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Anyons, Zitterbewegung and dynamical

phase transitions in topologically

nontrivial systems

DOCTORAL THESIS

Supervisor:
prof. dr. sc. Hrvoje Buljan
doc. dr. sc. Dario Jukić
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Fizički odsjek

Frane Lunić
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Abstract
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quantum Hall effect, synthetic anyons

Nontrivial topology in physical systems is the driving force behind many interesting phe-
nomena. Notably, phases of matter must be classified in part by their topological properties.
Phases with topological (nonlocal) order, such as the fractional quantum Hall effect (QHE), can
support anyonic excitations obeying fractional statistics with potential application in topologi-
cal quantum computing. States lacking intrinsic topological order can still belong to topologi-
cal phases, provided certain symmetries are imposed. On their own, these symmetry-protected
phases do not support anyons, but they can still have other interesting features, such as protected
boundary states. In this thesis we present an original research into several topologically nontriv-
ial systems. First, we present the experimental and theoretical results on light propagation in the
valley modes of inversion-symmetry broken honeycomb lattices (HCL). We find that a rotating
spiral pattern, leading to Zitterbewegung, arises in the intensity profile of the beam as a result
of the nontrivial topology of the HCL valleys. Next, we present the numerical demonstration of
dynamical topological phase transitions driven by nonlinearity of the photonic medium, which
occur in soliton SSH lattices. The phase transitions, marked by the appearance of topological
edge states in the band gap, occur due to the setup which enables continually changing relative
values of the intracell and intercell soliton couplings. Finally, we propose a scheme for creating
and manipulating synthetic anyons in a noninteracting system by perturbing it with specially
tailored localized probes. The external probes are needed because noninteracting systems do
not possess the kind of topological order required to support anyonic excitations. We start from
a noninteracting 2D electron gas in a uniform magnetic field, which is in an integer QHE state,
and introduce thin solenoids carrying a fractional magnetic flux. We present the solution for a
suitable ground state, and demonstrate the fractional braiding statistics in the coordinates of the
solenoids.
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Chapter 1

Introduction

In contemporary condensed matter physics and related areas, the role of topology has been re-
ceiving an increasing amount of attention. There are various ways in which topological features
of a system can impact its properties, some of which we will encounter in this thesis. Topology
is usually described as a branch of mathematics related to geometry which studies those prop-
erties of geometric objects which are unchanged under continuous deformations. For example,
even though a sphere and (the surface of) a cube are clearly different geometric shapes, it is
the case that every point on a sphere can be mapped to a unique point on a cube according to a
continuous function, and back according to the continuous inverse. The function satisfying the
stated properties is called a homeomorphism. On the other hand, a torus, i.e. the surface of a
donut with a hole in the middle, can never be homeomorphically mapped to a sphere. Here, the
number of holes is a topological property which cannot be changed by a continuous deforma-
tion. Another interesting example in topology is a Möbius strip, created by twisting and then
buckling a belt. Due to the half-twist, the topology of a Möbius strip is different from a regu-
larly buckled belt. The consequence is that its surface is nonorientable, i.e. it does not have the
inner and outer surfaces, as both sides of the strip can be reached by moving along its length.
No continuous transformation (i.e. without unbuckling) may change this fact.

When a topological property of a system is behind a physical phenomenon, this can make
the phenomenon more robust, as it becomes insensitive to continuous transformations which
preserve the topological property. This may protect the phenomenon against disorder, or pre-
serve it under different parameters of the system. In a sense, topology is ubiquitous in physical
science. For instance, topological defects can be present in crystalline, and other media, and
they can be important in various fields, from electronics and chemistry all the way to cosmology.
It is therefore not surprising (with hindsight) that quantum states can be classified according to
their topological properties, which differentiate between topological phases. When nontriv-
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Chapter 1. Introduction

ial topological phases are possible, we are dealing with topological quantum matter, which is
among the topics explored in this thesis. A ubiquitous topologically protected property found in
topological matter are the boundary modes between different topological phases, which can be
chiral and protected against backscattering. It is not difficult to imagine that such modes could
find technological applications. Another notable example which we will touch on is the topo-
logical protection some systems possess against information "leakage" into the environment,
which has been the bane of quantum computing.

The main purpose of this thesis is to compile the results of the published original research
the author has contributed to. Each of the papers explores a different topic, all of which, in
their own way, relate to topology. Two of the papers are in the field of photonics, first of which
also presents experimental results. In this paper, the propagation of light through photonic
symmetry-broken honeycomb lattices under specific circumstances is explored. The effect that
was found is a consequence of a momentum-space topological singularity (a kind of vortex). In
the second photonics paper, a nonlinear medium is used which allows for soliton beams, and
mediates their interaction. The configuration of beams is arranged so as to lead to an emergent
1D system which can assume two topological phases at different points during the propaga-
tion of the beams. The final included paper presents solutions to a model for a noninteracting
system which features synthetic anyons. Anyons obey fractional statistics, different to the (in-
tegral) bosonic and fermionic statistics. Their existence is allowed under the constraints of a
two-dimensional space, and they are thought to occur as excitations in topologically nontrivial
materials. Anyons are crucial to the subject of topological quantum computing.

The thesis is arranged as follows. In chapter 2, we provide a theoretical introduction to
some of the topics which are relevant to the later presented research. Where it seems warranted,
we expand our discussion beyond what is strictly necessary for a basic understanding of our
results, in order to provide a fuller overview. In section 2.1, we introduce the geometric (Berry)
phase and the related concepts, which are invaluable for understanding the subjects of this
thesis, as they can correspond to the mathematical quantities which determine the topology
(such as curvature), or reveal the fractional statistics. In section 2.2, we introduce the topological
quantum matter, and discuss some specific pertaining topics, including the quantum Hall effect,
anyons, and the symmetry-protected topological states. In chapter 3, we present the results
of the aforementioned photonics papers. In section 3.1, we give the results on single-valley
light propagation through the inversion-symmetry-broken honeycomb photonic lattices. This
includes the experimental results, as well as theoretical analysis from the "low-energy" point
of view. The results feature a rotating spiral diffraction pattern, and the Zitterbewegung effect.
In section 3.2, we present the numerical results on propagation of soliton beams arranged in a

2



Chapter 1. Introduction

bipartite (SSH) lattice pattern through a nonlinear medium which facilitates soliton interaction.
The results suggest the occurrence of dynamically emerging topological phase transitions. In
chapter 4, we present the solutions of a model for synthetic anyons in a noninteracting system. A
derivation of the statistics is outlined, and the interpretation of the synthetic anyons is discussed.
Finally, we summarize and conclude in chapter 5.
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Chapter 2

Theoretical background

In this chapter, we introduce the basic concepts, and discuss some of the relevant theoretical
background. In section 2.1, we introduce the geometric phase. In section 2.1.1, we discuss the
simple case of the Abelian Berry phase, relevant to the nondegenerate systems. In 2.1.2, we gen-
eralize to the degenerate case, which includes the possibility of non-Abelian geometric phases
(more precisely, Berry holonomies). Section 2.2 deals with topological quantum matter. The
topics covered individually in this section are the integer quantum Hall effect in section 2.2.1,
the fractional quantum Hall effect in section 2.2.2, anyons in section 2.2.3, symmetry-protected
topological phases in section 2.2.4, and finally, some notable experimental platforms for real-
ization of topological phases of matter in section 2.2.5.

2.1 Geometric phase

Geometric phases (Berry phases) are the phases determined by the geometry of the paths traced
in the parameter space as the system Hamiltonian is varied. This phenomenon was discovered
by Pancharatnam in polarization optics in 1956 [1], and the Aharonov-Bohm effect [2], a special
case of quantum geometric phase, was discovered in 1959. However, the true importance and
ubiquity of geometric phases in quantum mechanics was only appreciated following the seminal
work of Sir Michael Berry in 1984 [3]. Roughly along the lines of Berry’s original paper,
we will review the geometric phase in the general case for nondegenerate energy levels under
assumptions of adiabatic and cyclical evolution. We will refer to this phase as the Berry phase.
We will then touch on the more general non-Abelian geometric phases that arise when no-
degeneracy requirement is relaxed. We will discuss the role these phases play in the physics
of electronic bands. Adiabatic and cyclical evolution is assumed throughout this presentation,
even though the existence of geometric phases is not predicated on these assumptions [4,5].

4



2.1. Geometric phase Chapter 2. Theoretical background

2.1.1 Berry phase

Let the Hamiltonian of a system depend on a number of parameters Ri, written compactly as
the vector R = (R1, R2, . . . ) in the parameter space; H = H(R). As the parameters are slowly
tweaked between times 0 and T , the system adiabatically traces a path through the parameter
space. The cyclicity assumption is expressed as R(T ) = R(0) ≡ R0.

At any point during the evolution, we may choose an orthonormal "natural" basis |m(R)⟩
such that

H(R) |m(R)⟩ = Em(R) |m(R)⟩ . (2.1)

If the system is initially prepared in a specific nondegenerate basis state |ψn(0)⟩ = |n(R0)⟩, the
adiabatic theorem guarantees that the state it assumes at time t, i.e. |ψn(t)⟩, only differs from
|n(R(t))⟩ by a phase factor, provided no degeneracy is encountered along the way. To find the
phase we search for a solution to the time-dependent Schrödinger equation

iℏ
d

dt
|ψn(t)⟩ = H(R(t)) |ψn(t)⟩ (2.2)

in the form

|ψn(t)⟩ = eiγn(t) exp

− i

ℏ

t∫
0

dt′En(R(t′))

 |n(R(t))⟩ , (2.3)

where the second exponential is the dynamical phase factor, and the first is associated with the
nonvanishing time derivative d

dt
|n(R(t))⟩ = −i .γn(t) |n(R(t))⟩. Integrating, we find that

γn(t) =

t∫
0

An ·
.

R dt′, (2.4)

having defined the Berry connection:

An(R) ≡ i ⟨n(R)|∇R n(R)⟩ . (2.5)

We use the notation |∇R n(R)⟩ ≡ ∇R |n(R)⟩ to stress that ∇R is the gradient operator in
the parameter space, instead of the Hilbert space. Upon traversing the path corresponding to a
closed curve C and returning to the initial position, we are left with the Berry phase

γn ≡ γn(T ) =

∮
C
dR ·An(R). (2.6)

Since the Berry phase corresponds to a closed path, it is gauge invariant, in contrast to

5



2.1. Geometric phase Chapter 2. Theoretical background

the phase γn(t) which corresponds to an open path and can be removed by a gauge trans-
formation. The connection An is gauge-dependent, and transforms according to An(R) →
An(R) +∇R λ(R) where λ(R) is a scalar function corresponding to some gauge transfor-
mation. This motivates the analogy between the Berry connection and the magnetic vector
potential. It makes sense to define the gauge invariant quantity

Ωn
µν ≡ ∂RµAn

ν − ∂RνAn
µ, (2.7)

called the Berry curvature tensor. Then by the Stokes theorem [6]

γn =

∫
S(C)

dRµ ∧ dRν
1

2
Ωn
µν(R), (2.8)

where S(C) is the surface bounded by the path C, and ∧ represents the wedge product, which
is used to obtain the area elements (see pages 47 and 58 in [6]). It is often the case that the
relevant parameter space is 3-dimensional (e.g. when the parameters varied are the components
of the real magnetic field). In this case, the gauge invariant Berry curvature vector, analogous
to the magnetic field, can be defined as

Ωn ≡ ∇R ×An, (2.9)

and related to the curvature tensor by Ωn
µν = ϵµνλΩ

n
λ. Now, the Berry phase is

γn =

∫
S(C)

dS ·Ωn, (2.10)

making obvious the analogy between the Berry phase and the magnetic flux through S(C).
An interesting behaviour can occur when C lies close to a point of degeneracy R∗. Consider

a 2-level system with conical dependence of energy on R̃ = R−R∗ around a degeneracy point
in a 3D parameter space. Close to R∗, the Hamiltonian is of the form H(R) ∝ R̃ · σ. The
Berry curvature can be shown to be a monopole field Ω± ∝ ± R̃

2R3 [3]. This phenomenon occurs
in, for example, Weyl semimetals, where the parameter space corresponds to the Brillouin zone
which features pairs of oppositely charged degeneracies (Weyl points).

As Berry has shown, it is possible to reinterpret the Aharonov-Bohm phase in terms of the
geometric phase. The Aharonov-Bohm effect [2] is an entirely quantum phenomenon wherein
charged particles feel the effect of electromagnetic potentials, even in regions with no finite
fields. This effect manifests as a phase shift, and can be demonstrated by splitting a coherent
beam of electrons, having them pass by a magnetic flux confined inside a solenoid on opposite

6
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sides, and then rejoining them to produce interference. The connection to the Berry phase can
be made evident by considering the following setup. Let the charged particle be confined in
a box centred on R. Now the box is slowly transported on the contour C around an infinite
solenoid carrying the flux ΦB, but never penetrating it. The wave function of the particle in the
vector potential A(r) is given by

n(r;R) = e
iq
ℏ
∫ r
R A(r′)·dr′

ψ0
n(r −R), (2.11)

where ψ0
n(χ) is the state in absence of the magnetic flux. The Aharonov-Bohm result tells us

the phase shift upon completing the circuit is

γAB =
q

ℏ

∮
C
A · dR =

qΦB

ℏ
. (2.12)

However, this process involves a loop in the space of parameter R. Using (2.11) and (2.5), we
find the Berry connection

An(R) =
q

ℏ
A(R), (2.13)

and using to (2.6), we see that γn = γAB. Evidently, the Aharonov-Bohm phase is a special
case of the geometric Berry phase.

2.1.2 Non-Abelian geometric phases

Cyclic transport as discussed above can lead to non-Abelian geometric phases when the system
is prepared in a degenerate state [7,6]. It is assumed this degeneracy holds for all R. Once
again, we choose an orthonormal basis |na(R)⟩ such that H(R) |na(R)⟩ = En(R) |na(R)⟩,
for a = 1, 2, . . . , gn, where gn is the degeneracy of the n-th energy level. Having chosen an
initial state within the n-th level subspace

|ψn(0)⟩ =
∑
a

Cn
a (0) |na(R(0))⟩ , (2.14)

we let R adiabatically trace a closed path C between times 0 and T . The result is given by

|ψn(T )⟩ = UdynU
n
C |ψn(0)⟩ . (2.15)

Here, Udyn is the familiar dynamical phase, while Un
C ∈ U(gN) is a unitary matrix, the so-called

Berry holonomy which may always be expressed in terms of a Hermitian matrix Γn defined as

7



2.1. Geometric phase Chapter 2. Theoretical background

eiΓn ≡ Un
C . An expression analogous to (2.6) may be given for the Berry holonomy:

Un
C = P exp

(∮
C
dR ·An(R)

)
, (2.16)

where P is the path-ordering operator, and the Berry connection is now a vector whose compo-
nents are Hermitian matrices with elements

An
µ(ab)

(R) = i ⟨na(R)|∂Rµnb(R)⟩ . (2.17)

The possibility of non-Abelian nature of these matrices, i.e. [An
µ(R),An

µ(R
′)] ̸= 0 for R ̸= R′,

makes the path ordering necessary. The effect of this unitary transformation is to rotate the
original vector within the degenerate subspace. Hence, final superposition is not the same as
the initial (|Cn

a (T )| ̸= |Cn
a (0)|). This is strikingly different from the nondegenerate case where

the final state was parallel to the initial state, differing only by a phase.
Finally, let us review the behaviour under gauge transformation. The connections will trans-

form as An
µ → U−1An

µU + iU−1∂RµU . In contrast to the gauge invariant Abelian Berry holon-
omy, the non-Abelian holonomy transforms as Un

C → U−1(R0)U
n
C U(R0) [6]. Hence, a gauge

invariant quantity must be found in order to measure the effect of holonomy. Among such
quantities are the eigenvalues of Un

C , and the so-called Wilson loop W = Tr[Un
C ].

2.1.3 Role in Bloch bands

The Bloch’s theorem guarantees that each eigenstate of a spatially periodic single-particle
Hamiltonian is the product of a plane wave and a cell-periodic function [8]

ψnk(r) = eik·runk(r), (2.18)

with unk(r +
∑

imiai) = unk(r), where ai are the lattice vectors, mi ∈ Z, and i is the co-
ordinate index. The functions unk(r) are the eigenstates of the Bloch Hamiltonian H(k) =

e−ik·rHeik·r. Since this Hamiltonian is parametric, a cyclic change in k may give rise to a ge-
ometric phase, or more generally, a holonomy. In the Abelian case, the Berry phase is obtained
according to (2.6), with the Berry connection defined as:

An(k) = i ⟨unk|∇kunk⟩ . (2.19)

In a 3-dimensional lattice, the Berry curvature is naturally defined as Ωn = ∇k × An(k).
This amounts to a magnetic field acting in momentum space. Additionally, an explicit time

8



2.2. Topological quantum matter Chapter 2. Theoretical background

dependence of the Hamiltonian may be thought of as introducing a geometric scalar potential
in addition to the time-dependent vector potential An(k, t) [6].

By working with the Bloch Hamiltonian, the lattice Brillouin zone becomes the parameter
space, instead of it being imposed externally. However, it is the effect of an external perturba-
tion that drives the cyclic evolution in the Brillouin zone. For example, upon imposing a ho-
mogeneous time-dependent vector potential A(t), a 1-dimensional periodic system still admits
a solution essentially of the type (2.18), except unk(x) → unk(t)(x), where k(t) = k − e

ℏA(t)
1.

This vector potential can be realized by simply applying a homogeneous electric field. The
only way to obtain a Berry phase in a 1D lattice is to have the perturbation drive k(t) across the
Brillouin zone. A Berry phase, called the Zak phase, then appears due to its periodicity [9]

γZak =

k0+
2π
a∫

k0

dkAn(k). (2.20)

This phase is due to the circle-like topology of the periodic Brillouin zone, since no curvature
can be enclosed by a contour in 1D space. It assumes any value in general, but in inversion-
symmetric systems, it is constrained to either 0 or π [9].

2.2 Topological quantum matter

By the end of the 20th century, it became clear that topology has a role to play in classification
of the phases of matter. The classical approach, based on the Landau symmetry-breaking theory
[10], ascribes transitions between phases to changes in symmetry of the system. The solution
of a Hamiltonian which obeys certain symmetries does not necessarily obey all of the same
symmetries. Instead, it will inherit a subset of its symmetries. The solutions obeying different
symmetries are distinct phases, and cannot be connected without encountering a phase transi-
tion. A reduction in symmetry is associated with the appearance of some kind of ordering of the
state, as indicated by a nonzero value of some local order parameter, such as magnetization in
the case of ferromagnetic phase transition. However, it is now known that classification based
on symmetry is not complete, since some zero-temperature phases of matter that share the same
symmetries are nevertheless separated by a phase transition [6]. These phases are character-
ized by discrete topological invariants (sometimes requiring certain protective symmetries) that
cannot be changed without going through the so-called topological phase transitions. The topo-
logical states that we will consider are gapped, and the topological phase transitions involve

1Note that in this gauge the plane wave factor remains time-independent.

9
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closing and reopening the gap. At the point when two bands are merged, the topological invari-
ants associated with each band are not well defined. This facilitates the discontinuous change in
the value of the invariants during the phase transition. A variety of interesting phenomena, like
topological degeneracy of the ground state (i.e. a degeneracy robust against local perturbations
that do not affect the topology of the state), exotic excitations, and robust, perfectly conducting
edge states may arise due to the topological nature of these states [6]. Currently, the most at-
tractive potential application for the former two is in quantum computing [11], while the latter
may have applications in fields such as electronics and photonics.

Historically, the need to go beyond local order has lead to the notion of topological order
[12]. All (intrinsic) topological orders are a consequence of long-range entanglement (LRE).
LRE states are the many-body states that cannot be transformed into product states by any local
unitary transformation (arising from a gap-preserving adiabatic deformation of the Hamilto-
nian). Different patterns of LRE which cannot be connected by a local unitary transformation
correspond to different topological orders [13]. The topologically ordered states may have fea-
tures such as topologically protected gapless boundary modes, topologically degenerate ground
states and exotic excitations obeying fractional Abelian or non-Abelian statistics [6] (see sec-
tion 2.2.3). These nontrivial excitations are a feature of strongly-interacting states, such as
the fractional quantum Hall effect (see section 2.2.2) and quantum spin liquids [14,15] and
are sometimes considered as a defining criterion for topological order. However, the weakly-
interacting integer quantum Hall effect (section 2.2.1) states lack the nontrivial excitations, but
do possess LRE according to the above definition [6].

Not all topological phases possess LRE. These short-range entangled (SRE) states lack the
full topological protection of the topologically ordered phases2, implying they can be connected
without a phase transition by adiabatic deformations, provided these deformations break cer-
tain symmetries of the Hamiltonian. As long as the required symmetries are preserved, these
symmetry-protected topological (SPT; see section 2.2.4) phases remain separate. SPT phases
lack the topological degeneracy and nontrivial excitations, but they possess the topologically
protected boundary states [6].

These boundary states are a consequence of the bulk-boundary correspondence which re-
lates the topological properties of the system’s bulk to the topological properties of its boundary.
Due to their topological nature, they are protected against perturbations that preserve the gap
and, in the case of SPT phases, the required symmetries. For example, in 2D, if the boundary
is gapless, strips of states connecting the valence to the conduction band will be seen in the dis-

2By topological order, we mean the intrinsic topological order. The SRE states are sometimes said to possess a
different kind of topological order.
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persion relation plot, while in 1D, one or more states associated with each edge will appear at
zero energy. These states are the interface phenomena localized to the region where two differ-
ent topological phases meet. This motivates an intuitive understanding of the gapless boundary
states. Essentially, the gap is closed at the interface, thus enabling the discontinuous change of
the topological invariants.

In this section, we take a closer look at the integer and the fractional QHE, as well as
fractional statistics, i.e anyons. We also briefly discuss the SPT phases, and introduce the Su-
Schrieffer-Heeger model. We conclude by mentioning some notable experimental platforms
that can be used for realization of topological phases of matter.

2.2.1 Integer quantum Hall effect

The quantum Hall effect (QHE), first measured in 1980 by Klitzing, Dorda and Pepper [16],
refers to the quantization of Hall conductivity in two-dimensional electronic systems (or analo-
gous atomic and other systems) with broken time-reversal symmetry (TRS). When a voltage is
applied across some direction, a Hall current density jH = σHE will appear in the orthogonal
direction. The Hall (transverse) conductivity is quantized in units of q2/h [16]

σH =
q2

2πℏ
ν, (2.21)

where q is the carrier charge and ν is an integer in case of the integer QHE (IQHE). As we shall
see, ν is a topological invariant characteristic of the IQHE state in question. Typically, the TRS
is broken by a magnetic field, and σH is a function of the field characterized by wide plateaus
corresponding to the quantized values, connected by transition regions [17] (see fig. 2.1). With
respect to the longitudinal conductivity, the system is normally an insulator, but becomes con-
ductive in the transition regions.

Continuum noninteracting 2D electron gas model

An archetypal system featuring the IQHE is a continuous noninteracting 2D electron gas (2DEG)
under a uniform magnetic field in the perpendicular direction (z). A moderate amount of disor-
der is required to obtain the extended conductivity plateaus. The Hamiltonian of the system is
given by:

H =
Ne∑
j=1

[
1

2m
(pj − qA(rj))

2 + V (rj)

]
, (2.22)

11
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Figure 2.1: Schematic representation of Hall (blue) and longitudinal (red) resistivity dependence on
magnetic field for a 2DEG. Created by Alba Cazorla (modified). Licensed under CC BY-SA 4.0. Link
to original.

where Ne is the number of electrons, V (r) is a scalar potential, and A(r) is the vector potential
due to the uniform field B = (0, 0, B) in the symmetric gauge:

A(r) =
1

2
B × r. (2.23)

We will first consider the simple case V (r) = 0, and will later discuss the effect of a random
potential. The spectrum of the single-particle Hamiltonian (inside square brackets in (2.22))
is composed of flat, massively degenerate Landau levels at energies En = ℏωB(n + 1/2),
where n = 0, 1, . . . , and ωB = |q|B/m is the cyclotron frequency (see fig. 2.2(a)). If we
assume B > 0 and q < 0, the lowest Landau level (LLL) single-particle states are given
by ψLLL(zj, zj ) = f(zj ) exp

(
− |zj |2

4l2B

)
, where zj is the complex conjugate of zj = xj + iyj ,

lB =
√
ℏ/B|q| is the magnetic length, and f(z ) is any antiholomorphic function [17,18]. Given

the azimuthal symmetry, it makes sense to work in the basis labeled by the angular momentum
quantum number:

ψLLL,m(z, z ) ≡ ψm = z m exp

(
−|z|2
4l2B

)
, m = 0, 1, 2, . . . (2.24)
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The normalization factor is implied, but will usually be omitted. The degeneracy of each Landau
level per unit area equals the number of flux quanta per unit area (B/Φ0) [17]. The ψm states
are peaked around the radius rm =

√
2mlB which encloses a region containing m flux quanta.

The many-body ground state is obtained by constructing a Slater determinant from all filled
single-particle states ψn,m.

a) b)

Figure 2.2: Schematic representation of Landau levels and spectral flow. Solid circles represent the
shared basis of the symmetric gauge single-particle Hamiltonian and the canonical angular momentum
operator. (a) Unperturbed spectrum (infinite system). (b) Spectrum of a system on a Corbino ring after
the flux through the hole has been adiabatically increased from 0 to α = Φ/Φ0 < 1. Empty circles
represent the initital eigenstates m for α = 0 and the arrows indicate the direction of the spectral flow.

