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ABSTRACT

In this thesis, an experimental investigation of charge stripe order in cuprate superconduc-

tors is presented. Several lanthanum-based cuprate compounds are taken as model sys-

tems for studying charge order physics. Multiple experimental techniques are employed:

nuclear magnetic resonance as a local probe, linear and nonlinear conductivity for investi-

gating transport properties and broken symmetries, and specific heat as a thermodynamic

probe. The use of complementary experiments provides an overarching picture of the in-

fluence of disorder on charge stripe formation, their dynamical properties, and relation

with superconductivity. It is found that the charge stripes form through an unconven-

tional precursor charge nematic phase, which only breaks orientational symmetry and is

insensitive to disorder, in agreement with previous theoretical work by other groups. We

find that the stripes themselves do not appear as a well-defined phase, but always re-

main short-range ordered. Furthermore, the charge stripes are strongly pinned to lattice

defects and are virtually static, but induce strong spin fluctuations which are dynami-

cally decoupled from the charge stripes and display glassy freezing. The stripes strongly

influence superconductivity, inducing a decoupling of copper-oxygen planes in cuprates

and ushering in a quasi-two-dimensional superconducting state with ultraslow character-

istic dynamics. Yet this state is unique to the charge-ordered compounds, showing that

cuprate superconductivity in general is not essentially two-dimensional.

Keywords : cuprates, high-temperature superconductivity, charge order, electronic liq-

uid crystal, nuclear magnetic resonance, nonlinear conductivity

v



vi



Contents

1 Introduction 1

1.1 Cuprates as complex materials. . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Charge and spin order in cuprates. . . . . . . . . . . . . . . . . . . . . . . 5

1.3 The influence of disorder, electronic liquid crystals. . . . . . . . . . . . . . 8

2 Experimental Methods and their Interpretation 12

2.1 Nuclear magnetic resonance. . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Theoretical background. . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.2 Fast relaxation measurements. . . . . . . . . . . . . . . . . . . . . . 17

2.2 Linear and nonlinear conductivity. . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.1 Contact-free conductivity measurement. . . . . . . . . . . . . . . . 22

2.2.2 Conductivity and Kosterlitz-Thouless physics. . . . . . . . . . . . . 24

2.2.3 Nonlinear response. . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.4 Detecting nematic fluctuations. . . . . . . . . . . . . . . . . . . . . 29

2.3 Specific heat. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.4 Samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3 Results and discussion 40

3.1 The emergence of charge order. . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Charge and spin stripe dynamics. . . . . . . . . . . . . . . . . . . . . . . . 51

3.3 Striped superconductivity. . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4 Conclusions and Outlook 80

5 Nabojne pruge u kupratima 82

5.1 Uvod. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2 Eksperimentalne metode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

vii



5.3 Rezultati i diskusija. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.4 Zaključci. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

A Cu NMR frequencies 90

B The nematic susceptibility 92

C The specific heat probe 94

D Stripe pinning 96

E The Davidson-Cole distribution 98

viii



List of Figures

1.1 The crystal structure of cuprates. . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Schematic phase diagram of hole-doped cuprates. . . . . . . . . . . . . . . 4

1.3 Electronic liquid crystals. . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1 Nuclear spin levels of 63Cu. . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Shematic representation of the NMR experimental setup. . . . . . . . . . . 18

2.3 The nuclear spin echo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Lump element transmission line. . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5 Schematic representation of the nonlinear conductivity measurement setup. 28

2.6 Fermi surface deformations. . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.7 Setup for specific heat measurements. . . . . . . . . . . . . . . . . . . . . . 38

3.1 The LTT structural transition. . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 The NMR spectrum of LESCO. . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 Spin-spin relaxation of LESCO. . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4 Copper NQR and NMR signal wipeout in LESCO. . . . . . . . . . . . . . 45

3.5 LESCO specific heat. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.6 Linear and nonlinear conductivity of LESCO. . . . . . . . . . . . . . . . . 47

3.7 The charge nematic phase in LESCO. . . . . . . . . . . . . . . . . . . . . . 48

3.8 The evolution of charge stripes. . . . . . . . . . . . . . . . . . . . . . . . . 49

3.9 Critical behaviour of the nematic susceptibility. . . . . . . . . . . . . . . . 50

3.10 The copper NQR spectrum of LBCO-1/8. . . . . . . . . . . . . . . . . . . 53

3.11 Charge stripe order parameter in LBCO. . . . . . . . . . . . . . . . . . . . 55

3.12 Electric field dependence of the LESCO nonlinear conductivity. . . . . . . 56

3.13 The classical washboard model of charge stripe pinning. . . . . . . . . . . . 57

3.14 Copper spin-spin relaxation in LBCO-1/8. . . . . . . . . . . . . . . . . . . 61

3.15 Cu spin-spin relaxation times in dependence on external magnetic field. . 62

ix



3.16 Cu spin-lattice relaxation in LBCO-1/8. . . . . . . . . . . . . . . . . . . . 64

3.17 Frequency-dependent conductivity of LBCO-1/8. . . . . . . . . . . . . . . 69

3.18 LBCO conductivity nonlinearities. . . . . . . . . . . . . . . . . . . . . . . . 73

3.19 Superconductivity of LESCO. . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.20 Two-dimensional superconductivity in LESCO-1/8. . . . . . . . . . . . . . 76

3.21 Effect of the LTT shift on superconductivity. . . . . . . . . . . . . . . . . . 78

C.1 The 1K pot probe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

x



"There are some enterprises in which a careful disorderliness is the true method."

– H. Melville

xi



xii



Chapter 1

Introduction

Understanding high-temperature superconductors is one of the most important endeav-

ours in solid state physics. Yet in the three decades since the discovery of the first cuprate

superconductor [1], it has become clear that these materials are extremely complex [2]. To

understand their main features, it may be necessary to broaden or abandon many concepts

evolved for describing materials during the last century. There are several reasons for this

complexity, but arguably the three most important are reduced dimensionality, strong

electronic correlations, and disorder. All known high-temperature superconductors are

lamellar materials, consisting of electrically conducting atomic planes separated by ionic

layers; this leads to a strong anisotropy of all material properties, and in some aspects

it is possible to treat these compounds as quasi-two-dimensional. An essential ingredi-

ent of high-temperature superconductors are transition metals (such as copper or iron);

their atomic orbitals cause strong on-site Coulomb interactions, leading to short-range

electronic correlations superimposed on the usual long-range correlations characterizing

a Fermi liquid. Finally, to obtain superconductivity, the materials must be doped: ad-

ditional electrons or holes must be introduced into the respective parent compounds,

usually by modifying their stoichiometry. This inevitably makes the materials disordered;

yet even without the doping, the structures of major high-𝑇𝑐 compounds are intrinsically

prone to local deformation and structural disorder [3]. The interplay between effective

two-dimensionality, strong correlations, and disorder gives rise to interesting new physics

and very rich phase diagrams. It also makes formulating an all-encompassing theory

of high-temperature superconductors extremely challenging. But most importantly, it

demands the use of many complementary experimental techniques to gain a complete pic-

ture. It is fair to say that the complexity of high-𝑇𝑐 materials has been a major driver of
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both experimental and theoretical methods in solid state physics, and significant progress

in understanding the materials has been made. Yet several crucial issues remain con-

troversial. It is the intent of this thesis to investigate the interplay between disorder,

dimensionality and electronic ordering tendencies using several innovative experimental

approaches, in order to provide answers to some of the most debated questions and further

our understanding of these fascinating compounds.

1.1 Cuprates as complex materials.

Several families of high-temperature superconductors have been discovered to date, but

cuprates remain the most prominent, and will be the subject of our investigations. They

are compounds based on copper and oxygen, and have a common structural element:

the CuO2 plane, a rectangular array of Cu and O atoms with the oxygens serving as

bridges between the coppers (Fig. 1.1). To obtain a cuprate crystal, ionic layers are

inserted between stacked CuO2 planes. Different cuprate families have different ionic lay-

ers, and are doped in different ways. Crystallographically, cuprates belong to the large

perovskite family, and their structures are close to tetragonal symmetry. However, as

in other prominent perovskites such as the ferroelectric BaTiO3, the tetragonal symme-

try is readily broken (locally or globally) due to the intrinsic symmetry of transition

metal atomic 𝑑-orbitals and bond mismatch between the CuO2 and ionic layers. The

instability of the tetragonal structure leads to a series of structural transitions in some

cuprate families, and to local symmetry breaking in others. In all cuprates, the Cu-O

bonds in the planes are buckled for the same reason. To obtain superconductivity (and

other electronically ordered phases) one must introduce charge carriers into the insulat-

ing parent compounds. This is usually done by modifying the ionic layers between the

CuO2 planes, either by substitutional or by interstitial stoichiometry changes. The first

cuprate family to be discovered, lanthanum cuprates, has the parent compound La2CuO4

(also referred to as La-214), and can be doped by substituting some of the trivalent lan-

thanum by divalent ions such as strontium or barium. Thus is formed one of the most

extensively investigated cuprate systems, La2−𝑥Sr𝑥CuO4 (LSCO), where 𝑥 denotes the

fraction of substituted lanthanum, and the closely related La2−𝑥Ba𝑥CuO4 (LBCO). Other

well-known cuprates include YBa2Cu3O6+𝑦 (YBCO or Y-123), HgBa2CuO4+𝑦 (Hg-1201),

Tl2Ba2CuO6+𝑦 (Tl2201) and Bi2Sr2CaCu2O8+𝑦 (BSCCO), which are all doped by adding

2



Figure 1.1: The crystal structure of cuprates.

Extended unit cells of four representative cuprate families are shown: mercury-

based (Hg1201), lanthanum-based (LSCO), yttrium-based (YBCO) and thallium-based

(Tl2201). All families contain the common CuO2 plane structure, shown schematically

with oxygen 𝑝 and copper 𝑑 orbitals, and differ in the ionic layers separating the CuO2

planes. Adapted from [4].

interstitial oxygen atoms. Importantly, the cuprates appear not to be doped like semicon-

ductors – where the dopands form an alloy with the parent compound, and the local states

delocalize into impurity bands – but through an electrostatic influence of the dopands on

the CuO2 planes [5, 6]. Determination of the effective number of carriers in the planes is

thus often difficult, especially in the oxygen-doped compounds [7].

It is not always possible to synthesize undoped parent compounds, but the known

ones – including La2CuO4 and YBa2Cu3O6 – are antiferromagnetic insulators [8]. This

relatively well understood electronic ordering is the basis for all further discussions below.

While there are significant differences between the cuprate families, some features of their

phase diagrams appear to be universal. A recent schematic phase diagram of hole-doped

cuprates is shown in Fig. 1.2, but it must be noted that several elements of the diagram

are still disputed. Yet a rough picture can be formed, as follows.

The undoped compounds have one hole per unit cell, and would then have half-filled

3



Figure 1.2: Schematic phase diagram of hole-doped cuprates.

Upon doping the antiferromagnetic (AF) parent compounds, a spin glass/spin stripe phase

(SDW) emerges at low temperatures, and the pseudogap appears below a temperature 𝑇 *.

Superconductivity (d-SC) and charge order (C and CDW) arise within the pseudogap.

The ’strange metal’ region can be explained with a temperature-dependent carrier con-

centration [9,10]. Tentative critical doping concentrations are marked. Adapted from [2].

bands in a simple band theory. Yet they become antiferromagnetic insulators due to

electronic correlations. Such behaviour is well understood within the simplest model

which includes a large charge transfer energy barrier between copper and oxygen orbitals,

the effective one-band Hubbard model (leading to the Heisenberg spin Hamiltonian) [8,

11–14]. The electrostatic repulsion causes localization of the one hole per unit cell, and

antiferromagnetic (AFM) order at lower temperatures. The AFM phase itself is rather

conventional, with the ordered spins residing on copper sites and with a single well-defined

effective coupling between them [8] up to small corrections [14, 15]. Doping the parent

compounds quickly destroys long-range AFM order, replacing it with a spin-glass-like state

[8,16–18]. Superconductivity emerges from that state at around 0.06 additional holes per

unit cell [2,19] (or 6% doping). As the compounds are doped further, the superconducting
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critical temperature 𝑇𝑐 increases, reaches a maximum (at an ’optimal doping’ of ∼ 0.16)

and decreases towards zero on the overdoped side, at doping ∼ 0.26. Concomitantly,

the normal state of the mobile holes becomes a conventional umklapp Fermi liquid [4],

with a large Fermi surface on the highly overdoped side [21,22]. Although the maximum

𝑇𝑐 varies heavily between cuprate families, the characteristic doping concentrations for

superconductivity are nearly universal. Another universal and very controversial feature

is the pseugogap state in the underdoped region of the phase diagram. Its true nature

and origin are still unclear, as well as its role in the formation of superconductivity [20].

Yet it seems likely that it is a remnant of the strongly correlated antiferromagnetic phase

of the parent compounds, involving the one localized hole per unit cell [9,23–25]. Within

the pseudogap state, different electronically ordered phases appear, including charge and

spin density modulations [2]. Cuprates are thus truly complex materials, with several

intertwined electronic ordering tendencies. Charge order is of special importance, since

it has recently been shown to be universal in the cuprates as well [26–33, 37]; several

theoretical proposals relate it to the pseudogap [38–40], and even to the superconductivity

itself [38, 39, 41, 42]. Resolving the role of charge order in the cuprate phenomenology is

the primary goal of this thesis, so we must first discuss what is known (and predicted)

about it from previous work.

1.2 Charge and spin order in cuprates.

Spontaneous charge modulations appear in a wide range of compounds, being first pre-

dicted in quasi-one-dimensional systems [43, 44]. This classic Peierls instability occurs

as a way to minimize the net energy of the system by trading elastic for electronic en-

ergy. In quasi-two-dimensional materials such as the cuprates, the charge modulations

take the form of density waves in the CuO2 planes, but their origin is extensively de-

bated and apparently more complex than the basic Peierls picture. Relatively soon

after the discovery of cuprate superconductors, it was hypothesized that charge (and

spin) modulations should exist in these materials [45], as a way to minimize the en-

ergy associated with strong antiferromagnetic correlations away from zero doping. In

this simple picture, the stripes were imagined as ’rivers’ of charge, separated by insu-

lating AFM strips. The first experimental detection of charge stripes in a cuprate, the

neodymium co-doped La2−𝑥−𝑦Nd𝑦Sr𝑥CuO4, was taken as a confirmation of this phase-
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separation idea [46]. Yet subsequent work, and the refinement of experimental techniques

such as resonant X-ray scattering, showed that the charge modulations are relatively

weak in cuprates [29, 33, 37, 47, 48]. Thus the phase-separation scenario had to be modi-

fied significantly, and it is now understood that charge (and spin) order is nowhere near

as drastic as envisaged in the early work. Yet it remains true that charge stripes induce

strong spin fluctuations and glassy spin stripe ordering [49–51], an important aspect of

cuprate electronic physics.

Since the basic phase separation scenario is not appropriate, the microscopic mech-

anism responsible for charge stripes in cuprates is still under scrutiny. Theoretical pro-

posals range from a Fermi surface nesting scenario [52, 53] and Fermi surface instabil-

ities [54] to various local ionic mechanisms [90, 91] and metallic stripes as instabilities

of the doped Hubbard model [2, 55, 56]. The situation is further complicated in much-

studied compounds such as YBCO, where two distinct types of charge density waves

appear: zero-field [30,31,57] and magnetic field-induced [26] density waves. The Fermi sur-

face reconstruction seen universally in quantum oscillation experiments at high magnetic

fields [52, 58] indicates that nesting may indeed play a role, but other scenarios for field-

induced charge order such as magnetic breakdown have been proposed [59]. It remains

unclear if and how the field-induced and zero-field charge stripes are related [57], and what

the formation mechanisms are. Furthermore, biaxial charge modulations, known as che-

querboard order, have been found in nominally tetragonal materials such as BSCCO [35].

Their relationship to uniaxial stripes in other materials remains unclear, although it seems

plausible that the physical origin is similar. Notably, the wave-vectors of charge order in

lanthanum-based cuprates [28, 29] have a different doping trend than those in oxygen-

doped systems such as Hg1201 [34] and YBCO [32], which might indicate a different

physical origin [29]. Yet transport properties such as Nernst effect [36] are remarkably

similar; we will show that local amplitudes of the charge modulations are broadly similar

as well, and the associated spin dynamics is qualitatively the same. It is therefore plau-

sible that charge modulations in cuprates have a common origin, but different properties

due to different levels of point (dopand) disorder and proximity to antiferromagnetism.

Due to relatively small amplitudes and short correlation lengths, charge order in

cuprates is difficult to detect. Its presence has only recently been established in the most

prominent families, primarily by X-ray diffraction: LBCO [37, 60] and LSCO [61, 62],

YBCO [26, 27, 30, 31, 57], Hg1201 [33, 34]. Although charge stripes were first found by
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neutron scattering in neodymium co-doped LSCO, there were early indications for their

presence in other materials from local probes such as nuclear magnetic resonance (NMR),

chiefly in lanthanum cuprates [63–65]. More specifically, a decrease of the copper magnetic

resonance signal intensity – called the wipeout effect – occurs when charge stripes appear

in the material [47, 63–66]. Yet since the discovery of wipeout, its nature and relation to

charge stripes has been controversial [65, 67]. One of our objectives in this thesis is to

clarify the origin of the wipeout effect, enabling insights into the microscopic behaviour

of charge stripes in representative cuprates.

Perhaps the most important question in relation to charge order is its relationship

with other electronic phenomena in cuprates – pseudogap and superconductivity. Surface

sensitive experiments such as scanning tunnelling microscopy (STM) and spectroscopy

show evidence of local spatial symmetry breaking in the temperature range of pseudogap

appearance, which may be interpreted as a nascent charge stripe state [69]. Furthermore,

some neutron scattering [70] and resistivity [71] studies have obtained evidence of in-

creased anisotropy within the CuO2 planes of cuprates such as YBCO, a sign of possible

tetragonal symmetry breaking as a precursor to charge stripes. Yet other experiments,

such as magnetometry [72–74], polar Kerr effect [75, 76] and polarized neutron scatter-

ing [77–79], detect an unconventional magnetism in a similar temperature range, which

is more difficult to reconcile with a stripe scenario. The ubiquitous presence of disorder

complicates the physics of stripes (and pseudogap) considerably [70, 98–100, 105], and it

is thus crucial to resolve the effects of disorder to understand the relation between stripes

and pseudogap. We will discuss this point in more detail below.

Notably, the signature of charge stripe correlations and superconducting fluctuations

are similar in probes such as Nernst effect and 𝑐-axis optical conductivity [80]; the ap-

parent finding of a wide superconducting fluctuation temperature range through Nernst

effect measurements [81, 82] was subsequently shown to be caused by a stripe-related

signal [36, 83]. However, on the underdoped side of the cuprate phase diagram, charge

stripes and superconductivity do coexist in a significant doping range. Since the finding

of charge stripes in lanthanum-based cuprates, it was clear that there is a strong inter-

action between the charge order and superconductivity [18, 84–86]. All cuprates display

the so-called ’1/8-anomaly’, a decrease of the bulk superconducting 𝑇𝑐 close to doping

1/8; this is the doping concentration where charge stripes are most stable (Fig. 1.2).

X-ray scattering experiments show that the stripe order parameter decreases below 𝑇𝑐
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in YBCO [31], also indicating competition between the two ordering tendencies. On the

other hand, a state with cooperating stripes and superconductivity (leading to a spatially

modulated superconducting phase, or phase density wave) has been suggested [39,87–89],

motivated by the dramatic behaviour of LBCO-1/8 [85, 86]. This compound contains

an enviable collection of cascading ordered phases, including structural, charge and spin

stripe, and superconducting transitions [86]. Most importantly, it appears that the su-

perconductivity of LBCO-1/8 is truly two-dimensional in a wide temperature range from

∼ 35 K down to the bulk 𝑇𝑐 ∼ 4 K [85, 86]. This is unique among cuprates, and to ex-

plain the almost complete CuO2 plane decoupling, superconducting phase density waves

(PDW) were proposed [89]. If the PDWs are stacked in a particular way, the effective

Josephson coupling between CuO2 planes can be almost eliminated, leading to a stripe-

induced two-dimensionality and Kosterlitz-Thouless physics [85,88]. Some aspects of this

scenario have been observed in LBCO-1/8 through transport and scattering experiments,

but it remains questionable if the model is relevant for the material. Furthermore, other

cuprates with prominent charge stripes could display similar effects; a promising exam-

ple is the co-doped compound La2−𝑥−𝑦Eu𝑦Sr𝑥CuO4 (LESCO). In this work, LBCO and

LESCO will be taken as model cuprates for the investigation of charge stripe physics and

striped superconductivity. Contrasting them with other compounds will provide insight

into the properties of cuprate superconductivity in general.

1.3 The influence of disorder, electronic liquid crystals.

We have seen that the multiple electronic ordering tendencies in the cuprates provide a

rich phase diagram and unconventional physics. The presence of disorder further compli-

cates the understanding of these materials, and will be shown to be important for many

of their properties. As noted above, to introduce charge carriers into the insulating CuO2

planes, chemical doping must be used, introducing a large concentration of point defects

into the crystal. Depending on the dopands, the disorder may be quenched – as in the

case of Sr substitutional doping – or partially or fully annealed – as for oxygen interstitial

doping. Sr dopands are immobile, resulting in a highly homogeneous spatial distribution

of point defects, while oxygen mobility in cuprates is quite high and causes specific ionic

ordering, further complicating the material properties. Furthermore, the tetragonal per-

ovskite structure of cuprates is intrinsically unstable towards different symmetry-breaking
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deformations due to the orbital makeup of Cu atoms [3, 6, 90, 91]. Structural disorder is

thus to some degree inevitable in cuprates, regardless of the refinement of synthesis pro-

cedures. A crucial unresolved question is, however, whether disorder is relevant for the

various electronic phenomena, or can be disregarded or treated in some effective manner.

Models of cuprate band structure neglect disorder completely, making the conventional

assumption of translational invariance and enabling a transition to reciprocal 𝑘-space in

describing electronic properties. This assumption is rarely questioned, and used to inter-

pret a large body of experimental results – from angle-resolved photoelectron spectroscopy

to nuclear magnetic resonance and optical properties [91,92]. However, experiments such

as hydrostatic and conductivity relaxation [93,94], nuclear quadrupole resonance [95,96],

and (most notably) STM [68,97–100] have consistently shown that disorder exists in the

cuprates on the nanoscale. Recently it has become clear that underlying disorder also has

a profound influence on normal-state conductivity and superconducting fluctuations [101],

and some theories argue that heterogeneity is essential for both pseudogap and supercon-

ducting pairing [90, 102–104]. Yet the most drastic effects of disorder are on charge and

spin stripes. In clean systems the charge stripes are a thermodynamically well-defined or-

dered phase, appearing through a true phase transition. However, it has been long known

theoretically that even low levels of point defects destroy long-range charge stripe order

and make it glassy [40, 105–108]. In other words, disorder is a relevant perturbation for

charge stripes in the renormalization group sense [109]. Interestingly, vestiges of charge

stripe order survive even in moderately disordered systems, but these phases do not break

translational symmetry [40, 105, 106]. They have therefore been called ’electronic liquid

crystals’ [105], since they are different from an ordinary electronic Fermi liquid. Some

of them break only rotational symmetry and are referred to as charge nematics, due to

the analogy with nematic liquid crystals formed by rod-like molecules. The molecular

liquid – electron analogy can be extended further (Fig. 1.3): a liquid phase with broken

translational and rotational symmetry is called a smectic, and corresponds to the charge

stripes.

Physically, the sensitivity of two-dimensional charge stripes to disorder originates from

the almost vanishing energy costs of defects in the stripe structure [107,159]. The stripes

can curl around point defects with virtually no energy penalties, destroying long-range

order [40, 105]. Thus the transition into the stripe-ordered state is not a true phase

transition, but should be regarded as a crossover. Signatures of such glassy stripes are
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liquid nematic smectic

Figure 1.3: Electronic liquid crystals.

Charge ordered phases (above) have their analogies in classical liquids with rod-like

molecules (below): a featureless Fermi liquid is analogous to a simple molecular liquid,

charge and molecular nematics break orientational symmetry, while smectics break both

orientational and translational symmetry in one direction.

consistently observed in local experiments such as nuclear magnetic resonance [50, 65,

66, 110, 111]. Yet recent calculations show that the charge nematic phase is robust with

respect to disorder (due to its lower symmetry), and should survive as a well-defined

phase [40,108]. Some experiments, such as neutron scattering [70], STM [69], and YBCO

resistivity anisotropy [71], indicate that orientational symmetry is broken in the pseudogap

region, leading to the idea that the charge nematic is the hidden order responsible for the

pseudogap [40]. Testing this claim will be one of our objectives in this thesis.

Experimentally it is very difficult to study electronic liquid crystals in the cuprates,

mainly due to the fact that they do not break translational symmetry. Most scattering

methods are then useless, and one must resort to local probes and techniques sensitive to

higher-order charge correlations. Precedents for such investigations exist in other strongly

correlated materials: in pnictide superconductors, Raman scattering [112,113] and nuclear

magnetic/quadrupole resonance [114] was used to detect nematic fluctuations, and in

the hidden order system URu2Si2 nonlinear magnetic susceptibility provided insight into

unconventional spin ordering [115]. Yet in cuprates the appearance and dynamics of
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different kinds of charge order remains mostly unexplored experimentally.

We will show here that a well-chosen combination of experimental methods can provide

a complete picture of the formation and dynamics of charge stripes in the cuprates, and

give novel insight into the interaction between stripes and superconductivity. This will add

important pieces to the cuprate phenomenology, enable a comparison to other materials

and contemporary theoretical ideas outlined above, and provide answers to some long-

standing questions.

