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“the beauty of a glycan is not the sugars that go into it,
but the way those sugars are put together
(from GlycoBase)



1. INTRODUCTION

1.1. From Glycans to theGlycome and Glycomics

Investigating the structure, biosynthesis and bioklgienction of glycans has been tloeus of
the field of glycobiologyGlycobiology owes its fast expansion and growdlthe development
and continuous improvement daéchnological approaches aimed to explore the structural

complexity of glycans.

1.1.1. Glycans

Glycans are considered to be the most abundant and diverse biopdigmesd in nature and
they constitute one of the four major building blocks of cells, togethir proteins, nucleic
acids and lipidsThrough the years, advances in glycobioldmyverevealed several essential
roles played by glycans at timeolecular level, extending the initial view of glycans as simple

structural components and sources of energy in a cell.

Glycans arehains of monosaccharidés simple sugars) which have varialdagth from a few
sugars to several hundred. Glycansthe product of a series of stepwise reactions involvirey t
complexinteraction of hundreds of enzysand transcriptional factors andn be found in free

form or asglycoconjugate when attached to another molecule, usually a protein or a lipid

1.1.2. Glycome

The spectrum of all glycans and glycoconjugates imm@anismforms the glycomewhich is
estimated to be much larger than the proteome i{tek et al, 2005) The interrelated and
complicated pathways participating in the synthesis of glycadgte variousinkagesallowed
between monosaccharides, together contribute to the structural and functional diversitggresent

by the glycome.

The glycome has a role in both normal physiology and disease and its importance in molecular
biology should beaegarded at the same level as ¢time ofthe proteome or transcriptomé&he

fact that dycans are an essential part in the functioplofsiologicsystemshighlights the need

to include and take them into account in research analyses of biological sgstérmpsocesses
whenever possibleThe diversity of theglycome might hold necesary information to link

biological theorie®r uncovemew findings.



1.1.3. Glycomics

Research in the fields okgomics,proteomics and transcriptomics hasabledunquestionably
important discoveriesNonetheless, the view dfuman physiology is far from being complete
and many explanations regarding the different mechanisms and processaagatbiological
systemsaare still lacking The new emerging field of gtpmics is beéved to contaima great deal

of significant informatiorthat can help filling in the existing biological gaps as well as to give

additional insights into the current view of biological processes.

The concept of glycomics has emergedeference to the gtomeandconcerns the systematic
study of genetic, physiologic and pathologic aspects of the glycome expressed by specific cells,
tissues or organisms in order to elucidate the factors regulating the synthesis of gigctres a
association of glycans vitbiological processes.

In comparison to the analogous terms of genomics and proteomics, glycomics is a much more
recent discipline and its achievements are far beyond those aitaigedomics and proteomics.
Increased understanding of the functions lgtans and of the importance of glycosylation has

led to a growing interest in glycomics which has contributed to its own development. The limited
and late development of glycomics is dte challenges unique to glycan analysie
experimental and analytical methodologies inherent to glycomics have undergone several
improvementsvhich havesimplified the procedureand decreaseithe time required for glycan
analysisas well as enabled the analysis of a larger number of samples. Such improvements have
allowed thefirst largescale studies involving glycan structures and broggrgomics into line

with the 'omics' approaches génomics, proteomics and transcriptomics.

Nongheless, e multiplicity of questions asked bwll areas of glycobiology cannot be
adequately addressdxy analysing onlythe glycan moieties isolated from glycoproteifer
certain glycarrelated subjects, such as changes in protein properties, bacterial binding and
antigenicity specificities or therapeutic fiehcy of glycoproteins, the analysis of intact
glycoproteins or glycopeptides is requirddiafino et al, 2010) The wide range of glycoprotein
analyses and the questions behind them deweloge a field of its own -glycoprot@mics—

which is rapidly growing in parallel with glycomicB®espite having slightly differengoals,
glycomics and glycoproteomics complement each other and contribute to the mair&cope
elucidating the complex regulation of glycosylation. Although the overview of objectives and
applications of glycoproteomics is out of scope of this thesis, it seemed worth to briefly mention



its importance and its coexistence with glycomics (for a review of glycopeptide analysis and
glycoproteomics applications, see Wei &(RD09 and Dallaset al. (2013).

In glycobiology, as in most areas of science, the question to be answered dictates the type of
glycosylation analysis strategg be employed which should be selected to adequately suit the

needs of the study.

1.2. Glycosylation

1.2.1. Principles overview

Glycosylation is an enzymatic process through which glycansareurrentlysynthesized and

typically attached to proteins and lipids producing glycoproteins and glycolipids, respectively

Contrary to protein synthesiwhere a single gene codes for a protein, there is no universal code
for the structure of glycans.lggan synthesis is not template driven but ratwecodedby a
complex network of glycotransferases, glycosidases, transcription factors, transporters and other
proteins(Laucet al, 2010b) It is estimated that 1% of genes in mammalian genome participate

in glycan formation and modificatiohdwe & Marth 2003)

The numerousenzyme and factors involved in glycan synthesmoperate in an organized
manner in stepwiseeactionswhich lead to the final glycan structurel'he resulting glycan
moeitiesare assembled from only nine monosaccharigegose (Glc), galactose (Gal), fucose
(Fuc), mannose (Man), xylose (Xyl),-&tetylglucosamine (GIcNAc), ddcetylgalactosamine
(GalNAc), iduronic acid (IdoA and sialic acid (SA{Moremenet al, 2012) Although the
number of available monosaccharides may not appear sufficient to accomplish the claimed
diversity of the glycome, a variety of combinations can be formed by establishing different
glycosidic linkagedbetween monosaccharidés this way a modest number of monosaccharides

is able to generate a vast repertoire of glycan variants

The coordination of glycosylation mechanssia crucial for the accuratesynthesis of glycans
which wee shown to be essential factors in the maintenafican organisn's homeostasis
(Ohtsubo & Marth, 2006)Dysregulationof glycosylationpathwayg has been associated with
several diseasessuch as cancer and diabetes as wellcasliovascular, congenital and

immunological disorders.



Investigating the behaviour of glycosylatioslated factors and thenteraction of glycan
structures ireither physiological or pathological conditiomsyy help to gain a deeper knowledge

of the intricate regulation of glycosylation.

1.2.2. Protein glycosylation

Glycosylationis the most complex and one of the most abundant-tpmstlational protein
modificatiors occurring ineukaryotesand prokaryotesin fact, rearly all proteins in serum and

in the plasma membrane are glycosylatédr(matsi 2006)

Protein glycosylation can be categorized into specific groups based on the nature of the glycan
peptide bond and the glycan attached. The masinwonly detected types of glycosylation are

N- and O-linked glycosylationwhose glycans products adesignated N and O-glycans,
respectively.n the case oN-linked glycosylationglycans are covalently bad to the protein

via the nitrogen atom of an asparagiAsn) residuewhile in Olinked glycosylation glycans ar

attached to the oxygen atomsarines (Ser) or threonines (Thesidues

The twotypes of glycosylation play distthkey roles in cell biology: Nlinked glycosylation is
important for processes such as protein folding andcedlirecognition, whereas -{lhked
glycosylation is essential in the biosynthesis of the proteins that form mucus secretions — mucins.
The principles of O-linked glycosylationandthe description of the structuse biosynthesis and
functions of Qglycans are behind the scope of this thesis (for further reashe¢layeset al.
(2012)andVan den Steest al. (1998). The Nlinked glycosylaton process is the focus of this

thesis andts main aspectwill be later describeth greater detail

1.2.3. Structural basis of glycan and glycoproteindiversity

The linkage between two monosaccharide uniésghycosidic bond-is at the basis of diversity
existent among glycans. Contrary to peptide bonds, glycosidic bonds are extremely flexible,
meaning they can be eslished in several different ways between two monosaccharides and
allow the formation of isomers differing not ontytheir threedimensional structures but also in

their biological activities. The versatility of glycosidic bonds accounts for the factathat
ensemble of monosaccharides yields a greater number of possible final configurations than the
same number of amino acids would yidld.particular, three different amino acids are able to
form only six differentchains of three residues each, whereas three different monosaccharides

can produce more than thousand unique chains of three resMais ¢t al, 2009) This



difference in complexity becomes even more visibleghes number of monosaccharide units
increasesleading to the theoretical presence of an infinite number of glycan struicturatire
However, glycan structures studied so fame composed of only some of the available
monosaccharide units linked in ianited number of combinations, with many more stiues
expected to be discoveredhe number and nature dhe monosaccharidaunits and the
conformational arrangements between them also contribute to the vafrietyisting sugar
chains by influencing their length (short or long chains), composition (types of sutja

chain) and structurelfranched or unbranched chgins

When compared to other pesanslational modifications of proteins, glycosylation is found to
contribute to a higher degree to the diversity of proteome. Two main reasons are pointed out.
First, due to the complexity of glycosylation and the template driven process glycan
synthesis the nolecular steps occurring during every glycosylation event are likely tg vary
leading to slightly different final glycoconjugate produckaurig et al, 2009) Second, in a
glycoprotein, diversity arises due to not only the attachment of different glycan structures, but

also because of the variable occupancglgéosylation site (Marino et al, 2010)

1.3. N-glycosylation and Nglycans in Eukaryotes

The general term of glycosylation is often characterised as arpogational modification.
Although this isa fact for other types of glycosylation, it is not the case ofirked

glycosylation which mainly occurs doanslationally.

N-linked glycosylation (Nglycosylation in short) is the most common type of glycosylatith
extreme importance for the normal metabolism of cells as evidenced by the multiple functions
played by Nlinked glycoproteinan the regulation of vital cellular processes. Moreover, N
glycosylation isessentiato life as demonstrated by the fact thatick of all Nglycans is lethal

in species ranging from yeast to mamnkakgze, 2006)

From this point forward and unless stated otherwise, the tergigchsylation and Nylycans

will refer to NHiinked protein glycosylation and its glycan products in eukaryotspectively

1.3.1. Synthesisof N-glycans

N-glycosylation comprises a complex series of reactiorsyzad by two groups of enzyme

having opposite activities: glycosyltransferases which synthesize gipeamsand glycosidases



which hydrolyze glycarinkages Glycosyltransferaseand glycosidasesreresponsible for the
assemblyand transformation of Mdlycansandtheir attachmento proteinsThe main processing
stepsoccurring during glycan biosynthesis, from the-gWycan initiation in the endoplasmic
reticulum (ER) to the complete maturation in the Golgpparatusare depictedn a simplified

manner in Figug 1 andare outlined and briefly described below.

N-glycan synthesis begins on the cytosolic side of BRewith the assembly of the -§jlycan
precursor by the addition of 14 monosaccharites lipid anchor molecule named dolichol
phosphatgFigure 1, upper pangl As a result, a lipidinked oligosaccharide carrying an- N
glycan precursocomposed of 14 sugars is formed. The Himted oligosaccharide is then
flipped across the Emembrane and reriented tothe reticularlumen Subsequently, a protein
complex called oligosaccharyltransferasg¢alyzes the ctranslational transfer dooc of the N
glycan precursor from the lipid anchor to asparagine residue of nascent protemswiy
synthesized proteins which are being translocated to the HRR glycan precursas directly
linkedto a specific asparagine residue through agiydosidic bond involving the nitrogen atom
(N) of the asparagine, hence the ternglicosylation(Snider 2013) The asparagine residues
candidates toeceiwe N-glycans are usually part of the sequence motif-&s8er/Thr, wheran
asparagine (Asn followed by any amino acid (X@xcept proline and esavith a serine(Ser)
or threonine(Thr). Following the co-trandational attachmentof the Nglycan precursor to a
nascent protein, an initial trimming of thegW/cansoccurs in the ER along with the protein

folding.

Additional enzymatic processing and maturation of-dliycans are completed in the Golgi
apparatus withthe glycoprotein alreadfolded. In the Golgi apparatus, -Blycansare further
trimmedand extensively modified by the incorporatiohnew monosaccharides until a mature,
complex Nglycan structure is produceBigurel, lower panel)Such modifications include the
formation and elongation of branches, also called antennary structmetshe addition of
terminal sugarsuch adN-acetylgalactosamine, galast sialic acid and fucose to the elongated

branches.

In summary, the process ofdlycosylation can bdivided intotwo spatially separated stepke

first step occurringin the ERand concerning the formation archnsferof the Nglycan
precursorin association with protein folding; and the second step taking place in the Golgi
apparatusand involvingthe modification and diversification of glycan structu(elelenius &

Aebi, 2001) Regarding the glycahinding site, it should be noted that not all asparagine



residuesof a protein can accept an-dllycan. The Asn-X-Ser/Thr motif is considerecthe
glycosylation sequon, i.e., a sequence of three consecutive aminomthégyiycanacceptor
polypeptide chains which is recognized by the oligosaccharyltransferase coagpkire
attachment site for glycanalthough the AsnX-Ser/Thr sequon is thmostfrequentlyoccurring
site of glycosylabn, N-glycans are also found to be linked in a smaller propottiasther non-
standard sequences swashthe AsAX-Cys notif (where Cys is cysteineMoremenet al, 2012)

In eukaryotes,hte extensive and intricate biosynthetic pathways -gfiydosylation areable to
transforma simpleN-glycan precursor into a wide and diversifiehge of complex Mjlycan
structuresOne of the main differences betweerglcosylation in eukaryotes and prokaryotes
concernsprecisey this source of variabilityof the Nglycans. While ekaryotessynthesizea
conservedipid-linked oligosaccharide structure and in later steps prodadable antennary
structure, prokaryotes synthesize a diverse array of the initial Hipked oligosaccharides
(Schwarz & Aehi2011) Despitethe N-glycosylation properties characteristic of edoimain of

life, the principal events of {dlycosylation described abovéné¢ lipid-linked oligosaccharide
assembly, flipping across a membrane and transfer to the protein) are shared among the three
domains of life and occur in a similar man @ell et al, 2010)

Figure 1. Biosynthesis of Nglycans.The Nglycosylation process can be divided into two spatially separated

steps: the first step occurs in the ER (upper panel) and includes theblysseéthe Nglycan precursor, the
7



transfer of the Nglycan precursor to the nascent protein and some minimal trimming; the second step takes
place in the Golgi apparatus (lower panel) and involves trimming, elongation and maturation -gfiybars.

While the glycan precursors formed in the ER are conserved, the Golgi reactions generate highly diverse
glycan structures that also differ widely between species. In the final matgiygeah structurethe number

and size of branches present is variable, as is the nature of the sugars added; only one of the many possible

terminal glycosylation pathways is showkdapted fromHelenius & Aebi (2001)

1.3.2. Structure of N-glycans

N-glycans are typically an ensemble of 10 to 15 monosacchaticidi&e DNA and protein
molecules which have a lineprimary structureN-glycansareoften highly branched molecules

of complex structure

The different ways in which the initial and plaingW/canprecursoris trimmed and modifieth

the ER and,to a grear extent, in the Golgi apparatgenerate three major structural classes of
N-glycans: complex, hybrid and oligomannose or higmannose(Figure 2). These structures
vary in thenumber and size of the antennary structuaeswell as inthe nature of their
constituting sugar while sharinga common coreonsisting of five monosacchargl&ept from

the original Nglycan precursor

The core and branches of the majorgican structures aresually subjected to further
modifications originating mature-ilycan structuresThe main core modification in vertebrates
is the addition of fucoseotthe coe residues, called core fucosylatioviatki et al, 2009)
Another frequent modification of the-§lycan core ishe transfer of an MNacetylgalactosamine
residue GICNAC) to the mannose residue at the base of tydybhncore,producing aisecting
GIcNAc structure The elongated branches can be altdrgdhe addition of terminal gars
through capping reactions sucls galactosylatia, sialylation and fucosylation which add
galactose, sialic acid and fucose, respectively.

The human glycome is estimated to comprise more than 7@f)gcln structures of which only
circa 2000 structures have been descrili&ti{mings 2009) Theseglycan structures known so
far are composed of only some of the available monosaccharide units linkechited iumber

of combinations, with many more structures expected to be discovered.



Figure 2. Major structural classes of mature Nglycans in eukaryotes.The structure of siture Nglycans

can be divied into three major classesmplex A), hybrid B8) and oligomannose or highannose @). The
monosacharides forming the common core aflytans are coloed in red while the monosacharides
belonging to the antennary structures are celduim green. A fucose attached to the comdss shown in the
complex Nglycan structureX). The AsnX-Ser/Thr binding motif is represented at the bottom of each glycan
(where Asn is asparagines, X is any amino acid except proline, Ser is serine and Thr is threonine).
Monosaccharide abbviations:Fuc- fucose; Gal galactose; GIcNAc N-acetylglucosamine; Manmannose;

SA -sialic acid. Adapted frorBalzarini(2007)

1.3.3. Diversity of N-glycansand N-glycoproteins

The diversity found in Nglycans arises from the association between the nature and adopted
configuraton of the joined monosaccharide units and the complex network of different reactions

involved in the Nglycosylationprocess

In addition to the inherited basic features common to sugar cf{distaissed in sectioh.2.3)
N-glycansexhibit their own diversity achieved through multiple elongation and modification
reactions ocauing during the Nglycosylation Even though theeactionsresponsible for the
asembly of the branches of the core of-dlycans are arranged in a stepwise manner, they
follow a variable pathway which mainly depends on the localizatidhe glycotransferases and
glycosidaes through the EBRnd Golgi apparatug.he enzymatic activityléw associated with
the regulatory activity of other factors influences the fate of the coreglyddns by dictating
the main composition and configuration of the antennary structieeminal sugars can be
further added both to the core ofdl/cans (sch as fucose or GIcNAc) and to the antennary

structures (such as fucose, sialic acid and galactose). Altogétéssrmodificationsintroduce

9



variousdegrees of structural variability to the common core gjly¢ansand accountor the
enormous spectrum of maturegW/can structures displayed at the cell surface.

Glycosylation is the most extensive source of protein heterogearadtyNlinked glycosylation

in particular is a major contributdo that heterogeneityN-glycosylation is characterised by a
sdective and diversified attachment of-dlycans to proteins which generates glycoproteins
exhibiting macre and microheterogeneitfMarino et al, 2010) Macroheterogeneity concerns

the glycosylation sites assigned for the attachment gflybans (not all available N
glycosylation site®n proteinsare occupiedand the number of idlycans simultaneously linked

to the protein (typically between two and five glycans are attached to an average protein).
Microheterogeneity refers to the diversity of glycan structtines @an be found at a specific
glycosylation site of a given protein, i.e. the same class of proteins might have distinct glycan
structures attached to identical glycosylation sites. Maamd microheterogeneity appear to be
associated with the activity of glgs/ltransferases and glycosidasgisice these enzymes have a
remarkable degree of substrate specificity, their activity can be easily constrained due to protein
sequence and conformation as well as environmental factors. Changes in enzymatic activity
influence the fate of newly synthesized glycoproteins and lead to different glycosylation patterns
characteristic of different cell types and stages of cell cycle, such as development, differentiation

and maintenance.

The intrinsic variability of Nglycansand the heterogeneity of glycoproteins give rise to a vast
glycome composed of thousands of glycan isomers and glycoprotein is@odnmscrease the
structural diversity of an already broad proteome.

1.3.4. Biological roles of N-glycansin health and disease

As opposed to the corsynthesis of Nylycans which is mainly conserved, the assembly of
antennary structures is often regulated in a tissueell lineagespecific manner suggesting that
the branches can be directly implicated in the different functions-glfycans(Varki et al,
2009)

N-glycans are complex extensions of the glycoproteins and their impact on the protein itself is
not restricted to the structural level but extends tdoit&€hemical and functional properties.
Small structural modifications of jlycanscan be sufficient to cause loss or impairment of
protein function showing that N-glycans are neithempassive nor functional independent
componerg of glycoproteins; on the contrary,-@lycansand proteins forming glycoproteins
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work as one functional unifThus, the functional universe of proteisisould not beexplored
without their glycan moieties since they are an integral part of the identity of glycoproteins

Determining the functions ofjlycans and unravellingheir contribution to the activity and
properties of glycoproteins has been a challenging fBls&. strategies applied vary from the
inactivation of enzymeodinggenes through genetic mutation methods to the use of inhibitors
for specific Nglycosylation reactions and the study of features ptedeby mutant cells or
organisms with a defect in-lycosylation(Varki etal., 2009) However, to fully understand the
function ofglycans it is necessary to have a detailed characterization of their strudbickssw

technically difficult to achieve due to tinéremendoustructural diversity

Regardless of the obstacles posed, advances in the area of fungiyopnaiology have been
attributing fundamental roles to-§lycansin a multitude of key lmlogical processes including
protein folding stability and targetingmolecular trafficking and clearance, cell adhesion, signal

transduction and cetlell interactions

Like other co- and postranslational modifications occurrinigp the ER N-glycosylation is
important for correct protein folding. In the absence or failure-gfyidosylation, glycoproteins
usually misfold and aggregate and, consequentlysubcted to degratian by quality control
mecharsms in the ER Therefore,the most basic knowfunction of N-glycans is to facilitate
protein folding in the ER which explairtke fact that glycans are attachastranslationally to
nascent polypeptide chains siiti thar unfolded state (i.e. not in their native structun).
glycans ensure the proper folding of proteins by direstdilizing their structure or bgcting as
recognition tagsand promotinginteractiors between glycoproteins and enzymasolved in
protein folding(Helenius & Aebj 2009.

Concurrent with the aid in protein folding is the involvement ajflixtans in the protein quality
control system in the ERThe main purpose of this quality camitrsystem is tamonitor the
integrity of protein syritesis and preveraberrant proteins (misfolded or néumctional) from
going further in the secretory pathway agsigning them for degradation. éfmechanisms of
guality control employ glycan moietiess tags to mediate tlwdrrect recognition of mislded
proteins which are then selectively retained and targeted for posterior degratatstindg
2003) It has been proposdtat glycansattached to misfolded proteimsight not be properly
trimmed thus functioning as indicators of the protein structure condition, whether the
protein failed to fold or folded correctl@émblinet al, 2009)
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Furthermoreglycans might play a role in the secretion and intracellular transport of proteins and
they appear to ptect proteins from proteolysassuggestedy the fact that proteins lacking-N
glycans are more susceptible to proteolytic degradéEmuler & Simons1995) Even though
some glycoproteinhiave shown to be functionathen lacking Nglycan moieties they still
require the presence ofdlycans for folding and transport out of the ERNglycans willaffect

protein conformation and stabiliffrombetta 2003)

The reported importance of-f§lycans in ell differentiation, adhesion andigrationas well as
in cell-cell communication and signal transductisnsomehow expected sinogost receptors
and adhesion molecules on the cell surfame Nglycosylated(Gu & Taniguchj 2008) For
instance, it has been shown that the branching structureglythins in growth factor receptors
serve as important determinants for the signalfumgction of the receptorélrakahashiet al,
2004) In addition, Nglycans have been foun have crucialroles in the nervous system
development, regeneration and synaptic plasticitym®diating the formation of eural cell
interactiongKleene & Schachne2004)

Some of the hormoneggulating major metabolic and reproductive functions of the body are
also N-glycosylated.Evidence suggests thitglycan moietiesof these glycoprotein hormones
have a biological role in hormonal conttwy being involved in their differential targeting and
blood clearancéThotakura & Blithe 1995)

Due to the participation dfl-glycans in a extensive lisbf vital processes, defects ingdllycan
biosynthesis can compromise the course of these processes and, consequently, lead to disease
Not surprisingly, Nglycanshave beemssociated with many pathologi@lents including host

pathogen interactiongymourinvasion and metastasis, diabetes,diovascular, immunological

and genetic disorders, among othe@mmon to all these pathological conditions is the

observation of an altergmhttern ofglycosylation.

N-glycans present in cell surface glycoproteins that mediate-cedll and celmatrix
interactionshave been described to be implicatedigreatlycontribute to the metastatic process
(Zhao et al, 2008) In epithelialtumours including those of breast, colon and prostabe
adhesionand signalling properties of cellsare affected due to modificatisnin N-glycan
structuredisplayed at the cell surfagRambaruth & Dwek2011) These structural alterations

in N-glycanslessen the interactiofmetween glycans and their binding partners and promote cell
migration and invasion, thus providing favouraldenditions for tumourprogression and

dissemination.
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Among thdargenumber of genetic disorders related to glycosylation whae been identified

in recent years, the group of congenital disorders of glycosylationeisof the most explored.
Congenitaldisorders of glycosylatioarea group of raréut severe inherited metabolic disorders
characterised by defectsainly in the N-glycosylation pathwayMarquardt & Denecke, 2003)

In congenitaldisorders of glycosylation, genetically inherited mutations yecagylationrelated
genesare the cause of deficiency in 34 different enzymes participating in-tiigclnsynthetic
pathway (Sparks & Krasnewich2005) Congenital disorders of glycosylation usually affect
multiple organ systems (especially nervous, gastrointestinal, hepatic, visual and immune
systems) ath present a broad spectrum of clinical features ranging from psychomotor difficulties
to mental retardatiorilhe various differentsymptoms manifested by patients who suffer from
congenital disorders of glycosylation pose an obstacle to a correct andliagrigsis of thee
diseaseg§Marquardt & Freeze, 2001)

As can be see-glycans regulate many physiological and pathological processes and a correct
N-glycosylation is a prerequisite for the normal functionhe tells andconsequentlyof the

entire organismOne the one hand, understanding in more detail heglydans influence the
behaviourof glycoproteinscan help to clarify the precise function ofgN/cansas well as to
provide new insights on thbiology of glycosylatiorrelated disordersOn the other hand,
understanding the mechanisms leading to disease @entifying specific alteratian in
glycosylation associated withganaid the discovery of new biomarkers and therapeutic targets
andpronote the developmentf novel and more efficient diagnostic anelatment solutions.

1.4. Human Plasma N-glycome

1.4.1. Challenges of suctural analyses of N-glycans

Understandinghe biological roles oflycans and their involvement in disease®stablishing
the cause of different glycosylation patterns are relevant topics in the field of glycobiology
Although developing at a slow pace over the years, glycobiology has given dnsigdits into
the importance of glycans and glycosylation whi@we contribued to the recentgrowing

interest in glycan analysis.

Glycan analysis provides a structural description of glycans that can be valuable for a more
comprehensive view of the functional significance of glycans (and glycosylation). However, t

challenges faced by glycan analysis account for the fact that the knowledge of glycan structures
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and their synthesis lags behind the knowledge acquired in protein or nucleic acids research
which are not affected by such problems.

The hetrogeneity and structuralomplexity exhibited by ¢ycans and the inexistence of a
universal glycan structure code capable of explgisuch diversity have been a bottleneck in
the determination of glycan structuresd a restraintto glycan analysis. Such extremely
challenging nature of glycan structusksmands adequate, robust and efficient methods that can
provide a correct anddetailed analysis of glycan€hromatographic and mass speatetry
basedmethodologiesre the principal strategiesed forstructuralanalysis of glycangStumpo

& Reinhold, 2010. While mass spectrometry techniguesse higler resolution and are able to
identify a greagr number of glycan structures, chromatography methods are aesegparang
iIsomers despite theirlimited resolution.The methodologyelated variability yields slightly
different results creating comparability issues arakingthe validation ofresults obtained from
different sources a more difficuidsk (Thobhaniet al, 2009) Sinceno referencestandards are
available,resuls from glycan analysis should be interpreted in the light of the methodology of

choice.

Additionally, structural analyses of glycans have been restricted to a reduced number of samples
due to technological limitations and, thus, a complete and detailed characterization of the
glycome composition has remained scarekgh-performance liquid chromatography,hée
simplesttechnique used for a broad profiliagalysisof glycans, has been recently adapted for
high-throughput glycan quantificatiaiRoyle et al, 2008) The possibility to quantify glycans in

a relatively large number of samplepens new venues for the study of glycans and the

investigation of factors associated with glycosylation in a large scale.

1.4.2. Variability, heritability and stability of N -glycans

Recent developments in methodological procedures, namely the adaptationpérficgimance
liquid chromaographyfor high-throughputanalysis of glycans, has allowdide first large scale
study evaluatinghe variability and heritability of the human plasmaMcome(Knezevic et al.
2009) The plasma MNylycan profiles of 1008 individuals were anags based on a
chromatographic division of 33 peaks containing similar glycan structlies.observed
variability of glycans at the population level wlasger than expectegimphasizing the need for a
careful approach when using glycan levels for diagnostic purpédesad range of varietn in
heritability of glycans waalsofound suggesting that th@fluence of genetic and environmental
factors varies according to different structurdgicgn groups
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Since he varability found at the population level was larger than changes reported to be
associated with disease, a follow up study was conducted to test the stability of the human
plasmaN-glycomeover a period of time anevaluate the validity of the use of glycamaages

for diagnostic purpose@sornik et al, 2009) Several plasma {glycan profiles were obtained

for 12 healthy individuals during 5 days and the profiles within an individual were compared.
The plasm N-glycome showed a good temporal stabilityggesting asignificant genetic
background controlThus glycan changesarising from environmental factors dor altered

physiological processgmesent themselves as potential diagnostic markers for diseases

A comprehensive analysis of association betweeglydlans of human plasma arsdveral
environmental factors and biochemitalits reported smokingliet, lipid status gender and age

to affect different glycosylation featurefKnezevic et al, 2010) However, the parameters
analy®d explained only a small fraction of the variability observed in glycan levels supporting

the previous evidence that glycans are under gesstic control.

