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Summary

Keywords : physical virology, nucleic acids, con�nement, DNA condensation,

protein-DNA mixtures, crowding

Packing of nucleic acids inside (naturally occurring) con�ned spaces presents an in-

triguing problem of compacting a long and highly charged polymer into a small space

possibly crowded with other particles (proteins). For example, viruses have a large amount

of genomic information that is encoded in nucleic acids packed in small spaces resulting in

high densities of matter. The arising interactions are coupled to the con�nement giving a

more complex phase diagram than expected in bulk. In this work we study the problem

of packing nucleic acids in con�ned spaces in the context of physical virology. First, we

study compacted states of DNA including condensed DNA in cells and con�ned DNA

in bacteriophage capsids. We apply polymer and liquid crystal theory along with mean

�eld approximations for the bending energy to characterize the state of DNA. The re-

sulting framework is used to explainin vivo ejection of DNA from a bacteriophage into a

Gram-positive bacteria based only on thermodynamic considerations, without invoking any

active cellular mechanisms. The packing mechanism for DNA with condensing proteins in

adenoviruses is studied by comparing Langevin dynamics simulations of e�ective particle

models, representing condensing proteins, with experimental data. The DNA is found to

act as an e�ective medium for condensing core protein interactions. A backbone of DNA

linking the condensing proteins is not needed to explain the experimental results. To

further explain such systems, we construct a full model of packed polymer and condensing

proteins inside spherical con�nement using Langevin dynamics. Internal organization of

condensing particles shows that they tend to cover themselves with the DNA polymer

which provides an e�ective medium for interactions with other condensers, con�rming the

applicability of our e�ective model for core particle organization in adenoviruses. Crowd-

ing of the viral interior and con�nement in�uences the conformation of the DNA and

protein, facilitating more direct contacts between the DNA polymer and the condensing

particles, and modifying the interactions between them. Our model is able to explain

the general internal organisation of adenovirus cores, and provide insight into packing of

genetic material in similar systems.
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Chapter 1

Introduction

Prologue

Applying physical concepts to biological problems is not a new endeavour. Still, due

to the complexity of physical phenomena of Life, there is ample opportunity for new

developments. It is within this overlap of physics and biology that we �nd the problem of

compaction of nucleic acids. The problem that all organisms face, from viruses and cells to

humans, is how to store the largest amount of information in the smallest space possible,

be it genetic information or the entirety of knowledge accumulated by mankind. What

interests us is how simple organisms compact this information, and store it for future use.

The simplest organism we can �nd is probably a virus, although it is debatable if it

is alive. Consisting of barely a container and its genetic information, it is the prototype

of one of the simplest "nano-machine" Nature has produced. If we would aspire to make

nano-machines of our own, it is in viruses we should �nd inspiration.

1.1 Background

1.1.1 Nucleic acids as polymers

A nucleic acid is the basis of Life, containing in itself the instructions for the assembly

of all proteins necessary for functioning of organisms. The nucleic acids DNA (deoxyri-

bonucleic acid) and RNA (ribonucleic acid), are polymers made from monomers known

as nucleotides. A pair of nucleotides in a double stranded DNA forms one monomeric

unit called a base pair. They form the building blocks of the DNA double helix, and

contribute to the folded structure of both DNA and RNA. Our primary interest lies in

the compaction of either double stranded DNA (dsDNA) or single stranded RNA (ss-

RNA). Double stranded DNA, in the most common B-form, has base pairs (bp) of length

Lbp = 0:34 nm and base radiusD � 1 nm. Single stranded RNA on the other hand, has

a radius of aboutD � 0:5 nm.
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Chapter 1. Introduction

The simplest model of a polymer is that of a ideal chain [1]. An ideal chain can be

represented as a random walk of a step of lengtha, the monomer unit length, in a three-

dimensional space. For example, RNA can be represented as a freely rotating chain with

taking into account that the angle � between two neighbouring bond vectors will depend

on the chemical structure of the bond. This enables the calculation of many statistical

parameters of such a polymer [1].

The most important di�erence between RNA and DNA will be in the sti�ness of such

molecules. While, RNA is well represented by a freely jointed chain with a monomer size

a = 1 nm consisting of� 3 nucleotides, DNA is usually better represented as aworm like

chain (the Kratky-Porod model) [1]. In contrast to the ideal chain where each bond is

rigid, the worm like chain is not completely rigid and can �uctuate and bend. The length

scale on which the natural �uctuations of the worm like chain overcome the inherent chain

sti�ness is called the persistence lengthLp. The length scale after which the correlation

of tangent vectors displaced byl on the contour reduces by a factore� 1:

hu(r )u(r + l)i r = e� l
L p (1.1.1)

is by de�nition the persistence lengthLp. This allows one to use the Kuhn length, which

is twice the persistence lengthlb = 2Lp, to renormalise the behaviour of the worm like

chain into an ideal chain, albeit with a new bond length oflb [2]. In addition to governing

statistical behaviour of the chain,Lp is also a measure of the energy required to bend a

DNA of length L into a curve with a radius of curvatureR [3]:

Fb =
1
2

kB T
LL p

R2
; (1.1.2)

whereLp = EI=k B T with E the Young modulus andI the moment of inertia of the cross

section of DNA.

A realistic chain can not cross itself, as each segment excluded a volume in space, thus

forming a self avoiding random walk. This excluded volumev is a result of the interaction

potential U(r ) between two chain segments. In essence,v is related to the Boltzmann

factor for �nding the segment at any point in space. The probability of �nding a point in

space occupied by an particle is given via the Mayerf -function [1]:

f (r ) = e� U(r )=kB T � 1; (1.1.3)

such that the excluded volume is the integral off (r ) over all available volume:

v = �
Z

f (r )d3r: (1.1.4)

The Flory theory of a polymer in a good solvent [1] then gives that the interaction energy

2



Chapter 1. Introduction

of a polymer with itself, or segments from another polymer, is given by the excluded

volume as

Fint = kB T
vn2

V
(1.1.5)

with n the number of chain beads (segments) of excluded volumev in volume V.

1.1.2 Electrostatics in solutions

Electrostatics in water solutions containing salt ions is governed mostly by classical

physics. The existence of a solution of ions complicates matters by giving a background

medium which screens all electrostatic interactions, as we will now show. In order to

determine the electrostatic potential� from a charge distribution in space, one can use

Poisson's equation connecting the electrostatic potential and the local charge density

c =
P

i ci of all the charge speciesi in the medium.

r 2� (r ) = �
4�
�

c(r ); (1.1.6)

and connect it with the Boltzmann distribution

ci = c0
i eezi � (r )=kB T (1.1.7)

for �nding a concentration ci of charged species with valencyzi at a point in space. This

Poisson-Boltzman equation can be linearised to obtain the famous Debye-Huckel (DH)

equation [4] and further simpli�ed for monovalent salts (c1 = c2 = c0, z1 = � z2 = 1) :

r 2� = � � 2
D � (r ) (1.1.8)

where� D is the Debye-Hückel screening length:

� D =

s
�k B T
8�e 2c0

: (1.1.9)

The solution of this equation for a point charge gives the most important result of the DH

equation � counterions screen the electrostatic potential so that it acquires the Yukawa

form [4]:

� (r ) �
1

r� D
e� � D r : (1.1.10)

The result is that all electrostatic interactions at length scales smaller than the screening

length � are practically unchanged, while interactions are exponentially suppressed at

larger length scales.

3



Chapter 1. Introduction

1.1.3 Virology

Figure 1.1: Sketch of an virus with icosahedral symmetry � an adenovirus. a)
Icosahedral shell organization with a model showing the roles of di�erent capsid proteins. (b)
Core structure of the shell from cryo-EM with a schematic representation of the core contents,

including DNA and core proteins (V, VII and � ). Taken from Ref. [5].

As the basic application of our work lies in better understanding how viruses work,

we shall present a physicist's caricature of what a virus is. A virus consists of at least

a genome, either DNA or RNA, and a container made out of protein protecting it (the

capsid). The taxonomy of viruses is diverse, e.g. one can base it on the type of nucleic acid

or the shape of the container [6]. We will focus only on two groups of viruses relevant in our

work: a) tailed bacteriophages, and b) viruses with icosahedral symmetry. In discussing

icosahedral viruses, we will additionally limit ourselves to types that are known to use

condensing agents to compact their genome in the capsid (adenovirus, polyomavirus).

The basic building block of viral capsids with icosahedral symmetry are repeating

proteins which triangulate the viral capsids. It is into this capsid that the genome is

packed, either during assembly of the capsid shell or afterwards via cellular motors, and

4



Chapter 1. Introduction

onto which di�erent protein receptors are located [6]. A typical example of icosahedral

capsid structure can be found in the adenovirus (Fig. 1.1).

Figure 1.2: A tailed bacteriophage. Sketches of tailed bacteriophages with marked capsids
containing the genome (double stranded DNA) and tails of various lengths. Taken from Ref. [7].

Bacteriophages are viruses which speci�cally attack bacteria. Their structure is simple

(Fig. 1.2), they have a capsid of either icosahedral or prolate shape protecting their genome,

a protein tail (in most cases), and receptors enabling the ejection of their genome inside

bacteria. Tailed phages contain dsDNA and represent 96% of all known bacteriophages

[7]. Tailed bacteriophages are represented with great variety: typical tail lengths are in

the ranges 10-800 nm, capsids sizes 30-160 and genome lengths in the range of14� 498

kbp (thousands of base pairs) [8].

1.2 Overview

Packing of nanoparticles, synthetic polyelectrolytes and genomes in a con�ned space is

fundamentally and technologically important. From one aspect, it is a study of the inter-

actions in a macromolecular complex with molecular signatures of "life", thus important

for understanding life processes [9]. On the other side, viruses are evolved nano-machines

with a "purpose" to penetrate the cellular membrane for delivery of their "cargo", the

genome [6]. Any modi�cations to this cargo, e.g. by using a designed macromolecule

or nano-particle, carries a signi�cant potential for applications in personalised medicine

(targeted drug or genome delivery). Still, there is a lack of fundamental understanding of

5



Chapter 1. Introduction

the state of DNA in a viral capsid at di�erent densities and thus the physics behind the

viral packaging of genetic material and subsequent infection process [9, 10].

Although the problem of packing a polymer, either �exible or semi-�exible, into con�ned

spaces of di�erent geometries (slits, cavities) has been extensively studied [2], the intricacies

brought about by a three-dimensional cavity have only been approached recently [11].

Depending on the �exibility of the polymer, its degree of con�nement, density and any

(excluded volume) interactions a rich phase diagram is expected [12]. The phase diagram

is expected to be traversed by DNA during its ejection from a bacteriophage [10].

The understanding of DNA phase states and the polymorphism of DNA conformation in

con�nement [10] requires an approach combining and bridging di�erent theoretical models.

The isotropic (disordered) state at low densities is known to have a phase transition to a

liquid crystal state. This happens in bulk liquid crystals due to the inherent anisotropy in

the excluded volume of long polymers [13]. Still, experiments �nd intricacies not expected

in bulk encouraging new approaches to modelling con�ned liquid crystals [14, 15]. The

liquid crystal phase covers roughly one third of the density diagram [10, 12] and ends in a

dense condensed phase [16, 17]. It is known that the formation of dense phases of DNA

(condensed DNA) depends on a combination of electrostatic and hydrophobic interactions

between di�erent segments of the negatively charged DNA backbone in a background

of mono- and multi-valent counterions [9, 17]. In this sense the densely packed DNA in

viruses, e.g. bacteriophages, is a relatively simple case well suited to study con�ned DNA

phases without the complications of a cellular (in vivo) environment [17].

An open question regarding DNA packaged into viruses is what are the mechanisms

of its release into the cell. The explanation of all the relevant (thermodynamical) forces

guiding the ejection of dsDNA from tailed bacteriophages into bacterial cells is, in spite

of 50 years of research, still missing [18, 19]. The ejection starts as a release of DNA from

the fully packed viral capsid (protein coating of the bacteriophage). The DNA is packed

to extreme densities and exerts a pressure of25� 100atm on the capsid [9, 20]. Models

developed and testedin vitro (see [18] and references therein) predict that the ejecting

force resulting from even such a dense packing is insu�cient to completely transfer the

DNA into the cell interior. Although cells have smaller turgor pressures than fully packed

bacteriophages [21], the ejecting force (and pressure) in the capsid drops sharply as it

empties [22]. A recent single molecule Hershey-Chase experiment [23] hints that in vivo

ejection is controlled not by the amount of DNA left inside the capsid but by the amount

ejected into the cell. This means that once the pressure built-up in the bacteriophage is

spent on the DNA ejection, a cellular mechanism takes over. There have been various

proposed mechanisms for completion of the ejection but it appears that none of these

models give a de�nite answer while experiments suggest a coexistence of many di�erent

mechanisms.

6
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Packing of DNA in con�nement has been studied both experimentally and theoretically

for some time, but what happens when interacting proteins are added to the mix is un-

known. There are reasons to believe that some viral proteins may be evolutionary adapted

to encapsidate nucleic acids [24]. This may be relevant for encapsidation of synthetic

cargo [25]. A good example are adenoviruses which package dsDNA into the viral capsid

accompanied by viral DNA-binding proteins, which may help in charge neutralization and

condensation [5]. There is no high resolution structural data for any of these proteins, and

the exact conformation of this mixture of polymer (DNA) and nano-particles (proteins)

is still not known. The DNA, being partially bound or neutralized by the proteins, may

be modelled as an e�ective medium for the DNA-binding proteins. Here the e�ects of the

viral capsid may induce a degree of ordering in the distribution of these proteins. Similar

e�ects have been recently seen in the chromatin organization in capsids of SV40 virus

where the coupling between packing proteins and the con�nement in�uences the state of

the packaged DNA material [26].

The crowded environment of polymers/polyelectrolytes and nanoparticles is also inter-

esting from the biological viewpoint as it parallels with the crowded cell interior. Crowding

has been shown to lead to many di�erent phenomena, e.g. renormalization of bare in-

teractions [27] and anomalous di�usion [28]. It is known to be relevant for both nucleic

acid compaction [29, 30, 31, 32] and protein folding [33]. But the exact nature of this

mechanism and the repercussions it may have on our understanding of cellular functions

are not known.

1.3 Outline of work

Chapter 2 "Compacted DNA" covers the topic of condensed and con�ned DNA. We

explain parts of the phase diagram for con�ned DNA in 3D con�nement and apply it to

understanding DNA phases in bacteriophages, the interplay of various free energy terms

and the ejection process from a phage. We contribute to understanding the problem of

in vivo DNA ejection from bacteriophages by giving a thermodynamic model explaining

ejection into Gram-positive bacteria.

Chapter 3 "Nucleic acids and condensing proteins in con�nement" deals with the subject

of how condensing proteins interact with nucleic acids in a con�ned environment. We

will discuss basics of packaging nucleic acids in con�nement, and how the con�nement

and crowding in�uence elementary interactions. We apply this models to explain the

organization of viral capsid interiors containing condensing core proteins and DNA.

7





Chapter 2

Compacted DNA

A part of the work presented in this chapter has been previously published in:

[34] S. Marion and A. ’iber, �Ejecting Phage DNA against Cellular Turgor Pressure,�

Biophys. J. 107,1924�1929 (2014).

DNA is considered to be compacted if its spatial extent has been reduced due to an

external in�uence. In its native state, when located inside a physiological solution, dsDNA

has the conformation of a self-avoiding walk in space [35], i.e. a random coil. Two major

compaction mechanisms which will be considered are: a) condensation of DNA in a dense

phase, and b) con�nement of DNA inside a small volume. Speci�cally, we will consider

con�nements into three-dimensional cavities [11]. The motivation for considering states of

compacted DNA is to understand the process of genome ejection from bacteriophages into

cells but also the packing of DNA in viruses. During viral ejection from a bacteriophage

into a cell, the DNA moves from one container into another, form a viral capsid into a

crowded cellular interior. We will �rst try to understand how these di�erent compacted

states behave, before combining our understanding to explainin vivo ejection from a

bacteriophage. Althoughin vitro ejection has been successfully resolved [36, 37, 38], the

in vivo case with all its biological intricacies is still lacking a solid explanation [18].

2.1 Condensation of DNA

Condensation of DNA is known to take place in various conditions [39]. In a dilute

solution, DNA-DNA interactions are strongly repulsive resulting in DNA performing a self

avoiding walk in space, producing a so called random coil. But, if the strong electrostatic

repulsive interaction between parts of the DNA is suppressed, the DNA as any polymer

might condense in globules [2], or speci�cally for DNA, even in dense hexagonal phases

[40, 41]. The hexagonal phases of DNA are known to be induced by multivalent cations,

which mediate a net attractive interaction between the DNA strands. Other methods for

9
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condensation include neutral polymers, where by using the osmotic pressure produced by

Polyethylene glycol (PEG) one can measure the forces resisting the osmotic compation,

and simultanuesly measure the unit cell of the hexagonal packings [40, 40]. Examples of

multivalent cations that act as condensing agents include cobalt hexamine (3+) [40], and

compounds presentin vivo like polylysine [30] and spermidine (3+) [29].

Condensation of DNA with multivalent ions has been demonstrated in controlled bi-

ological conditions. Electron microscopy shows that DNA collapses in globules, toroids

and rods, with toroids being a preferable state in biological conditions (See references in

[42] and [41]). It was also shown that in the presence of condensing agents like spermi-

dine, bacteriophages eject DNA which forms toroidal condensates, even when con�ned in

liposomes [43]. The interior of the cell is known to be a crowded environment with DNA

condensing agents, both causing condensation of DNA [29, 30, 31, 32]. Thus, we study

how DNA condensation can be modelled using the continuum model of Ubbink and Odijk

[16, 42] in order to understand condensed phases of DNA, especially those found in cells,

as a basis for explainingin vivo ejection of DNA from bacteriophages.

2.1.1 Ubbink-Odijk continuum model

The continuum model of Ubbink and Odijk (U-O) [16, 42] examines the free energy

of a DNA condensate in a dense hexagonal phase from the three-dimensional shape of

the condensate. The model treats the free energy of the condensateF = Fv + Fs + Fb as

having three distinct contributions coming from: the bulk contributionFv proportional to

the volume V, the surface free energy contributionFs and the elastic energy contribution

Fb due to the bending of the "DNA bundle". The resulting problem is to obtain the shape

of the condensate that corresponds to the free energy minimum arising from an interplay

of surface and bending e�ects.

In our consideration, we limit our modelling to systems with rotational symmetry

around the z-axis. The total free energyFtor is minimal when the condensate has the

shape of a torus [16, 37, 42], but there are other possibilities like rods [30] which are not

relevant in physiological conditions [44]. We will optimize the shape of this condensate by

�nding the closed curve which produces the �nal surface of revolution. The free energy

of the DNA condensate will be given as a functionalF [C] of the curveC which de�nes

this cross section (Fig. 2.1). Numerically, the curveC is treated as an ordered set ofN0

points f r i ; hi g.

We will obtain the free energy per base pair of the condensed DNA as a function of

its length L = V=A0. Here V is the condensate volume andA0 the area of the base of

the hexagonal latticeA0 =
p

3d2=2 of DNA strands andd the closest neighbour distance

between DNA strands. In this section we will take the valued = 4 nm as in the work of

10
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Ubbink and Odijk [16, 42]. Other parameters are the base pair lengthLbp = 0:34 nm and

the persistence lengthLp = 50 nm valid for physiological monovalent salt concentrations

[45].

The volume contribution to the free energy is given as a negative (attractive) part

proportional to the DNA volume � 
V or when integrated over a rotational body at a

distancer from the axis of symmetry with a unit area ofdrdh

Fv = � kB T 

ZZ

f r;h gin C

2�rdrdh: (2.1.1)

where
 is an e�ective condensing pressure,r is the radial coordinate andh the rotation axis

coordinate in the cylindrical coordinate system (Fig. 2.1b). Thesurface contribution

is given by a positive contribution proportional to the surface area�S represented by the

integral

Fs = kB T �
I

C
2�rdl; (2.1.2)

where� is the surface tension. Thetotal bending energy is given asLp=2R2 per unit

length of a circular loop of DNA wound at a radiusR [3] with persistence lengthLp � 50

nm in physiological conditions [45]. The total binding energy is obtained from an integral

of thin circular �bres over the cross section area with a cylindrical symmetry:

Fb = kB T
LpL
2V

ZZ

f r;h gin C

2�r
r 2

drdh: (2.1.3)

Before proceeding to minimizing the resulting free energy, we must examine the physical

content of the constants
 and � .

Figure 2.1: a) Cross-sectional areas (in green) for various DNA condensates of the same
volume, b) Coordinate system used assuming cylindrical symmetry around the axis of

rotation for the torus and inversion symmetry for axish. Slice shows the hexagonal DNA
ordering.
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Non-dimensionalisation of the Ubbink-Odijk equation

In the U-O model a non-dimensional parameter� [16] is used to quantify the relative

impact of the surface versus bending free energy contributions. It is obtained by scaling

all the spatial variables inF = Fb + Fs:

~F =
Z R+ r

R� r

H (X )
X

dX + �
Z

C
XdL (x) (2.1.4)

where� is de�ned as

� =
4�V

4
3

LpL
=

4�A
4
3
0 (LbpNbp)

1
3

Lp
: (2.1.5)

The non-dimensional parameter� will de�ne the shape of the condensate. Because� 0 is

a function of the length of DNA in the condensate, we will de�ne� 0 = � (N 0
bp) as the �

when all the DNA base pairsN 0
bp, e.g. from a virus, are in the condensate. The shape of

the condensate, and not just its volume, will depend on the amount of DNAL = LbpNbp

in the condensate:

� (Nbp) =

 
Nbp

N 0
bp

! 1
3

� 0: (2.1.6)

When optimising the shape of the toroid, we will change the length of DNA but keep

the values of the surface and volume energy density constant, in essence we start from

a certain � = � 0 which is then reduced if the quantity of condensed DNA is decreased.

Because� 0 is a coupling parameter of the total surface and total bending energy of a

toroid, by changing the length we will vary the ratio of these contributions.

Connection between � and 


The volume contribution of the free energy divided by the volumeFv=V can be obtained

by summing the contribution f 0 (a calculation of f 0 is given in Ref. [42]) from all the

pairs of interacting strands times the density of base pairs:

�
Fv

V kB T
= 6f 0

Nbp

LA 0
=

6f 0

LbpA0
= 
: (2.1.7)

For the surface contribution, the free energy divided by the surface area will be propor-

tional to the number of neighbours (� 2 for the hexagonal lattice) lost due to the reduced

coordination of the surface and the number of base pairs on the surface divided by the

surface area:
Fs

SkB T
=

2f 0N 2D
bp

Ld
=

2f 0

Lbpd
= �: (2.1.8)
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Figure 2.2: Cross sections of the toroid (only upper halves shown) for di�erent starting
� 0. Each sub-�gure shows the e�ect of reducing the length (volume) of the condensed

DNA on the shape while keeping� (and 
 ) constant. Arrows show the direction of
reducing the total condensate volume. Take note of di�erent scales on thex and y axes

of the sub-�gures.

It follows that � and 
 are related as:


 =
2
p

3
d

�: (2.1.9)

We can now represent the volume free energy contribution via the surface (tension) constant

�
Fv

kB TNbp
=

1
Nbp


V =
1

Nbp

 
2
p

3
d

�

!

(A0LbpNbp) = 3 dLbp� (2.1.10)

or vice versa.
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2.1.2 Optimizing the DNA condensate shapes

In order to obtain the optimal shapes for DNA we minimize the free energy function

with contributions from Eq. (2.1.2), (2.1.3) and (2.1.10) to obtain

Ftor

kB T
=

LpL
2V

ZZ

f r;h gin C

2�r
r 2

drdh + �
I

C
2�rdl �

2
p

3
d

�V; (2.1.11)

for a �xed DNA length L = V=A0. This is achieved via numerical optimization ofFtor (C),

i.e. by a minimization of a multidimensional functionFtor (r i ; hi ) (Fig. 2.1). The opti-

mization was performed in Python using the Numba JIT compiler [46] with 20 coordinate

pairs (r i ; hi ) representing the upper half of the base of the rotational body.

A representative example of minimization of the free energy given by Eq.(2.1.11) for

four starting � 0 with di�erent numbers of DNA base pairsNbp is shown on Fig. 2.2). The

�gure represents how a DNA condensate's shape changes as the amount of DNA becomes

smaller. When� 0 is small (Fig. 2.2a,b), tori with shorter DNA present a tendency to

only reduce the toroid major axis while maintaining a circular cross section. For larger

� 0 (Fig. 2.2c,d), tori no longer have a circular cross section. As the bending contribution

is smaller for large� (L), the condensate collapses in a globule with a small cylindrical

"void" near r = 0 due to the bending energy diverging there. A crossover between these

two behaviours (the "thin torus" and "fat sphere") occurs when� � 10.

When the bending energy dominates (see Fig. 2.2a) we expect athin torus with a

circular cross section whose free energy can be approximated using a variational approach.

We �rst approximate the free energy (without the volume contribution) as:

Fslim

kB T
=

LpL
2V

V
R2

+ �S: (2.1.12)

To obtain the major radius R of the torus, we minimize the free energy with respect toR

while keeping the volumeV �xed:

R =

 
Lpp

2�A 0�

! 2
5

V
1
5 : (2.1.13)

Now, the total free energy per base pair is obtained as:

Fslim

kB TNbp
= 5

 
Lp� 4� 4A2

0L3
bp

8

! 1
5

N
� 2

5
bp : (2.1.14)

In the "fat sphere" limit (see Fig. 2.2d) the bending contribution is considered
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negligible, so only the surface energy has a noticeable contribution:

Ffat

kB TNbp
= 3

p
4�� (3A0Lbp)

2
3 N

� 1
3

bp : (2.1.15)

Figure 2.3: Free energy per base pair in the U-O model as a function of the number of
base pairsNbp in the condensate; only surface and bending contributions are included.

The points are values obtained numerically while the lines are power law �ts. The
vertical dashed line corresponds to the length for which the U-O surface-bending

coupling constant� 0 is de�ned for a DNA of 169 kbp (T4 DNA). Di�erent � parameters
were obtained by �xing the DNA persistance length atLp = 50 nm and varying � (and
thus 
 ) using Eq. (2.1.5). The points on this curve correspond to the starting shapes in

Fig. 2.2 The two limiting scaling exponents are shown.

We calculate the sum of surface and bending energies for di�erent� in Fig. 2.3. The

dependence of the free energy on the number of base pairs with the included surface and

bending terms is between the limiting power laws of the thin torus and the fat sphere.

We note that both � 0 = 0:1 and � 0 = 1 curves are in the thin torus regimes, while the

� 0 = 100 curve is approaching the fat sphere regime. In the fat sphere regime there is an

exclusion cylinder atx = 0 due to a divergence in the bending free energy.
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2.1.3 Minimal packed length for condensate stability

For DNA to be in the condensed state, the total free energyFtor must be negative.

When we add the volume contribution to the previously calculated surface and bending

contributions (Fig. 2.3) we see that all� 0-curves follow the same trend (see Fig. 2.4):

there exists a minimal length for stable condensation (F < 0).

Figure 2.4: Free energy per base pair in the U-O model as a function of the number of
base pairsNbp in the condensate; the values have been scaled by division with� 0 (at
maximal packing). Thus, they-axis corresponds directly to the curve� 0 = 1. The

horizontal dashed line corresponds to the asymptote for extremely largeNbp. The entropy
contribution T� S for � 0 = 1, and the scaledT� S=� 0 corresponding to the� 0 = 0:1

curve, are marked on the lefty-axis with arrows. Parameters are the same as in Fig. 2.3.

In the fat sphere limit, the minimal base pair quantity for stable packaging can be

obtained from Eq. (2.1.15)and (2.1.10). Thus, without bending the Ubbink-Odijk model

requires at leastNmin � 40 base pairs. In the thin torus limit for the � 0 = 0:1 curve, we
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obtain from Eq. (2.1.14)and (2.1.10) that at least Nmin � 2500base pairs are needed for

a stable condensate. This matches the interpolated numerical value obtained from Fig.