The thesis is organized as follows: in Chapter 2, we discuss the experimental techniques

used to study charge order in cuprates, their theoretical foundations and what information

can be gained; Chapter 3 presents the results of the studies and discussion of their physical

implications, while Chapter 4 is a summary.
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Chapter 2

Experimental Methods and their

Interpretation

The most important aspect of the work presented here is the use of multiple exper-

imental techniques, including several innovations, to obtain in-depth information about

the intertwining electronic orders in representative cuprates. In the Introduction, we have

discussed in broad strokes the experimental difficulties for studying unconventional charge

order; here we will describe in some detail the experimental methods used to surmount

these difficulties. Four distinct techniques have been chosen to give an all-encompassing

physical picture: a local probe – nuclear magnetic (and quadrupolar) resonance; a bulk

thermodynamic probe – differential microcalorimetry; and two transport probes – linear

and nonlinear conductivity. To make some of these measurements possible, custom-made

experimental probes were constructed; the nonlinear conductivity method was newly de-

veloped [116], and innovations were introduced to the other, more conventional exper-

imental techniques in order to make measurements which were previously unavailable.

High-quality single crystals, characterized in detail in previous work, were used for all in-

vestigations. This is of particular importance since it is known that NMR signal wipeout is

different in powder and single crystal samples [65,66]. Unconventional superconductivity

and symmetry breaking related to charge order can only be studied in single crystals as

well, because of the well-defined crystallographic directions and absence of grain bound-

aries in crystals. The use of state-of-the-art high-quality samples ensures that our results

and conclusions pertain to intrinsic effects, and not irregularities introduced by imperfect

sample preparation.
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2.1 Nuclear magnetic resonance.

2.1.1 Theoretical background.

Nuclear magnetic resonance (NMR), and the closely related nuclear quadrupole resonance

(NQR), are spectroscopic techniques which use the transitions between quantum levels of

nuclear spins to investigate the local magnetic and electric fields seen by the nuclei [117].

This makes NMR and NQR powerful local probes, providing microscopic information

about static and dynamic fields in the material. The energy differences between nuclear

spin levels are typically of the order of 107 Hz, which places NMR and NQR in the MHz

frequency range and enables highly sensitive coherent detection. Before describing the

NMR experiment in more detail, we will first discuss the scope and possibilities of the

technique in a somewhat formal manner.

The basic Hamiltonian of a nuclear spin in an external magnetic field H0 is [117]

ℋ𝑛0 = −𝛾~
∑︁
𝛼

𝐻0𝛼𝐼𝛼 (2.1)

where 𝛾 is the nuclear gyromagnetic ratio, and 𝐼𝛼 the components of the nuclear spin.

However, in a material the local magnetic field is modified by coupling to electrons. Also,

a quadrupolar term appears in the Hamiltonian due to the interaction between the local

electric field and nuclear quadrupole moment. The full Hamiltonian is then

ℋ𝑛 = ℋ𝑛0 + ℋ𝑛−𝑒𝑙 + ℋ𝑄, (2.2)

where ℋ𝑛−𝑒𝑙 is the nuclear-electron interaction contribution and ℋ𝑄 the quadrupolar

contribution. We first consider the nuclear-electron term, which has important static and

dynamic aspects in the experiment. ℋ𝑛−𝑒𝑙 can be derived [118] by considering the coupling

between electrons and an average nuclear magnetizationM𝑛 = 𝛾~ ⟨I⟩. In reciprocal space,

the coupling then becomes

ℋ𝑛−𝑒𝑙 =
∑︁
q

∑︁
𝛼,𝛽

𝐴𝛼,𝛽(q)𝐼𝛼 ⟨𝑚̂𝛽(q)⟩ (2.3)

where 𝐴𝛼,𝛽 is a 𝑞-dependent form-factor and 𝑚̂ the electron magnetization operator.

The induced electronic magnetization is simply ⟨𝑚̂𝛽(q)⟩ =
∑︀

𝜅 𝜒𝜅,𝛽𝐻0𝜅(q), with 𝜒𝜅,𝛽 the

magnetic susceptibility tensor. Of course, this simple form is only valid in the linear

response approximation, but it is universally used in NMR and we are not aware of any

significant exceptions. Clearly the nuclear-electron coupling term effectively modifies the
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field H0 at the nuclear site; if we assume for simplicity that the form factor 𝐴𝛼,𝛽 is

diagonal, the effective field can be written as

𝐻𝛼,𝑒𝑓𝑓 =

(︂
1 +

𝐴𝛼𝛼

𝛾~
𝜒𝛼𝛼

)︂
𝐻0𝛼 = (1 + 𝐾𝛼𝛼)𝐻0𝛼 (2.4)

where we have denoted the dimensionless field change 𝐾𝛼𝛼, conventionally called the

Knight shift [92, 117]. It is straightforward to generalize the expression for nondiagonal

𝐾. Clearly the Knight term shifts the NMR resonance frequencies in proportion to the

electronic susceptibility. Notably, if the electronic system displays static magnetic order-

ing, the Knight shift description becomes invalid due to the presence of strong intrinsic

magnetic fields, making possible a detection of ’zero-field’ NMR signals. Measuring the

NMR line shift gives a microscopic measure of the static susceptibility and complements

macroscopic susceptibility measurements (especially in that it is insensitive to magnetic

impurities, being a true bulk probe). Yet in the lanthanum-based cuprates we investigate

here, the Knight shift is of limited experimental merit due to the large widths of the NMR

lines, which make the determination of the shift difficult – this is not generally the case in

cuprates, especially oxygen-doped systems where point electrostatic disorder is relatively

small. The dynamic aspects of the nuclear-electron coupling are much more important

for us, as follows.

Along with shifting the resonance lines, the nuclear-electron interaction can induce

transitions between nuclear levels. The energy is then transferred from the nuclear spin

system, which relaxes into lower states, to the lattice (or in this case, the electron system,

which is then thermalized with phonons). The corresponding relaxation time – termed

spin-lattice relaxation – can be obtained from the coupling Hamiltonian using Fermi’s

golden rule and employing equilibrium Fermi-Dirac statistics for the electrons. The result

is
1

𝑇1

=
2𝜋

~2
∑︁
q

|𝐴(q)|2 𝑆+−(q, 𝜔) (2.5)

expressed through the dynamic structure factor 𝑆+−, with 𝜔 being the NMR resonance

frequency. The structure factor is defined as the Fourier transform of the electronic two-

point magnetization correlation function, 2𝜋𝑆𝛼𝛽(q, 𝜔) =
∫︀∞
−∞ 𝑑𝑡𝑒𝑖𝜔𝑡 ⟨𝑚̂𝛼(q, 𝑡)𝑚̂𝛽(−q, 0)⟩.

The fluctuation-dissipation theorem connects this correlation function to the imaginary

part of the magnetic susceptibility, giving a relation between spin-lattice relaxation and

susceptibility of the form

1

𝑇1

=
2𝑘𝐵𝑇

𝜔

∑︁
q

|𝐴(q)|2ℑ (𝜒+−(q, 𝜔)) (2.6)
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where 𝑘𝐵 is Boltzmann’s constant and 𝑇 the temperature. Thus measuring 𝑇1 provides

a way of determining the imaginary part of the susceptibility at the NMR frequency,

giving important information about low-frequency spin dynamics in the material. The

susceptibility can be independently measured e.g. by inelastic neutron scattering, and

in many cases agrees with the NMR results [92]. However, we shall see that there are

important differences when slow spin fluctuations appear in relation to charge stripes.

The spin-lattice relaxation time 𝑇1 measures the rate of energy exchange between the

spin system and other components – in the above-discussed case, conduction electrons.

Yet if the spin system is excited in a coherent manner, an additional relaxation time

appears: the spin-spin relaxation time 𝑇2, which measures the rate of spin decoherence

(without energy transfer). Physically, decoherence of the spin ensemble occurs because

each nuclear spin experiences a slightly different local field, either due to slow fluctuations

or static effects. The theory of 𝑇2 is in principle much more complex than that of 𝑇1, but

two limiting cases deserve attention for their usefulness. In the static limit, mutual nuclear

spin-flip processes are neglected, and the nuclear spin interaction that causes decoherence

is only transferred through the electronic spins [119, 120]. It can be shown that in that

case the spin-spin decay curve has a Gaussian shape, ⟨𝐼+,−⟩ (𝑡) ∼ exp(−𝑡2/2𝑇 2
2𝐺), with 𝑇2𝐺

the corresponding relaxation time. 1/𝑇2𝐺 is proportional the real part of the electronic

susceptibility [92, 119], providing another way of determining this important quantity

microscopically. In the opposite, dynamic limit, mutual spin flips dominate and the

relaxation is purely exponential, ⟨𝐼+,−⟩ (𝑡) ∼ exp(−𝑡/𝑇2𝐸); this case can be realized for

certain configurations of the external (or internal) magnetic fields in anisotropic systems

[119]. Both regimes are relevant for copper magnetic resonance in cuprates, and the

transition from static to dynamic spin decoherence will be a sign of the appearance of

strong spin fluctuations on the NMR timescale.

The intensity of the nuclear resonance signal is proportional to the number of inves-

tigated nuclei in the sample, and the equilibrium population differences between nuclear

levels. In a vast majority of cases, the spin system is well described by classical Maxwell-

Boltzmann thermodynamics, implying that the population differences depend on temper-

ature as 1/𝑘𝐵𝑇 . Thus the signal decreases at higher temperatures, and if one is interested

in the number of nuclei contributing to it, the thermal Boltzmann factor must be com-

pensated for. Importantly, spin-spin and spin-lattice relaxation times can also influence

the apparent signal intensity: as we will discuss in more detail below, the NMR excitation
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and detection takes some time; if relaxation occurs on a similar timescale, the signal will

decrease. This is the cause of the well-known wipeout effect – a Cu NMR/NQR signal

decrease related to charge and spin stripe order in cuprates [63–67, 110]. By performing

measurements faster than was possible in previous work, we will be able to avoid wipeout

to a large extent in some compounds, resolving its spin-fluctuation origin.

The last contribution to the nuclear Hamiltonian, the quadrupolar term, is of special

interest in cuprates with charge order [26, 27, 47, 57, 117]. Its origin is the interaction

of local electric field gradients with the nuclear electric quadrupole moment, thus giving

the possibility of measuring local electric fields. Generally, the quadrupolar term can

only appear if the nucleus under investigation has spin higher than 1/2, since spin-1/2

nuclei are spherically symmetric and have zero quadrupole moment [117]. We will only

consider the case of spin-3/2 nuclei (relevant for Cu NMR and NQR), and assume that

the local electric field gradients have approximate cylindrical symmetry (corresponding to

a tetragonal crystal structure, with two equivalent directions in the CuO2 planes). The

Hamiltonian then reads [117]

ℋ𝑄 =
∑︁
𝛼

1

9

𝑒𝑄𝑉𝛼𝛼

2

(︂
3𝐼2𝛼 − 15

4

)︂
(2.7)

where 𝑒 is the elementary charge, 𝑄 the nuclear quadrupole moment, and 𝑉𝛼𝛼 the second

derivatives of the electric potential at the nuclear site. Depending on the size of 𝑄 and

applied external magnetic field 𝐻0, the quadrupolar term can be a small perturbation

within the NMR Hamiltonian, become comparable to the magnetic term, or dominate all

other terms. If the external magnetic field is strictly zero (and there are no permanent

internal magnetic fields), ℋ𝑄 remains as the only contribution to the nuclear spin Hamil-

tonian: this case is referred to as pure nuclear quadrupole resonance (NQR). Since 𝑄 for

different nuclei is known with precision, a measurement of the pure NQR spectrum gives

direct information on the size of local static electric field gradients, in analogy with the

Knight shift for the magnetic case. This is very valuable if charge modulations are present.

To investigate spin fluctuations, it will prove advantageous to apply external magnetic

fields in cuprates with stripe order – in the full Hamiltonian (A.1), the quadrupolar term

cannot be treated as a perturbation in that case, since it is comparable to the magnetic

contribution. A numerical diagonalization of the full Hamiltonian [121] is then necessary

to determine the resonant frequencies (Fig. 2.1).

To summarize, nuclear magnetic resonance is a versatile and powerful method for

obtaining information about local fields in materials: we will use it mainly to determine
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Figure 2.1: Nuclear spin levels of 63Cu.

Nuclear transition frequencies for a 63Cu nucleus with comparable magnetic and

quadrupolar contributions to the Hamiltonian are shown in dependence on the applied

magnetic field (which is perpendicular to the symmetry axis of the electric field gradient

tensor). The transitions are obtained by numerical diagonalization of the nuclear Hamil-

tonian, eq. (A.1) – see Appendix A for details. The arrow marks the pure NQR frequency.

Dotted lines have small intensity (i.e. they are nominally ’forbidden’ transitions).

the spin dynamics (through relaxation time measurements) and investigate charge order

(through NQR spectroscopy and signal wipeout).

2.1.2 Fast relaxation measurements.

Having shown what physical information can be gained from NMR/NQR, we proceed

to describe the experiment itself, with focus on innovations that have made fast relax-

ation rate measurements possible. As mentioned above, NMR is a radio-frequency (RF)

spectroscopic technique, enabling coherent excitation and detection of the nuclear spin

transitions. In practice, this means that the sample is put in a coil which is part of an

LC resonant circuit. The circuit serves as an antenna for both excitation and detection.

Pulsed NMR spectroscopy is used exclusively, due to its many advantages in measurement

possibilities and signal processing [122]. Within that method, microsecond RF pulses are

used to excite the nuclear spin system out of equilibrium. The nuclear magnetization

is then refocused and detected using spin echoes, as discussed below. A coherent NMR

spectrometer generates the excitation pulses, which pass through a high-power pulse am-
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Figure 2.2: Shematic representation of the NMR experimental setup.

A simplified block diagram of the NMR/NQR experiment, with a coherent spectrometer

serving as both a pulse generator and signal detector, a power amplifier increasing the

excitation pulse amplitude, a passive transcoupler serving as a switch to isolate the sen-

sitive signal preamplifier from the strong RF pulses, and a NMR probe inside a variable

temperature inset (VTI) for sample temperature regulation. Signal and excitation pulses

are denoted by different lines, but in reality the same coaxial transmission line is used.

plifier and passive coupler before reaching the LC circuit and sample. The NMR signal

is detected by the same spectrometer, with a low-noise preamplifier used for first stage

signal conditioning. A schematic of the entire experiment is shown in Fig. 2.2. For

measurements in magnetic fields, we use a high-homogeneity Oxford Instruments super-

conducting magnet with a variable-temperature insert. Thus the sample and LC circuit

are in a stream of helium at atmospheric pressure, minimizing self-heating from the in-

tense RF pulses. To further decrease the heating effects, a sapphire holder is used for the

sample.

The NMR and NQR spectral lines in cuprates are typically rather broad, due to the

electrostatic disorder [65,95,123]. This means that the only reasonable way to detect the

signals in a pulsed experiment is to use the spin echo technique [124]. To understand

the spin echo (and how to measure it with short waiting times), we will use the standard

classical picture of nuclear spin dynamics, noting that the same results are obtained

within a more complete density matrix formalism [117]. In equilibrium, the spin system
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is polarized either by an external magnetic field or by internal electric field gradients,

as written in the static nuclear Hamiltonian (A.1). Thus the nuclear spin levels are

unequally populated and the spin ensemble has an average magnetization ⟨M𝑛⟩, whose

direction defines the 𝑧-axis of an internal spin coordinate system. The definition can

be written simply as ⟨M𝑛⟩ = ⟨𝑀𝑛𝑧⟩ ẑ. An RF magnetic field pulse causes transitions

between the nuclear spin levels and places the system out of equilibrium: effectively, the

average magnetization is rotated from its equilibrium direction. If the pulse has the correct

duration, the populations of the spin levels are precisely equalized after the pulse, and the

entire nuclear magnetization lies in the 𝑥𝑦-plane of the internal coordinate system. Such

a pulse is referred to as a 𝜋/2 pulse, since it rotates the effective magnetization by 𝜋/2.

After the pulse, the level populations change spontaneously and the magnetization returns

to equilibrium with characteristic relaxation time 𝑇1. The most straightforward way of

measuring NMR would be to detect the nuclear magnetization itself; yet this is extremely

difficult in most situations, due to the very small magnetic moments involved (although

SQUID-based experiments have been devised to make such measurements [125]). Instead,

the time-dependent part of the magnetization is detected using simple magnetic induction

in the LC circuit containing the sample. In the effective magnetization picture, the

only time-dependent components are ⟨𝑀𝑛𝑥⟩ and ⟨𝑀𝑛𝑦⟩, which oscillate at the resonant

frequency corresponding to the nuclear spin level energy difference. However, if different

nuclei have slightly different resonant frequencies – or, equivalently, if the spectrum is

broadened – the in-plane components of the effective magnetization will quickly decay

to zero. To counteract this, a second pulse can be applied after the 𝜋/2 pulse, which

refocuses the in-plane magnetizations causing a signal peak known as a spin echo (Fig.

2.3). The refocusing pulse should be twice as long as the 𝜋/2 pulse for optimal spin

echo creation to fully rotate the spins, and hence is called a 𝜋 pulse. If the time interval

between the 𝜋/2 and 𝜋 pulses is 𝜏 , the peak of the spin echo will occur at a time 2𝜏 after

the 𝜋/2 pulse. The time 𝜏 is referred to as the echo time. Importantly, the spin-echo

pulse sequence cannot refocus the in-plane magnetizations if intrinsic decoherence has

occurred – thus the spin echo amplitude decays with increasing 𝜏 , with a characteristic

time equal to the spin decoherence time 𝑇2. Clearly, if 𝑇2 is short, detecting the signal

becomes problematic.

In previous NMR and NQR work the typical echo times are above 10 𝜇s [92]. We

have managed to shorten this time by an order of magnitude, enabling measurements
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Figure 2.3: The nuclear spin echo.

A schematic representation of the spin echo experiment: the pump or 𝜋/2 pulse rotates

the nuclear magnetization into the 𝑥𝑦-plane, where different spins precess with slightly

different angular rates due to local field inhomogeneity. A rephasing or 𝜋 pulse rotates

the spins by 𝜋, enabling their refocussing after an echo time 𝜏2𝐸. Adapted from [126].

with 𝑇2 shorter than 3 𝜇s. Two factors bear a decisive influence on the shortest possible

echo time in an NMR experiment: preamplifier recovery times and LC circuit ringing.

During the RF pulses, the preamplifier is overloaded, and detection of the echo signal

cannot commence until the amplifier recovers. Modern fast recovery amplifiers, such as

the Miteq AU1114 used in our experiments, have recovery times of about 1 𝜇s, mostly

eliminating this problem. LC ringing is much more serious: an RF pulse excites resonant

current/voltage oscillations in the LC circuit, which persist some time after the pulse and

can completely obscure the small NMR signal. The ringing decay time is proportional

to the Q-factor of the circuit, but so is the circuit’s passive amplification factor, which

determines sensitivity. Thus a decrease of the Q-factor suppresses ringing, but a price

must be paid in NMR sensitivity. Various active electronic schemes have thus been devised

to damp the ringing [127, 128], but none of them operate fast enough for our purposes.

The only remaining option is to use passive damping, i.e. intentionally spoiling the Q-

factor by adding resistors to the LC circuit. By a systematic optimization of the Q-factor,

we have found that connecting a resistor of 20 Ω in series with the sample coil enables

fast measurements of Cu NMR and NQR in the frequency interval 30-50 MHz with a
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reasonable loss of signal sensitivity. In addition to spoiling the Q-factor of the LC circuit,

a technique known as phase cycling can be used to further decrease the effects of ringing

(but only as long as the preamplifier is in the linear regime). Since the NMR spectrometer

contains a heterodyne phase-sensitive detector, the relative phases of detection and all

excitation pulses are well defined. By cycling the phases from acquisition to acquisition

and averaging the detected signals, the nuclear echo signal can be enhanced and the

ringing suppressed, since they have different physical origins and hence different relative

phases. We use a double-antiringing phase cycle, which cancels the ringing induced by

both 𝜋/2 and 𝜋 pulses in a spin echo sequence (Table 2.1).

𝜋/2 pulse 0 2 0 2 0 2 0 2

𝜋 pulse 1 1 3 3 0 0 2 2

detector 0 2 0 2 2 0 2 0

Table 2.1: Spin echo antiringing phase cycle. The numbers are the phase divided by 𝜋/2.

We have seen that to measure the spin-spin relaxation time 𝑇2 one simply needs to

perform a spin-echo experiment with different echo times. Determining the spin-lattice

relaxation time is slightly more complicated, since a measurement of the 𝑧-component of

the nuclear magnetization is needed. It is accomplished by using a three-pulse sequence,

wherein the first pulse (or preparation pulse) rotates the instantaneous nuclear magneti-

zation into the 𝑥𝑦-plane, which is then detected with a standard spin echo sequence. By

changing the time between the preparation pulse and echo pulses, the return of ⟨𝑀𝑛𝑧⟩ to

equilibrium can be traced. A more involved phase cycle has to be used to ensure ringing

cancellation (Table 2.2).

preparation 1 1 1 1 3 3 3 3

𝜋/2 pulse 0 2 0 2 0 2 0 2

𝜋 pulse 1 1 0 0 1 1 0 0

detector 0 2 2 0 0 2 2 0

Table 2.2: Spin lattice relaxation measurement antiringing phase cycle. The numbers

are the phase divided by 𝜋/2.

Employing our short echo time methodology described above, measurements of short 𝑇1

also becomes possible. This will be of great importance in studying spin fluctuations

induced by charge order, and in clarifying the nature of signal wipeout.
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2.2 Linear and nonlinear conductivity.

2.2.1 Contact-free conductivity measurement.

Electrical conductivity is one of the basic properties of any material, but measuring it in

cuprates poses some specific challenges. Firstly, cuprates are ceramic materials, making

it difficult to make reliable electrical contacts on them. Usually the procedure involves

baking in an oxygen atmosphere and repeated annealing of the contacts. Even if the

contact resistance is reasonably low, the procedure can significantly affect the local dop-

ing of the crystal, sometimes even creating a percolating superconducting path above the

nominal 𝑇𝑐. This is especially troublesome if one wants to investigate superconducting

effects such as quasi-two-dimensional fluctuations, where the intrinsic bulk conductivity

is very high (but not yet infinite). As discussed in the Introduction, one of our objectives

is to investigate the interplay between charge and spin stripes, disorder and superconduc-

tivity, making the contact-related problems significant. Therefore a contact-free method

was established to reliably measure linear (and nonlinear) conductivity of cuprate single

crystals.

The contact-free experiment is similar to the previously developed microwave conduc-

tivity measurement [129], used extensively in cuprate and other systems [101, 130–133].

Related radio-fequency measurement methods utilizing tunnel diode resonators [134,135],

marginal oscillators [136, 137] and mutual inductance [138, 139] have also been used for

complex conductivity and NMR measurements in the past. The central idea is to use

the sample as a perturbation of a resonant cavity (for microwaves) or circuit (for lower

frequencies). Measuring the resonant frequency and Q-factor of the cavity or circuit, the

complex conductivity of the sample can be deduced. To measure the resonant parameters,

a frequency-modulated alternating voltage is applied to the resonator, and a directional

coupler is used to detect the reflected component. Due to the frequency modulation, the

rectified reflected voltage traces out the resonant curve, enabling a precise determination

of its parameters. A slightly different method is used in the MHz and microwave fre-

quency range, where the frequency and Q-factor are obtained by measuring the harmonic

components of the rectified reflected signal. Yet when extending the experiments down

to frequencies of ∼ 10 kHz the sensitivity of the resonant curve analysis method becomes

superior. The overall sensitivity depends on the Q-factor of the resonator, and thus dete-

riorates at low frequencies – this sets the practical lower limit of ∼ 10 kHz for this kind
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of experiment.

Three different experimental probes were used for contact-free conductivity measure-

ments. A previously constructed microwave cavity probe [129] was employed for frequen-

cies of ∼ 10 GHz; this probe enables measurements in a wide temperature range, since

the cavity is always at liquid helium temperatures and does not introduce a temperature-

dependent background. The sample is kept on a sapphire holder in vacuum, its temper-

ature controlled with a resistive heater and measured with a cernox resistive sensor. A

similar probe for frequencies between 10 kHz and 100 MHz was constructed, having a

coil and capacitor resonant circuit in place of the cavity. The LC circuit was immersed

in liquid helium as well, with the coil wound on a glass tube to avoid Q-factor deteriora-

tion. Due to the relatively weak thermal coupling between the sample and helium bath,

the base temperature in this probe was around 15 K. To make measurements at lower

temperatures (down to 1.5 K in a pumped variable temperature insert), a third option

was used: we simply worked with an NMR probe, which already contains an LC circuit.

However, in this configuration the resonator and sample have the same temperature, and

the temperature dependence of the empty coil Q-factor introduces a background which

is hard to remove. Thus the NMR probe was only used at temperatures below ∼ 20 K,

where the resistivity of the coil material saturates and the Q-factor of the empty circuit

does not significantly depend on temperature.

