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The performance of the analog-based post-processing method is tested in climatologically and 
topographically different regions, for point-based wind speed predictions at 10 m above the 
ground, and compared to the baseline Kalman filter (KF) model. This research shows that the 
deterministic analog-based predictions produced using deterministic numerical weather 
prediction (NWP) model output improve the correlation between predictions and 
measurements while reducing the forecast error compared to the starting model predictions 
regardless of the terrain complexity. While the KF based approach generally outperforms the 
analog-based predictions in the bias reduction, the combination of the KF and analog 
approach can be similarly successful.  
In the coastal complex area, characterized by a larger frequency of high wind speed, the 
analog-based predictions are more successful in reducing the dispersion error than the KF. 
The application of the KF algorithm to the analogs in the so-called analog space (KFAS) is 
the least prone to the standard deviation underestimation among the analog-based predictions. 
All analog-based predictions improve prediction of larger than diurnal motions while the 
KFAS is superior among all analog-based predictions in predicting alternating wind regimes 
on the time scales shorter than a day. The analog-based predictions better distinguish different 
wind speed categories in the coastal complex topography by using a higher-resolution model 
input.  
The analog method is also applied to the ensemble NWP. Evaluation of several configurations 
using various predictor variables is conducted through a set of sensitivity experiments. The 
results are compared to the ensemble model output statistic (EMOS) baseline model. Results 
show that both analog-based and EMOS experiments considerably improve the raw model 
forecast. The analog-based predictions are overall comparable to or even outperform the 
EMOS. Assessing the post-processing performance for high wind speeds, it is shown that the 
analog experiments can improve the raw forecast, exhibiting significantly higher skill than the 
EMOS. The processes at lower altitude stations seem to be better represented by the raw 
model, which leads to better input forecast to the post-processing and better overall result than 
for the mountain stations. Generally, the difference between several analog-based experiments 
is less pronounced. Furthermore, it is demonstrated that the usage of summarized ensemble 
measures is an optimal way to improve the forecast skill, compared to the other analog-based 
experiments.  

Keywords: analog-ensemble forecast, complex topography, ensemble model output 

statistics, Kalman-filter, mesoscale model, statistical post-processing, wind ensemble forecast 



§ Sažetak  

 xv 

 

Sveučilište u Zagrebu 

Prirodoslovno-matematički fakultet 

Geofizički odsjek 

Doktorska disertacija 

 

SAŽETAK 

PROGNOZA BRZINE VJETRA UPOTREBOM METODE ANALOGONA NAD 

SLOŽENOM TOPOGRAFIJOM 

 

Iris Odak Plenković 
Državni hidrometeorološki zavod  

 

Metoda analogona, koja se koristi za naknadnu obradu produkata numeričkog modela, 

testirana je za prognoze vjetra na 10 m iznad tla na lokacijama koje pripadaju topografski i 

klimatološki različitim područjima te uspoređena s metodom koja koristi Kalmanov filtar 

(KF). Deterministički produkt metode analogona ima veću koreliranost prognoze i mjerenja te 

manju pogrešku u odnosu na numerički model koji metoda koristi kao ulazni podatak, 

neovisno o složenosti topografije. Metoda naknadne obrade KF iznimno je uspješna u 

uklanjanju pristranosti prognoze. Kombinacija metode analogona i KF gotovo je jednako 

uspješna u uklanjanju pristranosti, pri čemu pokazuje i dodatne prednosti svojstvene metodi 

analogona.  

U obalnom području, karakteriziranom kompleksnom topografijom i učestalim jakim 

vjetrom, metoda analogona uspješnija je od KF u uklanjanju pogreške disperzije. Dodatno, 

primjena Kalmanovog filtra u takozvanom prostoru analogona (KFAS) je eksperiment koji je 

najmanje podložan podcjenjivanju prirodne varijabilnosti vjetra, mjereno standardnom 

devijacijom. Svi eksperimenti koji koriste analogije poboljšavaju prognoze na vremenskim 

skalama duljima od jednog dana. Međutim, na skalama kraćima od jednog dana je KFAS 

najuspješniji eksperiment. Korištenje modela veće rezolucije kao ulazni podatak za metodu 

analogona doprinosi da prognoza lakše razlikuje kategorije vjetra.  

Metoda analogona primijenjena je i na ansambl prognozu numeričkog modela. Pritom je 

testirano nekoliko različitih konfiguracija metode kroz testove osjetljivosti. Eksperimenti se 

prvenstveno razlikuju po ulaznim parametrima, tj. po načinu korištenja informacija iz početne 

ansambl prognoze modela. Rezultati metode analogona uspoređeni su s metodom naknadne 

obrade koja je bazirana na statistici simuliranih podataka za ansambl prognoze (EMOS). Obje 

testirane metode naknadne obrade vidno poboljšavaju prognozu ulaznog modela. Pritom je 

metoda analogona usporediva s metodom EMOS, ili čak i bolja. Dodatno, metoda analogona 

ostvaruje signifikantno bolji rezultat za prognozu jakog vjetra od početnog modela te metode 

EMOS. U numeričkom modelu procesi su bolje razlučeni za lokacije smještene na nižoj 

nadmorskoj visini nego za planinske lokacije. Posljedično, to znači i bolji rezultat nakon 

naknadne obrade produkata modela te bolji ukupan rezultat za lokacije nižih nadmorskih 

visina. Općenito, razlika među eksperimentima s različitim konfiguracijama metode 

analogona manje je izražena. Štoviše, pokazano je da je upravo korištenje sažetih informacija 

o prognozi ulaznog modela optimalan način da se poboljša točnost prognoze.  

Ključne riječi: EMOS, Kalmanov filtar, kompleksna topografija, mezoskalni model, 

metoda analogona, statističke metode naknadne obrade, ansambl prognoza vjetra 
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PROŠIRENI SAŽETAK 

i. UVOD 

Čak i najsuvremeniji prognostički modeli proizvode lokalne pogreške koje se ne mogu 

zanemariti, posebno pri prognoziranju nad kompleksnom topografijom [Horvath et al., 2012]. 

Zato je, uz razvoj prognostičkih modela, od izrazite važnosti razviti i dodatne alate koji 

korištenjem raspoloživih mjerenja smanjuju pogrešku modela, poput metoda naknadne 

obrade. Jedna od takvih metoda, tzv. metoda analogona, temelji se na desetljećima staroj ideji 

da se u prognozi koristi analogija s prethodnim situacijama (npr. Lorenz [1969]). Naime, 

pretpostavka je da će dva inicijalno slična stanja atmosfere neko vrijeme ostati slična. U 

prošlosti su se u metodi analogona koristile razne formulacije te uspoređivale točkaste 

prognoze, prognoze polja, mjerenja, analize i dr. U nedavnoj prošlosti razvijena je formulacija 

koja koristi numeričku prognozu za određenu lokaciju, uspoređuje je s povijesnim 

prognozama i odabire najsličnije (tzv. analogone) te je pokazala zavidne rezultate [Delle 

Monache et al., 2011, 2013]. Nakon što se odaberu analogoni, vrijednosti koje su izmjerene u 

tom terminu u prošlosti formiraju članove ansambla analogona (AnEn) (shema na Slici 1 na 

str. 7). Ako je model konzistentan u smislu da u sličnim situacijama proizvodi slične pogreške 

ili propušta predvidjeti procese fine lokalne skale, korištenjem mjerenja u rezultate 

prognostičkog sustava se uključuju učinci koje model nije u mogućnosti dinamički razlučiti.  

ii. NAKNADNA OBRADA DETERMINISTIČKE PROGNOZE 

U prvom dijelu ispitana je metoda analogona koja koristi determinističku prognozu 

operativnog numeričkog modela Aire Limitée Adaptation dynamique Développement 

InterNational (ALADIN) [ALADIN International Team, 1997], koji se koristi na Državnom 

hidrometeorološkom zavodu u Hrvatskoj (Slika 4, str. 14). Pritom je ispitana deterministička 

prognoza srednjaka (AN) i medijana (ANM) ansambla analogona. Pošto rezultati prognoze 
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ANM nisu uspješni kao AN (npr. Slika 6 na str. 22) te nisu pokazali specifične prednosti u 

odnosu na ostale prognoze, nisu detaljnije prikazani. Rezultati prognoze AN uspoređeni su s 

linearnim, rekurzivnim i prilagodljivim pristupom koji se temelji na primjeni Kalmanovog 

filtra (KF) [Kalman, 1960; Delle Monache et al., 2011]. Ovaj pristup koristi identične podatke 

(početnog) numeričkog modela i dostupnih mjerenja kao metoda analogona, producirajući 

prognozu KF. Dodatno, testirana su dva eksperimenta koji sjedinjuju metode analogona i KF. 

Prvi se temelji na primjeni KF na vremenskom nizu prognoza AN, rezultirajući prognozom 

KFAN. Drugi eksperiment primjenjuje KF, no umjesto da koristi vremenski niz prognoza 

početnog modela, koristi prognoze sortirane po sličnosti s posljednjom prognozom (onom 

koja se pokušava poboljšati). Tako se formira takozvani prostor analogona te se metoda zove 

Kalmanov filtar u prostoru analogona (KFAS). Shema prognoza KFAN i KFAS prikazana je 

na Slici 5 (str. 17), a ograničenje prognoze KF kod izrazite varijabilnosti pogreške objašnjeno 

na Slici 9 (str. 27). Konačno, determinističke prognoze metodom analogona uključuju AN, 

KFAN i KFAS. 

U radu se ispituje primjena metode analogona na području karakteriziranom 

kompleksnom topografijom. U fokusu je obalno područje Hrvatske, gdje se značajan udio 

mezoskalne energije prenosi strujanjima niz padine prema moru te termički induciranom 

obalnom cirkulacijom [Grisogono and Belušić, 2009]. Ispitana je primjena metode i nad 

planinsko-kompleksnom topografijom te ravnicom kontinentalne Hrvatske (Slika 2, str. 9; 

Slika 3, str. 11).  

Evaluacija prognoze brzine vjetra kao kontinuiranog prediktanda 

Analizirajući korijen srednje kvadratne pogreške (RMSE), koeficijenta korelacije ranga (RCC) 

te pristranosti srednjaka, pokazano je da sve testirane metode naknadne obrade poboljšavaju 

rezultat operativnog modela ALADIN (Slika 6, str. 22). Pritom su najbolji rezultati postignuti 

pri korištenju 15 članova AnEn. Korištenjem više od 15 članova uočen je porast pogreške, što 

je vjerojatno posljedica klimatološke razlike između razdoblja koje se koristilo za učenje 

metode u odnosu na razdoblje koje se koristilo za verifikaciju.  

U radu je pokazano da su eksperimenti KF i KFAN najuspješniji testirani pristupi za 

uklanjanje pristranosti srednjaka (Slika 7, str. 24). Očekivan je to rezultat, jer je KF 

konstruiran u svrhu uklanjanja sustavne pogreške ako se ona naglo ne mijenja (kod naglih i 

velikih dnevnih varijacija KF nije jednako uspješan). Uz to, prognoza KF povećava 

koeficijent korelacije između prognoze i mjerenja u odnosu na početni model nad relativno 
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ravnom topografijom u kontinentalnoj Hrvatskoj, gdje postoje indikacije da u prognozama 

numeričkog modela postoje sustavne pogreške koje utječu na gibanja velike skale (npr. za 

periode dulje od 10 dana). Međutim, prognoza KF nije jednako uspješna u uklanjanju 

nesustavne (disperzijske) pogreške na obalnom području. Za razliku od prognoze KF, ostale 

metode naknadne obrade pokazale su se uspješnima i na kompleksnoj topografiji poput 

obalnog područja. Iako svi pristupi koji koriste analogije pritom pokazuju veliku sposobnost 

prilagodbe području, u smanjenju nesustavne pogreške, najuspješnija je prognoza AN.  

Model ALADIN s horizontalnom razlučivošću od 8 km (A8) podcjenjuje prirodnu 

varijabilnost vjetra nad kompleksnom topografijom (Slika 8, str. 26). Standardna devijacija 

(σ) prognoze KF bliža je σ izmjerenih vrijednosti nego je to slučaj kod A8. Podcjenjivanje σ 

izmjerenih vrijednosti manje je izraženo kod metode analogona na obalnom području. Pritom 

je prognoza AN najsklonija podcjenjivanju σ. Razlog je najvjerojatnije razlika u varijabilnosti 

između razdoblja učenja metode analogona, ali i usrednjavanje koje se koristi pri 

prognoziranju srednjaka ansambla i djelomično smanjuje prirodnu varijabilnost vjetra. 

Eksperimenti koji kombiniraju metodu analogona i KF uspješniji su u uklanjanju sustavne 

pogreške pristranosti standardne devijacije σ od prognoze AN, pri čemu je najuspješnija 

prognoza KFAS. Različiti eksperimenti prognoze metodom analogona djeluju na različite 

aspekte početnog numeričkog modela, no u konačnici rezultiraju sličnim smanjenjem 

pogreške mjerene s RMSE. Prednost primjene metode analogona nad primjenom (isključivo) 

KF posebno se ističe u obalnom području.  

Utjecaj početnog numeričkog modela na rezultat nakon naknadne obrade njegovih 

produkata ispitan je koristeći tri različite konfiguracije operativnog modela ALADIN [Tudor 

et al., 2013]: dvije verzije s punim paketom fizike i horizontalnom razlučivosti od 8 km (A8), 

odnosno 2 km (A2), te model dinamičke adaptacije (DA) s horizontalnom razlučivosti od 2 

km. U svim ispitanim slučajevima dolazi do poboljšanja rezultata ulaznog modela nakon 

primjene metoda naknadne obrade (Slika 10, str. 32). Testirana je hipoteza da se korištenjem 

modela veće razlučivosti, koji je tako u mogućnosti simulirati više fizikalnih procesa, mogu 

izabrati i kvalitetniji analogoni. Međutim, za rezultate nakon naknadne obrade nije moguće 

donijeti jednoznačan zaključak. Osim utjecaja samog početnog modela, ovakav rezultat može 

biti posljedica nesavršenosti postupka pri ocjenjivanju rezultata prognoze. Takve 

nesavršenosti pri evaluaciji točkaste prognoze, poput velike osjetljivosti verifikacijske metrike 

na male prostorne i fazne pogreške, posebno se ističu kod modela velike razlučivosti (npr. od 
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oko 1 km). Analiza zato sadrži i evaluaciju prognoze za različite kategorije brzine vjetra te 

spektralnu analizu. Korištenje prostornih polja u ocjeni prognoze olakšalo bi identificiranje 

dodatnih prednosti korištenja modela velike razlučivosti. No, analize adekvatne razlučivosti i 

točnosti, kojima bi se takve prednosti kvantificirale, nisu dostupne.  

Evaluacija prognoze brzine vjetra kao kategoričkog prediktanda 

Kategorička verifikacija prognoza brzine vjetra provedena je koristeći vrijednost 50.-og i 90.-

og percentila za identifikaciju tri kategorije vjetra: slab, umjeren i jak. Polihorički koeficijent 

korelacije (PCC; Slika 11, str. str 35) mjeri asocijaciju koristeći tablicu kontingencije (Tablica 

3, str. 34) [Juras i Pasarić, 2006]. Mjera PCC pokazuje da modeli veće razlučivosti (A2 i DA) 

bilježe i veću asocijaciju s mjerenjima u obalnom području, no to nije slučaj za ostale tipove 

topografije (Slika 12, str. 38). Osim prognoze KF nad obalno-kompleksnom topografijom, 

sve metode naknadne obrade povećavaju asocijaciju prognoze i mjerenja. U prosjeku, metoda 

analogona ostvaruje bolji rezultat od prognoze KF, pri čemu najbolji rezultat ostvaruje AN.  

Nad obalno-kompleksnom topografijom prognoza A2 je nepristrana za sve kategorije 

vjetra (Slika 13, str. 40). Ostala dva modela podcjenjuju učestalost pojave jakog vjetra (model 

DA jakog i slabog vjetra), dok precjenjuju učestalost umjerenog vjetra. Nad ostalim tipovima 

topografije svi modeli podcjenjuju učestalost slabog, a precjenjuju učestalost umjerenog i 

jakog vjetra. Nakon primjene bilo koje metode naknadne obrade, u prosjeku se smanjuje 

pristranost pri prognoziranju klimatološki učestalih kategorija (slab i umjeren vjetar). 

Međutim, podcjenjivanje učestalosti kategorije jakog vjetra predstavlja najveći izazov za 

metodu analogona. Prognoza KFAS čini se pritom najmanje pristranom među 

eksperimentima metode analogona u kategoriji jakog vjetra, dok je za ostale kategorije gotovo 

jednako nepristrana kao AN. Konačno, rezultati za prognozu KF pokazuju manju pristranost u 

ovoj kategoriji vjetra. Ovi rezultati samo su indikacija određenih karakteristika, jer su zbog 

veličine uzorka intervali pouzdanosti veliki. 

Iako pristranost daje informaciju o (ne)adekvatnoj razdiobi, ne podrazumijeva i točnost 

prognoze. Zato je korišten kritični indeks uspjeha (CSI), mjera relativne točnosti za prognoze 

kategoričkog tipa [Wilks, 2011; Jolliffe and Stephenson, 2011]. Rezultati pokazuju da 

prognoza KF ima vidno veću relativnu točnost od početnih modela u gotovo svim testiranim 

slučajevima nad relativno ravnom kontinentalnom i planinsko-kompleksnom topografijom, no 

to nije slučaj i na obalnom području (Slika 14, str. 43). Korištenje analogona rezultira još 

višim vrijednostima, pokazujući veću relativnu točnost i od prognoze KF. Iznimka je 
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prognoza jakog vjetra u kontinentalnoj Hrvatskoj. U tom slučaju najbolji je rezultat prognoze 

KF, što sugerira sustavnu pogrešku modela pri prognozi jakog vjetra. Od eksperimenata 

metodom analogona, AN pokazuje najbolji rezultat u kategoriji slabog vjetra, dok su KFAN i 

KFAS uspješniji u ostale dvije kategorije. Može se primijetiti da korištenje veće rezolucije 

početnog modela dovodi do povećanja relativne točnosti kod prognoziranja jakog vjetra u 

obalnom području. Međutim, efekt nad ostalim vrstama topografije nije jednoznačan. Iako su 

razlike među eksperimentima koji koriste različit početni model manje nego za (neobrađene) 

prognoze modela, ipak se međusobne razlike među modelima zadržavaju i nakon primjene 

metoda naknadne obrade na njihovim produktima. Rezultati, posebno u kategoriji jakog 

vjetra, temeljeni su na relativno malom uzorku, a i mjera relativne točnosti CSI je osjetljiva na 

klimatološku učestalost pojave određene kategorije pa ih treba razmatrati kroz okvir određene 

nepouzdanosti. 

Jedan od načina kako poboljšati pouzdanost rezultata je povećati veličinu uzorka. 

Međutim, to je u suprotnosti s osnovnom idejom pri korištenju metoda naknadne obrade – da 

je metoda brza i efikasna, ali i jednostavna za implementaciju. Korištenje duljih nizova 

zahtjeva više vremena za izračun. Dodatno, pri svakoj promjeni modela potrebno je 

reproducirati povijesne prognoze, što je računalno zahtjevan postupak koji se u praksi rijetko 

radi za dulje razdoblje. Postupak treba ponoviti kod sljedećeg ažuriranja modela, što u praksi 

najčešće ne traje dugo (do par godina, no često kraće). Alternativno, može se koristiti 

verifikacijska mjera koja je posebno razvijena za evaluaciju rijetkih i ekstremnih događaja – 

indeks koji ovisi o ekstremima (EDI). Ovaj indeks nije, poput mjre relativne točnosti CSI, 

osjetljiv na klimatološku učestalost pojave određene kategorije (npr. jakog vjetra). Rezultati 

indeksa EDI u skladu su s prethodnim rezultatima, pri čemu su intervali pouzdanosti manji 

(Slika 15, str. 44). Metoda analogona, u prosjeku, postiže bolji rezultat od prognoze KF te 

prognoze numeričkog modela, pri čemu je najbolji rezultat prognoze KFAN. Rezultat je bolji 

ako se koristi model sa svim potrebnim parametrizacijama i većom razlučivošću (A2), što u 

skladu s prethodnim rezultatima.  

Spektralna analiza prognoze brzine vjetra 

Spektralnom analizom jasno je potvrđena pretpostavka da je primjena (isključivo) metode KF 

ograničena na gibanja velike skale (npr. periode dulje od 10 dana) kad postoji pristranost u 

spektru snage prognoze početnog modela (Slika 16, str. 48). Drugim riječima, prognoza KF 

povećava energiju gibanja velike skale u obalnom te ju smanjuje u kontinentalnom području, 
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no samo za periode veće od 10 dana. Zato je spektar snage prognoze KF gotovo identičan 

spektru početnog modela, a spektar KFAN gotovo identičan spektru AN. Moguće je bolje 

parametrizirati KF, no i u tom slučaju za očekivati je da nema efekta na kraće vremenske 

skale (npr. na period od 1 dan ili manje). Selektivno uključivanje mjerenih vrijednosti u 

metodi analogona vodi do boljeg prognoziranja na skalama duljim od 1 dan (LTD, od 

“longer-than-diurnal” [Horvath et al., 2012]) u odnosu na početni model (Slika 17, str. 49). 

Skala LTD je bitnija od velike (tj. veće od 10 dana) za prognoze do 72 prognostička sata. Na 

skali LTD metoda analogona smanjuje podcjenjivanje energije u odnosu na početni model u 

obalnom i precjenjivanje energije u kontinentalnom području. Ako se uzme u obzir i utjecaj 

metode naknadne obrade na skale kraće od 1 dan (STD, od “shorter-than-diurnal” [Horvath et 

al., 2012]), prognoza KFAS superiorna je ostalim eksperimentima. Razlog je što KFAS na 

skali LTD smanjuje pristranost spektra snage početnog modela jednako učinkovito kao 

prognoza AN, ili čak bolje. Uz to, KFAS za skale STD zadržava energiju simuliranih gibanja 

početnog modela. Zbog toga je manje sklona podcjenjivanju energije male skale od, 

primjerice, prognoza AN i KFAN. Sve metode naknadne obrade adekvatno prognoziraju 

amplitudu harmonika dnevnog hoda (24 h, 12 h, 8 h periodi), slično kao i početni model.  

Korištenje veće horizontalne rezolucije u početnom modelu općenito generira više 

energije u spektru (Slika 18, str. 52). Posljedično, manje je situacija u kojima početni model 

podcjenjuje gibanja na skalama LTD. Kad je takvo podcjenjivanje ipak prisutno, metoda 

analogona ponaša se u skladu s prethodno pokazanim rezultatima (kod korištenja modela 

manje rezolucije). Kad model precjenjuje energiju skale LTD, spektar prognoze metodom 

analogona je vrlo sličan spektru mjerenja (KFAS) ili ga blago podcjenjuje (AN). Na skali 

STD postoji podcjenjivanje energije metodom analogona, pri čemu najbolji rezultat ostvaruje 

prognoza KFAS.  

iii. NAKNADNA OBRADA ANSAMBL PROGNOZE 

Dostupnost kvalitetnih izmjerenih podataka u planinskom području Hrvatske je ograničena. U 

prvom dijelu ovog istraživanja samo tri lokacije nakon kontrole kvalitete odgovaraju 

potrebnim zahtjevima (npr. dovoljna količina raspoloživih podataka u traženom razdoblju) za 

uspješno testiranje i implementaciju metode analogona. Da bi se bolje istražila primjena 

metode nad kompleksnom topografijom planinskog tipa, drugi dio ovog istraživanja obuhvaća 

29 mjernih postaja u Austriji (Slika 19, str. 53) tijekom zimskog (siječanj) i ljetnog mjeseca 

(srpanj) u 2018. godini. Nakon što je u prvom dijelu potvrđena uspješnost primjene ove 
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metode u svrhu poboljšanja rezultata determinističke prognoze numeričkog modela, ispitana 

je njena sposobnost da se primjeni na ansambl prognozu modela. U prvom dijelu je, pritom, u 

fokusu deterministička prognoza metodom analogona (kao prognoza kontinuiranog ili 

kategoričkog prediktanda), dok je u drugom dijelu fokus na ansambl i probabilističkoj 

prognozi. Drugim riječima, ocijenjen je njen potencijal za kalibraciju ansambl prognoze. U tu 

svrhu temeljito je analizirana primjena metode analogona na prognozu austrijskog 

numeričkog modela ALADIN-LAEF (Limited-Area Ensemble Forecasting) (Slika 20, str. 56; 

Wang et al. [2019]). Cilj drugog dijela istraživanja je poboljšati prognozu brzine vjetra 

(LAEFws) te pritom zadržati računalnu efikasnost izvršavanja. Provedeno je zato nekoliko 

eksperimenata, koji koriste različite informacije iz prognoze ALADIN-LAEF kao ulazne 

podatke (tzv. prediktor varijable ili prediktori). Prethodno provođenju eksperimenata 

provedeni su testovi osjetljivosti. Testovi optimiziraju utjecaj određenog meteorološkog 

parametra kao prediktora na postupak izdvajanja najkvalitetnijih analogona, neovisno za 

svaku lokaciju [Junk et al., 2015; Alessandrini et al., 2015a]. Osim pretpostavljenog utjecaja 

informacije o prognoziranoj brzini vjetra, najbitnija je informacija o smjeru vjetra, zatim 

temperaturi i relativnoj vlažnosti (Slika 21, str. 59). Pritom je prednost korištenja većeg broja 

prediktora istaknutija nad topografski planinsko-kompleksnim nego nad pretežno ravnom 

topografijom (Slika 22, str. 60). Osim izbora meteoroloških parametara, ansambl prognoza 

početnog numeričkog modela nudi više načina kako koristiti njene prognostičke informacije 

kao ulazne podatke za metodu analogona. Primjerice, može se koristiti svaka pojedina 

vrijednost članova ansambla (za jedan ili više meteoroloških parametara) ili sumirati 

informacije pa, primjerice, koristiti samo informaciju o srednjoj vrijednosti i raspršenju 

ansambla. Provedeni testovi u potonjem slučaju pokazuju da optimalan doprinos informacije 

o raspršenju ansambla (mjereno standardnom devijacijom σ) iznosi oko 40 % vrijednosti 

doprinosa informacije o srednjaku ansambla (Slika 23, str. 61).  

Provedeno je ukupno šest eksperimenata metodom analogona, koji se prvenstveno 

razlikuju po izboru prediktor varijabli iz modela ALADIN-LAEF (Tablica 5, str. 62). 

Prediktor varijable uključuju: 

 Kontrolni (prvi) član ansambla za 6 dostupnih meteoroloških parametara (AnEnCtrl) 

 Sve članove ansambla prognoze brzine vjetra (AnEnWs)  

 Srednjake ansambla za 6 dostupnih meteoroloških parametara (AnEnMu) 
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 Srednjake i raspršenja (mjereno sa σ) ansambl prognoza za 6 dostupnih 

meteoroloških parametara (AnEnStd) 

 Sve članove ansambla za 6 dostupnih meteoroloških parametara (AnEnAll) 

 Prognozu za 6 meteoroloških parametara, pri čemu svaka prognoza odgovara 

(jednom) određenom članu ansambla (AnEnMem). 

