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Abstract

Ultrasound tomography (UT) is a medical imaging modality which can be used for the

detection of breast cancer. One of the ways to solve the problem of UT is to use the

distorted Born iterative method. In order for this method to provide a good solution, an

ill-posed inverse problem must be solved within each iteration. In this dissertation, we

regularize the inverse problem using direct spectral �ltering methods. We show the ad-

vantage of using them in general form instead of standard, since employing modi�cation

of discrete version of �rst order derivative operator will provide additional regularization.

The goal of the aforementioned methods is to minimize the in�uence of smaller (general-

ized) singular values, so the selection of the regularization parameter that is determining

which of the values will be omitted is crucial to these methods. For this purpose we

develop a new algorithm for choosing the regularization parameter that is, minimizing

the residual and the error resulted from the noise of the measured data. In addition, we

regularize the inverse problem using new forms of regularized total least squares where the

existing problem is projected onto lower dimensional subspace. The dimension reduction

is achieved by employing a generalized Krylov subspace expansion which results in sig-

ni�cant decrease of computational time. In addition, the problem associated with �nding

the regularization parameter is avoided since an integrated parameter search inside the

method is provided.

Keywords

Ill posed inverse problem, regularization methods, regularization parameters, ultra-

sound tomography, distorted Born iterative method, regularized total least squares method
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Saºetak

Ultrazvu£na tomogra�ja (UT) je dijagnosti£ka radiolo²ka metoda koja se moºe koristiti

za otkrivanje karcinoma dojke. Jedan od na£ina za rije²avanje problema UT-a je uporaba

perturbirane Bornove iterativne metode. Ova metoda moºe dati dobro rje²enje samo ako

se unutar svake njene iteracije rije²i lo²e uvjetovan inverzni problem. U ovoj disertaciji reg-

ulariziramo lo²e uvjetovani inverzni problem u ultrazvu£noj tomogra�ji koriste¢i direktne

spektralne metode kod kojih ¢emo pokazati prednost kori²tenja njihovog generaliziranog

oblika nad standardnim budu¢i da se dodatna regularizacija postiºe upotrebom modi�-

cirane diskretizirane verzije operatora prve derivacije. Ideja prije spomenutih metoda je

smanjiti utjecaj najmanjih (generaliziranih) singularnih vrijednosti pa je odabir regular-

izacijskog parametra, koji ¢e odrediti to smanjenje, od iznimne vaºnosti. U tu svrhu razvi-

jamo novi algoritam za odabir parametra koji ¢e, uz minimizaciju reziduala, minimizirati

i gre²ku koja je posljedica ²uma na vektoru izmjerenih podataka. Tako�er, regularizaciju

¢emo provesti koriste¢i novi ubrzani oblik metode potpunih najmanjih kvadrata gdje ¢e

se postoje¢i problem projicirati na potprostor niºe dimenzije. Ovo rezultira smanjenjem

vremena izvr²avanja metode. Manja dimenzija potprostora je postignuta koriste¢i gener-

alizirane Krylovljeve potprostore. Budu¢i da metoda ima integriran algoritam za traºenje

parametara, izbjegnut je problem kori²tenja vanjske metode u tu svrhu.

Klju£ne rije£i

Lo²a uvjetovost, inverzni problem, regularizacijske metode, regularizacijski parametri,

ultrazvu£na tomogra�ja, preturbirana Bornova iterativna metoda, regularizirana metoda

potpunih najmanjih kvadrata
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tion and after 10 iterations of the DBI in both settings. . . . . . . . . . . 80

6.3 RE-`2 for the reconstructed scattering function using Born approximation

in Full and Limited aperture setting. . . . . . . . . . . . . . . . . . . . . . 86

6.4 RE-`2 for Born approximation and after 10 iterations of DBI. . . . . . . . 93

ix



List of Figures

2.1 The circular array of transducers surrounding the ROI. . . . . . . . . . . . . . 10

2.2 The basis function expansion of the total �eld inside ROI using N pulse basis

functions (one for each cell). . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.1 Exact phantom (left) and reconstruction after 10 iterations of DBI with TSVD

(center) and TGSVD (right). . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 Slice plots of the scattering function after 10 iterations of DBI when TSVD and

TGSVD are used for regularization. (a) Vertical slice at x = 3.3 mm, and (b)

horizontal slice at y = −1.33 mm for the simulated phantom. (c) Vertical slice

at x = 13.33 mm, and (d) horizontal slice at y = −2.66 mm for the modi�ed

Shepp-Logan phantom. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3 Reconstruction of the ROI after 6 iterations of DBI with (a) Pseudoinverse, (b)

DSVD and (c) DGSVD, (SNR=30dB). . . . . . . . . . . . . . . . . . . . . . 47

4.4 Plots of RE-`2 for scattering function during 6 iterations of DBI, f=500kHz. . . 48

5.1 Decrease and increase of (generalized) singular values, Signal loss error

(SLE) and Noise error (NE) in the proposed adaptive method. . . . . . . . 53

5.2 Presentation of the limited aperture setting. . . . . . . . . . . . . . . . . . 56

5.3 Exact simulated phantom and breast phantom used in simulations with

frequency of 1MHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.4 Plots of the relative error (RE-`2) for the scattering function during 10

iterations of DBI. All combinations between Tikhonov regularization in

standard and in general form with algorithms for obtaining the parameter

(GCV, L-curve and adaptive) are tested. . . . . . . . . . . . . . . . . . . . 59

x



5.5 Values of regularization parameter λ during 10 iterations of DBI obtained

with three di�erent algorithms: L-curve, GCV and the proposed adaptive

algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.6 The reconstructed images of simulated phantom after 10 iterations of DBI

for 30 dB noise. Methods used for regularization are Tikhonov in standard

and general form, while λ is obtained with L-curve, GCV and proposed

adaptive algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.7 The reconstructed images of breast phantom after 10 iterations of DBI for

30 dB noise. Methods used for regularization are Tikhonov in standard

and general form, while λ is obtained with L-curve, GCV and proposed

adaptive algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.8 Vertical slice plots of phnatoms after 10 iterations of DBI in full aperture

setting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.9 Vertical slice plots of phnatoms after 10 iterations of DBI in limited aper-

ture setting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.10 L-curve plot and plot of the GCV function used for �nding regulariza-

tion parameter λ when Tikhonov in standard and general form is used for

regularization in Born approximation and in DBI. . . . . . . . . . . . . . . 65

6.1 Reconstructed phantom using Born approximation (top) and after 10 iterations

of DBI (bottom). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.2 Plots of relative errors for scattering function (left) and scattered �eld (right). . 73

6.3 Slice plots of scattering function after 10 iterations of DBI. Horizontal slice at

y = 0 mm (left) and vertical slice at x = 6.67 mm (right). . . . . . . . . . . . 73

6.4 The reconstructed ROI in the �rst setting when a noise of SNR=30dB is

added to the right side b. Reconstruction with Born approximation when

(a) TTLS and (c) RTLS-Newton are used for regularization. The ROI

after 10 iterations of the DBI using (b) TTLS and (d) RTLS-Newton.

The frequency is f = 2 MHz. . . . . . . . . . . . . . . . . . . . . . . . . . 77

xi



6.5 The second setting considers errors in X and b. The frequency is f = 2

MHz and the noise is SNR=30dB. Reconstruction of ROI using (a) Born

approximation and (b) 10 iterations of DBI with TTLS. Reconstruction

using (a) Born approximation and (b) 10 iterations of DBI with RTLS-

Newton. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.6 (a) Plots of relative errors for the scattering function during 10 iterations of

the DBI in both settings with TTLS and RTLS-Newton. (b) Slice plots of

the exact and reconstructed scattering functions in the �rst setting (noise

in b) after 10 iterations of the DBI with TTLS and RTLS-Newton . . . . 79

6.7 Exact (a) �rst simulated, (b) second simulated and (c) breast phantom

used in our simulations of UT. . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.8 Plots for SVD of operator matrix in Born approximation for �rst simulated

(left), second simulated (middle) and breast phantom (right). . . . . . . . 84

6.9 Position of transmitters and receivers in the limited aperture setting. . . . 85

6.10 Plots of the relative error RE-`2 during the 10 iterations of the DBI method

for (a) �rst simulated, (b) second simulated and (c) breast phantom in the

full aperture setting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.11 Reconstructions of �rst simulated, second simulated and breast phantom

after 10 iterations of DBI using TTLS and PB-RTLS in the Full aper-

ture setting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.12 Slice plots in the Full aperture setting for �rst simulated phantom at

y=-1.33 mm (top), second simulated phantom at y=2.58 mm (middle) and

breast phantom at y=11.25 mm (bottom). . . . . . . . . . . . . . . . . . . 89

6.13 Plots of the relative error RE-`2 during the 10 iterations of the DBI method

in the Limited aperture setting with 30 dB noise for �rst simulated (left),

second simulated (middle) and breast phantom (right). . . . . . . . . . . . 90

6.14 Reconstructions of �rst simulated, second simulated and breast phantom

after 10 iterations of DBI using TTLS and PB-RTLS in the Limited aper-

ture setting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

xii



6.15 Plots of the relative error RE-`2 for PB-RTLS, RTLS-Newton and Tikhonov

general Adaptive during 10 iterations of the DBI method with 30 dB (left),

25 dB (middle) and 20 dB noise (right). . . . . . . . . . . . . . . . . . . . 94

6.16 Slice plots of the reconstructed phantom after 10 iterations of DBI for three

di�erent cases: 30 dB (left), 25 dB (middle) and 20 dB noise (right). . . . . 95

xiii



List of Algorithms

1 Algorithm for DBI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Algorithm for RTLS - Newton . . . . . . . . . . . . . . . . . . . . . . . . 79

3 Algorithm for PB-RTLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

xiv



Chapter 1

Introduction

This dissertation is focused on improving the regularization techniques for an ill-posed

inverse problem in the ultrasound tomography.

Generally, an inverse problem is a process of calculating the values of parameters that

are characterizing the unknown system using measured data caused by this same system.

It is a common phenomenon in natural science and engineering and it arises in many

�elds such as signal processing, medical imaging and non destructive testing of materials.

One of its special cases is the ill-posed discrete inverse problem, more precisely, a system

of linear equations Xy = b where ill-posedness is presented as follows. Small errors

in measured vector b can lead to big errors in the solution vector y. In fact, singular

values of matrix X are gradually decreasing until they approach zero. The process of

regularization is necessary as we are solving the problem with a better numerical values

by de-emphasizing some of the smallest singular values.

1.1 Regularization

Regularization is a process in which an ill-posed inverse problem is replaced with a sim-

ilar one that has better numerical properties. A lot of work regarding characterization

of regularization methods for ill-posed discrete inverse problems Xy = b was done by

Hansen [33]. He analyzed the truncated singular value decomposition (TSVD)[30] where

the idea was to truncate smallest singular values, to approximate X with a matrix that

has smaller condition number. Then, he introduced truncated generalized singular value

1



decomposition (TGSVD)[31] which required additional constraint on the solution y by

minimizing the norm of the vector Ly, where L is a regularization matrix. Other option

was to damp (generalized) singular values using DSVD, DGSVD and Tikhonov regular-

ization in standard and general form described in [34]. The aforementioned methods use

�lter factors to give more or less signi�cance to the singular values. Hence, they are called

spectral �ltering methods. They are also known in literature under the name of direct

regularization methods. By choosing di�erent �lter factors [33], we can de�ne di�erent

methods. However, they all have in common the necessity for appropriate parameter that

decides which singular values to be de-emphasized, whether truncating or damping them,

to �nd an optimal solution. Algorithms that have already been developed for this pur-

pose are L-curve [35], GCV and discrepancy principle. However, their e�ciency depends

on the problem being solved. In addition to these direct spectral �ltering methods, new

iterative methods are also developed, such as conjugate gradient and Tikhonov-Arnoldi

which implements Tikhonov regularization using iterative algorithm, described in [19].

Aforementioned methods are solving the least squares problems.

Another approach to regularize the inverse problem is the truncated total least squares

method (TTLS) described by Golub and Van Loan in [23]. Method takes into account

not just errors in vector b but also in matrix X. That is why a singular decomposition

of the augmented matrix (X b) is used and its smallest singular values are truncated.

Regularization properties of TTLS were analyzed by Fierro et al in [18], where the problem

remains how to chose regularization parameter, that is, how many singular values should

be omitted. New regularized forms of TTLS are derived in [47] using regularization matrix

L, and faster forms of TTLS using bidiagonalization and generalized Krylov subspaces

are shown in [46]. E�ciency of this methods is demonstrated on the image deblurring

problem.

1.2 Ultrasound Tomography

One of the important inverse problems is ultrasound tomography (UT), a non-invasive

method used for medical imaging. It creates an image based on acoustical properties of

human tissue such as speed of sound, attenuation and scattering. Since malignant tissues

2



have di�erent values from benign tissues, UT can be used in detecting early stages of

breast cancer and separating malignant tumors from benign ones [15, 16, 38].

Although X-ray mammography, computerized tomography (CT Scan) and MRI are

standard medical imaging systems that have been in clinical use for a long time, they still

have major drawbacks. For example, X-ray mammography has a problem of di�erentiat-

ing between breast cancer and dense tissue [59]. In addition, during the imaging process,

the patient is exposed to ionizing radiation. MRI provides a good image quality, but it is

expensive and has a long examination time. UT retains their strengths while improving

their shortcomings. It is safe and low cost alternative imaging modality that can be used

more frequently and it can detect cancers even in dense breast tissue [59].

To reproduce an ultrasound image, an inverse scattering problem must be solved, that

is, the internal properties of the object needs to be determined based on the scattered

ultrasound waves that passed through that object [41]. Most researchers utilize the Born

inverse solution (Born approximation) which causes the scattering function to be linear

[27, 28, 42]. A forward scattering solver was developed in [56] for simultaneous reconstruc-

tion of acoustic density, attenuation and compressibility pro�les which takes advantage of

matrix structure. A numerical solver based on preconditioned conjugate gradient method

for the inverse scattering problem of inhomogeneous medium was presented in [37], where

the inverse problem was modeled with the operator equation. Convergence of iterative

solvers was analyzed by Norton in [58]. Solvers based on singular value decomposition

were used in [48]. Another algorithm uses the Newton-Kantorovitch method which is

adaptable to many di�erent circumstances. However, this algorithm has been proven in

[63] to be computationally identical to the Born approximation. Another technique is

the frequency based inverse scattering method which uses eigenfunctions of the scattering

operator [49],[54]. This method has advantages in gathering and examining data and its

complexity depends only on the size and structure of the scattering medium. Clinical

uses of UT have been advanced by [3, 4, 20, 53, 65]. These studies developed a scanner

consisting of a semi-spherical array of transducers for 3-D UT. Another improvement in

the 3-D scanner was described in [73]. A di�erent approach for UT is full wave inversion

used in [2, 55, 61, 62]. A waveform inversion with source encoding method is presented

in [71].

3



In this dissertation we model UT with integral representation of the Helmholtz equa-

tion and solve it using the distorted Born iterative (DBI) method developed by Chew

and Wang [11]. They used the electromagnetic waves to �nd a shape and composition

of imaging object, and the pulse basis functions for discretization. Later, with the same

purpose, the DBI method was used with ultrasonic waves by Lu et al [52], Haddadin and

Ebbini [27] [28] [26] , Liu et al. in [50] and Lavarello and Oelze in [42], [43] and [44]. In

[45], a 3-D reconstruction of spherical object was obtained using 2-D DBI method. In

this dissertation we are focusing just on 2-D reconstruction for UT. The DBI method may

not work under high frequency circumstances and is more sensitive when noise is added

[27],[28].

The methods goal is to determine coe�cients of the scattering function that represents

the imaging object. It iteratively solves the discretized forward and inverse scattering sys-

tem of linear equations. Since the method is iterative, it needs to be initialized with an

estimate of scattering function. The Born approximation, which assumes that the scat-

tering of the ultrasound wave is weak, can be used for this purpose, as already explained

in [27] and [50]. More on this is presented in Chapter 2.

The drawback of the DBI method is the ill posed linear system of the inverse scatter-

ing equations. Its regularization is an important problem that has already been analyzed

by utilizing well known regularization methods such as Tikhonov regularization [42], [39],

Truncated SVD (TSVD), [26], Total Variation [44], Conjugate Gradient Least Squares

[56], and Truncated Total Least Squares (TTLS) [50]. However, the e�ectiveness of most

of these methods in �nding acceptable solution depends largely on the choice of an appro-

priate regularization parameter λ that is utilized within each method. Namely, a solution

is overregularized when a large regularization parameter λ is used. Then, most of the

(generalized) singular values are omitted from calculating the solution. On the other

hand, a solution is underregularized when a small parameter λ is utilized and then most

of the (generalized) singular values are used to calculate the solution. The regularization

parameter λ will be appropriate for a given problem when balance is achieved between

overregularized and underregularized solutions.

Some of the standard parameter selection algorithms are Generalized Cross-Validation

(GCV) [22], L-curve [35], quasi-optimality criterion [34] and the discrepancy principle [34].
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The disadvantage of the discrepancy principle versus GCV and L-curve is that it requires

a good noise estimate from the measured data. Over or under estimate of the noise can

lead to underregularized or overregularized solution respectively. On the other hand, L-

curve and GCV may failed in �nding appropriate λ as shown by Lavarello and Oelze in

[42]. In their paper they have proposed a scaled maximum singular value to be used as λ

for Tikhonov regularization in standard form. This idea was also used in [39].

1.3 Contribution of Dissertation

The contributions of this dissertation in solving the inverse problem in ultrasound tomog-

raphy when the DBI method is utilized are the following:

• Showing advantages of using direct regularization (spectral �ltering) methods that

employ the GSVD over methods that employ the SVD. This happens because the

regularization matrix L, which is responsible for noise reduction from the measured

data, is utilized within GSVD.

• Developing a new algorithm for choosing the regularization parameter, suited for

direct regularization methods which employ both SVD and GSVD. The algorithm

provides an optimal balance between omitting and keeping singular values when

used within iterations of DBI.

• Solving the problem using Newton based regularized total least squares (RTLS-

Newton) and projection based regularized total least squares (PB-RTLS) where

errors in the operator matrix are taken into account. The computational time is

decreased since the problem is projected onto a lower dimensional subspace.

1.4 Organization of Dissertation

The dissertation is organized as follows:

• Since the purpose of this dissertation is to provide possible ways to regularize in-

verse problems in ultrasound tomography, we begin with Chapter 2 which presents

5



a numerical model of UT. We describe the forward and the inverse model, and de-

tailed process of their discretization. In addition, we describe the distorted Born

iterative method which is used to solve the UT problem. A simulation of the UT

problem is also presented in this chapter, and it is later used to test e�ects of other

regularization methods and algorithms described in this dissertation.

• Well-known facts from the �eld of numerical linear algebra, which are used trough

the rest of the dissertation, are stated in Chapter 3. We describe the least squares

problem, matrix factorizations SVD and GSVD, and the regularization matrix L.

