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ABSTRACT

WIND SPEED PREDICTION USING THE ANALOG METHOD OVER COMPLEX
TOPOGRAPHY

Iris Odak Plenkovi¢
Croatian Meteorological and Hydrological Service

The performance of the analog-based post-processing method is tested in climatologically and
topographically different regions, for point-based wind speed predictions at 10 m above the
ground, and compared to the baseline Kalman filter (KF) model. This research shows that the
deterministic analog-based predictions produced using deterministic numerical weather
prediction (NWP) model output improve the correlation between predictions and
measurements while reducing the forecast error compared to the starting model predictions
regardless of the terrain complexity. While the KF based approach generally outperforms the
analog-based predictions in the bias reduction, the combination of the KF and analog
approach can be similarly successful.

In the coastal complex area, characterized by a larger frequency of high wind speed, the
analog-based predictions are more successful in reducing the dispersion error than the KF.
The application of the KF algorithm to the analogs in the so-called analog space (KFAS) is
the least prone to the standard deviation underestimation among the analog-based predictions.
All analog-based predictions improve prediction of larger than diurnal motions while the
KFAS is superior among all analog-based predictions in predicting alternating wind regimes
on the time scales shorter than a day. The analog-based predictions better distinguish different
wind speed categories in the coastal complex topography by using a higher-resolution model
input.

The analog method is also applied to the ensemble NWP. Evaluation of several configurations
using various predictor variables is conducted through a set of sensitivity experiments. The
results are compared to the ensemble model output statistic (EMOS) baseline model. Results
show that both analog-based and EMOS experiments considerably improve the raw model
forecast. The analog-based predictions are overall comparable to or even outperform the
EMOS. Assessing the post-processing performance for high wind speeds, it is shown that the
analog experiments can improve the raw forecast, exhibiting significantly higher skill than the
EMOS. The processes at lower altitude stations seem to be better represented by the raw
model, which leads to better input forecast to the post-processing and better overall result than
for the mountain stations. Generally, the difference between several analog-based experiments
is less pronounced. Furthermore, it is demonstrated that the usage of summarized ensemble
measures is an optimal way to improve the forecast skill, compared to the other analog-based
experiments.

Keywords: analog-ensemble forecast, complex topography, ensemble model output
statistics, Kalman-filter, mesoscale model, statistical post-processing, wind ensemble forecast
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SAZETAK

PROGNOZA BRZINE VJETRA UPOTREBOM METODE ANALOGONA NAD
SLOZENOM TOPOGRAFIJOM

Iris Odak Plenkovié¢
Drzavni hidrometeoroloski zavod

Metoda analogona, koja se koristi za naknadnu obradu produkata numerickog modela,
testirana je za prognoze vjetra na 10 m iznad tla na lokacijama koje pripadaju topografski i
klimatoloski razli¢itim podrucjima te usporedena s metodom koja koristi Kalmanov filtar
(KF). Deterministicki produkt metode analogona ima vecéu koreliranost prognoze i mjerenja te
manju pogresku u odnosu na numeri¢ki model koji metoda koristi kao ulazni podatak,
neovisno o sloZenosti topografije. Metoda naknadne obrade KF iznimno je uspjeSna u
uklanjanju pristranosti prognoze. Kombinacija metode analogona i1 KF gotovo je jednako
uspjesna u uklanjanju pristranosti, pri ¢emu pokazuje i dodatne prednosti svojstvene metodi
analogona.

U obalnom podrucju, karakteriziranom kompleksnom topografijom i ucestalim jakim
vjetrom, metoda analogona uspjesnija je od KF u uklanjanju pogreske disperzije. Dodatno,
primjena Kalmanovog filtra u takozvanom prostoru analogona (KFAS) je eksperiment koji je
najmanje podloZzan podcjenjivanju prirodne varijabilnosti vjetra, mjereno standardnom
devijacijom. Svi eksperimenti koji koriste analogije poboljSavaju prognoze na vremenskim
skalama duljima od jednog dana. Medutim, na skalama kra¢ima od jednog dana je KFAS
najuspjesniji eksperiment. KoriStenje modela vece rezolucije kao ulazni podatak za metodu
analogona doprinosi da prognoza laksSe razlikuje kategorije vjetra.

Metoda analogona primijenjena je i na ansambl prognozu numeri¢kog modela. Pritom je
testirano nekoliko razli¢itih konfiguracija metode kroz testove osjetljivosti. Eksperimenti se
prvenstveno razlikuju po ulaznim parametrima, tj. po nacinu koriStenja informacija iz pocetne
ansambl prognoze modela. Rezultati metode analogona usporedeni su s metodom naknadne
obrade koja je bazirana na statistici simuliranih podataka za ansambl prognoze (EMOS). Obje
testirane metode naknadne obrade vidno poboljSavaju prognozu ulaznog modela. Pritom je
metoda analogona usporediva s metodom EMOS, ili ¢ak i bolja. Dodatno, metoda analogona
ostvaruje signifikantno bolji rezultat za prognozu jakog vjetra od pocetnog modela te metode
EMOS. U numerickom modelu procesi su bolje razluceni za lokacije smjeStene na nizoj
nadmorskoj visini nego za planinske lokacije. Posljedi¢no, to znaci i bolji rezultat nakon
naknadne obrade produkata modela te bolji ukupan rezultat za lokacije nizih nadmorskih
visina. Opcenito, razlika medu eksperimentima s razliCitim konfiguracijama metode
analogona manje je izrazena. Stovise, pokazano je da je upravo koristenje saZetih informacija
o prognozi ulaznog modela optimalan nacin da se poboljsa to¢nost prognoze.

Kljucéne rijeci: EMOS, Kalmanov filtar, kompleksna topografija, mezoskalni model,
metoda analogona, statisticke metode naknadne obrade, ansambl prognoza vjetra
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PROSIRENI SAZETAK

i. UVOD

Cak i najsuvremeniji prognosti¢ki modeli proizvode lokalne pogreske koje se ne mogu
zanemariti, posebno pri prognoziranju nad kompleksnom topografijom [Horvath et al., 2012].
Zato je, uz razvoj prognostickih modela, od izrazite vaznosti razviti i dodatne alate koji
koriStenjem raspolozivih mjerenja smanjuju pogresku modela, poput metoda naknadne
obrade. Jedna od takvih metoda, tzv. metoda analogona, temelji se na desetlje¢ima staroj ideji
da se u prognozi koristi analogija s prethodnim situacijama (npr. Lorenz [1969]). Naime,
pretpostavka je da ¢e dva inicijalno slicna stanja atmosfere neko vrijeme ostati slicna. U
proSlosti su se u metodi analogona koristile razne formulacije te usporedivale tockaste
prognoze, prognoze polja, mjerenja, analize 1 dr. U nedavnoj proSlosti razvijena je formulacija
koja koristi numericku prognozu za odredenu lokaciju, usporeduje je s povijesnim
prognozama i odabire najsli¢nije (tzv. analogone) te je pokazala zavidne rezultate [Delle
Monache et al., 2011, 2013]. Nakon §to se odaberu analogoni, vrijednosti koje su izmjerene u
tom terminu u proslosti formiraju ¢lanove ansambla analogona (AnEn) (shema na Slici 1 na
str. 7). Ako je model konzistentan u smislu da u sli¢nim situacijama proizvodi sli¢ne pogreske
ili propusta predvidjeti procese fine lokalne skale, koriStenjem mjerenja u rezultate

prognostickog sustava se ukljucuju ucinci koje model nije u moguénosti dinamicki razluciti.

ii. NAKNADNA OBRADA DETERMINISTICKE PROGNOZE
U prvom dijelu ispitana je metoda analogona koja koristi deterministicku prognozu
operativnog numerickog modela Aire Limitée Adaptation dynamique Développement
InterNational (ALADIN) [ALADIN International Team, 1997], koji se koristi na Drzavnom
hidrometeoroloSkom zavodu u Hrvatskoj (Slika 4, str. 14). Pritom je ispitana deterministicka

prognoza srednjaka (AN) 1 medijana (ANM) ansambla analogona. PosSto rezultati prognoze

xvi
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ANM nisu uspjesni kao AN (npr. Slika 6 na str. 22) te nisu pokazali specifi¢ne prednosti u
odnosu na ostale prognoze, nisu detaljnije prikazani. Rezultati prognoze AN usporedeni su s
linearnim, rekurzivnim i prilagodljivim pristupom koji se temelji na primjeni Kalmanovog
filtra (KF) [Kalman, 1960; Delle Monache et al., 2011]. Ova;j pristup koristi identi¢ne podatke
(pocetnog) numerickog modela i dostupnih mjerenja kao metoda analogona, producirajuci
prognozu KF. Dodatno, testirana su dva eksperimenta koji sjedinjuju metode analogona i KF.
Prvi se temelji na primjeni KF na vremenskom nizu prognoza AN, rezultiraju¢i prognozom
KFAN. Drugi eksperiment primjenjuje KF, no umjesto da koristi vremenski niz prognoza
pocetnog modela, koristi prognoze sortirane po sli¢nosti s posljednjom prognozom (onom
koja se pokuSava poboljsati). Tako se formira takozvani prostor analogona te se metoda zove
Kalmanov filtar u prostoru analogona (KFAS). Shema prognoza KFAN i KFAS prikazana je
na Slici 5 (str. 17), a ograni¢enje prognoze KF kod izrazite varijabilnosti pogreske objas$njeno
na Slici 9 (str. 27). Kona¢no, deterministicke prognoze metodom analogona uklju¢uju AN,
KFAN i KFAS.

U radu se ispituje primjena metode analogona na podru¢ju karakteriziranom
kompleksnom topografijom. U fokusu je obalno podru¢je Hrvatske, gdje se znacajan udio
mezoskalne energije prenosi strujanjima niz padine prema moru te termicki induciranom
obalnom cirkulacijom [Grisogono and Belusi¢, 2009]. Ispitana je primjena metode i1 nad
planinsko-kompleksnom topografijom te ravnicom kontinentalne Hrvatske (Slika 2, str. 9;

Slika 3, str. 11).

Evaluacija prognoze brzine vjetra kao kontinuiranog prediktanda
Analiziraju¢i korijen srednje kvadratne pogreske (RMSE), koeficijenta korelacije ranga (RCC)
te pristranosti srednjaka, pokazano je da sve testirane metode naknadne obrade poboljsavaju
rezultat operativnog modela ALADIN (Slika 6, str. 22). Pritom su najbolji rezultati postignuti
pri koristenju 15 ¢lanova AnEn. KoriStenjem viSe od 15 ¢lanova uocen je porast pogreske, $to
je vjerojatno posljedica klimatoloske razlike izmedu razdoblja koje se koristilo za ucenje
metode u odnosu na razdoblje koje se koristilo za verifikaciju.

U radu je pokazano da su eksperimenti KF 1 KFAN najuspjesniji testirani pristupi za
uklanjanje pristranosti srednjaka (Slika 7, str. 24). Ocekivan je to rezultat, jer je KF
konstruiran u svrhu uklanjanja sustavne pogreske ako se ona naglo ne mijenja (kod naglih i
velikih dnevnih varijacija KF nije jednako uspjesan). Uz to, prognoza KF povecava

koeficijent korelacije izmedu prognoze i mjerenja u odnosu na pocetni model nad relativno
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ravnom topografijom u kontinentalnoj Hrvatskoj, gdje postoje indikacije da u prognozama
numerickog modela postoje sustavne pogreske koje utjecu na gibanja velike skale (npr. za
periode dulje od 10 dana). Medutim, prognoza KF nije jednako uspjeSna u uklanjanju
nesustavne (disperzijske) pogreske na obalnom podrucju. Za razliku od prognoze KF, ostale
metode naknadne obrade pokazale su se uspjeSnima i na kompleksnoj topografiji poput
obalnog podrucja. Tako svi pristupi koji koriste analogije pritom pokazuju veliku sposobnost
prilagodbe podrucju, u smanjenju nesustavne pogreske, najuspjesnija je prognoza AN.

Model ALADIN s horizontalnom razlucivos¢éu od 8 km (A48) podcjenjuje prirodnu
varijabilnost vjetra nad kompleksnom topografijom (Slika 8, str. 26). Standardna devijacija
(o) prognoze KF bliza je ¢ izmjerenih vrijednosti nego je to slucaj kod 48. Podcjenjivanje o
izmjerenih vrijednosti manje je izrazeno kod metode analogona na obalnom podrucju. Pritom
je prognoza AN najsklonija podcjenjivanju o. Razlog je najvjerojatnije razlika u varijabilnosti
izmedu razdoblja ucenja metode analogona, ali i usrednjavanje koje se koristi pri
prognoziranju srednjaka ansambla i djelomi¢no smanjuje prirodnu varijabilnost vjetra.
Eksperimenti koji kombiniraju metodu analogona i KF uspjesniji su u uklanjanju sustavne
pogreske pristranosti standardne devijacije ¢ od prognoze AN, pri ¢emu je najuspjeSnija
prognoza KFAS. RazliCiti eksperimenti prognoze metodom analogona djeluju na razlicite
aspekte pocetnog numerickog modela, no u konacnici rezultiraju sli¢nim smanjenjem
pogreske mjerene s RMSE. Prednost primjene metode analogona nad primjenom (iskljucivo)
KF posebno se isti¢e u obalnom podrucju.

Utjecaj pocetnog numerickog modela na rezultat nakon naknadne obrade njegovih
produkata ispitan je koristeci tri razli¢ite konfiguracije operativnog modela ALADIN [Tudor
et al., 2013]: dvije verzije s punim paketom fizike i1 horizontalnom razlucivosti od 8 km (A48),
odnosno 2 km (A42), te model dinamicke adaptacije (DA) s horizontalnom razlucivosti od 2
km. U svim ispitanim slucajevima dolazi do poboljSanja rezultata ulaznog modela nakon
primjene metoda naknadne obrade (Slika 10, str. 32). Testirana je hipoteza da se koristenjem
modela vece razlucivosti, koji je tako u mogucénosti simulirati viSe fizikalnih procesa, mogu
izabrati 1 kvalitetniji analogoni. Medutim, za rezultate nakon naknadne obrade nije moguce
donijeti jednoznacan zakljucak. Osim utjecaja samog pocetnog modela, ovakav rezultat moze
biti posljedica nesavrSenosti postupka pri ocjenjivanju rezultata prognoze. Takve
nesavrSenosti pri evaluaciji toCkaste prognoze, poput velike osjetljivosti verifikacijske metrike

na male prostorne i fazne pogreske, posebno se isti¢u kod modela velike razluc¢ivosti (npr. od

xviii



§ Prosireni saZetak

oko 1 km). Analiza zato sadrzi i evaluaciju prognoze za razliCite kategorije brzine vjetra te
spektralnu analizu. KoriStenje prostornih polja u ocjeni prognoze olaksalo bi identificiranje
dodatnih prednosti koriStenja modela velike razlu€ivosti. No, analize adekvatne razlucivosti 1

to¢nosti, kojima bi se takve prednosti kvantificirale, nisu dostupne.

Evaluacija prognoze brzine vjetra kao kategorickog prediktanda
Kategoricka verifikacija prognoza brzine vjetra provedena je koristeéi vrijednost 50.-og i 90.-
og percentila za identifikaciju tri kategorije vjetra: slab, umjeren i jak. Polihoric¢ki koeficijent
korelacije (PCC; Slika 11, str. str 35) mjeri asocijaciju koriste¢i tablicu kontingencije (Tablica
3, str. 34) [Juras i Pasari¢, 2006]. Mjera PCC pokazuje da modeli vece razlucivosti (42 1 DA)
biljeze i veéu asocijaciju s mjerenjima u obalnom podrucju, no to nije slucaj za ostale tipove
topografije (Slika 12, str. 38). Osim prognoze KF nad obalno-kompleksnom topografijom,
sve metode naknadne obrade povecavaju asocijaciju prognoze i mjerenja. U prosjeku, metoda
analogona ostvaruje bolji rezultat od prognoze KF, pri ¢emu najbolji rezultat ostvaruje AN.

Nad obalno-kompleksnom topografijom prognoza A2 je nepristrana za sve kategorije
vjetra (Slika 13, str. 40). Ostala dva modela podcjenjuju ucestalost pojave jakog vjetra (model
DA jakog i slabog vjetra), dok precjenjuju ucestalost umjerenog vjetra. Nad ostalim tipovima
topografije svi modeli podcjenjuju ucestalost slabog, a precjenjuju ucestalost umjerenog 1
jakog vjetra. Nakon primjene bilo koje metode naknadne obrade, u prosjeku se smanjuje
pristranost pri prognoziranju klimatoloski ucestalih kategorija (slab i1 umjeren vjetar).
Medutim, podcjenjivanje ucestalosti kategorije jakog vjetra predstavlja najve¢i izazov za
metodu analogona. Prognoza KFAS ¢ini se pritom najmanje pristranom medu
eksperimentima metode analogona u kategoriji jakog vjetra, dok je za ostale kategorije gotovo
jednako nepristrana kao AN. Konacno, rezultati za prognozu KF pokazuju manju pristranost u
ovoj kategoriji vjetra. Ovi rezultati samo su indikacija odredenih karakteristika, jer su zbog
veli¢ine uzorka intervali pouzdanosti veliki.

lako pristranost daje informaciju o (ne)adekvatnoj razdiobi, ne podrazumijeva i tocnost
prognoze. Zato je koristen kriticni indeks uspjeha (CS7), mjera relativne to¢nosti za prognoze
kategorickog tipa [Wilks, 2011; Jolliffe and Stephenson, 2011]. Rezultati pokazuju da
prognoza KF ima vidno vecu relativnu to¢nost od pocetnih modela u gotovo svim testiranim
slu¢ajevima nad relativno ravnom kontinentalnom i planinsko-kompleksnom topografijom, no
to nije slucaj 1 na obalnom podrucju (Slika 14, str. 43). KoriStenje analogona rezultira jo$§

visim vrijednostima, pokazuju¢i vecu relativhu tocnost i od prognoze KF. Iznimka je
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prognoza jakog vjetra u kontinentalnoj Hrvatskoj. U tom slucaju najbolji je rezultat prognoze
KF, §to sugerira sustavnu pogresku modela pri prognozi jakog vjetra. Od eksperimenata
metodom analogona, AN pokazuje najbolji rezultat u kategoriji slabog vjetra, dok su KFAN i
KFAS uspjesniji u ostale dvije kategorije. Moze se primijetiti da korisStenje veée rezolucije
pocetnog modela dovodi do povecanja relativne tocnosti kod prognoziranja jakog vjetra u
obalnom podrucju. Medutim, efekt nad ostalim vrstama topografije nije jednoznacan. lako su
razlike medu eksperimentima koji koriste razli¢it poc¢etni model manje nego za (neobradene)
prognoze modela, ipak se medusobne razlike medu modelima zadrzavaju i nakon primjene
metoda naknadne obrade na njihovim produktima. Rezultati, posebno u kategoriji jakog
vjetra, temeljeni su na relativno malom uzorku, a i mjera relativne tocnosti CSI je osjetljiva na
klimatoloSku ucestalost pojave odredene kategorije pa ih treba razmatrati kroz okvir odredene
nepouzdanosti.

Jedan od nacina kako poboljsati pouzdanost rezultata je povecati veli¢inu uzorka.
Medutim, to je u suprotnosti s osnovnom idejom pri koriStenju metoda naknadne obrade — da
je metoda brza i efikasna, ali i1 jednostavna za implementaciju. KoriStenje duljih nizova
zahtjeva viSe vremena za izraCun. Dodatno, pri svakoj promjeni modela potrebno je
reproducirati povijesne prognoze, $to je raCunalno zahtjevan postupak koji se u praksi rijetko
radi za dulje razdoblje. Postupak treba ponoviti kod sljedeceg aZzuriranja modela, $to u praksi
najces¢e ne traje dugo (do par godina, no Cesto krace). Alternativno, moze se Kkoristiti
verifikacijska mjera koja je posebno razvijena za evaluaciju rijetkih 1 ekstremnih dogadaja —
indeks koji ovisi o ekstremima (EDI). Ovaj indeks nije, poput mjre relativne tocnosti CSI,
osjetljiv na klimatoloSku ucestalost pojave odredene kategorije (npr. jakog vjetra). Rezultati
indeksa EDI u skladu su s prethodnim rezultatima, pri ¢emu su intervali pouzdanosti manji
(Slika 15, str. 44). Metoda analogona, u prosjeku, postize bolji rezultat od prognoze KF te
prognoze numerickog modela, pri ¢emu je najbolji rezultat prognoze KFAN. Rezultat je bolji
ako se koristi model sa svim potrebnim parametrizacijama i1 ve¢om razlu¢ivoséu (42), §to u

skladu s prethodnim rezultatima.

Spektralna analiza prognoze brzine vjetra
Spektralnom analizom jasno je potvrdena pretpostavka da je primjena (iskljuc¢ivo) metode KF
ogranicena na gibanja velike skale (npr. periode dulje od 10 dana) kad postoji pristranost u
spektru snage prognoze pocetnog modela (Slika 16, str. 48). Drugim rije¢ima, prognoza KF

povecava energiju gibanja velike skale u obalnom te ju smanjuje u kontinentalnom podrucju,
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no samo za periode vece od 10 dana. Zato je spektar snage prognoze KF gotovo identican
spektru pocetnog modela, a spektar KFAN gotovo identican spektru AN. Moguce je bolje
parametrizirati KF, no 1 u tom slucaju za ocekivati je da nema efekta na kra¢e vremenske
skale (npr. na period od 1 dan ili manje). Selektivno uklju¢ivanje mjerenih vrijednosti u
metodi analogona vodi do boljeg prognoziranja na skalama duljim od 1 dan (LTD, od
“longer-than-diurnal” [Horvath et al., 2012]) u odnosu na pocetni model (Slika 17, str. 49).
Skala LTD je bitnija od velike (tj. ve¢e od 10 dana) za prognoze do 72 prognosticka sata. Na
skali LTD metoda analogona smanjuje podcjenjivanje energije u odnosu na pocetni model u
obalnom i precjenjivanje energije u kontinentalnom podruc¢ju. Ako se uzme u obzir i utjecaj
metode naknadne obrade na skale kra¢e od 1 dan (STD, od “‘shorter-than-diurnal” [Horvath et
al., 2012]), prognoza KFAS superiorna je ostalim eksperimentima. Razlog je §to KFAS na
skali LTD smanjuje pristranost spektra snage pocetnog modela jednako ucinkovito kao
prognoza AN, ili ¢ak bolje. Uz to, KFAS za skale STD zadrzava energiju simuliranih gibanja
pocetnog modela. Zbog toga je manje sklona podcjenjivanju energije male skale od,
primjerice, prognoza AN 1 KFAN. Sve metode naknadne obrade adekvatno prognoziraju
amplitudu harmonika dnevnog hoda (24 h, 12 h, 8 h periodi), slicno kao i po¢etni model.
Koristenje vece horizontalne rezolucije u pocetnom modelu opcenito generira vise
energije u spektru (Slika 18, str. 52). Posljedi¢no, manje je situacija u kojima pocetni model
podcjenjuje gibanja na skalama LTD. Kad je takvo podcjenjivanje ipak prisutno, metoda
analogona ponasa se u skladu s prethodno pokazanim rezultatima (kod koriStenja modela
manje rezolucije). Kad model precjenjuje energiju skale LTD, spektar prognoze metodom
analogona je vrlo slican spektru mjerenja (KFAS) ili ga blago podcjenjuje (4AN). Na skali
STD postoji podcjenjivanje energije metodom analogona, pri ¢emu najbolji rezultat ostvaruje

prognoza KFAS.

iii. NAKNADNA OBRADA ANSAMBL PROGNOZE
Dostupnost kvalitetnih izmjerenih podataka u planinskom podruc¢ju Hrvatske je ograni¢ena. U
prvom dijelu ovog istrazivanja samo tri lokacije nakon kontrole kvalitete odgovaraju
potrebnim zahtjevima (npr. dovoljna koli¢ina raspolozivih podataka u traZenom razdoblju) za
uspjesno testiranje i implementaciju metode analogona. Da bi se bolje istrazila primjena
metode nad kompleksnom topografijom planinskog tipa, drugi dio ovog istrazivanja obuhvaca
29 mjernih postaja u Austriji (Slika 19, str. 53) tijekom zimskog (sijecanj) i ljetnog mjeseca

(srpanj) u 2018. godini. Nakon $to je u prvom dijelu potvrdena uspjeSnost primjene ove
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metode u svrhu poboljSanja rezultata deterministicke prognoze numerickog modela, ispitana
je njena sposobnost da se primjeni na ansambl prognozu modela. U prvom dijelu je, pritom, u
fokusu deterministicka prognoza metodom analogona (kao prognoza kontinuiranog ili
kategorickog prediktanda), dok je u drugom dijelu fokus na ansambl i1 probabilistickoj
prognozi. Drugim rijeima, ocijenjen je njen potencijal za kalibraciju ansambl prognoze. U tu
svrhu temeljito je analizirana primjena metode analogona na prognozu austrijskog
numerickog modela ALADIN-LAEF (Limited-Area Ensemble Forecasting) (Slika 20, str. 56;
Wang et al. [2019]). Cilj drugog dijela istraZivanja je poboljSati prognozu brzine vjetra
(LAEFws) te pritom zadrzati racunalnu efikasnost izvrSavanja. Provedeno je zato nekoliko
eksperimenata, koji koriste razli¢ite informacije iz prognoze ALADIN-LAEF kao ulazne
podatke (tzv. prediktor varijable ili prediktori). Prethodno provodenju eksperimenata
provedeni su testovi osjetljivosti. Testovi optimiziraju utjecaj odredenog meteoroloskog
parametra kao prediktora na postupak izdvajanja najkvalitetnijih analogona, neovisno za
svaku lokaciju [Junk et al., 2015; Alessandrini et al., 2015a]. Osim pretpostavljenog utjecaja
informacije o prognoziranoj brzini vjetra, najbitnija je informacija o smjeru vjetra, zatim
temperaturi 1 relativnoj vlaznosti (Slika 21, str. 59). Pritom je prednost koriStenja veceg broja
prediktora istaknutija nad topografski planinsko-kompleksnim nego nad preteZzno ravnom
topografijom (Slika 22, str. 60). Osim izbora meteoroloskih parametara, ansambl prognoza
pocetnog numerickog modela nudi viSe nacina kako koristiti njene prognosticke informacije
kao ulazne podatke za metodu analogona. Primjerice, moze se koristiti svaka pojedina
vrijednost Clanova ansambla (za jedan ili viSe meteoroloskih parametara) ili sumirati
informacije pa, primjerice, koristiti samo informaciju o srednjoj vrijednosti 1 rasprSenju
ansambla. Provedeni testovi u potonjem sluc¢aju pokazuju da optimalan doprinos informacije
o rasprSenju ansambla (mjereno standardnom devijacijom ¢) iznosi oko 40 % vrijednosti
doprinosa informacije o srednjaku ansambla (Slika 23, str. 61).