Kratice pripadnih eksperimenata navedene su u zagradama. Dostupni meteorološki parametri 

uključuju 10-m brzinu i smjer vjetra, 2-m temperaturu, 2-m relativnu vlažnost, prizemni tlak i 

količinu oborine. Svi eksperimenti produciraju ansambl prognozu brzine vjetra sastavljenu od 

17 članova. Rezultati metode analogona uspoređeni su s metodom koja je bazirana na 

statistici simuliranih podataka za ansambl prognoze (EMOS) [Messner et al.; 2014]. 

Provedena su dva EMOS eksperimenta: EMOSws, koji koristi zadnjih 30 dana za učenje 

metode te samo informacije o prognozi brzine vjetra kao ulazni podatak, i EMOSstd, koji 

koristi cijelo raspoloživo razdoblje za učenje te sve raspoložive meteorološke parametre. 

Analiza pokazuje da je EMOSws nešto uspješniji u uklanjanju sustavne pogreške, a EMOSstd 

disperzijske pogreške prognoze početnog modela.  

Evaluacija ansambl i probabilističke prognoze brzine vjetra 

Rezultati pokazuju da su svi AnEn eksperimenti uspješni u poboljšanju prognoze početnog 

modela (Tablica 6, str. 71; Tablica 7, str. 73). Pritom je računalno najzahtjevniji eksperiment 

AnEnMem najmanje uspješan (Slika 29, str. 75). Nepovoljna svojstva početnog modela, 

poput nedovoljne raspršenosti te loše rezolucije (u smislu da se distribucije prognoza 

uvjetovanih mjerenim vrijednostima ne razlikuju dovoljno za različite mjerene vrijednosti) 

ostaju nakon primjene metode analogona u ovom eksperimentu više prisutna nego kod ostalih 

eksperimenata. Činjenica da je prostor za traženje analogona manji nego u eksperimentima u 

kojim se članovi razmatraju neovisno, što vjerojatno utječe na ovaj rezultat. Eksperiment 

AnEnWs, koji koristi isključivo informacije o brzini vjetra, uspješniji je ili usporediv s 

eksperimentom AnEnMem u poboljšanju uspješnosti prognoze te u uklanjanju sustavne 

pogreške pristranosti srednjaka (ansambla). Dakle, ako je iz nekog razloga dostupna samo 

prognoza jednog meteorološkog parametra, eksperiment AnEnWs pokazuje da metoda 

analogona može poboljšati rezultate. Još bolji rezultati postignuti su u eksperimentima koji 

koriste informacije o prognozi više od jednog meteorološkog parametra. Primjerice, sličan ili 

bolji rezultat je postignut pri korištenju prognoza kontrolnog člana ansambla u metodi 

analogona (AnEnCtrl), a korištenjem više od jednog člana ansambla rezultat se dalje 
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poboljšava. Pritom je pokazano da često nema potrebe koristiti sve raspoložive informacije iz 

početne prognoze. Naime, korištenje sažetih informacija (u obliku srednjaka i raspršenja 

ansambla) poboljšava početnu prognozu u gotovo jednakoj mjeri kao kad se koriste sve 

informacije, s vrlo malo statistički značajnih razlika. Uz to, potonje je računalno manje 

zahtjevan postupak. Uzevši sve navedene argumente u obzir, može se zaključiti da je upravo 

ovaj pristup optimalan za primjenu u operativno prognostičkom sustavu. Uz informaciju o 

pogrešci prognoze, na sažet i efikasan način uključuje se tako informacija o razvoju pogreške 

koja je dinamički simulirana numeričkim modelom.  

Svi eksperimenti poboljšali su rezultate prognoze početnog modela, povećavajući (pretjerano 

malu) raspršenost ansambla te povećavajući svojstva prognoze poput pouzdanosti i 

diskriminacije, posebno u siječnju (karakteristični oblici krivulja i načini tumačenja dijagrama 

korištenih za evaluaciju pobliže su opisani na Slikama 24-28, str. 65 - 70). Općenito su bolji 

rezultati primjene metoda naknadne obrade postignuti za ljetni mjesec, kada je i rezultat 

početnog modela nešto bolji nego za zimski mjesec. Iznimka je prognoza EMOSws, koja 

pokazuje manju raspršenost od očekivane, što je vjerojatno posljedica korištenja manjeg 

razdoblja učenja nego kod ostalih eksperimenata te samo jednog meteorološkog parametra.  

Općenito, točnost ansambl prognoza može se detaljno analizirati pomoću RMSE te 

mjerom neprekidno rangiranog ishoda vjerojatnosti (CRPS), koji se može razmatrati kao 

poopćenje srednje apsolutne pogreške na probabilističke prognoze [Wilks, 2011]. 

Eksperimenti temeljeni na metodi analogona signifikantno poboljšavaju prognozu početnog 

modela ALADIN-LAEF (LAEFws) za sve prognostičke sate u oba testirana mjeseca (siječanj 

i srpanj; Slika 30, str. 76). Rezultati su bolji noću nego tijekom dana. Pritom su rezultati 

metode analogona usporedivi s ili nadmašuju rezultate metode EMOS. Bolji rezultati metode 

analogona od metode EMOS mogu se uočiti za kratko nastupno vrijeme prognoze, općenito 

više u siječnju nego u srpnju.  

Svi eksperimenti zadovoljavaju zahtjev statističke konzistentnosti da je histogram ranga 

uniforman (Slika 34, str. 83). Eksperiment EMOSws pokazuje pretjeranu pouzdanost kod 

prognoziranja velike vjerojatnosti za ostvarenje događaja, dok eksperiment EMOSstd premalo 

pouzdan kod prognoziranja male vjerojatnosti za ostvarenje događaja (Slika 33, str. 82). 

Eksperimenti koji koriste analogone gotovo su savršeno pouzdani. Dodatno, svojstvo 

diskriminacije (između situacija koje jesu i onih koje nisu rezultirale ostvarenjem događaja) 

veće (bolje) je kod prognoza metodom analogona zbog većeg udjela točnih prognoza u 
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ukupnom broju ostvarenih događaja. Razlike među pojedinim eksperimentima metode 

analogona manje su istaknute nego kad se usporede s metodom EMOS ili rezultatom 

početnog modela. Rezultati AnEnStd i AnEnAll gotovo su identični, potvrđujući da je 

korištenje sažetih informacija o prognozi početnog modela najčešće sasvim dovoljno.  

Prostorno gledajući, pogreška prognoze LAEFws prati klimatološku razdiobu prosječne 

brzine vjetra, ispoljavajući veću pogrešku u područjima sklonim pojavi jačeg vjetra (Slika 31, 

str. 78). Primjenom metoda naknadne obrade, prognoza se dodatno poboljšava slijedeći sličnu 

prostornu razdiobu. Pri prostornoj evaluaciji primijećeno je da u području izrazito 

kompleksne topografije za prostorno bliske lokacije postoje velike razlike u uspješnosti 

prognoze numeričkog modela. Prognoza LAEFws uspješnija je za lokacije koje su smještene 

u kotlini od onih koje su na višoj nadmorskoj visini (na planini). Koristeći (bolju) LAEFws 

prognozu i konačan rezultat nakon primjene metode analogona je bolji za postaje u kotlini 

(Slika 32, str. 80). Međutim relativno poboljšanje u odnosu na prognozu početnog modela je 

zapravo mnogo više izraženo kod korištenja (lošije) LAEFws prognoze na višim nadmorskim 

visinama. Takav efekt posljedica je uklanjanja sustavnih izvora pogreške (pristranost 

srednjaka i σ), koji su u većoj mjeri prisutni u prognozi numeričkog modela za lokacije na 

planini. 

Iako je pojava slabog i umjerenog vjetra mnogo češća, bitno je razmotriti i kvalitetu 

prognoze za jak vjetar zbog njegovog utjecaje na ljude i imovinu. Koristeći više pragova za 

brzinu vjetra (u rasponu 0.5 – 20 ms-1), testirana je uspješnost prognoze za različite brzine 

vjetra (Slika 35, str. 85). Pokazano je da LAEFws prognoza pokazuje uspješnost isključivo za 

malu brzinu vjetra (npr. do 3 ms-1). Sve testirane metode naknadne obrade poboljšale su 

uspješnost prognoze i za veću brzinu vjetra. Pritom je metoda analogona značajno uspješnija 

od metode EMOS za brzinu vjetra do 10 ms-1, neovisno o dobu godine. Štoviše, eksperimenti 

AnEnStd i AnEnAll značajno poboljšavaju rezultate početnog modela za sve testirane 

pragove brzine u siječnju. 

iv. ZAKLJUČAK 

Rezultati pokazuju da deterministički produkt metode analogona ima veću koreliranost 

prognoze i mjerenja te manju pogrešku u odnosu na početni numerički model koji metoda 

koristi kao ulazni podatak. Dok prognoziranje srednjaka ansambla analogona rezultira 

najvećom korelacijom, primjena Kalmanovog filtra u takozvanom prostoru analogona 
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(KFAS) je eksperiment koji je najmanje sklon podcijeniti prirodnu varijabilnost vjetra, čak i 

na kratkim vremenskim skalama.  

Metoda analogona primijenjena je i na ansambl prognozu numeričkog modela, pri čemu 

je pokazano da je upravo korištenje sažetih informacija o prognozi ulaznog modela optimalan 

način da se poboljša točnost prognoze, čak i za prognozu jakog vjetra. U numeričkom modelu 

procesi su bolje reprezentirani za lokacije smještene na nižoj nadmorskoj visini nego za 

planinske lokacije, što znači i bolji ukupan rezultat nakon naknadne obrade produkata modela. 

Međutim, relativno poboljšanje u odnosu na početni model istaknutije je na višim 

nadmorskim visinama.  
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§ 1. INTRODUCTION 

1.1. Motivation 

 

The skill of short and medium-range numerical weather prediction models has improved at 

both global and regional scales. Their ability to simulate and forecast winds in complex 

topography and coastal areas is, however, still largely affected by insufficient resolution, 

imperfect boundary and initial conditions, simplification of physical processes and numerical 

approximations. It is often considered that the higher the model resolution the more accurate 

the forecast, due to better resolved lower boundary conditions and flow adaptation when 

decreasing the grid spacing. These benefits are not always evident [e.g. Mass et al., 2002; Rife 

and Davies, 2005]. Even at the sub-kilometer grid spacing, state-of-the-art mesoscale models 

still exhibit considerable errors, especially in complex topography [Horvath et al., 2012]. This 

is particularly relevant for operational weather prediction systems that are constrained by the 

available computing resources. It is thereby useful to develop suitable post-processing 

methods that reduce starting model errors at locations where measurements are available, 

besides improving the model itself (e.g., using a higher resolution or improved 

parametrization package).  

 

 

1.2. Using the analogies to predict the weather 

 

The idea that analogies (i.e., similar past forecast, measurements, or analysis) can be used for 

forecasting future weather has been explored for decades. It is based on an assumption that if 

two atmospheric states are initially very close, they will remain somewhat close for some time 

in the future. For instance, Lorenz [1969] claims that it is hard to identify any state in the past 

that can be considered a good match to the present large-scale flow pattern, except for 

mediocre analogues. Furthermore, Rousteenoja [1988] and Lorenz [1969] state that one needs 

to wait an astronomically large number of years until the likelihood of finding two 

atmospheric states that differ less than the present-day observational error is sufficiently high 
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enough to be considered as usable. Back then, the applicability of analogues for short-range 

weather forecasting is practically discarded. Van den Dool [1989], however, shows that it is 

possible to find useful analogies if the number of degrees of freedom in the matching 

procedure is reduced. The author uses analyses over a localized area (i.e., not entire Northern 

Hemisphere as in Lorenz [1969]) and then uses the 12-h subsequent analysis to each analogue 

as a plausible 500 hPa height forecast. Various procedures are formulated afterward, 

including different predictors and analogue selection criteria. This is done mainly because the 

use of analogues for forecasting of meteorological fields is limited due to excessive degrees of 

freedom of the problem at stake. Applications including long-range weather predictions using 

National Oceanic and Atmospheric Administration (NOAA) outgoing long-wave radiation 

fields [Xavier and Goswami, 2007] and very short-term orographic precipitation predictions 

using radar observations [Panziera et al., 2011] are proved to be skillful. The Southern 

Oscillation Index (SOI) forecasts using SOI measurements [Drosdowski, 1994] and point 

wind speed forecasts using wind speed measurements [Klausner et al., 2009] exhibit 

satisfactory results as well. Besides single fields, also the use of spatially correlated 

observational variables [Wu et al., 2012] also proofed to be suitable. 

Besides predicting the weather using past measurements or analyses, analogies can be 

employed to reduce the errors in the numerical weather prediction (NWP) model simulations. 

This approach utilizes the achievements of numerical modeling in predicting future state of 

the atmosphere. Additionally, it can reasonably absorb the information of the analogues in 

historical data (statistical model) in order to improve forecast skill as shown for idealized 

cases with low-order models [Ren and Chou, 2006] and general circulation modeling [Gao et 

al., 2006; Ren and Chou, 2007].  

Van den Dool [1989] reveals that analogues can be used to predict the forecast skill of a 

NWP model. Hamill et al. [2006] and Hopson [2005] extend the idea and apply the analogues 

to ensemble forecasts. Hamill and Whitaker [2006] state that, when comparing the pattern 

match of the historical local ensemble-mean forecast to the current ensemble-mean forecast in 

the same region, it is possible to find many similar and useful analogs within a few decades of 

re-forecasts. Their study focuses on probabilistic forecasts of 24-h precipitation. All the 

aforementioned analog-techniques are able to improve the Brier skill score, resulting in a skill 

comparable to a logistic regression technique. The authors, while comparing different analog-

techniques, also conclude that selecting analogs for each member rather than for the ensemble 
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mean generally decrease the forecast skill. Another successful example of a calibrating 

ensemble forecast can be found in Hopson and Webster [2010]. The authors seek analogs in 

order to generate the final set of discharge ensembles accounting for all aspects of discharge 

forecast uncertainty (meteorological and hydrological). This part of the fully automated 

operational 1-10-day multi-model ensemble forecasting scheme for the major river basins of 

Bangladesh helped to evacuate many thousands of people and livestock during flood events in 

2007. 

As a very successful continuation of the aforementioned studies, Delle Monache et al. 

[2011] propose two variations of analog-based post-processing method to improve 

deterministic NWP forecasts of 10-m wind speed, based on a historical data set including 

NWP data and observations at a single site. The weighted mean (AN) of the analog ensemble 

(AnEn) is tested and compared to a linear, adaptive and recursive Kalman filter (KF) post-

processing approach [Delle Monache et al., 2006, 2008, 2011]. Another approach is to apply 

Kalman filter to the historical set of (starting) model forecasts in the analog space, ordered 

from the worst to the best analog (Kalman Filter in Analog Space – KFAS; Delle Monache et 

al. [2011]). With that approach, the correction of the current forecast is based on a higher 

weight to the analog forecasts closer to it. The authors demonstrate that both approaches 

increase correlation and reduce random and systematic errors. Similar approaches are used for 

predicting other variables as well. Djalalova et al. [2015] show similar results predicting 

PM2.5 concentrations, while Nagarajan et al. [2015] test the techniques across several models 

and meteorological variables. Additionally, Djalalova et al. [2015] apply the KF to the time 

series of the AN, resulting in a new deterministic forecast called the KFAN.  

Delle Monache et al. [2013] explore benefits from using the analogs to produce 

probabilistic 10-m wind speed and 2-m temperature AnEn forecasts from a deterministic 

NWP. The authors show that the AnEn exhibits high statistical consistency, reliability and the 

ability to capture the flow-dependent behavior of errors. The use of an analog-based method 

to produce probabilistic output is not limited to short- or medium-range forecasts. Vanvyve et 

al. [2015] provide high-quality long-term wind resource estimates, characterized by an 

accurate wind time series and frequency distribution. In addition to using probabilistic analog-

based predictions to gain wind resource estimates [Vanvyve et al., 2015; Zhang et al., 2015], 

they are also used to downscale precipitation [Keller et al., 2017], to predict solar irradiance 
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[Alessandrini et al., 2015a], 10-m wind speed [Sperati et al., 2017] and wind power 

[Alessandrini et al., 2015b; Junk et al., 2015]. 

Additional to using a deterministic NWP to create AnEn [Delle Monache et al., 2011; 

2013], the same approach can also be applied using an NWP ensemble. The AnEn ability to 

capture the flow-dependent error growth is complemented with the aspects of error growth 

that can be represented dynamically by the multiple model runs of an NWP ensemble. 

Following that idea, Eckel and Delle Monache [2016] produce m analogs for each member of 

the n-member NWP ensemble, resulting in an m×n “hybrid” AnEn. The approach yields 

mixed results for the 10-m wind speed forecasts, while the application for the 2-m 

temperature forecast is more successful. Mugume et al. [2017], who uses the analog-based 

method to post-process ensemble members with different convection parameterization 

schemes, also explore the same idea. The authors demonstrate a root-mean-square error 

(RMSE) and bias reduction in rainfall prediction when using corresponding predictions of the 

(starting) ensemble mean analog as a forecast. Slightly better results (e.g. significant reduction 

of negative bias error) are achieved when seeking the analog for every (starting) ensemble 

member and then average the analogs. Finally, since the AnEn can be affected by a 

conditional negative bias, especially when predicting events in the right tail of the forecast 

distribution, the novel bias correction method is proposed by Alessandrini et al. [2019]. 

 

 

1.3. Research objectives 

 

In this research, we propose an in-depth analysis of analog-based method over complex 

topography. The target area of this research is located in Croatia, where different mesoscale 

wind regimes include strong bora downslope windstorms (which may reach hurricane scale 

strength, e.g., see review by Grisogono and Belusic [2009]), mountain valley and slope winds, 

and thermally-induced land-sea breeze (e.g., Telišman Prtenjak and Grisogono [2007]; 

Horvath et al. [2011]). Due to the importance of model resolution necessary to represent wind 

processes in the target area, we study whether the post-processing improves results when 

using a higher-resolution starting model. We thus test the role of 8- and 2-km grid spacing 

full-physics Aire Limitée Adaptation dynamique Développement InterNational (ALADIN) 

model. In addition, we use a model that dynamically adapts the 8-km ALADIN output to the 
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2-km grid spacing. The latter is a configuration (e.g., Žagar and Rakovec [1999]; Ivatek-

Šahdan and Tudor [2004]) used for operational wind forecasting in the ALADIN consortium 

and Croatian Meteorological and Hydrological Service. 

We study the performance of different post-processing methods using metrics that 

consider wind speed as both continuous and categorical predictand. These include AN, KF, 

KFAS, and KFAN, as described above. We analyze the results across three regions with 

distinct wind regimes:  

i. coastal complex topography where the most significant portion of mesoscale energy 

is governed by strong downslope windstorms as well as thermally induced land-sea 

circulations,  

ii. mountain complex topography where the most significant portion of mesoscale 

energy is governed by the weak-to-moderate valley and slope mountain winds, and  

iii. continental nearly flat topography where the motions are predominantly of synoptic-

scale variability and origin [Zaninović et al., 2008; Horvath et al., 2011].  

The focus is set on the complex topography, primarily coastal region. Therefore, we study the 

importance of the starting model resolution and formulation by using three versions of 

ALADIN focusing on coastal complex topography characterized by a plethora of mesoscale 

wind processes. 

In contrast to coastal complex topography, the availability of the quality data over 

mountain complex topography in Croatia is limited. Only three mountain locations satisfy the 

necessary quality demands for the analog method testing and implementation in the first part 

of this research (i.e. having a similar amount of data after basic quality control as for other 

sites). For that reason, the research is extended using 29 meteorological observation sites 

(TAWES) in Austria for winter (January) and summer (July) month of 2018. After 

investigating wind speed as continuous and categorical predictand, the focus is now extended 

to the ensemble and probabilistic wind speed forecasting. In addition to using deterministic 

NWP input to analog-based method, the ability to calibrate the ensemble NWP is also 

investigated. Therefore, an in-depth analysis of the analog-based method applied to the 

Austrian ALADIN-LAEF (Aire Limitée Adaptation dynamique Développement InterNational 

– Limited-Area Ensemble Forecasting) ensemble forecasts is provided in the second part of 

this research. Following the work of Eckel and Delle Monache [2016] and Mugume et al. 

[2017], the main goal is to significantly improve the ALADIN-LAEF ensemble 10-m wind 
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speed forecast while maintaining low computational cost for the analog search. To test the 

performance of the analog-based method and determine the optimal configuration, several 

experiments using different sources of information available of the ALADIN-LAEF ensemble 

forecasts are performed. The experiments include using one or more ALADIN-LAEF 

meteorological variables as predictors. The experiment using only ALADIN-LAEF control 

member for several meteorological variables as predictors is included to represent the analog-

based method performance using the deterministic input, similarly as the ALADIN model is 

used within the first part of this thesis. 

Through performed analysis, the experiments including only information about the 

ALADIN-LAEF ensemble mean (as suggested by Hamill and Whitaker [2006]) or every 

ensemble member (similar as in Mugume et al. [2017]) are also tested. A novelty in this 

research is the usage of the starting model ensemble uncertainty through its standard deviation 

(σ) in addition to ensemble mean (μ). The hypothesis additionally explored in this thesis is 

that using a summarized measure, like standard deviation σ, is the optimal way to dynamically 

represent the aspects of error growth of the input ensemble model to the flow-dependent error 

growth, which is already captured by the analog approach [Odak Plenković et al., 2020]. The 

ensemble model output statistic post-processing approach (EMOS; [Gneiting et al., 2005]) is 

used as a reference model in order to better understand the analog-search impact on the raw 

forecasts. All experiments provide 17 members wind speed AnEn forecast, as well as the 

ALADIN-LAEF forecast. 
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§ 2. ANALOG-BASED METHOD  

The AnEn can be used to estimate the probability distribution 𝑓(𝑦|𝑥𝑓) of the observed future 

value of the variable 𝑦 at a given time and location. The 𝑥𝑓 represents 𝑘 variables (predictors) 

from the deterministic (starting) model 𝑥𝑓 = (𝑥𝑓
1, 𝑥𝑓

2, … , 𝑥𝑓
𝑘). To generate 𝑦 samples, the 

analog-based method uses historical data within a specified analog training period for which 

both the deterministic NWP (starting model) and the verifying observation are available, as 

schematically shown in Figure 1.  

 

 

 

 

Figure 1. The analog-based method scheme for 4-member AnEn forecast at 09 UTC lead 

time. In this example, 3 predictor variables (i.e. wind speed, wind direction, and temperature) 

from the current NWP are used in the analog search procedure. For each variable, the values 

within a 3-lead-time-steps-wide time window (centered around 09 UTC) are compared to the 

historical forecast within the time window of the same width (also centered around 09 UTC). 

The predefined metric ‖𝐹𝑡𝐴𝑡′‖ is used to determine the quality of the match. Once the most 

similar historical forecasts are found, the AnEn is formed out of verifying observations. The 

deterministic forecast can then be issued as, for example, the mean of the AnEn. On the other 

hand, the probability of a pre-defined event (probabilistic forecast) can be calculated by 

counting the AnEn members predicting the event will happen.  

 

LT=9 UTC 

20.1.2011. 
(9 UTC) 

1.3.2010. 
(9 UTC) 

11.2.2010. 
(9 UTC) 

25.12.2011. 
(9 UTC) 

time 
window 
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The best-matching historical forecasts to the current prediction, so-called analogs, may 

originate in any past date in the training period. The quality of the analog is evaluated by the 

following metric: 

‖𝐹𝑡𝐴𝑡′‖ = ∑
𝑤𝑖

𝜎𝑓𝑖

√∑ (𝐹𝑖,𝑡+𝑗 − 𝐴𝑖,𝑡′+𝑗)
2𝑡̃

𝑗=−𝑡̃
𝑁𝐴
𝑖=1 , (1) 

where Ft is the current NWP deterministic forecast at a given location, valid at the future time 

t, whereas At' is an analog at given location with the same forecast lead time, but valid at a 

past time t'. The NA is the number of predictors used in the search for analogs, wi are the 

weights corresponding to the particular predictor. The absolute value of the metric is not 

important as such since it is only used for the inter-comparison of analogs when used for 

sorting by the quality. Therefore, the weights are not constrained (i.e. their sum does not need 

to be fixed). For the fair comparison between different meteorological parameters, however, 

the weights are normalized using the standard deviation (σfi) of past forecasts of a given 

variable at the same location. The 𝑡̃ is equal to half the number of additional times over which 

the metric is computed (the half of the time window of any specified width). Therefore, Fi,t+j 

and Ai,t'+j are the values of the forecast and the analog in the time window for a given variable, 

respectively. The time window is used to account for shifts and/or trends in the starting model 

forecast. Analogs are found independently for every forecast time and location, narrowing the 

search around a particular time of a day by a time window. In other words, the number of 

degrees of freedom in analog finding procedure is reduced (as proposed in Van den Dool 

[1989]). The 𝑡̃ value used in this research is equal to 1 lead time step, as proposed by Delle 

Monache et al. [2013]. The verifying observations of the best-matching analogs are the 

members of AnEn.  

The assumption is that the errors of the good (quality) analog forecasts are likely to be 

similar to the error of the current forecast [Delle Monache et al., 2011] and hence reduced by 

the historical observation used. Several authors state that the AnEn rank histograms are 

uniform (e.g., Delle Monache et.al. [2013]). Therefore, every member of the AnEn is an 

equally probable outcome, even though, measured by previously defined metrics, some 

analogs are closer to the current forecast than the others are. Once the AnEn is formed, it can 

be used to produce the deterministic analog-based prediction, as well as the probabilistic 

forecast (e.g., to estimate the probability of a predefined event).  
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§ 3. POST-PROCESSING THE DETERMINISTIC 

NWP  

3.1. Observations and climatology 

 

The post-processed forecasting methods are tested at 14 locations in Croatia, covering 

different climatological regions (Figure 2). The locations are selected based on the availability 

of wind speed measurements (10-minute average value) at 10 m above the ground in the 

2010-2012 period. The list of locations with the geographical features is given in Table 1.  

 

Figure 2. Topography and spatial distribution of the 14 stations providing the 10-m wind 

speed observations used in the section 3. The stations are divided in three groups: coastal 

complex (group I; red markers), mountain complex (group II; blue markers) and nearly flat 

continental topography (group III; yellow markers). 

 

Our goal is to compare and contrast the performance of the different methods, generated 

from different NWP models, and at different complex topography and coastline sites. The 

locations are thereby divided in three groups: 

I. Group I is a coastal complex topography region that includes the locations near the 

coastline and near the western slopes of Dinaric Alps. The prominent wind in this area 

is bora, a strong and gusty downslope windstorm (e.g., see review by Grisogono and 

Belušić [2009]). The bora wind is more frequent in the northern than in the southern 

Adriatic. Nevertheless, its maximal strength is similar in both regions [Horvath et al., 

2009]. Other mesoscale wind circulations are also notable and are governed by the 
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surface inhomogeneity (e.g. land-sea breeze) and vicinity of the mountains (e.g., 

mountain-plain circulation, gap flows, weak downslope flows). Therefore, the diurnal 

cycle is shaped by the proximity of the sea and terrain elevation. The highest wind 

speeds analyzed in this section are recorded in this area (Figure 3a) and the mean wind 

speed is 4.0 ms-1. 