• Direct regularization methods TSVD, TGSVD, DSVD, DGSVD and Tikhonov reg-

ularization are described in Chapter 4 using SVD, GSVD and �lter factors which

determine a particular method. The regularized inverse, speci�c to the aforemen-

tioned methods, is also introduced and its di�erence form the Moore-Penrose pseu-

doinverse is explained. In addition, numerical results, where an inverse problem of

UT is regularized with TSVD, TGSVD, DSVD and DGSVD are presented. The

advantages of using the methods which employ GSVD are visible in the presented

numerical results. The reason is the usage of regularization matrix L which smooths

out the noise in the measured data.

• Algorithms for obtaining the regularization parameter λ, such as GCV and L-curve,

are explained in Chapter 5. This parameter is necessary for aforementioned direct

regularization methods. In addition, we present our new algorithm for obtaining the

parameter λ. It is based on minimizing two inversely proportional components: sig-

nal loss and noise error. It starts with an overestimation of the noise in the measured

data which is appropriately adjusted within iterations of the DBI method using the

discrepancy between measured and calculated data. Using numerical simulation, we

show that our algorithm, when utilized within iterations of DBI, provides a lower

relative error (de�ned in Equation (4.22)) for the reconstruction of phantoms over

GCV and L-curve. This results in better quality of images reproduced with the DBI

method.

• Chapter 6 presents truncated total least squares (TTLS), adaptive TTLS, regu-
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larized total least squares combined with Newton method (RTLS-Newton) and

projection based regularized total least squares (PB-RTLS). Their application to

regularization in ultrasound tomography is also presented.

In adaptive TTLS, truncation parameter k is found by minimizing the expression

which consist of two parts: signal loss and noise error.

Using RTLS-Newton instead of TTLS for regularization within DBI results with

solution that has lower relative error since the regularization matrix L is employed.

In addition, it is faster since solves an equivalent eigenvalue problem instead of

calculating the SVD.

The advantages of using PB-RTLS over TTLS are the dimension reduction of the

problem being solved and the avoidance of the SVD calculation. These results in

signi�cant decrease of computational time. The dimension reduction is achieved

by projecting the problem onto lower dimensional subspace, where the subspace is

expanded dynamically by employing a generalized Krylov subspace expansion. In

addition, PB-RTLS is avoiding the problem associated with �nding the truncation

parameter in TTLS since it has integrated parameter search. In numerical simu-

lation we show bene�ts of using PB-RTLS over TTLS for regularization of inverse

problem in UT, both in time execution and robustness to errors.

Parts of the material in this dissertation have already been published in [1], [7], [8],

[9] and [10].

1.5 Basic notation

Throughout this dissertation, we use the following notation. A matrix is denoted by a

bold upper case letter such as X, its ith column is denoted by a bold lower case letter xi

and its (i, j)th element is denoted by xij. That is:

X =
(

x1 . . . xn

)
=


x11 . . . x1n
... . . . ...

xm1 . . . xmn

 .
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A bold lower case denotes a vector, such as b and its ith element is denoted by bi. A

transpose of matrix X is denoted by XT and conjugate transpose by X∗ = X
T
. It is

obvious that
(
XT
)T

= X and (X∗)∗ = X. The diagonal matrix D is denoted with

diag (d11, . . . , dnn). That is:

D = diag (d11, . . . , dnn) =


d11 . . . 0
... . . . ...

0 . . . dnn

 .

An identity matrix is denoted with I.
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Chapter 2

Numerical Model of Ultrasound

Tomography

Ultrasound tomography (UT) is a technique used for medical imaging, mostly for breast

cancer detection. It is a safe and inexpensive diagnostic which produces a quantitative

image of the region of interest - ROI (composed of the background medium and the

scattering object). This image contains values of acoustical parameters such as speed

of sound and attenuation. Based on this values, the malignant tissue can be separated

from the benign. After one transducer emits the wave, the echo is collected from the

transducer array surrounding the ROI, as shown in Figure 2.1. Using this method, two

measurements are made. The �rst, when the object is not present within ROI, is to

obtain the incident �eld measurement. The second, when the object is present in the

ROI, is to obtain the total �eld. Subtraction of the incident �eld from the total �eld

results in the scattered �eld which serves as an input to a reconstruction algorithm. This

process is repeated with di�erent transducers acting as transmitters until enough data

to reproduce the image is obtained. In this chapter we describe the theory of inverse

scattering problem, the forward and the inverse model and the distorted Born iterative

method which is used to solve them.
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Figure 2.1: The circular array of transducers surrounding the ROI.

2.1 Theory of a Scattering Problem

A common mathematical model for acoustic wave propagation through the system com-

posed of an in�nite space containing a homogeneous acoustic medium and a scattering

object embedded inside it is the Helmholtz equation [27]:

(∇2 + k2(r))ψt(r) = 0 , ψt(r) = ψi(r) + ψs(r) (2.1)

where ∇2 is the Laplacian operator and k(r) is the wavenumber. The incident, total

and scattered �eld at position r = (x, y) ∈ R2 are denoted with ψi(r), ψt(r) and ψs(r)

respectively. The Helmholtz equation (2.1) with Sommerfeld radiation condition [74] can

be transformed to the Lippmann - Schwinger integral representation [74] as:

ψt(r) = ψi(r) +

∫∫
R

G0(r, r
′)s(r′)ψt(r

′) d r′ (2.2)

where r and r′ are spatial positions of the two di�erent points inside ROI and R denotes

bounded spatial domain of the whole ROI. The scattering function is de�ned as [27]:

s(r) = ω2

(
1

c2(r)
− 1

c20

)
+ i

2ωα(r)

c(r)
(2.3)

where c(r) and c0 are speed of sound in scattering object at position r and in the back-

ground medium respectively. The attenuation factor α(r) presents the decrease of am-

plitude and intensity of ultrasound wave as it travels through tissue and the angular
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Figure 2.2: The basis function expansion of the total �eld inside ROI using N pulse basis functions

(one for each cell).

frequency ω is a scalar measure of rotation rate. We note that the connection between

wavenumber, angular frequency and speed of sound is given with the relation k = ω/c.

The speed of sound is constant in the background medium, while it may vary inside the

scattering object depending on spatial position r. Those changes are re�ected in the scat-

tering function which can be used to reproduce an image of ROI. The 2-D homogeneous-

background Green's function is de�ned as a response on position r to a point source

positioned at r′. Its expression in cylindrical coordinates is given as [29]:

G0(r, r
′) =

i

4
H

(1)
0 (ko|r− r′|) (2.4)

whereH(1)
0 is the zero-th order Hankel function of the �rst kind [29] and ko is the wavenum-

ber of background medium. The Equation (2.2) is di�cult to solve because it has two

unknowns, the total �eld ψt(r) and the scattering function s(r), making the problem of

UT nonlinear and impossible to �nd a solution analytically.

To solve Equation (2.2) numerically, we �rst need to discretized it. The square region

enclosing the ROI is divided into N = L1×L2 square cells as shown in Figure 2.2. Length
′w′ of one cell is small compared to the sound wavelength λ in the background medium.

Changes in the speed of sound and total �eld inside each cell are negligible. The center of

the nth cell is denoted with rn = (xn, yn), n = 1, . . . , N . For the basis function expansion,
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we will use pulse basis functions fn(r) that are de�ned as:

fn(r) = fn(x, y) = rect

(
|x− xn|

w

)
rect

(
|y − yn|

w

)
, (2.5)

where the function rect is de�ned as:

rect (x) =

 1, |x| ≤ 1/2

0, |x| > 1/2
. (2.6)

As presented in Figure 2.2, if point r is inside the nth cell, then fn(r) = 1. Otherwise,

it is fn(r) = 0. Using the rectangular pulse basis functions, discrete approximations of

scattering function and total �eld have a constant value over each cell. Another approach

is to use sinc basis functions de�ned as sincx =
sin(πx)

πx
[40]. However, we decided to

use pulse basis functions because they produce simpler formulas [40] and are reasonably

accurate for small pixel dimension [27].

2.2 Forward Model

The goal of the forward model is to calculate the total �eld inside the ROI from Equation

(2.2) using values of the scattering function s. Here, we present the derivation of the

linear system of equations that will provide a values for the total �eld inside ROI.

The basis function expansion of the sub integral function from Equation (2.2), using

a �nite set of N pulse basis function, is given as:

G0(r, r
′)s(r′)ψt(r

′) =
N∑
n=1

G0(r, rn)ψt(rn)s(rn)fn(r′). (2.7)

A variable r′ is an arbitrary position inside ROI and the center of the nth cell is denoted

with rn. The value of the total �eld is constant in each cell and it is denoted with ψt(rn).

Then, the double integral from the Lippmann-Schwinger integral equation (2.2) can be

transformed as:
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∫∫
R

G0(r, r
′)s(r′)ψt(r

′) d r′ =

∫∫
R

N∑
n=1

G0(r, rn)ψt(rn)s(rn)fn(r′) d r′

=
N∑
n=1

G0(r, rn)ψt(rn)s(rn)

∫∫
R

fn(r′) d r′

=
N∑
n=1

G0(r, rn)ψt(rn)s(rn)w2.

This leads to new expression for (2.2) given as:

ψt(r) = ψi(r) + w2 ·
N∑
n=1

G0(r, rn)ψt(rn)s(rn). (2.8)

The total and incident �eld can also be written in the form of basis function expansion

as:

ψt =
N∑
j=1

ψt(rj)fj and ψi =
N∑
j=1

ψi(rj)fj. (2.9)

From Equation (2.8) and (2.9) follows:

N∑
n=1

ψt(rn)fn =
N∑
n=1

ψi(rn)fn + w2

N∑
j=1

N∑
n=1

G0(rj, rn)ψt(rn)s(rn)

⇒


ψt(r1)

...

ψt(rN)

− w2



N∑
n=1

G0(r1, rn)ψt(rn)s(rn)

...
N∑
n=1

G0(rN , rn)ψt(rn)s(rn)


=


ψi(r1)

...

ψi(rN)



⇒


ψt(r1)− w2

N∑
n=1

G0(r1, rn)ψt(rn)s(rn)

...

ψt(rN)− w2

N∑
n=1

G0(rN , rn)ψt(rn)s(rn)


=


ψi(r1)

...

ψi(rN)

 .

We model the wave propagation with Green's functions so in the case when r = rn is

true, there is no transmission of energy and we set G0(r, rn) = 0. This leads to:

13




ψt(r1) + w2G0(r1, r2)ψt(r2)s2 + · · ·+ w2G0(r1, rN)ψt(rN)sN

...

ψt(rN) + w2G0(rN , r1)ψt(r1)s1 + · · ·+ w2G0(rN , rN−1)ψt(rN−1)sN−1

 =


ψi(r1)

...

ψi(rN)




1 w2G0(r1, r2)s2 . . . w2G0(r1, rN)sN
...

w2G0(rN , r1)s1 w2G0(rN , r2)s2 . . . 1


︸ ︷︷ ︸

F(G0,s)

·


ψt(r1)

...

ψt(rN)


︸ ︷︷ ︸

ψt

=


ψi(r1)

...

ψi(rN)


︸ ︷︷ ︸

ψi

where si = −s(ri) for i = 1, . . . , N . The total �eld is found as a solution of system of

linear equations:

F(G0, s)ψt = ψi (2.10)

where ψt, ψi ∈ CN×1 are vectors which contain values of total and incident �eld in each

of the cells respectively.

2.3 Inverse Model

The same process of discretization, as in forward model, is used for the inverse model.

First, for an arbitrary transducer positioned at qj = (x, y), the Equation (2.2) is trans-

formed to:

ψs(qj) = ψt(qj)− ψi(qj) =

∫∫
R

G0(qj, r)s(r)ψt(r) d r

=

∫∫
R

N∑
n=1

G0(qj, rn)s(rn)ψt(rn)fn(r) d r

=
N∑
n=1

G0(qj, rn)s(rn)ψt(rn)

∫∫
R

fn(r) d r

= w2

N∑
n=1

G0(qj, rn)s(rn)ψt(rn).

14



The derived equation holds for all transducers positions qj, j = 1, . . . ,M , that is:


ψs(q1)

...

ψs(qM)


︸ ︷︷ ︸

ψs

= w2



N∑
n=1

G0(q1, rn)ψt(rn)s(rn)

...
N∑
n=1

G0(qM , rn)ψt(rn)s(rn)



= w2


G0(q1, r1)ψt(r1) . . . G0(q1, rN)ψt(rN)

G0(qM , r1)ψt(r1) . . . G0(qM , rN)ψt(rN)

 ·

s(r1)
...

s(rN)


︸ ︷︷ ︸

s

.

The coe�cients of scattering function (2.3) can be found as a solution of system of linear

equations:

U(Gs,ψt)s = Gs diag(ψt) · s = ψs (2.11)

where ψs ∈ CM×1 is a vector that contains values of scattered �eld received with M

transducers. The matrix Gs is de�ned as:

Gs = w2


G0(q1, r1) . . . G0(q1, rN)

...
...

...

G0(qM , r1) . . . G0(qM , rN)

 (2.12)

where r1, r2, . . . , rN are spatial positions of cell's centers in ROI and q1, q2, . . . , qM

are positions of M transducers that receive the scattered wave. Since the transducers

are located outside ROI, it is always true that qi 6= rj, i = 1, . . . ,M , j = 1, . . . , N .

We already mentioned that the problem of UT is nonlinear since both total �eld and

scattering function are unknown.

A basic approach to linearize this problem is to assume that the scattered �eld, which

is produced by the object, is a very small perturbation of the incident �eld. That is why

the total �eld ψt(r) in Equation (2.11) can be replaced by the incident �eld ψi(r) and

approximation for the scattering function can be obtained. This approach is called the
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Born approximation [5]. However, Born approximation is not good enough for imaging

biological tissue because of strong scattering [66].

2.4 Distorted Born Iterative Method

The distorted Born iterative method uses Born approximation to obtain �rst estimation

of the scattering function. Then it iterates between solving the forward and the inverse

scattering problem. The method was constructed by Chew and Wang [11] in order to

provide a good image reconstruction when Born approximation fails due to its limitations.

Algorithm 1 Algorithm for DBI

1: Initialize: ` = 0; ψ0
t = ψi; G0

s = G0(q, r); Gd = G0(r, r
′);

2: Calculate Born approximation s0e = U(G0
s, ψ

0
t )ψsm ;

3: while RRV > pre-selected threshold do

4: ` = `+ 1;

5: Solve F(Gd, s
`−1
e )(G`

s)
T = (G0

s)
T for G`

s;

6: Solve F(Gd, s
`−1
e )ψ`t = ψi for ψ`t ;

7: Calculate ψ`se = U(G`
s, ψ

`
t)s

`−1
e ;

8: Solve U(G`
s, ψ

`
t)∆s` = ψsm −ψ`se for ∆s`;

9: Set s`e = s`−1e + ∆s`;

10: Calculate RRV;

11: end while

In each iteration of the method, the scattering function is updated by a correction

factor. The new scattering function is then used to update the total �eld and the Green's

function. The iterations continue until the residual error is below a prede�ned threshold.

The following steps illustrate the detailed process of the DBI:

1) To initialize the problem, �rst use Born approximation to set the total �eld to

be the incident �eld as ψ0
t = ψi. We denote the total �eld for the `th iteration as ψ`t .

Throughout the execution of the algorithm, the value of the total �eld ψ`t should be

updated for every iteration. Let the Green's function for the inverse model of the �rst

iteration to be G0
s, where G0

s = G0(q, r) according to the relation de�ned in Equation
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(2.4). Use the homogeneous Green's function G0 to solve for the �rst estimated scattering

function s0e as shown in line 2 in the Algorithm 1, where ψsm is the value of the scattered

�eld measured at transducers. In the Algorithm 1, Gd is the forward model's Green's

function G0(r, r
′), and G`

s is the inverse model's Green's function G(q, r) of the `th

iteration.

2) Since the Green's functions satisfy the same Helmholtz equation as the total �eld

[11], [42], the same matrix F from the forward model, Equation (2.10), that updates

incident �eld to the total �eld, is used to �nd updated inverse model of the Green's

function G`
s as:

F(Gd, s
`−1
e )(G`

s)
T = (G0

s)
T . (2.13)

Here s`e is the scattering function for the `th iteration.

3) Solve the forward problem using Equation (2.10) for the new approximation of the

total �eld:

F(Gd, s
`−1
e )ψ`t = ψi, (2.14)

and solve the inverse problem for the estimated scattered �eld:

ψ`
se = U(G`

s, ψ
`
t)s

`−1
e . (2.15)

4) Solve for the correction factor ∆s`e of the scattering function by solving the inverse

problem:

U(G`
s, ψ

`
t)∆s`e = ψsm −ψ`se (2.16)

where ψsm and ψ`−1
se

are the measured and the estimated scattered �eld respectively.

The justi�cation for the Equation (2.16) is following: from Equations (2.11) and (2.15),

under assumption that measured scattered �eld ψsm is exact, we have:

s = U(Gs, ψt)
−1ψsm and s`−1e = U(G`

s, ψ
`
t)
−1ψ`

se .

Using approximation U(Gs, ψt) ≈ U(G`
s, ψ

`
t) and subtracting previous two equations, we

have

s− s`−1e = U(G`
s, ψ

`
t)
−1(ψsm −ψ

`
se).
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The goal of DBI method is that the new estimate s`e for the scattering function is closer

to the exact s then the previous estimate s`−1e . That is why the update ∆s`e is calculated

from (2.16). Then, use the update to �nd better estimate for the scattering function:

s`e = s`−1e + ∆s`e. (2.17)

5) Calculate the relative residual value (RRV) for the estimation of the scattered �eld

ψ`se at the `th iteration as:

RRV =

M∑
n=1

∣∣ψism(rn)− ψ`se(rn)
∣∣

M∑
n=1

|ψsm(rn)|
(2.18)

to test the convergence of the DBI method. The iterations will continue by going back to

step 2) until the algorithm converges.

2.5 Simulation of Ultrasound Tomography

The e�ciency of regularization methods presented in this dissertation is tested on the

simulation of UT. So, in this section we describe a general guidelines of our simulations.

We simulate M equidistant transducers surrounding the ROI as shown in Figure 2.1.

We have Mt out of M transducers acting as transmitters, that is, they are emitting the

ultrasound wave at known frequency f , one at a time. The frequencies used in simulations

are 500 kHz, 1 MHz or 2 MHz, similar to those reported in [20], [29] and [42]. All M

transducers are used for receiving the echo data in the full aperture setting.

