Suć, Josipa

Doctoral thesis / Disertacija

2016

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Science / Sveučilište u Zagrebu, Prirodoslovno-matematički fakultet

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:217:472032

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-09-25

Repository / Repozitorij:

Repository of the Faculty of Science - University of Zagreb

University of Zagreb FACULTY OF SCIENCE

Josipa Suć

SYNTHESIS OF PEPTIDOMIMETICS COMPRISING HYDRAZINO - DERIVATIVES OF AMINO ACIDS

DOCTORAL THESIS

Zagreb, 2016.

Sveučilište u Zagrebu PRIRODOSLOVNO-MATEMATIČKI FAKULTET

Josipa Suć

HIDRAZINO - DERIVATI AMINOKISELINA U SINTEZI PEPTIDOMIMETIKA

DOKTORSKI RAD

Mentor: dr. sc. Ivanka Jerić

Zagreb, 2016.

University of Zagreb FACULTY OF SCIENCE

Josipa Suć

SYNTHESIS OF PEPTIDOMIMETICS COMPRISING HYDRAZINO - DERIVATIVES OF AMINO ACIDS

DOCTORAL THESIS

Supervisor: Ivanka Jerić, PhD

Zagreb, 2016.

Najveće hvala mojoj mentorici, dr. sc. Ivankį Jerić na odabranoj temi, njenom stručnom vodstvu, brojnim korisnim raspravama i savjetima, te podršci i pomoći koju mi je pružila tijekom izrade ove disertacije.

Zahvaljujem se svim članovima Laboratorija za biomimetičku kemiju, posebno Matiji, Lidiji, Kristini, Katarini i Danijelu na pruženoj nesebičnoj pomoći, savjetima i uvijek veseloj radnoj atmosferi. Također veliko hvala svim članovima Laboratorija za stereoselektivnu katalizu i biokatalizu na svim posuđenim kemikalijama, brojnim savjetima i pomoći.

Hvala svim članovima Laboratorija za biomolekularne interakcije i spektroskopiju, posebno dr. sc. Ivi Piantanidi i dr. sc. Lidiji-Mariji Tumir na pomoći za DNA ispitivanja i interpretaciju rezultata. Također, hvala dr. sc. Danijeli Barić za provedena računalna modeliranja dobivenih produkata i interpretaciju rezultata. Veliko hvala članovima Laboratorija za kemiju čvrstog stanja i kompleksnih spojeva, posebno dr. sc. Srećku Kirinu, dr. sc. Zoranu Kokanu i Ernestu Sandersu na pruženoj nesebičnoj pomoći u svim oblicima i korištenju mikrovalnog reaktora. Hvala svim članovima NMR centra na snimljenim NMR spektrima.

Od srca zahvaljujem svojim prijateljima Matiji, Lidiji, Kristini, Katarini, Danijelu, Mladeni, Lari, Andreji, Danielu, Kruni i Tihomiru na svim lijepim trenucima, iskrenom prijateljstvu i podršci.

I na kraju veliko hvala mojoj obitelji i Igoru na ljubavi, neizmjernom strpljenju i razumijevanju svih ovih godina.

Josipa

Sadržaj	
SAŽETAK	xiii
ABSTRACT	xv
1. UVODNI DIO	15
1.1. UVOD	16
1.2. CILJ RADA	
2. LITERATURNI PREGLED	21
2.1. PEPTIDOMIMETICI	22
2.1.1. Uvod	22
2.1.2. Dizajn peptidomimetika	24
2.2. α-HIDRAZINO-PEPTIDI	
2.3. PRIPRAVA PEPTIDOMIMETIKA	
2.3.1. Passerinijeva reakcija	39
2.3.2. Ugijeva reakcija	40
3. EKSPERIMENTALNI DIO	
3.1. METODE I MATERIJALI	44
3.2. PRIPRAVA OPTIČKI ČISTIH HIDRAZINO-DERIVATA α-AMINOKIS	SELINA 46
3.2.1. Priprava zaštićene N^{α} -Bn, N^{β} -Boc-L-hidrazino-kiseline (1)	46
3.2.2. Priprava N^{α} -Boc, N^{β} -Boc-L-hidrazino-kiselina (2)	51
3.2.3. Priprava N^{α} -Cbz, N^{β} -Boc-L-hidrazino-kiselina (3)	52
3.2.4. Priprava nezaštićene α-hidrazino-kiseline (4)	55
3.3. PRIPRAVA HIDRAZINO-PEPTIDOMIMETIKA POSTUPNOM SINTE	ZOM U
OTOPINI	58
3.3.1. Priprava dipeptida (5)	58
3.3.2. Priprava tripeptida (6)	63
3.3.3. Priprava N^{α} -Bn- N^{β} -Boc-L-Aaa-Gly-OH (7)	70
3.3.4. Priprava N^{α} -Bn-L-hLeu-OMe (8)	72
3.3.5. Priprava N^{α} -Bn- N^{β} -Boc-L-Leu-NH- N^{α} -Bn-Leu-OMe (9)	73
3.3.6. Priprava Boc-Lys(Boc)-Leu-OH (10)	74
3.3.7. Priprava Boc-Leu-Gly-OH (11)	75

3.3.8. Priprava Boc-Leu-Gly-Phe-OH (12)
3.3.9. Priprava Boc-Lys(Boc)-Leu-Leu-Gly-Phe-OH (13)77
3.3.10. Priprava Boc-Lys(Boc)-Leu-Leu-Gly-OH (14)
3.3.11. Priprava Boc-Lys(Boc)-Leu-Leu-Gly-AlaP-OMe (15)
3.3.12. Priprava Boc-Lys(Boc)-hLeu-OH (16)
3.3.13. Priprava Boc-Lys(Boc)-hLeu-Leu-OH (17)
3.3.14. Priprava Boc-Gly-AlaP-OMe (18)
3.3.15. Priprava Boc-Lys(Boc)-hLeu-Leu-Gly-AlaP-OMe (19)85
3.3.16. Priprava Boc-Lys(Boc)-hLeu-hLeu-OH (20)
3.3.17. Priprava Boc-Lys(Boc)-hLeu-hLeu-Gly-AlaP-OMe (21)
3.3.18. Priprema Boc-Leu-hLeu-OH (22)
3.3.19. Priprema Boc-Lys(Boc)-hLeu-Leu-hLeu-OH (23)91
3.3.20. Priprema Boc-Lys(Boc)-hLeu-Leu-hLeu-Gly-AlaP-OMe (24)
3.3.21. Ispitivanje interakcija hidrazino-peptidomimetika s DNA
3.4. PRIMJENA KIRALNIH HIDRAZINO-DERIVATA α-AMINOKISELINA U VIŠEKOMPONENTNIM REAKCIJAMA95
3.4.1. Priprava aminokiselinskih izocijanida (25)95
3.4.2. Primjena optički čistih α -hidrazino-kiselina u Passerinijevoj reakciji (26-53) 98
3.4.3. Priprava N^{α} -Boc, N^{β} -Boc-L-hidrazino-aldehida (54)
3.4.4. Priprava N^{α} -Cbz, N^{β} -Boc-L-hidrazino-aldehida (55)
3.4.5. Primjena optički čistih α -hidrazino-aldehida u Passerinijevoj reakciji (56-66) 131
4. REZULTATI I RASPRAVA
4.1. UVOD
4.2. PRIPRAVA OPTIČKI ČISTIH HIDRAZINO-DERIVATA α -AMINOKISELINA. 144
4.3. PRIPRAVA HIDRAZINO-PEPTIDOMIMETIKA POSTUPNOM SINTEZOM U OTOPINI
4.3.6. Ispitivanje interakcija hidrazino-peptidomimetika s nukleinskim kiselinama 153
4.4. PRIMJENA HIDRAZINO-DERIVATA α-AMINOKISELINA U VIŠEKOMPONENTNIM REAKCIJAMA158
4.4.1. Primjena α-hidrazino-kiselina u Passerinijevoj reakciji
4.4.2. α-hidrazino-aldehidi u Passerinijev reakciji

4.4.3. Primjena α -hidrazino-aldehida u Passerinijevoj reakciji	
5. ZAKLJUČAK	
6. POPIS OZNAKA, KRATICA I SIMBOLA	176
7. LITERATURNI IZVORI	
8. ŽIVOTOPIS	

Sveučilište u Zagrebu Prirodoslovno-matematički fakultet Kemijski odsjek

SAŽETAK

HIDRAZINO-DERIVATI AMINOKISELINA U SINTEZI PEPTIDOMIMETIKA

Josipa Suć Laboratorij za biomimetičku kemiju Institut Ruđer Bošković, Bijenička cesta 54, Zagreb, Hrvatska

Peptidi i proteini imaju ključnu ulogu u nizu bioloških i fizioloških procesa; međutim, njihova primjena kao terapeutika je ograničena slabom stabilnošću i biodostupnošću. Stoga je razvoj peptidomimetika, spojeva koji oponašaju strukturu i/ili funkciju proteina od velikog značaja za akademsku zajednicu i farmaceutsku industriju.

Cilj istraživanja predloženih u okviru doktorske disertacije je priprava peptidomimetika korištenjem hidrazino-derivata α -aminokiselina. Istraživanja će uključivati: razvoj metodologije za pripravu optički čistih hidrazino-derivata α -aminokiselina te razvoj metodologije za pripravu hidrazino-peptidomimetika postupnom sintezom u otopini i primjenom u višekomponentnim reakcijama.

Istraživanja bi trebala rezultirati optimiranim uvjetima priprave hidrazino-derivata α aminokiselina i hidrazino-peptidomimetika te potpuno novom skupinom peptidomimetika s ugrađenom hidrazino-jedinicom.

(191 stranica, 29 slika, 16 shema, 9 tablica, 133 literaturnih navoda, jezik izvornika: Hrvatski)

Rad je pohranjen u Središnjoj kemijskoj knjižnici, Horvatovac 102a, Zagreb i Nacionalnoj i sveučilišnoj knjižnici, Hrvatske bratske zajednice 4, Zagreb.

Ključne riječi: hidrazino-derivati α -aminokiselina / hidrazino-depsipeptidi / hidrazino-peptidomimetici / višekomponentne reakcije

Mentor: Dr. sc. Ivanka Jerić, viša zn. sur.

Rad prihvaćen: 15. lipnja 2016.

Ocjenitelji: Dr. sc. Ines Primožič, izv. prof. Dr. sc. Ivanka Jerić, viša zn. sur. Dr. sc. Zdenko Hameršak, zn. savj. Doktorska disertacija

Josipa Suć

University of Zagreb Faculty of Science Department of Chemistry

ABSTRACT

SYNTHESIS OF PEPTIDOMIMETICS COMPRISING HYDRAZINO DERIVATIVES OF AMINO ACIDS

Josipa Suć Division of biomimetic chemistry Ruđer Bošković Institute, Bijenička cesta 54, Zagreb, Croatia

Peptides and proteins have a crucial role in a number of biological and physiological processes; however, their use as therapeutics is limited by poor stability and bioavailability. Therefore, the development of peptidomimetics, compounds that mimic structure and/or function of proteins is of great importance for the academic community and the pharmaceutical industry. The objective of the research proposed in this doctoral thesis is the preparation of peptidomimetics using hydrazino derivatives of α -amino acids. Therefore, studies include: development of methodologies for the preparation of hydrazino derivatives of α -amino acids; development of methodology for the preparation of hydrazino peptidomimetics by stepwise synthesis in solution and by multicomponent reactions.

Expected results are: optimized conditions for the preparation of hydrazino derivatives of α amino acids and hydrazino peptidomimetics and a new class of peptidomimetics comprising hydrazino moiety.

(191 pages, 29 figures, 16 schemes, 9 tables, 133 references, original in Croatian)

Thesis deposited in Central Chemical Library, Horvatovac 102A, Zagreb, Croatia and National and University Library, Hrvatske bratske zajednice 4, Zagreb, Croatia.

Keywords: hydrazino derivatives of α -amino acids / hydrazino depsipeptides / hydrazino peptidomimetics / multicomponent reactions

Supervisor: Dr. Ivanka Jerić, Research Associate

Thesis accepted: June 15th, 2016

Reviewers: Dr. Ines Primožič, Associate Professor Dr. Ivanka Jerić, Senior Research Associate Dr. Zdenko Hameršak, Senior Research Associate **Doctoral Thesis**

xv

Doctoral Thesis

1. UVODNI DIO

1.1. UVOD

Peptidi i proteini su molekule koje karakterizira velika strukturna i funkcionalna raznovrsnost. Ta raznovrsnost je posljedica primarne strukture proteina; redoslijeda kojim je međusobno povezano svega 20 prirodnih aminokiselina. Međusobna ovisnost slijeda aminokiselina, strukture i biološke funkcije nije još uvijek u potpunosti razriješena. Strukturna složenost peptida i proteina raste od jednostavnih konformacija α -, β -, γ -okreta do paralelnih i antiparalelnih ploča i uzvojnica.^[1] Funkcije biološki aktivnih peptida su različite; nalazimo ih u skupini hormona, enzima, receptora, antitijela, toksina. Premda je biološki značaj proteina i peptida neupitan, tek u posljednje vrijeme dolaze u fokus medicinske kemije i farmaceutske industrije. Naime, slaba enzimska stabilnost i otežan transport kroz membrane zahtijevaju modifikacije peptida i proteina u cilju optimiranja strukturnih i funkcionalnih svojstava.^[2]

Jedan od načina optimiranja svojstava peptida je zamjena prirodnih aminokiselina neprirodnim derivatima, u cilju povećanja enzimske stabilnosti i/ili stabilizacije određene biološki relevantne konformacije. Tako produljenje peptidne okosnice ugradnjom β -, γ - ili δ aminokiselina generira peptidomimetike novih konformacijskih značajki. Zamjenom pojedinih ugljikovih atoma u takvim produljenim aminokiselinama heteroatomom, dobivaju se derivati koji svojim proton-donorskim ili proton-akceptorskim svojstvima mogu dodatno utjecati na strukturu peptida u koji su ugrađeni. Tako ugradnja α -hidrazino-kiselina u peptidni slijed uzrokuje nastajanje karakteristične konformacije osmeročlanog prstena stabiliziranog vodikovim vezama, poznatog kao hidrazino-okret.^[3] Međutim, ovisno o peptidu, mogu se stabilizirati i druge konformacije, pa hidrazino-peptidomimetici predstavljaju atraktivne strukture u razvoju molekula pogodnih za interakciju s različitim biološkim metama.

Kako bi se postigao visoki stupanj strukturne raznovrsnosti potrebno je imati "gradivne elemente" s različitim funkcionalnim skupinama koje mogu kemijskom reakcijom dati raznovrsne strukturne okosnice. Korištenje višekomponentih reakcija predstavlja primjer visoko učinkovitog pristupa sintezi peptidomimetika, gdje se korištenjem strukturno jednostavnih početnih spojeva u jednom reakcijskom stupnju mogu dobiti raznovrsni produkti visokog stupnja složenosti. Stoga je od velike važnosti priprava novih gradivnih elemenata koji u višekomponentnim reakcijama mogu dati još neopisane strukture pogodne za istraživanje bioloških meta. Probir biblioteka malih molekula je najdostupniji i najjednostavniji način traženja biološki aktivnih molekula. Većina biblioteka malih molekula predstavljaju skupinu velikog broja strukturno sličnih molekula. Smatra se da je strukturna raznolikost spojeva ključni čimbenik koji povećava mogućnost pronalaska biološki aktivnog spoja u biblioteci.

1.2. CILJ RADA

Modifikacija prirodnih aminokiselina i njihova zamjena neprirodnim analozima utječe na stabilnost, konformaciju i funkciju spojeva u koje su ugrađene. α -Hidrazino-kiseline predstavljaju strukturni element koji produljuje peptidnu okosnicu i stabilizira konformaciju okreta nizom intramolekulskih vodikovih veza. α -Hidrazino-peptidomimetici pokazuju značajnu biološku aktivnost, kao što je inhibicija proteaza, vezanje na nukleinske kiseline i antitumorska aktivnost.^[4] Zbog takvih izvanrednih svojstava važno je pronaći metodologiju za brzu i jednostavnu pripravu ovakvih konformacijski definiranih struktura. Šira primjena hidrazino-peptidomimetika ograničena je pripravom optički čistih α -hidrazino-kiselina i njihovom ugradnjom u peptidni lanac.

Cilj istraživanja predloženih u okviru ove doktorske disertacije je priprava peptidomimetika korištenjem hidrazino-derivata α -aminokiselina. Provedena istraživanja uključuju:

- 1. optimizaciju metodologije za pripravu optički čistih hidrazino-derivata α aminokiselina,
- 2. razvoj metodologije za pripravu hidrazino-peptidomimetika postupnom sintezom u otopini,
- 3. razvoj metodologije za pripravu hidrazino-peptidomimetika višekomponentnim reakcijama.

Sintezi optički čistih zaštićenih α -hidrazino-kiselina pristupilo se optimiranjem literaturno poznatih metoda i naknadno njihovim korištenjem u pripravi hidrazino-peptidomimetika sintezom u otopini. Ispitan je utjecaj kondenzacijskih reagensa i zaštitnih skupina na iskorištenja reakcija priprave di- i tripeptida (*Slika 1.*).

Slika 1. Priprava peptidomimetika s N^{α} -Bn-L-hidrazino-derivatima

Također, provedena je priprava peptidomimetika s uzastopnom i naizmjeničnom raspodjelom nezaštićene α -hidrazino-kiseline (*hAaa*) sa ciljem proučavanja utjecaja i rasporeda intramolekulskih vodikovih veza na formiranje sekundarne strukture hidrazino-peptida (*Slika 2.*).

Slika 2. Priprava peptidomimetika s uzastopnom i naizmjeničnom raspodjelom nezaštićene αhidrazino-kiseline

Uvođenjem hidrazino-derivata α -aminokiselina u peptidni slijed formira se konformacijski otklon, poznat kao hidrazino-okret. Tako nastaje cilindrični oblik peptidne okosnice pogodan za vezanje u mali utor DNA ili veliki utor RNA. Pripravljena je serija hidrazino-peptidomimetika koji na N-kraju sadrže lizin, koji doprinosi vezanju na DNA/RNA kroz elektrostatske interakcije, a na C-kraju fenantridinil-L-alanin (*AlaP*), u svrhu lakšeg praćenja vezanja na nukleinske kiseline. Nakon sinteze provedena su ispitivanja interakcije dobivenih peptidmimetika s nukleinskim kiselinama nizom spektroskopskih metoda.

Slika 3. A) Serija peptidomimetika s uzastopnom i naizmjeničnom raspodjelom nezaštićene hidrazino-kiseline (hAaa), B) neprirodna aminokiselina, fenantridinil-L-alanin (AlaP)

Premda se višekomponentne reakcije često koriste u sintezi peptidomimetika, hidrazino-derivati α -aminokiselina do sada nisu korišteni u takvim reakcijama. U okviru ove disertacije odabrana je Passerinijeva reakcija koja uključuje kondenzaciju tri komponente: karbonilnog spoja, karboksilne kiseline i izocijanida čime nastaju depsipeptidi. Provedene su Passerinijeve reakcije koje uključuju različite α -hidrazino-kiseline (alifatske i aromatske), različite komercijalno dostupne aldehide i ketone (alifatske i aromatske) te različite aminokiselinske izocijanide (alifatske i aromatske). Nadalje, provedena je redukcija spomenutih α -hidrazino-kiselina u aldehide i njihovo uvođenje kao okso-komponente u Passerinijeve reakcije (*Slika 4.*).

Slika 4. Mogući načini primjene hidrazino-derivata α-aminokiselina u MCRs

Rezultati istraživanja u okviru ove doktorske disertacije značajno su unaprijedili postojeća znanja u području peptidomimetika; prvenstveno znanja o reaktivnosti hidrazinoderivata α -aminokiselina. Također, provođenjem višekomponentnih reakcija dobivene su nove, do sada neopisane strukture pogodne za probir aktivnih spojeva.

20

2. LITERATURNI PREGLED

2.1. PEPTIDOMIMETICI

2.1.1. Uvod

Danas je poznato više od 7000 prirodnih peptida koji imaju često ključnu ulogu u fiziologiji čovjeka (hormoni, neurotransmiteri, čimbenici rasta ili ligandi ionskih kanala).^[4] Između ostalog peptidi se mogu ponašati kao selektivne i djelotvorne signalne molekule koje se vežu na specifične receptore na površini stanice, kao što su G-protein vezani receptori (engl. *G-protein coupled receptors*, GPCR) ili na ionske kanale, gdje aktiviraju međustanične procese.^[5] Vrlo su važni i neuroaktivni peptidi koji su uključeni u kontrolu metabolizma.^[6] Antimikrobni peptidi i proteini predstavljaju jedan od najprimitivnijih elemenata imunološkog sustava koji djeluje protiv patogena. Veliki broj antimikrobnih peptida pokazuje obećavajući potencijal kao lijekovi, međutim samo nekoliko ih je dospjelo u klinička ispitivanja. Među njima je derivat laktoferina koji je vrlo učinkovit protiv multirezistentne *S. aureus* (MRSA) te je trenutno u završnim kliničkim ispitivanjima za tretiranje uobičajenih bolničkih infekcija.^[7] S druge strane, životinjski otrovi predstavljaju bogatu biblioteku bioaktivnih peptida i proteina s dokazanim potencijalom, ne samo za istraživačke svrhe nego i kao terapeutici. To je najbolje prikazano u slučaju morskog puža (Conus) čiji se otrovi sastoje od smjese nekoliko stotina peptida (konotoksina) s raznolikim molekulskim meta.^[8]

Iako prirodni peptidi osiguravaju visoku razinu biološke raznolikosti, raznovrsne biološke aktivnosti, specifičnosti i niske toksičnosti kod terapeutske primjene, nedostatak im je slaba bioraspoloživost, niska stabilnost zbog brze razgradnje proteazama, otežani prolaz kroz stanične membrane te brzo izlučivanje putem jetre ili bubrega.^[9] Velika fleksibilnost omogućuje im interakciju s različitim receptorima što često dovodi do neželjenih nuspojava. Osim toga, problem je dugo predstavljala i njihova složena priprema, koja je najčešće uključivala više sintetskih koraka.^[10]

Tijekom proteklog desetljeća, peptidi nalaze sve širu primjenu u medicini i biotehnologiji, a istraživanja peptida kao terapeutika trenutno doživljavaju renesansu. Potreba za modificiranim peptidima s poboljšanom stabilnošću i farmakokinetičkim svojstavima pokreće velika istraživanja u ovom području.^[11] Peptidni terapeutici postaju sve značajniji

tijekom posljednjih nekoliko desetljeća. Porast broja identificiranih terapeutskih meta i znatno unaprijeđenih sustava isporuke omogućilo je rast peptidnih terapeutika gotovo dva puta brže od cjelokupnog farmaceutskog tržišta. Na tržištu do sada postoji 67 peptidnih terapeutika, 150 u kliničkim ispitivanjima i više od 400 u naprednim predkliničkim ispitivanjima.^[1]

Kombinacija dizajna i molekulskog modeliranja dovele su do niza strukturnih modifikacija peptida i razvoja potpuno novih sintetskih pristupa. Poznato je da kemijske modifikacije peptidne okosnice omogućuju dobivanje biološki aktivnih spojeva.^[12] Peptidomimetici se mogu dobiti modifikacijom peptidne okosnice prirodnih α -peptida, a uključuju uvođenje neprirodnih aminokiselina u peptidnu okosnicu ili zamjenu peptidne veze izosterima.^[13] Neprirodne aminokiseline mogu se dobiti modifikacijama prirodnih aminokiselina, kao što su: alkilacije amino-skupine, supstitucije bočnog lanca, strukturno proširenje okosnice, ciklizacije i zamjena terminalnih funkcionalnih skupina drugim skupinama koje daju izosterne zamjene amidne veze. Tako nastaju konformacijski ukočene strukture koje umanjuju višestruko vezanje na receptore te povećavaju aktivnost na željenom receptoru, pokazuju bolji transport kroz stanične membrane zbog dodatnih hidrofobnih dijelova u strukturi i/ili zamjene amidne veze te bolju stabilnost prema proteazama.^{[14],[15]} Upravo zbog toga su vrlo važni u istraživanjima novih lijekova.^[16] Pronalaze primjenu u različitim poljima uključujući medicinu,^{[17],[18]} katalizu,^[19] materijale^[20] i nanotehnologiju.^[21] Primjeri biološki aktivnih peptidomimetika uključuju one koji inhibiraju interakciju između p53 i hDM2 proteina, iniciraju apoptozu tumorskih stanica i opstanak bjelančevina članova Bcl-2 skupine proteina te omogućuju obavijanje HIV viriona i stanice domaćina.^[22]

Protutumorski peptidomimetici vežu se specifično na proteine u tumorskim stanicama koji su odgovorni za pokretanje njihove apoptoze. Selektivno uništavaju tumorske stanice, tzv. ciljanom kemoterapijom, uzrokujući programiranu smrt stanice ili apoptozu.^[23] Walensky i suradnici pripravili su 2004. godine stabilizirani α-uzvojiti peptid koji oponaša BH3 proteine odgovorne za apoptozu. Molekula je dizajnirana sa ciljem stabilizacije prirodne uzvojite strukture formiranjem makrocikla između bočnih lanaca koji nisu uključeni u vezanje. Ovakav proces je poznat kao peptidna spajalica i uključuje neprirodne aminokiseline koje omogućuju makrociklizaciju. Važnost ove molekule je da potiskuje razvoj leukemije kod čovjeka.^[24] Također 2004. godine Harran i suradnici su pripremili malu dimernu molekulu koja oponaša protein Smac (engl. mitochondrial regulation in apoptosis, Smac) odgovoran za apoptozu. Takva molekula oponaša N-terminus linearnog peptida Ala-Val-Pro-Ile.

23

Specifičnost ove dimerne molekule je povećana aktivnost u odnosu na odgovarajući monomer te može senzibilizirati niz tumorskih stanica pluća u odnosu na poznate kemoterapeutike (Gemcitabin, Vinorelbin).^[25]

2.1.2. Dizajn peptidomimetika

S obzirom na važnost peptidomimetika u razvoju novih terapeutika i biomedicinskim istraživanjima, razvijen je niz metodologija i strategija za transformaciju peptidnih struktura u peptidomimetike poboljšanih svojstava. Taj proces obično počinje identifikacijom minimalnog aktivnog peptidnog slijeda ili farmakofora odgovornih za biološku aktivnost.^[26] Nakon toga slijedi uvođenje konformacijskih ograničenja, gdje se usporedbom strukture i aktivnosti dobivenih derivata (engl. structure-activity relationship, SAR) definira 3D struktura peptidomimetika pogodna za daljnje modifikacije.^[27] Aminokiseline koje podliježu izomerizaciji, glikolizaciji ili oksidaciji, predstavljaju dobre kandidate za supstituciju kemijski manje reaktivnim analozima.^[28] Također, potrebno je prepoznati aminokiselinske slijedove podložne proteolitičkom cijepanju, koji se mogu zamijeniti neprirodnim aminokiselinama ili drugim strukturnim elementima.^[29] U konačnici, fizikalno-kemijske osobine peptida mogu se značajno poboljšati uvođenjem elemenata koji stabiliziraju bioaktivnu konformaciju; αuzvoinicu ili različite konformacije okreta.^[30] Naiznačajnije modifikacije prirodnih peptida uključuju: uvođenje neprirodnih aminokiselina, promjenu kiralnosti uvođenjem Daminokiselina, supstituciju funkcionalnih skupina u bočnim lancima, uvođenje skupina na amino- ili karboksilni kraj te ciklizaciju peptida (Slika 5.).

Slika 5. Modifikacije peptida

Za prijenos peptidomimetika u organizmu potrebna je topljivost u vodi, što je u izravnoj vezi s njegovom polarnošću. Supstitucija funkcionalnih skupina u bočnim lancima ili zamjena osnovne neprirodnom aminokiselinom utječe na lipofilnost peptida. Mala stabilnost peptida koja je rezultat djelovanja proteaza može se poboljšati zaštitom terminalnih amino- i karboksilnih skupina, modifikacijom određenih peptidnih veza ili uvođenjem D-aminokiselina. Uvođenjem strukturnih elemenata koji mogu ograničiti fleksibilnost peptida doprinosi povećanoj aktivnosti i selektivnosti za određeni receptor.

Najjednostavniji način uvođenja konformacijske ukočenosti u peptidni slijed je ciklizacija peptida. Takvi peptidi pokazuju puno veću stabilnost od svojih linearnih analoga.^[31] Cikličke strukture mogu nastati povezivanjem N i C krajeva linearnih peptida, povezivanjem N ili C kraja peptida s bočnim lancem, povezivanjem bočnih lanaca peptida i/ili povezivanjem stabilnih prirodnih ili neprirodnih aminokiselina (*Slika 6.*).^[32] Ciklizacija se povoljno odražava na metaboličku stabilnost, smanjuje stupanj slobode i makrociklička molekula poprima konformacijski ukočenu strukturu kojom se minimizira vezanje na neželjene receptore istovremeno povećavajući afinitet za ciljani receptor.

Slika 6. Klase cikličkih peptida: 1) A) glava-rep, B) bočni lanac-bočni lanac, C) bočni lanacglava, D) bočni lanac-rep

Neprirodne aminokiseline mogu se dobiti modifikacijama prirodnih aminokiselina, kao što su: alkilacije amino-skupine, supstitucije bočnog lanca, strukturno proširenje okosnice, ciklizacije i zamjena terminalnih funkcionalnih skupina drugim skupinama koje daju izosterne zamjene amidne veze (*Slika 7.*).^[33] *N*-Alkilacija, npr. *N*-metiliranje predstavlja vrlo važnu modifikaciju peptidne veze i utječe na konformacijsku pokretljivost peptidne okosnice. Sterička ograničenja uvedenih *N*-alkilnih skupina također utječu i na pokretljivost bočnih lanaca susjednih aminokiselina. Osim toga, uklanjanje amino-skupina peptidne okosnice utječe na smanjenje broja inter- i intramolekulskih vodikovih veza što u konačnici dovodi do destabilizacije konformacija α -uzvojnice i β -ploče. Dodatno uvođenje karbonilnih skupina uzrokuje povećanje bazičnosti i smanjenje polarnosti.

Modifikacije aminokiselinske okosnice mogu se kategorizirati kao što slijedi:^[34]

- 1. zamjena amino-skupine
- 2. zamjena α-CH
- 3. produljenje okosnice s jednim ili više atoma
- 4. modifikacije karboksilne skupine

Slika 7. Modifikacije peptidne okosnice

2.1.2.1. Izosterna zamjena amino-skupine

Zamjena amino-skupine izosternim atomom (kisik ili sumpor) ima značajan utjecaj na formiranje vodikovih veza i time na sekundarnu strukturu peptidomimetika. Izosterna zamjena barem jedne amino-skupine peptidnog lanca atomom kisika dovodi do formiranja depsipeptida (*Slika 8.*). Eliminacija amino-skupine rezultira smanjenjem vodikovih veza odgovornih za nastajanje sekundarnih struktura ili slaganja peptida.^[35] Zbog smanjene rezonantne delokalizacije naboja, depsipeptidi imaju niže rotacijske barijere za *cis-trans* izomerizacije od svojih izvornih analoga i stoga fleksibilniju strukturu.^[36]

Slika 8. Izosterna zamjena amino-skupine

Prirodni depsipeptidi, posebno ciklički derivati, izolirani su iz velikog broja mikroorganizama kao što su gljive, bakterije, morski organizmi te pokazuju široki spektar biološke aktivnosti uključujući antimikrobnu, antifungalnu, protuupalnu, antitutumorsku i anti-HIV aktivnost.

§ 2. Literaturni pregled

Valinomicin (*Slika 9, A*)) je prirodni dodekadepsipeptid izoliran iz stanica bakterija *Streptomyces* i spada u skupinu prirodnih neutralnih ionofora. Građen je od enantiomera D- i L-valina, D-alfa-hidroksiizovalerijanske kiseline i L-mliječne kiseline međusobno povezane amidnim i esterskim mostovima. Pokazuje veliku selektivnost prema kalijevim ionima unutar stanične membrane te olakšava prijenos kalijevih iona kroz lipidne membrane.^[37] Nonaktin također posjeduje svojstva ionofora i pokazuje selektivnost prema amonijevim ionima (*Slika 9, B*)).^[38]

Slika 9. Depsipeptidni ionofori; A) Valinomicin, B) Nonaktin

Otkrićem velike skupine depsipeptida, razvijeno je mnogo metoda za formiranje esterske veze. Metode priprave depsipeptida zahtjevaju aktivaciju karboksilnih kiselina te naknadnu reakciju s α -hidroksi-kiselinama. Najefikasnija metoda priprave depsipeptida uključuje korištenje Yamaguchijevih reakcijskih uvjeta; aktivacijom karboksilne kiseline 2,4,6-triklorbenzoil-klorid reagensom (*Slika 10.*).^[39]

Slika 10. Priprava depsipeptida korištenjem Yamaguchijevih reakcijskih uvjeta

Zamjena amidnog dušika peptidne veze atomom sumpora generira novu skupinu peptidomimetika poznatu kao tiodepsipeptidi *(Slika 8.)*.^[40] Ova zamjena uzrokuje različita elektrostatska svojstva i nove sekundarne konformacije peptidomimetika, što u konačnici rezultira poboljšanim farmakokinetičkim svojstvima.^[41]

Makrociklički tiodepsipeptidi izolirani su iz prirodnih izvora te imaju značajnu primjenu u medicini. Tiokoralin je makrociklički antitumorski antibiotik izoliran iz *Micromonospora sp.* i *Verrucosispora sp.* (*Slika 11, A*)).

Slika 11. Tiopeptidni antibiotici; A) Tiokoralin, B) Noziheptid

Noziheptid također spada u skupinu makrocikličkih tiopeptidnih antibiotika, a prvotno je izoliran iz *Streptomyces actuous*. Iako totalna sinteza ovog spoja još nije provedena, Kimber i Moody su razvili pripravu "južnog dijela" makrocikličkog prstena prikazanog plavom bojom na *slici 11. B*).^[43] Prvi sintetski tiokoralin pripremljen je u grupi Bogera i suradnika. Priprema uključuje tiolnu esterifikaciju tripeptida korištenjem zaštićenog derivata D-cisteina (*Slika 12.*).^[42]

Slika 12. Metoda priprave tiodepsipeptida

2.1.2.2. Zamjena C^{α} atoma

Mnogi peptidomimetici nastali su kao rezultat modifikacija na kiralnom C^{α} atomu aminokiseline, što uključuje inverziju konfiguracije, zamjenu H^{α} atoma alkilom ili nekom drugom skupinom te zamjenu C^{α} atoma heteroatomom (najčešće dušikom). Zamjena C^{α} atoma aminokiseline atomom dušika generira novu skupinu spojeva poznatu kao azapeptidi *(Slika 13. A))*. Takva zamjena C^{α}-C(O) veze podložne rotaciji s krutom skupinom uree N^{α}-C(O) uzrokuje značajne promjene kemijskih i bioloških svojstava peptida.^[44] Osim toga, gubi se kiralnost na α -položaju.^[45] Budući su azapeptidi otporniji na enzimsku hidrolizu, predstavljaju vrlo atraktivne spojeve u dizajnu novih lijekova.^[46]

Slika 13. A) Struktura azapeptida, B) Atazanavir-antiretrovirusni terapeutik

Azapeptidi se koriste kao inhibitori proteaze serina i cisteina, proteaze humanog neutrofila, virusa hepatitisa A i hepaptitisa C te proteaze HIV-a.^[47] Atazanavir (Reyatazt), FDA-odobreni antiretrovirusni terapeutik spada u vrlo aktivne azapeptide (*Slika 13. B*)). Ronco i suradnici su proveli prvu pripravu azapeptida iz etil-karbazata.^[48] Metoda uključuje

tri reakcijska koraka: (i) zaštitu amino-skupine karbazata aldehidom, (ii) N^{α} -alkilaciju, (iii) eliminaciju aldehida pri čemu nastaje N^{α} -supstituirani etil-karbazat (*Slika 14.*).

Slika 14. Priprava N^{α}-supstituiranih etil-karbazata

2.1.2.3. Produljenje peptidne okosnice

Umetanje dodatnih atoma između karboksilne i amino-skupine aminokiselina predstavlja korisnu strategiju za dobivanje novih peptidnih oligomera. Na taj način umetanjem atoma ugljika nastaju β -aminokiseline, a umetanjem atoma kisika ili dušika nastaju aminoksi- i hidrazino-peptidi (*Slika 15.*).^[49]

Slika 15. Peptidomimetici nastali produljenjem peptidne okosnice umetanjem heteroatoma

Peptidi građeni od α -aminoksi-kiselina postaju zanimljivi kao novi foldameri zbog novih konformacija i zanimljive biološke aktivnosti.^{[50],[51]} Također, imaju veću sklonost formiranja stabilnih peptidnih struktura u odnosu na njihove prirodne analoge kao rezultat odbijanja između slobodnog elektronskog para dušika i kisika, što olakšava formiranje jakih intramolekulskih vodikovih veza između susjednih ostataka.^[52] α -Hidrazino-kiseline možemo promatrati i kao aza-analoge β -aminokiselina s hidrazino-jedinicom u kojoj je C^{β} atom zamijenjen dušikom.

Motiv α -hidrazino-kiselina nađen je u nekoliko prirodnih spojeva kao što su antibiotik negamicin i antagonist vitamina B6 linatin (*Slika 16. A i B*).^[53]

Doktorska disertacija

31

Slika 16. Prirodne strukture koje sadrže N-N-C-C=O fragment A) negamicin, B) linatin i C) piperazinska kiselina

Motiv piperazinske kiseline, heksahidropiridazin-3-karboksilna kiselina (*Slika 16. C*), pronađen je u nizu strukturno složenih sekundarnih metabolita, uključujući određeni broj makrocikličkih peptida i depsipeptida. Mnogi od tih spojeva posjeduju važna biološka svojstva, kao što je antitumorska aktivnost, ili inhibicija HIV reverzne transkriptaze već u vrlo niskim koncentracijama.^{[54],[55]}

2.2. α -HIDRAZINO-PEPTIDI

Među neprirodnim aminokiselinama koje su značajne u sintezi peptidomimetika određenih konformacijskih značajki, posebno mjesto zauzimaju hidrazino-derivati α -aminokiselina.^{[56],[57],[13]} Hidrazino-derivati α -aminokiselina nastaju zamjenom C^{β} atoma u β -aminokiselinama atomom dušika (*Slika 17.*).^[58]

Slika 17. Strukturne razlike između α - i β -peptida te α -hidrazino-peptida

Peptidomimetici koji u svojoj strukturi sadrže hidrazino-derivate α -aminokiselina pokazuju izraženiju konformacijsku ukočenost kao rezultat odbijanja slobodnih elektronskih parova na susjednim atomima dušika.^[3] Sa strukturnog aspekta, uvođenjem (-*NH*₂-*NH*-*CH*(*R*)-*CO*₂*H*-) fragmenta u peptidni lanac, dolazi do formiranja jedinstvene sekundarne strukture, poznate kao hidrazino-okret.^{[3],[59],[60]} Poznato je da prisutnost konformacijskih ograničenja, H-donorskih i H-akceptorskih skupina, ili *trans-cis* izomerizacija peptidne veze mogu stabilizirati strukturu okreta.^{[59],[61]} Budući da se dodatni dušikov atom može ponašati kao donor i akceptor vodikove veze, nastaju nove vodikove veze koje su neophodne u stabilizaciji konformacije hidrazino-okreta (*Slika 18.*).^[60] Takva konformacija omogućuje slaganje peptidne okosnice nizom intramolekulskih vodikovih veza, pri čemu mogu nastati različite strukture α -uzvojnica.^[62]

Slika 18. Formiranje hidrazino-okreta djelovanjem intramolekulskih vodikovih veza

Cheguillaume i suradnici su proveli niz istraživanja s oligomerima N^{α} -supstituiranih oligomera hidrazino-octene kiseline. NMR analizama je utvrđeno da se takvi akiralni analozi slažu u uzvojitu strukturu koja se sastoji od osmeročlanog prstena vodikovih veza s oba dušikova atoma u prstenu.^[3] Osim toga, otkriveno je: i) u slučaju kada su oba dušika supstituirana, obje amidne skupine su u krutom ortogonalnom razmještaju kako bi se umanjile steričke smetnje, ii) kada je samo N^{β} dušik supstituiran, N^{α} dušik ima sp³ karakter i posjeduje R ili S konfiguraciju ovisno o mogućim interakcijama u kojima N^{α} H veza može sudjelovati.^[63] iii) konformacijsko usmjerenje N^{α} – N^{β} veze u hidrazidnoj skupini fleksibilnije je u odnosu na disupstituirane spojeve, iv) hidrazidna skupina sudjeluje u formiranju kompleksa vodikovih veza u kojem CO–NH^{β} amidna jedinica oponaša standardnu peptidnu skupinu s proton-donorskim dijelom (N–H^{β} veza) i proton-akceptorskim dijelom (karbonilni kisik). Slobodan elektronski par također sudjeluje u stabilizaciji strukture hidrazino-okreta.

