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Abstract 

 

In the present thesis a three-dimensional finite element formulation for concrete failure under high-

energy impact loadings is presented. The formulation is based on the theoretical framework of continuum 

mechanics and irreversible thermodynamics. In order to obtain a non-unilateral contact/impact description, the 

spatial regions occupied by the bodies under collision are discretized with linear tetrahedral elements. The 

temporal discretization is traditionally conducted by finite difference method. During the time of contact, the 

contact constrains are satisfied with the Lagrange multiplier method adapted for the explicit time integration. 

The frictional behaviour on the contact interface is assumed to be of kinematic type described with the 

Coulomb friction model. At the numerical implementation level, the dissipative nature of friction forces is 

introduced via the relaxation of tangential displacement on the contact interface. The quantitative description of 

expected finite strains is conducted according to the Update Lagrange formulation of motion. Following the 

standard notations used in contact mechanics, the concrete body is denoted as target body and the body that 

transmits its kinetic energy, as the contractor body. The hyperelastic material model is used to define the 

constitutive behaviour of the contractor body. On the other hand, in order to simulate the mechanical behavior 

of the concrete body, the stress-strain relationship is carried out via the rate sensitive microplane material 

model with relaxed kinematic constraint (co-rotational formulation). It is important to note that the concrete 

strain rate effect can be particularly evidenced in impact loadings. Thus, to numerically replicate the concrete 

response in a realistically way, the strain rate effect is introduced by means of the energy activation theory of 

bond ruptures. For this purpose, the macroscopic strain measure is performed with the Green-Lagrange strain 

tensor. Damage and cracking phenomena are modeled within the concept of smeared cracking. Furthermore, 

the crack band method is used with the aim of assuring the objectivity of the analysis with respect to the size of 

the finite elements. Finally, in order to validate the developed formulation, the free fall drop weight experiment 

is numerically replicated. The retrieved numerical results are evaluated, discussed and compared with the 

experimental results. A parametric study aimed at numerical investigation of the influence of loading rate on 

the failure mode of beams under impact loadings, is carried out. It is shown that the plain beam resistance and 

failure modes strongly depend on the loading rate. Indeed, the numerical formulation predicts correctly the 

beam failure patterns investigated with the experimental methodology. Namely, for relative low impact 

velocities the numerical results coincide with the experimental results providing the expected bending mode of 

failure (mode-I). On the other hand, by increasing the loading rate, there is a transition of the failure mechanism 

from bending to shear mode (mixed mode). Based on the retrieved numerical predictions, one may conclude 

that the developed numerical formulation is adequate for investigating the response of concrete under high-

energy impact loadings. Indeed, due to the fact that the failure process in concrete occurs in a very short period 

of time, the numerical study is useful and necessary for better understanding of damage phenomena occurring 

under impact loadings. 
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Nomenclature 

 

Respecting the traditional signatures used in the theory of continuum mechanics, in the present Thesis the 

scalar quantities are denoted by a Latin or Greek italic letter while vectors, tensors and/or matrices are 

represented by the boldface characters. The subscripts i, j, k, l, r and s denote specific component of a vector or 

tensor quantity in question. When possible, the Einstein summation convection will be used. 

 

 

notation
indicial 

notation
matrix 

T

notation
 tensor

bAb jiji bAb bAb  

 

 

 

Only the most frequent symbols are listed below. 

 

 

Chapter 2  

P  1
st
 Piola-Kirchhoff stress tensor 

S  2
nd

 Piola-Kirchhoff stress tensor 

s  back-rotated Cauchy stress tensor 

ε  Cauchy strain tensor 

σ  Cauchy stress tensor 

X  coordinates vector for a particle in the material (referent) configuration 

x  coordinates vector for a particle in the spatial (current) configuration 

F  deformation gradient tensor 

  deformation mapping function 

  density 

F  force 

E  Green-Lagrangian strain tensor 

ψ  Helmholtz free energy function 

I  identity matrix 

J  Jacobian of deformation 

K  kinetic energy 
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τ  Kirchhoff stress sensor 

ij  Kronecker delta 

,  Lamé constants 

b  left Cauchy-Green deformation tensor 

v  left stretch tensor 

m  mass 

R  material rotation tensor 

C  Material stiffness tensor 

CC, 10  notations for the continuum referent and current configuration, respectively 

eE ˆ,ˆ  orthonormal basis in the referent and current configuration, respectively 

  Poisson ration 

d  rate-of-deformation tensor 

C  right Cauchy-Green deformation tensor 

U  right stretch tensor 

w  spin tensor 

W  strain energy function 

t  surface traction 

l  velocity gradient tensor 

σ  Voight notation for the Cauchy stress tensor 

b  volume forces 

E  Young’s modules 

 

 

Chapter 3  

x
n

 coordinates vector of a FE node n 

)(~ xu  displacement vector for an arbitrary point inside the element domain Ωe 

c  domain boundary where the contact constraint are activated 

u  domain boundary where the displacement boundary conditions are prescribed 

t  domain boundary where the traction boundary conditions are prescribed 

http://en.wikipedia.org/wiki/Lame_constants
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e  domain occupied by a finite element 

A  FE assembling operation (relate local dof to global dof) 

ex
F  FE external force vector 

)(σF
in  FE internal force vector 

N  FE interpolation function matrix 

r  FE out-of-balance force vector 

K  FE stiffness matrix 

B  FE strain-displacement matrix 

eV  FE volume in the material (referent) configuration 

ev  FE volume in the spatial (current) configuration 

u  general notation for a displacement vector 

  general notation for a domain of a occupied special region 

gK  geometrical stiffness matrix 

)(xnN  interpolation function defined in a element node n 

J  Jacobian transformation matrix 



σ  Jaumann rate of the Cauchy stress tensor 

mK  material stiffness matrix 

G  matrix that collects the direction cosines of the normal vector n on the boundary Гt 

cn  number of contact constraint violation 

en  number of element in the spatial discretization 

mn  number of microplanes used to perform the unit sphere approximation 

nn  number of nodes over the element 

D  stiffness matrix 

TK  tangent stiffness matrix 

u  test function (virtual displacement) 

v  test function (virtual velocities) 

S  three-dimensional strain operator 

n  unit normal vector 
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u
n

 vector of a node n displacement components  

ξ  vector of tetrahedral element barcentric coordinates 

ε  Voight notation for the Cauchy strain tensor 

 

 

Chapter 4  

ctt  critical time increment 

L  Lagrangian of the system 

  the total potential energy for a hyperelastic continuum 

t  time 

t  time increment 

C  viscous damping matrix 

 

 

Chapter 5  

r
τ  back-rotated Kirchhoff stress tensor 


kmn ,,  base vectors on the microplane 

crw  critical concrete crack aperture 


Ds  deviatoric stress components on the microplane 

Ψ  discontinuity function dedicated to the  microplane 

effC,  effective microplane secant module 

effe,  effective microplane strain component 

H  Henky strain tensor 

0,DE  initial (undamaged) microplane deviatoric module 

0,0, , KM EE  initial (undamaged) microplane shear modules 

0,VE  initial (undamaged) microplane volumetric module 

D  material integrity parameter related to the microplane deviatoric strain 

KM  ,  material integrity parameter related to the microplane shear strain 

V  material integrity parameter related to the microplane volumetric strain 

DC  microplane secant deviatoric module 
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KM CC ,  microplane secant shear module 

VC  microplane secant volumetric module 


TN ee ,  normal and tangential strain component on the microplane, respectively 

321 ,, XXX  rectangular Cartesian coordinates (material coordinates) 

321 ,, xxx  rectangular Cartesian coordinates (spatial coordinates) 

r  referent deformation value (FE cracking visualization) 

  scalar quantity associated to the rate of the Green-Lagrangian strain tensor 


KM ee ,  shear microplane strain components on the microplane 


KM ss ,  shear stress components on the microplane 


e  strain vector on the microplane 

m
ijklC  tangent stiffness microplane tensor 


DV ee ,  volumetric and deviator strain component on the microplane, respectively 

Vs  volumetric stress components on the microplane 

 

 

Chapter 6  

G

 

contact displacement constrain matrix 

c

 

contact energy functional 

c
TK

 

contact tangent stiffness matrix 

),( 21 

 

contractor node and target surface intersection coordinates 

αβm

 

contravariant metric tensor components 

px

 

coordinates vector of nodes over the target surface 

αβm

 

covariant metric tensor components 

μ

 

friction coefficient 

g  gap vector 

C
u

 

incremental displacement vector due to contact loadings 

D
u

 

incremental displacement vector due to dynamic loadings 

λ

 

incremental Lagrangian multiples vector 

]][[ un

 

jump in the displacement field on Гc 
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]][[ σn

 

jump in the stress field on Гc 

λ  Lagrange multiplier vector 

 ,

 

Newmark integration parameters 

TN ,tt  normal and tangential component of a traction vector t on Гc, respectively 

TN , vv

 

normal and tangential component of a velocity vector v on Гc, respectively 

m
n

 

normal vector in the intersection point between the contract node and target surface 

pN

 

shape functions of nodes over the target surface 

βα ,aa

 

target surface tangent vectors 

βα ,aa

 

target surface unit tangent vectors 

κ

 

upper index used for the association of data for bodies under collision 
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Chapter 1 
 

 

Introduction 
 

1.1 Motivation 
 

The subject of the thesis is primary concentrated on the mechanical behaviour of structures made of quasi-

brittle material under severe impact loading. Particularly, the main attention is here dedicated on concrete 

structures subject to high-energy impact loading. Note that these kinds of events are characterized by highly 

concentrated strains generated in a relatively very short period of time. Under these circumstances, the 

considered transient event can be widely found in industrial practice as well as during the exploitation of civil 

structures. Thus, it is easy to agree that, due to the complex mechanism of failure, the experimental and 

numerical investigations are needed to accurately predict the consequence and eventual risks caused by impact 

accidents. The fact that impact loading can occasionally lead to structure collapse, obliges us to study impact 

loadings. 

 

Behind the author general interest for mechanical interactions, the thesis mainly emerges from the author’s 

wishes and intentions to modestly contribute to this wide and complex issue. 
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§ Problem definition 

 

The structure response to impact is influenced by the structure mass and stiffness. Due to the complexity of 

such system, the author assumes that a productive numerical investigation can be obtained by reducing the 

scale of observation. According to that, the focus of the thesis is retained on concrete elements (such as beams, 

columns or plates) and not on the whole concrete structure. Furthermore, in order to focus the study only on the 

concrete behavior, the aspects related to reinforcements are here omitted. 

 

The aforementioned assumption may be supported by the fact that the structure global stiffness degradation is 

always related to local damage (structure elements) which can be generally interpreted as a consequence of 

concrete local failure. On the other hand, with a realistic numerical prediction of the response of structural 

elements, the analysis of the whole structure can be obtained by extending the same concept to the entire 

structure. However, since at this scale of observation the presence of reinforcements cannot be neglected, 

passing from local to global analysis is obviously not a trivial task. In order to preserve simplicity of the 

analysis, the abovementioned is used as an additional argument in favor of focusing the study solely on 

structural elements (particularly beam elements). 

 

By defining the subject of interest, the problem definition arises almost naturally. Namely, as the title of the 

thesis indicates, the intention is to numerically simulate the mechanical behavior of concrete elements under 

impact. The task will require a numerical formulation sensitive to a complex mechanism of the growth of 

concrete microstructural cracks. Thus, in order to reproduce the acute nature of failure under severe impact 

loading, the numerical formulation should be able to predict macrostructural (inertial forces) but also 

microstructural mechanical effects (strain rate effect). 

 

It is clear that the intention required accurate model calibration. For this purpose, the proposed numerical 

formulation will be validated by performing a comparative study of available experimental results with related 

numerical predictions. In order to validate the range of applicability, the experimental reference will be chosen 

in a way to activate different types of failure (Bentur, Mindess & Banthia, 1986; Sukontasukku & Mindess, 

2003; Sukontasukkul, Nimityongskul & Mindess, 2004). 

 

It is important to point out the problem shows highly non-linear properties. The non-linear nature of the 

problem directly implies that the numerical description should provide computational stability and robustness. 

Namely, it is evident that: 

 

(i) a non-linear mechanical behavior of concrete (material non-linearity),  

(ii) possibly large displacements in front of the contact/impact zone (geometrical non-linearity)  

(iii) and a non-linear nature of contact description between bodies (contact non-linearity) 

 

will require the use of an incremental-iterative solution strategy. 
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§ Note on experimental observations 

 

The behavior of concrete under severe impact loading is currently under intensive experimental and numerical 

investigation (Reinhardt, 1982; Bentur, Mindess & Banthia, 1986; Comite Euro-International Du Beton (CEB), 

1988; Weerheijm, 1992; Buchar, Voldřich, Rolc & Lazar, 2002; Ballew, 2004; May, Chen, Owen, Feng & 

Bere, 2005; Remennikov & Kaewunruen, 2007; Zinn, Stangenberg, Borgerhoff, Chauvel & Touret, 2007). 

Particularly, due to the presently available computational possibilities, the numerical investigations are 

especially attractive. However, to reproduce the real response of concrete under impact, there is an evident need 

for experimental observations. Namely, the validation of numerical analysis requires extensive experimental 

documentations, which are also related to a lot of difficulties due to the complexity of impact phenomena. 

 

The most popular and efficient experimental method of studying concrete under impact loading is the free fall 

drop weight test. The experiment mainly consists of dropping the impact hammer (with pre-defined mass) on 

concrete element placed at the end of the dropping trajectory. Two typical experimental devices are shown in 

Fig. 1.1. 

 

            
 

Figure 1.1 Free fall drop weight test. Pictures taken from: a) May et al. (2005) and b) Sukontasukkul et al. (2004) 

 

Evidently, the system input energy is defined by the hammer mass and the dropping altitude. Note that the 

same system input energy can be obtained at a relatively low but also at a relatively high impact velocity. 

Accordantly, one could ask why the affiliation of impact character is here expressed in terms of energy instead 

of velocity. Well, from the hierarchic point of view, it can be said the description in terms of energy is more 

accurate then the description in terms of velocity. Namely, both the velocity and mass information are 
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contained in the kinetic energy of the hammer. For this reason, the energy-related description seemed the most 

adequate choice. However, it should be pointed out that even in case of elevated energy of impact loading, 

characterized by a relatively slow impact velocity, the response of concrete will be significantly different than 

in case of impact with the same impact energy but with a relatively high collision velocity. Therefore, the 

energy-related description should not be viewed as a general classification of consequences on bodies under 

impact. 

 

With a pre-defined test program, the measurement of forces in the free fall drop weight experiment is 

performed by accelerometers. It is also important to point out that in order to transform the whole system input 

energy into the kinetic and strain energy of the concrete element under consideration, the dropping hammer 

should be made of steel with high stiffness. Only in this manner the presents of its strain energy can be 

minimized (Fig. 1.2).  

 

 
 

 
 

Figure 1.2 Railway concrete sleepers under impact loadings (pictures taken from Remennikov & Kaewunruen, 2007) 
 

The results of the briefly described experimentation methodology (Fig. 1.1) show that loading rate significantly 

influences the response of structures made of quasi-brittle materials. In fact, by comparing the concrete 

response under static loading conditions with its response at high loading rate (impact loading), it can be 

deduced that the nominal strength increases with the increase of loading rate. Moreover, it is well known that 

the failure also depends on loading rate. The response depends on loading rate through three different effects. 

(i) Through the creep of the bulk material between the cracks. (ii) Through the dependency rate of the growing 

micro-cracks. (iii) Through the effect of structural inertia forces, which can significantly influence the state of 

stresses and strains at the material level. Principally, each one of the abovementioned influences is always 

present. However, depending on the type of material and loading rate, the first, the second or the third effect 

may become predominant. As far as cracking and damage phenomena are concerned, the first effect is 

important only in case of relatively low loading rates (creep-fracture interaction). The second effect 

predominates in case of moderate loading rates while the last one, in case of relatively high loading rates 

(impact loading). 
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Apart the influence of loading rate, an additional problem related to high-energy impact loading is rather 

complex mechanism of energy transfer that takes place via contact surfaces between colliding bodies (Comite 

Euro-International Du Beton, 1988). Furthermore, according to the work of Sukontasukkul and Mindess 

(2003), the experimental analysis show that impact loading cannot be viewed as a problem of strain rate or 

extreme case of stress rate. Also, as Bentur, Mindess and Banthia (1986) reported, the experimental tests prove 

that it is difficult to obtain the energy balance by measuring the mechanical energies in the experiment. A few 

statements taken from the relevant article (Bentur, Mindess & Banthia, 1986) may summarize some interesting 

experiment findings: 

 

 
“Even for the relatively low impact velocities used in these tests (~3 m/s), the peak load 

in the specimens occurred within about 1 ms after contact.” 

 
“The use of accelerometers mounted on the beams can be used to estimate the inertia 

load, as well as specimen velocities and accelerations. This permits load-deflection 

curves for impact loading to be generated.” 

 
“At the peak load measured by the instrumented tup, the inertia load may account for 

more than 2/3 of the total load.” 

 
“Failure to account for the inertia load may result in misleading conclusions.” 

 
 “Estimations of energy from the instrumented tup loadings do not agree with the sum of 

the calculated kinetic energy and the energy expended in deflecting and fracturing the 

beam.” 

 

 
In order to justify the need of the proposed numerical formulation, resume that the mechanism of energy 

transformation cannot be identified through an experiment (Bentur, Mindess & Banthia, 1986). However, the 

kinetic energy transformation can be revealed numerically with an appropriated numerical formulation. Also, it 

should be point out that the experimental technique is somehow limited due to the fact that, even in case of low 

impact loading, the peak load is registered within 1 ms after the contact take place. Consequently, the relevant 

part of the deformation history is trapped in a very small time period and can be hardly reached by 

experimental methodology. 

 

A similar problem can be observed in the case of penetration or concrete perforation problems (Fig. 1.3 – photo 

taken from the web site of National University of Singapore - Impact Mechanics Laboratory). Namely, from 

the numerical aspect, the problems are almost identical except for that the related numerical description should 
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be able to handle highly concentrated strain in front of the impact zone (requirement for remeshing). Another 

very important difference from the free fall drop weight experiment is the relevant presence of heat energy 

arising from friction between bodies. For both experimental and numerical researcher, the presence of 

temperature gradients represents a challenging problem. Numerical formulations need realistic constitutive 

equations, which are often poorly calibrated being directly related to difficulties with experimental 

measurements. Thus, the currently conducted experimental researches are based on the principle of causality. 

This means that for the given system input data (impact velocity) the output system data is registered (deep of 

penetration). In this sense, the deformation history can be hardly obtained, since the penetration trajectory 

cannot be followed by instrumental devices. The difficulties in measurement are not only related to spatial 

restrictions but, due to the fact that penetration occurs in small time interval (~1 ms), also to temporal 

restrictions. However, there are promising experimental methodologies (like x-ray laminography) which are 

already in use for investigation of damage phenomena caused by impact loadings on concrete panels 

(Vossoughi, Ostertag, Monteiro & Albert, 2006). 

 

 

Figure 1.3 Impact of steel nail into concrete a block 

 

 

§ Note on numerical expectations 

 

There are various numerical studies which are conducted in order to investigate the effect of loading rate on the 

response of concrete structure elements (Dilger, Koch & Kowalczyk, 1978; Reinhardt, 1982; Curbach, 1987; 

CEB, 1988; Bažant & Gettu, 1992; Weerheijm, 1992; Ožbolt & Reinhardt, 2001, 2005; Saatci & Vecchio, 

2009). Most of the studies employ different constitutive relations similar to the spring-dashpot models of visco-
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elasticity. Some models cover only a limited range of loading rates whereas other models are more general and 

applicable to large range of loading rates. However, from the perspective of strain rate sensitivity effect, there 

are only a limited number of numerical studies in which the concrete failure mode is investigated as a function 

of loading rate (Sukontasukku & Mindess, 2003; Ožbolt & Reinhardt, 2005; Saatci & Vecchio, 2009). In the 

proposed numerical formulation a rate dependent model, based on the rate process theory (Krausz & Krausz, 

1988) of bond ruptures, is used. The model was originally proposed by Bažant et al. (2000) and later coupled 

with the microplane model for concrete. The choice can be justified by simply taking into account the results of 

other studies where the mentioned combination of models showed impressive correspondence with 

experimentally evidenced phenomena (Ožbolt & Reinhardt, 2001; Ožbolt, Rah & Meštrović, 2006). 

 

With regard to the free fall drop weight experiment (Fig. 1.1 & Fig. 2.1), the subject of thesis will be based on 

the failure of a plain concrete beams under impact loadings. However, the present numerical description will be 

principally valid for impact loadings of any type. 

 

In order to validate the proposed formulation, the numerical experiment is conducted by reproducing the free 

fall droop weight experiment (Fig. 1.1) in which the altitude of the dropped hammer is set as a variable. Since 

the contact force between the dropped hammer and the tested concrete beam is unknown, the mechanical 

interaction have to be numerically simulated (contact problem). The range of investigated impact velocities will 

imply very high strain rates but still smaller than the strain rates at which the dropping hammer would cause 

extreme local damage (concrete local crashing).  

 

According to the abovementioned, a development of the present numerical formulation represents a logical 

extension of the current state of knowledge in the field of concrete behavior under severe impact loadings. 

Namely, due to the fact that the failure process of concrete occurs in a very short period of time, the numerical 

study is useful and necessary for a better understanding of concrete damage phenomena under impact. Unlike 

the experimental investigations, by assuming isothermal conditions, the numerical simulation should reveal the 

kinetic energy transformation into other mechanical energies generated during the deformation history. 

Furthermore, it is also expected that the proposed numerical formulation will be able to reveal the contribution 

of inertial, viscous damping and internal forces into reaching equilibrium state with contact forces on the 

contact/impact surface. The formulation will consequently help defining further research directions of this still 

insufficiently explored scientific and engineering field. 

 

Resuming, the primary aim of the study can be viewed as the test of whether the proposed numerical 

formulation is able to realistically predict the rate-dependent failure mechanism and, if it can, as investigation 

of the influence of impact velocity on the concrete response. 
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1.2 Hypothesis 
 

The hypothesis was (2006): 

 

 

 

and in the present thesis I will verify if the proposed three-dimensional numerical formulation, for materials 

and loadings type under consideration, predicts my suspicions. 

 

 

 

 

 

1.3 Purpose of the thesis 
 

Following the conclusions drawn from experimental observation; in order to numerically replicate the concrete 

failure at impact load, the numerical formulation should be characterized by highly predicting abilities. This 

fact can be interpreted as a primary purpose of the thesis, since it is a prerequisite for the accomplishment of the 

following intentions. 

 

 Based on the adopted theoretical assumptions and numerical approximations, the main purpose (that 

will lead to others) is to check whether the developed numerical formulation is able to realistically 

predict the concrete failure at different loading rates. If it can, the following purposes shall be taken 

into account. 

 

 Reveal the transformation of impact kinetic energy into other mechanical energies.  

 

 Find out the contribution of inertial, viscous damping and internal forces to reaching the equilibrium 

state with contact forces arises as a consequence of bodies collision.  

 

 Based on the objective overview of the proposed numerical formulation, define further research 

directions for the development of numerical models for simulation of concrete penetration and 

perforation problems. 

 

 

 

 

“For concrete structures under high-energy impact loadings, the structural response is controlled 

by inertial forces and the influence of strain rate sensitivity is less important and can be 

consequently neglected in related numerical simulations.” 
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1.4 Outline of the thesis 
 

Before summarizing the chapters, note that the thesis can be viewed as a unification of selected current 

knowledge and certain new findings in the field of computational mechanics, needed for the numerical 

investigation of quasi-brittle materials under severe impact loading. The thesis contains ten individual chapters 

which are summarized as follows. 

 

Chapter 2 – Continuum preliminaries 

It is well known that the structural response to any type of external loading is always governed by the structure 

micro-mechanical properties. The physical properties of practical importance emerge as a consequence of 

material particles interaction. Thus, it is evident that the body collision event implies a very complex 

mechanical system which can hardly be approached at this micro-scale of observation. Therefore, the problem 

is here defined in the framework of continuum mechanics. Accordantly, the presence of material particles is 

here ignored and the natural discontinuity is replaced by a presupposed continuous distribution of matter. For 

this purpose, the second chapter is dedicated to a brief overview of the continuum mechanics theory. 

 

Chapter 3 – Spatial discretization 

As the title of the thesis suggests, the finite element method (FEM) is used to perform the discretization of 

governing equations in the spatial regions occupied by bodies under collision. Since the temporal discretization 

and the discussion related to contact mechanics are addressed in two separated chapters, the time dimension 

and restriction on displacements (caused by contact) will be temporary ignored. Accordantly, the third chapter 

will address the derivation of the weak form of the previously given strong form of the problem. Later on, the 

neglected influences will be applied to derive the discrete form of equilibrium equation. Furthermore, as the 

choice of finite element (FE) directly influences the numerical description of contact/impact events, some 

useful properties of the here used linear tetrahedral element will be presented. At the end of the chapter, a brief 

overview of the Update Lagrange formulation, used to solve the non-linear deformation problem, will be given. 

 

Chapter 4 – Temporal discretization 

It is clear that impact loadings are time depended phenomenon characterized by the evident presents of inertial 

forces. With the aim of introducing the contribution of inertial forces in the equilibrium equation, the principle 

of least action (Hamilton principle) will be here presented. After that, the temporal discretization of the 

unconstrained equation of motion (no contact) will be carried out by application of the Newmark’s Beta 

integration method. For this purpose, basic assumptions and related possibilities will be presented (such as 

switching between the implicit and explicit integration technique). The Newmark’s Beta method will be also 

used to evidence that the original form of equations implies necessary modifications to introduce the contact 

displacement restrictions. This will be separately explained in a chapter dedicated to contact mechanics. 

Furthermore, since the deformation history is “trapped” in a relatively small time period, a discussion on an 
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appropriate time integration technique will be given. The attention is paid mainly to numerical stability and 

numerical properties required to preserve energy in numerical simulations. At the end, the traditional 

phenomenological manner of introducing viscous damping effect will be addressed and discussed from the 

perspective of the thesis subject. 

 

Chapter 5 – Microplane material model 

An almost crucial part of the proposed numerical formulation is addressed in the this chapter. Namely, in order 

to numerically simulate the real concrete response for severe impact loading, an appropriate constitutive 

material description is provided in accordance with restrictions laid down by the First and Second Law of 

Thermodynamics. Since the mechanical behavior of concrete implies a very complex microstructural stress 

transfer mechanism, the microplane material model is found to be the most appropriate choice for the 

constitutive definition. A discussion aimed to prove the benefit of the microplane model and the basics 

theoretical assumptions are provided therein. Afterwards, an extensive discussion on the choice of appropriate 

microplane stress and strain tensors is elaborated. The concepts of effective microplane components and the 

microplane discontinuity function are included. Finally, as the rate dependency effect plays an especially 

important role in impact loading, the respective influence is also introduced by means of the energy activation 

theory. 

 

Chapter 6 – Contact mechanics 

The issue of mechanical interactions is introduced at the beginning of the sixth chapter. The chapter begins by 

exposing the respective strong formulation of any contact problem (Signorini problem). Thereafter, the 

discretization of the given governing equations is conducted. The method of Lagrange multipliers is elaborated 

with the purpose of introducing the restriction in the solution space of kinematically admissible displacements. 

Some difficulties related to time integration are also addressed. Furthermore, since the presents of friction plays 

a special importance, its presence is taken into account by application of the phenomenological Coulomb 

friction model. The chapter ends with an iterative solution strategy used for solving the resulting system of 

equations. 

 

Chapter 7 – Contact detection 

An especially important part of the proposed numerical formulation lies in an almost “chirurgical” requirement 

for detection of contact between bodies under collision. Therefore, it seemed reasonable to situate the contact 

detection strategy in a separated chapter. Indeed, in order to accurately capture the frictional behavior on 

contact interfaces, the contact detection phase should give a valid geometrical approximation of the contact 

position (especially important in concrete perforation and penetration problems). It is necessary to point out 

that the accurate computation of contact position is very important since a rough contact detection algorithm 

can make the whole formulation extremely fragile. As a matter of fact, only one wrong contact detection can 
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destroy the physical meaning of the numerical analysis. For this purpose, a detailed discussion of the adopted 

global and local detection strategy is presented in this chapter. 

 

Chapter 8 – Adaptive finite elements 

Since impact loading may lead to a perforation of a body, the periodical finite element mesh adaptations are 

needed. Due to a lot of complexities related to progressive three-dimensional mesh adaptations, this chapter 

should be only viewed as an introduction to future related investigation. Namely, the FE adaptive strategy is 

here discussed in order to replace the poor conditioned mesh with a new one with better properties. However, 

some preliminary computations showed that penetration and perforation problems imply a special requirement 

of robustness of the adopted mesh generation algorithm. Also, since the transfer data operator is expecialy 

influenced by the discretization, an accurate adaptation in the cracking zone ought to be carried out. Namely, 

the quasi-brittle failure represents a challenging task for the transfer operator that should preserve the discrete 

nature of cracking during the mapping procedure of damage parameters from the old Gauss points to the new 

appropriated one. In order to meet such requirement, the new mesh should somehow be in accordance with the 

old mesh. This requirement directly increases the expectation of the mesh generation algorithm. All the 

mentioned are appropriately elaborated in this chapter. 

 

Chapter 9 – Computational aspects 

The ninth chapter arises from the need to validate the proposed formulation. Namely, the chapter retains the 

algorithmic structure of the program code developed according to the previously presented chapters. The 

chapter also contains some opinions and discussions related to possible code parallelization. Namely, note that 

the pretension of high mesh density around zones of special interest will lead to a rapid increase of 

computational time. In particular, since the non-coupled systems of equations are spread over the entire 

program code (vectorial operations); the author opinion is that implementing the OpenMP parallelization 

technique is especially attractive. Such opinion can be appropriately justified by taking into account the 

previously introduced computational phases and taking into account the perspective of their parallelization. 

 

Chapter 10 – Numerical examples 

The penultimate chapter embodies the whole thesis by demonstrating few numerical examples. In order to 

validate the formulation, the numerical results are compared with the experimental data available in the 

literature. Since there are well documented experimental observations of plain concrete beams under impact 

loading, the numerical experiment is performed by simulating three-point bending failure. In particular, the 

transitions between failure modes, attained at different velocity of impact, are observed and discussed. An 

interesting overview of the numerical possibility to investigate the dynamics of fracture is also evidenced. 

Furthermore, it is shown that the propagation of compressive stress wave can be used as an additional argument 

for the validation of the presented but also similar numerical formulation. In all cases, the energy balance 

diagram shows that the sum of mechanical energies is equal to the total energy (isothermal conditions), which 
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confirms that the dynamic equilibrium has been reached. To illustrate the delivered adaptive finite element 

strategy, the chapter ends with a numerical example of penetration of steal anchor into a concrete block. Due to 

the large concentrated displacements in front of the contact/impact zone, the FE mesh is progressively adapted 

to the occurred deformations. However, since the computations related to remeshing and refinement is 

computationally expensive; the given example should be viewed only as a preliminary example which will 

serve to define future research directions.   

 

Chapter 11 – Summary and conclusions 

The last chapter is dedicated to objective and subjective conclusions. The objective part refers to the validation 

of the proposed numerical formulation and the subjective part refers to some conclusions on future expansions 

of the formulation. The weak points of the proposed formulation are also discussed and, according to such 

weak points, some preliminary directions for further activities are given. 
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Chapter 2 
 

 

Continuum preliminaries 
 

2.1 Introduction 
 

The subject of the thesis might be defined as fracturing of monolith concrete mass into discrete fragments as a 

consequence of high-energy impact loading. However, in order to avoid the complex description of 

fragmentation (Pandolfi & Ortiz, 2002), the development of the proposed numerical formulation starts with the 

application of continuum mechanics (Bowen, 2007). By introducing the continuum concept, it is possible to 

define tensor fields as continuous functions of spatial coordinates. In order to make this assumption acceptable, 

the scale of observation must abide by the principle of representative elementary volume (REV) that also sets 

up the limit of continuum mechanics applicability. The principle requires that in all REV cells the property on a 

material macroscopic level should be defined as an average data of the property at the microscopic level. The 

macroscopic material level is defined by a finite number of REV cells, further denoted as continuum point. By 

contrast, material points refer to an infinite number of particles contained in the material structure and denote 

microscopic material level. According to the REV principle, the impact event is monitored on the macroscopic 

scale where all mechanical data are interpreted as average data of material points proximity. Since the subject 
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of the thesis is placed in the framework of continuum mechanics, before proceeding with the development of 

the related numerical description, it seems appropriated to give a basic overview of the continuum theory. 

 

 

2.2 Finite strain 
 

It is reasonable to expect that under high-energy impact the concrete body will suffer finite deformation, 

translation and rotation. In order to numerically simulate the history of deformation, an appropriated and 

accurate description of motion is inevitable. For this purpose, the basic concepts and mathematical relations of 

finite strain kinematic are hereafter summarized. It must be stressed out that the presented relations, valid in 

continuum mechanics theory, are also valid inside FE, as well.  

 

 
 

2.2.1 Kinematics of finite strain 
 

Consider an undeformed continuum body at time t  
+
 occupying a geometric region B  

3
 denoted as 

0
C 

configuration. In order to track the spatial and temporal evolution of mater, a fixed rectangular Cartesian 

coordinate system, with origin O and orthonormal basis ÊJ (2.1), is attributed to position 
0
C (Fig. 2.1). The 

0
C 

configuration is known as reference configuration (reference frame). 

 

   3,2,1whereˆˆˆˆ T 

321  JEEEJE  (2.1) 

 

In addition, suppose a force field that causes the continuum to move and deform. The change in configurations 

is the result of the existing displacement field which is defined by a displacement vector u attributed to each 

point in the continuum. Principally, each displacement vector u={u1,u2,u3}
T
 contains two displacement 

components characterized as rigid-body motion (translation and rotation) and deformation. During the time of 

evolution, 
0
C configuration suffers respective matter transformations governed by the fundamental laws of 

physics. At an arbitrary time t[t0,t1], the space occupied by the continuum body is denoted by 
1
C 

configuration (Fig. 2.1), usually referred to as the current configuration (current frame). This frame is related 

to a coordinate system with origin o and orthonormal basis êi (2.2). 

 

   3,2,1whereˆˆˆˆ T 
321  ieeeie  (2.2) 

 

Before proceeding, it is opportune to discuss some geometrical aspects of the basis vectors in the reference 

(2.1) and current configuration (2.2). First of all, note that due to the orthogonal property of covariant basis ÊJ 

and êi, their dot product with contravariant vectors Ê
J
 and ê

i
 is defined as (Bonet & Wood, 1997): 

 

 ,ˆˆandˆˆ j
i

j
i

J
I

J
I   eeEE  (2.3) 
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where I 
J
 and i 

j
 are components of Kronecker δ (2.4). 
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The metric of the Euclidian space in 
0
C configuration is characterized by the metric tensor E


 (2.5). 

 

 JIIJJI
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

 (2.5) 

 

Similarly, the tensor e


 defines the metric in 
1
C configuration (2.6). 

 

 jiijji
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

 (2.6) 

 

From 
0
C to 

1
C, the coordinate axes rotations are given by the dot product of basis ÊJ and êi as 

 

 ,ˆˆ
iJJiiJ  eE  (2.7) 

 

where αji denote the cosines directions between the reference and current coordinate axes. The coordinate 

system translation, between 
0
C to 

1
C configurations (Fig. 2.1), is given by vector j ={j1,j2,j3}

T
. 

 

 
 

Figure 2.1 Lagrangian kinematics (description of motion from the reference to the current configuration) 

 

In order to illustrate the kinematical aspect of motion (Fig. 2.1), consider a particle P  B in the reference 

configuration with position vector X=XJÊJ={X1,X2,X3}
T
. At the end of the deformation process, the related 

particle p  (B) in 
1
C configuration will be given by position vector x=xiêi={x1,x2,x3}

T
. Now, the particle 

motion can be completely defined by function  as 
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 ,,),( 3 XxXx t  (2.8) 

 

where the mapping restriction is: 

 

 .:)t,( 3
BB  XX  (2.9) 

 

Within the deformation history, for each time t the parametric function  contains the information of successive 

particle P  B position. In such way,  describes the path trajectory of particle P (Fig. 2.1). From the fact that 

two material points cannot occupy the same space at the same time, it can be deduced that two distinct particles 

can have the same position in any configuration and that in the given configuration two distinct points cannot 

be located in the same particle. Consequently, the parametric function  is unique and its inverse function exist 

as 

 

 .,)t,( 31  
XxxX  (2.10) 

 

In other words, the deformation process can not involve tearing and interpenetrations of matter. Therefore, in 

both cases the deformation mapping is defined by an injective function such as the one in Eq. (2.8) and in Eq. 

(2.10). Consequently, the inverse deformation mapping can be defined as (Bowen, 2007): 

 

 .)t,(:1
BB 

XX  (2.11) 

 

Note that the functions (2.8) and (2.10) describe the same motion but under different circumstances. The first 

one (2.8), describes the motion with respect to the so-called material coordinates and characterize material 

particles in movement. Accordantly, the independent variables (X,t) are referred to as material variables. The 

second one (2.10), defines the motion with respect to the spatial coordinates, focusing on a point in space. In 

this case, the independent variables (x,t) are referred to as spatial variables. Following the standard notation in 

continuum mechanics, the material description of motion is denoted as the Lagrangian description, and the 

spatial description, as the Eulerian description. Traditionally, the uppercase letter is used to indicate material 

coordinates and the lowercase latter to indicate the spatial coordinates (Crisfield, 1991; Bonet & Wood, 1997; 

Crisfield, 2000). 

 

Due to the fact that the event under consideration is non-linear, which implies an incremental-iterative solution 

strategy with a considerable number of successive spatial configurations; it should be pointed out that the total 

deformation should not be understood as a superposition of successive deformations between configurations. 

This fact can be supported by imagining the existence of two neighboring mapping function 1 : B → 
3
 and 

2 : B → 
3
. In this case, the total continuum deformation can be obtained as 

 

 .),()),,((),( 1212 tttt XXX    (2.12) 
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It is clear that with a finite number of mapping functions, the total deformation is defined by composition of all 

mapping functions in accordance with the given example (2.12). Obviously, the current deformation state is 

clearly influenced by all previously deformation states. This is especially valid in case of materials like 

concrete that “store” the information of their initial virgin state (path-dependency). 

 

In order to proceed with the kinematical aspects of finite strains, the components of the position vector X, in 

respect to basis ÊJ in the reference configuration, are introduced as 

 

 .ˆ
JJX EX   (2.13) 

 

Analogically, the position x related to basis êi in the current configuration is given as 

 

 .ˆ
iix ex   (2.14) 

 

Note that a special attention should be paid to the selection of coordinate system that will be used for 

measuring the motion of bodies. Namely due to the fact that the constitutive laws are often given in terms of 

material coordinates (Bowen, 2007), the numerical formulation in question should be placed in the framework 

of the Lagrangian description of motion. 

 

When describing the motion in displacement terms, the vector u(X,t)
 
that joins the position of particle P  B in 

the reference configuration with its position p  (B) in the current configuration, can be expressed in terms of 

material coordinates as 

 

 ,ˆ),( iiut eXu   (2.15) 

 

or in terms of spatial coordinates as 

 

 .ˆ),( JJUt ExU   (2.16) 

 

Usually, the displacement field u(X,t) is defined by 

 

 ,or),(),(),( JiJiJiJi Xxbuttt   XXxXbXu  (2.17) 

 

and the displacement field U(x,t) expressed in terms of spatial coordinates by 

 

 .or),(),(),( JiJijJ XxbUttt  xXxxbxU  (2.18) 

 

When using Eq. (2.7), u(X,t) can be related to a spatial coordinate by 

 

 ,JiJi Uu   (2.19) 
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while U(x,t) can be related to material coordinates through 

 

 .iJiJ uU   (2.20) 
 

Knowing that 

 

 ,ˆˆ
JiJi Ee   (2.21) 

 

it can be demonstrate that the field u(X,t) is associated to U(x,t) via 

 

 .),(ˆ)ˆ(ˆ),( tuut JJjiJiii xUEUEeXu    (2.22) 

 

In order to simplify the description of finite strain, it is a usually practice to assume that the coordinate basis ÊJ 

(2.1) and êi (2.2) coincide. In such case, the continuum motion is monitored from a single coordinate system 

(Fig. 2.2) and, as a consequence, the coordinate system translation disappears (j=0). 

 

 
 

Figure 2.2 Lagrangian kinematics (deformation of a material line segment) 

 

With coinciding basis, the dot product in Eq. (2.7) becomes Kronecker δ (2.23). 

 

 JiiJiJ  eE ˆˆ  (2.23) 

 

Therefore, the filed U(x,t) can be rewritten as 

 

 .or),(),( JiJii Xxutt  XXxXU  (2.24) 

 

Similarly, u(x,t) in Eq. (2.17) can be calculated by means of 

 

 .or),(),( JiJiJ XxUtt  xXxxu  (2.25) 
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Since the collision event is obviously time-depended, the rate of change of mechanical quantity should be taken 

into account. For this purpose, assume a tensor or scalar quantity q(X,t) defined in material coordinates X at 

time t. The rate of change is well defined by 

 

 ,),(
tD

Dq
tq X  (2.26) 

 

where the notation D∙/Dt denotes the so-called material time-derivative, and it is commonly introduced to 

distinguish it from the spatial time derivative, traditionally indicated by ∂∙/∂t (Belytschko, Liu & Moran, 2001). 

According to Eq. (2.8), the material time-derivative of q(x,t) is given by definition as (Bonnet & Wood, 1997) 

 

 ,
)),,(()),,((

lim),(
0 t

ttqttttq
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Dq
tq

t 






XX
x


  (2.27) 

 

with the derivative structure: 
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(2.28) 

 

The first term on the RHS denotes the spatial time-derivative and the second one denotes the so-called 

convective influence that describes the change of spatial position of a particle with velocity v(X,t) and material 

coordinates X (2.13). 

 

 

2.2.2 Deformation gradient 
 

Suppose that the movement from 
0
C to 

1
C configuration (Fig. 2.2) causes the continuum to suffer deformation 

that results in change of its shape and/or size. In order to quantify the deformation at an arbitrary particle P  

B, the changes of its neighboring particle Q  B should be considered (Fig. 2.3). 

 

Assume that the line segment dX (connecting the particles P  B and Q  B in reference configuration) and the 

line segment dx (connecting the related particles p  (B) and q  (B) in current configuration) are relatively 

small, making the differential calculus possible. The absolute position of a particle Q in the reference 

configuration is defined by X+dX, and in the current configuration by x+dx. The change in distance 

(stretching) may be measured by expressing the current position x+dx in terms of its reference position X+dX 

and adding the contribution of the respective displacement u (2.29). 

 

 )d(dd XXuXXxx   (2.29) 

 
The line segment dx can be further expressed as 
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,)()d(d)d(dd

d

  
u

XuXXuXXXuXxXx   
(2.30) 

 

and upon introduction of the differential notation du, by 

 

 .ddd uXx   (2.31) 

 

In this Eq. du denotes the relative displacement vector of particle Q in respect to particle P. According to the 

continuum principles (Bowen, 2007), the continuity of the displacement field allows to apply the Taylor series 

expansion around particle P in order determine the value of du in the immediate vicinity of Q. By ignoring 

higher-order terms, u(X+dX) in Eq. (2.30) is approximated as 

 

 .d)(d)()d( XuXuuXuXXu x  (2.32) 

 

Eq. (2.31), that links the line segment dx to the line segment dX, can be rewritten as 

 

 
  .dddddd XuIXuXuXx

F

xx 
  

(2.33) 

 

The term in brackets can be represented in a compact form by introducing the symbol F, such that 

 

 .dd XFx   (2.34) 

 

F denotes a second-order tensor quantity which is traditionally called deformation gradient matrix. It follows 

that F represents the gradient of the mapping function (2.9) that describes the continuum motion from 
0
C to 

1
C 

configuration (2.8). It can be also said that F “lives” in both reference 
0
C and current 

1
C configuration, 

therefore, it is usually referred to as two-point tensor (Zienkiewicz & Taylor, 2002).  

 

As a fundamental quantity in finite deformation analysis, F defines the local deformation around the particle P 

 B by transforming the neighboring infinitesimal line segment dX into the respective line segment dx in 

current configuration (2.35).  
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 (2.35) 

 

By using indicial notation, F can be written as 

 

 ,
J

i
iJ

J

i
iJ

X

u

X

x
F









   (2.36) 

 

from which it can be deduced that the tensor structure contains derivatives dx={x1,x2,x3}
T
 with respect to the 

components of dX={X1,X2,X3}
T
, all of which are arranged in Jacobian format (2.37). 
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Since the mapping (2.11) is unique, the deformation gradient inversion is valid (2.38). 
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or, by expanding tensors components, as 
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Resuming, the gradient deformation matrix F enables the transformation of a material line segment from one 

configuration into another (2.35), appropriate one, and vice versa (2.38). Note that the mapping is linear, so F 

can be interpreted as a linear affine operator. Following the traditional practice in continuum mechanics, Eq. 

(2.35) is usually denoted as push forward operation and Eq. (2.38) as pull back operation. The reciprocal 

operations are possible due to the nonsingular property of F. To illustrate the consequences of this property, 

consider an infinitesimal volume dV in reference configuration and an infinitesimal neighborhood X+dX. The 

volume dV is defined by the parallelepiped product 

 

 ,d)dd(d )3()2()1(
XXX V  (2.41) 

 

or by matrix determinant as: 

 

 .)d|d|d(detd )3()2()1(
XXXV  (2.42) 

 

dX
i 

denotes the vectors on the dV edges with i=1..3. The related volume dv, situated in the corresponding 

spatial neighborhood, is defined with the triple product 

 

 ,d)dd(d )3()2()1(
xxx v  (2.43) 

 

or, analogically to Eq. (2.42), with the following matrix determinant (2.44). 

 

 )d|d|d(detd )3()2()1(
xxxv  (2.44) 

 

According to Eq. (2.34), the next few assortment steps establish the relation between dv and dV (2.45). 
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 )d|d|d(det)d|d|d(detd )3()2()1()3()2()1(

XFXFXFxxxv  
(2.45)  

Vddet)d|d|d(detdet))d|d|d((det )3()2()1()3()2()1(
FXXXFXXXF   

 

It follows that the ration between dv and dV is defined through detF via (Bonet & Wood, 1997) 
 

 .),(),(det
d

d 0




 tJt

V

v
XXF  (2.46) 

 

In this Eq., J denotes the so-called Jacobian of deformation and links the continuum mass density ρ0 to ρ in 

reference and current configuration, respectively. Since φ is injective (2.11), the linear mapping is locally one-

to-one at X in time t, if: 

 

 .0),( tJ X  (2.47) 

 

Eq. (2.47) is usually interpreted as the local invertibility condition, and ensures that the material volume 

element remains positive throughout deformation history. 

 

 

2.2.3 Multiplicative polar decomposition 
 

For a displacement field with inhomogeneous property (Nam, 2004), which means that F does not depend on 

its position on the continuum (i.e. material coordinates X), the deformation from 
0
C to 

1
C is partly deformation 

and partly rigid-body rotation. This is due to the fact that: 

 

 ,jFXx   (2.48) 
 

where the translation vector j stands alone and so has no contribution on the deformation. The information 

about continuum deformations and rigid-body rotations are contained in the deformation gradient matrix F. In 

order to separate the deformation from rigid-body rotation, the polar decomposition theorem ought to be 

introduced. Since F is non-singular and positively definite second-order tensor, the polar decomposition is a 

valid operation and can apply on the basis of the next theorem. 

 
 

For any non-singular second-order tensor F there exist unique positive definite, symmetric second-order tensor 

U and v, and orthogonal second-order tensor R such that F=RU=vR. 

 

 

Like every orthogonal tensor, R has the property 

 

 ,T
IRR   (2.49) 

 

while the symmetric tensors U and v have the well-known characteristics: 

 

 .and TT
vvUU   (2.50) 
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According to standard notations, v denotes the left stretch tensor, U the right stretch tensor while R denotes the 

material rotation tensor. The tensors are linked by means of multiplicative polar decomposition theorem, given 

as (Bonet & Wood, 1997) 

 

 .vRRUF   (2.51) 
 

The problem of decomposition can be now formulated as follows: If for a given F the deformation contained in 

U and the rotation in R must be determined, it is necessary to separate U or v (or even R) from the known F. 

The problem can be solved by introducing the next lemma. 

 

 

To any symmetric, positive definite second-order tensor T there correspond a unique symmetric, positive 

definite second-order tensor U such that U
2
=T. 