An established procedure was used to obtain the complex conductivity of the single

crystal samples from the resonant circuit parameters. The relationship between the com-

ponents of the conductivity tensor and the power absorbed in the sample was derived

in [140], and independently in [141]; we follow the approach of [141]. For a rectangu-

lar sample with side dimensions 2𝑎 and 2𝑏 and length 𝑐, the power absorbed from an

oscillating magnetic field (parallel with 𝑐) with amplitude 𝐻0 and frequency 𝜔 is equal to

𝑃 (𝜔) =
1

2
𝑖𝜔𝜇0𝐻0

𝜇(𝜔)

1 + (𝜇(𝜔) − 1)𝑁𝑚

(2.8)

where 𝑁𝑚 is the demagnetizing factor for a rectangular sample geometry [142], and 𝜇(𝜔)

the effective complex permeability of the sample given by

𝜇(𝜔) =
4

𝜋

∑︁
𝑚 𝑜𝑑𝑑

1

𝑚

(︂
tanh 𝛽𝑚𝑏

𝛼𝑚𝛽𝑚

+
tanh 𝛿𝑚𝑎

𝛾𝑚𝛿𝑚

)︂
(2.9)

with 𝛼𝑚 = 𝜋𝑚/2𝑎, 𝛾𝑚 = 𝜋𝑚/2𝑏, 𝛽2
𝑚 = 𝑖𝜔𝜇0𝜎𝑥 + 𝛼2

𝑚𝜎𝑥/𝜎𝑦 and 𝛿2𝑚 = 𝑖𝜔𝜇0𝜎𝑦 + 𝛾2
𝑚𝜎𝑦/𝜎𝑥.

The conductivities along 𝑎 and 𝑏 are 𝜎𝑥 and 𝜎𝑦, respectively. The real and imaginary

components of the absorbed power are related to the parameters of the resonator through
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ℜ𝑃 (𝜔) ∼ 1/𝑄0 − 1/𝑄 and ℑ𝑃 (𝜔) = (𝜈 − 𝜈0)/𝜈0, where 𝑄0 and 𝜈0 are the Q-factor and

resonant frequency of the empty resonator. The components of the conductivity tensor

are obtained numerically from measurements of 𝑄 and 𝜈 in dependence on temperature,

for different orientations of the sample. The parameters 𝑄0 and 𝜈0 are determined by

the shape and material of the resonant cavity in the microwave experiment, while at

lower frequencies they can be changed in a wide range by modifying the inductance and

capacitance of the resonant circuit components.

2.2.2 Conductivity and Kosterlitz-Thouless physics.

The contact-free conductivity measurement technique is especially well suited to investi-

gate exotic superconducting phases, where the conductivity is very high but not necessarily

infinite. Cuprate superconductors are layered materials, and hence their superconductiv-

ity is always strongly anisotropic [144, 145]. Yet it is debated if the superconductivity is

essentially three-dimensional, or can be regarded as two-dimensional [143, 146] (with in-

terlayer coupling corrections for bulk samples). In several of the most prominent cuprate

families, microwave conductivity measurements [131,133,147] have shown that supercon-

ductivity in the CuO2 planes appears in the same way as perpendicular to the planes,

indicating a three-dimensional nature. Some specific materials, however, seem to be ex-

ceptions. The clearest evidence for true two-dimensional superconductivity to date is

obtained in underdoped LBCO (hole doping ≈ 1/8, where contact conductivity measure-

ments have detected several hallmark features of two-dimensionality [85,86].

It has been known for a long time that long-range superconducting order is impossible

in two-dimensional systems due to strong phase fluctuations [148,151,152]. Instead, they

are described by Berezinski-Kosterliz-Thouless (BKT) theory, where the superconducting

correlation function changes from an exponential to a power-law behaviour at a charac-

teristic temperature 𝑇𝐵𝐾𝑇 , but long-range phase coherence never develops [148,149,153].

The strong fluctuations thus completely change the nature of the superconducting or-

der and renormalize the bare mean-field transition temperature 𝑇𝑐0. The Berezinski-

Kosterliz-Thouless transition at 𝑇𝐵𝐾𝑇 < 𝑇𝑐0 can thermodynamically be regarded as an

infinite-order phase transition, with several specific material properties appearing in its

vicinity: a fast exponential divergence of the correlation length [109], strongly nonlinear

current-voltage characteristics [154, 155], and sensitivity to external pair-breaking fields

(and thus very weak diamagnetic shielding). Current-voltage nonlinearity, an essentially

24



infinite ratio between in-plane and 𝑐-axis conductivity, and sensitivity to external mag-

netic fields have been detected in LBCO-1/8 [85], making it the best known candidate for

Kosterliz-Thouless behaviour in a bulk material. Yet a much more stringent test would

be an investigation of the dynamic properties of LBCO-1/8 superconductivity, for which

we use contact-free conductivity measurements in a wide frequency range.

Berezinski-Kosterliz-Thouless theory can be formulated in terms of superconducting

vortex-antivortex pairs – the temperature 𝑇𝐵𝐾𝑇 is then the vortex unbinding tempera-

ture, above which free vortices and antivortices exist in the material. In clean materials,

the dynamics of the free vortices can be described by conventional Debye-Drude expo-

nential relaxation at temperatures high above 𝑇𝐵𝐾𝑇 , leading to a frequency-dependent

conductivity of the form

ℜ𝜎(𝜔) = 𝜌0𝜏
1

1 + 𝜔2𝜏 2
, ℑ𝜎(𝜔) = 𝜌0𝜏

𝜔𝜏

1 + 𝜔2𝜏 2
(2.10)

where 𝜌0 is the bare superconducting density and 𝜏 the vortex relaxation time [154–156],

which is proportional to the free vortex density. Close to 𝑇𝐵𝐾𝑇 the vortices bind into

vortex-antivortex pairs, the number of free vortices diminishes and the response is dom-

inated by the bound pairs; this leads to a model referred to as Minnhagen phenomenol-

ogy [154], with conductivity

ℜ𝜎(𝜔) =
𝜌0
𝜖

2

𝜋

𝜏𝑀 ln𝜔𝜏𝑀
𝜔2𝜏 2𝑀 − 1

, ℑ𝜎(𝜔) =
𝜌0
𝜖

𝜏𝑀
1 + 𝜔𝜏𝑀

(2.11)

where 𝜖 is an effective vortex dielectric constant and 𝜏𝑀 the corresponding relaxation

time. Importantly, the characteristic relaxation times of the vortices are extremely slow

compared to other relevant electronic scales, as seen in investigations of superconducting

and superfluid films [156–158]. Measurements of the frequency-dependent conductivity in

materials which are candidates for BKT physics will give us the possibility to compare with

relations (2.10) and (2.11), providing insight into vortex dynamics and giving evidence of

the existence of true 2D superconductivity.

2.2.3 Nonlinear response.

As discussed in the previous section, one of the distinctive properties of two-dimensional

superconductors is the strong nonlinearity of their current-voltage characteristic both

above and below the BKT transition temperature [85,154,155]. However, nonlinear con-

ductivity is also appreciable in any superconductor, especially in the temperature range
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above 𝑇𝑐 where traces of superconductivity still exist [101]. Furthermore, it is known that

one-dimensional charge density waves respond to external electric fields in a nonlinear

way due to pinning effects [159], so similar effects are expected for charge stripes. All

this implies that studying the nonlinear response of cuprates is a worthwhile endeavour,

capable of providing information on many aspects of electron correlation physics.

Nonlinear conductivity is conventionally defined as the field-dependent corrections to

Ohm’s law:

𝑗𝑘 =
∑︁
𝑙

𝜎𝑘𝑙𝐸𝑙 +
∑︁
𝑙,𝑚,𝑛

𝜎3,𝑘𝑙𝑚𝑛𝐸𝑙𝐸𝑚𝐸𝑛 + ... (2.12)

where 𝜎𝑘𝑙 is the linear conductivity tensor, 𝐸 the external electric field, and 𝜎3,𝑘𝑙𝑚𝑛 the

third order nonlinear conductivity tensor. The third order term is the first nonlinear

contribution in most cases, since the second order response is symmetry-constrained [160]

– we will not discuss it further here. Clearly if the electric field is oscillating at a frequency

𝜔, the third order response will appear as a signal at 3𝜔, i.e. at the third harmonic

frequency (as well as a small correction to the signal at 𝜔, which is however hard to

detect and not discussed further). This provides a possibility for sensitive measurement

of the nonlinear response.

Except contact problems, a major difficulty in measuring nonlinear conductivity is

sample heating. If the frequency of the applied electric field is small enough, Joule heating

in a conductive sample will cause temperature oscillations and lead to a spurious third

harmonic signal proportional to the temperature derivative of the linear conductivity

[161,162]. Conventionally the heating effects are decreased by using pulsed electric fields

(with pulse duration ∼ 1 ms), but it has been shown that this method does not completely

eliminate the unwanted nonlinear signal [161, 162]. Hence we use a different approach:

measurements at high frequencies, where the temperature of the sample cannot follow

the field. The frequency must be greater than a characteristic thermal frequency of the

sample, which can be estimated from the heat diffusion equation:

𝜈𝑇 ∼ 𝜅

𝜌𝑐𝑝𝐿2
(2.13)

where 𝜅 is the thermal diffusivity, 𝜌 the density, 𝑐𝑝 the specific heat, and 𝐿 the linear

dimension of the sample. For typical cuprates at 100 K the thermal frequency is of

the order of 1 kHz, while our experimental setup operates in the MHz frequency range –

clearly the sample temperature cannot follow the electric field in this case, thus eliminating

spurious third harmonic signals.
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Figure 2.4: Lump element transmission line.

A tune-free excitation circuit can be made by connecting capacitors to the windings of a

coil, creating a lump element transmission line whose impedance is matched to 50 Ω in a

wide frequency range.

A special probe was designed for measuring nonlinear response, with two distinct

detection methods. The measurement principle is always the same: one system of coils

and capacitors provides the excitation field 𝐸, while a second system detects the third

harmonic response in a selective manner. Of course, any other multiple of the excitation

frequency can be used, in order to measure other nonlinear conductivity contributions. For

the measurements we employ the same probe as for linear conductivity, but with a more

complicated circuitry, as follows. Since the experiment operates in the RF range, we use a

resonant LC circuit for detection, similar to linear conductivity and NMR described above.

The excitation field is provided by a special non-resonant matched circuit, consisting of

a distributed capacitance and inductance and effectively behaving as a transmission line

(Fig. 2.4). In practice, this circuit is fabricated by winding a tight coil from varnish-

insulated copper wire and painting it with conductive silver paint. The paint is then

grounded, providing the needed distributed capacitance. The impedance of such a circuit

can be finely tuned to the standard transmission line impedance of 50 Ω by varying the

fraction of the coil surface covered by the silver paint. This results in a very low coefficient

of reflection in a wide frequency range. We have managed to obtain a 50 Ω impedance

from ∼ 1 to ∼ 100 MHz with the best circuits. Using a non-resonant excitation circuit

instead of a resonant one eliminates cumbersome double tuning, but we note that it would

be possible to perform the experiment with a double tuned resonant circuit, similar to

two-channel NMR.

Two different detection/demodulation methods were used in nonlinear conductivity
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Figure 2.5: Schematic representation of the nonlinear conductivity measurement setup.

Nonlinear conductivity is measured with two distinct methods: low power (left) and high

power (right). The low-power setup uses a radio-frequency (RF) lock-in amplifier to detect

the third harmonic response, and an audio-frequency (AF) modulation scheme for higher

sensitivity. The high-power setup is essentially the same as an NMR experiment, with

additional filtering for the first and third harmonic signals.

experiments, depending on the magnitude of the applied electric field. In both setups,

it is important to filter out nonlinearities from the excitation signal (which can be large

for high-power amplifiers) and to minimize the amount of excitation signal reaching the

detector. Several commercial and custom-made low-pass and high-pass filters were used

for this. A 7-pole Chebyshev filter was constructed to reject the first harmonic voltage at

the detector, enabling a suppression ratio of ∼ 80 dB. Single- and double-pole low-pass

filters were used to clean the excitation signal. The applied filters minimize crosstalk

between the excitation and detection circuits and avoid nonlinear amplification effects in

the detection preamplifier.

The low-field experiment uses a continuous alternating voltage generator for the ex-

citation field, and the third harmonic signal is detected with an RF lock-in amplifier

(Fig. 2.5 left). The locking voltage is created from the excitation signal by a custom-

made Schottky diode frequency tripler. For improved sensitivity, the RF signal can be

amplitude-modulated at a frequency in the 100 Hz range, and the RF lock-in is then used

as a demodulator whose output is fed to a second, low-frequency lock-in amplifier. This
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configuration was used to investigate nonlinear response related to superconductivity,

which is sizeable even for relatively low excitation fields.

The high-field experiment employs a conventional NMR spectrometer and power am-

plifier to generate strong excitation fields and detect the nonlinear response (Fig. 2.5

right). To avoid overheating of the coils and sample, the measurements are performed

with pulsed excitations, similar to NMR (but with somewhat longer pulses of ∼ 20 𝜇s).

Despite the extensive filtering, a nonlinear contribution is always present in the excitation

signal due to the strong distortion in the power amplifier. To subtract these electronic

nonlinearities and increase the sensitivity, the third harmonic is measured for different

amplitudes of the excitation, and signal averaging is used (again in analogy to NMR).

The high-field method was used for the investigation of charge order and stripe pinning

nonlinearities, which require very high applied fields to be measurable with confidence.

2.2.4 Detecting nematic fluctuations.

We will apply nonlinear response to investigate two distinct phenomena in lanthanum-

based cuprates: the formation and dynamics of charge order, and unconventional quasi-2D

superconductivity, i.e. Berezinski-Kosterliz-Thouless physics. While nonlinear conductiv-

ity in BKT theory is relatively well studied (and was already investigated in LBCO-1/8),

the response of different charge-ordered phases is less thoroughly understood. In known

systems with charge-density waves, defects can pin the stripes, and a strong electric field

causes stripe unpinning and hence nonlinear response [159,163,164]. The pinning in one-

dimensional models is most simply described by the washboard model [159], where it is

taken that the stripes move in a periodic pinning potential. If the external electric field is

small, the stripes only oscillate around equilibrium positions of the potential; if the field

is high enough, it is possible for the stripes to move from one potential well to the other,

enhancing the conductivity of the system. Thus the response becomes strongly nonlinear

in the vicinity of this threshold electric field. Of course, in an effectively two-dimensional

system such as the cuprates, the potential landscape for stripe motion is much more

complicated, and deformations of the stripes play an important role [40]. Nevertheless,

qualitatively one would expect a similar threshold field to exist, which causes stripe de-

pinning and leads to nonlinear response. This is one aspect of charge stripe nonlinearity

that we will investigate with our experimental setup.

Furthermore, third order nonlinear conductivity is intimately related to higher-order
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charge correlation functions, making it an interesting probe of hidden charge ordering. The

relation between nonlinear response and four-point correlation functions was investigated

extensively within the physics of glassy liquids [166–169] and spin glasses [165], with the

establishment of an extended fluctuation-dissipation theorem (FDT) connecting third-

order response to four-point correlation functions [166, 169]. A related framework was

also used for the analysis of nonlinear magnetic susceptibility [170] in materials with

possible spin nematic order, such as URu2Si2 [115]. Here we apply a similar formalism

to establish a relation between third order nonlinear conductivity and charge nematic

fluctuations.

As discussed in the Introduction, a charge nematic is an electronic ordered phase which

breaks orientation symmetry, but keeps translational symmetry intact [40,105,106]. In the

cuprates, the underlying lattice symmetry is ideally tetragonal (disregarding structural

changes), and nematic order will lower it to orthorhombic – the 𝑥 and 𝑦 directions in the

CuO2 planes will not be equivalent. In contrast to charge stripes, a charge nematic is

relatively insensitive to disorder [40], and was predicted to exist as a well-defined phase in

underdoped cuprates. If this is true, a feature in the specific heat should be present, as well

as a diverging susceptibility related to fluctuations of the nematic order parameter. We

show that a direct correspondence exists between nematic fluctuations and third order

nonlinear conductivity, as follows. Recent transport and optical studies show that the

mobile holes in underdoped cuprates behave like a Fermi liquid [9, 171], so we base the

discussion on Fermi liquid theory [172, 173]. The starting point is then the Landau-Silin

transport equation for a charged Fermi liquid [173],

𝜕𝛿𝑛k

𝜕𝑡
+ vk · ∇r𝛿𝑛̄k + 𝑒E · ∇k𝑛k = 𝐼 (𝛿𝑛̄k) (2.14)

where 𝑛k is the quasiparticle distribution (in dependence on the wave-vector k), 𝑛0,k the

equilibrium distribution, 𝛿𝑛k and 𝛿𝑛̄k the global and local deviations of the quasiparticle

distribution from the equilibrium distribution respectively, vk the group velocity, E the

screened electric field, and 𝐼 (𝛿𝑛̄k) the collision integral. The local and global deviations

are related via

𝛿𝑛̄k = 𝛿𝑛k −
𝜕𝑛0

𝜕ℰk

∑︁
k′

𝑓kk′𝛿𝑛k′ (2.15)

where ℰk is the dispersion and 𝑓kk′ the quasiparticle interaction. Thus the full transport

equation (2.14) is an integrodifferential equation and unsolvable in the general case, so

we focus our attention on the simple limiting cases still relevant for experiment. Most
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importantly, the electric fields we apply are almost constant in space (compared to mi-

croscopic length scales such as the inverse of the Fermi wavevector), and we thus drop

the term containing spatial derivatives of the distribution function. This corresponds to

writing the electric field in Fourier components with wavevector q, and taking the limit

𝑞 → 0. Furthermore, we take the quasiparticle Fermi surface to be isotropic – this is

certainly not quantitatively true in cuprates, but makes the calculations tractable; but

we will argue below that the qualitative conclusions do not depend on the precise form of

the dispersion relation. Finally, we employ the relaxation time approximation, wherein

the collision integral is modelled as a simple linear relaxation process.

Before calculating the nonlinear response, we first discuss the textbook case of linear

conductivity [173]. For an isotropic Fermi surface, the external field E gives a convenient

axis of symmetry, so that 𝛿𝑛k and 𝛿𝑛̄k can be expanded in spherical harmonics with the

polar angle 𝜃 being between E and k. Since we are interested in planar response, we can

use a Legendre polynomial expansion in place of the full spherical harmonics, yielding

𝛿𝑛k =
∑︁
𝑙

𝛿𝑛𝑙𝑃𝑙(cos 𝜃), 𝛿𝑛k =
∑︁
𝑙

𝛿𝑛̄𝑙𝑃( cos 𝜃) (2.16)

where 𝑃𝑙(cos 𝜃) are Legendre polynomials of order 𝑙. In a degenerate Fermi liquid, all

relevant quantities are restricted to the vicinity of the Fermi surface, and thus the quasi-

particle interaction 𝑓kk′ only depends on the angle between k and k′ in the isotropic

case. After expanding the interaction into Legendre polynomials as well, we find that the

relation (2.15) between 𝛿𝑛k and 𝛿𝑛̄k takes the simple form

𝛿𝑛̄𝑙 =

(︂
1 +

𝐹𝑙

2𝑙 + 1

)︂
𝛿𝑛𝑙 = 𝜂𝑙𝛿𝑛𝑙 (2.17)

where 𝐹𝑙 is the 𝑙-th dimensionless Legendre component of 𝑓kk′ and 𝜂 a shorthand. The

collision integral in the relaxation time approximation may also be expanded in a similar

way [173],

𝐼 (𝛿𝑛̄k) = −
∑︁
𝑙

Γ𝑙𝛿𝑛̄𝑙 (2.18)

where Γ𝑙 are the relaxation rates for the 𝑙-th component of the nonequilibrium distribution.

In the simplest case, they are all equal and Γ𝑙 = Γ. We will use the constant Γ approxima-

tion for simplicity, keeping in mind that it is easy to reintroduce different Γ𝑙 if necessary.

The linear response to an oscillating applied field E(𝜔) = E𝑒𝑖𝜔𝑡 can now be simply calcu-

lated by assuming that ∇k𝑛k ≈ ∇k𝑛0 = vk𝜕𝑛0/𝜕ℰk in the Landau-Silin equation. Since

in an isotropic Fermi liquid the group velocity is along k, E·vk = 𝐸𝑣k cos 𝜃 = 𝐸𝑣k𝑃1(cos 𝜃)
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and the transport equation becomes

∑︁
𝑙

(︂
𝜔

𝜂𝑙
+ 𝑖Γ

)︂
𝛿𝑛̄𝑙𝑃𝑙(cos 𝜃) = 𝑖𝑒𝐸𝑣k

𝜕𝑛0

𝜕ℰk
𝑃1(cos 𝜃) (2.19)

where we have incorporated the relation between 𝛿𝑛̄𝑙 and 𝛿𝑛𝑙 and used the fact that 𝛿𝑛̄

oscillates at the same frequency as the external field. Clearly the only finite component

of 𝛿𝑛̄𝑙 is 𝑙 = 1, as it should be – the external field induces a vector-like deviation from

equilibrium, creating a current flow (Fig. 2.6). It is trivial to solve equation (2.19) to

obtain

𝛿𝑛̄
(1)
1 =

𝑖𝑒𝐸𝑣k
𝜔/𝜂1 + 𝑖Γ

𝜕𝑛0

𝜕ℰk
(2.20)

where we have highlighted the fact that 𝛿𝑛̄(1)
1 is the linear response component. The linear

conductivity may now be found from the standard relation for the charge current,

j =
∑︁
k

vk𝛿𝑛̄k (2.21)

giving the well-known Drude form of frequency-dependent conductivity [173].

To go beyond linear response, one step in the above discussion must be modified:

if the nonequilibrium distribution is a nonlinear function of the external field, we must

not approximate ∇𝑛k in the Landau-Silin equation. To solve this general, nonlinear case

in a systematic way, we investigate the effect of slowly turning on the electric field by

multiplying it with a small parameter [174]: E → 𝜆E. When 𝜆 = 1, the full transport

equation is recovered. The parameter 𝜆 now enables a systematic expansion of 𝑛k,

𝛿𝑛̄k = 𝛿𝑛̄
(0)
k + 𝜆𝛿𝑛̄

(1)
k + 𝜆2𝛿𝑛̄

(2)
k + 𝜆3𝛿𝑛̄

(3)
k + ... (2.22)

and similar for 𝛿𝑛k. The zeroth-order term may be incorporated into 𝑛0,k without loss

of generality, and thus will not be considered in the calculation. Inserting the expansion

(2.22) into the transport equation with included 𝜆E, we may derive a system of equations

for the different expansion terms by noting that the original equation must be valid for

any value of the parameter 𝜆. Collecting terms with the same power of 𝜆, we obtain

𝜕𝛿𝑛
(1)
k

𝜕𝑡
+ Γ𝛿𝑛̄

(1)
k = 𝑒E · ∇k𝑛0 (2.23a)

𝜕𝛿𝑛
(2)
k

𝜕𝑡
+ Γ𝛿𝑛̄

(2)
k = 𝑒E · ∇k𝛿𝑛

(1)
k (2.23b)

𝜕𝛿𝑛
(3)
k

𝜕𝑡
+ Γ𝛿𝑛̄

(3)
k = 𝑒E · ∇k𝛿𝑛

(2)
k (2.23c)
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and continuing for higher-order contributions; to evaluate third order response, the above

system is sufficient. If we take the electric field to be oscillating as 𝑒𝑖𝜔𝑡, clearly the 𝛿𝑛
(𝑝)
𝑘

terms will oscillate at 𝑝𝜔, as seen from the recursive nature of the system (2.23). The first

equation corresponds to linear response and has been solved above. To obtain the second-

order contribution, we may again employ the Legendre polynomial expansion, noting that

the right-hand side of eq. (2.23b) contains E · ∇k𝐸𝑣k𝑃1(cos 𝜃). After evaluating the

gradient in terms of Legendre polynomials, the second-order equation becomes∑︁
𝑙

(︂
2𝜔

𝜂𝑙
+ 𝑖Γ

)︂
𝛿𝑛̄

(2)
𝑙 𝑃𝑙(cos 𝜃) =

1

3𝜂1

(𝑖𝑒)2𝐸2
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− 𝑣𝑘
𝑘

)︂
𝑃2(cos 𝜃) +

(︂
𝜕𝑣𝑘
𝜕𝑘

+ 2
𝑣𝑘
𝑘

)︂
𝑃0(cos 𝜃)

]︂
(2.24)

This expression is important for us because the second-order correction is bilinear in the

external field, meaning that it represents the induced quadrupolar charge density, which

is closely related to the nematic order parameter. There are two contributions to 𝛿𝑛̄(2),

𝑙 = 0 and 𝑙 = 2, corresponding to the two irreducible deformations of a circular Fermi

surface induced by a uniaxial bilinear electric field. Such contributions are well known in

the analysis of electronic Raman scattering, where the response is bilinear in the applied

vector potential [91]. The 𝑙 = 0 term is referred to as A1g and represents an isotropic

expansion or contraction, while the 𝑙 = 2 or B1g term is a 𝑑-wave quadrupolar deformation

(Fig. 2.6). The third irreducible representation, B2g, is obtained as a rotation of B1g by

𝜋/4, and in our geometry does not explicitly enter the transport equation (2.24). A

nematic order parameter has B1g symmetry, and thus the 𝑙 = 2 contribution directly

represents the field-induced nematic density. The induced density is

⟨𝜌𝑄⟩ =
∑︁
k

𝛿𝑛
(2)
2 =

2

3𝜂1𝜂2

1

𝜔/𝜂1 + 𝑖Γ

⃒⃒⃒⃒
𝑘
𝜕

𝜕𝑘

𝑣𝑘
𝑘

⃒⃒⃒⃒
𝑘𝐹

𝐸2 = 𝜒𝑁𝐸
2 (2.25)

where 𝑘𝐹 is the Fermi wave-vector, and we have defined a nematic susceptibility 𝜒𝑁 as a

measure of the softness of the system with respect to nematic fluctuations. In Fermi liquid

theory, a spontaneous nematic deformation of the Fermi surface occurs when the 𝑙 = 2

channel of the quasiparticle interaction satisfies the Pomeranchuk instability condition

𝜂2 = 0 [175]. Clearly 𝜒𝑁 ∼ 1/𝜂2, implying that the nematic susceptibility diverges at the

Pomeranchuk nematic transition, as should be expected.

When calculating the second-order conductivity using expression (2.21), the angular

factors make the Fermi surface integral disappear, implying that j(2) = 0. This is in line

with general symmetry constraints, since no second order response can be present if the
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Figure 2.6: Fermi surface deformations.