Provedeno je ukupno Sest eksperimenata metodom analogona, koji se prvenstveno
razlikuju po izboru prediktor varijabli iz modela ALADIN-LAEF (Tablica 5, str. 62).
Prediktor varijable ukljucuju:

e Kontrolni (prvi) ¢lan ansambla za 6 dostupnih meteoroloskih parametara (AnEnCtrl)
e Sve ¢lanove ansambla prognoze brzine vjetra (AnEnWs)

e Srednjake ansambla za 6 dostupnih meteoroloskih parametara (AnEnMu)
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e Srednjake 1 rasprSenja (mjereno sa o) ansambl prognoza za 6 dostupnih
meteoroloskih parametara (AnEnStd)
e Sve ¢lanove ansambla za 6 dostupnih meteoroloskih parametara (AnEnAll)
e Prognozu za 6 meteoroloskih parametara, pri ¢emu svaka prognoza odgovara
(jednom) odredenom ¢lanu ansambla (AnEnMem).
Kratice pripadnih eksperimenata navedene su u zagradama. Dostupni meteoroloski parametri
ukljucuju 10-m brzinu i smjer vjetra, 2-m temperaturu, 2-m relativnu vlaznost, prizemni tlak i
koli¢inu oborine. Svi eksperimenti produciraju ansambl prognozu brzine vjetra sastavljenu od
17 ¢lanova. Rezultati metode analogona usporedeni su s metodom koja je bazirana na
statistici simuliranih podataka za ansambl prognoze (EMOS) [Messner et al.; 2014].
Provedena su dva EMOS eksperimenta: EMOSws, koji koristi zadnjih 30 dana za ucenje
metode te samo informacije o prognozi brzine vjetra kao ulazni podatak, 1 EMOSstd, koji
koristi cijelo raspolozivo razdoblje za ucenje te sve raspoloZive meteoroloSke parametre.
Analiza pokazuje da je EMOSws nesto uspjesniji u uklanjanju sustavne pogreske, a EMOSstd

disperzijske pogreske prognoze pocetnog modela.

Evaluacija ansambl i probabilisticke prognoze brzine vjetra
Rezultati pokazuju da su svi AnEn eksperimenti uspjesni u poboljSanju prognoze pocetnog
modela (Tablica 6, str. 71; Tablica 7, str. 73). Pritom je racunalno najzahtjevniji eksperiment
AnEnMem najmanje uspjeSan (Slika 29, str. 75). Nepovoljna svojstva pocetnog modela,
poput nedovoljne rasprSenosti te loSe rezolucije (u smislu da se distribucije prognoza
uvjetovanih mjerenim vrijednostima ne razlikuju dovoljno za razli€ite mjerene vrijednosti)
ostaju nakon primjene metode analogona u ovom eksperimentu vise prisutna nego kod ostalih
eksperimenata. Cinjenica da je prostor za traZenje analogona manji nego u eksperimentima u
kojim se Clanovi razmatraju neovisno, $to vjerojatno utjece na ovaj rezultat. Eksperiment
AnEnWs, koji koristi isklju¢ivo informacije o brzini vjetra, uspjesniji je ili usporediv s
eksperimentom AnEnMem u poboljSanju uspjesnosti prognoze te u uklanjanju sustavne
pogreske pristranosti srednjaka (ansambla). Dakle, ako je iz nekog razloga dostupna samo
prognoza jednog meteoroloSkog parametra, eksperiment AnEnWs pokazuje da metoda
analogona moZze poboljsati rezultate. Jo§ bolji rezultati postignuti su u eksperimentima koji
koriste informacije o prognozi vise od jednog meteoroloSkog parametra. Primjerice, slican ili
bolji rezultat je postignut pri koriStenju prognoza kontrolnog c¢lana ansambla u metodi

analogona (AnEnCtrl), a koriStenjem viSe od jednog Clana ansambla rezultat se dalje
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poboljsava. Pritom je pokazano da ¢esto nema potrebe koristiti sve raspolozive informacije iz
pocetne prognoze. Naime, koriStenje sazetih informacija (u obliku srednjaka i rasprSenja
ansambla) poboljSava pocetnu prognozu u gotovo jednakoj mjeri kao kad se koriste sve
informacije, s vrlo malo statisticki znaCajnih razlika. Uz to, potonje je racunalno manje
zahtjevan postupak. Uzevsi sve navedene argumente u obzir, moze se zakljuciti da je upravo
ovaj pristup optimalan za primjenu u operativno prognostickom sustavu. Uz informaciju o
pogresci prognoze, na sazet 1 efikasan nacin ukljucuje se tako informacija o razvoju pogreske
koja je dinamicki simulirana numeri¢kim modelom.

Svi eksperimenti poboljsali su rezultate prognoze pocetnog modela, povecavajuci (pretjerano
malu) rasprSenost ansambla te povecavajuéi svojstva prognoze poput pouzdanosti i
diskriminacije, posebno u sije¢nju (karakteristi¢ni oblici krivulja i na€ini tumacenja dijagrama
koriStenih za evaluaciju pobliZe su opisani na Slikama 24-28, str. 65 - 70). Opcenito su bolji
rezultati primjene metoda naknadne obrade postignuti za ljetni mjesec, kada je i rezultat
pocetnog modela nesto bolji nego za zimski mjesec. Iznimka je prognoza EMOSws, koja
pokazuje manju rasprSenost od ocekivane, Sto je vjerojatno posljedica koriStenja manjeg
razdoblja ucenja nego kod ostalih eksperimenata te samo jednog meteoroloskog parametra.

Opcenito, toCnost ansambl prognoza moze se detaljno analizirati pomocu RMSE te
mjerom neprekidno rangiranog ishoda vjerojatnosti (CRPS), koji se moZe razmatrati kao
poopcenje srednje apsolutne pogreske na probabilisticke prognoze [Wilks, 2011].
Eksperimenti temeljeni na metodi analogona signifikantno poboljSavaju prognozu pocetnog
modela ALADIN-LAEF (LAEFws) za sve prognosticke sate u oba testirana mjeseca (sijeanj
1 srpanj; Slika 30, str. 76). Rezultati su bolji no¢u nego tijekom dana. Pritom su rezultati
metode analogona usporedivi s ili nadmasuju rezultate metode EMOS. Bolji rezultati metode
analogona od metode EMOS mogu se uociti za kratko nastupno vrijeme prognoze, opcenito
viSe u sijecnju nego u srpnju.

Svi eksperimenti zadovoljavaju zahtjev statistiCke konzistentnosti da je histogram ranga
uniforman (Slika 34, str. 83). Eksperiment EMOSws pokazuje pretjeranu pouzdanost kod
prognoziranja velike vjerojatnosti za ostvarenje dogadaja, dok eksperiment EMOSstd premalo
pouzdan kod prognoziranja male vjerojatnosti za ostvarenje dogadaja (Slika 33, str. 82).
Eksperimenti koji koriste analogone gotovo su savrSeno pouzdani. Dodatno, svojstvo
diskriminacije (izmedu situacija koje jesu i1 onih koje nisu rezultirale ostvarenjem dogadaja)

veée (bolje) je kod prognoza metodom analogona zbog veceg udjela tocnih prognoza u
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ukupnom broju ostvarenih dogadaja. Razlike medu pojedinim eksperimentima metode
analogona manje su istaknute nego kad se usporede s metodom EMOS ili rezultatom
pocetnog modela. Rezultati AnEnStd 1 AnEnAll gotovo su identi¢ni, potvrdujuc¢i da je
koristenje sazetih informacija o prognozi pocetnog modela najcesce sasvim dovoljno.

Prostorno gledaju¢i, pogreska prognoze LAEFws prati klimatolosku razdiobu prosjecne
brzine vjetra, ispoljavajuci ve¢u pogresku u podrucjima sklonim pojavi jaceg vjetra (Slika 31,
str. 78). Primjenom metoda naknadne obrade, prognoza se dodatno poboljSava slijede¢i slicnu
prostornu razdiobu. Pri prostornoj evaluaciji primije¢eno je da u podrucju izrazito
kompleksne topografije za prostorno bliske lokacije postoje velike razlike u uspjesnosti
prognoze numerickog modela. Prognoza LAEFws uspjesnija je za lokacije koje su smjestene
u kotlini od onih koje su na vi$oj nadmorskoj visini (na planini). Koriste¢i (bolju) LAEFws
prognozu i konacan rezultat nakon primjene metode analogona je bolji za postaje u kotlini
(Slika 32, str. 80). Medutim relativno poboljSanje u odnosu na prognozu pocetnog modela je
zapravo mnogo vise izrazeno kod koristenja (losije) LAEFws prognoze na visim nadmorskim
visinama. Takav efekt posljedica je uklanjanja sustavnih izvora pogreske (pristranost
srednjaka i o), koji su u vecoj mjeri prisutni u prognozi numeri¢kog modela za lokacije na
planini.

Iako je pojava slabog i umjerenog vjetra mnogo ce$ca, bitno je razmotriti 1 kvalitetu
prognoze za jak vjetar zbog njegovog utjecaje na ljude 1 imovinu. Koriste¢i viSe pragova za
brzinu vjetra (u rasponu 0.5 — 20 ms™'), testirana je uspje$nost prognoze za razlicite brzine
vjetra (Slika 35, str. 85). Pokazano je da LAEFws prognoza pokazuje uspjesnost isklju¢ivo za
malu brzinu vjetra (npr. do 3 ms™). Sve testirane metode naknadne obrade poboljsale su
uspjesnost prognoze i za vecu brzinu vjetra. Pritom je metoda analogona znacajno uspjesnija
od metode EMOS za brzinu vjetra do 10 ms™', neovisno o dobu godine. Stovise, eksperimenti
AnEnStd 1 AnEnAll znaajno poboljSavaju rezultate pocetnog modela za sve testirane

pragove brzine u sijecnju.

iv. ZAKLJUCAK
Rezultati pokazuju da deterministicki produkt metode analogona ima vecu koreliranost
prognoze i mjerenja te manju pogresku u odnosu na pocetni numericki model koji metoda
koristi kao ulazni podatak. Dok prognoziranje srednjaka ansambla analogona rezultira

najveCom korelacijom, primjena Kalmanovog filtra u takozvanom prostoru analogona
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(KFAS) je eksperiment koji je najmanje sklon podcijeniti prirodnu varijabilnost vjetra, ¢ak i
na kratkim vremenskim skalama.

Metoda analogona primijenjena je i na ansambl prognozu numerickog modela, pri cemu
je pokazano da je upravo koristenje sazetih informacija o prognozi ulaznog modela optimalan
nacin da se poboljsa to¢nost prognoze, ¢ak i za prognozu jakog vjetra. U numerickom modelu
procesi su bolje reprezentirani za lokacije smjeStene na nizoj nadmorskoj visini nego za
planinske lokacije, Sto znaci i bolji ukupan rezultat nakon naknadne obrade produkata modela.
Medutim, relativho poboljSanje u odnosu na pocetni model istaknutije je na viSim

nadmorskim visinama.
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§ 1. INTRODUCTION
1.1. Motivation

The skill of short and medium-range numerical weather prediction models has improved at
both global and regional scales. Their ability to simulate and forecast winds in complex
topography and coastal areas is, however, still largely affected by insufficient resolution,
imperfect boundary and initial conditions, simplification of physical processes and numerical
approximations. It is often considered that the higher the model resolution the more accurate
the forecast, due to better resolved lower boundary conditions and flow adaptation when
decreasing the grid spacing. These benefits are not always evident [e.g. Mass et al., 2002; Rife
and Davies, 2005]. Even at the sub-kilometer grid spacing, state-of-the-art mesoscale models
still exhibit considerable errors, especially in complex topography [Horvath et al., 2012]. This
is particularly relevant for operational weather prediction systems that are constrained by the
available computing resources. It is thereby useful to develop suitable post-processing
methods that reduce starting model errors at locations where measurements are available,
besides improving the model itself (e.g., using a higher resolution or improved

parametrization package).

1.2. Using the analogies to predict the weather

The idea that analogies (i.e., similar past forecast, measurements, or analysis) can be used for
forecasting future weather has been explored for decades. It is based on an assumption that if
two atmospheric states are initially very close, they will remain somewhat close for some time
in the future. For instance, Lorenz [1969] claims that it is hard to identify any state in the past
that can be considered a good match to the present large-scale flow pattern, except for
mediocre analogues. Furthermore, Rousteenoja [1988] and Lorenz [1969] state that one needs
to wait an astronomically large number of years until the likelthood of finding two

atmospheric states that differ less than the present-day observational error is sufficiently high
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enough to be considered as usable. Back then, the applicability of analogues for short-range
weather forecasting is practically discarded. Van den Dool [1989], however, shows that it is
possible to find useful analogies if the number of degrees of freedom in the matching
procedure is reduced. The author uses analyses over a localized area (i.e., not entire Northern
Hemisphere as in Lorenz [1969]) and then uses the 12-h subsequent analysis to each analogue
as a plausible 500 hPa height forecast. Various procedures are formulated afterward,
including different predictors and analogue selection criteria. This is done mainly because the
use of analogues for forecasting of meteorological fields is limited due to excessive degrees of
freedom of the problem at stake. Applications including long-range weather predictions using
National Oceanic and Atmospheric Administration (NOAA) outgoing long-wave radiation
fields [Xavier and Goswami, 2007] and very short-term orographic precipitation predictions
using radar observations [Panziera et al., 2011] are proved to be skillful. The Southern
Oscillation Index (SOI) forecasts using SOI measurements [Drosdowski, 1994] and point
wind speed forecasts using wind speed measurements [Klausner et al., 2009] exhibit
satisfactory results as well. Besides single fields, also the use of spatially correlated
observational variables [Wu et al., 2012] also proofed to be suitable.

Besides predicting the weather using past measurements or analyses, analogies can be
employed to reduce the errors in the numerical weather prediction (NWP) model simulations.
This approach utilizes the achievements of numerical modeling in predicting future state of
the atmosphere. Additionally, it can reasonably absorb the information of the analogues in
historical data (statistical model) in order to improve forecast skill as shown for idealized
cases with low-order models [Ren and Chou, 2006] and general circulation modeling [Gao et
al., 2006; Ren and Chou, 2007].

Van den Dool [1989] reveals that analogues can be used to predict the forecast skill of a
NWP model. Hamill et al. [2006] and Hopson [2005] extend the idea and apply the analogues
to ensemble forecasts. Hamill and Whitaker [2006] state that, when comparing the pattern
match of the historical local ensemble-mean forecast to the current ensemble-mean forecast in
the same region, it is possible to find many similar and useful analogs within a few decades of
re-forecasts. Their study focuses on probabilistic forecasts of 24-h precipitation. All the
aforementioned analog-techniques are able to improve the Brier skill score, resulting in a skill
comparable to a logistic regression technique. The authors, while comparing different analog-

techniques, also conclude that selecting analogs for each member rather than for the ensemble
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mean generally decrease the forecast skill. Another successful example of a calibrating
ensemble forecast can be found in Hopson and Webster [2010]. The authors seek analogs in
order to generate the final set of discharge ensembles accounting for all aspects of discharge
forecast uncertainty (meteorological and hydrological). This part of the fully automated
operational 1-10-day multi-model ensemble forecasting scheme for the major river basins of
Bangladesh helped to evacuate many thousands of people and livestock during flood events in
2007.

As a very successful continuation of the aforementioned studies, Delle Monache et al.
[2011] propose two variations of analog-based post-processing method to improve
deterministic NWP forecasts of 10-m wind speed, based on a historical data set including
NWP data and observations at a single site. The weighted mean (AN) of the analog ensemble
(AnEn) is tested and compared to a linear, adaptive and recursive Kalman filter (KF) post-
processing approach [Delle Monache et al., 2006, 2008, 2011]. Another approach is to apply
Kalman filter to the historical set of (starting) model forecasts in the analog space, ordered
from the worst to the best analog (Kalman Filter in Analog Space — KFAS’; Delle Monache et
al. [2011]). With that approach, the correction of the current forecast is based on a higher
weight to the analog forecasts closer to it. The authors demonstrate that both approaches
increase correlation and reduce random and systematic errors. Similar approaches are used for
predicting other variables as well. Djalalova et al. [2015] show similar results predicting
PM2.5 concentrations, while Nagarajan et al. [2015] test the techniques across several models
and meteorological variables. Additionally, Djalalova et al. [2015] apply the KF to the time
series of the AN, resulting in a new deterministic forecast called the KFAN.

Delle Monache et al. [2013] explore benefits from using the analogs to produce
probabilistic 10-m wind speed and 2-m temperature AnEn forecasts from a deterministic
NWP. The authors show that the AnEn exhibits high statistical consistency, reliability and the
ability to capture the flow-dependent behavior of errors. The use of an analog-based method
to produce probabilistic output is not limited to short- or medium-range forecasts. Vanvyve et
al. [2015] provide high-quality long-term wind resource estimates, characterized by an
accurate wind time series and frequency distribution. In addition to using probabilistic analog-
based predictions to gain wind resource estimates [Vanvyve et al., 2015; Zhang et al., 2015],

they are also used to downscale precipitation [Keller et al., 2017], to predict solar irradiance
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[Alessandrini et al., 2015a], 10-m wind speed [Sperati et al., 2017] and wind power
[Alessandrini et al., 2015b; Junk et al., 2015].

Additional to using a deterministic NWP to create AnEn [Delle Monache et al., 2011;
2013], the same approach can also be applied using an NWP ensemble. The AnEn ability to
capture the flow-dependent error growth is complemented with the aspects of error growth
that can be represented dynamically by the multiple model runs of an NWP ensemble.
Following that idea, Eckel and Delle Monache [2016] produce m analogs for each member of
the n-member NWP ensemble, resulting in an mxn “hybrid” AnEn. The approach yields
mixed results for the 10-m wind speed forecasts, while the application for the 2-m
temperature forecast is more successful. Mugume et al. [2017], who uses the analog-based
method to post-process ensemble members with different convection parameterization
schemes, also explore the same idea. The authors demonstrate a root-mean-square error
(RMSE) and bias reduction in rainfall prediction when using corresponding predictions of the
(starting) ensemble mean analog as a forecast. Slightly better results (e.g. significant reduction
of negative bias error) are achieved when seeking the analog for every (starting) ensemble
member and then average the analogs. Finally, since the AnEn can be affected by a
conditional negative bias, especially when predicting events in the right tail of the forecast

distribution, the novel bias correction method is proposed by Alessandrini et al. [2019].

1.3. Research objectives

In this research, we propose an in-depth analysis of analog-based method over complex
topography. The target area of this research is located in Croatia, where different mesoscale
wind regimes include strong bora downslope windstorms (which may reach hurricane scale
strength, e.g., see review by Grisogono and Belusic [2009]), mountain valley and slope winds,
and thermally-induced land-sea breeze (e.g., TeliSman Prtenjak and Grisogono [2007];
Horvath et al. [2011]). Due to the importance of model resolution necessary to represent wind
processes in the target area, we study whether the post-processing improves results when
using a higher-resolution starting model. We thus test the role of 8- and 2-km grid spacing
full-physics Aire Limitée Adaptation dynamique Développement InterNational (ALADIN)
model. In addition, we use a model that dynamically adapts the 8-km ALADIN output to the
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2-km grid spacing. The latter is a configuration (e.g., Zagar and Rakovec [1999]; Ivatek-
Sahdan and Tudor [2004]) used for operational wind forecasting in the ALADIN consortium
and Croatian Meteorological and Hydrological Service.

We study the performance of different post-processing methods using metrics that
consider wind speed as both continuous and categorical predictand. These include AN, KF,
KFAS, and KFAN, as described above. We analyze the results across three regions with
distinct wind regimes:

1. coastal complex topography where the most significant portion of mesoscale energy
is governed by strong downslope windstorms as well as thermally induced land-sea
circulations,

ii.  mountain complex topography where the most significant portion of mesoscale
energy is governed by the weak-to-moderate valley and slope mountain winds, and

iii.  continental nearly flat topography where the motions are predominantly of synoptic-
scale variability and origin [Zaninovi¢ et al., 2008; Horvath et al., 2011].
The focus is set on the complex topography, primarily coastal region. Therefore, we study the
importance of the starting model resolution and formulation by using three versions of
ALADIN focusing on coastal complex topography characterized by a plethora of mesoscale
wind processes.

In contrast to coastal complex topography, the availability of the quality data over
mountain complex topography in Croatia is limited. Only three mountain locations satisfy the
necessary quality demands for the analog method testing and implementation in the first part
of this research (i.e. having a similar amount of data after basic quality control as for other
sites). For that reason, the research is extended using 29 meteorological observation sites
(TAWES) in Austria for winter (January) and summer (July) month of 2018. After
investigating wind speed as continuous and categorical predictand, the focus is now extended
to the ensemble and probabilistic wind speed forecasting. In addition to using deterministic
NWP input to analog-based method, the ability to calibrate the ensemble NWP is also
investigated. Therefore, an in-depth analysis of the analog-based method applied to the
Austrian ALADIN-LAEF (Aire Limitée Adaptation dynamique Développement InterNational
— Limited-Area Ensemble Forecasting) ensemble forecasts is provided in the second part of
this research. Following the work of Eckel and Delle Monache [2016] and Mugume et al.
[2017], the main goal is to significantly improve the ALADIN-LAEF ensemble 10-m wind
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speed forecast while maintaining low computational cost for the analog search. To test the
performance of the analog-based method and determine the optimal configuration, several
experiments using different sources of information available of the ALADIN-LAEF ensemble
forecasts are performed. The experiments include using one or more ALADIN-LAEF
meteorological variables as predictors. The experiment using only ALADIN-LAEF control
member for several meteorological variables as predictors is included to represent the analog-
based method performance using the deterministic input, similarly as the ALADIN model is
used within the first part of this thesis.

Through performed analysis, the experiments including only information about the
ALADIN-LAEF ensemble mean (as suggested by Hamill and Whitaker [2006]) or every
ensemble member (similar as in Mugume et al. [2017]) are also tested. A novelty in this
research is the usage of the starting model ensemble uncertainty through its standard deviation
(0) in addition to ensemble mean (u). The hypothesis additionally explored in this thesis is
that using a summarized measure, like standard deviation o, is the optimal way to dynamically
represent the aspects of error growth of the input ensemble model to the flow-dependent error
growth, which is already captured by the analog approach [Odak Plenkovi¢ et al., 2020]. The
ensemble model output statistic post-processing approach (EMOS; [Gneiting et al., 2005]) is
used as a reference model in order to better understand the analog-search impact on the raw
forecasts. All experiments provide 17 members wind speed AnEn forecast, as well as the

ALADIN-LAEEF forecast.
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§ 2. ANALOG-BASED METHOD

The AnEn can be used to estimate the probability distribution f(y|x/) of the observed future
value of the variable y at a given time and location. The x/ represents k variables (predictors)
from the deterministic (starting) model x/ = (x},x7,...,xf). To generate y samples, the
analog-based method uses historical data within a specified analog training period for which
both the deterministic NWP (starting model) and the verifying observation are available, as

schematically shown in Figure 1.
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Figure 1. The analog-based method scheme for 4-member AnEn forecast at 09 UTC lead
time. In this example, 3 predictor variables (i.e. wind speed, wind direction, and temperature)
from the current NWP are used in the analog search procedure. For each variable, the values
within a 3-lead-time-steps-wide time window (centered around 09 UTC) are compared to the
historical forecast within the time window of the same width (also centered around 09 UTC).
The predefined metric ||F Ay || is used to determine the quality of the match. Once the most
similar historical forecasts are found, the AnEn is formed out of verifying observations. The
deterministic forecast can then be issued as, for example, the mean of the AnEn. On the other
hand, the probability of a pre-defined event (probabilistic forecast) can be calculated by
counting the AnEn members predicting the event will happen.
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The best-matching historical forecasts to the current prediction, so-called analogs, may
originate in any past date in the training period. The quality of the analog is evaluated by the

following metric:

N Wi 2
IFeAyll = 54 Jz_t(m, Apras) o

where F; is the current NWP deterministic forecast at a given location, valid at the future time
t, whereas A, is an analog at given location with the same forecast lead time, but valid at a
past time ¢". The N4 is the number of predictors used in the search for analogs, w; are the
weights corresponding to the particular predictor. The absolute value of the metric is not
important as such since it is only used for the inter-comparison of analogs when used for
sorting by the quality. Therefore, the weights are not constrained (i.e. their sum does not need
to be fixed). For the fair comparison between different meteorological parameters, however,
the weights are normalized using the standard deviation (o5) of past forecasts of a given
variable at the same location. The £ is equal to half the number of additional times over which
the metric is computed (the half of the time window of any specified width). Therefore, Fi+;
and A4;,+; are the values of the forecast and the analog in the time window for a given variable,
respectively. The time window is used to account for shifts and/or trends in the starting model
forecast. Analogs are found independently for every forecast time and location, narrowing the
search around a particular time of a day by a time window. In other words, the number of
degrees of freedom in analog finding procedure is reduced (as proposed in Van den Dool
[1989]). The t value used in this research is equal to 1 lead time step, as proposed by Delle
Monache et al. [2013]. The verifying observations of the best-matching analogs are the
members of AnEn.

