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SUMMARY

This thesis consists of two parts. In the first part of the thesis, we analyse the behaviour
of thin composite plates whose material properties vary periodically in-plane and possess
a high degree of contrast between the individual components. Starting from the resolvent
equations of three-dimensional linear elasticity that describe soft inclusions embedded
in a relatively stiff thin-plate matrix, we derive the corresponding asymptotically equiva-
lent two-dimensional plate equations. Our approach is based on recent results concerning
decomposition of deformations with bounded scaled symmetrised gradients. Using an
operator-theoretic approach, first we calculate the limit resolvent and analyse the associ-
ated limit spectrum and effective evolution equations. We obtain our results under various
asymptotic relations between the size of the soft inclusions (equivalently, the period) and
the plate thickness as well as under various scaling combinations between the contrast,
spectrum, and time. In particular, we demonstrate significant qualitative differences be-
tween the asymptotic models obtained in different regimes.

In the second part of the thesis, we provide resolvent asymptotics as well as various
operator-norm estimates for the system of linear partial differential equations describing
the thin infinite elastic rod with material coefficients which periodically highly oscillate
along the rod. The resolvent asymptotics is derived simultaneously with respect to the
thickness of the rod and the period of material oscillations. These two parameters are
taken to be of the same order. The analysis is carried out separately on two invariant
subspaces pertaining to the out-of-line and in-line displacements, under some additional
assumptions, as well as in the general case where these two sorts of displacements inter-
twine inseparably.

Keywords Homogenisation - Dimension reduction - Two-scale convergence - High-

contrast - Resolvent asymptotics - Elastic heterogeneous rods and plates
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SAZETAK

Ovaj rad sastoji se od dva dijela. U prvom dijelu rada analiziramo ponaSanje tankih
kompozitnih ploc¢a ¢ija svojstva materijala periodi¢no variraju u ravnini i posjeduju vi-
sok stupanj kontrasta izmedu pojedinih komponenti. Polazeci od rezolventnih jednadzbi
trodimenzionalne linearne elasti¢nosti koje opisuju meke inkluzije ugradene u relativno
krutu matricu tanke ploce, izvodimo odgovarajuce asimptotski ekvivalentne jednadzbe
dvodimenzionalne ploce. Na$ pristup temelji se na nedavnim rezultatima o dekompozi-
ciji deformacija s ograniCenim simetriziranim gradijentima. Koristeci pristup teorije op-
eratora, najprije izraCunavamo limes rezolventu te analiziramo pridruZeni limes spektar i
efektivne evolucijske jednadZzbe. NaSe rezultate dobivamo pod razli¢itim asimptoti¢kim
odnosima izmedu veli¢ine mekih inkluzija (perioda oscilacija) i debljine ploce, kao i
pod razli¢itim kombinacijama skaliranja izmedu kontrasta, spektra i vremena. Takoder
pokazujemo znacajne kvalitativne razlike izmedu asimptotskih modela dobivenih u ra-
zli¢itim reZimima.

U drugom dijelu rada izvodimo asimptotiku rezolventi kao i razne ocjene u opera-
torskim normama za sustav linearnih parcijalnih diferencijalnih jednadzbi koje opisuju
tanki beskonacni elasti¢ni Stap s materijalnim koeficijentima koji periodi¢no jako oscili-
raju duz Stapa. Rezolventnu asimptotiku izvodimo simultano s obzirom na debljinu Stapa
1 period oscilacija materijala. Uzimamo da su ova dva parametra istog reda. Analizu
provodimo zasebno na dva invarijantna podprostora koji se odnose na pomake duz prosti-
ranja Stapa i pomake okomite na prostiranje Stapa, pri Cemu pretpostavljamo neke dodatne
pretpostavke. Takoder provodimo analizu i u opéem slucaju kada se ove dvije vrste po-
maka neraskidivo ispreplicu.

Kljucéne rije¢i Homogenizacija - Redukcija dimenzije - Dvoskalna konvergencija -

Visoki kontrast - Rezolventna asimptotika - Elasti¢ni heterogeni Stapovi i ploCe
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1. INTRODUCTION

1.1. MOTIVATION

The main objective of this thesis is to provide rigorous derivation of the lower dimensional
homogeneous models for thin elastic structures and establish the approximation properties
of various interesting objects such as the spectra of underlying operators, their resolvents
and associated semigroups. We employ the methods of simultaneous homogenization and
dimension reduction in order to answer some of the pending questions regarding the be-
havior of the spectrum of composite thin elastic structures, when the physical parameters
related to the thickness of the material and the period of material oscillations are fairly
small.

The models for thin heterogeneous structures, where the heterogeneity is of periodic
nature, are accompanied by the two parameters £ > 0, & > 0, where the former represents
the period of material oscillations, while the latter plays the role of the thickness of the
material in one or several directions. Depending on the mutual relation between the orders

of magnitude of these parameters, namely:
h<eg h~e h>eg,

one obtains quite different effective models for these structures. The effective models,
which we are interested in, are the models of lower dimensional homogeneous structures,
which in a certain way, to a certain degree approximate the behaviour of the starting
structure. Homogenization and dimension reduction is performed simultaneously in order
to derive physically relevant models.

In material sciences, it is of great importance to understand the behavior of thin elas-

tic structures. When developing lower dimensional models, one has to recognize the



appropriate scaling of variables in the corresponding system of partial differential equa-
tions, which also leads to the scaling of spectrum of the underlying operator and external
forces. This theory is well understood, with many developed techniques for its analysis.
Composite elastic structures are often modeled with partial differential equations with
rapidly oscillating coefficients. It is known that composite materials often exhibit prop-
erties which are very different from their constitutive parts. Homogenization theory has
extensively been used in order to derive effective models which approximate the original
oscillating models in some sense. Various methods have been developed for this cause
including the method of two-scale convergence introduced by Nguetseng [50], Allaire [1]
as well as the theory of Gamma convergence introduced by De-Giorgi.

The analysis and characterization of spectrum of the underlying differential operators
is of much importance for engineering and material sciences. Therefore, it is important
to answer a question in which sense the spectrum of the effective operators approximates
the spectrum of operators which model oscillating composite structures. The question of
spectral convergence and the approximation of evolution equations can be answered by
observing the convergence of the corresponding resolvents. In some cases, these results
can be quantified by providing the exact estimates on the distance of the associated re-
solvens to their effective counterparts in various operator norms. Such results yield even
greater benefits for understanding the matter, such as the bounds on the spectral gaps and
the estimates on the associated semigroups.

Dimension reduction in elasticity always requires a special treatment, due to the de-
generacy of the problem as a consequence of the fact that the constant in the Korn’s
inequality blows up as the domain thickness goes to zero. From the point of view of
spectral analysis, the operator of the associated problem on a rescaled domain of finite
thickness has spectrum of order h?, with the associated eigenfunctions which describe
the so-called bending deformations. A standard physical interpretation is that bending
deformations carry very small energy in comparison with their magnitude, while on the
other hand, the magnitude of the so-called stretching deformations is comparable to their
energy. Thus for bounded thin elastic structures there are two distinct orders of eigenval-
ues/characteristic frequencies: ones of order h? and the rest of order one. (On the infinite

plates or rods there is no natural way to scale the spectrum, see [20].) As a result, in the



evolution analysis, one would scale time (or mass density) accordingly, in order to capture
the motion occurring on different time-scales.

Particularly interesting phenomena occur when the coeflicients of materials which
constitute the heterogeneous material are in high contrast. This means that their mate-
rial coefficients have values on entirely different scales from one another. Since these
materials exhibit peculiar, somewhat nonphysical properties, they are widely called meta-
materials. Such composites possess macroscopic, or “effective”, material properties not
commonly found in nature, such as time the non-locality (leading to "memory” effects) or
negative refraction, which motivates their use in the context of electromagnetic or acous-
tic wave propagation for the development of novel devices with cloaking and superlensing

properties.



1.2. LLITERATURE OVERVIEW

Derivation of limit models for thin structures in linear and non-linear elasticity is a well-
established topic (for example, for the approach via formal asymptotics, see [23,24] and
references therein). As part of recent related activity, there appeared a number of works
that derive models of (highly) heterogeneous thin structures by simultaneous homogeni-
sation and dimension reduction, see [10, 33,48,49, 69]; for the older work see also [11].
In this thesis, we continue in this direction with the derivation of effective models for
thin plates with high-contrast inclusions in the context of spectral and evolution analy-
sis. Simultaneously with the above activity in relation to the analysis of thin structures,
the past two decades have seen a growing interest to the analysis of materials with high-
contrast inclusions (for early papers on this subject, see [9,70,71]) that exhibit frequency-
dependent material properties (equivalently, time-nonlocal evolution), which is represen-
tative of what one may refer to as “metamaterial” behaviour [12]. Furthermore, as was
recently discussed in [18], high contrast in material parameters corresponds to regimes
of length-scale interactions, when parts of the medium exhibit resonant response to an
external field. Due to the dependence of the effective parameters on frequency, the wave
propagation spectrum of these materials has a characteristic band-gap structure (i.e.waves
of some frequencies do not propagate through the material, see also [3,61]).

There have been several works dealing with high-contrast inclusions in the context
of elasticity: spectral analysis on bounded domains is given in [3], in the whole space
in [73], see also [61] for treating partial degeneracy (when “directional localisation” takes
place), for different models of high-contrast plates (where the starting equations are two-
dimensional equations for an “infinitely thin” elastic plate), see [56,57]. In subsequent
developments, [25] deals with high-contrast inclusions with partial degeneracy, when only
one of several material constants (namely, the shear modulus) is relatively small, [22] dis-
cusses the limit spectrum of planar elastic frameworks made of rods and filled with a soft
material, and [15] derives an effective model for the case of of high-contrast inclusions in
the stiff matrix in the context of non-linear elasticity, under an assumption of small loads.
In the more recent push towards a quantitative description of metamaterials, elliptic dif-

ferential equations with high contrast have been analysed in the sense of approximating



the associated resolvent with respect to the operator norm (see [18], [21]). In the related
papers, using the Gelfand transform as a starting point, a new operator family was con-
structed that approximates the resolvent of the original one and that cannot be obtained
directly from the standard limit operator inferred from the earlier qualitative analysis.
However, these results are by now obtained only for the whole-space setting and for the
particular case of the diffusion operator. In relation to quantifying the resolvent behaviour
with respect to the operator norm, we should also mention [40], where the dimension re-
duction for a class of differential operators is carried out in the abstract setting (on a finite
domain) and [20], where thin infinite elastic plates in moderate contrast are analysed.

In terms of understanding the structure of two-scale limits of partial differential oper-
ators with high contrast, we refer to [38], where an approach to spectral analysis and its
consequences for materials with high-contrast inclusions (including partial degeneracies)
on bounded domains is presented, via two-scale convergence. While addressing the de-
scription of the limit spectrum only partially, [38] provided a general framework for the
analysis of the limit resolvent, on which new results concerning elasticity and other phys-
ically relevant setups could subsequently build. Finally, the subject of homogenisation of
stochastic high-contrast media, which naturally follows the analysis of periodic setups,
was recently initiated in [16] and further developed in [17].

In this thesis, namely in Chapter 2, we assume that all elastic moduli of the soft com-
ponent are of the same order (unlike in [25,61]). While we do not apply any additional
scaling to either elastic moduli or the mass densities, we do discuss models obtained on
different time scales. Note that this kind of time scaling is sometimes interpreted as a
scaling of the mass density (see [24, 54]).

The theory of operator type estimates in homogenisation is studied in the series of
papers [5], [6], [7] in which the authors use the spectral approach to the derivation of the
estimates. Firstly it is done in whole space setting and later these estimates were used
to obtain the estimates on the finite domain in the works [65] and [67]. The approach
initiated by Birman and Suslina has proven to be fruitful in obtaining operator-norm and
energy estimates for a number of related problems: boundary-value operators [65], [67],
parabolic semigroups [64], [62], [43], hyperbolic groups [6], [45], [44], perforated do-

mains [66]. The key technical milestones for this progress are boundary-layer analysis



for bounded domains (as in [65], [67]) and two-parametric operator-norm estimates [63].
It seems natural to conjecture that similar developments could be pursued in the con-
text of thin plates and rods, both infinite and bounded, by taking either the spectral germ
approach or the one which was used in [20] and in this thesis, namely Chapter 3 (see,
however, Section 3.1.6 for comparison).

An overview of the existing approaches to obtaining operator-norm estimates would
not be complete without mentioning also the works [32], [72], [39], whose methods could
also be considered in the context of thin structures.

The rigorous study of thin elastic rod is quite an old topic, see [24] and references
therein for the linear theory. An overview of the derivation of various rod models in the
static and evolution case can be found in the works [37], [35], [36] and [68]. Spectral
analysis for the case of finite plates, together with estimates on eigenvalues, is done in
[27], where the considered material is homogeneous and isotropic. The derivation of
different models of rods, starting from 3D non-linear elasticity is done in [47], [46], [58]
and [59] by means of I'-convergence.

In this thesis, in Chapter 3, we assume that the elastic material is heterogeneous with
the coefficients being in moderate contrast, while the oscillations of the material are of the
same order as the thickness, and for this setup we carry out simultaneous homogenisation
and dimension reduction. In [11] the author derives limit plate model by doing simulta-
neous homogenisation and dimension reduction, only for the case of isotropic material.
In [26], the authors also perform the simultaneous homogenisation and dimension reduc-
tion in the case of plates without the assumption on periodicity and using material (planar)
symmetries of the elasticity tensor, by introducing the notion of H-convergence adapted
to dimension reduction. Derivation of the non-linear plate model in von Karmén regime
by simultaneous homogenisation and dimension reduction is obtained in [49]. In [10] the
authors derive the limit plate models by doing simultaneous homogenisation and dimen-
sion reduction in the general case by means of ['-convergence (the analysis presented there
also covers some non-linear models). The derivation of the model of the non-linear rod in
the bending regime by doing simultaneous homogenisation and dimension reduction and
without the assumption on periodicity is given in [42].

For an extensive overview of models of composite structures, one can consider the



book by Panasenko [52] in which one can find thorough exposure of asymptotic expan-
sions for the models of thin heterogeneous elastic structures, where the full asymptotics
with error estimates and boundary layer analysis is given. However, the constants in the
error estimates obtained there in the case of heterogeneous plates and rods with oscillating
material depend non-linearly on the loads, which makes these estimates not useful for the

spectral analysis.



1.3. THESIS OVERVIEW

The thesis consists of two parts. The first part is related to establishing rigorous qualitative
approximation properties for the models of thin heterogeneous plates in various regimes
by means of two-scale resolvent convergence. The heterogeneity of the analysed material
is of high contrast and therefore “metamaterial” effects are present in the limit model.
This part is covered in the Chapter 2.

Adopting the operator-theoretic perspective, we start by deriving the limit resolvent in
different scaling regimes. To that end, we combine suitable decompositions of deforma-
tions that have bounded symmetrised gradients with some special properties of two-scale
convergence (see Appendix and the references therein). Here we obtain different mod-
els depending on the effective parameter ¢ € [0, o], which is the limit ratio between the
thickness of the domain /4 and the period €, where € tends to zero simultaneously with A.
In order to obtain high-contrast effects for “small” spectrum, we also treat a non-standard
scaling of the coefficients of high-contrast inclusions ("higher” contrast).

In order to derive the limit spectrum, we employ elements of the approach of [70,
71]. Surprisingly, in the regime ¢ = oo, the limit spectrum does not coincide with the
spectrum of the limit operator, which necessitates additional analysis (see Section 2.2.3.5
and Remark 2.3.3). This, however, is not specific for elasticity and would also happen if
one carried out simultaneous high-contrast homogenisation and dimension reduction for
the diffusion equation.

Suitably adapting the approach of [53] to dimension reduction in linear elasticity (see
Appendix for details), we use our results on resolvent convergence to derive appropriate
limit evolution equations. To infer weak convergence of solutions from the weak con-
vergence of initial conditions and loads, we use the fact that the resolvent is the Laplace
transform of the evolution operator, while for deriving strong convergence of solutions for
all times ¢ (from the strong convergence of initial conditions and loads), one needs to show
the strong convergence of exponential functions on the basis of the strong convergence of
resolvents. Both these implications are analysed in [53] in an abstract form, which guides
our study in the specific context of dimension reduction.

In Chapter 2, we first present the results (effective tensors, limit resolvent, limit spec-



trum, limit evolution equations in different regimes), see Sections 2.2, and then, in Section
2.3, we provide the proofs of all statements.

The second part of the thesis is centered around deriving the precise sharp estimates on
the distance between the resolvents of & problems and homogenised resolvents in operator
norms. Here, we analyse infinite heterogeneous elastic rods, where the heterogeneity is of
moderate contrast, namely, the tensor of material coefficients is uniformly positive defi-
nite. We use the approach started in [20] and adapt it to the case of rods. A fairly large part
of the analysis is the development of the asymptotic procedure for calculating the correc-
tor operators which contribute to the approximation of the resolvent operator in stronger
operator norms. This part of the thesis is covered in Chapter 3. We assume that the het-
erogeneity of the rod appears in a periodic manner along the rod. The norm-resolvent
asymptotics is performed with respect to a small parameter that simultaneously plays the
role of the rod thickness as well as the period of material oscillations. We first focus on
the case when material symmetries are assumed. This yields a separation of the problem
into the two mutually orthogonal problems, from which we draw the motivation for tack-
ling the general case. These two orthogonal problems pertain to describing the in-line
and out-of-line displacements, which in the general case intertwine. The norm-resolvent
estimates are obtained in various operator norms, from where one can see interesting new
nonstandard corrector terms appearing in the approximation.

In Section 3.1 we introduce the problem and the methods and state the main results. In
Section 3.2 we provide apriori estimates necessary for the asymptotic expansions of the
resolvents, as well as spectral estimates which serve as the motivation for different prob-
lem scalings. In Section 3.3 we establish the resolvent asymptotics with respect to the
parameter of quasimomentum in the case of additional assumptions on the material sym-
metries. In Section 3.4 we combine the obtained results into the norm-resolvent estimates
in the real domain, but only in the case of additional material symmetries. In Section 3.5
we finally are able to repeat the procedure and derive the norm-resolvent estimates for the
case of general tensor.

The third part of the thesis, namely Chapter 4, is the Appendix in which we collected
auxiliary results which we use in the proofs throughout the thesis. These results consist

of useful claims about decomposition of displacements with bounded scaled symmetric



gradients, two-scale convergence, extension operators and operator theoretical approach

to high-contrast.
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2. SPECTRAL AND EVOLUTION ANALYSIS OF
ELASTIC PLATES IN THE HIGH-CONTRAST

REGIME

2.1. NOTATION AND SETUP

In this section we introduce the notaion which we will use throughout Chapter 2. Let
w C R? be a bounded Lipschitz domain and consider the open interval I = (=1/2,1/2) cR.

Given a small positive number & > 0, we define a three-dimensional plate
Q" := wx (h),

whose boundary consists of the lateral surface I'* := dw x (hI) and the transverse boundary
w x O(hI). We assume that the part of the boundary of Q" on which the Dirichlet (zero-
displacement) boundary condition is set has the form F}]l) :=vypX(hl) C I, where YD Cw
has positive (one-dimensional) measure.

For a vector a € R¥, we denote by aj, j=1,...,k, its components, s0 a = (ay,...,a).

Similarly, the entries of a matrix A € R

, are referred to as A;;, i,j = 1,...,k. We de-
note by x = (x1, x2,x3) =: (X, x3) the standard Euclidean coordinates in R3. (Note that we
reserve the boldface for vectors and matrices representing elastic displacements and their
gradients and regular type for coordinate vectors in the corresponding reference domains.)

The unit basis vectors in R¥ are denoted by e;, i =1,...,k. Furthermore, for a,b € R¥ we

denote by a® b € R the matrix whose i j-entry is a;b j

k

a®b = {aibj}ijzl'

11



For A e R®™! by AT we denote its transpose and for the case k = [ we denote by sym A =
(A+AT)/2 the “symmetrisation” of A.

For an operator (A (or a bilinear form a) the domain of A (respectively a) is denoted
by D(A) (respectively D(a)).

Throughout the chapter, we use the notation g, interchangeably with &, to emphasize
the fact that £ goes to zero simultaneously with /.

Furthermore, when indicating a function space X in the notation for a norm || - ||x, we
omit the physical domain on which functions in X are defined whenever it is clear from
the context. For example, we often write || -[|12, || ||z instead of |- [|;2q.rkys |- |51 (urbys
k=2,3.

Finally, we use the label C for all constants present in estimates for functions in various
sets. In such cases C can be shown to admit some positive value independent of the

function being estimated.