We restrict now to the case of n completely filled Landau levels, i.e. the Fermi energy lies
between the En and En+1. The longitudinal conductivity vanishes since the system is now a
band insulator. To explore the Hall conductivity, we introduce a scalar potential restricting the
electron gas to a ring between the radii r1 < r2 (the Corbino ring). Then an additional magnetic
flux Φ can be threaded through an infinite solenoid placed at the origin without changing the
magnetic field inside the ring. This setup was explored in [19]. We express the flux in units of
the magnetic flux Φ0 = 2πℏ

|q| as α = Φ/Φ0. Suppressing the Gaussian factor, we write the LLL
states with r1 < rm < r2

3 for α = 0 in the symmetric gauge as

ϕ0
m = z m = e−imφrm. (2.25)

The vector potential due to the flux α is Aα = Φ
2πr
φ̂, and is locally pure gauge. Therefore,

turning it on would only shift the phase of any localized state by eiαφ, which can be removed
via a gauge transformation. However, it is clear from (2.25) that the LLL states are extended
around the ring. The topology of extended states does not in general allow for this kind of

3More precisely, we require that rm − r1 ≫ lb, and r2 − rm ≫ lB
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gauge transformation since it would disrupt phase coherence around the ring, except for α ∈ Z.
Since the flux is then not pure gauge, it may affect the spectrum, but we expect the spectrum to
be intact for integer values of α. Let us consider an adiabatic evolution of α from 0 to 1 over
time T ≫ ω−1

B . Due to the azimuthal symmetry, the state ϕαm remains an m-eigenstate of the
canonical angular momentum operator Lαz = |r × (p0 + qAα)| = L0

z + sign(q)ℏα during the
evolution. In the end we have

L1
zϕ

1
m =

(
L0
z − ℏ

)
ϕ1
m = −ℏmϕ1

m (2.26)

for electrons, which implies that L0
zϕ

1
m = −ℏ(m− 1)ϕ1

m. Therefore, due to the discrete nature
of gauge invariance of the extended states, changing the flux from 0 to 1 amounts to mapping
the states according to m→ m−1. During the evolution, the states gradually shift inward from
radius rm to rm−1, as can be seen by inspecting the wave function4

ϕαm = |z|−αz m, (2.27)

while remaining in the LLL with unperturbed energy. This phenomenon, schematically depicted
in fig. 2.2(b), is called spectral flow, and it can be intuitively understood as the ring-like states
contracting in order to keep the enclosed number of flux quanta constant and therefore avoid
reacting to the induced emf due to Faraday’s law E = −Φ0/T

5. On the other hand E does
produce a Hall current in the radial direction due to spectral flow. From what we have seen, we
conclude that the LLL contributes the current of ir = −q/T since the net worth of one charge
carrier is adiabatically pumped from the outer to the inner edge over time T . Similarly, every
one of the n filled Landau levels contributes a single charge q to the current, leading to a net
conductivity σH = ir

E = − q
Φ0
n = q2

2πℏn, which is consistent with (2.21), if ν corresponds to the
filling factor.

A ring system bounded in one direction as discussed above may provide an intuitive un-
derstanding of the connection between the Landau levels and the plateau values of the Hall
conductivity. However, the pumping process described cannot go on indefinitely. Even though
the model ignores the build-up of Hall potential opposing the current, the process is stopped
when all of the electrons have been pumped to the inner edge. Furthermore, the upward curving
of the Landau levels near the edges leads to the appearance of net azimuthal currents [17,19].
This may in fact be understood as as a Hall current due to the potential difference between the
states on the inner and outer edge, caused by the pumping. These boundary effects obfuscate the

4See Appendix A in [18] for derivation.
5No bulk azimuthal current is produced. This does not apply to the edges.
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profound role of topology in the IQHE. For this reason, we will next consider a system defined
on a space with a toroidal topology.

A rectangle with periodic boundary conditions in both directions is topologically equivalent
(homeomorphic) to a torus, since there are two distinct possible classes of nontrivial loops that
cannot be contracted into a point without breaking them open (see [6] for a more rigorous
treatment). This is akin to loops around the two holes of a spatial torus that can be created
by welding together the two ends of a metal pipe. We will work in a rectangular coordinate
system (x, y) that may be visualised as curving around the spatial torus, and we will call these
nontrivial loops the x−cycle and the y−cycle. A presence of a hole allows us to thread a flux,
as in the previous example. In this case, we have two possible fluxes Φx and Φy. One may
visualise this by imagining the pipe was welded around an infinite solenoid carrying Φx, and
another toroidal solenoid is carrying the flux Φy on the inside of the pipe, as shown in fig. 2.3.
Note that the visualisations involving the spatial torus are crude, since the periodic rectangle
we are considering does not curve in space, and is not possible to construct in practice. It is,
nevertheless, a conceptually sound simplification.

Figure 2.3: A torus with threaded magnetic fluxes Φx and Φy.

The vector potential due to the uniform magnetic field and the fluxes Φx and Φy is

A = AB +
Φx

Lx
êx +

Φy

Ly
êy, (2.28)

where Lx and Ly are the rectangle dimensions. We will consider the induced field a weak
perturbation, so it suffices to consider the first order in perturbation theory. We may then use
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the linear response (Kubo) formula for the Hall conductivity [6,20]

σxy =
q2ℏ

iLxLY

(Eα<EF )∑
α

(β ̸=α)∑
β

⟨ψα|vx|ψβ⟩ ⟨ψβ|vy|ψα⟩ − ⟨ψα|vy|ψβ⟩ ⟨ψα|vx|ψβ⟩
(Eα − Eβ)2

, (2.29)

where α = (n,m) and β = (n′,m′), ψα and ψβ are the unperturbed single-particle Hamilto-
nian eigenstates in the n-th and n′-th Landau level6, and vi are the components of the velocity
operator v = (−iℏ∇− qA)/m. One may verify that (for single-particle Hamiltonian H)

⟨ψβ|vj|ψα⟩ = ⟨ψβ|−
Lj
q

∂H
∂Φj

|ψα⟩ = −Lj
q
(Eα − Eβ) ⟨ψβ|∂Φj

ψα⟩ . (2.30)

Upon substituting into the Kubo formula, and some manipulation, we arrive at

σxy = i
q2

ℏ

(Eα<EF )∑
α

[
∂θy ⟨ψα|∂θxψα⟩ − ∂θx

〈
ψα
∣∣∂θyψα〉] , (2.31)

where θi = 2πΦi/Φ0. Since fluxes that differ by an integer are related by a gauge transforma-
tion, the parameter space is essentially a torus T2

Φ. The angular variables θi were introduced in
recognition of this fact since they parametrize a torus in a natural way. After absorbing the part
of summation going over m, the expression in the brackets becomes proportional to the Berry
curvature Ωn = ∇θ ×An, where An = i

∑
m ⟨ψα|∇θψα⟩, and so we have

σxy = −q
2

ℏ
ê3 ·

(En<EF )∑
n

Ωn, (2.32)

where ê3 is the unit vector perpendicular to the 2D plane. The Hall conductivity is related to
the flow of the states on the torus, and we do not expect this to depend on the exact values θi7.
Therefore, we may average it over the parameter torus

σxy = −q
2

ℏ

(En<EF )∑
n

∫
T2

Φ

d2θ

(2π)2
ê3 ·Ωn =

q2

2πℏ

(En<EF )∑
n

Cn, (2.33)

6In this form, the formula assumes nondegeneracy of single-particle states within each Landau level. This will
be borne out in the realistic case due to level broadening. One may approach this more rigorously by working with
the many-body ground state instead.

7This is obvious for our example, since there is no curvature and nothing special about any point on the rectan-
gle.
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where we have defined the first Chern number (TKNN8 invariant) of the n-th band as

Cn ≡ Cn
1 = − 1

2π

∫
T2

Φ

d2θ ê3 ·Ωn. (2.34)

Provided the Berry connection An can be defined smoothly over the entire T2
Φ, we may

apply the Stokes theorem to obtain Cn = − 1
2π

∮
∂T2

Φ
dlθ · An ≡ 0, since the torus has no

boundary. It is, however, not generally the case that An is defined smoothly on the whole
parameter space, and a nonzero Chern number indicates a breakdown of the Stokes theorem
due to nontrivial topology of the parameter space. We will state without proof that Cn ∈ Z.
However, this is easy to show if we assume the parameter space can be covered by two open
subsets O1 and O2 that allow for smooth definition of An

1 and An
2 . In the overlap region of

O1 and O2, the two definitions of the Berry connection are related by a gauge transformation
An

2 = An
1 − ∇χ. We imagine a closed contour ∂S lying entirely in the overlap region, and

dividing the parameter space into two disjunct regions, the "interior" S, and the exterior S ′ (see
fig. 2.4). Now we may write the Chern number as the sum of the Berry curvature flux through
the regions S and S ′, and apply the Stokes theorem to both integrals:

Cn = − 1

2π

[∫
S

d2θΩn +

∫
S′
d2θΩn

]
= − 1

2π

[∮
∂S

dlθ ·An
1 −

∮
∂S

dlθ ·An
2

]
=

1

2π
(γ2 − γ1). (2.35)

As we can see, the Chern number is now the difference between the Berry phases along the
same path, calculated by using gauge shifted Berry connections. Since the Berry phase is gauge
invariant, the difference must be a multiple of 2π, and hence Cn ∈ Z. Specifically, for each
Landau level, Cn = ±1 [21]. We may now conclude that when the Fermi energy lies in the N -
th band gap, the Hall conductivity for a Landau level system defined on a torus is σxy = q2

2πℏν,
where ν =

∑N
n C

n = N is the total IQHE state Chern number, and equal up to a sign to the
filling factor.

The discrete nature of the Chern number points to its topological nature, since it cannot
be gradually changed by deforming the quantum states. Indeed, it is a topological invariant
characterizing an IQHE state, and it can only change at the point of a phase transition when
the gap separating the valence and the conduction band closes and reopens. On the other hand,
closing and reopening of the lower gaps may change the Chern number of the specific bands in
question, but their sum is unaffected [22].

8Thouless-Kohmoto-Nightingale-den Nijs [20]
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Figure 2.4: The toroidal parameter space divided into the "interior" region S and the "exterior" region
S′, which lie (respectively) inside the O1, and the O2 subsets of the parameter space.

IQHE in lattice models

Thus far, we have been considering the IQHE for a continuum model of a noninteracting 2DEG
in a magnetic field. Let us now turn our attention to lattice models. We again assume an
insulating state with EF in a gap. As we have seen in section 2.1.3, spatial periodicity in a
Hamiltonian allows us to view the problem in terms of the Bloch Hamiltonian

Hk =
1

2m
(−iℏ∇+ ℏk − qA(r))2 + U(r), (2.36)

parametrically dependent on the crystal momentum which assumes values from the Brillouin
zone, k ∈ BZ. Due to its periodicity, the Brillouin zone itself is homeomorphic to a T2 torus.
In this case, the parameter space is intrinsic to the system, as opposed to the externally imposed
perturbations discussed for a continuum system confined to a torus, but the consequences of
its topology are similar. We may once again use the Kubo formula (2.29) to find the Hall
conductivity, replacing the states |ψα⟩ by the eigenstates |unk⟩ of the Bloch Hamiltonian Hk,
and the summation indices α = (n,m) by (n,k). In this case, we may replace vj by 1

ℏ
∂H
∂kj

,
which does not change the off-diagonal matrix elements:

⟨unk|vj|un′k′⟩ = 1

ℏ
⟨unk|

∂Hk

∂kj
|un′k′⟩ = (En′k′ − Enk)

〈
unk
∣∣∂kjun′k′

〉
, (2.37)

and the summation over k by an integral,
∑

k → LxLy

(2π)2

∫
BZ

d2k. Once again, we arrive at the
Hall conductivity of the form

σxy =
q2

2πℏ
C, (2.38)
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with the Chern number given by

C =

(En<EF )∑
n

Cn =

(En<EF )∑
n

(−)
1

2π

∫
BZ

d2k ê3 ·Ωn. (2.39)

The same remarks on the integral values of the Chern number, and its topological nature apply
here.

Figure 2.5: The spectrum of the Harper-Hofstadter model (the Hofstadter butterfly) for flux per plaquette
α ∈ [0, 1] in units of flux quantum. The colors indicate the Chern number of the gap, i.e. the sum of
the Chern numbers of all levels below the gap. Warm (cold) colors indicate a negative (positive) Chern
number. Adopted from [21].

The specific value of the Chern number, and hence the topological phase of the IQHE sys-
tem, will depend on the specifics of the system in question. The simple Landau level picture
of the continuum problem above does not carry over to the lattice version of the same problem,
as can be seen, for example, in the case of the square lattice (the Harper-Hofstadter model).
Fig. 2.5 shows the spectrum of Harper-Hofstadter model [23] in relation to the magnetic flux
per plaquette (α) in units of Φ0; the famous Hofstadter butterfly. For rational values of α = p

q
,

p and q being coprime integers, the topologically trivial lowest Bloch band decomposes into q
subbands with nontrivial Chern numbers, while for irrational values of α, the spectrum fractal-
izes [17,21]. Decomposition is the result of a vector potential breaking the discrete translation
symmetry of the lattice, as evident from the Landau gauge tight-binding (TBA) Hamiltonian
[21]:

ĤHH = −J
∑
x,y

(â†x+a,yâx,y + ei2παx/aâ†x,y+aâx,y +H.c.), (2.40)

where a is the lattice constant, âx,y is the annihilation operator for a particle at site (x, y), and J
is the hopping amplitude to the neighbouring site, modified in the y direction by the symmetry-
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breaking Peierls phase factor ei2παx/a . For rational fluxes, translation symmetry still applies in
the Landau gauge, but for the so-called magnetic unit cell of size (qa, a). In this case, we may
define the magnetic Brillouin zone that is q times smaller than the original BZ. This leads to the
appearance of q subbands.

As mentioned at the beginning of this section, time-reversal symmetry breaking is a nec-
essary condition for the QHE. The reason is that TRS causes localization in 2D, and has to
be broken to allow for the existence of current-carrying extended states [19]. A net magnetic
flux through each plaquette will achieve TRS breaking, since hopping in opposite directions
produces opposite Peierls phases, but it is not necessary for quantized Hall conductivity, as
demonstrated by Haldane [24]. The TBA Haldane model Hamiltonian is given by [25]

Ĥ = t1
∑
⟨i,j⟩

â†i âj + t2
∑
⟨⟨i,j⟩⟩

e−iνi,jφ â†i âj +M
∑
i

ϵiâ
†
i âi, (2.41)

where âi is the annihilation operator for a particle at site i; ⟨i, j⟩ and ⟨⟨i, j⟩⟩ denote respectively
the summation over the nearest and next-nearest neighbours for all sites of the honeycomb
lattice (HCL), while t1 and t2 are respectively the nearest and next-nearest neighbour hopping
amplitudes; νi,j = −νj,i = ±1 when i and j are next-nearest neighbours (see fig. 2.6 (a)), φ is a
constant (see fig. 2.6 (a)), M is the mass parameter, and ϵi = ±1, depending on the sublattice.
The HCL has two sites per cell, so the lowest Bloch band splits into two.

a) b)

Figure 2.6: (a) The honeycomb lattice. Next-nearest neighbour hopping along the arrows produces the
Peierls phase +φ, while hopping against the arrows produces −φ. (b) The phase diagram (sketch) of the
Haldane model. C denotes the Chern number, M the mass parameter, and t2 the next-nearest neighbour
hopping amplitude.

The first term in the Hamiltonian accounts for hopping between nearest neighbours with
amplitude t1. On its own, this term is a simple model for graphene, and it features the familiar
gapless Dirac points in the six corners of the BZ, two of which are nonidentical. The dispersion
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is conical in their vicinity, resembling that of massless relativistic electrons obeying the 2D
Dirac Hamiltonian HD = ℏvD(qxσx + qyσy) in k-space, where q is the momentum measured
from a Dirac point, σi are the Pauli matrices, and vD ≡ 3t1/2 is the Dirac velocity.

The Dirac points are known to be protected by the combined TR and inversion (IS) sym-
metries [25]. The last two terms break one of those symmetries each, which has the effect
of adding a term proportional to σz to the k-space Hamiltonian. The third term is simply an
on-site energy, breaking the IS by alternating the sign between the two sublattices. This term
opens a gap by adding a mass (M ) term to the Dirac Hamiltonian, but does not induce nontrivial
band topology. The second term breaks the TRS (when φ ̸= 0, π) due to the opposite Peierls
phases for next-nearest neighbour hopping in opposite directions. This allows the two bands
to be nontrivial in certain regions of the phase diagram (fig. 2.6 (b)), with the Chern numbers
C± = ±1. However, the Peierls phases arranged in this way do not produce a net flux through
a plaquette, and preserve the original translation symmetry, unlike the previous example of the
Harper-Hofstadter model.

Role of disorder

So far, we have explained the Hall conductivity values for the case of completely filled bands
or Landau levels (EF lying in a gap), in terms of the Chern number. These values correspond
to the resistivity plateaus shown in fig. 2.1. However, in order to explain the width of the
plateaus, we must consider partially filled bands. For a 2DEG with electron density ρ0 in a
magnetic field, the filling factor is controlled by the flux density, i.e. the magnetic field. The
filing factor is an integer ν when the field is given by ρ0Φ0/ν. Between these values, we expect
the resistivity to increase smoothly, as opposed to stepwise. This picture is changed in presence
of disorder. Taking the random potential into account in the Hamiltonian (2.22), the Landau
levels will broaden, due to the degeneracy being lifted. We assume the disorder is not strong
enough to completely disrupt the Landau level picture. The randomly distributed potential
hills and valleys may bind states, and localize them to the region of increased or decreased
potential, leading to an increase or reduction in their energy. The remaining extended states
will be perturbed, but their energies will tend to shift less [17], so they will tend to occupy
the central regions of their respective bands in the density of states (fig. 2.7). Let us recall the
Corbino ring geometry example from earlier. Threading a flux through the ring does not affect
the localized states beyond a gauge transformation, but the extended states still have to flow,
due to the discrete nature of gauge invariance. When flux is increased to Φ0, the spectrum maps
back onto itself, and each extended state takes the place of the next available state. Therefore,
provided all extended states are filled, a single electron is mapped from one edge to another,
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regardless of the number of available extended states. As argued in [19], some extended states
will survive, as long as the disorder is not strong enough to disrupt the Landau level picture.

Figure 2.7: A density of states (sketch) characteristic of Landau levels broadened by disorder. The
regions in black represent the bands of extended states, while the broader regions in grey represent the
whole bands, including localized states. The Fermi energy EF shifts vertically as the magnetic field is
varied.

To explain the plateaus, we now simply have to consider what happens as the magnetic field
is adiabatically varied, starting from a particular strength, such that ν bands are completely
filled. As we gradually increase the field, the band centers in the density of states shift upwards.
Since the energy axis in fig. 2.7 is scaled by ℏωB, the levels appear stationary, and the Fermi
energy shifts downwards instead. As the Fermi energy crosses the localized states on the top
of the highest occupied band, these states become unoccupied since the system remains in the
ground state. However, the longitudinal and transversal conductivities are unaffected, since they
are only dependent on the extended states. As the Fermi energy crosses the extended portion
of the band, the system becomes a conductor, and the Hall conductivity transitions between the
plateaus. This corresponds to a particular transition region in fig. 2.1. The new plateau value
of conductivity is then retained until the Fermi energy reaches the next band of extended states.
An important point on which this explanation relies is the topological protection of the band
Chern number against disorder that is not strong enough to merge the bands of extended states.

2.2.2 Fractional quantum Hall effect

Not long after the discovery of the IQHE, Tsui, Stormer, and Gossard discovered a conductivity
plateau at a fraction (ν = 1/3) of q2/h [26]. Other fractional values followed, some of them
depicted in fig. 2.8. This phenomenon is called the fractional quantum Hall effect (FQHE) and
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it is a rich source of emergent and often unintuitive physics. The key to fractionalizaion of Hall
conductivity is that the Coulomb interaction be prominent enough to break the relatively simple
IQHE picture. This requires that the Coulomb energy scale should be large in comparison to the
scale of the disorder potential, but it should be small when compared to the cyclotron energy
ℏωB [17], so that the Landau level structure is perturbed, but not destroyed.

Figure 2.8: Overview of Hall and longitudinal resistivity over a range of magnetic field values measured
in a GaAs/AlGaAs heterostructure. Plateaus at fractional fillings are visible in the Hall resistivity. From
[27].

FQHE at fillings ν = 1/m

We will again consider a 2DEG in a uniform magnetic field, but this time we include the inter-
actions between electrons. Perhaps the simplest system of this kind is given by the Hamiltonian

H =
Ne∑
j

[
1

2m
(pj − qA(rj))

2 + V (rj)

]
+

q2

4πϵ0

Ne∑
j>k

1

|rj − rk|
, (2.42)
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where V is a neutralizing potential due to a positively charged uniform background (for elec-
trons). In practice, finding an exact ground state is impossible for largeNe, but the topologically
protected features of the FQHE states ought to be captured by any wave function that is adia-
batically deformable into the correct ground state. Such wave functions have been proposed for
various FQHE states, most notably the Laughlin states [28] which model the ν = 1/m FQHE
states (fermionic for odd m):

ψm({zk}) =
Ne∏
i<j

zi − zj
m exp

(
−

Ne∑
i

|zi|2
4l2B

)
, (2.43)

where we take the {zk} dependence to include both zk and z k for each k. These states have high
overlaps with the true ground states of the Hamiltonian (2.42) for small numbers of particles,
but are not expected to be a good approximation for large systems [17]. Instead, they are useful
entirely because they are characterized by the same kind of topological order as the true ground
state. Note that for the completely filled LLL (m = 1), the interactions become unimportant
in the context of QHE, which is reflected in the fact that the Laughlin state corresponds to the
many-body ground state for the noninteracting system, i.e. the Slater determinant comprised of
the states (2.24).

It can be argued by employing the plasma analogy (explained below) that the preferred
number density of electrons in a Laughlin ground state is given by ρ0 = 1

2πl2Bm
[17,29]. In

fact, it behaves like an incompressible liquid, meaning it admits no gapless excitations. This
indicates that the QHE at a fractional filling 1/m should be explained as a consequence of the
interactions opening a gap in the LLL at this filling. We may repeat the Corbino ring argument
here. The spectrum is sensitive to the value of the flux threaded through the ring, but it must
be indistinguishable for different integer values of flux. Threading a negative flux α = −1

will cause the states to flow outwards, since the number of flux quanta in the area is reduced.
We assume an infinitely thin flux-carrying solenoid, and the argument is then unchanged if we
consider the system on a disk instead of the ring geometry. In this case, electron density must
be depleted in a region around the position of the solenoid due to the outward flow. Since the
new state is again an eigenstate of the Hamiltonian, we will consider this depletion a quasihole.
Since only 1/m of the LLL is filled, we may anticipate that only q/m charge is transferred
radially. This may be confirmed by examining the probability distribution resulting from the
wave function describing a quasihole at position η [28,17]

ψηm({zl}) =
Ne∏
k

zk − η

Ne∏
i<j

zi − zj
m exp

(
−

Ne∑
i

|zi|2
4l2B

)
(2.44)
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through the lens of plasma analogy [28]. To do this we write this distribution as a Boltzmann
distribution |ψηm({zk})|2 = exp[−βU({zl})], with the inverse "temperature" β = 2/m and

U({zl}) = −m2

Ne∑
i<j

log

( |zi − zj|
lB

)
+

m

4l2B

Ne∑
i

|zi|2 −m
Ne∑
i

log

( |zi − η|
lB

)
, (2.45)

where we have restored the scale lB in the logarithms from the omitted normalization factor.
This potential function corresponds to a 2D plasma with a charged impurity at η. The first term
describes the Coulomb repulsion between particles of "charge" m (corresponding to electrons)
and the second term the interaction of each "charge"mwith a neutralizing background "charge"
density of −1/2πl2B. The first two terms are also present for the ground state, whereas the third
term is specific to a state with a hole at η, and it describes the interaction of "charges" m
with an impurity of "charge" 1. At a distance much greater than lB, the impurity "charge"
will be screened by a redistribution of the plasma particles. Since the impurity "charge" to be
neutralized is m times less than the particle "charge", it follows that the actual charge of the
quasihole is −q/m, and therefore, that the charge q/m has been radially transferred away from
the hole. Alternatively, a positive flux would cause an inward transfer of the same charge. The
accumulation of additional charge q/m around η indicates the presence of a quasiparticle.

Combined with the effect of disorder, the fractional charge of the Laughlin quasiparticles
and quasiholes explains the plateaus of conductivity for 1/m states. However, an apparent
contradiction may arise with the result (2.33) that implies Hall conductivity quantization in
terms of the (integral) Chern number for a system defined on a torus. To resolve this, we note
that the Kubo formula in the form (2.29) only applies when the ground state is nondegenerate.
However, the ground state on a Riemann surface of genus g is not unique, but is characterized by
a topological degeneracy mg [30]. This gives an m-fold degeneracy in case of a torus (g = 1).
This degeneracy is a topological invariant characteristic of the topological order inherent to the
FQHE system on a torus.

In addition to fractional charge, another remarkable property of the Laughlin quasiparticles
is their fractional (anyonic) exchange statistics [31,32]. We will derive the statistical parameter
for 1/m Laughlin quasiholes in the following, and will further discuss anyons in the next sec-
tion. Similar to Arovas et al. [32], we consider a quasihole at η, and let η adiabatically traverse
a closed path C, enclosing the region Ω (see fig. 2.9). The resulting Berry phase is composed
of the Aharonov-Bohm contribution due to the charge of the quasihole, and the statistical phase
which occurs if the path encloses other identical quasiholes9. The wave function for a state

9We argue in the next section that taking a path around another particle can be regarded as equivalent to two
subsequent exchanges.
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a) b)

Figure 2.9: A possible path C traversed by the quasihole η, enclosing the region Ω. The direction of the
magnetic field is indicated in the top-right corners. a) When no quasiholes are enclosed, integration in
(2.50) leads to the Aharonov-Bohm phase. b) The path encloses NΩ = 2 quasiholes, leading to the total
Berry phase (2.52), which is the sum of the Aharonov-Bohm phase, and the statistical phase.

containing N quasiholes is given by:

ψ({zl}; {ηα}) =
N∏
β=1

Ne∏
k

zk − ηβ

Ne∏
i<j

zi − zj
m exp

(
−

Ne∑
i

|zi|2
4l2B

)

=
Ne∏
k

zk − η ψ({zi}; {ηα>1}), (2.46)

where in the second line we single out the quasihole that is to be taken around a loop. Since we
are using complex notation for the coordinates, the Berry phase is given by

γ = i

∮
C
(Aηdη +A η dη ), (2.47)

where Aη and A η are the holomorphic and antiholomorphic Berry connections. The functional
form of the normalization factor is needed to derive Aη and A η , so we introduce the explicitly
normalized state Ψ =

√
Z

−1
ψ and write

Aη = i ⟨Ψ|∂ηΨ⟩ = i

Z
⟨ψ|∂ηψ⟩ −

i

2

1

Z
∂ηZ

A η = i ⟨Ψ|∂ ηΨ⟩ = i

Z
⟨ψ|∂ ηψ⟩ −

i

2

1

Z
∂ ηZ, (2.48)

where ∂η = 1
2
(∂x− i∂y) and ∂ η = 1

2
(∂x+ i∂y) are the Wirtinger derivatives. From the Cauchy-

Riemann equations, it follows that ∂ η f = 0 for any holomorphic function, and equivalently
∂ηf = 0 for antiholomorphic functions. Since ψ is antiholomorphic in η, we have ⟨ψ|∂ηψ⟩ = 0,
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∂ ηZ = ∂ η ⟨ψ|ψ⟩ = ⟨ψ|∂ ηψ⟩, and ∂ηZ = ⟨∂ηψ|ψ⟩ = ⟨ψ|∂ ηψ⟩∗. Finally, it is easily shown
that ⟨ψ|∂ ηψ⟩ = −⟨ψ|∑Ne

j zj − η −1|ψ⟩. By (2.48) and (2.47), the Berry phase now assumes
the form

γ =
i

2

∮
C
dη ⟨Ψ|

Ne∑
j

1

zj − η
|Ψ⟩ − i

2

∮
C
dη ⟨Ψ|

Ne∑
j

1

zj − η
|Ψ⟩ (2.49)

Using the definition of the single-particle density ρ(z; {ηi}) = ⟨Ψ|∑Ne

j δ(zj − z)|Ψ⟩, we may
rewrite in the form

γ =
i

2

∫
d2r

[∮
C
dη

ρ(z; {ηi})
z − η

−
∮
C
dη

ρ(z; {ηi})
z − η

]
(2.50)

Far away from the quasihole, the density is uniform, so we may write ρ(z) = ρ0+δρ({z−ηi}).
In the thermodynamic limit, the plasma analogy leads to δρ({z − ηi}) = − 1

m

∑N
k δ

2(z − ηk)

(see [33] and references therein). This result ignores the short-distance behaviour and only
accounts for charge expulsion, but it may be used to approximate the Berry phase when the
surface enclosed by the traversed contour is large compared to l2B. The uniform density ρ0,
being both holomorphic and antiholomorphic, allows us to use the residue theorem to solve the
contour integral

∮
C dη

ρ0
z−η = −2πiρ0Θz∈Ω and its complex conjugate, where the step function

Θz∈Ω will act to constrain the surface integration in (2.50) to region Ω. We first derive the
Aharonov-Bohm contribution, which corresponds to the Berry phase for ρ(z ∈ Ω) = ρ0, i.e. no
quasiholes in region Ω, as in fig. 2.9 a). We arrive at

γ0 = 2π ⟨n⟩Ω = 2π
ΦΩ

Φ0

1

m
, (2.51)

where ⟨n⟩Ω = ρ0AΩ is the mean number of electrons in the enclosed region Ω. The result corre-
sponds to the Aharonov-Bohm phase (2.12) for a particle of charge q∗ = q/m, thus confirming
the fractional charge of the quasiholes.