The relation between glycosylation and ageimattracting a lot of attention and few studies
have investigated how plasmagN/cans change during ageifiging et al, 2011;Knezevicet

al., 2010; Vanhooreet al, 2010; Vanhooreet al, 2008) Similar aje-related structural changes

in N-glycan profiles were consistently reported in all studies regardless of the ethnic origin of the
populations considered (Belgia@hinese Croatian andtalian). Some of these studies also
analysed the relation between glycan levels and gendewever, in this caseglycan
differences between malesd females at different age stagesre not reproducible in all
studies. This age and gender dependence of glycans should be taken into accdhat
development of glycabased diagnostic tools as well as in the data analysis of studies

comparing different groups.

Glycosylation changes associated with the intake of different medications were analysed and few
sporadicassociations were identified but not demonstrated in all tested g{Sajsovaet al,

2012) Additional studies analysing a larger number of samples are necessary to validate the
associations observed.

The recent availability of considerabkmounts of glycomic and lipidomic data and the
biological importance of these two major classes of molecules motivated the first glycome and
lipidome-wide association study intendedreveal possible interactions between 46 plasma N
glycan structural features and 183 lipid traits in individuals from three geographically distinct
population cohortglgl et al, 2011) Although strong associations betweengNcans and lipids
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were found in each individugdopulation, thee patterns of associatiowere different and not
completely replicable across populationBhe observations suggest potential interactive
metabolic pathways between glycans and lipids and show the presence of pogpktitio-
correlations which are thoughth derive from exposure to different environments and genetic

background.

All these studies on plasma-glycans arean attempt to characterise detail the humarN-
glycomeand providea complete description @& behaviouand peculiarities at karge scale and

at the populdion level. The overall findingof the overviewedanalysissuggest a strong
influence of the genetic component on thgcgh levels and possible associations of glycans
with several (patho)physiological phenotyp&ke integration of glycan traits, phenotypes and
genotype data is required in further studies in order to determine the extent of dlitikge

preliminaryfindings.

1.4.3. Potential diagnostic valueof the N-glycome

Blood is the central transport medium asdhe human body and is composed of blood cells
suspended in blood plasntlood plasma is the liquid component of blood containing dissolved
proteins, among other substances such as glucose and clotting factors.

The majority of proteins in blood plasmeealycosylatedAs said beforeglycosylationis the

most common podtanslational modification of proteins and a biological important process for

the human physiological metabolisidysregulationof glycosylation has been implicated

several diseases, making it plausible to assume that glycosylation alterations can be a sensitive
indicator of changes in the external and internal environment of thevimdifications in the
mechanisms controlling and changing glycosylation witimately lead to glycan structural
variation which can be examined and determined through glycan analysesefore, the
composition of plasma {glycome is expected to reflect diverse physiological status of the
organism and to be able to act as a bionmrarke

The potential value of glycan profiles as a diagnostic biomarker otype of maturityonset
diabetes of the young (MODY) has been assesshdn@balasingharet al, 2013) Glycan
profiles were shown to be altered in individuals presenting the condition and the particular
changes identifiedvere suggested to be used together with existing biomarkers to improve the
diagnosis of the disease. Probable genoeplpnotype relationships were also indicated but the

validation of such edences requires more extensive stud&milar studies involving other
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diseases can help to clarify the role of glycans in pathological conditions and to explore their use

as biomarkers.

In the context of biomarkers applicatioh,should be noted that thatethe majority of studies
involving the analysis of Mjlycans report findings exclusively in adult populations. However,
the glycosylation profiles in childhood are of equal importancel ahould not be
underestimatedgspecially when children are Ialg affected by congenital disorders of
glycosylation. The composition of plasma and Ig&glicome was analgsl in childhood and
wasreported to vary from the glycosylation profiles observed in adulthBadi¢et al, 2012)
Thus, the use of glycans as diagnostic biomarkers and the development of bglgedn-
therapeutics should take into account the different glycosylation pattennd in children and
adults.

Analysing the plasma {dlycome and monitoring glycosylation changes bring insights into
the mechanisms of glycosylation in health and disease as well as open new possibtliges
clinical application of glycans in maal prognosis, diagnosis and therapy procedures.great
and promising potential of the humangycome as a disease biomarker is further strengthen
by the ready availability of plasma and by the simplicity andineasiveness of blood sampling

proceadures.

1.4.4. Genomeand Glycomewide association studies

Genomewide association sties (GWAS) aim to find associations between genotype and
phenotype The genotype is represented by singleleotide polymorphisms (SNPs) while the
phenotype is represented by a disease trait or a biochemical/physiological feature. Attieough
the current strategy of choice fecreening relevant genetic variants ungag human diseases

and traits GWAS shows major drawbacks.

The first limitation is related with the application of GWAS to the case of polygenic diseases or
traits. GWAS canaccuratelydetectmutationsresponsibldor single gene disorderal§o known
asMendelian disordejsdue to the fact that a certain disease is caused by SNPs in a single gene.
On the contrary, complex diseases and trat®lve complicated interconnections between
multiple genes as well as environmental factorsgamkeenvironmeninteractions. As such, the
causeeffect relation between genotype and phenotype is not as direct as in thegsimgle
disorders andestablishing associations between variants andplemdiseases and traits
becomes a lessmple and straightforwargsk(Hirschhorn & Daly 2005. Nonetheless, GWAS
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has been widely applied to the study of polygenic diseases andduaitsas diabetes, asthma,
cancercardiovascular and neurologidadisorders, obesity and elevated blood cholestevalls
Although several common genetic variam$luencing complex human diseases and tiagtge
been indatified, GWAS is unable to recover all loinvolved (Cooper & Shendure2011)
Moreover it should be emphasized that the majority of vaaantsdiscoverecby GWAS only
explain a small proportion of the genetic contribution to the pheneBg@nce andhus,cannot
be taken with full reliability as risk factors for disedQeieitschet al, 2012)

The secondiinitation concerns the rationale behind the GWAS approach. GWAS are mainly
based on a series of singteus analysis where each SNP is examined independently for
association with the phenotype through a statistical test that depends on the nature of the
phenotype (quantitative or categorical). Such gene selection approaches using univariate (gene
by-gene) analysis areasy to implement and to interpret and are computtjomexpensive
(Mooreet al, 2010) However,thesetraditional univariate models are often unable to deal with
nonlinear relationshipsand highdimensionaldata which are characteristic targe studies.
Additionally, univariate methods assunie existence of araple genetic architecture excluding
possible gengene interactiosn, which are known to occur complex diseases and traifghile

being part of the genetic architecture, ggeee interactionare likely to play an important role

in the genotype to phenotype mapping relaghip and should be considered in GWAS.

Modified versions of GWAS and complementary approaches have been proposed through the
years to overcome the drawbacks and improve the potential of GWAS. In particulafpoudti
analyseghat explore the interactions between SNPs have been investigated. However,-genome
wide studiescurrently generate between 500,000 and 1,000,000 markers and combinatorially
examining all possible pairwise or highender SNP interactions is a computationallieasible
approach(Bush & Moore 2012)

Strategies aimed to reduce the numberested SNPs propodbat the analysis should be
performed in twostages:in the first stage, a subset of likely associated genetic variants is
selected based on a chosen methoddlls singlelocus methods); anoh the second stage, a
desired multiocus analysis is performed on this filteradd reducedubset(Cordell 2009)
Although often employed in genetic analyses, filtering strategies might miss potential interacting
markers with small marginal effecas these will be missed and eliminated in the first stage of
SNP selection.
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Machine learning approaches such as br@sed methods or suppeector machines have been
used as a promising alternative to filtering algorithms in several association siiahe®( al,
2009;Li et al, 2011;Mittag et al, 2012;Yao et al, 2009) Popular treebased methods are the
Random Forests and the Randoungle which is an improved version of Random Forests
implemented to allow the analysis of highmensional dat§Schwarzet al, 2010; Winham et

al., 2012) These ensemble learning methods do not include the interaction betweepesNEs

but allow for theirinteraction during the process of tree contruction. In other words, the paths in
the treelike structures correspond to particular combinaion SNPswhich might mirror

potental interactions between them

Analysing all SNPs available for a genowale studyas well as existent SNBNP interactions
would be theideal scenario for GWAS. Despite the great effort ptd imying to solvethis
problem, there are still computationatatistical and logistical challengegich need to be
overcomeDue to the computationahd memory requirements inherdatthe analysis ohigh-
dimensional dataalgorithms with high statistical efficiency and computational performance are
necessary to provide faster analyses and to improve the findings discovered by current genome
wide approachefecently, multivariate methods have been developed to addrga®ihemof

SNP selection and their use GWAS has shown satisfactory resyotival et al, 2011;Zhou

et al, 2013; Zuber et al, 2012) Such multivariate methods implement polygenic modelling
algorithms which areable to simultaneouslynaly® multiple SNPs and account for their
dependenciewhile executingthe task in an acceptable amoohtime. Polygenic modelling is
viewed as a promissing and valuable appraachenomewide studiesand has beegaining

more attentioroverthe commonly used standard univariate methods.

Glycosylation is a polygenic trait characterised by the production of differentngbgnactures.
The levels of thesglycan products can be measured and considered as indiglteradtypes in
analyseshaving the same rationale as GWAS. Such glycome wide studies aim to get more
insights into the genetic regulation of the glycosylation process as well as into the association of

glycans with diseases.

This was the fundament fdne first comprehensive analysis oframon genetic polymorphisms
affeding protein glycosylation whictwas recently performed by combining hitiiroughput
glycan analysis with the GWAS&pproach(Lauc et al, 2010g. This pilot study conduetl a
metaanalysis of GWAS data for 13-flycan features in individuals from three European
SRSXODWLRQV 9LV .RNgycanDevBl®i6 harubN Qlatina were found to be
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influencal by a set of polymorphisms locatet three locicomprising thefucosyltransferase 8
(FUTB8), the fucosyltransferase 6 (FUT6) and ttepatic nuclear factor 1 alphaNIH1A) genes

A complementary studwas performed to include an additional population sample (Sweden) and
to extend the analyses to 46 glycosylation tr@itsffman et al, 201]). The results of the pilot
study were reinforced and three novel associations with glycan features wefedéntb-1,3-
glucuronyltransferase 1 (B3GAT1), solute carrier family 9, member 9 (SLC%®)
mannosyl(al,6-)-glycoprotein bi,6-N-acetylglucosaminyltransferase V (MGAT5) gendr

the first time high-throughput data from genomics and glycomidsr@ught together in an effort

to map the complex network of genes involved in the regulation of protgigddsylation and

to unravel the mechanisms behind the genetic associations observed.

Despite the optimisticesults achieved in these preliminary studiég polygenic nature of
glycosylation reflects itself in the still scarce understanding of the genetic regulation of
glycosylation.In this context, e polygenic modelling methoa®uld show their usefulness
fetching new polymorphisms related to glycosylation or to be used as a faster alternative to
GWAS analysis.

1.5. Immunoglobulin G: an N-linked glycoprotein

1.5.1. Structure and function of IgG

Antibodies, or immunoglobulins, are glycoproteins produced by the immune system in response
to bacteria, virus, toxins or other pathogens. Antibodies are released throughout the body to
mediate a variety of effector functions, aimed at identification, neutralization and removal of
infectious agents and their products. Usyalhe antibody is required to bind its antigen (a
specific part of pathogens which is unique to each of them) in order to trigger the effector

functions.

In mammals, antidies can be grouped accordiogtheir structure into five major classes, also
called antibody isotypes: IgA, IgD, IgE, 1gG and IgM; where the prefix Ig stands for
immunoglobulin. These antibody isotypes differ in their biological properties, functional
locations and each of them helps to coordinateapropriate immune response fogiaen

pathogen.

Immunoglobulin G or IgG, is the most abundant antibody isotype found in human blood
accounting for approximately 75% of the total immunoglobulins in plasma of healthy
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individuals. IgG is a major effector molecule of the humoral immune respyresetivating the
complement system and inducing phagocytosis in order to protect against bacterial and viral

infections.

IgG is a glycoprotein composed of two identical light chains and two heavy duainscted by
disulfide bonds and forming a tetramwith a Y-shaped structuré~igure 3). The structure of

IgG can be divided into two regions: the antigmnding fragment (Fab) comprising the arms of
the Y structureand thecrystallizable fragment (Fdprming the tail region of the “gtructure
These two regions account for the main biological activities of IgG: the Fab portion is
responsible for the recognition of pathogens by beathegsite to bind antigens; arde Fc

domain initiateghe effector functions by interactimgth cell surface receptors.

Figure 3. Immunoglobulin G structure. The Y-shaped structure dlie human IgGis composed ofthe Fab
region (responsible for the antigbmding activity) and the Fc region (responsible for the effector functions).
A single Nglycan is attached to each asparadif@-residue in the Fc portion and is showmed in thetri-
dimensional moleculeFour possible structures of fioked N-glycansare shown; themonosaccharides
represented afd-acetylglucosamine (blue squaremannose (green circlesucose (red triang®, galactose

(vellow circles) and sialic acid (pink diamongdsAdapted from New England BioLab@013)
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1.5.2. Glycogylation of IgG

Glycosylation of Fc fragments is fundamental for this domain to be able to mediate the effector
functions of the IgGlIn the glycosylated state, each heavy cludifgG has asinglebiantennary
N-glycanattachedo the highly conserved-§lycosylation site asparagine 297 of the Fc region
(Figure3). The two Nglycan moieties, also known as Fc glycans,caueial for the interaction
between IgG and the receptors, as demondtiatehe fact that interaction between the two parts

is lod in the absence of glycosylatiokgnekoet al, 2006) Fc glycans are beved to maintain

an open conformation of the heavy chains which is favorable to the bindig® @b receptors
(Anthony & Ravetch2010)

Glycosylation of IgG varies considerably due tmdifications of the lantennary core or
elongation of the arms of the Fc glycans through sugar additions. These structural alterations are
frequent and over 30 different glycans have been detected onnid@althy individuals
(Anthonyet al, 2012) However, certain glycan structures might alter the conformation of the Fc
region in a way that affects its affinity to receptors and, as a result, have a profound impact on

the effector functions of the 1gG.

One of the most striking examples is the presesfcterminal sialic acids which totally reverts
the innate function of 1gG. Sialylation alters the binding ability of IgG and converts I1gG from
having promflammatory into having aninrflammatory activity (Kaneko et al, 2006) The
potential antinflammatory behaviourmanifested by IgG has been used successfully in the
intravenous IgG therapy, a common treatment for a number of autoimmune diaseastsal,
2010)

A fucose residue attached to the glycan core is present in the majority of IgGs but rarely found in
other plasma proteins. This cdrecosylation seems to negatively influence the action of IgG on
the antibodydependent celnediated cytotoxicity mechanism, as opposed to a lack of core-
fucose which enhances the affinity of IgG to bind receptors of cells involved in the antibody

dependent celnediated cytotoxicity prmess Gornik et al, 2012)

The first report implicating 1gG glycosylation in disease dates back to 1985 and describes
decreased IgG galactosylation to be associated with rheunaatbrdis (Wuhreret al, 2007)

Since then, the interest in the potential iégG glycosylation in disease increased and several
studies followed reporting the presence of characteristic IgG glycosylation patterns in other

autoimmune diseases, infectious diseasesander.
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A correct glycosylation is of physiological importance for glycoproteins and IgG is a clear
example of that. Alternative glycosylation of IgG induces structural alterations in its Fc domain
which enable 1gG to perform completely different fuoes. In this way, IgG glycoforms play an

important role in the modulation of inflammatory respor(stsinsell & Davies1993)

Although the functions of alternative glycosylation of IgG have beesly®d in health and
disease, the molecular significance of these changes and the specific regofatios
glycosylation process astill mostly unknown.

1.5.3. Structural analysesof IgG

IgG is one of ie most studied glycoproteins iarms of structural and functional aspects of
glycosylation. The interest in IgG lies not only on its important biological activity in humoral
Immune responses but also on its glycosylation patterns whichbegreshown to be altered
under various physiological and pathologiiceonditions. Understanding thalternative

glycosylation of IgG requires a detailed analysis of the composition of the dgiggchime.

Recently, a high throughput method for the isolabéigG was developed and appliedthe
first largescale study of the IgG dglycome which showed a higker variability between
individualsthan that reported for the totalasma Nglycome(Pucicet al., 2011) Associations
between certain IgG glycosylation features and ageh as an increase of structures with
bisecting GIcCNAc and a decrease in galactosylation and sialylateye, observed in accordance
with previous studies which alsepored the dependence of glycosylatideaturessex and

pregnancyHuhn et al, 2009)

While the present thesis was progress and the analyses in completiargenomewide
association study of the human IgGgNcome was published_g&uc et al, 2013) Significant
associationsvith IgG glycanswere found for nine genetic loci. Whifeur loci comprie genes
encoding known glycosyltrafesases the remaining five loci have not been previously
implicated in protein glycosylation but comprise genes reported to be related with autoimmune

and inflammatory conditions.

In the studies concerning the analysis of human plasrgh/ddme, the broadpectrum of N

glycan structures considered are carried by many diverse glycoproteins which might be under
distinct glycosylation regulation. However, these glycan analygewt include any information

about the glycoproteins themselves in the sensetligaiglycan moieties examined are not

differentiated according to the glycoproteins from which they were released. Thus, the analysis
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of the entire set oN-glycan moities existent in the plasmeovides an overall descriptive and
quantitative view of the Mjlycome but overlooks subtle glycan structural fluctuations occuring

at the individual level of glycoproteins. Separating the glycans by glycoproteins and analysing
them independently has the potential to detect glycoprsf@uific glycan changes dissilated

at the plasma level, thus adding another dimension to the knowledge about glycosylation

regulation.

1.6. Aim and objectivesof the thesis

Major breakthroughs in methodological procedures created the possibility to reliably quantify
glycans in a highhroughput manner and allowed the first large scale studies reparting
comprehensive description of the behaviotihuman Nglycans and opossible causes behind

that behaviour These studies and their encouraging and promising results constitute the basis

and the motivation for the present research.

The aim of this thesis is to gain more insights into the genomic and environmental regulation of
glycosylationby usingadvancedioinformatics toolsAt the present stage of glycome research,

the field ofbioinformatics is required to develogdaptand improvecomputational algorithms

for a more thorough exploration and accurate characterization of the available spectrum of glyco-
related datgAoki-Kinoshita 2008) Threeisolated population cohortharacterisedn the level

of the glycome,genome and physiological/biochemical parameters were analysed as case

studies

Within the aim of the thesis and regarding the available data, the following objestives
defined

- to developa general data processing pipeline to treat and prepare the data for further
analysis;

- to investigate the existence of glypbenotypes, in particular glycan changes associated
with medical conditions such as diabetes

- to examine the presence of populatimmsed glycosylation patterns that could
characterisgeographically distinct cohorts;

- to explore associations between glycans and genotypes that could rrewesariants

influencing the glycosylation process
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Computationalmethodsdlgorithmspresent in literature were researched and evaldateitheir
suitability to fulfil the particular needs of each of the mentioned objectiSeseralmethods
consideredd be appropriate for the analyses were choSerte nethods intended for the same

type of analysis usuallgiffer in their principles and might yield different resuftsr someof the
analysesnore than one method was investigated. In such cases, tbenaarces of the methods
applied were compared and the agreement of their results was assessed. Exploratory graphical
methods were employed to enable the visualisation of rdsilts obtained with the

computational methods and facilitate their interpretation
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2. MATERIALS & METHODS

2.1. Study Populations

Data comsists of human samples from thr@iferent isolated population cohorts: the islaraf

9LV DQG .RUpXOD LQrk&dy eréhivelao [ Qcsttadaddividuals were recruited as

part of larger genetic epidemiology studies intended to irgadstigenetic variability anchap

genes associated with common complex diseases and disease traits in genetically isolated

populations.

The “10 001 Dalmatians” study of Croatian island isolates ineld@88individuals from Vis
island (Vis cohort)and969 LQGLYLGXDOV IURP.RR p¥a®&tDRudaeD &,G
2006; Rudan et g11999; Rudan et gl2009)

The Orkney Complex Disease Studyrkney cohor) includes 2095ndividuals from Orkney
Islands(Igl et al, 2010)

All individualsareadults over 18 years of agad he mentionedstudies were approved by the
approprate ethical committeedn all three population studiesblood samples were drawn,
biochemical and physiological traits were measured, lifestyle ardicateelated information

was acquired and DNA samples from individuals were genotigdkedving similar protocols

2.2. N-glycan Quantification Analysis

2.2.1. Plasma Nglycans

A high-throughput method was used to isolate and quantify the glycan structures prekent in
plasma samples of the individuals. The developed methodology allows a rapid and detailed
analysis ofa large number of samples by combining an@ll plate platform with quantitative
high-performance liquid chromatograpliPLC) profiling in an automated mannéRoyle et

al., 2008)

Prior to thechromatographic analysis, plasma samples are required to be preprocessed for the
release and labelingof N-glycans First, N-glycans are enzymaticallyeleased from
glycoproteins usingeptideN-glycosidase KPNGase Fwhich cleaves the linkage between the

core of the glycasmand the asparagine residue of the prot8econd since isolated Nlycans
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do not present anghromophores they are labeled with -@minobenzamide (2B) for
fluorescent detectiorAdamczyket al, 2012) Thelabeling of glycans is nonselective allogy

charged and neutral glycans to be aredysimultaneously.

The eleased andabeled Nglycans are then anabd by hydrophilic interaction high
performane liquid chromatography (HILICyith fluorescent detectioto identify and quantify
individual glycars present in the samples.

Glycan profiling aims to identify and assign glycans structures to the various peaks in the
chromatogram obtained on the basis of the elution positions of different glycandsiEpettific
purposethe measurecklution positions of glyans areconvertedo glucose units which are then

matched against reference values in the GlycoBase database for structure assignment.

A 2AB-labeled glucose laddés used as an external calibration standardhe assignment of
glucose unitsThe glucose ladder chr@togramcontainsthe elution positions (or retention
times) of glucose homopolymer species with different degrees of polymeriafibanng each
chromatographic peak to be expressed as a glucoseThng, a chromatogram of a certain
glycan poolcan be comparetb the reference glucose ladder and the elution positions of

individual glycans can be assigned wgllicose units.

The prediction of glycan structures basedgtutose unitvalues is possible due to the fact that
each monosaccharide present in gheicture has its own additional value. In this way, the
glucose unitvalue of each glycan structure is directly related to the number and type of linkage
of its constituent monosaccharides,,il@gherglucose unitvalues correspontb larger glycans
GlycoBase contains the HPLC elution positiexpressed as glucose unit values for more than
700 2ABlabelled glycan structures bothlked and Glinked (Campbellet al, 2008)

The identification of different glycan structuresfollowed by thedivision of the chromatogram
into certain chromatographic areas and the lgtemtificationof glycans on those areabBhe
chromatograms are divideitito severalpeaksbased on peak resolutiomd similarity of
individual glycan structuresachpeak containing more thn one glycan structuré-igure 4).

The amount ofjlycans present in each peakeigpressed as gercentage of the total integrated
area of the chromatogram and calculatedh@samount of total glycan structures the peak
divided by thetotal serum Nglycome;the percentages of all peaks add up to 100% for a single

chromatogramKnezevicet al, 2009)
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Figure 4. Example of achromatographic peak division for glycan quantification. Chromatogram was
obtained by HILIC and divided into 16 chromatographic peaks. Each peak contains more than one similar
individual glycan structures as shown. The amount of glycans present in each peak is expressed as a
percentage of the total integrated area of the chromatogram and calculated as the amount of total glycan
structures in the peak/the total serumgljficome; the percentages of all peaks add up @0%l
Monosaccharide abéviations: Fuc -fucose; Gal -galactose; GIcNAc- N-acetylglucosamine; Man —

mannose; NeuNAcN-Acetylneuraminic acid. Adapteddm Lauc & Zoldos (201Q)

Three separate chromatographic methods were used to antdigsglycans: HILIC, HILIC of
desialylated glycans and weak anion exchange-ighsureliquid chromatographyWAX-
HPLC). HILIC analysischromatogramweredivided into 16 groups named GIER16(Figure
5A). HILIC of desialylated glycans waserformedon releasedN-glycans after the removal of
sialic acids  sialidase digestiotreatmentand the chromatographic division resulted I8
groupsof desialylated glycansamedDG1-DG13 (Figure5B). The individual glycan structures
presentin each of the chromatographic peakof HILIC analysisand HILIC analysis afir

sialidase treatment argpecifiedin Supplementary table MWAX-HPLC separated glycans
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accordng to the level of sialylation, i.e. the number of attached sialic acidsnotmsialylated,
disialylated, trisialylated and tetrak/lated (Figure 5C). In WAX-HPLC, compounds are
separated and quantified depending on their charge density with higher charged compounds

having longer retention tinse

Figure 5. Plasma Nglycome chromatographic and quantification analysisTypical chromatograms from
HILIC (A), HILIC after sialidase digestion treatment (B) and WAIRLC (C) of Nglycans released from
human blood plasm&hese three chromatographic methods allow the division Esanp Nglycome profile

into 33 chromatographic peaks-glycansare separated into: 16 peaks with HILIC analysis (named GP1-
GP16), 13 peaks witHILIC analysis after sialidase treatmgnamedDG1-DG13) and 4 peaks with WAX
HPLC analysis (hamed SImonosialylated, S2 disialylated, S3 trisialylated, S4 tetrasialylated). Adapted
from Saldova et al. (2012)
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Additional glycan structural features, such as fucosylation, levajathctosylationlevel of
sialylation of biantennary structures and degree of branching, were approximated by adding the
glycanssharingthe samestructuralcharactestic from either HILICor HILIC after sialidase
treamentintegrated glycan profileg\ total of 13 glycan structat features were deriveathd are

presented irsupplementary table 2.

HPLC analysef plasma Nglycanswere performedby collaboratorsin the Glycobiology
Laboratory of Genos Ltd in Zagreb, Croatia, and in the National Institute for Biotechnology and
Training(NIBRT) in Dublin, Ireland.

2.2.2. 1gG N-glycans

IgG proteins were isolated and purified from plasma using a nowekfiorotein G monolithic
plate followed by the release and lald of N-glycans(Pucic et al.,, 2011) Fluorescently

labeled N-glycans were separated by ultra performance liquid chromatography (HIRLC).

There are twaersons of this technique: the “igel” approach used for the quantification of IgG
JO\FDQV LQ WKH papuvlaib@sGandRhepi¥auilon” approach used to quantify the
IgG glycans from the Orkney sampld$e two approaches maintjffer in the methodology of
the stepsinvolved: the filtration of plasma before isolation and purification of Ig@guns was
introduced in the irsolution version, the deglycosylationdene in solution conditions the in
solution method as opposeddel blocksused in the irgel method, microcrystalline celluloge
used for solighhase extraction to remove excess &R dye in the insolution method while
chromabgraphy paper is edl in the ingel method. Ovell, the insolution method has shown to
be less laborious, much faster and cheaper than thalimtgel approach. It should be noted,
however, that these differences in methodological procedures will lead to slightlemtiffer

quantification results.

Individual glycan structures in the chromatographic peakgidentified by mass spectrometry
The amount ofjlycans present in each peakeigpressed as a percentage of the total integrated
area of the chromatogramnd the percentages of all peaksld up to 100% for a single

chromatogram

IgG N-glycan chromatograms obtained with HILIOPLC were divided into 24 peaksamed
GP1GP24(Figure6) andthe composition of individual glycan structures contained in each peak
is presented inSupplementary table 3The minor peak GP3 was excluded from all the

calculations because its value was digantly contaminated as explained in Pucic e(2011)
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Additional glycan structural features were derivaad approximated from the ratio$ the 23
IgG original N-glycan peaksharing similar structural features total of 54glycosylation traits
were derived and both their descriptiamd calculationformula are available irSupplementary
table 4.

The analyses and quantification of IgGgNcans wereperformedby collaboratorsin the

GlycobiologyLaboratory of Genos Ltd in Zagreb, Croatia

Figure 6. 1IgG N-glycome chromatographic and quantification analysis. The IgG f§lycome was separated
into 24 chromatographic peaks (named &¥24) by HILIGUPLC. The amount of glycans present in each
peak is expressed as a percentage of the total integrated arealofotmatogram; the percentages of all peaks
add up to 100%. Adapted from Pucic et al. (9011

2.3. Feature Data ®ts

Eachindividual sample is represented by a plasyrglycan profile,an lgG N-glycan profile a

setof phenotype traits and a list of genotypes for several SNPs

2.3.1. PlasmaN-glycan profile data

The human plasma -§lycome was separated lfairee chromatographic analyses ir@8
different chromatographigeaks: 16 groups of glycans before desialylation from HILE
groups of desialylated glycans from HILIC after sialidase tmeatand 4 group®f differently
charged glycans from WAXPLC. An additional group of 13 glycan structural featunese
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derived based on the above measured chromatographic .p@&ales plasma profile of an
individual consists of a total of 46 traits divided into the 4 groups previously mentionter
referred to a&P (n=16), DG (n=13), Sialos (n=4) and Structural (ngly@ans

2.3.2. 1gG N-glycan profile data

The human 1gG Nylycome wasdivided into 23chromatographic peakshich were used to
derive 54 additionalglycan structural featurehe IgG profile of an individuatomprises 77
traits divided into 4 groupdurther referred to alwitial (n=23), Chargedn=17), Neutral (n=14)
and Neutral derivechE23 glycans.