Di�erent phantom are used for reconstructions in simulations, some of them are shown

in Figures 4.1, 5.3 and 6.7. The Modi�ed Shepp-Logan and simulated phantoms were

created using Matlab routine 'phantom', while the Matlab data for the breast phantoms

were extracted from the database [51]. Values of the exact scattering function s are

calculated using the Equation (2.3). The speed of sound in the background medium is

1480 m/s, as in water, and the values of aforementioned phantoms are the percentage

increase over the background medium.
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We note that the realistic experimental setting directly use measurement of the scat-

tered �eld received by transducers to calculate the discrepancy from the estimated scat-

tered �eld. However, in our simulations, we used the exact scattering function to calculate

the exact total �eld ψt and the Green's functions Gs in inhomogeneous medium. Then,

using Equation (2.11), we calculated ψs = U(Gs,ψt)s. A Gaussian white noise with

signal to noise ratio between 20, 25 or 30 dB, depending on the case, was added on ψs

to mimic the realistic settings. This process was done only in the beginning to obtain

"measured" scattered �elds with di�erent noise levels. Similar noise levels were used in

[29] and [42]. We also want to emphasize that in the reconstruction process, the incident

�eld ψi will be used instead of ψt and the Green's function Gs will be replaced by G0

in homogeneous medium. The zero-th order Hankel function from Equation (2.4) were

calculated using Matlab routine 'besselh'.

The focus of this dissertation is on solving the inverse problem where the system of

linear equations Gs diag(ψ) ·∆s = ∆ψs is ill-posed. The update for each pixel is corre-

sponding to each component of the vector ∆s, making it N components. The dimension

of matrix Gs diag(ψt) is M ×N and the vector ∆ψs has M components, that is, system

Gs diag(ψt) ·∆s = ∆ψs is underdetermined.

To overcome this lack of data (M is often much less than N), a sound wave emission

from Mt di�erent equidistant positions is simulated, leading to Mt underdetermined sys-

tems Gs diag(ψt)
(`) ·∆s = ∆ψ(`)

s , ` = 1, . . . ,Mt . Instead of solving each underdetermined

system individually, we construct the overdetermined system


Gs diag(ψt)

(1)

...

Gs diag(ψt)
(Mt)

 ·∆s =


∆ψ(1)

s

...

∆ψ(Mt)
s

⇒ Gs diag(ψt) ·∆s = ∆ψs

⇒ Trough the rest of this dissertation we will use new labels for the system: Xy = b,

where X ∈ C(Mt·M)×N and b ∈ C(Mt·M). This problem is ill-posed and a regularization

method is necessary to solve it. Possible ways to solve this problem are described in this

dissertation.
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Chapter 3

Preliminaries

In this chapter we state a basic results from the �eld of numerical linear algebra regarding

the singular value decomposition (SVD), the generalized singular value decomposition

(GSVD) and the least squares problem. These mathematical tools are used extensively

trough the rest of this dissertation. The de�nitions and theorems listed below can be found

in [12], [36], [67] and [68]. Main theorems are given without proof. Basic mathematical

terms for an arbitrary vector y ∈ C` and matrix X ∈ Cq×` that are used in this dissertation

are the following:

• The norm `2 of vector y is given as ‖y‖2 =

√√√√∑̀
i=1

|yi|2.

• The inner product of two vectors y, z ∈ C` is given as (y, z) = y∗z =
∑̀
i=1

yizi. In

addition, the norm `2 can be de�ned using inner product as ‖y‖2 =
√

(y,y).

• Norm-2 of matrix X is given as ‖X‖2 = max
y 6=0

‖Xy‖2
‖y‖2

. In addition, it holds

‖Xy‖2 ≤ ‖X‖2‖y‖2.

• Frobenius norm of matrix X is given as ‖X‖F =

√√√√ q∑
i=1

∑̀
j=1

|xij|2.

• Range of matrix X is given as R(X) = span {x1, . . . ,x`}. That is, range of matrix

X is equal to the set of all linear combinations of columns of matrix X.
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• The rank of matrix X is the number of linear independent columns of matrix X,

that is rank(X) = dimR(X). In addition, it holds rank(X) = rank(XT ).

• A matrix X has full row rank if its rank is equal to the number of rows, that is

rank(X) = q.

• The null space of matrix X is given as N (X) =
{
y ∈ C` | Xy = 0

}
.

• A matrix X is called left orthogonal if it holds X∗X = I, where I is the identity

matrix. A square matrix X is called unitary if it holds X∗X = XX∗ = I.

• For any unitary matrix X holds ‖Xy‖2 = ‖y‖2 and ‖X‖2 = 1.

• A trace of square matrix A ∈ Rn×n is given as trace(A) =
n∑
i=1

aii.

• Let X ∈ Cn×n and y ∈ Cn, y 6= 0. If there exist scalar λ that satis�es Xy = λy,

then y is an eigenvector and λ is an eigenvalue of matrix X.

• If the product A ·B is de�ned, then (A ·B)∗ = B∗ ·A∗.

• If matrices A,B ∈ Cn×n are regular then (A ·B)−1 = B−1 ·A−1.

• If A ∈ Cn×n is a nonsingular matrix, then (A−1)
∗

= (A∗)−1.

• If D is a diagonal matrix with real entries, then D∗ = D.

• If D1 and D2 are diagonal matrices of same size, then D1D2 = D2D1.

3.1 Singular Value Decomposition

Singular Value Decomposition (SVD) is one of the most important matrix factorization.

It exists for all matrices regardless of their type. Using SVD, the given matrix X is decom-

posed into product of two unitary and one diagonal matrix. Using this decomposition, a

valuable informations about rank, range and null space of given matrix X can be easily

obtained. A formal de�nition of SVD is provided with the following theorem.
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Theorem 3.1.1 (SVD, Theorem 3.2 in [12] ). Let X ∈ Cq×`, q > `, be an arbi-

trary matrix. Then, there exist unitary matrices U ∈ Cq×q, V ∈ C`×` and matrix

Σ = diag(σ1, σ2, . . . σ`), σ1 ≥ σ2 ≥ · · · ≥ σ` ≥ 0, such that

X = U

 Σ

0

V∗. (3.1)

We refer to Equation (3.1) as a singular value decomposition of matrix X. Columns of

matrices U and V are left and right singular vectors respectively and σi, i = 1, . . . , ` are

singular values.

When notation

U =
(

u1 u2 . . . uq

)
(3.2)

and

V =
(

v1 v2 . . . v`

)
, (3.3)

is introduced, then the matrix X can be written as a sum of rank-one matrices, that is:

X =
∑̀
i=1

σiuivi
∗. (3.4)

If the last q − ` columns of matrix U from Theorem 3.1.1 are omitted, then it holds

U∗U = I and UU∗ 6= I. When SVD of the matrix X is calculated, then the following

informations can be obtained:

1. If r is the number of nonzero singular values, then rank(X) = r.

2. R(X) = span {u1, . . .ur}

3. N (X) = span {vr+1, . . .v`}

4. ‖X‖2 = σ1

5. ‖X‖2F = σ2
1 + σ2

2 + · · ·+ σ2
`

6. The condition number of matrix X in `2 norm is κ2(X) = σ1/σ`.

In addition, the best lower rank approximation of the matrix X can be found using its

SVD as stated with the following theorem [67].
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Theorem 3.1.2 (Eckart-Young-Mirsky Theorem). Let X ∈ Cq×` be an arbitrary matrix

of a rank r. For k < r we de�ne

Xk =
k∑
i=1

σi · uiv∗i . (3.5)

Then

1.) ‖X−Xk‖2 = inf
rank(A)<k

‖X−A‖2 = σk+1

2.) ‖X−Xk‖F = inf
rank(A)<k

‖X−A‖F =
√
σ2
k+1 + σ2

k+2 + · · ·+ σ2
r .

A Moore-Penrose pseudoinverse of a matrix X ∈ Cq×` is a matrix with ` rows and q

columns, denoted with X†, which satis�es four Penrose conditions [67]:

1. XX†X = X

2. X†XX† = X†

3.
(
XX†

)∗
= XX†

4.
(
X†X

)∗
= X†X.

When SVD of a matrix X is obtained, its Moore-Penrose pseudoinverse can be found as:

X† = V
(

Σ−1 0
)

U∗ =
∑̀
i=1

1

σi
viui

∗. (3.6)

3.2 Least Squares Problem

A very common problem in the �eld of numerical linear algebra is to solve an overdeter-

mined linear system

Xy = b , X ∈ Cq×`, b ∈ Cq, q > `. (3.7)

Standard approach to solve it is to �nd its least squares solution.

A vector y ∈ C` is called a least squares solution of (3.7) if it satis�es [12]:

‖Xy − b‖2 = min
z∈C`
‖Xz− b‖2. (3.8)

The following theorem gives one way to �nd minimum norm least squares solution of 3.7

using Moore-Penrose pseudoinverse [57].
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Theorem 3.2.1 (Minimum norm least squares solution). Let X ∈ Cq×` be an arbitrary

matrix of rank r and X = U

 Σ

0

V∗ its singular value decomposition. The minimum

norm least squares solution of the equation Xy = b is given as y = X†b where X† is the

Moore-Penrose pseudoinverse (3.6).

Proof. Columns of matrix V form an orthogonal basis for the vector space C`. That is

why vector y ∈ C` can be written as a linear combination

y =
∑̀
i=1

divi = Vd (3.9)

where the vector d is given as d =
(
d1 d2 . . . d`

)T
. We denote elements of vector

U∗b with gi, that is U∗b =
(
g1 g2 . . . gq

)T
and compute

‖Xy − b‖22 = ‖UΣV∗ ·Vd−UU∗b‖22

= ‖U (Σd−U∗b) ‖22 = ‖Σd−U∗b‖22

=
r∑
i=1

(σidi − gi)2 +

q∑
i=r+1

(gi)
2 .

It is obvious that the value of expression ‖Xy − b‖22 is minimal when di =
gi
σi
, for

i = 1, . . . , r. Then the vector y is given as:

y = V ·
(

g1
σ1

. . .
gr
σr

gr+1 . . . g`

)T
. (3.10)

The smallest norm of the solution ‖y‖2 is achieved when gi = 0 for r < i ≤ `, so the

minimum least squares solution is uniquely determined by the formula

y = X†b = VΣ−1U∗b =
∑̀
i=1

ui
∗b

σi
vi. (3.11)

If matrix X has a large condition number and its singular values are decreasing and

approaching to zero, then the linear system (3.7) is ill-posed [33]. This means that small

errors in the vector b produce large errors in the least squares solution y when it is

calculated using Equation (3.11).
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The following example shows how small singular values of matrix X can have detri-

mental e�ect on the least squares solution when a "measured" vector b̃ given with noise

is used in calculations instead of exact vector b.

Example 3.2.2. We want to solve a linear system Xy = b̃ where the matrix X is given

as:

X =


0.081926788634506 −0.002027961639074 0.097447639682838

0.085216023638418 −0.002109057544086 0.101361200841502

0.040440069687235 −0.001001013837422 0.048101164945327

0.030841167295902 −0.000763767640783 0.036683103427746

 .

The vector b̃ =


0.017734973960188

0.018446991332726

0.008753835370936

0.006676776098835

 contains a normally distributed noise with zero

mean and the variance equal to 10−6. This results in relative error of vector b̃, de�ned as
‖b̃−b‖2
‖b̃‖2

, to be equal to 3 · 10−5. The exact least squares solution of linear system Xy = b

is y =


0.1

0.1

0.1

. However, in order to �nd least squares solution using Equation (3.11),

we calculate SVD of matrix X using Matlab routine 'svd'. The calculated singular values

of matrix X are 0.2, 10−6 and 10−7, and left and right singular vectors are columns of

matrices

U =


−0.636634781567791 −0.231599658895989 −0.187418253983662 −0.711289076937856

−0.662199211796307 0.593197818576590 0.335964091025294 0.311025210350983

−0.314250033176460 −0.216454155047623 −0.744445543997357 0.547900855478153

−0.239656578134369 −0.740017259797268 0.545713624200223 0.311666199837785

 ,

and

V =


−0.643435043666662 −0.674197593975200 −0.362558890195417

0.015926488646733 0.461730483459696 −0.886877278772808

−0.765335019152440 0.576422210642622 0.286355973461018

 .

Then, the least squares solution, calculated using Equation (3.11), is given as
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ỹ =


−1.514138612128782

−4.838235661915373

1.354283113338196

 . (3.12)

Then, the relative error of vector ỹ is
‖y − ỹ‖2
‖ỹ‖2

= 1.018524800497955.

The problem when a least squares solution is obtained with Equation (3.11) is its

sensitivity to even relatively small noise on vector b. One of the reasons is that singular

vectors, which corresponds to smaller singular values, tend to have more sign changes in

their elements [34]. Then, when singular values are inverted, as seen in Equation (3.11),

in�uence of these singular vectors on the least squares solution is increased, resulting in

high relative errors.

A regularization method, which decreases the in�uence of smaller singular values and

corresponding singular vectors, is necessary in order to produce acceptable solution for

the linear system (3.7). More on regularization methods is explained in Chapter 4.

3.2.1 Regularization matrix L

Common practice for solving an ill-posed linear system (3.7), when vector b is given with

errors, is adding the constraint on the solution y using a regularization matrix L. It is

required that matrix L has a full row rank. The problem 3.7 is modi�ed to

Xy = b s.t. ‖Ly‖2 ≤ δ (3.13)

where the value for δ is a priori known. In the term of least squares problem, similarly as

de�ned in Equation (3.8), a least squares solution of 3.13 for an unknown and relatively

small δ can be de�ned as:

∥∥∥∥∥∥
 X

L

y −

 b

0

∥∥∥∥∥∥
2

= min
z∈C`

∥∥∥∥∥∥
 X

L

 z−

 b

0

∥∥∥∥∥∥
2

. (3.14)

The regularization matrix L can be bene�cial when dealing with noisy data. Common

choices for this matrix are discrete versions of the �rst or second order derivative operator
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given as:

L1 =
1

2


1 −1 0 . . . 0

0 1 −1 . . . 0
. . . . . .

0 . . . 0 1 −1

 ∈ R(`−1)×` (3.15)

and

L2 =
1

4


−1 2 −1 0 . . . 0

0 −1 2 −1 . . . 0
. . . . . . . . .

0 . . . 0 −1 2 −1

 ∈ R(`−2)×`. (3.16)

They are supposed to impose smoothness on the solution of (3.13). Null spaces of these

matrices are given with:

N (L1) = span




1
...

1


 and N (L2) = span




1
...

1

 ,


1
...

`


 (3.17)

However, the choice of matrix L is not limited to aforementioned options and di�erent

matrices can be constructed to suite better the nature of the problem.

The problem of constructing regularization matrices has been discussed in literature

before. Calvetti et al. in [6] modi�ed the matrices L1 and L2 to the square invertible

matrices L̃1 and L̃2 ∈ R`×` de�ned as:

L̃1 =
1

2



1 −1 0 . . . 0

0 1 −1 . . . 0

. . .
. . .

0 . . . 0 1 −1

0 . . . 0 0 10−8


and L̃2 =

1

4



2 −1 0 0 . . . 0

−1 2 −1 0 . . . 0

0 −1 2 −1 . . . 0

. . .
. . .

. . .

0 . . . 0 −1 2 −1

0 . . . 0 0 −1 2


and used their inverses as preconditioners for the iterative methods GMRES, RRGMRES

and LSQR. New ways to construct square invertible regularization matrices for large-scale

minimization problems that allow inexpensive computation of the matrix vector product
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are shown in [13]. Their transformations based on given boundary conditions are given

in [14]

Since the focus of dissertation is the regularization of the inverse problem in ultrasound

tomography, there are some known facts which can be used to modify original matrices L1

or L2. Speci�cally, the reproduced image consists of a scattering object surrounded with

the background medium. Since the values of pixels that represent background medium

are equal to zero (more on this is explained in Chapter 2), we can impose boundary

conditions. That is why in some of our tests we use modi�cation of matrix L1 given as:

L =
1

2



10−5 0 0 . . . 0 0

0 1 −1 . . . 0 0
. . . . . .

0 . . . 0 1 −1 0

0 . . . 0 0 0 10−5


∈ R(`−1)×` (3.18)

with null space

N (L) = span





0

1
...

1

0




(3.19)

3.3 Generalized Singular Value Decomposition

Generalized Singular Value Decomposition (GSVD), described in [24], [60] and [70], is

generalizing the idea of SVD for one matrix to the matrix pair (X,L). For GSVD to be

de�ned, matrices X ∈ Cq×` and L ∈ Cp×`, q ≥ ` ≥ p, must satisfy two conditions:

1. L has full row rank, that is rank(L) = p, and same number of columns as X.

2. N (X) ∩N (L) = {0}

where N (·) denotes a null space of matrix. These two conditions are equivalent to the

condition rank

 X

L

 = ` . Because of that they are necessary for the uniqueness of
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the solution for problem 3.13. The following theorem gives a formal de�nition for GSVD

of matrix pair [70].

Theorem 3.3.1 (GSVD). Let matrix pair (X,L) satis�es two aforementioned conditions.

Then there exist left orthogonal matrix U ∈ Cq×`, unitary matrix V ∈ Cp×p, and a

nonsingular matrix Y ∈ C`×` such that

X = U

 DX 0

0 I`−p

Y−1 (3.20)

L = V
(

DL 0
)

Y−1. (3.21)

The diagonal elements of matrices DX = diag(α1, α2, . . . , αp) and DL = diag(β1, β2, . . . , βp)

satisfy the relations

0 ≤ α1 ≤ α2 ≤ · · · ≤ αp ≤ 1 (3.22)

1 ≥ β1 ≥ β2 ≥ · · · ≥ βp ≥ 0 (3.23)

α2
k + β2

k = 1, k = 1, . . . , p. (3.24)

Columns of the matrices U and V are the left generalized singular vectors, and the right

generalized singular vectors are the columns of Y, that is

Y =
(

y1 y2 . . . y`

)
. (3.25)

The generalized singular values of matrix pair (X,L) are de�ned as:

γk =
αk
βk

for k = 1, . . . , p. (3.26)

It is easy to derive that GSVD is a generalization of SVD when matrix L is equal to the

identity matrix I. For L = I and p = ` we have

I = VDLY−1 ⇒ DL
−1V∗ = Y−1 ⇒ X = UDXDL

−1V∗.

Then, the SVD of matrix X is given as:

X = U diag

(
α1

β1
, . . . ,

αp
βp

)
V∗,
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and generalized singular values of (X, I) are equal to singular values of matrix X with the

opposite ordering.

The connection between normal and general singular values only exist when L = I as

described above. However, some relations regarding well and ill conditioned matrices can

be derived for a general case.

It can be shown that, for a well conditioned matrix L, the matrix Y is well conditioned

[34]. As a consequence, the ill-conditioning of the matrix X is displayed on the diagonal

matrix DX. Since the relation

γk =
αk
βk

=
αk√

1− α2
k

≈ αk (3.27)

holds for a small αk, the generalized singular values de�ned with 3.26 must decay to zero

as ordinary singular values do.
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Chapter 4

Direct Regularization Methods

According to Hadamard conditions: a problem is well posed if it has a unique solution

which depends continuously on the data. This means that small noise in the input mea-

sured data does not produce large errors in the solution. However, if one of this conditions

is not satis�ed, a problem is called ill posed. When using Moore-Penrose pseudoinverse to

�nd a least squares solution of an ill posed problem, the smaller singular values together

with the noise from the measured data, can have a detrimental e�ect on the solution.