Let us now imagine that the path C encloses NΩ quasiholes as in fig. 2.9 b). The Aharonov-
Bohm phase remains unchanged, and the δρ term in (2.50) is easily evaluated by first performing
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the surface, followed by the contour integral

γ = γ0 +
i

2

[∮
C
dη

∫
d2r

−1
m

∑N
k=2 δ

2(z − ηk)

z − η
−
∮
C
dη

∫
d2r

−1
m

∑N
k=2 δ

2(z − ηk)

z − η

]

= γ0 −
i

2m

N∑
k=2

[∮
C

dη

ηk − η
−
∮
C

dη

ηk − η

]
= 2π

ΦΩ

Φ0

1

m
− i

m

N∑
k=2

(−)2πiΘηk∈Ω

= 2π(
ΦΩ

Φ0

−NΩ)
1

m

= 2π ⟨n⟩Ω (2.52)

Once again, the total phase is proportional to the mean number of electrons enclosed, but this
number is now reduced by 1/m for each enclosed quasihole. The statistical phase is simply the
difference between γ and γ0, which for a single enclosed quasihole amounts to

γS = γ1 − γ0 = −2π
1

m
(2.53)

The sign of the phase here depends on whether the contour C is traversed in clockwise or
anticlockwise sense, which is a feature of anyonic statistics, along with the fractional phase (in
units of 2π) upon double exchange.

FQHE at other filling fractions

FQHE at filling fractions ν other than 1/m may be explained by hierarchical construction
[34,31], starting from Laughlin states. For small deviations of the magnetic field from the
ρ0Φ0m value, the change in filling fraction may be viewed as a net excess in the number of
quasiparticle excitations, defined as the difference between the number of quasiparticles and
quasiholes, Nex = Nqp − Nqh. Since quasiparticles are (fractionally) charged, they feel the
background magnetic field, and may condense into a Laughlin-like state. The allowed shapes
of the wave function are imposed by statistics. We have seen that factors of the form zi − zj

α

with α = m = 2p − 1 appear for each particle pair in case of fermions. More generally,
α = 2p + θ, where θ is the statistical parameter. In case of bosons, we would have θ = 0,
resulting in Laughlin states with even m. For anyonic quasiparticles(holes) discussed above,
θ = χ/m, with χ = +1 for quasiparticles and χ = −1 for quasiholes, and the magnetic length
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is
√
mlB, so the appropriate wave function is

ψ({ηk}) =
N∏
i<j

ηi − ηj
2p+χ 1

m exp

(
−

N∑
i

|ηi|2
4ml2B

)
, p = 1, 2, 3, . . . (2.54)

where, in order to accommodate for the possibility of positively and negatively charged quasi-
particles, we define ηk = ηx+ iχηy. Given the starting Laughlin state, the restriction p ∈ N lets
us predict a series of allowed filling fractions. It can be shown using the plasma analogy that
the quasiparticle excitation density in the state (2.54) is ρex = χ [2π(2p− χ/m)ml2B]

−1. Since
each excitation corresponds to an excess or shortage of 1/m electrons, their combined effect
is a contribution to electron density of ∆ρel = ρex/m above the density at filling factor 1/m.
Knowing that the electron density of the filled Landau level is ρν=1 = 1/2πl2B, we obtain the
quasiparticle contribution to the filling factor as the ratio ∆ν = ∆ρel/ρν=1, and the total filling
factor as

ν =
1

m
+∆ν =

1

m
+

χ

2pm2 − χm
=

1

m− χ
2p

(2.55)

The new "child" state at filling ν can have its own characteristic excitations which may also
condense into a QHE state, giving rise to a hierarchy of QHE states at filling fractions

ν =
1

m− χ1

2p1 −
χ2

2p2 − . . .

(2.56)

The hierarchies starting with 1/m for odd m contain every rational number with an odd
denominator [35]. It depends on the details of the system whether a QHE state at a certain
filling is realized. In practice, the QHE states that are higher in the hierarchy (closer to the
1/m state) tend to be more stable, and similarly those with smaller m and p1, since interactions
are more prominent at larger densities [34]. Thus, the hierarchical construction explains the
existence of FQHE at various fillings. An alternative way to explain the FQHE in terms of the
IQHE of composite fermions has been proposed by Jain [36]. A composite fermion refers to
a bound state of an electron and an even number of flux quanta, which feels a lower effective
magnetic field, such that the filling factor is an integer.

We have ignored the role of spin in our discussion, which implies the assumption of com-
plete spin polarization. This is sometimes justified due to the Zeeman effect, but other times
it will be necessary to work with unpolarized or partially polarized states. It is also important
to note that the FQHE states obtained in the way we described are Abelian, as the exchanges
of their quasiparticle excitations merely produce a phase, as opposed to a noncommutative
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unitary transformation. However, other kinds of FQHE states are possible, sometimes at even-
denominator fillings, and some some possibly non-Abelian [11]. A notable example is the
ν = 5/2 state, which was the first even-denominator FQHE state observed [27], and is thought
to be non-Abelian, specifically a spin-polarized Moore-Read Pfaffian state [11].

2.2.3 Anyons

It is known that identical particles in quantum mechanics are indistinguishable, which implies
that an exchange of two particles cannot affect the physical state in any measurable way. How-
ever, this requirement does not prevent a wave function from acquiring a phase factor. There is
a common naive argument that since two subsequent exchanges of a pair of particles bring the
system back to the initial configuration, the physical exchange must be analogous to a double
permutation of particle labels. Since a double permutation cannot affect the wave function, it
follows that the effect of a single permutation is multiplication by a square root of 1, i.e ±1.
Therefore, the wave functions should either be symmetric or antisymmetric under an exchange
of identical particles. The former case corresponds to bosons, while the latter corresponds to
fermions.

The effect of the requirements of (anti)symmetry on quantum statistics was already recog-
nized in the 1920s, and for the better part of the 20th century, it was thought that Bose and Fermi
statistics were the only two possibilities. This is unsurprising, given that the conclusion is true
in 3D, and consequently, most easily accessible particles obey one or the other. It turns out,
however, that the conclusion does not hold in general. It is now understood that the reason it
holds in 3D is of topological nature, and that different possibilities arise in 2D. The significance
of the difference between 3D and 2D space was recognized in 1977 by Leinaas and Myrheim
[37], and the name anyon for a particle obeying exotic statistics was coined by Frank Wilczek in
1982 when he showed that objects composed of a charge bound to a magnetic flux may behave
unlike bosons or fermions [38].

Topology and exchange statistics

We now describe how topology affects the exchange phases (or transformations) in 2D and 3D.
We consider a pair of hardcore10 particles lying in some plane (xy), and we ignore all physics
except for the exchange statistics. Out of an infinite number of ways by which a single exchange
may be achieved, we choose a two-step process depicted in fig. 2.10 a)-c). In step 1, the relative

10Hardcore repulsion implies a diverging repulsive potential for particle configurations with two or more parti-
cles in the same place, such that these configurations are effectively excluded from the configuration space (see eq.
(2.57)).

30



2.2. Topological quantum matter Chapter 2. Theoretical background

a) b) c)

f)e)d)

Figure 2.10: a)-e) Stepwise depiction of a process that achieves two subsequent exchanges of particles
P1 and P2 in the anticlockwise sense. The dashed lines represent the paths taken during the current step.
Solid (empty) circles represent the particle positions after (before) each step is performed, and r12 is
the relative coordinate vector. a) The starting position. b) r12 is inverted by taking P2 along path 1. c)
Rigid translation (path 2) of both points so they match each others starting positions, completing single
exchange. d) Rigid translation in the opposite direction (path 1′). e) r12 is inverted again by taking P2

along path 2′. f) Complete path of double exchange C, excluding rigid translations.

coordinate is inverted (r12 → −r12) by taking particle P2 in the anticlockwise sense (relative
to particle P1) along a path lying in the xy-plane, and terminating on the other side of P1. Then
in step 2, both particles are rigidly translated so that the new position of each corresponds to
the starting position of the other. A second exchange (fig. 2.10 d)-e)) may then be achieved
by first undoing the rigid translation (step 1′), and then completing the anticlockwise path of
particle P2, until it is back in its starting position (step 2′). Clearly, we may get rid of both rigid
translations when considering a double exchange (fig. 2.10 f)), and conclude that taking one of
the particles along an anticlockwise path (C = 1 + 2′) around the other should be considered
an equivalent process. If we assume that the exchange statistics is a topological effect, the
final result should only depend on the winding of the path of one particle around the other.
The path taken was mostly chosen arbitrarily in the xy-plane. The nonarbitrary aspects are the
encirclement (anticlockwise winding) and the two fixed points marked in 2.10 f). The point A
is fixed by the initial and final conditions, but the point B, marking a single exchange, may be
relaxed without affecting the result.

Now, the difference between different dimensional spaces becomes clear. If the dimension
is greater than 2, the path can be deformed outside of the xy-plane, as shown in fig. 2.11 a).

31



2.2. Topological quantum matter Chapter 2. Theoretical background

a) b)

Figure 2.11: Difference in topology between 3D and 2D space with an excluded point (P1). a) All loops
starting at P2 may be continuously contracted into P2 in 3D. b) In 2D, the red loops wind around P1

once, and, unlike the green loops, cannot be continuously deformed into P2.

Therefore, it belongs to the class of loops that may be continuously contracted into a vanishing
loop. Since a vanishingly small loop cannot wind around P1, the conclusion is that winding is
not well defined in 3D, and the double exchange must be equivalent to the identity operation
(multiplication by 1). Only the 2πn phase shifts satisfy this requirement. On the other hand,
as shown in fig. 2.11 b), the option of deforming C outside of the xy-plane is not available
in 2D. Therefore, a continuous contraction into a point is not possible, since the loop would
have to cross P1, and such paths are forbidden due to hardcore repulsion. In topological terms
(see [6]), loops winding around P1 a different number of times belong to different homotopy
classes. This is a consequence of the exclusion of P1, making the space infinitely connected.
The group of loop homotopy classes of a topological space is called the fundamental group.
In 3D case, the space is simply connected, and so this group is trivial, consisting of only the
identity element (contractible loops). In 2D case, every integer has a corresponding homotopy
class. The fundamental group is then isomorphic to the the Z group, i.e. integers under addition.
The winding of a path is therefore well defined by its homotopy class, and the final result
need not be trivial for nonzero winding numbers. Note that the particles P1 and P2 were not
assumed to be identical. Mutual statistics may be defined for distinguishable particles in 2D
when considering double exchanges [11].

We may already draw some preliminary conclusions about single exchanges of indistin-
guishable particles. When dealing with one-component wave functions, it seems that a ±1

factor, i.e. bosons or fermions, is the only possibility in 3D, since a double exchange entails
winding which is not well defined. We run into no such constraint in 2D. However, to get a
proper mathematical picture of single exchanges, we must look into the properties of the con-
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figuration space of the system. As before, all configurations with two particles in the same point
must be excluded due to the hardcore condition. But furthermore, due to indistinguishability,
we must identify all configurations that can be changed into one another by simply permuting
particle labels. This can be easily visualised in the 2D, two-particle case, since the configura-
tion space can be thought of as a product of the center-of-mass coordinate space and the relative
coordinate space. The center-of-mass coordinate is unaffected, but the relative coordinate r12

is identified with its inverse, −r12. Visually, this means that a half of the plane is removed, e.g.
bottom half, and the positive x-axis is folded onto the negative x-axis, creating a cone without
the tip (as the origin is unphysical). In this topology, a single exchange is a closed loop around
the cone, and is clearly noncontractible due to the missing tip. The fundamental group of this
space (and by extension the full configuration space) is once again Z, its elements distinguished
by their winding number, but we must keep in mind that a single winding now corresponds to a
single, instead of a double exchange. It is more difficult, but possible (see [37,39]), to visualise
that the relative coordinate space in 3D is doubly connected, i.e. permitting contractible and a
single kind of noncontractible loops. The latter corresponds to single, and the former to double
exchanges (equivalent to identity). The fundamental group is Z2, the group of integers {0, 1}
under addition modulo 2, or equivalently, the permutation (symmetric) group of two elements
S2.

In the general case of N particles in a d-dimensional space, the configuration space is de-
noted [40]

Md
N =

(Rd)N −D

SN
, (2.57)

Here, subtracting the generalized diagonal D, i.e. the set of configurations with ri = rj for any
i ̸= j, imposes the hardcore condition, and "dividing" by the permutation group SN imposes
the indistunguishability of identical particles by identifying configurations distinguished only
by a particle permutation. The fundamental groups are known for this class of spaces (see [39]
and references therein) ,

π1(M
d
N) =

SN for d ≥ 3,

BN for d = 2.
(2.58)

where BN is a braid group of N strands. Its elements are called braids and they can be obtained
from the generating set σ1, . . . , σN−1 satisfying

σiσj = σjσi for |i− j| ≥ 2,

σiσi+1σi = σi+1σiσi+1 for 1 ≤ i ≤ N − 2. (2.59)
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A braid can be thought of as a specific way of connecting a sequence of N fixed starting points
to a sequence of N fixed ending points by N strands. Two braids are considered distinct only
if they cannot be deformed into each other without any strands crossing, or moving any of the
fixed points. The generator σi can be thought of as the operation that winds (braids) the i-th
and the (i+1)-th strand around each other in the positive sense so that their ends are exchanged,
as shown in fig. 2.12 a), and its inverse σ−1

i represents winding in the negative sense. Any
braid α can be constructed by a product, i.e. sequential application, of the generators σi and
their inverses (see fig. 2.12 b) for an example). This is a very appealing picture, since each
strand can be thought of as a world line of a particle in (2+1) dimensions, representative of the
equivalence class of those world lines it can be deformed into.

a) b)

Figure 2.12: A schematic representation of: a) The braid constructed by a single application of the σi
operator. b) Braid α = σiσ

−1
i+1σi−1, constructed by a sequential application (product) of the braid group

generators and their inverses. The strands may be interpreted as (2 + 1)D world lines, in which case the
horizontal axis represents the 2D space, and the vertical axis represents time.

The infinite braid group BN is in some sense similar to the finite permutation group SN in
that both describe exchanges of the elements of some set (particles). However, braids can keep
track of the topology of the paths taken in (2 + 1)D, which may be nontrivial even if the final
particle configuration matches the initial. On the other hand, in (3+1)D, an additional degree of
freedom is available, and all world lines connecting matching configurations can be unwound.
In this case, the only topological difference is between the N ! different configurations, which
is encoded by the permutation group. This intuitively explains the result (2.58). Note that
in the special case of 2 particles, the braid group B2 is isomorphic to the Z group, while the
permutation group S2 is isomorphic to the cyclic group Z2, as a consequence of the fact that
any permutation is its own inverse.

This understanding of the topology of the configuration space can be applied to determine
the outcome of particle exchanges. In the path integral framework, an amplitude for the system
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to transition from configuration q at time t to configuration q′ at t′ is obtained by summing
over all paths with weights equal in magnitude, but their phases determined by the action.
Since different path homotopy classes in a multiply connected space Md

N are not continuously
connected, integration over paths must be done separately for each homotopy class α to obtain
partial amplitudes

Kα(q
′, t′; q, t) =

∫
q(τ)∈α

Dq(τ) exp
(
i

ℏ

∫ t′

t

dsL[q(s), q̇(s)]

)
, (2.60)

L(q, q̇) being the Lagrangian, and
∫
q(τ)∈αDq(τ) denoting integration over all paths q(τ) satis-

fying q(t) = q and q(t′) = q′. To obtain the total amplitude, the partial amplitudes are summed
with weights [41]

K(q, t; q′, t′) =
∑

α∈π1(Md
N )

ρ(α)Kα(q, t; q
′, t′). (2.61)

The total amplitude is the propagator that determines the wave function at t′, given the initial
condition at t according to ψ(q′, t′) =

∫
Md

N
dqK(q′, t′; q, t)ψ(q, t). Clearly, the weights ρ(α) are

expressed in the final result, and they cause it to be dependent on the topology of the contributing
paths. To find the possible values for ρ(α), we require that the transition amplitudes combine
according to K(q′′, t′′; q, t) =

∫
Md

N
dq′K(q′′, t′′; q′, t′)K(q′, t′; q, t) (see [39,41]), which leads to

ρ(α)ρ(β) = ρ(αβ), ∀α, β ∈ π1(M
d
N). (2.62)

This is a defining relation for a representation of the fundamental group π1(Md
N). Assuming

scalar quantum mechanics, ρ can only be a one-dimensional representation. It can also be
shown [41] that the representation is unitary (i.e. a phase factor). The only unitary scalar rep-
resentations of the permutation group SN are the trivial (ρ(α) = 1), and the sign (ρ(α) = ±1,
depending on permutation parity) representations. Therefore, in 3D, exchange of identical par-
ticles is governed by one of the two possible representations, resulting respectively in bosonic
or fermionic statistics. On the other hand, the braid groupBN has an infinite number of possible
unitary scalar representations. These can be parametrized by the statistical parameter θ ∈ [0, 2⟩,
and it can be shown by employing (2.62) and the first relation of (2.59) that [40]

ρθ(σi) = eiθπ (2.63)

for any member of the generating set ofBN . The group representation satisfies ρ(σi)ρ(σ−1
i ) = 1,

so ρ(σ−1
i ) = e−iθπ. We conclude that in 2D scalar quantum mechanics, a physical exchange is
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not equivalent to the unphysical permutation of particle labels. Instead it produces a phase shift
dependent on the sense of the exchange path, with a spectrum of possible values. Bosonic and
fermionic statistics correspond respectively to the special cases θ = 0 and θ = 1.

Let us briefly note that the π in the exponent in (2.63) comes from the change in the relative
angle between particles i and i+ 1 upon a single exchange. The representation for an arbitrary
braid α involves summing over the changes of the relative angles between all particles, and may
be expressed as [40,39]

ρθ(α) = exp

[
iθ
∑
i<j

∫ t′

t

dτ
d

dτ
φ
(α)
ij (τ)

]
, (2.64)

where braiding operations are performed between time t and t′. This allows us to incorpo-
rate the weights ρ(α) of (2.61) into the action in (2.60), by defining an effective Lagrangian
L′ = L+ ℏθ

∑
i<j

d
dτ
φ
(α)
ij (τ). This suggests an alternative interpretation of fractional statis-

tics as a form of topological interaction. The Lagrangian L′ may, for example, be that of the
Chern-Simons theory, which is a topological quantum field theory effectively describing the
low-energy properties of the Laughlin FQHE states discussed in the previous section [6,11].

Since the representation (2.63) is scalar, it must be commutative. Hence, it describes the so-
called Abelian fractional (anyonic) statistics. However, braid group representations that govern
particle exchanges are not always scalar. In case wave functions are multiplets, higher dimen-
sional unitary representations may be needed. If there is a set of g degenerate states describing
N particles at fixed positions, the effect of braiding particles may be described by a g×g unitary
matrix [11]

ψa → [ρ(α)]abψb, (2.65)

where {ψa|a = 1, . . . , g} is an orthonormal basis set of the degenerate subspace. Besides
phase shifts, these unitary transformations may rotate the state ψa within the degenerate sub-
space. The commutator [ρ(σi), ρ(σj)] does not vanish in general, so these representations may
describe non-Abelian statistics. Of course, permutation groups also have higher-dimensional
representations which give rise to parastatistics, but this is not of fundamental importance as it
can be viewed as ordinary statistics for particles with an additional quantum number [11].

Anyon fusion

Two or more anyons can be fused, i.e. brought together, and considered a single particle with
combined quantum numbers [11]. This includes combined statistics (topological quantum num-
ber), which manifests if such fused anyons are braided. This means that systems allowing for
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anyons normally allow for more than one species, and to be able to characterize an anyonic
system, a list of possible species is needed. Furthermore, an outcome of fusion is not always
unique. Similar to addition of angular momenta, different fusion channels may be possible.
These are governed by fusion rules denoted as

ϕa × ϕb =
∑
c

N c
abϕc, (2.66)

meaning that when an anyon of species a is fused with an anyon of species b, an anyon of each
allowed species cmay be obtained inN c

ab distinct ways. When a and b are Abelian, there is only
one possible outcome c with N c

ab = 1, and N c′

ab = 0 when c′ ̸= c. For example if two anyons
obeying statistics θ are fused, the outcome is a 4θ anyon. This can be explained by noting that
in braiding one fused anyon with another, each of its two constituent θ anyons is braided with
the other two θ anyons, thus accumulating the 2θ phase twice.

When viewed in isolation, a system of N anyons fuses, i.e. observes a combined statistics.
It may be prepared in some linear combination of states with different topological quantum
numbers allowed by fusion rules. For example, since vacuum has the statistics of a topologically
trivial (bosonic) particle, a system with a definite, trivial quantum number may be prepared by
creating N/2 pairs from vacuum. To understand the fusion of N anyons, we start by dividing
the system into arbitrary pairs, which fuse into intermediate channels, and repeat the process
until the final result is reached. This can be visualized as a fusion tree. For example, let us
consider a system of three anyons of species a, b, and c. We may first fuse a and b into an
intermediate channel i, and then fuse i with the remaining anyon c into the channel d:

a b c

i

d

. (2.67)

Let us now assume that a, b, and c, as well as the outcome d are known in advance. This means
the total fusion space is restricted to a particular subspace, namely the fusion space with total
quantum number d. In this case, i may be any species consistent with the fusion rules, i.e. for
which N i

ab ̸= 0 and Nd
ic ̸= 0. The number of such species determines the dimension of the

fusion space. The set of states (2.67) for every allowed i forms the basis. Clearly, there is more
than one way to divide the system into pairs. For example, b may initially fuse with c to give the
intermediate anyon j, which then fuses with a. Since this is not a physical change, the fusion
space must be the same, and states with different j comprise another basis. The basis change is

37



2.2. Topological quantum matter Chapter 2. Theoretical background

parametrized by the so-called F matrix

a b c

i

d

=
∑
j

[F d
abc]ij

a b c

j

d

, (2.68)

where the indices within the brackets enumerate the initial and final anyons, while the ones
outside enumerate the intermediate anyons. Basis transforamtions for larger fusion trees may
still be represented by F matrices with the same number of indices by treating subtrees inde-
pendently. Assuming degenerate fusion space and recalling (2.65), we conclude that braiding
may induce rotations within the fusion space. To describe braiding in this fusion framework,
we require another ingredient, namely the R matrices, which describe the effect of exchanging
(in the positive sense) two particles in a fixed fusion channel. When all N c

ab ≤ 1, the R matrices
reduce to phases Rc

ab. This must be true, since the topological quantum number of the pair (i.e.
their fusion channel) is fixed as long as the two can be viewed as an isolated system. Therefore,
braiding a pair of anyons in a fixed fusion channel does not change the state in the fusion space.
However, braiding one of the two with a third anyon may induce rotations, as we will demon-
strate in the following. Together with the list of particle species and the fusion rules, the F and
R matrices specify the braiding statistics of a given anyon model. We note that the R and F
matrices are constrained by consistency relations, namely the pentagon and hexagon equations
(see [17]).

