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Summary

In this thesis we study numerical methods for solving nonlinear eigenvalue problems of

polynomial type, i.e.P(l )x � (å k
`= 0 l `A` )x = 0, whereA` 2 Cn� n, l 2 C, 0 6= x 2 Cn. In

particular, we are interested in the quadratic (k = 2) and the quartic (k = 4) eigenvalue problems.

The methods are based on the corresponding linearization – the nonlinear problem is replaced

with an equivalent linear problem of the type(A� l B)y = 0, of dimensionkn.

We propose several modi�cations and improvements of the existing methods for both the

complete and partial solution; this results in new numerical algorithms that are a substantial

improvement over the existing ones. In particular, as an improvement of the state of the art

quadeig method of Hammarling, Munro and Tisseur, we develop a scheme to de�ate all zero

and in�nite eigenvalues before calling the QZ algorithm for the linear problem. This provides

numerically more robust procedure, which we illustrate by numerical examples. Further, we

supplement the parameter scaling (designed to equilibrate the norms of the coef�cient matrices)

with a two–sided diagonal scaling to nearly equilibrate (in modulus) the nonzero matrix entries.

In addition, we analyze the �ne details of the rank revealing factorization used in the de�ation

process. We advocate to use complete pivoting in the QR factorization, and we also propose a

LU based approach, which is shown to be competitive, or even better than the one based on the

QR factorization. The new method is extended to the quartic problem.

For the partial quadratic eigenvalue problem (computing only a part of the spectrum), the ite-

rative Arnoldi–like methods are studied, especially the implicitly restarted two level orthogonal

Arnoldi algorithm (TOAR). We propose several improvements of the method. In particular, new

shift selection strategy is proposed for the implicit restart for the class of overdamped quadratic

eigenvalue problems. Also, we show the bene�t of choosing the starting vector for TOAR, based

on spectral information of a nearby proportionally damped pencil. Finally, we provide some

new ideas for the development of a Krylov–Schur like methods that is capable of using arbitrary

polynomial �lters in the implicit restarting.

Keywords: polynomial eigenvalue problem, quadratic eigenvalue problem, quartic eigenva-

lue problem, projection method, Arnoldi like method, linearization, QZ, quadeig, de�ation, rank

determination, normwise backward error, componentwise backward error, TOAR, SOAR
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Prošireni sa�etak

Nelinearni problemi svojstvenih vrijednosti se javljaju u mnogim primjenama kako u pri-

rodnim znanostima, tako i u in�enjerstvu. Jedna od najpoznatijih klasa nelinearnih svojstvenih

problema su polinomni svojstveni problemi. Tako se, na primjer, kvadrati�cni svojstveni problem

(l 2M + l C + K)x = 0 pojavljuje u dinami�ckoj analizi mehani�ckih i elektri�cnih struktura, u

vibro–akustici, mehanici �uida, obradi signala. S druge strane, polinomni se problem�cetvrtog

reda(l 4A+ l 3B+ l 2C+ l D + K)x = 0 pojavljuje u analizi stabilnosti Poiseuilleovog toka u

cijevi.

Za razliku od linearnih problema svojstvenih vrijednosti, numeri�cke metode za nelinearne

probleme još uvijek nisu dovoljno razrad̄ene, niti numeri�cki pouzdane, iako je algebarska teorija

za polinomne probleme svojstvenih vrijednosti dobro razvijena.

Naglasak ove disertacije je na numeri�ckom rješavanju kvadrati�cnog svojstvenog problema.

Cilj je razviti nove, robusnije numeri�cke metode koje se mogu koristiti u praksi kao pouzdan

numeri�cki softver.

U disertaciji se pro�cavaju dvije vrste metoda:direktnei iterativne. Direktne metode se

razvijaju za ra�cunanje svih svojstvenih vrijednosti i odgovarajućih svojstvenih vektora zadanog

problema. Kada nas zanima samo dio spektra, recimo one svojstvene vrijednosti koje su najveće

po modulu ili one koje se nalaze u lijevoj kompleksnoj poluravnini, tada korisitimo iterativne

metode. Ovdje je naj�ceš́ce slu�caj da je dimenzija originalnog problema mnogo veća od broja

svojstvenih vrijednosti koje �elimo izra�cunati. Ideja iterativnih metoda je konstruirati potprostor

mnogo manje dimenzije od originalnog problema koji sadr�i informaciju o tra�enom dijelu

spektra, a aproksimacija tra�enog dijela spektra se onda izra�cuna koristéci projekciju problema

na nādeni potprostor.

Osnova vécine metoda za rješavanje polinomnih svojstvenih problema je linearizacija, to jest

polinomni problem se zamijeni ekvivalentnim linearnim problemom koji se onda rješava koris-

teći već razvijene metode za linearne probleme. Med̄utim, naivno direktno korištenje linearnih

metoda ne garantira zadovoljavajuće rezultate za originalni problem.�Cak i ako izra�cunati svojst-

veni par ima malu grešku unazad za odgovarajuću linearizaciju, greška unazad za rekonstruirani

svojstveni par originalnog problema mo�e biti puno veća.

Prije razvijanja metoda, u Poglavlju 2 je predstavljena analiza grešaka unazad za polinomni

svojstveni problem, bazirana na radu F. Tisseur [66]. Ideja analize grešaka unazad je da se

izra�cunate aproksimacije interpretiraju kao egzaktna rješenja problema koji je blizu originalnom

v



Prošireni sa�etak

problemu, i�ciji matri�cni koe�cijenti su de�nirani kaoA` + DA` pri �cemu jeDA` malo. Med̄utim,

u mnogim primjenama matriceA` imaju odrēdenu strukturu, npr. hermitske su, ili anti hermitske.

Prema tome, bilo bi prirodno zahtjevati da greška unazadDA` �cuva ovu strukturu. U slu�caju kad

je ta stuktura hermitska i anti hermitska, postojeći rezultati za realne svojstvene vrijednosti su

prošireni na oṕcenite svojstvene vrijednosti.

U poglavlju 3 se prou�cavaju direktne metode za rješavanje kvadrati�cnog svojstvenog pro-

blema. Standardni pristup je korištenje QZ algoritma na odgovarajućoj linearizaciji. Mēdutim,

ako originalni problem ima svojstvene vrijednosti koje su nula ili beskona�cno, ovakav pristup je

sklon numeri�ckim poteškócama. 2011. Hammarling, Munro i Tisseur [37] su razviliquadeig

algoritam koji prije korištenja QZ metode za linearni problem skalira originalni problem kako

bi norme matri�cnih koe�cijenata bile ujedna�cene te pokuša detektirati postojanje svojstvenih

vrijednosti nula i beskona�cno koje ona procesom de�acije ukloni iz linearizacije.

De�acija se temelji na odrēdivanju ranga matricaM i K. Kod quadeiga se koristi QR fak-

torizacija pivotiranjem stupaca. Koristeći ortogonalne transformacijen� rank(M) beskona�cnih

i n � rank(K) svojstvenih vrijednosti nula je uklonjeno iz odgovarajuće linearizacije. Glavni

doprinos ovog poglavlja je novi algoritam za nala�enje svih svojstvenih vrijednosti kvadrati�cno

problema kojeg zovemoKVADeig. Kao motivacija za potrebu poboljšanjaquadeiga je predsta-

vljen primjer kod kojegquadeig nije uspio detektirati sve beskona�cne svojstvene vrijednosti.

Štoviše, nakon što je uklonjen odred̄en broj ovih svojstvenih vrijednosti, preostale izra�cunate

svojstvene vrijednosti koje su kona�cne �cak nemaju ni veliku apsolutnu vrijednost koja bi nas

mo�da mogla nagnati na zaklju�cak da bi one trebale biti proglašene beskona�cnim. Problem na-

stane kada postoji više od jednog Jordanovog bloka za svojstvene vrijednosti nula i bekona�cno.

Naime, de�acija uquadeigu ukloni samo jedan Jordanov blok.

Kako bismo riješili ovaj problem razvili smo test koji slu�i za provjeru postoji li više od

jednog Jordanovog bloka za svojstvene vrijednosti nula i bekona�cno. On je baziran na Van

Doorenovom algoritmu za odred̄ivanje Kroneckerove strukture generaliziranog svojstvenog

problema. Dodatno se analizira utjecaj metoda koje se koriste kao faktorizacije za odred̄ivanje

ranga te utjecaj kriterija po kojem se rang odred̄uje. Pored skaliranja koje je predlo�eno u

quadeigu uvodimo i dvostrano dijagonalno balansiranje�ciji je cilj ujedna�cavanje elemenata u

matricama koje de�niraju problem. Na kraju razvijamo metodu baziranu na LU faktorizaciji

potpunim pivotiranjem za odrēdivanje ranga. Numeri�cki eksperimenti u Sekciji 3.7 ilustriraju

prednosti predlo�ene metode.

U poglavlju 4 je razvijen novi algoritamKVARTeigza rješavanje polinomnog svojstvenog

problema stupnja�cetiri. Umjesto direktne linearizacije koristimo kvadrati�kaciju koja je uve-

dena u [17], tj. de�niramo ekvivalentan kvadrati�cni problem. Novi algoritam je baziran na

KVADeigu, s tim da je skaliranje de�nirano na matricama originalnog problema i proces de�a-

cije je prilagōden tako da što više iskoristi strukturu originalnog problema. Kao i za kvadrati�cni

problem, i ovdje je razvijen test za provjeru postojanja više od jednog Jordanovog bloka za

svojstvene vrijednosti nula i beskona�cno. Numeri�cki primjeri u Sekciji 4.5 prikazuju prednost

vi



nove metode nadquadeigom i polyeig om koji je implementiran u MATLABu.

U Poglavlju 5 se prou�cavaju iterativne metode Arnoldijevog tipa za kvadrati�cni svojstveni

problem. Bai i Su [3] su prvi primijetili da je u slu�caju iterativnih metoda Arnoldijevog tipa

bolje primijeniti Rayleigh–Ritzovu projekciju direktno na originalni kvadrati�cni problem. U tu

svrhu su de�nirani Krilovljev potprostor drugog reda i odgovarajući algoritam SOAR (Second

Order Arnoldi) za ra�cunanje odgovarajúce baze. Ovaj algoritam je dodatno modi�ciran te je

razvijen takozvani TOAR (Two level orthogonal Arnoldi) algoritam [49].

U ovom poglavlju predla�emo nekoliko modi�kacija implicitno restartanog TOAR algoritma

koje su temeljene na�cinjenici da algoritam koristimo za rješavanje kvadrati�cnog problema svo-

jstvenih vrijednosti. Pod implicitnim restartanjem se misli na korištenje polinomih �ltera kako

bi se de�nirao novi po�cetni vektor koji uvelike utje�ce na konvergenciju metode. Za posebnu

klasu pregušenih problema svojstvenih vrijednosti predla�emo novi na�cin de�niranja polino-

mih �ltera. Takod̄er, za oṕcenite probleme, predla�emo novi izbor po�cetnog vektora koji se

temelji na aproksimaciji kvadrati�cnog svojstvenog problema problemom�cije je gušenje linearno.

Numeri�cki primjeri pokazuju da predlo�ene modi�kacije rezultiraju manjim brojem restartanja

potrebnih za nala�anje svojstvenih parova sa zadovoljavajućom greškom unatrag.

U drugom dijelu Poglavlja 5 dajemo pregled implicitno restartanog Krylov–Schurovog al-

goritma kojeg je uveo Stewart [64]. Ideja ovog algoritma je da se de�nira faktorizacija koja

ne zahtijeva posebnu strukturu kao Arnoldijeva, i na kojuće se lakše primijeniti implicitno

restartanje. Mēdutim, prilikom ovakvog restartanja moguće je koristiti samo egzaktne pomake

za de�niranje polinomnog �ltera. Drma�c i Bujanovíc su razvili metodu koja omogućava koriš-

tenje proizvoljnih pomaka kod implicitno restartanog Krylov–Schurovog algoritma. U ovom

poglavlju generalizairamo predlo�eni proces u svrhu korištenja Krylov–Schurovog algoritma za

rješavanje kvadrati�cnog svojstvenog problema.
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Introduction

Nonlinear eigenvalue problems arise in wide spectrum of applications in natural sciences

and engineering. In particular, the polynomial eigenvalue problem is to �nd all complex scalars

l and nontrivial vectorsx such that

P(l )x � (
k

å
`= 0

l `A` )x = 0;

whereA0; : : : ;Ak are real or complexn� n matrices. So, for instance, the quadratic eigenvalue

problem(l 2M + l C+ K)x = 0, which is in the focus of this thesis, is at the core of dynamic

analysis of mechanical and electrical structures, vibro-acoustics, computational �uid mechanics,

signal processing; just to name a few. For an excellent review, we refer [67]. Another important

class of the polynomial eigenvalue problems that we consider is the quartic eigenvalue problem

(l 4A+ l 3B+ l 2C+ l D + K)x = 0. It appears, for example, in the analysis of the stability of

the plane Poiseuille �ow in a channel.

Unlike the linear case (i.e. the linear eigenvalue problem(A� l B)x= 0), numerical methods

for the nonlinear problems are not at the satisfactory level with respect to numerical reliability

and robustness. Interestingly, the algebraic theory of the general polynomial eigenvalue problem

is well developed and the spectral canonical structure ofP(l ) is well understood; yet, the

numerical methods, despite the importance of the problem in many engineering applications, are

not satisfactory. One of the main reasons is that the nonlinearity brings in many analytical and

numerical dif�culties which in some situations can be classi�ed as pathological. For instance,

some eigenvalues can be in�nite.

The main focus of the thesis is numerical solution of the quadratic eigenvalue problem; our

goal is to contribute with development of new, better robust numerical methods that can be

implemented as reliable mathematical/numerical software and used in applications.

We consider the two main classes of problems and the corresponding solution methods. The

so calleddirect methodsare designed to compute all eigenvalues and the corresponding eigen-

vectors, and are usually deployed for small to moderate dimensionsn. On the other hand, in

some applications, only certain eigenvalues of particular interest are needed e.g. in an engi-

neering design. For instance, eigenvalues in the left half plane close to the imaginary axis are

important for studying the stability of the underlying dynamical system; or, the eigenvalues in

some givenW� C might be requested. In such applications, the coef�cient matrices originate
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from a discretization process (e.g. by �nite elements) and are usually of large dimension (e.g.

n > 104;105 or higher) and sparse (only small number of entries are nonzero) and structured.

The idea of the so callediterative methodsis to, iteratively, construct a subspace (of dimension

much smaller than the original dimensionn) such that the requested spectral information can be

extracted from the problem projected onto that subspace.

In the kernel of most of these methods is the linearization, i.e., the polynomial eigenvalue

problem is replaced with an equivalent linear eigenvalue problem, which is then solved using the

well developed techniques for linear problems. For example, one linearization for the quadratic

eigenvalue problem(l 2M + l C+ K)x = 0 is

Ay� l By�

 
C � I

K 0

!

y� l

 
� M 0

0 � I

!

y = 0; where y =

 
l x

x

!

:

Unfortunately, this elegant algebraic manipulation cannot be so simply turned into a robust

numerical method. The �nite arithmetic rounding errors and the truncation of the necessarily

in�nite iteration process when solving the linear problem create the backward errorsDA, DB

such thatkDAk=kAk andkDBk=kBk are small, but this backward stability does not extend to the

original problem, i.e., we cannot in general claim that the approximate solution corresponds to

slightly backward perturbed original matricesM, C andK. Hence, for both the direct and the

iterative methods, careful modi�cations are necessary.

The thesis is structured as follows:

Chapter 1 contains preliminaries. It provides an algebraic setting of the polynomial eigenva-

lue problem, including the theory of canonical forms of matrix polynomials, which will be used

in the developments of numerical methods. In addition, we provide brief illustrations of two

selected applications of the quadratic eigenvalue problem, and one of the quartic eigenvalue pro-

blem. We also present the theory of the linearization of matrix polynomials, which is essential

for the development of numerical methods.

In Chapter 2 we present elements of backward error analysis of the polynomial eigenvalue

problem. It is based on the work of F. Tisseur [66]. Backward error analysis is fundamental

in assessing the quality of the computed approximations and it provides means for a posteriori

estimation of the accuracy of the computed eigenvalues and eigenvectors. It is the backward

error analysis that guides in removing the discrepancy between the backward stability of the

auxiliary linear and the original quadratic problem. In particular, it shows that the norms of

the coef�cient matricesA` should be balanced, which is then achieved by a parameter scaling.

The idea of backward error analysis is to interpret the computed (approximate) result as the

exact result of a nearby problem, de�ned with the coef�cient matricesA` + DA` , with small

DA` . However, in many applications the matricesA` have an additional structure, e.g., they

are Hermitian or skew–Hermitian. Hence, for proper use of backward error, it is desirable to

establish the existence of the optimal (smallest is some well de�ned sense) backward errorsDA`

that preserve the structure. In Section 2.2 we extend the existing results for only real eigenvalues

2
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to the general case of any �nite eigenvalues, when the required structure is the hermiticity or

the skew–hermiticity. In addition, we provide new insights in the component-wise measured

backward error.

In Chapter 3 we study the complete solution of quadratic eigenvalue problem(l 2M + l C+

K)x = 0 by direct methods. The standard approach is to linearize it and then use the QZ

algorithm for the corresponding generalized (linear) eigenvalue problem. This procedure is

known to be prone to numerical dif�culties in presence of zero and in�nite eigenvalues. In

2011., Hammarling, Munro and Tisseur [37] proposed thequadeig algorithm that substantially

alleviated these problems by careful preprocessing. Before calling the QZ algorithm,quadeig

deploys parameter scaling to equilibrate the norms of the coef�cient matrices, and then attempts

to detect and de�ate the zero and the in�nite eigenvalues from the linearized problem.

The de�ation process relies on rank determination of the coef�cient matricesM, andK, and

quadeig uses the (rank revealing) QR factorization with column pivoting. Using the orthogonal

equivalence transformation on the linearization,n � rank(M) in�nite and n � rank(K) zero

eigenvalues are removed from the linearized pencil. The remaining eigenvalues are computed

using the QZ algorithm. In Chapter 3 we analyze the numerical properties of thequadeig in

more details. We present the backward error analysis of the de�ation process in the case of only

one singular matrix,M or K. The main contribution of this Chapter is the new algorithm for

the complete solution of the quadratic eigenvalue problem, which we designated asKVADeig.

To illustrate the need for improvements, we use numerical case study examples wherequadeig

fails to �nd all in�nite eigenvalues; moreover, the eigenvalues that are computed instead of

in�nities are �nite and they may not be of large absolute values to even indicate that they may

correspond to in�nities. This often poses dif�culties in applications, because those eigenvalues

cannot be interpreted in a physically meaningful way. A closer analysis reveals that the problem

is when the in�nite eigenvalues are carried in several Jordan blocks (in the canonical structure),

andquadeig is capable of de�ating only one of them.

To solve this problem, we have developed a test for the existence of Jordan blocks for zero

and in�nite eigenvalues, and we have developed a new algorithm for the de�ation of all zero and

in�nite eigenvalues. It is based on Van Dooren's algorithm for the Kronecker canonical form

of the generalized eigenvalue problem. Further, we analyze the in�uence of the rank revealing

factorization, and rank determination (truncation) criteria used to determine the numerical ranks

of M andK. Here we show some weaknesses in the rank determination in thequadeig algorithm.

Furthermore, we advocate to equip the column pivoted rank revealing QR factorizations with

row sorting in thè ¥ norm (the Powell–Reid and Björck pivoting). Also, in addition to parameter

scaling as inquadeig, we introduce a two–sided diagonal scaling that (nearly) equilibrates the

matrix entries; this proves to be a very powerful technique both for theoretical estimate and

the practical computation. And �nally, we develop a rank-revealing LU analogue of the QR

approach. It may seem surprising at �rst, but the LU approach, when properly implemented, can

outperform the QR based preprocessing and can even be recommended as a method of choice.
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Numerical experiments in Section 3.7 demonstrate the power of the newly proposed method.

In Chapter 4, we develop a new algorithm, designated asKVARTeig, for the complete solution

of the quartic eigenvalue problem(l 4A+ l 3B+ l 2C+ l D + K)x = 0. Instead of the direct

linearization, we �rst use the so called quadrati�cation introduced as an algebraic tool in [17],

i.e., we de�ne an equivalent quadratic eigenvalue problem. The new algorithm is based on

KVADeig, wherein the scaling is done on the original matrices, and the de�ation process is

modi�ed so that the structure of the original problem is exploited as long as possible in the

process. As in Chapter 3, we provide a test for the existence of Jordan blocks for zero and

in�nite eigenvalues in terms of the original matrix coef�cients. Our numerical examples in

Section 4.5 show that the new algorithm outperformsquadeig and thepolyeig function in

MATLAB.

In Chapter 5, we investigate computation of only a selected part of the spectrum of the

quadratic eigenvalue problem, using Arnoldi–like methods. Bai and Su [3] were the �rst who

realized that in the case of iterative Arnoldi-type methods, it would be advantageous to apply the

Rayleigh-Ritz projection directly to the initial quadratic problem, instead of to the linearization.

To that end, they introduced second order Krylov subspaces, and the corresponding second order

Arnoldi procedure for generating orthonormal bases. The resulting method, called Second Order

Arnoldi (SOAR), is further modi�ed yielding TOAR (Lu, Su and Bai [49]).

Here we propose several modi�cations of the Implicitly restarted TOAR algorithm [49],

which uses the fact that the linear problem is a linearization of the quadratic eigenvalue problem.

Implicit restarting refers to an application of a polynomial �lter (implicitly through QR iterati-

ons), designed to purge the initial vector from the directions of the unwanted eigenvalues. This

is a nontrivial issue as two eigenvalues (e.g., one wanted and one unwanted) may share the same

eigenvector. Selecting good shifts to de�ne a good �lter is also more complex. We devise a

new selecting strategy of shifts for one particular class – the overdamped quadratic eigenvalue

problems. Here we deploy polynomials in tropical algebra.

It is known that the quality of the approximation for eigenpair produced by the Arnoldi

algorithm depends on the starting vector. In this chapter we propose a new procedure for

picking the starting vector based on the approximation of the original quadratic problem with the

proportionally damped one, which can be reduced to the linear eigenvalue problem. Numerical

examples in Subsection 5.6.1 illustrate that this new choice of the starting vector, together with

other modi�cations of implicitly restarted TOAR, results with a smaller number of the restarts.

In the second part of Chapter 5 we introduce the Krylov–Schur algorithm developed by

Stewart in [64]. Here, restrictions on the structure of the factorization from the Arnoldi de-

composition are removed resulting in a more elegant restarting procedure. However, during the

implicit restart only exact shifts can be used. This was improved by Bujanović and Drma�c in

[11]. They proposed the4R procedure for applying arbitrary shifts in the implicit restart of the

Krylov–Schur algorithm.

The standard Krylov–Schur algorithm can be used for the quadratic eigenvalue problem
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so that the TOAR procedure is used to compute the starting decomposition. This method is

implemented in [14]. Again, only exact shifts can be used in the implicit restart. In order to use

the shifts proposed for the overdamped problems, and to use any other shifts in the restart we

extend the4R procedure for the Krylov–Schur algorithm used as a quadratic eigenvalue problem

solver. The numerical example at the end of the Chapter demonstrates the importance of the

possibility to choose the arbitrary shifts.

The parts of this thesis were presented at the following scienti�c meetings: at6th Croatian

Mathematical Congress, Zagreb, Croatia (the talk "Second Order Krylov Schur Algorithm with

Arbitrary Filter"), atEuropean School on Mathematical Modelling, Numerical Analysis and

Scienti�c Computing, Kacov, Czech Republic (the talk "On Improved Implicit Restarting of

Arnoldi Methods for Quadratic Eigenvalue Problem", results from Chapter 5), atInternational

Workshop on Optimal Control of Dynamical Systems and Applications, Osijek, Croatia (the

talk "On Implicit Restarting Of Second Order Arnoldi Procedure For Quadratic Eigenvalue

Problem", results from Chapter 5), at6th IMA Conference on Numerical Linear Algebra and

Optimization, Birmingham, United Kingdom (the talk "On De�ation Process and Solving the

Quadratic Eigenvalue Problems", results form Chapter 3), and atNinth Conference on Applied

Mathematics and Scienti�c Computing, Šibenik, Croatia (the talk "An Algorithm for the Solution

of Quartic Eigenvalue Problems", results from Chapter 4).
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Chapter 1

The Polynomial Eigenvalue Problem

This chapter provides de�nitions and a selection of theory and results for polynomial eigen-

value problem needed in the development of the results in the remaining chapters.

1.1 Problem setting

In this section we de�ne the polynomial eigenvalue problem and introduce the two canonical

forms for matrix polynomials, namely the Smith form, and the Jordan form. These forms will

be used for developing algorithms in Chapters 3 and 4. In addition, we present the notion of

invariant pairs, which is an analogue of invariant subspaces in the linear case.

Polynomial eigenvalue problem. Let P(l ) be a matrix polynomial of degreek

P(l ) =
k

å
`= 0

A` l
` ; (1.1)

whereA` 2 Cn� n, ` = 0; : : : ;k, andAk 6= 0. P(l ) is often calledl -matrix. The matrix polynomial

(1.1) is said to beregular if detP(l ) is not identically zero for all values ofl , andnonregular

otherwise.

A scalarl 2 C is called aneigenvalueof the matrix polynomial if there exists a vector

x 2 Cn n f 0g so that

P(l )x = 0: (1.2)

In this case,x is called aright eigenvector(or just an eigenvector). A vectory 2 Cn n f 0g is

called aleft eigenvectorif

y� P(l ) = 0: (1.3)

We refer to(x; l ) as aneigenpair, and(x;y; l ) as aneigentriple.

Equivalently,l is said to be an eigenvalue of the matrix polynomialP if it is a zero of

detP(l ). SincedetP(l ) = detAkl kn+ lower order powers ofl , we conclude that, if the coef-

7
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�cient matrix Ak is regular, the number of eigenvalues for matrix polynomial of orderk is kn.

Therefore, the set of eigenvectors cannot be linearly independent, and it is possible for different

eigenvalues to share the same eigenvector.

Example 1.1.Consider the quadratic eigenvalue problem

Q(l )x �

(

l 2

 
1 0

0 1

!

+ l

 
5 0

0 5

!

+

 
3 � 1

� 1 3

!)

x = 0:

The eigenvalues are the zeros of the polynomial

detQ(l ) = ( l 2 + 5l + 3)2 � 1 = 0;

that is� 1; � 4; � 5+
p

17
2 ; � 5�

p
17

2 . Eigenvalues� 1 and� 4 share the eigenvector
�

1 � 1
� T

, and

� 5+
p

17
2 and � 5�

p
17

2 have the same eigenvector
�

1 1
� T

.

In addition, if the leading coef�cient matrixAk is singular, the degreer of the polynomial

detP(l ) is smaller thanknand there arer �nite and kn� r in�nite eigenvalues. In�nite eigenva-

lues are de�ned as the zero eigenvalues of the so calledreversalproblem

revP(l ) = l kP(1=l ) =
k

å
`= 0

l `Ak� ` : (1.4)

Example 1.2. Consider the quadratic eigenvalue problem

Q(l )x =

(

l 2

 
1 0

0 0

!

+ l

 
� 3 0

0 1

!

+

 
2 0

0 � 3

!)

:

The degree of the polynomial detQ(l ) is 3

detQ(l ) = l 3 � 6l 2 + 11l � 6;

meaning that there is one in�nite eigenvalue, and the remaining �nite eigenvalues are1;2 and3.

The reversed problem is

revQ(l )x �

(

m2

 
2 0

0 � 3

!

+ m

 
� 3 0

0 1

!

+

 
1 0

0 0

!)

x = 0;

wherem= 1=l . The eigenvalues are the zeros of the polynomial

det(revQ(l )) = � 6l 4 + 11l 3 � 6l 2 + l ;

that is 0;1;1=2;1=3.

8



1.2. Canonical forms of matrix polynomials

The algebraic multiplicityof an eigenvaluel is the order of the corresponding zero in

detP(l ). The geometric multiplicityof l is the dimension of the nullspacekerP(l ). An

eigenvaluel is simpleif its algebraic and geometric multiplicity are equal to 1. An eigenvalue

l is semisimpleif its algebraic and geometric multiplicities coincide.

We will sometimes use the so calledhomogeneous formof the polynomial eigenvalue pro-

blem

P(a ;b) =
k

å
`= 0

a `b k� `A` : (1.5)

Here,l is identi�ed with any pair(a ;b) 6= ( 0;0) for which l = a =b. The homogeneous form

is useful because all eigenvalues, including in�nity, are treated the same way. It is used in

papers [42], [43] which consider backward errors and conditioning of linearizations of matrix

polynomials. Analogously, we de�ne homogeneous generalized (linear) eigenvalue problem

L(a ;b) = bA� a B: (1.6)

1.2 Canonical forms of matrix polynomials

The goal of this section is to describe Jordan structure of matrix polynomials. This is a

generalization of the Jordan normal form for single matrix, and it is more complicated.

1.2.1 Jordan normal form of matrix

The Jordan normal form of a single matrix provides canonical structure that reveals complete

spectral information; in the simplest case of diagonalizable matrix, the Jordan form is simply a

diagonal matrix with the eigenvalues along the diagonal. If the matrix is not diagonalizable, the

structure is more complex. We brie�y review the key details.

For every integer̀ and each eigenvaluel i of a matrixA 2 Cn� n, it holds thatKer(A �

l i I )`+ 1 � Ker(A� l i I )` , and since we are dealing with �nite dimensional space, there exists the

smallest̀ i such that

Ker(A� l i I )` i+ 1 = Ker(A� l i I )` i ;

and Ker(A� l i I )` = Ker(A� l i I )` i for all ` � ` i . The integer̀ i is called theindexof l i .

Denote withMi = Ker(A� l i I )` i which is invariant subspace forA, and letmi = dim(Mi).

In each invariant subspaceMi there aregi � mi independent eigenvectors which can be completed

to form a basis by adding the elements ofKer(A� l i I )2, Ker(A� l i I )3, and so on. The process

goes as follows:

• for each eigenvectoru 2 Ker(A� l i I ), de�ne z1 so that(A� l i I )z1 = u

• until it is possible, computezi+ 1 as(A� l i I )zi+ 1 = zi .

9
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The vectorszi 2 Ker(A� l i I ) i+ 1 are calledprincipal vectors. There are at most̀i principal

vectors for each of thegi eigenvectors associated with the eigenvaluel i .

Finally, we can represent the matrixA with the respect to the basis made up of thep bases

of invariant subspacesMi

X� 1AX = J = diag(J1;J2; : : : ;Jp); (1.7)

where eachJi corresponds to the subspaceMi associated with the eigenvaluel i . Ji is of ordermi

with following structure

Ji = diag(Ji1;Ji2; : : : ;Jigi ); Jik =

0

B
B
B
B
@

l i 1
... ...

l i 1

l i

1

C
C
C
C
A

: (1.8)

EachJik corresponds to a different eigenvector of the eigenvaluel i, and its size is equal to

the number of the principal vectors for the corresponding eigenvector. Previous reasoning is

summed up in the following theorem.

Theorem 1.1([60]). Any matrix A can be reduced to a block diagonal matrix consisting ofp

diagonal blocks, each associated with a distinct eigenvalue. Each diagonal blockJi has itself

a block diagonal structure consisting ofgi subblocks, wheregi is the geometric multiplicity of

the eigenvaluel i. Each of the subblocks, referred to as a Jordan block, is an upper bidiagonal

matrix of size not exceeding` i , with the constantl i on the diagonal and the constant one on the

super diagonal.

Notice that, sinceA andJ are similar, their characteristic polynomials are the same, and thus

the algebraic multiplicity of the eigenvaluel i is the same, i.e., the algebraic multiplicity ofl i is

equal tomi .

From all this we see that the Jordan form is very useful because it completely determines the

structure of the eigenvalues of matrixA. However, the computation of it is numerically unstable.

This is why the Schur form is used in numerical computation, because unitary matrixQ is used

instead of regularX which can be ill conditioned. However, the form is no longer compact. The

following theorem gives existence of the Schur form.

Theorem 1.2.For any given matrixA2 Cn� n there exists a unitary matrixQ such thatQ� AQ= R

is upper triangular.

The Jordan structure for matrix polynomials provides the complete information about the

structure of the eigenvalues. The main term we will de�ne is Jordan pair. The �rst step is the

de�nition of canonical Jordan chains, which are something like a basis in �nite dimensional

linear space [32]. The path of de�ning the Jordan pair is presented in Figure 1.1, therefore we

start by de�ning the Smith form ofP.

10
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The Smith Form

Elementary
Divisors

Partial Mul-
tiplicities

Root Polynomial Canonical
Jordan Chain

Jordan Pair

Figure 1.1: Diagram for de�ning the Jordan pair

1.2.2 The Smith form

The main result describing the Smith form is given in a more general form, meaning that it

holds for matrix polynomialsP (l ) = å k
`= 0A` l ` , whereA` 2 Cm� n are rectangular matrices:

Theorem 1.3([32]). Every m� n matrix polynomialP (l ) admits the representation

P (l ) = E(l )D(l )F(l ); (1.9)

where

D(l ) =

0

B
B
B
B
B
B
B
B
B
B
@

d1(l ) 0
...

dr (l )
...

0
...

0 � � � 0

1

C
C
C
C
C
C
C
C
C
C
A

(1.10)

is a diagonal polynomial matrix with monic scalar polynomialsdi(l ) such thatdi(l ) is divisible

bydi� 1(l ); E(l ) andF(l ) are matrix polynomials of sizesm� mandn� n respectively, with

constant nonzero determinants.

Representation (1.9) is calledthe Smith form of the matrix polynomialP (l ). Sometimes,

the matrixD(l ) itself, given by (1.10), is also called the Smith form. The matrix polynomials

E(l ) andF(l ) are not unique. However,D(l ) is unique, and its diagonal polynomials can be

expressed in terms ofP (l ) as stated in the following theorem:

Theorem 1.4([32]). Let P (l ) be anm� n matrix polynomial. Letpk(l ) be the greatest

common divisor (with leading coef�cient 1) of the minors ofP (l ) of orderk, if not all of them

are zeros, and letpk(l ) � 0 if all minors of orderk of P (l ) are zeros. Letp0(l ) = 1 and

11
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D(l ) = diag(d1(l ); : : : ;dr (l );0; : : : ;0) be the Smith form ofP (l ). Thenr is the maximal

integer such that pr (l ) 6� 0, and

di(l ) =
pi(l )

pi� 1(l )
; i = 1;2; : : : ; r: (1.11)

Invariant polynomials and Elementary Divisors. The diagonal elementsd1(l ), : : : ;dr (l )

in (1.10) are calledinvariant polynomialsof P (l ). SincerankP (l ) = rankD(l ) for every

l 2 C, andrankD(l ) = r if l is not a zero of one of the invariant polynomials, andrankD(l ) < r

otherwise, we conclude that

r = max
l 2C

rankP (l ):

If we represent each invariant polynomial as the product of factors

di(l ) = ( l � l i1)a i1 : : : (l � l i;ki )
a i;ki ; i = 1;2; : : : ; r;

wherel i1; : : : ; l i;ki are different complex numbers anda i1; : : : ;a i;ki are positive integers, then the

factors(l � l i j )a i j , j = 1; : : : ;ki, i = 1; : : : ; r are called theelementary divisorsof P (l ). An

elementary divisor is said to belinear if a i j = 1, andnonlinearotherwise.

These characteristics will be important for developing the theory of Jordan structure. For better

understanding of these concepts, let us present a simple example:

Example 1.3([32]). Let

P(l ) =

 
l (l � 1) 1

0 l (l � 1)

!

:

The proof of theorem 1.3 describes the computation of the Smith form. However, we will not

discuss the process here, but only state the �nal solution

D(l ) =

 
1 0

0 l 2(l � 1)2

!

: (1.12)

From (1.12) we read the elementary divisors:l 2 and(l � 1)2.

Local Smith Form and Partial Multiplicities. We now return to consideration of matrix

polynomial with square matrix coef�cients (1.1). IfdetP(l ) 6� 0, that is, ifP is regular, the next

theorem describes the local Smith form:

Theorem 1.5([32]). LetP(l ) be andn� n matrix polynomial withdetP(l ) 6� 0. Then for every

l 0 2 C, P(l ) admits the representation

P(l ) = El 0
(l )

0

B
B
@

(l � l 0)k1 0
...

0 (l � l 0)kn

1

C
C
A Fl 0

(l ); (1.13)

12



1.2. Canonical forms of matrix polynomials

whereEl 0
(l ) andFl 0

(l ) are matrix polynomials invertible atl 0, andk1 � : : : � kn are nonne-

gative integers, which coincide (after removing zeros) with degrees of the elementary divisors of

P(l ) corresponding tol 0 (i.e., of the form(l � l 0)n). ki = 0, i = 1; : : : ;n if l 0 is not a root of

an invariant polynomial of P(l ).

The integersk1 � : : : � kn are calledpartial multiplicitiesof P(l ), and they are uniquely

determined byP(l ) andl 0. The representation (1.13) is called thelocal Smith Formof P(l ) at

l 0.

ConsiderP(l ) from Example 1.3. The partial multiplicities of eigenvalues 0 and 1 are

k1 = 0;k2 = 2, and the partial multiplicities ofl 0 62 f0;1g are zeros.

Equivalence of Matrix Polynomials. Two matrix polynomialsP(l ) andR(l ) of the same

size are calledequivalent(we writeP(l ) � R(l )) if

P(l ) = E(l )R(l )F(l ); (1.14)

for some matrix polynomialsE(l ) andF(l ) with constant nonzero determinants. This relation

is indeed an equivalence relation. The important property of equivalent matrix polynomials is

given in the following theorem

Theorem 1.6([32]). P(l ) � R(l ) if and only if the invariant polynomials ofP(l ) andR(l )

are the same.

1.2.3 Jordan chains

We will de�ne a Jordan chain for matrix polynomial which is a generalization of a Jordan

chain for a square matrixA.

As a motivation for the de�nition, consider the matrix polynomialP(l ) = å k
`= 0A` l ` , and

the associated homogeneous differential equation

k

å
`= 0

A`
d`

dt`
u(t) = 0; (1.15)

whereu(t) is ann-dimensional vector valued function. Suppose that we seek the solution of

(1.15) in the form

u(t) = p(t)el 0t =
�

tm

m!
x0 +

tm� 1

(m� 1)!
x1 + : : : + xm

�
el 0t; (1.16)

wherep(t) is ann-dimensional vector valued polynomial int, l 0 is a complex number, and

x j 2 Cn, x0 6= 0. Now, the following proposition holds

13



Chapter 1. The Polynomial Eigenvalue Problem

Proposition 1.1([32]). The vector functionu(t) given by (1.16) is a solution of equation (1.15)

if and only if the following equation holds:

i

å
p= 0

1
p!

P(p)(l 0)xi� p = 0; i = 0;1; : : : ;m: (1.17)

P(p)(l ) in (1.17) denotes the pth derivative of P with respect tol .

The sequence ofn-dimensional vectorsx0;x1; : : : ;xm (xm 6= 0) such that (1.17) holds is called

a Jordan chain of lengthm+ 1 for P(l ), corresponding to the complex numberl 0. P(p)(l )

in (1.17) denotes thepth derivative ofP with respect tol . Its leading vectorx0 6= 0 is an

eigenvector, and the subsequent vectorsx1; : : : ;xm are calledgeneralized eigenvectors.

It is important to notice that the vectors in a Jordan chain for the polynomialP, of order

higher than one, need not be linearly independent. Indeed, the zero vector can be a generalized

eigenvector as well. Example 1.4 illustrates this phenomena.

It is useful to note that the solutions of the linear system

0

B
B
B
B
@

P(l 0) 0 � � � 0

P0(l 0) P(l 0) � � � 0
...

... � � �
...

1
`! P

` (l 0) 1
(`� 1)! P

(`� 1)(l 0) � � � P(l 0)

1

C
C
C
C
A

0

B
B
B
B
@

x0

x1
...

x`

1

C
C
C
C
A

= 0;

form the set of all Jordan chainsx0;x1; : : : ;x` of P(l ) with length not exceeding̀+ 1 correspon-

ding tol 0.

The next proposition gives another way of writing a Jordan chain.

Proposition 1.2([32]). The vectorsx0; : : : ;x`� 1 form a Jordan chain of the matrix polynomial

P(l ) of order k corresponding tol 0 if and only if x0 6= 0 and

A0X0 + A1X0J0 + : : : + AkX0Jk
0 = 0; (1.18)

whereX0 =
�

x0 : : : x`� 1

�
is ann� ` matrix, andJ0 is the Jordan block of sizek� k with l 0

on the main diagonal.

Root Polynomials and Canonical set of Jordan Chains. An n-dimensional vector polyno-

mial j (l ), such thatj (l 0) 6= 0 andP(l 0)j (l 0) = 0, is called aroot polynomialof P(l ) cor-

responding tol 0. The multiplicity of the zerol 0 of P(l )j (l ) is called theorder of the root

polynomialj (l ).

Root polynomials are a tool for constructing the canonical set of Jordan chains:

1. Let j 1(l ) = å k1� 1
j= 0 (l � l 0) j j 1j be a root polynomial with the largest orderk1.

14
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2. Let j 2(l ) = å k2� 1
j= 0 (l � l 0) j j 2j be a root polynomial with the largest order among all the

root polynomials whose eigenvector is not a scalar multiple ofj 10.

3. If j 1(l ); : : : ; j s� 1(l ) are already chosen,j i = å ki � 1
j= 0 (l � l 0) j j i j , i = 1; : : : ;s� 1, let

j s(l ) = å ks� 1
j= 0 (l � l 0) j j s j be a root polynomial with the largest orderks among all the

root polynomials whose eigenvectors are not in the span of the eigenvectorsj 10; : : : ; j s� 1;0.

4. We continue this process until the setkerP(l 0) of all eigenvectors ofP(l ) corresponding

to l 0 is exhausted. This means that we will constructr = dimkerP(l 0) root polynomials

by this procedure.

Now, the Jordan chains

j 10; : : : ; j 1;k1� 1; j 20; : : : ; j 1;k2� 1; : : : j r0; : : : ; j 1;kr � 1 (1.19)

are called thecanonical setof Jordan chains forP(l ) corresponding tol 0.

Example 1.4([32]). Let

P(l ) =

 
l 2(l � 1)( l 2 + 1) l 3(l � 1)

l 2(l � 1)2 l 3(l � 1)2

!

:

The determinant isdetP(l ) = l 7(l � 1), meaning that the eigenvalues are0 and1. We will

compute the Jordan chain for the eigenvalue 0. Let us write the derivatives

P0(l ) =

 
5x4 � 4x3 + 3x2 � 2x x2(4x� 3)

2x(2x2 � 3x+ 1) x2(5x2 � 8x+ 3)

!

; P(IV )(l ) =

 
24(5x� 1) 24

24 24(5x� 2)

!

;

P00(l ) =

 
20x3 � 12x2 + 6x� 2 6x(2x� 1)

2(6x2 � 6x+ 1) 20x(10x2 � 12x+ 3)

!

; P(V)(l ) =

 
120 0

0 120

!

;

P000(l ) =

 
60x2 � 24x+ 6 24x� 6

24x� 12 60x2 � 48x+ 6

!

:

SinceP0(0) = 0, we have thatP0(0)x0 + P(0)x1 = 0 for all x0;x1 2 C2 with x0 6= 0, thus any

combinationx0;x1 forms a Jordan chain. Denote the elements of the vectorxi asxi1;xi2. Now,

1
2!

P00(0)x0 + P0(0)x1 + P(0)x2 =

 
� 1 0

1 0

!  
x01

x02

!

= 0;

implies thatx01 = 0. The next equation

1
3!

P000(0)x0 +
1
2!

P00(0)x1 + P0(0)x2 + P(0)x3 =

 
� x02 � x11

x02+ x11

!

= 0

15
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implies thatx11 = � x02. Similarly,

1
4!

P(IV )(0)x0 +
1
3!

P000(0)x1 +
1
2!

P00(0)x2 + P0(0)x3 + P(0)x4 =

 
� x12 � x21

x12+ x21

!

= 0

implies thatx21 = � x12. From the last equation

1
5!

P(V)(0)x0 +
1
4!

P(IV )(0)x1 +
1
3!

P000(0)x2 +
1
2!

P00(0)x3 + P0(0)x4 + P(0)x5 = 0;

it is obvious thatx4;x5 can be any two vectors. To conclude, our Jordan chain is of the form

 
0

x02

!

;

 
� x02

x12

!

;

 
� x12

x22

!

;

 
x31

x32

!

;

 
x41

x42

!

;

wherex02;x12;x22;x31;x32;x41;x42 are arbitrary complex numbers.

Now, to determine the canonical set of Jordan chains, we recall that ifx01 = 0 the order of the root

polynomial is5, and ifx01 6= 0 the order is2. This means that we can choosej 1j , j = 0; : : : ;4

to be  
0

1

!

;

 
� 1

0

!

;

 
0

0

!

;

 
0

0

!

;

 
0

0

!

:

For j 2j , j = 0;1 we can choose  
1

0

!

;

 
0

0

!

:

Some of the useful properties of the canonical set of Jordan chains (proved in [32]) are:

• not unique,

• the numbersk1; : : : ;kr are uniquely de�ned

• k1; : : : ;kr are the nonzero partial multiplicities ofP(l ) at l 0.

Jordan pair. Let (1.19) be the canonical Jordan chain ofP(l ) corresponding to the eigenvalue

l 0, and write it in the matrix form

X(l 0) =
�

j 10 : : : j 1;k1� 1 j 20 : : : j 2;k2� 1 : : : j r0 : : : j r;kr � 1

�
2 Rn� k ;

J(l 0) = diag(J1;J2; : : : ;Jr ) 2 Rk � k ;

whereJi is the Jordan block of sizeki with the eigenvaluel 0, andk = å r
j= 1k j . The pair of

matrices(X(l 0);J(l 0)) is calledJordan pairof P(l ) corresponding tol 0. The characterisation

of Jordan pair is given by the next theorem
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1.2. Canonical forms of matrix polynomials

Theorem 1.7([32]). Let ( bX; bJ) be a pair of matrices, wherebX is an n� p matrix and bJ is a

p� p Jordan matrix with unique eigenvaluel 0. Then the following conditions are necessary

and suf�cient in order that( bX; bJ) be a Jordan pair of P(l ) = å k
`= 0 l `A` corresponding tol 0:

(i) detP(l ) has a zerol 0 of multiplicity p,

(ii) rank

0

B
B
B
B
@

bX
bX bJ
...

bX bJk� 1

1

C
C
C
C
A

= p,

(iii) Ak bX bJk + Ak� 1 bX bJk� 1 + : : : + A0 bX = 0.

Let p be the number of different eigenvalues ofP(l ), and take the corresponding Jordan pair

(X(l j );J(l j )) for every eigenvaluel j of P(l ). The�nite Jordan pair (XF ;JF ) of P(l ) is

XF =
�

X(l 1) X(l 2) : : : X(l p)
�

;

JF = diag(J(l 1);J(l 2); : : : ;J(l p)) :
(1.20)

Some useful facts about �nite Jordan pair are:

• XF 2 Rn� n;JF 2 Rn� n, wheren = degdetP(l )

• (XF ;JF ) is not determined uniquely

• (XF ;JF ) does not determineP(l ) uniquely.

Because of the last fact, we need to de�ne Jordan pair for in�nite eigenvalue. This Jordan pair is

de�ned as the Jordan pair for the reversed matrix polynomialrevP(l ) = l kP(l � 1) at eigenvalue

zero. Denote

X¥ =
�

y 10 : : : y 1;s1� 1 y 20 : : : y 2;s2� 1 : : : y q0 : : : y q;sq� 1;
�

J¥ = diag(J¥ 1;J¥ 2; : : : ;J¥ q);
(1.21)

whereJ¥ j is the Jordan block of sizesj with eigenvalue zero. The pair(X¥ ;J¥ ) is calledin�nite

Jordan pairof P(l ). The characterisation is given in the following theorem.

Theorem 1.8([32]). Let ( bX; bJ) be a pair of matrices, wherebX is n� p and bJ is a p� p Jordan

matrix with unique eigenvaluel 0 = 0. Then the following conditions are necessary and suf�cient

in order that( bX; bJ) be an in�nite Jordan pair of P(l ) = å k
i= 0 l iAi :

(i) det(l kP(l � 1)) has a zero atl 0 = 0 of multiplicity p,
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(ii) rank

0

B
B
B
B
@

bX
bX bJ
...

bX bJk� 1

1

C
C
C
C
A

= p,

(iii) A0 bX bJk + A1 bX bJk� 1 + : : : + Ak bX = 0.