That is why the idea of direct regularization methods is to decrease the in�uence of the

smallest singular values and corresponding singular vectors. In this chapter we describe

a well known direct regularization methods: truncated SVD and GSVD, Tikhonov regu-

larization in standard and general form and damped SVD and GSVD which are in next

chapters used for regularization in ultrasound tomography.

Direct regularization methods that utilize SVD can be written in the form yλ = X†λb

where matrix X†λ is the regularized inverse of matrix X de�ned as:

X†λ = V
(

Σ−1λ 0
)

U∗ =
∑̀
i=1

fi(λ)
1

σi
viui

∗. (4.1)

The matrix Σ−1λ is diagonal matrix diag

(
f1(λ)

σ1
, . . . ,

f`(λ)

σ`

)
. Filter factors, denoted

with fi(λ), are responsible for minimizing the in�uence of smaller singular values on the

calculated solution. They depend on the regularization parameter λ and de�ne di�erent

methods.

In general, the regularized inverse X†λ satis�es third and fourth Penrose condition:
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1.
(
XX†λ

)∗
= XX†λ

(
XX†λ

)∗
=
(
V
(

Σ−1λ 0
)

U∗
)∗U

 Σ

0

V∗

∗ = U

 Σ−1λ

0

( Σ 0
)

U∗

= U

 Σ−1λ Σ 0

0 0

U∗ = U

 ΣΣ−1λ 0

0 0

U∗ = U

 Σ

0

V∗V
(

Σ−1λ 0
)

U∗

= XX†λ

2.
(
X†λX

)∗
= X†λX.

(
X†λX

)∗
= (V∗)∗

(
Σ 0

)
U∗U

 Σ−1λ

0

V∗ = V

 ΣΣ−1λ 0

0 0

V∗

= V
(

Σ−1λ 0
)

U∗U

 Σ

0

V∗ = X†λX.

The �rst and second Penrose conditions are discussed for each method separately in the

following sections.

4.1 Truncated SVD and GSVD

Truncated singular value decomposition (TSVD) as a method of regularization for an

ill-posed linear system (3.7) was discussed by Hansen in [30]. The idea of TSVD is to

derive a new linear system by replacing matrix X with the well-conditioned matrix Xk

de�ned in equation (3.5). The matrix Xk is the best k-rank approximation for matrix X

as stated in Theorem 3.1.2. Then, a solution of new linear system is the TSVD solution

yk of given ill-posed system (3.7) and it is de�ned as:

yk =
k∑
i=1

uTi b

σi
vi. (4.2)

The singular values are denoted with σi, and ui and vi, are left and right singular vectors

as de�ned in Theorem 3.1.1.

The regularized inverse from equation (4.1) in the case of TSVD is de�ned as:

X†k = V
(

Σ−1k 0
)

U∗ =
k∑
i=1

1

σi
viui

∗, (4.3)
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where matrix Σ−1k ∈ R`×` is given as:

Σ−1k =

 diag
(

1
σ1
, . . . , 1

σk

)
0

0 0


The �lter factors for the TSVD method are de�ned as:

fi(k) =

 1 for σi ≥ σk

0 for σi < σk
. (4.4)

With this approach, the biggest k singular values are kept and the rest of smaller singular

values and corresponding singular vectors are truncated. This results in decreasing the

e�ect of the noise from the right side vector b on the solution of linear system in equation

(3.7).

We note that, for the TSVD method, the real regularization parameter λ is replaced

with integer parameter k.

As already stated, in general, the regularized inverse satis�es third and fourth Penrose

condition. However, in TSVD case, X†k also satis�es the second Penrose condition:

X†kXX†k = V
(

Σ−1k 0
)

U∗U

 Σ

0

V∗V
(

Σ−1k 0
)

U∗

= V
(

Σ−1k 0
) Σ

0

( Σ−1k 0
)

U∗ = VΣ−1k Σ
(

Σ−1k 0
)

U∗

= V

 Ik

0`−k

( Σ−1k 0
)

U∗ = V
(

Σ−1k 0
)

U∗ = X†k

The �rst condition is not satis�ed because:

XX†kX = U

 Σ

0

V∗V
(

Σ−1k 0
)

U∗U

 Σ

0

V∗

= U

 Σ

0

( Σ−1k 0
) Σ

0

V∗ = U

 ΣΣ−1k 0

0 0

 Σ

0

V∗

= U

 ΣΣ−1k Σ

0

V∗ = Xk 6= X
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The following example presents the ill-posed linear system from example 3.2.2 solved

using the TSVD method.

Example 4.1.1. We want to solve the linear system Xy = b̃ from the Example 3.2.2

using the TSVD method. Since the matrix X has three singular values, the possible values

for regularization parameter k are 1 and 2.

• For k = 1, only the biggest singular value σ1 = 0.2 is used to calculate the solution.

Then, the TSVD solution is yk =


0.089621849834053

−0.002218345717926

0.106600877329206

 with relative error equal

to 0.7392.

• For k = 2, �rst two singular values σ1 = 0.2 and σ2 = 10−6 are used. Then, the

TSVD solution is yk =


0.381207870431206

−0.201913739862813

−0.142697933712352

 with relative error equal to 1.0535.

Although the relative errors for TSVD solutions are high for this example, they are an

improvement compared to the solution obtained with equation 3.11 in Example 3.2.2.

The problem for TSVD is how to choose the regularization parameter k, that is how to

decide which singular values to keep and which to truncate. More on this topic is written

in Chapter 5.

4.1.1 TGSVD

Truncated generalized singular value decomposition (TGSVD) method, [31], [34], is based

on the same idea of truncating smaller values as aforementioned TSVD. However, the

di�erence is that TGSVD employs a regularization matrix L, described in Subsection

3.2.1. In addition, TGSVD solves the problem (3.14) instead of linear system (3.7). The

GSVD of matrix pair (X,L) is used to calculate the solution and smallest generalized

singular values and the corresponding generalized singular vectors are truncated.

The formula for TGSVD solution of problem (3.14) is derived as follows. First, in

equation

 X

L

y =

 b

0

, matrices X and L are replaced with the GSVD of matrix

pair (X,L) de�ned in 3.20 and 3.21. Then we have
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 U

 DX 0

0 I`−p

Y−1

V
(

DL 0
)

Y−1

y =

 b

0

⇒ y = Y

 DX
−1 0

0 I`−p

U∗b. (4.5)

It is obvious that only matrices U, DX and Y have e�ect on the solution y. The idea

of TGSVD is to truncate smallest generalized values. We will use diagonal matrix D−1Xk

de�ned as:

D−1Xk
=

 0 0

0 diag
(
α−1p−k+1, . . . , α

−1
p

)
 ∈ Rp×p (4.6)

to truncate lowest k values of αi from the solution. Now, the TGSVD solution is de�ned

as:

yk = X†kb , X†k = Y

 D−1Xk
0

0 I`−p

U∗. (4.7)

The matrix X†k can be interpreted as regularized inverse of matrix X in the TGSVD

case. It satis�es two Penrose conditions:
(
XX†k

)∗
= XX†k and X†kXX†k = X†k. These

relations are easy to prove, similarly as it is in the TSVD case. However, the other two

conditions are not satis�ed:

1.
(
X†kX

)∗
6= X†kX

(
X†kX

)∗
=
(
Y−1

)∗ DX 0

0 I`−p

 D−1Xk
0

0 I`−p

Y∗ =

(
Y−1

)∗ D−1Xk
0

0 I`−p

U∗U

 DX 0

0 I`−p

Y∗ 6= X†kX,

because Y is not necessary an unitary matrix.

2. XX†kX 6= X

XX†kX = U

 DX 0

0 I`−p

Y−1Y

 D−1Xk
0

0 I`−p

U∗U

 DX 0

0 I`−p

Y−1

U

 DXD−1Xk
DX 0

0 I`−p

Y−1 6= U

 DX 0

0 I`−p

Y−1 = X
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The TGSVD solution from equation 4.7 can be expressed using �lter factors similar to

4.2. The derivation of this expression follows from equations 4.7 and 4.6, by partitioning

matrices Y and U to the �rst p and last `− p columns as:

yk = X†kb =
(

Yp Y`−p

)
·

 D−1Xk
0

0 I`−p

 ·
 U∗p

U∗`−p

b

= YpD
−1
Xk

U∗pb + Y`−pU
∗
`−pb

This yields an expression for the TGSVD solution as:

yk =

p∑
i=p−k+1

ui
∗b

αi
yi +

∑̀
i=p+1

(ui
∗b)yi. (4.8)

The equation 4.8 can be written in the terms of sharp �lter factors:

fi(k) =

 1 for αi ≥ αk

0 for αi < αk
. (4.9)

Another way to de�ned a TGSVD solution is to use transformations form standard to

general form [34].

In order to show the e�ects of regularization matrix L within TGSVD, we solve the

ill-posed linear system from Example 3.2.2.

Example 4.1.2. We want to solve the linear system Xy = b̃ given in Example 3.2.2

using the TGSVD method. Since this method requires regularization matrix L, we use

the matrix L1 de�ned in equation 3.15 for this purpose.

The matrix pair (X,L) has two generalized singular values

γ1 =
0.000000155573386

0.999999999999988
and γ2 =

0.000001845960242

0.999999999998296
,

so we set regularization parameter k equal to 1. We would like to note that matrices U i

V obtained with GSVD are di�erent from those obtained with SVD, and they are

U =


−0.180834540312718 −0.236776638230098 −0.636634543773113

0.319158969349612 0.602405347441124 −0.662199870668450

−0.738067575123392 −0.237292725674562 −0.314250007747914

0.566297338740929 −0.724387177761126 −0.239655422621572


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and

V =

 0.410172291592458 −0.912008054355767

−0.912008054355767 −0.410172291592458

 .

Matrix Y is given as:

Y =


−0.560874307343569 −1.432157713852067 −3.589778559998338

−1.381218890528475 0.391858394856359 −3.589778559998338

0.442797218183038 1.212202978039876 −3.589778559998335

 .

Then, the TGSVD solution is yk =


0.099999999985196

0.100000000004051

0.100000000012531

 with relative error equal to

1.1440 · 10−10.

This relative error is much lower than errors of solutions obtained with the TSVD

method and equation 3.11 in Example 3.2.2.

We would like to note that for this particular example, the usage of matrix L has

bigger e�ect on the improvement of the solution than the truncation. The reason for

this is exact solution has constant values equal to 0.1, so �rst order derivative operator

smooths the noise. When we set k = 2, there is no truncation. However, the solution is

yk =


0.100000000010212

0.100000000065656

0.099999999992781

 with relative error equal to 3.8588 · 10−10.

The TGSVD method has the same problem as TSVD, that is how to decide which

values to keep and which to truncate. More on this is given in Chapter 5.

4.2 Tikhonov Regularization

Tikhonov regularization is one of the best known direct regularization methods and is

often used to solve discrete ill-posed problem Xy = b. Its formulation as an optimization

problem is given as:

min
y∈Cn

{
‖b−Xy‖22 + λ2‖Ly‖22

}
, (4.10)
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while its two alternative forms are:

min

∥∥∥∥∥∥
 X

λL

y −

 b

0

∥∥∥∥∥∥
2

and
(
X∗X + λ2L∗L

)
y = X∗y. (4.11)

The method minimizes the residual r = b−Xy and controls the norm of vector Ly using

positive regularization parameter λ. When matrix L is equal to identity matrix I then

the method is in standard form. Otherwise, it is in general form. Common choices for

regularization matrix L are described in Subsection 3.2.1.

The Tikhonov solution is de�ned as:

yλ = X†λb , X†λ =
(
X∗X + λ2L∗L

)−1
X∗. (4.12)

For this solution to be unique, condition N (X) ∩ N (L) = {0} must be satis�ed. The

same condition is also required for the existence of GSVD of matrix pair (X,L) as seen

in Section 3.3.

4.2.1 Regularized inverse and �lter factors

The matrix X†λ is the regularized inverse of matrix X in Tikhonov case. We can derive

its alternative form, similar to those of TSVD (equation 4.3) and TGSVD (equation 4.7)

which contains �lter factors.

For Tikhonov regularization in standard form, we use the SVD of matrix X to calculate

the product X∗X = VΣ2V∗ and set L∗L = I. Then, it follows:

X†λ =
(
VΣ2V∗ + λ2I

)−1
V
(

Σ∗ 0
)

U∗ =
(
VΣ2V∗ + λ2VV∗

)−1
V
(

Σ 0
)

U∗

=
(
V
(
Σ2 + λ2I

)
V∗
)−1

V
(

Σ 0
)

U∗ = (V∗)−1
(
Σ2 + λ2I

)−1 (
Σ 0

)
U∗

= V diag
(
(σ2

1 + λ2)−1, . . . , (σ2
` + λ2)−1

) (
diag(σ1, . . . , σ`) 0

)
U∗

= V

(
diag

(
σ1

σ2
1 + λ2

, . . . ,
σ`

σ2
` + λ2

)
0

)
U∗

Comparing this derived form of X†λ to the equation (4.1), we conclude
fi(λ)

σi
=

σi
σ2
i + λ2

.

Then, the �lter factors for Tikhonov regularization in standard form are:

fi(λ) =
σ2
i

σ2
i + λ2

for all i = 1, . . . , p. (4.13)
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The regularized solution yλ can be de�ned with �lter factors as:

yλ = X†λb =
∑̀
i=1

fi(λ)
u∗ib

σi
vi. (4.14)

Using �lter factors (4.13) contribution of smaller singular values σi < λ and their corre-

sponding singular vectors is neglected in yλ.

Regarding the Penrose conditions for X†λ, we already proved at the beginning of this

chapter that two conditions holds:
(
XX†λ

)∗
= XX†λ and

(
X†λX

)∗
= X†λX. However,

other two conditions are not satis�ed.

Similar process of derivation is for Tikhonov regularization in general form. We replace

matrices X and L with GSVD of matrix pair (X,L) and calculate products:

X∗X =
(
Y−1

)∗ DX 0

0 I`−p

U∗U

 DX 0

0 I`−p

Y−1

=
(
Y−1

)∗ diag
(
α2
1, . . . , α

2
p

)
0

0 I`−p

Y−1,

L∗L =
(
Y−1

)∗ DL

0

V∗V
(

DL 0
)

Y−1

=
(
Y−1

)∗ diag
(
β2
1 , . . . , β

2
p

)
0

0 0

Y−1.

Then, the alternative form of regularized inverse X†λ in Tikhonov case can be derived as:

X†λ =
(
X∗X + λ2L∗L

)−1
X∗

=

(Y−1)∗
 diag

(
α2
1, . . . , α

2
p

)
0

0 I`−p

+ λ2

 diag
(
β2
1 , . . . , β

2
p

)
0

0 0

Y−1

−1 X∗ =

Y

 diag
(

1
α2
1+λ

2β2
1
, . . . , 1

α2
p+λ

2β2
p

)
0

0 I`−p

((Y−1)∗)−1 (Y−1)∗
 diag (α1, . . . , αp) 0

0 I`−p

U∗

.
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This results in an alternative form of regularized inverse de�ned as:

X†λ = Y

 diag

(
α1

α2
1 + λ2β2

1

, . . . ,
αp

α2
p + λ2β2

p

)
0

0 I`−p

U∗ (4.15)

From this new form, we can easily calculate the �lter factors fi(λ) for the Tikhonov

regularization in general form:

fi(λ)

αi
=

αi
α2
i + λ2β2

i

⇒ fi(λ) =
α2
i

α2
i + λ2β2

i

=
γ2i

γ2i + λ2
for all i = 1, . . . , p. (4.16)

The Tikhonov regularized solution in general form can be de�ned using �lter factors as:

yλ =

p∑
i=1

fi(λ)
u∗ib

αi
yi +

∑̀
i=p+1

(u∗ib)yi (4.17)

where yi are right singular vectors from Equation (3.25).

Regularized inverse X†λ for Tikhonov regularization in general form only satis�es one

condition:
(
XX†λ

)∗
= XX†λ. Other conditions fail to be satis�ed as it is in the case of

TGSVD and Tikhonov in standard form.

In the following example, the ill-posed linear system from example 3.2.2 is solved using

Tikhonov regularization in standard and general form.

Example 4.2.1. We solve the linear system Xy = b̃ from Example 3.2.2 using Tikhonov

regularization in standard and general form.

The solution in standard form requires SVD of matrix X which is given in Ex-

ample 3.2.2. The value of regularization parameter λ needs to satis�ed the relation

σ3 = 10−7 ≤ λ ≤ 0.2 = σ1.

1. For λ = 10−7 the solution in standard form is yλ =


0.082784283895891

0.057126917586478

0.113581473632773

 with

relative error equal to 0.3174.

2. For λ = 10−6 the solution in standard form is yλ =


0.077697270098418

0.007029824639970

0.116815733267405

 with

relative error equal to 0.6911.
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3. For λ = 0.2 the solution in standard form is yλ =


0.044810218297817

−0.001109155368095

0.053299598176296

 with

relative error equal to 1.7848.

For the general form case, solution requires GSVD of matrix pair (X,L) given in

Example 4.1.2.

For λ =
0.000001845960242

0.999999999998296
the solution in general form is yλ =


0.099999999992774

0.100000000002460

0.100000000006126


with relative error equal to 5.6507 · 10−11.

For λ =
0.000000155573386

0.999999999999988
the solution in general form is yλ =


0.099999999997808

0.100000000034825

0.100000000002568


with relative error equal to 2.0200 · 10−10.

In this example Tikhonov regularization in general form produced solution with much

lower relative error than standard form. This happened because the exact solution vector

has constant values and regularization matrix L smooths the noise. For this same example

TGSVD obtained better solution than TSVD as seen before.

The main challenge with Tikhonov regularization in more complex examples is an

adequate selection of parameter λ, since the choice is largely dependent on the problem

being solved.

4.3 Damped SVD and GSVD

Idea of decreasing the in�uence of smallest singular values was also proposed by Ekstrom

and Rhodes in [17]. They damped the smallest singular values using �lter factors de�ned

as:

fi =
σi

σi + λ
. (4.18)
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These are smooth factors, as opposed to TSVDs sharp �lter factors and similar to those

of Tikhonov regularization. The DSVD solution is de�ned with formula

yλ =
∑̀
i=1

σi
σi + λ

· ui
∗b

σi
vi. (4.19)

Following the aforementioned idea of damping smaller singular values instead of trun-

cating them, Hansen in [32] described The Damped Generalized SVD (DGSVD). The

�lter factors for DGSVD are:

fi =
αi

αi + λβi
, i = 1, 2, . . . , p. (4.20)

and the DGSVD solution is de�ned as:

yλ =

p∑
i=1

αi
αi + λβi

· ui
∗b

αi
yi +

∑̀
i=p+1

(ui
∗b)yi. (4.21)

In this way, a generalized singular values smaller then λ are damped much faster then

the bigger ones. It is necessary to use regularization parameter λ ∈ R+ suited for given

problem.

Since there is similarity between D(G)SVD and Tikhonov regularization regarding

the �lter factors, regularized inverse X†λ is de�ned in similar way and the same Penrose

conditions are satis�ed.

Example 4.3.1. We solve the linear system Xy = b̃ from Example 3.2.2 using DSVD

and DGSVD.