Deformations of a circular Fermi surface induced by an applied field. The 𝑙 = 0 deforma-

tion amounts to a homogeneous expansion or contraction, 𝑙 = 1 is a vector deformation

(leading to a charge current), and 𝑙 = 2 is a quadrupolar deformation, which can be

viewed as electric field-induced nematic order.

system is time reversal symmetric. The quadrupular density thus cannot be measured in

a conductivity experiment (but is detectable with other probes, such as Raman scattering

[112] and NQR [114]). However, it is possible to measure the nematic susceptibility

𝜒𝑁 . We have seen above that when the system approaches a nematic instability at

𝜂2 = 0, it will become soft with respect to the field-induced nematic perturbations, and the

corresponding susceptibility will diverge. We now show that the third-order conductivity

is proportional to the nematic susceptibility, by employing the recursion (2.23) one more

time. After inserting 𝛿𝑛̄(2), the equation of motion becomes∑︁
𝑙

(︂
3𝜔
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)︂
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(2.26)

The only terms in 𝛿𝑛̄(3) are then those with 𝑙 = 1 and 𝑙 = 3. In calculating the corre-

sponding conductivity through relation (2.21), only the 𝑙 = 1 term remains after Fermi

surface integration; taking the limit 𝜔 → 0 appropriate for our experiment, we obtain

𝜎3 =
𝑒4

3𝜂1Γ

(︃
8

15

1
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3 𝜕

𝜕𝑘

1

𝑘2

𝜕

𝜕𝑘

𝑣𝑘
𝑘

⃒⃒⃒⃒
𝑘𝐹

+
2

3

1

𝜂0

⃒⃒⃒⃒
𝑣𝑘
𝑘2

𝜕

𝜕𝑘
𝑣𝑘𝑘

2

⃒⃒⃒⃒
𝑘𝐹

)︃
(2.27)

The third order conductivity contains two contributions: one proportional to 1/𝜂0, which

is always finite since 𝜂0 > 0 is the condition for a finite Fermi liquid compressibility, and
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the other proportional to 1/𝜂2, which becomes singular at the nematic transition. Thus

in the vicinity of a nematic transition, 𝜎3 ∼ 𝜒𝑁 ∼ 1/𝜂2 (with a complicated prefactor

depending on the form of the quasiparticle dispersion), and the third order conductivity

can be used for detecting the nematic Fermi surface instability. We note that instabilities

in higher 𝑙 channels can also be investigated with the corresponding nonlinear conductivity

contributions.

In deriving the relation between 𝜎3 and the nematic susceptibility, we have used sev-

eral simplifying assumptions: a spherical Fermi surface, negligible spatial variation of

the quasiparticle response, and of course the basic assumption that Fermi liquid theory

is applicable. Recent transport and optical experiments show that the latter is indeed

the case in cuprates [4, 9]. However, the Fermi surface certainly is not spherical; yet the

main conclusion that 𝜎3 is sensitive to nematic fluctuations should remain true. A Fermi

surface shape which depends on 𝜃 precludes the spherical harmonic expansion of 𝛿𝑛k,

𝛿𝑛̄k and 𝑓kk′ , implying that in the general case one must solve an integral equation of

motion for 𝛿𝑛̄k [173]. But even then the basic idea of a recursive calculation of higher-

order response remains valid: indeed, the system (2.23) does not explicitly include the

𝑙-expansion. Any Fermi surface shape with a four-fold symmetry can undergo a spon-

taneous nematic deformation for some value of the quasiparticle interaction components

– a generalized Pomeranchuk criterion can be obtained in two spatial dimensions [176].

For symmetry reasons, it is always possible to decompose the second-order response 𝛿𝑛(2)
k

into irreducible contributions and make an identification with the quadrupolar density

similar to eq. (2.25). The nematic susceptibility will then again diverge at the Fermi

surface instability, but with a more complex dispersion-dependent prefactor. In turn, the

third order response will always have a component proportional to the induced nematic

density, simply because of the nature of the recursive calculation. Thus 𝜎3 remains a

probe of divergent nematic fluctuations in the general case as well. We remark that the

same relation between third order response and fluctuations of the nematic order param-

eter was derived on completely different grounds for molecular liquids, within nonlinear

optics [177].

35



2.3 Specific heat.

We have seen in the preceding sections that nuclear magnetic (and quadrupole) reso-

nance can be used to gain microscopic insight into the electronic physics of cuprates,

and that contact-free linear and nonlinear conductivity measurements give information

on superconducting and charge fluctuations. To complete our experimental insight into

charge order formation, we use the simplest bulk thermodynamic probe: specific heat.

As discussed in the Introduction, on theoretical grounds we expect the charge stripes to

become glassy because of disorder, but a precursor charge nematic phase should remain

well-defined. Detecting the associated phase transition will be the main goal of the specific

heat investigation.

Due to the small size of the single crystal samples we are working with, a special

method had to be employed for the measurement of their specific heat. Standard methods

such as pulse calorimetry are not sensitive enough to detect the small features related

to nematic order, mainly because the transitions appear at rather high temperatures of

∼ 100 K (or higher). The lattice specific heat of the samples is large at these temperatures,

making the electronic contributions appear as small peaks on a large background. To

alleviate this problem, we use a variant of the well-known differential scanning calorimetry

(DSC) widely used in chemistry and material science [178], but modified for small samples

and with increased sensitivity. A similar experimental setup was developed for studying

vortex transitions in cuprate superconductors [179].

The measurement principle is very simple: the investigated sample and a reference

sample are mounted on two small temperature sensors – we use standard platinum re-

sistors. The resistors are weakly thermally coupled to a platform, whose temperature is

sweeped in time. The temperatures of the resistors lag behind the platform temperature

in proportionality with the specific heat of the samples. By connecting the resistors in a

bridge configuration, a precise determination of the specific heat becomes possible. If the

mass of the platform is much larger than the sample and resistor mass (which is easily

achieved in practice) and if the entire system is in high vacuum, it is straightforward to

show that the temperature difference between the two resistors is

∆𝑇 =
𝑇̇

Λ
(𝐶0 − 𝐶𝑝) (2.28)

where 𝑇̇ is the time derivative of the platform temperature, Λ the heat conductivity

of the link between platform and resistors (assumed to be equal for both resistors), 𝐶0
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the specific heat of the reference, and 𝐶𝑝 the sample specific heat. In the experiment,

the two platinum resistors are connected as one half of a Wheatstone bridge, with the

other half consisting of two high-precision low temperature coefficient chip resistors. The

bridge voltage is directly proportional to ∆𝑇 in a wide temperature range where the

temperature coefficient of platinum is nearly constant. If the bridge is excited by an

alternating voltage source, a phase sensitive measurement of the bridge voltage is possible

with a lock-in amplifier, enabling high sensitivity. Typically a temperature difference ∆𝑇

less than 10 𝜇K can be detected in this way.

While the specific heat measurement method described above is simple in essence,

several experimental difficulties make it more challenging than it might appear. The

most important is the fact that the temperature difference ∆𝑇 is very sensitive to the

instantaneous value of the platform temperature time derivative. This means that even

small oscillations of the platform temperature will be visible in the signal and obscure

real features in the sample specific heat. A conventional temperature regulation of the

platform includes a closed-loop PID temperature controller, with a finite density of ther-

mometer calibration points and linear interpolation between them; thus a programmed

linear temperature sweep will introduce small platform temperature oscillations due to

the discontinuous interpolation. Other effects such as helium bubbling and thermal con-

tact imperfections can cause temperature oscillations as well, but the controller-induced

effect is repeatable and especially difficult to remove. To eliminate it, we used open-loop

control, i.e. simply sweeping the heater power and measuring the resistivity of the plat-

form temperature sensor. The temperature was calculated from the resistivity using a

continuous calibration curve, thus removing the need for interpolation. This procedure

makes the platform temperature time dependence almost completely smooth in the range

between ∼ 10 K and ∼ 200 K. At lower temperatures, the resistivity of the platinum

sensors saturates and sensitivity is lost, while at higher temperatures many common ma-

terials used in probe construction (such as greases, epoxy, teflon and GE varnish) have

phase or glass transitions, introducing further artefacts. Fortunately, the most interesting

phenomena in our investigations turned out to occur within the smooth range.

A dedicated experimental probe was constructed for the specific heat measurements

(but also used in other investigations). To be useful in a wide range of experiments,

it was designed to be able to reach temperatures below 1.5 K in a liquid helium bath.

To reach temperatures below the normal helium boiling point of 4.2 K, the helium is
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Figure 2.7: Setup for specific heat measurements.

The specific heat probe head is shown (left) with two equal platinum resistance ther-

mometers and a LESCO single crystal sample [181]. The resistors are connected in a

simple bridge circuit (right), enabling sensitive bridge voltage measurements with a lock-

in amplifier.

sucked through a long capillary tube into a pot with a volume of several cm3, where

it is cooled by lowering the vapour pressure [180]. The probe design thus requires two

separate tubing systems: one for helium pumping, and one for the vacuum containing the

pot and sample platform. A photograph of the sample platform and 1K pot is shown in

Fig. 2.7; see Appendix C for design schematics. Some specific design points include the

conical grease seal between the brass cap and the probe body, the helium capillary made

of a stainless steel tube with 1 mm outer diameter and a constantan wire fitted inside

the tube to decrease its cross-section, and the use of multiple thermal anchoring points

throughout. The thermal contact between the pot and the sample platform is a thin

brass neck with counter-threads on both sides, enabling simple replacement if a neck with

different thermal conductivity is needed. The platform temperature is measured with a

calibrated low-magnetoresistance cernox sensor. A foil heat shield is wrapped around the

sample space, minimizing the effects of thermal radiation.

The simple measuring principle and carefully considered methodology enable highly

sensitive specific heat measurements. A fortunate circumstance provides an internal cali-
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bration and sensitivity standard in experiments on co-doped lanthanum cuprates. As we

shall see in the next chapter, they contain a structural phase transition relatively close

to the interesting charge stripe and nematic order. Detecting this transition gives an

independent measure of the sensitivity of the setup, which is shown to be adequate for

studying small features in the specific heat and usable for many other materials.

2.4 Samples.

Before discussing the results of our measurements, a short overview of the sample prepa-

ration methods and samples employed in the investigations is in order. We use materials

from two closely related cuprate families: LBCO and LESCO. Their structure is similar,

and both are derived from the 214 lanthanum cuprate La2CuO4, but the doping ions are

slightly different. LBCO is doped simply by substituting lanthanum for barium, while in

LESCO a fraction of the lanthanum is substituted by isovalent europium, and the hole

doping is provided by strontium. The europium ion is smaller than lanthanum and sta-

bilizes the low-temperature tetragonal (LTT) phase, which has a profound influence on

electronic properties (as we shall see in the next chapter).

LBCO and LESCO samples were high-quality single crystals with masses of the order

of 10 mg. All samples were grown with the traveling floating zone method, wherein a

system of high-power lamps and mirrors focuses light on a small portion of a powdered

sample rod [182]. The powder then melts locally, and if the rod is slowly translated,

recrystallization of the powder at the edges of the floating zone creates a single crystal.

The technique is suitable for growing 214 cuprates because of the non-volatility of the

starting oxides and their substitutional doping. Typical growing speeds are below 1 mm/h,

and large homogeneous crystals can be obtained. Both the LBCO and LESCO samples

used here were employed in numerous previous investigations and characterized in detail.

LESCO was grown by Udo Ammerahl in the group of A. Revcolevschi at Universite Paris-

Sud, and the europium and strontium concentrations were determined independently by

energy-dispersive X-ray analysis. The same crystals were used in previous NMR, X-

ray scattering [28, 29] and transport [183] studies. The LBCO crystal was grown at

Brookhaven National Laboratory, and samples from the same rod were characterized in

previous magnetization [86], transport [85,86] and scattering [37] experiments.
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Chapter 3

Results and discussion

Our combination of experimental techniques provides unique insights into the formation

and dynamics of charge order in the cuprates, and its interaction with superconductivity.

Before analysing the results of measurements and comparing them to recent theoretical

concepts, we introduce the particular compounds used as model systems for the investi-

gation of cuprates in general. The first superconducting cuprates to be discovered were

lanthanum-based systems. Charge stripe order was first found in lanthanum cuprates as

well. Yet due to strong spin fluctuations [60, 65, 66] and relatively small charge stripe

amplitudes, insight into the local properties as well as into the evolution of the stripes

is incomplete in these compounds. Importantly, it has been shown recently that other

prominent cuprate families display charge stripe features [26–28, 30–33, 57, 61, 62], mean-

ing that an understanding of charge order and its interaction with superconductivity is

relevant to cuprate physics in general. Lanthanum cuprates are single-layer compounds,

i.e. their structure has only one CuO2 motif per unit cell, making them simpler than

other prominent families such as YBCO. Furthermore, they are doped by ionic substi-

tution (and not by oxygen interstitials), which makes the doping easier to control and

determine, but introduces relatively strong point charge disorder. Last but not least, in

lanthanum cuprates such as LBCO the interaction between charge stripes and supercon-

ductivity seems to be especially pronounced, inducing an unconventional two-dimensional

superconducting state and suppressing bulk superconductivity [85, 86]. It is still unclear

whether these effects are properly understood and whether they are important for other

cuprates [39, 185]. Thus lanthanum-based compounds are good model systems for inves-

tigating the formation of charge stripes and their interplay with other electronic ordering

tendencies.
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This chapter is divided into three parts, answering three important questions:

¯ how are charge stripes formed in disordered cuprate systems?

¯ what are their local and dynamic properties?

¯ how do they interact with superconductivity?

Answering these questions will shed light on other fundamental issues of cuprate physics,

such as the universality of charge order, the nature of the pseudogap state, and properties

of the superconducting pairing mechanism.

3.1 The emergence of charge order.

Theoretical analysis [40, 105] suggests that charge stripe order is very sensitive to elec-

trostatic disorder, due to the small energy cost of defects in the ordered stripe structure.

Vanishingly small levels of disorder should thus destroy true long-range stripes, and make

the transition into the stripe state similar to a glass transition or crossover. Neutron

and X-ray scattering experiments in cuprates consistently show that the charge stripe

order has small coherence lengths [28, 31, 37], indicating that long-range order is never

established; also, local probes such as lanthanum NMR detect a glassy slowing down of

the spin dynamics [50, 66, 111, 184], which is related to the disordered stripe structure.

Thus the influence of disorder on the charge stripes is experimentally rather well docu-

mented. Intriguingly, it is predicted that a precursor ordered phase – the charge nematic

– is mostly unaffected by disorder, appearing through a well-defined phase transition [40].

The charge nematic, however, does not break translational symmetry and is rather dif-

ficult to detect experimentally. Even more exotic ordered phases are predicted to exist

between an ordinary Fermi liquid and the charge nematic, such as the loop metal state

which does not break any spatial symmetry [186, 187]. Which experimental probes can

then be used to investigate these precursors to charge stripe order? Firstly, if the charge

nematic is a thermodynamically well-defined phase, the corresponding phase transition

must be visible in the specific heat. Of course, a specific heat anomaly in itself cannot give

insight into the microscopic nature of the transition, so other probes are needed to provide

complementary information. In chapter 2 we have shown that third order nonlinear con-

ductivity is sensitive to nematic fluctuations, which should diverge at the transition from

Fermi liquid – or some other, more exotic phase – to the charge nematic phase. Finally,
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Figure 3.1: The LTT structural transition.

The CuO2 planes and adjacent La,Ba layers in LBCO are shown from above, indicating

the shifts of the CuO6 octahedra in the low-temperature orthorhombic (LTO, left) and

low-temperature tetragonal (LTT, right) phases. The LTT transition then involves a

rotation of the octahedra by 𝜋/4. Adapted from [111].

charge nematic order has been shown to induce spin fluctuations in systems close to an

antiferromagnetic ground state (such as that observed in the cuprates) [188], implying

that a signature in nuclear magnetic resonance should be present. Thus a combination of

specific heat, nonlinear conductivity, and NMR/NQR should enable a detection of charge

stripe precursor phases, and make their identification possible.

For the investigation of charge stripe formation we use the europium co-doped lan-

thanum cuprate La1.8−𝑥Eu0.2Sr𝑥CuO4 (LESCO) as a model system. The most important

reason for using LESCO is structure-related. All lanthanum-based cuprates possess a

structural transition [91, 190] which involves a tilt of octahedra with copper atoms in

their center (Fig. 3.1). The structure above this transition is referred to as low tem-

perature orthorhombic (LTO), while below the transition a low temperature tetragonal

(LTT) structure appears. The LTO-LTT transition temperature 𝑇𝐿𝑇𝑇 depends on dop-

ing and co-doping of the compound, and in several materials such as LBCO interferes

with the charge stripe order [37,86]. LESCO is unique in that 𝑇𝐿𝑇𝑇 is strongly increased

by Eu co-doping, which stabilises the LTT structure [18, 191]. Recent resonant x-ray

and neutron scattering studies show that the temperatures where charge and spin stripes

appear in LESCO are well-separated from the structural transition across the phase dia-

gram [28,29,192]. It thus provides the opportunity to investigate charge stripe formation

in the tetragonal setting, without interference from structural effects. Another reason for
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Figure 3.2: The NMR spectrum of LESCO.

Field-sweep spectrum [181] of the quadrupolar satellite of 63Cu at 140 MHz in dependence

on temperature, showing that the linewidth does not change appreciably in the tempera-

ture range where charge nematic order appears. The spectra are normalized to the same

surface area.

using LESCO as a model system is that the superconductivity in this system is rather

strongly suppressed (which will also be interesting for us further along), resulting in a

wide temperature range where the charge and related spin stripes can be studied without

having to consider the interplay with superconductivity.

To follow the evolution of charge stripes and precursor order in both doping and

temperature, we use three different LESCO samples in the underdoped region where

charge stripes appear. The first indication that a precursor phase exists in this system

comes from measurements of copper NQR signal intensity in dependence on temperature.

It has been known that in powder samples the NQR and NMR signal intensity drops when

charge stripe order appears – an effect known as wipeout, as discussed in the Introduction.

In previous work, measurements of the net intensity were performed by integrating the

entire NMR or NQR lineshape [47, 63–65], and extrapolating the spin-spin decay to zero

echo time to compensate for 𝑇2. Yet such measurements are relatively insensitive because

of the large linewidths, while the linewidths themselves do not significantly depend on

temperature. The 63Cu quadrupolar satellite in LESCO with 𝑥 = 0.125 is shown in Fig.

3.2 at three different temperatures, demonstrating that the lineshape is approximately

temperature-independent. It is therefore acceptable to determine the net signal intensity
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Figure 3.3: Spin-spin relaxation of LESCO.

Raw spin-spin relaxation data [181] are shown for samples with three hole doping con-

centrations: 𝑥 = 0.11 (left), 𝑥 = 0.125 (middle) and 𝑥 = 0.15 (right). The relaxation

is exponential at all temperatures shown here, and a gradual signal wipeout is observed

with decreasing temperature, as an overall reduction of the signal intensities.

by measuring the spin-spin decay at the peak of the NMR or NQR line, without integrating

the entire lineshape. As we shall show, the signal wipeout is significantly larger than the

small changes induced by lineshape changes.

Spin-spin relaxation was measured in dependence on temperature for the pure NQR

copper lines in the three compounds with different doping. In addition, measurements in

the sample with 𝑥 = 0.125, where the stripe order is most pronounced, were performed

in NMR at external fields of 6 T and 12 T. Representative spin-spin decay curves are

shown in Fig. 3.3, where it is clear that the decay is exponential in the entire investi-

gated temperature range. The NMR measurements have a much better signal-to-noise

ratio because the measurement frequency 𝜔0 is ∼ 4 times larger than in NQR, and the

sensitivity of the experiment is roughly proportional to 𝜔2
0. In all measurements it is clear

that a partial signal wipeout appears at temperatures close to 100 K, while a strong signal

decrease occurs ∼ 20 K below that. When the signal intensity is compensated for the

Boltzmann factor and plotted in dependence on temperature, the two wipeout features

are nicely visible in all samples (Fig. 3.4). The lower temperatures where a signal decrease

is observed closely correspond to the temperatures 𝑇𝐶𝑂 where resonant X-ray scattering

experiments first detect charge stripe order [29] (marked in Fig. 3.4). Yet the wipeout
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Figure 3.4: Copper NQR and NMR signal wipeout in LESCO.

Temperature dependence of the 63Cu NQR signal intensity for LESCO with three doping

concentrations [181]. The intensities are obtained by extrapolating spin-spin decay curves

to zero echo delay times, and by compensating for the usual Boltzmann temperature

factor. A wipeout plateau is seen in all three samples above the temperatures 𝑇𝐶𝑂 where

charge stripes are first seen in scattering experiments [29].

plateau extends at least 20 K above 𝑇𝐶𝑂, indicating that a precursor phase appears be-

tween the Fermi liquid at high temperatures and charge order below 𝑇𝐶𝑂. Note that the

wipeout fractions in the plateau are already rather high, ranging from 0.5 in the sample

with 𝑥 = 0.11 to 0.8 in the sample with 𝑥 = 0.15. Interestingly, the wipeout is stronger

in pure NQR than in NMR, indicating that the relatively large external magnetic field

influences the fluctuations responsible for the signal decrease. We will further explore this

effect in measurements on the closely related LBCO.

The observation of the wipeout plateau is encouraging, and enables us to extract a

new characteristic temperature 𝑇𝐶𝑁 corresponding to the high-temperature step in the

signal intensity. If this temperature signifies a true phase transition, a feature must be

present in the specific heat close to 𝑇𝐶𝑁 . Using the sensitive specific heat measurement

method described in Chapter 2, we have indeed observed a peak at 𝑇𝐶𝑁 in samples

with doping 𝑥 = 0.125 and 𝑥 = 0.15 (Fig. 3.5). In contrast, no recognizable peaks

are present near 𝑇𝐶𝑂, in agreement with the notion that the transition to the stripe

phase is smeared out. A glass-like broad feature could be expected instead, but the

resolution of our method is not large enough to observe it. The height of the peak at 𝑇𝐶𝑁

can be compared to a similar feature observed at the structural transition temperature

45



8 0 1 0 0 1 2 0 1 4 0

0

1 0

2 0

3 0

4 0

 

T C N

 

C p (1
0-3  J/

mo
l K

)

t e m p e r a t u r e  ( K )

T L T T

8 0 9 0 1 0 0
- 1
0
1
2
3
4
5
6

x  =  0 . 1 2 5

 

 T  ( K )

x  =  0 . 1 5

Figure 3.5: LESCO specific heat.

Differential specific heat of LESCO with 𝑥 = 0.125 [181]. Both the structural transition

at 𝑇𝐿𝑇𝑇 and the charge nematic transition at 𝑇𝐶𝑁 are clearly seen. The inset shows a

comparison with the sample with doping 𝑥 = 0.15.

𝑇𝐿𝑇𝑇 ∼ 130 K in the measurements on the sample with 𝑥 = 0.125 (Fig. 3.5). Clearly

the transition at 𝑇𝐶𝑁 involves a much smaller change of the internal energy than the

LTO-LTT structural transition, consistent with an electronic ordering. The peak at the

structural transition can serve as an internal calibration, enabling us to obtain absolute

values of the specific heat difference upon comparing with previous experiment on LESCO

powder samples [191].

The combination of NQR and NMR wipeout and specific heat measurements gives a

strong indication that a novel electronic phase appears at a temperature 𝑇𝐶𝑁 which is

different from both the structural transition temperature 𝑇𝐿𝑇𝑇 and the x-ray charge stripe

appearance temperature 𝑇𝐶𝑂. To show that this phase is in fact the theoretically predicted

charge nematic, we employ a third experimental technique – nonlinear conductivity. As

discussed in Chapter 2, third order nonlinear response is sensitive to fluctuations of the

charge nematic order parameter [106] 𝑄 =
(︀
𝑆k − 𝑆ℛ(k)

)︀
/
(︀
𝑆k + 𝑆ℛ(k)

)︀
, where 𝑆 is the

static electronic structure factor, and ℛ denotes a rotation by 𝜋/2. The fluctuations are

expected to diverge at a nematic transition, while the order parameter itself measures

orientational symmetry breaking and becomes finite below the transition temperature.

Nonlinear conductivity only measures the fluctuations (and not the symmetry breaking
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Figure 3.6: Linear and nonlinear conductivity of LESCO.

Third-order nonlinear conductivity of LESCO with 𝑥 = 0.125 [181], compared the charge

stripe signal intensity obtained in an x-ray scattering study [29] (left). The nonlinear

response shows a strong peak at 𝑇𝐶𝑁 . In comparison, a contact-free measurement of the

linear conductivity of LESCO with 𝑥 = 0.11 (right) is mainly featureless, apart from

a smooth deviation from the high-temperature behaviour appearing close to 𝑇𝐶𝑁 . For

simplicity, we show the raw measurement of the Q-factor of the resonant circuit containing

the sample, without calculating the linear conductivity.

directly). Measurements of third harmonic signal in LESCO with 𝑥 = 0.125 in dependence

on temperature display such a divergence at the temperature 𝑇𝐶𝑁 (Fig. 3.6). These

results can be compared directly to resonant x-ray measurements of the charge stripe

order parameter [28], which clearly appears at temperatures below 𝑇𝐶𝑁 . Since the charge

nematic does not break translational symmetry, scattering techniques such as resonant x-

ray should not detect it, as is indeed the case. At temperatures below 𝑇𝐶𝑂, the nonlinear

response follows the charge stripe amplitude, because of nonlinear stripe dynamic effects

– this will be discussed in the next section. The linear conductivity was also measured

in the temperature range where stripes and nematic order occur, showing no discernible

sharp features at either 𝑇𝐶𝑂 or 𝑇𝐶𝑁 (Fig. 3.6); instead, a continuous deviation from the

high-temperature behaviour starts close to 𝑇𝐶𝑁 , similar to previous investigations [36,83].