2.3.3. Phenotype dita

Phenotype data is composed of personal and hedi#tted data as well as physiological and
biochemical traits.Personal data (such as name, age, gender and education level), lifestyle
variables (such as smoking status and diet) and medical conditions (such as presence of certain
diseases and drug intake) were collected based on extensive questionS8avesl
physiological traits were measured including height, weight, blood pressure, waist circumference
and skinfold. Biochemical traits measured throudgiochemical analyses includeviels of
creatinine, uric acid, HDL, LDL, total cholesterol, tgigerides, insulin, fibrinogen and blood

glucose.

Due to the fact that different phetypes were available for each populatiosgtof phenotype
traits collected for all populations waselected. The following 21 phenotype traits were
considered for the present analysage, sex, systolic and diastolidood pressuréSys and
Disys), total cholesterol(Cholest) HDL, LDL, triglycerides (Trigy), blood glucosginsulin,
glycosylatedhaemodtpbin (HbA1c) fibrinogen (Fibrin), creatinine(Creat) calcium uric acid
albumin, body mass indeXBMI), waistto-hip ratio (WaistHip) FAT, waist and hip
circumference(WaistCir and HpCir). In parenthesis are indicated the short names of the

phenotypes whiclill appear in the figureshown in the present thesis

The diabetes status of amdividual was one of thenedical condition collected The level of
glycosylated hemoglobifa marker br average blood glucose levels over prolonged periods of
time; HbAlc in shorf was used to classify the individuals into one of the three groups: non
diabetics HbAlc < 6%, pre-diabetics(HbAlc 66.49%and no record of diabetes in medical

history) and diabetics(HbAlc >= 65% or physician reported diabetes in medical history or
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treatment with antdiabetic medication The diabetes status was available for a total of 3248
individuals IURP 9LV IURP .RUpXOD DQG IURRe 2UNQF

assigned as nodiabetics, 233 as pidiabetics and 279 as diabetics.

2.3.4. Genotype chta

DNA samples were genotyped according to the manufacturer’s instructions on Illlumina Infinium
SNP bead micrarrays (HumanHap300vifor the Mishort,HumanCNV370v1 for the RUp X O D
cohortandHumanHap300v2 for the @ney cohort). Genotypes were determined using lllumina
BeadStudio softwar@Laucet al, 20103.

Approximately 300.000 SNPs were genotypederred further on as the all SNPs setgluding
about 900 SNPs known to belated with glycosylatiofreferred further on as the glycaglated
SNPs set) Genotypingwas successfully completed on 986 individuals from ,\V@l4 from
. R U p 2@ 890 from @kney.

2.4. Data Preprocessing

Realworld data tend$o be incompletdlacking attribute values of interest)oisy (containing
errors or outliersand inconsistentcontaining discrepancies in codes or ngni€hakrabartiet
al., 2009)

Data preprocessing consists of an ensemble of techniquesding data cleaning, data
integration, data transformation and data reduction, aimed to improve the quality of the data
be analygd Data preprocessing metl® are applied to rectifthe databy fillin g in missing
values, reraving erors, correcting inconsistencies toansforming data into appropriate fam

for analysis.The use of these techniques is not mutually exclusive and uadellyof them are
applied sequentially to the same data set.

The mgjority of studies concerning large size populations and the collection of various feature
data sets for those populatidinequently face the problem of having sevesdords which are

not complete.The reasons accounting farcomplete and inaccuratecords vary from the
impossibility of trait measurements and incorrect data entry to errors occduimyg the
methodological procedures.
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The quality of data is of extreme importance am$ la great impact on the accyraand
interpretation of theresults for knowledge discovery. Therefore, data preprocessing is an

important routine to consider/bear in mind prior to data analysis.

The four available featurelata sets (plasma -§lycan profiles, 1IgG MNglycan profiles,
phenotypes and genotypdsliow the redrworld databehaviourandas such were subjedt¢o a

data preprocessing pipelias described below.

2.4.1. Data quality control

Data quality control was performed in order to eliminate the most incomplete samples and
decrease thamountof missing data. The ality control procedure was applied in the same

manner for all populations.

Plasma and IgG Mlycan and phenotype data sets were filtered by removing samsig
50% or more of the features in questidhe removal of all samples lacking at least oné was
not applied because it would greatly reduce the size of the study populations and lead to loss of

information.

Quality control of genotype data aing filter out not only individuals witta smallamount of
genotype data but alsSNPswhich were notresolved fora large number ofndividuals.
Genotyping quality control was performed on the basisheffollowing inclusion thresholds
criteria individuals were excluded when having a genotsgie lessthan 97%, i.e. with more
than 3% ofgenotypesnissing SNPs were removed when having a call rate less thf#n ®nor

allele frequency less tha®®or HardyWeinberg equilibrium pralue less than 1x10

While the IgG and phenotype profiles were rather complete in all populations, the plasma
profiles of a large part of the Orkney samples was lacking more than 50% of data and the
JHQRW\SH GDWD ZDV PDLQO\ LQFRPSOhtWwitehtelf ddta/quaiyG .R U

control on population sample size is summarized in Table 1.
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Table 1. Data summary for the study population cohorts.For each population the following values are
indicated the initial number of individuals, the remaining individuals after data quality control by feature data
set and the final sample size after data integratiop.cBborts: Population cohorts; Plasma and IgG profiles:

refer to plasma and IgG-blycan profiles.

Pop. Plasma pro:tlles IgG proﬂl::‘ts Phenotypf(tes Genotyp(fets Common
after after after after i
cohorts | initial filtering® initial filtering® initial filtering® initial filtering® Individuals
Vis 1008 995 890 890 1008 1006 986 858 735
.RUpPpXOT®I 949 914 914 969 959 944 887 823
Orkney | 2095 1475 1770 1770 2095 2077 890 890 770

?Filtering was done by excluding samples with 50% or more of the features missing.
® Filtering was done by applying a missirege per persoaf 90%.

¢ Individualspresent in alfour feature data sets withapopulation cohort.

2.4.2. Data integration

Gathering different kinds of data sets for a sirgjledy population of a large sample sttearly
provides a significant amount of data (and information) for the analysisever, dealing with
these various data sets afterwa be challenging and troublesaniarticularly, when
preparing data for analysis a certain level of data inconsistency is often encquoteredance
it might happen that some samples are present in some dditdhsets but nonexistantthe rest.
In such cases, data integratianperformed to properly combine data extracted from multiple

sources into a coherent whole.

In order toachieve data consistency within a population, the individuals phegediit feature

profiles were identified and their corresponding datected to be used the analysesThe

final number of individuals after data integration is shaowitable 1. This step greatly reduced

the number of available samples for each population, especially for Orkney where approximately
half of the samples was not genotyped. Although global data intagratis performed, pairwise
integration i.e., integrating data from only two feature data sets (for example, plasma profiles
and phenotypes) according to the analysis to be performed might be a better approach since a
smaller number of samples would benehated and, consequently, more samples would be

considered for analysis.

Data integratiorand data quality control also affected the number of individuals avidilable

diabetes status which was drastically reduced to less thaof lladf original numbre(Table 3.
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Table 2. Data summary for the diabetes data seNumber of samples per diabetes groupndiabetics pre
diabeticsand LDEHWLFY DQG WKH FRPSRVLWLRQ RI HDFK JURXS LQ WHU
In parenthesis is shown the number of samples for each group and population before the data quality control

and data integration steps.

. Populatims
Diabetes status - Total for groups
Vis .RUpXOD Orkney
Non-diabetics 449 270 585 (2736) 1304
Pre-diabetics 33 59 58 (233) 150
Diabetics 47 45 35 (279) 123
Total for populations (692) 529 (495) 374 (2061) 674 (3248) 1577

The use oflifferent SNP arrays for genotyping and theesholdasmposed in the qualitphase
controlresultedin different set of SNPs available for each populatiororder to ensure that the
samecore of SNPs was used throughout #malysesand be able to comparesultsbetween
populations the sebf SNPsshared byall three populations wasbtained and the corresponding
genotype data extracted for each populafidre final common set of SNPs comprisdstal of
275895 SNPs, including 971 glycosylatimmlatedSNPs

2.4.3. Data normalization

Normalization is commonly used to obtain a data set where all the variables aretlvateame
value range and can farly comparedSeveral data normalization procedures exist; however, it

is possible thiathey might affect the outcome of the analysis.

Data normalization was used to adjust the values of the features to a common scale and allow a
better comparison of features across populations. The approach selected to normalize the glycan
and phenotype da was the medn normalization which was intended to center the data to have
median zero while keeping the data distribution specific of each populdinentransformation

was accomplished by subtracting the median value of feathre to the correspondimgjtial

individual value.

2.4.4. Data correction

Data correction concerned the removal of batch effects present in IgG glycans and the age and

sex correction of both plasma and IgG data sets.
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The 23 InitiallgG glycars were corrected for batch effeatesulting from the use of different
platesin the 1gG quantification analysi§irst, a log transformation was applied to each glycan
group to obtain normally distributed variabl&econd, batch correction was performed using a
linear mixed model where ¢hmethodologicalsources of variation (plates and columnghe

plateg were described as random effedtbe estimated batch effeaafidom componeptvas
disregarded in the calculation of the corrected values which express only the normal biological
varnation of glycans Third, the exponentials of the corrected values are taken to retuvaltles

to their original scale. Aelmer function as implemented in the Impdckage for R was used for

the purposef the batcheffect correctior(Bateset al, 2013)

N-glycans have been reported to be associated with age and gender and it has been suggestec
that the influence of these variables should be taken into account when investigating the
relationship between glycans and phenotype traits and in genome widatamsastudies Ding

et al, 2011;Huhnet al, 2009;Knezevicet al, 2009) In this way, it is excluded the possibility

that observed associations between certain features and glycans are a reflection of a background
influence of aging or gender upon these featuressnd and IgG MNjlycan data wasorrected

for age and sexo eliminateany dependencie®f these wo variables with Nglycans The
correction was performed with a generalized additive model and the resulting residuals were
considered for analysisGeneralized additive models use a local scoring algorithm which
iteratively applies a smoothing functiom the data, similar to a locally weighted regresskuon.

each predictor variable in the model, the smoothing functiothi#slata by taking into account

the neighbourhood of each point being fittdthe gam function as implemented in the mgcv

package foR was used for the age and sex cdivacof glycangWood, 2011)

The age and sex correction was done in two different ways based on whetparpose of the
analysiswas to compareéhe glycephenotypecharacteristicof populations or to find general
associations between glycans and phenaifg¢Ps. To compare populations and seaifohn
particular glycephenotype features capable of distinguish thglycans were first normalized
independently for each population and thies age and sex correctiaas applied to the pool of
the three populations, resultimg a data sebhavinga total of 1990 individualsPerforming the

age and sex correction while considering the three populations as a whole assumesgeat the
covariate has the same distribution across populations. In this way, the age effect is kept constant
across populations and noticeable differenbetween populations can be regarded as a
consequence of the population structiteelf. To investigate potential association patterns
existing between glycans and phenotypes and between glycans and ti&ilPsan be
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generalizedthe age and sex correctioras done separately for each population, resulting in a
data set having a total of 2063 individual$is approach ensures that the population effect on
data is removed and, consequently, analysis intended to search general association trends
between vadbles can be compared across populations and can be donelmeehgopulations

as a whole.

2.4.5. Data removal of outliers

Outlier samplesvere removed after age and sex correctayneach glycan measure to account

for errors in quantification and to eliminate individuals not representative of normal variation

within populationsAn individual was classifiedo be an outlier if itgesidual measure for the

trait was more than 4 standard deviations away from the md#rmughin commonpracticea

data point isconsidered an outlier if the corresponding residual is 3 or more standard deviations
from the mean, dessconservative threshold of 4 was applied in order remove only extreme

outliers. The age and sex correction model \agsinfit to the data sets withu the outliers

2.4.6. Data imputation

Several statistical tools and algorithms either discard by dedayltrecord that has a missing
value or require complete record® overcome these problems imputation techniques are often
carried outlmputation is the process of replacing missing values with a probable value based on
the rest of the available data while preserving all the records in the data set.

Although the majorpart of missing datan the fourfeature data sets was removed when data
qguality control was performed, incomplete records with minimal amount of missing data
remained.Missing data in Nglycan profiles and phenotypes was handled by imputing the
missing values with the median of the corresponding trait wheméssng genotypes were
replaced wth the most common genotype found for each SSiRiilarly to data normalization,

various techniques can be applied to impute missing data and the approach chosen here was just

one technique among the various existing possibilities.

2.4.7. Data comparison

The insolution and ingel methodsused for highthroughput quantification of 1gG Jglycans
were compared by analysing 438mples from the Orkney cohort which had the Ig@ly¢an

profiles measuredith both methodsThe agreement between the two methods wassssd by
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computingtheir linear correlation after age and sex correction of the @a&m function of the
statspackage for R environment was used to compute the correlation coefficients.

2.5. Computational Tools

2.5.1. R statistical package

R is an open source programming language and environment for statistical computing and
graphics(R Core Team2013) R integrates a wide range of methods designed to exploréndata

a variety of ways such as modlkng, classification and statistical analysis, and to graphically
display data in a comprehensive manner to facilitate and improve data evaluatoome R
functionalty is extended byallowing uses to define newWunctionsandvia additionalpackages

which are freely available and provigeoupsof functions developed for specific analysis

The exploratory analysis of the datasmainly performedin the R programmingnvironment
(version 3.0.1) usingeveralspecializedpackagesaccording to the needs the analysis to be

carried out

2.5.2. PLINK

PLINK is afree, opensource whole genome association analysis toolset developed to improve

and facilitatecomputational analyses @rgescale genotype datRrcellet al, 2007)

PLINK was used to perfornthe genotypequality control throughthe commandsreserved to
specify the inclusion thresholds: --mifad the missing rate for pers@walue of 0.03)--genofor
the missing rate per SNPalue of 0.05)--maffor the minor allele frequendyalue of 0.02) and
--hwefor theHardy-Weinberg tesfvalue of 0.0000001)

2.5.3. Perl programming language

Perl is a highlevel and genergburpose programming language initially developed for text
processingbut rapidly extended to areas like system administration, web development and
graphical programmin(Perl 2013)

Perl was used to write auxiliary scripts mainly intended to perfasks of data manipulation
with the purpose of transforming and modifyirge tdata format and/or structure into a suitable

format for following computations.
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2.6. Computational Methods/Algorithms

Several machine learning, data mining and statistical methods as well as different graphical
representation approachegre applied to analgs visualiseand model the data and to derive

relevant biological information.

2.6.1. Nearest neighbairs computation

Althoughthe human plasma glycome is very stable and is similar among most individuals, some
individuals with a glycan profile showing deviations from this normal glycan profile were
observed and referred to as outlid@rs.form limited size groups of individuals sharing the same
profile characteristics as the outliers, computational identification of groups of nearest neighbour

individualswas carried out as described bel®apadiagt al, 2004)

Glycan profiles were normalized for age and gender differences and scaled to the mean residuals
of linear regressionndividuals presenting the masimilar glycan profiles to single identified
outliers were determined using a consensus scoring of pairwise distances between vectors
containing measured glycan valud3asically, the five nearest neighbors.€. the individuals

with the smallest respective profile distances) were calculated for each osithigifive distance
calculation methods: maximum value (maximum difference in any coordinate dimension);
Manhattan (city block); Euclidean (square root of the sum of squared vector coordinates);
Canberra (sum of differences between the vector coordinaed) Minkowski generalized
distance of order 4 (fourth root of the sum of vector coordmatised to the fourth power).
Neighbors occurring in a group of five nearest neighbors using at least two different methods

were selected as true neighbarsl trated as a group

2.6.2. Clustering

One of the most important goals of unsupervised learning is to discover meanlogfets in
data.Cluster analysis, an approachutassupervised learningims to discover groups, or clusters,
of data points which belong togetr because they are in some way similar to each other.
Although there are hundreds of published clustering algorithms, there is no atgoeithm that

can be applied to all clusteglated problemdnsteadthe most appropriate algorithm should be
chosen based on the capacity of utsderlying cluster model to fit thédata set propertiem

guestion Andreopouloset al, 2009)
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A popular clustering algorithms employed in a broad range of areas iseals algorithm

which attempts tartition the data points intodtusiers ® as to minimizeéhe sum of squared
distancedetweerthe data points and their nearest clusterazeAtmajor drawback oK-means

and similaralgorithmsis that thenumber of cluster§k) is often required to be specified prior to

the analysis which is not always desirable. Another issue concerns the assignment of the initial
cluster centers which is randomly performed; an inadequate initial choice of centers might lead
to poor results. Thki is the reason why -Kheans is often rerun several times with different

initialization centers in order to be able to find an acceptable solution.

Affinity propagation is a clustering approach that simultaneously considers all data points as
potential cerdrs, or exemplars, and recursively exchanges va@tgeded messages along the
network formed by these data points until a higality clusteringsolution is achieved as
illustrated in Figure/A (Frey & Dueck, 2007) Affinity propagation takesneasures of similarity
between data points as input and transmits two types of messages between data points which are
updated during the messagassing procedure. THeesponsability’message, defined as,Kj,

Is sent from data pointtdo candidate exemplar &dreflects the accumulated evidence for the
affinity that point ihas for choosing as its exemplaFigure 7B). The “availability” message,

defined as @,k), is sent from candidate exemplartdk point i and reflects the accumulated
evidence for how appropriate it would be for poirib ichoose poink as its exemplaFigure

7C). Combining these two messages allows the identification of exemplarsugh this
dynamic processf exchanging messages, the appropriate number of centers (and thus clusters)
emerges iteratively without having to specifybeforehandBesides the similarity matrjxhe
individual tendencies of data points to become exemplars, calped preferencescan be
specified in the affinity propagation clusteririgput preferences can be chosen individually for

each data point or can be a shared value among all data points (meaning that all data points are
equally suitable as exemplarghe value of the jput preferences influences the number of
clusters produced and is usually set to the median of the input similarities (resulting in a

moderate number of clusters) or to their minimum (resulting in a small number of clusters).

The affinity propagation clustering was applied to analyse the internal structure of the population
cohorts and to explore the glyptrenotype signatures of the observed clusters.

The apduster package for R environment implements the affinity propagation clustering
(Bodenhoferet al, 2011) The apclusterfunction was employed when the analyses were

performed without a prdefined number of clustersh@& input preferensewere choosen as a

41



common value for all data points and its optimal value for clustering was searched by setting the
g paameter to 0 and 0.5, corresponding to the minimum and median \afluée input
similarities respectively.The apclusterKfunction was used to analyse a specific number of
clusters The desired number of clusters was set with thgakameter and the paramefec

which controls the percentage that the number of clusters is allowed to deviate was set to O to
have exactly Kclusters.In both cases, the measure of similarity between samples was taken as

the negative Euclidean distance computed based on the glycan or phenotype profiles.

Figure 7. Principles of the affinity propagation algorithm. (A) Gradually emerging clusters during the
messag@assing procedure. (B) The “responsability” message, r(i,k), sent from data point i to candidate
exemplar point k. (C) The “availability” message, a(i,k), sent from candidate exemplar point k to point i.

Adapted fromFrey & Dueck (2007)
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2.6.3. Principal component analysis andpartial | east gjuares regression

Multivariate statistical analysisnvolve modelling data sets oftewith a large number of
explanatory variablesvhich do not have equal relevance to the modelditionally, the
organization of such higtimensionaldata cannot be spatially visualizedhus, variable

selection and dimension reduction are important taskaultivariate analysis

Principal Component Analysis (PCA) and Partial Least Squares (PL&je multivariate
techniquedor dimension reduction and aparticularly useful when the explanatorgriables

display a high degree of correlati@daitra & Yan, 2008) The principle of both methods is to
convert a set of correlated explanatory variables to a set of independent synthetic variables
(defined as linear combinations of the initial variapleg transforming the data into a new
coordinate systenbDespite the fact that the basic idea is similar, it should be noted that PCA is a
type of unsupervised analysis used to explore and visualise a single set of variables
(explanatory), while PLS is a supervised analysis for correlating two sets of variables

(explanatory and response). The main characeristics of each method are outlined below.

PCA determins linear combinations of the explanatory variables, cgbliedcipal components,
that explain most of the data variability withhé first princpal component accountingr as
much of the variability in the data as possitdkowed by the other componentsdered by the
amount of variance explainéMortsell & Gulliksson 2001) In this way, PCA projects the data

into a lower and more tractable dimension without losing too much information.

PLS decomposes simultaneously explanatory and response variables into linear combinations,
called latent variablesuch that the covariandgetween them is maximizedin an iterative
process, PLS seeks for the latent structure in the explanatory variables that bess thelain
latent structure accounting for the maximum variancthénresponse variabl€$obias 1995)

Partial LeastSquares Discriminant Analysis (PL3A) is a variant of PLS used when thds a

singleresponse variable

The PCA and PL®A methods were uskein an attempt to differentiatte samples according to
populations based on plasma profiles, IgG profiles and phersotgpd tosummarize the
differences that most influence the achieved separation

The mixOmicspackag for the R environmentledicated to the integrative analysis of ‘omics’
data, contains an implementation of these two technifiiee€aoet al, 2009) The functions

pcaandplsdawere used to perform the PCA and PRA& analyses, respectively. The package
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also provides several integrative techniques to analyse highly dimensional data sets as well as
numerous possibilities of graphical repentations to help interpréte results.

2.6.4. Discriminant analysis of gincipal components

Multivariate statistical approaches have been applied to investigate the genetic structures of
biological populations. In such studies, the aim of multivariatehaust is to detect a set of
alleles that best reflects the genetic variation present among the analysed indivitlisals.
genetic variability can be decomposed into two components: the begn@gm-variability
concerning the genetic structure of populations and the wgtioup variability related to the

general random genetic diversity exist@figure8A).

Approaches like the previously mentioned PE€#ek to describe the overall variability of data
(including both between and withgroup variability) and tend to overlook the divergence
between groupgFigure 8B). Discriminant Analysis (DA) isan alternativemethod that ha
almost theopposite rationale in the sense that it tries to model genetic differences by maximizing
the betweergroupsvariability while minimizing the withiagroup variability (Figure 8C). The

linear combinations of explanatory variables resulting from DA are called discriminant
components or functiondJnlike PCA which does not provide a group assessmensurea
essential to study population structures, DA is used when groups are known a priori and is able
to predict category membershigowever, the performance of DA when appltedyenetic data

is compromised bthe inherent characteristics of the degéssuch as the larger number of SNPs
when compared to the number of samples dnel high level of correlatiorpresent between
SNPs
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Figure 8. Fundamental difference between PCA and DA(A) The diagram shows the essential difference
between Principal Component Analysis (PCA) and Discriminant Analysis (DA). Individuals (dots) and groups
(colours and ellipses) are positioned on the plane using their values for two variables. In this space, PCA
searches for the direction showing thegést total variance (doted arrow), whereas DA maximizes the
separation between groups (plain arrow) while minimizing variation within group. As a result, PCA fails to
discriminate the groups §Bwhile DA adequately displays group differen¢€}. Adaptedrom Jombart et al.

(2010)
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DiscriminantAnalysis of Principal Components (DAP®) a new multivariate method for the
analysis of genetically strugted populations developed to allow the DA principle to be applied

in the analysis of large genetic datlorhbartet al, 2010; Rasmusseret al, 2011) DAPC
combines the capabilities of both PCA and DA for a better discrimination of genetically related
individuals into predefined groups. PCA is itially employed for dimensionality reducti@nd

for elimination of correlations between variables, in order to obtain a small number of
uncorrelated variables which can then be subjected to DA. The DAPC method allows for a
graphical assessment of betwgmpulation differentiation through scatterplots of discriminant
functions and derives group membership probabilities which can be considered as indicators of
how clearcut the population clusters are. Moreover, DAPC providemeasure of allele
contributions to the structures identified which can be used to fetch the alleles that most differ

across populations.

The DAPC technique was applied in an attemptléssify the three population cohorts and to

investigate the genetic background behind it.

The dapcfunction of the adegenepackage for the R software implements the DAPC method
and was used to perform the analy§&&smbart 2008;Jombart & Ahmed, 2011)The optimal
number of axes toetain in the PCA step of the DAPC algorithm (defined by the n.pca
parameter)was estimated using the optimalR@hction and the obtained result used in the
DAPC. In some cases, the analysis was also performed with a different number of principal

componentgor comparison purposes.

2.6.5. Random Forestsand Random Jungle

Random Forests (RRre an effectivanachine learningalgorithm usedor both problems of
supervised dlassifcation and regression) and unsupervisearning (Shi & Horvath, 2006;
Svetniket al, 2003) RF grows an ensembl of classification tresisich individual results are
aggregated to obtain the final predictions. The layer of randomness in the ionesbduced by

two main aspects in which the Rifees differ from the standard decision trees: random inputs,
each tree is independently constructed using a bootstrap sample from the data set (know as the
bagging method); and random features,heacde of the tree is split using the best among a
subset of variables (predictors) randomly chosen at that mbdeconstruction of the individual

trees in RF is depicted in Figu®and summarized below. Considering a data set haNing

samples and Npredictor variables:
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1. Draw with replacement &ootstrap sample consisting of N samples from the original
data.

2. At each node ithe treerandomly selectn variables fronthe entire set oM posssible
variables
Find the best split at that node among the m randomly selected variables.

4. lIterate the second and third steps until the tree is fully grown.

A specific number of trees can be achieved by repeating steps 1 to 4 a desired number of times
(for the theoretical background behiRIF see Breiman(2001)).The number of variables
randomly sampled as candidates at each node and the number of trees in the forest are the only
parameters that need to be specified when running the algofitienprediction of a new sample

is done by running down its corresponding vector of variables through each of the grown trees in
the forest. Each tree will give its owfassification for the new sample and the forest will choose

the classification having more votd3esides yielding a classsification result, RF additionally
provides ameasure of themportance of each predictor variapés useful feature to estimate the

contribution of the variables to the classification.

Figure 9. Diagram of the Random Forest algorithm The description of each step is described in the main
text. Adapted from Moore et al. (2010)
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RF was employedtundertake the classification distinct populations andeé classifcation of
diabetes statusased on glycan profiles and phenotypic dBtasma glycans, IgG glycans and
phenotypedeature data sets weseparatelyusedas predictor variableghile population and
diabetes classes were used as response vari&oleshe classification problenthe samples
were divided into a training set contaning 70% of the samples and a testoogtseting 30%

of the samples.

TherandomForespackage for R environment implements the algorithm described and was used
to address thawo classificationproblems(Liaw & Wiener, 2002. The number of trees to grow

was set to 5000 (defined by the ntieg&tion) and the number of variables randomly selected at
each split was left to default that is sqrt(M) wheresMhe total number of variables considered

(defined by the mtry option)

Random Jungle (RJ) is a recently developed alternative which allows the rapid analysis of large
scale data present in genomile association studi€Schwarzet al, 2010) RJimplementsall

the featuresavailable in the original RFs but it is structured and designeddty®d large data

sets. Additionally, RJ is able to perform on multiple CPUs when available. When applied to
genomewide data, the computational performance of RJ in terms of computing time and
memory usag&ereshown to besuperiror to those of the onm@l RF implementations while still

yielding valid results.

RJ was employed in three different scenarith& classification of distinct populations, the
classification of diabetes groups and the investigation of possible associations between glycan

profiles/phenotypes and SNRs.all casesgenotypes were taken psedictor variables

The RandomJunglsoftware implements this improved version of RF anfdeisly available for
download(Random Jungle2013) In the classification problems the rjunglespafigection was
used while in the regression problem the rjurfglection was appliedThe rjunglesparsés the
same program like rjunglbut uses less memory and data values can only be 0, 1, 2 (and 3 as

missing coding). The RJ parameters defined émheproblem are shown irable 3.
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Table 3. Random Jungle algorithm parameters. Random Jungle was applied to three case problems: the
classification of distinct populations, the classification of diabetes groupthamutediction of glycan levels

based on the genotyp@he tree typdor classifier type) and the number of trees in the jungle were set
according to each problem while the number of predictor variables randomly sampled at each node of the trees
was left to default in allases. Below the name of the parameter in parenthesis are the corresponding options

used when invoking the rjungle rjunglesparse&eommands.

Random Jungle parameters
Case problems Tree typ8 | Number of tree® | Number of sampled variabfes
-y) (-1) (-m)
Classification of Populations 1 800/1000 default
Classification of Diabetes 1 800 default
Regression on glycan levels 3 100 default

®The tree type was set to y=1 for classification with numeric predictor variables and categorical response variables
and to y=3 for regression trees with both numeric predictor and response variables.

® In the classification of populations case, the nunaférees was chosen to be t=800 when using all SNPs and to
be t=1000 was set when using the set of GlycansRelated SNPs.

° The default is the square root of the number of predictor variables.