The assumption is that the errors of the good (quality) analog forecasts are likely to be
similar to the error of the current forecast [Delle Monache et al., 2011] and hence reduced by
the historical observation used. Several authors state that the AnEn rank histograms are
uniform (e.g., Delle Monache et.al. [2013]). Therefore, every member of the AnEn is an
equally probable outcome, even though, measured by previously defined metrics, some
analogs are closer to the current forecast than the others are. Once the AnEn is formed, it can
be used to produce the deterministic analog-based prediction, as well as the probabilistic

forecast (e.g., to estimate the probability of a predefined event).
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§ 3. POST-PROCESSING THE DETERMINISTIC
NwP

3.1. Observations and climatology

The post-processed forecasting methods are tested at 14 locations in Croatia, covering
different climatological regions (Figure 2). The locations are selected based on the availability
of wind speed measurements (10-minute average value) at 10 m above the ground in the

2010-2012 period. The list of locations with the geographical features is given in Table 1.
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Figure 2. Topography and spatial distribution of the 14 stations providing the 10-m wind
speed observations used in the section 3. The stations are divided in three groups: coastal
complex (group I; red markers), mountain complex (group II; blue markers) and nearly flat
continental topography (group III; yellow markers).

Our goal is to compare and contrast the performance of the different methods, generated
from different NWP models, and at different complex topography and coastline sites. The
locations are thereby divided in three groups:

I.  Group I is a coastal complex topography region that includes the locations near the
coastline and near the western slopes of Dinaric Alps. The prominent wind in this area
is bora, a strong and gusty downslope windstorm (e.g., see review by Grisogono and
Belusi¢ [2009]). The bora wind is more frequent in the northern than in the southern
Adriatic. Nevertheless, its maximal strength is similar in both regions [Horvath et al.,

2009]. Other mesoscale wind circulations are also notable and are governed by the
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surface inhomogeneity (e.g. land-sea breeze) and vicinity of the mountains (e.g.,
mountain-plain circulation, gap flows, weak downslope flows). Therefore, the diurnal
cycle is shaped by the proximity of the sea and terrain elevation. The highest wind
speeds analyzed in this section are recorded in this area (Figure 3a) and the mean wind
speed is 4.0 ms™.

II.  Group II is a mountain complex topography region with highly-complex topographical
features. Locations in this area are farther from the coastline and at higher elevation
than the locations in any other group, with mountain tops reaching 1500 m above sea
level. Because of terrain complexity and low population density the measurements are
coarse in space in this area. The measurements may also be prone to longer data gaps
due to remoteness of locations and generally more severe winter climate. After our
analysis, we therefore choose three locations that satisfy the basic quality requirements
within this area (e.g. that there are no gaps longer than a few weeks). This area is
characterized by a significant portion of energy variance due to mountain slope and
valley winds. Wind speeds in the mountain complex topography are lower than in the

coastal complex topography (Figure 3b) and the mean wind speed is 2.0 ms™'.

Table 1. The list of the 14 stations providing the 10-m wind speed observations used in
section 3. The stations are divided in three groups: coastal complex (group I, red), mountain
complex (group II; blue) and nearly flat continental topography (group III; yellow).

Location name Latitude Longitude Altitude [m]
Dubrovnik 42.6 18.1 52
Jasenice 44.2 15.6 170
Krk 45.2 14.6 57
Split 43.5 16.4 122
Sibenik 43.7 15.9 77
Gospié 44.6 154 564
Knin 44.0 16.2 255
Ogulin 453 15.2 328
Bilogora 45.9 17.2 262
Gradiste 45.2 18.7 97
Osijek 45.5 18.6 89
Slavonski Brod 45.2 18.0 88
VaraZdin 46.3 16.4 167
Zagreb 45.8 16.0 123

10
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II.  Group III stations are located in the nearly-flat inland continental climatological
region of Croatia. The terrain elevation is up to 100 m above sea level. The diurnal
cycle is shaped mainly by the gentle microscale variations of the topography. The
region is still influenced by non-local effects of the Dinarides mountain system to the
west and southwest, since these mountains affect predominant westerly flow through
channeling, blocking and other mesoscale processes. A strong wind is very rare in the
continental area, and it occurs during the cold air outbreaks from polar or Siberian
areas in winter or during rough weather in summer [Zaninovi¢ et al., 2008]. The wind

speeds are relatively low (Figure 3c) and the mean wind speed is 2.0 ms™.
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Figure 3. The boxplots of the observed data (outliers are not shown), depending on time of the
day. The data are measured during the 2010-2012 period at 14 stations in Croatia. In
addition to the boxplot for all the data available (d), the data are sorted into groups (a-c)
based on topography type and basic climatological features. The green lines represent the
50" and red triangle markers the 90™ percentile, respectively. Those values are used as
thresholds between categories in the verification procedure. The exact values are listed at

Table 2.

Mean wind speed for all 14 stations is 2.7 ms™. The maximum of the diurnal cycle occurs
around 12 UTC on average for all stations (Figure 3d). However, different processes

contribute to the average daily cycle at different locations.
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Table 2. The exact values of the 50™ and 90" percentile of the observed data at 14 stations in
Croatia during the 2010-2012 period, depending on time of the day (as shown in Figure 3).
The data is sorted into groups based on topography type and basic climatological features.

Time UTC [h] Group I Group II Group III All
Percentile | 50" 90t 50t 9ot 50t 90t 50t 90th
0 2.4 9.0 1.0 4.1 1.3 3.8 1.5 5.7
3 2.7 9.4 0.9 3.8 1.3 3.7 1.5 5.6
6 2.5 9.6 0.9 42 1.4 3.6 1.5 5.6
9 2.5 9.6 1.5 49 1.9 4.4 2.0 6.0
12 3.3 8.6 2.5 5.4 2.2 47 2.6 6.2
15 3.2 8.6 2.8 5.4 2.1 45 2.5 5.9
18 2.2 8.7 1.4 4.6 1.5 3.8 1.6 5.5
21 2.2 9.1 1.1 3.9 1.5 3.9 1.5 5.6

Finally, the values of 50™ and 90™ percentile are shown in Figure 3 and listed in Table 2.

Those values are used as thresholds between categories in the verification procedure.

3.2. NWP model data

Three operational configurations of the limited-area mesoscale NWP model ALADIN (Aire
Limitée Adaptation dynamique Développement InterNational model) [ALADIN International
Team, 1997], that were issued at the Croatian Meteorological and Hydrological Service in the
2010-2012 period, are used to generate 10-m wind speed forecasts in this thesis:

I.  The operational limited-area mesoscale ALADIN model was launched twice a day (00
UTC and 12 UTC) at 8-km horizontal grid spacing (48). The A8 model used the
hydrostatic dynamics with spectral solver on 37 hybrid sigma-pressure vertical levels
[Tudor et al., 2013; Ivatek-Sahdan et al, 2018]. The initial conditions were based on a
variational data assimilation scheme for the upper-air fields and optimal interpolation
for surface variables [Stanesi¢, 2011]. The lateral boundary conditions were given by
the Action de Recherche Petite Echelle Grande Echelle (ARPEGE) global model,
which was run operationally at Meteo France. Vertical transfer of momentum, heat,

and moisture were based on a scheme that used prognostic turbulence kinetic energy
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IIL.

[Geleyn et al., 2006] combined with modified Louis [1982] stability dependency in the
surface layer [Redelsperger et al., 2001]. Contribution of shallow convection to the
evolution of prognostic fields was calculated within the turbulence parametrization
according to Geleyn et al. [1987]. Deep convection is described by a modified
diagnostic Kuo scheme [Geleyn et al., 1994]. Microphysics parametrization [Catry et
al., 2007] included prognostic treatment of cloud water/ice, rain, and snow, as well as
a statistical approach for sedimentation of precipitation [Geleyn et al., 2008].
Radiation effects were described according to Geleyn and Hollingsworth [1979], and
Ritter and Geleyn [1992]. The impact of soil processes on prognostic model fields was
accounted for by a two-layer Interaction Soil Biosphere Atmosphere (ISBA) scheme
[Noilhan and Planton, 1989], which was also used for the surface data assimilation
[Giard and Bazile, 2000]. Physics contribution was coupled to the dynamics via
interface based on a flux-conservative set of equations [Catry et al., 2007].

An operational ALADIN high-resolution dynamical adaptation (DA) model. The DA
procedure [Zagar and Rakovec, 1999] was taking the output fields from the 48. The
DA dynamically adapted wind fields to the higher resolution horizontal terrain (2-km
grid spacing) by adopting the model field to reach a quasi-stationary state forced by
time-invariant lateral boundary conditions [Ivatek-Sahdan and Tudor, 2004]. Vertical
levels in the planetary boundary layer were approximately at the same heights as in the
A8 model (the lowest level is about 17 m above ground). The vertical levels in the
upper troposphere and stratosphere were reduced, i.e., the DA was run on 15 levels in
the vertical. The wind field was interpolated to the height of measurements using the
stability functions and the Monin-Obukhov similarity theory [Geleyn, 1988].
Turbulence was the only parametrization scheme used in the DA, while contributions
of moist and radiation processes were neglected. This cost-effective forecast
refinement was run operationally twice a day (00 and 12 UTC run) for 72 h ahead with
a 3-h model output frequency. In the complex topography, the DA improved near-
surface wind predictions, as described in a number of studies such as Tudor and
Ivatek-Sahdan [2002], Ivatek-Sahdan and Tudor [2004], Ivatek-Sahdan and Ivanéan-
Picek [2006], Baji¢ et al. [2007, 2008], Horvath et al. [2011], etc. The DA was used
for operational wind forecasting in several countries that are members of the ALADIN

consortia.
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§ 3. Post-processing the deterministic NWP

III.  ALADIN at 2-km horizontal grid spacing (42) was configured similar to the 48, but
with non-hydrostatic dynamics [Ivatek-Sahdan et al, 2018]. Physics parametrizations
included a full parametrization set as in the 48, with an upgrade of a deep convection
parametrization. Unlike the A48, the deep convection in the 42 was a prognostic mass-
flux type scheme [Gerard and Geleyn, 2005; Gerard, 2007]. The convective processes
in the A2 were accounted for the use of prognostic variables for updraft and downdraft
vertical velocities and mesh fractions [Gerard et al., 2009]. The 42 was initialized
from the 06-h forecasts of the operational 48 00 UTC run, and it was run with the
Scale-Selective Digital Filter Initialization [Teremonia, 2008]. This high-resolution
forecast was run once daily for 24 hours in advance (until 06 UTC of the following

day), with 1-h model output frequency on 37 vertical levels [Tudor et al., 2013].
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Figure 4: The ALADIN model domains and topography — larger with 8 km horizontal grid
spacing (A8) and smaller with 2 km horizontal grid spacing (A2, DA).

All three ALADIN configurations (48 00 UTC, DA 00 UTC and A2 06 UTC) were used
to prepare forecasts for the period 2010-2012. The domains for all configurations are shown
in Figure 4. For every location of the analyzed measurement stations, the closest model grid

point (on land) is chosen from the four grid points surrounding the observation location.
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§ 3. Post-processing the deterministic NWP

3.3. Reference method: Kalman filter

Generally, the Kalman filter (KF) approach is a recursive post-processing method used to
estimate a signal from noisy measurements. It has been mainly used in data assimilation
schemes to improve the accuracy of the initial conditions for the NWP [e.g., Burgers et al.,
1998; Houtekamer et al., 2005]. The KF has also been used for NWP model forecasts as a
predictor bias correction method during post-processing of short-term weather forecasts
[Homleid, 1995; Roeger et al., 2003]. In a post-processing predictor bias correction method,
the information (i.e., recent past forecasts and observations) is used to revise the estimate of
the current raw forecast. Previous bias values are used as input to KF. The bias here is defined
as the “difference of the central location of the forecasts and the observations” [Jolliffe and
Stephenson 2003]. The filter estimates the systematic component of the forecast errors (i.e.
bias). Once the future bias has been estimated, it can be removed from the forecast to produce
an improved forecast. Such a corrected forecast should be statistically more accurate in a
least-squares sense. Further details on the KF predictor bias correction post-processing
method are given below.

The optimal recursive predictor of forecast bias x; at time ¢ is derived by minimizing the
expected mean square error. Kalman [1960] shows that x; at time t can be written as a
combination of the previous bias estimate and the previous forecast error y, (the hat (")
indicates the estimate):

Revatie = Reje—ae Ke(y: — *t|t—At)- )
The K, 1s a weighting factor called Kalman gain and can be calculated from:

2
Dt-attogt

K = —mm——.
t (pt—At+o.1%,t+a§.t) (3)

The expected mean-square error p can be computed as:
Pt = (pt—At + U;?,t)(l — Kp). “4)
The O',%t and o2, are variances of the noise term and the unsystematic error term,
respectively. Their so-called error ratio is set to 0.01 value, following the other authors (i.e.
Delle Monache et al. [2006; 2011]). However, it needs to be noted that the KF performance is
sensitive to the error ratio. If the ratio is too high, the filter will put excessive confidence in
the previous forecast, and the predicted bias will respond very quickly to previous forecast

errors. On the other hand, if the ratio is too low, the predicted bias will change too slowly
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§ 3. Post-processing the deterministic NWP

over time. More details on the sensitivity of the error ratio can be found in Delle Monache et
al. [2008].

For any plausible estimate of p, and K, the KF algorithm converges promptly,
producing the Kalman filter forecast (KF). Additional details of the procedure and algorithm
applied in this research can be found in Delle Monache et al. [2006].

The KF is easy to implement and computationally inexpensive. Since the KF approach
adapts its coefficients during each timestep there is no need for a long training period. The
advantages of the KF approach also include the ability to adapt to changing seasons, and even
changing models. However, a disadvantage of this method is that it is not likely to predict
sudden changes in the forecast error caused by rapid transitions from one weather regime to
another [Delle Monache et al., 2011]. Overall, these advantages and disadvantages make the

KF a valuable reference to assess the performance of the proposed analog-based method.

3.4. Description of experiments

The AN forecast for the future time ¢t at a given location is an average (weighted, if y # 1/N)
of the observations O; corresponding to N most similar analogs A;, (measured by metrics
previously defined in equation 1):
AN = <3 Y0;(Ar, ). (5)

In other words, the AN, is a (weighted) mean of N-sized AnEn for a (future) time #. Several
authors, such as Delle Monache et al. [2013], state that the AnEn rank histograms are
uniform. Every member of the AnEn is thus an equally probable outcome, even though some
analogs are closer to the current forecast than the others (measured by previously defined
metrics). Hence, the value assigned to the weight y is 1.

Forecasting the median of the AnEn (ANM) is additionally used as an alternative to the
AN that is less sensitive to the assumptions about the overall nature of the data (e.g. robust)
and to the small number of outliers (e.g. resistant) [Wilks, 2011]. The analogs are searched in
forecast space only, for both AN and ANM. Therefore, no observations are used to select the

best analogs and some sort of correction in real-time is desired.
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§ 3. Post-processing the deterministic NWP

The KF approach uses all the available information to estimate the error of the current
forecast, recursively giving higher weights to the most recent data. However, the KF alone is
not able to predict large day-to-day changes in the prediction error, as discussed thoroughly in
Delle Monache et al. [2011]. Benefits and shortcomings of the methods using analogs and KF
complement one another, hence combining them seems like a reasonable choice. In this

research two different ways to combine these methods are tested and schematically presented

in Figure 5.
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Figure 5. The schemes for the KFAN and the KFAS forecasts in real-time. For the KFAN
forecasting, the last member of the AN time series is created, while previously issued AN
forecasts are saved. The AN is hereby the mean of the N-member ensemble (N=4 in this
example). The KF is then applied to the time series of AN values and real-time measurements,
recursively giving the highest weight to the most recent AN (i.e. closest in time). For the
KFAS forecasting, the entire time series of previously issued model forecasts (analogs) are
sorted by their similarity to the current model forecast, thus forming an analog space. Then,
the KF' is applied to the analogs and corresponding measurements in the analog space, giving
the most weight to the most similar forecast.
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§ 3. Post-processing the deterministic NWP

The first combination of analog- and KF-based approaches includes running algorithms
independently. First, the AN forecasts are issued (or already saved), completing the time
series of the AN forecasts. The last member of the ANV time series is valid at the future time ¢.
Then, the KF algorithm is applied (in time) to the time series of the AN forecasts. The
Kalman filter of the AN forecast is created — therefore the KFAN forecast. In other words, the
KF is applied to the time series of the mean AnEn values. Hereby, every ensemble consists of
observations corresponding only to the N best analogs. The KF algorithm gives more weight
to the recent AN forecast than the AN forecasts issued at some time in the past. The
hypothesis is that the KFAN forecast is as adaptable as the AN forecast (e.g. when large day-
to-day changes in the prediction error are present), but unbiased as the KF forecast.

Another possibility is to run the KF algorithm through an ordered set of (all) analog
forecasts, rather than in time. The entire time series of analogs is ordered from the least
similar (worst analog) to the most similar (best analog) model forecast to the current one,
forming an analog space for every future time t. Then, the KF is applied to the ordered set of
analogs in analog space (the KF in Analog Space - KFAS). The KFAS algorithm weights
closeness in analog space, and not proximity in time (as the KFAN forecast). Therefore, the
starting model forecast (issued in the past) that is the most similar to the current starting
model forecast is given the most weight. This procedure should be able to cope even with
drastic changes in both the starting model and the A/ forecast error.

Model and observation datasets over the 2010-2012 period are divided into training and
verification periods. The training period is from 2010 to 2011, and 2012 is used as the
verification period. The training period increases gradually after every forecast. As the newer
observations might be available in some real-time operational settings, they are added to the
training database, together with the corresponding NWP model forecast. Therefore, the
training period is initially 24 months long (for the first verified forecast initialized January
Ist, 2012) and then prolonged on a daily basis up to 36 months (for the last forecast,
initialized December 31st, 2012). Delle Monache et al. [2006] show that there is an
improvement in skill for longer training datasets. The improvement is intense with increasing
the training period, especially for training periods up to 6 months. The improvement in skill
becomes less notable at around a yearlong dataset. Thus, a dataset ranging from 2 to 3 years
should be long enough for this method in our opinion. Furthermore, the analog-based

predictions work best with a consistent model setup. Since (operational) model setup changes
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§ 3. Post-processing the deterministic NWP

every once in a while, in our opinion it would be better to develop a methodology that can
easily adapt to those changes. It is, however, possible that by using longer training dataset the
prediction of rare events such as extremely strong wind would be even better.

When using the 48 or the A2 as the starting model, five predictors are used: wind speed
and direction logarithmically interpolated to 10-m height, air temperature and relative
humidity logarithmically interpolated to 2-m height, and air pressure reduced to the mean sea
level. The DA does not include moist and radiation physics. Hence, only physical variables
related to wind fields are included in the search for the best analogs: wind speed and direction
logarithmically interpolated to 10-m height, and vorticity and divergence at the lowest vertical
level (~17 m). The weight assigned to wind speed and direction is 1, and it is 0.8 for all other
variables. The time window used to find the most similar analogs is defined by one time step
before and after the lead time of interest. For instance, in eq. (5) t is equal to 1, hence forming
a 6-h time window for the A8 and the DA models, or 2-h time window for the 42 model. The
time window, the predictors and the corresponding weights used to find the most similar
analogs are the same for the KFAN and the KFAS as for the AN and the ANM. The same
recursive algorithm is used for generating the KFAN and the KFAS as for the KF.

To determine if the difference in scores between the experiments is statistically
significant, the bootstrap technique is applied. The Matlab function ,,bootci“, with default
bias corrected and accelerated percentile method using 1000 re-samples at a confidence level

of 95%, 1s used.

3.5. Evaluation of the wind speed as a continuous predictand

To evaluate the performance of the different deterministic post-processing methods, wind
speed can be considered as a continuous or categorical predictand. Considered as a continuous
variable, wind speed forecasts error is quantified by root-mean-square-error (RMSE), which
penalizes a larger discrepancy more than a smaller one. The source of error of a model can be
specified when decomposing the RMSE to the bias of the mean (or simply bias), the bias of
the standard deviation (o bias), and the dispersion (phase) error (e.g., Murphy [1988]; Horvath
et al. [2012]):
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RMSE? = (F — 0)? + (0p — 09)? + 2070, (1 — 130), (6)

where F represents forecast and O observations, ¢ is the standard deviation, and r is the
correlation coefficient between the forecast and observed data. Since the sum of the three
terms in (6) is exactly the square of the RMSE value, it is enough to provide information about
two out of these three terms to describe the dominant source of the error (the third term is the
squared RMSE value reduced by the value of the other two terms). The term describing the
dispersion error involves the Pearson correlation coefficient, weighted with the standard
deviation ¢ of both forecasts and measurements. Correlation coefficient and dispersion error
are thus closely related: the smaller the correlation coefficient, the larger the dispersion error
term in RMSE decomposition. In this section, the rank correlation coefficient (RCC) is used
as a robust and resistant alternative to Pearson correlation, appropriate if dealing with non-
Gaussian distributed variables such as wind speed. Unlike the Pearson correlation coefficient,
the RCC is a nonparametric statistic. The RCC, therefore, allows a nonlinear relationship

between predictions and observations [Wilks, 2011; Jolliffe and Stephenson, 2011].

3.5.1. The impact of the ensemble size to the deterministic forecasting

The first step in testing an ensemble-based method is to select a number of ensemble members
(N). For that purpose, we analyze the RMSE averaged over all locations and all lead times
(Figure 6a). The optimal ensemble size is presented and determined for the 48 starting model.
The mean confidence intervals shown here are estimated with bootstrapping, as previously
described.

Generally, the results are determined by the wind climate, complexity of topography, and
the low resolution of the driving mesoscale model. The starting model forecasts (A48) yield
RMSE of 2.35 ms™!, correlation coefficient RCC of 0.58, and almost non-existing bias of -0.01
ms™!. However, it needs to be noted that this is aggregated (averaged) bias value, therefore not
necessarily implying that the A8 forecast bias is small everywhere or during any time of a

day. For that reason, more detailed insight is provided in the following subsections.

20



§ 3. Post-processing the deterministic NWP

All tested post-processing methods, if averaged over the three studied regions, improve
the results of the 48 model. The KF forecast significantly reduces RMSE (Figure 6a),
improves correlation (Figure 6b), while bias remains small (Figure 6¢) when compared to the
A8. Using analogs improves results even further than just the KF, as it can be seen for the
KFAS. The KFAS uses the entire analog space and therefore does not depend on the
ensemble size. The other analog-based predictions (AN, ANM, and KFAN) produce similar
results as the KFAS for about 10 or more ensemble members. Furthermore, the AN, the
ANM, and the KFAN show similar behavior — the RMSE is reduced at first by increasing the
ensemble size, but then it increases again for more than 15 ensemble members. The
correlation also improves by increasing the ensemble size, while bias slightly worsens. The
mean of the observed wind speed during the verification period differs from the mean during
the training period for approximately 0.2 ms™. The bias is likely converging to that value
when increasing the ensemble size. Even though the biases after post-processing are
significantly different from bias for the 48, one should take into consideration that the bias
under 0.5 ms™! can be considered relatively small. It is an order of magnitude smaller than the
other two terms in RMSE decomposition and comparable to observational error (up to 0.5 ms”
! or even higher; WMO, 2008). Additional uncertainty comes from the fact that some of the
observation stations are subject to urban effects (heat islands, some larger-scale sheltering),
while these urban effects are not represented in tested ALADIN model configurations. Given
the RMSE and bias growth with the ensemble size, the optimal number of ensemble members
is set to 15, which is used hereinafter (in section 3).

It can be noticed that the ANM experiment has the highest RMSE and the highest bias if
different analog-based predictions are compared. Since the other analog-based predictions
produce better results than the ANM, and specific benefits are not achieved in tested cases
presented in this work, results for the ANM are discarded hereinafter.

Both AN and KFAN considerably reduce the RMSE (as evident from Figure 6a), better
than any other technique tested here. At the same time, they improve the correlation (Figure
6b). Both AN and KFAN have a very small negative bias, mostly between -0.1 and -0.2 ms™.
The AN has slightly better correlation and worse bias results than the KFAN, resulting in
indistinguishable RMSE.
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Figure 6. a) Root-mean-square-error (RMSE), b) rank correlation coefficient (RCC), and c)
bias dependency on number of analog ensemble members (N) for the AN, the ANM and the
KFAN forecasts. The results are generated with the A8 and averaged over all of lead times
and 14 locations during 2012. The AN, the ANM and the KFAN results are then compared to
the A8 model, the KF and the KFAS forecasts, which do not depend on N. The mean values of
the 95% bootstrap confidence intervals are indicated by the error bars.

Since the KFAN forecast is created by applying the KF to the AN forecast, the
differences between the KFAN and the AN in the correlation and bias results may be
expected. The KF algorithm updates its estimate of the future bias by using the old bias plus
uncertainty. The estimate is corrected by a linear function of the difference between the
previous prediction and the verifying bias. It is, therefore, very successful in removing the
systematic errors (such as a bias of the mean), if the bias does not change rapidly (i.e. large
hour-to-hour variations). However, the application of the KF algorithm can also lead to the
decrease of the correlation coefficient (i.e. an increase of the dispersion error), especially if

there are large hour-to-hour bias variations [Delle Monache et al., 2006; 2008].
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3.5.2. Lead time performance for different topography types

A more detailed insight into the performance of the post-processing methods can be gained by
analyzing the metrics in topographically different regions and at different lead times.

The first step is to analyze the A8 performance in the coastal complex topography. The
A8 model has the highest RMSE for the coastal complex topography among all groups of
stations (Figure 7a). Besides the increasing trend for longer lead times, the A8 RMSE error is
typically the largest during nighttime and peaks at 06 UTC in the coastal area. While during
nighttime the A48 exhibits maximum correlation (Figure 7e), it underestimates the mean
(Figure 71) and underestimates the standard deviation ¢ (Figure 8a) more than during the
daytime. While observed wind speed shows the highest variability at 06 UTC (Figure 8a), the
A8 forecast almost does not show the standard deviation ¢ diurnal cycle. That result suggests
a systematic source of the errors for the diurnal shape of 48 RMSE (Figure 7a). It is possible
that the 48 model underestimates land breeze, the combination of land breeze and downslope
wind called burin [Poje, 1995] or underestimates both mean speed and variability of the
strong bora wind, which can be determined with analysis by season (e.g., bora occurs mostly
during wintertime and it is variable and intense, while land breeze can be dominant during
summertime stable conditions) or by examining case studies.