 α -Hidrazino-peptidi pokazuju značajnu biološku aktivnost, kao što je inhibicija proteaza, vezanje na nukleinske kiseline i antitumorska aktivnost.^[53] α -Hidrazino-peptidi koji sadrže akiralnu hidrazino-octenu kiselinu na amino-kraju, pokazuju antitumorska svojstva te su vrlo korisni intermedijeri u sintezi lipopetida.^[64] Zbog takvih izvanrednih svojstava važno je pronaći metodologiju za brzu i jednostavnu pripravu ovakvih konformacijski definiranih struktura. Najčešće korišteni hidrazino-derivat opisan u literaturi je *N*-substituirana hidrazino-octena kiselina, akiralni monomer koji se može jednostavno pripraviti reakcijom supstituiranog hidrazina i bromacetata.^[65] Priprava kiralnih, optički čistih derivata daleko je zahtjevniji postupak te su literaturno poznata tri postupka.^[66]

Još 50-ih godina prošlog stoljeća otkrivena je jednostavna metoda prevođenja aminokiselina u α -hidrazino-karboksilne kiseline iste konfiguracije, danas poznate kao α -hidrazino-kiseline. Shestakovom pregradnjom derivata uree u hidrazin korištenjem hipoklorita omogućeno je dobivanje α -hidrazino-kiselina bez racemizacije, ali uz relativno niska iskorištenja 30-40 % (*Shema 1.*).^[67]

Shema 1. Shestakova pregradnja derivata uree u hidrazin korištenjem hipoklorita

Bolja iskorištenja optički čistih α -hidrazino-kiselina dobivena su metodom elektrofilne aminacije.^[68] Elektrofilna aminacija vrlo je važna sintetska reakcija u kojoj se elektronima siromašan dušikov atom reagensa prenosi na nukleofilni centar supstrata tvoreći u nastalom produktu N-N vezu (*Shema 2.*).^[69]

Shema 2. N-aminacija N-Bn derivata aminokiselina uz N-Boc-oksaziridin

Reagensi koji omogućuju elektrofilnu aminaciju su iz skupine oksaziridina. Zbog njihove nestabilnosti, prvi oksaziridini pripremani su *in situ* te su zbog toga imali ograničenu primjenu u organskoj sintezi. Fokus istraživača na tom području bio je dizajn oksaziridina koji bi bili dovoljno stabilni za izolaciju te koji bi imali zaštićeni atom dušika što je od velikog značaja u organskoj kemiji. Nova generacija *N*-zaštićenih oksaziridina prenosi *N*-alkiloksikarbonilni fragment na primarne i sekundarne amine dajući zaštićene hidrazine u vrlo dobrim iskorištenjima.^[70] Pripremljena je serija *N*-zaštićenih oksaziridina (*N*-Moc, Boc, Z, Fmoc), a kao najučinkovitiji se pokazao *N*-Boc-3-triklorometil oksaziridin (*Slika 19.*).^[71]

Slika 19. A) Serija *N*-zaštićenih oksaziridina B) najučinkovitiji *N*-Boc-3-triklorometil oksaziridin

N-Boc-3-triklorometil oksaziridin pripremljen je iz *tert*-butil-karbazata **I** i natrijevognitrita u kiselim uvjetima. Pri tome dolazi do stvaranja nitronij iona koji omogućuje nastajanje *tert*-butil-karbonazidata (Boc-N₃). ^{[72],[73]} Slijedi Staudingerova reakcija pri čemu se formira *N*-Boc iminofosforan **1**. Aza-Wittigovom reakcijom s bezvodnim kloralom nastaje imin **2** čijom oksidacijom je dobiven konačni produkt **3**. Tijekom ovog stupnja važno je osigurati bazične uvjete, jer u protivnom dolazi do formiranja amida umjesto zatvaranja oksaziridinskog prstena (*Shema 3.*). Prednost elektrofilne aminacije je optička čistoća dobivenih α -hidrazino-kiselina, budući da kiralni centar nije uključen u reakciju. Međutim, najveći nedostatak je dugotrajnost i slaba reproducibilnost priprave reagensa za elektrofilnu aminaciju.

Shema 3. Priprava N-Boc-3-triklorometil-oksaziridina

Najnovija opisana priprema α -hidrazino-kiselina **5** predstavlja nukleofilnu supstituciju odgovarajuće α -bromkiseline **4** s hidrazin-hidratom na 70 °C u mikrovalnom reaktoru kroz 20 minuta (*Shema 4.*).^{[74],[75],[76]} Prednost ove metode je jednostavnost i ekonomska prihvatljivost, međutim, nepotpuna konverzija zabilježena je u nekim slučajevima.

Shema 4. Prevođenje α-aminokiseline u α-bromkiselinu koja podliježe nukleofilnom napadu hidrazina uz inverziju konfiguracije

2.3. PRIPRAVA PEPTIDOMIMETIKA

Literaturno poznate strategije priprave peptidomimetika uključuju postupnu sintezu u otopini, na krutom nosaču te primjenom višekomponentnih reakcija. Klasična metoda sinteze peptidomimetika u otopini uključuje pripremu potpuno zaštićenih aminokiselina i njihovu postupnu kondenzaciju u organskom otapalu. Dobiveni produkti mogu biti čišćeni i praćeni u svakom stupnju reakcije, što omogućuje jednostavnu izolaciju konačnog produkta.^[77] Postupna sinteza u otopini važna je u proizvodnji na velikoj skali te za specijalizirane laboratorijske primjene. Nedostataci ove metode su dugotrajnost, velika potrošnja otapala te moguća racemizacija u stupnju kondenzacije.^[78]

Sinteza peptida na čvrstom nosaču (engl. *solid phase peptide synthesis*; SPPS) koristi netopljivi polimerni nosač za uzastopnu kondenzaciju bočno zaštićenih aminokiselina.^[79] Važan korak u sintezi peptida na čvrstom nosaču je izbor zaštitnih skupina i optimizacija reakcijskih uvjeta za svaki stupanj kondenzacije. Zaštita bočnih lanaca aminokiselina mora biti specifična kako bi se umanjile potencijalne reakcije reaktivnih bočnih skupina.^[80] Kondenzacijski reagensi i aminokiseline koriste se u velikom suvišku kako bi se osigurala kvantitativna reakcija što predstavlja nedostatak ove metode u odnosu na klasičnu pripravu u otopini.^[81] Osim toga metoda nije pogodna za sintezu na velikoj skali već se koristi u istraživačke svrhe. Ipak, SPPS ima mnogo prednosti u odnosu na klasičnu sintezu u otopini kao što je brzina, manji problemi s topljivošću, umanjeno nastajanje nusprodukata te se dobiveni peptid čisti tek nakon skidanja s krutog nosača.^[82]

Višekomponentne reakcije (engl. *multicomponent reactions;* MCRs) predstavljaju skupinu reakcija u kojima produkt nastaje u jednom reakcijskom koraku kondenzacije tri ili više reaktanata. MCRs zaobilaze tradicionalni pristup koji se oslanja na uzastopnom

ponavljanju bimolekularnih reakcija i stoga povećavaju efikasnost kemijske sinteze.^{[83],[84]} Osim toga predstavljaju robusnu, ekonomski isplativu strategiju za formiranje više kemijskih veza polazeći iz jednostavnih, jeftinih i lako dostupnih polaznih spojeva.^{[85],[86]} Među mnogobrojnim MCRs po važnosti se ističu reakcije koje uključuju izocijanidnu skupinu.^{[87],[88]} Jedinstveno svojstvo izocijanidne skupine, da može reagirati kao nukleofil i elektrofil, široko se primjenjuje u sintezi različitih spojeva.^[89] Mnoge MCRs koje se temelje na reakciji izocijanidne skupine (engl. *isocyanide-based MCRs;* IMCRs) odvijaju se u blagim reakcijskim uvjetima u prisustvu različitih funkcionalnih skupina.^{[90],[91],[92]} Passerinijeva i Ugijeva reakcija posebno su važne reakcije u skupini IMCRs, jer daju peptidima slične produkte-peptidomimetike, koji mogu oponašati strukturu i funkciju prirodnih peptida i proteina (*Shema 5.*).^{[93],[88]} Prema tome su Passerinijeva i Ugijeva reakcija nezaobilazne u procesu razvoja lijekova u farmaceutskoj industriji.^[94]

Shema 5. A) Passerinijeva i B) Ugijeva reakcija

2.3.1. Passerinijeva reakcija

Passerinijeva reakcija je dobila naziv prema Mariu Passeriniu još 1921. godine. Prednost Passerinijeve reakcije u pripravi peptidomimetika predstavljaju blagi reakcijski uvjeti kondenzacije karbonilnog spoja, karboksilne kiseline i izocijanida.^[95] Takvom reakcijom nastaju α-aciloksi-karboksamidi (depsipeptidi).^[96] Kao što je već prikazano, depsipetidi predstavljaju skupinu peptidomimetika s izosternom zamjenom amidne skupine peptidne okosnice atomom kisika. Budući da mnogi prirodni depsipeptidi imaju široki raspon biološke aktivnosti,^[66] smatraju se vodećim spojevima u procesu razvoja lijekova,^[97] ali i obećavajućim polimerima za biomedicinsku upotrebu.^{[98],[99]} Kako reakcija napreduje u nepolarnim otapalima uz visoku koncentraciju reaktanata na sobnoj temperaturi, smatra se da se reakcija odvija prema usklađenom mehanizmu (Slika 20.). i) Karboksilna kiselina III i karbonilna komponenta IV međusobno se povezuju vodikovim vezama u adukt V, ii) zatim dolazi do α-adicije elektrofilnog ugljika karbonila i nukleofilnog kisika karboksilne kiseline na ugljik izocijanida VI uz formiranje cikličkog prijelaznog stanja VII, iii) takav ciklički α adukt se intramolekulski pregrađuje u α -aciloksi-karboksamid VIII. Passerinijeva reakcija predstavlja vrlo korisnu strategiju za uvođenje strukturne raznolikosti primjenom raznolikih gradivnih blokova, međutim, struktura okosnice dobivenih produkata prvenstveno ovisi o karboksilnoj komponenti. Postoji ograničeni broj primjera u kojima su se koristile druge komponente umjesto karboksilne kiseline dajući strukturno različite spojeve. Kaïm i suradnici su proveli trikomponentnu reakciju izocijanida, fenolnih derivata i aldehida pri čemu su dobili O-arilirane Passerinijeve produkte.^[100] Passerinijeve reakcije aldehida, izocijanida i alifatskih alkohola katalizirane Lewisovim kiselinama daju nove produkte, α -alkoksi-amidne derivate.^[101] Brønstedovim kiselinama katalizirane reakcije izocijanida s acikličkim ili cikličkim acetalima primjenjene su u pripravi α-alkoksi-imidata koji se mogu vrlo lako hidrolizirati u α -alkoksi-estere.^[102] Nedavno, Soeta i suradnici su razvili O-sulfinativnu Passerinijevu reakciju s aldehidima, izocijanidima i sulfinskim kiselinama u kojoj su dobili kao konačne produkte α -sulfiniloksi-amide koji se mogu dalje oksidirati u α -sulfoniloksiamidne derivate.

Slika 20. Mehanizam Passerinijeve reakcije

Prirodne i neprirodne aminokiseline uvelike se koriste u MCRs kao mono- i bifunkcionalni gradivni blokovi kako bi povećali broj stereocentara i strukturnu raznolikost.^[103] Do sada nisu literaturno poznate Passerinijeve reakcije koje uključuju kiralne α -hidrazino-kiseline kao karboksilne komponente. Uvođenje takvih neprirodnih aminokiselina u višekomponentne reakcije pruža mogućnost dobivanja nove skupine peptidomimetika – α -hidrazino-depsipeptida koji posjeduju dva različita strukturna aspekta: proširenje peptidne okosnice komponentom α -hidrazino-kiseline te formiranje izostera amidne veze kao rezultat Passerinijeve reakcije.

2.3.2. Ugijeva reakcija

Ugijeva rekacija je višekomponentna reakcija kojom nastaju α -amino-acilamidi, a uključuje kondezaciju karboksilnih kiselina, karbonilne komponente (aldehida ili ketona), amina i izocijanida. Njemački kemičar Ivar Karl Ugi 1959. godine proveo je prvu četverokomponentnu reakciju. Ugijeva reakcija napreduje u polarnim aprotičnim otapalima te uz visoku koncentraciju reaktanata daje visoka iskorištenja.^{[104],[105]} S obzirom na to, predložen je reakcijski mehanizam (*Slika 21*).^[91] i) U prvom stupnju dolazi do formiranja imina **XI** reakcijom karbonilne komponente (aldehida ili ketona) **IX** i amina **X**. Kao i sve

reakcije imina, Ugijeva reakcija bolje napreduje aktivacijom Schiffove baze. ii) Prema tome, karboksilna kiselina **XII** protonira dušikov atom Schiffove baze, povećavajući time elektrofilnost C=N veze. Osim toga, elektrofilnost imina može se povećati dodatkom Lewisovih kiselina kao što su TiCl₄ ili BF₃·OEt₂. iii) Dolazi do nukleofilne adicije izocijanida **XIII** na nastali iminijev ion pri čemu se formira intermedijer **XIV** podložan drugoj nukleofilnoj adiciji karboksilata. iv) U zadnjem koraku dolazi do Mummove pregradnje nastalog α -adukta **XV** uz prijenos acilne skupine s atoma kisika na dušikov atom te do formiranja α -amino-acilamida **XVI**.

Slika 21. Mehanizam Ugijeve reakcije

Potencijal Ugijeve reakcije u pripravi neprirodnih α -aminokiselina otkriven je vrlo rano. Joullié i suradnici proveli su pripravu enantiočistih heterocikličkih α -aminokiselina korištenjem kiralnog feniletil-amina.^[106] Reakcija se također pokazala vrlo primjenjiva u pripravi α, α -dialkilnih ili diarilnih dipeptida. Na taj način je pripremljena serija α, α diizopropilnih i α, α -difenilnih dipeptida.^[107] To je do sada jedina poznata metoda priprave sterički zahtjevnih peptida. Priređene su biblioteke raznih peptidomimetika provođenjem Ugijeve reakcije u otopini i na krutom nosaču, a najbolja farmakokinetička svojstva su pokazali α -metil- α -alkilni peptidi.^[108] Korištenje bifunkcionalnih reakcijskih komponenata uvelike povećava raznolikost mogućih produkata reakcije. Isto tako, kombinacija više različitih reakcija dovodi do strukturno zanimljivih produkata. Ugijeva reakcija se primjenjuje u kombinaciji s intramolekulskom Diels-Alderovom reakcijom.^[109] Druga zanimljiva kombinacija se odnosi na Ugi-Smilesovu reakciju u kojoj je karboksilna komponenta zamijenjena s fenolom. U zadnjem stupnju reakcije Mummova pregradnja je zamijenjena Smilesovom pregradnjom.^[110]

Ugijeva reakcija jedna je od prvih reakcija koja se koristi izričito za razvoj kemijskih biblioteka. Pomoću načela kombinatorne kemije Ugijeva reakcija nudi mogućnost za pripravu velikog broja različitih spojeva u jednoj reakciji, reakcijom različitih ketona (ili aldehida), amina, izocijanida i karboksilnih kiselina. Dobivene biblioteke spojeva se tada mogu testirati s enzimima ili živim organizmima kako bi se pronašle nove aktivne farmaceutske supstance. Najpoznatiji terapeutici dobiveni Ugijevom reakcijom su: Indinavir (Crixivan) koji se koristi kao inhibitor proteaze HIV-a te anestetici Lidokain i Bupivakain.^[111]

3. EKSPERIMENTALNI DIO

3.1. METODE I MATERIJALI

Sve upotrebljene kemikalije u sintezi su bile analitičke čistoće, dok su otapala korištena u radu pročišćena prema standardnim propisima. Polazni spojevi su komercijalno dostupne supstance.

Tijek reakcija i kontrola čistoće sintetiziranih spojeva ispitani su analitičkom tankoslojnom kromatografijom (TLC) provedenom na pločicama silikagela Kieselgel 60 F_{254} (Merck; Darmstadt, Germany). Spojevi koji su UV aktivni detektirani su pod UV svijetlom na 254 nm, a ostali su detektirani korištenjem ninhidrina ili amonijevog molibdata uz zagrijavanje te im je određen retencijski faktor (R_f). Otopina amonijevog molibdata pripremljena je otapanjem amonijevog molibdata (5 g) i cerijevog sulfata (0,2 g) u 5% sumpornoj kiselini (100 mL). Konačni produkti pročišćeni su brzom (flash) tekućinskom kromatografijom na koloni silikagela Kieselgel 60 F_{254} (0,040 – 0,063 mm) (Merk).

Karakterizacija sintetiziranih spojeva provedena je pomoću spektrometrije nuklearne magnetske rezonance (NMR), spektrometrije mase (HRMS, MS-ESI) te određivanjem temperature tališta.

NMR spektri snimljeni su na Bruker 600 spektrometru, pri frekvencijama 600,13 MHz (¹H) i 150,92 MHz (¹³C) te na Bruker 300 spektrometru pri frekvencijama 300,13 (¹H) i 75,47 MHz (¹³C). NMR spektri spojeva snimljeni su u DMSO- d_6 , CDCl₃, CD₃OD ili D₂O pri sobnoj temperaturi. Kemijski pomaci (δ) izraženi su prema tetrametilsilanu (TMS) u ppm vrijednostima. Konstante sprege (J) izražene su u hercima (Hz). ¹H spektri prikazani su kako slijedi: ¹H NMR (frekvencija spektrometra, otapalo): δ kemijski pomak / ppm (asignacija, multiplicitet, konstante sprege, broj protona). ¹³C spektri prikazani su kako slijedi: ¹³C NMR (frekvencija spektrometra, otapalo): δ kemijski pomak / ppm (asignacija). Pikovi multipliciteta NMR signala označeni su kao: s (singlet), bs (broad singlet), d (dublet), dd (dublet dubleta), t (triplet), m (multiplet). Spektri su asignirani na temelju jednodimenzionalnih ¹H i APT (engl, Attached Proton Test) i dvodimenzionalnih COSY (engl, *Correlation Spectroscopy*), HETCOR (engl, Heteronuclear Chemical Shift Correlation) i HMQC (engl, Heteronuclear Multiple-Quantum Correlation) eksperimenata.

Spektri mase (MS) spojeva snimljeni su na uređaju Agilent 6410 Triple Quad tvrtke Agilent Tehnologies uz ionizaciju elektroraspršenjem (ESI, engl. *Electron Spray Ionisation*). Spektri su snimani u pozitivnom (ESI+) i negativnom (ESI-) načinu rada. Kao mobilna faza korištena je smjesa otapala 50 % MeOH/0.1 % mravlje kiseline uz protok od 0,2 mL/min. Spektri masa visoke rezolucije (HRMS) snimljeni su na instrumentu MALDI-TOF/TOF 4800 Plus analyzer (matricom potpomognuta ionizacija desorpcijom laserskog zračenja – analizator masa s vremenom leta). Korišteni su unutarnji standardi (monomerni, dimerni i trimerni CHCA) sa azitromicinom i angiotensinom II otopljenim u α -cijano-4-hidroksicimetnoj kiselini u masenom rasponu m/z 190.0499 do 749.5157 ili 1046.5417.

HPLC-MS analiza provedena je na Zorbax RF koloni XDB-C18 (3,5 µm, 4,6·75 mm).

RP-HPLC analiza provedena je na HPLC sustavu vezanim sa UV detektorom korištenjem semipreparativne C-18 kolone (5 μ m, 8 · 250 mm) uz protok 1 mL/min, ili analitičke kolone (5 μ m, 4.5 · 150 mm) uz protok 0,5 mL/min. UV detekcija provedena je na 254 nm ili 270 nm. Određena su retencijska vremena (t_R) priređenih hidrazino-peptidomimetika. Korištene su sljedeće metode za RP-HPLC kromatografiju:

<u>A</u> Gradijent: $0 \rightarrow 5 \text{ min}$, 50 % MeOH/ 0,1 TFA; $5 \rightarrow 20 \text{ min}$, 50 % MeOH/ 0,1 TFA \rightarrow 90 % MeOH/ 0,1 % TFA; 20 \rightarrow 30 min, 90 % MeOH/ 0,1 % TFA; 30 \rightarrow 35 min, 50 % MeOH/ 0,1 % TFA.

<u>B</u> Gradijent: 0 → 5 min, 40 % MeOH/ 0,1 TFA; 5 → 20 min, 40 % MeOH/ 0,1 TFA → 90 % MeOH/ 0,1 % TFA; 20 → 30 min, 90 % MeOH/ 0,1 % TFA; 30 → 35 min, 40 % MeOH/ 0,1 % TFA.

<u>C</u> Gradijent: $0 \rightarrow 5 \text{ min}$, 30 % MeOH/ 0,1 TFA; $5 \rightarrow 20 \text{ min}$, 30 % MeOH/ 0,1 TFA \rightarrow 90 % MeOH/ 0,1 % TFA; 20 \rightarrow 30 min, 90 % MeOH/ 0,1 % TFA; 30 \rightarrow 35 min, 30 % MeOH/ 0,1 % TFA.

Točke tališta određene su na Tottoli (Büchi) aparatu i nisu korigirane.

Sustavni nazivi spojeva dobiveni su iz programa ChemBioDraw Ultra 12,0 koji sljedi IUPACove konvencije. Reagens elektrofilne aminacije, *N*-Boc-3-triklorometil oksaziridin pripremljen je prema literaturno poznatoj proceduri te mu je karakterizacija u skladu s literaturnim rezultatima.^[73]

3.2. PRIPRAVA OPTIČKI ČISTIH HIDRAZINO-DERIVATA α - AMINOKISELINA

3.2.1. Priprava zaštićene N^{α} -Bn, N^{β} -Boc-L-hidrazino-kiseline (1)

N-benzilna- α -aminokiselina (500 mg) otopljena je u suhom MeOH (10 mL) i ohlađena na 0 °C. Reakcijskoj smjesi je dodan (CH₃)₄NOH (1 ekv.) te je miješanje nastavljeno 30 min na 0 °C. Otapalo je upareno, a ostatak je otopljen u suhom DCM (10 mL). Reakcijska smjesa je ohlađena na – 78 °C te je polako dokapan *N*-Boc-3-triklorometil oksaziridin (1,3 ekv.). Miješanje je nastavljeno na sobnoj temperaturi preko noći. Reakcijska smjesa je isprana 3 puta s vodom (30 mL), spojeni vodeni slojevi su zakiseljeni dodatkom KHSO₄ na pH 3, a produkt je ekstrahiran s DCM (50 mL). Otapalo je upareno te je dobiven produkt bez dodatnog pročišćavanja.

(S)-2-(1-benzil-2-(tert-butoksikarbonil)hidrazinil)-propanska kiselina (1a)

BocHN

žuto ulje; (242 mg; 29 %)

 $C_{15}H_{22}N_{2}O_{4} \\$

 $M_{\rm r} = 294,35$

 $R_f = 0,66$ (PE:EtOAc:AcOH=5:5:0,5)

MS-ESI: *m/z* 317,1 [M+Na]⁺

¹H NMR (600 MHz, DMSO- *d*₆): δ / ppm 7,64 – 7,57 (NH, m, 1H); 7,39 – 7,20 (H_{ar}, m, 5H); 3,93 (CH₂, Bn, m, 2H); 3,62 (α, Ala, dd, ²*J* =6,7 Hz, 1H); 1,41 (β, Ala, m, 3H); 1,25 (Boc, m, 9H)

¹³C NMR (151 MHz, DMSO- *d*₆): δ / ppm 174,4 (CO, COOH); 155,2 (CO, Boc); 137,7 (C, Bn); 128,7-126,9 (H_{ar}, Bn); 78,4 (C, Boc); 61,4 (α, Ala); 58,6 (CH₂, Bn); 28,2-27,9 (Boc); 17,7 (β, Ala)

(S)-2-(1-benzil-2-(*tert*-butoksikarbonil)hidrazinil)-3-metilbutanska kiselina (1b)

žuto ulje; (307 mg; 39 %)

 $C_{17}H_{26}N_2O_4$

 $M_{\rm r} = 322,40$

 $R_f = 0,89$ (PE:EtOAc:AcOH=7:5:0,5)

MS-ESI: *m*/*z* 345,1 [M+Na]⁺

¹H NMR (300 MHz, DMSO- *d*₆): δ / ppm 7,63 (NH, m, 1H); 7,40 – 7,28 (H_{ar}, m, 5H); 3,86 (CH₂, Bn, s, 2H); 2,96 (α, Val, d, *J* = 9,2 Hz, 1H); 1,91 (β, Val, m, 1H); 1,28 (Boc, s, 9H); 1,04 (γ, Val, d, *J* = 6,0 Hz, 3H); 0,87 (γ', Val, d, *J* = 6,4 Hz, 3H)

¹³C NMR (75 MHz, DMSO- *d*₆): δ / ppm 173,9 (CO, COOH); 152,5 (CO, Boc); 137,8 (C, Bn); 129,0-127,2 (H_{ar}, Bn); 82,0 (C, Boc); 71,9 (α, Val); 51,6 (CH₂, Bn); 31,1 (β, Val); 28,4-27,9 (Boc); 20,1 (γ, Val); 19,4 (γ', Val)

(S)-2-(1-benzil-2-(*tert*-butoksikarbonil)hidrazinil)-4-metilpentanska kiselina (1c)

žuto ulje; (302 mg; 39 %)

 $C_{18}H_{28}N_2O_4$

 $M_{\rm r} = 336,43$

 $R_f = 0,71$ (PE:EtOAc:AcOH=7:5:0,5)

MS-ESI: *m/z* 359,1 [M+Na]⁺

¹H NMR (300 MHz, DMSO- d_6): δ / ppm 12,70 (OH, s, 1H); 8,08 (NH, s, 1H); 7,67–7,21 (H_{ar}, m,5H); 4,02 – 3,87 (CH₂, Bn, m, 2H); 2,30 (α, Leu, m, 1H); 1,95 (β, Leu, d, J = 23,5 Hz, 2H); 1,64 – 1,50 (γ, Leu, m, 1H); 1,43 – 1,16 (Boc, m, 9H); 0,96 – 0,67 (δ, δ', Leu, m, 6H)

¹³C NMR (75 MHz, DMSO- d_6): δ / ppm 174,8 (CO, COOH); 137,7 (CO, Boc); 133,1 (C, Bn); 132,2-126,9 (H_{ar}, Bn); 78,3 (C, Boc); 63,1 (α, Leu); 28,2 (CH₂, Bn); 27,8 (β, Leu); 23,7 (γ, Leu); 21,3 (δ, δ', Leu)

(S)-2-(1-benzil-2-(tert-butoksikarbonil)hidrazinil)-3-fenilpropanska kiselina (1d)

žuto ulje; (289 mg; 40 %)

 $C_{21}H_{26}N_2O_4$

 $M_{\rm r} = 370,44$

 $R_f = 0,66$ (PE:EtOAc:AcOH=7:5:0,5)

MS-ESI: *m/z* 393,4 [M+Na]⁺

¹H NMR (600 MHz, CD₂Cl₂): δ / ppm 7,33 – 7,22 (H_{ar}, Phe, Bn, m, 10H); 6,16 (CH₂, Bn, s, 2H); 3,93 – 3,87 (α, Phe, m, 1H); 3,06 (β, Phe, d, *J* = 5.6 Hz, 1H); 3,04 (β, Phe, d, *J* = 5.6 Hz, 1H); 1.40 (Boc, s, 9H)

¹³C NMR (151 MHz, CD₂Cl₂): δ / ppm 172,4 (CO, COOH); 155,6 (CO, Boc); 136,5 (C_{ar},
Phe); 128,7; 127,9; 126,3 (CH_{ar}, Phe); 79,8 (C, Boc); 63,6 (α, Phe); 36,4 (β, Phe); 27,4 (Boc)

(S)-1-(tert-butoksikarbonilamino)pirolidin-2-karboksilna kiselina (1e)

bezbojno ulje; (334 mg; 34 %)

 $C_{10}H_{18}N_2O_4$

 $M_{\rm r} = 230,26$

 $R_f = 0,70$ (PE:EtOAc:AcOH=7:5:0,5)

MS-ESI: *m*/*z* 116,2 [M+2H]²⁺

¹H NMR (600 MHz, CDCl₃): *δ* / ppm 4,07 (α, Pro, t, *J* = 9,3 Hz, 1H); 3,23 - 2,96 (δ, m, 2H); 2,13 - 1,96 (β, Pro, m, 2H); 1,91 - 1,80 (γ, Pro, m, 2H); 1,48 (Boc, s, 9H)

¹³C NMR (151 MHz, CDCl₃): δ / ppm 175,0 (CO, COOH); 155,1 (CO, Boc); 81,9 (C, Boc);
66,8 (α, Pro); 47,1 (δ, Pro); 29,9 (β, Pro); 28,3 (Boc); 25,3 (γ, Pro)

3.2.2. Priprava N^{α} -Boc, N^{β} -Boc-L-hidrazino-kiselina (2)

 N^{β} -Boc-L-hidrazino-kiselina (1 ekv.) otopljena je u CH₂Cl₂ (10 mL) te je dodan Et₃N (2 ekv.). Takva otopina je dokapana u otopinu Boc₂O (2 ekv.) u CH₂Cl₂ (5 mL) pod dušikom na 0 °C. Reakcijska otopina je zagrijana na sobnu temperaturu te je nastavljeno miješanje 24 h. Otapalo je upareno, a ostatak je otopljen u EtOAc (10 mL) i ispran sa zasićenom vodenom otopinom NaCl. Organski sloj je sušen nad Na₂SO₄ i uparen pri čemu je dobiven konačan produkt bez dodatnog čišćenja.

Sve N^{α} -Boc, N^{β} -Boc-L-hidrazino-kiseline pripremljene su prema literaturno poznatoj proceduri te im je karakterizacija u skladu s literaturnim rezultatima.^[65]

(S)-2-(1,2-bis(tert-butoksikarbonil)hidrazinil)-4-metilpentanska kiselina (2a)

 $C_{16}H_{30}N_{2}O_{6} \\$

 $M_{\rm r} = 346,42$

narančasto ulje; (133 mg; 68 %)

 $R_f = 0,63$ (PE:EtOAc:AcOH=7:5:0,5)

¹H NMR (300 MHz, CDCl₃) δ / ppm 4,12 (α, hLeu, m, 1H); 1,77 (β, hLeu, m, 2H); 1,63 (γ, hLeu, m, 1H); 1,47 (CH₃, Boc, m, 18H); 1,00 – 0,91 (δ, δ', hLeu, m, 6H)

(S)-2-(1,2-bis(tert-butoksikarbonil)hidrazinil)-3-fenilpropanska kiselina (2b)

 $C_{19}H_{28}N_2O_6$

 $M_{\rm r} = 380,44$

narančasto ulje; (204 mg; 75 %)

 $R_f = 0,43$ (PE:EtOAc:AcOH=7:5:0,5)

3.2.3. Priprava N^{α} -Cbz, N^{β} -Boc-L-hidrazino-kiselina (3)

 N^{β} -Boc-L-hidrazino-kiselina (1 ekv.) otopljena je u MeCN (10 mL) uz dodatak Et₃N (2ekv.). Otopina je ohlađena na 0 °C te je dokapan Cbz₂O (2 ekv.) pod dušikom. Reakcijska otopina je zagrijana na sobnu temperaturu i miješanje je nastavljeno 24 h. Otapalo je upareno, a ostatak je otopljen u EtOAc (10 mL) i ispran sa zasićenom vodenom otopinom NaCl. Organski sloj je sušen nad Na₂SO₄ i uparen pri čemu je dobiven konačan produkt bez dodatnog čišćenja.

Sve N^{α} -Cbz, N^{β} -Boc-L-hidrazino-kiseline pripremljene su prema literaturno poznatoj proceduri te im je karakterizacija u skladu s literaturnim rezultatima.^[65]

(S)-2-(1-(benziloksikarbonil)-2-(*tert*-butoksikarbonil)hidrazinil)-4metilpentanska kiselina (**3a**)

 $C_{19}H_{28}N_{2}O_{6} \\$

 $M_{\rm r} = 380,44$

žuto ulje; (191 mg; 74 %)

 $R_f = 0,67$ (PE:EtOAc:AcOH=5:5:0,5)

MS-ESI: *m/z* 281,2 [M-Boc]⁺

¹H NMR (300 MHz, CDCl₃) *δ* / ppm 7,21 (H_{ar}, Cbz, m, 5H); 5,10 (CH₂, Cbz, s, 2H); 4,38 (α, hLeu, m, 1H); 1,68 (β, γ, hLeu, m, 3H); 1,48 – 1,17 (Boc, m, 9H); 0,93 – 0,70 (δ, δ', hLeu, m, 6H)

¹³C NMR (75 MHz, CDCl₃) δ / ppm 171,0 (CO); 140,8 (CO, Boc, Cbz); 135,2 (C_{ar}, Cbz); 128,6 - 127,0 (CH_{ar}, Cbz); 68,4 (α, hLeu); 66,9 (CH₂, Cbz); 36,4 (β, hLeu); 28,0 (Boc); 24,6 (γ, hLeu); 21,2 (δ, hLeu); 20,4 (δ', hLeu)

(S)-2-(1-(benziloksikarbonil)-2-(*tert*-butoksikarbonil)hidrazinil)-3fenilpropanska kiselina (**3b**)

 $C_{22}H_{26}N_2O_6$

 $M_{\rm r} = 414,45$

žuto ulje; (290 mg; 97 %)

 $R_f = 0,63$ (PE:EtOAc:AcOH=7:5:0,5)

MS-ESI: *m*/*z* 315.1 [M-Boc]⁺

¹H NMR (300 MHz, CDCl₃) δ / ppm 7,24 – 7,18 (H_{ar}, hPhe, Cbz, m, 10H); 5,07 (CH₂, Cbz, s, 2H); 4,42 – 4,36 (α, hPhe, m, 1H); 3,68 – 3,55 (β, hPhe, m, 2H); 1,35 (Boc, m, 9H)

¹³C NMR (75 MHz, CDCl₃) δ / ppm 174,6 (CO, hPhe); 141,4 (C_{ar}, Cbz, hPhe); 129,1 - 127,6 (CH_{ar}, Cbz, hPhe); 77,8 (C, Boc); 70,3 (α, hPhe); 65,9 (CH₂, Cbz); 35,0 (β, hPhe); 28,6 (Boc)

3.2.4. Priprava nezaštićene α-hidrazino-kiseline (4)

D-Aminokiselina (1 g) je otopljena u 2,5 M H₂SO₄ (1,3 mL / mmol) te je dodan KBr (3,5 ekv.). Reakcijska smjesa je ohlađena na 0 °C te je polako dokapana vodena otopina NaNO₂ (1,3 ekv.). Miješanje je nastavljeno na 0 °C 1 sat, a zatim na sobnoj temperaturi preko noći. Dobivena α -bromokiselina ekstrahirana je s EtOAc (50 mL) i isprana s NaHCO₃ te osušena s MgSO₄. Nakon uparavanja dobiven je produkt bez dodatnog čišćenja (70%).

Sve α -bromokiseline pripremljene su prema literaturno poznatoj proceduri te im je karakterizacija u skladu s literaturnim rezultatima.^[112]

Prethodno dobivena α -bromokiselina je otopljena u EtOH (2 mL) i polako je dokapana u otopinu NH₂NH₂ (3 ekv.) u EtOH (1 mL). Reakcija je provedena u mikrovalnom reaktoru na 70 °C i 50 W kroz 1 sat. Dobivena je bijela suspenzija. Otapalo je upareno, a produkt je prekristaliziran iz sustava EtOH / H₂O.

(S)-2-hidrazinil-3-metilbutanska kiselina (4a)

bijeli prah; (270 mg; 37 %)

 $C_5H_{12}N_2O_2 \\$

 $M_{\rm r} = 132,16$

 $R_f = 0,23$ (EtOAc:EtOH:AcOH:H₂O=7:1:1:1)

 $t.t. = 235 \ ^{\circ}\text{C}$

¹H NMR (300 MHz, D₂O): δ / ppm 3,47 (α, Val, m, 1 H); 2,25–2,12 (β, Val, m, 1 H); 1.00 (γ, γ', Val, d, J = 6,9 Hz, 6 H)

¹³C NMR(75 MHz, D₂O): δ / ppm 147,7 (CO, COOH); 72,1 (α, Val); 29,5 (β, Val); 19,0 (γ, γ', Val)

(S)-2-hidrazinil-4-metilpentanska kiselina (4b)

bijeli prah; (149 mg; 40 %)

 $C_6H_{14}N_2O_2$

 $M_{\rm r} = 146, 19$

 $R_f = 0,21$ (EtOAc:EtOH:AcOH:H₂O=7:1:1:1)

 $t.t. = 215 \ ^{\circ}\text{C}$

¹H NMR (300 MHz, D₂O): δ / ppm 3,64 (α, Leu, t, *J* = 6,8 Hz, 1 H); 1,78–1,59 (β, γ, Leu, m, 3 H); 0,93 (δ, δ', Leu, d, *J* = 6,3 Hz, 6 H)

¹³C NMR (75 MHz, D₂O): δ / ppm 176,4 (CO, COOH); 65,1 (α, Leu); 25,9 (β, Leu); 23,4 (γ, Leu); 23,3 (δ, δ', Leu)

(S)-2-hidrazinil-3-fenilpropanska kiselina (4c)

bijeli prah; (159 mg; 40 %)

 $C_{9}H_{12}N_{2}O_{2}$

 $M_{\rm r} = 180,20$

 $R_f = 0,23$ (EtOAc:EtOH:AcOH:H₂O=7:1:1:1)

t.t. = 195 °C

¹H NMR (300 MHz, D₂O): δ / ppm 7,42–7,18 (H_{ar}, Phe, m, 5 H); 3,88 (α, Phe, t, *J* = 6,3 Hz, 1); 3,19 (β, Phe, m, 1 H); 3,11 (β, Phe, m, 1 H)

¹³C NMR (75 MHz, D₂O): *δ* / ppm 179,1 (CO, COOH); 135,7; 132,1; 131,5; 131,2 (CH_{ar}, Phe); 64,3 (α, Phe); 38,3 (β, Phe)

3.3. PRIPRAVA HIDRAZINO-PEPTIDOMIMETIKA POSTUPNOM SINTEZOM U OTOPINI

3.3.1. Priprava dipeptida (5)

Boc-L-Aaa-OH (Aaa = Leu, Val, Ala) (1 mmol) i HOSu (1,5 mmol) otopljeni su u suhom DMF (3 mL) te je otopina ohlađena na 0 °C. Polako je dokapan DCC (1,5 mmol) otopljen u suhom DMF (2 mL). Nakon 30 min reakcijska smjesa je miješana na sobnoj temperaturi uz praćenje tijeka rekacije na TLC. Nastali talog je profiltriran, a filtrat je polako dokapan u otopinu H-Phe-R (R=OH, OEt ili NH₂) (1 mmol) i KHCO₃ (2 mmol) u vodi (5 mL). Reakcijska smjesa je miješana na sobnoj temperaturi preko noći. Otapalo je upareno, a ostatak je čišćen brzom tekućinskom kromatografijom.

(S)-2-((S)-2-(*tert*-butoksikarbonilamino)-4-metilpentanamido)-3-fenilpropanska kiselina (**5a**)

 $C_{20}H_{30}N_{2}O_{5} \\$

 $M_{\rm r} = 378,46$

bezbojno ulje; (0,68 g; 82 %)

 $R_f = 0,40$ (PE:EtOAc:AcOH=7:5:0,5)

¹H NMR (300 MHz, DMSO-*d*₆): δ 12,6 (br s, 1H, OH); 7,88 (d, ³J_{NH,H} = 7,9 Hz, 1H, NH Phe); 7,31–7,10 (m, 5H, δ, ε, ζ Phe); 6,83 (d, ³J_{NH,H} = 8.6 Hz, 1H, NH Leu); 4,49–4,38 (m, 1H, α Phe); 4,00–3,88 (m, 1H, α Leu); 3,05; 2,90 (dd, ³J_{H,H} = 8,6 Hz, ²J_{H,H} = 13,9 Hz, 2H, β, β' Phe); 1,55–1,46 (m, 3H, β , β' , γ Leu); 1,36 (s, 9H, CH₃ Boc); 0,83; 0,80 (d, ³J_{H,H} = 6,6 Hz, 6H, δ , δ' Leu).

¹³C NMR (75 MHz, DMSO-*d*₆): δ 172,8 (CO Phe); 172,3 (CO Leu); 155,1 (CO Boc); 137,3 (γ Phe); 129,0 (δ Phe); 128,0 (ε Phe); 126,4 (ζ Phe); 78,0 (C Boc); 53,1 (α Phe); 52,8 (α Leu); 41,0 (β Leu); 36,7 (β Phe); 28,1 (CH₃ Boc); 24,1 (γ Leu); 22,8; 21,6 (δ, δ' Leu).

(*S*)-2-((*S*)-2-(*tert*-butoksikarbonilamino)-3-metilbutanamido)-3-fenilpropanska kiselina (**5b**)

 $C_{19}H_{28}N_2O_5$

 $M_{\rm r} = 364,44$

bezbojno ulje; (0,45 g, 54 %)

 $R_f = 0.38$ (PE:EtOAc:AcOH=7:5:0,5)

¹H NMR (300 MHz, DMSO-*d*₆): δ 8,04 (d, ³*J*_{NH,H} = 7,8 Hz, 1H, NH Phe), 7,29–7,10 (m, 5 H, δ, ε, ζ Phe), 6,57 (d, ³*J*_{NH,H} = 8,2 Hz, 1H, NH Val), 4,42 (m, 1H, α Phe), 3,76 (m, 1H, α Val), 3,05; 2,88 (dd, ³*J*_{H,H} = 8,5 Hz, ²*J*_{H,H} = 13,8 Hz, 2H, β, β' Phe), 1,84 (m, 1H, β Val), 1,37 (s, 9H, CH₃ Boc), 0,74; 0,77 (d, ³*J*_{H,H} = 6,6 Hz, 6H, γ, γ' Val).