2.1.1. Differential operators of linear elasticity

Consider the reference cell Y := [0, 1)2. Let Yy C Y be an open set with Lipschitz boundary
(unless otherwise stated) such that its closure is a subset of the interior of Y, and set
Y1 =Y\ Y. We denote by xy, the characteristic function of Y and by yy, the characteristic
function of Y;. For any subset of A C R*, we denote by xa the characteristic function of

the set A. The domain Q" is then divided into two subdomains Qg”s” and Q}l”‘gh:
o= ) {ao+axnatl, Qb= MO
72€7%:ep(Y+z)Cw
Furthermore, we denote
Qo = QLo Q% = Qlon,

0 0 1 1

By p/-¢» we denote function representing the mass density of the medium. We then define

") = po (Rfen) X ey +01 RlEWX s x €D,
0 1

where pg,p1 are periodic positive bounded functions, defined on Yy and Y] respectively

and extended via periodicity. Namely, there exist c1,c2 > 0 such that

c1 <po(y)<ca VyeVy, c1<p1(y)<cy Vyel.



We also denote p := poxy, +p1xy,, P~ = pl#" . We make use of the variational space with

zero Dirichlet boundary conditions, defined as:
Hyy (@R = {ve H'(@" R v =00n T}

The elastic properties of periodically heterogeneous material are stored in the elasticity

tensor CH*, which is assumed to be of the form:

Ci(y), yel,
C(y) =
,u%l Co(y), yeYp.
where pj, is a parameter that goes to zero simultaneously with A4, g;,. The tensor CH# is then

extended to R? via Y-periodicity. The tensors Co and C; are assumed to be uniformly

positive definite on symmetric matrices, namely there exists v > 0 such that

VIEF < Co € E<v e VEERS, &7 = ¢ 2.1)

It is well known that for a hyperelastic material the following symmetries hold, which we

assume henceforth:
Coijki = Cojiti = Caaijs 1, Jok, 1€ {1,2,3}, a€{0,1}.

The focus of our analysis is the differential operator of linear elasticity ﬂﬁh corre-

sponding to the differential expression
— (o)™ div (CH(&/ep)sym V) ,

It is defined as an unbounded operator in L*(Q",R3) (where the inner product is weighted1

by the mass density function p/>¢*) with domain
h 1 h.p3
D(ﬂgh) - HF/]S(Q aR )’

via the bilinear form

by
ak (U, V) := / Ceh <8—h> sym VU(x) : sym VV(x)dx,
Qh

U,VeD)= H;g(gh;R% = D((AL)?),

Yw,)e, := [ " uy.
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with zero Dirichlet boundary condition on the part Fg of the boundary, which corresponds
to the partially clamped case. For a given pair (h,&;) we denote by U®" any “deformation

field” on Q" i.e. the solution to the integral identity
ar (U, V) = / F(x)-V(x)dx  VVeH., Q"R
Qh D

for some F € L2(Q";RY).
We assume that the following limits for the ratio of the period ¢, and the thickness A
exist:

h h
lim — =: 6§ € [0, 0], 1im—2=2K€[O,OO]
h—0 gy, h=0 g,

and will discuss different asymptotic regimes in terms of the values of 6, «.

The asymptotic regime uj = O(1) corresponds to the standard case of moderate-contrast
(i.e. uniformly elliptic) homogenisation. However, in the present chapter we are interested
in the “critical” case uj;, = &, which corresponds to high contrast in material coefficients.
In addition to this, due to the the dimension reduction in elasticity, higher orders of con-
trast will also be of interest, namely uj, = gh for 6 > 0 and puy = si for 6 = 0, see the table
in Section 2.1.3.

Parts of the following assumption will be used occasionally to showcase special situ-

ations.
Assumption 2.1.1. (1) The elasticity tensor is planar symmetric:

Ca,ijk3:O’Ca,i333:O, i9j’k€{1’2}’ ae{o’l}

(2) The inclusion set Yy has a “centre point” y* = (y(l),yg) € Yy, such that Y is symmetric
with respect to the lines y; = y(l), Y2 = y(z). We also assume that the elasticity tensor
y = Cp(y) and density y — po(y) are invariant under the corresponding symmetry

transformations.

(3) The inclusion set Y is invariant under the rotations with respect to the angle /2

0

around the point (y;

, yg). Additionally, assume that the following material symme-
tries hold:
Co,11ij = Co22ij»  Cojpouk =0, i, j,ke{l,2,3},

and that the function y — po(y) is symmetric with respect to the rotation through

0

nt/2 around the point (yl,yg).
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We define the following subspaces of L*(Q";R?):
L2bend( o R3y .= {V = (V1, V2, V3) € LH( Q" R?); Vi, V5 are odd w.r.t. x3, V3 is even w.rt. X3} ,
L>membf R3Y .= {V = (V1,Va,V3) € L2 Q" R3); V},V, are even w.r.t. x3, V3 is odd w.r.t. x3} .

Similarly, we define L>*"(Q x Y;R3), L>™emb(Q x Y; R3), L2Pend([ x Y; RY),
L2memb( 3 Yo; RY).

Remark 2.1.1. Part (1) of Assumption 2.1.1 is needed to infer that the spaces L>P"(Q"; R3),
L>™memb (OF-R3) are invariant for the operator ﬂﬁh. Part (2) of the same assumption will
additionally be used when we want to infer that the values of the Zhikov function S, see
(2.17), are diagonal matrices, and part (3) will be used in combination with parts (1) and
(2) when we want to infer that the (1, 1) and (2,2) entries of the Zhikov function are equal.
Although we do not assume the dependence on the x3 variable, our analysis can be easily
extended to this case (at the expense of obtaining more complex limit equations in some
cases). In the case of planar symmetries, a natural assumption would be that the elasticity

tensor is even in the x3 variable.

In order to work in a fixed domain Q := Q!, I':=T!, I'p := F]ID, we apply the change
of variables

o h h -1 h h h
(x1,%2,x3) 1= (X, o, (L e Qb

and define u® (x) := U?(x"). In the new variables, we will be dealing with a scaled

symmetrized gradient and scaled divergence, given by
sym VU (x") = symVyu® (x),  divU(x") = tr Viu® (x) =: div, u® (x),

where for a given function # we use the notation V,u := (V ;Culh_lé))gu) for the gradient
scaled “transversally”, and tr denotes the trace of a matrix. Thus, we are dealing with an
operator Ag, in L*(Q;R3) (where the inner product is defined with the weight function

p®) whose differential expression and domain are given by
—(p™) " divy (Co(R/en)symVi),  D(Ag,) C HE (GR?),

respectively. The operator A, is defined by the form

ag, (U, v) := / Ce (g) symVyu(x): symVypp(x)dx, u,v€Day,)=Hf, (R =D(A").
h

Q
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AsinRemark 2.1.1, under Assumption 2.1.1 (1) the spaces L>Pd(Q; R?), L>™memb(Q); R3)

are invariant for the operator A;,. We will also say that the operator A, represents the
bilinear form ag, (a symmetric bilinear form defines a self-adjoint densely defined un-
bounded operator, see e.g. [60]). In connection with A, we define the operator ﬁgh
as the restriction of \A,, onto the space L>™memb(Q): R3). Additionally, we define the self-
adjoint operators ﬁsh in L*(I x Yo; R*) whose differential expression and domain are given
by

—pal diV% (Co(y) symV%> , D(ﬁgh) C Héo(lx YO;R3),

as the operators represented by the respective bilinear forms
b, (W,v) = / Co()symV ,u:symV yvdxsdy,  w,v € D(@g,) = (Hi(Ix Yo:RY))?,
XY, eh eh

where H(I)O(I X Yo:R¥) stands for the subspace of H LI x Yo:RY) consisting of functions
with zero trace on I X §Y. Finally, we define A,, as the operator corresponding to the
same differential expression as ﬁsh but acting in the space L>™™P(] x Yy;R3), hence

representing an appropriate bilinear form

Gs, : (Hgo(lx 1/0;}&3))2 N (Lz’memb(lx YO;R3))2 SR

2.1.2. Additional notation

The inner product of x,y € R" is denoted by (x,y) := 37", x;y;. For a function f € L'(A)
(and similarly for f € L'(A;R?)), we denote by

fr=mh

its mean over A. We will also use the shorthand notation

J_’:=/f(X3)dx3, <f>::/f(y)dy, Sioi= /i ,
I Y f2

where in the last expression it is assumed that f is a (three-component) vector-valued
function. In line with (2.1.2), the notation ? and (f) is naturally extended to vector-valued

functions.
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Next, denote by ¢ the “embedding” operator

ainn ap 0O
ap a
. W2X2 3x3 .
t: R > R, L = ay; ax O
a; an
0O 0 O

Similarly, we define an operator ¢ : R¥*?* — R3*3. We use the same notation for this oper-
ator and the operator defined in (2.1.2), as it will be clear from the context which of the

two embeddings is used in each particular case. For a € R? we denote by ¢| the mapping

ag
i R3S RS, t(a) = a

a ap as

Furthermore, for [ > 0 we define the “scaling” matrix

I 00
= 0 /7 0
0 01

We also define the space H;D(w;RZ) of R2-valued H' functions vanishing on yp and the
space HiD (w) of scalar H? functions vanishing on yp together with their first derivatives.

In what follows, we denote by Y the flat unit torus in RZ, by Y the flat unit torus
in R? with a hole corresponding to the set Y, by R’g;rg the space of symmetric matrices,
R the space of skew-symmetric matrices, by Ix, the unit matrix in R™", and by dap
the Kronecker delta function. Furthermore, H'(Y), H2(Y) denote the spaces of periodic
functions in H'(Y), H3(Y). Similarly, we denote by H I x Y) the space of functions in
H'(I xY) that are periodic in y € Y. The spaces H'(Y), H'(I x V) are defined to consist of
functions in H'(Y), H'(I x Y/) whose mean value is zero. Similarly, we define the spaces
H*(Y)) for k = 1,2. Note that every function in H(l)O(I x Yo; R¥) can be naturally extended
by zero to a function in H 1(I xY ;Rk).

The space C¥(Y) denotes the space of smooth functions on the torus Y that have

continuous derivatives up to order k. In a similar way we define the space C*(I x V).

Furthermore, CSO(I X Yp) denotes the space of k-differentiable functions on I X Yy whose

17



derivatives up to order k are zero on I X dYy. For A C R”", the space C’g(A) consists of
functions with compact support in A that have continuous derivatives up to order k.
For a function u € H (Ix Y;R3), we use the notation 65 for the “anisotropically scaled”

gradient whose third column is obtained from the usual gradient by scaling with 67! :
651{ = (Vyu|6_16x3u) .
Next, for ¢ € L*(w; H' (I x Y;R3)), we denote
Cs(p) = sym Vs,

and for ¢, € L*(w; H'(Y;R?)), ¢ € L*(w; H*(Y)), g € L>(Qx Y;R?), we use the notation

. , . sixy)

Symvy(pl(x’y) - x3Vy‘102(x’y)
Colp1,¢2,8)(x,y) = 22(%,y)
gi1(x,y) g(x,y) g3(x,y)

Furthermore, for w € L>(Q; H' (Y;R3)), g € L*(Q;R3), we define

g1(x) +dy, w3(x,y)
symVyw.(x,y)
COO(wa g)(x’y) = gz(X)+ay2W3(x,)’) >
g1(x)+ 9y, w3(x,y) g2(x)+0y,w3(x,y) 83(x)

where w. is defined via (2.1.2).

For different values of 6, «x, we introduce the spaces

;

[Cs@): e (W H' UXY;RY))Y,  §€(0,00),

{Co@1.02.8) : 91 € L(w; H' (Y R), 2 € LH(w; HA(Y), g € AQX VR,
E5(QAXY) = 4

0=0,

{Co(w,8) 1w e LH(Q; H (Y;R)), g € LHQXY;RY)}, 6 =oo;

H) (R xLA(w),  §€[0,00], k= oo,

Vis@XY):= ¢ H (w;R?) X L2(w; HA(Y1) X LA(Yp)), §=0, ke (0,0),

H) (w;RHXLX(wxY), 6=0, k=0;
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(

L*(w; Hyy(I X Yo;RY)), 6 €(0,00),
Vas(QxYo) i= § LAQ HY(Yo;R?), 6=,

LA Hy(Yo;R)) X LA(wx Yo),  6=0;
\

;

LX(w;R)+ L2 Qx YR,  §€(0,00], k=00,

Hs5 (QXY) 1= ¢ [2(w;R3) + L2 (wx Yo R3), 6§=0, k=00,

(L*(w;R?) + L (wX Yo;R?)) X LA(w X Y), 5§=0, ke[0,00),

where functions defined on w are assumed to be constant across the plate whenever they
are considered in Q. (In other words, L2(w X Y) is treated as naturally embedded in L2(Qx
Y).) We denote by Ps, and PO the orthogonal projections Py : Q% Y;R3) — Hs , (Q X
Y)and P?: L2(QxY) = L*(w) + L*(w X Yp), respectively. The mappings

L*(Q) + L2 (Q X Yo) 3 u(x) + it(x, y) - u(x) € LX(Q)

and

L2(Q) + LA(Q X Yo) 3 u(x) + iu(x,y) > ii(x,y) € L2 (QX Yp)

are labelled by S| and S, respectively. For Hilbert spaces V,W and a linear operator
AV — W, we denote by R(A) Cc W its range, and for a linear operator A: V — V, we
denote by o (A) its spectrum. Furthermore, oess(A) and o gisc(A) denote the essential and
discrete spectrum of A, respectively. Throughout, we denote by 7 the identity operator
on the appropriate ambient space.

For the definition of two-scale convergence, the related notation and properties of
importance for our analysis, we refer the reader to Appendix (for the basic properties and
introduction, see also [1]). Finally, for a Hilbert space V, we denote by V* its dual, and

—, — denote, respectively, the weak and strong convergence.

2.1.3. Section guide for different scaling regimes

The table below shows the different scalings considered in this chapter for the period
of oscillations &, with respect to the thickness & as well as appropriate scalings of the

contrast, time, and spectrum.
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Time h<gy, Spec Time h~gp Spec Time | h> g Spec
0=0) (0 <6 < 00) (6 =00)
Non- | 7=0: 2.2.3.3 | Long: T=2: 7=2:| Non- | 7=0: 2.2.3.54
up=¢p | scaled: | 2.2.2.2.A 2241 2221.A | 2232 scaled: | 2.2.2.3.A
2242 2242
Non- 7=0: 7=0:
scaled: | 2.2.2.1.B | 2.2.3.3
2242
ok ootk #Fkx%k | Long: T=2: 2234 | Long: | 7=2: 2235
Un =€ph 2243| 222.1.C 2243(22238B
LOHg: T=2" 2234 kskoskok ok skskoskokosk kskoskokok skskoskokosk sHskoskokok skskoskok
pr=¢& |2244|2222B

Table 2.1: Overview of sections and results in Chapter 2
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2.2. MAIN RESULTS

2.2.1. Effective elasticity tensors

In this section we will define limit elasticity tensors that will appear in various regimes.

For 6 € (0, 00), we define a symmetric tensor Cgom via

Cy™(A,B): (A,B):=

= min //Cl(y) [L(A—ng)+sym§5cp} : [L(A—x3B)+sym§5<p} dydxs,
peH (IXYR3)
1Y,

A,B e R¥*?

sym>

(2.2)

as well as tensors Cg‘emb, Cgend via

CMemb A ;A := CIOM(A4,0): (A4,0), AeRZZ

sym>
CY¥™B:B:=C}°™(0.B): (0.B), BeRy;.
Remark 2.2.1. Under an additional assumption on the material symmetries, namely As-

sumption 2.1.1 (1), the tensor @gom can be written as the orthogonal direct sum
hom _ ~memb bend
Cs =Cs7 " aCs,

in the sense that

Cmemb 0
Chom _ 0
5 - ’
0 Cgend

i.e.

CI™(A.B): (A.B)=C*™A: A+Cy™B:B,  A.BeR};

sym*
For the case ¢ = 0 the following tensor C"°™ will be important (in this case we assume

that Yy is of class C1'1):

C"™(A,B): (A,B):=

=min//C1(y) [L(A = x3B) +Colpy,¢2,8)(x3.9)] : [t(A—x3B)+Co(y, 92, 8)(x3,y)] dydxs,
17
A,BeR%?

sym>

(2.3)
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where the minimum is taken over ¢, € H'(Y;R?), ¢, € H*(Y), g € L>(Ix Y,R?). Note that
in (2.3) the definition (2.1.2) of Cy is used with ¢, ¢», g independent of x. Furthermore,

we define a tensor function Cged(y), y € Yy, by the formula
Co'O)A,B): (A,B):=

= min /Co(y) [L(A - x3B) +11(g(x3))] : [t(A - x3B) +11(g(x3))] dia.4)
geLl2(I;R3) )

A,B e R¥2

sym*

In addition, for @ = 0, 1 we define a tensor-valued function C},(y), y € Y, via the formula
ComA: A =minCoMUA) +u@]: (D +u@d],  AERTE, yeYo.
deR

Remark 2.2.2. It is easily seen that for a ¢, ¢2, g on which the minimum in (2.3) is

attained, one has g(x3,y) = go(v) + x3g,(y), for some g, g; € L2(Y,R3). 1t follows that

C'™(A,B): (A,B)=C[*"™A: A+C**""B:B,  A,BeRJ2
where

CPm™TA:A = C'™(A4,0):(4,0)

= min / ClOMIA+Vyp 0] : [A+V,0,()]dy,  A€RID
p1eH (YRY) Jy,

Cll)end,rB ‘B = Chom’r(O,B) : (O,B)

1
= in — [ C'(y)[B+V? [B+Vie(»)dy,  BeRX2
12 )y, 1B+ V()] : [B+Vye(y)ldy sym

Similarly to the above, it is seen that the minimum in (2.4) is attained on the vector fields
of the form g(x3) = g, +x38,, where g, g, € R3. Furthermore, we have the following

decomposition:
CEUONAB) 1 (A, B)=CJ™ (DA : A+CY" ()B:B, ABeRI2  yel,

where

1
Cr™ (A A=Ch(NA:A, CYX"'()B:B:= —Co0)B:B. A.Be R22, yeY,.
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For the case § = oo, a tensor CP°™! will be important, which is defined by
chom(A,B): (A,B) =

— min / / CO) [1(A - x3B) + CooW, £)(x3.)] ¢ [1(A —13B) + Coolw, £)(x3,3)] dydxs.
I
A,BeR%?

sym>

(2.5)

where the minimum is taken over w € L*(I; H' (Y :R3)), ge L*(I;R?). (As in the case of
the expression Cy entering (2.3), for the expression Co in (2.5) we take the functions w,

g to be independent of x.)

Remark 2.2.3. It is easily seen that the minimum in (2.5) is attained on g = g5+ x381,

w =wo(y) +x3w1(y), for some gy, g € R3, wo, wi € L2(Y;R3). It follows that
C"™MA,B): (A,B)=C™™"A: A+C*"B:B,  A,BeR}%,
where

cmembh 4. 4 ._ Chom’h(A,O) 1 (A,0)

= min / CONA+CooW,2)]: [A+Co(w,g)]dy, A€ Riyxrﬁ,
Y

weH! (Y R3),geR3
cbendhp . p . chombg By (0, B)

1
= min — | CO[B+Co(w,g)]:[B+C(w,g)dy, BeR
weH!(Y R3),geR3 12 Y

The following proposition is proved in Section 2.3.1.
Proposition 2.2.4. The tensor Cgom (and consequently the tensors anemb, Cgend as well)
is bounded and coercive, i.e., there exists v > 0 such that

(AP +|B*) <CI°™(A,B): (A,B)<v ' (|AF+|B)  VA,BeRJa.

Analogous claims are valid for tensors CPomr chomh Cf)ed (and consequently tensors

Crlnemb,r’ Cliend,r’ Cmemb’h, Cbend’h, Cz)nemb,r’ Cgend,r )

2x2

sym-*
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2.2.2. Limit resolvent equations

Our starting point is the following resolvent formulation. For 7,4 > 0 and a given f*" €
L2(Q;RY), find uh € H}D (Q;R?) such that the following variational formulation holds:
% CHn (Sih) sym Vu®' sythvdx+/1/p8hu‘9h vdx= /f‘gh vdx Yy EH}D(Q;Rg’).
Q Q Q
(2.6)

We derive the limit resolvent equation, as 2 — 0, depending on various assumptions
about the parameter § = h/gj,, the exponent 7, and the scaling of the load density f*. In
Section 2.2.3 we discuss implications of these results for the limit spectrum and evolution
equations. Different scalings of the operator will, in particular, yield different scalings of
the spectrum and the time variable (or mass density) in the evolution problems. Note that
the load density scaling will also depend on the asymptotic regime considered.

