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Summary

In this thesis we study numerical methods for solving nonlinear eigenvalue problems of
polynomial type, i.e.P(I )x (3%, A)x= 0, whereA 2C" "1 2C,06 x2 C". In
particular, we are interested in the quadrattic (2) and the quartic= 4) eigenvalue problems.

The methods are based on the corresponding linearization — the nonlinear problem is replaced
with an equivalent linear problem of the typ& | B)y= 0, of dimensiorkn.

We propose several modi cations and improvements of the existing methods for both the
complete and partial solution; this results in new numerical algorithms that are a substantial
improvement over the existing ones. In particular, as an improvement of the state of the art
guadeig method of Hammarling, Munro and Tisseur, we develop a scheme to de ate all zero
and in nite eigenvalues before calling the QZ algorithm for the linear problem. This provides
numerically more robust procedure, which we illustrate by numerical examples. Further, we
supplement the parameter scaling (designed to equilibrate the norms of the coef cient matrices)
with a two—sided diagonal scaling to nearly equilibrate (in modulus) the nonzero matrix entries.
In addition, we analyze the ne details of the rank revealing factorization used in the de ation
process. We advocate to use complete pivoting in the QR factorization, and we also propose a
LU based approach, which is shown to be competitive, or even better than the one based on the
QR factorization. The new method is extended to the quartic problem.

For the partial quadratic eigenvalue problem (computing only a part of the spectrum), the ite-
rative Arnoldi—like methods are studied, especially the implicitly restarted two level orthogonal
Arnoldi algorithm (TOAR). We propose several improvements of the method. In particular, new
shift selection strategy is proposed for the implicit restart for the class of overdamped quadratic
eigenvalue problems. Also, we show the bene t of choosing the starting vector for TOAR, based
on spectral information of a nearby proportionally damped pencil. Finally, we provide some
new ideas for the development of a Krylov—Schur like methods that is capable of using arbitrary
polynomial Iters in the implicit restarting.

Keywords: polynomial eigenvalue problem, quadratic eigenvalue problem, quartic eigenva-

lue problem, projection method, Arnoldi like method, linearization, QZ, quadeig, de ation, rank
determination, normwise backward error, componentwise backward error, TOAR, SOAR
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ProSireni sa etak

Nelinearni problemi svojstvenih vrijednosti se javljaju u mnogim primjenama kako u pri-
rodnim znanostima, tako i u in enjerstvu. Jedna od najpoznatijih klasa nelinearnih svojstvenih
problema su polinomni svojstveni problemi. Tako se, na primjer, kvaufiagvvojstveni problem
(1 2M + | C+ K)x = 0 pojavljuje u dinamikoj analizi meharikih i elektricnih struktura, u
vibro—akustici, mehanici uida, obradi signala. S druge strane, polinomni se pratgémntog
reda(l A+ | 3B+ | 2C+ | D+ K)x= 0 pojavljuje u analizi stabilnosti Poiseuilleovog toka u
cijevi.

Za razliku od linearnih problema svojstvenih vrijednosti, nucieimetode za nelinearne
probleme jos uvijek nisu dovoljno razfane, niti numenki pouzdane, iako je algebarska teorija
za polinomne probleme svojstvenih vrijednosti dobro razvijena.

Naglasak ove disertacije je na nuno&om rjeSavanju kvadraiinog svojstvenog problema.

Cilj je razviti nove, robusnije numearke metode koje se mogu Koristiti u praksi kao pouzdan
numercki softver.

U disertaciji se proavaju dvije vrste metodadirektnei iterativne Direktne metode se
razvijaju za raunanje svih svojstvenih vrijednosti i odgovarGjusvojstvenih vektora zadanog
problema. Kada nas zanima samo dio spektra, recimo one svojstvene vrijednosti koje &ée najve
po modulu ili one koje se nalaze u lijevoj kompleksnoj poluravnini, tada korisitimo iterativhe
metode. Ovdje je nagZe slicaj da je dimenzija originalnog problema mnog@aed broja
svojstvenih vrijednosti koje elimo izi@unati. Ideja iterativnih metoda je konstruirati potprostor
mnogo manje dimenzije od originalnog problema koji sadr i informaciju o tra enom dijelu
spektra, a aproksimacija tra enog dijela spektra se ondaunakoristéi projekciju problema
na naleni potprostor.

Osnova véine metoda za rjeSavanje polinomnih svojstvenih problema je linearizacija, to jest
polinomni problem se zamijeni ekvivalentnim linearnim problemom koji se onda rjeSava koris-
teci veC razvijene metode za linearne probleme.dutm, naivno direktno koristenje linearnih
metoda ne garantira zadovoljavégurezultate za originalni probler@ak i ako izrgunati svojst-
veni par ima malu greSku unazad za odgovarajiinearizaciju, greSka unazad za rekonstruirani
svojstveni par originalnog problema mo e biti punccee

Prije razvijanja metoda, u Poglav(jli 2 je predstavljena analiza greSaka unazad za polinomni
svojstveni problem, bazirana na radu F. Tisseul [66]. Ideja analize greSaka unazad je da se
izracunate aproksimacije interpretiraju kao egzaktna rjeSenja problema koiji je blizu originalnom
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problemu, iciji matricni koe cijenti su de nirani kaoA: + DA pri cemu jeDA- malo. Malutim,

u mnogim primjenama matric® imaju odralenu strukturu, npr. hermitske su, ili anti hermitske.
Prema tome, bilo bi prirodno zahtjevati da greSka und&dcuva ovu strukturu. U skaju kad

je ta stuktura hermitska i anti hermitska, postojezultati za realne svojstvene vrijednosti su
proSireni na openite svojstvene vrijednosti.

U poglavlju[3 se procavaju direktne metode za rjeSavanje kvadraip svojstvenog pro-
blema. Standardni pristup je koriStenje QZ algoritma na odgoveogiunearizaciji. Mautim,
ako originalni problem ima svojstvene vrijednosti koje su nula ili besknoaovakav pristup je
sklon numertkim poteSk@éama. 2011. Hammarling, Munro i Tisseur [37] su razgiladeig
algoritam koji prije koriStenja QZ metode za linearni problem skalira originalni problem kako
bi norme matrgnih koe cijenata bile ujedneene te pokuSa detektirati postojanje svojstvenih
vrijednosti nula i beskor@no koje ona procesom de acije ukloni iz linearizacije.

De acija se temelji na odrédivanju ranga matricd i K. Kod quadeiga se koristi QR fak-
torizacija pivotiranjem stupaca. Korigfeortogonalne transformacije rank(M) beskonanih
i n rankK) svojstvenih vrijednosti nula je uklonjeno iz odgovakagdinearizacije. Glavni
doprinos ovog poglavlja je novi algoritam za nala enje svih svojstvenih vrijednosti kvadaati
problema kojeg zovemKVADeig Kao motivacija za potrebu poboljSamjaadeiga je predsta-
vljen primjer kod kojegquadeig nije uspio detektirati sve beskorr@e svojstvene vrijednosti.
Stovide, nakon 5to je uklonjen odien broj ovih svojstvenih vrijednosti, preostale mmaate
svojstvene vrijednosti koje su kocrae cak nemaju ni veliku apsolutnu vrijednost koja bi nas
mo da mogla nagnati na zakipak da bi one trebale biti proglasene beslkuma. Problem na-
stane kada postoji viSe od jednog Jordanovog bloka za svojstvene vrijednosti nula idrekona
Naime, de acija uquadeigu ukloni samo jedan Jordanov blok.

Kako bismo rijesili ovaj problem razvili smo test koji slu i za provjeru postoji li viSe od
jednog Jordanovog bloka za svojstvene vrijednosti nula i bekmmaOn je baziran na Van
Doorenovom algoritmu za odiieranje Kroneckerove strukture generaliziranog svojstvenog
problema. Dodatno se analizira utjecaj metoda koje se koriste kao faktorizacije davadje
ranga te utjecaj kriterija po kojem se rang aflige. Pored skaliranja koje je predlo eno u
gquadeigu uvodimo i dvostrano dijagonalno balansiraaigje cilj ujednacavanje elemenata u
matricama koje de niraju problem. Na kraju razvijamo metodu baziranu na LU faktorizaciji
potpunim pivotiranjem za oddévanje ranga. Numetki eksperimenti u Sekciji 37 ilustriraju
prednosti predlo ene metode.

U poglavlju[4 je razvijen novi algoritartK VARTeiga rieSavanje polinomnog svojstvenog
problema stupnjaetiri. Umjesto direktne linearizacije koristimo kvadrati kaciju koja je uve-
dena u[[17], tj. de niramo ekvivalentan kvadretii problem. Novi algoritam je baziran na
KVADeig, s tim da je skaliranje de nirano na matricama originalnog problema i proces de a-
cije je prilagaden tako da Sto viSe iskoristi strukturu originalnog problema. Kao i za kvadrati
problem, i ovdje je razvijen test za provjeru postojanja viSe od jednog Jordanovog bloka za
svojstvene vrijednosti nula i beskarr. Numereki primjeri u Sekciji4.5 prikazuju prednost
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nove metode naquadeigom i polyeig om koji je implementiran u MATLABuU.

U Poglavlju'$ se procavaju iterativne metode Arnoldijevog tipa za kvadratisvojstveni
problem. Bai i Sul[3] su prvi primijetili da je u st@ju iterativnin metoda Arnoldijevog tipa
bolje primijeniti Rayleigh—Ritzovu projekciju direktno na originalni kvadeatiproblem. U tu
svrhu su de nirani Krilovljev potprostor drugog reda i odgova@jalgoritam SOAR (Second
Order Arnoldi) za raunanje odgovarafie baze. Ovaj algoritam je dodatno modi ciran te je
razvijen takozvani TOAR (Two level orthogonal Arnoldi) algoritam|[49].

U ovom poglavlju predla emo nekoliko modi kacija implicitno restartanog TOAR algoritma
koje su temeljene neinjenici da algoritam koristimo za rjeSavanje kvadratig problema svo-
jstvenih vrijednosti. Pod implicitnim restartanjem se misli na koriStenje polinomih Itera kako
bi se de nirao novi paetni vektor koji uvelike utjee na konvergenciju metode. Za posebnu
klasu pregusenih problema svojstvenih vrijednosti predla emo nosinnde niranja polino-
mih ltera. Takoder, za openite probleme, predla emo novi izbor ggtnog vektora koji se
temelji na aproksimaciji kvadratinog svojstvenog problema problemaije je gusenje linearno.
Numericki primjeri pokazuju da predlo ene modi kacije rezultiraju manjim brojem restartanja
potrebnih za nala anje svojstvenih parova sa zadovolj@ajugreSkom unatrag.

U drugom dijelu Poglavlja]5 dajemo pregled implicitno restartanog Krylov—Schurovog al-
goritma kojeg je uveo Stewait [64]. Ideja ovog algoritma je da se de nira faktorizacija koja
ne zahtijeva posebnu strukturu kao Arnoldijeva, i na koguse lakSe primijeniti implicitno
restartanje. M@utim, prilikom ovakvog restartanja mogeije koristiti samo egzaktne pomake
za de niranje polinomnog Itera. Drmai Bujanovi su razvili metodu koja omo@ava koris-
tenje proizvoljnih pomaka kod implicitno restartanog Krylov—Schurovog algoritma. U ovom
poglavlju generalizairamo predlo eni proces u svrhu koristenja Krylov—Schurovog algoritma za
rjeSavanje kvadrathog svojstvenog problema.
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Introduction

Nonlinear eigenvalue problems arise in wide spectrum of applications in natural sciences
and engineering. In particular, the polynomial eigenvalue problem is to nd all complex scalars
| and nontrivial vectorsg such that

k

PI)x (& A)x=0;
=0

problem(l 2M + | C+ K)x = 0, which is in the focus of this thesis, is at the core of dynamic
analysis of mechanical and electrical structures, vibro-acoustics, computational uid mechanics,
signal processing; just to name a few. For an excellent review, we refer [67]. Another important
class of the polynomial eigenvalue problems that we consider is the quartic eigenvalue problem
(1 A+ 1 3B+ 1 °C+ | D+ K)x= 0. It appears, for example, in the analysis of the stability of
the plane Poiseuille ow in a channel.

Unlike the linear case (i.e. the linear eigenvalue probj@ém | B)x= 0), numerical methods
for the nonlinear problems are not at the satisfactory level with respect to numerical reliability
and robustness. Interestingly, the algebraic theory of the general polynomial eigenvalue problem
is well developed and the spectral canonical structur(bf) is well understood; yet, the
numerical methods, despite the importance of the problem in many engineering applications, are
not satisfactory. One of the main reasons is that the nonlinearity brings in many analytical and
numerical dif culties which in some situations can be classi ed as pathological. For instance,
some eigenvalues can be in nite.

The main focus of the thesis is numerical solution of the quadratic eigenvalue problem; our
goal is to contribute with development of new, better robust numerical methods that can be
implemented as reliable mathematical/numerical software and used in applications.

We consider the two main classes of problems and the corresponding solution methods. The
so calleddirect methodsire designed to compute all eigenvalues and the corresponding eigen-
vectors, and are usually deployed for small to moderate dimengsio@ the other hand, in
some applications, only certain eigenvalues of particular interest are needed e.g. in an engi-
neering design. For instance, eigenvalues in the left half plane close to the imaginary axis are
important for studying the stability of the underlying dynamical system; or, the eigenvalues in
some givenV. C might be requested. In such applications, the coef cient matrices originate

1



Introduction

from a discretization process (e.g. by nite elements) and are usually of large dimension (e.g.
n> 10%10° or higher) and sparse (only small number of entries are nonzero) and structured.
The idea of the so callaetkrative methodss to, iteratively, construct a subspace (of dimension
much smaller than the original dimensiopsuch that the requested spectral information can be
extracted from the problem projected onto that subspace.

In the kernel of most of these methods is the linearization, i.e., the polynomial eigenvalue
problem is replaced with an equivalent linear eigenvalue problem, which is then solved using the
well developed techniques for linear problems. For example, one linearization for the quadratic
eigenvalue problerfl M+ | C+ K)x= 0is

[ [ [
c 1 M O

Ay | By K 0 y | 0 | y= 0; wherey= y
Unfortunately, this elegant algebraic manipulation cannot be so simply turned into a robust
numerical method. The nite arithmetic rounding errors and the truncation of the necessarily
in nite iteration process when solving the linear problem create the backward &#oiMiSB
such thakDAk=kAk andkDBk=kBk are small, but this backward stability does not extend to the
original problem, i.e., we cannot in general claim that the approximate solution corresponds to
slightly backward perturbed original matrickls C andK. Hence, for both the direct and the
iterative methods, careful modi cations are necessary.

The thesis is structured as follows:

Chaptef 1L contains preliminaries. It provides an algebraic setting of the polynomial eigenva-
lue problem, including the theory of canonical forms of matrix polynomials, which will be used
in the developments of numerical methods. In addition, we provide brief illustrations of two
selected applications of the quadratic eigenvalue problem, and one of the quartic eigenvalue pro-
blem. We also present the theory of the linearization of matrix polynomials, which is essential
for the development of numerical methods.

In Chaptef R we present elements of backward error analysis of the polynomial eigenvalue
problem. It is based on the work of F. Tisseur|[66]. Backward error analysis is fundamental
in assessing the quality of the computed approximations and it provides means for a posteriori
estimation of the accuracy of the computed eigenvalues and eigenvectors. It is the backward
error analysis that guides in removing the discrepancy between the backward stability of the
auxiliary linear and the original quadratic problem. In particular, it shows that the norms of
the coef cient matrice#\ should be balanced, which is then achieved by a parameter scaling.
The idea of backward error analysis is to interpret the computed (approximate) result as the
exact result of a nearby problem, de ned with the coef cient matriées DA, with small
DA-. However, in many applications the matrickshave an additional structure, e.g., they
are Hermitian or skew—Hermitian. Hence, for proper use of backward error, it is desirable to
establish the existence of the optimal (smallest is some well de ned sense) backwardérrors
that preserve the structure. In Secfior] 2.2 we extend the existing results for only real eigenvalues
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to the general case of any nite eigenvalues, when the required structure is the hermiticity or
the skew—hermiticity. In addition, we provide new insights in the component-wise measured
backward error.

In Chapteﬁ% we study the complete solution of quadratic eigenvalue prgblévh+ | C+
K)x = 0 by direct methods. The standard approach is to linearize it and then use the QZ
algorithm for the corresponding generalized (linear) eigenvalue problem. This procedure is
known to be prone to numerical dif culties in presence of zero and in nite eigenvalues. In
2011., Hammarling, Munro and Tisselr [37] proposedgbhadeig algorithm that substantially
alleviated these problems by careful preprocessing. Before calling the QZ algayithdeig
deploys parameter scaling to equilibrate the norms of the coef cient matrices, and then attempts
to detect and de ate the zero and the in nite eigenvalues from the linearized problem.

The de ation process relies on rank determination of the coef cient matiteandK, and
guadeig uses the (rank revealing) QR factorization with column pivoting. Using the orthogonal
equivalence transformation on the linearization, rankM) in nite and n rankK) zero
eigenvalues are removed from the linearized pencil. The remaining eigenvalues are computed
using the QZ algorithm. In Chaptef 3 we analyze the numerical properties qtitiueig in
more details. We present the backward error analysis of the de ation process in the case of only
one singular matrixM or K. The main contribution of this Chapter is the new algorithm for
the complete solution of the quadratic eigenvalue problem, which we designakatAixeig
To illustrate the need for improvements, we use numerical case study examplesjwheesy
fails to nd all in nite eigenvalues; moreover, the eigenvalues that are computed instead of
in nities are nite and they may not be of large absolute values to even indicate that they may
correspond to in nities. This often poses dif culties in applications, because those eigenvalues
cannot be interpreted in a physically meaningful way. A closer analysis reveals that the problem
is when the in nite eigenvalues are carried in several Jordan blocks (in the canonical structure),
andquadeig is capable of de ating only one of them.

To solve this problem, we have developed a test for the existence of Jordan blocks for zero
and in nite eigenvalues, and we have developed a new algorithm for the de ation of all zero and
in nite eigenvalues. It is based on Van Dooren's algorithm for the Kronecker canonical form
of the generalized eigenvalue problem. Further, we analyze the in uence of the rank revealing
factorization, and rank determination (truncation) criteria used to determine the numerical ranks
of M andK. Here we show some weaknesses in the rank determinationgu#ueig algorithm.
Furthermore, we advocate to equip the column pivoted rank revealing QR factorizations with
row sorting in the y norm (the Powell-Reid and Bj6rck pivoting). Also, in addition to parameter
scaling as iquadeig, we introduce a two—sided diagonal scaling that (nearly) equilibrates the
matrix entries; this proves to be a very powerful technique both for theoretical estimate and
the practical computation. And nally, we develop a rank-revealing LU analogue of the QR
approach. It may seem surprising at rst, but the LU approach, when properly implemented, can
outperform the QR based preprocessing and can even be recommended as a method of choice.

3
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Numerical experiments in Sectipn B.7 demonstrate the power of the newly proposed method.

In Chaptef #, we develop a new algorithm, designatdt\éSRTeigfor the complete solution
of the quartic eigenvalue probleth*A+ 1 3B+ 1 2C+ | D+ K)x= 0. Instead of the direct
linearization, we rst use the so called quadrati cation introduced as an algebraic toolin [17],
i.e., we de ne an equivalent quadratic eigenvalue problem. The new algorithm is based on
KVADeig wherein the scaling is done on the original matrices, and the de ation process is
modi ed so that the structure of the original problem is exploited as long as possible in the
process. As in Chaptéf 3, we provide a test for the existence of Jordan blocks for zero and
in nite eigenvalues in terms of the original matrix coef cients. Our numerical examples in
Section 4.b show that the new algorithm outperfoomadeig and thepolyeig function in
MATLAB.

In Chaptef b, we investigate computation of only a selected part of the spectrum of the
guadratic eigenvalue problem, using Arnoldi-like methods. Bai and|Su [3] were the rst who
realized that in the case of iterative Arnoldi-type methods, it would be advantageous to apply the
Rayleigh-Ritz projection directly to the initial quadratic problem, instead of to the linearization.
To that end, they introduced second order Krylov subspaces, and the corresponding second order
Arnoldi procedure for generating orthonormal bases. The resulting method, called Second Order
Arnoldi (SOAR), is further modi ed yielding TOAR (Lu, Su and Bai [49]).

Here we propose several modi cations of the Implicitly restarted TOAR algorithm [49],
which uses the fact that the linear problem is a linearization of the quadratic eigenvalue problem.
Implicit restarting refers to an application of a polynomial Iter (implicitly through QR iterati-
ons), designed to purge the initial vector from the directions of the unwanted eigenvalues. This
is a nontrivial issue as two eigenvalues (e.g., one wanted and one unwanted) may share the same
eigenvector. Selecting good shifts to de ne a good lter is also more complex. We devise a
new selecting strategy of shifts for one particular class — the overdamped quadratic eigenvalue
problems. Here we deploy polynomials in tropical algebra.

It is known that the quality of the approximation for eigenpair produced by the Arnoldi
algorithm depends on the starting vector. In this chapter we propose a new procedure for
picking the starting vector based on the approximation of the original quadratic problem with the
proportionally damped one, which can be reduced to the linear eigenvalue problem. Numerical
examples in Subsectipn 5.6.1 illustrate that this new choice of the starting vector, together with
other modi cations of implicitly restarted TOAR, results with a smaller number of the restarts.

In the second part of Chaptef 5 we introduce the Krylov—Schur algorithm developed by
Stewart in [64]. Here, restrictions on the structure of the factorization from the Arnoldi de-
composition are removed resulting in a more elegant restarting procedure. However, during the
implicit restart only exact shifts can be used. This was improved by Bujaremd Drma in
[11]. They proposed thdR procedure for applying arbitrary shifts in the implicit restart of the
Krylov—Schur algorithm.

The standard Krylov—Schur algorithm can be used for the quadratic eigenvalue problem
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so that the TOAR procedure is used to compute the starting decomposition. This method is
implemented in[[14]. Again, only exact shifts can be used in the implicit restart. In order to use
the shifts proposed for the overdamped problems, and to use any other shifts in the restart we
extend thelR procedure for the Krylov—Schur algorithm used as a quadratic eigenvalue problem
solver. The numerical example at the end of the Chapter demonstrates the importance of the
possibility to choose the arbitrary shifts.

The parts of this thesis were presented at the following scienti ¢ meetingth &roatian
Mathematical CongresZagreb, Croatia (the talk "Second Order Krylov Schur Algorithm with
Arbitrary Filter"), atEuropean School on Mathematical Modelling, Numerical Analysis and
Scienti c Computing Kacov, Czech Republic (the talk "On Improved Implicit Restarting of
Arnoldi Methods for Quadratic Eigenvalue Problem", results from Chapter &)texhational
Workshop on Optimal Control of Dynamical Systems and Applicati@sgek, Croatia (the
talk "On Implicit Restarting Of Second Order Arnoldi Procedure For Quadratic Eigenvalue
Problem”, results from Chaptef 5), @th IMA Conference on Numerical Linear Algebra and
Optimization Birmingham, United Kingdom (the talk "On De ation Process and Solving the
Quadratic Eigenvalue Problems”, results form Chggter 3), aNih#t Conference on Applied
Mathematics and Scienti c Computingibenik, Croatia (the talk "An Algorithm for the Solution
of Quartic Eigenvalue Problems", results from Chapter 4).
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Chapter 1
The Polynomial Eigenvalue Problem

This chapter provides de nitions and a selection of theory and results for polynomial eigen-
value problem needed in the development of the results in the remaining chapters.

1.1 Problem setting

In this section we de ne the polynomial eigenvalue problem and introduce the two canonical
forms for matrix polynomials, namely the Smith form, and the Jordan form. These forms wiill
be used for developing algorithms in Chapiégrs 3[a@nd 4. In addition, we present the notion of
invariant pairs, which is an analogue of invariant subspaces in the linear case.

Polynomial eigenvalue problem. LetP(l ) be a matrix polynomial of degrde

P(l )= ékA\I K (1.1)
=0
whereA 2 C" ", " = 0;:::;k, andA¢ 6 0. P(l ) is often called -matrix. The matrix polynomial
(1.7) is said to beegularif detP(l ) is not identically zero for all values éf, andnonregular
otherwise.
A scalarl 2 C is called aneigenvalueof the matrix polynomial if there exists a vector
x2 C"nf0g so that
P(l )x= 0: (1.2)

In this casex is called aright eigenvector(or just an eigenvector). A vectgr2 C"nf0g is
called aleft eigenvectoif
y P(l)=0: (1.3)

We refer to(x;| ) as areigenpair and(x;y;| ) as areigentriple
Equivalently,| is said to be an eigenvalue of the matrix polynoniaf it is a zero of
detP(l ). SincedetP(l ) = detAl K"+ lower order powers of , we conclude that, if the coef-
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cient matrix Ay is regular, the number of eigenvalues for matrix polynomial of okdierkn.
Therefore, the set of eigenvectors cannot be linearly independent, and it is possible for different
eigenvalues to share the same eigenvector.

Example 1.1. Consider the quadratic eigenvalue problem

! ! )
10 50 3 1
| )x | 2 + 1 + x= 0
) 1 0 5 1 3
The eigenvalues are the zeros of the polynomial
detQ(l )=(12+5 +3)%> 1=0;
_ P P _ T
thatis 1; 4;,—>17; > 17 Figenvalues 1and 4 share the eigenvectol 1 , and

T

P P
>t 17 and—=17 have the same eigenvectot 1

In addition, if the leading coef cient matrid is singular, the degreeof the polynomial
detP(l ) is smaller tharknand there are nite and kn r in nite eigenvalues. In nite eigenva-
lues are de ned as the zero eigenvalues of the so cadeetsalproblem

k
revP(l )= | k(1= )= & | A - (1.4)
4

Example 1.2. Consider the quadratic eigenvalue problem

! ! )
, 10 30 2 0
I + | +

Ul )x= 0 0 1 0 3

The degree of the polynomial dgfl ) is 3
detQ(1 )=12 6l 2+ 11 6

meaning that there is one in nite eigenvalue, and the remaining nite eigenvaludszead3.
The reversed problem is

! ! N
2 0 30 10
me +m + x= 0
0 3 0O 1 00

revQ(l )x
wherem= 1= . The eigenvalues are the zeros of the polynomial
det(revQ(l ))= 6l 4+ 113 6l 2+1 ;

that is Q1;1=2;1=3.

8
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The algebraic multiplicity of an eigenvalué is the order of the corresponding zero in
detP(l ). The geometric multiplicityof | is the dimension of the nullspaderP(l ). An
eigenvalud is simpleif its algebraic and geometric multiplicity are equal to 1. An eigenvalue
| is semisimpléf its algebraic and geometric multiplicities coincide.

We will sometimes use the so calladmogeneous forof the polynomial eigenvalue pro-
blem )

P(a;b)= § a b A: (1.5)
=0
Here,l is identi ed with any pair(a;b) 6 ( 0;0) for whichl = a=b. The homogeneous form
is useful because all eigenvalues, including in nity, are treated the same way. It is used in
papers|[42], [43] which consider backward errors and conditioning of linearizations of matrix
polynomials. Analogously, we de ne homogeneous generalized (linear) eigenvalue problem

L(a;b)= bA aB: (1.6)

1.2 Canonical forms of matrix polynomials

The goal of this section is to describe Jordan structure of matrix polynomials. This is a
generalization of the Jordan normal form for single matrix, and it is more complicated.

1.2.1 Jordan normal form of matrix

The Jordan normal form of a single matrix provides canonical structure that reveals complete
spectral information; in the simplest case of diagonalizable matrix, the Jordan form is simply a
diagonal matrix with the eigenvalues along the diagonal. If the matrix is not diagonalizable, the
structure is more complex. We brie y review the key details.

For every integef and each eigenvalug of a matrixA2 C" ", it holds thatKer(A
1i1) *1  Ker(A 1;l), and since we are dealing with nite dimensional space, there exists the
smallest; such that

Ker(A 1) *1=Ker(A 1i1)7;

and Ke(A 1l) = Ker(A 1l)iforall” ;. Theinteger; is called theéndexof | ;.

Denote withM; = Ker(A 1 1) i which is invariant subspace fé;, and letm = dim(M;).

In each invariant subspaté there arggy  m; independent eigenvectors which can be completed
to form a basis by adding the elementef(A 11)%, Ker(A 1;1)3, and so on. The process
goes as follows:

« for each eigenvectar2 Ker(A |il),denez sothat(A Iil)zz=u

e until it is possible, computg+; as(A |il)z+1= 7.
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The vectorsz; 2 Ker(A | 1)'*1 are calledprincipal vectors There are at most principal
vectors for each of thg eigenvectors associated with the eigenvéalue

Finally, we can represent the matdxwith the respect to the basis made up of fheases
of invariant subspacdd;

X IAX=J= diag(Jy; Jo; 1115 dp)s (1.7)

where eacly; corresponds to the subspddeassociated with the eigenvallg J; is of orderm
with following structure

0 1
i 1

J = diag(Ji1; Jio; 1215 Jig); Jnﬁ% | 1§2 (1.8)
'

EachJy corresponds to a different eigenvector of the eigenvaluy@and its size is equal to
the number of the principal vectors for the corresponding eigenvector. Previous reasoning is
summed up in the following theorem.

Theorem 1.1([60]). Any matrix A can be reduced to a block diagonal matrix consisting of
diagonal blocks, each associated with a distinct eigenvalue. Each diagonal bhlbak itself

a block diagonal structure consisting gfsubblocks, wherg is the geometric multiplicity of

the eigenvalué;. Each of the subblocks, referred to as a Jordan block, is an upper bidiagonal
matrix of size not exceeding with the constanit; on the diagonal and the constant one on the
super diagonal.

Notice that, sincé andJ are similar, their characteristic polynomials are the same, and thus
the algebraic multiplicity of the eigenvallig is the same, i.e., the algebraic multiplicitylqfis
equal tom.

From all this we see that the Jordan form is very useful because it completely determines the
structure of the eigenvalues of matAx However, the computation of it is numerically unstable.
This is why the Schur form is used in numerical computation, because unitary iQasriused
instead of regulaK which can be ill conditioned. However, the form is no longer compact. The
following theorem gives existence of the Schur form.

Theorem 1.2.For any given matriA2 C" "there exists a unitary matri® such thaQ AQ= R
is upper triangular.

The Jordan structure for matrix polynomials provides the complete information about the
structure of the eigenvalues. The main term we will de ne is Jordan pair. The rst step is the
de nition of canonical Jordan chains, which are something like a basis in nite dimensional
linear space [32]. The path of de ning the Jordan pair is presented in Higure 1.1, therefore we
start by de ning the Smith form of.

10
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(The Smith Form

Elementary
Divisors

Partial Mul-
tiplicities

: Canonical -
[Root Polynomla]—{ Jordan ChainH Jordan Pair |

Figure 1.1: Diagram for de ning the Jordan pair

1.2.2 The Smith form

The main result describing the Smith form is given in a more general form, meaning that it
holds for matrix polynomial® (I ) = é'fzoA~I ", whereA 2 C™ " are rectangular matrices:

Theorem 1.3([32]). Every m n matrix polynomiaP (I ) admits the representation
P (l)=EW)DI)FU); (1.9)

where 0 1
dy(l) 0

D(l ) = d() 5 (1.10)

0 0

is a diagonal polynomial matrix with monic scalar polynomidld ) such thaui(l ) is divisible
byd 1(1 ); E(I ) andF(l ) are matrix polynomials of sizes mandn nrespectively, with
constant nonzero determinants.

Representatior (1.9) is calléde Smith form of the matrix polynomial (I ). Sometimes,
the matrixD(l ) itself, given by [(1.1D), is also called the Smith form. The matrix polynomials
E(l ) andF(l ) are not unique. Howeve(l ) is unique, and its diagonal polynomials can be
expressed in terms &f (I ) as stated in the following theorem:

Theorem 1.4([32]). LetP (I ) be anm n matrix polynomial. Letpk(l ) be the greatest
common divisor (with leading coef cient 1) of the minordo{| ) of orderk, if not all of them
are zeros, and lepi(l ) 0 if all minors of orderk of P (I ) are zeros. Lepo(l )= 1 and

11
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integer such that g1 ) 6 0, and

pcl) .
di(l )= =120 1.11
Invariant polynomials and Elementary Divisors. The diagonal element(l ), :::;di (1)

in (1.10) are callednvariant polynomialsf P (I ). SincerankP (I ) = rankD(l ) for every
| 2 C,andrankD(l )= rif | isnotazero of one of the invariant polynomials, aadkD(l ) < r
otherwise, we conclude that
r = maxrankP (I ):
I 2C

If we represent each invariant polynomial as the product of factors

d(l)=(1 T D) i= 5200

factors(l 1), j= 1;::5;ki, i = 1;:::;r are called theelementary divisorsf P (I ). An
elementary divisor is said to b@ear if ajj = 1, andnonlinearotherwise.

These characteristics will be important for developing the theory of Jordan structure. For better
understanding of these concepts, let us present a simple example:

Example 1.3([32]). Let [
(I 1) 1

PO= e g

The proof of theorern 1.3 describes the computation of the Smith form. However, we will not

discuss the process here, but only state the nal solution
!
1 0

p= " 120 1)2

(1.12)

From (1.12) we read the elementary divisors and(I ~ 1)2.

Local Smith Form and Partial Multiplicities. We now return to consideration of matrix
polynomial with square matrix coef cients (1.1).detP(I ) 6 O, that is, ifP is regular, the next
theorem describes the local Smith form:

Theorem 1.5([32]). LetP(l ) be andn nmatrix polynomial witrdetP(l ) 6 0. Then for every
| 02 C, P(I ) admits the representation
0

(
P )= E,0) 5

1
| gk 0
§F|0(| ); (1.13)
0 (I Tk

12
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whereg,; (I ) andR (I ) are matrix polynomials invertible dtp, andk;  :::  kp are nonne-
gative integers, which coincide (after removing zeros) with degrees of the elementary divisors of
P(l ) corresponding td ¢ (i.e., of the form(I 1 o)"). ki= 0,i= 1;:::;nif | ¢ is not a root of

an invariant polynomial of B ).

The integerk; ::: Kk are calledpartial multiplicities of P(l ), and they are uniquely
determined byP(l ) andl o. The representatiop (1./13) is called theal Smith Formof P(l ) at
| 0.

ConsiderP(l ) from Examplg 1.3. The partial multiplicities of eigenvalues 0 and 1 are
k1= 0;ko = 2, and the partial multiplicities dfy 62 0; 1g are zeros.

Equivalence of Matrix Polynomials. Two matrix polynomial€P(l ) andR(l ) of the same
size are calle@quivalentwe writeP(l ) R(I )) if

P(I')= E( )R(I)F( ); (1.14)

for some matrix polynomialg(l ) andF (I ) with constant nonzero determinants. This relation
is indeed an equivalence relation. The important property of equivalent matrix polynomials is
given in the following theorem

Theorem 1.6([32]). P(I ) R(l ) if and only if the invariant polynomials &¥(l ) andR(I )
are the same.

1.2.3 Jordan chains

We will de ne a Jordan chain for matrix polynomial which is a generalization of a Jordan
chain for a square matrix.

As a motivation for the de nition, consider the matrix polynomi{l ) = é!‘:OA«I ", and
the associated homogeneous differential equation

& d
=0

whereu(t) is ann-dimensional vector valued function. Suppose that we seek the solution of

(1.15) in the form
tm 1

b Xq+ i+ | ot 1.16
m 1)!X1 Xm € °t; (1.16)

tm
HXO

u(t) = p(t)e o =

where p(t) is ann-dimensional vector valued polynomial inl ¢ is a complex number, and
Xj 2 C", xo 6 0. Now, the following proposition holds

13
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Proposition 1.1([32]). The vector functiom(t) given by[(1.16) is a solution of equatidn (1.15)
if and only if the following equation holds:

i
o 1 -
a =PPUox p=0; i=01::;m (1.17)

P(P)(I ) in (1.17) denotes the pth derivative of P with respedt to

a Jordan chain of lengtm+ 1 for P(l ), corresponding to the complex numbey P(P(l )
in (1.17) denotes theth derivative ofP with respect td . Its leading vectoxy 6 0 is an
eigenvectarand the subsequent vectogs: : : ; Xy are calledgeneralized eigenvectars

It is important to notice that the vectors in a Jordan chain for the polyndpiaf order
higher than one, need not be linearly independent. Indeed, the zero vector can be a generalized
eigenvector as well. Examgle 1.4 illustrates this phenomena.

It is useful to note that the solutions of the linear system

10 1
P(l o) 0 0 X0
% Mo Plo) 0 E%xlg o
P (o) (—11)!P(‘ D(l o) P(I o) X

ding tol o.
The next proposition gives another way of writing a Jordan chain.

P(l ) of order k corresponding tbg if and only if % 6 0 and
AoXo+ ArXodo+ @1+ AXoJS = O; (1.18)
whereXp= xp ::: x 1 Iisann ~ matrix, andJ)y is the Jordan block of size kwith| g

on the main diagonal.

Root Polynomials and Canonical set of Jordan Chains. An n-dimensional vector polyno-
mialj (I ), such thaj (I o) & 0 andP(l o)j (I o) = 0, is called aroot polynomialof P(l ) cor-
responding td o. The multiplicity of the zerd o of P(l )j (I ) is called theorder of the root
polynomialj (I ).

Root polynomials are a tool for constructing the canonical set of Jordan chains:

1. Letj (1 )= é'j‘iol(l | 0)}j 1j be a root polynomial with the largest order.

14
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2. Letj o(l )= é'j‘i Ol(l | 0)Jj 2j be aroot polynomial with the largest order among all the
root polynomials whose eigenvector is not a scalar multiple;ef

3.0fj (I );::;) s 1(1 ) are already chosen,; = é‘j(izol(l 1 0)Jj ij, 1= 158 1, let
js(l)= é'j‘iol(l | 0)1j sj be a root polynomial with the largest ordeyamong all the

root polynomials whose eigenvectors are not in the span of the eigenvegiors;j s 1.o.

4. We continue this process until the setrP(l o) of all eigenvectors oP(l ) corresponding
tol o is exhausted. This means that we will construstdimkerP(l o) root polynomials
by this procedure.

Now, the Jordan chains

51k 1 (1.19)

are called theanonical sebf Jordan chains foP(l ) corresponding tb .

Example 1.4([32]). Let
!
120 1(12+1) 13 1
piy= |0 DOZFD 1%
1 2(1  1)? |31 1)?
The determinant isletP(l ) = | /(I 1), meaning that the eigenvalues &rand1. We will
compute the Jordan chain for the eigenvalue 0. Let us write the derivatives
I !

Bx* A3+ 3% 2x  X(4x 3 24(5x 1) 24

P4l )= : P(|V)| = :
1) 2X(2x% 3x+1) x3(5x% 8x+ 3) ' ) 24 245« 2)
; , ! !

POP| ) = 20x° 12+ 6x 2 ex(2x 1) PV ) = 120 O :
2(6x%  6x+ 1) 20x(10x2I 12x+ 3) 0 120
2 2ax+ 24x '

PO ) = 60x X+ 6 6

24x 12 60¢¢ 48x+ 6

SincePY0) = 0, we have thaP{0)xo+ P(0)x1 = O for all xp;x; 2 C? with xg 6 O, thus any
combinationxg; X, forms a Jordan chain. Denote the elements of the vecasx;q; Xj>. Now,
I I

1 10 '
~PR0)xo+ PYO)x; + P(O)x, = oo
implies thatp; = 0. The next equation
!
1 1 X
P00+ o PR+ PR+ POxe= 22 M =0
3' 2| X02+ X11

15
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implies thatx;1 = Xg2. Similarly,
I

1 1 1 X12 Xo1
41 3! 2! Xqp+ Xo1

implies thatxo1 = X12. From the last equation

PV O+ PN+ PO+ 2 PRO)xs+ PO+ P(0)xs = O

it is obvious thatxs; X5 can be any two vectors. To conclude, our Jordan chain is of the form
! ! ! ! !
0O . X2 . X2 | X;1 | X1

X02 X12 X22 X32 X42

whereXop; X12; X22; X31; X32; X41; Xa2 are arbitrary complex numbers.
Now, to determine the canonical set of Jordan chains, we recall that#0 the order of the root

to be ! ! ! ! !

Forj »j, j = 0;1 we can choose | |

Some of the useful properties of the canonical set of Jordan chains (proved in [32]) are:

* not unique,

Jordan pair.  Let (1.19) be the canonical Jordan chairP¢f ) corresponding to the eigenvalue
| o, and write it in the matrix form

XUo)= 10 i Jake 1 120 50 Jake 1 330 dro i odrk 1 2RTK
J(1 o) = diag(J1;Jo;::0 %) 2 RK k.
whereJ; is the Jordan block of sizle; with the eigenvalué o, andk = éﬁzlk,—. The pair of

matrices(X(l o);J(l o)) is calledJordan pairof P(l ) corresponding tbo. The characterisation
of Jordan pair is given by the next theorem
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Theorem 1.7([32]). Let (R;$ be a pair of matrices, wher® is ann  p matrix and®is a
p pJordan matrix with unique eigenvalug. Then the following conditions are necessary
and suf cient in order tha{R; $ be a Jordan pair of B ) = é'fzol "A corresponding td o

() detP(l ) has a zerd o of multiplicity p,

Okl

" %kbg
(i) rank : = p,

RIK
(i) AR+ A 1 RE 1+ 04+ AR = 0.

Let p be the number of different eigenvaluesR§f ), and take the corresponding Jordan pair
(X(l j);3(1 ) for every eigenvaluéj of P(l ). The nite Jordan pair (Xr;Jr) of P(l ) is

Xk X(h1) X(2) 0 X(p) ;
I = diagd(l 1): (1 5):

(1.20)

|

=
QD

K
(&
=

AN
N—r
[
=

N
N—r
[
=

o
N—’
~

Some useful facts about nite Jordan pair are:
e Xp 2 R" ™3 2 R" " wheren = degdeP(l )
* (XF;Jr) is not determined uniquely
 (Xe:Jr) does not determinB(l ) uniquely.