¹³C NMR (75 MHz, DMSO-*d*₆): δ 172,8 (CO Phe); 171,3 (CO Val); 155,2 (CO Boc); 137,0 (γ
Phe); 129,1 (δ Phe); 128,1 (ε Phe); 126,4 (ζ Phe); 78,1 (C Boc); 59,7 (α Val); 53,2 (α Phe);
36,8 (β Phe); 30,5 (β Val); 28,2 (CH₃ Boc); 19,1; 18,1 (γ, γ' Val).

(S)-2-((S)-2-(*tert*-butoksikarbonilamino)propanamido)-3-fenilpropanska kiselina (5c)

 $C_{17}H_{24}N_{2}O_{5} \\$

 $M_{\rm r} = 336,38$

bezbojno ulje; (1,78 g, 36 %);

 $R_f = 0,30$ (PE:EtOAc:AcOH=7:5:0,5)

¹H NMR (300 MHz, DMSO-*d*₆): δ 7,83 (d, ³*J*_{NH,H} = 7,7 Hz, 1H, NH Phe); 7,30–7,15 (m, 5H, δ, ε, ζ Phe); 6,81 (d, ³*J*_{NH,H} = 6,5 Hz, 1H, NH Ala); 4,40 (m, 1H, α Phe); 3,95 (m, 1H, α Ala); 3,04; 2,91 (dd, ³*J*_{H,H} = 8,4 Hz, ²*J*_{H,H} = 13,9 Hz, 2H, β, β' Phe); 1,36 (s, 9H, CH₃ Boc); 1,12 (d, ³*J*_{H,H} = 7,0 Hz, 3H, β Ala).

¹³C NMR (75 MHz, DMSO-*d*₆): δ 172,6 (CO Phe); 172,5 (CO Ala); 154,8 (CO Boc); 137,3 (γ
Phe); 129,1 (δ Phe); 128,0 (ε Phe); 126,3 (ζ Phe); 77,5 (C Boc); 53,1 (α Phe); 49,6 (α Ala);
18,1 (β Ala); 36,7 (β Phe); 28,1 (CH₃ Boc).

tert-butil-(*S*)-1-((*S*)-1-amino-1-okso-3-fenilpropan-2-ilamino)-4-metil-1oksopentan-2-ilkarbamat (**5d**)

 $C_{20}H_{31}N_3O_4$

$M_{\rm r} = 377,48$

bijela krutina; (0,31 g; 83 %)

t.t. = 140 °C

 $R_f = 0.35$ (PE:EtOAc:AcOH=10:5:0,5)

¹H NMR (300 MHz, DMSO-*d*₆): δ 7,70 (d, ${}^{3}J_{\text{NH,H}}$ = 7,8 Hz, 1H, NH Phe); 7,31–7,14 (m, 5H, δ, ε, ξ Phe); 7,36; 7,12 (br s, 2H,CONH₂); 6,96 (d, ${}^{3}J_{\text{NH,H}}$ = 8,5 Hz, 1H, NH Leu); 4,45 (m, 1H, α Phe); 3,84 (m, 1H, α Leu); 3,00–2,82 (m, 2H, β, β'Phe); 1,79–1,55 (m, 2H, β, β' Leu); 1,55–1,44 (m, 1H, γLeu); 1,37 (s, 9H, CH₃ Boc); 0,84; 0,80 (d, ${}^{3}J_{\text{H,H}}$ = 6,6 Hz, 6H δ, δ' Leu).

¹³C NMR (75 MHz, DMSO-*d*₆): δ 172,5 (CO Leu); 155,7 (CO Boc); 137,2 (γ Phe); 129,1 (δ Phe); 128,0 (ε Phe); 126,3 (ζ Phe); 78,6 (C Boc); 53,9 (αPhe); 53,6 (α Leu); 48,0 (β Leu); 38,1 (β Phe); 28,1 (CH₃ Boc); 24,6 (γ Leu); 23,3; 22,1 (δ, δ' Leu).

tert-butil-(*S*)-1-((*S*)-1-amino-1-okso-3-fenilpropan-2-ilamino)-3-metil-1oksobutan-2-ilkarbamat (**5**e)

 $C_{19}H_{29}N_3O_4$

Mr = 363,45

bijela krutina; (0,33 g; 90 %)

t.t. = 148 °C

 $R_f = 0.33$ (PE:EtOAc:AcOH=10:5:0,5)

¹H NMR (300 MHz, DMSO-*d*₆): δ 7,75 (d, ${}^{3}J_{\text{NH,H}}$ = 7,7 Hz, 1H, NH Phe); 7,30–7,14 (m, 5H, δ, ε, ξ Phe); 7,32; 7,02 (br s, 2H, CONH₂); 6,64 (d, ${}^{3}J_{\text{NH,H}}$ = 8,0 Hz, 1H, NH Val); 4,60–4,35

(m, 1H, α Phe); 3,75–3,60 (m, 1H, α Val); 2,96–2,83 (dd, ${}^{3}J_{H,H} = 8,5$ Hz, ${}^{2}J_{H,H} = 13,8$ Hz, 2H, β , β' Phe); 1,75–1,68 (m, 1H, β Val); 1,37 (s, 9H, CH₃ Boc); 0,72–0,68 (d, ${}^{3}J_{H,H} = 6,6$ Hz, 6H, γ , γ' Val).

¹³C NMR (75 MHz, DMSO-*d*₆): δ 173,2 (CO Val); 156,3 (CO Boc); 137,0 (γ Phe); 129,2 (δ Phe); 128,0 (ε Phe); 126,2 (ζ Phe); 78,6 (C Boc); 60,2 (α Val); 54,0 (α Phe); 37,6 (β Phe); 30,7 (β Val); 28,6 (CH₃ Boc); 19,1; 18,1 (γ, γ' Val).

tert-butil-(*S*)-1-((*S*)-1-amino-1-okso-3-fenyipropan-2-ilamino)-1-oksopropan-2ilkarbamat (**5f**)

 $C_{17}H_{25}N_{3}O_{4} \\$

 $M_{\rm r} = 335,40$

bijela krutina; (0,24 g; 72 %)

t.t. = 157 °C

 $R_f = 0,14$ (PE:EtOAc:AcOH=10:5:0,5)

¹H NMR (300 MHz, DMSO-*d*₆): δ 7,65 (d, ³*J*_{NH,H} = 7,8 Hz, 1H, NH Phe); 7,25–7,15 (m, 5H, δ, ε, ζ Phe); 7,00 (d, ³*J*_{NH,H} = 6,4 Hz, 1H, NH Ala); 7,45–7,10 (br s, 2H, CONH₂); 4,43 (m, 1H, α Phe); 3,87 (m, 1H, α Ala), 3,04–2,91 (m, 2H, β, β' Phe); 1,36 (s, 9H, CH₃ Boc); 1,07 (d, ³*J*_{H,H} = 6,8 Hz, 3H, β Ala).

¹³C NMR (75 MHz, DMSO-*d*₆): δ 172,6 (COPhe); 172,3 (CO Ala); 156,6 (CO Boc); 137,1 (γ
Phe); 129,0 (δ Phe); 128,1 (ε Phe); 126,3 (ζ Phe); 78,1 (C Boc); 53,2 (α Phe); 47,3 (α Ala);
36,7 (β Phe); 28,1 (CH₃ Boc); 18,0 (β Ala).

3.3.2. Priprava tripeptida (6)

 N^{α} -benzil- N^{β} -Boc-L-aminokiselina (0,5 mmol) otopljena je u suhom DMF, te su dodani NMM (0,5 mmol), BOP (0,55 mmol) i HOBt (0,55 mmol). Nakon miješanja od 30 min dokapana je otopina dipeptida (0,5 mmol) i NMM (0,5 mmol) prethodno otopljena u suhom DMF (1 mL). Reakcijska smjesa je miješana na sobnoj temperaturi preko noći. Otapalo je upareno, a ostatak je čišćen brzom tekućinskom kromatografijom.

<u> N^{α} -benzil- N^{β} -Boc-Leu-Leu-Phe-OH (**6a**)</u>

 $C_{33}H_{48}N_4O_6$

 $M_{\rm r} = 596,76$

žuto ulje; (56 mg; 19 %)

 $R_f = 0,66$ (PE:EtOAc:AcOH=5:5:0,5)

¹H NMR (600 MHz; DMSO-*d*₆): δ 8,29 (d; ³*J*_{NH;H} = 7,9 Hz; 1H; NH Phe); 7,88 (d; ³*J*_{NH;H} = 8,8 Hz; 1H; NH); 7,78 (br s; 1H; NH); 7,65–7,55 (m; 5H; Bn); 7,26–7,16 (m; 5H δ; ε; ξ Phe); 4,53 (m; 1H; α Phe); 4,43 (m; 1H; α Leu); 4,34 (m; 1H; α hLeu); 3,79 (s; 2H; CH₂ Bn); 3,00–2,89 (m; 2H β; β' Phe); 1,53 (m; 3H; β; γ Leu); 1,42–1,34 (m; 3H; β; γ hLeu); 1,33–1,25(m; 9H CH₃ Boc); 0,84–0,74 (m; 12H; δ; δ'; Leu; hLeu).

¹³C NMR (151 MHz; DMSO-*d*₆): δ 172,9; 171,6; 170,4 (CO Phe; Leu; hLeu); 154,9 (CO Boc); 137,6 (CBn); 137,4 (γ Phe); 133,1; 132,4; 131,4 (CH Bn); 129,1; 128,1; 127,0 (δ; ε; ζ Phe); 78,2 (α hLeu); 60,1 (α Phe); 53,2 (CH₂ Bn); 50,7 (α Leu); 37,0 (β Leu); 36,8 (β Phe); 36,6 (β hLeu); 28,0 (CH₃ Boc); 24,2 (γ hLeu); 23,8 (γ Leu); 23,0 (δ hLeu); 22,8 (δ Leu); 21,7 (δ' hLeu); 21,4 (δ' Leu).

HRMS (MALDI-TOF/TOF): izračunato za $C_{33}H_{48}N_4O_6$ [M + Na]⁺ 619,3466; nađeno 619.3446.

N^{α} -benzil- N^{β} -Boc-Val-Val-Phe-OH (**6b**)

 $C_{31}H_{44}N_4O_6$

 $M_{\rm r} = 568,70$

žuto ulje; (66 mg; 12 %)

 $R_f = 0,50$ (PE:EtOAc:AcOH=10:5:0,5)

¹H NMR (600 MHz; DMSO-*d*₆): δ 7,62–7,56 (m; 5H; Bn); 7,45–7,24 (m; 5H; δ; ε; ξ Phe); 4,43 (m; 1H; α Phe); 4,33–4,12 (m; 2H; α Val; hVal); 3,84–3,66 (m; 2H; CH₂ Bn); 3,05–2,95 (m; 2H; β Phe); 2,02–1,85 (m; 2H; β Val; hVal); 1,29–1,17(m; 9H; CH₃ Boc); 0,93–0,70 (m; 12H; γ ; γ' Val; hVal).

¹³C NMR (151 MHz; DMSO-*d*₆): δ 172,7; 170,6; 163,8 (CO Phe; Val; hVal); 154,3 (CO Boc); 137,5 (C Bn); 137,4 (γ Phe); 133,1; 132,4; 131,4 (CH; Bn); 128,7; 128,0; 127,8 (δ; ε; ζ Phe); 78,6 (C Boc); 78,1 (α hVal); 60,8 (α Phe); 57,3 (CH₂ Bn); 53,1 (α Val); 36,6 (β Phe); 34,7 (β hVal); 30,4 (β Val); 28,0 (CH₃ Boc); 19,3; 18,8 (γ; γ' hVal); 18,3; 17,9 (γ; γ' Val).

HRMS (MALDI-TOF/TOF): izračunato za $C_{31}H_{44}N_4O_6 [M + K]^+ 607,2892$; nađeno 607,291.

<u> N^{α} -benzil- N^{β} -Boc-Leu-Leu-Phe-OEt (**6c**)</u>

 $C_{35}H_{52}N_4O_6\\$

 $M_{\rm r} = 624,81$

žuto ulje; (32 mg; 10 %)

 $R_f = 0,75$ (PE:EtOAc:AcOH=10:5:0,5)

¹H NMR (600 MHz; DMSO-*d*₆): δ 8,57 (d; ³*J*_{NH;H} = 7,4 Hz; 1H; NH); 8,32 (d; ³*J*_{NH;H} = 7,2 Hz; 1H; NH); 7,79 (d; ³*J*_{NH;H} = 7,5 Hz; 1H; NH); 7,42–7,08 (m; 10H; Bn; δ; ε; ξ Phe); 4,50–4,33 (m; 3H; α Phe; CH₂ OEt); 4,07–3,95 (m; 2H; CH₂ Bn); 3,80 (m; 1H; α Leu); 3,48–3,32 (m; 1H; α hLeu); 3,07–2,90 (m; 2H; β; β' Phe); 1,66–1,40 (m; 6H; β; β'; γ Leu; hLeu); 1,40–1,17 (m; 9H; CH₃ Boc); 1,12–1,06 (m; 3H; CH₃ OEt); 0,93–0,75 (m; 12H; δ; δ' Leu; hLeu).

¹³C NMR (151 MHz; DMSO-*d*_δ): δ 171,8; 171,2; 170,6 (CO Phe; Leu; hLeu); 156,0 (CO Boc); 137,5 (C Bn); 137,1 (γ Phe); 129,0; 128,8; 128,1 (CH Bn); 127,8; 127,0; 126,5 (δ; ε; ζ Phe); 78,2 (α hLeu); 76,3 (C Boc); 60,4 (CH₂ OEt); 60,1 (CH₂ Bn); 53,7 (α Leu); 53,5 (α Phe); 51,4 (β Phe); 40,1 (β hLeu); 36,4 (β Leu); 28,0 (CH₃ Boc); 24,2 (γ hLeu); 24,0 (γ Leu); 22,9; 22,8 δ; δ' hLeu); 21,5; 21,2 (δ; δ' Leu); 13,8 (CH₃ OEt).

HRMS (MALDI-TOF/TOF): izračunato za $C_{35}H_{52}N_4O_6$ [M + Na]⁺ 647,3779; nađeno 647,3766.

 $C_{33}H_{48}N_4O_6\\$

 $M_{\rm r} = 596,76$

žuto ulje; (82 mg; 27 %)

 $R_f = 0,71$ (PE:EtOAc:AcOH=10:5:0,5)

¹H NMR (600 MHz; DMSO-*d*₆): δ 8,65 (d; ³*J*_{NH;H} = 7,2 Hz; 1H; NH); 8,27 (d; ³*J*_{NH;H} = 7,3 Hz; 1H; NH); 7,65 (d; ³*J*_{NH;H} = 7,4 Hz; 1H; NH); 7,66–7,53 (m; 5H; Bn); 7,31–7,16 (m; 5H; δ; ε; ξ Phe); 4,45 (m; 2H; CH₂ OEt); 4,31–4,24 (m; 1H; α Phe); 4,23–4,17 (m; 1H; α Val); 4,17–4,10 (m; 1H; α hVal); 4,01 (m; 2H; CH₂ Bn); 3,01–2,94 (m; 2H; β; β' Phe); 1,93 (m; 1H; β hVal); 1,72 (m; 1H; β Val); 1,65–1,25 (m; 9H; CH₃ Boc); 1,16–1,00 (m; 6H; γ; γ' Val); 0,94–0,86 (m; 3H; CH₃ OEt); 0,85–0,75 (m; 6H; γ; γ' hVal).

¹³C NMR (151 MHz; DMSO-*d*₆): δ 171,2; 170,7; 160,7 (CO Phe; Val; hVal); 156,6 (CO Boc); 133,1 (Bn); 132,4 (γ Phe); 132,1; 131,5; 131,4 (CH Bn); 129,0; 128,7; 128,1 (δ; ε; ζ Phe); 60,4 (α hVal); 57,2 (α Val); 55,5 (α Phe); 53,5 (CH₂ OEt); 47,5 (β Bn); 36,5 (β Phe); 33,3 (β hVal); 30,7 (β Val); 28,0 (CH₃ Boc); 25,3; 24,4 (γ; γ' hVal); 19,1; 17,9 (γ; γ' Val); 13,9 (CH₃ OEt).

HRMS (MALDI-TOF/TOF): izračunato za $C_{33}H_{48}N_4O_6$ [M + Na]⁺ 619,3466; nađeno 619,3478.

 $C_{33}H_{49}N_5O_5$

 $M_{\rm r} = 595,77$

žuto ulje; (212 mg; 71 %)

 $R_f = 0,48$ (PE:EtOAc:AcOH=7:5:0,5)

¹H NMR (600 MHz; CD₃OD): δ 7,42–7,04 (m; 12H; δ; ε; ξ Phe; Bn; CONH₂); 4,65–4,58 (m; 1H; α Phe); 4,40; 4,19 (m; 1H; α Leu); 3,46–3,32 (m; 1H; α hLeu); 3,14–2,77 (m; 2H; β;β' Phe); 1,87–1,45 (m; 6H; β; β'; γ Leu; hLeu); 1,29 (br s; 9H; Boc); 0,94–0,80 (m; 12H; δ; δ' Leu; hLeu).

¹³C NMR(151 MHz; CD₃OD): δ 175,8; 174,4; 172,6 (CO Phe; Leu; hLeu); 158,7 (CO Boc); 137,9 (γ Phe); 137,0; 129,6; 129,5; 129,4 (Bn); 129,1 (ε Phe); 128,5 (δ Phe); 127,8 (ε Phe); 80,8 (C Boc); 61,8 (CH₂ Bn); 55,6; 55,5 (α Phe); 53,8; 53,0 (α Leu); 49,7 (α hLeu); 41,4; 41,1 (β Leu); 40,2; 40,1 (β Phe); 38,9; 38,3 (β hLeu); 28,6 (CH₃ Boc); 25,8; 25,4 (γ Leu; hLeu); 23,4; 23,0; 22,5; 21, 8 (δ; δ' Leu; hLeu).

HRMS (MALDI-TOF/TOF): izračunato za $C_{33}H_{49}N_5O_5$ [M + Na]⁺ 618,3625; nađeno 618,3618.

 $C_{31}H_{45}N_5O_5\\$

 $M_{\rm r} = 567,72$

žuto ulje; (195 mg; 69 %)

 $R_f = 0,46$ (PE:EtOAc:AcOH=5:5:0,5)

¹H NMR (600 MHz; DMSO-*d*₆): δ 8,11; 7,96; 7,75 (br d; 3H; NH Phe; Val; hVal); 7,42-7,19 (m; 10H; Bn; Phe); 7,16 (br s; 2H; NH₂); 4,49 (m; 1H; α Phe); 4,22 (m; 1H; α Val); 3,76 (m; 2H; CH₂ Bn;); 3,08-2,91 (m; 2H; β ; β ' Phe); 2,81 (m; 1H; α hVal); 1,96 (m; 1H; β Val); 1,86 (m; 1H; β hVal); 1,32-1,13 (br s; 9H CH₃ Boc); 1,07-0,65 (m; 12H; γ ; γ ' Val; hVal).

¹³C NMR (151 MHz; DMSO-*d*₆): δ 172,6 (CO Phe); 170,3; 170,1 (CO Val; hVal); 163,7 (CO Boc); 137,7 (γ Phe); 137,6 (C Bn); 132,0; 131,5; 128,7 (CH Bn); 128,0; 127,8; 126,9; (δ; ε; ζ Phe); 78,1 (C Boc); 60,3 (CH₂ Bn); 57,6 (α Val); 53,5 (α Phe); 37,6 (β Phe); 30,2 (β Val); 28,0 (β hVal); 19,3 (CH₃ Boc); 18,9; 18,3 (γ; γ' Val; hVal).

HRMS (MALDI-TOF/TOF): izračunato za $C_{31}H_{45}N_5O_5$ [M + Na]⁺ 590,3313; nađeno 590,3334.

 $C_{27}H_{37}N_5O_5\\$

 $M_{\rm r} = 511,61$

žuto ulje; (176 mg; 69 %)

 $R_f = 0,31$ (EtOAc:EtOH:AcOH:H₂O=70:10:2:2)

¹H NMR(600 MHz; DMSO-*d*₆): δ 7,40–7,35 (br s; 3H, NH Ala; hAla; Phe); 7,30–7,18 (m; 10H; Bn; Phe); 7,15(s; 2H; NH₂); 4,41 (m; 1H; α Phe); 4,22 (m; 1H; α Ala); 3,82 (s; 2H; CH₂ Bn); 3,57 (m; 1H; α hAla); 3,04–2,81 (m; 2H; β ; β ' Phe); 1,40 (m; 6H; β Ala; hAla); 1,22 (s; 9H; CH₃ Boc).

¹³C NMR (151 MHz; DMSO-*d*₆): δ 172,6 (CO Phe); 171,9 (CO; Ala); 171,6 (CO; hAla); 137,8 (Bn); 136,9 (γ Phe); 129,2; 128,2; 127,9 (CH Bn); 127,8; 127,0; 126,8; (δ; ε; ζ Phe); 78,5 (C Boc); 62,2 (α hAla); 53,6 (α Phe); 48,0 (α Ala); 37,4 (β Phe); 28,2 (CH₃ Boc); 21,0 (β Ala); 17,8 (β hAla).

HRMS (MALDI-TOF/TOF): izračunato za $C_{27}H_{37}N_5O_5$ [M + Na]⁺ 534,2686; nađeno 534,2699.
3.3.3. Priprava N^{α} -Bn- N^{β} -Boc-L-Aaa-Gly-OH (7)

 N^{α} -benzil- N^{β} -Boc-L-Aaa-OH (Aaa = Leu, Val) (0.45 mmol) i HOSu (0,5 mmol) otopljeni su u 3 mL suhog DMF te je otopina ohlađena na 0 °C. Polako je dokapan DCC (0,5 mmol) prethodno otopljen u 2 mL suhog DMF. Nakon 30 min reakcija je miješana na sobnoj temperaturi uz praćenje tijeka reakcije tankoslojnom kromatografijom. Nastali talog je profiltriran, a filtrat je dokapan u otopinu glicina (0,45 mmol) i KHCO₃ (0,45 mmol) u 5 mL vode. Reakcijska smjesa je dalje miješana na sobnoj temperaturi preko noći. Otapalo je upareno, a ostatak je čišćen brzom tekućinskom kromatografijom.

<u> N^{α} -benzil- N^{β} -Boc-Leu-Gly-OH (**7a**)</u>

 $C_{20}H_{31}N_3O_5$

 $M_{\rm r} = 393,48$

žuto ulje; (117 mg; 52 %)

 $R_f = 0.57$ (EtOAc:PE:AcOH=10:5:0.5)

¹H NMR (600 MHz; CDCl₃): δ 7,57–7,03 (m; 5H; Bn); 5,52 (s; 2H; CH₂ Bn); 4,12 (br s; 2H; α Gly); 3,46–3,36 (m; 1H; α Leu); 1,95–1,88 (m; 2H; β Leu); 1,59 (m; 1H; γ Leu); 1,54–1,21 (m; 9H; CH₃ Boc); 1,15–0,75 (m; 6H; δ; δ' Leu).

¹³C NMR (151 MHz; CDCl₃): δ 175,8 (CO Gly); 163,1 (CO Leu); 157,9 (CO Boc); 129,7; 128,9; 128,0 (CH Bn); 64,0 (α Leu); 61,3 (CH₂ Bn); 49,7 (α Gly); 36,9 (β Leu); 28,5 (CH₃ Boc); 25,2 (γ Leu); 21,1; 21,0 (δ; δ' Leu).

HRMS (MALDI-TOF/TOF): izračunato za $C_{20}H_{31}N_3O_5$ [M + Na]⁺ 416,2156; nađeno 416,2166.

<u> N^{α} -benzil- N^{β} -Boc-Val-Gly-OH (**7b**)</u>

 $C_{19}H_{29}N_3O_5$

 $M_{\rm r} = 379,45$

žuto ulje; (82 mg, 46 %)

 $R_f = 0,70$ (PE:EtOAc:AcOH=7:5:0,5)

¹H NMR (600 MHz; DMSO-*d*₆): δ 8,51–7,09 (m; 5H; Bn); 5,09 (s; 2H; CH₂ Bn); 3,96–3,68 (m; 1H; α Val); 3,60–2,96 (m; 2H α Gly); 1,39 (m; 1H; β Val); 1,32–1,18 (m; 9H; CH₃ Boc); 1,08–0,99 (m; 6H; γ; γ' Val).

¹³C NMR (151 MHz; DMSO-*d*₆): δ 173,5 (CO Gly); 171,0 (CO Val); 156,6 (CO Boc); 128,9; 127,8; 126,8 (CH Bn); 78,6 (C Boc); 76,8 (α Val); 65,5 (CH₂ Bn); 47,5 (α Gly); 28,0 (CH₃ Boc); 25,0 (β Val); 19,3; 18,2 (γ; γ' Val).

HRMS (MALDI-TOF/TOF): izračunato za $C_{19}H_{29}N_3O_5$ [M + Na]⁺ 402,1999; nađeno 402,2005.

3.3.4. Priprava N^{α} -Bn-L-hLeu-OMe (8)

 N^{α} -benzil- N^{β} -Boc-L-Leu-OH (100 mg, 0,3 mmol) otopljen je u suhom DMF (10 mL), te je dodan KHCO₃ (60 mg, 0,59 mmol), a zatim polako CH₃I (30 µL, 0,48 mmol). Reakcija je miješana na sobnoj temperaturi preko noći. U reakcijsku smjesu je dodana voda, a produkt je ekstrahiran s EtOAc.

žuto ulje; (102 mg, 95 %)

 $R_f = 0,64$ (PE:EtOAc:AcOH=15:5:0,5)

MS–ESI: m/z 373 $[M + Na]^+$

Deprotekcija:

Produkt je otopljen u sustavu TFA: $H_2O=9:1$, te je reakcija miješana na sobnoj temperaturi 60 min. Otapalo je upareno, a ostatak je sušen na vakuum pumpi.

 $C_{14}H_{22}N_2O_2$

 $M_{\rm r} = 250,34$

3.3.5. Priprava N^{α} -Bn- N^{β} -Boc-L-Leu-NH- N^{α} -Bn-Leu-OMe (9)

Boc-NH-N(Bn)-Leu-OH (100 mg; 0,3 mmol) otopljen je u suhom DMF te je dodan NMM (55 μ L; 0,50 mmol; d=0,92; 1,5 ekv.). Reakcija je ohlađena na 0 °C te je dodan HATU (125 mg; 0,33 mmol; 1,1 ekv), dokapana je amino komponenta TFA x H-NH-N(Bn)-Leu-OH (100 mg; 0,3 mmol) uz dodatak NMM (55 μ L; 0,50 mmol; d=0,92; 1,5 ekv.). Miješanje nastavljeno preko noći na sobnoj temp. Po završetku reakcije dodana je zas. vod. otop. NaHCO₃ i miješano je još 10 min. Na kraju reakcija je razrijeđena s H₂O i ekstrahirana 3 x s Et₂O. Spojeni organski slojevi isprani su sa zas. vod. otop. NaCl, sušeni nad MgSO₄ i upareni. Ostatak je čišćen brzom tekućinskom kromatografijom u sustavu PE:EtOAc:AcOH=10:5:0,5 pri čemu je dobiven produkt (80 mg; 47 %).

 $C_{32}H_{48}N_4O_5\\$

 $M_{\rm r} = 568,75$

 $R_f = 0,58$ (PE: EtOAc:AcOH=10:5:0,5)

MS-ESI: *m/z* 569,3 [M+H]⁺; *m/z* 591,3 [M+Na]⁺

¹H NMR (600 MHz; CD₂Cl₂-*d*₆) δ / ppm 7,49 – 7,14 (H_{ar}; Bn; m; 10H); 6,86 (NH; br s; 1H); 5,83 (NH; d; *J* = 10,5 Hz; 1H); 3,99 – 3,94 (α; hLeu; hLeu; m; 2H); 3,78 – 3,62 (CH₂; Bn; CH₃; O-CH₃; m; 7H); 1,63 – 1,56 (β; hLeu; hLeu; m; 4H); 1,38 – 1,31 (Boc; m; 9H); 0,99 – 0,91 (γ; hLeu; hLeu; δ; δ'; δ; m; 11H); 0,88 – 0,87 (δ; hLeu; m; 3H),

¹³C NMR (151 MHz; CD₂Cl₂- d_6) δ / ppm 172,8 (CO); 172,7 (CO); 137,1 (C; Bn); 137,0 (C; Bn); 128,9 – 126,0 (CH_{ar}; Bn); 80,9 (α; hLeu); 66,0 (CH₂; Bn); 60,6 (α; hLeu); 53,7 (CH₂;

Bn); 50,9 (CH₃; OCH₃); 38,7-38,5 (β; hLeu; hLeu); 27,4 (Boc); 24,2-23,7 (γ; h Leu; hLeu); 22,1–20,9 (δ; δ'; hLeu; hLeu),

HRMS (MALDI-TOF/TOF): izračunato za $C_{32}H_{48}N_{46}O_5$ [M + K]⁺ 607,3256; nađeno 607,3256.

3.3.6. Priprava Boc-Lys(Boc)-Leu-OH (10)

Boc-Lys(Boc)-OH (1 g; 2,9 mmol) otopljen je u suhom DMF te je dodan DCC (890 mg; 4,35 mmol; 1,5 ekv.) i otopina je ohlađena na 0 °C, Uz miješanje dodan je HOSu (500 mg; 4,35 mmol; 1,5 ekv.). Nakon 30 min miješanja na 0 °C, reakcija je nastavljena na sobnoj temperaturi. Nastali talog uree je odfiltriran, a filtrat je dokapan u otopinu amino komponente L-Leu-OH (380 mg; 2,9 mmol) uz bazu KHCO₃ (580 mg; 5,8 mmol; 2 ekv.). Miješanje je nastavljeno preko noći na sobnoj temperaturi. Po završetku reakcije smjesa je razrijeđena s vodom i ekstrahirana s Et₂O, organski sloj je uparen, a ostatak je čišćen brzom tekućinskom kromatografijom u sustavu EtOAc:PE:AcOH=5:5:0,5 pri čemu je dobiven produkt u obliku ulja (870 mg; 67 %).

 $C_{22}H_{41}N_3O_7$

 $M_{\rm r} = 459,58$

MS-ESI: *m/z* 260,2 [M-200]⁺; *m/z* 460,3 [M+H]⁺; *m/z* 919,6 [2M+H]⁺

¹H NMR (300 MHz, CDCl₃) δ / ppm 4,57 (α, Leu, m, 1H); 4,11 (α, Lys, m, 1H); 3,08 (ε, Lys, d, *J* = 5,0 Hz, 2H); 1,75 – 1,53 (β, δ, Lys, β, Leu, m, 6H); 1,43 – 1,41 (Boc, m, 18H); 1,33 (γ, Lys, d, *J* = 15,6 Hz, 2H); 1,25 – 1,10 (γ, Leu, m, 1H); 0,95 – 0,89 (δ, δ', Leu, m, 6H)

¹³C NMR (75 MHz, CDCl₃) δ / ppm 175,5 (CO, Leu); 172,5 (CO, Lys); 156,0 (CO, Boc); 79,4 (C, Boc); 54,4 (α, Lys); 49,5 (α, Leu); 41,3 (ε, Lys); 40,1 (β, Leu); 29,6 (δ, Lys); 28,5 (Boc); 25,6 (β, Lys); 24,9 (γ, Lys); 22,6 (γ, Leu); 21,8 (δ, Leu); 20,9 (δ', Leu)

3.3.7. Priprava Boc-Leu-Gly-OH (11)

Boc-Leu-OH (1 g; 4,3 mmol) otopljen je u suhom DMF te je dodan DCC (1,33 g; 6,45 mmol; 1,5 ekv.) i otopina je ohlađena na 0 °C. Uz miješanje dodan je HOSu (743 mg; 6,45 mmol; 1,5 ekv.). Nakon 30 min miješanja na 0 °C, reakcija je nastavljena na sobnoj temperaturi. Nastali talog uree je odfiltriran, a filtrat je dokapan u otopinu amino komponente Gly-OH (323 mg; 4,3 mmol) uz bazu KHCO₃ (861 mg; 8,6 mmol; 2 ekv.). Miješanje je nastavljeno preko noći na sobnoj temperaturi. Po završetku reakcije smjesa je razrijeđena s vodom i ekstrahirana s Et₂O, organski sloj je uparen, a ostatak je čišćen brzom tekućinskom kromatografijom u sustavu otapala PE:EtOAc:AcOH=5:5:0,5 pri čemu je dobiven produkt u obliku ulja (968 mg; 78 %).

 $C_{13}H_{24}N_{2}O_{5} \\$

 $M_{\rm r} = 288,34$

MS-ESI: *m/z* 189,2 [M-100]⁺; *m/z* 289,2 [M+H]⁺; *m/z* 599,4 [2M+Na]⁺

¹H NMR (600 MHz, CDCl₃) δ / ppm 4,30 (α, Leu, s, 1H); 4,04 (α, Gly, m, 2H); 1,73 – 1,64 (β, Leu, m, 2H); 1,53 – 1,47 (γ, Leu, m, 1H); 1,43 (Boc, s, 9H); 0,95 – 0,92 (δ, δ', m, 6H)

¹³C NMR (151 MHz, CDCl₃) δ / ppm 175,8 (CO, Gly); 173,4 (CO, Leu); 157,9 (CO, Boc);
78,8 (C, Boc); 52,9 (α, Leu); 41,6 (α, Gly); 41,5 (β, Leu); 28,4 (Boc); 24,8 (γ, Leu); 23,0 (δ, Leu); 22,1 (δ', Leu)

3.3.8. Priprava Boc-Leu-Gly-Phe-OH (12)

Boc-Leu-Gly-OH (200 mg; 0,7 mmol) otopljen je u suhom DMF te je dodan DCC (227 mg; 1,1 mmol; 1,5 ekv.) i otopina je ohlađena na 0 °C. Uz miješanje dodan je HOSu (127 mg; 1,1 mmol; 1,5 ekv.). Nakon 30 min miješanja na 0 °C, reakcija je nastavljena na sobnoj temperaturi. Nastali talog uree odfiltriran, a filtrat je dokapan u otopinu amino komponente L-Phe-OH (127 mg; 1,1 mmol) uz bazu KHCO₃ (140 mg; 1,4 mmol; 2 ekv.). Miješanje nastavljeno preko noći na sobnoj temperaturi. Po završetku reakcije smjesa je razrijeđena s vodom i ekstrahirana s Et₂O, organski sloj je uparen, a ostatak je čišćen brzom tekućinskom kromatografijom u sustavu otapala EtOAc:PE:AcOH=10:5:0,5 pri čemu je dobiven produkt (156 mg; 51 %).

 $C_{22}H_{33}N_3O_6$

 $M_{\rm r} = 435,51$

 $R_f = 0.38$ (EtOAc:PE:AcOH=10:5:0.5)

MS-ESI: *m/z* 336,3 [M-100]⁺; *m/z* 871,6 [2M+H]⁺; *m/z* 893,6 [2M+Na]⁺

¹H NMR (300 MHz, CDCl₃) δ / ppm 7,25 – 7,12 (H_{ar}, Phe, m, 5H); 4,77 (α, Phe, m, 1H); 4,17 (α, Leu, m, 1H); 4,01 (α, Gly, d, *J* = 20,5 Hz, 2H); 3,20 (β, Phe, m, 2H); 1,65 – 1,53 (β, Leu, m, 2H); 1,44 (Boc, m, 9H); 1,24 – 1,10 (γ, Leu, m, 1H); 0,92 (δ, δ', Leu, dd, ²*J* = 6,2 Hz, 6H)

¹³C NMR (75 MHz, CDCl₃) δ / ppm 175,5 (CO, Leu); 174,3 (CO, Gly); 173,7 (CO, Phe); 156,1 (CO, Boc); 136,2 (C_{ar}, Phe); 129,5; 129,0; 128,5; 127,0; 127,2 (CH_{ar}, Phe); 53,8 (α, Phe); 49,6 (α, Leu); 43,05 (α, Gly); 41,6 (β, Leu); 37,5 (β, Phe); 28,4 (Boc); 24,8 (γ, Leu); 23,1 (δ, Leu); 20,8 (δ', Leu)

3.3.9. Priprava Boc-Lys(Boc)-Leu-Leu-Gly-Phe-OH (13)

Boc-Lys(Boc)-Leu-OH (200 mg; 0,44 mmol) otopljen je u suhom DMF te je dodan DCC (136 mg; 0,66 mmol; 1,5 ekv.) i otopina je ohlađena na 0 °C. Uz miješanje dodan je HOSu (76 mg; 0,66 mmol; 1,5 ekv.). Nakon 30 min miješanja na 0 °C, reakcija je nastavljena na sobnoj temperaturi. Nastali talog uree je odfiltriran, a filtrat je dokapan u otopinu amino komponente TFA-Leu-Gly-Phe-OH (190 mg; 0,44 mmol) uz bazu NMM (97 μ L; 0,88 mmol; 2 ekv.). Miješanje je nastavljeno preko noći na sobnoj temperaturi. Po završetku reakcije smjesa je razrijeđena s vodom i ekstrahirana s Et₂O, organski sloj je uparen, a ostatak je čišćen brzom tekućinskom kromatografijom u sustavu otapala EtOAc:AcOH=70:2 pri čemu je dobiven produkt (116 mg; 34 %).

 $C_{39}H_{64}N_6O_{10}\\$

 $M_{\rm r} = 776,96$

 $R_f = 0.33$ (EtOAc:AcOH=70:2)

MS-ESI: *m/z* 777,7 [M+H]⁺; *m/z* 799,6 [M+Na]⁺; *m/z* 1576,0 [2M+Na]⁺

Deprotekcija amino skupine:

Boc-Lys(Boc)-Leu-Leu-Gly-Phe-OH otopljen je u sustavu TFA:H₂O=9:1. Reakcija je miješana 1 sat. Tijek reakcije praćen je sustavom EtOAc:EtOH:H₂O:AcOH=70:20:2:2. Kiselina je uparena, a dobiveni produkt je čišćen RP-HPLC metodom <u>A</u>.

 $C_{29}H_{48}N_6O_6$

 $M_{\rm r} = 576,73$

MS-ESI: *m/z* 577,6 [M+H]⁺

 R_t (A)= 16,871 min [12 mg]

¹H NMR (300 MHz, DMSO-*d*₆) δ / ppm 8,50 (NH, d, J = 8,2 Hz, 1H); 8,13 (NH, dd, ²J = 8,0, 2H); 8,01 – 7,94 (NH, m, 1H); 7,81 (NH₂, s, 2H); 7,32 – 7,18 (H_{ar}, Phe, m, 5H); 4,50 – 4,42 (α, Phe, m, 1H); 4,39 (α, Leu, m, 1H); 4,34 – 4,26 (α, Leu, m, 1H); 3,80 – 3,67 (α, Gly, m, 2H); 3,61 (α, Lys, m, 1H); 3,06-2,91 (β, Phe, dd, ²J = 13,8, 2H); 2,74 (ε, Lys, m, 2H); 1,74 – 1,57 (γ, γ, Leu, Leu, β, Lys, m, 4H); 1,57 – 1,42 (β, β, Leu, Leu, δ, Lys, m, 6H); 1,34 (δ, Lys, m, 2H); 0,94 – 0,79 (δ, δ', Leu, m, 12H)

¹³C NMR (75 MHz, DMSO-*d*₆) δ / ppm 172,6 (CO, Phe); 172,0 (CO, Leu); 171,4 (CO, Leu); 168,4 (CO, Lys); 168,2 (CO, Gly); 137,3 (C_{ar}, Phe); 129,1; 128,6; 128,0; 127,8; 126,4 (CH_{ar}, Phe); 53,4 (α, Phe); 51,7 (α, Lys); 51,1 (α, Leu); 50,9 (α, Leu); 41,5 (α, Gly); 40,8 (ε, Lys); 40,5 (β, Leu); 36,9 (β, Leu); 30,4 (β, Phe); 26,4 (β, Lys); 25,2 (δ, Lys); 24,1 (δ, Leu); 23,9 (δ', Leu); 23,1 (δ, Leu); 23,0 (δ', Leu); 21,4 (γ, Leu); 21,32 (γ, Leu); 20,8 (γ, Lys)

3.3.10. Priprava Boc-Lys(Boc)-Leu-Leu-Gly-OH (14)

Boc-Lys(Boc)-Leu-OH (100 mg; 0,22 mmol) otopljen je u suhom DMF te je dodan NMM (24 μ L; 0,22 mmol; d=0,92; 1 ekv.) i HATU (92 mg; 0,24 mmol; 1,1 ekv.). Nakon 15 min miješanja dokapana je amino komponenta TFA⁻⁺NH₃-Leu-Gly-OH (63 mg; 0,22 mmol) uz NMM (24 μ L; 0,22 mmol; d=0,92; 1 ekv.). Miješanje je nastavljeno preko noći na sobnoj temperaturi. Po završetku reakcije otapalo je upareno, a ostatak je čišćen brzom tekućinskom kromatografijom u sustavu otapala EtOAc:AcOH=70:2 pri čemu je dobiven produkt (54 mg; 39 %).

 $C_{30}H_{55}N_5O_9$

 $M_{\rm r} = 629,79$

MS-ESI: *m/z* 630,6 [M+H]⁺; *m/z* 652,3 [M+Na]⁺; *m/z* 1282,1 [2M+Na]⁺

3.3.11. Priprava Boc-Lys(Boc)-Leu-Leu-Gly-AlaP-OMe (15)

Boc-Lys(Boc)-Leu-Leu-Gly-OH (32 mg; 0,051 mmol) otopljen je u suhom DMF te je dodan NMM (8 μ L; 0,051 mmol; d=0,92; 1 ekv.) i HATU (22 mg; 0,056 mmol; 1,1 ekv.). Nakon 15 min miješanja dokapana je amino komponenta TFA⁻NH₃⁺-AlaP-OMe (20 mg; 0,051 mmol) uz NMM (8 μ L; 0,051 mmol; d=0,92; 1 ekv.). Miješanje je nastavljeno preko noći na sobnoj temperaturi, Po završetku reakcije otapalo je upareno, a ostatak je čišćen brzom tekućinskom kromatografijom u sustavu otapala EtOAc:PE:EtOH=3:1:0,5 pri čemu je dobiven produkt (25 mg; 54 %).