Thus the order appearing at 𝑇𝐶𝑁 must involve higher-order charge correlations, consistent

with a nematic phase.

Taken together, wipeout, specific heat and nonlinear response measurements (Fig. 3.7)
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Figure 3.7: The charge nematic phase in LESCO.

Three experimental probes detect a charge nematic transition [181] in LESCO-1/8 (left):

copper NQR wipeout (squares), nonlinear conductivity (full circles) and specific heat

(empty circles). The nematic phase follows the charge stripes throughout the phase

diagram with a characteristic dome shape (right), seemingly disappearing close to the

doping concentration where the LTT phase becomes unstable (critical LTT tilt). Values

for 𝑇𝐶𝑁 are from NQR wipeout (full circles) and specific heat (empty triangles). The

LTT transition temperatures are from Ref. [191].

provide strong evidence for the existence of a charge nematic in LESCO, enabling us to

construct a qualitative scenario for the appearance of charge stripes in agreement with

theoretical predictions [40, 105, 186, 187] (Fig. 3.8). Starting from the high-temperature

Fermi liquid, a thermodynamically well-defined charge nematic phase transition occurs

upon cooling at 𝑇𝐶𝑁 , showing that the nematic is indeed insensitive to the electrostatic

disorder present in LESCO. Charge stripes develop gradually from the nematic phase

without a clear phase transition; the stripes are never coherent over long spatial distances,

and their formation can be envisaged as a decrease in the number of stripe defects with

cooling. This is in line with the predicted sensitivity of stripes to disorder, and previous

observations of small stripe correlation lengths and glassy dynamics. The charge nematic

transition closely follows the charge stripe appearance in dependence on doping, as seen

in the updated LESCO phase diagram in Fig. 3.7. Importantly, 𝑇𝐶𝑁 is always relatively

close to 𝑇𝐶𝑂 and significantly below 𝑇𝐿𝑇𝑇 . This shows clearly that the charge nematic
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charge stripe nematic loop metal?

Figure 3.8: The evolution of charge stripes.

Schematic depiction of charge stripe formation in the presence of disorder, as seen in

our experiments [181]. The nematic phase remains well defined and appears through a

phase transition at 𝑇𝐶𝑁 , while the stripes form gradually upon cooling. A possible exotic

high-temperature phase – the loop metal – is also shown.

cannot be identified with the pseudogap phase, since the pseudogap opening temperatures

are significantly higher in the underdoped region of lanthanum-based cuprates. This does

not imply that the pseudogap is not present together (and possibly in competition) with

the nematic phase, but rather that the nematic forms within the pseudogap regime in

the phase diagram. Our work thus confirms the theoretical scenario of charge stripe

formation involving a precursor nematic phase [40, 105, 186], but disproves speculation

relating the pseudogap to the charge nematic [40]. However, orientational symmetry

breaking tendencies have been observed within the pseudogap in other cuprates such as

YBCO and BSCCO [69,70]: this could be a consequence of their more complex structure

(e.g. YBCO contains oxygen chains that create a preferred direction in the CuO2 planes),

or may be due to the interaction between pseudogap hidden order and the nematic/charge

stripe fluctuations. It is worth noting that charge stripe onset temperatures in YBCO

are some 50 K higher than in lanthanum-based cuprates, making it difficult to separate

pseudogap from charge stripe effects.

As discussed above, some quantum theories of charge stripe melting predict the ex-

istence of more exotic phases than the charge nematic, such as the loop metal phase

which does not break any spatial symmetry [186, 187]. The difference between a loop
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Figure 3.9: Critical behaviour of the nematic susceptibility.

The nematic susceptibility 𝜎3 (𝑘𝐵𝑇 )3 in dependence on relative temperature 𝜀 =

|1 − 𝑇/𝑇𝐶𝑁 |, below 𝑇𝐶𝑁 (empty circles) and above 𝑇𝐶𝑁 (full circles). The log-log plot

shows that a simple power-law description is not valid in the nematic critical region. The

data are consistent with a logarithmic dependence (lines), but due to the limited sensi-

tivity and number of points, a quantitative analysis of the critical behaviour is difficult.

metal and conventional Fermi liquid is that the loop phase only contains closed charge

modulation loops, while a Fermi liquid can be envisioned as a liquid of both open and

closed loops. The nematic, in turn, may be viewed as a loop metal wit a preferred di-

rection for the elongation of the loops. Direct detection of a loop metal is even more

difficult than the charge nematic, but our results hint at its possible presence above 𝑇𝐶𝑁 .

Namely, if one calculates the nematic susceptibility as |𝜎3| (𝑘𝐵𝑇 )3 from the generalized

fluctuation-dissipation theorem, it is seen that the susceptibility decays rather slowly at

high temperatures, indicating that strong nematic fluctuations are present up to 𝑇𝐿𝑇𝑇 .

This is also in agreement with recent x-ray nematicity measurements in LESCO [193].

Quantitatively, one may try to extract a critical exponent from the nematic suscep-

tibility by plotting it on a log-log scale with relative temperature 𝜀 = (𝑇 − 𝑇𝐶𝑁) /𝑇𝐶𝑁 .

Interestingly, power-law behaviour is not observed in the measured temperature range –

the results are, however, consistent with a logarithmic dependence (Fig. 3.9). The small

number of data points precludes any strong conclusions about the fluctuation regime,

and the deviation from power-law critical behaviour might also be caused by corrections
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to scaling [109]. Either way, clearly a simple mean-field description is inadequate for the

charge nematic transition. A loop metal phase should possess strong nematic fluctuations,

which then imply that renormalization effects are important and mean-field theory does

not apply [186, 187]. The large nematic susceptibility and unconventional critical regime

are therefore consistent with the existence of a loop metal phase. Yet further experiments

are necessary to make a definite identification. Due to the absence of structural transi-

tions, other materials such as mercury-based cuprates [33,194] might be more convenient

for investigating such exotic charge ordered phases.

The finding of a charge nematic phase in LESCO creates a connection between cuprates

and other novel materials: the presence of electron nematic order in pnictide superconduc-

tors [112, 114, 195, 196] and quantum Hall systems [197] is relatively well established. In

these cases, nematic ordering is manifested through macroscopic anisotropies of response

functions; in contrast, nematic order in nominally tetragonal layered compounds such as

LESCO might be self-masking [54]. Namely, the nematic direction can rotate from plane

to plane due to interplane coupling (similar to the charge stripe orientation [37]), resulting

in a vanishing macroscopic in-plane anisotropy. Thus the orientational symmetry break-

ing cannot be measured by macroscopic (linear) transport. Yet as we demonstrate here,

the field-induced fluctuations measured by nonlinear conductivity are still be present and

detectable, since their direction only depends on the direction of the applied electric field.

Thus 𝜎3 is a good probe of nematic fluctuations in self-masked nematics as well, where

linear response cannot detect the nematic transition.

3.2 Charge and spin stripe dynamics.

Having established that charge stripes appear through a precursor nematic phase, we now

turn to an investigation of the stripe dynamics and related electronic spin fluctuations.

Several theoretical arguments are relevant for this discussion. Firstly, in a disordered

system the charge stripes are expected to be pinned to impurities and thus relatively

static. Charge density wave pinning has been investigated in several materials [159, 162–

164, 198–201] and both quantum and quasi-classical models of the process have been

developed [159, 202]. The situation in cuprates is more complex than in one-dimensional

CDW systems because the stripes are two-dimensional and can deform in many ways to

minimize their energy in the presence of point defects [198, 203]. A quantitative theory
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of two-dimensional stripe pinning is therefore more difficult to develop and is to our

knowledge still an open prospect, but we assume that the qualitative features are similar

to one-dimensional CDW.

In the simplest model of stripe pinning, the stripes reside in a periodic pinning potential

[159]. An electric field higher than a critical value is needed for the stripes to move

between minima of the pinning potential. If a field higher than this unpinning field is

applied, the stripes can significantly contribute to charge transport, causing a nonlinear

response. Well-known one-dimensional CDW systems [163, 164] are insulators at low

electric fields, because the stripe pinning almost completely blocks long-distance charge

transfer; application of high electric fields then induces a strong conductivity increase and

significant nonlinearity. In cuprates, the unpinning effects are much less dramatic, since

the stripes are metallic and but small modulations of the charge density, so linear charge

transport is possible even with pinned stripes. Therefore conductivity nonlinearity due to

stripe dynamics is expected to be small and superimposed on a large linear conductivity,

which makes our nonlinear response measurement setup uniquely suited for studying such

effects. On the other hand, the local dynamics of stripe pinning can be investigated using

NQR, since the charge modulation changes the local electric fields seen by the nuclei and

modifies the NQR spectra (if the stripes are static on NQR timescales), or influences the

NQR spin-lattice relaxation (if the stripes fluctuate). Combining NQR and nonlinear

conductivity will thus give us a complete picture of charge stripe dynamics in lanthanum-

based cuprates.

The second important effect related to charge stripes in cuprates is the appearance of

a related spin stripe order, and strong spin fluctuations [37,60,66,67,111,184,192]. In the

roughest approximation, the spins order because of the proximity of an antiferromagnetic

ground state, making it energetically favourable to couple regions of smaller charge density

to increased AFM correlations. Such a view effectively states that the spin degrees of

freedom are secondary for the charge stripe formation; comparing different materials will

give some credence to this. An increase of spin fluctuations has been predicted in cuprate

charge nematics as well [188], providing a link between the nematic order and NMR/NQR

signal wipeout. Using these local probes, we will show that the spin stripes have different

dynamic properties than the underlying charge order, and that their strength strongly

varies between cuprate families.

We use two cuprate compounds for the investigation of stripe dynamics. The europium
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Figure 3.10: The copper NQR spectrum of LBCO-1/8.

The spectra [189] were obtained by integrating the Fourier-transformed spin echo signals

with an echo time of 2.3 𝜇s. Four distinct spectral lines are present: two sites (A and B) for

two isotopes (63Cu and 65Cu). Lines are Gaussian fits, and 𝑇𝐶𝑂 denotes the temperature

where charge stripe order is first observed in scattering studies [37]. A strong broadening

of the B line is observed below 𝑇𝐶𝑂, a consequence of incommensurate static charge

stripes.
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co-doped LESCO is a good model system for the same reasons as mentioned in the

discussion of charge nematic order: it possesses charge stripe order in a wide temperature

range, without interference from structural effects or superconductivity. In addition, we

use one of the most investigated charge stripe cuprates, LBCO-1/8. There the LTT-LTO

transition, charge stripes, spin stripes, and unconventional superconductivity all appear

within 20 K [37,85,86]. We employ LESCO mainly for nonlinear conductivity experiments

due to the clear separation between transition temperatures, while LBCO is better suited

for Cu NQR investigations because of a fortunate arrangement of spectral lines. The Cu

NQR spectrum of a LBCO-1/8 single crystal is shown in Fig. 3.10, at several temperatures

above and below 𝑇𝐿𝑇𝑇 and 𝑇𝐶𝑂. High-temperature spectra are the same as in previous

work [65,204]. All spectra were obtained with the fast spin echo methodology described in

Chapter 2, enabling measurements at temperatures significantly below 𝑇𝐶𝑂 where signal

wipeout makes conventional spin echo experiments impossible.

Four lines are visible in the NQR spectra: two sets of two lines (from two isotopes 65Cu

and 63Cu). Each isotope has two distinct lines, implying two different local environments

for the copper atoms. Investigations in related strontium-doped cuprates [95, 205] have

shown conclusively that the two lines originate from Cu atoms close to the Ba (or Sr)

dopands – the higher-frequency B line – and Cu atoms further away from the dopands

– the broad, low frequency A line. The positions (and widths) depend significantly on

doping [95]. LBCO is particularly favourable for NQR work due to the large separation

between the lines, enabling clear observations of the influence of charge order on the

spectra. The effects of incommensurable charge stripe order are indeed observed below

𝑇𝐶𝑂 as an increase in the width of the lines. A simple Gaussian fit to the B line of 63Cu

makes quantitative analysis of the width possible, and its temperature dependence is

shown in Fig. 3.11. Since NQR frequencies are proportional to the local charge, the NQR

linewidth is a direct measure of the amplitude of the charge modulation. A comparison

to the stripe order parameter (which is equivalent to the amplitude) obtained from a hard

X-ray scattering study of Tranquada et al. [86] confirms this; the measurements follow

each other closely below 𝑇𝐶𝑂.

Importantly, the NQR linewidth is a microscopic measure of the stripe amplitude,

and its value can be directly compared to experiments in other cuprates. If one assumes

that the linewidth corresponds to the X-ray order parameter down to 𝑇 = 0, a ground-

state value of the modulation amplitude can be inferred. Taking 𝜈𝑄 to be the mean
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Figure 3.11: Charge stripe order parameter in LBCO.

Widths of the 63Cu B line (see Fig. 3.10) in dependence on temperature [189], com-

pared to the charge stripe amplitude measured with hard x-ray scattering by Tranquada

et al. [86]. The NQR linewidth follows the X-ray measurements closely, and is thus a

good microscopic measure of the charge stripe amplitude. Below ∼ 𝑇𝑆𝑂 the spin-lattice

relaxation is too fast for NQR measurements.

NQR frequency of the B line in LBCO-1/8, the extrapolated relative amplitude becomes

∆𝜈𝑄/𝜈𝑄 ≈ 0.02. A similar amplitude is seen in other cuprate compounds: oxygen NQR

satellite linewidths in YBCO [57] and LESCO [47] at doping 1/8 have the same values.

The copper NQR satellites in YBCO with doping 0.105, which show evidence of a com-

mensurate charge density wave, display a line splitting similar to the extrapolated width in

LBCO as well [26]. We may thus conclude that the amplitude of charge stripe modulation

in different cuprate families is universal; this is in agreement with conclusions from recent

resonant X-ray scattering work [48], but the precision of our local probe investigation is

significantly higher.

The linewidth change also provides an absolute measure of the charge modulation

amplitude, which can be estimated by knowing that 𝜈𝑄 is proportional to the number

of doped holes per unit cell with 20 MHz per hole [123]. A significant intrinsic charge

inhomogeneity exists in lanthanum-based cuprates at all temperatures [95], determining

the high-temperature linewidth of ∼ 1.1 MHz in LBCO-1/8 (Fig. 3.10). Charge stripes
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Figure 3.12: Electric field dependence of the LESCO nonlinear conductivity.

Third harmonic response of LESCO-1/8 in dependence on the applied electric field (nor-

malized to the maximum attainable field 𝐸0). Lines are fits to a simple one-dimensional

washboard stripe pinning model, and the inset shows the temperature dependence of the

characteristic depinning field 𝐸𝑐.

add another ∼ 1.5 MHz to the linewidth at 𝑇 = 0, implying a stripe amplitude of ∼ 0.04

holes. This value is considerable, but still far from the average doping concentration.

To understand the value universal amplitude, a microscopic theory of stripe formation is

necessary, but our work shows that the formation is likely not material-sensitive. Fur-

thermore, the NQR line broadening indicates that the charge stripes are static on the

NQR time scale, since stripes fluctuating on timescales shorter than 1/𝜈𝑄 not influence

the static linehsapes, but only the spin-lattice relaxation times. A more detailed analysis

of the nuclear relaxation in LBCO will indeed show that the relaxation mechanism is

purely magnetic, as discussed below. Thus the charge stripes are effectively pinned to

lattice defects, and nonlinear conductivity due to stripe depinning is to be expected.

As discussed in the previous section, in LESCO a significant nonlinear response is

observed in relation to the charge nematic transition at 𝑇𝐶𝑁 , but a steadily increasing

contribution is also seen at lower temperatures. The low-temperature signal closely follows

the X-ray scattering intensity, which is proportional to the amplitude of the charge stripes

(Fig. 3.6). We argue here that the low-temperature nonlinear response is consistent with

stripe depinning dynamics. Measurements of the nonlinear response dependence on the
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Figure 3.13: The classical washboard model of charge stripe pinning.

The charge stripes are imagined as a point with mass 𝑚 and charge 𝑞𝑒𝑓𝑓 , moving in a

periodic pinning potential (line). Without applied electric field, the stripes are pinned in

a potential well (left). Application of a large external field tilts the potential and enables

stripe unpinning (right).

external field at several temperatures below 𝑇𝐶𝑂 were performed (Fig. 3.12), in order to

compare them with simple models of stripe pinning dynamics. A distinct shape of the field

dependence is observed, bearing a likeness to the current-voltage characteristic of well-

known charge density wave materials [159]. A naive washboard pinning model may be used

to analyse the measurements, assuming simply that the stripes have some effective mass

𝑚𝑒𝑓𝑓 and charge 𝑞𝑒𝑓𝑓 and that they move in a one-dimensional periodic potential [159]

(Fig. 3.13). The use of a basic one-dimensional model is somewhat justified because it

is known from scattering studies that stripes are predominantly pinned by orthorhombic

twin boundaries present in the LTT phase [61, 62]. Since the boundaries are extended

(linear) crystalline imperfections, point defects are to one-dimensional CDW what line

defects are to two-dimensional stripes. The classical one-dimensional stripe equation of

motion is

𝑚𝑒𝑓𝑓𝜉 + Γ𝜉 +
𝜕𝑉

𝜕𝑥
= 𝑞𝑒𝑓𝑓𝐸(𝑡) (3.1)

where 𝜉 is the position (or phase) of the effective stripe, Γ a damping coefficient, 𝑉 the

pinning potential and 𝐸 the external electric field. Notably, the washboard model assumes

that the stripes are rigid in the sense that their dynamics can be described through the

single phase parameter 𝜉 (without appreciable amplitude changes) – this is a radical

approximation, and thus the entire analysis should be taken semiquantitatively.
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Taking the pinning potential to be a simple sinusoidal function, the equation of motion

becomes tractable [159]. We note that similar dynamic models are used e.g. for vortex

pinning in superconductors [206], and hopping conduction in semiconductors [207]. No

thermal excitation contribution is present, since both NQR and X-ray scattering exper-

iments show that the stripes are static on long timescales, implying that the barriers

between the minima of the pinning potential are significantly higher than 𝑘𝐵𝑇 . For sim-

plicity, we assume that the damping term dominates the inertial term, which leads to

conventional exponential relaxation of the stripe system in response to a small pulsed

external field. The inertial term gives rise to a collective mode, which is shifted to a finite

frequency in the presence of pinning [159]. Without the inertial term, the case of a con-

stant electric field is easily solved: no stripe motion occurs unless the field is higher than

the critical value 𝐸𝑐 = 1/𝑞𝑒𝑓𝑓 |𝜕𝑉/𝜕𝑥|𝐿𝑝𝑖𝑛
, where 𝐿𝑝𝑖𝑛 is the characteristic pinning length,

corresponding to the spatial period of the pinning potential. A complementary analysis

of small stripe oscillations in the pinning potential can be performed by retaining only

the linear term in the derivative 𝜕𝑉/𝜕𝑥, which for a sinusoidal pinning potential yields a

characteristic collective stripe motion frequency [159]

𝜔2
0 =

1

𝑚𝑒𝑓𝑓

⃒⃒⃒⃒
𝜕𝑉

𝜕𝑥

⃒⃒⃒⃒
=

2𝜋

𝐿𝑝𝑖𝑛

𝑞𝑒𝑓𝑓
𝑚𝑒𝑓𝑓

𝐸𝑐 (3.2)

This relation between the frequency 𝜔0 and pinning field 𝐸𝑐 provides a way to estimate

one quantity if the other is known, and will be used below. For electric fields higher

than 𝐸𝑐, the stripes can cross the pinning barrier and obtain a velocity which has both a

constant and a periodic part. Yet our experimental situation requires solving eq. (D.1) for

an oscillating external field, which cannot be done in closed form. A numerical solution is

necessary, and the third harmonic response is obtained by a Fourier expansion of 𝜉(𝑡) for

different values of the electric field amplitude (see Appendix D). Experimental data can

be fitted to the resulting curves in a satisfactory manner (lines in Fig. 3.12), validating

our simple effective approach to stripe pinning dynamics.

Stripe-related nonlinear conductivity was investigated in cuprates and similar systems

before, with mixed results – it was always difficult to separate the intrinsic response from

heating contributions [161,198–200]. Since our nonlinear measurement method eliminates

heating, it makes the detection of stripe pinning signals possible. However, a downside is

that we cannot know the absolute values of the induced electric fields, and can thus only

compare the relative critical fields for different temperatures. The maximum electric field

induced in the excitation coil of our setup may be roughly estimated from the Maxwell
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equations, as 𝐸0 ∼ 𝐵0𝜔𝐿, where 𝐵0 ∼ 100 Gauss is the typical magnetic field amplitude,

𝜔 ∼ 2𝜋 · 20 MHz the oscillation frequency, and 𝐿 ∼ 2 mm the linear dimension of the

sample. The electric field is then ∼ 20 V/cm, implying that the pinning fields are of the

order of 10 V/cm. This is two to three orders of magnitude higher than in conventional

CDW systems [159,163,164], but somewhat lower than the values measured in quasi-two-

dimensional materials such as nickelates [198]. Importantly, the quasi-one-dimensional

pinning model in cuprates is plausible because line defects (twin boundaries) cause the

pinning. For the case of point defect pinning of two-dimensional stripes, their dynamics

might be qualitatively different because of the possibility of curving around the pinning

centers. The theory of such pinning is to our knowledge not developed, but might be

relevant to other materials. Another salient point is the assumption that the stripes in

lanthanum-based cuprates are uniaxial in the CuO2 planes, and not of the chequerboard

type. Strong evidence for uniaxial stripes exists from scattering experiments on LBCO

[37] and LESCO [28]. Presumably the pinning dynamics of chequerboard order is also

qualitatively different, which might be important for other cuprates such as BSCO.

To estimate the collective mode frequency, we must make assumptions about the

pinning length and effective mass and charge of the pinned stripe in eq. (3.2). To obtain

an upper limit on the frequency, we may take 𝑞𝑒𝑓𝑓 = 𝑒 and 𝑚𝑒𝑓𝑓 = 𝑚, where 𝑒 and

𝑚 are the charge and mass of the electron, respectively. The pinning length should be

comparable to the stripe coherence length, 𝐿𝑝𝑖𝑛 ∼ 10 nm. This gives 𝜔0 ∼ 1011 Hz, in

the far infrared frequency range. Note that the frequency only depends on the ratio of

effective mass and charge, so taking a lower charge (e.g. the stripe amplitude of 0.04

holes per unit cell calculated above) should imply also taking a smaller mass, leaving the

frequency roughly the same. Finding the collective mode would be independent evidence

of the stripe pinning model in LESCO and other cuprates; yet the infrared spectra of

cuprates are rather complicated, and a large low-frequency Drude contribution [91] might

obscure the collective mode (especially in the case of strong damping).

Stripe-related nonlinearities in cuprates around doping 1/8 have to our knowledge not

been demonstrated before, and the pinning field values appear to be reasonable in view

of the enhanced stability of two-dimensional stripes. Yet the possibility remains that the

nonlinear conductivity we observe in LESCO below 𝑇𝐶𝑂 has a different origin: some com-

ponents of the nonlinear response tensor are sensitive to orientational symmetry breaking,

in particular 𝜎3,𝑥𝑥𝑥𝑦 [174] (the indices denote the directions of the electric field and current
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components). The signal might then simply be a measure of the nematic order parameter,

since in our experimental configuration the magnetic field induces electric fields in both 𝑥

and 𝑦 directions. This would also explain the apparently weak dependence of the pinning

field on temperature, shown in the inset of Fig. 3.12 (although similar dependences also

appear in some CDW systems [159]). To distinguish between the alternative origins of the

nonlinear signal, a phase-sensitive measurement would be required, and detection of the

collective mode would be highly desirable. Other tell-tale signs of stripe collective motion,

such as narrow band noise and conductivity relaxation after a temperature quench should

also be observable in principle [159], but could again be obscured due to the relatively

large conductivity of cuprates. In any case, the depinning fields are at least 10 V/cm, and

possibly much higher if the nonlinear conductivity is proportional to the nematic order

parameter.

We have seen that a relatively large electric field is needed to unpin the charge stripes

in LESCO, and the Cu NQR spectra in LBCO are consistent with static stripes as well.

Yet significant spin dynamic effects are known to occur in relation to charge stripes:

lanthanum NQR and NMR studies consistently detect strong and slow spin fluctua-

tions [65,66,111,184], while neutron scattering measurements of the spin susceptibility see

a spin gap opening [37,86]. To gain deeper insight into the spin dynamics, we measure the

spin-spin and spin-lattice relaxation times in LBCO-1/8, using our fast spin echo method-

ology. The first important result is that fast spin-spin relaxation completely explains the

previously observed signal wipeout in LBCO. We find that the Cu 𝑇2 drops sharply be-

low 𝑇𝐶𝑂, to values around 3 𝜇s. In a conventional NMR or NQR experiment, the echo

times are larger than 10 𝜇s – the signal below 𝑇𝐶𝑂 is completely unobservable in such

conditions. Yet no appreciable signal decrease is observed if the spin-spin relaxation is ex-

trapolated to zero echo times in our measurements above 40 K (Fig. 3.14), demonstrating

that the entire wipeout effect is accounted for by the fast relaxation. Furthermore, the

spin-spin relaxation curves change in shape. Above 𝑇𝐶𝑂 they are predominantly Gaus-

sian, implying that there the decoherence is caused by indirect nuclear coupling through

the electron gas; such a situation is frequently encountered in other cuprates at high tem-

peratures. Below 𝑇𝐶𝑂, the relaxation is pure exponential, meaning that the surrounding

electrons cause nuclear spin flips [119, 120] and indicating large electronic local fields on

the NQR timescale. A similar change from Gaussian to exponential relaxation appears in

other cuprates such as YBCO [26], but in lanthanum-based cuprates the spin fluctuations
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Figure 3.14: Copper spin-spin relaxation in LBCO-1/8.