Because of the last fact, we need to de ne Jordan pair for in nite eigenvalue. This Jordan pair is
de ned as the Jordan pair for the reversed matrix polynonesaP(l )= | kP(I 1) ateigenvalue
zero. Denote

X¢= Y10 5 Yus 1 Y20 i Yag 1 i Yo D Ygg G (1.21)

whereJy j is the Jordan block of sizg with eigenvalue zero. The paiKy; Jy) is calledin nite
Jordan pairof P(l ). The characterisation is given in the following theorem.

Theorem 1.8([32]). Let(R; ¥ be a pair of matrices, whetRisn pand®isap pJordan
matrix with unique eigenvaluey = 0. Then the following conditions are necessary and suf cient
in order that(R; $ be an in nite Jordan pair of B ) = &1 'A:

(i) de(l kP(I 1)) has a zero at ¢ = 0 of multiplicity p,

17
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Okl

" %kbg
(i) rank : = p,

RIK
(i) AgRE+ A RIK 1+ i+ AR= 0.

1.2.4 Invariant Pairs

For given matrix polynomialP(l ), apair(X;9 2 C"  C" s calledinvariantif
P(X;9) 1= AgX + AiXSH+ ApX S+ 111+ AXS = 0 (1.22)

The de nition of invariant pair is independent of the choice of the basixXfowhen working

with matrix polynomials we cannot de ne invariant subspace in the same way it was de ned
for the single matrix because the set of all eigenvectors of matrix polynomials is not linearly
independent. Hence, given a full rank matkxhat is know to be a part of invariant pair for
some matrix polynomiaP may not uniquely determine the mat®such that equation (1.P2)
holds. This is why we work with pairs instead of single matrices.

Simple Invariant Pair. In order to allow rank de ciencies in he matriX of an invariant
pair (X;S), Betcke and Kressner, in|[6], introduced the notion of minimality. Namely, a pair
(X;92C" C" issaid to baninimalif there existan2 N such that

0 1
xgn

Vin(X;9) = %} XS E (1.23)

X

has full column rank. The smallest suetis calledminimality indexof (X;S).

They showed that it is always possible to extract the minimal pair from an invariant pair, thus it
is enough to work with minimal pairs.

As generalization of simple eigenvalug, [6] de netinple invariant pairdX;S) as invariant
pairs which are minimal and the algebraic multiplicities of the eigenvalu&saoé identical to

the algebraic multiplicities of the corresponding eigenvalud?. of

Perturbation theory. Here we present the rst order perturbation theory developed|in [6].
The objective is to study the change of invariant §2irS under the small perturbations of the
coef cient matrices of the polynomial

(P+ DP)(1 )= ( Ao+ Eg)+ | (Ar+ Ep)+ i+ | KA+ EY); (1.24)
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P:C" C ! C":

1.25
(X;9 7! AgX + AgXS+ 1+ AXSS (1.25)

By (1.23), a simple invariant pair satis €XX;S) = 0. To this, we add "normalization condition”,
W Vn(X; S = |, wheremis not smaller than the minimality index ¢X; S) and the columns of
W form an orthonormal basis sparfVin(X;S). Now, we can formulate the problem as nding
the pair(X; § such that

(P+DP)(X;9 =0, W Vn(X;§ 1=0; (1.26)
whereP+ DP is de ned as in[(1.25), but with perturbed coef cients.

The rst order sensitivity of X; S) under the perturbation is given in the following theorem.

Theorem 1.9([6]). Let(X;S) be a simple invariant pair for a regular matrix polynomial For
suf ciently smallkDPk := k(Ep; E1; :::; Ex)kr the perturbed polynomid?+ DP has a simple
invariant pair (X; § satisfying

(%;9=(X;9 (I Pro) L YDP(X;9;0)+ O(kDPk?); (1.27)

whereProj is the orthogonal projector onto the tangent spdgegM = f(XM;SM  MS) :
M2C gand

L:c" c 1 c" Cc

(1.28)
(DX;D9) 7! (Lp(DX;DS);Ly(DX;DS));
k .
Lp: (DX;D9 7! P(DX;9+ § AXDS(DS); (1.29)
=1
Lv : (DX;D9) 7t W§'DX+ § W}(DXS + XDS'DS); (1.30)
j=1
. v
DS :DS7! § SDSS ' L (1.31)

i=0

Here M = f(XT;T 1ST): T2 CK Kinvertibleg C" k CX Kisa manifold of invariant
pairs generated b{X;S). Since we are evaluating the sensitivity (&f; S under perturbati-
ons, the components of the error te(#; ) (X;9 that are contained iM are neglected,
and this is achieved by projecting out the components d{DP(X; S); 0) contained iMx.gM .
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1.3 Applications of polynomial eigenvalue problem

The polynomial eigenvalue problem arises in a variety of applications in natural sciences
and engineering. The most common is the quadratic eigenvalue problem which appears in vibra-
tion analysis of mechanical systems, acoustics, uid mechanics, and more. Moreover, quartic
eigenvalue problem occurs in calibration of the central catadioptric vision system and spatial
stability analysis of the Orr Sommerfeld equation. In this section we present two applications of
the quadratic eigenvalue problem, which is the main focus of the thesis, and one application of
the quartic eigenvalue problem.

1.3.1 Disk brake squeal

The quadratic eigenvalue problem arises in modelling and analysis of disk brakes [34]. In
particular, one is interested only in eigenvalues with positive real part to determine the possibility
of brake squeal.

The brake noise generation mechanisms are described in [1]. The ideal brake consists of
a pair of pads that squeezes a rotating disk with a constant friction coef cient, and there are
normal and tangential forces acting on the interface of pads and rotor. During the stationary
contact the forces are uniformly distributed. However, during the relative motion the forces
develop non-uniform distribution. The analysis of possible sources of instabilities is based
on lab experiments, on numerical simulations based on nite element models, or on idealized
minimal models mimicking the physics of a real brake|[34]. We will consider here the nite
element model and macroscopic equation of motion arising from it, as|in [34]:

Mwii+ Dywu+ Kyu= f: (1.32)
The terms in[(1.32) are:

* Mw 2 R" " represents thenass matrix collecting acceleration terms; it is symmetric
positive semide nite;

 Dw2 R" " collectsdamping and gyroscopic effectollecting velocity terms, typically
nonsymmetric;

* Kw2 R" "collectsstiffness and circulatory effegtsollecting displacement terms, typi-
cally nonsymmetric;

» Wis parameter vector;

f is external forcef O for self-excited vibrations;
* u:R! R"contains the coordinates in the FE basis of the displacements;
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U contains components of the velocity;
* (i contains components of the acceleration.

The coef cient matrices can depend on one or more parameters represenfédypically
including operating conditions (temperature, pad pressure, etc.), material properties (friction
coef cient, brake geometry and mass distribution, effects of wear and damping, etc.) and rotation
speed of the brake disk.

Above we mentioned that the brake squeal is a product of utter-type instabilities. This type
of instabilities is indicated by the coalescing of eigenvalues on the real axis, or by eigenvalues
with positive real part of the quadratic eigenvalue problem

(1 M+ | D+ Ky)x= 0 (1.33)

The quadratic eigenvalue problem (1.33) is obtained by considering the homogeneous system of
equations[(1.32), i.ef, = 0. The general solution to the homogeneous problem can be written
as

%n
ut)=  awwe
k=1

where(l ;%) are eigenpairs of (1.33).

The eigenvalues with positive real part of the problém (|1.33) are usually aaiis@ble
eigenvaluesand the goal in this application is to determine those eigenvalues. It is important
to have an ef cient algorithm for computing these eigenvalues mostly because our problem is
usually large scale and it has to be executed for many values of the par&heter

Derivation of the model. Description of complicated dynamical systems, such as disk bra-
kes, is usually developed using the Langevin equation. In this approach, one observes collective,
macroscopic variables which are changing only slowly relative to other microscopic variables
of the system. Those variables are degrees of freedom. Now, the Langevin equation describes
the time evolution of a subset of the degrees of freedom. However, this kind of simulation is not
computationally feasible. This is why the linearized nite element (FE) model is usually used
in practice. It formulates the equations of motion assuming a very simpli ed description of the
forcing term arising from a macroscopic friction law, and the results obtained from this model
are useful|[34].

In this model, one is interested in stability analysis of disk brakes which is done by computing
the eigenvalues and eigenmodes. In particular, if our model has eigenvalues with positive real
part then a self-excited vibration induced by friction may arise and in real model this can be
represented by audible squeal.

The "zeroth" step of the analysis is the initial state of the brake. At this point the brake is
stationary and unloaded. All possible contact zones are de ned although they are not in contact
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yet. The rotation of the disk is neglected. Finally, the equation of motion is
Mi+ Dyu+ Kgu= O: (1.34)

The matrixM represents mass, and is symmetric positive de nite, the mByixrepresents
damping and it is symmetric positive semi-de nite, the maifi represents elastic stiffness
and it is symmetric positive de nite.

The rst step is linear static analysis. One investigates the disk with the external load from
the brake pad. The goal of the linear static analysis is to provide a location of contact and the
normal and friction forces in the contact area. The disk is considered stationary, but to map the
friction force at the contact correctly, velocity eld information is assigned to each FE node.
Further re nement of the model is obtained by considering the state of contact frozen and the
contact points constrained in normal direction with multi-point constraints (MPCs). Equations
of motion are

MU+ ( Dy + %/DR)LH'(KE‘F Kryu= f: (1.35)

HereKR is nonsymmetric matrix describing circulatory effedf¢is a parameter representing
the rotational speed of the disk, abg is symmetric matrix describing the friction induced
damping.

The second step is linear static analysis with centrifugal loads. One modi es the previous
model by introducing the rotation of the disk brake. Instead of moving the nodes, they are
applied with the load resulting from centrifugal forces. This analysis provides internal stress
conditions. Equations of motions are

1
Mii+( D+ DR+ WDG)u+(Ke + K+ WKg)u= f: (1.36)

Dg is skew symmetric matrix (gyroscopic term) alg is symmetric matrix modelling the
geometric stiffness.

Notice that in this model, we have only one param&eepresenting the disk speed. In
general, the coef cient matrices can depend on more than one parameter.

1.3.2 Regularized Total Least Squares

In [62], a new approach for solving regularized total least squares has been developed which
includes solving the quadratic eigenvalue problem several times. Precisely, the rightmost eigen-
value and the corresponding eigenvector of certain quadratic eigenvalue problem is computed.

Total least squares (TLS) is a technique for solving overdetermined linear system of equations

Ax b;A2R™ " b2 R™ x2R"(m> n): (1.37)

Here, both the coef cient matri® and the vectob are subject to errors. Problein (1.37) is
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actually an optimization problem

mink A b A b k& subjecttoAx= b: (1.38)

x;A;b
When using the ordinary least squares (LS) method for sol{ing](1.38) we assume that the coef -
cient matrixA is error free and thai contains all the errors. However, in practice, all data are
contaminated by noise and thus total least squares (TLS) approach should be used. Methods
developed for TLS are based on the SVD decomposition and they also deal with problems when
only some columns oA are contaminated by noise, and the remaining ones are noise free. When
the matrixA is ill conditioned, both of these methods, LS and TLS might give a solution that
Is physically meaningless and certain regularization is needed in order to decrease the effect of
the ill conditioning and data noise. This is why the Regularized Total Least Squares (RTLS)
problem formulation is introduced. It imposes a quadratic constraint on the solution xéactor
(1.38). This new constrained problem cannot be solved using SVD, and in [62] the new approach
based on solution of a quadratic eigenvalue problem is developed. Here we present this method.
It is referred to as a quadratically constrained formulation.
RTLS is formulated as follows

mink A b A b k&; subjecttoAx= b; kLxk3 d?; (1.39)
x;A;b

whereL2 RP ™ p nandd > 0. Itis known that the objective function ifi (1]39) can be

2
replaced by orthogonal distanélér%?, so the problem reads as
2

_kAX bk3

min————2 subject toAx= b; kLxk3 = d%; 1.40
X 1+ ka% J 2 ( )

for d small enough (i.ed < KLxt_ sk»). Since the normkLxt_sko can be large for ill conditioned
problem [(1.3]), the assumption thats small enough can be considered guaranteed in practice,
and thus the inequality ifi (1.B9) can be replaced by equality. In prattisaysually chosen to

be approximation of the rst or second-order derivative operators in order to impose a certain
degree of smoothness in the solution.

So, where does the quadratic eigenvalue problem come from? Write the Lagrangean for the

RTLS problem|[(1.40)
_ kAx bkZ

. 2 2\.
L (6l)= = o +1 (kLxk2  d?): (1.41)

The rst order optimality conditions are
B(X)x+ | LTLx= d(x); kLxk3 = d?; (1.42)
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where
ATA kAx bkZ ATb

B(X) = d= D
0= i@ @r 2™ 99= 11

(1.43)

This system[(1.43) is solved iteratively, where in every iteration wexgd andl y+ 1 which
solve the system
B(x)x+ | LTLx= dy:= d(x); kLxk? = d?; (1.44)

corresponding to the eigenvalue with the largest reallparsing an equivalent quadratic eigen-
value problem.

In order to derive the QEP formulation let us dismiss the irklgom (1.44), and consider
thatB is symmetric matrix. We distinguish two cases, whes square and invertible, and when
L is nonsquare.

L square and invertible. Impose a change of varial#e= Lx to get

|__T{§|__}1_z+| z= |__{ZT_§; Z'z= d* (1.45)
=:W; symmetric =:h
Solving this system is equivalent to nding the rightmost eigenvalue and the corresponding
eigenvector for certain quadratic eigenvalue problem. Assumingd tisgkarge enough so that
W+ | | is positive de nite, denote= (W+ 1 1) ?h. Now,h"u= z"z= d2andh= d 2hh'u,
so we can write the conditioh (1}45) @+ 1 1)2u= hwhich can be written as QEP

(121+2l W+W? d 2hhDu=0: (1.46)

We are interested in the rightmost eigenvaluand the corresponding eigenvectoscaled
so thath"u= d2. Now, the solution of the original problem is recovered by rst computing
z=(W+ 1| Huandtherx= L !z

NonsquareL. Inthis casd."L is singular, because its rank is equal to the minimum of number
of columns and number of rows. We write eigenvalue decompoditiar= USUT. Equivalent

form of (1.44) is

uTBU k’zT}X*' Sy= UTd; y'Sy= d* (1.47)
=y
Letr = rankS) andS; = §(1:r;1:r). Partitioning elements of (1.47) with respecrtae get
8

< .

Tiyi+ Toyo+ | Siy1 = dy;
- YISy = d% (1.48)

Tyt Ty =d

For the sake of simplicity, we will assume thRtis invertible and thus we can express

y2=T, (2 T, y1): (1.49)
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If we place [1.4P) in rst equation irj (1.48) we get
(L LT T +1S)y1=(di ToT, 'dy);

which is the system of fornfW + 1 )2u= hforw = § Ty TT, 7)™ andh =
S (dy ToT, dy), as before.
The solution of[(1.48) is given by

y= = > Te 122, (1.50)

The nal solution isx= Uy.

1.3.3 Orr-Sommerfeld equation

The quartic eigenvalue problem appears in the analysis of the stability of plane Poiseuille
ow in a channel. In the case of Poiseuille ow, the undisturbed stream velociy(ig = 1 y?
in thex direction. The side walls are g= 1 andy= 1. The Reynolds number R= 1=n,

Ya

Figure 1.2: Poiseuille ow

wheren is the kinematic viscosity. The stability of the ow depends on the Reynolds number.
The goal is to nd the critical Reynolds number for which the ow becomes unstable.

In this example, the y component of the perturbation velocity is considered to be, as in [10],
proportional to the real part of

F(xyt) = f(y)ed x (1.51)

wherel is the wavenumber and is the angular frequency. By the linearization of the Navier-
Stokes equations for the velocity perturbation (1L.51), the Orr-Sommerfeld equation is obtained
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d 2 ° d? 2 00 "
0P I iR (1U w) a7 I | U f =0; (1.52)
with the boundary conditions
f(y)y=0; fqy)= Oaty= 1 (1.53)

Discretization of the equatiof (1J52) leads to a quartic eigenvalue problem. The eigenvalue
of interest are those closest to the real axis, and the system is stable if the imaginary part of
eigenvalue is positive. We will consider the discretization using the Chebyshev polynomials, as
in [65] and [5], that i is expanded in 1;1] as

¥
f(y)= & anTa(y); (1.54)
n=0
whereT,(cogq)) = cognqg) and
2 z 1 Pp—
= fOIT0) 1 y*dy co=2ce=Lforn>0 (1.55)
n 1

The approximate solution is of form

N
f(y)= & anTn(y): (1.56)
n=0

Let Dy represent the Chebyshev differentiation matrix. The entri&oére given in[[63]

2N2+ 1 2N2+ 1
(DN)11= 5 (DN)N+ LN+1 = 5
Xi 1 .
(DN)jj = s = 25N,
2(1 % )
¢ ( I .
D =N 6 — 2 ..... N
(Dn)ij R 16 j;i;)=2;000N;
8
S2 i=LN+1 . . _ -
wherec; = , andx; = cogjp=N); j = 0;:::;N. The higher order derivatives

- 1 otherwise

are obtained as powers Dfy. By plugging in the derivative matric@,j\, instead ofdd—;, in (1.52)
we derive the quartic pendil*A+ | 3B+ | 2C+ | D+ E with

A= I; B = iRdiagl »);
C= (iwRl+2D3); D= iRdiagl x*)Df 2iRI;
E = D, + iRwDZ:
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1.4 Linearizations of Matrix Polynomials

The most common approach when dealing with polynomial eigenvalue problem is to de ne
an equivalentlinear problem, i.e. to linearize it, and then work with the larger linear matrix pencil.
The eigenvalues of the equivalent problems are the same, and there is an explicit connection
between the corresponding eigenvectors. In this section we present most used linearizations
and de ne the vector spaces of linearizations. Their most desirable property would be that the
Jordan structure of the eigenvalues is preserved, and we will emphasize the linearizations with
this property.

De nition 1.1. LetP(l ) beann nmatrix polynomial of degrele 1. ApencilL(l )= 1 X+Y
with X;Y 2 RK" knis called alinearizationof P(l ) if there exist matrix polynomialg(l ) and
F(l ), with constant nonzero determinant, so that

P() 0

E(OLOIF()= T o : (1.57)

The most important and the most used linerizations in practice aresttemmpanion form
Ci(l )= 1 Xy + Y7 and thesecond companion formp(@ ) = | Xo+ Yo where

0 1 0 1
Ay Ac 1 A2 Ao
| | 0 0
X1=% . gi Yl:% : T :E; (1.58)
| 0 I O
0 1 0 1
Ay A 1 | 0
xf%; - g;vzz 2 D E (1.59)
" : . |
I Ag 0 0

When all the eigenvalues &%(1 ) are nite, the Jordan structure can be recovered from any
linearization. However, when the in nite eigenvalues are present this is not the case. So we
de ne that the linearizatioh(l ) for P(l ) is astrong linearizationf, in addition,revL(l ) is a
linearization for rew(l ).

Vector spaces of linearizations. In [50], Mackey et al. de ned vector spaces of matrix pencils

which generalize the rst and the second companion form. They proved that all pencils, which
are linearizations, from these spaces are also strong linearizations. Here, we present those spaces
and some of their important properties.
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The de nitions are

L1(P):= fL(I )= I X+ Y :X;Y2R™ ™ 1(1) (L 1,)2 Vpg; (1.60)
Lo(P):= fL(I )= 1 X+ Y:X;Y2 R™ " LT 1) L(I)2 Weg; (1.61)
T
whereL(r)= rk 1 (k2 r 1 and
Vp=fv P(l):v2RXg; (1.62)
W= fw'  P(l):w2 R¥g: (1.63)

Here represents the Kronecker product, i.e., for matrik@C™ "andB 2 CP 9the matrix
A B2 C™MP "djs the block matrix

0 1
a;nB ::: anB

A B=%5 :
ayB i amB

It is proven [50] that[(1.60) andl (1.61) are vector spaces, and that they have the same dimension
k(k 1)r?+ k. In order to introduce the characterization of these de nitions, from which it is
easier to construct the linearization, t@umn shifted surfor block matrices< andY of the

form 0 1 0 1
X1 o Xk Yi1 i Y
X:%E 5§;Y=%5 5§:>ﬁ;;Yi,-2C“”
X oo Xk Yia i Yek
is introduced as
0 1 O 1
X11 o Xlk On On Y11 Ylk
X@Y:%; o ;§+ N 2 (1.64)
X 0 Xk On On Y1 0 Y
and therow shifted sunas
0 1 0 1
X11 o Xk Y1 o Yk
xav=8 +  ‘G+B T L. (1.65)
X1 il Xk Vi 00 Yik
On On On On
Now, it can be proven that
n o]
Li(P)= I X+Y:XBY=Vv A A1 2 Ay ;v2CK ; (1.66)
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8 0 1 9
3 A 3
L,(P) = $| X+ Y X@y=w' %Aoﬁ W2 Ck? : (1.67)

In addition, the theorem which gives an algorithm for determining if a pencil is a linearization
Is proven as well.
Finally, we state the theorems about recovery of both right and left eigenvectors.

Theorem 1.10([50]). LetP(l ) be ann n matrix polynomial of degrek, andL(l ) any pencil
in L, with nonzero right eigenvect@ Thenx 2 C" is an eigenvector foP(l ) with nite
eigenvalud 2 C if and only ifL X is an eigenvector foL(l ) with eigenvalud . If, in
addition, P is regular andL 2 L1(P) is a linearization forP, then every eigenvector bfwith
nite eigenvalue is of the formL  x for some eigenvector x of P.

Theorem 1.11([42]). LetL 2 L1(P) be a linearization oP, with vectorvin (1.66). Ifuis a left
eigenvector of L with eigenvaluethen

y=(v Nu (1.68)

is a left eigenvector d? with eigenvalud . Moreover, any left eigenvector Bfcorresponding
tol can be recovered from one of L from the form{ila (1.68).

Theorem 1.12([42]). LetL 2 L»(P) be a linearization oP, with vectorw in (1.67). Ifzis a
right eigenvector of L with eigenvaldethen

x=(w' 1)z (1.69)

Is a right eigenvector d? with eigenvalué . Moreover, any right eigenvector Bfcorresponding
tol can be recovered from one of L from the form{ila (1.69).

Theorem 1.13([50]). LetP(l ) be ann n matrix polynomial of degrek, andL(l ) any pencil
in Lo with nonzero left vectan. Theny 2 C" is a left eigenvector foP(I ) with nite eigenvalue
| 2 CifandonlyifL yis an eigenvector fokL(l ) with eigenvalud . If, in addition, P

is regular andL 2 L,(P) is a linearization forP, then every left eigenvector bfwith nite

eigenvalud is of formL y for some left eigenvector y of P.

Theorem 1.14([50]). LetP(l ) be ann n matrix polynomial of degrek, andL(l ) any pencil
in L1 (resp.,L2) with nonzero right (left) vectow. Thenx2 C" is a right (left) eigenvector
for P(l ) with in nite eigenvalue if and only i&; X is a right (left) eigenvector foL(l ) with
in nite eigenvalue. If, in additionP is regular andL 2 L1(P) (resp.,L2(P) is a linearization
for P, then every right (left) eigenvector biwith in nite eigenvalue is of forne; x for some
right (left) eigenvector x of P with in nite eigenvalue.
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From these theorems we see that the right eigenvector recovery is straightforward for the
pencils inL 1, and the left eigenvector is easy to recover for the pencllsinThis is an attractive
feature, which is why [50] de ned the vector spdoe (P) := L1(P)\ L2(P), which has both
properties. They derived characterisation for this space. Another signi cant property is that for
symmetricP every pencil inDL (P) is also symmetric.

At the end, we present examples for two linearizations which will be used in the remaining
sections.

Example 1.5(First companion form) Consider the rst companion form linearizatign (1158)
Ci(I ) 2 L1(P). The corresponding vecterfrom the characterizatioh (1.66)vVs= e;. Letx be
the right eigenvector foP(l ), andzthe corresponding right eigenvector foy(1 ). Then

Olklxl

%}I K ng
z=L x= : : (1.70)

X

Now, lety be the left eigenvector fdP(l ), andu corresponding left eigenvector f@q(l ),

wherel is nite and nonzero. Then

0 1
I

u= % (At Aca) Ey (1.71)

(K IAHTR 2N o+ 1+ A)

Example 1.6(Second companion form)onsider the second companion form linearization
(1.59)Cy(l ) 2 L»(P). The corresponding vector from the characterizatiof (1.67)vs= e;.
Let x be the right eigenvector fa?(l ), andzthe corresponding right eigenvector (! ), |

nite nonzero. Then

0 1
I

z= % (l Ak+Ak 1 Ex: (1.72)

(1K IAH TR 2A o+ 1+ A)

Now, lety be the left eigenvector fdP(l ), andu corresponding left eigenvector f@x(l ),
wherel is nite and nonzero. Then

Olklyl

k 2
G (1.73)
y
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Linearization and invariant pairs. The connection between the invariant pairs of matrix
polynomial and its linearization is given in the following lemma

Lemma 1.1([6]). A minimal invariant pair(X;S) for a regular matrix polynomial is simple if
and only if(W(X;S); S is a simple invariant pair for the corresponding companion linearization.

The recovery of invariant pairs from linearization analogous to theprem 1.10 is given in the
following theorem.

Theorem 1.15([6]). LetL(l )= | B+ A2 L1(P) be a linearization of a regular matrix polyno-
mial P. Then for every simple invariant paf;S) 2 CK" ©~ C of L there existX 2 C"
such that Y= V(X; S and(X; ) is a simple invariant pair of P.

1.5 Localization of eigenvalues of nonlinear eigenvalue pro-
blem

In this section we present the localization theorems, pseudospectral inclusion theorems and
Bauer-Fike theorem for general nonlinear eigenvalue problems developed by Bindel and Hood
in [[7].

They study the nonlinear eigenvalue problem

T( )v=0; v6 0; (1.74)

whereT : W! C" "is analytic on the simply connected domalih C, and regular, meaning
that de(T(2)) 6 0. The emphasis is only on nite eigenvalues.

We de ne thenumber of eigenvalues insid& for G C, a simple closed contour, afid2)
nonsingular for alz2 G, by the winding number

Y4 Z

We(detT (2) = 2—; . dﬁzmgde(T(z)) dz= Z—;i (T 11%2)dz (1.75)

Now, the main lemma for the proofs of the localization theorems is the following:

Lemma 1.2([7]). Supposd :W! C" "andE:W! C" "are analytic and thaG Wis a
simple closed contour. Tf(2) + sE(2) is nonsingular for alls2 [0;1] and allz2 G, thenT and
T + E have the same number of eigenvalues in€idsounting the multiplicities.

The nonlinear generalization of Gershgorin theorem states

Theorem 1.16([7], Nonlinear Gershgorin theoremyupposéd (z2) = D(2)+ E(2), whereD; E :
W! C" "are analytic and D is diagonal. Thenforaly a 1,
L(T) G%; (1.76)
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where Cﬁ‘ is the jth generalized Gershgorin region
G = fz2 W:jdjj(9j rj(2%ci(d* ?g; (1.77)
and rj and g are jth absolute row and column sums of E, i.e.,
g . : Q. :
ri(d= a ieix(di; cj(2= a jejdj: (1.78)
k=1 i=1
Moreover, suppose thal is a bounded connected component of the ur[1iq)@]-’1 such that

U W. ThenU contains the same number of eigenvalue$ aihdD, and ifU includesm
connected components of the Gershgorin regions, it must contain at least m eigenvalues.

1.5.1 Pseudospectrum

The spectrum of a matrikis a set of alz2 C" such that resolvent operatgfz) = (zI A) !
is not de ned. Thee-pseudospectrumman be equivalently de ned as [69]:

Le= fz[2 C:k(zl A k,>e g (1.79)

= L(A+ E) (1.80)
kEk2<e

=fz2C:k(z A)Vko< e;v2 C"kvky = 1g: (1.81)

The motivation for the rst de nition in [(1.7D) is that asking #is eigenvalue of the matri& is

the same as asking if the matdk A is singular. However, determination of the singularity of

a matrix is not numerically robust, because arbitrary small perturbation can change the matrix
from singular to regular. The better approach is to check if the ngah A) 'k, is large, and

thus the rst de nition of pseudospectrum.

The second de nition in[(1.80) is motivated by the eigenvalue perturbation theory. Namely,
by this de nition, e-pseudospectrum is the set of all eigenvalues of all perturbed ma#icds
with kEk»> < e.

The usual de nition ofe-pseudospectrum for nonlinear eigenvalue problem is generalization
of (1.80). For the spade consisting of some set of analytic matrix-valued functions of interest,
thee-pseudospectrum far 2 F is

Le(T)= | L(T + E); (1.82)

E2F ;kEkglob<e
wherekEKgop is a global measure of the size of the perturbing funciomn [7], F is the space
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of all analytic matrix-valued functionr8" (W, C" ") with the global measure
KEKgiob  SUPKE(2)ko>: (1.83)
2W

In this setting, three equivalent de nitions of pseudospectrum, similar to](1.79)}(1.81) are
provided in [7]

Theorem 1.17([7]). LetE = fE:W! C" " E analytic sup, wKE(2)kz < egandEy= fEp2
C" M:KkEpks < eg. Then the following de nitions are equivalent:

Le(T)= fz2 W:kT(2) ko> e g (1.84)
E2E
= L(T + Eg): (1.86)
Eo2Eg

Another generalization a-pseudospectrum theory for linear problem is stated in the follo-
wing proposition.

Proposition 1.3([7]). Supposd : W! C" "is analytic andU is a bounded connected com-
ponent ofL¢(T) withU 2 W. ThenU contains an eigenvalue of T.

Connection with backward error is given in proposition
Proposition 1.4([7]). Suppose Ip)x: r and krky=kxk, < e. ThenP 2 Le(T).
The comparison between eigenvalue problems via pseudospectra is given in the next theorem

Theorem 1.18([[7]). Suppose TW! C" "and E: W! C" "are analytic, and let
We f 22 W:KE(2)k2 < eg:

Then
(L(T+E)\ W)  (Le(T)\ We):

Furthermore, ifU is a bounded connected component.gfT) such thatU W, thenU
contains exactly the same number of eigenvalues of T an@&T

1.6 Diagonalizable quadratic matrix polynomials

In this section we investigate under what assumptions we can diagonalize quadratic matrix
polynomial. The diagonalization is done by congruence or direct equivalence transformation.
We will also present the approach from Lancaster and Zaballa in [46] where the diagonalization
is obtained by applying congruence or strict equivalence transformation to a linearization, while
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Chapter 1. The Polynomial Eigenvalue Problem

preserving the structure of the original problem.

The pencil(l M+ | C+ K) is said to badiagonalor decoupledf M;C;K are diagonal matrices.
Two pencils arasospectralif they have the same Jordan form, that is if they have the same
eigenvalues and the same partial multiplicities. Finally, a pencil is diagonalizable if it admits an
isospectral diagonal system.

Diagonalization without linearization. Here we list the quadratic pencils that allow diago-
nalization by congruence (Hermitian pencils) and by strict equivalence (no symmetry) without
linearization. Before stating the theorem we must introduce the notion of sign characteristic.
Hermitian pencilsA+ | B are congruent to pencil
! !
WP 1 1 a M 0 | (m+iwj)

hj(| a,-) hj | . | .
=1 j=r+1 aj 0 j=s+1 (M iw;) 0

are the real eigenvalues with partial multiplicities equal to two, @ad  iws1;:::; W
are complex conjugate pairs with partial multiplicities one. The numibers:; hs take values
1 end represent the sign characteristic of the pencil.

Theorem 1.19(Hermitian pencils,[46]) LetM;C;K 2 C" "withde{M) 6 O,M = M;C =C
andK = K. Assume thdt M + K is semisimple with all eigenvalues real and of de nite type,
and de ne

where the size of the identity matiixis a partial multiplicity of the eigenvaluk; for each
j, and the sign of each term i8is determined by the correspondirdl or 1 in the sign
characteristic. Then there exists a nonsingula? C" " such thalU MU;U CU andU KU
are diagonal if and only itM 1K = KM 1C: If, in addition, M;C;K are real and symmetric,
then there is a corresponding J R" .

Theorem 1.20(No symmetry, [[46]) Let M;C;K 2 R" " with de{M) 6 0 and assume that
| M+ K hasndistinct eigenvalues. Then there exist nonsingulagy 2 C" "such that/MV = |
and UCV/UKYV are diagonal if and only if CM'K = KM C.

Diagonalization by linearization. In the above theorems we saw that the certain commutati-
vity conditions must be satis ed in order for pencil to be diagonalizable. Here, we are interested
in the procedure for computing that diagonal pencil, and this is developed using the linearization

A= ; B= ; (1.87)
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1.6. Diagonalizable quadratic matrix polynomials

which is structure preserving.
Before the diagonalization of the original pencil we will rst study the Jordan form of the desired
diagonal pencil.

De nition 1.2 ([46]). LetJ,c andJyr be the classes édin  2n canonical Jordan matrices
forn ndiagonal pencils, and nreal diagonal pencils, respectively (so ttiatr  Jn.c
CZn 2n)_

Denote by x; the direct diagonal sum of scalars or matriggs:: ; x.

ki;rrg;i > 0 for eachi. Then the eigenvalule; has geometric multiplicityny; nand the
algebraic multiplicitymy; = &%} kij  2n. It holds that

kij = 2n: (1.88)

Qo3

t
o

i=1j=1

—
1

Ln ~ .
Write diagonal penciQ(l ) = ~ [ml 2+ ¢l + k], where®L,m 6 0. Then each diagonal
=1

|
entry has a linearization

" #
0 1
1o = 12000
ki=my =
andQ(l ) has the tridiagonal linearizatidnl A where
" #
M 0 1

=1 k=M GEm

A=

The elementary divisors ¢fl A are the disjoint unions of those 0f (1|/87) and we have
1 kjj 2forl i t1 | my (1.89)

For each distinct eigenvalde, i = 1;2;:::;t we de ne the integers;, 0 by

kij = . ' :_ (1.90)

myi S n pi=L2:0t (1.91)

Theorem 1.21(Jordan form for diagonal pencil, [A6]A Jordan matrix with partial multiplici-
tiesfk; jg;jtl;;’;?” is in J,,c if and only if conditions|(1.88)| (1.89) and (1/91) hold where, for
i = 1,2;:::;t the integersis 0 appearing in[(1.9]1) are de ned by (1.90).
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Theorem 1.22(Jordan form for real diagonal pencil, [46]A Jordan matrixJ with partial
multiplicities fkijg_ =" is in Jyg is and only if there is analp, 0 no  n, such that
J = diag(Jn,; In n,) for Jordan matricesy);Jn n, Withs (J,,) Rands(J )\ R=0and

(@) conditions[(1.88)[(1.89) anf (1]91) (with n replaced pyhrold for J,, and
(b) s(JIn ny) consists of conjugate pairs of nonreal semisimple eigenvalyes.

Now we consider the generalization of an isospectral diagonal system to our §dtgry
the application of congruence or strict equivalence on the lineariza#tonB in (1.87). First we
de ne the transformation which will be used. They are all structure preserving transformations.

De nition 1.3. (&) A system i©DEC (diagonalizable by strict equivalence ov@j if there
exist nonsingular LV 2 C?" 2" such that

UIA BV=IR B

wherel R B is the linearization of a (generally complex) diagonal sysl@(h) =

| 2N+ | &+ k.

(b) A real system i®ER if there exist nonsingular t/ 2 C2" 2" such that
UIA BV=IR B

wherel R B is the linearization of a real diagonal syst@@l )=120+1 b+ k.

(c) A system iDCR (diagonalizable by congruence) if there exist nonsinglleéz C2" 2
such that
UIA BU =R B

wherel R Bis the linearization of a real diagonal systel )= | 2M+ | €+ R.
Finally, we state the main theorem for this section
Theorem 1.23([46]). (a) A system Q ) with Jordan form J iDEC if and only if J2 Jyc.
(b) Areal system Q ) with Jordan form J iDER if and only if J2 Jn .

(a) An Hermitian system @ ) with Jordan form J iDCR if and only if J2 J,r.

1.7 Minimax theory

In [28] Duf n considered heavily damped dynamical systems. The aim of his work was to
develop variational principles for overdamped systems analogous to variational principles for
Hermitian matrices, i.e.
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1.7. Minimax theory

Theorem 1.24.LetAbe ann nHermitian matrix with eigenvaluds; ::: |y 0 |p.
Then A
k= min max( X’X): (12.92)
U xeu (XX)
dimU=k X6 0

The main tool for the theory is Rayleigh coef cient, which is replaced by the Rayleigh
functional in he case of overdamped dynamical systems.
For given matrice$/;C andK of ordern and the associated quadratic forms

m(v) = (Mv,V); ¢(v) = (CwV); k(v) = (Kv,V); (1.93)
we assume that
(i) M;C andK are symmetric,
@i) mv) 0,c(v) 0,andk(v) 0, which is later replaced by weaker hypothegig O,
(i) c2(v) 4m(v)k(v) > 0, overdamping condition
If r is the rank of matriM, then there are precisehy# r roots of the equation
de(l °M+ 1 C+K)= 0; (1.94)
which represent the eigenvalues of the quadratic eigenvalue problem
(1 2M+ | C+ K)x= 0 (1.95)

Duf n divided these eigenvalues into two groups, the primary and the secondary eigenvalues.
Namely,hy hy i hy, ther smallest roots of (1.94), are callegcondary eigenvalugs
andk; ky i kp, thenlargest roots, are callgufimary eigenvaluesThe corresponding
eigenvectors are called tsecondary eigenvectoemdprimary eigenvectorgespectively.

1.7.1 The primary functional

The primary functional is de ned as

2k(V)

p(v) = W; (1.96)

where q
div)=  c2(v) 4m(v)k(v) > O (1.97)
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In order to state the main theorem, we introduce the nuRP€) associated with each subspace
Y of dimension one or greater by

P(Y) = supp(y): (1.98)
y2Y

Theith primary minimax valud; is then de ned as
ki= inf P(Y): (1.99)

dimY=i

The rstimportant theorem states that the eigenvectors of the primary eigenvalues are linearly
independent, more precisely:

Theorem 1.25(]28]). There is an independent set of n primary eigenvectgrso: ::; u,. The

u is a linear combination of vectors of the set having the same eigenvalue as u.
The minimax theorem reads as follows.
Theorem 1.26([28]). If Y is a subspace of dimensionl, let
P(Y) = maxp(y):
Then, fori= 1;2;:::;n, the primary minimax valug ks given by
ki = minP(Y);

for all subspaces of dimension i.

1.7.2 The secondary functional

The secondary functiona{v) is de ned for a vectow if and only if m(v) 6 0 as
2(Vim(v)+ c(v) = d(Vv): (1.100)

A primary and a secondary eigenvectors can coincide, but the primary and secondary eigenvalues
cannot. More precisely

Theorem 1.27([28]). Letr be the rank oM. Then there is an independent setr ofectors

tor is a linear combination of vectors of the set with the same eigenvalue.

Theorem 1.28([28]). The range of the primary functional and the range of the secondary
functional have no common value.
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1.7. Minimax theory

Consider the reversed quadratic eigenvalue problem which satis es the conditions (i), (ii)
and (iii). The primary functional for the reversed problem is

2m(v) |

0 —
V= S+ dw)

Thus, ifmé 0, thens= 1=p°. So one can prove an analogous theorem to Theprem 1.26 for the
secondary functional.
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Chapter 2
Backward error

Backward error analysis provides an elegant way to justify the computed output: if the
initial data is slightly perturbed (this perturbation is caltetkward erroj, then the computed
(inexact) output can be reproduced by exact computation with this new data. This, of course,
does not guarantee that the computed result is close to the exact one - the error depends on
the sensitivity of the function we are trying to compute. If the size of the backward error is of
the comparable size as the estimated uncertainty in the initial data, then we may say that the
computed results is as good as warranted by te data.

In Sectior] 2.2, we show that optimal Hermitian backward error (of the same minimal norm
as in the unconstrained case) is possible for any eigenpair; this is an extension od the existing
theory in which such optimal Hermitian backward error was established only for the case of real
eigenvalue. The result is extended to allow both Hermitian and skew Hermitan perturbations in
the coef cient matrices. Further, we derive a new more intrinsic proof of the explicit formula
for the component-wise backward error.

2.1 Optimal backward error for a given eigenpair

In the case of matrix polynomi&l(l ) and its approximate eigenpdi;| ), with | nite, the
minimal size of the normwise backward error, measured e.g. in the spectralknéemis
de ned by

hp(x;1 )= minfe : (P(l )+ DP(l ))x= 0; kDAko ekAiky; i = 0;:::;Kg; (2.1)

whereDP(I )= &% I 'DA; is the backward error iR(l ), and

k
P(1)+ DP(1 )= g | '(Ai+ DA):
i=0
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In other words, we seek small perturbatidd4; of the coef cientsA;, that will render the
computed paifx;| ) an exact eigenpair d&?(1 )+ DP(l ).

Using the backward error to justify the computed result is usually illustrated by a commuta-
tive diagram as in Figure 7.1.

computed B
. approximation ® PlledXex=0
P(l)= &L, 'A @ e (xI);(P(l)+DP(l )x=0
backward _ exact computation of the
errorDP(l )= &Ll 'A eigenvalues and eigenvectors

P(l)+DP(l) e

Figure 2.1: Commutative diagram for a backward perturbation in the computation of a right
eigenpair(x;| ) of the matrix polynomiaP(l )= &L, 'A.