Since DSVD and Tikhonov regularization in standard form both utilize SVD of matrix

X and have similar �lter factors, candidates for the regularization parameter λ are same.

1. For λ = 10−7 the solution in standard form is yλ =


0.084771996846320

0.055765584333117

0.111881936779997

 with

relative error equal to 0.3196.

2. For λ = 10−6 the solution in standard form is yλ =


0.080525408487807

0.013949012599734

0.114581128353726

 with

relative error equal to 0.6354.
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3. For λ = 0.2 the solution in standard form is yλ =


0.044810113068864

−0.001109028637699

0.053299689281974

 with

relative error equal to 1.7848.

The GSVD of matrix pair (X,L) is utilized both by DGSVD and Tikhonov regular-

ization in general form. Because of that, they have same candidates for λ.

For λ =
0.000001845960242

0.999999999998296
the solution in general form is yλ =


0.099999999994542

0.100000000006814

0.100000000004730


with relative error equal to 5.732656561564236 · 10−11.

For λ =
0.000000155573386

0.999999999999988
the solution in general form is yλ =


0.099999999998854

0.100000000034539

0.100000000001682


with relative error equal to 1.997540846063769 · 10−10.

These results produced by DSVD and DGSVD are very similar to the results produced

by Tikhonov regularization in standard and general form.

However, the DSVD and DGSVD have the same issue as aforementioned methods,

how to choose properly the regularization parameter λ ∈ R+, so that ‖b−Xy‖2 remains

small and the solution y is not noise dominated.

4.4 Regularization in UT with TSVD and TGSVD

In this section we compare the TSVD and TGSVD methods for the regularization of

inverse problem within iterations of DBI. The aim is to investigate whether the inclusion

of regularization matrix L, which is the part of TGSVD, improves the reconstruction of

scattering function from the noisy data.

Our simulation of UT, general guidelines are described in Section 2.5, has M = 128

transducers positioned equidistantly from one another, surrounding the ROI. Only Mt =

32 of the 128 transducers, one at a time, transmitted a sound wave at a frequency of

f = 500 kHz. All the transducers received the echoes from every transmission and the

background medium is loss-free. The ROI is a square with dimensions 40 mm× 40 mm.
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Figure 4.1: Exact phantom (left) and reconstruction after 10 iterations of DBI with TSVD (center)

and TGSVD (right).

Table 4.1: RE-`2 of reconstructed scattering function

Method Simulated phantom Modi�ed Shepp-Logan

TSVD 0.2693 0.6226

TGSVD 0.2014 0.5295

Two phantoms are used for the scattering object, simulated phantom and modi�ed Shepp-

Logan phantom, shown in left column of the Figure 4.1. The gray scale image of the true

ROI is discretized with N = 60× 60 pixels. Other groups constructed the problem as an

underdetermined system and found the approximate solution of the scattering function

[27]. However, we constructed an overdetermined linear system within the inverse scat-

tering section of the DBI algorithm. The number of unknowns is 60 × 60 which is less

than the number of equations 128× 32. In order for our experiment to be more realistic,

vector b has a signal-to-noise ratio (SNR) of 30 dB.

We initialized the DBI method with Born approximation and then ran 10 iterations.
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In each iteration, for the inverse scattering part, two di�erent algorithms are utilized,

TSVD and TGSVD.

In order to obtain quantitative measurement for quality of reconstruction with the DBI

method, we calculate the relative `2 norm error (RE-`2) for the reconstructed scattering

function ”s” as:

RE-`2 =
‖s− ŝ‖2
‖s‖2

. (4.22)

The reconstructed images using TSVD and TGSVD are shown in Figure 4.1 and the

results for RE−`2 are shown in Table 6.1. It is visible that for both phantoms, TGSVD

provides lower error. The usage of regularization matrix L in TGSVD smoothed the

solution to give a better image quality. This is shown in Figure 4.2 where slice plots of

tested phantoms are compared. These plots were obtained from the reconstructed ROI

after 10 iterations of DBI. For the simulated phantom we took vertical and horizontal

line of the reconstructed phantom with �xed x-axis x = 3.3 mm and y-axis at y = −1.33

mm, respectively. For the modi�ed Shepp-Logan we took vertical line with �xed x-axis

at x = 13.33 mm and horizontal line with �xed y-axis at y = −2.66 mm. The TGSVD

provided smoother solution and more reliable reconstruction of the edges, while TSVD

failed to detect lager changes in the speed of sound contrast.

However, a problem with the aforementioned truncation techniques is the determi-

nation of the truncated parameter in Equations (4.2) and (4.7). Here, we choose k to

be position where the highest drop in singular values occurred. More on the options for

choosing the regularization parameter is presented in Chapter 5.

4.4.1 Conclusions

The simulation reveals that TGSVD outperforms TSVD when it is used for regularization

within the inverse problem where the right side (b) contain errors. This outcome can be

attributed to the smoothening property of the matrix L which causes a reduction in the

noise. TGSVD, unlike TSVD, calculates the generalized singular values of the matrix

pair (X,L) so that both matrices are equally represented which results in solution with

less error.
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Figure 4.2: Slice plots of the scattering function after 10 iterations of DBI when TSVD and

TGSVD are used for regularization. (a) Vertical slice at x = 3.3 mm, and (b) horizontal slice at

y = −1.33 mm for the simulated phantom. (c) Vertical slice at x = 13.33 mm, and (d) horizontal

slice at y = −2.66 mm for the modi�ed Shepp-Logan phantom.
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Figure 4.3: Reconstruction of the ROI after 6 iterations of DBI with (a) Pseudoinverse, (b)

DSVD and (c) DGSVD, (SNR=30dB).

4.5 Regularization in UT with DSVD and DGSVD

For the purpose of testing the regularization properties of the methods DSVD and DGSVD,

we reconstructed a grayscale image of the Modi�ed Shepp-Logan phantom as our region

of interest (ROI). Since the main focus is the reconstruction of velocity values, a grayscale

image is an optimal way to present those values. We discretized ROI with N= 60 × 60

pixels with h = λ0
4.5
. To construct a model problem for the DBI method, we assumed

a circular array of 128 equidistant transducers surrounding the ROI. We transmit at a

frequency of f = 500 kHz from each of the 32 transducers, one at a time, while all 128

transducers act as receivers. The radius of the circle is r = 100 mm and the background

medium has a constant wavenumber ko = 2.122. Thus, every time one transducer is

transmitting, we collect the data from all of them. This leads to 32× 128 equations and

because the number of unknowns pixels is 3600, we constructed an overdetermined linear

system. We tested the algorithms with added noise of SNR = 30 dB to the right hand

side 'b'.

To numerically determined which of the methods is the best, we calculate relative

`2 norm error of the scattering function as de�ned in the Equation (4.22). We choose

the 1000th singular value as the parameter λ for DSVD and DGSVD. It is visible that

DGSVD is much better in restoring the image than use of the pseudoinverse. When

compared to DSVD, DGSVD produces pixel values that are closer to the original. Figure

4.3 are the reconstructed images of the ROI after 6 DBI iterations. Figure 4.4 shows
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Figure 4.4: Plots of RE-`2 for scattering function during 6 iterations of DBI, f=500kHz.

the plots of relative error RE-`2 for 6 iterations of DBI in all three cases and con�rms

that DGSVD is better than DSVD or pseudoinverse. The results of the experiment show

that gradual damping of the generalized singular values results in a better image quality

and a more accurate approximation of the scattering function. Because, in our setting,

the singular values are small and decay to zero gradually, we have an ill-posed problem

and the psuedoinverse solution is noise dominated. In this way, damping decreases the

in�uence of the small singular values on the solution. The DGSVD produces the best

image and outperforms DSVD and pseudoinverse because, in addition to the damping, it

reduces the value of ‖Ly‖2 where L is a �rst derivative operator, thereby smoothing the

solution yλ in (4.21).

4.5.1 Conclusions

The smaller singular values of the matrix X in system (3.7) cause the solution to be

contaminated by noise and can lead to a poorly reconstructed image. In this section, we

propose damping those values using the DGSVD method. In that way, not only is the

noise contribution to the solution decreased, but also the regularization matrix L insures

a smooth solution yλ in (4.21). Our tests show that DGSVD regularization provides a

higher quality solution than the DSVD regularization or the direct solution using the
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Moore-Penrose pseudoinverse. Our choice for λ for these tests has been purely heuristic,

thus a better approach for choosing λ is necessary.
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Chapter 5

Choosing the Regularization

Parameters

Direct regularization methods described in Chapter 4 are e�cient in solving an inverse

problem only if appropriate regularization parameter is chosen. For the TSVD and the

TGSVD method, an integer value k will determine which of the smallest (generalized)

singular values will be omitted. In the case of Tikhonov in standard and general form,

DSVD and DGSVD, a positive real number λ is responsible for damping the in�uence of

the smallest (generalized) singular values on the solution.

In this chapter we present well known algorithms for choosing the regularization pa-

rameter: generalized cross validation (GCV) and L-curve. Then, we derive our adaptive

algorithm for determining λ based on the error resulted form the noise and signal loss.

We utilize Tikhonov regularization methods in standard and general form to solve the

ill posed inverse part of the DBI method. Since the performance of these methods greatly

depends on the choice of regularization parameter λ, in numerical results our adaptive

algorithm is compared to GCV and L-curve.
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5.1 Standard Methods for Choosing Regularization Pa-

rameter

5.1.1 Generalized Cross validation (GCV)

Generalized cross validation (GCV) was introduced in [22] and it was used to �nd param-

eter for the Tikhonov regularization in the standard form. The parameter λ is chosen to

be the value that minimizes the GCV function de�ned as:

GCV(λ) =
‖Xyλ − b‖22(

trace(I−XX†λ)
)2 (5.1)

where the matrix X†λ is de�ned in (4.12) for standard and in (4.15) for general form. The

GCV function is composed of two inversely proportional parts, residual norm ‖Xyλ − b‖22
and

(
trace(I−XX†λ)

)−2
. The idea of the GCV method is that the regularized solution

predicts the missing element bi of the vector b [34]. The denominator in Equation 5.1

can be replaced with the following [34]

trace(I−XX†λ) = q − (`− p)−
p∑
i=1

fi (5.2)

where fi are �lter factors for the corresponding method. From (5.2) it is obvious that(
trace(I−XX†λ)

)−2
achieves minimal value for the largest possible λ. In addition, this

value increases if (generalized) singular values of matrix X increases.

5.1.2 L-curve

The L-curve algorithm [35] is designed to balance the residual norm ‖b−Xyλ‖2 with the

norm of the solution ‖yλ‖2 for Tikhonov in standard form, or seminorm ‖Lyλ‖2 for the

general form case. These two parts are in most cases inversely proportional, so the curve

de�ned as:

(ζ(λ), η(λ)) = (log ‖b−Xyλ‖2, log ‖Lyλ‖2) (5.3)

has distinct L shape. The value of λ that maximizes the curvature
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κ(λ) =
η′(λ)ζ ′′(λ)− ζ ′(λ)η′′(λ)

((η′(λ))2 + (ζ ′(λ))2)3/2
(5.4)

is de�ned as the L-curve's corner [33] and is chosen to be the regularization parameter. In

this way, the compromise between minimization of residual norm and solution seminorm

is achieved.

5.2 Adaptive Method based on Signal-loss and Noise

Error

The adaptive algorithm based on the signal loss and noise error was used for determining

the truncation parameter k for TSVD in [26] and TTLS in [9] and in Section 6.2. The

parameter is found as a solution of the following minimization problem:

k = min
t∈{1,2,...,`}

{
b∗(I−XX†t)b + σ2 ·

t∑
i=1

1

σ2
i

}
(5.5)

where the matrix X†t is obtained from Equation (3.6) by replacing upper bound of sum-

mation with t. The rank of the matrix X is denoted with `, σ2 is the variance of Gaussian

white noise in the measured vector b, and the σi are the singular values of X. The left

part of the argument in Equation (5.5) is named the signal loss error and the right part is

noise error. Inspired by this idea, we develop an adaptive algorithm for both the standard

and generalized form of Tikhonov regularization that estimates the norm of the noise, de-

noted with ‖e‖2, rather than its variance. If we overestimate the norm of the error at the

beginning of the algorithm, the DBI method simply requires more iterations to converge

to the appropriate solution. The reason for this is that estimation of norm of the error,

‖e(i)
DBI‖2 , is adaptively decreased in each iteration of DBI as:

‖e(i)
DBI‖2 = ‖e‖2 ·

‖b(i)
DBI‖2

‖b(i−1)
DBI ‖2

, (5.6)

where b
(i)
DBI denotes the right side vector of the inverse problem within the ith iteration

of DBI.

The following is the theoretical background for our algorithm. Since the measured

vector b holds errors e, it follows:
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Figure 5.1: Decrease and increase of (generalized) singular values, Signal loss error (SLE) and Noise error

(NE) in the proposed adaptive method.

Xy ≈ b⇒ yλ = X†λb = X†λbexact + X†λe.

We de�ne Noise Error (NE) as:

NE(λ) =
∥∥∥X†λe∥∥∥

2
. (5.7)

In order to �nd e�ective formula for calculation of NE(λ), we derive the following. First,

for the SVD case, using the de�nition of X†λ and the fact that matrices U and V are left

orthogonal (i.e. U∗U = V∗V = I and ‖U‖2 = ‖V‖2 = 1), we have

∥∥∥X†λe∥∥∥
2

=

∥∥∥∥∥∥∥∥∥V


f1/σ1 0
. . .

0 f`/σ`

U∗e

∥∥∥∥∥∥∥∥∥
2

≤

∥∥∥∥∥∥∥∥∥


f1/σ1 0

. . .

0 f`/σ`


∥∥∥∥∥∥∥∥∥
2

· ‖e‖2. (5.8)

The upper bound for the noise error is given as:

NESVD(λ) ≤ max
i

{
fi
σi

}
‖e‖2 = max

i

{
σi

σ2
i + λ2

}
· ‖e‖2. (5.9)

For the GSVD case, we have:
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∥∥∥X†λe∥∥∥
2

=

∥∥∥∥∥∥∥∥∥∥∥∥
Y


f1/α1 0

. . .

f`/α`

0 I`−p

U∗e

∥∥∥∥∥∥∥∥∥∥∥∥
2

≤ ‖Y‖2

∥∥∥∥∥∥∥∥∥∥∥∥


f1/α1 0

. . .

f`/α`

0 I`−p



∥∥∥∥∥∥∥∥∥∥∥∥
2

· ‖e‖2, (5.10)

leading to the upper bound

NEGSVD(λ) ≤ ‖Y‖2 ·max
i

{
αi

α2
i + β2

i λ
2
, 1

}
· ‖e‖2. (5.11)

For the Signal Loss Error (SLE), we calculate the norm of the residual vector r = b−Xyλ

as:

‖b−Xyλ‖22 =
∥∥∥(I−XX†λ

)
b
∥∥∥2
2

= b∗
(
I−XX†λ

)∗ (
I−XX†λ

)
b.

Since
(
XX†λ

)∗
= XX†λ, we de�ne SLE as:

SLE(λ) =

√
b∗
(
I−XX†λ

)2
b. (5.12)

Remark 5.2.1. The regularized inverse X†k in the case of TSVD and TGSVD satis�es

Penrose condition X†kXX†k = X†k, as seen in Chapter 4. Using this condition, we have(
I−XX†k

)2
= I−XX†k −XX†k + XX†kXX†k = I−XX†k,

so the expression for SLE in the case TSVD and TGSVD is

SLE(λ) =

√
b∗
(
I−XX†λ

)
b. (5.13)

In order to e�ectively calculate SLE(λ), the product XX†λ can be replaced with the

simpler form as:
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XX†λ = U


f1

. . .

fp

I`−p

U∗. (5.14)

Using Equations (5.12) and (5.14), we derive:

SLE = b∗

I− 2U


f1

. . .

fp

I`−p

U∗ + U


f 2
1

. . .

f 2
p

I`−p

U∗

b

(5.15)

The SLE(G)SVD can be calculated as:

SLE2
(G)SVD(λ) = b∗b + (U∗b)∗


f 2
1 − 2f1

. . .

f 2
p − 2fp

I`−p

U∗b. (5.16)

We note that in SVD case is ` = p. The errors thus de�ned behave in an inverse propor-

tion. With increasing the λ, SLE increases while NE decrease, as it is shown in Figure

5.1. The regularization parameter is found by minimizing the following cost function

λ = min
λi

{
| SLE(G)SVD(λi)− NE(G)SVD(λi)|

}
. (5.17)

The candidates λi are chosen among (generalized) singular values since they need to satisfy

the condition. More precisely, in our adaptive algorithm, we create a set of 400 candidates

for λi that are uniformly distributed between the largest and the smallest (generalized)

singular value. It is important that the value of λi does not exceed this range. Otherwise,

the Tikhonov regularization will not be e�ective. We decided to chose 400 candidates as

it is similarly implemented in the codes for GCV and L-curve from [34]. However, this

number is optional.
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Figure 5.2: Presentation of the limited aperture setting where the wave is emitted from 64 di�erent

positions and collected with 57 receivers for the simulated phantom and 63 for the breast phantom.

5.3 Numerical results

To test the DBI with the aforementioned regularization methods, we simulated 128

equidistant transducers surrounding the ROI as shown in Figure 2.1. Two di�erent set-

tings were created. The �rst one is the full aperture setting where 32 out of 128 transducers

emitted the ultrasound wave, one at a time, at a frequency of f = 1 MHz which corre-

sponds to a wavelength λ0 = 1.4823 mm in the background medium. The echo data was

collected from all 128 transducers. The second setting is limited aperture setting where

data was collected from limited number of transducers (receivers) as shown in Figure

5.2. We changed the position of the transmitter counterclockwise and the positions of

receivers were changing accordingly. The reason why we created this setting is that it

should reduce the computational time and the time needed to collect the data if it were

to be used in the experimental environment.

The reconstruction of two di�erent grayscale images of the ROI, shown in Figure 5.3,

were preformed. First one is the simulated phantom, where the central oval has the value

of contrast of 3%, and the rest of them are 5%, 8% and 9%. The second one is breast

phantom which was extracted from numerical phantoms database [51].

Numbers of transmitters (Mt) and receivers (Mr) used in the full and limited aperture

setting, with the domain size and the length of one pixel (w) are presented in Table 5.1.

Since the DBI method is iterative, we used the Born approximation to initialized it and

then we ran 10 iterations. Two di�erent noise levels were tested, 20 dB and 30 dB.

For the regularization of the inverse problem, we used Tikhonov regularization meth-
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Figure 5.3: Exact simulated phantom and breast phantom used in simulations with frequency of 1MHz.

The distribution of speed of sound is shown as percentage increase over background medium.

Table 5.1: Number of transmitters (Mt) and receivers (Mr) used in full and limited aperture setting.