1.2.4 Invariant Pairs

For given matrix polynomialP(l ), a pair(X;S) 2 Cn� ` � Cn� ` is calledinvariant if

P(X;S) := A0X + A1XS+ A2XS2 + : : : + AkXSk = 0: (1.22)

The de�nition of invariant pair is independent of the choice of the basis forX. When working

with matrix polynomials we cannot de�ne invariant subspace in the same way it was de�ned

for the single matrix because the set of all eigenvectors of matrix polynomials is not linearly

independent. Hence, given a full rank matrixX that is know to be a part of invariant pair for

some matrix polynomialP may not uniquely determine the matrixSsuch that equation (1.22)

holds. This is why we work with pairs instead of single matrices.

Simple Invariant Pair. In order to allow rank de�ciencies in he matrixX of an invariant

pair (X;S), Betcke and Kressner, in [6], introduced the notion of minimality. Namely, a pair

(X;S) 2 Cn� ` � Cn� ` is said to beminimalif there existsm2 N such that

Vm(X;S) :=

0

B
B
B
B
@

XSm� 1

...

XS

X

1

C
C
C
C
A

(1.23)

has full column rank. The smallest suchm is calledminimality indexof (X;S).

They showed that it is always possible to extract the minimal pair from an invariant pair, thus it

is enough to work with minimal pairs.

As generalization of simple eigenvalue, [6] de�nedsimple invariant pairs(X;S) as invariant

pairs which are minimal and the algebraic multiplicities of the eigenvalues ofSare identical to

the algebraic multiplicities of the corresponding eigenvalues ofP.

Perturbation theory. Here we present the �rst order perturbation theory developed in [6].

The objective is to study the change of invariant pair(X;S) under the small perturbations of the

coef�cient matrices of the polynomial

(P+ DP)( l ) = ( A0 + E0) + l (A1 + E1) + : : : + l k(Ak + Ek); (1.24)
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for general matricesE0; : : : ;Ek. For given matrix polynomialP, de�ne nonlinear matrix operator

P : Cn� ` � C`� ` ! Cn� ` ;

(X;S) 7! A0X + A1XS+ : : : + AkXSk:
(1.25)

By (1.22), a simple invariant pair satis�esP(X;S) = 0. To this, we add "normalization condition",

W� Vm(X;S) = I , wherem is not smaller than the minimality index of(X;S) and the columns of

W form an orthonormal basis ofspan(Vm(X;S)) . Now, we can formulate the problem as �nding

the pair( eX; eS) such that

(P+ DP)( eX; eS) = 0; W� Vm( eX; eS) � I = 0; (1.26)

whereP+ DP is de�ned as in (1.25), but with perturbed coef�cients.

The �rst order sensitivity of(X;S) under the perturbation is given in the following theorem.

Theorem 1.9([6]). Let (X;S) be a simple invariant pair for a regular matrix polynomialP. For

suf�ciently smallkDPk := k(E0; E1; : : : ; Ek)kF the perturbed polynomialP+ DP has a simple

invariant pair ( eX; eS) satisfying

( eX; eS) = ( X;S) � (I � Proj) � L � 1(DP(X;S);0)+ O(kDPk2); (1.27)

whereProj is the orthogonal projector onto the tangent spaceT(X;S)M = f (XM;SM� MS) :

M 2 C`� `g and

L : Cn� ` � C`� ` ! Cn� ` � C`� `

(DX;DS) 7! (LP(DX;DS);LV(DX;DS)) ;
(1.28)

LP : (DX;DS) 7! P(DX;S)+
k

å
j= 1

A jXDSj (DS); (1.29)

LV : (DX;DS) 7! WH
0 DX +

m� 1

å
j= 1

WH
j (DXSj + XDSjDS)) ; (1.30)

DSj : DS7!
j � 1

å
i= 0

SiDSSj � i� 1: (1.31)

Here,M = f (XT;T � 1ST) : T 2 Ck� k invertibleg � Cn� k � Ck� k is a manifold of invariant

pairs generated by(X;S). Since we are evaluating the sensitivity of(X;S) under perturbati-

ons, the components of the error term( eX; eS) � (X;S) that are contained inM are neglected,

and this is achieved by projecting out the components ofL � 1(DP(X;S);0) contained inT(X;S)M .
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1.3 Applications of polynomial eigenvalue problem

The polynomial eigenvalue problem arises in a variety of applications in natural sciences

and engineering. The most common is the quadratic eigenvalue problem which appears in vibra-

tion analysis of mechanical systems, acoustics, �uid mechanics, and more. Moreover, quartic

eigenvalue problem occurs in calibration of the central catadioptric vision system and spatial

stability analysis of the Orr Sommerfeld equation. In this section we present two applications of

the quadratic eigenvalue problem, which is the main focus of the thesis, and one application of

the quartic eigenvalue problem.

1.3.1 Disk brake squeal

The quadratic eigenvalue problem arises in modelling and analysis of disk brakes [34]. In

particular, one is interested only in eigenvalues with positive real part to determine the possibility

of brake squeal.

The brake noise generation mechanisms are described in [1]. The ideal brake consists of

a pair of pads that squeezes a rotating disk with a constant friction coef�cient, and there are

normal and tangential forces acting on the interface of pads and rotor. During the stationary

contact the forces are uniformly distributed. However, during the relative motion the forces

develop non-uniform distribution. The analysis of possible sources of instabilities is based

on lab experiments, on numerical simulations based on �nite element models, or on idealized

minimal models mimicking the physics of a real brake [34]. We will consider here the �nite

element model and macroscopic equation of motion arising from it, as in [34]:

MWü+ DW�u+ KWu = f : (1.32)

The terms in (1.32) are:

• MW 2 Rn� n represents themass matrix, collecting acceleration terms; it is symmetric

positive semide�nite;

• DW 2 Rn� n collectsdamping and gyroscopic effects, collecting velocity terms, typically

nonsymmetric;

• KW 2 Rn� n collectsstiffness and circulatory effects, collecting displacement terms, typi-

cally nonsymmetric;

• Wis parameter vector;

• f is external force,f � 0 for self-excited vibrations;

• u : R ! Rn contains the coordinates in the FE basis of the displacements;
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• �u contains components of the velocity;

• ü contains components of the acceleration.

The coef�cient matrices can depend on one or more parameters represented byW, typically

including operating conditions (temperature, pad pressure, etc.), material properties (friction

coef�cient, brake geometry and mass distribution, effects of wear and damping, etc.) and rotation

speed of the brake disk.

Above we mentioned that the brake squeal is a product of �utter-type instabilities. This type

of instabilities is indicated by the coalescing of eigenvalues on the real axis, or by eigenvalues

with positive real part of the quadratic eigenvalue problem

(l 2MW+ l DW+ KW)x = 0: (1.33)

The quadratic eigenvalue problem (1.33) is obtained by considering the homogeneous system of

equations (1.32), i.e.,f = 0. The general solution to the homogeneous problem can be written

as

u(t) =
2n

å
k= 1

akxke
l kt ;

where(l k;xk) are eigenpairs of (1.33).

The eigenvalues with positive real part of the problem (1.33) are usually calledunstable

eigenvalues, and the goal in this application is to determine those eigenvalues. It is important

to have an ef�cient algorithm for computing these eigenvalues mostly because our problem is

usually large scale and it has to be executed for many values of the parameterW.

Derivation of the model.Description of complicated dynamical systems, such as disk bra-

kes, is usually developed using the Langevin equation. In this approach, one observes collective,

macroscopic variables which are changing only slowly relative to other microscopic variables

of the system. Those variables are degrees of freedom. Now, the Langevin equation describes

the time evolution of a subset of the degrees of freedom. However, this kind of simulation is not

computationally feasible. This is why the linearized �nite element (FE) model is usually used

in practice. It formulates the equations of motion assuming a very simpli�ed description of the

forcing term arising from a macroscopic friction law, and the results obtained from this model

are useful [34].

In this model, one is interested in stability analysis of disk brakes which is done by computing

the eigenvalues and eigenmodes. In particular, if our model has eigenvalues with positive real

part then a self-excited vibration induced by friction may arise and in real model this can be

represented by audible squeal.

The "zeroth" step of the analysis is the initial state of the brake. At this point the brake is

stationary and unloaded. All possible contact zones are de�ned although they are not in contact
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yet. The rotation of the disk is neglected. Finally, the equation of motion is

Mü+ DM �u+ KEu = 0: (1.34)

The matrixM represents mass, and is symmetric positive de�nite, the matrixDM represents

damping and it is symmetric positive semi-de�nite, the matrixKE represents elastic stiffness

and it is symmetric positive de�nite.

The �rst step is linear static analysis. One investigates the disk with the external load from

the brake pad. The goal of the linear static analysis is to provide a location of contact and the

normal and friction forces in the contact area. The disk is considered stationary, but to map the

friction force at the contact correctly, velocity �eld information is assigned to each FE node.

Further re�nement of the model is obtained by considering the state of contact frozen and the

contact points constrained in normal direction with multi-point constraints (MPCs). Equations

of motion are

Mü+ ( DM +
1
W

DR) �u+ ( KE + KR)u = f : (1.35)

HereKR is nonsymmetric matrix describing circulatory effects,Wis a parameter representing

the rotational speed of the disk, andDR is symmetric matrix describing the friction induced

damping.

The second step is linear static analysis with centrifugal loads. One modi�es the previous

model by introducing the rotation of the disk brake. Instead of moving the nodes, they are

applied with the load resulting from centrifugal forces. This analysis provides internal stress

conditions. Equations of motions are

Mü+ ( DM +
1
W

DR+ WDG) �u+ ( KE + KR+ W2Kg)u = f : (1.36)

DG is skew symmetric matrix (gyroscopic term) andKg is symmetric matrix modelling the

geometric stiffness.

Notice that in this model, we have only one parameterWrepresenting the disk speed. In

general, the coef�cient matrices can depend on more than one parameter.

1.3.2 Regularized Total Least Squares

In [62], a new approach for solving regularized total least squares has been developed which

includes solving the quadratic eigenvalue problem several times. Precisely, the rightmost eigen-

value and the corresponding eigenvector of certain quadratic eigenvalue problem is computed.

Total least squares (TLS) is a technique for solving overdetermined linear system of equations

Ax� b; A 2 Rm� n; b 2 Rm; x 2 Rn (m> n): (1.37)

Here, both the coef�cient matrixA and the vectorb are subject to errors. Problem (1.37) is
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actually an optimization problem

min
x;A;b

k
�

A b
�

�
�

A b
�

k2
F subject toAx= b: (1.38)

When using the ordinary least squares (LS) method for solving (1.38) we assume that the coef�-

cient matrixA is error free and thatb contains all the errors. However, in practice, all data are

contaminated by noise and thus total least squares (TLS) approach should be used. Methods

developed for TLS are based on the SVD decomposition and they also deal with problems when

only some columns ofA are contaminated by noise, and the remaining ones are noise free. When

the matrixA is ill conditioned, both of these methods, LS and TLS might give a solution that

is physically meaningless and certain regularization is needed in order to decrease the effect of

the ill conditioning and data noise. This is why the Regularized Total Least Squares (RTLS)

problem formulation is introduced. It imposes a quadratic constraint on the solution vectorx in

(1.38). This new constrained problem cannot be solved using SVD, and in [62] the new approach

based on solution of a quadratic eigenvalue problem is developed. Here we present this method.

It is referred to as a quadratically constrained formulation.

RTLS is formulated as follows

min
x;A;b

k
�

A b
�

�
�

A b
�

k2
F ; subject toAx= b; kLxk2

2 � d2; (1.39)

whereL 2 Rp� n; p � n andd > 0. It is known that the objective function in (1.39) can be

replaced by orthogonal distancekAx� bk2
2

1+ kxk2
2

, so the problem reads as

min
x

kAx� bk2
2

1+ kxk2
2

subject toAx= b; kLxk2
2 = d2; (1.40)

for d small enough (i.e.,d < kLxTLSk2). Since the normkLxTLSk2 can be large for ill conditioned

problem (1.37), the assumption thatd is small enough can be considered guaranteed in practice,

and thus the inequality in (1.39) can be replaced by equality. In practice,L is usually chosen to

be approximation of the �rst or second-order derivative operators in order to impose a certain

degree of smoothness in the solution.

So, where does the quadratic eigenvalue problem come from? Write the Lagrangean for the

RTLS problem (1.40)

L (x; l ) =
kAx� bk2

2

1+ kxk2
2

+ l (kLxk2
2 � d2): (1.41)

The �rst order optimality conditions are

B(x)x+ l LTLx = d(x); kLxk2
2 = d2; (1.42)
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where

B(x) =
ATA

1+ kxk2
2

�
kAx� bk2

2

(1+ kxk2
2)2

In; d(x) =
ATb

1+ kxk2
2
: (1.43)

This system (1.43) is solved iteratively, where in every iteration we �ndxk+ 1 andl k+ 1 which

solve the system

B(xk)x+ l LTLx = dk := d(xk); kLxk2 = d2; (1.44)

corresponding to the eigenvalue with the largest real partl using an equivalent quadratic eigen-

value problem.

In order to derive the QEP formulation let us dismiss the indexk from (1.44), and consider

thatB is symmetric matrix. We distinguish two cases, whenL is square and invertible, and when

L is nonsquare.

L square and invertible. Impose a change of variablez= Lx to get

L� TBL� 1
| {z }

= :W; symmetric

z+ l z= L� Td| {z }
= :h

; zTz= d2: (1.45)

Solving this system is equivalent to �nding the rightmost eigenvalue and the corresponding

eigenvector for certain quadratic eigenvalue problem. Assuming thatl is large enough so that

W + l I is positive de�nite, denoteu = ( W + l I )� 2h. Now, hTu = zTz= d2 andh = d � 2hhTu,

so we can write the condition (1.45) as(W + l I )2u = h which can be written as QEP

(l 2I + 2l W + W2 � d � 2hhT)u = 0: (1.46)

We are interested in the rightmost eigenvaluel and the corresponding eigenvectoru scaled

so thathTu = d2. Now, the solution of the original problem is recovered by �rst computing

z= ( W + l I )u and thenx = L� 1z.

NonsquareL. In this caseLTL is singular, because its rank is equal to the minimum of number

of columns and number of rows. We write eigenvalue decompositionLTL = USUT . Equivalent

form of (1.44) is

UTBU UTx|{z}
= :y

+ l Sy= UTd; yTSy= d2: (1.47)

Let r = rank(S) andS1 = S(1 : r;1 : r). Partitioning elements of (1.47) with respect tor we get

8
<

:
T1y1 + T2y2 + l S1y1 = d1;

TT
2 y1 + T4y2 = d2

; yT
1 S1y1 = d2: (1.48)

For the sake of simplicity, we will assume thatT4 is invertible and thus we can express

y2 = T � 1
4 (d2 � TT

2 y1): (1.49)
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If we place (1.49) in �rst equation in (1.48) we get

(T1 � T2T � 1
4 TT

2 + l S1)y1 = ( d1 � T2T � 1
4 d2);

which is the system of form(W + l I )2u = h for W = S� 1=2
1 (T1 � T2T � 1

4 TT
2 )S� 1=2

1 andh =

S1=2
1 (d1 � T2T � 1

4 d2), as before.

The solution of (1.48) is given by

y =

 
y1

y2

!

=

 
S� 1=2

1 z

T � 1
4 (d2 � TT

2 S� 1=2
1 z)

!

: (1.50)

The �nal solution isx = Uy.

1.3.3 Orr-Sommerfeld equation

The quartic eigenvalue problem appears in the analysis of the stability of plane Poiseuille

�ow in a channel. In the case of Poiseuille �ow, the undisturbed stream velocity isU(y) = 1� y2

in thex direction. The side walls are aty = � 1 andy = 1. The Reynolds number isR= 1=n,

x

y

y=1

y=-1

Figure 1.2: Poiseuille �ow

wheren is the kinematic viscosity. The stability of the �ow depends on the Reynolds number.

The goal is to �nd the critical Reynolds number for which the �ow becomes unstable.

In this example, the y component of the perturbation velocity is considered to be, as in [10],

proportional to the real part of

F (x;y;t) = f (y)ei (l x� wt); (1.51)

wherel is the wavenumber andw is the angular frequency. By the linearization of the Navier-

Stokes equations for the velocity perturbation (1.51), the Orr-Sommerfeld equation is obtained
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" �
d2

dy2 � l 2
� 2

� iR
�

(l U � w)
�

d2

dy2 � l 2
�

� l U00
� #

f = 0; (1.52)

with the boundary conditions

f (y) = 0; f 0(y) = 0 aty = � 1: (1.53)

Discretization of the equation (1.52) leads to a quartic eigenvalue problem. The eigenvalue

of interest are those closest to the real axis, and the system is stable if the imaginary part of

eigenvalue is positive. We will consider the discretization using the Chebyshev polynomials, as

in [55] and [5], that isf is expanded in[� 1;1] as

f (y) =
¥

å
n= 0

anTn(y); (1.54)

whereTn(cos(q)) = cos(nq) and

an =
2

pcn

Z 1

� 1
f (y)Tn(y)

p
1� y2dy; c0 = 2;cn = 1 for n > 0: (1.55)

The approximate solution is of form

f (y) =
N

å
n= 0

anTn(y): (1.56)

Let DN represent the Chebyshev differentiation matrix. The entries ofDN are given in [68]

(DN)11 =
2N2 + 1

6
; (DN)N+ 1;N+ 1 = �

2N2 + 1
6

;

(DN) j j =
� x j � 1

2(1� x2
j� 1)

; j = 2; : : : ;n;

(DN) i j =
ci

c j

(� 1) i+ j

(xi� 1 � x j � 1)
; i 6= j; i; j = 2; : : : ;N;

whereci =

8
<

:
2 i = 1;N + 1

1 otherwise
, andx j = cos( jp=N); j = 0; : : : ;N. The higher order derivatives

are obtained as powers ofDN. By plugging in the derivative matricesD j
N instead ofd j

dyj in (1.52)

we derive the quartic pencill 4A+ l 3B+ l 2C+ l D+ E with

A = I ; B = iRdiag(1� x2
i );

C = � (iwRI + 2D2
N); D = � iRdiag(1� x2

i )D2
N � 2iRI ;

E = D4
N + iRwD2

N:
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1.4. Linearizations of Matrix Polynomials

1.4 Linearizations of Matrix Polynomials

The most common approach when dealing with polynomial eigenvalue problem is to de�ne

an equivalent linear problem, i.e. to linearize it, and then work with the larger linear matrix pencil.

The eigenvalues of the equivalent problems are the same, and there is an explicit connection

between the corresponding eigenvectors. In this section we present most used linearizations

and de�ne the vector spaces of linearizations. Their most desirable property would be that the

Jordan structure of the eigenvalues is preserved, and we will emphasize the linearizations with

this property.

De�nition 1.1. LetP(l ) be ann� n matrix polynomial of degreek � 1. A pencilL(l ) = l X+ Y

with X;Y 2 Rkn� kn is called alinearizationof P(l ) if there exist matrix polynomialsE(l ) and

F(l ), with constant nonzero determinant, so that

E(l )L(l )F(l ) =

 
P(l ) 0

0 I (k� 1)n

!

: (1.57)

The most important and the most used linerizations in practice are the�rst companion form

C1(l ) = l X1 + Y1 and thesecond companion form C2(l ) = l X2 + Y2 where

X1 =

0

B
B
B
B
@

Ak

I
...

I

1

C
C
C
C
A

; Y1 =

0

B
B
B
B
@

Ak� 1 Ak� 2 � � � A0

� I 0 � � � 0
...

... ...
...

0 � � � � I 0

1

C
C
C
C
A

; (1.58)

X2 =

0

B
B
B
B
@

Ak

I
...

I

1

C
C
C
C
A

; Y2 =

0

B
B
B
B
B
@

Ak� 1 � I � � � 0

Ak� 2 0
...

...
...

...
... � I

A0 0 � � � 0

1

C
C
C
C
C
A

: (1.59)

When all the eigenvalues ofP(l ) are �nite, the Jordan structure can be recovered from any

linearization. However, when the in�nite eigenvalues are present this is not the case. So we

de�ne that the linearizationL(l ) for P(l ) is astrong linearizationif, in addition,revL(l ) is a

linearization for revP(l ).

Vector spaces of linearizations. In [50], Mackey et al. de�ned vector spaces of matrix pencils

which generalize the �rst and the second companion form. They proved that all pencils, which

are linearizations, from these spaces are also strong linearizations. Here, we present those spaces

and some of their important properties.
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The de�nitions are

L1(P) := f L(l ) = l X + Y : X;Y 2 Rnk� nk;L(l ) � (L 
 In) 2 VPg; (1.60)

L2(P) := f L(l ) = l X + Y : X;Y 2 Rnk� nk; (L T 
 In) � L(l ) 2 WPg; (1.61)

whereL (r) =
�

rk� 1 rk� 2 � � � r 1
� T

and

VP = f v
 P(l ) : v 2 Rkg; (1.62)

Wp = f wT 
 P(l ) : w 2 Rkg: (1.63)

Here
 represents the Kronecker product, i.e., for matricesA 2 Cm� n andB 2 Cp� q the matrix

A
 B 2 Cmp� nq is the block matrix

A
 B =

0

B
B
@

a11B :: : a1nB
...

...
...

an1B :: : amnB

1

C
C
A :

It is proven [50] that (1.60) and (1.61) are vector spaces, and that they have the same dimension

k(k � 1)n2 + k. In order to introduce the characterization of these de�nitions, from which it is

easier to construct the linearization, thecolumn shifted sumfor block matricesX andY of the

form

X =

0

B
B
@

X11 : : : X1k
...

...
...

Xk1 : : : Xkk

1

C
C
A ; Y =

0

B
B
@

Y11 : : : Y1k
...

...
...

Yk1 : : : Ykk

1

C
C
A ; Xi j ;Yi j 2 Cn� n

is introduced as

X Y =

0

B
B
@

X11 : : : X1k 0n
...

...
...

...

Xk1 : : : Xkk 0n

1

C
C
A +

0

B
B
@

0n Y11 : : : Y1k
...

...
...

...

0n Yk1 : : : Ykk

1

C
C
A ; (1.64)

and therow shifted sumas

X Y =

0

B
B
B
B
@

X11 : : : X1k
...

...
...

Xk1 : : : Xkk

0n : : : 0n

1

C
C
C
C
A

+

0

B
B
B
B
@

Y11 : : : Y1k
...

...
...

Yk1 : : : Ykk

0n : : : 0n

1

C
C
C
C
A

: (1.65)

Now, it can be proven that

L1(P) =
n

l X + Y : X Y = v

�

Ak Ak� 1 : : : A0

�
;v 2 Ck

o
; (1.66)
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L2(P) =

8
>><

>>:
l X + Y : X Y = wT 


0

B
B
@

Ak
...

A0

1

C
C
A ;w 2 Ck

9
>>=

>>;
: (1.67)

In addition, the theorem which gives an algorithm for determining if a pencil is a linearization

is proven as well.

Finally, we state the theorems about recovery of both right and left eigenvectors.

Theorem 1.10([50]). LetP(l ) be ann� n matrix polynomial of degreek, andL(l ) any pencil

in L1 with nonzero right eigenvectorz. Thenx 2 Cn is an eigenvector forP(l ) with �nite

eigenvaluel 2 C if and only if L 
 x is an eigenvector forL(l ) with eigenvaluel . If, in

addition,P is regular andL 2 L1(P) is a linearization forP, then every eigenvector ofL with

�nite eigenvaluel is of the formL 
 x for some eigenvector x of P.

Theorem 1.11([42]). LetL 2 L1(P) be a linearization ofP, with vectorv in (1.66). Ifu is a left

eigenvector of L with eigenvaluel then

y = ( v� 
 I )u (1.68)

is a left eigenvector ofP with eigenvaluel . Moreover, any left eigenvector ofP corresponding

to l can be recovered from one of L from the formula (1.68).

Theorem 1.12([42]). Let L 2 L2(P) be a linearization ofP, with vectorw in (1.67). Ifz is a

right eigenvector of L with eigenvaluel then

x = ( wT 
 I )z (1.69)

is a right eigenvector ofP with eigenvaluel . Moreover, any right eigenvector ofP corresponding

to l can be recovered from one of L from the formula (1.69).

Theorem 1.13([50]). LetP(l ) be ann� n matrix polynomial of degreek, andL(l ) any pencil

in L2 with nonzero left vectoru. Theny 2 Cn is a left eigenvector forP(l ) with �nite eigenvalue

l 2 C if and only if L 
 y is an eigenvector forL(l ) with eigenvaluel . If, in addition, P

is regular andL 2 L2(P) is a linearization forP, then every left eigenvector ofL with �nite

eigenvaluel is of formL 
 y for some left eigenvector y of P.

Theorem 1.14([50]). LetP(l ) be ann� n matrix polynomial of degreek, andL(l ) any pencil

in L1 (resp.,L2) with nonzero right (left) vectorw. Thenx 2 Cn is a right (left) eigenvector

for P(l ) with in�nite eigenvalue if and only ife1 
 x is a right (left) eigenvector forL(l ) with

in�nite eigenvalue. If, in addition,P is regular andL 2 L1(P) (resp.,L2(P) is a linearization

for P, then every right (left) eigenvector ofL with in�nite eigenvalue is of forme1 
 x for some

right (left) eigenvector x of P with in�nite eigenvalue.
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Chapter 1. The Polynomial Eigenvalue Problem

From these theorems we see that the right eigenvector recovery is straightforward for the

pencils inL1, and the left eigenvector is easy to recover for the pencils inL2. This is an attractive

feature, which is why [50] de�ned the vector spaceDL(P) := L1(P) \ L2(P), which has both

properties. They derived characterisation for this space. Another signi�cant property is that for

symmetricP every pencil inDL(P) is also symmetric.

At the end, we present examples for two linearizations which will be used in the remaining

sections.

Example 1.5(First companion form). Consider the �rst companion form linearization (1.58)

C1(l ) 2 L1(P). The corresponding vectorv from the characterization (1.66) isv = e1. Let x be

the right eigenvector forP(l ), andz the corresponding right eigenvector forC1(l ). Then

z= L 
 x =

0

B
B
B
B
@

l k� 1x

l k� 2x
...

x

1

C
C
C
C
A

: (1.70)

Now, let y be the left eigenvector forP(l ), andu corresponding left eigenvector forC1(l ),

wherel is �nite and nonzero. Then

u =

0

B
B
B
B
@

I

(l Ak + Ak� 1)�

: : :

(l k� 1Ak + l k� 2Ak� 2 + : : : + A1)�

1

C
C
C
C
A

y: (1.71)

Example 1.6(Second companion form). Consider the second companion form linearization

(1.59)C2(l ) 2 L2(P). The corresponding vectorw from the characterization (1.67) isw = e1.

Let x be the right eigenvector forP(l ), andz the corresponding right eigenvector forC1(l ), l

�nite nonzero. Then

z=

0

B
B
B
B
@

I

(l Ak + Ak� 1)

: : :

(l k� 1Ak + l k� 2Ak� 2 + : : : + A1)

1

C
C
C
C
A

x: (1.72)

Now, let y be the left eigenvector forP(l ), andu corresponding left eigenvector forC2(l ),

wherel is �nite and nonzero. Then

u = L 
 y =

0

B
B
B
B
@

l k� 1y

l k� 2y
...

y

1

C
C
C
C
A

: (1.73)
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Linearization and invariant pairs. The connection between the invariant pairs of matrix

polynomial and its linearization is given in the following lemma

Lemma 1.1([6]). A minimal invariant pair(X;S) for a regular matrix polynomial is simple if

and only if(Vk(X;S);S) is a simple invariant pair for the corresponding companion linearization.

The recovery of invariant pairs from linearization analogous to theorem 1.10 is given in the

following theorem.

Theorem 1.15([6]). Let L(l ) = l B+ A 2 L1(P) be a linearization of a regular matrix polyno-

mial P. Then for every simple invariant pair(Y;S) 2 Ckn� ` � C`� ` of L there existsX 2 Cn� `

such that Y= Vk(X;S) and(X;S) is a simple invariant pair of P.

1.5 Localization of eigenvalues of nonlinear eigenvalue pro-

blem

In this section we present the localization theorems, pseudospectral inclusion theorems and

Bauer-Fike theorem for general nonlinear eigenvalue problems developed by Bindel and Hood

in [7].

They study the nonlinear eigenvalue problem

T(l )v = 0; v 6= 0; (1.74)

whereT : W! Cn� n is analytic on the simply connected domainW� C, and regular, meaning

that det(T(z)) 6� 0. The emphasis is only on �nite eigenvalues.

We de�ne thenumber of eigenvalues insideG, for G� C, a simple closed contour, andT(z)

nonsingular for allz2 G, by the winding number

WG(detT(z)) =
1

2pi

Z

G

�
d
dz

logdet(T(z))
�

dz=
1

2pi

Z

G
tr(T(z)� 1T0(z))dz: (1.75)

Now, the main lemma for the proofs of the localization theorems is the following:

Lemma 1.2([7]). SupposeT : W! Cn� n andE : W! Cn� n are analytic and thatG� Wis a

simple closed contour. IfT(z)+ sE(z) is nonsingular for alls2 [0;1] and all z2 G, thenT and

T + E have the same number of eigenvalues insideG, counting the multiplicities.

The nonlinear generalization of Gershgorin theorem states

Theorem 1.16([7], Nonlinear Gershgorin theorem). SupposeT(z) = D(z)+ E(z), whereD;E :

W! Cn� n are analytic and D is diagonal. Then for any0 � a � 1,

L (T) �
n[

j= 1

Ga
j ; (1.76)
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where Ga
j is the jth generalized Gershgorin region

Ga
j = f z2 W: jd j j (z)j � r j (z)a c j (z)1� a g; (1.77)

and rj and cj are jth absolute row and column sums of E, i.e.,

r j (z) =
n

å
k= 1

jejk(z)j; c j (z) =
n

å
i= 1

jei j (z)j: (1.78)

Moreover, suppose thatU is a bounded connected component of the union[ jGa
j such that

U � W. ThenU contains the same number of eigenvalues ofT andD, and if U includesm

connected components of the Gershgorin regions, it must contain at least m eigenvalues.

1.5.1 Pseudospectrum

The spectrum of a matrixA is a set of allz2 Cn such that resolvent operatorR(z) = ( zI� A)� 1

is not de�ned. Thee-pseudospectrumcan be equivalently de�ned as [69]:

L e = f z2 C : k(zI � A)� 1k2 > e� 1g (1.79)

=
[

kEk2< e

L(A+ E) (1.80)

= f z2 C : k(z� A)vk2 < e;v 2 Cn;kvk2 = 1g: (1.81)

The motivation for the �rst de�nition in (1.79) is that asking ifz is eigenvalue of the matrixA is

the same as asking if the matrixzI � A is singular. However, determination of the singularity of

a matrix is not numerically robust, because arbitrary small perturbation can change the matrix

from singular to regular. The better approach is to check if the normk(zI � A)� 1k2 is large, and

thus the �rst de�nition of pseudospectrum.

The second de�nition in (1.80) is motivated by the eigenvalue perturbation theory. Namely,

by this de�nition,e-pseudospectrum is the set of all eigenvalues of all perturbed matricesA+ E

with kEk2 < e.

The usual de�nition ofe-pseudospectrum for nonlinear eigenvalue problem is generalization

of (1.80). For the spaceF consisting of some set of analytic matrix-valued functions of interest,

thee-pseudospectrum forT 2 F is

L e(T) =
[

E2F ;kEkglob< e

L(T + E); (1.82)

wherekEkglob is a global measure of the size of the perturbing functionE. In [7], F is the space
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1.6. Diagonalizable quadratic matrix polynomials

of all analytic matrix-valued functionsCw(W;Cn� n) with the global measure

kEkglob � sup
z2W

kE(z)k2: (1.83)

In this setting, three equivalent de�nitions of pseudospectrum, similar to (1.79)-(1.81) are

provided in [7]

Theorem 1.17([7]). LetE = f E : W! Cn� n; E analytic; supz2WkE(z)k2 < eg andE0 = f E0 2

Cn� n : kE0k2 < eg. Then the following de�nitions are equivalent:

L e(T) = f z2 W: kT(z)� 1k2 > e� 1g (1.84)

=
[

E2E

L(T + E) (1.85)

=
[

E02E0

L(T + E0): (1.86)

Another generalization ofe-pseudospectrum theory for linear problem is stated in the follo-

wing proposition.

Proposition 1.3([7]). SupposeT : W! Cn� n is analytic andU is a bounded connected com-

ponent ofL e(T) with U 2 W. ThenU contains an eigenvalue of T .

Connection with backward error is given in proposition

Proposition 1.4([7]). Suppose T(bl )x = r andkrk2=kxk2 < e. Thenbl 2 L e(T).

The comparison between eigenvalue problems via pseudospectra is given in the next theorem

Theorem 1.18([7]). Suppose T: W! Cn� n and E: W! Cn� n are analytic, and let

We � f z2 W: kE(z)k2 < eg:

Then

(L (T + E) \ We) � (L e(T) \ We) :

Furthermore, ifU is a bounded connected component ofL e(T) such thatU � We, thenU

contains exactly the same number of eigenvalues of T and T+ E.

1.6 Diagonalizable quadratic matrix polynomials

In this section we investigate under what assumptions we can diagonalize quadratic matrix

polynomial. The diagonalization is done by congruence or direct equivalence transformation.

We will also present the approach from Lancaster and Zaballa in [46] where the diagonalization

is obtained by applying congruence or strict equivalence transformation to a linearization, while

33



Chapter 1. The Polynomial Eigenvalue Problem

preserving the structure of the original problem.

The pencil(l 2M + l C+ K) is said to bediagonalor decoupledif M;C;K are diagonal matrices.

Two pencils areisospectralif they have the same Jordan form, that is if they have the same

eigenvalues and the same partial multiplicities. Finally, a pencil is diagonalizable if it admits an

isospectral diagonal system.

Diagonalization without linearization. Here we list the quadratic pencils that allow diago-

nalization by congruence (Hermitian pencils) and by strict equivalence (no symmetry) without

linearization. Before stating the theorem we must introduce the notion of sign characteristic.

Hermitian pencilsA+ l B are congruent to pencil

rM

j= 1

h j (l � a j ) �
sM

j= r+ 1

h j

 
1 l � a j

l � a j 0

!

�
tM

j= s+ 1

 
0 l � (mj + iw j )

l � (mj � iw j ) 0

!

;

wherea1; : : : ;a r are the real eigenvalues with partial multiplicities equal to one,a r+ 1; : : : ;as

are the real eigenvalues with partial multiplicities equal to two, andms+ 1 � iws+ 1; : : : ;mt � iwt

are complex conjugate pairs with partial multiplicities one. The numbersh1; : : : ;hs take values

� 1 end represent the sign characteristic of the pencil.

Theorem 1.19(Hermitian pencils,[46]). LetM;C;K 2 Cn� n with det(M) 6= 0, M� = M;C� = C

andK� = K. Assume thatl M + K is semisimple with all eigenvalues real and of de�nite type,

and de�ne

L = diag(l 1I1; l 2I2; : : : ; l sIs); S= diag(� I1; � I2; : : : ; � Is);

where the size of the identity matrixI j is a partial multiplicity of the eigenvaluel j for each

j, and the sign of each term inS is determined by the corresponding+ 1 or � 1 in the sign

characteristic. Then there exists a nonsingularU 2 Cn� n such thatU � MU;U � CU andU � KU

are diagonal if and only ifCM� 1K = KM� 1C: If, in addition,M;C;K are real and symmetric,

then there is a corresponding U2 Rn� n.

Theorem 1.20(No symmetry, [46]). Let M;C;K 2 Rn� n with det(M) 6= 0 and assume that

l M+ K hasn distinct eigenvalues. Then there exist nonsingularU;V 2 Cn� n such thatUMV = I

and UCV;UKV are diagonal if and only if CM� 1K = KM� 1C.

Diagonalization by linearization. In the above theorems we saw that the certain commutati-

vity conditions must be satis�ed in order for pencil to be diagonalizable. Here, we are interested

in the procedure for computing that diagonal pencil, and this is developed using the linearization

A =

 
C M

M 0

!

; B =

 
� K 0

0 M

!

; (1.87)
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1.6. Diagonalizable quadratic matrix polynomials

which is structure preserving.

Before the diagonalization of the original pencil we will �rst study the Jordan form of the desired

diagonal pencil.

De�nition 1.2 ([46]). Let Jn;C andJn;R be the classes of2n� 2n canonical Jordan matrices

for n� n diagonal pencils, andn� n real diagonal pencils, respectively (so thatJn;R � Jn;C �

C2n� 2n).

Denote by� x j the direct diagonal sum of scalars or matricesx1; : : : ;xk.

Let l 1; : : : ; l t 2 C;1 6= t 6= 2n be distinct eigenvalues, and letl i have partial multiplicitieski1 �

: : : � ki;mg;i > 0 for eachi. Then the eigenvaluel i has geometric multiplicitymg;i � n and the

algebraic multiplicityma;i = å
mg;i
j= 1ki j � 2n. It holds that

t

å
i= 1

mg;i

å
j= 1

ki j = 2n: (1.88)

Write diagonal pencilQ(l ) =
nL

i= 1
[mi l 2 + ci l + ki ], whereÕn

i= 1mi 6= 0. Then each diagonal

entry has a linearization

l I2 �

"
0 1

� ki=mi � ci=mi

#

; i = 1;2; : : : ; t;

andQ(l ) has the tridiagonal linearizationl I � A where

A =
nM

i= 1

"
0 1

� ki=mi � ci=mi

#

:

The elementary divisors ofl I � A are the disjoint unions of those of (1.87) and we have

1 � ki j � 2; for 1 � i � t;1 � j � mg;i : (1.89)

For each distinct eigenvaluel i , i = 1;2; : : : ; t we de�ne the integerssi � 0 by

ki j =

8
<

:
2; j = 1;2; : : : ;si

1; j = si + 1; : : : ;mg;i ;
(1.90)

mg;i � si � n� p; i = 1;2; : : : ; t: (1.91)

Theorem 1.21(Jordan form for diagonal pencil, [46]). A Jordan matrix with partial multiplici-

ties f ki j g
i= t; j= mg;i
i= 1; j= 1 is in Jn;C if and only if conditions (1.88), (1.89) and (1.91) hold where, for

i = 1;2; : : : ; t the integers si � 0 appearing in (1.91) are de�ned by (1.90).
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Theorem 1.22(Jordan form for real diagonal pencil, [46]). A Jordan matrixJ with partial

multiplicities f ki j g
i= t; j= mg;i
i= 1; j= 1 is in Jn;R is and only if there is andn0, 0 � n0 � n, such that

J = diag(Jn0;Jn� n0) for Jordan matrices Jn0;Jn� n0 with s (Jn0) � R ands (Jn� n0) \ R = /0 and

(a) conditions (1.88), (1.89) and (1.91) (with n replaced by n0) hold for Jn0 and

(b) s (Jn� n0) consists of conjugate pairs of nonreal semisimple eigenvaluesl j ; l j .

Now we consider the generalization of an isospectral diagonal system to our systemQ(l ) by

the application of congruence or strict equivalence on the linearizationl A� B in (1.87). First we

de�ne the transformation which will be used. They are all structure preserving transformations.

De�nition 1.3. (a) A system isDEC (diagonalizable by strict equivalence overC) if there

exist nonsingular U;V 2 C2n� 2n such that

U(l A� B)V = l bA� bB;

where l bA � bB is the linearization of a (generally complex) diagonal systembQ(l ) =

l 2 bM + l bC+ bK.

(b) A real system isDER if there exist nonsingular U;V 2 C2n� 2n such that

U(l A� B)V = l bA� bB;

wherel bA� bB is the linearization of a real diagonal systembQ(l ) = l 2 bM + l bC+ bK.

(c) A system isDCR (diagonalizable by congruence) if there exist nonsingularU 2 C2n� 2n

such that

U(l A� B)U � = l bA� bB;

wherel bA� bB is the linearization of a real diagonal systembQ(l ) = l 2 bM + l bC+ bK.

Finally, we state the main theorem for this section

Theorem 1.23([46]). (a) A system Q(l ) with Jordan form J isDEC if and only if J2 Jn;C.

(b) A real system Q(l ) with Jordan form J isDER if and only if J2 Jn;R.

(a) An Hermitian system Q(l ) with Jordan form J isDCR if and only if J2 Jn;R.

1.7 Minimax theory

In [28] Duf�n considered heavily damped dynamical systems. The aim of his work was to

develop variational principles for overdamped systems analogous to variational principles for

Hermitian matrices, i.e.
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1.7. Minimax theory

Theorem 1.24.Let A be ann� n Hermitian matrix with eigenvaluesl 1 � : : : � l k � : : : � l n.

Then

l k = min
U

dimU= k

max
x2U
x6= 0

(Ax;x)
(x;x)

: (1.92)

The main tool for the theory is Rayleigh coef�cient, which is replaced by the Rayleigh

functional in he case of overdamped dynamical systems.

For given matricesM;C andK of ordern and the associated quadratic forms

m(v) = ( Mv;v); c(v) = ( Cv;v); k(v) = ( Kv;v); (1.93)

we assume that

(i) M;C andK are symmetric,

(ii) m(v) � 0, c(v) � 0, andk(v) � 0, which is later replaced by weaker hypothesisc(v) � 0,

(iii) c2(v) � 4m(v)k(v) > 0, overdamping condition.

If r is the rank of matrixM, then there are preciselyn+ r roots of the equation

det(l 2M + l C+ K) = 0; (1.94)

which represent the eigenvalues of the quadratic eigenvalue problem

(l 2M + l C+ K)x = 0: (1.95)

Duf�n divided these eigenvalues into two groups, the primary and the secondary eigenvalues.

Namely,h1 � h2 � : : : � hr , ther smallest roots of (1.94), are calledsecondary eigenvalues,

andk1 � k2 � : : : � kn, then largest roots, are calledprimary eigenvalues. The corresponding

eigenvectors are called thesecondary eigenvectorsandprimary eigenvectors, respectively.

1.7.1 The primary functional

The primary functional is de�ned as

p(v) =
� 2k(v)

c(v)+ d(v)
; (1.96)

where

d(v) =
q

c2(v) � 4m(v)k(v) > 0: (1.97)
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In order to state the main theorem, we introduce the numberP(Y) associated with each subspace

Y of dimension one or greater by

P(Y) = sup
y2Y

p(y): (1.98)

Theith primary minimax valueki is then de�ned as

ki = inf
dimY= i

P(Y): (1.99)

The �rst important theorem states that the eigenvectors of the primary eigenvalues are linearly

independent, more precisely:

Theorem 1.25([28]). There is an independent set of n primary eigenvectors u1;u2; : : : ;un. The

corresponding eigenvalues are the minimax valuesk1;k2; : : : ;kn. Any other primary eigenvector

u is a linear combination of vectors of the set having the same eigenvalue as u.

The minimax theorem reads as follows.

Theorem 1.26([28]). If Y is a subspace of dimension� 1, let

P(Y) = max
y2Y

p(y):

Then, for i= 1;2; : : : ;n, the primary minimax value ki is given by

ki = minP(Y);

for all subspaces of dimension i.

1.7.2 The secondary functional

The secondary functionals(v) is de�ned for a vectorv if and only if m(v) 6= 0 as

2s(v)m(v)+ c(v) = � d(v): (1.100)

A primary and a secondary eigenvectors can coincide, but the primary and secondary eigenvalues

cannot. More precisely

Theorem 1.27([28]). Let r be the rank ofM. Then there is an independent set ofr vectors

w1;w2; : : : ;wr . Each vector of the set is a secondary eigenvector. Any other secondary eigenvec-

tor is a linear combination of vectors of the set with the same eigenvalue.

Theorem 1.28([28]). The range of the primary functional and the range of the secondary

functional have no common value.
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1.7. Minimax theory

Consider the reversed quadratic eigenvalue problem which satis�es the conditions (i), (ii)

and (iii). The primary functional for the reversed problem is

p0(v) =
� 2m(v)

c(v)+ d(v)
:

Thus, ifm6= 0, thens= 1=p0. So one can prove an analogous theorem to Theorem 1.26 for the

secondary functional.
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Chapter 2

Backward error

Backward error analysis provides an elegant way to justify the computed output: if the

initial data is slightly perturbed (this perturbation is calledbackward error), then the computed

(inexact) output can be reproduced by exact computation with this new data. This, of course,

does not guarantee that the computed result is close to the exact one - the error depends on

the sensitivity of the function we are trying to compute. If the size of the backward error is of

the comparable size as the estimated uncertainty in the initial data, then we may say that the

computed results is as good as warranted by te data.

In Section 2.2, we show that optimal Hermitian backward error (of the same minimal norm

as in the unconstrained case) is possible for any eigenpair; this is an extension od the existing

theory in which such optimal Hermitian backward error was established only for the case of real

eigenvalue. The result is extended to allow both Hermitian and skew Hermitan perturbations in

the coef�cient matrices. Further, we derive a new more intrinsic proof of the explicit formula

for the component-wise backward error.

2.1 Optimal backward error for a given eigenpair

In the case of matrix polynomialP(l ) and its approximate eigenpair(x; l ), with l �nite, the

minimal size of the normwise backward error, measured e.g. in the spectral normk � k2, is

de�ned by

hP(x; l ) = minf e : (P(l ) + DP(l ))x = 0; kDAik2 � ekAik2; i = 0; : : : ;kg; (2.1)

whereDP(l ) = å k
i= 0 l iDAi is the backward error inP(l ), and

P(l )+ DP(l ) =
k

å
i= 0

l i(Ai + DAi):
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Chapter 2. Backward error

In other words, we seek small perturbationsDAi of the coef�cientsAi, that will render the

computed pair(x; l ) an exact eigenpair ofP(l ) + DP(l ).

Using the backward error to justify the computed result is usually illustrated by a commuta-

tive diagram as in Figure 2.1.

P(l ) = å k
i= 0 l iAi (x; l ); (P(l ) + DP(l ))x = 0

P(l ex)xex = 0

P(l )+ DP(l )

computed
approximation

backward
error DP(l ) = å k

i= 0 l iAi

exact computation of the
eigenvalues and eigenvectors

Figure 2.1: Commutative diagram for a backward perturbation in the computation of a right
eigenpair(x; l ) of the matrix polynomialP(l ) = å k

i= 0 l iAi .

The optimal backward error (2.1) corresponds to the residual, and in practical computation

it can be obtained using the explicit formula, derived in [66]:

hP(x; l ) =
kP(l )xk2�

å k
`= 0 jl ` jkA`k2

�
kxk2

: (2.2)

If only the eigenvaluel is of interest, we can always assume that the optimal eigenvector is

available so thathP(l ;x) is minimal. Clearly, thekP(l )xk2=kxk2 factor in (2.2) is minimized

if x is the right singular vector that corresponds to the smallest singular value ofP(l ). Hence,

hP(l ) � min
x6= 0

kP(l )xk2�
å k

`= 0 jl ` jkA`k2
�

kxk2
=

smin(P(l ))
�
å k

`= 0 jl ` jkA`k2
� =

1
�
å k

`= 0 jl ` jkA`k2
�

kP(l )� 1k2
;

wheresmin(�) denotes the minimal singular value of a matrix. This trick of involving the singular

vector of the smallest singular value is also at the core of the eigenvector re�nement technique

of Jia and Sun [45].

Remark 2.1. It is instructive to consider the special casel = 0. Obviously, if we set

DA` = 0; ` = 0; : : : ;k; DA0 = � A0x
x�

kxk2
2

�
note that here

kDA0k2

kA0k
=

kA0xk2

kA0kkxk2

�
; (2.3)

then(P(0) + DP(0))x = ( A0 + DA0)x = 0: Recall that thisDA0 corresponds to the optimal bac-

kward error forA0x � 0.

Remark 2.2. If the computed approximate eigenvalue isl = ¥ , then we can try to interpret it

as a zero eigenvalue of a backward perturbed reversed problem. UsingP(l ) = l k revP(1=l ),

m= 1=l , the expression (2.2) can be interpreted as

hP(x; l ) =
kl k å k

`= 0(l � `Ak� ` )xk2

jl kj(å k
`= 0 jl j� `kAk� `k2)kxk2

=
kå k

`= 0 m̀ Ak� `xk2�
å k

`= 0 jm̀ jkAk� `k2
�

kxk2
� hrevP(x;m):
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Hence, for in�nite l , the backward error can be de�ned analogously to (2.3) asDA` = 0, ` =

0; : : : ;k � 1, andDAk = � Akxx� =kxk2
2. Clearly, kDAkk2=kAkk2 = kAkxk2=(kAkk2kxk2), and

(Ak + DAk)x � (revP(0)+ DrevP(0))x = 0.