 $C_{48}H_{71}N_7O_{10}\\$

 $M_{\rm r} = 906, 12$

MS-ESI: *m*/*z* 906,5 [M+H]⁺

¹H NMR (600 MHz, MeOD) δ/ ppm 7,63 - 7,56 (H_{ar}, AlaP, m, 7H); 4,89 (α, AlaP, m, 1H); 4,10 (α, Lys, m, 1H); 3,96 – 3,91 (α, Leu, m, 1H); 3,82 (α, Leu, m, 1H); 3,74 (α, Gly, s, 2H); 3,35 (CH₃, OMe, s, 6H); 3,06 (β, AlaP, m, 2H); 3,03 (ε, Lys, m, 2H); 1,73 – 1,55 (β, δ, Lys, β, γ, Leu 2x, m, 10H); 1,45 – 1,42 (Boc 2x, m, 18H); 1,33 (γ, Lys, m, 2H); 0,99 – 0,94 (δ, δ', Leu, m, 6H); 0,90 – 0,84 (δ, δ', Leu, m, 6H)

Deprotekcija karboksilne skupine:

Boc-Lys(Boc)-Leu-Leu-Gly-AlaP-OMe (46 mg; 0,051 mmol) otopljen je u MeOH te je dodana 1M NaOH (105 μL; 0,105 mmol; 2 ekv.). Reakcija je miješana na refluksu otapala 2

sata. Tijek reakcije praćen u sustavu otapala EtOAc:PE:EtOH=3:1:0,5. Po završetku reakcije otapalo je upareno, a ostatak je otopljen u vodi te je podešen pH dodatkom 10 % limunske kis. na 3. Reakcijska smjesa je ekstrahirana s EtOAc, organski sloj je sušen nad Na₂SO₄ i uparen.

Deprotekcija amino skupine:

Boc-Lys(Boc)-hLeu-Leu-Gly-AlaP-OH je otopljen u sustavu TFA:H₂O=9:1. Reakcija je miješana 1 sat. Tijek reakcije je praćen sustavom otapala EtOAc:EtOH:H₂O:AcOH=70:20:2:2. Kiselina je uparena, a dobiveni produkt je čišćen RP-HPLC metodom <u>B</u>.

 $C_{37}H_{53}N_7O_6$

 $M_{\rm r} = 691,86$

MS-ESI: *m/z* 346,8 [M+H]²⁺; m/z 692,4 [M+H]⁺

 R_t (B)= 19,000 min [12 mg]

¹H NMR (600 MHz, MeOD) δ / ppm 8,93 (H_{ar}, AlaP, dd, ²*J* = 8,1 Hz, 2H); 8,49 (H_{ar}, AlaP, s, 1H); 8,23 – 8,16 (H_{ar}, AlaP, m, 2H); 8,02 – 7,94 (H_{ar}, AlaP, m, 2H); 4,93 (α, AlaP, m, 1H); 4,47 (α, Leu, m, 1H); 4,33 – 4,24 (α, Leu, m, 1H); 3,95 (α, Lys, m, 1H); 3,90 - 3,78 (β, AlaP, dd, ²*J* = 16,9 Hz, 2H); 3,38 (CH₃, AlaP, s, 3H); 3,36 (α, Gly, s, 2H); 2,99 (ε, Lys, m, 2H); 1,91 (β, Lys m, 2H); 1,78 – 1,69 (γ, δ, Lys, m, 4H); 1,64 (β, γ, Leu, m, 3H); 1,58 – 1,48 (β, γ, Leu, m, 3H); 1,00 – 0,86 (δ, δ', hLeu 2x, m, 12H)

¹³C NMR (151 MHz, MeOD) δ / ppm 174,9 (CO); 174,7 (CO); 174,2 (CO); 171,2 (CO); 170,0 (CO); 162,8 (C, AlaP); 160,9 (C, AlaP); 138,8 - 138,5 (CH_{ar}, AlaP); 133,5 (C, AlaP); 132,0 - 130,4 (CH_{ar}, AlaP); 125,8-125,4 (CH_{ar}, AlaP); 124,6 (C, AlaP); 54,7 (α, Lys); 53,9 (α,

Leu); 53,7 (α, Leu); 53,4 (α, AlaP); 43,2 (α, Gly); 41,7 (ε, Lys); 41,4 (β, Leu); 40,2 (β, Leu); 38,6 (β, AlaP); 32,0 (β, Lys); 28,0 (δ, Lys); 25,8 - 25,7 (δ, δ' hLeu); 23,4-23,2 (δ, δ' hLeu); 22,4 (γ, Lys); 22,0 (γ, hLeu); 21,8 (γ, hLeu)

HRMS (MALDI-TOF/TOF): izračunato C₃₇H₅₃N₇O₆ [M+H]⁺ 692,4130; nađeno 692,415

3.3.12. Priprava Boc-Lys(Boc)-hLeu-OH (16)

Boc-Lys(Boc)-OH (236 mg; 0,68 mmol) otopljen je u suhom DMF te je dodan DCC (210 mg; 1,02 mmol; 1,5 ekv.) i otopina je ohlađena na 0 °C. Uz miješanje dodan je HOSu (117 mg; 1,02 mmol; 1,5 ekv.). Nakon 30 min miješanja na 0 °C, reakcija je nastavljena na sobnoj temperaturi. Nastali talog uree je odfiltriran, a filtrat je dokapan u vodenu otopinu amino komponente hLeu-OH (100 mg; 0,68 mmol) uz KHCO₃ (136 mg; 1,36 mmol; 2 ekv). Miješanje je nastavljeno preko noći na sobnoj temperaturi. Po završetku reakcije smjesa je razrijeđena s vodom i ekstrahirana s Et₂O, organski sloj je uparen, a ostatak je čišćen brzom tekućinskom kromatografijom u sustavu otapala EtOAc:AcOH=70:2 pri čemu je dobiven produkt u obliku ulja (156 mg; 48 %).

 $C_{22}H_{42}N_4O_7$

 $M_{\rm r} = 474,59$

MS-ESI: *m/z* 275,2 [M-2Boc]⁺; *m/z* 375,2 [M-Boc]⁺; *m/z* 475,3 [M+H]⁺; *m/z* 949,5 [2M+H]⁺; m/z 971,5 [2M+Na]⁺

¹H NMR (600 MHz, CDCl₃) δ / ppm 4,83 – 4,62 (α , Lys, m, 1H); 3,83 – 3,60 (α , hLeu, m, 1H); 3,16 – 3,07 (ϵ , Lys, m, 2H); 1,90 – 1,50 (β , δ , Lys, β , hLeu, γ , hLeu, m, 8H); 1,42 (Boc, m, 18H); 1,33 (γ , Lys, m, 2H); 0,99 (δ , hLeu, d, J = 6,6 Hz, 3H); 0,96 (δ ', hLeu, d, J = 6,6 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) δ / ppm 175,4 (CO); 52,9 (α, Lys); 47,7 (α, hLeu); 40,3 (β, hLeu); 39,6 (ε, Lys); 32,3 (β, Lys); 29,8 (δ, Lys); 28,4 (Boc); 25,1 (γ, hLeu); 23,1 (γ, Lys); 22,7 (δ, hLeu); 22,1 (δ', hLeu).

3.3.13. Priprava Boc-Lys(Boc)-hLeu-Leu-OH (17)

Boc-Lys(Boc)-hLeu-OH (100 mg; 0,21 mmol) otopljen je u suhom DMF te je dodan DCC (65 mg; 0,32 mmol; 1,5 ekv.) i otopina je ohlađena na 0 °C. Uz miješanje dodan je HOSu (37 mg; 0,32 mmol; 1,5 ekv.). Nakon 30 min miješanja na 0 °C, reakcija je nastavljena na sobnoj temperaturi. Nastali talog uree je odfiltriran, a filtrat je dokapan u vodenu otopinu amino komponente L-Leu-OH (28 mg; 0,21 mmol) uz KHCO₃ (42 mg; 0,42 mmol; 2 ekv.). Miješanje je nastavljeno preko noći na sobnoj temperaturi. Po završetku reakcije smjesa je razrijeđena s vodom i ekstrahirana s Et₂O, organski sloj je uparen, a ostatak je čišćen brzom tekućinskom kromatografijom u sustavu otapala EtOAc:AcOH=70:2 pri čemu je dobiven produkt u obliku ulja (61 mg; 49 %).

 $C_{25}H_{47}N_5O_8\\$

 $M_{\rm r} = 587,75$

 $R_f = 0,73$ (EtOAc:AcOH=70:2)

MS-ESI: *m*/*z* 588,7 [M+H]⁺; *m*/*z* 1176,1 [2M+H]⁺

¹H NMR (600 MHz, CDCl₃) δ / ppm 5,27 (α , Leu, m, 1H); 3,88 – 3,59 (α , Lys, m, 1H); 3,46 (α , hLeu, m, 1H); 3,12 (ϵ , Lys, m, 2H); 1,75 – 1,68 (β , Lys, m, 2H); 1,67 – 1,58 (δ , Lys, m, 2H); 1,58 – 1,51 (β , Leu, hLeu, m, 2H); 1,51 – 1,41 (Boc 2x, m, 18H); 1,38 – 1,32 (γ , Lys, m, 2H); 1,22 – 0,82 (γ , γ ', Leu, hLeu, m, 12H).

¹³C NMR (151 MHz, CDCl₃) δ / ppm 176,2 (CO, Leu); 175,3 (CO, hLeu); 171,7 (CO, Lys); 157,2 (CO, Boc); 76,5 (C, Boc); 63,9 (α, hLeu); 61,5 (α, Lys); 55,5 (α, Leu); 41,1 (ε, Lys); 40,4 (β, Leu); 33,8 (β, hLeu); 31,5 (β, Lys); 29,7 (δ, Lys); 28,4 (Boc); 28,3 (Boc); 25,6 (γ, hLeu); 24,9 (γ, Leu); 23,5 (γ, Lys); 23,1 (δ, hLeu); 23,0 (δ', hLeu); 22,7 (δ, Leu); 22,5 (δ', Leu).

3.3.14. Priprava Boc-Gly-AlaP-OMe (18)

Boc-Gly-OH (12 mg; 0,07 mmol) otopljen je u suhom DMF te je dodan NMM (8 μ L; 0,07 mmol; d=0,92; 1 ekv.) i HATU (28 mg; 0,08 mmol; 1,1 ekv.). Nakon 15 min miješanja dokapana je amino komponenta TFA⁻NH₃⁺-AlaP-OMe (20 mg; 0,07 mmol) uz NMM (8 μ L; 0,07 mmol; d=0,92; 1 ekv.) prethodno otopljena u DMF. Miješanje je nastavljeno preko noći na sobnoj temperaturi. Po završetku reakcije otapalo je upareno, a ostatak je čišćen brzom tekućinskom kromatografijom u sustavu otapala EtOAc:PE:EtOH=3:1:0,5 pri čemu je dobiven produkt (27 mg; 43 %).

 $C_{25}H_{29}N_3O_5$

 $M_{\rm r} = 451, 51$

MS-ESI: *m/z* 452,5 [M+H]⁺; *m/z* 474,5 [M+Na]⁺

3.3.15. Priprava Boc-Lys(Boc)-hLeu-Leu-Gly-AlaP-OMe (19)

Boc-Lys(Boc)-hLeu-Leu-OH (85 mg; 0,14 mmol) otopljen je u suhom DMF te je dodan NMM (15 μ L; 0,14 mmol; d=0,92; 1 ekv.) i HATU (58 mg; 0,15 mmol; 1,1 ekv.). Nakon 15 min miješanja dokapana je amino komponenta TFA⁻NH₃⁺-Gly-AlaP-OMe (65 mg; 0,14 mmol) uz NMM (15 μ L; 0,14 mmol; d=0,92; 1 ekv.) prethodno otopljena u DMF. Miješanje je nastavljeno preko noći na sobnoj temperaturi. Po završetku reakcije otapalo je upareno, a ostatak je čišćen brzom tekućinskom kromatografijom u sustavu otapala EtOAc:PE:EtOH=3:1:0,5 pri čemu je dobiven produkt (28 mg; 22 %).

C48H72N8O10

 $M_{\rm r} = 921, 13$

MS-ESI: *m*/*z* 921,8 [M+H]⁺

¹H NMR (600 MHz, MeOD) δ / ppm 8,68 (H_{ar}, AlaP, dd, ²*J* = 4,4 Hz, 2H); 8,38 (H_{ar}, AlaP, dd, ²*J* = 8,4 Hz, 2H); 7,98 (H_{ar}, AlaP, s, 1H); 7,48 (H_{ar}, AlaP, dd, ²*J* = 8,4 Hz, 2H); 4,94 (α, AlaP, m, 1H); 3,92 (α, Lys, m, 1H); 3,89 – 3,81 (α, Leu, m, 1H); 3,78 – 3,74 (α, Gly, m, 2H); 3,57 – 3,50 (α, hLeu, m, 1H); 3,45 – 3,32 (β, AlaP, m, 2H); 2,99 (CH₃, OMe, s, 3H); 2,86 (CH₃, AlaP, s, 3H); 2,85 – 2,82 (ε, Lys, m, 2H); 1,84 (β, Lys, m, 2H); 1,74 – 1,67 (β, γ, Leu, m, 3H); 1,62 – 1,55 (β, γ, hLeu, m, 3H); 1,53 – 1,47 (δ, Lys, m, 2H); 1,47 – 1,38 (Boc, m, 18H); 1,18 – 1,09 (γ, Lys, m, 2H); 1,00 – 0,80 (δ, δ', Leu, hLeu, m, 12H).

85

Deprotekcija karboksilne skupine:

Boc-Lys(Boc)-hLeu-Leu-Gly-AlaP-OMe (60 mg; 0,07 mmol) otopljen je u MeOH te je dodana 1M NaOH (130 μ L; 0,13 mmol; 2 ekv.). Reakcija je miješana na refluksu otapala 2 sata. Tijek reakcije praćen je u sustavu otapala EtOAc:PE:EtOH=3:1:0,5. Po završetku reakcije otapalo je upareno, a ostatak je otopljen u vodi te je podešen pH dodatkom 10 % limunske kis. na 3. Reakcijska smjesa je ekstrahirana s EtOAc, organski sloj je sušen nad Na₂SO₄ i uparen.

Deprotekcija amino skupine:

Boc-Lys(Boc)-hLeu-Leu-Gly-AlaP-OH otopljen je u sustavu TFA:H₂O=9:1. Reakcija je miješana 1 sat. Tijek reakcije praćen je sustavom otapala EtOAc:EtOH:H₂O:AcOH=70:20:2:2. Kiselina je uparena, a dobiveni produkt čišćen je RP-HPLC metodom <u>C</u>.

 $C_{37}H_{54}N_8O_6$

 $M_{\rm r} = 706,87$

MS-ESI: *m*/*z* 707,3 [M+H]⁺

 R_t (C)= 16,664 min [5 mg]

¹H NMR (600 MHz, CD₃CN) δ / ppm 8,83 – 8,78 (H_{ar}, AlaP, m, 2H); 8,42 (H_{ar}, AlaP, d, J = 9,3 Hz, 1H); 8,38 (H_{ar}, AlaP, d, J = 7,9 Hz, 1H); 8,15 (H_{ar}, AlaP, d, J = 8,3 Hz, 1H); 7,97 – 7,93 (H_{ar}, AlaP, m, 2H); 7,66 (NH, Gly, hLeu, m, 2H); 7,60 (NH, Lys, d, J = 8,8 Hz, 1H); 7,50 (NH, AlaP, Leu, m, 2H); 4,80 (α AlaP, m, 1H); 4,34 (α, Leu, Lys, m, 2H); 3,88 (α, Gly,

86

s, 2H); 3,56 – 3,54 (α, hLeu, m, 1H); 3,32 (β, AlaP, m, 2H); 2,95 (CH₃, AlaP, s, 3H); 1,68 (β, Lys, m, 2H); 1,65 (γ, Leu, hLeu, m, 2H); 1,57 (δ, Lys, m, 2H); 1,53 (β, Leu, m, 2H); 1,46 (β, hLeu, m, 2H); 1,34 – 1,32 (γ, Lys, m, 2H); 0,97 – 0,93 (δ, δ', Leu, hLeu, m, 12H).

¹³C NMR (151 MHz, CD₃CN) δ / ppm 176,3 (CO); 175,3 (CO); 171,2 (CO); 169,2 (CO); 169,2 (CO); 161,1 (C, AlaP); 160,9 (C, AlaP); 138,7-137,2 (CH_{ar}, AlaP); 133,9 (C, AlaP); 132,1-130,5 (CH_{ar}, AlaP); 125,4-125,2 (CH_{ar}, AlaP); 124,4 (C, AlaP); 64,4 (α, hLeu); 54,6 (α, Lys); 52,9 (α, AlaP); 51,9 (α, Leu); 41,2 (α, Gly); 40,4 (ε, Lys); 40,2 (β, Leu); 37,7 (β, hLeu); 37,5 (β, AlaP); 30,9 (β, Lys); 26,7 (δ, Lys); 25,8-25,7 (δ, δ' hLeu); 23,2-23,1 (δ, δ' hLeu); 22,4 (γ, Lys); 21,9 (γ, hLeu); 21,5 (γ, hLeu).

HRMS (MALDI-TOF/TOF): izračunato C₃₇H₅₄N₈O₆ [M+H]⁺ 707,4239; nađeno 707,4252

3.3.16. Priprava Boc-Lys(Boc)-hLeu-hLeu-OH (20)

Boc-Lys(Boc)-hLeu-OH (100 mg; 0,21 mmol) otopljen je u suhom DMF te je dodan NMM (23 μ L; 0,21 mmol; d=0,92; 1 ekv.) i HATU (88 mg; 0,23 mmol; 1,1 ekv.). Nakon 15 min miješanja dokapana je amino komponenta hLeu-OH (31 mg; 0,21 mmol) uz NMM (23 μ L; 0,21 mmol; d=0,92; 1 ekv.) prethodno otopljena u DMF. Miješanje je nastavljeno preko noći na sobnoj temperaturi. Po završetku reakcije otapalo je upareno, a ostatak je čišćen brzom tekućinskom kromatografijom u sustavu otapala EtOAc:AcOH=70:2 pri čemu je dobiven produkt u obliku ulja (68 mg; 53 %).

 $C_{28}H_{54}N_6O_8\\$

 $M_{\rm r} = 602,76$

 $R_f = 0.35$ (EtOAc:AcOH=70:2)

MS-ESI: *m/z* 503,6 [M-100]⁺; *m/z* 603,6 [M+H]⁺; *m/z* 1206,1 [2M+H]⁺

¹H NMR (600 MHz, MeOD) δ / ppm 3,96 (α, Lys, m, 1H); 3,49 (α, hLeu 2x, m, 2H); 3,06 (ε, Lys, m, 2H); 1,89 (β, Lys, m, 2H); 1,77 – 1,73 (δ, Lys, m, 2H); 1,66 – 1,60 (β, γ, hLeu, m, 3H); 1,60 – 1,55 (β, γ, hLeu, m, 3H); 1,47 (Boc, m, 18H); 1,41 – 1,37 (γ, Lys, m, 2H); 1,02 – 0,98 (δ, δ', hLeu 2x, m, 12H).

¹³C NMR (151 MHz, CDCl₃) δ / ppm 178,1 (CO, hLeu); 172,1 (CO, hLeu); 170,9 (CO, Lys); 157,2 (CO, Boc); 82,1 (C, Boc); 79,1 (C, Boc); 66,3 (α, hLeu); 63,9 (α, Lys); 57,8 (α, hLeu); 41,3 (β, hLeu); 40,1 (ε, Lys); 38,6 (α, hLeu); 33,8 (β, Lys); 29,6 (δ, Lys); 28,4 (Boc); 28,3 (Boc); 25,6 (γ, hLeu); 24,8 (γ, hLeu); 22,8 (γ, Lys); 22,1 (δ, hLeu); 22,0 (δ', hLeu); 21,9 (δ', hLeu).

3.3.17. Priprava Boc-Lys(Boc)-hLeu-hLeu-Gly-AlaP-OMe (21)

Boc-Lys(Boc)-hLeu-hLeu-OH (80 mg; 0,13 mmol) otopljen je u suhom DMF te je dodan NMM (15 μ L; 0,13 mmol; d=0,92; 1 ekv.) i HATU (54 mg; 0,13 mmol; 1,1 ekv.). Nakon 15 min miješanja dokapana je amino komponenta TFA⁻NH₃⁺-Gly-AlaP-OMe (60 mg; 0,13 mmol) uz NMM (15 μ L; 0,13 mmol; d=0,92; 1 ekv.) prethodno otopljena u DMF. Miješanje je nastavljeno preko noći na sobnoj temperaturi. Po završetku reakcije otapalo je upareno, a ostatak je čišćen brzom tekućinskom kromatografijom u sustavu otapala EtOAc:PE:EtOH=3:1:0,5 pri čemu je dobiven produkt (14 mg; 11 %).

 $C_{48}H_{73}N_9O_{10}$

 $M_{\rm r} = 936, 15$

 $R_f = 0.82$ (EtOAc:PE:EtOH=3:1:0,5)

MS-ESI: *m*/*z* 937,9 [M+H]⁺

¹H NMR (300 MHz, MeOD) δ / ppm 8,74 (H_{ar}, AlaP, m, 1H); 8,27 – 8,00 (H_{ar}, AlaP, m, 1H); 7,93 – 7,30 (H_{ar}, AlaP, m, 5H); 4,97 (α, AlaP, m, 1H); 4,25 (α, Lys, m, 1H); 4,19 – 3,90 (α, hLeu, m, 1H); 3,88 – 3,75 (α, hLeu, m, 1H); 3,74 – 3,41 (β, AlaP, m, 2H); 3,40 (CH₃, OMe, s, 3H); 3,20 – 2,88 (α, Gly, ε, Lys, m, 4H); 2,87 (CH₃, AlaP, s, 3H); 2,07 – 1,54 (β, δ, Lys, β 2x hLeu, m, 8H); 1,48 (Boc, m, 18H); 1,45 – 1,29 (γ, Lys, γ, hLeu 2x, m, 4H); 1,10 – 0,86 (δ, δ', hLeu 2x, m, 12H).

Deprotekcija karboksilne skupine:

Boc-Lys(Boc)-hLeu-hLeu-Gly-AlaP-OMe (50 mg; 0,05 mmol) otopljen je u MeOH te je dodana 1M NaOH (110 μ L; 0,11 mmol; 2 ekv.). Reakcija je miješana na refluksu otapala 12 sati. Tijek reakcije praćen je u sustavu otapala EtOAc:PE:EtOH=3:1:0,5. Po završetku reakcije otapalo je upareno, a ostatak je otopljen u vodi te je podešen pH dodatkom 10 % limunske kis. na 3. Reakcijska smjesa je ekstrahirana s EtOAc, organski sloj je sušen nad Na₂SO₄ i uparen.

Deprotekcija amino skupine:

Boc-Lys(Boc)-hLeu-Leu-Gly-AlaP-OH otopljen je u sustavu TFA:H₂O=9:1. Reakcija je miješana 1 sat. Tijek reakcije praćen je sustavom otapala EtOAc:EtOH:H₂O:AcOH=70:20:2:2. Kiselina je uparena, a dobiveni produkt je čišćen RP-HPLC metodom <u>C</u>.

 $C_{37}H_{55}N_9O_6$

 $M_{\rm r} = 721,89$

 R_t (C)= 18,123 min [2,5 mg]

¹H NMR (600 MHz, CD₃CN) δ / ppm 8,74 (H_{ar}, AlaP, m, 2H), 8,31 (H_{ar}, AlaP, d, J = 5,3 Hz, 1H), 8,02 (H_{ar}, AlaP, d, J = 8,5 Hz, 1H), 7,20 (H_{ar}, AlaP, m, 3H), 6,96 (NH, d, J = 7,4 Hz, 1H), 6,65 (NH, Gly, s, 1H), 4,82 (α, AlaP, m, 1H), 3,77 – 3,70 (α, Lys, m, 1H), 3,68 (α, hLeu 2x, m, 2H), 3,54 – 3,49 (α, Gly, m, 2H), 3,32 (β, AlaP, m, 2H), 3,26 (CH₃, AlaP, s, 3H), 2,54 (ε, Lys, m, 2H), 2,04 (β, Lys, m, 2H), 1,87 – 1,80 (β, hLeu, m, 2H), 1,63 (β, hLeu, m, 2H), 1,56 – 1,50 (δ, Lys, m, 2H), 1,38 – 1,32 (γ, Lys, γ, hLeu 2x, m, 4H), 0,89 – 0,86 (δ, δ', hLeu 2x, m, 12H).

¹³C NMR (151 MHz, CD₃CN): δ / ppm 178,1(CO); 172,1 (CO); 171,4 (CO); 170,9 (CO); 170,1 (CO); 162,8 (C, AlaP); 141,1; 138,8; 138,5; 134,3; 130,4; 125,8; 124,6 (CH_{ar}, AlaP); 66,3 (α, hLeu); 63,9 (α, hLeu); 57,8 (α, AlaP); 53,6 (α, Lys); 43,5 (α, Gly); 41,3 (β, hLeu); 40,1 (β, hLeu); 38,6 (β, AlaP); 33,8 (β, Lys); 29,6 (γ, Lys); 25,6 (δ, Lys); 24,8 (γ, hLeu); 22,8 (γ, hLeu); 22,1 (δ, hLeu); 22,0 (δ', hLeu); 21,9 (δ, hLeu); 20,2 (δ', hLeu).

HRMS (MALDI-TOF/TOF): izračunato C₃₇H₅₅N₉O₆ [M+H]⁺ 722,4348; nađeno 722,4349

3.3.18. Priprema Boc-Leu-hLeu-OH (22)

Boc-Leu-OH (158 mg; 0,68 mmol) otopljen je u suhom DMF te je dodan NMM (150 μ L; 1,4 mmol; d=0,92; 2 ekv.) i ClCOOiBu (100 μ L; 0,75 mmol; 1,1 ekv) uz miješanje na 0°C. Nakon 20 min miješanja dokapana je amino komponenta hLeu-OH (100 mg; 0,68 mmol) prethodno otopljena u suhom DMF. Miješanje je nastavljeno preko noći na sobnoj temperaturi. Po završetku reakcije smjesa je razrijeđena s vodom i ekstrahirana s Et₂O, organski sloj je uparen, a ostatak je čišćen brzom tekućinskom kromatografijom u sustavu otapala EtOAc:PE:AcOH=10:5:0,5 pri čemu je dobiven produkt u obliku ulja (134 mg; 55 %).

 $C_{17}H_{33}N_3O_5$

 $M_{\rm r} = 359,46$

 $R_f = 0,28$ (EtOAc:PE:AcOH=10:5:0,5)

MS-ESI: *m/z* 360,4 [M+H]⁺; *m/z* 719,7 [2M+H]⁺

¹H NMR (300 MHz, CDCl₃) δ / ppm 4,28 – 4,10 (α, Leu, m, 1H); 3,68 – 3,56 (α, hLeu, m, 1H); 1,58 (β, Leu, hLeu, m, 4H); 1,52 – 1,46 (γ, Leu, hLeu, m, 2H); 1,42 (Boc, s, 9H); 0,98 – 0,89 (δ, δ', Leu, hLeu, m, 12H).

¹³C NMR (75 MHz, CDCl₃) δ / ppm 177,0 (CO, hLeu); 175,2 (CO, Leu); 172,2 (CO, Boc); 80,8 (C, Boc); 61,8 (α, hLeu); 51,6 (α, Leu); 41,6 (β, hLeu); 39,5 (β, Leu); 28,4 (Boc); 25,1 (γ, hLeu); 24,8 (γ, hLeu); 23,1-22,8 (δ, δ', hLeu); 22,0-20,8 (δ, δ', Leu).

3.3.19. Priprema Boc-Lys(Boc)-hLeu-Leu-hLeu-OH (23)

Boc-Lys(Boc)-hLeu-OH (148 mg; 0,31 mmol) otopljen je u suhom DMF te je dodan NMM (35 μ L; 0,31 mmol; d=0,92; 1 ekv.) i HATU (130 mg; 0,34 mmol; 1,1 ekv.). Nakon 15 min miješanja dokapana je amino komponenta TFA⁻NH₃⁺-Leu-hLeu-OH (112 mg; 0,31 mmol) uz NMM (35 μ L; 0,31 mmol; d=0,92; 1 ekv.) prethodno otopljena u DMF. Miješanje je nastavljeno preko noći na sobnoj temperaturi. Po završetku reakcije otapalo je upareno, a ostatak je čišćen brzom tekućinskom kromatografijom u sustavu otapala PE:EtOAc:EtOH:AcOH=7:5:1:0,5 pri čemu je dobiven produkt (45 mg; 20 %).

 $C_{34}H_{65}N_7O_9$

 $M_{\rm r} = 715,92$

 $R_f = 0,45$ (PE:EtOAc:EtOH:AcOH=7:5:1:0,5)

MS-ESI: *m*/*z* 716,4 [M+H]⁺; *m*/*z* 1431,8 [2M+H]⁺

3.3.20. Priprema Boc-Lys(Boc)-hLeu-Leu-hLeu-Gly-AlaP-OMe (24)

Boc-Lys(Boc)-hLeu-Leu-hLeu-OH (45 mg; 0,063 mmol) otopljen je u suhom DMF te je dodan NMM (7 μ L; 0,063 mmol; d=0,92; 1 ekv.) i HATU (26 mg; 0,069 mmol; 1,1 ekv.). Nakon 15 min miješanja dokapana je amino komponenta TFA NH₃⁺-Gly-AlaP-OMe (30 mg; 0,063 mmol) uz NMM (7 μ L; 0,063 mmol; d=0,92; 1 ekv.) prethodno otopljena u DMF. Miješanje je nastavljeno preko noći na sobnoj temperaturi. Po završetku reakcije otapalo je upareno, a ostatak je čišćen brzom tekućinskom kromatografijom u sustavu otapala EtOAc:PE:EtOH=3:1:0,5 pri čemu je dobiven produkt (40 mg; 61 %).

 $C_{54}H_{84}N_{10}O_{11} \\$

 $M_{\rm r} = 1049,31$

MS-ESI: *m/z* 836,7 [M-2 Boc-Me]⁺; *m/z* 1050,0 [M+H]⁺

Deprotekcija karboksilne skupine:

Boc-Lys(Boc)-hLeu-hLeu-Gly-AlaP-OMe (150 mg; 0,14 mmol) otopljen je u MeOH te je dodana 1M NaOH (286 μ L; 0,286 mmol; 2 ekv.). Reakcija je miješana na refluksu otapala 12 sati. Tijek reakcije praćen je u sustavu otapala EtOAc:PE:EtOH=3:1:0,5. Po završetku reakcije otapalo je upareno, a ostatak je otopljen u vodi te je podešen pH dodatkom 10 % limunske kis. na 3. Reakcijska smjesa je ekstrahirana s EtOAc, organski sloj je sušen nad Na₂SO₄ i uparen.

Deprotekcija amino skupine:

Boc-Lys(Boc)-hLeu-Leu-Gly-AlaP-OH otopljen je u sustavu TFA:H₂O=9:1. Reakcija je miješana 1 sat. Tijek reakcije praćen je sustavom otapala EtOAc:EtOH:H₂O:AcOH=70:20:2:2. Kiselina je uparena, a dobiveni produkt je čišćen RP-HPLC metodom <u>C</u>.

 $C_{43}H_{66}N_{10}O_7$

 $M_{\rm r} = 835,05$

 R_t (C)= 23,814 min [3 mg]

¹H NMR (600 MHz, MeOD) δ / ppm 9,14 (H_{ar}, AlaP, d, J = 2,0 Hz, 1H); 8,79 (H_{ar}, AlaP, dd, ² J = 4,4 Hz, 1H); 8,51 (H_{ar}, AlaP, dd, ²J = 8,4 Hz, 1H); 8,27 – 7,99 (H_{ar}, AlaP, m, 3H); 7,56 (H_{ar}, AlaP, dd, ²J = 8,4 Hz, 1H); 4,91 (α, AlaP, m, 1H); 4,49 – 4,42 (α, Lys, m, 1H); 4,14 – 4,06 (α, Leu, m, 1H); 3,64 (α, hLeu 2x, m, 2H); 3,39 (α, Gly, CH₃, AlaP, s, 5H); 3,01 (β, AlaP, m, 2H); 2,99 – 2,91 (ε, Lys, m, 2H); 2,01 (β, Lys, m, 2H); 1,93 – 1,88 (δ, Lys, m, 2H); 1,78 – 1,75 (β, γ, Leu, m, 3H); 1,68 – 1,59 (β, γ, hLeu, m, 12H); 1,53 – 1,50 (γ, Lys, m, 2H); 0,98 – 0,93 (δ, δ', hLeu 2x, Leu, m, 18H).

¹³C NMR (151 MHz, CD₃CN): δ / ppm 178,2 (CO); 172,3 (CO); 171,6 (CO); 170,7 (CO); 170,3 (CO); 170,1 (CO); 162,8 (C_{ar}, AlaP); 141,2; 138,7; 138,6; 134,3; 130,4; 125,8; 124,6 (CH_{ar}, AlaP); 66,3 (α, hLeu); 63,7 (α, hLeu); 57,6 (α, Lys); 57,3 (α, AlaP); 55,4 (α, Leu); 53,5 (α, Gly); 43,7 (β, hLeu); 41,2 (β, hLeu); 40,1 (β, AlaP); 39,8 (β, Leu); 38,6 (β, Lys); 33,5 (γ, Lys); 32,8 (δ, Lys); 29,6 (γ, hLeu); 25,8 (γ, hLeu); 25,5 (γ, Leu); 24,8 (δ, hLeu); 24,6 (δ', hLeu); 22,7 (δ, hLeu); 22,4 (δ', hLeu); 22,2 (ε, Lys); 21,7 (δ, Leu); 20,3 (δ, Leu).

HRMS (MALDI-TOF/TOF): izračunato C₄₃H₆₆N₁₀O₇ [M+H]⁺ 835,5188; nađeno 835,5199

3.3.21. Ispitivanje interakcija hidrazino-peptidomimetika s DNA

Za dvolančanu DNA koristi se kupovna DNA timusa teleta (engl. *calf thymus* DNA) (Aldrich). ctDNA otopi se u Na-kakodilatnom puferu ($I = 0,05 \text{ mol dm}^{-3}$, pH 7,01) te se dodatno obradi ultrazvukom i filtrira kroz filter 0,45 mm. Koncentracija ctDNA odredi se spektroskopski kao koncentracija fosfata (ctDNA na 260 nm, $\varepsilon = 6600$).

Promjena temperature mekšanja ctDNA:

Eksperiment se provodi u Na-kakodilatnom puferu ($I = 0,05 \text{ mol } \text{dm}^{-3}$) pri pH 7,01. Temperaturne krivulje mekšanja DNA te njezinih kompleksa s ispitivanim spojevima određene su praćenjem promjene absorbancije ctDNA na 260 nm u ovisnosti o temperaturi (25 – 98 °C). Temperature mekšanja određene su kao točke infleksije temperaturnih krivulja na osnovu prve derivacije ili metodom tangente. Vrijednosti promjene temperature mekšanja ΔT_m razlika su između vrijednosti temperature mekšanja kompleksa ctDNA/spoj i temperature mekšanja čiste ctDNA. Dobivene vrijednosti ΔT_m rezultat su najmanje dva neovisna pokusa.

Fluorescencijska mjerenja:

Eksperiment se provodi u Na-kakodilatnom puferu ($I = 0,05 \text{ mol } \text{dm}^{-3}$) pri pH 7,01. Kod fluorescencijske titracije prati se promjena intenziteta fluorescencije ispitanog spoja na valnim duljinama $\lambda_{\text{em}} = 450 - 600 \text{ nm}$ te se koriste valne duljine pobude kod kojih ctDNA nema UV/Vis spektar $\lambda_{\text{eks.}} > 320 \text{ nm}$. Fluorescencijska titracija izvodi se uz dodatak otopine ctDNA u puferiranu vodenu otopinu spoja. Koristi se relativno kratko vrijeme (1 min) potrebno da se uspostavi ravnotežno stanje po dodatku ctDNA u otopinu ispitivanog spoja.

CD mjerenja:

Eksperiment se provodi u Na-kakodilatnom puferu ($I = 0,05 \text{ mol dm}^{-3}$) pri pH 7,01 te se spoj dodaje u otopinu polinukleotida. Mjeri se u rasponu od 240 – 700 nm pri standardnoj osjetljivosti instrumenta i brzini snimanja od 200 nm min⁻¹.

3.4. PRIMJENA KIRALNIH HIDRAZINO-DERIVATA α-AMINOKISELINA U VIŠEKOMPONENTNIM REAKCIJAMA

3.4.1. Priprava aminokiselinskih izocijanida (25)

Otopini DCC (1,3 ekv.) u suhom DCM na 0 °C polako je dokapana mravlja kiselina (1,3 ekv.). Trenutno nastaje bijela suspenzija koja je miješana još 10 min. U takvu otopinu su dodani L-aminokiselinski metilni ester (1 g), DMAP (0.2 ekv.) i Et₃N (1,6 ekv.) te je miješanje nastavljeno na sobnoj temperaturi preko noći. Nastali talog uree je profiltriran, a filtrat je uparen. Ostatak je čišćen brzom tekućinskom kromatografijom u sustavu EtOAc:PE=2:1 pri čemu je dobiven formamid u obliku bezbojnog ulja koje je korišteno u slijedećem koraku.

Formamid (1 ekv.) otopljen je u suhom THF (5 mL) pod argonom te je otopina ohlađena na 0 °C. U otopinu su dodani Et₃N (5 ekv.) i POCl₃ (2 ekv.). Boja otopine prelazi u narančastu boju, a miješanje je nastavljeno na sobnoj temperaturi preko noći. Reakcija je zaustavljena polaganim dodatkom vodene otopine K_2CO_3 , te je ekstrahirana s EtOAc (2 x 20 mL). Spojeni organski slojevi su sušeni nad Na₂SO₄ i upareni. Dobiveni produkt čišćen je brzom tekućinskom kromatografijom u sustavu otapala EtOAc:PE=2:1.

Metil-2-izocijano-3-metilbutanoat (25a)

 $C_7H_{11}NO_2 \\$

 $M_{\rm r} = 141, 17$

žuto ulje, (427 mg; 67 %)

 $R_f = 0.75$ (EtOAc:PE=2:1)

¹H NMR (600 MHz, CDCl₃) δ / ppm 4,17 (α, Val, d, *J* = 4,2 Hz, 1H); 3,81 (OCH₃, s, 3H); 2,33 (β, Val, m, 1H); 1,10 (γ, Val, d, *J* = 6,8 Hz, 3H); 1,00 (γ', Val, d, *J* = 6,7 Hz, 3H)

¹³C NMR (151 MHz, CDCl₃) δ / ppm 167,0 (CO); 160,7 (CN); 63,0 (α, Val); 53,3 (OCH₃);
31,4 (β, Val); 19,4 (γ, Val); 19,1 (γ', Val)

Metil-2-izocijano-4-metilpentanoat (25b)

 $C_8H_{13}NO_2\\$

 $M_{\rm r} = 155, 19$

žuto ulje; (675 mg; 84 %)

 $R_f = 0.5$ (EtOAc:PE=2:1)

¹H NMR (300 MHz, CDCl₃) δ / ppm 4,28 (α, Leu, m, 1H); 3,81 (CH₃, OCH₃, s, 3H); 1,98 – 1,85 (β, m, 2H); 1,68 (γ, Leu, m, 1H); 0,97 (δ, δ', Leu, m, 6H)

¹³C NMR (75 MHz, CDCl₃) *δ* / ppm 167,8 (CO); 160,2 (CN); 55,2 (α, Leu); 53,4 (CH₃, OCH₃); 41,4 (β, Leu); 24,9 (γ, Leu); 22,7 (δ, Leu); 21,0 (δ', Leu)

Metil-2-izocijano-3-fenilpropanoat (25c)

 $C_{11}H_{11}NO_2 \\$

 $M_{\rm r} = 189,21$

žuta krutina; (421 mg; 61 %)

 $R_f = 0,63$ (EtOAc:PE=2:1)

¹H NMR (600 MHz, CDCl₃) δ / ppm 7,37 – 7,25 (CH_{ar}, m, 5H); 4,46 (α, Phe, m, 1H); 3,81 – 3,80 (CH₃, OCH₃, s, 3H); 3,26 (β, Phe, dd, ²*J* = 13,9, 1H); 3,15 (β, Phe, dd, ²*J* = 13,9, 1H)

¹³C NMR (151 MHz, CDCl₃) δ / ppm 166,7 (CO); 161,2 (CN); 134,5 (C_{ar}, Phe); 129,4 - 128,0 (CH_{ar}, Phe); 58,2 (α, Phe); 53,5 (CH₃, OCH₃); 39,1 (β, Phe)

3.4.2. Primjena optički čistih α-hidrazino-kiselina u Passerinijevoj reakciji (26-53)

U staklenu vialu koja sadrži 1 M otopinu okso-komponente (0,11 mmol) u THF pod dušikom, dodani su N^{α} , N^{β} - zaštićena hidrazino-kiselina (0,11 mmol) i isocijanid (0,11 mmol). Takva otopina je miješana 24 h u slučaju aldehida ili 48 h u slučaju ketona. Otapalo je upareno, a ostatak je čišćen brzom tekućinskom kromatografijom u sustavu otapala PE:EtOAc=2:1.