We will now describe a simple braiding operation which rotates a state in the four-anyon
fusion space on a very simple example called the Ising anyon model (see e.g. [6]). This model
allowes three species of anyons, namely, the trivial (vaccum) anyon 1, the σ anyon, and the ψ
anyon (fermion). The fusion rules are

σ× σ = 1+ ψ, σ× ψ = σ, ψ× ψ = 1,

1× x = x, for x = 1, σ, ψ.
(2.69)

We consider two pairs of σ anyons, 1,2, and 3,4, created from the vacuum. By (2.69), two σ
anyons may fuse in the 1 or the ψ channel, but since they are created from vacuum, we know
that 1 and 2 must fuse into 1. Furthermore, the total fusion channel of the four-anyon system
is also trivial, and by (2.69), this means that 3 and 4 must always fuse in the same channel as
1 and 2. To change the fusion channel of 1 and 2, we must braid two particles from different
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pairs, e.g. 2 and 3, twice11 before measuring the quantum number of the pair. To determine
the outcome, we must write the matrix ρ(σ23) in terms of the F and R matrices, which can be
obtained from the consistency relations. We first rearrange the fusion tree by grouping particle
3 with the fusion product of 1 and 2 instead of particle 4:

σ σ σ σ

1 2 3 4

1 1

1

F σ
1σσ−−−−−−−−→

σ σ
σ

1 2 3

1
σ

σ

4

1

. (2.70)

This is a trivial transformation, as there is only one possible fusion tree on the right. We will
omit the dashed branches in the following, and only consider the fusion of three σ anyons with
the total quantum number σ, since all nontrivial effects of the braiding operation in question are
manifested in this subtree. We further rearrange so that 2 fuses with 3 instead of 1:

σ σ
σ

1 2 3

1
σ

F σ
σσσ−−−−−−−−→ σ

σ σ

1 2 3

i
σ

. (2.71)

The intermediate anyon imay be either 1 or ψ. We are now in position to exchange the particles
2 and 3 twice, which involves the phases [Ri

σσ]
2. To complete the braid we move in the direction

opposite of (2.71) by applying [F σ
σσσ]

−1. To determine the braid matrix, we only need one fusion
and one rotation matrix

F σ
σσσ =

1√
2

(
1 1

1 −1

)
, Rσσ =

(
R1
σσ 0

0 Rψ
σσ

)
, (2.72)

with the phase shifts R1
σσ = e−πi/8, Rψ

σσ = e3πi/8 [6]. This is done by taking the product of all
transformations

ρ(σ23) = [F σ
σσσ]

−1[Rσσ]
2F σ

σσσ = e−iπ/4

(
0 1

1 0

)
. (2.73)

The anti-diagonal structure of the matrix indicates that braiding 2 and 3 results in changing the
fusion channel of 1 and 2 from 1 to ψ. It is then straightforward to reattach the 3-anyon tree to
the larger 4-anyon tree, and transform back to the original particle grouping (1, 2) and (3, 4).

11Braiding 2 and 3 once is an exchange and would result in fusing 1 with 3 instead of 2..
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Graphically, the braid is represented as

σ σ σ σ

1 2 3 4

1 1

1

ρ(σ23)−−−−−−−−→
σ σ σ σ

1 2 3 4

ψ ψ

1

. (2.74)

Topological quantum computation

The most significant reason for studying anyons is the potential application of non-Abelian
anyons in realization of fault tolerant quantum computers. The idea behind quantum computa-
tion is to use the resources of the Hilbert space to solve computational problems by manipulating
a set of qubits according to appropriate quantum algorithms. A qubit is a two-state quantum sys-
tems serving as the unit of quantum information. Unlike classical bits, which can only assume
states 0 and 1, qubits can assume any superposition state a |0⟩ + b |1⟩. Different qubits can be
entangled, and the state of an N -qubit system then belongs to a 2N -dimensional Hilbert space.
Simulations of quantum systems whose complexity scales exponentially with system size, an
intuitively appealing use for such a machine, was indeed among the earliest envisaged uses
[42]. On the other hand, probably the most famous quantum algorithm is the Shor’s algorithm
[43] for integer factorization. The time of execution scales favourably with the number of digits
when compared to the fastest known classical algorithm. It is conjectured that for a certain class
of problems, quantum algorithms exist that outperform any possible classical algorithm.

In essence [11], quantum computation involves initializing a system in some known state
|ψ0⟩ (input), and unitarily evolving the state according to a Hamiltonian H(t), encoding the
algorithm. The final state U(t) |ψ0⟩ is the output. While the state of a classical computer tra-
verses only one trajectory during computation, the quantum computer traverses all the available
states, since the qubits go through superpositions of the definite (classical) states between the
final measurement and initialization. This is commonly likened to parallel computing, but there
is a distinction, since there is only one final state, determined by the coherent sum of all tra-
jectories. The main difficulty with quantum computation is the tendency of pure superposition
states of many-qubit systems to become entangled with the environment. This causes decoher-
ence through which quantum information is lost to the environment. This makes it difficult to
achieve fault tolerance, i.e. the possibility of error correction at a rate faster then their occur-
rence.

One of the schemes for achieving fault tolerance is through topological quantum computa-
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tion, employing non-Abelian anyons. As we have seen, multi-anyon system states belong to a
fusion space and may be rotated within that space by certain braiding operations. An appropri-
ate multi-anyon system may assume the role of a qubit in a quantum computer. The anyons may
be created at the beginning, and fused at the end of a computation, thus forming links whose
topology determines the output. The resistance to errors due to interaction with the environ-
ment stems from the fact that information is stored nonlocally in the links. Therefore, local
perturbations have vanishing matrix elements within the fusion space and so the state of a qubit
cannot be affected by local interactions with the environment [11]. The only way to perform a
computation is to affect the topology by braiding the anyons, and the only way errors can occur
is via unwanted braiding with unaccounted anyons, either thermally excited or those trapped
by disorder. It is hoped that these sources of error are not detrimental, since unwanted exci-
tations may be reduced by working at energies lower than the excitation gap and with weakly
disordered systems.

As an example, the (1, 2) pair of the four-anyon system discussed above may be regarded
as a simple qubit. Indeed, while discussing the σ23 braid, we have essentially described a NOT
gate, changing the fusion channel from 1 to ψ, which may now respectively correspond to the
|0⟩ and |1⟩ qubit states. The anyons of the 5/2 Moore-Read FQHE state are very similar to the
Ising anyons discussed above. Should the physical 5/2 state be confirmed to be the Moore-Read
state, it may be a candidate for quantum computation. However, this kind of anyonic system
cannot perform all possible unitary transformations, meaning that it must be supplemented with
extra nontopological gates to be capable of universal quantum computation [11]. On the other
hand, some other anyon models, such as the Fibonacci model, containing two anyon species
and obeying a single nontrivial fusion rule τ × τ = 1+ τ , are capable of universal topological
quantum computation [11].

2.2.4 Symmetry-protected topological states

As mentioned in the introduction to this section, gapped short-range entangled systems lacking
topological order may also exist in topologically nontrivial phases. This requires that the Hamil-
tonian belongs to a certain symmetry class. These symmetry-protected topological phases then
correspond to the regions in the phase diagram spanned by those parameters of the Hamiltonian
that do not affect the symmetry class. If the required symmetries are broken, the different topo-
logical phases merge, as they can be connected to the topologically trivial phase by adiabatic
deformations without closing the gap (i.e. going through a topological phase transition). The
trivial phase is topologically identical to the atomic insulator, as well as the vacuum. Unlike the
topologically ordered phases, which cannot be connected to the vacuum by any gap-preserving
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deformation, the SPT phases do not support anyonic excitations in the bulk, but they still exhibit
a variety of nontrivial boundary physics.

SPT phases may be interacting or noninteracting. Adding interactions to the noninteracting
SPT states can lead both to merging of distinct noninteracting topological phases and to emer-
gence of new phases. Topologically protected (d−1)D boundary states are present in all cases,
and are always found in the band gap in noninteracting SPT phases. On the other hand, they
need not be gapless in the interacting case, provided the boundary either spontaneously breaks a
symmetry that enables the existence of the SPT phase in question (in 2D or higher dimensions),
or that it carries an intrinsic topological order (in 3D or higher dimensions) [6].

An example of a noninteracting SPT phase is the quantum spin Hall effect (QSHE). The
QSHE is the spin current analogue of the charge current QHE. In 2005, a topologically non-
trivial 2D QSHE system was proposed by Kane and Mele [44,45]. It is a spin-1/2 system on
a honeycomb lattice with a spin-orbit interaction. The system is similar to the Haldane model,
but the alternating magnetic field (with a net-zero flux) felt by the spin up and spin down com-
ponents is opposite. Additionally, processes that couple the two components are allowed. In the
special case of uncoupled spins (Sz conservation), this amounts to two copies of the Haldane
model with broken time-reversal symmetry leading to the opposite Chern numbers C↑↓. Even
though the total system preserves TRS, and hence the total Chern number is C↑ + C↓ = 0, each
spin component has |C↑↓| topologically protected gapless chiral edge modes. The modes carry
no net charge current, since they come in oppositely propagating pairs, but instead carry a ro-
bust spin current. Such a pair makes up a so-called helical edge mode, and the existence of one
such topologically protected gapless mode is a defining feature of the QSH phase. The QSH
phase can survive even if Sz is not conserved, provided the gap remains open and TRS is not
broken. The gapless edge mode is protected by TRS, since the Kramers’ theorem guarantees the
existence of a distinct state with momentum −k and energy E for each state with momentum
k and energy E in any TR-symmetric fermionic system. This means that the edge states are
doubly degenerate for TR-invariant momenta12, implying the gap must close at these momenta.

The QSHE is a topological insulator (TI) characterized by a Z2 topological invariant [45],
taking up values 0 and 1 in the trivial and the QSH phase, respectively. TIs are the noninteract-
ing insulating phases topologically distinct from the trivial insulator [6]. In addition to the Z2

TIs, there are also Z TIs, which are characterized by a topological invariant taking any integer
value. Technically, the first Chern number is a Z invariant, and the IQHE phases can be clas-
sified along with noninteracting SPT phases, although they are not protected by any symmetry.

12A TR-invariant momentum kTR is separated by a reciprocal lattice vector from its time-reversed counterpart
−kTR.
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Higher-order IQH effects can exit in even dimensions higher than 2, and are characterized by
Z invariants, namely the higher Chern numbers [21]. Other non-IQHE Z and Z2 TIs, as well
as topological superconductors are possible for various dimensions and combinations of time-
reversal, particle-hole, and chiral (sublattice) symmetries. Classification of TIs and topological
SCs is reviewed in chapter 5 of ref. [6].

In section 3.2, we will encounter an example of a 1D Z model with topological phases pro-
tected by chiral symmetry, namely the Su-Schrieffer-Heeger (SSH) model [46–49]. For nonin-
teracting tight-binding models, chiral symmetry means that the lattice can be divided into two
sublattices, and hopping occurs only between them. Then the momentum space Hamiltonian of
a periodic chiral-symmetric system with n sites per sublattice can be written as [21]

Hk =

(
0 Q(k)†

Q(k) 0

)
, (2.75)

where 0 and Q(k) are n× n matrices, and Q(k) = Q(k + 2π/a), a being the lattice spacing.
When there is a gap at zero energy, i.e. detQ(k) ̸= 0, the winding number of detQ(k) =

| detQ(k)|eiθ(k) around the origin of the complex plane

W =
1

2π

∫ 2π
a

0

dk
dθ(k)

dk
(2.76)

is a well defined topological invariant of the Hamiltonian. Its absolute value then equals the
number of topologically protected edge states at zero energy.

t t t t t tt’ t’ t’ t’ t’

Figure 2.13: The Su-Schrieffer-Heeger lattice with the alternating hopping amplitudes t and t′ indicated
between the lattice sites. The boxes (dashed lines) enclose the unit cells.

The SSH model, depicted in fig. 2.13, is a simple special case with only one site per sublat-
tice (n = 1). The tight-binding Hamiltonian is given by

ĤSSH =
∑
x

(tb̂†xâx + t′â†x+1b̂x +H.c.), (2.77)

where âx and b̂x are the annihilation operators for the two sublattices at site x, and t and t′ are,
respectively, the intracell and intercell hopping amplitudes13. The momentum space Hamilto-

13In a finite system, the cells are defined with respect to the boundary, as in fig. 2.13
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nian is now

H = |Q(k)|
(

0 e−iθ(k)

eiθ(k) 0

)
, (2.78)

with eigenvalues 1√
2

(
±e−iθ(k) 1

)T
. By (2.5), the Berry connection is then A±(k) = 1

2
dθ
dk

, and
we see that the winding number (2.76) is proportional to the Zak phase (2.20)

W =
1

π

∫ 2π
a

0

dkA±(k) =
1

π
γZak. (2.79)

Due to inversion symmetry, this means that the winding number assumes two possible values
depending on the relative values of t and t′. For t > t′, the system is in the W = 0 phase,
while for t < t′, it is in the W = 1 phase. In an infinite system, it is possible to group the sites
into unit cells in another way (t ⇄ t′), which switches the winding numbers of the two phases
(0 ⇄ 1). Thus, there is no essential difference between the two phases. On the other hand, in a
bounded system, the boundary imposes a unique choice of the unit cell, i.e. the two sites next to
the boundary belong to the same cell (see fig. 2.13). Now, the phase W = 0 can be considered
topologically trivial, i.e. equivalent to the vacuum, while the W = 1 phase is nontrivial, and
possesses a zero-energy edge (gap) state due to a discontinuous transition in W at the boundary
[21]. Equivalently, a gap state should appear at the topological defect created by joining two
semi-infinite chains with different winding numbers, since this also marks a boundary between
two phases.

2.2.5 Experimental platforms

The study of topological phases of matter has its roots in condensed matter physics. Both the
integer and the fractional QHE, largely responsible for diverting attention to topological quan-
tum phases of matter, were discovered in semiconductor systems [16,26]. Condensed matter
remains a relevant platform for scientific and technological progress in topological matter, even
as other methods arise.

With technological advancement, it is becoming increasingly possible to realize equivalent
(as well as novel) physical models in entirely different platforms, such as clouds of ultracold
atomic gases and photonic systems. These systems can be designed to obey the same approx-
imate mathematical laws that arise in condensed matter systems. This is akin to numerical
simulation, but it is not subject to the same computational limitations. These platforms can
allow for measurements that would be difficult or impossible in traditional condensed matter
setups, and can have their own technological applications.
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Ultracold atomic gases [50] are systems composed of one or more species of atoms trapped
and cooled by interaction with optical, electric and magnetic fields. These interactions can also
be used to modulate low-energy atomic interactions, and create synthetic gauge fields for neutral
atoms [51]. This makes them well suited for realization of low-temperature gapped phases that
may have topological properties.

Photonics is a field concerned with controlling the behavior of light. While light can be
thought of as obeying the laws of classical electrodynamics, its propagation modes may ob-
serve band structure and be governed by the same equations as seemingly unrelated quantum
systems. We will encounter examples of this in chapter 3. Since photonic systems may pos-
sess band structure, it is possible to create topologically nontrivial phases in this framework.
Developments in the field of topological photonics were reviewed in [21].
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Chapter 3

Topological Photonics

In this chapter, we will present the results of two recent papers in the field of topological pho-
tonics coauthored by the author of this thesis. The work presented in this chapter has been
published in:

[52] Liu, X., Lunić, F., Song, D., Dai, Z., Xia, S., Tang, L., Xu, J., Chen, Z., Buljan, H., 2021.
Wavepacket Self-Rotation and Helical Zitterbewegung in Symmetry-Broken Honeycomb

Lattices. Laser Photonics Rev., 15, 2000563. doi: https://doi.org/10.1002/lpor.202000563

[53] Bongiovanni, D., Jukić, D., Hu, Z., Lunić, F., Hu, Y., Song, D., Morandotti, R., Chen,
Z., Buljan, H., 2021. Dynamically Emerging Topological Phase Transitions in Nonlinear
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The first paper presents the results of a theoretical and experimental study of the effect of
the valley degree of freedom on propagation of light through an inversion-symmetry-broken
photonic honeycomb lattice (a (2+1)D system). Valleys are the local minima (maxima) in
the conduction (valence) bands. The honeycomb lattice (HCL) is composed of two triangular
lattices which together form an equilateral hexagonal (honeycomb) tiling pattern (see circles in
panel a) of fig. 2.6). The valleys of the HCL are located in the corners of the hexagonal first
Brillouin zone. Only two of the six corners are inequivalent, and therefore the HCL is a two-
valley system. The valleys are labelled K and K ′ and are found in the neighbouring corners.
Near the K and K ′ points, the dispersion and the wave dynamics is described by the 2D Dirac
equation (see eq. (3.2) below), which is why they are called the Dirac points. If the system is
inversion symmetric with respect to the midpoint between two nearest-neighbouring sites, the
conduction and the valence bands touch in the K and K ′ points, and the dispersion is conical.
This dispersion corresponds to the massless Dirac equation. Breaking the inversion symmetry
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opens the gap, allowing us to view the two bands as truly separate. The gapped parabolic
dispersion reveals the presence of the mass term in the Dirac equation.

The experiments1 were performed by shining a light beam with a Gaussian profile and a
triangular lattice structure on a 2D hexagonal array of straight waveguides "written" into a pho-
tonic crystal. The profile of the beam at a certain point in time is described by a quantum
state, since the propagation of light is governed by a Schrödinger-like equation (see eq. (3.1)
below). In the following, we will see how an initially Gaussian wavepacket with zero angular
momentum can obtain a vortex component with a nonzero angular momentum when propagat-
ing through a HCL. This is the effect of a topological singularity, i.e. nontrivial winding of
the Berry curvature, at the Dirac points. The full band is topologically trivial, as the winding
is opposite for K and K ′ points, but when the light is restricted to propagate close to one of
the valleys, the topological singularity is imprinted onto the propagating beam. As shown in
the images below, this manifests as a rotating spiral pattern of the light intensity (for inversion-
symmetry-broken HCLs), caused by the interference of the vortex and nonvortex components
of the beam. Further analysis also reveals the Zitterbewegung phenomenon in the evolution of
the pattern.

The second paper is a numerical investigation of a (1+1)D array of soliton beams prop-
agating in a nonlinear medium in the following configuration: an SSH lattice is formed from
two arrays of beams propagating at an angle, so that they periodically cross (see fig. 3.5 a) be-
low). Recall that the SSH system assumes one of the two SPT phases, depending on the relative
strengths of the intracell and the intercell tunnelling coefficients. In our case, these coefficients
arise due to the soliton beam interaction, mediated by nonlinearity, and are controlled by the
spatial separation of the beams at a certain point during the propagation (see fig. 3.4 below).
We study the spectrum of the system which reveals the topological phase through the presence
or absence of the topological gap states. The role of energy in the spectrum is played by the
propagation constant (β) which prescribes the evolution of the complex electric field envelope,
analogous to how the energy prescribes the evolution of the energy eigenstate. As the separation
between the neighbouring beams changes during the propagation, the system repeatedly gains
the edge states in dynamical topological phase transitions, and then loses them in the mean-
time as they decouple from the lattice, thus leaving the remaining lattice in the trivial phase
until the next phase transition. The existence of different topological phases is emergent from
nonlinearity of the medium, since the beams would not couple in a linear medium.

1The details of the experiment are given in the Experimental section of the published article [52]:
https://onlinelibrary.wiley.com/doi/full/10.1002/lpor.202000563#
lpor202000563-sec-0060-title.
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3.1 Wavepacket Self-Rotation and Helical Zitterbewegung in
Symmetry-Broken Honeycomb Lattices

3.1.1 Introduction

Electric charge is the key quantity for controlling signals in conventional electronics and semi-
conductor devices. However, advances in manipulating spin and valley degrees of freedom
have reshaped the traditional perspective, leading to the development of spintronics [54] and
valleytronics [55]. Amplitude, phase, and polarization are the key quantities of usual recipes
for controlling the flow of light. However, the understanding and development of optical spin-
orbit interactions [56], photonic pseudospins [57], and valley degrees of freedom[58–65] have
offered us new knobs that can be used for manipulation of light in photonic structures, in anal-
ogy with parallel advances in electric systems.

The pioneering achievements exploiting valley degrees of freedom in photonics include,
e.g., the prediction [58,59] and experimental demonstration [61] of photonic valley-Hall topo-
logical insulators, topologically protected refraction of robust kink states in valley photonic
crystals [60], topological valley-Hall edge states [62], and spin and valley-polarized one-way
Klein tunnelling [64]. Photonic valley systems can be implemented at telecommunication and
terahertz wavelengths on a silicon platform [65,66], at subwavelength scales on plasmonic plat-
forms [61,67,68], and they can be used for the development of topological lasers [69–72], which
opens the possibilities for many applications. Besides electromagnetic waves, valley topolog-
ical materials have been used for manipulation of other waves such as sound waves [73] and
elastic waves [74]. All these exemplary successes unequivocally point at the need and impor-
tance of discovering valley-dependent wave phenomena, for both fundamental understanding
and advanced applications.

To this end, it is important to understand the behaviour of physical quantities that distinguish
different valleys. Among the most studied examples in photonics are the two inequivalent
valleys of the honeycomb lattices, located at the lattice high-symmetry K and K ′ points in
the Brillouin zone, which are furnished with nontrivial Berry phase winding [75,21]. Since the
Berry curvatures are in opposite directions at K- and K ′-valleys in a (symmetry-broken) HCL
(e.g., see [21]), they can be used to distinguish the two valleys. Besides the Berry curvature,
in electronic systems, the electron magnetic moment can also be used to distinguish the two
valleys [76,77]. The magnetic moment occurs from the self-rotating electric wavepacket [76–
78], which is virtually impossible to be directly observed with electrons.

Here, we study valley-dependent propagation of light in an inversion-symmetry-broken pho-
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tonic HCL. We establish the lattice by employing a direct laser-writing technique [79], and we
demonstrate experimentally and numerically the valley-dependent helicity in spiraling intensity
patterns related to wavepacket self-rotation. Specifically, we show that, by selective excitation
of the valleys in a gapped HCL, a probe beam undergoes distinct spiralling during propagation
through the lattice, characterized by its helical intensity pattern and "center-of-mass" oscilla-
tion, even though no initial orbital angular momentum is involved. We theoretically demon-
strate that the observed phenomenon dwells upon the existence of the Berry phase [3], leading
to the fundamental phenomenon of Zitterbewegung, first introduced by Schrödinger [80] in the
context of relativistic electrons. We find that the helicity of Zitterbewegung in our system is a
valley-dependent quantity.

Zitterbewegung refers to a prediction that elementary particles such as electrons described
by the relativistic Dirac equation would exhibit rapid oscillatory motion in vacuum, with an-
gular frequency on the order of 2mc2/ℏ [80]. It was studied in attempts to provide a deeper
understanding of the electron spin [81,82] and even to interpret some aspects of quantum me-
chanics [83], but the Zitterbewegung of electrons in vacuum has never been observed owing to
its inherent ultra-small amplitude and ultra-high frequency. However, electrons in Bloch bands
of some materials are driven by equations analogous to the relativistic Dirac equation, e.g., Zit-
terbewegung of electrons was predicted to occur in semiconductor quantum wells [84]. In a full
analogy, Zitterbewegung was also predicted with ultracold atoms in optical lattices [85] and
with photons in 2D photonic crystals [86]. Experimental observation of Zitterbewegung-like
phenomena was, however, mostly limited to 1D domain in systems including trapped ions [87],
photonic lattices [88], and Bose–Einstein condensates [89,90], or to surface acoustic waves in
an integrated phononic graphene [91]. The Zitterbewegung term in the quantum expectation
value of the position operator vanishes if the wave-packets are made up with solely positive (or
negative) energy states, thus leading to its interpretation in terms of interference of positive and
negative energy states. In periodic lattices, this amounts to the interference of Bloch waves from
different bands. In this work, we show theoretically that the Zitterbewegung can be interpreted
via interference between the incident nonvortex beam component and the vortex component
arising from the universal momentum-to-real space mapping mechanism, which inherently has
a topological origin [92]. Thus, we provide a different perspective about the Zitterbewegung
phenomenon, which gives rise to a simpler visualization than the original interpretation.
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3.1.2 Results

Experimental Results and Numerical Simulations

We study light propagation in (2+1)D photonic lattices, which in the paraxial approximation is
governed by the Schrödinger-like equation (e.g., see ref. [21] and references therein)

i
dΨ

dz
= − 1

2k0
∇2Ψ− k0δn(x, y)

n0

Ψ(x, y, z). (3.1)

Here Ψ(x, y, z) is the complex amplitude of the electric field, k0 is the wave number in the
medium, n0 is the background refractive index, and δn(x, y) is the induced refractive-index
change forming the HCL with broken inversion symmetry, as illustrated in fig. 3.1 a). Equation
(3.1) is mathematically equivalent to the Schrödinger equation describing electrons in 2D quan-
tum systems, with z playing the role of time. The HCL is comprised of two sublattices (A and
B), and the inversion-symmetry breaking is achieved with a refraction index offset between the
sublattices, see fig. 3.1 a). In k-space, the HCL has two distinct valleys located at the K and K ′

Dirac points in the Brillouin zone, as illustrated in fig. 3.1 b). In the vicinity of Dirac points, the
band structure is described by ±

√
k2 +m2, and the wave dynamics is approximately described

by the 2D massive Dirac equation (see theoretical analysis below). Here, k is the magnitude
of the wave vector with origin at the Dirac point, and m is the "effective mass" determined by
band dispersion, namely, the band gap. The band gap is proportional to the refraction index
offset between the two sublattices as illustrated in fig. 3.1 c) for the photonic lattices used in our
numerical simulations and experiments, and its size is 2m. This implies that the effective mass
m is expressed in the same units as the Hamiltonian in eq. (3.1), i.e. the inverse length which
indeed corresponds to the units of k. For direct comparison, the insets in fig. 3.1 c) show the
band structure close to the K-point for m = 0 (gapless Dirac-cone type band structure), and for
m > 0 (gapped ±

√
k2 +m2 type band structure).

Our main finding is sketched in fig. 3.1 b). The probe beam which is formed by interfering
three broad Gaussian beams excites the modes in the vicinity of three equivalent K-points (or
K ′-points) in momentum space, i.e., the modes in one valley, with both sublattices equally
excited in real space. The output beam exhibits self-rotation during propagation through the
HCL, which has a spiraling intensity pattern with the helicity depending on the valley (K or
K ′) that is initially excited. It will be shown below that this spiraling self-rotating motion is
attributed to a root of the Zitterbewegung of the wavepacket, identified through the rotation
of its "center-of-mass" (COM), which is defined as the space average value ⟨r⟩ =

∫
rI(r)da

weighted with respect to intensity I(r).
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Figure 3.1: Valley-dependent wavepacket self-rotation in a symmetry-broken HCL. a) Illustration of an
inversion-symmetry-broken HCL consisting of A and B sublattices. The inset sketches the refractive-
index offset (nA > nB is shown, e.g.). b) Illustration of wavepacket self-rotation when the modes in
the vicinity of the K-valley (or K ′-valley) are excited, showing spiralling intensity patterns with valley-
dependent helicity. Top inset shows the valley locations at the edges of the first Brillouin zone in k-space;
the Berry curvature is opposite at two inequivalent valleys (sketched with red and blue colors). Bottom
inset shows the scheme when three K-valleys are simultaneously excited. c) The size of the gap as a
function of the index offset (nA − nB) for photonic lattices used in our experiments. The insets show
the band-gap structures in the vicinity of the K-point for nA − nB = 0 (upper inset), and nA − nB > 0

(lower inset). d)-f) Spiralling intensity patterns at different propagation distances indicating self-rotation
of the wavepacket. g) Plot of the COM trajectory obtained numerically. The probe at z = 0 shown in
d) has a Gaussian envelope with no initial orbital angular momentum - see video file in the supporting
information2 to [52].

