doctoral thesis
Unaprijeđeni postupci za raspoznavanje razina boli na temelju slika lica

Josip Juraj Strossmayer University of Osijek
Faculty of Electrical Engineering, Computer Science and Information Technology Osijek
Department of Software Engineering
Chair of Programming Languages and Systems

Cite this document

Zorić, B. (2017). Unaprijeđeni postupci za raspoznavanje razina boli na temelju slika lica (Doctoral thesis). Retrieved from https://urn.nsk.hr/urn:nbn:hr:200:158468

Zorić, Bruno. "Unaprijeđeni postupci za raspoznavanje razina boli na temelju slika lica." Doctoral thesis, Josip Juraj Strossmayer University of Osijek, Faculty of Electrical Engineering, Computer Science and Information Technology Osijek, 2017. https://urn.nsk.hr/urn:nbn:hr:200:158468

Zorić, Bruno. "Unaprijeđeni postupci za raspoznavanje razina boli na temelju slika lica." Doctoral thesis, Josip Juraj Strossmayer University of Osijek, Faculty of Electrical Engineering, Computer Science and Information Technology Osijek, 2017. https://urn.nsk.hr/urn:nbn:hr:200:158468

Zorić, B. (2017). 'Unaprijeđeni postupci za raspoznavanje razina boli na temelju slika lica', Doctoral thesis, Josip Juraj Strossmayer University of Osijek, Faculty of Electrical Engineering, Computer Science and Information Technology Osijek, accessed 06 July 2020, https://urn.nsk.hr/urn:nbn:hr:200:158468

Zorić B. Unaprijeđeni postupci za raspoznavanje razina boli na temelju slika lica [Doctoral thesis]. Osijek: Josip Juraj Strossmayer University of Osijek, Faculty of Electrical Engineering, Computer Science and Information Technology Osijek; 2017 [cited 2020 July 06] Available at: https://urn.nsk.hr/urn:nbn:hr:200:158468

B. Zorić, "Unaprijeđeni postupci za raspoznavanje razina boli na temelju slika lica", Doctoral thesis, Josip Juraj Strossmayer University of Osijek, Faculty of Electrical Engineering, Computer Science and Information Technology Osijek, Osijek, 2017. Available at: https://urn.nsk.hr/urn:nbn:hr:200:158468

Islandora Bookmark - Please login to use this feature