<u>3.4.2.1.</u> (*S*)-*tert*-butil-2-(1-(cikloheksilamino)-1-okso-3-fenilpropan-2-il)-2-(4nitrobenzil) hidrazin karboksilat (**26**)^[103]

 $C_{27}H_{36}N_4O_5$

 $M_{\rm r} = 496,60$

žuto ulje; (12 mg; 13 %)

 $R_f = 0,32$ (PE:EtOAc=2:1)

MS-ESI: *m*/*z* 497,3 [M+H]⁺

¹H NMR (600 MHz, CDCl₃) δ / ppm 8,20 – 8,05 (H_{ar}, H3, H4, H6, H7, m, 5H); 7,56 – 7,28 (H_{ar}, hPhe, m, 5H); 4,50 – 4,38 (α, hPhe, m, 1H); 4,14 – 4,05 (H1, s, 2H); 4,07 – 3,97 (H8, m, 2H); 3,14 (β, hPhe, m, 2H); 1,82 (H11, m, 2H); 1,71 (H10, H12, m, 4H); 1,62 (H9, H13, m, 4H); 1,46 (H, Boc, s, 9H).

¹³C NMR (151 MHz, CDCl₃) δ / ppm 170,1 (CO); 157,1 (CO, Boc); 147,8 - 145,9 (C2, C5); 140,4 (C_{ar}, hPhe); 130,8 - 124,0 (CH_{ar}, hPhe, C3, C4, C6, C7); 81,3 (C, Boc); 65,8 (α, hPhe); 55,3 (C1); 48,7 (C8); 33,0 (β, hPhe); 32,9 (C9, C13); 28,7 (C, Boc); 25,8 (C11); 25,2 - 25,0 (C10, C12).

<u>3.4.2.2. *tert*-butil-2-(2-(cikloheksilamino)-1-(4-nitrofenil)-2-oksoetil)-2-((*R*)-1metoksi-1-okso-3-fenilpropan-2-il)hidrazin karboksilat (**27**)</u>

 $C_{29}H_{38}N_4O_7$

 $M_{\rm r} = 554,63$

smeđe ulje; (14 mg; 23 %)

 $R_f = 0.57$ (PE:EtOAc=2:1)

MS-ESI: *m/z* 455,3 [M-Boc]⁺; *m/z* 555,3 [M+H]⁺; *m/z* 1109,6 [2M+H]⁺

¹H NMR (600 MHz; CDCl₃) δ / ppm 8,22 (NH; m; 1H); 8,17 (CH_{ar}; R-CHO; d; *J* = 8,6 Hz; 2H); 7,64 (NH; m; 1H); 7,47 (CH_{ar}; R-CHO; d; *J* = 8,2 Hz; 2H); 7,36 – 7,30 (CH_{ar}; hPhe; m; 5H); 4,54 (α; R-CHO; s; 1H); 3,82 (α; hPhe; m; 1H); 3,72 (OMe; s; 3H); 3,58 (1; m; 1H); 3,05 (β; hPhe; m; 1H); 3,00 (β; hPhe; m; 1H); 1,68 – 1,57 (2; 4; 6; m; 6H); 1,34 (Boc; s; 9H); 1,19 – 1,10 (3; 5; m; 4H).

¹³C NMR (151 MHz; CDCl₃) δ / ppm 173,0 (CO); 167,9 (CO); 155,6 (CO; Boc); 147,4 (C_{ar}); 141,3 (C_{ar}); 136,9 (C_{ar}); 130,4; 129,0; 128,3; 128,0; 126,8; 126,5; 123,4; 123,3; 122,9 (CH_{ar}); 80,2 (C; Boc); 73,5 (α; R-CHO); 72,6 (α; hPhe); 51,7 (C1); 47,9 (OCH₃); 36,1 (β; hPhe); 32,4 (C2); 31,8 (C6); 27,6 (C4); 24,9 (C5); 24,3 (C3).

3.4.2.3. *tert*-butil-2-benzil-2-((2S)-1-(2-(1-metoksi-1-okso-3-fenilpropan-2-il amino)-1-(4-nitrofenil)-2-okso-etoksi)-1-okso-propan-2-il) hidrazin karboksilat (**28**)

 $C_{33}H_{38}N_4O_9$

 $M_{\rm r} = 634,68$

žuto ulje; (41 mg; 59 %)

 $R_f = 0.45$ (PE:EtOAc=2:1)

MS-ESI: *m/z* 535,3 [M-Boc]⁺; *m/z* 579,3 [M-Bn+Na]⁺; *m/z* 635,4 [M+H]⁺; *m/z* 657,4 [M+Na]⁺

¹H NMR (600 MHz, CDCl₃) δ / ppm 8,20 - 7,04 (CH_{ar}, Bn, Phe, H3, H4, H6, H7, m, 14H); 6,13 (H1, s, 1H); 4,94 - 4,79 (α, Phe, m, 1H); 4,05 - 3,85 (CH₂, Bn, m, 2H); 3,80 - 3,68 (OCH₃, α, hAla, m, 4H); 3,30 - 3,03 (β, Phe, m, 2H); 1,41 - 1,32 (Boc, β, hAla, m, 12H)

¹³C NMR (151 MHz, CDCl₃) δ / ppm 171,6 (CO); 171,5 (CO); 166,7 - 141,9 (C_{ar}, Phe, Bn, C2, C5); 129,5 - 124,0 (CH_{ar}, Phe, Bn, C3, C4, C6, C7); 80,2 (C, Boc); 74,4 (C1); 60,5 (CH₂, Bn); 53,3 (α, hAla); 52,9 (α, Phe); 52,7 (OCH₃); 37,4 (β, Phe); 28,3 (Boc); 14,3 (β, hAla)

HRMS (MALDI-TOF/TOF): izračunato C₃₃H₄₈N₃O₇ [M+H]⁺ 635,2717; nađeno 635,2716

3.4.2.4. (3*S*)-4,7-dibenzil-3-metil-10-(4-nitrofenil)-1,4,5,8-oksa-triazekan-2,6,9trion (**29**)

Deprotekcija karboksilne skupine:

Passerinijev produkt (40 mg; 0,063 mmol) otopljen je u MeOH te je dodana 1M NaOH (126 μ L; 0,13 mmol; 2 ekv). Reakcija je miješana na refluksu otapala 1 sat. Tijek reakcije praćen je u sustavu PE:EtOAc=2:1. Po završetku reakcije otapalo je upareno, a ostatak je otopljen u vodi te je podešen pH dodatkom 10 % limunske kis. na 3. Reakcija je ekstrahirana s EtOAc, organski sloj sušen nad Na₂SO₄ i uparen.

Deprotekcija amino skupine:

Produkt prethodne deprotekcije otopljen je u sustavu TFA: $H_2O=9:1$. Reakcija je miješana 1 sat na sobnoj temperaturi. Tijek reakcije praćen je sustavom PE:EtOAc:AcOH=5:5:0,5. Kiselina je uparena uz dodatak toluena, a dobiveni produkt je dalje korišten bez čišćenja.

<u>Ciklizacija:</u>

Potpuno nezaštićeni produkt (22 mg; 0,042 mmol) otopljen je u suhom DMF (12 mL) te je dodan Et₃N (6 μ L; 0,042 mmol). Takva reakcijska smjesa dokapavana je "syringe" pumpom kroz 13 sati (800 μ L/ h) u otopinu Et₃N (6 μ L; 0,042 mmol) i kondenzacijskog reagensa HATU (36 mg; 0,092 mmol; 2,2 ekv.) u suhom DMF. Reakcijska smjesa je razrijeđena s H₂O i ekstrahirana s Et₂O dva puta. Organski sloj je osušen s Na₂SO₄ i uparen. Ostatak je čišćen HPLC metodom <u>C</u>.

 $C_{27}H_{26}N_4O_6$

 $M_{\rm r} = 502,52$

Josipa Suć

MS-ESI: 525.5 *m*/*z* [M+Na]⁺

 R_t (C)= 26,757 min [3 mg]

¹H NMR (600 MHz, CDCl₃) δ / ppm 8,32 (H_{ar}, R-CHO, d, *J* = 8,7 Hz, 2H); 8,27 (H_{ar}, R-CHO, d, *J* = 8,8 Hz, 2H); 7,34 (H_{ar}, Phe, Bn, m, 10H); 5,01 (α, R-CHO, s, 1H); 4,80 (α, Phe, m, 1H); 3,74 (CH₂, Bn, s, 2H); 3,36 (α, hAla, m, 1H); 3,25 – 3,20 (β, Phe, m, 2H); 1,48 (β, hAla, m, 3H).

¹³C NMR (151 MHz, CDCl₃) δ / ppm 173,9 (CO); 171,5 (CO); 169,1 (CO); 147,7 (C_{ar}, R-CHO); 139,7 (C_{ar}, Bn); 135,1 (C_{ar}, Phe); 132,2; 131,2; 130,9; 129,3; 129,2 (CH_{ar}, Bn); 128,8; 128,7; 128,2; 127,7; 126,7 (CH_{ar}, Phe); 125,8; 123,6; 123,4; 122,3 (CH_{ar}, R-CHO); 86,7 (α, R-CHO); 68,6 (α, hAla); 64,8 (α, Phe); 57,5 (CH₂, Bn); 37,7 (β, Phe); 13,9 (β, hAla).

3.4.2.5. *tert*-butil-2-benzil-2-((2S)-1-(2-(1-metoksi-1-okso-3-fenilpropan-2-il amino)-1-(4-nitrofenil)-2-okso-etoksi)-3-metil-1-okso-butan-2-il) hidrazin karboksilat (**30**)

 $C_{35}H_{42}N_4O_9$

 $M_{\rm r} = 662,73$

žuto ulje; (37 mg; 63 %)

 $R_f = 0.6$ (PE:EtOAc=2:1)

MS-ESI: *m/z* 563,4 [M-Boc]⁺; *m/z* 663,5 [M+H]⁺; *m/z* 685,5 [M+Na]⁺

¹H NMR (600 MHz, CDCl₃) δ / ppm 8,29 – 6,59 (CH_{ar}, Phe, Bn, H3, H4, H6, H7, m, 14H); 6,19 – 6,04 (H1, m, 1H); 4,92 – 4,82 (α, Phe, m, 1H); 3,91 (CH₂, Bn, m, 2H); 3,79 – 3,72 (OCH₃, m, 3H); 3,24 – 3,00 (α, hVal, β, Phe, m, 3H); 2,14 – 1,98 (γ, hVal, m, 1H); 1,42 – 1,34 (Boc, m, 9H); 1,13 – 1,03 (δ, hVal, m, 3H); 0,91 – 0,79 (δ', hVal, m, 3H).

¹³C NMR (151 MHz, CDCl₃) δ / ppm 171,5 (CO); 171,3 (CO); 166,6 (CO, Boc); 148,4 - 135,3 (C_{ar}, Phe, Bn, C2, C5); 129,4 - 124,1 (CH_{ar}, Phe, Bn, C3, C4, C6, C7); 80,0 (C, Boc); 74,4 (C1); 71,3 (α, hVal); 62,7 (CH₂, Bn); 53,4 (OCH₃); 52,8 (α, Phe); 37,7 (β, Phe); 28,4 (Boc); 23,0 (γ, hVal); 20,1 (δ, hVal); 19,5 (δ', hVal).

HRMS (MALDI-TOF/TOF): izračunato $C_{35}H_{43}N_4O_9 [M+H]^+ 663,3030$; nađeno 663,3036

<u>3.4.2.6. *tert*-butil-2-benzil-2-((2*R*)-1-(1-(tert-butilamino)-3-metil-1-oksoheksan-2-il-oksi)-3-metil-1-okso butan-2-il) hidrazin karboksilat (**31**)</u>

 $C_{28}H_{47}N_3O_5$

 $M_{\rm r} = 505,69$

žuto ulje; (18 mg; 29 %)

 $R_f = 0.75$ (PE:EtOAc=2:1)

MS-ESI: *m*/*z* 406,3 [M-Boc]⁺; *m*/*z* 506,4 [M+H]⁺

¹H NMR (300 MHz, CDCl₃) δ / ppm 7,37 (H_{ar}, Bn, m, 5H); 5,01 – 4,91 (H1, m, 1H); 3,94 – 3,73 (CH₂, Bn, m, 2H); 3,38 (α, hVal, d, *J* = 11,8 Hz, 1H); 3,07 (β, hVal, m, 1H); 2,60 – 2,39 (H2, m, 1H); 1,37 (CH₃, Boc, t-Bu, m, 18H); 1,22 – 1,15 (H3, H4, m, 4H); 0,94 – 0,88 (γ, γ', hVal, H5, H6, m, 12H).

¹³C NMR (151 MHz, CDCl₃) δ / ppm 177,0 (CO); 172,1 (CO); 154,9 (CO, Boc); 137,0 (C_{ar}, Bn); 129,4 - 127,5 (CH_{ar}, Bn); 87,4 (C1); 78,9 (α, hVal); 78,3 (C, Boc); 65,7 (C7); 57,1 (CH₂, Bn); 36,0 (C2); 32,6 (C3); 29,7 (β, hVal); 28,6 (CH₃, t-Bu); 28,2 (CH₃, Boc); 20,4 (C4); 19,7 (γ, hVal); 19,0 (γ', hVal); 14,1 (C5); 13,9 (C6).

```
HRMS (MALDI-TOF/TOF): izračunato C_{28}H_{48}N_3O_5 [M+H]^+ 506,3594; nađeno 506,3594
```

3.4.2.7. *tert*-butil-2-benzil-2-((2*R*)-1-(1-(1-metoksi-3-metil-1-okso-butan-2-il amino)-3-metil-1-okso-heksan-2-il-oksi)-3-metil-1-okso-butan-2-il) hidrazin karboksilat (**32**)

 $C_{30}H_{49}N_3O_7$

 $M_{\rm r} = 563,73$

žuto ulje; (12 mg; 21 %)

 $R_f = 0.7$ (PE:EtOAc=2:1)

MS-ESI: *m/z* 464,4 [M-Boc]⁺; *m/z* 564,4 [M+H]⁺; *m/z* 586,4 [M+Na]⁺

¹H NMR (300 MHz, CDCl₃) δ / ppm 7,50 – 7,27 (H_{ar}, Bn, m, 5H); 4,60 (H1, m, 1H); 4,14 (α, hVal, m, 1H); 3,91 – 3,78 (CH₂, Bn, m, 2H); 3,78 – 3,71 (OCH₃, s, 3H); 3,39 (α, Val, d, J = 14,8 Hz, 1H); 2,47 (β, hVal, m, 1H); 2,18 (H2, m, 1H); 1,88 (β, Val, m, 1H); 1,38 – 1,34 (CH₃, Boc, m, 9H); 1,21 – 1,13 (H3, H4, m, 4H); 0,91 (γ, γ', hVal, Val, H5, H6, m, 18H).

¹³C NMR (151 MHz, CDCl₃) δ / ppm 178,2 (CO); 177,0 (CO); 171,9 (CO); 154,9 (CO, Boc); 137,0 (C_{ar}, Bn); 129,4 - 127,5 (CH_{ar}, Bn); 87,2 (C1); 78,9 (α, hVal); 78,3 (C, Boc); 65,7 (α, Val); 57,1 (CH₂, Bn); 52,2 (OCH₃); 36,0 (C2); 32,6 (C3); 31,4 (β, Val); 28,7 (β, hVal); 28,2 (CH₃, Boc); 20,4 (C4); 20,0 (γ, hVal); 19,7 (γ', hVal); 19,0 (γ, Val); 17,8 (γ', Val); 14,1 (C5); 13,9 (C6).

HRMS (MALDI-TOF/TOF): izračunato $C_{30}H_{50}N_3O_7 [M+H]^+$ 564,3649; nađeno 564,3649
3.4.2.8. *tert*-butil-2-benzil-2-((2S)-1-(1-(1-metoksi-4-metil-1-okso-pentan-2-ilamino)-2-metil-1-okso-propan-2-il oksi)-4-metil-1-okso-pentan-2-il) hidrazin karboksilat (**33**)

 $C_{29}H_{47}N_{3}O_{7} \\$

 $M_{\rm r} = 549,70$

žuto ulje; (30 mg; 42 %)

 $R_f = 0,7$ (PE:EtOAc=2:1)

MS-ESI: *m/z* 550,6 [M+H]⁺; *m/z* 572,5 [M+Na]⁺

¹H NMR (600 MHz, CDCl₃) δ / ppm 7,35 – 7,30 (CH_{ar}, m, 5H); 4,28 (α, Leu, m, 1H); 3,82 (OCH₃, s, 3H); 3,74 (CH₂, Bn, s, 2H); 3,72 – 3,69 (α, hLeu, m, 1H); 1,66 (β, Leu, hLeu, m, 4H); 1,49 (H2, H3, s, 6H); 1,46 (γ, Leu, hLeu, m, 2H); 1,37 (CH₃, Boc, m, 9H); 1,01 – 0,96 (δ, δ', Leu, hLeu, m, 12H).

¹³C NMR (151 MHz, CDCl₃) δ / ppm 173,9 (CO); 172,4 (CO); 167,8 (CO); 160,5 (CO, Boc); 137,3 (C_{ar}, Bn); 129,7 - 127,7 (CH_{ar}, Bn); 81,9 (C, Boc); 60,8 (α, hLeu); 54,7 (C1); 53,4 (α, Leu); 53,0 (CH₂, Bn); 52,5 (OCH₃); 41,5 (β, Leu); 39,2 (β, hLeu); 28,4 (CH₃, Boc); 25,0 (γ, Leu); 24,7 (C2); 24,5 (C3); 24,0 (γ, hLeu); 23,0 (δ, Leu); 22,7 (δ', Leu); 21,8 (δ, hLeu); 21,1 (δ', hLeu).

HRMS (MALDI-TOF/TOF): izračunato C₂₉H₄₈N₃O₇ [M+H]⁺ 550,3492; nađeno 550,3491.

3.4.2.9. *tert*-butil-2-benzil-2-((2S)-1-(2-(1-metoksi-1-okso-3-fenilpropan-2-ilamino)-1-(4-nitrofenil)-2-okso-etoksi)-4-metil-1-okso-pentan-2-il) hidrazin karboksilat (**34**)

 $C_{36}H_{44}N_4O_9$

 $M_{\rm r} = 676,76$

žuto ulje; (40 mg; 54 %)

 $R_f = 0.5$ (PE:EtOAc=2:1)

MS-ESI: m/z 577,5 [M-Boc]⁺; m/z 621,5 [M+Na-Bn]⁺; m/z 677,6 [M+H]⁺; m/z 699,6 [M+Na]⁺

¹H NMR (600 MHz, CDCl₃) δ / ppm 8,39 (CH_{ar}, H3, H7, d, J = 8,6 Hz, 2H); 8,07 (CH_{ar}, H4, H6, d, J = 8,7 Hz, 2H); 7,43 – 7,27 (CH_{ar}, Bn, Phe, m, 10H); 6,16 – 6,05 (H1, m, 1H); 4,46 (α, Phe, m, 1H); 3,80 (OCH₃, s, 3H); 3,76 – 3,75 (CH₂, Bn, m, 2H); 3,56 (α, hLeu, m, 1H); 3,26 (β, Phe, dd, ²J = 4,6 Hz, 1H); 3,15 (β, Phe, dd, ²J = 4,8 Hz, 1H); 1,58 (β, γ, hLeu, m, 3H); 1,37 (CH₃, Boc, m, 9H); 0,96 – 0,80 (δ, δ', hLeu, m, 6H).

¹³C NMR (151 MHz, CDCl₃) δ / ppm 171,4 (CO); 171,4 (CO); 166,7 (CO); 161,4 (CO, Boc); 148,6 (C_{ar}, C5); 140,3 (C_{ar}, C2); 135,4 (C_{ar}, Bn); 134,5(C_{ar}, Phe); 130,6 (CH_{ar}, C3, C7); 129,4 - 127,9 (CH_{ar}, Bn, Phe); 124,5 (CH_{ar}, C4, C6); 74,4 (C1); 74,1 (α , hLeu); 58,2 (α , Phe); 52,8 (OCH₃); 39,1 (CH₂, Bn); 37,7 (β , hLeu); 37,4 (β , Phe); 28,4 (CH₃, Boc); 28,1 (γ , hLeu); 24,3 (δ , hLeu); 23,2 (δ ', hLeu).

HRMS (MALDI-TOF/TOF): izračunato C₃₆H₄₅N₄O₉ [M+H]⁺ 677,3187; nađeno 677,3184.

3.4.2.10. *tert*-butil-2-benzil-2-((2S)-1-(2-(1-metoksi-4-metil-1-okso-pentan-2-ilamino)-2-okso-1-fenil-etoksi)-4-metil-1-okso-pentan-2-il) hidrazin karboksilat (35)

 $C_{33}H_{47}N_3O_7$

 $M_{\rm r} = 597,74$

žuto ulje; (17 mg; 22 %)

 $R_f = 0.6$ (PE:EtOAc=2:1)

MS-ESI: *m*/*z* 498,5 [M-Boc]⁺; *m*/*z* 598,5 [M+H]⁺

¹H NMR (600 MHz, CDCl₃) δ / ppm 7,52 – 7,30 (CH_{ar}, Bn, H2-H7, m, 10H); 5,51 (H1, m, 1H); 4,67 (α, Leu, m, 1H); 4,17 – 3,89 (CH₂, Bn, m, 2H); 3,75 – 3,68 (OCH₃, m, 3H); 3,55 (α, hLeu, m, 1H); 2,00 – 1,87 (β, Leu, m, 2H); 1,66 (β, hLeu, γ, Leu, hLeu, m, 4H); 1,57 – 1,49 (CH₃, Boc, m, 9H); 0,98 – 0,85 (δ, δ', Leu, hLeu, m, 12H).

¹³C NMR (151 MHz, CDCl₃) δ / ppm 173,1 (CO); 168,3 (CO); 165,0 (CO); 154,8 (CO, Boc); 138,6 (C_{ar}, Bn); 137,3 (C_{ar}, C2); 130,0 - 127,5 (CH_{ar}, Bn, C3-C7); 81,6 (C, Boc); 76,4 (C1); 60,8 (α, hLeu); 54,7 (CH₂, Bn); 52,5 (α, Leu); 50,9 (OCH₃); 41,9 (β, hLeu); 36,8 (β, Leu); 28,4 (CH₃, Boc); 26,0 (γ, hLeu); 25,0 (γ, Leu); 22,9 (δ, hLeu); 22,7 (δ', hLeu); 22,1 (δ, Leu); 21,8 (δ', hLeu).

HRMS (MALDI-TOF/TOF): izračunato C₃₃H₄₈N₃O₇ [M+H]⁺ 598,3492; nađeno 598,3486.

3.4.2.11. *tert*-butil-2-benzil-2-((2S)-1-(1-(1-metoksi-3-metil-1-okso-butan-2-ilamino)-3-metil-1-okso-heksan-2-il-oksi)-1-okso-3-fenilpropan-2-il) hidrazin karboksilat (**36**)

 $C_{34}H_{49}N_3O_7$

 $M_{\rm r} = 611,77$

žuto ulje; (64 mg; 74 %)

 $R_f = 0.65$ (PE:EtOAc=2:1)

MS-ESI: *m*/*z* 612,6 [M+H]⁺

¹H NMR (600 MHz, CDCl₃) δ / ppm 7,38 – 7,17 (CH_{ar}, hPhe, Bn, m, 10H); 4,66 (H1, m, 1H); 4,61 – 4,53 (α, Val, m, 1H); 3,85 – 3,83 (α, hPhe, m, 1H); 3,82 – 3,81 (CH₂, Bn, m, 2H); 3,75 (OCH₃, s, 3H); 3,75 – 3,73 (β, hPhe, m, 2H); 2,20 (β, Val, H2, m, 2H); 1,52 (CH₃, Boc, s, 9H); 1,46 – 1,40 (H3, H4, m, 4H); 0,96 (H5, H6, d, *J* = 6,9 Hz, 6H); 0,92 (γ, γ', Val, d, *J* = 6,9 Hz, 6H).

¹³C NMR (151 MHz, CDCl₃) δ / ppm 172,2 (CO); 167,1 (CO); 160,7 (CO); 151,1 (CO, Boc); 129,8 -126,7 (CH_{ar}, hPhe, Bn); 83,9 (C, Boc); 78,6 (C1); 78,2 (α, hPhe); 63,0 (α, Val); 53,3 (OCH₃); 34,0 (β, hPhe); 33,7 (C3); 31,5 (β, Val); 31,4 (C2); 28,1 (CH₃, Boc); 20,3 (C4); 19,4 (γ, Val); 19,1 (γ', Val); 17,8 (C5); 16,8 (C5).

HRMS (MALDI-TOF/TOF): izračunato C₃₄H₅₀N₃O₇ [M+H]⁺ 612,3649; nađeno 612,3646.

<u>3.4.2.12</u>. *tert*-butil-2-benzil-2-((2*S*)-1-(2-(cikloheksilamino)-1-(4-nitrofenil)-2okso-etoksi)-1-okso-3-fenilpropan-2-il) hidrazin karboksilat (**37**)

 $C_{35}H_{42}N_4O_7$

 $M_{\rm r} = 630,73$

žuto ulje; (25 mg; 36 %)

 $R_f = 0.4$ (PE:EtOAc=2:1)

MS-ESI: *m/z* 531,3 [M-Boc]⁺; *m/z* 631,3 [M+H]⁺; *m/z* 653,3 [M+Na]⁺

¹H NMR (300 MHz, CDCl₃) δ / ppm 8,44 – 8,36 (H_{ar}, H3, H7, m, 2H); 8,11 – 8,05 (H_{ar}, H4, H6, m, 2H); 7,45 – 7,00 (H_{ar}, hPhe, Bn, m, 10H); 5,23 – 4,94 (H1, m, 1H); 4,09 (α, hPhe, m, 1H); 3,92 (H8, m, 1H); 3,84 – 3,59 (CH₂, Bn, m, 2H); 3,30 – 2,87 (β, hPhe, m, 2H); 1,97 – 1,55 (H9, H11, H13, m, 6H); 1,54 – 1,45 (CH₃, Boc, m, 9H); 1,27 – 1,09 (H10, H12, m, 4H).

¹³C NMR (75 MHz, CDCl₃) δ / ppm 170,5 (CO); 165,8 (CO); 162,8 (CO, Boc); 148,0 (C_{ar}, C5); 140,1 (C_{ar}, Bn, C2); 134,1 (C_{ar}, hPhe); 130,5 - 123,7 (CH_{ar}, hPhe, Bn, C3, C4, C6, C7); 83,8 (C, Boc); 75,1 (α, hPhe); 74,7 (C1); 59,5 (CH₂, Bn); 48,8 (C8); 32,9 (β, hPhe); 32,7 (C9), 32,6 (C13); 28,2 (CH₃, Boc); 25,4 (C11); 24,9 (C10); 24,7 (C12).

HRMS (MALDI-TOF/TOF): izračunato C₃₅H₄₃N₄O₇ [M+H]⁺ 631,3132; nađeno 631,3134.

3.4.2.13. *tert*-butil-2-benzil-2-((2*S*)-1-(1-(2-metoksi-2-okso-etilamino)-3-metil-1-okso-heksan-2-il oksi)-1-okso-3-fenilpropan-2-il) hidrazin karboksilat (**38**)

 $C_{31}H_{43}N_3O_7$

 $M_{\rm r} = 569,69$

žuto ulje; (26 mg; 32 %)

 $R_f = 0,46$ (PE:EtOAc=2:1)

MS-ESI: *m/z* 470,3 [M-Boc]⁺; *m/z* 570,3 [M+H]⁺; *m/z* 592,3 [M+Na]⁺

¹H NMR (300 MHz, CDCl₃) δ / ppm 7,30 (H_{ar}, hPhe, m, 5H); 7,26 – 7,16 (H_{ar}, Bn, m, 5H); 5,20 – 5,11 (H1, m, 1H); 4,06 (α, hPhe, m, 1H); 4,01 – 3,91 (α, Gly, s, 2H); 3,76 (CH₂, Bn, s, 2H); 3,73 (OCH₃, s, 3H); 3,20 – 2,99 (β, hPhe, m, 2H); 2,64 – 2,40 (H2, m, 1H); 1,46 – 1,41 (CH₃, Boc, m, 9H); 1,27 – 1,19 (H3, H4, m, 4H); 0,91 – 0,84 (H5, H6, m, 6H).

¹³C NMR (151 MHz, CDCl₃) δ / ppm 170,0 (CO); 169,7 (CO); 162,9 (CO, Gly); 156,4 (CO, Boc); 136,6 (C_{ar}, hPhe); 133,6 (C_{ar}, Bn); 129,8 - 126,7 (CH_{ar}, hPhe, Bn); 83,7 (C1), 79,8 (α, hPhe); 78,1 (C, Boc); 60,8 (CH₂, Bn); 52,3 (OCH₃); 40,9 (α, Gly); 35,8 (C2); 35,1 (β, hPhe); 33,5 (C3); 28,2 (CH₃, Boc); 20,2 (C4); 14,3 (C5); 14,1 (C6).

HRMS (MALDI-TOF/TOF): izračunato C₃₁H₄₄N₃O₇ [M+H]⁺ 570,3179; nađeno 570,3173.

3.4.2.14. di-*tert*-butil-1-((2S)-1-(2-(1-metoksi-1-okso-3-fenilpropan-2-il-amino)-1-(4-nitrofenil)-2-okso-etoksi)-4-metil-1-okso-pentan-2-il) hidrazin-1,2dikarboksilat (**39**)

 $C_{34}H_{46}N_4O_{11}$

 $M_{\rm r} = 686,75$

bezbojno ulje; (13 mg; 17 %)

 $R_f = 0.45$ (PE:EtOAc=2:1)

MS-ESI: *m/z* 709,5 [M+Na]⁺

¹H NMR (600 MHz, CDCl₃) δ / ppm 8,21 - 7,61 (H_{ar}, H3, H4, H6, H7, m, 4H); 7,27 - 7,15 (H_{ar}, Phe, m, 5H); 6,09 (H1, s, 1H); 4,96 - 4,75 (α, hLeu, Phe, m, 2H); 3,71 (OCH₃, m, 3H); 3,19 - 3,02 (β, Phe, m, 2H); 1,73 (β, γ, hLeu, m, 3H); 1,48 (CH₃, Boc 2x, m, 18H); 0,95 - 0,90 (δ, δ', hLeu, m, 6H).

¹³C NMR (151 MHz, CDCl₃) δ / ppm 171,4 (CO); 166,9 (CO); 148,2 (CO, Boc); 130,6 - 128,6 (HC_{ar}, Phe); 124,0 - 123,9 (HC_{ar}, C3, C4, C6, C7); 82,6, 82,5 (C, Boc); 75,3 (C1); 53,6 (α, hLeu); 53,4 (α, Phe); 52,6 (OCH₃); 37,5 (β, Phe); 37,3 (β, hLeu); 28,3 (CH₃, Boc 2x); 24,9 (γ, hLeu); 23,2 (δ, hLeu); 21,9 (δ', hLeu).

HRMS (MALDI-TOF/TOF): izračunato C₃₄H₄₇N₄O₁₁ [M+H]⁺ 687,3241; nađeno 687,3237.

<u>3.4.2.15. di-*tert*-butil-1-((2S)-1-(1-(1-metoksi-4-metil-1-okso-pentan-2-ilamino)-2-metil-1-okso-propan-2-il-oksi)-1-okso-3-fenilpropan-2-il) hidrazin-1,2-dikarboksilat (**40**)</u>

C₃₀H₄₇N₃O₉

 $M_{\rm r} = 593,71$

bezbojno ulje; (8 mg; 10 %)

 $R_f = 0.42$ (PE:EtOAc=2:1)

MS-ESI: *m/z* 616,5 [M+Na]⁺; *m/z* 1209,9 [2M+Na]⁺

¹H NMR (600 MHz, CDCl₃) δ / ppm 7,35 – 7,26 (H_{ar}, hPhe, m, 5H); 4,62 (α, hPhe, m, 1H); 4,58 – 4,52 (α, Leu, m, 1H); 3,69 (OCH₃, s, 3H); 3,19 (β, hPhe, m, 2H); 1,66 – 1,57 (β, γ, Leu, H2, H3, m, 9H); 1,46 – 1,42 (CH₃, Boc 2x, m, 18H); 0,91 (δ, δ', Leu, m, 6H).

¹³C NMR (151 MHz, CDCl₃) δ / ppm 173,1 (CO); 129,5 - 126,8 (CH_{ar}, hPhe); 83,2 (C, Boc); 82,2 (α, hPhe); 81,4 (C1); 52,0 (α, Leu); 50,8 (OCH₃); 50,6 (β, Leu); 40,5 (β, hPhe); 34,9 (γ, Leu); 28,1 (CH₃, Boc); 24,8 (C2); 24,5 (C3); 22,9 (δ, Leu); 22,6 (δ', Leu).

HRMS (MALDI-TOF/TOF): izračunato C₃₀H₄₈N₃O₉ [M+H]⁺ 594,3391; nađeno 594,3384.

3.4.2.16. di-*tert*-butil-1-((2S)-1-(1-(1-metoksi-3-metil-1-okso-butan-2-il-amino)-3-metil-1-okso-heksan-2-il-oksi)-1-okso-3-fenilpropan-2-il) hidrazine-1,2dikarboksilat (**41**)

 $C_{32}H_{51}N_3O_9$

 $M_{\rm r} = 621,76$

bezbojno ulje; (21 mg; 24 %)

 $R_f = 0,7$ (PE:EtOAc=2:1)

MS-ESI: m/z 422,3 $[M-2Boc]^+$; m/z 616,5 $[M+H]^+$

¹H NMR (600 MHz, CDCl₃) δ / ppm 7,34 – 7,23 (H_{ar}, hPhe, m, 5H); 5,16 – 5,02 (H1, m, 1H); 4,49 (α, hPhe, m, 1H); 4,17 (α, Val, m, 1H); 3,82 (OCH₃, s, 3H); 3,31 (β, hPhe, m, 2H); 2,34 (H2, m, 1H); 2,25 – 2,15 (β, Val, m, 1H); 1,43 (CH₃, Boc 2x, m, 18H); 1,35 – 1,29 (H3, m, 2H); 1,23 (H4, m, 2H); 0,98 – 0,82 (γ, γ', Val, H5, H6, m, 12H).

¹³C NMR (151 MHz, CDCl₃) δ / ppm 172,1 (CO); 167,0 (CO); 160,7 (CO, Boc); 137,7 (C_{ar}, hPhe); 129,6 - 126,8 (CH_{ar}, hPhe); 79,4 (C, Boc); 78,7 (C1); 63,0 (α, hPhe); 57,4 (α, Val); 53,3 (OCH₃); 35,6 (C2); 34,8 (C3); 31,4 (β, Val); 29,8 (β, hPhe); 28,2 (CH₃, Boc 2x); 20,3 (C4); 19,2 (γ, Val); 19,1 (γ', Val); 14,2 (C5); 14,1 (C6).

HRMS (MALDI-TOF/TOF): izračunato C₃₂H₅₂N₃O₉ [M+H]⁺ 622,3704; nađeno 622,3694.

<u>3.4.2.17. di-*tert*-butil-1-((2*S*)-1-(2-(2-metoksi-2-okso-etilamino)-1-(4nitrofenil)-2-okso-etoksi)-1-okso-3-fenilpropan-2-il) hidrazin-1,2-dikarboksilat</u> (**42**)

 $C_{30}H_{38}N_4O_{11}$

 $M_{\rm r} = 630, 64$

bezbojno ulje; (20 mg; 23 %)

 $R_f = 0,2$ (PE:EtOAc=2:1)

MS-ESI: *m/z* 431,2 [M-2Boc]⁺

¹H NMR (600 MHz, CDCl₃) δ / ppm 7,42 – 7,02 (H_{ar}, hPhe, R-CHO, m, 9H); 6,13 (α, R-CHO, s, 1H); 4,12 – 3,97 (α, hPhe, m, 1H); 3,69 (α, Gly, s, 2H); 3,46 (OCH₃, s, 3H); 3,24 (β, hPhe, m, 2H); 1,44 (CH₃, Boc 2x, m, 18H).

¹³C NMR (151 MHz, CDCl₃) δ / ppm 169,9 (CO, hPhe); 169,8 (CO, Gly); 168,1 (CO, R-CHO); 155,6 (CO, Boc); 155,0 (CO, Boc); 148,3 (C_{ar}, R-CHO); 142,8 (C_{ar}, R-CHO); 140,4 (C_{ar}, hPhe); 130,8 (CH_{ar}, R-CHO); 129,3 - 124,6 (CH_{ar}, hPhe); 124,6 (CH_{ar}, R-CHO); 82,9 (C, Boc); 82,4 (C, Boc); 75,8 (α, R-CHO); 75,2 (α, hPhe); 51,1 (OCH₃); 41,1 (α, Gly); 30,0 (β, hPhe); 28,4 (CH₃, Boc 2x).

HRMS (MALDI-TOF/TOF): izračunato C₃₀H₃₉N₄O₁₁ [M+H]⁺ 631,2615; nađeno 631,2609.

<u>3.4.2.18. 1-benzil-2-*tert*-butil-1-((2S)-1-(2-(1-metoksi-1-okso-3-fenilpropan-2-il-amino)-1-(4-nitrofenil)-2-okso-etoksi)-4-metil-1-okso-pentan-2-il) hidrazin-1,2-dikarboksilat (43)</u>

 $C_{37}H_{44}N_4O_{11}$

 $M_{\rm r} = 720,77$

bezbojno ulje; (9 mg; 11 %)

 $R_f = 0.43$ (PE:EtOAc=2:1)

MS-ESI: *m/z* 621,3 [M-Boc]⁺; *m/z* 743,4 [M+Na]⁺

¹H NMR (600 MHz, CDCl₃) δ / ppm 7,30 (H_{ar}, Phe, Cbz, H3, H4, H6, H7, m, 14H); 6,07 (H1, s, 1H); 5,28 – 5,07 (α, Phe, hLeu, m, 2H); 4,79 (CH₂, Cbz, s, 2H); 3,70 (CH₃, OCH₃, m, 3H); 3,29 – 3,01 (β, Phe, m, 2H); 1,66 (CH₃, Boc, β, hLeu, m, 11H); 1,50 (γ, hLeu, m, 1H); 0,98 – 0,80 (δ, δ', hLeu, m, 6H).

¹³C NMR (151 MHz, CDCl₃) δ / ppm 171,5 (CO); 170,8 (CO); 169,1 (CO); 156,9 (CO, Boc); 141,0 (C_{ar}, Phe, Cbz); 130,6 - 124,1 (CH_{ar}, Phe, Cbz, C3, C4, C6, C7); 72,3 (C1); 68,9 (α, hLeu); 65,6 (CH₂, Cbz); 59,2 (α, Phe); 53,6 (CH₃, OCH₃); 39,0 (β, Phe); 35,3 (β, hLeu); 28,4 (CH₃, Boc); 24,4 (γ, hLeu); 23,0 (δ, hLeu); 21,7 (δ', hLeu).

HRMS (MALDI-TOF/TOF): izračunato C₃₇H₄₅N₄O₁₁ [M+H]⁺ 721,3085; nađeno 721,3076.

<u>3.4.2.19. 1-benzil-2-*tert*-butil-1-((2*S*)-1-(1-(cikloheksilamino)-3-metil-1-oksoheksan-2-il-oksi)-4-metil-1-okso-pentan-2-il) hidrazin-1,2-dikarboksilat (**44**)</u>

 $C_{32}H_{51}N_3O_7$

 $M_{\rm r} = 589,76$

bezbojno ulje; (9 mg; 11 %)

 $R_f = 0.43$ (PE:EtOAc=2:1)

MS-ESI: *m/z* 588,1 [M-H]⁻; *m/z* 490,2 [M-Boc]⁺

¹H NMR (300 MHz, CDCl₃) δ / ppm 7,23 – 7,19 (H_{ar}, Cbz, m, 5H); 5,73 (H1, s, 1H); 5,16 – 4,87 (CH₂, Cbz, s, 2H); 3,70 (α, hLeu, m, 1H); 3,60 – 3,40 (H7, m, 1H); 2,05 (β, γ, hLeu, H2, m, 4H); 1,89 (CH₃, Boc, s, 9H); 1,81 – 1,16 (H3, H4, H8, H9, H10, H11, H12, m, 14H); 1,15 – 0,63 (δ, δ', hLeu, H5, H6, m, 12H).

¹³C NMR (75 MHz, CDCl₃) δ / ppm 168,6 (CO); 168,2 (CO); 140,9 (C_{ar}, Cbz); 128,6 - 127,0 (CH_{ar}, Cbz); 78,0 (C1); 77,3 (α, hLeu); 65,3 (CH₂, Cbz); 47,9 (C7); 35,2 (β, hLeu); 33,6 (C2); 33,1 (C3); 32,9 (C8, C12); 29,7 (γ, hLeu); 28,2 (CH₃, Boc); 25,5 (C10); 24,7 (C9, C11); 20,9 (C4, δ, hLeu); 20,1 (δ', hLeu); 15,6 (C5); 14,1 (C6).