The optimal backward errdr (2.1) corresponds to the residual, and in practical computation
it can be obtained using the explicit formula, derived in [66]:

kP(l Yxks

hp(x;l )= - :
Pxil) 8% il kAky kxk

(2.2)

If only the eigenvalué is of interest, we can always assume that the optimal eigenvector is
available so thalip(l ;x) is minimal. Clearly, th&kP(l )xko=kxk; factor in (2.2) is minimized
if xis the right singular vector that corresponds to the smallest singular vaR(¢ pf Hence,

kP(l )xkz _ smin(P()) 1

hp(l min = S ;
o) 2K jl jkAky kP(I) ko

60 &% jl kAky kxky &% ojl jkAks

wheres min( ) denotes the minimal singular value of a matrix. This trick of involving the singular
vector of the smallest singular value is also at the core of the eigenvector re nement technique
of Jia and Sun [45].

Remark 2.1. It is instructive to consider the special case 0. Obviously, if we set

X KDAokz _ KApxka
Fk% note that her“kAok = KAKkdk,

DA-=0; =0;:::;k; DAg=  ApX (2.3)
then(P(0)+ DP(0))x = ( Ao+ DAg)x = 0: Recall that thidAg corresponds to the optimal bac-
kward error forAgx 0.

Remark 2.2. If the computed approximate eigenvalue is ¥, then we can try to interpret it
as a zero eigenvalue of a backward perturbed reversed problem. Risihg | XrevP(1= ),
m= 14 , the expressioii (2.2) can be interpreted as

K RaY ol A ke k&K omA ko
LKA kA ko)kxky &K im kA ko kxko

hp(x;l )= hyevp(X; M):
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Hence, for in nitel , the backward error can be de ned analogously to|(2.3pas= 0, * =

(Ac+ DAYX (revP(0)+ DrevP(0))x= O.

2.2 On Hermitian and skew—Hermitian backward error

A backward error analysis is reassuring — it allows us to claim the computed result can be
used with con dence because it corresponds almost to the given input data. However, in this
interpretation of having solved a nearby problem, for many applications not only the size but
also the structure of the backward perturbation matters. Suppose that the coef cient matrices
A are Hermitian (or real symmetric), where the symmetry is a result of the underlying physics
of a concrete engineering application. In such cases non-hermitian/non-symmetric backward
perturbed datd + DA make the interpretation of backward stability in terms of the original
problem dif cult.

Hence, it is of interest to determine the optimal backward error under the constraint that the
backward errors in the coef cien®s are Hermitian:

(2.4)
Note that in the de nition[(2]4) we do not require the coef ciertsof P(I ) to be Hermitian,
although such Hermitian case is usually tacitly assumed if we are intereshé'i']) x;1 ). The
existence of optimal Hermitian backward error for Hermitian pencil, that matches the size of
hp(x;1 ), is established by Tisseur [66], but only for real eigenvalues.

Theorem 2.1([66]). If all coef cient matrices ofP(l ) are Hermitian, and ifi is real, then
dy= hH) .
hp(x;1 )= hp (x1 ).

In the next theorem, we extend the result of Tisseur to the entire nite spectrum, i.e. we now
show that a Hermitian backward error is possible for any nite eigenvalue.

Theorem 2.2. Let(x;| ) be an approximate eigenpair of P). Thenhp(x;! ) = hé,H)(x;I ).

Proof. LetP(l )x=r 6 0,andletlt = r &l be the polar form of . (Forl = 0,setr =j =0

that

.
krk2
If we setS;j = (krka=kxko)Hj, thenS; = §j, Six= re 'l andkSjkz = krky=kxk,. De ne
backward errors

Hjx = kxkoe

DA = kAjk2Sj (note thatDA; = DA)) (2.5)

8% ojl j kAkz
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and check that o .
| le N kAjkzr_ I j'kAjk2 }

j
é&o“kakz éﬁo“yKAkZ’

| IDAjx =

and

DP(l )x = ék | IDAjx=r, (P(l )+ DP(l ))x= O
j=0

Finally, note that the norm ddA; matches the unconstrained optimal value, i.e.

krkz
kxko &' ojl | kA k2

kDAJ' k2 = kAj k2 = hp(X;| )kAj kz:

]

The trick used in Theorein 2.2 can be slightly modi ed to analogously construct a skew—
Hermitian perturbation.

Proof. Follow the proof of Theoremi 2.2. For eash = 1 de ne Hj as in [2.9) withS =
(krko=kxkp)Hj. If sj = 1, de ne the Householder re ectdd; so that

i T i -
Hjx |krk2kyk2e ;

and ses; = i(krko=kxko)H;. ThenS; = S, Sjx=re 'l . If we de ne DA; asin [2.5), then
DA; = s DA and the rest of the proof follows as in Theorem 2.2. O

2.2.1 The left eigenpair

If we have an approximate left eigenpéyr;| ) with nite | , its backward error is de ned
analogously as

hp(y ;1 )= minfe : y (P(l )+ DP(I ))= 0; kDAko ekAky; i = 0;:::;Kg; (2.7)

and the corresponding explicit formula in terms of the residual reads

ky P(I )kz
Ak ojl TjkAky kyky'

hp(y ;1) = (2.8)
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Of interest is, as discussed above, to determine minimal Hermitian backwardhgﬂoy ),
where

(2.9)
Clearly, we can usenutatis mutandisTheorem$ 2]2 arjd 2.3 to prove existence of the optimal
Hermitian/skew-Hermitian backward error. For the sake of completeness, we provide the details.

Theorem 2.4. Let (y ;1 ) be an approximate left eigenpair &1 ). Then h’(DH)(y ) =
he(y ;1).

Proof. Lety P(I )= r 6 0,andlet =r ¢l be the polarformof . (Forl = 0,setr =j =0

andl 9= 1) Forj = 0;:::;k, we can construct Householder re ectdis = H; = H; ! such
that
v= ij -
Hjy krkzkykze' ;
so that
= ii -
y Hj krkgkykze :

If we setS; = (krko=kykz)Hj, thenS; = S,y Sj= r e ', andkSjky = krko=kyk. De ne
backward errors

1
DA; = - kAik,S; (note thatDA; = DA 2.10
1T A kAl e = DAY (2.10)
and check that gl KAk | ikAK
|]yDAJ:° : .\A]2r=°|£ -J.\AJZ r
a*-oll ] kAcka a*-oll j kAka

and

y DP(l ) = g‘lfll lyDAj= r;y(P()+DP())= 0:
j=0

Finally, note that the norm dbA; matches the unconstrained optimal value, i.e.

kl’kz
kyko & ojl | kAkz

kDAj k2 = kAjkz = hp(y ;| )kAj k22

(2.11)
i.e. the backward errors are required to be Hermitian or skew—Hermitian, as indicated in
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Proof. Follow the proof of Theorerpn 214. For eash = 1 de ne Hj as in [2.2.]L) withSj =
(krko=kykp)Hj. If sj = 1, de ne the Householder re ectdt; so that

v= i ii -
Hiy= i kKo kyko€e! ;

so that
s ijj .
y H;j |krk2kyk2e ;
and sefS; = i(krko=kykz)H;. ThenS; = S,y §j= re 'l If we de ne DAj as in ),

thenDA; = s ;DA and the rest of the proof follows as in Theorem 2.4. O

Backward error for an approximate triple.  The backward error for a tripleg;y ;1 ), com-
puted by a numerical algorithm, is de ned as

h(xy ;I )= minfe: (P(l )+ DP(l ))x= 0;y (P(l )+ DP(l ))= O; kKA'ky ekAky; " =0;:::;kg:

(2.12)
The explicit formula for[(2.12) is given in the following theorem
Theorem 2.5([66]). The normwise backward error for eigentriple is given by
h(xy;l)= %max krkz, kskz (2.13)

kaz ’ kykz

where r= P(I )x,s =y P(I ) anda = &*_,jl j kA ka.

Notice that[(2.1B) actually says tHatx;y ;| ) = maxh (x| );h(y ;1)).

2.3 Backward error for a homogeneous form ofP(l )

As we emphasized in Sectipn [L.4, the rst step in most numerical methods for solving po-
lynomial eigenvalue problems is linearization — the nonlinearity is traded for linear eigenvalue
problem of higher dimension. Then, the next step is just direct deployment of the methods for
the linear problem, and straightforward reconstruction of approximate eigenvalues and eigen-
vectors of the original nonlinear problem. In practice, it has been noticed that, although the
backward error for a computed eigenpair for linear problem is small, the backward error of the
corresponding approximation for the original polynomial problem can be much larger. It turns
out that the relations between the norms of the coef cient matdcexf P(l ) affect the quality
of the computed solution. This should be intuitively clear — if the nokéy&, vary widely over
several orders of magnitude, and if some of those matrices are blocks in the coef cientBhatrix
of the linearization, then smatkd Bko=kBk, does not ensure sm&itl Ajko=kAjko.
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In some cases it is more convenient to de ne the backward errors for the homogeneous form
of the matrix polynomial, where the homogeneous form is de ned as

koo k .
P(a;b)= § a bX A ( bk3 (a=b) A):
=0 =0
The backward errors are then in forms#(a;b) de ned as

hp(x;a;b)= minfe: (P(a;b)+ DP(a;b))x= 0; kDAk, ekAky; i= 0;:::;kg; (2.14)
hp(y ;a;b)= minfe:y (P(a;b)+ DP(a;b))= 0; kDAk, ekAky; i= 0;:::;kg: (2.15)

An advantage of this representation of the backward error is that it uniformly applies to both
nite and in nite eigenvalues. Using®(a;b) = b*P(a=b) for b 6 0, and [2.2) and (2]8) we
get explicit formulas for homogeneous form

hp(x;a;b)= — KP(a;b)xie , (2.16)
(&ioialjibk TjkAika)kxkz
hp(y ;a;b) = ky Pla;b)ks (2.17)

(&1 ojalfiibk fkAik2)kyko'

Equivalent formulas for backward errors for the eigenpairs of a generalized (linear) eigenvalue
problem in homogeneous form(a;b) = bX+ aY, are obtained by replacirig= 1, Ag:= X

andA; := Y in (2.18) and[(2.1]7)

o KL(a:b)zk,
N(ZaiD) = kKo bikYka) k' (2.18)
hi(u:a:b)= ku L(a;b)ks (2.19)

(jajkXka+ jbjKYko)kuky

2.3.1 Backward error bounds for the homogeneous form

In [42], Higham, Li and Tisseur derived the bound for the backward error of an approximate
eigenpair oP(l ) in the terms of the backward error for the corresponding approximate eigenpair
of L, from which is clear how the norms of the coef cient matrices affect the unevenness of the
backward errors.

LetL(a;b) be alinearization oP(a;b), and letzbe an approximate eigenvector toand
X an approximate eigenvector fBy both corresponding to the same eigenvdkghb). In order
to comparehp(x;a;b) andh (za;b), some well-de ned relation betweenandz is needed.

The key assumption for deriving the backward error bounds is that there exists lammatrix
polynomialG(a;b) such that

G(a;b)L(a;b)=g' P(a;b); (2.20)
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Chapter 2. Backward error

for some nonzerg2 CX. Letg' = g1 i Ok .- Thenwe can write

g" P(a;b)= wmP(a;b) i gP(aib) =P(a;b)(g" In):
Now, if zis an eigenvector df then
G(a;b)L(a;b)z= P(a;b)(g" In)z
implies that
x=(g" 1n)z (2.21)

is an eigenvector dP. Now, if (2.20) is satis ed, ana is an approximate eigenvector lofthen
x de ned by (2.21), satis es (seé [42])

kG(a;b)kokL(a;b)zks
(&% ojajljbjk TkAjkz)kxky
jajkXko+ jbjkYks  kG(a;b)kokzko
&% oiajijbjk TkAjks kxKo

hp(x;a;b)

(2.22)

h (za;b):

Similarly, for a left eigenvectoy , the assumption analogous ffo (3.20) requires existence of an
kn nmatrix polynomialH(a;b) such that

L(a;b)H(a;b)=h P(a;b); (2.23)

for some nonzerd 2 CK. The connection between the left eigenvectofer L andy for P is
then
y=(h Dy (2.24)

and the corresponding backward error is bounded by

jajkXko+ jbjkYky,  kH(a;b)kakuks

h ;a;b 0
Py ) &% ojajljbj* TkAjk; kyko

h (u ;a;b): (2.25)

In the particular case of the rst companion forin£ C,), the ratio of the two backward errors
can be bounded as shown in the following two theorems.

Theorem 2.6([42]). Let z be an approximate right eigenvector ©f, corresponding to the

1 hp(zca;b) k5:2ma>(1; max kAk2)? kzky

K= ho(zab) © min(khoksiKAdks) Kzks (2.26)

Theorem 2.7([42]). Letu be an approximate left eigenvector©f corresponding to the ap-
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proximate eigenvaluéa;b). Then for y = u(1:n), we have

1 hp(uy;a;b) _, max(1; max kAikz) kukz
k122 hc,(u;a;b) min(kAgkz; kAcko) kuiky'

(2.27)

SinceC,(P) = C1(PT)T, we can conclude that these bounds apply to the second companion
form as well, but so thaf (2.26) applies to a left eigenpair, and|(2.27) holds for the corresponding
right eigenpair.

From both of these theorems we see that the backward errors of the initial nonlinear problem
and its linearization differ only by a modest factor of the deds,gerovided that the norms of

the coef cient matrices\ are close to one. To illustrate how unbalan&égks,'s in uence the

ratio between the two kinds of backward errors we present the following example.

Example 2.1. We consider th@ower_plant example from the NLEVP benchmark library [5].
Itis a QEP(I M+ | C+ K)x = 0 of order8, representing a reduced order model of dynamic
behaviour of a nuclear power plant. The norms of the coef cient matrices are:

M = 235000000
C = 4.350043895953605e+010
K= 1.692005328941397e+013

The backward errors for the eigenvalue problem for the linearization
A |IB= I ; (2.28)

and for the original problem are shown in Fig{ire|2.2.

10"
y . (e}
10° | * c.(z)) ®
s . O “o(z:,) O O o © © 0
2 10
@ O O o O O
o o o o
© -10
510 r
Q
3
3 1022 |
g
= 14
210 F
107°F # % Kk K ok * K L o 0 F 4 ox % x ¥ ¥
10'18 I I I I I I I
0 2 4 6 8 10 12 14 16

Eigenvalues

Figure 2.2: Backward errors for the eigenvalue problem of the Iineariza2.28) of the test
examplepower_plant , and for the original problerfl M+ | C+ K)x= 0.
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Chapter 2. Backward error

It is clear from Figuré 2]2 that there is a substantial gap between the backward error for the origi-
nal quadratic problem and the error of the corresponding second companion form linearization.
It is instructive to compare the gap between the two errors and the ratios of the norms of the
coef cient matrices in the quadratic problem.

2.3.2 Parameter scaling

In order to solve the problem of non equilibrated norms of the coef cient matrices of matrix
polynomialP(l ), the parameter scaling is proposed by several authors, seg e.g. [30],[31],[37].
The idea is to use two new parametgmsndd to change the variables and de ne a new polyno-
mial matrixB(m) = 8. ,m & as

=R =R

| =gm B(m):=P(l )d = n%fg_k{jZA_kgm# 1fgk A 1;+:::+(19£9}: (2.29)
= Ao

The free parametersandd are then determined so that the ratio

max(1; max kAiko)?
min(kAokz; kAckz)

from the boundqd (2.26) and (2]27) is as small as possible. Betcke proved in [4] that the optimal
g for minimizing

(2.30)

max g'kA ko

(9 = in(kAoke: gkAKD) (2.31)
is -
kAgky )

= Gk (2.32)

d is then de ned so that the norms of scaled matrices are closeRan, Lin and Van Dooren
derived the parameters for quadratic eigenvalue problem in [30]. This type of scaling is used
in quadeig algorithm for computing all eigenvalues and eigenvectors of quadratic eigenvalue
problem [37]. The parameters will be presented in Subsejction 3.3.1.

Finally, Gaubert and Sharify [31] proposed scaling using the tropical roots. Tropical algebra
Is relatively new and rarely present in the research in numerical linear algebra. For that reason,
we brie y review the elementary notions from tropical algebra, that will be needed in the rest of
the thesis.

Tropical scaling. The tropical algebra, or max—plus algebra is a semifRff ¥g;, ; )
with operations de ned as follows

X y=maxXxy);
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2.3. Backward error for a homogeneous formPgif )

X y=x+y

The zero elemer of the tropical semiring, for whic® a= aholds, isO= ¥. The unit
element of the tropical semiring forwhichl a=a 1= aholds,isl= 0.

The max—times semiring is another variant of the tropical semiring. It is a set of nonnegative
real numberfKk™ equipped with the max operation as addition and the usual multiplication as
multiplication. The tropical polynomial in max—times algebra ig(X) = max « nax¥. The
max—times and max—plus semirings are isomorphic by thexi7apogx.

The tropical polynomialp of degreen, written as

M
th= & x K a2R[f ¥g (2.33)

k=0
corresponds tp(x) = maxy k n(ax+ kX) in the classical algebra. The nite tropical roots of the
polynomial ) are de ned as the points at which the maxinmuayg x n(ax+ kX) is attained
at least twice. There aretropical roots, counting the multiplicities for the tropical polynomial
of degreen. The analogue of the fundamental theorem of algebra for the tropical polynomials is
thatp(x) can be uniquely written as(x) = an+ & |-, maxx;c), wherecs;:::;cn 2 R[f  ¥g
are the tropical roots. They are computed using the Newton polygons.

For tropical polynomial[(2.33) we de ne the corresponding Newton polygon as the upper

of linear segments. Now, the roots are the opposites of the slopes of these segments, and the
multiplicities are the width of the segments, that is the difference of the abscissae of its endpoints.
Letko= 0<:::< kq= nbe the abscissae of the vertices of the Newton polygon. Then (2.33)
hasq distinct roots

& A oq. .
=1::50q 2.34
] kJ kj l ) J ) 1q1 ( 3 )
with multiplicitiesm; = k;  k; 1; j= 1;:::;q, respectively.

On the other hand, the tropical roots of tropical polynorhigd(x) in max—times semiring are
the exponentials of the tropical roots of the max—plus polynotp{al) = maxy ¢ n(logax+ kx)

|
sk k)

a; 1
gj = ; (2.35)
j a
and the multiplicitesn; = k; k; 1 are the same.
The tropical roots can be computed in linear time, as shown in [31].

Example 2.2([54]). Consider the tropical polynomial
tp() = maxy.ge-5;:p.9erxpas P Baer 9T (2:30)
=ao =a1 =a =ag =ay
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L .
The Newton polygon corresponding to a max—plus tropical polynoip{a) =~ “.,a x

is presented in Figufe 2.3.

25

20f

15F

10f

log |a,|
L]

"k 0=0 k_1=1 2 k_2=3 k_3=4

Figure 2.3: Newton polygon corresponding tp(x)

Now, the tropical roots, and their multiplicities, ¢f (2]36) are

a0 1=(ky ko)

= o = 8.426966292134831e-008 m; = 1;
1
a 1=(ks k1)

Q= a_3 = 1.005665767719890e-003 mp = 2;
a 1=(k4 k)

B = a—4 = 1.142857142857143e+001mg = 1:

For veri cation, let us computé&(g), i = 1;2;3:

tp(ar) = max7.5000e-005;7.5000e-005;6.1072e-012;5.2662e-013; 3.8831e-021);
tp() = max7.5000e-005;8.9504e-001;8.6977e-004;8.9504e-001;7.8760e-005);
tp(x) = max7.5000e-005;1.0171e+004 1.1233e+005 1.3136e+0121.3136e+012):

We can see that the maximum is attained twice for egeny= 1,;2;3, as it is required by the
de nition of the tropical roots.

For our purpose of scaling a matrix polynonﬁLol "A, de ne the tropical polynomial
K .
tp(x) = kAck, x ; (2.37)
‘=0

whereA: are the coef cients of the matrix polynomial.
The tropical roots of (2.37) are used for scaling of the polynomial eigenvalue problem in order to

52



2.4. Componentwise backward error

improve backward error for the eigenpairs computed using the linearizatio®(tpt= P(l )d
be the scaled polynomial, whelre= gm Leta; a2 ::: agbe the tropical roots ap( ),
counted with multiplicities. The scaling parameters are de ned as

g=aj; d=(tpa)) Li= 1k (2.38)

Notice that there are as many distinct scaling parameters as the number of distinct tropical roots
of the polynomialtp( ). The small backward error is expected only for those eigenvalues that
are close to some roaf. This is why [31] proposes the following procedure:

* De ne the tropical polynomiatp
* Find thek tropical rootsa; a» ::: agcounting the multiplicities

* For each distinct tropical roet; de ne the corresponding tropical scaliig (2.38). Compute
the eigenvalues of the scaled problgm (2.29) by using the QZ algorithm for the correspon-
ding linearization. Sort the computed eigenvalues by the magnityde ;I ¢, and divide

choosdth group of the eigenvalues as the approximation.

2.4 Componentwise backward error

The componentwise backward error for a matrix polynorR{@&l) and its approximate ei-
genpair(x;| ), with | nite is de ned by

wp(x;l )= minfe : (P(l )+ DP(l ))x= 0; jDAjj ejAj; 1= 0;:::;kg; (2.39)

whereDP(l ) = é"zol DA is, as before, the backward errorRfl ). An explicit formula
for component-wise backward error for the generalized eigenvalue profteml x and the
corresponding approximate eigenp@l ) is derived in|[39] as

jrij
W (Xl )= maX——————; 2.40
LOGT) = M AT+ i BN ), (2.40)

wherer = Ax | Bx, andx=0 is interpreted as zero ¥ = 0, and in nity otherwise. In the
following theorem we derive explicit formula fdr (2/39) for the quadratic eigenvalue problem
Q(l )= 12M+ | C+ K using the component-wise backward error for the corresponding rst
companion form linearization. We provide a different proof, using the linearization of the
quadratic problem and the corresponding explicit formula for component-wise backward error
of generalized eigenvalue probleim (3.40).
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Chapter 2. Backward error

Theorem 2.8. The componentwise backward error for the quadratic matrix polyno@ial),
corresponding to an approximate eigenp@ir! ) is given by

jrij .
(1 i2Mj+ jliCi+ JK))jx);’

wo(x;1 ) = miax (2.41)

where r= (1 °M+ | C+ K)x, andx=0is interpreted as zero ¥ = 0, and in nity otherwise.

Proof. Let (x;| ) be an approximate eigenpair fQ(l ). Then( ' ;1) is an approximate
eigenpair for the corresponding rst companion form linearization

L ! ) !
| x C K M O | x
(A | B) = |
I O 0 | X
! ! (2.42)
(I12M+1C+K)x _ r o
0 o -

(2.41) applied on equatioh (2]42) implies that there eXi¥tsindDB so that(A+ DA | (B+

DB)) 'x =0, andjDAj ejAj, jDBj ejBj, withe= w_ !X ;I . Since this bound is
component-wise, we conclude that there ekigt, DC, DK, E1, E> so that
! ) ! !
C+DC K+ DK M + DM 0 I 0
o ) X2 Vo ay)
(| + E]_) 0 0 (| + E2) X 0

andjDMj ejMj, jDCj €|Cj, |DKj €jKj,jE1 e€jlj,jEsj €jlj (notice thatt; andE, are
diagonal matrices.) By equating the corresponding block rows on the left and right side of the
equation[(2.43) we get

(1 >(M+ DM)+ | (C+ DC)+( K+ DK))x= O; (2.44)
| Eqxx+ | Exx= 0: (2.45)

SinceE; andE; are diagonaI,S) read&y)iix = (E2)iix. Now, if i 8 0 (Ep)ii = ( Ep)ii-
Otherwise, any(Ej)ii; (E2)ii such that(Ej)iij;j(E2)iij e satis es the equation, so we take
(Ev)ii = (Ep)ii. From this reasoning we conclude that= E,. Finally, by multiplying the
equation|(2.43) with g (|+£1) 1 from the left we derive

! ) ! !
C+DC K+DK =~ (M+DM) O Ix _ 0 2.46)
| 0 0 | 0
Moreover, notice thgr j= 1 and that
! !
. . ) B . .| ..X. .| .Z.M..X.+ .I ..C..X.+ .K..X.
A+l jjBi) J.JJ.J S L LY B J JJ .JJJ IK]IX :
2l jix]
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2.4. Componentwise backward error

Finally, we expressv, in terms of the original data as
!

L i

W X 1 = max i Il = max ° :

X | . . ) B . | X | .I 2.MX.+ | ..C..X.+ .K..X.

A+l jigp A X JJJJJJZ!IQ_JJJ JKiiN
: jlix] :

_ jrij
GTAMI 1 jiC+ JKJ)JXJ).

Hence[(2.4]1) holds. O

Another, more intrinsic, proof is be to directly de &M, DC, DK analogously to proof for
the linear matrix pencil in [39]. Since the construction of the backward error directly in terms
of the original problem is more insightful, we provide the details.

A more intrinsic proof of Theorem 2.8.etw be the minimak such thajiDMj  ejMj, jDCj
ejCj,jDKj ejKj, and(l 2(M+ DM)+ | (C+ DC)+( K+ DK))x= 0. Ifr=(1 M+ | C+ K)x,
then

jri=j (1*DM+1DC+DK)x el j%Mj+ jl jiCj+ jKj)ix;
thatis,® wg(x;| ). On the other hand, this bound is attainable by the following perturbations

DM = sign(l 2)D1jMjD,; DC= sign(l )D1jCjDy; DK = D4jKjDy;

where
Fi

e ———————— ; Dy = diag(sign(x)):
((il j2Mj+ jI jiCi+ jKj)ixi); 2 o(sign(x;))

D, = diag

To see this, check that

DQ(l )x= | ?sign(l ?)diag L;—'J jMj diag(sign(x;)) x

|
| sign(l )diag % iCj diag(signx))x diag w:_lj iKj diag(sign(x)) x
| |

= r’

and

jDMj = dlagJJ—'JJJMJ Wo( | )iMi;

joc) = dlagJJ—IJJJCJ wo(x 1 )iCi;

JOKj = dlagJJ—'JJJKJ wo (X )jKj;
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wherejaj = (& il j JA])X. O

The following example demonstrates the difference between the normwise and the compo-
nentwise backward error. There can be a gap between these errors suggesting that the computed
eigenpair is not as good as we could conclude by just looking at the normwise backward error.

Example 2.3. Consider thespeaker_box example from the NLEVP library. We computed all

214 eigenvalues and corresponding right eigenvectors using the alggutaeig which will

be explained in Chaptgr 3. The normwise and the componentwise backward errors for all right
eigenpairs are presented in the following gure

15 |

10 7
*}*W ORI PG R i e Wi
*** * L L * * N K
*
*

1 0—20 [

* ho(xl)

o WQ(X,l )

10—25

0 5‘0 160 150 260
Figure 2.4: speaker_box, normwise and componentwise backward errors for all right eigen-
pairs

In order to prove the analogous theorem for a left eigenpair, we have to use the second
companion form linearization.

Theorem 2.9. The componentwise backward error for quadratic matrix polynom@igl) for
approximate left eigenpatty ;I ) is given by

ax irij .
iy iGiAMj+ G+ K)));

wo(y ;I')=m (2.47)

wherer = y (I M+ | C+ K), andx=0is interpreted as zero i = 0, and in nity otherwise.

Proof. Let (y ;1 ) be an approximate left eigenpair {1 ). Then( Iy y ;I)is an ap-
proximate left eigenpair for the corresponding second companion form linearization

( ! )
c | M O
| A IB)= | |
y vy ( ) y vy K 0 0 | (2.48)

= y(?M+1C+K) 0O

I
—
o

I
—

—
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2.47) applied on (2.48) implies that there exiBsandDBsothat |y y (A+DA | (B+

DB)) = 0, andjDA] ejA};jDB] €jBj, withe=w_ |y vy ;I . Since this bound is
componentwise, we conclude that there ekigt, DC, DK, E1, E» so that
! )
C+DC |+ E M + DM 0
ly y (I+B) ) = 0 0; (249
K + DK 0 0 (1+ Ep)

andjDMj ejMj, jDCj €|Cj, |DKj €jKj,jE1j e€jlj,jEs] €jlj (notice thatE; andE, are
diagonal matrices.) By equating the corresponding block rows on the left and the right side of
the equation (2.49) we get

y (I 2(M+ DM)+ | (C+ DC)+( K+ DK))= 0; (2.50)
ly Es+1yEx=0: (2.51)

SinceE; andE; are diagonal,l) read&,)iiyi = (E2)iiyi. Now, ify; 6 0 (Ev)ii = (Ep)ji.
Otherwise, any(Ej)ii; (E2)ii such that(Ej)iij;j(E2)iij e satis es the equation, so we take
(Ev)ii = (Ep)ii- Form this reasoning we conclude that= E,. Finally, by multiplying the

I
equation|(2.49) with from the right we derive

0 (I+Ey *
! )
ly y C+DC | | (M+DM) O _ 0 o0: (2.52)
K+DK O 0 | ' '

Moreover, notice thgr, j= jrj 0 and
iy iyi GA+itiB)=jl &y jiMi+jljiy iCi+ iy jiKi 2l jiyj
Finally, putting all together, we obtain

Wy y il =max—— W
© iy iy GA+IIB)

irj o
B T ———————
Y Ml Ly G+ Jy K] 2ty
MaX——-—_——: Jl’|j oy -
Uy JQEiEMI LG+ KD);

Hence|[(2.4]7) holds. O

Theoreni 2.8 anfl 2.9 can be generalized for arbitrary polynomial eigenvalue problem of
orderk. The only difference in the proof of the theorem is that the linerization will be the pencil
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of orderkn, and there will additional perturbatiors.j, i = 1;:::;k 1, j = 1,2 on identity
matrices
0 1
Ac 1+t DA 1 Ac 2+ DAc 2 e Ao+ DAg

|+ Ej. 0 i 0
(A+ DA) = ( . 1) _ _ _ : (2.53)

0 o (I+Ex 11) 0
(B+ DB) = diag/Ac+ DA; (I+ Er2);:::; (1+ Ex 1.2): (2.54)

By the same reasoning as in the proof of Theo@ 2.8, we can concludg iatE;.o;i =

Similarly, for the left eigenpair we will have

0 1
Ac 1+ DA (IT+ Erg) i 0
(A+ DAY= 2+,DAk ’ ° : (2.55)
: (1+ Bk 11)
Ao+ DAg 0 S 0
(B+ DB) = diag/Ac+ DA; (I + E12);iii; (1+ Ex 12)): (2.56)

Here, we state the theorem for the sake of completeness

Theorem 2.10.For the matrix polynomiaP(l ) of orderk, the component-wise backward error
for an approximate eigenpa(ix;| ) is given by

jrij
wp(X;1 ) = max———————— (2.57)
@il TTADIN

where r=( él‘zol "A)x, andx=0 s interpreted as zero ¥ = 0, and in nity otherwise.

Theorem 2.11. For the matrix polynomiaP(l ), the component-wise backward error for an
approximate left eigenpatty ;I ) is given by

jrj
wp(y ;1) = max———————; (2.58)
Oy @il TTIA) |

wherer =y (ékzol 'A'), andx=0is interpreted as zero i = 0, and in nity otherwise.
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Chapter 3

Complete solution of the quadratic
eigenvalue problem

In this chapter we study numerical methods for computing all eigenvalues with the corre-
sponding eigenvectors of tle n quadratic eigenvalue problem

QI )x=(1 M+ 1 C+ K)x= 0: (3.1)

This problem is at the kernel even of the methods for computing only selected eigenpairs of a
large scale problem; in such cas@d ) is restricted/projected on a small dimensional subspace
(constructed by some algorithm) and full solution of the projected problem is required to advance
an iterative method and/or to construct an approximate solution for the original problem.

The core of the state of the art methods is computation of the eigenvalues and eigenvectors
of a particularly chosen linearization. The linearized problem is usually solved with the QZ
method. In some cases, this may lead to dif culties, in particuldt is exactly or nearly rank
de cient, which leads to (numerically) in nite eigenvalues. Even if QZ is not too much troubled
by the presence of the in nite eigenvalues|[72], it would be advantageous to de ate them early
in the computational scheme. Similarly,Kf is rank de cient, then its null space provides
eigenvectors for the eigenvalle= 0 and removing it in a preprocessing phase facilitates more
ef cient computation of the remaining eigenvalues. In both cases a nontrivial decision about the
numerical rank has to be made.

These issues have been addressed by Hammarling, Munro and Tisseur [37] who used the
structure of the linearization pendil (3.2) to de ate certain number of zero and in nite eigenvalues
using the rank revealing decompositions of the coef cient matrideandK of the original
quadratic eigenvalue problem (B.1). The resulting algorithm, designatpebagig is shown
to be more robust as e.g. tpelyeig() function used in Matlab.

In this chapter we propose a new algorithm, following the philosophguafdeig, but
with more attention to ne numerical details that ensure numerically more robust and reliable
computational procedure. Our supporting numerical analysis and numerical evidence indicate
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that the new proposed algorithm can be recommended as method of choice for $oNing (3.1).
The Chapter is organized as follows. In Secfion 3.1 we present several rank revealing decom-
positions, and the corresponding error analysis. In Seftign 3.2, we introduce the Kronecker's
canonical form and the Van Dooren's algorithm for computing the complete structure of zero
eigenvalue, i.e. the number and the sizes of the associated Jordan blocks. The material of these
two introductory sections is essential for the development of the new algorithm.
Section| 3.B provides details about tipeadeig algorithm from Hammarling, Munro and

Tisseur[[37]. Itis based on the second companion form
! !
c 1 M O
Co(l) = K 0 I 0 | (3.2)
The main steps of the algorithm is the parameter scaling and de ation process that removes
certain number of zero and in nite eigenvalues. We supplement the description of the main steps
of quadeig with the analysis of backward stability; this, in turn, will reveal important issues
that will guide the modi cation introduced in the rest of the chapter.

In Sectior{ 3.4 we tackle another problem of scaling. While the parameter scaling, success-
fully used inquadeig, removes the balance in norms of the coef cient matrices, it cannot remove
different scaling of the matrix entries. Such imbalance between the entries of a particular matrix
may be source of arti cial ill-conditioning that causes to numerical algorithms that are sensitive
to scaling. We propose to modify and deploy the balancing process [9], for problems in which
the range of the elements of the coef cient matrices is high in absolute value. We provide brief
review of the method and numerical examples to demonstrate the bene ts of balancing.

Our main result is presented in Sectjon 3.5. We rst point out an interesting fact that the de-

ation process inquadeig algorithm is actually just the rst step of the Van Dooren's algorithm

for determining the canonical structure of the zero eigenvalue. We then present an interesting
case study example whegeadeig fails to determine all zero eigenvalues. The key problem is
that there may be more than one Jordan block of the eigenvalue zero, and the de ation process
in quadeig detects only one. After de ation, the QZ algorithm is unable to detect the remaining
zeros.

We develop a test for the existence of Jordan blocks in terms of the original coef cient
matrices. In addition, we develop a full de ation algorithm, which uses the structure of the line-
rization in the rst two steps of the de ation. Finally, we present examples which demonstrates
the power of the proposed method.

In Sectior 3.5, we develop the LU basguhdeig, that is we derive the transformation matri-
ces for de ation process when complete LU factorization is used for rank determination (instead
of the QR factorization). Furthermore, we present an algorithm for computing the structure
of the zero eigenvalue using the rank revealing LU factorization; this is a non—orthogonal (but
numerically well founded analogon of the Van Dooren's algorithm).

In §3.7 we present examples that demonstrates the difference between the rank revealing
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factorizations used in the de ation process. Also, we illustrate the importance of the choice of
truncation strategy for rank determination in the rst step of the preprocessing. It is clear from
these examples that the norm-wise backward error can be misleading, and we propose to use the
component-wise backward error instead.

3.1 Rank revealing decompositions

Since detecting zero or in nite eigenvalues is based on numerical rank decision, we brie y
discuss rank revealing decompositions (RRD, sek [19]). For a geaneralmatrix A, we say
thatA= XDY is arank revealing decomposition if bathandY are of full column rank and
well conditioned, and is diagonal nonsingular (for example, the SVD and the pivoted LDU

decmposition).
N

In nite precision computation, such a decomposition is computed only approximately and
we haveA+ dA= XB¥ , wheredA denotes initial uncertainty and/or the backward error that
corresponds to the numerically compued® and¥. Hence, any decision on the rank actually
applies toA+ dA.

Since the full rank matrices are open dense s&n" (R™ M), itis unlikely that, in general,
the rank will be determined correctly using a nite precision computation. Furthermore, in many
applications the matrix has been already contaminated by errors (previous computational steps,
measurement errors on the input etc.) and a rm statement about its rank is illusory.

The structure and the size @A depends on a particular algorithm for computing a RRD. In
some special cases, it is possible to compute such a rank revealing decomposition in a forward
stable way so that the rank is determined exactly. For instance, Demmel [18] showed that the
pivoted LU decompositioP,CP, = LDU of any Cauchy matri = C(x;y) (Gij = 1=(x + Yj))
can be computed so that each entryLpD, U is computed to high relative accuracy, that all
zeros are computed exactly and thatndU are well conditioned.

We refer to[[19],/[18],/[33] for a more in depth discussion and de nition of a numerical rank.

3.1.1 Singular Value Decomposition (SVD)

The ultimate rank revealing decomposition is the singular value decomposition (SVD), in
particular because it provides not only the information on the rank, but also exact distances to
matrices of lower ranks.
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Theorem 3.1. (Eckart-Young|[29], Mirsky|[52]) Let the SVD of AC™ " be

A=USVY ; S= diaqsi)in;iz(m;n); S1 S min(m;n) 0:

UkSkV, - The optimal rank k approximations kn k, and the Frobenius norrk kg are

¥ i——"
P mln(()n,m)

min KA Nky= KA Aks=si1; min kA Nkg= KA AKg= a s&
rankN) k rank(N) k =kt 1

The above theorem allows us to say something about the ranks of the matrices in the vicinity
of A, and to estimate what change is needed to lower the rank. In a framework of numerical
computation with noisy data, this kind of information is more proper than simply claiming the
rank to ber.

State of the art packages for matrix computation such as LAPACK [2] provide several su-
broutines for computing the SVD:

* XGESV,hivhich implements the zero shift QR method|[20] on the bidiagonal matrix.
* XGESDvhich implements the divide and conquer scheme on the bidiagonal matrix [35].
* XGESVJ, xGEJSAre the implementations of the Jacobi SVD,| [25], [26].

In some cases we resort to less expensive tools, that usually perform well — the pivoted QR
factorization and LU decomposition.

3.1.2 QR factorization with column and complete pivoting

QR factorization with column pivoting is a tool of trade in many applications, in particular
when the numerical rank of a matrix plays an important role. Particularly successful is the
Businger—Golub [12] pivot strategy which, &2 C™ ", computes a permutation matix a
unitary Q and an mim; n) upper triangular (trapezoidalmh < n) matrix R such that

R d .. o
AP=Q 0 : where jRjj a jRj% foralll i j n (3.3)
k=i

o<

Here, for the sake of brevity, we consider only the case n. If m< n, thenRism n
upper trapezoidal and the zero block 3.3) is voidralE rankA), thenO{Qan 6 0Oand

r= nun Rua g o ckk (3.4)
0 Reg
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then matrix R[Oll] R[cl)z] can be interpreted as upper triangular matrix in QR decomposition

of singular matrixA+ DA, i.e.
I | I

0 0 _~ Ruy Ru - 0 0
A+ DAP (A PP = 1 ™14 . pa PT: (3.5
( )P (A Q 0 Rus )P=Q o o Q 0 Rus (3.5)

Hence, ifk is such thaRy; 4 is of full rank, thenA+ DA is of rankk and
P—0 .
KDAKr = kRozke N KR+ 1k4 1)
Hence, ifg> 0 is a given threshold, and if we can nd an indexl k< n) such that
P—0 ,
N KR 1k+ J=KAKE  g; (3.6)

thenA is g-close to the rank matrix A+ DA, whose pivoted QR factorizatiop (3.5) is obtained
from @) by setting in the partitio@A) the bloBl, to zero. Of course, we would take the
smallest possiblk that satis es|(3.p).

The essence of rank revealing capability of the factorization is in the fact that suckikh
very likely be visible on the diagonal &if Ais close to a ranka matrix. This is due to the fact
that thejR;jj's mimic the distribution of the singular values Af and to the fact that the SVD
gives the exact distances to the lower rank approximatioAs$ee Theorern 3.1).

Example 3.1. To illustrate this discussion, we gener@@0 200matrix A asA= XY + E,
whereX andY are200 100pseudo-random matrices generated in Matlab using the function
randn() , andE is a pseudo-random matrix with entries bounded.By’. In Figur, we
display the singular values @&f(as computed by the functi@vd() ) and the absolute values of
the diagonal entries d®, which is computed using the Businger-Golub pivoting.

QRCP reveals the trend of the singular values
T T T T T T T T

svd(A)
abs(diag(R)) | 1

10710 I . I | I I . I .
20 40 60 80 100 120 140 160 180 200

Figure 3.1: Comparison of the absolute values of the diagonal entri€sfiadm ) and the

singular values of. Note that the QR factorization correctly detects thig O(10 /) close to
a matrix of rank 100.
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Remark 3.1. The rankk approximationA+ DA de ned in (3.5) in general does not share the
optimality property of the matri¥y from Theorenj 31, but it has one distinctive feature: it
always matche# exactly at the selectddcolumns, whileAy in general does not match any part
of A.

An ef cient and numerically reliable implementation ¢f (B.3) is available e.g. in LAPACK
[2] in the functionxGEQR3vhich is also under the hood of the Matlab's functigm for the
numerical and software details we refer|to|[23].