2.4.

We now analyse what happens if entropy is treated separately from the free energy

densities included in the model. The entropy penalty for condensing a semi-�exible

random coil can be approximated by using the free energy from undulations of a semi-

�exible polymer [47] as � S=Nbp = Lbp=Lp = 0:0068. Comparing this entropy penalty with

the values given in the model we �nd that the condensation in the� 0 = 0:1 case is not

stable, while for the� 0 = 1 case it increases the minimum number of base pairs by roughly

10%, and is negligible for higher� 0 (note the markings on the righty-axis at Fig. 2.4).

Bloom�eld [48] suggests that the minimal length for DNA condensation is between 150

and 400 base pairs for a dilute DNA solution. Also, he gives a value for the condensation

energy on the order of� 0:07 kB T per bp corresponding to our� 0 = 1 curve, consistent

with the previous discussion and other similar approaches [49].

2.2 Phases of con�ned DNA

Figure 2.5: Phase diagram of a con�ned polymer. Di�erent regimes for a con�ned
semi-�exible polymer are shown. Thex-axis shows the total length of polymer inside

con�nement with di�erent persistence lengthsLp marked (for details see Ref. [12]). Note,
the polymer monomer sizea is seta = 1 so that both the capsid length and persistence
length are given as non-dimensional quantities in the units of the monomer size. The

y-axis shows the radiusRc of the con�nement. The arrow (blue) shows the approximate
position and direction of the proposed ejection path for a bacteriophage (see text for

details). This �gure has been adapted from Ref. [12].
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Con�ned DNA di�ers from bulk DNA solutions. Depending on the interplay of the DNA

persistence lengthLp, capsid con�nement radiusRc and the total length L of encapsidated

DNA we expect several regimes. When scaling arguments are applied to a DNA molecule

con�ned in a capsid of radiusRc one can expect four distinct phases [12] before a dense

crystalline-like packing is reached at high densities (Fig. 2.5). When the con�nement size

is smaller than the persistence length of DNA, the DNA molecule will be sti�, and will be

pushed against the interior of the con�nement. We will call this the bending dominated

regime. In the opposite case, although the DNA will be bent inside, this bending energy

will not dominate over excluded volume interactions. Within this regime, we expect a

con�ned ideal polymer chain followed by a semi-dilute regime and �nally a liquid crystal

state [12]. At high density, in all the regimes the DNA will enter a dense hexagonal state

[40].

The simplest regime is the bulk regime, as here the dimension of the DNA random

walk in space is smaller than the size of the con�nement, and requires no special treatment.

After the DNA coil spatial extend starts to probe the con�nement, the DNA enters the

ideal chain regime ("dilute") in con�nement as the DNA can not signi�cantly interact with

the capsid, but it determines the local concentration of DNA. The transition into this

regime happens at
q

LbpN0Lp � 2Rc [50] which for Lp = 50 nm and Rc = 30 nm amounts

to N0 = 200 bp. At larger lengths the DNA enters the con�ned ideal chain regime � the

dominant free energy contribution is a con�nement penalty coming from bending. After

the ideal chain the DNA enters the (mean �eld) semi-dilute regime � here the bending

contributions are overcome by excluded volume self-interactions. At even higher densities,

the excluded volume and bending in�uence the local director, the tangent on the curve

of the DNA, to become correlated with that of the nearest neighbours to facilitate denser

packing. The DNA locally orders into a liquid crystal phase [13, 51]. It is known that the

packing progresses �rstly trough a nematic then cholesteric regime and ending in a dense

hexagonal packing manifest as an inverse spool (see Fig. 2.6) [10]. This inverse spool

has an axis of symmetry left from packing of DNA trough a portal in the viral capsid.

The completely packed DNA strand has a cylindrical symmetry around this axis passing

through the tail and center of the capsid.

The bending regime is the least studied, as in physiological conditions the persistence

length of DNA is just above the threshold for the transition in a bending dominated

regime. Many experiments �nd the DNA inside the capsid as being in a liquid crystalline

state [10]. The transition from an isotropic (disordered) to liquid crystal (ordered) state

seems to happen at about 30% packing in the case of phage, and the transition in a

hexagonal state at about 70% [10]. But, if the temperature of the partially �lled viral

capsid is reduced by20 degrees, the DNA adopts a conformation of an inverse spool (Fig.

2.6d), the signature of a bending dominated regime [10]. So, it seems that packed DNA
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Figure 2.6: Examples of di�erent DNA packing regimes. a) Cholesteric liquid
crystal DNA ordering inside partially �lled capsids. Figure adapted from Ref. [10], b)
Reconstruction of dense ordered organization inside epsilon15 phage capsids obtained
from icosahedraly averaged electron micrographs. Figure adapted from Ref. [52], c)

Micrograph od two bacteriophages ejecting DNA inside a liposome in the presence of the
spermidine condensing agent. The resulting DNA torus has hexagonal ordering (as in
Fig. 2.2). Figure adapted from Ref. [43], d) DNA inverse spool. The DNA enters the
capsid portal (tail), and packs as a spool with cylindrical symmetry startinge from the

outer layers inwards. Figure adapted from Ref. [53].

is just outside the bending dominated regime, which is initiated by enhancement in the

sti�ness at low temperatures. The ejection of DNA from a bacteriophage capsid is thus

expected to follow through several packing regimes (representing a horizontal path trough

the phase diagram on Fig. 2.5).In vivo, it will progress from a high density hexagonal

phase, trough the liquid crystal, and �nally the semi-dilute state before almost none is

inside and the force of ejection drops to zero. In the bending regime, ejection is expected

to be simpler, with only a change of the ordering and packing organization as the length

of the encapsidated DNA is reduced.

In what follows, we will �rst discuss how the bending energy can be calculated in both

the bending-dominated and the liquid crystal regimes, before continuing to study the free

energy of packed DNA in the ideal chain, and the liquid crystal regimes.

2.3 Bending of con�ned DNA

The bending of DNA is especially relevant in viral capsids, as the typical persistence

length of the DNA (Lp � 50 nm) is comparable to the size of viral capsids (Rc � 30� 50

nm) [54]. The bending energy is a�ected by the con�nement, e�ectively limiting the

maximal radius of curvature of a DNA contour to the size of the capsidRc. In this regime

the best approach is to model the DNA as a worm-like chain with a dominant contribution

from bending. The bending energy of a single strand of DNA can be expressed as an
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integral of its local radius of curvatureR over the full contour length [3]

Fb =
1
2

LpkB T
Z 1

R(r )2
dl(r ) (2.3.1)

wheredl follows the contour. The bending energy in con�nement becomes large for tightly

wound DNA as the the minimal bending energy is limited with the capsid radiusRc as

� R� 2
c . When the Kuhn length of DNA 2Lp, which represents one step in the random walk

of the DNA, is larger than the diameter of con�nement2Rc the DNA random walk becomes

frozen by the con�nement [12]. We can see this if we compare the the thermal energy

available to one persistence length segment to the corresponding bending contribution.

DNA inside a con�ning sphere of radiiRc has a minimal free energy when its radius of

curvature is equal to the radius of the con�nement. A lengthLp of such DNA would have

a free energy of� 1
2kB TLpLp=R2

c, comparable to the thermal energy of� 1
2kB T per degree

of freedom. The conformation of such DNA is e�ectively dominated by bending.

First, we shall discuss a simple mean �eld bending model, that is applicable if the DNA

is not tightly bent (not in the bending regime in Fig. 2.5), as a basis for future discussions.

Afterwards, we will discuss an e�ective loop model for tightly bent ordered DNA [55] and

extend it to include also transition to a disordered state [56].

2.3.1 Mean-�eld bending model

The bending energy of a DNA strand in a spherical con�nement of volumeVc can be

written as
Fb

kbT
=

Lp

2

Z

sphere
� (r )K 2(r )d3r (2.3.2)

whereK (r ) = 1 =R(r ) is the local curvature, the integration is limited to the inside of the

sphere, and� (r ) is the local density of DNA. We will make an approximation of a mean

local bending energy, such that there exist an expected value of the bendinghK 2i in place

of the true K 2(r ) together with the assumption that the density� = LbpNbp=Vc inside the

con�ning volume Vc is homogeneous.

We know that

K (r ) = jr su(r )j (2.3.3)

where r s is applied along the curve of the DNA strand, andu(r ) is the tangent vector

for a DNA strand at position r . u(r ) can be decomposed in a spherical coordinate system

with its center coinciding with the center of the spherical con�nement:

u = ur r̂ + u� �̂ + u� �̂: (2.3.4)

As we expect rotational symmetry inside the con�nement, we can simplify the calculation
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of the local curvature. We will consider a simpli�ed case where there is no� or � dependence

in the projections ofu on r̂; �̂; �̂ ; only a dependence on a order parameter, and possibly a

dependence ofur on r . Here, we neglect correlations between neighbouring parts of the

strand inside the capsid, except radial correlations due to boundary conditions on the

surface of the sphere. Thus, we can imagine the capsid consisting of in�nitesimal boxes

with a given probability distribution f (u) for �nding a piece of DNA in a given direction

u; this probability distribution can be either isotropic or give a measure of ordering.

We calculate the changes of the unit vectors of the coordinate system as we locally

move from one point to the other to obtain the local curvature:

K (r ) =

�
�
�
�
�
r̂

 
@ur
@r

+
u�

r
�

u�

r

!

+ �̂

 
ur

r
�

cos�
r sin�

u�

!

+ �̂

 
ur

r
+

cos�
r sin�

u�

! �
�
�
�
�
: (2.3.5)

Here, we must haveur (r = Rc) = 0 due to boundary conditions; the strand cannot

penetrate the capsid walls. But, to simplify the problem we will neglect the additional

e�ects of the boundary by taking ur to have a constant value inside the capsid. This

violates the boundary conditions, but is consistent with either an inverse spool or liquid

crystal ordering. In the inverse spool the DNA smoothly transitions between layers with

a minimal ur . If we were to takeur then the distribution function f n needs to also be

dependent on the azimuthal angle and possibly the distance from the center, requiring a

more complex model.

From

K 2(r ) =
1
r 2

(u� � u� )2 +
1
r 2

 

ur +
cos�
sin�

u�

! 2

+
1
r 2

 

ur �
cos�
sin�

u�

! 2

(2.3.6)

after some simpli�cations and partial integration overr and � we obtain

Fb

kbTNbp
=

3LpLbp

8�R 3
c

4�R c

0

@(u� � u� )2 +
Z �

2

� 0

 

ur +
cos�
sin�

u�

! 2

sin�d� +

Z �
2

� 0

 

ur �
cos�
sin�

u�

! 2

sin�d�

1

A (2.3.7)

where the integrals diverge for� 0 ! 0. This is because the integrals can be interpreted

as the winding of loops of increasingly smaller radius around the symmetry axis (analogy

to the inverse spool model). But, due to the �nite dimensions of the DNA strand we can

enter a minimal distance that is achievable. Thus, we introduce a lower cut-o� length of

R0 which is much smaller thanR so Rc� 0 � R0. It follows after neglecting higher orders
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of � 0 (� 0 � 1):

Fb

kbTNbp
=

3LpLbp

2R2
c

h
(u� � u� )2 + 2u2

r � 2ur (u� � u� ) + ( u2
� + u2

� )( � 1 + log 2 � log(� 0))
i

:

(2.3.8)

Here, we identify R0 as the "correlation hole" in the inverse spool model which should

depend on the length of DNA inside. At smaller packed lengths, the DNA will prefer to

�ll the outer parts of the capsid as �lling the center increases the bending energy [9]. Note

that the derived formulas are only valid when the density of DNA is homogeneous inside

the con�nement. Our approximations are not valid at low densities, e.g. near the end of

DNA ejection from a bacteriophage.

We approximate the bending energy by the expected value of the bending energy for a

given distribution function f (� ) such that

Fb ! h Fbi =
Z

Fbf (� )d
 (2.3.9)

The projections of the tangent vector on the spherical coordinate system axis are

ur = sin � sin 

u� = sin � cos 

u� = cos�

(2.3.10)

where we have rede�ned the values of� and  to be in a new spherical coordinate system

whereẑ is in the direction of the director �eld which we take to be�̂ (to recover the inverse

spool model in the completely ordered state). Now, from the property of the distribution

function that f (� ) = f (� � � ) and its independence on the azimuthal angle we can show

that the expected value of the projections are zero by de�nition

hur i = 0

hu� i = 0

hu� i = 0

(2.3.11)

and that the mixed terms are also zero

hur u� i = 0

hur u� i = 0

hu� u� i = 0

(2.3.12)

Using the preceding equation we can simplify Eq. (2.3.8) to obtain

Fb

kbTNbp
=

3LpLbp

2R2
c

�

hu2
� i + hu2

� i + 2hu2
r i + ( hu2

� i + hu2
� i )

�

ln
� 2Rc

R0

�

� 1
��

: (2.3.13)
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By using trigonometric expressions and taking into account that the distribution is not

dependent on the azimuthal angle 

Fb

kbTNbp
=

3LpLbp

2R2
c

�

1 +
1
2

hsin2 � i + (1 �
1
2

hsin2 � i )
�

ln
� 2Rc

R0

�

� 1
��

(2.3.14)

or by introducing the order parameter from liquid crystal theoryS[f ] = hP2(cos� )i :

Fb

kbTNbp
=

LpLbp

R2
c

�

1 � S + (1 +
1
2

S) ln
� 2Rc

R0

��

(2.3.15)

In the isotropic state S = 0, so:

Fb

kbTNbp
=

LpLbp

R2
c

�

ln
� 2Rc

R0

�

+ 1
�

(2.3.16)

and in the fully ordered stateS = 1, so

Fb

kbTNbp
=

3
2

LpLbp

R2
c

ln
� 2Rc

R0

�

(2.3.17)

which corresponds to the expression obtained by integrating the bending over an inverse

spool [55]. We can use standard values typical for a� -phage to obtain an estimate of the

di�erence in bending energy between these two states. The bending energy changes from

the isotropic to the completely ordered phase by a factor of� 5% (full packing) to � 25%

(low packing density) depending on the length of encapsidated DNA.

Note the term � ln Rc present in the isotropic state is also seen in the work by Morrison

and Thirumalai [57] � although their ln Rc term is not extensive and lacks an equivalent

lower cut-o� R0. The parameterR0 is easily identi�ed as the inaccessible region in the

center of the spool like con�guration, i.e. DNA cannot �ll the central volume of the spool

due to its �nite size and the corresponding bending energy. When the bending energy is

small with respect to electrostatics,R0 can be obtained from a variational approach at

high density [9]:

R0(N ) �
10Rcp

N
: (2.3.18)

which is of use when the system is in the liquid crystal regime and beyond, but is not

useful at low densities. In the disordered case, we can obtain a similar scaling at large

packing by variationally treating the competition of excluded volume and bending energy,

albeit this is of limited use as the disordered state is known to transition into an inverse

spool at high density [22]. Alternatively we can use a constant value comparable to the

width of a DNA base pair R0 = 2:5 nm.
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2.3.2 Loop bending model

In the bending dominated regime, the DNA persistence length is larger than the

con�ning radius Lp > R c. The major contribution to the free energy comes from bending

which is determined by the possible conformations the DNA strand can have inside the

con�nement. We approach the problem by �nding an elementary DNA conformational

unit which we can use as an e�ective quasi-particle akin to Kuhn segments in bulk [1]. The

DNA is expected to be bent into the shape of the con�nement so it will layer around the

interior surface. We will de�ne our e�ective unit as one loop of DNA which forms a circle.

This method was �rst introduced by Purohit [22, 55] to model DNA in the inverse spool

packing organization inside viral capsids, and was later studied for elastic wires packed in

spherical con�nement [56, 58].

Figure 2.7: a) Schematic for the inverse spool model with loops. Taken from Ref. [59]. b)
Reconstruction of sti� wire packing experiment inside spherical con�nement. Adapted from Ref.
[56]. c) Drawing of the integration method used for determining the order S dependence of the

loop radius r scaling with the total length L of con�ned DNA. The shaded area represents
represents the volume �lled with DNA which is obtained from the intersection of the large circle

of radius R = r=(1 � S) (blue) and the capsid sphere of radiusRc (red).

We can now de�ne basics elements of the DNA loop model. The bending energy

changedF for an in�nitesimal increasedl of packaged DNA length fromL to L + dl can

be represented as

dF =
1
2

kB TLp
dl

r 2(L)
(2.3.19)

where r (L) is radius of curvature forced on the lengthdl of DNA by the available free

volume. This internal radius r will become smaller as more DNA is packed inside and

layered on the interior surface, also leading to a non-linear increase of bending energy.
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Also, depending on the symmetry of packing,r will have di�erent functional dependences.

We can construct two simple cases (See Fig. 2.7a,b): a) DNA packages with a cylindrical

symmetry ("inverse spool"), b) DNA packages randomly, �lling equally the interior surface

("onion").

In the case of an inverse spool packing, the internal radiusr corresponds to the

cylindrical radial distance. As the length of DNA L is increased inside the capsid,r

changes according to [55]

r (L) = Rc

q
1 � (�L )

2
3 (2.3.20)

with � = 3A 0
4�R 3

c
whereRc is the spherical con�nement radius andA0 is the cross sectional

area per DNA strand. The cross sectional area will depend on the DNA-DNA electrostatic

repulsion, and will for full packing represent the area per DNA strand in hexagonal packing.

This results in a total bending energy of:

Fb

kB T
=

3Lp

2R2
c�

"

� 3
q

�L +
1
2

ln

 
1 + 3

p
�L

1 � 3
p

�L

!#

(2.3.21)

In the "onion" like regime the internal radius goes as:

r (L) = Rc
3

q
1 � �L (2.3.22)

leading to a total bending energy of:

Fb

kB T
=

3Lp

2R2
c�

h
1 � (1 � �L )

1
3

i
(2.3.23)

We see that the bending energy per unit of length grows withL as smaller loops carry a

larger bending contribution in both regimes, which is a necessity as experiments clearly

show that the ejection force is length dependent [22].

The packing of DNA inside viral capsids is expected to progress �rst as a disordered

"onion" packing corresponding to Eq.(2.3.22)and at longer packaged lengths to change into

an ordered "inverse spool" con�guration. The bending energy of an onion con�guration we

calculate is expectedly lower than in the ordered case as it does not introduce an energetic

penalty for loops to cross each other. Each loop crossing will produce stronger electrostatic

repulsion and require some degree of bending. We can make an estimate of such e�ects

by introducing a scaling relationship accounting for direct collisions of loop pairs.

The free energy penalty coming from collisions of two DNA loops should be be propor-

tional to the square of the local loop density� 2
loop (probability of �nding two particles at

one place), the total volumeVc in which the collisions could happen, the excluded volume

for interactions v and the probability Pcollision of the collisions happening. We can thus
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write a scaling relationship:

Fcollision � kB T � 2
loop � Vc � v � Pcollision : (2.3.24)

The probability of the collision will depend on the way DNA is packed. If packing is

progressing in the inverse spool, then collisions (crossings) between two loops are non-

existent. On the other hand, if all DNA loops are disordered the collisions will happen

always. We are here led to de�ne a order parameterS, in line with liquid crystal theory

[60], such that S = 1 in the inverse spool andS = 0 in the onion model. With a mixture

of two packing regimes the order parameter will be in the rangeS 2 [0; 1]. The collision

probability for any two DNA loops to cross each other is a sum of the probability of one

being ordered and the second disordered, with a multiplicity of two, and of both being

disordered, leading to:

Pcollision = 2 � S � (1 � S) + (1 � S) � (1 � S) = 1 � S2: (2.3.25)

A rough estimate for the excluded volumev would be to take it as being equal to the

maximal excluded volume of two DNA rods of persistence lengthLp and e�ective width

D, v = 2L2
pD. This gives the basic scaling of for the energetics of loop packing.

To calculate the collision free energy, we determine the number of loopsnh(L) in

con�nement. The number of loops will grow withL non-linearly depending on the packing

type. For an increase of DNA length ofdL the number of loops increases as

dnh =
dL

2�r (L)
(2.3.26)

from which one can calculate the number of loops in both regimes by simply integrating

using eq. (2.3.22) or (2.3.20). This gives su�cient information to calculate the total

bending energy in both cases.

In reality, DNA will not always be completely ordered or completely disordered inside

the system. The DNA will transition between these regimes during viral ejection, similarly

to the way it transitions from the liquid crystal state with lower DNA sti�ness [10]. To

study this e�ect, one can construct an e�ective model of packing between theS = 1

(inverse spool) andS = 0 (onion) regimes. The simplest model for a transition between

these two packings for which it is possible to calculate howr scales onL is by producing

an interpolation between these two regimes. To obtain howr (L) scales, we construct a

geometric model (Fig. 2.7c) of a cross section of our con�ning sphere and another sphere

of radius R. The spheres are placed such that forS = 1 the inner sphere radiiR ! 1

so that it represents a cylinder, and forS = 1 the inner sphere radiiR ! r so that it

represents the inner surface of the packaged DNA ("onion shell"). AssumingR = r=(1� S)
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allows us to calculate the volumeV(r; S) of the cross section of the two spheres. It is this

volume that is �lled as more DNA is inserted. Because of the shape of volume, an e�ective

radius of the current loopr is de�ned. Numerically one obtains howr (L) depends on the

order S (Fig. 2.8). For S = 0 and S = 1 we obtain the analytical results, while for a

varying degree of order we obtain a smooth transition between these regimes. This allows

the calculation of how the free energy in the model depends on the amount of packaged

DNA.

Figure 2.8: Dependence of loop radiusr (N ) as a function of packing percentage for
several di�erent order parametersS. Symbols mark the inve,rse spool (S = 1) and
onion-like (S = 0) packing limits given by Eq. (2.3.20) and (2.3.22), respectively.

The total free energy can be estimated using our scaling relationship based on the

numerically obtained r (N; S) (Fig. 2.8) with both the bending energy and collision en-

ergy depending on the ordering inside, i.e. by using our previous approximation for the

contribution of collisions Ftot (N; S) = Fcollision (N; S) + Fb(N; S) (Fig. 2.9). We see there

are two local free energy minima. First is atS = 0, corresponding to the onion model.

The second, atS = 1 represents the inverse spool model, and is a global minima because

there are no loop collisions. Interestingly, there is an energy barrier separating the ordered

(S = 1) and disordered (S = 0) regimes, which becomes larger as the packing is increased

from a larger number of loops. For full packing, we see thatS = 1 becomes globally

unfavourable as a result of our model not treating high density phases correctly.

The loop model presented here gives interesting insight into packing of sti� DNA

inside con�nement. First, it predicts that the inverse spool phase is more stable, but
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Figure 2.9: Total free energy in loop model with contributions from bendingFb(N; S)
and collisionsFcollisions (N; S) as a function of the order parameter for di�erent lengths of
packed DNA (here represented as packing fractionsx = N=N0). At full packing a dense

hexagonal phase with DNA strand separation ofd = 2:8 nm is assumed.

it also predicts that it is possible that packaging could remain stuck in the disordered

phase, because of the energy barrier. This could produce a hysteresis between packing

and unpacking, when the disordered phase can persist for long lengths during packaging,

but will be suppressed during ejecting the material. We can also relate our model to

packing of sti� wires in spheres [56, 58], where it could be applied to give analytical �ts

to experimental data of partially ordered packings.

Torsion can be relevant for packing, even leading to a lower degree of ordering when

there is no mechanism for relaxation [56]. In reality, packing in the disordered phase

consists of small ordered groupings of wires. Whenever the coiling radius becomes too

small, a new loop is started at a di�erent orientation [56]. So each layer seems to be ordered

in respect to itself, but with a di�erent orientation between di�erent layers. This seems

to minimize the crossing penalty. At higher densities, Stoopet al. [56] see a transition to

a "inverse spool" packing regime, as predicted by the loop model.

2.4 Con�ned DNA in the isotropic regime

After discussing the DNA bending, and speci�cally the bending dominated regime of

DNA con�nement, we will continue with the regimes where the bending contribution to

the free energy is not dominant. Going in the opposite direction to that ofin vivo ejection

(Fig. 2.5), we start in the isotropic regime, and follow into the liquid crystal regime. The

DNA at low packing densities, below 30% of packed total length, is considered to be in

the isotropic, or disordered, phase [10]. This phase has two distinct regimes [12]: a) the
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�rst part is the ideal chain regime, when the whole DNA does not feel the con�nement,

b) the second is when the correlation length between di�erent DNA segments become

comparable to the size of con�nement, and behaves as if being part of a semi-dilute bulk

solution [11]. As DNA is a strongly charged polyelectrolyte, we will focus on contributions

coming from angle dependent excluded volume interactions, which will dominate the free

energy [13, 14]. In this section, we will explain the state of the DNA, its free energy, and

use the resulting information to give estimates on pressures and forces involved during

the last parts of DNA ejection.

When the DNA behaves as an ideal chain, i.e. when it can be represented as a random

walk within con�nement, we can renormalizes the length scales to reduce the case to that

of an ideal chain [2]. We use a coarse graining scheme due to Khokhlov and Semenov [61].

The DNA is treated as an ideal polymer with a new renormalized monomer size (the Kuhn

length) of 2Lp, thus consisting ofn = L=(2Lp) segments. This representation includes the

"self-interaction" of the DNA strands. We must make a distinction between2Lp, which is

the Kuhn length and becomes a measure of spatial extent, and the persistence lengthLp,

which is related to the mechanical sti�ness.

In order to model the DNA in the isotropic regime, we must �rst determine the

interactions between two segments of the DNA. Due to the con�nement, these segments

are forced to exist much closer to each other than in free space. This spatial exclusion

coming from screened electrostatic interactions is called the excluded volume, and gives a

measure of the crowdedness inside the capsid.

DNA-DNA interactions

When two parts of a DNA molecule are in close proximity, they exert a repulsive force

on each other. E�ectively, each part of the DNA excludes a volume around it depending on

the strength of the interaction. When the density of particles is such that there is more free

volume than excluded volume, these particles are consider to be barely interacting. As the

density increases, the excluded volume becomes a good measure of the free energy required

to obtain such a packing. We will use measured DNA-DNA interaction parameters from

the seminal work by Rau and Parsegian [40] to obtain how the excluded volume behaves,

taking into account the mutual orientation and distance of two DNA segments.

The dominant part of the excluded volume for two DNA molecules comes from screened

electrostatic interactions. Due to its local rigidity DNA behaves as a long rod with a linear

charge density� and e�ective width D inserted into a salt solution with electrostatic

screening length� � 1. A solution of the linearised Poisson-Boltzmann equation (Debye-

Hückel) for the interaction of two long charged DNA rods with electrostatic screening

(Lp >> �; D ) which have their points of closest separation atr 1 and r 2 and a mutual angle
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of 
 between direction vectors (directors)n1 and n2 is given by [62]

U12(r 1; r 2) =
�� 2

��
e� � jr 1 � r 2 j

sin

(2.4.1)

where� is the e�ective linear charge density related to the e�ective charge per monomer

� ef f as

� =
� ef f eNbp

LbpNbp
=

� ef f e
Lbp

: (2.4.2)

The bare charge of DNA is� 0 = 2 elementary charges per base pair, but in physiological

conditions due to Manning-Oosawa counterion condensation [63] the e�ective charge is

reduced from its bare value� < � 0.