HRMS (MALDI-TOF/TOF): izračunato $C_{32}H_{52}N_3O_7 [M+H]^+$ 590,3805; nađeno 590,3805

3.4.2.20. 1-benzil-2-*tert*-butil-1-((2*S*)-1-(1-(*tert*-butilamino)-3-metil-1-oksoheksan-2-il-oksi)-4-metil-1-okso-pentan-2-il) hidrazin-1,2-dikarboksilat (**45**)

 $C_{30}H_{49}N_3O_7$

 $M_{\rm r} = 563,73$

bezbojno ulje; (20 mg; 32 %)

 $R_f = 0.36$ (PE:EtOAc=2:1)

MS-ESI: *m/z* 562,1 [M-H]⁻; *m/z* 464,2 [M-Boc]⁺; *m/z* 586,2 [M+Na]⁺

¹H NMR (300 MHz, CDCl₃) δ / ppm 7,33 (H_{ar}, Cbz, m, 5H); 5,21 (CH₂, Cbz, s, 2H); 4,93 (H1, m, 1H); 3,75 (α, hLeu, m, 1H); 2,12 (H2, m, 1H); 1,54 (β, γ, hLeu, H3, m, 5H); 1,52 – 1,23 (CH₃, Boc, t-Bu, H4, m, 20H); 1,02 – 0,79 (δ, δ', hLeu, H5, H6, m, 12H).

¹³C NMR (151 MHz, CDCl₃) δ / ppm 174,6 (CO); 171,2 (CO); 157,6 (CO, Boc); 152,8 (CO, Cbz); 141,2 (C_{ar}, Cbz); 128,9 - 127,3 (CH_{ar}, Cbz); 83,4 (C1); 65,7 (CH₂, Cbz); 63,5 (α, hLeu); 61,4 (C7); 35,5 (β, hLeu); 34,0 (C2); 32,3 (C3); 30,0 (CH₃, t-Bu); 29,0 (CH₃, Boc); 25,2 (γ, hLeu); 23,0 (δ, hLeu); 22,4 (δ', hLeu); 20,5 (C4); 14,6 (C5); 14,5 (C6).

HRMS (MALDI-TOF/TOF): izračunato $C_{30}H_{50}N_3O_7 [M+H]^+$ 564,3649; nađeno 564,3647

<u>3.4.2.21. 1-benzil-2-*tert*-butil-1-((2*S*)-1-(2-(cikloheksilamino)-1-(4-nitrofenil)-2okso-etoksi)-4-metil-1-okso-pentan-2-il) hidrazin-1,2-dikarboksilat (**46**)</u>

$$\begin{array}{c} & & & \mathsf{NO}_2 \\ & & & \mathsf{S}_1 \\ & & \mathsf{O}_2 \\ & & \mathsf{$$

 $C_{33}H_{44}N_4O_9$

 $M_{\rm r} = 640,72$

bezbojno ulje; (39 mg; 55 %)

 $R_f = 0.45$ (PE:EtOAc=2:1)

MS-ESI: *m/z* 541,3 [M-Boc]⁺; *m/z* 663,3 [M+Na]⁺; *m/z* 1281,6 [2M+H]⁺

¹H NMR (600 MHz, CDCl₃) δ / ppm 8,40 (H_{ar}, H4, H6, d, *J* = 8,7 Hz, 2H); 8,08 (H_{ar}, H3, H7, d, *J* = 8,7 Hz, 2H); 7,33 – 7,29 (H_{ar}, Cbz, m, 5H); 6,09 (H1, s, 1H); 5,34 – 5,07 (CH₂, Cbz, s, 2H); 4,80 (α, hLeu, m, 1H); 3,76 (H8, m, 1H); 1,81 – 1,65 (CH₃, Boc, m, 9H); 1,59 – 1,29 (β, γ, hLeu, H9, H10, H11, H12, H13, m, 13H); 1,05 – 0,80 (δ, δ', hLeu, m, 6H).

¹³C NMR (151 MHz, CDCl₃) δ / ppm 151,2 (CO, Boc, Cbz); 140,9 - 140,1 (C_{ar}, C5, C2); 139,3 (C_{ar}, Cbz); 130,5 - 124,3 (CH_{ar}, Cbz, C3, C4, C6, C7); 68,6 (C1); 65,4 (CH₂, Cbz); 63,1 (α, hLeu); 48,7 (C8); 35,0 (β, hLeu); 32,7 (C9); 32,6 (C13); 28,0 (CH₃, Boc); 25,4 (C11); 24,9 - 24,7 (C10, C12, γ, hLeu); 22,9 (δ, δ', hLeu).

HRMS (MALDI-TOF/TOF): izračunato C₃₃H₄₅N₄O₉ [M+H]⁺ 641,3187; nađeno 641,3187.

3.4.2.22. 1-benzil-2-*tert*-butil-1-((2S)-1-(1-(1-metoksi-3-metil-1-okso-butan-2il-amino)-3-metil-1-okso-heksan-2-il-oksi)-1-okso-3-fenilpropan-2-il) hidrazin-1,2-dikarboksilat (**47**)

 $C_{35}H_{49}N_3O_9$

 $M_{\rm r} = 655,78$

bezbojno ulje; (50 mg; 54 %)

 $R_f = 0.46$ (PE:EtOAc=2:1)

MS-ESI: *m*/*z* 556,4 [M-Boc]⁺; *m*/*z* 656,4 [M+H]⁺

¹H NMR (600 MHz, CDCl₃) δ / ppm 7,24 – 7,14 (H_{ar}, hPhe, Cbz, m, 10H); 5,19 – 4,86 (CH₂, Cbz, α, hPhe, H1, m, 4H); 4,43 (α, Val, m, 1H); 3,65 – 3,53 (CH₃, OMe, s, 3H); 3,30 – 3,02 (β, hPhe, m, 2H); 2,09 (H2, m, 1H); 1,94 (β, Val, m, 1H); 1,35 – 1,22 (CH₃, Boc, m, 9H); 1,21 – 1,15 (H3, m, 2H); 1,10 – 1,00 (H4, m, 2H); 0,76 (γ, γ', Val, H5, H6, m, 12H).

¹³C NMR (151 MHz, CDCl₃) δ / ppm 172,2 (CO); 172,1 (CO); 169,6 (CO); 155,6 (CO, Boc); 155,5 (CO, Cbz); 141,1 (C_{ar}, Cbz); 135,7 (C_{ar}, Boc); 129,3 - 127,0 (CH_{ar}, hPhe, Cbz); 81,7 (C1); 78,7 (C, Boc); 68,6 (α, hPhe); 65,4 (CH₂, Cbz); 57,3 (α, Val); 52,1 (CH₃, OMe); 35,5 (C3); 35,0 (C2); 31,1 (β, Val); 28,1 (CH₃, Boc); 20,2 (C4); 19,1 (γ, Val); 18,2 (γ', Val); 15,5 (C5); 14,2 (C6).

HRMS (MALDI-TOF/TOF): izračunato C₃₅H₅₀N₃O₉ [M+H]⁺ 656,3547; nađeno 656,3544.

<u>3.4.2.23. 1-benzil-2-*tert*-butil-1-((2*S*)-1-(1-(*tert*-butilamino)-3-metil-1-oksoheksan-2-il-oksi)-1-okso-3-fenilpropan-2-il) hidrazin-1,2-dikarboksilat (**48**)</u>

 $C_{33}H_{47}N_3O_7$

 $M_{\rm r} = 597,74$

bezbojno ulje; (28 mg; 43 %)

 $R_f = 0.57$ (PE:EtOAc=2:1)

MS-ESI: *m/z* 498,3 [M-Boc]⁺; *m/z* 620,4 [M+Na]⁺; *m/z* 1217,7 [2M+Na]⁺

¹H NMR (600 MHz, CDCl₃) δ / ppm 7,33 – 7,26 (H_{ar}, hPhe, Cbz, m, 10H); 5,25 – 5,09 (CH₂, Cbz, m, 2H); 5,09 – 4,80 (α, hPhe, H1, m, 2H); 3,23 (β, hPhe, m, 2H); 2,14 – 1,99 (H2, m, 1H); 1,52 – 1,20 (CH₃, Boc, t-Bu, H4, m, 20H); 1,16 (H3, m, 2H); 0,98 – 0,77 (H5, H6, m, 6H).

¹³C NMR (151 MHz, CDCl₃) δ / ppm 168,5 (CO); 164,4 (CO); 155,2 (CO, Boc); 154,4 (CO, Cbz); 141,3 (C_{ar}, Cbz, hPhe); 129,6 - 127,3 (CH_{ar}, Cbz, hPhe); 82,1 (C1); 68,9 (α, hPhe); 65,7 (CH₂, Cbz); 51,8 (C7); 35,7 (C2); 35,2 (C3); 30,0 (β, hPhe); 29,0 (CH₃, t-Bu); 28,4 (CH₃, Boc); 20,5 (C4); 14,5 (C5); 14,4 (C6).

HRMS (MALDI-TOF/TOF): izračunato C₃₅H₅₀N₃O₉ [M+H]⁺ 598,3492; nađeno 598,3489.

<u>3.4.2.24.</u> 1-benzil-2-*tert*-butil-1-((2*S*)-1-(2-(2-metoksi-2-okso-etilamino)-1-(4nitrofenil)-2-okso-etoksi)-1-okso-3-fenilpropan-2-il) hidrazin-1,2-dikarboksilat (**49**)

 $C_{33}H_{36}N_4O_{11}$

 $M_{\rm r} = 664, 66$

bezbojno ulje; (30 mg; 32 %)

 $R_f = 0,17$ (PE:EtOAc=2:1)

MS-ESI: *m/z* 662,9 [M-H]⁻; *m/z* 565,0 [M-Boc]⁺; *m/z* 687,0 [M+Na]⁺; *m/z* 1329,2 [2M+H]⁺

¹H NMR (300 MHz, CDCl₃) δ / ppm 8,25 – 7,20 (H_{ar}, hPhe, Cbz, H3, H4, H6, H7, m, 14H); 6,20 – 6,04 (H1, s, 1H); 5,22 (CH₂, Cbz, s, 2H); 4,68 (α, hPhe, m, 1H); 4,13 – 3,91 (α, Gly, m, 2H); 3,69 (CH₃, OMe, s, 3H); 3,22 (β, hPhe, m, 2H); 1,40 (CH₃, Boc, s, 9H).

¹³C NMR (75 MHz, CDCl₃) δ / ppm 171,2 (CO); 169,7 (CO); 167,7 (CO); 155,1 (CO, Boc); 150,7 (CO, Cbz); 148,2 (C_{ar}, C5); 142,2 (C_{ar}, C2); 136,9 (C_{ar}, hPhe); 136,3 (C_{ar}, Cbz); 129,2 - 123,6 (CH_{ar}, hPhe, Cbz, C3, C4, C6, C7); 82,6 (C, Boc); 73,7 (C1); 68,6 (α, hPhe); 67,0 (CH₂, Cbz); 52,3 (CH₃, OMe); 40,9 (α, Gly); 29,8 (β, hPhe); 28,1 (CH₃, Boc).

HRMS (MALDI-TOF/TOF): izračunato C₃₀H₃₇N₄O₁₁ [M+H]⁺ 665,2459; nađeno 665,2458

3.4.2.25. (2*S*)-2-(1-metoksi-4-metil-1-okso-pentan-2-il-amino)-1-(4-nitrofenil)-2-oksoetil 1-(*tert*-butoksikarbonilamino) pirolidin-2-karboksilat (**50**)

 $C_{25}H_{36}N_4O_9$

 $M_{\rm r} = 536,57$

žuto ulje; (11 mg; 16 %)

 $R_f = 0,47$ (PE:EtOAc=2:1)

MS-ESI: *m/z* 422,2 [M-BocNH]⁺

¹H NMR (600 MHz, CDCl₃) δ / ppm 8,22 (CH_{ar}, H3, H7, m, 2H); 7,74 – 7,64 (CH_{ar}, H4, H6, m, 2H); 6,19 (H1, s, 1H); 4,71 – 4,65 (α, Leu, m, 1H); 3,92 (α, hPro, m, 1H); 3,75 – 3,67 (OCH₃, m, 3H); 3,31- 3,23 (δ, hPro, m, 2H); 2,10 – 1,97 (β, hPro, m, 2H); 1,97 – 1,82 (γ, hPro, m, 2H); 1,67 (β, γ, Leu, m, 3H); 1,49 (CH₃, Boc, s, 9H); 0,97 – 0,88 (δ, δ', Leu, m, 6H).

¹³C NMR (151 MHz, CDCl₃) δ / ppm 172,7 (CO); 171,7 (CO); 167,1 (CO); 155,6 (CO, Boc); 148,2 (C_{ar}, C5); 142,3 (C_{ar}, C2); 128,6 (CH_{ar}, C3, C7); 123,8 (CH_{ar}, C4, C6); 81,3 (C, Boc); 77,9 (C1); 74,9 (α, hPro); 64,0 (α, Leu); 52,5 (δ, hPro); 50,7 (OCH₃); 45,8 (β, Leu); 28,2 (CH₃, Boc); 24,9 (β, hPro); 24,2 (γ, Leu); 22,9 (δ, Leu); 22,7 (δ', Leu); 21,6 (γ, hPro).

<u>3.4.2.26. (2*S*)-2-(cikloheksilamino)-1-(4-nitrofenil)-2-oksoetil 1-(*tert*butoksikarbonilamino) pirolidin-2-karboksilat (**51**)</u>

 $C_{24}H_{34}N_4O_7$

 $M_{\rm r} = 490,55$

narančasto ulje; (48 mg; 54 %)

 $R_f = 0.4$ (PE:EtOAc=2:1)

¹H NMR (600 MHz, CDCl₃) δ / ppm 8,20 -7,66 (H_{ar}, H3, H4, H6, H7, m, 4H); 6,13 (H1, s, 1H); 3,88 – 3,74 (α, hPro, H8, m, 2H); 3,29 – 3,16 (δ, hPro, m, 2H); 2,01 – 1,94 (β, hPro, m, 2H); 1,90 – 1,83 (γ, hPro, m, 2H); 1,76 – 1,67 (H9, H13, m, 2H); 1,66 – 1,57 (CH₃, Boc, m, 9H); 1,40 – 1,20 (H10, H11, H12, m, 6H).

¹³C NMR (151 MHz, CDCl₃) δ / ppm 171,5 (CO); 166,2 (CO); 155,9 (CO, Boc); 148,2 (C_{ar}, C5); 143,1 (C_{ar}, C2); 128,1 (CH_{ar}, C3, C7); 123,9 (CH_{ar}, C4, C6); 81,6 (C, Boc); 78,1 (C1); 74,9 (α, hPro); 64,3 (δ, hPro); 48,7 (C8); 32,9 (C8, C13); 28,3 (CH₃, Boc); 27,6 (β, hPro); 25,5 (C11); 25,2 (C10, C12); 24,9 (γ, hPro).

HRMS (MALDI-TOF/TOF): izračunato C₂₄H₃₃N₄O₇ [M-H]⁻ 489,2349; nađeno 489,2336.

<u>3.4.2.27. (2*S*)-1-(2-metoksi-2-okso-etilamino)-3-metil-1-okso-heksan-2-il-1-</u> (*tert*-butoksikarbonilamino) pirolidin-2-karboksilat (**52**)

 $C_{20}H_{35}N_3O_7$

 $M_{\rm r} = 429,51$

bezbojno ulje; (12 mg; 13 %)

 $R_f = 0.3$ (PE:EtOAc=2:1)

MS-ESI: *m*/*z* 315,2 [M-BocNH]⁺

¹H NMR (600 MHz, CDCl₃) δ / ppm 5,51 (H1, s, 1H); 3,71 (α, Gly, s, 2H); 3,70 (CH₃, OCH₃, s, 3H); 3,26 (α, hPro, m, 1H); 2,82 - 2,70 (δ, hPro, m, 2H); 2,24 - 2,07 (β, hPro, m, 2H); 2,05 - 1,89 (γ, hPro, H2, m, 3H); 1,46 (CH₃, Boc, m, 9H); 1,42 - 1,26 (H3, H4, m, 4H); 0,98 (H5, m, 3H); 0,90 - 0,87 (H6, m, 3H).

¹³C NMR (151 MHz, CDCl₃) δ / ppm 172,4 (CO); 170,4 (CO); 170,1 (CO, Gly); 156,3 (CO, Boc); 81,6 (C, Boc); 78,4 (C1); 76,8 (α, hPro); 63,9 (δ, hPro); 52,2 (CH₃, OCH₃); 40,8 (α, Gly); 35,6 (C2); 33,2 (C3); 28,2 (CH₃, Boc); 24,5 (β, hPro); 20,4 (γ, hPro); 20,3 (C4); 14,3 (C5); 14,2 (C6).

HRMS (MALDI-TOF/TOF): izračunato C₂₀H₃₄N₃O₇ [M-H]⁻ 428,2397; nađeno 428,2389.

<u>3.4.2.28. (2*S*)-2-(*tert*-butilamino)-1-(4-nitrofenil)-2-okso-etil-1-(*tert*butoksikarbonilamino) pirolidin-2-karboksilat (**53**)</u>

 $C_{22}H_{32}N_4O_7$

 $M_{\rm r} = 464,51$

bezbojno ulje; (12 mg; 20 %)

 $R_f = 0.45$ (PE:EtOAc=2:1)

MS-ESI: *m*/*z* 350,1 [M-BocNH]⁺

¹H NMR (300 MHz, CDCl₃) δ / ppm 8,21 (H_{ar}, H4, H6, d, *J* = 8,8 Hz, 2H); 7,64 (H_{ar}, H3, H7, d, *J* = 8,7 Hz, 2H); 6,04 (H1, s, 1H); 3,93 (α, hPro, m, 1H); 3,28 – 2,88 (δ, hPro, m, 2H); 1,96 (β, γ, hPro, m, 4H); 1,49 (CH₃, Boc, s, 9H); 1,39 - 1,35 (CH₃, t-Bu, m, 9H).

¹³C NMR (75 MHz, CDCl₃) δ / ppm 171,4 (CO); 166,0 (CO); 155,4 (CO, Boc); 148,0 (C_{ar}, C5); 143,0 (C_{ar}, C2); 128,4 - 123,7 (CH_{ar}, C3, C4, C6, C7); 81,2 (C, Boc); 75,2 (C1); 74,7 (α, hPro); 64,2 (C8); 51,9 (δ, hPro); 29,6 (β, hPro); 28,6 (CH₃, t-Bu); 28,1 (CH₃, Boc); 24,6 (γ, hPro).

3.4.3. Priprava N^{α} -Boc, N^{β} -Boc-L-hidrazino-aldehida (54)

 N^{α} -Boc, N^{β} -Boc-L-hidrazino-kiselina (1 ekv.) otopljena je u suhom DMF te je dodan Et₃N (2 ekv.). U otopinu je polako dokapan MeI (1,6 ekv.). Miješanje je nastavljeno na sobnoj temperaturi preko noći. Tijek reakcije praćen je tankoslojnom kromatografijom u sustavu otapala PE:EtOAc=2:1. Po završetku reakcije provedena je ekstrakcija sa sustavom EtOAc/H₂O te je organski sloj sušen nad Na₂SO₄ i uparen. Ostatak je čišćen brzom tekućinskom kromatografijom u sustavu otapala PE:EtOAc=2:1 pri čemu je dobiven odgovarajući ester.

 N^{β} -Boc hidrazino-ester (1 ekv.) otopljen je u DCM (10 mL) te je dodan Et₃N (2 ekv.). Takva otopina je dokapana u otopinu Boc₂O (2 ekv.) u DCM (5 mL) pod dušikom na 0 °C. Reakcijska otopina je zagrijana na sobnu temperaturu te je nastavljeno miješanje 24 h. Otapalo je upareno, a ostatak je otopljen u EtOAc i ispran sa zasićenom vodenom otopinom NaCl. Organski sloj je sušen nad Na₂SO₄ i uparen pri čemu je dobiven konačan produkt bez dodatnog čišćenja.

Svi N^{α} -Boc, N^{β} -Boc-L-hidrazino-aldehidi pripremljeni su prema literaturno poznatoj proceduri te im je karakterizacija u skladu s literaturnim rezultatima.

3.4.5.1. (S)-di-*tert*-butil-1-(4-metil-1-okso-pentan-2-il) hidrazin-1,2dikarboksilat (54)

 $C_{16}H_{30}N_2O_5$

 $M_{\rm r} = 330,42$

bezbojno ulje; (45 mg; 98 %)

 $R_f = 0,4$ (PE:EtOAc=2:1)

3.4.4. Priprava N^{α} -Cbz, N^{β} -Boc-L-hidrazino-aldehida (55)

 N^{α} -Cbz, N^{β} -Boc-L-hidrazino-kiselina (1 ekv.) otopljena je u suhom DMF te je dodan Et₃N (2 ekv.). U otopinu je polako dokapan MeI (1,6 ekv.). Miješanje je nastavljeno na sobnoj temperaturi preko noći. Tijek reakcije praćen je tankoslojnom kromatografijom u sustavu otapala PE:EtOAc=2:1. Po završetku reakcije provedena je ekstrakcija sa sustavom EtOAc/H₂O te je organski sloj sušen nad Na₂SO₄ i uparen. Ostatak je čišćen brzom tekućinskom kromatografijom u sustavu otapala PE:EtOAc=2:1 pri čemu je dobiven odgovarajući ester.

 N^{α} -Cbz, N^{β} -Boc-L-hidrazino-ester (1 ekv.) otopljen je u suhom toluenu pod atmosferom argona te je otopina ohlađena na -78 °C. U malim porcijama dokapan je DIBAL-H (2,5 ekv.). Miješanje je nastavljeno na -78 °C 2 sata. Tijek reakcije praćen je tankoslojnom kromatografijom u sustavu otapala PE:EtOAc=2:1. Reakcija je završena dodatkom MeOH (1-2 mL) i vodene otopine Rochellove soli (3-4 mL). Otopina je ostavljena da se zagrije na sobnu temperaturu te je provedena ekstrakcija sustavom Et₂O/H₂O. Organski sloj je odijeljen, sušen nad Na₂SO₄ i uparen.

<u>3.4.6.1. (S)-1-benzil-2-*tert*-butil-1-(3-metil-1-okso-butan-2-il) hidrazin-1,2dikarboksilat (**55a**)</u>

 $C_{18}H_{26}N_2O_5$

 $M_{\rm r} = 350,41$

žuto ulje; (250 mg; 71 %)

 $R_f = 0.34$ (PE:EtOAc=2:1)

MS-ESI: *m/z* 348,9 [M-H]⁻

¹H NMR (600 MHz; DMSO) δ / ppm 7,39 – 7,37 (H_{ar}; Cbz; m; 5H); 3,58 (α; hVal; m; 1H); 2,09 (β; hVal; m; 1H); 1,41 (Boc; s; 9H); 0,87 (γ; γ'; hVal; m; 6H).

¹³C NMR (151 MHz; DMSO) δ / ppm 210,6 (CO; CHO); 154,9 (CO; Boc); 135,9 (C_{ar}; Cbz);
129,0; 128,8; 128,6; 127,9 (CH_{ar}; Cbz); 69,5 (CH₂; Cbz); 66,3 (α; hVal); 40,6 (β; hval); 28,6 (Boc); 23,3 (γ; hVal); 22,3 (γ'; hVal).

<u>3.4.6.2.</u> (*S*)-1-benzil-2-*tert*-butil-1-(4-metil-1-okso-pentan-2-il) hidrazin-1,2dikarboksilata (**55b**)

žuto ulje; (212 mg; 90 %)

 $C_{19}H_{28}N_{2}O_{5} \\$

 $M_{\rm r} = 364,44$

 $R_f = 0.33$ (PE:EtOAc=2:1)

MS-ESI: *m/z* 265,1 [M-Boc]⁺; *m/z* 362,9 [M-H]⁻

¹H NMR (300 MHz, CDCl₃) δ / ppm 7,29 – 7,24 (H_{ar}, Cbz, m, 5H); 5,19 – 5,05 (CH₂, Cbz, m, 2H); 3,77 – 3,57 (α, hLeu, m,1H); 1,51 – 1,38 (CH₃, Boc, m, 9H); 1,28 (β, γ, hLeu, m, 3H); 0,89 (δ, δ', hLeu, d, *J* = 9,3 Hz, 6H)

¹³C NMR (75 MHz, CDCl₃) δ / ppm 197,0 (CO, CHO); 156,4 (CO, Boc); 141,0 (C_{ar}, Cbz);
128,6 -127,0 (CH_{ar}, Cbz); 69,8 (α, hLeu); 65,2 (CH₂, Cbz); 37,6 (β, hLeu); 28,1 (CH₃, Boc);
24,4 (γ, hLeu); 23,3 (δ, hLeu); 23,2 (δ', hLeu)

<u>3.4.6.3.</u> (*S*)-1-benzil-2-*tert*-butil-1-(1-okso-3-fenilpropan-2-il) hidrazin-1,2dikarboksilata (**55c**)

žuto ulje; (139 mg; 60 %)

 $C_{22}H_{26}N_{2}O_{5} \\$

 $M_{\rm r} = 398,45$

 $R_f = 0,29$ (PE:EtOAc=2:1)

MS-ESI: *m/z* 397,0 [M-H]⁻

¹H NMR (600 MHz; DMSO) δ 7,30 – 7,29 (H_{ar}; hPhe; Cbz; m; 10H); 5,12 (CH₂; Cbz; s; 2H); 4,65 (α; hPhe; m; 1H); 3,39 (β; hPhe; m; 1H); 2,77 (β'; hPhe; m; 1H); 1,38 – 1,33 (Boc; m; 9H)

¹³C NMR (151 MHz; DMSO) δ 196,0 (CHO); 143,0 (CO); 136,8 (CO); 129,5 (C_{ar}; hPhe); 129,1 (C_{ar}; Cbz); 128,6; 128,5; 127,7; (CH_{ar}; Cbz); 127,1; 126,9; 126,5 (CH_{ar}; hPhe); 70,6 (C; Boc); 68,6 (α ; hPhe); 63,4 (CH₂; Cbz); 32,3 (β ; hPhe); 28,4 (Boc)

3.4.5. Primjena optički čistih α -hidrazino-aldehida u Passerinijevoj reakciji (56-66)

Pripremljena je 1M otopina α -hidrazino-aldehida (1 ekv.) u suhom THF te je dodana karboksilna komponenta (1 ekv.) i na kraju izocijanid (1 ekv.). Reakcijska smjesa je miješana preko noći na sobnoj temperaturi. Tijek reakcije praćen je tankoslojnom kromatografijom u sustavu otapala PE:EtOAc=2:1. Kada je sav aldehid izreagirao, otapalo je upareno, a ostatak je čišćen brzom tekućinskom kromatografijom u sustavu otapala PE:EtOAc=2:1 pri čemu je dobiven konačan produkt.

<u>3.4.5.1. di-*tert*-butil-1-((3*S*)-2-acetoksi-1-(cikloheksilamino)-5-metil-1oksoheksan-3-il) hidrazin-1,2-dikarboksilat (**56**)</u>

 $C_{25}H_{45}N_3O_7$

 $M_{\rm r} = 499,64$

bezbojno ulje; (8 mg; 11 %)

 $R_f = 0,34$ (PE:EtOAc=2:1)

¹H NMR (300 MHz, CDCl₃) δ / ppm 4,94 (α, AcOH, m, 1H); 4,49 (α, hLeu, m, 1H); 3,73 (H1, m, 1H); 2,22 – 2,04 (CH₃, AcOH, s, 3H); 1,92 (H4, m, 1H); 1,63 (H2, H6, m, 2H); 1,54 – 1,41 (Boc, Boc, m, 18H); 1,33 (β, hLeu, m, 1H); 1,22 (H3, H5, m, 4H); 0,93 (γ, γ', hLeu, d, J = 5,9 Hz, 6H)

¹³C NMR (75 MHz, CDCl₃) δ / ppm 167,3 (CO, hLeu); 155,3 (CO, Boc); 81,1 (α, AcOH);
77,2 (C, Boc); 57,2 (α, hLeu); 48,3 (C1); 32,6 (β, hLeu); 32,2 (C2); 29,7 (C6); 28,2 (Boc);
28,1 (Boc); 25,6 (C4); 24,7 (β, hLeu); 24,5 (C3); 23,8 (C5); 20,9 (CH₃, AcOH)

<u>3.4.5.2.</u> 1-benzil-2-*tert*-butil-1-((2*S*)-3-acetoksi-4-(cikloheksilamino)-4-okso-1fenilbutan-2-il) hidrazin-1,2-dikarbokslat (**57**)

 $C_{31}H_{41}N_3O_7$

 $M_{\rm r} = 567, 67$

bezbojno ulje; (16 mg; 26 %)

 $R_f = 0,24$ (PE:EtOAc=2:1)

MS-ESI: *m*/*z* 565,9 [M-H]⁻; *m*/*z* 568,3 [M+H]⁺

¹H NMR (300 MHz, CDCl₃) *δ* / ppm 7,24 – 7,17 (CHar, hPhe, Cbz, m, 10H); 4,86 (α, AcOH, m, 1H); 4,70 (CH₂, Cbz, s, 2H); 4,51 (α, hPhe, m, 1H); 3,09 (H1, m, 1H); 3,14 - 2,63 (β, hPhe, m, 2H); 1,99 (CH₃, AcOH, s, 3H); 1,77 (Boc, s, 9H); 1,40 (H2, H6, m, 4H); 1,32 (H4, m, 2H); 1,19 (H3, H5, m, 4H)

¹³C NMR (75 MHz, CDCl₃) δ / ppm 176,2 (CO); 173,7 (CO, AcOH); 155,1 (CO, Cbz); 154,9 (CO, Boc); 140,9 (Car, Cbz); 137,9 (Car, hPhe); 128,6 - 127,0 (CHar, hPhe, Cbz); 81,7 (α, AcOH); 77,2 (C, Boc); 65,3 (CH₂, Cbz); 64,5 (α, hPhe); 62,6 (C1); 33,4 (C2); 32,7 (C6); 29,7 (β, hPhe); 28,3 (Boc); 25,3 (C4); 24,6 (C3); 24,5 (C5); 20,9 (CH₃, AcOH)

<u>3.4.5.3.</u> 1-benzil-2-*tert*-butil-1-((2*S*)-3-acetoksi-4-(*tert*-butilamino)-4-okso-1fenilbutan-2-il) hidrazin-1,2-dikarboksilat (**58**)

 $C_{29}H_{39}N_3O_7$

 $M_{\rm r} = 541,64$

bezbojno ulje; (23 mg; 38 %)

 $R_f = 0,23$ (PE:EtOAc=2:1)

MS-ESI: *m/z* 539,9 [M-H]⁻; *m/z* 564,3 [M+H]⁺; *m/z* 1105,5 [2M+Na]⁺

¹H NMR (300 MHz, CDCl₃) δ / ppm 7,24 – 7,16 (CHar, hPhe, Cbz, m, 10H); 5,83 (α, AcOH, m, 1H); 5,01 (CH₂, Cbz, s, 2H); 4,96 – 4,69 (α, hPhe, m, 1H); 3,72 – 3,48 (β, hPhe, m, 2H); 3,14 (CH₃, AcOH, s, 3H); 2,64 (Boc, s, 9H); 1,45 – 1,06 (CH₃, *t*-Bu, m, 9H)

¹³C NMR (151 MHz, CDCl₃) δ / ppm 171,3 (CO, *t*-Bu); 169,0 (CO, AcOH); 155,2 (CO, Boc);
154,1 (CO, Cbz); 140,9 (Car, Cbz); 137,9 (Car, hPhe); 128,6 - 127,0 (CHar, hPhe, Cbz); 81,7
(α, AcOH); 77,2 (C, Boc); 65,4 (CH₂, Cbz); 59,8 (α, hPhe); 52,2 (α, *t*-Bu); 33,4 (β, hPhe);
28,6 (Boc); 28,1 (Boc); 20,1 (CH₃, AcOH)

<u>3.4.5.4.</u> 1-benzil-2-*tert*-butil-1-((2*S*)-3-acetoksi-4-(2-metoksi-2-okso-etilamino)-4-okso-1-fenilbutan-2-il) hidrazin-1,2-dikarboksilat (**59**)

 $C_{28}H_{35}N_3O_9$

 $M_{\rm r} = 557,59$

bezbojno ulje; (21 mg; 34 %)

 $R_f = 0.39$ (PE:EtOAc=2:1)

¹H NMR (300 MHz, CDCl₃) δ / ppm 7,33 (CHar, hPhe, Cbz, m, 10H); 5,48 (α, AcOH, m, 1H); 5,27 (CH₂, Cbz, s, 2H); 4,88 (α, hPhe, m, 1H); 4,19 (α, Gly, s, 2H); 3,88 (CH₃, OMe, s, 3H); 2,23 (CH₃, AcOH, s, 3H); 1,33 (Boc, s, 9H)

¹³C NMR (151 MHz, CDCl₃) δ / ppm 176,7 (CO, Gly); 174,7 (CO, AcOH); 174,1 (CO, COOMe); 161,5 (CO, Cbz); 160,84 (CO, Boc); 140,9 (Car, Cbz); 128,6 - 127,0 (CHar, hPhe, Cbz); 80,1 (α, AcOH); 78,2 (C, Boc); 65,4 (CH₂, Cbz); 58,6 (α, hPhe); 52,0 (CH₃, OMe);
40,9 (α, Gly); 29,7 (β, hPhe); 28,1 (Boc); 22,3 (CH₃, AcOH)

<u>3.4.5.5.</u> 1-benzil-2-*tert*-butil-1-((2S)-3-acetoksi-4-(1-metoksi-4-metil-1-okso-pentan-2-il-amino)-4-okso-1-fenilbutan-2-il) hidrazin-1,2-dikarboksilat (**60**)

 $C_{32}H_{43}N_3O_9$

 $M_{\rm r} = 613,70$

bezbojno ulje; (10 mg; 12 %)

 $R_f = 0,41$ (PE:EtOAc=2:1)

¹H NMR (600 MHz, CDCl₃) δ / ppm 7,40 – 7,33 (CHar, hPhe, m, 5H); 7,30 (CHar, Cbz, m, 5H); 5,97 (α, AcOH, m, 1H); 5,13 (CH₂, Cbz, s, 2H); 4,96 (α, hPhe, m, 1H); 4,62 – 4,55 (α, Leu, m, 1H); 3,80 (OCH₃, s, 3H); 3,06 - 2,92 (β, hPhe, m, 2H); 2,20 – 2,09 (CH₃, m, 3H); 1,63 (β, γ, Leu, m, 3H); 1,54 – 1,46 (Boc, m, 9H); 0,95 (δ, δ', Leu, m, 6H)

¹³C NMR (151 MHz, CDCl₃) δ / ppm 172,2 (CO); 169,3 (CO); 167,3 (CO); 155,5 (CO, Boc);
155,2 (CO, Cbz); 135,4 (Car, Cbz); 135,1 (Car, hPhe); 128,4; 128,1; 128,0; 127,9 (CHar,
Cbz); 127,8; 127,7; 127,6; 127,3 (CHar, hPhe); 81,5 (α, AcOH); 72,3 (α, hPhe); 68,3 (CH₂,
Cbz); 57,1 (α, Leu); 50,6 (OMe); 40,6 (β, Leu); 29,2 (β, hPhe); 27,6 (Boc); 24,3 (γ, Leu); 22,3
(δ, Leu); 21,4 (δ', Leu); 20,2 (CH₃)

<u>3.4.5.6.</u> 1-benzil-2-*tert*-butil-1-((3*S*)-2-acetoksi-1-(cikloheksilamino)-5-metil-1okso-heksan-3-il)hidrazin-1,2-dikarboksilat (**61**)

 $C_{28}H_{43}N_3O_7$

 $M_{\rm r} = 533,66$

bezbojno ulje; (29 mg; 38 %)

 $R_f = 0.45$ (PE:EtOAc=2:1)

¹H NMR (300 MHz, CDCl₃) δ / ppm 7,32 – 7,30 (CHar, Cbz, m, 5H); 5,09 (α, AcOH, d, J = 7,6 Hz, 1H); 4,78 (CH₂, Cbz, s, 2H); 4,56 (α, hLeu, m, 1H); 3,63 (H1, m, 1H); 2,11 (CH₃, AcOH, s, 3H); 1,67 (H2, H6, m, 4H); 1,54 – 1,40 (Boc, m, 9H); 1,29 (H3, H4, H5, m, 6H); 1,13 (β, γ, hLeu, m, 3H); 0,91 (δ, δ', hLeu, m, 6H)

¹³C NMR (75 MHz, CDCl₃) δ / ppm 170,2 (CO); 168,2 (CO, AcOH); 155,6 (CO, Cbz); 151,5 (CO, Boc); 140,9 (Car, Cbz); 128,6 - 127,0 (CHar, Cbz); 81,2 (α, AcOH); 75,5 (C, Boc); 65,3 (CH₂, Cbz); 60,1 (α, hLeu); 48,5 (C1); 32,5 (C2); 31,9 (C6); 31,3 (β, hLeu); 28,1 (Boc); 25,5 (C4); 24,7 (C3); 24,5 (C5); 24,2 (γ, hLeu); 23,7 (δ, hLeu); 23,6 (δ', hLeu); 20,8 (CH₃, AcOH)

<u>3.4.5.7. 1-benzil-2-*tert*-butil-1-((3*S*)-2-acetoksi-1-(*tert*-butilamino)-5-metil-1okso-heksan-3-il) hidrazin-1,2-dikarboksilat (**62**)</u>

 $C_{26}H_{41}N_3O_7$

 $M_{\rm r} = 507,62$

bezbojno ulje; (27 mg; 38 %)

 $R_f = 0.5$ (PE:EtOAc=2:1)

MS-ESI: *m/z* 505,9 [M-H]⁻; *m/z* 508,2 [M+H]⁺

¹H NMR (300 MHz, CDCl₃) δ / ppm 7,34 – 7,30 (CHar, Cbz, m, 5H); 5,21 – 5,04 (α, AcOH, m, 1H); 4,86 – 4,70 (CH₂, Cbz, s, 2H); 4,50 (α, hLeu, m, 1H); 2,22 – 1,90 (CH₃, AcOH, s, 3H); 1,62 (β, γ, hLeu, m, 2H); 1,43 (Boc, s, 9H); 1,37 – 1,24 (CH₃, *t*-Bu, m, 9H); 0,93 (δ, δ', hLeu, m, 6H)

¹³C NMR (75 MHz, CDCl₃) δ / ppm 176,8 (CO, t-Bu); 171,9 (CO, AcOH); 159,4 (CO, Cbz); 158,0 (CO, Boc); 140,9 (Car, Cbz); 128,6 - 127,0 (CHar, Cbz); 86,8 (α, AcOH); 77,2 (C, Boc); 65,4 (CH₂, Cbz), 59,9 (α, *t*-Bu); 55,7 (α, hLeu); 32,8 (β, hLeu); 29,7 (CH₃, t-Bu); 28,3 (Boc); 24,2 (γ, hLeu); 24,0 (δ, hLeu); 23,7 (δ', hLeu); 20,8 (CH₃, AcOH) <u>3.4.5.8.</u> 1-benzil-2-*tert*-butil-1-((3S)-2-acetoksi-1-(cikloheksilamino)-4-metil-1okso-pentan-3-il) hidrazin-1,2-dikarboksilat (**63**)

 $C_{27}H_{41}N_{3}O_{7} \\$

 $M_{\rm r} = 519,63$

bezbojno ulje; (34 mg; 33 %)

 $R_f = 0.5$ (PE:EtOAc=2:1)

MS-ESI: *m/z* 518.0 [M-H]⁻; *m/z* 520.3 [M+H]⁺

¹H NMR (600 MHz, CDCl₃) δ / ppm 7,35 (Har, Cbz, m, 5H); 5,60 (α, AcOH, m, 1H); 5,17 (CH₂, Cbz, s, 2H); 4,35 (α, hVal, m, 1H); 3,66 – 3,61 (H1, m, 1H); 2,40 – 2,32 (β, hVal, m, 1H); 2,14 (CH₃, AcOH, s, 3H); 1,69 (H2, H6, m, 4H); 1,47 (Boc, s, 9H); 1,44 (H4, m, 2H); 1,36 (H3, H5, m, 4H); 0,91 – 0,82 (γ, γ', hVal, m, 6H)

¹³C NMR (151 MHz, CDCl₃) δ / ppm 170,9 (CO, hVal); 170,2 (CO, AcOH); 156,7 (CO, Boc); 156,4 (CO, Cbz); 135,2 (Car, Cbz); 128,6; 128,3; 127,8 (CHar, Cbz); 80,8 (C, Boc);
79,3 (α, AcOH); 72,7 (CH₂, Cbz); 69,7 (α, hVal); 52,0 (C1); 32,5 (C2); 31,9 (C6); 28,2 (Boc); 26,3 (C4); 25,4 (C3); 24,6 (C5); 22,7 (β, hVal); 20,8 (γ, hVal); 20,2 (γ', hVal)

<u>3.4.5.9.</u> 1-benzil-2-*tert*-butil-1-((3*S*)-2-acetoksi-1-(*tert*-butilamino)-4-metil-1okso-pentan-3-il) hidrazin-1,2-dikarboksilat (**64**)

 $C_{25}H_{39}N_3O_7$

 $M_{\rm r} = 493,59$

bezbojno ulje; (30 mg; 30 %)

 $R_f = 0.5$ (PE:EtOAc=2:1)

MS-ESI: *m/z* 492,0 [M-H]⁻; *m/z* 494,3 [M+H]⁺; *m/z* 1009,6 [2M+Na]⁺

¹H NMR (600 MHz, CDCl₃) *δ* / ppm 7,33 (Har, Cbz, m, 5H); 5,79 (α, AcOH, m, 1H); 5,18 (CH₂, Cbz, s, 2H); 4,35 (α, hVal, m, 1H); 2,32 (β, hVal, m, 1H); 2,14 (CH₃, AcOH, s, 3H); 1,53 – 1,42 (Boc, *t*-Bu, m, 18H); 1,08 (γ, hVal, m, 3H); 1,00 (γ', hVal, m, 3H)

¹³C NMR (151 MHz, CDCl₃) δ / ppm 167,9 (CO, t-Bu); 161,8 (CO, AcOH); 154,2 (CO, Boc);
152,5 (CO, Cbz); 135,7 (Car, Cbz); 128,3; 128,2; 128,0; 127,8 (CHar, Cbz); 72,8 (α, AcOH);
68,6 (CH₂, Cbz); 68,3 (α, hVal); 63,1 (C, *t*-Bu); 29,7 (CH₃, *t*-Bu); 28,1 (CH₃, Boc); 22,7 (β, hVal); 20,9 (CH₃, AcOH); 19,5 (γ, hVal); 19,1 (γ', hVal)

3.4.5.10. 1-benzil-2-*tert*-butil-1-((3S)-2-(benzoiloksi)-1-(*tert*-butilamino)-4metil-1-okso-pentan-3-il) hidrazin-1,2-dikarboksilat (**65**)

 $C_{30}H_{41}N_3O_7$

 $M_{\rm r} = 555,66$

bezbojno ulje; (5 mg; 8 %)

 $R_f = 0,48$ (PE:EtOAc=2:1)

MS-ESI: *m/z* 456,3 [M-Boc]⁺; *m/z* 556,3 [M+H]⁺

¹H NMR (600 MHz, CDCl₃) *δ* / ppm 7,42 – 7,29 (Har, Cbz, Ph, m, 10H); 6,22 (α, Ph, s, 1H); 5,20 (CH₂, Cbz, s, 2H); 4,28 – 4,18 (α, hVal, m, 1H); 2,36 (β, hVal, m, 1H); 1,49 (CH₃, Boc, *t*-Bu, m, 18H); 1,08 – 0,99 (γ, hVal, m, 3H); 0,94 – 0,87 (γ', hVal, m, 3H)

¹³C NMR (151 MHz, CDCl₃) δ / ppm 172,5 (CO, *t*-Bu); 166,6 (CO, PhOH); 157,5 (CO, Boc);
156,6 (CO, Cbz); 135,6 (Car, Cbz); 134,3 (Car, PhOH); 129,8; 129,7; 129,2; 128,8 (CHar, Cbz); 128,7; 128,6; 128,4; 128,2; 127,8 (CHar, PhOH); 81,9 (α, PhOH); 67,8 (CH₂, Cbz);
63,7 (α, hVal); 53,4 (C, *t*-Bu); 29,7 (CH₃, t-Bu); 28,1 (CH₃, Boc); 24,9 (β, hVal); 20,0 (γ, hVal); 19,4 (γ', hVal)

3.4.5.11. 1-benzil-2-*tert*-butil-1-((3*S*)-2-(benzoiloksi)-1-(1-metoksi-1-okso-3fenilpropan-2-il-amino)-4-metil-1-okso-pentan-3-il) hidrazin-1,2-dikarboksilat (**66**)

 $C_{36}H_{43}N_3O_9$

 $M_{\rm r} = 661,74$

bezbojno ulje; (21 mg; 29 %)

 $R_f = 0.6$ (PE:EtOAc=2:1)

MS-ESI: *m*/*z* 562,3 [M-Boc]⁺; *m*/*z* 662,4 [M+H]⁺

¹H NMR (600 MHz, CDCl₃) δ / ppm 7,25 – 6,69 (Har, Phe, Cbz, PhOH, m, 15H); 5,87 (α, PhOH, m, 1H); 4,83 – 4,72 (CH₂, Cbz, m, 2H); 4,70 (α, Phe, m, 1H); 4,36 (α, hVal, m, 1H); 3,40 (OCH₃, s, 3H); 2,86 (β, Phe, dd, *J* = 13,9, 1H); 2,75 (β', Phe, dd, *J* = 13,9, 1H); 2,65 (β, hVal, m, 1H); 1,11 – 1,03 (Boc, m, 9H); 0,79 – 0,29 (γ, γ', hVal, m, 6H)

¹³C NMR (151 MHz, CDCl₃) δ / ppm 166,6 (CO, Phe); 161,1 (CO, PhOH); 160,4 (CO, hVal); 155,7 (CO, Boc); 155,2 (CO, Cbz); 135,6 (Car, Cbz); 135,4 (Car, PhOH); 134,4 (Car, Phe); 129,9; 129,8; 129,3; 129,3 (CHar, Cbz); 129,0; 128,8; 128,6; 128,5 (CHar, PhOH); 128,5; 128,4; 127,8; 127,3 (CHar, Phe); 81,8 (C, Boc); 81,5 (α, PhOH); 68,4 (CH₂, Cbz); 67,8 (α, hVal); 58,0 (α, Phe); 53,4 (OCH₃); 38,9 (β, Phe); 28,1 (Boc); 23,7 (β, hVal); 19,4 (γ, hVal); 19,1 (γ', hVal)
4. REZULTATI I RASPRAVA

4.1. UVOD

U okviru ove doktorske disertacije pripremljeni su kiralni, optički čisti hidrazinoderivati α-aminokiselina korištenjem dvaju pristupa:

(A) N-aminacija N-benzilnih derivata aminokiselina korištenjem N-Boc-oksaziridina;

(B) prevođenje α-aminokiselina u α-bromkiseline koje podliježu nukleofilnom napadu hidrazina uz inverziju konfiguracije.

$$H_{2}N$$

$$H$$

Takvi hidrazino-derivati α-aminokiselina korišteni su u pripravi peptidomimetika postupnom sintezom u otopini. Skupina hidrazino-peptidomimetika dizajnirana je za interakciju s nukleinskim kiselinama i ispitana spektroskopskim metodama.