 

 

According to lemma, U
2
 can be related to F

T
F due to the fact that such product generates a positive definite 

second-order tensor. The tensor product will be attributed to a new tensor C (2.52), which will be appropriately 

discussed later on. 

 

 CFFRURUUUUUU  TTTT2
 (2.52) 

 

The problem is now reduced to determining the square root of U
2
 since it is related to R through F (2.53). 

 

 FFCURUF
Twhere   (2.53) 

 

According to the spectral decomposition theorem, the square root of C can be calculated by the eigenprojection 

procedure (Hirota, 2002). For the sake of introducing the mentioned procedure, suppose that λ
2

1, λ
2

2 and λ
2
3 

indicate the eigenvalues of C, and [ N1 N2 N3 ] the related eigenvectors. In such case, the following equality is 

valid (2.54). 

 

    

















2
3

2
2

2
1

321321

λ00

0λ0

00λ

NNNNNNC  (2.54) 

 

Being C and U
2
 symmetric and positively defined tensors, and being λi positive real numbers, the tensors can 

be rewritten by adopting the spectral decomposition theorem as (Marsden & Hughes, 1983): 

 

 .λandλ

3

1

22

3

1

2
ii

i

iii

i

i NNUNNC  


 (2.55) 

 
Furthermore, the next few assortment steps (2.56) demonstrate that the tensors C and U

2
 have the same 

stretching directions Ni (Hirota, 2002). 
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i
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ijji NNNN  
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  

 

Since the tensors basis do not change, it is clear that λi can be interpreted as principal stretches and Ni as 

principal stretches direction of the unknown tensor U (2.52). It follows that U can be calculated by performing 

the spectral decomposition of C (2.57). 

 

 ii

i

iiiii

i

NNCNNU  


3

1

*****

3

1

*
i λandλλwhereλ  (2.57) 

 

Resuming, the multiplicative polar decomposition of F is obtained by performing the spectral decomposition of 

C, where the calculated eigenvalues of C represent squared eigenvalues of U. As it was illustrated (2.56), the 

principal stretches Ni of U and C are the same. The same conclusion can be reached by nothing that 

(Brodersen, 2004) 

 

 ,T2
FFv   (2.58) 

 

which is an alternative to (2.52). From the geometrical aspect, the polar decomposition can be interpreted as 

follows. According to Eq. (2.45), the material line segment dX in the reference configuration is transformed 

into a line segment dx in the current configuration by linear affine mapping (2.59).  

 

 )d(dd XURXFx   (2.59) 

 

The multiplication UdX stretches dX by the factor λi in the direction of the principal axis Ni, and then the 

second multiplication rotates the material line segment dX to its current configuration. However, note that 

(2.60) is also valid. 

 

 )d(dd XRvXFx   (2.60) 

 

In this case, the material line segment dX is first rotated by R and then stretched by v, reaching the same 

current configuration dx, as defined by Eq. (2.59). A conclusion may be drawn: the current configuration will 

be always the same regardless of which one is applied first, the rigid-body rotation or deformation. 
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2.2.4 Strain tensors 
 

Suppose a continuum body immersed in an inhomogeneous displacement field u. Under this circumstance, the 

continuum body suffers change in shape and/or volume. In order to quantify the deformation, the deformation 

tensor should provide information on length alteration of the infinitesimal material line segment with respect to 

the difference in its material and spatial configuration. Resume, the deformation gradient matrix (2.37) 

performs the mapping of the material line segment form the given configuration to the neighboring one (2.35). 

Obviously, the rigid-body rotation R present in F is not a measure of deformation. As a consequence, the 

crucial requirement for any deformation tensor is that it must be able to isolate the pure deformation and to be 

immune to rigid-body rotation. Such requirement implies that the tensor should be a priori symmetric. 

 

 

2.2.4.1   Green-Lagrangian strain tensor 
 

A measure of deformation is obviously contained in U or v. In order to isolate the deformation from rigid-body 

rotation, a proper operation on F should be carried out. Indeed, since the material rotation tensor R is 

incorporated in F, and its presence is undesirable, its influence should be removed. For this purpose, note that 

the tensor orthogonal property (2.49) indicates that the R followed by its transpose, or vice versa, defines the 

identity matrix I. It can be deduced that the rigid-body rotation can be excluded from F by simply multiplying 

F by its transpose F
T
. The operation will produce a symmetric tensor that is here required. The abovementioned 

tensor (2.52) is the so-called right Cauchy-Green deformation tensor C (2.61). Mention that C can be also 

obtained by squaring U (2.52). 

 

 
J

k

I

k
kJkIIJ

X

x

X

x
FFC








 or2TT UUUFFC  (2.61) 

 

Note that six independent deformation components are referred to as reference configuration (material 

coordinates) and can be determined from the non-interdependent nine components of F. Note also that the 

backward operation (from the given tensor C to F) is not possible. A similar deformation tensor can be 

obtained by performing the inverse multiplication of the abovementioned (2.61). In this case, the generated 

tensor will be the left Cauchy-Green deformation tensor b (2.62), also referred to as left stretch tensor v. 

 

 
K

j

K

i
jKiKij

X

x

X

x
FFb








 or2TT

vvvFFb  (2.62) 

 

The tensor components are obtained in respect to the current configuration (spatial coordinates) and it is why 

the backward operation from the given tensor b to tensor F is not possible. In both cases, Eq. (2.61) and Eq. 

(2.62), the deformation tensors represent a link between the squared line segment dl in the current configuration 
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and the square of its related line segment dL in the reference configuration. In order to measure the 

deformation, the square of the line segment in the current configuration is introduced as (Lehmann, 2008) 

 

 .dd)d(ordddd)d( 22
JIIJJI

J

k

I

k
kk XXClXX

X

x

X

x
xxl 








  (2.63) 

 

On the other hand, the square of the line segment dL in the reference configuration is given by 

 

 .dd)d(ordddd)d( 122
jiijji

j

K

i

K
KK xxbLxx

x

X

x

X
XXL 








  (2.64) 

 

Before proceeding, let’s recapitulate. The deformation tensors (2.61) and (2.62) represent in what way the 

square of the line segment is linked between its current and reference configuration. In order to define the strain 

measure, the change in length of the square line segment should be examined. So, in the reference 

configuration the length of the vector dX may be defined as the dot product with itself (2.65). 

 

 XXdd)d( 2L  (2.65) 

 

Analogically, the length of the vector dx will be 

 

 .dd)d( 2
xxl  (2.66) 

 

As the interest is here paid on the difference between them, the following Eq. ought to be introduced (2.67). 

 

 iiii xxXXlL dddd)d()d( 22   (2.67) 

 

Suppose that the measures of material squeezing (2.67) is defined as (Bonet & Wood, 1997) 

 

 ,dd2)d()d( 22
jiji xExlL   (2.68) 

 

where Eij denotes an unknown strain tensor. Eq. (2.67) can be rewritten from Eq. (2.68) as 

 

 ,dd2dddd jijiiijkjkii xExXXXFFX   (2.69) 

 

and, since dXiFki=dxk and FkjdXj=dxk, after replacing the index k with the index i, the following equality can be 

obtained (2.70). 

 

 jijiiijkjkii xxxxXFFX dddddd   (2.70) 

 

The strain definition in Eq. (2.69) can now be rewritten as 

 

 ,dd2d)(ddddd jijijijkjkiijijijkjkii xExxFFxxxxFFx    (2.71) 

 

which directly leads to tensor E expressed in terms of deformation gradient components (2.72). 
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 )(
2

1
ijkjkiij FFE   (2.72) 

 

The derived second order symmetric tensor is the Green-Lagrangian strain tensor E which gives the 

information about stretching of the material line segment dL, regardless of the line segment rigid-body rotation. 

In accordance with Eq. (2.72), the components of E are given as 
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 (2.73) 

 

Note that for infinitesimal small strains, for which the reference and current configuration almost coincide, the 

components of Green-Lagrangian strain tensor E are reduced to the “naïve” engineering strain definition ε. It 

should be stressed out that in the proposed numerical formulation the Green-Lagrangian strain tensor plays a 

crucial role due to the fact that its presence in the adopted constitutive description is inevitable. The statement 

will be properly supported later on (Chapter 5 – 5.4 Microplane strain tensor). 

 

 

2.2.4.2   Material strain tensors 
 

As the continuum under consideration is of nonpolar type (Boltzmann continuum), a family of strain tensors 

E
(m)

 can be retrieved from the general strain notation given as (Başar & Weichert, 2000) 
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where m represents an arbitrary positive integer number. Depending on m, Eq. (2.74) generates a strain tensors 

universally denoted by E
(m)

. As the strain measures obtained in this way are related to right stretch tensor U 

(which is attributed to the reference configuration), their measure will refer to the continuum state in the 

material configuration. A set of corresponding strain tensors is presented in (2.75). 

 

 

)(5.0:2:sorstrain ten Lagange-Green 2)2(
IUE  Em  

(2.75) 

 

      :1:sorstrain ten materialBiot )1(
IUE  Bm  

 

           ln:0:sorstrain ten material Henck )0(
UE  Hmy  

 

The same sets of tensors can be obtained by the generalized form of Eq. (2.74) given as  
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 (2.76) 

 

In this case, m denotes an arbitrary positive or negative integer number, λi represents the eigenvalues of U (i.e. 

principal stretches) while Ni represents eigenvectors of U (i.e. principal stretching directions).  

 

 

2.2.4.3  Spatial strain tensors 
 

A family of spatial strain tensors can be also introduced by (Başar & Weichert, 2000) 
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with m as a negative integer number. A set of corresponding strain tensors is presented in (2.78). 
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Since the given strain measures are related to the left stretch tensor v they represent the strains in the spatial 

configuration. The same sets of tensors can be obtained by the generalized form of Eq. (2.77) given as 
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 (2.79) 

 

where λi represents the eigenvalues of v and Ni  the related eigenvectors. 

 

 

2.2.4.4  Velocity gradient tensor 
 

By definition, the velocity gradient tensor l is the partial derivative of the velocity field v(X,t) with respect to 

the spatial coordinates (2.80). Therefore, l will describe the velocity of transition between the material and 

spatial continuum configurations (Bonet & Wood, 1997). 
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It is also known that l can be retrieved by manipulation of the time-derivative of F (2.81). 
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2.2.4.5  Rate-of-deformation 
 

In most cases, but especially under severe impact loading, concrete failure takes place in extremely short period 

of time (Bentur, Mindess & Banthia, 1986). Consequently, the temporal change in deformation, from the initial 

standstill configuration throughout the deformation history to the finial standstill configuration, is considerable. 

This fact would not be of any interest if concrete would demonstrate no sensitivity to the rate-of-deformation. 

However, the reality is exactly the opposite. The experiment confirmed that at loading rate out of static or 

quasi-static range (impact load); the concrete mechanical behavior is especially influenced by the rate-of-

deformation (Sukontasukkul & Mindess, 2003). Accordantly, the constitutive model used for numerical 

simulation should be sensitive on a rate-of-deformation. A proper discussion on that subject will be given later. 

Before that, the rate-of-deformation should be introduced. 

 

The rate-of-deformation tensor can be retrieved by taking the time-derivative of the scalar product 

 

 ,dddd 2121 XCXxx   (2.82) 

 

where the line segments FdX1 and FdX2, in the reference configuration are related to line segments dx1 and dx2 

in the current configuration, respectively. Given that E=(1/2)(C-I), the time-derivative of Eq. (2.82) reads: 
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By introducing dX1=F
-1

dx1 and dX2=F
-1

dx2 into the former expression, it can be rewritten as 
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where the term in brackets represents the rate-of-deformation tensor d which is the symmetric part of the 

velocity gradient tensor l (2.85). 
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The antisymmetric (skew-symmetric) part of l is known as spin tensor w given as (Brodersen, 2004) 

 

    ,
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T
ijjiij vvwskew  lllw  (2.86) 

 

and it describes the rotation of a material particle around a certain point. Concluding, the rate-of-deformation 

tensor d measures the rate of change of a square material line segment dx. It should be pointed out that the time 

integral of d does not vanish in the reversible cycle of deformation and, as a consequence, d is path-depended 

(Belytschko, Liu & Moran, 2001). 
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2.2.4.6  Tensors and objectivity 
 

The meaning of objective tensor (frame-indifference principle) represents a fundamental concept in continuum 

mechanics and has a particular importance in development of material constitutive models (Bowen, 2007). 

Namely, it is clear that the constitutive law should not depend on the choice of the place from where the 

continuum movement is observed. In order to illustrate the tensor objectivity concept, consider the definition: 

Any second order tensor T is objective only if its transformation from the current configuration to the 

configuration where it is denoted by T
*
 is in conformity with 

 

 ,T*
RTRT   (2.87) 

 

where R represents the previously introduced material rotation tensor (Bonet & Wood, 1997). 

 

In order to dispose with an invariant type of the constitutive description, the objectivity requirement must be 

met with regard to any further adapted strain and stress tensor. According to the rule in Eq. (2.87), any second-

order tensor can be tested for objectivity (Lai, Rubin & Krempl, 1993). At the moment, mention that the Green-

Lagrangian strain tensor E, and the rate of deformation tensor d have this key tensor property. Nevertheless, in 

the proposed numerical formulation both quantities have special importance (Chapter 5 – 5.4 Microplane 

strain tensor). 

 

 

2.2.5 Cauchy’s stress theory 
 

Before moving onto the next topic regarding conjugate law, it seems opportune to introduce some aspects of 

the Cauchy’s stress theory (Brodersen, 2004). For this purpose, Fig. 2.3 illustrates the continuum body B that in 

time t=0 occupies the geometric region Ω0 bounded with the boundary ∂Ω0. Suppose that the body B is 

influenced by volume and surface forces that cause the continuum to move and deform. Furthermore, following 

the academic strategy of introducing the concept of stresses, the body in movement is truncate in two sections 

(Fig. 2.3). It is assumed that certain internal forces, that substitute the missing part of the continuum, exist on 

the generated surfaces in order to keep force balance. Furthermore, imagine an elementary surface ds  ∂Ω on 

the cross section in the current continuum configuration. The direction of ds is defined through the normal unit 

vector n. On the other hand, in the reference configuration, dS  ∂Ω0 denotes an elementary surface with its 

normal unit vector N. 

 

The df part of the total force f, that acts on the continuum cross sections, can be related to the elementary 

surfaces ds and dS. The Cauchy postulated says that the relation in Eq. (2.88) is valid for each elementary 

surface in the continuums body (Brodersen, 2004). 

 

 Ss ddd Ttf   (2.88) 
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Figure 2.3 Stress vectors in the reference and current configuration 
 

In this expression t denotes the Cauchy traction vector and T the 1
st
 Piola-Kirchoff traction vector. In the 

Cauchy’s theorem of stresses, there exists the stress tensors σ and P, linearly with n and N, and valid for 

(Truesdell & Noll, 1992): 

 

 
,;  ),(),,( jiji nttt  nxσnxt  

(2.89)  

.;),(),,( JiJi NPTtt  NXPNXT  

 

The stress tensor σ denotes a symmetric tensor, called Cauchy stress tensor (related to the reference 

configuration) and P represents the non-symmetric 1
st
 Piola-Kirchhoff stress tensor (PK1). PK1 is a dual type 

tensor due to the fact that the index i refer to the spatial coordinates while the other index J refers to the 

material coordinates. Note that if the continuum body rotates, without generating change in stresses, PK1 and σ 

will vary with material orientation. In order to examine the relation between σ and P, the Nanson’s formula, 

which links material line segments dl and dL, is introduced (2.90). 

 

 LJl dd T F  (2.90) 

 

Introducing the line segments dl and dL into Eq. (2.89), so that: 
 

 ,),,(),,( NXTnxt tt   (2.91a) 
 

 ,d),(d),( Ltlt NXPnxσ   (2.91b) 
 

 ,d),(d),( Ltlt XPxσ   (2.91c) 
 

and by substituting Eq. (2.91c) in Eq. (2.90), it can be obtained that 
 

 ,TT
FPσ

 J  (2.92) 

 

for the Cauchy stress tensor σ, and 
 

 ,T
FσP J  (2.93) 
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for the 1
st
 Piola-Kirchhoff stress tensor P (Brodersen, 2004). Note that the term Jσ on the left side of the former 

expression is usually referred to as Kirchhoff stress sensor τ. In case of small deformations (small 

displacements), τ is reduced to σ (2.93) since J ≈ 1 (2.94). 

 

 σJτ  (2.94) 
 

Note that P is asymmetric and as such not suitable for any conventional constitutive model. However, a 

quantity called 2
nd

 Piola-Kirchoff stress tensor (PK2) and denoted by S is defined in material coordinates and is 

suitable for the formulation of constitutive equations. Namely, PK1 is a dual type of tensor that owns its 

asymmetric property to tensor indexes relation with different configurations. On the other hand, PK2 corrects 

this impropriety by the pull-back operation (2.38) in the contravariant tensor field τ (2.94) giving 

 

 ,T1  FσFJS  (2.95) 

 

which also illustrates the direct relation between S and σ. From the aspect of the well-known stress definition, 

one can say that the Cauchy stress tensor σ associates forces with the surface area in the current configuration. 

Due to its physical meaning, this property makes σ also known as the true stress tensor. On the other hand, 

PK1 relates the forces in the current configuration with the areas in the reference configuration. It is evident 

that in this case a physical meaning is missing. Similarly, PK2 relates the force in the reference configuration 

with a surface area in the current configuration (Ruigomez, 1985). In this case the physical meaning is also 

hard to interpret but, as being a symmetric tensor, its benefit is evident in the formulation of material 

constitutive models. 

 

Finally, the so called back-rotated Cauchy stress tensor s should be also introduced since its presence in the 

proposed numerical formulation is inevitable. The stress measure is defined by Eq. (2.96). 

 

 RσRTs  (2.96) 

 

The back-rotated Cauchy stress tensor s is linked to an imaginary intermediate configuration, where is defined 

by stretching U before the rotation R is applied. In other words, s is expressed in terms of components in a 

coordinate system that follows the continuum motion (Belytschko, Liu & Moran, 2001). Its importance in the 

proposed numerical formulation will be discussed later (Chapter 5 – 5.3 Microplane stress tensor). 

 

Before proceeding, it is opportune to introduce the traditional Voigt notation (Zienkiewicz & Taylor, 2002); 

adopted to simplify the equations delivered in the framework of FE. Namely, since the tensors under 

consideration are symmetric tensors, the six independed components are rewritten in compact form by 

regrouping them as is illustrated in (2.97). 

 

  T 
132312332211

Voight   σσ  (2.97) 
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2.2.6 Conjugate law 
 

Generally, the internal system energy can be always expressed in terms of system internal state variables. For 

continuum deformation analysis, the internal energy can be defined as a product of internal force with related 

displacements. Therefore, force and displacement form work-conjugate pair. To discuss the work-conjugacy 

importance, resume that the displacement field is related to external loading through a system of fifteen 

differential equations, where six of them are attributed to the material constitutive model. Furthermore, assume 

that the constitutive equations are expressed in terms of stress and strain. In order to preserve the system 

energy, the stress tensor (force norm at the elementary surface) and the adopted strain tensor should be work-

conjugate (Bonet & Wood, 1997). Only in this way an eventual energy perturbation, related to a material 

constitutive model, can be avoided. 

 

To illustrate the principle, imagine an elementary volume under compression. In this case, the pressure force 

can be generalized by the stress tensors σ while the change in volume by the volume V multiplied with the 

strain tensor ε. The related mechanical work dw, as result of a stress-induced infinitesimal strain dε, can be 

calculated as 

 

 ,dd ijijVw   (2.98) 

 

where σ and ε represent a work-conjugate pair (2.99). 

 

 εσ  
 conjugatework 

 (2.99) 

 

Generalizing, for any strain measure E
(m)

, the related work-conjugate stress tensor T
(m)

 should be chosen in the 

way that the stress power per unit volume complies with (Lubarda, 1999) 

 

     ,:: dτmm
ET   (2.100) 

 

in which τ (2.94) and d (2.85) represent the earlier introduced tensors. According to the former equality, the 

following, here important, stress-strain conjugate pairs (2.101) are retrieved by changing the value of m in Eq. 

(2.74). 

 

 

Hs

ES 

 

 

conjugatework 

 conjugatework 

J

 (2.101) 

 

It should be mentioned that the use of a non-conjugated stress-strain pair is sometimes inevitable. In fact, to 

numerically simulate complex material behavior, one may need to decide whether to preserve the work-

conjugacy or to retain tensors pairs that does not fit well in Eq. (2.100) but poses physical meaning which is 

obviously an important requirement. The mentioned reflects the here present compromise situation that will be 

discussed later on (Chapter 5 – 5.4 Microplane strain tensor). 
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2.2.7 Generalized Hooke’s law 
 

It is well known that the Hooke’s law of elasticity defines the relationship between stress and strain in the 

displacement range where the σ-ε relationship is linear. Furthermore, as a prerequisite for linearity, the strain 

energy function W should be homogeneous and quadratic function of strain components with coefficients that 

increase proportionally with the increase of deformation. Particularly, W(ε)≥0, and for no continuum 

deformation, W(I)=0. In such case, W can be written for Hooke material as (Lehmann, 2008) 

 

 .3,2,1,,,where
2

1
 lkjiW klijijkl C  (2.102) 

 

The first derivation respect to strains will lead to the proportionality of σ respect to ε as 

 

 ,
ij

ij

W







  (2.103) 

 

while the second derivative will give the fourth-order stiffness tensor Cijkl with 81 components (2.104). 

 

 
kjij

ijkl

W

 




2

C  (2.104) 

 

The linear σ-ε constitutive relationship is then given by 

 

 .klijklij  C  (2.105) 

 

Since the order of differentiation should not matter, the Eq. (2.106) holds. 

 

 klijijkl CC   (2.106) 

 

According to σij = σji, Eq. (2.107) is also valid. 

 

 ijkljikl CC   (2.107) 

 

Finally, εkl = εlk so Eq. (2.108) is also true. 

 

 ijlkijkl CC   (2.108) 

 

All these symmetries reduce the final number of independent components of Cij to 21. For a general anisotropic 

material, σ and ε can be now related in compact form by rewriting the stress and strain tensors in a vectorial 

notation (Voigt notation). In this case, the obtained system of Eq. represents the generalized Hooke’s law of 

elasticity (2.109). 
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(2.109) 

 

Nevertheless, the former system of Eq. is valid only for displacement gradients such as (Lehmann, 2008): 

 

 ,uuu j,il,kj,i   (2.110) 

 

making the approximation uij ≈ ∂ui /∂Xj valid and enabling to write 

 

 .)(
2

1
,, ijjiijij uuE   (2.111) 

 

In this case, 
0
C and 

1
C configurations almost coincide. However, observe that for any magnitude of 

deformation, Eq. (2.111) is over-determined. In fact, 6 strain components are related to 3 displacement 

components. In order to obtain a unique solution, an additional condition is imposed on the strain components. 

The linear strain compatibility equations (2.112) provide the needed restriction. 
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(2.112) 
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Before proceeding, mention that the principles contained in Eq. (2.103) and Eq. (2.104) hold for non-linear 

material, as well. 

 

 

2.2.8 Hyperelasticity 
 

As already mentioned (Chapter 1 – 1.1 Motivation), the main purpose of the thesis is to develop a numerical 

formulation for concrete failure under high-energy impact loading. With the aim of validating such 

formulation, the proposed numerical description is translated into a program code which offers the possibility 

to investigate different types of collision (at low but especially at high loading rates). As far as the area of high-

energy collision is concerned, including large deformation in the description of occasionally elastic solids 

seems logical. For this purpose, and since the Hooke’s law is valid only for the linear σ-ε relationship (2.110), 

it is appropriate to introduce a briefly overview of material hyperelasticity. 
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According to the general definition of hyperelasticity, the strain energy function W depends on F via 

 

 ,)(W 


 FdF P  
(2.113) 

 

where, for the given deformation path Г, W has the property that W(I)=0, W(F)≥0 and (Brodersen, 2004) 

 

 .0)det(if)(and)det(if)(  FFFF WW  (2.114) 
 

Eq. (2.114) denotes that an infinite amount of energy is required to infinitely expand the body and to compress 

it to zero volume. Due to large elastic deformations, note that W should be also objective. This means that if the 

reference frame rotates, W must be transformed by the same rotation (2.115).  

 

 )()( T
FRRFR WW   (2.115) 

 

According to Eq. (2.49), the former expression can be rewritten as 

 

 ,)()( FRF WW   (2.116) 

 

that confirms the objectivity of W. However, for isotropic material, Eq. (2.117) should be also valid. 

  

 )()( FFR WW   (2.117) 
 

Furthermore, according to Eq. (2.103), P in Eq. (2.113) can be expressed as 

 

 .
)(

F

F






W
P  (2.118) 

 

The objectivity criterion implies that W depends implicitly on F through C (Brodersen, 2004). Hence 

 

 ,
)()(

2
E

S










F

C

F WW
 (2.119) 

 

where W is expressed as a function of E which is work-conjugated to S (2.101). To reproduce the linear elastic 

response, the character of W mast be appropriately defined. The so-called Saint Venant-Kirchhoff model has 

been adopted for this purpose (Bonet & Wood, 1997). The model is just an extension of the linear model to 

non-linear regime and it is formulated as 

 

 ,)(
2

)(W 2 2
EEE trtr 


  (2.120) 

 

where λ and μ are Lamé constants related to Young’s modules E and Poisson ration υ by 

 

 ,
)1(2

and
)21()1( 













EE
 (2.121) 

 

since it is assumed that the material is isotropic (2.117).  

http://en.wikipedia.org/wiki/Lame_constants
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Note that W (2.157) describes thermodynamic isothermal conditions with entropy production reduced to zero. 

Consequently, it represents a perfect (ideal) elastic material for which the components of C (2.109) are given 

according to Eq. (2.104) as 

 

 .2
22

klijklij

ijkl
EE

W

CC

W
C









  (2.122) 

 

To conclude the constitutive description, the S-E relationship in the Saint Venant-Kirchhoff model is given by 

(Bonet & Wood, 1997) 

 

 .2)(tr EES   I  (2.123) 
 

According to the usual notations, tr(∙) in Eq. (2.120) and Eq. (2.123) represents the trace of a tensor. It ought to 

be pointed out that (2.120) is polyconvex type of function and so does not represent a reasonable criterion for 

materials under compression. Indeed, if defF is equals to zero, which reflects total implosion of an elementary 

volume, the components of E will be equal to -0.5I (see Eq. 2.72). 

 

 

2.3 Conservation laws 
 

It is well known that every physical event is governed by the fundamental conservation laws and 

thermodynamic restrictions. Consequently, every numerical formulation delivered for the purpose of simulating 

physical events must preserve the quantity prescribed by the conservation laws. For this reason, the 

conservation laws are summarized as follow. 

 

 

2.3.1 Conservation of mass 
 

According to the basic principles of continuum mechanics, it is assumed that the mass m is continuous 

functions of spatial coordinates in the volume V. In this case, the scalar values m and V can be related through 

the density definition as 

 

 ,
d

d
lim

0d V

m

V
  (2.124) 

 

where dm denotes the mass of the infinitesimal volume dV. The total mass is simply given by 

 

 ,d
V

Vm   
(2.125) 

 

and in order to preserve the continuum mass, the material time-derivative of Eq. (2.125) should vanish 

(Dm/Dt=0). According to the previously introduced (2.2.1 Kinematics of finite strain), m can be expressed in 

terms of Lagrangian (m
*
) and Eulerian (m) coordinates (2.126). 
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The material time-derivative of m
*
 will lead to 
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Thus, the continuum mass will be preserved if (2.128) is true. 

 

 0
),(*






t

tX
 (2.128) 

 

The aforesaid is obvious since the material in the Lagrangian control volume is constant. As the density ρ
*
(X,t) 

depends on the Lagrangian coordinates X, its value will not change even if the coordinate system does. Note 

that it is opposite to the Eulerian description of motion. From the Eulerian point of view, the material time-

derivative of the second integral in Eq. (2.126) produces 
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 (2.129) 

 

where the first integral is calculated according to the volume Vx in time t. In fact, due to the continuum 

deformation, the boundary S of the initial domain Vx will reshape to become a new boundary S
t
. If the new 

volume is denoted by V+ΔV, the former integral can be rewritten as 
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where the domain of integration ΔV in the second integral represents the volume swept out by particles on the 

surface S with velocity v(x,t). For this integral the infinitesimal volume dx is equal to v · n dS dt where n 

denotes the unit normal outward vector on the elementary surface dS. On the other hand, the second integral 

can be converted to a surface integral giving 
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(2.131) 

 

from where the relation (2.132) can be obtained by applying the divergence theorem. 
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The former Eq. is usually called equation of continuity and it ensures the mass conservation by providing that 

the material time-derivative of m is zero (in the Eulerian frame). 

 

 

2.3.2 Conservation of linear momentum 
 

From the 2
st
 Newton’s law, the linear momentum changes only if a force F acts on a body (2.133). 

 

 maF   (2.133) 
 

For a body immersed in a gravity field, the weight w is a vector function related to body density as 

 

 ,bw   (2.134) 
 

in which b denotes the vector of volume forces. Therefore, for a given surface traction t on the elementary 

surface dS, Eq. (2.133) can be rewritten as 

 

 
.dd

)()(

 

tStV

SVF tb  
(2.135) 

 

By using Eq. (2.89), the former expression can be further restated as 

 

 
.dd

)(

T

)(
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tStV

SVF nσb  
(2.136) 

 

If the following is introduced (Brodersen, 2004) 
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V
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D
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(2.137) 

 

Eq. (2.133) can be expanded in terms of stresses on dS, producing: 

 

 
.ddd

)()(

T
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tVtStV

V
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D
SV v nσb  

(2.138) 

 

In order to satisfy the equilibrium condition, Eq. (2.139) must be true. 

 

 
0dd

)(

T

)(

 
tStV

SV nσb  
(2.139) 

 

The Gauss divergence theorem applied to the 2
st
 integral of the former Eq. will give 
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.dd)(dd

)()()(

V
Dt

D
VSV

VtVtStV

 
v

 σbnσb  
(2.140) 

 

Finally, the given volume integral will be true if (Belytschko, Liu & Moran, 2001) 

 

 ,or , ijiji ab   aσb  (2.141) 

 

where a denotes the body acceleration. If a=0, the former Eq. represent the equilibrium equations. 

 

 

2.3.3 Conservation of angular momentum 
 

According to classical dynamics, the rate of change of angular momentum L is directly related to the torque T 

via 

 

 .
d

d

t

L
T   (2.142) 

 

As is well known, T is zero for a body in equilibrium. On the basis of the definition of torque, the conservation 

of angular momentum can be expressed by expanding the concept in Eq. (2.139) over the entire body (2.143). 

 

   

)( )(

0dd

tV tS

SVT nσrbr   
(2.143) 

 

By applying the divergence theorem to the second integral in Eq. (2.186), and by generalizing (2.143) in 

respect to local infinitesimal angular momentum, Eq. (2.143) can be arranged as follows (2.144): 

 

 

,dd

)()(

SnxVbxT ikl

tS

jijkk

tV

jijk     

(2.144) 

 

,d)( ,

)(

VxbxT lkljijkk

tV

jijk     

 

,d))((

)(

, 

tV

lkljkjijk VxbxT   

 

,d)(

)(

,, VxxbxT

tV

lkljklljkjijk    

 

  .d)(

)(

,, VxbxT

tV

klljlklkjijk    

 

Since xj,l=δjl and ρbk+σkl,l=0, the last expression together with the equilibrium condition T=0 lead to 
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.00d

)(

 klijk

tV

kjijk V   
(2.145) 

 

Then, few assortment operations like: 

 

 

,0kjijklmi   

(2.146) 

 

,0kjjkilmi   
 

,0)(  kjmjlkmklj   
 

,0 lmml   

 

will finally leads to 
 

 ,or T
σσ  lmml   (2.147) 

 

which ensures the preservation of angular momentum, demanding the symmetry of stress tensor.  

 

 

2.3.4 Conservation of energy 
 

The energy conservation law will be presented by taking into account only mechanical energies in the system. 

Therefore, the kinetic energy K of a moving continuum can be calculated as 

 

 ,d
2

1
)( 

V

VtK vv  
(2.148) 

 

and the work P done by volume and surfaces forces as 

 

 .dd)(  

VS

VStP vbvt   
(2.149) 

 

The change in kinetic energy can be traced through the material time-derivative as 

 

 .dd
)(

V
Dt

Dv
vρV

Dt

D

Dt

tDK

V

i
i

V

 
v

v  
(2.150) 

 

According to Eq. (2.141), the former Eq. can be rewritten as 

 

 ,d)(
)(

, 

V

ijiji Vbv
Dt

tDK
  

(2.151) 

 

and since (viσij),j=viσij,j+vi,jσi, as 
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   .d)(
)(

,, Vvbvv
Dt

tDK

V

ijjiiijiji    
(2.152) 

 

By adopting the divergence theorem, the upper Eq. can be further restated as 

 

 ,ddd
)(

  

S V

ijijii

V

ii VDSvtVbv
Dt

tDK
  

(2.153) 

 

where Dij represents the symmetric part of vi,j. By introducing the notations: 

 

 ,)(whered , jiij

V

ijij vsymDVDS    
(2.154) 

 

it can be deduced that the mechanical power P, produced by external forces (2.149), is related to the change of 

kinetic energy (2.148) and internal energy S. The relations are defined by (DK/Dt)+S=P, and denotes the 

conservation of mechanical energies in the system. 

 

 

2.4 Thermodynamic restrictions 
 

In order to discuss the thermodynamic restriction imposed by the Second Law of Thermodynamics (entropy 

production), the multiplicative decomposition of F (2.37) is introduced by 

 

 ,peFFF   (2.155) 

 

where Fe denotes the elastic part of deformation (reversible part) and Fp the plastic part of deformation 

(irreversible part). In this case, the continuum deformation can be interpreted as follows. According to 

 

 ,d)d(d pepe xFXFFXF   (2.156) 

 

instead of moving directly towards the current configuration, the continuum moves across an imaginary 

intermediate configuration (composed only by plastic strain) before it reach the current configuration. 

Congruently, the additive decomposition of strains is valid (2.157). 

 

 pe    (2.157) 

 

To illustrate the consequences of thermodynamic restriction, assume that the material constitutive relations are 

given in terms of τ. The yield function is then expressed as a function of τ (2.94) and q as material hardening 

variable (Bonet & Wood, 1997). The variables τ and q represent the state variables and define the yield 

function Eye as 

 

   .0),(|),(  qq ττ fEye  (2.158) 
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Note that due to material isotropy, the yield function (2.158) does not depend on the orientation of τ. In this 

case, the Helmholtz free energy function ψ (Nguyen, 2005) is given by 
 

 ,),(ψψ ξbe  (2.159) 

 

and is a function of elastic part of the left Cauchy-Green deformation tensor  

 

 ,T
eee FFb   (2.160) 

 

and the internal variable ξ, which is work conjugated to q (2.161). 

 

 
ξ

q





ψ
 (2.161) 

 

In this case, the free energy function ψ depends only on Fe and be. By ignoring the contributions of heat energy, 

the dissipation function D can be expressed as 

 

 ,0),(ψ
d

d
:  ξbd e

t
D τ  (2.162) 

 

and describe the principle of irrecoverable system energy due to plastic deformations. To obtain the time 

derivative of ψ, note that be lies in the intermediate configuration. For this reason, it should be transform 

according to Eq. (2.62) in the following manner (2.163). 

 

 
T1TT1TT1T )()()( FCFFFFFFFFFFFb

  pppppeee  (2.163) 

 

The time derivative of be can be now calculated as 

 

 ,)(
d

d T1T1T1
FCFFCFFCFb

  pppe
t

  (2.164) 

 

where the last term indicates the Lie derivative defined as (Belytschko, Liu & Moran, 2001) 

 

 .)(
d

d T1
evp

t
bFCF l  (2.165) 

 

Resume that, the Lie derivative denotes the return of Cp to the reference configuration and, after performing its 

time derivative, it pushes Cp towards to the current configuration. Furthermore, the derivative of deformation 

gradient in Eq. (2.164) can be related to the elastic part be by 

 

 .TTT1TT1
eeepppp bFFFFFF

x

v
FFF

X

v
F ll 









   (2.166) 
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Using Eq. (2.165) and Eq. (2.166), Eq. (2.164) can be rewritten by separating its elastic and plastic part as 

 

 
.

part plasticpart elasti 

T
eveee bbbb lll 


  

(2.167) 

 

The dissipation function D in Eq. (2.162) may be now rewritten in terms of be, such that 

 

 ,
ψ

:
d

dψ
: ξ

ξ
b 




 e

t
D dτ  (2.168) 

 

while according to Eq. (2.161) and Eq. (2.167), as 

 

 

,)(:
d

dψ
: T

ξqbbb
b

 eveee
D llldτ  

(2.169) 
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
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
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


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eeve

e

e

e

D lldτ  

 

which finally leads to 
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
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b
b

b


 eeve

e

e

e

D ldτ  (2.170) 

 

Concluding, the thermodynamic restriction implies that inequality (2.170) must be satisfied in respect to all 

admissible stresses and internal state variables. It denotes the so-called principle of maximal dissipation 

(Nguyen, 2005). In other words, plastic deformations always occur in the direction that maximizes D. 

 

It should be pointed out that in the case of elastic and hyperelastic materials, the thermodynamic restrictions are 

not present since there are no plastic strains (no entropy production). On the other hand, in the case of non-

linear material (such as concrete), the maintenance of thermodynamic restriction plays a fundamental role in 

numerical simulation of deformations (Nguyen, 2005). 

 

In order to numerically obtain the principle of maximal dissipation (2.170), a proper constitutive description of 

concrete must be adopted due to its property of non-elastic strain localization (Carol, Jirásek & Bažant, 2001; 

Kuhl, Steinmann & Carol, 2001). 
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Chapter 3 
 

 

Spatial discretization 
 

3.1 Introduction 
 

It is difficult, usually impossible, to obtain a closed-form solution of the governing differential equations that 

describe the continuum deformations caused by pre-defined force fields. In order to overcome this problem, an 

approximate solution can be obtained by adopting one of the few numerical methods.  

 

In the proposed numerical formulation, the finite element method is found to be the most appropriate for 

simulation of concrete failure under impact loading. As illustrated later, an extensive theory aimed at 

describing mechanical interactions has been developed in accordance with finite elements. Furthermore, over 

the past few decades, many similar numerical formulations have shown that the use of the finite element 

method, to approximately describe such a complex physical event, is well justified (Unosson, 2000; Buchar, 

Voldřich, Rolc & Lazar, 2002; Ballew, 2004; Ramm, Erhart & Wall, 2005; Zinn, Stangenberg, Borgerhoff, 

Chauvel & Touret, 2007). 
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At this point it should be mentioned that the temporal discretization and contact mechanics are discussed in 

two separate chapters. The current chapter is dedicated only to the derivation of FE equations for static loading 

condition and non-constrained equations of motion (no contact). Also, mention that the differential equations 

are defined within the space occupied by the material in question and, in accordance with the usual 

mathematical notations, they will be hereinafter referred to as domain Ω bounded by Г. 

 

The numerical approximation of the event covered by the thesis begins with the process of spatial 

discretization. With regard to the physical domain Ω, occupied by body B  
3
, the spatial discretization 

involves the subdivision of Ω into a finite number ne of sub-domains Ωe (3.1), i.e. FE. 

 

 
en

e

e

1

  (3.1) 

 

In order to remain in the framework of continuum mechanics, possible gaps inside the discretized spatial region 

must be avoided. For this purpose, the generated sub-domains Ωe are interconnected by points i.e. FE nodes. 

With a finite number of nodes, the real physical body (concrete treated as a continuum) is exchanged with an 

approximate domain, represented by a mesh of finite elements (Fig. 3.1). 

 

 
 

Figure 3.1 Approximation of the real physical domain by a finite number of sub-domains (finite elements) 

 

Accordantly, spatial discretization “translates” the real physical domain Ω, containing an infinite number of 

degrees of freedom (DOF), to an approximate domain characterized by a finite number of DOF. Mention also 

that as the displacement filed u plays a fundamental role in deformation analysis, the nodal DOF are assumed 

to represent discrete displacement values of the continuous displacement function. Consequently, each finite 

element node (here identified by an upper index n) keeps the information on three orthogonal displacement 

components, collected in a vector 
n 
u as 
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
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3.2 Governing equations 
 

As mentioned, the conservation laws and imposed thermodynamic restrictions must be respected in every time 

interval [t1,t2]  
+
 of the deformations history (Chapter 2 – 2.3 Conservation laws & 2.4 Thermodynamic 

restrictions). Furthermore, under static loading conditions without mechanical interactions among bodies, the 

essential and natural boundary conditions are needed to define a single solution of the continuum deformation 

problem (Zienkiewicz & Taylor, 2002). Finally, to characterize the continuum under consideration, and the 

range of expected deformations, the material constitutive description and the strain-displacement relationship 

should be also properly defined. The formed sets of differential equations govern the continuum deformation 

process and are consequently referred to as governing equations. 

 

 

3.2.1 Strong form – indicial notation 
 

Using rigorous mathematical notations, the abovementioned description is usually restated as:   

 

:such thatfind 3u  
 

 ,in0,  jijib   (3.3a) 
 

:respect to  
, 

 ,.)ect,,( ijijij f    (3.3b) 
 

 ,)( iij uf  (3.3c) 
 

 :subject to and   

 ,on tijjii tnt   (3.3d) 
 

 ,on uii uu   (3.3e) 
 

:where  
 

 ,and  utut   
 

representing the so-called strong problem formulation for continuum deformation analysis. In the given 

notation, (3.3d) denotes the stress boundary condition (Neumann boundary condition) imposed on the 

continuum boundary Гt and on prescribed surface traction it  (characterized by the unit normal vector ni). The 

displacement boundary conditions (Dirichlet boundary condition) are given in Eq. (3.3e) and are predefined by 

the displacement values iu on the boundary Гu. Since the problem is formulated in terms of displacement u, and 

the balance of linear momentum is expressed in terms of stresses σ (3.3a), the link between them is established 

by an appropriate constitutive description (3.3b), as well as by the defined measure of deformation (3.3c). Note 

that the strong formulation does not abide neither by conservation laws (expect from the conservation of linear 

momentum) nor by the imposed thermodynamic restrictions. Namely, in the FE environment, their presence is 

typically artificially incorporated by means of material constitutive definition (Chapter 5 – Microplane 

material model). 
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3.2.2 Strong form – matrix notation 
 

Following the usual FE practice, the matrix notations of quantities under consideration is firstly introduced. For 

this purpose, assume small deformations (2.110) of a linear elastic material defined by the generalized Hooke’s 

law (2.109). In this case, the stress tensor σij is translated into the vector form σ  (2.97), while the components 

of the strain tensor εij are congruently contained in vector ε  as 

 

   .if2where
T 

312312332211
Voight

jiijij   εε  (3. 4) 

 

The strain-displacement relation is given by 
 

 ,uε S  (3.5) 
 

where S denotes the three-dimensional strain operator (3.6). 
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According to Eq. (2.105), the constitutive description is formulated as 

 

 ,εDσ   (3.7) 

 

where the matrix D gathers the stiffness parameters contained in Cijkl (2.109) by extracting values associated to 

index pairs ij and kl as is illustrated by Zienkiewicz & Taylor (2002). 

 

The displacement boundary conditions are simply redefined as 

 

 ,on u uu  (3.8) 

 

and the traction boundary conditions are given by 
 

 ,onT
t tσt G  (3.9) 

 

where G  (3.10) collects the direction cosines of the normal vector n on boundary Гt. 
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With the given matrix notations, the previously introduced strong form (3.3) can be rewritten as 
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:such thatfind 3u  
 

 ,in0T  σb S   
 

:respect to  
 

 ,εDσ    
 

 ,uε S   
 

 :subject to and   

 ,onT
t tσt G   

 

 ,on u uu   
 

:where  
 

 .and  utut   

 

To obtain an approximate solution in form of kinematically admissible displacement u, the so-called weak 

formulation of the problem, which leads to the principle of virtual work, is introduced (Zienkiewicz & Taylor, 

2002). 

 

 

3.2.3 Weak form 
 

Assume that δu represents an arbitrary test function defined on the continuum body B  
3
. In order to make 

the test function admissible, δu should vanish on the boundary part Гu for which the displacement boundary 

conditions u  are prescribed. The weak form is than obtained from the strong formulation (3.3) by multiplying 

Eq. (3.3a) of linear momentum and traction boundary condition (3.3d) by δu. Subsequently, the integrals over 

the domain Ω and boundaries Гt are set to vanish (3.11). 

 

 

 


t

t

ijijiijiji tnubu d)(d)( ,   

(3.11)  

0dddd,  


t

t

iit

t

jijiiijiji tunubuu   

 

Generally, the stresses σ will depend on strains ε which are derivative of displacements u. By consequence, to 

obtain the integrands, the integrals in Eq. (3.11) will require displacements second derivative. However, the 

need to compute second derivatives may be bypassed by performing integration by parts which will produce: 

 

 .dd)(d ,,,  


ijjijijijiji uuu   
(3.12) 

 

The first integral on the RHS can be converted into a surface integral as 
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,dd)( , 





t

tjijijiji nuu   
(3.13) 

 

which, if introduced in Eq. (3.12), gives 
 

 
.ddd ,,  



ijji

t

tjijijiji unuu   
(3.14) 

 

By substituting Eq. (3.12) in Eq. (3.14), the weak form is obtained as 
 

 
,0ddd,  

 u

uiiiiijji tubuu   
(3.15) 

 

or in matrix notation as 
 

 
.0ddd)( TTT   

  t

ttubuσu  S  
(3.16) 

 

The obtained Eq. represents the statement of virtual work with δu as virtual displacements (Bonet & Wood, 

1997). Particularly, the first integral denotes the virtual work of stresses while the other two reflect the virtual 

work of body and traction forces, respectively. 

 

Note that the form does not consider any material behavior in particular. Conditionally speaking, in contrast to 

the variational principles (Zienkiewicz & Taylor, 2002), the benefit of using this kind of formulation is shown 

by the need for specifying the constitutive material description and strain definition. In other words, the 

procedure enables to construct a numerical formulation for non-linear materials subject to large deformations. 

 

 

3.2.4 Finite element approximation 
 

To introduce the concept of FE discretization, consider a continuum body B  
3
 with smoothed boundaries 

fragmentized in a number n of disjoint parts. Obviously, the union of all disjoint parts B1, B2,… Bn  B will 

lead back to B (3.17). 

 

 jiji

n

1i
i 


forand BBBB   (3.17) 

 

The equality is trivial since every irregular arbitrary shape retrieved from B has the property that Bi  B. 

Similarly, the volume integral of an arbitrary function g taken over the domain of body B, can be split into 

respective disjoint parts Bi as 
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 (3.18) 

 

On the other hand, imagine a number ne of disjoint parts, such that B1
h
, B2

h
,… Bne

h
  B

h 
 B, which are 

characterized by regular shapes like polygons or parallelograms. The union of all disjoint parts will 

approximately describe the geometrical region B, since the assumed regular shapes cannot exactly capture the 

supposed smoothed continuum boundaries. In this case, the geometric region occupied by the body B can be 

approximated as 
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and the integral of a function g as 
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(3.20) 

 

Consequently, with a finite number ne of FE used for the discretization of body B, the related weak form will 

represent the contribution of all domains Ωe (3.21).  
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It is opportune to mention that the additive sum is allowed if the highest derivates appearing in the functional 

(3.21) are piecewise continuous so that all integrals exist and no contribution on the interelement boundaries is 

present (Zienkiewicz & Taylor, 2002). Generally speaking, for a function containing the highest derivative of 

order m + 1, the function adopted to approximate the unknown variable must have the property according to 

which all derivatives up to order m must give a continuous function over Ωe (continuity condition). Such 

functions are usually denoted as C
m
 functions. 

 

The choice of interpolation functions C
m
 is additionally limited by the property prescribing that C

m
 must 

contain complete polynomials up to the order m + 1. The property enables derivatives up to order m + 1 to 

assume constant values. Note that the aforementioned requirements do not change regardless of the type of FE 

adopted for the discretization. 