In fig. 3.1 d)-f), we show numerical results of the output patterns of the probe beam at differ-
ent propagation distances in the inversion-symmetry-broken HCL, obtained by solving equation
(3.1), with the refractive index offset between the sublattices set by the ratio nA : nB = 1.2 : 1,
exciting only the K-valley. The parameters used in the simulations correspond to that of the
experiment: n0 = 2.35 for the SBN:61 (strontium barium niobate) crystal [93], k0 = 2πn0/λ

and λ = 488 nm, the lattice constant is 16µm (i.e., the distance between nearest neighbour-
ing lattices is 9µm, and the maximal index change (depth of the lattice) is about 1.3 × 10−4.
The overall envelope of the probe beam is Gaussian-like (fig. 3.1 d)), but with a triangular lat-

2https://onlinelibrary.wiley.com/doi/full/10.1002/lpor.202000563#
support-information-section
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tice structure (due to three-beam interface) at z = 0 that can be positioned to excite one or
both sublattices. In simulations displayed in fig. 3.1 d)-f), the probe beam excites the mid-
dle points between the A and B sublattices, i.e., both sublattices are equally excited. We find
that the output wavepacket exhibits self-rotation during propagation (see the video in support-
ing information3 to the published article [52]), and the initially symmetric probe beam evolves
into an asymmetric spiralling intensity pattern as displayed in fig. 3.1 e), f). It expands during
propagation because of diffraction, whereas the spiral helicity and the direction of rotation are
valley-dependent. In fig. 3.1 g), the dynamical evolution of the beam’s COM is plotted in 3D,
showing spiral-like Zitterbewegung oscillations (in the plot we subtracted the drift which occurs
alongside Zitterbewegung phenomenon for better visualization).

Next, we present corresponding experimental results obtained in a HCL established in a
20mm long nonlinear crystal by a cw-laser-writing method [79]. Instead of using a single
Gaussian beam for writing, here the two sublattices are separately written and controlled by
a triangular lattice pattern. The refractive-index difference of the two sublattices nA : nB is
readily tuned by the writing time for each sublattice (see the experimental section4 in [52]). A
typical example of experimentally generated symmetry-broken HCL with nA > nB is shown in
fig. 3.2 a). As in simulation, the probe beam is a truncated triangular lattice pattern formed by
interfering three broad Gaussian beams (see fig. 3.2 b)) with their wavevectors matched to the
three K- or K ′-points. In real space, we excite both sublattices with equal amplitude and phase
by positioning the probe beam at middle points between the two sublattices. The observed
intensity patterns of the probe beam at the lattice output under different excitation conditions
are shown in the top panels of fig. 3.2 c)-f), with corresponding numerical simulation results
plotted in the bottom panels.

When the input beam excites the K-valley with the refractive-index offset between sublat-
tices such that nA > nB, the beam evolves into a spiralling pattern (fig. 3.2 c)). The helicity
of the spiralling pattern and therefore the rotation direction of the output beam is reversed if
the offset is changed to be nA < nB (fig. 3.2 d)). As we will show theoretically below, such
spiralling intensity pattern is related to the circular motion of the COM of the wavepacket and
the Berry-phase-mediated Zitterbewegung. We emphasize that the rotation can only be realized
when the inversion symmetry of the HCL is broken and the gap opens; for comparison, when
nA = nB, the output pattern exhibits conical diffraction [94] rather than a spiralling pattern
(fig. 3.2 e)) under the equal excitation condition. Importantly, we experimentally demonstrate
that the rotation direction depends on the valley degree of freedom. If we excite the K ′-valley

3See footnote 2.
4See footnote 1.
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Figure 3.2: Experimental and numerical results demonstrating valley-dependent wavepacket self-
rotation. a) Zoom-in image of a laser-written HCL with broken-inversion-symmetry; in this plot,
nA > nB , corresponding to fig. 3.1 a). b) Input triangular lattice pattern used in experiment as the
probe beam. c–f) Experimental (top row) and numerical (bottom row) results of output intensity patterns
for different excitation conditions: c–e) Results obtained underK-valley excitation where the index ratio
is c) nA : nB = 1.2 : 1, d) nA : nB = 1 : 1.2, e) nA : nB = 1. : 1. f) Result obtained under K ′-valley
excitation with nA : nB = 1.2 : 1. Note that the helicities of the spiralling patterns in (c) and (f) (as well
as in (c) and (d)) are in opposite directions, as illustrated by curved arrows.

instead of the K-valley, while keeping all other conditions unchanged, we observe that the
spiraling direction (i.e., helicity) of the intensity pattern is reversed. This can be seen by com-
paring the experimental results shown in fig. 3.2 c) and f). These observations are corroborated
by numerical beam propagation simulations using equation (3.1), which is shown in the bottom
panels of fig. 3.2. We point out that altering the helicity of the spiralling pattern by reversing the
index offset between the two sublattices (fig. 3.2 c) vs 2d)) is fully equivalent to altering the he-
licity via exciting different valleys (fig. 3.2 c) vs f)). In both cases, the helicity of the spiralling
pattern is correlated with the direction of the Berry curvature around the gapped Dirac cone.
In other words, the spiralling intensity is a valley contrasting quantity, analogous to the orbital
momentum of electrons in condensed matter systems [76–78], manifested when the inversion
symmetry is broken.
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Theoretical analysis

For excitations in the vicinity of the K-valley, equation (3.1) is approximated by idψ
dz

= Hψ,
where the Hamiltonian (in k-space) is an effective 2D massive Dirac equation

H = κ(σxkx + σyky) + σzm =

(
m κ(kx − iky)

κ(kx + iky) −m

)

=

(
m κke−iφk

κkeiφk −m

)
, (3.2)

where σi are the Pauli matrices. The numerical coefficient κ depends on the coupling strength
between adjacent waveguides in the lattice (e.g., see ref. [77]). Without any loss of generality,
we set κ = 1 in all analytical expressions, because they can be rescaled to any value of κ with

the substitution k → κk. The complex amplitude of the electric field ψ =
(
ψ 1

2
ψ− 1

2

)T
is a

two-component spinor, because the HCL has two sublattices. Pseudospin components ψ 1
2

and
ψ− 1

2
describe the field amplitudes in the A and B sublattices (e.g., see [92]). The eigenmodes

of the Hamiltonian in equation (3.2) are given by Hψnk = βnkψnk,

ψnk =
1√
Nnk

(
m+βnk

k
e−iφk

1

)
, Nnk = 2 +

2m(m+ βnk)

k2
, (3.3)

where βnk = n
√
k2 +m2; n = ±1 is the band number, k is the wavevector with origin at the

K-point, and φk its polar angle with respect to the origin. It is important to note that the k-
space topological charges of the two spinor components in equation (3.3) differ by one, i.e., the
vorticity of the two spinor components in k-space is different. This difference is independent of
the gauge used, and it gives rise to the Berry phase winding around the K-point.

Dynamics around the K ′-valley is described analogously with substitution kx → −kx in
equation (3.2) [77]. The eigenmodes at the K ′-valley are given by ψ∗

nk, i.e., the winding of the
spinor vorticity in k-space is in the opposite direction. Thus, the geometry of the eigenmodes
gives rise to the Berry curvature which is in opposite directions at the K- and K ′-points [21,86,
78] (see fig. 3.1 b)). This is the origin of the opposite helicity of the spiralling patterns observed
in fig. 3.2 c), f).

We are interested in the dynamics from an axially symmetric initial excitation

ψ(r, φ, z = 0) = ψ0

√
I0(r) =

∫
d2kψ0f(k)e

ik·r, (3.4)

where we have introduced the radial coordinates (x = r cosφ and y = r sinφ), f(k) corre-
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sponds to the spatial power spectrum of the initial excitation f(k) = (2π)−2
∫ √

I0(r)e
−ik·rda,

with da = rdrdφ the infinitesimal area element, and it determines the distribution of exci-

tations around the K- or K ′-point; and finally, ψ0 =
(
cos θeiα sin θ

)T
is the most general

initial spinor, where α is the relative phase between the fields in the sublattices at z = 0, and θ
determines the amplitude in each sublattice.

Dynamics from the initial condition (3.4) is readily found by expanding into eigenmodes of
the system. After a straightforward calculation one finds

ψ(r, φ, z) =

(
ψ 1

2
(r, φ, z)

ψ− 1
2
(r, φ, z)

)
=

(
g 1

2
,0(r, z) + g 1

2
,−1(r, z)e

−iφ

g− 1
2
,+1(r, z)e

iφ + g− 1
2
,0(r, z)

)
, (3.5)

where z = 13/κ0, and the g-functions can be expressed as integrals in k-space (see the support-
ing information5 to [52] for derivation):

g 1
2
,0(r, z) = 2π cos θ eiα

∑
n

∫ ∞

0

kdk

Nnk

(
m+ βnk

k

)2

J0(kr) e
−βnkz,

g 1
2
,−1(r, z) = 2πi sin θ

∑
n

∫ ∞

0

kdk

Nnk

m+ βnk
k

J1(kr) e
−βnkz,

g− 1
2
,+1(r, z) = 2πi cos θ eiα

∑
n

∫ ∞

0

kdk

Nnk

m+ βnk
k

J1(kr) e
−βnkz,

g− 1
2
,0(r, z) = 2π sin θ

∑
n

∫ ∞

0

kdk

Nnk

J0(kr) e
−βnkz, (3.6)

where J0(x) and J1(x) are the Bessel functions of the first kind. In fig. 3.3, we plot the spiralling
intensity pattern |ψ 1

2
(r, φ, z)|2 obtained with the Hamiltonian in equation (3.2); the envelope

of the initial excitation is Gaussian, f(k) = exp(−k2/k20), and both sublattices are equally

excited with same phase, ψ0 =
(
1 1

)T
. The mass term is m = 0.6κk0, which determines the

gap size. For our initial condition, the intensity in the lower spinor component |ψ− 1
2
(r, φ, z)|2

is equal to that in the upper component |ψ 1
2
(r, φ, z)|2, and consequently the whole intensity

|ψ|2 = |ψ 1
2
|2 + |ψ− 1

2
|2 has the same spatial dependence as |ψ 1

2
|2 illustrated in fig. 3.3 a) (see the

supporting information to [52]). For this reason, in what follows we focus on understanding the
intensity in just one spinor component. It is evident that the spiralling intensity pattern obtained
with the "low-energy" Hamiltonian equation (3.2) agrees with those obtained from numerical
simulations of the Schrödinger equation (3.1) as well as from experiments shown in 3.2.

It is important to note from Equation (3.5) that each spinor component is a superposition of

5See footnote 2.
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a nonvortex (Gaussian-like) amplitude and a vortex amplitude. At z = 0, there are no vortex
components, because g 1

2
,−1(r, 0) = g− 1

2
,+1(r, 0) = 0. The underlying mechanism behind the

emergence of these vortices was explained previously [92]: the vortex that is present in the k-
space of each eigenmode of this system (related to inherent topological singularity at the Dirac
point) is mapped to the real space during linear propagation dynamics (analogous to the far-field
mapping of the power spectra to real space intensity).
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Figure 3.3: Theoretical analysis of wavepacket self-rotation from Dirac equation. Top panels are the
intensity structure of the 1/2 spinor component of the spiralling beam and of its subcomponents, and
bottom panels show the motion of its "center-of-mass (COM)." In the figure, z is in units (κk0)−1, x and
y are in units k−1

0 . a) Intensity structure of the pseudospin component |ψ 1
2
(r, φ, z)|2, b) the nonvortex

component |g 1
2
,0(r, z)|2, and c) the vortex component |g 1

2
,−1(r, z)|2. d) The position of the COM of the

wavepacket (average values of x and y) as functions of z. e) Propagation of the velocity components
of the COM, and the (identical) expectation values ⟨σx⟩ and ⟨σy⟩. f) Propagation of the acceleration
components and numerical verification of equation (3.11). See the text for details.

To explain the spiraling pattern observed in our experiments, we calculate the intensity in
the pseudospin components∣∣∣ψ 1

2

∣∣∣2 = ∣∣∣g 1
2
,0(r, z)

∣∣∣2 + ∣∣∣g 1
2
,−1(r, z)

∣∣∣2+
+ 2
∣∣∣g 1

2
,0

∣∣∣∣∣∣g 1
2
,−1

∣∣∣ cos(− arg g 1
2
,0(r, z) + arg g 1

2
,−1(r, z)− φ

)
(3.7)

and equivalently for the other pseudospin component. The last term describes the interference
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between the vortex and nonvortex field amplitudes, which depends on their relative phase. The
intensities of the nonvortex term |g 1

2
,0(r, z)|2 and the vortex term |g 1

2
,−1(r, z)|2 are radially sym-

metric, as shown in fig. 3.3 b), c) (see the supporting information to [52] for plots of all the
g-functions). Therefore, the spiralling pattern must arise from the interference. The interfer-
ence term has a maximum when

φ = [− arg g 1
2
,0(r, z) + arg g 1

2
,−1(r, z)] mod 2π. (3.8)

When − arg g 1
2
,0(r, z) + arg g 1

2
,−1(r, z) is monotonically increasing (or decreasing) with r,

the function implicitly given in equation (3.8) is a spiral in the (r, φ)-plane; the spiral helicity
depends on whether the right-hand side in equation (3.8) decreases or increases. Evidently,
the spiralling self-rotating pattern arises from the interference of the vortex and the nonvortex
components.

We now present the theory for the wavepacket self-rotation and Zitterbewegung phenomenon
in our system. Dynamics of the COM of the wavepacket rC = xCx̂+ yC ŷ is given by

rC(z) = ⟨r⟩ =
∫
ψ†(r, φ, z)rψ(r, φ, z)da, (3.9)

where r = xx̂ + yŷ, and da = rdrdφ is the infinitesimal area element. It can be understood
by observing the velocity of the COM

vC =
drC
dz

=

∫
ψ†(r, φ, z)i [H, r]ψ(r, φ, z)da = ⟨σx⟩ x̂+ ⟨σy⟩ ŷ (3.10)

and its acceleration
dvC
dz

= −2ẑ × P + 2m ẑ × vC , (3.11)

where we have introduced the vector P = ⟨kxσz⟩ x̂+⟨kyσz⟩ ŷ (see the supporting information6

to [52] for the derivation). Calculated results from equations (3.10) and (3.11) are illustrated in
fig. 3.3 d)-f).

The second term in Equation (10) is the Zitterbewegung term; it corresponds to the oscil-
lations of the COM with frequency 2m (the size of the spectral gap). Oscillations are clearly
visible in all fig. 3.3 d)–f). Moreover, it is evident from (3.11) that the helicity of Zitterbewe-
gung oscillations depends on the sign of m ∝ nA − nB, which corroborates our experimental
findings. The first term in equation (3.11) yields the drift of the COM of the wavepacket, visible
in fig. 3.3 d), which is an expected feature of the Zitterbewegung effect (e.g., see refs. [84,95]).

6See footnote 2.
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The direction of the drift depends on the initial conditions. More specifically, the expectation
value of the pseudospin operator σ = x̂σx + ŷσy at z = 0 sets the direction of the initial ve-
locity of the COM (see fig. 3.3 e)). Such drifting of the COM is also observed in our numerical
simulations using equation (3.1). We note that for better visualization of the spiraling dynamics,
we did not include the drift when plotting fig. 3.1 g).

The components of the vector P are interpreted as the difference of the expectation value
of the momentum between the pseudospin-up and -down components, i.e., the difference of
the momentum between the two sublattices. The acceleration of the COM in the x-direction is
proportional to Py, which can therefore be interpreted as a pseudo-force exerted on the COM.
From the example shown in 3.3 f), we see that this pseudo-force P shows damped oscillations
around zero. Thus, it induces some oscillations, which should be distinguished from those of
the Zitterbewegung term. Our calculations indicate that the circular Zitterbewegung motion in
symmetry-broken HCLs exists only when m is nonzero and thus the gap opens, which is in
agreement with the Zitterbewegung of electrons [80]. Yet, our finding is in contradistinction
with similar oscillations that were called Zitterbewegung in gapless HCL systems [86,91,96].
The oscillations reported there could be linked to the oscillations of the pseudo-force P de-
scribed above, rather than to the Zitterbewegung term which is absent for m = 0.

3.1.3 Discussion

The theory of the Zitterbewegung has been addressed in numerous papers [81,83–86,97–99].
The Zitterbewegung effect was originally associated with oscillatory motion of electrons in 3D
space [80,81], but such motion has never been observed. Here, we focus on the novel aspects
of this phenomenon using optical wavepackets in 2D photonic lattices. We discuss connection
between the experimentally observed valley-dependent spiralling intensity pattern (related to
self-rotation of the wavepacket) and the Zitterbewegung phenomenon. This leads to a novel
interpretation of the phenomenon, and sheds light on the role played by the Berry phase.

First, we mention a seemingly unrelated simple example. Considering two coupled single-
mode waveguides, the system has a symmetric and an antisymmetric eigenmode, 1√

2
(uL±uR),

with two propagation constants (eigenvalues) whose difference depends on the strength of the
coupling (here the letter L stands for the left waveguide, and R for the right waveguide). By
launching a beam, e.g., into the left waveguide, both modes will be excited and they will undergo
beating; the field amplitude will thus jump from the left to the right waveguide and back and
forth, with the frequency given by the coupling strength. The COM of the beam will oscillate
at this frequency.

The very same mechanism, albeit a bit more complicated, leads to Zitterbewegung in our
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2D system. First, we excite both sublattices of the HCL equally and with the same phase, i.e.

ψ0 =
(
cos θ eiα sin θ

)T
=
(
1 1

)T
. The envelope of the initial excitation is Gaussian-like

with azimuthal symmetry. In experiments and numerical simulations, the intensity fine struc-
ture under this envelope is a triangular lattice (it allows tuning the excitation of the two sublat-
tices). In "low-energy" theory equation (3.2), this means that the continuous field amplitudes
ψ 1

2
(r, φ, z = 0) and ψ− 1

2
(r, φ, z = 0) are independent of the azimuthal angle φ. Because of the

nontrivial Berry phase winding around the Dirac points, i.e., the topology of the system, a vor-
tex beam component (with φ-dependent amplitude) will dynamically emerge. The underlying
universal mechanism which maps the topological singularity (vortex) from the k-space to the
real space was discovered recently [92]. As such, for z > 0, a single pseudospin component is
furnished with both the nonvortex and the vortex beam components, which naturally interfere.
It is demonstrated in the previous section and shown in fig. 3.3 that without the interference of
these two components, the intensity pattern of the beam retains its azimuthal symmetry. The
shape of the interference fringes depends on the evolution of the phase fronts of these two com-
ponents, i.e., on arg g 1

2
,0(r, z) − arg g 1

2
,−1(r, z), which yields a spiraling self-rotating pattern

(see fig. 3.3). This rotation breaks the azimuthal symmetry of the initial beam and leads to os-
cillation of the COM of the beam, rC(z), in analogy to the two-mode beating discussed above.
This alternative interpretation of the Zitterbewegung oscillations is perhaps more easily visu-
alized than the original one invoking interference between positive and negative energy states.
Both interpretations are correct; however, ours gives a simple picture for the circular oscillations
of the COM associated with wavepacket self-rotation.

It should be emphasized that without the gap, there is no Zitterbewegung (see equation
(3.11)). This means that the gap is crucial for the existence of radial dependence of the phase
fronts arg g 1

2
,0(r, z) − arg g 1

2
,−1(r, z) that yields the spiralling intensity patterns. This can be

understood because evolving phase fronts correspond to the dispersion curves. The disper-
sion curves drastically change when the gap opens, from the linear (conical) dispersion to the
"parabolic" one. The helicity of the spiraling self-rotating motion determines the helicity of
the Zitterbewegung of the COM. Consequently, it is valley-dependent in the symmetry-broken
HCLs.

Let us digress a bit and comment on results of conical diffraction shown in fig. 3.2 e), i.e.,
when m = 0 and the lattice band structure is a conical intersection. The far field intensity
structure, i.e., the outcome of conical diffraction, depends on the initial excitation conditions,
i.e., the weights and the relative phases of the Bloch modes excited around Dirac points. For
example, if one excites both sublattices in phase, and simultaneously at bothK- andK ′-valleys,
the output would be circularly symmetric [94]. If one excites only a single sublattice at either
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K-valleys or K ′-valleys, the output is also circularly symmetric [57]. The crescent-like output
in fig. 3.2 e) is the result when both sublattices are initially excited but at a single set (K or K ′)
of valleys.

Finally, we discuss the crucial role played by the Berry phase. The existence of the Berry
phase at each valley is responsible for the existence of the momentum to real space mapping
which produces a vortex component in the field, even though the initial excitation beam is
Gaussian-like. The connection between the Berry phase and Zitterbewegung has been analysed
previously in literature [85]. These analyses relied on the fact that the COM of the beam can
be expressed as ⟨r⟩ =

∫
ψ̃†(k, z)i∇kψ̃(k, z)d

2k in the momentum space representation of the
field amplitude [85,98]. When ψ̃(k, z) is expressed in eigenmodes of the system, some terms
in the expression for ⟨r⟩ will contain the Berry connection A(k) = iψ†

nk∇kψnk; however, the
terms corresponding to Zitterbewegung will be nonzero only if the interband matrix elements
iψ†

−1k∇kψ1k and iψ†
1k∇kψ−1k are nonzero (see the supporting information7 of [52] for the

derivation). These matrix elements take a very similar form to that of the Berry connection,
except that the operator i∇k is evaluated between modes of different bands. This is consistent
with our experimental setting where both bands are excited. Thus, we conclude that in our
observations, the key role of the Berry phase is to generate the vortex term enabling its interfer-
ence with the nonvortex component, and hence the Zitterbewegung. The direction of the Berry
curvature sets the helicity of the spiralling pattern, and therefore the valley-dependence of the
spiralling self-rotating wavepacket.

7See footnote 2.
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3.2 Dynamically Emerging Topological Phase Transitions in
Nonlinear Interacting Soliton Lattices

3.2.1 Introduction

Topological photonics offers a unique path for manufacturing photonic devices immune to scat-
tering losses and disorder [75,21]. Since the pioneering theoretical predictions [100] and ex-
perimental demonstrations [101] of topologically protected electromagnetic edge states, most
studies have focused on linear topological photonic structures [75,21]. However, by combining
topology with nonlinearity [102–117], many opportunities for fundamental discoveries and new
device functionalities arise [118]. This is appealing also because nonlinearity inherently exists
or is straightforwardly activated in most of the currently used linear topological photonic sys-
tems. The studies of nonlinear topological phenomena in photonics include, for example, non-
linear topological edge states and solitons [102–105,110–115], topological phase transitions
activated via nonlinearity [106–109], nonlinear frequency conversion [116,117], topological
lasing [119–125], and nonlinear tuning of non-Hermitian topological states [126,127].

In a recent study, we have introduced the concepts of inherited and emergent nonlinear
topological phenomena [113]. In this classification, inherited phenomena occur when nonlin-
earity is a small perturbation on an otherwise linear topological system. For example, in the Su-
Schrieffer-Heeger lattice [49], nonlinearity can easily break the chiral symmetry and therefore
the underlying topology; this enables coupling into an otherwise topologically protected edge
state [113,114]. However, many of the system properties, such as the structure of the nonlinear
topological edge states and/or solitons [102–104,110–115], are inherited from the correspond-
ing linear system [113]. In contrast, emergent nonlinear topological phenomena occur when
the underlying linear system is not topological, but the nonlinearity induces nontrivial topology
[113]. Nonlinearity induced topological phase transitions [106–109] are examples of emergent
nonlinear topological phenomena. In a recent experiment utilizing a nonlinear waveguide lattice
structure [108], such a transition was shown to happen when power (i.e., nonlinearity) exceeded
a certain threshold value. Emergent nonlinear topological phenomena are intriguing but were
scarcely explored in nonlinear topological photonics.

Here we report on dynamical topological phase transitions entirely driven by nonlinearity,
which constitute an example of emergent nonlinear topological phenomena. These phase tran-
sitions occur in colliding soliton lattices and are enabled by elastic soliton collisions. In optics,
spatial solitons are stable localized optical beams, which occur when diffraction is balanced by
nonlinearity [128]. Here we create two 1D soliton sublattices and initially kick them in opposite
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directions. As the sublattices evolve and collide, they form a paradigmatic model of topological
physics: the SSH lattice [46–49]. Recall that this lattice can be in both the topologically non-
trivial (fig. 3.4 a)) and trivial (fig. 3.4 b)) phase, depending on the Zak phase [9]. We find two
kinds of interesting phenomena, which periodically occur: (i) a dynamical topological phase
transition from the topologically trivial to nontrivial phase, characterized by a gap closing and
reopening at a single point, where two extended states are pulled from the bands into the gap to
become localized topological edge states (fig. 3.4 c)), and (ii) a crossover from the topologically
nontrivial to the trivial regime, which occurs via decoupling of the edge states from the bulk of
the lattice (fig. 3.4 d)).

(a)

(c) Topological phase transition

SSH lattice

Crossover via decoupling

(b)

Residual trivial SSH

Nontrivial SSH

Trivial SSH

Nontrivial SSH

Trivial SSH

Nontrivial SSH lattice Trivial SSH lattice

(d)

t’

t

t’

t

t ’’ ≈ 0

t ’’ ≈ 0

Topological edge states

Band Band

Figure 3.4: Illustration of the topological phase transition and crossover found in the evolving SSH
soliton lattice. a) The SSH lattice in the topologically nontrivial regime with t < t′, characterized by
two localized topological edge states. b) The SSH lattice in the topologically trivial regime with t > t′.
c) Sketch of the topological trivial-to-nontrivial phase transition in real space (left) and in the spectrum
(right). At the phase transition, the gap closes, and two extended eigenmodes are pulled from the bands
into the gap to become topological edge states. d) Sketch of the crossover from the nontrivial to the trivial
phase via decoupling of the outermost lattice sites. The NNN coupling is negligible in our SSH lattice,
t′′ ≈ 0, which results in decoupling during evolution in our system (left). This is equivalent to pulling
off the outermost SSH lattice sites to infinity, leaving the residual lattice in the trivial phase (right).