2.2 On Hermitian and skew–Hermitian backward error

A backward error analysis is reassuring – it allows us to claim the computed result can be

used with con�dence because it corresponds almost to the given input data. However, in this

interpretation of having solved a nearby problem, for many applications not only the size but

also the structure of the backward perturbation matters. Suppose that the coef�cient matrices

A` are Hermitian (or real symmetric), where the symmetry is a result of the underlying physics

of a concrete engineering application. In such cases non-hermitian/non-symmetric backward

perturbed dataA` + DA` make the interpretation of backward stability in terms of the original

problem dif�cult.

Hence, it is of interest to determine the optimal backward error under the constraint that the

backward errors in the coef�cientsA` are Hermitian:

h (H)
P (x; l ) = minf e : (P(l ) + DP(l ))x = 0; DA�

i = DAi ; kDAik2 � ekAik2; i = 0; : : : ;kg:

(2.4)

Note that in the de�nition (2.4) we do not require the coef�cientsAi of P(l ) to be Hermitian,

although such Hermitian case is usually tacitly assumed if we are interested inh (H)
P (x; l ). The

existence of optimal Hermitian backward error for Hermitian pencil, that matches the size of

hP(x; l ), is established by Tisseur [66], but only for real eigenvalues.

Theorem 2.1([66]). If all coef�cient matrices ofP(l ) are Hermitian, and ifl is real, then

hP(x; l ) = h (H)
P (x; l ).

In the next theorem, we extend the result of Tisseur to the entire �nite spectrum, i.e. we now

show that a Hermitian backward error is possible for any �nite eigenvalue.

Theorem 2.2.Let (x; l ) be an approximate eigenpair of P(l ). ThenhP(x; l ) = h (H)
P (x; l ).

Proof. Let P(l )x = r 6= 0, and letl = r ei j be the polar form ofl . (For l = 0, setr = j = 0

andl 0 = 1.) For j = 0; : : : ;k, we can construct Householder re�ectorsH j = H �
j = H � 1

j such

that

H jx = �
r

krk2
kxk2e� i j j :

If we setSj = ( krk2=kxk2)H j , thenS�
j = Sj , Sjx = � re� i j j , andkSjk2 = krk2=kxk2. De�ne

backward errors

DA j =
1

å k
`= 0 jl j`kA`k2

kA jk2Sj (note thatDA�
j = DA j ) (2.5)

43



Chapter 2. Backward error

and check that

l jDA jx =
� l je� i j j kA jk2

å k
`= 0 jl j`kA`k2

r =
�j l j jkA jk2

å k
`= 0 jl j`kA`k2

r;

and

DP(l )x =
k

å
j= 0

l jDA jx = � r; (P(l ) + DP(l ))x = 0:

Finally, note that the norm ofDA j matches the unconstrained optimal value, i.e.

kDA jk2 =
krk2

kxk2å k
`= 0 jl j`kA`k2

kA jk2 = hP(x; l )kA jk2:

The trick used in Theorem 2.2 can be slightly modi�ed to analogously construct a skew–

Hermitian perturbation.

Theorem 2.3.Let s = ( s0; : : : ;sk) 2 f� 1;1gk+ 1 and

h (H;s )
P (x; l ) = minf e : (P(l ) + DP(l ))x = 0; DA�

i = s iDAi ; kDAik2 � ekAik2; i = 0; : : : ;kg;

(2.6)

i.e. the backward errors are required to be Hermitian or skew–Hermitian, as indicated in the

prescribed signatures = ( � 1; : : : ; � 1). Thenh (H;s )
P (x; l ) = hP(x; l ).

Proof. Follow the proof of Theorem 2.2. For eachs j = 1 de�ne H j as in (2.9) withSj =

(krk2=kxk2)H j . If s j = � 1, de�ne the Householder re�ectorH j so that

H jx = i
r

krk2
kyk2e� i j j ;

and setSj = i (krk2=kxk2)H j . ThenS�
j = � Sj , Sjx = � re� i j j . If we de�ne DA j as in (2.5), then

DA�
j = s jDA j and the rest of the proof follows as in Theorem 2.2.

2.2.1 The left eigenpair

If we have an approximate left eigenpair(y� ; l ) with �nite l , its backward error is de�ned

analogously as

hP(y� ; l ) = minf e : y� (P(l ) + DP(l )) = 0; kDAik2 � ekAik2; i = 0; : : : ;kg; (2.7)

and the corresponding explicit formula in terms of the residual reads

hP(y� ; l ) =
ky� P(l )k2�

å k
`= 0 jl ` jkA`k2

�
kyk2

: (2.8)
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Of interest is, as discussed above, to determine minimal Hermitian backward errorh (H)
P (y� ; l ),

where

h (H)
P (y� ; l ) = minf e : y� (P(l ) + DP(l )) = 0; DA�

i = DAi ; kDAik2 � ekAik2; i = 0; : : : ;kg:

(2.9)

Clearly, we can use,mutatis mutandis, Theorems 2.2 and 2.3 to prove existence of the optimal

Hermitian/skew-Hermitian backward error. For the sake of completeness, we provide the details.

Theorem 2.4. Let (y� ; l ) be an approximate left eigenpair ofP(l ). Thenh (H)
P (y� ; l ) =

hP(y� ; l ).

Proof. Let y� P(l ) = r � 6= 0, and letl = r ei j be the polar form ofl . (Forl = 0, setr = j = 0

andl 0 = 1.) For j = 0; : : : ;k, we can construct Householder re�ectorsH j = H �
j = H � 1

j such

that

H jy = �
r

krk2
kyk2ei j j ;

so that

y� H j = �
r �

krk2
kyk2e� i j j :

If we setSj = ( krk2=kyk2)H j , thenS�
j = Sj , y� Sj = � r � e� i j j , andkSjk2 = krk2=kyk2. De�ne

backward errors

DA j =
1

å k
`= 0 jl j`kA`k2

kA jk2Sj (note thatDA�
j = DA j ) (2.10)

and check that

l jy� DA j =
� l jei j j kA jk2

å k
`= 0 jl j`kA`k2

r � =
�j l j jkA jk2

å k
`= 0 jl j`kA`k2

r � ;

and

y� DP(l ) =
k

å
j= 0

l jy� DA j = � r � ; y� (P(l ) + DP(l )) = 0:

Finally, note that the norm ofDA j matches the unconstrained optimal value, i.e.

kDA jk2 =
krk2

kyk2å k
`= 0 jl j`kA`k2

kA jk2 = hP(y� ; l )kA jk2:

Corollary 2.1. Let s = ( s0; : : : ;sk) 2 f� 1;1gk+ 1 and

h (H;s )
P (y� ; l ) = minf e : y� (P(l )+ DP(l )) = 0; DA�

i = s iDAi ;kDAik2 � ekAik2; i = 0; : : : ;kg;

(2.11)

i.e. the backward errors are required to be Hermitian or skew–Hermitian, as indicated in

s = ( � 1; : : : ; � 1). Thenh (H;s )
P (y� ; l ) = hP(y� ; l ).
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Proof. Follow the proof of Theorem 2.4. For eachs j = 1 de�ne H j as in (2.2.1) withSj =

(krk2=kyk2)H j . If s j = � 1, de�ne the Householder re�ectorH j so that

H jy = � i
r

krk2
kyk2ei j j ;

so that

y� H j = i
r �

krk2
kyk2e� i j j ;

and setSj = i (krk2=kyk2)H j . ThenS�
j = � Sj , y� Sj = � r � e� i j j . If we de�ne DA j as in (2.10),

thenDA�
j = s jDA j and the rest of the proof follows as in Theorem 2.4.

Backward error for an approximate triple. The backward error for a triple(x;y� ; l ), com-

puted by a numerical algorithm, is de�ned as

h (x;y� ; l ) = minf e : (P(l )+ DP(l ))x= 0;y� (P(l )+ DP(l )) = 0; kA`k2 � ekA`k2; ` = 0; : : : ;kg:

(2.12)

The explicit formula for (2.12) is given in the following theorem

Theorem 2.5([66]). The normwise backward error for eigentriple is given by

h (x;y� ; l ) =
1
a

max
�

krk2

kxk2
;
ksk2

kyk2

�
; (2.13)

where r= P(l )x, s� = y� P(l ) anda = å k
`= 0 jl j`kA`k2.

Notice that (2.13) actually says thath (x;y� ; l ) = max(h (x; l );h (y� ; l )) .

2.3 Backward error for a homogeneous form ofP(l )

As we emphasized in Section 1.4, the �rst step in most numerical methods for solving po-

lynomial eigenvalue problems is linearization – the nonlinearity is traded for linear eigenvalue

problem of higher dimension. Then, the next step is just direct deployment of the methods for

the linear problem, and straightforward reconstruction of approximate eigenvalues and eigen-

vectors of the original nonlinear problem. In practice, it has been noticed that, although the

backward error for a computed eigenpair for linear problem is small, the backward error of the

corresponding approximation for the original polynomial problem can be much larger. It turns

out that the relations between the norms of the coef�cient matricesA` of P(l ) affect the quality

of the computed solution. This should be intuitively clear – if the normskAik2 vary widely over

several orders of magnitude, and if some of those matrices are blocks in the coef�cient matrixB

of the linearization, then smallkdBk2=kBk2 does not ensure smallkdAik2=kAik2.
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In some cases it is more convenient to de�ne the backward errors for the homogeneous form

of the matrix polynomial, where the homogeneous form is de�ned as

P(a ;b) =
k

å
`= 0

a `b k� `A` (� b k
k

å
`= 0

(a =b)`A` ):

The backward errors are then in forms ofDP(a ;b) de�ned as

hP(x;a ;b) = minf e : (P(a ;b)+ DP(a ;b))x = 0; kDAik2 � ekAik2; i = 0; : : : ;kg; (2.14)

hP(y� ;a ;b) = minf e : y� (P(a ;b)+ DP(a ;b)) = 0; kDAik2 � ekAik2; i = 0; : : : ;kg: (2.15)

An advantage of this representation of the backward error is that it uniformly applies to both

�nite and in�nite eigenvalues. UsingP(a ;b) = b kP(a =b) for b 6= 0, and (2.2) and (2.8) we

get explicit formulas for homogeneous form

hP(x;a ;b) =
kP(a ;b)xk2

(å k
i= 0 ja i jjb k� i jkAik2)kxk2

; (2.16)

hP(y� ;a ;b) =
ky� P(a ;b)k2

(å k
i= 0 ja i jjb k� i jkAik2)kyk2

: (2.17)

Equivalent formulas for backward errors for the eigenpairs of a generalized (linear) eigenvalue

problem in homogeneous form,L(a ;b) = bX + aY, are obtained by replacingk = 1, A0 := X

andA1 := Y in (2.16) and (2.17)

hL(z;a ;b) =
kL(a ;b)zk2

(ja jkXk2 + jb jkYk2)kzk2
; (2.18)

hL(u� ;a ;b) =
ku� L(a ;b)k2

(ja jkXk2 + jb jkYk2)kuk2
: (2.19)

2.3.1 Backward error bounds for the homogeneous form

In [42], Higham, Li and Tisseur derived the bound for the backward error of an approximate

eigenpair ofP(l ) in the terms of the backward error for the corresponding approximate eigenpair

of L, from which is clear how the norms of the coef�cient matrices affect the unevenness of the

backward errors.

Let L(a ;b) be a linearization ofP(a ;b), and letz be an approximate eigenvector forL and

x an approximate eigenvector forP, both corresponding to the same eigenvalue(a ;b). In order

to comparehP(x;a ;b) andhL(z;a ;b), some well-de�ned relation betweenx andz is needed.

The key assumption for deriving the backward error bounds is that there exists ann� knmatrix

polynomialG(a ;b) such that

G(a ;b)L(a ;b) = gT 
 P(a ;b); (2.20)
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Chapter 2. Backward error

for some nonzerog 2 Ck. Let gT =
�

g1 : : : gk

�
. Then we can write

gT 
 P(a ;b) =
�

g1P(a ;b) : : : gkP(a ;b)
�

= P(a ;b)(gT 
 In):

Now, if z is an eigenvector ofL then

G(a ;b)L(a ;b)z= P(a ;b)(gT 
 In)z

implies that

x = ( gT 
 In)z (2.21)

is an eigenvector ofP. Now, if (2.20) is satis�ed, andz is an approximate eigenvector ofL, then

x de�ned by (2.21), satis�es (see [42])

hP(x;a ;b) �
kG(a ;b)k2kL(a ;b)zk2

(å k
j= 0 ja j j jb jk� jkA jk2)kxk2

�
ja jkXk2 + jb jkYk2

å k
j= 0 ja j j jb jk� jkA jk2

�
kG(a ;b)k2kzk2

kxk2
� hL(z;a ;b):

(2.22)

Similarly, for a left eigenvectory� , the assumption analogous to (2.20) requires existence of an

kn� n matrix polynomialH(a ;b) such that

L(a ;b)H(a ;b) = h
 P(a ;b); (2.23)

for some nonzeroh 2 Ck. The connection between the left eigenvectorsu for L andy for P is

then

y = ( h� 
 I )u; (2.24)

and the corresponding backward error is bounded by

hP(y� ;a ;b) �
ja jkXk2 + jb jkYk2

å k
j= 0 ja j j jb jk� jkA jk2

�
kH(a ;b)k2kuk2

kyk2
� hL(u� ;a ;b): (2.25)

In the particular case of the �rst companion form (L = C1), the ratio of the two backward errors

can be bounded as shown in the following two theorems.

Theorem 2.6([42]). Let z be an approximate right eigenvector ofC1, corresponding to the

approximate eigenvalue(a ;b). Then for zk = z((k� 1)n+ 1 : kn);k = 1; : : : ;k, we have

1
k1=2

�
hP(zk;a ;b)
hC1(z;a ;b)

� k5=2max(1;maxi kAik2)2

min(kA0k2;kAkk2)
kzk2

kzkk2
: (2.26)

Theorem 2.7([42]). Let u be an approximate left eigenvector ofC1 corresponding to the ap-
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2.3. Backward error for a homogeneous form ofP(l )

proximate eigenvalue(a ;b). Then for u1 = u(1 : n), we have

1
k1=2

�
hP(u�

1;a ;b)
hC1(u;a ;b)

� k3=2max(1;maxi kAik2)
min(kA0k2;kAkk2)

kuk2

ku1k2
: (2.27)

SinceC2(P) = C1(PT)T , we can conclude that these bounds apply to the second companion

form as well, but so that (2.26) applies to a left eigenpair, and (2.27) holds for the corresponding

right eigenpair.

From both of these theorems we see that the backward errors of the initial nonlinear problem

and its linearization differ only by a modest factor of the degreek, provided that the norms of

the coef�cient matricesAi are close to one. To illustrate how unbalancedkAik2's in�uence the

ratio between the two kinds of backward errors we present the following example.

Example 2.1. We consider thepower_plant example from the NLEVP benchmark library [5].

It is a QEP(l 2M + l C+ K)x = 0 of order8, representing a reduced order model of dynamic

behaviour of a nuclear power plant. The norms of the coef�cient matrices are:

M = 235000000;

C = 4.350043895953605e+010;

K = 1.692005328941397e+013:

The backward errors for the eigenvalue problem for the linearization

A� l B =

 
C � I

K 0

!

� l

 
� M 0

0 � I

!

; (2.28)

and for the original problem are shown in Figure 2.2.
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Figure 2.2: Backward errors for the eigenvalue problem of the linearization (2.28) of the test
examplepower_plant , and for the original problem(l 2M + l C+ K)x = 0.
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Chapter 2. Backward error

It is clear from Figure 2.2 that there is a substantial gap between the backward error for the origi-

nal quadratic problem and the error of the corresponding second companion form linearization.

It is instructive to compare the gap between the two errors and the ratios of the norms of the

coef�cient matrices in the quadratic problem.

2.3.2 Parameter scaling

In order to solve the problem of non equilibrated norms of the coef�cient matrices of matrix

polynomialP(l ), the parameter scaling is proposed by several authors, see e.g. [30],[31],[37].

The idea is to use two new parametersg andd to change the variables and de�ne a new polyno-

mial matrix eP(m) = å k
`= 0 m̀ eA` as

l = gm; eP(m) := P(l )d = mk (gkdAk)| {z }
= :eAk

+ mk� 1 (gk� 1dAk� 1)
| {z }

= :eAk� 1

+ : : : + ( dA0)
| {z }

= :eA0

: (2.29)

The free parametersg andd are then determined so that the ratio

max(1;maxi kAik2)2

min(kA0k2;kAkk2)
; (2.30)

from the bounds (2.26) and (2.27) is as small as possible. Betcke proved in [4] that the optimal

g for minimizing

r (g) :=
maxi gikAik2

min(kA0k2;gkkAkk2)
(2.31)

is

g =
�

kA0k2

kAkk2

� 1=k

: (2.32)

d is then de�ned so that the norms of scaled matrices are close to1. Fan, Lin and Van Dooren

derived the parameters for quadratic eigenvalue problem in [30]. This type of scaling is used

in quadeig algorithm for computing all eigenvalues and eigenvectors of quadratic eigenvalue

problem [37]. The parameters will be presented in Subsection 3.3.1.

Finally, Gaubert and Sharify [31] proposed scaling using the tropical roots. Tropical algebra

is relatively new and rarely present in the research in numerical linear algebra. For that reason,

we brie�y review the elementary notions from tropical algebra, that will be needed in the rest of

the thesis.

Tropical scaling. The tropical algebra, or max–plus algebra is a semiring(R [ f� ¥ g; � ; 
 )

with operations de�ned as follows

x� y = max(x;y);
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2.3. Backward error for a homogeneous form ofP(l )

x
 y = x+ y:

The zero element0 of the tropical semiring, for which0 
 a = a holds, is0 = � ¥ . The unit

element of the tropical semiring1, for which1 
 a = a
 1 = a holds, is1 = 0.

The max–times semiring is another variant of the tropical semiring. It is a set of nonnegative

real numbersR+ equipped with the max operation as addition and the usual multiplication as

multiplication. The tropical polynomial in max–times algebra ist� p(x) = max0� k� nakxk. The

max–times and max–plus semirings are isomorphic by the mapx 7! logx.

The tropical polynomialtp of degreen, written as

tp =
nM

k= 0

ak 
 x
 k; ak 2 R [ f� ¥ g; (2.33)

corresponds top(x) = max0� k� n(ak + kx) in the classical algebra. The �nite tropical roots of the

polynomial (2.33) are de�ned as the points at which the maximummax0� k� n(ak+ kx) is attained

at least twice. There aren tropical roots, counting the multiplicities for the tropical polynomial

of degreen. The analogue of the fundamental theorem of algebra for the tropical polynomials is

that p(x) can be uniquely written asp(x) = an + å n
k= 1max(x;ck), wherec1; : : : ;cn 2 R [ f� ¥ g

are the tropical roots. They are computed using the Newton polygons.

For tropical polynomial (2.33) we de�ne the corresponding Newton polygon as the upper

boundary of the convex hull of the set of points(k;ak); k = 1; : : : ;n. It consists of a number

of linear segments. Now, the roots are the opposites of the slopes of these segments, and the

multiplicities are the width of the segments, that is the difference of the abscissae of its endpoints.

Let k0 = 0 < : : : < kq = n be the abscissae of the vertices of the Newton polygon. Then (2.33)

hasq distinct roots

a j = �
ak j � ak j � 1

k j � k j � 1
; j = 1; : : : ;q; (2.34)

with multiplicities mj = k j � k j � 1; j = 1; : : : ;q, respectively.

On the other hand, the tropical roots of tropical polynomialt� p(x) in max–times semiring are

the exponentials of the tropical roots of the max–plus polynomialtp(x) = max0� k� n(logak + kx)

gj =

 
ak j � 1

ak j

! 1=(k j � k j � 1)

; (2.35)

and the multiplicitesmj = k j � k j � 1 are the same.

The tropical roots can be computed in linear time, as shown in [31].

Example 2.2([54]). Consider the tropical polynomial

t� p(x) = max(7.5e-5| {z }
= a0

;8.9e+2| {z }
= a1

x;8.6e+2| {z }
= a2

x2;8.8e+8| {z }
= a3

x3;7.7e+7| {z }
= a4

x4): (2.36)
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Chapter 2. Backward error

The Newton polygon corresponding to a max–plus tropical polynomialtp(x) =
L 4

`= 0 à 
 x
 `

is presented in Figure 2.3.
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Figure 2.3: Newton polygon corresponding totp(x)

Now, the tropical roots, and their multiplicities, of (2.36) are

g1 =
�

a0

a1

� 1=(k1� k0)

= 8.426966292134831e-008; m1 = 1;

g2 =
�

a1

a3

� 1=(k3� k1)

= 1.005665767719890e-003; m2 = 2;

g3 =
�

a3

a4

� 1=(k4� k3)

= 1.142857142857143e+001; m3 = 1:

For veri�cation, let us computetp(gi), i = 1;2;3:

tp(g1) = max(7.5000e-005;7.5000e-005;6.1072e-012;5.2662e-013;3.8831e-021);

tp(g2) = max(7.5000e-005;8.9504e-001;8.6977e-004;8.9504e-001;7.8760e-005);

tp(g3) = max(7.5000e-005;1.0171e+004;1.1233e+005;1.3136e+012;1.3136e+012):

We can see that the maximum is attained twice for everygi, i = 1;2;3, as it is required by the

de�nition of the tropical roots.

For our purpose of scaling a matrix polynomialå k
`= 0 l `A` , de�ne the tropical polynomial

tp(x) =
kM

`= 0

kA`k2 
 x
 ` ; (2.37)

whereA` are the coef�cients of the matrix polynomial.

The tropical roots of (2.37) are used for scaling of the polynomial eigenvalue problem in order to
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2.4. Componentwise backward error

improve backward error for the eigenpairs computed using the linearization. LeteP(m) = P(l )d

be the scaled polynomial, wherel = gm. Let a1 � a2 � : : : � ak be the tropical roots oftp(�),

counted with multiplicities. The scaling parameters are de�ned as

gi = a i ; di = ( tp(a i)) � 1; i = 1; : : : ;k: (2.38)

Notice that there are as many distinct scaling parameters as the number of distinct tropical roots

of the polynomialtp(�). The small backward error is expected only for those eigenvalues that

are close to some roota i . This is why [31] proposes the following procedure:

• De�ne the tropical polynomialtp

• Find thek tropical rootsa1 � a2 � : : : � ak counting the multiplicities

• For each distinct tropical roota i de�ne the corresponding tropical scaling (2.38). Compute

the eigenvalues of the scaled problem (2.29) by using the QZ algorithm for the correspon-

ding linearization. Sort the computed eigenvalues by the magnitudel 1; : : : ; l kn, and divide

them intok groups ofn elements. Theith group would bel (i� 1)n+ 1; : : : ; l in. For eacha i

chooseith group of the eigenvalues as the approximation.

2.4 Componentwise backward error

The componentwise backward error for a matrix polynomialP(l ) and its approximate ei-

genpair(x; l ), with l �nite is de�ned by

wP(x; l ) = minf e : (P(l ) + DP(l ))x = 0; jDAi j � ejAi j; i = 0; : : : ;kg; (2.39)

whereDP(l ) = å k
`= 0 l `DA` is, as before, the backward error inP(l ). An explicit formula

for component-wise backward error for the generalized eigenvalue problemAx = l x and the

corresponding approximate eigenpair(x; l ) is derived in [39] as

wL(x; l ) = max
i

jr i j
(( jAj + jl jjBj)jxj) i

; (2.40)

wherer = Ax� l Bx, andx=0 is interpreted as zero ifx = 0, and in�nity otherwise. In the

following theorem we derive explicit formula for (2.39) for the quadratic eigenvalue problem

Q(l ) = l 2M + l C+ K using the component-wise backward error for the corresponding �rst

companion form linearization. We provide a different proof, using the linearization of the

quadratic problem and the corresponding explicit formula for component-wise backward error

of generalized eigenvalue problem (2.40).
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Theorem 2.8. The componentwise backward error for the quadratic matrix polynomialQ(l ),

corresponding to an approximate eigenpair(x; l ) is given by

wQ(x; l ) = max
i

jr i j
(( jl j2jMj + jl jjCj + jKj)jxj) i

; (2.41)

where r= ( l 2M + l C+ K)x, andx=0 is interpreted as zero ifx = 0, and in�nity otherwise.

Proof. Let (x; l ) be an approximate eigenpair forQ(l ). Then(
�

l x
x

�
; l ) is an approximate

eigenpair for the corresponding �rst companion form linearization

(A� l B)

 
l x

x

!

=

( 
C K

� I 0

!

� l

 
� M 0

0 � I

!)  
l x

x

!

=

 
(l 2M + l C+ K)x

0

!

=

 
r

0

!

= rL:

(2.42)

(2.41) applied on equation (2.42) implies that there existsDA andDB so that(A+ DA� l (B+

DB))
�

l x
x

�
= 0, andjDAj � ejAj, jDBj � ejBj, with e = wL

��
l x
x

�
; l

�
. Since this bound is

component-wise, we conclude that there existDM, DC, DK, E1, E2 so that

( 
C+ DC K+ DK

� (I + E1) 0

!

� l

 
� (M + DM) 0

0 � (I + E2)

!)  
l x

x

!

=

 
0

0

!

; (2.43)

andjDMj � ejMj, jDCj � ejCj, jDKj � ejKj, jE1j � ejI j, jE2j � ejI j (notice thatE1 andE2 are

diagonal matrices.) By equating the corresponding block rows on the left and right side of the

equation (2.43) we get

(l 2(M + DM)+ l (C+ DC)+ ( K + DK))x = 0; (2.44)

� l E1x+ l E2x = 0: (2.45)

SinceE1 andE2 are diagonal, (2.45) reads(E1) ii xi = ( E2) ii xi. Now, if xi 6= 0 (E1) ii = ( E2) ii .

Otherwise, any(E1) ii ; (E2) ii such thatj(E1) ii j; j(E2) ii j � e satis�es the equation, so we take

(E1) ii = ( E2) ii . From this reasoning we conclude thatE1 = E2. Finally, by multiplying the

equation (2.43) with
�

I 0
0 (I+ E1)� 1

�
from the left we derive

( 
C+ DC K + DK

� I 0

!

� l

 
� (M + DM) 0

0 � I

!)  
l x

x

!

=

 
0

0

!

: (2.46)

Moreover, notice thatjrLj =
�

jr j
0

�
and that

(jAj + jl jjBj)

 
jl jj xj

jxj

!

=

 
jl j2jMjjxj + jl jjCjjxj + jKjjxj

2jl jj xj

!

:
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Finally, we expresswL in terms of the original data as

wL

  
l x

x

!

; l

!

= max
i

j(rL) i j 

(jAj + jl jjBj)

 
jl jj xj

jxj

!!

i

= max
i

 
jr j

0

!

i 
jl j2jMjjxj + jl jjCjjxj + jKjjxj

2jl jj xj

!

i

= max
i

jr i j
(( jl j2jMj + jl jjCj + jKj)jxj) i

:

Hence (2.41) holds.

Another, more intrinsic, proof is be to directly de�neDM, DC, DK analogously to proof for

the linear matrix pencil in [39]. Since the construction of the backward error directly in terms

of the original problem is more insightful, we provide the details.

A more intrinsic proof of Theorem 2.8.Let ew be the minimale such thatjDMj � ejMj, jDCj �

ejCj, jDKj � ejKj, and(l 2(M + DM)+ l (C+ DC)+( K + DK))x = 0. If r = ( l 2M + l C+ K)x,

then

jrj = j � (l 2DM + l DC+ DK)xj � e(jl j2jMj + jl jjCj + jKj)jxj;

that is, ew � wQ(x; l ). On the other hand, this bound is attainable by the following perturbations

DM = � sign(l 2)D1jMjD2; DC = � sign(l )D1jCjD2; DK = � D1jKjD2;

where

D1 = diag
�

r i

(( jl j2jMj + jl jjCj + jKj)jxj) i

�
; D2 = diag(sign(xi)) :

To see this, check that

DQ(l )x = � l 2sign(l 2) diag
�

r i

ja j i

�
jMj diag(sign(xi))x

� l sign(l ) diag
�

r i

ja j i

�
jCj diag(sign(xi))x� diag

�
r i

ja j i

�
jKj diag(sign(xi))x

= � r;

and

jDMj = diag
jr i j
ja j i

jMj = wQ(x; l )jMj;

jDCj = diag
jr i j
ja j i

jCj = wQ(x; l )jCj;

jDKj = diag
jr i j
ja j i

jKj = wQ(x; l )jKj;
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whereja j = ( å k
`= 0 jl j` jA` j)jxj.

The following example demonstrates the difference between the normwise and the compo-

nentwise backward error. There can be a gap between these errors suggesting that the computed

eigenpair is not as good as we could conclude by just looking at the normwise backward error.

Example 2.3.Consider thespeaker_box example from the NLEVP library. We computed all

214 eigenvalues and corresponding right eigenvectors using the algorithmquadeig which will

be explained in Chapter 3. The normwise and the componentwise backward errors for all right

eigenpairs are presented in the following �gure
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Figure 2.4: speaker_box, normwise and componentwise backward errors for all right eigen-
pairs

In order to prove the analogous theorem for a left eigenpair, we have to use the second

companion form linearization.

Theorem 2.9. The componentwise backward error for quadratic matrix polynomialQ(l ) for

approximate left eigenpair(y� ; l ) is given by

wQ(y� ; l ) = max
i

jr �
i j

(jy� j(jl j2jMj + jl jjCj + jKj)) i
; (2.47)

where r� = y� (l 2M + l C+ K), andx=0 is interpreted as zero ifx = 0, and in�nity otherwise.

Proof. Let (y� ; l ) be an approximate left eigenpair forQ(l ). Then(
�

l y� y�
�

; l ) is an ap-

proximate left eigenpair for the corresponding second companion form linearization

�
l y� y�

�
(A� l B) =

�
l y� y�

�
( 

C � I

K 0

!

� l

 
� M 0

0 � I

!)

=
�

y� (l 2M + l C+ K) 0
�

=
�

r � 0
�

= r �
L:

(2.48)
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(2.47) applied on (2.48) implies that there existsDA andDB so that
�

l y� y�
�

(A+ DA� l (B+

DB)) = 0, andjDAj � ejAj; jDBj � ejBj, with e = wL

��
l y� y�

�
; l

�
. Since this bound is

componentwise, we conclude that there existDM, DC, DK, E1, E2 so that

�
l y� y�

�
( 

C+ DC � (I + E1)

K + DK 0

!

� l

 
� (M + DM) 0

0 � (I + E2)

!)

=
�

0 0
�

; (2.49)

andjDMj � ejMj, jDCj � ejCj, jDKj � ejKj, jE1j � ejI j, jE2j � ejI j (notice thatE1 andE2 are

diagonal matrices.) By equating the corresponding block rows on the left and the right side of

the equation (2.49) we get

y� (l 2(M + DM)+ l (C+ DC)+ ( K + DK)) = 0; (2.50)

� l y� E1 + l y� E2 = 0: (2.51)

SinceE1 andE2 are diagonal, (2.51) reads(E1) ii yi = ( E2) ii yi. Now, if yi 6= 0 (E1) ii = ( E2) ii .

Otherwise, any(E1) ii ; (E2) ii such thatj(E1) ii j; j(E2) ii j � e satis�es the equation, so we take

(E1) ii = ( E2) ii . Form this reasoning we conclude thatE1 = E2. Finally, by multiplying the

equation (2.49) with

 
I 0

0 (I + E1)� 1

!

from the right we derive

�
l y� y�

�
( 

C+ DC � I

K + DK 0

!

� l

 
� (M + DM) 0

0 � I

!)

=
�

0 0
�

: (2.52)

Moreover, notice thatjr �
Lj =

�
jr � j 0

�
and

�
jl jj y� j j y� j

�
(jAj + jl jjBj) =

�
jl j2jy� jjMj + jl jj y� jjCj + jy� jjKj 2jl jj y� j

�
:

Finally, putting all together, we obtain

wL

��
l y� y�

�
; l

�
= max

i

j(r �
L) i j��

jl jj y� j j y� j
�

(jAj + jl jjBj)
�

i

= max
i

�
jr � j 0

�

i�
jl j2jy� jjMj + jl jj y� jjCj + jy� jjKj 2jl jj y� j

�

i

= max
i

jr i j
(jy� j(jl j2jMj + jl jjCj + jKj)) i

:

Hence (2.47) holds.

Theorem 2.8 and 2.9 can be generalized for arbitrary polynomial eigenvalue problem of

orderk. The only difference in the proof of the theorem is that the linerization will be the pencil
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Chapter 2. Backward error

of orderkn, and there will additional perturbationsEi; j , i = 1; : : : ;k � 1, j = 1;2 on identity

matrices

(A+ DA) =

0

B
B
B
B
@

Ak� 1 + DAk� 1 Ak� 2 + DAk� 2 : : : A0 + DA0

� (I + E1;1) 0 : : : 0
...

... ...
...

0 : : : � (I + Ek� 1;1) 0

1

C
C
C
C
A

; (2.53)

(B+ DB) = diag(Ak + DAk; � (I + E1;2); : : : ; � (I + Ek� 1;2)) : (2.54)

By the same reasoning as in the proof of Theorem 2.8, we can conclude thatEi;1 = Ei;2; i =

1; : : : ;k � 1. The rest of the proof is analogous.

Similarly, for the left eigenpair we will have

(A+ DA) =

0

B
B
B
B
B
@

Ak� 1 + DAk� 1 � (I + E1;1) : : : 0

Ak� 2 + DAk� 2 0 : : :
...

...
... ... � (I + Ek� 1;1)

A0 + DA0 0 : : : 0

1

C
C
C
C
C
A

; (2.55)

(B+ DB) = diag(Ak + DAk; � (I + E1;2); : : : ; � (I + Ek� 1;2)) : (2.56)

Here, we state the theorem for the sake of completeness

Theorem 2.10.For the matrix polynomialP(l ) of orderk, the component-wise backward error

for an approximate eigenpair(x; l ) is given by

wP(x; l ) = max
i

jr i j�
(å k

`= 0 jl ` jjA` j)jxj
�

i

; (2.57)

where r= ( å k
`= 0 l `A` )x, andx=0 is interpreted as zero ifx = 0, and in�nity otherwise.

Theorem 2.11.For the matrix polynomialP(l ), the component-wise backward error for an

approximate left eigenpair(y� ; l ) is given by

wP(y� ; l ) = max
i

jr �
i j

�
jy� j(å k

`= 0 jl ` jjA` j)
�

i

; (2.58)

where r� = y� (å k
`= 0 l `A` ), andx=0 is interpreted as zero ifx = 0, and in�nity otherwise.
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Chapter 3

Complete solution of the quadratic

eigenvalue problem

In this chapter we study numerical methods for computing all eigenvalues with the corre-

sponding eigenvectors of then� n quadratic eigenvalue problem

Q(l )x = ( l 2M + l C+ K)x = 0: (3.1)

This problem is at the kernel even of the methods for computing only selected eigenpairs of a

large scale problem; in such casesQ(l ) is restricted/projected on a small dimensional subspace

(constructed by some algorithm) and full solution of the projected problem is required to advance

an iterative method and/or to construct an approximate solution for the original problem.

The core of the state of the art methods is computation of the eigenvalues and eigenvectors

of a particularly chosen linearization. The linearized problem is usually solved with the QZ

method. In some cases, this may lead to dif�culties, in particular ifM is exactly or nearly rank

de�cient, which leads to (numerically) in�nite eigenvalues. Even if QZ is not too much troubled

by the presence of the in�nite eigenvalues [72], it would be advantageous to de�ate them early

in the computational scheme. Similarly, ifK is rank de�cient, then its null space provides

eigenvectors for the eigenvaluel = 0 and removing it in a preprocessing phase facilitates more

ef�cient computation of the remaining eigenvalues. In both cases a nontrivial decision about the

numerical rank has to be made.

These issues have been addressed by Hammarling, Munro and Tisseur [37] who used the

structure of the linearization pencil (3.2) to de�ate certain number of zero and in�nite eigenvalues

using the rank revealing decompositions of the coef�cient matricesM andK of the original

quadratic eigenvalue problem (3.1). The resulting algorithm, designated asquadeig is shown

to be more robust as e.g. thepolyeig() function used in Matlab.

In this chapter we propose a new algorithm, following the philosophy ofquadeig, but

with more attention to �ne numerical details that ensure numerically more robust and reliable

computational procedure. Our supporting numerical analysis and numerical evidence indicate
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Chapter 3. Complete solution of the QEP

that the new proposed algorithm can be recommended as method of choice for solving (3.1).

The Chapter is organized as follows. In Section 3.1 we present several rank revealing decom-

positions, and the corresponding error analysis. In Section 3.2, we introduce the Kronecker's

canonical form and the Van Dooren's algorithm for computing the complete structure of zero

eigenvalue, i.e. the number and the sizes of the associated Jordan blocks. The material of these

two introductory sections is essential for the development of the new algorithm.

Section 3.3 provides details about thequadeig algorithm from Hammarling, Munro and

Tisseur [37]. It is based on the second companion form

C2(l ) =

 
C � I

K 0

!

� l

 
� M 0

0 � I

!

: (3.2)

The main steps of the algorithm is the parameter scaling and de�ation process that removes

certain number of zero and in�nite eigenvalues. We supplement the description of the main steps

of quadeig with the analysis of backward stability; this, in turn, will reveal important issues

that will guide the modi�cation introduced in the rest of the chapter.

In Section 3.4 we tackle another problem of scaling. While the parameter scaling, success-

fully used inquadeig, removes the balance in norms of the coef�cient matrices, it cannot remove

different scaling of the matrix entries. Such imbalance between the entries of a particular matrix

may be source of arti�cial ill-conditioning that causes to numerical algorithms that are sensitive

to scaling. We propose to modify and deploy the balancing process [9], for problems in which

the range of the elements of the coef�cient matrices is high in absolute value. We provide brief

review of the method and numerical examples to demonstrate the bene�ts of balancing.

Our main result is presented in Section 3.5. We �rst point out an interesting fact that the de-

�ation process inquadeig algorithm is actually just the �rst step of the Van Dooren's algorithm

for determining the canonical structure of the zero eigenvalue. We then present an interesting

case study example wherequadeig fails to determine all zero eigenvalues. The key problem is

that there may be more than one Jordan block of the eigenvalue zero, and the de�ation process

in quadeig detects only one. After de�ation, the QZ algorithm is unable to detect the remaining

zeros.

We develop a test for the existence of Jordan blocks in terms of the original coef�cient

matrices. In addition, we develop a full de�ation algorithm, which uses the structure of the line-

rization in the �rst two steps of the de�ation. Finally, we present examples which demonstrates

the power of the proposed method.

In Section 3.6, we develop the LU basedquadeig, that is we derive the transformation matri-

ces for de�ation process when complete LU factorization is used for rank determination (instead

of the QR factorization). Furthermore, we present an algorithm for computing the structure

of the zero eigenvalue using the rank revealing LU factorization; this is a non–orthogonal (but

numerically well founded analogon of the Van Dooren's algorithm).

In §3.7 we present examples that demonstrates the difference between the rank revealing
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3.1. Rank revealing decompositions

factorizations used in the de�ation process. Also, we illustrate the importance of the choice of

truncation strategy for rank determination in the �rst step of the preprocessing. It is clear from

these examples that the norm-wise backward error can be misleading, and we propose to use the

component-wise backward error instead.

3.1 Rank revealing decompositions

Since detecting zero or in�nite eigenvalues is based on numerical rank decision, we brie�y

discuss rank revealing decompositions (RRD, see [19]). For a generalm� n matrix A, we say

thatA = XDY� is a rank revealing decomposition if bothX andY are of full column rank and

well conditioned, andD is diagonal nonsingular (for example, the SVD and the pivoted LDU

decmposition).

=A X

D
Y�

In �nite precision computation, such a decomposition is computed only approximately and

we haveA+ dA = eX eDeY� , wheredA denotes initial uncertainty and/or the backward error that

corresponds to the numerically computedeX, eD andeY. Hence, any decision on the rank actually

applies toA+ dA.

Since the full rank matrices are open dense set inCm� n (Rm� n), it is unlikely that, in general,

the rank will be determined correctly using a �nite precision computation. Furthermore, in many

applications the matrix has been already contaminated by errors (previous computational steps,

measurement errors on the input etc.) and a �rm statement about its rank is illusory.

The structure and the size ofdA depends on a particular algorithm for computing a RRD. In

some special cases, it is possible to compute such a rank revealing decomposition in a forward

stable way so that the rank is determined exactly. For instance, Demmel [18] showed that the

pivoted LU decompositionP1CP2 = LDU of any Cauchy matrixC = C(x;y) (Ci j = 1=(xi + y j ))

can be computed so that each entry ofL, D, U is computed to high relative accuracy, that all

zeros are computed exactly and thatL andU are well conditioned.

We refer to [19], [18], [33] for a more in depth discussion and de�nition of a numerical rank.

3.1.1 Singular Value Decomposition (SVD)

The ultimate rank revealing decomposition is the singular value decomposition (SVD), in

particular because it provides not only the information on the rank, but also exact distances to

matrices of lower ranks.
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Chapter 3. Complete solution of the QEP

Theorem 3.1. (Eckart-Young [29], Mirsky [52]) Let the SVD of A2 Cm� n be

A = USV � ; S = diag(s i)
min(m;n)
i= 1 ; s1 � � � � � smin(m;n) � 0:

For k 2 f 1; : : : ; rank(A)g, de�neUk = U(:;1 : k), Sk = S(1 : k;1 : k), Vk = V(:;1 : k), andAk =

UkSkV �
k . The optimal rank k approximations ink � k2 and the Frobenius normk � kF are

min
rank(N)� k

kA� Nk2 = kA� Akk2 = sk+ 1; min
rank(N)� k

kA� NkF = kA� AkkF =

vu
u
t

min(n;m)

å
i= k+ 1

s 2
i :

The above theorem allows us to say something about the ranks of the matrices in the vicinity

of A, and to estimate what change is needed to lower the rank. In a framework of numerical

computation with noisy data, this kind of information is more proper than simply claiming the

rank to ber.

State of the art packages for matrix computation such as LAPACK [2] provide several su-

broutines for computing the SVD:

• xGESVD, which implements the zero shift QR method [20] on the bidiagonal matrix.

• xGESDD, which implements the divide and conquer scheme on the bidiagonal matrix [35].

• xGESVJ, xGEJSVare the implementations of the Jacobi SVD, [25], [26].

In some cases we resort to less expensive tools, that usually perform well – the pivoted QR

factorization and LU decomposition.

3.1.2 QR factorization with column and complete pivoting

QR factorization with column pivoting is a tool of trade in many applications, in particular

when the numerical rank of a matrix plays an important role. Particularly successful is the

Businger–Golub [12] pivot strategy which, forA 2 Cm� n, computes a permutation matrixP, a

unitaryQ and an min(m;n) upper triangular (trapezoidal ifm< n) matrixR such that

AP= Q

 
R

0

!

; where jRii j �

vu
u
t

j

å
k= i

jRk jj2; for all 1 � i � j � n: (3.3)

Here, for the sake of brevity, we consider only the casem � n. If m < n, thenR is m� n

upper trapezoidal and the zero block in (3.3) is void. IfrA = rank(A), thenÕrA
i= 1Rii 6= 0 and

R(rA + 1 : n; rA + 1 : n) = 0. In general, ifk 2 f 1; : : : ;ng, and if we introduce the block partition

R=

 
R[11] R[12]

0 R[22]

!

; R[11] 2 Ck� k; (3.4)
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3.1. Rank revealing decompositions

then matrix

 
R[11] R[12]

0 0

!

can be interpreted as upper triangular matrix in QR decomposition

of singular matrixA+ DA, i.e.

(A+ DA)P � (A� Q

 
0 0

0 R[22]

!

PT)P = Q

 
R[11] R[12]

0 0

!

; DA � � Q

 
0 0

0 R[22]

!

PT : (3.5)

Hence, ifk is such thatR[11] is of full rank, thenA+ DA is of rankk and

kDAkF = kR[22]kF �
p

n� kjRk+ 1;k+ 1j:

Hence, ifg > 0 is a given threshold, and if we can �nd an indexk (1 � k < n) such that

p
n� kjRk+ 1;k+ 1j=kAkF � g; (3.6)

thenA is g-close to the rankk matrixA+ DA, whose pivoted QR factorization (3.5) is obtained

from (3.3) by setting in the partition (3.4) the blockR[22] to zero. Of course, we would take the

smallest possiblek that satis�es (3.6).

The essence of rank revealing capability of the factorization is in the fact that such arA will

very likely be visible on the diagonal ofR if A is close to a rankrA matrix. This is due to the fact

that thejRii j's mimic the distribution of the singular values ofA, and to the fact that the SVD

gives the exact distances to the lower rank approximations toA (see Theorem 3.1).

Example 3.1. To illustrate this discussion, we generate200� 200matrix A asA = XYT + E,

whereX andY are200� 100pseudo-random matrices generated in Matlab using the function

randn() , andE is a pseudo-random matrix with entries bounded by10� 7. In Figure 3.1, we

display the singular values ofA (as computed by the functionsvd() ) and the absolute values of

the diagonal entries ofR, which is computed using the Businger-Golub pivoting.

0 20 40 60 80 100 120 140 160 180 200
10-10

10-8

10-6

10-4

10-2

100

102

104
QRCP reveals the trend of the singular values

svd(A)
abs(diag(R))

Figure 3.1: Comparison of the absolute values of the diagonal entries ofR from (3.3) and the
singular values ofA. Note that the QR factorization correctly detects thatA is O(10� 7) close to
a matrix of rank 100.
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Remark 3.1. The rank–k approximationA+ DA de�ned in (3.5) in general does not share the

optimality property of the matrixAk from Theorem 3.1, but it has one distinctive feature: it

always matchesA exactly at the selectedk columns, whileAk in general does not match any part

of A.

An ef�cient and numerically reliable implementation of (3.3) is available e.g. in LAPACK

[2] in the functionxGEQP3, which is also under the hood of the Matlab's functionqr ; for the

numerical and software details we refer to [23].

Computation of the QR factorization in �nite precision arithmetic is backward stable [41]:

for the computed factorseP, eQ, eR, there exists a backward errordA and a unitary matrixbQ such

that

(A+ dA) eP = bQ

 
eR

0

!

; kdAkF � e1kAkF ; k eQ� bQkF � e2: (3.7)

In fact, the backward stability can be stated in a stronger form – the backward error in each

column is small relative to its norm,

kdA(:; i)k2 � e3kA(:; i)k2; i = 1; : : : ;n: (3.8)

This is an important feature if some columns ofA are, by its nature, much smaller than the largest

ones (different weighting factors, different physical units); (3.8) assures that the computed

factorization contains the information carried by small columns ofA. While (3.7, 3.8) hold

independent of pivoting, pivoting is important for the accuracy of the computed factorization,

and for the rank revealing. The error boundsej are a moderate functions of the matrix dimensions

times the machine roundoff unitu.

If, for a suitable partition ofeR, analogous to (3.4), we can determinek such thateR[22] can be

chopped off, we have

(A+ dA+ DA) eP = bQ

0

B
@

eR[11]
eR[12]

0 0

0 0

1

C
A ; kdAkF � e1kAkF ; k eQ� bQkF � e2; (3.9)

where

DA � � bQ

0

B
@

0 0

0 eR[22]

0 0

1

C
A ePT : (3.10)

Note that(DAeP)( :;1 : k) = 0, so that the overall backward error of the computation of the factori-

zation and truncation ofeR[22] in the most important columns (as determined by pivoting) remains

as in (3.8). Notice that in (3.9) we have additionaldA from computation of QR decomposition

in comparison with (3.5).
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3.1. Rank revealing decompositions

Complete pivoting. In some applications (e.g. weighted least squares) the rows of the data

matrix may vary over several orders of magnitude, and it is desirable to have backward error

that can be bounded row-wise analogously to (3.8). A pioneering work is done by Powell and

Reid [58], who introduced QR factorization with complete pivoting. More precisely, in aj-th

step, before deploying the Householder re�ector to annihilate below-diagonal entries in thej-th

column, row swapping is used to bring the absolutely largest entry to the diagonal position:

0

B
B
B
B
B
B
@

� � � � �

� � � �

� � �

~ � �

� � �

1

C
C
C
C
C
C
A

As any pivoting, this precludes ef�cient blocking and using BLAS 3 level primitives.