The angle dependent electrostatic excluded volume (second virial coe�cient) is then

calculated as [13, 51]

� (n1; n2) =
1
V

Z Z
(e� U12 ( r 1 ;r 2 )

k B T � 1)dr 1dr 2 (2.4.3)

which for the case of two charged rods of lengthLp at a closest separation ofx = jr 1 � r 2j

reduces to

� (n1; n2) = 2 L2
p sin


Z 1

D
(1 � e� U12 ( x;
 )

k B T )dx (2.4.4)

Because of the ambiguity in choosing the e�ective linear charge density due to correlations

and screening we opt to use an experimental �t which includes both hydration repulsion

and screened electrostatic interactions between two parallel rods as measured by Streyet

al. [64]

U(r ) = a
e� � H r

p
� H r

+ b
e� �r

p
�r

: (2.4.5)

where� � 1
H and � � 1 are the hydration and electrostatic decay lengths, respectively. Follow-

ing the outline for skewed rods [62], with a mutual angle of 
 at a minimal distancex, we

obtain for the angle dependent potential:

U(x; 
 ) =
r

�
2

a
� H

e� � H x

sin

+

r
�
2

b
�

e� �x

sin

: (2.4.6)

From this we can numerically calculate the angle dependent excluded volume� (n1; n2) in

(2.4.3). Representative values for a 100mM monovalent salt solution are� � 1
H = 0:3 nm,

� � 1 = 0:974nm, a = 1:7 � 104 kB T/nm and b= 85 kB T/nm [64].

Modelling the DNA in the isotropic regime

When the end-to-end distance of the encapsidated DNA is< comparable to the capsid

size, it starts to interact with its con�nement. The free energy of the DNA will be
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dominated by bending with excluded volume interactions becoming relevant at higher

densities. Using pairwise interactions, a Flory scaling approach [2] when L2
p < R ca

[12] gives that the free energy scales with the number of DNA monomers asF � n2.

Scaling arguments give the results up to a constant of order unity. In contrast, numerical

simulations combined with mean �eld modelling give the free energy at low density for a

worm like chain con�ned inside a spherical surface as [57]

F = 0:56
LP L
R2

c
� 1:1

Lp

Rc
+ 3 ln( Rc): (2.4.7)

which also gives a bending contribution, with termsLp=Rc and ln(Rc), not obtained in

typical scaling arguments [12] but it neglects strong electrostatic interactions. We can not

return to Eq. (2.3.15) for the mean �eld bending as it assumes a homogeneous packing

which is not yet established. The loop bending model as given by Eq.(2.3.23) in the

disordered (or ordered) regime provides a better estimate.

In order to construct the free energy, we will use our loop bending Eq.(2.3.23) and

combine it with pairwise interactions of the excluded volume type. When the worm like

chain starts to intersect we add the excluded volume interactions inside a spherical cavity

[2]

Fv = kB Tv
n2

p

Vc
(2.4.8)

where the relevant quantity is not the number of monomersNbp=V but the number of

"persistent segments" inside the con�nement:

np =
LbpNbp

2Lp
: (2.4.9)

Here, v is the isotropic excluded volume obtained by averaging the angle dependent

excluded volume from Eq.(2.4.4) over all possible mutual (random) angles between two

persistence segments of DNA:

v =
1
2

Z Z
� (n1; n2)

1
4�

1
4�

d
 1d
 2: (2.4.10)

We can integrate the excluded volume

v =
1
8

Z �

0

Z �

0
� (sin 
 ) sin � 1d� 1 sin� 2d� 2 (2.4.11)

where
 is the angle between the current directors� 1 and � 2. We can change the origin of

the �rst coordinate system so that it always coincides with the second, thus:

v =
1
4

Z �

0
� (
 ) sin 
d
 (2.4.12)
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leading to

v = L2
pD

 
ln A + 
 e

�D
� 1

!

�
L2

p

2�

Z �

0
j sin
 j ln(j sin
 j) sin 
d
: (2.4.13)

After integration we obtain the �nal equation for the isotropic excluded volume [13]:

v = L2
pD

 
ln A + 
 e

�D
� 1

!

�
L2

p

�
(ln 2 � 1): (2.4.14)

Here D is the e�ective width of the DNA, 
 e � 0:577a numerical constant and� � 1 the

electrostatic decay length. We can make an estimate of the excluded volume in viral

capsids by taking typical parametersD � 3 nm and � ef f = 1:9) and an electrostatic decay

length of 0:977 for 100 mM salt [64] and evaluate to obtainv � 2200nm3. For a viral

capsid of radiusRc = 30 nm, we obtain Vc � 50v. Thus, when 50 persistence length

segments (about2:5 � m of DNA) is inside the capsid, all the available volume is excluded.

This gives us a good estimate of the range of validity of models which take into account

only the pairwise term in the virial expansion.

We can �nally write the free energy for the whole isotropic regime as

Fd

kB T
=

3Lp

2R2
c�

h
1 � (1 � �L )

1
3

i
+ v

3
4�R 3

c

 
L
Lp

! 2

: (2.4.15)

This provides one equation for estimating the free energy before the DNA enters a liquid

crystal regime. Notably, for extremely short lengthsL ! 0, the bending term reduces

to the exact formula. Alternatively, if we have reason to believe that there is a strong

tendency for ordered packing, e.g. as simulated [57], we can use the spool bending model

given by Eq. (2.3.21) [59].

2.5 Liquid crystalline DNA phase

The liquid crystal phase is identi�ed by local ordering of the DNA strands such that

local DNA strand direction vectors (directors) become correlated on a global scale. This

transition from an isotropic phase to a liquid crystal is known to closely resemble the same

transition in concentrated unconstrained DNA solutions [65]. We base our modelling of the

liquid crystal phase on adding small perturbations to bulk models. These perturbations

are caused by spherical con�nement and manifest themselves as a limit on the possible

director �eld in the ordered phase and the addition of bending free energy.

As the DNA is one long strand con�ned inside a viral capsid, the con�nement limits

the possibilities for the liquid crystal global director to these that do not penetrate the

capsid and have a minimal amount of tight bends. Additionally, we will assume that there
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is no positional variation in the local ordering, i.e. that we have nematic ordering [60].

This leads us to approximate the director for a liquid crystal nematic order as the unit

vector for the polar angle�̂ with f (� ) the probability distribution for �nding a DNA rod

at an angle � towards �̂ . A �at distribution of f (� ) means that all directions in space

are equally probable (disordered state), while iff (� ) = � (� ) it would mean that all DNA

strands are directed aŝ� (ordered state). A similar approach was adopted by Oskolkov

et. al. [14] as they also studied the e�ects of con�nement on the spatial dependence

of polymer density and ordering with an Onsager approach [51]. They use only steric

interactions and take into account the �rst correction to the entropy due to spatial and

directional inhomogeneities. But they do not explicitly include the connectivity of the

polymer contour and the resulting bending energy, which we expect to modify the isotropic

to nematic liquid crystal transition.

Onsager model for a liquid crstal

We use a modi�cation of the Onsager approach for rods with excluded volume e�ects

to treat the liquid crystal ordering. We extend this approach by addition of the mean

�eld bending given by Eq. (2.3.15) calculated before and study how it a�ects the liquid

crystal transition. The Onsager approach [51] we adapt here [13] predicts the liquid crystal

transition well, although it does not account for other non-nematic orderings.

In the Onsager approach, the free energyFlc(f (� ) is a functional of the probability

distribution function f (� ) for �nding a local DNA strand oriented at an angle� to the

the director �̂ and can be written as [13]

Flc

kB TNbp
=

1
Nbp

S�
1

Nbp
� Sor [f n ]+

Fbend[f n ]
kB TNbp

+
1
2

n02

NbpVc

Z Z
� (n1; n2)f n 1 f n 2 d
 1d
 2 (2.5.1)

wherenp is the number of persistent segmentsnp = L bpNbp

2L p
but all coming from the same

DNA in our case, which is in contrast to the standard Onsager approach.

The content of the terms inFlc is the following. The last term given in Eq. (2.5.1)

is the anisotropic excluded volume given by Eq.(2.4.4) and represents the �rst term in

the virial expansion for DNA-DNA interactions. The resulting integral averages over all

director orientations of two DNA strands with directors n1 and n2. The orientational

entropy can be obtained from the director distribution function [66]

� Sor [f n ] = �
L

2Lp
� (f n ) = �

L
2Lp

Z
f

1
2 (cos� )� f

1
2 (cos� )d
 (2.5.2)

wtih � given as:

� =
1

sin�
@
@�

sin�
@
@�

: (2.5.3)
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The bending contribution we take is from our mean �eld bending model given by Eq.

(2.3.15), which was averaged over all the con�ned interior. This approximates the bending

energy in a homogeneous mixture of volumeVc:

Fbend[f n ]
kB TNbp

=
LpLbp

R2
c

�

1 � S[f n ] + (1 +
1
2

S[f n ]) ln
� 2Rc

R0

��

: (2.5.4)

This term is not present in the standard liquid crystal approach to DNA [13], and allows

us to study the e�ects of bending on the transition point. From experiments (see Ref. [10]

and references therein) we know that in monovalent salt conditions there is no exclusion

hole in the center of the capsid thus justifying our homogeneous approximation.

In order to solve the resulting equation we use the Onsager ansatz [51]:

f (� ) =
�

4� sinh�
cosh (� cos� ) (2.5.5)

dependent on a parameter� . Instead of having to solve for a continuous functionf (� ) we

can now solve for the parameter� . As a measure of the order, we will use the nematic

order parameterS = hP2(cos� )i [60]. The preceding ansatz allows us to directly connect

the order parameterS and the parameter� .

Finally, the order dependent part of the free energy can be written as:

� F
kbTNbp

=
Lbp

2Lp
� (� ) + AbhP2(cos� )i +

 
Lbp

Lp

! 2 2L2
p

�V
[(ln A + 
 e � �D ) � (� ) � � twist (� )]

(2.5.6)

where the constants are

Ab =
LpLbp

R2
c

� 1
2

ln
� 2Rc

R0

�

� 1
�

: (2.5.7)

and

A =
�� 2

ef f lb
L2

bp�
: (2.5.8)

The order independent part amounts to:

Fbend[f n ]
kB TNbp

=
LpLbp

R2
c

�

1 + ln
� 2Rc

R0

��

(2.5.9)

For the bending contributions we takeR0 = 2:5 nm as a representative value as it

approximates the radius of the inaccessible area in the middle of a spool-like packing with

the diameter of DNA.
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Application to the state of DNA inside viral capsids

One can proceed to minimize the free energy for the Onsager model as a function of

the number of base pairs present inside the capsid. A full calculation for the free energy

given by Eq. (2.5.1) with the possibility of ordering into a nematic liquid crystal is shown

in Fig. 2.10. We use three representative values of the monovalent salt concentration150

mM and 500mM with experimentally measured potential parameters [64]. We see that

the phase transition, manifest as an abrupt increase in the order parameterS, happens

at Nc=Nmax � 20% of packing, with smaller salt concentrations expectedly inducing an

earlier transition due to stronger electrostatic interactions.

Figure 2.10: Free energy per base pair (chemical potential) in the Onsager approach as given
by Eq. (2.5.1) for one DNA molecule encapsidated in a spherical capsid of radiusRc = 30 nm

with L p = 50 nm. Lines show the results of calculations for tw di�erent monovalent salt
concentrations (100 mM, 500 mM) as a function of the number of DNA base pairsN inside the

capsid. The connected sysmbols are corresponding values of the order parameterS (right
y-axis). The maximal number of packed base pairs wasNmax = 58:6 kbp.

Figure 2.11 shows the transition point, via the fraction of total packed DNA, for the

transition into a liquid crystal state as a function of persistence length with and without the

bending contribution. We note that the persistence length contributes both as a measure

of bending sti�ness and a length scale for the renormalization of the polymer random

walk, so that without bending we return to a bulk liquid crystal transition. As expected

there is a clear trend for earlier ordering as the persistence length is increased. The added

bending contribution signi�cantly in�uences the transition point at low salt conditions.
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A comparison with experiments which give a transition at30%encapsidated length, e.g.

in T5 [65], would indicate that the e�ective persistence length is somewhat lower than

Lp = 50 nm, or that we missed some important term like twist e�ects [67]. Comparing the

transition points, without and with bending, we see that bending suppresses the transition,

possibly because in the ordered case there are tight bends near the center of the capsid

that are energetically costly.

Let us discuss the values of the persistence length in the contest of the transition point.

It is expected to be around50 nm in the bulk with only monovalent salts to become

larger when the salt concentration is decreased [45, 68]. A small amount of multivalent

ions remaining inside the capsid could however lower the persistence length. Also, recent

experiments on the �exibility of DNA on length scales shorter than its persistence length

show that the worm-like chain model overestimates the bending energy at small length

scales [69], although this is not yet certain [70]. Thus, we useLp = 50 nm as a reference for

the �exibility of DNA and test how a change of DNA sti�ness alters the transition point.

Notably, temperature can also in�uence the persistence length. A change of ambient

temperature from 40� C to 5� C has been shown to cause an increase of the persistence

length of � 10 nm [71]. According to Fig. 2.11, a change of about 10 nm, could cause a

transition to a disordered state. This could explain experimental results on partially �lled

capsids where the liquid crystal state was shown to be extremely sensitive to temperature

[10].

Our results on the liquid crystal transition point are in contrast to Molecular dynamics

simulations (MD) [72] which give a liquid crystal transition at roughly two times the

encapsulated length than in experiments (� 70%) [10]. Although there has been some

controversy recently regarding the treatment of entropy in some MD studies [73, 74, 75],

we believe that the main reason is in the under-representation of the anisotropy of the

DNA interstrand interactions. MD studies usually use a coarse-grained model of a bead

spring with added "dihedral angles" to mimic the e�ects of a persistence length [76]. Here

each bead e�ects screened electrostatic interactions on other beads based on the rational

notion that a line of charged point particles will produce the same interaction as a charged

rod. If we examine one "solid" rod of length� Lp we �nd that in a bead spring model it

would have� 100point particles of charge unity. Such a construction has a pronounced

cylindrical symmetry. With DNA there also exists a delocalized cloud of counterions

screening the bare interactions [77] which is included in the experimentally determined

interactions [64]. Thus, we opted for coarse graining the DNA into rods with anisotropic

interactions.

Although many theoretical models [37, 55] and numerical simulations [72, 78, 79]

predict that an exclusion hole should always exist, irrespectively of the packing fraction

and solvent conditions, experiments indicate that this is the case only in partially �lled
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Figure 2.11: Critical length of DNA for phase transition from isotropic to liquid crystal as a
function of DNA persistence length. Results are given for three di�erent salt concentrations and

with or without any bending contribution to the liquid crystal free energy. Capsid size is
Rc = 30 nm. For other parameters see preceding section.

capsids at low temperatures or with added condensing agents [10]. Quenching of mostly

empty capsids from room temperature to� 4� C cases a transition from a homogeneous

isotropic state to an inverse spool with a depletion of DNA density in the core of the

capsid [10]. The assumption of a homogeneous density of particles is valid in the limit of

Lp � Rc where there is no preference for the DNA to leave the central part of the capsid

due to costly bends in the contour. In analogy to the Odijk two phase picture for dense

packings [80, 81], we propose that as the bending contribution is increased the center of the

capsid will behave as a exclusion hole for the DNA. This happens when the electrostatic

repulsion energy is not large enough to maximize the distance between the strands. DNA

in the center of the capsid has a tendency to stretch outwards, thus decreasing the e�ective

volume taken by the DNA and increasing the density of interacting DNA rods. In our

interpretation of the experiments a decrease in temperature can cause an increase in the

persistence length, thus changing the ratio between bending and electrostatic excluded

volume energies on behalf of the former. Such a transition from a homogeneous state

will take place when the bending energy of random packing of DNA loops given by Eq.

(2.3.23) is able to overcome the excluded volume interaction that is spreading the DNA
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throughout the whole capsid volume:
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We can think of it as the condition that the excluded volume repulsion overpowers the

bending contribution at higher densities � forcing the DNA to �ll all the volume at the

cost of increased bending. Using parameters from this section, we obtain a transition

at around � 30% packing, albeit highly sensitive to the value of the persistence length.

From experimental measurements of the DNA persistence length we that a change of

temperature of � 20� causes a change of� 15%in the persistence length, which could be

enough to explain the before-mentioned partial onset of exclusion hole formation. This

would indicate that the state of packaged DNA at in vivo temperatures is just outside the

bending regime.

2.6 Viral ejection in vivo

Ejection of dsDNA from bacteriophages is, in spite of half a century of active research,

still poorly understood [18, 82]. The process of ejection is of major importance in the viral

infection process. The ejections begins with the bacteriophage attaching to the bacteria

and the removal of a protein "cork" (tail portal covering) which stops the densely packed

DNA from exiting [54]. The DNA is packed to extreme densities and exerts a pressure of

25� 100atm on the bacteriophage capsid [9, 20]. Models developed and testedin vitro

(see [18, 82] and references therein) predict that the ejecting force resulting from even

such a dense packing is insu�cient to completely transfer the DNA into the cell interior.

Estimates of cellular pressure in bacteria range from0:1 � 25 atm [21, 83, 84]. Although

cells have smaller turgor pressures than fully packed bacteriophages, the ejecting force

(and pressure) in the capsid drops almost exponentially as it empties [22] indicating that

ejection should stall before the genome is fully ejected.

Models of DNA ejection based on the continuum theory by Ubbink and Odijk [16, 42]

have been applied to explain the ejection when both the ejected and encapsidated DNA

is condensed [37]. In the model by Tzlil et al. [37] the capsid DNA, being con�ned, has

a non-optimal shape which generates the force ejecting it from the capsid all until the

ejection force is balanced by a externalcounterforce. If this in vitro model is applied toin

vivo cases it predicts that ejection stalls when the cellular turgor pressure is larger than

about 0:5 atm. Typical cellular pressures are estimated to be0:3� 5 atm for Gram-negative

[21, 83, 84] and 15 � 25 atm for Gram-positive bacteria [84]. This would indicate that

ejection cannot proceed without some help.

Typical in vitro experiments do not provide a clean separation between two (three)
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compartments, one in the virus (immersed in the extracellular �uid), and the other in

the cell [17], which is a key feature of the ejection process we aim to include in the

model presented in this section. The theoretical models applied inin vitro , which assume

condensed DNA inside the capsid, may thus have a limited applicability in thein vivo

conditions.

Condensing agents are found in some capsids but this is not a general situation and has

been related to reduced infectivity [85]. Many viral capsids are permeable to small ions

so we expect intra-capsid solvent conditions analogous to those in their exterior. Because

typical extracellular �uids have no condensing agents in su�cient concentrations, DNA

ejection into bacteria is expected to proceed from a non-condensed state.

A recent single molecule Hershey-Chase experiment [23] hints that in vivo ejection is

controlled not by the amount of DNA left inside the capsid but by the amount of DNA

ejected into the cell. This means that once the pressure built-up in the bacteriophage

is spent on the DNA ejection, a cellular mechanism must take over. This has been

documentedin vivo in bacteriophages T5 [86] and T7 [87]. A variety of mechanisms have

been proposed for completing the ejection: nano-motors or enzymes that ratchet in the

stalled part of the DNA [87, 88], a solvent �ow through the semi-permeable capsid and

into the cell simultaneously �ushing the DNA trough the tail [89], osmotic pressure from

proteins remaining in the capsid [90] and di�usion of DNA with assisted pulling from

proteins in the cell [91]. It appears that none of these models give a de�nite answer while

experiments suggest a coexistence of many di�erent mechanisms.

We will calculate the pressures and forces driving the last parts of viral ejection using

thermodynamic models of the DNA inside the capsid (in an isotropic state) and condensed

DNA inside the cell (Sec. 2.1), and compare them to bacterial internal pressure (turgor

pressure). The phage DNA is modelled as one long strand of total lengthL0 and per-

sistence lengthLp � 50 nm [54] able to move between two compartments with di�erent

thermodynamic conditions � the virus and the cell. It is thus partitioned in two pieces,

one of lengthL inside the virus head and tail, and the other of lengthL0 � L in the cell.

Our premises are that DNA is in a non-condensed state in the capsid and in a condensed

state in the cell.

2.6.1 DNA inside the cell

DNA is condensed in the cell due to the presence of multivalent cationsduring ejection,

but not necessarily afterwards. Condensing DNA inside the cell does not necessarily

inhibit its function. A high reaction rate, and thus a high DNA transcription rate, was

demonstrated with condensed DNA [92]. Multivalent ions and osmolytes condense the

DNA. The shape of the condensate is a result of a competition between DNA-DNA
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attractions mediated by the cations and unfavourable e�ects of DNA bending (See Sec.

2.1).

The DNA inside the cell is treated as being condensed in a "hexagonally packed con-

tinuum" within the U-O model of Sec. 2.1. The packaging inside the cell is modelled

similarly as by Tzlil et al. [37] as a DNA condensate in the Ubbink-Odijk model [16, 42].

The volumeV of the condensed DNA is proportional to the contour lengthL of the DNA

V = A0(L0 � L ) with A0 the area per unit length of DNA. The DNA condensate has a free

energyFtor = � 
V + �S + Ebend as presented before. The total free energyFtor is minimal

when the condensate has the shape of a torus [37], but there are other possibilities like

rods which may become relevant if the DNA sti�ness is greatly reduced [30]. A di�erent

shape would only change the surface and bending energy terms to some degree and provide

a small correction to our conclusions.

The DNA in the condensate is assumed to be hexagonally packed with the area per unit

length of DNA A0 = �d 2
0=

p
12 � the packing constant for hexagonally packed cylinders

[37]. Hered0 � 2:8 nm is the experimentally determined closest separation between DNA

strands with added condensing agents [40]. We note that Tzlil et al. [37] model the surface

free energy contribution by assuming the loss of half of DNA nearest neighbours while

we assume the loss of a third of the nearest neighbours as derived by Ubbink and Odijk

[42]. This constitutes a minor correction to the surface free energy term, but may become

important if used to determine model parameters from toroid shapes.

The approximation adopted by Tzlil et. al. assumes the toroid to have the shape of a

thin torus as in Sec. 2.1. We will adopt this approximation due to its simplicity, but also

provide a full minimization of the total free energy for various DNA lengths. We calculate

the free energy of the condensate based on the variational approach result for the major

radius R given by Eq. (2.1.14) so that the minimal free energy of a toroidal condensate

[37] is

Ftor = � � 0(L � L0)

2
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where � 0 = A0
 is the condensation free energy per unit length in an ideally packed

hexagonal lattice andb= 1:308a constant. This � 0 was determined by Tzlilet al. [37] by

�tting the toroid major axis to experimental data for � -DNA in a solution of polylysine

which is also present in some bacteria [30]. As they chose a di�erent surface term than

the original model [16] and us, the condensation free energy per unit length they obtain


 T is smaller than the one obtained here
 UO. The shapes of toroids in the U-O model

are determined by a non-dimensional parameter [16]

� =
�V

1
3 d2

0

Lp
(2.6.2)
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which depends on the choice of surface energy� . By using a di�erent choice for the

surface energy the �ts to toroid shapes would correspond to di�erent values of the surface

free energy� than in the original model. Because� is derived from
 , we have that the

Ubbink-Odijk model, adopted here also by us, has
 UO = 3
2 
 T = 0:15 kB T=nm3 (� 6

atm) - this di�erence arises solely from di�erent treatment of the missing neighbours at

the surface of the toroid (one third missing in [16] - 
 UO � 6 atm vs. one half missing in

[37] - 
 T � 4 atm). An alternative approach to �tting is to obtain the condensing energy

per unit length from osmotic force measurements [40], e.g. a 20 mM solution of Cobalt

Hexamine corresponds to0:024kB T=nm3. The comparison of the two values obtained

(0:15 kB T=nm3 vs. 0:024 kB T=nm3) shows that the thermodynamics of the condensed

DNA importantly depends on the condensing agent.

When most of the viral DNA is in the condensate,L � L0, the surface and bending

terms in Eq. (2.6.1) are negligible [37]. This is because the largest contribution to the

free energy of tori comes from the bulk term inFtor as can be seen from

1:308
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L
� 2

5
0 � 1: (2.6.3)

The contributions of the surface and bending terms in the free energy are thus much

smaller from the bulk contribution, as can also be seen in Fig. 2.3.

To con�rm the wider applicability of this statement we also perform a full minimization

for toroids with di�erent lengths of DNA, corresponding to di�erent phage genomes. The

minimization of free energy yielded the optimal shape together with the corresponding

volume free energyFvol = 
V , surface free energyFsurf = �S and the bending energy

Fbend as in Sec. 2.1. The optimal condensate shapes are shown in Fig. 2.12 with the

corresponding energy contributions.

2.6.2 DNA in the capsid

Assuming repulsive DNA-DNA interactions in the capsid (non-condensed DNA), the

total force on the DNA will tend to eject it from the capsid. We will only consider the last

stages of ejection, because we want to determine whether it can �nish successfully. The

free energy inside the capsid is the free energy of a con�ned semi-�exible polymer with

isotropic excluded volume interactions and bending energy:

Fcapsid

kB T
= L2=s0 +

1
2

LpL
R2

c
(2.6.4)

where we take the simplest bending contribution from the DNA barely �lling the interior

capsid surface. The isotropic excluded volume can be estimated by using Eq.(2.4.4)

[13]. We obtain that the excluded volume of one DNA persistence length segment is
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Figure 2.12: a) Optimal DNA toroid shapes for several di�erent lengths of DNA
corresponding to well known phages[54] (See text for details). Only the upper halves of the

cross sections are shown. b) The calculated correction to turgor pressure�� (see main text)
for the DNA condensate in the cell as a function of genome length arising from the surface

Fsurf and bending Fbend free energies. Figure from Ref. [34].

v � VcL2
p=s0 with s0 � 73 � 103 nm2 a constant depending on the interactions and the

capsid size. We take the spherical con�nement radiusRc = 30 nm as a representative

value for bacteriophage capsid size. This amounts tov � Vc=80 (v � VC=30) for Lp = 30

nm (Lp = 50 nm) in a 100 mM salt solution.

2.6.3 Tug of war

We now study the balance of forces, thetug of war, near the end of ejection so that we

can determine the maximal cellular turgor pressure that can be overcome. The crowded

cellular interior exerts a turgor pressure� on the volumeV of any foreign material to

banish it from the cell [93] while the e�ect of condensation draws in more DNA to the

condensate. The balance of free energyin the cell is thus Fcell (L) = (� � 
 )A0(L0 � L)

which is always negative if� < 
 . The DNA will tend to enter the cell in spite of the

turgor pressure, due to the favorable condensation conditions. Our estimates for
 are

between4 and 6 atm depending on the choice of model parameters. We take
 � 4

atm for the turgor pressure that condensing agents in a cell could overcomeon their own.

Additional contributions, �� , come from unfavourable free energy contributions for DNA

in the capsidFcap and corrections to surface and bending energy terms in the condensate

(Fig. 2.13).

In order to better characterize the last stage of ejection, we will study the chemical

potential for DNA inside the capsid so that we can relate it to the turgor pressure inside the

42



Chapter 2. Compacted DNA

cell. The additional chemical potential for the DNA in the cell when the turgor pressure

is increased by�� is �� A0, and this should be matched by the chemical potential in the

capsid to avoid the stalling of the ejection. When the two chemical potentials are equal

� =
@Fcell

@L
= �� A0 =

@Fcap

@L

�
�
�
�
�
L �

(2.6.5)

the ejection will stall at some lengthL � . From this we determine the maximaladditional

�� that can be overcome by the virus because the DNA is ejected from the capsid. We

now study e�ects due to the con�nement in the capsid which was the cause of the driving

force in the early stage of ejection.

Some bacteriophages have tails of considerable lengtht so we examine if they in�uence

the ejection process. The entropic penalty for con�ning a semi-�exible polymer in a tube

of diameter w [94] is
Ftail

kB T
�

t
�

ln
Lp

�
(2.6.6)

where � = w2=3L1=3
p is the Odijk de�ection length. For a tail with w � 2:75 nm [54]

the e�ective chemical potential from the tail is Ftail =t � 0:27kB T=nm. This is enough

to oppose an additional1:5 atm of turgor pressure in the cell and is independent on the

length of the tail. However, the e�ect of the tail onsets only when the last DNA base

pair exits the capsid and enters the tail (i.e. whenL = t). This suggests a barrier in the

chemical potential that needs to be overcome for total ejection when4 atm< � < 5:5 atm

(as will be shown later). In Nature, phage tails have lengths in the range of10� 800nm

[8], so the fact that the penalty for con�ning DNA is independent on the tail length raises

questions regarding evolutionary reasons for long tails. We can assume that in addition

to ensuring that the DNA end is ready for ejection, and not lost in the packed DNA, it

provides some bene�t to the phage.