Hidrazino-derivati α -aminokiselina korišteni su u Passerinijevoj reakciji za pripravu nove skupine peptidomimetika – α -hidrazino-depsipeptida koji posjeduju dva različita strukturna aspekta: proširenje peptidne okosnice komponentom α -hidrazino-kiseline te formiranje izostera amidne veze kao rezultat Passerinijeve reakcije. U konačnici, α -hidrazinokiseline su reducirane u α -hidrazino-aldehide koji su korišteni kao karbonilne komponente u Passerinijevoj reakciji.

4.2. PRIPRAVA OPTIČKI ČISTIH HIDRAZINO-DERIVATA α - AMINOKISELINA

U okviru ove disertacije priređeni su hidrazino-derivati α -aminokiselina korištenjem dvaju sintetskih pristupa.

 N^{α} -Bn, N^{β} -Boc hidrazino-derivati α -aminokiselina dobiveni su metodom elektrofilne aminacije odgovarajuće *N*-benzilne-L-aminokiseline s *N*-Boc oksaziridinom.^[113] Dosadašnja istraživanja pokazala su da su najbolja iskorištenja α -hidrazino-kiselina postignuta reakcijom *N*-benzilnih derivata aminokiselina s oksaziridinskim reagensom.

N-Benzilni derivati aminokiselina dobiveni su reduktivnom alkilacijom enantiomerno čistih aminokiselina korištenjem Quittove metode uz benzaldehid i natrijev-bor hidrid u lužnatom mediju. Zbog bolje topljivosti, potrebno je *in situ* prevesti *N*-benzilni derivat aminokiseline u tetrametil-amonijevu sol uz odgovarajući hidroksid. Reakcija sa oksaziridinom je brza zbog povećanog nukleofilnog karaktera amino-skupine uslijed supstitucije benzilnom skupinom (*Shema 6.*).^[73]

Shema 6. N-aminacija N-benzilnih derivata aminokiselina uz N-Boc-oksaziridin

Ovom metodom dobiveni su N^{α} -Bn, N^{β} -Boc derivati α -hidrazino-kiselina u zadovoljavajućim iskorištenjima. (*Tablica 1.*) Optička čistoća dobivenih produkata provjerena je kiralnom tankoslojnom kromatografijom i utvrđeno je da nije došlo do racemizacije.

Tablica 1. Iskorištenja dobivenih zaštićenih hidrazino-kiselina (N^{α} -Bn, N^{β} -Boc hAaa)

Za dobivanje nezaštićenih α -hidrazino-kiselina korištena je metoda nukleofilne supstitucije α -bromkiselina. Sinteza se provodi u dva koraka. Prvi korak uključuje diazotaciju amino-skupine D-aminokiseline i prevođenje u α -bromkiselinu u kiselim uvjetima uz NaNO₂ i KBr.^[74] Drugi korak uključuje nukleofilnu supstituciju α -bromkiseline hidrazinom. Reakcija se odvija preko S_N2 mehanizma te dolazi do inverzije stereogenog centra. Reakcija je provedena na 70 °C u mikrovalnom reaktoru kroz 20 minuta (*Shema 7.*), a iskorištenja reakcija se kreću 30-40 % (Tablica 2.). Premda je u literaturi zabilježena nepotpuna konverzija u nekim slučajevima, prvenstveno kod sterički manje zahtjevnih bočnih lanaca, hidrazino-derivati valina, leucina i fenilalanina dobiveni su optički čisti.^{[112],[114]}

Shema 7. Prevođenje α-aminokiseline u α-bromkiselinu koja podliježe nukleofilnom napadu hidrazina uz inverziju konfiguracije

Ovaj sintetski pristup omogućava naknadno uvođenje zaštitnih skupina na N^{α} i N^{β} položaj α hidrazino-kiselina. Na taj način pripremljene su α -hidrazino-kiseline s tri različite zaštitne skupine na N^{α} atomu. Uvođenje Boc zaštitne skupine na N^{β} atom provodi se korištenjem di*tert*-butildikarbonata u baznim uvjetima. Slijedi zaštita N^{α} atoma s Boc- ili Cbz-skupinom.^[65] Uvođenje Boc zaštitne skupine provodi se uz slabiju organsku bazu trietilamin i dimetilaminopiridin kao nukleofilni katalizator prilikom stvaranja uretanske veze. U slučaju uvođenja Cbz zaštitne skupine koriste se identični uvjeti uz dibenzil-dikarbonat kao reagens (*Shema* 8.).

Shema 8. Priprava optički čistih hidrazino-kiselina s različitim zaštitnim skupinama na N^{α} i N^{β} položaju

4.3. PRIPRAVA HIDRAZINO-PEPTIDOMIMETIKA POSTUPNOM SINTEZOM U OTOPINI

Da bi ispitali reaktivnost optički čistih nezaštićene α -hidrazino-kiseline i zaštićene N^{α} -Bn, N^{β} -Boc-L-hidrazino-kiseline provedeno je niz kondenzacijskih reakcija s dipeptidima Aaa-Phe (Aaa = Leu,Val, Ala) koji posjeduju različite funkcionalne skupine na karboksilnom kraju (kiselina, ester ili amid) (*Shema 9.*).

Shema 9. Priprava peptida s N^{α} -Bn hidrazino-derivatima

Ispitana je aktivacija zaštićene N^{α} -Bn, N^{β} -Boc hidrazino-kiseline korištenjem različitih kondenzacijskih reagensa počevši s mješovitim anhidridom, zatim *N*,*N*dicikloheksilkarbodiimidom / N-hidroksi-sukcinimidom, benzotriaz-1-oksitris(dimetilamino)fosfonijevim heksafluorofosfatom i (*O*-(7-azabenzotriazol-1-il))-1,1,3,3tetrametilamonijevim heksafluorofosfatom. U konačnici samo BOP i HATU kondenzacijski reagensi su dali željeni produkt. Međutim, tripeptidi sa slobodnim karboksilnim krajem dobiveni su u niskim iskorištenjima (19 % **6a** i 12 % **6b**, *Tablica 3*.). Ista reakcija ponovljena je s etilnim esterima dipeptida **5** pri čemu su dobiveni odgovarajući tripeptidni esteri, ali ponovno u niskim iskorištenjima (10 % **6c** i 27 % **6d**; *Tablica 3*.). Prelazak na dipeptidne amide pokazao se vrlo važan zbog poboljšanja iskorištenja reakcija kondenzacije. Amidni tripeptidi **6e–g** dobiveni su u visokim iskorištenjima ≈ 70 % (*Tablica 3*.).

PRODUKT	\mathbf{R}^{1}	\mathbf{R}^2	R ³	η/%
<u>6a</u>	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂	OH	19
6b	CH(CH ₃) ₂	-CH(CH ₃) ₂	OH	12
6с	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂	OEt	10
6d	CH(CH ₃) ₂	CH(CH ₃) ₂	OEt	27
бе	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂	NH ₂	71
6f	CH(CH ₃) ₂	CH(CH ₃) ₂	NH ₂	69
6g	CH ₃	CH ₃	NH ₂	69

Tablica 3. Priprava hidrazino-tripeptida 3a-3g

Budući da je korištena ista karboksilna komponenta te isti kondenzacijski uvjeti u svim reakcijama, razlog takve velike razlike u iskorištenjima potražili smo u konformaciji dipeptida **5**. Poznato je da peptidni amidi imaju veću tendenciju formiranja intramolekulskih vodikovih veza nego peptidni esteri i na taj način stabiliziraju određenu konformaciju.^{[115],[116]} Međutim, ta istraživanja provedena su u nepolarnim otapalima gdje se i očekuju intramolekulske vodikove veze. NMR spektri dipeptida estera i kiselina **5** snimljeni u DMSO pokazuju prisutnost samo jednog konformera, a spektri dipeptida amida dva konformera u omjeru 75:25 i pripisani su *trans* i *cis* izomerima Aaa-Phe veze.^[114] S obzirom na visoka iskorištenja kondenzacijskih reakcija s dipeptidnim amidima, pretpostavlja se da je u polarnim

otapalima kao što je DMF, nukleofilni napad amino-skupine na aktiviranu karboksilnu skupinu efikasniji u *cis* formi, koja je stabilizirana amidnom skupinom na C-kraju dipeptida. Međutim, nije moguće isključiti ni utjecaj steričkih efekata. Najbolji primjer je reakcija kondenzacije spoja **1** s nezaštićenim glicinom pri čemu su dobiveni odgovarajući hidrazino-dipeptidi **7a** i **7b** u vrlo dobrim iskorištenjima (51 i 46 %, *Shema 9.*).

Budući da konformacijske osobine nukleofila jako utječu na ishod reakcija kondenzacije s aktiviranim N^{α} -Bn, N^{β} -Boc-L-hidrazino-kiselinama, ispitane su reakcije kondenzacije s nezaštićenim α-hidrazino-kiselinama. Prvo je provedena reakcija kondenzacije Boc-Lys(Boc)-OH s hidrazino-derivatom L-leucina (hLeu) te je dobiven željeni produkt 16 u iskorištenju od 48 % (Shema 10.) S obzirom na dobro iskorištenje, provedene su još dvije reakcije produljenja peptidne okosnice. Reakcija hidrazino-dipeptida 16 s leucinom uz DCC/HOSu aktivaciju karboksilne skupine dala je hidrazino-tripeptid 17 u iskorištenju od 49 %, dok je reakcija s hLeu uz HATU kondenzacijski reagens dala odgovarajući hidrazinotetrapeptid 23 u iskorištenju od 53 %. Nadalje, reakcija hidrazino-dipeptida 16 s hLeu uz HATU kondenzacijski reagens dala je hidrazino-tripeptid 20 u iskorištenju od 53%. Literaturno je poznato da prilikom aktivacije nezaštićenih hidrazino-kiselina može doći do sporednih reakcija koje rezultiraju diketopiperazinima ili različitim oligomerima.^[68] Aktivacija uz DCC/HOSu može biti uspješna jedino u slučaju kada aktivni ester nastaje in *situ*. Isto tako, aciliranje s nezaštićenim hidrazino-kiselinama ide regioselektivno na N^{β} položaj kada obje aminokiseline imaju sterički zahtjevne bočne lance.^{[60],[117]} Upravo zbog prisutnosti sterički zahtjevnih bočnih lanaca i relativno efikasnih aktivacija karboksilnih komponenti nisu opaženi produkti oligomerizacije. Prema tome, moguće su reakcije aciliranja s potpuno nezaštićenim nukleofilima što dodatno omogućuje jednostavno produljenje peptidnog lanca s naizmjeničnom (spoj 17) i uzastopnom (spoj 20) raspodjelom nezaštićene hidrazino-kiseline (Shema 10.). Zbog konformacijske fleksibilnosti koju posjeduju takvi peptidomimetici, pretpostavlja se da bi bili pogodni za interakciju s biomolekulama, posebno s nukleinskim kiselinama. Poznato je da je mali utor DNA česta meta mnogih spojeva koji se vežu nekovalentnim interakcijama gdje, uz elektrostatske Van der Waalsove interakcije, vodikove veze imaju ključnu ulogu u procesu prepoznavanja.^[118]

Shema 10. Peptidomimetici s naizmjeničnom i uzastopnom raspodjelom nezaštićene αhidrazino-kiseline

S ciljem proučavanja utjecaja broja i rasporeda α -hidrazino-kiselina na interakciju s nukelinskim kiselinama pripremljena je serija peptidomimetika (*Slika 22.*).^[119] Korištenje polarne bazične aminokiseline (*Lys*) na amino-kraju osigurava vezanje na DNA/RNA putem elektrostatskih interakcija. Na karboksilnom kraju peptidomimetika koristi se neprirodna aminokiselina, fenantridinil-L-alanin (*AlaP*), u svrhu markera na temelju koje je lakše pratiti vezanje na nukleinske kiseline. Peptidi koji sadrže jednu hidrazino-jedinicu leucina (spoj **19**), dvije uzastopne hidrazino-jedinice leucina (spoj **21**) i naizmjenične hidrazino-jedinice (spoj **24**) pripremljeni su sintezom u otopini (*Slika 22.*). Pentapeptid **15** pripremljen je kako bi se bolje razlučio utjecaj fenantridinil-L-alanina od utjecaja α -hidrazino-kiselina na vezanje s nukleinskim kiselinama.

Slika 22. Hidrazino-peptidomimetici dobiveni postupnom sintezom u otopini

Peptid **15** dobiven je kondenzacijom tetrapeptida Boc-Lys(Boc)-Leu-Leu-Gly s H-AlaP-OMe uz aktivaciju s HATU kondenzacijskim reagensom i potom uklanjanjem terminalnih zaštitnih skupina: metilnog estera uz 1M NaOH te Boc zaštitnih skupina uz 90 % TFA (*Shema 12*). Hidrazino-peptidomimetik **19** pripremljen je kondenzacijom tripeptida **17** s prethodno pripravljenim dipeptidom **18** (*Shema 12*.), te uklanjanjem zaštitnih skupina na prethodno opisan način. Na isti način, hidrazino-peptidomimetik **21** pripremljen je kondenzacijom tripeptida **20** s dipeptidom **18** i uklanjanjem zaštitnih skupina. Sinteza derivata **24** s naizmjenično ugrađenim hidrazino-komponentama provedena je kondenzacijom tetrapeptida **23** s dipeptidom **18** i uklanjanjem zaštitnih skupina (*Shema 12*.).

Shema 11. Priprava hidrazino-peptidomimetika s uključenom fenantridinskom jedinicom

4.3.6. Ispitivanje interakcija hidrazino-peptidomimetika s nukleinskim kiselinama

Studija interakcije priređenih hidrazino-peptidomimetika s nukleinskim kiselinama provedena je u suradnji s Laboratorijem za biomolekularne interakcije i spektroskopiju. Temperature mekšanja dvolančanih polinukleotida, DNA i RNA pokazuju da spojevi **15**, **19**, **21** i **24** na pH 5 i pH 7 neznatno stabiliziraju dvolančanu uzvojnicu. Također, UV/Vis i CD titracije dvolančanih polinukleotida sa spojevima **15**, **19**, **21** i **24** nisu pokazale značajne promjene u spektrima polinukleotida, što isključuje interkalativni način vezanja. Međutim, fluorimetrijske titratracije spojeva **15**, **19**, **21** i **24** s polinukleotidima pokazale su da fluorimetrijski odgovor, kao i afinitet ovise o broju i položaju α -hidrazino-kiselina u slijedu.

Naboj fenantridinske komponente kao rezultat protoniranja na pH 5,^{[120], [121],[122]} jako utječe na afinitete vezanja spojeva **15, 19, 21** i **24** s dvolančanim polinukleotidima koji su za red veličine veći na pH 5 nego na pH 7. Nadalje, uključivanje hidrazino-skupina u peptidni lanac snažno utječe na vezanje spojeva **15, 19, 21** i **24** na dvolančane polinukleotide. Afiniteti vezanja i spektroskopski odgovor značajno su smanjeni za svaku dodatnu hidrazino-skupinu. Osim toga, peptidomimetik **21** koji posjeduje dvije uzastopne α -hidrazino-kiseline značajno smanjuje afinitet vezanja u odnosu na peptidomimetik **24** s naizmjeničnim α -hidrazino-kiselinama.

Ovi rezultati upućuju na zaključak da se hidrazino-peptidomimetici vežu na površinu dvolančanih polinukleotida, ali ne isključivo elektrostatskim interakcijama. Naime, konstante stabilnosti su značajno veće nego što je karakteristično za molekule s dva pozitivna naboja (Lys i AlaP), što ukazuje na doprinos peptidnog dijela molekule, najvjerojatnije putem hidrofobnih interakcija. Taj doprinos je značajan, jer određuje orijentaciju fluorofora (AlaP) i uzrokuje opadanje afiniteta u nizu $21 \rightarrow 24 \rightarrow 19 \rightarrow 15$.^[119]

Slika 23. Eksperimentalne (•) i izračunate (–) fluorescencije spojeva **15, 19, 21** i **24** nakon dodavanja ct-DNA izračunate pomoću Scatchard jednadžbe (fix n=0,15); vrijednosti su normalizirane radi lakše usporedbe (Na-kakodilatni pufer, pH 5,0, c = 0,05 mol dm⁻³, λ_{exc} =

310 nm)

Hidrazino-skupine uvedene u peptidni lanac povezane su intramolekulskim vodikovim vezama koje uzrokuju slaganje peptidne okosnice u obliku "hidrazino okreta".^{[123],[124]} Prisustvo jedne ili više α -hidrazino-kiseline utječe na sekundarnu strukturu peptidomimetika na način da udaljava AlaP od polinukleotida. Jednostavan MM2 račun omogućio je vizualizaciju sekundarne strukture peptidomimetika koja nastaje kao posljedica intramolekulskih veza. Kao što je vidljivo na *slici 23.*, sekundarne strukture spojeva 15 i 19 su vrlo slične; hidrofobni i hidrofilni dijelovi molekula se vrlo dobro preklapaju. Također, postoji i vrlo velika sličnost u sekundarnim strukturama spojeva 21 i 24. Međutim, razlike između dvije skupine struktura su vrlo jasno vidljive i potpuno u skladu s rezultatima fluorimetrijskih titracija. Također, manualni doking spojeva 15 i 21 s dAdT-dAdT polinukleotidom, pokazuje kako se spoj 15 vrlo dobro smješta u mali utor DNA, pri čemu je hidrofobni dio molekule (Leu i AlaP) smješten unutar utora, a hidrofilni dio (Lys) usmjeren prema van (Slika 24. gore). Suprotno tome, savijena konformacija peptidomimetika 21 onemogućava vezanje duboko u utor, što znači da AlaP ostaje izloženiji na površini DNA (Slika 24. dolje). Ovi rezultati objašnjavaju rezultate fluorimetrijskih titracija.

Slika 24. Konformacijsko slaganje peptidomimetika 15 i 19 (gore), 21 i 24 (dolje)

Nadalje, napravljena je studija interakcije spojeva **15, 19, 21** i **24** s jednolančanim polinukleotidima. Budući da su jednolančani polinukleotidi znatno fleksibilniji od dvolančanih predstavljaju primjerenije mete za vezanje konformacijski definiranih polipeptida. Afiniteti spojeva **15, 19, 21** i **24** prema jednolančanim polinukleotidima vrlo su slični na pH 5 i pH 7, što pokazuje značajan utjecaj interkalacije fenantridinila u odnosu na elektrostatske interakcije. Moguće interkalacije dodatno su naglašene nešto višim afinitetima i značajno višim spektroskopskim odgovorima prema purinskim (poli A, poli G) u odnosu na pirimidinske (poli U, poli C) polinukleotide. Povećana krutost AlaP uzrokuje niže afinitete i slabiji fluorimetrijski odgovor kao rezultat titracije s polinukleotidima (*Slika 25.*).

Slika 25. Eksperimentalne (•) i izračunate (–) fluorescencije spojeva **15, 19, 21** i **24** nakon dodavanja poli G izračunate pomoću Scatchard jednadžbe (fix n=0,15); vrijednosti su normalizirane radi lakše usporedbe (Na-kakodilatni pufer, pH 5,0, c = 0,05 mol dm⁻³, λ_{exc} =

310 nm)

CD spektroskopija korištena je kao vrlo osjetljiva metoda za određivanje konformacijskih promjena u sekundarnoj strukturi polinukleotida. Iako su spojevi **15**, **19**, **21** i **24** kiralni, njihovi CD signali su premali da bi utjecali na CD spektar polinukleotida (*Slika 18.*).^[125] Prema tome, promjena u CD spektrima polinukleotida smatra se posljedicom promjene sekundarne strukture uslijed vezanja malih molekula. Kao što je već spomenuto, promjene u CD spektru dvolančanih polinukleotida na pH 5 su zanemarive. Također, zanemarive su i promjene u CD spektru jednolančanih polinukleotida pri titraciji sa spojevima **15**, **19**, **21** i **24** u neutralnim uvjetima na pH 7. Međutim, nešto drugačije ponašanje zapaženo je na pH 5. Spojevi **15**, **19**, i **24** uzrokuju značajno smanjenje CD vrpce na 260 nm, dok peptidomimetik **21** s dvije uzastopne hLeu jedinice uzrokuje snažan porast CD vrpce na 260 nm (*Slika 26.*). Isoeliptična točka upućuje na prisustvo samo jedne vrste kompleksa.

Slika 26. CD titracije poli G (c = 2×10^{-5} mol dm⁻³) sa spojem **19** (lijevo) i spojem **21** (desno) pri različitim molarnim omjerima r = [spoj] / [polinukleotid] (pH = 5,0, Na-kakodilatni pufer, I = 0.05 mol dm⁻³).

Sve to ukazuje da je vezanje peptidomimetika s dvije uzastopne hLeu jedinice drugačije nego kod ostalih struktura. Pretpostavljamo da je konformacijska krutost peptidomimetika s hLeu-hLeu slijedom daleko veća nego kod struktura s naizmjeničnom raspodjelom α -amino i α -hidrazino-kiselina i sprječava interkaliranje AlaP između parova baza. Umjesto toga, AlaP je smješten u jednom od utora poli G i uzrokuje stabilizaciju uzvojnice, a time i porast kiralnosti RNA.

4.4. PRIMJENA HIDRAZINO-DERIVATA α-AMINOKISELINA U VIŠEKOMPONENTNIM REAKCIJAMA

4.4.1. Primjena α-hidrazino-kiselina u Passerinijevoj reakciji

U Passerinijevoj reakciji korištene su α -hidrazino-kiseline s tri različite zaštitne skupine na N^{α} atomu; Bn, Boc i Cbz (**I-III**, *Slika* 27.). Time se otvara mogućnost selektivnog uklanjanja pojedine zaštitne skupine i daljnjeg korištenja dobivenog Passerinijevog produkta u nekoj drugoj višekomponentnoj reakciji ili u standardnoj peptidnoj sintezi. Osim toga, hidrazino-derivat prolina (**IV**, *Slika* 27.) korišten je u svrhu ispitivanja utjecaja cikličkih kiselinskih komponenti u Passerinijevoj reakciji.

Slika 27. α -hidrazino-kiseline sa različitim zaštitnim skupinama na N^{α} atomu i ciklička α -hidrazino-kiselina

Passerinijeva reakcija napreduje u aprotičnim otapalima na sobnoj temperaturi i obično daje visoka iskorištenja pri visokim koncentracijama reaktanata.^{[90],[91]} Provedena je optimizacija reakcijskih uvjeta na modelnoj reakciji koja uključuje N^{α} -Bn, N^{β} -Boc zaštićeni hidrazino-leucin, para-nitrobenzaldehid i metil-2-izocijano-3-fenilpropanoat. Prva reakcija provedena u suhom diklormetanu u atmosferi argona kroz 24 h dala je odgovarajući Passerinijev produkt **33** u iskorištenju od 40 % (*Tablica 4, Red 1*). Optimizacija reakcijskih uvjeta provedena je upotrebom različitih otapala te se kao najpogodniji za Passerinijevu reakciju pokazao tetrahidrofuran (54 %, *Red 3*). Provođenje reakcije na 50 °C u tetrahidrofuranu nije dodatno povećalo iskorištenje (*Red 5*). Bousquet et al. opisali su vrlo efikasnu Passerinijevu reakciju bez otapala na visokim temperaturama.^[126] Iz tog razloga proveli smo istu reakciju u talini kako bismo utvrdili utjecaj otapala na iskorištenju od 31 %

(*Red 6*). Prema tome, određeni su optimalni uvjeti za Passerinijevu reakciju s α -hidrazinokiselinama; tetrahidrofuran kao otapalo, sobna temperatura i trajanje reakcije od 24 h. Takvi optimirani uvjeti korišteni su prilikom provođenja Passerinijevih reakcija s različitim karbonilnim spojevima, izocijanidima i α -hidrazino-kiselinama.

Tablica 4. Optimizacija uvjeta Passerinijeve reakcije.^a

^aSve reakcije provođene su u trajanju od 24 h sa jednakim količinama reaktanata. ^bIskorištenja izoliranih produkata.

Passerinijeve reakcije provedene s N^{α} -Bn, N^{β} -Boc zaštićenim hidrazino-kiselinama (**I**) dale su odgovarajuće Passerinijeve produkte u iskorištenjima 22-74 % (*Tablica 5*, produkti **28-38**). Poznato je da priroda karbonilne komponente (aldehid/keton) ima značajan utjecaj na ishod Passerinijevih reakcija. Usporedba Passerinijevih reakcija provedenih s paranitrobenzaldehidom (produkti **28, 30, 33** i **36**), benzaldehidom (produkt **34**) i paraklorobenzaldehidom pokazala je da aromatski aldehidi koji posjeduju elektron odvlačeće supstituente u konačnici daju odgovarajuće produkte u vrlo dobrim iskorištenjima (36-63 %), u odnosu na nesupstituirane aldehide **34** (22 %), dok u reakciji s aldehidima koji posjeduju elektron donirajuće supstituente nisu dobiveni produkti. Reakcije provedene s alifatskim aldehidom 2-metilpentanalom (spojevi **31**, **32**, **37** i **38**) dale su Passerinijeve produkte u iskorištenjima 21-74 %, što ukazuje da je reakcija jako ovisna o prirodi kiseline i izocijanokomponente. Na kraju, korištena su dva ketona u Passerinijevoj reakciji; produkt **35** dobiven je s acetonom u umjerenom iskorištenju (42 %), dok reakcija s acetofenonom nije dala očekivani produkt. Općenito, niža iskorištenja dobivena su korištenjem komercijalno dostupnih izocijanida (spojevi **32**, **36**, **38**) nego s aminokiselinskim izocijanidima. Također, čini se da bočni lanci aminokiselina imaju mali utjecaj na reaktivnost u Passerinijevoj reakciji.

Tablica 5. Protokol za pripravu hidrazino-depsipeptida ^a

^a Iskorištenja izoliranih spojeva prikazana su u zagradama;. n.d. - nije dobiveno

Nakon toga provedene su reakcije s drugom vrstom α -hidrazino-kiselina (**II**), N^{α} -Boc, N^{β} -Boc zaštićenim leucinom i fenilalaninom. Reakcije su provedene s paranitrobenzaldehidom, i 2-metilpentanalom ili acetonom kao karbonilnom komponentom uz aminokiselinske izocijanide. Bez obzira na korištene karbonilne i izocijano-komponente, produkti **39-42** dobiveni su u niskim iskorištenjima (10-24 %, *Tablica 5.*). Utjecaj N^{α} -Cbz, N^{β} -Boc zaštićenih hidrazino-kiselina **III** u Passerinijevoj reakciji ispitan je s istim karbonilnim komponentama i različitim izocijanidima, dajući hidrazino-depsipeptide **43-49** (*Tablica 5.*). Passerinijevi produkti s α -hidrazino-kiselinama **III** dobiveni su u uglavnom višim iskorištenjima nego s α -hidrazino-kiselinama **II** (11-55 %). Važno je istaknuti da su dva produkta izolirana u najvišem iskorištenju, **44** i **47**, zapravo sastavljena od tri različite komponente.

Isti protokol ispitan je i s N^{β} -Boc zaštićenim hidrazino-prolinom. Zbog slabe reaktivnosti ketona u prethodnim reakcijama, Passerinijeve reakcije provedene su samo s aldehidima. Odgovarajući produkti dobiveni su u niskim iskorištenjima (**50-53**, *Tablica* 6.), uz iznimku kombinacije para-nitrobenzaldehid/cikloheksil-izocijanid kojom je dobiven Passerinijev produkt **51** u iskorištenju od 54 %.

Tablica 6. Protokol za pripravu hidrazino-prolinskih depsipeptida.

Usporedba dobivenih rezultata pokazuje smanjenje iskorištenja u Passerinijevoj reakciji u nizu I > III > II. Najbolji primjeri su Passerinijevi produkti **37** (74 %) - **47** (54 %) - **40** (24 %) te također **33** (54 %) - **43** (11 %) - **39** (17 %), gdje hidrazino-kiselina II daje Passerinijev produkt u nešto boljem iskorištenju od hidrazino-kiseline III, dok hidrazino-kiselina I daje Passerinijev produkt u daleko boljem iskorištenju. Moguće objašnjenje takvog ishoda su steričke smetnje Cbz- te posebno Boc-skupine na N^{α} atomu, kao i različita priroda supstituenta; *N*-benzilni supstituent nasuprot uretanskom tipu veze.

Kako bismo istražili razlike u iskorištenjima dobivenih produkata korištenjem različitih hidrazino-kiselina, odlučili smo ispitati reakcijski mehanizam. Do sada su provedena brojna istraživanja mehanizma Passerinijeve reakcije uključujući i teorijski pristup korištenjem DFT metoda, ali unatoč tome još su brojna pitanja ostala otvorena.^[127] Maeda i suradnici su koristili jednostavne reaktante (formaldehid, metil-izocijanid i mravlja kiselina) za račun energije mogućih stacionarnih točaka ^[128] te utvrdili da se reakcija u plinskoj fazi

odvija u sedam koraka: formiranje vodikovog klastera između kiseline i aldehida (1), reakcija s izocijanidom (2) što rezultira formiranjem imidata (3). Imidat zatim formira vodikov klaster s dodatnom molekulom kiseline koja služi kao katalizator (4), što omogućuje pregradnju klastera u međuprodukt dioksolana (5) stabiliziran vodikovim vezama s drugom molekulom kiseline. Konformacijska promjena vodikovih veza nastalog klastera dioksolan–kiselina (6) nužna je kako bi došlo do zadnjeg stupnja–Mummove pregradnje koja daje konačan produkt. Opisani mehanizam prikazan je na (*Shemi 12.*), uz α -hidrazino-kiselinu kao kiselinsku komponentu.

Shema 12. Mehanizam Passerinijeve reakcije prema Maedi

Maeda i suradnici su utvrdili da je pregradnja vodikovog klastera imidat–kiselina u dioksolan–kiselina klaster (korak **5**, uokviren na *Shemi 12*.) korak koji određuje brzinu reakcije.^{[127],[129]} Izračunata energija aktivacije potrebna za ovaj proces je 51,8 kJ mol⁻¹ s mravljom kiselinom, formaldehidom i metil-izocijanidom kao reaktantima.

U suradnji s dr. sc. Danijelom Barić (Grupa za računalne bioznanosti) upotrebom DFT pristupa izračunata je kinetika i temodinamička ravnoteža stupnja koji određuje brzinu Passerinijeve reakcije (*Shema 12.*) za dva produkta s najvećom razlikom u iskorištenju, **37** (74 %), i **40** (24 %), (*Tablica 4.*). Produkti se međusobno razlikuju samo u α -hidrazino-kiselini, N^{α} -Bn, N^{β} -Boc zaštićeni hidrazino-fenilalanin (**I**) za **37** i N^{α} -Boc, N^{β} -Boc zaštićeni hidrazino-fenilalanin (**II**) za **40**. Budući da je jedina razlika između dva reaktanta u zaštitnoj skupini na N^{α} atomu hidrazino-fenilalanin (\mathbb{R}^{1} , *Shema 12. i Shema 13.*), procijenjeno je da se mogu u računu koristiti manje modelne molekule kao karbonilne i izocijanide komponente. Stoga je umjesto 2-metilpentanala korišten formaldehid i metil-izocijanid umjesto 2-izocijano-3-metilmetilbutanoata. Uvedeno je dodatno pojednostavljenje, zamjena zaštitne skupine na N^{β} atomu hidrazino-kiseline; *tert*-butiloksikarbonilna (Boc) s metoksikarbonilnom skupinom (Moc), kao što je prikazano na *Shemi 13*.


```
R^1 = Bn ili Boc; R^2 = -CH<sub>2</sub>C<sub>6</sub>H<sub>5</sub>; R^3 = R^4 = -H; R^5 = -CH<sub>3</sub>
```


Nađeno je da u slučaju α -hidrazino-kiseline kao karboksilne komponente, klaster imidat–kiselina (*Shema 13.*) podliježe konformacijskim promjenama koje utječu na nastajanje novih vodikovih veza između dodatne molekule kiseline (služi kao katalizator u tom reakcijskom stupnju) i klastera. Nove vodikove veze stabiliziraju neproduktivnu konformaciju imidatnog klastera, te ne dolazi do reakcijskog stupnja prikazanog na *Shemi 13.* i reakcija ne daje produkt. Strukture produktivnih konformacija klastera imidat–kiselina prikazani su na *Slici 28.*; za N^{α} -Bn, N^{β} -Moc zaštićeni hidrazino-fenilalanin (gore) i N^{α} -Boc, N^{β} -Moc zaštićeni hidrazino-fenilalanin (dolje).

Slika 28. Shematski prikaz produktivnih i neproduktivnih konformacija klastera imidatkiselina s N^{α} -Bn, N^{β} -Moc zaštićenim hidrazino-fenilaninom (gore) i N^{α} -Boc, N^{β} -Moc zaštićenim hidrazino-fenilaninom (dolje). Zbog jednostavnosti, struktura dodatne hidrazinokiseline prikazana je u skraćenom obliku, dok je struktura kiseline kovalentno vezane za izocijanid i aldehid prikazana eksplicitno.

Neproduktivni konformeri klastera imidat–kiselina također su shematski prikazani na *Slici 28.* Potvrđena su dva moguća neproduktivna klastera imidata kada je korištena α -hidrazino-kiselina s \mathbb{R}^1 = Bn zaštitnom skupinom, dok su moguće čak tri neproduktivne konformacije klastera imidata ukoliko se koristi α -hidrazino-kiselina s \mathbb{R}^1 = Boc. Taj treći konformer nastaje zbog vodikovih veza između kisika karbonila na Boc skupini i vodika karboksilne skupine kiseline. Očito, u slučaju s Bn skupinom na N^{α} atomu, takve vodikove veze nisu moguće. Kako bismo objasnili razliku u iskorištenjima Passerinijevih reakcija u slučaju kada se koristi α -hidrazino-kiselina s \mathbb{R}^1 = Bn i \mathbb{R}^1 = Boc zaštitnom skupinom, usporedili smo termodinamičku stabilnost neproduktivnih konformera s produktivnim konformerom klastera imidata. Rezultati su prikazani u *Tablici 7*.

	produktivni	neproduktivni 1	neproduktivni 2	neproduktivni 3
$\mathbf{R}^1 = \mathbf{B}\mathbf{n}$	0	-11,9	-10,2	ne postoji
$\mathbf{R}^1 = \mathbf{Boc}$	0	-6,4	-50,5	-61,3

Tablica 7. Energije neproduktivnih konformera klastera imidata uspoređene s energijama produktivnih konformacija kada se koristi hidrazino-kiselina s $R^1 = Bn$ i $R^1 = Boc$ zaštitnom skupinom (kJ mol⁻¹), izračunate na M06-2X/6-31+G(d,p) + ZPE_{M06-2X/6-31+G(d,p)} razini teorije.

Nađeno je da su neproduktivni klasteri α -hidrazino-kiselina s R¹ = Bn zaštitnom skupinom nešto stabilniji u odnosu na produktivnu konformaciju klastera imidata (~10 kJ mol⁻¹). Upravo zbog toga cijela reakcija je brža, što znači da samo mali dio reaktanata završi u neproduktivnim konformacijama. S druge strane, dva od tri postojeća neproduktivna klastera u slučaju α -hidrazino-kiselina s R¹ = Boc zaštitnom skupinom pokazuju značajnu stabilnost u odnosu na produktivnu konformaciju klastera imidata (~50-60 kJ mol⁻¹). Nastanak takvih stabilnih neproduktivnih konformacija klastera imidata ukazuje da je spriječena pregradnja imidata u dioksolan iz kojeg nastaje konačan produkt. Podaci iz *Tablice 5*. pokazuju da svi produkti s R¹ = Boc zaštitnim skupinama imaju relativno niska iskorištenja, u rasponu od 10 do 24 % (spojevi **39-42**).