Spin-spin relaxation curves [189] are shown for the Cu B line at two representative temper-

atures above and below the charge stripe onset temperature 𝑇𝐶𝑂 ≈ 53 K. The relaxation is

Gaussian at high temperatures and pure exponential in the charge-ordered phase, but the

extrapolated intensities are roughly the same. Inset shows the dependence of extrapolated

intensity on temperature, demonstrating the absence of signal wipeout.

associated with charge stripes are significantly stronger, leading to very fast spin-spin

relaxation and apparent signal wipeout.

In previous work on Cu wipeout in powder samples, the wipeout fraction increases

by decreasing the temperature in a relatively mild manner, superficially similar to the

behaviour of the charge stripe order parameter [63–65]. Elaborate microscopic models of

the stripes have been proposed and fitted to the data [65], and the crossover from Gaussian

to exponential relaxation was explained through strong spatial inhomogeneity of nuclear

relaxation rates [65,110]. A fraction of the nuclei was supposed to relax quickly and thus

be invisible in the experiment, causing Redfield-like exponential spin-spin relaxation of

the visible nuclei. Our work refutes these hypotheses: we see no significant stretching of

either the spin-spin or the spin-lattice relaxation curves (to be discussed below), and all

nuclei are accounted for below 𝑇𝐶𝑂. Therefore the majority of nuclei relax in the same

way, and the exponential spin-spin relaxation must have a different cause. Notably, the

same Gaussian-exponential crossover is observed in charge-ordered YBCO [26], where the

spin-spin relaxation is an order of magnitude slower than in LBCO and no wipeout is seen.

A possible explanation of the exponential relaxation may come from slowly fluctuating
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Figure 3.15: Cu spin-spin relaxation times in dependence on external magnetic field.

The spin-spin relaxation rate of the Cu B line of LBCO-1/8 depends strongly on an

in-plane applied magnetic field [189], with a critical field 𝐵𝑐 ∼ 2 T. An in-plane field

suppresses the spin fluctuations induced by charge stripe order, thus increasing 𝑇2. Inset

shows all possible resonant frequencies obtained by numerical diagonalization of the full

NMR Hamiltonian (lines), and the frequencies used in the measurement (points).

local fields within the CuO2 planes caused by electronic spins, which induce nuclear spin-

flips in the same way as an external in-plane field would. The large difference between

crystals and powder samples then probably comes from surface pinning effects, although

the powders may have a larger concentration of structural defects as well. A detailed

investigation of this is beyond our work, but would be required to assess quantitatively

the significant body of previous wipeout measurements.

Further insight into this point can be obtained by applying an actual static external

magnetic field in the planes, which suppresses the in-plane spin fluctuations. To calculate

the resonant frequencies, an exact diagonalization of the NMR Hamiltonian is necessary,

as demonstrated in Chapter 2. We have measured the spin-spin relaxation at 45 K in

dependence of the external field up to 4 T, with dramatic results (Fig. 3.15). The

spin-spin relaxation time quickly increases with applied field up to a critical value ∼

2.5 T, and then levels off – notably, the relaxation curves are always exponential. This

suggests that already a small in-plane field suppresses the spin fluctuations that cause

the fast relaxation, by introducing a defined magnetic direction in the CuO2 planes.
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The field sets a direction in the planes for the electronic spins, thus frustrating their

possibility of free in-plane rotation and decreasing the spin fluctuations. Similar effects

have been observed previously in lanthanum NMR in LBCO [111], and our measurements

of partial wipeout in LESCO discussed in the previous section show a marked decrease of

the wipeout fraction when external in-plane fields are applied. It is probable that the same

spin fluctuation suppression mechanism is present in both materials. We note that the

magnetic field dependence of the spin-spin relaxation makes the apparent wipeout fraction

field-dependent as well, leading to possible discrepancies in previous work between NMR

and NQR wipeout fractions.

Magnetic fields perpendicular to the planes were not applied, since it is known that

their influence is small (at least for values up to ∼ 10 T) [111]. Much larger fields have

been shown to induce charge stripes in cuprates such as YBCO, but such effects were not

considered here.

While the spin-spin relaxation shows qualitatively that significant electronic spin fluc-

tuations appear in LBCO below 𝑇𝐶𝑂, a quantitative analysis is much easier for spin-lattice

relaxation. We therefore measure the spin-lattice relaxation time 𝑇1 on both A and B

lines of 63Cu in dependence on temperature. The decrease of 𝑇1 is not as abrupt as

the changes in spin-spin relaxation, and below ∼ 38 K the 𝑇1 values fall below 10 𝜇s,

making further measurements unreliable and setting the lower temperature limit for our

NQR investigations. To establish firmly the nature of the relaxation mechanism, we also

measured the relaxation times for both copper isotopes at 45 K (Fig. 3.16) and both A

and B lines. For a quadrupolar mechanism, the ratio of the relaxation times should be
63𝑇1/

65𝑇1 = (65𝑄/63𝑄)
2 ≈ 0.85, while in case of a purely magnetic mechanism the ratio

becomes 63𝑇1/
65𝑇1 = (65𝛾/63𝛾)

2 ≈ 1.15 [117]. The experimental ratios are 1.04 ± 0.07

for the A lines, and 1.2 ± 0.1 for the B lines, with the result for the B lines being more

reliable because of vanishing line overlap. The A signals are stronger (resulting in bet-

ter signal-to-noise ratios and smaller relaxation curve fitting error), but the lines overlap

significantly, which can artificially make the 𝑇1 values closer than they are. Taking this

into account, the values of the ratios are wholly consistent with a purely magnetic mecha-

nism, further confirming the fact that charge stripes are strongly pinned in LBCO-1/8 as

discussed above. We note also that the spin-lattice relaxation curves are almost perfectly

exponential, showing that no significant distribution of 𝑇1 is present. Fitting the curve

for the A line with a stretched exponential ∼ exp
[︁
− (𝑡/𝑇1)

𝛽
]︁
gives an exponent 𝛽 ≈ 0.9,
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Figure 3.16: Cu spin-lattice relaxation in LBCO-1/8.

Spin-lattice relaxation curves at 45 K for the two sites and two isotopes (left), showing

exponential decay and the differences between isotopes [189]. The inset is the raw magne-

tization recovery data in dependence on delay time for 63Cu A line. The temperature de-

pendence of the relaxation rates is shown in the right, normalized to the high-temperature

values (main panel) and raw measured values (inset). Within the charge-ordered phase,

spin fluctuations cause a glassy temperature dependence of 1/𝑇1, consistent with a Vogel-

Tamman-Fulcher law (line).

close to the pure exponential value of 𝛽 = 1. Again, this is similar to results in YBCO,

and invalidates the previously proposed models of inhomogeneous spin coupling for the

exponential spin-spin relaxation.

The temperature-dependent 𝑇1 measurements (Fig. 3.16) demonstrate two important

points: the relaxation mechanism is the same for the A and B lines (up to a constant,

temperature-independent factor), implying that the local spin and charge dynamics is

not sensitive to the proximity of Ba dopands; and the temperature dependence of the

relaxation rate is consistent with glassy spin freezing. As already discussed in relation

to the pinning model, the first point is in agreement with scattering studies of charge

stripes in lanthanum cuprates, which show that the stripes are predominantly pinned

not by the Ba impurities, but by orthorhombic twin boundaries present in the LTT

phase [61, 62]. To analyse the second point – glassy behaviour of spin fluctuations –

we introduce a simple model for the low-frequency electronic susceptibility in line with

neutron scattering and previous NMR investigations [50,65,86,92]. We take the imaginary
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part of the susceptibility, which determines 𝑇1, to have an asymptotic linear form at low

frequencies: ℑ𝜒(𝜔) ∼ 𝜏𝑐𝜔, where 𝜏𝑐 is a characteristic spin correlation time. Such a

form is consistent with a simple Lorentzian frequency dependence of the susceptibility

observed in neutron scattering experiments on LBCO and other cuprates [37,85,92,208].

It also leads to the low-frequency limit of a standard Bloembergen-Purcell-Pound (BPP)

𝑇1 mechanism [210] used extensively in diverse solid and liquid systems [117], as well as

cuprates with slow spin fluctuations [50, 111, 184]. According to the general theory of

spin-lattice relaxation expounded in Chapter 2, in the limited temperature range below

𝑇𝐶𝑂 in LBCO-1/8 we may write 1/𝑇1 ∼ 𝜏𝑐. This seemingly counter-intuitive relation

is true within BPP theory as long as the nuclear resonance frequency 𝜔0 is significantly

smaller than 𝜏𝑐: as the electronic correlation time decreases towards 𝜔0, its influence on

the nuclear relaxation increases. Thus the spin-lattice relaxation rate is a direct measure

of the spin correlation time, and it clearly diverges at some temperature below 𝑇𝐶𝑂 (Fig.

3.16).

To make a quantitative analysis, we use the well-known phenomenological model for

motional correlation times in glassy liquids, known as the Vogel-Tammann-Fulcher (VTF)

relation [169,211,212]:

𝜏𝑐 = 𝜏0𝑒
Δ/(𝑇−𝑇𝑉 𝑇𝐹 ) (3.3)

where 𝜏0 is a microscopic correlation time, ∆ plays the role of an energy gap, and 𝑇𝑉 𝑇𝐹

is the characteristic temperature where the dynamics freezes. Conventional Arrhenius

activated dynamics would imply 𝑇𝑉 𝑇𝐹 = 0, as seen e.g. in ordinary liquids [212]. Glassy

many-body correlations induce the strong dynamic slowing down at finite temperatures

[169, 212]. The VTF relation fits our 1/𝑇1 data well (Fig. 3.16), with 𝑇𝑉 𝑇𝐹 ≈ 20 K and

∆ ≈ 80 K. Although the experimental temperature range is rather limited, the obtained

value of 𝑇𝑉 𝑇𝐹 coincides with the temperatures where spin freezing is observed in LBCO

and LSCO using lanthanum NMR [50, 111], and it is also close to the temperature of

the superconducting Berezinski-Kosterlitz-Thouless transition [85], as discussed in the

next Section. Notably, inelastic neutron scattering experiments detect a spin ordering

temperature 𝑇𝑆𝑂 ∼ 40 K significantly higher than 𝑇𝑉 𝑇𝐹 and clearly not consistent with

our 𝑇1 data regardless of fitted models [37]. Yet the neutrons probe timescales which are

about four orders of magnitude shorter than 𝑇1, and in a glassy spin stripe scenario one

would expect a significant frequency dependence of the apparent freezing temperature.

Our experiments show clearly that the spin fluctuations are dynamically decoupled
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from the pinned charge stripes. Also, the universality of the charge stripe amplitudes is in

stark contrast to the material-specific strength of the spin fluctuations. This suggests that

the spin freezing is an induced effect, and not an integral part of charge stripe formation, as

in Hubbard [55,56] and phase separation [45,105] models. Any model which does include

spins as an important ingredient in charge stripes must then explain the large differences

in material sensitivity between charge and spin stripe order. Although our work is more

directly concerned with stripe thermodynamics and the influence of disorder than with

their microscopic formation mechanism, the spin-charge stripe dynamical decoupling does

provide constraints on the mechanism.

We have seen in this section that combined NQR, NMR and nonlinear conductivity

measurements in LBCO and LESCO demonstrate that charge stripes are strongly pinned

in these compounds, and that their amplitude is similar in several cuprate families. The

induced spin stripes, however, fluctuate strongly and freeze in a glassy fashion. As we

will find in the final section of this chapter, such complex spin and charge interplay bears

a deep influence on the superconductivity developing on top of it.

3.3 Striped superconductivity.

The final question to be discussed in this thesis is the interaction between charge stripes

and superconductivity, leading to dramatic CuO2 plane decoupling in LBCO-1/8 [85,86].

Two important questions are to be answered: can the dynamics of the unconventional

superconducting state in LBCO-1/8 be understood within established theories of two-

dimensional superconductivity? and perhaps more importantly, what are the implications

of such a state in charge-ordered compounds such as LBCO for cuprate superconductivity

in general?

We first focus on a deeper understanding of the superconductivity in LBCO-1/8,

through measurements of its conductivity in a wide frequency range. As discussed in

Chapter 2, LBCO-1/8 displays an extremely rich phase diagram: the structural LTO-LTT

transition occurs at ∼ 56 K, followed closely by the charge stripe onset at ∼ 53 K and

spin stripe glassy dynamics with a freezing temperature ∼ 20 K [37,85,86], as seen in the

previous section. In addition, a strong increase of in-plane conductivity is observed close

to 40 K, and the conductivity increases further until diverging at ∼ 16 K [85]. The 𝑐-axis

conductivity, however, remains finite down to ∼ 10 K, and a full superconducting Meissner
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response only appears at ∼ 4 K. Thus the ratio of in-plane to 𝑐-axis conductivity is essen-

tially infinite in a considerable temperature range, indicating that true two-dimensional

superconductivity is present in this compound. The results of the conductivity mea-

surements were modelled in Ref. [85] with a conventional Berezinski-Kosterlitz-Thouless

(BKT) expression [85,155], and a theoretical framework was devised to explain the decou-

pling of CuO2 planes necessary for 2D superconductivity to occur [87–89]. The essential

ingredient is the interplay between superconductivity and charge stripes, supposedly re-

sulting in a spatially modulated superconducting state known as a phase density wave

(PDW).

Superconductivity in a large majority of materials is spatially uniform, as is the BCS

theory of superconductivity and most of its generalizations (such as Eliashberg the-

ory) [118, 144]. Yet soon after the consolidation of BCS theory, a spatially modulated

superconducting state was suggested close to interfaces between superconductors and

ferromagnets, known as the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state [213, 214].

There a strong external magnetic field causes the Fermi surface to split in two (for spin

up and spin down electrons), and superconducting Cooper pairs form between electrons

on different Fermi surfaces; the pairing therefore has a finite wave-vector. In LBCO, a

similar phenomenon is proposed to occur: the superconducting phase becomes periodic

with wave-vector Q𝑆𝐶 , due to the interaction with underlying charge and spin stripe

order [39,87–89]. If the cuprates are regarded as stacks of two-dimensional superconduc-

tors with Josephson coupling between the layers, particular arrangements of the PDW

phases across the layers can frustrate the interlayer coupling which would otherwise induce

three-dimensional superconductivity. Broadly, such a frustrated coupling is proposed to

explain the 2D superconducting physics observed in LBCO-1/8. Yet experiments prob-

ing the modulated superconductivity itself are rather difficult to perform, especially since

the layer decoupling is not perfect and 3D superconductivity does appear eventually. In

fact, the mean-field PDW model requires a finite interplane coupling for energy mini-

mization [89]. Imaging the modulated superconductivity with surface sensitive probes in

LBCO is impossible because of the strong ionic character of the bonding between CuO2

and LaO layers, resulting in poor cleavability and large electric fields at the surface.

However, recently an STM study has claimed the first direct detection of modulated su-

perconductivity in a different, strongly anisotropic cuprate BSCCO [185], indicating that

such a state is at least possible in principle. Signatures of the PDW state in other, less
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direct probes such as ARPES are predicted to be relatively weak [215], and local probes

such as NMR and muon rotation spectroscopy are confounded by the coexisting charge

and spin stripes. It is thus fair to say that while the two-dimensional nature of super-

conductivity in LBCO-1/8 is relatively well established, the tentative underlying phase

density wave is much more speculative. Alternative mechanisms of interlayer coupling

frustration are thus possible.

To date the best evidence of BKT physics in LBCO comes from investigations of linear

and nonlinear conductivity [85], where both the above-mentioned in-plane conductivity

divergence and characteristic current-voltage power laws were observed. Here we measure

the conductivity in dependence on frequency, to place much stronger constraints on the

validity of BKT physics in LBCO and show that an ultra-slow timescale characterizes the

superconducting dynamics.

The in-plane conductivity of LBCO-1/8 was measured using the contact-free method-

ology described in Chapter 2, with excitation frequencies ranging from 10 kHz to 10 GHz.

A dramatic frequency dependence is observed below temperatures corresponding to the

onset of two-dimensional superconducting fluctuations in previous work (Fig. 3.17). Al-

most no change is seen in the microwave conductivity, while the low-frequency results

correspond closely to the nominally direct current (dc) conductivity from Ref. [85]. Mea-

surements at intermediate frequencies show a smooth evolution, indicating the presence

of a characteristic superconducting timescale in the millisecond range. In view of such a

strong frequency dependence at low frequencies, it is important to note that the previ-

ously obtained conductivity is not truly dc, but measured using millisecond pulses (and

thus effectively in the kHz frequency range). The temperature in our measurements is

limited to above ∼ 15 K due to a relatively weak thermal contact between the sample

holder and liquid helium (as described in Chapter 2), but the microwave measurements

are performed in a different probe and thus extend to lower temperatures. No clear signs

of superconductivity are seen at microwave frequencies down to at least 5 K.

Qualitatively, an extremely slow characteristic fluctuation timescale is consistent with

vortex-antivortex dynamics of two-dimensional superconductors both above and below

their BKT transition temperatures [156–158]. This is an important and nontrivial confir-

mation of BKT physics in LBCO-1/8. To make quantitative conclusions, we may com-

pare the results to standard expressions for dynamic conductivity above 𝑇𝐵𝐾𝑇 , where our

measurements are reliable. We have shown in Chapter 2 that the dynamics of unbound
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Figure 3.17: Frequency-dependent conductivity of LBCO-1/8.

AC conductivity of LBCO-1/8 in dependence on temperatures, at different frequencies of

the applied electric field (left), showing a dramatic frequency dependence below ∼ 38 K.

Previous current pulse measurements from Ref. [85] are shown for comparison (line).

The frequency dependence at 26 K is extracted in the inset, with a Davidson-Cole fit

(see text). The temperature dependence of the characteristic relaxation time 𝜏0 obtained

from the fits (right) follows a conventional Halperin-Nelson function (line – see text);

the full circles were calculated only from our data, while the empty circles include the

pulse measurements. The relaxation stretching parameter 1−𝛽 quantifies the influence of

disorder on the superconducting dynamics and increases upon cooling, in broad agreement

with lanthanum NMR studies. The inset shows the distributions of elementary relaxation

times leading to the Davidson-Cole relaxation, for two values of 1 − 𝛽.

vortices high above 𝑇𝐵𝐾𝑇 is essentially diffusional in a clean system, leading to simple

exponential relaxation in the time domain and a Debye-Drude dependence of conductivity

on frequency. Yet the measured dependence in Fig. 3.17 is stretched out over many orders

of magnitude in frequency, especially at temperatures closer to 𝑇𝐵𝐾𝑇 , and clearly cannot

be fitted with a simple Drude form (2.10). The bound-vortex dynamical conductivity, i.e.

the Minnhagen phenomenology (2.11) is also not appropriate, since its high-frequency

behaviour is similar to a Drude form. To fit our data, we then take a phenomenological

expanded Drude form used extensively in the analysis of glassy relaxation processes in
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polymers and liquids, known as Havriliak-Negami dynamics [216]:

𝜎(𝜔) = 𝜎∞ +
𝜎0

[1 + (𝑖𝜔𝜏0)𝛼]𝛽
(3.4)

where 𝜏0 is the mean relaxation time, and 𝛼 and 𝛽 exponents describing the underlying

spatial distribution of relaxation times. The Havriliak-Negami function in the frequency

domain is closely related to stretched exponential relaxation in the time domain [217],

and they both arise from a distribution of local characteristic times. To use a minimal

number of free parameters in analysing the conductivity, we set 𝛼 = 1 and obtain a

variant of the Havriliak-Negami relaxation called the Davidson-Cole form [218,219]. The

single stretching parameter 𝛽 then provides information on the influence of disorder on the

vortex dynamics. If the conductivity function is viewed as a superposition of elementary

Drude processes with different 𝜏𝐷, we can write it as

𝜎(𝜔) =

∫︁ ∞

0

𝛾 (𝜏𝐷) 𝑑𝜏𝐷
1 + 𝑖𝜔𝜏𝐷

(3.5)

with 𝛾 (𝜏𝐷) the distribution function, which is known in analytical form (see Appendix

E). A plot of 𝛾 (𝜏𝐷) for different 𝛽 (inset of Fig. 3.17 right) shows that the distribution

is heavy-tailed at small relaxation times (i.e. high frequencies), as is indeed observed

in experiment: the data can be satisfactorily fitted to the Davidson-Cole function at all

measurement temperatures, enabling the extraction of both the characteristic time and

𝛽 in dependence on temperature. A more physically realistic distribution of 𝜏𝐷 would

probably provide a more accurate description of the measurements, but would forfeit the

simplicity of the analytical Davidson-Cole expression.

In BKT theory, the relaxation time is proportional to the vortex density 𝑛𝑣, as dis-

cussed in Chapter 2. The temperature dependence of the density is modelled within the

theory with a phenomenological relation known as the Halperin-Nelson equation [155],

𝑛𝑣 ∼ 1/𝜉0(𝑇 )2𝑒−
√

𝑏(𝑇𝑐0−𝑇𝐵𝐾𝑇 )(𝑇−𝑇𝐵𝐾𝑇 ) (3.6)

where 𝑏 is a constant, 𝑇𝑐0 the mean-field superconducting transition temperature, and 𝜉0

is the Ginzburg-Landau superconducting correlation length with 1/𝜉20 ∼ 𝑇𝑐0 − 𝑇 [144].

This formula describes the measured temperature dependence of 𝜏0 rather well in the

entire range (noting that values from the previous voltage pulse study have been used

in determining 𝜏0 below 20 K). The characteristic temperatures are 𝑇𝐵𝐾𝑇 = 16 K and

𝑇𝑐0 = 41 K, and the value of 𝑏 = 0.084 ± 0.003 can be directly compared with a simi-

lar fit to the temperature dependence of the linear dc (pulsed) conductivity [85]. There
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𝑏 = 0.29 ± 0.02 was obtained, which is about 3.5 times larger than our estimate. The

difference may be attributed to two effects: as already discussed, the dc conductivity of

Ref. [85] should in fact be considered to be appropriate for frequencies in the kHz range

– the strong frequency dependence of the conductivity then introduces large corrections

at lower temperatures and the true dc value cannot be obtained from the pulsed mea-

surements alone. Furthermore, our frequency-dependent measurements show that clean

BKT vortex dynamics is modified by disorder in LBCO, inducing a stretching of the re-

laxation process and, plausibly, a distribution of local vortex densities. It is thus naive

to expect the ’clean’ BKT theory, which predicts a simple Drude dynamical conductivity,

to quantitatively describe LBCO. In view of these facts, the theoretical description of

the temperature dependence of 𝜏0 by the Halperin-Nelson function is remarkable, and the

agreement between the two values of 𝑏 obtained from different experiments appears rea-

sonable. We may thus conclude that our dynamic conductivity measurements confirm the

basic assumptions of BKT theory in LBCO and reveal a slow vortex fluctuation timescale,

while enabling us to quantify the effects of disorder.

It has long been known from lanthanum NMR studies that in 214 cuprates around

doping 1/8 the characteristic spin relaxation times have a wide distribution in real space

[50, 111, 184], which we have seen is closely related to the glassy slowing-down of spin

correlations in the charge stripe state. Clearly the spatially heterogeneous spin relax-

ation bears an influence on the superconducting dynamics, as displayed by the significant

stretching of the conductivity curves in Fig. 3.17. As discussed above, a pure BKT sys-

tem would have a Drude conductivity relaxation, and the simplest interpretation of the

stretching is through a distribution of relaxation times. If we plot the stretching param-

eter as 1 − 𝛽 to highlight the deviation from simple Debye-Drude dynamics, a consistent

picture emerges. The stretching is small close to 𝑇𝑐0 ∼ 40 K, as should be expected by

comparison with our Cu NQR relaxation measurements, where no significant stretching is

observed as well. 1−𝛽 then increases continuously down to the spin freezing temperature

𝑇𝑉 𝑇𝐹 ∼ 20 K determined from our Cu NQR experiments and in agreement with previous

lanthanum NMR studies. If the theory of intertwined charge, stripe and superconducting

orders is taken at face value, the different couplings present in it suggest that a glassy spin

dynamics should influence the vortex dynamics and induce heterogeneity as well. Yet this

is rather hard to include in a quantitative theory [89].

Interestingly, numerical work on 2D spin systems [220, 221] indicates that disorder
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significantly suppresses 𝑇𝐵𝐾𝑇 ; an analogous effect might explain the anomalously broad

fluctuation temperature region 𝜖 = 1 − 𝑇𝐵𝐾𝑇/𝑇𝑐0 ≈ 0.6 present in LBCO. Values of

𝜖 in thin films are significantly smaller for planar resistivities similar to LBCO [156], a

typical value being 𝜖 ≈ 0.1. More detailed numerical simulations of superconducting BKT

physics with disorder are necessary to confirm the effect, but it seems plausible that the

underlying spin heterogeneity induces dynamical vortex heterogeneity and broadens the

fluctuation range.

Further evidence for this comes from nonlinear conductivity measurements we have

performed, i.e. the dependence of conductivity on the applied electric field amplitude

(Fig. 3.18). Below 𝑇𝑐0 a large nonlinearity is present at 340 kHz, but not at 10 GHz or

in the pulsed kHz measurements (at least above 20 K). Thus there seems to exist a char-

acteristic frequency ∼ 1/𝜏0 where nonlinear response is strongest. As we have discussed

extensively in Chapter 2, nonlinear conductivity is directly related to higher order corre-

lation functions; it has been shown that in glass-forming and dynamically heterogeneous

materials the nonlinear response exhibits a peak at a specific frequency related to the

heterogeneity scale [167–169]. Our measurements in LBCO therefore create in interesting

link to other classes of disordered materials, and indicate that vortex dynamic correlations

are important.