It is standard in the theory of plates that one discusses limit equations (both static
and dynamic) depending on an appropriate scaling of the external loads. Furthermore,
we will see that the limit resolvent equation is always degenerate in some sense. From
the mathematical point of view, this is a consequence of the fact that for thin domains the
constant in Korn’s inequality blows up and by further analysis one can see that this implies
that the out-of-plane and in-plane components of the solution are scaled differently in the
limit problem. From the physical point of view, it is much easier (i.e. energetically more
convenient) for the plate to bend then to stretch. As a result, bending and membrane
waves propagate through the medium on different time scales. The effect of high-contrast
is also non-negligible, yielding different behaviour depending on the asymptotic regime:
the small elastic inclusions behave like three-dimensional objects (regime & ~ gp,) or like

small thin plates (regime h < g;,). We next present our main results.

2.2.2.1 Asymptotic regime s ~ g,

A. “Bending” scaling: uj, = g, 7=2

The following proposition provides an appropriate compactness result, namely a bound
on the sequence of energies for a fixed value of ¢, see (2.1.1), and its consequences in

terms of two-scale convergence.



Proposition 2.2.5. Consider a sequence {(h,&y)} such that 6 = limy_,oh/ep, € (0,00), and

suppose that uy = €y, T = 2. The following statements hold:

1. There exists C >0, independent of h, such that for any sequence (f")ps0 C L*(Q;R?)
of load densities and the corresponding solutions u® to the resolvent problem (2.6)

one has

h—2a8h(u8h’u5h) + ”u(gh”iZ < C”ﬂhfgh”iz'

2. If

limsup (5 2ag, @, u™) + ™|, ) <o, (@)so C HE (QR?),
h—0

then there exist functions a € H;D(a);Rz), be H)Z,D (W), CeCs5(QXY), i1 € Vo 5(QAX
Yo), such that for a subsequence, which we continue labelling with &y, one has

uth = i+ @, i i e H}D(Q;R3), | en =0,
1

2

L
A1l — (a1 (%) — x3016(%), 12(£) — x3026(2),b(H))

d _
h i (0 L2 e ), 2.7)
K sym V% (x) 2 ¢ (sym Via(2) — x3V2b(2)) + C(x.y),
eph™ sym Vi (x) a2, sym Vsi(x, y),

dr-2 . . . »»
where —— stands for the “dimension-reduction two-scale convergence” defined

in Appendix 4.3.
3. If;, additionally to 2, one assumes that

: -2 Eh ., &R en2 _ b 2
tim (s, (a0 + a1, ) = a30,5) + 01,

where the form ag is defined in (2.11), then one has the strong two-scale conver-
gence (cf. Appendix 4.3)

dr-2 . ~ R . R
71t = (a1(2) = x3016(2), 02(%) — x3920(2), b(H))
with a = a® (for the definition of a® see (2.10) below).

Remark 2.2.6. It can be seen from the proof of Proposition 2.2.5 that the assumption in

its third statement is equivalent to the convergence

_ dr-2 R R
I sym Vi) < (symVsa®) —xs V20 e, + G061,



Ep

_ o dr-2
enph ]syrthu —0,

dr-2
71— (a1(£) = x391b(2), a2(R) — 1392b(), b(R)) .

Here a = a® and C(x,-) solves the minimization problem (2.2) with A = symVza(%) and
B = V)%b(fc). The analogous claim is valid in all other regimes. As we do not explicitly

use it in what follows, we shall omit it.

The following theorem provides the limit resolvent equation. It can be seen that the
limit equations do not couple (a,b) and &. This is not usual in high-contrast analysis
and is a consequence of setting 7 = 2. This case is thus less interesting and we shall
omit its analysis in other regimes (6 = 0 and 6 = c0). However, we will study it here, as
it resembles the standard model of a moderate-contrast plate (and so the corresponding

evolution is obtained on a longer time scale).

Theorem 2.2.7. Under the notation of Proposition 2.2.5, suppose that 6 € (0, 00), u = &,

T =2, and consider a sequence (f")n>o of load densities such that
< dr-2 2 3
T f —— f(x,y) € L°(QXY;R). (2.8)

Then the sequence of solutions to the resolvent problem (2.6) converges in the sense of
(2.7) to the unique solution of the following problem: Determine a € H;D(a);Rz), be
H3 (w), it € V2 5(QX Yy), such that

/ Chom (sym Vza(2), V20(R)) © (sym V6.(2), V363(5)) di + 4 / (0Yb(R)3(%) d&

w

= / PR (0.(2),63(0) " dz - / (3f (%) Vib3(D)d: V6. € H. (w,R?), 63 € Ha (w),

/ / Co(y)symVsi(x,) : symVs(xs,y)dydocs
1 Yy

= / / Fy) (E1(x,).E(0,),0) T dydxs  VEe€ HY(IXYo;RY), ae iew.
I Y

(2.9)
If additionally one assumes the strong two-scale convergence in (2.8), then one has

dr-2
71 = (a1 (8) = x301B(R) + i, 02(R) — X302D(R) + 12, b(R)) .
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Remark 2.2.8. Under Assumption 2.1.1 (1) the first identity in (2.9) uncouples into two
independent identities (see Remark 2.2.1)

/ CIemd sym Vea(R) : sym V. () di = / (F(R)-0.(D)dk Vb, € H;D(w,RZ),
w

w

/ CPendy2p(2) : V203(%)di+ A / (P)b(R)03(X)d
Q

w

= / (f3)(®)63(8)dx - / (f)(R)-Vibs(R)dE Vo3 € H (w).

In connection with the limit problem, we consider a self-adjoint operator ﬂgom de-
fined on the (p)-weighted space L?(w;R?)x L?*(w) and corresponding to the differential
expression’

()~ (~divg, dividive) CRO™ (sym Vi, V3) .
More precisely, the operator ﬂgom is defined via the bilinear form

ao™ (), (£,8)) = / Chom (sym Viu(£), VIu(®)) 1 (symVed (2), VIE(®)) d,

w
dhom: (H) (@ R)x H (@) - R.

We also make use of the following observation. Plugging 63 = O into the first equation

in (2.9) and using linearity, we decompose a = a® + of =, where a[’,af x € H;D(a);Rz) are

solutions to the integral identities

/ Cemd sym V;a®(%) : sym V6,.(%) d

w

=- / Chom (0,V2b(%)) : (symV:6.(2).0) d& V6, € H), (w:R?),

w
w w

(2.10)
Notice that the in-plane deformation a® can be calculated from the out-of-plane deforma-
tion b by solving the first identity alone. It is easily seen that the solutions a®, a/* satisfy

the estimates

||SYmecabHL2(w;R2) < CHszszLZ(w)’ HsymV;Caf* HLZ(w;R?) = C} f

*

L(w)

’The repeated divergence div; div; is applied to matrices and corresponds to the usual divergence applied

row-wise and column-wise sequentially.
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The first identity in (2.10) defines a bounded linear operator A’ ;b tH (w) > H,, (w:R?)
by the formula ﬂa **p := a®. Furthermore, the bilinear form a ( (w)) — R given by

ab(v,0) := / Chom (sym Vi AG b(2), V20()) : (0,V30(3)) di

w

(2.11)
_ / Clom (symV)g ﬂg;bb(ﬁ),V§b(f)> : (symvfﬂgﬂg, V)%H()?)) dx
w

defines positive definite (as a consequence of Proposition 2.2.4) self-adjoint operator on

ﬂb ,hom

L*(w), which we denote by . The first identity in (2.9) can now be written as

follows:

aS(v,0)+ 1 / (PBRO(R) dx = / chom (symVzal,0) : (0,V20(2)) d

/ (3 DO(F)dx - / (x3f)(R) - Vi0(X) di =: F5(f)(6),

Vo e H, (w).
(2.12)

Notice that for f € L>(Q;R?) the right-hand side of (2.12) can be interpreted as an element
of (HﬁgD (w))*, which we denoted by Fs(f). This reveals the resolvent structure of the limit
problem (2.9).

B. “Membrane” scaling: u;, = &,,7=0

To formulate the convergence result for the present scaling, we consider a non-negative

self-adjoint operator As ., defined by the bilinear form

as.0o((0,0) +1t,(6,0) + gof) = /anemb symV;a(®) : symV;0(%)dx

w

+ / / Co(y)symVsi(x,y) : symVs&(x,y)dydx,  (2.13)
QY

a0 - (Vl,g,m(w XY)+ Vps(QX% Y()))2 - R
Notice that As « is degenerate with an infinite-dimensional kernel:

As0(0,0,0) =0  VveLX(w).

However, the restriction of A on the space Hsoo(Q X Y) N L>™MP(Q x ¥;R3) does not

exhibit such degeneracies (under Assumption 2.1.1 (1)).
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The following proposition gives a suitable compactness result, similar to Proposition

2.2.5.

Proposition 2.2.9. Consider a sequence {(h,&p)} such that 6 = limy_,oh/ep, € (0,00), and

suppose that uy, = e, T = 0. The following statements hold:

1. There exists C > 0, independent of h, such that for any sequence (f*")s0 € L>(Q;R?)

and the corresponding solutions u® to the problem (2.6) one has

2 2
ag, @, u™) + |, < CIfI,.

2. If a sequence (U)o C Hll_D (Q:R3) is such that
. En 1, R Enn2
limsup (agh(u U + ||u ||L2> < 00,
h—0
then there exist functions (a,0)"7 € Vi so(wXY), C€ Cs(QXY), @t € Vo, 5(Q X Y)

such that, up to extracting a subsequence, one has

uh = @+ G, a0 e H (QRY), @ ge =0,
1

e I
i —a,

dr-2
i’ T6R),

. (2.14)
" (x) —r—_——\ft(x,y),

dr-2
sym V,it®"(x) =Ny, (symV3:a(®)) +C(x, ),
dr-2

gpsym V,i°"(x) sym Vsit(x, y).

3. If; additionally to 2, one has

. [*] o O 2
tim (g, @) + [, ) = aseo ((@.0)7 +it,(0,0)7 +) +[|(0.0)7 +a]| .

where a5 is defined in (2.13), then the strong two-scale convergence
dr-2 R
u®h —=(a,0)" +a

holds.

The following theorem provides the limit resolvent equation.
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Theorem 2.2.10. Under the notation of Proposition 2.2.9, suppose that 6 € (0, 00), u, = &,

7 =0, and consider a sequence (f")y>q of load densities such that
00 L2 fx,y) € AQX YR, 2.15)

Then the sequence of solutions (U®"),~q to the resolvent problems (2.6) converges in the
sense of (2.14) to the unique solution of the following problem: Determine (a,b)" €

Vigsoo(wXY), it € Vo 5(Q2 % Yy), such that

/ CMemd sym Vza(%) : sym V;0(2) + 4 / (pYa(R)-6(R)di+ A / (poie.)(£) - (%) d

w

= / (F)®)-0R)dz  Y0eH) (w;R?),

(PYO(R) + (poitz)(R) = THfD(@R)  ae Xew.

/ / Co(y)sym Vsii(x,y) : sym Vs &(xs,y) dydoxs
I

7 (2.16)

+/1//Po(y)(al(fc),az(fc),b(fc))T'é(xs,y)dyd%
T Yo

+2 / / poMi(x,y) - €(x3,y)dydxs
1 Y

://f(x,y)-é(x3,y)dydx3 VE € HYy(IXY;RY), ae kew.
I Y

If, additionally, one assumes the strong two-scale convergence in (2.15), then one has
dr-2
u (x) = (a,b) " +a(x, y).

Corollary 2.2.11. Under Assumption 2.1.1 (1) and provided (f®")>o € L>™™(Q;R?),
in addition to the convergences in Proposition 2.2.9 one has
Hl

“’8/1
iy — 0,

and thus b = 0 in the limit equations (2.16).

Remark 2.2.12. The limit system (2.16) can be written as a resolvent problem on the

space Hs oo (2XY), as follows:>

Asoco+ AT u = Psoof, u=(a,0)" +a
(As, ) s.00 (a,b)

3Notice that this requires to take the inner product with the weight function Xy, +Poxy,-
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which is the usual structure for the limit problem in the high-contrast setting (see [53] and

Section 4.5).

Next, the operator Ajs on the space Hs (22X Y)N L2memb(() s ¥: R3) is defined via the

form &s given by the expression in (2.13) with a different domain:
2 2
as: (H)I,D (w;Rz) X {0} + Vo 5(Q2 X YO)) N (L2,memb(Q % Y;R3)) SR

This operator can only be defined under Assumption 2.1.1 (1).

In relation to the limit problem, we also define the following operators. The operator

Aoo,s, referred to as the Bloch operator, corresponds to the differential expression4

~(po) "' diva5 (sym V),

and is defined via the bilinear form

_ ~ 2
apo,su,v) ;= /Co(y)symV5u(x3,y):SymV5v(x3,y)dX3dy, aoo,5i<H(])0(1><Y0;R3)> - R.
IXYy

Similarly to the way the form s and the associated operator As; were defined by restrict-

ing the form a5, we define a form
2 2
00, ° (Hgo(l % YO;R3)) n (Lz’memb(lx YO;R3)) SR,

and the associated operator Ay s by restricting the form aggs. We also define a positive

self-adjoint operator &Zlglemb on L*(w;R?) corresponding to the differential expression
—(p)~ divg (C™ sym V),
as the one defined (on an appropriate weighted L? space) by the bilinear form

ag‘emb(u,v) = / Cg’emb sym Viu(R) : sym Viv(X)dX, ag'emb : (H;D(a);RZ))2 - R.
w

In order to simplify the system (2.16), one is led to first solve the equation (where we

replace A with —2)

(Ago s — D) = A(a(R),5(%)) " +(00) L f(£,),

4The differential expression ﬁzﬁ stands for %5' (applied row-wise), i.e. it is in the same relation to the

gradient Vs as the standard divergence is in the relation to the standard gradient.
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where the variable X% is treated as a parameter (see e.g. [73]). When f|y, =0and 1€ C\R,,

the equation (2.2.2.1) can be solved via the more basic problems
(Ago,s — AD)b} = e, i=1,2,3.

The following matrix-valued function 85 taking values in R**3 will be important for char-

acterizing the spectrum of the limit operator:

(B5(D),; = Ui+ P{pobD);),  inj=1,2.3.

We refer to s as “Zhikov function”, to acknowledge its scalar version appearing in [71].
Its significance will be clear in the next section. We can obtain an alternative representa-
tion of the Zhikov function as follows.

First, separate the spectrum of Ay s into two parts:

o(Aopos) = 1m.n2,..) Ulay,az,...},

where the second subset corresponds to eigenvalues with all associated eigenfunctions
having zero pg-weighted mean in all components. In each of the two subsets the eigen-
values are assumed to be arranged in the ascending order. Next, denote by (¢,,),en the set
of orthonormal eigenfunctions corresponding to the eigenvalues from the set {n,72,...}
in (2.2.2.1), repeating every eigenvalue according to its multiplicity. Using the spectral
decomposition, one obtains
2

NMn—A

(B5(D),; = Xy + Y ——{poleni) - (polen)y),  6-j=1,23. (217
n=1

Under Assumption 2.1.1 (1), one is actually only interested in the operator Apg s. We

memb

can then define a version of the Zhikov function, denoted by B6

and taking values in
R>*2 (dropping the third row and the third column of s, which necessarily vanish as a
consequence of symmetries) as the one associated with this operator. Eliminating those
values 77, and @, in (2.2.2.1) whose eigenfunctions belong to the subspace L>*"d(J x
YO,R3), we write

o (A06) = {1712, .. VL@, @, )
Here, similarly to the above, the eigenvalues in the second set are those whose all eigen-

functions have zero weighted mean in all of their components. (Note that due to sym-

metry the third component has zero weighted mean automatically.) We use the notation
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a’(ﬁoo,(;)’ for the set of such eigenvalues:
o(As) ={a1,a@,...}.

Analogously to (2.17), we can write a formula for the function Bg‘emb. Notice, in particu-

lar, that

(Brem™) s = (B5) oy @B=1.2.

C. “Strong high-contrast bending” scaling: u, = eyh, =2

As was shown above, in the case y, = &5, T = 2 one does not see effects of high-
contrast inclusions in the limit equations (i.e the limit equations are not coupled). Here we
consider an asymptotic regime of higher contrast, where the limit equations are coupled.
Proposition 2.2.13 below provides the relevant compactness result. Before proceeding to
its statement, we introduce some auxiliary objects.

In order to analyse the spectral problem, we will require a positive self-adjoint op-
erator &fl(g on the Hilbert space {0} x L*(w) + L2 (Q x Y, R?), as the one defined by the
bilinear form

a5((0,0,0)7 +it,(0,0,6)T +&) = al(v,6) + / ano.s(it, ) d3,

w
A (12 B2 2

as: (102 x H2 () + Vas(wx Y0)) >R, (2.18)
We also define a scalar Zhikov function 35 associated with this problem. Namely, we

eliminate the eigenvalues of Ay s all of whose eigenfunctions have zero weighted mean

in the third component and set
Bs =533
We also define 6(App ) as the set of the eigenvalues of Ay s all of whose eigenfunctions

have zero weighted mean in the third component.

Proposition 2.2.13. Consider a sequence {(h,&p)} such that 6 = limy_,oh/ep € (0, 0), and

suppose that uy = eph, T = 2. The following statements hold:

1. There exists C >0, independent of h, such that for any sequence (f&")ps0 € L*(Q;R>)

of load densities and the corresponding solutions u®" to the problem (2.6) one has

-2 2 2
1 2a, @ u) + a2, < ClLF 2,
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2. If

limsup (72, @, u®) + ™2, ) <co,  @Mso C HE (R?),
h—0

then there exist functions a € H,,(w;R?), b € H2 (w), C € Cs(QXY), it € V2,5(Qx

Yo), such that (up to a subsequence):
ut =@ +a%,  @ae HL (R, |y =0,
D 1

L2
T pl™ — (a1 () — x3010(R), a2(£) — x3920(%),b(%))

-
i (x) L i, ), (2.19)
dr-2
Wl sym V,i®"(x) iy (sym Via(x) - giéb(fc)) +C(x,y),
g dr-2 =
epsym Vit (x) —— sym Vsit(x,y).

3. If; additionally to 2, one assumes that

lim (A %ag, (uu) + a7 ) = 35(0,0,0)7 +it,(0,0,0) +i) +0.0.0)" + 7.

where as is defined in (2.18), then one has the strong two-scale convergence

dr-2
u £250,0,0)T + 4.

The following theorem describes the limit resolvent equation.

Theorem 2.2.14. Suppose that 6 € (0,00), uy = eph, and T = 2, and consider a sequence

(f*Mpso of load densities such that
fr L f e QX YRY). (2.20)

Then the sequence of solutions to the resolvent problem (2.6) converges in the sense of

- - - : ~ 1 ¢, . R2
(2.19) to the unique solution of the following problem: Determine a € H, (w;R"), b€
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HiD (), &t € V5(Q2%xY0) such that

/ Chom (sym Vza(2), VA0(R)) © (sym V0.(8), V363(5)) di+ A / ((OIB(R) + (poi3)(2)) 3(%) d3

w w

. / Fo@e@d: Vo e 2 (w),
/ / Co(y)sym Vsii(x,y) : sym Vs £(xs,y)dydxs + 4 / / PoB(R) - €3(x3,y) dydxs
1 Yy I Yy
+2 / / poi(x,y) - E(x3,y)dydxs
1 Yy

://f(x,y)-go-‘(xg,y)dydm VEEH(%O(IXYQ;R3), a.e. X € w.
I Yy

(2.21)

In the case when the strong two-scale convergence holds in (2.20), one has
1o L7250,0,0)7 +it.
Remark 2.2.15. The limit problem (2.21) can again be written as the resolvent problem
on {0}% x L2(w) + LA(Q x Yo; R3):
(As + AU = (S2(Psof)1.S2(Psof)2. (Psof)3) ', u=(0,0,0)" +i

which is again the general desired structure.

Remark 2.2.16. Under Assumption 2.1.1 (1), the first equation in (2.21) decouples from

the second (see Remark 2.2.1) and one has

a=0,

[ v : s [ (o + o)t = [ o Vo e

In the following sections we will analyse only those two cases for each regime when
there is a coupling between the deformations inside and outside the inclusions.
2.2.2.2 Asymptotic regime /1 < g, : ““very thin” plate

Throughout this section, we additionally assume that the set Yy has C'! boundary, to

ensure the validity of some auxiliary extension results, see Appendix 4.4.