 

On the other hand, it should be specified that there are finite element formulations which violate the continuity 

conditions leading to a so-called incompatible formulation (incompatible mode). The formulations are based on 

the so-called principle of variational crime and introduce additional DOF in FE (Wilson, Taylor, Doherty & 

Ghaboussi, 1973; Wilson, 1995). 
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3.2.4.1   Bubnov-Galerkin method 
 

The essence of the Bubnov-Galerkin method (BG) lies in the proper approximation of the dependent variables u 

and their virtual (variational) forms δu in the weak formulation (3.15). To illustrate the Bubnov-Galerkin 

method, consider a problem in which the approximate solution u
h
 is obtained from: 

 

 : thatsofind hhu V   
 

 .)(),( hhhhhhh uuuu WFA    (3.22) 

 

V 
h
 is the finite-dimensional space of functions (where u

h
 is the approximate solution) and W 

h
 is the discrete 

space of test functions δu
h
. A 

h
 and F 

h
 are approximation functions of bilinear and linear form, respectively. In 

the Bubnov-Galerkin method the approximation of dependent variables u and their variational forms δu are 

chosen such that (Belytschko, Liu & Moran, 2001): 
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(3.23)  

  ,on0),(| h
u

hhhh
i uuuu   BW  

 

and are subject to 

 

 .hh
VW   (3.24) 

 

 

3.2.4.2   Displacement interpolation 
 

The element degrees of freedom are assumed to be displacement components u1, u2 and u3 associated to 

directions of orthogonal Cartesian coordinate axes x1, x2 and x3, respectively. Depending on the number of 

nodes (nn), the element displacement vector u collects displacement components 
1un ,

2un  and 
3un , associated to 

node n with u
n . Adopting the usual node-wise strategy, u={ 

1u1
  2u1   

3u1   …  
1

n u   
2

n u   
3

n u  }
T
. The related 

force components are analogically collected in a vector F as { 
1

1F   2
1F   

3
1F   …  

1
n F   

2
n F   

3
n F  }

T
.  

 

The displacement values )(~ xu , where x  Ωe  B
h
, are calculated by taking the sum of displacements 

contributions (3.25) obtained by interpolation of element nodal displacement u
n  with predefined interpolation 

functions Nn(x). 
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In order to preserve the continuity statement, the previously introduced interpolations Nn (i.e. element shape 

function associated to element node n) are supposed to meet the abovementioned C
0
 requirement. Similarly to 

Eq. (3.25), the approximation of virtual displacement )(~ ξu  is given by 
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where ξ denotes the vector of parametric coordinates, which will be properly discussed later on. Note that the 

interpolation of displacement )(~ xu  and related variational values )(~ ξu  are conducted by the same 

interpolation function Nn with different arguments (3.2.4.1 Bubnov-Galerkin method). 

 

 

3.2.4.3   Partial derivatives 
 

Since the weak form requires first derivative of displacements (3.21), the interpolation functions are derived 

with respect to x by the chain rule (Zienkiewicz & Taylor, 2002) 
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The former expression can be rewritten in matrix form as 

 

 ,
x

J
ξ 






 nn NN
 (3.28) 

 

in which 

 

 ,,,

3

2

1

3

3

3

2

3

1

2

3

2

2

2

1

1

3

1

2

1

1

3

2

1

























































































































































x

N

x

N

x

N

N

xxx

xxx

xxx

ξ

N

ξ

N

ξ

N

N

n

n

n

n

n

n

n

n

x
J

ξ







 (3.29) 

 

with J denoting the Jacobian transformation matrix. Subsequently, the required derivatives are given by 

 

 ,1

ξ
J

x 






  nn NN
 (3.30) 

 

where the notation is often simplified as 
ixnin NxN , and 

inin NN  , . 
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3.2.4.4   Strain-displacement matrix 
 

According to Eq. (3.5), the strain vector ε  (3.4) can be expressed in terms of u~  via 
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giving rise to the structure of the matrix Bn as: 
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which denotes the FE strain-displacement matrix associated to node n. 

 

 

3.2.4.5   FE force equilibrium 
 

By rewriting Eq. (3.15) in form of 
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and by taking into account that uBε ~TT
   and uNu ~TT   , Eq. (3.54) becomes 
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In case of arbitrary small displacement variations u~ , Eq. (3.38) becomes: 
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and denotes the equality of element internal and external nodal forces. Furthermore, the internal force vector F
in

 

can be rewritten by expressing σ in terms of element nodal displacement u as 
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denoting the irreducible displacement method (Zienkiewicz & Taylor, 2002). The term in the brackets 

represents the finite element stiffness matrix K, which directly relates element nodal displacement u related to 

external nodal forces F
ex

 with uK . Since the time discretization is not yet involved, Eq. (3.35) represents the 

semi-discrete form of equilibrium. Also, as the essential displacement boundary conditions are not present, the 

prescribed displacement values u  at FE nodes on u  should be artificially imposed (Zienkiewicz, Taylor & 

Zhu, 2000).  

 

 

3.2.4.6   Numerical integration 
 

It is convenient to numerically integrate the FE arrays by quadrature (Zienkiewicz & Taylor, 2002). 

Particularly, since the interpolation functions Nn are here assumed to be polynomials, the most accurate 

procedure is the Gauss-Legendre quadrature. For illustration, assume that the range of shape function Nn(ξ) is 

defined between -1 and 1. In this case, the Gauss-Legendre quadrature integrates a function such as 
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in which ξi are function  f  coordinates and wi are weight coefficients defined in a variety of literature (Hutton, 

2004). It is important to point out that the given n-point formula (3.36) integrates exactly a polynomial of order 

2n – 1. For a general three-dimensional FE, defined in local coordinates ξ, η and ζ, the integration is determined 

by (Zienkiewicz & Taylor, 2002): 
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The integration gives an exact result if the polynomials order is less than 2n. 

 

 

3.2.4.7   Global assembling 
 

In an arbitrary spatial discretization, with a number nel of finite elements, the local element DOF will never 

coincide with the order of DOF present in the FE mesh. The discrete form of equilibrium is obtained by the 

standard finite element assembling operator A (Chawla & Laursen, 1998), which link local element DOF into 

global notation (3.38). 

 

 
















































 












et

et

eln

1e
e

e

eln

1e

eln

1e

e

e

eln

1e
ddd TTT

tNbNuBDB AAAA  (3.38) 



Three-Dimensional Finite Element Formulation for Concrete Failure at High-Energy Impact Loadings                              V. Travaš – Dissertation 
 

______________________________________________________________________________ 
Faculty of Civil Engineering, University of Rijeka, Croatia                                                                                                                      Page | 56 

 

3.3 Linear tetrahedral element 
 

The linear tetrahedral element falls in the group of solid elements used for three-dimensional spatial 

discretization. The element geometry is fully described by four nodes situated on different coordinates in the 

rectangular Cartesian coordinate system. Six-edge and four faces are obtained by joining nodal coordinates 

with lines. A typical tetrahedral element is illustrated in Fig. 3.2. 

 

 
 

Figure 3.2 Tetrahedral element: a) element shape and b) node numbering convection  

 

By introducing n for the geometrical and mechanical data association, the corresponding element nodal 

coordinates are traditionally stored in a vector 
n
x as 
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The volume occupied by the element domain Ωe, in the spatial and material configuration, is defined by 
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 (3.40) 

 

It is important to note that the node numbering strategy directly influences the interpretation of element 

geometrical properties. Namely, in order to avoid possible computations with negative element volume, the 

node numbering condition must be strictly respected for all elements in the discretization. Following the 

standard procedure, the node numbering convention can be summarized in two steps. First, an element face that 

will contain the first three nodes is selected. On that face any corner can be chosen to represent the first element 

node. The excluded element corner will be the last numbered node. Second, the nodes on the selected element 

face should be numbered counterclockwise respecting the viewing direction defined from the excluded element 

corner to the picked element face. 
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3.3.1 Geometrical description 
 

In order to introduce simplicity in the geometrical description of tetrahedral elements, the local barycentric 

coordinates are introduced (also known as natural coordinates). For this purpose, imagine a point P(x,y,z)  Ωe 

defined by Cartesian coordinates in a rectangular coordinate system. Since the element shape varies linearly 

(Fig. 3.2), the coordinates 1
~x , 2

~x  and 3
~x  of point P can be calculated by the element nodal coordinates 

n
x 

through the first order polynomial (3.41). 
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The coefficients ξ1, ξ2, ξ3 and ξ4, also previously introduced in Eq. (3.36), are the barycentric coordinates of 

point P. Congruently, like the nodal position vectors 
n
x={ 

n
x1  

n
x2  

n
x3 }

T
, any position x inside the element 

domain Ωe can be completely defined by vector ξ={ ξ1  ξ2  ξ3  ξ4 }
T
. The coordinates will vary linearly through 

the element domain Ωe between 0 and 1. Mention that for any point inside or in element domain the sum of 

barycentric coordinates is always one (3.42). 
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Note that this property introduces the correlation independency between three arbitrary barycentric coordinates. 

The relationship between the barycentric and rectangular coordinates can be simply obtained by rewriting the 

geometrical interpolation from Eq. (3.41) in matrix form and by adding the coordinates sum constrain (3.42) to 

the formed system of Eq. (3.43). 
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On the other hand, the barycentric coordinates ξ={ ξ1  ξ2  ξ3  ξ4 }
T
 can be also calculated from the given 

rectangular coordinates by inverting the matrix of the former expression (Zienkiewicz & Taylor, 2002), which 

will result in 
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The coefficients αn, βn, γn, and δn are calculated in the same manner as the determinants given in Eq. (3.45) 

which is written for the first local coordinates ξ1. The other three coefficients are obtained analogically by 

cyclic permutations of indexes n. 
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The geometrical interpretations of barycentric coordinates can be illustrated by splitting the one element into 

four smaller tetrahedral regions. The generated regions are defined by three element nodes and point P. A 

typical element division is illustrated in Fig. 3.3. 

 

 
 

Figure 3.3 Geometrical interpretation of tetrahedral element barycentric coordinates 
 

As can be seen, each of the formed volume vn describes a part of the tetrahedral volume defined by point P and 

three nodes that lie opposite to node n. With the volume measure (αn+x1βn+x2γn+x3δn)/6 for vn (3.44), it can be 

concluded that the barycentric coordinates represent the two volumes ratio (3.46) which directly explains the 

previously introduced sum limit (3.42). 
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For the purpose of proving the benefits of element barycentric coordinates application, the element 

displacement properties are hereafter introduced. 

 

 

3.3.2 Isoparametric property 
 

The three-dimensional nodal degrees of freedom are three independent orthogonal displacement components, 

gathered in form of a vector  u
n  (for n node) as 
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Having four nodes, the tetrahedral element disposes of twelve independent displacement components. By 

arranging all nodal displacements in vector u, the element nodal displacements can be represented in compact 

form by the following vector (3.48). 

 

  T
uuuuu

4321  (3.48) 

 

To obtain the element displacement vector u, assume a tetrahedral element immersed in a continuous 

displacement field û (x1, x2, x3). The displacement û  is distributed over the element by three first order 

polynomials given as (Zienkiewicz & Taylor, 2002): 
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(3.49) 
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The coefficients a1, a2,…, a12 are unknown in advance and should be determined so that displacement 

components u (3.48) satisfy the displacement field û . In order to separate the unknown coefficient, the former 

expressions (3.49) are rewritten in matrix form by collecting all coefficients ac (where c=1..12) in vector a, and 

coordinates x1, x2 and x3 in matrix α (3.50). 
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By expanding this concept over all nodes, the unknown nodal displacement u can be related to element nodal 

coordinates 
n
x through coefficients ac. In this case, the matrix that collects the nodal coordinates 

n
x is denoted 

by C and has the following structure (3.51). 
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(3.51) 

 

The unknown coefficients ac are determined by solving the system of Eq. (3.51) as 
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 ,1
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  (3.52) 

 

in which the structure of C
-1

 is defined as: 
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(3.53) 

 

The coefficients αn, βn, γn and δn are function of nodal coordinates and are calculated from Eq. (3.54), (3.55), 

(3.56) and (3.57), respectively. 
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The displacement vector u can be now related to the displacement field û ( x1, x2, x3) by simply rewriting vector 

a in terms of nodal displacements (3.58). 

 

 uCαaαu
1ˆ   (3.58) 

 

The matrix product αC
-1

 (usually denoted by N) maps the field û ( x1, x2, x3)  onto nodal displacement 

components  ( û =Nu ) and represent the interpolation function matrix of the tetrahedral element. The matrix 

collects element interpolation functions Nn, uniquely associated with the corresponding node n and possesses 

the structure 
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in which the functions Nn are given by (Zienkiewicz & Taylor, 2002) 
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Eq. (3.6) clearly explains why the tetrahedral element is preceded by the prefix “linear”. Obviously, the reason 

lies in the fact that the displacement field is interpolated over the element domain by linear functions. The 

function value in the corresponding node n is one, while in the remaining three nodes is zero.  

 

By comparing Eq. (3.44) with Eq. (3.60) it can be deduced that the element functions ξn are equal to functions 

Nn. For sake of illustration of the property in question, assume an element immersed in Cartesian coordinates 

system where the displacement field u(x1, x2, x3) is given in terms of spatial coordinates. In each node n the 

function u(x1, x2, x3) has its specific value that can be split in three orthogonal components, collected in vector 

n
u (3.77). For a point P defined by position vector ξ={ ξ1  ξ2  ξ3  ξ4 }

T
, the components of u~ ={ 1

~u   2
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~u  }
T
 

are approximated by summing nodal contributions of displacement values 
n
u, obtained by interpolation from 

node n to the position ξ (3.61). 
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 (3.61) 

 

On the other hand, by analyzing the geometrical aspect of the element functions ξn, for a same point P defined 

by ξ, the related coordinates x~ ={ 1
~x   2

~x   3
~x  }

T
 can be obtained as in Eq. (3.61) by summing the contribution 

of coordinate interpolation from element nodes to the position ξ (3.62). 



Three-Dimensional Finite Element Formulation for Concrete Failure at High-Energy Impact Loadings                              V. Travaš – Dissertation 
 

______________________________________________________________________________ 
Faculty of Civil Engineering, University of Rijeka, Croatia                                                                                                                      Page | 62 

 

 



























































 4

1

4

1

4

3

2

1

3
4

3
3

3
2

3
1

2
4

2
3

2
2

2
1

1
4

1
3

1
2

1
1

3

2

1

~or~

~

~

~

n

n
n

n

n
n N

xxxx

xxxx

xxxx

x

x

x

xxxx 









 (3.62) 

 

An important property arises from the comparison of Eq. (3.61) and Eq. (3.62). As it can be perceived, both 

geometrical (coordinates) and mechanical data (displacements) can be interpolated through the element domain 

Ωe by means of the same interpolation functions. In the finite element terminology, this concept is known as the 

isoparametric element property. By joining matrix Eq. (3.61) and Eq. (3.62), and upon adding the constraint in 

Eq. (3.42), the isoparametric property can be restated as 
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(3.63) 

 

At this point, it is important to mention that the property makes the linear tetrahedral element very attractive for 

numerical contact/impact simulation. Namely, modeling of mechanical interaction (like those in the thesis) 

requires coherence between interpolations of geometrical and mechanical data. 

 

 

3.3.3 Linearization 
 

High-energy impact loadings may occasionally cause the penetration (or even perforation) of one body into 

another (Fig. 1.3 & Fig. 3.4). It is clear that such scenario is accompanied by large displacements, concentrated 

in front of the bodies contact/impact zone. In this case, the relationship between strain and displacements is 

non-linear and the incremental-iterative solution strategy is inevitable. 

 

 
 

Figure 3.4 Large displacements in front of the body contact/impact zone (non-linear strain-displacement relationship) 
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The incremental-iterative solution strategy is based on the decomposition of deformation history in a discrete 

number of spatial configurations. For each spatial configuration, the balance between external and internal 

forces is enforced in an iterative fashion. 

 

Note that when the equilibrium equations are defined in the deformed configuration (spatial configuration), the 

position of loads can change under the influence of deformation and give rise to magnification effect, which is 

known as P–Δ effect (Wilson, 1995). In order to incorporate such effect, the linearization of the discrete form of 

equilibrium Eq. should be introduced. 

 

The equilibrium in the spatial configuration is reached when  
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where r denotes the out-of-balance force vector (Crisfield, 1991). Since the mathematical background of 

linearization lies in the Taylor series expansion, the linearization of the given non-linear function produces  
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By substituting Δr into Eq. (3.65), it can be obtain that (Laursen, Attaway & Zadoks, 1999) 

 

 ,)(grad
uu
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in  (3.67) 

 

which defines the solution procedure by the Newton-Raphson’s technique (3.68). 

 

 
u

ruuK
kk )(T

 (3.68a) 
 

 uuu  kkk 1,  (3.68b) 

 

For the system of Eq. (3.68), the displacement vector u
k  in the k-th iteration step is the result if the Euclidian 

norm || r
k || is smaller than a pre-defined tolerance value (Crisfield, 1991). The iterative displacement values 

u  are calculated through the tangent stiffness matrix KT ( u
k ), defined as the gradient of internal forces in the 

k-th iteration step (3.68a). Being the internal nodal force necessary for obtaining the structure of the tangent 

stiffness matrix KT, it will be dealt with in the next subtitle. 
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3.3.3.1   Internal force vector 
 

Since the current configuration is unknown a priori, the element internal force vector is rewritten in terms of 1
st
 

Piola-Kirchhoff stress tensor (2.93). Resume, PK1 relates forces in the current configuration to areas in the 

reference configuration. In this case, the stress integration is carried out over the element volume Ve in the 

known reference configuration (3.69). 
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Since P=FS (Brodersen, 2004), the former expression can be rewritten as 
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Before carrying out the Taylor series expansion (linearization), note that in Eq. (3.70) S is given in a tensor 

format. Therefore, it is not suitable for the FE implementation where the vectorial Voight notation is required 

(Belytschko, Liu & Moran, 2001). For illustrating the stress format transformation, assume the Saint Venant-

Kirchhoff material model (2.123) given by 
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(3.71) 

 

where the components of S are grouped in vector S . The adaptation from S to S is performed via 
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from which the stresses components can be extracted in Voight notation, such that 
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which gives rise to the strain-displacement matrix Bn (3.74). 
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The internal force vector F
in

 can be now given by 
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which is in conformity with (3.35). Furthermore, the given strain-displacement matrix Bn can be split into its 

linear and non-linear part. For this purpose, F
in

 is rewritten as (Crisfield, 1991) 
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where the linear part of Bn is contained in matrix 
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and the non-linear part is given by 
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(3.78) 

 

Additionally, the matrix H collects constants as 



Three-Dimensional Finite Element Formulation for Concrete Failure at High-Energy Impact Loadings                              V. Travaš – Dissertation 
 

______________________________________________________________________________ 
Faculty of Civil Engineering, University of Rijeka, Croatia                                                                                                                      Page | 66 

 

 .

001000100

010100000

000001010

100000000

000010000

000000001



























H  
(3.79) 

 

Note that for relatively small displacements (2.110), A[u(X)] collect only zeros (3.78). As a consequence, the 

element strain-displacement matrix B (defined as AG) is reduced to (3.32). In this case, the shape function 

derivatives are defined by the chain rule 
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giving the matrix structure for small displacements as 
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(3.81) 

 

The matrix components are coefficients identified in Eq. (3.54), Eq. (3.55), Eq. (3.56) and Eq. (3.57), 

multiplied by a constant given in terms of element volume Ve (Taylor, 2002). Since the element volume can be 

explicitly calculated (3.40), it follows that there is no need to compute the integral over the element domain by 

quadrature rule (3.37). As one can see, the strain-displacement matrix B produces a constant field of 

deformation over the element domain Ωe. Consequently, the element stress field is also constant which enables 

the monotonic convergence criteria, since the rigid body displacements and the ability to reproduce constant 

field of deformations are possible. 

 

Finally, note that the attractive element simplicity makes it inadequate for the simulation of complex stress and 

stain fields. However, complex mechanical fields can be numerical accurately reproduced by increasing the 

number of elements in a particular region of interest (h refinement procedure). The procedure will be 

appropriately discussed later on (Chapter 8 – Adaptive finite elements). 
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3.3.3.2   Tangent stiffness matrix 
 

The element tangent stiffness matrix KT derives from the same concept of linearization given in Eq. (3.65). By 

introducing the definition (Bonet & Wood, 1997) 
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and carry out displacement variations as 

 

   ,d)(
d

d
d)(

d

d

0

TTT

0

T
e

e

ne

e

n
in VV

uu

uuBHuuAGF 







 








ES  (3.83) 

 

the geometrical stiffness matrix Kg is given from the variations of Bn as (Crisfield, 1991) 
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The material stiffness matrix Km follows from the variations of S (3.86). 
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In order to obtain the displacement solution, the iterative strategy (3.87) should be followed. 
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(3.87)  

 uuu  kkk 1,  

 

To follow the incremental-iterative solution strategy, the next subtitle contains a briefly overview of the 

adopted formulation for the incremental decomposition of motion. 
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3.4 UL formulation 
 

The proposed numerical formulation is based on the Updated Lagrange (UL) formulation (Belytschko, Liu & 

Moran, 2001). In contrast to the Total Lagrange (TL) formulation (where the equations of motion are 

formulated with respect to material coordinates), the governing equations are here formulated with respect to 

the spatial coordinates (Refaat & Meguid, 1997). 

 
 

Figure 3.5 Updated Lagrangian formulation (successive update of continuum reference configuration)  

 

The derivatives are taken with respect to the spatial (Eulerian) coordinates while the integrals are computed 

over the elements domain in the spatial configuration. However, the integral computed in the spatial 

coordinates can be related to the material coordinates by J (3.88). 
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(3.88) 

 

At the numerical implementation level, the continuum motion is split into a finite number of intermediate 

configurations that are progressively used as reference frame (Fig. 3.5). The procedure is in accordance with 
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the concept of incremental analysis of non-linear problems. Indeed, the last known equilibrium state is set as 

the reference configuration (temporally frozen), and is then used for stress and strain measurement in the 

current configuration. On the other hand, note that the last equilibrium state can be either related to the base 

continuum configuration (Fig. 3.6) by the composition of incremental mapping functions φ (2.12). 

 

 
 

Figure 3.6 Composition of deformation (from Updated Lagrange to Total Lagrange formulation) 

 

The essence of the UL formulation lies in the successive updating of reference frame. Therefore, by knowing 

the incremental displacement Δu between neighboring configurations, the updating process begins with setting 

the current configuration (defined by the coordinate vector X) as the new reference configuration (defined by 

the coordinate vector x) for the next incremental of the analysis (3.89). 

 

 uXx   (3.89) 

 

Not only coordinates but also the stress field must be updated. With the convergence state obtained by a set of 

2
nd

 Piola-Kirchoff stress tensors, the components of the true Cauchy stress tensor (related to the new 

configuration) are calculated according to Eq. (2.95) as 

 

 .)()( T1
uFuFσ  

SJ  (3.90) 

 

The stress tensors are then superposed to the previously defined stress state σ0 as σ0+σ. After performing these 

updates, the next increment of the analysis is taken within a new reference frame. At the beginning of the 

increment, the stress state is given by 

 

 ,))((0 uσ  ESS  (3.91) 

 

where the stress components σ0 (defined at the end of the previous increment) are added to the current PK2 

stress values ΔS.  The incremental PK2 values are progressively calculated in an iterative fashion until ||r|| < 

predefined tolerance value (3.87). Note that at the beginning of the iteration loop σ0 coincides with PK2 since 

the incremental displacements Δu are set to zero at the entry of each increment. 
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3.4.1 Principle of virtual power 
 

In the UL formulation the Cauchy stress tensor σ(X,t) and the spatial velocity v(X,t) are independent variables. 

Both are function of material coordinates X and time t. In accordance with the aforementioned, the weak form 

of governing equations in the spatial configuration is obtained by adopting the concept of virtual power. In this 

case the test functions are virtual velocities δv, and the weak form becomes 
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The first integral can be further expanded by the product rule 
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Then, the first integral on the RHS can be transformed by the Gauss’s theorem as 
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By substituting Eq. (3.94) into Eq. (3.93) it can be obtained that 
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while by introducing Eq. (3.95) into Eq. (3.92), the weak statement arises as 

 

 
,0ddd

)(









t

i
t

iiei

e

ieij

e
j

i tvvbvv
x

v



 

(3.96) 

 

denoting the principal of virtual power (Malvern, 1969). 

 

 

3.4.2 Finite element approximation 
 

According to the BG method, the space U
0

 of trial vi and test functions δvi are defined as:  

 

         , on),(|,),( 0
00 iviiiii vvCvvtv  XX UU  (3.97) 

 

  ,on0),(|,)( 0
00 iviiii vCvvv   XX UU  (3.98) 

 

from where the function should be chosen. The functions are subject to continuity condition (which should be 

fulfilled for compatibility reasons) and to the boundary conditions of velocity (Belytschko, Liu & Moran, 

2001). Note that the δvi vanishes wherever the trial velocity is prescribed. 
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Congruently with Eq. (3.97) and Eq. (3.98), the approximation of velocities vi is given by 

 

 ,)(),( vXXv
n

nNt   (3.99) 

 

and the approximation of test function δvi as 

 

 .)()( vXXv
n

nN    (3.100) 

 

v
n  and v

n  denote the velocity and the quantity of its variation at node n. By introducing the approximation 

of test function into the principle of virtual power (3.96), the following result is obtained: 
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Since the virtual velocities vanish where the velocities are prescribed, only the virtual nodal velocities which 

are not on Гv are arbitrary. In this case, the weak form becomes (Belytschko, Liu & Moran, 2001) 
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from where the prescribed DOF are excluded. 

 

 

3.4.3 Jaumann rate & stress update 
 

Since the equilibrium equations are written in successive updated configurations, expressing them in form of 

tensor rate seems logical. This is particularly suitable for numerical analysis of materials like concrete that 

possess memory of its initial virgin state (Ruigomez, 1985). A common practice in this case is to use the rate-

of-deformation tensor d (2.106) as the strain measure. 

 

For this purpose, assume a constitutive description in which the rate of the true Cauchy stress tensor is given as 

a function of d and σ through the tensor of material constants C
σd

 (Belytschko, Liu & Moran, 2001) as: 

 

 ..)ect,,( σdCσ d


 (3.103) 

 

In this Eq. 


σ  denotes the Jaumann rate of the Cauchy stress tensor and it is defined by 
 

 .T
ww 



σσ
σ

σ
Dt

D
 (3.104) 

 

The need to introduce the Jaumann rate lies in the requirement for tensor objectivity (Belytschko, Liu & 

Moran, 2001). Namely, the given expression indicates that the material time-derivative Dσ/Dt (2.28) consists of 

two parts (3.105). 
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 
rotation material

T

response material

T
σσCσσσ

σ
wwdww  



:
Dt

D d  
(3.105) 

 

The first part denotes the change in rate due to material response and the second one (made of two parts 

influenced by the spin tensors w (2.86)), denotes the rate of change due to material rotations (Stoker, 1999).  

 

With the constitutive description defined through tensors rate (3.103), the stress update will be different to the 

previously discussed (3.91). Namely, in this case the stress update is carried out by integration of the material 

time-derivative Dσ/Dt of the Cauchy true stress.  

 

By assuming constant velocities t uu  of continuum transition between two neighboring configurations, 

the stress state at time t+Δt is defined as the stress state superposition at time t (rotated in the current 

configuration) and incrementally computed stresses.  

 

Considering that Rt represents the rotation of the continuum reference frame at time t towards the continuum 

current frame at t+Δt, the former description can be restated as 
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 (3.106) 

 

Eq. (3.106) defines the stress update procedure between the assumed reference and current configuration but 

also for all other neighboring intermediated configurations. 
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Chapter 4 
 

 

Temporal discretization 
 

4.1 Introduction 
 

Since impact loadings are time-depended phenomenon, the temporal monitoring of system state variables is 

necessary. In order to follow the system time evolution, the time period t[t0,t1]  
+
, in which contact/impact 

occurs, is discretized with a finite number n of time increments Δt (n – time step counter). As a consequence, 

the continuous time line is replaced (discretized) by a set of points (usually equidistant) in which the governing 

equations are satisfied (Fig. 4.1). The changes of internal variables (state variable), between neighborhood time 

points, are then obtained by some pre-defined interpolations. In this case, by knowing the initial conditions at 

time tn=nΔt (usually given in terms of velocities and accelerations), the unknown continuum configuration at 

time tn+1=nΔt+Δt can be calculated from the fully discretized Eq. of motion. However, the procedure is 

legitimate if static loading conditions are assumed in each time interval Δt [tn,tn+1]. When calculating 

successive temporal states, the continuum motion can be tracked by augmenting neighboring temporal states. 

The procedure is known as time stepping. 

 



Three-Dimensional Finite Element Formulation for Concrete Failure at High-Energy Impact Loadings                              V. Travaš – Dissertation 
 

______________________________________________________________________________ 
Faculty of Civil Engineering, University of Rijeka, Croatia                                                                                                                      Page | 74 

 

4.2 Dynamic equilibrium equation 
 

In order to retrieve the fully discrete equation of motion (valid for a dynamic system), from the previously 

introduced semi-discrete equation of motion (valid for a static system), the Hamilton variational is hereafter 

briefly introduced (principle i.e. principle of least action). 

 

 

4.2.1 Hamilton variational principle 
 

Upon introducing the notation K for the kinetic energy of continuum body in motion, and relating the internal 

potential energy and energy of external forces (volume and surface forces) to Π, the Hamilton variational 

principle can be written as 
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t

t L
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  (4.1) 

 

The term in the brackets denotes the Lagrangian of the system L (Lui & Quek, 2003). In words, the Hamilton 

principle states that the displacement solution of all admissible time histories makes the Lagrangian functional 

L minimum. Note that the admissible displacements field is the one that fulfills: the compatibility Eq. (2.112), 

the Neumann (3.3d) and Dirichlet boundary conditions (3.3e), and; the conditions at times tn and tn+1. To obtain 

the related FE approximation, focus on a discrete mechanical system which is in conformity with FE. In this 

case, Eq. (4.1) can be rewritten in matrix form as  
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and, by integrating the second term by parts, as 
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Due to the restriction δu(tn)= δu(tn+1)=0, the former Eq. is reduced to 
 

 ,0d
d

d
1n

n

T 




















t
L

t

L
t

t
uu

u


  (4.4) 

 

and, since the displacement variations are arbitrary, to 
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which represent the Lagrange’s equation of motion. 
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4.2.2 Finite element approximation 
 

In order to derive the FE approximation from the Lagrange’s equation of motion (4.5), consider a deformable 

continuum in a displacement field û (x1, x2, x3). In this case, the kinetic energy K, associated to a domain Ω 

with boundary Г and density ρ, can be expressed as 

 

 .dˆˆ
2

1 T  


uu K  
(4.6) 

 

By presupposing hyperelastic continuum, the total potential energy can be represented as  
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As already introduced, for a discretized continuum (Fig. 2.1), the displacement u , velocity u  and ε  in the FE 

domain Ωe  Ω are defined through the related nodal values uNu ˆ , uNu  ˆ  and ε=Bu, respectively. 

Accordantly, the element kinetic energy is obtained as 

 

 ,d
2

1 TT
uNNu 
















 


e

e

K   (4.8) 

 

and the total potential energy as 
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Finally, the discrete FE form of dynamic equilibrium arises by inserting Eq. (4.8) and Eq. (4.9) into the 

Lagrange’s equation of motion (4.5), producing: 
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Usually, the former Eq. is rewritten in compact form as 

 

 ,)(tex
FuKuM   (4.11) 

 

where M denotes the so-called consistent element mass matrix and the related term represents the contribution 

of inertial forces in reaching equilibrium state with external forces F
ex

. Note that the external force vector F
ex

 is 

now a function of time. 
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Since the displacement and displacement time derivatives are discrete space functions but continuous time 

function, the equilibrium Eq. (4.11) is given in a semi discrete form. The fully discrete Eq. of motion can be 

obtained by performing the temporal discretization of displacement and related characteristic time derivatives. 

The procedure is performed by attributing discrete value in a continuous time line. Accordantly, the 

equilibrium state at the end of the current time increment Δt (defined as tn+1=nΔt+Δt) is reached when 

 

 .)(
111 nnn   tex

FuKuM   (4.12) 

 

Note that the equilibrium Eq. (4.12) is satisfied only at discrete time intervals. Within each time interval, a 

variation of displacement, velocity and nodal acceleration is presupposed with the adopted time integration 

technique. In the proposed numerical formulation, the equations are solved in their original form (4.12) 

denoting direct time integration. It is important to point out that the accuracy of results is limited by a variety 

of theoretical assumptions and restrictions deriving from computational implementation. However, that issue 

will be properly discussed soon. 

 

 

4.2.3 Phenomenological damping 
 

As well known, the response of real structures to external forces is always accompanied by a certain amount of 

energy dissipation manifested through the damping behavior of structure oscillations. Since the origin of 

dissipation lies in the material microstructural level, the damping description is usually simplified by assuming 

that the value of energy dissipation is proportional to the structure displacements and that is represented by a 

non-linear function of displacements magnitude. The dissipation effect is here introduced by including the 

viscous damping force that tends to damp the structure oscillation. Thus, the dynamic equilibrium Eq. (4.12) is 

rewritten as 
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1111 nnnn   tex
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where the damping behavior is represented by the viscous damping matrix C defined as (Wilson, 1995) 

 

 .βα KMC   (4.14) 

 

The coefficients α and β are empirical parameters which should be appropriately chosen for the considered 

dynamic analysis (Rayleigh damping). The model reflects the damping ration by linear combination of the mass 

and stiffness matrixes. Particularly, the damping related to βK increases as the frequency increases while the 

damping related αM increases as the frequency of oscillation decreases. However, it will be illustrated that for 

high-energy impact loadings the presence of viscous damping forces can be ignored, which is expected 

considering the usual low amplitude of oscillation (Chapter 10 – 10.3.2.2 Contact force, force equilibrium and 

reactions). 
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4.3 Time integration 
 

The time integration of Eq. (4.13) is performed with the finite difference method (Hutton, 2004). According to 

the standard notation for temporal association of system state variables, the lower index n denotes the time 

position of quantities on a discrete time line (i.e. at the beginning of the time increment nΔt). Two related 

neighboring quantities, those at the beginning of a particular time increment and at the end of the time 

increment, are then defined by indexes n–1 and n+1, respectively. 

 

 

4.3.1 Assumption, approximations and errors 
 

In order to solve Eq. (4.13) for unknown nodal displacements 
1nu , the FE nodal accelerations nu and nodal 

velocities nu are approximated through displacements. However, to make the finite difference method suitable 

for approximation, the highest displacement derivatives (i.e. nodal accelerations) should be smooth functions of 

time. 

 

For the purpose of illustrating the approximation of first (velocity) and the second displacement derivative 

(acceleration), let consider a smooth displacement function u(t). For the displacement u(t+Δt) the Taylor series 

expansion produce: 
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while for the displacement u(t–Δt): 
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By truncating the series after the second derivative and by subtracting (4.16) from (4.15), the central difference 

formula will be obtained. For relatively small time increments Δt, the central difference formula enable the 

approximation of first displacement derivations as 
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By adding Eq. (4.15) to Eq. (4.16), the second displacement derivatives is approximated as 
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Mention that the presented time integration algorithm is affected by two types of errors. The first one, the so-

called truncation error, is associated with the accuracy of finite difference method. Namely, as the example 
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above shows (4.15), the error arises from the truncation of the Taylor series expansion by introducing the 

approximation of the right solution. The second type of error, referred to as round-off error, is associated with 

the finite number of digits used in computer arithmetic. However, both errors are influenced by the choice of 

Δt. Particularly, by reducing Δt both errors will decrease. In case of large Δt, the truncation error dominates the 

solution but it decreases together with Δt. On the other hand, the round-off error decreases more slowly and 

dominates the solution process for small Δt. Note that the numerical description of impact loading will be 

especially influenced by the round-off error. Namely, in order to accurately simulate the concrete deformation 

history, which is “trapped” in small time periods (~1 ms), the numerical description requires a relatively large 

number of small time increments Δt. Therefore, to minimize the presence of the round-off error, the use of 

computer 64-bit precision is inevitable. Abiding by the standard nomenclature used in computer program 

languages, this condition corresponds to the double precision declaration of program code variables. The 

declaration helps to keep the round-off errors as less as possible. Mention that other similar problems arise in 

contact detection procedure. The relevant problematic will be discussed in a separate chapter (Chapter 7 – 

Contact detection). 

 

It is important to point out that the previously introduced assumption (smooth feature of accelerations) is rarely 

preserved in impact analysis. Indeed, the functions of accelerations for bodies under collision are characterized 

by discontinuities (shock phenomena). However, with a careful choice of Δt, the discontinuities can be 

simulated by a finite number of discrete sloping segments (regularization). 

 

 

4.3.2 Newmark β integration method 
 

The essence of the Newmark method lies in the introduction of parameters β and γ into the truncated Taylor 

series expansion for displacements and velocities, respectively (Newmark, 1959). In this manner, the 

displacement value at time n+1 is approximated as 
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and velocities as 

 

   .uu)1(tuu 1  nnn1n   (4.20) 

 

The parameters introduced in the numerical simulation are constants defined in intervals: 0 ≤ β ≤ 0.5 and 0 ≤ γ 

≤ 1. Depending on the chosen parameters β and γ, Newmark approximations determine the order and accuracy 

of the integration method (Ngo & Mendis, 2008). Consequently, the Newmark family of single-step integration 

methods can be applied to both extreme loading type, i.e. loading characterized by short-time periods (e.g. blast 

loadings) and loading characterized by long-time periods (e.g. seismic loadings). 
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4.3.2.1   Implicit time integration 
 

The implicit time integration is obtained by setting the integration parameters in Eq. (4.19) and in Eq. (4.20) as 

β>0 and γ≠0 (Wilson, 1995). For this purpose, it is convenient to formulate the Newmark integration method by 

setting the displacements value un+1 as primary variables. Consequently, the acceleration 
1nu at time n+1 is 

determined form the displacements un and un+1 as 

 

 ,)( n3n2nn1n 11
uuuuu      (4.21) 

 

and the velocities 
1nu as 
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The coefficients α1, α2, α3, α4, α5 and α6 are given as follows (4.23). 
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By introducing Eq. (4.21) and Eq. (4.22) into Eq. (4.13), the dynamic equilibrium Eq. becomes:  
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By applying the previously introduced Newton-Raphson’s solution strategy (3.87), the unknown displacement 

vector un+1 will be determined through the tangent stiffness matrix KT, by performing the iteration loop over 

the index k at each time step tn+1 (4.25). 
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The iterative loop is conducted until the Euclidian norm || )(
1n

k
ur || becomes smaller than the predefined 

tolerance value. The benefit of the implicit time integration is that the procedure is unconditionally stable. 
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However, the strategy requires an evident computational time effort since the tangent stiffness matrix should be 

calculated at the beginning of each iteration. An alternative to that could be the modified Newton-Raphson’s 

solution strategy where the tangent stiffness matrix is computed only once, i.e. at the beginning of each 

increment of the analysis. Also, even though the implicit time integration is an adequate choice for simulation 

of low frequency modes, it is not suitable for time integration of equations of motion where body’s collision is 

expected. Indeed, high-energy impact loading are often accompanied by high frequency of oscillation. 

Therefore, and for other reasons (Wriggers, 2002); the explicit integration method turns out to be more 

appropriate choice. 

 

 

4.3.2.2   Explicit time integration 
 

By setting the parameters of integration in Eq. (4.19) and Eq. (4.20) as β=0 and γ=0.5, the Newmark method 

will produce the previously introduced central difference scheme. In this case, the velocity nu in time n is 

approximated as 
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and acceleration nu as 
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The discrete dynamic equilibrium Eq. can be rewritten as 
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giving the unknown displacement vector un+1 as 
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Since the matrix M and C do not change during the solution process (for no remeshing), the triangularization of 

coefficient matrix on the LHS has to be calculated only once. Also, note that all nonlinearities are introduced 

via the internal force vector in
nF  and, as the displacement solution in the explicit time integration is based on 

displacements at time n, there is no need to perform an iterative convergence loop. An especially attractive 

property of the strategy emerges when the matrix M and C are taken as diagonal matrixes. Indeed, if the 

consistent mass matrix (4.10) is transformed into a lumped mass matrix (by distributing FE mass uniformly to 

all element nodes), the triangularization of the LHS is trivial. 
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It should be noted that the damping matrix C is defined only by the mass matrix (not as in Eq. 4.14), since the 

diagonalization of stiffness matrix is not possible. On the other hand, such restriction does not inflict any harm 

to a formulation, since the presence of viscous damping forces in high-energy impact loading can be ignored. 

Having said that, the former Eq. can be rewritten as 

 

 
      .αwhere2

22
111 nnnnn

2
1

matrix diagona

n MCuuMuCFFCMu 









 
 





t
t

t inex



 
(4.30) 

 

Note that no global matrix needs to be computed. In fact, the explicit time integration enables the computing of 

unknown displacements by using only local element matrixes. Furthermore, from the computational point of 

view, obtaining the solution by the explicit time integration is much cheaper than by the implicit time 

integration (4.25). As a matter of fact, the explicit integration produces a system of uncoupled algebraic 

equations in which the displacement value at arbitrary DOF is not a function of other DOF (4.30). 

 

However, the definition of initial values requires special treatment since at time t=0 the displacement values u0-

1 are needed. These displacement values are determined from the given initial conditions of displacement u0 

and velocities 
0

u , defined at the beginning of the simulation. Indeed, the displacement vector u0-1 is 

determined from the Taylor series expansion at time t0-1 via (Bathe, 1996) 

 

 .
2

00010

2

uuuu 
t

t



 (4.31) 

 

The acceleration at time t=0 arise from Eq. (4.28) as 

 

   .)0(
000

1 ex
FuKuCMa     (4.32) 

 

With the explicit time integration the solution process is conditionally stable and is influenced by the adopted 

time increment Δt. Particularly, if the chosen time increment Δt is greater that the critical one Δtcr, the 

displacement solution divergence (numerical instability). In order to avoid this numerical instability, the 

acquired time increment Δt must be smaller than the critical one Δtcr (Courant criterion), that is calculated for 

each finite element e according to Eq. (4.33). 

 

 
e

e

e

e

ne
E

L
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

mine
cr

 
(4.33) 

 

In this Eq. eLmin denotes the minimum length of a finite element while Ee and ρe are Young’s modulus and 

density related to the respective finite element e. By knowing the critical time increment Δtcr, the time 

increment in the analysis should be chosen according to Eq. (4.43). 
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  ecrttt cr  min  (4.34) 

 

In case of non-linear problems (such as those under consideration), the critical time step should be additionally 

reduced by a safety factor below one (Wriggers, 2002). From the physical point of view, the critical time 

increment ensures that the propagation of stresses in Δt is slower than the speed of sound for the considered 

continuum. In this sense, the time increment requirement preserve the physical significance of the obtained 

results. However, with explicit time integration, the discussion of mesh stability is also valid. Indeed, 

depending on the shape of tetrahedral elements, the uncoupled system of equations (4.30) can give rise to 

displacements values that may violate the element local invertibility condition (2.47). As disused by Cheng, 

Quan and Sou-Yizheng (1993), the mesh stability can be preserved by ensuring that the Hilbert norm of 

element displacement vector u is smaller than the product of the element characteristic length L and control 

parameter η (4.35). 

 

  Lu  (4.35) 

 

The control parameter η is chosen respect to the finite element under consideration (Cheng, Quan & Sou-

Yizheng; 1993). When the conditions in Eq. (4.34) and Eq. (4.35) are fulfilled, the physical significance is 

preserved and the dangerous mesh instability, which can transiently grow through the solution process, is 

avoided. Note that, since the presence of non-linearity requires an incremental analysis, the solution process is 

decomposed into a finite number of discrete time increments Δt. The update procedure between successive time 

increments is illustrated in Fig. 4.1. 

 

 
 
 

Figure 4.1 Time stepping procedure 

 

It is important to mention that eventually changes of Δt during the solution process may harm the requirement 

for energy preservation. Namely, in case of penetration problems (Fig. 1.3), where the remeshing procedure is 

inevitable, the critical time increment Δtcr will rapidly vary due to the change of eLmin

 

(4.33). In this case, the 

adopted time increment should not be adapted during the solution process. To avoid numerical instabilities, a 

significantly smaller time increment Δt, compared to Δtcr (4.33), should be calculated for the initial 

discretization and used until the end of the simulation (Fig. 8.7). 
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Chapter 5 
 

 

Microplane material model 
 

5.1 Introduction 
 

From examining the uniaxial σ-ε relationship of concrete, it can be deduced that this composite falls into the 

group of quasi-brittle materials. At this phenomenological macro-scale of observation, the concrete response to 

external loading is governed by the micro-structural mechanical property of the material particle interactions. 

As a composite made of aggregate interconnected by cement matrix, the concrete mechanical behaviour is 

influenced by the micro-structural phenomena such as cohesion, friction and aggregate interlocking. In order to 

numerically simulate these effects, the material model should be formulated by respecting the composite nature 

of concrete. Therefore, from the various types of constitutive models used to simulate concrete, in the proposed 

numerical formulation the microplane material model is adopted. The choice can be justified by the concept of 

model itself that consists in representing the macroscopic material behavior by uniaxial σ-ε relationship on 

planes located at the concrete microscopic level. These planes with arbitrary spatial orientations (microplanes) 

are interpreted as damage planes or weak planes of contact layers between the concrete aggregate and cement 

matrix (Fig. 5.1).  
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From the historical point of view, the origin of such pioneering idea can be traced back to 1938 when G.I. 

Taylor proposed the basic concepts of the microplane theory. The original model, known as the “slip theory of 

plasticity”, was developed for the purpose of description of plastic slip in crystalline materials. At first, the 

model passed unnoticed in the scientific concrete community that, at that time, widely accepted the softening 

plasticity and continuum damage mechanics for the constitutive description of concrete. However, the physical 

background of plastic models imposed conceptual problems due to the fact that, being a composite material, the 

concrete behavior did not fit well in the plastic description. On the other hand, the concept of scalar damage 

gave rise to the theory of damage description in the concrete heterogeneous microstructure (Chaboche, 1988; 

Lemaitre, 1992). However, in order to reproduce the three-dimensional anisotropic damage state, the theory 

leads to damage tensors of second, fourth and even eighth order. It was based on the promising stiffness 

degradation principle but the tensor components could not be easily identified. Therefore, the model was 

inapplicable to practical problems and consequently abandoned.  

 

 
 

Figure 5.1 Idealistic representation of the microplane model (microplanes on microstructural interaction)   
 

Later on, Bažant and Gambarova (1984) found the microplane idea very interesting. They realized that a proper 

model extension would generate adequate properties for the numerical simulation of concrete. The proposed 

model was based on a compromise between the scalar damage theory and the microplane theory, introducing 

the concrete damage description by differently oriented planes on which the uniaxial stress-strain laws are 

enforced through the uniaxial scalar damage model. 
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Before proceeding to the description of the model, mention that the adopted FE discretization does not provide 

any information on possible local material imperfections or macroscopic non-homogeneities in the domain Ω 

occupied by concrete body. However, following the REV assumption (Chapter 2 – 2.1 Introduction), the non-

homogenous concrete microstructural properties are replaced by a uniform, homogenous mass distribution over 

the entire domain Ω. Indeed, the complex concrete microstructure stress transfer mechanism is artificially 

introduced by the microplane model. Such models indicate the microscopic mechanical behavior at the 

macroscopic level by taking into account an average response of the concrete microstructural mechanical 

properties. Consequently, the model falls into the group of macroscopic types of constitutive models. 

 

Mention that the microplane model can be easily incorporated in any continuum deformation analysis 

performed by FEM. For the sake of illustration, assume that the macro-micro transitions of mechanical quantity 

are performed in a FE mesh. The microplane model requires transitions by projecting macroscopic values, 

which are carried out at every continuum point, onto tangent planes of the unit microsphere that surrounds the 

micro-heterogeneous material. Indeed, at the numerical implementation level, the microplane model fits almost 

naturally in the FE environment, since continuum points are here represented by Gauss points, i.e. position 

inside Ωe where the FE macroscopic data are integrated. However, as it has been discussed (Chapter 3 – 3.3 

Linear tetrahedral element), if the domain is discretized by linear tetrahedral elements (Fig. 3.2), there is no 

need to perform the numerical integration at the Gauss point level. The microplane model can be still 

incorporated in the numerical formulation by assuming an imaginary integration point located at the tetrahedral 

barycenter coordinates. The passage from the known macroscopic (Gauss point) to the unknown microscopic 

values (microplane) is conducted through pre-defined projection tensors that relate macroscopic data to 

tangential planes defined at each point of the unit sphere (Fig. 5.2). 