DNA is a charged polyelectrolyte with strong repulsive electrostatic interactions be-

tween any two points on its contour. Interactions between nearby parts of the contour

act to give it its large persistence length comparable to the radius of the nearly spherical

capsidLp � Rc. When the DNA touches the capsid, any increase of lengthL will force the

DNA to bend in order to conform to the shape of the capsid. The bending energy in such

a situation can be approximated by that of a loop of DNA with radiusRc, kB TLL p=2R2
c.

A comparison with the previously neglected bending energy of the condensate (see eq.

2.6.1) reveals that they are matched forRc � 50 nm according to the thin torus model [37].

Smaller capsids could enhance the chemical potential, e.g. in the case of� phage with

Rc � 30 nm [54], the change of� � � 0:03kB T= nm is enough to compensate for� 0:15

atm of turgor pressure. Any direct interactions between the DNA and capsid appear to

be negligible - viral ejection experiments show no evidence of attractive forces [95] and

because dsDNA bacteriophage capsids have no considerable charge [24] only weak van der
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Waals interactions are possible.

When the length of the DNA in the capsid is large enough,L � Lp, the DNA chain

statistics resemble that of a random walk ofnp = L=L p persistence length segments

[61]. This approximation is valid for steric interactions in bulk as long asLp � Rc

[12]. The interaction energy between di�erent parts of the DNA strand in con�nement

may be estimated on the basis of the excluded volumev between two segments [12]. The

corresponding Flory free energy of interaction in the capsid of volumeVc is Fv � kB Tn2
pv=Vc.

This contribution vanishes asL ! 0 so it can not help the ejection in its latest stages.

The excluded volume between two DNA segments can be approximated as that between

two charged rods. This interaction is intrinsically anisotropic, but at low packing fractions

(near the end of ejection) there is no order and we can average this over all possible mutual

angles between two cylinders. We obtainv = L2
pDC0 where D is the DNA diameter

(D � 2.5 nm) and C0 is a numeric constant. The excluded volume interactions will

contribute to the total free energy askB TC0DL 2=Vc but only in the regime when there

are at least several persistence length segments inside the capsid. ForRc � 50 nm in

100 mM monovalent salt,v=Vc � 1=30 resulting in the e�ective chemical potential being

an increasing function of length@Fv=@L� 2L=L p0:013kB T=nm . If, say, 10 persistence

lengths of DNA are in the capsid the repulsive force is su�cient to oppose� 0:8 atm of

turgor pressure.

We represent the general dependence of the chemical potential for DNA inside the virus

in Fig. 2.13. When the cellular turgor pressure� is larger than the e�ective condensing

pressure
 in the cell, the net driving pressure� � 
 > 0 on the viral DNA will tend to

repel it from the cell. When the net repulsive cellular pressure is smaller than the tail

con�nement penalty � tail = Ftail =t (corresponding to� 1:5 atm) the DNA will be stuck in

the virus - the tail of length t will be completely �lled, and some lengthL � t will reside

inside the capsid. The stalling length is a result of all the repulsive interactions in the

capsid cancelling out with the net driving pressure in the cell. Note, however, that if the

whole DNA from the capsid (of lengthL � t) enters the tail, the additional asymmetry in

the free energy of the two thermodynamic reservoirs onsets. This is due to the con�nement

penalty of the DNA in the tail. With a partially �lled tail, the derivatives of the free

energy per unit length (the chemical potential) in the virus (the DNA length increases in

the virus) and in the cell (the DNA length increases in the cell) are not the same. The

thermodynamical balance is thus broken, and the thermodynamical gradient necessary for

the ejection is restored. Therefore, there exists a potential barrier which the DNA needs

to overcome for its capsid-side end to enter the tail and be swiftly ejected.

We now estimate whether the thermal �uctuations may overcome the free energy

barrier. Because the capsid DNA is not condensed it is coupled to a solvent heat bath

at temperature T. From the equipartition theorem, the encapsidated DNA will have
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Figure 2.13: Chemical potential for DNA of length L in inside the virus. Two
di�erent regions are marked, one forL < t when the DNA end is inside the tail of length t, and

the other when the DNA end is insite the capsid. A sketch of chemical potentials in the cell
corresponding to di�erent behaviours are indicated. � 3 � 
 3 represents the case when the

turgor pressure is so large that it causes the ejection of DNA to stall at lengthL 3. � 2 � 
 2

represents the case when the turgor pressure matches the chemical potential inside the tail,
leading to DNA ejection. � 1 � 
 1 is similar to the previous case, but when the turgor pressure

is much lower than the chemical potential inside the DNA, where the major contribution to
ejection comes when the DNA end enters the tail.

� 1
2kB T thermal energy per degree of freedom. A semi-�exible polymer of lengthL can be

partitioned into a random walk of np � L=L p steps with each step of lengthLp having two

degrees of freedom (two angles) and the origin being at the tail entrance. The resulting

DNA thermal energy is� 1kB T=Lp, or � 0:02kB T/nm which corresponds to a �uctuation

in the maximal turgor pressure of� 0:1 atm. We can argue that the ejection can happen

in a �nite time if the barrier corresponds to up to, say, three standard deviations� 0:3

atm.

We conclude that the mechanism of viral ejection from some dsDNA bacteriophages

into Gram-positive bacteria could be explained as a competition between the resisting

turgor pressure and a free energy gain from condensation of the ejected part of the DNA.

From the experimental data for the condensation energy of DNA, we estimate that a turgor

pressure in excess of4 atm can be overcome by unassisted ejection in line with recent

molecular dynamics simulations [96]. This value is somewhat reduced for smaller phages,

as given in Fig. 2.12. Our model does not exclude additional ejecting mechanisms like

the osmotic pressure from proteins remaining in the capsid [90] and pulling from proteins

in the cell [91] and such mechanisms can help to overcome even larger turgor pressures

than obtained here.
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Chapter 3

Nucleic acids and condensing proteins
in con�nement

A part of the work presented in this chapter has been previously published in:

[97] A. J. Perez-Berna, S. Marion, F. J. Chichon, J. J. Fernandez, D. C. Winkler, J. L.

Carrascosa, A. C. Steven, A. ’iber, and C. San Martin, �Distribution of DNA-condensing

protein complexes in the adenovirus core,�Nucleic Acids Res.43, 4274�4283 (2015).

Some viruses have capsids �lled only with nucleic acids, while it is more rare to �nd

viruses that have proteins aiding in the condensation of genetic material. Without con-

densation the cargo of genetic material packed in the capsid can exert pressures su�cient

to cause capsid bursting. Condensing agents like proteins facilitate genome packing. Pro-

teins located inside viral capsids are known to have various roles in the viral infection

process like sca�olding during assembly [98] and helping maturation [5, 99]. Some viral

core proteins have roles in binding DNA, such as baculovirus [100], adenovirus [101],

mimivirus [102] and poxviruses [103]. A special case is the polyomavirus type Simian

Virus 40 (SV40) which "borrows" cellular histones to pack its DNA into a minichromo-

some [104]. Adenoviruses and SV40 have been shown to have DNA directly condensed by

these nucleoproteins in unperturbed capsids [26, 97]. The details of how DNA and these

condensing proteins interact and organize are still unknown as standard experimental

techniques can not provide insight due to an apparent lack of viral core symmetry. The

basic assumption for decades has been that the viral core has an ordered structure with

the same symmetry as the capsid. However, icosahedraly averaged Cry-EM of adenovirus

capsids indicates a more or less �at density pro�le [5, 105, 106], lacking any DNA shelling

or ordering like other structurally related viruses [19, 107, 108]. Similarly to adenoviruses,

the polyomavirus SV40 cores have a �at density pro�le seen both in Cryo-EM [109] and

SAXS [26], with no pronounced DNA ordering.

The study of genomes inside viral capsids helps understand the viral infection process

and the host cell response [6], but also the basic principles for targeted cargo delivery
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with viruses or other nanocages [110]. Of special importance is the application of viruses

that contain condensing proteins, like adenovirus, in gene therapy [111, 112]. Although

adenovirus applications are in clinical trials, the packaging mechanism is still a mystery [5].

To help understand the packing mechanism in viruses, we will study the basic principles

of packing a polymer (DNA) and proteins inside viral capsids. First, we will study the

internal organization of adenoviruses using the available experimental data on the core

organization [97]. With statistical indicators we will characterize the core organization

and construct a simple model of condensing proteins to explain the apparent lack of

core structure. Later on, we will make a full model with both the polymer (DNA) and

condensing agents inside con�nement and relate it to experimental �ndings in adenoviruses

and polyomaviruses.

3.1 DNA and core protein organization in
adenoviruses

Adenoviruses are among the largest non-enveloped icosahedral viruses with a core di-

ameter of� 65 nm (see Fig. 1.1) [106]. They are common infectious agent in humans and

other vertebrates, being responsible for a wide array of diseases: from mild respiratory

infections (the common cold) to life threatening conditions like pneumonia [6]. In aden-

oviruses the DNA is constrained inside the viral capsid by DNA-condensing proteins [101],

which reduce the pressure on the capsid and aid stability [97]. Most of the evidence on

internal organization was based on studying disrupted cores, in which clusters and �bres

are seen. These clusters and �bres seemed related to the chromosome structure [113] thus

implying some kind of order. Two models based on studying disrupted capsids have been

proposed for the organization of the adenovirus core. One of these assumed an ordered

structure of proteins and DNA forming a cluster of 12 protein "spheres" with icosahedral

symmetry [114, 115, 116], while the other a chromatin like structure [117, 118, 119]. Small

angle neutron and X-ray scattering indicates structures with a size� 3 nm[120]. More

recent cryo-EM of undisturbed viral cores does not show any symmetry or order in the

viral core [5, 105, 106]. It may be that the original appearance of �bres and clusters with

disrupted cores is an artefact of sample preparation [121], or that crowding inside the

cores changes the interparticle interactions in an unknown way.

There are no structural data for any of the adenovirus core proteins, but it is assumed

that the protein clusters consist of three di�erent core proteins (called V, VII and� ) [5],

out of which two are proposed to contribute via universal mechanisms [122] bridging two

DNA strands (protein � ) or wrapping DNA (protein VII) [ 123]. Our working hypothesis,

based on analysis of experimental data is that these proteins exist as clusters with a size

� 3 nm as determined in opened cores. Due to their resemblance to chromosomes, we call
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them adenosomes. Chromosomes use highly basic histone proteins that wrap the DNA,

forming thus protein-DNA complexes callednucleosomeswhich allow the linear dimensions

of the DNA to be reduced several orders of magnitude [113]. A similar mechanism of

packing exists in polyomavirus SV40 which has� 20 nucleosomes in its core, which are

found in a "molten droplet" shape caused by con�nement e�ects [26]. The interaction of

histones with DNA is well documented, unlike the case of adenosomes.

Adenovirus cores have about 200 protein particles (adenosomes) which are assumed to

bind or wrap DNA. We will �rst discuss experimental data on adenovirus core protein

positions. We will attempt to explain the organization of adenovirus core particles using

an e�ective adenosome model in order to give insight on the apparent lack of organization

of the core and make estimates on the internal capsid pressure.

3.1.1 Cryo-EM of Adenovirus cores

Cryo-EM maps were obtained in the group of Carmen San Martin on single undisturbed

adenovirus particles [97]. The interior of the cores was identi�ed as having higher density

"points" embedded in a weaker density background (Fig. 3.1a). These points of higher

density were interpreted as consistent with previous data indicating a beaded pattern in

the DNA-protein core complex when extracted from the capsid [118, 119], and not with

the model consisting of 12 large spheres. We hypothesized that each high density region

corresponded to an adenosome � similar to the chromatin picture proposed earlier [119].

The position of each adenosome center was manually determined by visual inspection

of the individual virus maps in 3D (Fig. 3.1a,b). We found no preferred direction or

orientation for the adenosome cluster (Fig. 3.1c). Weaker densities between adenosomes

did not seem to follow a de�nite pattern. Statistical analysis was performed on a total of

20 virion cores. The adenosome selection procedure yielded between 190 and 280 positions

per viral particle corresponding to the center of regions of high density within the core,

with the mean across all analysed particles ofN = 230 � 30, also consistent with previous

observations on disrupted cores [118].

Visual inspection of the cryo-EM maps indicates lack of pronounced order or symmetry

in the core. To con�rm this we �rst checked if there was any asymmetry in the distribution

of adenosome positions. The adenosome coordinates were represented in a coordinate

system with the z-axis directed along the line connecting two opposite capsid icosahedral

vertices [5], and the origin of coordinate system was positioned at the center of mass

for each adenosome cluster (i.e. the set of adenosome positions in each viral particle).

Projections of the data on the alignment axis and the perpendicular plane did not show

any sign of preferred direction and no sign of �ve-fold symmetry was found [97].
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Figure 3.1: Cryo-EM of adenovirus core particles analysis. a) Central 2D section of a
single virus particle. The highest density regions are shown in black. Densities identi�ed as

adenosomes are encircled in white. Notice that circular outlines in the presented 2D slice have
di�erent radii because they are cross-sections of spherical markers used for picking the
adenosome centers in 3D, b) Surface rendering showing the adenovirus capsid cut open,
obtained from averaging 20 individual virus tomograms after aligning with respect to an

icosahedral reference (gray). The core density has been computationally removed. Cyan spheres
(4:5 nm in diameter) indicate the positions of adenosomes for the viral particle shown in panel
a, c) The histogram of the averaged probability for �nding adenosome particles in a horizontal

slice, i.e. when all the particle positions are projected on the line connecting two opposite
capsid icosahedral vertices[5]. For each viral particle, the origin of the coordinate system was

set at the center of mass of the adenosome cluster. Figure adapted from Ref. [97].
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3.1.2 Statistical analysis of core particle positions

In order to determine if the distribution of adenosomes is random or not, we statistically

analyse adenosome positions inside the core "cluster"(Fig. 3.2a-c). First, we constructed

radial distribution function R0(d) (RDF) for the adenosomes in all viruses. The RDF

R0(d) represents the probability of �nding two particles at a center-to-center distanced,

calculated for all particle pairs in the adenosome cluster. The distributions of inter-particle

distances were calculated from a dataset consisting of pairwise distances for all pairs of

adenosomes within each viral particle, then averaged across the 20 di�erent viral particle

maps. The maximal interadenosome distanced is about 70 nm, the internal diameter of

the capsid. Due to the �nite size of the viral core, the number of adenosome pairs becomes

smaller with larger distances leading toR0(d) to reduce to 0 at the maximal distance of

70 nm. This complicates comparison with bulk systems where with proper normalization

R0(d) saturates to 1 for su�ciently large d.

To obtain a quantity characteristic only of the interactions between the adenosomes and

without the in�uence of �nite size e�ects, we need to appropriately scale the distributions.

The resulting normalized RDFR(d) should saturate to unity at large interparticle distances

and can then be compared with its well known counterparts in bulk materials [124]. The

scaling requires a calculation of the cluster shape factor,f (d), which gives less statistical

weight to particle pairs with high mutual separation to compensate for the �nite sample

size. For a spherical cluster of radiusRc [125] the cluster shape factor is given by

f (d) =

 

1 �
d

2Rc

! 2  

1 +
d

4Rc

!

; d < 2Rc: (3.1.1)

so that the normalized RDF R(d) can be obtained from the RDFR0(d) using R(d) =

R0(d)=f (d). Scaling of experimental data with the shape factor for a sphere produced the

desired behavior of RDFs at large distances. When a numerically obtained scaling factor

f (r ) for an icosahedron was used there were no noticeable di�erences. We may thus treat

the adenosome cluster shape as a sphere. As a "bonus", the shape factor also enables us

to determine the e�ective radius of the adenosome cluster, since the requirement that the

RDF reduces to unity for large interparticle distances �xes the appropriate value ofRc.

Small changes inRc cause large deviations in RDF asr approaches2Rc, which enables

us to pinpoint Rc with some precision. We thus obtainedRc = 35 � 2 nm consistent with

experimental data on internal radii of capsids [106]. Note also that the experimental data

exhibits pronounced noise asd approaches2Rc as there are very small number of pairs

available there and the sampling is poor � for this reason the RDFs in Fig. 3.2 are shown

only up to about 60 nm as the RDFs ford larger than 60 nm are dominated by noise

augmented byf (d).

RDFs indicate an e�ective repulsive nature of the adenosome-adenosome interaction at
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Figure 3.2: Statistical indicators of the adenosome position dataset. The three
statistical indicators (radial distribution function, nearest neighbour distance distribution and

density distribution) constructed from experimental data on adenosome positions are
represented by green circles. The icosahedron random points reference is represented by a

dashed line. Figure adapted from Ref. [97].

small distances, featuring a characteristic depletion for distances smaller than 8 nm where

no pairs are observed. Were the positions of particles random, it would give a constant

value of 1 inR(d) as seen in the icosahedron reference calculation in Fig. 3.2a) obtained

from 230 randomly distributed dots in an icosahedron of mid-radius of35 nm. The slow

decay of probability asd approaches zero indicates a very soft interaction potential [125].

The RDF reduces from about1 to about 0:5 in a radial interval of 3 nm (from d � 8 nm to

d � 5 nm), and reaches0:1 at d = 3:5 nm below which there is practically no probability

of �nding a particle pair. This leads us to de�ne a hard particle diameter of � 4 nm

(e�ectively impenetrable), and a soft diameter of about� 10 nm, where the RDFs start

to decay. In their study of X-ray scattering on HAdV-2. Devauxet al. [120] reported a

scattering maximum corresponding to2:9 nm which could be interpreted as the hard core

of our soft adenosomes. One should also note a small-amplitude, yet persistent peak at10

nm, suggesting a very weak degree of adenosome �rst neighbour positional correlation as

expected for a "�uid-like" state. Beads of9:5 nm diameter connected by variable lengths

of dsDNA had been observed in disrupted cores [119]. This is comparable with the soft

diameter estimation obtained here.

We can use the previously obtained adenosome parameters to estimate the degree of

crowding inside the capsid. Using the experimental hard particle diameter, the adenosomes

have a volume fraction of� hard = 0:043, while the soft particle diameter predicts a volume

fraction of � sof t
ad = 0:67 (quite close to the density limit of 0.64 for random packing of

monodisperse hard spheres [126]). For comparison, the lower limit for the volume fraction

of DNA inside the capsid can be obtained by treating the DNA as a �bre of length12� m

and base-pair width of2:5nm thus obtaining � DNA � 0:33. We conclude that there is little

available free volume. The presence of a crowder can signi�cantly in�uence the e�ective

interactions [27, 127], rendering any comparison with the measurements done on diluted

capsid interiors doubtful.

52



Chapter 3. Nucleic acids and condensing proteins in con�nement

As a second indicator of the core organization we analysed the distributionp(dNN ) of

nearest neighbour distances,dNN for all the adenosomes in a virus, normalized so that

the total probability is unity. The nearest neighbour distribution gives some additional

insight on the RDF for small inter particle distances. As Fig. 3.2b shows, when com-

pared against the random icosahedron reference calculation (e�ectively anideal gasof

adenosome particles), one observes that the mean value of the adenosome distribution,

dNN is displaced (outward) by � 2 nm from that expected for a random distribution.

The position of the maximum in the random distribution for nearest neighbours scales as

d
rand
NN � 3

q
2=(3N )Rc. The shift of the distribution is a consequence of the repulsive nature

of the inter-adenosome interaction which pushes them further apart than would be the

case for a random distribution, leading also to a narrower probability distribution of the

nearest neighbour distances.

Finally, as the third indicator, we analysed the density of adenosome positions as a

function of the distance from the cluster center of mass (Fig. 3.2c). A decrease of density

is observed in regions with large radial distances producing a depletion layer known in the

polymer �eld theory [2, 12]. A self consistent calculation for a polymer in the semi-dilute

regime, con�ned inside a spherical cavity of radiusRc, gives� (r ) � tanh [(Rc � r )=� ]2 with

� the correlation length. This pro�le seems to cover the basic shape of the distribution,

however RDF shows no evidence of bonds. In our case the depletion layer is partially a

geometric e�ect with a similar shape to the �eld theory result, due to reduction of available

volume in the icosahedron as the radius increases from that of the inscribed sphere to that

corresponding to the circumscribed sphere. This would lead to a� � 1 nm, much smaller

than we would expect. Still, a comparison with the density pro�le obtained for random

points inside an icosahedron revealed additional unexplained depletion e�ects (Fig. 3.2c).

Also, there is a lack of any shelling near the capsid surface which is usually seen with

con�ned polymers [67] and spherical particles [128].

The statistical analysis has revealed several representative features in the experimental

dataset. Firstly, a soft repulsive interaction between e�ective adenosome particles is seen

in RDF and nearest neighbour distributions. Secondly, a �at pro�le in the density of

particles which slowly decays to zero at the capsid surface. We will now try to reproduce

the internal organization of adenosomes with models which account for di�erent possible

ways in which the DNA can interact with adenosomes.

3.1.3 Modelling the core proteins

The system we are dealing with consists of condensing proteins interacting with the

DNA, con�ned in the capsid, immersed in a salt solution. Because of a lack of information

on the structure of the adenosome particles, we opted for simple models which reproduce

basic features of the experimental data while giving some basic insight into the underlying
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physics. The large quantity of condensed DNA crowds the capsid and for all e�ective

purposes it would be di�cult to identify if di�erent parts of DNA are close on the DNA

contour. Thus, we treat the DNA as an e�ective medium which may, in speci�c models,

directionally connect the adenosomes in�uencing the spatial conformation. This motivates

treatment of particles in the simulations as quasiparticles � condensing proteins dressed

with parts of the DNA surrounding them. Yet, even with such a simpli�ed picture, we

may construct very di�erent coarse-grained models, representing di�erent relevant physical

e�ects involved.

We used molecular dynamics (MD) to simulate the interior structure of the viral capsids.

MD was performed in LAMMPS Molecular Dynamics Simulator [129] using a Langevin

thermostat [130] with 230 interacting particles in con�nement at room temperaturekB T =

1. Sampling of the MD data was done after a su�ciently long equilibration / thermalization

run � 200 simulation snapshots were taken during2� 106 Verlet time-steps and statistically

averaged over 50 di�erent runs with random starting conditions. To identify e�ects

related solely to the speci�c nature of the geometry, in all the simulations presented we

have preserved the icosahedral symmetry of the con�nement. The con�ning icosahedron

interacts with the adenosome particles via a superposition of a soft repulsive Morse

potential and an repulsive potential of the Weeks-Chandler-Andersen type [131]. The

range of the hard potential was chosen to be extremely small so as to properly mimic a

hard wall, while the soft potential parameters were found by �tting the numerical data to

the experimental RDF, maintaining the hard wall �xed. Other speci�cs of the simulation

are detailed in the corresponding sections.

Adenosomes as a �uid with short-ranged soft repulsive interactions

The simplest model represents the adenosomes as a �uid with soft repulsive interactions,

con�ned in a capsid with which it also interacts repulsively. This means that the details

of the DNA packing are completely smeared, i.e. the DNA only renormalizes the inter-

adenosome interactions. This does not mean that a possible pronounced association of

the condensing proteins and the DNA is not accounted for by the model. The model

can indeed account for such e�ects, but only in the short range sense; the protein-DNA

association can be included in the e�ective potential, but no topological constraints related

to the �nite length of DNA or to its elasticity survive in the coarse-grained representation.

In the soft repulsive �uid model, interactions between adenosomes are represented by a

potential function vr (d), whered is the separation between adenosomes. As a su�ciently

simple model forvr (d), we chose the shifted Morse potential and determined the parameters

of the potential that best �t the experimental data using molecular dynamics simulations.
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Figure 3.3: Statistical indicators of the adenosome position dataset, and their
comparison with expected values for the �uid model. The three statistical indicators

(radial distribution function, nearest neighbour distance distribution, and density distribution)
constructed from experimental data on adenosome positions are represented by green circles.
The simulations performed with the �uid model are represented by full lines. Figure adapted

from Ref. [97].

The potential (shifted Morse) is given by

vr (d) =

8
<

:

D
h
e� 2� (d� d0 ) � 2e� � (d� d0 ) + 1

i
; d < d0;

0; d > d0:
(3.1.2)

whered0 is the potential cut-o� radius. Comparison of the results of the molecular dynam-

ics simulations with the experimental data yielded the best-�t potential parametersD � 1

kB T, d0 � 11 nm, and � � 0:08 nm� 1. The soft part of the capsid-adenosome interaction

is well modelled with the same cut-o� distance but with a smaller� � 0:055nm� 1 (and a

short-range hard-core repulsion enforcing the impenetrability of the con�nement).

We have also considered other models forvr (d), and we �nd that the pronounced

softnessof the potential is its robust feature, regardless of the model used. The model of

very soft, disconnected quasi-particles reproduces very satisfactorily the radial distribution

function (Fig. 3.3a) and the nearest neighbor distance distribution (Fig. 3.3b) observed in

experiments. The only (slight) deviation from the experimental data is seen in the density

� (r ) near the capsid wall at30� 40 nm (Fig. 3.3c) - there we see a slower decay of the

experimental density than predicted by the simulation. This may indicate that the e�ective

con�ning potential induced by the capsid has a complicated spatial dependence, rendering

the regions just below the icosahedron vertices more approachable to the adenosomes than

those below the icosahedron sides. Additionally, we have assumed that the e�ective inter-

adenosome potentials are independent of their position in the capsid. As these potentials

are mediated by the DNA background, it seems likely that they will be di�erent when the

two adenosomes are close to the capsid than when they are deep in the bulk of the core.
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Adenosomes as a regular array of beads on a string

If the adenosomes are similar to nucleosomes [113], then the appropriate model would

consist of quasiparticles linked together by the DNA to form an e�ective polymer. We

may model the DNA "background" in this case as a yardstick, imposing certain distances

between the proteins along the chain (equilibrium bond length,l0, constant throughout

the chain). In such a model, any increase and decrease of the interprotein distance would

require energy, the parabolic dependence on the change of distance being the simplest

choice. So, in addition to the soft adenosome repulsion,vr (d), that acts between all of the

adenosome pairs, in this model the adenosomes are also connected along the chain with a

harmonic potential between two neighboring adenosomes. The harmonic potential used

to model the DNA connecting the adenosome particles is given by

vs(d) =
k
2

(d � l0)2 ; (3.1.3)

where l0 is the equilibrium length of the spring andk is the bond spring constant. The

equilibrium bond length l0 chosen in this model cannot be completely arbitrary, since

there is a �nite amount of DNA in the adenovirus core. We will �rst estimate possible

values for the equilibrium bond length and the bond spring constantk.

Equilibrium bond lengths l0 can be estimated based on the ratio of DNA length to

number of adenosomes. The upper limit is thuslmax
0 = 12 � m =230 = 52 nm, but this

does not include any DNA associated with (wrapped around) the condensing proteins.

With e�ective diameter of the condensing proteins� 4:5 nm, a single wrap of DNA on the

protein uses up about2(4:5=2 + 2:5=2)� � 22 nm, so that the length of DNA remaining

for linking the two adenosomes is52� 22 = 30 nm. We chose representative bond lengths

of 30 nm, 8 nm and 19 nm corresponding to: approximately one turn of DNA around the

adenosome; the shortest possible DNA linkage length consistent with the experimental

data; and a value in between. The value of8 nm is consistent with the proposed minimal

contact distance between two adenosomes, e.g. as seen in the dimensions of beaded strings

in disrupted cores [119] while still shorter bonds signi�cantly modify the exclusion zone

in the RDFs.