Björck [8] noted that the dynamic complete pivoting can be replaced with an initial sorting

of the rows ofA to obtain them in monotonically decreasing order with respect to the`¥ norm.

If Pr is the corresponding row permutation matrix, and if we setA := PrA, then

kA(1; :)k¥ � k A(2; :)k¥ � : : : � k A(m; :)k¥ ; (3.11)

and we proceed with the column pivoted factorization (3.3). An error analysis of this scheme

and Householder re�ector based QR factorization is given by Cox and Higham [15].

max
i= 1:m

kdA(i; :)k¥

kA(i; :)k¥
� e4 max

i= 1:m

a i

kA(i; :)k¥
; where a i = max

j ;k
j eA(k)

i j j; (3.12)

and eA(k) is thekth computed (in �nite precision arithmetic) intermediate matrix in the House-

holder QR factorization. As a result of initial row ordering and the column pivoting, [15] shows

that

a i �

( p
m� i + 1(1+

p
2) i� 1kA(i; :)k¥ ; i � n

(1+
p

2)n� 1kA(i; :)k¥ ; i > n
: (3.13)

It is worth mentioning that the factor(1+
p

2)n� 1 is almost never experienced in practice.

An advantage of replacing the dynamic complete pivoting of Powell and Reid with the initial

pre-sorting (3.11) followed by column pivoted QRF (3.3) is more ef�cient software implemen-

tation.

Remark 3.2. If we write the completely pivoted factorization as

PrAPc = Q

 
R

0

!

; then APc = ( PT
r Q)

 
R

0

!

is the column pivoted QR factorization (sincePr is orthogonal) and the row pivoting brings
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nothing new to the rank revealing property that is encoded in the triangular factor (this is because

of the essential uniqueness of the factorization). However it makes difference in the backward

stability because of (3.12) and (3.13).

Strong rank revealing pivoting. In some rare cases the column pivoting can miss small

singular value ofA, i.e. the structure ofRmay not reveal thatA is close to rank de�ciency. The

most well known example is the Kahan matrix

K(n;c;s) =

0

B
B
B
B
B
B
B
B
B
@

1 0 0 0 0 0

0 s 0 0 0 0

0 0 s2 0 0 0

0 0 0 s3 0 0

0 0 0 0
... 0

0 0 0 0 0 sn� 1

1

C
C
C
C
C
C
C
C
C
A

0

B
B
B
B
B
B
B
B
B
@

1 � c � c � c � c � c

0 1 � c � c � c � c

0 0 1 � c � c � c

0 0 0 1 � c � c

0 0 0 0
... � c

0 0 0 0 0 1

1

C
C
C
C
C
C
C
C
C
A

; c2 + s2 = 1;

which, forc approaching one, has one small singular value and in the factorization (3.3),jRnnj

overestimatessmin(K(n;c;s)) by the factor 2n� 1; see e.g. [40, §6.2], [74].

In the strong rank revealing decomposition, the task is to �nd the permutationP so that the

gap (i.e. sharp drop) in the singular values ofA is revealed by the gap between the singular

values of the diagonal blocksR[11] andR[22] in the partition (3.4); the partition parameterr is

also determined in the process. The key idea is, for givenr, to iteratively reshuf�e the columns

(thus updating the pivoting) with the goal to increase the singular values ofR[11] as much as

possible, and, at the same time, to decrease the singular values ofR[22]. The error factor between

the singular values ofA and the diagonal blocks ofR is expected to be a moderate function of

the dimensionsn andr.

In the strong rank revealing pivoting in [36, Algorithms 4 and 5], an additional parameter

h > 1 balances the trade-off between the sharpness of the estimate and the computational cost.

The algorithm guarantees the following enclosures of the singular values

s j (A)
p

1+ h 2r(n� r)
� s j (R[11]) � s j (A); 1 � j � r

s r+ j (A) � s j (R[22]) �
q

1+ h 2r(n� r) s r+ j (A); 1 � j � n� r;

at the cost ofO
�
(m+ nlogh n)n2

�
arithmetic operations [36, Section 4.4].

3.1.3 The complete orthogonal factorization (URV)

Suppose that in the QR factorization (3.3), the matrixA is of rankk < n, so that in the block

partition (3.4)R[22] = 0. In many instances, it is convenient to compress the trapezoidal matrix
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3.1. Rank revealing decompositions

(R[11] R[12]) to triangular form by an additional LQ factorization.

This LQ is equivalent to computing the QR factorization

 
R�

[11]

R�
[12]

!

= Z�
R

 
T �

[11]

0

!

;

whereT11 2 Ck� k is lower triangular and nonsingular. By a composition of these two steps we

get the so called complete orthogonal decomposition ofA

A = Q

 
T[11] 0

0 0

!

Z; whereZ = ZRPT . (3.14)

The above described process for computing the complete orthogonal decomposition can be

summarized in Algorithm 3.1.1.

Algorithm 3.1.1 Complete orthogonal decomposition ofA

INPUT: A 2 Cm� n

OUTPUT: Q, T[11], Z, so thatA = Q
�

T[11] 0
0 0

�
Z�

1: Optional:Compute permutationP2 such thatkeT
i P2Ak¥ � k eT

i+ 1P2Ak¥ , i = 1; : : : ;n� 1.

2: Compute the QR factorization with column pivoting(PT
2 A)P = Q

�
R
0

�
.

3: Compute the QR factorization with complete pivoting of the truncated matrix

R� P1 =

 
T �

[11]
T �

[12]

!

P1 = PT
2 ZR

�
T �

[11]
0

�
:

4: Z = PPT
2 ZR.

5: if P2 6= I then
6: Q = PT

2 Q
7: end if

8: Q = Q
�

P1 0
0 I

�

Backward error analysis. In the QR factorization, the matrixA is multiplied from the left by

a sequence of unitary transformations. Hence, there is no mixing of the columns; we can analyse

the process by following the changes of each column separately; that is why the column-wise

backward error bound (3.8) is natural and straightforward to derive. The transformations from

the right in the pivoted QR factorization are the error free column interchanges.

On the other hand, (3.14) involves nontrivial two–sided transformations ofA, and more

careful implementation and error analysis are needed to obtain backward stability similar to
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the one described in §3.1.2. The following theorem provides a backward error bound for the

Algorithm 3.1.1:

Theorem 3.2.Let eQ, eT[11] andeZ be the computed factors of complete orthogonal decomposition

of A. Then they correspond to the exact complete orthogonal decomposition of matrix

A+ dA+ DA+ bQ

0

B
@

d eR[11] d eR[22]

0 0

0 0

1

C
A ePT = bQ

 
P1 0

0 I

!
0

B
@

eT[11] 0

0 0

0 0

1

C
A bZ� P2 ePT ;

where bQ � eQ andbZ � eZ are orthogonal (unitary) and

kdAkF � e1kAkF ; DA = � bQ

0

B
@

0 0

0 eR[22]

0 0

1

C
A ePT ; kd eR(:; i)k � e3keR(:; i)k:

Proof. For the �rst step we have the relation (3.9). SeteR=
�

eR[11]
eR[12]

�
and compute the QR

factorization ofeR� . We use the complete pivoting, and the the computed factorseZ, eT �
[11] satisfy

( eR+ d eR)� P1 = PT
2

bZ

 
eT �
[11]

0

!

; (3.15)

wherebZ is unitary,keZ� bZkF � e2 and, by (3.12, 3.13),kd eR(:; i)k � e3keR(:; i)k. Including (3.15)

in (3.9), we obtain

(A+ dA+ DA+ bQ

0

B
@

d eR[11] d eR[22]

0 0

0 0

1

C
A ePT) = bQ

 
P1 0

0 I

!
0

B
@

eT[11] 0

0 0

0 0

1

C
A bZ� P2 ePT ;

wheredA is from (3.7, 3.8),DA is as in (3.10)

Hence, thek pivotal columns ofA (as selected byeP) have, individually, small backward

errors of the type (3.8). Note that the complete pivoting in (3.15) is essential for column-wise

small backward error ineR and thus isA.

3.1.4 Rank revealing LU and Cholesky factorizations

Using Gaussian eliminations, every matrixA 2 Rn� n with all its leading principal minors

different from zero can be factored as a product of a lower triangular matrixL and an upper

triangular matrixU, that isA = LU. In every stepk of Gaussian elimination the goal is to zero
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3.1. Rank revealing decompositions

out the elements below the diagonal in thek-th column by the following elementary operations

a(k+ 1)
i j = a(k)

i j � mika(k)
k j (3.16)

= a(k)
i j �

a(k)
ik

a(k)
kk

a(k)
k j ; i = k+ 1; : : : ;n; j = k+ 1; : : : ;n; (3.17)

wherea(k)
i j are the elements of the matrixA(k) =

 
A(k)

[11] A(k)
[12]

0 A(k)
[22]

!

in thekth step. It is clear from

equations (3.16)-(3.17) that the problem occurs whena(k)
kk = 0. Also mik can be large (if the

pivot a(k)
kk is small) and this may result in loss of signi�cant digits in �nite precision arithmetics.

This is why the following pivoting strategies are introduced:

• partial pivoting. in k-th step, thek-th and ther-th rows are interchanged wherer is such

that

ja(k)
rk j = max

k� i� n
ja(k)

ik j:

The resulting LU isPA= LU, whereP is the corresponding permutation matrix.

• complete pivoting.in k-th step, thek-th and ther-th row, and thek-th and thes-th column

are interchanged, wherer andsare such that

ja(k)
rs j = max

k� i; j � n
ja(k)

i j j:

The resulting LU isPAQ= LU, whereP, Q are the corresponding permutation matrices.

Moreover, if partial pivoting is turned on, every square matrixA admits LU factorizationPA=

LU.

Let A 2 Rm� n andm� n; clearly the elimination process applies in the rectangular case as

well. It is shown in [41] that, if the Gaussian eliminations run to completion, the computed

factorseL 2 Rm� n and eU 2 Rn� n satisfy

eL eU = A+ DA; jDAj � gnjeLjj eUj; gn =
nu

1� nu
:

It is usually said that partial pivoting is good and reliable enough, so that the complete pivoting

is not needed. However, there is a whole collection of problems for which Gaussian eliminations

with partial pivoting are unstable, see e.g. [73].

The important difference between LU and QR factorization is discussed and exploited in

[22]. The difference is that the LU factorization is invariant under row and column scaling. More

precisely, assume that matrixA is permuted so thatA � QAP= LU is the LU factorization with

complete pivoting. Moreover, assume thatA can be written asA = D1ZD2, where the elements

of the diagonal matrixD1 are sorted in the increasing order by the element magnitude, andZ
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admits an accurate LU factorizationZ = LZUZ with moderatekLZk2. Then the computed matrix
eL for A has a columnwise small relative error

k(L � eL)eik2

kLeik2
� max

j> i

�
�
�
�
(D1) j j

(D1) ii

�
�
�
� k(LZ � eLZ)eik2:

In exact arithmetics, LU factorization with complete pivoting is rank revealing factorization, that

is if rank(A) = r < n we have

PAQ= LU =

 
L[11] 0

L[21] In� r

!  
U[11] U[12]

0 0

!

:

However, there are examples where LU factorization with complete pivoting fails to detect the

nearly singular matrix, that is there are no small pivots in the factorization although matrix

contains a small singular value. This matrix is of the following form

W =

0

B
B
B
B
@

1 � 1 � 1 : : : � 1

1 � 1 : : : � 1
...

...
...

1

1

C
C
C
C
A

:

Pan proved in [56] that there exists a rank revealing LU factorization, and obtained the bounds

similar to those for the strong rank revealing QR. Before we state the result, we recall the notion

of matrix volume, and the localm-maximum volume.

De�nition 3.1. Let A 2 Rm� n and s1 � s2 � : : : � s p � 0, p = min(m;n), be the singular

values of A. The volume of A is de�ned as

vol(A) = s1s2 : : :s p:

De�nition 3.2. Let A 2 Rm� n andB be a submatrix ofA formed by anyk columns (rows) ofA.

vol(B) 6= 0 is said to be a localm-maximum volume in A,m� 1 if

mvol(B) � vol(B0); (3.18)

for anyB0that is obtained by replacing one column (row) ofB by a column (row) ofA which is

not in B.

Them� 1 in (3.18) is user supplied parameter; its role is critical in a volume maximizing

iterative scheme to avoid in�nite loop that may be caused by rounding errors. Pan proposes to

choosem= 1+ u, whereu is the machine precision. Pan [56] proved that, for a matrixA2 Rm� n
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and any integer 1� k � n there exists permutation matricesGandP such that

GTAP =

 
B[11] B[12]

B[21] B[22]

!

=

 
Ik 0

Z In� k

!  
B[11] B[12]

0 U[22]

!

;

whereZ = B[21]B
� 1
[11], U[22] = B[22] � ZB[12] and

sk(A) � smin(B[11]) �
1

k(n� k)m2 + 1
sk(A);

sk+ 1(A) � k U[22]k2 �
�
k(n� k)m2 + 1

�
sk+ 1(A):

The permutationP is determined so that the volume of the �rstk columns ofAP is a local

m-maximum inA, andGis determined so that the volume of the �rstk rows,vol(B[11]), is a local

m-maximum in the �rstk columns ofAP.

Cholesky factorization. Let A be real symmetric positive de�nite, and letA = LU be the

corresponding LU factorization. Note that bothL andU are nonsingular. SinceA = AT we have

UTLT = LU =) L� 1UT
| {z }

lower triangular

= UL� T
| {z }

upper triangular

=) L� 1UT = UL� T = : D; whereD is diagonal matrix

=) U = DLT :

Hence, we can writeA= LDLT . SinceA is positive de�nite, i.e.xTAx= xTLDLTx> 0, x6= 0 we

can conclude thatD is positive de�nite, and we can writeD =
p

D
p

D. By denotingR=
p

DLT ,

we obtain Cholesky factorizationA = RTR, whereRis upper triangular matrix. If we in addition

require that the diagonal ofR is positive, the factorization is unique.

There is a similar result of backward stability for Cholesky factorization to that for LU

factorization proven in [41]. Namely, if Cholesky factorization runs to completion then the

computed factorRsatis�es

eRT eR= A+ DA; jDAj � gn+ 1j eRT jj eRj; gn+ 1 =
(n+ 1)u

1� (n+ 1)u
:

For symmetric positive de�nite matrix there is a unique Cholesky factorization. On the other

hand, ifA is only positive semide�nite, generally we do not have uniqueness. For example

 
0 0

0 1

!

=

 
0 0

cosq sinq

!  
0 cosq

0 sinq

!

:

However, we know that there exists a permutationP such thatPTAP has a unique Cholesky

decomposition
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PTAP = RTR; R=

 
R[11] R[12]

0 0

!

;

whereR[11] is r � r upper triangular with positive de�nite diagonal elements. The pivoting

strategy ensures that at each stepk

a(k)
j j = max

k� i� n
a(k)

ii ; (3.19)

and it is equivalent to complete pivoting in Gaussian elimination. In exact arithmetics, the

Cholesky factorization with pivoting (3.19) is a rank revealing decomposition.

For 1� k � r partitionA

A =

 
A[11] A[12]

AT
[12] A[22]

!

;

so thatA[11] 2 Rk� k. Denote bySk(A) = A[22] � AT
[12]A

� 1
[11]A[12] the Schur complement ofA[11]

in A, and note thatSr (A) = 0. It is proven in [41] how theSk(A) changes whenA is perturbed.

Assume for symmetricE thatkA� 1
[11]E[11]k2 < 1 holds. Then

Sk(A+ E) = Sk(A)+ E[22] � (ET
[12]W + WTE[12]) + WTE[11]W + O(kEk2

2);

whereW = A� 1
[11]A[12]. This means that the sensitivity ofSk(A) to the perturbation inA essentially

depends on the matrixW. If the pivoting strategy (3.19) is used, the following inequality holds

kA� 1
[11]A[12]k2 �

r
1
3

(n� r)(4r � 1): (3.20)

If no pivoting is used, the norm in (3.20) can be arbitrary large. Since in the practice, when the

pivoting strategy (3.19) is used,kA� 1
[11]A[12]k2 rarely exceeds10 [41] we can conclude that the

Cholesky algorithm with this pivoting is stable algorithm for the semi–de�nite matrices.

3.2 Kronecker's canonical form for general pencils

Canonical (spectral) structure of a matrix pencilA� l B is, through linearization, an extre-

mely powerful tool for the analysis of quadratic pencilsQ(l ) = l 2M + l C+ K. In particular,

since the second companion form

A� l B =

 
C � I

K 0

!

� l

 
� M 0

0 � I

!

is strong linearization, the partial multiplicities, and thus the structure of all eigenvalues (inclu-

ding in�nity), are preserved. In a numerical algorithm for the QEP, it is desirable to remove the

zero and in�nite eigenvalues as early as possible and, thus, canonical structure can be used to

72



3.2. Kronecker's canonical form for general pencils

guide such a preprocessing step.

In this section, we brie�y review the numerical algorithm by Van Dooren [21], developed

for the computation of the structure of eigenvaluel for a generalm� n pencilA� l B, i.e. the

number and the orders of the Jordan blocks forl . The �nal goal is the Kronecker's Canonical

Form, that is a factorization of the form

P(A� l B)Q = diag(Le1; : : : ;Lep;L
P
h1

; : : : ;LP
hq

; I � l N;J � l I ); (3.21)

whereP, Q are constant invertible matrices and

Lm =

0

B
B
@

l � 1
... ...

l � 1

1

C
C
A 2 Cm� (m+ 1); LP

m =

0

B
B
B
B
B
@

� 1

l
...
... � 1

l

1

C
C
C
C
C
A

2 C(m+ 1)� m:

N is nilpotent Jordan matrix, andJ is in Jordan canonical form. Here, however, we focus

our attention only on computing the structure of the eigenvalue0. Notice that for the in�nite

eigenvalue one can reverse the pencil. For an arbitrary �nite eigenvalue, a suitably shifted pencil

is used; see [21] for more details.

For the sake of completeness and later references, we brie�y describe the main steps of the

staircase reduction for the zero eigenvalue. The pencilA� l B is assumed regular (thus square,

n� n), andl = 0 is assumed to be among its eigenvalues.

1. Compute the singular value decomposition ofA:

A = UASAV �
A ; (3.22)

and lets1 = n� rank(A). (Since zero is assumed to be an eigenvalue ofA� l B, A must be

column rank de�cient.) Note thatAVA =
�

A2 0n� s1

�
, whereA2 is of full column rank

n� s1. PartitionBVA =
�

B2 B1

�
in the compatible manner. If we multiply the pencil

by VA from the right we get

(A� l B)VA =
�

A2 � l B2 � l B1

�
: (3.23)

2. Compute the singular value decomposition ofB1

B1 = UBSBV �
B : (3.24)

The rank ofB1 is s1 (full column rank) since the initial matrix pencil is assumed regular,

andU �
BB1 =

 
B1;1

0n� s1� s1

!

, detB1;1 6= 0. Multiply the pencil (3.23) byU �
B from the left to
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get

U �
B(A� l B)VA =

 
A2;1 � l B2;1 � l B1;1

A2;2 � l B2;2 0n� s1� s1

!

: (3.25)

3. Let PB be the permutation matrix that swaps the row blocks in the above partition. Thus,

we have unitary matricesP1 = PBU �
B, Q1 = VA so that

P1(A� l B)Q1 =

 
A2;2 � l B2;2 0n� s1� s1

A2;1 � l B2;1 � l B1;1

!

; (3.26)

where  
A2;2

A2;1

!

= P1A2 2 Cn� (n� s1)

is of full column rank.

This concludes the �rst step of the algorithm. Note that

j detP1det(A� l B) detQ1j = j det(A� l B)j = jl js1j j detB1;1j
| {z }

6= 0

j det(A2;2 � l B2;2)j;

which clearly exposess1 copies of zero in the spectrum, and reduces the problem to the pencil

A2;2 � l B2;2 of lower dimensionn2 = n � s1. Clearly, if A22 is nonsingular, zero has been

exhausted from the spectrum ofA� l B. Otherwise, in the next step, we repeat the described

procedure on then2 � n2 pencilA2;2 � l B2;2 to obtain unitary matricesbP2, bQ2 so that

P2P1(A� l B)Q1Q2 =

0

B
@

A3;3 � l B3;3 0n3� s2 0n3� s1

A3;2 � l B3;2 � l B2;2 0s2� s1

A3;1 � l B3;1 A2;1 � l B2;1 � l B1;1

1

C
A ;

whereP2 = diag( bP2; Is1);Q2 = diag( bQ2; Is1), ands2 = n2 � rank(A22), n3 = n2 � s2. As in the

�rst step, B2;2 is s2 � s2 nonsingular, and
�

A3;3
A3;2

�
is of full column rank. Furthermore, since

�
0n3+ s2;s2

A2;1

�
is a column block in the full column rank matrix,A2;1 must have full column rank as

well.

This procedure is repeated until in an`th step we obtain

P(A� l B)Q =

0

B
B
B
B
B
B
B
B
B
B
@

A`+ 1;`+ 1 � l B`+ 1;`+ 1 0n`+ 1� s̀ : : : 0n`+ 1� s2 0n`+ 1� s1

A`+ 1;` � l B`+ 1;` � l B`;` : : : 0s̀ � s2 0s̀ � s1

...
...

...
...

...

A`+ 1;2 � l B`+ 1;2 A`;2 � l B`;2
... � l B2;2 0s2;s1

A`+ 1;1 � l B`+ 1;1 A`;1 � l B`;1
... A2;1 � l B2;1 � l B1;1

1

C
C
C
C
C
C
C
C
C
C
A

; (3.27)
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with nonsingularA`+ 1;`+ 1. Then, by design,Bi;i has full ranksi for i = 1; : : : ; `, andAi;i� 1 has

full column ranksi for i = 2; : : : ; `.

This procedure is formally described in Algorithm 3.2.1.

Algorithm 3.2.1 De�ation of eigenvalue 0 using SVD [21]

1: j = 1; A1;1 = A; B1;1 = B; n1 = n;
2: Compute the SVD:A1;1 = UASAV �

A
3: s1 = n1 � rank(A1;1)
4: while sj > 0 do
5: Partition matrices:

�
A j+ 1 0

�
= A j ; jVA,

�
B j+ 1 B j

�
= B j ; jVA

6: Update and partition blocks in rowj
7: for i = 1 : j � 1 do
8:

�
Ai; j+ 1 Ai; j

�
= Ai; jVA;

�
Bi; j+ 1 Bi; j

�
= Bi; jVA;

9: end for
10: Compute the SVD ofsj � n j matrixB j : B j = UBSBV �

B
11: CompressB j to full column rank, permute and partition:

12:

�
A j+ 1; j+ 1
A j ; j+ 1

�
= PBU �

BA j+ 1;
�

B j+ 1; j+ 1
B j ; j+ 1

�
= PBU �

BB j+ 1;

13:

�
0

B j ; j

�
= PBU �

BB j

14: n j+ 1 = n j � sj , j = j + 1
15: Compute the SVD:A j ; j = UASAV �

A
16: sj = n j � rank(A j ; j )
17: end while

It has been proven that this algorithm completely determines the structure of the zero eigen-

value of the matrix pencilA� l B.

Proposition 3.1([21]). The indiciessi given by Algorithm 3.2.1 completely determine the struc-

ture at0 of the pencil A� l B, i.e. A� l B has sj � sj+ 1 elementary divisorsl j , j = 1; : : : ; `.

Finally, we can conclude that this algorithm also determines the structure of zero eigenvalue

for the quadratic eigenvalue problem via a (strong) linearization.

Theorem 3.3.Algorithm 3.2.1 applied to pencil (3.2) completely determines the structure of the

eigenvalue zero for the quadratic eigenvalue problem Q(l ) = ( l 2M + l C+ K)x = 0.

Proof. Every regular quadratic matrix polynomialQ(l ) can be represented in the Smith form,

that is

Q(l ) = E(l )D(l )F(l ); (3.28)

whereD(l ) = diag(d1(l ); : : : ;dn(l )) is a diagonal polynomial matrix with monic scalar polyno-

mialsdi(l ) such thatdi(l ) is divisible bydi� 1(l ), andE(l );F(l ) aren� n matrix polynomials

with constant nonzero determinants.

The elementsd1(l ); : : : ;dr (l ) in the Smith form are called invariant polynomials and they are
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uniquely determined byQ(l ). Recall that, for an eigenvaluel 0 of Q(l ), we can represent the

invariant polynomials as

di(l ) = ( l � l 0)a i pi(l ); a i � 0; pi(l 0) 6= 0; (3.29)

where the numbers(a1;a2; : : : ;an) represent partial multiplicities of eigenvaluel 0. The ele-

ments(l � l 0)a i are the elementary divisors for the eigenvaluel 0, anda i represents the dimen-

sion of theith Jordan block for the eigenvaluel 0.

Now, since the second companion form is a strong linearization, this means that the partial

multiplicities of all eigenvalues ofQ(l ), including in�nity, are preserved. Proposition 3.1 states

that h indicesf sig computed by the Algorithm 3.2.1 completely determine the structure of the

eigenvalue zero for the given pencil. In our case the pencil is the second companion form

the linearization, and thus they completely determine the structure of the eigenvalue zero for

Q(l ).

3.3 The algorithm quadeig

As we discussed in the introduction of this chapter, zero and in�nite eigenvalues are dif�cult

to detect in �nite precision arithmetic, and their presence may impair convergence of an algo-

rithm for solving the linearized problem. Since those eigenvalues are related to the null spaces

of M andK, and since non-singularity is a generic matrix property (holds on the open dense set),

the distinction �nite–in�nite, or zero–nonzero, is numerically delicate issue. On the other hand,

if we could remove at least some of them in a numerically safe way, that would save the QZ

algorithm the trouble of dealing with zeros and in�nities in the spectrum. Besides, removing

those eigenvalues early in a computational scheme facilitates ef�cient iterations with reduced

problem's dimension.

This motivated [37] to develop a new de�ation scheme that removesn� rM in�nite and

n � rK zero eigenvalues, whererM = rankM and rK = rankK. The remaining generalized

linear eigenvalue problem is of the dimensionrM + rK; it may still have some in�nite and zero

eigenvalues, and their detection then depends on the performance of the QZ algorithm. The

computation is done in the framework of the linearization (3.2).

In this section, we analyzequadeig in detail. For the sake of the completeness, we �rst give

a detailed algebraic description of the reduction inquadeig. In addition, we provide a backward

error analysis of the de�ation process.

3.3.1 Parameter scaling

The main feature ofquadeig is the introduction of parameter scaling in order to equilibrate

the backward errors for the original problem and the corresponding second companion form
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linearizationC2 as described in Subsection 2.3.2, i.e. we consider the scaled quadratic eigenvalue

problem

l = gm; eQ(m) = Q(l )d = m2(g2dM)+ m(gdC)+ ( dK);

whereg andd are de�ned so that the norms of the coef�cient matricesM, C andK are approxi-

mately equal and close to one.

In [37], two types of scaling are used:

Fan, Lin and Van Dooren scaling. g andd are de�ned as the solution of the minimization

problem

min
g;d

maxfk Kk2 � 1;kCk2 � 1;kMk2 � 1g; (3.30)

that is,

g =

s
kKk2

kMk2
; d =

2
kKk2 + kCk2g

: (3.31)

Tropical scaling. g andd are de�ned as tropical roots of max-times scalar quadratic polyno-

mial

qtrop(x) = max(kMk2x2;kCk2x;kKk2); x 2 [0;¥ i : (3.32)

De�ne t Q = kCk2p
kMk2kKk2

. If t Q � 1, (3.32) has the double root

g+ = g� =

s
kKk2

kMk2
;

and if t Q > 1 there are two distinct roots

g+ =
kCk2

kMk2
> g� =

kKk2

kCk2
:

Hence, whent Q > 1, scaling with the parameters

g = g+ ; d = ( qtrop(g+ )) � 1

is used to compute the eigenvalues outside of the unit circle, and scaling using the parameters

g = g� ; d = ( qtrop(g� )) � 1

is used to compute those eigenvalues inside the unit circle. With this choice, the denominator in

the bound

1
p

2
�

hQ(z1;a ;b)
hC2(z;a ;b)

� 23=2 max(1;max(kMk2;kCk2;kKk2))
ja j2kMk2 + ja jjb jkCk2 + jb jkKk2

kzk2

kz1k2
(3.33)
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is O(1).

Example 3.2. Recall the Example 2.1. If we use the Fan, Lin and Van Dooren scaling on this

problem, the maximum backward error for QEP is1.793925004288704e-016. We added the

backward errors for the eigenpairs obtained from the scaled problemeQ(l ) to Figure 2.2 for

better illustration of the importance of parameter scaling.
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-20
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10
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´ Q (z1; ¸ )

´ C2 (z; ¸ )

´ ~Q (z1; ¸ )

Figure 3.2: Backward errors for the linearizationC2, the original problem quadratic problem
and the scaled pencileQ(l ), for the test problempower_plant .

3.3.2 De�ation process inquadeig

Before introducing the de�ation procedure, we analyze the backward error induced by trun-

cation, which will be used in the analysis of the backward error for the de�ation process.

Backward error in rank revealing QR factorizations of M and K

The procedure starts with the pivoted (rank revealing) factorizations

(Pr;MM)PM = QMRM; RM =

 � � � � �
0 � � � �
0 0 � � �
0 0 0 0 0
0 0 0 0 0

!

=

 
bRM

0n� rM ;n

!

; (3.34)

(Pr;KK)PK = QKRK; RK =

 � � � � �
0 � � � �
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

!

=

 
bRK

0n� rK ;n

!

: (3.35)

The initial (optional) row sorting before the column pivoted QR factorization is indicated by the

matricesPr;M, Pr;K. Since the sorting is in thè¥ norm, it is exact even in �nite precision. In the

absence of row sorting bothPr;M, Pr;K are implicitly set to the identityIn.

In �nite precision (see §3.1.2) the computed matriceseQM, eRM, ePM satisfy, independent of
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the choice of the permutation matrixPr;M,

Pr;M(M + dM) ePM = bQM eRM; (3.36)

where bQM = eQM + d eQM is exactly unitary with

kd eQMkF � k bQM � eQMkF � e2; and kdM(:; i)k2 � e3kM(:; i)k2; i = 1; : : : ;n;

wheree2;e3 are as in (3.7), (3.8).

If Pr;M is the row sorting permutation, then, in addition,

kdM(i; :)k2 � e�
qr kM(i; :)k2; i = 1; : : : ;n;

wheree�
qr is de�ned using (3.12) and (3.13) in §3.1.2. SincePr;M is unitary, we can absorb it

into eQM and bQM and rede�neeQM := PT
r;M

eQM, bQM := PT
r;M

bQM and write, instead of (3.36),

(M + dM) ePM = bQM eRM: (3.37)

Analogous statements (3.36–3.37) hold for the factorization (3.35).

Backward error induced by the truncation

However, if we truncate the triangular factor in an attempt to infer the numerical rank, we

must push the truncated part into the backward error, as in (3.5). This changes the backward

error structure, and the new error bounds depend on the truncation strategy and the threshold.

Assume in (3.37) that we can partitioneRM as

eRM =

 
( eRM)[11] ( eRM)[12]

0n� k;k ( eRM)[22]

!

; where the(n� k) � (n� k) block ( eRM)[22] "is small":

Then we can write a backward perturbed rank revealing factorization

(M + dM + bQM

 
0 0

0 � ( eRM)[22]

!

ePT
M

| {z }
DM

) ePM = bQM

 
( eRM)[11] ( eRM)[12]

0n� k;k 0n� k;n� k

!

: (3.38)

Obviously, DM is zero at thek "most linearly independent" columns ofM selected by the

pivoting, (DM) ePM(:;1 : k) = 0n;k. At the remainingn� k columns we have

k(DM) ePM(:;k+ j)k2 = k( eRM)[22](:; j)k2 � j (( eRM)[22])k+ 1;k+ 1j:

Consider the following choices ofk, for a given threshold parametert :
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1. k is the �rst index for whichj(( eRM)[22])k+ 1;k+ 1j � t j(( eRM)[22])k;kj. In that case

max
j= 1:n� k

k(DM) ePM(:;k+ j)k2 � t j(( eRM)[22])k;kj � t min
i= 1:k

k(M + dM) ePM(:; i)k2; (3.39)

2. k is the �rst index for whichj(( eRM)[22])k+ 1;k+ 1j � t � computed(kMkF ). In that case

max
j= 1:n� k

k(DM) ePM(:;k+ j)k2 � t � computed(kMkF );

3. k is the �rst index for which

j(( eRM)[22])k+ 1;k+ 1j � t � computed(maxfk MkF ;kCkF ;kKkFg):

In that case

max
j= 1:n� k

k(DM) ePM(:;k+ j)k2 � t � computed(maxfk MkF ;kCkF ;kKkFg):

This strategy (3.) is used inquadeig with t = nu. Here it is necessary to assume that

the coef�cient matrices have been scaled so that their norms are nearly equal. Otherwise,

such a truncation strategy may discard a block ineRM because it is small as compared e.g.

to kCkF or kKkF .

Remark 3.3. It is important to emphasize that inquadeig, scaling the matrices is optional,

and if the (also optional) de�ation procedure is enabled, the truncation strategy opens

a possibility for catastrophic error (severe underestimate of the numerical ranks) if the

matrices are not scaled and if their norms differ by orders of magnitude. A user may not

be aware of this situation, which can cause large errors.

We now go to the details of the de�ation procedure, whose decision tree depends on the

numerical ranks of the key matricesM andK.

The case of nonsingularM or nonsingular K

This case can be considered simple; it allows avoiding in�nite eigenvalues by simply rever-

sing the pencil.

Both matrices nonsingular. In the simplest caserank(M) = rank(K) = n, the linearized pencil

is transformed by the following equivalence transformation:

 
Q�

M 0

0 In

! ( 
C � In

K 0

!

� l

 
� M 0

0 � In

!)  
PM 0

0 In

!
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=

0

@
Q�

MCPM � Q�
M

KPM 0

1

A � l

0

@
� Q�

MMPM 0

0 � In

1

A

=

0

@
Q�

MCPM � Q�
M

KPM 0

1

A � l

0

@
� RM 0

0 � In

1

A � A� l B: (3.40)

Proposition 3.2. Let eA� l eB the computed linearization (3.40). Then it corresponds to an exact

linearization of a quadratic pencill 2(M + dM)+ l (C+ dC)+ K, where, for all i= 1; : : : ;n,

kdC(:; i)k2 � eCkC(:; i)k2; kdM(:; i)k2 � eqrkM(:; i)k2:

Further, if the row sorting is used in the QR factorization of M then, in addition,

kdM(i; :)k2 � e�
qr kM(i; :)k2

Proof: The proof can be read off as the special case of the proof of the Proposition 3.3 below.

�

Only one of M and K nonsingular. On the other hand, if e.g.rank(K) < rank(M) = n, then

the transformation reads
 

Q�
M 0

0 Q�
K

! ( 
C � In

K 0

!

� l

 
� M 0

0 � In

!)  
PM 0

0 QK

!

=

0

@
Q�

MCPM � Q�
MQK

Q�
KKPM 0

1

A � l

0

@
� Q�

MMPM 0

0 � In

1

A

=

0

B
B
@

Q�
MCPM � Q�

MQK

bRKPT
KPM

0n� rK ;n
0

1

C
C
A � l

0

@
� RM 0

0 � In

1

A

�

0

B
B
@

X11 X12 X13

X21

0n� rK ;n

0rK ;rK 0rK ;n� rK

0n� rK ;rK 0

1

C
C
A � l

0

B
B
@

� RM 0

0
� I rK 0

0 � In� rK

1

C
C
A : (3.41)

The reduced(n+ rK) � (n+ rK) pencil is

A� l B =

0

@
X11 X12

X21 0rK ;rK

1

A � l

0

@
� RM 0

0 � I rK

1

A : (3.42)

Consider now the backward stability of the reduction. We assume that the rank truncation is of

type 1. (see §3.3.2) with the corresponding backward error as in (3.39), witht = nu.

81



Chapter 3. Complete solution of the QEP

Proposition 3.3. Let

eA� l eB =

0

@
eX11 eX12

eX21 0erK ;erK

1

A � l

0

@
� eRM 0

0 � IerK

1

A (3.43)

be the computed linearization (3.42). Then it corresponds to exact reduced linearization of a

quadratic pencill 2(M + dM)+ l (C+ dC)+ ( K + dK + DK + D0K), where, for alli = 1; : : : ;n,

kdM(:; i)k2 � eqrkM(:; i)k2; kdC(:; i)k2 � eCkC(:; i)k2; kdK(:; i)k2 � eqrkK(:; i)k2; (3.44)

kD0K(:; i)k2 � hKkK(:; i)k2; (3.45)

and the truncation error is

max
j= 1:n� k

k(DK) ePK(:;k+ j)k2 � t min
i= 1:k

k(K + dK) ePK(:; i)k2; (DK) ePK(:;1 : k) = 0n;k

Further, if the row sorting is used in the QR factorization of M then, in addition,

kdM(i; :)k2 � e�
qr kM(i; :)k2: (3.46)

Proof:

(i) Using eRM in the computed pencil (3.43) can be justi�ed by introducingdM as in (3.36–

3.37). This will be the only backward error inM and it can be always estimated as in (3.44), and

in the case of complete pivoting as in (3.46).

(ii) It holds that eX11 = computed( eQ�
MCePM) = bQ�

M(C+ dC) ePM. To estimatedC, we start

with the fact that

computed( eQ�
MC) = eQ�

MC+ G; jGj � e� j eQ�
M jjCj; 0 � e� � 2nu:

Since eQM = ( I + E) bQM, kEk2 � eqr, we have

computed( eQ�
MC) = bQ�

M(I + E� )C+ G = bQ�
M(C+ E� C+ bQMG) � bQ�

M(C+ dC):

SincejGj � e� j eQ�
M jjCj, it follows that

kGk2 � k GkF � e� k eQ�
KkFkCkF � e� nk(I + E) bQKk2kCk2 � e� n(1+ kEk2)kCk2:

Using this, we get column-wise estimateskdC(:; i)k2 � (kE� k2 + e� n(1+ kE� k2))kC(:; i)k2,

and (3.44) follows witheC = ( eqr + e� n(1+ eqr)) . Note that the column permutation byePM is

error free.
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(iii) In the same way, usingeQK = ( I + F) bQK

�
eX12 eX13

�
= computed( eQ�

M
eQK) = bQ�

M(I + E� ) eQK + H (herejHj � e� j eQ�
M jj eQK j)

= bQ�
M( bQK + F bQK + E� eQK + bQMH) � bQ�

M( bQK + d bQK);

with kd bQKk2 � eqr + eqr(1+ eqr) + ne� (1+ eqr)2.

(iv) Note that in this moment the backward error inK contains both the �oating point error

dK and the truncation errorDK analogous to (3.38), i.e.(K + dK + DK) ePK = bQK eRK . Now, the

d bQK that helped us justify the error ineX12, eX13 must be pushed back into the initial data. If we

add it to bQK, then we can write

( bQK + d bQK) eRK = ( K + dK + DK + D0K) ePK; where D0K = d bQK eRK ePT
K: (3.47)

This is not the QR factorization asbQK + d bQK need not be unitary. However, it will be of full

rank and (3.47) is a rank revealing decomposition. If we setDSK = dK + DK + D0K, then we

can represent the computed linearization as

�
bQ�

M 0

0 ( bQK+ d bQK)� 1

� ( 
C+ dC � In

K + DSK 0

!

� l

 
� M � dM 0

0 � In

!)
�

ePM 0
0 bQK+ d bQK

�

=

0

B
B
@

eX11 eX12 eX13

eX21

0n� erK ;n

0erK ;erK 0erK ;n� erK

0n� erK ;erK 0

1

C
C
A � l

0

B
B
@

� eRM 0

0
� IerK 0

0 � In� erK

1

C
C
A :

�

If rank(M) < n and rank(K) = n, we proceed with the linearization of the reversed pencil.

Rank de�cient case: bothM and K rank de�cient

We now consider the case whenrK � rM < n or rM < rK < n. In this case,quadeig deploys

the following transformation of the linear pencil (optionally, depending onrK=rM we may reverse

the pencil):

 
Q�

M 0

0 Q�
K

! ( 
C � In

K 0

!

� l

 
� M 0

0 � In

!)  
In 0

0 QK

!

=

0

B
B
@

Q�
MC � Q�

MQK

bRKPT
K 0rK ;n

0n� rk;n 0n� rK ;n

1

C
C
A � l

0

B
B
@

� bRMPT
M 0rM ;n

0n� rM ;n 0n� rM ;n

0n;n � In

1

C
C
A
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�

0

B
B
B
B
@

(Q�
MC)11 (Q�

MC)12

(Q�
MC)21 (Q�

MC)22
� Q�

MQK

( bRKPT
K)11 ( bRKPT

K)12

0 0

0 0

0 0

1

C
C
C
C
A

� l

0

B
B
B
B
@

� ( bRMPT
M)11 � ( bRMPT

M)12

0 0

0 0

0 0

0 0

0 0

� I 0

0 � I

1

C
C
C
C
A

�

0

B
B
B
B
@

X11 X12

X21 X22

X13 X14

X23 X24

X31 X32

0 0

0 0

0 0

1

C
C
C
C
A

� l

0

B
B
B
B
@

Y11 Y12

0n� rM ;rM 0n� rM ;n� rM

0rM ;rK 0rM ;n� rK

0n� rM ;rK 0n� rM ;n� rK

0rK ;rM 0rK ;n� rM

0n� rK ;rM 0n� rK ;n� rM

� I rK 0rK ;n� rK

0n� rK ;rK � In� rK

1

C
C
C
C
A

� X � l Y: (3.48)

Note the difference in the transformation from the right: instead ofPM, we now haveIn, so that

Q�
MM = RMPT

M is not upper triangular. Preserving the triangular form in this moment does not

seem important because it is likely that it will be destroyed in subsequent steps.

In the next step,quadeig computes the complete orthogonal decomposition (i.e. URV

decomposition, using unitary matricesQX andZX)

� rM n� rM rK

n� rM X21 X22 X23

�
= QX

�
RX 0n� rM ;rM+ rK

�
ZX; RX 2 C(n� rM)� (n� rM): (3.49)

It will be convenient to write this decomposition as

Q�
X

�
X21 X22 X23

�
Z�

X

 
0 In� rM

I rM+ rK 0

!

=
�

0n� rM ;rM+ rK RX

�
:

Then (3.48) can be further transformed as follows:

0

B
B
B
B
@

I rM 0 0 0

0 0 I rK 0

0 Q�
X 0 0

0 0 0 In� rK

1

C
C
C
C
A

0

B
B
B
B
B
@

X11 X12

X21 X22

X13 X14

X23 X24

X31 X32

0 0

0 0

0 0

1

C
C
C
C
C
A

0

@ Z�
X

�
0 In� rM

I rM+ rK 0

�
0

0 In� rK

1

A

=

0

B
B
B
B
@

eX11 bX12

eX21 bX22

bX13 X14

bX23 0

0 0

0 0

RX eX24

0 0

1

C
C
C
C
A

; where

�
eX11 eX12 eX13
eX21 eX22 eX23

�
=

�
X11 X12 X13
X31 X32 0

�
Z�

X

�
0 In� rM

I rM+ rK 0

�

eX24= Q�
XX24 ;

:

The(1;1) diagonal block in the new partition (=k= ) is (rM + rK) � (rM + rK), and

• n � rM = rK : bXi j = eXi j , i = 1;2, j = 2;3;

• n � rM > rK : bX12 = eX12(:;1 : rK); bX13 = ( eX12(:; rK + 1 : n� rM); eX13);

bX22 = eX22(:;1 : rK); bX23 = ( eX22(:; rK + 1 : n� rM); eX23)
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• n � rM < rK : bX12 = ( eX12; eX13(:;1 : rK + rM � n)) ; bX13 = eX13(:; rK + rM � n+ 1 : rK);

bX22 = ( eX22; eX23(:;1 : rK + rM � n)) ; bX23 = eX23(:; rK + rM � n+ 1 : rK)

On the right hand side, the transformation reads, analogously,

0

B
B
B
B
@

I rM 0 0 0

0 0 I rK 0

0 Q�
X 0 0

0 0 0 In� rK

1

C
C
C
C
A

Y

0

B
@

Z�
X

 
0 In� rM

I rM+ rK 0

!

0

0 In� rK

1

C
A (3.50)

=

0

B
B
B
B
@

eY11 bY12

eY21 bY22

bY13 0rM ;n� rK

bY23 0rK ;n� rK

0n� rM ;rM 0n� rM ;n� rM

0n� rK ;rM 0n� rK ;n� rM

0n� rM ;rK 0n� rM ;n� rK

0 � In� rK

1

C
C
C
C
A

(3.51)

where

 
eY11 eY12 eY13

eY21 eY22 eY23

!

=

 
Y11 Y12 0rM ;rK

0rk;rM 0rK ;n� rM � I rK

!

Z�
X

 
0 In� rM

I rM+ rK 0

!

; (3.52)

and

• n � rM = rK : bYi j = eYi j , i = 1;2, j = 2;3;

• n � rM > rK : bY12 = eY12(:;1 : rK); bY13 = ( eY12(:; rK + 1 : n� rM); eY13);

bY22 = eY22(:;1 : rK); bY23 = ( eY22(:; rK + 1 : n� rM); eY23)

• n � rM < rK : bY12 = ( eY12; eY13(:;1 : rK + rM � n)) ; bY13 = eY13(:; rK + rM � n+ 1 : rK);

bY22 = ( eY22; eY23(:;1 : rK + rM � n)) ; bY23 = eY23(:; rK + rM � n+ 1 : rK):

Hence, the equivalent pencil is

0

B
B
B
B
@

eX11 bX12

eX21 bX22

bX13 X14

bX23 0

0 0

0 0

RX eX24

0 0

1

C
C
C
C
A

� l

0

B
B
B
B
@

eY11 bY12

eY21 bY22

bY13 0
bY23 0

0 0

0 0

0 0

0 � I

1

C
C
C
C
A

;

and it immediately reveals that the original quadratic pencil is singular ifdet(RX) = 0. Otherwise,

we �rst identify then� rK zero eigenvalues and then� rM in�nite ones, and the remaining ones

are computed from the linear generalized eigenvalue problem of the(rM + rK) � (rM + rK) pencil

A� l B �

 
eX11 bX12

eX21 bX22

!

� l

 
eY11 bY12

eY21 bY22

!

: (3.53)

Remark 3.4. In the important moment of computing the rank revealing decomposition (3.49),

quadeig uses the same truncation strategy and with the same threshold used to infer the nu-

merical ranks ofM andK. In our opinion, this is fundamentally wrong strategy that may lead
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to catastrophically wrong results. Our new algorithm will determine the numerical rank more

carefully.

3.3.3 Eigenvectors inquadeig

Once the de�ated linearized problem is solved, we need to transform the variables to the

original problem, i.e. to assemble the requested eigenvectors of the original quadratic pencil.

Before giving the formulas, let us �rst brie�y review the process of computing eigenvalues and

corresponding eigenvectors for quadratic eigenvalue problems that is solved via the linearization

by the second companion form. The eigenvalues are the same, and the right eigenvectorsz and

left eigenvectorsw of the linearization are of the forms, respectively,

z=

0

@
z1

z2

1

A =

8
>>>>>>>><

>>>>>>>>:

0

B
@

l x

� Kx

1

C
A ; l 6= 0

0

B
@

l x

Cx

1

C
A ; l = 0

; (3.54)

w =

0

@
w1

w2

1

A =

0

@
l y

y

1

A ; (3.55)

wherex;y are the right and left eigenvector of quadratic eigenvalue problem. From the �rst

relation we see that, when the matrixK is nonsingular, we have two choices for a right eigen-

vector, namelyz1 andK� 1z2. If K is singular (or highly ill-conditioned), we choosez1. For a

left eigenvector we have two choices in both cases. We can either choosew1 or w2. In quadeig

the eigenvector with smallest backward error is chosen in the case of both the right and the left

eigenvector.

However, the de�ation process inquadeig introduces an orthogonal transformation which

is used to transform linearizationC2(l ) to generalized eigenvalue problemQC2(l )V. The

eigenvalues of the transformed problem are the same, but the right eigenvectorez and the left

eigenvectorew are transformed in the following way

0

@
ez1

ez2

1

A = ez= Vz; (3.56)

0

@
ew1

ew2

1

A = ew = Q� w; (3.57)

wherez;w are as in (3.54) and (3.55). So, the process of extraction of the eigenvectors goes

from the bottom to the top. We �rst obtain the eigenvectors for the linearizationC2(l ), and then
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choose the eigenvector for the quadratic problem.

Now we provide explicit reconstruction formulas for the eigenvectors.