Scattering object Frequency No. of pixels w Setting Mt Mr

Simulated phantom 1 MHz 60 × 60 0.67 Full aperture 32 128

Limited aperture 64 57

Breast phantom 1 MHz 52 × 77 0.5 Full aperture 32 128

Limited aperture 64 63

ods in standard and general form. Since these methods require regularization parameter

λ, we utilized three di�erent algorithms for obtaining the regularization parameter: L-

curve, GCV and our proposed adaptive algorithm. All numerical tests were preformed in

MATLAB (The Mathworks Inc., Natick, MA, USA) with a four core processor Intel I7

with 32 GB of RAM. In order to quantitatively measure the quality of the reconstructed

image, we calculated the relative error of the reconstructed scattering function in `2 norm

(RE-`2) as de�ned in the Equation (4.22). We have described in Section 2.4 that the

iterations of the DBI method stops when the relative error for the calculated scattered

�eld drops below prescribed tolerance. However, in order to analyze weather the DBI

is converging or diverging with each method, we have decided to look at the problem

di�erently. We ran 10 iterations of the DBI for all presented cases (each regularization

method with di�erent algorithms to choose the regularization parameter λ).
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Table 5.2: RE-`2 for Born approximation and after 10 iterations of DBI in full aperture setting.

Scattering Tikhonov SNR L-curve GCV Adaptive

object form Born → DBI Born → DBI Born → DBI

Simulated Standard 30 dB 0.2897 → 1.2387 0.1910 → 0.1851 0.2113 → 0.1597

phantom 20 dB 0.5379 → 2.2043 0.2831 → 0.2845 0.3871 → 0.2580

General 30 dB 0.2988 → 1.2230 0.2215 → 0.2124 0.2282 → 0.1731

20 dB 0.5066 → 2.4191 0.3088 → 0.3088 0.3252 → 0.2875

Breast Standard 30 dB 0.2511 → 7.4295 0.2293 → 0.2266 0.2268 → 0.2086

phantom 20 dB 0.4512 → 8.0587 0.3014 → 0.3042 0.3404 → 0.2960

General 30 dB 0.2224 → 7.2417 0.2065 → 0.2049 0.2144 → 0.1684

20 dB 0.3723 → 8.3439 0.2666 → 0.2664 0.2919 → 0.2568

Table 5.2 shows the values of RE−`2 for Born approximation and the �nal 10th itera-

tion of DBI for all tested cases in the full aperture setting. Although all three algorithms

for �nding λ produced RE-`2 less than 0.55 for the Born approximation, only our pro-

posed adaptive algorithm has signi�cantly decreased RE-`2 after 10 iterations of DBI in

regard to initial Born approximation. GCV has obtained good regularization parameter

λ for Born, however, it failed to provide improvement by using the DBI method. On the

other hand, L-curve produced the values of RE-`2 for DBI that are greater than 1. It is

visible from Table 5.2 that the lowest values of RE-`2 in the 10th iteration of DBI for all

tested cases are achieved by using our proposed adaptive algorithm.

Values of RE-`2 through 10 iterations of DBI for the full and limited aperture settings

are presented in Figure 5.4. Cases shown in this plots are Tikhonov in standard and

general form with regularization parameters λ obtained using GCV and the proposed

adaptive algorithm. We did not include results for the L-curve algorithm as the values

of RE-`2 were much greater than the limits of vertical axis which is visible from Table

5.2. It is obvious that the proposed adaptive algorithm provided the lowest relative error,

while GCV failed to provide appropriate λ for the DBI method. In addition, Tikhonov

in standard form produced lower error for the simulated phantom, while the general form

worked better for the breast phantom. Figure 5.5 shows values of parameter λ obtained

with three tested algorithms during 10 iterations of DBI for simulated phantom. We did
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Figure 5.4: Plots of the relative error (RE-`2) for the scattering function during 10 iterations of DBI for

simulated (top four images) and breast phantom (bottom four images) in the full and limited aperture

setting. The frequency is f = 1 MHz and tested noise levels are 20 and 30 dB, respectively. All combina-

tions between Tikhonov regularization in standard (left) and in general form (right) with algorithms for

obtaining the parameter (GCV, L-curve and adaptive) are tested. However, the results for the L-curve

are not included in these plots since the values of RE-`2 are larger than 1.
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Figure 5.5: Values of regularization parameter λ during 10 iterations of DBI obtained with three di�erent

algorithms: L-curve, GCV and the proposed adaptive algorithm. The scattering object is simulated

phantom and noise levels are 30 (top images) and 20 dB (bottom images). Values provided with the

GCV algorithm for Tikhonov in general form weren't included in the graphs since they were too large,

100.2864 for 30 dB and 100.3179 for 20 dB.

Figure 5.6: The reconstructed images of simulated phantom after 10 iterations of DBI for 30 dB noise.

Methods used for regularization are Tikhonov in standard (top) and general (bottom) form, while λ is

obtained with L-curve (left), GCV (middle) and proposed adaptive algorithm (right). The frequency

used is 1 MHz.
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Figure 5.7: The reconstructed images of breast phantom after 10 iterations of DBI for 30 dB noise.

Methods used for regularization are Tikhonov in standard (top) and general (bottom) form, while λ is

obtained with L-curve (left), GCV (middle) and proposed adaptive algorithm (right). The frequency

used is 1 MHz.

not include values provided with the GCV algorithm for Tikhonov in general form since

they were larger compared to the limits of vertical axis. We would like to note that the

values were the same in each iteration, that is, 100.2864 for 30 dB and 100.3179 for 20

dB noise level. The regularization parameter λ obtained with the L-curve is shown to

be the smallest which indicates they are not suitable for a given problem. Parameters

obtained with GCV tend to be much larger than those obtain with other algorithms. As

shown, parameters obtained using the adaptive algorithm are gradually decreasing with

each iteration of DBI. We would like to note that, although we presented values of λ only

for simulated phantom in Figure 5.5, similar situation occurred for the breast phantom.

Reconstructed images of simulated and breast phantom with 30 dB noise after 10

iterations of DBI are shown in Figures 5.6 and 5.7 respectively. All combinations of

regularization methods and algorithms for obtaining the regularization parameter λ are

presented. It is noticeable that L-curve failed to provide a visible reconstructed image

from each original form (simulated and breast phantom images). In addition, when our

proposed adaptive algorithm is used, images are clearer and the scatterer are more distinct
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Simulated phantom - Full aperture

30 dB

20 dB

Breast phantom - Full aperture

30 dB

20 dB

Figure 5.8: Vertical slice plot at x = −10.72 mm of simulated phantom (top four) and at x = 13.5 mm of

breast phantom (bottom four) after 10 iterations of DBI for frequency of 1 MHz in full aperture setting.

Inverse problem is regularized with Tikhonov in standard form (left) and general form (right).
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Simulated phantom - Limited aperture

30 dB

20 dB

Breast phantom - Limited aperture

30 dB

20 dB

Figure 5.9: Vertical slice plot at x = 8.04 mm of simulated phantom (top four) and at x = −12 mm of

breast phantom (bottom four) after 10 iterations of DBI in limited aperture setting. Inverse problem is

regularized with Tikhonov in standard form (left) and general form (right).
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than with GCV (exact values are shown earlier in Table 5.2 and Figure 5.4). Furthermore,

to show the bene�t of using our proposed adaptive algorithm, we compared the slice plots

side by side of tested phantoms as shown in Figures 5.8 and 5.9. These plots were obtained

from the reconstructed ROI after 10 iterations of DBI. Top four images of Figure 5.8 show

the slice plots of the vertical line with �xed x-axis at -10.72 mm that we took from the

simulated phantom in the full aperture setting. In addition, for the breast phantom, we

took the vertical line �xed at x=13.5 mm as presented in bottom four images on Figure

5.8. For the limited aperture setting, top four images on Figure 5.9 show the slice plot of

the vertical line �xed at x=8.04 mm for the simulated phantom. For the breast phantom,

we took vertical line at x= -12 mm, presented in bottom four images on Figure 5.9.

Results obtained with L-curve are not visible in the images for 30 dB and only glitches

are visible for 20dB. The reason for this is that those values are much larger than the

scale on the axis. These plots show the e�ect of the inhomogeneity on the reconstruction

of the ROI. It is obvious that, for the Tikhonov in general form, the proposed adaptive

algorithm is able to track the changes of the image values more precisely than GCV and

L-curve. For Tikhonov in standard form the di�erences are slightly lower, however, the

adaptive algorithm is still better.

These results validated the bene�t of using our proposed adaptive algorithm over

L-curve and GCV for choosing the regularization parameter λ. This λ is essential for

Tikhonov regularization incorporated within the DBI method. Although L-curve and

GCV algorithms are e�ective for a variety of problems, including some cases of Born

approximation (Table 5.2), they failed when utilized within the DBI method, resulting in

a lower image quality comparable to our proposed algorithm.

All three tested algorithms are composed of two parts. The �rst one is the residual

norm ‖b − Xyλ‖2 which is a common feature for all three algorithms. It achieves its

minimum for the smallest possible λ and we referred to it as signal loss error. However,

the second part is di�erent for these three algorithms and it achieves its minimum for

the largest possible λ. Therefore, depending on this second part, algorithms will choose

di�erent values for regularization parameter λ.

The L-curve algorithm tends to obtain a very small regularization parameter λ in each

iteration as shown in Figure 5.5. As a consequence, the solution is underregularized and
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L-curve plot

Plot of GCV function

Figure 5.10: L-curve plot (top four) and plot of the GCV function (bottom four) used for �nding reg-

ularization parameter λ when Tikhonov in standard (a,b,e,f) and general form (c,d,g,h) is used for

regularization in Born approximation (a,c,e,g) and in DBI (b,d,f,h) for simulated phantom. L-curve and

GCV plots in the case of breast phantom are not included in this Figure since they are very similar to

the presented plots for the simulated phantom.
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DBI diverged in both cases of noise values (20 and 30 dB) as shown in Table 5.2 and

Figures 5.6 and 5.7. In the case of Born approximation, the curve has distinctive L shape

(Figure 5.10 (a) and (c)). This reveals that there is a balancing between residual and

solution norms and none of them is dominant. That is why, in this case, the obtained

regularization parameter λ using L-curve provides a solution with acceptable relative error

as already explained. However, for the regularization within the iteration of the DBI

method, the curve doesn't have the L shape (Figure 5.10 (b) and (d)). The reason for

this is that the second part (‖yλ‖2) for Tikhonov regularization in standard form is equal

to ‖∆s‖2 inside the DBI method. This value, ‖yλ‖2, is already very small compared to the

residual norm so it has been neglected during the process of minimization. Accordingly,

the obtained parameter λ has a small value with each iteration as it only minimized the

residual norm. For the general form case, ‖L∆s‖2 is even smaller, which results in a

choice of much smaller value of λ that negatively a�ects the image quality.

On the other hand, the problem with GCV is that the value of the obtained regu-

larization parameter λ is too high as shown in Figure 5.5. Because of that, when the

inverse part (Equation (2.16)) was solved using the obtained λ, the solution (the update

for the scattering function ∆ŝ) was overregularized and approximately equal to 0 within

iterations inside the DBI method. As a result, the relative error (RE-`2) always has a

constant value as shown in Table 5.2 and Figure 5.4. In the case of Born approximation,

the GCV function has a local minimum somewhere in the middle of the graph as shown in

Figure 5.10 (e) and (g). For the DBI case, the GCV function is monotonically decreasing

and the minimum function value is achieved at the end of the x-axis as shown in Figure

5.10 (f) and (h). This happened because the value of of the second part of Equation

(5.1),
(

trace(I−XX†λ)
)−2

, increased during iterations of the DBI method compared to

its previous value in the Born approximation. So, when we minimize the GCV func-

tion, we actually are minimizing
(

trace(I−XX†λ)
)−2

as it achieves much higher values

than the residual norm ‖b − Xyλ‖2. This leads to chose the highest possible value of

λ. The performance of L-curve and GCV algorithms when used inside the DBI method

was examined in [42]. Though, they have used di�erent test phantoms and di�erent basis

functions for discretization.

The best results are achieved when regularization parameter λ is chosen using our
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proposed adaptive algorithm. The value of the parameter is neither too large nor too

small, as shown in Figure 5.5. It provides an optimal balance between overregularized

and underregularized solutions. As a consequence, the DBI method converged in all tested

cases. Our proposed algorithm starts with a rough estimate of the norm of the noise for

Born approximation. Then, our algorithm bene�ts from the design of the DBI method

since in each iteration the discrepancy between the measured and the calculated data is

reduced. We use this information to decrease the estimate of the noise which we called

the noise error. Its value is neither too high nor too low compared to the residual norm,

unlike in L-curve or GCV case. That is why both parts of our algorithm are minimized

and as a consequence, it chooses a better value for λ which results in a higher quality

reconstructed images.

In some cases for the Born approximation, GCV provided lower value for RE-`2 than

the adaptive algorithm as visible in Table 5.2. However, this was due to an initial over-

estimation of the noise norm in the proposed algorithm which has been adjusted within

the iterations of the DBI method. In addition, inside the DBI method, GCV failed to

provide an appropriate choice of λ. However, our proposed algorithm succeed to decrease

the relative error, RE-`2, with each iteration, resulting in the lowest relative error in all

tested cases and better reconstructed images.

Figures 5.6 and 5.7 also con�rmed the bene�t of using our proposed algorithm for

choosing the regularization parameter λ. We would like to note that although Tikhonov

in standard form produced slightly better reconstruction for simulated phantom, Tikhonov

in general form proved to have better reconstruction image when more realistic medium

was used (breast phantom) as shown in Figure 5.7.

The slice plots presented in Figures 5.8 and 5.9 provided a valuable insight in the

quality of the reconstructed images. In most of the tested cases, our adaptive algorithm

achieved a better reconstruction of the presented phantoms. In addition, it captured the

sudden change in the values much better as we can see in Figure 5.8. It is also visible

that the reconstructed breast phantom in limited aperture setting (Figure 5.9) was closest

to the ground truth when our adaptive algorithm was employed for Tikhonov in general

form, while GCV failed to reconstruct values when rapid change occurs from y = −5 mm

to y = 5 mm.

67



Chapter 6

Di�erent Approaches to Total Least

Squares

Total least squares (TLS) is a method of �tting that has been known in the statistic

under the names orthogonal regression or errors in variable regression. It was introduced

in the �eld of numerical analysis by Golub and Van Loan in [23] where they proposed an

algorithm for solving TLS problem using singular value decomposition. Regularization

properties of truncated TLS were demonstrated in [18] making it a desirable regularization

method.

A short overview of TLS is presented in Section 6.1. The di�erence between least

squares method and TLS is that, in addition to the noise in the measured data, TLS

also assumes errors in the operator matrix X. The TLS approach could be bene�cial

for regularization of inverse problem within DBI method since matrix X is composed of

approximations for the Green's functions and the total �eld. Therefore it is a reasonable

assumption that X is given with errors. Section 6.2 presents adaptive truncated total

least squares, where truncation parameter k is found using similar idea as described

in Chapter 5. Regularized TLS (RTLS) method is presented in Section 6.3. This is a

modi�cation of Tikhonov regularization, presented in Chapter 4 where it solves the least

squares problem, to solve the total least squares problem. In Section 6.4 we describe

RTLS-Newton method where the problem of �nding parameters for RTLS is solved using

Newton method. In addition, numerical results comparing TLS and RTLS-Newton, when

utilized for regularization in UT, are presented. Finally, projection based regularized total
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least squares method is described in Section 6.5 and its robustness to increased noise levels

is compared with TLS.

6.1 Truncated Total Least Squares

The total least squares (TLS) method is suited for solving the overdetermined linear

system given in Equation (3.7) when errors are considered both in system matrix X and

the right-hand side vector b. The idea of TLS is to �nd matrix X̂ and vector b̂ as a small

perturbations of X and b, that is

min
X̂,b̂

∥∥∥(X,b)−
(
X̂, b̂

)∥∥∥2
F

(6.1)

with the condition b̂ ∈ R(X̂) satis�ed, where R(X̂) denotes the range of matrix X̂ and

‖·‖F denotes the Frobenius norm. We will include in the following the basic TLS method,

more details can be found in reference [69]. From Equation (3.7) it follows

(X,b)

 y

−1

 = 0. (6.2)

In order for the last equation to hold, vector

 y

−1

 must be an element of the null

space of the matrix (X,b). However, when this matrix has full rank, its null space

contains only zero vector and this requirement cannot be satis�ed. Accordingly, singular

value decomposition (SVD) of augmented matrix (X,b) = UΣV∗ =
N+1∑
i=1

σiuivi
∗ is used

to obtain matrix
(
X̂, b̂

)
=

N∑
i=1

σiuivi
∗ with null space spanned with vector vN+1. In

addition, according to Theorem 3.1.2, matrix
(
X̂, b̂

)
is the best rank-N approximation

of matrix (X,b) in the Frobenius norm. The minimum-norm TLS solution is now obtained

as:

yTLS =
−1

vN+1,N+1

·


v1,N+1

...

vN,N+1

 (6.3)

where vi,N+1 denotes ith element of vector vN+1. It is obvious that this method produces

a solution of a slightly perturbed linear system X̂y = b̂. When matrix X has singular
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values that decay gradually to zero, the problem is ill-posed, so truncation parameter k

needs to be used to produce the solution. In this case, we refer to the method as truncated

total least squares (TTLS) [18].

Here, we will present a short overview of the method, more details can be found in

[18] and [69]. The �rst step is to �nd SVD of the augmented matrix (X,b).

The second step is to choose the truncation parameter k that satis�es two conditions,

σk > σk+1 and V22 6= 0, where the matrix V22 is obtained from partitioning the matrix

V ∈ C( N+1)×( N+1) as:

V =


k N− k + 1

N V11 V12

1 V21 V22

.
Following the same idea, the solution belongs to a null space which is spanned by the last

N − k+ 1 columns of the matrix V and the minimum-norm TTLS solution can be found

as

yTTLS = −V12V
†
22 = −V12V

∗
22

‖V22‖22
,

where V†22 denotes the pseudoinverse of V22. The parameter k is responsible for the

truncation of the smallest singular values that can be highly a�ected by noise.

In order to show regularization properties of TTLS, its form as direct regularization

method was introduced in [18] using �lter factors de�ned as:

fi =
N+1∑
j=k+1

v2N+1,j

‖V22‖22
· σ2

i

σ2
i − σ2

j

=
k∑
j=1

v2N+1,j

‖V22‖22
· σ2

i

σ2
j − σ2

i

(6.4)

where σ1 > · · · > σN are singular values of matrix X.

However, there are several problems with the TTLS method:

1. TTLS solution can be sensitive to noise, so additional regularization may be re-

quired.

2. TTLS requires the complete SVD of matrix (X,b) which can be time consuming

for large matrices.
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3. Di�erent methods of a choice for parameter k have been proposed (GCV [42], [22],

L-curve[42], [35]), but they increase the computational cost and none of them suits

all cases of the problems solved using TTLS.

6.2 Adaptive truncated total least squares

In order to increase the e�ectiveness of the DBI and TTLS, we adopt appropriate algo-

rithm for searching the truncation parameter k in each iteration of DBI. It is based on

minimizing the following expression:

k = min
`∈{1,...,n}

{
b
(
I− (X,b) (X,b)†`

)
b∗ + σ2

∑̀
i=1

1

σ2
i

}
(6.5)

where σ2 is the variance of the Gussian white noise, σi are singular values of matrix (X,b),

while (X,b)†` is de�ned as:

(X,b)†` =
∑̀
i=1

1

σi
viu

∗
i .