HY (w).
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A. “Membrane” scaling: yu; = &,,7=0

Similarly to Part B of Section 2.2.2.1, where the membrane scaling is discussed for
the regime h ~ gj, we define the following objects using the limit resolvent in Theorem

2.2.19 below (expression (2.24) for the limit resolvent) :

e For each k € [0, 00], a form ag  : (V1,0,K(w XY)+V20(Q% Yo))2 — R and the associ-
ated operator Ay, on the space Vp (X Y), analogous to as« and A of Part B,

Section 2.2.2.1. In this way the limit problem (2.24) can be written in the form

(Ao +ADu = P, f, u=((a,b)" +it);
e A form
N 2
do (H;D(w;Rz)+L2(w;H(1)(Y0;R2))) —-R

and the associated operator Ay on L*(w;R?) + L*(w x Yo; R?) (analogous to &z and

As) — these are correctly defined under Assumption 2.1.1(1);

e A bilinear form af™ : (H;D(w;Rz)) — R and the associated operator AT on

L*(w;R?) (analogous to afsnemb and ﬂg’emb);

e A bilinear form o : (H(l)(YO,;]Rz))2 — R and the associated operator Aggo on
L*(Yo;R?) (analogous to oo, and 5’:(00,(5);
¢ Functions By, ﬁg‘emb, by analogy with s, Bg‘emb;

e A set o(Apo)’, by analogy with o(Apos)’ .

We do not write these definitions explicitely, since we assume their definition is natural.

The following proposition provides a compactness result for solutions to (2.6).
Proposition 2.2.17. Suppose that 6 =0, uy = &, T =0. The following statements hold:

1. There exists C > 0, independent of h, such that for a sequence ()0 € L*(€;R?)

of load densities and the corresponding solutions u®" to the problem (2.6) one has

2 2
aah(u8h9u8h) + ||u8h||L2 < C”fgh”LZ'



2. If

limsup (az, @, u™) + w7, ) < oo, @)oo € Hyy (AR),

h—0

then there exist (a,0)" € Vi g (wXY), ¢ € L*(w;H'(Y;R?)), @ € L*(w; H*(Y)),

e Vyo(QxYy), g€ L2(QXY;RY), &1oxy, = 0 such that (up to a subsequence)

uh = @+ G, G0 e H (QiRY), @)oo
1

P

e, dr=2 b()%), K = 09,

b(%,y), k € [0, 00),
\

p

¢ (symVza(2)) +Co(p1. 02, £)(x, ),

_ dr-2
sym Vi (x) —— < ; (sym V;a(2)) + Co(@1.&b, £)(x.).

| ¢ (sym Vza()) +Co(e1,0,8)(x.),

og, Ar=2 o
uh——au(%,y),

dr-2

enpsymV,u® Co(it+, 0, 8)(x, y).

3. If, additionally to 2, one assumes that

lim (ag, (0, 0) + 7, ) = ao.((@.0)7 +it, (@) +i) +[[(a,0)7 +ill}
n

where the form ay . is defined above, then one has

dr-2 o
uh —= (a,b)" +1.

0,

(2.22)

K = 00,
k € (0, 00),
k=0,

>

Remark 2.2.18. In the regimes h ~ si and h < 8]21 we are not able to identify the functions

b(%,y) and 13 separately on w X Yy (in the following theorem). However, we are able to

identify their sum, which is the only relevant object, since the third component of solution

converges to their sum. Thus we artificially set b(x,y) = 0 on w X Yj, to have uniqueness

of the solution of the limit problem. In the case when b is a function of X only, the

decomposition b(%) + i13(%,y) is unique in L?(w X Y), since we know that 3juxy; = 0.

The limit resolvent problem for the model of homogenized plate is given by the fol-

lowing theorem.
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Theorem 2.2.19. Let 6 =0, uj, = €5, T = 0 and suppose that the sequence of load densities
converge as follows:

o L2 e QX YR, (2.23)

Then the sequence of solutions to the resolvent problem (2.6) converges in the sense of
(2.22) to the unique solution (see also Remark 2.2.18) of the following problems: Find
(a, b)T € Vl,(),,((w XY), e V2,0(Q X Yy) such that

/ C'lnemb’rsymvﬁa(fc) :symV:0.(2)di+ A / (@Ya(R) + (poit)) - 0. () d%

w w

- / @ 0.(Dds V8, € H) (wR?),

/ CPem™ T (y) sym Vyita (£,y) : sym Vo, (y)dy + 4 /Y P00 (A(R) +i.(£.7)) - €,07)dy.

0
Yo

= / f&y)-E0dy V€, € Hy(YoR), ae R € w,
Yo
() +pois(£,y) = 1 PO f3(2.y),  k=co,
2
13 CLOITED : Ty + [ 10 ) dy

= fJ_£3(?AC»)’)V(Y)dy Vv e H2(Y), a.e. % € w. k € (0, 00),
Yy

poMiz(k.y) = A f3(5), b(E) =0,  yeYp )

PIOB(E,Y) + oMz (£,y) = A f3(R,y);  b(&,y)=0, yeTYo, k=0.
(2.24)

If additionally we assume the strong two-scale convergence in (2.23), then we additionally

have the strong two-scale convergence
dr-2 o
u®h(x) — (a,0) " +a(x,y).

Corollary 2.2.20. Under the Assumption 2.1.1 (1) and provided (f");so € L>™™°(Q" R3),

in addition to the convergences stated in Proposition 2.2.17, we have

g, H' ogy L2
u?’ —0, u?’ -0,

and thus we also have that b = 3 = 0 in the limit equations (2.24).
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B. “Bending” scaling: u; = s%l,r =2

In the regime & < gj, the band gap structure of the spectrum for the spectrum of order
h?* appears when we scale the coefficients in inclusions with 82. This can be seen from the

a priori estimates obtained in Appendix.

We define, for every f € L2(Q;R3),

Fo(£)((0,0,0)" +&) := / (f3)0dz + / / f(2,y)-€,.(x,y) dyd#,

(.L)YO

+ / / F3(E0ERy) dydi - / / 0 f (2 V(1Y) dy @&25)

w Yy w Y

[0.35emlf € L*(w), €= (£,.&3) € L* (w; HY(Yo; R?) x HE(Yp)).

Furthermore, in connection with the limit problem described in Theorem 2.2.22 ( expres-

sion (2.28) below), we introduce several objects:

e A bilinear form

a™ (@) > R

and the associated operator ﬂgom on L*(w), analogous to agom and ﬂgom of Part A,

Section 2.2.2.1 (notice that here the situation is simpler since necessarily a = 0);

e The bilinear form

A e 2 1 . : . 2
apo,0(it, &) = - / Cgend’r(y) symViu - sym V2Edy, aoop : (H}(Yo))” - R
Yo

and the associated “Bloch operator” floo,o on L?(Yp).

e A scalar Zhikov function 3y defined via the operator ﬁoo,o (analogous to 35 defined

via the operator Ay s, see Part C, Section 2.2.2.1);
e A set 5(Ago o) (analogous to &(Ago.s));
e The bilinear form
a0 (b+i8,0+&) = o™ (0,0) + / do0o(id),  ao: (B2 () + L@ HY(Ye) —E.
w

and the corresponding operator flo on L*(w) + L*(w; HS(YO)).



The following proposition gives a suitable compactness result for the regime 7 < gj,.
Proposition 2.2.21. Let 6 =0, uj; = 8%1, 7 =2. The following statements hold:

1. There exists C >0, independent of h, such that for any sequence (f*")p>0 € L*(Q;R3)

of load densities and the corresponding solutions u®" to the problem (2.6) one has

) 2 2
W2, ™)+ 1, < e s
2. If

limsup (h_zagh(ug”,ush) + ||u8h||iz> <o, (W®)c HllD (Q;RY),
h—0

then there exist a € H)I,D(a);RZ), be H%D(w), CeCyQxY), ity € Lz(w;Hé(Yo)), a=
1,2, i3 € L¥(w; HS(YO)), ge>(QxY;R3), Ziaxy, = 0 such that (up to subsequence)

u =@+ 5%, @A € Hi (RY),  @%|ge =0,
1

2

L - N
71— (a1 (%) = x3015(2), 2() — x3920(2), b(R)) ',

dr-2

o o A o A o A o A o A T
Ty hlt"" (it1(%,y) = x30y, #3(%, ), 02(R,y) — x30y,113(£, ), 13 (%))

dr-2
B! sym Vi (x) i

L(symVza(®) — x3V30()) + C(x,),

dr-2

sih_l sym Vi Coit., i3, 8)(x,).

(2.26)

3. If additionally to 2, one has

2

lim (™%, @) + a7 ) = ao(d+ i3, b+ iiz) + o+ s,
in

where ay is defined below, then the strong two-scale convergence holds:
dr-2
e U™ ——(0,0,0 +i13) "
The following theorem provides the limit resolvent equation.
Theorem 2.2.22. Let 6 =0, u, = aﬁ, T =2 and let the sequence of load densities satisfy

Tnjenf 2 f € QX Y3 RY), 2.27)
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Then the sequence of solutions to the resolvent problem (2.6) converges in the sense of
(2.26) to the unique solution of the following problem: Determine a € H;D(w;Rz), be

H (W), ftq € LX(w,H)(Y0)), @ = 1,2, ii3 € L*(w, H}(Yy)) such that

a=0,

12

w w

1 / CYMVIn(R) : V263(R)di+ A / ({OYB(R) + (poiia)(%) ) 65(%) d
= / (f3)®o3()dx Vo3 € H (w),

/ Co™ () sym Vi (2,5) : V,&,0) dy = / F2y)E0)dy VE € H(YGRY), ae few.
Yo Yo

1 o o
> / Co () Vaiz(2,y) : Vi&s(y)dy + 2 / po) (B(R) + i3 (%)) & () dy
Yo Yo
= / f3ENEG)dy - / xf (8 V& dy V& € Hi(Yo), ae ke w.
Y() Y()

(2.28)

If the strong two-scale convergence in (2.27) holds, then additionally one has
o &p dr-2 o A o A o A o A o A T
Tyt —— (01(£,y) = x30y, 13(£,y), i2(R,y) — x30y, 13(%, y), i13(%,y)) .

The right-hand side of (2.28) can be interpreted as the element of dual of

{01 x L*(w) + L*(w; Hy(Yo: R?) x H3(Y0)).

Notice that the second equation in (2.28) is completely separated from the rest of the

system.
2.2.2.3 Asymptotic regime g, < i : “moderately thin” plate

A. “Membrane” scaling: u, = &5, 7=0

Similarly to Section 2.2.2.1, we define the following objects using Theorem 2.2.24

(the expression for the limit resolvent (2.31)) :
e A bilinear form
oo * (Vieom(@XY) +V2,0(QX Y0))* - R
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and the associated operator Aw o 0N the space Ho oo(2X Y), analogous to a5 and
As.o of Part B, Section 2.2.2.1. In this way the limit problem (2.31) can be written
in the form

(Ao + AU = Poo oo f, u=(a,b)" +it;
e A bilinear form
oot (HL (@R X (0} 4 Vo @x ) (L2 1Y) S R,
and the associated operator A on the space
<L2(a);R2) x {0} + L2(Q x YO;R3)) N L2memb ) x ¥ R?)

(analogous to ds and As) — these are correctly defined under Assumption 2.1.1 (1);

A bilinear form @™ : (H) (w;R?))* — R and the associated operator AR on

L*(w;R?) (analogous to ag‘emb and ﬂg’emb);

A bilinear form dg, : (H(l)(Yo;R3))2 — R and the associated operator ﬁoo,m on

LZ(YO;R3 ) (analogous to dgo s and j‘oo,a);

Functions Be, SR, by analogy with 85, frem;

A set 0(Apo.)’, by analogy with o-(Ago,s)’.

As in the case of other regimes, we first prove an appropriate compactness result, as

follows.
Proposition 2.2.23. Let 6 = oo, uj, = €5, 7 = 0. The following statements hold:

1. There exists C > 0, independent of h, such that for any sequence (f")s0 C L*(Q;R?)

of load densities and the corresponding solutions u®' to the problem (2.6) one has

2 2
1 @, u) + a2, < CILf2,

2. If

limsup (g, @, 1)+ u™(2,) <o, @m0 € HE (QR?),
h—0
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there exist (0,0)7 € V] coc0(WXY), 1 € Hoo o(QXY), C € Coo(QX Y) such that (up

to subsequence)

uh =ah +ath, @t g e H}D(Q;R%, lolghbeh =0,
1

(2.29)

Sym Vi (x) L 1 (sym Va(2)) + C(x,y).

dr-2
epsym Vi —— symu(Vyit).
3. If, additionally to 2, one has:

2

lim (o, @) + U2, ) = Qo0 (0,0)7 +i,(0,0)T +22) +|(0,0) T+ ..

where the form as  is defined above, then we have strong two-scale convergence

dr-2 o
u®" —= (a,b)" +11.

The following theorem provides the limit resolvent equation.

Theorem 2.2.24. Let 6 = oo, uj, = &,,7 = 0 and let the sequence of load densities satisfy

the following convergence:
e 42 2 3
fr——f e L*(QXY;R"). (2.30)

The sequence of solutions to the resolvent problem (2.6) converges in the sense of (2.29) to

the unique solution of the following problem: Find (a,5)7 € V| o (WX Y), @1 € V3 o(Q X
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Yo) such that

/ Cmembh oum Vea(%) : sym V0, (%) di + A / (¢oa(®) + (oot )(2) ) - 0.(R)d

w w

- / (fO®)-6.(0)dx V6. € H) (w;R?),
(YD) + {poit3 ) (R) = A7 (F3)(R),

/Co(y) sym¢(Vyde(x,y)) : syme(V,E€()) dy

Yo

+/1/Y po){ (@1(£), a2(£), b)) T +it(x,y) } - E() dy

:/f(x,y)-.f-‘(y)dy {:-‘GH(I)(YQ;R3), a.e. x € Q.
Yo

(2.31)
If we assume the strong two-scale convergence in (2.30), then the strong two-scale con-
vergence

dr-2
uh(x) — (a,0) " +i(x,y)

holds.

Corollary 2.2.25. Under Assumption 2.1.1 (1) and provided (f®")s¢ € L>™™(Q;R3),

in addition to the convergences in Proposition (2.2.23) we have

L2

~Ep 0,

Us
and thus b = 0 in the limit equations (2.31).

Notice that the variable x3 is also just the parameter in the last equation in (2.31).

B. “Strong high-contrast bending’’ scaling u;, = g,h, T =2

Here we define the following objects using Theorem 2.2.27 (the expression (2.34) for

the limit resolvent):

e A bilinear form a"o™ : (HiD (w))> = R and the associated operator AOM on L2 (w),
analogous to agom and ﬂgom of Part A, Section 2.2.2.1 (notice that here the situation

is simpler since necessarily a = 0);
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e A scalar Zhikov function 3., analogous to 35 of Part C, Section 2.2.2.1, so similarly

to (2.2.2.1) we have
Boo = 0,33

o A set 6(App ), analogous to 6 (Apop s);
e The operator Aso on {012 x L2(w) + L2(Q x Yo; R3) defined via the bilinear form
f00((0,0,0) +1,(0,0,0)" +€) = alo™(b,0) + / 00,00 (12, €),
Q

oot (0P X 2, () + Vo, @x V) > R.

Similarly to the regimes discussed above, a suitable compactness result is proved.

Proposition 2.2.26. Let 6 = oo, uj, = gph, T = 2. The following statements hold:

1. There exists C > 0, independent of h, such that for a sequence (f&")ps0 € L*>(€;R?)

of load densities and solutions u®h to the problem (2.6) one has

-2 2 2
0 2a, @ u) + w2, < ClLF 2,

2. If

limsup (h~ap, @ u) + 1}, ) < oo, @)oo € Hi (URY),
h—0

then there exist functions a € H;,D (w;R?), be H%D(w), i eV(QX%Y)), CeCol(X

Y) such that (up to subsequence)

= a® + i, a®,a e Hy (GR), i™|gn =0,
1

2

L n n n n n
1l — (a1() — x3015(%), a2(%) — x3920(2),b(2)) ",

o dr-2
ugh (.X)

i(x,y), (2.32)
-1 ~c dr-2 ~ 2 ~

B! sym Vi (x) = ¢ (sym V(%) - x3V2b(3) ) + C(x.y),
gpsym Vi (x) a2 sym¢ (Vyit(x, y)) )

3. If, additionally to 2, one has

lim (772, @ u) + |12, ) = 300((0,0,0)T +it,(0,0,0) T +2) +11(0,0,5) T +ali2,.
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where Q4 is defined in (2.2.2.3), then the strong two-scale convergence
w L2,0,0,0) +i
holds.
The following theorem provides the limit resolvent equation.

Theorem 2.2.27. Let 6 = oo, u, = eph, T =2 and let the sequence of load densities satisfy

the following convergence:
c dr-2 2 3
[fr——fe L (QXY;R). (2.33)

Then the sequence of solutions to the resolvent problem (2.6) converges in the sense of
(2.32) to the unique solution of the following problem: Determine a € HYID(w;Rz), be

H3 (w), it € V,00(QX Yp) such that
a=0,

L [ comaigznge) : viy(s) e+ / (P0)B(R) + (poiiz)(D) 63() d5

w w

= / (F® (R ds Vo3 e H (w),

/ Co(y)sym¢(Vyii(x,y)) : syme(V,E€(y)) dy + 4 / PR E () dy + 4 / poit(x,y) - E()dy
Yy

Yo Yo

Z/f(x,y)-éc:(y)dy VEEH(I)(Y();R3), a.e. x € Q.
Yo

(2.34)

If strong two-scale convergence takes place in (2.33), then one additionally has
P dr-2 T .
u’(x)—(0,0,b)" +a(x,y).

Remark 2.2.28. The limit resolvent equations exhibit several differences between the
regimes discussed: beside different effective tensors (this also happens in the moderate-
contrast setting, see, e.g., [49] in the case of nonlinear von Kadrmdn plate theory), one
has different kinds of behaviour on the inclusions: in the regime & ~ gj, the inclusions

behave like three-dimensional objects, while for 6 = 0 they can be seen as small plates.
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Furthermore, different scalings of load densities are required in different regimes, which
does not happen in the case moderate contrast. Finally, the case ¢ = 0 has an additional
effective parameter x; when « € (0, 00) the elastic energy only resists to oscillatory (spatial)

motion (i.e. oscillations on the level of periodicity cells) in the out-of-plane direction.

2.2.3. Limit spectrum

In this section we will use the above resolvent convergence results to infer convergence of
spectra of the operators Ag,. As we shall see below in the proofs of the spectral conver-
gence, one does not need to apply different scalings to different components of external
loads, and thus only simplified versions of the limit resolvent equations will be necessary.
Also, the presence of a spectrum of order 4% implies that any other scaling will cause the
limit set to be the whole positive real line (see [14]). Thus, for the case when uj, = g, in
(2.1.1), in order for the limit spectrum to have a “band-gap” structure we are forced to
restrict ourselves to the “membrane” subspace L>™™, which is possible under Assump-
tion 2.1.1 (1) concerning material symmetries. Otherwise, for the same case, the limit
resolvent captures only the order-one part of the limit spectrum. This is consistent with
the standard result that the strong resolvent convergence only implies that the spectrum of
the limit operator is contained in limit spectrum for A, , while an additional compactness
argument is necessary for the opposite inclusion (see, e.g, [71]). In our setting, compact-
ness of eigenfunctions is lost when passing from the spectrum of order 4> (or order-one
spectrum for the restriction to L>™™P) to the order-one spectrum for the full operator, as
the transversal component of an eigenfunction would converge only weakly two-scale.
Under Assumption 2.1.1, for the membrane scalings of Part B of Section 2.2.2.1 and
Parts A of Sections 2.2.2.2, 2.2.2.3, the resolvent equation can be restricted to the invariant
subspace L>™™P_where the solutions happen to be compact in the strong topology, see
Corollaries 2.2.11, 2.2.20, 2.2.25. This compactness property enables one to prove the
convergence of spectra of order one for this restriction. Notice that in the regime h <«
ey, there are different types of limit resolvents (distinguished by different values of the
parameter k) when Assumption 2.1.1 is not satisfied. In this regime, the convergence of
the third component of the displacements is only weak two-scale, which is the reason why

we do not invoke different resolvent limits in the analysis of the convergence of spectra
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in the mentioned regime. However, we will use this information in our study of the limit

evolution equations.