Assuming a straight linker piece of DNA between two adenosomes, the energetics of

its lengthening (DNA stretching) and shortening (DNA bending) can be estimated and

approximately related to the bond constant of a simple harmonic bond. We assume that

the persistence length of DNA isLp = 50 nm in physiological conditions. The two most

important mechanisms for shortening of the bond lengthd� l0 are DNA molecule stretching

and bending. The bending energy to bend a straight DNA piece of lengthl0 to an arc of

radius R is

Fb = kB T
1
2

lpl0
R2

(3.1.4)
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Figure 3.4: Comparison of radial distribution function without and with a strong
harmonic bond. The radial distribution function is shown for the soft �uid model from Fig.

3.3 (red dashed line) compared to a model of beads on a string for equilibrium bond length
l0 = 19 nm and bond strength k = 1 kB T.

with lp � 50 nm the persistence length of DNA. This can be expanded for small changes

in the curvature 1=R to obtain:

Fb

kB T
=

12lp
l2
0

(l0 � l ) = c(l0 � l ); (3.1.5)

where l is the linear distance between the DNA ending points in the bent state. As the

potential energy dependence on the extensionl0 � l is linear (it is a quadratic function of

l0=R) we match the two potentials 1
2k(� l )2 = c(L0 � L ) for di�erent plausible extensions

� l = 1; 2; 5 nm. For Lp = 50 nm and l0 = 19 nm we �nd k � 3; 1:6; 0:7 kB T/nm 2. In

the case of stretching, the bond constant was found to bek � 10� 100 kB T/nm 2 after

matching a molecular dynamics harmonic potential model to experimental data for DNA

[76]. This gives k � 10 kB T / nm 2 and k � 1 kB T / nm 2 for stretching and bending

respectively, both of which are quite sti� and produce signi�cant correlations in the RDFs

as we have checked numerically. This is easily seen if one considers that a bond of strength

1 kB T=nm2 would allow thermal energy to move the particle position only
p

2 nm from

equilibrium, resulting in a large correlation in RDF (Fig. 3.4). However, di�erent, and

more complicatede�ective bonds can be envisaged in a crowded and strongly con�ned

environment and soft harmonic springs may mimic such a situation. That is why we

have chosen the bond constant ofk � 0:05 kB T= nm2, a smallest value that still yields

noticeable disagreement with at least one experimental indicator. It is also almost two

orders of magnitude smaller than the conservative estimate for DNA bending.

Results presented in Fig. 3.5 indicate that the existence of any type of bond worsens

the agreement with the experimental data. Soft8 nm bonds shift the nearest neighbour

distance away from the experimental data because a short bond forces spatial nearest
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Figure 3.5: Statistical indicators of the adenosome position dataset, and their
comparison with expected values for the soft �uid with springs model. The three

statistical indicators (radial distribution function, nearest neighbour distance distribution, and
density distribution) constructed from experimental data on adenosome positions are

represented by green circles. The simulations performed with the model of beads on a string are
shown for equilibrium bond lengths l0 = 8 nm, 19 nm, and 30 nm, respectively. Figure adapted

from Ref. [97].

neighbours to also be the nearest neighbours on the bead-string backbone. One also

observes a stronger correlation peak in the RDF with a corresponding "anti-correlation"

peak at � 15 nm � although such a bond could be hidden in the experimental RDF

it produces clear changes in the nearest neighbour distribution. The density shows a

peak near the capsid surface due to an increased order imposed by con�ning a "polymer"

[132]. If we take a larger bond equilibrium length ofl0 = 30 nm we see that the RDF

deviates from unity at large interparticle distances � adenosomes do not conform to a

spherical cluster. This is easily explained, as a bond length comparable to the capsid

diameter requires that the adenosomes explore the space beneath the icosahedron vertices

to minimize their free energy. Also, there is a reduction of density around10 nm from the

capsid wall inconsistent with the experimental data (Fig. 3.5c). The model with19 nm

bond lengths shows a combination of these characteristic e�ects with the addition of a

correlation peak in the RDF at the bond length (Fig. 3.5a, inset). Clearly, sti� bonds with

large k show up as clear maxima at� l0 in RDFs due to distance correlations imposed by

the bond length. This result that we �nd in our simulations (with large k's) is contrary to

what is seen in experiments (no pronounced maxima in RDF), and we conclude that the

inter-adenosome bonds, if they exist, must be very easy to stretch and compress (weak) in

thermal equilibrium. In that case, the correlations between the adenosome positions are

thermally smeared and the linkage, although present may not be seen in the indicators.

Irrespective of the equilibrium bond lengths chosen, the model of beads on a string is in

worse compliance with the experimental data than the model of �uid of soft interacting

particles.
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3.1.4 Core organization as a mixture of e�ective particles

Based on our two basic e�ective models for adenosomes we conclude that there is no

evidence of a strict type of ordering in their positions inside the capsid. Adenosomes exist

as a �uid of soft particles without a strictly (and sti�y) de�ned DNA backbone. The DNA

appears to act only as an e�ective medium for the soft inter-adenosome interactions in the

crowded environment. The essential feature of adenosomes is a soft repulsive interaction

they impose on neighbouring adenosomes, so that they, in lowest order approximation,

behave as a �uid of soft repulsive spheres. This interaction results in a �nite excluded

volume, and the nearest neighbor distance distribution shifted to larger values than would

be expected for random points in an icosahedron. The range of the repulsive interaction

is quite large, 3 nm, signi�cantly larger than the range of electrostatic interaction in the

Debye-Huckel approximation (about 1 nm at 150 mM salt concentration). The simplest

model of adenovirus core that accounts for most of the indicators is that of hard spheres

(condensing proteins) living in a "soup" of DNA where the DNA mediates an e�ective soft

repulsive interaction.

No evidence of a strict yardstick-like linkage between the adenosomes is seen in any of

the experimental indicators - the data can be adequately explained by using the previous

model of soft particles in con�nement. However, numerical studies [132] do not strictly

exclude other types of "links": a) extremely weak bonds (as those we investigated), b) a

distribution of bond lengths where adenosomes slide along the contour, c) sliding bonds

where the total length of non-bound DNA �uctuates - in dynamical terms, this signi�es

easier rearrangement of adenosomes in the DNA background than would be expected if they

were tied together by sti� linker DNA pieces. The existence of adenosome �laments after

disrupting the virion [118, 119] does imply some kind of "springs" between the adenosomes.

Such interactions in disrupted cores, however, do not necessarily imply the same inside

the crowded environment of the core [133].

The outward pressure on the capsid

Internal pressure has been measured or estimated inside other dsDNA viruses (bacterio-

phage and herpesvirus) and it appears to originate from the strong repulsion between the

nucleic acid strands in close proximity [19, 134]. The soft repulsion between adenosomes

gives a modest internal pressure in the adenovirus capsid. The outward pressure on the

capsid from the adenosomes in the e�ective medium obtained from the simulations is

0:055� 0:002atm. It is not clear at present if such a modest outward pressure would play

a role in the initial stages of adenovirus uncoating, but it should be mentioned that there

are additional contributions to the pressure, not accounted for by the numerical model.

Recent estimates using atomic force indentation of capsids [135] give the internal pressure
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on the order of� 30 atm [123], two orders of magnitude larger. Although the uncertainty

of pressures from indentation experiments is high, it would be interesting to see if we can

correct for contributions omitted in the model.

The outward pressure obtained in the best �t (soft repulsive) model is obtained on

the basis of an e�ective particle picture. A calculation of the pressureptot , including all

particles present in the capsid, would in the lowest order (of the virial expansion) consist of

contributions from DNA and adenosome entropy of con�nement (pDNA + pad), DNA-DNA

(pDNA � DNA ), adenosome-adenosome (pad� ad) and DNA-adenosome (pDNA � ad) interactions:

ptot � pDNA + pDNA � DNA + pad + pad� ad + pDNA � ad: (3.1.6)

As we do not know the exact composition of the core nor the bare potentials acting between

the proteins and DNA, we constructed our soft repulsive model by renormalizing the bare

interactions to include the e�ect of the crowded DNA medium. Thus, the molecular

dynamics result for the pressurepMD includes the adenosome entropic contribution (pad)

and e�ective adenosome-adenosome (~pad� ad) interactions:

pMD � pad + ~pad� ad: (3.1.7)

This value is a lower bound on the true pressure (pMD � ptot ). Because each adenosome has

a certain amount of DNA associated with it (within the soft core radiusd0) we assume that

all the DNA-adenosome interactions are included in~pad� ad. Also, from the association of

the DNA in the soft core radius with the adenosome we assume that this DNA is screened

by the adenosomes. The contributions including the DNA,pDNA � DNA + pDNA � ad, are to

some degree included inpMD . The only remaining DNA-DNA interactions unaccounted for

are in the capsid volume not �lled by the (soft) e�ective adenosomes,Vc(1� � sof t
ad ) � 1=3Vc.

Assuming a homogeneous density of DNA in the capsid, we estimate that about one third

of the DNA produces a nearly homogeneous background �eld of electrostatic interactions.

The pressure of such �eld can be roughly estimated in the Debye-Hückel approximation

for a homogeneously �lled spherical capsid [9]

pe =
� Nq

Vc

� 2 1
2� 2�

(3.1.8)

whereN is the number of unscreened basepairs of DNA,q = 2e the number of charges per

base pair,1=� � 1 nm the Debye electrostatic screening and� � 5 the dielectric constant

of an e�ective medium consisting of proteins and DNA [136]. Putting in N = 35000=3 we

obtain pe � 0:06 atm, comparable topMD . We can thus increase the lower bound on the

adenosome pressure to� 0:12 atm. This is still at least one order of magnitude smaller

than in the case of unscreened DNA charge interactions, observed in some bacteriophages

[19], but not implausible as we have basic proteins helping the condensation of DNA
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particles.

3.2 Mixtures of a polymer and condensing particles
in con�nement

Modelling virion core structures consisting of DNA and condensing proteins has so far

been based on e�ective models. Both our work from the previous section [97] and the work

done by Saper et al. on SV40 cores [26] only implicitly accounted for the presence of DNA,

included by adding a tethering bond between proteins or by modifying interactions. The

phase behaviour of DNA with binding proteins in dilute solutions is interesting [137], but

the question remains how it is in�uenced by con�nement or crowding. In this section, we

use a model which explicitly includes both the condensing proteins and the polymer (DNA)

inside a spherical con�nement. We study such a mixture in the context of adenovirus

and polyomavirus cores � in con�nement and without con�nement to mimic opened cores.

The explicit treatment of DNA allows us to investigate how the condensers are connected

by the DNA. It permits insight in the unordered, but not random, interiors of crowded

viral capsids.

First, we will introduce the numerical model used to simulate the system. Afterwards,

we will de�ne and adopt several statistical indicators which will be used to study the

e�ects of the parameters of the system on the internal organization and connectivity

of condensing proteins and polymer. Results obtained for a DNA-like polymer will be

compared to experimental data on adenoviruses [97] and polyomaviruses [26].

3.2.1 Molecular dynamics simulations

To sample the possible con�gurations of our system, we performed molecular dynamics

simulations using the LAMMPS programming package [129]. In the simulations we set

kB T = 1 so that the units of energy represent the thermal energy, and we use the radius

of the polymer beada0 = 1 as the basic unit of length. We study a �xed length of DNA

mixed with condensing agents inside a spherical con�nement. Our system comprises of

two particle types: spheres representing condensing agents and polymer beads on a string,

representing DNA or RNA, con�ned inside a sphere of radiusRc (Fig. 3.6). The number

of polymer beadsNp of sizeRp = a0 is de�ned trough the volume fraction� p they occupy

inside con�nement such thatNp = � pR3
c=R3

p � cp wherecp � 1:015 is a correction due to

neighbouring beads overlapping. Neighbouring beads are connected with a FENE spring

modelling DNA-DNA bonds [76, 138]. Condensing agents (condensers), representing

proteins, are implemented as spheres of radiiRs interacting with each other with repulsive

Lennard-Jones interactions. Condensers interact with polymer beads by a short range,
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Figure 3.6: Simulated mixture of DNA and condensing proteins (spheres) in a
spherical con�nement. Figure shows �ve "slices" out of a mixture in spherical con�nement
(black outline). a) Con�ned mixture of DNA with volume fraction � p = 0 :3 corresponding to

Np = 8221 polymer beads,� s = 0 :05, sti�ness K = 25, condenser-DNA binding energy
� = 2kB T and condensing particle radii ofRs = 1 for a total of Ns = 1350 condensers.

Condensing particles are represented as yellow spheres, and the DNA polymer as a blue coil. b)
Same as in a, except the radii of condensing particles isRs = 3 for a total of Ns = 50

condensers.

almost contact, non-speci�c attractive interaction, such that the energy gained in a "bond"

is � . The attractive part of the potential lies within a layer of width a0 outside the sphere

(condenser) surface. There are a total ofNs condensing spheres (condensers) related to

their volume fraction � s inside the con�nement with Ns = � sR3
c=R3

s.

Molecular dynamics simulations were performed using the Langevin thermostat [130].

The corresponding equation

mi
d2r i

dt2
= F i � � i

dr i

dt
+

q
2kB T � i � i (t): (3.2.1)

is solved for all particlesi in the system. HereF i represents the total force on the particle

i , mi the mass of the particle,� i the friction coe�cient, kB the Boltzmann constant and

T the temperature. The mass of the particles is dependent on the particle radiiRi such

that mi = R3
i and the friction coe�cient as � i = Ri according to Stokes law.� i (t) is a

random time-dependent Gaussian� -correlated noise of unity magnitude. The simulation

region is con�ned to a sphere of radius� Rc (representing the viral capsid) by inserting

a repulsive potential on at a sphere of radiiRc + 1 so that the probability of �nding a
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particle with radial coordinate r > R c is negligible.

The polymer is modelled with a beads on a spring model [76]. Neighbouring beads in

the polymer interact with the �nitely extensible nonlinear potential (FENE) representing

bonds of the form:

UF E (d) = �
1
2

K F E r 2
0 ln

 

1 �
d2

r 2
0

!

(3.2.2)

whered is the distance between two neighbouring beeds,K F E = 30 kB T=a2
0 and r0 = 3:0a0.

The sti�ness of the DNA (bending rigidity) is represented by a potential depending on

the angle� between three neighbouring beads in the polymer. The potential is given by

Ub = K b(1 + cos� ) (3.2.3)

whereK b = 25a0 corresponding to a persistence length ofLp = 2a0K b or in our nondimen-

sional units Lp = 2K b.

All interactions between particles of the same type (polymer-polymer and sphere-sphere)

and the con�nement are repulsive only Lennard-Jones with the potential energy

U(r ) = 4 � LJ

0

@

 
b
r

! 12

�

 
b
r

! 6
1

A + � LJ if r < 21=6b (3.2.4)

whereb is a constant equal to a sum of the diameter of the interacting particleb = 2Ri ,

or for the case of con�nement-particle interactions tob = Ri + a0. The cut-o� for the

potential is such so that the resulting force is0 at the cut-o�. For all particle-particle

cases� LJ = 1, while for con�nement-particle interactions � LJ = 10 (in units of kB T) is

used ensuring that the e�ective con�nement has a radii ofRc.

Interaction between condensers (spheres) and polymer beads is of the Lennard-Jones

type

Us� p(r ) = 4 �

2

4

 
b
r

! 12

�

 
b
r

! 6
3

5 + � if r < 2:8b; (3.2.5)

with b = Rs + a0. This interaction results in a non-speci�c binding with the maximum

bond energy of� . The spatial extent of the attractive potential allows only one layer of

polymer beads to interact (attractively) with the condensing sphere.

In order to set up the initial state of the system, we �rst randomly place condensers

inside along with a random walk representing the DNA in con�nement. Interactions

between all particles are initialized to act as a soft repulsive force with a barrier for

penetration (and crossing) of a height of100kB T and harmonic bonds between beads. The

total energy of the system was minimized by iteratively adjusting atom coordinates using

the provided procedure [129]. Afterwards the system was imbued with true interactions

and the total energy minimized again. Then the system was equilibrated for at least
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500 000 time steps using a Verlet time integrator with timestepdt = 0:05. After the

system internal energy was equilibrated (Fig. 3.8), the system con�guration was sampled

every 10 000 timesteps for 300 000 timesteps. An alternative method for generating the

starting con�guration was tried in order to minimize the polymer knotting or entanglement.

The system was generated in a �ve times larger con�nement, and then the con�nement

radius was slowly reduced toRc � but no signi�cant di�erence was found in the pressures

(Fig. 3.7). When studying systems with the con�nement removed, the con�gurations were

obtained using the preceding protocol without without any con�nement in a bounding box

of su�cient size with periodic boundary conditions. After at least 1200000 equilibration

steps to allow the released cores to thermalise, the system con�guration was sampled every

10 000 timesteps for 300 000 timesteps.

Figure 3.7: Comparison of standard protocol used here with an alternate aimed
to reduce entanglement and knotting. System parameters were� p = 0 :3, K b = 20, Rs = 1

and � = 2 with Rc = 30.

Model units and choice of parameters

All subsequent graphs are shown in non-dimensional units:� in units of kB T, distance

(K b, Rs, r , d) in units of a0, and pressure in units ofkB T=nm3. This allows one to compare

the results for di�erent polymers. The correspondence between our model and (double

stranded) DNA is obtained by takinga0 � 1 nm leading to � 4 base pairs per polymer

bead [76], and K = 25 leading to Lp � 50 nm valid for DNA in physiological conditions.

For (single stranded) RNA one needs to takea0 = 0:5 nm, leading to � 2 nucleotides per

polymer bead with K b = 0. The pressures given here can be converted to atmospheres

(atm) by multiplying by � 240kB T=a3
0. To make comparisons to real systems, we will

focus on a capsid radius ofRc = 30a0 matching the internal mid radii of adenoviruses
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Figure 3.8: Representative equilibriation graph for Langevin dynamics. All data is
represented as a function of time with time=0 corresponding to the start of thermalization,

time = 500 000 corresponding to the end of thermalization (vertical dashed line), while the time
range from 500 000to 800 000was used for sampling of con�gurations. Panel a shows the

dependence of the total energy of the system, panel b the energy of polymer bending, and panel
c the pressure exerted on the con�nement. System parameters were� p = 0 :3, � s = 0 :05,

K b = 25 and � = 2 with Rc = 30.

(� 32:5 nm) [106]. We note that polyomavirus SV40 has a comparable capsid radius of

18 nm [139]. We take a DNA volume fraction of� p = 0:3 and condensing agent volume

fraction of � s = 0:05 as a representative sample of adenovirus core organization based

on considerations in the previous section [97]. Note that we do not include long range

electrostatic repulsion, which signi�cantly in�uences the magnitude for the pressure on

viral capsids [9]. Similar coarse grained modelling of SV40 virial cores show that steric

interactions are su�cient to explain the internal structure [26]. In our modelling, we

see no signi�cant di�erence in the studied indicators if we include such interactions at

a large computational cost as it increases the numerical cut-o� radius. This is because

electrostatic interactions decay rapidly so that the interaction tail that remains after

the Lennard Jones interaction dies out is negligible compared to the thermal energy for
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determining the con�guration, but it in�uences the total pressure.

3.2.2 Statistical indicators

We will use two statistical indicators to indicate organization of the core: namely the

particle probability density � and normalized radial distribution function R. Additionally,

two indicators of polymer-condenser interconnectivity will be used: the wrapping number

w and the connectivity 
 . All � and R given here were averaged �rst over con�gurations

corresponding to di�erent snapshots in time, and then averaged for di�erent randomised

simulation starting conditions. The same was done forw and 
 , with exception that we

use the probability distributions of these valuesp(w) and p(
 ) for each con�guration and

then average those. We will now proceed to de�ne each of these indicators.

Particle probability density

The radially symmetric (angle-averaged) probability density� (r ) is calculated by de-

termining the probability of �nding a particle, at a position in the interval hr; r + � r i

from the con�nement center. The resulting probability distributions are normalized such

that
R1

0 � (r )4�r 2dr = 1. We opt to present the probability density, and not the particle

density, as it allows direct comparisons between di�erent condenser sizes, and thus a

di�erent particle number in the system.

Radial distribution function

In order to determine the correlations between positions of condensing proteins, we

use the normalized (reduced) radial distribution functionR(d) [125]. The normalized

radial distribution function is obtained by taking the radial distribution function R0(d)

and normalizing to account for the �nite size and shape of the "sample" in question. The

radial distribution function R0(d) is de�ned as the average number of particlesn(d) found

at a distanced from any particle in the system

R0(d) =
1

4�r 2N� 0
hn(d)i (3.2.6)

where N is the number of particles,� 0 = N=V the average particle density found at

distance d from the particle, averaged over all particle pairs in the con�guration. The

particle density has in itself the volumeV which does not necessarily correspond to the

whole volume of the con�nementVc. In some cases, condensers might not access the whole

interior, due to being bound to the polymer and preferring to be away from the repulsive

con�nement. The function R0(r ) obtained on a �nite sample, in our case a spherical cluster

of particles, decays to0 for r = 2Rc, due to the largest distance between two particles in
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such a cluster being two times its radius. But, in order to be able to compare correlations

to bulk samples, or between two samples of di�erent size, one needs to renormalise the

size (and shape) e�ects. The normalized radial distribution function is then de�ned as

R(d) = R0(d)=f (d) wheref (d) is the shape factor. The shape factorf (d) has the property

of f (0) = 1 and decays to zero at su�ciently larged. Shape factors can be obtained in

analytical form for most basic shapes with homogeneous density, but in our case although

the shape is spherical, we do not have a homogeneous particle density. The shape factor

is obtained by normalizing the radial density-density distribution function [125]:

f (d) =
1
v0

Z
� (x)� (x + d)d3x: (3.2.7)

f (d) represents the probability of �nding two units of density � (r ) at a mutual separation

of d. v0 is a normalization constant ensuringf (0) = 1 .

Our normalized radial distribution functions R(d) are obtained by �rst calculating the

shape factor from the corresponding particle density function� (r ). We then use the sum

rule property of the shape factor [125]:

Z 1

0
2�r 2f (r )dr = V (3.2.8)

giving us the volume of the sample. This sum rule allows us to recheck the e�ective radius

of con�nement in our simulation runs, and we �nd that the con�nement radius is always

within 1% of the speci�ed value. The radial distribution function R0(d) is then calculated

with the obtained true particle volume V for each con�guration, and then averaged over

all con�gurations obtained in simulations. After that, we use the shape factor to obtain

the normalized radial distribution function R(d) = R0(d)=f (d).

Polymer-condenser wrapping and connectivity

In order to study how DNA polymer beads interact with condensers we need to de�ne

what constitutes a bead bound to a condenser. A polymer bead atr b and condenser at

r s are considered bound if their center to center distanced = jr b � r sj is such that the

bead-condenser interaction is attractive, i.e.(Rs + a0) � a0=2 < d < (Rs + a0) + a0=2.

This corresponds to the bead being located in the attractive part of the condenser-DNA

interaction potential.

The wrapping numberw of a particular condenser is de�ned as the longest length of

DNA, in number of beads, that is bound to it (see Fig. 3.9a). For each snapshot, we make

a probability distribution function p(w) that any condenser in the current con�guration

has the longest continuous length of DNA consisting ofw beads. The total probability

of such a function is normalized to unity
P 1

j =0 p(w = j ) = 1 . The value p(w = 0)
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Figure 3.9: Sketch of wrapping and connectivity indicator construction. Polymer
beads are shown as grey �lled circles, with a black circle in the middle, and with bonds between
neighbouring beads as black lines connecting their centers. Green circles without markings in

the center represent condensers. a) Two polymers touching a condenser are shown. Red arc on
polymer beads show which beads are bound to the condenser. One segment with wrapping 1
and one segment with wrapping 3 are shown, leading tow = 3 for this bead. b) Method of

calculating 
 is shown. The shortest path connecting the two condensers is marked with darker
polymer beads with �lled centers. The red dashed line represents the total path between two

condensers, whiled marks the shortest distance. c) Representative example of
 values
obtained from geometrical constraints.

thus corresponds to the probability that a condenser has no polymer beads bound to it,

while p(w) corresponds to the probability that a condenser has the longest number of

continuously wound beads equal tow. Note, p(w) does not give any information of the

number and distribution of shorter bound segments< w , or if there are multiple segments

of length w. As such,w is an indicator of the maximal achieved wrapping length on the

condenser.

The connectivity 
 i = mini f l i g=di is de�ned as the inverse ratio between the nearest

(point to point) distance di = jr a � r b j, between any two condensersa and b, and the

shortest DNA contour distancemini f l i g, from a set of possible contour distancesf l i g, if

we follow a contour of DNA starting at beadj a bound to condensera and leading to bead

j b bound to condenserb (See Fig. 3.9b):

l i = 2Rs +
max( j a ;j b)� 1X

k=min( j a ;j b)

jr k � r k + 1 j: (3.2.9)

As it is possible to have two paths along the contour connecting two condensers, we use

(j a; j b) which give the shortest path along the contourmini f l i g. With this de�nition, two

condensers directly touching have
 = 2Rs +0
2Rs

= 1, as well as two condensers connected

by a straight line of polymer beads. Thus,
 indicates if the polymer connecting two

condensers is direct (
 � 1), or goes in a sideways or wobbly manner (
 > 1). For each

distinct pair i of condensers, we �nd its
 i values and make a probability distribution

p(
 ) for each con�guration. The resulting probability con�guration is then averaged over
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multiple snapshots done over di�erent timesteps and with di�erent initial conditions.

3.2.3 Pressures of packing

An important indicator of viral stability is the pressure exerted on the capsid which

depends on the amount of packaged DNA [140]. The resulting stress on the capsid is

di�erent for various capsid structures [141] and is known to cause capsids to burst [142].

In order to tie our results close to experimentally relevant indicators, we will discuss

how the pressure on the capsidP changes with di�erent parameters before continuing to

discuss the internal organization of packaged polymer and condensers. The pressures we

obtain do not include a signi�cant quantitative contribution from long range electrostatic

interactions. Electrostatic interactions can not compete with steric interactions at high

densities due to their fast decay [26], such as those studied here, but are a necessity for

predicting viral pressures [9].

Note, all points on pressure graphs in this subsection are an average of at least 12

di�erent initial conditions with 30 di�erent snapshots in time per initial condition.

Polymer only packing

Figure 3.10: Pressure from a con�ned polymer at di�erent volume fractions.
Pressure as a function of polymer volume fraction for three sti�ness constantsK b. Full lines

show a �t to the data at low volume fractions � p � 0:15 with a power law P � � n exponent n
of 2:25� 0:05, 2:01� 0:06 and 2:0 � 0:1 for K b = 0 ; 25; 100, respectively. Dashed lines show a �t
to the data at high volume fractions � p � 0:3 with a power law exponent of 4:5 � 0:1, 4:4 � 0:1

and 4:5 � 0:1 for K b = 0 ; 25; 100, respectively. The radius of con�nement wasRc = 30.
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Before studying the in�uence of condensers on the polymer, we examine how pure

polymer behaves inside a con�ning sphere. We study how the pressureP exerted on the

con�nement depends on the volume fraction� p of con�ned polymer for di�erent sti�ness

constantsK b (Fig. 3.10). Our simulations indicate two regimes, at low and high packing

with a crossover at� p � 0:15. At low concentrations, the pressure scales asP � � n
p with

n between2:0 and 2:25, while at high densities,n � 4:5.

Figure 3.11: Figure of a con�ned polymer with di�erent bending stifness K b.
Figure represents one snapshot of a polymer in con�nement (the con�nement is not visible) at

� p = 0 :2 and Rc = 30 for di�erent K b, as indicated.