We emphasize up front that there is a distinction between our system and those from refs.
[106–108], which all exhibit nonlinearity-induced topological phase transitions. In the theo-
retical models of refs. [106,107], the photonic lattices are fixed in the x space. In [108] they
are fixed in the x-z space (i.e., "spacetime"); the power of an external excitation can change
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the coupling via nonlinearity to induce a phase transition. In our system, the whole lattice au-
tonomously and nonlinearly evolves in the x-z space, resulting in different topological phases
along z (i.e., "time"). The surprising connection between interacting soliton lattices and non-
trivial topology is revealed by the phase transitions and crossovers accompanied by the "birth"
and "death" of topological edge states. This is reminiscent of the connection between topology
and quasicrystals, also revealed by the phase transitions [129]. In addition, our work is also
distinct from a recent endeavor in the topological control of nonlinear extreme waves [130].

We first outline a few basic facts about the SSH lattice. It is a 1D topological system,
which exists due to the underlying chiral symmetry [21,49]. In its topologically nontrivial
phase, the intercell coupling t′ is stronger than the intracell coupling t (t < t′) (see fig. 3.4
a)). The nontrivial SSH lattice has two topological edge modes with propagation constants
residing in the band gap and a characteristic phase structure [49,131]. In the trivial phase t > t′

(see fig. 3.5 b)), there are two bands separated by a gap, and all eigenmodes are extended. This
model has been implemented in versatile systems, including photonics and nanophotonics [131–
135], plasmonics [136,137], as well as quantum optics [138–141]. Some of the aforementioned
nonlinear topological phenomena have been studied also in the nonlinear SSH model [105–
107,111–114,116,124,125].

3.2.2 Results

We consider the propagation of a linearly polarized optical beam in a nonlinear medium, which
is described by a nonlinear Schrödinger equation (NLSE),

i
∂ψ

∂z
+

1

2k

∂2ψ

∂x2
+ γ|ψ|2ψ(x, z) = 0, (3.12)

where ψ(x, z) refers to the electric field envelope, γ defines the strength of the nonlinearity (we
assume a Kerr-type nonlinearity), and k is the wave number in the (isotropic) medium. The
NLSE possesses a family of soliton solutions, with the hyperbolic-secant soliton being the most
representative [142]:

ψS(x, z;κ, θ) =
√
I0 sech

(
x

x0
− κz

kx20

)
exp

[
i

(
κ

x0
x+

1− κ2

2kx20
z + θ

)]
. (3.13)

Here, x0 is a scaling factor, κ/x0 is the initial momentum, I0 defines the peak intensity, and θ is
an arbitrary phase. The stationary propagation is achieved when diffraction (quantified by the
diffraction length kx20 ) is balanced by nonlinearity (quantified by the nonlinear length 1/γI0 ),
that is, when γI0 = (kx20)

−1.
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Nontrivial topology in photonics is usually implemented via specially designed topological
photonic structures where light propagates [21], whereas light propagation in a homogeneous
and isotropic nonlinear medium described by equation (3.12) is usually unrelated to nontrivial
topology. Unexpected nontrivial topology emerges from the initial condition(s) given by

ψ(x, 0) =
M∑

j=−M

ψS(x− T − jd, 0;−κ, 0) +
M∑

j=−M

ψS(x+ T − jd, 0;κ, θ), (3.14)

where the first sum relates to sublattice B, and the second to sublattice A. The parameter d
defines the size of the unit cell, and T is the initial offset between the two sublattices. The
next-nearest-neighbour (NNN) tunnelling in our SSH lattice is negligible, t′′ ≈ 0. Due to the
presence of nonlinearity, soliton interaction results in a dynamically evolving optically induced
lattice. To understand its properties, we study the eigenvalues βNL,n(z) and the eigenmodes
ϕNL,n(x, z) of the (nonlinearly) optically induced lattice potential V (x, z) = −γ|ψ(x, z)|2, de-
fined by HϕNL,n = βNL,nϕNL,n, where H = −(2k)−1∂xx + V . Here we use the continuous po-
tential V (x, z) for better correspondence with experiments; one could in principle use the SSH
Hamiltonian in the tight-binding approximation as NNN tunnelling is negligible. An equivalent
approach for evolving nonlinear topological lattices was adopted in ref. [113].

In fig. 3.5 a) we show the numerically calculated intensity of the evolving soliton lattice.
The two sublattices propagate in opposite directions and periodically collide, but they keep their
sublattice structures and propagation directions intact after every collision, which is ensured by
the colliding properties of (Kerr-type) solitons [128]. The intercell and intracell distances are
equal at z = 0, because we have chosen T = d/4; κ > 0 implies that the sublattices initially
approach each other. Thus, in the z interval from z = 0 until the first collision, the soliton
lattice has the structure of the trivial SSH lattice (see fig. 3.5 a)). After the first collision, the
lattice retains its trivial topology until the intercell and intracell distances became equal again
for the first time after z = 0. This point is denoted with a vertical dashed line at z = 6.718mm

in fig. 3.5. At that point, the lattice undergoes a topological phase transition from the trivial to
the nontrivial SSH soliton lattice, illustrated in real space in fig. 3.5 a) and the left-hand side of
fig. 3.4 c).

An ultimate signature of the dynamical topological phase transition is illustrated in fig. 3.5
b), which shows the band gap structure of the evolving soliton lattice. We see that for z values
up to the first topological phase transition point at z = 6.718mm, there are two bands without
any states in the gap. At the transition point, the gap closes and immediately reopens, while two
eigenvalues are pulled from the bands to stay within the gap. These isolated eigenvalues corre-
spond to the topologically nontrivial edge states of the SSH soliton lattice, with characteristic
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Figure 3.5: Intensity (a) and spectrum (b) of the SSH soliton lattice evolving with propagation distance
z. Locations where topological phase transitions take place are indicated with vertical dashed lines,
while the crossover region is highlighted by the yellow stripe. Topological phase transitions occur at
the gap-closing points, after which two extended eigenmodes are pulled from the bands into the gap and
become topological edge states (i.e., the phase transition here is from the trivial to the nontrivial phase).
Between these closing points, there is a crossover from the nontrivial to the trivial phase via decoupling
of the edge states from the bulk of the lattice, which can be understood by comparing a) with fig. 3.4 d).
At the second transition stage, two new edge states emerge, as clearly seen in the enlarged inset in b),
while the old ones had by this point point turned into decoupled walk-off solitons. Parameters: M = 5,
T = d/4 = 50µm, θ = π, x0 = 18.0µm, κ = 5, k = 1.71× 107m−1, and γI0 = (kx20)

−1.

phase and amplitude structure, illustrated in fig. 3.6 d) [113,49,131]. They dynamically emerge
at the transition point. Gap closing is an inevitable and necessary ingredient of the topological
phase transition that is clearly illustrated in fig. 3.5 b).

In order to fully unveil the behaviour of our system, we explore the band gap structure and
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the modes of the SSH soliton lattice before the transition in figs. 3.6 a), b) (for concreteness
we consider z = 0.3mm), and just after the transition in figs. 3.6 c), d) (at z = 7mm). At
z = 0.3mm there are two bands separated by the gap (see fig. 3.6 a)). All eigenmodes of the
lattice are extended. In fig. 3.6 b) we plot the two extended modes with eigenvalues closest to
the gap. At the phase transition, these two extended modes are pulled from the band into the
gap (see fig. 3.6 c)); at this point they became localized topological edge modes of the SSH
soliton lattice, illustrated in fig. 3.6 d). We see that both of them have the characteristic features
of the topological edge modes: their amplitude is nonzero only in odd lattice sites (counting
from the edge inward), and the neighbouring peaks in the mode amplitude are out of phase (see,
e.g. [113,49,131]).

A glance at fig. 3.5 b) reveals an interesting feature of the evolving spectrum at z =

13.438mm: another gap closing and reopening occurs, where two eigenstates bifurcate from
the bands to become localized in the gap; see the inset in fig. 3.5 b) and figs. 3.6 g), h). This
appears to be another topological phase transition from the trivial to the nontrivial SSH lattice.
However, if this interpretation is correct (as we show below), it means that the system is con-
verted from the nontrivial to the trivial regime in between the two gap-closing points depicted
in fig. 3.5 b). This conversion is not a topological phase transition because the gap remains open
at all propagation distances between z = 6.718mm and z = 13.438mm.

To explain this intriguing phenomenon, we need to resort to the real space dynamics in
fig. 3.5 a), and explore the region shaded in yellow where the soliton collisions take place. In
this region the two outermost solitons become separated from the lattice, because the distance
to their nearest neighbours becomes d, which is the NNN distance in the SSH lattice, and thus
the probability of tunnelling from these outermost solitons to the bulk of the SSH lattice is
practically zero. The eigenvalues corresponding to the outermost solitons are in the gap (see
fig. 3.6 e)), so the eigenmodes are obviously localized (see fig. 3.6 f)), but their amplitude-phase
structure does not possess the feature of the topological edge states illustrated in fig. 3.6 d).
Thus, in the yellow region, two outermost solitons are actually decoupled from the SSH lattice,
which leads to the crossover from the topologically nontrivial to the trivial phase. Instead of a
discontinuous change of the system’s phase, the lattice sheds the outermost sites, thus forcing
us to redefine the boundary of the system, as well as the unit cell of the lattice. The nontrivial
phase of the old lattice (pre-crossover) corresponds to the trivial phase of the new latice (post-
crossover). This crossover is fully equivalent to a gradual process of pulling two outermost
lattice sites of the nontrivial SSH lattice into infinity, as illustrated in fig. 3.4 d).

The existence of the crossover is in full agreement with the observation and interpretation of
the gap-closing point at z = 13.438mm in fig. 3.5 b) described above. This pattern of an alter-
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Figure 3.6: Spectra of the evolving soliton lattice (left column) and selected eigenmodes ϕNL,n (right
column) at propagation distances indicated by red arrows in fig. 3.5. a) Spectrum and b) two eigenmodes
in the trivial phase at z = 0.3mm. The two eigenmodes are closest to the gap as indicated with arrows in
a). c) Spectrum and d) topological localized states in the nontrivial phase at z = 7mm, just after the first
topological phase transition. e) Spectrum and f) localized states after the nontrivial-to-trivial crossover
at z = 13mm. The states are localized solely in the outermost solitons and their amplitude is zero in
the bulk of the soliton lattice, which is in contrast to the amplitude-phase structure of topological edge
states shown in d). g) Spectrum and h) localized states at z = 13.7mm, after the second phase transition.
Two of the localized states are topological (black and orange lines), whereas the other two are outermost
solitons (blue and red lines).
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nating sequence of events—dynamical topological phase transitions (trivial to nontrivial phase)
→ crossover via decoupling of the outermost solitons (nontrivial to trivial phase)—repeats itself
during propagation until the two sublattices become fully separated. The sublattice constant d
is chosen sufficiently large so that the NNN tunneling probability is negligible; therefore, when
sublattices become separated, we can regard this system as a set of independent solitons.

The evolving nonlinear lattice has chiral symmetry in those z intervals where V (x, z) cor-
responds to either the trivial or the nontrivial SSH lattice. When the two sublattices col-
lide/overlap, there is no more chiral symmetry, but each on-site potential has two bound modes
leading to two bands. The overall structure of the dynamically evolving lattice in real space is
stable with respect to perturbations of the initial state. For perturbations preserving the lattice
and the chiral symmetry, the evolving nonlinear spectrum is robust, as the gap-closing points
indicating topological phase transitions are present, and the edge states have characteristic topo-
logical features. Perturbations which break the chiral symmetry will, strictly speaking, destroy
the topological phase. However, if they are sufficiently small, the characteristic features of the
topological states will be inherited and present in the perturbed system; see the supplemental
material8 to [53].

In conclusion, we have found dynamically emerging topological phase transitions in SSH
soliton lattices, which are classified as emergent nonlinear topological phenomena because they
cease to exist if nonlinearity is turned off. These phase transitions convert the SSH soliton
lattices from the topologically trivial to the nontrivial phase and are characterized by the gap
closing and reopening, accompanied by the emergence of two localized topological edge states.
In addition, we have found crossovers from the topologically nontrivial to the trivial regime,
which occur via decoupling of the edge states from the bulk of the lattice. These two events
occur one after the other in succession. Our results are presented in a spatial optical system;
however, they are accessible also in nonlinear fiber optics with realistic parameter values [143]
(see supplemental material [53]). In nonlinear saturable media such as photorefractive crys-
tals, soliton collisions are typically not elastic; thus, an observation of the proposed phenomena
should be more challenging (in the low saturation regime however, Kerr nonlinearity that we
used here is typically a good approximation). We envisage that this work will lead to exciting
fundamental research in nonlinear topological photonic systems, including the recently demon-
strated nonlinear higher-order topological insulators [144,145].

8http://link.aps.org/supplemental/10.1103/PhysRevLett.127.184101
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Chapter 4

Proposal for realization of Abelian anyons

The work presented in this chapter has been published in:

[18] Lunić, F., Todorić, M., Klajn, B., Dubček, T., Jukić, D., Buljan, H., 2020. Exact solutions

of a model for synthetic anyons in a noninteracting system. Phys. Rev. B, 101, 115139.
doi: 10.1103/PhysRevB.101.115139

In this chapter, we explore an unconventional way to realize anyonic statistics by perturbing
a noninteracting integer quantum Hall effect system with specially tailored localized probes.
Rather than exciting quasiparticles (which would obey integral statistics), the probes serve to
induce synthetic anyons by modifying the ground state in such manner that braiding of the
probes leads to Abelian fractional phases. Since the probes can be used as handles to induce
and manipulate the synthetic anyons, an experimental realization of our model could potentially
be a step towards topological quantum computers.

In the introduction to the next section, we present the motivation for our model, give a
brief overview of the related theoretical and experimental developments, and summarize the
results to be presented. In 4.1.2 we present the system in detail, and discuss the solutions to
the model. We consider many-body ground state wave function, as well as the single-particle
states in the lowest Landau level, and the gap between the lowest and the first excited Landau
levels. In section 4.1.3, we obtain the statistical phase analytically and numerically. We discuss
the distinction between synthetic anyons and emergent quasiparticles in section 4.1.4, and in
section 4.1.5 we explain how this impacts the anyon fusion rules. Finally, we discuss the results
and conclude the chapter in section 4.1.6.
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4.1 Exact solutions of a model for synthetic anyons in a
noninteracting system

4.1.1 Introduction

Since the possibility of fractional statistics was discovered [37,38], a considerable amount of
theoretical and experimental work was done to explore the topologically ordered 2D systems
that may host anyonic excitations. Recall from section 2.2.3 that the various fractional Hall ef-
fect systems are believed to support anyons obeying Abelian and non-Abelian fractional statis-
tics [32,146,11]. While the FQHE is the paradigmatic example, anyons are also believed to arise
in other systems. For example, some interacting spin systems may be topologically ordered and
have anyonic excitations [147–150,15]. On the other hand, non-Abelian Majorana zero modes
may be associated with excitations of topologically ordered systems, but also with defects in
topological superconductors [151,152]. While the fractional charge of the Laughlin quasipar-
ticles was observed in the quantum shot noise of the electrical current through a point contact
in a 2D electron gas [153], it has proven difficult to make anambiguous measurements of their
anyonic phases (though detections were claimed [146]). Convincing signatures of anyons were
obtained only recently [154,155].

As explained in section 2.2.3, the chief source of motivation for studying anyons is their
potential application in topologically protected quantum computation [147,11]. However, ef-
ficient methods for creation, detection and manipulation of non-Abelian anyons are necessary.
Many experiments have addressed anyonic systems, of which we only mention some. In con-
densed matter, this includes the already mentioned experiments on the FQHE [146], Majorana
zero modes [152], and the Kitaev paramagnetic state of the honeycomb magnet RuCl3 [150]
(see refs. [151,11] for reviews). Experiments on other platforms were also performed. For
example, a minimal variant of the Kitaev toric model [147], concieved as a platform for topo-
logical quantum computing, was experimentally realized in ultracold atomic gases [149], and
with trapped ions using dissipative pumping processes [156]. Anyonic statistics was simulated
in photonic quantum simulators [157,158], in superconducting quantum circuits [159], and by
using nuclear magnetic resonance [160]. The body of theoretical proposals is larger (we will
not attempt to provide a review) and, besides condensed matter systems [151,11], includes pro-
posals in ultracold atomic gases based on emulating the FQHE [161,162] or the Kitaev model
[163,164], or by employing synthetic gauge potentials [165]. Different mechanisms to achieve
FQH states of light have also been proposed [166,167]. Furthermore, it was recently proposed
that anyonic charge-flux composites can be achieved by sandwiching a charged magnetic dipole
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between two semi-infinite blocks of a high-permeability material [33].
Despite considerable progress, there is still a long way to go before fault tolerant topological

quantum computation is experimentally feasible [151,11]. Thus, there is a motivation to explore
less traditional schemes for realizing and manipulating anyons. For example, it was proposed
that anyons could be synthesized by coupling weakly interacting (or noninteracting) electrons to
a topologically nontrivial background (or topologically nontrivial external perturbations) [168–
170]. In refs. [168,169], anyons are proposed in a system of an artificially structured type-II
superconducting film, adjacent to a two-dimensional electron gas in the integer QHE with unit
filling fraction [168,169]. A periodic array of pinning sites imprinted on the superconductor will
structure an Abrikosov lattice of vortices [168]. Anyons are bound by vacancies (interstitials)
in the vortex lattice, which carry a deficit (surplus) of one-half of a magnetic flux quantum
[168]. In ref. [170] anyons were proposed in integer QHE magnets. Magnetic vortices in
this system are topologically stable and have fractional electronic quantum numbers yielding
anyonic statistics. Anyons were also proposed by using topological defects in graphene [171].

Here we present exact solutions of a model for synthetic anyons, which was considered in
refs. [168,169] (it was referred to as the continuum model therein). The model is represented
by the Hamiltonian for noninteracting 2DEG, in a uniform magnetic field, with N external
solenoids (probes), which introduce localized fluxes at positions ηk, for k = 1, . . . , N . We
find analytically and numerically the ground state of this Hamiltonian when the Fermi energy
is such that only the lowest Landau-level (LLL) states are populated. When the flux through
each solenoid is a fraction of the flux quantum, i.e. Φ = αΦ0, the ground-state wave function
is anyonic in the coordinates of the external probes ηk. In other words, by braiding the probes
one imprints the Berry (statistical) phase [3] on the ground state. We calculate this Berry phase
analytically and numerically. A potential experimental realization of this model must have a
mechanism that fixes the flux in external solenoids to an identical value in order for synthetic
anyons to be identical entities. From the solutions we find that around every solenoid probe there
is a cusp-like dip of missing electron charge ∆q. We demonstrate that the missing charge should
not be identified with the concept of an emergent quasiparticle by showing that ∆q

ℏ

∮
A · dl

does not correspond to the Aharonov-Bohm phase [2] acquired as the probe traverses a loop
in space. One could arrive at the same conclusion by using gauge invariance arguments [170].
This has consequences on the fusion rules of the synthetic anyons: the fusion rules depend on
the microscopic details of the fusion process as discussed below. Even though we consider
Abelian anyons, if an analogous scheme for synthetic non-Abelian anyons is developed, it will
be a potential path towards a platform for quantum computers.
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4.1.2 Ground-state wave function

In our theoretical model we consider Ne noninteracting spin-polarized electrons in 2D config-
uration space (in the xy-plane), in a uniform magnetic field B0 = ∇ × A0 = B0ẑ where
A0(r) = 1

2
B0 × r is the vector potential in the symmetric gauge (B0 > 0). The system is

perturbed with N very thin solenoids at locations ηk = ηx,kx̂ + ηy,kŷ. The vector potential of
each solenoid is

Ak(r) =
Φ

2π

ẑ × (r − ηk)

|r − ηk|2
, (4.1)

where Φ is the magnetic flux through each solenoid. The Hamiltonian representing the model
is then

H =
Ne∑
j=1

 1

2m

(
pj − qA0(rj)− q

N∑
k=1

Ak(rj)

)2

+ V (rj)

 , (4.2)

where V (r) is zero for r < Rmax, and infinite otherwise; q < 0 and m are the electron charge
and mass, respectively. The model is illustrated in fig. 4.1 Compare this Hamiltonian to that
of the continuum model for the integer quantum Hall effect (2.22). The only difference is in
the vector potential Ak(rj) due to the thin solenoid probes, which causes spectral flow of the
IQHE single-particle states, but preserves the Landau level structure far away from the probes.
We assume that the Fermi level is such that only the states from the LLL of energy ℏωB/2 are
populated, and we assume they are all populated. The ground-state wave function with energy
NeℏωB/2 is given by

ψ =
1√
Z

[
Ne∏
j=1

N∏
k=1

|zj − ηk|−α zj − ηk

][
Ne∏
i<j

zi − zj

]
exp

(
−

Ne∑
i=1

|zi|2
4l2B

)
, (4.3)

where α = Φ/Φ0, Z = Z({ηk}, {ηk }) is the normalization factor, zj and ηk are (respec-
tively) the electron and probe coordinates in complex notation, and the functional dependence
ψ = ψ({zj}, {zj }; {ηk}, {ηk }) is implied. We consider α ∈ ⟨0, 1⟩; results for fractional values
outside the ⟨0, 1⟩ interval are easily deduced. The "electron-electron" factors (in second brack-
ets) are the first powers of zi − zj , which is a form characteristic of the IQHE states. We may
compare this state to the 1/m FQHE Laughlin state withN quasiholes (2.46) in which the same
factors are raised to the m-th power. As we will show, the system is nevertheless anyonic in
coordinates ηk, since the "electron-probe" factors (in first brackets) are now modified with the
|zj − ηk|−α factor.

For the clarity of the presentation, we first present what happens when only one probe is
placed in the system, and subsequently what happens when two probes are inserted. For a single
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a) b)

c) d)

Figure 4.1: Sketch of the model. a) We explore a 2DEG in a magnetic field B0 on a disk of radius Rmax.
The solenoid probes with flux Φ pierce the 2DEG at positions ηj (coordinates are in complex notation).
b) The contour path of one probe, which adiabatically traverses a closed loop in space; we are interested
in the Berry phase accumulated along such paths. Contours are illustrated corresponding to c) γin and d)
γout. See text for details.

probe, the single-particle states of the system at the LLL energy are given by (see Appendix A
in [18] for details of the calculation)

ψm = |z − η|−αz − η z m exp

(
−|z|2
4l2B

)
, m = 0, 1, 2, . . . . (4.4)

Note that as η → 0, the state becomes (2.27), except m is shifted by 1, thus avoiding a spurious
divergent state1 |z|−α exp

(
− |z|2

4l2B

)
(see [18]). There is one state localized at the position of the

probe, with energy ℏωB(1 + 2α)/2 in between the LLL and the first excited LL

ψLS = |z − η|α exp
(
−|z − η|2 + η z − ηz

4l2B

)
. (4.5)

Suppose that one introduces the solenoid probe at some point in time, and adiabatically in-
creases the flux through it. As α increases from zero to one, spectral flow occurs as illustrated

1We note that in ref. [168] this spurious state was used to construct the many-body ground state, and as a result
the ground state from ref. [168] is in fact not anyonic (see below our discussion on gauge invariance in calculating
the Berry phase).

73



4.1. Synthetic anyons in a noninteracting system Chapter 4. Anyons

in fig. 4.2. As we can see, one state from the LLL rises in energy and flows towards the first
Landau level. Here we assume that the flux is fixed at some value α, and the Fermi energy is
between the LLL energy and ℏωB(1 + 2α)/2, and thus, this localized state is not populated.
The many-body ground state is constructed by inserting all LLL states in a Slater determinant
and it is given by (4.3) for N = 1.

α

a) b)

Figure 4.2: Sketch of the energy scales and the spectral flow for just one probe. a) A probe is centered
in the system; its flux is such that 0 ≤ α = Φ/Φ0 ≤ 1. b) As α is increased, there is a spectral flow as
illustrated. The Fermi energy EF is always set such that only the LLL states are populated. See text for
details.

For the case of two probes, the single-particle states of the system at the LLL energy are

ψm = |z − η1|−α|z − η2|−αz − η1 z − η2 z
m exp

(
−|z|2
4l2B

)
, m = 0, 1, 2, . . . . (4.6)

Now there are two localized states in between the LLL and the first excited Landau level. We did
not find analytical expressions for these states, but they are visible in numerical calculations.
The energies of these localized states are in the gap, between the LLL and the first excited
Landau level. They increase with increasing α and join the first excited Landau level when
α = 1 as expected. The many-body ground state is given by (4.3) for N = 2.

Now we generalize our results for any number of probes N . To this end, we employ the
following singular gauge transformation

ψ′ = ψ
Ne∏
i=1

N∏
j=1

exp(iαϕij), (4.7)

where ϕij denotes the argument of zi − ηj = |zi − ηj| exp(iϕij). In this gauge, the vector
potential of the probes is A′

k = 0 everywhere except at the positions of the probes, and the
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Hamiltonian H ′ is given by (4.2) with Ak replaced by A′
k = 0. It is straightforward to verify

that ψ′ is an eigenstate of H ′ with energy NeℏωB/2, and hence the ground state.
It should be pointed out that in the limit α → 0 the wave function (4.3) does not approach the

IQHE ground state with all LLL states filled, but rather it becomes an IQHE state with N of the
LLL states left empty. Namely, the localized states which appear at the position of the probes
for α > 0 are not included in the Slater determinant used to construct the ground state (4.3), as
discussed above. For α = 0 they enter the LLL, but since they were not used in constructing
(4.3), the wave function does not approach the IQHE ground state (with all LLL states filled) in
the limit α → 0. Strictly speaking, (4.3) is the ground state for α ∈ ⟨0, 1⟩, provided that only
the LLL states are filled. It is not the ground state for α = 0 and all LLL states filled.

In a potential experimental implementation of the proposed system, one should not populate
the localized states such as ψLS . With this state populated, the ground state is no longer anyonic
in the coordinates of the probes. For this state to remain empty, the temperature T must be
sufficiently low in order that kBT ≪ ℏωBα, which is difficult to obtain for small α. However,
an additional localized repulsive scalar potential at the location of the probes (e.g., the delta
function potential), which may be present naturally depending on the realization, would lift the
energies of the localized states to remedy this issue.

−2πq
l2B

−15 −10 −5 0 5 10 15

r/lB

−2πq
l2B

Figure 4.3: The single-particle densities (cross sections) of the ground states with one probe (at r = 0)
and two probes (at r = 0 and 5.264lB). The flux is given by α = 0.7. The horizontal dashed line depicts
the density of an infinite system (see text for details).

In fig. 4.3 we illustrate the single-particle density (cross section) for the system with one
and two probes. Clearly, the single-particle density has a cusplike dip at the position of a probe,
i.e., a missing electron charge ∆q > 0. It is tempting to identify the composite of the missing
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electron charge ∆q and the probe with flux Φ with Wilczek’s charge-flux-composite anyons
[38]. However, a careful analysis of the Berry phase below shows that this identification would
be erroneous (see section 4.1.4).