Remark 2.2.29. For the case of spectra of order h2, in order to be able to obtain limit
spectra with band gaps, one needs to consider different scalings of the coefficients on
high-contrast inclusions. This motivated us for the analysis of this situation in Part C of

2.2.2.1 and Parts B of Sections 2.2.2.2, 2.2.2.3.

2.2.3.1 Preliminaries on spectral convergence

The Lax-Milgram theorem (see [51]) implies that for each f € L2(Q;R3) the equation
Agu=f
has a unique solution u € H}D (Q;R?) understood in the weak sense. The operator
. 72(0-13 1 (0-R3 o
Te, : L°(CGR) = Hp (RY), Ty, f =u,

is compact due to the compact embedding H%D(Q;Rj’) < L2(Q;R3) (this compactness
will be lost in the limit problem, except for the first case analysed). Therefore, 7, has
countably many eigenvalues forming a non-increasing sequence of positive numbers con-
verging to zero, the only remaining element of the spectrum 7, . Therefore, the spectrum
of A, consists of eigenvalues ordered in a non-decreasing positive sequence A," that
tends to infinity.

In what follows, we are interested in understanding the relationship between the spec-
tra of Ag, as h — 0 and eigenvalues of the limit operators discussed in Section 2.2.2. To

this end, the following standard notion of convergence will be referred to throughout.

Definition 2.2.1. We say that a sequence of sets S (e.g. S, = 0(Ag,)) converges in the

Hausdorff sense to the set S if:
e (Hp) For any A € S, there exists a sequence of Aes, convergent to A (as h — 0.)
e (H,) The limit of any convergent sequence of A" € S, is an element of .

For various scalings of Section 2.2.2, we will discuss the convergence in the Hausdorff

sense of o(Aj,) to the spectrum of the corresponding limit operator.
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The first property of Hausdorff convergence of spectra is normally a direct conse-
quence of the strong resolvent convergence, while the second property requires the com-

pactness of the sequence of eigenfunctions in an appropriate topology.

2.23.2 Asymptotic regime 6 € (0, o), scaling 7 =2

In this section we will analyse the limit spectrum of order 4> for ei-scaling of the coeffi-
cients in the inclusions. We will show that the high-contrast has no effect on the limit, in
that the (scaled) limit spectrum is of the same type as for the ordinary plate (i.e. homoge-
neous or with moderate contrast), in particular the limit operator has compact resolvent.
This is precisely the reason why we analyse this combination of scalings of the spectrum
and the coefficients only for the asymptotic regime i ~ g, (i.e. § € (0, 00)).

On the one hand we would like to show that in the case of an ordinary plate the re-
solvent approach can also provide information about the convergence of spectra (alterna-
tively to, say, using Rayleigh quotients), and on the other hand we aim at demonstrating
that in the mentioned case the limit problem does not exhibit spectral gaps and thus a
different scaling of the coefficients is required for them to appear.

The following theorem provides the relevant result concerning spectral convergence.

Theorem 2.2.30. Let lim,_,gh/e, =6 € (0,00), up = €. The spectra O'(h'zﬂgh) con-
verge in the Hausdorff sense to the spectrum of ﬂg’hom, as h — 0, which is an increasing
sequence of positive eigenvalues (Asn)nen that tend to infinity, each of finite multiplic-

ity. More precisely, if by A;" we denote the n-th eigenvalue of Ay, (by repeating each

eigenvalue according to its multiplicity), then

W28 — Asn, h—0,

b,hom

where As,, is n-th eigenvalue of A 5

(again repeated in accordance with multiplicity).
Furthermore, for any fixed n and any choice of normalised eigenfunctions with eigenval-
ues A", there is a (h-indexed) subsequence such that the corresponding eigenfunctions

converge, as h — 0, to an eigenfunction with the eigenvalue s, of the limit problem.
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2.2.3.3 Asymptotic regime ¢ € [0, ), scaling u;, = &,, 7=0

In this section we analyse the operator Ay, in the space L>™M°(Q;R3). In the regime
§ = 0 we require that the component Yy has C'! boundary. We define the following

generalized eigenvalue problem: Find 4 >0 and a € H)I,D (w,R?) such that

/ CPemb sym Via(%) : sym Vip(R)di = / B (Da() - p()dR, Vg € Hy (w3 R).
w w

(2.35)

(In the case § = 0 we put Crlnemb’r instead of C"®™_in the case when 6 = co we put C™emP-
instead of C™MP gee Section 2.2.1 for the relevant definitions.) The following theorem
5 g

contains the spectral convergence result for the regime considered here.

Theorem 2.2.31. Suppose lim,_oh/e;, =06 € [0,00), uy, = &, and let Assumption 2.1.1 (1)
be valid. The set of all 1 > 0 for which the problem (2.35) has a non-trivial solution
ae H;D(w;RZ) is at most countable. The spectra of the operators Ay, converge in the

Hausdorff sense to the spectrum of As, and one has

o(As) = 0'(52{00’5)' U{Ad > 0: The generalized eigenvalue problem (2.35) is solvable.}.
(2.36)

Additionally, under Assumption 2.1.1(2,3), the matrix ﬁglemb(/l) is scalar and

O'(ﬂé) = O'(ﬁOO,&)’ U {/l >0 :ngleinb(/l) c O.(ﬂgnemb)} )

Remark 2.2.32. It was shown in [31] that each non-empty interval of the form (@, @,+1),
n € N, contains a subinterval (@,, @), ®, < @ < @,+1 in which both eigenvalues of the ma-
trix ﬁg‘emb are negative, a subinterval (e,f), @ <8 < @,+1 In which one of its eigenvalues
is negative while the other is positive, and the interval (8,®,+1) in which both its eigen-
values are positive. It follows, as is explained in [31], that in the interval (@,,®) there
is no wave propagation in any direction, while in the interval (@,£) one has evanescent
solutions in the direction of the negative eigenvectors, and finally in the intervals (8, @y+1)
all directions allow wave propagation.

Under Assumption 2.1.1 (1-3), the above spectral structure can be quantified in a

straightforward way and @, < @ = 8 < @,+1, see [70,71]. In this case the matrix Bg‘emb is
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scalar and

lim_BTmP(2) = —co, lim BImP(Q) = +oo,
- 7 _)&);H ’

where /:i’g’]ﬁ“b is one of the two equal diagonal elements, and the limits are taken as A
approaches @, on the right and on the left, respectively.

The above properties of the limit spectrum are relevant in a variety of applications,
such as noise suppression. Being peculiar to wave propagation in high-contrast media,

they are often referred to as “high-contrast effects”.

2.2.3.4 Asymptotic regime ¢ € (0, c0), scaling u;, = 5h, T = 2 and asymptotic regime

0 =0, scaling uj, = 8%, T=2

For the regimes considered here, we show that high-contrast effects occur in the limit as
h — 0. As before, when 6 = 0 we assume that Yo has C!»! boundary. We have the following

theorem.

Theorem 2.2.33. Let limy_0h/e;, = 6 € [0,00). In the cases 6 =0, § > 0 we assume that
U = 8}21 and uy, = gph, respectively. The spectrum of the operator h_zﬂgh converges in the

Hausdorff sense to the spectrum of the operator As, given by

. F(Aps)U{1>0:Bs() € r(A™}, 5 (0,00),
o(As) =

6 (Ap)U{1>0:Bo(d) € (AP}, 5=0.

Remark 2.2.34. The operator ﬂg’hom is non-local when Assumption 2.1.1 is not satisfied.
It is not known to us whether this has been commented on in the existing literature, even

in the case of a homogeneous plate.

2.2.3.5 Asymptotic regime 6 = o

As we see below, in the case § = oo, the limit spectrum has points outside spectrum of the
limit operator. From the intuitive point of view, the effective behaviour is similar to that
of a cuboid with disjoint soft inclusions in the shape of long thin rods arranged parallel to
each other and connecting two opposite sides of the body.

In order to formulate the result of this section, we define:
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An operator as the one defined via the bilinear form

2
Qstrip = / Co(y)sym Vu : sym Vvdxzdy, Qsyrip - (Héo(Rx YO;R3)) —R;
RxYy

An operator At on LZ(R(J)r x Yo;R?) as the one defined via the form

strip

strip .
0

An operator f[s‘trip on LA(Ry x Yp;R?) as the one defined via the form

strip
RyXxYo

Yo;R3), whenever Assumption 2.1.1 (1) holds.

at . = / Co(y)sym Vu : sym Vvdxsdy, asmp (H(I)O(R+ X Yo,R3)) - R;
R*%Yy

a.. = / Co(y)sym Vu : sym Vvdxzdy, asmp (H(l)O(R_ X YO,R3)> - R.
o XY

The restriction f(smp of the operator jlstrip to the membrane subspace L>™™P(R x

First, we give characterisations of the limit spectra of folgh and A_,, which in this

regime play significant roles.
Theorem 2.2.35. Suppose that €, < h. Then one has

hm a(ﬂgh) = hm O'(ﬂg, )= O'(ﬂgmp) U O'(ﬂ yu 0'(?(

strip strlp) '

Moreover, one has
U'ess(j(:trip) = O'(ﬁstrip),
and there exists mgy > 0 such that
O'(ﬁstrip) = O'ess(ﬁstrip) = [mg, +00).
Under Assumption 2.1.1 (1), one additionally has
o (ﬂsmp) o (‘?o{s_trip) ) O'(ﬁstrip) =0 ess(ﬂstrip) = O'(ﬁstrip) .

Next we provide a characterisation of the limit spectrum for Ay, .

(2.37)

(2.38)

(2.39)

Theorem 2.2.36. Let e, < h, uj, = € and v = 0. The set of all 1 > 0 for which the problem

(2.35) obtains a nontrivial solution a € H, ! (a)'R2) is at most countable. The spectra of

ﬂgh converge in the Hausdorff sense to O'(ﬂ YU (Aw), where

strip

o(As) = O'(ff;l()()’oo)/ U{Ad > 0: The generalized eigenvalue problem (2.35) is solvable.}.

(2.40)
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Under Assumption 2.1.1(2, 3), the matrix BT°™() is scalar and

(o) = (Anp.00) U {1> 0 BTM0(2) € or(AT™) | (2.41)

Furthermore, one has o(Apo.c0) C G(ﬁ;rip)'

Theorem 2.2.37. Suppose that g, < h, u, = eph, T =2. The spectra of h‘zﬂgh converge
in the Hausdorff sense to 0'(?01+ yU O'(ﬁ_ YU (As) and

strip strip

T(As) = F(Ago,c0) U {4 > 0 Boo(A) € 0 (AR™ }.

Remark 2.2.38. As is shown in Lemma 2.3.2, the set limy_ (T(&;lgh) (appropriately
scaled) is always a subset of the limit spectrum. In the regime ¢ = oo, the operator has a
scaling factor &;,/h in front of the derivative in x3. This allows eigenfunctions to oscillate
in the out-of-plane direction (and thus weakly converge to zero). This is the reason for

so-called ““spectral pollution” (see e.g. [2]).

2.2.4. Limit evolution equations

It is expected from the results of Section 2.2.2 concerning the resolvent convergence for
the operators A, that the limit evolution equations have the form of a system that links
the behaviour on the stiff matrix and the soft inclusions by means of coupled solution com-
ponents, which can be viewed as macroscopic and microscopic variables. Representing
the system in terms of the macroscopic component only leads to a non-trivial effective de-
scription exhibiting memory effects. This is one of the reasons what makes high-contrast
materials interesting in applications.

The present section aims at providing a detailed study of the consequences of the form
of the limit resolvent equations obtained for different asymptotic regimes in Section 2.2.2
on the limit evolution equations in the corresponding regimes. On the abstract level, this
connection has been analysed in [53]. A key fact used in that paper is that the resolvent
is the Laplace transform of the exponential function of the operator of the wave equation,
obtained from an equivalent system of equations of first order in time. In what follows, we
adjust our analysis to these general results, in order to account for the particular features of

our setup due to dimension reduction in linear elasticity. As we see below, in this context
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different scalings of spectra imply different scalings of time (i.e. bending waves propagate
on a slower time scale than in-plane, “membrane”, waves). As far as we know, the effect
of considering different time scalings has not been addressed in the literature; see [54]
for the analysis of limit evolution of isotropic homogeneous plates for the commonly
considered “long” time scaling of order 4!,

It should also be noted that some load density scalings prevent us from using the
results of [53], in which case separate analysis is necessary to show weak convergence
of solutions (see e.g. the proof of Theorem 2.2.39). This happens for the case 7 = 2 (i.e.
for long times of order #~') in the regimes & € (0,00), up = €, and 6 = 0, yp, = si. For
these, to prove weak convergence we use the Laplace transform directly, following the
same overall strategy as the one adopted in [53] in the abstract setting, see Apprendix.
However, due to the said load density scalings, a modification of the results of [53] is
required, in order to account for the specific structure of the right-hand side of the limit
problem; this is also discussed in Appendix, see in particular Theorems 4.5.4, 4.5.15.

The starting point of this section is the family of Cauchy problems (4 > 0)

Ou™ () + h™" A, u (1) = (1),
(2.42)
u?(0) =uy', du(0)=u",
understood in the weak sense. The term f*(¢) represents the load density at time ¢ > 0. For
each h, we suppose that %" is provided on the time interval [0, T},], Tj, > 0. The functions
ugh, u‘f" are the initial data for the displacement and velocity fields, respectively. We make

the following assumptions:
ul' € DALY = HY, (URY, ' e AR, e LX(0,T; LX(:RY),

In what follows, we shall analyse the “critical” cases T =2 and 7 = O for the time scal-
ing. Conditions for well-posedness of the problem (2.42) can be found in Appendix, see
Section 4.5.

In conclusion of this section, we reiterate that there are two ways to interpret the scal-
ing h™" of the differential expression in (2.42): by scaling the density of the material
(with A7) or by introducing the new time scale 7 = t/h™/?. We adopt the latter interpreta-

tion throughout. Multiplying (2.42) by A" and replacing ¢ by 7, we obtain the family of
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problems (k2 > 0)

Ouh (H+ ﬂahush (5= fgh (),
(2.43)

u(0) =uy', Ou(0)=al",
where £ (7) := h" for(h77), it;" := h"/*u’". Thus discussing the solution of (2.42) on a time
interval [0, 7] (with an appropriate scaling of the load density) is equivalent to discussing
the solution of (2.43) on the time interval [0, T/h™/?] (with the corresponding scaling of
the loads). While from now on we shall work in the framework of the equation (2.42),
which is convenient from the mathematical point of view, it is the equation (2.43) that
represents the actual physical wave motion, which thereby takes place on an appropriate

time scale of order h~7/2.

2.2.4.1 Long-time behaviour for the regime 6 € (0,0), up, =&, 7=2

The case analysed here resembles the standard (moderate-contrast) plate model. The

following convergence statement holds for the evolution problem.

Theorem 2.2.39. Suppose that § € (0,00), uj, = &, T =2. Let (u®")y~9 be a sequence of

solutions to (2.42) and assume that

(hOufe) o0 € L0, TT; LA(QXY)) bounded, o= 1,2, (2.44)
o S22 F e 12(10, T LA QX Y:RY)), (2.45)

uh L2 u0(%) € (0P X HE (w), (2.46)

u L (x,y) € LAQX YR, (2.47)

and assume additionally that

. -2 &p & Ep2
limsup (h ag, (" uy") + ||u0h||L2) < 00,

h—0

Then one has

al(t, )AC) — X3(91b(l‘,f€) + Lotl(l‘, x,y)
t,dr-2

U (1, &) — x300(t, %) + i (1, x,y) | »

b(z, X)

9 ush t,dr-2
t

(0,0,8,6(1, %)) ",



where a € C([0,T]; H,, (w:R?)), be C([0,T]; Hy, (w)), it € C([0,T]; L*(w; Hy(Ix Yo;R?)))
are determined uniquely by solving the problem
Aub(1) + AT (1) = Fo (f(1)),  (see (2.10)) (2.48)
0(0) = up3 € Hy (w),  8;5(0) = S 1(Psoot1)3 € L*(w),
a(r) = a®@ + 0O (see (2.12)) (2.49)
Aoostt(1, %,) = (f (£, %,),0)T, (2.50)

so that 8;b € C([0,T]; L*(w)). One also has

T
lim sup / (1720, @ (0),u (1) + |l D)I12, ) dr < oo.
h—0 0
If one assumes strong two-scale convergence of load densities
,dr—2
Tf* <= (0,0.0)7 € L2 ([0. T LA (@i ),
(2.51)

horfer — 0 strongly in L* ([0.T1LA@)) @ = 1.2,
strong two-scale convergence of the initial data in (2.46), (2.47), where (u1)« =0, u13 €

L[*(w), and the condition

lim (h2ag, (uf uf) + 7)) = a3 (6(0), 5(0)) +[[b(0)]2

h—0 L
then one has
t,dr—2 t,dr—2
71— (a8 = x3015,0} — x30,0,0)7, B ——(0,0,8,0)". (2.52)

Moreover, the following convergence of energy sequences holds for all t € [0,T] :
lim (12, 0,1 (0) + 1 01, ) = (660, 50) + IO

Corollary 2.2.40. Suppose that for each h > 0, a surface load density G € L*([0,T1; (H}D (Q;R¥)")
is added to the right-hand side of (2.42). We assume that G is generated by an L*-

function g (representing the “true” surface load) so that

GE(g")(0) = g0dx,  @eH} (R,
wx{=1/2,1/2} b

where an obvious shorthand for a sum of two integrals over w is used, and make the

following additional assumptions on g° :
midgst < L2 ([0,T): L2 (wx {~1/2,1/2} x Y:R?) ) is bounded ,
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t,dr—2

mhg ——— g € L}([0.T): L2 (wx {~1/2,1/2} x Y:E?) ).

Then a variant of Theorem 2.2.39 holds, where in the limit equations (2.48) the right-
hand side has an additional term Qé( g€ L*([0,T7]; (H%D(w))*), represented by a limiting

surface load L* vector function g = (g1,82,83) so that

G5(@)(1)(6) = / ((g3(t,%,~1/2,) + g3(1,2,1/2,))) O(R) d&

w

+ <g1(t,)?,—1/2,~)—g1(t,)?,1/2,~)>)310()?)d)?

| =

+

| =

/1
/ ((82(1,2,-1/2,) = g2(1,%,1/2,"))) B20(%) d %

+ Cgom (symV;Cag*(t),O) : (0, V)%H(?AC)) dx, 0 (H%)(w))*'

E\

In the above formula, for every t € [0, T, the function a8+ e H;D(a);Rz) is the solution
to the problem

/anemb symVza8-(2) : symV:0.(%)d% = G3(g,)(t)(0:) Vb€ H)I/D(‘“;Rz)’

w

where the functional Q(zs( g2.)(?) is defined by the formula

G5 (g.)(1)(6.) = / ((g1(6,2,~1/2,) + g1(t,2,1/2,-))) 61 d%

w

+ / ((g2(t,2,-1/2,) + g2(1,%,1/2,))) 02d%, 6, € H) (w;R).

w

Also, the right-hand side of (2.49) contains a8 e 12(]0, T];H;D(w,Rz)) as an additional
term, while on the right-hand side of (2.50) one additionally has G (g,)eL*(0,T); (Héo(l X
Yo;R*)*) defined by

G (g)(t,%)(&) = / g.(,%,)£.(),  E€HMIXYyRY),  t€[0,T], %ew.
{=1/2,1/2}xYy

Remark 2.2.41. For each of the other regimes studied, a statement analogous to Corollary

2.2.40 is valid.

Remark 2.2.42. The statement of Theorem 2.2.39 can be strengthened as follows. The
boundedness and convergence conditions (2.44) and (2.45) can be replaced by the re-

quirement of boundedness and convergence, respectively, of the sequences (7, f*");=0



and (h0,fiM)0 in the corresponding spaces of L' functions on [0, 7T]. Under this weaker
assumption, a still stronger version of (2.2.39), (2.2.39) holds, where the weak conver-
gence in L? spaces on [0, T] is replaced by a weak* convergence in the corresponding L*®
spaces on [0, T'], see the comment following Definition 4.3.2.

Similarly, the L? convergences (2.51) can be replaced by the weaker conditions

afo 22 0,0, /)T e L) (10.71: LX (@ RY))

hd,f7 — 0 strongly in L' ([0,T): LX), =12,

. t,00,dr—2 X
to obtain a strong two-scale convergence —— for both sequences in (2.52); see the

same comment at the end of Section 4.3 for the definition of w)

These stronger versions of the claims in Theorem 2.2.39 follow immediately from a
priori estimates, see also Remark 4.5.16, Remark 4.5.17, however we choose to remain in
the L? setting.