Computation of the QR factorization in nite precision arithmetic is backward stable [41]:
for the computed factor8, ®, R, there exists a backward errdA and a unitary matri@ such
that I

(A+ dAP= 0O ':  kdAkg  ekAke; k® Okr e (3.7)

In fact, the backward stability can be stated in a stronger form — the backward error in each
column is small relative to its norm,

kdA(:;i ko eskA(:; ko, 1= 1500 (3.8)

This is an important feature if some columnsfadire, by its nature, much smaller than the largest
ones (different weighting factors, different physical unit§); |(3.8) assures that the computed
factorization contains the information carried by small columné.oiWhile (3.7,[3.8) hold
independent of pivoting, pivoting is important for the accuracy of the computed factorization,
and for the rank revealing. The error boumglare a moderate functions of the matrix dimensions
times the machine roundoff unit

If, for a suitable partition oR, analogous t4), we can determlguch tha®,; can be
chopped off, we have

0 1
Ruy Rug

(A+dA+DAR= 8B 0 0 X: kdAke  ekAke: k@ Oke e  (3.9)
0 0

where 0 1

0 0
DA 6B0 RyKP": (3.10)
0 0

Note that{ DAP)(:; 1 :Kk) = 0, so that the overall backward error of the computation of the factori-
zation and truncation d&, in the most important columns (as determined by pivoting) remains
as in[3.8). Notice that ifj (39) we have additioda from computation of QR decomposition

in comparison with[(3]5).

64



3.1. Rank revealing decompositions

Complete pivoting. In some applications (e.g. weighted least squares) the rows of the data
matrix may vary over several orders of magnitude, and it is desirable to have backward error
that can be bounded row-wise analogously t0](3.8). A pioneering work is done by Powell and
Reid [58], who introduced QR factorization with complete pivoting. More precisely,jitha

step, before deploying the Householder re ector to annihilate below-diagonal entriesjitithe
column, row swapping is used to bring the absolutely largest entry to the diagonal position:

0 1

As any pivoting, this precludes ef cient blocking and using BLAS 3 level primitives.
Bjorck [8] noted that the dynamic complete pivoting can be replaced with an initial sorting
of the rows ofA to obtain them in monotonically decreasing order with respect togtherm.
If P is the corresponding row permutation matrix, and if wefset R A, then

KA(L;)ky k A(Z2;)ky ik A(mM;)ky; (3.11)

and we proceed with the column pivoted factorization|(3.3). An error analysis of this scheme
and Householder re ector based QR factorization is given by Cox and Higham [15].

kdA(i; ) ky aj (k)
—— —————; wh i = g A2
|r:nlar)n( KA(I; ;) Ky e4in:lr)n(kA(|;:)k¥ where a nj];ilxj}siIJ J (3.12)
andAR® is thekth computed (in nite precision arithmetic) intermediate matrix in the House-
holder QR factorization. As a result of initial row ordering and the column pivoting, [15] shows
that

m i+ 1(1+|D§)i KAG; kg, 0on

a; — .
! (1+ g 2" KA )ky: i>n

(3.13)

It is worth mentioning that the factgf+ g 2)" 1is almost never experienced in practice.

An advantage of replacing the dynamic complete pivoting of Powell and Reid with the initial
pre-sorting|(3.11) followed by column pivoted QRF (3.3) is more ef cient software implemen-
tation.

Remark 3.2. If we write the completely pivoted factorization as
! !

R
RAR=Q . then AR. = (P'Q)

is the column pivoted QR factorization (sinBeis orthogonal) and the row pivoting brings
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Chapter 3. Complete solution of the QEP

nothing new to the rank revealing property that is encoded in the triangular factor (this is because
of the essential uniqueness of the factorization). However it makes difference in the backward

stability because of (3.12) and (3]13).

Strong rank revealing pivoting. In some rare cases the column pivoting can miss small
singular value oA, i.e. the structure dR may not reveal thaA is close to rank de ciency. The
most well known example is the Kahan matrix

0 10 1

C C
C

o o o R
© o o o
O o o R
O O O O

K(n;c;s) = L2+ =1

oo o R o o
© o o o o
P o 0. 0 0. 0

Cc
Cc
c
1
0
0

O o0 oo wnw o
oo % o oo
oo oo R

o O O Bk

0 ot 0 0

which, forc approaching one, has one small singular value and in the factorizationj @),
overestimates min(K(n; c; ) by the factor 2 1; see e.g. [40, §6.2], [74].

In the strong rank revealing decomposition, the task is to nd the permutBtgmthat the
gap (i.e. sharp drop) in the singular valuesfois revealed by the gap between the singular
values of the diagonal blockg;; andRy, in the partition @); the partition parameteis
also determined in the process. The key idea is, for givémiteratively reshuf e the columns
(thus updating the pivoting) with the goal to increase the singular valuBg gfas much as
possible, and, at the same time, to decrease the singular valRgg oT'he error factor between
the singular values ok and the diagonal blocks &tis expected to be a moderate function of
the dimensions andr.

In the strong rank revealing pivoting in [36, Algorithms 4 and 5], an additional parameter
h > 1 balances the trade-off between the sharpness of the estimate and the computational cost.
The algorithm guarantees the following enclosures of the singular values

Sj(A) _ (A -
vm Sj(Ru1p) :J(A)’ 1 ]

Sr+j(A) Si(Rzz)  1+h2r(n nswj(A; 1 j n o

at the cost oD (m+ nlog, N)n® arithmetic operations [36, Section 4.4].

3.1.3 The complete orthogonal factorization (URV)

Suppose that in the QR factorizatign (3.3), the makis of rankk < n, so that in the block
partition @)R[zz] = 0. In many instances, it is convenient to compress the trapezoidal matrix
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(Rr11 Raz) to triangular form by an additional LQ factorization.
This LQ is equivalent to computing the QR factorization

! !
T

R Z 7 Tay

Rz 0

whereT;; 2 CK K is lower triangular and nonsingular. By a composition of these two steps we

get the so called complete orthogonal decompositiof of
!

Ty O
A=Q [31] o 2 whereZ= ZgPT. (3.14)

The above described process for computing the complete orthogonal decomposition can be
summarized in Algorithrn 3.7}1.

Algorithm 3.1.1 Complete orthogonal decompositionAf

INPUT: A2Cm "
0

OUTPUT: Q, Ty1y, Z, S0 thatA= Q T[éll 0 Z

R

0

3: Compute the QR factorization with complete pivoting of the truncated matrix
[

2: Compute the QR factorization with column pivotitig; A)P = Q

T T,

RPy= [ Pi=Plzg .
[12

4. Z= PPlZg.

5. if P, 6 | then

6. Q=PJQ

7: end if

o P10

8Q=Q |y |

Backward error analysis. Inthe QR factorization, the matrik is multiplied from the left by
a sequence of unitary transformations. Hence, there is no mixing of the columns; we can analyse
the process by following the changes of each column separately; that is why the column-wise
backward error bound (3.8) is natural and straightforward to derive. The transformations from
the right in the pivoted QR factorization are the error free column interchanges.

On the other hand[ (3.114) involves nontrivial two—sided transformations ahd more
careful implementation and error analysis are needed to obtain backward stability similar to
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the one described irf §3.1.2. The following theorem provides a backward error bound for the

Algorithm[3.1.1:

Theorem 3.2.Let®, %11 andZ be the computed factors of complete orthogonal decomposition
of A. Then they correspond to the exact complete orthogonal decomposition of matrix

odR[ " 1 'Oﬁ L

11] 27] ' 11]

A+ dA+ DA+ 0% 0 0 XE =08 F;l ? ® 0 X b PR
0

0 0 0

where® ®and2 2 are orthogonal (unitary) and

0 1
0 O
kdAkr e kAkr; DA= @%0 R[zagPT; kdR(:;;i)k  eskR(:;i)k:
0O O

Proof. For the rst step we have the relati.9). ¥t Ry Ry and compute the QR
factorization ofR . We use the complete pivoting, and the the computed faﬂdﬁﬁll satisfy
!

-
(R+ dR) P = PJD [(1)1] ; (3.15)

whereRis unitary,k2 Pke e and, by[(3.1F, 3.13kdR(:;i)k  eskR(:;i)k. Including [3.15)
in (3.9), we obtain

odR{ o 1 'O’ﬁ !

11 27] ' 11

(A+dA+DA+ OB 0 0 KP)= @ ! ? Do okkpP.e;
0

0
0 0 0

wheredA s from (3.7[3.8)DAis as in [[3.1D)

Hence, thek pivotal columns ofA (as selected b¥) have, individually, small backward
errors of the type[ (3]8). Note that the complete pivoting in (3.15) is essential for column-wise
small backward error il and thus isA. O

3.1.4 Rankrevealing LU and Cholesky factorizations

Using Gaussian eliminations, every mati2 R" " with all its leading principal minors
different from zero can be factored as a product of a lower triangular matixd an upper
triangular matrixJ, that isA= LU. In every stefk of Gaussian elimination the goal is to zero
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out the elements below the diagonal in #hth column by the following elementary operations
k+ 1 K K
a1-(J-+ ) = ai(j) mka(kj) (3.16)
K a,-(k) K
:ai(j) %al((j); 1= Kk+ 150 j=k+ 1, (3.17)
k

A A
wherea? are the elements of the mate = " 1 "2 in thekth step. Itis clear from
0 22]
equations|(3.16)-(3.17) that the problem occurs wq(é)n: 0. Also my can be large (if the
pivot aﬁkk) is small) and this may result in loss of signi cant digits in nite precision arithmetics.

This is why the following pivoting strategies are introduced:

* partial pivoting. in k-th step, the&k-th and ther-th rows are interchanged wherés such
that
(NP (k)
Jay) kmia>r<]Ja1k J:
The resulting LU iPA= LU, whereP is the corresponding permutation matrix.

» complete pivoting.in k-th step, theé-th and ther-th row, and the&-th and thes-th column
are interchanged, whereands are such that
(k)

(0 (K
jars’j = max jaij’J:

The resulting LU iPAQ= LU, whereP, Q are the corresponding permutation matrices.

Moreover, if partial pivoting is turned on, every square ma#ixdmits LU factorizatiorPA=
LU.

LetA2 R™ "andm n; clearly the elimination process applies in the rectangular case as
well. It is shown in [41] that, if the Gaussian eliminations run to completion, the computed
factorsE 2 R™ "and® 2 R" " satisfy

BO = A+ DA DA g8} = 7 .
It is usually said that partial pivoting is good and reliable enough, so that the complete pivoting
is not needed. However, there is a whole collection of problems for which Gaussian eliminations
with partial pivoting are unstable, see elg.|[73].

The important difference between LU and QR factorization is discussed and exploited in
[22]. The difference is that the LU factorization is invariant under row and column scaling. More
precisely, assume that matxis permuted so thad QAP= LU is the LU factorization with
complete pivoting. Moreover, assume tatan be written ad& = D1ZD», where the elements
of the diagonal matriXD, are sorted in the increasing order by the element magnitudeZ and
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admits an accurate LU factorizatidn= LzUz with moderate&kLzk,. Then the computed matrix
€ for A has a columnwise small relative error

k(L E)ek (D1)jj
2= TE max
KLek: > (Dy)ii

k(Lz Ez)eka:

In exact arithmetics, LU factorization with complete pivoting is rank revealing factorization, that
is if rank(A) = r < nwe have

! !
Lpug O Uny Ypng .

PAQ= LU =
Lpg In v 0 0

However, there are examples where LU factorization with complete pivoting fails to detect the
nearly singular matrix, that is there are no small pivots in the factorization although matrix
contains a small singular value. This matrix is of the following form

Pan proved in [56] that there exists a rank revealing LU factorization, and obtained the bounds
similar to those for the strong rank revealing QR. Before we state the result, we recall the notion
of matrix volume, and the locah-maximum volume.

De nition 3.1. LetA2 R™ "ands; s> i sp 0, p= min(m;n), be the singular
values of A. The volume of A is de ned as
VOI(A) = S1S2:::Sp:

De nition 3.2. LetA2 R™ "andB be a submatrix oA formed by anyk columns (rows) oA.
vol(B) 6 Ois said to be a locaimmaximum volume in An 1 if

mvol(B)  vol(BY; (3.18)

for anyB®that is obtained by replacing one column (row)Bby a column (row) oA which is
not in B.

Them 1in (3.18) is user supplied parameter; its role is critical in a volume maximizing
iterative scheme to avoid in nite loop that may be caused by rounding errors. Pan proposes to
choosen= 1+ u, whereu is the machine precision. Pan [56] proved that, for a ma#@xR™ "

70



3.1. Rank revealing decompositions

and any integer 1 k nthere exists permutation matriceéandP such that
! ! !

Gcap= oy Bug _ e O Buy Bug
By Bpg Z lh«k 0 Upg

whereZ = B[zl]B[ﬁ], Upg = By ZBjg and

1

kin me+ 1ok

Sk(A)  Smin(B11)

Sie1(A) Kk Upgka  k(n KNP+ 1 sy, 1(A):

The permutatiorP is determined so that the volume of the tsicolumns ofAP is a local
mrmaximum inA, andGis determined so that the volume of the kstows,vol(By;4), is a local
mmaximum in the rstk columns ofAP.

Cholesky factorization. Let A be real symmetric positive de nite, and |&t= LU be the
corresponding LU factorization. Note that battandU are nonsingular. Sinck= AT we have

T T = — 1T — T
e A ¢ I -
lower triangular  upper triangular

=) L WT=uUL T=:D; whereD is diagonal matrix
=) U=DL":

Hence, we can writd = LDLT. SinceA s positive de nite, i.ex" Ax= x"LDLTx> 0, x6 Owe
can conclude thdD is positive de nite, and we can writ® = 5p D. By denotingR= " DL,
we obtain Cholesky factorizatioh= R'R, whereR s upper triangular matrix. If we in addition
require that the diagonal &tis positive, the factorization is unique.

There is a similar result of backward stability for Cholesky factorization to that for LU
factorization proven in[[41]. Namely, if Cholesky factorization runs to completion then the
computed factoR satis es

(n+ u

T _ Lo . NETT _ .
RIR= A+ DA DA g alRIRS Gra= =

For symmetric positive de nite matrix there is a unique Cholesky factorization. On the other
hand, ifA is only positive semide nite, generally we do not have uniqueness. For example
! ! !
00 0 0 0 coyy

01 cosg sing 0 sing

However, we know that there exists a permutafosuch that? TAP has a unique Cholesky
decomposition
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!
PTap = RTR R= R Ruz
0 0
whereR};q is 1 upper triangular with positive de nite diagonal elements. The pivoting
strategy ensures that at each dtep

(K _ (k).
ajj = maxa;”; (3.19)
and it is equivalent to complete pivoting in Gaussian elimination. In exact arithmetics, the

Cholesky factorization with pivoting (3.19) is a rank revealing decomposition.
Forl Kk r partitionA

!
A= Ay Aug
T L
A[12] A2z
so thatAy 2 RX K. Denote byS(A) = Ay A[le]A[ﬁ]A[lz] the Schur complement &%,

in A, and note tha& (A) = 0. Itis proven in [41] how the&s(A) changes wheA is perturbed.
Assume for symmetri& thatkA[li]E[ll]kz < 1 holds. Then

S(A+E)= S(A)+ Eg  (EjgW+ WTEiz)+ WTEjggW + O(KEK3);

whereW = A[ﬁ]A[lz]- This means that the sensitivity §{(A) to the perturbation i\ essentially
depends on the matriw. If the pivoting strategy] (3.19) is used, the following inequality holds
r

Az S0 0@ 1) (3.20)

If no pivoting is used, the norm if (3.R0) can be arbitrary large. Since in the practice, when the
pivoting strategy|(3.19) is usekIA[li]A[lz]kz rarely exceed40[41] we can conclude that the
Cholesky algorithm with this pivoting is stable algorithm for the semi—de nite matrices.

3.2 Kronecker's canonical form for general pencils

Canonical (spectral) structure of a matrix perkil | B is, through linearization, an extre-
mely powerful tool for the analysis of quadratic pen€g )= | 2M+ | C+ K. In particular,
since the second companion form

Is strong linearization, the partial multiplicities, and thus the structure of all eigenvalues (inclu-
ding in nity), are preserved. In a numerical algorithm for the QEP, it is desirable to remove the
zero and in nite eigenvalues as early as possible and, thus, canonical structure can be used to
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3.2. Kronecker's canonical form for general pencils

guide such a preprocessing step.

In this section, we brie y review the numerical algorithm by Van Dooren [21], developed
for the computation of the structure of eigenvaluér a generam npencilA | B, i.e. the
number and the orders of the Jordan blockd foirhe nal goal is the Kronecker's Canonical
Form, that is a factorization of the form

P(A 1 B)Q= diag(Le;; i LeyiLiysiiisbigs ! IN;I 1) (3.21)
whereP, Q are constant invertible matrices and
0 1 1
I 1 .
Lm:% §zcm o pog ! 2 clmd) m.

1

N is nilpotent Jordan matrix, andlis in Jordan canonical form. Here, however, we focus
our attention only on computing the structure of the eigenvalulotice that for the in nite
eigenvalue one can reverse the pencil. For an arbitrary nite eigenvalue, a suitably shifted pencil
Is used; see [21] for more details.

For the sake of completeness and later references, we brie y describe the main steps of the
staircase reduction for the zero eigenvalue. The péncil B is assumed regular (thus square,
n n),andl = 0is assumed to be among its eigenvalues.

1. Compute the singular value decompositioof
A= UaSpVa; (3.22)

and lets; = n rank(A). (Since zero is assumed to be an eigenvalu® of B, Amust be
column rank de cient.) Note tha®pa= Ay | 0, 5, , WhereA; is of full column rank

n s. PartitionBVa= B, ‘ B, inthe compatible manner. If we multiply the pencil
by Va from the right we get

(A I BVa= A, IBy| IB : (3.23)
2. Compute the singular value decompositiorBof
B1 = UsSgVi: (3.24)

The rank ofB; is s; (full column rank) since the initial matrix pencil is assumed regular,

B,
andUgB; = L1 , detBy:1 6 0. Multiply the pencil (3.28) byJg from the left to

n 9 &1

73



Chapter 3. Complete solution of the QEP

get I
Ag1 | B2;1‘ | Byt

A2;2 | BZ;Z ‘ On SR

Ug(A | B)Va= (3.25)

3. Let B be the permutation matrix that swaps the row blocks in the above partition. Thus,
we have unitary matrice = PsUg, Q1 = Va So that

!
Ag2 | By ‘ Oh s

Pi(A |1 B)Q1= ; (3.26)
Ao | B2;1‘ | By1
where I
Ao
%2 —pa2Cct (s
2:1

is of full column rank.

This concludes the rst step of the algorithm. Note that

jdetPide(A | B)detQyj = jde(A | B)j= |l J'SlJ'J'Ide{IzBl;ljjJ'def(Az;z | B22)J;
60

which clearly exposes; copies of zero in the spectrum, and reduces the problem to the pencil
Az2 | B of lower dimensiom, = n 5. Clearly, if Ayz is nonsingular, zero has been
exhausted from the spectrumA&f | B. Otherwise, in the next step, we repeat the described
procedure onthay ny pencilAy, | By, to obtain unitary matrice, d?z so that

1
Azz | Bsgs Ons s Ong s
PP(A | B)Q1Q2= % Az2 | Bao | B2 Os, s ).
Az1 | Bgi|Ax1 | Bpi| |Bia

whereP, = diag(lbz;lsi);Qz = diaqﬂgz;lsl), ands; = np  rankAz), 3= Ny  $. Asin the
. . A3,3 . .
rst step, Boo iss; s nonsingular, and As, 1S of full column rank. Furthermore, since
Ong+ spisy
Aot
well.

is a column block in the full column rank matridy.; must have full column rank as

This procedure is repeated until in ah step we obtain

0 1
Arier | B‘+1f+1| On.y s EE ‘ Onyy s ‘Oml S~
Aci: 1By | 1By O 5, | Os g E
P(A | B)Q= ; g; (3.27)
N A2 | B2 A2 I B2 I B2 052;51 g
Asigr IBira |[Aa 1B Az1 1 Bz1| |Bia
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3.2. Kronecker's canonical form for general pencils

This procedure is formally described in Algorithm 3]2.1.

Algorithm 3.2.1 De ation of eigenvalue 0 using SVD [21]
L j=1LA1=ABp=Bm=n;
2: Compute the SVDA;;1 = UaSaAV,
3= rank(Ag1)
4: while sj > 0do

5:  Partiton matrices: Aj+1|0 = Aj;Va, Bj:+1|Bj = Bj;jVa
6: Update and partition blocks in royv

7. fori=1:) 1ldo

8: Aijr1 | Aij = AjVai Bije1 | Bij = BijVai

9: end for

10:  Compute the SVD of; nj matrix Bj: Bj = UgSgVg
11:  Compres$; to full column rank, permute and partition:
Al Bi.n:
12 k,l.'“l = BBUgAj+1; J+._l.'J+l = RUgBj+ 1;
i+l
. 0 _
13: . = PsUsB
1) .
14: Njw1=nj sj,j=]+1
15:  Compute the SVDA|:j = UaSaV,
16:  sj=nj rankAj;)
17: end while

It has been proven that this algorithm completely determines the structure of the zero eigen-
value of the matrix pench | B.

Proposition 3.1([21]). The indiciess given by Algorithnj 3.2]1 completely determine the struc-

~

Finally, we can conclude that this algorithm also determines the structure of zero eigenvalue
for the quadratic eigenvalue problem via a (strong) linearization.

Theorem 3.3. Algorithm[3.2.1 applied to pencfl (3.2) completely determines the structure of the
eigenvalue zero for the quadratic eigenvalue probleth)& (| 2M+ 1 C+ K)x= 0.

Proof. Every regular quadratic matrix polynomi@(l ) can be represented in the Smith form,
that is

Q(l)= E()D()F(); (3.28)

mialsd;(l ) such thati(l ) is divisible byd; 1(I ), andE(l );F(l ) aren nmatrix polynomials
with constant nonzero determinants.
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Chapter 3. Complete solution of the QEP

uniquely determined b@)(l ). Recall that, for an eigenvalue of Q(I ), we can represent the
invariant polynomials as

di(l)=(l 1o%pi(l); ai 0 pi(lo)6O; (3.29)

ments(l | ) are the elementary divisors for the eigenvdldeanda; represents the dimen-
sion of theith Jordan block for the eigenvallig.

Now, since the second companion form is a strong linearization, this means that the partial
multiplicities of all eigenvalues of(1 ), including in nity, are preserved. Propositipn B.1 states
that h indiced sg computed by the Algorithih 3.2.1 completely determine the structure of the
eigenvalue zero for the given pencil. In our case the pencil is the second companion form
the linearization, and thus they completely determine the structure of the eigenvalue zero for

Q). 0

3.3 The algorithm quadeig

As we discussed in the introduction of this chapter, zero and in nite eigenvalues are dif cult
to detect in nite precision arithmetic, and their presence may impair convergence of an algo-
rithm for solving the linearized problem. Since those eigenvalues are related to the null spaces
of M andK, and since non-singularity is a generic matrix property (holds on the open dense set),
the distinction nite—in nite, or zero—nonzero, is numerically delicate issue. On the other hand,
if we could remove at least some of them in a numerically safe way, that would save the QZ
algorithm the trouble of dealing with zeros and in nities in the spectrum. Besides, removing
those eigenvalues early in a computational scheme facilitates ef cient iterations with reduced
problem’s dimension.

This motivated|[3]7] to develop a new de ation scheme that remaoves), in nite and
n rg zero eigenvalues, whemg = rankM andrk = rankK. The remaining generalized
linear eigenvalue problem is of the dimensig+ ri; it may still have some in nite and zero
eigenvalues, and their detection then depends on the performance of the QZ algorithm. The
computation is done in the framework of the linearizat{on|(3.2).

In this section, we analyzguadeig in detail. For the sake of the completeness, we rst give
a detailed algebraic description of the reductioquadeig. In addition, we provide a backward
error analysis of the de ation process.

3.3.1 Parameter scaling

The main feature afjuadeig is the introduction of parameter scaling in order to equilibrate
the backward errors for the original problem and the corresponding second companion form
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3.3. The algorithnguadeig

linearizationC, as described in Subsection 2]3.2, i.e. we consider the scaled quadratic eigenvalue
problem

| = gm@m) = Q(l )d = nP(g’dM)+ m(gdC) +( dK);

whereg andd are de ned so that the norms of the coef cient matriéésC andK are approxi-
mately equal and close to one.
In [37], two types of scaling are used:

Fan, Lin and Van Dooren scaling. g andd are de ned as the solution of the minimization
problem

mjjnmaxfk Kko 1;kCk, 1;kMk, 1g; (3.30)
g
that is, s
kKky 2 _
kMkz’d__kKk2+kChg' (3.31)

Tropical scaling. gandd are de ned as tropical roots of max-times scalar quadratic polyno-
mial

Otrop(X) = max(kMkox?; kCkox; kKkz); x 2 [0;¥i: (3.32)
- kCk ]
Denetg= pm Ifto 1,(3.32) has the double root
S
kKK Kko
+ — .
9797 vk’

and iftg > 1 there are two distinct roots

+

kCks kKks>
—2>q = :
kMk> kCks

Hence, wherg > 1, scaling with the parameters
g=g"; d=(arop(g")) *

Is used to compute the eigenvalues outside of the unit circle, and scaling using the parameters
g=g ; d=(drop(g ) *

is used to compute those eigenvalues inside the unit circle. With this choice, the denominator in
the bound

1 ho(z1;a;b) 322 max1; max kMks; kCko; kKk2))  kzko

3 he(zab) © jafkMig+ jabjChot bikKkokake O
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Chapter 3. Complete solution of the QEP

is O(1).

Example 3.2. Recall the Example 2.1. If we use the Fan, Lin and Van Dooren scaling on this
problem, the maximum backward error for QERLi$93925004288704e-016 We added the
backward errors for the eigenpairs obtained from the scaled pro8igm to Figure for
better illustration of the importance of parameter scaling.

10

o o
@] © o ©
o o
o o © © o

10-10'
o ol(zs,)
* c,(z))

. + ol@sy)

10} ? i

¥¥$¥***$;******9e
+ +

+ *t 4+ 7

10”°

Figure 3.2: Backward errors for the linearizatidy, the original problem quadratic problem
and the scaled pend®(l ), for the test problenpower_plant .

3.3.2 De ation process inquadeig

Before introducing the de ation procedure, we analyze the backward error induced by trun-
cation, which will be used in the analysis of the backward error for the de ation process.

Backward error in rank revealing QR factorizations of M and K

The procedure starts with the pivoted (rank revealing) factorizations
! !

0 Ry
(RmM)Pm = QuRm; Ru= 00 ' = = ; (3.34)
On 'm:N
00000 M
! !
0 Ry
(PkK)Pk = QkR«; Rc= 00000 = : (3.35)
00000 On ren
00000 K

The initial (optional) row sorting before the column pivoted QR factorization is indicated by the
matricesP-m, P-k. Since the sorting is in the: norm, it is exact even in nite precision. In the
absence of row sorting both\, Pk are implicitly set to the identityy,.

In nite precision (see 2) the computed matri@g, Ry, P v satisfy, independent of
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3.3. The algorithnguadeig

the choice of the permutation matiky,
Pam(M+ dM)Py = QuRy; (3.36)
Where@M = @u + d®y is exactly unitary with
kd®@ukr k @M Oukr e; andkdM(:;;i)ky ekM(:;i)ko; i=1;::0m;

whereey; ez are as in[(3]7)[ (3]8).
If B-m is the row sorting permutation, then, in addition,

kdM(i; )k ey kM(is)kg; 1= 15

whereeg, is de ned using|(3.12) and (3.13) in §3.1.2. SirRe is unitary, we can absorb it
into @y and@y and rede ne@y := P1,@u, Oy = R, Ov and write, instead of (3.36),

(M+ dM)Py = QuRy: (3.37)

Analogous statements (3]36—3.37) hold for the factorizafion](3.35).

Backward error induced by the truncation

However, if we truncate the triangular factor in an attempt to infer the numerical rank, we
must push the truncated part into the backward error, (3.5). This changes the backward
error structure, and the new error bounds depend on the truncation strategy and the threshold.

Assume in|(3.37) that we can partitiy as

Ry (Rwuz

Ru= On kk  (Rw)pg

, wherethgin k) (n k) block (Rw)2z "is small™

Then we can write a backward perturbed rank revealing factorization
! |

(M+ dM+ By 0 0 Bl)Pw= Oy Ry Rulpg (3.38)
| 0 %?M)[ZZ] ) Onh kk On kn k

DM

Obviously, DM is zero at thek "most linearly independent” columns df selected by the
pivoting, (DM)P\(:;1:k) = Opk. At the remainingy  k columns we have

K(DM)Pm(:k+ j ko= K(Rm)2g (5 Dk2 ] ((Rw)22) k+ 1+ 1l
Consider the following choices &f for a given threshold parameter
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Chapter 3. Complete solution of the QEP

1. kisthe rstindex for whichj((Rv)p2z)k+ 1+ ti((Rw)g)ki- In that case

j:r?%xkk(DM)PM(:;m Dk2 ti((Rw)zgdkid  t mink(M+ dM)Pu(:i)kz; (3.39)

2. kis the rstindex for whichj((Rv)2z)k+ 1k+ 1) t computedkMkeg). In that case

_rriaxkk(DM)PM(:;k+ k2 t computedkMkg);
j=1n

3. kis the rst index for which
J((Rm)2z)ke ke it computedmaxik Mk ; KCke; KKKgg):
In that case

nzaxkk(DM)PM(:;k+ k2t computedmaxtk Mkg; kCkg; kKkrQ):
=1n

J

This strategy (3.) is used iquadeig with t = nu. Here it is necessary to assume that

the coef cient matrices have been scaled so that their norms are nearly equal. Otherwise,
such a truncation strategy may discard a blocRjnbecause it is small as compared e.qg.

to KCkg or kKKE.

Remark 3.3. It is important to emphasize thatquadeig, scaling the matrices is optional,
and if the (also optional) de ation procedure is enabled, the truncation strategy opens
a possibility for catastrophic error (severe underestimate of the numerical ranks) if the
matrices are not scaled and if their norms differ by orders of magnitude. A user may not
be aware of this situation, which can cause large errors.

We now go to the details of the de ation procedure, whose decision tree depends on the
numerical ranks of the key matricésandK.

The case of nonsingulaM or nonsingular K

This case can be considered simple; it allows avoiding in nite eigenvalues by simply rever-
sing the pencil.

Both matrices nonsingular. Inthe simplest casankM) = rank K) = n, the linearized pencil

Is transformed by the following equivalence transformation:
I( ! ) !
0 Ip K 0 0 In 0 Iy
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3.3. The algorithnguadeig

0 1 0 1
KPwm 0 0 In
0 1 0 1
QuCPwm Q Rull| O
= MA@ A |B: (3.40)
KPwm 0 0 In

Proposition 3.2. LetR | Bthe computed IinearizatioO). Then it corresponds to an exact

KdC(:;i)ka  eckC(:;i)ka; kdM(:;i)ko  egrkM(:;i)ko:
Further, if the row sorting is used in the QR factorization of M then, in addition,
kdM(i;)ka ey kM(i;2)ka

Proof: The proof can be read off as the special case of the proof of the Prop@siion 3.3 below.

Only one of M and K nonsingular. On the other hand, if e.gankK) < rankM) = n, then
the transformation reads

I( ! N l
0 K 0 0 [ 0
0 Qk 1 0 n 1QK
QKPwm 0 0 In
0 1 0 1
QuCPwm QmQk
C Rw 0
= AN
= B RePLPw 1@
—_— 0 0 In
0n rg;n
0 1 0 1
X1 X12 | X13 ~ Rwv ‘H 0 ~
% X21 OrK;rK OrK;n rk x | % O HK ‘ O g (341)
On rg;n On rK;rK 0 0 ‘ In Ik
The reducedn+ rg) (n+ rg) pencil is
0 1 0 1
Xu1 ||| X2 Rwm 0
A |B=@ A | @ A - (3.42)
X21 OI’K;I’K 0 IrK

Consider now the backward stability of the reduction. We assume that the rank truncation is of
type 1. (see[83.32) with the corresponding backward error (3.39)t withu.
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Chapter 3. Complete solution of the QEP

Proposition 3.3. Let
0 1 0 1

b3 Rwv
A | B @= A @ A (3.43)
Ro1 O ;e

o
7?_

KAM(5 i)k eqrkM(:5i)ko; KAC(:;i)ka  eckC(:;i)ko; kdK(5i)ka  eqrkK(:;i)ko; (3.44)

kDK (:;i)ka  hxkK(:;i)ko; (3.45)
and the truncation error is
J_:rrl1%xkk(DK)ﬁK(:;k+ Dko t ir=r1{51<k(K+ dK)Pk(:;i)ke; (DK)Pk(:;1:K)= Onk
Further, if the row sorting is used in the QR factorization of M then, in addition,
kdM(i;:)ka ey kKM(i; 1)k (3.46)

Proof:

(i) Using Ry in the computed penci3) can be justi ed by introducdld as in —
[3.37). This will be the only backward error M and it can be always estimated ag/in (3.44), and
in the case of complete pivoting as [n (3.46).

(ii) It holds that%;1 = computed®,,CPy) = QM (C+ dC)P),. To estimatedC, we start
with the fact that

computed®,,C)= Q,C+ G; jGj ej6yjiCj; 0 e 2nu:
Since®@y = (1 + E)@M, KEk> eqr, we have
computed®@,C) = Qy (I + E )C+ G = Qy(C+ E C+ BuG) §y(C+ dC):
SincejGj e j®,,jiC], it follows that
kGky k Gkr e k®krkCke e nk(l + E)BckokCko e n(1+ kEka)kCko:
Using this, we get column-wise estimatedC(:;i)ko (KE ko + e n(1+ KE k2))KC(:;i)ko,

and ) follows withec = ( ey + € N(1+ ey)). Note that the column permutation By is
error free.
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3.3. The algorithnguadeig

(iii) In the same way, usin®« = (1 + F)®k

SPEDSE computed®y &) = Qy(I + E )@+ H (herejHj e j@yjj&j)

Ou(Bc + FO + E & + OuH) 8y, (O + dd);

with kd®ky  eqr+ eqr(1+ egr)+ ne (1+ eg)2
(iv) Note that in this moment the backward erroircontains both the oating point error
dK and the truncation errdK analogous t8), i.dK+ dK+ DK)Pg = @KRK. Now, the

d O that helped us justify the error i », X;3 must be pushed back into the initial data. If we
add it to@K, then we can write

(B¢ + dBk)R« = (K + dK + DK + DK)Py; where DK = dOcR<P [ : (3.47)

This is not the QR factorization @K + d@K need not be unitary. However, it will be of full
rank and|(3.47) is a rank revealing decomposition. If wels#t = dK + DK + DX, then we
can represent the computed linearization as

( ! )
@M 0 C+ dC In | M dM O pM 0
0 (+d&) * K+DsK O 0 I 0 Oc+dd
0 1 0 1
Ri1 Ri2 | %3 N Rwv 0 ~
- % Ro1 Oscec | Onein e x | % 0 e 0 E:
On &n On e 0 0 In e

If rank(M) < n and rankK) = n, we proceed with the linearization of the reversed pencil.

Rank de cient case: bothM and K rank de cient

We now consider the case wheg vy < norry < rg < n. In this casequadeig deploys
the following transformation of the linear pencil (optionally, dependinga#ry, we may reverse
the pencil):

I( ! ] !
Qu O C In | M O In O
0 Q K 0 0 I 0 Qk
0 < 1 0 i 1
QMC Q|\/|QK ~ PMPR—A OrM;n
= % pr'}E Oron E [ % On rmin On rM;n§
On ren On rein On:n In
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0

(QuO)11 | (QuO)12 00 Ox i (RuPf)u| (RuPf)z || o]0 1ﬁ
(QuC)21 | (QuC)22 C | 0 0 0|0 E
(ReP )11 | (ReP )12 J ojo X olo 1fo X
0 0 0/o0 o|o o] 1
0 0 1
X1 | X12 Xi3 - Y11 Y12 Oryirk ‘ Oin e
X21 X22 X23 X24 : | 0n [TV 0n ;N Iy 0n 'k ‘ On rv;n rg :
@ X31 X32 0|0 K Cb OrK;rM 0rK;n v |rK OrK;n r K
0 0 00 On rerm | On rein 1 On rere In rg
X 1Y: (3.48)

Note the difference in the transformation from the right: instead @f we now havd, so that
QuM = RyP], is not upper triangular. Preserving the triangular form in this moment does not
seem important because it is likely that it will be destroyed in subsequent steps.

In the next stepguadeig computes the complete orthogonal decomposition (i.e. URV
decomposition, using unitary matric€x andZx)

m N I'm Tk
n ry Xo1 X2 Xo3 = Qx Rx Op MM T Zx; RXZC(“ fm) (0 rM): (3.49)
It will be convenient to write this decomposition as
!
0 |n 'm
Qx Xo1 X2 Xo3 Zx " 0 On ruirw+rc Rx
'mt+ Ik
Then [3.48) can be further transformed as follows:
0 10 1
ly 0 0 0 o Xu|Xo2 || Xi3| X1 80 1
E@O 0 I O g Xo1| Xo2 ||| Xez | Xo4 @ IrM?rKI”OrM ‘ 0 A
0 Q¢ 0 O Xa1 | Xa2 olo & 0 [ 1n
0 0 0 Inx 0|0 0|0
0 1
Rt | Rz || Rz | Xaa
X1 R R X11 X2 X 0 Inr
% Ro1| Rz || Roz| O é; where o B B~ Xe1Xa2 O ZX lyere O
0|0 Rx | Xoa K Roa= Qy X4,
0|0 0| O

The(1;1) diagonal block in the new partitiorrk=) is (rm + rg)
en ry=rk: Rj=Rj,i=12j=23;

(I’M + I‘K), and

en v >k Rio= Ro(lirk) i Ria= (Ra(rk+ 1:n rw); Ria);

Rop= Roo(i:1:1k); Roz = (Roa(stk + 120 1) Roa)
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en Iy <rk: Ro=(Rig Ria(Glirk+rv ) Riz= Rig(rk+ v n+ 1:rg);
Rop=(Roz; Roa(Lirk+rm  N);Rog= Rog(irk+ v N+ Lirk)
On the right hand side, the transformation reads, analogously,
0 1
, 0 0 0 _ O ! 1
B 0 0 | 0 & z O lnry 0 ¢
K X
Y | 0 3.50
%0 QX O O E % rm+ Ik ( )
0 [ 1n
0 0 0 Ing
0 1
@1 | Yo Yia | Oy e
®1 | B B3| Onein é
_ (3.51)
On 'v,'m On ;N I'm On 'MiIk On m,N Ik x
Oﬂ ey On rK;r] '™m O |n rKI I
where %1 %2 Wi Y11 Yiz. Oryirg Z, 0 Inory . (3.52)
el21 ?22 ?23 Ork;rM 0rK;n m |rK Irm+r|< 0
and
en ru=rx: B =9,i=12j=23;
en v >k Vo= @o( 1) Vs = (R + 10 ry); Ba);
Yo = (1) = (B2(iirk+ 100 1w); B
en rm< g Vo= (R Ra(lirk+rm ) Wis= Ba(rk+rm N+ 1irk);
Wo= (%2 Ba(Llirk+ v N)iWa= B+ v n+ Lirk):

Hence, the equivalent pencil is

° Rt | R | Rz | Xaa : ° Q¥ | Bs|O :

%ﬂzl Roo || Roz| 0O é I%?zl %, *?2302.
0lo R | Ros K olo [ olo K’
00 0| O 00 0o |

and itimmediately reveals that the original quadratic pencil is singutkatjRx) = 0. Otherwise,
we rstidentify then rg zero eigenvalues and time ry in nite ones, and the remaining ones
are computed from the linear generalized eigenvalue problem éfyheryx) (rm+ rg) pencil

|

! !
R11 | Rio LT
A IB I :
Ro1 | R 1 |
Remark 3.4. In the important moment of computing the rank revealing decomposjtion] (3.49),

guadeig uses the same truncation strategy and with the same threshold used to infer the nu-
merical ranks oM andK. In our opinion, this is fundamentally wrong strategy that may lead

(3.53)
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Chapter 3. Complete solution of the QEP

to catastrophically wrong results. Our new algorithm will determine the numerical rank more
carefully.

3.3.3 Eigenvectors imuadeig

Once the de ated linearized problem is solved, we need to transform the variables to the
original problem, i.e. to assemble the requested eigenvectors of the original quadratic pencil.
Before giving the formulas, let us rst brie y review the process of computing eigenvalues and
corresponding eigenvectors for quadratic eigenvalue problems that is solved via the linearization
by the second companion form. The eigenvalues are the same, and the right eigemasutors
left eigenvectorsv of the linearization are of the forms, respectively,

80 1
| X
0 1 %%E&, | 60
Z K
,c@2Aa- 0o 1 ; (3.54)
V.5) % IXQ
%)E : | =0
. Cx
0 1 0 1
w Iy
W:@:lA: ——A - (3.55)
Wo y

wherex;y are the right and left eigenvector of quadratic eigenvalue problem. From the rst
relation we see that, when the matkxis nonsingular, we have two choices for a right eigen-
vector, namely; andK 1z. If K is singular (or highly ill-conditioned), we chooge For a

left eigenvector we have two choices in both cases. We can either ciwpasev,. In quadeig

the eigenvector with smallest backward error is chosen in the case of both the right and the left
eigenvector.

However, the de ation process nuadeig introduces an orthogonal transformation which
is used to transform linearizatid@y(l ) to generalized eigenvalue proble@Cy(l )V. The
eigenvalues of the transformed problem are the same, but the right eigermantbthe left
eigenvectom are transformed in the following way

0o 1
2
@=—A = g=Vz (3.56)
&
0 1
W,
—A =-w=Qw, (3.57)
w2

wherez,w are as in[(3.54) andl (3.p5). So, the process of extraction of the eigenvectors goes
from the bottom to the top. We rst obtain the eigenvectors for the lineariz&j¢h), and then

86



3.3. The algorithnguadeig

choose the eigenvector for the quadratic problem.
Now we provide explicit reconstruction formulas for the eigenvectors.