II. Group II is a mountain complex topography region with highly-complex topographical 

features. Locations in this area are farther from the coastline and at higher elevation 

than the locations in any other group, with mountain tops reaching 1500 m above sea 

level. Because of terrain complexity and low population density the measurements are 

coarse in space in this area. The measurements may also be prone to longer data gaps 

due to remoteness of locations and generally more severe winter climate. After our 

analysis, we therefore choose three locations that satisfy the basic quality requirements 

within this area (e.g. that there are no gaps longer than a few weeks). This area is 

characterized by a significant portion of energy variance due to mountain slope and 

valley winds. Wind speeds in the mountain complex topography are lower than in the 

coastal complex topography (Figure 3b) and the mean wind speed is 2.0 ms-1.  

 

Table 1. The list of the 14 stations providing the 10-m wind speed observations used in 

section 3. The stations are divided in three groups: coastal complex (group I; red), mountain 

complex (group II; blue) and nearly flat continental topography (group III; yellow). 

Location name Latitude Longitude Altitude [m] 

Dubrovnik  42.6 18.1 52 

Jasenice 44.2 15.6 170 

Krk 45.2 14.6 57 

Split 43.5 16.4 122 

Šibenik 43.7 15.9 77 

Gospić 44.6 15.4 564 

Knin 44.0 16.2 255 

Ogulin 45.3 15.2 328 

Bilogora 45.9 17.2 262 

Gradište 45.2 18.7 97 

Osijek 45.5 18.6 89 

Slavonski Brod 45.2 18.0 88 

Varaždin 46.3 16.4 167 

Zagreb 45.8 16.0 123 
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III. Group III stations are located in the nearly-flat inland continental climatological 

region of Croatia. The terrain elevation is up to 100 m above sea level. The diurnal 

cycle is shaped mainly by the gentle microscale variations of the topography. The 

region is still influenced by non-local effects of the Dinarides mountain system to the 

west and southwest, since these mountains affect predominant westerly flow through 

channeling, blocking and other mesoscale processes. A strong wind is very rare in the 

continental area, and it occurs during the cold air outbreaks from polar or Siberian 

areas in winter or during rough weather in summer [Zaninović et al., 2008]. The wind 

speeds are relatively low (Figure 3c) and the mean wind speed is 2.0 ms-1.  

 

 

Figure 3. The boxplots of the observed data (outliers are not shown), depending on time of the 

day. The data are measured during the 2010-2012 period at 14 stations in Croatia. In 

addition to the boxplot for all the data available (d), the data are sorted into groups (a-c) 

based on topography type and basic climatological features. The green lines represent the 

50th and red triangle markers the 90th percentile, respectively. Those values are used as 

thresholds between categories in the verification procedure. The exact values are listed at 

Table 2. 

 

Mean wind speed for all 14 stations is 2.7 ms-1. The maximum of the diurnal cycle occurs 

around 12 UTC on average for all stations (Figure 3d). However, different processes 

contribute to the average daily cycle at different locations.  
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Table 2. The exact values of the 50th and 90th percentile of the observed data at 14 stations in 

Croatia during the 2010-2012 period, depending on time of the day (as shown in Figure 3). 

The data is sorted into groups based on topography type and basic climatological features.   

Time UTC [h] 

Percentile 

Group I Group II Group III All 

50th 90th 50th 90th 50th 90th 50th 90th 

0 2.4 9.0 1.0 4.1 1.3 3.8 1.5 5.7 

3 2.7 9.4 0.9 3.8 1.3 3.7 1.5 5.6 

6 2.5 9.6 0.9 4.2 1.4 3.6 1.5 5.6 

9 2.5 9.6 1.5 4.9 1.9 4.4 2.0 6.0 

12 3.3 8.6 2.5 5.4 2.2 4.7 2.6 6.2 

15 3.2 8.6 2.8 5.4 2.1 4.5 2.5 5.9 

18 2.2 8.7 1.4 4.6 1.5 3.8 1.6 5.5 

21 2.2 9.1 1.1 3.9 1.5 3.9 1.5 5.6 

 

Finally, the values of 50th and 90th percentile are shown in Figure 3 and listed in Table 2. 

Those values are used as thresholds between categories in the verification procedure. 

 

 

3.2. NWP model data 

 

Three operational configurations of the limited-area mesoscale NWP model ALADIN (Aire 

Limitée Adaptation dynamique Développement InterNational model) [ALADIN International 

Team, 1997], that were issued at the Croatian Meteorological and Hydrological Service in the 

2010-2012 period, are used to generate 10-m wind speed forecasts in this thesis: 

I. The operational limited-area mesoscale ALADIN model was launched twice a day (00 

UTC and 12 UTC) at 8-km horizontal grid spacing (A8). The A8 model used the 

hydrostatic dynamics with spectral solver on 37 hybrid sigma-pressure vertical levels 

[Tudor et al., 2013; Ivatek-Šahdan et al, 2018]. The initial conditions were based on a 

variational data assimilation scheme for the upper-air fields and optimal interpolation 

for surface variables [Stanešić, 2011]. The lateral boundary conditions were given by 

the Action de Recherche Petite Echelle Grande Echelle (ARPEGE) global model, 

which was run operationally at Meteo France. Vertical transfer of momentum, heat, 

and moisture were based on a scheme that used prognostic turbulence kinetic energy 
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[Geleyn et al., 2006] combined with modified Louis [1982] stability dependency in the 

surface layer [Redelsperger et al., 2001]. Contribution of shallow convection to the 

evolution of prognostic fields was calculated within the turbulence parametrization 

according to Geleyn et al. [1987]. Deep convection is described by a modified 

diagnostic Kuo scheme [Geleyn et al., 1994]. Microphysics parametrization [Catry et 

al., 2007] included prognostic treatment of cloud water/ice, rain, and snow, as well as 

a statistical approach for sedimentation of precipitation [Geleyn et al., 2008]. 

Radiation effects were described according to Geleyn and Hollingsworth [1979], and 

Ritter and Geleyn [1992]. The impact of soil processes on prognostic model fields was 

accounted for by a two-layer Interaction Soil Biosphere Atmosphere (ISBA) scheme 

[Noilhan and Planton, 1989], which was also used for the surface data assimilation 

[Giard and Bazile, 2000]. Physics contribution was coupled to the dynamics via 

interface based on a flux-conservative set of equations [Catry et al., 2007].  

II. An operational ALADIN high-resolution dynamical adaptation (DA) model. The DA 

procedure [Žagar and Rakovec, 1999] was taking the output fields from the A8. The 

DA dynamically adapted wind fields to the higher resolution horizontal terrain (2-km 

grid spacing) by adopting the model field to reach a quasi-stationary state forced by 

time-invariant lateral boundary conditions [Ivatek-Šahdan and Tudor, 2004]. Vertical 

levels in the planetary boundary layer were approximately at the same heights as in the 

A8 model (the lowest level is about 17 m above ground). The vertical levels in the 

upper troposphere and stratosphere were reduced, i.e., the DA was run on 15 levels in 

the vertical. The wind field was interpolated to the height of measurements using the 

stability functions and the Monin-Obukhov similarity theory [Geleyn, 1988]. 

Turbulence was the only parametrization scheme used in the DA, while contributions 

of moist and radiation processes were neglected. This cost-effective forecast 

refinement was run operationally twice a day (00 and 12 UTC run) for 72 h ahead with 

a 3-h model output frequency. In the complex topography, the DA improved near-

surface wind predictions, as described in a number of studies such as Tudor and 

Ivatek-Šahdan [2002], Ivatek-Šahdan and Tudor [2004], Ivatek-Šahdan and Ivančan-

Picek [2006], Bajić et al. [2007, 2008], Horvath et al. [2011], etc. The DA was used 

for operational wind forecasting in several countries that are members of the ALADIN 

consortia.  
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III. ALADIN at 2-km horizontal grid spacing (A2) was configured similar to the A8, but 

with non-hydrostatic dynamics [Ivatek-Šahdan et al, 2018]. Physics parametrizations 

included a full parametrization set as in the A8, with an upgrade of a deep convection 

parametrization. Unlike the A8, the deep convection in the A2 was a prognostic mass-

flux type scheme [Gerard and Geleyn, 2005; Gerard, 2007]. The convective processes 

in the A2 were accounted for the use of prognostic variables for updraft and downdraft 

vertical velocities and mesh fractions [Gerard et al., 2009]. The A2 was initialized 

from the 06-h forecasts of the operational A8 00 UTC run, and it was run with the 

Scale-Selective Digital Filter Initialization [Teremonia, 2008]. This high-resolution 

forecast was run once daily for 24 hours in advance (until 06 UTC of the following 

day), with 1-h model output frequency on 37 vertical levels [Tudor et al., 2013]. 

 

 

 

Figure 4: The ALADIN model domains and topography – larger with 8 km horizontal grid 

spacing (A8) and smaller with 2 km horizontal grid spacing (A2, DA). 

 

All three ALADIN configurations (A8 00 UTC, DA 00 UTC and A2 06 UTC) were used 

to prepare forecasts for the period 2010-2012. The domains for all configurations are shown 

in Figure 4. For every location of the analyzed measurement stations, the closest model grid 

point (on land) is chosen from the four grid points surrounding the observation location. 

 

 

 



§ 3. Post-processing the deterministic NWP  

 15 

3.3. Reference method: Kalman filter 

 

Generally, the Kalman filter (KF) approach is a recursive post-processing method used to 

estimate a signal from noisy measurements. It has been mainly used in data assimilation 

schemes to improve the accuracy of the initial conditions for the NWP [e.g., Burgers et al., 

1998; Houtekamer et al., 2005]. The KF has also been used for NWP model forecasts as a 

predictor bias correction method during post-processing of short-term weather forecasts 

[Homleid, 1995; Roeger et al., 2003]. In a post-processing predictor bias correction method, 

the information (i.e., recent past forecasts and observations) is used to revise the estimate of 

the current raw forecast. Previous bias values are used as input to KF. The bias here is defined 

as the “difference of the central location of the forecasts and the observations” [Jolliffe and 

Stephenson 2003]. The filter estimates the systematic component of the forecast errors (i.e. 

bias). Once the future bias has been estimated, it can be removed from the forecast to produce 

an improved forecast. Such a corrected forecast should be statistically more accurate in a 

least-squares sense. Further details on the KF predictor bias correction post-processing 

method are given below. 

The optimal recursive predictor of forecast bias 𝑥𝑡 at time 𝑡 is derived by minimizing the 

expected mean square error. Kalman [1960] shows that 𝑥𝑡 at time 𝑡 can be written as a 

combination of the previous bias estimate and the previous forecast error 𝑦𝑡 (the hat (^) 

indicates the estimate): 

𝑥𝑡+𝛥𝑡|𝑡 = 𝑥𝑡|𝑡−𝛥𝑡 + 𝐾𝑡(𝑦𝑡 − 𝑥𝑡|𝑡−𝛥𝑡). (2) 

The 𝐾𝑡 is a weighting factor called Kalman gain and can be calculated from: 

𝐾𝑡 =
𝑝𝑡−𝛥𝑡+𝜎𝜂,𝑡

2

(𝑝𝑡−𝛥𝑡+𝜎𝜂,𝑡
2 +𝜎𝜀,𝑡

2 )
. 

 

(3) 

The expected mean-square error 𝑝 can be computed as: 

𝑝𝑡 = (𝑝𝑡−𝛥𝑡 + 𝜎𝜂,𝑡
2 )(1 − 𝐾𝑡). (4) 

The 𝜎𝜂,𝑡
2  and 𝜎𝜀,𝑡

2  are variances of the noise term and the unsystematic error term, 

respectively. Their so-called error ratio is set to 0.01 value, following the other authors (i.e. 

Delle Monache et al. [2006; 2011]). However, it needs to be noted that the KF performance is 

sensitive to the error ratio. If the ratio is too high, the filter will put excessive confidence in 

the previous forecast, and the predicted bias will respond very quickly to previous forecast 

errors. On the other hand, if the ratio is too low, the predicted bias will change too slowly 
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over time. More details on the sensitivity of the error ratio can be found in Delle Monache et 

al. [2008]. 

For any plausible estimate of 𝑝0 and 𝐾0 the KF algorithm converges promptly, 

producing the Kalman filter forecast (KF). Additional details of the procedure and algorithm 

applied in this research can be found in Delle Monache et al. [2006].  

The KF is easy to implement and computationally inexpensive. Since the KF approach 

adapts its coefficients during each timestep there is no need for a long training period. The 

advantages of the KF approach also include the ability to adapt to changing seasons, and even 

changing models. However, a disadvantage of this method is that it is not likely to predict 

sudden changes in the forecast error caused by rapid transitions from one weather regime to 

another [Delle Monache et al., 2011]. Overall, these advantages and disadvantages make the 

KF a valuable reference to assess the performance of the proposed analog-based method. 

 

 

3.4. Description of experiments 

 

The AN forecast for the future time 𝑡 at a given location is an average (weighted, if 𝛾 ≠ 1/𝑁) 

of the observations 𝑂𝑖 corresponding to 𝑁 most similar analogs 𝐴𝑡′ (measured by metrics 

previously defined in equation 1): 

𝐴𝑁𝑡 =
1

𝑁
∑ 𝛾𝑂𝑖(𝐴𝑡′,𝑖)

𝑁
𝑖=1 . (5) 

In other words, the 𝑨𝑵𝑡 is a (weighted) mean of 𝑁-sized AnEn for a (future) time t. Several 

authors, such as Delle Monache et al. [2013], state that the AnEn rank histograms are 

uniform. Every member of the AnEn is thus an equally probable outcome, even though some 

analogs are closer to the current forecast than the others (measured by previously defined 

metrics). Hence, the value assigned to the weight 𝛾 is 1.  

Forecasting the median of the AnEn (ANM) is additionally used as an alternative to the 

AN that is less sensitive to the assumptions about the overall nature of the data (e.g. robust) 

and to the small number of outliers (e.g. resistant) [Wilks, 2011]. The analogs are searched in 

forecast space only, for both AN and ANM. Therefore, no observations are used to select the 

best analogs and some sort of correction in real-time is desired.  
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The KF approach uses all the available information to estimate the error of the current 

forecast, recursively giving higher weights to the most recent data. However, the KF alone is 

not able to predict large day-to-day changes in the prediction error, as discussed thoroughly in 

Delle Monache et al. [2011]. Benefits and shortcomings of the methods using analogs and KF 

complement one another, hence combining them seems like a reasonable choice. In this 

research two different ways to combine these methods are tested and schematically presented 

in Figure 5.  

 

 

Figure 5. The schemes for the KFAN and the KFAS forecasts in real-time. For the KFAN 

forecasting, the last member of the AN time series is created, while previously issued AN 

forecasts are saved. The AN is hereby the mean of the N-member ensemble (N=4 in this 

example). The KF is then applied to the time series of AN values and real-time measurements, 

recursively giving the highest weight to the most recent AN (i.e. closest in time). For the 

KFAS forecasting, the entire time series of previously issued model forecasts (analogs) are 

sorted by their similarity to the current model forecast, thus forming an analog space. Then, 

the KF is applied to the analogs and corresponding measurements in the analog space, giving 

the most weight to the most similar forecast. 
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The first combination of analog- and KF-based approaches includes running algorithms 

independently. First, the AN forecasts are issued (or already saved), completing the time 

series of the AN forecasts. The last member of the AN time series is valid at the future time t. 

Then, the KF algorithm is applied (in time) to the time series of the AN forecasts. The 

Kalman filter of the AN forecast is created – therefore the KFAN forecast. In other words, the 

KF is applied to the time series of the mean AnEn values. Hereby, every ensemble consists of 

observations corresponding only to the N best analogs. The KF algorithm gives more weight 

to the recent AN forecast than the AN forecasts issued at some time in the past. The 

hypothesis is that the KFAN forecast is as adaptable as the AN forecast (e.g. when large day-

to-day changes in the prediction error are present), but unbiased as the KF forecast.  

Another possibility is to run the KF algorithm through an ordered set of (all) analog 

forecasts, rather than in time. The entire time series of analogs is ordered from the least 

similar (worst analog) to the most similar (best analog) model forecast to the current one, 

forming an analog space for every future time 𝑡. Then, the KF is applied to the ordered set of 

analogs in analog space (the KF in Analog Space - KFAS). The KFAS algorithm weights 

closeness in analog space, and not proximity in time (as the KFAN forecast). Therefore, the 

starting model forecast (issued in the past) that is the most similar to the current starting 

model forecast is given the most weight. This procedure should be able to cope even with 

drastic changes in both the starting model and the AN forecast error.  

Model and observation datasets over the 2010-2012 period are divided into training and 

verification periods. The training period is from 2010 to 2011, and 2012 is used as the 

verification period. The training period increases gradually after every forecast. As the newer 

observations might be available in some real-time operational settings, they are added to the 

training database, together with the corresponding NWP model forecast. Therefore, the 

training period is initially 24 months long (for the first verified forecast initialized January 

1st, 2012) and then prolonged on a daily basis up to 36 months (for the last forecast, 

initialized December 31st, 2012). Delle Monache et al. [2006] show that there is an 

improvement in skill for longer training datasets. The improvement is intense with increasing 

the training period, especially for training periods up to 6 months. The improvement in skill 

becomes less notable at around a yearlong dataset. Thus, a dataset ranging from 2 to 3 years 

should be long enough for this method in our opinion. Furthermore, the analog-based 

predictions work best with a consistent model setup. Since (operational) model setup changes 
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every once in a while, in our opinion it would be better to develop a methodology that can 

easily adapt to those changes. It is, however, possible that by using longer training dataset the 

prediction of rare events such as extremely strong wind would be even better. 

 When using the A8 or the A2 as the starting model, five predictors are used: wind speed 

and direction logarithmically interpolated to 10-m height, air temperature and relative 

humidity logarithmically interpolated to 2-m height, and air pressure reduced to the mean sea 

level. The DA does not include moist and radiation physics. Hence, only physical variables 

related to wind fields are included in the search for the best analogs: wind speed and direction 

logarithmically interpolated to 10-m height, and vorticity and divergence at the lowest vertical 

level (∼17 m). The weight assigned to wind speed and direction is 1, and it is 0.8 for all other 

variables. The time window used to find the most similar analogs is defined by one time step 

before and after the lead time of interest. For instance, in eq. (5) t ̃ is equal to 1, hence forming 

a 6-h time window for the A8 and the DA models, or 2-h time window for the A2 model. The 

time window, the predictors and the corresponding weights used to find the most similar 

analogs are the same for the KFAN and the KFAS as for the AN and the ANM. The same 

recursive algorithm is used for generating the KFAN and the KFAS as for the KF. 

To determine if the difference in scores between the experiments is statistically 

significant, the bootstrap technique is applied. The Matlab function „bootci“, with default 

bias corrected and accelerated percentile method using 1000 re-samples at a confidence level 

of 95%, is used. 

 

 

3.5. Evaluation of the wind speed as a continuous predictand 

 

To evaluate the performance of the different deterministic post-processing methods, wind 

speed can be considered as a continuous or categorical predictand. Considered as a continuous 

variable, wind speed forecasts error is quantified by root-mean-square-error (RMSE), which 

penalizes a larger discrepancy more than a smaller one. The source of error of a model can be 

specified when decomposing the RMSE to the bias of the mean (or simply bias), the bias of 

the standard deviation (σ bias), and the dispersion (phase) error (e.g., Murphy [1988]; Horvath 

et al. [2012]): 
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𝑅𝑀𝑆𝐸2 = (𝐹̅ − 𝑂̅)2 + (𝜎𝐹 − 𝜎𝑂)2 + 2𝜎𝐹𝜎𝑂(1 − 𝑟𝐹𝑂), 

 

(6) 

where F represents forecast and O observations, σ is the standard deviation, and r is the 

correlation coefficient between the forecast and observed data. Since the sum of the three 

terms in (6) is exactly the square of the RMSE value, it is enough to provide information about 

two out of these three terms to describe the dominant source of the error (the third term is the 

squared RMSE value reduced by the value of the other two terms). The term describing the 

dispersion error involves the Pearson correlation coefficient, weighted with the standard 

deviation σ of both forecasts and measurements. Correlation coefficient and dispersion error 

are thus closely related: the smaller the correlation coefficient, the larger the dispersion error 

term in RMSE decomposition. In this section, the rank correlation coefficient (RCC) is used 

as a robust and resistant alternative to Pearson correlation, appropriate if dealing with non-

Gaussian distributed variables such as wind speed. Unlike the Pearson correlation coefficient, 

the RCC is a nonparametric statistic. The RCC, therefore, allows a nonlinear relationship 

between predictions and observations [Wilks, 2011; Jolliffe and Stephenson, 2011].  

 

 

3.5.1. The impact of the ensemble size to the deterministic forecasting 

 

The first step in testing an ensemble-based method is to select a number of ensemble members 

(N). For that purpose, we analyze the RMSE averaged over all locations and all lead times 

(Figure 6a). The optimal ensemble size is presented and determined for the A8 starting model. 

The mean confidence intervals shown here are estimated with bootstrapping, as previously 

described.  

Generally, the results are determined by the wind climate, complexity of topography, and 

the low resolution of the driving mesoscale model. The starting model forecasts (A8) yield 

RMSE of 2.35 ms-1, correlation coefficient RCC of 0.58, and almost non-existing bias of -0.01 

ms-1. However, it needs to be noted that this is aggregated (averaged) bias value, therefore not 

necessarily implying that the A8 forecast bias is small everywhere or during any time of a 

day. For that reason, more detailed insight is provided in the following subsections.   
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All tested post-processing methods, if averaged over the three studied regions, improve 

the results of the A8 model. The KF forecast significantly reduces RMSE (Figure 6a), 

improves correlation (Figure 6b), while bias remains small (Figure 6c) when compared to the 

A8. Using analogs improves results even further than just the KF, as it can be seen for the 

KFAS. The KFAS uses the entire analog space and therefore does not depend on the 

ensemble size. The other analog-based predictions (AN, ANM, and KFAN) produce similar 

results as the KFAS for about 10 or more ensemble members. Furthermore, the AN, the 

ANM, and the KFAN show similar behavior – the RMSE is reduced at first by increasing the 

ensemble size, but then it increases again for more than 15 ensemble members. The 

correlation also improves by increasing the ensemble size, while bias slightly worsens. The 

mean of the observed wind speed during the verification period differs from the mean during 

the training period for approximately 0.2 ms-1. The bias is likely converging to that value 

when increasing the ensemble size. Even though the biases after post-processing are 

significantly different from bias for the A8, one should take into consideration that the bias 

under 0.5 ms-1 can be considered relatively small. It is an order of magnitude smaller than the 

other two terms in RMSE decomposition and comparable to observational error (up to 0.5 ms-

1 or even higher; WMO, 2008). Additional uncertainty comes from the fact that some of the 

observation stations are subject to urban effects (heat islands, some larger-scale sheltering), 

while these urban effects are not represented in tested ALADIN model configurations. Given 

the RMSE and bias growth with the ensemble size, the optimal number of ensemble members 

is set to 15, which is used hereinafter (in section 3).  

It can be noticed that the ANM experiment has the highest RMSE and the highest bias if 

different analog-based predictions are compared. Since the other analog-based predictions 

produce better results than the ANM, and specific benefits are not achieved in tested cases 

presented in this work, results for the ANM are discarded hereinafter.  

Both AN and KFAN considerably reduce the RMSE (as evident from Figure 6a), better 

than any other technique tested here. At the same time, they improve the correlation (Figure 

6b). Both AN and KFAN have a very small negative bias, mostly between -0.1 and -0.2 ms-1. 

The AN has slightly better correlation and worse bias results than the KFAN, resulting in 

indistinguishable RMSE.  
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Figure 6. a) Root-mean-square-error (RMSE), b) rank correlation coefficient (RCC), and c) 

bias dependency on number of analog ensemble members (N) for the AN, the ANM and the 

KFAN forecasts. The results are generated with the A8 and averaged over all of lead times 

and 14 locations during 2012. The AN, the ANM and the KFAN results are then compared to 

the A8 model, the KF and the KFAS forecasts, which do not depend on N. The mean values of 

the 95% bootstrap confidence intervals are indicated by the error bars. 

 

Since the KFAN forecast is created by applying the KF to the AN forecast, the 

differences between the KFAN and the AN in the correlation and bias results may be 

expected. The KF algorithm updates its estimate of the future bias by using the old bias plus 

uncertainty. The estimate is corrected by a linear function of the difference between the 

previous prediction and the verifying bias. It is, therefore, very successful in removing the 

systematic errors (such as a bias of the mean), if the bias does not change rapidly (i.e. large 

hour-to-hour variations). However, the application of the KF algorithm can also lead to the 

decrease of the correlation coefficient (i.e. an increase of the dispersion error), especially if 

there are large hour-to-hour bias variations [Delle Monache et al., 2006; 2008].  
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3.5.2. Lead time performance for different topography types 

 

A more detailed insight into the performance of the post-processing methods can be gained by 

analyzing the metrics in topographically different regions and at different lead times.  

The first step is to analyze the A8 performance in the coastal complex topography. The 

A8 model has the highest RMSE for the coastal complex topography among all groups of 

stations (Figure 7a). Besides the increasing trend for longer lead times, the A8 RMSE error is 

typically the largest during nighttime and peaks at 06 UTC in the coastal area. While during 

nighttime the A8 exhibits maximum correlation (Figure 7e), it underestimates the mean 

(Figure 7i) and underestimates the standard deviation σ (Figure 8a) more than during the 

daytime. While observed wind speed shows the highest variability at 06 UTC (Figure 8a), the 

A8 forecast almost does not show the standard deviation σ diurnal cycle. That result suggests 

a systematic source of the errors for the diurnal shape of A8 RMSE (Figure 7a). It is possible 

that the A8 model underestimates land breeze, the combination of land breeze and downslope 

wind called burin [Poje, 1995] or underestimates both mean speed and variability of the 

strong bora wind, which can be determined with analysis by season (e.g., bora occurs mostly 

during wintertime and it is variable and intense, while land breeze can be dominant during 

summertime stable conditions) or by examining case studies.   

It is crucial to determine which post-processing method is the most successful in the error 

reduction, especially in this particular group of stations where the error is the largest. 