Since we are �nding the truncation parameter k for the TTLS, the SVD of the augmented

matrix (X b) is used. First part of the argument in Equation (6.5) presents the signal

loss error and it decreases when more singular values are used, while the second part is

noise error and it decreases when less singular values is used. In this way the optimal

parameter for TTLS is used in each iteration of DBI resulting with balance between this

two errors.

6.2.1 Numerical results

To test the DBI with TTLS as a regularization method, we simulated 128 equidistant

transducers surrounding the ROI. We have 32 out of 128 transmitting the wave, one at a

Table 6.1: Values of truncation parameter obtained using adaptive method

Iteration 1 2 3 4 5 6 7 8 9 10

k = 1415 1854 1698 2501 2261 2196 2170 2901 2598 2452
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Figure 6.1: Reconstructed phantom using Born approximation (top) and after 10 iterations of

DBI (bottom).
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Figure 6.2: Plots of relative errors for scattering function (left) and scattered �eld (right).

Figure 6.3: Slice plots of scattering function after 10 iterations of DBI. Horizontal slice at y = 0

mm (left) and vertical slice at x = 6.67 mm (right).

time, at a frequency of f = 1 MHz which is corresponding to a wavenumber k0 = 4.244

and wavelength λ0 = 1.4823 mm in the background medium. All 128 transducers are

used for receiving the echo data. The dimension of the ROI is 13.5λ0 × 13.5λ0, and it is

discretized with 60 × 60 cells. The focus was mainly on the inverse problem where the

system of linear equations X · y = b, X ∈ C4096×3600 and b ∈ C4096, is ill-posed.

A noise of 30 dB is added to the right side vector b to mimic the realistic settings

and test the regularization properties of the method. We �rst tested TTLS with �xed

k = 1000 and we name it TTLS-�xed. Then, we used the proposed adaptive algorithm

to obtain k, which we referred to as TTLS-adaptive. The values for k in each iteration

of DBI are presented in Table 6.1. We can see that in the �rst few iterations of DBI
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the value of the parameter is lower and TTLS is truncating more singular values. Latter

in the iterations, the value increases because some errors have already been eliminated

from the data and there is no need for removing more singular values. Reconstructed

images of ROI after 10 iterations of DBI for both methods are presented in Figure 6.1.

We measured the relative `2 norm error (RE-`2) as de�ned in the Equation (4.22). The

relative error (RE) for the calculated scattered �eld ψs(i) in the ith iteration of the DBI

is de�ned as:

RE-sc. f. =
‖ψs −ψi

s‖2
‖ψs‖2

. (6.6)

The standard approach is to use RE-sc. f. for termination of the DBI when it drops bellow

a prescribed value, or it can be used to predict the divergence of an algorithm. Here, we

used 10 iterations of the DBI and observed how this error behaved. It is shown in Figure

6.2 that relative error using TTLS-adaptive is less than error using TTLS-�xed. In order

to prove whether the reconstruction detects tissue disorders, we observe the slice plots of

the scattering function after 10 iterations of DBI, presented in Figure 6.3. We can see

that for both horizontal slice plot at y = 0 mm and vertical slice plot at x = 6.67 mm,

TTLS-adaptive is closer to the ground truth than TTLS-�xed.

6.2.2 Conclusions

We simulated the process of UT and tested TTLS method for the regularization of the

inverse problem in each iteration of the DBI method where the truncation parameter is

obtained using adaptive algorithm. It proved to give a good balance between minimizing

the noise of 30 dB in the data and keeping received information as much as possible.

The proposed adaptive algorithm provided lower relative error which resulted in better

quality reconstruction image over �xing the value of the parameter for all iterations.

These tests have shown that the e�ciency of the regularization methods largely depends

on the appropriate choice of truncation (regularization) parameter, which coincides with

the conclusions from Chapter 5.
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6.3 Regularized Total Least Squares

Since the TTLS solution can be sensitive to noise, additional regularization can be pro-

vided by incorporating constraint ‖Ly‖2 ≤ δ. The variable δ comes from a knowledge of

the underlying physical model and the regularization matrix L is introduced in Chapter

3. This results in a method that combines features of TLS and Tikhonov regularization

and is known as regularized total least squares (RTLS), described in [21] and [64]. Its

formulation is given as:

min
∥∥∥(X b)−

(
X̂ b̂

)∥∥∥
F

s.t. ‖Ly‖2 ≤ δ (6.7)

with the condition b̂ ∈ R(X̂) satis�ed. One way to solve problem 6.7 is to �nd solution

of the linear system:

(
XTX + µ1L

TL− µ2I
)
y = XTb. (6.8)

The theorem which proves that a solution of (6.7) is also a solution of (6.8) can be found

in [21]. The parameters µ1 and µ2 are given as:

µ1 = η(1 + ‖y‖22) and µ2 =
‖b−Xy‖22
1 + ‖y‖22

,

and the variable η is the Lagrange multiplier from

L(X̂,y, η) = ‖X− X̂‖2F + ‖b− b̂‖22 + η(‖Ly‖22 − δ2).

In [25] is shown that the solution of 6.8 can be found by solving the eigenvalue problem:

 XTX + µ1L
TL− µ2I XTb

bTX bTb− µ2 − µ1δ

 y

−1

 = µ2

 y

−1

 (6.9)

The main di�culty of RTLS is that the unknown parameters µ1 and µ2 depend on

the solution y which is also unknown. Some ways of �nding µ1 and µ2 are presented in

[21] and [64] and we will write more on this in the next subsection.

In order for formulas to be more concise in the following sections, we introduce:

M(µ1, µ2) =
(
XTX + µ1L

TL− µ2I
)
, (6.10)

and notation µµµ =

 µ1

µ2

 and M(µµµ) = M(µ1, µ2).
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6.4 RTLS-Newton

As described in previous section, the main problem of RTLS is that the unknown solution

y and the unknown parameters µ1 and µ2 are interdependent. One e�cient way to solve

this problem is presented by Lee et al. in [47]. Here, a short overview of their iterative

method is presented. We name the method RTLS-Newton.

A well conditioned system of nonlinear equations


φ1(µ1, µ2) =

1

δ
− 1

‖Ly‖2
= 0

φ2(µ1, µ2) = bTb− µ2 − µ1‖Ly‖22 − bTXy = 0
⇒ φ(µµµ) = 0 (6.11)

is derived. This system has a nonsingular Jacobian

Jφ(µµµ) =


∂φ1

∂µ1

∂φ1

∂µ2
∂φ2

∂µ1

∂φ2

∂µ2

 =

 −2λyTLTL
∂y

∂µ1

−1− ‖y‖22 + 2µ1y
T ∂y

∂µ1

−
yTLTL ∂y

∂µ1

‖Ly‖32

yT ∂y
∂µ1

‖Ly‖32

 (6.12)

that can be computed inexpensively.

Then, a system 6.11 is solved iteratively using the Newton's method.

It generates a sequence (µµµk) de�ned with:

Jφ(µµµk) ·
(
µµµk+1 − µµµk

)
= −φ(µµµk). (6.13)

The advantage of the method is fast convergence to a solution from any starting vector

µµµ0 that is close enough to a real solution.

The RTLS-Newton method is presented in Algorithm 2.

6.4.1 Numerical results

In order to test the advantages of using RTLS-Newton over TTLS for regularization

within iterations of DBI, the following experiment is conducted. We simulated a system

of 128 transducers positioned around the ROI as it is presented in Figure 2.1. Our

ROI is a 20 mm × 20 mm square and inside is the modi�ed Shepp-Logan phantom

which is a standard domain for testing in tomography. The sound wave is transmitted

at the frequency of f = 2 MHz which is corresponding to the wavenumber ko = 8 of the

background medium. The ROI is discretized with 60×60 cells, making the reconstructed
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Figure 6.4: The reconstructed ROI in the �rst setting when a noise of SNR=30dB is added to the right

side b. Reconstruction with Born approximation when (a) TTLS and (c) RTLS-Newton are used for

regularization. The ROI after 10 iterations of the DBI using (b) TTLS and (d) RTLS-Newton. The

frequency is f = 2 MHz.
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Figure 6.5: The second setting considers errors in X and b. The frequency is f = 2 MHz and the noise

is SNR=30dB. Reconstruction of ROI using (a) Born approximation and (b) 10 iterations of DBI with

TTLS. Reconstruction using (a) Born approximation and (b) 10 iterations of DBI with RTLS-Newton.
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Algorithm 2 Algorithm for RTLS - Newton

1: Input X, L, b, µµµ0, tol

2: k = 0

3: Solve M(µµµ0) · y0 = XTb

4: Set δ = ‖Ly0‖2
5: While RE ≥ tol

Solve M(µµµk)ykµ = −LTLyk

Set the system φ(µµµk)

Compute Jφ(µµµ)

Solve Jφ(µµµk) ·∆(µµµk) = −φ(µµµk)

Set µµµk+1 = µµµk + αk∆µµµ
k

Solve M(µµµk+1)yk+1 = XTb

RE = ‖yk+1−yk‖2
‖yk‖2

k = k + 1

6: return yk

Figure 6.6: (a) Plots of relative errors for the scattering function during 10 iterations of the DBI in

both settings with TTLS and RTLS-Newton. (b) Slice plots of the exact and reconstructed scattering

functions in the �rst setting (noise in b) after 10 iterations of the DBI with TTLS and RTLS-Newton
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image of 3600 pixels. To overcome the problem of 3600 unknowns, we transmitted the

wave from 32 transducers (one at the time) and collected the data from all 128 of them,

making it 4096 equations leading to the overdetermined system Xy = b. We created

two settings, in the �rst one the noise of SNR= 30 dB is added to the vector b, and in

the second one the errors are also in the matrix X with the noise in b. To numerically

compare the quality of the reconstructed image, we calculated the relative error in `2

norm for the approximation of the scattering function ŝ as de�ned in the Equation (4.22).

We �rst ran the Born approximation using both algorithms, TTLS and RTLS-Newton.

We also measured the execution time for each of them. The algorithm RTLS-Newton was

10 times faster than the TTLS. We expected that, since the TTLS needs singular value

decomposition which is time consuming. Using Born approximation as a initialization, we

ran 10 iterations of the DBI. In Tab. 6.2 are presented relative errors for the scattering

function in both settings after Born approximation and after 10 iterations of DBI.

Table 6.2: RE − `2 for the reconstructed scattering function ŝ using Born approximation and after 10

iterations of the DBI in both settings.

1st setting (errors in b) 2nd setting (errors in X & b)

Method TTLS RTLS-Newton TTLS RTLS-Newton

Born: 0.1630 0.2674 0.2201 0.2733

DBI (10 iter.) 0.1598 0.1166 0.2151 0.1694

Although the TTLS produces smaller error for Born, the RTLS-Newton decreases the

error after 10 iterations of DBI for both settings. The reconstructed images of ROI are

shown in Figure 6.4 and 6.5. Again, it is obvious that the regularization with RTLS-

Newton produces better quality images. Figure 6.6 contains the plots of relative errors

for scattering function for 10 iterations of DBI. We can se that RTLS-Newton is decreasing

the error during iterations, while TTLS isn't making any signi�cantly improvement. The

same �gure also has the slice plots for the scattering function after 10 iterations of DBI

for the �rst setting with aforementioned methods.

A comparison between RTLS-Newton and Tikhonov regularization in general form is

presented in Section 6.6. The regularization parameter λ for the Tikhonov method is

obtained with our adaptive algorithm (presented in Section 5.2).
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6.5 Projection Based Regularized Total Least Squares

Another approach in solving the RTLS problem is the projection based regularized total

least squares (PB-RTLS) presented in [46].

In order to speed up the execution time, PB-RTLS solves RTLS problem by projecting

the matrices X and L onto the lower dimensional subspace Sk spanned by the left orthog-

onal matrix Vk ∈ Rn×k. Thus, all calculations are done with XVk and LVk, resulting in

dimension reduction and faster computations. The problem being solved with PB-RTLS

is formulated as:

min
X̂,yk

(∥∥∥b− X̂Vky
k
∥∥∥2
2

+
∥∥∥XVk − X̂Vk

∥∥∥2
F

)
s.t. ‖LVky

k‖2 ≤ δ, (6.14)

similarly as optimization problem in Equation (6.1) with added constraint and projected

matrices.

To avoid the calculation of the SVD, the solution of (6.14) can be found using a

formula similar to that in Equation (6.8) by solving the system:

Vk
TM(µ1, µ2)Vky

k = Vk
TXTb. (6.15)

We put µµµ =

 µ1

µ2

. To �nd µµµ, a well conditioned system of nonlinear equations φk(µ)

described as:

φk(µµµ) =


1

δ
− 1

‖LVky
k‖2

bTb− µ2 − µ1‖LVky
k‖22 − bTXVky

k

 = 0 (6.16)

with a nonsingular Jacobian

Jφk(µµµ) =


−2µ1(y

k)T (LVk)TLVk
∂yk

∂µ1

−1− ‖yk‖22 + 2µ1(yk)
T ∂yk

∂µ1

−
(yk)

T (LVk)TLVk
∂yk

∂µ1

‖LVky
k‖32

(yk)
T ∂yk

∂µ1

‖LVky
k‖32

 (6.17)

was derived in [46], similar as for the RTLS-Newton. The �rst equation of the system

(6.16) follows from the request ‖LVky
k‖2 ≤ δ, while the second one follows from the
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Equation (6.15) with more complex derivation which details can be found in [46]. An

iterative process is used to solve a nonlinear system in Equation (6.16) by �rst solving

the system Jφk(µµµk) · ∆µµµk = −φk(µµµk) and then updating µµµk+1 = µµµk + ∆µµµk. In this way,

the RTLS problem is solved without using the singular value decomposition. In addition,

an integrated parameter search inside the algorithm is provided so there is no need for

the extra work in detection of truncation parameters as is necessary for TTLS.

The dimension k of the subspace Sk expands dynamically by using a generalized

Krylov subspace expansion. The expansion of Sk to Sk+1 occurs when solution yk isn't

converging. The matrix Vk is then transformed to Vk+1 = (Vk, vk+1) by adding the

column

vk+1 = αk(I−VkVk
T )rk,

where rk = XTb −M(µ1, µ2)Vky
k and αk is a scalar such that ‖vk+1‖2 = 1. The �nal

solution of the problem is y = Vky
k and the whole pseudocode of PB-RTLS is presented

in Algorithm 3. We note that in our tests, presented in Section 6.5.1, the matrix form of

the �rst order derivative operator, de�ned in Equation 3.15, is used for matrix L.

6.5.1 Numerical Results

Figure 6.7: Exact (a) �rst simulated, (b) second simulated and (c) breast phantom used in our simulations

of UT. The distribution of speed of sound is shown as percentage increase over background medium.

We simulate an environment of 128 transducers surrounding the region of interest

(ROI) as shown in Figure 2.1. The ultrasound wave is excited at frequency of 2 MHz,

one at a time, and all 128 transducers were used as receivers. We created three di�erent
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Algorithm 3 Algorithm for PB-RTLS

1: Input X, L, b, µµµ1, tol

2: k = 1

3: Solve M(µµµ1) · v1 = XTb

4: Set V1 = [v1]

5: Solve
(
V1

TM(µµµ1)V1

)
y1 = V1

T (XTb)

6: Set δ = ‖LV1y
1‖2

7: While ERR ≥ tol

8: Set the system φk(µµµ
k)

9: Compute Jφk(µµµk)

10: Solve Jφk(µµµk) ·∆µµµk = −φk(µµµk)

11: Set µµµk+1 = µµµk + ∆µµµk

12: Set rk = M(µµµk)Vky
k −XTb

13: Set vk+1 = rk −VkVk
T rk, vk+1 = vk+1

‖vk+1‖2

14: Set Vk+1 = (Vk vk+1)

15: Solve VT
k+1M(µµµk+1)Vk+1y

k+1 = VT
k+1X

Tb

16: ERR= ‖Vk+1y
k+1−Vky

k‖2
‖Vkyk‖2

17: k = k + 1

18: Return y = Vky
k
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Figure 6.8: Plots for SVD of operator matrix in Born approximation for �rst simulated (left), second

simulated (middle) and breast phantom (right).

settings for our tests with added Gaussian noise of 20, 25 and 30 dB on ψsm respectively.

The area of the ROI was discretized into C × D pixels and three di�erent phantoms

(�rst simulated, second simulated and breast phantom) were tested as scattering object.

First simulated phantom is shown in Figure 6.7 (a) with dimensions 40 mm × 40 mm

(53.33λ0 × 53.33λ0) and 60 × 60 pixels. It consists of a cylinder which has a contrast of

3% and is surrounded with a ring that has a contrast of 6%. Inside it are three ovals with

di�erent shapes and contrast percentages (5%, 7% and 9%). We would like to note that

all of these contrast percentage are the percentage increase over the background medium.

The second simulated phantom contains small scattering objects, visible in Figure 6.7

(b). The smallest objects have contrast of 9%, while other two objects have contrast

increase of 4% and 6%. In addition, there are two intersecting ovals with contrast of 3%.

The phantom is discretized with 62 × 62 pixels. However, it is the same size as the �rst

simulated phantom. For the simulation to be more realistic, we have decided to use a

breast phantom obtained from the database described in [51], shown in Figure 6.7 (c). The

dimensions are 37.5 mm × 52 mm (50λ0×69.33λ0) and 75 × 104 pixels. With the aim of

providing more data than the number of unknown pixels for the simulated phantoms, we

have used 32 transducers, one at a time, as transmitters of total 128 transducers. However,

to maintain the overdetermined system, we have used 64 transmitters in a case of breast

phantom, since it has larger number of pixels. We are able to process these amount of

data since PB-RTLS is not time consuming and TTLS only requires calculation of SVD.

We used Born approximation to �nd the �rst estimate of the scattering function and
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Figure 6.9: Position of transmitters and receivers in the limited aperture setting. The ultrasound wave

is excited from transmitters counterclockwise, one at a time, and the echo is received with the receivers.

For the �rst (second) simulated phantom, we have used 60 (62) transmitters on the one side and 60 (62)

receivers on the other side. For the breast phantom, 88 transmitters and 89 receivers were used.

then we had our DBI method ran for 10 iterations. The necessity for the regularization

is visible in the SVD plots (Figure 6.8) since the larger singular values are signi�cantly

bigger than the smallest one. We used these plots to determine the truncation parameter

k in TTLS for both simulated and breast phantoms. The values were 3510, 3200 and

6000 respectively. All simulations and test were preformed in MATLAB (The Mathworks

Inc., Natick, MA, USA) with a four core processor Intel I7 with 32 GB of RAM.

In addition to the full aperture setting, where all 128 transducers were used as re-

ceivers, we created a limited aperture setting, presented in Figure 6.9, where the receivers

are located on one side of the scattering object and transmitters are on the other side.