The right eigenvectors

The caseranM) = rankK) = n. The matrixK is nonsingular, and we have two choices for
the right eigenvector. Latbe the right eigenvector for the transformed GEP. The corresponding
right eigenvector fo€y(l ) is

0 1 /0 1 0 1
P
;m@2EA- Pm 0 @Fa_@ MEA.
2 0 I & &

Hence, the two candidates for the eigenvegtareP ye, andK 1&. Now, the candidate with
the smallest normwise backward error is chosen as the output.

The second caserank K) < rankM) = n. The matrixK is singular, andh rg zero eigenva-

lues have been de ated. The eigenvectors corresponding to those eigenvalues span the nullspace
of the matrixK. The basis for the nullspace is computed via the orthogonal complement of the
range ofK , using the QR decomposition of the upper triangular meﬁp’x

PcRq = Qg Ry :

The wanted vectors are the last rg columns of the orthogonal matrQ,bK.

The remaining eigenvalues and the corresponding eigenvex2o&™ '« are computed from
the(n+ rk) (n+rg) GEP (3.42). Partitioe” = e e} ,whereg 2 C"ande, 2 C'«. The
corresponding eigenvector f@p(l ) is

0 1 0 1

021 ; 0! & Pver
1 _ M s o t ‘_

S o QK%EZE_%QK = K
2 Oan Oan

The only choice for the right eigenvectors Py e;.

The third case: rankK) rankM) < n. Both matricesM andK are singular, andi ry
in nite and n  rk zero eigenvalues have been de ated. The eigenvectors for the zero eigenvalue
are obtained as in the previous case, whilst the eigenvectors for the in nite eigenvalue form the
basis for the nullspace of the matik The basis for the nullspace is obtained as the orthogonal
complement of the range M represented by the last ry columns of the orthogonal matrix
R,

ARy = Qk,Rg,,’
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The remaining eigenvalues with the corresponding eigenvee®3"«* '™ are obtained from
the(rk + rm) (rk + rm) GEP [3.58). The corresponding eigenvector@g{l ) is

0 1 | | 0 10 1
z mwo z o g 0 w0 ¢
@:A = (; Q (;( I %IrK+rM O O g%on ™ g

K
22 n rg O 0 |n e On »
| 0 0 1
_ |n 0 %Zx nerM
0 Qk
On Ik

. . . . 0 0
The only candidate for the right eigenvecids z, ™ (1:m)=2, "™
e E(l . r|\/|)

The left eigenvectors

We now describe how to assemble the left eigenvectors of the quadratic pencil.

The rst case: rankKM) = rankK) = n. Letw be the left eigenvector for the transformed GEP
QCy(I )V. The corresponding left eigenvector for the linearizata(l ) isw

0o 1 10 1 0 1
@ @

@A Q0 ¥, _ g%,
Wa 0 I w 7]

The two candidates for the left eigenvecyoof the quadratic eigenvalue problem g w:
andw,. The next step is to compute corresponding normwise backward errors and choose the
candidate with the smallest one as the output.

Te second caserankK) < rankM) = n. o The lgft eigenvectors for the zero eigenvalue are the

L1
lastn rk columns of the matriQx. Let @==A 2 C™ '« pe the eigenvector for the de ated
w5

(n+rk) (n+ rg) pencil (3.42), wheras;, 2 C" andw, 2 C'™«. The corresponding eigenvector
forthe 2n  2n pencil, before truncation satis es

00 1 0 11
X11 X12 | X13 ~ Rw 0 N
C (
® H‘WZ @3 %% X1 Oreire | Orn g k | %’ 0 Ir¢ 0 Eg =
0 0n ri;n On rkirK 0 0 In K
w1X11+ W2X21+ | WJ_RM -
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thereforeyms = X,,w1=l . The vectozfor Cy(l ) is

0 1 O 1
0 W 1 o O! 0 Quer
1 M 1
@ = %Wz K= % w X
Wo 0 Qx Qk
&3 &3

The candidates for the left eigenvectofor the quadratic eigenvalue problem &g, and

Qx gé . Again, the eigenvector with the smaller normwise backward error is chosen as the
approximation.

The third case:rankK) rankM) < n. The left eigenvectors for the zero eigenvalue are the
lastn rk columns ofQk, and for the in nite eigenvalue are the last ry columns ofQy. Let

w + ; ; 1

w; 2 C'k*™m be a left eigenvector for the truncatégk + ry)  (rk + rm) pencil (3.58). The

corresponding eigenvector for the per@T(l )V satis es

00
R | R || Ry | X B, || ¥s|0

14 ! ° ¥11

g21 kzz hzg 0 é ?21 VZZ tp23 0 g _

e w, e v ¢ | 0 =
0

olo Rx | Ros 0 ol 0 X
0l0 0l 0 0 ol 1

1
0

0
% 0
= =0
& Ris+ @Rz + wR | e Wiz | el X
‘Elk14+ W3R24+ | w,

The component®; w, are thus computed as

w;= | \Hlblg+ I \szzg \Hlklg \Ezhzg Rxl;

W, = Wlh14 W3g24 =

The left eigenvector foCy(l ) is

0 10 1 O 1
| ol O 0 0 &1 oy &1
_ Qu O 0 0 Qx ogé@mg_ Qxws é
0 QK O IrK 0 0 WS Q wz ga
0 0 0 Inr g “ a

and the candidates for the left eigenvegtareQw Q%S andQg :j . The eigenvector with

the smaller normwise backward error is chosen as the approximation.
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3.4 Balancing by two-sided diagonal scalings

As mentioned in the introduction, along with having the coef cient matrices with unbalanced
norms, their elements can be highly unbalanced too, for example as a result of particular choice
of physical units and/or different physical nature of the involved coupled variables. This results
in badly conditioned coef cient matrices, and backward error may simply wipe out small but
physically relevant parameters.

In order to improve the de ation process, we propose balancing of the coef cients|as in [9],
where the coef cient matrice8, E, B of a descriptor linear time invariant dynamical system
Ex = Ax+ Bu are balanced for more numerically robust reduction. It is a generalization of
Ward's balancing algorithm [70] for two matrices. Bosner's algorithm produces two diagonal
matricesD; andD;, such that the range of magnitude orders of all elements in the scaled matrices
D|AD;, D|ED; andD,B is small. We extend that algorithm so that the third matrix is also scaled
from the right; in means that we go over to a new equivalent QEP:

O(1 )= 1 2DMD,)+ | (D,CDy)+( DIKDy): (3.58)

For a computed (e.g. right) eigenpéir; x) of (3.58), the corresponding eigenpair for the original
problem is(l ;DyX).

3.4.1 The algorithm

De ne the range of elements in a matrix as the ratio of the element of the largest and the
one with smallest (nonzero) magnitude. The matribgsand D, are computed so that the
ranges of the elements dyMD,;D,CD, andD,KD, are moderate. The main idea is that the
exponents in the exponential notation of all nonzero elemeni MD,; D,CD, andD,KD,

The problem of balancing is then equivalent to minimization problem

minnj (hn=
I;r2R 2 3

n n n n
,,rrgignaﬁ & (1 1+ logimy)?+ A (+ 1+ logja 2+ & (v + logikyi)?L
' i

=1 J:l ]:1 J:l
m;j60 cij60 kij60
(3.59)
wherel = |4;::::0ly andr = rq;::ii;rn . This is a linear least square problem with the
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3.4. Balancing by two-sided diagonal scalings

following systemLx = p of normal equations
! ! !
FR G c I
L= _::_ ;p= DX= ;
G' K d r

R" "with

Q 3 Q
n,=4a 1+ a1+ ai
i= i=1 i=1
mj60 cij60 kij60
being the total number of nonzero elements in jtheth columns ofM, C andK, G2 R" "is
the sum of incidence matrices bf, C andK:

) (
1, ifm;60 N 1, ifc;60 N 1, ifkj60

BT o ifmy=o0 0, ifcj=0 0 k=0

the vectorc 2 R" has elements

n n n

= a logjmjj+ a logjcjj+ a logjkijj;
=1 =1 =1
mj60 Gj60 ij60

and the vectod 2 R" has elements

n n n
[o]

dj= a logjmjj+ @ logjcijj+ @ logjkij:
m; 60 G j_slo Iq'-j_slo

The system is solved as in|[9], using the preconditioned conjugate gradient method. In order to
demonstrate the importance of balancing in computation of eigenvalues and eigenvectors, we
will use the componentwise backward error (see Setidn 2.4) for the eig¢rpajr

(3.60)

N i((1 2M+ 1 C+ K)X)ij
WU = MG M+ 1 G+ KD
Example 3.3. In Table[3.], we show the maximum component-wise backward errors for non-
zero nite eigenvalues for selected examples from the NLEVP library, computed with and
without balancing. In Table 3.2, we show the range®lii€ andK for these examples with and
without balancing. It is clear from these results that there is signi cant improvemenaxwq
after the balancing took place. There is large improvement in the range of elements is in the
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Table 3.1: Comparison of component-wise backward errors

No balancing Balancing
Problem minwg maxwgq minwq maxwgq
damped_beam 3.4787e-015 7.6779e-016

power_plant || 7.7532e-014 | 1.5799e-010 | 2.1702e-015 | 1.0789e-013
speaker_box || 2.2373e-008 | 6.9832e-006 | 1.3051e-010 | 3.2287e-008

Table 3.2: Comparison of range of elementsiMiC; K

No balancing
Problem M C K
damped_beam 1.0400e+006 | 1.2000e+005 1

power_plant || 4.3519e+007 | 1.6131e+009 | 4.3473e+009
speaker_box || 1.3017e+010 | 3.5943e+010 | 3.7253e+017

Balancing
Problem M C K
damped_beam 240 100 1
power_plant 74.7664 849.2321 761.9298

speaker_box || 1.3017e+008 | 3.5943e+008 | 2.2146e+017

rst and the second example, which is followed by the smaller maximal component-wise error.
However, in the third example balancing did not made signi cant improvement in the range of
matrices, especially for matrik. Nevertheless, the component-wise backward error is improved
by two orders of magnitude.

We strongly believe that this balancing at the matrix elements level is an important prepro-
cessing technique that will prove its value in the design of iterative methods as well. Itis a
subject of our ongoing and the future work.

3.5 Improved de ation process. New algorihm -KVADeig

After preprocessing by parameter scaling and diagonal balancing, both optional, the task is
to detect and remove (de ate) the zero and the in nite eigenvalues. We have already discussed
the importance of such de ation. From the desigmjaadeig, it is clear that it cannot guarantee
removal of all zeros/in nites from the spectrum; in fact it can only de ate one Jordan block of
these eigenvalues.

In this section, we go through the details of this initial de ation, and we propose to supple-
ment it with additional steps. To motivate the need for the improvement of the de ation process,
we use an example from the NLEVP collection [5].
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3.5.1 A case study example

Thisisal0 10quadratic eigenvalue problem for the petici{l )= | 2M+ | C+ K, whose
real eigenvalues and the corresponding eigenvectors give the intersection points of a sphere, a
cylinder and a plane.

Figure 3.3: Intersection points of a sphere, a cylinder and a plarersection in NLEVP)

Although of small dimension and very simple structure, this example is an excellent illustra-
tion of dif culties in solving nonlinear eigenvalue problems.

It has been shown in [53], [51] that this problem has only four nite eigenvalues: two real
ones and a complex conjugate pair. We take this example as a case study and compute the
spectrum by several mathematically equivalent methods; all computation is done in Matlab
8.5.0.197613 (R2015a). If one plainly applies the QZ to a linearizatidn @f), such as the
rst or the second companion form with the Fan-Lin-Van Dooren scaling, the spectrum appears
as

S | 1= 2.476851749893558e+01
% | »=2.476851768196165e+01
il ) - | 3= -5.581844429198920e+08 - 1.628033679447590%()953' 61)
| 4 = -5.581844429198920e+08 + 1.628033679447590e+D
% | 5= 2.570601782117493e+18
'8 lg=:ii=1lyu=Inf;lis=:::= 1= -Inf ;
% | 1= 2.476851749893561e+01
Call ) - | ,=2.476851768196167e+01 (3.62)
E | 3= -2.653302084597818e+09
l4=::=117=1Inf ;l1g=:::=199= -Inf :

If we use the same method, but with the reversed perfé{l+ nC+ M, (I = 1=m) then from
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the rst companion form QZ has computé&@ nite eigenvalues (8 real and 2 complex conjugate
pairs), and from the second 10 (6 real and 2 complex conjugate pairs).
If we run the Matlab's solvepolyeig() , we obtain

8
| 1= 2.476851768196161e+01
% | = 2.476851749893561e+01

polyeig (Y (1)) : | 3= 1.426603361688555e+08 (3.63)
% | 4= -1.353812777123886e+08
' |5:ZZZ:|13:|nf;|19:|20:-|nf ;

and if we scale the coef cient matrices then

8
| 1= 2.476851768196165e+01
% | = 2.476851749893559e+01

polyeig (Yscaled! )) : | 3= -3.020295324523709e+08 + 1.229442619245432e+D9
% | 4 = -3.020295324523709e+08 - 1.229442619245432e+09

" lg=:ii=1l1g=1Inf ;[ 19= 1 29= -Inf :
(3.64)

Almost perfect match ith 1 andl 5 is reassuring, but there is an obvious disagreement in the
total number and the nature (real or complex) of nite eigenvalues. With an earlier version of
Matlab, the results that correspond[to (3.61), (B.62), {3.63),/and| (3.64) coincide in the numbers
of nite eigenvaluesj 1 andl , are close up to machine precision, but the remaining computed
nite eigenvalues are substantially different.

The rank of the matrid is exactly3, and it will be correctly determined numerically due
to a particularly simple sparsity structure . The matrixK is also sparse withk,(K)

4.09+03, so there is no numerical rank issue. In this situation, a preprocessing procedure such
as inquadeig will reverse the pencil and de atézero eigenvalues (in nite eigenvalues of the
original problem) at the very beginning. The remaining eigenvalues are then computed (e.g.
usingquadeig) a$]

| 1= 2.4769e+001 | g = -1.4660e+007 - 6.9064e+006i

| » = 2.4769e+001 | 9= -1.4660e+007 + 6.9064e+006

| 3= 1.1194e+006 | 10= -4.5822e+015

| 4 = -5.5674e+005 -1.0143e+006i | | 11= -3.9134e+015 (3.65)

| 5 = -5.5674e+005 + 1.0143e+006 || | 12 = -2.3047e+019
| 6= 1.4679e+007 - 1.9395e+007 | | 13= 3.0862e+020
| 7= 1.4679e+007 + 1.9395e+00v

After the de ation of the7 zero eigenvalues, in the thus obtained linearizafionl B, the rank
of the matrixAis 7, and it can be determined exactly because of spaiihag6 zero columns,

Here, to save the space, we display the computed values only to ve digits.
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and the remainin@ ones build a well conditionetl3 7 submatrix ofA). The matrixB is well
conditioneds.550831520847275e+003This means that at leaSimore zero eigenvalues are
present in the reversed problem (in nities in the original problem); those are not detected by the
QZ algorithm running oA | B.

Remark 3.5. It should be noted that the successful removal of many in nite eigenvalues in
(3.61), [3.62),[(3.63), and (3.64) is due to the sparsity that is successfully exploited by the
preprocessing to the QZ algorithm. Recall, before the reduction to the triangular - Hessenberg
form the matrices are scaled and permuted, as described in [70] in order to get equivalent pencil
R | Bofform

0 1 0 1
Ang  AngD2G2 A3 Buy  BugD2G2 B
R= %D 0  GiD1ApaD2G2 GiDiApg K b= E‘D 0 GiD1BpgD2G2 GiD1Bpgy X
0 0 A[33] 0 qO B[33]

whereA113; Aja3; Bpagp; Biag are upper triangular, and

0 1 0 1
Ang Anz Ang By Bpg Bpg

P]_AFE: % 0 A[22] A[23] X, P]_BFb: % 0 B[22] 8[23] g:
0 0 Aggy 0 0 Bpgy

Original problem. First row balanced second Reversed problem First row. balanced second
companion form linearization pencil. Second companion form linearization pencil. Second row
row: Balanced truncated pencil after the de atioBalanced truncated pencil after the de ation
process. process.

Figure 3.4: Sparsity structure of the linearization pencil before and after de ation

The matricesD; andD, are computed so that the elementsDai,; D2 and D1Bjy5D>
have magnitudes as close to ofi®. is permutation matrix determined so that the ratio of the
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column norms oD;A;7D2G; to the corresponding columns normsfB;,; DG, appear

in decreasing orderG; is determined so that the ratios of the row norm<3D1 A, D2G;

to those 0fG1D1Bj5D2G, appear in decreasing order. On the other hand, the transformation
(3.47) (designed to expose the zero eigenvalues of the reversed pencil, that correspond to the
null space oM) has introduced Il-in. This is illustrated in Figufe 3.4.

3.5.2 De ation process revisited

Recall the de ation process in thguadeig algorithm in the case of one singular matrix.
There, the QR factorization of the matiik is used to reduce the matrikto upper triangular
form. However, if we de ne the transformation matrices to maintain the identity in the upper
right block of the matrixA in the linearization pencih | B, we get:

0 1 ! !0 1

Q 0 I M [ 0
PA 1B)Q = @ —a( & In 0 @

, 0l 1K 0 0 0 ||| Qx

QkC Inp 0 QM‘H 0 1
- B ok 1= A
o [ I
0 0

Note thatrankA) = n+ rankK), soA andK have null spaces of equal dimensions. In essence,
multiplication from the left withQ,  Q (or withQ,, Qg, orln Q) is a rank revealing
transformation oA. We now truncate the; = n  rg copies of the eigenvalde= 0 and proceed
with the truncatedn+ rx) (n+ rg) pencil

0 1
Qx.1C I 0 1
; C QM 0
A 1Bp=BQuC| 0 ¢ |@ A (3.66)
0 |
P! || O '
Note that using the de nitior{ (3.66) %22 | By2in (3.66) yields
!
A | Bp
Pi(A I B = i A11=0  Bii= | : 3.67
1( ) Q1 0 Au | By 11= On re; B norg (3.67)

With A;1:= AandBy1 := B, this procedure can be understood as the rst step of the Van Dooren's
algorithm (actually its transposed version, spe83.2) for the determination of the elementary
divisors of the eigenvalue zero.

Using this modi ed transformation de ned by, andQ, for a rank revealing factorization of
Ay it suf ces to compute the rank revealing QR factorization ofrits n submatrixAox(rg + 1:
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n+ rg;1:n), |

Qx-,C

REST Pag, = QagoRay: (3.68)

K
This can be used to transform the pegip | Bys to
.C | kM || O | 0
Pa(Aoa | Bao) = QK’lT ‘H K | b,@== A.p,=
RAZZPAzz H‘ 0 0 Ire 0 QA22

(3.69)
If the factorization [(3.68) shows no rank de ciency, there are no zeros in the spectrum of
Aos | Bpo. OtherwiseAxo(rk + 1:n+ rg;1:n) is rank de cient; assume its rank to bg,
rro< n,ands, = n+rg ropo. Then
!

A !
Ra,= % i Ry,2C2 0,
22 0, - 22
1 0 1
QK,lC IrK ~ QK,].M OrK =
PA2 = %) IbAZZF’AT22 0o K; P,B,, = % N X: (3.70)
On r22;n On r22:rk 4

The next step is to transform mati®B,, so that the block is zero. This is done by computing
the complete orthogonal decomposition (for the analysis[see §3.1.3)

P,By, = UsRaVg: (3.71)

The column rank Oszzz is s, (otherwise, the matrix pencil is singular), aﬁd822VB =

B,, 0 (here we abuse notation f8po, for the sake of simplicity, as in Algorithm 3.5.1).
Let B represent the permutation of the rstand the lash s, column blocks. The wanted
structure is now obtained by multiplying the penEil (3.70) from the right W§R,:

!
Agz | B3z °

PoAVeRs | PaBooVeRs =
0 | Boo

(3.72)

The ext proposition shows that the existence of a second Jordan block for the zero eigenvalue
depends on the relationship between the mattcasdC.

Proposition 3.4. Assume that the matrik from the quadratic pencil °M + | C+ K has rank
rank K) = rg < n. There exists more than one Jordan block for the eigenvalue zero if

(kerC)[ X )\ kenK) 6 f0g; X =fy2 C":Cy2 Im(K)g:
Analogously, if the matrid has rankrankM) = ry < n, there is more than one Jordan block
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for the in nite eigenvalue if
(kerC)[ Y )\ kerfM) 6 fOg; Y =fy2 C":Cy2 Im(M)g

Proof. From Theorem 3|3 we know that the partial multiplicities, and thus the dimensions of
the Jordan blocks for a quadratic eigenvalue problem can be obtained using Algorithm 3.2.1
for a corresponding strong linearization. If we use the second companion form, the very rst
step of the de ation yields the penc66). Now, Bf, is singular, we will have another
Jordan block for the eigenyalue zero. The rank of the md&sixcan be determined by the

~C
rank of the matrix Q2

L
QK;2C
R<R{
kern(K ), and thus !
QK;ZC
R« PY

whereX = fy2 C":Cy= z z2 Im(K)g. O

. This matrix is rank de cient if its kernel is nontrivial, that is

if ker = ken(Qk:2C)\ ker(IQKP,I) 6 f0g. The matrixQk:» represents the basis for

ker =(kenC)[ X )\ kenK);

From these two steps we see that, for this choice of linearization, the upper triangular form
for (3.27) would be more tting. This is why we propose the modi cation of Algorithm 3.2.1
using the rank revealing QR factorization, se §3.5.3 below.

Backward error

The following proposition states the backward stability for the rst step od the de ation
process (3.66) as in Subsectjon 3.3.2.

Proposition 3.5. Let
0 1 0 1

” |
R | Bz @—= XA | @ A

be the computed linearization (3]66). Then it corresponds to an exact reduced linearization of a

KdM(:;i)ko  emKM(:;i)ko; KAC(:;i)ka  eckC(:;i)ko; kdK(:i)ka  eqrkK(:;i)ko; (3.73)
and the truncation error is

rrllaxkk(DK)PK(:;k+ ko t,m{r;(k(K+ dK)Pk(:;i)ke; (DK)Pk(:;;1:K)= Onk: (3.74)
=1:n 1=1:

]
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Proof. (i) Let B, @k, R« be the computed factors of QR decompositioKof.e. (K+ dK)B =
O« ROK k@& Okkr e Itholds thatRy; = computed®,C) = 8, (C+ dC). To estimate

dC, we start with the fact that
computed®,C) = Q«C+ Gc; jGcj €&ijiCj; 0 e 2nu:
Since® = (| + Ec)®«, kEck,  eqr, we have

computed®C) = O (1 + Ec)C+ Gc = G (C+ FeC, QKG?) Oy (C+ dC);
=dC

with column-wise estimatededC(:;i)ka  (KEckz + e n(1+ KE:-k2))kC(:;i)ko, and ) fol-
lows withec = (eqr + € N(1+ ey)) (derived as in Propositi.3).

(ii) By the same reasoning we g&ét; = @K(M + dM), wherekdM(:;i)ko  ewkM(:;i)ko,
andey = (egr+ € N(1+ g)):

(iii) Note that in this moment the backward errorkncontains both the oating point error
dK and the truncation errdK analogous t8), i.dK+ dK+ DK)Pg = O Rx. If we set
DsK = dK + DK, then we can represent the computed linearization as

( ! )
0 0 C+ dC In | M dM O Ih O
0 & K+ DsK 0 0 I 0 &
1 0 1
lo | On o . %11 0 ~
o .
% RKPT 0ﬂ<§ﬂ< OE’K;n (=74 x I % 0 IQ( 0 E:
n &;n On B & O 0 In (=7

It is hard to say something about the backward stability of the second step of the de ation
process in terms of the original coef cient matriddsC andK since the transformatiofi (370)
destroys the block structure. However, we can say something about the rank revealing QR

factorization for the block matrix
|

By.,(C+ dC)
R<P

Pa= QaRa;

which is used to determine whether there are more Jordan blocks for the quadratic eigenvalue
problem.
For the computed facto®a; ®p; Ra it holds that

" ! I#
O.,(C+ dC) , C

R« P & K

Pa= OaRa;
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where ! o I
C . ~(C+ dC) .
G e K';KPT (i) -
2 K 2
| q
However, the norm of block vector= X is kxko = kx1k§+ kxzkg, which means that
X2

above inequality holds for botkC(:;i)k, andkK(:;i)ko. On the other hand, we can estimate
kxko  2maxkxiks; kxoks). Using these bounds we get

KC(iidko  eq 2max kBa(C+ dC)(:iivko KRAPEC: K,
kKK(:; 1) ko eqrpimax k@K;z(CJf dC)(:;i)kz;kRKPE(:;i)kz :

Moreover, ifC = QcRc is the exact QR factorization of the matfx we have

kB.o(C+ dO)(5idka k O ,C(iri)ka+ k@ ,dC(:ii)ka (14 ec)kBy ,C(::i)ka;
= (1+ ec)k@ 2QcRe(5i)k  (1+ ec)kBy 2,QckakC(:;i)kz
=( 1+ ec)cos™ (Ker(K); Im(C))kC(:;i)ko;

andkRKPE(:;i)kg (1+ egr)kK(:;i)ko. Altogether we have

p émax (1+ ec)cos™ (Ker(K); Im(C))kC(:;i)ka; (1+ eqr)KK(:; i)k

kC(;i)ka  eyr KC(=)ks kC(:;1)k;
KKk eqrp émax (1+ ec) cos® (Ker(K);i:Ir(n((:(;:i)))kl;C(:;i)kz;(1+ eqr) KK (:; i)k KK i)k
ie.
% eqrIo 2max (1+ eg)cos® (Ker(K);Im(C));(1+ eqr)% (3.75)
% eqrIO 2max (1+ eg)cos (Ker(K); |m(C))%;(1+ er) : (3.76)

Notice that the bound$ (3.]/5,3]76) can blow up if there is a large difference in the norms of
columnsK(:;i), C(:;i) of the coef cient matriceX andC. This once more shows the importance
of scaling and balancing.

3.5.3 Computing the Kronecker's Canonical form using rank revealing
QR factorization

From the previous section, we know that, in order to exploit the structure of the second
companion form linearization as much as possible, it is more convenient to de ate the (zero)
eigenvalue by the transformations which lead to upper triangular fgrms (8.67),(3.72). This is
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done by using the rank revealing QR factorization of the current magrilcom the linearization
pencil, instead of using the SVD. In this subsection, we derive such an algorithm. We will
describe the rst step in detail, and then formulate the complete algorithm.

LetA;B2 C" ". Denote byn; the size of the current working matrix in stg@nds the defect

of the working matrix in step. Consider the following procedure.

1. Compute the rank revealing factorizationfaf; = A

A1;1Pa = QaRn; (3.77)
!
A
and denote; = np  rankA) = n  rank(A). Now, QA1 = 2 , whereA; is of
! 2N
B
full row rankn s;. PartitionQ,B = B—Z in compatible manner. Multiply the pencil
1
(A | B) by Q4 on the left to get
!
A | B
Qu(A 1B= 2 2 . (3.78)
| By
2. Compute the complete orthogonal decompositioB;of
B1 = UgRsVg: (3.79)
The column rank oBy is sy, if the matrix pencil is regular, arByVe =  Bi.1 ‘ Os;n s, >

whereBy;1 is upper triangular. Multiply the penc[l (3.78) i on the right to get
!
A2 | Bro ‘ Ao | Bpp
| By | 0 '

Qa(A | B)Vg=

3. Let B3 be the permutation matrix for permuting the rstand the lash s, columns.
De ne P, = Q4 andQy = VgRs. The rst Jordan block for the eigenvall@as de ated by
the following orthogonal transformation:

!
Az | By ‘ Az | By

0 1B

Pi(A |1 B)Q1= ; (3.80)

with
Azo App = AQ2CN ) M

SincejdetP def{A | B)detQ;j=jde(A | B)j=jl j%jdetBr.1de(Az2 | By.o)j holds,
it is clear that nding the additional zero eigenvalues reduces to the proBem | By.o.
If Ay is regular, there are no more zero eigenvalues, and the process stéps. idf
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singular, the process continues, that is, we nd unitary matribemnd®, so that

0 1
Asz | Bgz| Az I Bag|Ays | Byg
PR(A 1 BQQ=® O | Baz | Az | Bio K
0 0 | B11

whereP, = diag®;1s,); Q> = diag@;1s,).

The complete algorithm is described below

Algorithm 3.5.1 De ation of eigenvalue 0

1
2:
3:
4:

10:
11:
12:
13:
14:
15:
16:
17:

© 0o N a

j=1A1=AB=Bm=n

Compute rank revealing QR1:1Pa = QaRa
st=m  rankAg1)
while sj > 0do
Partit icess ANt1 — oA Bl _ g
artition matrices: = QAAj:j B; = QuBj;j
Update and partition blocks in royv
fori=1:j] 1do
B.
AA’JT =QA gt = QB
end for
Compute complete orthogonal decompositiosjof n; matrixBj: Bj = AgRgVg
Compress; to full column rank, permute and partition:
Aj+j+1 Ajj+1 = Aj+1VePe, Bj+1j+1 Bjj+1 = Bj+1VePs;
0 Bj;j = BjVehs
Nj+1=nj sj,j=j+1
Compute rank revealing QR;j:jPa = QaRa
sj=nj rankAj;j)
end while

This algorithm results in

P(A | BQ=
0( )Q 1
Avrer I Buger [Aver IBrar | i Azver I Brsn [Aper | Brsa
| Bo;o Ao | By 53

(3.81)

The de ation of the in nite eigenvalue can be done by the same algorithm, but with the reversed

pencilB | A
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Remark 3.6. Algorithm[3.5.] can be used to determine the structure of an arbitrary eigenvalue
a. The only difference is that the starting matAx; = A aBis shifted. The matriB;.1 = B

stays the same. Consider the shifted second companion form linearization
! ! !

c 1 M O C+aM I
' K 0 0 I K al

The rst step of the algorithm is to determine the rank2af 2n matrix Aqs;1. However, if we
: : al | _
multiply Az:1 with 0 | from the right we get

! !
al | a’M+aC+K 0
Ag1 = ;
0 | K al
meaning that theank'Ay.1) = n+ ranka?M + aC+ K), and thus it is enough to compute the

rank of then nmatrixa?M+ aC+ K.

3.5.4 Putting it all together: De ation process inKVADeig

We now describe the global structure of the new procedure. We assume that the initial scaling
and balancing are done as requested by an expert user.

The rst step of the de ation process is the computation of the rank revealing decomposition
of the matricedM andK.
After the determination of the numerical ranks, we have three main cases:

1. both matrices are regular,
2. one of the matrices is singular,

3. both matrices are singular.

1. Both matricesM and K are regular We proceed as iquadeig algorithm, that is we use
the rank revealing decomposition of the matvixto reduce matriB to an upper triangular form

@B.49).

2. One of the matrices is singular We can assume, without loss of generality, tKais
singular, because in the case of singltawe just consider the reversed problem.

Before we continue with de ation process of the rk zero eigenvalues, we check whether
there are Jordan blocks for this eigenvalue, that is, we compute the numerical rankofrthe
block matrix [3.68). As we mentioned before, the nullity of this matrix is equal to the nullity of
the matrix&;,, and the next step depends on it.
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2.1. Regular matrix A2 In this case we proceed asdquadeig algorithm. That is, the
n rg zero eigenvalues are de ated, and the maBis reduced to the upper triangular form

B.42).

2.2. Singular matrix A2  In the notation of Algorithnji 3.5]1, this means tisa6 0, mea-
ning that there exists more than one Jordan block for the zero eigenvalue. In this case, reduction
of the matrixB to upper triangular form will not be conducted. Using the structure of the matrix
A, the de ation of the rst two blocks is done as in (3]66) and (3.69). For possible further
de ation steps, Algorithni 3.5]1 is applied to the pen&is | Bss.

3. Both matrices are singular In this case, before any de ation process, we check the ranks
of both block matrices I I
QK;ZC . QM;ZC .
Ra{ ~ RuRy
The ranks of these matrices determine whether there exist more than one Jordan block for the
zero eigenvalue and the in nite eigenvalue, respectively. There are three possible outcomes:

(3.82)

3.1. Both matrices in [3.82) are regular This means that there are exaatly ry in nite,
andn rg zero eigenvalues, which are de ated agjumadeig algorithm.

3.2. One of the matrices in[(3.82) is singular In any case, we use the structure to de ate
two Jordan blocks of eigenvalue zero, meaning that% is singular, i.e if there are
M

at least two Jordan block for in nite eigenvalues, the reversed problem is considered. Now,
Algorithm[3.5.1 is used to compute the complete structure of the zero eigenvalue. The rst two
steps are as in (3.p6) arld (3.69), that is, the structure of original problem is used. After the
de ation of the zero eigenvalue, we get new reduced pefcill B. Now, Algorithm is

used to de ate the in nite eigenvalue of the generalized eigenvalue problem. We already know
that the number of in nite eigenvaluesiis ry, and this is used as a test when the rank of the
matrix B is determined numerically. Namely, the rankBis equal to the rank d¥1. We also

know that only one step of Algorithin 3.5.1 is enough to de ate all in nite eigenvalues.

3.3. Both matrices in [3.8P) are singular We consider the original problem, if the number
of the detected zero eigenvalues is larger than the number of the detected in nite eigenvalues, and
the reversed problem otherwise. That is, we want to use the structure to de ate zero eigenvalue,
and we are considering either original or reversed problem, whichever has more zero eigenvalues.
The rststep is to de ate all zero eigenvalues, using Algorithm 3.5.1 (the rst two steps are done
using the structure of the mat®¥. After that, we get the reduced penﬂil | B. The next stepis
to de ate the in nite eigenvalues, using the Algoritfjm 3.J5.1 on the reversed pencil. Its structure
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is determined by the nymbegs From the previous computation we kneyw= n ry < n, and
-C . .
S =n rank QR:AA;T ), and this is used as a test for rank determination in Algorjthm 3.5.1.

M
The decision tree for the described process is sketched in Figlre 3.5

Reduce B
to upper triangular

Ry

)
©

One step of
reguia’ deflation

MP M = QM RM ‘ one singular ‘ Qk:oC

Pa= QaRa

KPk = QkRk ‘ w.l.o.g.,rk < n ‘ RPY
full deflation
process
601/}
s/’{go/ one step of
& deflation

(0 and infinite)

Qv.,C _
Reml PATQRA T e [TUll deflation of O
Q 'E: one deflation step
M;2 — Lo .
51 Ps= QeRe for infinite
RuPy

full deflation step
of 0 and inifinite

Figure 3.5: De ation process irKVADeig- decision tree

Example 3.4(continuation of the exampliatersection ). The de ation process described
above de ates all 16 eigenvalues dnsteps. The defects of the intermediate matrisgsre
S1=7,9%9=6;53= 2;54= 1. The computed nite eigenvalues are:

| 1 =-5.581811074974700e+008 -1.628029358197346e+009i
| ,=-5.581811074974700e+008 +1.628029358197346e+009i
| 3=2.476851768196167e+001,

| 4=2.476851749893556e+001

that is, two real, and a complex conjugate pair, as expected. The corresponding backward
errors are given in Figufe 3.6 below. The backward errors for the real eigenvalues computed
by quadeig algorithm are also included. Note how this example shows that norm-wise small
backward error can be completely misleading.
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Figure 3.6: Backward errors for nite eigenvalues, sorted by magnitude, for the benchmark
problemintersection

Eigenvector recovery

There are two levels of the eigenvector recovery. First, we compute the eigenvectors of the
transformed penciQ(A | B)V, and we must recover the eigenvectors for the original pencil
A | B. Second, we must recover the eigenvectors for the quadratic eigenvalue problem from
the corresponding linearization.

The recovery of the eigenvectors in the cases whenlaéimdK are regular, and when we
have only one Jordan block to de ate for zero or/and in nite eigenvalues goes as explained in
§3.3.3. In addition, we present the recovery in the case of the existence of more Jordan blocks.

Assume that more than one Jordan block is de ated for either zero or/and in nite eigenvalue.
Let k be the dimension of the truncated penil | B. Letz2 R?" andw; 2 R?" be the
computed right and left eigenvectors®f | B. If k> n, the right eigenvector is recovered as
Xx=Q(1:n;1:n)z(1:n),and ifk< nthenx= Q(1:n;1:k)z
For the left eigenvector, write the transformed pencil as

!
R IB X

QA | BV = 9

Now, the left eigenvectow 2 R?" for the transformed peno®(A | B)V is
!
w
w= b we= wXY &
W2

andw; is computed left eigenvector & | B. For the left eigenvector we always have two
choices for the original problem, and for the right eigenvector we have two choices #hly if
nonsingular. By default we choose the eigenvector with smaller backward error.
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3.5.5 Numerical examples

Experiment 1. mobile_manipulator . This example is also from the NLEVP library. Itis a
5 5 quadratic matrix polynomial arising from modeling a two-dimensional three-link mobile

manipulator as a time invariant descriptor control system. The matrices are of the form
! ! !

M ' T
Mz MO . CO . K F
0 O 0 O Fo 0
with
0 1 0 1
187532 794493 794494 1:52143 155168 155168
Mg = %}7:94493 318182 268182&; Co= %3:22064 328467 328467X;
7:94494 268182 268182 3:22064 328467 328467

0 1
67.4894 692393 692393 !
Ko= 0698124 168624 168617 ; Fo=
69.8123 168617 682707

This quadratic problem is known to be close to singular problem [13]. The mé&thias full
rank, and the matri¥ has ranky, = 3. This means that there are at leastry = 2 in nite
eigenvalues amongst the totallid eigenvalues. We compute the eigenvalues of this problem
using thequadeig algorithm, and these are the computed eigenvalues:

| 1= -5.1616e-002 -2.2435e-001i | = -1.0770e+006 -1.8660e+006i
| » = -5.1616e-002 +2.2435e-001i | | 7= -1.0770e+006 +1.8660e+006i
| 3= -2.7707e+005 -4.7991e+005i || | g= 2.1551e+006

| 4= -2.7707e+005 +4.7991e+005i || | g = Inf

| 5= 5.5416e+005 [ 10= Inf

We also compute the eigenvalues of this problem using the QZ algorithm directly on the second
companion form linearization, without any prior de ation. The QZ algorithm fo8nd nite

and two nite eigenvalues. Our algorithm de até&dzero eigenvalues from the pencil for the
reversed problem. The two nite eigenvalues computed from the reduced pencil are:

| 1=-5.161621336216381e-002 -2.243476109085836e-001i
| = -5.161621336216381e-002 +2.243476109085836e-001i

The problem imjuadeig is in the reduction of the matrii to the upper triangular form in the

de ation process. In the QZ algorithm this step is done after the balancing algorithm [70] of the
matricesA andB. Also this algorithm permutes rows and columns of matrices in order to use
the sparsity structure to de ate possible zero or in nite eigenvalues before the main steps of the
algorithm. The reduction to upper triangular formgunadeig algorithm destroys the structure
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and QZ is unable to detect more in nite eigenvalues. Notice that the computed eigenvalues do
not have big absolute values either. Finally, we conclude that only the scaling of the matrices
M, C andK is not enough. For the interesting discussion regarding the balancing in eigenvalue
computation, refer to [71].

Recall thatjuadeig works with reversed problem when the matkixis singular, that is it
de ates the zero eigenvalues. So, in this case, the algorithm dea#sio eigenvalues. We
computed the rank of matrik after the de ation, and the rank w&s meaning that there were
at least two more zero eigenvalues which the QZ algorithm could not detect.

Experiment 2. Here, we present more examples from the NLEVP library where our algorithm
detects more zero or/and in nite eigenvalues taadeig:

Table 3.3: Number of de ated eigenvalues

quadeig KVADeig
Problem zero in nite zero in nite
bilby 1 2 1 3(2+1)
omnicaml 11(8+3) 0 12(8+4) 0
omnicam?2 14 0 23(14+9) 0
relative_pose_6pt 0 4 0 5(4+1)
shaft 0 201 0 402(201+201)

The numbers inside parentheses represent the numbers of de ated eigenvalues per de ation
step. In thequadeig case, for themnicamlproblem, the QZ algorithm de ated additional
zero eigenvalues in addition to the 8 from the de ation process.

3.6 LU based de ation

Instead of the QR factorization, we can use the LU factorization with complete pivoting for
determining the rank of the coef cient matrices in order to de ate zero and in nite eigenvalues.
The transformation matrice® andV in the de ation process now depend on the triangular
matricesL andU, and on the inverse of the matidix However L is triangular matrix, meaning
that the inverse multiplication is actually just solution of lower triangular system of equations.
Du to pivoting, it is expected to be well conditioned with respect to linear system solution.

In this section we develop guadeig—type algorithm and the de ation Algorithin 3.5.1 using
the LU factorization with complete pivoting as rank revealing factorization (see §3.1.4).
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Let
|
-
LkUk = FcKQk; Uk = o
On ran,
o |
LmUm = FuMQu; Uwm = M
On ryin

be the LU factorizations with complete pivoting for the coef cient matrices of the quadratic
pencill M+ | C+ K. In the following subsection we present the de ation process of one
Jordan block of zero eigenvalue using the rank revedllbdactorization.

3.6.1 The case of nonsingulaM

First, if ranK) = rankM) = n, the equivalence transformation is
I( ! ) !