It is crucial to determine which post-processing method is the most successful in the error
reduction, especially in this particular group of stations where the error is the largest.
Additionally, it is important to demonstrate which term of the RMSE decomposition is
reduced by which post-processing method. For that reason, the performance of different post-
processing methods in the coastal complex topography will be presented in the next
paragraph. The results are presented in such a manner that one can thus decide which post-
processing method is the most applicable for a specific situation, after a simple statistical

analysis of the potential starting model.
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Figure 7. Root-mean-square-error (RMSE)(a-d), rank correlation coefficient (RCC) (e-h) and
bias (i-1) dependency on forecast lead time for the A8 starting model and the corresponding
post-processing methods (KF, AN, KFAN and KFAS). The results are averaged over the
corresponding groups and for 14 locations in Croatia during 2012. The mean values of the
95% bootstrap confidence intervals are indicated by the error bars.
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Secondly, we aim to answer how well does the KF reference method perform against the
A8 model and against other analog-based experiments in the coastal complex topography. The
KF reduces RMSE and bias (Figure 7a and Figure 7i) while increases standard deviation o
(Figure 8a), maintaining very similar dependency on lead time as the 48. The other analog-
based predictions (AN, KFAN, and KFAS) improve the A8 results even further — reducing
RMSE and bias while standard deviation o is even closer to the standard deviation of the
measurements. Moreover, even though the standard deviation is still a bit underestimated, the
diurnal cycle of the standard deviation is more similar to the diurnal cycle of the
measurements than for the A8. Previously mentioned systematic 48 error (possibly
unresolved land breeze, underestimation of burin wind, etc.) is thus reduced or removed
completely. The standard deviation of the analog-based predictions is very close to the
standard deviation of the measurements available over the training period. The analog-based
predictions underestimation of the standard deviation is, therefore, partially explained by the
fact that there is a standard deviation difference between training and testing period. Also, in
the coastal complex area, the KF has a smaller correlation coefficient (RCC) than the A8,
unlike all the analog-based predictions which have a higher correlation coefficient than the
A8. Improving the correlation shows that by using analogs and measurements to build a
prediction the random error is reduced, suggesting that additional information on physical
processes is included in the analog-based predictions.

After the general comparison of the analog-based predictions against the reference
method KF in the coastal complex topography, we will take a more detailed look into the
differences among analog-based predictions for this group of stations in the next three
paragraphs. We will focus on the underestimation of the standard deviation and the ability of

the analog-based predictions to reduce random error (i.e. increase the correlation).
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Figure 8. The dependency of the standard deviation on forecast lead time for the observations
during the training (2010-2011) and the verification period (2012), the A8 starting model and
the corresponding post-processing methods (KF, AN, KFAN and KFAS). The results refer to
the corresponding groups (a-c), and to 14 locations in Croatia (d) during 2012. The mean
values of the 95% bootstrap confidence intervals are indicated by the error bars.

Among the analog-based predictions, the AN forecast is the most prone to systematic
underestimation of the standard deviation (Figure 8) in the coastal complex topography (but
also in general). This reduction of the forecast variability is due to averaging of AnEn
members while predicting the mean of the ensemble. This averaging naturally reduces the
variability and might partially be improved by using the lower number of ensemble members.
This systematic error is partially removed by the application of the KF algorithm in the
KFAN forecast.
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Figure 9. Schematic representation of a Kalman filter correction for wind speed prediction
(WSPD) (a) run in time (KF) or (b) through an ordered set of analog forecasts (ANKF,
equivalent to the abbreviation KFAS used in this thesis). White arrows at forecast time (far
right) indicate the post-processing methods estimate of the forecast error. Circles indicate
observations, asterisks refer to the raw prediction, and the dashed line represents the
corrected predictions (from Delle Monache et al. [2011], page 3557).

The KFAS forecast, on the other hand, exhibits the highest standard deviation among the
analog-based predictions in the coastal complex topography and in general. This is worth
additional discussion. The simplified schematic example for improving the adaptability of the
KFAS forecast is provided in Delle Monache et al. [2011], as shown in Figure 9. The
hypothesis is that applying the KF algorithm in analog space (rather than in time), results in
higher forecast variability during alternating wind regimes. The higher KFAS standard
deviation than the KFAN standard deviation in the coastal area supports this hypothesis. The
difference in the standard deviation between the KFAN and the KFAS does not necessarily
mean that the higher variability for the KFAS is occurring during alternating wind regimes
(i.e. on the time scales shorter than a day). The remaining underestimation of standard
deviation depends on other aspects such as the variability of starting model forecasts and fine-
tuning of the analog search setup (e.g., choice of predictors, corresponding weights, as shown

by Junk et al. [2015]). The variability in the training period might be enlarged by prolonging
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the period itself (i.e. including El Nifio/Southern variations). Finally, the variability of the
post-processed forecasts, in general, might be further improved by additional calibration. For
example, applying the ensemble model output statistic post-processing approach (EMOS;
[Gneiting et al., 2005]) on the analog forecasts or directly combining the two methods might
be a possible future research avenue.

Among different analog-based predictions, the AN seems to have the highest correlation,
while the KFAN reduces the bias the most, as previously described in the more general case.
The KFAS exhibits the highest standard deviation among the analog-based predictions,
supporting the hypothesis that using the analog space improves variability during alternating
wind regimes. After all, there are no significant differences in the reduction of RMSE for the
AN, the KFAN, and the KFAS.

After analyzing the forecasts in the coastal complex area, we will shift our focus to the
other topography types. We will also start by examining the starting model 48 performance.
The A8 exhibits considerably smaller RMSE for the mountain complex (Figure 7b) and nearly
flat topography (Figure 7c) than it is the case for the coastal complex area (Figure 7a). The
smaller A8 RMSE is predominantly due to lower, less underestimated standard deviation of
measured wind speed for these groups (Figure 8b-c) than for the coastal complex topography.
Even though the 48 error is smaller than in the coastal complex topography, it is still very
important to determine which term in the RMSE decomposition is dominant and how it can be
reduced by post-processing. Unlike underestimation of (on average) higher wind speed in the
coastal topography, the 48 overestimates (on average) lower wind speed in the mountain
complex (Figure 7)) and the nearly flat topography (Figure 7k), exhibiting the similar absolute
value of the bias. The 48 standard deviation is much closer to measured wind speed standard
deviation for the mountain complex (Figure 8b) and the nearly flat (Figure 8c) than the coastal
complex topography. The A8 correlation coefficient (RCC) is lower for the mountain (Figure
7f) and for the nearly flat (Figure 7g) than for the coastal complex topography, therefore
decreasing with measured mean wind speed and corresponding standard deviation. It seems
that the lower the average wind speed for a certain group, the lower the correlation of
measurements and predictions, implying that weak wind is less predictable than a strong one.
This especially makes sense for wind speeds that are comparable to observational error (up to

0.5 ms or even higher; WMO [2008]). In other words, models are more successful in
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simulating winds which are due to stronger forcings i.e. pressure gradients, than weak winds
in non-gradient situations.

Even though some statistical properties of the 48 predictions are similar for the mountain
and nearly flat topography, the physical processes influencing the flows are different. This is
due to different dominant topographic characteristics, as explained in section 3.1. For this
reason, it is interesting to compare the effect of post-processing in a certain group of stations.
We will start by examining the KF performance for different topography types. The KF
forecast exhibits significantly lower RMSE than the A8 in the mountain and nearly flat
topography. The A8 bias is almost completely removed by the KF, regardless of the
topography type and if the 48 is underestimating (Figure 7i) or overestimating (Figure 7j-k)
wind speed. The KF standard deviation ¢ in the mountain and the nearly flat topography is
almost the same as the 48, and very close to measured ¢ as well. In addition to reducing the
A8 bias of the mean and maintaining bias of the standard deviation almost non-existent, the
KF also improves the correlation for all of the lead times in the mountain and the nearly flat
topography. Unlike for the coastal complex, dispersion error is therefore reduced by the KF,
especially for the nearly flat topography. Furthermore, the KF forecast dependency on lead
time is different than for the 48 in the nearly flat topography. The KF forecast exhibits a local
correlation coefficient maximum around 00 UTC, while the 48 exhibits a local minimum
(Figure 7g).

After examining the KF performance in different topography types, we will compare
those results against the analog-based predictions. The analog-based predictions (AN, KFAN,
and KFAS) in the mountain complex and the nearly flat topography reduce the 48 RMSE
even more than the KF forecast, further improving correlation and reducing bias. The RMSE,
correlation and bias dependencies on a lead time are similar as for the KF. This is especially
interesting in the nearly flat topography, where previously mentioned improvement of the 48
correlation coefficient RCC is even more indicated when using analogs than for the KF. The
analog approach selects similar numerical predictions (not necessarily recent) for assessment
of the starting model error, unlike non-selectively using previously predicted (recent) values
in the KF algorithm. The KF would be capable of improving persistent error in predicting
stable boundary layer flow once it is started, as previously mentioned for the application of

the KF algorithm. The analog-based method would be more adaptable and capable of
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predicting the beginning of the flow, thus resulting in an even higher correlation coefficient
than for the KF.

We will now take a detailed look into the analog-based predictions performance in
different topography types. Similarly to the coastal complex, in the mountain complex and the
nearly flat topography the AN seems to be the most highly correlated with measurements. The
KFAN has a slightly lower correlation coefficient RCC but is almost unbiased. Unlike the 48
and the KF, the analog-based predictions exhibit a slight underestimation of ¢ in the mountain
complex (Figure 8b) and nearly flat topography (Figure 8c). The underestimation of the
standard deviation is the smallest for the KFAS and the largest for the AN, for the same
reasons as previously mentioned. The results for the KFAN are mostly in between these two
(AN and KFAS), which may be explained by the fact the KFAN shares important features
with both methods.

Finally, we will try to summarize the previous analysis by aggregating results for all
available stations, regardless of the topography type. Overall, the A8 RMSE is significantly
reduced by every post-processing method tested for all of the lead times, more by the analog-
based predictions (AN, KFAN, and KFAS) than for the KF (Figure 7d). All post-processing
methods reduced the A8 bias, which is evident for a specific group and lead time (Figure 7i-
k), even though it seems non-existent on average for the A48 (Figure 71). The KFAN
predictions seem to be the most successful in removing bias, while the AN appears to exhibit
the highest correlation (Figure 7h). Measured wind speed standard deviation & is
underestimated on average by the 48 model and all post-processing methods (Figure 8),
mostly due to the underestimation of standard deviation in the coastal area (group I). Overall,

the standard deviation of KFAS is the closest to the observed value.

3.5.3. The influence of the starting model

To investigate the influence of the starting model used to generate analogs, results are
averaged over all lead times for every group of stations. A reasonable hypothesis could be that
the more physical processes that are directly simulated in the starting model (e.g., with higher
resolution), the better the forecast will be. The RMSE (Figure 10a) and bias (Figure 101) are
lower for the 42 and the DA models than for the 48 in the coastal complex topography,
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empirically supporting this hypothesis. The correlation coefficient RCC does not differ
significantly among different models (Figure 10e). It must be noted that it is difficult to
quantify the improvement of more detailed forecasts over coarser ones using point-based
verification metrics [Rossa et al., 2008; Jolliffe and Stephenson, 2006]. Point-based
verification metrics tend to penalize spatial and phase errors, contaminating finer resolution
simulations more than coarser ones. Hence, it might be challenging to easily demonstrate the
true benefits of using a higher-resolution forecast. To determine if that is the case, it would be
advisable to do case studies and some sort of spatial verification (for gridded forecasts). The
selection of bora and sirocco case studies might provide an interesting insight into post-
processing performance benefits of using high resolution (i.e. prediction of extremely high
wind speed). This is especially the case if the experiments are provided using (even the
simple) NWP model but with a more similar setup, preferably changing the resolution and
making only the necessary adjustments. Furthermore, using the gridded forecasts and analysis
in the analog search, as well as the spatial verification tool, is an inevitable future
development. Since the computational efficiency needs to be adequate, the analog approach
might also include other methods (such as clustering, using empirical orthogonal functions,
etc.).

All post-processing methods tested in this section improve model predictions. It is to be
expected that the analog-based predictions (AN, KFAN, and KFAS) also achieve better
results when using the A2 or the DA than when using the 48. The quality of an analog should
increase the better the representation of physical processes simulated in the starting model
(i.e. with higher resolution, non-hydrostatic dynamics in the A2, etc.). This type of
improvement is clearly evident, for example, for the AN results in the coastal complex
topography. The results show that the differences in using different starting model
configurations are much smaller after post-processing than for three starting models.
However, the RMSE, correlation, and bias scores are similar for the post-processing methods
applied to all three starting models. For some scores, such as the RMSE, the analog-based

predictions have the best results when applied to the 48 model.
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Figure 10. The average root-mean-square-error (RMSE) (a-d), rank correlation coefficient
(RCC) (e-h) and bias (i-1) for three different starting models and the corresponding post-
processing methods (KF, AN, KFAN, and KFAS). The results are averaged over the
corresponding groups and over all stations in Croatia during 2012. The colors represent the
starting model used (A8, A2, and DA), while the x-tick labels stand for model and
corresponding post-processing methods. The values of the 95% bootstrap confidence
intervals are indicated by the error bars.
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Finally, it seems that even though the higher resolution 42 and DA models achieve better
results if the results are averaged over all available stations. However, the analog-based
predictions based on the A2 and the DA do not statistically outperform the analog-based
predictions based on the 48 (Figure 10d, 10h and 101). This does not necessarily mean that
improvement is not made at all. The benefits might be partially hidden because of the
imperfections of the verification metrics used. To investigate the benefits of using higher
resolution further, one can analyze the forecasts categorically (i.e. to examine the forecasts of
the rare events such as strong wind), perform a spectral analysis or look at the case study. The
categorical verification results and spectral analysis are presented in the next two sections,

while it is previously discussed how the case studies are a possible future research avenue.

3.6. Evaluation of the wind speed as a categorical predictand

To verify a categorical predictand the event or events need to be pre-defined. Wind speed is
therefore divided into 3 categories: weak (or no wind at all), moderate and strong wind,
depending on the climatology of the corresponding group of stations. Thresholds are
determined as the 50™ and 90™ percentile of the entire group. This is done independently for
each lead time, so the thresholds vary due to the diurnal cycle (Figure 3). After defining
categories (events), the next step is the calculation of a so-called contingency table (Table 3).
The forecast-observation pairs corresponding to the same (real) time populate the contingency
table, representing the joint distribution (i.e. fields A-I in Table 3). At the right side and the
bottom, the marginal distributions are also shown (Fields J-P in Table 3).

The categorical verification procedure includes frequency bias (FBias), critical success
index (CSI) and polychoric correlation coefficient (PCC). The choice of these measures is

consistent with the continuous case.
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Table 3. The example of a contingency table
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The polychoric correlation coefficient PCC measures the association of forecasts and
observations in the contingency table. The idea behind the PCC is to assign a density function
to the contingency table and then cut the domain into rectangles corresponding to the cells of
the contingency table (Figure 11). The PCC is the parameter value of the standard bivariate
normal density function for which the volumes of the discretized distribution are equal to the
corresponding joint probabilities of the contingency table [Juras and Pasari¢, 2006]. The
standard bivariate normal density function is completely determined by one parameter (PCC),
while the mean value is set to 0 and the standard deviation parameter is set to 1. However, it is
not applied to the latent (i.e. underlying continuous) variables directly, but to corresponding
standard normal deviates Zx using the following transformation for the continuous variable X:

Zy = o7 (dx(X)), (7)
where the @y represents the cumulative distribution function of X, while the ® is the
cumulative distribution function of standard normal distribution. Having the contingency
table, it is implicitly accepted that we are dealing with categorical variables, which in our case
are observation (O) and forecast (F). It is assumed that the random vector (Zo, Zr) follows the
bivariate normal density function. Similarly, the thresholds between different categories are

also transformed.
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Density function

Figure 11. Standard bivariate normal density function for which the volumes of the
discretized distribution are equal to the corresponding joint probabilities of the 3%3
contingency table.

For dichotomous forecasts, the PCC is called the tetrahoric correlation coefficient. If the
z, and zr are standard normal deviates of the marginal probabilities, the relation between the
tetrahoric correlation coefficient and the A field of the 2x2 contingency table is uniquely

determined:
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For the higher-order (i.e. 3x3) contingency tables, the relation between PCC and A is not
unique. Nevertheless, it can be approximated. The conditional maximum likelihood method is
used in this research. Additional details of the procedure applied in this research can be found
in Juras and Pasari¢ [2006].

The range for the polychoric correlation coefficient PCC is between -1 and 1. The PCC
value for the random forecast is defined as 0, while it is undefined for the constant forecast.
The measure does not depend on the underlying climatology for the pre-defined events. For
this reason, it is suitable for comparison among climatologically different regions.

Ekstrom [2011] shows the (asymptotical) equivalence of the rank correlation coefficient
RCC and the polychoric correlation coefficient PCC under several conditions including that

the number of categories is as large as the number of measurement-forecast pairs, the
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underlying joint distribution is binormal, etc. Even though a “simplified” rank correlation
coefficient RCC can be re-calculated if the ordinal variables arise from discretization such as
groupings of values into categories (as in this section), it has some undesirable properties. For
instance, it can achieve a value of 1 even if non-discretized empirical variables are not
perfectly dependent. The polychoric correlation coefficient PCC is therefore considered to be
more conservative and better suited for statistical inference about the association of the
underlying, non-discretized variables than the rank correlation coefficient RCC.

The frequency bias Fbias, similarly to bias, measures the tendency to forecast too often
(FBias greater than 1) or too rarely (FBias less than 1) a particular category [Wilks, 2011;
Jolliffe and Stephenson, 2011]. In other words, it is the ratio of the number of forecasted

events and the number of occurred events, calculated separately for each category, as follows:

©)

K
FBias; = %; FBias, = N; FBias; = 0

The Fbias provide the information about the forecast distribution (i.e. whether the event is
under- or over-forecasted) and not the forecast accuracy. For example, the persistence
forecasting (forecasting the last measured value) is almost completely unbiased. However, it
is often not accurate and it lacks skill.

The critical success index CSI measures the fraction of observed forecast events that are
correctly predicted. It can be thought of as the relative accuracy when correct negatives are
removed from consideration. It is computed from the contingency table, separately for each
category, as follows:

(10)

CcSI, = csl, CSl,

rn—a Chen—g ShT o1
The CSI, therefore, measures the error (similar to the RMSE in continuous case). Sensitive to
hits, the CSI penalizes both misses and false alarms. It does not distinguish the source of
forecast errors and hence additional verification measures need to be examined [Wilks, 2011;
Jolliffe and Stephenson, 2011]. The CSI value ranges from 0 to 1. Ideally, it is equal to 1,
which means there is not a single false forecast.

Assessing the quality of predictions of extreme weather events is complicated by the fact
that measures of forecast quality typically degenerate to trivial values as the rarity of the
predicted event increases. The extremal dependence index EDI is a measure developed for the

extreme weather events verification independent on underlying climatology [Ferro and
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Stephenson, 2011]. It is a function of the false alarm rate F and hit rate H and is calculated as

follows:
o et
The EDI; is of use when the aim is to assess the quality of the forecast for discriminating
the antecedent conditions leading to the occurrence of extreme weather from those which do
not (i.e. discrimination property). It is a regular, asymptotically equitable measure that is

difficult to hedge and always has range [—1, 1]. The value for the perfect forecast is 1.

3.6.1. The association of forecasts and observations in the contingency table

The polychoric correlation coefficient PCC results for different forecasts (Figure 12a-d) do
resemble the rank correlation coefficient RCC results (Figure 7e-h) when results are averaged
for all of the lead times in a certain group. The DA and the 42 exhibit higher association in
the coastal complex but not in the other topography types. Association is significantly
improved by almost all post-processing methods in all groups of stations and overall, as
already presented. The exception is the KF forecast in the coastal complex topography. The
analog-based predictions achieve better both rank and polychoric correlation coefficient
results than the KF in general, particularly the AN. There are some differences between the
rank correlation coefficient RCC and polychoric correlation coefficient PCC results that need
to be highlighted in order to determine the origin; whether it is due to statistical properties of
the verification measure used or it is a direct consequence of discretization (i.e., the grouping
of wind speed into 3 categories). If both coefficients are calculated for the same (ordered) data
and grouped into identical categories, the rank correlation coefficient RCC would have a
slightly higher value [Ekstrom, 2011]. The polychoric correlation coefficient PCC shows
higher values than the rank correlation coefficient RCC calculated for the continuous variable,
hence confirming the assumption that it is easier to predict the category than the exact

(continuous) value of wind speed.
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Figure 12. The polychoric correlation coefficient (PCC) for three different starting models
(A8, A2, and DA) and the corresponding post-processing methods (KF, AN, KFAN, and
KFAS). The results are averaged for the corresponding groups (a-c) and for all (d) of the
locations in Croatia during the year 2012. The PCC is calculated using three different
categories, divided by the 50" and 90" percentile. The values of the 95% bootstrap
confidence intervals are indicated by the error bars.

3.6.2. Frequency bias

There is a variety of frequency bias (Fbias) results depending on the exact model, group of
stations and wind category (Figure 13). For instance, the DA predicts category 2 too often
(Figure 13e), while predicting the other two categories (Figure 13a and 13i) too rarely in the
coastal area. The frequency bias results for the 48 model are somewhat similar, while the 42
is almost unbiased in this case. All starting models under-forecast weak wind category while
over-forecast moderate and strong wind categories in the mountain complex and the nearly
flat topography (Figure 13f, 13g, 13j and 13k). The exact values differ for different models
and categories yielding mixed results in terms of determining the best-performing starting

model.
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The KF only slightly impacts the A8 frequency bias by decreasing the value for the weak
wind category (Figure 13a), while only indicating the increased value for the moderate and
the strong wind categories (Figure 13e and Figure 131) in the coastal area. More generally,
besides the frequency bias reduction for the weak wind category (Figure 13a-Figure 13d), the
KF does not have a noticeable impact on the starting model results. Unlike the coastal area, in
the mountain complex and the nearly flat topography, the KF seems to be less biased than the
corresponding (starting) model for all cases tested. This is indicated by the significantly
smaller bias for the weak wind category, and smaller confidence intervals near the zero value
for the moderate and strong wind categories. The smaller confidence interval referring to the
same sample size means smaller variability within the results.

The frequency bias results for the analog-based predictions (AN, KFAN, and KFAS) seem
to exhibit much less variety depending on a different group of stations. The results are
indistinguishable among different starting models, especially for the moderate and strong
wind categories (Figure 13e-Figure 131). For any given group, the analog-based predictions
consistently over-predict moderate wind speeds (Category 2), while under-predict rarer and
stronger wind (Category 3). These analog-based predictions sometimes even under-predict the
occurrence of weak wind. The KFAS seems to be the least biased analog-based prediction,
showing the highest values for strong wind category while being as unbiased as the AN in the
other two categories. However, it needs to be mentioned that these differences are not
statistically significant, partially due to the small sampling size.

Overall, the post-processed forecasts, in general, reduce bias for the climatologically most
common wind speed category (weak wind). The analog-based predictions frequency bias
results are not as variable as for the starting model and the KF, inheriting only a slight
difference from the corresponding model for an exact technique (4N, KFAN or KFAS). The
main deficiency of the post-processing methods seems to be under-forecasting the occurrence

of strong wind, with the KFAS being the most successful (Figure 131).
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Figure 13. The frequency bias (Fbias) for three different starting models (A8, A2, and DA)
and the corresponding post-processing methods (KF, AN, KFAN, and KFAS). The results
are averaged for the corresponding groups and all of the locations in Croatia during the year
2012. The Fbias is calculated for three different categories, divided by the 50™ and 90"

percentile. The values of the 95% bootstrap confidence intervals are indicated by the error
bars.
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3.6.3. Evaluation of the forecast quality

If results among different starting models are compared, it can be seen that for the weak wind
category the A2 produces higher critical success index CS/ than the A8 and the DA (Figure
14a). Furthermore, finer horizontal resolution slightly improves relative accuracy for the
strong wind category in the coastal complex topography (Figure 14i). The results for the
moderate wind category are similar across the different starting models (Figure 14e).
Increasing the horizontal resolution does not necessarily improve the critical success index in
other groups of stations. Due to the small sample size, the results rarely differ significantly.

The critical success index results are considerably higher for the KF than for the starting
models (48, A2, and DA) for the weak wind category in the mountain complex and the nearly
flat topography, but not as much in the coastal area. The indication KF being the most
successful in predicting the strong winds (Category 3) in nearly flat continental topography,
even though not statistically significant, might still suggest a dominant systematic error in the
models’ predictions of the strong wind. The frequency bias is lower for the KF than for any
starting model, which combined with a higher critical success index indicates that the number
of false alarms is reduced.

Analysis suggests that analog-based predictions outperform starting models and
corresponding KF forecasts for all of the categories and all groups of stations except the
strong winds in the nearly flat continental topography (Figure 14k). The improvement of the
critical success index value is the most evident, and statistically significant, for the most
common weak wind category (Figure 14a-d). However, the larger sample is needed to provide
a more rigorous proof of that statement for the moderate and strong wind.

Overall, all post-processing methods improve the critical success index value. The AN
forecasts achieve the best result for predicting weak wind (Figure 14d), while the KFAN and
the KFAS produce slightly better results than the KF and the AN for the other two categories
(Figure 14h and 141).

It needs to be noted that the results for the moderate and strong wind speed categories are
rarely statistically significant, partially due to the small sample size. However, analysis
suggests that the best results are achieved when using the A2 as the starting model, mostly
due to the higher critical success index in the coastal complex topography than when using a

coarser resolution starting model. It is possible that additional improvements may be
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generated by increasing the resolution (1 km or less) in the complex topography. The
necessity to use even 2-km grid spacing is, however, questionable and might be reexamined
for nearly flat continental topography (i.e. by spectral analysis). In addition to improving the
relative accuracy in coastal complex topography, the categorization suggests the higher
association for the full-physics 42 model and corresponding post-processing methods in the
coastal complex and the nearly flat continental topography, as shown before. These results
combined might suggest that the higher resolution full-physics 42 model is better capable to
distinguish low from moderate or unusually strong wind, especially in the coastal complex
topography. This capability is then mostly inherited by the different post-processing methods,

including the analog-based predictions.
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Figure 14. Critical success index (CSI) for three different starting models (A8, A2, and DA)
and the corresponding post-processing methods (KF, AN, KFAN, and KFAS). The results
are averaged for the corresponding groups and for all of the locations in Croatia during the
year 2012. The CSI is calculated for three different categories, divided by the 50" and 90™
percentile. The values of the 95% bootstrap confidence intervals are indicated by the error
bars.
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There is a decrease in the critical success index values for moderate (Category 2) and in

particular strong wind (Category 3), regardless of the exact group of the stations or the
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forecast. It should be mentioned that that decrease is partially the direct consequence of
sensitivity of the critical success index metrics to the climatological probability of the
predefined category that is being evaluated, and therefore it should be analyzed with caution.
The sensitivity to climatology is due to counting the portion of correct forecasts that can be
accurately predicted by random chance. Also, the different values across different groups for
the same category (e.g., strong winds at Figure 14i-k) might suggest that unusually strong and
rare wind is predicted more easily in coastal than in continental area, regardless of the exact

forecast.
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Figure 15. Extremal dependence index (EDI) for three different starting models (A8, A2, and
DA) and the corresponding post-processing methods (KF, AN, KFAN, and KFAS). The
results are averaged for the corresponding groups and for all of the locations in Croatia
during the year 2012. The EDI is calculated for the Category 3 (strong wind; above 90"
percentile). The values of the 95% bootstrap confidence intervals are indicated by the error
bars.

