost optimalnog sloja ASL-2 testirana pod utjecajem raznih parametara modela: krutost (deformabilni modeli M1-M4), veličina temelja (mali, veliki), tip potresa (četiri različita akcelerograma) i razina naprezanja (elastična, do sloma). Da bi se dobio još efikasniji aseizmički sloj ASL-3, optimalnom sloju ASL-2 dodavani su razni klizni slojevi (geomreže, geomembrana na sloju pijeska). Kreirano je jedanaest različitih kompozitnih slojeva ASL-3 čija je efikasnost testirana na modelu krute zgrade M0 kao kod sloja ASL-2. Na temelju rezultata testova određen je optimalni sloj ASL-3 (ASL-2 s jednom geomrežom veće površine na vrhu sloja). Potom je efikasnost optimalnog sloj ASL-3 testirana pod utjecajem raznih parametara modela, kao kod testiranja sloja ASL-2. Razvijen je pouzdani numerički model za seizmičku analizu betonskih, čeličnih i zidanih konstrukcija sa seizmičkom izolacijom baze pomoću sloja ASL-2, s inovativnim konstitutivnim modelom aseizmičkog sloja. Model može simulirati najvažnije nelinearne efekte u navedenim materijalima, a provjeren je na rezultatima provedenih eksperimentalnih testova. Zaključeno je da, u odnosu na krutu podlogu, sloj ASL-1 može povećati sigurnost testiranih modela za približno 10% pri nižim razinama ubrzanja podloge te približno 14% pri slomu modela. Zbog efekta kalcifikacije pijeska dugotrajna efikasnost ovog sloja je upitna. Zaključeno je da razmatrane aseizmičke podloge ASL-2 i ASL-3 nisu prikladne kod modela srednje krutih M3 i mekih konstrukcija M4. U odnosu na krutu podlogu RB, modeli M1 (vrlo kruta konstrukcija) i M2 (kruta konstrukcija) s aseizmičkim slojem ASL-2 imali su prosječno smanjenje potresnih sila i naprezanja/deformacija od 13% pri nižim razinama ubrzanja podloge te približno 25% pri slomu modela. U odnosu na RB modeli M1 i M2 sa aseizmičkim slojem ASL-3 imali su prosječno smanjenje potresnih sila i naprezanja/deformacija od 25% pri nižim razinama ubrzanja podloge, te približno 34% pri slomu modela. U odnosu na RB modeli M1 i M2 oslonjeni na ASL-2 i ASL-3 nisu imali veće pomake, što je povoljno. Zaključeno je da slojevi ASL-2 i ASL-3 imaju veliki potencijal za praktičnu primjenu kod vrlo krutih i krutih zgrada, kao i mostova manjih raspona temeljenih na čvrstom tlu. Ipak, potrebna su daljnja istraživanja. Također, zaključeno je da razvijeni numerički model ima veliki potencijal za praktičnu primjenu. Potrebna je daljnja verifikacija kreiranog modela na rezultatima eksperimentalnih testova, kao i poboljšanje razvijenih konstitutivnih modela.
Keywords
seismic base isolation
limestone sand
stone pebbles
geosynthetics
shake-table testing
numerical modelling
Keywords (croatian)
seizmička izolacija osnove građevine
vapnenački pijesak
kameni oblutci
geosintetici
testiranje potresnom platformom
numeričko modeliranje
Language english
DOI https://doi.org/10.31534/DocT.052.BanI
URN:NBN urn:nbn:hr:123:347942
Promotion 2021
Study programme Title: Civil Engineering Study programme type: university Study level: postgraduate Academic / professional title: doktor/doktorica znanosti, područje tehničkih znanosti, polje građevinarstvo (doktor/doktorica znanosti, područje tehničkih znanosti, polje građevinarstvo)
Catalog URL http://library.foi.hr/lib/knjiga.php?B=422&H=&E=&V=&lok=&zbi=&item=14935
Type of resource Text
Extent 231 list s razl. pag. : tabele, graf. prikazi, ilustr. u bojama ; 30 cm
File origin Born digital
Access conditions Open access Embargo expiration date: 2023-03-26
Terms of use
Repository FCEAG Repository
Created on 2021-04-12 11:37:47