LMlPM o C In | M 0 QM 0
0 I K O o I, 0 Iy
 wacal wa' | weme| o
e o e
. @ MOM] bty g ML O 4 (3.83)
KQw 0 o I 1,

If rank(K) < rankM) = n we have following transformation:

I( ! ) !
Ly'Pv O C I | MO Qu O
0 L' K 0 0 Iy 0 Pl Lk
!
| Lne | WAL L | o
LR 0 RE
o LtAnCQu || LytPuPTLk
o a0 T 1
X12 | X13 - 0 ~
% X21 OrK;rK OrK n rg ! % 0 |r|< 0 E:(3'84)
On rg;n On k'K 0 0 |n 'k
The reducedn+ rk) (n+ rg) pencilis
0 1 0 1
X1 ||| X2 Rw 0
A |IB= O———w1"A | @ A - (3.85)
X21 OrK;rK 0 |rK
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3.6.2 Rank de cient cases

In the case whernk ry < ntransformation is

I( ! ) !
LAy 0 C In , MO In O
0 LR K 0 . 0 Iy 0 I_:{'I Lk

0 1
Ly'PvC || Ly'PuPilk OMQY || Oryin
% LDKQT Oreon E I On ry:n ||| On rM;n§
0 (()n 1rk nC) ( 0r11 r};,)n Or:‘lin 0 In
LM PvC)11 LM PvC)12 1 T
L, 'AuPI Lk ~ buQT UNTe)
% (LM:LH\/IC)Z]. (LM]'PMC)ZZ M H\/] K -K (. I % ( MOQM)ll ( MOQM)lZ On
(BQP) 11 | (BQY)12 0|0 K 0 H‘ I
0 0 0l0 " A
0 1 0 1
>(12 X13 >(14 Y12 OrM;rK 0rM;n rg ~
=
X22 X23 X24 é On 'mi'm On MmN I'm On 'miTk On 'v:N Ik ¢
! <
X31 X32 ii E OrK ™ OrK;n ™ |rK OrK;n rk A
0 0 0 On rki;'m On rk;N 'y On Ik Ik |n Ik
X 1Y (3.86)

In the next step, we compute the complete orthogonal decomposition (i.e. URV decomposi-
tion, using unitary matrice®x andZx)

m N I'm [Tk
n ry Xo1 X292 Xo3 = Qx Rx Op MM T Zx; RXZC(“ fm) (N rM): (3.87)

The remaining steps are analogous to thos¢ in §3.3.2.

3.6.3 Eigenvectors

Assume that the right eigenvectarand the left eigenvectoms of the transformed pencil
QCy(I )V are computed. The transformations are de ned as in the previous sections, depending
on the ranks of the matriced andK. The corresponding right eigenvec®mand the left
eigenvectom for the original linearization penc@,(l ) are

0 1
2
@—A = g=Vz
2
0
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Notice that, in opposite to de ation process using the QR factorization, the left eigenvector is
obtained by solving the system of equations. However, this can be reduced to solving triangular
systems. The candidates for the right and the left eigenvectors for the original quadratic eigen-
value problem are derived next. If there are two choices for the eigenvector, the algorithm picks
the one with the smaller (e.g. norm-wise) backward error.

The right eigenvectors

The rst case: rankKM) = rankK) = n. The matrixK is nonsingular, and we have two choi-
ces for the right eigenvector. Letbe the right eigenvector for the transformed GEP. The
corresponding right eigenvector fGp(l ) is

0o 1 0 1 0 1
- @2A- M0 @EEA:@—QM—QA:
2] 0 I & &

Hence, the two candidates for the eigenvegtareQue;, andK le.

The second caserank K) < rankM) = n. The matrixK is singular, andh rg zero eigenva-

lues are de ated. The eigenvectors corresponding to those eigenvalue span the nullspace of the
matrix K. The basis for the nullspace is computed using orthogonal complement of the range of
K using the QR decomposition of the matlb,;gQK:

B Qx = Qp Ry, :

The wanted vector are the last rk columns of the orthogonal matr%K.
The remaining eigenvalues and eigenvece@ <™ '« are computed from thg+ rx)  (n+ rg)
GEP [3.85). The corresponding eigenvectorGgfl ) is

0 1 0 1
0 ] 1 o o e Quer . _
@ 12_ M = =
- 0 PTL % 2 x_% T 7] x
n rg Oan

The only candidate for the right eigenveckas Quve;.

The third case: rankKK) rankKM) < n. Both matricesM andK are singular, and ry

in nite and n  rk zero eigenvalues are de ated. The eigenvectors for zero eigenvalues are
obtained as in the previous case, whilst the eigenvectors for in nite eigenvalues form the basis
for the nullspace of the matriM. As before, the basis is obtained as the orthogonal complement

111



Chapter 3. Complete solution of the QEP

of the range oM represented by the last ry columns of the orthogonal matrQ@M

ByQw = Qy Ry, :

The remaining eigenvalues and eigenveca2C'«* '™ are obtained from the'x + rv)  (rk +
rm) GEP [3.5B). The corresponding eigenvectorGg(l ) is

0 1 | | 0 10 1
2] w0 z! o g 0 fnm O ¢
@EA = n X %lr +r 0 0 X O §

T K+Tm n v
22 0 PKLK O In rk
0 0 In g On ¢
ot
_ I 0 F@le nErM _
0 Qx .
On Ik

. . 0
The wanted eigenvectaris Z, 2 " ™ (:;1:n).
e

The left eigenvectors

The rstcase: ranKM) = rankKK) = n. Letw be the left eigenvector for the transformed GEP
QCy(I )V. The corresponding left eigenvector for the linearizata(l ) isw

0o 1 0 1 0 1
w T @& Pulmwe
@2a- Pulvm 0 g% o _ @ MMTL L

W2 0 In &2 &>

The two candidates for the left eigenvecymf the quadratic eigenvalue problem &pLve;
andwy.

The second caserankK) < ranKM) = n.  Thegeft eigenvectors for the zero eigenvalue are

L4

the lastn  rk columns of the matri®] Lx. Let @==A 2 C™ 'k pe the eigenvector for the
w2

de atedn+ rg n+ rk pencil (3.8%). The corresponding eigenvector for Zhe 2n pencil,

before truncation, is

00 1 0 11
X11 X12 | X13 ~ Um 0 -
C (
@, H‘ W, 8 %% X21 Orcirc | Oreon g x ! % 0 Iy 0 Eg =
On ;N On rk;rk 0 O Iﬂ Ik
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0 1
W1X11+ W2X21+ | W]_UM ~

‘H — .

\E1X12+ | w, x = 0;

thereforews = X;,@1=l . The vectorzfor Cy(l ) is

0 0
0 " 1 . I PaLwes
Wa 0 PRk 2 PTLK

The left eigenvectoy for the QEP is now picked betwe®j Lmwe; andPy Lk

The third case:rankK) rankM) < n. The left eigenvectors for zero eigenvalues are the

|7

W3

lastn rk columns ofPlI Lk, and for in nite eigenvalues are the last ry columns ofP,\T,I Lm.

"2/ . .
Let © 2 C'x*'™ be a left eigenvector for truncated + ryy  rg + ry pencil (3.58). The
L:7)
corresponding eigenvector for the per@Tx(l )V is then
00 11
Rt | Rz | Rz | X 1| Y2 || ®i5|0
6 W H S %% Ro1 | Rop || Ros % 1% || B30 gg _
toellTe T o]0 R« 224 o [[o[]o X
00 0 0 o |
0 1
0
% 0
= =0
W1k13+ W2k23+ w,Rx | \Hlblg | \EZV23 K
‘Hle14+ W3R24+ I W,
The component®,; &, are thus computed as
&3 = |W1*?13+|W2*?23 Wlklg Wzkzg Rxl;
W, = W]_hl4 W3g24 =
The left eigenvector foCy(l ) is
0 10 1 O 1
.7
II’M 0 W]_ P'\-ZLM 1 :
we PTLM % 0 Qx 0 7 g _ X3
PTLK IrK 0 s ro® X
In r Wy [/
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I I
LAl |7
andP] Lk

and the candidates for the left eigenveqmreP,& Lm
Qx &3 @

3.6.4 Computing the Kronecker's Canonical form using rank revealing
LU factorization

In this subsection, we derive an algorithm for de ating the eigenvalue zero, using the rank
revealing LU factorization instead of the SVD or the QR factorization with column pivoting. We
will describe the rst step in moe detail, and then formulate the algorithm.

LetA;B2 C" ". Denote byn; the size of a working matrix in stépands the defect of working
matrix in step.

1. Compute the rank revealing factorizationfaf; = A

QAA]_;]_PA = LAUA; (3.88)

and denotes; = n;  rankA) = n  rankA). Now, LAlQAAl;lz . Partition

! s

B
La'QaB = B—z in compatible manner. Multiply the pengih | B) by L,'Qa on
1
the left to get I

A 1By
L,'Qa(A 1B)= % : (3.89)
1

2. Compute the complete orthogonal decompositioB;of
B]_ = UBRBVBZ (390)

The column rank oB; is sy, if the matrix pencil is regular, anB;Vg = Bg.1 Ogn s, -
Multiply the pencil [3.89) byvg from the right to get

[
Az | By ‘ Ag2 | By

La'Qa(A | B)\Vg= (3.91)

3. Let Ps be the permutation matrix for permuting teegandn s, column blocks. De ne
P.= L 1QaandQ, = ZgRs. The rst Jordan block for the eigenvali@ss de ated by the
following orthogonal transformation:

I

Ago | By ‘ A2 | By

Pi(A | B =
1( )Ql 0 ‘ | Bl;l

(3.92)

Complete algorithm is described below
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Algorithm 3.6.1 De ation of eigenvalue O

1
2:
3:
4:

10:
11:
12:
13:
14.
15:
16:
17:

j=1,A11=AB11=B;n=n;

Compute rank revealing LUQaA1:1Pa = LaUa
s1=ng rankAr1)

while sj > 0do

Partition matrices: Agl = L, 'QaAjj, Bé:l = L,'QaBj;
Update and partition blocks in royv
fori=1:j 1do
B
BT sl P = Loy

end for
Compute the complete orthogonal decomposiBpr UgRgVg
Compress; to full column rank, permute and partition:

Aj+j+1 Ajj+1 = Aj+1VePs, Bj+1j+1 Bjj+1 = Bj+1VePs;

0 Bj;j = Bjvehs
Nj+1=nNj sj,j=j+1
Compute rank revealing LUQaA;jPa = LaUa
sj=nj rankAj;j)

end while

This algorithm results in

1
A‘+1;‘+1 | B‘+1;‘+1 A‘;‘+l | B\;\+1 ‘ L ‘ A2;‘+1 I Bz;‘+1 ‘ A1;‘+1 | Bl;‘+1 .
0 | B i ‘ Az: | By ‘ A IBy
C
P(A | B)Q= : : ok

<

‘ 0 o | B2 Az 1Bz KX

‘ 0 ‘ o ‘ 0 | By
(3.93)

The de ation of in nite eigenvalues can be done by the same algorithm, but with reversed pencil

B

| A

Numerical examples

Experiment 1. intersection . Recall the case study example from Subsedtion[3.5.1. We used
Algorithm[3.6.] to compute the structure of zero eigenvalues in the reversed problem. This
algorithm also de ated 6 zero eigenvalueg,in the rst, 6 in the second? in the third andL in

the fourth step of the process, just as Algorifhm 3.5.1. The computed real eigenvalues are

| 1= 2.476851749893558e+001
| 2= 2.476851768196165e+001
| 3= -5.581818959997490e+008 -1.628030389374511e+009i
| 4= -5.581818959997490e+008 +1.628030389374511e+009i
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The following gure shows the backward error for the computed nite eigenvalues for all three
algorithms,quadeig, KVADeigand LU basedVADeig

Figure 3.7: Backward errors for the nite eigenvalues sorted by magnitude for the
intersection  problem

Experiment 2. mobile_manipulator . In this example, Algorithm 3.6]1 de ate8izero eigen-
values in the reversed problem. There whésteps of de ation, and two zero eigenvalues were
de ated in every step. The two nite computed eigenvalues after the de ation are

1= -5.161621336216380e-002 -2.243476109085838e-0011
l o= -5.161621336216380e-002 +2.243476109085838e-001i

Figure representing the backward errors for nite eigenvalues computegdageig, KVADeig
andLU KVADeigs presented below.

Figure 3.8: Comparison of the backward errors for the nite eigenvalues, sorted by magnitude,
for themobile_manipulator problem
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3.7 Numerical examples. Comparison of rank revealing de-
compositions

The goal of this section is to present the difference in computed results using different
rank revealing decompositions. The emphasize is not on the de ation process, but on the
transformation of the pencil when no zero or in nite eigenvalues are detected. We will use three
rank revealing decompositions:

* QR factorization with column pivoting (QR)

* OR factorization with column pivoting and initial sorting of rows so that (8.11) holds
(QRrs) (default irkKVADei{

LU factorization with complete pivoting (LUcp).

In addition, we will illustrate the importance of rank determination in the rst step of de ation
process. Our algorithm offers two types of criteria for rank determination:

1. rank of matrixAis equal tak 1, wherek s the rstindex for whichRyx > t kAkg holds,
whereAP = QRIis rank revealing factorization (F-norm);

2. rank of matrixAis equal tok 1, wherek is the last index for whichR«j=R« 1k 1 t,
whereAP = QRIis rank revealing factorization, ands prescribed threshold (drop-off).

It will be clear from all examples that component-wise backward error gives better insight
into the accuracy of computed solutions than the norm-wise backward error. This stresses the
importance of the techniques such as parameter scaling and diagonal balancing (advocated in
this chapter).

3.7.1 Example 1cd_player .

This a example from NLEVP library [5]. It is a quadratic eigenvalue problem arising in the
study of a CD player control task. The dimension of the problemAs60; the matrixM is the
identity.

Original problem

We computed the eigenvalues for this problem using three different rank revealing decompo-
sitions in the de ation process: the QR with column pivoting, the QR with complete pivoting
(presorting of rows followed by column pivoting), and the LU with complete pivoting. For the
last two we use®&VADeigmplementation, and for the rst one we usqdadeig. The compu-
ted eigenvalues are sorted by magnitude in ascending order. The norm-wise and component-wise
backward errors forthe eigenvalues are given in Figures 3.9a and 3.9b.
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(a) Normwise backward errors (b) Componentwise backward errros

Figure 3.9: Comparison of the normwise and componentwise backward errors for the right
eigenpair for the problerod_player

From Figurg 3.9a we see that the normwise backward errois\féiDeigand LU based
KVADeigre similar, and the backward errors tpradeig are bit higher for the rs60 eigenva-
lues. However, the real difference is seen in the Figureg 3.9b of component-wise backward errors.
Precisely, foquadeig, the error is equal t@ for most of the rst60 eigenvalues. We explain
the reason for this below.
The matrixM is identity, so we do not have any transformation of the linearization pencil in the
de ation procgss. However, when choosing eigenvector, we have two chaicasdK 1o,

X1 . : : . . .
wherex= * isthe corresponding eigenvector for the linear pencifuadeig, the system
X2

K 1x; is solved using the computed rank revealing factorization of the midtrixext gures
represent the structure of the matkband the corresponding rank revealing factorizations.

(@) spy(K) (b) spy(Q), QR (©)spy(R), QR (d) spy(Q), QRrs

(e)spy(R), QRrs  (f) spy(L), LUcp  (g) spy(U), LUcp

Figure 3.10: Sparsity structure of the matrkk and the corresponding components in the rank
revealing factorizations

In the case of the rsB0 eigenvalues imuadeig, the blockK 1x, is chosen because its
norm-wise backward error is smaller, however, solving the system using the QR factorization has
bigger component-wise error. Itis clear from the gures that the QR factorization does not inherit
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the sparsity of the original matrix, in contrast to the LU factorization. In our algoriantx is
computed using the LU factorization. Together wittersection andmobile_manipulator
examples, this is another example where the norm-wise backward error can be misleading. In
this casequadeig had access to the better solution, but the criteria for choosing the approximate
solution lead to the wrong one.

Reversed problem If we consider the reversed problem, the leading matrix wilkhso the

rst step will be the reduction to upper triangular form of the maii the linearization pencil.
Thereby, the rank revealing factorization from the previous paragraph will be used. Norm-wise
and component-wise backward errors in this case are presented in the Figurgs 3[11a &nd 3.11b.

(a) Normwise backward error (b) Componentwise backward error

Figure 3.11: Comparison of the normwise and backward errors for the right eigenpair for the
reversectd_player problem

In this case, the component-wise backward errors are equally high for all eigenvalues when
the QR factorizations are used, because sparsity is disturbed in the rst step of the algorithm.
However, when we use the LU factorization, the error is satisfactory.

There is the difference between the norm-wise backward errors as well, and this is due to
computation of the block x, as in the original case.

3.7.2 Example 2. Scaledirac .

We analyze another examples from the NLEVP library. It is a quadratic eigenvalue problem
that originates from the Dirac operator. The mabixs identity, and the condition number of the
matrixK is 367:4304 There is no signi cant difference between the methods either for original
or reversed problem. However, if we scale the original problem, to increase the condition of the
matrices, there is essential difference. Note that this creates a synthetic example and the goal is
to illustrate the importance of scaling.

We created diagonal matric&s andSg of conditions10® and10°, respectively. The equiva-
lent scaled quadratic problem(is?S. MSg+ | SCSR+ S KSR)x= 0. The singular values for

the matricedvl andK are shown in Figurgs 3.17a, 3.12b.
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(a) Singular values oM (b) Singular values oK

Figure 3.12: Singular values of the coef cient matricds andK in the scaledlirac example

(a) Componentwise backward error (b) Normwise backward error

(c) Eigenvalues (d) Zoomed part of the spectrum

Figure 3.13: Comparison of the componentwise backward error, normwise backward errors,
and the spectrum for the scaldulac problem

There is a difference in result depending on the rank determination. In the rstouzesegig
will de ate 1 zero andl in nite eigenvalue, just as LU basedVADeig because it will be
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determined that the matricdd andK have rank79. In addition, KVADeigwill de ate one

more zero and in nite eigenvalue in the second step of the de ation process. This results
in smaller norm-wise backward error in Figure 3.[13b, compared to the other algorithms. In
the second case, when we change the rank determination criteria to "drog\éDeigand

LU basedKVADeigwill not detect any zero or in nite eigenvalues. By looking just the norm-
wise backward error, there is no big difference between the methods, however component-wise
backward error represents the difference very well.

To see the importance of row sorting before the QR factorization, we scale only the matrix
K so that the rows vary in norm, and we observe the reversed problem. There is a difference in
rank determination as well. The rst criterion de ates one in nite eigenvalue, that is the rank
of M is declared a39. For the second criteriorM is declared regular matrix. The singular
values are presented in Figlire 3.14. There is a difference in the component-wise error for rank
revealing factorizations as well. This is presented in Table 3.4.

Table 3.4: Rank revealing factorization error, scaled reverdiedc

Method Normwise error | Componentwise error
LU complete pivoting| 1.8958e-018 2.6949e-004
QR column pivoting 1.3928e-016 1.1128
QR row sorting 4.2503e-016 7.6146e-014

The following gure shows the singular values of the scaled matrix

Figure 3.14: Singular values of leading coef cient matrix in scaled reverdedc example

Again, the component-wise backward error in Figure 3.15a gives better insight in the diffe-
rence and accuracy of the presented methods
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(a) Componentwise backward error (b) Normwise backward error

(c) Eigenvalues (d) Zoomed part of the spectrum

Figure 3.15: Comparison of the componentwise backward error, normwise backward errors,
and the spectrum for the scaled reverdagdc problem

3.7.3 Constrained least squares problem

Quadratically constrained least square problem
minkAx bk3; kxk3 = d?; (3.94)
can be solved by the following quadratic eigenvalue problem
(121+21 H+H? d 2gg")y=0; (3.95)

whereH = ATA andg= ATb. We will consider the reversed problem of ord€0, so that
we can compare various factorizations in the de ation process. The exalepl® is taken
from theRegularization Tools: A MATLAB package for Analysis and Solution of Discrete IlI-
Posed Problems. Version 4lh.this example, the problem is the determination of the rank of

122



3.7. Numerical examples. Comparison of rank revealing decompositions

the matrixH? d 2gg". LU KVADeigill de ate 917 in nite eigenvalues, an&VADeigwill

de ate total906+ 30+ 6+ 2+ 2+ 1= 947in nite eigenvalues. If the second criterion for rank
determination is used, then no in nite eigenvalue will be detected. The singular values of the
leading coef cient matrixM are presented in Figufe 3]17.

There is signi cant difference betwe@uadeig and our methods, however the main diffe-
rence in rank determination is detected by the componentwise backward error.

(a) Componentwise backward error

(b) Normwise backward error

Figure 3.16: Comparison of the componentwise backward errors, and normwise backward
errors for thederiv2 problem

Figure 3.17: Singular values of the leading matrix coef cientderiv2 example
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Chapter 4

Complete solution of the gquartic
eigenvalue problem

In this chapter we consider the polynomial eigenvalue problem of @dez. thequartic
eigenvalue problem
(1 A+ 13B+12C+1 D+ E)x= 0; (4.1)

whereA;B;C;D;E 2 C" ". A important application of the quartic eigenvalue problem, as
illustrated in §1.3.3, is in solving the Orr—Sommerfeld equation which appears in the analysis
of the stability of the Poiseuille ow. Our goal is an ef cient and numerically robust algorithm
for the complete solution of the problem (4.1).

The idea is to try to use the algebraic toobpfadrati cationintroduced by De Teran, Dopico
and Mackey|[1]7]. Quadrati cation is a equivalence relation that allows us to reduce the quartic
problem [(4.1) to an equivalent quadratic eigenvalue problem, which is then solved following the
development from the previous chapters. Moreover, in our proposed approach, we try to use
the original matrix coef cients as much as possible. Also, we develop a test for the existence
of Jordan blocks for zero and in nite eigenvalues, and develop an algorithm for the complete
determination of the structure of these eigenvalues.

The numerical experiments, presented[in B4.5, show the power of our method in comparison
to the MATLAB's function for the computation of the polynomial eigenvalue problpayleig ,
and to thequadeig as well. For instancegolyeig completely fails to nd the solution of the
quartic eigenvalue problem obtained from Orr—Sommerfeld equation of the dimersia00Q
whereas our algorithm provides the solution with acceptable backward error.

4.1 Quadrati cation

Let us rst brie y introduce the quadrati cation [17], and the notions of unimodulary equi-
valent matrix polynomials, and spectrally equivalent matrix polynomials.
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Chapter 4. Complete solution of the quartic eigenvalue problem

De nition 4.1. Supposd® andQ are two matrix polynomials of degregsandh, respectively,
not necessarily of the same size.

* P andQ are said to be extended unimodularly equivalent, dené&téd Q, if for some
rrs Owe havediagP,l;) diagQ;ls).

* PandQ are said to be spectrally equivalent, denofed Q, if P QandrevP” revQ.

Notice that unimodular equivalence corresponds to "being linearization", and spectral equi-
valence to "being strong linearization". This is clearer if we de ne these notions in the terms of
the previous De nition|[(4.]L).

De nition 4.2. Let (| ) be an m n matrix polynomial of degree g.

« A matrix pencilL(l ) is said to be a linearization &®(l ) if L(I ) » P(l ). A linearization
is said to be strong if, in additiomevL(l ) * revP(l ). Equivalently, a pencil(l ) is a
strong linearization for @ ) if

L(1)  Pa):

* A quadratic matrix polynomiaQ)(l ), i.e. a polynomial of degreg, is said to be a
qguadrati cation of P(I ) if Q(I ) » P(I ). A quadrati cation is said to be strong if, in
addition,revQ(l ) revP(l ). Equivalently, a pencil(l ) is a strong quadrati cation
for P(1 ) if

Q) P(l):

We will be interested in the strong quadrati cation because they preserve the structure of
both nite and in nite eigenvalues (Theorem 4.1. in [17]).

4.1.1 Companion form of grade2

Analogously to the linearization by companion form, the rst and the second companion
form of grade 2 are introduced in [17] as follows. First, de ne matrix polynomials

Bi(l )= 12C+| D+ E; (4.2)
Bx(l )= | ?A+ | B: (4.3)

The rst companion form of grade 2 is de ned as
| |

)= B0) Bil) _ 1%A+1B 1%C+ID+E
ST A, | | 2]
n n n n
| | | (4.4)
, A C BD 0 E
=1 +1 + :
0 I 0 0 In 0
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We will use the second companion form of gr&jéecause its structure is more convenient for

the de ation process:
| |

By(l In | 2A+1 B In
C§(|): 2() no_ n
B1(l ) |'2|n I2IC+ID+E I|2|n
_,2A0  BO_ 0 I (4.5)
C In D O E 0
=1 ?2M+1| C+K:

It can be proved that these quadrati cations are strong in the sense of De jitipn 4.2 (See [17]).
The quadratic eigenvalue problem (4.5) can be solved by a corresponding algorithm, based on
e.g. the second companion form linearization. In that case, the nal matrix pencil cfrsizén,

that represents a linearization of the quartic protjlem 4.1, is

0 1 0 1
B On ln On A O | 0n On

D 0,]0 | c 1,]l0, o g

A IB:% —— “§ |% AN L Sl o (4.6)
O In| On On Oh O | In On X
E On On On On On On |n

By the same reasoning as before, we can conclude that the de ation Algérithrh 3.2.1 completely
determines the structure for zero and in nite eigenvalues of the quartic problem. The key is that
the quadrati cation[(4.5) is strong, meaning that the partial multiplicities for these eigenvalues
are preserved. Moreover, the linearization|(4.6) for the obtained quadratic problem is also strong,
hence the conclusion follows by transitivity.

Theorem 4.1. Algorithm[3.2.1 applied to pencil (4.6) completely determines the structure of
eigenvalue zero for quartic eigenvalue problénfA+ | 3B+ 1 2C+ | D+ E)x= 0.

4.2 Scaling

In order to equilibrate the norms for the coef cient matriceq in|(4.1), we propose two types
of scalings, to be applied directly to the coef cient matride8;C; D andE. The rstone is
tropical scaling, as described in §2]3.2, and the second one is a generalization of the Fan, Lin
and Van Dooren's scaling for the quadratic eigenvalue problem. Here, we use the result from
[4], which provides a unique minimizer of the coef cient

max(L; max kAko)?
min(kAokao; kAcko)

in the bound for the backward error of the matrix polynomial and the corresponding linearization.
In addition, the parameter is de ned as proposed in [14].
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4.2.1 Tropical scaling.

The corresponding tropical polynomial for the quartic problem reads
tp(x) = kAkox* k Bkox® k Ckox? k Dkox k Eko: (4.7)

For the computation of the tropical roots pf (4.7) we use the algorithm provided|in [61].
The maximal number of distinct tropical rootsdsEvery roota; de nes one set of scaling
parameters
g=a; d=(p@) 4 i=1234 (4.8)

Every set of the parameters improves the backward error for certain part of the spectrum, and the
other eigenvalues do not have to be computed as accurately. This is why, for this type of scaling,
the complete quartic eigenvalue problem would have to be solved four times, in order to deliver
all 4n eigenvalues with small backward errors. Howeven, ig large, this is not very ef cient,
especially because we are in fact solving the generalized eigenvalue problem 4 foze

times. Thus, this type of scaling is practical only in the case of problems of small dimension

4.2.2 Fan, Lin, Van Dooren generalization scaling.

The second option is a generalization of the Fan, Lin and Van Dooren's scaling for the
quadratic eigenvalue problem. Fgyrwe choose

S
KEk>
= 4 __= 4.
KAk (4.9)
which is the optimag for minimizing the factor
ma><(1; kAkg;kBkz;kag;kaz;kEkz)z_ (4 10)
min(kKEkz; kAk») ’ '
in the backward error ratio bounds (2.26) and (R.27).
Ford, we choose 4
(4.11)

4= (Eky+ kgDka+ kg?Cky + KgPBky

This scaling is used in all our experiments.

4.3 De ation process

If the leading coef cient matriXA has rank o = rank(A) < n, then there are at least ra
in nite eigenvalues of the quartic eigenvalue problgm|4.1). Similarly, if the coef cient matrix
E has rankg = ranE) < nthere are atleast rg zero eigenvalues. We want to remove those
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eigenvalues from the linearization pencil before calling the QZ algorithm. The rst step would

is determination of the numerical rank by some rank revealing factorization. Let
!

R
AP A= QaRa; Ra= A (4.12)
On ran |
EPE= QeRe; Re= Re ; (4.13)
On re;n

be the rank revealing QR factorizations fsandE. We would like to use the transformation
matrices from the de ation process asKVADeig described in Section 3.5, applied to the
quadratic probleny (4]5). These include the rank revealing factorizations of maitiees K

of order .

Consider the matriM of order 21 from the quadrati cation[(4]5)
!
A0
M = ; (4.14)
C In

From its structure, itis clear theank{M) = n+ rank(A), meaning that it is enough to determine
the singularity of the matriXA of ordern to determine the singularity dfl. Moreover, by
interchangingh  n block columns and rows we get
! ! ! !
BMP = OIln, ADO 0 Ip _ In C : (4.15)
lhn O Cly, 1, O 0 A

Now, we can use (4.12) to get the rank revealing decomposition of the nivairix

In 0 In O 0 Iy 0 Py Iy CPy
" PpMp " = "M Az T A (4.16)
0 Q 0 Pa Qs O In O 0 Ra

Finally, the rank revealing factorization bf is given by

0 1 0 1 0 1
0 ||| Qa 0 (| Pa | CPRy
MPu= QuRw; Qu= @===A; Py = @ A Ru= @=— A
Inf{l| O Ini]| O 0 Ra
(4.17)

Next, consider the matriK of the quadrati cation[(4.5)
K = : 4.18
0 ( )

Again, we conclude thaankK) = n+ rank(E), that is, to check the singularity & of order
2n, it is enough to check the singularity of the n matrixE. If we permute thean n column
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blocks we get ! ! I
0 I 0 1 lh O
KP = " = " : (4.19)
E O I, O 0 E
Hence, we can usg (4]13) to determine the rank revealing decomposition of theKnatrix

ln O lhn O lh O
" Kp " = " : (4.20)
0 Qg 0 R 0 Re

Finally, the rank revealing factorization of the matkixis
0 1 0 1 0 1
| 0 0 ||| I 0
KPk = QcR; Q= @==—==A; py= @—_ZA; R = @=_—"oA: (4.21)
0 ||| Qe Pe || O 0

However, notice that the permutation of the column blocks only ensures that the Raiax
upper triangular. If this structure is not important for the process, we can skip the permutation

step and just make the following transformation

| | |

I”OKPEoz OIIr1: (4.22)

0 Qe 0 Ip Re O
Now, we can use the de ation process foKiWADeigalgorithm. The rst step is the determi-
nation of the ranks of the matricédsandE to determine whether there are zero and in nite
eigenvalues. Of course, there can be more than one Jordan block for both of these eigenvalues,
and in that case we want to de ate all of them, and not only the rst block agiadeig. We
will have a nice characterization for the existence of the Jordan blocks in terms of the matrices
of the original problem, as for the quadratic eigenvalue problem.
Again, as in theKVADeigthere are three standard cases: Bo#ndE regular; only one matrix
is singular; and boti andE are singular.

Both matrices A and E regular. If both matrices are regular, we can use the factorization
(4.17) to reduce the matr® from (4.8) to upper triangular form, since this is already the rst

step of the QZ algorithm.
I( ! ) !
Qu O C Iy M 0 Pvw O
0 Iy K 0 0 In 0 Iy

0 1
I oP | o || t T 1
_ % I\H O Qu © E |%)%Hﬂﬂ;:f % 423

I I2n

o2n
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Only one matrix is singular. Assume rst thatE is singular, meaning that there are at least

n rg zero eigenvalues which must to be de ated. If there is only one Jordan block of zero
eigenvalues, then only one step of de ation is needed, and we can use the structure of the
linearization pencil to transform the matikto upper triangular form. This is done by the same

transformation matrices as in (3]40)

I ! 1 !
Qu O C In | M 0 Pu O
0 K 0 0 I 0
0 Qk A r(; Qk 1
0 DP
=2 0 Qe Ll cr
0 ||| QABPa Qn O =————>=1 0,
= I 5 E | 0 Ra . (4.24)
- O2n O2n I lon
0 || RePePa

In order to derive the condition for the existence of multiple Jordan blocks for zero eigenvalue,
we must consider different transformation, as in (3.66)

1( ! 1 !

Qc O C In | M 0 lon O
0 O K 0 0 In 0 Qk
0 5 0 1
A 0
%[0 ¢ Lo |,
= 0 In g I% ocll Qe §: (4.25)
REPE 0 O2n O2n | I 2n
0 0
The de ated pencil of orderis+ rg reads
0 1
8 Jlo | ] 0 .
20 [0 allo |,
n n+r
A2z | Bo= QgD || 0 0 0 I % ocl o e )§;
0 In 0 g O(n+rE) (2n) | In+rE
_ n+re
ReP- || ©

(4.26)
whereQg.; = Qg(1:rg;:) andQg., = Qg(re+ 1:n;:). The next step in the de ation process
is to determine the rank of the matry,. From the structure of the matrix, we conclude that
the rank ofA,, is equal to B+ rg+ the rank of the n n matrix

|

QD . (4.27)

ReP:
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Therefore, the test for the existence of Jordan blocks for the quartic prgblgm (4.1) is to determine
the rank of then n matrix (4.27) which is de ned in terms of the coef cient matricRs®indE
of the original problem.

Notice that, if the matrixA is rank de cient, we can consider the reversed prob{erfE +

mD+ mfC+ mB+ A)x= 0, m= 1=l , and the corresponding truncated linearization pencil of
order 1+ rp reads

0 1
D 0 In
0 1
QA;lB 0 IrA E 0 0 5
+1A
Azx | Ba= Qa2B || O 0 0 | % QL Qa e (e rA) §;
0 In 0 g On+ra) (2n) | In+ra
—_— n+ra
RaP, || O
(4.28)
and the rank of matri,, is now h+ ra+ the rank of the n n matrix
!
-B
OnzB (4.29)

Finally, we can prove proposition analogous to Proposifior] (3.4) for quadratic case

Proposition 4.1. Assume that matrii in the quartic pencil A+ | 3B+ | 2C+ | D+ E has
rankrankE) = rg < n. There exists more than one Jordan block for eigenvalue zero if

(kerD)[ X )\ ke(E)6 fOg; X =fy2 C":Dy= z z2 Im(E)g: (4.30)

Analogously, if the matriA has rankrank{A) = ra < n, there are more than one Jordan block
for in nite eigenvalue if

(kerB)[ Y )\ ker(A) 8 fOg; Y =fy2 C":By=z z2 Im(A)g: (4.31)

Proof. From Theorem 4|1 we know that the partial multiplicities, and thus the dimensions of
Jordan blocks for a quartic eigenvalue problem can be obtained using Alg¢rithmy 3.2.1 for a
corresponding strong linearizatipn #.6. The very rst step of the de ation yields the pencil
(4.28). Now, ifAp; is singular, we will have another Jordan block for the eigenvalue zero.
The rank of the matrixA,, can be determined by the rank of matri E;Fz,g . This matrix is
rank de cient if its kernel is nontrivial, that is ier ?RE?—EE = ken(Qg:2D)\ ker(I*QEPg) 6 f0g.
Matrix Qg:2 represents the basis for kK&r), and thus

[

= ker(D)[ (Im(D)\ ker(E )?) \ ker(E): (4.32)

, C
Re P!
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]

Denote the left and the right transformation matrices fiom {4.25) RitandQ1 respectively,
and the linearization pencilwitA | B= A1; | B11. After the rst de ation step we have
!
Az | B ¢

Pi(A | B = : 4.33
1(A11 11)Q1 0 | By, (4.33)

Compute the rank revealing factorization

QE'ZD .
) P =0 Ra..: 4.34
IQEPE Az P22 ™AL ( )

If this matrix is singular, in order to de ate additional zeros, the rst step is to permute the rows
to get this matrix in the lower left corner of the matAx,. This is done by the permutation
p= 1l:n+rg 2n+1:3n n+rg+1:2n 3n+ 1:4n (denote withP the corresponding
permutation matrix). Now, the transformation matBxis given by

|

|
hy= T P (4.35)
QAzz
and the transformed pencil is
0 1
Qg.1D 0 I A 0 0
E;1 e n+rg
' QCll Qe g
Poh2= 0 | 0] 0 & 5822:% = 0 = o %
Il2'6‘22F)X22 0 E — n
0 0 On (n+re) 4 ||| N

(4.36)
To be able to de ate additional zeros, we have to reduce the blocksd4 to zero. This is
done by the complete orthogonal decomposition

B85, = UgpRepVgs; (4.37)

so thatBB,2Veg = By, 0 . Denote byP the permutation matrix for these column blocks.
Finally, the de ated pencil is

A | B
BAVEsP | BB VggP = 3 : (4.38)
0 | Boo

Since we have lost the structure of the original linearization, the potential further de ation
process is done by Algorithm 3.5.1 on the pereis | Bss.
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Both matrices A and E are singular. When both matriceé andE are rank de cient, and we
determined that there are no more Jordan blocks for zero and in nite eigenvalues by computing

the numerical rank of block matrices
I I

Qe,D . QuB .

RePe ~ RaPy

we can de ate them in one step, as donegjuadeig algorithm. The transformation matrices
would be

(4.39)

1 ! ) !
Qu O C In | M O In O
0 K 0 0 | 0
0 Qk A n Qk
of| o 0 0 1
Q 0QE % LN [
01| Q.B A 2
= I AO ;‘ I % 0 RaP, " §: (4.40)
n
—_— Oz2n O2n | I 2n
0 [ Rep

Notice that, in terms of the quadratic problem, we hgye= n+ ra, andrg = n+ rg, so if we
want to make the partitiof (3.48) as before, we will have (in previous notation):

0
e | % ! On D(:;1:rp) D(:;;ra+ 1:n)
Xll X12 = ED Orin Qall:rasl:rp) Qa(l:rara+1:n) E{; (4.41)
21| 722 On ran Qa(rat 1:n1:ra) ‘ Qa(ra+ 1:nra+ 1:n)1
wor | x ! On Qe(51:re) | Qe(sre+1:n)
13 | X14
Xom | X = % Qa(l:ras) Orpire Orpin re X ; (4.42)
23 | K24
Qalra+ 1:n;2) On rare ‘ 0nI ran re
In On'rA On:n ra '
X31 | X = ’ ’ X 4.43
31‘ % Oen RePe(ii1:ra) | RePe(ira+ 1:0) (4.43)
I C(;l:r Ci;rat1:n
Y11 ‘ Yo = " ( & (57 ) (4.44)
O,on RaPa(:;1:ra) | RaPa(i;ra+ 1:n)

The rest of the process goes as in Subseftion|3.3.2.

4.3.1 Backward error analysis for the de ation process

In this section, we develop a backward error analysis for the rst two steps of the de ation
process, described in the previous section. The following proposition deals with the rst step,
that is, the de ation of the rsih rg zero eigenvalues.
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4.3. De ation process

Proposition 4.2. Let

0 1
Ll o
B || o 0 1
— 0 | All o
Ri1 || O & % O2n (n+ex) §
R 1B= 0|l o I %o |l Of
0 In 0 G Onver) 20 | Inve
n+ eg
RePL || O
(4.45)

be the computed linearizatioh (4]25). Then it corresponds to exact reduced linearization of
a quartic pencill A+ 1 3B+ | 2(C+ dC)+ | (D+ dD)+( E+ dE + DE), where, for alli =

KdC(:;i)ka  eckC(:;i)ko; kdD(:;i)ka  epkD(:;i)ko; KAE(:;i)ka  eqrkE(:i)ko;  (4.46)
and the truncation error is

_r?axkk(DE)PE(:;k+ ko t_mirllk(E+ dE)Pe(:;;i)k; (DE)Pe(:;;1:K) = Onk;  (4.47)
j=1in i=1:

with t is prescribed threshold parameter.

Proof: (i) It holds thatX;; = computed®cD) = @E(D+ dD). To estimatedD, we start
with the fact that

computed@eD) = @D+ D; jDj epj&jjDj; 0 e 2nu
Since®g = (1 + E)@E, KEk>  eqr, we have
computed®eD) = Og(1 + E )D+ D = O(D+ E D+ §D) O(D+ dD)

with column-wise estimatelsdD(:;i)k,  (KE ko+ epn(1+ KE ko))KkD(:;i)k, (derived as in
Proposition 3.8), and (4.46) follows withy = (eqr + epn(1+ eyr)).

(ii) By the same reasoning we get; = (QE(C+ dC), wherekdC(:;i)ko, eckC(:;i)ko, and
ec=(eg+ ov’ A(L+ €r)):

(iif) Note that in this moment the backward errorfncontains both the oating point error
dE and the truncation errddE analogous t8), i.€dE+ dE+ DE)Pg = O:cRe. If we set
DskE = dE + DE, then we can represent the computed linearization as

0 1 I I I
In 0 00 ( B Oh In O° A Oh On On ) In0 0 0
@0 Q0 0 D+dD On On In | (C+dC) 1n On On 01nh 0 0
001, 0 0 In On Op On Oh In On 00I, O
00 08 E+DsE Op O On Oh  On On In 00 0d
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Chapter 4. Complete solution of the quartic eigenvalue problem

The next step is computation of the rank revealing factorization of the block matrix

I
. (D+ dD)
EREPE Pay, = Qay,Ray: (4.48)
For the computed factoR,,,; @a,,; Ra,, it holds that
" (9 [ 1#
(D+ dD) D _
EREP-IE- + E pAzz = ©A22RA22’ (4.49)
where I @ I
D ) D+ dD .
Gi) ey ELTAD) (4.50)

: €
E X RePL X

By an analogous procedure to the one in Subseftion]3.5.2 we get the nal estimate

kD (:;1)ko P _ KE(:;i)ko
m €r 2max (1+ ep)cos® (ker(E)+ Im(D));(1+ eqr)m
KE(:; 1)k P~ KD(:;i)ko

—kE(:;i)k2 €r 2max (1+ ep)cos® (ker(E)+ Im(D)) —kE(:;i)kz’(1+ eqr)

4.3.2 Eigenvector recovery

The right and the left eigenvectors of the original probleém|(4.1) and the nal linearization
pencil [4.6) are related as follows. Lef C*' andw 2 C*" be the right and left eigenvector
for the linearization, and 2 C", y 2 C" the right and left eigenvector for the original problem,

T

andl 2 C the corresponding eigenvalue. If we partiter z] z zI zI andw=

:
wl w) wl wj ,wherew;z 2 C"i= 1;2;3;4, we have
0O 1 O 1
1 | x
| %(l A+ B
.- B2 - gl )Xg; (4.51)
3 I (I A+ B)x
| Ex
0 “ 1 0 1
Wy [ °x
| 2
w= %WZE = % Xg : (4.52)
W3 | X
Wy X

For both the right and the left eigenvector there are four choices to rexk@redy. Namely,
for the right eigenvector we can choage(l A+ B) z;(1 A+ B) 'z3orE 'z. Notice that,
for the last three choices we have to solve the system of the equations in order to compute the
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4.3. De ation process

wanted vector. Reconstruction of the left eigenvector is easier, though. We just choose one of
the block components; wo; W3 Or wj.