 

Since the number of points on the unit sphere is infinite, it is obvious that the described idealistic strategy 

cannot be approached computationally. For this purpose, the unit sphere is usually replaced by a geometrical 

approximation composed of finite number of planes (usually triangular planes). However, as far as the unit 

sphere discretization delicacy is concerned, if a coarse geometrical approximation is applied, the model will be 

computationally acceptable but physically poorly conditioned. On the other hand, by increasing the number of 

planes for the geometrical approximation of the unit microsphere, the computational efficiency will rapidly 

decrease. To preserve the model efficiency and, in the same time, to overcome computational time effort, 

Bažant and Oh (1986) propose the unit sphere approximation by triangular planes generated between 42 points 

(vertex), as a good compromise between efficiency and computational effort. Following this conclusion, in the 

proposed numerical formulation the unit sphere is replaced by a discrete geometrical approximation shown in 

Fig. 5.2 (for alternative see: Němeček, Patzák, Rypl & Bittnar, 2002). 

In order to avoid any doubts, note that the generated triangular planes should not be interpreted as microplanes 

themselves. Indeed, once the macroscopic values at FE Gauss points are known, their projections are performed 
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on planes that lie on edges of the generated three-dimensional object. Particularly, the spatial orientations of 

planes are defined by an average approximation of planes that surrounds each vertices and edges (Fig 5.2). 

Note that, due to the fact that the discrete approximation is symmetric, it is sufficient to project the macroscopic 

data only on half the total number of microplanes. 

 

 

 
 

Figure 5.2 Microplane: a) Ideal microsphere and b) discrete microsphere approximated by 42 points 

 

 

By taking into account tensorial invariants restrictions, the microplane concept does not require the invariant 

restrictions to be directly enforced. Indeed, the conditions are automatically fulfilled since considering 

microplanes with different spatial orientations have been taken into account. This fact introduces advantages in 

respect to other tensorial constitutive models which are based on tensorial invariants. Namely, a weak point of 

other invariant types of models is the prediction of correct concrete expansion caused by the triaxial 

compressive loading. Furthermore, from the theoretical point of view, such models are based on the theory of 

continuum mechanics and are not acceptable for the description of complex σ-ε relationship that implies 

discontinuity like cracking in the assumed material continuum. On the other hand, for materials that are subject 

to damage phenomena and non-elastic strain localization (cracking), the microplane model realistically 

reproduces the material response. The statement is supported by a variety of numerical experiments which are 

in accordance with experimental observations (Ožbolt, Li & Kožar, 2001). 

 

In order to validate the proposed numerical formulation, a need for cracking description in the environment of 

FE should be satisfied. The so-called smeared cracking concept, taken from the few developed strategies, is 

used for this purpose (Willam, Pramono & Sture, 1987). In this case, the cracking trajectories are manifested in 

contour of principal tensile deformation (Weihe, Kröplin & de Borst, 1998). Following the principal tensile 

deformation, the concrete cracks can be tracked by scaling deformations values to the reference deformation 

value εr that causes the cracks to open. According to the engineering strain definition, εr can be simply 

determined as 
 

 ,
min
e
cr

r
L

w
  (5.1) 
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where wcr denotes the critical crack aperture (depended on the concrete under consideration) and L
e
min the 

minimum element edge length of all elements in the discretization. An example of the smeared cracking 

concept is illustrated in Fig. 5.3. Differently from smeared cracking concept, that lies within the framework of 

continuous mechanics, note that it would be appropriate to describe the formed crack as an aperture in the FE 

mesh. This kind of scenario can be numerically reproduced by means of the so-called discrete cracking 

concept. However, the mentioned concept considerably increases the computational effort (especially in the 

three-dimensional environment), since it introduces a significant amount of geometrical and topological FE 

mesh adaptations also known as mesh fragmentation (Shen, 2000; Pandolfi & Ortiz, 2002). To preserve 

simplicity as much as possible, the description of continuum fragmentation process, i.e. the discrete cracking 

description, is here abandoned. 

 

The smeared cracking concept introduces austerity in the aforementioned challenging cracking description by 

simply excluding the contribution of internal forces (to the total internal force field) of those FE that lie on the 

crack trajectory. In such way the mesh continuity is preserved, satisfying the continuous mechanics 

assumptions. At the same time, the crack extension is simply tracked by monitoring the principal traction strain 

contour, as previously introduced in Eq. (5.1). 

 

 
 

Figure 5.3 Smeared cracking concept (red elements represent the cracks extension) 

 

Concluding, there are three relevant features that support the benefit of using the microplane model for the 

concrete constitutive definition. (i) By adopting the microplane material model, the material behaviour at the 

microscopic scale of observation is artificially incorporated at the macroscopic level. (ii) A simple constitutive 

uniaxial σ-ε relationship, defined at the microplane level, ensures very accurate macroscopic prediction of 

material behavior (Bažant & Oh, 1983). (iii) With regard to the general three-dimensional case, the microplane 

material model enables to include the initial and induced material anisotropy in a simple way (Ožbolt, Li & 

Kožar, 2001). 
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5.2 Microplane theory preliminaries 
 

During the early phase of the theory development (Batdorf & Budianski, 1949), it was assumed that the stress 

vector, which acts on microplanes with a different spatial orientation, is the projection of the macroscopic stress 

tensor σ integrated at FE Gauss points. Due to the fact that the stress tensor holds the information on internal 

forces, the procedure was named static constrain condition. Later on, Bažant realized that in order to obtain the 

unique solution for softening, the static constraint should be replaced by the so-called kinematic constraint 

condition in which the microplane strain components are calculated by projection of the macroscopic strain 

tensor ε (Bažant & Caner, 2005). Moreover, the here proposed numerical formulation is based on the relaxed 

kinematic constraint principle (Ožbolt, Li & Kožar, 2001), which is an extension of the model proposed by 

Bažant et al. (2005) and will be appropriately discussed after some preliminary microplane assumptions. 

 

 

5.2.1 Microplane coordinate system 
 

In a general three-dimensional case the microplane outward unit normal vector 
n  (5.2), associated to 

microplane , defines its spatial orientation on the discretized unit microsphere (Fig. 5.2). 

 

   pn,..2,1nnn 321  
wheren

T 
 (5.2) 

 

The related microplane tangential unit vectors 
m and 

k , defined as 

 

     ,,..2,1kkkmmm 321321 pn 
wherekandm

T T 
 (5.3) 

 

are chosen in such way such that 
 

 ,
nmk   (5.4) 

 

forming a local orthogonal coordinate system associated to microplane  (Fig. 5.4). 

 

 

 
 

Figure 5.4 Microplane local coordinate system: a) microplanes and b) microplane unit vectors 
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5.2.2 Microplane strain components 
 

The kinematic constraint principle allows to calculate the stain vector 
e  from the macroscopic strain tensor ε 

as (Pivonka, Ožbolt, Lackner & Mang, 2004) 

 

 .
nεe   (5.5) 

 


e can be further split into its normal component 

Ne as 

 

 ,)( 
nnnee eN   (5.6) 

 

in which e  denotes the norm of the stain vector 
Ne , and its tangential component 

Te  as 

 

 .
NT eee   (5.7) 

 

By substituting Eq. (5.5) into Eq. (5.6), the microplane normal component 
Ne  is related to ε (Pivonka, Ožbolt, 

Lackner & Mang, 2004) through the second-order projection tensor 
N  (5.8). 

 

 


nεNnεnnnnεne ):():()( N  (5.8) 

 

Similarly, by inserting Eq. (5.5) into Eq. (5.7), the microplane strain component 
Te  can be also obtained from 

the macroscopic strain tensor ε. In this case, the macro-micro transition is defined through the third-order 

projection tensor 
T  given as 

 

 εTεnnnInnnεnεne ::)()(  T  (5.9) 

 

in which I denote the fourth-order unit tensor. Furthermore, the length εN : Ne  of 
Ne  (normal to the 

microplane) can be decomposed as 

 

 ,
DVN eee   (5.10) 

 

where 
Ve  denotes the volumetric part, given by 

 

 ,::)31( εVε1
 Ve  (5.11) 

 

and 
De  denotes the deviatoric part defined as 

 

 .::: εDεVεN
  VND eee  (5.12) 

 

In these expressions 
V and 

D  are microplane second order projection tensors while 1 denotes the second 

order unit tensor. 
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Note that 
Ve  (5.11) does not depend on the microplane orientation (5.2). As a consequence, for a given Gauss 

point at which the macroscopic strain tensor ε is projected onto the surrounding microplanes, the volumetric 

strain components 
Ve  can be assumed as constant (5.13). 

 

 .const VV ee  (5.13) 

 

Mention also that the tangential microplane strain vector 
Te  (5.9) can be decomposed into two (arbitrary) 

perpendicular strain components that lie on the microplane . It is important to point out that these tangential 

components may be interpreted as shear microplane strain components, usually denoted as 
Me and 

Ke . In 

accordance with the given share strains signature, the strain vector 
Te  can be furthermore decomposed as 

 

 ,
KMT eee   (5.14) 

 

where the part 
Me is defined with 

 

 ,)(
2

1
where):()( 

mnnmMMMεTMMeMe  MTM e  (5.15) 

 

while the part 
Ke  with 

 

 .)(
2

1
where):()( 

knnkKKKεTKKeKe  MTK e  (5.16) 

 

Tensors 
M  and 

K are first-order projection tensors (Pivonka, Ožbolt, Lackner & Mang, 2004). Resuming, 

for a given FE Gauss point, the macroscopic strain tensor ε is projected on surrounding microplanes and then 

decomposed into the microplane volumetric 
Ve , deviatoric 

De  and shear strain component 
Me  and 

Ke , 

illustrated in Fig. 5.5. 

 

 
 

Figure 5.5 Microplane strain components: a) vectors and decompositions of b) normal and c) tangential components 
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5.2.3 Microplane stress components 
 

For each microplane strain component (Fig. 5.5) an appropriate microplane stress component is obtained via 

microplane secant modules (Pivonka, Ožbolt, Lackner & Mang, 2004). Subsequently, the microplane stresses 


MDV sss ,, and 

Ks  are calculated from 
MDV eee ,, and 

Ke , through the volumetric CV, deviatoric CD and shear 

microplane modules CM and CK, respectively (5.17). 

 

 

VVV eCs   

(5.17) 

 


DDD eCs   

 


KKKMMM eCseCs  and  

 

In the proposed numerical formulation, the microplane s-e relationships are defined by means of microplane 

modules proposed by Ožbolt and Bažant (1996). Except for the region of volumetric compression, there are 

based on the Mazar scalar damage theory and defined with: 

 

 

,)1(0, VVV EC   

(5.18) 

 

,)1(0, DDD EC   
 

.)1(and)1( 0,0, KKKMMM ECEC    

 

EV,0, ED,0, EM,0 and EK,0 are initial material modules (related to the state in which the material was undamaged) 

while ωV, ωD, ωM  and ωK are the concrete integrity parameters related to the material damage at the microplane 

level. The integrity parameters (scalar values) are functions of microplane volumetric 
Ve , deviatoric 

De  and 

shear strain components 
Me  and 

Ke  as: 
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and 
 

 
.1and1

55

k

K
K

k

T
M

eeee
ee

 

     
(5.20) 

 

The parameters e1, e2, e3, e4, e5, m, n and k, are empirical parameters determined from the uniaxial compressive 

and tensile experiments. Note that e5 is equal to e3 if Ve  ≥ 0. On the other hand, if 
Ve < 0, e5 is equal to e3-e4 Ve . 

As one can note, the microplane shear components (5.20) depend on the volumetric strain components 

Ve through the empirical parameter e5. This dependency introduces an additional scalar kinematic condition and 
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describes the microscopic frictional behavior on aggregate surface. Obviously, this is due to the influence of 

compression to the frictional behaviour. Now, in order to cover the complete range of possible deformations, 

the s-e relationship for volumetric compression is assumed as 
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e
EC  (5.21) 

 

a, b, p and q are also empirical parameters but independent from the type of concrete under consideration. 

Namely, in this case there is no damage, so the scalar damage value ωV is set equal to zero. Finally, the full 

range of microplane modules, given in Eq. (5.22) and Eq. (5.23), are obtained by introducing Eq. (5.19) and 

Eq. (5.20) into Eq. (5.18) and adding to them Eq. (5.21) for volumetric compression. 
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Note that the microplane relationships 
Ms - 

Me  and 
Ks - 

Ke  (5.23) have the same functions which are assumed 

to be symmetric (Fig. 5.6c). Also, according to the Eq. (5.21), when the concrete body is under volumetric 

compression, there is no material damage (Fig. 5.6a). 

 
 

 
 

Figure 5.6 Qualitative illustration of the microplane stress-strain relationships (virgin load) 
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5.2.4 Macroscopic stress tensor 

 
After retrieving the microplane stress components (5.17), the macroscopic stress tensor σ (2.92) is obtained by 

invoking the principle of virtual work (Kuhl & Ramm, 1998). In this case, the macroscopic internal work 

W
macro

 is approximated by the scalar product of macroscopic stress tensor σ and virtual variations δε, multiplied 

by the microsphere surfaces area (5.24). 

 

 εσ δ:
3

4
W


macro  (5.24) 

 

On the other hand, the microscopic virtual work W
micro

 is obtained by adding the virtual work done by normal 

component Ns : 

 

 ,δ)(δ NDVNN esses   (5.25) 

 

to the tangential virtual work Ts : 

 

 ,δ)(δ 22
TKMTT esses   (5.26) 

 

and integrating the obtained sum over the domain of a unit sphere S (5.27). 

 

   Seses

S

TTNN
micro dδδW    

(5.27) 

 

The equivalency of the stress work at the macro (5.24) and micro level (5.27) is defined by 

 

   ,dδδ
4

3
δ: Seses

S

TTNN 


εσ  
(5.28) 

 

or by decomposing Ns  and Ts , as 

 

   .dδδδ)(
4

3
δ: Sesesess

S

KKMMNDV 


εσ  
(5.29) 

 

For a discrete approximation of the unit sphere (Fig. 5.2), the microscopic virtual work W
micro

 is obtained by 

integration over the microplane area Sd . Since it is assumed that all microplanes have equal surface area, the 

RHS of Eq. (5.29) can be rewritten in discrete form. With a number nm of microplanes used for the unit 

hemisphere discretization (Fig. 5.2), the microscopic stress works W
micro

 is defined as the sum of microplane 

contributions (5.30). 
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(5.30) 

 

Since the strain component variations are associated to the variation of ε via 

 

 ,δ:δ εN
 Ne  

(5.31) 
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the macroscopic stress tensor σ (2.92) can be calculated by (Pivonka et al., 2004) 
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 (5.32) 

 

The former Eq. denotes the macroscopic state of stress at the FE Gauss point i.e. continuum point (Chapter 2 – 

2.1 Introduction). To stress out an important fact, the former Eq. should be rewritten in indicial notation. For 

this purpose, the volumetric strain component is expressed as 
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ε
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the deviatoric strain components as  

 

 ,VijjiD enne    (5.34) 

 

and the shear stain components as 

 

 .and ijjiKijjiM nkenme     (5.35) 

 

By substituting these relations into Eq. (5.31), Eq. (5.30) can be rewritten as 

 

 .d)(
2

1
)(

2

1

2

3

1

 
 


























mn

S

KijjiMijjiDjiVjiij Ssnknksnmnmsnnsnnσ










 (5.36) 

 

The given integrals are linear in stress and thus appropriate for incremental stress analyses which are required 

for non-linear problems but also for problems in which the material under consideration possess memory of its 

initial (virgin) state (path-dependence). Furthermore, Carol and Bažant (1997) suggest that the term ninj (placed 

next to the deviatoric stress component sD) should be replaced by ninj – δij/3. The magnitude of the new term – 

δij/3 is proportional to the difference between the tensile and compressive deviatoric strength. Bažant shows 
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that the new term has no effect in the elastic response and that its presence can be evident only in inelastic 

region. For this region the absence of the term can produce negative energy dissipation which is especially 

evidenced during closed strain cycles. Obviously, the pathological behavior breaches the restriction imposed by 

the Second Law of Thermodynamics (Chapter 2 – 2.4 Thermodynamic restrictions). However, in the proposed 

numerical formulation, the additional term – δij/3 is suppressed by setting the ratio of initial deviatoric and 

volumetric microplane modules to be less than one. Furthermore, in order to abide by the thermodynamic 

restriction, the shear microplane strength is assumed to be greater than the deviatoric compressive strength 

(Ožbolt, Li & Kožar, 2001). Finally, note that the term absence is also compensated by the shear resistance 

dependency on volumetric strain. 

 

 

5.2.5 Microplane tangent stiffness 
 

Ožbolt and Bažant (1992) demonstrated that the components of the tangent stiffness tensor m
ijklC  can be 

calculated by substituting Eq. (5.33), Eq. (5.34), Eq. (5.35) and the incremental form of Eq. (5.18) into the 

incremental form of Eq. (5.36). Accordantly, m
ijklC  arias as 
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and enables to form the incremental relationship 

 

 ,dd m
klijklij  C  (5.38) 

 

which is necessary for non-linear analysis. 

 

 

5.3 Microplane stress tensor 
 

The very good performance of the microplane model for lies behind its conceptual simplicity. Namely, it is 

based on the possibility to retrieve direct physical meaning from the microplane stress components. 

Particularly, with various microplane spatial orientations, the normal and shear microplane components can be 

easy related to physical phenomena such as microstructure aggregate friction and strength or material yield 

limit at the three-dimensional microstructural level. However, it ought to be pointed out that the physical 

interpretation is justified only if the microplane stresses are true stresses (Cauchy stress). As already discussed 

(Chapter 2 – 2.2.5 Cauchy’s stress theory), PK2 is not quite suitable for this purpose. Note that this is a valid 

topic only if the expected macroscopic strains are relatively large. On the other hand, if the generated strains do 
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not cause the relevant presence of non-linear terms in the strain-displacement matrix B (3.76), the 2
nd

 Piola-

Kirchhoff stress tensor will be reduced to a Cauchy stress tensor σ (5.39). 

 

 .
det

1
where; T

FF
F

σσIF SS   (5.39) 

 

On the other hand, if the macroscopic strains are relatively large, the presence of PK2 is inevitable due to the 

fact that the force equilibrium at the current configuration is related to stresses in the reference configuration 

(two-point tensor). This is the case of the numerical investigation under consideration. To approach the 

problem by regarding large-strain generalization of the microplane model, some findings by Bažant et al. 

(2000a) will be paraphrased hereafter. 

 

To illustrate the mentioned stress differences, a comparison between PK2 (2.95) and the Cauchy stress tensor 

(2.92), generated from the same deformation on a single microplane, will be performed. For the sake of 

simplicity, suppose a deformation without material rotation. In this case, the material rotation matrix R will be 

equal to identity matrix I and the stress and strain tensor will be coaxial. Furthermore, assume that the local 

microplane axes have the same direction as the main orthogonal stress components. The spatial position of the 

considered microplane is defined by the angle of 45 degrees lying (Fig. 5.7). For this scenario, the deformation 

gradient matrix F (2.37) collects only principal stretch values such that (Shabana, 2008) 
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 (5.40) 

 

The deformation produces a true Cauchy stress tensor σ with only diagonal components Eq. (5.41). 
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Since S=J F
-1 

σ F
-T

, the given deformation gradient F (5.40), together with the related Cauchy stress tensor σ 

(5.42), produce PK2 filled only by diagonal components as 
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The shear component S12 is equal to (Bažant et al., 2000a)  
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while the component σ12 is different and equal to 
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By analyzing the normal components, the PK2 component Socta can be expressed as 
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(5.45) 

 
while the Cauchy stress component σocta is again different and equal to 

 

 .
3

321 σσσ
σocta


  (5.46) 

 
Note that the Cauchy component σocta can be physically interpreted as hydrostatic pressure (5.46) which is an 

important data for pressure-sensitive material such as concrete. On the other hand, the normal PK2 component 

Socta will describe the same result but only for relatively small strains (5.39). For relatively large strains, Socta 

(5.45) will have no direct physical meaning. 

 

 
 

Figure 5.7 Considered microplane: a) spatial position and b) principal stress components 

 

As discussed by Bažant et al. (2000a), with the strains growing tendency the PK2 components will 

progressively diverge from the corresponding components of the Cauchy stress tensor. This is especially 

evident in case of concentrated impact loadings (blast loading) where the factor of difference between σ and S 

can reach the value of two and even more.  
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Following the above-mentioned, the slip or stick frictional conditions can be hardly interpreted by adopting S 

(as well as the hardening and softening law on the microplane) and only the Cauchy true stress tensor σ will 

give real physical meaning. Nevertheless, due to the fact that the Cauchy stress tensor σ is not work conjugated 

to the here adopted Green-Lagrangian strain measure E, its essential form is not adequate for the constitutive 

description. Namely, for materials like concrete that retain information about deformation history, the 

constitutive description should be formulated in respect to the material state in the reference configuration. 

Therefore, the adequate stress tensor will be the true Cauchy stress tensor σ rotated back to the reference 

configuration (Bažant et al., 2000a). This is the formerly introduced back-rotated Cauchy stress tensor s 

(Belytschko, Liu & Moran, 2001). The backward rotation to the reference frame is carried out with the material 

rotation matrix R as 

 

 .T
RσRs  (5.47) 

 

Note that when there is no material rotation (R=I), the back-rotated Cauchy stress tensor s is equal to the 

Cauchy stress tensor σ. The same principle (5.47) can be applied to Kirchhoff stress tensor (2.94), producing 

the back-rotated Kirchhoff stress tensor τr (5.48). 

 

  tensorstress KirchhoffwhereT  σRσR JJ
r
τ  (5.48) 

 

In this case, if R=I the back-rotated Kirchhoff stress tensor τr will be equal to σ/J. The physical meaning of τr 

can be simply drawn by dividing it by J. Since the tensor invariant are unaffected by rotation, for both tensors, 

i.e.  s in Eq. (5.47) and τr in Eq. (5.48), the physical meaning is not jeopardized. 

 

For the numerical description covered by the thesis, the concrete pressure sensitivity is especially emphasized. 

For this reason the used stress tensor should refer to the initial configuration (5.46). Namely, such tensor has a 

clear physical meaning and makes the phenomenological interpretation of shear and normal microplane stress 

components possible (as well as of the hydrostatic pressure on the related microplane). Provided that the real 

pressure values on the microplanes can be assigned, the microplane material model will be able to simulate the 

complex concrete high-pressure ductile response and, on the other hand, it’s low-pressure brittle failure (Bažant 

et al., 2000a). 

 

In conclusion, the control of frictional effects, yield and strength material limit, and hardening or softening on 

the microplane level is easy when performed by a stress tensor that complies with the abovementioned 

requirements. So, the stress tensor that fulfills such conditions and is also adopted in the proposed numerical 

formulation is the back-rotated Cauchy stress tensor s (2.96). 
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5.4 Microplane strain tensor 
 

To formulate the constitutive relations for concrete, a strain measure that will be work-conjugated to the 

discussed s and τ tensors should be found (2.100). Two problems arise from this task (Bažant et al., 2000a). 

The first problem is that the required strain measure should depend neither on the current deformation nor on 

the deformation path that leads to the current continuum state. In other words, the strain tensor that is work-

conjugated to the back-rotated Cauchy stress tensor s (or to the back-rotated Kirchhoff stress tensor τ) will be 

nonholonomic (path-dependent). As showed by Bažant (1997), the appropriately strain tensor which is related 

to the back-rotated Cauchy stress tensor s (here denoted by e), can be obtained in an incremental form. The 

tensor derivation starts with the variational equivalence between the work of PK2, which is related to E (2.72), 

and the stress work performed by Cauchy true stress tensor σ that is conjugated to the unknown strain tensor e 

(5.49). 

 

 SEe :δ:δ σ  (5.49) 
 

The back-rotated Cauchy stress tensor s can be introduced in Eq. (5.49) by expressing σ according to Eq. 

(5.47). Furthermore, PK2 tensor in the former Eq. can be represented in terms of σ through Eq. (5.39). 

Congruently, the given operations will produce the equivalence: 

 

 .:δ:δ T1T  FσFRσR Ee J  (5.50) 

 

Following to the polar decomposition theorem, F can be in addition expressed as RU and, since F
-1

=U
-1

R
T
 and 

F
-T

=RU
-1

, the former expression can be than rewritten as (Bažant et al., 2000a) 

 

 ,:where:δ:δ T11
RσRUU  

ssEse J  (5.51) 

 

or in indicial notation as 

 

 .:wherδδ 1 UYeJsYYEse ijjlkiklijij  (5.52) 

 

This Eq. should be valid for all s and it will be true if: 

 

 .δδ JYEYe kilkjlij   (5.53) 

 

Being 

 

 ,
2

)(δ
δ

UU
E  (5.54) 

 

after replacing strain variations δ in Eq. (5.52) to differential d, such that 

 

 ,dd JYEYe kilkjlij   (5.55) 

 

the incremental strain tensor de (Bažant et al., 2000a) can be obtained as follows (5.56). 
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If the principal strain axes do not rotate (R=I), the integration of the former Eq. will produce 
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where the RHS cannot be explicitly integrated if the stretch axes are not fixed. In other words, the derived 

strain tensor e is nonholonomic i.e. path-depended. Similarly, the variational equality 

 

 ,:δ:δ SEτξ   (5.58) 

 

will lead to the incremental strain tensor dξ work conjugated to τ (5.59). 
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In contrast to Eq. (5.56), dξ is explicitly integrable and as such it is path-independent (5.60). 
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Note that the generate strain measure coincides with the previously introduced (2.75) logarithmic Henky strain 

tensor H (Chapter 2 – 2.2.4.2 Material strain tensors). The path-independency of ξ is preserved if the principal 

strain axes do not rotate (R=I). However, due to the fact that the principal strain axes usually rotate 

(eigenvectors of ξ), the derived strain measure is not suitable for the formulation of the constitutive relations for 

concrete under impact load. Also, for materials like concrete which suffer damage phenomena, the requirement 

for preserving the memory about its virgin state plays a redundant importance for the constitutive description of 

such materials. The aforementioned can be summarized by quoting Bažant et al. (2000a). 

 

 

“…The path-dependence destroys memory of the initial virgin state of the material...” 
 

 

Furthermore, the second problem, representing a hindrance to the quest for a suitable strain measure, is the 

necessity for physical interpretations of strain components on differently oriented microplanes (Fig. 5.5). 

Particularly, the generalization of the microplane model for finite strain produces the need for physical 

interpretation of normal eN and tangential eT strain components. To obtain the generalization, the microplane 

strain components should meet the following requirements: 
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1
st
 Requirement:    The normal strain component 

Ne  must uniquely describe the stretching of the material line 

segment that is normal to microplane in the initial configuration. 

 

2
nd

 Requirement:  The tangential strain components 
Me  and 

Ke  must uniquely describe the change of angles 

between two initially orthogonal material line segments on the microplane. 

 

In other words, the microplane strain should be independent on the starching of the material line segment that 

lies on the initial microplane. An example of the requirement can be illustrated by analyzing the strain 

components on a microplane defined with the unit normal vector n= T 
02121 . In this case, the Henky 

normal strain component HN is 
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Let’s compare the former strain component HN with the normal component EN (5.62) related to the Green-

Lagrangian strain tensor E (2.73). The comparison will be appropriately justified later on. 
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As Malvern proved (1969), the Green-Lagrangian strain tensor E produces a stretching EN in the normal 

direction given by 
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At this point the notation Ξ should be introduced in order to represent the ratio of the principal stretching axes 

λ1/λ2. By bearing the given notation, λ1 can be related to the normal stretching value λN through 

 

 .
1

2
21


 Nλλ  (5.64) 

 

Substituting Eq. (5.64) into Eq. (5.61), the Henky stretching value HN, for the normal direction n of the given 

microplane, can be calculated as 

 

 .
1

2
ln)(ln

21 
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
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
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An important conclusion can be drawn by comparing Eq. (5.62) and Eq. (5.65). The Henky normal component 

HN depends on the stretching value λN but also on the ratio Ξ. Respect to the 1
st
 requirement, Henky strain 

measure evidently breaches the prescribed condition. However, it would be a valid strain measure if the 

influence of Ξ is irrelevant. Well, according to Bažant et al. (2000a), it is not. 
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On the other hand, Eq. (5.65) illustrates that the normal stretching value EN is immune to the ratio Ξ. Pursuant 

to the 1
st
 requirement; this fact justifies the consideration of E and gives it seniority over other strain measures 

considered for the development of microplane constitutive relations. 

 

After identifying E as an appropriated candidate for the constitutive definition, it should be also determine if 

the shear strain components fit into the 2
nd

 requirement. For this purpose, assume a microplane on which the 

shear strains γxy and γxz are related to local microplane axes by subscripts x, y and z. These shear strains should 

uniquely define the shear angles θxy and θxz according to the 2
nd

 requirement. Malvern demonstrated (1969) that 

the shear angles can be calculated from the strain components as: 
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 (5.66) 

 

As the shear angles are here expressed only in terms of strain components, as well as the request contained in 

the 1
st
 requirement, the Green-Lagrange strain tensor E fulfill also the 2

nd
 requirement. In the case of Henky 

strain measure H, the shear angles are not expressed in terms of strain components on the related microplane 

(Bažant et al., 2000a). For this purpose, the shear angles are connected with the share angels on other 

microplanes and to stretches in other directions. It follows that the Henky strain measure fails to fulfill the 

conditions prescribed by the 1
st
 and 2

nd
 requirement. Concluding, it seems that the Green-Lagrangian strain 

tensor (2.73) is an appropriate choice for the microplane model applied to replicate the concrete response under 

high-energy impact loadings. In fact, according to the 1
st
 and 2

nd
 requirement, the components of E are 

sufficient to uniquely define the deformation on the microplane. However, being the metric of the Green-

Lagrangian tensor quadratic, and the equilibrium conditions on the microplane linear, the work-conjugacy 

becomes a problem which should be examine (Bonet & Wood, 1997). 

 

According to the abovementioned, an inevitable question should be answered: May the Green-Lagrangian 

strain tensor E be used and related to the back-rotated Cauchy stress tensor s ? If yes, possible side effects 

should be examined. 

 

 

5.4.1 Unique correspondence to conjugate pairs 
 

For a non-conjugated stress-strain pairs, the unique compliance with the conjugate constitutive law should be 

investigated (Bažant et al., 2000a). The non-conjugated law, which is here under consideration, can be 

formulated by introducing the tensorial function ψ with E as an argument (5.67). 

 

 )ψ(Es   (5.67) 

 

The law must be tested for correspondence with the conjugate constitutive law given by 
 

 ,)φ(ES   (5.68) 
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in which φ denotes another tensorial function. The problem can be now formulated as follows. The non-

conjugated law in Eq. (5.67) is admissible if the tensorial function ψ is uniquely related to the tensorial function 

φ, provided that this relation does not involve any material rotation (5.69). 

 

 )ψ()φ(
?

EE  
R

 (5.69) 

 

The requisite is examined by expressing the conjugate law in Eq. (5.68) in terms of s. Substituting Eq. (5.47) in 

Eq. (5.39); the given definition (5.67) may be formulated by expressing σ in terms of φ as 

 

 .)φ( T1
FFσ E

 J  (5.70) 

 

According to Eq. (2.51), and by recalling that )(2 EE UIU  , the former Eq. can be rewritten as 

 

 .)()φ()( T1
RUURσ EEE

 J  (5.71) 

 

The tensor s is obtained by multiplying Eq. (5.71) by R
T
 from the left and by R from right side (5.72). 

 

 )()φ()()ψ(where)()φ()( 11
EEEEEEs E UUUU

  JJ  (5.72) 

 

It is now clear that the correspondence to conjugate constitutive law is satisfied: 

 

 )()ψ()()φ( 11
EEEE

 UU J  (5.73) 

 

since the given relation (5.73) uniquely defines the relation between the tensorial functions φ and ψ and it is not 

affected by material rotation (5.69). 

 

 

5.4.2 Micro-macro constrains 
 

After having tested the compliance with the conjugate constitutive law, the conjugacy between the micro and 

macro constraints should be also examined. For this purpose, the chronology of computations necessary for 

obtaining the macroscopic stress tensor, are here resumed. (i) On the basis of the macroscopic train tensor E, 

the microplane strain components (Fig. 5.5) are calculated according to the kinematic constrains condition. (ii) 

The non-conjugated microplane stress components are calculated in accordance with the microplane 

constitutive laws (5.17). (iii) The macroscopic stress tensor is obtained following to the principle of virtual 

work (5.29). 

 

The third step directly implies that the macroscopic strain components E and the microplane strain components 

e are conjugated to the Cauchy stress tensor σ. The mentioned apparently introduces an additional kinematic 

condition. In other words, the microplane strain components are not only the projection of the macroscopic 

strain tensor but they are also the projection of the strain tensor on the microplane. It can be said that the 
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additional condition is a “ghost” kinematic condition due to the fact that the microplane can have only one 

kinematic constrain. Actually, such constrain can be trivially disproved. Namely, if the microplane strain 

components are defined by the projection of the macroscopic strain tensor E then, by definition, the microplane 

strain components will be obtained by projecting the strain tensor e that lies on that microplane. In short 

(Bažant et al., 2000a): 

 

 

“…If the kinematic micro-macro constraint is imposed for one type of strain measure, then the kinematic 

constraint automatically holds for any type of strain measure...” 

 

 

In summary, from the perspective of work-conjugacy, an appropriate strain measure for the adopted stress 

tensor s is the e strain tensor (5.57). However, the nonholonomic property of e reflects its path-dependency and 

makes it unusable for materials like concrete that retain the information on their initial state (virgin state). 

Furthermore, the tendency to preserve the strain objectivity on the microplane rejects the work-conjugate strain 

tensors as possible strain measure. The requirement to fully and uniquely describe the stretch of a material line 

segment (initially normal to the microplane), and to retain the true shear angle, is met only by the Green-

Lagrangian strain tensor E (2.73).  

 

In conclusion, in order to preserve the physical meaning of the microplane stress components, and to dispose 

with an objective microplane strain measure (immune to deformations on other microplanes), it can be deduced 

that a compromise is inevitable. Congruently, in the proposed numerical formulation the constitutive 

description is based on the back-rotated Cauchy stress tensor s and the Green-Lagrangian strain tensor E which 

are not work-conjugated. However, only in this manner the microplane model simplicity and its conceptual 

clarity can be preserved. On the other hand, it should be pointed out that even if the non-conjugated stress-

strain pairs are used, their admissibility can be justified by testing the unique correspondence condition to 

another work-conjugate law and the unique micro-macro cinematic transition. As already discussed, those 

requirements have been met. 

 

 

5.5 Ψ - discontinuity function 
 

Based on the original Bažant and Prat’s (BP) model (1987 & 1988), the formulation adopted in the present 

numerical investigation is enriched with the so-called relaxed kinematic constraint principle (Ožbolt, Li & 

Kožar, 2001). Namely, the original model displays pathological behavior for dominating tensile damage 

(tensile softening). For this type of loading, the pathological behaviour was evidenced by an unrealistic lateral 

extension (negative Poisson ration). For the purpose of illustrating the extended version of the model, which 

corrects the mentioned non-physical prediction, the basis of the original BP model will be hereafter presented. 
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5.5.1  BP model - pathological behavior 
 

As Jirásek showed (1993), the pathological behavior of the BP model lies in the split of the normal microplane 

components into their volumetric and deviatoric parts rather than into microplane kinematic constraint. To 

illustrate the reason of this pathological expansion, which has been identified in concrete subject to tension 

loadings, consider a simple example where a two-dimensional specimen is loaded in a uniaxial tension (Fig. 

5.8a). For the sake of simplicity, assume a plane stress analysis for a linear elastic material response and two 

microplanes (x and y) which are coaxial with the global rectangular coordinate axes (Ožbolt, Li & Kožar, 

2001). 

 

 
 

Figure 5.8 Microplane in uniaxial tension: a) load, b) volumetric and c) deviatoric stress-strain components 
 

Furthermore, focus on the microplane perpendicular to the loading direction where the lateral expansion is 

expected. For the given scenario, the BP model requires the normal stress component to be split into its 

volumetric and deviatoric part as 

 

 ,,, yDVyN sss   (5.74) 

 

and the microplanes strain component to be split accordantly as 
 

 .,, yDVyN eee   (5.75) 

 

Note that the condition  
 

 0,  yNy ss  (5.76) 

 

should be fulfilled. Approximately at point 1 in Fig. 5.8b the volumetric strain component is given by 
 

 ,)21()31( xV ee   (5.77) 

 

and the deviatoric strain components by 
 

 .)1()31(, xyD ee   (5.78) 

 

If ex > 0 the deviatoric strain eD,y and deviatoric stress sD,y on the y microplane will be negative denoting 

compression state. Now, suppose that the given loading causes the vertical crack opening (crack state). In that 

case ex will tend to infinity and the volumetric sV and deviatoric sD stresses will drop to 0. 
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In the BP model the volumetric sV and deviator sD stresses (for virgin load) are calculated by secant stiffness 

modules for volumetric CV and deviator CD components (5.22), respectively. With regard to the crack state, 

let’s check when the condition (5.76) is fulfilled. According to Eq. (5.74) and Eq. (5.75) the crack state is 

preserved if one of the following conditions is satisfied (5.79). 

 

 0or0 ,  yDD eC  (5.79) 

 

The conditions simply reflect that the deviatoric component on the y microplane is subject to softening (Ožbolt, 

Li & Kožar, 2001). The Fig. 5.8c illustrates this situation with the dotted line indicating the deviatoric limit. 

Note that the BP model requires that the deviatoric compressive strength should be approximately 10 times 

greater than the volumetric tensile strength. According to that, the fulfillment of the second condition in (5.79) 

ensures the equality in (5.76). On the other hand, the deviatoric strain component eD,y is not subject to 

softening, and the model replicates lateral expansion (5.80). 

 

 VyN ee ,  (5.80) 

 

 

5.5.2 Regularizing condition 
 

To avoid the pathological behavior of the BP model, it can be demonstrated that an appropriate relationship 

between CD,y and CV is necessary. By introducing sV and sD from the microplane constitutive equations in Eq. 

(5.17) into Eq. (5.74) and Eq. (5.75), and denoting that 

 

 ,
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C
  (5.81) 

 

the condition in Eq. (5.82) can be obtained (Ožbolt, Li & Kožar, 2001). 
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η can be rewritten by taking into account Eq. (5.77) and Eq. (5.78), which gives 
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  (5.83) 

 

It follows that, in order to satisfy Eq. (5.82), η should be constant for any level of damage (5.84). 

 

 VyD CC ,  (5.84) 

 

The connection between the secant stiffness moduli refers that the condition (5.79) is fulfilled only when CD,y is 

proportional to CV during the entire history of deformation which is characterized by damage. In conclusion, 

only an appropriate sD-eD relationship that satisfies (5.79) will lead to a realistic solution for concrete under 
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uniaxial tension. For other constitutive description, the BP model will predict certain lateral expansion or even 

the situation in which the normal stress components sN,y will never reach zero since ex → +∞  (Ožbolt, Li & 

Kožar, 2001). 

 

 

5.5.3 Effective microplane strain components 
 

In order to remove the pathological behavior from the BP model, the discontinuity nature of the strain field 

should be taken into account. A possible solution is the improvement of the microplane kinematic condition by 

adding an additional constraint to the microplane strain components. Mention that there are other possibilities 

but they produce side effects at the microplane level, perceived as the non-negative energy dissipation (Bažant 

et al., 2000a). The proposed numerical formulation is based on retaining and expanding the microplane 

kinematic condition. 

 

The main idea of the original BP model improvement lies in the extended description of the strain field, by 

introducing the concept of effective microplane strain components (Ožbolt, Li & Kožar, 2001). The theoretical 

modification perturbs the assumption originally introduced by Bažant and Prat (1987), and so, it is reasonable 

to interpret the model alteration as an improvement. Namely, instead of calculating the microplane stress 

components from the microplane strain data for dominate tensile load (obtained by projecting the macroscopic 

stress tensor E), the microplane stresses are calculated on the base of the so-called effective microplane strain 

components. 

 

Except for microplane volumetric strain, the effective strain components are redefined as components of the 

projected macroscopic strain tensor E multiplied by a pre-defined function ψ. In this case, the model corrects 

the deviatoric microplane strain component eD as 

 

 .)( VijjiD eEnne   (5.85) 

 

Similarly, the tangential strain components are now calculated via 

 

 .and,  ijjiKijjiM EnkeEnme   (5.86) 

 

As mentioned, the model enrichment is based on the relaxed kinematic concept. Now, the prefix “relaxed” can 

be explained as follows. For dominated tensile loading, accompanied by discrete crack openings, the function ψ 

describes the innate discontinuous character of strain field by introducing strain relaxations. Due to the fact 

that the dominate tension loading can obtain any direction, for each microplane around the given FE Gauss 

point, the value   is uniquely dedicated and defined across the interval 

 

 .01    (5.87) 
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Since ψ marks discontinuity in the strain field, it is called the discontinuity function. Its selection is influenced 

by the microplane volumetric stress-strain relationship and by the maximal principal stress σ1 (tension stresses). 

Whit such assumptions, ψ allow the smooth transition from the dominant tensile load to dominant compressive 

load. The procedure is discussed as follow. 

 

 

5.5.3.1   Strain relaxation – deviatoric components 
 

At the initial material virgin state (even for small tensile load) the concrete integrity can be viewed as an 

isotropic elastic continuum (Ožbolt, Li & Kožar, 2001). By increasing tension load, the concrete integrity starts 

to decrease (stiffness degradation). At the microstructural level, a bunch of microcracks arise which can 

consequently lead to their local accumulation and finally, to material rupture evidenced at the macro-scale as a 

crack extension. The continuum theory predicts this state as a localization of strains at the crack trajectory.  

 

In order to describe the stress behavior at the crack state, assume a plane damaged by horizontal tensile loading 

(Fig. 5.9). The damage evolution is directly related to the strain value in load direction (damage direction). By 

increasing lateral strains, which are denoted in Fig. 5.9 by the red arrow (direction 1), the stresses in the same 

direction start to decrease. In this case, the strain components oriented perpendicularly to the damage direction 

(direction 2) have decreased in a nearly elastic manner. After the material rupture, the three-dimensional stress 

state is reduced to a uniaxial stress-strain state. 

 

 
 

Figure 5.9 Influence of damage orientation on stress (macroscopic loading and unloading) 

 

This is an important mechanism that should be incorporated in every material model for quasi-brittle material. 

In order to introduce the mechanism in the concept of relaxed kinematic constrain, an objective criteria is 

required for evidencing dominant tensile load. For this purpose, imagine a material volume segment loaded by 

tension in one, two or all three directions. In this case, the Green-Lagrangian volumetric strain component EV 

and the principal stress sI of the back-rotated Cauchy stress tensor s are positive. Thus, it seems reasonable to 

assume that dominate tensile load exists if (Ožbolt, Li & Kožar, 2001): 

 

 ,0and0  IV se  (5.88) 



V. Travaš – Dissertation                                                                                                                                   Chapter 5 – Microplane material model 

 

______________________________________________________________________________ 
Faculty of Civil Engineering, University of Rijeka, Croatia                                                                                                                      Page | 109 

 

where eV and sI are invariant macroscopic tensor properties. Indeed, the invariant property makes Eq. (5.88) 

even more adequate criteria for dominate tensile load. Moreover, in the elastic range of material response, the 

principal stress can evidence the presence of tensile load. On the other hand, the condition (5.88) survives even 

if the volume segment is fully cracked. In such case, the total volumetric strain is positive and the principal 

stress drops close to zero. Furthermore, the total volumetric strain (for the cracked material) is approximately 

equal to a non-elastic volumetric strain which additionally indicates that (5.88) can be uses as an indicator of 

dominant tensile load. 

 

After identifying the need to invoke the discontinuity function ψ, its value should be appropriately defined. As 

previously demonstrated in Eq. (5.84) for tensile load, the secant modulus CD should be proportional to the 

secant modulus CV. According to Eq. (5.84) and Eq. (5.18), the deviatoric stress component for virgin load is 

calculated as 
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(5.89) 

 

where eD represents the total microplane deviatoric strain. By applying the effective microplane strain concept, 

the former expression can be rewritten as 

 

 ,,effDDD eCs   (5.90) 

 

in which eD,eff denotes the effective strain and is calculated through the discontinuity function by 
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(5.91) 

 

The same concept can be applied to the microplane secant modulus giving 
 

 ,, DeffDD eCs   (5.92) 

 

where CD,eff represents the effective secant modulus and is calculated by 

 

 ., DeffD CC   (5.93) 

 

The effective deviatoric secant modulus CD,eff is proportional to CV and varies from CD,0 (in the initial virgin 

state) to zero (crack state). In order to preserve the discussed proportionality given in Eq. (5.84), the 

discontinuity function ψ must be of the same type as the function that controls the microplane volumetric 

secant modulus CV (5.21). 

 

It can be conclude that the discontinuity function ψ applied to the microplane deviatoric strain component 

enables the material relaxation in the direction perpendicular to the principal damage direction. Therefore, one 

may say that the mechanism illustrated in Fig. 5.9 has been replicated. Also, note that for the general three-
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dimensional case, where the damage can move towards any direction, the various microplane orientations can 

easily trap the principal damage direction. Namely, as the discontinuity function is prescribed for each 

microplane separately, the microplane which is perpendicular to the crack surface has the negative deviatoric 

strain and will be unloaded (5.94). 

 

 0,0,  eeeee NVND  (5.94) 

 

By contrast, the microplane which is parallel to the crack surface has positive deviatoric strain: 
 

 ,00,,  DNVNVND eeeeeee  (5.95) 

 

and is loaded in tension. Depending on loading or unloading case, the deviator microplane strain components 

need or need not be multiplied by the discontinuity function ψ. In this manner, even for complex three-

dimensional damage evolution, the microplane model can replicate the anisotropic damage behavior at the 

concrete microstructural level. 

 

 

5.5.3.2   Strain relaxation – what about volumetric components ? 
 

According to Eq. (5.85) and Eq. (5.86), the question why the volumetric strain components are not split into 

their effective and non-effective part, seems valid. Principally, there are four important reasons for that. (i) As 

already introduced in Eq. (5.13), the volumetric strain components are invariant in respect to the microplane 

orientation. (ii) The static constraint on the volumetric stress component has been fulfilled whereas eV → ∞ 

when sV → 0. (iii) Its originality should be preserved due to its role for macroscopic tensile damage 

identification. (iv) The information about the volumetric strain component is useful for monitoring of the 

stress-strain patch in case of concrete under cycling loading.  

 

Furthermore, according to Eq. (5.93), the microplane negative deviatoric strain component indicates that the 

microplane orientation (5.2) is orthogonal to the damage direction. If the damage increases, the deviatoric stress 

and strain in the direction of damage evolution should relax and consequently reach zero. In order to reproduce 

this effect artificially, the discontinuity function for the deviatoric strain component is conditionally assumed as 

(Ožbolt, Li & Kožar, 2001): 
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  (5.96) 
 

                                                     ,0if                 0  De  
 

in which sI,min denotes small negative limit value of the maximum principal stress. In principle, ψ in Eq. (5.96) 

has the same form as the microplane stress-strain relationship for volumetric tension (5.19). The difference is 

evidenced in the introduced function f (sI) which reflects the smoothed transition from the discontinuous state 

(at the tensile crack opening) to the continuous one in which the crack is closing, producing compression at the 

crack surface (Fig. 5.10). 
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Figure 5.10 Microplane discontinuity function: a) strain discontinuity and b) stress discontinuity function  

 

Based on experimental cyclic test data, the function f (sI) is here adopted as: 
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In conclusion, for microplanes closely oriented towards the damage direction, the strain value perpendicular to 

the crack surface reaches infinity while the appropriate microplane stresses are reduced to zero. This unloading 

scenario can be summarized as follows (5.98). 

 

 1withand0)),(,,(  DKMTDVV essssse  (5.98) 

 

 

5.5.3.3   Strain relaxation – shear components 
 

In order to numerically trap the concrete behavior under high confining pressure (which is obviously important 

in high-energy impact loading), the shear microplane strain components should be influenced by the 

microplane volumetric strain (5.23). For this purpose, note that the independency of shear components 
Me and 


Ke  specifies that there is no co-axiality between their microplane stress components. Now, in the case of 

tension loading accompanied by the crack state (positive normal stresses), the shear resistance should be 

reduced to zero. On the other hand, for negative normal stress, caused by compression loading, the microplane 

share resistance should be activated, which can be physically interpreted as the microstructural frictional effect 

(concrete aggregate interlocking). This is a typical situation in which the concrete is under pure compression, or 

shear compression softening, where the microplanes shear persistence lies in the mainly normal compressive 

stress. In this case, it is convenient to model concrete as a continuum filled by cracks (Ožbolt, Li & Kožar, 

2001). However, in case of dominant tensile damage, the shear stress and strain microplane components should 

be reduced to zero. The aforementioned situations can be numerically reflected by the shear discontinuity 

function here assumed as 
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                                      . elseif                      1         
 

Once again, the introduced discontinuity function is influenced by function f (sI), enabling the smoothed 

continuum-discontinuum transition (5.97). This is an almost crucial improvement of the BP microplane model, 

due to the fact that under high-energy impacts loading, the presence of shear failure mode is inevitable. This 

fact is especially evidenced in experiments in which a plain concrete beam is tested on relatively high impact 

loadings (Sukontasukkul & Mindess, 2003). 