The right eigenvectors

The case:rank(M) = rank(K) = n. The matrixK is nonsingular, and we have two choices for

the right eigenvector. Letezbe the right eigenvector for the transformed GEP. The corresponding

right eigenvector forC2(l ) is

z=

0

@
z1

z2

1

A =

 
PM 0

0 In

! 0

@
ez1

ez2

1

A =

0

@
PMez1

ez2

1

A :

Hence, the two candidates for the eigenvectorx arePMez1 andK� 1ez2. Now, the candidate with

the smallest normwise backward error is chosen as the output.

The second case:rank(K) < rank(M) = n. The matrixK is singular, andn� rK zero eigenva-

lues have been de�ated. The eigenvectors corresponding to those eigenvalues span the nullspace

of the matrixK. The basis for the nullspace is computed via the orthogonal complement of the

range ofK� , using the QR decomposition of the upper triangular matrixbR�
K:

PK bR�
K = QbR�

K
RbR�

K
:

The wanted vectors are the lastn� rK columns of the orthogonal matrixQbR�
K
.

The remaining eigenvalues and the corresponding eigenvectorsez2 Cn+ rK are computed from

the(n+ rK) � (n+ rK) GEP (3.42). PartitionezT =
�

ezT
1 ezT

2

�
, whereez1 2 Cn andez2 2 CrK . The

corresponding eigenvector forC2(l ) is

0

@
z1

z2

1

A =

 
PM 0

0 QK

!
0

B
B
@

ez1

ez2

0n� rK

1

C
C
A =

0

B
B
@

PMez1

QK

 
ez2

0n� rK

!

1

C
C
A :

The only choice for the right eigenvectorx is PMez1.

The third case: rank(K) � rank(M) < n. Both matricesM andK are singular, andn� rM

in�nite and n� rK zero eigenvalues have been de�ated. The eigenvectors for the zero eigenvalue

are obtained as in the previous case, whilst the eigenvectors for the in�nite eigenvalue form the

basis for the nullspace of the matrixM. The basis for the nullspace is obtained as the orthogonal

complement of the range ofM� represented by the lastn� rM columns of the orthogonal matrix

QbR�
M

PM bR�
M = QbR�

M
RbR�

M
:
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The remaining eigenvalues with the corresponding eigenvectorsez2 CrK+ rM are obtained from

the(rK + rM) � (rK + rM) GEP (3.53). The corresponding eigenvector forC2(l ) is

0

@
z1

z2

1

A =

 
In 0

0 QK

!  
Z�

X 0

0 In� rK

!
0

B
@

0 In� rM 0

I rK+ rM 0 0

0 0 In� rK

1

C
A

0

B
B
@

ez

0n� rM

0n� rK

1

C
C
A

=

 
In 0

0 QK

!
0

B
@

Z�
X

 
0n� rM

ez

!

0n� rK

1

C
A :

The only candidate for the right eigenvectorx is Z�
X

 
0n� rM

ez

!

(1 : n) = Z�
X

 
0n� rM

ez(1 : rM)

!

.

The left eigenvectors

We now describe how to assemble the left eigenvectors of the quadratic pencil.

The �rst case: rank(M) = rank(K) = n. Let ew be the left eigenvector for the transformed GEP

QC2(l )V. The corresponding left eigenvector for the linearizationC2(l ) is w

0

@
w1

w2

1

A =

 
QM 0

0 In

! 0

@
ew1

ew2

1

A =

0

@
QM ew1

ew2

1

A :

The two candidates for the left eigenvectory of the quadratic eigenvalue problem areQM ew1

and ew2. The next step is to compute corresponding normwise backward errors and choose the

candidate with the smallest one as the output.

Te second case:rank(K) < rank(M) = n. The left eigenvectors for the zero eigenvalue are the

lastn� rK columns of the matrixQK. Let

0

@
ew1

ew2

1

A 2 Cn+ rK be the eigenvector for the de�ated

(n+ rK) � (n+ rK) pencil (3.42), whereew1 2 Cn and ew2 2 CrK . The corresponding eigenvector

for the 2n� 2n pencil, before truncation satis�es

�
ew�

1 ew�
2 ew�

3

�

0

B
B
@

0

B
B
@

X11 X12 X13

X21

0n� rK ;n

0rK ;rK 0rK ;n� rK

0n� rK ;rK 0

1

C
C
A � l

0

B
B
@

� RM 0

0
� I rK 0

0 � In� rK

1

C
C
A

1

C
C
A =

0

B
B
@

ew�
1X11+ ew�

2X21+ l ew�
1RM

ew�
1X12+ l ew�

2

ew�
1X13+ l ew�

3

1

C
C
A = 0;
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therefore,ew3 = X�
13ew1=l . The vectorz for C2(l ) is

0

@
w1

w2

1

A =

 
QM 0

0 QK

!
0

B
B
@

ew1

ew2

ew3

1

C
C
A =

0

B
B
@

QM ew1

QK

 
ew2

ew3

!

1

C
C
A :

The candidates for the left eigenvectory for the quadratic eigenvalue problem areQM ew1 and

QK

�
ew2
ew3

�
. Again, the eigenvector with the smaller normwise backward error is chosen as the

approximation.

The third case: rank(K) � rank(M) < n. The left eigenvectors for the zero eigenvalue are the

lastn� rK columns ofQK , and for the in�nite eigenvalue are the lastn� rM columns ofQM. Let�
ew1
ew2

�
2 CrK+ rM be a left eigenvector for the truncated(rK + rM) � (rK + rM) pencil (3.53). The

corresponding eigenvector for the pencilQC2(l )V satis�es

�
ew�

1 ew�
2 ew�

3 ew�
4

�

0

B
B
B
B
@

0

B
B
B
B
@

eX11 bX12

eX21 bX22

bX13 X14

bX23 0

0 0

0 0

RX eX24

0 0

1

C
C
C
C
A

� l

0

B
B
B
B
@

eY11 bY12

eY21 bY22

bY13 0
bY23 0

0 0

0 0

0 0

0 � I

1

C
C
C
C
A

1

C
C
C
C
A

=

=

0

B
B
B
B
@

0

0

ew�
1
bX13+ ew�

2
bX23+ ew�

3RX � l ew�
1
bY13 � l ew�

2
bY23

ew�
1
bX14+ ew�

3
eX24+ l ew�

4

1

C
C
C
C
A

= 0:

The componentsew�
3; ew�

4 are thus computed as

ew�
3 =

�
l ew�

1
bY13+ l ew�

2
bY23 � ew�

1
bX13 � ew�

2
bX23

�
R� 1

X ;

ew�
4 =

�
� ew�

1
bX14 � ew�

3
eX24

�
=l :

The left eigenvector forC2(l ) is

w =

 
QM 0

0 QK

!

0

B
B
B
B
@

I rM 0 0 0

0 0 QX 0

0 I rK 0 0

0 0 0 In� rK

1

C
C
C
C
A

0

B
B
B
B
@

ew1

ew2

ew3

ew4

1

C
C
C
C
A

=

0

B
B
B
B
B
@

QM

 
ew1

QX ew3

!

QK

 
ew2

ew4

!

1

C
C
C
C
C
A

;

and the candidates for the left eigenvectory areQM

�
ew1

QX ew3

�
andQK

�
ew2
ew4

�
. The eigenvector with

the smaller normwise backward error is chosen as the approximation.
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3.4 Balancing by two-sided diagonal scalings

As mentioned in the introduction, along with having the coef�cient matrices with unbalanced

norms, their elements can be highly unbalanced too, for example as a result of particular choice

of physical units and/or different physical nature of the involved coupled variables. This results

in badly conditioned coef�cient matrices, and backward error may simply wipe out small but

physically relevant parameters.

In order to improve the de�ation process, we propose balancing of the coef�cients as in [9],

where the coef�cient matricesA, E, B of a descriptor linear time invariant dynamical system

E �x = Ax+ Bu are balanced for more numerically robust reduction. It is a generalization of

Ward's balancing algorithm [70] for two matrices. Bosner's algorithm produces two diagonal

matricesDl andDr such that the range of magnitude orders of all elements in the scaled matrices

Dl ADr , Dl EDr andDl B is small. We extend that algorithm so that the third matrix is also scaled

from the right; in means that we go over to a new equivalent QEP:

bQ(l ) = l 2(Dl MDr ) + l (DlCDr ) + ( Dl KDr ): (3.58)

For a computed (e.g. right) eigenpair(l ;x) of (3.58), the corresponding eigenpair for the original

problem is(l ;Drx).

3.4.1 The algorithm

De�ne the range of elements in a matrix as the ratio of the element of the largest and the

one with smallest (nonzero) magnitude. The matricesDl andDr are computed so that the

ranges of the elements inDl MDr ;DlCDr andDl KDr are moderate. The main idea is that the

exponents in the exponential notation of all nonzero elements inDl MDr ;DlCDr andDl KDr

should be close to zero. The diagonal matrices are de�ned asDl = diag(10l1; : : : ;10ln) and

Dr = diag(10r1; : : : ;10rn).

The problem of balancing is then equivalent to minimization problem

min
l ;r2Rn

j (l ; r) =

min
l ;r2Rn

n

å
i= 1

2

6
6
4

n

å
j= 1

mi j 6= 0

(l i + r j + logjmi j j)2 +
n

å
j= 1

ci j 6= 0

(l i + r j + logjci j j)2 +
n

å
j= 1

ki j 6= 0

(l i + r j + logjki j j)2

3

7
7
5 ;

(3.59)

where l =
�

l1; : : : ; ln
�

and r =
�

r1; : : : ; rn

�
. This is a linear least square problem with the
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following systemLx = p of normal equations

L =

 
F1 G

GT F2

!

; p =

 
� c

� d

!

; x =

 
l

r

!

;

whereF1 = diag(nr1; : : : ;nrn) 2 Rn� n with

nr i =
n

å
j= 1

mi j 6= 0

1+
n

å
j= 1

ci j 6= 0

1+
n

å
j= 1

ki j 6= 0

1

being the number of nonzero elements in thei-th rows ofM, C andK, F2 = diag(nc1; : : : ;ncn) 2

Rn� n with

nc j =
n

å
i= 1

mi j 6= 0

1+
n

å
i= 1

ci j 6= 0

1+
n

å
i= 1

ki j 6= 0

1

being the total number of nonzero elements in thej � th columns ofM, C andK, G 2 Rn� n is

the sum of incidence matrices ofM, C andK:

gi j =

(
1; if mi j 6= 0

0; if mi j = 0

)

+

(
1; if ci j 6= 0

0; if ci j = 0

)

+

(
1; if ki j 6= 0

0; if ki j = 0

)

;

the vectorc 2 Rn has elements

ci =
n

å
j= 1

mi j 6= 0

logjmi j j +
n

å
j= 1

ci j 6= 0

logjci j j +
n

å
j= 1

ki j 6= 0

logjki j j;

and the vectord 2 Rn has elements

d j =
n

å
i= 1

mi j 6= 0

logjmi j j +
n

å
i= 1

ci j 6= 0

logjci j j +
n

å
i= 1

ki j 6= 0

logjki j j:

The system is solved as in [9], using the preconditioned conjugate gradient method. In order to

demonstrate the importance of balancing in computation of eigenvalues and eigenvectors, we

will use the componentwise backward error (see Section 2.4) for the eigenpair(x; l ):

wQ(x; l ) = max
i

j(( l 2M + l C+ K)x) i j
(( jl j2jMj + jl jjCj + jKj)jxj) i

: (3.60)

Example 3.3. In Table 3.1, we show the maximum component-wise backward errors for non-

zero �nite eigenvalues for selected examples from the NLEVP library, computed with and

without balancing. In Table 3.2, we show the ranges inM;C andK for these examples with and

without balancing. It is clear from these results that there is signi�cant improvement inmaxwQ

after the balancing took place. There is large improvement in the range of elements is in the

91



Chapter 3. Complete solution of the QEP

Table 3.1: Comparison of component-wise backward errors

No balancing Balancing
Problem minwQ maxwQ minwQ maxwQ

damped_beam 3.4787e-015 3.2404e-009 7.6779e-016 8.0865e-013
power_plant 7.7532e-014 1.5799e-010 2.1702e-015 1.0789e-013
speaker_box 2.2373e-008 6.9832e-006 1.3051e-010 3.2287e-008

Table 3.2:Comparison of range of elements inM;C;K

No balancing
Problem M C K

damped_beam 1.0400e+006 1.2000e+005 1
power_plant 4.3519e+007 1.6131e+009 4.3473e+009
speaker_box 1.3017e+010 3.5943e+010 3.7253e+017

Balancing
Problem M C K

damped_beam 240 100 1
power_plant 74.7664 849.2321 761.9298
speaker_box 1.3017e+008 3.5943e+008 2.2146e+017

�rst and the second example, which is followed by the smaller maximal component-wise error.

However, in the third example balancing did not made signi�cant improvement in the range of

matrices, especially for matrixK. Nevertheless, the component-wise backward error is improved

by two orders of magnitude.

We strongly believe that this balancing at the matrix elements level is an important prepro-

cessing technique that will prove its value in the design of iterative methods as well. It is a

subject of our ongoing and the future work.

3.5 Improved de�ation process. New algorihm –KVADeig

After preprocessing by parameter scaling and diagonal balancing, both optional, the task is

to detect and remove (de�ate) the zero and the in�nite eigenvalues. We have already discussed

the importance of such de�ation. From the design ofquadeig, it is clear that it cannot guarantee

removal of all zeros/in�nites from the spectrum; in fact it can only de�ate one Jordan block of

these eigenvalues.

In this section, we go through the details of this initial de�ation, and we propose to supple-

ment it with additional steps. To motivate the need for the improvement of the de�ation process,

we use an example from the NLEVP collection [5].
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3.5.1 A case study example

This is a10� 10quadratic eigenvalue problem for the pencilI (l ) = l 2M + l C+ K, whose

real eigenvalues and the corresponding eigenvectors give the intersection points of a sphere, a

cylinder and a plane.

Figure 3.3: Intersection points of a sphere, a cylinder and a plane (intersection in NLEVP)

Although of small dimension and very simple structure, this example is an excellent illustra-

tion of dif�culties in solving nonlinear eigenvalue problems.

It has been shown in [53], [51] that this problem has only four �nite eigenvalues: two real

ones and a complex conjugate pair. We take this example as a case study and compute the

spectrum by several mathematically equivalent methods; all computation is done in Matlab

8.5.0.197613 (R2015a). If one plainly applies the QZ to a linearization ofI (l ), such as the

�rst or the second companion form with the Fan-Lin-Van Dooren scaling, the spectrum appears

as

C1(l ) :

8
>>>>>>>>><

>>>>>>>>>:

l 1 = 2.476851749893558e+01

l 2 = 2.476851768196165e+01

l 3 = -5.581844429198920e+08 - 1.628033679447590e+09i

l 4 = -5.581844429198920e+08 + 1.628033679447590e+09i

l 5 = 2.570601782117493e+18

l 6 = : : : = l 14 = Inf ; l 15 = : : : = l 20 = -Inf ;

(3.61)

C2(l ) :

8
>>>><

>>>>:

l 1 = 2.476851749893561e+01

l 2 = 2.476851768196167e+01

l 3 = -2.653302084597818e+09

l 4 = : : : = l 17 = Inf ; l 18 = : : : = l 20 = -Inf :

(3.62)

If we use the same method, but with the reversed pencilm2K + mC+ M, (l = 1=m) then from

93



Chapter 3. Complete solution of the QEP

the �rst companion form QZ has computed12�nite eigenvalues (8 real and 2 complex conjugate

pairs), and from the second 10 (6 real and 2 complex conjugate pairs).

If we run the Matlab's solverpolyeig() , we obtain

polyeig (Y (l )) :

8
>>>>>><

>>>>>>:

l 1 = 2.476851768196161e+01

l 2 = 2.476851749893561e+01

l 3 = 1.426603361688555e+08

l 4 = -1.353812777123886e+08

l 5 = : : : = l 18 = Inf ; l 19 = l 20 = -Inf ;

(3.63)

and if we scale the coef�cient matrices then

polyeig (Yscaled(l )) :

8
>>>>>><

>>>>>>:

l 1 = 2.476851768196165e+01

l 2 = 2.476851749893559e+01

l 3 = -3.020295324523709e+08 + 1.229442619245432e+09i

l 4 = -3.020295324523709e+08 - 1.229442619245432e+09i

l 5 = : : : = l 18 = Inf ; l 19 = l 20 = -Inf :
(3.64)

Almost perfect match inl 1 andl 2 is reassuring, but there is an obvious disagreement in the

total number and the nature (real or complex) of �nite eigenvalues. With an earlier version of

Matlab, the results that correspond to (3.61), (3.62), (3.63), and (3.64) coincide in the numbers

of �nite eigenvalues;l 1 andl 2 are close up to machine precision, but the remaining computed

�nite eigenvalues are substantially different.

The rank of the matrixM is exactly3, and it will be correctly determined numerically due

to a particularly simple sparsity structure ofM. The matrixK is also sparse withk2(K) �

4.09+03, so there is no numerical rank issue. In this situation, a preprocessing procedure such

as inquadeig will reverse the pencil and de�ate7 zero eigenvalues (in�nite eigenvalues of the

original problem) at the very beginning. The remaining eigenvalues are then computed (e.g.

usingquadeig) as1

l 1 = 2.4769e+001 l 8 = -1.4660e+007 - 6.9064e+006i

l 2 = 2.4769e+001 l 9 = -1.4660e+007 + 6.9064e+006i

l 3 = 1.1194e+006 l 10 = -4.5822e+015

l 4 = -5.5674e+005 -1.0143e+006i l 11 = -3.9134e+015

l 5 = -5.5674e+005 + 1.0143e+006i l 12 = -2.3047e+019

l 6 = 1.4679e+007 - 1.9395e+007i l 13 = 3.0862e+020

l 7 = 1.4679e+007 + 1.9395e+007i

(3.65)

After the de�ation of the7 zero eigenvalues, in the thus obtained linearizationA� l B, the rank

of the matrixA is 7, and it can be determined exactly because of sparsity (A has6 zero columns,

1Here, to save the space, we display the computed values only to �ve digits.
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and the remaining7 ones build a well conditioned13� 7 submatrix ofA). The matrixB is well

conditioned5.550831520847275e+003. This means that at least6 more zero eigenvalues are

present in the reversed problem (in�nities in the original problem); those are not detected by the

QZ algorithm running onA� l B.

Remark 3.5. It should be noted that the successful removal of many in�nite eigenvalues in

(3.61), (3.62), (3.63), and (3.64) is due to the sparsity that is successfully exploited by the

preprocessing to the QZ algorithm. Recall, before the reduction to the triangular - Hessenberg

form the matrices are scaled and permuted, as described in [70] in order to get equivalent pencil
bA� l bB of form

bA =

0

B
@

A[11] A[12]D2G2 A[13]

0 G1D1A[22]D2G2 G1D1A[23]

0 0 A[33]

1

C
A ; bB =

0

B
@

B[11] B[12]D2G2 B[13]

0 G1D1B[22]D2G2 G1D1B[23]

0 q0 B[33]

1

C
A ;

whereA[11];A[33];B[11];B[33] are upper triangular, and

P1AP2 =

0

B
@

A[11] A[12] A[13]

0 A[22] A[23]

0 0 A[33]

1

C
A ; P1BP2 =

0

B
@

B[11] B[12] B[13]

0 B[22] B[23]

0 0 B[33]

1

C
A :

Original problem . First row: balanced second
companion form linearization pencil. Second
row: Balanced truncated pencil after the de�ation
process.

Reversed problem. First row: balanced second
companion form linearization pencil. Second row:
Balanced truncated pencil after the de�ation
process.

Figure 3.4: Sparsity structure of the linearization pencil before and after de�ation

The matricesD1 andD2 are computed so that the elements ofD1A[22]D2 andD1B[22]D2

have magnitudes as close to one.G2 is permutation matrix determined so that the ratio of the
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column norms ofD1A[22]D2G2 to the corresponding columns norms ofD1B[22]D2G2 appear

in decreasing order.G1 is determined so that the ratios of the row norms ofG1D1A[22]D2G2

to those ofG1D1B[22]D2G2 appear in decreasing order. On the other hand, the transformation

(3.41) (designed to expose the zero eigenvalues of the reversed pencil, that correspond to the

null space ofM) has introduced �ll-in. This is illustrated in Figure 3.4.

3.5.2 De�ation process revisited

Recall the de�ation process in thequadeig algorithm in the case of one singular matrix.

There, the QR factorization of the matrixM is used to reduce the matrixB to upper triangular

form. However, if we de�ne the transformation matrices to maintain the identity in the upper

right block of the matrixA in the linearization pencilA� l B, we get:

P1(A� l B)Q1 =

0

@
Q�

K 0

0 Q�
K

1

A (

 
C � In

K 0

!

� l

 
� M 0

0 � In

!

)

0

@
In 0

0 QK

1

A

=

0

B
B
@

Q�
KC � In

bRKPT
K 0

0 0

1

C
C
A � l

0

@
� Q�

KM 0

0 � In

1

A :

Note thatrank(A) = n+ rank(K), soA andK have null spaces of equal dimensions. In essence,

multiplication from the left withQ�
K � Q�

K (or with Q�
M � Q�

K, or In � Q�
K) is a rank revealing

transformation ofA. We now truncate thes1 = n� rK copies of the eigenvaluel = 0 and proceed

with the truncated(n+ rK) � (n+ rK) pencil

A22 � l B22 =

0

B
B
@

Q�
K;1C � I rK

Q�
K;2C 0

bRKPT
K 0

1

C
C
A � l

0

@
Q�

KM 0

0 � I rK

1

A : (3.66)

Note that using the de�nition (3.66) ofA22 � l B22 in (3.66) yields

P1(A� l B)Q1 =

 
A22 � l B22 �

0 A11 � l B11

!

; A11 = 0n� rK ; B11 = � In� rK : (3.67)

With A11 := A andB11 := B, this procedure can be understood as the �rst step of the Van Dooren's

algorithm (actually its transposed version, see §3.2) for the determination of the elementary

divisors of the eigenvalue zero.

Using this modi�ed transformation de�ned byP1 andQ1, for a rank revealing factorization of

A22 it suf�ces to compute the rank revealing QR factorization of itsn� n submatrixA22(rK + 1 :
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n+ rK;1 : n),  
Q�

K;2C
bRKPT

K

!

PA22 = QA22RA22: (3.68)

This can be used to transform the pencilA22 � l B22 to

bP2(A22 � l B22) =

 
Q�

K;1C � I rK

RA22P
T
A22

0

!

� l bP2

0

@
Q�

KM 0

0 � I rK

1

A ; bP2 =

 
I rK 0

0 Q�
A22

!

:

(3.69)

If the factorization (3.68) shows no rank de�ciency, there are no zeros in the spectrum of

A22 � l B22. Otherwise,A22(rK + 1 : n+ rK;1 : n) is rank de�cient; assume its rank to ber22,

r22 < n, ands2 = n+ rK � r22. Then

RA22 =

 
bRA22

0n� r22;n

!

; bRA22 2 Cr22� n;

bP2A22 =

0

B
@

Q�
K;1C � I rK

bRA22P
T
A22

0

0n� r22;n 0n� r22;rK

1

C
A ; bP2B22 =

0

B
@

Q�
K;1M 0rK

� N

� 4

1

C
A : (3.70)

The next step is to transform matrixbP2B22 so that the block� is zero. This is done by computing

the complete orthogonal decomposition (for the analysis see §3.1.3)

bP2B22 = UBRBV �
B : (3.71)

The column rank ofbP2B22 is s2 (otherwise, the matrix pencil is singular), andbP2B22VB =�
B22 0

�
(here we abuse notation forB22, for the sake of simplicity, as in Algorithm 3.5.1).

Let PB represent the permutation of the �rsts2 and the lastn� s2 column blocks. The wanted

structure is now obtained by multiplying the pencil (3.70) from the right withVBPV :

bP2A22VBPB � l bP2B22VBPB =

 
A33 � l B33 •

0 � l B22

!

: (3.72)

The ext proposition shows that the existence of a second Jordan block for the zero eigenvalue

depends on the relationship between the matricesK andC.

Proposition 3.4. Assume that the matrixK from the quadratic pencill 2M + l C+ K has rank

rank(K) = rK < n. There exists more than one Jordan block for the eigenvalue zero if

(ker(C) [ X ) \ ker(K) 6= f 0g; X = f y 2 Cn : Cy2 Im(K)g:

Analogously, if the matrixM has rankrank(M) = rM < n, there is more than one Jordan block
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for the in�nite eigenvalue if

(ker(C) [ Y ) \ ker(M) 6= f 0g; Y = f y 2 Cn : Cy2 Im(M)g

Proof. From Theorem 3.3 we know that the partial multiplicities, and thus the dimensions of

the Jordan blocks for a quadratic eigenvalue problem can be obtained using Algorithm 3.2.1

for a corresponding strong linearization. If we use the second companion form, the very �rst

step of the de�ation yields the pencil (3.66). Now, ifeA22 is singular, we will have another

Jordan block for the eigenvalue zero. The rank of the matrixeA22 can be determined by the

rank of the matrix

 
Q�

K;2C
bRKPT

K

!

. This matrix is rank de�cient if its kernel is nontrivial, that is

if ker

 
Q�

K;2C
bRKPT

K

!

= ker(QK;2C) \ ker( bRKPT
K ) 6= f 0g. The matrixQK;2 represents the basis for

ker(K� ), and thus

ker

 
Q�

K;2C
bRKPT

K

!

= ( ker(C) [ X ) \ ker(K);

whereX = f y 2 Cn : Cy= z; z2 Im(K)g.

From these two steps we see that, for this choice of linearization, the upper triangular form

for (3.27) would be more �tting. This is why we propose the modi�cation of Algorithm 3.2.1

using the rank revealing QR factorization, see §3.5.3 below.

Backward error

The following proposition states the backward stability for the �rst step od the de�ation

process (3.66) as in Subsection 3.3.2.

Proposition 3.5. Let

eA� l eB =

0

@
eX11 � IerK

eRK ePT
K 0erK ;erK

1

A � l

0

@
� eY11 0

0 � IerK

1

A

be the computed linearization (3.66). Then it corresponds to an exact reduced linearization of a

quadratic pencill 2(M + dM)+ l (C+ dC)+ ( K + dK + DK), where, for all i= 1; : : : ;n,

kdM(:; i)k2 � eMkM(:; i)k2; kdC(:; i)k2 � eCkC(:; i)k2; kdK(:; i)k2 � eqrkK(:; i)k2; (3.73)

and the truncation error is

max
j= 1:n� k

k(DK) ePK(:;k+ j)k2 � t min
i= 1:k

k(K + dK) ePK(:; i)k2; (DK) ePK(:;1 : k) = 0n;k: (3.74)
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Proof. (i) Let ePK , eQK , eRK be the computed factors of QR decomposition ofK, i.e. (K + dK) ePK =

bQK

 
eRK

0

!

, k eQK � bQKkF � e2. It holds thateX11 = computed( eQ�
KC) = bQ�

K(C+ dC). To estimate

dC, we start with the fact that

computed( eQ�
KC) = eQ�

KC+ GC; jGCj � e� j eQ�
K jjCj; 0 � e� � 2nu:

Since eQK = ( I + EC) bQK, kECk2 � eqr, we have

computed( eQ�
KC) = bQ�

K(I + E�
C)C+ GC = bQ�

K(C+ E�
CC+ bQKGC| {z }

:= dC

) � bQ�
K(C+ dC);

with column-wise estimateskdC(:; i)k2 � (kE�
Ck2 + e� n(1+ kE�

Ck2))kC(:; i)k2, and (3.73) fol-

lows witheC = ( eqr + e� n(1+ eqr)) (derived as in Proposition 3.3).

(ii) By the same reasoning we geteY11 = bQK(M + dM), wherekdM(:; i)k2 � eMkM(:; i)k2,

andeM = ( eqr + e� n(1+ eqr)) :

(iii) Note that in this moment the backward error inK contains both the �oating point error

dK and the truncation errorDK analogous to (3.38), i.e.(K + dK + DK) ePK = bQK eRK. If we set

DSK = dK + DK, then we can represent the computed linearization as

�
bQ�

K 0

0 bQ�
K

� ( 
C+ dC � In

K + DSK 0

!

� l

 
� M � dM 0

0 � In

!)
�

In 0
0 bQK

�

=

0

B
B
@

eX11 � IerK 0n� erK

eRK ePT
K

0n� erK ;n

0erK ;erK 0erK ;n� erK

0n� erK ;erK 0

1

C
C
A � l

0

B
B
@

� eY11 0

0
� IerK 0

0 � In� erK

1

C
C
A :

It is hard to say something about the backward stability of the second step of the de�ation

process in terms of the original coef�cient matricesM;C andK since the transformation (3.70)

destroys the block structure. However, we can say something about the rank revealing QR

factorization for the block matrix
 

bQ�
K;2(C+ dC)

eRK ePT
K

!

PA = QARA;

which is used to determine whether there are more Jordan blocks for the quadratic eigenvalue

problem.

For the computed factorsePA; eQA; eRA it holds that

" 
bQ�

K;2(C+ dC)
eRK ePT

K

!

+

 
C

K

!#

ePA = bQA eRA;
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where 










 
C

K

!

(:; i)












2

� eqr












 
bQ�

K;2(C+ dC)
eRK ePT

K

!

(:; i)












2

:

However, the norm of block vectorx =

 
x1

x2

!

is kxk2 =
q

kx1k2
2 + kx2k2

2, which means that

above inequality holds for bothkC(:; i)k2 andkK(:; i)k2. On the other hand, we can estimate

kxk2 �
p

2max(kx1k2;kx2k2). Using these bounds we get

kC(:; i)k2 � eqr
p

2max
�

k bQ�
K;2(C+ dC)( :; i)k2;keRK ePT

K(:; i)k2

�
;

kK(:; i)k2 � eqr
p

2max
�

k bQ�
K;2(C+ dC)( :; i)k2;keRK ePT

K(:; i)k2

�
:

Moreover, ifC = QCRC is the exact QR factorization of the matrixC, we have

k bQ�
K;2(C+ dC)( :; i)k2 � k bQ�

K;2C(:; i)k2 + k bQ�
K;2dC(:; i)k2 � (1+ eC)k bQ�

K;2C(:; i)k2;

= ( 1+ eC)k bQ�
K;2QCRC(:; i)k � (1+ eC)k bQ�

K;2QCk2kC(:; i)k2

= ( 1+ eC) coŝ (Ker(K); Im(C))kC(:; i)k2;

andkeRK ePT
K(:; i)k2 � (1+ eqr)kK(:; i)k2. Altogether we have

kC(:; i)k2 � eqr
p

2
max

�
(1+ eC) coŝ (Ker(K); Im(C))kC(:; i)k2; (1+ eqr)kK(:; i)k2

�

kC(:; i)k2
kC(:; i)k2;

kK(:; i)k2 � eqr
p

2
max

�
(1+ eC) coŝ (Ker(K); Im(C))kC(:; i)k2; (1+ eqr)kK(:; i)k2

�

kK(:; i)k2
kK(:; i)k2;

i.e.

kC(:; i)k2

kC(:; i)k2
� eqr

p
2max

�
(1+ eC) coŝ (Ker(K); Im(C)) ; (1+ eqr)

kK(:; i)k2

kC(:; i)k2

�
(3.75)

kK(:; i)k2

kK(:; i)k2
� eqr

p
2max

�
(1+ eC) coŝ (Ker(K); Im(C))

kC(:; i)k2

kK(:; i)k2
; (1+ eqr)

�
: (3.76)

Notice that the bounds (3.75,3.76) can blow up if there is a large difference in the norms of

columnsK(:; i),C(:; i) of the coef�cient matricesK andC. This once more shows the importance

of scaling and balancing.

3.5.3 Computing the Kronecker's Canonical form using rank revealing

QR factorization

From the previous section, we know that, in order to exploit the structure of the second

companion form linearization as much as possible, it is more convenient to de�ate the (zero)

eigenvalue by the transformations which lead to upper triangular forms (3.67),(3.72). This is
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done by using the rank revealing QR factorization of the current matrixAi;i from the linearization

pencil, instead of using the SVD. In this subsection, we derive such an algorithm. We will

describe the �rst step in detail, and then formulate the complete algorithm.

Let A;B 2 Cn� n. Denote byni the size of the current working matrix in stepi, andsi the defect

of the working matrix in stepi. Consider the following procedure.

1. Compute the rank revealing factorization ofA1;1 = A

A1;1PA = QARA; (3.77)

and denotes1 = n1 � rank(A) = n� rank(A). Now,Q�
AA1;1 =

 
A2

0s1� n

!

, whereA2 is of

full row rankn� s1. PartitionQ�
AB =

 
B2

B1

!

in compatible manner. Multiply the pencil

(A� l B) by Q�
A on the left to get

Q�
A(A� l B) =

 
A2 � l B2

l B1

!

: (3.78)

2. Compute the complete orthogonal decomposition ofB1

B1 = UBRBV �
B : (3.79)

The column rank ofB1 is s1, if the matrix pencil is regular, andB1VB =
�

B1;1 0s1;n� s1

�
,

whereB1;1 is upper triangular. Multiply the pencil (3.78) byVB on the right to get

Q�
A(A� l B)VB =

 
A1;2 � l B1;2 A2;2 � l B2;2

l B1;1 0

!

:

3. Let PB be the permutation matrix for permuting the �rsts1 and the lastn� s1 columns.

De�ne P1 = Q�
A andQ1 = VBPB. The �rst Jordan block for the eigenvalue0 is de�ated by

the following orthogonal transformation:

P1(A� l B)Q1 =

 
A2;2 � l B2;2 A1;2 � l B1;2

0 l B1;1

!

; (3.80)

with �
A2;2 A1;2

�
= A2Q1 2 C(n� s1)� n:

Sincej detP1det(A� l B) detQ1j = j det(A� l B)j = jl js1j detB1;1det(A2;2 � l B2;2)j holds,

it is clear that �nding the additional zero eigenvalues reduces to the problemA2;2 � l B2;2.

If A2;2 is regular, there are no more zero eigenvalues, and the process stops. IfA2;2 is
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singular, the process continues, that is, we �nd unitary matricesbP2 and bQ2 so that

P2P1(A� l B)Q1Q2 =

0

B
@

A33 � l B3;3 A2;3 � l B2;3 A1;3 � l B1;3

0 � l B2;2 A1;2 � l B1;2

0 0 � l B11

1

C
A ;

whereP2 = diag( bP2; Is1);Q2 = diag( bQ2; Is1).

The complete algorithm is described below

Algorithm 3.5.1 De�ation of eigenvalue 0

1: j = 1; A1;1 = A; B1;1 = B; n1 = n;
2: Compute rank revealing QR:A1;1PA = QARA
3: s1 = n1 � rank(A1;1)
4: while sj > 0 do

5: Partition matrices:
�

A j+ 1
0

�
= Q�

AA j ; j ,
�

B j+ 1
B j

�
= Q�

AB j ; j

6: Update and partition blocks in rowj
7: for i = 1 : j � 1 do

8:

�
Ai; j+ 1
Ai; j

�
= Q�

AAi; j ;
�

Bi; j+ 1
Bi; j

�
= Q�

ABi; j ;

9: end for
10: Compute complete orthogonal decomposition ofsj � n j matrixB j : B j = ABRBV �

B
11: CompressB j to full column rank, permute and partition:
12:

�
A j+ 1; j+ 1 A j ; j+ 1

�
= A j+ 1VBPB;

�
B j+ 1; j+ 1 B j ; j+ 1

�
= B j+ 1VBPB;

13:
�

0 B j ; j
�

= B jVBPB
14: n j+ 1 = n j � sj , j = j + 1
15: Compute rank revealing QRA j ; jPA = QARA
16: sj = n j � rank(A j ; j )
17: end while

This algorithm results in

P(A� l B)Q =
0

B
B
B
B
B
B
B
B
@

A`+ 1;`+ 1 � l B`+ 1;`+ 1 A`;` + 1 � l B`;` + 1 : : : A2;`+ 1 � l B2;`+ 1 A1;`+ 1 � l B1;`+ 1

0 � l B`;` : : : A2;` � l B2;` A1;` � l B1;`
...

...
...

...
...

0 0 : : : � l B2;2 A1;2 � l B1;2

0 0 : : : 0 � l B1;1

1

C
C
C
C
C
C
C
C
A

:

(3.81)

The de�ation of the in�nite eigenvalue can be done by the same algorithm, but with the reversed

pencilB� l A.
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Remark 3.6. Algorithm 3.5.1 can be used to determine the structure of an arbitrary eigenvalue

a . The only difference is that the starting matrixA1;1 = A� a B is shifted. The matrixB1;1 = B

stays the same. Consider the shifted second companion form linearization

A1;1 =

 
C � I

K 0

!

� a

 
� M 0

0 � I

!

=

 
C+ a M � I

K a I

!

:

The �rst step of the algorithm is to determine the rank of2n� 2n matrix A1;1. However, if we

multiply A1;1 with

 
a I I

0 I

!

from the right we get

 
a I I

0 I

!

A1;1 =

 
a 2M + aC+ K 0

K a I

!

;

meaning that therank(A1;1) = n+ rank(a 2M + aC+ K), and thus it is enough to compute the

rank of then� n matrixa 2M + aC+ K.

3.5.4 Putting it all together: De�ation process inKVADeig

We now describe the global structure of the new procedure. We assume that the initial scaling

and balancing are done as requested by an expert user.

The �rst step of the de�ation process is the computation of the rank revealing decomposition

of the matricesM andK.

After the determination of the numerical ranks, we have three main cases:

1. both matrices are regular,

2. one of the matrices is singular,

3. both matrices are singular.

1. Both matricesM and K are regular We proceed as inquadeig algorithm, that is we use

the rank revealing decomposition of the matrixM to reduce matrixB to an upper triangular form

(3.40).

2. One of the matrices is singular We can assume, without loss of generality, thatK is

singular, because in the case of singularM we just consider the reversed problem.

Before we continue with de�ation process of then� rK zero eigenvalues, we check whether

there are Jordan blocks for this eigenvalue, that is, we compute the numerical rank of then� n

block matrix (3.68). As we mentioned before, the nullity of this matrix is equal to the nullity of

the matrixeA22, and the next step depends on it.
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2.1. Regular matrix A22 In this case we proceed as inquadeig algorithm. That is, the

n� rK zero eigenvalues are de�ated, and the matrixB is reduced to the upper triangular form

(3.42).

2.2. Singular matrix A22 In the notation of Algorithm 3.5.1, this means thats2 6= 0, mea-

ning that there exists more than one Jordan block for the zero eigenvalue. In this case, reduction

of the matrixB to upper triangular form will not be conducted. Using the structure of the matrix

A, the de�ation of the �rst two blocks is done as in (3.66) and (3.69). For possible further

de�ation steps, Algorithm 3.5.1 is applied to the pencilA33 � l B33.

3. Both matrices are singular In this case, before any de�ation process, we check the ranks

of both block matrices  
Q�

K;2C
bRKPT

K

!

;

 
Q�

M;2C
bRMPT

M

!

: (3.82)

The ranks of these matrices determine whether there exist more than one Jordan block for the

zero eigenvalue and the in�nite eigenvalue, respectively. There are three possible outcomes:

3.1. Both matrices in (3.82) are regular This means that there are exactlyn� rM in�nite,

andn� rK zero eigenvalues, which are de�ated as inquadeig algorithm.

3.2. One of the matrices in (3.82) is singular In any case, we use the structure to de�ate

two Jordan blocks of eigenvalue zero, meaning that if

 
Q�

M;2C
bRMPT

M

!

is singular, i.e if there are

at least two Jordan block for in�nite eigenvalues, the reversed problem is considered. Now,

Algorithm 3.5.1 is used to compute the complete structure of the zero eigenvalue. The �rst two

steps are as in (3.66) and (3.69), that is, the structure of original problem is used. After the

de�ation of the zero eigenvalue, we get new reduced pencileA� l eB. Now, Algorithm 3.5.1 is

used to de�ate the in�nite eigenvalue of the generalized eigenvalue problem. We already know

that the number of in�nite eigenvalues isn� rM, and this is used as a test when the rank of the

matrix eB is determined numerically. Namely, the rank ofeB is equal to the rank ofM. We also

know that only one step of Algorithm 3.5.1 is enough to de�ate all in�nite eigenvalues.

3.3. Both matrices in (3.82) are singular We consider the original problem, if the number

of the detected zero eigenvalues is larger than the number of the detected in�nite eigenvalues, and

the reversed problem otherwise. That is, we want to use the structure to de�ate zero eigenvalue,

and we are considering either original or reversed problem, whichever has more zero eigenvalues.

The �rst step is to de�ate all zero eigenvalues, using Algorithm 3.5.1 (the �rst two steps are done

using the structure of the matrixA). After that, we get the reduced pencileeA� l eeB. The next step is

to de�ate the in�nite eigenvalues, using the Algorithm 3.5.1 on the reversed pencil. Its structure
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is determined by the numberssi . From the previous computation we knows1 = n� rM < n, and

s2 = n� rank(

 
Q�

M;2C
bRMPT

M

!

), and this is used as a test for rank determination in Algorithm 3.5.1.

The decision tree for the described process is sketched in Figure 3.5

MPM = QMRM

KPK = QKRK

�
Q�

K;2C
bRKPT

K

�
PA = QARA

�
Q�

M;2C
bRMPT

M

�
PB = QBRB

full deflation step
of 0 and inifinite

both singular

full deflation of 0
one deflation step

for infinite

one singular

w.l.o.g, K

one step of
deflation

(0 and infinite)

both regular

both singular

�
Q�

K;2C
bRKPT

K

�
PA = QARA

full deflation
process

singular

One step of
deflationregular

one singular

w.l.o.g.,rK < n

Reduce B
to upper triangular

both
regular

Figure 3.5: De�ation process inKVADeig– decision tree

Example 3.4(continuation of the exampleintersection ). The de�ation process described

above de�ates all 16 eigenvalues in4 steps. The defects of the intermediate matricesAii are

s1 = 7;s2 = 6;s3 = 2;s4 = 1. The computed �nite eigenvalues are:

l 1 = -5.581811074974700e+008 -1.628029358197346e+009i;

l 2 = -5.581811074974700e+008 +1.628029358197346e+009i;

l 3 = 2.476851768196167e+001,

l 4 = 2.476851749893556e+001,

that is, two real, and a complex conjugate pair, as expected. The corresponding backward

errors are given in Figure 3.6 below. The backward errors for the real eigenvalues computed

by quadeig algorithm are also included. Note how this example shows that norm-wise small

backward error can be completely misleading.
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Figure 3.6: Backward errors for �nite eigenvalues, sorted by magnitude, for the benchmark
problemintersection .

Eigenvector recovery

There are two levels of the eigenvector recovery. First, we compute the eigenvectors of the

transformed pencilQ(A� l B)V, and we must recover the eigenvectors for the original pencil

A� l B. Second, we must recover the eigenvectors for the quadratic eigenvalue problem from

the corresponding linearization.

The recovery of the eigenvectors in the cases when bothM andK are regular, and when we

have only one Jordan block to de�ate for zero or/and in�nite eigenvalues goes as explained in

§3.3.3. In addition, we present the recovery in the case of the existence of more Jordan blocks.

Assume that more than one Jordan block is de�ated for either zero or/and in�nite eigenvalue.

Let k be the dimension of the truncated pencileA � l eB. Let z 2 R2n andw1 2 R2n be the

computed right and left eigenvectors ofeA� l eB. If k > n, the right eigenvector is recovered as

x = Q(1 : n;1 : n)z(1 : n), and ifk < n thenx = Q(1 : n;1 : k)z.

For the left eigenvector, write the transformed pencil as

Q(A� l B)V =

 
eA� l eB X

0 Y

!

:

Now, the left eigenvectorw 2 R2n for the transformed pencilQ(A� l B)V is

w =

 
w1

w2

!

; w2 = � w�
1XY� 1;

andw1 is computed left eigenvector ofeA� l eB. For the left eigenvector we always have two

choices for the original problem, and for the right eigenvector we have two choices only ifK is

nonsingular. By default we choose the eigenvector with smaller backward error.

106



3.5. Improved de�ation process. New algorihm –KVADeig

3.5.5 Numerical examples

Experiment 1. mobile_manipulator . This example is also from the NLEVP library. It is a

5� 5 quadratic matrix polynomial arising from modeling a two-dimensional three-link mobile

manipulator as a time invariant descriptor control system. The matrices are of the form

M =

 
M0 0

0 0

!

; C =

 
C0 0

0 0

!

; K =

 
K0 � FT

0

F0 0

!

;

with

M0 =

0

B
@

18:7532 7:94493 7:94494

7:94493 31:8182 26:8182

7:94494 26:8182 26:8182

1

C
A ; C0 =

0

B
@

1:52143 1:55168 1:55168

3:22064 3:28467 3:28467

3:22064 3:28467 3:28467

1

C
A ;

K0 =

0

B
@

67:4894 69:2393 69:2393

69:8124 1:68624 1:68617

69:8123 1:68617 68:2707

1

C
A ; F0 =

 
1 0 0

0 0 1

!

:

This quadratic problem is known to be close to singular problem [13]. The matrixK has full

rank, and the matrixM has rankrM = 3. This means that there are at leastn� rM = 2 in�nite

eigenvalues amongst the total of10 eigenvalues. We compute the eigenvalues of this problem

using thequadeig algorithm, and these are the computed eigenvalues:

l 1 = -5.1616e-002 -2.2435e-001i l 6 = -1.0770e+006 -1.8660e+006i

l 2 = -5.1616e-002 +2.2435e-001i l 7 = -1.0770e+006 +1.8660e+006i

l 3 = -2.7707e+005 -4.7991e+005i l 8 = 2.1551e+006

l 4 = -2.7707e+005 +4.7991e+005i l 9 = Inf

l 5 = 5.5416e+005 l 10 = Inf

We also compute the eigenvalues of this problem using the QZ algorithm directly on the second

companion form linearization, without any prior de�ation. The QZ algorithm found8 in�nite

and two �nite eigenvalues. Our algorithm de�ated8 zero eigenvalues from the pencil for the

reversed problem. The two �nite eigenvalues computed from the reduced pencil are:

l 1 = -5.161621336216381e-002 -2.243476109085836e-001i

l 2 = -5.161621336216381e-002 +2.243476109085836e-001i:

The problem inquadeig is in the reduction of the matrixB to the upper triangular form in the

de�ation process. In the QZ algorithm this step is done after the balancing algorithm [70] of the

matricesA andB. Also this algorithm permutes rows and columns of matrices in order to use

the sparsity structure to de�ate possible zero or in�nite eigenvalues before the main steps of the

algorithm. The reduction to upper triangular form inquadeig algorithm destroys the structure
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and QZ is unable to detect more in�nite eigenvalues. Notice that the computed eigenvalues do

not have big absolute values either. Finally, we conclude that only the scaling of the matrices

M, C andK is not enough. For the interesting discussion regarding the balancing in eigenvalue

computation, refer to [71].

Recall thatquadeig works with reversed problem when the matrixM is singular, that is it

de�ates the zero eigenvalues. So, in this case, the algorithm de�ated2 zero eigenvalues. We

computed the rank of matrixA after the de�ation, and the rank was6, meaning that there were

at least two more zero eigenvalues which the QZ algorithm could not detect.

Experiment 2. Here, we present more examples from the NLEVP library where our algorithm

detects more zero or/and in�nite eigenvalues thanquadeig:

Table 3.3:Number of de�ated eigenvalues

quadeig KVADeig
Problem zero in�nite zero in�nite

bilby 1 2 1 3(2+1)
omnicam1 11(8+3) 0 12(8+4) 0
omnicam2 14 0 23(14+9) 0
relative_pose_6pt 0 4 0 5(4+1)
shaft 0 201 0 402(201+201)

The numbers inside parentheses represent the numbers of de�ated eigenvalues per de�ation

step. In thequadeig case, for theomnicam1problem, the QZ algorithm de�ated additional3

zero eigenvalues in addition to the 8 from the de�ation process.

3.6 LU based de�ation

Instead of the QR factorization, we can use the LU factorization with complete pivoting for

determining the rank of the coef�cient matrices in order to de�ate zero and in�nite eigenvalues.

The transformation matricesQ andV in the de�ation process now depend on the triangular

matricesL andU, and on the inverse of the matrixL. However,L is triangular matrix, meaning

that the inverse multiplication is actually just solution of lower triangular system of equations.

Du to pivoting, it is expected to be well conditioned with respect to linear system solution.