Additionally, it is important to demonstrate which term of the RMSE decomposition is 

reduced by which post-processing method. For that reason, the performance of different post-

processing methods in the coastal complex topography will be presented in the next 

paragraph. The results are presented in such a manner that one can thus decide which post-

processing method is the most applicable for a specific situation, after a simple statistical 

analysis of the potential starting model.  
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Figure 7. Root-mean-square-error (RMSE)(a-d), rank correlation coefficient (RCC) (e-h) and 

bias (i-l) dependency on forecast lead time for the A8 starting model and the corresponding 

post-processing methods (KF, AN, KFAN and KFAS). The results are averaged over the 

corresponding groups and for 14 locations in Croatia during 2012. The mean values of the 

95% bootstrap confidence intervals are indicated by the error bars. 
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Secondly, we aim to answer how well does the KF reference method perform against the 

A8 model and against other analog-based experiments in the coastal complex topography. The 

KF reduces RMSE and bias (Figure 7a and Figure 7i) while increases standard deviation σ 

(Figure 8a), maintaining very similar dependency on lead time as the A8. The other analog-

based predictions (AN, KFAN, and KFAS) improve the A8 results even further – reducing 

RMSE and bias while standard deviation σ is even closer to the standard deviation of the 

measurements. Moreover, even though the standard deviation is still a bit underestimated, the 

diurnal cycle of the standard deviation is more similar to the diurnal cycle of the 

measurements than for the A8. Previously mentioned systematic A8 error (possibly 

unresolved land breeze, underestimation of burin wind, etc.) is thus reduced or removed 

completely. The standard deviation of the analog-based predictions is very close to the 

standard deviation of the measurements available over the training period. The analog-based 

predictions underestimation of the standard deviation is, therefore, partially explained by the 

fact that there is a standard deviation difference between training and testing period. Also, in 

the coastal complex area, the KF has a smaller correlation coefficient (RCC) than the A8, 

unlike all the analog-based predictions which have a higher correlation coefficient than the 

A8. Improving the correlation shows that by using analogs and measurements to build a 

prediction the random error is reduced, suggesting that additional information on physical 

processes is included in the analog-based predictions.  

After the general comparison of the analog-based predictions against the reference 

method  KF in the coastal complex topography, we will take a more detailed look into the 

differences among analog-based predictions for this group of stations in the next three 

paragraphs. We will focus on the underestimation of the standard deviation and the ability of 

the analog-based predictions to reduce random error (i.e. increase the correlation). 
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Figure 8. The dependency of the standard deviation on forecast lead time for the observations 

during the training (2010-2011) and the verification period (2012), the A8 starting model and 

the corresponding post-processing methods (KF, AN, KFAN and KFAS). The results refer to 

the corresponding groups (a-c), and to 14 locations in Croatia (d) during 2012. The mean 

values of the 95% bootstrap confidence intervals are indicated by the error bars. 

 

 

Among the analog-based predictions, the AN forecast is the most prone to systematic 

underestimation of the standard deviation (Figure 8) in the coastal complex topography (but 

also in general). This reduction of the forecast variability is due to averaging of AnEn 

members while predicting the mean of the ensemble. This averaging naturally reduces the 

variability and might partially be improved by using the lower number of ensemble members. 

This systematic error is partially removed by the application of the KF algorithm in the 

KFAN forecast.  
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Figure 9. Schematic representation of a Kalman filter correction for wind speed prediction 

(WSPD) (a) run in time (KF) or (b) through an ordered set of analog forecasts (ANKF; 

equivalent to the abbreviation KFAS used in this thesis). White arrows at forecast time (far 

right) indicate the post-processing methods estimate of the forecast error. Circles indicate 

observations, asterisks refer to the raw prediction, and the dashed line represents the 

corrected predictions (from Delle Monache et al. [2011], page 3557). 

 

 

The KFAS forecast, on the other hand, exhibits the highest standard deviation among the 

analog-based predictions in the coastal complex topography and in general. This is worth 

additional discussion. The simplified schematic example for improving the adaptability of the 

KFAS forecast is provided in Delle Monache et al. [2011], as shown in Figure 9. The 

hypothesis is that applying the KF algorithm in analog space (rather than in time), results in 

higher forecast variability during alternating wind regimes. The higher KFAS standard 

deviation than the KFAN standard deviation in the coastal area supports this hypothesis. The 

difference in the standard deviation between the KFAN and the KFAS does not necessarily 

mean that the higher variability for the KFAS is occurring during alternating wind regimes 

(i.e. on the time scales shorter than a day). The remaining underestimation of standard 

deviation depends on other aspects such as the variability of starting model forecasts and fine-

tuning of the analog search setup (e.g., choice of predictors, corresponding weights, as shown 

by Junk et al. [2015]). The variability in the training period might be enlarged by prolonging 



§ 3. Post-processing the deterministic NWP  

 28 

the period itself (i.e. including El Niño/Southern variations). Finally, the variability of the 

post-processed forecasts, in general, might be further improved by additional calibration. For 

example, applying the ensemble model output statistic post-processing approach (EMOS; 

[Gneiting et al., 2005]) on the analog forecasts or directly combining the two methods might 

be a possible future research avenue.   

Among different analog-based predictions, the AN seems to have the highest correlation, 

while the KFAN reduces the bias the most, as previously described in the more general case. 

The KFAS exhibits the highest standard deviation among the analog-based predictions, 

supporting the hypothesis that using the analog space improves variability during alternating 

wind regimes. After all, there are no significant differences in the reduction of RMSE for the 

AN, the KFAN, and the KFAS. 

After analyzing the forecasts in the coastal complex area, we will shift our focus to the 

other topography types. We will also start by examining the starting model A8 performance. 

The A8 exhibits considerably smaller RMSE for the mountain complex (Figure 7b) and nearly 

flat topography (Figure 7c) than it is the case for the coastal complex area (Figure 7a). The 

smaller A8 RMSE is predominantly due to lower, less underestimated standard deviation of 

measured wind speed for these groups (Figure 8b-c) than for the coastal complex topography. 

Even though the A8 error is smaller than in the coastal complex topography, it is still very 

important to determine which term in the RMSE decomposition is dominant and how it can be 

reduced by post-processing. Unlike underestimation of (on average) higher wind speed in the 

coastal topography, the A8 overestimates (on average) lower wind speed in the mountain 

complex (Figure 7j) and the nearly flat topography (Figure 7k), exhibiting the similar absolute 

value of the bias. The A8 standard deviation is much closer to measured wind speed standard 

deviation for the mountain complex (Figure 8b) and the nearly flat (Figure 8c) than the coastal 

complex topography. The A8 correlation coefficient (RCC) is lower for the mountain (Figure 

7f) and for the nearly flat (Figure 7g) than for the coastal complex topography, therefore 

decreasing with measured mean wind speed and corresponding standard deviation. It seems 

that the lower the average wind speed for a certain group, the lower the correlation of 

measurements and predictions, implying that weak wind is less predictable than a strong one. 

This especially makes sense for wind speeds that are comparable to observational error (up to 

0.5 ms-1 or even higher; WMO [2008]). In other words, models are more successful in 
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simulating winds which are due to stronger forcings i.e. pressure gradients, than weak winds 

in non-gradient situations. 

Even though some statistical properties of the A8 predictions are similar for the mountain 

and nearly flat topography, the physical processes influencing the flows are different. This is 

due to different dominant topographic characteristics, as explained in section 3.1. For this 

reason, it is interesting to compare the effect of post-processing in a certain group of stations. 

We will start by examining the KF performance for different topography types. The KF 

forecast exhibits significantly lower RMSE than the A8 in the mountain and nearly flat 

topography. The A8 bias is almost completely removed by the KF, regardless of the 

topography type and if the A8 is underestimating (Figure 7i) or overestimating (Figure 7j-k) 

wind speed. The KF standard deviation σ in the mountain and the nearly flat topography is 

almost the same as the A8, and very close to measured σ as well. In addition to reducing the 

A8 bias of the mean and maintaining bias of the standard deviation almost non-existent, the 

KF also improves the correlation for all of the lead times in the mountain and the nearly flat 

topography. Unlike for the coastal complex, dispersion error is therefore reduced by the KF, 

especially for the nearly flat topography. Furthermore, the KF forecast dependency on lead 

time is different than for the A8 in the nearly flat topography. The KF forecast exhibits a local 

correlation coefficient maximum around 00 UTC, while the A8 exhibits a local minimum 

(Figure 7g). 

After examining the KF performance in different topography types, we will compare 

those results against the analog-based predictions. The analog-based predictions (AN, KFAN, 

and KFAS) in the mountain complex and the nearly flat topography reduce the A8 RMSE 

even more than the KF forecast, further improving correlation and reducing bias. The RMSE, 

correlation and bias dependencies on a lead time are similar as for the KF. This is especially 

interesting in the nearly flat topography, where previously mentioned improvement of the A8 

correlation coefficient RCC is even more indicated when using analogs than for the KF. The 

analog approach selects similar numerical predictions (not necessarily recent) for assessment 

of the starting model error, unlike non-selectively using previously predicted (recent) values 

in the KF algorithm. The KF would be capable of improving persistent error in predicting 

stable boundary layer flow once it is started, as previously mentioned for the application of 

the KF algorithm. The analog-based method would be more adaptable and capable of 
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predicting the beginning of the flow, thus resulting in an even higher correlation coefficient 

than for the KF.  

We will now take a detailed look into the analog-based predictions performance in 

different topography types. Similarly to the coastal complex, in the mountain complex and the 

nearly flat topography the AN seems to be the most highly correlated with measurements. The 

KFAN has a slightly lower correlation coefficient RCC but is almost unbiased. Unlike the A8 

and the KF, the analog-based predictions exhibit a slight underestimation of σ in the mountain 

complex (Figure 8b) and nearly flat topography (Figure 8c).  The underestimation of the 

standard deviation is the smallest for the KFAS and the largest for the AN, for the same 

reasons as previously mentioned. The results for the KFAN are mostly in between these two 

(AN and KFAS), which may be explained by the fact the KFAN shares important features 

with both methods. 

Finally, we will try to summarize the previous analysis by aggregating results for all 

available stations, regardless of the topography type. Overall, the A8 RMSE is significantly 

reduced by every post-processing method tested for all of the lead times, more by the analog-

based predictions (AN, KFAN, and KFAS) than for the KF (Figure 7d). All post-processing 

methods reduced the A8 bias, which is evident for a specific group and lead time (Figure 7i-

k), even though it seems non-existent on average for the A8 (Figure 7l). The KFAN 

predictions seem to be the most successful in removing bias, while the AN appears to exhibit 

the highest correlation (Figure 7h). Measured wind speed standard deviation σ is 

underestimated on average by the A8 model and all post-processing methods (Figure 8), 

mostly due to the underestimation of standard deviation in the coastal area (group I). Overall, 

the standard deviation of KFAS is the closest to the observed value.  

 

 

3.5.3. The influence of the starting model 

 

To investigate the influence of the starting model used to generate analogs, results are 

averaged over all lead times for every group of stations. A reasonable hypothesis could be that 

the more physical processes that are directly simulated in the starting model (e.g., with higher 

resolution), the better the forecast will be. The RMSE (Figure 10a) and bias (Figure 10i) are 

lower for the A2 and the DA models than for the A8 in the coastal complex topography, 
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empirically supporting this hypothesis. The correlation coefficient RCC does not differ 

significantly among different models (Figure 10e). It must be noted that it is difficult to 

quantify the improvement of more detailed forecasts over coarser ones using point-based 

verification metrics [Rossa et al., 2008; Jolliffe and Stephenson, 2006]. Point-based 

verification metrics tend to penalize spatial and phase errors, contaminating finer resolution 

simulations more than coarser ones. Hence, it might be challenging to easily demonstrate the 

true benefits of using a higher-resolution forecast. To determine if that is the case, it would be 

advisable to do case studies and some sort of spatial verification (for gridded forecasts). The 

selection of bora and sirocco case studies might provide an interesting insight into post-

processing performance benefits of using high resolution (i.e. prediction of extremely high 

wind speed). This is especially the case if the experiments are provided using (even the 

simple) NWP model but with a more similar setup, preferably changing the resolution and 

making only the necessary adjustments. Furthermore, using the gridded forecasts and analysis 

in the analog search, as well as the spatial verification tool, is an inevitable future 

development. Since the computational efficiency needs to be adequate, the analog approach 

might also include other methods (such as clustering, using empirical orthogonal functions, 

etc.).  

All post-processing methods tested in this section improve model predictions. It is to be 

expected that the analog-based predictions (AN, KFAN, and KFAS) also achieve better 

results when using the A2 or the DA than when using the A8. The quality of an analog should 

increase the better the representation of physical processes simulated in the starting model 

(i.e. with higher resolution, non-hydrostatic dynamics in the A2, etc.). This type of 

improvement is clearly evident, for example, for the AN results in the coastal complex 

topography. The results show that the differences in using different starting model 

configurations are much smaller after post-processing than for three starting models. 

However, the RMSE, correlation, and bias scores are similar for the post-processing methods 

applied to all three starting models. For some scores, such as the RMSE, the analog-based 

predictions have the best results when applied to the A8 model.  
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Figure 10. The average root-mean-square-error (RMSE) (a-d), rank correlation coefficient 

(RCC) (e-h) and bias (i-l) for three different starting models and the corresponding post-

processing methods (KF, AN, KFAN, and KFAS). The results are averaged over the 

corresponding groups and over all stations in Croatia during 2012. The colors represent the 

starting model used (A8, A2, and DA), while the x-tick labels stand for model and 

corresponding post-processing methods. The values of the 95% bootstrap confidence 

intervals are indicated by the error bars. 
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Finally, it seems that even though the higher resolution A2 and DA models achieve better 

results if the results are averaged over all available stations. However, the analog-based 

predictions based on the A2 and the DA do not statistically outperform the analog-based 

predictions based on the A8 (Figure 10d, 10h and 10l). This does not necessarily mean that 

improvement is not made at all. The benefits might be partially hidden because of the 

imperfections of the verification metrics used. To investigate the benefits of using higher 

resolution further, one can analyze the forecasts categorically (i.e. to examine the forecasts of 

the rare events such as strong wind), perform a spectral analysis or look at the case study. The 

categorical verification results and spectral analysis are presented in the next two sections, 

while it is previously discussed how the case studies are a possible future research avenue. 

 

 

3.6. Evaluation of the wind speed as a categorical predictand 

 

To verify a categorical predictand the event or events need to be pre-defined. Wind speed is 

therefore divided into 3 categories: weak (or no wind at all), moderate and strong wind, 

depending on the climatology of the corresponding group of stations. Thresholds are 

determined as the 50th and 90th percentile of the entire group. This is done independently for 

each lead time, so the thresholds vary due to the diurnal cycle (Figure 3). After defining 

categories (events), the next step is the calculation of a so-called contingency table (Table 3). 

The forecast-observation pairs corresponding to the same (real) time populate the contingency 

table, representing the joint distribution (i.e. fields A-I in Table 3). At the right side and the 

bottom, the marginal distributions are also shown (Fields J-P in Table 3).  

The categorical verification procedure includes frequency bias (FBias), critical success 

index (CSI) and polychoric correlation coefficient (PCC). The choice of these measures is 

consistent with the continuous case.  
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Table 3. The example of a contingency table 

Wind speed predictor 
Observed 

Below 50th 
percentile 

Between the 50th 
and 90th percentile 

Above 90th 
percentile 

Total 

Forecast 

Below 50th 
percentile 

A B C J 

Between the 50th 
and 90th percentile 

D E F K 

Above 90th 
percentile 

G H I L 

Total M N O P 

 

 

The polychoric correlation coefficient PCC measures the association of forecasts and 

observations in the contingency table. The idea behind the PCC is to assign a density function 

to the contingency table and then cut the domain into rectangles corresponding to the cells of 

the contingency table (Figure 11). The PCC is the parameter value of the standard bivariate 

normal density function for which the volumes of the discretized distribution are equal to the 

corresponding joint probabilities of the contingency table [Juras and Pasarić, 2006]. The 

standard bivariate normal density function is completely determined by one parameter (PCC), 

while the mean value is set to 0 and the standard deviation parameter is set to 1. However, it is 

not applied to the latent (i.e. underlying continuous) variables directly, but to corresponding 

standard normal deviates ZX using the following transformation for the continuous variable X: 

𝑍𝑋 =  Φ−1(ΦX(𝑋)), (7) 

where the ΦX  represents the cumulative distribution function of X, while the Φ is the 

cumulative distribution function of standard normal distribution. Having the contingency 

table, it is implicitly accepted that we are dealing with categorical variables, which in our case 

are observation (O) and forecast (F). It is assumed that the random vector (ZO, ZF) follows the 

bivariate normal density function. Similarly, the thresholds between different categories are 

also transformed.  
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Figure 11. Standard bivariate normal density function for which the volumes of the 

discretized distribution are equal to the corresponding joint probabilities of the 3×3 

contingency table.  

 

For dichotomous forecasts, the PCC is called the tetrahoric correlation coefficient. If the 

zo and zF are standard normal deviates of the marginal probabilities, the relation between the 

tetrahoric correlation coefficient and the A field of the 2×2 contingency table is uniquely 

determined:  

𝐴 =
1

2𝜋
 ∫ exp [−

1

2
(𝑧𝑂

2 + 𝑧𝐹
2 − 2𝑧𝑂𝑧𝐹𝑐𝑜𝑠𝜔)𝑐𝑜𝑠𝑒𝑐2𝜔] 𝑑𝜔

𝜋

arccos (𝑇𝐶𝐶)

 . 
(8) 

For the higher-order (i.e. 3×3) contingency tables, the relation between PCC and A is not 

unique. Nevertheless, it can be approximated. The conditional maximum likelihood method is 

used in this research. Additional details of the procedure applied in this research can be found 

in Juras and Pasarić [2006].  

The range for the polychoric correlation coefficient PCC is between -1 and 1. The PCC 

value for the random forecast is defined as 0, while it is undefined for the constant forecast. 

The measure does not depend on the underlying climatology for the pre-defined events. For 

this reason, it is suitable for comparison among climatologically different regions.   

Ekström [2011] shows the (asymptotical) equivalence of the rank correlation coefficient 

RCC and the polychoric correlation coefficient PCC under several conditions including that 

the number of categories is as large as the number of measurement-forecast pairs, the 
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underlying joint distribution is binormal, etc. Even though a “simplified” rank correlation 

coefficient RCC can be re-calculated if the ordinal variables arise from discretization such as 

groupings of values into categories (as in this section), it has some undesirable properties. For 

instance, it can achieve a value of 1 even if non-discretized empirical variables are not 

perfectly dependent. The polychoric correlation coefficient PCC is therefore considered to be 

more conservative and better suited for statistical inference about the association of the 

underlying, non-discretized variables than the rank correlation coefficient RCC. 

The frequency bias Fbias, similarly to bias, measures the tendency to forecast too often 

(FBias greater than 1) or too rarely (FBias less than 1) a particular category [Wilks, 2011; 

Jolliffe and Stephenson, 2011]. In other words, it is the ratio of the number of forecasted 

events and the number of occurred events, calculated separately for each category, as follows: 

𝐹𝐵𝑖𝑎𝑠1 =
𝐽

𝑀
;  𝐹𝐵𝑖𝑎𝑠2 =

𝐾

𝑁
;  𝐹𝐵𝑖𝑎𝑠3 =

𝐿

𝑂
 . 

(9) 

The Fbias provide the information about the forecast distribution (i.e. whether the event is 

under- or over-forecasted) and not the forecast accuracy. For example, the persistence 

forecasting (forecasting the last measured value) is almost completely unbiased. However, it 

is often not accurate and it lacks skill.  

The critical success index CSI measures the fraction of observed forecast events that are 

correctly predicted. It can be thought of as the relative accuracy when correct negatives are 

removed from consideration. It is computed from the contingency table, separately for each 

category, as follows:  

𝐶𝑆𝐼1 =
𝐴

𝐽 + 𝑀 − 𝐴
;   𝐶𝑆𝐼2 =

𝐸

𝐾 + 𝑁 − 𝐸
;   𝐶𝑆𝐼3 =

𝐼

𝐿 + 𝑂 − 𝐼
 . 

(10) 

The CSI, therefore, measures the error (similar to the RMSE in continuous case). Sensitive to 

hits, the CSI penalizes both misses and false alarms. It does not distinguish the source of 

forecast errors and hence additional verification measures need to be examined [Wilks, 2011; 

Jolliffe and Stephenson, 2011]. The CSI value ranges from 0 to 1. Ideally, it is equal to 1, 

which means there is not a single false forecast. 

Assessing the quality of predictions of extreme weather events is complicated by the fact 

that measures of forecast quality typically degenerate to trivial values as the rarity of the 

predicted event increases. The extremal dependence index EDI is a measure developed for the 

extreme weather events verification independent on underlying climatology [Ferro and 
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Stephenson, 2011]. It is a function of the false alarm rate F and hit rate H and is calculated as 

follows:  

𝐻 =
𝐼

𝑂
;   𝐹 =

𝐿 − 𝐼

𝑃 − 𝑂
; 𝐸𝐷𝐼3 =

log 𝐹 − log 𝐻

log 𝐹 + log 𝐻
 . 

(11) 

The EDI3 is of use when the aim is to assess the quality of the forecast for discriminating 

the antecedent conditions leading to the occurrence of extreme weather from those which do 

not (i.e. discrimination property). It is a regular, asymptotically equitable measure that is 

difficult to hedge and always has range [−1, 1]. The value for the perfect forecast is 1.  

 

 

3.6.1. The association of forecasts and observations in the contingency table 

 

The polychoric correlation coefficient PCC results for different forecasts (Figure 12a-d) do 

resemble the rank correlation coefficient RCC results (Figure 7e-h) when results are averaged 

for all of the lead times in a certain group. The DA and the A2 exhibit higher association in 

the coastal complex but not in the other topography types. Association is significantly 

improved by almost all post-processing methods in all groups of stations and overall, as 

already presented. The exception is the KF forecast in the coastal complex topography. The 

analog-based predictions achieve better both rank and polychoric correlation coefficient 

results than the KF in general, particularly the AN. There are some differences between the 

rank correlation coefficient RCC and polychoric correlation coefficient PCC results that need 

to be highlighted in order to determine the origin; whether it is due to statistical properties of 

the verification measure used or it is a direct consequence of discretization (i.e., the grouping 

of wind speed into 3 categories). If both coefficients are calculated for the same (ordered) data 

and grouped into identical categories, the rank correlation coefficient RCC would have a 

slightly higher value [Ekström, 2011]. The polychoric correlation coefficient PCC shows 

higher values than the rank correlation coefficient RCC calculated for the continuous variable, 

hence confirming the assumption that it is easier to predict the category than the exact 

(continuous) value of wind speed.  
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Figure 12. The polychoric correlation coefficient (PCC) for three different starting models 

(A8, A2, and DA) and the corresponding post-processing methods (KF, AN, KFAN, and 

KFAS). The results are averaged for the corresponding groups (a-c) and for all (d) of the 

locations in Croatia during the year 2012. The PCC is calculated using three different 

categories, divided by the 50th and 90th percentile. The values of the 95% bootstrap 

confidence intervals are indicated by the error bars. 

 

 

3.6.2. Frequency bias 

 

There is a variety of frequency bias (Fbias) results depending on the exact model, group of 

stations and wind category (Figure 13). For instance, the DA predicts category 2 too often 

(Figure 13e), while predicting the other two categories (Figure 13a and 13i) too rarely in the 

coastal area. The frequency bias results for the A8 model are somewhat similar, while the A2 

is almost unbiased in this case. All starting models under-forecast weak wind category while 

over-forecast moderate and strong wind categories in the mountain complex and the nearly 

flat topography (Figure 13f, 13g, 13j and 13k). The exact values differ for different models 

and categories yielding mixed results in terms of determining the best-performing starting 

model.  

a) b) c) d) 
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The KF only slightly impacts the A8 frequency bias by decreasing the value for the weak 

wind category (Figure 13a), while only indicating the increased value for the moderate and 

the strong wind categories (Figure 13e and Figure 13i) in the coastal area. More generally, 

besides the frequency bias reduction for the weak wind category (Figure 13a-Figure 13d), the 

KF does not have a noticeable impact on the starting model results. Unlike the coastal area, in 

the mountain complex and the nearly flat topography, the KF seems to be less biased than the 

corresponding (starting) model for all cases tested. This is indicated by the significantly 

smaller bias for the weak wind category, and smaller confidence intervals near the zero value 

for the moderate and strong wind categories. The smaller confidence interval referring to the 

same sample size means smaller variability within the results.  

The frequency bias results for the analog-based predictions (AN, KFAN, and KFAS) seem 

to exhibit much less variety depending on a different group of stations. The results are 

indistinguishable among different starting models, especially for the moderate and strong 

wind categories (Figure 13e-Figure 13l).  For any given group, the analog-based predictions 

consistently over-predict moderate wind speeds (Category 2), while under-predict rarer and 

stronger wind (Category 3). These analog-based predictions sometimes even under-predict the 

occurrence of weak wind. The KFAS seems to be the least biased analog-based prediction, 

showing the highest values for strong wind category while being as unbiased as the AN in the 

other two categories. However, it needs to be mentioned that these differences are not 

statistically significant, partially due to the small sampling size.  

Overall, the post-processed forecasts, in general, reduce bias for the climatologically most 

common wind speed category (weak wind). The analog-based predictions frequency bias 

results are not as variable as for the starting model and the KF, inheriting only a slight 

difference from the corresponding model for an exact technique (AN, KFAN or KFAS). The 

main deficiency of the post-processing methods seems to be under-forecasting the occurrence 

of strong wind, with the KFAS being the most successful (Figure 13l).  
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Figure 13. The frequency bias (Fbias) for three different starting models (A8, A2, and DA) 

and the corresponding post-processing methods (KF, AN, KFAN, and KFAS). The results 

are averaged for the corresponding groups and all of the locations in Croatia during the year 

2012. The Fbias is calculated for three different categories, divided by the 50th and 90th 

percentile. The values of the 95% bootstrap confidence intervals are indicated by the error 

bars. 
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3.6.3. Evaluation of the forecast quality 

 

If results among different starting models are compared, it can be seen that for the weak wind 

category the A2 produces higher critical success index CSI than the A8 and the DA (Figure 

14a). Furthermore, finer horizontal resolution slightly improves relative accuracy for the 

strong wind category in the coastal complex topography (Figure 14i). The results for the 

moderate wind category are similar across the different starting models (Figure 14e). 

Increasing the horizontal resolution does not necessarily improve the critical success index in 

other groups of stations. Due to the small sample size, the results rarely differ significantly. 

The critical success index results are considerably higher for the KF than for the starting 

models (A8, A2, and DA) for the weak wind category in the mountain complex and the nearly 

flat topography, but not as much in the coastal area. The indication KF being the most 

successful in predicting the strong winds (Category 3) in nearly flat continental topography, 

even though not statistically significant, might still suggest a dominant systematic error in the 

models’ predictions of the strong wind. The frequency bias is lower for the KF than for any 

starting model, which combined with a higher critical success index indicates that the number 

of false alarms is reduced.  

Analysis suggests that analog-based predictions outperform starting models and 

corresponding KF forecasts for all of the categories and all groups of stations except the 

strong winds in the nearly flat continental topography (Figure 14k). The improvement of the  

critical success index value is the most evident, and statistically significant, for the most 

common weak wind category (Figure 14a-d). However, the larger sample is needed to provide 

a more rigorous proof of that statement for the moderate and strong wind.  

Overall, all post-processing methods improve the critical success index value. The AN 

forecasts achieve the best result for predicting weak wind (Figure 14d), while the KFAN and 

the KFAS produce slightly better results than the KF and the AN for the other two categories 

(Figure 14h and 14l).  