 

 

5.6 Cyclic loading 
 

The presence of cyclic loading in a general triaxial case is incorporated in the adopted microplane model by 

loading-unloading rules attributed to each uniaxial stress-strain microplane relationship. Namely, the virgin 

loading for the  microplane is reached if: 

 ,0)()(and minmax   eeeeee  (5.100) 
 

in which 
maxe  and 

mine denote the maximal and minimal strain value that has been attained so far. For other 

situations, the microplane unloading or reloading case is activated when the microplane stress-strain 

relationship is reconstructed in an incremental form by 

 

 ,dd eCs cy  (5.101) 
 

where Ccy represents the unloading-reloading tangent moduli given by 
 

 .
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The strain component e
*
 in Eq. (5.102) is calculated according to the total strain value e by 

 

 

,if)(
0

1 pp
p

p eeee
C

s
ee    

(5.103) 
 

,if1 pp eeee   

 

in which sp and ep denote the positive (sp
+
) or negative (sp

-
) peak stress, and (ep

+
) and (ep

-
) are the corresponding 

positive and negative peak strains. The parameter α in Eq. (5.102) and the parameter β in Eq. (5.103) are 

empirically chosen and usually assumed as constant between 1 and 0. For each microplane, C0 represents its 

initial elastic stiffness moduli. A sample of loading-unloading-reloading rules is illustrated in Fig. 5.11. It can 

be see that, in the region of volumetric compression (Fig. 5.11a), the loading-unloading modulus is defined by 

the initial elastic volumetric modulus CV,0 (virgin state). On the other hand, the stress-strain relation in the 

tension quadrant is controlled by Eq. (5.102).  
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Figure 5.11 Loading-unloading-reloading rules for: a) volumetric and b) deviatoric microplane components 
 

Following the letters in Fig. 5.11, an example of a typical load cycle, composed of the virgin loading tension, 

unloading in compression and reloading in tension, can be given as (Ožbolt, Li & Kožar, 2001) 

 

 .A)0,0(FEBADCBAP)0,0(    

 

Another one could be 
 

 ,ADBA)0,0(    

 

or even 
 

 ,A)0,0(FEBAP)0,0(BA)0,0(    

 

which denotes the virgin loading in compression, unloading and then reloading in tension (Fig. 5.11a). Similar 

rules can be applied for the description of cycling loading attributed to deviatoric compression and tension (Fig. 

5.11b). The cycling rules for shear microplane components are almost the same as for the deviatoric component 

(Fig. 5.11a). However, in order to reproduce the effect evidenced in bond cyclic experiment (where the loading 

in one direction causes the decreasing of share strength and stiffness in the opposite direction), the share 

microplane components are adapted through the stiffness moduli CM and CK multiplied by an additional 

damage function given as 

 

 
.

1.1

0
2.1 
















 es  
(5.104) 

 

In this Eq. Λ denotes dissipation of the accumulated shear energy while Λ0 represents the area under the 

monotonic microplane shear stress-strain curve. This empirical damage function has been proposed by 

Eligehausen, Popov and Bertero (1983), and is based on an evaluated number of experimental bond cycle test 

data. 
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5.7 Anisotropy 
 

Considering the origin of material anisotropy, the initial and damage induced anisotropy should be 

distinguished. The first one is a consequence of the material structure in the initial virgin state. The second one 

is caused by damage localization in a particular direction (Fig. 5.10) and its evolution is influenced by loading 

(Kuhl, Ramm & de Borst, 2000). At the numerical implementation level, both situations can be very elegantly 

incorporated into the microplane material model (Ožbolt, Li & Kožar, 2001). Indeed, the damage induced 

anisotropy is automatically taken into account by various microplanes orientations in which the stress-strain 

dependency is uniquely defined as the function of damage (5.18). The initial material anisotropy can be 

incorporated in two different ways. 

 

 

5.7.1 Ω(n) – material weak direction 
 

The initial anisotropy can be incorporated by considering the function Ω(n) depending on the microplane 

normal direction (5.2) in respect to the material weak direction w. The function Ω(n) is represented as a 

statistical distribution of the weak direction frequency attributed to the microplane normal vector 
n  (Fig. 

5.12). Particularly, if the microplane normal vector is parallel to the weak direction, Ω(n) is equal to 1 and if 

the vector 
n  is perpendicular to w, Ω(n) is equal to 0. 

 

 

 
 

Figure 5.12 Material anisotropy viewed as a weak direction defined with angle φ 



V. Travaš – Dissertation                                                                                                                                   Chapter 5 – Microplane material model 

 

______________________________________________________________________________ 
Faculty of Civil Engineering, University of Rijeka, Croatia                                                                                                                      Page | 115 

 

Once the material weak direction w is known, the function Ω(n) can be introduced in Eq. (5.36) from where the 

macroscopic stress tensor σ is calculated. As the volumetric stress components does not depend on the 

microplane orientation (denoting volumetric isotropy), Eq. (5.36) can be rewritten as 
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Mention that the weak point of the strategy is the difficulty to identify the function Ω(n) in the experimental 

tests. However, in the proposed numerical formulation the function is defined empirically as 

 

 ,)()( 
iiwn n  (5.106) 

 

where wi is the component of the weak direction w and γ is the parameter ≥ 1 (Ožbolt, Li & Kožar, 2001). 

 

 

5.7.2 Anisotropy by microplane orientation 
 

The second strategy is based on defining the uniaxial microplane constitutive description for different types of 

microplane orientations (Prat & Gens, 1994). The strategy modifies Eq. (5.22) and Eq. (5.23) by extending 

their dependency to the microplane normal direction n (5.107). 

 

 

),( nVVV eCC   

(5.107) 

 

),,( nDVDD eeCC   
 

),,,( nVVMMM seeCC   
 

),,,( nVVKKK seeCC   

 

In contrast with the previous strategy, the volumetric anisotropy is here replicated by setting the microplane 

volumetric modules as a function of microplane orientation (5.2). The passage from micro to macro scale is the 

same as discussed earlier (5.1.1 Microplane strain components). 

 

 

5.8 Strain rate sensitivity 
 

In order to develop a numerical formulation able to realistically capture the concrete acute failure under high-

energy impact loading (but also low-impact loading), the strain rate sensibility effect should be included in the 

concrete constitutive description. Namely, experiments confirm that the response of concrete structures is 

directly related to loading rate (Bentur, Mindess & Banthia, 1986; Sukontasukkul & Mindess, 2003). As 

discussed by Ožbolt et al. (2006), there are mainly three different effects that govern the mechanical behavior 

of concrete exposed to external loading. 
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(i)   At a relatively low-loading rate, like static or quasi-static loading rate, the concrete response is 

manifested as the bulk material creeping between the cracks. 

 

(ii)   With a smooth margin of transition, by increasing the loading rate the material response is governed 

by the rate dependency of the growing microcracks. 

 

(iii)   At high-impact loading, the material response is under dominant influence of inertial forces, which 

can significantly change the stress and strain state at the crack tip. 

 

Basically, all three failure mechanisms are always present but their contributions to concrete cracking vary with 

loading rate. It can be deduced that the concrete cone of failure (Fig. 5.13) varies and depends on the 

deformation rate. 

 

 

With the present numerical formulation the author intends to numerically replicate, and subsequently 

investigate, the transition between the abovementioned three effects that govern the concrete failure. 

 

 

Numerous theoretical and experimental researchers, motivated by 

the importance of strain rate effect, have developed a variety of 

strategies aimed to quantitatively describe its manifestation (Bažant 

et al., 2000b). A lot of proposed models were based on different 

stress-displacement relationships, similar to the spring-dashpot 

models of viscoelasticity. However, in the proposed numerical 

formulation, the model for rate dependency is based on the energy 

activation theory of bond ruptures (Krausz & Krausz, 1988). The 

adopted model can reproduce the rate dependency of the crack 

propagation across a wide range of loading rates (Ožbolt & 

Reinhardt, 2001; Ožbolt, Rah & Meštrović, 2006). 

 

 

The rate dependency model is here implemented in the thermodynamically consistent M2-O microplane model 

for concrete (Ožbolt, Rah & Meštrović, 2006). On the basis of the previously mentioned effects (that govern 

the concrete failure process), the introduced rate dependency model enables to numerically reconstruct the first 

two. Indeed, the proposed numerical formulation is sensitive to the rate dependency related to formation of 

microcracks and to the creep of concrete between the microcracks. The third effect is not included in the model 

since it is not a part of the constitutive law (inertial forces). It emerges automatically from the dynamic 

equilibrium equation due to the direct interaction of the constitutive law with the activation of inertial forces. 

 
 

Figure 5.13 Concrete cone of failure 
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In contrast with the model proposed by Bažant et al. (2000b), where the initial concrete elasticity modulus is 

manipulated by a pre-defined viscoelastic model, the rate dependency softening and hardening are here 

controlled by the formation of microcracks. With such physical background, the adopted concept is reasonable 

since the concrete microcracks start to grow immediately upon the implication of loads. 

 

In order to represent the rate dependency caused by the creep of concrete between the microcracks, the 

generalized Maxwell model for concrete is adopted (Ožbolt & Reinhardt, 2001). Considering the duration of 

load, the first rate dependency effect (i) is manifested in relatively short loading times (impact loadings) and the 

second one, in relatively long loading times associated to creep fracture interactions (static loading). 

 

After introducing the basic concepts related to strain rate effect, the model for simulating the rate dependency is 

hereafter presented. For this purpose, assume a concrete body smeared with parallel cohesive cracks. In this 

case, the rate of macroscopic strain dε/dt can be expressed as 

 

 .
d

d

Es

w

t cr

 
  (5.108) 

 

In this Eq. ε denotes the macroscopic strain, normal to the direction of parallel microcracks, scr represents the 

spacing of the assumed parallel cracks and the term dw/dt is the crack opening ratio where w indicates the crack 

aperture. By validly assuming that the elastic strain ratio (dσ/dt)/E can be neglected in respect to the crack 

opening ration dw/dt (Ožbolt, Rah & Meštrović, 2006), the former Eq. (5.108) can be simplified such that 
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 (5.109) 

 

Having introduced this reasonable simplification, the influence of strain rate effect may be applied to the stress-

strain constitutive relationship. Accordantly, the macroscopic stress components σ(ε) are related to the 

macroscopic strain components ε via the constitutive material description enriched by the rate-of-deformation 

dε/dt (5.110). 
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(5.110) 

 

 

The parameters c1 and c2 are material constant obtained by fitting test data (Bažant et al., 2000b). Note that the 

macroscopic stress σ(ε) are the product of the originally obtained stress σ(ε)
0
 multiplied by a correctional factor 

that reflects the influence of the rate-of-deformation (5.110). 
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Resume, for the given microplane strain components, the microplane stress components are obtained through 

the microplane uniaxial constitutive definition (5.17). At this scale of observation, the microplane stresses do 

not depend on the rate-of-deformation. Namely, to preserve the tensors objectivity, it is seems reasonable to 

assume that the microplane stress components are unaffected by the previously defined principle (5.110). In 

this case, the rate-of-deformation is measured at the macroscopic level, with a scalar quantity associated to the 

macroscopic Green-Lagrangian strain tensor E (5.111). 

 

 
ijijEE

2

1    (5.111) 

 

Measuring the rate-of-deformation at the microplane level would be inappropriate due to the fact that individual 

microplanes possess different strain rate which will consequently lead to a subjective strain rate measure. 
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Chapter 6 
 

 

Contact mechanics 
 

6.1 Introduction 
 

In order to numerically simulate the free fall drop weight experiment, as well as any other mechanical 

interaction, contact between different FE discretizations has to be considered. For this purpose, resume that the 

non-linear nature of contact phenomenon will requires the incremental solution to reproduce body deformation 

path. Mention also that in each time increment Δt the contact simulation brings two different tasks. (i) Since the 

contact event is evident in mesh boundary interactions and, on the other hand, the introduced equation of 

motion cannot recognize contact events, an exterior procedure is needed to monitor the deformation path and to 

notify if contact occurs. (ii) By identifying and localizing mesh contact regions, the description of forces over 

the contact interfaces should be given according to the principles of contact mechanics. Basically, these two 

procedures can be classified as contact detection and contact resolution stage (Fig. 6.1). Since the 

computational stages are principally different, i.e. the first one involves only kinematical aspect of contact 

while the second one involves the mechanical aspects; it is convenient to discuss them separately. 
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According to the abovementioned, the current chapter addresses the issue of an adequate modifications for Eq. 

(4.30), needed to include the presents of contact forces. The here discussed contact resolution stage will be 

principally valid for an arbitrary result previously obtained in the contact detection stage. The contact detection 

stage will be discussed in the next chapter. 

 

 
 

Figure 6.1 Numerical treatment of contact: a) contact detection and b) contact resolution phase 

 

Each contact problems involve a number nb of solids for which the upper index κ can be used to represent the 

bodies geometrical and mechanical data association (κ=1..nb). However, since the main attention is here 

dedicated to numerically investigate the concrete response by simulating the free fall drop weight experiment 

(Fig. 1.1), it is reasonable to simplify the description by considering only two bodies that are further indicated 

as the body m and s (κ=m,s). 

 

Under these circumstances, the pre-defined force field b
κ
 induces the motion of bodies and generates the 

deformation path completely defined with the reference configuration at time tn and current configuration at 

time tn+1. During the deformation history, the domains Ω
κ
 bounded by Γ

κ
 can occasionally come into contact 

and thus produce the contact boundary interface Γc (Fig. 6.2). Note that the contact interface dimension is one 

order below the space dimension. Therefore, in case of two-dimensional problems Γc is a curve, and in case of 

three-dimensional problems, Γc is a surface. Mention also that the contact surface Γc is usually unknown in 

advance and has to be determined in an iterative fashion (non-linear problem). 

 

 

6.2 Strong formulation 
 

By definition, the contact problem arises from the classical body deformation analysis (3.3) by adding the 

contact displacements constraints to introduce a restriction over the displacement solution space. Namely, 

since two material points cannot occupy the same space at the same time, the displacement field that causes 

penetrations between bodies must be forbidden. Furthermore, the solution space restriction will be additionally 

influenced by the physical property over the contact surface Γc. In other words, the tangential displacements 

will depend on an adopted frictional constitutive behavior.  
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In order to obtain the FE approximation of displacement field u for bodies under collision, the strong problem 

formulation should be considered. The formulation was originally introduced by Signorini (1933) and it is 

therefore also known as the Signorini problem. 

 

 
 

Figure 6.2 Deformation path characterized by mechanical interaction (contact on boundary Гc) 

 

 

6.2.1 Signorini problem 
 

The governing differential equations for bodies in contact/impact are principally the same as the previously 

introduced in (3.3). However, the key differences lie in the additional kinematic and kinetic conditions, defined 

on the contact interface Γc (Fig. 6.2). Resume, due to the fact that the body domain should not be 

interpenetrated (not allowed physical penetrations); the so-called impenetrability contact condition must be 

fulfilled (kinematic condition). Furthermore, to characterize the contact response, the physical behaviour of Γc 

should be also taken into account (kinetic condition). By enriching the earlier given strong form (3.3) with the 

mathematical description of the mentioned conditions, the strong form for contact problem can be formulated 

as follows (Signorini problem): 

:such thatfind 3u  
 

 ,in0 κκ
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κκ  jijib    
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 ,0κ ig  (6.1a) 
 

 ,on0κ
cit   (6.1b) 

 

 ,0κκ ii tg  (6.1c) 
 

:where  
 

 .and κκκκκ  utut   

 

By considering a number of bodies in the pre-defined force field b
κ
, the possible mechanical interactions are 

now introduced via additional boundary contact conditions (6.1). Particularly, if the negative gap value gi 

indicates the magnitude of non-physical penetrations, then the first impenetrability contact condition (6.1a) 

states that no penetration is allowed (6.2). 
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The second so-called intensility contact condition (6.1b) describes the compressive character of normal 

traction, and states that only compressive stresses can occur on Γc. The so-called complementarity contact 

condition (6.1c) combines the impenetrability (6.1a) and intensility conditions (6.1b) by describing the unique 

product between them. This condition is also known as the unitary contact condition and expresses the fact that 

contact forces do not produce mechanical work (Belytschko, Liu & Moran, 2001). In other words, if there is no 

contact, no compressive traction can occur. By contrast, if there are no compressive stresses, the gap value 

must be positive. 

 

 

6.2.2 Karush-Kuhn-Tucker constraints 
 

The conditions (6.1) are also known as Karush-Kuhn-Tucker conditions of optimality (KKT). The conditions 

are required in the weak form of equilibrium (3.15) and lead to the so-called weak inequalities or variational 

inequalities principle (Wriggers, 2002). The KKT conditions can be also approximately fulfilled by 

appropriately controlling the impenetrability condition (6.1a). In the proposed numerical formulation the KKT 

conditions are fulfilled artificially by means of an adequate description of the related numerical algorithm. 

However, since the numerical description lies in the geometrical approximation of bodies, the impenetrability 

condition cannot be exactly fulfilled and certain tolerance value is needed to measure the non-physical 

penetration. Note the importance of the computational stage for contact detection and the influence of the 

earlier discussed computational round-off error (Chapter 4 - 4.3.1 Assumption, approximations and errors). 
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6.2.3 Frictional constraints 
 

As a real contact event is always accompanied by a certain amount of frictional energy dissipation, the 

phenomenological description of friction should be given. As already mentioned, the frictional behavior 

imposes an additional restriction on the displacement solution space. Particularly, depending on frictional 

properties over Γc, the particles in contact can be subject to stick or slip contact condition (Wriggers, 2002). 

The skipping between them is quantitatively described by a pre-defined friction models. In the proposed 

numerical formulation, the Coulomb frictional model is used to reproduce the dissipative nature of tangential 

contact forces. Accordantly, the functional relation Φ between the normal tN and the tangential component tT of 

traction vector t are obtained through the frictional coefficient µ. For this purpose, the tangential velocity vT 

between the particle in contact and the consistency parameter for slip ζ are needed (Kloosterman, 2002). The 

frictional constraints can be now formulated as follows (6.3). 

 

 0μ: NT  tt  (6.3a) 
 

 0TT  tv 

 

(6.3b) 
 

 0

 

(6.3c) 
 

 0 

 

(6.3d) 

 

Mention that the friction coefficient µ is here assumed as constant while for some other constitutive 

descriptions it can be set as a function of velocity and/or pressure. The condition in Eq. (6.3b) and Eq. (6.3c) 

induces the tangential traction as work opposite to the slip direction. Similarly to Eq. (6.1c), Eq. (6.3d) 

represents the frictional complementary condition. In other words, there is no slip contact condition if the 

tangential traction has not reached its local minimum. On the other hand, if the slip condition is activated, Φ 

has reached its maximum i.e. zero. 

 

As mentioned earlier (Chapter 4 – 4.3.1 Assumption, approximations and errors), the obstacle in numerical 

contact simulation lies in an unsmoothed response of bodies under collision. In fact, the velocity field vN, 

normal to the interface Γc is always a discontinuous function of time. As such, it is difficult to be captured 

numerically. However, sufficiently small time steps Δt will able to flow through the solution process without 

significantly lose the normal velocity feature. On the other hand, by assuming frictional contact behaviour, the 

tangential velocities vT becomes also discontinuous function of time. In this case, the discontinuous nature of vT 

is manifested through the switching between stick and slip contact condition (Belytschko, Liu & Moran, 2001). 

In a general case, the discontinuous nature of tangential displacements is significantly lower than the 

discontinuous behavior of normal velocities. Consequently, the discontinuous nature of tangential velocity will 

be automatically preserved if the assumed time step Δt can preserve the normal velocity feature. 
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6.2.4 Continuity constraint 
 

Assume a displacement filed which is not continuously differentiable; i.e. its derivatives are discontinuous 

along a certain number of surfaces. In this case, the considered domain Ω must be subdivided in sub-domains 

Ωe (FE) in which the displacement function should be at least C
1
 (Chapter 3 – 3.2.4 Finite element 

approximation). Note that the situation reflects the contact condition along the boundary Γc (the so-called 

material interface). As a consequence, since the strains are first derivative of displacements, the continuous 

property of stress filed should be obviously also preserved (Fig. 6.3). 

 
 

 
 

Figure 6.3 Continuity condition preserved by the program code based on the proposed numerical formulation  
 

The continuity condition can be expressed by applying the divergence theorem to each FE domain Ωe 

(Belytschko, Liu & Moran, 2001). The procedure gives the jump [[n u]] in the displacement field u as 

 

 ,]][[]][[ ssmm

iiiiii ununun un  (6.4) 

 

and the jump [[n σ]] in the stress field σ as 

 

 .]][[]][[ ssmm

ijiijiiji σnσnσn σn  (6.5) 

 

The vectors nm and ns denote the outward normal vectors on body m and s, respectively (Fig. 6.3). In order to 

preserve the continuity of u, the condition in Eq. (6.4) should vanish on Γc. However, as the stress field 

emerges from the constitutive description (which is connected to displacements through the strain definition), it 

is reasonable to suppose that continuity of σ will preserve the displacement filed continuity. Accordantly, the 

continuity constraint can be reduced to 

 

 .0]][[]][[  ssmm

ijiijiiji σnσnσnσn  (6.6) 
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6.3 Weak formulation 
 

To gradually introduce the contact restrictions (6.1) into the dynamic equilibrium Eq. (4.30), suppose at the 

moment that deformation path of bodies B
κ
 (κ=1,2) does not involve any mechanical interactions. Thus, by 

including inertial forces through the D’Alabert’s principle, the dynamic equilibrium Eq. becomes 

 

 .κκκκκ
, iijij uf    (6.7) 

 

Furthermore, according to the previously discussed procedure (Chapter 3 – 3.2.3 Weak form), the weak form of 

the former strong expression is obtained as 
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where δu represents an arbitrary test function with the property that allows δu to disappear from the boundary 

part Гt which is subject to traction boundary conditions (3.3e). Now, suppose that the deformation path causes 

mechanical interaction i.e. contact on Γc. In order to introduce this scenario into the weak form (6.8), the 

displacement solution space must be restricted by excluding those displacements that violates the 

abovementioned contact constraints over Γc. For this purpose, the variation of the so-called contact energy 

functional Πc is introduced in Eq. (6.8) as 
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The structure of the functional Πc depends on the method adopted to enforce the contact constraints. Among 

many different strategies used for this purpose (Wriggers, 2002), the Lagrange multipliers method (LM) is 

found to be the most suitable for the here proposed numerical formulation. 

 

 

6.3.1 Lagrange multipliers method 
 

From the mechanical point of view, Lagrange multipliers λ can be seen as force necessary to separate bodies 

after the non-physical penetration (6.2) has been detected. In other words, LM denotes reaction force due to the 

contact constraint. In terms of energy, the contact event is here described by introducing the artificial contact 

energy functional Πc, stored on the interface Γc (often called “parasite” contact energy). In this case, Πc is 

defined by the LM work performed on the forbidden gap value g (6.2). The structure of Πc follows by 

decomposing the total work of λ into its normal λN and tangential part λT. At this point, it is important to note 
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that the measure of g is relatively performed from the position where the particles intersect the boundary before 

penetrating inside the domain. By visualizing this trajectory, it follows that the gap vector g can be decomposed 

into its normal gN and tangential part gT (Fig. 6.4). It is clear that if the particle trajectory is perpendicular to Γc, 

g will be equal to gN. 

 

 
 

Figure 6.4 Two-dimensional gap components (contact with pure tangential stick) 

 

The contact energy functional Πc can be formulated as 

 

 
.d)(),( TTNN c

c

c gλ  


gλgλ  
(6.10) 

 

In accordance with Eq. (6.8), the former functional is introduced into the weak statement by invoking its 

stationary value. Since the functional argument is the contact force λ and the related gap value g, the variation 

leads to the following contribution (6.11). 

 

 c

c
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(6.11) 

 

The first integral represents the virtual work performed by normal and tangential λ component, while the 

second one introduces the enforcement of the contact constraints. To introduce simplicity, the discussion is 

currently restricted only to the stick contact case, ignoring eventual tangential slip motion (Fig. 6.4). Therefore, 

the terms λN · δgT and δλN · gT describe the pure tangential stick case in which the tangential slip gT is reduced 

to zero. As a consequence, λT becomes tangential reaction force. Note that the tangential traction vector tT has 

to be determined from the adopted constitutive definition of friction. In particular, the tangential contact 

constraints are here included artificially by monitoring the tangential motion of FE nodes over Γc. The related 
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procedure will be discussed later. At the moment, the mentioned strategy allows to simplify the contact integral 

by ignoring tangential components (6.12). 

 

 c

c

c gλ  


d)(),( NNNN gλgλ   
(6.12) 

 

Resuming, Eq. (6.12) only enforces the impenetrability contact constraint (6.2). The assumption is here 

required for further considerations. Therefore, it is assumed that the contact forces acts on the normal gap 

component gN which is defined perpendicularly to the boundary Γc. Consequently, g has to be determined 

according to the minimum distance problem. 

 

 

6.3.2 Gap & minimum distance function 
 

Consider bodies Bm  
3
 and Bs  

3
 with Ωm Ωsin their reference configuration. If bodies establish 

contact, the condition (6.1a) can be rewritten in terms of particle coordinates x
κ
 in the current configuration. 

Subsequently, with regard to particles interacting on boundaries Γm and Γs, the impenetrability contact 

condition can be express as 

 

 ,0)(  mms
nxxg  (6.13) 

 

in which nm represents the normal outward unit vector on Γm. Supposing that Γc  Γm ∩ Γs is a convex region 

(at least locally), to each point on Γs the minimum distance function d relates a point xm on Γm via 

 

 .min msms

m

xxxx
x

d  (6.14) 

 

The related gap value gN is given by (Zienkiewicz & Taylor, 2002) 

 

 ,0)(N  mms
nxxg  (6.15) 

 

where the unit normal vector m
n is defined as 

 

 .
ms

ms
m

xx
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n




  (6.16) 

 

It should be pointed out that the distance function d (6.14) is sometimes locally non-differentiable. The 

property depends on the boundaries in contact. In particular, it may happen that the projection of point xs 
is not 

unique. However, in practical applications such discontinuities do not have great influence. Indeed, the non-

differentiable property can be by-passed by appropriate numerical techniques (Wriggers, 2002). 
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As the weak form (6.12) requires first variation of gN, and the gap value is a function of displacements (6.15), 

the first variation will produce (Parisch, 1989): 

 

 .)()(N
mmsmms

nuunxx   g  (6.17) 

 

Since δn is perpendicular to n (orthogonality), the first term on the RHS is equal to zero (Wriggers, 2002). The 

other term, associated to particles with coordinates xs and m
x , indicates the admissible variations of particles 

displacements. 

 

 

6.3.3 Variational formulation 
 

In order to retrieve the FE approximation of displacement field for bodies under contact/impact, the variational 

formulation of the constrained Eq. of motion is needed. For this purpose, assume that the contact surface Γc is 

known in the reference configuration. In such case, the active set of contact constraints will be known, enabling 

to form the constrained weak form of equilibrium within Δt. Therefore, according to Eq. (6.9) and Eq. (6.12), 

the frictionless variational formulation becomes 
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 (6.18) 

 

where δui are test functions which are set to vanish on boundaries dГu where the displacements are prescribed. 

The given weak form defines the deformation mapping functions φ
κ
 (2.9), such that Eq. (6.18) is satisfied for 

all δu
κ
 P where 

 

    ,0|),(  mmssm

iii
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in which the space V 
h
 is the same as the one previously introduced in Eq. (3.23). 

 

 

6.4 FE formulation 
 

The FE simulation of contact events is related to many difficulties. The first obstacle arises from the spatial 

discretization that involves the approximation of original smoothed boundary with linear FE boundaries (Fig. 

3.1). As a consequence, it may occur that for the FE edge which is defined by two penetrated nodes, the edge 

remain in contact even after the edge nodes are remove from it. Such issue gave origin to different strategies 

developed to reach an adequate solution (e.g. edge-edge contact element). The second obstacle is particularly 
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present in contact analysis accompanied with large deformation. Namely, due to the discrete FE environment, 

the normal vectors between elements cannot be continuously defined. In other words, the FE surfaces over Γc 

have non-unique normal vectors. 

 

In order to overcome the mentioned difficulties, the so-called smoothed contact description can be applied. The 

principal idea is to replace the flat FE boundary by a smoothed surface approximation usually generated by 

Bezier interpolations (Wriggers, 2002). In this case, the contact constraints have to be satisfied on this 

smoothed Γc approximation. However, for the sake of simplicity, in the proposed numerical formulation the flat 

nature of FE boundaries is retained and the smoothed contact description is not considered. 

 

 

6.4.1 Spatial discretization 
 

Differently from the strong and weak form, in FE form the enforcement of contact constraints is carried out 

discretely. Namely, since the mesh boundaries are represented by finite number of flat surfaces, the contact 

constraints violations are measured only on specific locations. Commonly, the mesh boundary nodes are used 

for this purpose (Fig. 6.5). However, mentioned that expect the FE nodes, the element edges and surfaces can 

be also used to define mesh interaction. 

 

 
 
 

Figure 6.5 Contact surface between: a) two continuum bodies and b) two bodies approximated by FE 

 

In FE analysis the element nodes, edges and surfaces are universally denoted as finite element design objects. 

Obviously, the interaction between different design objects is possible. It follows that the most robust 

description of contact will be obtained by taking into account the interaction between all design objects. On the 

other hand, the related contact description becomes complicated and it usually required only in cases of 

continuum fragmentation problems. The need is evident since the number of design objects that can interact in 

between rapidly grows during mesh fragmentation. However, to retain simplicity and due to the fact that the 

fragmentation process is here avoided, the proposed numerical formulation evidence meshes interaction only in 

FE nodes. Indeed, as the concrete fracturing process is here modeled by the formerly discussed smeared 

cracking concept (Chapter 5 – 5.1 Introduction), the strategy is well justified. 
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There is another important consequence on using FE for contact analysis. To evidence it, emphasize that the 

real contact surface is approximated by flat tetrahedral elements (Fig. 3.2). Under this circumstance, the 

following important question should be answer. 

 

 

How fine should be discretized the boundaries of bodies in contact, in order to reproduce real 

interface behavior, as well as the contact surface geometry? 

 

 

Well, it is obvious that by increasing the number of design objects over Γc, the result will lead to a better 

description of interface phenomena. On the other hand, it is also well-known that the procedure dramatically 

increases the computational time. Therefore, the problem is usually solved by an engineering estimation, 

making a compromise between these extremes. The aforementioned serves as the argument to justify the 

interface discretization used in the later presented numerical examples (Chapter 10 – Numerical examples). 

 

Before proceeding it is opportune to introduce some typical notations used for the contact analysis and permits 

to simplify the description of the contact resolution stage (Fig. 6.1). For this purpose, consider two bodies in 

contact. The related FE discretizations are often referred to as master and slave discretizations. According to 

that, the spatial discretization of a concrete body will be referred to as a master discretization (master body). 

The body that induces impact load will be denoted as slave body (e.g. impact hammer). Note the 

correspondence with the earlier introduced notations m and s. 

 

Furthermore, consider the FE nodes on the boundary Γc where the contact constraints violations are evidenced 

(Fig. 6.5). In the proposed numerical formulation the registered violations are discretely treated by adopting the 

so-called node-to-segment contact resolution strategy. In this case, for a given slave node that breaches the 

prescribed contact conditions (6.1), the node-to-segment strategy involves the activation of contact constraints 

fulfillment in a set of boundary nodes on the master body. Particularly, for a spatial discretization performed by 

linear tetrahedral element (Chapter 3 – 3.3 Linear tetrahedral element), each slave node is related to three 

master nodes that describe a flat triangular boundary surface. At this point, note that each boundary surface can 

be hit with more than one slave node. The nodes that are involved in the contact form one contact element and 

are usually denoted as contact element nodes. Also, during the contact element assimilation, it is a usual 

practice to denote the slave node as the contractor node and the related master surface, as the target surface. 

 

Finally, it should be pointed out that for contact analysis with FE, the contact constraints are not satisfied in 

advance. Namely, as earlier mentioned, the contact surface Γc is not known a priori. It arises from the contact 

constraint fulfillment prescribed upon FE nodes. Consequently, it can be said that the contact problem in the FE 

environment is retroactive. 
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6.4.1.1   Contact surface parameterization 
 

In order to obtain the FE approximation of a displacement field for bodies in contact/impact, the discrete nature 

of mechanical interaction in the FE environment should be examined. For this purpose, a uniquely local 

coordinate system is defined for each target surface. In other words, the parameterization of the real continuous 

surface, originally described by curvilinear coordinates, is introduced (Fig. 6.6). 

 

 
 

Figure 6.6 Target surface parameterization: a) intersection point in global and b) local coordinates 

 

The parameterization enables to relate an arbitrary intersection point m
x on the target surface to local surface 

coordinates ξ={ξ
1
,ξ

2
}

T
. According to Eq. (3.62), the relationship is carried out by the element nodal coordinates 

c
xp and respective nodal shape functions p

cN  as 

 

 ,),(

3

1

21




c

p
cp

cN xx m  (6.20) 

 

where c stands for quantities related to nodes on target surface (c=1,2,3). In order to describe the geometry of 

each target surface, the tangent vectors at a position ξ={ξ
1
,ξ

2
}

T
 are given as 
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The corresponding unit vectors are specified as 
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and the unit normal vector as 
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The metric of the target surface can be defined by components of the covariant metric tensor mαβ 

(Kloosterman, 2002; Wriggers, 2002) which are given by the dot product of the basic vectors in Eq. (6.22) as 

 

 .βααβ aa m  (6.24) 

 

Similarly, the components of the contravariant metric tensor m
αβ

 are determined by 

 

 ,)( 1
αβ

αβ  mm  (6.25) 

 

which provides the transition between complementary tangential systems via 
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Since contact problems always involves a non-linear load-displacement curve (even for small deformation of 

elastic solids), the given geometrical quantities are necessary to obtain the linearized form of Πc in Eq. (6.18). 

The procedure is discussed hereafter. 

 

 

6.4.1.2   Consistent tangent stiffness matrix 
 

To derive the consistent contact tangent matrix, the relationship between δgN and δξ must be determined. For 

this purpose consider the gap function 
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in which s
x denotes the coordinates of a penetrated node while )(ξx

m  denotes the coordinates of a point on the 

target plain (Fig. 6.6). According to the former Eq., the relationship between δgN and δξ is obtained via 

(Wriggers, 2002) 
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from where it follows that 
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or in a matrix notation: 
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where  
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Evidently the vector cÛ  performs the distribution of contact influence across the contact element nodes 

(Zienkiewicz & Taylor, 2002). Assuming frictionless contact conditions, the variation of the contact integral in 

Eq. (6.10) may be now written as 
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where Ac denotes the contact surface area i.e. area of integration. The consistent contact tangent matrix arises 

from the linearization of the variational form of the contact integral in Eq. (6.12). The linearization produces 

(Zienkiewicz & Taylor, 2002): 
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in which the gap value ΔgN can be now obtained according to Eq. (6.29), by simply replacing the variation δ 

with Δ. Furthermore, the linearized term Δ(δgN) follows from Eq. (6.17) as  
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where m

,γu  denotes the differentiation with respect to γ , where γ=1,2 (Wriggers, 2002). Due to the fact that 

the normal vector is perpendicular to the tangent vectors (6.21), it follows that 
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in which the linearized tangent vectors are defined as 

 

 .and 13β12α uuauua   (6.36) 

 

Following the earlier introduced notations, Δuc denotes the incremental displacement vector of nodes on the 

target surface (c=1,2,3). For flat target surface, the linearized terms in Eq. (6.35) and Eq. (6.36) lead to the 

linearized gap variation, such that (Wriggers, 2002) 
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in which the linearization of ξ is given by 
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The vectors s
u and m

u represent the incremental displacement vectors for slave node and the closets point 

on the target surface, respectively. Finally, the linearization of the contact contribution δΠc in Eq. (6.18) can be 

obtained by combining Eq. (6.37) and Eq. (6.38). Accordantly, the contribution of one contact element to the 

total tangent stiffness matrix will produce a symmetric matrix as (Wriggers, 2002) 
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where 
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With the linearized form of the contact contribution in Eq. (6.18), the incremental loadings can be related to 

incremental displacements through (Zienkiewicz & Taylor, 2002) 
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Evidently, the LM method introduces an additional unknown for each contact element. Therefore, the system of 

Eq. (6.41) will linearly increase with increasing the number of contacts. From the perspective of computational 

effort, this property makes the LM method improper for practical applications. However, apart this 

inconvenient property, note that the method enable to enforce the contact conditions exactly and 

unconditionally. This is not the case for other techniques. Namely, an alternative strategy, that will bypass this 

negative side effect, could be the he penalty regularization technique (Wriggers, 2002). In this case, the contact 

conditions are satisfied conditionally but without increasing the number of DOF in the system. It should be also 

mentioned that the LM method produces zeros on a part of the diagonal of the tangent matrix. However, the 

perturbed Lagrangian method can be adopted to avoid division by zero (Zienkiewicz & Taylor, 2002). Finally, 

note that the contact tangent matrix is associated to local DOF. Therefore, in order to affect a set of global 

DOF, the assembling operator A is invoked (3.38). 
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6.4.1.3   Note on contact interface velocity 
 

To illustrate an important fact, consider particles A and B attached to body a and b, respectively. Assume that 

the velocity vector of body b define a collision trajectory with the standstill body a. Furthermore, imagine 

relatively small time increments dt. Upon the occurrence of the first contact (particles lying on each other on 

Γc), it is reasonable to expect that the velocity of the particle B will gradually decrease. On the other hand, due 

to the transfer of kinetic energy, the velocity of the particle A will gradually increase. Resume that the particles 

are in contact. At this point, one may ask: How is it possible that two material points, which are in contact, 

have different velocities? Well, at the micromechanical level the particles are not continuously in contact as can 

be presupposed by observing the macroscopic level. Actually, once the velocity of particle a reach the velocity 

of particle b (Fig. 6.7a), the velocities of both particles decrease continuously but with different fluctuations 

around the average velocity (Fig. 6.7b). This behaviour of velocities on Γc is present due to the influence of 

inertial forces on the contact surface. Indeed, the oscillatory behavior can vary in frequency and depends on the 

mechanical and kinematical properties of bodies under impact. 

 

 

 
 
 

 

Figure 6.7 Change in velocity due to impact: a) macroscopic point of view and b) microscopic point of view 

 

Mention that the proposed three-dimensional numerical formulation predicts this scenario. As will be later 

presented (Chapter 10 – 10.3.2.2 Contact force, force equilibrium and reactions), the evaluated contact forces 

suffer high-frequency oscillations, which is directly caused by the character of particles velocities on Γc.  

 

Furthermore, an additional observation can be made. As the velocities of particles on Γc are locally different 

(Fig. 6.7b), the time evolution causes continuous separations and reestablishes interactions. Obviously, the 

occasional separation of particles leads to no contact forces. As the particles separation is not simultaneous, the 

fluctuation of the total contact force is reasonable. However, due to this complex interface behavior, there 

aren’t experimental observations that could confirm this scenario which is here predicted numerically. 

Therefore, since the fluctuations cannot be validated, the later presented results should be viewed as a 

qualitative description of the discussed phenomenon. 
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6.4.1.4   Contact force interpolation 
 

Even for discretizations in which the mesh nodes over Γc coincide in their initial configurations, large sliding 

contact will cause relatively large tangential displacement and produce non-matching meshes over Γc. As a 

consequence, the difference between discretizations of Γc can harm the earlier discussed continuity requirement 

prescribed for the stress field (6.6). Basically, the requirement will be met if the contact forces on the mesh 

boundaries Γc are balanced (Fig. 6.3). In order to activate the forces equilibrium between non-matching meshes, 

the interpolation of Lagrange multipliers should be considered. It is evident that the contact force interpolation 

in Eq. (6.30) is performed consistently with Eq. (3.61) and Eq. (3.62). Therefore, at a certain point on the target 

surface, λ can be interpolated as (isoparametric property) 

 

 ,)(

3

1

c

c

p
cN λξλ 



  (6.42) 

 

where λc denotes the contact force vector associated to target plane node c. As may be perceived, for the here 

adopted FE the contact force is linearly distributed across the surface Γc. However, Eq. (6.42) is efficient only 

if the discretizations are not significantly different (Fig. 6.3). In an extreme case, the differences among mesh 

boundaries will produce not coinciding force fields λ on both side of Γc. In this case, that requirement for 

equilibrium cannot be satisfy. Thus, the used approximation is reasonable only if the expected displacements 

are relatively small. However, for large tangential displacement (e.g. penetration and body perforation 

problems), the remeshing procedure can be use to progressively adapt the meshes interface, compensating the 

non-matching meshes. Note also that there are other strategies that can be use for bypass the non-matching 

deviations. Particularly, the so-called mortar method (Wriggers, 2002) is based on introducing an additional 

discretization; for the purpose of separately interpolate the contact forces field between the bodies. The 

performance of the strategy is evident in the Taylor and Papadopoulos patch test (Crisfield, 2000). 

 

 

6.4.1.5   FE form of equilibrium 
 

In order to introduce the impenetrability contact condition into the discrete Eq. (4.13), the variational form of 

the contact energy functional should be discretized. Accordantly, the first term in Eq. (6.12), which represents 

the contribution of virtual work done by contact forces, is approximated as 

 

   .N
TT 

NN λGugλ
c   (6.43) 

 

In this Eq. δu
c
 collects the displacement variations as 
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and the so-called contact displacement matrix G arises in accordance with Eq. (6.31) as 
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The matrix components are related to local DOF and can be translated into global notation by the assembling 

operator A (3.38). Note that the matrix components are unknown a-priori. Namely, during the deformation path 

evolution, G will vary due to the variations in contact position ξ. In such case, an external procedure is needed 

to monitor the nodal displacements and to adequately adapt G as contact occurs (Chapter 7 – Contact 

detection). It is important to note that the contact forces {G
T
·λN} should not be viewed as a part of external 

forces. As the force value depends on deformation (i.e. displacements), it is part of internal forces. The second 

term in Eq. (6.12) denotes the weak form of impenetrability constraint. The related FE expression can be 

written as 

 

   ,N 0XuGg   (6.46) 

 

in which u represents the incremental nodal displacements while X represents the coordinates vector in the 

reference configuration. The equation can be literally interpreted as follows. After adding the displacement 

vector u to material coordinates X, no mesh interpenetration can occur (gN=0). The final form of the 

constrained Eq. of motion can be obtained by introducing the contact force approximation (6.43) into Eq. (4.13) 

and demanding the fulfillment of the impenetrability condition (6.46). The procedure will give: 

 

 ,)(N
T texin

FλGFuCuM    (6.47a) 
 

   .0XuG   (6.47b) 

 

Eq. (6.47a) denotes the force equilibrium in contact and the second one (6.47b) ensures the fulfillment of 

impenetrability condition (6.2). However, since the temporal discretization is not yet involved, Eq. (6.47) 

represents the semi-discrete Eq. of motion. Analogically to Eq. (6.41), the LM method introduces λN as an 

additionally unknown which can be determined by solving Eq. (6.47a) and Eq. (6.47b) simultaneously. It 

should be mentioned that the RHS of Eq. (6.47a), i.e. external force vector, is here assumed equal to zero. 

Namely, the presence of forces on the LHS arises from the second Newton law, as a consequence of change in 

linear momentum in time when contact occurs. Accordantly, Eq. (6.47a) can be rewritten as 

 

 .N
T
λGFuCuM  in  (6.48) 

 

It will be interesting to see the contribution of forces on the LHS in reaching equilibrium state with contact 

forces on the RHS (Chapter 10 – 10.3.2.2 Contact force, force equilibrium and reactions). 
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6.4.2 Temporal discretization 
 

In order to obtain the fully discrete Eq. of motion, the dependent variables should be approximated by an 

appropriated time integration technique. For this purpose, note that all the assumptions and approximations 

discussed earlier (Chapter 4 – 4.3.1 Assumption, approximations and errors) are also valid for the here 

considered FE contact/impact description. Furthermore, in order to gradually discuss the numerical description 

of friction, it is opportune to introduce a short observation on λ. In contrast to the above assumptions (6.12), the 

arbitrary direction of contact force λ will be further considered. Accordantly, depending on the spatial 

orientations of a particular target surface (6.22), the total magnitude of λ will be split into its normal λN and 

tangential component λT (6.49). 

 

 TN λλλ   (6.49) 

 

 

 

6.4.2.1   Implicit time integration 
 

Resume that for events which are here under consideration (impact and blast loadings), the deformation history 

is “trapped” in a relatively short period of time (Chapter 1 – 1.1 Motivation). For this purpose, to evidence 

some inappropriate properties of the implicit time integration, and to justify the here adopted explicit time 

integration, a briefly discussion on the first one is introduced. At the moment, mention also that the original 

form of the explicit time integration is inappropriate as well. However, there are assumptions that introduce the 

needed modifications and will be discussed later on. 

 

According to the Newmark single-step methods, which can reproduce both explicit and implicit time 

integration, the dependent variables in Eq. (6.47) are discretized in time as 

 

 ,
11111 n

T
nnnn 0λGuKuCuM     (6.50a) 

 

   .nnnn 11
0XuuG   (6.50b) 

 

The system of Eq. determinates the unknown displacement vector un+1 and force vector λn+1 at the end of the 

time increment Δt. In order to obtain these vectors, the second order direct time integration operators are here 

assumed as (Carpenter, Taylor & Katona, 1991) 

 

 ,
11 n00n   uqu b   

 

 ,
11 n11n   uqu  b  (6.51) 

 

 ,
11 n22n   uqu  b   

 

where  
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 ,
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1
n

2
nn0 uuuq  tt    

 

 ,nn1 uuq  t  (6.52) 
 

 .n2 uq    

 

The integration constants are given as functions of integration parameters β and γ (6.53). 
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 tb 1  (6.53b) 
 

 12 b  (6.53c) 

 

The integration operator corresponds to the Beta-2 method, which is a subset of the generalized Beta-m method 

(Carpenter, Taylor & Katona, 1991). Furthermore, by substituting Eq. (6.51) into Eq. (6.50), the incremental 

Eq. of motion can be rewritten in compact form as 
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 (6.54) 

 

By assuming β = 0 and γ = 0.25, which corresponds to the constant-average-acceleration method (also known 

as trapezoidal rule), the system of Eq. is integrated in an implicit manner. Now, from the perspective of the 

thesis subject, the inappropriate properties follow from (6.54). Namely, note that during the solution process, 

the zero on the matrix diagonal can lead to division by zero. However, this is a minor problem which can be 

bypassed by the perturbed Lagrangian method (Wriggers, 2002). 

 

 
 

Figure 6.8 Spectral view of coefficient matrix obtained by implicit time integration 
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Furthermore, the assumed parameters of integration will produce a non-symmetric coefficient matrix (6.54). 

The matrix skew property will influence the solution strategy needed to obtaining the unknown vectors un+1 and 

λn+1. However, as a main obstacle, note that the contact constraints contributions (introduced by G) 

considerably increase the bandwidth of the matrix (Fig. 6.8). As a consequence, the implicit time integration 

will requires a considerable amount of memory space and CPU time. On the other hand, due to the fact that 

highly non-linear events will require considerable number incremental steps, the uncoupled system of Eq. is 

here needed. For this purpose, the explicit time integration is further considered. 

 

 

6.4.2.2   Explicit time integration 
 

By setting β = 0 and 0 ≤ γ ≤ 1 the integration of Eq. (6.54) becomes explicit giving 
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(6.55) 

 

Note that integration parameter β in Eq. (6.53a) reduce the integration constant b0 to zero. Consequently, the 

explicit solution strategy produces a singular coefficient matrix. Obviously, the influence excludes its 

admissibility. However, by introducing appropriated assumptions, an alternative explicit procedure can be 

obtained. The procedure is discussed hereafter. 