In this section we develop aquadeig–type algorithm and the de�ation Algorithm 3.5.1 using

the LU factorization with complete pivoting as rank revealing factorization (see §3.1.4).
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Let

LKUK = PKKQK; UK =

 
bUK

0n� rK ;n

!

;

LMUM = PMMQM; UM =

 
bUM

0n� rM ;n

!

be the LU factorizations with complete pivoting for the coef�cient matrices of the quadratic

pencil l 2M + l C + K. In the following subsection we present the de�ation process of one

Jordan block of zero eigenvalue using the rank revealingLU factorization.

3.6.1 The case of nonsingularM

First, if rank(K) = rank(M) = n, the equivalence transformation is

 
L� 1

M PM 0

0 In

! ( 
C � In

K 0

!

� l

 
� M 0

0 � In

!)  
QM 0

0 In

!

=

 
L� 1

M PMCQM � L� 1
M PM

KQM 0

!

� l

 
� L� 1

M PMMQM 0

0 � In

!

=

0

@
L� 1

M PMCQM � L� 1
M PM

KQM 0

1

A � l

0

@
� UM 0

0 � In

1

A : (3.83)

If rank(K) < rank(M) = n we have following transformation:

 
L� 1

M PM 0

0 L� 1
K PK

! ( 
C � In

K 0

!

� l

 
� M 0

0 � In

!)  
QM 0

0 PT
K LK

!

=

 
L� 1

M PMCQM L� 1
M PMPT

K LK

L� 1
K PKKQM 0

!

� l

 
L� 1

M PMMQM 0

0 � In

!

=

 
L� 1

M PMCQM L� 1
M PMPT

K LK

L� 1
K PKKQM 0

!

� l

 
� UM 0

0 � In

!

�

0

B
B
@

X11 X12 X13

X21

0n� rK ;n

0rK ;rK 0rK ;n� rK

0n� rK ;rK 0

1

C
C
A � l

0

B
B
@

� UM 0

0
� I rK 0

0 � In� rK

1

C
C
A :(3.84)

The reduced(n+ rK) � (n+ rK) pencil is

A� l B =

0

@
X11 X12

X21 0rK ;rK

1

A � l

0

@
� RM 0

0 � I rK

1

A : (3.85)
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3.6.2 Rank de�cient cases

In the case whenrK � rM < n transformation is

 
L� 1

M PM 0

0 L� 1
K PK

! ( 
C � In

K 0

!

� l

 
� M 0

0 � In

!)  
In 0

0 PT
K LK

!

=

0

B
B
@

L� 1
M PMC � L� 1

M PMPT
K LK

bUKQT
K 0rK ;n

0n� rk;n 0n� rK ;n

1

C
C
A � l

0

B
B
@

� bUMQT
M 0rM ;n

0n� rM ;n 0n� rM ;n

0n;n � In

1

C
C
A

�

0

B
B
B
@

(L� 1
M PMC)11 (L� 1

M PMC)12

(L� 1
M PMC)21 (L� 1

M PMC)22
� L� 1

M PMPT
K LK

( bUKQT
K)11 ( bUKQT

K)12

0 0

0 0

0 0

1

C
C
C
A

� l

0

B
@

� ( bUMQT
M)11 � ( bUMQT

M)12

0 0
0n

0n � In

1

C
A

�

0

B
B
B
B
B
@

X11 X12

X21 X22

X13 X14

X23 X24

X31 X32

0 0

0 0

0 0

1

C
C
C
C
C
A

� l

0

B
B
B
B
B
@

Y11 Y12

0n� rM ;rM 0n� rM ;n� rM

0rM ;rK 0rM ;n� rK

0n� rM ;rK 0n� rM ;n� rK

0rK ;rM 0rK ;n� rM

0n� rK ;rM 0n� rK ;n� rM

� I rK 0rK ;n� rK

0n� rK ;rK � In� rK

1

C
C
C
C
C
A

� X � l Y: (3.86)

In the next step, we compute the complete orthogonal decomposition (i.e. URV decomposi-

tion, using unitary matricesQX andZX)

� rM n� rM rK

n� rM X21 X22 X23

�
= QX

�
RX 0n� rM ;rM+ rK

�
ZX; RX 2 C(n� rM)� (n� rM): (3.87)

The remaining steps are analogous to those in §3.3.2.

3.6.3 Eigenvectors

Assume that the right eigenvectorsz and the left eigenvectorsw of the transformed pencil

QC2(l )V are computed. The transformations are de�ned as in the previous sections, depending

on the ranks of the matricesM andK. The corresponding right eigenvectorez and the left

eigenvectorew for the original linearization pencilC2(l ) are

0

@
ez1

ez2

1

A = ez= Vz;

0

@
ew1

ew2

1

A = ew = Q� 1w:
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Notice that, in opposite to de�ation process using the QR factorization, the left eigenvector is

obtained by solving the system of equations. However, this can be reduced to solving triangular

systems. The candidates for the right and the left eigenvectors for the original quadratic eigen-

value problem are derived next. If there are two choices for the eigenvector, the algorithm picks

the one with the smaller (e.g. norm-wise) backward error.

The right eigenvectors

The �rst case: rank(M) = rank(K) = n. The matrixK is nonsingular, and we have two choi-

ces for the right eigenvector. Letez be the right eigenvector for the transformed GEP. The

corresponding right eigenvector forC2(l ) is

z=

0

@
z1

z2

1

A =

 
QM 0

0 In

! 0

@
ez1

ez2

1

A =

0

@
QMez1

ez2

1

A :

Hence, the two candidates for the eigenvectorx areQMez1 andK� 1ez2.

The second case:rank(K) < rank(M) = n. The matrixK is singular, andn� rK zero eigenva-

lues are de�ated. The eigenvectors corresponding to those eigenvalue span the nullspace of the

matrix K. The basis for the nullspace is computed using orthogonal complement of the range of

K� using the QR decomposition of the matrixbU �
KQK:

bU �
KQK = QbU �

K
RbU �

K
:

The wanted vector are the lastn� rK columns of the orthogonal matrixQbU �
K
.

The remaining eigenvalues and eigenvectorsez2 Cn+ rK are computed from the(n+ rK) � (n+ rK)

GEP (3.85). The corresponding eigenvector forC2(l ) is

0

@
z1

z2

1

A =

 
QM 0

0 PT
K LK

!
0

B
B
@

ez1

ez2

0n� rK

1

C
C
A =

0

B
B
@

QMez1

PT
K LK

 
ez2

0n� rK

!

1

C
C
A :

The only candidate for the right eigenvectorx is QMez1.

The third case: rank(K) � rank(M) < n. Both matricesM andK are singular, andn� rM

in�nite and n � rK zero eigenvalues are de�ated. The eigenvectors for zero eigenvalues are

obtained as in the previous case, whilst the eigenvectors for in�nite eigenvalues form the basis

for the nullspace of the matrixM. As before, the basis is obtained as the orthogonal complement
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of the range ofM� represented by the lastn� rM columns of the orthogonal matrixQbU �
M

bU �
MQM = QbU �

M
RbU �

M
:

The remaining eigenvalues and eigenvectorsez2 CrK+ rM are obtained from the(rK + rM) � (rK +

rM) GEP (3.53). The corresponding eigenvector forC2(l ) is

0

@
z1

z2

1

A =

 
In 0

0 PT
K LK

!  
Z� 1

X 0

0 In� rK

!
0

B
@

0 In� rM 0

I rK+ rM 0 0

0 0 In� rK

1

C
A

0

B
B
@

ez

0n� rM

0n� rK

1

C
C
A

=

 
In 0

0 QK

!
0

B
@

Z� 1
X

 
0n� rM

ez

!

0n� rK

1

C
A :

The wanted eigenvectorx is Z� 1
X

 
0n� rM

ez

!

(:;1 : n).

The left eigenvectors

The �rst case: rank(M) = rank(K) = n. Let ew be the left eigenvector for the transformed GEP

QC2(l )V. The corresponding left eigenvector for the linearizationC2(l ) is w

0

@
w1

w2

1

A =

 
PT

MLM 0

0 In

! 0

@
ew1

ew2

1

A =

0

@
PT

MLM ew1

ew2

1

A :

The two candidates for the left eigenvectory of the quadratic eigenvalue problem arePT
MLM ew1

and ew2.

The second case:rank(K) < rank(M) = n. The left eigenvectors for the zero eigenvalue are

the lastn� rK columns of the matrixPT
K LK. Let

0

@
ew1

ew2

1

A 2 Cn+ rK be the eigenvector for the

de�ated n+ rK � n+ rK pencil (3.85). The corresponding eigenvector for the2n� 2n pencil,

before truncation, is

�
ew�

1 ew�
2 ew�

3

�

0

B
B
@

0

B
B
@

X11 X12 X13

X21

0n� rK ;n

0rK ;rK 0rK ;n� rK

0n� rK ;rK 0

1

C
C
A � l

0

B
B
@

� UM 0

0
� I rK 0

0 � In� rK

1

C
C
A

1

C
C
A =

112



3.6. LU based de�ation

0

B
B
@

ew�
1X11+ ew�

2X21+ l ew�
1UM

ew�
1X12+ l ew�

2

ew�
1X13+ l ew�

3

1

C
C
A = 0;

therefore,ew3 = X�
13ew1=l . The vectorz for C2(l ) is

0
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w2

1
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PT
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K LK

!
0
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1
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0
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PT
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PT
K LK

 
ew2

ew3

!

1

C
C
A :

The left eigenvectory for the QEP is now picked betweenPT
MLM ew1 andPT

K LK

 
ew2

ew3

!

.

The third case: rank(K) � rank(M) < n. The left eigenvectors for zero eigenvalues are the

lastn� rK columns ofPT
K LK, and for in�nite eigenvalues are the lastn� rM columns ofPT

MLM.

Let

 
ew1

ew2

!

2 CrK+ rM be a left eigenvector for truncatedrK + rM � rK + rM pencil (3.53). The

corresponding eigenvector for the pencilQC2(l )V is then

�
ew�
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The componentsew�
3; ew�

4 are thus computed as

ew�
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�
l ew�

1
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2
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�
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ew�
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The left eigenvector forC2(l ) is
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and the candidates for the left eigenvectory arePT
MLM

 
ew1

QX ew3

!

andPT
K LK

 
ew2

ew4

!

.

3.6.4 Computing the Kronecker's Canonical form using rank revealing

LU factorization

In this subsection, we derive an algorithm for de�ating the eigenvalue zero, using the rank

revealing LU factorization instead of the SVD or the QR factorization with column pivoting. We

will describe the �rst step in moe detail, and then formulate the algorithm.

Let A;B 2 Cn� n. Denote byni the size of a working matrix in stepi, andsi the defect of working

matrix in stepi.

1. Compute the rank revealing factorization ofA1;1 = A

QAA1;1PA = LAUA; (3.88)

and denotes1 = n1 � rank(A) = n� rank(A). Now, L� 1
A QAA1;1 =

 
A2

0s1� n

!

. Partition

L� 1
A QAB =

 
B2

B1

!

in compatible manner. Multiply the pencil(A� l B) by L� 1
A QA on

the left to get

L� 1
A QA(A� l B) =

 
A2 � l B2

l B1

!

: (3.89)

2. Compute the complete orthogonal decomposition ofB1

B1 = UBRBV �
B : (3.90)

The column rank ofB1 is s1, if the matrix pencil is regular, andB1VB =
�

B1;1 0s1;n� s1

�
.

Multiply the pencil (3.89) byVB from the right to get

L� 1
A QA(A� l B)VB =

 
A1;2 � l B1;2 A2;2 � l B2;2

l B1;1 0

!

: (3.91)

3. Let PB be the permutation matrix for permuting thes1 andn� s1 column blocks. De�ne

P1 = L� 1QA andQ1 = ZBPB. The �rst Jordan block for the eigenvalue0 is de�ated by the

following orthogonal transformation:

P1(A� l B)Q1 =

 
A2;2 � l B2;2 A1;2 � l B1;2

0 l B1;1

!

: (3.92)

Complete algorithm is described below
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Algorithm 3.6.1 De�ation of eigenvalue 0

1: j = 1; A1;1 = A; B1;1 = B; n1 = n;
2: Compute rank revealing LU:QAA1;1PA = LAUA
3: s1 = n1 � rank(A1;1)
4: while sj > 0 do

5: Partition matrices:
�

A j+ 1
0

�
= L� 1

A QAA j ; j ,
�

B j+ 1
B j

�
= L� 1

A QAB j ; j

6: Update and partition blocks in rowj
7: for i = 1 : j � 1 do

8:

�
Ai; j+ 1
Ai; j

�
= L� 1

A QAAi; j ;
�

Bi; j+ 1
Bi; j

�
= L� 1

A QABi; j ;

9: end for
10: Compute the complete orthogonal decompositionB j = UBRBV �

B
11: CompressB j to full column rank, permute and partition:
12:

�
A j+ 1; j+ 1 A j ; j+ 1

�
= A j+ 1VBPB;

�
B j+ 1; j+ 1 B j ; j+ 1

�
= B j+ 1VBPB;

13:
�

0 B j ; j
�

= B jVBPB
14: n j+ 1 = n j � sj , j = j + 1
15: Compute rank revealing LU:QAA j ; jPA = LAUA
16: sj = n j � rank(A j ; j )
17: end while

This algorithm results in

P(A� l B)Q =

0

B
B
B
B
B
B
B
B
@

A`+ 1;`+ 1 � l B`+ 1;`+ 1 A`;` + 1 � l B`;` + 1 : : : A2;`+ 1 � l B2;`+ 1 A1;`+ 1 � l B1;`+ 1

0 � l B`;` : : : A2;` � l B2;` A1;` � l B1;`

...
...

...
...

...

0 0 : : : � l B2;2 A1;2 � l B1;2

0 0 : : : 0 � l B1;1

1

C
C
C
C
C
C
C
C
A

:

(3.93)

The de�ation of in�nite eigenvalues can be done by the same algorithm, but with reversed pencil

B� l A.

Numerical examples

Experiment 1. intersection . Recall the case study example from Subsection 3.5.1. We used

Algorithm 3.6.1 to compute the structure of zero eigenvalues in the reversed problem. This

algorithm also de�ated16zero eigenvalues,7 in the �rst, 6 in the second,2 in the third and1 in

the fourth step of the process, just as Algorithm 3.5.1. The computed real eigenvalues are

l 1 = 2.476851749893558e+001;

l 2 = 2.476851768196165e+001;

l 3 = -5.581818959997490e+008 -1.628030389374511e+009i;

l 4 = -5.581818959997490e+008 +1.628030389374511e+009i:
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The following �gure shows the backward error for the computed �nite eigenvalues for all three

algorithms,quadeig, KVADeig, and LU basedKVADeig.

Figure 3.7: Backward errors for the �nite eigenvalues sorted by magnitude for the
intersection problem

Experiment 2. mobile_manipulator . In this example, Algorithm 3.6.1 de�ated8 zero eigen-

values in the reversed problem. There where4 steps of de�ation, and two zero eigenvalues were

de�ated in every step. The two �nite computed eigenvalues after the de�ation are

l 1 = -5.161621336216380e-002 -2.243476109085838e-001i;

l 2 = -5.161621336216380e-002 +2.243476109085838e-001i:

Figure representing the backward errors for �nite eigenvalues computed byquadeig, KVADeig,

andLU KVADeigis presented below.

Figure 3.8: Comparison of the backward errors for the �nite eigenvalues, sorted by magnitude,
for themobile_manipulator problem
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3.7 Numerical examples. Comparison of rank revealing de-

compositions

The goal of this section is to present the difference in computed results using different

rank revealing decompositions. The emphasize is not on the de�ation process, but on the

transformation of the pencil when no zero or in�nite eigenvalues are detected. We will use three

rank revealing decompositions:

• QR factorization with column pivoting (QR)

• QR factorization with column pivoting and initial sorting of rows so that (3.11) holds

(QRrs) (default inKVADeig)

• LU factorization with complete pivoting (LUcp).

In addition, we will illustrate the importance of rank determination in the �rst step of de�ation

process. Our algorithm offers two types of criteria for rank determination:

1. rank of matrixA is equal tok� 1, wherek is the �rst index for whichRk;k > t kAkF holds,

whereAP = QRis rank revealing factorization (F-norm);

2. rank of matrixA is equal tok� 1, wherek is the last index for whichjRk;kj=jRk� 1;k� 1j � t ,

whereAP = QRis rank revealing factorization, andt is prescribed threshold (drop-off).

It will be clear from all examples that component-wise backward error gives better insight

into the accuracy of computed solutions than the norm-wise backward error. This stresses the

importance of the techniques such as parameter scaling and diagonal balancing (advocated in

this chapter).

3.7.1 Example 1.cd_player .

This a example from NLEVP library [5]. It is a quadratic eigenvalue problem arising in the

study of a CD player control task. The dimension of the problem isn = 60; the matrixM is the

identity.

Original problem

We computed the eigenvalues for this problem using three different rank revealing decompo-

sitions in the de�ation process: the QR with column pivoting, the QR with complete pivoting

(presorting of rows followed by column pivoting), and the LU with complete pivoting. For the

last two we usedKVADeigimplementation, and for the �rst one we usedquadeig. The compu-

ted eigenvalues are sorted by magnitude in ascending order. The norm-wise and component-wise

backward errors forthe eigenvalues are given in Figures 3.9a and 3.9b.
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(a) Normwise backward errors (b) Componentwise backward errros

Figure 3.9: Comparison of the normwise and componentwise backward errors for the right
eigenpair for the problemcd_player

From Figure 3.9a we see that the normwise backward errors forKVADeigand LU based

KVADeigare similar, and the backward errors forquadeig are bit higher for the �rst60eigenva-

lues. However, the real difference is seen in the Figure 3.9b of component-wise backward errors.

Precisely, forquadeig, the error is equal to1 for most of the �rst60 eigenvalues. We explain

the reason for this below.

The matrixM is identity, so we do not have any transformation of the linearization pencil in the

de�ation process. However, when choosing eigenvector, we have two choices:x1 andK� 1x2,

wherex =

 
x1

x2

!

is the corresponding eigenvector for the linear pencil. Inquadeig, the system

K� 1x2 is solved using the computed rank revealing factorization of the matrixK. Next �gures

represent the structure of the matrixK and the corresponding rank revealing factorizations.

(a) spy(K) (b) spy(Q), QR (c) spy(R), QR (d) spy(Q), QRrs

(e) spy(R), QRrs (f) spy(L), LUcp (g) spy(U), LUcp

Figure 3.10:Sparsity structure of the matrixK and the corresponding components in the rank
revealing factorizations

In the case of the �rst60 eigenvalues inquadeig, the blockK� 1x2 is chosen because its

norm-wise backward error is smaller, however, solving the system using the QR factorization has

bigger component-wise error. It is clear from the �gures that the QR factorization does not inherit
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the sparsity of the original matrix, in contrast to the LU factorization. In our algorithm,K� 1x is

computed using the LU factorization. Together withintersection andmobile_manipulator

examples, this is another example where the norm-wise backward error can be misleading. In

this case,quadeig had access to the better solution, but the criteria for choosing the approximate

solution lead to the wrong one.

Reversed problem If we consider the reversed problem, the leading matrix will beK, so the

�rst step will be the reduction to upper triangular form of the matrixB in the linearization pencil.

Thereby, the rank revealing factorization from the previous paragraph will be used. Norm-wise

and component-wise backward errors in this case are presented in the Figures 3.11a and 3.11b.

(a) Normwise backward error (b) Componentwise backward error

Figure 3.11:Comparison of the normwise and backward errors for the right eigenpair for the
reversedcd_player problem

In this case, the component-wise backward errors are equally high for all eigenvalues when

the QR factorizations are used, because sparsity is disturbed in the �rst step of the algorithm.

However, when we use the LU factorization, the error is satisfactory.

There is the difference between the norm-wise backward errors as well, and this is due to

computation of the blockK� 1x, as in the original case.

3.7.2 Example 2. Scaleddirac .

We analyze another examples from the NLEVP library. It is a quadratic eigenvalue problem

that originates from the Dirac operator. The matrixM is identity, and the condition number of the

matrixK is 367:4304. There is no signi�cant difference between the methods either for original

or reversed problem. However, if we scale the original problem, to increase the condition of the

matrices, there is essential difference. Note that this creates a synthetic example and the goal is

to illustrate the importance of scaling.

We created diagonal matricesSL andSR of conditions108 and109, respectively. The equiva-

lent scaled quadratic problem is(l 2SLMSR+ l SLCSR+ SLKSR)x = 0. The singular values for

the matricesM andK are shown in Figures 3.12a, 3.12b.
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Chapter 3. Complete solution of the QEP

(a) Singular values ofM (b) Singular values ofK

Figure 3.12:Singular values of the coef�cient matricesM andK in the scaleddirac example

(a) Componentwise backward error (b) Normwise backward error

(c) Eigenvalues (d) Zoomed part of the spectrum

Figure 3.13: Comparison of the componentwise backward error, normwise backward errors,
and the spectrum for the scaleddirac problem

There is a difference in result depending on the rank determination. In the �rst case,quadeig

will de�ate 1 zero and1 in�nite eigenvalue, just as LU basedKVADeig, because it will be
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determined that the matricesM andK have rank79. In addition,KVADeigwill de�ate one

more zero and in�nite eigenvalue in the second step of the de�ation process. This results

in smaller norm-wise backward error in Figure 3.13b, compared to the other algorithms. In

the second case, when we change the rank determination criteria to "drop-off",KVADeigand

LU basedKVADeigwill not detect any zero or in�nite eigenvalues. By looking just the norm-

wise backward error, there is no big difference between the methods, however component-wise

backward error represents the difference very well.

To see the importance of row sorting before the QR factorization, we scale only the matrix

K so that the rows vary in norm, and we observe the reversed problem. There is a difference in

rank determination as well. The �rst criterion de�ates one in�nite eigenvalue, that is the rank

of M is declared as79. For the second criterion,M is declared regular matrix. The singular

values are presented in Figure 3.14. There is a difference in the component-wise error for rank

revealing factorizations as well. This is presented in Table 3.4.

Table 3.4:Rank revealing factorization error, scaled reverseddirac

Method Normwise error Componentwise error
LU complete pivoting 1.8958e-018 2.6949e-004
QR column pivoting 1.3928e-016 1.1128
QR row sorting 4.2503e-016 7.6146e-014

The following �gure shows the singular values of the scaled matrix

Figure 3.14:Singular values of leading coef�cient matrix in scaled reverseddirac example

Again, the component-wise backward error in Figure 3.15a gives better insight in the diffe-

rence and accuracy of the presented methods
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Chapter 3. Complete solution of the QEP

(a) Componentwise backward error (b) Normwise backward error

(c) Eigenvalues (d) Zoomed part of the spectrum

Figure 3.15: Comparison of the componentwise backward error, normwise backward errors,
and the spectrum for the scaled reverseddirac problem

3.7.3 Constrained least squares problem

Quadratically constrained least square problem

min
x

kAx� bk2
2; kxk2

2 = d2; (3.94)

can be solved by the following quadratic eigenvalue problem

(l 2I + 2l H + H2 � d � 2ggT)y = 0; (3.95)

whereH = ATA andg = ATb. We will consider the reversed problem of order100, so that

we can compare various factorizations in the de�ation process. The examplederiv2 is taken

from theRegularization Tools: A MATLAB package for Analysis and Solution of Discrete Ill-

Posed Problems. Version 4.1.In this example, the problem is the determination of the rank of
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3.7. Numerical examples. Comparison of rank revealing decompositions

the matrixH2 � d � 2ggT . LU KVADeigwill de�ate 917 in�nite eigenvalues, andKVADeigwill

de�ate total906+ 30+ 6+ 2+ 2+ 1 = 947in�nite eigenvalues. If the second criterion for rank

determination is used, then no in�nite eigenvalue will be detected. The singular values of the

leading coef�cient matrixM are presented in Figure 3.17.

There is signi�cant difference betweenquadeig and our methods, however the main diffe-

rence in rank determination is detected by the componentwise backward error.

(a) Componentwise backward error

(b) Normwise backward error

Figure 3.16: Comparison of the componentwise backward errors, and normwise backward
errors for thederiv2 problem

Figure 3.17:Singular values of the leading matrix coef�cient inderiv2 example
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Chapter 4

Complete solution of the quartic

eigenvalue problem

In this chapter we consider the polynomial eigenvalue problem of order4, i.e. thequartic

eigenvalue problem

(l 4A+ l 3B+ l 2C+ l D+ E)x = 0; (4.1)

whereA;B;C;D;E 2 Cn� n. A important application of the quartic eigenvalue problem, as

illustrated in §1.3.3, is in solving the Orr–Sommerfeld equation which appears in the analysis

of the stability of the Poiseuille �ow. Our goal is an ef�cient and numerically robust algorithm

for the complete solution of the problem (4.1).

The idea is to try to use the algebraic tool ofquadrati�cation introduced by De Terán, Dopico

and Mackey [17]. Quadrati�cation is a equivalence relation that allows us to reduce the quartic

problem (4.1) to an equivalent quadratic eigenvalue problem, which is then solved following the

development from the previous chapters. Moreover, in our proposed approach, we try to use

the original matrix coef�cients as much as possible. Also, we develop a test for the existence

of Jordan blocks for zero and in�nite eigenvalues, and develop an algorithm for the complete

determination of the structure of these eigenvalues.

The numerical experiments, presented in §4.5, show the power of our method in comparison

to the MATLAB's function for the computation of the polynomial eigenvalue problem,poyleig ,

and to thequadeig as well. For instance,polyeig completely fails to �nd the solution of the

quartic eigenvalue problem obtained from Orr–Sommerfeld equation of the dimensionn = 1000,

whereas our algorithm provides the solution with acceptable backward error.

4.1 Quadrati�cation

Let us �rst brie�y introduce the quadrati�cation [17], and the notions of unimodulary equi-

valent matrix polynomials, and spectrally equivalent matrix polynomials.
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Chapter 4. Complete solution of the quartic eigenvalue problem

De�nition 4.1. SupposeP andQ are two matrix polynomials of degreesg andh, respectively,

not necessarily of the same size.

• P andQ are said to be extended unimodularly equivalent, denotedP ^ Q, if for some

r;s � 0 we havediag(P; Ir ) � diag(Q; Is).

• P andQ are said to be spectrally equivalent, denotedP � Q, if P ^ Q andrevP ^ revQ.

Notice that unimodular equivalence corresponds to "being linearization", and spectral equi-

valence to "being strong linearization". This is clearer if we de�ne these notions in the terms of

the previous De�nition (4.1).

De�nition 4.2. Let P(l ) be an m� n matrix polynomial of degree g.

• A matrix pencilL(l ) is said to be a linearization ofP(l ) if L(l ) ^ P(l ). A linearization

is said to be strong if, in addition,revL(l ) ^ revP(l ). Equivalently, a pencilL(l ) is a

strong linearization for P(l ) if

L(l ) � P(l ):

• A quadratic matrix polynomialQ(l ), i.e. a polynomial of degree2, is said to be a

quadrati�cation of P(l ) if Q(l ) ^ P(l ). A quadrati�cation is said to be strong if, in

addition,revQ(l ) ^ revP(l ). Equivalently, a pencilL(l ) is a strong quadrati�cation

for P(l ) if

Q(l ) � P(l ):

We will be interested in the strong quadrati�cation because they preserve the structure of

both �nite and in�nite eigenvalues (Theorem 4.1. in [17]).

4.1.1 Companion form of grade2

Analogously to the linearization by companion form, the �rst and the second companion

form of grade 2 are introduced in [17] as follows. First, de�ne matrix polynomials

B1(l ) = l 2C+ l D+ E; (4.2)

B2(l ) = l 2A+ l B: (4.3)

The �rst companion form of grade 2 is de�ned as

C2
1(l ) =

 
B2(l ) B1(l )

� In l 2In

!

=

 
l 2A+ l B l 2C+ l D+ E

� In l 2In

!

= l 2

 
A C

0 In

!

+ l

 
B D

0 0

!

+

 
0 E

� In 0

!

:

(4.4)
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We will use the second companion form of grade2, because its structure is more convenient for

the de�ation process:

C2
2(l ) =

 
B2(l ) � In

B1(l ) l 2In

!

=

 
l 2A+ l B � In

l 2C+ l D+ E l 2In

!

= l 2

 
A 0

C In

!

+ l

 
B 0

D 0

!

+

 
0 � In

E 0

!

= l 2M + l C + K:

(4.5)

It can be proved that these quadrati�cations are strong in the sense of De�nition 4.2 (see [17]).

The quadratic eigenvalue problem (4.5) can be solved by a corresponding algorithm, based on

e.g. the second companion form linearization. In that case, the �nal matrix pencil of size4n� 4n,

that represents a linearization of the quartic problem 4.1, is

A � l B =

0

B
B
B
B
@

B 0n � In 0n

D 0n 0n � In

0n � In 0n 0n

E 0n 0n 0n

1

C
C
C
C
A

� l

0

B
B
B
B
@

� A 0n 0n 0n

� C � In 0n 0n

0n 0n � In 0n

0n 0n 0n � In

1

C
C
C
C
A

: (4.6)

By the same reasoning as before, we can conclude that the de�ation Algorithm 3.2.1 completely

determines the structure for zero and in�nite eigenvalues of the quartic problem. The key is that

the quadrati�cation (4.5) is strong, meaning that the partial multiplicities for these eigenvalues

are preserved. Moreover, the linearization (4.6) for the obtained quadratic problem is also strong,

hence the conclusion follows by transitivity.

Theorem 4.1. Algorithm 3.2.1 applied to pencil (4.6) completely determines the structure of

eigenvalue zero for quartic eigenvalue problem(l 4A+ l 3B+ l 2C+ l D+ E)x = 0.

4.2 Scaling

In order to equilibrate the norms for the coef�cient matrices in (4.1), we propose two types

of scalings, to be applied directly to the coef�cient matricesA;B;C;D andE. The �rst one is

tropical scaling, as described in §2.3.2, and the second one is a generalization of the Fan, Lin

and Van Dooren's scaling for the quadratic eigenvalue problem. Here, we use the result from

[4], which provides a unique minimizer of the coef�cient

max(1;maxi kAik2)2

min(kA0k2;kAkk2)
;

in the bound for the backward error of the matrix polynomial and the corresponding linearization.

In addition, the parameterd is de�ned as proposed in [14].
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Chapter 4. Complete solution of the quartic eigenvalue problem

4.2.1 Tropical scaling.

The corresponding tropical polynomial for the quartic problem reads

t p(x) = kAk2x4 � k Bk2x3 � k Ck2x2 � k Dk2x� k Ek2: (4.7)

For the computation of the tropical roots of (4.7) we use the algorithm provided in [61].

The maximal number of distinct tropical roots is4. Every roota i de�nes one set of scaling

parameters

gi = a i ; di = ( p(a i)) � 1; i = 1;2;3;4: (4.8)

Every set of the parameters improves the backward error for certain part of the spectrum, and the

other eigenvalues do not have to be computed as accurately. This is why, for this type of scaling,

the complete quartic eigenvalue problem would have to be solved four times, in order to deliver

all 4n eigenvalues with small backward errors. However, ifn is large, this is not very ef�cient,

especially because we are in fact solving the generalized eigenvalue problem of size4n four

times. Thus, this type of scaling is practical only in the case of problems of small dimensionn.

4.2.2 Fan, Lin, Van Dooren generalization scaling.

The second option is a generalization of the Fan, Lin and Van Dooren's scaling for the

quadratic eigenvalue problem. Forg, we choose

g = 4

s
kEk2

kAk2
; (4.9)

which is the optimalg for minimizing the factor

max(1;kAk2;kBk2;kCk2;kDk2;kEk2)2

min(kEk2;kAk2)
; (4.10)

in the backward error ratio bounds (2.26) and (2.27).

Ford, we choose

d =
4

kEk2 + kgDk2 + kg2Ck2 + kg3Bk2
: (4.11)

This scaling is used in all our experiments.

4.3 De�ation process

If the leading coef�cient matrixA has rankrA = rank(A) < n, then there are at leastn� rA

in�nite eigenvalues of the quartic eigenvalue problem (4.1). Similarly, if the coef�cient matrix

E has rankrE = rank(E) < n there are at leastn� rE zero eigenvalues. We want to remove those
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4.3. De�ation process

eigenvalues from the linearization pencil before calling the QZ algorithm. The �rst step would

is determination of the numerical rank by some rank revealing factorization. Let

APA = QARA; RA =

 
bRA

0n� rA;n

!

; (4.12)

EPE = QERE; RE =

 
bRE

0n� rE;n

!

: (4.13)

be the rank revealing QR factorizations forA andE. We would like to use the transformation

matrices from the de�ation process as inKVADeig, described in Section 3.5, applied to the

quadratic problem (4.5). These include the rank revealing factorizations of matricesM andK

of order 2n.

Consider the matrixM of order 2n from the quadrati�cation (4.5)

M =

 
A 0

C In

!

: (4.14)

From its structure, it is clear thatrank(M) = n+ rank(A), meaning that it is enough to determine

the singularity of the matrixA of ordern to determine the singularity ofM. Moreover, by

interchangingn� n block columns and rows we get

PMP =

 
0 In

In 0

!  
A 0

C In

!  
0 In

In 0

!

=

 
In C

0 A

!

: (4.15)

Now, we can use (4.12) to get the rank revealing decomposition of the matrixM.

 
In 0

0 Q�
A

!

PMP

 
In 0

0 PA

!

=

 
0 In

Q�
A 0

!

M

 
0 PA

In 0

!

=

 
In CPA

0 RA

!

: (4.16)

Finally, the rank revealing factorization ofM is given by

MPM = QMRM; QM =

0

@
0 QA

In 0

1

A ; PM =

0

@
0 PA

In 0

1

A ; RM =

0

@
� In � CPA

0 � RA

1

A :

(4.17)

Next, consider the matrixK of the quadrati�cation (4.5)

K =

 
0 In

E 0

!

: (4.18)

Again, we conclude thatrank(K) = n+ rank(E), that is, to check the singularity ofK of order

2n, it is enough to check the singularity of then� n matrixE. If we permute then� n column
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blocks we get

KP =

 
0 In

E 0

!  
0 In

In 0

!

=

 
In 0

0 E

!

: (4.19)

Hence, we can use (4.13) to determine the rank revealing decomposition of the matrixK

 
In 0

0 Q�
E

!

KP

 
In 0

0 PE

!

=

 
In 0

0 RE

!

: (4.20)

Finally, the rank revealing factorization of the matrixK is

KPK = QKRK; QK =

0

@
In 0

0 QE

1

A ; PK =

0

@
0 In

PE 0

1

A ; RK =

0

@
In 0

0 RE

1

A : (4.21)

However, notice that the permutation of the column blocks only ensures that the matrixRK is

upper triangular. If this structure is not important for the process, we can skip the permutation

step and just make the following transformation

 
In 0

0 Q�
E

!

K

 
PE 0

0 In

!

=

 
0 In

RE 0

!

: (4.22)

Now, we can use the de�ation process formKVADeigalgorithm. The �rst step is the determi-

nation of the ranks of the matricesA andE to determine whether there are zero and in�nite

eigenvalues. Of course, there can be more than one Jordan block for both of these eigenvalues,

and in that case we want to de�ate all of them, and not only the �rst block as inquadeig. We

will have a nice characterization for the existence of the Jordan blocks in terms of the matrices

of the original problem, as for the quadratic eigenvalue problem.

Again, as in theKVADeig, there are three standard cases: bothA andE regular; only one matrix

is singular; and bothA andE are singular.

Both matrices A and E regular. If both matrices are regular, we can use the factorization

(4.17) to reduce the matrixB from (4.6) to upper triangular form, since this is already the �rst

step of the QZ algorithm.

 
Q�

M 0

0 In

! ( 
C � In

K 0

!

� l

 
� M 0

0 � In

!)  
PM 0

0 In

!

=

0

B
B
B
B
@

0 DPA

0 Q�
ABPA

0 � In

� Q�
A 0

� In 0

0 EPA

02n

1

C
C
C
C
A

� l

0

B
@

� In � CPQ

0 � RA

02n

02n � I2n

1

C
A : (4.23)
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Only one matrix is singular. Assume �rst thatE is singular, meaning that there are at least

n� rE zero eigenvalues which must to be de�ated. If there is only one Jordan block of zero

eigenvalues, then only one step of de�ation is needed, and we can use the structure of the

linearization pencil to transform the matrixB to upper triangular form. This is done by the same

transformation matrices as in (3.40)

 
Q�

M 0

0 Q�
K

! ( 
C � In

K 0

!

� l

 
� M 0

0 � In

!)  
PM 0

0 QK

!

=

0

B
B
B
B
B
@

0 DPA

0 Q�
ABPA

0 � QE

� Q�
A 0

� In 0

0 REP�
EPA

02n

1

C
C
C
C
C
A

� l

0

B
B
@

� In � CPQ

0 � RA

02n

02n � I2n

1

C
C
A : (4.24)

In order to derive the condition for the existence of multiple Jordan blocks for zero eigenvalue,

we must consider different transformation, as in (3.66)

 
Q�

K 0

0 Q�
K

! ( 
C � In

K 0

!

� l

 
� M 0

0 � In

!)  
I2n 0

0 QK

!

=

0

B
B
B
B
B
B
B
@

B 0

Q�
ED 0

� I2n

0 � In

bREP�
E 0

0 0

02n

1

C
C
C
C
C
C
C
A

� l

0

B
B
@

� A 0

� Q�
EC � Q�

E

02n

02n � I2n

1

C
C
A : (4.25)

The de�ated pencil of order 3n+ rE reads

A22 � l B22 =

0

B
B
B
B
B
B
B
@

B 0

Q�
E;1D 0

Q�
E;2D 0

� In

� I rE

0 0

0 � In

bREP�
E 0

0n+ rE

1

C
C
C
C
C
C
C
A

� l

0

B
B
@

� A 0

� Q�
EC � Q�

E

0(2n)� (n+ rE)

0(n+ rE)� (2n) � In+ rE

1

C
C
A ;

(4.26)

whereQ�
E;1 = Q�

E(1 : rE; :) andQ�
E;2 = Q�

E(rE + 1 : n; :). The next step in the de�ation process

is to determine the rank of the matrixA22. From the structure of the matrix, we conclude that

the rank ofA22 is equal to 2n+ rE+ the rank of the n� n matrix

 
Q�

E;2D
bREP�

E

!

: (4.27)
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Therefore, the test for the existence of Jordan blocks for the quartic problem (4.1) is to determine

the rank of then� n matrix (4.27) which is de�ned in terms of the coef�cient matricesA andE

of the original problem.

Notice that, if the matrixA is rank de�cient, we can consider the reversed problem(m4E +

m3D + m2C+ mB+ A)x = 0, m= 1=l , and the corresponding truncated linearization pencil of

order 3n+ rA reads

A22� l B22 =

0

B
B
B
B
B
B
B
B
@

D 0

Q�
A;1B 0

Q�
A;2B 0

� In

� I rA

0 0

0 � In

bRAP�
A 0

0n+ rA

1

C
C
C
C
C
C
C
C
A

� l

0

B
B
@

� E 0

� Q�
AC � Q�

A

0(2n)� (n+ rA)

0(n+ rA)� (2n) � In+ rA

1

C
C
A ;

(4.28)

and the rank of matrixA22 is now 2n+ rA+ the rank of the n� n matrix

 
Q�

A;2B
bRAP�

A

!

: (4.29)

Finally, we can prove proposition analogous to Proposition (3.4) for quadratic case

Proposition 4.1. Assume that matrixE in the quartic pencill 4A+ l 3B+ l 2C+ l D + E has

rank rank(E) = rE < n. There exists more than one Jordan block for eigenvalue zero if

(ker(D) [ X ) \ ker(E) 6= f 0g; X = f y 2 Cn : Dy = z; z2 Im(E)g: (4.30)

Analogously, if the matrixA has rankrank(A) = rA < n, there are more than one Jordan block

for in�nite eigenvalue if

(ker(B) [ Y ) \ ker(A) 6= f 0g; Y = f y 2 Cn : By= z; z2 Im(A)g: (4.31)

Proof. From Theorem 4.1 we know that the partial multiplicities, and thus the dimensions of

Jordan blocks for a quartic eigenvalue problem can be obtained using Algorithm 3.2.1 for a

corresponding strong linearization 4.6. The very �rst step of the de�ation yields the pencil

(4.26). Now, if A22 is singular, we will have another Jordan block for the eigenvalue zero.

The rank of the matrixA22 can be determined by the rank of matrix
�

Q�
E;2D

bREPT
E

�
. This matrix is

rank de�cient if its kernel is nontrivial, that is ifker
�

Q�
E;2D

bREPT
E

�
= ker(QE;2D) \ ker( bREPT

E ) 6= f 0g.

Matrix QE;2 represents the basis for ker(E� ), and thus

ker

 
Q�

E;2C
bREPT

E

!

=
�

ker(D) [ (Im(D) \ ker(E� )? )
�

\ ker(E): (4.32)
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Denote the left and the right transformation matrices from (4.25) withP1 andQ1 respectively,

and the linearization pencil withA � l B = A11 � l B11. After the �rst de�ation step we have

P1(A11 � l B11)Q1 =

 
A22 � l B22 •

0 � l B11

!

: (4.33)

Compute the rank revealing factorization

 
Q�

E;2D
bREP�

E

!

PA22 = QA22RA22: (4.34)

If this matrix is singular, in order to de�ate additional zeros, the �rst step is to permute the rows

to get this matrix in the lower left corner of the matrixA22. This is done by the permutation

p =
�

1 : n+ rE 2n+ 1 : 3n n+ rE + 1 : 2n 3n+ 1 : 4n
�

(denote withP the corresponding

permutation matrix). Now, the transformation matrixbP2 is given by

bP2 =

 
I2n+ rE

Q�
A22

!

P; (4.35)

and the transformed pencil is

bP2A22 =

0

B
B
B
B
B
B
B
@

B 0

Q�
E;1D 0

0 � In

� In

� I rE

0 0

bRA22P
T
A22

0

0 0
0n� (n+ rE)

1

C
C
C
C
C
C
C
A

; bP2B22 =

0

B
B
B
B
@

� A 0

� Q�
E;1C � Q�

E;1

0n+ rE

0

�

In 0

4 N

1

C
C
C
C
A

:

(4.36)

To be able to de�ate additional zeros, we have to reduce the blocks� and4 to zero. This is

done by the complete orthogonal decomposition

bP2B22 = UBBRBBV �
BB; (4.37)

so thatbP2B22VBB =
�

B22 0
�

. Denote byP the permutation matrix for these column blocks.

Finally, the de�ated pencil is

bP2A22VBBP � l bP2B22VBBP =

 
A33 � l B33 �

0 � l B22

!

: (4.38)

Since we have lost the structure of the original linearization, the potential further de�ation

process is done by Algorithm 3.5.1 on the pencilA33 � l B33.
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Chapter 4. Complete solution of the quartic eigenvalue problem

Both matricesA and E are singular. When both matricesA andE are rank de�cient, and we

determined that there are no more Jordan blocks for zero and in�nite eigenvalues by computing

the numerical rank of block matrices
 

Q�
E;2D

bREP�
E

!

;

 
Q�

A;2B
bRAP�

A

!

; (4.39)

we can de�ate them in one step, as done inquadeig algorithm. The transformation matrices

would be
 

Q�
M 0

0 Q�
K

! ( 
C � In

K 0

!

� l

 
� M 0

0 � In

!)  
In 0

0 QK

!

=

0

B
B
B
B
B
B
@

0 D

0 Q�
AB

0 � QE

� Q�
A 0

� In 0

0 REP�
E

02n

1

C
C
C
C
C
C
A

� l

0

B
B
@

� In � C

0 � RAP�
A

02n

02n � I2n

1

C
C
A : (4.40)

Notice that, in terms of the quadratic problem, we haverM = n+ rA, andrK = n+ rE, so if we

want to make the partition (3.48) as before, we will have (in previous notation):

 
X11 X12

X21 X22

!

=

0

B
@

0n D(:;1 : rA) D(:; rA + 1 : n)

0rA;n Q�
A(1 : rA;1 : rA) Q�

A(1 : rA; rA + 1 : n)

0n� rA;n Q�
A(rA + 1 : n;1 : rA) Q�

A(rA + 1 : n; rA + 1 : n)

1

C
A ; (4.41)

 
X13 X14

X23 X24

!

=

0

B
@

0n � QE(:;1 : rE) � QE(:; rE + 1 : n)

� Q�
A(1 : rA; :) 0rA;rE 0rA;n� rE

� Q�
A(rA + 1 : n; :) 0n� rA;rE 0n� rA;n� rE

1

C
A ; (4.42)

�
X31 X32

�
=

 
� In 0n;rA 0n;n� rA

0rE;n bREPE(:;1 : rA) bREPE(:; rA + 1 : n)

!

; (4.43)

�
Y11 Y12

�
=

 
� In � C(:;1 : rA) � C(:; rA + 1 : n)

0rA;n � bRAPA(:;1 : rA) � bRAPA(:; rA + 1 : n)

!

: (4.44)

The rest of the process goes as in Subsection 3.3.2.

4.3.1 Backward error analysis for the de�ation process

In this section, we develop a backward error analysis for the �rst two steps of the de�ation

process, described in the previous section. The following proposition deals with the �rst step,

that is, the de�ation of the �rstn� rE zero eigenvalues.
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Proposition 4.2. Let

eA � l eB =

0

B
B
B
B
B
B
B
B
@

B 0

eX11 0

� In 0

0 � IerE

0 0

0 � In

eRE ePT
E 0

0n+ erE

1

C
C
C
C
C
C
C
C
A

� l

0

B
B
@

� A 0

� eY12 � bQT
E

02n� (n+ erE)

0(n+ erE)� 2n � In+ erE

1

C
C
A

(4.45)

be the computed linearization (4.25). Then it corresponds to exact reduced linearization of

a quartic pencill 4A+ l 3B+ l 2(C+ dC) + l (D + dD) + ( E + dE + DE), where, for alli =

1; : : : ;n,

kdC(:; i)k2 � eCkC(:; i)k2; kdD(:; i)k2 � eDkD(:; i)k2; kdE(:; i)k2 � eqrkE(:; i)k2; (4.46)

and the truncation error is

max
j= 1:n� k

k(DE) ePE(:;k+ j)k2 � t min
i= 1:k

k(E + dE) ePE(:; i)k2; (DE) ePE(:;1 : k) = 0n;k; (4.47)

with t is prescribed threshold parameter.

Proof: (i) It holds that eX11 = computed( eQ�
ED) = bQ�

E(D + dD). To estimatedD, we start

with the fact that

computed( eQ�
ED) = eQ�

ED+ D; jDj � eD j eQ�
EjjDj; 0 � eD � 2nu

Since eQE = ( I + E) bQE, kEk2 � eqr, we have

computed( eQ�
ED) = bQ�

E(I + E� )D+ D = bQ�
E(D+ E� D+ bQED) � bQ�

E(D+ dD)

with column-wise estimateskdD(:; i)k2 � (kE� k2 + eD n(1+ kE� k2))kD(:; i)k2 (derived as in

Proposition 3.3), and (4.46) follows witheD = ( eqr + eD n(1+ eqr)) .

(ii) By the same reasoning we geteY21 = bQE(C+ dC), wherekdC(:; i)k2 � eCkC(:; i)k2, and

eC = ( eqr + eM
p

n(1+ eqr)) :

(iii) Note that in this moment the backward error inE contains both the �oating point error

dE and the truncation errorDE analogous to (3.38), i.e.(E + dE + DE) ePE = bQE eRE. If we set

DSE = dE + DE, then we can represent the computed linearization as

0

@
In 0 0 0
0 bQ�

E 0 0
0 0 In 0
0 0 0 bQ�

E

1

A

( 
B 0n � In 0

D+ dD 0n 0n � In
0 � In 0n 0n

E+ DSE 0n 0n 0n

!

� l

 
� A 0n 0n 0n

� (C+ dC) � In 0n 0n
0n 0n � In 0n
0n 0n 0n � In

!) In 0 0 0
0 In 0 0
0 0 In 0
0 0 0 bQE

!

:
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�

The next step is computation of the rank revealing factorization of the block matrix

 
bQ�

E(D+ dD)
eRE ePT

E

!

PA22 = QA22RA22: (4.48)

For the computed factorsePA22; eQA22; eRA22 it holds that

" 
bQ�

E(D+ dD)
eRE ePT

E

!

+

 
D

E

!#

ePA22 = bQA22
eRA22; (4.49)

where 










 
D

E

!

(:; i)












2

� eqr












 
bQ�

E(D+ dD)
eRE ePT

E

!