It needs to be noted that the results for the moderate and strong wind speed categories are 

rarely statistically significant, partially due to the small sample size. However, analysis 

suggests that the best results are achieved when using the A2 as the starting model, mostly 

due to the higher critical success index in the coastal complex topography than when using a 

coarser resolution starting model. It is possible that additional improvements may be 
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generated by increasing the resolution (1 km or less) in the complex topography. The 

necessity to use even 2-km grid spacing is, however, questionable and might be reexamined 

for nearly flat continental topography (i.e. by spectral analysis). In addition to improving the 

relative accuracy in coastal complex topography, the categorization suggests the higher 

association for the full-physics A2 model and corresponding post-processing methods in the 

coastal complex and the nearly flat continental topography, as shown before. These results 

combined might suggest that the higher resolution full-physics A2 model is better capable to 

distinguish low from moderate or unusually strong wind, especially in the coastal complex 

topography. This capability is then mostly inherited by the different post-processing methods, 

including the analog-based predictions. 
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Figure 14. Critical success index (CSI) for three different starting models (A8, A2, and DA) 

and the corresponding post-processing methods (KF, AN, KFAN, and KFAS). The results 

are averaged for the corresponding groups and for all of the locations in Croatia during the 

year 2012. The CSI is calculated for three different categories, divided by the 50th and 90th 

percentile. The values of the 95% bootstrap confidence intervals are indicated by the error 

bars. 

 

There is a decrease in the critical success index values for moderate (Category 2) and in 

particular strong wind (Category 3), regardless of the exact group of the stations or the 
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forecast. It should be mentioned that that decrease is partially the direct consequence of 

sensitivity of the critical success index metrics to the climatological probability of the 

predefined category that is being evaluated, and therefore it should be analyzed with caution. 

The sensitivity to climatology is due to counting the portion of correct forecasts that can be 

accurately predicted by random chance. Also, the different values across different groups for 

the same category (e.g., strong winds at Figure 14i-k) might suggest that unusually strong and 

rare wind is predicted more easily in coastal than in continental area, regardless of the exact 

forecast. 

 

 

Figure 15. Extremal dependence index (EDI) for three different starting models (A8, A2, and 

DA) and the corresponding post-processing methods (KF, AN, KFAN, and KFAS). The 

results are averaged for the corresponding groups and for all of the locations in Croatia 

during the year 2012. The EDI is calculated for the Category 3 (strong wind; above 90th 

percentile). The values of the 95% bootstrap confidence intervals are indicated by the error 

bars. 

 

Since the critical success index value degenerates as the rarity of the predicted event 

increases, it is hard to produce a statistically significant result, especially when dealing with 

only a year-long dataset. For that reason, the measure extremal dependence index EDI3, which 

is independent of underlying climatology, is also used to evaluate the forecast of rare events 
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(i.e. strong wind). The results (Figure 15) are generally consistent with the previously shown 

critical success index analysis (Figure 14), with smaller confidence intervals. If results among 

different starting models are compared, it can be seen that for the coastal complex topography 

the A2 produces significantly higher EDI3 than the A8 and the DA. This is not the case for 

other types of topography. The KF approach performs better in a flat continental, while the 

analog-based method performs better in the mountain complex topography. In the coastal 

complex topography, the KF is the best post-processing method for the A2 post-processing, 

while the analog-based method is more successful than KF for post-processing A8 and DA 

forecasts. Overall, the analog-based method performs better than KF. Among different 

analog-based experiments, the best result is achieved for the KFAN forecast. The analog-

based method is more successful if it started with A2 than if it started with A8 or DA models, 

which is consistent with the previous results. 

 

 

3.7. Spectral analysis of wind speed forecast 

 

The small spatial and temporal errors of (generally) well-simulated phenomena can 

profoundly change the verification results [Mass et al. 2002; Rife et al. 2004]. For that reason, 

spectral analysis in the frequency domain is utilized to provide a scale-dependent measure of 

different post-processing methods performance which is essentially insensitive to temporal 

errors. Spectral analysis allows quantification of power distribution among different temporal 

scales. It is relevant to determine the exposure of a particular station to longer-than-diurnal 

(LTD), diurnal (DIU) and shorter-than-diurnal (STD) motions and the forecast ability to 

simulate these motions [Horvath et al., 2012]. 

Spectral decomposition of the detrended time series is performed using the Welch 

periodogram-based method [Welch, 1967] with 50% overlapping segments. The data time 

series is divided into smaller segments. The periodogram is calculated for each segment, and 

the estimations are then averaged. In other words, by introducing so-called data-, lag- and 

spectral-window, the variance of the estimator is reduced for longer time series (otherwise it 

is independent on time series length), making the spectrum smoother. The length of the 

Hamming spectral window (chosen length is 256; approximately a month-long) is adjusted to 

optimally emphasize the difference among tested post-processing methods. Here, for a year-
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long time series, there are approximately 24 estimations. The distribution of the spectral 

estimator is often approximated as 𝜒2 distribution to provide the information on typical 

variability and confidence intervals [Papoulis, 1984; Koopmans, 1974]. The confidence 

interval for the power spectra 𝑆(𝜐) is calculated as: 

𝛾𝑆𝑇
̅̅ ̅(𝜈)

𝜒𝛾
2(1 − 𝛼/2)

< 𝑆(𝜐) <
𝛾𝑆𝑇

̅̅ ̅(𝜈)

𝜒𝛾
2(𝛼/2)

, 

 

(12) 

where 𝑆𝑇
̅̅ ̅ represents the averaged periodograms (estimations) in frequency domain 𝜈, 𝛾 

represents the number of degrees of freedom (depending on the exact spectral window, 

overlapping, time series, and interval length), 𝛼 represents the significance level and the 

distribution used is 𝜒𝛾
2. This interval is usually shown as a small cross sign that is independent 

on the logarithmic scale. Since not changing the size, it can easily be moved up and down 

providing a simple visual comparison with the spectrum.  

It should be noted that power spectral density (PSD) analysis performed contains the 

effect of aliasing, necessarily contaminating all scales by oscillations with periods shorter than 

6 hours (here corresponding to the Nyquist frequency). Testing this effect on measured data 

suggests that it is rather small on longer-than-diurnal scales. Significant effects, however, may 

be found on shorter-than-diurnal scales, especially near the periods corresponding to the 

Nyquist frequency [Žagar et al., 2006; Hrastinski et al., 2015]. Since the A8 and the DA 

forecasts are archived every 3 hours (and the A2 and the measurements are adjusted by simply 

using the same output frequency), it is not possible to circumvent this effect. However, it may 

be noted that all the forecasts tested (and measurements) are aliased similarly; therefore, the 

effect is not crucial for the inter-comparison.   

The forecast output frequency is 3 h for all forecasts, and only the 24-hour forecast period 

is considered in the analysis (making a continuous time-series). Missing data are provided by 

using linear interpolation. It should be noted that the typical diurnal rotation of winds in the 

Adriatic partially hides the diurnal spectral peak if the analysis is performed using wind speed 

values [Telišman Prtenjak and Grisogono, 2007]. However, the preferred spectral analysis of 

wind components is not possible as the analog-based method in our analysis predicts only the 

wind speed (not the direction).  

The spectral analysis is performed for all forecasts and locations included in this part of 

the thesis (section 3) for the entire year of 2012 (shown in Appendix A). However, it is 
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decided that it is more comprehensive to show the results for several representative locations, 

instead of any sort of averaging or summarizing the results. The particularities that could not 

be easily seen on figures are pointed out and explained in the text. Two locations (Dubrovnik 

and Jasenice stations) correspond to the coastal group of stations, covering the northern and 

the southern part of the coastline. The reason for including these two stations is that the 

governing processes somewhat differ (e.g. processes that lead to bora windstorm as explained 

in Horvath et al. [2009]). Osijek is chosen as a representative station for the nearly flat 

continental topography, while Ogulin is chosen to represent the mountain complex 

topography.  

 

 

3.7.1. The Kalman filter approach influence  

 

The KF influences the motions on the time scales longer than 10 days if the model’s 

power spectral density PSD function is biased. The KF forecast, therefore, enlarges the 

energy of these large-scale motions in the coastal area, as shown in Figure 16a. Similarly, KF 

reduces the energy that is overestimated by the NWP model at the nearly flat continental 

topography (Figure 16b). Besides the large scale motions, the KF does not significantly 

influence the shorter time scale. Similarly, the KFAN is almost the same as the AN spectrum, 

except rarely significant differences for large scale motions. The same effect can be noticed, 

regardless of the starting model (as shown in Odak Plenković et al. [2018]). The very small 

difference among spectra before and after the application of the KF algorithm might mean 

that the ratio of the variances (error ratio) used in the algorithm is not optimal. If the error 

ratio is set too high, the filter puts excessive confidence in the past forecasts, and therefore 

failing to remove any error. On the other hand, if the ratio is too low, the filter will be unable 

to respond to changes in bias [Delle Monache, 2006]. The increase of the error ratio might 

lead to KF algorithm affecting somewhat shorter scales (e.g. synoptic), and possibly even 

increase the correlation with the observations (as in Delle Monache et al. [2008]). The 

sensitivity of these results to changing the ratio of the variances used in the algorithm, 

therefore, might be tested in future work. However, the qualitative effect of affecting only 

large scale motions would presumably remain the same. Finally, the KF spectra are the same 

as the model spectra and the KFAN spectra are the same as the AN spectra for the scales 
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shorter than 10 days and therefore would not be shown or discussed further in this section. 

However, it needs to be mentioned that these forecasts are not the same, even if their spectra 

approximately are. Other verification measures shown in previous sections exhibit substantial 

differences. For example, one can compare a forecast time series to a forecast time series that 

is exactly the same but time-lagged and bias of the mean is added (e.g. a persistency forecast 

with a 3-hourly time lag with an added fixed value of 5 ms-1). In comparison, the spectra for 

these two forecasts will differ only in frequency of 0 Hz. However, the accuracy might differ 

substantially, leading to very different accuracy measures (i.e. RMSE values). This is 

precisely the reason why the verification procedure needs to include various aspects.  

 

 

  

Figure 16. The power spectral density (PSD) of the observed 10-m wind speed, starting model 

forecast A8, the corresponding AN. The effect of the KF on the spectra is shown via KF (KF 

applied on the NWP model data) and KFAN (KF applied on the AN forecasts). The spectra 

are shown for coastal Dubrovnik and continental Osijek stations in 2012. The confidence 

intervals (in the logarithmic scale) are noted by the cross-like symbol in the upper right 

corner. 

 

 

3.7.2. How the analog-based method affects the A8 NWP spectra 

 

It can easily be seen that the largest portion of measured power at all stations is 

associated with the longer-than-diurnal motions. These longer-than-diurnal motions are more 

energetic for the coastal area (Jesenice and Dubrovnik stations – Figure 17a-b) than for the 

mountain complex (Figure 17c) and the nearly flat continental topography (Figure 17d). As 
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shown by several other authors, this is related to the strong and gusty bora wind [Horvath et 

al., 2009; Horvath et al., 2011; Hrastinski et al. 2015, etc.].  

The longer-than-diurnal motions are severely underestimated with the A8 model in the 

coastal area (Figure 17a-b). The longer-than-diurnal motions in the AN and the KFAS data 

contain more energy compared to the model power spectral density PSD, therefore, improving 

the model. This shows great potential for the analog-based predictions to improve the model 

forecast when there is a model underestimation of longer-than-diurnal motions, even in the 

complex topography.  

 

 

Figure 17. The power spectral density (PSD) of the observed 10-m wind speed, starting model 

forecast A8, and the corresponding post-processing methods (AN and KFAS) for stations 

Jasenice, Dubrovnik, Ogulin and Osijek during the year 2012. The confidence intervals (in 

the logarithmic scale) are noted by the cross-like symbol in the upper right corner. 

 

In the nearly flat topography, the A8 model simulates well or overestimates the energy of 

longer-than-diurnal motions (Figure 17d). The analog-based predictions (AN, KFAN, and 

KFAS) lower the energy of longer-than-diurnal motions if it is well simulated or 
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overestimated by the model. This sometimes leads to an underestimation of longer-than-

diurnal motions, especially for the AN. The KFAS exhibits the longer-than-diurnal power 

spectral density spectrum very similar to measurements. Thus, the KFAS shows the greatest 

potential for the forecast improvement if the model overestimates the energy of longer-than-

diurnal motions in the nearly flat topography.  

The A8 results for longer-than-diurnal motions in the mountain complex consist of all 

previously mentioned scenarios, depending on the location and the exact time scale. For 

instance, it is well simulated for periods longer than 3 days and underestimated for shorter 

time scales at Ogulin station (Figure 17c). The analog-based predictions act similarly as in 

previous types of topography; exhibiting more energy if it is underestimated by the A8 model, 

or less if it is not.  

The shorter-than-diurnal motions are severely underestimated by the A8 model for the 

majority of locations, regardless of the topography (e.g. Horvath et al. [2011]). Only at a few 

stations (e.g. Osijek in Figure 17d) is the amount of energy at these scales comparable to 

measured values. The AN forecast is, once again, the most prone to energy underestimation. 

The shorter-than-diurnal KFAS spectra, on the other hand, seems very similar to model 

spectra. Moreover, it seems that the KFAS exhibits power spectral density PSD values similar 

to the AN and observations for longer time scales, but it is similar to model values at shorter 

time scales. However, it must be noted again that aliasing of scales shorter than 6 hours adds a 

considerable share of the energy of shorter-than-diurnal motions in spectral analysis, which is 

why these results should be interpreted with care. Finally, it is interesting to note that even 

though the energy of the shorter-than-diurnal motions is underestimated, the harmonics of the 

diurnal cycle (24 h, 12 h and 8 h period) are very well simulated by the A8 model and all of 

the post-processing methods. 

 

 

3.7.3. The influence of the starting model on the analog-based predictions 

 

Introducing the higher-resolution orography affects the dynamical processes and increases the 

amount of energy at all temporal scales (e.g. Žagar et al., 2006). Therefore, the difference 

between the A8 and the DA is that there is almost no underestimation of the longer-than-

diurnal motions, even in the coastal complex area (e.g. Figure 18b). The exception is the 
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Dubrovnik station (Figure 18d), which is very similar as it is for the A8 model (Figure 17b). 

The energy simulated by the DA is higher at the mountain complex station (Figure 18f) than 

when simulated with the A8 (Figure 17c), overestimating the longer-than-diurnal motions. 

Introducing the higher resolution orography into nearly flat continental topography results 

with very similar power spectral density curves for the DA, as it is the case for the A8 (e.g. 

Figure 18h, compared to Figure 17d).  This is to be expected because the flatter the 

topography, the number of details added by increasing horizontal resolution is smaller. In the 

mountain complex topography (group II) results may be improved by using an even finer 

model resolution to represent local flows.  However, the need for using 2- opposed to 8-km 

grid spacing for weak wind in the nearly flat continental topography (group III) may be less 

pronounced. Naturally, the post-processing methods are also exhibiting similar effect as it is 

the case of the A8 model. Similarly, introducing a higher resolution field into the A2 forecasts 

increases the power at all time scales. All the conclusions regarding power spectral density 

spectra that are valid for the DA longer-than-diurnal motions are valid for the A2 model as 

well.  

Additionally, due to the more complete package of physics parametrizations and non-

hydrostatic effects, the A2 model shorter-than-diurnal part of power spectral density spectra 

contains more energy than for the A8 and the DA models, partially due to aliasing effect. Both 

the A8 and the DA models severely underestimate the power at scales below diurnal, as 

reported by Žagar et al. [2006]. Unlike the A8 and the DA models, the A2 simulates well or 

even sometimes overestimates the shorter-than-diurnal motions. The exception is Dubrovnik 

station, where some underestimation of the shorter-than-diurnal motions can still be noticed. 

Even when the model overestimates the shorter-than-diurnal motions, the analog-based 

predictions reduce the shorter-than-diurnal power, often leading to under-prediction of 

shorter-than-diurnal motions. When the shorter-than-diurnal motions are well simulated or 

underestimated by the model, the AN forecast often severely lacks power for these shorter-

than-diurnal motions. The KFAS forecast, however, exhibits power spectral density values 

similar to the AN and observations for longer time scales, but it is similar to model values at 

shorter time scales. In other words, the KFAS forecast is less prone to underestimation of the 

shorter-than-diurnal motions than other analog-based predictions tested. This result is 

consistent regardless of the starting model. 
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Figure 18. The power spectral density of the observed 10-m wind speed, starting model 

forecasts (A2 and DA) and the corresponding post-processing methods (AN and KFAS) for 

stations Jasenice, Dubrovnik, Ogulin and Osijek during year 2012. The confidence intervals 

(in the logarithmic scale) are noted by the cross-like symbol in the upper right corner. 
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§ 4. POST-PROCESSING THE ENSEMBLE NWP 

(ENSEMBLE CALIBRATION) 

4.1. Observations and climatology 

 

The Austrian meteorological observation network, TAWES, consists of more than 300 sites 

across Austria. In this work, 29 TAWES sites are used representing the different Austrian 

climate zones, as listed in Table 4. The locations are selected based on the availability of wind 

speed measurements (10-minute average value) at 10 m above the ground in the selected time 

period. All sites monitor 2-m temperature, 10-m wind speed and direction, 2-m relative 

humidity, surface pressure, precipitation, and, depending on the site, different radiation 

measurements are carried out. Here, only 10-meter wind speed observations are used. The 

2015 and 2016 wind speed observations are used for the analog-based method training period 

in this section. For the performance testing, two target months are chosen, January and July 

2018. These months are selected to investigate the forecast performance during a winter and a 

summer period. The January and July 2017 wind speed observations are used for independent 

sensitivity testing (weight optimization), which is a procedure explained further below.  

The observed average monthly wind speed is slightly higher in January (2.88 ms-1) than 

in July (2.22 ms-1), across all available stations and lead-times. Additionally, the standard 

deviation of the wind speed measurements is also higher on average in January (3.27 ms-1) 

than in July (1.92 ms-1).  

 

 

Figure 19. The spatial distribution of the observed monthly mean wind speed in the January 

(left) and July (right), 2018. The arrows mark mountain stations for later comparison. 
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Table 4. The list of the 29 stations providing the 10-m wind speed observations used in 

section 4 with main geographical features. 

Station name Latitude Longitude Altitude [m] 

Weitra 14.9 48.7 572 

Wien-Hohe Warte 16.4 48.3 198 

Schwechat 16.6 48.1 183 

Linz-Stadt 14.3 48.3 262 

Krems 15.6 48.4 203 

Bregenz 9.7 47.5 424 

Gaschurn 10.0 47.0 976 

Patscherkofel 11.5 47.2 2251 

Lunz Am See 15.1 47.9 612 

Rax/Seilbahnbergstation 15.8 47.7 1547 

Eisenstadt-Nordost 16.5 47.9 184 

Güssing 16.3 47.1 215 

Lienz 12.8 46.8 661 

Kanzelhöhe 13.9 46.7 1520 

Fürstenfeld 16.1 47.0 271 

Gmünd 13.5 46.9 738 

Graz-Univ. 15.4 47.1 367 

Innsbruck-Univ. 11.4 47.3 578 

Sonnblick 13.0 47.0 3109 

Kolm Saigurn 13.0 47.0 1626 

Rauris 13.0 47.2 934 

Salzburg/Freisaal 13.0 47.8 418 

Bad Mitterndorf 13.9 47.6 814 

Reichenau/Rax 15.8 47.7 488 

Semmering 15.8 47.6 988 

Hirschenkogel 15.8 47.6 1318 

St. Pölten/Landhaus 15.6 48.2 274 

 

 

The wind speed is weak and moderate (i.e. < 8.0 ms-1) for both January (Figure 19a) and 

July (Figure 19b) at the majority of the stations. The average monthly wind speed increases 

towards the north-eastern part of Austria (Pannonian basin) for both January and July. 

Exceptions are the three mountain stations (arrows in Figure 19), where the average wind 

speeds are much higher if compared to the neighboring valley stations. 

Most of the stations are located in or near the Alps, which significantly modulates the 

related local wind regimes. The complex topography of the Alpine area is characterized by a 



§ 4. Post-processing the ensemble NWP  

 55 

variety of different wind processes such as foehn and downslope windstorms, gap winds, 

valley and slope winds, flow blocking and other. To investigate those phenomena, among 

other, Alpine region is also the target area to several major field experiments, such as 

ALPEX, MAP and TEAMx [Kuettner, 1986; Bougeault et al., 2001; Lehner and Rotach, 

2018; Serafin et al, 2018, etc.]. Nevertheless, many challenges related to the NWP in complex 

topography still exist (e.g. Arnold et al. [2012]), including modeling wind climatology of the 

Alpine areas prone to such downslope windstorms (e.g. Horvath et al. [2011]) and objective 

foehn wind classification (e.g. Mayr et al. [2018]). 

 

 

4.2. NWP model data 

 

The numerical model used within section 4 is the ALADIN model configuration used in 

ALADIN-LAEF (Aire Limitée Adaptation dynamique Développement InterNational model – 

Limited-Area Ensemble Forecasting) [Wang et al., 2011, 2019] ensemble forecasting system. 

It is adjusted to fit the Austrian purposes and is running in operational mode since 2009. The 

NWP is initialized daily at 0000 and 1200 UTC with one hourly lead-time, up to 72 hours. 

Only the dataset corresponding to the model run initialized at 0000 UTC is used in this work.   

The ALADIN-LAEF uses the underlying hydrostatic and spectral limited-area model 

(LAM) ALADIN-Austria [Wang et al., 2006]. It uses a two-time-level semi-Lagrangian 

advection scheme, semi-implicit time-stepping, fourth-order linear horizontal diffusion, 

Davies–Kalberg type relaxation and digital filter initialization, and set of parametetrizations 

of unresolved physics processes [Wang et al., 2006].  

The ALADIN-LAEF integration domain covers the whole of Europe and a large part of 

the Atlantic, as shown in Figure 20. The resolution of 11 km on a Lambert conformal grid is 

used in the horizontal. In the vertical, 45 terrain-following pressure-based hybrid coordinate 

levels with on average nine levels within the lowest 1000 km above ground level are used.  

For dealing with the initial uncertainties, a blending method is used [Wang et al., 2014], 

based on the idea of combining the large-scale perturbation from the ECMWF (European 

Centre for Medium-Range Weather Forecasts) singular vectors and the small-scale 

perturbations from the LAM native breeding vectors. The coupling with ECMWF-EPS 
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(Ensemble Prediction System) members are used for dealing with the lateral boundary 

condition uncertainties [Weidle et al., 2013]. A multi-physics is implemented to account for 

model uncertainties in the atmosphere. The perturbed initial land surface conditions, such as 

soil moisture and surface temperature, are obtained through an ensemble of land surface data 

assimilation [Belluš et al., 2016]. 

 

 

Figure 20. Domain and model topography of ALADIN-LAEF. (from Wang et al. [2019], page 

3355. The inner limited-area domain in red represents the area authors used for verification 

of ensemble experiments).   

 

The ALADIN-LAEF consists of 17 ensemble members: 16 perturbed members and one 

control run. The 16 perturbed members are driven by 16 ECMWF-EPS members. Given the 

structure and composition of the LAEF ensemble, it can be considered as a non-exchangeable 

ensemble. However, as shown by Baran and Lerch [2015] the differences between the 

treatment of a non-exchangeable ensemble as fully exchangeable did not worsen the results to 

statistically relevant size. Therefore, we decided to treat the ALADIN-LAEF ensemble as 

exchangeable.  

A subset of six ALADIN-LAEF parameters to be used as an input to the analog-based 

method includes temperature (t2m), wind speed (ws) and direction (dd), relative humidity 

(rH), pressure (p) and precipitation (prec). The NWP datasets correspond to the observation 

datasets. From the four grid points surrounding the observation location, the closest model 

grid point is chosen. The 2-year long dataset (2015 – 2016) is used for training. January and 
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July 2017 are used for weight optimization. Finally, the results are given for the independent 

dataset consisting of January and July 2018. 

 

 

4.3. Reference method: Ensemble model output statistics (EMOS) 

 

The reference forecast for the analog-based method ensemble calibration is the ensemble 

model output statistics (EMOS). The EMOS is introduced by Gneiting et al. [2005] and 

adapted for wind by Messner et al. [2014]. Therefore, a non-homogeneous regression with a 

30-day rolling training window is fitted on every lead-time and station. To capture the natural 

boundary of wind at 0 ms-1, a left-censored logistic regression is used. In the EMOS the 

observed wind speed (𝑦) is explained by a logistic distribution censored at zero (ℒ0) with µ as 

a mean and σ as a spread. A logistic distribution has a similar bell shape as a Gaussian 

distribution but with slightly heavier tails. Additionally, censoring at zero states that no 

negative wind values can occur. Further details can be found in Messner et al. [2014]. 

Censoring and the linear regressions for µ and σ are defined as follows: 

𝑦 ~ ℒ0(𝜇, 𝜎), (13) 

𝜇 =  𝛽0 +  𝛽1 𝑤𝑠𝜇 (14) 

log(𝜎) =  𝛾0 + 𝛾1  log(𝑤𝑠𝜎), (15) 

with β* and γ* as the regression coefficients, 𝑤𝑠µ as an ensemble mean and 𝑤𝑠𝜎 as an 

ensemble spread of the wind speed members. The logarithmic link function is used to ensure 

positive values. Further applications of the EMOS to wind speed can be found in 

Thorarinsdottir and Gneiting [2010], Baran and Lerch [2015] or Scheuerer and Möller [2015]. 

The 30 days rolling training window is often used for the EMOSws experiment, making it 

a good reference for the analog experiment that uses only the raw model wind speed data. 

However, since the other analog experiments use all available variables, a second reference is 

added. The second experiment (EMOSstd) uses all available variables. The boosting method 

of Messner et al. (2017), which is implemented in the R-package “crch”, is applied to all 

variables and the whole dataset, instead of the rolling training window. Additionally, annual 

and biannual harmonic functions are added to capture a seasonal bias. A variable selection 
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method, such as boosting, is needed to prevent overfitting. The boosting is able to choose the 

most important variables and exclude the other variables using zero value. As a result, a single 

fit per station and lead time can be used to forecast both test months. 

Concluding, whereas the EMOSws only uses the last 30 days as training and only the 

wind speed as an input, the EMOSstd uses all available training data and all variables 

including seasonal functions.  

 

 

4.4. Sensitivity tests 

 

In the previously described experiments (section 3) the predictors are chosen using the „trial-

and-error“ approach, simply trying several combinations of available predictor variables and 

keeping the one that seems to be the most successful. Following the work of Delle Monache 

et al. [2013], all predictor weights are set to value 1.00. However, several authors in more 

recent work show that, instead of assigning the same importance to each predictor variable, 

the brute-force weight optimization can increase the AnEn performance. This is demonstrated 

in several applications, such as Junk et al. [2015] and Alessandrini et al. [2015a]. The 

weights’ optimization is based on choosing the combination that minimizes the error 

(measured by the continuous rank probability score). For that reason, it is decided to include a 

predictor weighting strategy in the second part of this thesis. 

Even though it is the best possible approach, due to the limited computational resources, 

not all the possible combinations are tested in this work. The forward selection algorithm is 

used instead, starting with weight value fixed at 1 for the wind speed parameter. Then, one by 

one (ensemble mean) predictor from a pre-selected subset of six ALADIN-LAEF parameters 

is added, optimizing the weights independently at each location by error minimization. The 

forward selection algorithm is computationally less demanding than testing all the possible 

combinations independently at each location. However, it needs to be noted that the algorithm 

makes a key assumption that is often not true - assuming that all predictors are independent of 

each other, which is generally not the case.  