The most striking result of our dynamical conductivity studies in LBCO is the ap-

pearance of a slow fluctuation timescale 𝜏0. We stress that 𝜏0 is many orders of magnitude

larger than typical electronic and superconducting scales seen in the cuprates and other

conducting systems [130, 144, 145, 222]. Its existence in itself demonstrates that the su-

perconductivity of LBCO-1/8 is highly unconventional, and we have shown that it can be

understood within the BKT framework (with included effects of disorder). However, such

a slow superconducting timescale has never been observed in other prominent cuprates

such as LSCO, YBCO and Hg1201, although it has long been speculated that BKT

physics may universally play a role in cuprate superconductivity [145,223,224]. It is true

that superconductivity is an inherent property of the quasi-two-dimensional CuO2 planes:

interfacial superconductivity in cuprate heterostructures was shown to be possible in a

single doped CuO2 layer in high-precision engineered films [225, 226]. Yet these experi-

ments do not find the characteristic signs of BKT, but instead detect a well-defined 𝑇𝑐

and significant Meissner shielding, which should not be possible in a true 2D supercon-

ductor [150, 151]. Thus the superconductivity is either not truly limited to one plane,
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Figure 3.18: LBCO conductivity nonlinearities.

The conductivity of LBCO-1/8 is shown at two frequencies: 340 kHz (left) and 10.3 GHz

(right), for different excitation fields. AT the lower frequency, a strong nonlinearity is

present below ∼ 36 K, signalling the onset of 2D superconducting fluctuations. The

left inset shows the dependence of conductivity on applied field (i.e. voltage on the

coil), compared to a power law dependence similar to Ref. [85] (line). In the microwave

frequency range, no noticeable nonlinearities are present in a wide range of excitation

voltages. The right inset shows the 𝑐-axis microwave conductivity, with a clearly visible

LTT structural transition and increase at low temperatures.

or some as yet unknown aspect of the superconducting mechanism voids the argument

that in two spatial dimensions the fluctuations are always too strong for long-range phase

coherence to appear. In either case, a BKT interpretation is not plausible. The finding of

BKT physics in the exceptional compound LBCO-1/8 therefore highlights the fact that

such 2D superconductivity is not the norm in cuprates. In other words, our results are

strong evidence against the ubiquity of two-dimensional vortex fluctuations in cuprates,

since LBCO is a very special case where the complex interaction of charge and spin stripes

with superconductivity induces BKT physics.

Although critical behaviour consistent with 2D exponents has been observed in some

underdoped compounds such as LSCO films using microwave conductivity measurements

[222], the timescales remain significantly shorter and the fluctuation region much narrower
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Figure 3.19: Superconductivity of LESCO.

The radiofrequency magnetic susceptibility of three LESCO samples measured at 50 MHz

is shown, with doping levels 𝑥 = 0.08, 𝑥 = 0.15 and 𝑥 = 0.125. Bulk superconductivity is

clearly observed in the 𝑥 = 0.08 and 𝑥 = 0.15 samples, while the sample with doping 1/8

is not superconducting down to the experimental base temperature.

than what is found in LBCO. Furthermore, several recent studies of different cuprates –

including LSCO, YBCO and Hg1201 – demonstrate that superconductivity essentially

appears in a three-dimensional way, with a relatively narrow temperature range above

𝑇𝑐 where traces of superconductivity are detected [101, 131, 133, 147, 227]. The stark

contrast between superconducting fluctuations in LBCO and other cuprates serves to

emphasize that the superconducting fluctuations in ’normal’ cuprates are not caused by

vortex unbinding and two-dimensional physics.

The superconductivity in LBCO-1/8 is clearly exceptional, but that does not imply

that it is unique. If charge stripes in LBCO are capable of inducing layer decoupling

and two-dimensional superconductivity, it should be expected that similar effects take

place in related materials. So far there is little experimental evidence of this [39, 89].

Depressions of bulk 𝑇𝐶 around doping 1/8 in representative cuprates such as LSCO and

YBCO have long been known, but no clear indication of stripe-induced layer decoupling

has been found [39, 89, 228]. Here we investigate the superconductivity of LESCO, a 214
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cuprate with prominent stripe order, to compare it to LBCO. Our contact-free conduc-

tivity measurement setup is used to determine the conductivity both in the CuO2 planes

and perpendicular to them, for three LESCO samples with different doping concentra-

tions. Three-dimensional bulk superconductivity is clearly seen in samples away from

doping 1/8 (Fig. 3.19). Yet the sample with doping 1/8, with the most prominent charge

and spin stripe order, does not become superconducting along the 𝑐-axis down to the base

temperature of our experiment of 1.5 K. In contrast, the in-plane conductivity shows signs

of superconductivity as high as 12 K, as demonstrated by the effect of external magnetic

fields (Fig. 3.20). Below 12 K the conductivity curves upwards and the fields shift the

curve to lower temperatures, consistent with a superconducting response. The rate of

shift is roughly 4 K/T, similar to the shift of 𝑇𝑐0 and 𝑇𝐵𝐾𝑇 in LBCO [85], but much

larger than the change of 𝑇𝑐 in external fields for cuprates such as YBCO and LSCO away

from doping 1/8 [131,133,229–231].

Furthermore, strong current-voltage nonlinearity appears below 12 K in the in-plane

response, while the 𝑐-axis response remains linear in a wide range of excitation voltages

(Fig. 3.20). Low-current measurements below 10 K can be analysed using a power law

temperature dependence 𝜎 ∼ 𝑇−𝑎 with 𝑎 ≈ 0.2 – such behaviour was predicted for a

’sliding phase’ stack of 2D superconductors [232] and is also observed in LBCO (but in

a narrower temperature range and exponent closer to 1) [86]. We note that a previous

Nernst effect study of LESCO [233] has also found behaviour consistent with 2D Gaussian

fluctuations above 𝑇𝑐. However, the work advocates that 2D superconductivity in LESCO

implies an universal importance of similar effects in cuprates. Our experiments clearly

demonstrate that such a view is flawed, since other cuprates do not possess the ultra-slow

vortex dynamics detected here, and in both LESCO and LBCO the pinned charge order

underlies strong layer decoupling. The 2D superconductivity may thus be viewed as an

emergent phenomenon limited to doping concentrations around 1/8 and resulting from

the interplay between charge stripes and pairing tendencies. While the stripes are clearly

responsible for the dramatic interlayer tunnelling frustration, our experiments cannot

be seen as strong evidence for (or against) the phase density wave model. Yet we have

shown that the stripes are disordered, and this disorder is reflected in the superconducting

dynamics. Since the PDW layer decoupling scheme implies well-defined phase differences

between density waves in different layers, it seems that in-plane disorder could significantly

affect the decoupling.
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Figure 3.20: Two-dimensional superconductivity in LESCO-1/8.

The in-plane and 𝑐-axis conductivity of LESCO-1/8, for different out-of-plane external

magnetic fields (left) and excitation voltages (right). The in-plane response is very sen-

sitive to both external fields and changes in excitation amplitude, while the 𝑐-axis con-

ductivity is always the same. This strongly suggests the presence of 2D superconducting

fluctuations in the sample. The in-plane conductivity for low excitation amplitudes fol-

lows a power law in temperature (line), in accordance with theoretical predictions (see

text). The small kink at ∼ 7 K is the superconducting transition of Pb-Sn solder used in

the coil contacts.

The experiments show unambiguously that a two-dimensional superconducting fluc-

tuation state similar to LBCO-1/8 occurs in LESCO-1/8 as well, but the characteristic

temperatures are about three times lower in LESCO than in LBCO. We thus cannot

clearly observe the BKT transition in LESCO with our setup, since temperatures below

1.5 K are needed. Yet the fluctuation regimes in the two compounds are remarkably

similar, except for the overall temperature shift. Putting the effects of charge stripes and

layer decoupling aside, the shift itself provides important insight into the makeup of the

superconducting condensate, as follows. It has been theoretically argued that symmetric

combinations of oxygen orbitals are involved in cuprate superconductivity [6,90,235]. The
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canting of CuO octahedra in the LTT structure would then be detrimental to supercon-

ductivity [234] because it breaks the symmetry between two oxygen atoms in the unit

cell [6, 91, 235]. Co-doped lanthanum cuprates with prominent LTT phases indeed have

smaller 𝑇𝑐 than their LTT-free counterparts, but so far the effect has not been investigated

quantitatively due to the many complications of the 214 phase diagram. Here we have the

opportunity to separate the influence of charge order around doping 1/8 from an overall

LTT suppression of 𝑇𝑐 for two compounds with different 𝑇𝐿𝑇𝑇 , LESCO and LBCO. If

their characteristic temperatures are plotted together, the phase diagrams indeed look

similar (Fig. 3.21), with superconductivity shifted to lower temperatures where 𝑇𝐿𝑇𝑇 is

higher.

Phenomenologically, the LTT effect on 𝑇𝑐 (and the superconducting onset temperature

𝑇𝑐0) can be eliminated if the two scales are multiplied: 𝑇𝑐 · 𝑇𝐿𝑇𝑇 and 𝑇𝑐0 · 𝑇𝐿𝑇𝑇 fall on

the same curves for both compounds, yielding a universal phase diagram. Of course, the

simple multiplication should be taken as a semiquantitative indicator of the suppression

of 𝑇𝑐 when 𝑇𝐿𝑇𝑇 increases; it is presumably only useful in a limited range of 𝑇𝐿𝑇𝑇 , since

e.g. if 𝑇𝐿𝑇𝑇 is very small, 𝑇𝑐 will not diverge. An analogous analysis can be made for

the neodymium co-doped compound La2−𝑥−𝑦Nd𝑦Sr𝑥CuO4, keeping in mind that it has an

additional structural transition to a low temperature less-orthorhombic (LTLO) phase at

low doping concentrations [84, 91]. Including only compounds with a well-defined 𝑇𝐿𝑇𝑇 ,

we plot the superconducting onset temperatures 𝑇𝑐0 from LNSCO resistivity [84] on the

universal phase diagram, obtaining agreement with the values in LBCO and LESCO. To

our knowledge, bulk 𝑇𝑐 data for the same LNSCO compositions are not available, and

are thus not included. Yet magnetic susceptibility studies on samples with different Nd

concentrations show a strong suppression of bulk 𝑇𝑐 close to doping 1/8, similar to LBCO

and LESCO. Notably, in several previous investigations the onset of superconductivity in

resistivity was ascribed to sample inhomogeneities [84,236], since the corresponding bulk

𝑇𝑐 is significantly lower around doping 1/8. It is now clear that the large difference is due

to stripe-induced two-dimensionality, since a 2D superconductor has negligible Meissner

shielding. The effects of stripes and LTT oxygen symmetry breaking are thus clearly

separated in the phase diagram in Fig. 3.21.

Charge stripe order and LTT effects in the phase diagram are clearly separated: the

stripes induce a suppression of bulk 𝑇𝑐 around doping 1/8, but leave the onset temper-

atures 𝑇𝑐0 largely intact; the LTT effect is superimposed on the charge stripe effect and
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Figure 3.21: Effect of the LTT shift on superconductivity.

The superconducting phase diagram of three lanthanum-based cuprates: LBCO, LESCO

and LNSCO, demonstrating the strong influence of the LTT phase on superconductivity.

A universal phase diagram is obtained when the superconducting and structural transition

temperatures are multiplied. Bulk 𝑇𝑐 · 𝑇𝐿𝑇𝑇 values are shown for LBCO [37] and LESCO

(full symbols), while resistivity 𝑇𝑐 are plotted for LBCO and LESCO from data ontained

in this work, and for LNSCO from available data [84] (empty symbols). The charge-

stripe-induced effects around doping 1/8 only influence bulk superconductivity, while the

onset temperatures remain roughly the same and follow the well-known parabolic doping

dependence once the LTT effect is taken into account. The inset shows the raw phase

diagrams of LESCO and LBCO, exhibiting the wide range of transition temperatures

involved in the scaling in the main panel.
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equally suppresses all forms of superconductivity. The suppression of 𝑇𝑐 and 𝑇𝑐0 is roughly

inversely proportional to 𝑇𝐿𝑇𝑇 over a significant range; the structural transition temper-

atures for LBCO and LESCO differ by a factor of two. More importantly, no apparent

doping dependence of the LTT suppression is seen. We note that in some previous work

the LTT tilt angle has been taken as a microscopic measure of the stability of the phase, in

place of 𝑇𝐿𝑇𝑇 [84]. Yet more recent work on LBCO has demonstrated that the tilt angle is

not an unambiguous indicator of LTT stability [37]: the tilt angle decreases with doping,

while 𝑇𝐿𝑇𝑇 increases slightly. Other stabilising factors thus come into play, with point

disorder being one candidate. The transition temperature is then taken as a more reliable

measure of LTT effects here, although a relation between 𝑇𝐿𝑇𝑇 and microscopic parame-

ters such as oxygen orbital symmetry breaking might not be simple as well. Regardless of

the exact pairing mechanism, the oxygen orbital symmetry breaking presumably enters

into the effective electron-electron coupling 𝜆, and thus strongly influences 𝑇𝑐 due to its

exponential dependence on 1/𝜆.

The suppression of superconductivity by the LTT octahedral tilt has important reper-

cussions for understanding the orbital conditions necessary for high-T𝑐 pairing in cuprates.

Generally, in single-layer cuprates 𝑇𝑐 is inversely correlated with the deviation of CuO2

units from perfect squares [91]: the tetragonal material Hg1201 has a maximum 𝑇𝑐,𝑚𝑎𝑥 ∼

100 K, compared to the orthorhombic LSCO with 𝑇𝑐,𝑚𝑎𝑥 ∼ 40 K. This indicates that

oxygen-oxygen orbital symmetry is beneficial for superconductivity. The notion is con-

firmed by two further experiments: the influence of the LTT phase discussed here, and

a recent study of Zn-substituted YBCO [6], where it is shown that a Zn-induced local

oxygen symmetry breaking is responsible for strong 𝑇𝑐 suppression. Interestingly, Zn

substitution also suppresses charge stripe order in LBCO and stabilizes the LTT struc-

ture [237]. This is reasonable, since the LTT and Zn-induced tilts are similar and point

to the same physical mechanism. Oxygen symmetry breaking poses a strong constraint

on possible theories of high-T𝑐 superconductivity.
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Chapter 4

Conclusions and Outlook

This thesis provides comprehensive experimental insight into the behaviour of charge order

in cuprates and its relation to superconductivity. Here we summarize the most important

open questions addressed by our experiments, put the results in a broader context, and

discuss possible avenues for further work.

The first significant result is the evolution of charge stripe order through a precursor

charge nematic phase in LESCO. We have shown that the nematic appears through a

well-defined phase transition, while charge stripes are not a true thermodynamic phase.

Theories of stripe emergence predict precisely such an evolution, and our combined exper-

imental investigation confirms them, highlighting the role of disorder in cuprate charge

stripe physics. We gain the first firm experimental evidence of a charge nematic phase in

cuprates, establishing a link to other classes of materials with strong electronic correlations

that also undergo nematic ordering; prominent examples are pnictide superconductors and

quantum Hall systems. Furthermore, our experimental methodology, and especially the

newly developed nonlinear response measurement setup, pave the way for further studies

of unconventional electronic order in a diverse range of materials. It would be interesting

to search for the charge nematic in other tetragonal cuprates as well, with Hg1201 being

a prime candidate.

Importantly, the charge nematic transition temperatures we detect in LESCO are well

below the pseudogap opening temperatures 𝑇 *, thus disproving the direct relation between

pseudogap and charge nematic suggested in recent theoretical work. Yet our experiments

leave open the possibility for the existence of even more exotic ordered phases such as the

tentative loop metal, which might be associated with the pseudogap state. Further work

is needed to clarify this issue, but such a connection is in our view unlikely due to the
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significantly different evolution of pseudogap and charge order with doping.

Having resolved the thermodynamic properties of charge stripes, we use nuclear mag-

netic resonance as a local probe of stripe dynamics in LBCO-1/8. The measurements

show that charge stripes are strongly pinned to the lattice, in agreement with previous

X-ray scattering investigations. Yet our NQR experiments provide a way of estimating

the amplitude of the charge modulation, which turns out to be similar in LBCO and

other cuprates such as LESCO and YBCO. This suggests that the charge stripe am-

plitude in cuprates is universal. Nonlinear conductivity measurements in LESCO also

detect a stripe pinning-induced signal and confirm the strong pinning of charge stripes

in lanthanum-based cuprates. In contrast, the spin stripes induced by the charge order

fluctuate intensely and their amplitude significantly depends on the cuprate family. Our

fast relaxation NQR experiments demonstrate that these fluctuations are responsible for

the decrease of Cu NMR/NQR signal intensity observed in previous work. The nature of

the signal wipeout effect is thus resolved after two decades of debate.

Finally, we investigate the unusual two-dimensional superconductivity in LBCO-1/8

induced by charge stripes. Measurements of frequency-dependent conductivity reveal an

extremely slow superconducting fluctuation timescale, in line with Berezinski-Kosterlitz-

Thouless vortex physics. This confirms that LBCO-1/8 exhibits true 2D superconductiv-

ity, and gives credence to the idea of a phase density wave as the origin of CuO2 layer

decoupling. However, effects of disorder on the vortex dynamics are also seen in the

conductivity, indicating that a pure BKT description is overly simplistic. To determine

if the 2D superconductivity is endemic to LBCO-1/8, we perform conductivity measure-

ments on LESCO, finding similar features at doping 1/8. The experiment allows us to

disentangle the influence of charge stripes from a systemic effect of the LTT tilt, which

breaks the symmetry between oxygen orbitals in the unit cell. The pronounced doping-

independent suppression of superconductivity in the LTT phase suggests that symmetric

oxygen orbital combinations are important for cuprate superconductivity in general.

An omnipresent motive throughout our investigations is disorder: it destroys long-

range charge stripes, causes stripe pinning and glassy spin dynamics, and influences su-

perconducting vortex fluctuations. Perhaps the most important message of this work

is that disorder is a vital ingredient of cuprate physics, and cannot be disregarded in

understanding prominent electronic ordering tendencies.
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Chapter 5

Nabojne pruge u kupratima

5.1 Uvod.

Predmet istraživanja ovog rada su kupratni supravodiči: materijali koji su u fokusu fizike

kondenzirane materije već trideset godina. Unatoč intenzivnom istraživanju, još uvijek

ne postoji slaganje oko prirode glavnih značajki kuprata. Od njih je svakako najvažnija

supravodljivost – makroskopsko kvantno stanje elektrona u materijalu koje ima električni

otpor jednak nuli – ali se pojavljuju i druge srodne elektronski uređene faze. Zbog velikog

bogatstva elektronske fizike, možemo reći da su kuprati iznimno kompleksni materijali.

Tri su glavna razloga za tu složenost: smanjena efektivna dimenzionalnost, jake korelacije

među elektronima, i intrinzični nered.

Kuprati su spojevi perovskitne kristalne strukture na bazi bakra i kisika, čiji su

glavni strukturni elementi CuO2 ravnine. Pri formiranju trodimenzionalnog kristala,

CuO2 ravnine se izmjenjuju s ionskim slojevima koji služe kao rezervoari naboja. Ra-

zličiti ionski slojevi daju različite obitelji kuprata. Većina zanimljivih elektronskih fenom-

ena odvija se unutar CuO2 ravnina, i zbog te slojevitosti se kuprati smatraju kvazi-

dvodimenzionalnim materijalima, odnosno materijalima smanjene efektivne dimenzion-

alnosti. Jake elektronske korelacije nastaju zbog kulonskog odbijanja elektrona u d-

orbitalama atoma bakra, što vodi na izolatorsko i antiferomagnetsko osnovno stanje po-

laznih spojeva kuprata. Konačno, za dobivanje supravodljivosti i ostalih elektronskih

uređenja, slobodni nosioci naboja ubacuju se u CuO2 ravnine dopiranjem ishodišnih spo-

jeva. Kemijski proces dopiranja nužno unosi nered u kristal, no poznato je da su perovskiti

i intrinzično skloni lokalnim deformacijama kristalne rešetke. Nered je zato neizbježan

aspekt fizike kuprata, i kao što ćemo ovdje pokazati, važan za razumijevanje elektronskih
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uređenja.

Fazni dijagram kuprata u kojem su kontrolni parametri dopiranje (odnosno koncen-

tracija slobodnih nosioca naboja) i temperatura ima nekoliko važnih univerzalnih svo-

jstava. Prije svega, nedopirani spojevi su zbog jakih korelacija Mottovi izolatori i an-

tiferomagneti. No već nekoliko postotaka dopiranih šupljina po jediničnoj ćeliji uniš-

tava dugodosežni magnetizam, stvara se spinsko staklo i supravodljivost. Temperatura

supravodljivog prijelaza je maksimalna oko dopiranja 16%, i ima karakterističan kupolast

oblik u faznom dijagramu. Zato se spojeve s dopiranjem ispod 16% naziva poddopiran-

ima, a one iznad 16% naddopiranima. Poddopirano područje faznog dijagrama je naročito

zanimljivo zbog pojave elektronskih uređenja, poput još nerazjašnjenog pseudoprocjepa,

te nabojnih i spinskih pruga. Nedavno je eksperimentalno ustanovljeno da su nabojne

pruge univerzalno prisutne u kupratima, no razumijevanje njihovog nastanka i dinamike

je nepotpuno. Stoga su nabojne i spinske pruge glavni predmet ovog istraživanja.

Teoretska istraživanja ponašanja prugastih faza općenito predviđaju da je dugodosežno

prugasto uređenje iznimno osjetljivo na nered. U prisutstvu točkastog nereda prugasto

uređenje gubi dugodosežne korelacije i postaje staklasto, uz nedostatak pravog faznog

prijelaza. Međutim, faza koja lomi samo orijentacijku simetriju, poznata kao nabojni

nematik, preživljava i ostaje dobro definirana. Prema tome, nabojne pruge u kupratima bi

trebale nastajati postepeno iz nematske faze. Neki teorijski radovi zato povezuju nematik s

pseudoprocjepom, zaključujući da je veći dio faznog dijagrama kuprata određen nabojnim

uređenjima. Eksperimentalna detekcija nematika i provjera teorijskih razmišljanja prvi je

cilj ovog rada.

jednom kad su nabojne pruge formirane, zbog gore spomenute jake interakcije s nere-

dom njihova dinamika postaje netrivijalna. Tu je najvažniji koncept zapinjanja, odnosno

onemogućavanja ’klizanja’ nabojnih pruga kroz materijal zbog vezanja na lokalne potenci-

jale defekata u kristalnoj rešetci. Dinamika zapinjanja u kupratima je slabo istražena zbog

njihove velike vodljivosti i poteškoća s mjerenjem lokalnih odziva poput nuklearne mag-

netske rezonancije jezgri bakra. Novim eksperimentalnim metodologijama će ovdje biti

moguće istraživati i razumjeti dinamiku pruga u reprezentativnim kupratnim spojevima.

Napokon, interakcija nabojnih pruga i spuravodljivosti daje zanimljive nekonven-

cionalne supravodljive faze, i može pružiti uvid u dimenzionalnost supravodljivosti u

kupratima općenito. Mjerenjem eletričnog odziva u širokom rasponu frekvencija dokazat

ćemo postojanje prave dvodimenzionalne supravodljivosti pod utjecajem nabojnih pruga,
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te usporediti taj specijalni slučaj s tipičnim kupratima bez nabojnih uređenja.

5.2 Eksperimentalne metode.

U ovom radu korišteno je nekoliko komplementarnih eksperimentalnih metoda, s ciljem

što potpunije karakterizacije novih elektronskih faza u odabranim kupratima. Naročito

važan aspekt eksperimentalnog rada bile su inovacije u primjeni različitih tehnika, koje

su omogućile otkrivanje nekonvencionalnih elektronskih uređenja.

Četiri različite tehnike su upotrebljavane u istraživanju: nuklearna magnetska rezonan-

cija (NMR), linearna i nelinearna vodljivost, te diferencijalni toplinski kapacitet. NMR je

metoda koja se zasniva na mjerenju koherentnog odziva spinova atomskih jezgri unutar

materijala, te daje informacije o lokalnoj elektronskoj fizici. U ovom radu korištene su jez-

gre bakra, koje se nalaze u CuO2 ravninama pa daju izravan uvid u njihova lokalna statička

i dinamička svojstva. Za opažanje nuklearne rezonancije nužno je da se nuklearni spinski

nivoi rascijepe pomoću vanjskog polja. Tada se može manipulirati nuklearnim spinskim

sustavom pomoću pulseva izmjeničnog magnetskog polja na frekvenciji koja odgovara ci-

jepanju energija. U slučaju magnetske rezonancije, to vanjsko polje je magnetsko, i proc-

jep između spinskih nivoa je proporcionalan polju. No postoji i druga, srodna tehnika

poznata kao nuklearna kvadrupolna rezonancija (NQR), gdje lokalni gradijent električnog

polja uzrokuje cijepanje. S obzirom da lokalna električna polja ovise o gustoći naboja,

NQR je posebno pogodna tehnika za proučavanje nabojnih uređenja. Statički NQR spek-

tri izravno daju informaciju o raspodjeli nabojne gustoće. Dinamička svojstva mogu se

također istraživati, mjerenjem relaksacijskih vremena nuklearnih spinova. Spinski sustav

ima dva karakteristična vremena: spin-rešetka relaksacijsko vrijeme 𝑇1, koje mjeri brzinu

izmjene energije spinova s okolinom u materijalu, te vrijeme spinske dekoherencije 𝑇2.