If we de�ne an order parameterS, such that S = hP2(cos� )i as in nematic liquid

crystals (Sec. 2.5), but with taking into account the radial component of the vector, we

obtain S = 0 in all cases con�rming a visual representation that the system is globally

disordered, albeit there is a degree of local ordering seen with largerK b (Fig. 3.11). A

transition into a ordered (nematic) liquid crystal has been seen in similar simulations

[72], albeit in that study the polymer representing DNA self-interacts with long range

repulsive interactions. Additionally, the con�nement is gradually �lled trough the virus

tail. It is this gradual �lling combined with long range interactions that seems to induce

an ordered packing similar to experiments with �lling spheres with sti� wire [56]. We also

assume that the addition of condensing particles will inhibit local ordering of the polymer

due to condensers acting as impurities. This view is consistent with Cryo-EM images of

adenoviruses [5] which show no core ordering.

Polymer scaling theory based on the approach by Flory [2] provides scaling behaviours

for several polymer regimes. At su�cient densities a �exible polymer is assumed to be in a

semi-dilute regime with a scaling analogous to bulk solutions [12]. This semi-dilute regime

is characterized by the polymer scaling as if it was surrounded with other (impenetrable)

polymers forming an e�ective cavity. The free energy of a polymer in the semi-dilute

regime scales asF � Np� 1=(3� � 1)
p , with � = 0:588 the Flory exponent [2, 11]. From

P = � @F=@Vc we obtain that the pressure scales as

P � � 3�= (3� � 1) (3.2.10)
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or P � � 2:25 (the des Cloizeaux law [2]). Cacciuto and Luijten [11] numerically con�rmed

that the scaling for polymers con�ned to a cavity is the same as in bulk semi-dilute

solutions. Using Eq.(3.2.10) they obtain from their simulation � � 0:594 for a polymer

consisting of hard sphere beads without bending ( their con�nement size would beRc = 40

in our units). If we take our values forK b = 0:0, corresponding to a model of RNA,

we obtain a value of� = 0:6, also consistent with the Flory exponent. We attribute

the small di�erence in exponents due to di�erent models for polymer bead interactions

� softer Lennard-Jones interactions we use give a di�erent excluded volume. For higher

K b = 25; 100 we see a reduction of the exponent to a scaling of roughlyP � � 2
p. This

exponent is the one obtained in the (mean-�eld) approximation at semi-dilute densities

[2, 12], for cases when the excluded volume is dominant, and corresponds to the Flory free

energy Eq. (2.4.8) overpowering the bending penalty for con�nement.

At high density (� p > 0:15), the semi-dilute scaling picture breaks down [11]. For

�exible polymers, the correlations between monomers become too large, while for semi-

�exible polymers the �rst virial expansion in density (proportional to the excluded volume)

is lacking of higher order terms. Cacciuto and Luijten [11] show that from � p = 0:15 up

to the maximum value they test � p = 0:3 the system enters a concentrated regime, and

the pressure from numerical simulations scales roughly asP � � 3
p. Theoretical mean

Figure 3.12: Pressure from a con�ned polymer of di�erent persistence length.
Pressure as a function of polymer sti�nessK b = L p=2 for di�erent polymer volume fractions � p.
Full lines show a �t to the data at K b � 25 with a power law P � K n

b exponent n of 0:1 � 0:2
for all � p. Dashed lines show a �t to the data at K b � 100 with power law exponents n of
0:6 � 0:1 (� p = 0 :1), 0:67� 0:06 (� p = 0 :2), 0:69� 0:05 � p = 0 :3 and 0:66� 0:03 (� p = 0 :4).

The radius of con�nement was Rc = 30.
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�eld calculations indicate a scaling ofP � � 3
p at intermediate densities before entering

the concentrated regime [12]. Our data indicate that after � p = 0:3 the system enters a

high density regime with a well de�ned scaling ofP � � 4:5� 0:1
p suggesting a concentrated

polymer regime. A degree of caution is needed in this interpretation as the exponent at

high densities could be dependent on the choice of the polymer bead interaction potential.

It appears that previous works [11, 143, 144] did not show investigate scaling regime

comprehensively.

We can also see how the pressureP depends on the values of the sti�ness constant

K b. From the previous chapter we know that the DNA should have a transition from a

bending dominated to a �exible regime atLp = 2K b � Rc. Fig. 3.12 shows such a scaling

behaviour happening forLp betweenRc and 2Rc, as expected [12]. The scaling behaviour

in the �exible regime (K b � Rc) shows no strong dependence of the pressure on the value

of the persistence lengthP � L0:1� 0:2
p , albeit the pressure does grow weakly withLp. 2Lp

is the new monomer size of the e�ective polymer [2]. In the bending dominated regime

(K b � 100) we see a power law behaviourP � L0:64� 0:03
p inconsistent with both bending

models of onion given by Eq.(2.3.23) and inverse spool by Eq.(2.3.21) loop packing

which predict P � Lp. There is no direct experimental test of this scaling dependence

as far as we know of but the loop models are able to predict scaling at constantLp for

wire packing in spheres [56]. Some simulations and mean �eld models also predictLp

dependence in the bending dominated regime [57], albeit at low densities.

With molecular dynamics simulations we obtain scaling exponents for the pressure

of con�ned polymers. We con�rm the existence of a �exible and bending dominated

regime as bending stifness is changed, with a transition at2K b = Lp � Rc. At di�erent

concentrations, we �nd �rst the semi-dilute for �exible polymers and the mean-�eld

(Flory) semi-dilute for rigid polymers. At higher concentrations the pressure enters the

concentrated regime with the same scaling independent of bending sti�ness. Interestingly,

in the bending dominated regime we obtain a scaling of the pressure onLp inconsistent

with any of the theoretical models discussed here (Sec. 2.3).

Condenser and polymer packing

We now study how di�erent condensers in�uence the pressure of a con�ned mixture of

condensers with the polymer. Figure 3.13 shows the pressure exerted by the mixture of

polymer (DNA) and condensers on the capsid as a function of the volume of condensing

particles for di�erent condensing particle radii Rs. When only a polymer is con�ned

(� s = 0) the pressure exerted on the capsid is a growing function of polymer volume

fraction � p (Fig. 3.10). If condensing proteins are added with a condensing energy larger

than kB T, the addition of condensing materials �rst reduces the pressure until a minimum

is reached for a certain� s, after which the pressure rises again. At higher volume fractions
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Figure 3.13: Pressure on con�nement for di�erent condenser binding energies.
Pressure as a function of condenser volume fraction for three condenser radiiRs with condenser

binding energy � as indicated. Both panels have� p = 0 :3, Rc = 30:0, K = 25.

of condensers, steric repulsion becomes the dominant force and the pressure increases

irrespective of the size or binding strength of the condensers. With weak binding, an

increase of the volume fraction of condensing proteins always increases the pressure.

There exists an optimal volume fraction of condensers when the capsid pressure is

maximally reduced. With smaller condensers (Rs = 1) the addition of condensing agents

contributes to lowering the pressure with an optimal concentration (here� s = 0:08) where

the pressure exerted on the capsid is reduced by more than 50%. For larger condensers,

the lowering of capsid pressure is suppressed, leading ultimately to an increase of pressure

with added condensers (atRs = 3). The observed behaviour of pressure comes from the

total number of binding sites available for DNA-condenser interactions. If the size of the

condensing particleRs is increased, while the volume fraction is kept the same, the total

binding energy that can be realized is decreased. The maximal binding sites that can

be realized per condenser is proportional to the surface area� �R 2
s, while the number of

condenser particlesNs is proportional to � � sR� 3
s . This means that that the free energy

that can be realized from binding goes as� �� sR� 1
s . Thus, if the volume fraction is the

same, smaller condensers are able to better connect the DNA and stabilize it because they

are capable of permeating the crowded DNA structure better to realize more bonds.

With mixtures, more protein content � p leads to an increase of pressure (Fig. 3.14).

Independent of the binding strength, at large� p, the pressure has a value dependent

only on the bending sti�nessK b. When crowding becomes dominant, a �xed number of

condensers can not contribute to reducing the pressure. The asymptotic value at high� p,

de�ned by K b is approached with a di�erent power law for each� .

A comparison of pressure for di�erent condenser-DNA binding strengths at� p = 0:3; 0:4

shows two binding regimes (see Fig. 3.15), one when the binding energy� is smaller than
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Figure 3.14: Pressure from condensers at di�erent polymer volume fractions.
Pressure as a function of polymer� p for di�erent K b and � at � s = 0 :05 with Rc = 30:0. Lines
represent a power law �t P � � n for � � 0:4 with power law coe�cients in the bending regime:
5:04� 0:08 (K b = 100 and � = 0 :5) and 5:63� 0:04 (K b = 100 and � = 2 ), and in the �exible

regime: 4:81� 0:08 (K b = 0 and � = 0 :5) and 5:99� 0:03 (K b = 0 and � = 2 ).

Figure 3.15: Pressure on con�nement for di�erent condenser binding energies at
three di�erent polymer volume fractions. Pressure as a function of interaction energy for

three condenser radiiRs at polymer fraction � p = 0 :3; 0:4; 0:6 All panels have � s = 0 :05,
Rc = 30:0, K = 25. Horizontal dashed line represents the pressure without any condensing

proteins, except for � p = 0 :5 where the pressure without condensers is0:254.

the thermal energy (weak binding) and one when� is larger than the thermal energy (strong

binding). The major di�erence is that for strong binding (� > k B T) smaller condensers are

better in reducing pressure, while for weak binding (� < k B T) larger condensers are better.

In the strong binding regime a single bound bead is thermally stable, while in the weak

binding regime more than one is needed for stable binding. In the weak binding regime, we
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�nd that an increase in condenser size reduces the pressure on the capsid. However, in this

regime it is still more favourable to haveno condensing proteins inside the capsid, as any

increase of number of condensers increases the pressure. As each condenser contributes

to the total free energy less thankB T via binding, other contributions become relevant

� the entropic contribution to the pressure dominates over the binding part. At higher

polymer volume fractions (Fig. 3.15 for� p = 0:4), and with the same condensing protein

volume fraction, we see the same two regimes (strong and weak binding) but they no longer

correspond to a net decrease of pressure. Only at higher binding energies, depending on

the size of condenser, does the addition of condensers reduce the pressure. Crowding

becomes the dominant contribution, requiring stronger condenser binding to negate it. At

even higher volume fractions (Fig. 3.15 for� p = 0:5), there exists a maximum in the

pressure at about� � kB T. Regarding a reduction of pressure, it becomes optimal to

either have no binding or extremely strong binding. It seems that bonds comparable to

the thermal energy somehow sti�en the structure, enhancing the pressure. Biologically, it

seems that only with strong binding with lower crowding do condensing proteins contribute

to reducing the pressure exerted on the capsid. Larger weak binding condensers do not

inhibit the internal pressure signi�cantly, so their presence is "tolerable" if they are required

to facilitate other aspects of the infection process.

Figure 3.16: Pressure on con�nement for di�erent condenser sizes. Pressure as a
function of condenser size for two condenser binding energies at three di�erent� p = 0 :3; 0:4; 0:5.

Dashed lines represent the pressure without any condensers. All panels have� s = 0 :05,
Rc = 30:0, K = 25.

Figure 3.16 shows how the pressure changes with the sizeRs of condensers. Both at

� p = 0:3 and � p = 0:4 we see no crossover between pressure lines for di�erent binding

energies. With strong binding, we see that the pressure saturates with an increase of

Rs, even resulting in a increase of pressure at aroundRs = 4 with respect to the case

without condensers. For weak binding, we see a decrease of pressure with an increase of

Rs. A similar trend is seen for� p = 0:4, albeit only strongly bound Rs = 1 decrease the
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total pressure. A decrease in pressure withRs in the weak binding can be explained as

being in�uenced by a decrease of entropic pressure, which is proportional to the number of

particles. On the other hand, in the strong binding regime the pressure saturates at high

Rs, likely as the total energy of binding,� �� sR� 1
s , is reduced at highRs. At � p = 0:5

larger and strong binding condensers increase the pressure with respect to weak binders.

Figure 3.17: Pressure from a con�ned polymer with condensing proteins for
di�erent poylmer stifnesses. Pressure as a function of polymer sti�nessK b = L p=2 for two
di�erent volume fractions of � p = 0 :3 (left panel) and � p = 0 :4 (right panel) at � s = 0 :05 with
Rc = 30:0. Full lines show power law �ts with a scaling exponent 0:1 � 0:1. Dashed lines show a

power law �t with exponents: a) for � p = 0 :3 we have exponents0:62� 0:05 (Rs = 1 :0 and
� = 0 :5), 0:85� 0:01 (Rs = 1 :0 and � = 2 ), 0:62� 0:05 (Rs = 3 :0 and � = 0 :5) and 0:69� 0:03

(Rs = 3 :0 and � = 2 ), b) � p = 0 :4 with exponents 0:58� 0:03 (Rs = 1 :0 and � = 0 :5), 0:66� 0:02
(Rs = 1 :0 and � = 2 ), 0:60� 0:01 (Rs = 3 :0 and � = 0 :5) and 0:61� 0:02 (Rs = 3 :0 and � = 2 ).

The addition of condensing proteins will also in�uence the dependence of the pressure

on the polymer sti�ness. A comparison of scaling with di�erent parameters (Fig. 3.17)

indicates that the bending dominated regime and the �exible polymer regime persist in

spite of added condensers (Fig. 3.12). In all cases, a higher bending sti�ness increases the

pressure and makes binding ultimately ine�cient in reducing the pressure. In the �exible

regime (2K b < R c) there is no well de�ned scaling on the persistence lengthLp, just a

monotonous rise in the pressure. In the bending regime at lower crowding (� p = 0:3) we

can argue that there are two possibilities. Weak binding and large condensers produce a

scalingP � K n
b with the exponent n � 0:6 similar to the scaling with only polymer (Fig.

3.12). If the condensers have a strong binding energy (� > 1kB T), the scaling relationship

is changed. In order to approach the same highK b pressure value, the scaling onK b in the

bending regime approaches an exponent of1. At higher crowding (� p = 0:4), the pressure

reduction with strong and small condensers is less relevant, and the resulting asymptotic
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scaling exponent is also smaller. Thus, strong condensers are more in�uenced by a sti�

polymer backbone, initiating a faster return to a pure (repulsive) pressure value.

We conclude that the presence of condensing agents with a polymer in con�nement

in�uences the total pressure exerted on the con�nement. There exists an optimal condenser

volume fraction which minimizes the pressure, but only with strong binding and su�ciently

small condensers able to realize many bonds with the polymer. At higher polymer densities,

the crowding e�ect overcomes the reduction of pressure from condensers. We �nd two

regimes in both volume fraction of packaged cargo and sti�ness of the polymer � an

increase in concentration brings a change from a semi-dilute to a concentrated regime,

and an increase in bending sti�ness changes the system from a �exible polymer to the

bending dominated regime.

3.2.4 Internal organization

We will now study how di�erent parameters in�uence the internal organization of

con�ned mixtures of condensing proteins and polymer. Experimentally it is possible to

probe both the density and radial distribution function for condensing proteins using

either electron microscopy [97, 121] or small angle X-ray scattering [26]. Our aim is to

study how parameters of the model in�uence these experimentally accessible indicators.

Additionally, our inclusion of an explicit polymer allows us to study how crowded and

con�ned mixtures of polymer and condensers are interconnected. Based on the analysis

of the pressures we will concentrate on con�nements matching the typical size of viral

capsids, with strong and weak binding, and both �exible and sti� polymers. Afterwards,

the implications of these �ndings will be discussed in the context of virology and arti�cial

nano-cargo delivery.

All statistical indicators presented here have been averaged for at least 48 random

initial states of the system, with 30 snapshots in time per each initial state.

Polymer only packing

Packing of polymers inside spherical con�nement is a well studied problem [11, 143, 144],

examined also in the context of DNA packing and ejection in bacteriophages [72, 79,

145, 146], allows us to benchmark our model before continuing studying mixtures with

condensing particles. Fig. 3.18 shows how the probability density for polymer beads

depends on a choice of sti�ness constants at di�erent polymer volume fractions� p. At

low densities (� p = 0:05) thepolymer sti�ness has a profound in�uence on its density

pro�le. A �exible polymer ( K b = 0) �lls the interior and has a depletion layer at the

walls of the capsid, the same as obtained in polymer �eld theory, with a density pro�le

� (r ) � tanh2[(Rc � r )=� ] for r < R c where� is the mean �eld correlation length dependent
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Figure 3.18: Probability density for di�erent sifness constants K b and polymer
volume fractions � p for Rc = 30:0.

on the volume fraction � p [12]. On the other hand, a sti� polymer (K b = 100) in the

bending regime has an exclusion hole in the center of the con�nement, the bending sti�ness

forcing it to cover the interior of the con�nement surface to minimize its bending energy.

The case withK b = 25, corresponding to the sti�ness of DNA whena0 = 1 nm, lies in

between these two regimes, with the exclusion zone starting to form. Although DNA lies

outside the bending dominated regime, its density pro�le shows similarities to pro�les of

higher bending sti�ness.

At intermediate densities (� p = 0:2), just beyond the semi-dilute regime, we see that

the polymer �lls the whole volume of the con�nement. A �exible polymer (K b = 0) still

has a depletion layer near the con�nement, but it is barely visible. Sti�er polymers are

located with a high probability in well de�ned layers near the surface of the con�nement

with a higher sti�ness giving a higher probability. This layering is a direct consequence of

interactions with the con�ning surface, and is a known e�ect both in con�ned polymers

[67] and spheres [128]. At higher densities, the di�erence between polymers of di�erent

sti�ness becomes less pronounced, as the lack of free volume and the topology of the chain

determines the packing density.

Con�nement size e�ects

The size of con�nement can in�uence the internal organization of the system. Our

primary interest lies with large con�nement radii which we can compare to viruses. For

example, adenoviruses �lled with DNA would correspond toRc = 30 nm with a0 = 1

nm. But, smaller con�nements, e.g. representing protein cages, withRc � 8 nm are also

interesting for applications in nano-cargo delivery [110]. We �rst test large con�nement

radii, which would correspond to both adenoviruses and polyomaviruses.

Fig. 3.19 shows the dependence of the particle probability density� and connectivity
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Figure 3.19: Structure variation for di�erent con�nement radii Rc. Particle
probability density � and connectivity p(
 ) are shown for� p = 0 :3, � s = 0 :05, � = 2 , K b = 25.

Figure 3.20: Probability density for di�erent small con�nement radii Rc for a
�exible ( K b = 0 ) and sti� polymer ( K b = 100). Particle probability density � and

connectivity p(
 ) are shown for� p = 0 :3, � s = 0 :05 and � = 2 .


 for di�erent con�nement radii comparable to viral capsids. The density� shows the

same general pro�le in all cases, but
 shows a di�erence between di�erentRc. A larger

probability for �nding two condensers directly connected, i.e. a small
 , is seen i small

con�nements. This is expected as the complexity of paths is smaller with less DNA

connecting the system. When the con�nement becomes comparable to the size of the

particles in the simulated mixture (Fig. 3.20) one begins to see changes in the density

due to �nite size e�ects, but also subtle changes in the radial distribution function. As

our primary interest lies in viral capsids, we will not discuss this case further.

Internal organization at varying polymer density

Figure 3.21 shows the polymer density pro�le for various polymer volume fractions

with the sti�ness corresponding to that of DNA (K b = 25) with added condensing proteins

(� s = 0:05). The general trend with all condenser sizes is that the presence of condensers
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Figure 3.21: Polymer density pro�le with added condensers for di�erent polymer
volume fractions. Data is shown for stifnessK b = 25 (DNA) with condenser volume fraction
� s = 0 :05 con�ned in a sphere of radiusRc = 30 for di�erent combinations of condenser radius

Rs = 1 ; 3 and condenser binding strength� = 0 :5; 2.

does not in�uence the density in a major way if the condensers are weakly binding. When

condensers bind strongly (� = 2kB T), they produce a more compact structure at low

densities, albeit still �lling most of the available free volume. Larger condensers at low

densities produce a more spread out polymer density. In all cases layering in the area near

the con�nement surface is observed at su�ciently high densities.

The density distribution of condensers (Fig. 3.22) exhibits similar behaviour as the

polymer density. When the binding is weak and the condensers are small, the condenser

densities follow similar trends as the polymer densities. Strong binding shows a di�erent

pro�le with the cluster of condensers and polymer becoming more compact without any

signi�cant ordering near the con�nement until � p = 0:45. A reduction in the pressure

(Fig. 3.14) is correlated with more compact structures. The �rst layer of condenser

density at the con�nement surface is suppressed in comparison to the second (interior)

layer, especially with strong binding. We argue this is a combination of two e�ects: a)

the polymer is pushed outwards from the center of the con�nement due to its bending
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Figure 3.22: Condenser density pro�le for di�erent polymer volume fractions.
Data is shown for sti�ness K b = 25 (DNA) with condenser volume fraction � s = 0 :05 con�ned

in a sphere of radiousRc = 30 for di�erent combinations of condenser radiusRs = 1 ; 3 and
condenser binding strength� = 0 :5; 2.

rigidity, and b) if condensing particles constitute the outermost layer, they have a reduced

number of polymer bead neighbours thus reducing the opportunity for binding. With

larger condensers (Rs = 3) con�gurations show depletion of probability near the center of

the con�nement.

The radial distribution function R(d) for condensers (Fig. 3.23) indicates that the

correlation of the particle positions is highly dependant on the size and binding strength

of condensing proteins at all densities. Small condensers (Rs = 1) show that a high density

leads to a better correlation of �rst neighbour condensers. In the case of strong binding,

both low and high polymer volume fractions show a high correlation for the �rst neighbour

(�rst peak). But, in between concentrations have a reduction in the probability of �nding a

condenser at a direct contact with another one (atd = 2Rs � 2), where a minimum is seen

for � p = 0:3 and � p = 0:4. In this case the second peak, attributed to one polymer bead

in between two condensers (atd = 2Rs + a0 � 3), becomes dominant. Larger condensers

exhibit a reduction in the probability of direct contact of two condensers irrespectively of
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Figure 3.23: Radial distribution function of condensers for di�erent polymer
volume fractions. Data is shown for sti�ness K b = 25 (DNA) with condenser volume fraction
� s = 0 :05 con�ned in a sphere of radiousRc = 30 for di�erent combinations of condenser radius

Rs = 1 ; 3 and condenser binding strength� = 0 :5; 2.

the binding strength. It seems that the presence of a polymer forces two condensers to be

more distant, as it is energetically more favourable for them to be bound. Interestingly,

with larger condensers (Rs = 3) this e�ect leads to a almost complete elimination of the

direct contact, which is present even when more than one bond, as in the case with� = 1=2,

is needed for binding to be thermally stable. At high volume fractions� p = 0:5 all the

peak positions are moved to lower values, as the particles are at s su�cient density to

warrant closer contacts.

The wrapping number w, which corresponds to the longest length of a continuous

polymer segment whose beads are bound to the same condenser, is shown in Fig. 3.24

for di�erent polymer volume fractions. Small and weak binding condensers at low con-

centrations are unbound with signi�cant probability. At high densities, we see saturation

at w = 2, the same value seen for all small and strongly bound condensers. The limiting

factor is in this case the size of the condenser. Larger condensers seem to e�ciently wrap

the polymer, and as such can bind the polymer even with weak binding. Additionally,
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Figure 3.24: Wrapping for di�erent polymer volume fractions. Data is shown for
sti�ness K b = 25 (DNA) with condenser volume fraction � s = 0 :05 con�ned in a sphere of

radius Rc = 30 for di�erent combinations of condenser radiusRs = 1 ; 3 and condenser binding
strength � = 0 :5; 2.

the distribution p(w) is much wider, and increases with an increase of polymer volume

fraction. The strength of the binding is also not a major factor, as it seems that it is the

con�nement that forces the polymer to more tightly interact with condensers.

For small condensers withRs = 1 we see that the most probable winding number is

w = 2 for both binding regimes, meaning that most of the condensers will bind maximally

two connected DNA beads. An increase of condenser radius enables a largerw on average,

as the DNA can have longer segments bound to the condenser as both the surface is larger

and the required polymer bending smaller. The obtained growth is proportional toRs and

surprisingly shows no major dependence on the interaction strength, again indicating that

the dominant e�ect comes from con�nement, and not interaction strength in this regime.

From the wrapping indicator we conclude that when the size of the condensing particles

is small, Rs � 1, they predominantly act as bridger molecules, while larger condensers

(Rs > 3) approach the behaviour expected for wrapping particles [122].

We have found that the condensers bind small segments of polymer on them, but
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Figure 3.25: Connectivity indicator for di�erent polymer volume fractions. Data is
shown for stifnessK b = 25 (DNA) with condenser volume fraction � s = 0 :05 con�ned in a

sphere of radiousRc = 30 for di�erent combinations of condenser radiusRs = 1 ; 3 and
condenser binding strength� = 0 :5; 2.

that does not provide information on how or if di�erent beads are interconnected by the

polymer backbone. We can study how condenser pairs are connected via the polymer

backbone to see if the connecting DNA follows the shortest path between them. For each

pair of condensers we construct the connectivity indicator
 = mini f lg=d which is the

ratio between the smallest distance along a contour of DNA connecting these two proteins,

and the closest (point to point) distanced between them. Figure 3.25 shows how the

probability distribution for p(
 ) changes for di�erent polymer volume fractions. We see

that Rs = 1 condensers have a �at probability distribution for 
 indicating that any two

condensers are mostly connected indirectly. There is a small maximum at roughly
 � 1:5

that seems to be related to spatially nearest neighbours directly interconnected with the

contour. A higher density slightly enhances more direct contacts. If we increase the

condenser radius, we see that smaller
 become increasingly more probable, meaning they

are more directly connected. As the cross section of a condenser goes like� �R 2
s a "random

walk" (in a crowded and con�ned environment) has a much higher probability of stumbling

across a nearby condenser. A stronger interaction facilitates more direct connections, for
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then the probability for small 
 is larger, while maintaining the same position of the peak

in p(
 ) is maintained. The presence of condensers with stronger binding seems to force

the DNA to have a more directed path between any two condensers.

Figure 3.26: Connectivity indicator between nearest neighbours for di�erent
polymer volume fractions. Data is shown for sti�ness K b = 25 (DNA) and condenser

binding strength � = 2 with condenser volume fraction � s = 0 :05 con�ned in a sphere of radius
Rc = 30 for di�erent condenser radiusesRs = 1 ; 3.

We can also use
 , the ratio between the DNA length connecting two condensers and

their mutual distance, to study how relaxed the interconnectivity is in the neighbourhood

of condensers. We can de�ne
 NN = mini f lNN g=dNN as the ratio of the shortest contour

length connecting two spatially nearest neighbours and their mutual distance. Figure 3.26

shows the variation of
 NN with � p for di�erent condenser sizes in the strong binding

regime. For Rs = 1 there are three major contributions top(
 ): a) at 
 NN � 1 from

direct contacts trough one polymer bead located between two nearest neighbours, b) at


 NN � 1:25 coming from the polymer touching (grazing) two neighbouring beads touching

at a mutual distance ofd = 2Rs, and c) at 
 NN � 2 most probably coming from the

polymer grazing two neighbouring beads at a mutual distance ofd = 2Rs + a0 (second peak

in Fig. 3.23). At low volume fractions � p and small condensers (Rs = 1) the system is

relaxed and nearest neighbours are contacted indirectly. As� p is increased, and although

the volume fraction of condensers is present, we get more directly connected condensers

as the crowding has increased. Larger condensers posses a slightly more pronounced

probability of �nding direct contacts between them, but have shorter indirect contacts

centred at
 NN � 1:25. This is because larger condensers have a higher probability of direct

contacts due to their larger size thus reducing the total number of possible topological

paths in respect to smaller condensers.

We conclude that higher densities of polymer enhances binding until we reach the

concentrated regime when the crowding inhibits e�cient binding. Small condensers are

more able to permeate the structure and distribute themselves than larger condensers.
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Larger condensers are unable to be directly in contact, as they are limited by the polymer

they have bound, or wrapped, on themselves. Crowding large condensers with more

polymer enhances this wrapping.