Lete2 C" andw 2 C" be the computed right and left eigenvector for the linearization pencil
(4.6). Both right and left eigevectors will ha¥a elements if no de ation occurred, otherwise the
number of elements will berd d, where d is the total number of zero and in nite eigenvalues

de ated.4n dis also the dimension of the truncated peikil | B= P(A | B)Q which is
passed to the QZ algorithm for computation of nite nonzero eigenvalues.

No de ation occurred. The right and the left eigenvectors for the original linearization pencil
arez= Qeandw= PTw. Now we choose andy form the four choices. The criterion can be
the smallest backward error.

De ation occurred. In order to be able to recover eigenvectors we must have thérfuibc-

tors for the transformed problem. For the right eigenvector this is easy; we justzatds to
: e . . .

thee, thatisz= Q . However, in the case of the de atidhand/orA is singular, so we

Od 1
just take the rstn block as the right eigenvector of the original problem to avoid solving the

system with a singular matrix.
Getting the he left eigenvector is more tricky. To obtain the4ualeigenvector for the lineariza-
tion, we rst have to compute the missingcomponents o®. Denote withe; the eigenvector

of the truncated problem, and M} be the missing part. From

[
w] w] P(A |B)= w ) R1B X (4.53)
0 Y
we conclude that, = &, XY 1. Now,w= PTw, and we choose one of thdlock components
as a left eigenvector for the original problem.
The right eigenvectors for zero (in nite) eigenvalues are computed as tha lagt (N ra)
columns of orthogonal matrix from the QR factorizatiorEof(A ), and the left as the last rg

(n ra) columns ofQg (Qa).

Remark 4.1. Recall the Remark 3.6, where we stated that the structure of any eigemvalue
can be determined by the Algoritim 35.1 but with the shifted starting mafrix> A aB.
Consider the linearization for the quartic eigenvalue probfenj (4.6). The shifted rAatris of
form

0 0 0 1
B O A O B+aA O I 0
D O C D+aC al] O |
A1 = ;
0 | 0 al 0
E O 0 0 al
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Chapter 4. Complete solution of the quartic eigenvalue problem

The rst step in the Algorithni 3.5]1 is to determine the rank®gf. Similarly as in Remark 3]6,
we can conclude that the rank of the 4n matrix A;.1 can be determined by the rank of the
n nmatrixa®A+ a3B+ a?C+ aD+ E asrankA) = 3n+ ranka?A+ a3B+ a?C+ aD+ E).
This follows from the following transformation

0 1 0 1
asl alla?l | a*A+a3B+a2C+abD+E 0|0 O
0 | 0 og D+ aC all o 1
Apq =
o ol 1 ogf 0 1lal o
0o o] o 1 E ol o0 al

4.4 De ation process inKVARTeiglgorithm

We will refer to our algorithm for the complete solution of quartic eigenvalue proljlem (4.1)
asKVARTeigIn this section we develop full de ation algorithm depending on the number of
Jordan blocks that need to be de ated for both zero and in nite eigenvalues.

The rst step is rank determination for the matricgandE. Letra = rankA) andrg = rankE).
We have three main cases

1. Both matrices A and E are regular, i.e. ro = rg = n. In this case there is no de ation,
we just use the rank revealing factorization fér(4.17) to reduce the matr& to upper
triangular form as in[(4.23).

2. One of the matrices is singular.First assume that < n. Then, befqre any de ation
QgD

Re P-

the matrixA is singylar, we will consider the reversed problem, and the maghuwill
Qp2B

RaPy

continuation of this step we will talk only about de ation of the zero eigenvalue, because
the in nite eigenvalues of our problem are the zero eigenvalues of the reversed problem.

step, we determine the rank of the blatk n matrix Ay := . However, if

be Ay, = . Nevertheless, the next step depends on the rams-0fIn the

2.1 Regular Ag,. If Ayo is regular, there is just one Jordan block of zeros, and it is
de ated as in[(4.2/4), that is we also reduce the maBribo upper triangular form.

2.2 Singular Ay. In this case there is at least one more Jordan block for the zero eigen-
value. The rsttwo blocks are de ated using the structure of the linearization pencil,
as described i (4.25) and (4]36). At this point, we cannot use the structure of the
pencil any more, and thus we send the derived pencil to Algoifithm|3.5.1 to check
whether there are more Jordan blocks and to de ate them.

3. Both matrices A and E are singular. Again, before any transformations of the lineariza-
tion pencil, we must check whether there exist more Jordan blocks for the zero and the
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4.4. De ation process ilkKVARTeiglgorithm

in nite eigenvalues. This is done by determining the rank oftthen matrices
| |

QA;ZB. . QE;ZD . .
RaP, = ReR:

After that, there are three possible outcomes

(4.54)

3.1 Both matrices in (4.54) are regular.In this case there is just one Jordan block of
both zero and in nite eigenvalues, and they are de ated by one transformation as in

@.49).

3.2 Only one matrix in (4.54) is singular. This means that there are more than one
Jordan blocks for zero or in nite eigenvalue. In either case, we de ate two Jordan
blocks for the zero eigenvalue using the structure described in| (4.25) and (4.36),
meaning that the reversed problem is considered if there are more Jordan blocks for
the in nite eigenvalues. After that, the pencil is sent to Algorithm 3.5.1 to check
whether there are more Jordan blocks of zero and to de ate them. Finally, when all
zeros are de ated, we send the reversed truncated linearization pencil to Algorithm
[3.5.1 to de ate one Jordan block of the in nite eigenvalues. We do not check the
rank for the number of in nite eigenvalues, but we use the information that there are

exactlyn ra, orn rg if reversed pencil is considered, in nite eigenvalues.

3.3 Both matrices in (4.54) are singular.In this case there is more than one Jordan
block for both zero and in nite eigenvalues. Depending which total sum of the
dimensions of the rst two Jordan blocks is greater, we consider original or the
reversed problem. In either case, we use the structure to de ate two Jordan blocks
of zero eigenvalue. After that, the truncated pencil is sent to Algorjthm]|3.5.1 to
de ate possible remaining Jordan blocks of zero eigenvalues. Finally, when all zeros
are de ated, we send the reversed truncated linearization pencil to Algdrithm 3.5.1
together with the information about the size of the rst two Jordan blocks, for which
we know to exist, and need to be de ated. Any additional Jordan blocks will be
determined by the algorithm.

At the end, we present the diagram for the decision three of the described algorithm
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Chapter 4. Complete solution of the quartic eigenvalue problem

Reduce B
to upper triangular

& One step of
© regula" deflation
B
%’:’; PA= QaRa
a
pana® fulldeflation
o process
One step of
reguia’ deflation
Qg;2D
' Pa = QaRa .
60’5 |iQE PE Singulgr
%, full deflation
&
4. process
one step of
deflation
¢ (0 and infinite)
o&‘(\‘eg\)\a
Q..,.D
hop. PAT QaRa full’ deflation of 0
Q EB one deflation step
pA;é P = QeRs for infinite
AFA

full deflation step
of 0 and infinite

Figure 4.1: Decision tree for the de ation processVARTeig

4.5 Numerical experiments

In this section, we provide numerical examples that clearly illustrate the superiority of the
new proposed algorithm, as compared with the two state of the art methogslyleey and
gquadeig.

Experiment 1. We tested our algorithm for three examples from NLEVP benchmark library
for quartic eigenvalue problembutterfly : n= 64; orr_sommerfeld : n= 64; andplanar
waveguide: n= 129.

We also computed the eigenvalues using the fungbiolgeig from MATLAB, and the
quadeig. The maximal backward errors are given in Tdblg 4.1:

140



4.5. Numerical experiments

Table 4.1: Comparison of backward errors fpolyeig , quadeig andKVARTeig

polyeig quadeig KVARTeig
Problem minh maxh minh maxh minh maxh
butterfly 2.0432e-016 | 8.6189e-016 | 2.5525e-016 | 2.0389e-015 | 5.8418e-017 | 1.1377e-015
orr_sommerfeld 1.3618e-017
planar waveguide || 1.6060e-016 | 3.0879e-012 | 4.9977e-016

From Tablg 4.]l we can conclude that our algorithm is convincingly better for th second
problem. In other two cases is either slightly better or there is no signi cant difference between
the methods. It is interesting to notice tliptadeig algorithm has greater maximal backward
error in every example.

Experiment 2. In this experiment we present the power of our de ation process. It is another
example from NLEVP library, so calledirror , that originates from the calibration of cadioptric
vision system. The order is= 9.

Both A andE matrices are rank de cient, with the ramk = ra = 2, which means that there
are at leas¥ zero and7 in nite eigenvalues. They are de ated by the de ation process in
guadeig algorithm. The QZ algorithm founds an additional zero eigenvalue, and two more
in nite eigenvalues.Polyeig identi ed 2 zero eigenvalues, ar&in nite eigenvalues. However,
our de ation process found additional two zero and two in nite eigenvalues, making the total
number of both zero and in nite eigenvalues equal to 9.

The smallest nonzero real eigenvalue computed bytiagleig is-7.520795255755492e-014

The seven smallest nonzero eigenvalues computed kpollgeig are

| 1= 2.658653684986126e-028 | 5= -8.144083812492196e-016
| = -3.730521707731879e-024 | 5= -1.057366058524636e-015
| 3= 4.343895348238823e-017 | 7= -3.036244175050749e-014
| 4= -4.135304334627443e-016

(4.55)

Figure 4.2: Norm-wise backward error for nite nonzero eigenvaluesgror
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Chapter 4. Complete solution of the quartic eigenvalue problem

Figure[4.2 presents (for all three algorithms) the backward errors for the nite nonzero
eigenvalues, sorted by the magnitude.

The backward errors for the rst seven nite eigenvalues potyeig are of orderl0 28
because they are smdll (4]55) and should be declared zero. It is clear form this gure that by
just looking at the norm-wise backward error we cannot concludeptiigeig andquadeig
did not nd all zero eigenvalues because the backward errors are satisfying. Therefore this
example shows the importance of checking whether there are more Jordan blocks for zero and
in nite eigenvalue and then de ating them. If we look at the structure of matricaadE for
this particular problem, we see that their rank can be determined exactly because there are
zero columns in both matrices. On the other hand, the block matrices$ (4.54) which are used to
determine the existence of more than one Jordan block for zero and in nite eigenvalues also
have two zero columns each, and the &st7 submatrices are well conditioned. Thus we can
conclude that our algorithm determined the accurate number of zero and in nite eigenvalues.

Experiment 3: orr_sommerfeld of order 1000. Here, we speci cally analyse the example
or_sommerfeld, but now with much higher dimension, namely 1000 This means that
corresponding quadratic problem has dimen&06Q and the corresponding generalized eigen-
value problem has dimensiag®0Q When using MATLAB functionpolyeig , all computed
eigenvalues are of the formInf Infi. With our algorithm, the result depends on the rank
determination of the matriR, as described in Sectipn B.7. If we use the rst criterion (F-norm),
the rank is988 meaning thal2in nite eigenvalues are de ated. In the case of drop-off strategy,
the matrixA is not rank de cient. The singular values of the matfxare presented in Figure

4.3.

Figure 4.3: Singular values of leading Figure 4.4: The ratios 1(A)=si(A)
matrix coef cientA, orr_sommerfeld u—machine precision

We also usejuadeig algorithm to compute the eigenvalues of the corresponding quadrati -
cation by the second companion forfri44in nite eigenvalues are computed. We present the
computed nite eigenvalues, and the corresponding norm-wise and component-wise backward

errors in Figures 4.6b, 4.Ha, 4] 5c.
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4.5. Numerical experiments

(a) Componentwise backward errorguadeig

(b) Componentwise backward errorkVARTeig

(c) Normwise backward error iquadeig

(d) Normwise backward error iIKVADeig

Figure 4.5: Comparison of the normwise and componentwise backward errors for the nite
right eigenpairs foorr_sommeferld example of orden= 1000
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Chapter 4. Complete solution of the quartic eigenvalue problem

Once again we see the importance of careful rank determination. The component-wise
backward error from Figuie 4.5 shows that the second rank determination criterion gives better
results.

(a) KVARTEeig (b) quadeig

Figure 4.6: Computed nite eigenvalues farr_sommerfeld example of orden= 1000
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Chapter 5

lterative methods

The objective of this section is the development of Arnoldi like methods for computation of
the part of a spectrum for quadratic eigenvalue problem. In particular, we are only interested to
nd the prescribed numbér of eigenvalues and corresponding right eigenvectors with a given
property (for example, those of the largest magnitude, largest real part, closest to the real axis,
etc.). Usually, the number of the wanted eigenvakiessmuch smaller than the dimension of
the problem.

As we saw in the previous Chaptéfs 3 and 4, the rst step in solving the polynomial eigen-
value problems is the linearization. After that, we use well developed methods for the linear
problem. However, a naive straightforward usage of these methods, without keeping in mind
that the original problem is nonlinear, can produce poor results.

In this chapter, we will show, with the examples, the problem that occurs when using the Ar-
noldi algorithm for the quadratic eigenvalue problem. We will propose several improvements of
the two level orthogonal Arnoldi algorithm. The main difference will be that the approximation
for the wanted eigenpairs is obtained from the projected quadratic problem, and not projected
linear problem. In addition, we will propose new shifts for restart for overdamped quadratic
eigenvalue problems, and demonstrate its bene ts through the numerical examples. We will
propose a new selection method for starting vectors by approximating the original problem with
a proportionally damped problem.

In the second part of the chapter the Krylov—Schur algorithm for the linear eigenvalue pro-
blem is introduced. We discuss the Krylov—Schur algorithm for the quadratic eigenvalue pro-
blem, and generalize th#R procedure proposed ih [11] when the TOAR algorithm is used to
build the starting factorization. The importance of the usage of arbitrary shifts is presented with
the numerical example.
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Chapter 5. Iterative methods

5.1 Arnoldi algorithm

Consider the linear eigenvalue problem

Hy= 1Yy, (5.1)

whereH 2 CN N, Instead of computing aM eigenpairg] ;y), we wantto nd onlyk N
eigenvalues with certain property, e.g. smallest absolute value, closest to the imaginary axis,
belonging to a giveWv C.

The ideais to nd ayjoodk-dimensional subspace spanned by an orthonovh2aCN K, in the

sense that it has a good information about the wanted part of the spectrum, and that is nearly
H—invariant. Then, we compute the eigenpairs for the smaller projected problem okorder

f\i{I;X}z: | z (5.2)

2¢Ck k
and if (I ;2) is an eigenpair for the projected problen {5.2), tifenV 2 is an approximate
eigenpair for the original probler (5.1).
The goal of this Section is to explain, in more details, the Arnoldi type methods for nding
that nearly spans the subspace corresponding to the wanted eigenvalue¥. ideteysen as
the orthogonal basi = v; ::: v of the Krylov subspace

K k(H;v1) = sparfvi;Hvy; i HY tvig (5.3)

of orderk. The basis is computed using the Gramm-Schmidt orthogonalization process. The
algorithm is called Arnoldi algorithm and it is given below:

Algorithm 5.1.1 Arnoldi algorithm

1: vi = vi=kviko 9: if ti+1;) = O then

2: for j=1:kdo 10: =y Vo= Jvgiinv], T o=
3 rj=Hy; (tij)(‘+l) Y

4: fori=1:jdo 11: STOP

5: tij = virj; 12:  endif

6: rj=rj vitj 130 Vi1 = t,—ijl;j

7. end for 14: end for

8 tjryj= krjk 15: "= KV =[v o T=(6) ke 1) K

In akth step of Algorithm} 5.1]1, we get the so called Arnoldi factorization
HVk = Vka+ M€ (5.4)

whereT, 2 CK Xis upper Hessenberg, and the columns of the orthonormal nvatrepresent
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5.1. Arnoldi algorithm

an orthonormal basis for the Krylov subspa&cg(H; v1).

Notice that, if the norm in the line 8 of the Algoritim 5.]L.1 is zero, it meanskhat= V- T,
or more precisely that: spans an invariant subspace Ky and the eigenvalues af are the
eigenvalues oH. Geometrically, it means thaj is in the span of the previously computed

because then we know that we have found an invariant subsp&tamd the extracted spectral
data is error-free.

However, if the breakdown did not occur, then we can only use approximate eigenpairsfor
the form(l ;2 =: (I ;y) where(l ;2) is a computed eigenpair for the projected mafipof
orderk. The corresponding residualis Hy |y, andits normis

kl’kzz kHy | yk2: k(HVk Vka)ﬂ(gz krkksz(ZjZ (5.5)

If we de nedH = % we have thafl ;y) is an exact eigenpair of the mattik+ dH. Hence,
with suf ciently small residual, we can consider the computatioifl afy) as backward stable.
Moreover, this norm depends on the choice of the rst vewiaand the following theorem says

when can we expect fdrik to be equal to zero.

Theorem 5.1([63]). LetHV, VT = rcg be ak-step Arnoldi factorization oH, with Ty

with Q Q = I and R upper triangular of order k.

In essence, Theorem 5.1 states that, if the starting vegtr a linear combination of
k eigenvectors oH, the breakdown will occur ikth step of the Arnoldi algorithm, i.e. an
invariant subspace of dimensi&mwill be found.
Since we are interested in the speci c eigenvalues, we would like the starting vector to be a
linear combination of the corresponding (wanted) eigenvectors. Then, the eigenvalues of the
Hessenberg matri¥, would be exactly those that we are looking for. So the main question is,
how to de ne a good starting vector when we do not know anything about the wanted part of the
spectrum. The original idea is to use th@ynomial Itersand it was proposed by Saad in [59].

starting vectow, is represented in this basis as

N
Vi = é XiXi: (5.6)
i=1

Let the eigenvalues be enumerated so that thek refpresent the wanted ones. Split the sum in
(5.9) in two parts

& N
Vi= axXixit a XX,
i=1 i=k+1

so that the rst sum belongs to the wanted eigenvectors. In order to obtain the wanted invariant
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subspace by using the Arnoldi algorithm, the rst sum should prevail the second one (in vector
norm). Saad's idea is to de ne a matrix functidnwhich is large on the wanted part of the
spectrum and small on the unwanted part. This matrix function is called polynomial Iter. Then,
if we apply it to our starting vector, we get

N K N
f(Hvi= & f(l)xix= & fllixix+ & f(ixx: (5.7)
i=1 i=1 =kt 1

Thus, if we de ne a new starting vector &¢H)v,, wheref is a polynomial lter, our starting
vector will be better than the previous one.
In [59], Saad proposed to de neas polynomialps for which the minimum

minmaxj p(l )j (5.8)
P2Ps| 2E
is achieved. This is dif cult to solve for the arbitrary domdin However, ifE = E(d;c;a) is an
ellipse with real cented, focid+ ¢, d cand major semiaxig, which contains the unwanted
eigenvalues then the best minimax polynomial is

T d)=c) .

) (5-9)

ps(l ) =

whereTs is the Chebyshev polynomial of degreef the rst kind which can be computed using
the three—term recurrence

Ta(l)=1; To(l )= 1,
Te2(l)=20To(l)) Ty 2(I);n L

The following algorithm computeg = p;(H)vp which can be used to de ne a new starting
vector in Arnoldi procedure

Algorithm 5.1.2 Chebyshev iteration

1. For givenzo, | 1 andE(d; c;a), computes; = -5, v1 = SL(H d)z
: for j= 1:sdo
Sj+1= 2551 s

zj= Zsjgl(H dl)vj sjsj+1zj 1
end for

The full process is as follows:

* build the Arnoldi factorization of ordem> k with the starting vectov;.

» Compute the eigenvalues of he Hessenberg m#&tixrhese are the approximations for
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* Find an ellipseE(d;c;a) that contains the unwanted eigenvaluesT@f De ne zp =
é!; 1 X as a linear combination of the eigenvectors corresponding to the approximation of
the wanted eigenvalues. Use Algorithm 5]1.2 to obggin

* De ne new starting vectovy = zs=kzks.

» Repeat these steps until convergence.

The implicit realization of this process is proposed by Sorensen |n [63] and it is described in the
next section.

5.1.1 Implicitly restarted Arnoldi (IRA)

Consider the linear Iter
f(H)=H m: (5.10)

If mis an eigenvalue ol andxy, is the corresponding eigenvector, we have thadd)xm, =
0. Moreover, ifx is an arbitrary vectorf(H) applied onx will remove the direction of the
eigenvectokm from x. Recall the idea of the polynomial Iter i (5.7). If, in addition, we de ne

f(H) = g) (H 1iD); (5.11)
i=k+1

we get
k
f(Hvi= & f(H)xix+0;
i=1
that is, the directions of the unwanted eigenvectors in the representatrpmilf be removed.
However, we do not have any information about the spectrukh, @nd thus we must use the
approximations of ; to de ne the lter (5.10). The following gure illustrates one example
of the lter (6.10). The goal was to determidecigenvalues with the largest magnitude of the
matrix of ordem = 500 produced by MATLABs functionand.

Figure 5.1: Polynomial lter in the rstrestart of IRA iterations
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Sorensen [63] developed an implicit algorithm for applying this Iter to the starting vector
in the Arnoldi algorithm. The process goes as follows:

Building the starting factorization. As the rst step, we build amth order Arnoldi factori-
zation, wheramis larger than the number of the wanted eigenvalues

HVin = VmTm+ rm€y: (5.12)

For example, in MATLAB's implementation of Implicitly Restarted Arnoldi (IRA) algorithm,
eigs , the default value fomis 3k.

Iterative part. Now, until convergence, repeat the following steps:

1. Compute the eigenvalues ol The eigenvalues of the Hessenberg matpixepresent
approximations for the eigenvalues of the original problem. However, amafghem
we must choose thosewhich best correspond to the wanted ones. The remamingk
eigenvalues are then used to de ne the lter of the fofm (5.11). These are referred to as
the unwanted eigenvalues. The partition in wanted and unwanted sets is done by sorting
the computed eigenvalues by the prescribed criteria. For example, if we want to nd
the eigenvalues with the largest magnitude, we will just sort the approximations by the
magnitude and chooseargest as the wanted ones, and the rest as the unwanted.

2. Implicit QR iterations. The next step is an application p= m k) implicitly shifted
QR iterations ofMy:
Tm ml=QR; i=1:p; (5.13)

resulting inQyTmQm = T3, whereQm = Qp:::Qq. SinceTn is upper Hessenberg, the

Qm(i;j)= Ofori> j+ p, as a product op Hessenberg matrices.
If the matrixH is real, we want to keep the Arnoldi factorization real as well. In that case,
a complex shift appear as conjugate pgi~ aj+ ibj, and one uses the double shift in

(G.13)
(Tm @)%+ bfl = QjR;: (5.14)

If we use the unwanted Ritz values (eigenvalue3g)fas shiftsm, they are called the
exact shifts

3. Truncation to the factorization of order k: Multiply the factorization[(5.12) bdm from
the right to get

HVmQm = VinQm(Qm TmQm) + rm€&mQm: (5.15)
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5.2. Second Order Arnoldi (SOAR)

Now, sinceQn, is product ofp orthogonal Hessenberg matrices the row veet@pny, =
0 ::: 0 b b hasits rstnonzero element on theh position. Thus, if we equate
the rst k columns of the[(5.15) we get thkeorder Arnoldi factorization

HV, = VT + 1] e (5.16)

whereV,” = ViQm(:;1:K), T = T (1:k1:K) andry = VinQm(: k+ DT (k+ L;K) +
FmQm(m; k).
This is equivalent to Arnoldi decomposition obtained using the starting veftor

o
vi= O (H 1) (5.17)
j=k+1

4. Expand to factorization of order m: Using the Arnoldi process, without having to com-
pute rstk steps, we obtain the Arnoldi factorization of oraefrom (5.16).

Implicitly restarted Arnoldi algorithm is implemented ARPACK [48] which is used by the
MATLABS function eigs .

5.2 Second Order Arnoldi (SOAR)

Suppose that we want to use the Implicitly Restarted Arnoldi (IRA) algorithm for computing
a part of the spectrum for the quadratic eigenvalue problem

QI )x=(1?M+ 1 C+ K)x= 0;

by applying it to the rst companion form linearized problem
! !
Mic MK | x
Hy= y=1ly, y= : (5.18)
I 0 X
Already with the linearization the structure of the problem is lost, and, in addition, we use a

small linear problem for the approximation of the large nonlinear eigenvalue problem.

Example 5.1. Consider the quadratic eigenvalue probl@ntM + | C+ K)x = 0 with the
following coef cient matrices

1 0 1
0 7 5 0 01 0
K;C=@®10 8 0X:K=@® 2 3 0X;
1 0 0 1 00 1

<
I
o &%

o » O
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and the corresponding rst companion form linearization

0 1
7 500 10
10 8 0 2 3

1
H= 0 0 0 0 (5.19)

1 000 O
O 100 O
O 010 O O

Suppose we want to compute the eigenvalue with the largest magnitude. We use MATLAB's
eigs (H; k), wherek = 1. If we de ne that the maximal dimensiam of the Arnoldi factoriza-

tion is 3 (meaning thap = 2 shifts are used at restart), the algorithm fails to nd the wanted
eigenvalue in the rst 300 restarts, producing the following error

?7?7? Error using ==> eigs>processEUPDinfo at 1453 Error with ARPACK
routine dneupd: dnaupd did not find any eigenvalues to sufficient
accuracy.

We see that, even for the small problems the state of the art algorithm can fail.

One of the drawbacks of the direct application of the Arnoldi algorithm to the linearization
is that the computed Rayleigh quotient destroys the structure of the original quadratic problem.
The idea of Bai and Su in [3] is to nd a good subspace, rich with the information of the wanted
part of the spectrum, and then use the smaller projected quadratic problem to approximate the
eigenvalues. Furthermore, if the projection is orthogonal, the structure, and therefore the speci c
properties of the original problem, are preserved. For examplgidfan orthonormal basis for
such a subspace, then the projected pentif{® MQ)+ | (Q CQ)+( Q KQ) and if, e.g.M
is Hermitian, then so iQ MQ as well.

The proposed wanted subspace would be the basis of the generalized Krylov subspace, which
was introduced in [3]. In contrast to standard Krylov subspace, their de nition depends on two
matrices of the same orderand one vector.

ro=u;
ra= Aro; (5.20)

ri=Arj 1+Brj 2; ] 2
is called a second order Krylov sequence based @h#&nd u. The space
G(A;B;u) = sparfro;ri;iiiirk 19 (5.21)
is called a second order Krylov subspace of order k.
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5.2. Second Order Arnoldi (SOAR)

De nition (b.1) is a generalization of the standard Krylov subspace de nition, in the sense
thatG((A; O;u) = K k(A;u).
The algorithm for computing an orthogonal basis[of (5.21) is given below.

Algorithm 5.2.1 [P, Q;H; ] = SOAR(A; B; u; k)

1. gL= u=kuk2 13: =N

2. p1= 14: P=[py::;p,Q=[ags::5q], T=
3: for J— 1,2;:::;kdo (tij)c+n)

4. r=Aq+ BpJ 15: STOP

5. S= (] 16: endif

6: fori—12"::;jdo 170 Oj+1= r=tj+qj

7: tj = qI 18:  Pj+1= SHj+1;

8: r=r ot 19: end for

o: S=s pitjj 20: =k

10:  end for 21: P=[pyiinpkl, Q=[aninadd, T =
110 tjeqj = krko (t|J)(k+1) K

12:  if tj+1; = Othen

Atfter k steps of Algorithnj 5.2]1, we get the second order Arnoldi factorization

AQc+ BR.= QTk+ Gis 16 tr 1k (5.22)
Q«= AT+ Prr 168 tier 1:; (5.23)

whereQy has orthogonal columns and it represents the basis for the second order Krylov sub-
space of ordek; Ty is upper Hessenberg, afd contains auxiliary vectors. The factorization

(5.22)-[5.2B) can be also written in compact form
! ! ! ! !

A B

=3 Il 0 R R P+ 1

This is similar to the Arnoldi factorizatio.4), except that the block matr% is not
orthogonal.

To further explore the connection between the Arnoldi and the second order Arnoldi factori-
zation, we make a distinction between the two key events: de ation and breakdown, which are
associated with the norm in line 11 in Algoritim 5]2.1 being zero.

In the Arnoldi Algorithm5.1.]L, we concluded that breakdown means that the current vector
rj is in the span of the previously computed vectors, implying that we have found an invariant
subspace. This is regarded as a good thing. However, in the SOAR procedure, theryeators
(5.20), which are being orthogonalized, depend on two previous vectors. Thus, wherjtim the
step we get that the norm in line 11 is equal to zero, we can conclude; tisah the span of
the previously computed vectors, i®; 1(A;B;u) = Gj(A;B;u). However, this does not have
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to be true for all subsequent vectogsk > j. This means that, when this happens, we cannot
say that we have found an orthogonal basis for the second order Krylov subspace. To be able
to claim this, we have to check whether the block vectgr)'fl is in the span of the previously
computed/,),i= 1;:::;j 1. Ifthatis the case, then we call it a breakdown and we know
that we found the basis. If not, we call it de ation and the process continues. The full algorithm,
which deals with the de ation phenomena is given below:

Algorithm 5.2.2 [P,Q;H; '] = SOAR(A; B; u; k)

1: 01 = u=kuks 15: =
2 pm=0 16: P=[ps:upl, Q=[ay:al,
3: for j=1,2;:::;kdo T=(tj)c+1 -
4:  r= Agj+ Bp 17: else
5. S= (] 18: de ation
6. fori=1;2;:::;jdo 19: ti+1j=1; Qj+1=0; pj+1=5
7: tij=qr 20: end if
8 r=r gt 21: else
9: S=s pitj 22: Qj+1= r=tj+ 1
10: end for 23: Pj+1= Stj+1j
11: tj+15 = krka 24:  endif
12:  if tj+1; = Othen 25: end for
13: if s2sparipji:q=01 i jg 26 =Kk
then 27: P=[py;:i5 k], Q=105 0]
14: breakdown 28: T =(tij)k+1) K

Now, in [3], Bai and Su proved the following theorem, which gives the connection between
the SOAR and the Arnoldi algorithm.

Theorem 5.2([3]). The SOAR procedure with the matrickand B, and the starting vectan
breaks down at a certain stejpif and only if the Arnoldi procedure with the matrix® g and
the starting vecto(éjn) breaks down at the same step j.

It is instructive to note here that, when the breakdown occurs in the SOAR algorithm, the
matrix ,ngi spans an invariant subspace for the matfh& , but it is not an orthonormal basis,
and we know that the computation of a nonorthonormal basis may not be a numerically stable
process.

To see an application for solving the partial quadratic eigenvalue problem, we de=ne

M ICandB= M K. Now, the matrix £ & represents the rst companion form lineari-

zation for the quadratic eigenvalue problem. Compute the orthogonal®atis the second
order Krylov subspacé(A; B;u). To nd an approximation for the eigenpairs we now compute

the eigenvalues of the smaller projected problem of okder

=:Mg =1Ck =Ky

(I ZF%M%H f%{(i‘q_(gﬂlg(é()k;)z: o: (5.25)
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5.3. Two level orthogonal Arnoldi factorization

Notice that the structure of the original quadratic eigenvalue problem is preserved, for example,
if M, C andK are Hermitian so ar®;Cy andKy as well. We will see later that this will be an
important property for de ning a new way of choosing the shifts for the quadratic eigenvalue
problem with certain property.

5.3 Two level orthogonal Arnoldi factorization

As we mentioned before, the SOAR algorithm can be interpreted as an algorithm for nding
a nonorthogonal basis for the Krylov subsp#cg(H;v), whereH is of the form [(5.2§4), and
u"= v' 0, . Therefore, the SOAR algorithm has tendency to be numerically unstable ([49]).
This is why Lu, Su and Bai [49] developed the Two level Orthogonal Arnoldi (TOAR) procedure,
which preserves the orthogonality of the block matr%f as well.

In order to develop the TOAR procedure, a slightly modi ed de nition of the second order
Krylov subspace is introduced. Here, the second order Krylov subspé8eB;r 1;rg) depends
on two starting vectors of ordex and it is a generalization df (5.21) in the sense that in the case
of De nition .1 r 1 is always a null vector.

.
De nition 5.2. LetA;B2 C" Mandr 1;ro2 C"suchthat r7; rl & 0. Then the sequence

ri=Arj 1+Brj 2, j 1 (5.26)
is called a second order Krylov sequence based @A ; and ry. The subspace
G(AB;r 1;r0) = sparfir 1;ro;:::;rk 19 (5.27)
Is called a second order Krylov subspace of order k.

Consider the second order Krylov subsp&g€A;B;r 1;rp), and letQy be its orthogonal
basis. Furthermore, 1&¢ «(H;V) be the standard Krylov subspace, witt2 C?" 2" as in [5.24)
andv= ', andV its orthogonal basis. From the de nition of the sequefice (5.26) it holds

( )

K k(H;v) = spariv;Hv;:::;H¥ vg= span fo ; £ il fk 1 : (5.28)
r o Nk 2
Now,
sparfiVi(1:n;:)g= spariro;ry;:::;re 10; (5.29)
sparfiVg(n+ 1:2n;:)g= sparir 1;rp;:::;rk 20; (5.30)
that is
spari Qg = sparfVi(1:n;:);Vk(n+ 1:2n;:)g: (5.31)
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This connection can be written as
| |

Vi(1:n;: . Uy .
Vi = K _ Qi (5.32)
Vi(n+ 1:2n;:) QUi;2
Therefore, the basi®x can be computed froiv using the rank revealing QR factorization of
eitherVi(1 : n;:) orVi(n+ 1 : 2n;:). Without loss of generality we can assume a2 C2" K,
However, the number of columns @ 2 C" "« can be smaller thahy < k, which would

correspond to the de ation.

Instead of building the Arnoldi factorization for the rst companion form linearization and
then computing the QR factorization to obtain the basis for the second order Krylov subspace,
TOAR computesQx by maintaining the orthogonality of the basis for the standard Krylov
subspace. This is why it is called two level orthogonal. One Gram-Schmidt process is used to
compute orthogonal basi@ and another fo¥y. The full algorithm is presented below.

Algorithm 5.3.1 [Qk; Uk:1; Uic2; Hk] = TOAR(A; B; 1 1;10;K)
1 r 1 ro = QX (Rank revealing QR fac-16:  tj.1.j = (a2+ ksk3+ kuk3)1™2

torization,hy is the rank) 17:  if tj+1;j = Othen
o ro 18: stop (breakdown)
2: g= :
ra 19:  endif
3: Q1= Q,Ur1= X(:;2)=0,U2= X(:;1)=g. 20: if a = Othen
21: hj+1= h; (de ation)
4: for j=1:k 1do 22: Qj+1= Qj,Ujr1:1= Uj1 SHj+1j
5. r=A(QjUj1(: 1))+ B(QjUj:2(5 1)) Ujr12= Uj2 Utj+ 1]
6: fori=1:hjdo 23: else
7: s=qr 24: hjs1=h;+1
8 r=r sqg 25: Qj+1= Qj r=a
9: end for Uiqi Stivq
100 a=kik o Upna= gt g
110 s=[sg;iis )T u=Ujals) _ Ujz Ut
12 fori=1:jdo 2r: Ujr12= 0
13: tij = Uja(ii)Ts+ Uj2(5i) Tu 28: end if
14: s=s tjU;(ii),u=u tjUj2(5i) 29: end for
15 end for

Remark 5.1. The Arnoldi algorithm, as well as SOAR, and TOAR use the Gramm-Schmidt
orthogonalization process. However, in nite precision arithmetic this procedure does not have
to produce numerically orthogonal vectors. To insure the numerical orthogonality, for example
in Algorithm [5.3.1, after thea = krkz is computed, one should checkaf tkA(Q;Uj(:

;1)) + B(QjUj:2(:; 1)) ko, for the threshold parameter 1. If the inequality holds, additional
orthogonalization of againsQ); is performed. This procedure is known as the twice—is—enough
algorithm [57].
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5.3. Two level orthogonal Arnoldi factorization

After k steps of Algorithnj 5.3]1 we get the TOAR factorization

A B Uet Uet
QU1 _ QU1 Tk+rke|1—tk+1;k; (5.33)

| n On QkUk;Z QkUk;Z

where I
Qk(Stks 16 + Ok 1(@ Ttk 1)
Qu(U=ty+ 1:x) ’

if no de ation occurred in the last step, and

Mg =

!
Q(Stk+ 1:6) .
Qu(U=ty+ 1:)

otherwise. Numerical stability of the Algorithim 5.8.1 is proved in|[49].

5.3.1 Implicitly restarting the TOAR procedure

In this subsection we give a review of the implicit restarting procedure for the TOAR algo-
rithm analogous to the implicitly restarted Arnoldi. That is, we want to apply the polynomial

Iter of the form o

f(H)= O(H ml); (5.34)
i=1

some prescribed manner. Since the factorizafion [5.33) is also an Arnoldi factorization for the
matrix H, we can modify the process described in Subse¢tion]|5.1.1. Suppose that we have a
TOAR factorization of ordem> k, and we want to truncate it to the orderFirst, we compute

Tm= VTV : (5.35)

T is again upper Hessenberg, avids orthogonal withvi;j = O fori > j+ p. Multiply the
decomposition[(5.33) witkf from the right to get
| | |

A B UV UtV
QnidmaV - QumaV v b eV s 1 (5.36)
() QmUm;ZV QmUm;ZV
Now, the truncated factorization is
! ! I
A B U’ Ut
Otk o B e el (5.37)
10 QmUk;Z QmUk;Z ’
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whereU’; = UnaV(5;1:K);Up = UnaV(510K); T = T (1:k;1:K), and

" = UV k+ DTS k+ 1K+ Sty 1V (M K); (5.38)
a’ = atpe 1mV(MK); (5.39)
u" = UnaV (s k+ DTy (k+ LK) + Ut 1.V (M K); (5.40)

q
= (KU K2+ kstk2+(a*)?): (5.41)

However, we are not done yet. Notice that ($.37) is not a TOAR factorization beQastl

hash,, m+ 1 columns and it does not represent the basis of the bI@gk:qj;l andeUl:’;z.

To make it a legitimate TOAR factorization we compute the compact SVD factorization, as

proposed in/[65] I
UI:r;l s’ :tI:+ 1k UI:;Z u’* :tI:+ 1k |

= PSG ; 5.42
0 a*=,,| 0 0 (-42)

P2 Chm1 M1 92 CMer Me1andG= G G, 2 CMwr (K*DHKHD) The rankhy,  is at
leastk+ 2. Now, the nal factorization, written in compact form, of orders
I I I

+ + + + ’ :
0 Qk+ 1Uk+ 1,2 Qk+ 1Uk+ 1;2

whereQy, ; = Qm:+1P, Uy, 1.4 = SG1 andUys+ 12 = SG2. The updating algorithm is presented in

Algorithm[5.3.2.

Algorithm 5.3.2 [Qm; U 1; Um2; Hm] = TOAR_UpdatéA; B; Qk+ 1; Uks 1:1; Uks 1:2; Ti; M)

1: for j= k+ 1:mdo 16: end if

2 r=AQjUja( )+ B(QjUj:2(:5 1)) 17: if a = Othen

3 fori=1:hjdo 18: hj+1= h; (de ation)

4: S= qrr 19: Qj+1= Qj,Ujr11= Uj1 SHj+1j
5: r=r sq Uj+12= Uj2 utjs g
6: end for 20: else

7:  a = krky 21: hj+1=hj+1

8: ?:[sl;:::;a&j]T, u= Uja(;j) 22: Qj+1= Qj r=a

9. fori=1:jdo _ Uj1 sHjer
100t = Upa(si)Ts+ Uja(5i)Tu 2 Upna= g a:tjjﬂ;],-
E en?j fosr Uil U= U Ut 24: Ujs 1,2 = ch);z qul”
130 tje1j=(a2+ ksk3+ kuk3)1=2 25:  end if

14:  if tj+1;j = Othen 26: end for

15: stop (breakdown)
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54 TOAR revisited

In this subsection we present a new interpretation of the de ation and breakdown phenomena
in the TOAR algorithm, in the terms of the invariant pair for the quadratic eigenvalue problem.
We present two interpretations of the TOAR algorithm, namely as a linear solver, and as a
guadratic solver. In this regard, we propose several improvements of the restarting procedure

presented in[85.3.1.

5.4.1 De ation and breakdown

Recall the de ning relation for an invariant pgiX;S) 2 C" ¥ Ck K (see Sectioh 1]1):
MXS + CXS+ KX = 0 (5.44)

Now, assume that in theth step of the Algorithmi 5.3} 1 we hatg 1« = 0. It means that

AQUic1 + BQUi2 = QU1 Tk; (5.45)
QU1 = QuUk2Tic: (5.46)

If we substitute[(5.46) intd (5.45), and use the factthat M CandB= M K we get
MQWUic2 Ty + CQUk2Ti+ KQUic2 = O, (5.47)

or,
MQUk1 T2 + CQUk1 Tk + KQUk1 = O; (5.48)

from Uy, = U1 Ty L This means thatQyUi1; Tk) and(QkUy:2; Tx) are invariant pairs for the
quadratic problem. On the other hamgd,;.xk = 0 implies

Uet Uet
QuUk:1 _ QiUk:1 T (5.49)

QUk:2 QkUk:2
meaning that we have found an invariant pairgtﬂ';f; ; Ty for the linear problem. If de ation
occurred, the matriceQUy.1 andQkUy.» are not of full rank, which means that there is linear
dependence between eigenvectors for the eigenvaluks Hbwever, the block matrix SEBE;

is always orthogonal of full rank.