(:; i)












2

: (4.50)

By an analogous procedure to the one in Subsection 3.5.2 we get the �nal estimate

kD(:; i)k2

kD(:; i)k2
� eqr

p
2max

�
(1+ eD) coŝ (ker(E)+ Im(D)) ; (1+ eqr)

kE(:; i)k2

kD(:; i)k2

�
;

kE(:; i)k2

kE(:; i)k2
� eqr

p
2max

�
(1+ eD) coŝ (ker(E)+ Im(D))

kD(:; i)k2

kE(:; i)k2
; (1+ eqr)

�
:

4.3.2 Eigenvector recovery

The right and the left eigenvectors of the original problem (4.1) and the �nal linearization

pencil (4.6) are related as follows. Letz 2 C4n andw 2 C4n be the right and left eigenvector

for the linearization, andx 2 Cn, y 2 Cn the right and left eigenvector for the original problem,

and l 2 C the corresponding eigenvalue. If we partitionz =
�

zT
1 zT

2 zT
3 zT

4

� T
andw =

�
wT

1 wT
2 wT

3 wT
4

� T
, wherewi ;zi 2 Cn; i = 1;2;3;4, we have

z=

0

B
B
B
B
@

z1

z2

z3

z4

1

C
C
C
C
A

=

0

B
B
B
B
@

l x

l 2(l A+ B)x

l (l A+ B)x

l Ex

1

C
C
C
C
A

; (4.51)

w =

0

B
B
B
B
@

w1

w2

w3

w4

1

C
C
C
C
A

=

0

B
B
B
B
@

l 3x

l 2x

l x

x

1

C
C
C
C
A

: (4.52)

For both the right and the left eigenvector there are four choices to recoverx andy. Namely,

for the right eigenvector we can choosez1; (l A+ B)� 1z2; (l A+ B)� 1z3 or E� 1z4. Notice that,

for the last three choices we have to solve the system of the equations in order to compute the
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wanted vector. Reconstruction of the left eigenvector is easier, though. We just choose one of

the block componentsw1;w2;w3 or w4.

Let ez2 Cn and ew 2 Cn be the computed right and left eigenvector for the linearization pencil

(4.6). Both right and left eigevectors will have4n elements if no de�ation occurred, otherwise the

number of elements will be 4n� d, where d is the total number of zero and in�nite eigenvalues

de�ated. 4n� d is also the dimension of the truncated pencileA � l eB = P(A � l B)Q which is

passed to the QZ algorithm for computation of �nite nonzero eigenvalues.

No de�ation occurred. The right and the left eigenvectors for the original linearization pencil

arez= Qez andw = PT ew. Now we choosex andy form the four choices. The criterion can be

the smallest backward error.

De�ation occurred. In order to be able to recover eigenvectors we must have the full4n vec-

tors for the transformed problem. For the right eigenvector this is easy; we just addd zeros to

theez, that isz= Q

 
ez

0d� 1

!

. However, in the case of the de�ationE and/orA is singular, so we

just take the �rstn block as the right eigenvector of the original problem to avoid solving the

system with a singular matrix.

Getting the he left eigenvector is more tricky. To obtain the full4n eigenvector for the lineariza-

tion, we �rst have to compute the missingd components ofew. Denote withew1 the eigenvector

of the truncated problem, and letew2 be the missing part. From

�
ewT

1 ewT
2

�
P(A � l B) =

�
ewT

1 ewT
2

�
 

eA� l eB X

0 Y

!

(4.53)

we conclude thatew2 = � ew�
1XY� 1. Now,w= PT ew, and we choose one of the4 block components

as a left eigenvector for the original problem.

The right eigenvectors for zero (in�nite) eigenvalues are computed as the lastn� rE (n � rA)

columns of orthogonal matrix from the QR factorization ofE� (A� ), and the left as the lastn� rE

(n� rA) columns ofQE (QA).

Remark 4.1. Recall the Remark 3.6, where we stated that the structure of any eigenvaluea

can be determined by the Algorithm 3.5.1 but with the shifted starting matrixA1;1 = A� a B.

Consider the linearization for the quartic eigenvalue problem (4.6). The shifted matrixA1;1 is of

form

A1;1 =

0

B
B
B
B
@

B 0 � I 0

D 0 0 � I

0 � I 0 0

E 0 0 0

1

C
C
C
C
A

� a

0

B
B
B
B
@

� A 0 0 0

� C � I 0 0

0 0 � I 0

0 0 0 � I

1

C
C
C
C
A

=

0

B
B
B
B
@

B+ a A 0 � I 0

D+ aC a I 0 � I

0 � I a I 0

E 0 0 a I

1

C
C
C
C
A

:
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Chapter 4. Complete solution of the quartic eigenvalue problem

The �rst step in the Algorithm 3.5.1 is to determine the rank ofA1;1. Similarly as in Remark 3.6,

we can conclude that the rank of the4n� 4n matrix A1;1 can be determined by the rank of the

n� n matrixa 4A+ a 3B+ a 2C+ a D+ E asrank(A) = 3n+ rank(a 4A+ a 3B+ a 2C+ a D+ E).

This follows from the following transformation

0

B
B
B
B
@

a 3I a I a 2I I

0 I 0 0

0 0 I 0

0 0 0 I

1

C
C
C
C
A

A1;1 =

0

B
B
B
B
@

a 4A+ a 3B+ a 2C+ a D+ E 0 0 0

D+ aC a I 0 � I

0 � I a I 0

E 0 0 a I

1

C
C
C
C
A

:

4.4 De�ation process inKVARTeigalgorithm

We will refer to our algorithm for the complete solution of quartic eigenvalue problem (4.1)

asKVARTeig. In this section we develop full de�ation algorithm depending on the number of

Jordan blocks that need to be de�ated for both zero and in�nite eigenvalues.

The �rst step is rank determination for the matricesA andE. Let rA = rank(A) andrE = rank(E).

We have three main cases

1. Both matrices A and E are regular, i.e. rA = rE = n. In this case there is no de�ation,

we just use the rank revealing factorization forM (4.17) to reduce the matrixB to upper

triangular form as in (4.23).

2. One of the matrices is singular.First assume thatrE < n. Then, before any de�ation

step, we determine the rank of the blockn� n matrix A22 :=

 
Q�

E;2D
bREP�

E

!

. However, if

the matrixA is singular, we will consider the reversed problem, and the matrixA22 will

be A22 :=

 
Q�

A;2B
bRAP�

A

!

. Nevertheless, the next step depends on the rank ofA22. In the

continuation of this step we will talk only about de�ation of the zero eigenvalue, because

the in�nite eigenvalues of our problem are the zero eigenvalues of the reversed problem.

2.1 Regular A22. If A22 is regular, there is just one Jordan block of zeros, and it is

de�ated as in (4.24), that is we also reduce the matrixB to upper triangular form.

2.2 Singular A22. In this case there is at least one more Jordan block for the zero eigen-

value. The �rst two blocks are de�ated using the structure of the linearization pencil,

as described in (4.25) and (4.36). At this point, we cannot use the structure of the

pencil any more, and thus we send the derived pencil to Algorithm 3.5.1 to check

whether there are more Jordan blocks and to de�ate them.

3. Both matricesA and E are singular. Again, before any transformations of the lineariza-

tion pencil, we must check whether there exist more Jordan blocks for the zero and the

138



4.4. De�ation process inKVARTeigalgorithm

in�nite eigenvalues. This is done by determining the rank of then� n matrices

 
Q�

A;2B
bRAP�

A

!

;

 
Q�

E;2D
bREP�

E

!

: (4.54)

After that, there are three possible outcomes

3.1 Both matrices in (4.54) are regular.In this case there is just one Jordan block of

both zero and in�nite eigenvalues, and they are de�ated by one transformation as in

(4.40).

3.2 Only one matrix in (4.54) is singular. This means that there are more than one

Jordan blocks for zero or in�nite eigenvalue. In either case, we de�ate two Jordan

blocks for the zero eigenvalue using the structure described in (4.25) and (4.36),

meaning that the reversed problem is considered if there are more Jordan blocks for

the in�nite eigenvalues. After that, the pencil is sent to Algorithm 3.5.1 to check

whether there are more Jordan blocks of zero and to de�ate them. Finally, when all

zeros are de�ated, we send the reversed truncated linearization pencil to Algorithm

3.5.1 to de�ate one Jordan block of the in�nite eigenvalues. We do not check the

rank for the number of in�nite eigenvalues, but we use the information that there are

exactlyn� rA, or n� rE if reversed pencil is considered, in�nite eigenvalues.

3.3 Both matrices in (4.54) are singular.In this case there is more than one Jordan

block for both zero and in�nite eigenvalues. Depending which total sum of the

dimensions of the �rst two Jordan blocks is greater, we consider original or the

reversed problem. In either case, we use the structure to de�ate two Jordan blocks

of zero eigenvalue. After that, the truncated pencil is sent to Algorithm 3.5.1 to

de�ate possible remaining Jordan blocks of zero eigenvalues. Finally, when all zeros

are de�ated, we send the reversed truncated linearization pencil to Algorithm 3.5.1

together with the information about the size of the �rst two Jordan blocks, for which

we know to exist, and need to be de�ated. Any additional Jordan blocks will be

determined by the algorithm.

At the end, we present the diagram for the decision three of the described algorithm
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APA = QARA

EPE = QERE

�
Q�

E;2D
bREP�

E

�
PA = QARA

�
Q�

A;2B
bRAP�

A

�
PB = QBRB

full deflation step
of 0 and infinite

both singular

full deflation of 0
one deflation step

for infinite

one singular

w.l.o.g, E

one step of
deflation

(0 and infinite)

both regular
both

singular

�
Q�

E;2D
bREP�

E

�
PA = QARA

full deflation
process

singular

One step of
deflationregular

only E singular

�
Q�

A;2B
bRAP�

a

�
PA = QARA

full deflation
process

singular

One step of
deflationregular

only A singular

Reduce B
to upper triangular

bo
th

re
gu

lar

Figure 4.1: Decision tree for the de�ation process inKVARTeig

4.5 Numerical experiments

In this section, we provide numerical examples that clearly illustrate the superiority of the

new proposed algorithm, as compared with the two state of the art methods, thepolyeig and

quadeig.

Experiment 1. We tested our algorithm for three examples from NLEVP benchmark library

for quartic eigenvalue problems:butterfly : n = 64; orr_sommerfeld : n = 64; andplanar

waveguide: n = 129.

We also computed the eigenvalues using the functionpolyeig from MATLAB, and the

quadeig. The maximal backward errors are given in Table 4.1:
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Table 4.1:Comparison of backward errors forpolyeig , quadeig andKVARTeig

polyeig quadeig KVARTeig
Problem minh maxh minh maxh minh maxh

butterfly 2.0432e-016 8.6189e-016 2.5525e-016 2.0389e-015 5.8418e-017 1.1377e-015
orr_sommerfeld 1.3618e-017 8.0176e-006 2.1743e-014 4.0733e-004 6.3789e-021 1.7600e-015
planar waveguide 1.6060e-016 3.0879e-012 4.9977e-016 2.0346e-009 4.3288e-016 1.7554e-013

From Table 4.1 we can conclude that our algorithm is convincingly better for th second

problem. In other two cases is either slightly better or there is no signi�cant difference between

the methods. It is interesting to notice thatquadeig algorithm has greater maximal backward

error in every example.

Experiment 2. In this experiment we present the power of our de�ation process. It is another

example from NLEVP library, so calledmirror , that originates from the calibration of cadioptric

vision system. The order isn = 9.

Both A andE matrices are rank de�cient, with the rankrE = rA = 2, which means that there

are at least7 zero and7 in�nite eigenvalues. They are de�ated by the de�ation process in

quadeig algorithm. The QZ algorithm founds an additional zero eigenvalue, and two more

in�nite eigenvalues.Polyeig identi�ed 2 zero eigenvalues, and9 in�nite eigenvalues. However,

our de�ation process found additional two zero and two in�nite eigenvalues, making the total

number of both zero and in�nite eigenvalues equal to 9.

The smallest nonzero real eigenvalue computed by thequadeig is -7.520795255755492e-014.

The seven smallest nonzero eigenvalues computed by thepolyeig are

l 1 = 2.658653684986126e-028 l 5 = -8.144083812492196e-016

l 2 = -3.730521707731879e-024 l 6 = -1.057366058524636e-015

l 3 = 4.343895348238823e-017 l 7 = -3.036244175050749e-014

l 4 = -4.135304334627443e-016

(4.55)

Figure 4.2: Norm-wise backward error for �nite nonzero eigenvalues,mirror
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Figure 4.2 presents (for all three algorithms) the backward errors for the �nite nonzero

eigenvalues, sorted by the magnitude.

The backward errors for the �rst seven �nite eigenvalues forpolyeig are of order10� 28

because they are small (4.55) and should be declared zero. It is clear form this �gure that by

just looking at the norm-wise backward error we cannot conclude thatpolyeig andquadeig

did not �nd all zero eigenvalues because the backward errors are satisfying. Therefore this

example shows the importance of checking whether there are more Jordan blocks for zero and

in�nite eigenvalue and then de�ating them. If we look at the structure of matricesA andE for

this particular problem, we see that their rank can be determined exactly because there are7

zero columns in both matrices. On the other hand, the block matrices (4.54) which are used to

determine the existence of more than one Jordan block for zero and in�nite eigenvalues also

have two zero columns each, and the rest9� 7 submatrices are well conditioned. Thus we can

conclude that our algorithm determined the accurate number of zero and in�nite eigenvalues.

Experiment 3: orr_sommerfeld of order 1000. Here, we speci�cally analyse the example

or_sommerfeld, but now with much higher dimension, namelyn = 1000. This means that

corresponding quadratic problem has dimension2000, and the corresponding generalized eigen-

value problem has dimension4000. When using MATLAB functionpolyeig , all computed

eigenvalues are of the form� Inf � Inf i . With our algorithm, the result depends on the rank

determination of the matrixA, as described in Section 3.7. If we use the �rst criterion (F-norm),

the rank is988, meaning that12 in�nite eigenvalues are de�ated. In the case of drop-off strategy,

the matrixA is not rank de�cient. The singular values of the matrixA are presented in Figure

4.3.

Figure 4.3: Singular values of leading
matrix coef�cientA, orr_sommerfeld

Figure 4.4: The ratios1(A)=s i(A)
u–machine precision

We also usequadeig algorithm to compute the eigenvalues of the corresponding quadrati�-

cation by the second companion form.1144in�nite eigenvalues are computed. We present the

computed �nite eigenvalues, and the corresponding norm-wise and component-wise backward

errors in Figures 4.6b, 4.5a, 4.5c.
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(a) Componentwise backward error inquadeig

(b) Componentwise backward error inKVARTeig

(c) Normwise backward error inquadeig

(d) Normwise backward error inKVADeig

Figure 4.5: Comparison of the normwise and componentwise backward errors for the �nite
right eigenpairs fororr_sommeferld example of ordern = 1000
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Once again we see the importance of careful rank determination. The component-wise

backward error from Figure 4.5 shows that the second rank determination criterion gives better

results.

(a) KVARTeig (b) quadeig

Figure 4.6: Computed �nite eigenvalues fororr_sommerfeld example of ordern = 1000
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Iterative methods

The objective of this section is the development of Arnoldi like methods for computation of

the part of a spectrum for quadratic eigenvalue problem. In particular, we are only interested to

�nd the prescribed numberk of eigenvalues and corresponding right eigenvectors with a given

property (for example, those of the largest magnitude, largest real part, closest to the real axis,

etc.). Usually, the number of the wanted eigenvaluesk is much smaller than the dimension of

the problemn.

As we saw in the previous Chapters 3 and 4, the �rst step in solving the polynomial eigen-

value problems is the linearization. After that, we use well developed methods for the linear

problem. However, a naive straightforward usage of these methods, without keeping in mind

that the original problem is nonlinear, can produce poor results.

In this chapter, we will show, with the examples, the problem that occurs when using the Ar-

noldi algorithm for the quadratic eigenvalue problem. We will propose several improvements of

the two level orthogonal Arnoldi algorithm. The main difference will be that the approximation

for the wanted eigenpairs is obtained from the projected quadratic problem, and not projected

linear problem. In addition, we will propose new shifts for restart for overdamped quadratic

eigenvalue problems, and demonstrate its bene�ts through the numerical examples. We will

propose a new selection method for starting vectors by approximating the original problem with

a proportionally damped problem.

In the second part of the chapter the Krylov–Schur algorithm for the linear eigenvalue pro-

blem is introduced. We discuss the Krylov–Schur algorithm for the quadratic eigenvalue pro-

blem, and generalize the4R procedure proposed in [11] when the TOAR algorithm is used to

build the starting factorization. The importance of the usage of arbitrary shifts is presented with

the numerical example.
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5.1 Arnoldi algorithm

Consider the linear eigenvalue problem

Hy = l y; (5.1)

whereH 2 CN� N. Instead of computing allN eigenpairs(l ;y), we want to �nd onlyk � N

eigenvalues with certain property, e.g. smallest absolute value, closest to the imaginary axis,

belonging to a givenW� C.

The idea is to �nd agoodk–dimensional subspace spanned by an orthonormalV 2 CN� k, in the

sense that it has a good information about the wanted part of the spectrum, and that is nearly

H–invariant. Then, we compute the eigenpairs for the smaller projected problem of orderk

(V � HV)
| {z }

2Ck� k

z= l z; (5.2)

and if (l ;z) is an eigenpair for the projected problem (5.2), then(l ;Vz) is an approximate

eigenpair for the original problem (5.1).

The goal of this Section is to explain, in more details, the Arnoldi type methods for �ndingV

that nearly spans the subspace corresponding to the wanted eigenvalues. Here,V is chosen as

the orthogonal basisVk =
�

v1 : : : vk

�
of the Krylov subspace

K k(H;v1) = spanf v1;Hv1; : : : ;Hk� 1v1g (5.3)

of orderk. The basis is computed using the Gramm-Schmidt orthogonalization process. The

algorithm is called Arnoldi algorithm and it is given below:

Algorithm 5.1.1 Arnoldi algorithm

1: v1 = v1=kv1k2
2: for j = 1 : k do
3: r j = Hv j
4: for i = 1 : j do
5: ti j = v�

i r j ;
6: r j = r j � viti j
7: end for
8: t j+ 1; j = kr jk

9: if t j+ 1; j = 0 then
10: ` = j; V = [ v1; : : : ;v` ]; T =

(ti j )(`+ 1)� ` ;
11: STOP
12: end if
13: vi+ 1 = r j

t j+ 1; j

14: end for
15: ` = k; V = [ v1; : : : ;vk]; T = ( ti j )(k+ 1)� k;

In akth step of Algorithm 5.1.1, we get the so called Arnoldi factorization

HVk = VkTk + rke
�
k; (5.4)

whereTk 2 Ck� k is upper Hessenberg, and the columns of the orthonormal matrixVk represent
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an orthonormal basis for the Krylov subspaceK k(H;v1).

Notice that, if the norm in the line 8 of the Algorithm 5.1.1 is zero, it means thatHV̀ = V̀ T̀ ,

or more precisely thatV̀ spans an invariant subspace forH, and the eigenvalues ofT̀ are the

eigenvalues ofH. Geometrically, it means thatr j is in the span of the previously computed

orthogonal vectorsv1; : : : ;v j � 1. This is called thebreakdown, and it is desirable for it to happen,

because then we know that we have found an invariant subspace ofH and the extracted spectral

data is error-free.

However, if the breakdown did not occur, then we can only use approximate eigenpairs forH of

the form(l ;Vkz) = : (l ;y) where(l ;z) is a computed eigenpair for the projected matrixTk of

orderk. The corresponding residual isr = Hy� l y, and its norm is

krk2 = kHy� l yk2 = k(HVk � VkTk)zk2 = krkk2je�
kzj: (5.5)

If we de�ne dH = � ry�

y� y we have that(l ;y) is an exact eigenpair of the matrixH + dH. Hence,

with suf�ciently small residual, we can consider the computation of(l ;y) as backward stable.

Moreover, this norm depends on the choice of the �rst vectorv1 and the following theorem says

when can we expect forkrkk to be equal to zero.

Theorem 5.1([63]). Let HVk � VKTk = rke�
k be ak-step Arnoldi factorization ofH, with Tk

unreduced, i.e.(Tk) i;i� 1 6= 0, i = 2; : : : ;k. Thenrk = 0 if and only ifv1 = Qy whereHQ = QR

with Q� Q = Ik and R upper triangular of order k.

In essence, Theorem 5.1 states that, if the starting vectorv1 is a linear combination of

k eigenvectors ofH, the breakdown will occur inkth step of the Arnoldi algorithm, i.e. an

invariant subspace of dimensionk will be found.

Since we are interested in the speci�c eigenvalues, we would like the starting vector to be a

linear combination of the corresponding (wanted) eigenvectors. Then, the eigenvalues of the

Hessenberg matrixTk would be exactly those that we are looking for. So the main question is,

how to de�ne a good starting vector when we do not know anything about the wanted part of the

spectrum. The original idea is to use thepolynomial �ltersand it was proposed by Saad in [59].

Suppose that the matrixH is diagonalizable, and letxi , i = 1; : : : ;N be the eigenbasis. Then, the

starting vectorv1 is represented in this basis as

v1 =
N

å
i= 1

xixi : (5.6)

Let the eigenvalues be enumerated so that the �rstk represent the wanted ones. Split the sum in

(5.6) in two parts

v1 =
k

å
i= 1

xixi +
N

å
i= k+ 1

xixi ;

so that the �rst sum belongs to the wanted eigenvectors. In order to obtain the wanted invariant
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subspace by using the Arnoldi algorithm, the �rst sum should prevail the second one (in vector

norm). Saad's idea is to de�ne a matrix functionf which is large on the wanted part of the

spectrum and small on the unwanted part. This matrix function is called polynomial �lter. Then,

if we apply it to our starting vector, we get

f (H)v1 =
N

å
i= 1

f (l i)xixi =
k

å
i= 1

f (l i)xixi +
N

å
i= k+ 1

f (l i)xixi : (5.7)

Thus, if we de�ne a new starting vector asf (H)v1, wheref is a polynomial �lter, our starting

vector will be better than the previous one.

In [59], Saad proposed to de�nef as polynomialps for which the minimum

min
p2Ps

max
l 2E

j p(l )j (5.8)

is achieved. This is dif�cult to solve for the arbitrary domainE. However, ifE = E(d;c;a) is an

ellipse with real centerd, foci d+ c, d � c and major semiaxisa, which contains the unwanted

eigenvalues then the best minimax polynomial is

ps(l ) =
Ts(( l � d)=c)
Ts(( l 1 � d)=c)

; (5.9)

whereTs is the Chebyshev polynomial of degreesof the �rst kind which can be computed using

the three–term recurrence

T1(l ) = l ; T0(l ) = 1;

Tn+ 1(l ) = 2l Tn(l ) � Tn� 1(l ); n � 1:

The following algorithm computeszi = pi(H)v0 which can be used to de�ne a new starting

vector in Arnoldi procedure

Algorithm 5.1.2 Chebyshev iteration

1: For givenz0, l 1 andE(d;c;a), computes1 = c
l 1� d , v1 = s1

c (H � dI )z0
2: for j = 1 : sdo
3: s j+ 1 = 1

2=s1� s j

4: zj = 2s j+ 1
c (H � dI )v j � s js j+ 1zj � 1

5: end for

The full process is as follows:

• build the Arnoldi factorization of orderm> k with the starting vectorv1.

• Compute the eigenvalues of he Hessenberg matrixTm. These are the approximations for

the eigenvalues ofH. Select thek wanted eigenvaluesl 1; : : : ; l k, with the corresponding

eigenvectorsx1; : : : ;xk.
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• Find an ellipseE(d;c;a) that contains the unwanted eigenvalues (ofTk). De�ne z0 =

å k
i= 1xi as a linear combination of the eigenvectors corresponding to the approximation of

the wanted eigenvalues. Use Algorithm 5.1.2 to obtainzs.

• De�ne new starting vectorv1 = zs=kzsk2.

• Repeat these steps until convergence.

The implicit realization of this process is proposed by Sorensen in [63] and it is described in the

next section.

5.1.1 Implicitly restarted Arnoldi (IRA)

Consider the linear �lter

f (H) = H � mI : (5.10)

If m is an eigenvalue ofH andxm is the corresponding eigenvector, we have thatf (H)xm =

0. Moreover, ifx is an arbitrary vector,f (H) applied onx will remove the direction of the

eigenvectorxm from x. Recall the idea of the polynomial �lter in (5.7). If, in addition, we de�ne

f (H) =
N

Õ
i= k+ 1

(H � l i I ); (5.11)

we get

f (H)v1 =
k

å
i= 1

f (H)xixi + 0;

that is, the directions of the unwanted eigenvectors in the representation ofv1 will be removed.

However, we do not have any information about the spectrum ofH, and thus we must use the

approximations ofl i to de�ne the �lter (5.10). The following �gure illustrates one example

of the �lter (5.10). The goal was to determine4 eigenvalues with the largest magnitude of the

matrix of ordern = 500 produced by MATLABs functionrand.

Figure 5.1: Polynomial �lter in the �rst restart of IRA iterations
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Sorensen [63] developed an implicit algorithm for applying this �lter to the starting vector

in the Arnoldi algorithm. The process goes as follows:

Building the starting factorization. As the �rst step, we build anmth order Arnoldi factori-

zation, wherem is larger than the number of the wanted eigenvaluesk:

HVm = VmTm+ rme�
m: (5.12)

For example, in MATLAB's implementation of Implicitly Restarted Arnoldi (IRA) algorithm,

eigs , the default value form is 3k.

Iterative part. Now, until convergence, repeat the following steps:

1. Compute the eigenvalues ofTm: The eigenvalues of the Hessenberg matrixTm represent

approximations for the eigenvalues of the original problem. However, amongm of them

we must choose thosek which best correspond to the wanted ones. The remainingm� k

eigenvalues are then used to de�ne the �lter of the form (5.11). These are referred to as

the unwanted eigenvalues. The partition in wanted and unwanted sets is done by sorting

the computed eigenvalues by the prescribed criteria. For example, if we want to �nd

the eigenvalues with the largest magnitude, we will just sort the approximations by the

magnitude and choosek largest as the wanted ones, and the rest as the unwanted.

Let l 1; : : : ; l m denote the eigenvalues ofTm, and assume that they are already enumerated

so thatl 1; : : : ; l k are the wanted ones.

2. Implicit QR iterations. The next step is an application ofp(= m� k) implicitly shifted

QR iterations onTm:

Tm � mi I = QiRi ; i = 1; : : : ; p; (5.13)

resulting inQ�
mTmQm = T+

m , whereQm = Qp : : :Q1. SinceTm is upper Hessenberg, the

matricesQi, i = 1; : : : ; p are upper Hessenberg as well, and the matrixQm is such that

Qm(i; j) = 0 for i > j + p, as a product ofp Hessenberg matrices.

If the matrixH is real, we want to keep the Arnoldi factorization real as well. In that case,

a complex shift appear as conjugate pairmj = a j + ib j , and one uses the double shift in

(5.13)

(Tm � a j I )2 + b2
j I = Q jRj : (5.14)

If we use the unwanted Ritz values (eigenvalues ofTm) as shiftsmi, they are called the

exact shifts.

3. Truncation to the factorization of order k: Multiply the factorization (5.12) byQm from

the right to get

HVmQm = VmQm(Q�
mTmQm) + rme�

mQm: (5.15)
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Now, sinceQm is product ofp orthogonal Hessenberg matrices the row vectore�
mQm =�

0 : : : 0 b b�
�

has its �rst nonzero element on thekth position. Thus, if we equate

the �rst k columns of the (5.15) we get thek order Arnoldi factorization

HV+
k = V+

k T+
k + r+

k e�
k; (5.16)

whereV+
k = VmQm(:;1 : k), T+

k = T+
m (1 : k;1 : k) andr+

k = VmQm(:;k+ 1)T(k+ 1;k) +

rmQm(m;k).

This is equivalent to Arnoldi decomposition obtained using the starting vectorv+
1

v+
1 =

m

Õ
j= k+ 1

(H � l j I )v1: (5.17)

4. Expand to factorization of order m: Using the Arnoldi process, without having to com-

pute �rst k steps, we obtain the Arnoldi factorization of orderm from (5.16).

Implicitly restarted Arnoldi algorithm is implemented ARPACK [48] which is used by the

MATLABs function eigs .

5.2 Second Order Arnoldi (SOAR)

Suppose that we want to use the Implicitly Restarted Arnoldi (IRA) algorithm for computing

a part of the spectrum for the quadratic eigenvalue problem

Q(l )x = ( l 2M + l C+ K)x = 0;

by applying it to the �rst companion form linearized problem

Hy =

 
� M� 1C � M� 1K

I 0

!

y = l y; y =

 
l x

x

!

: (5.18)

Already with the linearization the structure of the problem is lost, and, in addition, we use a

small linear problem for the approximation of the large nonlinear eigenvalue problem.

Example 5.1. Consider the quadratic eigenvalue problem(l 2M + l C + K)x = 0 with the

following coef�cient matrices

M =

0

B
@

1 0 0

0 1 0

0 0 1

1

C
A ; C =

0

B
@

7 � 5 0

10 � 8 0

0 0 � 1

1

C
A ; K =

0

B
@

0 1 0

� 2 3 0

0 0 � 1

1

C
A ;
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and the corresponding �rst companion form linearization

H =

0

B
B
B
B
B
B
B
B
B
@

� 7 5 0 0 � 1 0

� 10 8 0 2 � 3 0

0 0 1 0 0 1

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

1

C
C
C
C
C
C
C
C
C
A

: (5.19)

Suppose we want to compute the eigenvalue with the largest magnitude. We use MATLAB's

eigs (H;k), wherek = 1. If we de�ne that the maximal dimensionm of the Arnoldi factoriza-

tion is 3 (meaning thatp = 2 shifts are used at restart), the algorithm fails to �nd the wanted

eigenvalue in the �rst 300 restarts, producing the following error

??? Error using ==> eigs>processEUPDinfo at 1453 Error with ARPACK

routine dneupd: dnaupd did not find any eigenvalues to sufficient

accuracy.

We see that, even for the small problems the state of the art algorithm can fail.

One of the drawbacks of the direct application of the Arnoldi algorithm to the linearization

is that the computed Rayleigh quotient destroys the structure of the original quadratic problem.

The idea of Bai and Su in [3] is to �nd a good subspace, rich with the information of the wanted

part of the spectrum, and then use the smaller projected quadratic problem to approximate the

eigenvalues. Furthermore, if the projection is orthogonal, the structure, and therefore the speci�c

properties of the original problem, are preserved. For example, ifQ is an orthonormal basis for

such a subspace, then the projected pencil isl 2(Q� MQ)+ l (Q� CQ)+ ( Q� KQ) and if, e.g.,M

is Hermitian, then so isQ� MQ as well.

The proposed wanted subspace would be the basis of the generalized Krylov subspace, which

was introduced in [3]. In contrast to standard Krylov subspace, their de�nition depends on two

matrices of the same ordern and one vector.

De�nition 5.1. Let A;B 2 Cn and u2 Cn n f 0g. The sequence r0; r1; : : : ; rk� 1, where

r0 = u;

r1 = Ar0;

r j = Ar j � 1 + Br j � 2; j � 2

(5.20)

is called a second order Krylov sequence based on A;B and u. The space

Gk(A;B;u) = spanf r0; r1; : : : ; rk� 1g (5.21)

is called a second order Krylov subspace of order k.
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De�nition (5.1) is a generalization of the standard Krylov subspace de�nition, in the sense

thatGk(A;0;u) = K k(A;u).

The algorithm for computing an orthogonal basis of (5.21) is given below.

Algorithm 5.2.1 [P;Q;H;`] = SOAR(A;B;u;k)

1: q1 = u=kuk2
2: p1 = 0
3: for j = 1;2; : : : ;k do
4: r = Aqj + Bpj
5: s= q j
6: for i = 1;2; : : : ; j do
7: ti j = qT

i r
8: r = r � qiti j
9: s= s� piti j

10: end for
11: t j+ 1j = krk2
12: if t j+ 1j = 0 then

13: ` = j
14: P= [ p1; : : : ; p` ], Q= [ q1; : : : ;q` ], T =

(ti j )(`+ 1)� `
15: STOP
16: end if
17: q j+ 1 = r=t j+ 1j
18: p j+ 1 = s=t j+ 1j
19: end for
20: ` = k
21: P = [ p1; : : : ; pk], Q = [ q1; : : : ;qk], T =

(ti j )(k+ 1)� k

After k steps of Algorithm 5.2.1, we get the second order Arnoldi factorization

AQk + BPk = QkTk + qk+ 1eT
k tk+ 1;k; (5.22)

Qk = PkTk + pk+ 1eT
k tk+ 1;k; (5.23)

whereQk has orthogonal columns and it represents the basis for the second order Krylov sub-

space of orderk; Tk is upper Hessenberg, andPk contains auxiliary vectors. The factorization

(5.22)-(5.23) can be also written in compact form

H

 
Qk

Pk

!

=

 
A B

I 0

!  
Qk

Pk

!

=

 
Qk

Pk

!

Tk +

 
qk+ 1

pk+ 1

!

eT
k tk+ 1;k: (5.24)

This is similar to the Arnoldi factorization (5.4), except that the block matrix
�

Qk
Pk

�
is not

orthogonal.

To further explore the connection between the Arnoldi and the second order Arnoldi factori-

zation, we make a distinction between the two key events: de�ation and breakdown, which are

associated with the norm in line 11 in Algorithm 5.2.1 being zero.

In the Arnoldi Algorithm 5.1.1, we concluded that breakdown means that the current vector

r j is in the span of the previously computed vectors, implying that we have found an invariant

subspace. This is regarded as a good thing. However, in the SOAR procedure, the vectorsr j in

(5.20), which are being orthogonalized, depend on two previous vectors. Thus, when in thejth

step we get that the norm in line 11 is equal to zero, we can conclude thatr j is in the span of

the previously computed vectors, i.e.Gj � 1(A;B;u) = Gj (A;B;u). However, this does not have
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to be true for all subsequent vectorsrk, k > j. This means that, when this happens, we cannot

say that we have found an orthogonal basis for the second order Krylov subspace. To be able

to claim this, we have to check whether the block vector
� r j

r j � 1

�
is in the span of the previously

computed( r i
r i� 1 ), i = 1; : : : ; j � 1. If that is the case, then we call it a breakdown and we know

that we found the basis. If not, we call it de�ation and the process continues. The full algorithm,

which deals with the de�ation phenomena is given below:

Algorithm 5.2.2 [P;Q;H;`] = SOAR(A;B;u;k)

1: q1 = u=kuk2
2: p1 = 0
3: for j = 1;2; : : : ;k do
4: r = Aqj + Bpj
5: s= q j
6: for i = 1;2; : : : ; j do
7: ti j = qT

i r
8: r = r � qiti j
9: s= s� piti j

10: end for
11: t j+ 1j = krk2
12: if t j+ 1j = 0 then
13: if s 2 spanf pi ji : qi = 0;1 � i � jg

then
14: breakdown

15: ` = j
16: P = [ p1; : : : ; p` ], Q = [ q1; : : : ;q` ],

T = ( ti j )(`+ 1)� `
17: else
18: de�ation
19: t j+ 1j = 1; q j+ 1 = 0; p j+ 1 = s
20: end if
21: else
22: q j+ 1 = r=t j+ 1j
23: p j+ 1 = s=t j+ 1j
24: end if
25: end for
26: ` = k
27: P = [ p1; : : : ; pk], Q = [ q1; : : : ;qk]
28: T = ( ti j )(k+ 1)� k

Now, in [3], Bai and Su proved the following theorem, which gives the connection between

the SOAR and the Arnoldi algorithm.

Theorem 5.2([3]). The SOAR procedure with the matricesA andB, and the starting vectoru

breaks down at a certain stepj if and only if the Arnoldi procedure with the matrix
�

A B
I 0

�
and

the starting vector( u
0n ) breaks down at the same step j.

It is instructive to note here that, when the breakdown occurs in the SOAR algorithm, the

matrix
�

Q j
Pj

�
spans an invariant subspace for the matrix

�
A B
I 0

�
, but it is not an orthonormal basis,

and we know that the computation of a nonorthonormal basis may not be a numerically stable

process.

To see an application for solving the partial quadratic eigenvalue problem, we de�neA =

� M� 1C andB = � M� 1K. Now, the matrix
�

A B
I 0

�
represents the �rst companion form lineari-

zation for the quadratic eigenvalue problem. Compute the orthogonal basisQk for the second

order Krylov subspaceGk(A;B;u). To �nd an approximation for the eigenpairs we now compute

the eigenvalues of the smaller projected problem of orderk:

(l 2 (Q�
kMQk)| {z }
= :Mk

+ l (Q�
kCQk)| {z }
= :Ck

+( Q�
kKQk)| {z }
= :Kk

)z= 0: (5.25)
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Notice that the structure of the original quadratic eigenvalue problem is preserved, for example,

if M, C andK are Hermitian so areMk;Ck andKk as well. We will see later that this will be an

important property for de�ning a new way of choosing the shifts for the quadratic eigenvalue

problem with certain property.

5.3 Two level orthogonal Arnoldi factorization

As we mentioned before, the SOAR algorithm can be interpreted as an algorithm for �nding

a nonorthogonal basis for the Krylov subspaceK k(H;v), whereH is of the form (5.24), and

uT =
�

vT 0n

�
. Therefore, the SOAR algorithm has tendency to be numerically unstable ([49]).

This is why Lu, Su and Bai [49] developed the Two level Orthogonal Arnoldi (TOAR) procedure,

which preserves the orthogonality of the block matrix
�

Qk
PK

�
as well.

In order to develop the TOAR procedure, a slightly modi�ed de�nition of the second order

Krylov subspace is introduced. Here, the second order Krylov subspaceGk(A;B; r� 1; r0) depends

on two starting vectors of ordern, and it is a generalization of (5.21) in the sense that in the case

of De�nition 5.1, r� 1 is always a null vector.

De�nition 5.2. LetA;B 2 Cn� n andr� 1; r0 2 Cn such that
�

rT
� 1 rT

0

� T
6= 0. Then the sequence

r� 1; r0; r1; : : : ; rk with

r j = Ar j � 1 + Br j � 2; j � 1 (5.26)

is called a second order Krylov sequence based on A;B;r� 1 and r0. The subspace

Gk(A;B; r� 1; r0) = spanf r� 1; r0; : : : ; rk� 1g (5.27)

is called a second order Krylov subspace of order k.

Consider the second order Krylov subspaceGk(A;B; r� 1; r0), and letQk be its orthogonal

basis. Furthermore, letK k(H;v) be the standard Krylov subspace, withH 2 C2n� 2n as in (5.24)

andv =
� r0

r� 1

�
, andVk its orthogonal basis. From the de�nition of the sequence (5.26) it holds

K k(H;v) = spanf v;Hv; : : : ;Hk� 1vg = span

( 
r0

r1

!

;

 
r1

r0

!

; : : : ;

 
rk� 1

rk� 2

!)

: (5.28)

Now,

spanf Vk(1 : n; :)g = spanf r0; r1; : : : ; rk� 1g; (5.29)

spanf Vk(n+ 1 : 2n; :)g = spanf r� 1; r0; : : : ; rk� 2g; (5.30)

that is

spanf Qkg = spanf Vk(1 : n; :);Vk(n+ 1 : 2n; :)g: (5.31)
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This connection can be written as

Vk =

 
Vk(1 : n; :)

Vk(n+ 1 : 2n; :)

!

=

 
QkUk;1

QkUk;2

!

: (5.32)

Therefore, the basisQk can be computed fromVk using the rank revealing QR factorization of

eitherVk(1 : n; :) or Vk(n+ 1 : 2n; :). Without loss of generality we can assume thatVk 2 C2n� k.

However, the number of columns ofQk 2 Cn� hk can be smaller thanhk < k, which would

correspond to the de�ation.

Instead of building the Arnoldi factorization for the �rst companion form linearization and

then computing the QR factorization to obtain the basis for the second order Krylov subspace,

TOAR computesQk by maintaining the orthogonality of the basis for the standard Krylov

subspace. This is why it is called two level orthogonal. One Gram-Schmidt process is used to

compute orthogonal basisQk and another forVk. The full algorithm is presented below.

Algorithm 5.3.1 [Qk;Uk;1;Uk;2;Hk] = TOAR(A;B;r� 1; r0;k)

1:
�
r� 1 r0

�
= QX (Rank revealing QR fac-

torization,h1 is the rank)

2: g =










�
r0

r� 1

� 








2
3: Q1 = Q, U1;1 = X(:;2)=g, U1;2 = X(:;1)=g.

4: for j = 1 : k� 1 do
5: r = A(Q jU j ;1(:; j)) + B(Q jU j ;2(:; j))
6: for i = 1 : h j do
7: si = qT

i r
8: r = r � siqi
9: end for

10: a = krk2
11: s= [ s1; : : : ;sh j ]

T , u = U j ;1(:; j)
12: for i = 1 : j do
13: ti j = U j ;1(:; i)Ts+ U j ;2(:; i)Tu
14: s= s� ti jU j ;1(:; i), u = u� ti jU j ;2(:; i)
15: end for

16: t j+ 1; j = ( a 2 + ksk2
2 + kuk2

2)1=2

17: if t j+ 1; j = 0 then
18: stop (breakdown)
19: end if
20: if a = 0 then
21: h j+ 1 = h j (de�ation)
22: Q j+ 1 = Q j ,U j+ 1;1 =

�
U j ;1 s=t j+ 1; j

�
,

U j+ 1;2 =
�
U j ;2 u=t j+ 1; j

�

23: else
24: h j+ 1 = h j + 1
25: Q j+ 1 =

�
Q j r=a

�

26: U j+ 1;1 =
�

U j ;1 s=t j+ 1; j
0 a =t j+ 1; j

�

27: U j+ 1;2 =
�

U j ;2 u=t j+ 1; j
0 0

�

28: end if
29: end for

Remark 5.1. The Arnoldi algorithm, as well as SOAR, and TOAR use the Gramm–Schmidt

orthogonalization process. However, in �nite precision arithmetic this procedure does not have

to produce numerically orthogonal vectors. To insure the numerical orthogonality, for example

in Algorithm 5.3.1, after thea = krk2 is computed, one should check ifa � t kA(Q jU j ;1(:

; j)) + B(Q jU j ;2(:; j))k2, for the threshold parametert � 1. If the inequality holds, additional

orthogonalization ofr againstQ j is performed. This procedure is known as the twice–is–enough

algorithm [57].
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After k steps of Algorithm 5.3.1 we get the TOAR factorization

 
A B

In 0n

!  
QkUk;1

QkUk;2

!

=

 
QkUk;1

QkUk;2

!

Tk + rke
T
k tk+ 1;k; (5.33)

where

rk =

 
Qk(s=tk+ 1;k) + qk+ 1(a =tk+ 1;k)

Qk(u=tk+ 1;k)

!

;

if no de�ation occurred in the last step, and

rk =

 
Qk(s=tk+ 1;k)

Qk(u=tk+ 1;k)

!

;

otherwise. Numerical stability of the Algorithm 5.3.1 is proved in [49].

5.3.1 Implicitly restarting the TOAR procedure

In this subsection we give a review of the implicit restarting procedure for the TOAR algo-

rithm analogous to the implicitly restarted Arnoldi. That is, we want to apply the polynomial

�lter of the form

f (H) =
p

Õ
i= 1

(H � mi I ); (5.34)

to the starting block vector
� r0

r� 1

�
, wheremi, i = 1; : : : ; p are the shifts which are determined in

some prescribed manner. Since the factorization (5.33) is also an Arnoldi factorization for the

matrix H, we can modify the process described in Subsection 5.1.1. Suppose that we have a

TOAR factorization of orderm> k, and we want to truncate it to the orderk. First, we compute

p steps of the shifted QR factorization onTm with the given shiftsm1; : : : ;mp to get

Tm = VT+
m V � : (5.35)

T+
m is again upper Hessenberg, andV is orthogonal withVi; j = 0 for i > j + p. Multiply the

decomposition (5.33) withV from the right to get

 
A B

I 0

!  
QmUm;1V

QmUm;2V

!

=

 
QmUm;1V

QmUm;2V

!

V � TmV + rmeT
mVtm+ 1;m: (5.36)

Now, the truncated factorization is

 
A B

I 0

!  
QmU+

k;1

QmU+
k;2

!

=

 
QmU+

k;1

QmU+
k;2

!

T+
k + r+

k eT
k t+

k+ 1;k; (5.37)
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whereU+
k;1 = Um;1V(:;1 : k);U+

k;2 = Um;2V(:;1 : k);T+
k = T+

m (1 : k;1 : k), and

s+ = Um;1V(:;k+ 1)T+
m k+ 1;k+ stm+ 1;mV(m;k); (5.38)

a + = a tm+ 1;mV(m;k); (5.39)

u+ = Um;2V(:;k+ 1)T+
m (k+ 1;k)+ utm+ 1;mV(m;k); (5.40)

t+
k+ 1;k =

q
(ku+ k2 + ks+ k2 + ( a + )2): (5.41)

However, we are not done yet. Notice that (5.37) is not a TOAR factorization becauseQm still

hashm � m+ 1 columns and it does not represent the basis of the blocksQmU+
k;1 andQmU+

k;2.

To make it a legitimate TOAR factorization we compute the compact SVD factorization, as

proposed in [65]  
U+

k;1 s+ =t+
k+ 1;k U+

k;2 u+ =t+
k+ 1;k

0 a + =t+
k+ 1;k 0 0

!

= PSG� ; (5.42)

P 2 Chm+ 1� hk+ 1, S 2 Chk+ 1� hk+ 1 andG =
�

G1 G2

�
2 Chk+ 1� ((k+ 1)+( k+ 1)) . The rankhk+ 1 is at

leastk+ 2. Now, the �nal factorization, written in compact form, of orderk is

 
A B

I 0

!  
Q+

k+ 1U
+
k+ 1;1

Q+
k+ 1U

+
k+ 1;2

!

=

 
Q+

k+ 1U
+
k+ 1;1

Q+
k+ 1U

+
k+ 1;2

!

bT+
k ; (5.43)

whereQ+
k+ 1 = Qm+ 1P, U+

k+ 1;1 = SG1 andUk+ 1;2 = SG2. The updating algorithm is presented in

Algorithm 5.3.2.

Algorithm 5.3.2 [Qm;Um;1;Um;2;Hm] = TOAR_Update(A;B;Qk+ 1;Uk+ 1;1;Uk+ 1;2;Tk;m)

1: for j = k+ 1 : mdo
2: r = A(Q jU j ;1(:; j)) + B(Q jU j ;2(:; j))
3: for i = 1 : h j do
4: si = qT

i r
5: r = r � siqi
6: end for
7: a = krk2
8: s= [ s1; : : : ;sh j ]

T , u = U j ;1(:; j)
9: for i = 1 : j do

10: ti j = U j ;1(:; i)Ts+ U j ;2(:; i)Tu
11: s= s� ti jU j ;1(:; i), u = u� ti jU j ;2(:; i)
12: end for
13: t j+ 1; j = ( a 2 + ksk2

2 + kuk2
2)1=2

14: if t j+ 1; j = 0 then
15: stop (breakdown)

16: end if
17: if a = 0 then
18: h j+ 1 = h j (de�ation)
19: Q j+ 1 = Q j ,U j+ 1;1 =

�
U j ;1 s=t j+ 1; j

�
,

U j+ 1;2 =
�
U j ;2 u=t j+ 1; j

�

20: else
21: h j+ 1 = h j + 1
22: Q j+ 1 =

�
Q j r=a

�

23: U j+ 1;1 =
�

U j ;1 s=t j+ 1; j
0 a =t j+ 1; j

�

24: U j+ 1;2 =
�

U j ;2 u=t j+ 1; j
0 0

�

25: end if
26: end for
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5.4 TOAR revisited

In this subsection we present a new interpretation of the de�ation and breakdown phenomena

in the TOAR algorithm, in the terms of the invariant pair for the quadratic eigenvalue problem.

We present two interpretations of the TOAR algorithm, namely as a linear solver, and as a

quadratic solver. In this regard, we propose several improvements of the restarting procedure

presented in §5.3.1.