Formation of polymer-condenser quasi-particles

Larger condensing particles indicated (Fig. 3.23) a tendency for the mutual distance

between closest condensers to increase. We identify two major contributions inR(d), one

from direct contacts between two condensers atd = 2Rs, and another from a polymer

located in between two closest condensers atd = 2Rs + a0. In the strong binding regime

we see a transition from a mixture of direct and DNA-mediated contacts to only DNA-

mediated condenser contacts for large condensers. The direct contact between condensers

is slightly less probable in respect to a condenser-bead-condenser contact forRs = 1. With

larger condensing particles, the direct contact between condensers becomes suppressed,

and all interactions are mediated by a polymer layer around the condensers. This becomes

more relevant for larger (Rs = 3) condensers with strong binding, so we test how do the

Figure 3.27: Structural change for di�erent radii Rs of condensing proteins.
Graphs show normalized radial distribution functions R, wrapping w and the probability

distribution for connectivity for all particle pairs p(
 ) and for just spatialy nearst neigbours
p(
 NN ). Parameters wereRc = 30:0, � p = 0 :3, � s = 0 :05 and � = 2 .
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indicators change with condensing proteins of di�erent radiiRs (Fig. 3.27). An incrase

of condenser radius toRs = 3 shows that direct contacts between condensers are highly

improbable � there is always a at least one polymer bead in between two condensers.

When the radius is further increased toRs = 5, we see two close peaks atd = 2Rs + a0

and d = 2Rs + 2a0 with equal statistical weight. The increase of radius has allowed

the condensers to cover themselves each with their own polymer "layer". The system

transitions from a state where condensers can interact directly, to a state where each

condenser is covered by at least a layer of polymer which mediates all interactions, a

form of quasi-particle like the one one used in the previous section in our e�ective model

of adenosomes [97]. This formation of quasi-particles is followed by an increase in the

wrapping indicator w.

An increase of condenser size also enchances wrapping and makes the core better inter-

connected, asp(
 ) show a higher probability of direct paths between any two condensers.

From the wrapping indicator we conclude that when the size of the condensing particles

is small (Rs � 1), they predominantly act as bridging molecules, while larger condensers

(Rs > 3) approach the behaviour expected for wrapping particles [122]. The connectivity

of nearest neighbours
 NN indicates a transition between a more sparse relationship at

Rs = 1 to a more direct connectivity for largerRs. These changes in connectivity can be

attributed to an increase in the cross section of the condensers.

Figure 3.28: Layering comparison for two binding strengths. Graphs show normalized
radial distribution functions R and density probability for condenser particles� (r ). Parameters

were Rc = 30:0, � p = 0 :3, � s = 0 :05, Rs = 3 and K b = 25.

The formation of adenosomes covered with a "halo" of polymer beads can also be seen

in the density(Fig. 3.28). After the system transitions from a mixture of direct contacts

and indirect (polymer mediated) contacts to only indirect, we see a change in the density.

First, the outermost layer of condensers in direct contact with the con�nement disappears.

Secondly, two peaks evident in the density� at a distanceRs + a0 and Rs + 2a0 from the

edge of the con�nement become comparable for� = 2 � the �rst one from a quasi-particle
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directly contacting the surface, the second from an additional layer of polymer between

the quasi-particle and the con�nement wall. Additionally, a peak at roughly2Rs from

the con�nement surface begins to form. Thus, we see quasi-particles in both the radial

distribution function R and in the density � . Surprisingly, this is followed by negligible

di�erences in the interconnectivity of condensers, only direct linksp(
 NN = 1) becoming

slightly more probable, and also a negligible di�erence inp(w) between the weak and

strong binding case. So although wrapping is connected to formation of the quasi-particle,

it is not su�cient.

Condenser volume fraction

Figure 3.29: Nearest neighbour connectivity for di�erent condenser volume
fractions � s at Rs = 1 . Data is shown for stifnessK b = 25 (DNA) with polymer volume
fraction � p = 0 :3 con�ned in a sphere of radiousRc = 30 for condenser binding strengths

� = 0 :5; 2.

Beforehand we have �xed the condenser volume fraction� s = 0:05 at the value that is

both expected inside adenovirus cores, and the minimum in pressure obtained forRs = 1

and � = 2 condensers. An increased amount of condensers enhances the direct contact

between condensers and suppresses any layering. The connectivity
 remains the same

on the scale of the whole con�ned system, but the nearest neighbour connectivity
 NN is

changed for small condensers (Rs = 1). Figure 3.29 shows how an increase of condenser

volume fraction changes the local connectivity of condensers. Surprisingly, an increase

of condenser volume fraction makes the nearest neighbour links less direct, although the

probability to �nd another condenser at the minimal distanceR(d � 2Rs) is increased. It

seems that the increased crowding complicates the paths the polymer must take between

neighbouring condensers, although the density of condensers is larger.
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Figure 3.30: Density and radial distribution function for di�erent bending
sti�ness. � and R are shownfor di�erent bending stifness parametersK b. Parameters were

Rc = 30, � = 2 , Rs = 3 , � s = 0 :05 and � p = 0 :3.

Figure 3.31: Wrapping for di�erent bending sti�ness. p(w) is shown for two di�erent
condenser radiiRs for di�erent bending stifness parametersK b. Parameters wereRc = 30,

� = 2 , � s = 0 :05 and � p = 0 :3.

Comparing various bending regimes

Figure 3.30 shows how the bending sti�nessK b for �exible ( K b = 0), sti� ( K b = 100)

and DNA-like (K b = 25) polymers in�uence the internal organization in con�nement.

Sti� polymers are found to reduce the layering of polymers on condensers, while �exible

polymers enhance the quasi-particle picture from before. As the sti�ness is reduced, the

density � exhibits a transition from two peaks for condensers and polymers near the

surface of the con�nement, into one merged peak for the quasi-particle. Similarly inR we

see a widening of the �rst peak for the �exible polymer, corroborating the quasi-particle

picture. Interestingly, wrapping (Fig. 3.31) indicates that �exible polymers have a larger

winding number w for small condensers, and smallerw for larger condensers, with respect

to sti� polymers. Sti�er polymers, once they make contact with a condenser, have a
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higher probability of continuing on the same path, grazing the surface of the condenser.

Such paths allow the sti� polymers to be slightly diverted to follow the shape of large

condensers more closely, in order to achieve more binding opportunities with the same

condenser. Flexible polymers have almost no correlation between subsequent steps in their

"random walk", and are expected to more easily, temporarily, leave the neighbourhood of

a condenser.

3.2.5 Opening the capsid

To understand what is the degree that con�nement in�uences the structure, we study

how removing the con�nement in�uences the mixture. We �rst show an example of

con�ned wrapping w and nearest neighbour connectivity
 NN for parameters close to the

ones we believe match the conditions in adenoviruses best (Fig. 3.32).

Figure 3.32: Connectivity of DNA and condensing proteins with con�nement.
Probability distributions for the wrapping number w and 
 NN = min i f lNN

i g=dNN averaged for
all condensing particle pairs which are nearest neighbours are shown in the weak (� = 1=2) and
strong (� = 2 ) binding regime for di�erent values of the condenser radiusRs. Parameters were

Rc = 30, � p = 0 :3, � s = 0 :05 and sti�ness K = 25.

After the capsid is removed and a su�cient time has passed for the system to equilibrate,
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Figure 3.33: a) DNA and condensing particle cluster after removing con�nement. Same as
Fig. 3.6 except the capsid con�nement has been removed. b) Cryo-EM of opened adenoviruses

showing a compact core and remnants of the capsid. Adapted from Ref. [121].

we see that the structure has relaxed but retains the general shape of a cluster (Fig. 3.33a).

In the case of small weakly binding condensers (� = 1=2kB T) almost all of the condensing

particles leave the cluster.

To gain insight on the internal connectivity we study wrapping (w) and connectivity

(
 and 
 NN ) for DNA condenser mixtures without spherical con�nement as shown in Fig.

3.34. Wrappingw shows the most striking di�erence from previous results in con�nement.

In all cases, the tendency for wrapping has reduced. In the case of strong binding, the

dependence ofw on size has become weaker, indicating that the entropic penalty for the

DNA to remain near the bead remains stronger than the energy gained from binding. In

the weak binding regime, we see that most of the smaller condensers do not have any DNA

bound to them (seen asp(w) = 0 ), as they have escaped the cluster. Larger condensers

for Rs = 5, and Rs = 3, show the same wrapping pro�le for both weak and strong binding

regime. When the size of the condenser becomes more comparable to the persistence

length of DNA, the binding is able to "bend" the DNA to touch the surface.

The contour lengths of DNA connecting condensers, as represented in
 NN (Fig. 3.34),

indicate a more sparsely connected, if connected at all, structure for weak binding without

con�nement. Smaller condensers do not participate in forming any network and leave the

structure, while larger condensers start to exhibit the general pro�les seen with con�nement

for which the probability for direct links (small 
 NN ) becomes larger than for indirect links.

Strong binding indicates a similar structure as in con�nement. The DNA links for nearest

neighbours shows the most striking di�erence for small and weak binding condensers where

there are no direct links between condensers, only indirect ones where DNA subsequently

touches two condensers during its random walk (
 NN � 1:4). In contrast, strongly bound

condensers exhibit the same general trend as in the con�ned case, except the structure

is more relaxed, with indirect links becoming more probable. This con�rms the visual

conclusion that strongly binding condensers retain the same general connectivity as in
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Figure 3.34: Connectivity of DNA and condensing proteins with con�nement
removed. Probability distributions for the wrapping number w and 
 NN = min i f lNN

i g=dNN

averaged for all condensing particle pairs which are nearest neighbours are shown in the weak
(� = 1=2) and strong (� = 2 ) binding regime for di�erent values of the condenser radiusRs. All

other parameters are the same as in Fig. 3.32 but with the spherical con�nement removed.

con�nement, while weak condensers cause a loss of connectivity except for larger condensers

where several bonds can be achieved simultaneously to "anchor" the condenser inside the

structure. If we take 
 for all connections in the system, we �nd minor di�erences from

the con�ned case implying that the global connectivity remains the same.

3.2.6 Implications for viral packing

By using molecular dynamics simulations of mixtures of explicit DNA and condensing

proteins we investigated the organization of material inside viral capsids. The approach we

presented enables us to expand on the e�ective model of core quasi-particles (adenosomes)

and show that we can explain some basic experimental features: the depletion layer near

the capsid surface and that core particles interact as e�ective quasi-particles.

The parameters used for the condenser and polymer model correspond to a simpli�ed

model applicable to adenoviruses if we take a DNA volume fraction of� p = 0:3 and
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condensing agent volume fraction of� s = 0:05 [97]. Density pro�les for Rs � 1 in the

strong binding regime (Fig. 3.22) follow the experimental pro�les showing a �at density

pro�le inside and a gradual decay of the probability for �nding condensers close to the

capsid surface � a depletion layer of particle density. The total density as it would be seen

in electron microscopy, would be a weighted sum of DNA and protein densities. The DNA

in this regime shows little layering (Fig. 3.21), as does the condenser density distribution

(Rs = 1 in Fig. 3.22), and has the same general pro�le seen in core protein density for

condensing particles in adenoviruses (Rs = 1 in Fig. 3.2) [97] and chromatin in SV40 [26].

The existence of surface layering is a well known feature of models with only spherical

particles [128] and only DNA polymers [67] and originates in the con�nement wall inducing

"ordering". This particle layering near the capsid surface is not necessarily seen only in

density, but also happens in the orientation of elongated condensing proteins near the

capsid walls as seen in coarse grained models of polyomavirus SV40 [26]. Thus, care

is needed when interpreting the origin of density �uctuations from electron microscopy

images, as their origin can come from any combination of the preceding e�ects.

Comparing the radial distribution functions obtained from simulations (Fig. 3.23) to

those obtained for condensing proteins in adenoviruses [97], we see we can reproduce two

basic behaviours. First, there exists a regime where condensing proteins do not interact

directly but through a DNA medium. If there was tethering between two condensing

particles, it would present as a high probability at �nding the two particles at some

mutual distance. No such evidence for tethering is seen. Combined with the density� (r )

depletion layer seen also in adenoviruses, it seems that our model can successfully cover

the basic internal structure in adenoviruses. This is in spite of the simplicity of our model,

and seems to be a feature of the crowded and con�ned environment. We can also compare

to the core organization of histone proteins inside SV40 viral capsids [26]. Histones can

be modelled as oblate particles which wind DNA aorund them [113], so our model would

constitute an oversimpli�cation. Yet, Cryo-EM of SV40 cores also indicates lack of ordered

core organization [109] which is also collaborated by SAXS studies corroborated with a

coarse grained model of histones in an e�ective medium of DNA con�ned in a viral capsid

with attractive interactions [26]. The coarse grained model by Saper et al. [26] treats

the SV40 capsid as being �lled with oblate ellipsoids with steric repulsion, non-speci�c

binding and tethered by a harmonic spring to simulate the backbone of DNA connecting

the histones. They �nd that the core structure exists in a disordered state with densities

that correspond to the experimental evidence. Although the basic geometry is di�erent

because of the shape of condensing particles, we can compare general trends for the density

as chromatin is estimated to have a binding energy of� 6 kB T [113]. Our density pro�les

in the strong binding regime forRs � 1 (Fig. 3.22) best approximate the density seen,

corresponding also to a model of oblate ellipsoidal particles with nonspeci�c long range

attraction, tethered with a harmonic spring approximating DNA. Alternate models used
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by Saper et al. [26] for a tighter/closer tethering have the same basic structure as we

see in the case of larger condensing particles. Although similarities are seen, our results

indicate that the addition of a polymer can provide di�erent explanations for the same

behaviour as does tethering combined with a di�erent particle shape. In the case of SV40

it is well known that chromatin does indeed wrap DNA around it, giving plausibility

for the tethering model. To consistently prove that tethering is not seenin vivo due to

crowding a more complex model for the condensing proteins is needed as is the inclusion

of possibly attractive interactions with the capsid [24, 26].

Removal of con�nement (Fig. 3.33a) for parameters close to those expected in aden-

oviruses has shown a relaxed but still compact structure. Although it was thought that

after opening of adenovirus capsids, the core resembles a �bre structure [118, 119], recent

experiments have shown that this is an artefact from sample preparation [121]. Cryo-EM

shows that most adenovirus cores after the removal of the capsids remain compact (Fig.

3.33b) [121], validating paralels between the model behaviour and adenoviruses. Similarly,

in SV40 it is known that the state of its minichromosome depends on the experimental

conditions [147] as the view that chromosomesin vivo exist as ordered structures is being

challenged [148, 149]. The �nding that cores remain compact is not surprising, but it is

interesting to study the degree of structural change.

The scarcity of experimental evidence on the packing of nucleic acids with condensing

proteins has motivated us to make direct comparisons with the only two systems with

direct experimental evidence of internal structures: adenovirus [97] and polyomavirus

[26, 104]. Papovaviruses from the family of polyomaviruses also have genomes condensed

with histones forming a minichromosome [104]. There is no evidence of order in the viral

core, even in the areas close to the inner capsid surface [150]. On the other side, BK virus

from the polyomavirus family shows a small degree of core ordering (shelling) near the

capsid walls [151], which could be caused by higher density, or a change of interactions as

supported by both our model (caused by crowding) and Saper et al. (caused by di�erent

interaction screening) [26]. There exist other possible candidates with core proteins that

could be capable of acting as condensers: baculovirus [100], mimivirus [102] and poxviruses

[103]. The same lack of capsid internal ordering is seen in the giant mimiviruses [102] and

the vaccinia poxvirus [152]. Vaccinia exhibits an increase in total density near the capsid

surface[152] � reminiscent of our increase in the probability for �nding larger condensers

at the con�nement surface in respect to the center. Clearly, there is ample opportunity

for testing of our results.

Obtained density pro�les of protein content inside viral capsids, and radial distribution

functions for these proteins, provide a picture of a disordered structure. Density pro�les

are able to explain the lack of symmetry and order seen in viral capsids of adenoviruses

[5, 97] and polyomaviruses [26, 151]. The correlations between condensing protein positions
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shows that DNA can be considered an e�ective medium, mediating condenser-condenser

interactions. We �nd no direct DNA tethering between condensers, the connections

between them being mostly random for smaller condensing particles, and directed for

larger condensers. The internal connectivity between condensers mediated by DNA is

found to be indirect and with no evidence of direct winding of large lengths of DNA.

For the polymer, the interior of the capsid is a crowded environment where the lack of

possible con�gurations promotes winding of DNA around condensers. Con�nement and

crowding seem to in�uence the way condensers with non-speci�c binding interact with the

polymer � we see that di�erent sizes of condensers promote linker molecules to approach

the behaviour expected from wrapping particles [122]. The resulting crowding facilitates

more direct contacts between the DNA polymer and the condensing particles. We conclude

that con�ned mixtures of DNA and condensing proteins are importantly in�uenced by

con�nement and crowding, and not only the exact interactions, which may, in certain

regimes, be secondary.
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Conclusions

By studying di�erent phases of pure DNA in its compacted form, we were able to

characterize the DNA condensed inside a cell and DNA con�ned inside viral capsids. The

state of con�ned DNA was studied in di�erent regimes which depend on the DNA sti�ness,

con�nement size and electrostatic screening. We showed how emptying of such a capsid

could proceed thus paving the ground for further understanding of the interplay of forces

during ejection of viral dsDNA from bacteriophages into cells. We examinedin vivo

ejection of non-condensed DNA from tailed bacteriophages into bacteria. The ejection

is dominantly governed by the physical conditions in the bacteria - the con�nement of

the DNA in the virus capsid only slightly helps the ejection. In spite of the assumptions

that passive ejection is not possible, we show that the mechanism of viral ejection from

dsDNA bacteriophages into Gram-positive bacteria could be explained as a competition

between the resisting turgor pressure of a cell and a free energy gain from condensation

of the ejected part of the DNA. The premise of condensed DNA in the cell enables us

to estimate the maximal bacterial turgor pressure against which the ejection can still be

fully realized. The thus calculated pressure (� 5 atm) shows that the ejection of DNA

into Gram-negative bacteria could proceed spontaneously, i.e. without the need to invoke

active mechanisms.

The packing mechanism for DNA in adenoviruses has long evaded a precise description

since the viral core, including DNA and proteins, lacks icosahedral order characteristic of

the virus protein coating (capsid). We analysed experimental cryo-EM images showing

an apparently random distribution of unknown core particles inside the adenovirus core.

These core particles, called "adenosomes", are identi�ed as complexes of core proteins which

condense parts of the genome. Our analysis of their positional relationships shows that

the core lacks symmetry and strict order, yet the distribution of the condensing proteins

is not entirely random. The features of the distribution can be explained by modelling

the condensing proteins and the part of the DNA each of them binds as very soft spheres,

interacting repulsively with each other and with the capsid. The DNA appears to act

only as an e�ective medium for the soft interadenosome interactions. A backbone of DNA
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linking the condensing proteins is not needed to explain the experimental results. We

conclude that although these condensing proteins are connected by DNA in disrupted

virion cores, thein vivo capsid is a crowded environment changing the e�ective interactions

involved in the packing of the DNA material.

Modelling of virion core structures was approached using Langevin dynamics simula-

tions which include both condensing proteins and an explicit DNA polymer inside spherical

con�nement. The DNA and polymer interact attractively via non-speci�c interactions.

We �nd there exists an optimal concentration of condensing particles which helps packag-

ing of the genome by reducing the interior pressure. Internal organization of condensing

particles shows that they tend to cover themselves with the DNA polymer which provides

an e�ective medium for interactions with other condensers, con�rming the applicability of

our e�ective model for core particle organization in adenoviruses. Crowding of the viral

interior and con�nement in�uences the conformation of the DNA and proteins, changing

how DNA interconnects the condensing proteins. It facilitates more direct contacts be-

tween the DNA polymer and the condensing particles. We �nd no direct DNA tethering

between condensers, the connections between them being mostly random for smaller con-

densing particles, and directed for larger condensers. The internal connectivity between

condensers mediated by DNA is found to be indirect and with no evidence of direct winding

of large lengths of DNA. Our model is able to explain the general internal organisation of

adenovirus cores, and provide insight into packing of genetic material in similar systems.

Outlook

Modelling mixtures of DNA and condensing proteins will become increasingly important

in the domain of virology as experimental techniques are starting to unravel even unordered

cores [26, 97, 153]. More complex systems can be studied within the same framework in

order to test how di�erent DNA condensing molecules (linkers, bridgers and wrappers)

[122] in�uence the internal organisation and viral capsid pressures. Full DNA and protein

models also enable comparing nano-indentation of viruses using atomic force microscopy

[135] and determining how the core proteins interact with the DNA and a�ect the internal

pressure [123] or in�uence capsid stability [154]. Studying the packing of DNA with

proteins inside viral capsids, might provide information on how cellular crowding, through

changing interactions [27], in�uences chromosomal packing [148, 149] or even protein

folding [27].
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1 Uvod

Pakiranje nano£estica, sinteti£kih polimera i genoma u ograni£eni prostor je od izrazi-

tog fundamentalnog i tehnolo²kog zna£aja. S jedne strane, to je prou£avanje interakcija

unutar makromolekularnog kompleksa s mnogim potpisima "ºivota" pa je stoga vaºno

za razumijevanje ºivotnih procesa [9]. S druge strane, virusi su evoluirani nano-strojevi

sa "svrhom" prolaska kroz stani£nu membranu radi dostavljanja svog "tereta", genoma

[6]. Bilo kakve izmjene tog tereta, kao ²to je kori²tenje dizajniranih makromolekula ili

nano£estica, nose sa sobom zna£ajan potencijal za primjene u osobnoj medicini (ciljano

dostavljanje lijekova ili genska terapija). Ipak, temeljno razumijevanje stanja DNK u

virusnom omota£u pri razli£itim gusto¢ama pakiranja, a samim time i �zike koja stoji

iza pakiranja virusnog genskog materijala i potonjeg procesa infekcije [9, 10], je nepot-

puno. Iako je problem pakiranja savitljivog ili polu-savitljivog polimera u ograni£ene

prostore dobro de�nirane geometrije (pukotine, ²upljine) bio intenzivno prou£avan [2], tro-

dimenzionalne ²upljine tek su nedavno postale predmetom istraºivanja [11]. U ovisnosti o

savitljivosti polimera, stupnju ograni£enja, gusto¢i i interakcijama (isklju£enog volumena)

o£ekuje se bogati fazni dijagram [12]. Za razumijevanje faznih stanja DNK i polimor�zma

njezinih konformacija u ograni£enom prostoru [10] potreban je pristup koji kombinira i

mežusobno povezuje razli£ite teorijske modele. ’to se ti£e izotropnog (neureženog) stanja

(pri malim gusto¢ama) dobro je poznat fazni prijelaz u teku¢i kristal. Do faznog prijelaza

dolazi zbog svojstvene anizotropije u isklju£enom volumenu dugih polimera [13].

Unato£ tome, rezultati eksperimenata ukazuju na neo£ekivane pojave u uzorcima

makroskopskih dimenzija ²to poti£e razvoj novih pristupa u modeliranju teku¢ih kristala

u ograni£enom prostoru [14]. Faza teku¢eg kristala pokriva otprilike tre¢inu dijagrama

gusto¢e [10, 12] te zavr²ava u gusto kondenziranoj fazi [16, 42]. Poznato je da formiranje

gustih faza DNK (kondenzirana DNK) ovisi o kombinaciji elektrostatskih i hidrofobnih

mežudjelovanja izmežu razli£itih dijelova negativno nabijene DNK "ki£me" i pozadine

jedno- i vi²e- valentnih protuiona [9]. U tom duhu, gusto pakirana DNK u virusima (npr.

bakteriofagima) je relativno jednostavan slu£aj prikladan za prou£avanje faza ograni£ene

DNK bez sloºenosti koju donosi stani£ni (in vivo) okoli².
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Jedno od glavnih otvorenih pitanja vezano uz pakiranje DNK u viruse odnosi se na

mehanizme njezinog oslobažanja u stanicu. Unato£ 50 godina istraºivanja, obja²njenje

svih relevantnih (termodinami£kih) sila koje vode izbacivanje dvostruke uzvojnice DNK iz

repatih bakteriofaga u bakterijsku stanicu, jo² uvijek nedostaje [18, 19]. Izbacivanje po£inje

kao oslobažanje DNK iz potpuno ispunjenog virusnog omota£a (proteinske presvlake

bakteriofaga). DNK je pakirana do ekstremnih gusto¢a te na omota£ vr²i pritisak od

25 � 100 atm [9, 20]. Modeli razvijeni i testirani in vitro (vidi [ 18] i reference unutar)

predvižaju da sile izbacivanja prouzro£ene £ak i takvim ekstremno gustim pakiranjem

nisu dovoljne za potpuni prijenos DNK u unutra²njost stanice. Iako stanice imaju manji

osmotski tlak od potpuno pakiranih bakteriofaga [21], sila izbacivanja (a time i tlak

u omota£u) brzo pada kako se omota£ prazni [22]. Nedavno provedeni Hershey-Chase

experiment na razini jedne molekule [23] nagovije²ta da izbacivanjein vivo nije kontrolirano

koli£inom DNK preostale u omota£u ve¢ koli£inom izba£enom u stanicu. To zna£i da nakon

²to se tlak nakupljen u bakteriofagu "potro²i" na izbacivanje DNK, proces preuzimaju

stani£ni mehanizmi. Predloºeni su razli£iti mehanizmi za zavr²etak izbacivanja, no £ini se

da ni jedan ne daje cjelokupnu sliku, dok eksperimenti nagovje²¢uju postojanje mno²tva

razli£itih mehanizama.

Postoje razlozi za vjerovati da su neki virusni proteini evolucijski prilagoženi za oma-

tanje nukleinskih kiselina [24], ²to bi moglo biti vaºno za pakiranje umjetnog tereta u

proteinski omota£ [25]. Dobar primjer su adenovirusi koji pakiraju (dvolan£anu) DNK

u virusni omota£ s DNK-veºu¢im proteinima, koji potencijalno pomaºu u neutralizaciji

naboja i kondenzaciji [5]. Ni za jedan od ovih proteina ne postoje strukturni podaci visoke

rezolucije, i to£na konformacija takve mje²avine polimera (DNK) i nano£estica (proteini)

jo² nije poznata. Po²to je DNK djelomi£no vezana na protein ili neutralizirana zbog pri-

sutnosti proteina, moºe se modelirati kao efektivni medij za DNK-veºu¢e proteine. Ovdje

pak efekti virusnog omota£a mogu prouzro£iti odreženi stupanj ureženja u raspodjeli

tih proteina. Sli£ni efekti su nedavno opaºeni u organizaciji kromatina u virusu SV40

gdje vezanje izmežu proteina i prostornog ograni£enja mijenja stanje spakiranog DNK

materijala [26].

Prenapu£eni okoli² polimera/polielektrolita i nano£estica takožer je zanimljiv s biolo²ke

to£ke gledi²ta jer se moºe povezati s prenapu£enom unutra²njosti stanice. Pokazano je

da prenapu£enost vodi na mnoge pojave kao ²to su renormalizacija golih interakcija i

anomalna difuzija [28]. Unato£ tome, to£na priroda ovog mehanizma kao i posljedice koje

bi mogla imati na na²e razumijevanje zbijanja DNK nisu poznati.
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2 Saºimanje DNK

DNK se smatra saºetom ako je njena prostorna proteºitost smanjena zbog vanjskog

utjecaja. U prirodnom stanju DNK, kao i svaki polimer, ima konformaciju nasumi£nog

²eta£a u prostoru. Tretiraju se dva najvaºnija mehanizma saºimanja DNA: a) kondenzacija

DNK u guste faze [16, 37, 42], b) trodimenzionalno prostorno zato£enje DNK u male

volumene [2, 11].