2.6.6. Correlation adjusted scores

The correlatioradjusted {score (CA scorefor binary respons¢sand the correlatioadjusted
marginal correlation (CAR scoréor quantitative responsegsre two multivariate statistics
recently introduced (Zuber & Strimmey 2009) These two measures are mudriate
generalizationsof the standard univariate test statistics that explicitly included in their
formulation the correlation existent among SNRKhough initially suitableto analyg only
relatively large data sgtnew improvements in the algonitis currently allow theicomputation

on large scale datalhe variable selection based on these measarafiownto be highly
efficient andto evenoutperformboth uni and multivariate competing approact{ésberet al,

2012) Additionally, the squared scores of these statistics can be regemdauiral measures for
SNPimportanceand the cumulative sum of SNP importance can be regarded as the coeficient of

determinationgroportion of phenotypic varianaxplained by SNPs)

Theseadjustedscores were applied to the classification of distinct populattbesclassification
of diabetes groupsand the investigation of possibl@associations between glycan
profiles/phenotypes and SNPs.

Thecarepackag for R software implements the original and improved versbtise measures

and was used for the above mentioned analyadser & Strimmey2011)
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2.6.7. Genomewide dficient mixed model associathn

Despite being widely used in genetic analyses with rather overlapping puyrlrosas mixed

models (LMM) and sparse regression modelse a quite different rationaleMM applied to
polygenic modelling assume that every genetic variant affects the phenotype, whereas sparse
regression models assume that a relatively small proportion of all variants affect the phenotype.
These two different assumptions will yield different results depending on the real genetic

background of the phenotype.

Bayesian sparse linear mixed model (BSLMM) is a hybrid type of modelling that combines the
advantages of botbMM and sparse regression mod@sou et al, 2013) The model behind

can be interpreted as assuming #lavariants have at least a small effect and that a part of the
variants have an additional effect. BSLMlds two important estimatiomeasuresthe total
proportion of variance in phenotype explained by both random and sparse effects together,
denoted as PVEand the proportion of genetic variance explained by the sparse effectgiterms

by the additional effects of certain variants), denoted as. PGRough the PVE estimatiocan

also be obtained with LMM and sparse regression models, #&Eeature specific of BSLMM.
These estimates can help in the persisbeablemof "missing heritability" byunveiling new
potential effects of variants and, thus, contributing to a better understanding of the underlying

genetic architecture of compleisdases.

The univariate linear mixed model and the bayesian sparse linear mixed model were applied to

explore associations between glycan profiles and SNPs.

The GEMMA software(GEMMA stands for Genomedde Efficient Mixed Model Association
algorithm) implementsboth algorithmsandis freely available for downloaGEMMA, 2013;
Zhou & Stephens2012) The main gemmacommand was run with thdslmmoption to fit a
BSLMM (with samplingrelated parameters set to w=1000 and s=1000) and with-Ilthen

option to perform association tests with a linear mixed model.

2.7. Statistical Methods

A quantilequantile plot (known as @ plot) was usedfor assessingvhether the glycan
variables were approximately normally distribut@thta not shown)Since the majority of
glycans showed a namermal distribution, thenonparametricWilcoxon ranksum test (also

called MannWhitney U tes) was used toassessthe statigical significance of pairwise
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differences betweeglycan and phenotype levels of the particular groups ardalyée built-in
functionscorresponding to the mentioned tests were used as avandhkestatspackage for R

environment.

Bonferronicorrection was applied to adjystvalues derived from multiple statistical testhe
correctedsignificance level varied according to the analyses performed and is indicated through

the text whenever the analyses are described.
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3. RESULTS

3.1. Data Preprocessing/Analysis Pipeline

In order to improve data quality, it is not uncommon to apply certain preprocessing methods to
the data of interest prior to data analysis. The choice of the preprocessing methods to be used
depends on the nature of the data and vavigs the type of analyses to be performéthe

feature data sets analysed in the present stydlgsma profiles, IgG profiles, phenotypes and
genotypes- were subjected to a data preprocessing pipeline which included data quality control,
data integratin, data normalization, data correction and data imputation, as described in detail in
section2.4.

Additionally to the above described preprocessing methods, a comparison of the gel and solution
methods used for IgG glycan quantification was performed. Since the IgG glycan profiles were
PHDVXUHG ZLWK WKH JHO PHWKRG IRU helsvluto® @eth&®lUdgy X OD |
Orkney, an evaluation of the agreement between the two methods was necessary to allow a
proper comparison and interpretation of results from analyses involving the 1gG profiles of the
three populations.

For the purpose, the IgG gl levels measured with both methods for a small set of Orkney
samples were quantitatively compared. Several glycan groups presented a smaller range of
values with the solution method than with the gel method, such as IGG1, IGG2, IGG16, IGG19,
IGG20 and 1&21 (Supplementary figure 1). This behaviour was also observed when comparing
the raw data of the three populations with Orkney samples showing lower glycan lenélfsstha
DQG .RUpXOD GDWHe re&sRte/ ard K& 42dpally unexpected in the light of the
differences in methodology (explained in sect®p.2) and the typef glycan structures present

in each peak. On the one hand, IGG1 and IGG19 are themselves low intensity peaks and
minimal integration inaccuracies in both quantification procedwasld account for the
differences observed. On the other hand, the plasma filtration step introduced before the isolation
of IgG in the solution method reduced the mpecific binding of proteins other than IgG. As a
consequence, peaks containing glycan structures present in proteins other than IgG would be
expected to show dezased values in the solution method. This is the case of IGG16 and IGG20
that include glycan structures present not only in IgG but also in transferrin proteaimswere

likely to be eliminated during plasma filtration.
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The correlation betweethe meastes obtained with the two methods waghercomputed and
correlation coefficients above 0.7 were obtained for the majority of the pegkegented as red

lines inFigure10). Peaks showingcorrelationcoefficient lower than 0.45 mainly correspond to

those peaks presenting a lower range of values with the solution method. Hatveasrbeen

argued that the correlation coefficient is a misleading measure of the agreement between two
clinical measurement methods and that alternative measures and graphical techniques should be
used insteadBland & Altman 2003) A first problem pointed out is the fact that correlation
depends on the range bktvariables, i.e., it will vary if different group of subjects with different
measures are selected. A second issue is that correlation looks at the degree of association
between two variables, not the agreement between them. In other words, a goadiaoisl
achieved if both measurements lie along any straight line while a good agreement is obtained
only if data is distributed along the line of equality. In the comparison of the IgG glycan
guantification measures, the lines of equality are similar to the correlation regression lines for
peaks with high correlation values except for IGG2 (represented as green kigsren10). The

lines of equality for IGG2 and peaks with low correlation coefficients show a clear bias of the
data points to lie on the right of the line of equality which confirms the tendency for the gel

method to exceed the solution method for these peaks.

Plotting the difference between the measwents by the two methods against their mean has
been proposed as a more informative alternatvbe simple scatter plot of one method against

the other in assessing betweaapthod differencesBland & Altman 1999) Such a plot allows

the examination of the relationship between the error measurement (estimated as the difference
of values) and the true value (estimated as the average of values). An increase in the differences
of the two 1gG quantification methods as the magnitude of the glycan meastiieaneases is
noticeable for the IgG peaks where a bias for the gel method to have higher values than the
solution method was previously observed. A similar behaviour is shown by the IGG11 peak
which, however, did not displagignificant differences bewen the range values of the two
methods. For the rest of the peaks the differences did not vary in any systematic way over the

range of measurements.

A certain lack of agreement between the gel and solution IgG glycan quantification methods is
inevitable since they differ in the glycan preparation procedures and in some steps of the
quantification analysisThe comparison analysis carried out suggested that in the majority of
peaksthere is a good agreement between the IgG quantification metHodstheles, some

peaks show a tendency to have higher measurements with the gel method than with the solution
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method with these differences increasing with the increase in the magnitude of measurements.
Such dissimilarities between methods should be taken into account when interpreting results
derivedobtained in the analyses of IgG glycalmsfuture studies, perhaps it would be advisable

to seek for a formula that could enable the transformation of values between the two methods

and allow a more accurate compansd results.

Figure 10. IgG glycan quantification measurements by solution method versus gel methodhe
correlation regression line is displayed in red and the corresponding correlation coefficient annotated on the
bottom right corner of each graph. The line of equality is displayed in green. For the peaks having high
correlation between the two methods, the correlation regression line and the line of equality are close to each
other and even overlap in some cases. For theimgrggeaks, the line of equality indicates a bias for the gel

method to present higher values than the solution method.

3.2. Common aberrations from the normal human plasma N-glycan profile

Glycan profiles aregather similar in the majority of individugleowever, deviations from this
normal glycan profile might occulue to pathgshysiological conditionsindividuals having
significantly different glycan profilethan the so called “normal profile” were identifiedhile
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analysing the lasma Nglycan profiesof 1991 individuals fRP 9LV DQG .RUBKOD FRI
major outlying glycan features were obse&hvan example of the normal glycan profile and five

of the aberrant profiles are shown in Figure 11.

Figure 11. Normal and aberrant plasma N-glycan profiles. Examples of deviations from the normal glycan
profile: outlier A, individual with elevated A2G2S1 glycans; outlier B, individual with glycan changes that
mirror premature aging; outlier C, individual with elevated biantennary nongalactosylated glycans; outlier D,
individual with elevated biantennary monosialgd glycans; outlier E, individual with increased core

fucosylated glycans. Adapted from Pucic et al. (2010

In order to investigate the possible causes leading to these aberrant gnofited, size groups
of individuals sharing the same profile characteristics as the outhers formedand their
phenotypic cheacteristics compared. While four of the outliers presented the geofiee and
were treated as a group, the manual inspection andtamaous comparison of glycan profiles
for the other outliers would be an impracticatask. In this case, computatiormaethods were

used to identify the nearest neighbours of these outliers, i.e., the individuals showing the most
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similar glycan profiles (as previously described in secBidhl). The performed analyses were
published in Pucic et a(2010)

Subsequently, each of the six groupas analysed for the presence of common phenotypic
characteristics among the individuala. somegroupsthe individuals sharedertain clinical
conditions, like renal problems, wheraather groups thadividuals were apparently healthy,
demonstratinghe existenceof specific glycephenotypeshat in some cases might represent risk
factors for the development of specific diseggagic et al. 2010)

These groups were subjected to further analyses intended to explore the contribution of the
genotype to group structuring. For the purpose, PCA, discriminant analysis of principal
components and Random Jungle methods were applied to genotype data. The PCA and
discriminant analysis of prcipal components did not reveal distinct clusters corresponding to
the groups(data not shown)This lack of structure was further confirmed by the poor
classificationof groups (error of 84%) achieved with the Random Jungle algorithm. Altogether,

the geotype data appears not to be able to discriminate the groups.

3.3. Analysis of clusteringpatterns insidepopulations

The structure of the population cohorts was examined for the existence of clusters of individuals
based on the glycan profiles and phenotyps&inity propagation algorithm was used to
perform the clustering analysisith plasmaand IgG glycan profiles and phenotypes taken
separatelyas predictor variablesThe clustered data was visually represented in the form of a
heatmap expressing ttieature levels of samplesrrangedby cluster.This data representation

was intented to facilitate the comparison of clusters and, consequinatlydentification of
clusterspecific characteristics.

With the purpose o&xploing the internal structure of the populations, affinity propagation
clustering was applied to each populatiodividually. The number of clusters obtained varied
between 80 and 100 when input preferences were set to the median of the similarity matrix and
between 3 and 8 when set keetminimum of the similarity matrix for all feature data sets in the
three populations. Visual inspection of the similarity matrices used as input in the affinity
propagation clustering showed that #fmeall number of largelustersbetter reproduced the data.

In general, the data patterns displayed by these small cluster structures were similar between

populations for all feature data sé€Bupplementary figur@ presents the results for the Vis
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ZKLFK DUH LOOXVWUDWLYH RI WKH UHWVIXDa\tNsterg sbtaihe@ HG | F
with plasma glycans, GP7, GP9, DG5, DG6, Monosialo and some of the structural glycans
appeared as the most distifieatures amongusters The cluster division based on IgG profiles
showed main differences on the level of IGG3, IGG13, IGG43 and IGG55 and also in some of
the Charged ah Neutral Derived featuresThe cluster structure obtained for phenotypes
basically dividedHe indviduals according to the levels of BMI and weigp-related features

In order to verify whether the affinity propagation algorithm would be able to separate the three
populations into three clustersietpooleddata of all populations/as considered farlustering.

For all feature data sets, the pooled data was divided into several clusters containing a small
number of samples. The fact that the algorittaited to discriminate the populations was not
surprisingin the light of the results previously @medfor each population separately which
showed cluster similarities acrogsopulationsVisualinspection of the corresponding similarity
matrices revealed that rsumberof clustersbetween 2 and 4 would better fit the dafaus

affinity propagationwas runwith the number of clusters set beforehand to an®4 for each
feature data sefThe clusters obtained werfermed of approximately the same number of
individuals from each population and revealed similar tendencies to tbbserved inthe
individual populationsWhile the most appropriate structure for phenotypes was compos:d of
clusters(Figure 12), for plasma and IgG glycarthe mos correct division ofsamples was
difficult to establish(Figure 13, Supplementary figure 3for instance,n the case of plasma
glycans thedivisioninto 2 clusters showed opposite levels of several glycan peaks such as GP9,
Monosialo, BAMS, BADS and C.FUQF(gure 13A), while the division into 3 clusteibesides

these differences also revealad emerging cluster with high levelsf GP7 and G2Kigure

13B). The specific data patterns presented by the dluster structures can hmoncurrently

acceptable andqually valid to describe the data.

Additionally, for each clustering experiment, the heatmaps of the other two feature data sets
were also displayed so as to verify the existence of associations between the three feature data
sets.In none of the cases did the other two feature data sets present a cluster specific pattern

meaning that the division into clusters depends on the type of feature
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Figure 12. Affinity propagation clustering results based on phenotype data for the pooled data of
populations. The structural division into 3 clusters was the oneltleat fitted the phenotype data. The clusters
were comprisedof approximately the same number of individuals from each population and presented
differences at the level of uric acid, BMI, waist circumference and hip circumference. The heatmap represents
the levels of each phenotypic feature (rows) for the samples in each cluster (columns); db®eyf the
heatmap varies from red to yellow corresponding to low and high values, respectively. The bars above the
heatmap depict the cluster division in difint shades of grey and the population division coloured as gold for
9LV JUHHQ IRU .RUpXOD DQG EOXH IRU 2UNQH\
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Figure 13. Affinity propagation clustering results based on plasma glycan profiles for the pooled data of
populations. The clustering results of affinity propagation algorithm run with K=2 (A) and K=3 (B) are
presented to illustratdhe difficulty in establishing the most reliable clustering structure. In the case of the 2
cluster division, opposite levels gfycan features such as GP9, Monosialo, BAMS, BADS and C.FUC are
clearly observed. These main differences are retained for a part of the samples in the 3 cluster division which
additionally reveals a cluster with high levels of GP7 and G2. The heatmap represents the levels of each glycan
(rows) for the samples in each cluster (columns); the key colotire heatmap varies from red to yellow
corresponding to low and high values, respectively. The bars above the heatmap depict the cluster division in
diferHQW VKDGHV RI JUH\ DQG WKH SRSXODWLRQ GLYLVLRQ FRORXUL
Orkney. The bar on the left side of the heatmap indicates the four groups of plasma glycatessk GRig,

DG (blue), Sialos tnedium blug and Structurallight blug).

3.4. Correlation between N-glycomeand phenotygc traits

The correlation betweehe plasma and IgG glycan profiles and the set of available phenotypes
was carried out to identify environmental determinants #natlikely to affectglycans.The
analysisaimedto find the extent to which the correlations carrdq@icated across all population
cohorts in order b be able to identify general pattewfsassociatiorand to provideevidenceof
possible populatiospecific correlations that coulae related to the geographical and lifestyle

separation of the populations.

The plasma and IgG data of the analysed populations presented patterns of correlation with age
which have beepreviously describeduch as the decrease of céueesylation, galetosylation

and sialylation and the increase of structures with bisecting Glc{tn et al, 2009)
$GGLWLRQDOO\ WKH HIIHFW RI DJH RQ ERWK JO\FDQ VHW
replicatedthe findings reported for the Vis population coniimgnthe agedependencyf certain

glycans structuresSUpplementary figure d4nd Supplementary figure Bnezevicet al, 2009;

Pucicet al, 2011) To remove theeffects of aging and gender upon the associations between
glycans and phenotypes, plasma and IgG data sets were subjected to age and sex,@srection
described in section 2.4.4. Alissequent analyses were performed on the corrected data.

The correlation coefficients between glycans and phenotypes were higher for plasma glycans
ranging from approximately0-3 to 0.3 than for IgG glycans varying from approximatély 7

to 0.17. Overall, the tendency of the glycahenotype associations was similar across
populationsfor both plasma and IgG glycans although with slighdifferent magnitudes
(Supplementary figure &nd Supplementary figure 7).
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In plasma glycans, statistically significant correlations present in all three populations were

mainly found for body fat parameters and lipedated measures (p<0.0003&&jure14). DG10

and BADS peaks were positively correlated with BMI, waist circumference and hip

circumference, while GP5, GP8 and BAMS were negatively correlated with these same

phenotypesDG10 was Bo positively correlated with cholesterol and LDL and DG8 with

triglycerides.Particular correlations were observed for Vis between tretraantennary structures
75,$ DQG * DQG FKROHVWHURO DQG IRU .RUpXOD EHWZHH

In IgG dycans, despite the fact that the majority of strong correlations were consistent in all
populations, statistically significant correlations were sparse and mainly shown for Orkney
(p<0.000216;Figure 15). An interesting association pattern which did not pass the threshold of
significance is the one displayed by the population of Orkney bettieglycan structures of

the 1gG Neutral derived group andicium Supplementary figure)7Positive corredtions were
observed for IgGlycan featurescontaining bisecting Mcetylglucosaming¢GIcNAc) whereas
negative correlations were found for structures without bisecting GIcNAc. Bisecting GIcNAc
structures are synthesized as a result of a transfer of a GIcNAc residue to the mannose residue at
the base of theore of the Nglycan and are known to have impont effects on the 1gG protein

function.
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Figure 14. Statistically significant correlations between plasma glyans and phenotypes for all
populations. The heatmap depicts the level of correlation between each plasma glycan feature (rows) and the
phenotypes for each population (columns); correlation coefficients range-@t8ngdark blue) to 0.3 (dark

red). The bar above the heatmap indicates the papulad which the three columns of each phenotype
FRUUHVSRQG WR JROG IRU 9LV JUHHQ IRU .RUpXOD DQG EOXH IR
indicates the four groups of plasma glycans: GP (dark blue), DG (blue), Sialos (medium blueyctndait

(light blue) The significance level was set to 0.000362 to account for the multiple testing (46 plasma features

and 3 populations).
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Figure 15. Statistically significant correlations between IgGglycans and phenotypes foall populations.

The heatmap depicts the level of correlation between each IgG glycan feature (rows) and the phenotypes for
each population (columns); correlation coefficients range f@it7 (dark blue) to 0.17 (dark red). The bar

above the heatmapditates the population to which the three columns of each phenotype correspond to: gold
IRU 9LV JUHHQ IRU .RUpXOD DQG EOXH IRU 2UNQH\ 7KH EDU RQ V
groups of IgG glycans: Initiadérk blug, Charged l§lue), Neutral (medium blug¢ and Neutral derivedight

blug). The significance level was set to 0.000216 to account for the multiple testing (77 IgG features and 3

populations).

While the ensemble of plasma glycans analysed contaigkyddns attached to a variety of
proteins the 1gG glycans are a filtered subset containing oniglydans attached to the 1gG
protein. This fact allows establishing a correspondence between the main IgG peaks and certain
plasma peaks containing the samglifcan structureéSupplementary table 5yhe existence of

such correspondenc&vas consideredto determinewhether the associations with phenotypes

found in plasma glycans could be captliby thecorrespondindgG glycans component.

The IgG Initial grouppeaks(GP1GP24)were combined into 11 plasma pe&&1-GP11)for

the pooled data of all populations. The correlation of these IgG combined peaks with phenotypes
was computed and compdr& the original correlation pattern of plasmaeaks(Figure 16).

Plasma and IgG peaks presented a quite similar pattern of correlation with the strongest and most
stablecorrelations being between GP5, GP6 and GP8 peaks and both body fat parameters and
lipid-related measure®ppositecorrelation tendencies were found for GP9 and waist and hip
circumferences and for GP11 and albumim.both casesgevident positive correlation was
observed for plasma data and almost eristing negative correlation was found for the
corresponding IgG datdhe sameanalysispreformed orthe individual populations produced
comparable results to those obtained and described abotleefpooled datalThe agreement

shown between plasma and IgG peaks can be viewed as a reinforcértientexistence of

associatios between certain glycan structures aheénotypes.
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Figure 16. Correlation of 11 plasma peaks andHheir corresponding IgG peaks with phenotypesThe

heatmap depicts the level of correlation between each of the 11 glycan peaks (rows) and the phenotypes
(columns) for the pooled data of all populations; correlation coefficients range-Gt@nfdark blue}o 0.2

(dark red). Each phengie comprises two columns correspondioglasma (gold) rmd 1gG (green) peaks as

indicated by the bar above the heatmap.
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3.5. Comparison of feature profiles from diabetes groups

The potential of glycans as a biomarker for diseases was evafoatéte particular case of
diabetesFor the purpose, several computational methods were applied to a total of 1577 samples
divided into 3 groupgnondiabetic, prediabetic and diabetic) in an attempt to defgassible

glycan, phenotypic and genotypic features characteristic of each group status.

Parallel coordinateplot were used to display the glycan and phenotype prodilete three
groupsin a visually clear manner and, in this way, facilitate the comparison wirésaacross
groups Figurel7?). The plasma and IgG profiles did not reveal any particular features that were
clearly distinct across the three groug@3n the other hand, the phenotype profiles showed
marked differences at the level of HbAlc and glucegé the diabetic group having higher
levels and the nodiabetic having lower levels. Less pronounced differences were found for age,
systolic blood pressure, BMI, waitt-hip ratio and waist circumference.

The nonparametric Wilcoxon sum rank statistical test was employkadther assess pairwise
differencesin levels of glycansand phenotypebetween the thregroups The nonexistence of
differences between grosip the case gplasma and IgG glycans was confirmed by the absence
of statistically significant hits in these two feature data §et9.00109 for plasma; p<0.00065
for 1gG). Regarding the phenotypes, the majority of statistically significant differenees
obtainedfor the pairwise comparisons of the ndiabetic group with the other two groups
(p<0.00238; Figure 18). Differences in systolic blood pressure, glucose and HbAlc were

considered statistically significant across the three groups.
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Figure 17. Parallel coordinates plots of plasma glycan, 1gG glycan and phenotype profiles for nahabetic, pre-diabetic and diabetic groups.The plasma and
IgG profiles do not show any differences between groups while the phenotype profiles show, among others, high values of HbAlc and glucose for the diabetic group e

low values for the nodiabetic group. The median values of the features for each group are highlighted. Sex is represented asud(fi@ssanles) Non-diabett

group samples are represehby gold lines, preliabetic by green lines and diabetic by blue lines.



Figure 18. Wilcoxon sum rank test pvaluesfor the pairwise comparison of the diabetesgroups with
regard to phenotype data.Statistically significant hits are highlighted in blue; the significance level was set
to 0.00238 to account for multiple testing in each pairwise comparison. The names of the groups are

abbreviated as ND for nedliabetics, PD for praliabetics and D for diabetics.

Following the initial overview of the data, PZA and PCA methodswere used to try to
separate the groups based on the glycan profiles and the phendtypesmalyses @re carried
out for the entire group of individuals and for the individuals divided by populationsivittar

outcomegroducedThe analysis of plasma and IgG glycan profilegigboth methods was not
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able to differentiate the groups whether full glycaofites or individual glycan groups were
consideredas could be anticipatedrom the data visualgion Supplementary figure &nd
Supplementaryigure 9). PLS-DA applied to the phenotype data set yielded a separation of the
three groupswith HbAlc and glucose emerging as the variables most contributing for the
division as expected from the role they playdiabeteqFigure 19, left panél PCA in its turn

was not able to capture these phenotypic differeifeggire 19, right panel) Insteagd PCA
detected general phenotypic patterns already observed¢tusteing analysisevidenced by the

fact that the 3 features identified as the most contributing for PCA (uric acid, waist and hip
circumferences) were among the ones being more distinct between cladtetionally, the top

10 contributingfeatures from each data set were selected and jointly used as a new input for both
PLSDA and PCA. The results produced were identical to the ones regortdte phenotype

data set due to the strongefluence of phenotype features over glycan ones

Despite the unsatisfactory results obtained with PCA andPA%nalyses, the Random Forest

(RF) method was employed with the purpose of obtaining quantification measures regarding the
prediction process of the groups. The classification using either plasma or IgG glycan profiles as
predictor variables (considering all peaks simultaneously or each group of peaks individually)
was poor and almost all individuals were placed into thedmalmetic groupgTable 4A and B.

The classification using phenotypes as predictor variables had a much better performance
assigning the majority of the testing samples to the correct group with an estimated error rate of
4.5%for a 10fold crossvalidation Eigure20, Table 4C). The classification of groups based on

the combination of the 10 most important variables from each feature data set (30 features in
total) had a comparablgerformance to the classification using phenotypes similarly to what
occurred in the PL®A and PCA analyses$-{gure 20, Table@).

Theresults obtained with PL-BA, PCA and RF analyses suggest that plasma and IgG glycans
might not have enough predictive power for this data set while confirming the fact that HbAlc

and glucose are good indicators of the diabetes status.
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Figure 19. PLS-DA and PCA analysis of the diabetes groups using phenotype datalthough PLSDA

achieved a separation of the groups and HbAlc and glucose were indicated as the most important factors for
the separation, PCA was not able to distinguish the groups. The score plots representing the data samples by
the two first principal components (PC1 on thaxs and PC2 on theaxis) are shown on the upper panels;
groups are coloed as gold for nodiabetic, green for prdiabetic and hle for diabetic. The corresponding

loading plots establishing the relative contributions of each phenotype feature to the overall variation in the

groups are shown on the lower panels.
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Table 4. Random Forest confusion matrices fothe classification of the diabetes groupsthe confusion

matrices show the performance of the Random Forest algorithm in classifying testing samples using all plasma
glycans (A), all IgG glycans (B), phenotypes (C) and the set of 30 most importaneé$ezitatl data sets (D).

The plasma and IgG glycans have a poor classification performance with almost all testing samples assigned to
the nondiabetic group. The phenotypes and the set of 30 most important features show similar performance
with the nondiabetic group having the lower classification error per group. Each row of the matrix represents
the instances in the actual group, while each column represents the instances in a predicted class (0 for non-
diabetics, 1 for preliabetics and 2 for diabetlcsThe “Error” column indicates the test set errors for the

classification of each group and for the overall classification of the testing samples

A) Plasma glycans (all) B) 1gG glycans (all)
Predicted outcome Predicted outcome
Error (%) Error (%)
0 1 2 0 1 2
391 0 0 0 0| 393 0 1 0.3
1 41 0 0 100 1 42 0 0 100
41 0 0 100 2 37 0 0 100
17.34 2412
C) Phenotypes D) Set of 30 most important features
Predicted outcome Predicted outcome
Error (%) Error (%)
0 1 2 0 1 2
394 0 0 0 0| 397 0 1 0.2
9 35 4 27.1 1] 11 29 1 29.3
5 0 26 16.1 2 4 4 26 23.5
3.81 4.44
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Figure 20. Random Forest variable importance for the classification othe diabetes groupsThe variable
importance plots correspond to the phenotype data (left panel) and to the set of 30 most important features of
all data sets (right panel). The measure of variable importance presented is the mean decrease in accuracy
estimated by comparing éhaccuracy in classification without and with permutation of the values of each
predictor variable. When a given variable has little predictive power, its permutation will not cause substantial
difference in accuracies, therefore a higher decrease inaaygcisrindicative of a more important variable.

Variable labels are coloed as gold for plasma glycans, green for IgG glycans and blue for phenotypes.
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The possibility of classifying the samples according to theeéhgroups based on the genotypic
information was analysed by employirige RandomJungle (RJ) algorithm.RJ was not able to
comectly classify the samples with the majority of them beasgigned to the nediabetics
groupboth when using the all SNPs and glycatated SNPs setSince the nomiabetic group
was circa 5 times larger than the other two groupsy&sIperformed several times with random
subsets of 200 samples from the mbabetics groupa verify whetheror not the unequal size of
the groups could be affecting thesults The RJ performance did not improve when using the
subsets of samples (error rate betweeitt@) indicating that the number of sampigsnot a

critical factor for the classification.

The genetic contribution to disease and the possibility ofipriog biomarkers in the case of
diabeteswas alsoexploredusing the correlation adjusted scomsthod.Among the top SNPs
emerging as important with the correlatiatjusted scores approach are several SNPs located in
genes or regions around genes which have been diretdiedto diabetes or linked to the
regulation of insulin secretion angktinal degeneratiorsuch as NCS1, CDK19, DCLK1
GLCCI1, CCRand DCC Thetop 30 SNPs potentially associated with diabetes conditren
listed in Supplementary tableahd the genetic context of some of these SNPs is represented in
Figure 21and in Supplementary figure 10.
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Figure 21. Genetic context of polymorphisms possibly associated withthe diabetes condition.The

regional association plots show the correlation adjusted scG®RH scores) for SNPs distributed in a

genomic region centred on variansl292123 on chromosome 6 (A) and rs6563348 on chromosome 13 (B).