Općenito se može pokazati da je u sistemima s vodljivim elektronima domantni doprinos

spin-rešetka relaksaciji proporcionalan elektronskoj spinskoj susceptibilnosti, što daje jed-

nostavnu mjeru te važne veličine. Teorija dekohenercije je nešto složenija, no 𝑇2 u principu

ovisi o lokalnim magnetskim poljima i daje informaciju o njihovim fluktuacijama. U ovom

radu su kombinirana mjerenja statičkih NQR i NMR spektara za dobivanje informacije o

lokalnim gustoćama naboja, te mjerenja 𝑇1 i 𝑇2 za određivanje niskofrekventne dinamike

elektronskih spinova.

U praksi se za mjerenje NMR/NQR signala koristi metoda spinske jeke, pa deko-
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herencijsko vrijeme 𝑇2 ograničava brzinu mjerenja. Ako 𝑇2 padne ispod ∼ 15 𝜇s, mjerenja

uobičajenim postupcima su znatno otežana, no u kupratima s nabojnim uređenjem se

upravo to događa. Zato je osmišljena nova metodologija za eksperimente koji omogućuju

određivanje vrijednosti 𝑇2 kraćih od 3 𝜇s. Najvažniji elementi su signalno predpojačalo s

kratkim vremenom zasićenja, uvođenje pasivnog gušenja, te posebna sekvenca cikliranja

faza pulseva.

Linearna i nelinearna vodljivost mjerene su sličnim metodama, koje eliminiraju kon-

takte na uzorku i omogućuju eksperimente u širokom rasponu frekvencija. Uzorci se stavl-

jaju u zavojnicu, koja je dio rezonantnog LC kruga ili mikrovalne šupljine. Za mjerenje

linearne vodljivosti, dovoljno je odrediti rezonantnu frekvenciju i Q-faktor kruga sa i bez

uzorka. Za nelinearnu vodljivost potreban je dodatni pobudni krug. Nelinearna vodljivost

se općenito definira kao najniža korekcija uobičajenom Ohmovom zakonu, odnosno u she-

matskom obliku

𝑗 = 𝜎𝐸 + 𝜎3𝐸
3 + ... (5.1)

gdje je 𝑗 gustoća električne struje, 𝐸 vanjsko električno polje, 𝜎 linearna vodljivost i 𝜎3

nelinearna vodljivost trećeg reda. Odziv drugog reda je simetrijski ograničen i u većini

slučajeva jednak nuli. Naravno, u anizotropnom materijalu poput kuprata je 𝜎 tenzor

drugog reda, 𝜎3 tenzor četvrtog reda, i tako dalje. Ako je električno polje oscilatorno

u vremenu s frekvencijom 𝜔, lako je pokazati da će signal na frekvenciji 3𝜔 biti pro-

porcionalan komponentama 𝜎3. Zato pobudni krug u eksperimentu stvara polje neke

frekvencije (tipično reda 10 MHz), a detekcijski krug je namješten na trostruku frekven-

ciju. Visoka primijenjena frekvencija polja eliminira najvažniji izvor artefakata u mjerenju

nelinearne vodljivosti – grijanje uzorka. Naime, ako je oscilacija polja dovoljno spora, tem-

peratura uzorka može pratiti polje i dovesti do signala na trostrukoj frekvenciji koji nema

veze s intrinzičnim nelinearnim odzivom. U našem slučaju je frekvencija dovoljno visoka

da nema temperaturnih oscilacija.

Linearna vodljivost u širokom rasponu frekvencija dat će nam informaciju o supravodljivim

relaksacijama, dok je nelinearna vodljivost iznimno pogodna proba za nematske fluk-

tuacije. Na temperaturi faznog prijelaza iz Fermijeve tekućine u nematik, fluktuacije ne-

matskog parametra reda divergiraju; detekcija te divergencije daje jednoznačnu potvrdu

prirode prijelaza. Unutar teorije Fermijevih tekućina u blizini nematske nestabilnosti Fer-

mijeve površine (Pomerančukova nestabilnost) može se pokazati da je 𝜎3 ∼ 𝜒𝑁 , gdje je

𝜒𝑁 nematska susceptibilnost. Ta veza je posljedica iste kvadrupolne simetrije nematskog
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parametra reda i tenzora odziva trećeg stupnja.

Posljednja korištena eksperimentalna tehnika je diferencijalna metoda mjerenja toplin-

skog kapaciteta. Toplinski kapacitet je ključan za određivanje prirode faznih prijelaza, ali

je za male uzorke teško odvojiti veliki fononski doprinos od malog elektronskog. Zato

je izrađena proba za mjerenje metodom diferencijalne termalne analize, u kojoj se mjeri

relativno kašnjenje temperature uzorka za referentnim senzorom. Ako se temperatura

reference mijenja jednoliko u vremenu, razlika temperatura uzorka i reference je propor-

cionalna toplinskom kapacitetu uzorka. Za mjerenje na uzorcima malih masa, korišteni

su platinski otporni senzori u visokom vakuumu, uz veliku stabilnost i osjetljivost.

Kao reprezentativni sustavi za proučavanje nabojnih uređenja odabrani su kuprati

na bazi lantana, s ishodišnim spojem La2CuO4. Kod njih se dopiranje postiže zam-

jenom dijela atoma lantana dvovalentnim ionima poput stroncija ili barija. Također,

moguće je i izovalentno dopiranje, npr. europijem. Dvije obitelji lantanovih kuprata

su naročito pogodne: La2−𝑥Ba𝑥CuO4 (LBCO) i La2−𝑥−𝑦Eu𝑦Sr𝑥CuO4 (LESCO). Visokok-

valitetni monokristali tih kuprata dobiveni su metodom rasta plutajuće zone i karakter-

izirani u brojnim prethodnim istraživanjima.

5.3 Rezultati i diskusija.

Najvažniji rezultati ovog rada mogu se podijeliti u tri skupine: razjašnjavanje nastanka

nabojnih pruga i pronalazak nematske faze; istraživanje dinamike zapinjanja nabojnih

pruga; te interakcija pruga sa supravodljivošću.

Kombinacijom mjerenja intenziteta NQR signala na jezgrama bakra, nelinearne vodljivosti

i specifičnog toplinskog kapaciteta jednoznačno je pokazano da se nabojne pruge u kupratu

LESCO formiraju postepeno, te da postoji nematska faza. Iz toplinskog kapaciteta se

vidi da nabojno nematsko uređenje nastaje na pravom termodinamičkom faznom prije-

lazu, koji je opažen u uzorcima različitih dopiranja u blizini 𝑥 = 0.125. Također, nelin-

earna vodljivost 𝜎3 daje divergenciju odgovarajuće nematske susceptibilnosti na temper-

aturi faznog prijelaza. Ti rezultati su u skladu s teorijskim predviđanjima za nastanak

nabojnih pruga u prisutstvu nereda, i predstavljaju prvo jednoznačno eksperimentalno

opažanje nabojnog nematika u kupratima. Međutim, u faznom dijagramu nematska faza

usko prati nabojne pruge, i nastaje na temperaturama znatno nižim od temperatura ot-

varanja pseudoprocjepa. Prema tome veza između nematika i pseudoprocjepa ne može
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biti izravna, što opovrgava neke teorijske pretpostavke. Zanimljivo je da mjerenja ne-

matske susceptibilnosti pokazuju njen znatan porast na temperaturama iznad nematskog

faznog prijelaza, ukazujući na prisutstvo jakih nematskih fluktuacija. To je u skladu s

nedavnim opažanjima lokalnog nematiciteta u raspršenju X-zraka, i može se povezati s

teorijski predviđenom egzotičnom fazom poznatom kao ’loop metal’. No za potvrđivanje

postojanja takve faze, potrebni su dodatni eksperimenti. Također je zanimljivo pitanje

univerzalnosti nabojnih nematika u kupratima – iz naših rezultata bilo bi očekivano da i

u drugim kupratima (npr. u tetragonalnom HgBa2CuO4+𝛿) nabojne pruge nastaju kroz

nematsku fazu.

Zbog utjecaja nereda i zapinjanja nabojnih pruga, njihova dinamika je zanimljiva i

relativno neistražena. U kupratima se uz nabojne pruge veže i pojava jakih fluktuacija

elektronskih spinova, te staklaste spinske pruge. Drugi dio rezultata bavi se tim di-

namičkim fenomenima, koristeći modelni kuprat s nabojnim prugama LBCO (dopiranje

𝑥 = 0.125). U njemu je ovdje po prvi puta izmjeren NQR signal bakra ispod temperature

nastanka nabojnih pruga, koji je dosad bio nedostupan zbog vrlo brze spinske dekoheren-

cije (takozvani ’wipeout’ efekt). Spektar bakra se ukupno sastoji od četiri linije, po dva

para za dva izotopa 63Cu i 65Cu. Parovi linija dolaze od različitih okruženja atoma bakra

– u blizini dopanda barija, ili daleko od njega. U nabojno uređenoj fazi, opažen je znatan

porast širine linija bakra, što je očekivano za statične inkomenzurabilne nabojne pruge.

Širina linija je izravno povezana s nabojnim parametrom reda, koji je nezavisno mjeren

raspršenjem X-zraka u prethodnim istraživanjima. Ovi rezultati pokazuju da je nabo-

jno uređenje kvazi-statično u LBCO, dok vrlo kratka vremena spinske dekoherencije i

spin-rešetka relaksacije ukazuju na snažne fluktuacije elektronskih spinova. Sistematskim

mjerenjem temperaturnih ovisnosti relaksacijskih vremena, te usporedbom njihovih vri-

jednosti za dva izotopa bakra, potvrđen je magnetski karakter relaksacija i pokazano je

da spinske fluktuacije prate temperaturnu ovisnost karakterističnu za staklaste tekućine.

To se slaže s prethodnim, neizravnim istraživanjima LBCO preko nuklearne magnetske

rezonancije jezgri lantana. Također, na spinsku dekoherenciju snažno utječe vanjsko mag-

netsko polje unutar CuO2 ravnina, koje stvara preferirani smjer za fluktuacije elektronskih

spinova i time ih potiskuje.

Uz mjerenje NQR bakra u LBCO, dinamika nabojnih pruga proučavana je i u spoju

LESCO mjerenjem nelinearne vodljivosti na niskim temperaturama, gdje su pruge već

formirane. Tamo je opažena karakteristična ovisnost nelinearnod odziva o vanjskom elek-

87



tričnom polju, koja je u skladu s jednostavnim teorijama zapinjanja nabojnih pruga.

Određeno je da su kritična polja zapinjanja reda veličine 10 V/cm ili veća, što je znatno

više od klasičnih kvazi-jednodimenzionalnih sustava s valovima gustoće naboja.

Napokon, iz prethodnih istraživanja vodljivosti spoja LBCO na dopiranju 𝑥 = 0.125 =

1/8 postoje indikacije za dvodimenzionalnu supravodljivost, opisanu Berezinski-Kosterlitz-

Thouless (BKT) teorijom. Općenito je zbog slojevite strukture kuprata dimenzionalnost

njihove supravodljivosti važno pitanje. No ponašanje u skladu s BKT predviđanjima za

čistu dvodimenzionalnu supravodljivost nije opaženo ni u jednom spoju osim LBCO-1/8,

gdje zato mora postojati neki mehanizam razvezivanja CuO2 ravnina. Da bismo dokazali

primjenjivost BKT teorije u LBCO-1/8, mjerena je električna vodljivost u širokom rasponu

frekvencija, gdje je pronađen karakteristični niskofrekventni relaksacijski proces. Tipične

vremenske skale su reda 0.1 ms, što je očekivano za dinamiku razvezanih supravodljivih

vrtloga i antivrtloga u BKT sustavima. To je nezavisan i jak dokaz postojanja dvodimen-

zionalnih supravodljivih fluktuacija u LBCO-1/8. No nepostojanje takve relaksacije u

drugim kupratima ukazuje da u njima općenito BKT fizika nije relevantna za supravodljivi

prijelaz. Baš suprotno – nedavna mjerenja mikrovalne vodljivosti u reprezentativnim spo-

jevima pokazuju da supravodljivost u principu nastaje na jednak način unutar ravnina i

okomito na njih.

Da bismo istražili povezanost nabojnih pruga i dvodimenzionalne supravodljivosti,

proučavan je i kuprat LESCO na isti način kao LBCO-1/8. U njemu je također oko dopi-

ranja 1/8 opaženo odvajanje CuO2 ravnina i pojava dvodimenzionalnosti, što pokazuje

da međuigra nabojnih pruga i supravodljivosti općenito može dovesti do takvih efekata.

To daje potporu teorijskoj ideji o valu gustoće faze (phase density wave – PDW), u ko-

joj međudjelovanjem nabojnih pruga i supravodljivog sparivanja nastaje prostorno mod-

ulirana supravodljivost. Slaganjem takvih valova gustoće faze u ravninama moguće je

značajno smanjiti vezanje među ravnina. Međutim, uz efekt nabojnih pruga, proučavanje

supravodljivosti LBCO i LESCO daje nam mogućnost ocjene drugog važnog utjecaja:

niskotemepraturne tetragonalne (LTT) strukture. Naime, većina lantanovih kuprata na

niskim temperaturama prelazi u LTT fazu, koja uključuje rotaciju oktaedarskih jedinica

CuO6 i slama simetriju duljina veza između kisika i bakra u CuO2 ravninama. LTT struk-

tura u pravilu potiskuje supravodljivost, no ovdje imamo priliku kvantitativno ocijeniti

njen utjecaj. Usporedbom LBCO, LESCO i neodimijem ko-dopiranog kuprata LNSCO

pokazuje se da je temperatura supravodljivog prijelaza obrnuto proporcionalna tempera-
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turi LTT prijelaza, bez obzira na dopiranje. Ovakav sistematski utjecaj LTT faze pokazuje

da je simetrija orbitala kisika važna za supravodljivost, i u skladu je s prethodnim mjeren-

jima lokalne strukture u kupratima gdje je mali postotak bakra zamijenjen cinkom. Efekt

cinka je identičan efektu LTT strukture: lom lokalne simetrije dvaju kisika vezanih na

bakar i snažno potiskivanje supravodljivosti. Simetrične kombinacije orbitala kisika prema

tome igraju bitnu ulogu u supravodljivom mehanizmu.

5.4 Zaključci.

Četiri su glavna zaključka ovog rada: nabojne pruge u lantanovim kupratima nastaju kroz

dobro definiranu fazu nabojnog nematika; vezanje nabojnih pruga za rešetku je jako, dok

spinski stupnjevi slobode fluktuiraju; međudjelovanje nabojnih pruga i supravodljivosti

može dovesti do pojave nekonvencionalne dvodimenzionalne supravodljivosti u trodimen-

zionalnim kristalima, ali kupratna supravodljivost u pravilu nije intrinzično dvodimen-

zionalna; i na kraju, LTT faza i lom simetrije kisika vezanih na bakar univerzalno po-

tiskuje supravodljivost, što ukazuje na važnost simetričnih kombinacija orbitala kisika

u supravodljivom mehanizmu. Ti zaključci predstavljaju bitan doprinos razumijevanju

fizike kuprata, naročito nabojnih pruga i srodnih uređenja, te daju poveznice s drugim

materijalima poput pniktidnih supravodiča, manganata, kobaltata itd. u kojima je nabo-

jni i nematski red prisutan. Naposlijetku, zaključci vezani uz supravodljivi mehanizam

predstavljaju test za bilo koju teoriju visokotemperaturne supravodljivosti u kupratima.

89



Appendix A

Cu NMR frequencies

The determination of Cu NMR resonant frequencies in the case of comparable quadrupolar

and Zeeman contributions is described here. As discussed in Sections 2.1 and 3.2, the full

NMR Hamiltonian must be considered to calculate the resonant frequencies of copper in

lanthanum-based cuprates, if the external magnetic fields are neither too large nor too

small. We are interested in the case of in-plane magnetic fields, since they affect the spin

fluctuations associated with charge stripes much more than out-of-plane fields [111]. In

cuprates the electric field gradient (EFG) tensor at the Cu site is nearly axially symmetric,

with the symmetry axis perpendicular to the CuO2 planes. The NMR Hamiltonian reads

[117]

ℋ = −𝛾BI +
𝑒2𝑄𝑉𝑧𝑧

4𝐼(2𝐼 − 1)

[︀
3𝐼2𝑧 − 𝐼2 + 𝜂

(︀
𝐼2𝑥 − 𝐼2𝑦

)︀]︀
(A.1)

where 𝜂 is the asymmetry parameter which is ≈ 0 in LBCO and similar compounds, 𝐼 is

the nuclear spin, 𝐵 the local magnetic field and 𝑄 the nuclear quadrupole moment. The

𝑧-axis is taken to be the EFG symmetry axis, implying that in in-plane field only has 𝑥 or 𝑦

components. The spin Hilbert space of a spin-3/2 nucleus such as Cu is four-dimensional,

and in principle four eigenvalues are found by diagonalization of the Hamiltonian. The case

of pure NRQ, i.e. when 𝐵 = 0, is easily diagonalized, yielding only two degenerate energy

levels. The single resonant frequency is 𝜈𝑄, which is between 30 and 40 MHz in most

cuprates. The limiting case of small 𝐵 can be solved by perturbation techniques around

the pure NQR eigenstates [117]. Yet if the in-plane field is of the order of 1 T, it can no

longer be treated as small, and numerical diagonalization of the full Hamiltonian becomes

necessary. The following Mathematica code only finds the eigenvalues and transition

frequencies:

The computed frequencies are shown in Figs. 2-1 and 3-15. To evaluate the transition

90



intensities, one must compute the matrix elements between the eigenstates with corre-

sponding eigenvalues. The eigenstates are superpositions of the elementary spin levels,

and in principle the matrix elements are rather complex.
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Appendix B

The nematic susceptibility

In this Appendix we detail some of the steps in calculating the nonlinear response of

an isotropic Fermi liquid discussed in Section 2.2. In particular, we address the 𝑘-space

gradient of quantities such as 𝑣𝑘𝑃𝑙(cos 𝜃), where 𝑣𝑘 = 𝜕ℰ𝑘𝜕𝑘 is the quasiparticle group

velocity and 𝑃𝑙 the 𝑙-th order Legendre polynomial. These expressions appear on the

right-hand side of the recursive equations of motion for the second-order and third-order

equilibrium deviations 𝛿𝑛̄(2)
𝑘 and 𝛿𝑛̄

(3)
𝑘 . In calculating second-order response, we need to

find E · ∇k𝑣𝑘𝑃1(cos 𝜃), which for a spherically symmetric system is equal to

E ·

(︃
k̂
𝜕

𝜕𝑘
+

𝜃

𝑘

𝜕

𝜕𝜃

)︃
𝑣𝑘 cos 𝜃 = 𝐸

(︂
cos2 𝜃

𝜕𝑣𝑘
𝜕𝑘

+ sin2 𝜃
𝑣𝑘
𝑘

)︂
(B.1)

where k̂ and 𝜃 are unit vectors, and the angle between the electric field and 𝑘 is taken to

be 𝜃. The terms in parentheses can be collected to give

cos2 𝜃𝑘
𝜕

𝜕𝑘

𝑣𝑘
𝑘

+
𝑣𝑘
𝑘

(B.2)

where we have used that
𝜕𝑣𝑘
𝜕𝑘

− 𝑣𝑘
𝑘

= 𝑘
𝜕

𝜕𝑘

𝑣𝑘
𝑘

(B.3)

The angle-dependent term can now be expressed through Legendre polynomials to enable

solving the equation different components of 𝛿𝑛̄(2)
𝑘 . Using that 𝑃2(cos 𝜃) = 1

2
(3 cos2 𝜃 − 1),

we easily obtain the right-hand side of eq. (2.24). A further simplification is possible by

observing that
𝜕𝑣𝑘
𝜕𝑘

+ 2
𝑣𝑘
𝑘

=
1

𝑘2

𝜕

𝜕𝑘
𝑣𝑘𝑘

2 (B.4)

Similar calculations are used in solving the transport equation for the third-order term,
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eq. (2.23c). The relevant gradients are

E ·

(︃
k̂
𝜕

𝜕𝑘
+

𝜃

𝑘

𝜕

𝜕𝜃

)︃
𝑘
𝜕

𝜕𝑘

𝑣𝑘
𝑘
𝑃2(cos 𝜃) (B.5a)

E ·

(︃
k̂
𝜕

𝜕𝑘
+

𝜃

𝑘

𝜕

𝜕𝜃

)︃
1

𝑘2

𝜕

𝜕𝑘
𝑣𝑘𝑘

2𝑃0(cos 𝜃) (B.5b)

As above, the angle between E and k̂ is 𝜃, and 𝑃0(cos 𝜃) = 1. In terms of 𝜃, the gradients

then become

1

2

𝜕

𝜕𝑘
𝑘
𝜕

𝜕𝑘

𝑣𝑘
𝑘

cos 𝜃
(︀
3 cos2 𝜃 − 1

)︀
+ 3

𝜕

𝜕𝑘

𝑣𝑘
𝑘

cos 𝜃
(︀
cos2 𝜃 − 1

)︀
(B.6a)

𝜕

𝜕𝑘

1

𝑘2

𝜕

𝜕𝑘
𝑣𝑘𝑘

2 cos 𝜃 (B.6b)

To determine the Legendre components of the third order response, we must transform

the angular terms into Legendre polynomials, using that cos3 𝜃 = 3
5
𝑃1(cos 𝜃) + 2

5
𝑃3(cos 𝜃).

Inserting this relation into eq. (B.6), collecting the terms and noting that

3
𝜕

𝜕𝑘

𝑣𝑘
𝑘

+ 𝑘
𝜕2

𝜕𝑘2

𝑣𝑘
𝑘

=
1

𝑘2

𝜕

𝜕𝑘
𝑘3 𝜕

𝜕𝑘

𝑣𝑘
𝑘

(B.7a)

−2
𝜕

𝜕𝑘

𝑣𝑘
𝑘

+ 𝑘
𝜕2

𝜕𝑘2

𝑣𝑘
𝑘

= 𝑘3 𝜕

𝜕𝑘

1

𝑘2

𝜕

𝜕𝑘

𝑣𝑘
𝑘

(B.7b)

the equation of motion (2.26) is obtained.
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Appendix C

The specific heat probe

Figure C.1: The 1K pot probe.

A schematic representation of a continuously operating 1K pot probe is shown. The

sample platform is suspended from the 1K pot with an intermediate heat conduction

neck (not shown). Adapted from [180].
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Appendix D

Stripe pinning

Here we describe the procedure of solving the stripe equation of motion in a one-dimensional

periodic pinning potential, as discussed in Section 3.2. The starting equation is the re-

duced equation of motion, with neglected inertial term and sinusoidal pinning potential,

Γ
𝑑𝜉

𝑑𝑡
+ 𝜔0 sin 𝜉(𝑡) = 𝐸𝑒𝑥𝑡 cos𝜔𝑡 (D.1)

where Γ is the damping coefficient, 𝜔0 a measure of the pinning potential depth, 𝐸𝑒𝑥𝑡

the external electric field, and 𝜔 the external field oscillation frequency. The equation

of motion cannot be solved in closed form for large external fields, and we thus use a

numerical procedure. It is divided in two parts: (i) solving the differential equation for

𝜉(𝑡); (ii) calculating the Fourier transform of 𝜉(𝑡) to obtain the response at 3𝜔, which

is measured in experiments. The entire procedure is repeated for different values of the

external field, to calculate the dependence of third harmonic response on external field

for comparison with experiment. We do not use a fast Fourier transform routine, but the

exact formula for the Fourier coefficient at 3𝜔. The Mathematica code for the calculation

is as follows:
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Appendix E

The Davidson-Cole distribution

The general form of the Havriliak-Negami relaxation function discussed in Section 3.3,

𝜎∞ +
𝜎0

[1 + (𝑖𝜔𝜏0)𝛼]𝛽
(E.1)

becomes the Davidson-Cole relaxation if 𝛼 = 1. The complex relaxation function can be

separated into real and imaginary parts

ℜ𝜎(𝜔) = 𝜎∞ + 𝜎0 cos 𝛽𝜑
(︀
1 + 𝜔2𝜏 20

)︀−𝛽/2 (E.2a)

ℑ𝜎(𝜔) = 𝜎0 sin 𝛽𝜑
(︀
1 + 𝜔2𝜏 20

)︀−𝛽/2 (E.2b)

where 𝜎∞ is the high-frequency conductivity, 𝜎0 the low-frequency conductivity step

height, 𝜏0 is the relaxation time, 𝛽 the stretching exponent, and tan𝜑 = 𝜔𝜏0. The

Davidson-Cole relaxation may be analysed as a superposition of elementary Debye-Drude

relaxations with different characteristic times 𝜏𝐷. To find the relaxation time distribution,

a full Havriliak-Negami relaxation distribution must be used, taking the limit 𝛼 → 1 as

the last step. The HN relaxation time distribution function is [219]

𝑔 (ln 𝜏𝐷) =
1

𝜋

(𝜏𝐷/𝜏0)
𝛼𝛽 sin 𝛽𝜃[︀

(𝜏𝐷/𝜏0)
2𝛼 + 2 (𝜏𝐷/𝜏0)

𝛼 cos 𝜋𝛼 + 1
]︀𝛽/2 (E.3)

with

tan 𝜃 =
sin 𝜋𝛼

(𝜏𝐷/𝜏0)
𝛼 + cos 𝜋𝛼

(E.4)

if the right-hand side is positive; else 𝜋 must be added to 𝜃. Clearly one cannot simply take

𝛼 = 1, since that would lead to singularities in eq. (E.3) and a zero in eq. (E.4). Therefore

the Davidson-Cole distribution function is meaningful only in the limit 𝛼 → 1. In the

time domain, the Havriliak-Negami function is expressed through a series of generalized
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exponential functions known as Mittag-Leffler functions [238], similar in appearance to

the stretched exponential relaxation. The peculiar form of the relaxation time distribution

function (E.3) is not realistic in most cases, but gives the tractable analytical form of the

relaxation in the frequency domain.
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