Remark 5.2. From the reasoning above we can conclude that the TOAR algorithm can be
interpreted as an algorithm for computing the minimal invariant pair for the quadratic pencil, i.e.,
if the breakdown occurred at théh step of the algorithn(QxUy.1; T) and(QuUy2; Ty) satisfy

QU1 —  QUk2Tk
5.44),and oy, = Qu, IS offullrank.
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We want to use TOAR algorithm to compute a part of the spectrum of the quadratic eigen-
value problem. However, instead of approximating the eigenvalues of quadratic problem with
eigenvalues of smaller linear problem we would like to use the I§@sier the second order
Krylov subspace for de ning the smaller projected problém (b.25), and then solve the smaller
guadratic problem with the same structure.

There are two ways to look at the TOAR algorithm. The rst way is that the TOAR procedure
(5.3.3) computes a basis for the standard Krylov subskageé!;v) and by implicitly restarting
it will be closer to an invariant subspace of the matdx On the other hand, we use it to
compute an orthogonal basis for the second order Krylov subspdéeB;r 1;rg), and, by
implicit restart, we want it to nd a better subspace that will be used to project our quadratic
problem. More precisely, the implicitly restarted TOAR algorithm is both a linear solver, and a
guadratic solver. To construct a robust algorithm, we must keep in mind the speci cs of both of
these problems, and adjust our algorithm to it, always keeping in mind that the main goal is to
solve the quadratic eigenvalue problem.

5.4.2 TOAR as a linear eigenvalue problem solver

The key improvement of the TOAR algorithm over SOAR is that the basis for the Krylov
subspac& ((H;v) remains orthogonal as well, thus making the process numerically stable.

As we explained before, the upper Hessenberg matrix represents an approximation for the
invariant pairs for both the quadratic problem and the corresponding linear problem. Although
we use the projected quadratic problem to compute the approximation, the procedure to obtain
the basis is still done on the linear problem, and breakdown means that we have found an
invariant pair for the linear problem with the mattk However, we already discussed that the
backward error for computed eigenpairs can be suf ciently small for the linearization, but much
higher for the original problem. A solution to this problem is offered inghadeig algorithm,
which scales the matrices before using the algorithms for the linear problem.

Remark 5.3. The scaling is also important in the TOAR algorithm, because if the norms of the
coef cient matrices are not equilibrated, the breakdown will occur before we nd a good enough
approximation for the quadratic problem.

This is why, as a rst step, we propose scaling as described in Subsgction 3.3.1.

5.4.3 TOAR as a quadratic solver

Choice of the approximation for the eigenpairs. The rst exploitation of the fact that we are
solving quadratic eigenvalue problem is that the approximation is obtained from the projected
problem

(I 2AQMQ)+ 1 (QLQY)+( QKQW)z= O (5.50)
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For the solution of this small QEP we use ¢{WADeigalgorithm described in the Sectipn B.5.
It is important to solve this small problem correctly for it to be a better approximation for the
original problem.

Eigenvector re nement. During the restarts, the subspace spanne@pgan have better
information, however the approximate eigenvectors do not necessarily converge. This is why Jia
proposed the eigenvector re nement|in [45]. loebe the computed eigenvalue pf (5.50). Then

the corresponding vectaris computed to minimize the residual:

z= arg min k(q?M + qC+ K)Quzky: (5.51)
o= 1

Notice that[(5.5]1) involves the original matrices, and Qg represents an approximation for
an eigenvector of the original problem. The proposed procedure for compitir@.51) is via
the eigenvector of the matriy

Bk = X X = (4°MQy+ qCQ+ KQy) (a°MQx+ qCQx+ KQy); (5.52)

associated with the smallest eigenvalue. It is important to underline the following facts regarding
this procedure. First, as the process convergbecomes increasingly ill-conditioned. The
condition number i&,(By) = ko(X)2. Secondly, because of ill-conditioning, there is no gua-
rantee that the eigenvalue algorithm will compute the smallest eigenvalue and the corresponding
eigenvector oBy suf ciently accurately.

As an alternative to Jia's approach, [24] proposes another procedure which does not use the
matrix By. It uses the QR factorization

0 1
Ri1 Riz R
0 R R

MQx CQx KQx = QR R= 22 23%; Ri 2 Ck k. (5.53)
0 0 R
0O 0 O

and the re nement is reduced to computing the smallest singular value with the corresponding
right singular vector of thelB k matrix

0O 1 O 1 0 1

Ri1 Ri2 Ri3
qz% 0K+ q %Rzzg + %Rzzlc-{ : (5.54)
0 0 Ra3

Shift and invert. Suppose that we want to compute the eigenvalues closest tossooneve
have an approximation for the wanted eigenvalue and we want to use that information to improve
our iterative process. Then, we can de ne shifted and inverted quadratic eigenvalue problem in
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the following way. Let = x+ s. De ne
Qs (X) = X?Ms + XCs + K; Mg = S°M+sC+K; Cs = 2sM+C; Ks = M:  (5.55)

Now, computing the eigenvalues with largest magnitude of QEP](5.55) corresponds to compu-
ting the eigenvalues of the original problem closess toThe eigenvectors are the same, and

for the eigenvalues we have= 1=(x + s). This transformation is important for computing

the eigenvalues close to some targetecause they become dominant and thus more easily
computed by an iterative method.

Polynomial Iter. By implicit restart described in Subsectipn 5|3.1 the polynomial Iter
f(H) = (N)ip: 1(H ml) is applied to the starting vector. The idea is, if thés represent the
unwanted eigenvalues, then this polynomial Iter will remove the directions of the unwanted
eigenvectors from the starting vector.

The most used shifts in implicitly restarted Arnoldi algorithms are the eigenvalues of the Hes-
senberg matriX;, which are the approximation of the unwanted eigenvalues. These shifts are
referred to as exact shifts. In practice, they work well for an arbitrary linear eigenvalue problems.
However, in the quadratic eigenvalue problem, we can have two eigenvalues sharing the same
eigenvector. Therefore, this can pose a problem when applying a Iter. We do not want to remove
the directions of the wanted eigenvalues by removing the directions of the unwanted eigenvalues.
Let us look at this situation more closely.

Example 5.2. Suppose that two eigenvaluegsandl » share the same eigenveckpand suppose

that we chosé 1 as the shift. The eigenvectors for the linearizattbare different for these two
eigenvalues; they ard ¢ and !2¢¥ respectively. This suggests that, by using this shift, the
direction of the wanted eigenvector will not be removed, since it is not the same eigenvector for
the linearization. Let us see what happens wh@t) = ( H | 11) is applied to the eigenvector

|2X
X

" ! # ! ! !
A B Iox  1oAX+Bx lalox  12x 14l x
| 112n = =
| o |1%< (I2 I1)x
|2X.
=(l2 Iy ;
X

Hence, this polynomial Iter will not remove the eigenvectdg* , however the factofl 2 | 1)

can be e.g. very small or very big. If it is small, ahglis wanted eigenvalue, then this shift
will reduce the direction of this eigenvector in starting vector. On the other hand, if the factor is
big, andl , is also unwanted eigenvalue, this will increase the contribution of another unwanted
eigenvector in the starting vector.

These are the things that need to be considered when choosing shifts in TOAR as quadratic
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solver. Another thing is that we choose the shifts from the information we get from the projected
problem [5.5D). The number of eigenvalueis, and amongst them we must determine
approximations for the wanted eigenvalues, arapproximations for the unwanted ones. Also,
some of them can be meaningless for our original problem. For example, consider the projection
onto one eigenvectox, | °>x Mx+ | x Cx+ x Kx= 0. This is a quadratic equation, which
means that there are two solutidng| ,. However, only in special cases both of these roots
are eigenvalues. Usually, only one of the roots represents a valid eigenvatugaltommon
eigenvector, then both roots are eigenvalues.

These described phenomena are nicely seen in the special class of quadratic eigenvalue
problems called overdamped problems.

5.4.4 Polynomial lter for overdamped problems

We introduced the overdamped quadratic eigenvalue problems in Seciion 1.7. The matrices
M;C andK are symmetricM andC are positive de nite, and is positive semide nite. The
overdamping condition

min (X CX)?  4(x Mx)(x Kx) > 0 (5.56)
kxko=1
is satis ed. The eigenvalues are divided into two sets. mhargest eigenvalues are called
primary, and the& smallest are called secondary. An important property is that gigenvectors
corresponding to the primary eigenvalues form a linearly independent set, amditfevectors
corresponding to secondary eigenvalues also form a linearly independent set.

Here, we propose a new strategy for choosing the shifts for the polynomial Iter in the
implicitly restarted TOAR algorithm. We present numerical examples which demonstrate the
power of the new proposed shift selection strategy.

Recall that, if the starting vector in the Arnoldi procedure is a linear combinatida of
eigenvectors, the breakdown will occur at #tk step, and the eigenvalues of the mafipwill
matchk eigenvalues of the original problem, corresponding to those eigenvectors. Suppose that

. . . X . :
the starting vector for the Arnoldi and TOAR algorithm |% , Wherex is an eigenvector for

two eigenvalues$ 1 andl . Now,
! " ! 1# !
X [ 1Xx | oX I | 2)x
- 1 X _ (1 12) ; (5.57)

0 X X 0
wheret is a normalizing factor. By the Theorgm b.1 we conclude that the breakdown will
occur in the second step of the Arnoldi/TOAR procedure because the starting vector is a linear
combination of two eigenvectors, corresponding {@ndl 2, and they will be the eigenvalues

of the Hessenberg matrik. This shows that it is natural for the eigenvalues which share the
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same eigenvector to appear together, and therefore if they are unwanted, they should be used as
shifts together, and if one of them is wanted, the other one cannot be used as a shift. Also, if
we use both eigenvalues as shifts, we avoid the possible increase by thélfactdr) of the
another unwanted vector or decreasing of the wanted eigenvector.

The process of choosing the shifts we propose goes as follows:

1. Compute g eigenvalues of the projected problem

(I 2QuMQ«+ | QrCQm+ QuKQm)x= 0

The structure of the problem is preserved by the orthogonal projection, meaning that this
problem is also overdamped.

2. The structure of the eigenvalues is as described, we have a sepiinary and a set
of m secondary eigenvalues. Sort the eigenvalues by magnitude. Thm lvsstong to
the primary, and the lash to the secondary eigenvalues. Choksggenvalues with the
largest magnitudes as approximations for the wanted eigenvalues (assuming this as the
selection criterion). The eigenvectors are computed from the SVD decomposition of the

matrix (5.54).

3. The number of the shifts will always be even, let us 8pyFirst, choose the eigenvalues
farthest from the wantekl eigenvalues in the primary part. We know for sure that these
eigenvalues do not share eigenvectors with the wanted eigenvalues.

4. Now, if there are eigenvalues sharing the eigenvector with tipesieifts, we want to
choose them. If they exist, they will be the roots of the quadratic polyndnfialMx +
| x Cx+ x Kx, wherex is the eigenvector. This is why, for every eigenvalue amongst
already chosen shifts from the primary part we compute the eigenvector by re nement
(5.51). Then we compute the roots of the mentioned quadratic polynomial, and these roots
are now the shifts. So, at the end, we ha@yeshifts, for which we are sure that do not
share the eigenvector with the wanted eigenvalues. This step can be also understood as a
re nement step for computing the unwanted eigenvalues.

Here, we described how to choose shifts if the eigenvalue with the largest magnitude are of
interest. This can work for any other feature prescribed for the wanted eigenvalue, we just a
adjust the sorting criteria.

Tropical roots for shift and invert.  In this section we propose a new selection of approxima-
tion for de ning the shifted and inverted problem in order to get the better approximation for the
wanted eigenvalues.

When we discussed the parameter scaling for equilibration of the backward errors for the
guadratic problem and the corresponding linearization, we mentioned roots of the tropical poly-
nomial as one of the options.
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5.4. TOAR revisited

Another interesting fact is that the tropical roots can be good approximations for the moduli of
the eigenvalues of the quadratic problem, as investigated in [54].

For the overdamped problems, we know that all eigenvalues are real and in the left half
plane. Therefore, if we want to nd eigenvalues with largest magnitudes, an upper bound on
their moduli is the larger tropical root, and therefore we propose them to be used as shifts to
de ne shifted and inverted QEP (5)58).

We already said that scaling must be done before calling TOAR to avoid early breakdown,
therefore the norms of matrices will be computed in any case. We can use it then to compute the
larger tropical root

_ kCky
g= kMK, (5.58)
ift = % > 1. Thens = gis a good shift for shifted and inverted problem.
2 2

5.4.5 Numerical examples for overdamped problems

Example 1. First example is from Bai and Su's rst paper on the Second Order Arnoldi
algorithm [3]. The problem is of order= 50 and the matricelsl;C andK are de ned as

M=011; C=1; K=tridiag( 0:1;0:2; 0:1): (5.59)

Here, thekth largest and thith smallest eigenvalues share the same eigenvector. In Figlire 5.2,
we show all 100 eigenvalues.

Figure 5.2: All eigenvalues of QEF (5.102)

The eigenvalues marked by the same color share the eigenvector. We compared our algorithm
with MATLAB's eigs which is an implementation of the implicitly restarted Arnoldi algorithm.

LIt is noted in [54] that the tropical roots are also used as the starting point in the Ehrlich—-Aberth method.
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The shifts are the exact shifts, that is some of the eigenvalues of the Hessenberg matrix in the
Arnoldi factorization.

The goal was to ndn= 2 eigenvalues with largest magnitudes. The number of shifts in
both cases wap = 4, and the maximal dimension of the factorization Was 6. The tolerance
for the backward error was u whereu is the machine precision.

eigs did not nd the requested eigenpairs for which the backward error is small enough,
even after 300 restarts, producing the error message

?7?7? Error using ==> eigs>processEUPDinfo at 1453 Error with ARPACK
routine dneupd: dnaupd did not find any eigenvalues to sufficient
accuracy.

We plotted the residuals for the rst 23 restarts in Figure 5.3 for better illustration of the superior
performance of our new method. After the r28B restarts, the backward error produced by
TOAR with our new ltering is already belowtO 8, while ineigs the error is around0 3 and
it does not improve during the remaining 277 iterations.

We also called TOAR on the shifted and inverted QEP with the shift 10, which is a
greater tropical root for this problem. With the same setting, approximations where found in just
3 iterations. The backward errors are present in Figufe 5.4.

Figure 5.3: Backward errors for rst Figure 5.4: Backward errors for shift and invert
23 iterations okigs with tropical root

Example 2. The next example is of order= 400. The matrices are
M= 1; C=tridiag( 10;30; 10); K= tridiag( 5;15; b5): (5.60)

We want to computé& = 6 eigenvalues using = 6 shifts with the maximal dimensiom =

12. We usedeigs and our new implementation of the implicitly restarted TOAR (we will
refer to it as MTOAR). Depending on the starting vectigs sometimes nds good enough
approximations, and sometimes not3@0iterations. On the other hand, mMTOAR always nds
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the approximations with a smaller number of restarts. For one example wigsradid not
converge, mTOAR found satisfactory approximation in the ¥8¥ restarts. The tolerance for
the backward error was 162,

When we used the tropical root as a shift, mMTOAR needed bahgstarts. For this example
we provide gures with backward errors in every restart for every wanted eigenvalue.

(a) eigs (b) IRMTOAR

(c) shifted and inverted IRMTOAR (d) Final normwise backward errors

Figure 5.5: Normwise backward errors in every restart for all computed eigenvalues

5.5 Lockingin IRA

When an element on the subdiagonal of the Hessenberg nigtiixthe Arnoldi process
is small, we know that we have found a good enough approximation for some eigenvalue of
the original problem. However, a Ritz value may be close to an eigenvalue of the original
problem without small elements appearing on the subdiagonal dlechoucq and Sorenesen
[47] developed the so called locking procedure, which applies a certain orthogonal change of
basis so that the appropriate subdiagonal elemef isf(close to) zero. The following lemma
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is important for the derivation of this process.

Lemma 5.1([47]). LetTyiz= qzwhereT, 2 R* Kis an unreduced upper Hessenberg matrix and
q 2 R withkzks = 1. LetW be a Householder matrix such thatz= e;t wheret =  sign(e' 2).
Then

aW=e +w; (5.61)

wherekwk P 2jef 7 and
WTHWe = qes: (5.62)

Suppose that we have the Arnoldi factorization of orkers in [5.4). Let(q;2) be an
eigenpair forTy, with je[(rzj small enough so that the resid5.5) far k2 is small enough.
De ne W as in Lemma 5]1, and multiply the factorizatipn {5.4) to get

HVIW = VIW(WTHW) + r el W (5.63)
Using (5.61) and (5.62) we get
|
qa
HVW = W _ + e+ naw': (5.64)
0 Tk 1

For ) to be an Arnoldi factorization, the matflix ; must be upper Hessenberg, and the
termrw’ must be dropped. When restorifig 1 to Hessenberg form, we must be careful not
to change the matrikeg]. The transformation matriX is thus de ned ag/ = %Yle:(?:Yk .
whereY; is such that [

G 3

Y:ITTk 1Y1: —
beet » 9

(5.65)

krikokYTwks = krikokwko, the size okrw! ko remains the same. By updating
Vi = WY He= YTWTHWY: w' = w'Y;

and by discarding the termw", we get a factorization in which the eigenvalyés locked.
The following theorem shows that this process constructs the Arnoldi factorization of an nearby
matrix.

Theorem 5.3([47]). LetHVk = T+ reel + rew’ be an Arnoldi factorization whergz= qz
and ijeszkrkkz ekHk> for somee > 0. Then there exists a matrix ER" " such that

(H+ E)Vic= VicTi+ ey (5.66)
wherekEk,  ekAko.
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The general algorithm is then as follows. Suppose that we have already Ipelghvalues,
and that the partitioned Arnoldi factorization is

Vi i P Vi Tj _Gj + rke[[ + rkwT: (5.67)
0 Tk j
The matrixTj 2 RI J contains previously locked eigenvalues, and  is unreduced upper Hes-
senberg matrix. The columns df represent the Schur basis for the locked invariant subspace.
Let the columns oK; 2 R 1) 1 represent the eigenvectors corresponding to theiregenva-
lues which we want to lock. The new factorization is obtained in the following 4 steps:

1. Compute the orthogonal factorization

R
=X
° Ok ji

whereQ2 RK D (k]

2. Update the factorization (5/67% j= Q"Tk jQ, Vi j= Vi jQ,Gj= G|Q.

3. Compute an orthogonal matrix2 R& 1 0 (k1 1 that restore¥y i to Hessenberg
form.

4. Update the factorizatioy j = P'Tx j iPVk j i= Vk j iPGj+i = Gj+iP.

5.5.1 Locking in TOAR

In this subsection we develop and analyze, analogously, a locking procedure in the new
implicitly restarted TOAR algorithm.
Assume that we built TOAR factorization of order

AQrUn1 + BQrUm2 = QU1 Tm+ S€tms 1m; (5.68)
QmUm1 = QmUm2Tm+ Uef-;trm Lm (5.69)

and that an eigenpa(g; Qm2z) from the projected probleifg?QlMQm+ qQI.CQOm+ Q KQm)z=
0is a good approximation for the original problem. We would like to lock this eigenpair in the
similar way to locking for the standard eigenvalue problem. That is, we want to introduce a
small element onto the subdiagonal of the Hessenberg nigtrix

The rst problem is that the eigenpaig; Qm2) is obtained from the projected quadratic
problem, and not from the matrik,. In order to proceed with locking, we rst need to make
sure thaty is an eigenvalue of,. The eigenvector for the corresponding linearizatibfor
the eigenvalueg] is qé?:f . This means that, ifj is an eigenvalue ofy, the corresponding
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eigenvector would be

[ [ | ¢ !

. T . .
y= QmUm1 qQmz _ Um1 gz : (5.70)

QmUm:2 Omz Um:2 z

Since [5.68){(5.69) represents the Arnoldi factorization for the métrithe residual for the
eigenpair(q; 8282; y) ) is small enough jielyj is small. Finally, we conclude thgtcan
be regarded as an eigenvalu€eTgfif the last component of5:70) is small. If this is the case,
we can continue with locking. Suppose tNdtis as in Lemma 5]1. The transformed TOAR

factorization is

AQuUm1W + BQuUmsW = QuUm i WW' TW + S€ tme 1:m+ SW(1:n)T; (5.71)
QmUmiW = QuUm2aWWT ToW + u€ltme 1m+ uwm(n+ 1:2n)T;  (5.72)

and I
q

WTT, W = _

(5.73)

As described in the linear cas#,’ T,,Ww must be returned to upper Hessenberg form, making
sure that we do not change the tersa§ anduel,. Denote withY the transformation matrix. By
removing the termsw' anduw’ and by updating

Um1= UniWY, Un2 = UnoWY, Tym= YTWIT,WY, w' = w'y;

we have locked the eigenvalge

However, with this procedure we did not change the madjx And the next time we compute

the approximation, we must again compgteeigenvalue from the projected problem, and thus,
we will again compute the locked eigenvalue. With this locking we have only assured that the
implicit restart will not affect the locked part of the Hessenberg maiqin the factorization.

5.6 Rayleigh damping

Consider the quadratic eigenvalue probigmM + | C+ K)x= 0with proportional damping
C=aM+ bK, also known as Rayleigh damping. This problem reduces to the linear pencil

Kx= mx m= 13 (5.74)
- " Ib + 1 '
The eigenvalues for the original quadratic problem are restored as
p
+ +bm? 4 :
| 1.2 = (a+bm Z(a bm) m; for mnite and nonzero (5.75)
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[,=0; I1,= a; form=0; (5.76)
[1=¥; | o= %; for m= ¥: (5.77)

Since the proportional damping is easier to handle numerically, we would like to exploit the
information about the wanted part of the spectrum for the problems which are close to pro-
portionally damped. Namely, for given quadratic probldmM + | C+ K)x= 0 we want to
determine the smalleBC so that(l M+ | (C+ DC)+ K)x= Qis proportionally damped. This

Is done by minimizing

kC (aM+bK)ke! min; jaj?+ jbj?! min; (5.78)

overa;b. By application of the projection theorem@f{' ", equipped with the Frobenius inner
producthA; Big = Tr(B A), in [24] the following normal equations were derived
! ! !
H\/|;|V|-I|: H<;M_|F a _ C; M-I[: : (5.79)
M;Kig HK;Kig b HC; Kig
Now, the algorithm for using the approximation of the quadratic problem by proportionally
damped one would go as follows:

» Suppose that we want to compilteigenvalues with largest magnitude

« Computea;b from (5.79).

» Call implicitly restarted Arnoldi to computk eigenpairg| i; %) with largest magnitude

for (5.73)

* De ne new starting vectors 1= 42,1ix, ro = &L;x and call implicitly restarted
MTOAR on the original problem with these starting vectors.

We will refer to this algorithm as mMTOAR NRD. The numerical examples are presented in the
following subsection.

5.6.1 Numerical examples

Experiment 1. The rst example isPath crossing , from [44]. M andK are given as
BCSSTMEhdBCSSTK1f2om the Harwell-Boeing collection [27], ar@ is a block combi-
nation ofM andK. The matrices are of orddd73 De ne M; = M(1:60Q1 : 600 and
Mo = M(540: 1473540 : 1473, andKy; K3 in the same way. The@ =[ ¢;j] is de ned as

8

2 ayum; + agoki; wheni < 540 orj < 540
Cij = _ (a11+ ap)myj +( a2+ ax)kij; when540 i;j 600

" ap1mij + agokij; wheni > 600 orj > 600
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where(31) = lej“WZ W2 with x1 = 0:05, xp = 0:10, andw; andw; are the rst and tenth

natural frequencies for the undamped problemiM + K)x = 0.

We want to comput& = 6 eigenvalues of largest magnitudes. The maximal dimension of
TOAR and Arnoldi factorizations is set tm= 18. The number of shifts in TOAR is set to
2p = 8, and the number of shifts iigs is alwaysm k= 12.

We started TOAR aneigs with the same starting vectors ;1 = randn;1) andrg =
randn; 1). In addition, we called TOAR with starting vector as described in Seftidn 5.6. More
precisely, we computeal = 0.340395988262736andb = 0.340395988262736s0 that|(5.7P)
holds. We callegigs onKx= mMx. The tolerance on the normwise backward error evaTs,
whereeps is the machine precision. Algorithm found the wanted eigenvalues with prescribed
tolerance in 7 restarts. The tolerance for the normwise backward error of the original problem
wasn eps= 3.2707e-013. The following table presents the number of restarts needed to nd
the eigenpairs with prescribed tolerance

Table 5.1: Number of restarts, Path crossing

Algorithm IRMTOAR | IRMTOAR NRD | eigs
No. restarts 68 56 = (7+49) 118

The following gure represents the nal backward errors for all 6 wanted eigenvalues obtai-
ned by all three methods

Figure 5.6: Final normwise backward errors, Path crossing

At last, we present the backward errors during the restarts for mMTOAR, and mMTOAR NRD
for 3 complex conjugate pairs of wanted eigenvalues.
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Figure 5.7: Normwise backward errors in every restart for all computed eigenvalues

Experiment 2. Next example ixd_player from NLEVP library. We started the algorithm

with the same parameters as in previous example, except the number of wanted eigenvalues and
shifts, which ar&k = 4, m= 10, 2p = 2. The following table presents the number of restarts
needed to nd the eigenpairs with prescribed toleramceeps = 1.3323e-014

Table 5.2: Number of restarts;d_player

Algorithm IRMTOAR | IRMTOAR NRD | eigs
No. restarts 22 8 = (5+3) 23

The following gure represents the nal backward errors for all 4 wanted eigenvalues obtai-
ned by all three methods

Figure 5.8: Final normwise backward errorsg_player

At last, we present the backward errors during the restarts for TOAR, and TOAR with
Rayleigh Damping approximation for 4 wanted eigenvalues.
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Figure 5.9: Normwise backward errors in every restart for all computed eigenvaideplayer

5.7 Krylov—Schur algorithm for the linear eigenproblem

In [64] Stewart de ned thé&krylov decompositioof orderk for the ann n matrixH as
HUy = UgBy+ Uks 1B 1 (5.80)

whereBy isk kmatrix,Ug 2 C" X, ugs 1;bie 1 2 C", and the columns dlUy uy: 1) are linearly
independent. The idea of this decomposition is to weaken the constraints on the ndyrices
andBy prescribed by the Arnoldi decomposition, whéfighas to be orthogonal, a8 has
to be upper Hessenberg. Due to this constraints, we always have to be careful when restarting,
locking or purging Arnoldi process in order to maintain its structure.

Itis proven in [64] that the Krylov decomposition is closed under translation, i.gefen =
Uk+1 Ukg,96 0

HUk = Uk(Bk+ gby, 1) + B+ 1(9bk+1)

is a Krylov decomposition with the same space/ as (5.80). Moreover, the Krylov decomposition
is closed under the similarity as well, i.e. for nonsingiar

HUW b= (UW HWBW 1+ (b W 1)

is a Krylov decomposition whose space is the samg as|(5.80).

This makes Krylov decomposition equivalent to Arnoldi decomposition (i.e., the Rayleigh
guotients are similar). In addition, using these elementary transformations, we can reduce Kry-
lov decomposition into a form that is the most convenient for the truncation step in the implicit
restart. Namely, we can keep the column8&pbrthonormal, and redud® to Schur form. The
resulting decomposition is calld¢tylov—Schur decomposition
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Implicitly restarted Krylov—Schur algorithm.  Just like in the implicitly restarted Arnoldi
algorithm, the Krylov—Schur method consists of the expansion phase and the contraction phase.
In the expansion phase, the Krylov—Schur decomposition of drdeconstructed, using the
Arnoldi algorithm[5.1.]l. The contraction phase purges the unwanted eigenvalues from the
decomposition. An advantage of the Krylov—Schur scheme is that it can be truncated at any

point. Suppose we partitioned the Kyrlov—Schur decomposition in the form
I

H U U, = U U S S +tUu by b, ; (5.81)
0 S»
then

HU1 = U151+ Ubl (5.82)

Is a Krylov—Schur decomposition of ordier Moreover, this truncation step is equivalent to
applying the shifted QR to the Hessenberg malgpin the implicitly restared Arnoldi algorithm

in order to get a new decomposition with better starting vector. The shifts are the eigenvalues of
the matrixS». This is summarized in the following theorem.

Theorem 5.4([11]). Let the Krylov decomposition HE UB+ ub be partitioned as
!
Bi1 B
HU U = U U % iy (5.83)
0 Bz

whereU; 2 C" K B2 CX K u; 2 Ckandthecolumnsdd = U; U, 2C" ™ m= k+ °,
span a Krylov subspade n(H;Vv) which is not H-invariant. Then,

Im(Ul) =K k(H;szz(H)V); kBgz(X) = de(XI BZZ): (584)

Further, if Im(Uy) = K«(H;p(H)v), for some monic polynomiagl of degree’, thenp =
Kg,,. Thus,AU; = U1B11+ ub, is an implicitly restarted Krylov decomposition witim(Uq) =
Kk H;()i‘= 1(H sil)v ifand onlyifsy;:::;s- are the eigenvalues of,B

Thus, in order to apply the shifts which are approximations of the unwanted eigenvalues,
the eigenvalues of the matr§1 must be the wanted ones. This is accomplished by using the
ordered Schur form. In the ordered Schur form the cluster of eigenvalues appears in the leading
elements on the diagonal of the upper triangular matrix [2].

Let (5.81) represent the desired form, that is, let the eigenvalugg oépresent the approx-
imation of wanted eigenvalues. The truncation step is illustrated in the following gure
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—_— Umn+ 1

\_\%1 Si2

—_—

k

Figure 5.10: Truncation step in Krylov—Schur algorithm

It is clear that the truncation process in the Krylov—Schur algorithm is more elegant and
easier that in the implicitly restarted Arnoldi algorithm, since we are not limited by the structure
of the matrices. However, the aw of this approach is that the only shifts which can be used are
the exact ones, i.e., the eigenvalue8gfin (5.80); on the other and, in the Arnoldi algorithm
we can use arbitrary shifts. Since the number of iterations in the Arnoldi like algorithms depends
on the shifts used in restart, it would be convenient if we could choose any shifts for the restart
in the Krylov—Schur algorithm as well.

The Krylov—Schur method is implemented in the Scalable Library for Eigenvalue Problem
Computations (SLEPCc) [38].

5.7.1 Using the arbitrary shifts in Krylov—Schur algorithm

Bujanovi and Drma developed a new restarting procedure for Krylov—Schur algorithm
using the arbitrary shifts i [11], using Theorém|5.4. We brie y outline the main steps; for more
details we refer tq [11].

Suppose we have an orthogonal Krylov decomposition

proposed in[[11].
1. Reassign
Apply an eigenvalue assignment algorithm to compute the vdcsorthat the spectrum

Re-assignment of the eigenvaluesByf is possible if and only if the paifB,,; bm) IS
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controllable, i.e. if

. _ zl By
m(B,; bm) len; Smin((z! By bm)) Z'E";; Smin bmm > 0 (5.87)

f is determined in two steps. First, compute unitdguch thaw B,W = H is upper Hes-
senberg anwv by, = beg, b = kbyks. This is called a reduction to Controller—Hessenberg

of H+ e;g . This can be done by using an eigenvalue assignment algorithm described in
e.g. [16]. Thewanted is f = Lg W .

. Reorder
In this step we compute the ordered Schur decompositi@yef fb,,, so that the shifts

Bt fhn=(Q1 Q) 2 22 (Q1 Q) : (5.88)

. Restart
Multiply (5.86) with Q1 to get the restarted Krylov—Schur decomposition

HO, = BS;1 + B 10,Q1;
wherel®, = UyQ1, 8 1= Unse1 Unf.

. Restore

Another translation is needed to restore the orthogonal Krylov decompositioby.Let
"k*lTngl be the result of the Gram—Schmidt orthogonalization of the vegior against
Im(By), with normalizing factog = ka1 Bxgiko. Then

HO= B S+ 9B + g 1By; (5.89)

WhereBk = Q;bm.

Implicitly restarted Krylov—Schur algorithm for the QEP

Campos and Roman [14] extended the Krylov—Schur algorithm for the solution of poly-

nomial eigenvalue problems. In order to build the starting factorization they use the TOAR
Algorithm[5.3.] with the rst companion form linearization. Here, we give details of the algo-
rithm for the quadratic eigenvalue probledil )= | °M+ | C+ K.
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Let H be the linearization matrix

MIIC MK A B
H= = : (5.90)

Let
HVm = VinSn+ Vi 1004 1 (5.91)

be the Krylov—Schur decomposition fét, of orderm, i.e. B2 C™ ™ and Vi, Vw1 2

Cc? ™1 has linearly independent columns. Partition the decompos (5.91) to get
! ! !

A B Vim1 Vim1
o= ’ + Ve 104 1 5.92
I 0 Vin2 Vine2 SH m+ 1Mme+ 1 ( )

Stewart proved that the decompositipn ($.91) is equivalent to Arnoldi decomposition. Let
HVin= VinTm+ Ve 160 (5.93)

be the corresponding Arnoldi decomposition. We can thus concludg that (5.91) is also equivalent
to TOAR factorization by extractinQ 1 by the rank revealing decomposition of

Vim(1:n;)) Vme1(1:n) ‘Vk(n+ 1:2n;)) VYew1(n+ 1:2n)

Hence, we can build the Krylov decomposition férin (5.90) using the TOAR algorithm as

well 0 1
| Q Um1 Um+ 11 |
Qulm1 E@ "0 by E Tm (5.94)
QmUm:2 Um2 Un+1:2 tr+ 1;mer-51 . .
Qm+1 0 0

The corresponding Krylov—Schur decomposition is then obtained by computing the Schur form
Tk = X§X and transforming

0 ! l
UmiX Uns+1
| m;1 1;1
B Qm z_}F“_{
QurlmiX % 0 bm, E% X ToX X (5.95)
QmUm2X Um2X  Unt 12 X
m+ 1 0 0 1;mem

Now, the truncation process goes as described for the linear case, and illustrated iff Figure 5.10.
Let S be partitioned as 351 %g , and without loss of generality suppose that the eigenvalues

of S;1 2 CK K approximate the wanted eigenvalues, and the eigenvalugs afc(m K (m k)
approximate the unwanted eigenvalues. Parton X; X, . Then the truncated decompo-
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sition (5.9%) of ordek is

0 11
| UmiX1 Ums+ 12 |
QuimXa _ E@ ™0 b, E Su (5.96)
QmUm2X1 O 1 Um2X1 Ums 12 tre 1m€Xe '
0 0

However, as in the case of implicitly restarted TOAR, notice @at1 2 C" "m1 is not
truncated. We solve this as in the case of TOAR, i.e., compute the compact SVD factorization of
!
Um2X1 Um+1;2
0

UmiX1 Um+ 11
0 ]

= PSG :

PartitionG= G; G, 2 CM1 (k*D+(k*1) and de neQu+1 = Qm+1P, Uk+ 1.1 = SG1 and
Ui+ 1.2 = SGy to obtain fully truncated decomposition of order

Although this procedure is more elegant and simpler in comparison to the implicitly restarted
TOAR, the problem of the shifts remains, i.e., the only shifts one can use in the restarts are the
eigenvalues of the Hessenberg malfiiix We already saw the examples in which the implicit
procedure fails to nd good enough approximations when the exact shifts are used. This is
why we extend the idea of arbitrary shifts in Krylov—Schur algorithm derived by Bujareowil
Drmac [11] for the quadratic eigenvalue problem.

5.8.1 Using arbitrary shifts in the Krylov—Schur algorithm for the qua-
dratic eigenvalue problem

Here, we extend the 4R procedure form the Subseftion|5.7.1 to the case of the quadratic
eigenvalue problem.

Let 0 1
! Ome 1 Umi Umne11 !
QnUma - _ % 0 bmes g Tm (5.97)
QmUm;2 Un2 Um 12 tms 1;mer-£1
Qme 1 0 0

restart. Our procedure has and additional step, and it goes as follows

1. Reassign
Apply an eigenvalue assignment algorithm to compute the vedcsorthat the spectrum
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0 1
Umi Un+11 Um;lf I

|
: Q 1 :
Qum :% ™0 b 1 .% Tn feltmeim

(5.98)
QmUm;Z trrH- 1;me|I1

Qe 1 Un2 Unr12 Umoaf
™0 0

THe Eigenvalue assignment is possible if and only if the @&t &] tm+ 1.m) is controllable,
i.e. if (5.87) holds.

As in Subsectiof 5.7] 1, is determined in two steps:

— compute the Controller—Hessenberg forn(Gf; €l tm+ 1:m), i.€. compute unitaryV
so thaW T,,W = ¥, is upper Hessenberg, aid et 1m= €1€n+ 1:m-

cf— 1
vectorfis f = %l;mg W .

2. Reorder

as the eigenvalues of tifen k) (m k) block S,
|

Si1 512.

Tm+ fe-r;trm- 1m= X3 X X1 Xo (5.99)
0 &
3. Restart
Multiply the decompositior] (5.98) with; to obtain the decomposition of ordier
0 '
| O 1 UmniX1 Um+11 Um;lf |
! e !
QuUmaXy  _ % 0 bmr1 E Si1 (5.100)
QmUm2X1 Um2X1 Ume12 Umaf t+ 1;me-rrnxl

Qme+1 0 0

DenoteW@y; = UmaXe; Bko = UnaXe and i 11 = Ume11 Umtfiba 10 = Une12

Um;zf.
4. Restore 0 1
@lbk;l bK+ 11

Another translation is used to restore the orthogonality of the m 59(7 bm1 A - et

g y k2 Ot 1.2

0 0
g= lbk;lh& 11t lbk;zh& 1:2;

and

Br11= O 11 Oa1Q Be12= b1 Beoo:
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q
Compute the norng= b2, | + Key. 1.1k3 + Kay 1.0k to get

b
; €k+1: —g 1:

_ Bi11, _ 12
Ber1:1= ; B+ 12 =

5. Reduce
To get the full restarted decomposition of or#tewe must truncate the orthogonal matrix

Qm+1 as well. In the rst step compute the SVD decomposition
!
lbk;l B+ 1.1 Lbk;2 B+ 1.2

= PSG : 5.101

Let hy+ 1 be the rank of the above matrix. Partiti@= G; G, so thatGy;G; 2
Cher1 (1) The new decomposition is determined W@, 1 = Qm+ 1P, U+ 1.1 = SG,
Uk+ 1.1 = SGo.

Numerical example. Recall the quadratic eigenvalue probl€@ )= | 2M+ | C+ K with
matrix coef cients

M= 0:1l; C=1I; K= tridiag( 0:1,0:2; 0:1): (5.102)

from Subsection 5.4]5. We compute the 2 eigenvalues with the largest magnitude with the
same parameters as in Experiment 1 of the same Subsection.

(a) New shifts (b) Exact shifts

Figure 5.11:Normwise backward errors for the eigenpair during the restarts

The implicitly restarted Krylov—Schur algorithm with arbitrary shifts described in Subsection
[5.4.4 found the wanted eigenvaluesihrestart. We implemented the Krylov—Schur algorithm
with the exact shifts, i.e. the eigenvalues of the maBixin (5.97). The eigenpairs with
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the wanted normwise backward error were not found in the rst 300 restarts. The normwise
backward errors of the eigenvalues during the restarts are presented in Figures 5[11a and 5.11b.
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Conclusion

This thesis offers new algorithms for the complete solution of the quadratic and the quartic
eigenvalue problems, as well as several improvements of the implicitly restarted Arnoldi like
methods for the partial solution of the quadratic eigenvalue problems. Although the basis of
these methods is the solution of the equivalent linear problem, considering the particularities of
the original nonlinear problem is essential for the computation of the good nal approximation.

The contributions of the thesis are:

A new procedure for detecting and de ating of the zero and in nite eigenvalues of the
quadratic eigenvalue probleth?M + | C+ K)x = 0, before calling the QZ algorithm for the
linearized problem. It is known that the current methods, despite the prior de ation, cannot
remove all zero and in nite eigenvalues; the problem is that, if there exist more Jordan blocks
for these eigenvalues, current methods, such agqubdeig, de ate only one of them, and, in
the subsequent steps, the QZ algorithm may not detect the additional zero or in nite eigenvalues.
We developed a test for determining the existence of the Jordan blocks in the terms of the
original quadratic problem. In addition we propose the new de ation algorithm, based on the
Van Dooren's algorithm for the Kronecker canonical form of linear pencils. Moreover, we
analyze different rank revealing strategies, as well as rank determination criteria, and show how
they impact the output. Finally, we provide numerical experiments to illustrate the advantages
of the new developed method.

An algorithm for the complete solution of the quartic eigenvalue proklefi\+ | 3B+
| 2C+ | D+ E)x= 0is proposed. It follows the ideas and the guiding principles from the deve-
lopment of the quadratic solver. In fact, instead of the direct linearization, it uses an algebraic
trick called quadrati cation to de ne an equivalent quadratic eigenvalue problem. However, the
original coef cient matrices of the problem are used for the de nition of scaling and develop-
ment of the full de ation process of the zero and in nite eigenvalues. Numerical experiments
prove that our algorithm is much better than direct application of the state of the art methods
guadeig andpolyeig (MATLAB).

The methods for the partial solution of the quadratic eigenvalue problems are also analyzed.
New contributions to the implicit restarting of the two level orthogonal Arnoldi algorithm are
developed and tested to demonstate their effectiveness in practical computations. In particular,
the important class of the overdamped problems is considered in more details and a new strategy,
based on tropical roots, is shown to deliver superior performance. Moreover the new starting
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Conclusion

vectors for these methods are proposed as well. Finally, the thesis show a direction in which one
can develop an ef cient Krylov-Schur based method for the quadratic eigenvalue problem; for
start it is shown how to enable using arbitrary shifts in a restarting procedure.
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