As already mentioned, six ALADIN-LAEF parameters are used as an input to the analog-

based method:  wind speed (ws) and direction (dd), temperature (t2m), relative humidity (rH), 

pressure (p) and precipitation (prec). They are tested using the forward selection algorithm 
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one after another, in the same order as listed. Five possible weight values (0.00, 0.25, 0.50, 

0.75 and 1.00) are investigated for each predictor variable. The predictor weighting strategy is 

carried out for January and July 2017, using the 2015-2016 period for the training. Therefore, 

the optimization procedure uses a completely independent dataset from the period for which 

training, as well as for which forecasting is performed (January and July 2018). The 

independency of the datasets used is an important aspect that ensures the objective validity of 

the results. 

 

 

Figure 21. The histogram of the optimized weights for each predictor tested (using the AnEn 

mean values), at 29 stations in Austria in January and July 2017. 

 

The results show that the wind direction is the most important predictor in addition to 

wind speed (Figure 21). Even though it seems the values are slightly higher in the complex 

topography, the values are quite high for all stations (Figure 22). The wind direction is 

followed by temperature and relative humidity parameters, especially in the more complex 

topography, such as the alpine area. The pressure and precipitation parameters are often 

optimized with the 0.00 weight, meaning that they are not carrying additional benefits at 

certain stations. But, that is not always the case. For instance, the pressure parameter is also 

optimized by taking higher values in the complex alpine area. For precipitation parameter, a 

similar behavior is found at the southern slopes of the Alps, a region prone to the convective 

precipitation. The increased importance of the precipitation predictor in this area might, for 

example, indicate the forecast improvement under foehn conditions, when foehn triggers the 

precipitation while approaching the southern Alps.  
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Figure 22. The spatial distribution of the optimized weights for each predictor tested, at 29 

stations in Austria in January and July 2017.  

 

Supplementary to using the mean value of 17 ALADIN-LAEF ensemble members for 

each meteorological parameter, the standard deviation of those 17 members can also be used 

as an additional predictor. Thus, the information on the starting model ensemble uncertainty is 

included in the analog search. The standard deviation predictors are optimized as one 

multiplying factor to the all pre-calculated weights for meteorological parameters, 

independently for each location. Five possible values of this multiplying factor are tested: 

0.20, 0.40, 0.60, 0.80, and 1.00. If using neither of the values results in a forecast 

improvement, the value 0.00 is used as the best fit. In the following illustrative example, it is 



§ 4. Post-processing the ensemble NWP  

 61 

assumed that the optimal weight for the ALADIN-LAEF temperature ensemble mean 

predictor is 0.75 at a particular location. Similarly, the weight for the relative humidity is 

optimized as 0.50, for precipitation as 0.00, etc. Then, the weight for the six ALADIN-LAEF 

ensemble standard deviation predictors is optimized as 0.20 value. The wi in Eq.1. would be 

0.20×0.75 for the temperature standard deviation predictor, 0.20×0.50 for the relative 

humidity standard deviation predictor, 0.20×0.00 for the precipitation, etc. The distribution 

for the optimized standard deviation multiplying factors is given at the (Figure 23). The result 

shows that the optimal contribution of the standard deviation predictors is about 40% of the 

ensemble mean predictors’ contribution in the majority locations tested. However, no 

distinctive spatial distribution pattern regarding the optimal values is noticed.  

 

 

Figure 23. The histogram (left) and the spatial distribution (right) of the optimized weights 

for standard deviation predictor for different meteorological parameters tested at 29 stations 

in Austria in January and July 2018. 

 

The AnEn can be affected by a conditional negative bias, especially when predicting 

events in the right tail of the forecast distribution. For that reason, the novel bias correction 

method is applied for these experiments, as proposed by Alessandrini et al. [2019]. The 

method is based on correction factor proportional to the linear regression coefficient between 

the wind speed observations and raw model forecast (i.e. ALADIN-LAEF wind speed 

ensemble mean) during training, as well as to the distance between the current raw model 

forecast and the average value of the previous raw model forecasts that correspond to the 

currently selected analogs in the AnEn. The lead-time-independent correction factor is added 

to all the members of the AnEn if the current raw model forecast is above a certain threshold 

value. If the threshold is set too low, the bias correction adjustment can become small and 
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noisy, leading to forecast performance degradation. After the simple minimizing the RMSE, 

the 95. percentile of the climatological raw model forecast distribution (during training 

period) is chosen as a threshold in this work.  

 

 

4.5. Description of experiments 

 

In total, six different input configurations using the observations and the ALADIN-LAEF 

ensemble data are investigated (see Table 5 for a summary). All six investigated 

configurations provide an AnEn forecast, consisting of the past observation corresponding to 

the 17 most similar past ALADIN-LAEF ensemble predictions. Thus, the new analog 

ensemble forecast provides the 17 ensemble members, equivalent to the original ALADIN-

LAEF model. The chosen ensemble size does not only reflect the input NWP ensemble but is 

close to the optimal size of 15 members for the deterministic application of the analog 

ensemble found by Odak Plenković et al. [2018]. 

 

Table 5. The summary information for the experiments tested in section 4. 

Name Meteorological variables 

used  

ALADIN-LAEF input (predictors) Nb. of analog searches 

per lead-time 

LAEFws ws X X 

EMOSws ws 
Ensemble µ and σ for one parameter, 

wind speed (2 predictors) 
X 

EMOSstd ws, dd, t2m, rH, p, prec 
Ensemble µ and σ for six parameters (12 

predictors) 
X 

AnEnCtrl ws, dd, t2m, rH, p, prec 
Control ensemble member for six 

parameters (6 predictors) 
1 

AnEnWs ws 
17 ensemble wind speed members (17 

predictors) 
1 

AnEnMu ws, dd, t2m, rH, p, prec  
Ensemble µ for six parameters (6 

predictors) 
1 

AnEnStd ws, dd, t2m, rH, p, prec 
Ensemble µ and σ for 6 parameters (12 

predictors) 
1 

AnEnAll ws, dd, t2m, rH, p, prec 
17 ensemble members for 6 parameters 

(6 × 17 predictors) 
1 

AnEnMem ws, dd, t2m, rH, p, prec 
1 ensemble member for every parameter 

(6 predictors) 
17 
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Dabernig et al. [2015] show the value of an ensemble forecast compared to its 

deterministic control run. Therefore, the first experiment, the AnEnCtrl, uses the ALADIN-

LAEF control member for the six meteorological parameters available as six predictors. The 

AnEnWs, uses all 17 ALADIN-LAEF ensemble member wind speed predictions (LAEFws) 

as 17 predictors. More meteorological variables are exploited in the AnEnMu experiment. In 

contrast to the AnEnWs, only the ensemble mean µ for every parameter is used as a predictor 

in the AnEnMu experiment. For the AnEnStd ensemble forecasts, the ALADIN-LAEF 

ensemble uncertainty (σ) and the ensemble mean (µ) of the defined six meteorological 

parameters are used. The AnEnStd includes the aspects of error growth, represented 

dynamically by the used ensemble model, as explained in Eckel and Delle Monache [2016]. 

This adds additional information to the flow-dependent error growth already captured by the 

analog approach (e.g. in AnEnMu). 

In addition to the aforementioned experiments, two diverging ways of including all the 

ALADIN-LAEF information available are investigated. The first additional experiment, the 

AnEnAll, uses every member of the ALADIN-LAEF ensemble for every defined 

meteorological predictor. Thus, in this experiment, 6 variables and 17 ensemble members are 

used, which equals 6 × 17 predictors. An important goal of this research is to evaluate if all 

probabilistic information is needed or summary measures, such as mean or spread, are already 

sufficient. The second additional experiment is the “member by member” approach 

AnEnMem. Here, the analog search procedure is carried out for every ALADIN-LAEF 

member separately. Therefore, each raw model member is now distinguishable from the 

others. The analog-search procedure is independently done for each set of six pre-defined 

meteorological parameters, corresponding to the same raw model member. Thus, in 

AnEnMem the search procedure is performed 17 times in total. Only one analog is chosen in 

every analog search procedure per ensemble member, with verifying observation chosen as 

the member in the AnEnMem ensemble. This is the most demanding configuration presented 

in this research. An analog experiment similar to the AnEnMem experiment, but using more 

than one analog (e.g. 5 analogs) for each of the ALADIN-LAEF ensemble members, is also 

investigated. However, besides being even more computationally demanding, it did not 

provide any benefits justifying the additional computational costs. Therefore, these results are 

not discussed here.  
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All experiments use an analog search time window fixed at every lead-time individually, 

including one time step before/after to account for a trend. 

To determine if the difference in scores between the experiments is statistically 

significant, the moving-block bootstrap technique, following the procedure of Wilks [1997] 

and using 1000 re-samples at a confidence level of 95%, is applied, except for correlation 

where pair bootstrap technique was used (as in Wilcox [2009]; see section 4.2).   

 

 

4.6. Evaluation of the wind speed ensemble and probabilistic forecast 

 

Even when evaluating the ensemble forecast, a useful starting point is to define a dominant 

source of error. The source can be specified when decomposing the RMSE to the bias of the 

ensemble mean, the bias of the standard deviation (σ bias) of the ensemble mean and the 

dispersion (phase) error of the ensemble mean, as previously explained. It needs to be noticed 

that the σ bias is defined as the bias of the standard deviation of the ensemble mean 

(regardless of the ensemble spread).  

A particularly important aspect of ensemble forecasting is the information about the 

uncertainty in a forecast. The standard deviation of the ensemble members with respect to its 

mean is referred to as the spread of the ensemble. The spread describes the diversity of the 

ensemble forecast. In other words, the forecaster is confident that the ensemble mean is close 

to the eventual state of the atmosphere if the spread of the ensemble is small. On the contrary, 

if the ensemble members are all very different from each other, the future state of the 

atmosphere is more uncertain. To adequately represent the forecast uncertainty, the magnitude 

of ensemble spread should correspond to the magnitude of the error in the ensemble mean. A 

large difference between the ensemble spread and the RMSE of the ensemble mean is an 

indication of statistical inconsistency, while closeness is a measure of the statistical reliability 

[Buizza et al. 2005]. A good match between the ensemble spread and RMSE of the ensemble 

mean implies the greater predictability of ensemble mean skill, suggesting that the ensemble 

spread represents the ensemble uncertainty well.  

The ensemble is consistent if the actual future atmospheric state behaves like a random 

draw from the same distribution that produced the ensemble [Anderson, 1997]. Then, the 

observation being predicted looks statistically like just another member of the forecast 
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ensemble. The probability forecasts derived from an ensemble is good (i.e., appropriately 

expresses the forecast uncertainty) to the extent that the consistency condition has been met.  

A necessary condition for the ensemble consistency is an appropriate degree of ensemble 

dispersion. The most common approach to evaluating whether a collection of ensemble 

forecasts satisfies the consistency condition is the construction of a verification rank 

histogram (or simply the rank histogram). The rank of the corresponding observation within 

the ensemble is tabulated, taking the value from 1 to n+1 for an n-member ensemble. 

Collectively, these verification ranks are plotted in the form of a histogram. If the consistency 

condition is met, the histogram of verification ranks is uniform, reflecting the equiprobability 

of the observations within their ensemble distributions [Wilks, 2011]. The exceptions are 

departures that are small enough to be attributable to sampling variations. Departures from the 

ideal of rank uniformity can be used to diagnose aggregate deficiencies of the ensembles 

[Hamill, 2001], as shown in Figure 24. 

 

 

 

Figure 24. Example verification rank histograms for hypothetical ensembles of size 10, 

illustrating characteristic ensemble dispersion and bias errors. Perfect rank uniformity is 

indicated by the horizontal dashed lines, and the best match is noted with a “check” mark.   

 

 

The Brier Skill Score (BSS) is a commonly used metric for the probabilistic forecast of 

binary event that uses climatology as a reference [Wilks, 2011; Jolliffe and Stephenson, 

2011]. It is calculated using the following expression:  
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𝐵𝑆𝑆 = 1 −
𝐵𝑆

𝐵𝑆𝑐𝑙𝑖𝑚
, 

(16) 

where the Brier score (𝐵𝑆 = ∑ (𝑓𝑖 − 𝑜𝑖)
2

𝑖 /𝑛) averages the squared differences between pairs 

of forecast probabilities 𝑓 and the subsequent binary observations 𝑜 over all 𝑛 forecast – 

observation pairs. The Brier score is essentially the mean squared error of the probability 

forecasts, where the observation value is 1 (if the event occurs) or 0 (if the event does not 

occur). A binary event is defined using an exceedance threshold, i.e. of wind speed forecasted 

higher than 5 ms-1. The closer the BSS is to the perfect number 1, the better the skill of the 

forecast is. Here, a threshold of 5 ms-1 is chosen for the BSS as it is reasonably high while, on 

the other hand, not being too rare. The Brier score is negatively oriented, with perfect 

forecasts having value 0. Since individual forecasts and observations are both bounded by 0 

and 1, the score can take on values in the range between 0 and 1.  

After some algebra, the Brier score can be expressed as the sum of the three terms: 

reliability (REL), resolution (RES), and uncertainty (UNC), as follows: 

𝐵𝑆 = 𝑅𝐸𝑆 − 𝑅𝐸𝐿 + 𝑈𝑁𝐶;    𝐵𝑆𝑆 =
𝑅𝐸𝑆 − 𝑅𝐸𝐿

𝑈𝑁𝐶
, 

(17) 

The preferred outcome is as small as possible reliability term and as large as possible 

resolution term (in absolute value). The reliability term describes the calibration (or 

conditional bias) of the forecasts. The forecast probability in each subsample of the perfectly 

reliable forecast is exactly equal to the relative frequencies of the observed event in each 

subsample. The resolution term describes the ability of the forecasts to distinguish subsample 

forecast periods with relative frequencies of the event that are different from each other. In 

other words, the resolution term will be large if the forecasts sort the observations into 

subsamples having substantially different relative frequencies than the overall sample 

climatology (or vice versa). Since the uncertainty term depends only on the sample 

climatological relative frequency, it is unaffected by the forecasts. This term takes on value 0 

when the climatological probability is either 0 or 1. Similarly, when the event being forecast 

almost never (or almost always) happens, the uncertainty in the forecasting situation is small. 

Then, forecasting the climatological probability gives good results. Contrary, the uncertainty 

maximum is achieved when the climatological probability is 0.5. In that case, there is 

substantially more uncertainty inherent in the forecasting situation.  

The reliability diagram is a graphical device that shows the full joint distribution of 

forecasts and observations for probability forecasts of a binary event in terms of so-called 
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calibration-refinement factorization. The elements of the calibration-refinement factorization 

are the calibration (or conditional) distribution of the observation given each of the n 

allowable values of the forecast 𝑝(𝑜1|𝑓𝑖); and the refinement distribution 𝑝(𝑓𝑖) that describes 

the frequency of use of each of the possible forecasts. Here, the occurrence of a binary event 

is noted with index 1. The n calibration probabilities 𝑝(𝑜1|𝑓𝑖) define a calibration function 

that is usually the main aspect of the reliability diagram [Wilks, 2011]. The reliability diagram 

provides an insight into the unconditional and conditional biases, as shown in Figure 25.  

 

 

 

Figure 25. Example characteristic forms for the calibration-function 𝑃(𝑜|𝑓) element of the 

reliability diagram. The black diagonal line represents the perfect reliability, while the blue 

dashed line represents the climatological frequency of the event. The most reliable forecast is 

indicated by a “check” mark.  The arrangement of the panels corresponds to the calibration 

portions of the rank histogram in Figure 24. 

 

The labels “underconfident” and “overconfident” are concerning the other elements of the 

reliability diagram: the refinement distribution 𝑃(𝑓𝑖) shown in the so-called sharpness 

diagram. The dispersion of the refinement distribution reflects the overall confidence of the 

forecaster. For example, forecasts that deviate rarely and quantitatively little from their 

average value exhibit little confidence. Forecasts that are frequently extreme (i.e. often 0% or 

100% chance for the event occurrence) exhibit high confidence/sharpness [Wilks, 2011]. 

Characteristic forms are shown in Figure 26. 

The continuous rank probability score CRPS is a summary metric that can be interpreted 

as the integral of the Brier score over all possible threshold values for the parameter under 

consideration:  

𝐶𝑅𝑃𝑆 = ∫ [𝑃𝐹(𝑥) − 𝑃𝑜(𝑥)]2 𝑑𝑥,
∞

−∞

 
(18) 

𝑃
(𝑜

|𝑓
) 

𝑓 
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Figure 26. Example characteristic forms for the sharpness (refinement distribution) 𝑝(𝑓) 

element of the reliability diagram. Forecasts that are frequently extreme (i.e. often 0% or 

100% chance for the event occurrence) exhibit high confidence/sharpness. On the other hand, 

narrow distribution close to the average forecast value exhibit low confidence. 

 

 

 

  

 

Figure 27. Schematic illustration of the continuous ranked probability score. Three forecast 

probability distribution functions 𝑝𝐹(𝑥) and corresponding cumulative distribution functions 

𝑃𝐹(𝑥) are shown, together with the step-function cumulative distribution function for the 

observation 𝑃𝑜(𝑥) Distribution 1 would produce a small (good) score because 𝑃𝐹1
(𝑥) is the 

closest approximation to the step function (hence the smallest integrated squared difference). 

Distribution 2 concentrates probability away from the observation, and Distribution 3 is 

penalized for lack of sharpness even though it is centered on the observation. 
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where 𝑃𝐹 stands for forecasted probability (cumulative distribution), while 𝑃𝑂 is a cumulative-

probability step function that jumps from 0 to 1 at the point where the forecast variable equals 

the observation. In other words, the CRPS can also be computed as the Brier score for binary 

events, integrated over all possible division points of the continuous variable y into the binary 

variable above and below the division point [Hersbach, 2000]. Additionally, for non-

probabilistic forecasts, CRPS reduces to the (mean) absolute error. 

The continuous rank probability score CRPS is a negatively oriented (the lower, the 

better) accuracy measure that is equivalent to the mean absolute error for deterministic 

forecast and also has a value of 0 for the perfect forecast. To better understand the meaning, 

an illustrative example of 3 forecast distributions is shown in Figure 27. Since the continuous 

rank probability score is the integrated squared difference between the cumulative distribution 

function and the step function representing the observation, cumulative distribution function 

that approximates the step function best (Distribution 1) produces relatively small integrated 

squared differences, and good scores. Distribution 2 is equally sharp but its displacement 

from the observation produces large discrepancies with the step function. This is especially 

the case for values of the predictand slightly larger than the observation, and hence very large 

integrated squared differences. Distribution 3 is centered on the observation, but much wider 

than the Distributions 1 and 2. Such a great width means that it is nevertheless a poor 

approximation to the step function and so also yields large integrated squared differences. 

The ROC (relative operating characteristic, or receiver operating characteristic) diagram 

is another graphical forecast verification display. While the reliability diagram describes the 

calibration (distribution of observations conditioned on the forecast), the ROC diagram 

describes the likelihood (distribution of forecasts conditioned on the observation 𝑝(𝑓|𝑜)). 

Unlike the reliability diagram, it does not include the full information contained in the joint 

distribution of forecasts and observations. The base-rate (distribution of the observations 

𝑝(𝑜)) is not included and, hence, it is insensitive to conditional and unconditional biases (e.g., 

Jolliffe and Stephenson [2011]). To determine the ROC values, one contingency table is 

derived for several probabilistic thresholds (e.g. > 90%, >80%, >70%, etc). The probabilistic 

false alarm rate F and hit rate H (as defined in Eq.11) are calculated for a certain probability 

(e.g. 80%). Then, each H vs. F is plotted on the same graph to form the ROC curve. This 

curve must pass through points (0,0) and (1,1). It shows the ability of a set of probability 

forecasts to discriminate between the outcomes of a binary event (the event does or does not 
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occur). No-skill forecasts are indicated by a diagonal line (where H=F); the further the curve 

is towards the upper left-hand corner (where H=1 and F=0) the better is the ability to 

discriminate the event. The example of two ROC curves on the ROC diagram is given in 

Figure 28. 

 

 

Figure 28. The illustrative example of the ROC diagram consisting of two ROC curves. Each 

curve is plotted through points derived from several (e.g. 3 marked with a different color for 

each forecast) contingency tables. Each contingency table uses a different probability 

threshold for probability forecasts of a pre-defined event. The black dashed line represents 

forecast with no skill, while the red dashed line represents the perfect forecast. Darker dashed 

blue line, by being closer to the top left corner, shows a better ability to discriminate different 

outcomes for a pre-defined event than the lighter dashed blue line.  

 

 

4.6.1. Overall results 

 

In total, six different analog-based ensemble experiments (see Table 5 for a summary) are 

carried out in this study. Results are evaluated against observations, the raw ensemble model, 

the ALADIN-LAEF (LAEFws) and the variations of the EMOS forecasts. The novelty of this 

approach is the usage of different types and setups of the probabilistic input model to give 

new insights into the analog-based methodology. Summarizing, all analog forecasts show an 

improvement compared to the raw forecasts during January (Table 6) and July (Table 7) 2018. 
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Moreover, most analog forecasts perform similar or even better than the EMOS methods. 

Furthermore, distinct differences between the analog configurations are found. 

 

Table 6. The average values and confidence interval (0.95 sig. level) of several verification 

measures for the different models at all available stations in Austria and all lead-times during 

January 2018. The best result among compared forecasts is underlined (the spread is better 

when closer to the RMSE value). The values significantly different from the AnEnStd forecast 

(0.05 sig. level) are marked with an asterisk sign. 
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Bias  

[ms-1] 

-0.210*  

[-0.232, 

 -0.185] 

-0.053* 

 [-0.069,  

-0.039] 

-0.160*  

[-0.174,  

-0.146] 

-0.060* 

[-0.072, 

-0.046] 

-0.036  

[-0.048,  

-0.022] 

-0.029  

[-0.042, 

 -0.016] 

-0.023  

[-0.035,  

-0.011] 

-0.061*  

[-0.075,  

-0.048] 

-0.048*  

[-0.061,  

-0.034] 

CC 0.378* 

[0.371, 

0.385] 

0.831* 

[0.826, 

0.835] 

0.841*  

[0.837,  

0.845] 

0.841* 

[0.837, 

0.845] 

0.845* 

[0.841, 

0.849] 

0.861* 

[0.858, 

0.865] 

0.863 

[0.858, 

0.865] 

0.863 

[0.860, 

0.867] 

0.856* 

[0.852, 

0.860] 

Disp. Err 

[ms-1] 

2.670* 

[2.645, 

2.696] 

1.801* 

[1.784, 

1.826] 

1.705* 

[1.681, 

1.733] 

1.694* 

[1.672, 

1.715] 

1.705* 

[1.682, 

1.727] 

1.613 

[1.593, 

1.633] 

1.608 

[1.589, 

1.626] 

1.596* 

[1.573, 

1.618] 

1.634* 

[1.612, 

1.654] 

σ bias 

[ms-1] 

-1.501*  

[-1.545,  

-1.458] 

-0.322* 

[-0.378,  

-0.278] 

-0.454* 

[-0.505,  

-0.404] 

-0.495*  

[-0.546, 

-0.444] 

-0.391*  

[-0.444,  

-0.340] 

-0.386  

[-0.438,  

-0.328] 

-0.372  

[-0.433,  

-0.314] 

-0.405*  

[-0.455,  

-0.352] 

-0.420*  

[-0.483,  

-0.367] 

RMSE 

[ms-1] 

3.070* 

[3.029, 

3.111] 

1.831* 

[1.812, 

1.851] 

1.772* 

[1.748, 

1.795] 

1.766* 

[1.743, 

1.792] 

1.749* 

[1.729, 

1.771] 

1.659 

[1.639, 

1.677] 

1.650 

[1.632, 

1.672] 

1.647 

[1.624, 

1.667] 

1.688* 

[1.670, 

1.707] 

Spread 

[ms-1] 

0.850* 

[0.846, 

0.854] 

1.611* 

[1.599, 

1.622] 

1.605* 

[1.592, 

1.617] 

1.776* 

[1.750, 

1.779] 

1.663 

[1.650, 

1.675] 

1.672 

[1.660, 

1.686] 

1.667 

[1.655, 

1.679] 

1.641* 

[1.629, 

1.654] 

1.728* 

[1.714, 

1.742] 

BSS  

(>5 ms-1) 

-0.075*  

[-0.093,  

-0.059] 

0.490* 

[0.479, 

0.500] 

0.515* 

[0.505, 

0.524] 

0.520* 

[0.510, 

0.529] 

0.513* 

[0.504, 

0.523] 

0.546 

[0.537, 

0.555] 

0.549 

[0.541, 

0.558] 

0.555 

[0.546, 

0.563] 

0.526* 

[0.517, 

0.535] 

CRPS 

[ms-1] 

1.631* 

[1.613, 

1.648] 

0.883* 

[0.875, 

0.892] 

0.823* 

[0.815, 

0.831] 

0.814* 

[0.806, 

0.820] 

0.823* 

[0.816, 

0.831] 

0.777 

[0.770, 

0.784] 

0.772 

[0.765, 

0.779] 

0.769 

[0.762, 

0.776] 

0.816* 

[0.809, 

0.823] 

 

 

Results show that the average bias of the LAEFws ensemble is small, underestimating the 

wind speed by 0.21 ms-1 in January and 0.23 ms-1 in July. The same results are found for the σ 

bias in July with 0.77 ms-1, while it is a slightly more dominant source of error in January 
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with -1.50 ms-1. The other evaluated scores such as the correlation coefficient (CC), which is 

on average higher in July than in January with 0.37, or the RMSE with 3.07 ms-1 in January 

and 1.79 ms-1 in July, indicate that the LAEFws, in general, has realistic results, especially for 

the summer month. However, there are still some unresolved processes, as can be seen by the 

results of the dispersion error.  

The main aim of any kind of the NWP model post-processing is to improve the results of 

the original model. This is the case here, too. The EMOS post-processing experiments are 

applied successfully, exhibiting the 0.46 maximum increase of the average correlation 

coefficient value. Moreover, the EMOS experiments are reducing all three error sources: the 

bias, the bias of the standard deviation (σ bias) and the dispersion error in comparison to 

LAEFws. The LAEFws RMSE is, therefore, reduced by the EMOS experiments with the 

maximum 1.30 ms-1 difference among average values. The EMOSws is more successful in 

removing a systematic source of the error, while the EMOSstd is better in removing a 

dispersion error. All six analog-based experiments are able to outperform the LAEFws as 

well. Specifically, they can reduce all three error sources for the ensemble mean. Already the 

first and most “simple” experiments in terms of input data, the AnEnCtrl and the AnEnWs, 

successfully remove the systematic errors in the bias and σ bias similar to the EMOS 

approach. Even more successful in removing the predominant dispersion source are the 

experiments with the additional predictors: AnEnMu, AnEnStd, and AnEnAll. 

In addition to improving the results for the ensemble mean, the average ensemble spread 

matches the average RMSE better after any post-processing. The AnEnStd exhibits the best 

spread among analog-based experiments in July, while AnEnAll shows better results in 

January. This might be related to the fact that wind speed shows greater variability (higher 

standard deviation of observations) and is probably harder to predict it correctly in January. 

For that reason, using more information from the raw model adds more variety to the 

ensemble members. This result also indicates that in the convective season most likely a 

horizontally and vertically higher resolved convection-permitting NWP model might add 

some additional information not present in the coarser LAEFws. 