4.1.3 Anyonic properties of the wave function; calculation of the Berry
phase

In this section we calculate the Berry phase as one of the probes undergoes adiabatically a closed
loop in space as illustrated in 4.1 b). More specifically , we calculate the Berry phases γin when
a single probe is within the loop as in fig. 4.1 c), and γout when all of the other probes are outside
of the loop as in fig. 4.1 d). The calculation proceeds in the same manner as the calculation of
the statistics of Laughlin quasiholes (pages 25-28). Once again, the difference between the
two phases is the statistical phase, which we find to be γS = γin − γout = 2π(α− 1), where
α = Φ/Φ0. This result means that in the coordinates of the external probes the wave function
ψ is anyonic when α is fractional.

We assume that the probes remain sufficiently far apart from each other at any time. Without
loss of generality, we assume that the probe η1 traverses the path. Recall that the Berry phase
accumulated along the path C is given by

γ = i

∮
C
(Aη1dη1 +Aη1 dη1 ), (4.8)

where Aη1 = i ⟨Ψ|∂η1Ψ⟩ and Aη1 = i ⟨Ψ|∂η1 Ψ⟩. After employing the plasma analogy to take
normalization into account (see Appendix B in [18]), once again, we find

γ = 2π ⟨n⟩C , (4.9)

where ⟨n⟩C is the mean number of electrons in the area encircled by the path C. Since the inner
probe expels some charge as illustrated in fig. 4.3, and thus the mean number of electrons inside
the contour differs in the two cases: ⟨n⟩C,in ̸= ⟨n⟩C,out, there is a statistical phase

γS = 2π(⟨n⟩C,in − ⟨n⟩C,out). (4.10)

We calculate the expelled charge from the single-particle density ρ of the many-body wave
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function ψ. It can be found by employing the plasma analogy:

ρ(z) =
1

2πl2B
− (1− α)

N∑
k=1

δ2(z − ηk). (4.11)

The missing charge at the probe is thus ∆q = −q(1 − α), and the statistical phase (in the
thermodynamic limit) is

γS = 2π(α− 1). (4.12)

Thus, γS mod 2π is equal to 2πα.
Let us briefly comment on the fact that ∆q → −q as α → 0, and ∆q → 0 as α → 1, which

may seem awkward at first sight. This is related to our discussion in the previous section on the
behavior of the wave function (4.3) as α → 0. In constructing the wave function, we do not
populate the localized states which appear at the position of the probes for α > 0. Therefore,
as α → 0, they are not in the Slater determinant, leaving a hole of charge ∆q = −q at the
position of the probe. When α → 1, the localized states at the position of the probe enter the
first LL (which is empty by assumption); however, the corresponding state in the LLL below is
now filled, yielding ∆q = 0, as the spectrum has flown back on itself when α flows from zero
to one.

In order to further underpin (4.12), and explore the dependence of the statistical phase on
the separation between the probes (we assumed above that they are sufficiently far apart along
the path C) and the details of the path, we perform numerical calculations. We numerically
consider the cases with one and two probes. In all our calculations presented here, the magnetic
field is given by B0R

2
maxπ/Φ0 = 100 (Rmax is the radius of the finite numerical system, see

fig. 4.1 a) and b)), and we construct the numerical ground state by filling the first Ne = 55

states to minimize the boundary (finite-size) and numerical grid effects while still successfully
mimicking an infinite system. The method for the numerical calculation of the Berry phase
is as follows [172]: instead of performing the integral in eq. (4.8) we discretize the evolution
parameter, here called time for simplicity, and evaluate it at Nt equidistant points. Let ψi(t)
be the i-th numerical single-particle eigenstate lying in the LLL at time t, and let Mij(tk, tl) =

⟨ψi(tk)|ψj(tl)⟩ be the elements of the overlap matrix M(tk, tl) at two different times. Then the
Berry matrix

U =M(t0, t1)M(t1, t2) . . .M(tT , t0) (4.13)

leads directly to the Berry phase
γ ≈ − arg(detU). (4.14)
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This relation is exact in the limit Nt → ∞. A possible concern about numerical error arises if
the value of α is close to a whole number (or two values of α are close). However, this is not an
issue for the values we choose in the following.

In fig. 4.4 we illustrate γS . as a function of the separation between the probes R. The dashed
lines denote the analytical prediction in (4.12). We see that if the probes are too close they will
influence each other’s cusp dip in the density, and consequently the statistical phase will not be
given by 2π(α− 1). However, after they are sufficiently apart, γS exhibits a plateau at the value
2π(α − 1). As the outer probe gets close to the edge of our (numerical) finite-size system, the
phase departs from the analytical solution. We conclude that the numerical calculations agree
with the analytical prediction when the path of the moving probe does not come too close to
other probes, and if they are not too close to the edges of the sample. The system exploited
in numerical calculations is very small (practically mesoscopic). In reality, the system would
be much larger providing a much broader region in space where a constant plateau would be
observed.

=0

Figure 4.4: The statistical phase γS as a function of the separation between the probes at three different
flux values α. In every calculation, one of the probes is at z = 0, and the other one adiabatically traverses
a circle of radius R in the anticlockwise direction (shown on the right). The dashed lines denote the
2π(α− 1) values corresponding to the analytical prediction.

Next we perform the same calculation, but deform the contour C as illustrated in fig. 4.5
a). The contour is such that the probes are sufficiently separated at all times, and away from
the sample edges. We obtain the statistical phase γS = −0.631 × 2π, which is in agreement
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with the analytical result γS = 2π(α − 1) for α = 0.37, with relative error of about 0.2%. We
conclude that the statistical phase does not depend on the details of the contour.

a) b)

Figure 4.5: Two different contours. a) One of the probes undergoes a closed loop, visiting three different
radii a, b, and c, such that each is sufficiently far from the probe at zero and from the edge of the system.
b) Two probes at opposite radii (|η1| = |η2| = 3.13lB) are exchanged leading to an exchange phase
π(α − 1) (see text for details). The parameters used in the calculation are α = 0.37, a = 4.76lB ,
b = 6.14lB , c = 7.52lB , θ1 = π/6, and θ2 = π/2.

Next we consider the exchange of two probes. We numerically calculate the exchange phase
obtained when two of the probes are exchanged along the path illustrated in fig. 4.5 b). We then
subtract the two Berry phases obtained when each of the probes η1 and η2 traverses its respective
path (semicircles), without the other probe present. We find the result to be −0.636 × π for
α = 0.37, once again in agreement with the analytical calculations. The relative error is about
1%. From the viewpoint of the relative coordinate, when one of the probes encircles the other
probe, this corresponds to a double exchange of the two probes illustrated in fig. 4.5 b). Thus,
we conclude that if we exchange two of the probes adiabatically along a path illustrated in
fig. 4.5 b) (with no other probes within the closed contour), the exchange phase accumulated
by the wave function will be π(α − 1). This means that the wave function ψ is anyonic in the
coordinates of the probes, with the statistical parameter given by θ = α− 1.

We end this section by a note on the gauge invariance of the Berry phase calculated along the
closed path C. The wave function ψ in (4.3) is a single-valued function of the positions of the
external probes ηk, provided that the normalization Z({ηk}, {ηk }) is also chosen to be a single-
valued function of ηk. In contrast, the singular gauge wave function ψ′ in (4.7) is a multivalued
function of ηk. Equation (4.8) for calculating the Berry phase yields different results when
naively used for ψ and ψ′. However, the Berry phase calculated along a closed path must be
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independent of the gauge used. This issue is resolved by noting that (4.8) should be used only
for single-valued wave functions (ψ in our case) . If one wishes to calculate the Berry phase in
the singular gauge by using the multivalued wave function ψ′, there is an additional term that
should be included in the Berry phase formula (see eq. (5.12) in ref [172]) which ensures gauge
invariance. We note that our results differ from refs. [168,169], which have used multivalued
wave functions and (4.8) to calculate the Berry phase.

4.1.4 Synthetic anyons are not emergent quasiparticles

From the illustration of the single-particle density in fig. 4.3 we see that at the position of
every solenoid probe there is a cusp-like dip, i.e., a missing electron charge, which is found
to be ∆q = −q(1 − α) from the single-particle density. We have already noted that it is
tempting to identify the composite of a missing electron charge ∆q, and a solenoid with flux
Φ with Wilczek’s charge-flux-composite anyon [38]. Now we show that such an interpretation
is erroneous. When a probe traverses a closed path C, the system acquires the Berry phase
γ = 2π ⟨n⟩C . Let us try to calculate the missing charge by a different route using the Aharonov-
Bohm phase, and by assuming that we are dealing with a charge-flux composite. To this end,
let us denote the missing charge q∗, and check whether we obtain the same result as with the
single-particle density. When the charge q∗ traverses the path C, it will acquire the Aharonov-
Bohm phase q∗ΦC/ℏ, where ΦC = ⟨n⟩C Φ0 is the total magnetic flux within the path C (we have
assumed unity filling of the LLL). To obtain the Berry phase, we should include the Aharonov-
Bohm phase acquired by the solenoid with flux αΦ0 that circulates around the charge q ⟨n⟩C ,
which is equal to q ⟨n⟩C αΦ0/ℏ. By identifying

γ = 2π ⟨n⟩C =
q∗ΦC

ℏ
+
q ⟨n⟩C αΦ0

ℏ
, (4.15)

we find
q∗ = −q(1 + α) ̸= ∆q = −q(1− α). (4.16)

This difference may come as a surprise, because an equivalent calculation for anyons in the
FQHE yields identical expressions for the missing charge from the single-particle density and
from the Aharonov-Bohm calculation of q∗.

To understand the obtained result, first we note that the external solenoid probe acts as a la-
dle that stirs the electron sea around, and the Aharonov-Bohm phase depends on the movements
of the electrons in the sea, and not of the missing charge. When the missing charge corresponds
to the quasiparticle, as in the FQHE, then q∗ = ∆q because the motion of (quasi)holes uniquely
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corresponds to the motion of the electron sea. However, the missing charge here is not a quasi-
hole, since a quasihole would produce the same Aharonov-Bohm phase as a particle of the same
charge, and we cannot interpret the missing charge attached to the solenoid probe as Wilczek’s
charge-flux-tube composite. One way to understand this difference is to assume that the elec-
tron sea is a superfluid. Then the Aharonov-Bohm phase acquired by stirring the ladle would be
zero. To further corroborate this idea, we mention that a similar point was raised for a charge
expelled by a delta function potential barrier on a 1D ring enclosing a solenoid [173]. The Berry
phase accumulated as the barrier traverses the ring is due to the particles being reflected from
the barrier, rather than the motion of the missing charge around the solenoid.

4.1.5 Fusion rules of synthetic anyons

The conclusion of the previous section has impact on the fusion rules of synthetic anyons. The
fusion rules depend on the physical microscopic process which corresponds to fusion. For
example, suppose that we have N = 4 solenoid probes in the system with flux αΦ0, i.e., we
have two pairs of probes. Next, we slowly bring together (merge) two of the solenoids from
each pair, thereby forming a system with N = 2 solenoid probes with flux 2αΦ0. This system
is identical to the one we have explored with α replaced by 2α mod 1. Thus, the exchange
phase changes from π(α− 1) to π[(2α mod 1)− 1]. This is not the exchange phase 22π(α− 1)

expected from fusing two anyons (see discussion in section 2.2.3, on page 37). This is related
to the fact that we cannot interpret the missing charge attached to a solenoid probe as Wilczek’s
charge-flux-tube composite, because in that case the standard fusion rules would be applicable.

If we, however, consider the fusion process as pairing the solenoids two by two in the sense
η2 = η1 + c and η4 = η3 + c, where c is a complex number with magnitude greater than lB,
then the standard fusion rules apply. For example, if we move one of the pairs in a circle of
sufficiently large radius around the other pair, we analytically obtain the expected statistical
phase of 22 × 2π(α− 1) (see Appendix B of [18] for details of calculation).

4.1.6 Discussion

It might be interesting to discuss a potential experimental realization, and pertinent challenges,
of the Hamiltonian in eq. (4.2) in ultracold atomic gases. Ultracold atomic gases have been
experimentally realized in two dimensions [174,175], and a viable path (although not a sim-
ple one) for implementing IQHE states with ultracold atoms is to employ synthetic magnetic
fields [176–178,51]. The missing ingredients are the solenoid-like probes. The synthetic vector
potential of a solenoid can in principle be achieved with vortex laser beams nonresonantly in-
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teracting with two-level atoms [179]. Namely, by exploring eq. (7) in sec. II of ref. [177], one
finds that a vortex beam interacting with a two-level atom can yield the Berry connection which
corresponds to the vector potential of a solenoid. The vortex phase ensures proper direction of
the vector potential; however, to obtain the proper ∼1/r dependence one must in addition prop-
erly adjust the detuning and the intensity of the laser. An additional challenge along this path
would be to ensure that the synthetic magnetic flux through every solenoid is identical, so that
an exchange of any of the two lasers would depend on the unique statistical parameter (other-
wise the localized perturbations at the probes could not be referred to as synthetic anyons). The
advantages of ultracold atomic systems are long coherence times and the possibility to relatively
easily braid the laser probes.

In conclusion, we have presented exact solutions of a model for synthetic anyons in non-
interacting many-body systems. The key ingredients in the model are the specially tailored
external potentials (that could correspond to some external localized probes), which supply the
demanded nontrivial topology in the system. The Hamiltonian representing the model is that of
noninteracting electrons in a uniform magnetic field (in the IQHE state for LL filling factor 1),
and the probes are solenoids with a magnetic flux that is a fraction of the flux quantum. The
Fermi energy is such that only the lowest Landau-level states are occupied; the localized states
which appear at the position of every probe, with energy in the gap, are assumed to be empty.
We have found the ground state of this system, and demonstrated that it is anyonic in the coordi-
nates of the probes when the flux through solenoids is a fraction α of the flux quantum Φ0. The
statistical parameter of the synthetic anyons is π(α − 1). We have shown that these synthetic
anyons cannot be considered as emergent quasiparticles, and that they cannot be interpreted as
Wilczek’s charge-flux-tube composites. This observation has consequences on the fusion rules
of these synthetic anyons, which depend on the microscopic details of the fusion process. In a
future study, it would be interesting to consider the forces that act upon the probes. Geometric
forces on point fluxes carrying integer quanta of fluxes in quantum Hall fluids were studied in
Ref. [180]. Next, it would be interesting to explore the potential for anyonic physics in a sys-
tem of solenoids that does not necessarily rely on the quantum Hall effect. For example, one
such system might be the Aharonov-Bohm billiards [181]. Finally, it would be interesting to
extend the ideas presented here to explore non-Abelian synthetic anyons, and investigate their
capacity for topological quantum computing. A step in this direction was recently taken by
solving a related model with spin-unpolarized electrons coupled to non-Abelian probes [182].
However, the statistics obtained for the studied system, although of higher dimension, was still
commutative. Therefore, a different setup is needed to achieve truly non-Abelian statistics.
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Conclusion

In this thesis, we have explored several different topics whose unifying theme is the relevance
of topology to the physics in question. The main goal of the thesis was to present the papers
[52,53,18] published during the course of the author’s PhD study, but we have also used the
opportunity to set up the stage in chapter 2 by exploring multiple relevant topics in topological
quantum matter, as well as the indispensable concept of geometric phase. Among the topics
explored were the integer and the fractional quantum Hall effects, anyons, and the symmetry-
protected topological states.

Besides being one of the first discovered topological states of matter, the conceptual signif-
icance of the IQHE lies in its relation to the FQHE, as well as to other related systems such
as topological insulators. One could almost consider understanding the IQHE an essential step
towards building an understanding of the FQHE, as it enables one to first grasp the Hall conduc-
tance quantization in terms of individual electrons following the spectral flow of the quantum
states, and then to generalize this understanding to emergent fractional quasiparticles of the
FQHE, thus explaining the fractional-value plateaus of the Hall conductance, as well as setting
up the stage for grasping the quasiparticles’ fractional statistics. On the other hand, the IQHE
(despite not being a SPT phase) may also be considered a prototype for topological insulators,
as well as other topological phases characterized by simple numerical topological invariants,
akin to the first Chern number. Similarly, it may motivate the understanding of the relation
between the topology of the bulk and the protected states at the edge. The FQHE is interesting
as the first known realization of topological order (in the sense of supporting anyonic excita-
tions), and it is still among the most promising platforms for topological quantum computation,
notably the non-Abelian Moore-Read and the Z3 parafermion Read-Rezayi state which are can-
didates for the 5/2 and 12/5 FQHE states, respectively [11]. Of course, in working towards
fault tolerant quantum computation with the FQHE or other systems, one has the freedom of
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choosing the most suitable experimental platform, such as solid state materials, ultracold atomic
gases (or trapped ions), and topological photonics. Both the fractional and the integer QHE are
relevant to our proposal for synthetic anyons in weakly-interacting systems. The IQHE is the
foundation on which our model is built, and the Laughlin FQHE states provided the inspiration
for the idea of perturbing the IQHE with the probes carrying a fractional magnetic flux (recall
that the Laughlin quasiparticles can be created by threading an integer flux). Mathematically,
the fractional braiding phases of the Laughlin quasiholes stem from the fact that the factors
containing the differences between two electron coordinates are raised to the m-th power, while
the factors containing the differences between electron and quasihole coordinates are raised to
the first power. As we have seen through plasma analogy, this means that the quasiparticles can
be interpreted as a fraction of an electron. While m = 1 in the wave function of the IQHE, it
turns out that by using fractional instead of integral probes, anyonic probe-braiding phases can
be achieved in this system.

Needless to say, we have only scratched the surface in our presentation of topological phases
of matter. We have largely focused on the IQHE, the Laughlin and the hierarchical FQHE states,
and have briefly discussed some SPT phases, but for example, we have merely mentioned the
non-Abelian FQHE states, and topological order in quantum spin liquids [15]. However, the
full spectrum of possibilities is even broader; for example, topological materials such as Weyl
semimetals [183] can also be gapless.

In section 3.1, we have presented the results of the photonics experiments carried out by
our collaborators, and our theoretical analysis. The idea was to explore the effect of the val-
ley degree of freedom of the honeycomb lattice on the propagation of light through photonic
crystals. The valley degree of freedom may play a role in future photonics, as well as elec-
tronics applications. An obvious potential application of a two-valley system is in quantum
computation, as a two-state system can be a qubit. As we have seen, the propagation in modes
close to one of the valleys of the inversion-symmetry broken HCL has an interesting effect on
an initially Gaussian beam of light that excites both sublattices. Namely, a vortex component
emerges, which interferes with the (initially present) non-vortex component and produces a ro-
tating spiralling pattern, different from the conical diffraction one would see if modes near both
valleys were excited. The reason lies in the winding of the Berry curvature around the K and
K ′ points in opposite directions. Essentially, the two points are topological singularities in the
momentum space that imprint themselves on the real space, thus producing the vortex compo-
nents with opposite vorticity. The conical diffraction results when those vortices cancel out,
but when only a single valley is excited, a vortex survives, and interferes with the non-vortex
component. Plotting the center-of-mass of the spiralling beam against propagation distance (i.e.
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time) reveals the Zitterbewegung oscillations. This allows us to reinterpret the Zitterbewegung
effect, usually interpreted in terms of interference of positive and negative energy states, as a
consequence of the vortex-nonvortex beam interference. This interpretation is equally correct,
but easily visualized in our case, and it makes obvious the connection to topology.

In section 3.2, we have presented the results of a numerical simulation of soliton beams
arranged so that an SSH lattice is formed from two sublattices propagating at small and op-
posite angles. The two different tunnelling coefficients needed for an SSH lattice result from
the nonlinearity-mediated interaction between solitons. Thus, the topological SSH lattice owes
its existence to the nonlinearity. During the propagation, the relative values of the coefficients
change, along with the distance of the neighbouring beams. This causes topological phase
transitions from the initial trivial phase to the topologically nontrivial phase, manifested by
the appearance of the topological edge states. Eventually, as the solitons at the edges separate
enough from their nearest neighbour (≈ the next-nearest-neighbour distance), their coupling
to the lattice becomes negligible, and they are no longer a part of the lattice. The remaining
lattice loses the edge modes, and finds itself in the trivial phase, until the next phase transi-
tion. These cycles repeat, until the last of the beams cross, and the two sublattices are fully
separate. These nonlinearity-induced topological phase transitions are an emergent nonlinear
topological phenomenon. By drawing attention to nonlinearity-induced nontrivial topology, we
hope to contribute to unlocking the possibilities at the intersection of nonlinear and topological
photonics.

In chapter 4, we have proposed to realize synthetic anyons by perturbing a weakly-interacting
(or noninteracting) system with specially tailored localized probes. In the model that we have
studied, thin solenoid probes carrying a fractional magnetic flux are used to raise one of the
single-particle states (per probe) from the lowest Landau level of an IQHE system, and into the
gap. We set the Fermi level below the energy of these localized gap states, so that they are left
empty, and some charge is displaced from each probe (to infinity). We have found the ground
state of this system and shown that it is anyonic in the coordinates of the probes. As we have
stated above, there is an analogy to be drawn between our perturbed system, and the Laughlin
state containing anyonic quasiholes. However, we once again caution against interpreting these
regions of missing charge as emergent quasiparticles. While this is a correct interpretation of
the holes created by threading integer fluxes through the Laughlin state, it is not warranted in
case of the synthetic anyons in our proposal, because the fractional flux carried by the probes is
not pure gauge, and does not merely excite the underlying system. For this reason, the move-
ment of the electrons as the probes are braided cannot be captured in terms of the movement of
the displaced charges. To show this, we have attempted to calculate the missing charge by as-
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suming that the Berry phase accumulated as the probe traverses a path enclosing an area devoid
of other probes corresponds to the Aharonov-Bohm phase (in part) due to the missing charge.
Predictably, this calculation does not yield the correct value for the missing charge, and thus it
shows that it would be wrong to think of our synthetic anyons as emergent quasiparticles, or as
Wilczek’s anyons composed of the missing charge and the flux tube. A further consequence of
this subtlety was seen when fusing the anyons. Simply bringing the solenoids to the same place
does not result in the expected fusion product. However, the expected fusion rule for Abelian
anyons still applies if groups of solenoids are braided with other distant groups by moving them
in unison, but without bringing them close together.

As our system allows for creation and manipulation of synthetic Abelian anyons, it is a
natural step towards topological quantum computation. However, the final product requires a
non-Abelian equivalent, as well as a method for pinning all the fractional fluxes to the same
constant value. Finally, a practicable realization of the model is needed. Ultracold atomic
systems with synthetic magnetic vector potentials hold some promise in this regard.
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Prošireni sažetak

Glavni je cilj ovog rada predstavljanje originalnog istraživanja objavljenog za vrijeme autorovog
doktorskog studija. Prva dva rada koja predstavljamo pripadaju području fotonike koje se bavi
manipulacijom svjetlosti. U jednom istražujemo propagaciju svjetlosti u dolinskim modovima
saćaste fotoničke rešetke s narušenom inverzijskom simetrijom, dok u drugom demonstriramo
topološke fazne prijelaze solitonske rešetke koji su posljedica nelinearnosti medija. U trećem
radu predstavljamo model za sintetičke anyone u neinteragirajućem sustavu. Poveznica svih
triju tema je važnost topologije za fiziku koju proučavamo. Stoga u prvom dijelu dajemo uvod
u neke povezane teme i koncepte iz topološke fizike.

Teorijska pozadina

Geometrijske faze

Geometrijske se faze javljaju kad se hamiltonijan sustava mijenja u vremenu, a ovisne su o
geometriji putanje C u prostoru parametara hamiltonijana.

Berryjeva faza

Neka hamiltonijan ovisi o skupu parametara R = (R1, R2, . . . ). Parametre adijabatski va-
riramo izmed̄u vremena 0 i T uz uvjet cikličnosti R(T ) = R(0). Za svaki R odabiremo
ortonormalnu bazu |m(R)⟩. Pretpostavimo da je sustav pripremljen u nekom od stanja iz baze,
ψn(0) = |n(R0)⟩, te da ni u jednom trenutku evolucije ne prolazi kroz degenerirano stanje.
Adijabatski teorem nam garantira da je |ψn(t)⟩ = eiγn(t) exp

[
− i

ℏ

∫ t
0
dt′En(R(t′))

]
|n(R(t))⟩

rješenje vremenski neovisne Schrödingerove jednadžbe. Drugi faktor je dinamička faza, dok
prvi faktor na kraju evolucije postaje Berryjeva faza [3]

γn ≡ γn(T ) =

∮
C
dR ·An(R),
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gdje smo uveli Berryjevu konekciju An(R) ≡ i ⟨n(R)|∇R n(R)⟩. Berryjeva konekcija se pri
baždarnim transformacijama ponaša kao vektorski potencijal, dok je Berryjeva faza invarijantna
na baždarne transformacije.

Aharonov-Bohmov efekt [2] je fenomen u kojem nabijene čestice osjećaju utjecaj elektro-
magnetskih potencijala čak i u područjima gdje nema magnetskog polja. Efekt se može interpre-
tirati kao specijalni slučaj Berryjeve faze [3]. Pretpostavimo da je čestica naboja q zarobljena u
kutiji bez magnetskog polja, ali osjeća vektorski potencijal beskonačnog solenoida A. Transpo-
rtiramo li kutiju polako oko solenoida duž krivulje C, rezultat je faza γAB = q

ℏ

∮
C A ·dR = qΦB

ℏ ,
gdje je ℏ reducirana Planckova konstanta, a ΦB tok magnetskog polja kroz solenoid. Proma-
tramo li položaj kutije R kao parametar hamiltonijana, dobivamo da je Berryjeva konekcija
An(R) = q

ℏA(R), a faza γn = γAB.

Neabelovske geometrijske faze [7]

Ako je sustav pripremljen u gn-degeneriranom stanju i degeneracija vrijedi za sve R, ciklička
adijabatska evolucija može rotirati početno stanje unutar degeneriranog potprostora: |ψn(T )⟩ =
UdynU

n
C |ψn(0)⟩. Udyn je dinamička faza, a unitarna matrica Un

C = P exp
(∮

C dR ·An(R)
)

je Berryjeva holonomija, gdje je P tzv. „path-ordering” operator. Komponente neabelovske
Berryjeve konekcije su matrice s elementima An

µ(ab)
(R) = i ⟨na(R)|∂Rµnb(R)⟩, gdje a, b =

1, . . . , gn.