The flanking region extends 0.5Mb both upstream and downstream of the reference SNP which is labelled and

shown in purple. The coloumtensity of the other SNPs within the region represents the extent of their linkage

GLVHTXLOLEULXP U ZLWK WKH UHIHUHQFH 613 UHG U - RUD¢
DQG GDUN E O X idcatldnsof known7ge€rnes @ the region are depicted below the association

plot.

3.6. Comparison of feature profiles from isolated populations

Since he population cohorts studied represéulated populations comingom different
geographic regionsthey are likely to present their own charaddécs. In order to seek for
populationspecific patternscapable of differentiatingpetween populations, the glycan and
phenotype profiles were compared and the genotyped data analysed using diverse computational

tools and algorithms.

Parallel coordinates plots were used to display tlyeagn and phenotypprofiles of the three
populations in concise yet descriptive manrféigre 22). The plasma profiles do not show
visible differences between groups, the 1gG profiles show slight differences for several of the

glycans and the phenotype profiles show differences for sex

The statistical analysis was performed using the nonparanvéiicoxon sum rank test which
assessed the statistical differences in the levels of glycans and phenotypes for each pairwise
comparison between populatiofBigure 23). In the case of plasma glycans, differences in
%$'6 EHWZHHQ 9LV DQG 2UNQH\ DQG LQ *3 EHWZHHQ .RU
significant (p©0.00109. Regarding the IgG glycans, several features emerged as significant in
the pairwise comparisons of Orkney wigitherVis or .RUpXOD ZKLOH QRQH RI
UHDFKHG WKH WKUHVKROG Rl VLJQLILFDQFH LQ WKH SDLL
(p<0.00065). As for the phenotypes, statistically significant differences were obtained for gender
EHWZHHQ .RUpXOD DQG 2UNQH\ DQG IRU /'/ LQ WKH SDLUZL
.RUp X @®DO0238).
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Figure22 3DUDOOHO FRRUGLQDWHYV SORWYV RI SODVPD JO\FDQ ,J* JO\FDQ DQG Yherplada/prefitesmdt L OH V
show visible differences between groups, ldp@ profiles show slight differences for several of the glycans and the phenotype profiles show differences for gender
(‘Sex’). The median values of the features for each group are highligdg&ds represented agmales)and 1(females).Vis samplesare represented by gold lines,
.RUpXOD E\ JUHHQ OLQHV DQG 2UNQH\ E\ EOXH OLQHV
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Figure 23. Wilcoxon sum rank test pvalues for thepairwise comparison ofthe population cohorts with regard to plasma, IgGand phenotype dataStatistically
significant hits are highlighted in blue; the significance level was set to 0.00109 for plasma glycans, 0.00065 for ngG@uglly0a00238 for phenotypes to account for
multiple testing in each pairwise comparison. The names of the gnmupblareviated as Vis for Vis, KArRU .RUpXOD DQG 2UN IRU 2UNQH\



PLSDA and PCA methods were applied to each of the three feature profiles to investigate
whether the patterns of dissimilarity established by the statistical analysis would be able to
discriminate the populations. Surprisingly, none of the feature data sets, independently of the
used method, yielded a separation of the populatighgure 24 for plasma glycans
Supplementary figurd1 for IgG glycans andsupplementary figurd2 for phenotypes The
patterrs of contribution of plasmalgG and phenotype features to the overall dataation

shown by thePCA analysis resemble the onebtained when analysing the diabetes groups

(Figure 24, lower righpanej see section 3.5 for comparison with diabetes)data

Figure 24. PLSDA and PCA analysis of the population cohorts sing plasma glycans data.None of the
methods achieved a separation of the populations based on the profiles of all plasma glycans. The score plots
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representing the data samples by the two first principal components (PC1 caxitb@are PC2 on theaxis)

are shownRQ WKH XSSHU SDQHOV WKH SRSXODWLRQV DUH FRORXUHG
Orkney. The corresponding loading plots establishing the relative contributions of each plasma feature to the
overall variation in the populations are shown on the lower panels; glycans are coloured according to their
group: GP (dark blue), DG (blue), Sialos (medium blue) and Structural (light blue)

RandomForest was conducted to investigate the performance of a classifier on the task of
predicting populations based on glycan profiles (all peaks simultaneously and each group of
peaks individually), phenotypes and a set of 30 features combining the top 10 contributing
features from each data set. The best classification was achieved for the set of 30 nuresi feat
and the worst for the IgG glycans. Thé-fold crossvalidation eimated classification errors

were 11%, 16%, 19% and 25% for the set of 30 features, phenotypes, plasm&agigidans,
respectively the confusion maices for the classification dést set samplese shown in Table

5).

In the case of plasma glycans, the entire set of glycans produced the best results having an
estimated classification error of 19% for a-fbld crossvalidation. The highest measures of
variable importance belong to two GP glycaRgy(re25) explaining the fact that the GP group
presented th lowest classification error rate among the individual groups of plasma glgcans:
27% error for GP compared to more than 40% for the other groups, estimatdlGfold

crossvalidation

Regarding the classification using 1gG glycans, it was alsoritie eset of glycans that achieved
the best performance and the Initial group yielded the best classification amondivicah
groups of IgG glycans with estimated errors of 25% and 26% for-fald @rossvalidation,
respectively The similarity in tlese two classification error values suggéstd the Initial group

of 1gG glycans holds the most significant informatiomn the overall classificationn fact, 5
glycans belonging to the Initial group were among the most important variables whenrthe ent

set of IgG glycans was used for classificatibrg(re 25).
The phenotype data had a similar classification performance as the plasma glycans.

Combining the top 1@nost important features from each data set decreased the estimated error
rate for a 1€fold crossvalidation to 11%. This improvement in the overall classification
indicates that &chfeature data set holdsfferent types of information which complement each
other Eigure 25).
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Noteworthy that, in all these classification scenarios with different predictor variables, the
Orkney population had invariably a significantbwer classification error rate when compared
WR 9LV DQG .RUpXrame5p REXFDIOWWHMR QURP 9LV DQG .RUpXOD ZF

among these two populations and to a lower extent with Orkney.

Although statistically significant differences were found in the levelseofam glycans and
phenotypes across populations, these differences were not captured in b RIod PCA
analysesOn the contraryRF algorithmachieveda satisfactoryclassification of populations for
a combined set of glycama phenotype features amehs ableto yield a good separan of
Orkney flom the other two population®r all feature data set3he different results obtained

might be due to the distinct nature of the algoritlemgployed

Table 5. Random Forest confusio matrices for the classification of thepopulation cohorts. The

confusion matrices shoviaé¢ performance of Random Forest algoriihnelassifying testing samples using all

plasma glycans (A), all IgG glycans (B), phenos/f€) and the set of 30 most important features of all data
sets(D). The set of 30 features yielded the best classification, plasma glycans and phenotypes had a slightly
worse performance and IgG glycans presented the higher error rate. In all cases, Orkney population showed the
lowest classification error per groupach row of the matrix represents the instances in the gmipalation,

IRU 9LV IR L
Orkney) The “Error” column indicates the test set errors for the classification of each grofqy #reloverall

while each column represents the instances in a predicted SRSXODWLRQ

classification of the testingamples.

A) Plasma glycans (all) B) 1gG glycans (all)

Predicted outcome Predicted outcome
Error (%) Error (%)
0 1 2 0 1 2
163 | 27 4 16 112 | 54 11 36.7
46 | 154 5 24.9 55 | 144 9 30.8
9 8 181 8.6 9 6 197 7.1
16.58 24.12

C) Phenotypes

D) Set of 30 most important features

Predicted outcome Predicted outcome
Error (%) Error (%)
0 1 2 0 1 2
163 | 18 9 14.2 162 | 22 5 14.3
33 | 162 | 21 25 28 | 180 | 11 17.8
6 12 | 173 9.4 5 7 177 6.3
16.58 13.07
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Figure 25. Random Forest variable importance for the classification othe population cohorts. The

variable importance plots correspond to plasma glycans (upper left panel), IgG glycans (upper right panel),
phenotypes (lower left panel) and the set of 30 most important features of all data sets (lower right panel). For
plasma and I1gG glycans onlye top 30 features are displayed. The measure of variable importance presented
is the mean decrease in accuracy estimated by comparing the accuracy in classification without and with
permutation of the values of each predictor variable. When a given leahiab little predictive power, its
permutation will not cause substantial difference in accuracies, therefore a higher decrease in accuracy is
indicative of a more important variable. Variable labels are coloured as gold for plasma glycans, green for IgG

glycans and blue for phenotypes.
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In an attempt to model the genetic structure of the populations, three different appreaches
Random Jungl€RJ), discriminant analysis of principal componemMAPC) and correlation

adjusted scoreCARE) — were applied to both sets of SNPs and their results compared.

RJ showed a better performance for the set of all SNPs with an error rate of 11% and the most
important SNPs mainly located on chromosomeé&He classification based on the set of glycan
related SNPs had an errrate of 26% with the chromosome 6 harloogithe most important
SNPs.,Q ERWK FDVHV 9LV DQG .RUpXOD VDPSOHVY WHQGHG W
samples were better differentiated showing the lowest classification error per group (the

confusion matrices for the classificatiare shown in Table 6).

The DAPC analysis was able to separate the populations using both set of SNPs with the set of
all SNPsachieving a more defined separatidig(re 26, upper panels In both caseghe first
component differentiad Orkney from the other two populations whilee secod component
differentatHG 9LV IURP .RUpXOD 6LQFH WKH VHW RI DOO 613V \
analysis will be considered below. SNPs with the largest contributions to the first discriminant
componentvere mainly localized on chromosome, 4 and 6, while SNPs contributing to the
seconddiscriminant component apparently aidt share a preferential locatidRegarding their
genotype frequency, the SNPs related to the first comp@hentedsimilar genotype patterns

for 9LV DQG wRilg[xhdibng a different genotypic profiter Orkney(Figure27). The

SNPs related to theecondcomponentshowed less pronounced differences in the genotype
frequencies which were presesitherfor 9LV R U . BupplErebtary figuré3).

In order to verify the results obtained with RJ and DAPC while accounting for any bias in the
data and controlling for the possibility of overfitting of the models, the analyses were repeated
using randomised groups, i.e. randomly assigning each sample to one of the populations. For the
randomised data in both set of SNPs, the RJ classificatror greatly increased and the DAPC
analysis showed a single cluster as opposed to the cluster arrangements observed fer the non
randomised datéTable 6 and Figure 26, lower panels). This fact indicates that an underlying
population structure based on genotype data exists and is lost when populations are randomised.

Moreover this genetic structure was to some extent captured by SNPs related to glycosylation.
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Table 6. Random Jungle confusion matrices for the classificatiorof population cohorts based on
genotype data.The confusion matrices showetperformance of Random Jungle algoritimrtlassifying the
population cohorts usinghe set of all SNPs (A) and the set of glycatated SNPs (B) for both non-
randomised and randomised populations. The set of all SNPs yielded a quite satisfactorgattassifi
achieving a much smaller error than the set of glyedtated SNPs. In both cases, the Orkney population
showed the lowest classification error per group. The classification performance was greatly diminished when
the population classes were randpeai suggesting the disruption of a certain population strudfah row

of the matrix represents the instances in the actual populetiie, each column represents the instances in a
predicted SRS XODWLRQ IRU 9LV IRU . REXD Rolin® Grdicatés the2tesNsgtH \
errors for the classification of each group and for the overall classification.

A) Set of all SNPs B) Set of glycansrelated SNPs
True populations True populations
Predicted outcome Predicted outcome
Error (%) Error (%)
0 1 2 0 1 2
473 | 158 | 6 25.7 0| 386 | 182 | 69 39.4
1| 41 | 658 | 6 6.7 1| 88 | 547 | 70 22.4
0 7 641 11 2| 42 72 | 534 17.6
11 26.3
Randomised populations Randomised populations
Predicted outcome Predicted outcome
Error (%) Error (%)
0 1 2 0 1 2
150 | 311 | 176 76.5 0| 142 | 339 | 156 77.7
1| 141 | 366 | 198 48.1 1| 148 | 366 | 191 48.1
143 | 333 | 172 73.5 2| 159 | 355 | 134 79.3
65.4 67.7
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Figure 26. DAPC analysis of he population cohorts usinggenotype data.The score plots representing the

data samples by the two first discriminant components (Compl1 onahis @nd Comp2 on theaxis) are

shown for the set of all SNPs (left panels) and the set of ghgtated SNPs (right panels). In theadysis of

the nonrandomised data, the first discriminant component differentiated Orkney from the other two
SRSXODWLRQV ZKLOH WKH VHFRQG GLVFULPLQDQW FRPSRQHQW G
observed genetic structure of populatiomas lost when the population classes were randomised (lower
SDQHOV 3RSXODWLRQV DUH FRORXUHG DV JROG IRU 9LV JUHHQ IR
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Figure 27. Genotype frequencies of the 1SNPsmost contributing to the first discriminant component

of the DAPC analysis of thepopulation cohorts. SNPs are mainly located on chromosomes 2, 4 and 6 and
VKRZ GLIITHUHQW JHQRW\SH SDWWHUQV IRU 2UNQH\ ZKHQ FRPSDU
patterns. Genotypes are codedjrey shades with light grey corresponding to mimamor allele combination,

medium grey corresponding to mirorajor allele and dark grey corresponding to mxapajor allele

A common finding in the SNP selection analyses carried out birrak methodswas the fact

that among the top 100 most important SNPs identified when analysing the set of all SNPs were
presentsome of the most important SNPs identified when using the set of gigizded SNPs

(Table 7). The rs494620variant found in thesolute carrier family 449ene SLC44A4) in
chromosome 6 was the only SNP assigned as important by all three methods.
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Table 7. Glycan-related SNPs present among the most contributing SNPs fdahe genetic structure of
populations. List of glycanrelated SNPs found among the top 100 most important SNPs for the analysis of
population differentiation based on the set of all SNPs. Information regarding the chromosomergatheur
SNP, the SNP alleles, the associated gene and thelgsciption are displayed. The SNP selection methods
which detected each of the SNPs are also indicatedstétls for Random Jungle, DAPC for discriminant
analysis of principal components and CARE for correlation adjusted socaesdescription from Eembl

database was not available.

SNP Chr | Alleles | Gene Gene description Methods
rs494620 6 G/A SLC44A4 solute carrier family 44, member 4 | RJ, DAPC, CARE
rs644827 |6 T/IC SLC44A4 solute carrier family 44, member 4 | RJ, DAPC
rs2242665 | 6 cIT SLC44A4 solute carrier family 44, member 4 | RJ, DAPC
rs660550 6 C/A SLC44A4 solute carrier family 44, member 4 | RJ, DAPC

mannosyl (alphd.,6-)-glycoprotein
rs651970 2 AIG MGAT5 betal,6N-acetyt RJ
glucosaminyltransferase

rs9267649 | 6 AIG NEU1 sialidase 1 (lysosomal sialidase) RJ

rs845739 5 GIT AC012603.1 | n.a. RJ

rs3901856 | 6 AIG SLC35F1 solute carrier family 35, member F1 RJ

mannosidase, alpha, class 2A,

rs2301010 | 5 T/C MAN2A1
member 1

CARE

The relative performance of the thi@8BP selection methods and the extent of agreemeheiof
results wereassesselly selecting the SNPs consistentigtectedoy all methods within the top

100 and comparing their ranking position with each metAothtal of 35SNPswere found in
commonin the analysis involvinghe set of all SNPs while 23NPs were commonly identified

in the analysis involving the set of glyceslated SNP.sThe comparison of SNP rangs/en by

the three methods revealed a fairly good agreewfemrgtsults across the methaguoksrticularly for

the best psitioned SNPs in the set of all SNFsglre 28). The set of 35SNPs(Supplementary

table 7) are mainly located on chromosome 2 in a region spanning genes related to mRNA
processing, protein biosynthesis and trafficking and on chromosome 6 in a region
comprehending genes involved ithe immune system response, cell interacioand

glycosylationrelated processdBigure 29.
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Figure 28. Ranking comparison of the most inportant SNPs consistently identified by the three
investigated approaches in the analysis of the genetic structure of populatio#stotal of 35SNPs were
commonly detected among the top 100 SNPs by all methods in the analysis performed with thé SKRPaf al

(A) and 27SNPs in the analysis performed with the deglgcanrelated SNPs (B The plots represent the

ranks of the selected SNPs according to each method: Random Jungled(Bidcles), correlation adjusted

scores (CARE; blue triangles) and discriminant analysis of principal compolmek®sC{ green diamonds).

The first SNPs in the set of all SNPs showed the best ranking agreement between all three methods. The SNPs

were ordered using thamking obtainedby RJ
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Figure 29. Genetic context of the most important SNPs consistently identified by the three investigated
approaches in the analysis of the genetic structure of populationk the analysis performed with the set of

all SNPs, the majority of SNPs detected among the top 100 SNPs by all methods are mainly distributed along
the chromosomes 2 (Aand 6 B). The annotation categories for SNPs are: syomenymous (inverted

triangle) synonymous or UTR (square), MCS44 Placental (diamond) and no annotation (filled circle).

3.7. N-glycome association studies

Possible associations between glycan levels and SNPs were examined to get more insights into

the genetic background influencing theagigylation process.

Since the individuals from the three population cohorts showed similarities of their glycan
profiles (as previously discussed in section 3.B)cameassociation analyses were perfornred

the pooled data of all populations. In this way, more information is included in the analyses and
the derived results are not populatspecific but can be interpreted in the light of general

population trends

Three methods Random Jungl€RJ), correlation adjusted scorf@3ARE) and bayesian sparse

linear mixed model (GEMMAY- were applied for the selection of SNPs associated with plasma
glycans,lgG glycansand phenotypesThe SNPs were usesk explanatory variables and each
glycanor phenotype feature was used as a single quantitative response variable in the analysis.
In order to assess the agreement between methods and obtain a consensus SNP selection, th
results of the three methods wex@mnbined for each feature by selectthg SNPs consistently
detected by all methods within the top 100 SNPs.

For plasma, 64 SNPs were found in commoralbynethods and of them hd an association

with more than one trait. Onlfyve of the glycan traitslid not present SNP associations which
were fetched by all methods. For IgG, SMIPswere identified by all methods with I8 them
being firstranked bythe three methodShe methods did not present shared associaftoris?

of the glycan traits and 17 SNPs showed an association with two or more glycarFumits.
phenotypesthe methods detected in common 11 SNPs associated with only 6 of the traits
namely systolic pressure, HDL, triglyceridessulin, calcium and uric acidThe lists of
associations found together with the annotation relative to the genes overlapping the \a@riation
the nearest gene tq thechromosome where the variation is located as well as the rank position
of the variationby each method aneresented in Supplementary tabl8upplementary table 9
and Supplementaryable 10 for plasma, IgG and phenotypes, respectiv@yerall, CARE and
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GEMMA appearto perform better than Raksevidenced by the higher ranks presented for the
majority of association@~igure 30)

Figure 30. Histograms of SNPsranking by method. The histograms represent the ranking by methdod of
SNPs identified to be iassociation with the traits from each feature data set by all three meffoodz!
feature data sets, CARE and GEMINENd to rank the SNPs in higher positions than the RF.

Additionally, GEMMA algorithm yieldedwo estimation measures of heritability: PVE and PGE
representinghe proportion of variance in the analysed traits explained by both small and large
effect size SNPs and by the large effect size SNPs alone, respectfeitd sectior?.6.7for

an explanation of the measuyres

In the case of plasma glycans, estimates of PVE indicate that between 20% and 45% of the
heritability of themajority of glycan traits can be explained by the available SRigsire31A).
Estimates of PGE wemainly below 20%andonly threeplasmatraits showed estimates above

30% (Supplementary figure 14ARegarding the IgG glycans, almost half of the traits had
estimates of PVE between 40% and 6@4h glycans belonging to thee\tral derived group
showing the highest estimat@¢sgure31B). Similarly to what was observed for plasgigcans

only few IgG traits had PGE values above 3@d glycans belonging tihe Charged group
presented the highest valuE€Supplementary figurd4B). For phenotypes, estimates of PVE
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were above 40% for albumin, hip circumference and triglyce(Eiggire 31C), while estimates

of PGE were above 40% for HbAlc and insulin with the later having PGE of more than 65%
(Supplementary figurel4C). As any other measures of heritabilithese estimatesan be
influenced by environmental factors and their interpretation should take that fact into
consideration.

Figure 31. Proportion of the variance ofall traits of the three feature data setexplained by genotype

The estimates of PVE by the Bayesian sparse linear mixed model are represented for each trait of plasma
glycans (A), IgG glycans (B) and phenotypes (C). For plasma and IgG glycans the colours of the bars
represent the glycan groups as indicated in the corresponding legend above the barplot.
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4. DISCUSSION

4.1. Glyco-phenotypes in the general population

A rather similar glycan profile with very little changes over time is shown by the majority of
pemle and can be refad to as the dormal profile". Due to genetic background and/or
environmental conditions, deviations from this normal profile might oandrtheir significance

should be examined.

The association of certain glycan alterations with biochemical traits and clinical conditions was
studied after the identification of several individuals exhibiting a glycan profile that significantly
differed from the genat populationUsing computational approachegptal of six groups were
formed based on particular glycan aberratoomnd a comprehensive analysis of several
biochemical traits and medical data was able to identify some of the shared characteristics within
each group. While some of the observeglycan aberrations were associated widriais

conditions, other glycan changes apparently did not reflect any peculiar medical status.

Although the results only suggest a possible association between plasma glycan patterns
(patho)physiological conditionsheyrevealedthe existencan the general populatioof glyco-
phenotypeswhich might represent risk factors for the development of specific diseases.
Moreover the observed deviations from the normpksma glycan profiles in th&x groups of
individuals were much more pronounced than changes reported to occur in common diseases and
the incidence of these deviations in the studied population was much lower than the incidence of
any common diseas@ucic et al, 2010) Together, lhese facts indicatéhat these common
aberrations from the normal plasma might originate duerat® mutations and/or rare

combinations of common mutations instead of being a result of altered physiological conditions.

The genotype influence upon the group structuring and itsiatism with the particular gtan
aberrations presentdxy each group were analysed by three methGasthe one handhé poor
performanceof all employed methodsuggests a lack of genetic structure behind the glyco
phenotypegroups.On the other handhe small number of samples in each group might not be
sufficient to select representative genotypes containing significant informationabkat allow

aproper discrimination of the groups.
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The validity of theseglyco-phenotypes findings and the exploration of a possible genetic
background effecshould involve the examination of a larger number of individuals with the

identified aberrations

4.2. Internal clustering structure of isolated populations

Finding particularglyco-phenotypes in the general population motivated the examinatioine
level of single population, of the presence of larger clusters that could be characterised by certain
glycan or phenotype featureSomparing the characteristics of clusters with similar consensus

profiles can bring new insights into the causes of glycosylation and phenotypic alterations.

A first approachn this direction has been described in detad previous work investigatinbe
clusteringstructureof individuals based on their plasma and IgG glycan profiles in four isolated
population cohortsKlari () 2012) The studyaimedto determine the optimal number of clusters

for a population and to assess the stabititythe constitutedclusters Briefly, the kmeans
algorithm was used to perform the clustering of the samples and the consensus clustering
approach was applied to obtain a characterization of the clusters robu3tmessonsensus
clustering consisted in the repetition efeans algorithm with different subsets of the data and

the construction of a summanmyatrix — consensus matrix where @ch element is defined as the

ratio between the number of times two samples clustered together and the number of times the
samesamples were selected for theneansclustering(Monti et al, 2003) Despitethe fact that
clusteringwas performed on glycamaw data (i.e. without age, sex and batch correctide)
analysis showed a certain level ioternal structureof the populations with relatively robust

clusters varying in number from 3 to 6 according to the population cohort.

In the present thesis, to furtheddressthe subject of glycghenotypesthe featurespecific

profiles of each cluster were inspected and the analyses were extended to the phenotype feature
data setHowever, in the adoptespproach the data used was corrected by age, sex and for batch
effects and the clusting algorithmemployed washe novel affinity propagation clustering
method.

The affinity propagation algorithm yieldednumber of clusters in the same range as the ones
previously obtaineadnd the inspection of the clusterofiles revealed the existence of similar
data patterns across populatiomie to these cluster similarities between populations, the

analysis of the pooled data of all populations did not produce a cluster for each population;
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however,it did replicatethe clustemprofiles observed for the individual populatioagich will

be discussed below

For plasma glycans, two matiuster profiles were observeld the first profile, GP9, DG5 and
BADS which mainly refer tobiantennary and digalactosylated glycastsuctures(A2G2)
showed opposite patterto DG6, Monosialo, BAMS and C.FUQvhich mainly represent
fucosylated biantennary and digalactosylated glycans (FA2@G2he second profile, peaks
GP7, DG5, Monosialo, BAMS and G2 whid¢tave in common biantennadigalactosylated
glycans with one sialic acid (A2G2S1) presented a contrary patt&ADR& and C.FUC which

refer to biantennargligalactosylated glycansith two sialic acié and fucose.

For IgG glycansa division into two clusters presented a clustering profile showing opposite
tendency of structures with core fucose and without galactose (IGG33I&@E IGG5) and of
structures with core fucose and two galacto$8§13, IGG17, IGG56 and IGGh7Increasing

the number of clusters resulted hefurther separation of the above clusters according to the
level of sialylation (IGG24GG27) and the presence of bisecting GIcNK&G62-IGG69).

The phenotype data produced a cluster structure with santipided according to three levels
of BMI, waist circumference andaistto-hip ratio. In the cluster with the lowest levels of these

measures, the majority of individuals are female and also present low values of uric acid.

The fact that groups of individuals from geographically separated populations display similar
characteristics suggests the presence of an underlying structure based on glycans and phenotype:
that is shared between populatioRarticularly, the presence of groups of samples with different
combinations of glycan structural featuresghtireflect biological interactions at the level of
glycosylation. Togetherhese findings could be usedatiempt to identify the SNPs responsible

for such specifideature signaturdsy analysingthe genotype profiles of each cluster and, in this

way, address the study of the association between SNPs and glycans and phdnmty@es

differentangle.

4.3. Association between N-glycans and phenotypes

Besides the genotype effect, environmefdatorsalsoseem to influence glycan structutesa

certain degre. The changes in glycosylation due to common biochemical and lifestyle
parameters (hereidesignated by phenotypes) have been previously analysed for all glycans in
9LV DQG IRU WKH VWUXFWXUDO JKnezdRivet@ID 2010KQezeMiéeiV X U H V
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al., 2009) However, such analysis has not yet been conducted regarding the IgG dhsrans.
the analysis of the association between plasma glycans and phenotypes was complemented by
extending it to the Orkney populati@amd a comprehensianalysis of the association between

IgG glycans and phenotypes was performed for the first time.

In plasma glycans,tatisticaly significant correlationgresentin all three populationswere

mainly observedor phenotypic traits linked with obesity and unhealthy lifestyle such as BMI,
waist and hip circumferenceand to lower extent cholesterol, LDL antiglycerides
Associatios with certain phenotypes were found to mere uneven across populationkile

being exhibited by only some of the populatons VXFK DV FKROHVWHURO LQ 9
and fibrinogen in Vis and Orkneplthough these patterns can be a consequence of population
predisposition and be regardad populatiorspecific, it should be taken into consideration the

fact that these phenotypes have been shown to be subjected to largedinicual variation
(Demacketrt al, 1982)

In 1gG glycansonly few associations were shown to be statistically signifiCEms could be
explained by thstrict threshold of significance resulting from the criteria U{sedhe correction

of multiple testing a subject where the best approach to follow is still a matter of debate.
Nonetheless, some patterns of correlation which did not pass the threshold of significance were

similar in all three populations and shall be briefly commented

Body fat parameters, triglycerides, glucose, insulin, HbAlc, fibrinogen and uric acid were
directly correlated with agalactosylated structures (IGG&b{l inversely correlated with
digalactosylated structurddGG57), indicating that galactosylation is decreased in conditions
where these parameters are elevated. A shared characteristic to these phéndhgreknown
connection toa certain degree with a pathological status such as obesity, diabetes or

cardiovascular problems.

IgG with reduced content of galactose has besorted as a common featurea number of
autoimmune diseases which are known to be characterisefldsymatory conditiongCiric et

al., 2005;Huhn et al, 2009. Obesity not only presents a chronic lgnade inflammation as it
has been implicated in theusceptibility to autoimmune diseasasch asdiabetes(Golay &
Ybarra, 2005;Kahn et al, 2006; Procacciniet al, 2011) Although te obesityautoimmune
relationshipis still not thoroughly understood, it appears to be the result of complex intesaction
between sesral factorsand conditions where hormonesid neural mediatorsmay have an

important role $teinmaret al, 2003)
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Fibrinogen is a protein involved in blood clot formati@md elevatedelvels of fibrinogen have
been identified asmajor risk factor for ardiovascular diseasesith possible mechanisms
through which fibrinogemmight operate being suggest&tiopk & Ubben 1990;Daneshet al,

2005; Stecet al, 200Q. Besides its clotting factor role, fibrinogen seems to function as a
signalling molecule in the frammatory response and has been recently linked with diseases
presenting an inflammatory component like multiple sclerosis, Alzheimer's disease and

rheumatoid arthritisiavalos & Akassoglow2012).