Since the critical success index value degenerates as the rarity of the predicted event
increases, it is hard to produce a statistically significant result, especially when dealing with
only a year-long dataset. For that reason, the measure extremal dependence index EDI3, which

is independent of underlying climatology, is also used to evaluate the forecast of rare events
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(i.e. strong wind). The results (Figure 15) are generally consistent with the previously shown
critical success index analysis (Figure 14), with smaller confidence intervals. If results among
different starting models are compared, it can be seen that for the coastal complex topography
the A2 produces significantly higher £DI; than the A8 and the DA. This is not the case for
other types of topography. The KF approach performs better in a flat continental, while the
analog-based method performs better in the mountain complex topography. In the coastal
complex topography, the KF is the best post-processing method for the 42 post-processing,
while the analog-based method is more successful than KF for post-processing A8 and DA
forecasts. Overall, the analog-based method performs better than KF. Among different
analog-based experiments, the best result is achieved for the KFAN forecast. The analog-
based method is more successful if it started with 42 than if it started with 48 or DA models,

which is consistent with the previous results.

3.7. Spectral analysis of wind speed forecast

The small spatial and temporal errors of (generally) well-simulated phenomena can
profoundly change the verification results [Mass et al. 2002; Rife et al. 2004]. For that reason,
spectral analysis in the frequency domain is utilized to provide a scale-dependent measure of
different post-processing methods performance which is essentially insensitive to temporal
errors. Spectral analysis allows quantification of power distribution among different temporal
scales. It is relevant to determine the exposure of a particular station to longer-than-diurnal
(LTD), diurnal (DIU) and shorter-than-diurnal (STD) motions and the forecast ability to
simulate these motions [Horvath et al., 2012].

Spectral decomposition of the detrended time series is performed using the Welch
periodogram-based method [Welch, 1967] with 50% overlapping segments. The data time
series is divided into smaller segments. The periodogram is calculated for each segment, and
the estimations are then averaged. In other words, by introducing so-called data-, lag- and
spectral-window, the variance of the estimator is reduced for longer time series (otherwise it
is independent on time series length), making the spectrum smoother. The length of the
Hamming spectral window (chosen length is 256; approximately a month-long) is adjusted to

optimally emphasize the difference among tested post-processing methods. Here, for a year-

45



§ 3. Post-processing the deterministic NWP

long time series, there are approximately 24 estimations. The distribution of the spectral
estimator is often approximated as y? distribution to provide the information on typical
variability and confidence intervals [Papoulis, 1984; Koopmans, 1974]. The confidence

interval for the power spectra S(v) is calculated as:

VS W) VS ) (12)
2 -ad) W <zaszy

where S; represents the averaged periodograms (estimations) in frequency domain v, y
represents the number of degrees of freedom (depending on the exact spectral window,
overlapping, time series, and interval length), a represents the significance level and the
distribution used is y;. This interval is usually shown as a small cross sign that is independent
on the logarithmic scale. Since not changing the size, it can easily be moved up and down
providing a simple visual comparison with the spectrum.

It should be noted that power spectral density (PSD) analysis performed contains the
effect of aliasing, necessarily contaminating all scales by oscillations with periods shorter than
6 hours (here corresponding to the Nyquist frequency). Testing this effect on measured data
suggests that it is rather small on longer-than-diurnal scales. Significant effects, however, may
be found on shorter-than-diurnal scales, especially near the periods corresponding to the
Nyquist frequency [Zagar et al., 2006; Hrastinski et al., 2015]. Since the 48 and the DA
forecasts are archived every 3 hours (and the 42 and the measurements are adjusted by simply
using the same output frequency), it is not possible to circumvent this effect. However, it may
be noted that all the forecasts tested (and measurements) are aliased similarly; therefore, the
effect is not crucial for the inter-comparison.

The forecast output frequency is 3 h for all forecasts, and only the 24-hour forecast period
is considered in the analysis (making a continuous time-series). Missing data are provided by
using linear interpolation. It should be noted that the typical diurnal rotation of winds in the
Adriatic partially hides the diurnal spectral peak if the analysis is performed using wind speed
values [TeliSman Prtenjak and Grisogono, 2007]. However, the preferred spectral analysis of
wind components is not possible as the analog-based method in our analysis predicts only the
wind speed (not the direction).

The spectral analysis is performed for all forecasts and locations included in this part of

the thesis (section 3) for the entire year of 2012 (shown in Appendix A). However, it is
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decided that it is more comprehensive to show the results for several representative locations,
instead of any sort of averaging or summarizing the results. The particularities that could not
be easily seen on figures are pointed out and explained in the text. Two locations (Dubrovnik
and Jasenice stations) correspond to the coastal group of stations, covering the northern and
the southern part of the coastline. The reason for including these two stations is that the
governing processes somewhat differ (e.g. processes that lead to bora windstorm as explained
in Horvath et al. [2009]). Osijek is chosen as a representative station for the nearly flat

continental topography, while Ogulin is chosen to represent the mountain complex

topography.

3.7.1. The Kalman filter approach influence

The KF influences the motions on the time scales longer than 10 days if the model’s
power spectral density PSD function is biased. The KF forecast, therefore, enlarges the
energy of these large-scale motions in the coastal area, as shown in Figure 16a. Similarly, KF
reduces the energy that is overestimated by the NWP model at the nearly flat continental
topography (Figure 16b). Besides the large scale motions, the KF does not significantly
influence the shorter time scale. Similarly, the KFAN is almost the same as the AN spectrum,
except rarely significant differences for large scale motions. The same effect can be noticed,
regardless of the starting model (as shown in Odak Plenkovi¢ et al. [2018]). The very small
difference among spectra before and after the application of the KF algorithm might mean
that the ratio of the variances (error ratio) used in the algorithm is not optimal. If the error
ratio is set too high, the filter puts excessive confidence in the past forecasts, and therefore
failing to remove any error. On the other hand, if the ratio is too low, the filter will be unable
to respond to changes in bias [Delle Monache, 2006]. The increase of the error ratio might
lead to KF algorithm affecting somewhat shorter scales (e.g. synoptic), and possibly even
increase the correlation with the observations (as in Delle Monache et al. [2008]). The
sensitivity of these results to changing the ratio of the variances used in the algorithm,
therefore, might be tested in future work. However, the qualitative effect of affecting only
large scale motions would presumably remain the same. Finally, the KF spectra are the same

as the model spectra and the KFAN spectra are the same as the AN spectra for the scales
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shorter than 10 days and therefore would not be shown or discussed further in this section.
However, it needs to be mentioned that these forecasts are not the same, even if their spectra
approximately are. Other verification measures shown in previous sections exhibit substantial
differences. For example, one can compare a forecast time series to a forecast time series that
is exactly the same but time-lagged and bias of the mean is added (e.g. a persistency forecast
with a 3-hourly time lag with an added fixed value of 5 ms™). In comparison, the spectra for
these two forecasts will differ only in frequency of 0 Hz. However, the accuracy might differ
substantially, leading to very different accuracy measures (i.e. RMSE values). This is

precisely the reason why the verification procedure needs to include various aspects.
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Figure 16. The power spectral density (PSD) of the observed 10-m wind speed, starting model
forecast A8, the corresponding AN. The effect of the KF on the spectra is shown via KF (KF
applied on the NWP model data) and KFAN (KF applied on the AN forecasts). The spectra
are shown for coastal Dubrovnik and continental Osijek stations in 2012. The confidence
intervals (in the logarithmic scale) are noted by the cross-like symbol in the upper right
corner.

3.7.2. How the analog-based method affects the AS NWP spectra

It can easily be seen that the largest portion of measured power at all stations is
associated with the longer-than-diurnal motions. These longer-than-diurnal motions are more
energetic for the coastal area (Jesenice and Dubrovnik stations — Figure 17a-b) than for the

mountain complex (Figure 17¢) and the nearly flat continental topography (Figure 17d). As
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shown by several other authors, this is related to the strong and gusty bora wind [Horvath et
al., 2009; Horvath et al., 2011; Hrastinski et al. 2015, etc.].

The longer-than-diurnal motions are severely underestimated with the 48 model in the
coastal area (Figure 17a-b). The longer-than-diurnal motions in the AN and the KFAS data
contain more energy compared to the model power spectral density PSD, therefore, improving
the model. This shows great potential for the analog-based predictions to improve the model

forecast when there is a model underestimation of longer-than-diurnal motions, even in the

complex topography.
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Figure 17. The power spectral density (PSD) of the observed 10-m wind speed, starting model
forecast A8, and the corresponding post-processing methods (AN and KFAS) for stations
Jasenice, Dubrovnik, Ogulin and Osijek during the year 2012. The confidence intervals (in
the logarithmic scale) are noted by the cross-like symbol in the upper right corner.

In the nearly flat topography, the A8 model simulates well or overestimates the energy of
longer-than-diurnal motions (Figure 17d). The analog-based predictions (AN, KFAN, and

KFAS) lower the energy of longer-than-diurnal motions if it is well simulated or
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overestimated by the model. This sometimes leads to an underestimation of longer-than-
diurnal motions, especially for the AN. The KFAS exhibits the longer-than-diurnal power
spectral density spectrum very similar to measurements. Thus, the KFAS shows the greatest
potential for the forecast improvement if the model overestimates the energy of longer-than-
diurnal motions in the nearly flat topography.

The A8 results for longer-than-diurnal motions in the mountain complex consist of all
previously mentioned scenarios, depending on the location and the exact time scale. For
instance, it is well simulated for periods longer than 3 days and underestimated for shorter
time scales at Ogulin station (Figure 17c). The analog-based predictions act similarly as in
previous types of topography; exhibiting more energy if it is underestimated by the 48 model,
or less if it is not.

The shorter-than-diurnal motions are severely underestimated by the 48 model for the
majority of locations, regardless of the topography (e.g. Horvath et al. [2011]). Only at a few
stations (e.g. Osijek in Figure 17d) is the amount of energy at these scales comparable to
measured values. The AN forecast is, once again, the most prone to energy underestimation.
The shorter-than-diurnal KFAS spectra, on the other hand, seems very similar to model
spectra. Moreover, it seems that the KFAS exhibits power spectral density PSD values similar
to the AN and observations for longer time scales, but it is similar to model values at shorter
time scales. However, it must be noted again that aliasing of scales shorter than 6 hours adds a
considerable share of the energy of shorter-than-diurnal motions in spectral analysis, which is
why these results should be interpreted with care. Finally, it is interesting to note that even
though the energy of the shorter-than-diurnal motions is underestimated, the harmonics of the
diurnal cycle (24 h, 12 h and 8 h period) are very well simulated by the 48 model and all of

the post-processing methods.

3.7.3. The influence of the starting model on the analog-based predictions

Introducing the higher-resolution orography affects the dynamical processes and increases the
amount of energy at all temporal scales (e.g. Zagar et al., 2006). Therefore, the difference
between the 48 and the DA is that there is almost no underestimation of the longer-than-

diurnal motions, even in the coastal complex area (e.g. Figure 18b). The exception is the
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Dubrovnik station (Figure 18d), which is very similar as it is for the 48 model (Figure 17b).
The energy simulated by the DA is higher at the mountain complex station (Figure 18f) than
when simulated with the A8 (Figure 17c), overestimating the longer-than-diurnal motions.
Introducing the higher resolution orography into nearly flat continental topography results
with very similar power spectral density curves for the DA, as it is the case for the A8 (e.g.
Figure 18h, compared to Figure 17d). This is to be expected because the flatter the
topography, the number of details added by increasing horizontal resolution is smaller. In the
mountain complex topography (group II) results may be improved by using an even finer
model resolution to represent local flows. However, the need for using 2- opposed to 8-km
grid spacing for weak wind in the nearly flat continental topography (group III) may be less
pronounced. Naturally, the post-processing methods are also exhibiting similar effect as it is
the case of the 48 model. Similarly, introducing a higher resolution field into the 42 forecasts
increases the power at all time scales. All the conclusions regarding power spectral density
spectra that are valid for the DA longer-than-diurnal motions are valid for the 42 model as
well.

Additionally, due to the more complete package of physics parametrizations and non-
hydrostatic effects, the 42 model shorter-than-diurnal part of power spectral density spectra
contains more energy than for the A8 and the DA models, partially due to aliasing effect. Both
the 48 and the DA models severely underestimate the power at scales below diurnal, as
reported by Zagar et al. [2006]. Unlike the 48 and the DA models, the A2 simulates well or
even sometimes overestimates the shorter-than-diurnal motions. The exception is Dubrovnik
station, where some underestimation of the shorter-than-diurnal motions can still be noticed.

Even when the model overestimates the shorter-than-diurnal motions, the analog-based
predictions reduce the shorter-than-diurnal power, often leading to under-prediction of
shorter-than-diurnal motions. When the shorter-than-diurnal motions are well simulated or
underestimated by the model, the AN forecast often severely lacks power for these shorter-
than-diurnal motions. The KFAS forecast, however, exhibits power spectral density values
similar to the AN and observations for longer time scales, but it is similar to model values at
shorter time scales. In other words, the KFAS forecast is less prone to underestimation of the
shorter-than-diurnal motions than other analog-based predictions tested. This result is

consistent regardless of the starting model.
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Figure 18. The power spectral density of the observed 10-m wind speed, starting model
forecasts (A2 and DA) and the corresponding post-processing methods (AN and KFAS) for

stations Jasenice, Dubrovnik, Ogulin

and Osijek during year 2012. The confidence intervals

(in the logarithmic scale) are noted by the cross-like symbol in the upper right corner.
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§ 4. POST-PROCESSING THE ENSEMBLE NWP
(ENSEMBLE CALIBRATION)

4.1. Observations and climatology

The Austrian meteorological observation network, TAWES, consists of more than 300 sites
across Austria. In this work, 29 TAWES sites are used representing the different Austrian
climate zones, as listed in Table 4. The locations are selected based on the availability of wind
speed measurements (10-minute average value) at 10 m above the ground in the selected time
period. All sites monitor 2-m temperature, 10-m wind speed and direction, 2-m relative
humidity, surface pressure, precipitation, and, depending on the site, different radiation
measurements are carried out. Here, only 10-meter wind speed observations are used. The
2015 and 2016 wind speed observations are used for the analog-based method training period
in this section. For the performance testing, two target months are chosen, January and July
2018. These months are selected to investigate the forecast performance during a winter and a
summer period. The January and July 2017 wind speed observations are used for independent
sensitivity testing (weight optimization), which is a procedure explained further below.

The observed average monthly wind speed is slightly higher in January (2.88 ms™') than
in July (2.22 ms™), across all available stations and lead-times. Additionally, the standard
deviation of the wind speed measurements is also higher on average in January (3.27 ms™)

than in July (1.92 ms™).
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Figure 19. The spatial distribution of the observed monthly mean wind speed in the January
(left) and July (right), 2018. The arrows mark mountain stations for later comparison.
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Table 4. The list of the 29 stations providing the 10-m wind speed observations used in
section 4 with main geographical features.

Station name Latitude Longitude Altitude [m]
Weitra 14.9 48.7 572
Wien-Hohe Warte 16.4 48.3 198
Schwechat 16.6 48.1 183
Linz-Stadt 14.3 48.3 262
Krems 15.6 48.4 203
Bregenz 9.7 47.5 424
Gaschurn 10.0 47.0 976
Patscherkofel 11.5 47.2 2251
Lunz Am See 15.1 47.9 612
Rax/Seilbahnbergstation 15.8 47.7 1547
Eisenstadt-Nordost 16.5 47.9 184
Glissing 16.3 47.1 215
Lienz 12.8 46.8 661
Kanzelhohe 13.9 46.7 1520
Fiirstenfeld 16.1 47.0 271
Gmiind 13.5 46.9 738
Graz-Univ. 15.4 47.1 367
Innsbruck-Univ. 11.4 47.3 578
Sonnblick 13.0 47.0 3109
Kolm Saigurn 13.0 47.0 1626
Rauris 13.0 47.2 934
Salzburg/Freisaal 13.0 47.8 418
Bad Mitterndorf 13.9 47.6 814
Reichenau/Rax 15.8 47.7 488
Semmering 15.8 47.6 988
Hirschenkogel 15.8 47.6 1318
St. Polten/Landhaus 15.6 48.2 274

The wind speed is weak and moderate (i.e. < 8.0 ms™') for both January (Figure 19a) and
July (Figure 19b) at the majority of the stations. The average monthly wind speed increases
towards the north-eastern part of Austria (Pannonian basin) for both January and July.
Exceptions are the three mountain stations (arrows in Figure 19), where the average wind
speeds are much higher if compared to the neighboring valley stations.

Most of the stations are located in or near the Alps, which significantly modulates the

related local wind regimes. The complex topography of the Alpine area is characterized by a
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variety of different wind processes such as foehn and downslope windstorms, gap winds,
valley and slope winds, flow blocking and other. To investigate those phenomena, among
other, Alpine region is also the target area to several major field experiments, such as
ALPEX, MAP and TEAMx [Kuettner, 1986; Bougeault et al., 2001; Lehner and Rotach,
2018; Serafin et al, 2018, etc.]. Nevertheless, many challenges related to the NWP in complex
topography still exist (e.g. Arnold et al. [2012]), including modeling wind climatology of the
Alpine areas prone to such downslope windstorms (e.g. Horvath et al. [2011]) and objective

foehn wind classification (e.g. Mayr et al. [2018]).

4.2. NWP model data

The numerical model used within section 4 is the ALADIN model configuration used in
ALADIN-LAEF (Aire Limitée Adaptation dynamique Développement InterNational model —
Limited-Area Ensemble Forecasting) [Wang et al., 2011, 2019] ensemble forecasting system.
It is adjusted to fit the Austrian purposes and is running in operational mode since 2009. The
NWP is initialized daily at 0000 and 1200 UTC with one hourly lead-time, up to 72 hours.
Only the dataset corresponding to the model run initialized at 0000 UTC is used in this work.

The ALADIN-LAEF uses the underlying hydrostatic and spectral limited-area model
(LAM) ALADIN-Austria [Wang et al., 2006]. It uses a two-time-level semi-Lagrangian
advection scheme, semi-implicit time-stepping, fourth-order linear horizontal diffusion,
Davies—Kalberg type relaxation and digital filter initialization, and set of parametetrizations
of unresolved physics processes [Wang et al., 2006].

The ALADIN-LAEF integration domain covers the whole of Europe and a large part of
the Atlantic, as shown in Figure 20. The resolution of 11 km on a Lambert conformal grid is
used in the horizontal. In the vertical, 45 terrain-following pressure-based hybrid coordinate
levels with on average nine levels within the lowest 1000 km above ground level are used.

For dealing with the initial uncertainties, a blending method is used [Wang et al., 2014],
based on the idea of combining the large-scale perturbation from the ECMWF (European
Centre for Medium-Range Weather Forecasts) singular vectors and the small-scale

perturbations from the LAM native breeding vectors. The coupling with ECMWEF-EPS
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(Ensemble Prediction System) members are used for dealing with the lateral boundary
condition uncertainties [Weidle et al., 2013]. A multi-physics is implemented to account for
model uncertainties in the atmosphere. The perturbed initial land surface conditions, such as
soil moisture and surface temperature, are obtained through an ensemble of land surface data

assimilation [Bellus et al., 2016].

Figure 20. Domain and model topography of ALADIN-LAEF'. (from Wang et al. [2019], page
3355. The inner limited-area domain in red represents the area authors used for verification
of ensemble experiments).

The ALADIN-LAEF consists of 17 ensemble members: 16 perturbed members and one
control run. The 16 perturbed members are driven by 16 ECMWEF-EPS members. Given the
structure and composition of the LAEF ensemble, it can be considered as a non-exchangeable
ensemble. However, as shown by Baran and Lerch [2015] the differences between the
treatment of a non-exchangeable ensemble as fully exchangeable did not worsen the results to
statistically relevant size. Therefore, we decided to treat the ALADIN-LAEF ensemble as
exchangeable.

A subset of six ALADIN-LAEF parameters to be used as an input to the analog-based
method includes temperature (z2m), wind speed (ws) and direction (dd), relative humidity
(rH), pressure (p) and precipitation (prec). The NWP datasets correspond to the observation
datasets. From the four grid points surrounding the observation location, the closest model

grid point is chosen. The 2-year long dataset (2015 — 2016) is used for training. January and
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July 2017 are used for weight optimization. Finally, the results are given for the independent

dataset consisting of January and July 2018.

4.3. Reference method: Ensemble model output statistics (EMOS)

The reference forecast for the analog-based method ensemble calibration is the ensemble
model output statistics (EMOS). The EMOS is introduced by Gneiting et al. [2005] and
adapted for wind by Messner et al. [2014]. Therefore, a non-homogeneous regression with a
30-day rolling training window is fitted on every lead-time and station. To capture the natural
boundary of wind at 0 ms™, a left-censored logistic regression is used. In the EMOS the
observed wind speed (y) is explained by a logistic distribution censored at zero (£y) with u as
a mean and o as a spread. A logistic distribution has a similar bell shape as a Gaussian
distribution but with slightly heavier tails. Additionally, censoring at zero states that no
negative wind values can occur. Further details can be found in Messner et al. [2014].

Censoring and the linear regressions for 1 and ¢ are defined as follows:

v~ Lo(w,0), (13)
= Po+ P1wsy, (14)
log(o) = vo + v1 log(ws,), (15)

with f+ and y+ as the regression coefficients, ws, as an ensemble mean and ws, as an
ensemble spread of the wind speed members. The logarithmic link function is used to ensure
positive values. Further applications of the EMOS to wind speed can be found in
Thorarinsdottir and Gneiting [2010], Baran and Lerch [2015] or Scheuerer and Moéller [2015].

The 30 days rolling training window is often used for the EMOSws experiment, making it
a good reference for the analog experiment that uses only the raw model wind speed data.
However, since the other analog experiments use all available variables, a second reference is
added. The second experiment (EMOSstd) uses all available variables. The boosting method
of Messner et al. (2017), which is implemented in the R-package “crch”, is applied to all
variables and the whole dataset, instead of the rolling training window. Additionally, annual

and biannual harmonic functions are added to capture a seasonal bias. A variable selection
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method, such as boosting, is needed to prevent overfitting. The boosting is able to choose the
most important variables and exclude the other variables using zero value. As a result, a single
fit per station and lead time can be used to forecast both test months.

Concluding, whereas the EMOSws only uses the last 30 days as training and only the
wind speed as an input, the EMOSstd uses all available training data and all variables

including seasonal functions.

4.4. Sensitivity tests

In the previously described experiments (section 3) the predictors are chosen using the ,,trial-
and-error* approach, simply trying several combinations of available predictor variables and
keeping the one that seems to be the most successful. Following the work of Delle Monache
et al. [2013], all predictor weights are set to value 1.00. However, several authors in more
recent work show that, instead of assigning the same importance to each predictor variable,
the brute-force weight optimization can increase the AnEn performance. This is demonstrated
in several applications, such as Junk et al. [2015] and Alessandrini et al. [2015a]. The
weights’ optimization is based on choosing the combination that minimizes the error
(measured by the continuous rank probability score). For that reason, it is decided to include a
predictor weighting strategy in the second part of this thesis.

Even though it is the best possible approach, due to the limited computational resources,
not all the possible combinations are tested in this work. The forward selection algorithm is
used instead, starting with weight value fixed at 1 for the wind speed parameter. Then, one by
one (ensemble mean) predictor from a pre-selected subset of six ALADIN-LAEF parameters
is added, optimizing the weights independently at each location by error minimization. The
forward selection algorithm is computationally less demanding than testing all the possible
combinations independently at each location. However, it needs to be noted that the algorithm
makes a key assumption that is often not true - assuming that all predictors are independent of
each other, which is generally not the case.

As already mentioned, six ALADIN-LAEF parameters are used as an input to the analog-
based method: wind speed (ws) and direction (dd), temperature (#2m), relative humidity (rH),

pressure (p) and precipitation (prec). They are tested using the forward selection algorithm
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one after another, in the same order as listed. Five possible weight values (0.00, 0.25, 0.50,
0.75 and 1.00) are investigated for each predictor variable. The predictor weighting strategy is
carried out for January and July 2017, using the 2015-2016 period for the training. Therefore,
the optimization procedure uses a completely independent dataset from the period for which
training, as well as for which forecasting is performed (January and July 2018). The
independency of the datasets used is an important aspect that ensures the objective validity of

the results.
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Figure 21. The histogram of the optimized weights for each predictor tested (using the AnEn
mean values), at 29 stations in Austria in January and July 2017.

The results show that the wind direction is the most important predictor in addition to
wind speed (Figure 21). Even though it seems the values are slightly higher in the complex
topography, the values are quite high for all stations (Figure 22). The wind direction is
followed by temperature and relative humidity parameters, especially in the more complex
topography, such as the alpine area. The pressure and precipitation parameters are often
optimized with the 0.00 weight, meaning that they are not carrying additional benefits at
certain stations. But, that is not always the case. For instance, the pressure parameter is also
optimized by taking higher values in the complex alpine area. For precipitation parameter, a
similar behavior is found at the southern slopes of the Alps, a region prone to the convective
precipitation. The increased importance of the precipitation predictor in this area might, for
example, indicate the forecast improvement under foehn conditions, when foehn triggers the

precipitation while approaching the southern Alps.
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Figure 22. The spatial distribution of the optimized weights for each predictor tested, at 29
stations in Austria in January and July 2017.