 

 

6.4.2.3   Forward incremental Lagrange multipliers method 
 

It can be demonstrated that the contact forces λn+1 directly influence the forward difference term 
1nu  but acts 

one time step too late with respect to terms nn ,uu  or nu . Additionally, note that the forward difference term 

1nu  is not present in the second order incremental equation 
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2
nnn   uuuuu  tt  (6.56) 

 

since for explicit integration β = 0. Therefore, the contact forces λn+1 have no influence on incremental 

displacements un+1. However, an alternative procedure can be obtained by relating displacement constraint at 

time n+1 to LM at time n. The procedure is known as the forward incremental Lagrangian multipliers method 

and allows to rewrite Eq. (6.50) as (Carpenter, Taylor & Katona, 1991) 
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For the explicit time integration the adapted incremental solution strategy will be obtained by substituting the 

central difference approximations for velocities (4.17) and accelerations (4.18) into Eq. (6.57). To determinate 

the unknown incremental displacement un+1, the strategy produce four computational steps. At the end of each 

time increment Δt, the incremental displacement vector Δun=un+1-un is calculated by summing the contributions 

of displacements values obtained in the so-called displacement predictor and displacement corrector stage.  

 

The first stage requires to assume that there are not mechanical interactions between FE meshes at the 

beginning of a time increment Δt. In other words, by temporarily ignoring the influence of contact, the 

computation start with the contact predictor stage where the nodal displacements D
n 1u  are calculated with 

respect to the classical explicit displacement update (6.58). 
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(6.58) 

 

The computation proceeds by activation of the so-called global contact detection algorithm. The procedure is 

discussed hereafter and it basically consists on identifying possible non-physical penetration of boundary FE 

nodes (Fig. 6.6). For those contractor nodes that violate the impenetrability constraint (6.2), and penetrate in a 

forbidden mesh domain, the local detection strategy is activated. The strategy should localize the position of 

contact ξ which is needed for to calculation of the contact displacement matrix Gn+1 (6.45). Once the detection 

procedures are executed, the correction of the previously calculated displacement field (6.58) is performed by 

adding the contact displacement contribution (Carpenter, Taylor & Katona, 1991). For this purpose, the contact 

forces λn, i.e. Lagrange multipliers, are determined for each contact element according to Eq. (6.59). 
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 (6.59) 

 

In order to correct the non-physical event (penetration), the contact displacement vector C
n 1u  is calculated in 

the third computational step by distributing the contact forces from Eq. (6.59) among the contact element nodes 

(Fig. 6.6). Depending on the position of contact ξ the contact displacements are calculated through the contact 

displacement matrix Gn+1 as 

 

 .n
T
n

12C
n 11
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  t  (6.60) 
 

At the end of the time interval Δt, the total nodal displacements un+1 are calculated as 
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 .D
n

C
nn 111   uuu  (6.61) 

 

Resuming, depending on the adopted time integration technique, the predictor and displacement correction 

stage can be performed both simultaneously and separately. The first procedure will lead to a coupled system of 

equations and the second one to the uncoupled system of equations. Due to the discussed difficulties, the 

proposed numerical formulation is based on the explicit time integration. However, like every explicit time 

integration technique, the illustrated modified strategy is also conditionally stable. In order to avoid numerical 

instability, the time increment Δt must be smaller than the critical time increment Δtcr (4.33). Note also that all 

the consequences of the introduced assumptions and approximations are still present as it was earlier disused 

(Chapter 4 – 4.3.1 Assumption, approximations and errors). 

 

 

6.4.2.4   High-frequency numerical damping 
 

Mention that the Beta-2 integration method has been introduced here on purpose. Namely, it allows high-

frequency numerical damping, which is expected to be necessary for numerical simulations of impact loadings. 

Its implementation is very simple which additionally justifies its use. It is carried out by replacing the term Δt
2
 

in Eq. (6.59) and Eq. (6.60) with Δt
2
 (β0+0.5), where 0 ≤ β0 ≤ 0.5 (Carpenter, Taylor & Katona, 1991). It the 

later presented numerical examples (Chapter 10 – Numerical examples), the parameter β0 was set to 0.45. 

 

 

6.5 Gauss-Seidel iteration 
 

In order solve Eq. (6.58), Eq. (6.59), Eq. (6.60) and Eq. (6.61), the effective iteration strategy developed by 

Carpenter, Taylor and Katona (1991) is here implemented and so briefly discussed. For this purpose, consider a 

number nc of contact constraint violations. By introducing the upper index i for indicates the particular 

violation, the components of matrix Gn+1 (6.45) and vector λn (6.59) can be related to a particular violation as 

i
1nG  and i

nλ . According to the given notations, Eq. (6.59) can be expressed as 
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(6.62) 

 

The solution strategy proposes by Carpenter et al. (1991) is based on the Gauss-Seidel iterative strategy. The 

iterative cycles from iterations k to k+1 is illustrated in Eq. (6.63). 
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(6.63a) 

 

   ikkiii t gGMGλ
1,

1
T 

n
1

n
2

11







 




  (6.63b) 

 

 iikik
λλλ 

nn
1  (6.63c) 

 

However, the presented strategy is not yet suitable for numerical implementation. Namely, note that Eq. (6.63a) 

contains the contact contribution coupling between i-th and j-th displacement constraints. For this reason, an 

appropriate expression should be obtained by combining Eq. (6.59) and Eq. (6.60). In this case, the value of the 

contact displacement at the beginning of the iteration step k can be expressed as 
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and, at the end of the iteration, as 
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giving the difference between them as  
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By substituting Eq. (6.63c) into Eq. (6.64) and Eq. (6.65), the former Eq. become 
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From iteration k to k+1, the displacement vector C
n

1,
1


u

kk  will be given as 
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Furthermore, by substituting Eq. (6.64) and Eq. (6.67) into the former Eq., the displacement vector C
n

1,
1


u

kk  

can be now expressed as 
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Apart the incremental displacement vector in Eq. (6.67), the incremental force vector i
λ can be obtained by 

substituting Eq. (6.69) into Eq. (6.63a). The procedure will result in 
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Concluding, the Gauss-Seidel solution strategy (6.63) can be reformulated as follows (6.71). 
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The benefit of using the Gauss-Seidel iteration strategy is shown by the fact that all the needed computations 

are performed at local FE level. The property is especially attractive since in the adopted explicit integration 

technique (4.30) the computation of dynamic displacements is here also free of any global matrix. Furthermore, 

as demonstrated by Carpenter, Taylor and Katona (1991), the convergence of the strategy is affected only by 

the difference between the masses of contractor node and related target surface nodes. Particularly, if the target 

nodes are not so massive, the convergence is slower. However, in case where the masses are not extremely 

different, the convergence rate is almost linear.  
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The converged state is reached when 

 

 ,ε n
1
λλ

 k  (6.72) 

 

where ε  denotes a pre-defined tolerance value. Note that from the point of view of numerical implementation, 

the iterative strategy in Eq. (6.71) can be elegantly incorporated in any explicit FE contact analysis. The pseudo 

code in Box 6.1 is given to support the statement. 

 

 

! Gauss-Seidel iteration loop  

! **************************** 

 

2      DO Penetration = 1, No_Penetrations 

 

              CALL Gauss_Seidel_GAP (Penetration)  
 

              CALL Gauss_Seidel_LAGRANGE (Penetration) 
 

              CALL Gauss_Seidel_FRICTION (Penetration) 
 

              CALL Gauss_Seidel_UPDATE_LAGRANGE (Penetration) 
 

              CALL Gauss_Seidel_CONTACT_DISPLACEMENT (Penetration)  

 

        END DO 

 

        CALL Gauss_Seidel_CONVERGENCE ; IF (GS_convergence="NO") GOTO 2 

 

        ELSE RETURN 
 

 

Box 6.1 Subroutines for the reproduction of the Gauss-Seidel iteration strategy 
 

Evidently, the given algorithm enables to resolve each contact constraint violation separately. This is due to the 

fact that the system of Eq. is now uncoupled. Observe also that there is an anticipated subroutine that deals with 

the frictional behavior on the contact interface (Gauss Seidel FRICTION). Namely, the contact kinematic 

conditions are here resolved separately by prescribing displacement constraints to prevent overlapping and to 

control contact sliding. Particularly, the surface force conditions, i.e. normal (6.1b) and tangential force limit 

(6.3a), are laid down and controlled in case of violation of the constitutive law. 

 

 

6.6 Contact force restrictions 
 

The algorithm in (6.71b) leads to the contact surface reaction λ that will satisfy the contact impenetrability 

constraint by pulling the contractor node to the position of intersection with the target surface (Fig. 6.6). 

However, once the impenetrability condition is satisfied (6.2), the surface contact force conditions may be 

violated. Therefore, the normal component of contact forces should be always compressive. On the other hand, 

depending on the type of the adopted frictional constitutive model, there is a certain limit prescribed to the 

tangential force component as well. 
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6.6.1 Contact reaction – normal component 
 

During the Gauss-Seidel iterative fashion, the coordinates of contact elements nodes are progressively updated 

(6.71e). Consequently, the gap value will vary in each iterative cycle (6.71a). According to that, mention that 

there are situations in which the iterative procedure will put the contractor node outside the penetrated domain 

(g>0). In that case, the next iteration loop will tends to pull back the node to the position of intersection, 

provoking tensile contact reaction. Obviously, this scenario is not physical and the node under consideration 

should be released from contact (Fig. 6.9). 

 

 
 

Figure 6.9 Numerical consequence on: a) forbidden nodal separation and b) allowed nodal separation 

 

It follows that the contact force components should be progressively monitored to include the nodal separation 

in the above algorithm (6.71). For this purpose, note that λ in Eq. (6.71b) is given in respect to global 

rectangular axes. In order to test the normal component λN for tension, λ should be transformed into local 

coordinates of the belonging target surface. For this purpose, since the target surfaces are here always flat, the 

normal component λN can be defined as 

 

 .)(N λnλλ
m  (6.73) 

 

The contractor node related to Eq. (6.73) can be now tasted for separation. Namely, if the force λN denotes 

tension, the nodal separation is simply reproduced by setting λN equal to zero. The procedure is equal for all 

nodes in contact and can be summarize as follow (6.74). 
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6.6.2 Contact reaction – tangential component 
 

Apart the normal reaction force λN (6.74), the allowed limit of its tangential component λT is also prescribed by 

the assumed frictional constitutive model. Particularly, the Coulomb frictional model is here employed to 

differentiate the stick from the slip contact condition (Fig. 6.5). Similarly to Eq. (6.73), to perform the 

tangential check force limit, the force component λT should be obtained from λ and the related target surface 

vectors (6.21). The computation involves basic vector algebra as 

 

 ,)()(T kkλmmλλ   (6.75) 

 

where the projection vectors m and k are given by  
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Once the force component λT is known, the tangential force correction is introduced behind Eq. (6.71b). The 

computational procedure is graphically illustrated in Fig. 6.10. 

 

 
 

Figure 6.10 Illustration of computational steps needed for nodal displacement relaxation 
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In other words, after calculating the contact force vector λ, in the computational step (6.71b), the obtained force 

is decomposed into its normal λN and tangential part λT according to (6.73) and (6.75), respectively (Fig. 

6.10b). The computation proceeds with checking the nodal tendency for contact separation (6.74). This is 

reasonable since the tangential force λT in the Coulomb frictional model depends on λN. Furthermore, it is clear 

that if the node establishes tension load, further checking will not be required since the node will be released 

from contact. On the other hand, if the tensile force is not present, the tangential force components have to be 

tested for eventual sliding contact condition. At the numerical implementation level, the given qualitative 

description can be restated in algorithm form as 
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(6.77) 

 

which is activated for each contractor node after the computation step in Eq. (6.71b). Note that if the tangential 

force component λT has been modified (according to the assumed frictional constitutive description), a new 

respective contact force λ should be computed before moving onto the next iterative cycle (Fig. 6.10d). 

 

Finally, it ought to be mentioned that during the Gauss-Seidel iteration cycles the components of the 

displacement constraint matrix Gn+1 (6.45) are not alternated. However, if the numerical simulation is 

characterized by large slings, the matrix components will vary due to the sliding of contactor nodes along target 

surfaces. For this purpose, even if a very small time increment Δt is adopted, which will consequently produce 

a relatively small incremental nodal displacements, it would be convenient to calculate Gn+1 at the beginning of 

each Gauss-Seidel iteration process or at the beginning of each time increment.  

 

 

 

6.6.3 Numerical example 
 

In order to test the above numerical algorithm, a numerical experiment is conducted by simulating a collision 

event between two elastic spheres. The spheres under consideration are identical from the geometrical, 

kinematical and mechanical point of view, except that the velocity vectors are characterized by opposite 

directions. The sticking and sliding contact conditions are induced by setting the friction coefficient µ equal to 

∞ and 0, respectively. In order to magnify the influence of contact, the spheres trajectory is set to be eccentric. 

The numerical results are shown in Fig. 6.11. 
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Figure 6.11 Numerical simulation of spheres under collision: a) left column µ=0 and b) right column µ=∞ 

µ=0, t=0.000 ms 

µ=0, t=0.345 ms 

µ=0, t=0.690 ms 

µ=0, t=1.035 ms 

µ=0, t=1.380 ms 

µ=0, t=1.725 ms 

µ=0, t=2.075 ms 

µ=∞, t=0.000 ms 

µ=∞, t=0.345 ms 

µ=∞, t=0.690 ms 

µ=∞, t=1.035 ms 

µ=∞, t=1.380 ms 

µ=∞, t=1.725 ms 

µ=∞, t=2.075 ms 



Three-Dimensional Finite Element Formulation for Concrete Failure at High-Energy Impact Loadings                              V. Travaš – Dissertation 
 

______________________________________________________________________________ 
Faculty of Civil Engineering, University of Rijeka, Croatia                                                                                                                      Page | 150 

 

Evidently, the collision response is highly influenced by the presence of friction. Namely, the left column of 

Fig. 6.11 illustrate the collision response in which it was assumed that µ=0. In that case, the sliding contact 

condition was activated, leading to a repulsive collision response without the presence of spheres rotations. The 

explanation to that is the following: since there is not any tangential force, and the straight line of normal 

contact forces almost passes through the spheres centers (relatively small displacements), the collision response 

cannot involve angular momentum. At the energetical level, the numerical simulation predicts the correct 

transformation of energies without the presence of entropy. As shown in Fig. 6.12, after the spheres separation 

had occurred, the balance of energies was satisfied. However, some minor difference arose as a consequence of 

numerical approximation. 
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Figure 6.12 Mechanical energies vs. time (µ=0) 

 

On the other hand, when the frictional coefficient µ was set equal to ∞, the presence of tangential forces caused 

the spheres to rotate around their centers (inertial effect). Indeed, it can be seen that the spheres in the left 

column separated from each other while, for the same time increment, those in the right one were still in 

contact. The numerical simulation also predicted correctly the dissipative nature of friction forces since the 

sphere velocities after impact did not return to their initial value (Fig. 6.13). It is also interesting no note that 

the presence of friction causes the sphere to suffer more deformations. 
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Figure 6.13 Mechanical energies vs. time (µ=∞) 
 

Fig. 6.12 and Fig. 6.13 are qualitatively validated and prove to be in a good compliance with the numerical 

predictions available in the literature (Cirak & West, 2005). 
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Chapter 7 
 

 

Contact detection 
 

7.1 Introduction 
 

Differently from the analytical treatment of contact problems (Hertzian contact), the contact constraints in 

numerical analysis are satisfied retroactively. Namely, the enforcement procedure is invoked after their 

violations have been detected. Consequently, the ability to identify contact constraints violations immediately 

becomes a requirement. For this purpose, a set of computational procedure forms the so-called contact 

detection stage. In particular, as the contact constrains violations in FE environment are measured discretely, 

the related set of computational procedure is used to localize such violations by focusing the respective search 

on FE nodes. Indeed, it is a common practice to hierarchically split the contact detection stage into global and 

local detection phase. The global detection phase serves to determine if the FE boundary nodes interpenetrated 

any discretizational domain and, if so, to obtain the nodes ID. After that, in the local detection phase a detailed 

search is performed to approximate the time and position when the contactor node hit the target surface. The 

procedures enable the assembling of contact elements by paring contractor nodes with nodes on the belonging 

target surfaces. 
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The contact constraint enforcement is here based on the assumption that only nodal displacements u
D

 (6.58) are 

present at the beginning of each time increment Δt. Therefore, the respective force field does not include the 

presence of contact forces {G
T
 · λ}. The side effect is that the impenetrability constraint violations are then 

temporary allowed. However, the contact constraint enforcements are still retroactively satisfied (Chapter 6 – 

6.4.2.3 Forward incremental Lagrange multipliers method). 

 

The contact detection stage should lead to the unknown collision time tc (located between two neighboring time 

steps) in which the violation of impenetrability contact constraint begins (Fig. 7.1). As the initial nodal position 

at the beginning of each time increment Δt is known, tc will lead to the position on the target surface where the 

violation occurs (Fig. 6.6). 

 

 
 
 

Figure 7.1 Collision detection viewed from the perspective of time stepping (incremental analysis) 

 

It is important to note that the contact detection stage require presupposing nodal velocities between times steps 

tn and tn+1. Particularly, in the proposed numerical formulation, it is assumed that at the beginning of each 

contact detection stage, the nodal velocities are constant inside Δt. The assumption is reasonable since the 

adopted explicit time integration requires relatively small time increments. Mention that the exact computation 

of tc will not significantly improve the numerical prediction (Carpenter, Taylor & Katona, 1991). 

 

Before proceeding, an important fact should be underlined. Since the physical event under consideration is 

trapped in a very small period of time (Introduction – Note on experimental observations), and a considerable 

number of time increments is inevitable in order to reproduce the non-linear response, the adopted time 

increment Δt will be particularly small (Δt << 1ms). The consideration will introduce difficulties for the 

computation of tc. Furthermore, the global detection phase will also suffer some consequences due to the 

relatively small nodal movements between time tn and tn+1. Namely, a relatively small nodal movement can 

occasionally result in a seemingly permanent proximity of contractor nodes to target surfaces. As a 

consequence, the possibility to detect nodal penetrations will be very difficult due to the presence of 

computational round-off errors (Chapter 4 – 4.3.1 Assumption, approximations and errors).  
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Nevertheless, as the analysis proceeds, the contractor node will move away from the target surface. In a certain 

moment, it will emerge from the region occupied by round-off errors. In such moment, it will be 

computationally visible and detected by the global detection procedure. Note also that in this case the related 

magnitude of g will be greater than the magnitude of surrounding contractor nodes that regularly report the 

violation of impenetrability contact condition (6.2). 

 

Mention that the abovementioned scenario, in which one non-detected penetration is carried through time, 

could produce dramatic consequences on the numerical simulation. In fact, once the earlier nonregistered 

penetration has been detected, the jump in gap value will be considerable (comparing it with neighboring gap 

vectors). As a consequence, a grater contact force will be needed to satisfy the impenetrability constraint (6.59). 

Consequently, by disposing of convergence state, the following time increment will register a relatively 

enormous presence of inertial forces. The local significant difference between inertial forces will cause the 

divergence of the solution process. 

 

In order to overcome these problems, the presence of computational round-off errors should be minimized. For 

this purpose, it is recommended that the variables contained in the contact detection stage (both in global and 

local phase) are classified as double precision (REAL 8), or even quad precision variables (REAL 16). In the 

program code developed in accordance with the proposed numerical formulation, the double precision 

statement is used for variables declaration. Additionally, some external computational procedures are 

incorporated to monitor and appropriately resolve the still possible no detected penetrations. 

 

 

 

7.2 FE surfaces that are candidates for mechanical interaction 
 

Since the considered mechanical interactions occur across the body external boundaries Г
κ
, the eventual 

presence of internal boundaries is here ignored. Under this circumstance, it is obvious that, in the three-

dimensional FE environment, the list of boundary nodes and boundary surfaces is necessary to perform the 

contact analysis (Fig. 7.1). Before presenting the strategy aimed to obtain such data, it should be clarified why 

for each discretization both data are needed. 

 

According to the previous Chapter, the numerical treatment of contact phenomena starts by attributing the 

boundary nodes on one mesh as potential contractor nodes, and the boundary surfaces on the other mesh as 

potential target surfaces. In order to form a contact element, the contractor nodes identified in the global 

detection phase are paired with belonging three nodes on the target surface (Fig. 6.6), recognized in the local 

detection phase. After the contact detection and contact resolution stage has been performed, and before 

proceeding with the next time increment, the associations of contractor nodes and target surfaces are switched 

between the meshes. In this case, a new contact detection and contact computing stage is performed. 
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Figure 7.2 Target surfaces and contractor nodes on boundary elements (objects subject to mechanical interactions) 

 

Namely, the switching of attributes between target surfaces and contractor nodes is here introduced due to the 

fact that the contact constraint violations are measured by monitoring the contractor nodes and not surfaces. In 

other words, since the meshes under interaction can have different nodal density over Гc (Fig. 6.3), this strategy 

will ensure that all non-physical nodal penetrations have been removed. On the other hand, even if the meshes 

have equal nodal density over Гc (perfect nodal pairing), large sliding analysis will leads to an inevitable non-

matching interface. In this case, the switching between contact detection attributes is necessary to evidence the 

not allowed penetrations on both meshes. In short, if there are two bodies under collision, the computational 

stage related to contact detection and contact resolution phases is performed twice in each time increment (two-

pass algorithm). 

 

As the boundary element surfaces are here defined by three boundary nodes (Fig. 7.2), it follows that by 

knowing the list of boundary surfaces, the list of boundary nodes will be automatically defined. Note that the 

needed data are hidden in the so-called mesh topology matrix (7.1). 
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The notations nd1e,.., nd4e stand for nodes ID on the e element. The nodal combinations that will define each 

boundary surface can be found by identifying what is common for these surfaces. In other words, it should be 

recognize what makes them different from the interior surfaces? Well, in order to preserve the continuum 

assumption, the internal elements will divide surfaces while the boundary surfaces will remain undivided. In 

this sense, the nodal combinations that define boundary surfaces will be unique. According to that, the three 

nodes that lie on a particular boundary surfaces can be extracted from matrix Topology_Mtx (7.1) according to 

the concept illustrated in Box 7.1. 

 
 

 

! for a given FE spatial discretization form a list of boundary surfaces 

! ********************************************************************** 

 

DO Consider_Element = 1, Number_of_Elements 

 

nd1 = Topology_Mtx (Consider_Element, 1) 

nd2 = Topology_Mtx (Consider_Element, 2) 

nd3 = Topology_Mtx (Consider_Element, 3) 

nd4 = Topology_Mtx (Consider_Element, 4) 

 

       DO Permutation = 1, 4 

 

             SELECT CASE (Permutation) 
 

             CASE (1): SETnd1 = nd1 ; SETnd2 = nd2 ; SETnd3 = nd3 
 

             CASE (2): SETnd1 = nd2 ; SETnd2 = nd3 ; SETnd3 = nd4 
 

             CASE (3): SETnd1 = nd1 ; SETnd2 = nd2 ; SETnd3 = nd4 
 

             CASE (4): SETnd1 = nd1 ; SETnd2 = nd3 ; SETnd3 = nd4 
 

             END SELECT 

 

 

           DO Other_Element = 1, Number_of_Elements 

 

               IF Consider_Element = Other_Element CYCLE ; Count_nd = 0          

 

                  TESTnd1 = Topology_Mtx (Other_Element, 1)   

                  TESTnd2 = Topology_Mtx (Other_Element, 2) 

                  TESTnd3 = Topology_Mtx (Other_Element, 3) 

                  TESTnd4 = Topology_Mtx (Other_Element, 4) 

 

               IF SETnd1 = TESTnd1 OR SETnd1=TESTnd2 OR SETnd1=TESTnd3 OR SETnd1=TESTnd4 THEN 

 

                  Count_nd = Count_nd + 1 

 

               IF SETnd2 = TESTnd1 OR SETnd2=TESTnd2 OR SETnd2=TESTnd3 OR SETnd2=TESTnd4 THEN  

 

                  Count_nd = Count_nd + 1 

 

               IF SETnd3 = TESTnd1 OR SETnd3=TESTnd2 OR SETnd3=TESTnd3 OR SETnd3=TESTnd4 THEN 

 

                  Count_nd = Count_nd + 1 

 

               IF (Count_nd = 3) EXIT LOOP 

 

           END DO: Other_Element 

 

    IF (Count_nd /= 3) THEN SETnd1 , SETnd2 , SETnd3 are nodes on boundary surface 

!          ******************************************************************************* 

 

       END DO: Permutation 

 

END DO: Consider_Element 
 

 

Box 7.1 Pseudo-code delivered to retrieve the list of elements boundary surfaces (target surfaces) 
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7.3 Global detection 
 

At the beginning of any time increment, the mesh boundaries are separated due to the previously fulfillment of 

the impenetrability contact condition (6.2). Furthermore, according to the adopted explicit time integration 

technique (6.58), the computation of the next continuum configuration begins by calculating the incremental 

nodal displacement Δu
D
. After adding the displacement vector Δu

D
 to material coordinate vector Xn, it is 

reasonable to expect that a particular boundary nodes can be found inside some discretized domain. In order to 

remove these nodes from such non-physical positions, the forces needed to separate the bodies should be 

calculated. However, in order to form contact element nodal pairs, and before proceeding to the related Eq. 

(6.59), the ID of penetrated nodes must be obtained in the global detection stage.  

 

 

 

7.3.1 Note on robustness and efficiency 
 

Since the time increment necessary to numerically simulate the concrete response under impact loading will be 

relatively small (Δt<<1ms), and the geometry of the already formed contact interface can be rather complex, 

the issue of robustness of global contact detection arises automatically. 

 

Furthermore, note that one undetected penetration, or even worse; one wrongly detected penetration can lead to 

numerical divergence. Therefore, the robustness issue can be viewed as a crucial requirement for the contact 

detection stage. For illustration, consider the case in which 100 nodes violate the impenetrability condition in 

each time increment. Additionally, assume that 15000 time increments are needed to perform the complete 

numerical analysis. In such case, the computational procedures used for global detection must register 1500000 

forbidden node penetrations! Evidently, the fact immediately gives rise to the computational algorithm 

robustness requirement. 

 

It should be mentioned that the abovementioned scenario is more than possible. Indeed, typical industrial FE 

contact simulation requires an even larger number of nodes in order to adequately describe the contact force 

field. Consequently, the computational efficiency requirement arises as well. Evidently, the global detection 

phase has to be fast and reliable at the same time. 

 

Since the contact interface Гc is unknown in advance (and may significantly vary in time); it follows that the 

global detection phase mast be performed across all boundaries in each time increment. Only in this manner 

some possible hidden contact regions can be revealed. However, for an arbitrary spatial discretization, the 

primitive loop over all boundary nodes candidate for penetration would be quite expensive and inappropriate 

for practical applications. Mention that the requirements of videogames industry (car racing and combat 

competitions) and the SF film industry (the cloth of master Joda in the remake of the Star Wars trilogy), led to 

few very efficient global detection strategies that are also used in numerical FE contact/impact simulations. 
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In order to numerically reproduce the free fall drop weight experiment (Fig. 1.1) or concrete penetration (Fig. 

1.3), the proposed numerical formulation uses a primitive but robust global detection strategy. The strategy is 

based on the previously discussed geometrical description of the tetrahedral finite elements (Chapter 3 – 3.3.1 

Geometrical description). Before illustrating the adopted strategy, mention that with the aim of ensuring its 

efficiency, some external procedures have been delivered for the purpose of speeding up the search of nodal 

contact impenetrability violations (6.2). The procedures are incorporated into the delivered program code and 

are later briefly presented. 

 

 

 

7.3.2 Detection strategy 
 

In order to identify mesh boundaries involved in contact, the procedure adopted here follows from the known 

point in polygon test. The procedure is based on the fact that the barycentric coordinates ξ of a point P are 

positive if the point is inside the element domain Ωe (Chapter 3 – 3.3.1 Geometrical description). In this case, 

the sum of barcentric coordinates is equal to 1 and 0 ≤ ξn ≤ 1. 

 

The procedure can be formulated as follow. After adding the incremental displacements Δu
D
 (6.58) to 

coordinate vector Xn, a check loop is performed for each slave boundary nodes. The procedure consists on 

calculating the slave node barcentric coordinates for elements in the computational loop. If for an element in 

the loop the barcentric coordinates are in accordance with Eq. (3.42), the penetration is detected. In other 

words, for a boundary node with coordinates { ccc xxx 321 }
T
, the penetration check will involve the 

computational loop over a number of elements ne as: 

 

 

,4,3,2,1where)(),,(

,..,2,1for

321321 



nxxxxxx

ne

e
n

ce
n

ce
n

ce
nn

e



 (7.2) 

 

where the coefficients e
n

e
n

e
n  ,,  and e

n , are given in Eq. (3.54), (3.55), (3.56) and (3.57), respectively. The 

strategy can be also reformulated in terms of region volumes (Fig. 3.3). Moreover, the volume terminology 

brings a benefit since the range check of barcentric coordinate can be here suppressed. The volumes Vn are 

defined by pairing three element nodes with the coordinates of the node candidate for penetration. The 

computations are performed according to Eq. (3.40) where the coordinates of the penetrated node and the 

coordinates of element node cyclically switch. If all volumes are positive, the point will be inside Ωe. Note that 

the strategy is very simple and robust but inefficient. Namely, due to the frequent request for contact detection 

(and numerous necessary looping procedures), the illustrated loop is inappropriate for practical computations. 

However, some speedup aspects will be discussed later. 
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To perform the search for possible nodal penetrations, except the mesh topology matrix (7.1), the nodal 

coordinate matrix Coord_Mtx should be given as well. For a typical three-dimensional spatial discretization, 

the matrix structure can be represented as follow (7.3). 
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Coord_Mtx  (7.3) 

 

The matrixes (7.1) and (7.2) are obtained from the commercial mesh generation program FEMAP. The 

topology matrix (7.1) and the nodal coordinate matrix (7.3) are given in accordance with the spatial 

discretization performed by linear tetrahedral elements. The matrix uniquely defines the three-dimensional 

finite element discretization and contains information needed for the adopted global detection procedure. 

However, it should be pointed out that the local detection phase will not involve only the geometrical aspects of 

meshes but also the kinematical aspects of nodal movement between times steps tn and tn+1. 

 

It is easy to demonstrate that the computations of volumes in Eq. (3.40), which are illustrated in Fig. 3.3, 

involves the computation of some terms that are repeating. For this purpose, the optimizing algorithm, that will 

avoid repeated calculations, is given in Box 7.2. 

 
 
 

! identify the boundary nodes that interpenetrate into an FE mesh 

! *************************************************************** 

 

DO Consider_Node = 1, Number_of_Nodes  

 

sx = Coord_Mtx(List_of_Boundary_Nodes(Consider_Node),1) 

 

sy = Coord_Mtx(List_of_Boundary_Nodes(Consider_Node),2) 

 

sz = Coord_Mtx(List_of_Boundary_Nodes(Consider_Node),3) 

 

 

        DO Consider_Element = 1, Number_of_Elements 

 

          x2xs = Coord_Mtx(Topology_Mtx(Consider_Element,2),1) - sx 

          x3xs = Coord_Mtx(Topology_Mtx(Consider_Element,3),1) - sx 

          x4xs = Coord_Mtx(Topology_Mtx(Consider_Element,4),1) - sx 

          y2ys = Coord_Mtx(Topology_Mtx(Consider_Element,2),2) - sy 

          y3ys = Coord_Mtx(Topology_Mtx(Consider_Element,3),2) - sy 

          y4ys = Coord_Mtx(Topology_Mtx(Consider_Element,4),2) - sy 

          z2zs = Coord_Mtx(Topology_Mtx(Consider_Element,2),3) - sz 

          z3zs = Coord_Mtx(Topology_Mtx(Consider_Element,3),3) - sz 

          z4zs = Coord_Mtx(Topology_Mtx(Consider_Element,4),3) - sz 

 

          V =x2xs*(y3ys*z4zs-y4ys*z3zs)+y2ys*(x4xs*z3zs-x3xs*z4zs)+z2zs*(x3xs*y4ys-x4xs*y3ys) 

 

          IF ( V < -tolerance ) CYCLE 

 

          xsx1 = sx - Coord_Mtx(Topology_Mtx(Consider_Element,1),1) 

          ysy1 = sy - Coord_Mtx(Topology_Mtx(Consider_Element,1),2) 

          zsz1 = sz - Coord_Mtx(Topology_Mtx(Consider_Element,1),3) 
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          x3x1 = Coord_Mtx(Topology_Mtx(Consider_Element,3),1) – & 
 

                          & Coord_Mtx(Topology_Mtx(Consider_Element,1),1) 

 

          x4x1 = Coord_Mtx(Topology_Mtx(Consider_Element,4),1) – & 
 

                          & Coord_Mtx(Topology_Mtx(Consider_Element,1),1) 

 

          y3y1 = Coord_Mtx(Topology_Mtx(Consider_Element,3),2) – & 
 

                          & Coord_Mtx(Topology_Mtx(Consider_Element,1),2) 

 

          y4y1 = Coord_Mtx(Topology_Mtx(Consider_Element,4),2) – & 
 

                          & Coord_Mtx(Topology_Mtx(Consider_Element,1),2) 

 

          z3z1 = Coord_Mtx(Topology_Mtx(Consider_Element,3),3) – & 
 

                          & Coord_Mtx(Topology_Mtx(Consider_Element,1),3) 

 

          z4z1 = Coord_Mtx(Topology_Mtx(Consider_Element,4),3) – & 
 

                          & Coord_Mtx(Topology_Mtx(Consider_Element,1),3) 

 

          V =xsx1*(y3y1*z4z1-y4y1*z3z1)+ysy1*(x4x1*z3z1-x3x1*z4z1)+zsz1*(x3x1*y4y1-x4x1*y3y1) 

 

          IF ( V < -tolerance ) CYCLE 

 

          x2x1 = Coord_Mtx(Topology_Mtx(Consider_Element,2),1) – & 
 

                          & Coord_Mtx(Topology_Mtx(Consider_Element,1),1) 

 

          y2y1 = Coord_Mtx(Topology_Mtx(Consider_Element,2),2) - & 
 

                          & Coord_Mtx(Topology_Mtx(Consider_Element,1),2) 

 

          z2z1 = Coord_Mtx(Topology_Mtx(Consider_Element,2),3) - & 
 

                          & Coord_Mtx (Topology_Mtx(Consider_Element,1),3) 

 

          V =x2x1*(ysy1*z4z1-y4y1*zsz1)+y2y1*(x4x1*zsz1-xsx1*z4z1)+z2z1*(xsx1*y4y1-x4x1*ysy1) 

 

          IF ( V < -tolerance ) CYCLE 

 

          V =x2x1*(y3y1*zsz1-ysy1*z3z1)+y2y1*(xsx1*z3z1-x3x1*zsz1)+z2z1*(x3x1*ysy1-xsx1*y3y1) 

 

          IF ( V < -tolerance ) CYCLE 

 

          No_Penetrations = No_Penetrations + 1  

 

          Penetration_List(No_Penetrations)=List_of_Boundary_Nodes(Consider_Node) EXIT LOOP 

!         ********************************************************************************* 

 

     END DO: Consider_Element 

 

END DO: Consider_Node 
 

 

Box 7.2 Pseudo-code delivered to identify if boundary mesh nodes interpenetrate in any FE domain 

 

Note that the aspect of computational efficiency is additionally improved by the function CYCLE (Box. 7.2). 

Indeed, for the first noticed negative volume, the function enables the jump from the current computational 

loop to the next one, and thus accelerates the search. Furthermore, due to the computational round-off errors, 

the test of volume sign is performed by assuming a minimum tolerance value which is set as negative value 

close to zero. Namely, the computed volume for the node-surfaces proximity can be easily below zero. Since 

the surface under consideration can lie on the mesh boundary, the situation should not be interpreted as a 

problem a-priori. In this case, the gap value g is close to zero, denoting no contact (6.2). However, if the 
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penetrated node lies on the interior surface (between two internal element faces) the detection procedure may 

fail to identify the penetration. This is the reason why a certain tolerance is needed to check the sign of 

calculated volumes. The same situation occurs if the contractor node falls on the internal element edge. As in 

case of node-surface proximity, these situations can be accounted for taking into account low tolerance while 

checking the related volume sign. Finally, mention that the strategy presented in Box 7.2 is valid only if the 

node numbering convention is respected (Fig. 3.2).  

 

 

 

7.3.3 Speed-up of global detection 

 

Even for the improved global contact detection (Box 7.2), it is easy to agree that the computational loop is still 

rather expensive. In order to minimize necessary computations, and to preserve the robustness of the strategy, 

two simple modifications are presented below. 

 

The first modification arises from the fact that relatively small time increments Δt must be adopted in order to 

reproduce the deformation path caused by high-energy impact loading. The mentioned makes the assumption 

of relatively small incremental displacements valid. So, after adding the displacement vector Δu
D
 to coordinate 

vector Xn, the forbidden penetrations will always be registered in the proximity of mesh boundaries. 

Consequently, the strategy given in Box 7.2 can be simply improved by replacing the list of elements in the 

loop Consider Element (which denotes the list of elements in the whole discretization) with the list of 

elements situated only on the mesh boundary (boundary layer elements). By dramatically decreasing the 

number of computational loops, the modification will considerably contribute to the acceleration of the global 

contact detection phase (Fig. 7.3). 

 

 
 
 

Figure 7.3 Identifications of not allowed nodal penetrations (test by local coordinates or volume sing)  
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The computational loop in Box 7.2 can be further accelerated by specifying the radius r for volume testing. In 

this case, instead of performing the loop check over all elements, the loop procedure is performed over a 

number of boundary elements that are situated inside the radius r (Fig. 7.3b). Considering that the computation 

of distance between two points is evidently much cheaper than the volume computations (7.2), it is reasonable 

to calculate the barycenter coordinates of all elements on the mesh boundary and then the distance between that 

retrieved coordinates and the boundary node candidates for penetration. If the distance is smaller than the pre-

defined tolerance value r (Fig. 7.3b), the penetration check will be carried out by volume computations (Box 

7.2). As a benefit, for a node candidate for penetration, the check loop will be performed only over the nearest 

elements on the boundary layer, improving the efficiency of the strategy. 

 

 

 

7.4 Local detection 
 

Resume, after identifying the ID of a boundary node that penetrates into a forbidden spatial discretization (now 

classified as contractor node), a detailed check should be performed in order to find an adequate target surface 

needed to perform the contact element assimilation. The related computations form the local contact detection 

phase. 

 

 

7.4.1 Surfaces that are candidates for contact assimilation 
 

The most robust way to find possible contact pairs would be to check every contractor node against every 

boundary surface with a pre-defined quantitative measure for contact pair assimilation. However, even for 

simplest criteria of contact pair assembly, it is evident that the given description is quite expensive and 

consequently inappropriate for practical applications. 

 

 
 

Figure 7.4 Set of candidate surfaces as plains attached to the boundary nodes nearest to the penetrated node 
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However, according to the assumption of relatively small incremental displacements, the contact element 

assimilation can be focused only on certain number of boundary surfaces around each contractor node. This is 

possible since the small nodal movement implies no interaction with more distant surfaces. The list of surfaces 

that are candidates for contact assimilation can be obtained as follow. The first step is to determine the number 

of boundary nodes nearest to the contractor node in question. Note that, due to the large number of nodes on the 

mesh boundaries, the procedure should be performed carefully. Otherwise, it could badly harm the 

computational efficiency. For this purpose, Box 7.3 contains an optimized pseudo-code delivered for this 

purpose. 

 
 

! for a given penetrated node find a certain number of nearest boundary nodes 

! *************************************************************************** 

 

DO Penetration = 1, No_Penetrations 

 

Node_Distance_Vec = 0.0  

Node_Number_Vec = 0 

 

mx = Coord_Mtx(Penetration_List(Penetration),1) 

my = Coord_Mtx(Penetration_List(Penetration),2) 

mz = Coord_Mtx(Penetration_List(Penetration),3)  

 

       DO Boundary_Node = 1, Number_of_Boundary_Nodes 

 

          sx = Coord_Mtx(List_of_Boundary_Nodes(Boundary_Node),1) 

          sy = Coord_Mtx(List_of_Boundary_Nodes(Boundary_Node),2)  

          sz = Coord_Mtx(List_of_Boundary_Nodes(Boundary_Node),3)  

 

          Node_Distance_Vec(Boundary_Node)=((mx-sx)**2.0+(my-sy)**2.0+(mz-sz)**2.0)**0.5 

 

          Node_Number_Vec(Boundary_Node)=List_of_Boundary_Nodes(Boundary_Node)  

 

       END DO: Boundary_Node 

 

           DO Near_Node = 1, Number_of_Near_Nodes  

 

                 Minimal_Distance = MINVAL(Node_Distance_Vec) 

 

                   DO Boundary_Node = 1, Number_of_Boundary_Nodes 

 

                      IF (Node_Distance_Vec(Boundary_Node)=Minimal_Distance) THEN 

 

                      Nearest_Node_List(Penetration,Near_Node)=Node_Number_Vec(Boundary_Node) 

!                     ***********************************************************************                                           

 

                      Node_Distance_Vec(Boundary_Node)=1.0D+30 ; EXIT LOOP          

 

                      END IF 

 

   END DO: Boundary_Node 

 

       END DO: Near_Node 

 

END DO: Penetration 
 

 

Box 7.3 Pseudo-code delivered to find nearest boundary nodes to the penetrated node (contractor node)  
 

Once the nearest boundary nodes are identified, the list of candidate surfaces will be determined for each 

penetrated node by a check loop over all boundary surfaces. The check loop will consist on storing that 

boundary surfaces that contains at least one nearest boundary nodes. 
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However, mention that a smaller number of nearest nodes may produce a list of candidate surfaces not accurate 

enough to trap the contact pair assimilation. Indeed, such situations may lead to wrong assimilation of contact 

pairs and cause the collapse of the entire numerical simulation. Such scenario is particularly evident in 

penetration and perforation problems in which, due to the complex time evolution of Гc (Fig. 3.4), the contact 

interface requires a refined discretization. 

 

Before proceeding with the adopted local contact detection strategy, it should be pointed out that the related 

computations will be based only on the geometrical properties (static projection) and/or kinematical properties 

(dynamic projection) of nodes on the meshes boundaries. 

 

 

7.4.2 Closest point strategy 
 

The simplest strategy for pairing contractor nodes with belonging target surface nodes arises from the earlier 

discussed minimum distance function d (Chapter 6 – 6.3.2 Gap & minimum distance function). However, due 

to its static projection nature, the strategy is not suitable for frictional contact simulations, and it is used here 

only when the other two implemented strategies (later discussed) fail to identify the contact pairs. 

 

 
 

Figure 7.5 Illustration of the closest point strategy: a) non-regular and b) regular contact detection 
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Indeed, the combination of different strategies is well justified since the result of the local detection phase is 

important as the global one. However, the presents of other detection procedures can be also justified by taking 

into account the fact that each detection procedure operates within a short period of time. Under this 

circumstance, it is highly sensitive to computational round-off errors (Fig. 7.1). On the other hand, note also 

that penetration and perforation problems (Fig. 3.4) produce a very challenging environment for local contact 

detections, evidencing the requirement for few detection procedures. 

 

According to Fig. 7.5, the closest point strategy consists on performing a set of successive perpendicular 

projections of each contractor node over a list of related nearest boundary surfaces (earlier obtained according 

to Box 7.3). For this purpose, it is assumed that the boundary surface that contains the closest projection is the 

most suitable for contact element assimilation (Fig. 7.5). Since for the adopted FE the tangent vectors that 

define the spatial orientation of element surface do not depend on the coordinates ξ={ξ
1
,ξ

2
}

T
, the closest form 

of the minimal distance function d (6.14) can be written as (Wriggers, 2002) 
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which can be solved directly for ξ
1
 and ξ

2
 (7.5). 
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Nevertheless, note that the minimum distance requirement is necessary but it is not sufficient to report the 

contact element found. Being the perpendicular projections performed on plains defined by boundary surfaces, 

the projection point ξ can fall outside the boundary surface (as illustrated in Fig. 7.5b). Therefore, in order to 

ensure that the projection point is inside the boundary surface, the compliance of the local projection 

coordinates ξ must be checked (7.6). 

 

 2,1where0and121  nn  (7.6) 

 

Finally, the global coordinates of a projection can be obtained by 
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where the notation np
c x ,  is in accordance to Eq. (6.20) and denotes the coordinates component n, of the target 

surface node c that lies on the mesh boundary (Fig. 6.6). 
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7.4.3 Trajectory intersection strategy 
 

A more efficient local detection strategy, and also more appropriate for frictional contact analysis, is the 

trajectory intersection strategy. The strategy is based on the assumption that the mesh that contains candidate 

target surfaces does not suffer nodal displacements obtained in Eq. (6.58). The assumption can be supported by 

the earlier introduced assumption that the incremental nodal displacements Δu
D
 are relatively small due to the 

adopted small time increment Δt.  

 

For the sake of illustration, consider a contractor node moving from time tn to time tn+1 (Fig. 7.6). The line 

segment that connects the neighboring temporal positions defines the node trajectory. The trajectory 

intersection strategy chooses the target surface which will be crossed by the contract node trajectory from the 

list of candidate surfaces (Fig. 7.6). 

 

 
 

Figure 7.6 Illustration of the trajectory intersection strategy: a) non-regular and b) regular contact detection 

 

At the numerical implementation level, the strategy requires the computation of the intersection parameter T 

which defines the global rectangular coordinates of intersection (7.8). 
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For the given set of coordinates 
c
xp , each of them associated to the target surface nodes through index c, and 

coordinates vectors s

ntx  and s

1ntx , associated contractor node in time tn and tn+1, the intersection parameter T 

arises as a value that satisfies 
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and can be explicitly calculated as shown in Box 7.4.  

 
 

! procedure for calculate the intersection parameter T  

! ***************************************************** 
 

LOWER(1 ) = -Px1*Cz1*Py2      ;       UPPER(1 ) =  Cx0*Py2*Pz3 

LOWER(2 ) =  Px1*Cy1*Pz2      ; UPPER(2 ) = -Px1*Cz0*Py3 

LOWER(3 ) = -Px3*Cz1*Py1      ; UPPER(3 ) =  Px2*Cy0*Pz1 

LOWER(4 ) =  Px3*Cz1*Py2      ; UPPER(4 ) = -Cx0*Pz2*Py3 

LOWER(5 ) =  Px3*Cy1*Pz1      ; UPPER(5 ) = -Px2*Cy0*Pz3 

LOWER(6 ) = -Px3*Cy1*Pz2      ; UPPER(6 ) =  Px1*Pz2*Py3 

LOWER(7 ) =  Px1*Cz1*Py3 ; UPPER(7 ) = -Cx0*Py2*Pz1 

LOWER(8 ) = -Px1*Cy1*Pz3 ; UPPER(8 ) = -Cx0*Py1*Pz3 

LOWER(9 ) =  Px2*Cz1*Py1 ; UPPER(9 ) =  Cx0*Pz2*Py1 

LOWER(10) = -Px2*Cz1*Py3 ; UPPER(10) =  Cx0*Pz1*Py3 

LOWER(11) = -Px2*Cy1*Pz1 ; UPPER(11) = -Px1*Py2*Pz3 

LOWER(12) =  Px2*Cy1*Pz3 ; UPPER(12) =  Px2*Py1*Pz3 

LOWER(13) = -Cx1*Pz1*Py3 ; UPPER(13) =  Px2*Cz0*Py3 

LOWER(14) =  Cx0*Py2*Pz3 ; UPPER(14) = -Px2*Cz0*Py1 

LOWER(15) = -Cx1*Pz2*Py1 ; UPPER(15) = -Px2*Pz1*Py3 

LOWER(16) =  Cx1*Pz2*Py3 ; UPPER(16) =  Px1*Cy0*Pz3 

LOWER(17) =  Cx1*Py1*Pz3 ; UPPER(17) =  Px3*Cy0*Pz2 

LOWER(18) =  Cx1*Py2*Pz1 ; UPPER(18) = -Px3*Cy0*Pz1 

LOWER(19) = -Cx1*Py2*Pz3 ; UPPER(19) = -Px3*Pz2*Py1 

LOWER(20) = -Px1*Cz0*Py3 ; UPPER(20) = -Px3*Cz0*Py2 

LOWER(21) =  Px2*Cy0*Pz1 ; UPPER(21) =  Px3*Cz0*Py1 

LOWER(22) = -Cx0*Pz2*Py3 ; UPPER(22) =  Px3*Py2*Pz1 

LOWER(23) = -Px2*Cy0*Pz3 ; UPPER(23) = -Px1*Cy0*Pz2 

LOWER(24) = -Cx0*Py2*Pz1 ; UPPER(24) =  Px1*Cz0*Py2 

LOWER(25) = -Cx0*Py1*Pz3 

LOWER(26) =  Cx0*Pz2*Py1 

LOWER(27) =  Cx0*Pz1*Py3 

LOWER(28) =  Px2*Cz0*Py3    ! NOTATIONS                            

LOWER(29) = -Px2*Cz0*Py1    ! ********* 

LOWER(30) =  Px1*Cy0*Pz3    ! Px1,Py1,Pz1 ->coordinates of #1 target surface node (time tn) 

LOWER(31) =  Px3*Cy0*Pz2    ! Px2,Py2,Pz2 ->coordinates of #2 target surface node (time tn) 

LOWER(32) = -Px3*Cy0*Pz1    ! Px3,Py3,Pz3 ->coordinates of #3 target surface node (time tn) 

LOWER(33) = -Px3*Cz0*Py2    ! Cx0,Cy0,Cz0 ->coordinates of contractor node        (time tn) 

LOWER(34) =  Px3*Cz0*Py1    ! Cx1,Cy1,Cz1 ->coordinates of contractor node        (time tn+1) 

LOWER(35) = -Px1*Cy0*Pz2 

LOWER(36) =  Px1*Cz0*Py2 

 

        T = SUM(UPPER) / SUM(LOWER) 

! *************************** 
 

! * WARNING * -> TRAJECTORY IN PLANE (T=NaN) 
 

               IF (ABS(SUM(LOWER))<=tolerance) TRAJECTORY_TYPE = "PARALLEL" 

 

! * WARNING * -> TRAJECTORY PARALLEL WITH PLANE (T=oo) 
 

               IF (ABS(T)>1.0D+20)             TRAJECTORY_TYPE = "PARALLEL" 
 

 

Box 7.4 Terms needed for calculating the trajectory intersection parameter T (note the warnings)  
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However, even though the global coordinates of intersection are determined (7.8), the computation is not yet 

over. Formerly obtained coordinates are again given as coordinates of intersection between the contractor node 

trajectory and the plain defined by tangent vectors on the candidates’ surface (6.21). In other words, if the 

intersection point falls outside the target plain area, the considered target surface must be rejected as a 

candidate for contact element assembling (Fig. 7.6). Thus, in order to ensure the validity of the candidate 

surface the global coordinates of intersection m
x are translated to the local surface coordinates ξ={ξ

1
,ξ

2
}

T
 (7.7). 