5.4.1 De�ation and breakdown

Recall the de�ning relation for an invariant pair(X;S) 2 Cn� k � Ck� k (see Section 1.1):

MXS2 + CXS+ KX = 0: (5.44)

Now, assume that in thekth step of the Algorithm 5.3.1 we havetk+ 1;k = 0. It means that

AQkUk;1 + BQkUk;2 = QkUk;1Tk; (5.45)

QkUk;1 = QkUk;2Tk: (5.46)

If we substitute (5.46) into (5.45), and use the fact thatA = � M� 1C andB = � M� 1K we get

MQkUk;2T2
k + CQkUk;2Tk + KQkUk;2 = 0; (5.47)

or,

MQkUk;1T2
k + CQkUk;1Tk + KQkUk;1 = 0; (5.48)

from Uk;2 = Uk;1T � 1
k . This means that(QkUk;1;Tk) and(QkUk;2;Tk) are invariant pairs for the

quadratic problem. On the other hand,tk+ 1;k = 0 implies

H

 
QkUk;1

QkUk;2

!

=

 
QkUk;1

QkUk;2

!

Tk; (5.49)

meaning that we have found an invariant pair
��

QkUk;1
QkUk;2

�
;Tk

�
for the linear problem. If de�ation

occurred, the matricesQkUk;1 andQkUk;2 are not of full rank, which means that there is linear

dependence between eigenvectors for the eigenvalues ofTk. However, the block matrix
�

QkUk;1
QkUk;2

�

is always orthogonal of full rank.

Remark 5.2. From the reasoning above we can conclude that the TOAR algorithm can be

interpreted as an algorithm for computing the minimal invariant pair for the quadratic pencil, i.e.,

if the breakdown occurred at thekth step of the algorithm,(QkUk;1;Tk) and(QkUk;2;Tk) satisfy

(5.44), and
�

QkUk;1
QkUk;2

�
=

�
QkUk;2Tk
QkUk;2

�
is of full rank.

159



Chapter 5. Iterative methods

We want to use TOAR algorithm to compute a part of the spectrum of the quadratic eigen-

value problem. However, instead of approximating the eigenvalues of quadratic problem with

eigenvalues of smaller linear problem we would like to use the basisQk for the second order

Krylov subspace for de�ning the smaller projected problem (5.25), and then solve the smaller

quadratic problem with the same structure.

There are two ways to look at the TOAR algorithm. The �rst way is that the TOAR procedure

(5.3.1) computes a basis for the standard Krylov subspaceK k(H;v) and by implicitly restarting

it will be closer to an invariant subspace of the matrixH. On the other hand, we use it to

compute an orthogonal basis for the second order Krylov subspaceGk(A;B;r� 1; r0), and, by

implicit restart, we want it to �nd a better subspace that will be used to project our quadratic

problem. More precisely, the implicitly restarted TOAR algorithm is both a linear solver, and a

quadratic solver. To construct a robust algorithm, we must keep in mind the speci�cs of both of

these problems, and adjust our algorithm to it, always keeping in mind that the main goal is to

solve the quadratic eigenvalue problem.

5.4.2 TOAR as a linear eigenvalue problem solver

The key improvement of the TOAR algorithm over SOAR is that the basis for the Krylov

subspaceK k(H;v) remains orthogonal as well, thus making the process numerically stable.

As we explained before, the upper Hessenberg matrix represents an approximation for the

invariant pairs for both the quadratic problem and the corresponding linear problem. Although

we use the projected quadratic problem to compute the approximation, the procedure to obtain

the basis is still done on the linear problem, and breakdown means that we have found an

invariant pair for the linear problem with the matrixH. However, we already discussed that the

backward error for computed eigenpairs can be suf�ciently small for the linearization, but much

higher for the original problem. A solution to this problem is offered in thequadeig algorithm,

which scales the matrices before using the algorithms for the linear problem.

Remark 5.3. The scaling is also important in the TOAR algorithm, because if the norms of the

coef�cient matrices are not equilibrated, the breakdown will occur before we �nd a good enough

approximation for the quadratic problem.

This is why, as a �rst step, we propose scaling as described in Subsection 3.3.1.

5.4.3 TOAR as a quadratic solver

Choice of the approximation for the eigenpairs. The �rst exploitation of the fact that we are

solving quadratic eigenvalue problem is that the approximation is obtained from the projected

problem

(l 2(Q�
kMQk) + l (Q�

kCQk) + ( Q�
kKQk))z= 0: (5.50)
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For the solution of this small QEP we use ourKVADeigalgorithm described in the Section 3.5.

It is important to solve this small problem correctly for it to be a better approximation for the

original problem.

Eigenvector re�nement. During the restarts, the subspace spanned byQk can have better

information, however the approximate eigenvectors do not necessarily converge. This is why Jia

proposed the eigenvector re�nement in [45]. Letq be the computed eigenvalue of (5.50). Then

the corresponding vectorz is computed to minimize the residual:

z= arg min
z2Ck

kzk2= 1

k(q2M + qC+ K)Qkzk2: (5.51)

Notice that (5.51) involves the original matrices, and thatQkz represents an approximation for

an eigenvector of the original problem. The proposed procedure for computingz in (5.51) is via

the eigenvector of the matrixBk

Bk = X�
k Xk = ( q2MQk + qCQk + KQk)

� (q2MQk + qCQk + KQk); (5.52)

associated with the smallest eigenvalue. It is important to underline the following facts regarding

this procedure. First, as the process converges,Xk becomes increasingly ill-conditioned. The

condition number isk2(Bk) = k2(Xk)2. Secondly, because of ill-conditioning, there is no gua-

rantee that the eigenvalue algorithm will compute the smallest eigenvalue and the corresponding

eigenvector ofBk suf�ciently accurately.

As an alternative to Jia's approach, [24] proposes another procedure which does not use the

matrixBk. It uses the QR factorization

�
MQk CQk KQk

�
= QR; R=

0

B
B
B
B
@

R11 R12 R13

0 R22 R23

0 0 R33

0 0 0

1

C
C
C
C
A

; Rii 2 Ck� k; (5.53)

and the re�nement is reduced to computing the smallest singular value with the corresponding

right singular vector of the 3k� k matrix

q2

0

B
@

R11

0

0

1

C
A + q

0

B
@

R12

R22

0

1

C
A +

0

B
@

R13

R23

R33

1

C
A : (5.54)

Shift and invert. Suppose that we want to compute the eigenvalues closest to somes , or we

have an approximation for the wanted eigenvalue and we want to use that information to improve

our iterative process. Then, we can de�ne shifted and inverted quadratic eigenvalue problem in
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the following way. Letl = x + s . De�ne

Qs (x ) = x2Ms + xCs + K; Ms = s 2M + s C+ K; Cs = 2s M + C; Ks = M: (5.55)

Now, computing the eigenvalues with largest magnitude of QEP (5.55) corresponds to compu-

ting the eigenvalues of the original problem closest tos . The eigenvectors are the same, and

for the eigenvalues we havel = 1=(x + s ). This transformation is important for computing

the eigenvalues close to some targets , because they become dominant and thus more easily

computed by an iterative method.

Polynomial �lter. By implicit restart described in Subsection 5.3.1 the polynomial �lter

f (H) = Õp
i= 1(H � mi I ) is applied to the starting vector. The idea is, if themi 's represent the

unwanted eigenvalues, then this polynomial �lter will remove the directions of the unwanted

eigenvectors from the starting vector.

The most used shifts in implicitly restarted Arnoldi algorithms are the eigenvalues of the Hes-

senberg matrixTm which are the approximation of the unwanted eigenvalues. These shifts are

referred to as exact shifts. In practice, they work well for an arbitrary linear eigenvalue problems.

However, in the quadratic eigenvalue problem, we can have two eigenvalues sharing the same

eigenvector. Therefore, this can pose a problem when applying a �lter. We do not want to remove

the directions of the wanted eigenvalues by removing the directions of the unwanted eigenvalues.

Let us look at this situation more closely.

Example 5.2.Suppose that two eigenvaluesl 1 andl 2 share the same eigenvectorx, and suppose

that we chosel 1 as the shift. The eigenvectors for the linearizationH are different for these two

eigenvalues; they are
�

l 1x
x

�
and

�
l 2x
x

�
respectively. This suggests that, by using this shift, the

direction of the wanted eigenvector will not be removed, since it is not the same eigenvector for

the linearization. Let us see what happens whenf (H) = ( H � l 1I ) is applied to the eigenvector
�

l 2x
x

�

" 
A B

I 0

!

� l 1I2n

# 
l 2x

x

!

=

 
l 2Ax+ Bx� l 1l 2x

l 2x� l 1x

!

=

 
l 2

2 x� l 1l 2x

(l 2 � l 1)x

!

= ( l 2 � l 1)

 
l 2x

x

!

:

Hence, this polynomial �lter will not remove the eigenvector
�

l 2x
x

�
, however the factor(l 2 � l 1)

can be e.g. very small or very big. If it is small, andl 2 is wanted eigenvalue, then this shift

will reduce the direction of this eigenvector in starting vector. On the other hand, if the factor is

big, andl 2 is also unwanted eigenvalue, this will increase the contribution of another unwanted

eigenvector in the starting vector.

These are the things that need to be considered when choosing shifts in TOAR as quadratic
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solver. Another thing is that we choose the shifts from the information we get from the projected

problem (5.50). The number of eigenvalues is2m, and amongst them we must determinek

approximations for the wanted eigenvalues, andp approximations for the unwanted ones. Also,

some of them can be meaningless for our original problem. For example, consider the projection

onto one eigenvectorx, l 2x� Mx+ l x� Cx+ x� Kx = 0. This is a quadratic equation, which

means that there are two solutionsl 1; l 2. However, only in special cases both of these roots

are eigenvalues. Usually, only one of the roots represents a valid eigenvalue. Ifx is a common

eigenvector, then both roots are eigenvalues.

These described phenomena are nicely seen in the special class of quadratic eigenvalue

problems called overdamped problems.

5.4.4 Polynomial �lter for overdamped problems

We introduced the overdamped quadratic eigenvalue problems in Section 1.7. The matrices

M;C andK are symmetric,M andC are positive de�nite, andK is positive semide�nite. The

overdamping condition

min
kxk2= 1

�
(x� Cx)2 � 4(x� Mx)(x� Kx)

�
> 0 (5.56)

is satis�ed. The eigenvalues are divided into two sets. Then largest eigenvalues are called

primary, and then smallest are called secondary. An important property is that then eigenvectors

corresponding to the primary eigenvalues form a linearly independent set, and then eigenvectors

corresponding to secondary eigenvalues also form a linearly independent set.

Here, we propose a new strategy for choosing the shifts for the polynomial �lter in the

implicitly restarted TOAR algorithm. We present numerical examples which demonstrate the

power of the new proposed shift selection strategy.

Recall that, if the starting vector in the Arnoldi procedure is a linear combination ofk

eigenvectors, the breakdown will occur at thekth step, and the eigenvalues of the matrixTk will

matchk eigenvalues of the original problem, corresponding to those eigenvectors. Suppose that

the starting vector for the Arnoldi and TOAR algorithm is

 
x

0

!

, wherex is an eigenvector for

two eigenvaluesl 1 andl 2. Now,

 
x

0

!

= t

" 
l 1x

x

!

�

 
l 2x

x

!#

= t

 
(l 1 � l 2)x

0

!

; (5.57)

wheret is a normalizing factor. By the Theorem 5.1 we conclude that the breakdown will

occur in the second step of the Arnoldi/TOAR procedure because the starting vector is a linear

combination of two eigenvectors, corresponding tol 1 andl 2, and they will be the eigenvalues

of the Hessenberg matrixT2. This shows that it is natural for the eigenvalues which share the
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same eigenvector to appear together, and therefore if they are unwanted, they should be used as

shifts together, and if one of them is wanted, the other one cannot be used as a shift. Also, if

we use both eigenvalues as shifts, we avoid the possible increase by the factor(l 1 � l 2) of the

another unwanted vector or decreasing of the wanted eigenvector.

The process of choosing the shifts we propose goes as follows:

1. Compute 2meigenvalues of the projected problem

(l 2Q�
mMQk + l Q�

mCQm+ Q�
mKQm)x = 0:

The structure of the problem is preserved by the orthogonal projection, meaning that this

problem is also overdamped.

2. The structure of the eigenvalues is as described, we have a set ofm primary and a set

of m secondary eigenvalues. Sort the eigenvalues by magnitude. The �rstm belong to

the primary, and the lastm to the secondary eigenvalues. Choosek eigenvalues with the

largest magnitudes as approximations for the wanted eigenvalues (assuming this as the

selection criterion). The eigenvectors are computed from the SVD decomposition of the

matrix (5.54).

3. The number of the shifts will always be even, let us say2p. First, choose thep eigenvalues

farthest from the wantedk eigenvalues in the primary part. We know for sure that these

eigenvalues do not share eigenvectors with the wanted eigenvalues.

4. Now, if there are eigenvalues sharing the eigenvector with thesep shifts, we want to

choose them. If they exist, they will be the roots of the quadratic polynomiall 2x� Mx+

l x� Cx+ x� Kx, wherex is the eigenvector. This is why, for every eigenvalue amongst

already chosen shifts from the primary part we compute the eigenvector by re�nement

(5.51). Then we compute the roots of the mentioned quadratic polynomial, and these roots

are now the shifts. So, at the end, we have2p shifts, for which we are sure that do not

share the eigenvector with the wanted eigenvalues. This step can be also understood as a

re�nement step for computing the unwanted eigenvalues.

Here, we described how to choose shifts if the eigenvalue with the largest magnitude are of

interest. This can work for any other feature prescribed for the wanted eigenvalue, we just a

adjust the sorting criteria.

Tropical roots for shift and invert. In this section we propose a new selection of approxima-

tion for de�ning the shifted and inverted problem in order to get the better approximation for the

wanted eigenvalues.

When we discussed the parameter scaling for equilibration of the backward errors for the

quadratic problem and the corresponding linearization, we mentioned roots of the tropical poly-

nomial as one of the options.
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Another interesting fact is that the tropical roots can be good approximations for the moduli of

the eigenvalues of the quadratic problem, as investigated in [54].

For the overdamped problems, we know that all eigenvalues are real and in the left half

plane. Therefore, if we want to �nd eigenvalues with largest magnitudes, an upper bound on

their moduli is the larger tropical root, and therefore we propose them to be used as shifts to

de�ne shifted and inverted QEP (5.55).1

We already said that scaling must be done before calling TOAR to avoid early breakdown,

therefore the norms of matrices will be computed in any case. We can use it then to compute the

larger tropical root

g =
kCk2

kMk2
; (5.58)

if t = kCk2p
kMk2kKk2

> 1. Thens = � g is a good shift for shifted and inverted problem.

5.4.5 Numerical examples for overdamped problems

Example 1. First example is from Bai and Su's �rst paper on the Second Order Arnoldi

algorithm [3]. The problem is of ordern = 50 and the matricesM;C andK are de�ned as

M = 0:1� I ; C = I ; K = tridiag(� 0:1;0:2; � 0:1): (5.59)

Here, thekth largest and thekth smallest eigenvalues share the same eigenvector. In Figure 5.2,

we show all 100 eigenvalues.

Figure 5.2: All eigenvalues of QEP (5.102)

The eigenvalues marked by the same color share the eigenvector. We compared our algorithm

with MATLAB's eigs which is an implementation of the implicitly restarted Arnoldi algorithm.

1It is noted in [54] that the tropical roots are also used as the starting point in the Ehrlich–Aberth method.
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The shifts are the exact shifts, that is some of the eigenvalues of the Hessenberg matrix in the

Arnoldi factorization.

The goal was to �ndm= 2 eigenvalues with largest magnitudes. The number of shifts in

both cases wasp = 4, and the maximal dimension of the factorization wask = 6. The tolerance

for the backward error wasn� u whereu is the machine precision.

eigs did not �nd the requested eigenpairs for which the backward error is small enough,

even after 300 restarts, producing the error message

??? Error using ==> eigs>processEUPDinfo at 1453 Error with ARPACK

routine dneupd: dnaupd did not find any eigenvalues to sufficient

accuracy.

We plotted the residuals for the �rst 23 restarts in Figure 5.3 for better illustration of the superior

performance of our new method. After the �rst23 restarts, the backward error produced by

TOAR with our new �ltering is already below10� 8, while in eigs the error is around10� 3 and

it does not improve during the remaining 277 iterations.

We also called TOAR on the shifted and inverted QEP with the shifts = � 10, which is a

greater tropical root for this problem. With the same setting, approximations where found in just

3 iterations. The backward errors are present in Figure 5.4.

Figure 5.3: Backward errors for �rst
23 iterations ofeigs

Figure 5.4: Backward errors for shift and invert
with tropical root

Example 2. The next example is of ordern = 400. The matrices are

M = I ; C = tridiag(� 10;30; � 10); K = tridiag(� 5;15; � 5): (5.60)

We want to computek = 6 eigenvalues usingp = 6 shifts with the maximal dimensionm =

12. We usedeigs and our new implementation of the implicitly restarted TOAR (we will

refer to it as mTOAR). Depending on the starting vector,eigs sometimes �nds good enough

approximations, and sometimes not, in300iterations. On the other hand, mTOAR always �nds
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the approximations with a smaller number of restarts. For one example whereeigs did not

converge, mTOAR found satisfactory approximation in the �rst177restarts. The tolerance for

the backward error was 10� 12.

When we used the tropical root as a shift, mTOAR needed only13restarts. For this example

we provide �gures with backward errors in every restart for every wanted eigenvalue.

(a) eigs (b) IRmTOAR

(c) shifted and inverted IRmTOAR (d) Final normwise backward errors

Figure 5.5: Normwise backward errors in every restart for all computed eigenvalues

5.5 Locking in IRA

When an element on the subdiagonal of the Hessenberg matrixTk in the Arnoldi process

is small, we know that we have found a good enough approximation for some eigenvalue of

the original problem. However, a Ritz value may be close to an eigenvalue of the original

problem without small elements appearing on the subdiagonal ofTk. Lechoucq and Sorenesen

[47] developed the so called locking procedure, which applies a certain orthogonal change of

basis so that the appropriate subdiagonal element ofTk is (close to) zero. The following lemma
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is important for the derivation of this process.

Lemma 5.1([47]). LetTkz= qzwhereTk 2 Rk� k is an unreduced upper Hessenberg matrix and

q 2 R with kzk2 = 1. LetW be a Householder matrix such thatWz= e1t wheret = � sign(eTz).

Then

eT
k W = eT

k + wT ; (5.61)

wherekwk �
p

2jeT
k zj and

WTHWe1 = qe1: (5.62)

Suppose that we have the Arnoldi factorization of orderk as in (5.4). Let(q;z) be an

eigenpair forTk with jeT
k zj small enough so that the residual (5.5) for(q;Vkz) is small enough.

De�ne W as in Lemma 5.1, and multiply the factorization (5.4) to get

HVkW = VkW(WTHW)+ rke
T
k W: (5.63)

Using (5.61) and (5.62) we get

HVkW = VkW

 
q tT

0 Tk� 1

!

+ rke
T
k + rkw

T : (5.64)

For (5.64) to be an Arnoldi factorization, the matrixTk� 1 must be upper Hessenberg, and the

termrkwT must be dropped. When restoringTk� 1 to Hessenberg form, we must be careful not

to change the matrixrkeT
k . The transformation matrixY is thus de�ned asY =

�
1 0
0 Y1Y2:::Yk� 3

�

whereY1 is such that

YT
1 Tk� 1Y1 =

 
G g

b ke
T
k� 2 g

!

; (5.65)

andeT
k� 1Y1eT

k� 1 = 1. The matricesY2; : : : ;Yk� 3 are de�ned analogously. SincekrkwTYk2 =

krkk2kYTwk2 = krkk2kwk2, the size ofkrkwTk2 remains the same. By updating

Vk = VkWY; Hk = YTWTHkWY; wT = wTY;

and by discarding the termrkwT , we get a factorization in which the eigenvalueq is locked.

The following theorem shows that this process constructs the Arnoldi factorization of an nearby

matrix.

Theorem 5.3([47]). LetHVk = VkTk + rkeT
k + rkwT be an Arnoldi factorization whereTkz= qz

and
p

2jeTzjkrkk2 � ekHk2 for somee > 0. Then there exists a matrix E2 Rn� n such that

(H + E)Vk = VkTk + rke
T
k ; (5.66)

wherekEk2 � ekAk2.
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The general algorithm is then as follows. Suppose that we have already lockedj eigenvalues,

and that the partitioned Arnoldi factorization is

H
�
Vj Vk� j

�
=

�
Vj Vk� j

�
 

Tj G j

0 Tk� j

!

+ rke
T
k + rkw

T : (5.67)

The matrixTj 2 R j � j contains previously locked eigenvalues, andTk� j is unreduced upper Hes-

senberg matrix. The columns ofVj represent the Schur basis for the locked invariant subspace.

Let the columns ofXi 2 R(k� j)� i represent the eigenvectors corresponding to the newi eigenva-

lues which we want to lock. The new factorization is obtained in the following 4 steps:

1. Compute the orthogonal factorization

Q

 
Ri

0k� j� i

!

= Xi ;

whereQ 2 R(k� j)� (k� j).

2. Update the factorization (5.67):Tk� j = QTTk� jQ, Vk� j = Vk� jQ, G j = G jQ.

3. Compute an orthogonal matrixP 2 R(k� j � i)� (k� j � i) that restoresTk� j� i to Hessenberg

form.

4. Update the factorization:Tk� j� i = PTTk� j� iP;Vk� j� i = Vk� j� iP;G j+ i = G j+ iP.

5.5.1 Locking in TOAR

In this subsection we develop and analyze, analogously, a locking procedure in the new

implicitly restarted TOAR algorithm.

Assume that we built TOAR factorization of orderm

AQmUm;1 + BQmUm;2 = QmUm;1Tm+ seT
mtm+ 1;m; (5.68)

QmUm;1 = QmUm;2Tm+ ueT
mtm+ 1;m; (5.69)

and that an eigenpair(q;Qmz) from the projected problem(q2QT
mMQm+ qQT

mCQm+ QT
mKQm)z=

0 is a good approximation for the original problem. We would like to lock this eigenpair in the

similar way to locking for the standard eigenvalue problem. That is, we want to introduce a

small element onto the subdiagonal of the Hessenberg matrixTm.

The �rst problem is that the eigenpair(q;Qmz) is obtained from the projected quadratic

problem, and not from the matrixTm. In order to proceed with locking, we �rst need to make

sure thatq is an eigenvalue ofTm. The eigenvector for the corresponding linearizationH for

the eigenvalueq is
�

qQmz
Qmz

�
. This means that, ifq is an eigenvalue ofTm, the corresponding
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eigenvector would be

y =

 
QmUm;1

QmUm;2

! T  
qQmz

Qmz

!

=

 
Um;1

Um;2

! T  
qz

z

!

: (5.70)

Since (5.68)-(5.69) represents the Arnoldi factorization for the matrixH, the residual for the

eigenpair(q;
�

QmUm;1
QmUm;2

�
y) (5.5) is small enough ifjeT

myj is small. Finally, we conclude thatq can

be regarded as an eigenvalue ofTm if the last component of(5:70) is small. If this is the case,

we can continue with locking. Suppose thatW is as in Lemma 5.1. The transformed TOAR

factorization is

AQmUm;1W + BQmUm;2W = QmUm;1WWTTmW + seT
mtm+ 1;m+ sw(1 : n)T ; (5.71)

QmUm;1W = QmUm;2WWTTmW + ueT
mtm+ 1;m+ uw(n+ 1 : 2n)T ; (5.72)

and

WTTmW =

 
q tT

0 Tm� 1

!

: (5.73)

As described in the linear case,WTTmW must be returned to upper Hessenberg form, making

sure that we do not change the termsseT
m andueT

m. Denote withY the transformation matrix. By

removing the termsswT anduwT and by updating

Um;1 = Um;1WY; Um;2 = Um;2WY; Tm = YTWTTmWY; wT = wTY;

we have locked the eigenvalueq.

However, with this procedure we did not change the matrixQm. And the next time we compute

the approximation, we must again compute2meigenvalue from the projected problem, and thus,

we will again compute the locked eigenvalue. With this locking we have only assured that the

implicit restart will not affect the locked part of the Hessenberg matrixTm in the factorization.

5.6 Rayleigh damping

Consider the quadratic eigenvalue problem(l 2M+ l C+ K)x= 0 with proportional damping

C = a M + bK, also known as Rayleigh damping. This problem reduces to the linear pencil

Kx = mMx; m= �
l 2 + la
lb + 1

: (5.74)

The eigenvalues for the original quadratic problem are restored as

l 1;2 =
� (a + b m) �

p
(a + b m)2 � 4m

2
; for m�nite and nonzero; (5.75)
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l 1 = 0; l 2 = � a ; for m= 0; (5.76)

l 1 = ¥ ; l 2 = �
1
b

; for m= ¥ : (5.77)

Since the proportional damping is easier to handle numerically, we would like to exploit the

information about the wanted part of the spectrum for the problems which are close to pro-

portionally damped. Namely, for given quadratic problem(l 2M + l C+ K)x = 0 we want to

determine the smallestDC so that(l 2M + l (C+ DC)+ K)x = 0 is proportionally damped. This

is done by minimizing

kC� (a M + bK)kF ! min; ja j2 + jb j2 ! min; (5.78)

overa ;b . By application of the projection theorem inCn� n, equipped with the Frobenius inner

producthA;Bi F = Tr(B� A), in [24] the following normal equations were derived

 
hM;Mi F hK;Mi F

hM;Ki F hK;Ki F

!  
a

b

!

=

 
hC;Mi F

hC;Ki F

!

: (5.79)

Now, the algorithm for using the approximation of the quadratic problem by proportionally

damped one would go as follows:

• Suppose that we want to computek eigenvalues with largest magnitude

• Computea ;b from (5.79).

• Call implicitly restarted Arnoldi to computek eigenpairs(l i ;xi) with largest magnitude

for (5.74)

• De�ne new starting vectorsr� 1 = å m
i= 1 l ixi, r0 = å m

i= 1xi and call implicitly restarted

mTOAR on the original problem with these starting vectors.

We will refer to this algorithm as mTOAR NRD. The numerical examples are presented in the

following subsection.

5.6.1 Numerical examples

Experiment 1. The �rst example isPath crossing , from [44]. M and K are given as

BCSSTM12andBCSSTK12from the Harwell–Boeing collection [27], andC is a block combi-

nation ofM andK. The matrices are of order1473. De�ne M1 = M(1 : 600;1 : 600) and

M2 = M(540 : 1473;540 : 1473), andK1;K2 in the same way. ThenC = [ ci j ] is de�ned as

ci j =

8
>>><

>>>:

a11mi j + a12ki j ; wheni < 540 or j < 540;

(a11+ a21)mi j + ( a12+ a22)ki j ; when 540� i; j � 600;

a21mi j + a22ki j ; wheni > 600 or j > 600;
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where( ai1
ai2 ) = 2xi

w1+ w2

� w1w2
1

�
with x1 = 0:05, x2 = 0:10, andw1 andw2 are the �rst and tenth

natural frequencies for the undamped problem(m2M + K)x = 0.

We want to computek = 6 eigenvalues of largest magnitudes. The maximal dimension of

TOAR and Arnoldi factorizations is set tom = 18. The number of shifts in TOAR is set to

2p = 8, and the number of shifts ineigs is alwaysm� k = 12.

We started TOAR andeigs with the same starting vectorsr� 1 = rand(n;1) and r0 =

rand(n;1). In addition, we called TOAR with starting vector as described in Section 5.6. More

precisely, we computeda = 0.340395988262736andb = 0.340395988262736so that (5.79)

holds. We calledeigs onKx = mMx. The tolerance on the normwise backward error was
p

eps,

whereeps is the machine precision. Algorithm found the wanted eigenvalues with prescribed

tolerance in 7 restarts. The tolerance for the normwise backward error of the original problem

wasn� eps= 3.2707e-013. The following table presents the number of restarts needed to �nd

the eigenpairs with prescribed tolerance

Table 5.1:Number of restarts, Path crossing

Algorithm IRmTOAR IRmTOAR NRD eigs
No. restarts 68 56 = (7+49) 118

The following �gure represents the �nal backward errors for all 6 wanted eigenvalues obtai-

ned by all three methods

Figure 5.6: Final normwise backward errors, Path crossing

At last, we present the backward errors during the restarts for mTOAR, and mTOAR NRD

for 3 complex conjugate pairs of wanted eigenvalues.
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Figure 5.7: Normwise backward errors in every restart for all computed eigenvalues

Experiment 2. Next example iscd_player from NLEVP library. We started the algorithm

with the same parameters as in previous example, except the number of wanted eigenvalues and

shifts, which arek = 4, m = 10, 2p = 2. The following table presents the number of restarts

needed to �nd the eigenpairs with prescribed tolerancen� eps = 1.3323e-014

Table 5.2:Number of restarts,cd_player

Algorithm IRmTOAR IRmTOAR NRD eigs
No. restarts 22 8 = (5+3) 23

The following �gure represents the �nal backward errors for all 4 wanted eigenvalues obtai-

ned by all three methods

Figure 5.8: Final normwise backward errors,cd_player

At last, we present the backward errors during the restarts for TOAR, and TOAR with

Rayleigh Damping approximation for 4 wanted eigenvalues.
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Figure 5.9:Normwise backward errors in every restart for all computed eigenvalues,cd_player

5.7 Krylov–Schur algorithm for the linear eigenproblem

In [64] Stewart de�ned theKrylov decompositionof orderk for the ann� n matrixH as

HUk = UkBk + uk+ 1b�
k+ 1; (5.80)

whereBk is k� k matrix,Uk 2 Cn� k, uk+ 1;bk+ 1 2 Cn, and the columns of(Uk uk+ 1) are linearly

independent. The idea of this decomposition is to weaken the constraints on the matricesUk

andBk prescribed by the Arnoldi decomposition, whereUk has to be orthogonal, andBk has

to be upper Hessenberg. Due to this constraints, we always have to be careful when restarting,

locking or purging Arnoldi process in order to maintain its structure.

It is proven in [64] that the Krylov decomposition is closed under translation, i.e. forgeuk+ 1 =

uk+ 1 � Ukg, g 6= 0

HUk = Uk(Bk + gb�
k+ 1) + euk+ 1(gbk+ 1)�

is a Krylov decomposition with the same space as (5.80). Moreover, the Krylov decomposition

is closed under the similarity as well, i.e. for nonsingularW

H(UkW
� 1) = ( UkW

� 1)(WBkW
� 1) + uk+ 1(b�

k+ 1W
� 1)

is a Krylov decomposition whose space is the same as (5.80).

This makes Krylov decomposition equivalent to Arnoldi decomposition (i.e., the Rayleigh

quotients are similar). In addition, using these elementary transformations, we can reduce Kry-

lov decomposition into a form that is the most convenient for the truncation step in the implicit

restart. Namely, we can keep the columns ofUk orthonormal, and reduceBk to Schur form. The

resulting decomposition is calledKrylov–Schur decomposition.

174



5.7. Krylov–Schur algorithm for the linear eigenproblem

Implicitly restarted Krylov–Schur algorithm. Just like in the implicitly restarted Arnoldi

algorithm, the Krylov–Schur method consists of the expansion phase and the contraction phase.

In the expansion phase, the Krylov–Schur decomposition of orderk is constructed, using the

Arnoldi algorithm 5.1.1. The contraction phase purges the unwanted eigenvalues from the

decomposition. An advantage of the Krylov–Schur scheme is that it can be truncated at any

point. Suppose we partitioned the Kyrlov–Schur decomposition in the form

H
�
U1 U2

�
=

�
U1 U2

�
 

S11 S12

0 S22

!

+ u
�

b�
1 b�

2

�
; (5.81)

then

HU1 = U1S11+ ub�
1 (5.82)

is a Krylov–Schur decomposition of orderk. Moreover, this truncation step is equivalent to

applying the shifted QR to the Hessenberg matrixTm in the implicitly restared Arnoldi algorithm

in order to get a new decomposition with better starting vector. The shifts are the eigenvalues of

the matrixS22. This is summarized in the following theorem.

Theorem 5.4([11]). Let the Krylov decomposition HU= UB+ ub� be partitioned as

H
�
U1 U2

�
=

�
U1 U2

�
 

B11 B12

0 B22

!

+ u
�

u�
1 u�

2

�
; (5.83)

whereU1 2 Cn� k, B11 2 Ck� k, u1 2 Ck and the columns ofU =
�
U1 U2

�
2 Cn� m, m= k+ `,

span a Krylov subspaceK m(H;v) which is not H–invariant. Then,

Im(U1) = K k(H;kB22(H)v); kB22(x ) = det(x I � B22): (5.84)

Further, if Im(U1) = K k(H;p(H)v), for some monic polynomialp of degree`, then p =

kB22. Thus,AU1 = U1B11+ ub�
1 is an implicitly restarted Krylov decomposition withIm(U1) =

K k
�
H;Õ`

i= 1(H � s i I )v
�

if and only ifs1; : : : ;s ` are the eigenvalues of B22.

Thus, in order to apply the shifts which are approximations of the unwanted eigenvalues,

the eigenvalues of the matrixS11 must be the wanted ones. This is accomplished by using the

ordered Schur form. In the ordered Schur form the cluster of eigenvalues appears in the leading

elements on the diagonal of the upper triangular matrix [2].

Let (5.81) represent the desired form, that is, let the eigenvalues ofS11 represent the approx-

imation of wanted eigenvalues. The truncation step is illustrated in the following �gure
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H U1

k

U2

m� k

= U1 U2

um+ 1

b�
1 b�

2

S11 S12

S22

Figure 5.10: Truncation step in Krylov–Schur algorithm

It is clear that the truncation process in the Krylov–Schur algorithm is more elegant and

easier that in the implicitly restarted Arnoldi algorithm, since we are not limited by the structure

of the matrices. However, the �aw of this approach is that the only shifts which can be used are

the exact ones, i.e., the eigenvalues ofBm in (5.80); on the other and, in the Arnoldi algorithm

we can use arbitrary shifts. Since the number of iterations in the Arnoldi like algorithms depends

on the shifts used in restart, it would be convenient if we could choose any shifts for the restart

in the Krylov–Schur algorithm as well.

The Krylov–Schur method is implemented in the Scalable Library for Eigenvalue Problem

Computations (SLEPc) [38].

5.7.1 Using the arbitrary shifts in Krylov–Schur algorithm

Bujanovíc and Drma�c developed a new restarting procedure for Krylov–Schur algorithm

using the arbitrary shifts in [11], using Theorem 5.4. We brie�y outline the main steps; for more

details we refer to [11].

Suppose we have an orthogonal Krylov decomposition

HUm = UmBm+ um+ 1b�
m; (5.85)

and lets1; : : : ;sm� k be the shifts that we want to apply. We now preform the4R-procedure

proposed in [11].

1. Reassign

Apply an eigenvalue assignment algorithm to compute the vectorf so that the spectrum

of Bm+ f b�
m contains the shiftss1; : : : ;sm� k; then usef to translate (5.85) to

HUm = Um(Bm+ f b�
m) + ( um+ 1 � Um f )b�

m: (5.86)

Re-assignment of the eigenvalues ofBm is possible if and only if the pair(B�
m;bm) is
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controllable, i.e. if

m(B�
m;bm) � inf

z2C
smin((z I � B�

m; bm)) � inf
z2C

smin

  
z I � Bm

b�
m

!!

> 0: (5.87)

f is determined in two steps. First, compute unitaryW such thatW� B�
mW = H is upper Hes-

senberg andW� bm = be1, b = kbmk2. This is called a reduction to Controller–Hessenberg

form. The second step is computing the vectorg such thats 1; : : : ;s m� k are eigenvalues

of H + e1g� . This can be done by using an eigenvalue assignment algorithm described in

e.g. [16]. The wantedf is f = 1
b g� W� .

2. Reorder

In this step we compute the ordered Schur decomposition ofBm+ f b�
m, so that the shifts

s1; : : : ;sm� k appear as the eigenvalues of theS22 block in the Schur formS

Bm+ f b�
m = ( Q1 Q2)

 
S11 S12

0 S22

!

(Q1 Q2)� : (5.88)

3. Restart

Multiply (5.86) with Q1 to get the restarted Krylov–Schur decomposition

H bUk = bUkS11+ euk+ 1b�
mQ1;

wherebUk = UmQ1, euk+ 1 = um+ 1 � Um f .

4. Restore

Another translation is needed to restore the orthogonal Krylov decomposition. Letbuk+ 1 =
euk+ 1� bQkg1

g be the result of the Gram–Schmidt orthogonalization of the vectoreuk+ 1 against

Im( bUk), with normalizing factorg = keuk+ 1 � bUkg1k2. Then

H bUk = bUk

�
S11+ g1bb�

k

�
+ gbuk+ 1bb

�
k; (5.89)

wherebbk = Q�
1bm.

5.8 Implicitly restarted Krylov–Schur algorithm for the QEP

Campos and Roman [14] extended the Krylov–Schur algorithm for the solution of poly-

nomial eigenvalue problems. In order to build the starting factorization they use the TOAR

Algorithm 5.3.1 with the �rst companion form linearization. Here, we give details of the algo-

rithm for the quadratic eigenvalue problemQ(l ) = l 2M + l C+ K.
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Let H be the linearization matrix

H =

 
� M� 1C � M� 1K

� I 0

!

=

 
A B

I 0

!

: (5.90)

Let

HVm = VmSm+ vm+ 1b�
m+ 1 (5.91)

be the Krylov–Schur decomposition forH, of orderm, i.e. Bm 2 Cm� m, and
�
Vm vm+ 1

�
2

C2n� m+ 1 has linearly independent columns. Partition the decomposition (5.91) to get

 
A B

I 0

!  
Vm;1

Vm;2

!

=

 
Vm;1

Vm;2

!

Sm+ vm+ 1b�
m+ 1: (5.92)

Stewart proved that the decomposition (5.91) is equivalent to Arnoldi decomposition. Let

HVm = VmTm+ vm+ 1eT
m (5.93)

be the corresponding Arnoldi decomposition. We can thus conclude that (5.91) is also equivalent

to TOAR factorization by extractingQm+ 1 by the rank revealing decomposition of

�
Vm(1 : n; :) vm+ 1(1 : n) Vk(n+ 1 : 2n; :) vm+ 1(n+ 1 : 2n)

�
:

Hence, we can build the Krylov decomposition forH in (5.90) using the TOAR algorithm as

well

H

 
QmUm;1

QmUm;2

!

=

0

B
B
B
B
@

Qm+ 1

 
Um;1 um+ 1;1

0 bm+ 1

!

Qm+ 1

 
Um;2 um+ 1;2

0 0

!

1

C
C
C
C
A

 
Tm

tm+ 1;meT
m

!

: (5.94)

The corresponding Krylov–Schur decomposition is then obtained by computing the Schur form

Tk = XSkX� and transforming

H

 
QmUm;1X

QmUm;2X

!

=

0

B
B
B
B
@

Qm+ 1

 
Um;1X um+ 1;1

0 bm+ 1

!

Qm+ 1

 
Um;2X um+ 1;2

0 0

!

1

C
C
C
C
A

0

B
@

= Smz }| {
X� TmX

tm+ 1;meT
mX

1

C
A : (5.95)

Now, the truncation process goes as described for the linear case, and illustrated in Figure 5.10.

Let Sk be partitioned as
�

S11 S12
0 S22

�
, and without loss of generality suppose that the eigenvalues

of S11 2 Ck� k approximate the wanted eigenvalues, and the eigenvalues ofS22 2 C(m� k)� (m� k)

approximate the unwanted eigenvalues. PartitionX =
�

X1 X2

�
. Then the truncated decompo-

178



5.8. Implicitly restarted Krylov–Schur algorithm for the QEP

sition (5.95) of orderk is

H

 
QmUm;1X1

QmUm;2X1

!

=

0

B
B
B
B
@

Qm+ 1

 
Um;1X1 um+ 1;1

0 bm+ 1

!

Qm+ 1

 
Um;2X1 um+ 1;2

0 0

!

1

C
C
C
C
A

 
S11

tm+ 1;meT
mX1

!

: (5.96)

However, as in the case of implicitly restarted TOAR, notice thatQm+ 1 2 Cn� hm+ 1 is not

truncated. We solve this as in the case of TOAR, i.e., compute the compact SVD factorization of

 
Um;1X1 um+ 1;1 Um;2X1 um+ 1;2

0 bm+ 1 0 0

!

= PSG� :

PartitionG =
�

G1 G2

�
2 Chk+ 1� ((k+ 1)+( k+ 1)) and de�neQk+ 1 = Qm+ 1P, Uk+ 1;1 = SG1 and

Uk+ 1;2 = SG2 to obtain fully truncated decomposition of orderk.

Although this procedure is more elegant and simpler in comparison to the implicitly restarted

TOAR, the problem of the shifts remains, i.e., the only shifts one can use in the restarts are the

eigenvalues of the Hessenberg matrixTm. We already saw the examples in which the implicit

procedure fails to �nd good enough approximations when the exact shifts are used. This is

why we extend the idea of arbitrary shifts in Krylov–Schur algorithm derived by Bujanović and

Drma�c [11] for the quadratic eigenvalue problem.

5.8.1 Using arbitrary shifts in the Krylov–Schur algorithm for the qua-

dratic eigenvalue problem

Here, we extend the 4R procedure form the Subsection 5.7.1 to the case of the quadratic

eigenvalue problem.

Let

H

 
QmUm;1

QmUm;2

!

=

0

B
B
B
B
@

Qm+ 1

 
Um;1 um+ 1;1

0 bm+ 1

!

Qm+ 1

 
Um;2 um+ 1;2

0 0

!

1

C
C
C
C
A

 
Tm

tm+ 1;meT
m

!

(5.97)

be the compact TOAR decomposition of orderm. Let m1; : : : ;mm� k be the shifts for the implicit

restart. Our procedure has and additional step, and it goes as follows

1. Reassign

Apply an eigenvalue assignment algorithm to compute the vectorf so that the spectrum
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of Tm+ f eT
mtm+ 1;m contains the shiftsm1; : : : ;mm� k. The translated factorization (5.97) is

H

 
QmUm;1

QmUm;2

!

=

0

B
B
B
B
@

Qm+ 1

 
Um;1 um+ 1;1 � Um;1 f

0 bm+ 1

!

Qm+ 1

 
Um;2 um+ 1;2 � Um;2 f

0 0

!

1

C
C
C
C
A

 
Tm � f eT

mtm+ 1;m

tm+ 1;meT
m

!

: (5.98)

THe Eigenvalue assignment is possible if and only if the pair(T �
m;eT

mtm+ 1;m) is controllable,

i.e. if (5.87) holds.

As in Subsection 5.7.1,f is determined in two steps:

– compute the Controller–Hessenberg form of(T �
m;eT

mtm+ 1;m), i.e. compute unitaryW

so thatW� T �
mW = eTm is upper Hessenberg, andW� eTtm+ 1;m = e1etm+ 1;m.

– Computeg such thatm1; : : : ;mm� k are the eigenvalues ofeTm + e1g� . The wanted

vector f is f = 1
etm+ 1;m

g� W� .

2. Reorder

Compute the ordered Schur form ofTm+ f eT
mtm+ 1;m so that the shiftsm1; : : : ;mm� k appear

as the eigenvalues of the(m� k) � (m� k) blockS22

Tm+ f eT
mtm+ 1;m =

�
X1 X2

�
 

S11 S12

0 S22

!
�

X1 X2

� �
: (5.99)

3. Restart

Multiply the decomposition (5.98) withX1 to obtain the decomposition of orderk

H

 
QmUm;1X1

QmUm;2X1

!

=

0

B
B
B
B
@

Qm+ 1

 
Um;1X1 um+ 1;1 � Um;1 f

0 bm+ 1

!

Qm+ 1

 
Um;2X1 um+ 1;2 � Um;2 f

0 0

!

1

C
C
C
C
A

 
S1;1

tm+ 1;meT
mX1

!

: (5.100)

Denote bUk;1 = Um;1X1; bUk;2 = Um;2X1 and buk+ 1;1 = um+ 1;1 � Um;1 f ; buk+ 1;2 = um+ 1;2 �

Um;2 f .

4. Restore

Another translation is used to restore the orthogonality of the matrix

0

@
bUk;1 buk+ 1;1
0 bm+ 1

bUk;2 buk+ 1;2
0 0

1

A : Let

g = bU �
k;1buk+ 1;1 + bU �

k;2buk+ 1;2;

and

euk+ 1;1 = buk+ 1;1 � bUk;1g; euk+ 1;2 = buk+ 1;2 � bUk;2g:
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5.8. Implicitly restarted Krylov–Schur algorithm for the QEP

Compute the normg =
q

b2
m+ 1 + keuk+ 1;1k2

2 + keuk+ 1;2k2
2 to get

euk+ 1;1 =
euk+ 1;1

g
; euk+ 1;2 =

euk+ 1;2

g
; ebk+ 1 =

bm+ 1

g
:

5. Reduce

To get the full restarted decomposition of orderk, we must truncate the orthogonal matrix

Qm+ 1 as well. In the �rst step compute the SVD decomposition

 
bUk;1 euk+ 1;1 bUk;2 euk+ 1;2

0 ebm+ 1 0 0

!

= PSG� : (5.101)

Let hk+ 1 be the rank of the above matrix. PartitionG =
�

G1 G2

�
so thatG1;G2 2

Chk+ 1� (k+ 1). The new decomposition is determined withQk+ 1 = Qm+ 1P, Uk+ 1;1 = SG1,

Uk+ 1;1 = SG2.

Numerical example. Recall the quadratic eigenvalue problemQ(l ) = l 2M + l C+ K with

matrix coef�cients

M = 0:1I ; C = I ; K = tridiag(� 0:1;0:2; � 0:1): (5.102)

from Subsection 5.4.5. We compute thek = 2 eigenvalues with the largest magnitude with the

same parameters as in Experiment 1 of the same Subsection.

(a) New shifts (b) Exact shifts

Figure 5.11:Normwise backward errors for the eigenpair during the restarts

The implicitly restarted Krylov–Schur algorithm with arbitrary shifts described in Subsection

5.4.4 found the wanted eigenvalues in51 restart. We implemented the Krylov–Schur algorithm

with the exact shifts, i.e. the eigenvalues of the matrixBm in (5.97). The eigenpairs with
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Chapter 5. Iterative methods

the wanted normwise backward error were not found in the �rst 300 restarts. The normwise

backward errors of the eigenvalues during the restarts are presented in Figures 5.11a and 5.11b.
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Conclusion

This thesis offers new algorithms for the complete solution of the quadratic and the quartic

eigenvalue problems, as well as several improvements of the implicitly restarted Arnoldi like

methods for the partial solution of the quadratic eigenvalue problems. Although the basis of

these methods is the solution of the equivalent linear problem, considering the particularities of

the original nonlinear problem is essential for the computation of the good �nal approximation.

The contributions of the thesis are:

A new procedure for detecting and de�ating of the zero and in�nite eigenvalues of the

quadratic eigenvalue problem(l 2M + l C+ K)x = 0, before calling the QZ algorithm for the

linearized problem. It is known that the current methods, despite the prior de�ation, cannot

remove all zero and in�nite eigenvalues; the problem is that, if there exist more Jordan blocks

for these eigenvalues, current methods, such as thequadeig, de�ate only one of them, and, in

the subsequent steps, the QZ algorithm may not detect the additional zero or in�nite eigenvalues.

We developed a test for determining the existence of the Jordan blocks in the terms of the

original quadratic problem. In addition we propose the new de�ation algorithm, based on the

Van Dooren's algorithm for the Kronecker canonical form of linear pencils. Moreover, we

analyze different rank revealing strategies, as well as rank determination criteria, and show how

they impact the output. Finally, we provide numerical experiments to illustrate the advantages

of the new developed method.

An algorithm for the complete solution of the quartic eigenvalue problem(l 4A+ l 3B+

l 2C+ l D + E)x = 0 is proposed. It follows the ideas and the guiding principles from the deve-

lopment of the quadratic solver. In fact, instead of the direct linearization, it uses an algebraic

trick called quadrati�cation to de�ne an equivalent quadratic eigenvalue problem. However, the

original coef�cient matrices of the problem are used for the de�nition of scaling and develop-

ment of the full de�ation process of the zero and in�nite eigenvalues. Numerical experiments

prove that our algorithm is much better than direct application of the state of the art methods

quadeig andpolyeig (MATLAB).

The methods for the partial solution of the quadratic eigenvalue problems are also analyzed.

New contributions to the implicit restarting of the two level orthogonal Arnoldi algorithm are

developed and tested to demonstate their effectiveness in practical computations. In particular,

the important class of the overdamped problems is considered in more details and a new strategy,

based on tropical roots, is shown to deliver superior performance. Moreover the new starting
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Conclusion

vectors for these methods are proposed as well. Finally, the thesis show a direction in which one

can develop an ef�cient Krylov-Schur based method for the quadratic eigenvalue problem; for

start it is shown how to enable using arbitrary shifts in a restarting procedure.
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