Supplementary to using the mean value of 17 ALADIN-LAEF ensemble members for

each meteorological parameter, the standard deviation of those 17 members can also be used

as an additional predictor. Thus, the information on the starting model ensemble uncertainty is

included in the analog search. The standard deviation predictors are optimized as one

multiplying factor to the all pre-calculated weights for meteorological parameters,

independently for each location. Five possible values of this multiplying factor are tested:

0.20, 0.40, 0.60, 0.80, and 1.00. If using neither of the values results in a forecast

improvement, the value 0.00 is used as the best fit. In the following illustrative example, it is
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assumed that the optimal weight for the ALADIN-LAEF temperature ensemble mean
predictor is 0.75 at a particular location. Similarly, the weight for the relative humidity is
optimized as 0.50, for precipitation as 0.00, etc. Then, the weight for the six ALADIN-LAEF
ensemble standard deviation predictors is optimized as 0.20 value. The w; in Eq.1. would be
0.20x0.75 for the temperature standard deviation predictor, 0.20x0.50 for the relative
humidity standard deviation predictor, 0.20%0.00 for the precipitation, etc. The distribution
for the optimized standard deviation multiplying factors is given at the (Figure 23). The result
shows that the optimal contribution of the standard deviation predictors is about 40% of the
ensemble mean predictors’ contribution in the majority locations tested. However, no

distinctive spatial distribution pattern regarding the optimal values is noticed.
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Figure 23. The histogram (left) and the spatial distribution (vight) of the optimized weights
for standard deviation predictor for different meteorological parameters tested at 29 stations
in Austria in January and July 2018.

The AnEn can be affected by a conditional negative bias, especially when predicting
events in the right tail of the forecast distribution. For that reason, the novel bias correction
method is applied for these experiments, as proposed by Alessandrini et al. [2019]. The
method is based on correction factor proportional to the linear regression coefficient between
the wind speed observations and raw model forecast (i.e. ALADIN-LAEF wind speed
ensemble mean) during training, as well as to the distance between the current raw model
forecast and the average value of the previous raw model forecasts that correspond to the
currently selected analogs in the AnEn. The lead-time-independent correction factor is added
to all the members of the AnEn if the current raw model forecast is above a certain threshold

value. If the threshold is set too low, the bias correction adjustment can become small and
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noisy, leading to forecast performance degradation. After the simple minimizing the RMSE,
the 95. percentile of the climatological raw model forecast distribution (during training

period) is chosen as a threshold in this work.

4.5. Description of experiments

In total, six different input configurations using the observations and the ALADIN-LAEF
ensemble data are investigated (see Table 5 for a summary). All six investigated
configurations provide an AnEn forecast, consisting of the past observation corresponding to
the 17 most similar past ALADIN-LAEF ensemble predictions. Thus, the new analog
ensemble forecast provides the 17 ensemble members, equivalent to the original ALADIN-
LAEF model. The chosen ensemble size does not only reflect the input NWP ensemble but is
close to the optimal size of 15 members for the deterministic application of the analog

ensemble found by Odak Plenkovi¢ et al. [2018].

Table 5. The summary information for the experiments tested in section 4.

Name Meteorological variables ALADIN-LAEF input (predictors) Nb. of analog searches
used per lead-time
LAEFws ws X X
EMOSws s Er.lsemble pand o for one parameter, X
wind speed (2 predictors)
E bl d o for si t 12
EMOSstd ws, dd, 12m, rH, p, prec nse.m e 1 and o for six parameters ( X
predictors)
trol 1 for si
AnEnCtrl ws, dd, 2m, rH, p, prec Control ensemble @ember or six |
parameters (6 predictors)
AnEnWs s 17 er'lsemble wind speed members (17 |
predictors)
E le u for si
AnEnMu ws, dd, 12m, rH, p, prec nse'mb e u for six parameters (6 |
predictors)
E 1 for 6 t 12
AnEnStd ws, dd, 12m, rH, p, prec nse.mb e 1 and o for 6 parameters ( 1
predictors)
17 ensemble members for 6 parameters
AnEnA , dd, 2m, rH, p, . 1
nEndll | ws L TEL P PTEC (6 % 17 predictors)
1 1 fi t
AnEnMem | ws, dd. 12m, vH, p, prec ense@b e member for every parameter 17
(6 predictors)
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Dabernig et al. [2015] show the value of an ensemble forecast compared to its
deterministic control run. Therefore, the first experiment, the AnEnCtrl, uses the ALADIN-
LAEF control member for the six meteorological parameters available as six predictors. The
AnEnWs, uses all 17 ALADIN-LAEF ensemble member wind speed predictions (LAEFws)
as 17 predictors. More meteorological variables are exploited in the AnEnMu experiment. In
contrast to the AnEnWs, only the ensemble mean u for every parameter is used as a predictor
in the AnEnMu experiment. For the AnEnStd ensemble forecasts, the ALADIN-LAEF
ensemble uncertainty (o) and the ensemble mean (1) of the defined six meteorological
parameters are used. The AnEnStd includes the aspects of error growth, represented
dynamically by the used ensemble model, as explained in Eckel and Delle Monache [2016].
This adds additional information to the flow-dependent error growth already captured by the
analog approach (e.g. in AnEnMu).

In addition to the aforementioned experiments, two diverging ways of including all the
ALADIN-LAEF information available are investigated. The first additional experiment, the
AnEnAll, uses every member of the ALADIN-LAEF ensemble for every defined
meteorological predictor. Thus, in this experiment, 6 variables and 17 ensemble members are
used, which equals 6 x 17 predictors. An important goal of this research is to evaluate if all
probabilistic information is needed or summary measures, such as mean or spread, are already
sufficient. The second additional experiment is the “member by member” approach
AnEnMem. Here, the analog search procedure is carried out for every ALADIN-LAEF
member separately. Therefore, each raw model member is now distinguishable from the
others. The analog-search procedure is independently done for each set of six pre-defined
meteorological parameters, corresponding to the same raw model member. Thus, in
AnEnMem the search procedure is performed 17 times in total. Only one analog is chosen in
every analog search procedure per ensemble member, with verifying observation chosen as
the member in the AnEnMem ensemble. This is the most demanding configuration presented
in this research. An analog experiment similar to the AnEnMem experiment, but using more
than one analog (e.g. 5 analogs) for each of the ALADIN-LAEF ensemble members, is also
investigated. However, besides being even more computationally demanding, it did not
provide any benefits justifying the additional computational costs. Therefore, these results are

not discussed here.
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All experiments use an analog search time window fixed at every lead-time individually,
including one time step before/after to account for a trend.

To determine if the difference in scores between the experiments is statistically
significant, the moving-block bootstrap technique, following the procedure of Wilks [1997]
and using 1000 re-samples at a confidence level of 95%, is applied, except for correlation

where pair bootstrap technique was used (as in Wilcox [2009]; see section 4.2).

4.6. Evaluation of the wind speed ensemble and probabilistic forecast

Even when evaluating the ensemble forecast, a useful starting point is to define a dominant
source of error. The source can be specified when decomposing the RMSE to the bias of the
ensemble mean, the bias of the standard deviation (¢ bias) of the ensemble mean and the
dispersion (phase) error of the ensemble mean, as previously explained. It needs to be noticed
that the o bias is defined as the bias of the standard deviation of the ensemble mean
(regardless of the ensemble spread).

A particularly important aspect of ensemble forecasting is the information about the
uncertainty in a forecast. The standard deviation of the ensemble members with respect to its
mean is referred to as the spread of the ensemble. The spread describes the diversity of the
ensemble forecast. In other words, the forecaster is confident that the ensemble mean is close
to the eventual state of the atmosphere if the spread of the ensemble is small. On the contrary,
if the ensemble members are all very different from each other, the future state of the
atmosphere 1s more uncertain. To adequately represent the forecast uncertainty, the magnitude
of ensemble spread should correspond to the magnitude of the error in the ensemble mean. A
large difference between the ensemble spread and the RMSE of the ensemble mean is an
indication of statistical inconsistency, while closeness is a measure of the statistical reliability
[Buizza et al. 2005]. A good match between the ensemble spread and RMSE of the ensemble
mean implies the greater predictability of ensemble mean skill, suggesting that the ensemble
spread represents the ensemble uncertainty well.

The ensemble is consistent if the actual future atmospheric state behaves like a random
draw from the same distribution that produced the ensemble [Anderson, 1997]. Then, the

observation being predicted looks statistically like just another member of the forecast
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ensemble. The probability forecasts derived from an ensemble is good (i.e., appropriately
expresses the forecast uncertainty) to the extent that the consistency condition has been met.
A necessary condition for the ensemble consistency is an appropriate degree of ensemble
dispersion. The most common approach to evaluating whether a collection of ensemble
forecasts satisfies the consistency condition is the construction of a verification rank
histogram (or simply the rank histogram). The rank of the corresponding observation within
the ensemble is tabulated, taking the value from 1 to n+/ for an n-member ensemble.
Collectively, these verification ranks are plotted in the form of a histogram. If the consistency
condition is met, the histogram of verification ranks is uniform, reflecting the equiprobability
of the observations within their ensemble distributions [Wilks, 2011]. The exceptions are
departures that are small enough to be attributable to sampling variations. Departures from the
ideal of rank uniformity can be used to diagnose aggregate deficiencies of the ensembles

[Hamill, 2001], as shown in Figure 24.

1ind
(663°

ffo! gion jon
ove™sias . el s
e ove‘;’?sp oo™ Ranr ity undefd‘ fdef‘"

Ur\deﬂ B‘as

it-u;

Figure 24. Example verification rank histograms for hypothetical ensembles of size 10,
illustrating characteristic ensemble dispersion and bias errors. Perfect rank uniformity is
indicated by the horizontal dashed lines, and the best match is noted with a “check’ mark.

ind

The Brier Skill Score (BSS) is a commonly used metric for the probabilistic forecast of
binary event that uses climatology as a reference [Wilks, 2011; Jolliffe and Stephenson,

2011]. It is calculated using the following expression:
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BS (16)
BSclim’

BSS =1 -

where the Brier score (BS = Y;(f; — 0;)? /n) averages the squared differences between pairs
of forecast probabilities f and the subsequent binary observations o over all n forecast —
observation pairs. The Brier score is essentially the mean squared error of the probability
forecasts, where the observation value is 1 (if the event occurs) or 0 (if the event does not
occur). A binary event is defined using an exceedance threshold, i.e. of wind speed forecasted
higher than 5 ms™'. The closer the BSS is to the perfect number 1, the better the skill of the
forecast is. Here, a threshold of 5 ms™! is chosen for the BSS as it is reasonably high while, on
the other hand, not being too rare. The Brier score is negatively oriented, with perfect
forecasts having value 0. Since individual forecasts and observations are both bounded by 0
and 1, the score can take on values in the range between 0 and 1.

After some algebra, the Brier score can be expressed as the sum of the three terms:

reliability (REL), resolution (RES), and uncertainty (UNC), as follows:

RES — REL (17)
BS = RES — REL + UNC; BSS = ————

The preferred outcome is as small as possible reliability term and as large as possible
resolution term (in absolute value). The reliability term describes the calibration (or
conditional bias) of the forecasts. The forecast probability in each subsample of the perfectly
reliable forecast is exactly equal to the relative frequencies of the observed event in each
subsample. The resolution term describes the ability of the forecasts to distinguish subsample
forecast periods with relative frequencies of the event that are different from each other. In
other words, the resolution term will be large if the forecasts sort the observations into
subsamples having substantially different relative frequencies than the overall sample
climatology (or vice versa). Since the uncertainty term depends only on the sample
climatological relative frequency, it is unaffected by the forecasts. This term takes on value 0
when the climatological probability is either O or 1. Similarly, when the event being forecast
almost never (or almost always) happens, the uncertainty in the forecasting situation is small.
Then, forecasting the climatological probability gives good results. Contrary, the uncertainty
maximum is achieved when the climatological probability is 0.5. In that case, there is
substantially more uncertainty inherent in the forecasting situation.

The reliability diagram is a graphical device that shows the full joint distribution of

forecasts and observations for probability forecasts of a binary event in terms of so-called
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calibration-refinement factorization. The elements of the calibration-refinement factorization
are the calibration (or conditional) distribution of the observation given each of the n
allowable values of the forecast p(04]f;); and the refinement distribution p(f;) that describes
the frequency of use of each of the possible forecasts. Here, the occurrence of a binary event
is noted with index 1. The n calibration probabilities p(0;|f;) define a calibration function
that is usually the main aspect of the reliability diagram [Wilks, 2011]. The reliability diagram

provides an insight into the unconditional and conditional biases, as shown in Figure 25.
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Figure 25. Example characteristic forms for the calibration-function P(o|f) element of the
reliability diagram. The black diagonal line represents the perfect reliability, while the blue
dashed line represents the climatological frequency of the event. The most reliable forecast is
indicated by a “check” mark. The arrangement of the panels corresponds to the calibration
portions of the rank histogram in Figure 24.

The labels “underconfident” and “overconfident” are concerning the other elements of the
reliability diagram: the refinement distribution P(f;) shown in the so-called sharpness
diagram. The dispersion of the refinement distribution reflects the overall confidence of the
forecaster. For example, forecasts that deviate rarely and quantitatively little from their
average value exhibit little confidence. Forecasts that are frequently extreme (i.e. often 0% or
100% chance for the event occurrence) exhibit high confidence/sharpness [Wilks, 2011].
Characteristic forms are shown in Figure 26.

The continuous rank probability score CRPS is a summary metric that can be interpreted
as the integral of the Brier score over all possible threshold values for the parameter under

consideration:

CRPS = J.OO [Pe(x) — P,(x)]? dx, (18)
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Figure 26. Example characteristic forms for the sharpness (refinement distribution) p(f)
element of the reliability diagram. Forecasts that are frequently extreme (i.e. often 0% or
100% chance for the event occurrence) exhibit high confidence/sharpness. On the other hand,
narrow distribution close to the average forecast value exhibit low confidence.

p(x)

Figure 27. Schematic illustration of the continuous ranked probability score. Three forecast
probability distribution functions pp(x) and corresponding cumulative distribution functions
Pr(x) are shown, together with the step-function cumulative distribution function for the
observation P,(x) Distribution 1 would produce a small (good) score because Pg, (x) is the
closest approximation to the step function (hence the smallest integrated squared difference).
Distribution 2 concentrates probability away from the observation, and Distribution 3 is
penalized for lack of sharpness even though it is centered on the observation.
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where P stands for forecasted probability (cumulative distribution), while P, is a cumulative-
probability step function that jumps from 0 to 1 at the point where the forecast variable equals
the observation. In other words, the CRPS can also be computed as the Brier score for binary
events, integrated over all possible division points of the continuous variable y into the binary
variable above and below the division point [Hersbach, 2000]. Additionally, for non-
probabilistic forecasts, CRPS reduces to the (mean) absolute error.

The continuous rank probability score CRPS is a negatively oriented (the lower, the
better) accuracy measure that is equivalent to the mean absolute error for deterministic
forecast and also has a value of 0 for the perfect forecast. To better understand the meaning,
an illustrative example of 3 forecast distributions is shown in Figure 27. Since the continuous
rank probability score is the integrated squared difference between the cumulative distribution
function and the step function representing the observation, cumulative distribution function
that approximates the step function best (Distribution 1) produces relatively small integrated
squared differences, and good scores. Distribution 2 is equally sharp but its displacement
from the observation produces large discrepancies with the step function. This is especially
the case for values of the predictand slightly larger than the observation, and hence very large
integrated squared differences. Distribution 3 is centered on the observation, but much wider
than the Distributions 1 and 2. Such a great width means that it is nevertheless a poor
approximation to the step function and so also yields large integrated squared differences.

The ROC (relative operating characteristic, or receiver operating characteristic) diagram
is another graphical forecast verification display. While the reliability diagram describes the
calibration (distribution of observations conditioned on the forecast), the ROC diagram
describes the likelihood (distribution of forecasts conditioned on the observation p(f|o)).
Unlike the reliability diagram, it does not include the full information contained in the joint
distribution of forecasts and observations. The base-rate (distribution of the observations
p(0)) is not included and, hence, it is insensitive to conditional and unconditional biases (e.g.,
Jolliffe and Stephenson [2011]). To determine the ROC values, one contingency table is
derived for several probabilistic thresholds (e.g. > 90%, >80%, >70%, etc). The probabilistic
false alarm rate /" and hit rate H (as defined in Eq.11) are calculated for a certain probability
(e.g. 80%). Then, each H vs. F is plotted on the same graph to form the ROC curve. This
curve must pass through points (0,0) and (1,1). It shows the ability of a set of probability

forecasts to discriminate between the outcomes of a binary event (the event does or does not
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occur). No-skill forecasts are indicated by a diagonal line (where H=F); the further the curve
is towards the upper left-hand corner (where H=/ and F=0) the better is the ability to
discriminate the event. The example of two ROC curves on the ROC diagram is given in

Figure 28.
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Figure 28. The illustrative example of the ROC diagram consisting of two ROC curves. Each
curve is plotted through points derived from several (e.g. 3 marked with a different color for
each forecast) contingency tables. Each contingency table uses a different probability
threshold for probability forecasts of a pre-defined event. The black dashed line represents
forecast with no skill, while the red dashed line represents the perfect forecast. Darker dashed
blue line, by being closer to the top left corner, shows a better ability to discriminate different
outcomes for a pre-defined event than the lighter dashed blue line.

4.6.1. Overall results

In total, six different analog-based ensemble experiments (see Table 5 for a summary) are
carried out in this study. Results are evaluated against observations, the raw ensemble model,
the ALADIN-LAEF (LAEFws) and the variations of the EMOS forecasts. The novelty of this
approach is the usage of different types and setups of the probabilistic input model to give
new insights into the analog-based methodology. Summarizing, all analog forecasts show an

improvement compared to the raw forecasts during January (Table 6) and July (Table 7) 2018.
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Moreover, most analog forecasts perform similar or even better than the EMOS methods.

Furthermore, distinct differences between the analog configurations are found.

Table 6. The average values and confidence interval (0.95 sig. level) of several verification
measures for the different models at all available stations in Austria and all lead-times during
January 2018. The best result among compared forecasts is underlined (the spread is better
when closer to the RMSE value). The values significantly different from the AnEnStd forecast
(0.05 sig. level) are marked with an asterisk sign.

~ S
[ S E =~ ) = ~= ~ )
Janua = ‘% % S = = 4 < =
~ & & ~ ~ = = = =
Bias -0.210* -0.053* -0.160* -0.060* -0.036 -0.029 -0.023 -0.061* -0.048*
[ms™] [-0.232,  [-0.069, [-0.174, [-0.072, [-0.048, [-0.042, [-0.035, [-0.075, [-0.061,
-0.185]  -0.039] -0.146] -0.046] -0.022]  -0.016] -0.011] -0.048] -0.034]
CcC 0.378* | 0.831* | 0.841%* | 0.841* | 0.845* | 0.861* | 0.863 | 0.863 | 0.856*
[0.371, | [0.826, | [0.837, | [0.837, | [0.841, | [0.858, | [0.858, | [0.860, | [0.852,
0.385] 0.835] 0.845] 0.845] 0.849] 0.865] 0.865] 0.867] 0.860]
Disp. Err | 2.670* 1.801* 1.705* 1.694* 1.705* 1.613 1.608 1.596* 1.634*
[ms™] [2.645,  [1.784, [1.681, [1.672,  [1.682,  [1.593, [1.589, [1.573, [1.612,
2.696]  1.826]  1.733]  1.715]  1.727]  1.633]  1.626]  1.618]  1.654]
¢ bias -1.501%*| -0.322*| -0.454*| -0.495*| -0.391*| -0.386 | -0.372 | -0.405*| -0.420*
[ms™] [-1.545, | [-0.378, | [-0.505, | [-0.546, | [-0.444, | [-0.438, | [-0.433, | [-0.455, | [-0.483,
-1.458] | -0.278] | -0.404] | -0.444] | -0.340] | -0.328] |-0.314] |-0.352] |-0.367]
RMSE 3.070* 1.831* 1.772* 1.766* 1.749* 1.659 1.650 1.647 1.688*
[ms] [3.029, [1.812, [1.748,  [1.743, [1.729, [1.639, [1.632, [1.624,  [1.670,
3.111]  1.851)  1.795]  1.792]  1.771]  1.677]  1.672]  1.667]  1.707]
Spread | 0.850* | 1.611* | 1.605* | 1.776* | 1.663 | 1.672 | 1.667 | 1.641* | 1.728*
[ms™] [0.846, | [1.599, | [1.592, | [1.750, | [1.650, | [1.660, | [1.655, | [1.629, | [1.714,
0.854] | 1.622] | 1.617] | 1.779] | 1.675] | 1.686] | 1.679] | 1.654] | 1.742]
BSS -0.075* 0.490* 0.515* 0.520* 0.513* 0.546 0.549 0.555 0.526*
Sms™) | 0093, [0.479,  [0.505, [0.510, [0.504, [0.537, [0.541,  [0.546,  [0.517,
-0.059] 0.500]  0.524]  0.529]  0.523]  0.555]  0.558]  0.563]  0.535]
CRPS 1.631%* | 0.883* | 0.823* | 0.814* | 0.823* | 0.777 |0.772 | 0.769 | 0.816*
[ms™] [1.613, | [0.875, | [0.815 | [0.806, | [0.816, | [0.770, | [0.765, | [0.762, | [0.809,
1.648] 0.892] 0.831] 0.820] 0.831] 0.784] 0.779] 0.776] 0.823]

Results show that the average bias of the LAEFws ensemble is small, underestimating the

wind speed by 0.21 ms™! in January and 0.23 ms™! in July. The same results are found for the ¢

bias in July with 0.77 ms™!, while it is a slightly more dominant source of error in January
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with -1.50 ms™'. The other evaluated scores such as the correlation coefficient (CC), which is
on average higher in July than in January with 0.37, or the RMSE with 3.07 ms™! in January
and 1.79 ms™ in July, indicate that the LAEFws, in general, has realistic results, especially for
the summer month. However, there are still some unresolved processes, as can be seen by the
results of the dispersion error.

The main aim of any kind of the NWP model post-processing is to improve the results of
the original model. This is the case here, too. The EMOS post-processing experiments are
applied successfully, exhibiting the 0.46 maximum increase of the average correlation
coefficient value. Moreover, the EMOS experiments are reducing all three error sources: the
bias, the bias of the standard deviation (o bias) and the dispersion error in comparison to
LAEFws. The LAEFws RMSE is, therefore, reduced by the EMOS experiments with the
maximum 1.30 ms™ difference among average values. The EMOSws is more successful in
removing a systematic source of the error, while the EMOSstd is better in removing a
dispersion error. All six analog-based experiments are able to outperform the LAEFws as
well. Specifically, they can reduce all three error sources for the ensemble mean. Already the
first and most “simple” experiments in terms of input data, the AnEnCtrl and the AnEnWs,
successfully remove the systematic errors in the bias and ¢ bias similar to the EMOS
approach. Even more successful in removing the predominant dispersion source are the
experiments with the additional predictors: AnEnMu, AnEnStd, and AnEnAll.

In addition to improving the results for the ensemble mean, the average ensemble spread
matches the average RMSE better after any post-processing. The AnEnStd exhibits the best
spread among analog-based experiments in July, while AnEnAll shows better results in
January. This might be related to the fact that wind speed shows greater variability (higher
standard deviation of observations) and is probably harder to predict it correctly in January.
For that reason, using more information from the raw model adds more variety to the
ensemble members. This result also indicates that in the convective season most likely a
horizontally and vertically higher resolved convection-permitting NWP model might add
some additional information not present in the coarser LAEFws.

In the selected two months, the observed frequency of the wind speed exceeding 5 ms™ is
higher for January with 18% cases than for July with 9%. Based on these observed numbers,
the Brier skill score BSS value of the original ensemble (LAEFws) is -0.08 for January and

0.03 for July, indicating that the small differences are already present in the input data. It is
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shown that the Brier skill score is improved by all post-processing experiments. This is
especially the case in January, where the underlying climatology shows that the higher wind
speed is more frequently observed than in July and the wind speed variance (higher standard
deviation of observations) is higher. The AnEnMu, AnEnStd, and AnEnAll experiments
show a nearly similar improvement. The other post-processing approaches improve the Brier

skill score BSS less.

Table 7. The average values and confidence interval (0.95 sig. level) of several verification
measures for the different models at all available stations in Austria and all lead-times during
July 2018. The best result among compared forecasts is underlined (the spread is better when
closer to the RMSE value). The values significantly different from the AnEnStd forecast (0.05

sig. level) are marked with an asterisk sign.