Then, the candidate surface is reported as target surface provided that the allowed range of local coordinates is 

respected (7.6). 

 

 

7.4.4 Continuous collision detection strategy 
 

The most robust local detection procedure, here primarily invoked, is the continuous collision detection 

strategy. Namely, after gathering a list of potential interaction surfaces for a given contractor node, the strategy 

establishes the time of contact tc and the position ξ where the contractor node hits the surfaces. The amount of 

non-physical penetration can be then easily obtained. Evidently, the strategy is based on the geometrical and 

kinematical properties of nodes involved in contact. Particularly, by assuming that the nodal velocities vc do not 

change between time tn and tn+1, the strategy will reveal if and when the contractor node hits the candidate 

boundary surface (Fig. 7.7).  

 

 
 

Figure 7.7 Illustration of the continuous collision detection strategy (movement of nodes from time tn and tn+1) 

 

The idea is based on the fact that at the time of collision tc, the four nodes are coplanar. Provot (1997) showed 

that for four points defined by the position vectors xn and constant velocities vn, the time tc at which the points 

are coplanar satisfy 

 

 ,0)()()( 414131312121  vxvxvx ccc ttt  (7.10) 
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where 

 

 .and jiijjiij vvvxxx   (7.11) 

 

Since the nodal coordinate vectors xn and velocities vn at a time tn are known (reference frame), in order to 

solve Eq. (7.10) the monomial form of the polynomial is needed. By extending the differences in Eq. (7.11) to 

Eq. (7.10), and grouping the outcome by means of tc, the solution is obtained by 188 additions and 192 

multiplications. From the perspective of efficiency, it is obvious that this computation requires considerable 

computational effort. Namely, note that the local detection phase is the most frequently applied computational 

stage in every contact/impact analysis. However, the polynomial can be computed by only 50 additions and 48 

multiplications (Hutter & Fuhrmann, 2007), provided that the coefficients are grouped and rewritten as dot- and 

cross-products (7.12). 

 

 4131213a vvv   (7.12a) 
 

 3141212131414131212a vxvvxvvvx   (7.12b) 
 

 2131413141213121411a vxxvxxxxv   (7.12c) 
 

 3121410a xxx   (7.12d) 

 

Furthermore, each cross-product occurs twice thus it can be calculated only once. Now, the time in which the 

points are coplanar represents the real roots of the cubic polynomial in time 

 

 .)( 01
2

2
3

3 atatatatP ccc   (7.13) 

 

Note that there are many strategies aimed to reach the solution of the former polynomial. However, in the 

proposed numerical formulation the so-called companion matrix Mc is used for this purpose (7.14). 
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The roots of the polynomial (7.13) are equal to the eigenvalues of Mc (7.14). Note that the eigenvalues should 

be found by means of a procedure coherent with the double precision statement used to specify the involved 

variables. Note also that being the matrix (7.14) non-symmetric; its eigenvalues can obtain imaginary 

components. Obviously, the imaginary results are instantly discarded. Finally, since the co-planarity condition 

is necessary but not sufficient for detecting the point-surface interaction, the appropriate time result is the 

lowest one between the remaining. 
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Chapter 8 
 

 

Adaptive finite elements 
 

8.1 Introduction 
 

As high-energy impact loading can occasionally result in penetration of one body into another (or even cause 

body perforation), the related numerical description must take into consideration possible dramatically changes 

in geometry of FE. Indeed, the shape of finite elements may degenerate rapidly, what in extreme type of 

loading can occasionally even lead to almost flat three-dimensional finite elements. In fact, with relatively large 

concentration of displacements at the impact area, the nearest FE evidence distortional behavior. It is easy to 

deduce that the problem arises as a consequence of the Lagrangian description of motion (Chapter 2 – 2.2.1 

Kinematics of finite strain). To avoid element degradations, the so-called Arbitrary Lagrangian Eulerian 

formulation (ALE) is developed to overcome this inappropriate FE behavior (Belytschko, Liu & Moran, 2001). 

However, due to complexity of ALE formulation, the proposed numerical formulation is based on the 

Lagrangian description of motion and deals differently with this undesired FE shape degradation. Particularly, 

the numerical description of concrete subject to penetration is given by the adaptive finite element strategy 

(known as remeshing procedure). 
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By knowing the convergence state at the end of each time increment Δt, the finite elements distortion 

(degradations) is quantified and tested in order to establish whether it exceeds the pre-defined tolerance value. 

If so, the mesh adaptation algorithm is activated. The basics of the mesh adaptation are given by a brief 

chronological presentation of the related procedures. 

 

 

 

8.2 Remeshing criteria 
 

In order to evidence the need for remeshing, a quantitative measure of element distortion must be introduced. 

For this purpose, due to its simplicity, robustness and reliability, the element collapse ratio has been 

incorporated in the delivered program code. It consists in calculating the parameter χe as a ratio between the 

longest eLmaxand shortest element edge eLmin  in the spatial configuration (8.1). 

 

 
e

e

e
L

L

min

maxχ   (8.1) 

 

For linear tetrahedral elements (Fig. 3.2), it is a common practice to tune the procedure in the following 

manner. If the parameter χe is grater than 10, the procedure declares element e unsuitable for the next time 

increment and attributes distortional behavior to it (Fig. 8.1). 

 

 
 
 

Figure 8.1 Progressive element degradation due to concentrated force (remeshing needed for χ>10) 

 

At the numerical implementation level, the computation of parameter χe can be simply and efficiently 

incorporated (Box 8.1). However, in order to perform the continuous monitoring of elements shape 

degradation, the procedure must be activated at the end of each time increment. 
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! for a given tetrahedral discretization test mesh elements for distortion 

! ************************************************************************ 

 
DO Consider_Element = 1, Number_of_Elements 

 

x1 = Coord_Mtx(Topology_Mtx(Consider_Element,1),1) 

x2 = Coord_Mtx(Topology_Mtx(Consider_Element,2),1) 

x3 = Coord_Mtx(Topology_Mtx(Consider_Element,3),1) 

x4 = Coord_Mtx(Topology_Mtx(Consider_Element,4),1) 

 

y1 = Coord_Mtx(Topology_Mtx(Consider_Element,1),2) 

y2 = Coord_Mtx(Topology_Mtx(Consider_Element,2),2) 

y3 = Coord_Mtx(Topology_Mtx(Consider_Element,3),2) 

y4 = Coord_Mtx(Topology_Mtx(Consider_Element,4),2) 

 

z1 = Coord_Mtx(Topology_Mtx(Consider_Element,1),3) 

z2 = Coord_Mtx(Topology_Mtx(Consider_Element,2),3) 

z3 = Coord_Mtx(Topology_Mtx(Consider_Element,3),3) 

z4 = Coord_Mtx(Topology_Mtx(Consider_Element,4),3) 

 

Lenght(1) = ( ((x1-x2)**2.0) + ((y1-y2)**2.0) + ((z1-z2)**2.0) ) ** 0.50 

Lenght(2) = ( ((x2-x3)**2.0) + ((y2-y3)**2.0) + ((z2-z3)**2.0) ) ** 0.50 

Lenght(3) = ( ((x3-x1)**2.0) + ((y3-y1)**2.0) + ((z3-z1)**2.0) ) ** 0.50 

Lenght(4) = ( ((x4-x1)**2.0) + ((y4-y1)**2.0) + ((z4-z1)**2.0) ) ** 0.50 

Lenght(5) = ( ((x4-x2)**2.0) + ((y4-y2)**2.0) + ((z4-z2)**2.0) ) ** 0.50 

Lenght(6) = ( ((x4-x3)**2.0) + ((y4-y3)**2.0) + ((z4-z3)**2.0) ) ** 0.50 

 

 

rate = ( MAXVAL(Lenght(:)) / MINVAL(Lenght(:)) ) 

!  ************************************************ 

 

 

IF ( rate > tolerance ) REMESHING_STATUS="YES" & EXIT LOOP 

 

END DO: Consider_Element 
 

 

Box 8.1 Pseudo-code for calculation of tetrahedral elements collapse ratio (activated at the end of each increment)   
 

Since the remeshing procedure involves two spatial discretizations, one before and one after remeshing, it is 

opportune to distinguish them. For this purpose, the spatial discretization and the related mechanical fields are 

here characterized as “old” and “new”, related to the time at which the remeshing process is carried out. 

Therefore, after the need for remeshing has been detected (REMESHING_STATUS="YES" in Box 8.1), the 

contact/impact analysis is temporarily frozen and the procedure for generating the new spatial discretization is 

invoked. Basically, each remeshing procedure can be hierarchically divided in two phases. The first one 

involves the generation of the deformed boundary (Box 7.1), and the second one, the generation of a new 

spatial discretization over the constructed deformed boundary. 

 

Mention that the remeshing process can occasionally keep some elements from the old mesh, and generate new 

elements elsewhere. Actually, this is a common practice and it is employed here, as well. The benefit of this 

practice is especially evident when the discretization under consideration describes a quasi-brittle material 

which establishes cracking and damage phenomena. The statement is discussed late on (8.4 Path-dependency 

vs. remeshing). Additionally, since the discretization occasionally changes form one increment to another, it is 

opportune to consider eventual mesh adaptations in spatial regions of particular interest (refinement procedure). 

The procedure is discussed in the following section. 
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8.3 Refinement criteria 
 

Since the numerical simulation of concrete penetration and perforation events are the main topic of the current 

Chapter, it should be pointed out that the inevitable remeshing procedure enables to address possible mesh 

refinements around zones of special interest. Actually, it can be said that the refinement procedure is here 

somehow inevitable. To support the statement, assume a rigid object that tends to completely penetrate into the 

concrete mass. In this case, it is reasonable to presuppose that the initial spatial discretization will not be able to 

accurately describe the shape of the penetrated body. Therefore, progressive mesh adaptations are needed to 

numerically reproduce Гc (Fig. 6.5). 

 

However, apart the abovementioned geometrical need for refinement, the mechanical aspect should be taken 

into account as well. Indeed, from the historical point of view, the FE refinement procedures arise as a 

consequence of the need to measure the numerical error caused by FE approximation. Particularly, as was 

suggested by Zienkiewicz and Zhu (1987), the absolute scalar error ζe can be obtained from the generalized 

form of the classical energy error norm (8.2). 

 

 e

e

rhrh2
e )()(  



dεεσσζ   
(8.2) 

 

In Eq. (8.2) 
h

σ  and h
ε  are the stress and strain rates, obtained as FE solution, while 

h
σ  and r

ε are the related 

so-called reconstruction variables. In order to measure the solution error, the reconstruction variables are 

obtained by the Superconvergent Path Recovery (Zienkiewicz & Zhu, 1992). Basically, after the error 

distribution over the spatial discretization is known, the refinement procedure is invoked to increase the number 

of elements (h refinement procedure) or the order of interpolation functions (p refinement procedure), or even 

both of them (ph refinement procedure), in zones with errors. However, the briefly illustrated FE error 

estimator is here not considered. The refinement procedure is presented here only because of geometrical 

aspects of the FE degradation and not because of the presence of errors in the state variable field 

(displacements). 

 

It is easy to deduce that, in the numerical simulations of penetration and perforation problems, the mesh zones 

of interest will be the interface surface Γc (zones under refinement). On the other hand, by taking into account 

the three-dimensional environment for remeshing and refinement procedure, it is obvious that the related 

procedure will be so complex that should be addressed with special attention. For this purpose, the further 

discussion will be focused only on a certain type of problems, avoiding generalization. Namely, the perforation 

problems will be excluded from the further discussion and the penetration problems will be limited to concrete 

block under impact of shaped objects such as steel anchors and nails. 
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So far, the reasons for introducing remeshing and refinement procedure have been justified. Now, once the 

need for remeshing has been identified, the refinement procedure must identify spatial regions which will be 

refined (Fig. 8.1 & Box 8.1). For this purpose, note that from the chronological point of view, the refinement 

procedure will precedes the remeshing procedure. Namely, as a result of the refinement procedure, a set of 

points on and inside the deformed boundary will be retrieved and used to define the locations where the new 

nodes should be generated. In other words, the refinement procedure will locally prescribe the new mesh 

property and in this sense introduce restrictions into remeshing. 

 

In order to focus the mesh refinement to specific zones, a quantitative needed to identify the regions of interest 

should be defined. Since the refinement zones are unknown a priory, the related measure must be objective. 

Indeed, the procedure should include the entire spatial discretization in order to be able to localize the zone of 

interest. For this purpose, the domain space subject to refinement (Ωr) can be seen as the union of old domains 

Ωe which are mostly affected by deformations.  

 

According to Eq. (2.46), it can be deduced that the determinant of the deformation gradient matrix F (2.37), i.e. 

the Jacobian of deformation J, will be adequate to quantify the state of FE deformation. In order to check if the 

element domain Ωe should be added to Ωr, the element Jacobian of deformation is compared to predefined 

threshold value εr. If Je > εr, the space occupied by the element e will be considered for further refinement. In 

the later presented numerical example (Chapter 10 – Numerical examples), εr was set to be depended on the 

maximal Jacobian of deformation (8.3). 

 

  er FF detmaxdetε max 

 

(8.3) 

 

The space region Ωr subject to refinement was obtained by performing a check loop over all elements in the 

discretization. Particularly, for those finite elements for which Je was greater than εr multiplied by the scaling 

coefficient δ (8.4), the element region Ωe was added to Ωr. The scaling coefficient δ is here set to 0.85. 

 

 

ere

ene





over  refinementδεdet

,..,2,1for

F

 (8.4) 

 

It should be pointed out that the procedure can form space regions Ωr that are not connected between each 

other. In this case, each Ωr should be treated separately. Indeed, once the regions for refinement are discovered 

(here the contact regions between the concrete block and steel anchor), the procedure for inserting refinement 

points should be loop over the number of space regions Ωr. After that, the remeshing procedure will use such 

points to allocate new mesh nodes. 
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The strategy for prescribing new nodal positions follows from the geometry of old elements stored in the list 

for refinement (8.4). However, since the procedure is already present in the commercial program code FEMAP, 

which is here used to perform remeshing procedure; it will be only briefly discussed. 

 

Basically, after defining the region for refinement (union of space region Ωe of those elements for which Je 

exceeds the pre-defined criteria value), the program locally produces a new discretization according to the 

three-dimensional Delaunay triangularization. The local discretization is performed by setting a greater value 

of the so-called element density parameter, compared to its value in the same region in the old discretization. 

However, it should be pointed out that the procedure will progressively decrease the volume of finite elements 

in Ωr. Namely, as the incremental analysis goes on, the number of elements in Ωr will increase and the spatial 

region Ωr not evidently. As a consequence, the volume of FE in Ωr will decrease. In this case, the problem of 

possible element collapsing arises. To avoid too small elements, the minimum element volume value that 

should not be traverse (Vmin), is specified. Therefore, the abovementioned procedure (8.4) is modified by 

excluding those elements that already reach such margin (8.5). 

 

 

eere

e

VV

ne


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over  refinement)andδεdet(if
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minF

 (8.5) 

 

Note that the volume restriction will not cause the smallest element to resist the refinement procedure. Indeed, 

since the number of small elements will increases with the evolution of the analysis and, being excluded from 

refinement (8.5), they will form their own greater spatial region. The region formed by small elements 

accumulation can be then again remeshed. The possibilities of a described procedure, which is developed and 

implemented in the delivered program code, are illustrated in Fig. 8.2. 

 

 

 
 

Figure 8.2 Numerical result of a typical penetration problem reproduced by continuous mesh adaptations  
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By progressive inserting new nodes in the old discretization, the illustrated adaptive finite element strategy 

allows numerical discretization of very large concentrated displacements (near perforation). Furthermore, it can 

be observed that the strategy clearly predicts the contact surface Гc as the zone of interest. Indeed, by further 

reduction of the scaling coefficient δ (8.5), the accuracy of the retrieved solution will increase and even a more 

expanded region will be refined. Consequently, the region under consideration will not be any region but the 

one that will suffer grater deformations. Therefore, in the case of concrete fracturing, it is expected that the 

strategy will identify cracks trajectory and follow the cracks accordingly by increasing the number of elements 

around them. However, since the developed procedure requires considerable computation effort, due to 

continuous mesh generations and other related complexities, it was not tested yet for this purpose. 

 

For a spatial discretization performed by linear tetrahedral elements, the determinant of the deformation 

gradient matrix F, which is here used to define the refinement criteria (8.5), can be calculated as 
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(8.6) 

 

At the numerical implementation level, the determinant of the deformation gradient matrix F can be calculated 

as is illustrated in Box 8.2. 

 

 

 
! for a given tetrahedral discretization form a spatial region for refinement 

! *************************************************************************** 
 

DO Consider_Element = 1, Number_of_Elements 

 

x1 = Coord_Mtx(Topology_Mtx(Consider_Element,1),1) 

x2 = Coord_Mtx(Topology_Mtx(Consider_Element,2),1) 

x3 = Coord_Mtx(Topology_Mtx(Consider_Element,3),1) 

x4 = Coord_Mtx(Topology_Mtx(Consider_Element,4),1) 

 

y1 = Coord_Mtx(Topology_Mtx(Consider_Element,1),2) 

y2 = Coord_Mtx(Topology_Mtx(Consider_Element,2),2) 

y3 = Coord_Mtx(Topology_Mtx(Consider_Element,3),2) 

y4 = Coord_Mtx(Topology_Mtx(Consider_Element,4),2) 

 

z1 = Coord_Mtx(Topology_Mtx(Consider_Element,1),3) 

z2 = Coord_Mtx(Topology_Mtx(Consider_Element,2),3) 

z3 = Coord_Mtx(Topology_Mtx(Consider_Element,3),3) 

z4 = Coord_Mtx(Topology_Mtx(Consider_Element,4),3)  

 

 

dN1dx = ( y2*(z4-z3) - y3*(z4-z2) + y4*(z3-z2) ) * ( 1.0d+0 / Element_Volume ) 

dN1dy = (-x2*(z4-z3) + x3*(z4-z2) - x4*(z3-z2) ) * ( 1.0d+0 / Element_Volume ) 

dN1dz = ( x2*(y4-y3) - x3*(y4-y2) + x4*(y3-y2) ) * ( 1.0d+0 / Element_Volume ) 
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dN2dx = (-y1*(z4-z3) + y3*(z4-z1) - y4*(z3-z1) ) * ( 1.0d+0 / Element_Volume ) 

dN2dy = ( x1*(z4-z3) - x3*(z4-z1) + x4*(z3-z1) ) * ( 1.0d+0 / Element_Volume ) 

dN2dz = (-x1*(y4-y3) + x3*(y4-y1) - x4*(y3-y1) ) * ( 1.0d+0 / Element_Volume ) 

 

dN3dx = ( y1*(z4-z2) - y2*(z4-z1) + y4*(z2-z1) ) * ( 1.0d+0 / Element_Volume ) 

dN3dy = (-x1*(z4-z2) + x2*(z4-z1) - x4*(z2-z1) ) * ( 1.0d+0 / Element_Volume ) 

dN3dz = ( x1*(y4-y2) - x2*(y4-y1) + x4*(y2-y1) ) * ( 1.0d+0 / Element_Volume ) 

 

dN4dx = (-y1*(z3-z2) + y2*(z3-z1) - y3*(z2-z1) ) * ( 1.0d+0 / Element_Volume ) 

dN4dy = ( x1*(z3-z2) - x2*(z3-z1) + x3*(z2-z1) ) * ( 1.0d+0 / Element_Volume ) 

dN4dz = (-x1*(y3-y2) + x2*(y3-y1) - x3*(y2-y1) ) * ( 1.0d+0 / Element_Volume ) 

          

F(1,1) = ( dN1dx * Displacements_Vec ( Element_dof(Consider_Element,1 ) ) ) + & 

         ( dN2dx * Displacements_Vec ( Element_dof(Consider_Element,4 ) ) ) + & 

         ( dN3dx * Displacements_Vec ( Element_dof(Consider_Element,7 ) ) ) + & 

         ( dN4dx * Displacements_Vec ( Element_dof(Consider_Element,10) ) ) + 1.0d+0 

 

F(1,2) = ( dN1dy * Displacements_Vec ( Element_dof(Consider_Element,1 ) ) ) + & 

         ( dN2dy * Displacements_Vec ( Element_dof(Consider_Element,4 ) ) ) + & 

         ( dN3dy * Displacements_Vec ( Element_dof(Consider_Element,7 ) ) ) + & 

         ( dN4dy * Displacements_Vec ( Element_dof(Consider_Element,10) ) ) 

 

F(1,3) = ( dN1dz * Displacements_Vec ( Element_dof(Consider_Element,1 ) ) ) + & 

         ( dN2dz * Displacements_Vec ( Element_dof(Consider_Element,4 ) ) ) + & 

         ( dN3dz * Displacements_Vec ( Element_dof(Consider_Element,7 ) ) ) + & 

         ( dN4dz * Displacements_Vec ( Element_dof(Consider_Element,10) ) ) 

 

F(2,1) = ( dN1dx * Displacements_Vec ( Element_dof(Consider_Element,2 ) ) ) + & 

         ( dN2dx * Displacements_Vec ( Element_dof(Consider_Element,5 ) ) ) + & 

         ( dN3dx * Displacements_Vec ( Element_dof(Consider_Element,8 ) ) ) + & 

         ( dN4dx * Displacements_Vec ( Element_dof(Consider_Element,11) ) ) 

 

F(2,2) = ( dN1dy * Displacements_Vec ( Element_dof(Consider_Element,2 ) ) ) + & 

         ( dN2dy * Displacements_Vec ( Element_dof(Consider_Element,5 ) ) ) + & 

         ( dN3dy * Displacements_Vec ( Element_dof(Consider_Element,8 ) ) ) + & 

         ( dN4dy * Displacements_Vec ( Element_dof(Consider_Element,11) ) ) + 1.0d+0 

 

F(2,3) = ( dN1dz * Displacements_Vec ( Element_dof(Consider_Element,2 ) ) ) + & 

         ( dN2dz * Displacements_Vec ( Element_dof(Consider_Element,5 ) ) ) + & 

         ( dN3dz * Displacements_Vec ( Element_dof(Consider_Element,8 ) ) ) + & 

         ( dN4dz * Displacements_Vec ( Element_dof(Consider_Element,11) ) ) 

 

F(3,1) = ( dN1dx * Displacements_Vec ( Element_dof(Consider_Element,3 ) ) ) + & 

         ( dN2dx * Displacements_Vec ( Element_dof(Consider_Element,6 ) ) ) + & 

         ( dN3dx * Displacements_Vec ( Element_dof(Consider_Element,9 ) ) ) + & 

         ( dN4dx * Displacements_Vec ( Element_dof(Consider_Element,12) ) ) 

 

F(3,2) = ( dN1dy * Displacements_Vec ( Element_dof(Consider_Element,3 ) ) ) + & 

         ( dN2dy * Displacements_Vec ( Element_dof(Consider_Element,6 ) ) ) + & 

         ( dN3dy * Displacements_Vec ( Element_dof(Consider_Element,9 ) ) ) + & 

         ( dN4dy * Displacements_Vec ( Element_dof(Consider_Element,12) ) ) 

 

F(3,3) = ( dN1dz * Displacements_Vec ( Element_dof(Consider_Element,3 ) ) ) + & 

         ( dN2dz * Displacements_Vec ( Element_dof(Consider_Element,6 ) ) ) + & 

         ( dN3dz * Displacements_Vec ( Element_dof(Consider_Element,9 ) ) ) + & 

         ( dN4dz * Displacements_Vec ( Element_dof(Consider_Element,12) ) ) + 1.0d+0 

 

detF = F(1,1) * (F(2,2) * F(3,3) - F(2,3) * F(3,2)) - & 

       F(1,2) * (F(2,1) * F(3,3) - F(3,1) * F(2,3)) + & 

       F(1,3) * (F(2,1) * F(3,2) - F(2,2) * F(3,1)) 

      

 

       IF (detF > detF_margin) CALL RIFINEMENT_DOMAIN (Consider_Element) 

!             ***************************************************************** 

 

 

END DO: Consider_Element 
 

 

Box 8.2 Computation of deformation gradient matrix for the linear tetrahedral element (J - refinement measure) 
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In order to illustrate the proposed refinement procedure, a set of pictures is shown in Fig. 8.3. The given 

example is obtained by the delivered program code and illustrates the time evolution of mesh density caused by 

remeshing and refinement procedures. It is easy to agree that the procedures are inevitable for penetration 

problems. Namely, observe that the in the initial state the mesh region at the front side of the anchor is poorly 

discretized. As the numerical simulation proceeds, it will be adapted to handle the deformations properly. Note 

also that the rest of the discretization remains unchanged (zones of lower interest). The benefit of the illustrated 

strategy is that the computational efficiency can be preserved as long as possible. 

 

 
 

Figure 8.3 Sequences of anchor penetration into a hyperelastic block (progressive refinements around contact) 

 

Besides the remeshing and refinement procedures, there is another subject-related procedure which should be 

carefully considered in order to fully accomplish the mesh adaptation task. Namely, before proceeding to the 

next increment of the analysis, the mentioned procedure is expected to copy the mechanical fields from the old 

discretization to the new one. It should be pointed out that the mapping procedure for non-linear material is 

challenging task and should be discussed in more details. 

 

 

8.4 Path-dependency vs. remeshing 
 

Since the remeshing procedure generates a new discretization that is free of any mechanical fields, it is clear 

that the mechanical information can be preserved only by mapping the mechanical fields from the old 

discretization to the new one. Several methods have been developed for this purpose (Zienkiewicz, Taylor & 

Zhu; 2000), but only few are found to be suitable and are employed in the delivered program code. Namely, 



Three-Dimensional Finite Element Formulation for Concrete Failure at High-Energy Impact Loadings                              V. Travaš – Dissertation 
 

______________________________________________________________________________ 
Faculty of Civil Engineering, University of Rijeka, Croatia                                                                                                                      Page | 178 

 

due to different materials behaviors, the mapping generalization is not possible. On the other hand, since the 

remeshing and refinement procedure always produces significant difference between old and new 

discretization, the mapping procedure is far away from being trivial. Indeed, the projection of old mechanical 

fields over the new discretization can never exactly reflect the so far reached mechanical state and it will 

always introduce a certain artificial diffusion of the field in transition. In case of materials like concrete, that 

suffer damage phenomenon and stain localizations, the artificial diffusion makes the problem even more 

challenging. Before proceeding with the discussion related to field mapping, some typical notations used in 

mapping procedures ought to be introduced.  

 

The mechanical fields that are subject of transportation from the old to new discretization are denoted as state 

variables. However, the variables that are needed in the adopted microplane material model are here denoted as 

damage variables (Chapter 5 – 5.2.3 Microplane stress components). The reason why such difference is 

emphasized lies in the nature of damage variables which is more discrete compared to the much smoother 

fields of state variables (e.g. displacement). In fact, during the transportation of fields from old discretization to 

the new one, the state and damage variables should be treated separately in order to minimize artificial 

diffusions and preserve, as much as possible, their original state. 

 

It is common practice to relate all computational procedures necessary for the mapping of a particular 

mechanical field to the so-called transfer operator T. In this case, the relation between the old and new mesh 

data can be represented as 

 

 ..)ect,,(.)ect,,( oldoldnewnew  T  (8.7) 

 

In order to transport all mechanical fields contained in the old discretization, note that the transfer operator T 

should operate on two types of variables. Namely, by considering one finite element and all related mechanical 

fields, it can be deduce that the first type of variables will be the vector fields stored in the element nodes 

(displacements, velocities, accelerations, ect.) and the second one, the tensor fields stored in the FE Gauss point 

(stress, strain, ect.). In other words, two types of transfer operators will be needed to fully map the old fields 

into the new discretization. The first is here denoted by T1, and it is associated to the mesh Gauss point data, 

while the second one T2 is associated to the mesh nodal data. Note that T1 contains two sub-operators since it 

maps the state and damage variables, for which different mapping procedures are needed. 
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8.4.1 Transfer operators T1 & T2 
 

The difficulties related to the transfer operator T1, used for the mapping of mesh Gauss point data, arise from 

the discontinuity of the fields in transition. Namely, with the spatial discretization performed by linear 

tetrahedral elements, the stress and strain fields inside element domains Ωe will be constant (Chapter 3 – 

3.3.3.1 Internal force vector). Therefore, σ and ε are discontinuous over element boundaries. The fact that 

discontinuity in the old and new discretization cannot be the same implies that exact mapping solutions do not 

exist (Fig. 8.4). 

 

 
 

Figure 8.4 Mapping of the stress filed σ33 from the old discretization to the new one (note the qualitative accordance) 

 

The related error can be quantified by taking into account two aspects. The first one states that the sum of 

energetic quantities {σe · Ve} in the old and in the new discretization should coincide. Such requirement can be 

formulated as 
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and it can be only approximately satisfied since the discretizations are a priori different and the constant stress 

and strain fields in each tetrahedral element produce field jumps over the elements boundaries. However, note 

that the condition in Eq. (8.8) is necessary but not sufficient to ensure the correspondence of fields. In order to 

ensure the spatial distribution of state variables σ and ε, the deflection of old and new iso-surfaces should be 

minimized as much as possible. Nevertheless, this requirement is difficult to quantify and to incorporate into 

any transfer operator. Namely, the minimum departure of iso-surfaces should arise as a consequence of an 

appropriated mapping procedure. 
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8.4.1.1   Shape function transfer – operator T1  
 

In order to illustrate the transfer operator used for mapping stress and stain fields, imagine a new mesh M1 

immersed into the old discretization M2. In this case, the mesh boundaries coincide while the rest of interior 

nodes will be rarely with equal coordinates. Namely, as mentioned earlier, the remeshing procedure will cause 

that the number of nodes on the old and new boundary will be different but they will still describe the same 

boundary. As a consequence, the number of elements will also vary. Particularly, it is common practice to 

progressively increase the number of elements at each remeshing stage. In this way, it is easier to meet the 

second abovementioned requirement (i.e. the minimum departure of iso-surfaces).  

 

The projection of the old quantity q
M1

 onto the new quantity q
M2

 can be summarized as follows (Wriggers, 

2002). (i) The quantity q
M1

 is projected onto the element nodes by element interpolation functions (3.60). The 

obtained state is here denoted as M1

N,q  (Fig. 8.5a). (ii) A search procedure is invoked to find the positions of new 

mesh nodes in the old mesh. (iii) After pairing each new node with one old element, the quantity q
M1

 is 

projected from old nodes onto the new mesh nodes. The projections are again performed by element 

interpolation functions (3.60). (iv) The new quantity q
M2

 is obtained by interpolation of the nodal values q
M1 

to 

the new element Gauss point (denoted as M2

G,q ). The described transfer procedure is graphically illustrated in 

Fig. 8.5. 

 

 
 
 

Figure 8.5 T1 transfer: (a) from old Gauss point to old nodes, (b) to new nodes and finally; (c) to new Gauss points 

 

Note that the discontinuous character of the state variable q in the old discretization is replaced by an 

approximated continuous field in the new discretization. As a consequence, the given procedure introduces an 

artificial diffusion in the reconstructed mechanical field. In other words, the transfer procedure will cause that 

the pick stress value in a particular zone in the old discretization will be smoothed over a certain number of 

elements in the new discretization.  However, the eventual side-effects of the introduced artificial diffusion are 

here minimized by increasing the density of FE in the new discretization at zone of special interest (contact 

surface). Since the described procedure involves element interpolation function, the procedure is named shape 

function transfer operator (SFT) and is often given in compact form as (Gharehbaghi & Khoei, 2008) 
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(8.9) 

 

The signatures M1

N,q  and M2

N,q  denote the state of variable q in the old and new mesh nodes, respectively. 

Similarly, M1

G,q  and M2

G,q  denote the state variable in the old and new FE Gauss points, respectively. Mention 

that in the delivered program code, the illustrated transfer operator does not copy only the stress and strain 

fields but also the mesh density. Indeed, a few test transfer procedures have demonstrated that the density 

distribution suffers minor artificial diffusion and that possible side effects can be therefore easily ignored. 

 

 

8.4.1.2   Closest point transfer – operator T2  
 

In order to preserve the discrete nature of cracking, the artificial diffusion introduced by the shape function 

transfer operator cannot be allowed or it should be at least minimized as much as possible. Therefore, a more 

appropriated transfer procedure is used for the mapping of damage variables. The procedure consists in taking 

the data from the closest Gauss point to the new one (Fig. 8.6). 

 

 
 

Figure 8.6 Illustration of the closest point transfer procedure T2 in two-dimensional FE environment 

 

Beside its simplicity, some comparative studies demonstrated that the procedure is suitable for the transfer of 

damage variable. Namely, it preserves the size of damage and does not introduce any damage diffusion. 

However, it should be mentioned that the strategy introduces some minor stress oscillations. On the other hand, 

once the computation has been resumed, the induced oscillations decrease in time due to equilibrium iterations 

(Chapter 10 – Numerical examples). 
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8.4.2 Transfer operator T3  
 

The transfer operator procedure dedicated to mapping of element nodal values (such as displacements), 

velocities or accelerations is a much easier and more accurate than the aforementioned two (T1 & T2). Indeed, 

since the element nodal values are linearly interpolated inside the element domain, which is obtained by pre-

defined elements interpolation functions (3.61), the nodal fields are not characterized by jumps between the 

elements boundaries.  

 

Before defining T3, note that only the nodal displacement field should be transported. In fact, the calculation of 

the velocity and acceleration field by the reconstructed displacement field is reasonable since the related 

computational effort is much cheaper than the transportation of all nodal fields. 

 

In principle, the transfer operator T3 can be formulated as follows:  

 

(i) Find the old element in which the node n
new

 is located (Box. 7.2). 

(ii) Calculate the barcentric coordinates ξ of node n
new

 located in the now known old element. 

(iii) According to Eq. (3.61), from the displacement vectors 
n
u

old
 stored in nodes of the old 

element, calculate the displacement vector u~  for node n
new

. 

 

Based on the above instructions, T3 can be formulated as 
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(8.10) 

 

where ΛM1 and ΛM2 denote the displacement field in the old and new discretization, respectively, 
new

u~  denotes 

the displacement vector associated to the new mesh nodes and 
n
u

old
  the displacement vectors associated to the 

old mesh nodes. According to Eq. (3.43) and Eq. (3.61), the above described procedure can be translated into 

an efficient program code as illustrated in Box 8.3. 
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! copy old displacement field into the new discretization 

! ******************************************************* 

 
DO New_Node = start_ID, end_ID 

 

!    INITIALIZE 

!    ******************************************* 

     LOOP = 0 ; INFO = “Na”              

!    ******************************************* 

     New_Node_XYZ(1) = 1.0              

     New_Node_XYZ(2) = New_Coord_Mtx(New_Node,1)             

     New_Node_XYZ(3) = New_Coord_Mtx(New_Node,2)             

     New_Node_XYZ(4) = New_Coord_Mtx(New_Node,3)  

!    ******************************************* 

 

5   DO Old_Element = start_ID, end_ID 
 

XYZ_Mtx(1,1) = 1.0  

XYZ_Mtx(1,2) = 1.0  

XYZ_Mtx(1,3) = 1.0  

XYZ_Mtx(1,4) = 1.0 

XYZ_Mtx(2,1) = Element_#1_Node_x_Coord_Vec(Old_Element) 

XYZ_Mtx(2,2) = Element_#2_Node_x_Coord_Vec(Old_Element) 

XYZ_Mtx(2,3) = Element_#3_Node_x_Coord_Vec(Old_Element) 

XYZ_Mtx(2,4) = Element_#4_Node_x_Coord_Vec(Old_Element) 

XYZ_Mtx(3,1) = Element_#1_Node_y_Coord_Vec(Old_Element)  

XYZ_Mtx(3,2) = Element_#2_Node_y_Coord_Vec(Old_Element)  

XYZ_Mtx(3,3) = Element_#3_Node_y_Coord_Vec(Old_Element)  

XYZ_Mtx(3,4) = Element_#4_Node_y_Coord_Vec(Old_Element) 

XYZ_Mtx(4,1) = Element_#1_Node_z_Coord_Vec(Old_Element)  

XYZ_Mtx(4,2) = Element_#2_Node_z_Coord_Vec(Old_Element)  

XYZ_Mtx(4,3) = Element_#3_Node_z_Coord_Vec(Old_Element)  

XYZ_Mtx(4,4) = Element_#4_Node_z_Coord_Vec(Old_Element) 
 

CALL SGESV(4,1,XYZ_Mtx,4,IPIV,New_Node_XYZ,4,INFO) ! LApack solver (Ax=b) 
 

Local(1) = New_Node_XYZ(1)                                                           

Local(2) = New_Node_XYZ(2)                                                           

Local(3) = New_Node_XYZ(3)                                                           

Local(4) = New_Node_XYZ(4)                                                            
 

IF (Local(1) < -tolerance) CYCLE 

IF (Local(2) < -tolerance) CYCLE 

IF (Local(3) < -tolerance) CYCLE 

IF (Local(4) < -tolerance) CYCLE 
 

Transfer_Mtx(1,1) = Old_Nodal_Value_Vec(Old_Element_dof_Vec(Old_Element,1))  

Transfer_Mtx(1,2) = Old_Nodal_Value_Vec(Old_Element_dof_Vec(Old_Element,4))  

Transfer_Mtx(1,3) = Old_Nodal_Value_Vec(Old_Element_dof_Vec(Old_Element,7))  

Transfer_Mtx(1,4) = Old_Nodal_Value_Vec(Old_Element_dof_Vec(Old_Element,10)) 

Transfer_Mtx(2,1) = Old_Nodal_Value_Vec(Old_Element_dof_Vec(Old_Element,2))  

Transfer_Mtx(2,2) = Old_Nodal_Value_Vec(Old_Element_dof_Vec(Old_Element,5))  

Transfer_Mtx(2,3) = Old_Nodal_Value_Vec(Old_Element_dof_Vec(Old_Element,8))  

Transfer_Mtx(2,4) = Old_Nodal_Value_Vec(Old_Element_dof_Vec(Old_Element,11)) 

Transfer_Mtx(3,1) = Old_Nodal_Value_Vec(Old_Element_dof_Vec(Old_Element,3))  

Transfer_Mtx(3,2) = Old_Nodal_Value_Vec(Old_Element_dof_Vec(Old_Element,6))  

Transfer_Mtx(3,3) = Old_Nodal_Value_Vec(Old_Element_dof_Vec(Old_Element,9)) 

Transfer_Mtx(3,4) = Old_Nodal_Value_Vec(Old_Element_dof_Vec(Old_Element,12)) 

 

New_Nodal_Value_Local_Vec = MATMUL(Transfer_Mtx, Local)  
 

INFO = “FOUND” ; EXIT LOOP 

 

    END DO: Old_Element 

 

IF (INFO = “NaN”) LOOP = LOOP + 1 AND tol = tol + 1.0d-03 
 

IF (LOOP >  50 ) CALL DEEPER_SEARCH(New_Node) ; IF (INFO = “NaN”) GOTO 5 

 

END DO: New_Node 
 

 

Box 8.3 Computation procedure for the transfer of displacement filed from the old discretization to the new discretization  
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Chapter 9 
 

 

FE program NACFAIL  
 

9.1 Introduction 
 

In order to test the proposed three-dimensional numerical formulation, the presented procedures are translated 

into a computational program code. For this purpose, the computer language FORTRAN95 was used. The code 

verification is performed by comparing the numerical predictions of a free fall drop weight experiment (Fig. 1.1 

& Fig. 10.1) with the related experimental results taken from the literature (Bentur, Mindess & Banthia, 1986; 

Sukontasukku & Mindess, 2003). 

 

The obtained program is named NACFAIL, which is an acronym and stands for: 

 

Numerical Analysis of Concrete Failure under Impact Loadings, 

 

and was used to obtain all the numerical examples contained in the thesis. The pre-processing part (mesh 

generation) and the post-processing part (results preview) were conducted in the commercial program package 

FEMAP v7.0. 
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9.2 NACFAIL structure 
 

In order to summarize the computational steps presented in previous Chapters, the structure of the developed 

program code is hereafter described. For this purpose, the NACFAIL kernel is shown in Box 9.1. Note that due 

to the presence of non-linearity, the subroutines are executed in a repeated fashion. In this case, each 

computation cycle forms one time increment of the analysis. Obviously, the subroutines named Initialize 

are executed only once, i.e. at the beginning of the analysis. However, if the problem under consideration needs 

remeshing procedure, the Initialize subroutines will be executed once again to adapt the memory space 

necessary to allocate newly generated arrays. 

 
 
 

PROGRAM nacfail 

 

CALL Initialize_MODEL_PARAMETERS  
 

CALL Initialize_MESH_and_TOPOLOGY 
 

CALL Initialize_VECTOR_and_MATRIX 
 

CALL Initialize_MICROPLANE 
 

CALL Initialize_COLLISION_TRAJECTORY 

 

2  CALL TRANSFER_OPERATORS 

 

CALL ELEMENTS_VOLUME  
 

CALL SHAPE_FUNCTIONS 
 

CALL GENERATE_B_mtx 
 

CALL INTERNAL_FORCE 
 

   CALL INCREMENTAL_dt 
 

3  CALL DIRECT_INTEGRATION (mesh_condition) 

 

CALL SET_CONTACT_PASS 
 

4 CALL UPDATE_COORDINATES (pass) 
 

CALL GLOBAL_SEARCH (pass) 
 

CALL CLOSEST_NODES (pass) 
 

CALL CANDIDATES_SURFACES (pass) 
 

 CALL LOCAL_SEARCH (pass) 
 

CALL CONTACT_CONSTRAINS (pass) 
 

CALL Gauss_Seidel (pass)                  ; IF (pass="FIRST") GOTO 4 

 

CALL MESH_STABILITY (mesh_condition)      ; IF (mesh_condition="UNSTABLE") GOTO 3 

 

CALL INCREMENTAL_DISPLACEMENTS 
 

CALL DEFORMATION_GRADIENT 
 

CALL POLAR_DECOMPOSITION 
 

CALL STRAIN_TENSOR 
 

CALL STRESS_TENSOR 
 

CALL UPDATE_CONFIGURATIONS 

 

   CALL PRINT_INCREMENT_OUTPUT 

 

CALL TEST_MESH_DISTORTION (remeshing) 
 

CALL FEMAP (remeshing) 

 

IF (INCREMENT="NEXT") GOTO 2 

 

END PROGRAM nacfail 
 

 

Box 9.1 List of subroutines that forms the kernel of NACFAIL (computer language FORTRAN90) 
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In accordance with the UL formulation (Chapter 3 – 3.4 UL formulation), at the beginning of each time 

increment, the previously obtained deformed configuration is set as the reference configuration for the current 

increment of the analysis. However, a few preliminary operations are needed if the remeshing procedure has 

been evidenced at the end of the previous time increment. In such a case, the computational steps contained in 

subroutine TRANSFER OPERATORS are performed to transfer the state variables (8.9), damage variables (Fig. 

8.6) and nodal displacements (8.10) from old discretization to the new one (Chapter 8 – 8.4 Path-dependency 

vs. remeshing). Nevertheless, regardless of whether the remeshing procedure was activated or not, after 

subroutine TRANSFER OPERATORS, the meshes are set to their reference configurations (material coordinates). 

 

The next set of computational steps begins with subroutine ELEMENTS VOLUME, where the elements volumes 

are calculated in their reference configuration (3.40). Furthermore, the element nodal shape functions (3.60) are 

determined in the subroutine SHAPE FUNCTIONS and used to generate the element strain-displacement matrixes 

B (3.74) in the subroutine GENERATE B mtx (Chapter 3 – 3.3.3.1 Internal force vector). According to Eq. 

(3.76) the internal force vector F
in

 is calculated in subroutine INTERNAL_FORCE. At this point, note that the 

computation of non-linear terms in Eq. (3.74) and Eq. (3.76) can be avoided since the time integration is 

performed explicitly (Chapter 4 – 4.3.2.2 Explicit time integration). Accordantly, the physical significance of 

the results is ensured if the adopted time increment Δt is smaller than the critical one which is for this purpose 

calculated in the next subroutine INCREMENTAL dt. 

 

Following the adopted forward incremental Lagrange multiplies method (Chapter 6 – 6.4.2.3 Forward 

incremental Lagrange multipliers method), the program execution proceeds with the computation of the 

displacement vector u
D
 (6.58) in subroutine DIRECT INTEGRATION. The computations are performed by 

temporary neglecting the possible mechanical interactions. Namely, if the meshes interpenetrate, the 

enforcements of contact constraints are satisfied retroactively by identifying contact constraint violations in the 

following set of subroutines (contact detection). For this purpose, the list of boundary surfaces and boundary 

nodes is obtained in subroutine Initialize MESH and TOPOLOGY (Chapter 7 – 7.2 FE surfaces that are 

candidates for mechanical interaction). 

 

As the contact description is numerically performed in compliance with the two-pass algorithm, the contact 

detection stage starts with subroutine SET CONTACT PASS, where the master and slave roles is attributed to 

meshes. Thereafter, the mesh node coordinates are updated in subroutine UPDATE COORDINATES, by adding the 

formerly calculated incremental displacements Δu
D
 to them. The contact detection stage begins with subroutine 

GLOBAL SEARCH, in which the violations of the contact impenetrability condition are identified (Box 7.2). 

Congruently with the procedure given in Box 7.3, in subroutine CLOSEST NODES, a list of nearest boundary 

nodes is attributed to each contractor node. From the obtained results, a list of candidates target surfaces is 

composed for each contractor node in subroutine CANDIDATES SURFACES. In order to pair one contractor node 
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with the belonging target surface, the continuous collision strategy is executed in subroutine LOCAL SEARCH 

(Chapter 7 – 7.4 Local detection). However, if the strategy fails to pair contact element nodes, which is 

possible due to computational round-off errors, the local detection phase will proceed with subroutines 

developed for trajectory intersection strategy (Fig. 7.6) and closest point detection strategy (Fig. 7.5). In 

subroutine CONTACT CONSTRAINS, the contact displacement matrix G (6.45) is generated for each contact 

element. 

 

In the next set of subroutines, the contact displacement matrixes are used to enforce the contact constraints over 

Гc. The related subroutines are executed according to the Gauss-Seidel iterative fashion, and are contained in 

subroutine Gauss Seidel (Chapter 6 – 6.5 Gauss-Seidel iteration). Finally, with the convergence state 

obtained after a set of iterations, subroutines dedicated to contact procedures are executed once again if the 

string variable pass is set equal to "FIRST" (Box. 9.1). In particular, the contact procedures are executed again 

but with switching the master and slave body rules (two-pass algorithm). 

 

At this point, at the end of the current time increment the displacement vector un+1 is completely defined (6.61). 