Prisutnost dodatnih funkcionalnih skupina u MCR produktima omogućuje različite naknadne modifikacije pri čemu nastaju novi, strukturno poboljšani spojevi. Passerini-amin deprotekcija-acil migracija (engl. *Passerini-amine-deprotection-acyl migration*, PADAM) jedna je od najčešće korištenih naknadnih modifikacija Passerinijevih produkata, a koristi se za prevođenje depsipeptida u α -oksoamide, strukturni motiv nađen u prirodnim produktima, sintetskim antitumorskim spojevima te inhibitorima proteaze.^[130] Osim toga, razvijeni su različiti protokoli za pripravu malih cikličkih i makrocikličkih spojeva, uključujući metatezu zatvaranja prstena (engl. *ring-closing metathesis;* RCM),^[92] makrolaktonizaciju, klik-kemiju i ciklizaciju temeljenu na višekomponentnim reakcijama.^[131] U našem slučaju, transformacija linearnih hidrazino-depsipeptida u njihove cikličke analoge predstavlja vrlo atraktivni doprinos novim strukturama peptidomimetika. Prema tome, odabrali smo N^{α} -Bn, N^{β} -Boc zaštićeni derivat **28** koji posjeduje metilni ester na C-položaju peptida. Provedena je deprotekcija u dva stupnja; uklanjanje estera u baznim uvjetima, a zatim uklanjanje Boc zaštitne skupine u kiselim uvjetima. Dobiven je nezaštićeni hidrazino-depsipeptid koji je dalje podvrgnut intramolekulskoj ciklizaciji uz HATU kondenzacijski reagens u uvjetima velikog razrjeđenja i dobiven je ciklički hidrazino-depsipeptid **29** u iskorištenju od 14 % (*Shema 14.*).

Shema 14. Intramolekulska ciklizacija

Osim toga, provedeno je nekoliko reakcija s α -hidrazino-kiselinom bez zaštitne skupine na N^{α} atomu (*Shema 15.*). U uvjetima optimiranim za Passirinijevu reakciju (THF, RT, 24 h) nije dobiven odgovarajući Passerinijev produkt. Reakcija provedena na refluksu toluena (110 °C), 4 sata dovodi do dekarboksilacije α -hidrazino-kiseline i *N*-alkilacije na nezaštićenom N^{α} atomu, što je u skladu s prije opisanim primjerima *N*-alikalcije prolina u istim uvjetima.^[103] U konačnici, reakcija provedena u metanolu na sobnoj temperaturi, nakon 24 sata daje Ugijev produkt **27** u iskorištenju od 23 %. Time se otvara mogućnost primjene N^{α} nezaštićenih hidrazino-kiselina u trokomponentnoj Ugijevoj reakciji primjenom različitih karbonilnih spojeva i izocijanida.

Shema 15. Reakcija α -hidrazino-kiseline bez zaštitne skupine na N^{α} atomu

4.4.2. α-hidrazino-aldehidi u Passerinijevoj reakciji

S obzirom na uspješnu primjenu α -hidrazino-kiselina u Passerinijevoj reakciji, odlučili smo reducirati karboksilnu skupinu u aldehid i dobivene α -hidrazino-aldehide ispitati u Passerinijevoj reakciji. Aldehidi su dobiveni u dva reakcijska koraka iz zaštićenih α hidrazino-kiselina *(Shema 16.)*. U prvom stupnju provedeno je zaštićivanje karboksilne skupine α -hidrazino-kiseline esterifikacijom. Reakcija je provedena u baznim uvjetima korištenjem metil-jodida kao reagensa.^[132] U drugom koraku provedena je redukcija dobivenog estera uz pomoć elektrofilnog reducirajućeg reagensa diizobutilaluminijevoghidrida (DIBAL-H) koji omogućuje redukciju estera i nitrila u aldehide.^[133] Na taj način dobiveni su α -hidrazino-aldehidi s različitim zaštitnim skupinama (Boc ili Cbz) na N^{α} položaju u iskorištenju 60-90 %.

Shema 16. Priprava kiralnih α-hidrazino-aldehida

4.4.3. Primjena α-hidrazino-aldehida u Passerinijevoj reakciji

Nova serija Passerinijevih reakcija uključuje korištenje širokog spektra komercijalno dostupnih kiselina i izocijanidnih komponenti uz α -hidrazino-aldehide s različitim zaštitnim skupinama na N^{α} atomu (*Slika 29.*). Kao i u prethodnom slučaju nastaju hidrazino-depsipeptidi s novim kiralnim centrom.

Slika 29. α -hidrazino-aldehidi s različitim zaštitnim skupinama na N^{α} atomu

Provedena je optimizacija reakcijskih uvjeta na modelnoj reakciji koja uključuje N^{α} -Cbz, N^{β} -Boc zaštićeni aldehid hidrazino-fenilalanina, octenu kiselinu i *tert*-butil izocijanid. Prva reakcija provedena u suhom diklormetanu u atmosferi argona kroz 2 dana dala je odgovarajući Passerinijev produkt **58** u iskorištenju od 35 % (*Tablica 8, Red 1*). Optimizacija reakcijskih uvjeta provedena je upotrebom različitih otapala te se kao najpogodniji za Passerinijevu reakciju pokazao tetrahidrofuran (38 %, *Red 3*). Provođenje reakcije na 50 °C u tetrahidrofuranu i etil-acetatu na sobnoj temperaturi nije dalo odgovarajući produkt (*Red 2 i 5*). Optimalni uvjeti za Passerinijevu reakciju određeni s α -hidrazino-kiselinama korišteni su i u slučaju α -hidrazino-aldehida; tetrahidrofuran kao otapalo, sobna temperatura i trajanje reakcije od 2 dana. Takvi optimirani uvjeti korišteni su prilikom provođenja Passerinijevih reakcija s različitim karboksilnim kiselinama, izocijanidima i α -hidrazino-aldehidima.

Tablica 8. Optimizacija reakcijskih uvjeta Passerinijeve reakcije

^aSve reakcije provođene su u trajanju od 2 dana s jednakim količinama reaktanata. ^bIskorištenja izoliranih produkata.

Budući da su Passerinijeve reakcije provedene s N^{α} -Boc, N^{β} -Boc zaštićenim hidrazinokiselinama I dale najslabija iskorištenja, provedena je testna Passerinijeva reakcija s N^{α} -Boc, N^{β} -Boc hidrazino-aldehidom leucina, octenom kiselinom i cikloheksilnim izocijanidom. Odgovarajući Passerinijev produkt (*Tablica 9*, spoj 56) je dobiven, ali u slabom iskorištenju. Stoga su provedene Passerinijeve reakcije s N^{α} -Cbz, N^{β} -Boc hidrazino-aldehidima (*Tablica 9*).

^a Iskorištenja izoliranih spojeva prikazana su u zagradama;. n.d. - nije dobiveno

Nakon provedenog velikog broja reakcija, najbolja iskorištenja dobivena su u seriji N^{α} -Cbz, N^{β} -Boc hidrazino-aldehida fenilalanina 26-38 % za spojeve **57-59** (*Tablica 9.*) te slabija iskorištenja za spoj **60** (12 %). Kako bi se umanjila mogućnost steričkih smetnji, u većini provedenih reakcija korištena je octena kiselina. Slični rezultati su dobiveni i za preostala dva α -hidrazino-aldehida: kod leucinskog derivata dobiveni su produkti **61** i **62** u 38 % iskorištenju, a kod valinskog α -hidrazino-aldehida dobiveni su produkti **63** (33 %) i **64** (30 %). Uočeno je da u slučaju aminokiselinskih izocijanida nisu dobiveni odgovarajući Passerinijevi produkti. Važno je naglasiti da su u prethodno provedenim Passerinijevim reakcijama s N^{α} , N^{β} - zaštićenim hidrazino-kiselinama najbolja iskorištenja dobivena upravo s aminokiselinskim izocijanidima. Umjesto octene kiseline uvedena je benzojeva kiselina (*Tablica 9.*, spojevi **65**, **66**), međutim, u slučaju spoja **65** dobiveno je slabije iskorištenje nego s octenom kiselinom (spoj **64**), a spoju **66** (29 %) srodni produkt s octenom kiselinom nije dobiven (*Tablica 9.*).

Na temelju dobivenih rezultata uočeno je da najveći utjecaj na odvijanje Passerinijeve reakcije s α -hidrazino-aldehidima ima priroda izocijanidne komponente; jedino uz cikloheksilni izocijanid i *tert*-butilni izocijanid su dobiveni Passerinijevi produkti za sva tri korištena α -hidrazino-aldehida. Relativno slaba iskorištenja mogu se pripisati i prirodi samih aldehida; u svim reakcijama korišteni su alifatski aldehidi sa sterički zahtjevnim skupinama na C^{α} atomu.

173

5. ZAKLJUČAK

U okviru ove disertacije priređene su optički čiste N^{α} -Bn, N^{β} -Boc-L-hidrazino-kiseline metodom elektrofilne aminacije odgovarajuće *N*-Bn-L-aminokiseline s *N*-Boc-oksaziridinom. Nezaštićene α -hidrazino-kiseline dobivene su nukleofilnom supstitucijom odgovarajuće α bromkiseline hidrazinom. Ovim sintetskim postupkom dobivene su i zaštićene N^{α} -Boc, N^{β} -

Boc-L-hidrazino-kiseline, te N^{α} -Cbz, N^{β} -Boc-L-hidrazino-kiseline.

Dobivene α -hidrazino-kiseline korištene su u sintezi dipeptida i tripeptida kako bi se optimirali reakcijski uvjeti za sintezu hidrazino-peptidomimetika u otopini. Pripremljeni su derivati s uzastopnom i naizmjeničnom raspodjelom nezaštićene α -hidrazino-kiseline s ciljem proučavanja utjecaja i rasporeda intramolekulskih vodikovih veza na formiranje sekundarne strukture hidrazino-peptidomimetika. Budući da se uvođenjem hidrazino-derivata α aminokiselina u peptidni slijed formira cilindrični oblik peptidne okosnice pogodan za vezanje u mali utor DNA ili veliki utor RNA, ispitana je njihova interakcija s nukelinskim kiselinama. U tu svrhu priređena je serija peptidomimetika koji na N-kraju sadrže bazičnu aminokiselinu lizin, a na C-kraju fenantridinil-L-alanin. Nadalje, peptidomimetici u svojoj strukturi sadrže jednu hidrazino-jedinicu leucina (19), dvije uzastopne hidrazino-jedinice leucina (21) i dvije naizmjenične hidrazino-jedinice (24). Uključivanje hidrazino-skupina u peptidni lanac snažno utječe na vezanje spojeva na dvolančane polinukleotide. Afiniteti vezanja i spektroskopski odgovor značajno su smanjeni za svaku dodatnu hidrazino-skupinu. Osim toga, peptidomimetik 21 koji posjeduje dvije uzastopne hidrazino-kiseline značajno smanjuje afinitet vezanja u odnosu na peptidomimetik 24 s naizmjeničnom raspodjelom hidrazino-kiselina. Povećanje krutosti oligopeptidne jedinice koje je posljedica sekundarne strukture okreta, ometa vezanje spojeva 19, 21 i 24 u odnosu na spoj 15 koji u svojoj strukturi ne sadrži hidrazino-kiselinu. Nadalje, nađeno je da hidrazino-peptidomimetik 21 s dvije uzastopne hLeu jedinice stabilizira poli G i uzrokuje porast kiralnosti RNA, za razliku od spojeva 15, 19 i 24.

 α -Hidrazino-kiseline s različitim zaštitnim skupinama na N^{α} i N^{β} korištene su u Passerinijevoj reakciji za dobivanje nove skupine peptidomimetika. Dobiveni su odgovarajući Passerinijevi produkti **28-53** u iskorištenjima 10-74 %. Usporedba dobivenih rezultata pokazuje da su najbolja iskorištenja dobivena u slučaju s aromatskim aldehidima te aminokiselinskim izocijanidima. Osim toga, usporedbom korištenih α -hidrazino-kiselina uočeno je da iskorištenja reakcija opadaju u nizu Bn > Cbz > Boc zaštitnih skupina na N^{α} atomu. Objašnjenje je nađeno izučavanjem reakcijskog mehanizma korištenjem DFT metoda. Na temelju usporedbe termodinamičke stabilnosti neproduktivnih konformera s produktivnim konformerom klastera imidata objašnjena je razlika u iskorištenjima Passerinijevih reakcija u slučaju kada se koristi α -hidrazino-kiselina s R¹ = Bn i R¹ = Boc zaštitnom skupinom. Otkriveno je da su neproduktivni minimumi α -hidrazino-kiselina s R¹ = Boc zaštitnom skupinom nešto stabilniji u odnosu na produktivnu konformaciju klastera imidata. Nastanak takvih stabilnih neproduktivnih konformacija klastera imidata ukazuje da je spriječena pregradnja imidata u dioksolan iz kojeg nastaje konačan produkt.

Druga serija Passerinijevih reakcija uključuje korištenje α -hidrazino-aldehida s različitim zaštitnim skupinama na N^{α} atomu. Najbolja iskorištenja dobivena su u seriji N^{α} -Cbz, N^{β} -Boc α -hidrazino-aldehida fenilalanina (26-38 %) i za cikloheksilni i *tert*-butilni izocijanid za sve korištene α -hidrazino-aldehide.

Kao rezultat višekomponentnih reakcija korištenjem hidrazino-derivata α aminokiselina dobivene su nove strukture hidrazino-peptidomimetika. Dobiveni hidrazinodepsipeptidi posjeduju dva različita strukturna aspekta; proširenje peptidne okosnice komponentom α -hidrazino-kiseline te formiranje izostera amidne veze kao rezultat Passerinijeve reakcije. Budući da je kao N-terminalna komponenta u konačnom hidrazinopeptidomimetiku α -hidrazino-kiselina ili aldehid, moguće su daljnje modifikacije uvođenjem u neke druge višekomponentne reakcije ili korištenjem standardne procedure peptidne sinteze.

Aaa	aminokiselina
Ala	alanin
AlaP	fenantridinil-L-alanin
AcOH	octena kiselina
Bn	benzil
Boc	tert-butiloksikarbonil
Boc ₂ O	di- <i>tert</i> -butil-dikarbonat
BOP	benzotriaz-1-oksi-tris(dimetilamino)fosfonijev heksafluorofosfat
Cbz	benziloksi-karbamat
Cbz ₂ O	dibenzil-dikarbonat
(CH ₃) ₄ NOH	tetrametil-amonijev hidroksid
CHCl ₃	kloroform
Cl ₃ CCOH	kloral
ClCOOiBu	izobutil-klorformijat
COSY	engl. correlation spetroscopy
ctDNA	DNA izolirana iz timusa teleta (engl. calf thymus DNA)
DCC	N,N-dicikloheksilkarbodiimid
DCM	diklormetan
DIBAL-H	diisobutil-aluminijev hidrid
DMF	N,N-dimetilformamid
DMAP	dimetil-aminopiridin
DMSO- d_6	deuterirani dimetilsulfoksid
ekv.	ekvivalent
Et ₂ O	dietil-eter
ESI	elektrosprej ionizacija (engl. electron spray ionisation)
Et ₃ N	trietilamin
EtOAc	etil-acetat
EtOH	etanol
Gly	glicin
H_2SO_4	sumporna kiselina
NH ₂ NH ₂	hidrazin
hAaa	α-hidrazino-kiselina
HATU	(O-(7-azabenzotriazol-1-il))-1,1,3,3-tetrametilamonijev
---	---
	heksafluorofosfat
HMBC	engl. heteronuclear multiple bond correlation
HMQC	engl. heteronuclear multiple-quantum correlation
HOBt	1-hidroksibenzotriazol
HOSu	N-hidroksi-sukcinimid
KBr	kalijev bromid
KHSO ₄	kalijev hidrogen-sulfat
2KHSO ₅ ·KHSO ₄ ·K ₂ SO ₄	okson, kalijev peroksomonosulfat
K_2CO_3	kalijev karbonat
Leu	leucin
Lys	lizin
MeCN	acetonitril
MeI	metil-jodid
MeOH	metanol
$MgSO_4$	magnezijev sulfat
MS	spektrometrija masa (engl. mass spectrometry)
NaBH ₄	natrij-bor hidrid
NaCl	natrijev klorid
NaHCO ₃	natrijev hidrogen-karbonat
NaNO ₂	natrijev nitrit
NMM	N-metilmorfolin
NMR	nuklearna magnetska rezonancija (engl. nuclear magnetic
	resonance)
OMe	metilni ester
PE	petroleter
PPh ₃	trifenil-fosfin
PhCHO	benzaldehid
Phe	fenilalanin
POCl ₃	fosforil-triklorid
Pg	zaštitna skupina (engl. protecting group)
RP HPLC	tekućinska kromatografija visokog učinka obrnutih faza (engl.
	reversed-phase high performance chromatography)

§ 6. Popis oznaka, kratica i simbola

t-Bu	<i>tert</i> -butil
TCBC	2,4,6-triklorbenzoil-klorid
THF	tetrahidrofuran
TFA	trifloroctena kiselina
TLC	tankoslojna kromatografija
TMS	tetrametilsilan
t.t.	točka tališta
Val	valin
Z_2O	dibenzil-dikarbonat

180

7. LITERATURNI IZVORI

- [1] R. C. Ladner, A. K. Sato, J. Gorzelany, M. De Souza, *Drug Discov. Today* **9** (2004) 525–529.
- [2] D. J. Hill, M. J. Mio, R. B. Prince, T. S. Hughes, J. S. Moore, J. Am. Chem. Soc 101 (2001) 3893–4011.
- [3] A. Barker, J. G. Kettle, T. Nowak, J. E. Pease, *Drug Discov. Today* **18** (2013) 298–304.
- [4] K. Fosgerau, T. Hoffmann, *Drug Discov. Today* **20** (2014) 122–128.
- [5] C. Giordano, M. Marchio, E. Timofeeva, G. Biagini, *Front. Neurol.* **5** (2014) 1–14.
- [6] A. Padhi, M. Sengupta, S. Sengupta, K. H. Roehm, A. Sonawane, *Tuberculosis* 94 (2014) 363–373.
- [7] S. D. Robinson, H. Safavi-Hemami, L. D. McIntosh, A. W. Purcell, R. S. Norton, A. T. Papenfuss, *PLoS One* 9 (2014) 1–13.
- [8] A. D. Bautista, C. J. Craig, E. A. Harker, A. Schepartz, Curr. Opin. Chem. Biol. 11 (2007) 685–692.
- [9] R. E. Melendez, W. D. Lubell, J. Am. Chem. Soc 23 (2004) 6759–6764.
- [10] H. Rask-Andersen, W. Liu, E. Erixon, A. Kinnefors, K. Pfaller, A. Schrott-Fischer, R. Glueckert, Anat. Rec. 295 (2012) 1791–1811.
- [11] Z. Q. Lu, Y. Y. Zhu, J. Bin Lin, X. K. Jiang, Z. T. Li, *Chinese Sci. Bull.* 55 (2010) 2870–2878.
- [12] T. A. Martinek, F. Fülöp, Chem. Soc. Rev. 41 (2012) 687–702.
- [13] V. J. Hruby, *Drug Discov. Today*, **2** (1997) 165–167.
- [14] T. Kieber-Emmons, R. Murali, M. Green, *Curr. Opin. Chem. Biol.* 8 (1997) 435–441.
- [15] L. Nevola, E. Giralt, *Chem. Commun.* **51** (2014) 3302–3315.
- [16] B. J. Smith, E. F. Lee, J. W. Checco, M. Evangelista, S. H. Gellman, W. D. Fairlie, *ChemBioChem* 14 (2013) 1564–1572.
- [17] W. S. Horne, *Expert Opin. Drug Discov.* **6** (2011) 1247–1262.
- [18] Y.-Y. Zhu, G.-T. Wang, Z.-T. Li, Curr. Org. Chem. 15 (2011) 1266–1292.
- [19] X. Zhao, Z.-T. Li, Chem. Commun. 46 (2010) 1601–1616.
- [20] S. B. L. Vollrath, C. Hu, S. Bräse, K. Kirshenbaum, Chem. Commun. 49 (2013) 2317– 2319.
- [21] P. Ruzza, in Med. Chem. Drug Des. (2012) 297–314.
- [22] L. Li, R. M. Thomas, H. Suzuki, J. K. De Brabander, X. Wang, P. G. Harran, Science (80-.) 305 (2004) 1471–1474.

- [23] L. D. Walensky, A. L. Kung, I. Escher, T. J. Malia, S. Barbuto, R. D. Wright, G. Wagner, G. L. Verdine, S. J. Korsmeyer, *Science* (80-.) 305 (2004) 1466–1470.
- [24] R. M. Greer, M. Peyton, J. E. Larsen, L. Girard, Y. Xie, A. F. Gazdar, P. Harran, L. Wang, R. A. Brekken, X. Wang, *Cancer Res.* **71** (2011) 7640–7648.
- [25] J. Vagner, H. Qu, V. J. Hruby, Curr. Opin. Chem. Biol. 12 (2008) 292–296.
- [26] M. Goodman, C. Zapf, Y. Rew, *Biopolym. Pept. Sci. Sect.* 60 (2001) 229–245.
- [27] Z. Antosova, M. Mackova, V. Kral, T. Macek, Trends Biotechnol. 27 (2009) 628–635.
- [28] P. Vlieghe, V. Lisowski, J. Martinez, M. Khrestchatisky, Drug Discov. Today 15 (2010) 40–56.
- [29] L. Gentilucci, R. De Marco, L. Cerisoli, Curr. Pharm. Des. 16 (2010) 3185–3203.
- [30] J. N. Lambert, J. P. Mitchell, K. D. Roberts, J. Chem. Soc. Perkin Trans. 1 5 (2001) 471–484.
- [31] S. F. Martin, Acc. Chem. Res. **39** (2006) 433–442.
- [32] G. Latacz, E. Pekala, A. Ciopinska, K. Kiec-Kononowicz, Acta Pol. Pharm. Res. 62 (2006) 430–433.
- [33] A. Grauer, B. König, European J. Org. Chem. 2009 (2009) 5099–5111.
- [34] I. L. Karle, C. Das, P. Balaram, *Biopolymers* **59** (2001) 276–289.
- [35] J. A. Scheike, C. Baldauf, J. Spengler, F. Albericio, M. T. Pisabarro, B. Koksch, *Angew. Chemie* **46** (2007) 7766–7769.
- [36] Y. A. Ovchinnikov, Eur. J. Biochem. 94 (1979) 321–336.
- [37] Z. Žižka, Folia Microbiol. **43** (1998) 7–14.
- [38] J. Zhang, M. Garrossian, D. Gardner, A. Garrossian, Y.-T. Chang, Y. K. Kim, C.-W. T. Chang, *Bioorg. Med. Chem. Lett.* **18** (2008) 1359–1363.
- [39] S. Aravinda, N. Shamala, C. Das, P. Balaram, *Biopolymers* 64 (2002) 255–267.
- [40] J. Campbell, Q. Lin, G. D. Geske, H. E. Blackwell, ACS Chem. Biol. 4 (2009) 1051– 1059.
- [41] D. L. Boger, S. Ichikawa, W. C. Tse, M. P. Hedrick, Q. Jin, J. Am. Chem. Soc. 123 (2001) 561–568.
- [42] M. C. Kimber, C. J. Moody, *Chem. Commun.* 5 (2008) 591–593.
- [43] T. Johnson, L. C. Packman, C. B. Hyde, D. Owen, M. Quibell, J. Chem. Soc. Perkin Trans. 1 (1996) 719–728.
- [44] H. J. Lee, J. W. Song, Y. S. Choi, H. M. Park, K. B. Lee, J. Am. Chem. Soc. 124 (2002)

11881–11893.

- [45] D. Boeglin, W. D. Lubell, J. Comb. Chem. 7 (2005) 864–878.
- [46] P. J. Piliero, *Expert Opin. Drug Discov.* **11** (2002) 1295–1301.
- [47] K. Ronco, H. Erlenmeyer, *Helv. Chim. Acta.* **39** (1956) 1045–1050.
- [48] D. Seebach, P. E. Ciceri, M. Overhand, J. Bernhard, D. Rigo, S. P. Ag, C. H. Basel, *Helv. Chim. Acta.* 79 (1996) 2043–2066.
- [49] D. Seebach, J. L. Matthews, *Chem. Commun.* **1** (1997) 2015–2022.
- [50] J. L. Matthews, K. Gademann, B. Jaun, D. Seebach, J. Chem. Soc. Perkin Trans. 1 8 (1998) 3331–3340.
- [51] C. Peter, X. Daura, W. F. van Gunsteren, J. Am. Chem. Soc. 122 (2000) 7461–7466.
- [52] A. Vidal, J. Hannachi, J.-C. Mulatiere, J.-C. Collet, J. Org. Chem. 69 (2004) 2367–2373.
- [53] A. J. Oelke, D. J. France, T. Hofmann, G. Wuitschik, S. V. Ley, Nat. Prod. Rep. 28 (2011) 1445–1471.
- [54] R. Kharb, M. Rana, P. Chander Sharma, M. Shahar Yar, *J. Chem. Pharm. Res.* **3** (2011) 173–186.
- [55] M.-I. Aguilar, A. W. Purcell, R. Devi, R. Lew, J. Rossjohn, A. I. Smith, P. Perlmutter, *Org. Biomol. Chem.* **5** (2007) 2884–2890.
- [56] H. Niedrich, *Pharmacol. Ther.* (1963) 2774–2779.
- [57] D. Steer, R. Lew, P. Perlmutter, A. Smith, M.-I. Aguilar, *Curr. Med. Chem.* **9** (2002) 811–822.
- [58] A. Cheguillaume, A. Salau, S. Sinbandhit, M. Potel, P. Gall, *J. Org. Chem.* **66** (2001) 4923–4929.
- [59] A. Salaün, A. Favre, B. Le Grel, M. Potel, P. Le Grel, J. Org. Chem. 71 (2006) 150– 158.
- [60] S. Acherar, A. Salaün, P. Le Grel, B. Le Grel, B. Jamart-Grégoire, *European J. Org. Chem.* **2013** (2013) 5603–5613.
- [61] I. Bouillon, R. Vanderesse, N. Brosse, O. Fabre, B. Jamart-Grégoire, *Tetrahedron* 63 (2007) 9635–9641.
- [62] R. Günther, H.-J. Hofmann, K. Kuczera, J. Phys. Chem. B 105 (2001) 5559–5567.
- [63] D. Seebach, *Helv. Chim. Acta* **86** (2003) 4152–4168.
- [64] B. Mojsoska, H. Jenssen, *Pharmaceuticals* **8** (2015) 366–415.
- [65] D. Bonnet, C. Grandjean, P. Rousselot-Pailley, P. Joly, L. Bourel-Bonnet, V. Santraine,
 H. Gras-Masse, O. Melnyk, J. Org. Chem. 68 (2003) 7033–7040.

- [66] I. Avan, C. D. Hall, A. R. Katritzky, *Chem. Soc. Rev.* 43 (2014) 3575–3594.
- [67] J. Viret, J. Gabard, A. Collet, *Tetrahedron* **43** (1987) 891–894.
- [68] L. Guy, J. Vidal, A. Collet, A. Amour, M. Reboud-Ravaux, J. Med. Chem. 41 (1998) 4833–4843.
- [69] A. Vidal, J. Hannachi, J.-C. Hourdin, G. Mulatiere, J.-C. Collet, *Tetrahedron Lett.* **39** (1998) 8845–8848.
- [70] A. Vidal, J. Hannachi, J.-C. Damestoy, S. Guy, L. Aubry, A. Collet, *Chem. Eur. J.* 3 (1997) 1691–1709.
- [71] S. Andreae, E. Schmitz, *Synthesis* (1991) 327–341.
- [72] M. Bodanszky; A. Bodanszky, in Pract. Pept. Synth. (1997) 242–243.
- [73] K. Quitt, P., Hellerbach, J., Vogel, Helv. Chim. Acta 46 (1963) 327–333.
- [74] S. S. Panda, C. El-Nachef, K. Bajaj, A. R. Katritzky, European J. Org. Chem. 2013 (2013) 4156–4162.
- [75] V. Declerck, D. J. Aitken, J. Org. Chem. 76 (2011) 708–711.
- [76] A. Altmayer-Henzien, V. Declerck, R. Guillot, D. J. Aitken, *Tetrahedron Lett.* 54 (2013) 802–805.
- [77] Y. Tsuda, Y. Okada, Amin. Acids, Pept. Proteins Org. Chem. 3 (2011) 203–251.
- [78] Y. Yang, S. Laval, B. Yu, Adv. Carbohydr. Chem. Biochem. 71 (2014) 137–226.
- [79] R. De Marco, M. Spinella, A. De Lorenzo, A. Leggio, A. Liguori, Org. Biomol. Chem. 11 (2013) 3786–3796.
- [80] R. B. Merrifield, J. Am. Chem. Soc. 85 (1963) 2149–2154.
- [81] V. Mäde, S. Els-Heindl, A. G. Beck-Sickinger, *Beilstein J. Org. Chem.* **10** (2014) 1197–1212.
- [82] F. Albericio, R. P. Hammer, C. García-Echeverría, M. A. Molins, J. L. Chang, M. C. Munson, M. Pons, E. Giralt, G. Barany, *Int. J. Pept. Protein Res.* 37 (1991) 402–413.
- [83] A. G. Zhdanko, A. V. Gulevich, V. G. Nenajdenko, *Tetrahedron* **65** (2009) 4692–4702.
- [84] B. Ganem, Acc. Chem. Res. 42 (2010) 463–472.
- [85] A. Dömling, W. Wang, K. Wang, Chem. Rev. 112 (2012) 3083–3135.
- [86] C. de Graaff, E. Ruijter, R. V. A. Orru, Chem. Soc. Rev. 41 (2012) 3969–4009.
- [87] A. V. Gulevich, A. G. Zhdanko, R. V. A. Orru, V. G. Nenajdenko, *Chem. Rev.* 110 (2010) 5235–5331.

- [88] G. Koopmanschap, E. Ruijter, R. V. A. Orru, *Beilstein J. Org. Chem.* **10** (2014) 544–598.
- [89] S. Brauch, S. S. van Berkel, B. Westermann, *Chem. Soc. Rev.* 42 (2013) 4948–4962.
- [90] A. Dömling, Chem. Rev. 106 (2006) 17–89.
- [91] A. Dömling, I. Ugi, Angew. Chemie **39** (2000) 3168–3210.
- [92] A. D. F. S. Barreto, O. E. Vercillo, L. A. Wessjohann, C. K. Z. Andrade, *Beilstein J. Org. Chem.* 10 (2014) 1017–22.
- [93] L. Edjlali, E. Vessally, Z. Jafari, M. D. Esrafili, Green Chem. Lett. Rev. 9 (2016) 13– 19.
- [94] P. Slobbe, E. Ruijter, R. V. A. Orru, Med. Chem. Commun. 3 (2012) 1189–1218.
- [95] M. Pelay-Gimeno, J. Tulla-Puche, F. Albericio, *Mar. Drugs* **11** (2013) 1693–1717.
- [96] C. de Graaff, E. Ruijter, R. V. A. Orru, *Chem. Soc. Rev.* **41** (2012) 3969–4009.
- [97] R. Lemmens-Gruber, M. R. Kamyar, R. Dornetshuber, *Curr. Med. Chem.* **16** (2009) 1122–1137.
- [98] A. Feng, Y. K.; Lu, J. A.; Behl, M.; Lendlein, *Macromol. Biosci.* **10** (2010) 1008–1020.
- [99] M. C. N. Brauer, R. A. W. Neves, B. Westermann, R. Heinke, L. A. Wessjohann, *Beilstein J. Org. Chem.* **11** (2015) 25–30.
- [100] A. Dos Santos, L. El Kaim, L. Grimaud, C. Ronsseray, Beilstein J. Org. Chem. 7 (2011) 1310–1314.
- [101] H. Yanai, T. Sakiyama, T. Oguchi, T. Taguchi, *Tetrahedron Lett.* **53** (2012) 3161–3164.
- [102] N. Tobisu, M.; Kitajima, A.; Yoshioka, S.; Hyodo, I.; Oshita, M.; Chatani, J. Am. Chem. Soc 129 (2007) 1143–11437.
- [103] S. U. Dighe, S. Srivastava, P. Shukla, S. Singh, M. Dikshit, S. Batra, J. Org. Chem. 80 (2014) 99–108.
- [104] I. Ugi, B. Werner, A. Dömling, *Molecules* 8 (2003) 53-66.
- [105] H. Bienaymé, C. Hulme, G. Oddon, P. Schmitt, *European J. Org. Chem.* 8 (2000) 3321–3329.
- [106] H. R. Divanfard, Z. Lysenko, P. C. Wang, M. M. Joullie, Synth. Commun. 8 (1978) 269–273.
- [107] I. N. Hardy, P. M., Lingham, Int. J. Pept. Protein Res. 21 (1983) 392-405.
- [108] S. R. S. W. Kim, Y. S. Shin, Bioorg. Med. Chem. Lett. 8 (1998) 1665–1668.

Josipa Suć

- [109] A. Ilyin, V. Kysil, M. Krasavin, I. Kurashvili, A. V. Ivachtchenko, J. Org. Chem. 71 (2006) 9544–9547.
- [110] L. El Kaim, M. Gizolme, L. Grimaud, J. Oble, Org. Lett. 8 (2006) 4019–4021.
- [111] K. Rossen, P. J. Pye, L. M. DiMichele, R. P. Volante, P. J. Reider, *Tetrahedron Lett.* 39 (1998) 6823–6826.
- [112] R. Moumne, S. Lavielle, P. Karoyan, J. Org. Chem. 71 (2006) 3332–3334.
- [113] D. Lelais, G. Seebach, Helv. Chim. Acta. 86 (2003) 4152–4168.
- [114] J. Suć, I. Jerić, Springerplus 4 (2015) 507-519.
- [115] K. N. Vijayadas, R. V. Nair, R. L. Gawade, A. S. Kotmale, P. Prabhakaran, R. G. Gonnade, V. G. Puranik, P. R. Rajamohanan, G. J. Sanjayan, *Org. Biomol. Chem.* 11 (2013) 8348–8356.
- [116] A. Jabs, M. S. Weiss, R. Hilgenfeld, J. Mol. Biol. 286 (1999) 291-304.
- [117] S. S. Panda, C. El-Nachef, K. Bajaj, A. R. Katritzky, European J. Org. Chem. 2013 (2013) 4156–4162.
- [118] A. Lauria, A. Montalbano, P. Barraja, G. Dattolo, A. M. Almerico, *Curr. Med. Chem.* 14 (2007) 2136–2160.
- [119] J. Suć, L.-M. Tumir, L. Glavaš-Obrovac, M. Jukić, I. Piantanida, I. Jerić, Org. Biomol. Chem. 14 (2016) 4865–4874.
- [120] M. Tumir, L.-M.; Piantanida, I.; Novak, P.; Žinić, J. Phys. Org. Chem. 15 (2002) 599– 607.
- [121] M. Tumir, L.-M.; Piantanida, I.; Juranović, I.; Meić, Z.; Tomić, S.; Žinić, Chem. Commun. 7 (2005) 2561 – 2563.
- [122] M. Dukši, D. Baretić, V. Čaplar, I. Piantanida, Eur. J. Med. Chem. 45 (2010) 2671– 2676.
- [123] A. Aubry, D. Bayeul, J.-P. Mangeot, J. Vidal, S. Sterin, A. Collet, A. Lecoq, M. Marraud, *Biopolymers* 31 (1991) 793–801.
- [124] F. Andre, A. Vicherat, G. Boussard, A. Aubry, M. Marraud, J. Pept. Res. 50 (1997) 372–381.
- [125] B. Rodger, A.; Norden, in *Biochemistry* (1997) 1–428.
- [126] T. Bousquet, M. Jida, M. Soueidan, R. Deprez-Poulain, F. Agbossou-Niedercorn, L. Pelinski, *Tetrahedron Lett.* 53 (2012) 306–308.
- [127] S. Maeda, S. Komagawa, M. Uchiyama, K. Morokuma, *Angew. Chemie Int. Ed.* **50** (2011) 644–649.

- [128] Y. Zhao, D. G. Truhlar, Acc. Chem. Res. 41 (2008) 157–167.
- [129] M. Puripat, R. Ramozzi, M. Hatanaka, W. Parasuk, V. Parasuk, K. Morokuma, J. Org. Chem. 80 (2015) 6959–6967.
- [130] L. Banfi, R. Riva, A. Basso, Synlett 2010 (2009) 23-41.
- [131] O. E. Vercillo, C. K. Z. Andrade, L. A. Wessjohann, Org. Lett. 10 (2008) 205-208.
- [132] M. Passiniemi, A. M. P. Koskinen, Beilstein J. Org. Chem. 9 (2013) 2641–2659.
- [133] D. H. Rich, E. T. Sun, A. S. Boparai, J. Org. Chem. 43 (1978) 3624–3626.

OSOBNI PODACI:

Ime i prezime:	Josipa Suć
Datum i mjesto rođenja:	10. kolovoza 1985, Zagreb, Hrvatska
e-mail:	josipa.suc@irb.hr

RADNO MJESTO:

2010. - danas: Stručni suradnik, Laboratorij za biomimetičku kemiju, Zavod za organsku kemiju i biokemiju, Institut Ruđer Bošković, Zagreb, Hrvatska.

OBRAZOVANJE

2004 2010.:	Diplomirani inženjer kemije, Sveučilište u Zagrebu, Fakultet kemijskog inženjerstva i tehnologije, Hrvatska.
2000 2004.:	XI. Gimnazija, Zagreb, Hrvatska
1992 2000.:	Osnovna škola Savski Gaj, Zagreb, Hrvatska

STIPENDIJE I PRIZNANJA

- 2016.: Godišnja nagrada Društva sveučilišnih nastavnika i drugih znanstvenika
- 2009.: Priznanje za usmeno izlaganje na Znanstvenoj konferenciji studentskih istraživanja, Sveučilište Panonije, Veszprem, Mađarska; tema: "Fotokemija piridonskih derivata beta-laktama".

ČLANSTVA U DRUŠTVIMA:

Hrvatsko kemijsko društvo

European Peptide Society (EPS)

ZNANSTVENA USAVRŠAVANJA:

2016.:	Stručno usavršavanje u trajanju od mjesec dana u okviru InnoMol projekta na Sveučilištu Duisburg-Essen, Njemačka; priprava peptida s ciljem inhibicije enzima dipeptidil peptidaze III.
2011.:	Stručno usavršavanje u trajanju od dva tjedna u okviru NATO projekta (SFP 983154), Institut Torrey Pines, Port St. Lucie, Florida; ispitivanje smjesa različitih peptida za specifično vezanje na monosaharid antroze.
2008.:	Jednomjesečna studentska praksa u Zavodu za fizičku kemiju, Laboratorij za sintezu i procese samoorganizacije organskih molekula, Institut Ruđer Bošković, Zagreb, Hrvatska.

SUDJELOVANJE U NASTAVI:

2012. - 2013.: Voditelj laboratorijskih vježbi Opće kemije, Preddiplomski studij molekularne biologije, Prirodoslovno-matematički fakultet, Sveučilište u Zagrebu.

KONFERENCIJSKA SUDJELOVANJA:

2015.:	Postersko izlaganje - 40. Ljetna škola organske sinteze "A. Corbella"; Suć, Josipa; Jerić, Ivanka; Tumir, Lidija-Marija; Piantanida, Ivo. HYDRAZINO PEPTIDOMIMETICS FOR NUCLEIC ACIDS BINDING // Book of Abstracts; Gargnano, Italija.
2015.:	Postersko izlaganje - 9. Skup Medicinske kemije; Jerić, Ivanka; Suć, Josipa; Vlahoviček-Kahlina, Kristina; HYDRAZINO-BASED PEPTIDOMIMETICS // <i>e-Book of Abstracts</i> ; Atena, Grčka, 77-77.
2014.:	Usmeno izlaganje – 10. Skup mladih kemijskih inženjera; Suć, Josipa; Jerić, Ivanka; Priprava hidrazino peptidomimetika za vezanje na nukleinske kiseline. Zagreb, Fakultet kemijskog inženjerstva i tehnologije, 48-48.
2012.:	Postersko izlaganje – 32. Europski peptidni kongres; Jakas, Andreja; Cudic, Predrag; Bionda, Nina; Suć, Josipa; Vlahoviček-Kahlina, Kristina; Cudic, Mare. Umjetni receptori peptidnog karaktera za prepoznavanje ugljikohidrata antroze; Moroder, Luis (ur.). Chichester, UK : Wiley, S108-S108.

ZNANSTVENI RADOVI:

Josipa Suć; Lidija-Marija Tumir; Ljubica Glavaš-Obrovac; Marijana Jukić; Ivo Piantanida; Ivanka Jerić. The impact of α -hydrazino acids embedded in short fluorescent peptides on peptide interactions with DNA and RNA. // *Org. Biomol. Chem.* **14** (2016), 4865-4874

Jakas, Andreja; Perc, Milica; Suć, Josipa; Rodriguez, Maria C.; Cudic, Mare; Cudic, Predrag. Synthesis of anthrose lipidic derivative as mimic of B. anthracis BclA glycoprotein for use in ELISA-like binding assays. // *Journal of Carbohydrate Chemistry*. **1** (2016), 1-17

Suć, Josipa; Dokli, Irena; Gredičak, Matija.
Chiral Brønsted Acid-Catalysed Enantioselective Synthesis of Isoindolinone-Derived N(acyl),
S- Acetals. // Chemical communications. 52 (2016), 2071-2074

Suć, Josipa; Jerić, Ivanka. Synthesis of hybrid hydrazino peptides: protected vs unprotected chiral α-hydrazino acids. // *SpringerPlus*. **4** (2015), 507-518

PROJEKTI:

2016 danas:	Suradnik na hrvatsko-austijskom bilateralnom projektu: Proširenje kemijskog prostora novim strukturama glikomimetika.
2016 danas:	Suradnik na hrvatsko-kineskom bilateralnom projektu: Održive metodologije asimetričnih priprava povlaštenih jezgri prirodnih spojeva.
2015 danas:	Stručni suradnik na projektu (IP-2014-09-3102): Višekomponentne reakcije u sintezi peptidnih mimetika.
2010 2012.:	Stručni suradnik na NATO projektu (CBP.EAP.SFP.983154): Umjetni receptori za specifično otkrivanje antroze.