The transmitters excited the wave counterclockwise, one at a time, and all receivers re-

ceived the echo simultaneously. The positions of the 128 transducers didn't change from

the previous full aperture setting. We would like to emphasize that the size of �rst sim-

ulated phantom is 60 × 60 pixels and second simulated phantom is 62 × 62. We used

60 transmitters on the one side and 60 receivers on the other side for the �rst simulated

phantom. For the second phantom, we used 62 transmitters and 62 receivers. Since the

breast phantom is composed of more pixels (75 × 104), we used 88 of transducers as a
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transmitters and 89 as a receivers. For the �rst and second simulated phantoms we don't

have overlap between transmitters and receivers. However, for the breast phantom we

have overlap in order to ensure an overdetermined system. Tests for all phantoms were

performed with 30 dB noise.

Table 6.3: RE-`2 for the reconstructed scattering function using Born approximation in Full and Limited

aperture setting.

Scattering object Setting SNR TTLS PB-RTLS

First simulated phantom Full aperture 30 dB 0.7279 0.2038

25 dB 0.8468 0.2117

20 dB 0.9185 0.3078

Limited aperture 30 dB 0.7313 0.2132

Second simulated phantom Full aperture 30 dB 0.4223 0.1903

25 dB 0.5461 0.1996

20 dB 0.7539 0.3176

Limited aperture 30 dB 0.4524 0.2083

Breast phantom Full aperture 30 dB 1.3697 0.2098

25 dB 1.7353 0.2269

20 dB 2.0638 0.3104

Limited aperture 30 dB 1.9967 0.2213

6.5.2 Reconstruction with Born approximation and DBI

We compared the performance of TTLS and PB-RTLS method for the Born approxima-

tion and DBI in the full aperture setting. In order to measure numerically the quality

of reconstruction, we calculated the relative error (RE−`2) for the scattering function as

de�ned in the Equation (4.22).

Regularization with PB-RTLS provided smaller relative error for the Born approxima-

tion than TTLS in all tested cases as seen in Table 6.3. In addition, PB-RTLS maintained

values of RE-`2 lower than 0.32 when SNR decreased from 30 dB to 20 dB, while TTLS

was worse in all cases. The plots of RE-`2 for DBI of the simulated phantom, Figure

6.10 (a), demonstrates that PB-RTLS gives much smaller relative error than TTLS for

all three tested values of SNR. In addition, only 7 iterations of DBI were required for the
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Figure 6.10: Plots of the relative error RE-`2 during the 10 iterations of the DBI method for (a) �rst

simulated, (b) second simulated and (c) breast phantom in the full aperture setting.

relative error to be below 0.125 when SNR is 30 dB. For the second simulated phantom,

PB-RTLS also provided lower RE-`2 than TTLS. Plots of RE-`2 for the breast phantom,

have similar behavior, shown in Figure 6.10 (c) except TTLS diverged after 3 iterations

when SNR is 25 and 20 dB, and is almost constant after 5 iterations when SNR is 30 dB.

Reconstructed images after 10 iterations of DBI for all phantoms with SNR=30 dB are

shown in Figure 6.11, where it is visible that PB-RTLS provided better regularization,

resulting in a better quality image that has higher resolution and more visible edges than

the results from TTLS.

Another criteria used to measure the quality of reconstruction is the contrast percent-

age slice plot of the reconstructed image in the last iteration of DBI. Slice plots for all

phantoms with 30, 25 and 20 dB SNR are shown in Figure 6.12. The y-axis represents

the value of the scattering function, which holds information about contrast level, and

x-axis represents the dimension of the ROI. We took horizontal line, �xed at y=-1.33 mm

for the �rst simulated phantom, at y=2.58 mm for the second simulated phantom and at

y=11.25 mm for the breast phantom. The contrast percentage slice plots in Figure 6.12
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Figure 6.11: Reconstructions of �rst simulated (top), second simulated (middle) and breast phantom

(bottom) after 10 iterations of DBI using TTLS (top row) and PB-RTLS (bottom row) in the Full

aperture setting. The frequency is f = 2 MHz with a 30 dB SNR.

show that the PB-RTLS has values that are much more closer to the exact image and

they are far less a�ected by noise for the lower SNR than the TTLS.

We also performed tests for the limited aperture setting with SNR equal to 30 dB for all

three phantoms. Values for the truncation parameter k were 3395 for �rst simulated, 3660

for second simulated and 6620 for breast phantom. RE-`2 values for Born approximation,

presented in Table 6.3, and plots of RE-`2, presented in Figure 6.13, show that PB-RTLS

produces lower relative error than TTLS for all tested cases. Reconstructed images after

10 iterations of DBI for all phantoms are shown in Figure 6.14, and same as in the

full aperture setting shown in Figure 6.11, PB-RTLS provided better regularization than

TTLS which resulted in high quality images with clear composition.

In addition to comparing the reconstruction accuracy, we also compared the execution

time. The PB-RTLS method was six times faster in both tested cases (simulated and

breast phantom) than TTLS. This was expected since PB-RTLS is solving the problem

on lower dimensional subspace and is avoiding the calculation of SVD.

These results con�rmed the privilege of using our proposed method (PB-RTLS) over
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First simulated phantom

Second simulated phantom

Breast phantom

Figure 6.12: Slice plots in the Full aperture setting for �rst simulated phantom at y=-1.33 mm (top),

second simulated phantom at y=2.58 mm (middle) and breast phantom at y=11.25 mm (bottom).
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Figure 6.13: Plots of the relative error RE-`2 during the 10 iterations of the DBI method in the Lim-

ited aperture setting with 30 dB noise for �rst simulated (left), second simulated (middle) and breast

phantom (right).

Figure 6.14: Reconstructions of �rst simulated (left), second simulated (middle) and breast phantom

(right) after 10 iterations of DBI using TTLS (top row) and PB-RTLS (bottom row) in the Limited

aperture setting. The frequency is f = 2 MHz with a 30 dB SNR.
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TTLS in solving the inverse problem with either Born approximation or DBI. Although the

regularization properties of the TTLS method have been reported in several papers [18],

[50], we have proved that using PB-RTLS produced a higher quality image than TTLS.

Another drawback of the TTLS is on the choice of the k parameter. There are some

methods that can provide a regularization parameter such as GCV [22], [42], Discrepancy

principle [34] or L-curve [35], [42], but they add more computational time. However,

PB-RTLS is avoiding the calculation of this truncation parameter, and instead has two

parameters µ1 and µ2 that only need arbitrary starting values. Then, during the iterations,

PB-RTLS is correcting these values based on the problem being solved making the DBI

method to converge as seen in previous section.

Since in our simulation we used noisy data (20, 25 and 30 dB), the tested PB-RTLS

method, which employs discrete version of the �rst order derivative operator, obtained

the additional smoothness of the solution. All of the tested phantoms had parts with

constant velocity values, so an improvement in the reconstruction of contrast pro�les was

expected. In this way, in each iteration the relative error was decreased, resulting in the

convergence of the DBI method that results in a high quality reconstructed ultrasound

image. This is clearly shown, as we mentioned earlier, in plots for the RE-`2 (Figure

6.10) error and �nal reconstructed images (Figure 6.11) respectively. In addition, from

Figure 6.10, it is visible that PB-RTLS ensures smaller relative error for all tested values

of SNR, unlike TTLS. That can be attributed to the in�uence of the matrix L that has

been used in PB-RTLS. The same in�uence is also seen in the slice plots (Figure 6.12).

We used �rst order derivative operator which works as a smoother of the solution. It is

obvious that the values of the TTLS are much noisier than our proposed method. More

precisely, on Figure 6.12 for 30 dB (left) is visible that PB-RTLS well reconstructed for

each local minimum and local maximum values, while TTLS was 1 and 2% o� expected.

In addition, when noise of 20 or 25 dB is used, the quality of reconstructed images with

TTLS deteriorated. For the limited aperture setting when 30 dB SNR is used, PB-RTLS

also provided better reconstruction of all phantoms than TTLS. In addition, PB-RTLS

is also suited for solving linear systems where the matrix X is subject to errors, so this

desirable characteristic of TTLS is not lost when it is replaced by PB-RTLS.

To the best of our knowledge, the only reported use of TTLS in UT was on simulated
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phantom in [9], [10], [50] and [76]. However, in our performed tests TTLS diverged in

the case of second simulated phantom for low SNR (20 dB). Moreover, we tested the per-

formance of TTLS on a more realistic domain (breast phantom [51]) and TTLS diverged

after 3 iterations when SNR is 20 and 25 dB (Figure 6.10 (c)) because medium is highly

scattering. This gives us indication that it will not be suited for more complex mediums.

Regularization with PB-RTLS proven to be better because it implicitly combined the

e�ects of both TTLS and Tikhonov.

We would like to note that in Section 6.4 we have proved that another regularization

method (RTLS-Newton) yields a better reconstructed image than TTLS. The RTLS-

Newton method is implemented as an eigenvalue problem (avoiding the explicit calculation

of the SVD) and is using Newton method to �nd regularization parameters. However,

implementation of RTLS in this section is di�erent. The proposed method PB-RTLS

projects the problem onto lower dimensional subspace, making the calculations easier

which results on less execution time. In addition, the e�ects of the regularizations are

di�erent because of this dimension reduction.

When we described the DBI method, we mentioned that the iterations should stop

when the relative error of the calculated scattered �eld is below a prescribed threshold.

However, for our simulation we ran 10 iterations of DBI. The reason for this is the thresh-

old is only an arbitrary number, if we set it to high, iterations will stop much earlier

and there would be no way of telling how well the reconstruction algorithm can be. It

is noticeable that we could save on execution time by terminating the iterations earlier.

As we can see in Figure 6.10, PB-RTLS has approximately reached lower value for RE-`2

after 4 iterations for most settings and the decrease after that wasn't signi�cant.

6.5.3 Conclusions

To conclude, the main advantages of the proposed PB-RTLS method over TTLS are:

1. Employing regularization matrix L that impose additional smoothness on the solu-

tion, proving to be useful when lower SNR level is introduced, such as 20 and 25

dB.

2. Integrated search for regularization parameters µ1 and µ2 inside the algorithm so no
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other method is used for parameter choice. In addition, µ1 is controlling the matrix

L to avoid oversmoothing the solution.

3. Algorithm has at least six times less computational time since the calculation of

SVD is avoided and the problem is projected onto lower dimensional subspace.

6.6 Comparison between Adaptive algorithm, RTLS-

Newton and PB-RTLS

Through this dissertation, three methods have shown to be e�ective for regularization of

the inverse problem in UT. These methods are: Tikhonov regularization in general form

where the regularization parameter λ is obtained using our adaptive method (presented

in Section 5.2), RTLS-Newton (presented in Section 6.4) and PB-RTLS (presented in

Section 6.5).

In this section, we compare aforementioned methods with each other and analyze

their advantages and disadvantages. A common feature of all three methods is the usage

of regularization matrix L, which has proved to be useful in Sections 4.4 and 4.5. The

di�erence between methods is that RTLS-Newton and PB-RTLS assume the errors both

in matrix operator X and measured vector b, while Tikhonov regularization considers

only errors in b. In addition, it is expected that PB-RTLS and RTLS-Newton are much

faster since they avoid calculation of SVD or GSVD which can be time consuming.

Table 6.4: RE-`2 for Born approximation and after 10 iterations of DBI.

SNR PB-RTLS RTLS-Newton Tikh. gen. Adaptive

Born → DBI Born → DBI Born → DBI

30 dB 0.2038 → 0.1226 0.2491 → 0.1359 0.2065 → 0.1219

25 dB 0.2117 → 0.1743 0.3079 → 0.1999 0.2397 → 0.1627

20 dB 0.3078 → 0.2290 0.3380 → 0.2421 0.2733 → 0.2189

To test aforementioned methods, we used the same simulation of UT in full aperture

setting as presented in Section 6.5.1. The goal was to reconstruct the �rst simulated

phantom, shown in Figure 6.7 (a), using the DBI method in three di�erent cases. Each
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Figure 6.15: Plots of the relative error RE-`2 for PB-RTLS, RTLS-Newton and Tikhonov general Adaptive

during 10 iterations of the DBI method with 30 dB (left), 25 dB (middle) and 20 dB noise (right).

case had a di�erent noise level: 20dB, 25dB and 30dB.

The slowest method was Tikhonov in general form since it required calculation of

GSVD of matrix pair (X, L). The RTLS-Newton was faster as expected. The fastest one

was PB-RTLS because, not only that GSVD calculation was avoided, but the problem

was projected onto lower dimensional subspace.

Values of the relative error RE−`2 for the reconstructed scattering function in Born

approximation and after 10 iterations of DBI are presented in Table 6.4. These values

show that our adaptive method produces the lowest relative error. This is also con�rmed

with the plots of RE−`2, presented in Figure 6.15. It is visible that our adaptive method

produces the lowest relative error for 20 and 25 dB, while for 30 dB it is similar to

PB-RTLS.

Figure 6.16 shows horizontal slice plots of the reconstructed phantom at y = 2 mm

for three di�erent cases: 30 dB, 25 dB and 20 dB noise. The highlighted segment of the

images for 25 and 20 dB show that the part of the phantom with the highest value of the

change in velocity is best reconstructed using our adaptive algorithm.

The advantage of PB-RTLS is that it accounts for the errors in matrix X. However, our

adaptive algorithm utilize the features of DBI method (mainly the discrepancy between

calculated and measured scattered �eld) to decrease the in�uence of the noise.

PB-RTLS provides accuracy with low execution time, while for more noisier data (SNR

equal to 20 or 25 dB), Tikhonov regularization combined with our adaptive algorithm is

more accurate.
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Figure 6.16: Slice plots of the reconstructed phantom after 10 iterations of DBI for three di�erent cases:

30 dB (left), 25 dB (middle) and 20 dB noise (right).
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Chapter 7

Conclusions

7.1 Summary and conclusions

Ultrasound tomography (UT) is a medical imaging modality which can be used for the de-

tection of malignant tissue in the human breast. Compared to other imaging techniques,

such as X-ray mammography, CT and MRI, it is relatively low cost and does not in�ltrate

healthy tissue. The ultrasound wave propagation can be modeled using Helmholtz equa-

tion, that is, its Lippmann-Schwinger integral representation when Sommerfeld radiation

condition is satis�ed. However, this problem is nonlinear since it requires knowledge of

both scattering function and total �eld throughout the region of interest. Hence, it can

not be solved exactly.

In this dissertation we simulated the problem of UT and solved it numerically using

the distorted Born iterative (DBI) method, as described in Chapter 2. The Born ap-

proximation was used as initialization for DBI. Since an ill-posed inverse problem needs

to be solved within each iteration of DBI, main focus of this dissertation was on its

regularization.

Direct regularization methods, presented in Chapter 4, are based on truncating or

damping smaller (generalized) singular values. We created a simulation of UT and solved

the inverse problem using truncated (G)SVD and damped (G)SVD. A comparison be-

tween these SVD forms and GSVD forms of methods showed the bene�ts of using �rst

order derivative operator L, which is a part of TGSVD and DGSVD, in reconstruction of

scattering function for UT. This can be attributed to the smoothening property of matrix
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L.

An appropriate regularization parameter is necessary for direct regularization methods

to be e�cient. Existing algorithms for parameter search (GCV and L-curve) are proven

to be ine�ective when utilized within DBI. That is why in Chapter 5 we developed our

adaptive algorithm based on signal loss and noise error. It requires only an overestimate

of the norm of noise in measured data. Then this estimation is decreased within iterations

of DBI according to discrepancy between measured and calculated data.

These three algorithms were utilized for Tikhonov regularization inside the DBI method

and tested for simulations on two di�erent phantoms with 20 and 30 dB noise. Two dif-

ferent settings were created. First one was full aperture setting, where all transducers

were receiving the echo. The second one was limited aperture settings where the echo

was received with certain number of transducers placed on one side of imaging object.

Our proposed algorithm provided the lowest relative error of reconstructed scattering

function for all tested cases after 10 iterations of DBI. The reason for this was that our

algorithm determined an adequate parameter λ inside each iteration of DBI, while the

parameters obtained with GCV and L-curve were either too large or too small respectively.

This resulted in higher quality reconstructed images when our algorithm was employed.

Another approach in regularizing the inverse problem is truncated total least squares

(TTLS) method, showed in Chapter 6, which assumes errors both in operator matrix

X and measured vector b. Since matrix X in ill-posed inverse problem is composed

of approximations for the total �eld and inhomogeneous Green's functions, the TTLS

method seems like a logical choice for the regularization. However, TTLS has problems

with determination of truncation parameter k and sensitivity to noise from the measured

data.

First problem is addressed in Section 6.2 where a truncation parameter for TTLS is

found using adaptive algorithm. Numerical results show that proposed TTLS adaptive

provides lower relative error of the reconstructed scattering function than with �xed

truncation parameter. Reason for this is that adaptive algorithm minimizes the noise

from the measured data while keeping received informations as much as possible.

Regarding the problem of noise sensitivity of TTLS, we regularized the inverse prob-

lem with two di�erent methods for RTLS and compared the results with TTLS. First
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method is RTLS-Newton where the solution for RTLS problem is found by solving the

equivalent eigenvalue problem, which resulted in decrease of execution time since SVD

calculations is avoided. We simulated a problem of UT and showed that regularization

with RTLS-Newton produced lower relative error of reconstructed scattering function

than with TTLS.

The second method for RTLS described in this dissertation is the projection based

(PB-RTLS). This method projects the problem onto lower dimensional subspace using

generalized Krylov subspace expansion. This resulted in decreasing the execution time

of the DBI method. The performance of TTLS and PB-RTLS was analyzed on three

phantoms (two simulated and breast phantom) with di�erent levels of noise (20, 25 and

30 dB) considered in the measured data. We have proved that using PB-RTLS gives lower

residual error which results in better reconstructed images in all cases.

Finally, we compared RTLS-Newton, PB-RTLS and Tikhonov regularization in general

form where the λ is obtained using our adaptive algorithm. These three methods are useful

when utilized for the regularization within iterations of DBI. PB-RTLS is the fastest and

produces low relative error. However, when more noisier data is considered, Tikhonov

regularization combined with our adaptive algorithm is the most accurate.

7.2 Future work

There are three possible directions for our future work on the problem of UT: decreasing

the execution time of the regularization methods used in this dissertation and testing them

on larger domains, investigate new regularization methods which could provide better

quality of reproduced images and examining a di�erent models for UT. More details are

listed as follows:

• In recent years, new approach for computing SVD and GSVD with randomized

algorithms has been developed. Successful implementation of these algorithms for

Tikhonov regularization in standard and general form is presented in [75] and [72]

respectively. Our further research will be done in implementing our adaptive algo-

rithm to be suited for these new approximations of Tikhonov regularization which

will result in dramatic decrease of execution time.
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• Another type of regularization that is more appropriate for reconstruction of sparse

domain is `1 regularization. This approach could be bene�cial when utilized for

reconstruction of scattering function.

• Other researchers are modeling the UT with full wave inversion so we will compare

this approach with the DBI method and analyze advantages and shortcomings of

each model.
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