However, possible mesh instabilities should be excluded by verifying if the Euclidian norm of the element 

displacement vector satisfies the requirement given in Eq. (4.35). The verification is carried out by 

corresponding computations contained in subroutine MESH STABILITY (Chapter 4 – 4.3.2.2 Explicit time 

integration). If a particular element fails to meet the prescribed condition, the incremental analysis will be 

repeated by adopting a smaller time interment Δt. In this case, the computation cycles are performed by 

decreasing the time increment Δt, until the condition in Eq. (4.35) is fulfilled with respect to all elements in the 

discretization. However, it should be mentioned that the condition is typically satisfied without the reductions 

of time increment. Namely, it is here introduced only to overcome possibly inconvenient nodal displacements 

which can be particularly evidenced in concrete penetration problems. 

 

In the following set of subroutines (Box 9.1), the Cauchy stress tensors are calculated for the now known 

current configuration. The computation starts with subroutine INCREMENTAL DISPLACEMENTS where the 

incremental displacement vector Δu is calculated as Δu
D
+Δu

C
. The displacement vector Δu is further used to 

define incremental strain tensors. Since it is assumed that the constitutive definitions are given through the 

Green-Lagrangian strain tensor E, the computation will proceed with subroutine DEFORMATION GRADIENT 

(Chapter 2 – 2.2.2 Deformation gradient). According to Eq. (2.37), the subroutine provides the matrix F, which 

maps the elements in the reference configuration to their positions in the current configuration. In order to 

obtain the right Cauchy-Green deformation tensor C (2.61), which is needed for the calculation of the Green-

Lagrangian strain tensor E, the polar decomposition theorem is further performed on the previously defined 

matrix F. The related procedures are contained in subroutine POLAR DECOMPOSITION, and are discussed at the 

beginning of the thesis (Chapter 2 – 2.2.3 Multiplicative polar decomposition). Once the element deformation 
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has been separated from the rigid body rotation, the required Green-Lagrangian strain tensor E (2.73) is 

calculated in the following subroutine named STRAIN TENSOR (Chapter 2 – 2.2.4.1 Green-Lagrangian strain 

tensor). As the here performed contact/impact analysis involves two different materials (i.e. two different 

constitutive laws), subroutine STRESS TENSOR splits the computation of stress tensors in two parts. In 

particular, the strain tensors attributed to the slave body are used in the hyperelastic constitutive model 

(Chapter 2 – 2.2.8 Hyperelasticity), and the strain tensors associated to the master body are used in the 

microplane material model as the macroscopic strain measure (Chapter 5 – 5.2.2 Microplane strain 

components). The execution ends with subroutine UPDATE CONFIGURATIONS, in which the update of stress 

fields and coordinates vectors are performed according to the Updated Lagrange formulation (Chapter 3 – 3.4 

UL formulation). 

 

At the end of the current time increment, 

subroutine PRINT INCREMENT OUTPUT (Box 

9.1) summarizes the convergence status of 

contact forces in the screen output format. 

Beside other monitoring variables, at the end of 

a regular time increment of the contact/impact 

analysis, the NACFAIL screen output shows 

also the growing or decreasing tendency of 

involved mechanical energies (Fig. 9.1). 

 

However, note that the incremental 

computation of the current time increment is 

not finished yet, since the meshes under 

consideration may suffer relatively large 

concentrated loading (penetration problems) 

that render them unsuitable as reference 

configurations for the next increment of the 

analysis (Fig. 8.1). As previously discussed, in 

order to avoid the degradation of FE geometry 

(Chapter 8 – 8.2 Remeshing criteria), the 

element distortional behavior in subroutine 

TEST MESH DISTORTION is quantified 

according to the criteria given in Eq. (8.1). If the remeshing procedure is needed, subroutine FEMAP activates 

the mesh generator FEMAP which will form a new spatial discretization for the so far obtained deformed 

boundary. Due to the peculiarity of the procedure, the related operations are discussed separately in the next 

 
 

Figure 9.1 NACFAIL screen output (incremental monitoring)  



Three-Dimensional Finite Element Formulation for Concrete Failure at High-Energy Impact Loadings                              V. Travaš – Dissertation 
 

______________________________________________________________________________ 
Faculty of Civil Engineering, University of Rijeka, Croatia                                                                                                                      Page | 190 

 

subtitle. Nevertheless, with or without remeshing, the next increment of the analysis begins with subroutine 

TRANSFER OPERATORS and proceeds as discussed earlier.  

 

The subroutines that form NACFAIL kernel (Box 9.1), and other subroutines involved in the computations, are 

translated into a set of computational instructions by the Lahey/Fujitsu LF95 Compiler for 32-bit computational 

architecture. 

 

 

 

 

9.3 Implementation of remeshing 
 

In order to preserve the computational efficiency, which is especially required for penetration problems, the 

program user should not be involved in possible interventions caused by remeshing. For this purpose and since 

FEMAP has two useful properties, NACFAIL is joined with FEMAP in an exchanging communication cycles. 

Namely, FEMAP contains its own basic script enabling the manipulation of mesh generation, and second; there 

is the possibility of automatic run of the specific subroutine immediately after FEMAP activation. The benefit 

of these two program property are further explained. 

 

If at the end of a certain time increment the subroutine TEST MESH DISTORTION (Box 9.1) evidences the need 

for remeshing, a calling statement in subroutine FEMAP runs the mesh generator (Box 9.2). In this case, the 

mesh generator creates a new discretization for the so far obtained deformed boundary. 

 

 
! if the mesh elements are badly distorted, call FEMAP to automatically generate a new mesh 

! ***************************************************************************************** 

 

IF (REMESHING_STATUS="YES") CALL SYSTEM ('C:\FEMAP\FEMAP.exe') ! see Box 8.1 

 
 

Box 9.2 FORTRAN statement for the activation of FEMAP from NACFAIL (need for FEMAP.exe file address) 
 

Note that before calling FEMAP, and after detecting the need for remeshing, NACFAIL should provide the 

information regarding the deformed boundary which is to be remeshed. For this purpose, there are two 

dedicated folders, through which NACFAIL and FEMAP communicate. The folders are named with respect to 

meshing time, as pre_REMESHING and post_REMESHING folder.  

 

Furthermore, once the calling statement in Box 9.2 activates FEMAP, the coordinates of boundary nodes and 

the nodes on boundary plains will be already stored in the folder pre_REMESHING. At this point, it should be 

mention that the computations in NACFAIL are temporarily frozen and will be reactivated automatically when 

FEMAP is closed. 
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In order to automatically run FEMAP script files, which contains the program instructions for remeshing, in the 

FEMAP dialog window the address at which the related program script is located ought to be inserted (Fig. 

9.2). Furthermore, the check box in the same dialog window (located next to “Run Program for New Model 

only”), should also be activated. 

 

 
 

Figure 9.2 Dialog box for the setting of script automatic start immediately upon FEMAP launching 

 

Until now, the preliminary operations for the remeshing automation were presented and now the chronological 

aspect of procedures used to guide FEMAP through the discretization process will be discussed. For this 

purpose, mention that the first task of program scripts that are executed with the FEMAP activation is to create 

a mesh boundary on the bases of files previously allocated by NACFAIL in the pre_REMESHING folder. In 

accordance with FEMAP basic script program language, the program structure delivered to obtain the mesh 

boundary is given in Box 9.3. At the end of the given basic script, there are further instructions for execution of 

remeshing. 

 
 

! FEMAP script - form the mesh boundary based on the result of the procedure given in Box 7.1 

! ******************************************************************************************* 

 

SUB Construct_Mesh_Boundary 

 

Dim Line1  As Long 

Dim Line2  As Long 

Dim ret_val   As Long 
 

Dim ival1  As Integer 

Dim ival2  As Integer 

Dim ival3  As Integer 
 

Dim loc1  As esp_Coord 

Dim loc2  As esp_Coord 

Dim loc3  As esp_Coord 
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OPEN "C:\Contact\pre_REMESHING\No_Planes_on_Boundary.txt" FOR Input As #1 
 

Line Input #1, st 
 

ret_val = esp_MiscParseInit(st)  
 

ret_val = esp_MiscParseInt(1,ival1)  
 

Plane_Number = ival1 
 

CLOSE #1 

 

OPEN "C:\Contact\pre_REMESHING\Planes_Nodaes_on_Boundary.txt" FOR Input As #1 
 

FOR i = 1 To Plane_Number 
 

Line Input #1, st 
 

ret_val = esp_MiscParseInit(st) 
 

ret_val = esp_MiscParseInt(1,ival1) 

ret_val = esp_MiscParseInt(2,ival2) 

ret_val = esp_MiscParseInt(3,ival3) 
 

ret_val = esp_CoordOnNode(ival1,loc1) 

ret_val = esp_CoordOnNode(ival2,loc2) 

ret_val = esp_CoordOnNode(ival3,loc3) 
 

Line1   = esp_LineEndpoints(10,1,loc1,loc2) 

Line2   = esp_LineEndpoints(10,1,loc1,loc3) 
 

ret_val = esp_SurfRuled(Line1,Line2) 
 

NEXT i 
 

CLOSE #1 
 

END SUB 

 

ret_val = esp_FileProgramRun ( "C:\Contact\pre_REMESHING\Remeshing.PRG" ) 
 

 

Box 9.3 The given FEMAP script chooses the spatial region for further meshing on the basis of the list of boundary nodes 
 

After obtaining the deformed boundary, the remeshing procedure can be summarized in a set of program scripts 

illustrated in Box 9.4. In accordance with the previously discussed subject of mesh refinement (Chapter 8 – 8.3 

Refinement criteria), the generation of the new discretization begins with the script delivered for this purpose. 

The related basic script operates on coordinates of points on and inside the earlier retrieved domain, and will be 

used to define a part of the new mesh (restrictions for remeshing). 

 
 

! FEMAP script – extension of the procedure in Box 9.3 – procedures for remeshing 

! ******************************************************************************* 

 

ret_val = esp_FileProgramRun ( "C:\Contact\post_REMESHING\Refinement.PRG" ) 

 

ret_val = esp_FileProgramRun ( "C:\Contact\post_REMESHING\Meshing.PRG" ) 

 

ret_val = esp_FileProgramRun ( "C:\Contact\post_REMESHING\Import_Both_Discretization.PRG" ) 

 

ret_val = esp_FileProgramRun ( "C:\Contact\post_REMESHING\Renumber_Nodes.PRG" ) 

 

ret_val = esp_FileProgramRun ( "C:\Contact\post_REMESHING\Renumber_Elements.PRG" ) 

 

ret_val = esp_FileProgramRun ( "C:\Contact\post_REMESHING\Export_Discretization.PRG" ) 

 

ret_val = esp_FileProgramRun ( "C:\Contact\post_REMESHING\Export_Boundary_Conditions.PRG" ) 

 

CLOSE FEMAP 
 

 

Box 9.4 Chronological execution of FEMAP script programs for mesh remeshing (note the renumbering necessity)  
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Once the zones of special interest have been defined (refinement zones), the next basic script gives FEMAP 

necessary instructions for the new mesh. It is important to note that after the mesh has been created, the other 

non-remeshed mesh (the anchor or nail mesh) should be imported together with the new one (concrete body). 

Namely, as a result of every remeshing procedure, the numbering of elements and nodes will not coincide with 

the related numbers in the old discretization. This is a side effect of every remeshing procedure. However, the 

importing of both meshes allows the renumbering of nodes and elements ID, preserving the identification 

continuity by avoiding ID repetitions. 

 

In the last two basic scripts given in Box 9.4, the files containing the information on the newly generated 

discretization are put in post_REMESHING folder. After that, the last instructions force FEMAP to close and 

give NACFAIL the authorization to proceed with the next increment of the analysis. The computational cycle 

is considered closed when the txt files left by FEMAP are imported in NACFAIL, and the transfer of all 

mechanical fields is performed (Fig. 9.3). 

 

 
 
 

Figure 9.3 Communication between NACFAIL and FEMAP 

 

Mention that it is possible to create program intercommunication (NACFAIL - FEMAP) such that the 

remeshing and refinement procedure are included for both meshes under collision. The mentioned possibility 

will allow the numerical simulation of relatively soft body. In that case, the continuous mesh adaptation will be 

more than required since large displacements at the front of impact are expected for both bodies. In such a case, 

a special attention must be paid to the renumbering of nodes and elements. Namely, note that there are three 

remeshing scenarios. The remeshing procedure can be performed for each discretization separately and for both 

discretizations simultaneously in the same time increment. However, due to the complexity of a needed 

procedure, which arises as a consequence of different remeshing possibilities, the remark is not yet included in 

NACFAIL. 
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9.4 Parallelization 
 

In order to obtain an accurate solution, it is advisable to describe the collision event with a relatively dense 

mesh of finite elements (Chapter 6 – 6.4.1 Spatial discretization). On the other hand, it is also well known that 

by increasing the number of FE in the discretizations, the computational time effort will be tremendously 

affected. Therefore, it is opportune to briefly address some possibilities to speed-up the computations. 

 

By examining the mathematical operations present in NACFAIL, it can be seen that only vector operations are 

performed. Indeed, there is a matrix inversion in Eq. (6.59) but, as the lumped mass matrix is here adopted, the 

mentioned computation is trivial since the matrix has a diagonal form. Being only vector operations spread 

over the entire program code, parallelization of the code by the use of OpenMP technique seems to be more 

reasonable. Basically, OpenMP parallelization consists in the distribution of a non-iterative computational loop, 

over a number of interconnected CPU cores. In order to illustrate the program implementation strategy, 

consider a DO loop which doesn’t involve any iteration. The computation can be distributed over a number of 

CPU cores by adding the OpenMP instruction for parallelization (Box 9.5). 

 
 

! distribute a non-iterative loop over a number of threads  

! ******************************************************** 

 

! $OMP DO 

 

      DO i = 1, 100 

 

        variable = f(i) 

 

      END DO 

 

! $OMP END DO 
 

 

Box 9.5 Algorithm for distribute a DO loop over a number of CPU cores 
 

OpenMP parallelization is especially useful for the contact detection phase. Namely, by distributing the 

computational loop in Box 7.2 over a number of cores, the global detection phase can be significantly 

accelerate. On the other hand, the application of the OpenMP parallelization to the local search phase should be 

further considered. Resume, an appropriate target surface is determined for each penetrated node from the list 

of candidates’ surfaces. Thus, the computations related to the identification of appropriate target surface will be 

distributed over a number of cores by dividing the list of candidate surfaces by the number of such cores. In 

order to choose the suitable one, note that the result of all loops should be unified to enable a unique check of 

contact element assimilation. 



 

______________________________________________________________________________ 
Faculty of Civil Engineering, University of Rijeka, Croatia                                                                                                                      Page | 195  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 10 
 

 

Numerical examples 
 

10.1 Introduction 
 

Three-point bending experiment (Fig. 1.1) shows that the beam resistance and brittleness increase with an 

increase of loading rate (Sukontasukku & Mindess, 2003). In particular, under relatively low loading rates, it 

has been shown that the beam failure is due to bending, characterizing the so-called fracture mode I. On the 

other hand, by an increase in loading rate there is a transition from bending to shear mode of failure. However, 

due to the fact that fracture takes place in a rather short time period, the experiments at high loading rates are 

usually related to difficulties of measurement of mechanical properties. In this sense, the numerical analysis is 

performed for the following two reasons: (i) The first one is to investigate whether the proposed numerical 

formulation is able to reproduce correctly the experimental results and, if so, (ii) to investigate the response of 

concrete beam under different loading rates (e.g. energy distribution, failure modes, cracking rate, etc). For this 

purpose, the following numerical study is carried out by using the delivered program code NACFAIL. In order 

to evaluate the obtained numerical predictions, the next topic summarizes the basic concepts of concrete failure 

under impact load. 
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10.2 Preliminaries 
 

Resume, the results of experimental investigations have shown that loading rate significantly influences the 

response of structures made of quasi-brittle materials (such as concrete). By comparing the concrete response 

under static or quasi-static load, with the response obtained at high loading rates (impact), it can be seen that 

the concrete nominal strength increases with increasing of loading rate.  

 

As discussed earlier (Chapter 5 – 5.8 Strain rate sensitivity), the structural response depends on loading rate in 

terms of three different effects. (i) The first one is the creep of the bulk material between the cracks. (ii) The 

second one is the rate dependency of the growing micro-cracks. (iii) The last one emerges as the effect of 

structural inertia forces. Actually, at relatively high loading rates, the last one can significantly influence the 

state of stresses at the material level. However, each of the aforementioned effects is always present but the 

dominance of the first, the second or the third effect depends on the type of material and on loading rate. In 

case of quasi-brittle materials, which exhibit non-elastic strain localization and damage phenomenon, the first 

effect is important only at relatively low loading rates (creep-fracture interaction). The second one is important 

at medium loading rates, and the last one dominates the failure mechanism at relatively high loading rates 

(impact loadings). 

 

Moreover, it is known that the failure mechanism depends on the loading rate, as well. If the loading rate falls 

inside the static or quasi-static loading region, a concrete beam loaded at the mid-span fails due to the 

dominating bending stresses (failure mode I). In this case, the failure process is governed by the first 

abovementioned effect. On the other hand, by increasing the loading rate, the so-called mixed failure mode will 

be induced. This mode of failure is characterized by a bending crack and two inclined share cracks. By further 

increase in the loading rate, the mixed mode of failure becomes more articulated. As a matter of fact, under 

relatively high impact load, the beam rupture is characterized by the pure share mode of failure (only lateral 

cracks). In order to numerically reproduce the mentioned modes of failure, and the transition modes, the 

concrete constitutive law is here influenced by the rate-of-deformation. 

 

Currently, there are only a limited number of experimental studies engaged in the investigation of concrete 

failure mode as a function of loading rate (Bentur, Mindess & Banthia, 1986; Sukontasukku & Mindess, 2003; 

Ožbolt & Reinhardt, 2005; Saatci & Vecchio, 2009). Apart from the influence of loading rate, the experimental 

studies address problems such as rather complex energy transfer mechanism that occurs between the contact 

surfaces of bodies under collision (Comite Euro-International Du Beton, 1988). Indeed, the complex energy 

transformation mechanism implies that the high impact loading cannot be simply observed as an extreme case 

of strain rate. Furthermore, as observed by Bentur, Mindess and Banthia (1986), experiments may hardly 

satisfy the energy balance by measuring energies in the system. On the other hand, by assuming isothermal 

thermodynamical conditions, note that the numerical analysis should reveal the transformation of the impact 

kinetic energy into other mechanical energies. 
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According to the abovementioned, and due to the fact that the concrete failure process occurs in a very short 

period of time (Fig. 10.1), numerical studies are useful and necessary for a better understanding of concrete 

damage phenomena under impact loading (Dilger et al., 1978; Reinhardt, 1982; Curbach, 1987; CEB, 1988; 

Bažant & Gettu, 1992; Weerheijm, 1992; Ožbolt & Reinhardt, 2001, 2005; Saatci & Vecchio, 2009).  

 

Mention that different constitutive relations were employed in the past studies to numerically reproduce the 

influence of loading rate on the structure response. Principally, most of these models were based on the spring-

dashpot models of visco-elasticity. Some models cover only a limited range of loading rates, whereas others 

cover a more general range. The proposed FE formulation is based on the rate dependent microplane model for 

concrete (Ožbolt et al., 2001; Ožbolt et al., 2006; Bažant et al., 2000) and is based on the rate process theory of 

bond ruptures (Krausz & Krausz, 1988). 

 

 
 

 
 

Figure 10.1 The time period between the first contact and the concrete beam rupture is around 1ms 

 

It can be concluded that, due to the complexity of concrete response under impact load, the main purpose of the 

thesis is to check whether the proposed numerical formulation is able to realistically predict the rate dependent 

failure mechanism of plain concrete beam. If yes, the influence of the impact velocity on the response of the 

beam will be studied. 

 

 

 

10.3 Plain concrete beam – impact analysis 
 

The numerical experiment is conducted by three-dimensional FE simulation of the free fall drop weight 

experiment (Fig. 1.1). In order to numerically replicate different failure modes, the altitude of the dropping 

hammer is set as a variable. The investigated range of impact velocities implies very high strain rates but still 

smaller than those at which the dropping hammer would cause extreme local damage (crashing over the impact 

zone). For all dropping altitudes (Fig. 10.2), the beam under consideration is a simply supported beam and 

loaded by an impact hammer on its middle span. 
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The dropping hammer is assumed to be linear elastic with Young’s modulus Eh = 100000 N/mm
2
 and density 

h =  8000 kg/m
3
. The length of the hammer is 600 mm and the cross-section area is 300 × 300 mm. On the 

contact interface Гc the frictional coefficient  is assumed equal to 0.5. The dimensions of the beam are: length-

height-width = 3000 × 600 × 300 mm, while the mechanical properties are: Young’s modulus Ec = 30000 

N/mm
2
, Poisson’s ratio υ = 0.18, uni-axial compressive strength fc = 45.0 N/mm

2
, tensile strength ft = 2.70 

N/mm
2
, fracture energy GF = 0.10 N/mm and density c = 2300 kg/m

3
. 

 

 
 

 

Figure 10.2 Spatial discretization of the free fall drop weight experiment (linear tetrahedral elements) 

 

The numerical analysis is performed for quasi-static loading and for impact velocities of 2, 4, 6 and 8 m/s. 

Besides the static analysis, the altitudes that cause mentioned impact velocities are illustrated in Fig. 10.2. 

Mention that, since it is expect that the contact interface Гc will not change significantly in time, the adaptive 

finite elements strategy may be ignored here. 

 

It ought to be pointed out that the non-unilateral contact/impact analysis provides a more realistic beam 

response. Namely, since the temporal variation of contact forces is a result of inertial properties of the contact 

interface Гc (Fig. 6.7), they can be numerically reproduced only by including the deformation property of both 

bodies under collision. On the other hand, with a unilateral contact description, the numerical simulation cannot 

capture the fluctuations of the contact forces. Furthermore, in order to enhance the contact accuracy, in each 

time increment a two-pass algorithm is introduced by switching the master and slave attribute between the 

meshes in contact. 
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10.3.1 Static analysis 
 

Fig. 10.3 illustrates the beam failure for the currently considered type of loadings. The picture has been taken 

from the website of the Engineering research center ATLSS, at the Lehigh University in Bethlehem 

(Pennsylvania, USA). Note that the proportions of the beam in the experiment and the proportions of the 

discretized beam are almost identical (Fig. 10.2 & Fig. 10.3). 

 

 
 

Figure 10.3 Plain concrete beam exposes in the three-point bending experiment under static loading conditions  

 

In order to ensure static or quasi-static loading conditions, the loading rate is controlled by prescribing 

displacement vectors at nodes located over the contact surface Гc. Therefore, the presence of inertial forces is 

suppressed by gradual increase of nodes displacement. Thus, the force needed to produce the prescribed 

displacement is calculated. 

 

According to the briefly discussed smeared cracking concept (Chapter 5 – 5.1 Introduction), the cracking 

trajectories are visible in terms of maximal principal strains (Fig. 5.3). In particular, the critical crack aperture 

wcr is assumed to be 0.2 mm the average element size is equal to 50 mm. According to Eq. (5.1), it follows that 

the critical strain εr is equal to 0.004. For static loading conditions, the predicted mode of failure is illustrated in 

Fig. 10.4. 
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As documented by Sukontasukkul and Mindess (2003), the beams failure mode at static loading conditions 

primary fall in the flexural mode. The failure is characterized by a single crack, initiated at the bottom of the 

beam, where the tensile stresses are maximal. By increasing the loading magnitude, the crack propagates 

straight to the top of the beam surface (beam rupture). As expected, the numerically predicted beam failure 

mode is of type I (bending failure mode). It is easy to agree that the obtained result (Fig. 10.4) is congruent 

with the experimental observation (Fig. 10.3). 

 

 
 

Figure 10.4 Failure mode at static analysis 

 

It should be pointed out that no crack branching or temporal crack arrests are evidenced in the experimental 

investigations. Accordantly, as will be illustrated soon, the numerical analysis predicts almost linear increasing 

of the crack tip velocity, without branching or evolutional arrest. 

 

Once the beam rupture takes place, the resistance decreases rapidly (quasi-brittle failure). The performed 

numerical analysis correctly predicts the mentioned beam behavior, which can be supported by Fig. 10.5 

showing the calculated load-displacement curve at the beam mid-span. 
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Figure 10.5 Load-displacement curve at the beam mid-span (static analysis)  
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10.3.2 Dynamic analysis 
 

Apart from the static loading conditions, the response for dynamic loading is here tested. A set of numerical 

predictions of the free fall drop weight experiments are given. The numerical results are obtained by keeping 

the hammer mass constant and by varying the hammer dropping altitude, all according to the specifications 

given in Fig. 10.2. 

 

 

10.3.2.1  Failure modes and energies transformation 
 

Fig. 10.6, 10.7, 10.8 and 10.9 shows predicted failure modes in terms of maximal principal strains. Consider 

the time interval up to the moment when the contact beam-hammer contact force drops approximately to zero. 

Within this time period the relevant damage of the beam takes place. It can be seen that for impact velocity of 2 

m/s dominates mode-I fracture. However, for impact velocity higher than 4 m/s dominates shear failure mode 

and for impact velocities between 2 m/s and 4 m/s there is a transition from bending to shear failure. Similar 

results were obtained by experimental investigations (Sukontasukku & Mindess, 2003). Note, that these “limit” 

impact velocities are valid only for the here investigated beam-hammer geometry and their mechanical 

properties. For other geometrical and mechanical properties, these limit velocities would change. However, the 

observed failure modes would principally be the same.  

 

  
 

Figure 10.6 Failure mode at impact velocity of 2 m/s Figure 10.7 Failure mode at impact velocity of 4 m/s 

 

  
 

Figure 10.8 Failure mode at impact velocity of 6 m/s Figure 10.9 Failure mode at impact velocity of 8 m/s 
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The numerically obtained shear crack inclination is in accordance with the typical experimental observations 

(Fig. 10.10 - the picture has been taken from the website of Faculty of Science and Technology at the 

University of Macau). 

 

    
 

 

Figure 10.10 Typical share failure mode 

 

Fig. 10.11, 10.12, 10.13 and 10.14 shows computed distributions of energy as a function of time. It can be seen 

that, because of relatively high stiffness of the hammer, its deformation energy is negligible compared the 

deformation energy of the beam. After approximately 0.30 ms the total kinetic energy of the hammer is 

transformed into deformational and kinetic energy of the beam. The figure shows that the total energy slightly 

decreases with time. For all loading rates the decrease is obvious only up to the point of transition of the total 

kinetic energy of the hammer into the beam (approximately up to t = 0.30 ms). The reason for this slight drop is 

the frictional energy between the beam and hammer, which is not included in the total energy plotted. The 

smaller part of the energy loss is caused by numerical error. The energy curves show that the sum of 

deformational and kinetic energy is equal to the total energy (isothermal conditions), what confirms that 

dynamic equilibrium is fulfilled. 

 

 

10.3.2.2  Contact force, force equilibrium and reactions 
 

The predicted mid-span impact loads and reactions are, as a function of time, plotted in Fig. 10.15 and Fig. 

10.17, respectively. Comparing the peak load for quasi-static load (see Fig. 10.5) and impact load (Fig. 10.15), 

it can be seen that the impact load is much higher than the quasi-static peak (failure) load. With increase of 

impact velocity the impact load increases. Compared to the impact load, the reaction forces are relatively small. 

They are activated after the beam is already significantly damaged and impact load reduces almost to zero. This 

indicates that the load transfer takes place in a relatively small zone of the beam, close to impact zone, and that 

the impact load is almost entirely in equilibrium with inertia forces. Indeed, with increase of loading velocity, 

the zone of the load transfer tends to be smaller i.e. more localized (see predicted failure modes).  
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Figure 10.11 Predicted transformation of mechanical energies at impact velocity of 2 m/s   
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Figure 10.12 Predicted transformation of mechanical energies at impact velocity of 4 m/s  
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Figure 10.13 Predicted transformation of mechanical energies at impact velocity of 6 m/s  
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Figure 10.14 Predicted transformation of mechanical energies at impact velocity of 8 m/s  
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Resume, except the gravity field, there are no external forces acting upon the bodies under collision. Once the 

contact occurs, all forces present in Eq. (6.48) arise from the change of linear momentum (2
nd

 Newton Law). 
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Figure 10.15 Predicted contact forces vs. time 

 

As mentioned earlier (Chapter 6 – 6.4.1.5 FE form of equilibrium), observe that the numerical analysis can 

reveal the contribution of inertial, viscous damping and internal forces in reaching equilibrium state with 

contact forces. According to Eq. (6.48), for the case where the impact velocity was set equal to 8 m/s, the 

numerically predicted force components are plotted in Fig. 10.16. 
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Figure 10.16 Contact force components in the direction of loading (impact velocity of 8 m/s) 
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Furthermore, it can also be seen that just after the impact of the hammer, the reactions start to act in direction 

opposite to the impact load (positive reactions). However, once the beam in the zone of impact is damaged, the 

left and the right part of the beam tend to be lifted up (negative reactions). The mechanism can be illustrated by 

taking into account the principal compressive stress waves. 
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Figure 10.17 Predicted support reactions vs. time 

 

 

 

10.3.2.3  Compressive stress waves 
 

Figure10.18 illustrates the plot of sequence of distribution of principal compressive stress waves for the case of 

impact velocity of 2 m/s. It can be seen that after the beam is damaged in the mid bottom region, the 

compressive wave propagates under an angle of approximately 35 degree and reflects from the bottom beam 

surface into the left and the right regions of the beam ends by pushing these parts into direction that is opposite 

to the load direction (negative reaction).  Note also that the velocity of wave propagation is calculated correctly. 

Namely, for the used concrete the loading wave speed can be calculated from the material properties giving 

(Ec/c)
0.5

 = 3551 m/s. Accounting for the beam geometry and the time predicted for the propagation of the 

loading wave from the top to the bottom of the beam (0.165 ms, Fig. 10.18d), it turns out the velocity of 3593 

m/s, what agrees well with the loading wave velocity for the used concrete. 

 

 

10.3.2.4  Propagation velocity of the bending crack tip  
 

In Fig. 10.19 are shown velocities of bending-crack tip as a function of time. They are obtained from the 

evaluation of numerical results. The relative velocities are related to Rayleigh wave speed (maximal speed of 

crack propagation), which is for the used concrete vR = CR(Gc/ρc)
0.5

 = 2,140 m/s. The constant CR depends on 

Poisson’s ratio. For the simulated concrete it is equal to CR = 910 (for crack velocity in m/s) and Gc is shear 

modulus of concrete. It is interesting to observe that after crack initiation, there is almost linear increase in 

velocity of the crack tip up to the maximal velocity of approximately 0.55vR. 
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Figure 10.18 Sequences of propagation of principal compressive stresses waves for impact velocity of 2 m/s (bending failure) 

a) 0.041 ms b) 0.083 ms 

c) 0.124 ms d) 0.165 ms 

e) 0.206 ms f) 0.247 ms 

g) 0.288 ms h) 0.329 ms 

i) 0.370 ms j) 0.411 ms 

k) 0.452 ms l) 0.493 ms 
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This is in good agreement with theoretical prediction (Freund, 1972a; Freund, 1972b). From Fig. 10.19 can be 

seen that maximal crack speed only slightly increases with increase of impact velocity. According to theoretical 

solution for dynamic propagation of a single crack (Freund, 1972a; Freund, 1972b), for relative velocities 

greater than 0.5 crack branching of mode-I crack is possible. This is also confirmed by the results of the present 

study. Namely, Fig. 10.7, 10.8 and 10.9 show that after reaching relative velocity of 0.5, bending crack tends to 

branch into two inclined cracks.  
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Figure 10.19 Relative velocity of the bending crack tip as a function of time 

 

Furthermore, the evaluation of results indicates that the acceleration at the crack tip is very high, i.e., for a few 

orders of magnitude higher than the gravity constant. How realistic are such values is difficult to say because it 

is well known that standard numerical integration scheme, such as used here, often leads to not accurate 

estimation of acceleration. Mention that he results related to the dynamic crack propagation can be considered 

only as qualitative. To get more detailed view into the dynamic crack propagation, numerical analysis should 

be carried out with finer discretization of the cracking zone. 

 

10.3.3 Concluding remarks  
 

The comparison between numerical and experimental results (Sukontasukkul & Mindess, 2003), shows that the 

used numerical formulation is able to correctly capture the rate dependant failure mechanism of plain concrete 

beam. Similar as in the present study, the recent numerical studies (Ožbolt & Reinhardt, 2005a,b) show that for 

lower loading rates (bending failure) the rate sensitive response is controlled by local inertia forces at the crack 

tip. In numerical analysis this is accounted for by the rate dependent constitutive law of concrete. Furthermore, 

it is shown that for high and extremely high strain rates (shear failure mode), the structural inertia forces govern 

structural response and that the rate dependency at the constitutive level is much less important. The 

consequence is that the structural response is strongly dependent on the geometry of the structure. The same 

turns out to be the case in the present numerical study, what implies that, in contrary to lower loading rates, for 

higher loading rates bending reinforcement would have no or little effect on the failure mode that is of shear 

type. 
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10.4 Concrete block – penetration analysis 
 

To test the presented FE adaptive procedure, the numerical experiment is conducted by simulating the impact 

event of a steel nail with the concrete block. Due to the complexity of the problem, a brief overview of 

necessary requirements concerning the numerical description are hereafter given.  

 

 

 

10.4.1 Numerical requirements 
 

Obviously, large displacements and finite strains are needed in order to realistically model the concrete 

behavior at the front of the nail. Dynamic analysis is required to predict the transformation of nail kinetic 

energy into strain energy of a concrete block. The cracking and damage phenomena are modeled with a 

smeared crack approach and the objectivity of the results is assured by the use of the crack band approach 

(Bažant & Oh, 1983). Before illustrating the result of the numerical simulation, there are two numerical aspects 

that should be separately addressed. 

 

 

 

10.4.1.1  Critical time increment 
 

The adaptive finite element procedure automatically entails further consideration of the critical time increment 

Δtcr, that arises as a stability condition of the explicit time integration. Resume, in order to preserve the physical 

meaning of the numerical results, the adopted time step Δt must be smaller than the critical one Δtcr (4.33). 

 

Since the remeshing procedure changes the FE geometry a-priori, the temporal variations of Δtcr should be 

taken into account. However, if no remeshing procedure is applied, the variations of Δtcr will be still present but 

as a smoothed curve in time. Furthermore, apart from the geometrical property of FE mesh, Δtcr is also 

influenced by the change in stiffness. In case of materials like concrete, the progressive stiffness degradation 

obviously causes changes of Δtcr. However, the changes produced by stiffness degradation are smoother than 

the changes caused by the remeshing procedure and they usually cause less serious consequences on the 

numerical analysis. Namely, the remeshing procedure will occasionally cause jumps of Δtcr that can transverse 

the adopted time step Δt and make it inadequate for proceeding with the numerical analysis. 

 

Note that time step Δt should not be adapted with respect to the current Δtcr. Namely, the adaptation will cause 

that the displacement vector un and the displacement vector un-1 in Eq. (4.30) would be temporarily non-

consistent. Such non-consistency could produce numerical instability, often viewed as the fluctuation of the 

total system energy, and lead to numerical divergence. 
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Figure 10.20 Progressive changes in Δtcr and the adopted Δt for the numerical example given in Figure 10.22 

 

The discussed inconvenient side effect of remeshing can be bypassed by assuming the first time increment Δt 

(calculated for the first mesh at the beginning of the numerical simulation) reasonably lower than any critical 

future time increment Δtcr. Obviously, the exact prediction of the later generated Δtcr is not possible, but it is 

possible to exclude eventual extreme values. For the sake of illustration, Fig. 10.20 shows changes in Δtcr with 

respect to time increments of the analysis and the assumed time increment Δt that has allowed a correct 

execution of the computation.  

 

 

 

10.4.1.2  Boundary conditions 
 

The second numerical aspect is related to specification of boundary conditions. In order to simulate the 

penetration of the nail correctly, mention that it is common engineering practice to set a steel plate. The plate 

has an opening which allows the nail to pass through. Namely, the impact of the nail at concrete surface cause 

local damage in form of spalling of concrete boundary layer (Fig. 10.21). Therefore, the purpose of the steel 

plate is obvious. It should be also mentioned that the impact event without the steel plate can be treated 

numerically as well, provided that the continuum fragmentation is included, which enables the separation of 

elements from discretized concrete block. However, since the continuum fragmentation is here not yet 

included, an alternative is introduced. 

 

Note also that at the numerical implementation level, the penetration scenario cannot be simulated only by 

assuming two bodies under mechanical interactions (concrete-nail). This is due to the fact that the mechanical 

interaction between the concrete block and the steel plate is present as well. An appropriated strategy will by 

the multi body contact analysis. 

 
However, because of simplicity, the nodes at the surface of the concrete, that are close to the impact point, are 

fixed in direction of impact. This is a reasonable assumption the enable to perform the computation. 
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Figure 10.21 Experimental evidence and numerical prediction of damage zones around the zone of impact 

 

 

 

10.4.2 Numerical simulation 
 

It is very important to mention that in the present result, which is based on the numerical formulation under 

isothermal condition, the temperature over the contact surface is not accounted for. However, the experimental 

observations reveal that the presence of elevated temperature on the contact interface significantly influences 

the concrete mechanical behavior. Indeed, once the nail penetrates into the concrete block, the consequences of 

thermo-mechanical effects are responsible for its bearing capacity. 

 

The dimensions of the concrete block are: length-height-width = 500 × 500 × 500 mm. The mechanical 

properties of concrete are: Young’s modulus Ec = 30000 N/mm
2
, Poisson’s ratio υ = 0.18, uni-axial 

compressive strength fc = 45.0 N/mm
2
, tensile strength ft = 2.70 N/mm

2
, fracture energy GF = 0.10 N/mm and 

concrete mass density c = 2300 kg/m
3
. The mechanical behavior of the nail is assumed to be linear elastic with 

Young’s modulus of 200000 N/mm
2
 and mass density of 8000 kg/m

3
. On the contact surface the frictional 

coefficient  is assumed to be equal 0.5. The load is applied through the kinetic energy of nail. The numerical 

analysis is performed for nail impact velocity of 200 m/s. Unfortunately, since the analysis was performed on a 

single-processor laptop computer, the numerical simulations had to be stopped before the nail fully penetrated 

the concrete block due to the very high demand on CPU-time.  

 

Fig. 10.22 shows the sequence of the nail penetration history, where, qualitative prediction is in accordance 

with the experimental observations. The mesh adaptation (remeshing) progressively increases the number of 

finite elements around the contact zone, enabling the continuous mesh adaptation of the contact surface. 

However, the mesh density out of the contact area remained unchanged. 
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Figure 10.22 Sequences of nail penetration into a concrete block (progressive mesh adaptations) 

a) 0.000 ms b) 0.000 ms 

c) 0.000 ms d) 0.007 ms 

e) 0.014 ms f) 0.021 ms 

g) 0.028 ms h) 0.035 ms 

i) 0.042 ms j) 0.049 ms 
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10.4.2.1  Stress data transfer 
 

 The adequacy of the transfer operator T2 and T3 is 

proven by the asymmetric stress field σ13 

illustrated in Fig. 10.23. Due to the frequent mesh 

adaptations during the analysis, the mapping was 

performed 47 times. The consistency and the 

symmetry of the absolute stress value remained well 

preserved what confirms that the used mapping 

procedure is appropriated. 

 

 

 

 

 
 
 

10.4.2.2  Stress oscillations 
 

Apart from the remeshing and refinement procedures that showed to be suitable for the simulation of the 

penetration problem, the analysis of the outcome confirms that the transfer operators are adequate, as well. 

Indeed, the transfer operator T2 used for the mapping of internal damage variables caused local stress 

oscillations. However, after the remeshing process, the induced oscillations disappear in the next few time steps 

(Fig. 10.24). 
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Figure 10.24 Oscillation of stresses after remeshing (after few time increments the oscillations disappear) 

 

 

10.4.2.3  Velocity of penetration 
 

As it was expected, the progressive degradation of the nail velocity has not been affected by the remeshing 

procedure performed on the concrete block (Fig. 10.25). Nevertheless, some minor oscillations of the nail 

velocity occurred after each remeshing procedure. 

 
 

Figure 10.23 σ13 at the end of the numerical simulation  
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Figure 10.25 Nail velocity vs. time (computation stopped due to inappropriate CPU performance) 

 

The abovementioned should be briefly discussed since in case of relatively larger contact surfaces Гc it may 

cause numerical instability. Namely, before each remeshing step, the internal forces on the contact interface Гc 

are in equilibrium. Since FE over Гc are the main reason for considering remeshing and refinement procedure 

(particularly the elements on the concrete block), it is clear that after such procedure the internal forces will not 

be exactly the same as before remeshing. Consequently, the next increment of the analysis must inevitably start 

from the non-equilibrated configurations. However, since the magnitude of residual forces is usually relatively 

small, the equilibrium state will be reached by iteration before the end of the current time increment. 

 

 

10.4.2.4  Contact force 
 

Since the contact forces are not history-dependent variable, their evolution is unaffected by remeshing 

procedure. As discussed earlier (Chapter 6 – 6.4.1.4 Contact force interpolation), the approximation of the 

contact force field is largely influenced by the spatial discretization over Гc (6.42). The contact force diagram 

related to the present numerical example, which was obtained according to the above introduced refinement 

procedure (8.5), is illustrated in Fig. 10.26. 
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Figure 10.26 Predicted contact forces vs. time 
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10.4.3 Concluding remarks 
 

The present numerical simulation demonstrated that the proposed finite element formulation is principally able 

to simulate complex problem of penetration of a nail into a concrete block. However, it should be mentioned 

that at the moment, only the first part of the author’s intention has been solved (nail penetration). More difficult 

part, which is to numerically simulate the pull-out capacity after penetration, is not yet done. 

 

According to the aforementioned remark, once the nail penetrates into the concrete body, the thermo-

mechanical interaction on the contact surface has to be simulated in order to solve the nail pull-out problem. 

This is an especially intriguing and complex problem that should be dealt with in future. Furthermore, because 

of the complexity of the problem (material and geometrical nonlinearity, rate sensitivity, contact and 

remeshing), the program code has to be parallelized, and a more effective and a more robust mesh generator 

has to be used. 
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Chapter 11 
 

 

Summary and conclusions 
 

§ Motivation 

In the present thesis, a three-dimensional finite element numerical formulation for concrete failure under high-

energy impact loadings is proposed. Apart the evident importance of studying concrete response at impact load, 

the thesis arises from the motivation for simulating, and consequently studding concrete damage phenomena 

and non-elastic strain localization in impact analysis. 

 

§ Framework 

The numerical formulation lies in the framework of continuum mechanics and irreversible thermodynamics. In 

order to obtain an approximated solution of the displacement field, the finite element method is used to perform 

the discretization of governing differential equations in spatial regions occupied by bodies in collision. 

Particularly, the linear tetrahedral element is used for this purpose. According to the traditional practice, the 

temporal discretization is performed by finite difference method. Due to the non-linear nature of the event under 
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consideration, the solution process is based on the incremental–iterative solution strategy. For this purpose, the 

stresses and strains are calculated with respect to the system reference frame, which is successively updated 

according to the Update Lagrange formulation of finite strain. 

 

§ Rate sensitivity 

In order to numerically simulate the rate deepened response of concrete, which is widely evidenced in 

experimental tests, the model for strain rate dependency is based on the energy activation theory of bond 

ruptures. Accordantly, for static and quasi-static loading conditions, the proposed numerical formulation is 

sensitive to the rate dependency related to formation of microcracks and to creep of concrete between the 

microcracks. On the other hand, for elevated strain rates, the dominant influence of inertial forces is not 

included in the model. This is due to the fact that the inertial influence is not a part of the constitutive law. 

However, it emerges automatically from the dynamic equilibrium equation from the direct interaction between 

the constitutive law and inertial forces. 

 

§ Constitutive law 

The rate dependency model is implemented in the thermodynamically consistent M2-O microplane model for 

concrete. The macro-micro transition is performed by projecting the macroscopic Green-Lagrange strain tensor 

on microplanes with different orientations. Particularly, the microplane strains are calculated according to the 

relaxed kinematic constraint principle. Damage and cracking phenomena are modeled within the concept of 

smeared cracks. To assure objectivity of the analysis with respect to the size of the finite elements, the crack 

band method is used. 

 

§ Contact mechanics 

To perform a non-unilateral contact/impact analysis, the displacement solution space is restricted by the 

Lagrangian multipliers method. However, to preserve the benefits of the explicit time integration scheme, the 

contact description is formulated according to the forward incremental Lagrangian multipliers method. The 

energy dissipation related to friction is represented by the phenomenological Coulomb model. Its numerical 

implementation is conducted by performing a monitoring of contact reaction forces and relaxation of tangential 

displacements.  

 

§ Implementation 

To validate the proposed numerical formulation, the presented procedures are implemented into a program code 

named NACFAIL (Numerical Analysis of Concrete Failure at Impact Loading). For this purpose, the computer 

language FORTRAN95 has been used. All the subroutines are translated into a set of computational 

instructions by the Lahey/Fujitsu LF95 Compiler for 32-bit computational architecture.  
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§ Verification 

The free fall drop weight experiment is numerically simulated in order to validate the proposed numerical 

formulation. In particular, the mass of the dropping hammer is assumed constant and the parametric study is 

obtained by varying the impact velocity i.e. the dropping altitudes. The dropping altitudes were prescribed to 

reproduce impact loadings of 2, 4, 6 and 8 m/s. All numerical simulations clearly predict the failure modes 

obtained by experiments. Namely, in case of relatively low impact loadings, i.e. quasi-static loading conditions, 

NACFAIL clearly predict the expected bending failure mode. However, by increasing the impact velocity up to 

4 m/s, the failure mode is characterized by dominating bending crack enriched with two inclined lateral damage 

zones, which can be interpreted as incoming cracks at more elevated impact velocities. Furthermore, by 

increasing the impact velocity up to 6 m/s, a transition failure mode is obtained. The mode is characterized by a 

dominating bending crack and shaped shear fractures, not entirely articulated yet. In fact, for impact velocities 

of 6 m/s and 8 m/s, NACFAIL predicts the mixed mode of failure. From the perspective of beam failure modes, 

it is concluded that the numerical formulation is able to correctly predict failure mechanisms that dominate the 

beam rupture. 

 

It is also demonstrated that the proposed finite element code is principally able to simulate complex problem of 

penetration of a steel anchor into a concrete block. However, due to the complexity of such events, the aim of 

the present numerical study is to establish numerical basis and directions for the development of numerical 

procedures that would deal with these problems in a more accurate manner. Indeed, mention that the final 

objective is to find the optimal shape of a nail (or anchor); such that the energy necessary for the pushing of the 

nail into a concrete is minimal but ensures maximal pull-out capacity. The solution lies in the simulation of the 

thermo-mechanical interaction on the contact interface. However, due to the complexity of the problem 

(material and geometric nonlinearity, rate sensitivity, contact and remeshing), it is clear that the program code 

had to be first parallelized. 

 

§ Conclusions 

Based on the experimental and numerical results obtained in the study of rate dependent failure of plain 

concrete beam under impact load, the following can be concluded. (i) Loading rate has significant influence on 

the resistance and failure mode of plain concrete beam. The comparison between numerical and experimental 

results shows that the used numerical model is able to correctly predict the rate dependent failure of plain 

concrete beam. (ii) For quasi-static load and relatively low impact load velocity, the beam fails in bending 

(mode- I fracture). With increase in impact velocity there is a transition of failure mode from dominant bending 

to dominant shear and the failure tends to be localized closer to impact zone. (iii) For relatively low strain rates 

(mode-I fracture) local inertia forces at the micro-crack tip control the beam response. The rate dependent 

constitutive law for concrete can account for the rate dependent response. For higher loading rates the influence 
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of loading rate on the beam response is mainly controlled by structural inertia forces. Consequently, for higher 

loading rates the geometry (size) of the beam should have significant influence on the failure. (iv) Because of 

the change of failure mode with increase in loading rate from bending to shear, in reinforced concrete beams 

loaded by higher loading rates, bending reinforcement would be ineffective. Instead, the shear reinforcement is 

required to prevent failure. (v) Velocity of the bending crack tip increases almost linearly up to the peak value 

of approximately 0.55 Rayleigh wave speed. The maximal velocity only slightly increases with the increase of 

impact velocity. The analysis indicates branching of bending crack. (vi) Further studies are needed to 

investigate dynamic crack propagation in more detail. 

 

§ Future work 

The future work will be primarily dedicated to parallelization of NACFAIL. 
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