In the selected two months, the observed frequency of the wind speed exceeding 5 ms-1 is 

higher for January with 18% cases than for July with 9%. Based on these observed numbers, 

the Brier skill score BSS value of the original ensemble (LAEFws) is -0.08 for January and 

0.03 for July, indicating that the small differences are already present in the input data. It is 
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shown that the Brier skill score is improved by all post-processing experiments. This is 

especially the case in January, where the underlying climatology shows that the higher wind 

speed is more frequently observed than in July and the wind speed variance (higher standard 

deviation of observations) is higher.  The AnEnMu, AnEnStd, and AnEnAll experiments 

show a nearly similar improvement. The other post-processing approaches improve the Brier 

skill score BSS less.  

 

Table 7. The average values and confidence interval (0.95 sig. level) of several verification 

measures for the different models at all available stations in Austria and all lead-times during 

July 2018. The best result among compared forecasts is underlined (the spread is better when 

closer to the RMSE value). The values significantly different from the AnEnStd forecast (0.05 

sig. level) are marked with an asterisk sign. 
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Bias  

[ms-1] 

-0.229*  

[-0.242,  

-0.215] 

-0.001*  

[-0.008,  

-0.010] 

-0.119*  

[-0.129,  

-0.111] 

-0.012 

[-0.021, 

-0.001] 

-0.090*  

[-0.099,  

-0.080] 

-0.055  

[-0.063,  

-0.046] 

-0.063  

[-0.072,  

-0.054] 

-0.088*  

[-0098,  

-0.080] 

-0.043*  

[-0.053,  

-0.033] 

CC 0.415* 

[0.406, 

0.422] 

0.750* 

[0.745, 

0.754] 

0.764* 

[0.759, 

0.768] 

0.752* 

[0.748, 

0.757] 

0.739* 

[0.735, 

0.744] 

0.770* 

[0.766, 

0.774] 

0.774 

[0.769, 

0.778] 

0.774 

[0.770, 

0.778] 

0.759* 

[0.754, 

0.763] 

Disp. Err 

[ms-1] 

1.602* 

[1.589, 

1.616] 

1.229* 

[1.215, 

1.240] 

1.144*  

[1.132,  

1.154] 

1.229* 

[1.216, 

1.241] 

1.262* 

[1.250, 

1.273] 

1.156* 

[1.144, 

1.167] 

1.145 

[1.136, 

1.157] 

1.148* 

[1.138, 

1.159] 

1.183* 

[1.172, 

1.194] 

σ bias 

[ms-1] 

-0.773*  

[-0.794,  

-0.754] 

-0.344*  

[-0.368, 

-0.325] 

-0.474*  

[-0.494,  

-0.452] 

-0.344* 

[-0.364, 

-0.323] 

-0.331*  

[-0.353,  

-0.308] 

-0.400*  

[-0.418,  

-0.377] 

-0.409  

[-0.429,  

-0.387] 

-0.396*  

[-0.416,  

-0.375] 

-0.403*  

[-0.423, 

 -0.383] 

RMSE 

[ms-1] 

1.794* 

[1.775, 

1.813] 

1.276* 

[1.262, 

1.288] 

1.244*  

[1.234, 

1.256] 

1.272* 

[1.261, 

1.284] 

1.307* 

[1.294, 

1.321] 

1.225 

[1.213, 

1.237] 

1.219 

[1.208, 

1.229] 

1.218 

[1.206, 

1.228] 

1.251* 

[1.238, 

1.262] 

Spread 

[ms-1] 

0.651* 

[0.648, 

0.654] 

1.170* 

[1.164, 

1.176] 

1.138*  

[1.133,  

1.144] 

1.318* 

[1.311, 

1.326] 

1.256* 

[1.248, 

1.263] 

1.253 

[1.246, 

1.261] 

1.244 

[1.236, 

1.250] 

1.190* 

[1.184, 

1.197] 

1.301* 

[1.294, 

1.308] 

BSS  

(>5 ms-1) 

0.032*  

[0.009, 

0.055] 

0.329*  

[0.314, 

0.345] 

0.337  

[0.322, 

0.353] 

0.329* 

[0.313, 

0.344] 

0.319* 

[0.303, 

0.335] 

0.349 

[0.334, 

0.365] 

0.355 

[0.341, 

0.369] 

0.353 

[0.338, 

0.369] 

0.325* 

[0.310, 

0.340] 

CRPS 

[ms-1] 

1.032* 

[1.022, 

1.042] 

0.648* 

[0.643, 

0.653] 

0.624* 

[0.619, 

0.629] 

0.636* 

[0.631, 

0.641 

0.650* 

[0.645, 

0.656] 

0.613 

[0.608, 

0.618] 

0.610 

[0.605, 

0.615] 

0.612 

[0.606, 

0.617] 

0.635* 

[0.630, 

0.640] 
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The LAEFws shows a higher continuous rank probability score CRPS (1.63 ms-1) for 

January than for July (1.03 ms-1). Again, the CRPS value is improved by all post-processing 

experiments, exhibiting better overall results for July than in January, when wind speed and 

its variance is higher on average. Similar to the Brier skill score BSS, the AnEnAll shows the 

highest skill during the winter month, while the AnEnStd is slightly better during the summer 

month. This indicates that not just that adding more input from the raw model increases the 

ensemble spread, but it also improves its accuracy. The AnEnMu follows both AnEnAll and 

AnEnStd results closely. The other post-processing experiments are not as successful, 

exhibiting significantly worse overall results for both months investigated. 

 

 

4.6.2. Lead time performance 

 

To investigate six analog-based ensemble experiments comparison further, a summary 

continuous rank probability score CRPS is considered for the individual lead-times (Figure 

29). The result shows that there is no significant difference between the AnEnMu, AnEnStd 

and AnEnAll performance during neither winter nor summer month. The AnEnCtrl, 

AnEnWs, and AnEnMem are slightly outperformed by other analog-based experiments, 

especially for January. Even though the AnEnCtrl, AnEnWs, and AnEnMem can improve 

the raw NWP forecasts, comparable to the EMOS approach, they are less promising than 

other analog-based experiments. The AnEnWs results show that it essential to use more than 

one meteorological variable as a predictor in the analog approach. This can be explained by 

the better ability of the analog method to distinguish different seasonal and synoptic 

situations. The analog-search pool in the AnEnMem experiment is smaller than in other 

analog experiments since the search is performed dependently for the same ensemble 

member. Possibly, that is why the AnEnMem would not increase the skill of the raw 

probabilistic input, as one would inherit undesirable properties of the input model, such as 

under-dispersion and lower resolution issues. Additionally, AnEnMem is the most 

computationally expensive setup. For these reasons, it is not shown or discussed further in the 

thesis (results can be found in the Appendix). Finally, even though the AnEnCtrl and the 

AnEnMu use the same number of the meteorological parameters as predictor variables, the 
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AnEnMu performs better for both months and at all lead times tested. Similar results are 

shown in Dabernig et al. [2015], where the EMOS results based on ensemble forecasts 

outperformed the forecasts using only the control run. 

 

 

Figure 29. Continuous rank probability score depending on lead-time for five different 

analog-based ensemble experiments during January (left) and July (right) 2018 at 29 stations 

in Austria. The markers are set for the results significantly different from the AnEnStd 

forecast (95% confidence level), while the red shaded area represents the AnEnStd 95% 

confidence interval calculated by the bootstrap percentile method [Jolliffe, 2007]. 

 

Overall, the AnEnAll performs the best in post-processing for January whereas the 

AnEnStd setup performs the best for July. Among these experiments with a similar result, the 

AnEnStd is chosen as the best representative. The reason for this decision is that it is not 

computationally demanding as the AnEnAll, while it includes the information about raw 

model spread (unlike the AnEnMu). The information about the raw model error growth is 

considered as a very important aspect of the raw NWP ensemble forecast. Therefore, it is 

expected to be further developed in the near future, leading to greater differences between the 

AnEnMu and AnEnStd experiments. To determine if using summarized predictors, such in 

the AnEnStd experiment, leads to information loss and decreases the forecast quality, the 

results are compared to the AnEnAll experiment. In addition to overall comparison, the 

AnEnStd and AnEnAll experiments are also compared against the two different EMOS 

experiments and the LAEFws, separated into lead-times using several verification metrics.  
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Figure 30. Continuous rank probability score (top), the correlation coefficient for the 

ensemble mean (middle) and the spread-skill diagram (bottom) depending on lead-time for 

the raw LAEFws ensemble, the EMOSws and two different analog ensemble configurations 

at 29 stations in Austria tested for January (left) and July (right) 2018. The markers are set 

for the results significantly different from the AnEnStd forecast (95% confidence level), while 

the red shaded area represents the AnEnStd 95% confidence interval calculated by the 

bootstrap percentile method [Jolliffe, 2007]. 
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The continuous rank probability score CRPS shows that the LAEFws exhibits a higher 

skill during daytime (i.e. 0600 - 1800 UTC) than during nighttime, and higher during July 

(Figure 30b) than during January (Figure 30a). The EMOS and the analog-based experiments 

are more skillful during nighttime than during daytime. The improvement over the LAEFws 

after post-processing is greater in January for both the EMOS and the analog approach since 

the LAEFws is worse than in July.  

However, the EMOS and the analog experiments are overall better in July, when the 

LAEFws, which also served as input, is better. These results imply that the best result is 

achieved when the input model is also working better. The AnEnStd and AnEnAll show 

almost no difference. They are both more skillful than the two EMOS experiments. Even 

though the differences are often subtle, they are significant for the EMOSws at almost all 

lead-times during January and at several lead-times during July, especially within the first 24 

hours.  

Evaluating the dependency on the lead-time, the analog post-processing methods show 

considerable improvement over the LAEFws for both months tested with the correlation 

coefficient CC (Figure 30c-d). The analog approach outperforms the EMOS methods in terms 

of correlation, often significantly. This is especially the case for January when the correlation 

enlargement over EMOSws is significant for almost all lead-times and sometimes even over 

EMOSstd (i.e. during nighttime).  

The analog-based forecasts exibit a major statistically significant reduction of the 

LAEFws RMSE at all lead-times (Figure 30e-f), similarly to the EMOS approach, with very 

few significant differences. The improvement is the most evident for the LAEFws RMSE 

maxima at 0000 UTC.  

Similar results can be found in the spread-skill diagrams. These diagrams test if the 

average ensemble spread matches the average RMSE, representing the forecast uncertainty 

appropriately. The LAEFws experiment shows a strong underestimation of spread. All post-

processing methods satisfactorily increase the spread. Here, both analog-based forecasts are 

showing a major imprevoment in spead-skill relationship with an almost perfect agreement 

between the RMSE and the spread, while the EMOS experiments are slightly under-

dispersive, especially the EMOSws in January (Figure 30e). This can be related to the fact 

that it uses only the wind speed as a predictor and most likely, not enough dispersion 
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information is given. Additionally, the EMOSws only uses a 30-days training window, which 

also results in a small under-dispersion.  

 

 

4.6.3. Spatial performance 

 

The climatology in Figure 19 shows that the wind speed increases towards the northeastern 

part of Austria (Pannonian Plain) for both January and July, which also suggests a spatial 

pattern in forecast performance. Within this subsection, it is decided to show only results for 

January, since the previous results suggested the better distinction in the performance after 

post-processing. Even though not shown here, the spatial distribution of results for July is 

very similar to the ones for January. The results for both months are shown in Appendix B. 

Additionally, due to very subtle and hardly notable differences among analog 

experiments, only the AnEnStd configuration is shown as a representative. The results for the 

AnEnMu and the AnEnAll experiments are almost indistinguishable from the AnEnStd, 

while the AnEnCtrl, AnEnWs, and the AnEnMem are the same or slightly worse. Since the 

results for these experiments carry no new information within this subsection, they are not 

shown from this moment on (but can be found in Appendix B). 

 

 

Figure 31. The spatial distribution of the monthly mean continuous rank probability score for 

the raw LAEFws (left) and the AnEnStd (right) for January 2018. The arrows point to 

closely situated stations in the highly complex topography, where the valley stations exhibit 

much better results than the mountain stations. 

 

The value for the LAEFws monthly mean continuous rank probability score CRPS is 

following the climatological wind speed pattern, having higher values at the stations prone to 

higher winds. The plains are better represented by the ALADIN-LAEF topography and, 
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therefore, the performance of ALADIN-LAEF is, in general, better at lower altitudes and less 

complex topography. The error is reduced for the analog experiments (Figure 31b) compared 

to the LAEFws (Figure 31a), following a similar pattern. Additionally, there are large 

differences for the nearby stations situated in highly complex topography. The mapped CRPS 

values for any forecast tested show that the valley stations are better predicted than the 

mountain stations (arrows), especially for the LAEFws. A close look at the two stations in 

Innsbruck (arrow in the west of Austria) shows, for example, that the AnEnStd CRPS at the 

valley station is improved by around 20% compared to the LAEFws. As the LAEFws 

performance at mountain stations is not as efficient, this leaves room for improvement. Here, 

the CRPS can be improved by around 70% at e.g. Patscherkofel, the mountain station close to 

Innsbruck. A similar pattern is shown at the station Sonnblick (arrow in the middle) where the 

mountain station has much higher CRPS values (raw and post-processed) compared to the 

valley station. As an example, for the three sites located in the Semmering region (most 

eastern arrow), a mountain pass in the east of Austria, the different settings of the sites can be 

one of the factors. The site located at the pass is prone to the gap flows (e.g. Mayr et al. 

[2007]), whereas the site at the mountaintop is located within the skiing resort, somewhat 

shielded by the nearby hut and not represented in the model lower boundary conditions. The 

site located at the valley shows again the lower CRPS values. These differences in 

predictability are mainly related to the high wind speeds and the coarse resolution of the raw 

model. This suggests a large sensitivity of the models in the Alpine complex topography to 

the exact details of the mountain height and shape, as well as the incoming background layer, 

where subtle differences can result in a large range of responses in the downslope wind 

regime. In contrast, the stations in the north-east of Austria (around Vienna) are also 

climatologically prone to high wind speeds but show much better CRPS values.  
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Figure 32. The AnEnStd and the LAEFws performance comparison at mountain and valley 

stations by root-mean-square error decomposition into bias, σ bias, and dispersion error 

during January 2018. 

 

To evaluate the performance for valley and mountain stations, the stations marked with 

arrows (Figure 19 and Figure 31) are investigated separately. For the valley stations, the 

RMSE (1.50 ms-1) shows that the LAEFws wind speed prediction performs adequately. 

However, for mountainous sites, the RMSE is 6.24 ms-1, due to the aforementioned reasons. 

The RMSE is notably reduced by the analog approach, by 0.45 ms-1 at the valley and by 3.33 

ms-1 at mountain stations. The RMSE decomposition (Figure 32) shows that the dispersion 

error is notably reduced by the analog approach, slightly more for the mountain than the 

valley sites. The LAEFws exhibits much larger systematic errors for the mountain than the 

valley stations. The LAEFws bias and the σ bias at the valley stations are very small, to begin 

with. The analog approach is therefore not able to make a large difference after post-

processing. On the other hand, the LAEFws systematic sources of error at the mountain 

stations are much more pronounced than at the valley stations. These sources of error are yet 

again successfully removed by the analog approach. The RMSE reduction is therefore much 

more noticeable for the mountain stations than for the valley stations, due to the reduction of 

systematic sources of error, which are not as present in the raw model for the valley stations. 

However, the spatial distribution of forecast performance could be further investigated in 

future work. 
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4.6.4. Special diagrams: reliability, ROC and rank histograms 

 

The reliability of a probabilistic forecast is the property of that forecast to predict probabilities 

that match the relative frequencies within the data. Here, it is evaluated for the probability of 

wind speed exceedance of > 5 ms-1. Again, the LAEFws ensemble has lower reliability in 

January (Figure 33a) than in July (Figure 33b). Furthermore, it is below the no-skill line for 

the high probabilities in January. Both EMOS experiments improve LAEFws reliability, 

EMOSstd improving it a bit more than EMOSws. However, the analog experiments show an 

even higher resolution and reliability across all experiments, especially for the winter month. 

The differences can be noticed for the probabilities up to a 50% chance of wind speed to 

exceed 5 ms-1, where the EMOSstd is slightly underconfident, or for the probabilities with a 

more than 40% chance, where the EMOSws is slightly overconfident. Between the analog 

experiments, only small and insignificant differences are found. Both analog-based 

experiments exhibit almost perfect reliability for winter month almost perfectly, while being 

slightly overconfident during summer.  
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Figure 33. Reliability diagrams (top) and relative operating characteristic (ROC) diagrams 

(bottom) for two different analog forecasts and a threshold of > 5 ms-1, compared to the raw 

LAEFws and the EMOSws during January (left) and July (right) 2018 at 29 stations in 

Austria. The dashed lines in the reliability diagrams show a 95% confidence interval, while 

the sharpness diagrams are shown in the upper left corners. 

 

 

Besides a higher resolution of the analog experiments, one can notice that the sharpness 

property (the diagram in the upper left corner of the reliability diagram) is satisfactory for all 

approaches, exhibiting moderate to high forecast confidence. However, the LAEFws is a bit 

sharper than the post-processing experiments, indicating a higher tendency to forecast 

extreme probabilities. This is preferable because of the better forecast usability if the forecasts 
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are reliable. Still, the post-processing experiments are overall more accurate in terms of 

reliability.  

The ROC curve shows a ratio of hit rate versus false alarm rate using a pre-defined 

threshold. Again, the threshold of 5 ms-1 is used. The ROC curve (Figure 33c-d) indicates that 

the analog methods, in general, improve the raw LAEFws forecasts comparable to or better 

than the EMOS. Unlike other measures, the reliability and discrimination property exhibit 

higher values for January than for July. However, this might be due to the higher 

climatological frequency of such wind speeds in January (18%) than in July (9%).  For that 

reason, the differences among winter and summer month should not be investigated by using 

the fixed threshold. The results should be used for comparison among different experiments. 

The AnEnStd exhibits a slightly higher hit rate than the AnEnAll and EMOS experiments, 

especially for July.  

 

 

Figure 34. Rank histograms for the AnEnStd and AnEnAll compared to the raw LAEFws, 

EMOSws, and EMOSstd forecasts during January (left) and July (right) 2018 at 29 stations 

in Austria. 

 

Evaluating the rank histogram (Figure 34), a clear under-dispersion of LAEFws is found, 

especially for January. This is not the case for the post-processed forecasts. It shows that the 

analog method is able to improve the dispersion of the original NWP ensemble.  

Finally, it is shown that the analog approach outperforms the raw LAEFws model in 

terms of better accuracy, reliability, resolution, discrimination and spread for both winter and 

summer months. The results are very similar to or better than the EMOS experiments shown, 

with the larger differences during the winter month. The difference among analog 

experiments (AnEnAll and AnEnStd) is barely notable. Therefore, it is indicated that using 
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the summarized metrics of the raw model meteorological variable ensemble as a predictor in 

the analog approach barely sacrifices the forecast quality, while saving computational power.  

Special diagrams for the other analog-based experiments (AnEnWs, AnEnCtrl, AnEnMu and 

AnEnMem) can be found in Appendix C. 

 

 

4.6.5. High wind speed predictions 

 

The majority of measured wind speed values during the selected months are within 2-3 ms-1 

range (30-40%), while the wind speeds higher than 10 ms-1 are rare (Figure 35c-d). However, 

it is not less important to properly forecast higher wind speeds as of their higher impact on 

people and damage on the property, road and air traffic disruptions, wind energy production, 

and others. For this reason, it is important that a probabilistic forecast is consistently good for 

several different thresholds. Besides the exceedance of 5 ms-1 the thresholds ranging from 0.5 

ms-1 to 20 ms-1 are investigated (Figure 35a-b).  

The Brier skill score BSS indicates that the LAEFws forecast is somewhat skillful in 

reproducing wind speeds of the order of 3 ms-1, but shows much less skill, if any, for the 

higher and lower thresholds. The EMOS approach is more skillful than the LAEFws for any 

threshold value in January and up to 10 ms-1 (EMOSws) or even 15 ms-1 (EMOSstd) in July. 

The analog experiments are able to improve the forecast skills up to 10 ms-1 significantly 

better than the EMOS experiments. Approaches as in Baran and Lerch [2016] could be used 

to adjust EMOS to higher wind speeds but have not been tried. Furthermore, the AnEnStd 

and AnEnAll improve the LAEFws forecasts for all thresholds investigated for January. 

Again, the AnEnCtrl, AnEnWs, and AnEnMem do improve the LAEFws forecasts but are 

less skillful than the other analog experiments (shown in Appendix D). However, AnEnWs 

still provides a good result. It is, thus, recommended approach if only a reduced set of 

ensemble data is available or the computational resources are limited. These results reveal the 

potential for post-processing using the analog approach, even though one needs to be careful 

with the interpretation since the number of occurrences of high wind speed (i.e. around 20 ms-

1) is very small. 
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Figure 35. Brier skill score (top) and relative frequency (bottom) depending on a wind speed 

threshold. The analog probabilistic forecasts are compared to the raw LAEFws and the 

EMOS forecasts during January (left) and July (right) 2018 at 29 stations in Austria. The 

markers are set for the BSS results significantly different from the AnEnStd forecast (95 % 

confidence level). 
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§ 5. SUMMARY AND DISCUSSION  

The development of suitable post-processing methods that reduce starting model errors at 

locations where measurements are available is needed since even state-of-the-art mesoscale 

models still exhibit considerable errors, especially in complex topography. The answer might 

lie in the several-decades-old idea to use analogies (i.e., similar past forecast, measurements 

or analysis) for forecasting future weather. The idea is based on an assumption that if two 

atmospheric states are initially very close, they will remain somewhat close for some time in 

the future. More recently developed formulation of an analog-based post-processing method 

is already proven to improve deterministic numerical weather prediction (NWP). The analog-

based method uses a historical data set including NWP data and observations at a single site. 

The output of the analog-based method is an analog ensemble (AnEn), which can then be 

used to issue a deterministic forecast. 

First, a deterministic NWP is tested as an input to the analog-based method – an 

operational limited-area mesoscale NWP model Aire Limitée Adaptation dynamique 

Développement InterNational (ALADIN) of the Croatian Meteorological and Hydrological 

Service. The deterministic output of analog-based experiments includes forecasting the mean 

(AN) and median (ANM) of the AnEn. Since the other experiments produce better results than 

the ANM, and specific benefits are not achieved in tested cases presented in this work, results 

for the ANM are mostly discarded. The results for the AN are compared to a linear, adaptive 

and recursive Kalman filter (KF) post-processing approach. The KF algorithm is first applied 

using the same NWP and observations as in analog-based experiments, resulting in 

deterministic Kalman filter prediction (KF). Additionally, two experiments that combine 

analog and Kalman filter approaches are also performed. The first one is applying the KF to 

the time series of the AN forecasts, resulting in a new deterministic forecast called the KFAN. 

Additionally, the KF is applied to the same historical set of NWPs and verifying observations 

but in the analog space, ordered from the worst to the best analog (Kalman Filter in Analog 

Space – KFAS. Therefore, the analog-based experiments include AN, KFAN, and KFAS.  

In this research, an in-depth analysis of the analog-based method over a complex 

topography is performed. The target area of this research is a coastal complex topography in 

Croatia, where the most significant portion of mesoscale energy is governed by strong 
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downslope windstorms as well as thermally induced land-sea circulations. Additionally, the 

research includes mountain complex topography and continental nearly flat topography.  

By analyzing root-mean-square-error (RMSE), rank correlation coefficient (RCC) and 

bias of the mean it is shown that all tested post-processing methods improve results of the A8 

starting model. The best results are obtained for the analog-based method when using 15 

analog ensemble members. The RMSE and bias growth is noticed for larger ensembles, 

probably due to climatological differences between training and verification period.  

The KF and the KFAN are the most successful post-processing methods for bias 

reduction. That is expected result since the KF is constructed to remove the systematic error if 

it does not change rapidly (i.e. large hour-to-hour variations). However, the application of the 

KF can also lead to a decrease in the correlation coefficient (i.e. increase of the dispersion 

error). The dispersion error is noticeably reduced by the KF approach in the flat topography, 

where there are some indications of a systematic error influencing a large scale (i.e. period 

longer than 10 days) strong wind in the model. The KF is not as successful in reducing the 

dispersion error in the coastal complex area. The analog-based method reduces dispersion 

error (i.e., improve RCC) regardless of the topography complexity, showing greater 

adaptability than the KF forecast. The AN seems to be the most suitable post-processing 

method for RCC improvement. The standard deviation (σ) of the KF forecasts is closer to the 

observed standard deviation σ than for the raw model, especially in the complex topography. 

The analog-based method is also prone to the same underestimation but not as much as KF in 

the complex topography. The underestimation of the measured standard deviation σ for the 

analog-based method is partially explained by climatological differences between the training 

and testing period. The AN forecast is the most prone to systematic underestimation of the 

standard deviation σ among analog-based forecasts. This is due to additional averaging when 

forecasting the ensemble mean, thus naturally reducing the variability of the forecast.  This 

systematic error is partially removed by the application of the KF in the KFAN forecast. The 

KFAS forecast exhibits the highest standard deviation σ among the analog-based experiments 

due to better adaptability. Finally, even though the analog-based method affects different 

aspects of the starting model, the RMSE reduction is very similar among them and superior to 

the KF approach. This is especially the case in the coastal complex topography. 

The importance of the starting model resolution and formulation is investigated by using 

three configurations of ALADIN model run: with 8 km grid spacing (ALADIN; A8) and 2 km 
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grid spacing (ALADIN; A2, dynamical adaptation; DA), as well as verifying observations of 

10-m wind speed. Comparison of post-processing methods performance with starting models 

at 2 km grid spacing (A2, DA) compared to the post-processing performance with the A8 as a 

starting model shows that post-processing methods considerably improve numerical 

predictions for all tested model resolutions. We furthermore test the hypothesis that the 

greater the representation of physical processes directly simulated by the starting model, the 

better is the quality of the analogs. Even though the higher-resolution starting models yield 

better statistical results themselves in our target area (coastal complex topography), it is not 

necessarily the case for the analog-based forecasts generated by the higher resolution model. 

This may be due to the imperfections of the point-based verification metrics used that 

typically increase with a resolution at near-kilometer scale grid spacing of numerical models 

(i.e. high sensitivity to spatial and phase errors). Therefore, the categorical and spectral 

analyses are performed to explore the potentially undetected benefits of using a higher 

resolution model further.  

To assess the performance of forecasts for different wind speeds, we performed a 

verification using three wind speed categories: weak, moderate and strong wind. The 

categories are divided by 50th and 90th percentile. The polychoric correlation coefficient for 

categorical forecasts leads to similar conclusions as to the rank correlation coefficient 

analysis. The DA and the A2 exhibit higher association in the coastal complex but not in the 

other topography types. Association is significantly improved by almost all post-processing 

methods, except the KF forecast in the coastal complex topography.  Averaged over all 

locations, the analog-based method achieves better both rank and polychoric correlation 

coefficient results than the KF in general, particularly the AN.  

Averaged over all locations, starting models forecast weak wind occurrence too rarely and 

moderate wind occurrence too often. For coastal complex topography, different starting 

models yield different frequency bias. Starting models A8 and A2 over-forecast the 

occurrence of moderate wind category while under-forecast the occurrence of the strong wind. 