These associations found betweéyG glycosylation patterns and phenotypes which are related
to pathological conditions suggest tigatcosylationmight be involed in theintricate interplay

of factorsexistent in the pathways leading to these disorders

Anotherinterestingpatternwhich was only observed for the Orkney populatiorihie positive
association between calcium and glysancturescontaining bisecting GlcNAand thenegative
association with glycastructures without bisecting GIcNAd&Vhile the presence of bisecting
GIcNAc on IgG increases its effector functefTakahashet al, 2009) calcium signallinghas
an important role inmmune function byparticipatingin diverse mechanismsf the immune
system(Diamantstein & Odenwald1974) Moreover, Nglycans on Tcell glycoproteinsare

found to be involved in triggering-@ell functions Walzelet al, 2006)

Due to the fact that the IgG glycans are a filtered set of the plasghgcéhs,the main 1gG
chromatographic peaks can be combined into 11 plasma p&hks.comparison ofthe
associatios of both plasma peaks and their corresponding IgG peaks with phenotypes revealed a
good agreement between the majority of peakse fact that IgG glycans captdréhe
associations from the pool of all plasmagNcans suggests that these associatimight
actuallybe connectedo IgG protein.The few associations showo be contradictory between

peaks might refledheir specificity to a particular protein.

The ensemble of Mlycansin human plasma originadrom a variety of glycgroteinswhich
differentially contribute to the general glycan composition obselsthblishingthe individual
glyco-contribution of each protein and exploring the specdgsociationof their glycan
structureswith other featuresmight bring more detailed informatioabout the influence of

specific glycans in protein function as well as their connection to pathophysiologic states.
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4.4. Diabetes: a case example

Diabetesaffects a high number of people worldwigledhas beenhe continuousocus of many
researchstudiesintendedto understandhe wide rangef mechanisms leading to disea3ée

goal of such studies ithe discovey of biomarkers that can reliablgetectthe presence or
susceptibility to diabetes at an initial stageince anearly diagnosiscan help in disease

prewvention.

The diabetes status ofsabset of samples from the three population colveats available and
the samplesssigned into one of three groups: mhabetic, prediabetic and diabetid he three
groups were comparedith respect toplasma, 1gG, phenotype and genotypefiles using

graphical, statistical and classification methods

Plasma glycan profilegdid not present significant differences between the three analysed groups
and teir use as predictor variables did not discriminagééwveen groupsStudies performed to
examine the alteration of-fjlycans in the serum glycoproteins in diabetes are scarce and a first
finding reports the elevated levels of glycoprotaicose in diabetesMcMillan, 1972) The
analyss of theN-glycansin the serum of the model mice of type 2 diabetes with obesity also
revealedan increased fucosylation ofg¢lycansbut the same modification imuman serumvas
foundto be smallltoh et al, 2007) Although pointing to a possible increase of fucose content

in diabetes and suggestitg association with th@athophysiologyof diabetes these studies
should beviewedand interpreted with cauticsince they were based on small sample sizes and
further studies are necessary to confirm the findingee apparentabsence of significant
differences between the plasma glycan profiles of the three gamabgsedn the present work
could arise from the fact that the-g§jlycansanalysed originate from an ensemble of proteins

which might conceal potential differences of specific proteins.

Analysing the changes in glycosylation patterns of single proteins in diabetegn®ufttecise
insights about which proteins are more prone to be targets of abnormal glycosylation in the
diseaseThe comparison of IgG glycan profiles in the three groups did not reveal stHiistica
significant differencesand similarly to plasma glycans showed a poor predictive power in
classifying the samples. The investigation ofgljfcan structures of an acupitase protein
showed anincrease infucosylated glycans which was significant in individuals with
inflammation but not in individuals with pe 2 diabetegHigai et al, 2003) Furthermore,
fucosylation of IgG was found to be significantly increased in patientsnveumatoid arthritis
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(Gornik et al, 1999) Perhaps the alterations to which IgG is subjected in diabetes differ from

those presented by chronic inflammatooyditions.

Non-enzimatic glycosylationor glycation, the addition of glucose to proteins without the
controlling action of enzymesas an increased rate of occurrence in diabetics and has been
indicatedto contribute to several lorigrm complications in diabeteslany proteins are known

to beglycated to a much higher degree in diabetics than in normal individghlsging the well
studied case of glycated hemoglobin (HbAleps crystallinsbasic mglin protein, collagen

and also IgGThe levels of glycated IgG wefeund to be significantly higher in diabetic than in
normal individuals sggesting that noenzimatic glycosylation of Ig@ight be associated with
changes in its functio (Bunn, 1981;Vlassaraet al, 1986) The relative impact of structural
changes in Nglycans and of noenzimatic glycosylatiom the pathophysiology of diabetes and

their target proteinsequires more comprehensive studies concerning single proteins.

Contrary to plasma and IgG profiles, the phenotype data showed noticeable differences at the
level of HbA1c and glucose and less marked differences for age, systolic blood pressure, BMI,
waistto-hip ratio and waist circumference. In all cases, the diabgtoup preseet higher

levels and the nodiabetic lower levels of theeaturesHbALc is routinely usedfor monitoring

long term glycemic contrah people with diabeteandis currently the most commonly used
markerin the diagnosis adliabetesHigh blood glucose is a sign of diabetes or that a person is at
high risk for developing the disease, althoutgis considered to be an insufficient indicator of
diabetes.The other altered phenotypes between groups are more likely to be presented by
individuals with diabetes than healthy individuals and so are considered astipeedisposing
factorsor symptoms ofliabetesThus, it was not surprising that both HbAlc and glucose were
found to markedly vary across groups while the remaining phenotypesd tara lesser extent.

The associatiorof thesephenaypeswith diabetes wasurther verified by their highmportance

andpredictive power in the separation and classification of the groups.

The analysis of the genotype contribution to the diabetes status revealed SNPsetairbour
genomic regions comprising genes directly or indirectly related to diahebrsefly described

below.

The first most important SNP is located in a region near the neuronal calcium-beesw
(NCS1), a calcium binding protein involved in the molecular mechanisms of calcium and
metabolic signalling by which cells are able to adjust insulin secretion in response to glucose

stimulation Gromadaet al, 2005)
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Several SNPs overlap the cyclitependent kinase IfEne (CDK19) whose potential function in
the nervous system has been suggested upon the results of functional asfalisetosest
orthologuein Drosophila CDK8. CDK8 was showrio regulate dendritic development and to
play a major role in the developmt of peripheral sensory organs including the eye
(Mukhopadhyayet al, 2010) Different changes of dendritic structures have been reported in
glaucoma, a condition that hdmbetic retinopathgs a possible cause.

The initial portion of doublecortitike kinase 1gene DCLK1) harbous four highranked SNPs.
DCLKZ1, a neuronal functiomelated gendéighly expressed in the ganglion cell layer of retisa
shown to be downregulated in rat model of diabetes suggesting its association with reduction of
synapses observed in diabetic rat retifgasi¢klacheret al, 2008;Van Kirk et al, 2011) Also,

DCKL1 regulates microtubule polymerization and stabilizateord has beeffiound to bea

marker for the identification of pancreatic stem cells which could be used in cell replacement

therapies such as in typaliabetes(Mwangi & Srinivasan2010)

The glucocorticoid induced transcriptdene GLCCI1), locatedin close proximity to thdslet

Cell Autoantigen Igene (ICA1) alsocontains important SNPs. A region flanked by these two
geneshas been identified as a glaucoma susceptibility locus due to the presence of a common
variant associated witklevatedintraocular pressuréBMES & WTCCC2 2013) Both genes

have been shown to be expressed in the human eye and are plausible candidates in the
determination of intraocular pressure, a major risk factor for the development and progression of
glaucoma. On the one hand, ICA1 has been indicated as aardigien in insulirdependent
diabetes mellitus and glaucoma is a well known eye problem in peopiedialietes. On the

other hand, sincglucocorticoids increase¢he risk of glaucoma by raising the intraocular
pressure GLCCI1 could be implicated in intraocular pgase via its response to endogenous
cortisol.

SNPs located in the upstream region and in aaoaling region of the deleted in codatal
carcinomagene (DCC) were also identified among the most important SNPs.refien
containing the DCC gene was suggesto be associated with autoimmune diseases in a large
study comprising families with type 1 diabetes, multiple reslis and rheumatoid arthritis
(Merrimanet al, 2001)

The gene cluster of chemokine receptors (CCR) is a highly enriched area for chemokine receptor
genes and harbaaisome SNPs of interesBmall signaling proteins secreted bglls called

chemokines and their corresponding receptor genes induciemasignaling in cells and are
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involved in processes of the immune system: tipdownregulation of both chemokine and
chemokine receptor gene expression has been observed in a wide range of inflammatory and
autoimmune diseaselNdvratilovg 2006) Also, functional polymorphisms in chemokinglated
geneshave been implicated in the pathogsis of ype 1 diabetes andsi microvascular

complications Yanget al, 2004)

In the upstream region of the cardiac ryanodine receptor calcium release channel gene (RYR2), a
single SNPisolates itself from all the other neighbmy SNPs.RYR2 geneis central to the
heartbeat cyclaevhile regulating the calcium homeostasis responsible for the heart muscle cell
contractions. Alteration of calcium signallingwas found to bepresent in diabetic
cardiomyopathyand to be relatedwith partial loss of RR2 function (Yaras et al, 2005)
Furthermore mutations in this gene have been reported to caudgthmias of the right
ventricle in a condion known as arrhythmogenic right ventricular cardiomyopdMyting et

al., 2006) Other SNPsin the flanking region of RYR®vere linked with heart failure conditions

in association studies (informatioretrieved from the NCBI dbSNP database website, see

http://www.ncbi.nlm.nih.qov/projects/SNP/snp ref.cqi?rs=4659764

The agreement with previous findings in some cases and the suggestive link with diabetes in
other cases present evidence in tavaf the use of alternative methods to univariate regression
for SNP selectionNonetheless, a@horough inspection of other higlanked SNPs and their
flanking regionsshould be carried ouh order to investigatevhether other novel associations

with diabetes can arise.

4.5. Population-specific patterns

Isolated ppulationsderived from factors like geographic or cultural isolation present a level of
genetic discontinuitySuch differentiated cohorts have shown to be of valuable importance for
the mapping of rare genetic diseases as well as for unravelling the genetiosradrcaomplex
diseass Yitart et al, 2006)

The three studiedohorts are themselves isolated populatmmdthe analysis not only of their
genetic data but also of biochemical traits might on one side reveal characteristics specific to a
population, and on the other side give reliable information about conserved associations in the

general population.
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Significant differences were obtained in all featueg¢adsets with all of them being observed
between Orkney and the other two populatioflse IgG glycans set presented the highest
number of differences compared with plasma glycans and phenotypesamhete/o traits in

each data set achieved a statistical significahlcedifferencesseen fogG glycans could be an
experimental artifact due to the fact that 1IgG glycans in Orkney were quantified using a different
PHWKRG WKDQ LQ 9LV DQG .RUpXOD + RatHhéemebaaesianisinfsection

most IgG glycans correlated well between methods despite the differences in magnitude.

Despite their significance, these differences were not powerful ertoughld discrimination
betweerpopulations when performing the PACBA and PCAanalysesNonethelesst should be
notedthatthe importance of the traits for the principal components in the PCA analysisiof
feature data set reprodutcthe findings observed in the clustering anaysee sections 3&hd

4.2). For instance, in the case of plasma glycans, GP9, DG5 and BADS show opposite
contributionsto DG6, Monosialo, BAMS and C.FUC, a tendency that was observed to occur
across clusters. For 1gG glycans, the features IGG3, 1GG43 and IGG55 (referring to
agalactosylated glycan structures) are grougmethey haveimilar contributionsandthey also
presented different patterns across clusterghe case of phenotype data, uric acid, waist and
hip circumference have the highest contributions and were also shown to differ between
clusters Altogether, these results suggest that a common phenotygkgrband exists between
populations which is independent of the geographic location of the individuals and might be
related with certain shared lifestyle habits.

The classification of populations by RF based on glycan and phenotype profiles yielded more
satisfactory results. The best performance in the classification of populations with a relatively
low error was achieved for a combined set of glycans and phenodtypesting that the traits
complement each other by introducing additional information about the populations. For all
feature data sets, Orkney is always better separated from the other two populations which are
FRQVLVWHQWO\ PLVWDNHQ $OWKRXJK FRQVLGHUHG LVROTCL
are much closer geographically to each othan to Orkney means that thaye under more

similar biological pressures which might be the cause of the observed.results

The different results obtained with PILBA and PCA analyses and with RF are related with the
distinct nature of the algorithms. While PDR and PCA search for linear combinations of
features that can explain the variability of the data, RF method is a more flexible and nonlinear

approach.The fact that RF achieved better results than-BBSand PCA suggests that
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populdion-specifc patterns of glycans and phenotypes might arise from nonlinear combinations
of features.

Concerning the analysis tfhie genetic sticture of the populations, the ensemble of SNPs was
able to separate the populations as could be expected from the fact that the populations are
isolated and hold their own genetic signatufdsreover Orkney could beclearly separated

from the other two populations which partially overlap to a small extent reflecting the
JHRJUDSKLFDO SUR][LP L WAtvwItoQrkhepfQriter Ruestiyafidn ofitHe SNPs

most contributing for the genetic structure of tpepulations yielded a set of 35NPs
consistently detected e three different SNP selection methoglmployed.These SNPs are
mainly located in two m@ons: one on chromosome 2 comprising genes related to mRNA
processing, protein biosynthesis and trafficking, anathe@r on chromosome 6 comprehending
genes involved in the immune system response, cell interactions and glycosgktied-
processesThe populaton-specificcharaceristicsarising from the difrencesn these SNPs and

from possible functional alteration upon genes adfgbl them is yet to belucidated and would
require a throughout examination of pathtoysiologic differences presebétweenpopulations.

Given the functions of the genes harbouring and flanking these SNPs, a plausible explanation
would be that these SNPs might reflect a predispositicapafpulationfor certain diseasesr

conditions.

4.6. Association between N-glycans andemaypes

Understandingtte influence of the genomic background upon a trait or disease is of extreme
importanceto expand the knowledge abotlite pathways leading to those phenotypes and,

consequently, help in the development of more accdiagmostic ¢sts and treatment solutions.

A first approach to elucidate possibldateonship between the glycan and genotype profiles in
two of the populations included in the present study was the subject of a previou@lieark

2011) In the studygenotypes were used to calculate estimates of pairdesdity-by-descenta
measure that is useful for detecting pairs of individuals who eate similarto each other than

it would be expected by chance in a random samydesuch, the pairwise identityy-descent
estimatiors were taken as a measure of the distance between pairs of individuals and were
subjected to hierarchical clusteririche clusters obtained based on genotypes were characterised
regarding their glycan profile. Enrichment of certain glycan features was observed for some

clusters suggesting the presence of a link betwbaans and genotypes.
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In the present thesis, the agation between glycans and genotypes was approached with a
similar rationale to that of GWAS but using different modeling methdtsee multivariate
methods which considered the interaction among SNPs in their algorithms were applied
address the prohie of SNP selection in the glycosylation context. The glycenue analysis

carried out intended to assess whether these methods were responsive to this data as well as tc

attempt to unravel novel associations.

The principal associations previously reported for both plasma and IgG glycans wereddapture
the used method@Huffman et al, 2011; Lauc et al, 2010a Lauc et al, 2013) Additional
associationsfor plasma glycans with three glycosyltransferases implied for DG7 and
disialylated structureand with two genes from the solute carrier family are implied for GP13,
G3 and disialylated structure$able8). For the disialylated structures, thariationrs9847446

is flanked by two members of the solute carrier family, namely SLC9C1 and SLC35A5. The
solute carrier SLC9A9 has been reported betfofge associatiated with tetrasialylated strugure
(Huffmanet d., 2011) In the case olgG glycans severaltraits were found to be associated with
the variant rs6764279 the ST6GAL1gene and the majority of theassociations was ranked in
the first place by all methods which is strongly suggestive of its influence upon thdrtraits
question(Supplementary table) 9A careful examination of the genetic context of SNPs which
have not yet been reported to be linked with glycosylation dhioellcarriedout as they may

contain additional information.
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Table 8. Genetic variants implied to be associated with plasma glycan traits.ist of SNPs consistently
identified by the three methods to be associated with the presented glycan traits within the top 100 SNPs.
Genes overlapping with the SNP are annotated without asterisk and neighbour genes of the SNP are annotated
with asterisk. The variation number in parenthesis following the name of the method indicates the rank
position achieved by the SNP with that particular method. RJ: Random Jungle; CARE: correlation adjusted
scores; GEMMA: bayesian sparse linear mixed model.

Trait SNP Chr Genes Methods (rank)

GP13 rs13107325 | 4 SLC39A8 RJ(5); CARE(2); GEMMA(6)
DG7 rs315081 1 ST6GALNAC3 RJ(17); CARE(2); GEMMA(3)
DG7 rs4569731 4 GALNTL6 RJ(72); CARE(86); GEMMA(66)
Disialo rs9847446 3 RP11231E6.1* | RJ(3); CARE(7); GEMMA(3)
Disialo rs759602 3 ST6GAL1 RJ(38); CARE(46); GEMMA(92)
G3 rs13107325 | 4 SLC39A8 RJ(6); CARE(1); GEMMA(1)

The association analysis between phenotypes and genotypes was also peAssoedtions
detected by all methods were achieved for systolic pressure, HDL, triglycerides, insulin, calcium
and uric acidWhile some of the SNPs are located in genomic regions that can be related with

the corresponding trait, some apparently have no link.

The variation rs10507382, impligd be associated with systolic blood pressure, is |daate
chromosome 13overlappingthe FmsRelated Tyrosine Kinase 1 gene (FLTIhis gene
encodes a protein member of the vascular endothelial gfaetibr receptor family and plays an

important role in angiogenesis and vasculogenesis.

The variation rs159382, implietb be associated th triglycerides, is located in a region of
chromosome 5 close to the Phosphodiesterase 4D, C3péEific gene (PDE4D) whose
mutations have been associated with the levels of serum &iglggSinha et al, 2013)
Moreover, neighbouring SNPs are implicatecdbther GWAS studiesanalysing cholesterol and
triglycerides (nhformation retrieved from the NCBI dbSNP database website, see
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=159382

The variation rs6679047, implied to be associated with insulin levels is located on chromosome
1 upstream the Nuclear Receptor Subfamily 5, Group A, Member 2 gene (NR5A2) which is

involved in the pancreatic function.
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The variation rs7914270mplied to be associated with uric acid, harboured in the Solute
Carrier Family 2 (Facilitated Glucose Transporter), Member 9 gene (SL@2AGLUT9)
locatedon chromosome 10. This gene has been reported before as a modulator of uric acid levels
and the results wereplicate in several populatiofise et al, 2008;Vitart et al, 2008;Zemunik

et al, 2009)

The small number of associations found for phenotypes are a consensus of those associations
consistently identified by all methods and thus should not be regarded as a result of the poor
performance of the methods. The individual results of each method pagsibly reveal other

findingsas well as confirming previous ones.

The results achieved demonstratiee ability of the employedSNP selection methods to
reproducerecentresuls of GWAS applied to glycosylatiotraits and to suggesother potential
associationsDespite the large numeb of GWAS conducted nowadays and their success in
revealing important genetic factors underlying human diseases and traits, GWAS still faces
challengeshot only at the level of the rationale behind the analysis but also at the computational
level. Most GWAS approachesest one SNP at a time and overlook potential multiple causal
variantsby disregarding the interdependencies between SNPs which occur in complex diseases
and traits.Additionally, genome wide studies are usually computationally demanding and the
traditional methods are becoming obsolete with the increasisgenof the data sets available

for such type of analysifRecently developed polygenic modelling methods implement more
efficient algorithms capable of analysing a large number of SNHslevsimultaneously
incorporating dependencies among SNPs.isTlncrease in efficiency is reflected in less
computationally exhaustive algorithms which have the advantage of a reduction in the
computational timeeguired to perform the analystiuscontibuting to gains in terms afpeed,

time and als&nowledge.

Heritability represents the proportion of the phenotype variance that can be attributed to genetic
factors and is a recurreanalysis in any genetic study. GEMMA algorithm provides two such

measures: PVE which estimates the proportion of variance in the analysed traits explained by
both small and large effect size SNPs and PGE which is the proportion of variance in the trait

explained by the large effect size SNPs alone.

Estimates of PVE were up to around 45%, 6886 50% for plasma glycaigG glycanand
phenotype traits, respectivelyhile estimates oPGEwereabove 30% only for few traits in all
cases.Overall, the fact that estimates of PVE were highbant PGE suggestthat small
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polygenic effects might have a stronger contribufmnmost of the analysed traits, whereas a
limited number of trait@reinfluenced by large effect size SNR$owever, these estimates of
heritability should be interpreted ti caution since the presence of unmeasured environmental
factors that influence the phenotype and are correlated with genotype can affect the estimates
(Zhou et al, 2013) Particular care should therefore be taken in the present case Wwhere t
obtained estimates alsmsed on a pooled data sé#tthree populations subjected to different
environmentsvhich can compromise the resuliurther analysis considering each population
separately should be performed in order to verify whether the different retatisébutions of

small and large effect size SNPs to glycan traits and phenotypes are conserved across

populationsor indeedvary according to the population.
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SAZETAK

Glikozilacija je jedna od najopsetrMLK PRGLILNDFLMD SURWHLQD *OLN
funkciju proteina na koje su vezani, a poznato je i da imaju vazne uloge u fizioloSkim i
SDWROR&ANLP SURFHVLPD 6LQWH]D JOLNDQD QH RGYLMD °
proteina, nego u MM VXGMHOXMH NRPSOHNVQD PUH&D LQWHUD
transkripcijskin faktora. Nedostatak univerzalnog koda za sintezu glikana zajedno sa
WHKQROR&ANLP SRWHANRUDPD NYDQWLILNDFLMH JOLNDQD LU
kojireguOLUDMX QMLKRYX VLQWH]X =QDpDMQL QDSuawjFL X D
pouzdanihvisoko-S U R WiRdidgitza kvantifikaciju glikana, a time i pestudije plazmaskog
N-glikoma velikog broja ljudi Sto je glikomiku postavilo uz bok ostaimYLVRNRSURWRD
metodamaOve FMHORYLWH VWXGLMH powkhbdsiehetske prdalisPozipile\ive oblike

okolisnih faktora u glikozilaciji proteina.

Kako bi se istrazila genomska i i okoliSna regulacija glikozilacije, u ovom su radu glikanski,
fizioloSki i biokemijski podaci, ugenotipoveW U L U D] O L djudskdpdplR€e ahBligraini

seriom UDpXQPBWRGDP 7DNRYyHU SUHGORAHQ MHOBR&SBIUHQLW!
glikomskih SRGDWDND ]D GDOMQMH DQDOL]J]H 8 RSURM SRSXODTF
SURILOL SRWHQFLMDOQR SRYH]D évaluvadje padddijal igiRenB k&D W R O
biomarkera dijabetesa. Analizom unutaiji VW U XNW XUD SR SsxiGKopineld DM& UNRXQ D
SURILOL VOUDQOLBIREXRODFLMDPD 2VLP WRJD XQDWRpPp J
razdvojenosti populacija, otkriveno je nekoliko obrazaca povezagbktina i fenotigkih

] Q D p ko9 Ipojavljuju u svim populacijama. Genski pdP RUIL]PL NRML XWMHpX Q
su analizirani metodama viSe varijabli, zagmih na poligenskom modeliranjiRotvrda
SUHWKRGQLK RWNULUD L SURQDOD]DN QRYLK SRWHQFLMDO
postati alternativa tradicionalnigjelogenomskim studijamaasnovanim na jednoj istrazivanoj

varijabli.
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ABSTRACT

Glycosylation is one of the most extensive protein modificati@lgcans influence both
structure and function of the proteins atitky are known to have important roles in
physiological and pathological processes. Glycan synthesis is not template driven but encoded
within a complex network involving the interaction of hundreds of enzymes and transcriptional
factors. The inexistence of a universal glycan structure code asfthddogical restrictions in
glycan quantification analysis haléndered the knowledgabout the processes involved in the
regulation of glycan assemblilajor breakthroughs in analytical procedures have allowed the
quantification of glycans in a higihroughputmanner and motivated the first largeale studies

on human plasma{glycome which puglycomics on the same par as otbericsapproaches.

These first comprehensive studies reported a divessgribution of genetic background and

environmental faors to glycosylation.

In order to explorethe genomic and environmentadgulation of glycosylation different
computational methods were employedto the integrated analysis of glycan,
physiological/biochemical and genotype data in three isolated population cohgeseral data
processing ipeline to treat and pyprocesgylyco-relateddataprior to analysis was established.
Specific glycephenotypes possibly related to pathologies ewatentified in the general
population and the potential use of glycan modifications as biomarkers was evaluated for the
particular case of diabetes. The analysis of the internal structure of populations revealed the
presence of cluster profilesimilar between populations. dditionally, several patterns of
associations between glycans and phenatywere sharedicross populations despite their
geographical and environmental separation. Multivariate methods based on a polygenic
modelling were used to inviggate genetic polymorphisms affecting glycosylation. Confirmation

of previous findings and the identification of possible novel links suggest that these efficient
methods could provide an alternative to traditional univariate gemadesassociation stueis.
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APPENDIX A. Supplementary Figures

Supplementary figure 1. Differences between gel and solution methods for 1IgG glycan quantification.
Scatterplots showing the IgG values for each sample as measured with the gel (golden points) and the solution

methods (green points).
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Supplementary figure 2. Affinity propagation clustering results for Vis cohort. Clustering results of

affinity propagation algorithm for the Vis population based on plasma glycans (A), 1gG glycans (B) and
phenotypes (C) 7KH UHVXOWYVY REWDLQ H @oplrationaRd spril&dt® the Qnés ahithireely for

Vis and thus,were not presented.he heatmap represents the levels of each feature (rows) for the samples in
each cluster (columns); the key colour of the heatmap varies from red to yellow corresponding to lol and hig
values, respectively. The babove the heatmap detsithe cluster division in different shades of grey. The bar

on the left side of the heatmaps of plasma and IgG glycans represents the corresponding glycan groups as

indicated in the legend.
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Supplementary figure 3. Affinity propagation clustering results based on IgGlycan profiles for the
pooled data of populations.The clustering results of affinity propagatiomg@ithm run with K=2 (A) and
K=4 (B) are presented to illusiie the difficulty in establishing the most reliable clustering structure. In the
case of the 2 cluster division, opposite levels of glycan features su@G8s IGG17, IGG43, IGG55 and
IGG57 among others are clearly observedthe case of the 4 clusteivision, additionaldifferences in
IGG241GG27 and IGG626G69 glycan features are revealdthe heatmap represents the levels of each

glycan (rows) for the samples in each cluster (columns); the key colour of the heatmap varies from red to

125



yellow correponding to low and high values, respectively. The bars above the heatmap depict the cluster
GLYLVLRQ LQ GLIIHUHQW VKDGHV RI JUH\ DQG WKH SRSXODWLRQ GL
blue for Orkney. The bar on the left side of thath®p indicates the four groups of IgG glycans: Initial (dark

blue), Charged (bluelNeutral (medium blue) and Neutral derived (light blue).
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Supplementary figure 4. Correlation of plasma glycanswith age and gende The heatmap depicthe

level of correlation betweeeachplasmaglycan feature (rows) and age and gender for each population
(columns) correlation coefficients range fror@.65 (dark blue) to 0.65 (dark redhe barabove the heatmap
indicatesthe populatiorto which the three columns of each phenotype correspomgbliah for Vis, green for
.RUpXOD DQG EOXHhHé bar th the NfQditle of the heatmap indicates the four groups of plasma
glycans: GP (dark blue), DG (blue), Sialos (medium blue) and Structural (light blue)
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Supplementary figure 5. Correlation of IgG glycans withage and genderThe heatmap depictke level of

correlation betweereachIgG glycan feature (rows) and age and gender for each population (columns)
correlation coefficients range from.65 (dark blue) to 0.65 (dark red)he barabove the heatmap indicates

the populatiorto which the three columns of each phenotype correspond O G IRU 9LV JUHHQ IR/
and blue for OrkneyThe bar on the left side of the heatmap indicates the four groug& aflycans:Initial

(dark blue)Chargedblue),Neutral(medium blue) and NeutrBlerived(light blue)
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Supplementary figure 6. Correlation between plasma glycans and phenotypes for all population$he

heatmap depicts the level of correlation between each plasma glycan feature (rows) and the phenotypes for
each population (columns); corrétan coefficients range frorm0.3 (dark blue) to 0.3 (dark red). The bar

above the heatmap indicates the population to which the three columns of each phenotype correspond to: gold
IRU 9LV JUHHQ IRU .RUpXOD DQG EOXH IR the héan@HindicatédHth&E Dw RQ \
groups of plasma glycans: GP (dark blue), DG (blue), Sialos (medium blue) and Structural (light blue).
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Supplementary figure 7. Correlation between IgG glycans and phenotypes for hlpopulations. The

heatmap depicts the level of correlation between each IgG glycan feature (rows) and the phenotypes for each
population (columns); correlation coefficients range fr@5 (dark blue) to 0.15 (dark red). The bar above

the heatmap indicates the population to which the three columns of each phenotype correspond to: gold for
9LV JUHHQ IRU .RUpXOD DQG EOXH IRU 2UNQH\ 7KH EDU RQ WKH Ot
IgG glycans: Initial (dark blue), Charged (blue), Nalfmedium blue) and Neutral derived (light blue).
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Supplementary figure 8 PLS-DA and PCA analysis of the diabetes groups using plasma glycans data

The score plots representing the data samples by the twerfitsipal components (PC1 on theaxis and

PC2 on the yaxis) are shown on the upper panels; groups are coloured as gold ftiabetic, green for pre
diabetic and blue for diabetic. The corresponding loading plots establishing the relative contributions of each
plasma glycan feature to the overall variation in the groups are shown on the lower gloalss are

coloured according to their group: GP (dark blue), DG (blue), Sialos (medium blue) and Structural (light blue).
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Supplementary figure 9. PLS-DA and PCA analysis of the diabetes groups using IgG glycans dafehe

score plots representing the data samples by the two first principal components (PC1 axidlaad-PC2 on

the yaxis) are shown on the upper panels; groups are coloured as gold fiinbetie, green for prdiabetic

and blue for diabetic. The corresponding loading plots establishing the relative contributions of each 1gG
glycan feature to the overall variation in the groups are shown on the lower; gpedsis are coloured
according to their group: Initial (dark blue), Charged (blue), Neutral (medium blue) and Neutral derived (light
blue).
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Supplementary figure 10. Genetic context of several polymorphisms possibly associated with the
diabetes condition.The regional association plots show the correlation adjusted scores (CARE scores) for
SNPs distributed infive genomic regions centred on variants6563348 (chromosome 13), rs37984
(chromosome 7), rs763155&hfomosome 3), rs12605728htomosome 18) and rs465976hiomosome 1)

The flanking region extends 0.5Mb both upstream and downstream of the reference SNP which is labelled and
shown in purple. The coloumtensity of the other SNPwithin the regiomepresents the extent of théitkage
disequilibrium ¢?) with the reference SNP: red (¢ RUDQJH " JUHHQ "

" DQG GDUN ETh¥lbcations of known genes in the regiare depicted below the association

plot.
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Supplementary figure 11. PLS-DA and PCA analysis of the population cohorts using IgG glycans data.