A version of the discussion within this remark applies also to Theorem 2.2.47, Theo-

rem 2.2.51, and Theorem 2.2.53.

Remark 2.2.43. The limit equations (2.48)—(2.50) are obtained on a long time scale. The
stiff component behaves like a perforated domain, and there is no coupling between its
deformation and the deformation of the inclusions. The deformation of the inclusions and
the even part of the in-plane deformation of the stiff component behave quasi-statically
(i.e. without an inertia term), as a consequence of small forces slowly varying in time.
(Recall that the physical equation is (2.43) with the right-hand side ™ subject to an ap-
propriate version of the condition (2.44).) Since there is no coupling in the limit between
the inclusions and the stiff component, there are no memory effects in the time evolution.
However, it is expected that high-contrast effects would be seen in higher-order terms
(“correctors”) of the deformation, which we do not pursue here.

Without making additional symmetry assumptions about the material properties, the
limit operator for the evolution of the out-of-plane component is spatially non-local, due

the coupling between the in-plane and out-of-plane components.

Remark 2.2.44. We are not able to obtain pointwise in time convergence without ad-

ditional assumptions on the load density. This is expected (replacing weak two-scale
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convergence with strong two-scale convergence) also as a consequence of the analysis

presented in [53].

Remark 2.2.45. The influence of in-plane forces on the limit model is seen through
their mean value across the plate, represented above by an integral over the interval
I =1[-1/2,1/2], as well as through the mean value of their moments over the same in-
terval /. In the case of planar symmetries, see Assumption 2.1.1 (1), moments of in-plane
forces have the same effect on the limit deformation as out-of-plane forces, i.e., they pro-
duce out-of-plane displacements. This is expected from the physical point of view and is

standard for plate theories (see, e.g., [23]).

Remark 2.2.46. Considering whether different components of the load density should
be scaled differently is important from the modelling perspective. Indeed, if its in-plane
and out-of-plane components had the same magnitude, one would not see the effects of
the in-plane components in the (leading order of the) deformation. On the other hand,
it is expected that sufficiently large in-plane loads do influence the limit deformation.
However, for some of the asymptotic regimes analysed here the effects on the in-plane
and out-of-plane loads on the limit deformation are similar, in which case these loads are
set to have the same magnitude in the equations. This kind of situation also occurs in the
context of linear elastic shells, see [24] for shells as compared to the case of linear elastic

plates [23].

2.2.4.2 Real-time behaviour for yu;, = €5, 7 = 0 in different regimes

Here we discuss a class of evolution problems with “non-standard” effective behaviour,

which manifests itself, in particular, through time non-locality.

Theorem 2.2.47. Suppose that u, = e, T =0, 6,k € [0,00], and consider the sequence

(U®M)p=0 of solutions to the problem (2.42), assuming that

£ F e 1210, T L2 QX Y3 RY)), (2.53)
w2 (x, ) € Vi g (X ¥) + Vo o(@ X ¥p),
u Ly (x,y) € LAQX Y3 R), (2.54)
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Assume also that

. & & &
limsup (ash(uoh,uoh) + ||u0h||Lz) < 00.

h—0
Then one has
dr—2 i
w2 0, 0)T + i, (2.55)
,dr—2
a2 6,((0,0)" +id), (2.56)

where (a,b)T +it € C([0,T]; Vi sx(wXY)+ V2 5(QX Yy)) is the unique weak solution of the

problem

O ((a,0)" +1) (1) + As ((a,0)" +1) (1) = Ps,e f (1),
((0,0)T +1)(0) = uo(x,y), 9;((0,0)" +1)(0) = Psui1(x,),

such that 0; ((a,b)T + u) € C([0,T]; Hs«(Q2x Y)). Furthermore, the following limit energy
bound holds:

T
limsup/o (agh (w® (1), u (1)) +||u8"(t)||iz> < 0o,

h—0
If strong two-scale convergence holds in (2.53)—(2.54) with f € L*([0,T1; Hs(QXY)),
u € H5  (QxY), and

Eh o €h

lim (ae, (uf el) + 1112, = a5, (((0,0)T +i)(0), ((0,0)T +@)(0) + | ((0.5)T +22) (O)]| 7.

then strong two-scale convergence holds in (2.55)—(2.56). Moreover, one has

lim (@, (™ (0.0 (0)) + ™ )12 ) = a6, (0,007 +)(0), (0,07 +)(1)) + | ((0. 1) +i) (o).
foreveryte|[0,T].

Remark 2.2.48. The models obtained here are degenerate with respect to the out-of-plane
component of the displacement. Indeed, in the static case it is substantially easier for the
plate to bend than to extend in-plane; however, in the dynamic case in real time, for the
forces of magnitude one, there is no elastic resistance to out-of-plane motions, which are
therefore entirely due to external loads.

It is also worthwhile noting that in the high-contrast setting out-of-plane loads f =

(0,0, f3) for which ?3 = 0 do produce some in-plane motion in the case when § € (0, oo],
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as a consequence of the coupling between the deformations on the stiff component and
on the inclusions, which is not possible in the setting of homogenisation with moderate
contrast. (In the regime ¢ = 0, inclusions behave like small plates and thus only the effects
of the average loads ? in the variable x3 are seen in the limit.) On a related note, from the
point of view of quantitative analysis, it is not expected that the effect elastic resistance to
out-of-plane motions disappears entirely, as it may manifest itself in lower-order terms,
see [20] for a quantitative analysis of the resolvent equation for a thin infinite plate in

moderate contrast.

Remark 2.2.49. To the best of our knowledge, dynamic models representing ‘“real time
behaviour” have not been discussed in the literature, even in the case of an ordinary plate.
Certainly, these models are not as physically relevant as those in which elastic resistance
to out-of-plane motions is observed. This might be due to the fact that for most materials
mass density is much smaller than Lamé constants (in dimensionless terms). However,
since these models exhibit high-contrast effects, which does not happen when the time
is scaled (unless the coefficients on the inclusions are scaled in a non-standard way in
relation to the coefficients on the stiff component), we find it is important to discuss them

also.

Remark 2.2.50. In the limit problem, due to the coupling of the deformation on the
stiff component, given by (a,b)", and the oscillatory part of the deformation on the soft
component, given by #, there are memory effects (under the assumption that the micro-
variable # is unknown). The emergence of these memory effects can be seen as follows.
If one would like to know the deformation on the stiff component at time 7', given by
(a,b) "(T'), one would not only require the initial data (deformation and speed) on the
stiff component at an “initial” time #9 < 7 and loads f on the time interval [#,T], but
also the value of the micro-variable & and its speed at time #y. It one cannot measure this
micro-variable (which is a physically meaningful scenario), then the corresponding degree
of freedom becomes “hidden” internally, which results in a non-local time dependence

macroscopically.
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2.2.4.3 Long-time behaviour for 6 € (0,00], uy = eph, 7=2

Here we demonstrate that by varying the contrast between material properties of the two
components (“stiff” and “soft”), the evolution problem may be shown to exhibit time

non-locality also in the regime of long times.

Theorem 2.2.51. Suppose that 6 € (0,00), up = eph, T =2, and let (u®")~q be the sequence

of solutions of the problem (2.42), assuming that

,dr—2

[T f e 20, THLHQX VRY)), 2.57)
dr-2

Ul = ug (%) +dto(x,y) € {0)> x H2, () + Vo, 5(Q X Yp),

' L (x,y) € LAQX YR, (2.58)

Assume also that

limsup (agh(ugh,ugh) + ||u8"||L2) < oo,

h—0
Then one has
Jdr—2 .
u® 227200,0,0) +it, (2.59)
,dr—2
O 2=5,((0,0,0)T +i), (2.60)

where (0,0)T +1 € C([0,T];{0}* x H%D (w) + V25(Q % Yp)) is the unique weak solution to

the problem
0 ((0,0,0)™ +2) (1) + Az ((0,0,0)T +&) (1) = (S 2(Psco f (D)1, S 2(Ps o f (D)2, (Poo f(1)3)
((0’ 07 b)T + lol) (O) = uO(an)a al‘ ((0’ 07 b)T + lol) (0) = (SZ(P5,OOu1)1 ) Sz(P5,OOu1)2a (P(5,00u1)3> T(x’y),

such that 0, ((0,0, b+ u) € C([0,T]; H5.00(Q2 X Y)). Furthermore, the following limit en-

ergy bound holds:

T
lim sup / (20 (0,4 (5) + | (DI, ) < oo.
h—0 0

If strong two-scale convergence holds in (2.57)—(2.58) with f € L2([0, T]; Hs00(2 X
Y)), uy € H50(QXY), and

lim (720, (@l u) + 12, ) = 25 (((0,0,0)T +)(0), ((0,0,0) T +i)(0)) +[|((0.0,6)" +i)O)|[,,

h—
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then strong two-scale convergence holds in (2.59)—(2.60). Moreover, for every t € [0,T]

one has
lim (™ %a, (™ (0, (1) + ™ O )
= 5(((0,0,0)" +a@)(#),((0,0,6) " +@)(1)) +|((0,0,) " + i’t)(t)||i2.
Remark 2.2.52. The above limit model exhibits memory effects, due to the coupling of
the deformations on the stiff component and on the inclusions, similarly to what happened
in Section 2.2.4.2. As before, see Remark 2.2.43, in the case when ¢ € (0,00) and no

additional symmetries are imposed on the material properties, the limit macro-operator

As is spatially non-local.

2.2.4.4 Long-time behaviour for 6 =0, y;, = z—:i, T=2

Here we discuss an analogue of the result of the previous section for the case 6 =0, in
which we need to apply different scalings to the in-plane and out-of-plane loads. As
already emphasized in Sections 2.2.2.2 (resolvent convergence), 2.2.3.4 (limit spectrum),

in this regime we require that Y, have C!"! boundary.

Theorem 2.2.53. Suppose that 6 =0, uj = si, T =2, and let (u®")~o be the sequence of

solutions to the problem (2.42), assuming that

((/en)dfa) no € LX(0,TT LA (QXY)) is bounded, — a=1,2,

e S Y2 fe 120, T LA QX YV RY)),
uf T uo(2,9) € (0P < B (@) + 0P X L(@X Yol (2:61)
u? (1) 2w (x,y) € LAQX VR, (2.62)

and assume additionally that

limsup (7 ~2ag, (g uf") + g1l 2 ) < .

h—0

Then one has

I?tl (t’ 55,)’) - x3ay1 &3(ta )?’y)
t,dr-2

ﬂgh/hu ﬁz(la)%,)’)_x3ay2&3(t,ff,)7)

b(t, X) + i3(t, X, y)
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,dr—
O’ b2 (0,0,8, (b(z, %) + i13(2, £,))) n

where the pair b € C([0,T]; H, (w)), &t € C([0,T; L*(w; H (I X Yo;R?))) form the unique

weak solution of the problem
011 (0+i13) (1) + Ao (0 +113) (1) = Fo(f),  (see (2.25))
(b+i13)(0) = uo3 € Hyp () + LA (X Y0),  8i(b+i13)(0) = POus 3 € L*(w) + L*(w X Yo),

Aooolts(t,%,7) = f.(1,%,), (2.63)

such that 8,(b(t, %) + 3(t, X, v)) € C([0, T1; L*(w) + L*(w x Yy)). Furthermore, the following

limit energy bound holds:

T
lim sup / (120, @ (0, u (1) + |l D)I12, ) dr < oo.
h—0 0

If one additionally assumes that
g, bAr—2 T g2 720, 3 4 72 R3
e £ —— (0,0, )7 € L ([0, T]; LA R) + LA(wx Yo RY) ),
(h/e)dife — O strongly in L? ([0, T];Lz(Q)) , a=1,2,

the two-scale convergence in (2.61) and (2.62) holds in the strong sense with (u1). =0,

ui3 € L*(w)+ L*(wx Yy), and that
. — o o o 2
lim (725, @ u) + el P) = al (b +13)(0). (b + i3)(0)) +]|(b + z3)(O)]] .2
then one has
g, LAr=2 “ o ~ T g, LAr=2 A o N T
u ——(0,0,b(t, %) +i3(t,%,y)) ", O™ ——(0,0,0,(b(t, %) + +it3(1, %,y))) .
Moreover, for every t € [0,T] the convergence
. p— o o o 2
i (h2a, @ (1), u (1)) + [ ()12, ) = (0 +i3)(0). 0+ 3)(0)) + |0+ i) 0|
holds.

Remark 2.2.54. In the regime ¢ = 0 inclusions behave like small plates and thus the cor-
responding deformation satisfies a version of the classical Kirchhoff-Love ansatz. Using

the rationale discussed in Remark 2.2.46, we argue that in order to see the effects of both
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in-plane and out-of-plane components of loads in the limit model, we should scale them
differently to one another.

Similarly to the regime ¢ € (0,00), uy = €, T =2, we impose a restriction on the
time derivatives of in-plane forces, see (2.2.53), which in terms of the “physical” time
corresponds to slowly acting loads. This results in a (partial) quasi-static evolution in
the limit, see (2.63). Furthermore, in order to obtain strong two-scale convergence of
solutions, akin to (2.52), we impose a further restriction that properly scaled in-plane

forces together with their time derivatives, in the spirit to (2.51), go to zero as h — 0.
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2.3. PROOFs

2.3.1. Proof of Proposition 2.2.4

Proof. We provide the proof for the case ¢ € (0,0); the other cases are dealt in a similar
fashion, bearing in mind Remark 2.2.2 and Remark 2.2.3.

Consider the minimiser ¢ € H!'(I x Y;R?) in the variational formulation (2.2). Then

RZXZ

for arbitrary symmetric matrices A, B € R one has a lower bound for elastic stored

energy density, as follows:

2

dx;
L2(; R3)

Chom(A, B): (A,B) > C / HL(A — x3B)+sym V., o(x3.")
1

) (2.64)
2 C/ HA - XSB + Symvy IP*(X:;, ')HLZ(YI ;szz) dX3,
1

due to the coercivity of the tensor C; representing the elastic properties on the stiff com-
ponent. In order to eliminate the corrector ¢, from the bound (2.64), we first con-
struct an extension for it from Y; to the whole cell Y for each x3 € I. To this end,
we first define the symmetric affine part of an arbitrary H' function, as follows. For

E=(£,6)" € H'(Y1;R?), we consider the function é € H(Y;R?) defined by

é0)5= f g0+ F s,y (- fav).
g

gl Y

Notice that the operator * is linear and satisfies the following properties:

V,E = symV, = ][ symV,£()dy, ][ £y = ][ £0)dy.
Y Y Y

”Symvyéan(Y;RM) <I¥l/I¥il ||Symvy§”L2(Y1;R2x2) .
Now we define the extension operator £ : H'(Y;R?) — H'(Y;R?), via
E¢:=EE-§)+¢,
where E is the extension operator from [51, Lemma 4.1], which satisfies the estimate

[sym Vy(Ef)HLZ(Y;RZXZ) < Cllsym VnyLZ(Yl R2X2) -
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It is easy to see that

Hsym Vy(Ef){’iZ(y;RZXZ) S C HSym VnyiZ(Yl ;R2><2) . (265)

Next, consider the function

Y() =(A-x3B)y+¢.0).

Clearly, one has

Ey(y) = E(p, - $,)0) + (A - x3B)y+9,(y) = Ep,(y) + (A - x3B)y.
Furthermore, from (2.65) one has
A 2 2 2
H SYmVy(E‘/’)HH(Y;RM) <C ”Symvy‘ﬁHLZ(Yl g2y =C HA —x3B+symV,p, HLZ(Yl R2X2) -

(2.66)

At the same time, the following bound holds:
) . 2
H Sym Vy(E‘/’)HLZ(y;RZXZ) = H Sym Vy(E‘P*) + (A - x3B)HL2(Y;R2X2)

A 2
= H Sym Vy(EQO*)HLz(Y;szz) + ”A - X3B”i2(y;R2x2) 2 |A - )C3B|2.

(2.67)

Integrating (2.67) over [ and taking into account (2.66) and then (2.64), the claim follows.

|
2.3.2. Proofs for Section 2.2.2
A. Proof of Proposition 2.2.5
Proof. Notice first that using #®" as a test function in (2.6) immediately yields
h_zagh (@, u®") + |l ||i2(Q;R3) <C ||7Thf8h||L2(Q;R3)||7T1/hu8h l2(:r3)- (2.68)

Next, we define #°" by applying Theorem 4.4.1 to extend u®|z; to the whole domain Q
1

and set

8 = G —u,

Furthermore, Theorem 4.4.1 and Lemma 4.4.4 imply

Isym V4|7, < Cag, @,u™), W21 [, + Vit [7, < Ch™>ag, @, u™). (2.69)
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Combining Corollary 4.2.5 with (2.69), we obtain
ey nee™ 125 < 2l i |7, + 2l e |75 < h2ag, @, u). (2.70)

The claim in part 1 now follows directly from (2.68) and (2.70).

Proceeding to the proof of part 2, we notice that the fourth convergence in (2.7) is
a direct consequence of (2.69) and Theorem 4.3.1 (1b). To prove the first and second
convergence in (2.7), we use Lemma 4.2.8 and (2.69). Lemma 4.2.8 (3) now yields the

following decomposition of the sequence & :

—x301b ap
1
Eﬁsh (x)= —x30,b + ap + ‘pgh’
h1b 0

1
5 symV,a®h =1 <symV;Ca - x3V%b> +sym Vi,

where b € HgD(a)), ae H;D(w;Rz), and (Y )0 C H}D(Q;R3) is such that Amy ™ — 0
in L?.

To prove the third convergence in (2.7), we first assume that w has C»!' bound-
ary. By virtue of Lemma 4.2.10 (3), there are sequences (¢*);~0 C H%D(w), (:fh)h>0 C

HILD (Q:R3), (0°M)50 € L2(Q; R¥3) such that
sym Vi = —x30 (V™) +sym V™ + 0,

where

L0, Vo 50, V20%n < C
— U, )?90 — U, ” )ACQD ||L2— s

Eh

¥

- 12 -
g =0, (Vg2 <C,

2

En L_) 0.

o

In view of Lemma 4.3.3 (1) and Theorem 4.3.1 (1a), there exist z € L*(w; H*(Y)) and

l} € L*(w; H' (I x Y;R?)) such that (up to extracting a subsequence)

A dr=2 "
Vi (8) — Viz(%,y),

dr-2

sym V4™ (x) sym Vs §(x,y).
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Introducing the function
—x30y,2(X,y)
e(r.y)i= | —x3dynzRy) | +¥x),
6~ 2(%,y)
we have
symVs@(x,y) = —x3¢(V2z(£,y)) +sym Vs i(x,y),

from which the third convergence in (2.7) follows.

Next we can extend this result to the case of an arbitrary Lipschitz domain. In the
general case we can only conclude that since h! sym V,ii(x) is bounded in L2(Q;RY)

there exists C € L2(Q x Y; R3*3) such that

dr—

! sym Vit (x) L2 t(symVza(®) — x3V3b(2)) +C(x,y).

Take a sequence (wp)nen Of increasing domains with C L1 boundary such that w, C w,
Unenwp, = w. By the preceding analysis we conclude that for every n € N there exists

¢" € L*(wn; H' (I x Y;R?)) such that
Clx.y) =symVy5¢"(x.y) ae. X€wy, (x3.y) €I Y.
Furthermore, notice that

[sym V25" HLz(w”xIxY;R3X3) <ICllz@xyres),  YneN.

Finally, we extend ¢" by zero outside w;, X I. The claim follows from the fact that C5(Q2 < I)
is weakly closed, which in turn is a consequence of Korn’s inequality for functions in
H'(IxY;R3) (see [48, Theorem 6.3.8]).

To prove part 3, we first notice that

lim W2 ag, (W, u®™) = aS(b,b).

Using lower semicontinuity of convex functionals with respect to weak two-scale conver-
gence and the definition of a}, we conclude that sym Vsit(x,y) = 0, a = a® and that C(x, )
solves the minimisation problem (2.2) with A = sym Vza(%) and B = V)%b(fc).

The strong two-scale convergence claim of part 3 as well as Remark 2.2.6 follow from
the strict convexity of the tensors C,, @ = 1,2, viewed as quadratic forms on symmetric

matrices. [ ]
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B. Proof of Theorem 2.2.7

Proof. We choose the test function v in (2.6) to be of the form
h01(X) — hx30163(X)

veh(x) = h0x (%) — hx39205(%) +hepd (x, gih) +hé (x, i) ,

2
63(%)
where 0, € Cl(w;R?), 63 € C2(w), { € CLQCIUIXY;RY)), € € Cl(w; CL (I X Yo; R?)).