2.1 Kondenzirana DNK

U razriježenim otopinama, DNK-DNK interakcije su snaºno odbojne te je za konden-

zaciju DNK potreban jak poticaj. Poznato je da kondenzacija DNK moºe imati razli£ite

uzroke [39] te da se pri ekstremnim gusto¢ama kondenzacije manifestira u obliku heksa-

gonalne faze [40, 41]. Heksagonalne faze DNK mogu biti uzrokovane vi²evalentim ionima

poput kobalt heksamina (3+) [40], ili spojevima prisutnim in vivo poput polilizina [30] i

spermidina (3+) [29]. Alternativno, kondenzacija moºe biti uzrokovana vanjskim tlakom

nekog polimera, npr. polietilen glikola [40, 40]. Kondenzacija DNK demonstrirana je i

u kontroliranim biolo²kim uvjetima(vidi [ 42] i [41] te reference unutar). Kondenzirana

DNA u unutra²njosti stanice se smatra posljedicom prenapu£enog okruºenja s prisutnim

kondenziraju¢im proteinima [29, 30, 31, 32].

Koristimo kontinuumski model Ubbinka i Odijka [16, 42] kako bismo karakterizirali

kondenzirane faze DNK, posebice one koje nalazimo u stanicama, te ga kasnije primije-

njujemo za opis izbacivanja DNK iz bakteriofaga u stanicu. Ubbink i Odijk (UO) [16, 42]

model opisuje slobodnu energiju DNK kondenzata u gustoj heksagonalnoj fazi preko tro-

dimenzionalnog oblika kondenzata. Model tretira ukupnu energiju kondenzirane DNK

u tri dijela: a) energetski doprinos proporcionalan volumenu koji teºi kondenzaciji, b)

energetski doprinos proporcionalan povr²ini uslijed gubitka energetski povoljnih veza, te

c) elasti£ni doprinos od savijanja snopa DNK koji se odupiru formiranju kondenzata.

Elasti£ni doprinos ¢e teºiti ²irenju kondenzata u oblik torusa kako bi se snop DNK ²to

manje savijao, dok povr²inski doprinos teºi uru²avanju kondenzata u globulu (sferu). Nu-

meri£kom optimizacijom oblika DNK kondenzata u UO modelu istraºuju se mogu¢i oblici

kondenzata te kona£ne ovisnosti o koli£ini kondenzirane DNK u kondenzatu, kao i njenoj

stabilnosti pri malim duljinama kondenzirane DNK.

2.2 Faze zato£ene DNK

DNK koja je prostorno zato£ena unutar sfere pokazuje speci�£no pona²anje. U ovisnosti

o mežusobnom djelovanju duljine ustrajnostiLp, radijusa Rc sfernog zato£enja i ukupne

duljine DNK L o£ekujemo nekoliko reºima [12]. Pri velikim gusto¢ama DNK ulazi u
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gustu heksagonalnu fazu [40], a ispod tih gusto¢a njeno pona²anje ovisi o njenoj krutosti.

Kada je duljina ustrajnosti manja od radijusa zato£enja nalazimo se u �eksibilnom reºimu.

Pri malim koncentracijama DNK se pona²a kao �eksibilni polimer u polu-razriježenom

reºimu koji pri ve¢im koncentracijama prolazi kroz lokalno ureženje niti DNK u reºim

teku¢eg kristala. U �eksibilnom reºimu glavni doprinos dolazi od energije savijanja pri

malim koncentracijama, dok pri ve¢im koncentracijama nadvladava doprinos od interakcija

isklju£enog volumena. Te interakcije isklju£enog volumena uzrokuju lokalno ureženje u

teku¢i kristal [13, 51], prvo kroz nemati£ku, a zatim kolesteri£ku fazu [10]. Ukoliko je

radijus zato£enja manji od duljine ustrajnosti, DNK se nalazi u reºimu dominiranom

savijanjem (kruti polimer). Ovaj reºim je najmanje prou£avan budu¢i da je DNK u

�ziolo²kim uvjetima upravo iznad granice prijelaza u taj reºim [10, 65].

2.3 Savijanje zato£ene DNK

Slobodna energija zato£ene DNK opisuje se u dva reºima pomo¢u modela srednjeg

polja. Prvo, opisuje se energija savijanja DNK pri gusto¢ama kada DNK u potpunosti

ispunjava prostor te kada energija savijanja nije dominanti £lan u slobodnoj energiji. Cilj

je opis doprinosa savijanja za prijelaz u teku¢i kristal. Energija savijanja DNK opisuje se

preko lokalne zakrivljenosti u prostoru [3] za koju je pretpostavljena cilindri£na simetrija.

Svaka lokalna "¢elija" DNK, ovisno o globalnom parametru ureženja, ili slijedi cilindri£nu

simetriju ili biva neurežena. Rezultat je doprinos savijanju slobodne energije koji ovisi o

parametru ureženja koji se moºe dobiti iz teorije teku¢ih kristala.

U reºimu savijanja, kada je savijanje DNK dominantni doprinos slobodnoj energiji,

konstruira se efektivni model temeljen na de�niciji nove kvazi-£estice. Uslijed izraºene

kompeticije duljine ustrajnosti i radijusa zakrivljenosti, DNK je pritisnuta uz unutra²-

njost zato£enja te poprima oblik petlji [22, 55]. De�niranjem petlji kao kvazi-£estica za

pakiranje, konstruira se slobodna energija u ovisnosti o na£inu slaganja petlji. Navedeni

izrazi se poop¢uju tako da uklju£uju mežusobno presijecanje petlji kako bi mogli opisati

kontinuirani prijelaz iz ureženog u neureženo stanje, poput onog uo£enog u pakiranju

elasti£nih ºica u sfere [56, 58].

2.4 Zato£enje u izotropnom reºimu

Diskutira se reºim �eksibilnog polimera pri prelasku iz razriježenih u polu-razriježene

otopine, a netom prije prijelaza u teku¢i kristal. Prvo se ra£una isklju£eni volumen DNK

temeljem kutno ovisnog interakcijskog potencijala DNK prikazane preko nabijenih ²tapi¢a

[13, 14]. Radi izra£una interakcije koriste se eksperimentalno odreženi parametri inte-

rakcije [62] koji uzimaju u obzir elektrostatsko zasjenjenje kao i sloºenije pojave poput
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kondenzacije protuiona [63]. Dobiveni isklju£eni volumen omogu¢uje ra£unanje interak-

cije u izotropnom reºimu primjenom Flory relacije [2]. Dobivene interakcije isklju£enog

volumena se, uz prethodno dobivene izraze za energiju savijanja polimera, primjenjuju

u opisu slobodne energije prostorno zato£ene DNK. DNK lanac se renormalizira [61]

u efektivni polimer s dimenzijom monomera jednakoj Kuhnovoj duljini, tj. dvostrukoj

duljini ustrajnosti [2].

2.5 Faza teku¢eg kristala

Opisuje se prijelaz iz neureženog, izotropnog, reºima u stanje teku¢eg kristala nemati£-

kog ureženja [60]. Iako je poznato da je niz faznih prijelaza zato£ene DNK sli£an onome

makroskopskog sustava, to£an utjecaj energije savijanja na to£ku prijelaza nije poznat

[65]. U svrhu razja²njenja tog utjecaja, u Onsagerov model za teku¢i kristal [13, 14, 51]

se ugražuje energija savijanja ovisna o globalnom ureženju proiza²la iz prija²njih razma-

tranja. Uz pretpostavku da se prijelaz odvija direktno iz neureženog u nemati£ko stanje,

bez kolesteri£kog ureženja, minimizira se Onsagerova slobodna energija u prostornom za-

to£enju. Uspje²no se predviža to£ka prijelaza u teku¢i kristal na usporedivim gusto¢ama

pakiranja kao i u eksperimentima [10, 65].

Rezultati dobiveni Onsagerovim modelom stavljaju se u kontekst iznosa duljine us-

trajnosti DNK [ 45, 68] te osjetljivosti iste na promjene u temperaturi [71]. Navedeno

moºe objasniti nagle promjene reºima, iz �eksibilnog u reºim savijanja, koji su uo£ljivi u

eksperimentima [10]. Takožer, diskutira se £injenica da molekularno-dinami£ke simulacije

predvižaju prijelaz u teku¢i kristal na znatno ve¢im koncentracijama [72] od eksperimen-

talno izmjerenih [10].

2.6 Viralna ejekcija u bakteriju

Saznanja is prethodnih sekcija se primjenjuju na procesin vivo izbacivanja DNK iz

bakteriofaga s repovima u bakterije. DNK se tretira kao da se nalazi unutar dva vezana

spremnika s razli£itim pripadnim slobodnim energijama. Temeljna pretpostavka je da je

DNK u nekondenziranom stanju u kapsidi (prvi spremnik), a u kondenziranom stanju u

stanici (drugi spremnik).

Prenapu£ena sredina stanice teºi kondenziranju DNK [30, 37], ali i njenom izbacivanju

iz stanice [93]. Primjenom Ubbink-Odijk modela [16, 42] uz prora£un doprinosa konden-

zacije, saznajemo da se zbog kondenzacije DNK u stanici moºe poni²titi oko4 � 6 atm

stani£nog tlaka. Dodatne korekcije zbog to£nog oblika DNK kondenzata, koji ovisi o vrsti

bakteriofaga i duljini njegove DNK, mogu ne²to smanjiti taj tlak. S druge strane, DNK u

virusnoj kapsidi ima vi²e doprinosa koji teºe izbacivanju, no ti doprinosi teºe nuli kako se
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smanjuje koli£ina zato£ene DNK. Diskutiraju se utjecaji elektrostatskog odbijanja, ener-

gije savijanja i prostornog zato£enja DNK u rep bakteriofaga [94]. Uz pomo¢ termalnih

�uktuacija, pokazuje se kako doprinosi zato£enja u bakteriofagu mogu prema²iti jo² do 1

atm tlaka unutar stanica.

Tipi£ne Gram-pozitivne bakterije imaju unutra²nje tlakove stanica u rasponu0:1 � 5

atm, dok su Gram-negativne u rasponu 5-25 [21, 83, 84]. Stoga, zaklju£uje se da je

mehanizam izbacivanja viralne DNK iz bakteriofaga u Gram-pozitivne bakterije mogu¢e

objasniti primjenom termodinami£kih argumenata. Uobi£ajeni pristup koji priziva aktivne

mehanizme (stani£ne motore) ili druge doprinose izbacivanju [18] nije nuºan kako bi

objasnio in vivo ejekciju DNK.

3 Nukleinske kiseline i kondenziraju¢i proteini u
prostornom zato£enju

U ovom poglavlju prou£ava se, za viruse rijetki, mehanizam pakiranja nukleinskih

kiselina uz pomo¢ kondenziraju¢ih proteina. Poznato je da proteini koji se mogu na¢i

u jezgrama virusa mogu imati razli£ite uloge prilikom sastavljanja i sazrijevanja virusa

[5, 98, 99]. Neki virusi kao ²to su bakulovirus [100], adenovirus [101], mimivirus [102] i

poxvirus [103] u jezgrama sadrºe i proteine za koje je poznato da se veºu na DNK. Za

adenoviruse [5] i poliomavirus SV40 [26, 104] postoje direktni dokazi da ti kondenzacijski

proteini potpomaºu saºimanje DNK. Ove vrste virusa su takožer obiljeºene nedostatkom

ikozaedarske simetrije u svojim jezgrama koja se manifestira ravnim pro�lom gusto¢e

[5, 26, 105, 106, 109], u suprotnosti s drugim sli£nim vrstama virusa gdje se DNK pakira

u guste urežene slojeve [19, 107, 108]. Nepostojanje teorijskih modela koji opisuju nedos-

tatak ureženja i op¢enito pakiranje nukelinskih kiselina s kondenziraju¢im (vezuju¢im)

proteinima (bez kondenzacije) motivira daljnje prou£avanje.

3.1 Organizacija DNK i jezgrenih proteina u adenovirusima

Poznate su dvije temeljne teorije organizacije DNK u adenovirusima: jedna koja pret-

postavlja dobro de�niranu ikozaedarsku strukturu [114, 115, 116] te druga koja pretpos-

tavlja formiranje "narukvice" poput one u kromatinu [117, 118, 119]. No, kako ne postoje

dokazi ikozaedarske strukture, oba predloºena modela su upitna [5, 105, 106]. U svrhu

obja²njenja naizgled nasumi£ne raspodjele kondenziraju¢ih proteina u jezgrama adenovi-

rusa, vr²i se statisti£ka analiza eksperimentalnih podataka o ureženju nakupina jezgrenih

proteina (tzv. "adenosomi").
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Statisti£ka analiza poloºaja jezgrenih proteina

Poloºaji proteinskih £estica (adenosoma) dobiveni su iz Cryo-EM slika neo²tte¢enih

virusnih £estica [97]. Eksperimenti ukazuju na postojanje oko 200 adenosoma, u skladu s

drugim eksperimentima [118], za koje se pretpostavlja da veºu ili namataju adenovirusnu

DNK. Prostorna raspodjela adenosoma prati se pomo¢u raspodjele vjerojatnosti nalaºenja

prvih susjeda na nekoj uzajamnoj udaljenosti, vjerojatnosti nalaºenja drugog adenosoma

na nekoj radijalno simetri£noj udaljenosti te putem radijalno simetri£ne gusto¢e £estica.

Analiza pokazuje da iako su adenosomi neureženo posloºeni unutar kapside adenovirusa,

poloºaji i mežusobni odnosi adenovirusa nisu posljedica nasumi£nog pakiranja. Dodatno,

analiza ukazuje na dimenziju adenosoma koja je u skladu s o£ekivanom dimenzijom £estica

dobivenih u razorenim kapsidama adenovirusa [118]. Interakcija izmežu adenosoma je

izrazito mekana, bez indikacija £vrstog vezanja kakvog bi o£ekivali u kromatinskom modelu

s dobro de�niranim duljinama veza. U gusto¢i adenosoma je vidljiv osiroma²eni sloj uz

povr²inu kapside. Gusto¢a pakiranja adenosoma i DNK je izrazito velika, te upu¢uje na

prenapu£enost koja moºe utjecati na interakcije.

Modeliranje adenosoma

Kako bismo dodatno opisali unutra²njost adenovirusa, koristi se Langevinova dinamika

[129, 130]. Adenosomi se tretiraju kao efektivne £estice £ija je meka interakcija [131]

odrežena medijem DNK u kojem se nalaze. Time se prisustvo DNK tretira implicitno

kroz efektivne interakcije adenosoma. Usporedba efektivnog modela £estica te efektivnog

modela £estica adenosoma povezanih harmoni£kom oprugom (veza), ukazuje kako model

s dobro de�niranim vezama ne odgovara eksperimentalnim rezultatima u prou£avanim

statisti£kim indikatorima.

Organizacija jezgri kao mje²avine efektivnih £estica

Temeljem modeliranja, utvrženo je kako se adenosomi u kapsidi pona²aju kao efek-

tivne £estice (kvazi-£estice) bez mežusobnog vezanja. Prenapu£eno okruºenje DNK i

proteina modi�cira osnovne interakcije. Povezanost DNK i proteina, ukoliko postoji, se

moºe jedino manifestirati preko veza �eksibilnih ili slabo de�niranih duljina. Model nam

takožer omogu¢uje procjene donje granice unutarnjeg tlaka viralne kapside od oko0:1

atm, ²to je nekoliko redova veli£ina manje od tlaka izmjerenog kod gusto pakirane DNK

u bakteriofagima [9, 19, 134].

105



Pro²ireni saºetak

3.2 Mje²avine polimera i kondenziraju¢ih proteina u
prostornom zato£enju

Dosada²nji modeli saºete DNK i kondenziraju¢ih proteina bili su temeljeni na impli-

citnoj prisutnosti DNK putem stvaranja veza i modi�ciranja interakcija izmežu proteina

[26, 97]. Temeljem modela analognog sustava bez prostornog zato£enja [137], o£ekuje se

zanimljivi fazni dijagram. Stoga prou£avamo takve mje²avine u kontekstu pakiranja u

adenovirusima [97] i poliomavirusima [26], s ciljem boljeg razumijevanja procesa pakiranja

i unutarnje organizacije.

Simuliranje putem molekularne dinamike

Mje²avina polimera i sfera, koje predstavljaju kondenziraju¢e proteine, se modelira

putem Langevinove dinamike [129, 130]. Istovrsne £estice interagiraju putem odbojnih

mežudjelovanja, dok je interakcija kondenziraju¢ih proteina i polimera privla£na i nespeci-

�£na. Sve repulzivne interakcije su prikazane preko isklju£ivo odbojnog Lennard-Jonesovog

mežudjelovanja, dok je veza izmežu pojedinih kuglica ovisna o njihovoj mežusobnoj uda-

ljenosti [138] i lokalnoj savijenosti kako bi prikazivala krutost konture [76]. Navedena

mje²avina je zato£ena u sferu koja sa svim £esticama mežudjeluje odbojno.

Statisti£ki indikatori

U svrhu opisivanja unutarnje organizacije polimera i kondenziraju¢ih £estica (proteina)

koristimo dva indikatora unutarnje strukture te dva indikatora mežusobne povezanosti po-

limera i kondenziraju¢ih £estica. Kao indikatori unutarnje organizacije koriste se radijalno

simetri£na gusto¢a vjerojatnosti nalaºenja £estica� te radijalno simetri£na raspodjela vje-

rojatnosti nalaºenja £esticaR. Kao indikatore mežusobne povezanosti de�niramo faktor

omatanja w i faktor povezanosti
 . Faktor omatanja de�nira se kao najve¢a kontinuirana

duljina polimera koji je u direktnom kontaktu (vezi) s istom kondenziraju¢om £esticom.

Faktor povezanosti se de�nira kao najkra¢a udaljenost po konturi polimera koja pove-

zuje dvije vezuju¢e £estice podijeljena s njihovom prostornom udaljeno²¢u. Svi navedeni

indikatori se konstruiraju temeljem vi²e reprezentativnih kon�guracija sustava.

Tlakovi pri pakiranju

Unutra²nji tlak u kapsidama koristi se kao indikator stabilnosti virusa [140, 141, 142].

U tu svrhu diskutira se kako razli£iti parametri kondenziraju¢ih proteina i polimera utje£u

na tlak prije prou£avanja unutarnje organizacije. Prvo se prou£ava pona²anje tlaka u

slu£aju pakiranja samog polimera unutar zato£enja. Simulacije potvržuju postojanje dva

reºima u ovisnosti o krutosti polimera: pri malim krutostima, kad je duljina ustrajnosti
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manja od dimenzije sfernog zato£enja, polimer pokazuje skaliranja u skladu s teorijom

�eksibilnih polimera [2, 12]. U slu£aju kad je duljina ustrajnosti ve¢a od dimenzije sfernog

zato£enja, uo£ava se skaliranje dominirano duljinom ustrajnosti polimera, ali razli£ito od

onoga koje se dobiva u modelima srednjeg polja. U ovisnosti o koncentraciji, potvrženo

je postojanje polurazriježenog reºima za �eksibilne polimere [11] te Flory reºima za krute

polimere [2, 12].

Prisustvo kondenziraju¢ih proteina uz polimer utje£e na tlak. Ovisno o koncentraciji

polimera, postoji optimalna koncentracija kondenziraju¢ih proteina koja smanjuje tlak

u usporedbi sa zato£enim samim polimerom. Polimer s kondenziraju¢im proteinima

i dalje zadrºava osnovne reºime s obzirom na svoju duljinu ustrajnosti. Skaliranja s

koncentracijom i duljinom ustrajnosti ostaju ista kao i bez proteina, osim u slu£ajevima

kad je protein uspje²an u smanjenju ukupnog tlaka.

Unutarnja organizacija

Statisti£ki indikatori omogu¢uju uvid u unutarnju organizaciju te usporedbu s eksperi-

mentalnim rezultatima elektronske mikroskopije [97, 121] i raspr²enja X-zraka pri malim

kutevima [26]. Prou£ava se utjecaj snage vezanja proteina, duljine ustrajnosti polimera, di-

menzije zato£enja te veli£ine kondenziraju¢ih £estica na unutarnju organizaciju mje²avina

kondenziraju¢ih proteina i polimera. Naglasak je na prou£avanju dimenzija zato£enja koje

odgovaraju adenovirusima i poliomavirusima te duljini ustrajnosti koja odgovara DNK.

Nadalje se promatra utjecaj razli£itih koli£ina kondenziraju¢ih proteina te polimera

na mežusobne odnose kondenziraju¢ih proteina. Statisti£ki indikatori gusto¢e i radijalne

distribucije £estica ukazuju na postojanje reºima u kojem kondenziraju¢i proteini na sebe

omotaju razli£ite dijelove polimera te mežudjeluju indirektno � samo posredstvom svojih

polimerskih omota£a. Navedeno potvržuje kvazi£esti£nu sliku kori²tenu pri modeliranju

organizacije adenosoma u adenovirusima. Takožer, uo£ena je i pojava osiroma²enog sloja

£estica uz povr²inu sfernog zato£enja, sukladno analognoj situaciji kod adenovirusa.

Indikatori mežusobne povezanosti polimera i kondenziraju¢ih proteina, faktor omatanja

w i faktor povezanosti
 , pokazuju da su kondenziraju¢i proteini neizravno povezani putem

polimera. Ne postoji jasna kontura DNK koja ih naizmjence povezuje, kao kod kromatina u

slobodnom prostoru [113]. Polimer se omata na kondenziraju¢i protein, te faktor omatanja

prvenstveno ovisi o stupnju prenapu£enosti prostora.

Otvaranje kapsida

U svrhu prou£avanja kako prostorno zato£enje utje£e na pakiranje polimera i virusa,

usporežuju se statisti£ki indikatori mežusobne povezanosti sa i bez prostornog zato£enja.
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Naglasak je na kori²tenju parametara koji bi najbliºe odgovarali situaciji u adenovirusima.

Ukidanje zato£enja za jako vezuju¢e proteine pokazuje relaksirane, ali i dalje kompaktne,

strukture. Indikatori mežusobne povezanosti ukazuju da nedostatak zato£enja i pre-

napu£enosti, zna£ajno smanjuje indeks omatanja kondenziraju¢ih proteina s polimerom.

Postojanje kompaktnih struktura je sukladno s eksperimentima koji pokazuju kompaktne

jezgre adenovirusa nakon razbijanja kapsida uin vivo uvjetima [121].

Posljedice za pakiranje u virusima

Diskutiraju se rezultati prethodnih sekcija na unutarnju organizaciju virusa za koje

postoje eksperimentalni podaci: adenoviruse [97] i poliomaviruse [26, 104]. Zaklju£uje se

da je ovdje razvijeni model u stanju predvidjeti organizaciju jezgri tih virusa usprkos svojoj

jednostavnosti. Model uspje²no predviža oblik pro�la gusto¢e £estica bez ikozaedralne

simetrije te postojanje kvazi-£estica kondenziraju¢ih proteina. Nedostatak direktnog ve-

zanja izmežu proteina moºe upu¢ivati na promjenu na£ina kako kondenziraju¢i proteini

poput kromatina mežudjeluju s DNK u prenapu£enoj sredini. Prenapu£ena sredina poti£e

direktnije kontakte izmežu proteina i polimera te moºda moºe mijenjati prirodu vezanja

s nukleinskim kiselinama [122]. Postoji mogu¢nost primjene modela na druge, za sada

neistraºene, jezgre virusa: bakulovirus [100], mimivirus [102] i poxvirus [103].

4 Zaklju£ak

Prou£avaju¢i razli£ite faze saºete DNK karakterizirali smo kondenziranu DNK u ºivim

stanicama te prostorno zato£enu DNK u virusnim kapsidama. Diskutiran je utjecaj rigid-

nosti molekule DNK, veli£ine zato£enja te elektrostatskog zasjenjenja. Navedeni teorijski

formalizam je primijenjen na proces izbacivanja viralne DNK iz glave bakteriofaga u sta-

nicu. Usprkos uvrijeºenim pretpostavkama da proces izbacivanja virusne DNK zahtjeva

uklju£enje aktivnih stani£nih mehanizama, poput stani£nih motora, pokazali smo da je

za uspje²nu ejekciju u Gram pozitivne bakterije dovoljno primjeniti termodinami£ke argu-

mente. Obja²njenje je temeljeno na ravnoteºi potpomaºu¢eg utjecaja DNK kondenzirane

unutar stanice, zbog prostorne prenapu£enosti i kondenziraju¢ih proteina, te energetske

cijene zato£enja unutar malih virusa.

Iako je pakiranje DNK u prostornom zato£enju prou£avano, malo je poznato o tome

kako prisustvo kondenziraju¢ih proteina utje£e na organizaciju (strukturu) unutra²njosti

kapsida. Adenovirusi i poliomavirusi spadaju u kategoriju virusa u kojima posebni proteini

potpomaºu pakiranje DNK u kapside. Detalji mehanizma pakiranja su nepoznati, no

poznato je da pakirane sredice nemaju ikozaedralnu simetriju kao ²to je slu£aj s kapsidama

i mnogim drugim virusima te vrste. U svrhu boljeg razumijevanja pakiranja, analizirali

smo eksperimentalne podatke o poloºaju nakupina proteina i DNK (tzv. adenosomi)

108



Pro²ireni saºetak

u jezgrama adenovirusa. Iz statisti£ke analize mežusobnog odnosa poloºaja adenosoma

pokazali smo da su sredice virusa, iako naizgled nasumi£ne, posloºene po odreženom

obrascu. Svojstva statisti£kih raspodjela ukazuju na to da adenovirusi mežudjeluju putem

mekog potencijala uzrokovanog modi�kacijama DNK medija u kojem se nalaze. Ne

nalazimo dokaze o postojanju povezanosti izmežu parova adonosoma, poput one koju

bismo o£ekivali kod nukleosoma. Zaklju£ujemo da su rezultantne interakcije posljedica

toga da je unutra²njost kapside prenapu£ena sredina koja mijenja efektivne interakcije

izmežu £estica.

Dosada²nje modeliranje jezgri virusa, koje sadrºe nukleinske kiseline i kondenziraju¢e

proteine, bilo je temeljeno na modelima koji tretiraju prisustvo DNK implicitno kroz

mijenjanje interakcija i stvaranja veza izmežu proteina. Primjenom Langevinove dinamike

simulirali smo mje²avinu kondenziraju¢ih proteina koji se nespeci�£no veºu na polimer i

eksplicitnog polimera (DNK ili RNK) u sferi£nom prostornom zato£enju. Medij, uslijed

prostorne prenapu£enosti, mijenja efektivne interakcije. Posljedica je da zbog zato£enja

polimer teºi prekrivanju kondenziraju¢ih proteina. Pokazali smo da prisustvo polimera

stvara kvazi£estice poput adenosoma, potvržuju¢i valjanost efektivnog modela kojeg smo

primijenili na adenovirusima. Takožer, ne pronalazimo stvaranje dobro de�niranih veza

izmežu kondenzacijskih proteina. Veze izmežu proteina se pokazuju nasumi£nim i indi-

rektnim. Modelom moºemo uspje²no objasniti op¢enite trendove u pro�lima gusto¢e i

korelacije poloºaja jezgrinih proteina u adenovirusima te primijeniti principe na druge

vrste poput poliomavirusa.

Modeliranje mje²avina nukleinskih kiselina i kondenziraju¢ih proteina ¢e u budu¢nosti

imati sve ve¢u vaºnost kako se eksperimentalne tehnike budu pribliºavale direktnom opa-

ºanju neureženih sredica [26, 97, 153]. Razvijeni model moºe se primijeniti na testiranje

kako razli£ite vrste kondenziraju¢ih proteina [122] utje£u na unutarnju organizaciju i tlak

kapsida. Otvorena je i mogu¢nost simuliranja eksperimenata stiskanja kapsida mikro-

skopom atomskih sila [135] s ciljem utvrživanja odnosa proteina i nukleinskih kiselina

[123]. Ovakve studije omogu¢uju prou£avanje fenomena poput stani£ne prenapu£enosti te

utjecaja kojeg prenapu£ena sredina ima na pakiranje kromosoma [148, 149] ili savijanje

proteina [27].
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