The score plots representing the data samples by the two first priocipponents (PC1 on theaxis and

PC2 on the axis) are shown on the upper panels; the populations are coloured as gold for Vis, green for
.RUpXOD DQG EOXH IRU 2UNQH\ 7KH FRUUHVSRQGLQJ ORDGLQJ SO
IgG dycan feature to the overall variation in the populations are shown on the lower panels; glycans are
coloured according to their group: Initial (dark blue), Charged (blue), Neutral (medium blue) and Neutral
derived (light blue).
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Supplementary figure 12. PLS-DA and PCA analysis of the population cohorts using phenotypes data.

The score plots representing the data samples by the two first principal components (PC1 axistiac-

PC2 on the axis) are shown on the upper panels; the populations are coloured as gold for Vis, green for
.RUpXOD DQG EOXH IRU 2UNQH\ 7KH FRUUHVSRQGLQJ ORDGLQJ SO

phenotype feature to the overall variation in the populations are shothie tower panels

139



Supplementary figure 13. Genotype frequencies of the 15 SNPs most contributing to the second
discriminant component of the DAPC analysis of thgopulation cohorts. SNPs are located along varg
FKURPRVRPHY DQG HLWKHU 9LV RU .RUpXOD VKRZ VOLJKWO\ GLIIHU
grey shades with light grey corresponding to mimimor allele combination, medium grey corresponding to

minor-major allele and dark grey corresponding to majajor allele.
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Supplementary figure 14. PGE estimates for all traits of thethree feature data setsThe estimates of PGE
by the Bayesian sparse linear mixed model are represented for each trait of plasma glycans (A), IgG glycans
(B) and phenotypes (C). For plasma and IgG glycans the colours of the bars represent the glycan groups as

indicated in the corresponding legend above the barplot.
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APPENDIX B. Supplementary Tables

Supplementary table 1.Glycan structures present in different HPLC peaks.Chromatographic peaks
obtained with HILIC analysis (GPGP16, left) and with HILIC after sialidase treatment (D&13, right)

and the individual glycan structures present in each peak.

PEAK STRUCTURE PEAK STRUCTURE PEAK STRUCTURE PEAK | STRUCTUR
GP1 | A2 FA2BG2 A2F1G2S2 DG1 | A2
A2B M7D3 A3G35(3,3)2 A2B
GP2 | A1G1 GP7 | A2G2S(3)1 A3G3S(3,6)2 DG2 | AlG1
FA2 A2G2S(6)1 GP12 | A3G35(6,6)2 FA2
M5 M7D1 A3BG3S(3,3)2 M5
FA2B A2BG2S(3)1 A3BG3S(3,6)2 FA2B
GP3 DG3
A2[6]G1 A2BG2S(6)1 A3BG35(6,6)2 A2[6]G1
A2[6]BG1 M5A1G1S1 A3G3F1S2 A2[6]BG1
FA2G2S(3)1 FA3G3S(3,3)2 M4A1G1
A2[3]G1 GP8 | Ea2G2s(6)1 FA3G3S(3,6)2 A2[3]G1
A2[3]BG1 A3G3 FA3G3S(6,6)2 A2[3]BG1
M4ALG1 FA2BG2S(3)L | gpyg| FASBG3S(3,3)2 DG4 | Ea2ie1BGL
FA2[6]G1 FA3BG3S(3,6)2
FA2BG2S(6)1 , FA2[3]G1
FA2[6]BG1 FA3BG3S(6,6)2 FA2[3]BG1
cpa | ALBIG1SE)L A2F1G2S(3)1 A3G3S(3,3,6)3 - 5
A1[6]G1S(6)1 A2F1G2S(6)1 A3G3S(3.6.6)3 MéD1, D
FA2[3]G1 M8D2, D3 A3G3S(6,6,6)3 pGs | “oD3
FA2[3]BG1 GP9 | A2G25(3,3)2 A2G2
M6éD1, D2 A2G25(3,6)2 A3F1G3S(3,3,6)3 A2BG2
A1[3]G1S(3)1 A2G2S(6,6)2 FA3F1G3S(6,6,6)3 FA2G2
A1[3]G1S(6)1 M8D1,D3 A4GA4S(6,6)2 DG6 | M5A1G1
cp14| ASF1G3S(3,6,6)3 FA2BG2
M6D3 A2BG2S(3,3)2 A3F1G3S(6,6,6)3
A2[6]G1S(3)1 A2BG2S(3,6)2 A4G4S(6,6,6)3 M7D3
A2[6]G1S(6)1 A2BG2S(6,6)2 A4F1G4S?2 DG7 | A2F1G2
GP5 | A2G2 cp1o| A3BG3SE)L A4GAS3 M7D1
A2[3]G1S(3)1 A3BG3S(6)1 A3G3
A2[3]G1S(6)1 FA2G2S(3,3)2 A4G4S4 A2F2G2
A2BG2 GP15
FA2G2S(3,6)2 A4F1GA4S3 DG8 | FA3G3
FA2G2S(6,6)2 M8D2, D3
M8D1,D3
FA2[6]G1S(3)1
FA3BG3
FA2[6]G15(6)1 A4GAS(6,6,6,6)4 DGO | A3F1G3
FA2[6]BG1S(3)1
A4G4S(3,6,6,6)4 M9
FA2[6]BG1S(6)1 DG10
A4BG4S4 FA3F1G3
M4A1G1S1 FA2BG2S(3,3)2
: FA4GA4S4 A4GA
GP6 | FA2G2 FA2BG2S(3,6)2 GP16
GP11 ’ A4F1G4S4 A4BG4
FA2[3]G1S(3)1 FA2BG25(6,6)2 DG11
A4G4LacS4 A3F2G3
FA2[3]G1S(6)1 M9 NF2GASA
A2BG1S1 FAAF1G4S4 i
FA2[3]BG1S(3)1 DG12 | AAF1G4
FA2[3]BG1S(6)1 A4GA4Lac
DG13 | A4F2G4
FA4F1G4
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Structure abbreviations: all-jlycans have two core GIcNAcs; F at the start of the abbreviation indicates a core fucose
-6 linked to the inner GIcNAc; Mx, number (x) of mannose on core GIcNAcs; D1 indicates that2hmabnose is on

the ManO-6Man-6 arm, D2 on the ManlEBMan-6 arm, D3 on the ManlEB arm of M6 and on the MadD
2Man-3 arm of M7 and M8; Ax, number of antenna (GIcNAc) on trimannosyl core; A2, biantennary with both
GIcNAcs asH-2 linked; A3, triantennary with a GIcNAc linkeflL-2 to both mannose and the third GIcNAc linkEd4

to the M3 linked mannose; A4, GIcNAcs linked as A3 with additional GIcNAe6 Hinked to M6 mannose; B,
bisecting GIcNAc linked 4 to E-3 mannose; Gx, humber (X) d-4 linked galactose on antenna; [3]G1 and [6]G1
indicates that the galactose is on the antenna of 1H& dd -6 mannose; F(x), number (x) of fucose linket+30io
antenna GIcNAc; Lac(x), number (x) of lactosamine (BalGICNAc) extensions; Sx, number (x) of sialic acids linked to
galactose; the numbers 3 or 6 or in parentheses after S indicate whether the sialic acid B3noanRB linkage. If
thereis no linkage number, the exact link is unknown.
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Supplementary table 2. Glycan structural features derived from the plasma glycome peakBerived

plasma glycosylation traiterere approximated by adding the chromatographic peaks from either HILIC or

HILIC after sialidase treatment sharitige same structural characteristics.

GLYCAN
TRAIT
STRUCTURAL DESCRIPTION FORMULA
CODE
FEATURE
Fucosylation FUC-C Core fucosylated DG6/(DG5+DG6)*100
(positionof fucose) | pyc.p Antennary fucosylated DG7/(DG5+DG7)*100
BA Biantennary DG1+DG2+DG3+DG4+DG5+DG6+DG7
E egree of | i Triantennary DG8+DG9+DG10
ranching
TA Tetraantennary DG11+DG12+DG13
Sialylation of BAMS Monosialylated biantennary (GP7+GP8)/(DG5+DG6+DG7)*100
biantennary
structures BADS Disialylated biantennary (GP9+GP10+GP11)/(DG5+DG6+DG7)*1(
GO Nongalactosylated DG1+DG2
Gl Monogalactosylated DG3+DG4
G2 Digalactosylated DG5+DG6+DG7
Galactosylation
G3 Trigalactosylated GP12+GP13+GP14
G4 Tetragalactosylated GP15+GP16
A2 Biantennary nongalactosylated (GP1+DG1)/2
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Supplementary table 3. Composition of the IgG glycomeThe IgG glycome was separated into 24
chromatographic peaks BYILIC-UPLC and the individual glycan structures each peak were determined by

mass spectrometrifhe peaks are named IGB3G23 along the thesis, with the peak GP3 excluded from the

analyis as explained in the main text.

Glycan Peak . Structure % Glycan Peak composition Structure %
peak composition peak
o @ @
GP1 F(6)A1 -{ omm 100 F(6)A2BG2 iﬁ“ﬂ 83
O
. [0 @
GP2 A2 . omm 100 F(6)A1G1S1 * oM@y omam 8
Lo
2 GP15 2
GP3 A2B momm 100 A2G1S1 * o oum 5
2 .
& o2
GP4 F(6)A2 " oma 100 F(6)A2G2 ik 4
i ol
o @
' * o#
M5 o 63 F(6)A2[6]G1S1 2 omm 63
GP5 -
2 & o [0
ona jor T
F(6)A2 ¢ 37 GP16a M4A1G1S1 * oul 25
< F
F(6)A2B 9@" 97 A2BG1S1 * o O““ 13
™ "
GP6
Ry " oa
A2[6]G1 4 3 F(6)A2[3]G1S1 91
2 GP16b * Zé S
A2[3]G1 oma 75 F(6)A2[6]BG1S1 * BOEE 9
GP7 22 S j
F(6)A2B BOEE 25 A2G2S1 * oma 89
= GP17 o
I R
A2BG1 o-{ moma 93 F(6)A2[3]BG1S1 momm 11
iz 3
F(6)A2[6]G1 om. 7 A2BG2S1 *x | momm 91
<>§ 5 GP18a Zé 3
GP8b F(6)A2[6]G1 Ptale 100 F(6)A2G2S1 * oma 9
2 o
R N
GP9 F(6)A2[3]G1 3 oun 100 GP18b F(6)A2G2S1 * A&ﬁ o8 100
o B
GP10 F(6)A2[6]BG1 2‘«0“ 100 GP19 F(6)A2BG2S1 * ;FD" 100
o @
GP11 F(6)A2[3]BG1 QE'O« i 100 GP20 n.d. /
o
A2G2 o 91 GP21 A2G2S2 * &2_0" 100
GP12 <>§ R * ﬁ
F(6)A2[3]BG1 &2““ 9 GP22 A2BG2S2 * &2'.0“ 100
*
<>2 <
GP13 A2BG2 momm 87 GP23 F(6)A2G2S2 * R ouw 100
<>2 * &2
& @
ié jor T | * &gm-
* <>2
@
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F(6)A2G2 13 GP24 F(6)A2BG2S2 100

GP14 F(6)A2G2 100

Structure abbreviations: all-jlycans have core sugar sequence consisting of twoelAglucosamines (GIcNAc) and

three mannose residues; F indicates D F R U H6 liXkedRty the .inner GIcNAc; Mx, number (x) of mannose on core
*OF1$FV $[ QXPEHU RI DQWHQQD *OF1$F RQ WULPDQQRV\O FRUH $ EL
OLQNHG % ELVHFWLQJWRFmhémose GNridiBb H U—Rlihked galactose (G) on antenna; [3]G1

DQG > @* LQGLFDWHVY WKDW WKH J-b ODUF&\ivbsd; 8x, R@nHBATHH oDs@IW &tiQQimkeRk | W K |
to galactose. Structural schemes are given in termsamfeijdglucosamine (square), mannose (circle), fucose (rhomb with

a dot), galactose (rhomb) and sialic acid (star).
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Supplementary table 4. Glycan structural features derived from the IgG glycome peakBerived IgG glycosylation traits were approximated from the ratios of

original IgG glycan peaks (GR&P24, excluding GP3) sharing thearse structural characteristics as indicate by the formulas.

GLYCOSYLATION STRUCTURAL FEATURE
FEATURE GROUPS LABEL CODE STRUCTURAL FEATURE DESCRIPTION FORMULA
The percentage of sialylation of fucosylated galactosylated struc{ SUM(GP16 + GP18 + GP23) / SUM(GP16GP18 +
1G24 FGS/(FG+FGS) without bisecting GIcNAc in total IgG glycans GP23 + GP8 + GP9 + GP14) * 100
The percentage of sialylation of fucosylated galactosylated struc{ SUM(GP19 + GP24) / SUM(GP19 + GP24 + GP10
I6G25 FBGS/(FBG+FBGS) with bisecting GIcNAc in total IgG glycans GP11 + GP15) * 100
The percentage of sialylation of all fucosylated structures withou{ SUM(GP16 + GP18 + GP23) / SUM(GP16 + GP18 +4
IGG26 | FGS/(F+FG+FGS) bisecting GIcNAG in total IgG glycans GP23 + GP4 + GP8 + GP9 + GP14) * 100
The percentage afalylation of all fucosylated structures with SUM(GP19 + GP24) /| SUM(GP19 + GP24 + GP6 +
16G27 FBGS/(FB+FBG+FBGS) bisecting GIcNAc in total IgG glycans GP10 + GP11 + GP15) * 100
The percentage of monosialylation of fucosylated .
IGG28 FG1S1/(FG1+FG1S1) monogalactosylatestructures in total IgG glycans GP16 / SUM(GP16 + GP8 + GP9) * 100
The percentage of monosialylation of fucosylated digalactosylate .
IGG29 FG2S1/(FG2+FG2S1+FG2S2) structures in total IgG glycans GP18/ SUM(GP18 + GP14 + GP23) * 100
The percentage of disialylation of fucosylated digalactosylated .
IGG30 FG2S2/(FG2+FG2S1+FG2S2) structures in total IgG glycans GP23/ SUM(GP23 + GP14 + GP18) * 100
IGG31 | FBG2S1/(FBG2+FBG2S1+FBG2S2) | € Percentage of monosialylation of fucosylateglactosylated | 514/ sum(GP19 + GP15 + GP24) * 100
structures with bisecting GIcNAc in total IgG glycans
1gG CHARGED glycans The percentage of disialylation of fucosylated digalactosylated
(derived parameters) IGG32 FBG2S2/(FBG2+FBG2S1+FBG2S2 structures with bisecting GIGNAG in total IggB/cans GP24 | SUM(GP24 + GP15 + GP19) * 100
IGG33 plotalg 1 /potelg o Ratio of all fucosylated (+hisecting GlyNAc) monosyalilated and SUM(GP16 + GP18 + GP19) / SUM(GP23 + GP24)
disialylated structures in total IgG glycans
IGG34 FS1/FS? Ratio offucosylated (without bisecting GIcNAc) monosialylated & SUM(GP16 + GP18) / GP23
disialylated structures in total IgG glycans
Ratio of fucosylated (with bisecting GIcNAc) monosialylated and
IGG35 FBS1/FBS2 disialylated structures in total IgG glycans GP19/GP24
otal) - ctotal Ratio of all fucosylated sialylated structures with and without
IGG36 FBS™/FS' bisecting GICNAC SUM(GP19 + GP24) / SUM(GP16 + GP18 + GP23)
Ratio of fucosylated monosialylated structures with and without
IGG37 FBS1/FS1 bisectingGIcNAC GP19/ SUM(GP16 + GP18)
The incidence of bisecting GIcNAc in all fucosylated monosialyla
IGG38 FBS1/(FS1+FBS1) structures in total IgG glycans GP19 / SUM(GP16 + GP18 + GP19)
Ratio of fucosylated disialylated structures with avithout
IGG39 FBS2/FS2 bisecting GlcNAc GP24/ GP23
IGG40 FBS2/(FS2+FBS?) The incidence of bisecting GIcNAc in all fucosylated disialylated GP24 | SUM(GP23 + GP24)

structures in total IgG glycans




3T

ISELAT'IE:L?RSEYIC_;AR-I;?JII;‘S LABEL STRUCTUEQID_I:EATURE STRUCTURAL FEATURE DESCRIPTION FORMULA
IGG41 GPT The percentage of GP1 glycan in tatautral IgG glycans (GB GP1/GP* 100
IGG42 GP2 The percentage of GP2 glycan in total neutral IgG glycans'\GP | GP2/ GP* 100
IGG43 GP4 The percentage of GP4 glycan in total neutral IgG glycans'\GP | GP4/ GP* 100
IGG44 GPH' The percentage @P5 glycan in total neutral IgG glycans (P GP5 / GP* 100
IGG45 GP@' The percentage of GP6 glycan in total neutral IgG glycans'\GP | GP6 / GP* 100
IGG46 GP7 The percentage of GP7 glycan in total neutral IgG glycans'\GP | GP7 / GP* 100
IGG47 GPg The percentage of GP8 glycan in total neutral IgG glycans'\GP | GP8/ GP* 100
1gG NEUTRAL glycans
IGG48 GP9 The percentage of GP9 glycan in total neutral IgG glycans'\GP | GP9/ GP* 100
IGG49 GP10 The percentage of GP10 glycan in total neutral IgG glycans)GP| GP10/ GP* 100
IGG50 GP1T The percentage of GP11 glycan in total neutral IgG glycans)GP| GP11 / GP* 100
IGG51 GP12 The percentage of GP12 glycan in total neutral IgG glycans)GP| GP12 / GP* 100
IGG52 GP13 The percentage of GP13 glycantatal neutral IgG glycans (G GP13/GP* 100
IGG53 GP14 The percentage of GP14 glycan in total neutral IgG glycans)GP| GP14 / GP* 100
IGG54 GP1% The percentage of GP15 glycan in total neutral IgG glycans)GP| GP15/ GP* 100
IGG55 co' ;’E{i:r(]esrcentage of agalactosylated structures in total neutral IgG SUM(GPT: GP6)
IGG56 cr Ege glt)ell(’:caennstage of monogalactosylated structures in total neutral SUM(GPT: GP1T)
IGG57 G ;’E{i:r(]esrcentage of digalactosylated structures in total neutral IgG SUM(GP12: GP15)
IGG58 0 ot The percentage of all fucosylated {bisecting GIcNAc) structures SUM(GP1+ GP4+ GP5+ GP6+ GP8+ GP9'+
in total neutral IgG glycans GP10+ GP1I'+ GP14'+ GP15)
IgG NEUTRAL glycans IGG59 FGO'*®GO" The percentage of fucosylation of agalactosylated structures SUM(GP1+ GP4+ GP5+ GP6") / GO'* 100
(derived parameters) IGG60 FGI"®G1" The percentage of fucosylation of monogalactosylated structure§ SUM(GP8+ GP9+ GP10+ GP11) / G1"* 100
IGG61 FG2' oG The percentage of fucosylation of digalactosylated structures SUM(GP14+ GP15) / G2* 100
IGG62 | F' Lht% t‘;’ff:l:‘tt;??goé g:;g;ﬁ':‘ted (without bisecting GICNAC) StUCHy o\ 1Py GPA+ GPS'+ GPE'+ GPI+ GP14)
IGG63 | FGOYGO' Zg;ggﬁ’g};&t‘gs ;’I&‘;ﬁfgf“o” (without bisecting GIENAC) of | o\ Gp1+ GPA™+ GPSY) / GO™ 100
IGG64 FGIVGT The percentage of fucosylation (without bisecting GIcNAc) of SUM(GP8+ GPY") / GI'* 100

monogalactosylated structures




ST

ISELX'I?L?RSEYCL;AR-I;?J';S LABEL STRUCTU;QID_I:EATURE STRUCTURAL FEATURE DESCRIPTION FORMULA
IGG65 FG2/GY g%zlzi:gzglt:t%ed c;ftrfLLngt?jsr)éI;uion (without bisecting GIcNAc) of GP14/ G2'* 100
IGG66 FR" I)TZI %Zl’jt?gltzlagg c;fl;g;gzylated (with bisecting GIcNAc) structures SUM(GP6 + GP10'+ GP1T'+ GP15)
IGG67 FBGOYGO" zgzlg;:)cg;:gg ;)terL::?ng;ation (with bisecting GIcNAc) of GPEY GO™ 100
IGG68 | FBGT/GT" ;';igg;faeé‘ttgfﬁ a‘:g;”ggﬁﬂitr'gg (with bisecting GICNAC) of SUM(GP10+ GP1T") / GI'* 100
IGG69 FBG2/GY" g%zlzi:gzglt:t%ed c;ftrfLLngt?jsr)éI;uion (with bisecting GIcNAc) of GP15) / G2* 100
IGG70 FB"/F" Ratio of fucosylated structures with and without bisecting GIcNA¢ FB"/ F"* 100
IGG71 FRY/EN ol I)TZI i:gii?;clzgf;iys::;?g GlIcNAc in all fucosylated structures in FBY F" @ * 100
IGG72 FUE" + FBY) theraLtjié)tlj):Jga)itsglatseéjcgggizelgt’ilrchlcNAc structures and all FY(GP13+ FB")
IGG73 BY(F + FEY) SRteriLtji((:)t lj):esstr(tﬁtgifesc\t,;l:g gli?\lc;\lg)g GIcNAc and all fucosylated GP13/ (F+ FB") * 1000
IGG74 FBGZ/EGY' bRizggticr)ngclocs’\}/ged digalactosylated structures with and without GP15/GP14
IGG75 | FBGZ'/(FGZ' + FBGZ) It';l‘jcitrl‘frfg‘ncfo?;b;zzgg;%g%y@;:‘sa" fucosylated digalactosyli 01y (p14+ GP15) * 100
cos | Fozieez+ Focz) B e o urg o CPLIGPS+ GPLS)
IGG77 BG2I(FGZ + FBGY) Ratio of digalactosylated structures with bisecting GIcNAc and al GP18/(GP14+ GP15) * 1000

fucosylated digalactosylated structures-(bisecting GIcNAc)




Supplementary table 5.Correspondence between IgG and plasma glycan peakihe IgG glycan peaks
(GP1GP24) are combined into 11 plasma glycan peaks {@P11). Notes about IgG glycan peaks: GP1 has

no correspondence in plasma peaks, GP3 was excluded from all analyses as explainsdctioti®e2.2

GP20 glycan structures were not determined (n.d.) and minor peaks designated with letters a and b sum up to a
major peak (for instance, GP8a+GP8b=GP8).

IgG glycan peaks Plasma glycans peaks

GP1 -

GP2 GP1

GP3

GP2
GP4

GP5
GP3

GP6

GP7

GP8a

GP8b
GP4

GP9

GP10

GP11

GP12

GP5
GP13

GP14

GP15
GP6

GP16a

GP16b

GP17 GP7

GP18a

GP18b GP8

GP19

GP20

GP9
GP21

GP22
GP10

GP23
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GP24

GP11
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Supplementary table 6. Genetic variantpotentially associated withthe diabetescondition. List of the top
30 SNPs identified by the correlation adjusted scores method as the most important for the diabetes data group
division. Genes overlapping with the SNP are annotated without asterisieigidbour genes of the SNP are

annotated with asterisk.

SNP Chr Genes
rs7865906 9 NCS1*
rs1292123 6 CDK19*
rs9578030 13 LINC00398*
rs6563348 13 DCLK1
rs7865279 9 IDNK*
rs37984 7 AC006042.8AC006465.3GLCCI1
rs7232159 18 RP112503.1*
rs2203586 2 AC092684.1
rs2150228 13 RNY4P29*
rs1373762 18 RP112503.1*
rs12492596 3 AC104637.1*
rs7631551 3 FLT1P1
rs1328650 13 DCLK1*
rs7163551 15 RGMA
rs1926317 13 DCLK1
rs12605728 18 DCC
rs5961574 X ACO074035.1*
rs4659764 1 MT1HL1
rs802684 6 CDK19
rs1910780 12 RP11955H22.2*
rs3924384 2 AC116609.1
rs3795366 1 SIPA1L2
rs1358725 6 RP1-60019.1*
rs10897193 11 AP003733.1*
rs2691185 6 CDK19
rs1217770 5 MAP1B*
rs7202468 16 AC009158.1*
rs9954050 18 RP112503.1*
rs7334245 13 DCLK1
rs11653470 17 AC005863.1
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Supplementary table7. Geneticvariants most contributing to the genetic structure of populations. List

of 35 SNPs consistently identified by the three SNP selection methods to be the most important for population
discriminationwithin the top 100 SNR<5enes overlapping with the SNP are annotated without asterisk and
neighbour genes of the SNP are annotated with asterisk. The number in parenthesis following the name of the
method indicates the rank pasit achieved by the SNP with that particular methed: Random Jungle;

CARE: correlation adjusted scores; DARI&criminat analysis of principal components.

SNP Chr Genes Methods (rank)
rs1446585 | 2 R3HDM1 RJ(1): CARE(2); DAPC(1)
rs6730157 | 2 RAB3GAP1; ZRANB3 RJ(2): CARE(1); DAPC(2)
rs309160 | 2 DARS RJ(3); CARE(8); DAPC(6)
rs313519 | 2 R3HDM1 RJ(4); CARE(14); DAPC(9)
rs313528 | 2 R3HDM1 RJ(5); CARE(13); DAPC(8)
[s932206 | 2 AC068492.1* RJ(6); CARE(4); DAPC(4)
rs1561277 | 2 ZRANB3 RJ(7): CARE(3); DAPC(3)
(621341 | 2 TMEM163 RJ(8); CARE(11); DAPC(15)
12011946 | 2 AC068492.1* RJ(9): CARE(6); DAPC(7)
rs6739713 | 2 R3HDM1* RJ(10); CARE(9); DAPC(11)
rs1469996 | 2 LCT; UBXN4 RJ(11); CARE(39); DAPC(17)
AL645941.1; AL662845.1; AL935042.1;
rs2071556 | 6 2?385%575968:11;?533;%3%;lf:HRzngGé;S'1; RJ(12); CARE(22); DAPC(21)
XXbac-BPG181M17.5
rs309137 | 2 AC093391.2 RJ(13); CARE(7); DAPC(5)
rs2322659 | 2 LCT RJ(14); CARE(57); DAPC(12)
rs1869829 | 2 RAB3GAP1 RJ(15); CARE(20); DAPC(10)
rs3213943 | 2 R3HDM1 RJ(18); CARE(66); DAPC(20)
AL645941.1; AL662845.1; AL935042.1;
rs1042337 | 6 gﬁgﬁ%ﬁg‘;‘_ll’; %ﬁ%@gﬁ% i;%isﬁgf ‘11| R3(20); CARE(26); DAPC(33)
XXbac-BPG181M17.5
rs7950019 | 11 ST13P5 RJ(21); CARE(5); DAPC(28)
rs1035798 | 6 AGER; PBX2; RNF5 RJ(24); CARE(18); DAPC(26)
rs6430585 | 2 UBXN4 RJ(28); CARE(45); DAPC(18)
rs659445 | 6 C2; CYP21A2; EHMT2; ZBTB12 RJ(29); CARE(65); DAPC(45)
rs10008492 | 4 RNA5SP158* RJ(30); CARE(15); DAPC(14)
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rs494620 6 CYP21A2; SLC44A4 RJ(31); CARE(58); DAPC(30)
rs382259 6 XXbac-BPG154L12.4* RJ(32); CARE(12); DAPC(13)
rs4331786 | 4 TLR10 RJ(37); CARE(33); DAPC(27)
rs9267833 | 6 NOTCH4 RJ(41); CARE(24); DAPC(63)
rs1123848 2 HNRNPKP2* RJ(43); CARE(80); DAPC(19)
rs10024216 | 4 RNA5SP158 RJ(46); CARE(34); DAPC(22)
rs535586 6 CYP21A2; EHMT2 RJ(51); CARE(67); DAPC(46)
rs13296013 |9 RPS10P3 RJ(59); CARE(32); DAPC(58)
rs1319281 13 RN7SKP2* RJ(61); CARE(64); DAPC(84)
rs10496746 | 2 RN7SKP141* RJ(62); CARE(99); DAPC(24)
rs2045272 | 11 ST13P5* RJ(75); CARE(17); DAPC(49)
rs185819 6 5S_rRNA; RNA5SP206; TNXB RJ(82); CARE(60); DAPC(44)
rs13149231 |4 KLF3* RJ(84); CARE(10); DAPC(35)
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Supplementary table . Genetic variantsassociated with plasma Nylycan traits. List of SNPs consistently

identified by the three SNP selection methods to be associated with each glycan trait within the top 100 SNPs.
SNPs which were firatanked by two of the methodse hghlighted in bold. Genes overlapping with the SNP

are annotated without asterisk and neighbour genes of the SNP are annotated with asterisk; n.d. means that the
annotation for that SNP could not be fetched from Ensembl database. The number in parenthesis following the
name of the method indicates the rank position achieyedebSNP with that particular method. RJ: Random

Jungle; CARE: correlation adjusted scores; GEMMA: bayesian sparse linear mixed model.