~ s
3 =N ~

July g £ > 5§ g 5 & 3§ =

R Q % = S S S S

T S § 3§ § F § 3§ 3

N = S < = = < < =

Bias -0.229* -0.001* -0.119* -0.012 -0.090* -0.055 -0.063 -0.088* -0.043*

[ms™] [-0.242, [-0.008, [-0.129, [-0.021, [-0.099,  [-0.063, [-0.072, [-0098,  [-0.053,
20.215] -0.010] -0.111] -0.001] -0.080]  -0.046]  -0.054] -0.080] -0.033]
CC 0.415* | 0.750* | 0.764* | 0.752* |0.739* | 0.770* | 0.774 | 0.774 0.759*

[0.406, | [0.745, | [0.759, | [0.748, |[0.735, | [0.766, | [0.769, | [0.770, | [0.754,
0.422] |0.754] | 0.768] | 0.757] |0.744] | 0.774] | 0.778] | 0.778] | 0.763]

Disp. Err | 1.602% 1.229*% 1.144* 1.229* 1.262* 1.156* 1.145 1.148* 1.183*

[ms™] [1.589, [1.215, [1.132, [1.216, [1.250,  [l.144,  [1.136, [1.138,  [1.172,
1.616] 1.240]  1.154]  1.241] 1.273]  1.167]  1.157]  1.159]  1.194]

o bias -0.773% -0.344* | -0.474*| -0.344*|-0.331* | -0.400*| -0.409 | -0.396*| -0.403*

[ms™] [-0.794, | [-0.368, | [-0.494, | [-0.364, |[-0.353, | [-0.418, | [-0.429, | [-0.416, | [-0.423,
0.754] |-0.325] | -0.452] | -0.323] |-0.308] | -0.377] | -0.387] | -0.375] | -0.383]

RMSE 1.794* 1.276* 1.244* 1.272* 1.307* 1.225 1.219 1.218 1.251*
[ms™] [1.775,  [1.262,  [1.234, [1261, [1.294,  [1.213,  [1.208, [1.206, [1.238,
1.813] 1.288]  1.256]  1.284] 1.321]  1237]  1.229] 1.228]  1.262]

Spread 0.651* | 1.170* | 1.138* | 1.318* |1.256* | 1.253 | 1.244 | 1.190* | 1.301*

[ms™] [0.648, | [1.164, | [1.133, | [1.311, |[1.248, | [1.246, | [1.236, | [1.184, | [1.294,
0.654] | 1.176] | 1.144] | 1.326] |1.263] | 1.261] | 1.250] | 1.197] | 1.308]
BSS 0.032* 0.329* 0.337 0.329* 0.319* 0.349 0.355 0.353 0.325*%*

>5ms™Y) | 0.009, [0.314, [0.322,  [0.313, [0.303,  [0.334, [0.341, [0.338,  [0.310,
0.055]  0.345]  0.353]  0.344] 0.335]  0.365]  0.369]  0.369]  0.340]
CRPS 1.032* | 0.648* | 0.624* | 0.636* [0.650* | 0.613 0.610 [0.612 | 0.635*
[ms™] [1.022, | [0.643, | [0.619, | [0.631, |[0.645 | [0.608, | [0.605 | [0.606, | [0.630,
1.042] | 0.653] | 0.629] | 0.641 |0.656] | 0.618] | 0.615] |0.617] | 0.640]
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The LAEFws shows a higher continuous rank probability score CRPS (1.63 ms™) for
January than for July (1.03 ms™). Again, the CRPS value is improved by all post-processing
experiments, exhibiting better overall results for July than in January, when wind speed and
its variance is higher on average. Similar to the Brier skill score BSS, the AnEnAll shows the
highest skill during the winter month, while the AnEnStd is slightly better during the summer
month. This indicates that not just that adding more input from the raw model increases the
ensemble spread, but it also improves its accuracy. The AnEnMu follows both AnEnAll and
AnEnStd results closely. The other post-processing experiments are not as successful,

exhibiting significantly worse overall results for both months investigated.

4.6.2. Lead time performance

To investigate six analog-based ensemble experiments comparison further, a summary
continuous rank probability score CRPS is considered for the individual lead-times (Figure
29). The result shows that there is no significant difference between the AnEnMu, AnEnStd
and AnEnAll performance during neither winter nor summer month. The AnEnCitri,
AnEnWs, and AnEnMem are slightly outperformed by other analog-based experiments,
especially for January. Even though the AnEnCtrl, AnEnWs, and AnEnMem can improve
the raw NWP forecasts, comparable to the EMOS approach, they are less promising than
other analog-based experiments. The AnEnWs results show that it essential to use more than
one meteorological variable as a predictor in the analog approach. This can be explained by
the better ability of the analog method to distinguish different seasonal and synoptic
situations. The analog-search pool in the AnEnMem experiment is smaller than in other
analog experiments since the search is performed dependently for the same ensemble
member. Possibly, that is why the AnEnMem would not increase the skill of the raw
probabilistic input, as one would inherit undesirable properties of the input model, such as
under-dispersion and lower resolution issues. Additionally, AnEnMem is the most
computationally expensive setup. For these reasons, it is not shown or discussed further in the
thesis (results can be found in the Appendix). Finally, even though the AnEnCtrl and the

AnEnMu use the same number of the meteorological parameters as predictor variables, the
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AnEnMu performs better for both months and at all lead times tested. Similar results are
shown in Dabernig et al. [2015], where the EMOS results based on ensemble forecasts

outperformed the forecasts using only the control run.

a) Wind speed; all stat.; Jan 2018 b) Wind speed; all stat.; Jul 2018
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Figure 29. Continuous rank probability score depending on lead-time for five different
analog-based ensemble experiments during January (left) and July (vight) 2018 at 29 stations
in Austria. The markers are set for the results significantly different from the AnEnStd
forecast (95% confidence level), while the red shaded area represents the AnEnStd 95%
confidence interval calculated by the bootstrap percentile method [Jolliffe, 2007].

Overall, the AnEnAll performs the best in post-processing for January whereas the
AnEnStd setup performs the best for July. Among these experiments with a similar result, the
AnEnStd is chosen as the best representative. The reason for this decision is that it is not
computationally demanding as the AnEnAll, while it includes the information about raw
model spread (unlike the AnEnMu). The information about the raw model error growth is
considered as a very important aspect of the raw NWP ensemble forecast. Therefore, it is
expected to be further developed in the near future, leading to greater differences between the
AnEnMu and AnEnStd experiments. To determine if using summarized predictors, such in
the AnEnStd experiment, leads to information loss and decreases the forecast quality, the
results are compared to the AnEnAll experiment. In addition to overall comparison, the
AnEnStd and AnEnAll experiments are also compared against the two different EMOS

experiments and the LAEFws, separated into lead-times using several verification metrics.
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Figure 30. Continuous rank probability score (top), the correlation coefficient for the
ensemble mean (middle) and the spread-skill diagram (bottom) depending on lead-time for
the raw LAEFws ensemble, the EMOSws and two different analog ensemble configurations
at 29 stations in Austria tested for January (left) and July (right) 2018. The markers are set
for the results significantly different from the AnEnStd forecast (95% confidence level), while
the red shaded area represents the AnEnStd 95% confidence interval calculated by the
bootstrap percentile method [Jolliffe, 2007].
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The continuous rank probability score CRPS shows that the LAEFws exhibits a higher
skill during daytime (i.e. 0600 - 1800 UTC) than during nighttime, and higher during July
(Figure 30b) than during January (Figure 30a). The EMOS and the analog-based experiments
are more skillful during nighttime than during daytime. The improvement over the LAEFws
after post-processing is greater in January for both the EMOS and the analog approach since
the LAEFws is worse than in July.

However, the EMOS and the analog experiments are overall better in July, when the
LAEFws, which also served as input, is better. These results imply that the best result is
achieved when the input model is also working better. The AnEnStd and AnEnAll show
almost no difference. They are both more skillful than the two EMOS experiments. Even
though the differences are often subtle, they are significant for the EMOSws at almost all
lead-times during January and at several lead-times during July, especially within the first 24
hours.

Evaluating the dependency on the lead-time, the analog post-processing methods show
considerable improvement over the LAEFws for both months tested with the correlation
coefficient CC (Figure 30c-d). The analog approach outperforms the EMOS methods in terms
of correlation, often significantly. This is especially the case for January when the correlation
enlargement over EMOSws is significant for almost all lead-times and sometimes even over
EMOSstd (i.e. during nighttime).

The analog-based forecasts exibit a major statistically significant reduction of the
LAEFws RMSE at all lead-times (Figure 30e-f), similarly to the EMOS approach, with very
few significant differences. The improvement is the most evident for the LAEFws RMSE
maxima at 0000 UTC.

Similar results can be found in the spread-skill diagrams. These diagrams test if the
average ensemble spread matches the average RMSE, representing the forecast uncertainty
appropriately. The LAEFws experiment shows a strong underestimation of spread. All post-
processing methods satisfactorily increase the spread. Here, both analog-based forecasts are
showing a major imprevoment in spead-skill relationship with an almost perfect agreement
between the RMSE and the spread, while the EMOS experiments are slightly under-
dispersive, especially the EMOSws in January (Figure 30e). This can be related to the fact

that it uses only the wind speed as a predictor and most likely, not enough dispersion

77



§ 4. Post-processing the ensemble NWP

information is given. Additionally, the EMOSws only uses a 30-days training window, which

also results in a small under-dispersion.

4.6.3. Spatial performance

The climatology in Figure 19 shows that the wind speed increases towards the northeastern
part of Austria (Pannonian Plain) for both January and July, which also suggests a spatial
pattern in forecast performance. Within this subsection, it is decided to show only results for
January, since the previous results suggested the better distinction in the performance after
post-processing. Even though not shown here, the spatial distribution of results for July is
very similar to the ones for January. The results for both months are shown in Appendix B.
Additionally, due to very subtle and hardly notable differences among analog
experiments, only the AnEnStd configuration is shown as a representative. The results for the
AnEnMu and the AnEnAll experiments are almost indistinguishable from the AnEnStd,
while the AnEnCtrl, AnEnWs, and the AnEnMem are the same or slightly worse. Since the
results for these experiments carry no new information within this subsection, they are not

shown from this moment on (but can be found in Appendix B).

a) LAEFws, all stations, Jan 2018

b) AnEnStd, all stations, Jul 2018
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Figure 31. The spatial distribution of the monthly mean continuous rank probability score for
the raw LAEFws (left) and the AnEnStd (vight) for January 2018. The arrows point to
closely situated stations in the highly complex topography, where the valley stations exhibit
much better results than the mountain stations.

The value for the LAEFws monthly mean continuous rank probability score CRPS is
following the climatological wind speed pattern, having higher values at the stations prone to

higher winds. The plains are better represented by the ALADIN-LAEF topography and,
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therefore, the performance of ALADIN-LAEF is, in general, better at lower altitudes and less
complex topography. The error is reduced for the analog experiments (Figure 31b) compared
to the LAEFws (Figure 31a), following a similar pattern. Additionally, there are large
differences for the nearby stations situated in highly complex topography. The mapped CRPS
values for any forecast tested show that the valley stations are better predicted than the
mountain stations (arrows), especially for the LAEFws. A close look at the two stations in
Innsbruck (arrow in the west of Austria) shows, for example, that the AnEnStd CRPS at the
valley station is improved by around 20% compared to the LAEFws. As the LAEFws
performance at mountain stations is not as efficient, this leaves room for improvement. Here,
the CRPS can be improved by around 70% at e.g. Patscherkofel, the mountain station close to
Innsbruck. A similar pattern is shown at the station Sonnblick (arrow in the middle) where the
mountain station has much higher CRPS values (raw and post-processed) compared to the
valley station. As an example, for the three sites located in the Semmering region (most
eastern arrow), a mountain pass in the east of Austria, the different settings of the sites can be
one of the factors. The site located at the pass is prone to the gap flows (e.g. Mayr et al.
[2007]), whereas the site at the mountaintop is located within the skiing resort, somewhat
shielded by the nearby hut and not represented in the model lower boundary conditions. The
site located at the valley shows again the lower CRPS values. These differences in
predictability are mainly related to the high wind speeds and the coarse resolution of the raw
model. This suggests a large sensitivity of the models in the Alpine complex topography to
the exact details of the mountain height and shape, as well as the incoming background layer,
where subtle differences can result in a large range of responses in the downslope wind
regime. In contrast, the stations in the north-east of Austria (around Vienna) are also

climatologically prone to high wind speeds but show much better CRPS values.
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Figure 32. The AnEnStd and the LAEFws performance comparison at mountain and valley
stations by root-mean-square error decomposition into bias, ¢ bias, and dispersion error
during January 2018.

To evaluate the performance for valley and mountain stations, the stations marked with
arrows (Figure 19 and Figure 31) are investigated separately. For the valley stations, the
RMSE (1.50 ms™') shows that the LAEFws wind speed prediction performs adequately.
However, for mountainous sites, the RMSE is 6.24 ms™', due to the aforementioned reasons.
The RMSE is notably reduced by the analog approach, by 0.45 ms™! at the valley and by 3.33
ms™! at mountain stations. The RMSE decomposition (Figure 32) shows that the dispersion
error is notably reduced by the analog approach, slightly more for the mountain than the
valley sites. The LAEFws exhibits much larger systematic errors for the mountain than the
valley stations. The LAEFws bias and the o bias at the valley stations are very small, to begin
with. The analog approach is therefore not able to make a large difference after post-
processing. On the other hand, the LAEFws systematic sources of error at the mountain
stations are much more pronounced than at the valley stations. These sources of error are yet
again successfully removed by the analog approach. The RMSE reduction is therefore much
more noticeable for the mountain stations than for the valley stations, due to the reduction of
systematic sources of error, which are not as present in the raw model for the valley stations.
However, the spatial distribution of forecast performance could be further investigated in

future work.
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4.6.4. Special diagrams: reliability, ROC and rank histograms

The reliability of a probabilistic forecast is the property of that forecast to predict probabilities
that match the relative frequencies within the data. Here, it is evaluated for the probability of
wind speed exceedance of > 5 ms™!. Again, the LAEFws ensemble has lower reliability in
January (Figure 33a) than in July (Figure 33b). Furthermore, it is below the no-skill line for
the high probabilities in January. Both EMOS experiments improve LAEFws reliability,
EMOSstd improving it a bit more than EMOSws. However, the analog experiments show an
even higher resolution and reliability across all experiments, especially for the winter month.
The differences can be noticed for the probabilities up to a 50% chance of wind speed to
exceed 5 ms!, where the EMOSstd is slightly underconfident, or for the probabilities with a
more than 40% chance, where the EMOSws is slightly overconfident. Between the analog
experiments, only small and insignificant differences are found. Both analog-based
experiments exhibit almost perfect reliability for winter month almost perfectly, while being

slightly overconfident during summer.

81



§ 4. Post-processing the ensemble NWP

10 a) Wind speed; all stat.; Jan 2018

‘Number
Ta
10% 4

0.8 ..... P i
g | |
o T e T T
g 0.00.20.4 06 0.8 1.0
o 0.6 ~ Fcst. prob.
g :
Y=
e}
Q
c 0.4
o
v
o
(@]

0.2

0.0 i . ; L

0.0 0.2 0.4 0.6 0.8 1.0
Forecasted probability
c) Wind speed; all stat.; Jan 2018
; ]

0.8 : | :
o 0.6
[
-
T oAl domicafo b

0.4 0.6
False alarm rate

00 02

Figure 33. Reliability diagrams (top) and relative operating characteristic (ROC) diagrams
(bottom) for two different analog forecasts and a threshold of > 5 ms™, compared to the raw
LAEFws and the EMOSws during January (left) and July (right) 2018 at 29 stations in
Austria. The dashed lines in the reliability diagrams show a 95% confidence interval, while
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the sharpness diagrams are shown in the upper left corners.

Besides a higher resolution of the analog experiments, one can notice that the sharpness
property (the diagram in the upper left corner of the reliability diagram) is satisfactory for all
approaches, exhibiting moderate to high forecast confidence. However, the LAEFws is a bit
sharper than the post-processing experiments, indicating a higher tendency to forecast

extreme probabilities. This is preferable because of the better forecast usability if the forecasts
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are reliable. Still, the post-processing experiments are overall more accurate in terms of
reliability.

The ROC curve shows a ratio of hit rate versus false alarm rate using a pre-defined
threshold. Again, the threshold of 5 ms™ is used. The ROC curve (Figure 33c-d) indicates that
the analog methods, in general, improve the raw LAEFws forecasts comparable to or better
than the EMOS. Unlike other measures, the reliability and discrimination property exhibit
higher values for January than for July. However, this might be due to the higher
climatological frequency of such wind speeds in January (18%) than in July (9%). For that
reason, the differences among winter and summer month should not be investigated by using
the fixed threshold. The results should be used for comparison among different experiments.
The AnEnStd exhibits a slightly higher hit rate than the AnEnAll and EMOS experiments,
especially for July.

a) Wind speed; all stat.; Jan 2018 b) Wind speed; all stat.; Jul 2018
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Figure 34. Rank histograms for the AnEnStd and AnEnAll compared to the raw LAEFws,
EMOSws, and EMOSstd forecasts during January (left) and July (right) 2018 at 29 stations
in Austria.

Evaluating the rank histogram (Figure 34), a clear under-dispersion of LAEFws is found,
especially for January. This is not the case for the post-processed forecasts. It shows that the
analog method is able to improve the dispersion of the original NWP ensemble.

Finally, it is shown that the analog approach outperforms the raw LAEFws model in
terms of better accuracy, reliability, resolution, discrimination and spread for both winter and
summer months. The results are very similar to or better than the EMOS experiments shown,
with the larger differences during the winter month. The difference among analog

experiments (AnEnAll and AnEnStd) is barely notable. Therefore, it is indicated that using
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the summarized metrics of the raw model meteorological variable ensemble as a predictor in
the analog approach barely sacrifices the forecast quality, while saving computational power.
Special diagrams for the other analog-based experiments (AnEnWs, AnEnCtrl, AnEnMu and
AnEnMem) can be found in Appendix C.

4.6.5. High wind speed predictions

The majority of measured wind speed values during the selected months are within 2-3 ms!
range (30-40%), while the wind speeds higher than 10 ms™ are rare (Figure 35¢-d). However,
it is not less important to properly forecast higher wind speeds as of their higher impact on
people and damage on the property, road and air traffic disruptions, wind energy production,
and others. For this reason, it is important that a probabilistic forecast is consistently good for
several different thresholds. Besides the exceedance of 5 ms™! the thresholds ranging from 0.5
ms™! to 20 ms™! are investigated (Figure 35a-b).

The Brier skill score BSS indicates that the LAEFws forecast is somewhat skillful in
reproducing wind speeds of the order of 3 ms™!, but shows much less skill, if any, for the
higher and lower thresholds. The EMOS approach is more skillful than the LAEFws for any
threshold value in January and up to 10 ms™! (EMOSws) or even 15 ms™! (EMOSstd) in July.
The analog experiments are able to improve the forecast skills up to 10 ms™ significantly
better than the EMOS experiments. Approaches as in Baran and Lerch [2016] could be used
to adjust EMOS to higher wind speeds but have not been tried. Furthermore, the AnEnStd
and AnEnAll improve the LAEFws forecasts for all thresholds investigated for January.
Again, the AnEnCtrl, AnEnWs, and AnEnMem do improve the LAEFws forecasts but are
less skillful than the other analog experiments (shown in Appendix D). However, AnEnWs
still provides a good result. It is, thus, recommended approach if only a reduced set of
ensemble data is available or the computational resources are limited. These results reveal the
potential for post-processing using the analog approach, even though one needs to be careful
with the interpretation since the number of occurrences of high wind speed (i.e. around 20 ms”

1) is very small.

84



§ 4. Post-processing the ensemble NWP

_a) Wind speed; all stat.; Jan 2018 b) Wind speed; all stat.; Jul 2018
[ S et S S SR A e — S C— 0.6 o] et A BG4 " EMOGWS LAEFws -
—— AnEnAll —— EMOSstd
o 041
o
] .
2021
v :
o :
_E 0.0
@
-0.2
—-0.4- ; ; ‘ : . i : ; 4L ‘ ‘ ; : : ; ‘ ‘
0.0 2.5 5.0 7510.012.515.017.520.0 0 2 4 6 8 10 1z 14 16
WS (m/s) WS (m/s)
10° c) Wind speed; all stat.; Jan 2018 10° d) Wind speed; all stat.; Jul 2018
: : : ‘ : : H —— AnEnStd —e— EMOSws LAEFws
H o i —s— AnEnall —=— EMOSstd === QObserved
10—1{ B, 10-14- f N
>
g
2 102 10724
o
e
*= 1073 10734
o
o i : : \
1074 10~4_... SRR SRR S— [ T
1051 ; 5 : ‘ ; ; ; 1 10-5L ; i ; ; ; : i ;
0.0 25 5.0 7.510.012.515.017.520.0 0.0 25 5.0 7.510.012.515.017.520.0

WS (m/s) WS (m/s)

Figure 35. Brier skill score (top) and relative frequency (bottom) depending on a wind speed
threshold. The analog probabilistic forecasts are compared to the raw LAEFws and the
EMOS forecasts during January (left) and July (right) 2018 at 29 stations in Austria. The
markers are set for the BSS results significantly different from the AnEnStd forecast (95 %
confidence level).
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§ 5. SUMMARY AND DISCUSSION

The development of suitable post-processing methods that reduce starting model errors at
locations where measurements are available is needed since even state-of-the-art mesoscale
models still exhibit considerable errors, especially in complex topography. The answer might
lie in the several-decades-old idea to use analogies (i.e., similar past forecast, measurements
or analysis) for forecasting future weather. The idea is based on an assumption that if two
atmospheric states are initially very close, they will remain somewhat close for some time in
the future. More recently developed formulation of an analog-based post-processing method
is already proven to improve deterministic numerical weather prediction (NWP). The analog-
based method uses a historical data set including NWP data and observations at a single site.
The output of the analog-based method is an analog ensemble (AnEn), which can then be
used to issue a deterministic forecast.

First, a deterministic NWP is tested as an input to the analog-based method — an
operational limited-area mesoscale NWP model Aire Limitée Adaptation dynamique
Développement InterNational (ALADIN) of the Croatian Meteorological and Hydrological
Service. The deterministic output of analog-based experiments includes forecasting the mean
(AN) and median (ANM) of the AnEn. Since the other experiments produce better results than
the ANM, and specific benefits are not achieved in tested cases presented in this work, results
for the ANM are mostly discarded. The results for the AV are compared to a linear, adaptive
and recursive Kalman filter (KF) post-processing approach. The KF algorithm is first applied
using the same NWP and observations as in analog-based experiments, resulting in
deterministic Kalman filter prediction (KF). Additionally, two experiments that combine
analog and Kalman filter approaches are also performed. The first one is applying the KF to
the time series of the AV forecasts, resulting in a new deterministic forecast called the KFAN.
Additionally, the KF is applied to the same historical set of NWPs and verifying observations
but in the analog space, ordered from the worst to the best analog (Kalman Filter in Analog
Space — KFAS. Therefore, the analog-based experiments include AN, KFAN, and KFAS.

In this research, an in-depth analysis of the analog-based method over a complex
topography is performed. The target area of this research is a coastal complex topography in

Croatia, where the most significant portion of mesoscale energy is governed by strong
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downslope windstorms as well as thermally induced land-sea circulations. Additionally, the
research includes mountain complex topography and continental nearly flat topography.

By analyzing root-mean-square-error (RMSE), rank correlation coefficient (RCC) and
bias of the mean it is shown that all tested post-processing methods improve results of the 48
starting model. The best results are obtained for the analog-based method when using 15
analog ensemble members. The RMSE and bias growth is noticed for larger ensembles,
probably due to climatological differences between training and verification period.

The KF and the KFAN are the most successful post-processing methods for bias
reduction. That is expected result since the KF is constructed to remove the systematic error if
it does not change rapidly (i.e. large hour-to-hour variations). However, the application of the
KF can also lead to a decrease in the correlation coefficient (i.e. increase of the dispersion
error). The dispersion error is noticeably reduced by the KF approach in the flat topography,
where there are some indications of a systematic error influencing a large scale (i.e. period
longer than 10 days) strong wind in the model. The KF is not as successful in reducing the
dispersion error in the coastal complex area. The analog-based method reduces dispersion
error (i.e., improve RCC) regardless of the topography complexity, showing greater
adaptability than the KF forecast. The AN seems to be the most suitable post-processing
method for RCC improvement. The standard deviation (o) of the KF forecasts is closer to the
observed standard deviation o than for the raw model, especially in the complex topography.
The analog-based method is also prone to the same underestimation but not as much as KF in
the complex topography. The underestimation of the measured standard deviation o for the
analog-based method is partially explained by climatological differences between the training
and testing period. The AN forecast is the most prone to systematic underestimation of the
standard deviation ¢ among analog-based forecasts. This is due to additional averaging when
forecasting the ensemble mean, thus naturally reducing the variability of the forecast. This
systematic error is partially removed by the application of the KF in the KFAN forecast. The
KF AS forecast exhibits the highest standard deviation ¢ among the analog-based experiments
due to better adaptability. Finally, even though the analog-based method affects different
aspects of the starting model, the RMSE reduction is very similar among them and superior to
the KF approach. This is especially the case in the coastal complex topography.

The importance of the starting model resolution and formulation is investigated by using

three configurations of ALADIN model run: with 8 km grid spacing (ALADIN; 48) and 2 km
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grid spacing (ALADIN; A2, dynamical adaptation; DA), as well as verifying observations of
10-m wind speed. Comparison of post-processing methods performance with starting models
at 2 km grid spacing (42, DA) compared to the post-processing performance with the 48 as a
starting model shows that post-processing methods considerably improve numerical
predictions for all tested model resolutions. We furthermore test the hypothesis that the
greater the representation of physical processes directly simulated by the starting model, the
better is the quality of the analogs. Even though the higher-resolution starting models yield
better statistical results themselves in our target area (coastal complex topography), it is not
necessarily the case for the analog-based forecasts generated by the higher resolution model.
This may be due to the imperfections of the point-based verification metrics used that
typically increase with a resolution at near-kilometer scale grid spacing of numerical models
(i.e. high sensitivity to spatial and phase errors). Therefore, the categorical and spectral
analyses are performed to explore the potentially undetected benefits of using a higher
resolution model further.

To assess the performance of forecasts for different wind speeds, we performed a
verification using three wind speed categories: weak, moderate and strong wind. The
categories are divided by 50" and 90™ percentile. The polychoric correlation coefficient for
categorical forecasts leads to similar conclusions as to the rank correlation coefficient
analysis. The DA and the 42 exhibit higher association in the coastal complex but not in the
other topography types. Association is significantly improved by almost all post-processing
methods, except the KF forecast in the coastal complex topography. Averaged over all
locations, the analog-based method achieves better both rank and polychoric correlation
coefficient results than the KF in general, particularly the AN.

Averaged over all locations, starting models forecast weak wind occurrence too rarely and
moderate wind occurrence too often. For coastal complex topography, different starting
models yield different frequency bias. Starting models 48 and A2 over-forecast the
occurrence of moderate wind category while under-forecast the occurrence of the strong wind.
The DA seems to be the least (frequency) biased model in the coastal complex topography.
For other topography types (mountain complex and nearly flat continental) all starting models
tested in this study under-forecast the frequency of weak wind and over-forecast the
frequency of moderate and strong wind. All post-processing methods significantly reduce the

frequency bias for climatologically common wind speed categories on average. While the
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results for the KF are slightly less biased, the main challenge for the analog-based method
seems to be the under-forecasting of strong wind occurrence. The KFAS seems to be the least
biased analog-based experiment, showing the best result for strong wind while being as
unbiased as the AN in the other two categories. It has to be noted that the results in the
moderate and strong wind speed categories exhibit very large confidence intervals, providing
only indications of the post-processing methods’ ability to improve the starting model
forecast.