The DA seems to be the least (frequency) biased model in the coastal complex topography. 

For other topography types (mountain complex and nearly flat continental) all starting models 

tested in this study under-forecast the frequency of weak wind and over-forecast the 

frequency of moderate and strong wind. All post-processing methods significantly reduce the 

frequency bias for climatologically common wind speed categories on average. While the 
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results for the KF are slightly less biased, the main challenge for the analog-based method 

seems to be the under-forecasting of strong wind occurrence. The KFAS seems to be the least 

biased analog-based experiment, showing the best result for strong wind while being as 

unbiased as the AN in the other two categories. It has to be noted that the results in the 

moderate and strong wind speed categories exhibit very large confidence intervals, providing 

only indications of the post-processing methods’ ability to improve the starting model 

forecast.  

The critical success index (CSI) is a measure of the relative accuracy of a categorical 

forecast. The KF has considerably higher relative accuracy than the starting models for weak 

wind category in the nearly flat continental and mountain complex topography, but not as 

much in the coastal complex topography. Results suggest that the relative accuracy result is 

improved for the moderate and strong winds as well. The analog-based experiments seem to 

outperform both starting models and corresponding KF forecasts for all the cases tested, 

except the prediction of the strong wind in the nearly flat continental topography. For the 

latter, the KF seems to be the best post-processing method once again suggesting consistent 

model error when predicting strong wind. The AN achieves the highest relative accuracy for 

weak wind, while the KFAN and the KFAS seem to be better in predicting the other 

categories.  

Using a model at finer horizontal resolution leads to improvements in the relative 

accuracy for starting model predictions of the strong wind in the coastal complex topography. 

This confirms that finer resolution modeling in coastal complex topography leads to a better 

ability of the forecast in distinguishing low from moderate or unusually strong wind. This 

horizontal resolution increase yields mixed results for other categories and topography types, 

potentially due to the nature of time-space model errors and the related statistical 

imperfections of the metrics. This property is then inherited by all of the post-processing 

methods. However, the results corresponding to moderate and especially strong winds could 

be further reinforced using a larger sample size. However, enlarging the sample size is 

contradictory to the basic post-processing idea: it needs to be efficient but also quick and easy 

to implement. Every time there is an update in an NWP model, the method needs to be re-

trained. That means that historical NWP forecasts need to be simulated, which is a 

computationally demanding procedure. Therefore, it is rarely done for periods longer than 1 
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or 2 years. That dataset is then used for training and new forecasts are issued. However, this is 

only up until the model is updated again (i.e. few years maximum).  

The measure extremal dependence index (EDI) independent of the underlying climatology 

and, for that reason, also used to evaluate the forecast of rare events (i.e. strong wind). The 

results are generally consistent with the relative accuracy analysis (measured by CSI), with 

smaller confidence intervals. Overall, the analog-based method performs better than the KF, 

especially the KFAN forecast. The analog-based method is more successful if it is started with 

A2 than if it is started with A8 or DA models, which is consistent with the previous results. 

The spectral analysis suggested that the KF approach affects only (very) large scale 

motions (i.e. period longer 10 days) if the power spectral density function is biased. The KF 

thus enlarges the energy of the large-scale motions in the coastal area and reduces the energy 

of the large-scale motions at the nearly flat continental topography. However, the KF does not 

significantly influence the shorter time scales. The KF might be slightly adjusted by 

optimizing the parameters of the KF, affecting somewhat shorter scales (e.g. synoptic), 

However, the qualitative effect of affecting only large scale motions would presumably 

remain the same. In other words, the KF does not significantly influence the energy of the 

shorter time scale motions.  

Unlike the KF approach, introducing past similar situations in the analog-based method 

leads to better forecasting processes on a longer-than-diurnal scale. The longer-than-diurnal 

scales are much more relevant than the larger scales (i.e. a period longer than 10 days) for 

forecasts up to 72 h ahead. The analog-based method improves model underestimation of the 

longer-than-diurnal motions in the coastal area and in the nearly flat topography when the 

model overestimates the longer-than-diurnal motions. The KFAS method is superior to the 

other post-processing methods because it maintains the modeled energy for shorter-than-

diurnal part of the power spectra (unlike the AN), while it improves both under- and 

overestimation of the longer-than-diurnal motion energy (just as good as or better than the 

AN). Furthermore, higher-resolution models A2 and DA generally contain more energy than 

A8. Consequently, there are fewer situations with under-predicting large-scale motions. But 

when they do occur, the post-processing methods behave as presented for the lower resolution 

A8 model. Even though the analog-based experiments often under-predict the shorter-than-

diurnal motions, they simulate the correct amplitude of the diurnal cycle harmonics (24-h, 12-
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h, and 8-h), similarly to model. Additionally, even if the model over-predicts the amplitudes 

of the diurnal cycle harmonics, the analog approach reduces them.  

 

Table 8. The summarized results for the post-processing of the deterministic NWP regarding 

benefits and limitations the post-processing methods used in this thesis. 

Forecast Benefits Limitations 

KF  Bias reduction 

 The standard deviation unbiased in 

mountain and flat topography 

 Less prone to underestimate the 

occurrence of strong wind category  

 Best relative accuracy for the strong 

wind in the flat topography 

 Possible correlation decrease (in 

complex topography) 

 Standard deviation underestimated 

in coastal complex topography 

 Affecting only the (very) large scale 

motions (i.e. period longer than 10 

days) 

AN  Best correlation increase 

 Best relative accuracy for the weak 

wind speed category 

 Better forecasting processes on a 

longer-than-diurnal scale 

 Bias increase for large ensembles 

 Prone to underestimation of the 

variability (σ) in mountain and flat 

topography 

 Prone to underestimate the 

occurrence of strong wind category 

 Underestimates shorter-than-diurnal 

scale motions 

KFAN  Correlation increase 

 Adequate relative accuracy for strong 

and moderate wind speed category 

 Better forecasting processes on a 

longer-than-diurnal scale 

 Bias increase for large ensembles 

 Prone to somewhat underestimate 

the variability (σ) and the occurrence 

of strong wind category 

 Underestimates shorter-than-diurnal 

scale motions 

KFAS  Bias reduction 

 Correlation increase  

 The least prone to underestimation of 

standard deviation overall 

 Less prone to underestimate the 

occurrence of strong wind category 

than other analog experiments 

 Adequate relative accuracy for strong 

and moderate wind speed category 

 Better forecasting processes on 

longer-than-diurnal scale 

 Better forecasting processes on a 

shorter-than-diurnal scale 

 Prone to somewhat underestimate 

the variability (σ) and the occurrence 

of strong wind category 
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Finally, one can conclude that each post-processing method tested in this thesis 

successfully improves the deterministic NWP wind speed forecasts. However, each post-

processing method also has its strengths and weaknesses, and the choice for operational use 

depends on the envisaged purpose. For that reason, the benefits but also the limitations of the 

post-processing method tested are listed in Table 8. Hence, one can decide on the most 

suitable approach according to the statistical properties of the starting model deterministic 

NWP and potential user-specific needs. 

The availability of the quality data over mountain complex topography in Croatia is 

limited. Only three locations satisfy the necessary quality demands for the analog method 

testing and implementation in the first part of this research. Hence, the research is extended 

using 29 meteorological observation sites (TAWES) in Austria for winter (January) and 

summer (July) month of 2018. Additionally, after investigating wind speed as continuous and 

categorical predictand, the focus is shifted to the ensemble and probabilistic wind speed 

forecasting. In addition to using deterministic NWP input to analog-based method, the ability 

to calibrate the ensemble NWP is also investigated. Therefore, an in-depth analysis of the 

analog-based method applied to the Austrian ALADIN – LAEF (Aire Limitée Adaptation 

dynamique Développement InterNational model – Limited-Area Ensemble Forecasting) 

ensemble forecasts, is provided in the second part of this research.  

The aim of this work is to test the potential improvement of the NWP ALADIN-LAEF 

ensemble forecasts for the 10-m wind speed (LAEFws) while maintaining low computational 

costs for the analog search. For that reason, several experiments using different forecast 

information of the Austrian ALADIN-LAEF ensemble as input to the analog method are 

thoroughly analyzed. First, the sensitivity tests are performed to determine the optimal 

influence a certain meteorological parameter used as a predictor should have in the analog 

search procedure. The results show that the wind direction is the most important predictor in 

addition to wind speed, followed by temperature and relative humidity parameters, especially 

in the more complex topography. Using an NWP ensemble enables the use of more 

meteorological variables (predictors) in more than one realization as input to the analog 

search. In addition, using summarized information such as the ensemble mean and/or the 

standard deviation of the ensemble or every single ensemble member can provide useful 

insights. If the standard deviation of the ensemble is used as a predictor, its optimal 
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contribution is about 40% of the ensemble mean predictors’ contribution in the majority 

locations tested.  

In total, six analog-based AnEn experiments are conducted using a different set of input 

information from the ALADIN-LAEF model as predictors to the analog-based method. The 

choice of predictors from raw NWP model includes: 

 The ensemble control member of all available parameters (AnEnCtrl) 

  All wind speed raw forecast ensemble members (AnEnWs)  

 The ensemble mean of all available parameters (AnEnMu) 

 The ensemble mean and spread of all parameters (AnEnStd) 

 All ensemble members of all parameters (AnEnAll) 

 All available parameters corresponding to only one (distinguishable) ensemble 

member (AnEnMem), 

where the abbreviations for analog experiments are listed in the brackets.  

All experiments provide the 17 members wind speed analog ensemble forecast. To better 

understand the impact on the raw forecasts, the two experiments using the ensemble model 

output statistic post-processing approach (EMOS) are used as a baseline. The EMOSws only 

uses the last 30 days as training and only the wind speed as an input, whereas the EMOSstd 

uses all available training data and all variables including seasonal functions. The EMOSws is 

slightly more successful in removing the systematic, while the EMOSstd the dispersion 

source of the error. 

Results show that all AnEn experiments substantially improve the raw model forecast. 

However, the most computationally demanding “member by member” AnEnMem experiment 

proved to be the least successful. The undesirable properties of the raw model, such as under-

dispersion and lower resolution, are inherited more easily for this than for the other analog 

experiments. That is probably due to the fact that the analog-search pool is smaller than when 

seeking among all members independently, as it is the case in the other analog experiments. 

Using only one predictor variable as input (the 17 members of LAEFws) already improves the 

forecast skills and lowers the systematic error of the ensemble mean, better or comparable to 

the AnEnMem experiment. If the number of available parameters from the raw model is 

limited, the experiment using only wind speed ensemble members (AnEnWs) proved to be 

successful. Even better results are achieved when using more than one predictor variable. 

Therefore, similar or better results are achieved when using only the ensemble control 



§ 5. Summary and discussion  

 94 

member as input (AnEnCtrl). In addition, using more than one ensemble member within the 

analog search procedure improves results even more. The results confirm the hypothesis that 

post-processing methods have a large potential to improve the raw ensemble forecast. 

Moreover, it is shown that often there is no need to use the full input spectrum of a raw 

probabilistic model, i.e. all ALADIN-LAEF members as predictors. Using basic information 

of an input ensemble, such as ensemble mean and ensemble standard deviation, improves the 

forecast skills almost as successful as using the full input spectrum of a raw probabilistic 

model as predictors, with very little significant differences, if any. Furthermore, it is 

computationally less demanding. This result confirms the additional hypothesis that the 

summary metric (e.g. mean and standard deviation) is the optimal way to add the aspects of 

error growth, that can be represented dynamically by the input ensemble model, to the flow-

dependent error growth already captured by the analog approach. Therefore, it can be 

suggested as the most promising configuration among experiments tested in this work.  

All post-processing experiments in this work provide better results than the raw input 

model, as expected, reducing the under-dispersion while increasing the reliability and 

discrimination. The best results for both the analog approach and the EMOS are achieved in 

July when the raw model performs better. The raw model under-spread is almost completely 

removed by all experiments. The EMOSws approach is slightly under-dispersive, especially 

in January, probably due to using only wind speed parameters and much shorter training than 

other post-processing experiments.  

The accuracy of the ensemble forecast is measured by the RMSE for the ensemble mean 

and the continuous rank probability score (CRPS). The analog-based experiments outperform 

the raw LAEFws forecast in terms of significantly better accuracy for all forecast lead-times 

during both (winter and summer) months. They are more skillful during nighttime than during 

daytime. The analog-based method is comparable to or outperforms both EMOS experiments. 

The outperformance is noticed at short lead-times and during the winter month, especially in 

terms of correlation. The EMOSws is overconfident to a certain extent for the high probability 

forecasts, while EMOSstd is underconfident for low probability forecasts. The analog-based 

experiments are almost perfectly reliable. Additionally, discrimination is slightly better than 

the EMOS due to a higher hit rate. The difference among the analog experiments is less 

pronounced than when compared to the LAEFws and the EMOS experiments, confirming 
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that using basic information of an input ensemble, such as ensemble mean and standard 

deviation is often sufficient. 

If considered spatially, the LAEFws error follows the climatological wind speed pattern, 

having higher values at the stations prone to higher winds. Also, the LAEFws error is more 

pronounced in the alpine complex topography than in the eastern plains. The accuracy of post-

processing methods is improved when compared to the raw model forecast, following a 

similar pattern. Additionally, even though an improvement over the raw model forecast is 

evident, large differences among nearby stations are noticed in highly complex topography. 

The valley stations wind speed is better predicted by the raw model, and post-processing 

result is, therefore, overall better at the valley stations than at the mountain stations with the 

climatologically higher wind speeds. On the other hand, the relative improvement to the raw 

model is more pronounced at mountain stations due to the reduction of systematic sources of 

error by post-processing. These sources of error are less present in the raw model for the 

valley stations. 

It is very important to assess the post-processing performance for high wind speed 

because of the impact on people and property. For that reason, several thresholds ranging 

from 0.5 ms-1 to 20 ms-1, are used to test the skill of the post-processed forecasts. The result 

shows that the LAEFws forecast is skillful in reproducing wind speeds of the order of 3 ms-1 

thresholds, but the same can not be concluded at higher or lower thresholds. The analog 

experiments are able to improve the raw forecast, exhibiting significantly higher skill than the 

EMOS, up to 10 ms-1 wind speed threshold. Furthermore, the AnEnStd and the AnEnAll 

experiments significantly improve the raw model results for all thresholds tested in January. 

However, neither of the post-processing methods tested is an adequate tool to reproduce the 

wind speeds exceeding 15 ms-1. For that purpose, further modifications of the proposed 

methods, their combination, or the usage of the additional calibration method, such as quantile 

regression forests, should be investigated. 

To summarize, even the simple experiment AnEnWs, which uses only one 

meteorological parameter (wind speed) as a predictor variable, significantly increases 

correlation with the measurements and decreases the error. Using more meteorological 

parameters as predictor variables improves the results even further, leading to substantial 

improvements in terms of correlation, reliability, spread-skill ratio and error reduction 

(measured by RMSE and CRPS). We confirmed our primary hypothesis that the analog 
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experiments can remarkably improve the raw LAEFws forecast. Overall, the experiments 

prove to be at least as successful as the EMOS post-processing approach, or even more.  

It is shown that the optimal weight of the different predictor variables in the analog 

search procedure is location-dependent and every meteorological parameter tested is 

beneficial at least at certain areas, and, hence, should not be neglected. Furthermore, we 

demonstrate the importance of including the information on the raw ensemble uncertainty into 

analog search procedure in contrast to using only one raw ensemble member (AnEnCtrl) or 

the mean of the raw ensemble (AnEnMu). Since the two the most successful analog 

experiments, AnEnAll and AnEnStd, rarely differ significantly, we have proven the 

additional hypothesis that the summary metric is the optimal way to include the aspect of the 

error growth, that can be represented dynamically by the raw model.  

The error reduction by the analog-based method is notable regardless of the topographic 

features due to (but not limited to) systematic error reduction. After demonstrating the 

applicability of the analog-based method in the coastal complex topography, the performance 

is hereby confirmed even for mountain complex topography tested for the alpine region. This 

makes the analog-based method a perfect candidate for the implementation in the Croatian 

Meteorological and Hydrological Service operational suite. Additionally, the importance of a 

predictor weighting strategy for a successful implementation is also highlighted. However, the 

post-processing methods tested in this thesis are not an adequate tool to reproduce the 

extremely high wind speeds (i.e. to issue warnings) in the proposed configuration. For that 

purpose, further modifications of the proposed methods or even the additional correction or 

calibration are advised. 
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§ 6. CONCLUSION  

The performance of the analog-based post-processing method is tested in climatologically 

and topographically different regions in Croatia and Austria, for point-based wind speed 

predictions at 10 m above the ground. The target area is coastal-complex topography in 

Croatia. First, the analog-based method is applied to the deterministic numerical weather 

predictions (NWPs). The performed verification shows that all analyzed post-processing 

methods improve upon the starting model forecasts. The level of improvement depends on the 

type of topography, starting model and verification metric. Each tested post-processing 

method has its strengths and weaknesses and the choice for operational use of those methods 

depends on the envisaged purpose. The results are presented in such a manner that after a 

simple statistical analysis of the potential starting model, one can thus decide which post-

processing method is the most applicable for a specific situation.  

The forecasting using the mean of the analog ensemble exhibits the highest correlation 

with measurements. It is thus the most applicable if the model is unbiased, but there is a need 

to reduce the dispersion error. The applications of the Kalman filter directly on the NWP 

forecast (KF) or on the AN forecast (KFAN) are the most successful in removing bias, 

whereas the KFAN is better suited if the topography is more complex. The analog-based 

method exhibits better result than the Kalman filter approach in the complex topography in 

general, especially coastal area. If the focus is on the prediction of the weak wind, then the 

AN is the most suitable, whereas for somewhat higher wind speed the analog approach is 

better suited when combined with the KF (i.e. applying the Kalman filter to the sorted analogs 

- KFAS). The Kalman filter algorithm affects only the (very) large scale flows: enlarges the 

energy of these large-scale motions in the coastal area and reduces the energy at the nearly 

flat continental topography for the periods longer than 10 days. On the other hand, the analog-

based method affects smaller scales. If the starting model power spectral density is biased, the 

KFAS method is superior to the other approaches. The superior adaptability of the KFAS 

results in better adaptability of the shorter than diurnal motions.  

Additionally, results of the post-processing methods are further improved if higher-

resolution (convection-permitting) starting model data are used in the coastal complex 

topography. Introducing the higher-resolution modeling in nearly flat continental topography 

results with very similar power spectral density curves. The experiments exhibit at least as 
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good results when using the coarser horizontal resolution, if not better. Therefore, the need for 

using 2-km as opposed to the 8-km grid spacing model may not be necessary. On the other 

hand, the higher-resolution modeling increased the energy available for all of the time scales 

in the mountain complex topography. The latter, however, yielded mixed results when using 

the other verification metrics for both the starting models and corresponding post-processing 

results. In this case, the results may be improved by using even finer model resolution than 2-

km to represent local flows.   

Due to the limited availability of measurements in the mountain complex topography, the 

second part of this research is performed using Austrian sites. After a thorough analysis of the 

analog-based method application to the deterministic NWP, the focus is now shifted to the 

application to the ensemble NWP. Naturally, the verification procedure in this part includes 

the scores suitable for the ensemble and probabilistic forecasting (i.e. Brier skill score, 

continuous rank probability score, spread-skill diagram, rank histograms) to analyze the most 

important aspects such as reliability, sharpness, discrimination, spread-skill ratio and 

statistical consistency. 

Substantial improvements of raw model wind speed forecast are demonstrated in terms of 

correlation, reliability, spread-skill ratio and error reduction (measured by RMSE and CRPS). 

The benefits of using even the simple analog-based method implementation that uses only 

wind speed as a predictor variable are significant, and using more meteorological parameters 

as predictor variables further improves the results. Overall, the experiments are proved to be 

as successful as the ensemble model output statistic (EMOS) post-processing approach or 

better.   

We demonstrate the importance of a predictor weighting strategy and also including the 

summarized information on the raw ensemble uncertainty into the analog search procedure in 

contrast to using only one raw ensemble member or the mean of the raw ensemble, but not 

necessarily the full input spectrum of a raw probabilistic model. 

The error reduction is first demonstrated for coastal complex topography in Croatia and 

then confirmed even for mountain complex topography in the alpine region. encouraging the 

implementation of the analog-based method in the operational suite of the Croatian 

Meteorological and Hydrological Service. Finally, several possible future research avenues 

are proposed as a continuation of this research, such as investigating the implementation for 

forecast fields or extremely high wind speed forecasts. 
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§ 7. LIST OF ABBREVIATIONS 

ABBREVIATION DESCRIPTION 

A2 
 - operational limited-area mesoscale ALADIN model at 2-km 

horizontal grid spacing 

A8 
 - operational limited-area mesoscale ALADIN model at 8-km 

horizontal grid spacing 

ALADIN 
 - Aire Limitée Adaptation sdynamique Développement InterNational 

model 

ALADIN-LAEF 
 - Aire Limitée Adaptation dynamique Développement InterNational 

model – Limited-Area Ensemble Forecasting 

AN  - analog ensemble mean forecast 

AnEn  - analog ensemble 

AnEnAll 
 - analog-based experiment that uses all ensemble members of all 

meteorological parameters as an input 

AnEnCtrl 
 - analog-based experiment that uses the ensemble control member of 

all available meteorological parameters from raw model as an input 

AnEnMem 

 - analog-based experiment that uses all available meteorological 

parameters corresponding to only one (distinguishable) raw model 

ensemble member 

AnEnMu 
 - analog-based experiment that uses the raw model ensemble mean of 

all available meteorological parameters  as an input 

AnEnStd 
 - analog-based experiment that uses the raw model ensemble mean and 

spread of all meteorological parameters as an input 

AnEnWs 
 - analog-based experiment that uses all wind speed raw forecast 

ensemble members as an input  

ANKF  - equivalent to KFAS forecast 

ANM  - analog ensemble median forecast 

ARPEGE  - Action de Recherche Petite Echelle Grande Echelle global model 

BS  - Brier score 



§ 7. List of abbreviations  

 100 

ABBREVIATION DESCRIPTION 

BSS  - Brier Skill Score  

CRPS  - continuous rank probability score 

CSI  - critical success index; equvalent to threat score 

DA  - operational ALADIN high-resolution dynamical adaptation model 

dd  - ALADIN-LAEF wind direction prediction 

DIU  - diurnal (motions) 

ECMWF  - European Centre for Medium-Range Weather Forecasts 

EDI  - extremal dependence index 

EMOS  - ensemble model output statistic 

EMOSstd 
 - EMOS experiment that uses all available training data and all 

variables including seasonal functions 

EMOSws 
 - EMOS experiment only using the last 30 days as training and only 

the wind speed as an input 

EPS  - Ensemble Prediction System 

F  - forecasts 

F  - false alarm rate 

FBias  - frequency bias 

H  - hit rate 

ISBA  - Interaction Soil Biosphere Atmosphere 

KF 
 - Kalman filter; Kalman filter forecast (applied to starting model time 

series) 

KFAN  - Kalman filter of the analog ensemble mean prediction 

KFAS  - Kalman filter in analog space prediction 

LAEFws  - ALADIN-LAEF ensemble wind speed predictions  

LAM  - limited-area model 

LTD  - longer than diurnal (motions) 

N  - number of ensemble members 

NOAA  - National Oceanic and Atmospheric Administration 

NWP   - numerical weather prediction 

O  - observations 
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ABBREVIATION DESCRIPTION 

p  - ALADIN-LAEF pressure prediction 

PCC  - polychoric correlation coefficient 

prec  - ALADIN-LAEF precipitation prediction 

PSD  - power spectral density 

RCC  - rank correlation coefficient  

REL  - reliability term in the Brier score decomposition 

RES  - resolution term in the Brier score decomposition 

rH  - ALADIN-LAEF relative humidity prediction 

RMSE  - root-mean-square error 

ROC  - relative operating characteristic 

SOI  - Southern Oscillation Index 

STD  - shorter than diurnal (motions) 

t2m  - ALADIN-LAEF temperature (2m) prediction 

UNC  - uncertainty term in the Brier score decomposition 

UTC  - coordinated universal time 

WMO  - World Meteorological Organization 

ws  - ALADIN-LAEF wind speed prediction 

WSPD  - wind speed prediction 

μ  - ensemble mean 

σ  - standard deviation 

. 
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§ 9. APPENDIX 

9.1. Appendix A – spectral analysis 

 

Fig. I. The power spectral density of the observed 10-m wind speed, starting model forecasts 

(A8, A2 and DA) and the corresponding post-processing methods (KF, AN, KFAN and 

KFAS) for stations Jasenice, Dubrovnik, Ogulin and Osijek during year 2012. The confidence 

intervals (in the logarithmic scale) are noted by the cross-like symbol in the upper right 

corner. 
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Fig. II. The power spectral density of the observed 10-m wind speed, starting model forecasts 

A8 and the corresponding post-processing methods (KF, AN, KFAN and KFAS) for 14 

stations in Croatia during year 2012. The confidence intervals (in the logarithmic scale) are 

noted by the cross-like symbol in the upper right corner. 
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Fig. III. The power spectral density of the observed 10-m wind speed, starting model forecasts 

A2 and the corresponding post-processing methods (KF, AN, KFAN and KFAS) for 14 

stations in Croatia during year 2012. The confidence intervals (in the logarithmic scale) are 

noted by the cross-like symbol in the upper right corner. 
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Fig. IV. The power spectral density of the observed 10-m wind speed, starting model forecasts 

DA and the corresponding post-processing methods (KF, AN, KFAN and KFAS) for 14 

stations in Croatia during year 2012. The confidence intervals (in the logarithmic scale) are 

noted by the cross-like symbol in the upper right corner. 
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9.2. Appendix B – spatial performance 

 

Fig. V. The spatial distribution of the monthly mean continuous rank probability score for the 

raw LAEFws, EMOSws and EMOSstd forecasts for January (left) and July (right) 2018.  

 

 

Fig. VI. The spatial distribution of the monthly mean continuous rank probability score for 

the AnEnStd and AnEnAll forecasts for January (left) and July (right) 2018.  
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Fig. VII. The spatial distribution of the monthly mean continuous rank probability score for 

the AnEnCtrl, AnEnMem, AnEnWs and AnEnMu forecasts for January (left) and July 

(right) 2018. 
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9.3. Appendix C – special diagrams 

 

  

  

Fig. VIII. Reliability diagrams (top) and relative operating characteristic (ROC) diagrams 

(bottom) for four different analog forecasts and a threshold of > 5 ms-1 during January (left) 

and July (right) 2018 at 29 stations in Austria. The dashed lines in the reliability diagrams 

show a 95% confidence interval, while the sharpness diagrams are shown in the upper left 

corners 
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Fig. IX. Rank histograms for the AnEnWs, AnEnCtrl, AnEnMu and AnEnMem forecasts 

during January (left) and July (right) 2018 at 29 stations in Austria. 

9.4. Appendix D – high wind speed predictions 

 

  

  

Fig. X. Brier skill score (top) and relative frequency (bottom) depending on a wind speed 

threshold. The analog probabilistic forecasts shown for January (left) and July (right) 2018 at 

29 stations in Austria. The markers are set for the BSS results significantly different from the 

AnEnWs forecast (95 % confidence level). 

 