The arbitrary choice of { and a density argument imply

//C] 6)) [L (V;Ca — )@V%b) +C(Z, -)} : syme(g Ldydx; =0 aeXx €w,
1Y

from which the effective tensor Cgom is then obtained. Another density argument and
Proposition 2.2.5 now provide the validity of the equations (2.9). The uniqueness of the
solution to (2.9) follows from Lax-Milgram and Proposition 2.2.4, while the last claim
follows by energy considerations or by duality arguments [70, Proposition 2.8], see also

the proof of Theorem 2.2.33. [

Remark 2.3.1. It is not difficult to incorporate surface loads into the statement of Theo-

rem 2.2.7. Namely, if one adds to the right-hand side of (2.6) the term
/ g% 0d3, € H. (Q:R%),
wx{=1/2,1/2} D

where g% € L*(wx{-1/2,1/2};R3) and the integral over wx{—1/2,1/2} represents a sum
of two integrals over w, and assumes that

,dr—2
n.hgght_r_\geLz(wX{—l/z,l/z}xyaR3)’

then using the proof of Theorem 2.2.7 and Remark 4.4.5, one concludes that the limit
equations (2.9) have an additional term

/ (&)(R)-0(R)dx— / (<g*(f€, 1/2,y)) —(g.(X, —1/2,y)>) -V305(X)d3,
wx{=1/2,1/2}

in the first equation and
/y g(5,—1/2,y)- (&1(=1/2,y),&2(~1/2,),0) " + /Y g(5,1/2,y)- (£1172,),E(1/2,),0) " dy,
0 0

in the second equation.
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C. Proof of Proposition 2.2.9 and Corollary 2.2.11

Proof. The proof partially follows the proof of Proposition 2.2.5. Part 1 is obtained im-
mediately by plugging v®" = u®" in (2.6).

Proceeding to part 2, we perform an extension procedure similar to that undertaken in
the proof of Proposition 2.2.5. Using Theorem 4.4.1, we define #®" as the extension of

ughlgsh to the whole domain Q and then set
1

3h — €h _

u = ath —u®h,

Theorem 4.4.1 and Lemma 4.4.4 now imply the estimates (2.69).
Next, we characterise the behaviour of the sequence @#®. To this end, notice that

Lemma 4.2.8 yields the following decomposition of the sequence & :

—X3616 a
a(x) = —x30,0 + ¥ +y%,  symVi® =1(—x3Vib+symVia) +sym Vg™,
h'b 0

where b e H%) (w), a € H)I,D(w;Rz), W) =0 C HllD (Q:R?), and hry g — 0in [?. Since

u', and hence ii5" as well, is bounded in L*(Q;R3) (see Lemma 4.4.4), we infer that
~<9h h,ﬁ

so consequently b = 0. By Theorem 4.2.3, we can decompose the third component as
iy =g+ 95", where 3" = [;ii5" and )3 [|;2(q) < Ch. Thus, by two-scale compactness,

we conclude that there exists b € L2(w X Y;R3) such that

B () = p 0%, ),

Furthermore, by invoking Remark 4.2.7 and applying Lemma 4.3.2 (1), we note that
b(X,y) = b(X). The rest of the proof is analogous to that of Proposition 2.2.5.

To prove Corollary 2.2.11, we invoke Remark 4.2.6, Remark 4.4.3, as well as the sym-
metries of the solution due to the assumption concerning the symmetries of the elasticity

tensor. ]

D. Proof of Theorem 2.2.10
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Proof. We begin by plugging in (2.6) test functions of the form

01(X) — hx30103(%))
v (x) = 0>(X) — hx30,03(%) +end (x’ ﬁ) +§°: (X’ 8_);> )

En
03(%)

where 0, € Cl(w;R?), 03 € CH(w), { € CLQ; C' U x Y;RY)), é € Cl(w; CL (I x Yo; RY)), and
using the compactness result from Proposition 2.2.9. The rest of the argument follows the

proof of Theorem 2.2.7. [ |

E. Proof of Proposition 2.2.13 and Theorem 2.2.14

Proof. To obtain part 1 of Proposition 2.2.13, we plug #®" in (2.6). The rest of the proof
of Proposition 2.2.13 and the proof of Theorem 2.2.14 follow the steps of the proofs of

Proposition 2.2.5 and Theorem 2.2.7, respectively. [

F. Proof of Proposition 2.2.17

Proof. To prove part 1, we first plug in v** = u®' in (2.6). Next, using Theorem 4.4.6,

Corollary 4.2.5, and Remark 4.4.8, we obtain the following a priori bounds:

ué“h — ﬁsh +L°l8h, ﬁsh — E«?hush’

lsym Vaah || + 12|y |0 + 1812, < C (a5, (@™ u®) + a2, )

—gpx301V°"
ogy _ o °En
u’ = —&px30LV +y
h_lshﬁ'sh

15712, + 2|V 5|7 + e [V20 |5 + [0 |[7. + IV ™12, < Cellsym Va2, < Cag, @, u),

—1 . q1eEn |2
W= enllv117, < C (ag, @™, u) + || 2) ,

where ¥ € H2(w), € H'(Q;R?), ¥*" =y = 0 on Q.
Proceeding to part 2, we note that the first convergence in (2.22) follows directly from

Theorem 4.2.3 and Remark 4.2.7. To prove the remaining convergence statements, by
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analogy with the argument of Proposition 2.2.5 we first assume that w has C!*! boundary.

Using Lemma 4.2.8 and Lemma 4.2.10, 3 we have

5" = h~l g+ W+ g,
where (¢%);50 is bounded in H?(w), (W®");s0 is bounded in H'(w) and o3 L—2> 0. Since
h~'¢® is bounded in L?, the first part of the second convergence in (2.22) follows from
Lemma 4.3.2 (2). Furthermore, the first part of the third convergence in (2.22) follows
from Remark 4.2.7, Remark 4.2.9, Theorem 4.3.1 (2) and Lemma 4.3.3 (1) (in addition to
the more standard Lemma 4.2.8 and Lemma 4.2.10 (3).) The second and third parts of the
third convergence statement in (2.22) need to be additionally combined with the second
convergence statement in (2.22) through Lemma 4.3.3 (2). Finally, the fourth and fifth
convergence in (2.22) follow from Lemma 4.3.3 (3) and Lemma 4.3.4 (1) by noticing that
P —s 0in L? as a consequence of the fact i < &5,. This concludes the proof of part 2 for
the case when w has C! boundary. For the general case of w with Lipschitz boundary,
we now use Lemma 4.2.10 (3), Theorem 4.3.1 (2) and Lemma 4.3.3 (1) in combination
with the approach of the proof of Proposition 2.2.5.

The argument for part 3 is analogous to that for Proposition 2.2.5. [

G. Proof of Theorem 2.2.19

Proof. The proof is carried out by taking appropriate vest functions v = v®" in 2.6 and then
passing to the limit as 2 — 0, for which we invoke a combination of Proposition 2.2.17,
Remark 2.2.2, and a density argument.

Different equations in (2.24) are obtained by using different kinds of test functions.

For the first equation, we use test functions of the form

A

(%) = (61(2),62(),0) " +ey (gl (x 8—);) e ( 2, i) ,0) ’
con(- (5.2 o (.2) Lo 5. 2))

X3 N
+h/ r(x,i) dxs,
0 Ep
where 8 € Cl(w;R?), { € Cl(w; CH(Y;R?)), ¥ € CL(w; C1(Y)), r e CL(Q; CH(Y; RY)). Next,

for the second equation we use test function of the form

o X o X T h X3 L
vah(x):(fl(fc,i),fz(fc,ﬁ),o) WD / i"(x,i>dx3,
En En En Jo En
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where £ € Cl(w; C!(Yo;R?)), € CL(Q; C1(Yy;R?)) . Further, for the third equation (k = co)

we use test equation of the form

h o X h o X o X T
YEh(x) = (—hx3010(%), —hx30,0(2),0(2) T + (——xﬁylf(fc, al ),——X35y1§(5€, i) f(x i)) :
En &p

€h Eh Eh

where 0 € Cg(a)), f € Ccl(a);Cg(Yo)). For the fourth equation («x € (0,00)) we use test

functions of the form

h N h N REAYY
voh(x) = (——x;;(?ylv x,— |, ——x30,,v| X, — |,v| &, — ,
&n &n & En Ep

where v € CC1 (w,C*(Y)). For the fifth equation (k € (0, 0)) we use test functions of the

h (<] X h o X o X T
yeh(x) = (——xsay,f(fc,i),——xsayg(f,i),f(x,i)) :
En En En &p Ep

é eC Cl (w, C%(YO)). Finally, for the sixth equation (x = 0) we use test functions of the form

h £ h £ AN
voh(x) = <——X36y1v<fc, —> ,— —x3(9y1v<fc, —) ,v(fc, —>>
&n &n &n En En

h of . % h of 2\ of 0 RN\\T
+(——X30y1§<x,—>,——x30ylf<x,—),§<x,—>> ,
&n &n &y En En

where v € Cl(w; C2(Y)), € € Cl(w; C2(Yp)). The proof of the remaining claims follow an

form

analogous part of the proof of Theorem 2.2.7. [

H. Proof of Corollary 2.2.20

Proof. The proof follows easily from Remark 4.2.6, Remark 4.2.11, and Remark 4.4.9.

L. Proof of Proposition 2.2.21

Proof. Part 1 follows easily from Theorem 4.4.6 (in particular, (4.16)—(4.18)) and Corol-
lary 4.2.5, after plugging v®" = u®' into (2.6). To justify the scaling, notice that as a

consequence of the above mentioned statements we have

)
7, ™2 < Ch™"ag, ™, u®"),
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see also the last expression in (2.71) below. To prove part 2 we use Theorem 4.4.6 and

Corollary 4.2.5 again and obtain

uth = @+, @t = EShyh,

i [ ) < CH2symaas|; < Ch™2a,, (™, u™),

2(Q:R3) =
—&px301 V%"

o 9 Eh
—&px302 V%" +yY,

Eh —

h_lsh\o/gh

17 o+ 2 95 gy o 25 gy b s

+epl|en Vg™ ||L2<QR3x3)—Ch 2} |sym Vair® || < Ch™*ag, (W™, u™),

2.71)
where ¥ € H*(w), l/l € HY(Q;RY), ven = tﬁ =0on Q’f”. Assuming first that w has C!

LZ(Q R3><3) =

boundary, part 2 follows by using Lemma 4.2.8, Lemma 4.2.10 (3), Theorem 4.3.1 (2),
Lemma 4.3.3 (1,3), Lemma 4.3.4 (1), and Theorem 4.4.6. For general Lipschitz domains
we follow the approach of Proposition 2.2.5 and Proposition 2.2.17. Finally, part 3 is

obtained the same way as part 3 of Proposition 2.2.5. [

J. Proof of Theorem 2.2.22

Proof. Proof follows the approach of the proof of Theorem 2.2.7, by using Proposition

2.2.21, Remark 2.2.2, and test functions of the form

o a T
voh(x) = (h1(R) — hx30165(R), h62(%) — hx30263(%),03(%)) +h8h< (A,8—2>,§2< i>,0>

A A A T A
+e <—hx36y1!,//<fc, x) hx3ay2¢< x) g[/()c i)) +h2/ r<x,i> dxs
En En & 0 €h
h ] o j\: h o ] .i' o j\: T
V(2 (b (52) L (1)) 6 (2))
&p Ep En Ep 27

h [, x
+— r{x,— |dxs,
€n Jo Eh

-

where 0. € Cl(w;R?), 83 € CX(w), { € Cl(w; C'(Y;R?)), y € Cl(w; C1(Y)), re Cl(w; C(Y;R?)),
£, € Clw: CL(Yo;R?)), &; € Cl(w; CH(Y)), I € CHQ; CL(Yo: RY)). m

K. Proof of Proposition 2.2.23 and Corollary 2.2.25
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Proof. The proof proceeds in the same way as the proofs of Proposition 2.2.9 or Propo-
sition 2.2.5 by invoking additionally Theorem 4.3.1(3), Theorem 4.4.10, and Lemma
4.3.4(2). In order to conclude the form of Co, from Lemma 4.2.8, Lemma 4.2.10 (3), and

Theorem 4.3.1 (3), it is also important to see that the following simple identity holds:
X V3e(R,y) = Vy(x30y,0,%30,,0,0) 7, Vg € L (w; H(Y)).

The proof of Corollary 2.2.25 uses Remark 4.2.6, Remark 4.4.11, and symmetries of the

solution, as a consequence of the assumption on symmetries of the elasticity tensor. =

L. Proof of Theorem 2.2.24

Proof. The proof is similar to the proof of Theorem 2.2.10, by invoking Remark 2.2.3

and plugging in (2.6) test functions of the form

01(%) — hx301603(%)

vh(x) = 62(%) = hx301603(2) | +end (X’ ;);) th /:3 rx)das +§ (x’ g_);)
63(%)
where 6 € Cl(w;R?), 65 € C2(w), { € CLHQC'IXY;RY), re CLQ), € € CCI(M;C(I)O(IX
Yo:R)). .

M. Proof of Proposition 2.2.26

Proof. The proof is carried out similarly to the proof of Proposition 2.2.9 and Proposi-
tion 2.2.5, where we additionally use Theorem 4.3.1 (3), Theorem 4.4.10, and Lemma
4.3.4(2). [ ]

N. Proof of Theorem 2.2.27

Proof. The proof follows the proof of Theorem 2.2.10, by using Remark 2.2.3 and by

plugging in (2.6) test functions of the form

h61(%) — hx30163(%)

% & of &
Ve (x) = h6>(X) — hx30103(%) + hep, {(x, _> +h? / r(x)dxs + §<x, —> )
Eh 0 Eh
63(%)
where 0 € Cl(w;R?), 03 € C2(w), { € CHQ;C' I X Y;R), r e CLQ), € € Cl(w; CL(I %
Yo; R3)). =
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2.3.3. Proofs for Section 2.2.3

A. Proof of Theorem 2.2.30

b,hom

Proof. Itis easy to see from Proposition 2.2.4 that the operator A

is positive definite,
coercive, and has compact inverse. This, in particular, allows one to obtain immediately
a characterization of its spectrum, which we omit.

From Proposition 2.2.5 and Theorem 2.2.7 we infer that if f —s f in L?, then the
sequence of solutions (u®"),s( of (2.6) for A = 1 satisfies u®* — (0,0,b)", where b € H%D (w)

solves
(AP 4 Yo = ()7 £,

Using the proof of [70, Proposition 2.2], we show that the property (H1) in Definition 2.2.1
holds. To prove the property (H), we take a sequence A°" of eigenvalues of the operator
h‘z.?{gh converging to 4 > 0. Next, consider the sequence (u®");~¢ of the corresponding
eigenfunctions

W2 A ut = Fhuh, || = 1.

Multiplying the above equation by u®, using the compactness result from Proposition
2.2.5, and invoking an argument similar to that of Theorem 2.2.7, we conclude that u® —

(0,0,0)T in L2, where b € H%D (w) solves

AN = 2b,  lbll2 = 1,

which completes the proof of (H3). This also proves the convergence of eigenfunctions.

To prove a refined version of the Hausdorff convergence concerning the convergence
of eigenvalues ordered in the increasing order, we take an arbitrary closed curve I' c C,
intersecting an interval in (0, co) and not passing through any of the eigenvalues A;, and
define the following projection operators:

-1
Pih = —zim ) (%ﬂg}, —zf> dz, Pr= —ziﬂi ) (cAbom 1) " .

We claim that for small enough &, > 0 the dimensions of the ranges R(P?’) and R(Pr)
coincide. (Note that they are finite by the compactness of the resolvent.) Indeed, from the

compactness result in Proposition 2.2.5 and Lebesgue theorem on dominated convergence
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it follows that if (f&)s0 € L2(Q;R3), v*")s0 € L*(Q;R?) are such that f& — f, voh —y
weakly in L?, then one has

(P fon,voh) — (Prf,v).

It follows that P?’ f — Prf in L?. This immediately implies that the dimensions of
R(P?’) and R(Pr) coincide for sufficiently small &j,.

Next, fix a closed curve I's,, C C containing in its interior the eigenvalue A5, and no
other eigenvalues, intersecting the real line at wy and w» such that A5 ,—1 <w1 < A5, <wp <
Asn+1, Where we set 450 = 0. The multiplicity ks, of this eigenvalue equals dimR(Pr;,,).
By using the above claim, we know that for small enough &, exactly ks, eigenvalues of

h_zﬂgh (including their multiplicities) are contained in the interval (wy,w»). [ |
Before giving the rest of the proofs we will state and prove one helpful lemma:

Lemma 2.3.2. 1. If up = ey, one has

lim (A, C lim o(Ag,).
2. If 6 € (0,00], up = gph, one has

. ° . -2

]11_{% o(Ag,) C }lll_r)% h™“o(Ag,).
3. If6=0, u, = sfl, one has
.22 .8 )
}lll_l’)%h £,0(Ag,) C }lll_r)r(l)h o(Ag,).

Proof. We prove part 1 for the case o € (0,00) only, as the cases 6 =0 and ¢ = oo are

dealt with by similar arguments. We take 1% € U(ﬁgh) such that 2%» — A and @' €

Héo(l X Yo;R3) such that 1173 ;2 =1and ﬂghi’tfh = %" The convergence properties of
A%h and @;" immediately imply that the sequence

symV " )
(” y % r ||L2 >0

is bounded.’> For each / we take a cube Q" = ¢" x I such that ¢" c w has vertices in

h

epZ? and side length 2n'ey,, where n” is an integer. Furthermore, we assume that n'ey,

5Actually it can be concluded that the sequence (||i:" || y1)n>0 1s bounded, see [20, Section 7].
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converge to some positive number as 17 — 0. We define u® as follows. Consider z € Z>
such that the cube of size & whose left corner is at g5,z is contained in qh. On the inclusion
en(Yo+2) x I, we set u® to be equal to &t," (£/&y — z, x3) if 71 (the first coordinate of z) is
even and to —#1." (%/ &, —z, x3) if 1 is odd. We then extend u®" by zero outside &5(Yo +2) X 1.
This procedure is repeated for all z € Z> with the above property, and finally u®" is set to
zero on Q\ Q"

It can be easily checked that for £ € H;,D (Q:R3) N L2memb(()-R3) one has

X

/ o (1) symViut(o : symVgCode— 2 / put £ (2.72)
Q

Eh
Q
= / CHn (i) sym V,u®(x) : sym V,&E(x)dx — A% / pou® - Edx,
o' Qgh En ohn Qgh
where £ = &+ ;ﬁ, with € being the extension provided by Theorem 4.4.1. Recall that, as a

consequence of Corollary 4.2.5,

[l < Cllsym V] .

where C > 0 does not depend on 4. Using this fact and the definition of u®" (noting that
the mean value of u®" is zero on each two neighbouring small cubes of size g, in the x|
direction) it can be easily seen that the right hand side of (2.72) can be written in the form
/f‘f” : sythde+/f‘§h Edx,
Q Q
where f" € L2(QMR¥3), fre L*(Q";R3), and IfM 2 = 0, If5 2 = 0 as h — 0. To
see this, we divide the domain into small rectangles containing two neighbouring cubes,
where the first coordinate of the left corner is even and odd respectively, and apply the
Poincaré inequality. This yields an estimate for the right-hand side of (2.72) by the ex-
pression Csh(llvhéll 2+ ||.j~5|| 12), where C > 0 is h-independent. By using the Riesz repre-
sentation theorem (applied first on the physical domain and then moved on the canonical
domain) and the fact that on Qh the norm || -[|;2 + |[Vi()l|;2 1s equivalent to the norm
II1l;2 +1lsym V,(-)ll;2, we conclude that the right-hand side of (2.72) can be written in the

form

n (/ sym V,ré(x) : sythg-‘(x)dx+/ roh -%‘dx) ,
Qh Qh

where ||sym V;,r®||;2 +[|r®"||;2 is bounded independently of 4. The claim follows by tak-

ing f1" = &, symV;,r®" and f5' = £,r° in (2.3.3).

79



To conclude the proof of part 1, we note that there exists C > 0 such that ||u®t||;» > C
and hence, by applying a suitable version of Lemma 4.6.4 (see also Remark 4.6.5), one
has

dist(1%,0(Ag,)) > 0 as h— 0.