The critical success index (CSI) is a measure of the relative accuracy of a categorical
forecast. The KF has considerably higher relative accuracy than the starting models for weak
wind category in the nearly flat continental and mountain complex topography, but not as
much in the coastal complex topography. Results suggest that the relative accuracy result is
improved for the moderate and strong winds as well. The analog-based experiments seem to
outperform both starting models and corresponding KF forecasts for all the cases tested,
except the prediction of the strong wind in the nearly flat continental topography. For the
latter, the KF seems to be the best post-processing method once again suggesting consistent
model error when predicting strong wind. The AN achieves the highest relative accuracy for
weak wind, while the KFAN and the KFAS seem to be better in predicting the other
categories.

Using a model at finer horizontal resolution leads to improvements in the relative
accuracy for starting model predictions of the strong wind in the coastal complex topography.
This confirms that finer resolution modeling in coastal complex topography leads to a better
ability of the forecast in distinguishing low from moderate or unusually strong wind. This
horizontal resolution increase yields mixed results for other categories and topography types,
potentially due to the nature of time-space model errors and the related statistical
imperfections of the metrics. This property is then inherited by all of the post-processing
methods. However, the results corresponding to moderate and especially strong winds could
be further reinforced using a larger sample size. However, enlarging the sample size is
contradictory to the basic post-processing idea: it needs to be efficient but also quick and easy
to implement. Every time there is an update in an NWP model, the method needs to be re-
trained. That means that historical NWP forecasts need to be simulated, which is a

computationally demanding procedure. Therefore, it is rarely done for periods longer than 1
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or 2 years. That dataset is then used for training and new forecasts are issued. However, this is
only up until the model is updated again (i.e. few years maximum).

The measure extremal dependence index (EDI) independent of the underlying climatology
and, for that reason, also used to evaluate the forecast of rare events (i.e. strong wind). The
results are generally consistent with the relative accuracy analysis (measured by CSI), with
smaller confidence intervals. Overall, the analog-based method performs better than the KF,
especially the KFAN forecast. The analog-based method is more successful if it is started with
A2 than if it is started with A8 or DA models, which is consistent with the previous results.

The spectral analysis suggested that the KF approach affects only (very) large scale
motions (i.e. period longer 10 days) if the power spectral density function is biased. The KF
thus enlarges the energy of the large-scale motions in the coastal area and reduces the energy
of the large-scale motions at the nearly flat continental topography. However, the KF does not
significantly influence the shorter time scales. The KF might be slightly adjusted by
optimizing the parameters of the KF, affecting somewhat shorter scales (e.g. synoptic),
However, the qualitative effect of affecting only large scale motions would presumably
remain the same. In other words, the KF does not significantly influence the energy of the
shorter time scale motions.

Unlike the KF approach, introducing past similar situations in the analog-based method
leads to better forecasting processes on a longer-than-diurnal scale. The longer-than-diurnal
scales are much more relevant than the larger scales (i.e. a period longer than 10 days) for
forecasts up to 72 h ahead. The analog-based method improves model underestimation of the
longer-than-diurnal motions in the coastal area and in the nearly flat topography when the
model overestimates the longer-than-diurnal motions. The KFAS method is superior to the
other post-processing methods because it maintains the modeled energy for shorter-than-
diurnal part of the power spectra (unlike the AXN), while it improves both under- and
overestimation of the longer-than-diurnal motion energy (just as good as or better than the
AN). Furthermore, higher-resolution models 42 and DA generally contain more energy than
A8. Consequently, there are fewer situations with under-predicting large-scale motions. But
when they do occur, the post-processing methods behave as presented for the lower resolution
A8 model. Even though the analog-based experiments often under-predict the shorter-than-

diurnal motions, they simulate the correct amplitude of the diurnal cycle harmonics (24-h, 12-
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h, and 8-h), similarly to model. Additionally, even if the model over-predicts the amplitudes

of the diurnal cycle harmonics, the analog approach reduces them.

Table 8. The summarized results for the post-processing of the deterministic NWP regarding
benefits and limitations the post-processing methods used in this thesis.

Forecast Benefits Limitations
KF + Bias reduction — Possible correlation decrease (in
+ The standard deviation unbiased in complex topography)
mountain and flat topography — Standard deviation underestimated
+ Less prone to underestimate the in coastal complex topography
occurrence of strong wind category — Affecting only the (very) large scale
+ Best relative accuracy for the strong motions (i.e. period longer than 10
wind in the flat topography days)
AN + Best correlation increase — Bias increase for large ensembles
+ Best relative accuracy for the weak — Prone to underestimation of the
wind speed category variability (o) in mountain and flat
+ Better forecasting processes on a topography
longer-than-diurnal scale — Prone to underestimate the
occurrence of strong wind category
— Underestimates shorter-than-diurnal
scale motions
KFAN + Correlation increase — Bias increase for large ensembles
+ Adequate relative accuracy for strong | — Prone to somewhat underestimate
and moderate wind speed category the variability (¢) and the occurrence
+ Better forecasting processes on a of strong wind category
longer-than-diurnal scale — Underestimates shorter-than-diurnal
scale motions
KFAS + Bias reduction — Prone to somewhat underestimate

+ Correlation increase

+ The least prone to underestimation of
standard deviation overall

+ Less prone to underestimate the
occurrence of strong wind category
than other analog experiments

+ Adequate relative accuracy for strong
and moderate wind speed category

+ Better forecasting processes on
longer-than-diurnal scale

+ Better forecasting processes on a
shorter-than-diurnal scale

the variability (o) and the occurrence
of strong wind category
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Finally, one can conclude that each post-processing method tested in this thesis
successfully improves the deterministic NWP wind speed forecasts. However, each post-
processing method also has its strengths and weaknesses, and the choice for operational use
depends on the envisaged purpose. For that reason, the benefits but also the limitations of the
post-processing method tested are listed in Table 8. Hence, one can decide on the most
suitable approach according to the statistical properties of the starting model deterministic
NWP and potential user-specific needs.

The availability of the quality data over mountain complex topography in Croatia is
limited. Only three locations satisfy the necessary quality demands for the analog method
testing and implementation in the first part of this research. Hence, the research is extended
using 29 meteorological observation sites (TAWES) in Austria for winter (January) and
summer (July) month of 2018. Additionally, after investigating wind speed as continuous and
categorical predictand, the focus is shifted to the ensemble and probabilistic wind speed
forecasting. In addition to using deterministic NWP input to analog-based method, the ability
to calibrate the ensemble NWP is also investigated. Therefore, an in-depth analysis of the
analog-based method applied to the Austrian ALADIN — LAEF (Aire Limitée Adaptation
dynamique Développement InterNational model — Limited-Area Ensemble Forecasting)
ensemble forecasts, is provided in the second part of this research.

The aim of this work is to test the potential improvement of the NWP ALADIN-LAEF
ensemble forecasts for the 10-m wind speed (LAEFws) while maintaining low computational
costs for the analog search. For that reason, several experiments using different forecast
information of the Austrian ALADIN-LAEF ensemble as input to the analog method are
thoroughly analyzed. First, the sensitivity tests are performed to determine the optimal
influence a certain meteorological parameter used as a predictor should have in the analog
search procedure. The results show that the wind direction is the most important predictor in
addition to wind speed, followed by temperature and relative humidity parameters, especially
in the more complex topography. Using an NWP ensemble enables the use of more
meteorological variables (predictors) in more than one realization as input to the analog
search. In addition, using summarized information such as the ensemble mean and/or the
standard deviation of the ensemble or every single ensemble member can provide useful

insights. If the standard deviation of the ensemble is used as a predictor, its optimal
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contribution is about 40% of the ensemble mean predictors’ contribution in the majority
locations tested.

In total, six analog-based AnEn experiments are conducted using a different set of input
information from the ALADIN-LAEF model as predictors to the analog-based method. The
choice of predictors from raw NWP model includes:

e The ensemble control member of all available parameters (4AnEnCtrl)

All wind speed raw forecast ensemble members (AnEnWs)
e The ensemble mean of all available parameters (AnEnMu)
e The ensemble mean and spread of all parameters (AnEnStd)
e All ensemble members of all parameters (AnEnAll)
e All available parameters corresponding to only one (distinguishable) ensemble
member (AnEnMem),
where the abbreviations for analog experiments are listed in the brackets.

All experiments provide the 17 members wind speed analog ensemble forecast. To better
understand the impact on the raw forecasts, the two experiments using the ensemble model
output statistic post-processing approach (EMOS) are used as a baseline. The EMOSws only
uses the last 30 days as training and only the wind speed as an input, whereas the EMOSstd
uses all available training data and all variables including seasonal functions. The EMOSws is
slightly more successful in removing the systematic, while the EMOSstd the dispersion
source of the error.

Results show that all AnEn experiments substantially improve the raw model forecast.
However, the most computationally demanding “member by member” AnEnMem experiment
proved to be the least successful. The undesirable properties of the raw model, such as under-
dispersion and lower resolution, are inherited more easily for this than for the other analog
experiments. That is probably due to the fact that the analog-search pool is smaller than when
seeking among all members independently, as it is the case in the other analog experiments.
Using only one predictor variable as input (the 17 members of LAEFws) already improves the
forecast skills and lowers the systematic error of the ensemble mean, better or comparable to
the AnEnMem experiment. If the number of available parameters from the raw model is
limited, the experiment using only wind speed ensemble members (AnEnWs) proved to be
successful. Even better results are achieved when using more than one predictor variable.

Therefore, similar or better results are achieved when using only the ensemble control
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member as input (AnEnCtrl). In addition, using more than one ensemble member within the
analog search procedure improves results even more. The results confirm the hypothesis that
post-processing methods have a large potential to improve the raw ensemble forecast.
Moreover, it is shown that often there is no need to use the full input spectrum of a raw
probabilistic model, i.e. all ALADIN-LAEF members as predictors. Using basic information
of an input ensemble, such as ensemble mean and ensemble standard deviation, improves the
forecast skills almost as successful as using the full input spectrum of a raw probabilistic
model as predictors, with very little significant differences, if any. Furthermore, it is
computationally less demanding. This result confirms the additional hypothesis that the
summary metric (e.g. mean and standard deviation) is the optimal way to add the aspects of
error growth, that can be represented dynamically by the input ensemble model, to the flow-
dependent error growth already captured by the analog approach. Therefore, it can be
suggested as the most promising configuration among experiments tested in this work.

All post-processing experiments in this work provide better results than the raw input
model, as expected, reducing the under-dispersion while increasing the reliability and
discrimination. The best results for both the analog approach and the EMOS are achieved in
July when the raw model performs better. The raw model under-spread is almost completely
removed by all experiments. The EMOSws approach is slightly under-dispersive, especially
in January, probably due to using only wind speed parameters and much shorter training than
other post-processing experiments.

The accuracy of the ensemble forecast is measured by the RMSE for the ensemble mean
and the continuous rank probability score (CRPS). The analog-based experiments outperform
the raw LAEFws forecast in terms of significantly better accuracy for all forecast lead-times
during both (winter and summer) months. They are more skillful during nighttime than during
daytime. The analog-based method is comparable to or outperforms both EMOS experiments.
The outperformance is noticed at short lead-times and during the winter month, especially in
terms of correlation. The EMOSws is overconfident to a certain extent for the high probability
forecasts, while EMOSstd is underconfident for low probability forecasts. The analog-based
experiments are almost perfectly reliable. Additionally, discrimination is slightly better than
the EMOS due to a higher hit rate. The difference among the analog experiments is less

pronounced than when compared to the LAEFws and the EMOS experiments, confirming
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that using basic information of an input ensemble, such as ensemble mean and standard
deviation is often sufficient.

If considered spatially, the LAEFws error follows the climatological wind speed pattern,
having higher values at the stations prone to higher winds. Also, the LAEFws error is more
pronounced in the alpine complex topography than in the eastern plains. The accuracy of post-
processing methods is improved when compared to the raw model forecast, following a
similar pattern. Additionally, even though an improvement over the raw model forecast is
evident, large differences among nearby stations are noticed in highly complex topography.
The valley stations wind speed is better predicted by the raw model, and post-processing
result is, therefore, overall better at the valley stations than at the mountain stations with the
climatologically higher wind speeds. On the other hand, the relative improvement to the raw
model is more pronounced at mountain stations due to the reduction of systematic sources of
error by post-processing. These sources of error are less present in the raw model for the
valley stations.

It is very important to assess the post-processing performance for high wind speed
because of the impact on people and property. For that reason, several thresholds ranging
from 0.5 ms™! to 20 ms™, are used to test the skill of the post-processed forecasts. The result
shows that the LAEFws forecast is skillful in reproducing wind speeds of the order of 3 ms’!
thresholds, but the same can not be concluded at higher or lower thresholds. The analog
experiments are able to improve the raw forecast, exhibiting significantly higher skill than the
EMOS, up to 10 ms"' wind speed threshold. Furthermore, the AnEnStd and the AnEnAll
experiments significantly improve the raw model results for all thresholds tested in January.
However, neither of the post-processing methods tested is an adequate tool to reproduce the
wind speeds exceeding 15 ms™'. For that purpose, further modifications of the proposed
methods, their combination, or the usage of the additional calibration method, such as quantile
regression forests, should be investigated.

To summarize, even the simple experiment AnEnWs, which uses only one
meteorological parameter (wind speed) as a predictor variable, significantly increases
correlation with the measurements and decreases the error. Using more meteorological
parameters as predictor variables improves the results even further, leading to substantial
improvements in terms of correlation, reliability, spread-skill ratio and error reduction

(measured by RMSE and CRPS). We confirmed our primary hypothesis that the analog
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experiments can remarkably improve the raw LAEFws forecast. Overall, the experiments
prove to be at least as successful as the EMOS post-processing approach, or even more.

It is shown that the optimal weight of the different predictor variables in the analog
search procedure is location-dependent and every meteorological parameter tested is
beneficial at least at certain areas, and, hence, should not be neglected. Furthermore, we
demonstrate the importance of including the information on the raw ensemble uncertainty into
analog search procedure in contrast to using only one raw ensemble member (AnEnCtrl) or
the mean of the raw ensemble (AnEnMu). Since the two the most successful analog
experiments, AnEnAll and AnEnStd, rarely differ significantly, we have proven the
additional hypothesis that the summary metric is the optimal way to include the aspect of the
error growth, that can be represented dynamically by the raw model.

The error reduction by the analog-based method is notable regardless of the topographic
features due to (but not limited to) systematic error reduction. After demonstrating the
applicability of the analog-based method in the coastal complex topography, the performance
is hereby confirmed even for mountain complex topography tested for the alpine region. This
makes the analog-based method a perfect candidate for the implementation in the Croatian
Meteorological and Hydrological Service operational suite. Additionally, the importance of a
predictor weighting strategy for a successful implementation is also highlighted. However, the
post-processing methods tested in this thesis are not an adequate tool to reproduce the
extremely high wind speeds (i.e. to issue warnings) in the proposed configuration. For that
purpose, further modifications of the proposed methods or even the additional correction or

calibration are advised.
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§ 6. CONCLUSION

The performance of the analog-based post-processing method is tested in climatologically
and topographically different regions in Croatia and Austria, for point-based wind speed
predictions at 10 m above the ground. The target area is coastal-complex topography in
Croatia. First, the analog-based method is applied to the deterministic numerical weather
predictions (NWPs). The performed verification shows that all analyzed post-processing
methods improve upon the starting model forecasts. The level of improvement depends on the
type of topography, starting model and verification metric. Each tested post-processing
method has its strengths and weaknesses and the choice for operational use of those methods
depends on the envisaged purpose. The results are presented in such a manner that after a
simple statistical analysis of the potential starting model, one can thus decide which post-
processing method is the most applicable for a specific situation.

The forecasting using the mean of the analog ensemble exhibits the highest correlation
with measurements. It is thus the most applicable if the model is unbiased, but there is a need
to reduce the dispersion error. The applications of the Kalman filter directly on the NWP
forecast (KF) or on the AN forecast (KFAN) are the most successful in removing bias,
whereas the KFAN is better suited if the topography is more complex. The analog-based
method exhibits better result than the Kalman filter approach in the complex topography in
general, especially coastal area. If the focus is on the prediction of the weak wind, then the
AN 1is the most suitable, whereas for somewhat higher wind speed the analog approach is
better suited when combined with the KF (i.e. applying the Kalman filter to the sorted analogs
- KFAS). The Kalman filter algorithm affects only the (very) large scale flows: enlarges the
energy of these large-scale motions in the coastal area and reduces the energy at the nearly
flat continental topography for the periods longer than 10 days. On the other hand, the analog-
based method affects smaller scales. If the starting model power spectral density is biased, the
KFAS method is superior to the other approaches. The superior adaptability of the KFAS
results in better adaptability of the shorter than diurnal motions.

Additionally, results of the post-processing methods are further improved if higher-
resolution (convection-permitting) starting model data are used in the coastal complex
topography. Introducing the higher-resolution modeling in nearly flat continental topography

results with very similar power spectral density curves. The experiments exhibit at least as
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good results when using the coarser horizontal resolution, if not better. Therefore, the need for
using 2-km as opposed to the 8-km grid spacing model may not be necessary. On the other
hand, the higher-resolution modeling increased the energy available for all of the time scales
in the mountain complex topography. The latter, however, yielded mixed results when using
the other verification metrics for both the starting models and corresponding post-processing
results. In this case, the results may be improved by using even finer model resolution than 2-
km to represent local flows.

Due to the limited availability of measurements in the mountain complex topography, the
second part of this research is performed using Austrian sites. After a thorough analysis of the
analog-based method application to the deterministic NWP, the focus is now shifted to the
application to the ensemble NWP. Naturally, the verification procedure in this part includes
the scores suitable for the ensemble and probabilistic forecasting (i.e. Brier skill score,
continuous rank probability score, spread-skill diagram, rank histograms) to analyze the most
important aspects such as reliability, sharpness, discrimination, spread-skill ratio and
statistical consistency.

Substantial improvements of raw model wind speed forecast are demonstrated in terms of
correlation, reliability, spread-skill ratio and error reduction (measured by RMSE and CRPS).
The benefits of using even the simple analog-based method implementation that uses only
wind speed as a predictor variable are significant, and using more meteorological parameters
as predictor variables further improves the results. Overall, the experiments are proved to be
as successful as the ensemble model output statistic (EMOS) post-processing approach or
better.

We demonstrate the importance of a predictor weighting strategy and also including the
summarized information on the raw ensemble uncertainty into the analog search procedure in
contrast to using only one raw ensemble member or the mean of the raw ensemble, but not
necessarily the full input spectrum of a raw probabilistic model.

The error reduction is first demonstrated for coastal complex topography in Croatia and
then confirmed even for mountain complex topography in the alpine region. encouraging the
implementation of the analog-based method in the operational suite of the Croatian
Meteorological and Hydrological Service. Finally, several possible future research avenues
are proposed as a continuation of this research, such as investigating the implementation for

forecast fields or extremely high wind speed forecasts.
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§ 7. LIST OF ABBREVIATIONS

ABBREVIATION DESCRIPTION

- operational limited-area mesoscale ALADIN model at 2-km

AZ . . .
horizontal grid spacing
48 - operational limited-area mesoscale ALADIN model at 8-km
horizontal grid spacing
- Aire Limitée Adaptation sdynamique Développement InterNational
ALADIN
model
- Aire Limitée Adaptation dynamique Développement InterNational
ALADIN-LAEF o _
model — Limited-Area Ensemble Forecasting
AN - analog ensemble mean forecast
AnEn - analog ensemble
- analog-based experiment that uses all ensemble members of all
AnEnAll . )
meteorological parameters as an input
- analog-based experiment that uses the ensemble control member of
AnEnCtrl ) . .
all available meteorological parameters from raw model as an input
- analog-based experiment that uses all available meteorological
AnEnMem parameters corresponding to only one (distinguishable) raw model
ensemble member
- analog-based experiment that uses the raw model ensemble mean of
AnEnMu ) ) )
all available meteorological parameters as an input
- analog-based experiment that uses the raw model ensemble mean and
AnEnStd ) .
spread of all meteorological parameters as an input
- analog-based experiment that uses all wind speed raw forecast
AnEnWs )
ensemble members as an input
ANKF - equivalent to KFAS forecast
ANM - analog ensemble median forecast
ARPEGE - Action de Recherche Petite Echelle Grande Echelle global model
BS - Brier score
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ABBREVIATION DESCRIPTION

BSS - Brier Skill Score

CRPS - continuous rank probability score

CSI - critical success index; equvalent to threat score

DA - operational ALADIN high-resolution dynamical adaptation model

dd - ALADIN-LAEF wind direction prediction

DIU - diurnal (motions)

ECMWF - European Centre for Medium-Range Weather Forecasts

EDI - extremal dependence index

EMOS - ensemble model output statistic

EMOSsid - EMOS experiment that uses all available training data and all
variables including seasonal functions

EMOSws - EMOS experiment only using the last 30 days as training and only
the wind speed as an input

EPS - Ensemble Prediction System

F - forecasts

F - false alarm rate

FBias - frequency bias

H - hit rate

ISBA - Interaction Soil Biosphere Atmosphere

- Kalman filter; Kalman filter forecast (applied to starting model time

&F series)

KFAN - Kalman filter of the analog ensemble mean prediction

KFAS - Kalman filter in analog space prediction

LAEFws - ALADIN-LAEF ensemble wind speed predictions

LAM - limited-area model

LTD - longer than diurnal (motions)

N - number of ensemble members

NOAA - National Oceanic and Atmospheric Administration

NWP - numerical weather prediction

O - observations

100



§ 7. List of abbreviations

ABBREVIATION DESCRIPTION

P - ALADIN-LAEF pressure prediction

PCC - polychoric correlation coefficient

prec - ALADIN-LAEF precipitation prediction

PSD - power spectral density

RCC - rank correlation coefficient

REL - reliability term in the Brier score decomposition
RES - resolution term in the Brier score decomposition
rH - ALADIN-LAEEF relative humidity prediction
RMSE - root-mean-square error

ROC - relative operating characteristic

SOI - Southern Oscillation Index

STD - shorter than diurnal (motions)

t2m - ALADIN-LAEF temperature (2m) prediction
UNC - uncertainty term in the Brier score decomposition
UTC - coordinated universal time

WMO - World Meteorological Organization

ws - ALADIN-LAEF wind speed prediction

WSPD - wind speed prediction

U - ensemble mean

o - standard deviation
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9.1. Appendix A — spectral analysis
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Fig. I. The power spectral density of the observed 10-m wind speed, starting model forecasts
(A8, A2 and DA) and the corresponding post-processing methods (KF, AN, KFAN and
KFAS) for stations Jasenice, Dubrovnik, Ogulin and Osijek during year 2012. The confidence
intervals (in the logarithmic scale) are noted by the cross-like symbol in the upper right
corner.
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Fig. Il. The power spectral density of the observed 10-m wind speed, starting model forecasts
A8 and the corresponding post-processing methods (KF, AN, KFAN and KFAS) for 14
stations in Croatia during year 2012. The confidence intervals (in the logarithmic scale) are
noted by the cross-like symbol in the upper right corner.
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Fig. IIl. The power spectral density of the observed 10-m wind speed, starting model forecasts
A2 and the corresponding post-processing methods (KF, AN, KFAN and KFAS) for 14
stations in Croatia during year 2012. The confidence intervals (in the logarithmic scale) are
noted by the cross-like symbol in the upper right corner.
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9.2. Appendix B — spatial performance
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Fig. V. The spatial distribution of the monthly mean continuous rank probability score for the
raw LAEFws, EMOSws and EMOSstd forecasts for January (left) and July (right) 2018.
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Fig. VI. The spatial distribution of the monthly mean continuous rank probability score for
the AnEnStd and AnEnAll forecasts for January (left) and July (right) 2018.
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Fig. VII. The spatial distribution of the monthly mean continuous rank probability score for
the AnEnCtrl, AnEnMem, AnEnWs and AnEnMu forecasts for January (left) and July
(vight) 2018.
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9.3. Appendix C - special diagrams
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Fig. VIII. Reliability diagrams (top) and relative operating characteristic (ROC) diagrams
(bottom) for four different analog forecasts and a threshold of > 5 ms™ during January (left)
and July (right) 2018 at 29 stations in Austria. The dashed lines in the reliability diagrams
show a 95% confidence interval, while the sharpness diagrams are shown in the upper left

corners
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All stations, Jan 2018 All stations, Jul 2018

0.35 AnEnWs AnEnMu 0.35 AnEnWs AnEnMu
030 i B AnEnCtrl AnEnMem 030 . AnEnCtrl AnEnMem
0.251 0.25

9 o

§ 0.201 §0.20

50.15* 50.15

L .
0.101 0.10
S 1000 0
0.00 Category bins 0.00 Category bins

Fig. IX. Rank histograms for the AnEnWs, AnEnCtrl, AnEnMu and AnEnMem forecasts
during January (left) and July (right) 2018 at 29 stations in Austria.

9.4. Appendix D — high wind speed predictions

All stations, Jan 2018 All stations, Jul 2018

(IR e — 0.6 AnEnWs AnEnMu
—— AnEnCtrl —— AnEnMem
E 0.4 E 0.4 T
o o
(9} (o]
2 02 Y 02
~ &~
[y} wn
b 0.0 b 0.0
@ @
-0.2 - - : -0.2 \
—— AnEnWs AnEnMu
—— AnEnCtr| —— AnEnMem
-0.4 - o : -0.4 s o :
.0 25 50 7.5 10.012.515.017.520.0 .0 25 50 7.5 10.012.515.017.520.0
WS (m/s) WS (m/s)
10° All stations, Jan 2018 10° All stations, Jul 2018
! —s— AnEnWs  —s— AnEnMem —»— AnEnWs  —s— AnEnMem
—e— AnEnCtrl  mss= Observed —e— AnENCtrl == Observed
AnEnMu 10-1 AnEnMu
> >
(9] (&)
c c 2
g ¢ 10
o o
Q Q
= <1073
O o
o o
107 107
\
10~ -

0.0 2.5 5.0 7.5 10.012.515.017.520.0 0.0 2.5 5.0 7.5 10.012.515.017.520.0
WS (m/s) WS (m/s)

Fig. X. Brier skill score (top) and relative frequency (bottom) depending on a wind speed

threshold. The analog probabilistic forecasts shown for January (left) and July (vight) 2018 at

29 stations in Austria. The markers are set for the BSS results significantly different from the

AnEnWs forecast (95 % confidence level).
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