Uloga u Blochovim vrpcama

Prostorno-periodički sustavi mogu se opisati periodičkim funkcijama unk(r), gdje je n indeks
vrpce u spektru, a k valni vektor. Funkcije unk(r) su svojstvena stanja Blochovog hamiltonijana
H(k) = e−ik·rHeik·r koji parametarski ovisi o k, pa tako prva Brillouinova zona poprima ulogu
intrinzičnog parametarskog prostora. Berryjeva konekcija An(k) = i ⟨unk|∇kunk⟩ se u 3D
rešeci ponaša kao magnetski vektorski potencijal u k-prostoru [6].

U 1D rešetkama može se javiti konačna geometrijska (topološka) Zakova faza [9] koja na-
staje kad se k varira preko cijele Brillouinove zone γZak =

∫ k+ 2π
a

k
dkAn(k). U rešetkama s

inverzijskom simetrijom moguće su samo dvije vrijednosti, 0 ili π.

Topološka kvantna materija

Prije kraja dvadesetog stoljeća postalo je jasno da klasifikacija faza materije temeljena na sime-
triji nije dovoljna za potpuni opis. Pri apsolutnoj nuli postoje odvojene faze koje karakteriziraju
diskretne topološke invarijante. Obično je riječ o sustavima s procijepom izmed̄u vrpca, gdje
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se fazni prijelazi dogad̄aju pri specijalnim vrijednostima parametara gdje je procijep zatvoren,
a topološke invarijante pojedine vrpce nedefinirane [6].

Topološke faze mogu se podijeliti na dalekodosežno (LRE) i kratkodosežno (SRE) spre-
gnute faze. LRE faze nije moguće adijabatski transformirati u nespregnuta produkt-stanja (ili
jednu u drugu) bez zatvaranja procijepa [13], što ih čini topološki netrivijalnim (posjeduju to-
pološki red). Najvažniji primjer su stanja kvantnog Hallovog efekta. LRE faze obično imaju
egzotična pobud̄enja s frakcijskom statistikom [6]. Za odred̄ena se SRE stanja može smatrati
da pripadaju topološki netrivijalnim fazama ako razmatramo isključivo transformacije koje ne
narušavaju odred̄ene simetrije hamiltonijana. Riječ je o tzv. simetrijom zaštićenim topološkim
(SPT) fazama. Topološki zaštićena granična stanja su prisutna i kod faza s topološkim redom i
kod SPT faza.

Cjelobrojni kvantni Hallov efekt

Cjelobrojni kvantni Hallov efekt (IQHE), otkriven 1980. [16], pojava je kvantizacije Hallove
vodljivosti u 2D sustavima s narušenom simetrijom obrata vremena:

σxy =
q2

2πℏ
ν,

gdje je q naboj čestica nosioca naboja, ν = C =
∑N

n C
n = N , pri čemu je je N broj popunje-

nih vrpci prostorno protežnih stanja, a C je topološka invarijanta sustava zvana Chernov broj
(TKNN invarijanta) [6,20]. Chernov broj n-te vrpce je Cn = − 1

2π

∫
d2θ ê3 · Ωn ∈ Z, gdje je

Ωn = ∇θ×An Berryjeva zakrivljenost, ê3 jedinični vektor u smjeru okomitom na 2D ravninu,
a integracija se vrši po parametarskom prostoru koji mora imati topologiju torusa. Obično je
riječ o Brillouinovoj zoni kod 2D rešetki. Popunjenost lokaliziranih stanja ne utječe na Hallovu
vodljivost, što daje robusnost kvantizaciji (pojava platoa) kod sustava s neredom kod kojih lo-
kalizirana stanja obično zauzimaju širi spektar energija unutar vrpce od protežnih stanja koja se
nalaze po sredini vrpce [17,19].

Simetriju obrata vremena najčešće narušava magnetsko polje. Razmotrimo li neinteragi-
rajući 2D elektronski plin (2DEG) u homogenom magnetskom polju iznosa B, pronaći ćemo
spektar ravnih Landauovih nivoa s energijama En = ℏωB(n + 1/2), gdje je ωB = |q|B/m
ciklotronska frekvencija za čestice naboja q i mase m, a n = 0, 1, . . . . U simetričnom baždare-
nju jednočestična stanja su lokalizirana na radijusu od ishodišta koji odred̄uje kvantni broj m.
Kad sustav ograničimo na prsten izmed̄u dva radijusa te adijabatski povećavamo magnetski tok
kroz šupljinu prstena, uočavamo pojavu spektralnog toka [17,19]. Spektralni tok podrazumi-
jeva postupni radijalni pomak stanja stopom od ∆m = 1 za svaki dodatni kvant magnetskog
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toka Φ0. Ovakvo ponašanje posljedica je baždarne invarijantnosti te specifične topologije sta-
nja protegnutih oko prstena. Ova pojava je usko povezana s kvantizacijom Hallove (radijalne)
vodljivosti jer vremenski promjenjiv magnetski tok inducira azimutnu elektromotornu silu koja
transportira jedan elektron radijalno s vanjskog na unutrašnji rub prstena.

Frakcijski kvantni Hallov efekt

Frakcijski kvantni Hallov efekt (FQHE), otkriven 1982. [26], fenomen je kvantizacije Hallove
vodljivosti sličan IQHE-u, ali s razlikom da se javljaju necjelobrojne vrijednosti ν kvanta vodlji-
vosti (q2/h), koje odgovaraju djelomično popunjenim Landauovim nivoima gdje se popunjenost
ponovo odnosi na protežna stanja. Ključ objašnjenja ove pojave su nezanemarive med̄uelektro-
nske interakcije koje mogu otvoriti procijep unutar Landauovih nivoa [17]. Prva skupina FQHE
stanja koja su objašnjena su Laughlinova stanja koja se javljaju za faktore popunjenosti oblika

1/m, gdje je m neparan u fermionskim sustavima: ψm =
Ne∏
i<j

zi − zj
m exp

(
−∑Ne

i
|zi|2
4l2B

)
[28],

gdje Ne predstavlja broj čestica u sustavu, zi = xi + iyi položaj i-te čestice u kompleksnom
zapisu, zi predstavlja komplesnu konjugaciju, a lB =

√
ℏ/B|q| je magnetska duljina. Ova

stanja nisu egzaktna rješenja za realistične hamiltonijane, no odlikuje ih odgovarajući topološki
red.

Ako kao i ranije adijabatski provučemo kvant magnetskog toka kroz sustav na prstenu, te
pustimo da unutrašnji radijus prstena teži u nulu, baždarna invarijantnost garantira da spektra-
lni tok uzrokuje pobud̄enje jedne kvazičestice u sustavu. Budući da je faktor popunjenosti
1/m, ovaj put se transportira 1/m elektrona [28,17]. Posljedično nastaje lokalizirani manjak
(višak) naboja e/m oko solenoida koji odgovara kvazišupljini (čestici). Osim necjelobrojnog
naboja Laughlinove kvazičestice imaju i (abelovsku) frakcijsku statistiku [32] što smo poka-
zali u sklopu disertacije pomoću Berryjeve faze koja se javlja pri kruženju jedne oko druge
kvazišupljine.

Laughlinova stanja mogu objasniti FQHE i na drugim racionalnim faktorima popunjenosti
s neparnim nazivnikom pomoću hijerarhijske konstrukcije [34,31]. No postoje i stanja koja se
moraju objasniti na druge načine te koja vjerojatno uključuju i sustave s neabelovskim pobud̄e-
njima [11].

Anyoni

Anyoni su čestice koje se pri izmjenama ponašaju u skladu s frakcijskom statistikom [37,38].
Frakcijska statistika se razlikuje of bozonske i fermionske, a moguća je u 2D zahvaljujući topo-
loškim razlikama u odnosu na 3D prostor. Naime, transformacije valne funkcije pri izmjenama
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čestica su zadane unitarnim reprezentacijama fundamentalne grupe odgovarajućeg konfiguraci-
jskog prostora. Za skupN identičnih „hardcore” čestica1 fundamentalna grupa je permutacijska
grupa SN za 3D ili višedimenzionalni prostor, a „braid” grupa BN za 2D [39]. Elementi BN ,
za razliku od SN , nisu isključivo mapiranja izmed̄u različitih indeksiranja čestica, već se mogu
prikazati kao N niti koje povezuju fiksne početne i konačne konfiguracije točaka. Topološki
različite „pletenice” sačinjene od niti predstavljaju različite elemente. Zamjena i-te i (i+1)-te
čestice je operacija σi, a sve takve operacije čine skup generatora grupe.

Anyoni mogu biti abelovski i neabelovski. Abelovski se anyoni javljaju kod skalarnih repre-
zentacija fundamentalne grupe koje opisuje statistički parametar θ ∈ [0, 2⟩: ρθ(σi) = eiθπ [40].
Specijalne vrijednosti θ = 0, 1 odgovaraju bozonskoj i fermionskoj statistici. Višedimenzi-
onalne reprezentacije, koje su relevantne kad čestice opisuju degenerirana stanja, mogu biti ne-
abelovske. Valne funkcije se tada rotiraju unutar degeneriranog potprostora: ψa → [ρ(α)]abψb.

„Fuzija” anyona rezultira novom vrstom anyona. Kod abelovskih anyona postoji samo jedan
ishod, θ× θ = 4θ, dok neabelovski imaju više fuzijskih kanala koji razapinju Hilbertov prostor.
Ako imamo par anyona u odred̄enom fuzijskom kanalu, dvostruka zamjena jednog anyona iz
para s trećim anyonom može promijeniti fuzijski kanal. Budući da kanal fuzije nije osjetljiv na
lokalne interakcije s okolinom, neabelovski se anyoni potencijalno mogu iskoristiti za kvantno
računanje otporno na greške [11].

Simetrijom zaštićena topološka stanja

SPT stanja ne posjeduju intrinzični topološki red pa ne podržavaju anyonska pobud̄enja. No s
druge strane, podržavaju netrivijalna topološka granična stanja [6]. Kod neinteragirajućih faza
ova stanja uvijek premošćuju procijep izmed̄u spektralnih vrpca dok kod višedimenzionalnih
interagirajućih faza mogu i ne moraju biti u procijepu. SPT faze uključuju (neinteragirajuće)
topološke supravodiče i izolatore (npr. kvantni spinski Hallov efekt koji štiti simetrija obrata
vremena), te postoje u prostorima svih dimenzija [6].

Nama je posebno zanimljiv Su-Schrieffer-Heegerov (SSH) model [49], koji je 1D rešetka
sačinjena od dvije podrešetke s tuneliranjem izmed̄u prvih susjeda te može biti u dvije SPT
faze zaštićene kiralnom simetrijom, ovisno o Zakovoj fazi koja ovisi o relativnim vrijednostima
koeficijenta tuneliranja unutar ćelije (t) i med̄u ćelijama (t′). Netrivijalna faza SSH rešetke
posjeduje lokalizirano stanje energije nula na svakom od rubova [21].

1"Hardcore" odbijanje podrazumijeva odbojni potencijal koji divergira u konfiguracijama gdje se dvije ili više
čestica nalazi u istoj točki čime su te konfiguracije isključene iz konfiguracijskog prostora.
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Topološka fotonika

Rad predstavljen u ovom dijelu objavljen je u člancima [52] i [53].

Rotacija valnih paketa i Zitterbewegung u saćastim rešetkama s naruše-
nom simetrijom

Amplituda, faza i polarizacija su veličine koje se obično koriste za kontrolu toka svjetlosti u
fotonici. Napredak u manipulaciji spinskog i dolinskog stupnja slobode otvara nove mogućnosti
za primjene u elektroničkim i poluvodičkim ured̄ajima [54,55] te u fotonici [56–65]. Doline su
lokalni minimumi u vodljivoj ili maksimumi u valentnoj vrpci.

Motivirani potrebom za istraživanjem pojava ovisnih o dolini proučavali smo propagaciju
svjetla u fotoničkim saćastim rešetkama s narušenom inverzijskom simetrijom (IS). Saćaste
rešetke imaju dvije neekvivalentne doline u K i K ′ točkama visoke simetrije u Brillouinovoj
zoni. Selektivnim pobud̄enjem jedne od dolina postižemo da početno gaussijanska zraka bez
kutne količine gibanja tijekom propagacije dobije vrtložnu („vorteks”) komponentu. Interfe-
rencija „vorteks” i „nevorteks” komponenti uzrokuje pojavu rotirajućeg spiralnog uzoraka u
profilu intenziteta zrake, gdje smjer rotacije ovisi o pobud̄enoj dolini. Posljedica ove rotacije je
i Zitterbewegung efekt, koji se očituje u oscilacijama „centra mase” valnog paketa.

Zitterbewegung je naziv za predvid̄ene brze oscilacije masivnih relativističkih čestica u va-
kuumu, opisanih Diracovom jednadžbm, frekvencijom 2mc2/ℏ [80], gdje je m masa čestice,
c brzina svjetlosti u vakuumu, a ℏ reducirana Planckova konstanta. Iako nije opažen u va-
kuumu, očekuje se i u materijalima u kojim se ponašanje elektrona aproksimativno opisuje
istom jednadžbom te u analognim sustavima poput fotoničkih [86], uključujući saćastu re-
šetku čije doline, odnosno niskoenergijsko ponašanje, opisuje 2D Diracova jednadžba H =

κ(σxkx + σyky) + σzm, gdje su σx, σy, σz Paulijeve matrice, ki je i-ta komponenta valnog
vektora mjerenog od točke K, κ je koeficijent ovisan o udaljenosti i koeficijentu tuneliranja
izmed̄u susjednih valovoda, a masa m ovisi o širini procijepa koji je otvoren u slučaju narušene
inverzijske simetrije. Ovu pojavu uzrokuje interferencija stanja pozitivne i negativne energije,
no naš rad upućuje i na interpretaciju iz drugog kuta, preko interferencije „vorteks” i „nevor-
teks” komponente, što ukazuje na vezu s topologijom. Naime, u disertaciji argumentiramo da
„vorteks” komponenta nastaje kao posljedica topološki netrivijalnog namatanja Berryjeve za-
krivljenosti oko točaka K i K ′.

U eksperimentu je korišten fotonički kristal pozadinskog indeksa loma n0 s (2 + 1)D saća-
stom rešetkom valovoda indeksa loma nA i nB. Razlika indeksa loma izmed̄u susjednih valo-
voda narušava IS. Probna zraka je formirana interferencijom triju širokih gaussijanskih zraka u
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blizini triju ekvivalentnih K ili K ′ točaka u k-prostoru, čime se formira trokutasti uzorak koji
je prostorno pozicioniran tako da podjednako pobudi obje podrešetke. Propagaciju svjetla u
paraksijalnoj aproksimaciji opisuje jednadžba Schrödingerovog tipa

i
dΨ

dz
= − 1

2k0
∇2Ψ− k0δn(x, y)

n0

Ψ(x, y, z),

gdje je Ψ kompleksna amplituda električnog polja, k0 valni broj u mediju, ∆n odstupanje inde-
ksa loma od n0, a os z igra ulogu vremena. Rezultati eksperimenta su konzistentni s numeričkim
simulacijama propagacije u skladu sa Schrödingerovom jednadžbom te s analitičkim proraču-
nima u okviru niskoenergijske teorije.

Dinamički emergirajući topološki fazni prijelazi u nelinearnim
interagirajućim solitonskim rešetkama

Većina dosadašnjih studija se fokusirala na linearne topološke fotoničke strukture, no kombina-
cija netrivijalne topologije i nelinearnosti u fotonici otvara vrata brojnim novim fundamentalnim
otkrićima i funkcionalnostima ured̄aja [72]. Nelinearne topološke pojave možemo podijeliti na
naslijed̄ene i emergentne [113]. U osnovi, prva skupina se javlja usprkos nelinearnosti, odnosno
naslijed̄ena je iz odgovarajućeg linearnog sustava, dok se druga skupina javlja zahvaljujući ne-
linearnosti. Primjer emergentnih pojava su nelinearnošću inducirani topološki fazni prijelazi
[106–109].

U ovom dijelu predstavljamo rezultate numeričke studije propagacije linearno polariziranih
optičkih zraka u nelinearnom mediju. Pri specijalnim početnim uvjetima uočavaju se dinamički
topološki fazni prijelazi izmed̄u trivijalne i netrivijalne faze optičke SSH rešetke. Propagaciju
opisuje nelinarna Schrödingerova jednadžba (NLSE)

i
∂ψ

∂z
+

1

2k

∂2ψ

∂x2
+ γ|ψ|2ψ(x, z) = 0,

gdje je ψ amplituda električnog polja, k valni broj u mediju, a γ parametar nelinearnosti koja je
Kerrovog tipa i predstavlja optički inducirani potencijal. Kad je difrakcija u ravnoteži s nelinea-
rnosti, takav medij dozvoljava stacionarno propagirajuća rješenja koja zadržavaju oblik tijekom
propagacije, tzv. solitone. Kao početni uvjet postavljamo dvije (1 + 1)D podrešetke zraka koje
odgovaraju solitonskim rješenjima, a propagiraju se u suprotnom smjeru u „prostornoj” dime-
nziji, odnosno pod kutom u (1+1)D ravnini. Kako svaka solitonska zraka sama „usjeca” vlastiti
valovod u nelinearnom mediju, kad dvije zrake imaju nezanemariv preklop, jedna utječe na
optički inducirani potencijal druge. Ovim mehanizmom nelinearnost posreduje interakciji med̄u
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solitonima. Druge najbliže susjede, odnosno najbliže solitone koji pripadaju istoj podrešeci,
postavljamo na udaljenost na kojoj je interakcija zanemariva.

(1+1)D periodička konfiguracija s dvije podrešetke i nezanemarivom interakcijom izmed̄u
prvih susjeda odgovara SSH modelu. Rešetka je postavljena tako da je sustav nakon početnog
trenutka u topološki trivijalnoj fazi s procijepom izmed̄u vrpca u spektru propagacijske konsta-
nte i bez lokaliziranih (rubnih) stanja u procijepu. Kako se propagiraju pod kutom, podrešetke
se presijecaju te potom dolaze do točke gdje interakcija med̄u ćelijama nadjačava interakciju
unutar ćelije. Procijep se na trenutak zatvara te dolazi do faznog prijelaza iz netrivijalne u
trivijalnu fazu. Fazni prijelaz se odražava pojavom stanja s konstantom propagacije u procijepu.
Profil amplitude tih stanja pokazuje lokalizaciju na rub te čvorne točke na parnim mjestima
u rešeci što odgovara topološkim rubnim stanjima. S vremenom se rubni modovi dovoljno
udalje od ostatka rešetke da više nemaju nezanemarivu interakciju s prvim susjedima. Pritom
se odvajaju od rešetke, što se odražava kroz potpunu lokalizaciju uz rub na profilu amplitude,
te postaju samostalni solitoni s konstantom propagacije u procijepu. Kroz taj proces redukcije,
rešetka postaje topološki trivijalna bez faznog prijelaza. Pri sljedećem faznom prijelazu javlja
se novi par topoloških rubnih modova u procijepu. Fazni prijelazi u netrivijalnu fazu i redukcije
u trivijalnu fazu ponavljaju se periodički dok se rešetke potpuno ne razid̄u.

Zaključno, pronašli smo nelinearnošću inducirane dinamičke fazne prijelaze u solitonskim
SSH rešetkama. Ovaj rezultat služi kao demonstracija koja ukazuje na potrebu za daljnjim
istraživanjem emergentnih nelinearnih topoloških pojava u fotonici.

Prijedlog za realizaciju abelovskih anyona

Rad predstavljen u ovom dijelu objavljen je u referenci [18].

Egzaktna rješenja modela za sintetičke anyone u neinteragirajućem
sustavu

Sustavi koji podržavaju frakcijsku statistiku privlačno su područje zahvaljujući potencijalnoj
primjeni neabelovskih anyona u topološkom kvantnom računanju. Budući da se anyoni obično
javljaju u topološki ured̄enim sustavima s dalekodosežnim korelacijama, jako interagirajući su-
stavi predstavljaju uobičajenu platformu za anyonske sustave. Paradigmatski primjer takvog
sustava je FQHE. Anyonski sustavi predmet su brojnih objavljenih eksperimentalnih radova na
različitim eksperimentalnim platformama kao što su kondenzirana tvar [146,152,150], ultra-
hladni plinovi [149] i zarobljeni ioni [156], fotonički [157,158] te drugi [159,160] kvantni si-
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mulatori. Usto, literatura sadrži i brojne teoretske prijedloge (vidi npr. rev. članke [11,151] te
reference [161–167,33]).

Topološko kvantno računanje zahtijeva efikasne metode za kreaciju, detekciju i manipu-
laciju neabelovskih anyona. Usprkos svim istraživanjima, eksperimentalno izvediva metoda
još nije nadohvat ruke [11,151] što daje motivaciju da se pokušaju neki manje konvencionalni
pristupi realizaciji anyona. Primjerice, frakcijska statistika je moguća u slabo interagirajućim
sustavima s topološki netrivijalnom pozadinom ili smetnjama [168–170]. U ref. [168,169]
predložen je kompozitni sustav od 2DEG položenog uz supravodljivi (tip-II) film s periodičkom
rešetkom vrtloga koji daju pozadinsko magnetsko polje. Šupljine i med̄upoložajne primjese u
rešeci tada nose frakcijsku statistiku.

Ovdje proučavamo model za sintetičke anyone čiji specijalni slučaj opisuje sustav iz ref.
[168,169]. Model opisuje hamiltonijan za neinteragirajući 2DEG u homogenom magnetskom
polju s N tankih vanjskih solenoida koji nose necjelobrojni magnetski tok Φ = αΦ0, gdje
je α ∈ ⟨0, 1⟩. Daleko od solenoida sustav zadržava spektralnu strukturu IQHE-a, te efekt
solenoida možemo objasniti spektralnim tokom. Jednočestična stanja u najnižem Landauovom
nivou (LLL) energije E0 = ℏωB/2 su oblika

ψm = |z − η|−αz − η z m exp

(
−|z|2
4l2B

)
, m = 0, 1, 2, . . . ,

za N = 1 solenoid na položaju η, gdje su η i z koordinate u kompleksnom zapisu, a lB magne-
tska duljina. Stanja za više solenoida lako se konstruiraju dodavanjem faktora |z−ηi|−αz − ηi .
Osim stanja u Landauovim nivoima blizu svakog solenoida javlja se jedno lokalizirano stanje
po nivou s energijom u procijepu (ℏωB(1 + 2α)/2 za LLL). Za potrebe konstrukcije anyo-
nskog sustava biramo α ∈ ⟨0, 1⟩ te Fermijevu energiju postavljamo poviše energije LLL-a, no
ispod energije lokaliziranih stanja. Osnovno stanje Ψ konstruiramo kao Slaterovu determinantu
popunjenih jednočestičnih stanja.

Slično kao za Laughlinove kvazičestice, statistiku izmjene solenoida pokazujemo pomoću
Berryjeve faze nakupljene tijekom kruženja jednog solenoida oko drugog [32]. Ova faza sadrži
doprinos od Aharonov-Bohmove faze koji treba oduzeti da bi se pronašla statistička faza. Za
udaljene solenoide statistička faza je necjelobrojna te iznosi

γS = 2π(α− 1),

što implicira statistički parametar θ = α−1. Ovaj smo analitički rezultat potvrdili i numerički za
više vrijednosti α te za različite radijuse kružne putanje. Provjerili smo i da numerički rezultat
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nije osjetljiv na deformacije putanje, te da jednostruka izmjena daje fazu πθ.
Iako svaki solenoid istiskuje dio naboja iz svoje okoline, kao i kod Laughlinovih kvazi-

čestica, sintetičke anyone u ovom sustavu ne možemo poistovjetiti s istisnutim nabojem jer sta-
nje perturbiranog sustava ne odgovara emergentnoj kvazičestici, kao ni s Wilczekovim kompo-
zitnim česticama od istisnutog naboja te toka u solenoidu. Posljedica ovoga je da Aharonov-
Bohmova faza koja potječe od kruženja istisnutog naboja i solenoida ne odgovara dobivenoj
Berryjevoj fazi, odnosno učinak pomicanja solenoida na valnu funkciju nije u potpunosti opisan
gibanjem ististnutog naboja. Osim toga, spajanje dvaju solenoida ne stvara anyon očekivane 4θ
statistike. Ipak, očekivani rezultat fuzije dobije se u procesu gdje par udaljenih solenoida obilazi
identičan par bez promjene relativih pozicija solenoida unutar parova.

Zaključak

U ovoj disertaciji proučavali smo više tema koje objedinjuje utjecaj topologije na fiziku sustava.
Glavni cilj bio je prezentacija originalnih članaka [52,53,18], no pritom smo predstavili i neke
bitnije teme vezane za topološku kvantnu materiju uključujući IQHE, FQHE, anyone i SPT faze.
IQHE i FQHE, iako različiti, su povezani, a obje pojave su bitna pozadina za naše sintetičke
anyone. Dok IQHE služi kao temelj za naš model, Laughlinove kvazičestice u FQHE-u daju
inspiraciju za ideju perturbacije sustava lokaliziranim frakcijskim solenoidnim probama.

U sklopu prezentacije prvog članka prikazali smo utjecaj netrivijalne topologije dolinskog
stupnja slobode saćaste rešetke na propagaciju svjetla kroz fotonički kristal. Ovaj utjecaj se ma-
nifestira kroz pojavu „vorteks” komponente koja u interferenciji s "nevorteks" komponentom
uzrokuje rotirajući spiralni uzorak u profilu intenziteta te s njim povezanu pojavu Zitterbewe-
gunga. Ove pojave smo vidjeli u rezultatima eksperimenta i u teorijskim proračunima.

U sljedećem dijelu predstavili smo rezultate numeričke studije evoluirajuće solitonske SSH
rešetke koja je moguća zahvaljujući nelinearnosti fotoničkog medija. Uočili smo periodičku
pojavu rubnih stanja u spektralnom procijepu s faznim profilom topoloških rubnih stanja koja
signalizira topološke fazne prijelaze. Ovakvi topološki fazni prijelazi primjer su emergentne
nelinearne topološke pojave.

U posljednjem dijelu predlažemo realizaciju sintetičkih anyona perturbacijom neinteragira-
jućeg sustava posebnim lokaliziranim probama. Naši sintetički anyoni se razlikuju od emergent-
nih frakcijskih kvazičestica kakve se javljaju u sustavima poput FQHE-a, no realizacija ovog
modela je poželjna jer bi njegov neabelovski pandan mogao biti podloga za topološka kvantna
računala. Sustavi ultrahladnih atoma sa sintetičkim vektorskim potencijalima su obećavajuća
platforma za ovu namjenu.
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terija, fotonika, Zitterbewegung, saćasta rešetka s narušenom simetrijom, dolinski stupanj slo-
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