Trait SNP Chr | Genes Methods (rank)
GP1 rs6573604 14 CTD-2509G16.5 RJ(46); CARE(1); GEMMA(1)
GP3 rs946808 9 RP11375018.2 RJ(6); CARE(23); GEMMA(2)
GP5 rs1530057 |3 RBMS3 RJ(78); CARE(7); GEMMA(75)
SNORD10; AC113189.5;
GP6 rs9901675 | 17 | SNORA67; MPDU1;CD68; RJ(17); CARE(1); GEMMA(1)
EIF4Al1; SENP3-EIF4Al
GP7 rs12362065 | 11 | OR10W1* RJ(74); CARE(87); GEMMA(5)
GP8 rs6725841 2 LINC00299;AC007464.1 RJ(4); CARE(1); GEMMA(5)
GP8 rs10484427 |6 RP11254A17.1* RJ(10); CARE(2); GEMMA(2)
GP9 rs4487196 | 3 RPL21P41* RJ(65); CARE(2); GEMMA(97)
GP9 rs3734087 |5 NUDT12 RJ(74); CARE(44); GEMMA(84)
GP10 rs10483776 | 14 | FUT8 RJ(3);CARE(1); GEMMA(3)
GP10 rs4756899 | 11 | USH1C;0TOG RJ(9); CARE(3); GEMMA(1)
GP10 rs174627 11 | FADS3;FADS2 RJ(71); CARE(2); GEMMA(2)
GP11 rs7137203 12 | AC139931.1* RJ(2); CARE(1); GEMMA(1)
GP11 rs4414724 | 2 LDHAP3* RJ(85); CARE(29); GEMMA(15)
GP12 rs1281121 | 4 SH3TC1 RJ(61); CARE(24); GEMMA(4)
GP13 rs13107325 | 4 SLC39A8 RJ(5); CARE(2); GEMMA(6)
GP14 rs3760776 | 19 | FUT6;FUT3 RJ(1); CARE(1); GEMMA(2)
GP14 rs1974491 17 | BRIP1* RJ(17); CARE(2); GEMMA(1)
GP15 rs10812830 | 9 LINGO2 RJ(27); CARE(8); GEMMA(27)
GP15 rs10743152 11 TH;MIR4686 RJ(79); CARE(1); GEMMA(3)
GP16 rs1569785 22 | RP1293L6.1* RJ(24); CARE(3); GEMMA(59)
DG1 rs11621121 | 14 | MIR4708* RJ(2); CARE(5); GEMMA(1)
DG1 rs10132229 14 CTD-2509G16.5 RJ(7); CARE(4); GEMMA(2)
DG2 rs1412990 |9 PIP5K1B RJ(56);CARE(61); GEMMA(13)
DG3 rs4567889 2 ALK RJ(57); CARE(5); GEMMA(2)
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DG4 rs2980542 | 8 RGS22 RJ(31); CARE(2); GEMMA(3)
DG4 rs1995536 | 8 CSMD1 RJ(93); CARE(77); GEMMA(80)
DG5 rs1506869 | 8 DOCK5 RJ(89); CARE(25); GEMMA(69)
DG7 rs315081 1 ST6GALNAC3 RJ(17);CARE(2); GEMMA(3)
DG7 rs3760776 | 19 | FUT6;FUT3 RJ(52); CARE(1); GEMMA(2)
DG7 rs4569731 | 4 GALNTL6 RJ(72); CARE(86); GEMMA(66)
DG8 rs2446440 | 8 LINC00967* RJ(4); CARE(3); GEMMA(1)
DG8 rs1328514 | 9 AL353707.1* RJ(29); CARE(6); GEMMA(37)
DG8 rs2472867 6 FARS2 RJ(51); CARE(2); GEMMA(2)
DG8 rs12926250 | 16 | PMFBP1 RJ(54); CARE(13); GEMMA(16)
DG9 rs3760776 | 19 | FUT6;FUT3 RJ(1); CARE(1); GEMMA(2)
DG9 rs1150975 12 | RP11428G5.1 RJ(38); CARE(7); GEMMA(3)
DG9 rs2650000 12 | HNF1A-AS1* RJ(45); CARE(6); GEMMA(1)
DG10 rs3135363 | 6 BTNL2* RJ(3); CARE(3); GEMMA(1)
DG11 rs13203024 | 6 NUS1* RJ(1); CARE(1); GEMMA(3)
DG11 rs729724 10 | WARS2P1* RJ(11); CARE(7); GEMMA(5)
DG12 rs3760776 | 19 | FUT6;FUT3 RJ(16); CARE(1); GEMMA(1)
Monosialo | rs10514990 |17 | CA10 RJ(37); CARE(73); GEMMA(4)
Disialo rs9847446 | 3 RP11231E6.1* RJ(3); CARE(7); GEMMA(3)
Disialo rs759602 3 ST6GAL1 RJ(38); CARE(46); GEMMA(92)
Trisialo rs248230 5 RNF130 RJ(19); CARE(49); GEMMA(34)
Trisialo rs10211505 |2 AC012671.2* RJ(33); CARE(51); GEMMA(24)
BAMS rs718858 3 AGTR1 RJ(46); CARE(3); GEMMA(53)
BADS rs9808120 2 RP1:111J6.2* RJ(6); CARE(49); GEMMA(71)
BADS rs11701048 |21 | CBS RJ(66); CARE(26); GEMMA(3)
BA rs1486536 11 RP13:179A10.1* RJ(83); CARE(95); GEMMA(64)
TRIA rs2235959 14 | FLRT2 RJ(52); CARE(3); GEMMA(1)
C.FUC rs12702696 | 7 ICA1;AC006042.6 RJ(41); CARE(52); GEMMA(33)
A.FUC rs3760776 | 19 | FUT6;FUT3 RJ(1); CARE(1); GEMMA(2)
A.FUC rs17078797 | 13 | RP11531P20.1* RJ(2); CARE(91); GEMMA(71)
A.FUC rs4899579 14 | IFT43* RJ(13); CARE(31); GEMMA(98)
A.FUC rs4807826 | 19 | RANBP3 RJ(39); CARE(40); GEMMA(51)
A.FUC rs10795250 | 10 | AKR1C5P RJ(85); CARE(27); GEMMA(41)
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A2 rs10132229 | 14 | CTD-2509G16.5 RJ(7); CARE(3); GEMMA(66)
A2 rs7159888 | 14 | CTD-2509G16.5 RJ(8); CARE(2); GEMMA(1)

A2 rs2305480 17 | GSDMB RJ(96);CARE(15); GEMMA(2)
GO rs6782811 | 3 ITPR1 RJ(52); CARE(30); GEMMA(79)
G1 rs1045873 | 10 | PRTFDC1 RJ(11); CARE(4); GEMMA(1)
G1 rs3133679 | 8 RGS22 RJ(12); CARE(1); GEMMA(2)
Gl rs7789699 7 PRKAG?2 RJ(21); CARE(6); GEMMA(24)
G2 rs17735715 | 3 RP13123D24.2;RNU6-901P RJ(67); CARE(61); GEMMA(10)
G3 rs13107325 | 4 SLC39A8 RJ(6); CARE(1); GEMMA(1)

G3 rs469523 5 DCP2* RJ(32); CARE(6); GEMMA(65)
G3 rs4827341 X SRPX;RP1343E11.1,TM4SF2 | RJ(39); CARE(30); GEMMA(63)
G4 rs10743152 | 11 | TH;MIR4686 RJ(10); CARE(1); GEMMA(1)
G4 rs228376 X DMD RJ(77); CARE(30); GEMMA(4)
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Supplementary table 9.Genetic variants associated with IgG Nglycan traits. List of SNPs consistently
identified by the three SNP selection methods to be associated with each glycan trait within the top 100 SNPs.
SNPs which were firatanked by all methodare highlighted in bold. Genes overlapping with the SNP are
annotated without asterisk and neighbour genes of the SNP are annotated with an asteniskib&nean
parenthesis following the name of the method indicates the rank position achieved by the SNP with that

particular method. RJ: Random Jungle; CARE: correlation adjusted scores; GEMMA: bayesian sparse linear

mixed model.

Trait SNP Chr Genes Methods (rank)

IGG2 rs1269068 14 CTD-2509G16.5 RJ(3); CARE(4); GEMMA(1)
IGG3 rs3818593 9 B4GALT1 RJ(5); CARE(1); GEMMA(1)
IGG3 rs13121519 | 4 GRID2 RJ(42); CARE(9); GEMMA(85)
IGG4 rs6100044 20 VAPB RJ(55); CARE(37); GEMMA(79)
IGG5 rs909674 22 MGAT3 RJ(2); CARE(1); GEMMA(2)
IGG6 rs1556463 9 PTPRD RJ(69); CARE(45); GEMMA(68)
IGG7 rs4908037 1 AGL* RJ(61); CARE(1); GEMMA(33)
IGG8 rs7570009 2 TMEM131 RJ(42); CARE(65); GEMMA(16)
IGG8 rs1218577 1 KCNN3 RJ(43); CARE(32); GEMMA(52)
IGG9 rs9620326 22 SMARCB1 RJ(1); CARE(1); GEMMA(2)
IGG9 rs2292298 4 RELL1 RJ(6); CARE(3); GEMMA(1)
IGG10 rs9620326 22 SMARCB1 RJ(1); CARE(1); GEMMA(5)
IGG10 rs4731214 7 POT1* RJ(57); CARE(15); GEMMA(2)
IGG10 rs3136706 1 CD2 RJ(61); CARE(37); GEMMA(85)
IGG10 rs7232036 18 LINC00908* RJ(93); CARE(21); GEMMA(54)
IGG11 rs7159888 14 CTD-2509G16.5 RJ(69); CARE(2); GEMMA(1)
IGG12 rs7146952 14 RP11326E7.1* RJ(38); CARE(16); GEMMA(46)
IGG13 rs3818593 9 B4GALT1 RJ(1); CARE(1); GEMMA(2)
IGG13 rs6764279 3 ST6GALL RJ(11);CARE(2); GEMMA(1)
IGG13 rs7897452 10 CACNB2* RJ(18); CARE(30); GEMMA(10)
IGG13 rs2142661 22 RIBC2 RJ(22); CARE(23); GEMMA(74)
IGG14 rs9620326 22 SMARCB1 RJ(1); CARE(4); GEMMA(3)
IGG14 rs1539604 6 RP11278J20.2* RJ(33); CARE(31); GEMMA(5)
IGG14 rs6444193 3 ST6GAL1 RJ(52); CARE(2); GEMMA(15)
IGG15 rs6764279 3 ST6GALL RJ(1); CARE(1); GEMMA(1)
IGG15 rs6444193 3 ST6GALL RJ(2); CARE(2); GEMMA(3)
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IGG15 rs154452 5 AC008592.5 RJ(47); CARE(31); GEMMA(14)
IGG17 rs2363447 4 SLC4A4* RJ(3); CARE(4); GEMMA(2)
IGG17 rs6764279 3 ST6GALL RJ(5); CARE(2); GEMMA(1)
IGG17 rs1368304 5 HMGN1P16 RJ(13); CARE(5); GEMMA(18)
IGG17 rs16939284 8 RP131706J10.1ZFHX4-AS1 RJ(25); CARE(10); GEMMA(5)
IGG17 rs3818593 9 BAGALT1 RJ(30); CARE(1); GEMMA(3)
IGG20 rs7201219 16 GSG1L RJ(94); CARE(5); GEMMA(5)
1IGG22 rs6764279 3 ST6GAL1 RJ(47); CARE(1); GEMMA(1)
1IGG22 rs4830793 X FRMPD4 RJ(65); CARE(29); GEMMA(48)
1IGG23 rs6764279 3 ST6GALL RJ(1); CARE(1); GEMMA(1)
1IGG23 rs1174864 7 POM121L12* RJ(11); CARE(91); GEMMA(59)
1GG24 rs6764279 3 ST6GALL RJ(1); CARE(1); GEMMA(1)
IGG24 rs1358295 2 RNU6-187P RJ(36); CARE(81); GEMMA(99)
IGG25 rs4677611 3 FOXP1 RJ(2); CARE(38); GEMMA(32)
IGG25 rs6734537 2 KLF7* RJ(77); CARE(25); GEMMA(1)
IGG26 rs6764279 3 ST6GALL RJ(1); CARE(1); GEMMA(1)
1IGG26 rs3818593 9 B4GALT1 RJ(2); CARE(2); GEMMA(2)
IGG26 rs9405681 6 EXOC2* RJ(12); CARE(32); GEMMA(73)
1IGG27 rs2154637 8 KB-1615E4.2 RJ(22); CARE(2); GEMMA(1)
IGG28 rs6764279 3 ST6GAL1 RJ(1); CARE(1); GEMMA(L)
1IGG28 rs6444193 3 ST6GALL RJ(2); CARE(2); GEMMA(2)
1IGG28 rs935653 2 PRKCE RJ(30); CARE(12); GEMMA(7)
1IGG28 rs4940206 18 DCC RJ(73); CARE(11); GEMMA(14)
1IGG29 rs6764279 3 ST6GALL RJ(1); CARE(1); GEMMA(1)
1IGG29 rs6444193 3 ST6GALL RJ(2); CARE(2); GEMMA(2)
1IGG29 rs2725391 17 AZI1 RJ(5); CARE(6); GEMMA(3)
1IGG29 rs8104096 19 CTC-265F19.2;GNG7 RJ(54); CARE(55); GEMMA(71)
IGG31 rs6764279 3 ST6GALL RJ(1); CARE(1); GEMMA(2)
IGG31 rs6687262 1 PSAT1P3* RJ(2); CARE(2); GEMMA(1)
IGG31 rs4887970 16 WWOX RJ(4); CARE(5); GEMMA(27)
IGG31 rs378268 5 RP11158J3.2* RJ(9); CARE(24); GEMMA(65)
IGG31 rs2279913 17 RP13145506.2,AZI1 RJ(22); CARE(3); GEMMA(3)
IGG32 rs6764279 3 ST6GALL RJ(1); CARE(1); GEMMA(1)
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1IGG32 rs6444193 3 ST6GALL RJ(2); CARE(2); GEMMA(2)
IGG33 rs1036585 3 BCHE* RJ(22); CARE(3); GEMMA(1)
IGG33 rs1816658 8 LINC00966* RJ(56); CARE(5); GEMMA(7)
IGG33 rs13266168 | 8 RP11705024.1* RJ(91); CARE(4); GEMMA(2)
IGG34 rs1036585 3 BCHE* RJ(11); CARE(7); GEMMA(38)
IGG34 rs13083341 |3 BCHE* RJ(51); CARE(8); GEMMA(93)
IGG35 rs6764279 3 ST6GALL RJ(1); CARE(1); GEMMA(1)
IGG35 rs3777179 5 ELL2 RJ(28); CARE(11); GEMMA(3)
IGG35 rs2149436 13 HTR2A* RJ(85); CARE(10); GEMMA(8)
IGG36 rs10758192 | 9 BAGALT1 RJ(4); CARE(2); GEMMA(1)
IGG37 rs6764279 3 ST6GAL1 RJ(1); CARE(1); GEMMA(1)
IGG37 rs10758192 | 9 B4GALT1 RJ(10); CARE(3); GEMMA(2)
IGG38 rs3818593 9 BAGALT1 RJ(2); CARE(2); GEMMA(2)
IGG38 rs6764279 3 ST6GAL1 RJ(3); CARE(1); GEMMA(1)
IGG38 rs302740 1 RP5896L10.1 RJ(92); CARE(7); GEMMA(4)
IGG39 rs909674 22 MGAT3 RJ(1); CARE(1); GEMMA(4)
IGG39 rs9620326 22 SMARCB1 RJ(7); CARE(8); GEMMA(3)
IGG39 rs3818593 9 B4GALT1 RJ(34); CARE(9); GEMMA(2)
IGG40 rs9620326 22 SMARCB1 RJ(2); CARE(7); GEMMA(2)
IGG40 rs5757659 22 TAB1 RJ(5); CARE(2); GEMMA(3)
IGG40 rs3818593 9 B4GALT1 RJ(10);CARE(9); GEMMA(1)
IGG42 rs10132229 | 14 CTD-2509G16.5 RJ(2); CARE(2); GEMMA(2)
1IGG42 rs7159888 14 CTD-2509G16.5 RJ(7); CARE(3); GEMMA(1)
IGG43 rs1445779 5 FTH1P9 RJ(69); CARE(3); GEMMA(2)
IGG45 rs9620326 22 SMARCB1 RJ(5); CARE(6); GEMMA(3)
IGG45 rs5757659 22 TAB1 RJ(6); CARE(3); GEMMA(1)
IGG45 rs7573966 2 STRN RJ(53); CARE(13); GEMMA(2)
IGG45 rs5757721 22 RPS19BP1* RJ(83); CARE(11); GEMMA(37)
IGG46 rs3798174 6 SLC22A1 RJ(1); CARE(7); GEMMA(66)
IGG46 rs6573604 14 CTD-2509G16.5 RJ(9); CARE(2); GEMMA(1)
IGG46 rs11650354 | 17 TBX21 RJ(14); CARE(5); GEMMA(2)
IGG46 rs7789913 7 IKZF1 RJ(35); CARE(6); GEMMA(6)
IGG46 rs9285339 13 SLITRK6* RJ(52); CARE(24); GEMMA(3)
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IGG48 rs10151805 | 14 C140rf80* RJ(66); CARE(1); GEMMA(49)
1IGG49 rs9620326 22 SMARCB1 RJ(1); CARE(1); GEMMA(3)
IGG49 rs909674 22 MGAT3 RJ(16); CARE(2); GEMMA(4)
IGG49 rs2185781 1 ADIPOR1 RJ(50); CARE(38); GEMMA(46)
IGG50 rs9620326 22 SMARCB1 RJ(1); CARE(1); GEMMA(3)
IGG50 rs7232036 18 LINC00908* RJ(86); CARE(8); GEMMA(7)
IGG50 rs7563350 2 PROM2* RJ(90); CARE(69); GEMMA(45)
IGG51 rs11650354 | 17 TBX21 RJ(10); CARE(1); GEMMA(2)
IGG51 rs1341138 13 HSPD1P8 RJ(54); CARE(57); GEMMA(7)
IGG52 rs12256995 | 10 PPIAP31* RJ(20); CARE(27); GEMMA(64)
IGG52 rs1028531 14 RP11816J8.1* RJ(79);CARE(1); GEMMA(1)
IGG53 rs10758192 | 9 B4GALT1 RJ(21); CARE(4); GEMMA(1)
IGG53 rs1998930 6 RP11230C9.1* RJ(58); CARE(5); GEMMA(8)
IGG53 rs10057083 5 CSNK1A1;CTB-89H12.4 RJ(97); CARE(28); GEMMA(73)
IGG54 rs10517927 | 4 SPOCK3 RJ(6); CARE(1); GEMMA(5)
IGG54 rs7857028 9 RNU6-996P* RJ(62); CARE(17); GEMMA(61)
IGG56 rs441233 9 LINC00094* RJ(18); CARE(1); GEMMA(13)
IGG56 rs5905956 X RP11342D14.1 RJ(93); CARE(3); GEMMA(6)
IGG57 rs3818593 9 BAGALT1 RJ(1); CARE(1); GEMMA(1)
IGG57 rs2861806 5 CTB-63M22.1* RJ(84); CARE(11); GEMMA(30)
IGG58 rs7789913 7 IKZF1 RJ(13); CARE(20); GEMMA(11)
IGG58 rs7159888 14 CTD-2509G16.5 RJ(18); CARE(2); GEMMA(1)
IGG58 rs7079570 10 VSTM4 RJ(40); CARE(35); GEMMA(28)
IGG59 rs6573604 14 CTD-2509G16.5 RJ(1); CARE(1); GEMMA(1)
IGG59 rs8074094 17 ITGB3; ITGB3 RJ(9); CARE(17); GEMMA(2)
IGG59 rs7453920 6 HLA-DQB2 RJ(79); CARE(73); GEMMA(9)
IGG61 rs6573604 14 CTD-2509G16.5 RJ(11); CARE(2); GEMMA(1)
IGG61 rs11643717 | 16 LINC00311;CTC-786C10.2 RJ(44); CARE(53); GEMMA(14)
1IGG62 rs9620326 22 SMARCB1 RJ(1); CARE(1); GEMMA(2)
IGG62 rs909674 22 MGAT3 RJ(3); CARE(2); GEMMA(3)
1IGG62 rs7789913 7 IKZF1 RJ(11); CARE(3); GEMMA(1)
1IGG62 rs8102799 19 ZNF160 RJ(50); CARE(20); GEMMA(5)
1IGG62 rs1859425 7 ZNF804B RJ(78); CARE(47); GEMMA(55)
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IGG63 rs9620326 22 SMARCB1 RJ(1); CARE(4); GEMMA(3)
IGG63 rs909674 22 MGAT3 RJ(3); CARE(1); GEMMA(4)
IGG63 rs7781977 7 IKZF1 RJ(7); CARE(6); GEMMA(1)
IGG63 rs1041350 9 SUMO2pP2* RJ(15); CARE(9); GEMMA(2)
IGG63 rs10483766 | 14 RHOJ RJ(54); CARE(14); GEMMA(38)
IGG64 rs9620326 22 SMARCB1 RJ(1); CARE(1); GEMMA(3)
IGG64 rs7781977 7 IKZF1 RJ(46); CARE(3); GEMMA(2)
IGG64 rs6570330 6 TXLNB* RJ(56); CARE(11); GEMMA(1)
IGG65 rs2427032 20 CDH4 RJ(1); CARE(4); GEMMA(2)
IGG65 rs11643717 | 16 LINC00311;CTC-786C10.2 RJ(28); CARE(19); GEMMA(29)
IGG65 rs7159888 14 CTD-2509G16.5 RJ(93); CARE(6); GEMMA(1)
IGG66 rs9620326 22 SMARCB1 RJ(1); CARE(1); GEMMA(1)
IGG66 rs909674 22 MGAT3 RJ(2); CARE(2); GEMMA(2)
IGG66 rs5750811 22 TAB1 RJ(6); CARE(6); GEMMA(6)
IGG67 rs909674 22 MGAT3 RJ(2); CARE(1); GEMMA(4)
IGG67 rs9620326 22 SMARCB1 RJ(3); CARE(5); GEMMA(3)
IGG67 rs1041350 9 SUMO2P2* RJ(9); CARE(8); GEMMA(2)
IGG68 rs9620326 22 SMARCB1 RJ(1); CARE(1); GEMMA(1)
IGG68 rs10506022 | 12 RP11:709A23.1;PPFIBP1 RJ(3); CARE(7); GEMMA(3)
IGG68 rs909674 22 MGAT3 RJ(6); CARE(2); GEMMA(2)
IGG68 rs7475361 10 SEPHS1 RJ(10); CARE(5); GEMMA(6)
IGG68 rs3802586 10 PHYH RJ(95); CARE(18); GEMMA(45)
IGG69 rs9620326 22 SMARCB1 RJ(1); CARE(2); GEMMA(3)
IGG69 rs1159709 2 ERBB4 RJ(29); CARE(20); GEMMA(88)
IGG69 rs3818593 9 BAGALT1 RJ(49); CARE(3); GEMMA(2)
IGG70 rs9620326 22 SMARCB1 RJ(1); CARE(1); GEMMA(2)
IGG70 rs909674 22 MGAT3 RJ(3); CARE(2); GEMMA(3)
IGG70 rs7789913 7 IKZF1 RJ(50); CARE(9); GEMMA(1)
IGG71 rs9620326 22 SMARCB1 RJ(1); CARE(1); GEMMA(2)
IGG71 rs909674 22 MGAT3 RJ(2); CARE(2); GEMMA(3)
IGG71 rs1390156 13 TDRD3* RJ(12); CARE(64); GEMMA(55)
IGG71 rs10139559 14 RP131353P15.1* RJ(17); CARE(33); GEMMA(72)
IGG71 rs31340 5 FSTL4 RJ(20); CARE(23); GEMMA(25)
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Trait SNP Chr Genes Methods (rank)

IGG71 rs7789913 7 IKZF1 RJ(67); CARE(9); GEMMA(1)
IGG72 rs9620326 22 SMARCB1 RJ(1); CARE(1); GEMMA(2)
IGG72 rs909674 22 MGAT3 RJ(2); CARE(2); GEMMA(3)
IGG72 rs7781977 7 IKZF1 RJ(14); CARE(7); GEMMA(1)
IGG72 rs1355925 n.d. RJ(32); CARE(16); GEMMA(4)
IGG73 rs11954386 |5 PARPS RJ(71); CARE(58); GEMMA(20)
IGG74 rs9620326 22 SMARCB1 RJ(3); CARE(1); GEMMA(4)
IGG74 rs10758192 | 9 B4GALT1 RJ(8); CARE(2); GEMMA(3)
IGG75 rs9620326 22 SMARCB1 RJ(1); CARE(1); GEMMA(2)
IGG75 rs10758192 | 9 BAGALT1 RJ(2);CARE(2); GEMMA(L)
IGG75 rs31340 5 FSTL4 RJ(36); CARE(4); GEMMA(5)
IGG75 rs2092168 22 RPS19BP1* RJ(70); CARE(5); GEMMA(3)
IGG76 rs9620326 22 SMARCB1 RJ(3); CARE(1); GEMMA(3)
IGG76 rs31340 5 FSTL4 RJ(11); CARE(3); GEMMA(2)
IGG76 rs7789913 7 IKZF1 RJ(54); CARE(21); GEMMA(8)
IGG76 rs3818593 9 BAGALT1 RJ(69); CARE(6); GEMMA(5)
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Supplementary table 10.Geneticvariants associated with phenotyped.ist of SNPs consistently identified

by the three SNP selectionethods to be associated with each phenotype within the top 100 SNPs. Genes
overlapping with the SNP are annotated without asterisk and neighbour genes of the SNP are annotated with
asterisk. The number in parenthesis following the name of the methodtéwdtbe rank position achieved by

the SNP with that particular method. RJ: Random Jungle; CARE: correlation adjusted scores; GEMMA:

bayesian sparse linear mixed model.

Trait SNP Chr Genes Methods (rank)

Sys rs10485097 | 6 PPIL4 RJ(9); CARE(51); GEMMA(22)
Sys rs7001273 |8 RP11628E19.4* RJ(56); CARE(24); GEMMA(46)
Sys rs10507382 | 13 PAN3;FLT1 RJ(65); CARE(3); GEMMA(7)
HDL rs995538 3 CPNE4 RJ(7); CARE(42); GEMMA(21)
Trigy rs2131905 |1 AKNAD1 RJ(2); CARE(46); GEMMA(59)
Trigy rs159382 5 CTD-2176121.2* RJ(45);CARE(1); GEMMA(3)
Insulin rs10026220 | 4 PI4K2B RJ(2); CARE(4); GEMMA(64)
Insulin rs965972 1 RP11452J13.1* RJ(16); CARE(2); GEMMA(3)
Insulin rs6679047 |1 AL450244.1* RJ(49); CARE(12); GEMMA(5)
Calcium rs7914270 | 10 WAPAL;RP1177P6.2 RJ(16); CARE(3)GEMMA(4)
UricAcid rs1014290 |4 SLC2A9 RJ(35); CARE(1); GEMMA(L)
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