The proof of part 2 proceeds in a similar way. Part 3 requires an additional explana-
tion while following the same kind of argument. We again take A% € O'(S%lh‘zfg{gh) such
that A — A and @;" € H} (I x Yp;R?) such that [|iZ;"]|;> = 1 and g,ﬁh—zﬁgh&fh = A%hilh,
Using the same argument as in the proof of Theorem 2.2.30 (notice that here the n-th
eigenvalue is of order h_zsfl), we infer immediately that (shh_lllsymV % | Lz) >0 is

bounded. Furthermore, invoking Corollary 4.2.5, we obtain

for some C > 0 independent of 4. The rest of the proof follows the proof of part 1. [

L2

sh o sh o o Sh [*]
(—ug"l, —ug"2,u8§> < C—HsymVLufh
h r, h r, r, Hl h %

Remark 2.3.3. Using a standard approach (resolvent convergence and compactness of
eigenfunctions), it can be easily shown that when ¢ € (0,00) one has limj_,o cr(ﬁgh) =
O'(f{oo,(s) and limy_,q O'(jlgh) = 0(Apo,s).- To obtain this result one needs to use uniform
(in ) Korn inequality, see e.g. [20, Section 7].

In the case 6 = 0 one can prove (similarly to the proof of Theorem 2.2.30) that limj_, U(&Zglgh) =
o (Ao, and limy,_0 8;21h'20 (Ag,) = (Aoo0)-

The analogous claim is not valid for § = co. This is the main reason why in this
regime the limiting spectrum is different than the spectrum of the limit operator. Here,
due to the fact that only resolvent convergence (as in Theorem 2.2.24) holds and no
compactness of eigenfunctions is available, one only has O'(fi{oo,oo) c limy,—0 a(&zg(gh),

(Ao.00) C limysg (As,).
B. Proof of Theorem 2.2.31

Proof. The countability of the solutions of (2.35) is proved in Proposition 4.6.3.

The equality (2.36) is proved in the same way as in [71, Section 8], by analysing the
resolvent equation for the limit operator.

The proof of the Hausdorff convergence consists of two parts: the statement (Hy) is

the direct consequence of the strong resolvent convergence established in Theorem 2.2.10
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and Theorem 2.2.19. The statement (H3) is proved by following the strategy of Theorem

2.2.30: taking the sequence of the solutions to
ﬁshu‘gh = /lghugh’ ”u‘ghllL2 = 15

where 4°» — A. One only needs to establish that the L? weak limit of u® is not zero, so
(H») then follows by letting &, — 0 in (2.3.3). This claim is verified by proving that the

sequence (u°");~o converges strongly two-scale to the limit u, i.e.

wr 2y,
Note that, due to Lemma 2.3.2, one can assume without loss of generality that A ¢
limy, 0 0'(?2[8,1) = O'(floo,(;). One can then prove (2.3.3) in the same way as in [71, Lemma
8.2], see also [16, Theorem 6.2] for an analogous proof in the stochastic setting as well as
the proof of Theorem 2.2.33 below. It is important to emphasize that the proof requires
strong convergence in L? of the sequence of extensions (&°" )0, which can be ensured by

imposing Assumption 2.1.1 (1) and using Corollary 2.2.11 and Corollary 2.2.20.

memb

The claim about the symmetry of 5 5

is a direct consequence of Assumption 2.1.1.

]
C. Proof of Theorem 2.2.33

Proof. The proof follows the lines of the proof of Theorem 2.2.31. The analysis of the
spectrum of limit operator is carried out as in [71, Section 8], by studying the limit resol-
vent equations in Theorem 2.2.14 and Theorem 2.2.22. Furthermore, in Theorem 2.2.22
we take f, = 0, which implies &, = 0. Strong resolvent convergence is then obtained as
the last statement in the mentioned theorem, and compactness of an appropriate sequence
of eigenfunctions can be proved by invoking [71, Lemma 8.2]. The only fact we will
additionally comment on is the strong two-scale convergence of the eigenfunctions in the
regime ¢ = 0. We take 2% € o(h™2A,,) such that liminf),_,odist(1%,h~2e20(A,,)) > 0
(this is again the only situation that requires special analysis, due to Lemma 2.3.2) and
A% — A. Next, we take u® € D(Ay,), such that |[u®||;> = 1 and h‘zﬂghugh = A%y, In
order to prove that A is in the spectrum of the limit operator, we show that the sequence u®"

is compact in the sense of strong two-scale convergence. We decompose u®* = #t®h + u®",
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where @ = E*hu®t, where E®! is an extension given in Theorem 4.4.6. In the same way
as in Proposition 2.2.21, we infer that (2.71) holds. Taking test function f € H}D(Q;R-”)

that vanish on Q‘lg”, we conclude that

1 A o
o C”h< )symvhif”(x) :sym V,E" (x) dx — A / 0 - Edx =
Eh
Q' (2.73)
1 A o
— CHn ( > sym V% (x) : sym V& (x)dx — A put - Edx.
h? Q Eh Sh

To prove the strong two-scale convergence, we shall use a duality argument. To this end,

consider the identity

1

h2

Eh
Q0

%En

C“”(s )symvhzgl’(x) sym V,&(x) dx — /lg’l/ pz-Edx = / S -Edx,

vé e HII_D(Q;R3), £=00nQ,
(2.74)

where £ € L2(Q;R3) and #° € H} (@ R?), £ = 0 on Q}". Denoting by iét¢" the solution
of (2.74) with Jc‘gh = —A%hp@®h, subtracting (2.74) from (2.73), and using an appropriate

version of Lemma 4.6.4 (see Remark 4.6.5), we obtain that

2 5/1

o Ep
—a?l |

eh”syth(uah - ("S")”L2 + =0 as h—0.

. oep L o
Notice also that %" — 0 as the consequence of apriori estimates, see also (2.71). We now

)
take % € L*>(Q;R>) such that g% & € L2(Qx Y;R3). Furthermore, we take §° as

the solution of (2.74) with f = 2% Substituting §°* as a test function in the equation for
" and " as a test function in the equation for s, we obtain by the same argument as

in the proof of Theorem 2.2.22 that

1 o o A o A A
5 [ G0V : Vis(R.y) didy ~ A / Po(it3(%,) - $3(%,y) didy
wxYy wXYy
=-41 / po(V)itz(X,y) - §3(X,y)dxdy = / 33(2,y) - i3(%,y) didy,
wXYy wXYy

where i13, §3 € Lz(w;Hg(Yo)) are weak two-scale limits of 73", 53" while §" — 0 in L2,

and i3 € H%D (w) 1s the strong limit of ﬁ‘;” while #%" — 0 in L2. It follows that

lim [ g°%-a®"dx=-Alim | pa®-§°"dx=-2 / pii3(x,y)- 83 = / g3(x,y)uz(x,y)dxdy.
h—0 Jo h—0 Jo v QxY
X
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Therefore, the sequence @°", and consequently u®", converges strongly two-scale. Passing
to the limit in the (weak formulation of the) equation h‘zﬂahugh = A%hu®, we immediately

obtain flou = Au, where u # 0 is the two-scale limit of u®". [ |
D. Proof of Theorem 2.2.35

Proof. The proof uses some ideas given in [2] adapted to the present, simpler, setup.

We start by characterising the sets O'(ﬁsmp), Uess(ﬁ:trip), and Uess(ﬁs‘trip), By apply-

ing the Fourier transform, it is easily seen that the generalised eigenfunctions of j’(smp are

of the form
uZtrip(yl’yz’x3) = e"u(yy,y2), neR,

where u" € H(l)(Yo; C3)is an eigenfunction of the self-adjoint operator &?{Zmp on L%(Yy; C?)

defined via the bilinear form

&Ztrip(u’v) =/ Co(y) sym (dy,u|dy,uinu) : sym(dy,¥|0,,v|inv)dy,
Yo

al o Hy(Yo;C?)x Hy(Yo;C?) - C.

strip

n

It is easily seen that for each n € R the operator ﬂsmp

is positive definite and has compact

resolvent, and thus it has an increasing sequence of eigenvalues {a'll,

ay,...} diverging to

+oo. It follows that

O-(ﬁstrip) = U{a’f,ag, e }

neR
By using a suitable Korn’s inequality on the on /X Y (applied to the function (x3,y1,y2) —

e™3u(y1,y7)) and (2.1), we obtain that there exists a constant C > 0, which is independent

of n, such that

el + || (8,21 0y, i) |, < Cal ) V€ HY(Yg: C3).

Furthermore, using the characterisation of eigenvalues through a Rayleigh quotient, we

obtain
&Ztrip
4 mi

a;, = n —2
ueH)(Yo:c%)  [ull7,

(u,u)

—

Combining this with (2.3.3), we infer that there exists ¢ > 0, independent of 7, such that

. 2
0/17 >¢  min ||((9y1u|8y2u|177u)||L2.

ueH (¥o;C%) el
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Finally, using Poincaré’s inequality on Yj, we obtain the existence of ¢ > 0 such that
aTl’ > ¢ +n°. The continuity of a'{ with respect to n (which can also be inferred from
(2.3.3)) implies that the range of the mapping n +— a/']7 is [mg, +o0) for some mg > 0. This

concludes the characterisation of the set O'(ﬁsmp), provided by (2.2.35).

+

. ), we show that they in fact coincide
strip

Proceeding to the discussion of the sets O'ess(fol
with U(j(smp). The proof of this claim, for which we just provide a sketch, is similar to the
argument of [2, Proposition 7.5]. Consider a Weyl sequence associated to A € O'ess(&zofr ),

strip
ie., @ "),en € D(ﬁ;“trip) such that

L? 5
el =1, w0, | ALt -t — 0. (2.75)

The properties (2.75) imply that (u*"),cy is bounded in H'. Next, take a smooth positive
function ¢ : Rg — R that takes zero values on (—co, 1] and is equal to unity on [2,+00) and
show that for all v € HéO(Rar X Yp;R) one has

/ Co(y)V(yu™") : Vvdxsdy — /l/ po(yu™") -vdxsdy
R(';XY()

RgXYO

= / CoV(yu™") : Vvdxzdy — A / po(yu™") -vdx3dy
RxYy RxYp

= / Co(y)sym(0]010,yu™") : sym Vvdxzdy
[1.2]xY,

+/ Co(y)symVa™" : sym(0]0|0x,yv) dx3dy.
[1,2]xY ’

(2.76)
Combining (2.75) with compact embedding of H'! into L? on bounded domains, we con-
clude that for all bounded sets A one has |ju™"| 12(4) — 0. Furthermore, considering a
smooth non-negative compactly supported function ¥4 that is equal to one on A and not-

ing that by virtue of (2.75) one has
/R+ ) (ﬁ;ripu+’” — ") Yaut" - 0,
010

we obtain that actually [lu*"||1(4) — 0.

Thus we conclude that the right-hand side of (2.76) can be written in the form

/ fl: syvaa’x3dy+/ S5 -vdxdy,
[1.2]xYp [1.2]xY,
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where || f7ll;2 — 0 and ||f7ll;2 — 0 as n — co. By combining a suitable version of Lemma

4.6.4 with (2.76), we conclude that A € O'(ﬁsmp). In a similar fashion, starting from the

+

generalised eigenfunction (2.3.3), we conclude that O'(jlstrip) - O'(ﬁsmp .

strip? W€ also obtain

By repeating the above argument for A
Oess (j[s_trip) = O_(ﬁsmp) :
This establishes the property (2.38). We now proceed to proving (2.39).

First, by virtue of the symmetries of the elastic tensor (and considering appropriate

Weyl sequences), we easily obtain the equality U(Sfl+ )= U(fol_ 1D). Next we show that

strip stri
Oess (ﬁztrip> - O'(ﬁstrip), O'(ﬁstrip) = O'(jlstrip) (2.77)

To show the first inclusion in (2.77), we take a Weyl sequence associated to the A €

O'ess(ézol+ ), i.e. @H™)uen C Z)(?OIJr ) such that

strip strip

L
™"l =1,  w™"—0,

a+ +.1n 3,0
ﬂstripu Au ”L2 —0.

Using the elastic symmetries once again, we infer that for the functions

- N - e
u, n(x3,)’) =U, n(_x3,Y), l/l3 n(x3,)’) D —M3 n(_x3,)’)’ (XS,}’) € Rg X YO’
one has
—.n —.n L 71— —.n —n
lu™ll2=1, w0, Agiptt™" = ™|, = 0.

We also note that the sequences (u*"),cx are bounded in H 1 'We now define

u"(x3,y) 1= Y(x3)u"(x3,y) + Y(—x3)u~"(x3,), (x3,y) € Rx Y.

In the same way as in (2.76), we conclude that for every v € HéO(Rg X Yp;R) one has

/ Co(y)Vu'" : Vvdxszdy — /l/ oo’ vdxsdy
RxYj R*Yo

= / S :symVvdxzdy + / Sfavdxsdy,
([1,2]U[-2,~1])x¥y ([1,2]U[-2,~1])x¥,

where || f'll;2 — 0 and ||f5l;2 — 0 as n — oo, from which it follows that A € G(ﬁsmp).
For the last equality in (2.77) it suffices to argue that O'(ﬁstrip) - a(?glsmp). To this
end, we apply the Fourier transform and for 7 € R we consider generalised eigenfunctions

of the operator jlsmp of the form

uZtrip(x3’y) = eiTIX3un()’)’ (x3,y) e Rx Y,
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1 3 n _
where u" € H,(Yo;C”) is an eigenfunction of the operator ﬂsmp ie., ﬂsmpu”(yl, y2) =

a?u”(yl, y2), u'l # 0, for some i € N. Invoking the symmetries, we infer that for each p € R

( strlp) (.X3 Y) = (ustrlp)*( X3, )’) M;Tr]ipﬁ(x&)’) = —Mztrip,3(—x3»)’)’ (X3,}’) eRx YO’

is also a generalised eigenfunction of the operator jlstrip associated with the same eigen-

T oyul

value . Therefore, the function (u )
i strip strip

/2 is a generalised eigenfunction of the
operator f(strip (and hence the operator ﬁsmp) associated with the same eigenvalue. Since
every element of the spectrum of the operator ?olsmp coincides with a/? for some n € R
and i € N, we conclude that G(ﬁstrip) - O'(ﬁsmp)- This construction also proves that

aess(ﬁstrip) = a(ﬁstrip). Since we have already established that a(ﬁstrip) c a(ﬂ* ),

strip
the property (2.39) follows.
Next we establish the property (2.37). We start by proving the inclusion
hm O'(ﬂgh) C O'(ﬂsmp) U O'(ﬂsmp) U 0 (Agyip)- (2.78)

Let us take A% € 0'(&1013,,) and u® € Z)(&zolgh) such that A°» — A and
AU = 2Pt || =1,

Consider smooth positive functions i, i = 1,2,3 on R such that /| +yo +iy3 =1, supp ¥ C
[—-1/4,1/4], supp ¢1 C (—00,—1/8], supp ¢3 C [1/8,00), and 3(x3) = /1(—x3). Then there

exists i € {1,2,3} such that (up to a subsequence)

1
ol = 5 v

If i = 2, we extend y,u®" by zero on R X Yy and, by scaling the variable x3, define

h & En
5mp(m y) = \/ m(zm) h(gx&y), (x3,y) ERX Y.

It is straightforward to see that

1
|| strlp”L2 = 3
and that for all v € HéO(R x Y:R?) one has
/ Co(y)Vustl : Vvdxsdy— A% / pou‘;:t”ripvdx3dy = S symVvdxdy+ fv
RxYy RXY) RXxY) RxYy



where || 8]’|| 2—0, f;hll 12 — 0 as h — 0. By using an appropriate analogue of Lemma

4.6.4 (see also Remark 4.6.5) adapted to the operator ﬂsh, we conclude that

A€ G(ff’olstrip).

Ifi=1 ori=3 we argue similarly that 1 € ﬂstrlp 1Le. d€ ﬂsmp respectively.

Next, we prove that G'(ﬂsmp) c limy_0 O'(ﬂgh) Considering a and u € Z)(.?lsmp)
such that

ﬂgmpu” = a/?u”, llee"||;2 =1
we set
ulp(63,9) = €Mu(y),  (x3,) ERX Yo

It is easily seen that ﬂsmpusmp = al strlp We define

u(x3,y) = ’l/fz( 3)u Smp< ! X3, y) Lz_ Yo (x3)u Smp<£ X3, y) (x3,) € IX Yp.

It then follows easily that for every 2> 0 and v € H(I)O(I x Yo:C3) one has

/ Co(y)V;_lu‘g” : V}_szX?,dy - 0’7/ p()ugh -vdx3dy
IxXYy “h “h IxXYy
(2.79)
= S symV 4 vdxady + £,
XY h IXY)

where ||ffh||L2 -0, || 8]’||L2 — 0 as h — 0. By using a result analogous to Lemma 4.6.4

(see also Remark 4.6.5) we obtain
dist(a,0(A)) =0 as h— 0.

It can be also easily deduced that O'dlsc(ﬂ )C limh_,o 0'(30(8,1). Namely, for an eigen-

strip

+ . .
value o . ip of ﬂstrp and associated eigenfunction ug . » € D(AL

q+ at +

at _ .
str1p) ||uStrip||L2 =1, 1e.

+ . .
- u? =a . u?_  itcan be easily shown that the sequence
strip ~ strip strip  strip

h 1
l//l(X3)usmp( - <X3 + 2) y)

satisfies (2.79) with [|f{"ll;2 = O, [If5'll;2 = 0 as h — 0 and with a! replaced by A. It

-1
h 1
L2 17[/1( 3)ustr1p< h<x3+2> y)’ (-x?)’y)EIXYO’

u(x3,y) = ’

follows that A € limy,_,g O'(ﬂgh). In view of (2.38), we obtain the opposite inclusion in

(2.78).
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It remains to prove, under the Assumption 2.1.1 (1), the characterisation of limy,_,q O'(ﬁgh)
provided by (2.37). By the same argument as in the case without planar symmetries, we
obtain

lim O'(ﬂgh) C O'(ﬂsmp) U 0'(52[+ ) ] O'(ﬁ_

h—0 strip strip) ’ (2.80)

and O'(ﬁstrip) C limy_s0 U(?E(Eh). By virtue of (2.38) and (2.39), it remains to prove the

inclusion
This will be done by a slightly different argument, as follows. For a € O'dlsc(ﬂsmp) we
. . . a,+ @,+ —
take the associated eigenfunction usmp € Z)(ff’lsmp) ||usmp|| 12 = 1, of the operator ﬂstrlp
+ @+ _
1.e. .?lsmp strip ozusmp Using the elastic symmetries, we infer that the functions u strlp
defined by
uf’_(XS,)’) = usz’+(_-x3ay)9 ug’_(x3,Y) = _u§’+(_-x3ay)9 (x3’y) € R(-')— X YO’
satlsfyu trip eD(ﬂsmp) ||z smp” ;2 =1and ﬂsmp strlp =au strlp Finally, we define

l#1(963)usmp< }2 <X3 + ;) > +¢3(X3)usmp( hh <X3 - %) ,y>

O T, (e 1)) s (- (o))
(e o\ 813 s S\ B3

and use an argument similar to that employed for showing that « € limy,_q O'(ﬁgh) under

L2

no symmetry assumptions.

Similarly, we demonstrate that

O disc (ﬂ

strip

c li A
) € lim (A, ),
which concludes the proof of the opposite inclusion in (2.80). [

Remark 2.3.4. In the same way as in [2, Proposition 7.5], it can be shown that eigenfunc-

tions associated with eigenvalues in o (A= ) have exponential decay at infinity.

strip

E. Proof of Theorem 2.2.36 and Theorem 2.2.37

Proof. The equality (2.40) is proved in the same way as in [71, Section 8]. The inclusion

O'(ﬁoo) c limy,—0 O'(jlgh) follows from resolvent convergence provided by Theorem 2.2.24

,  (x3,y)€IXY),
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+

strip) = limy, 0 O-(ﬁb‘h) Climy—0 U'(ﬂgh) fol-

and Corollary 2.2.25, while the inclusion 0'(_701
lows from Theorem 2.2.35 and Lemma 2.3.2.

It remains to show that limy_, O'(j(gh) C 0'(&10(;“t rip) Uo(As). To this end, consider
A%h € 0(Ay,) such that

liminf dist (1%, o"(Ay,)) > 0
1}11261 is ( o(A h)) >

(which is the only case that requires analysis, due to Lemma 2.3.2) and 4°» — A. Fur-
thermore, consider u® € D(A,) such that [|u®||;> = 1 and A, u = A°u®. The strong
two-scale compactness of u®" is proved in the same way as in the proof of Theorem 2.2.33
by combining (2.3.3) with Lemma 4.6.4, see also Remark 4.6.5. The equation (2.41) is a
direct consequence of the symmetry assumptions.

The proof of Theorem 2.2.37 is carried out in a similar fashion. [

2.3.4. Proofs for Section 2.2.4

A. Proof of Theorem 2.2.39

Proof. 1t is not possible to put the first claim in the framework of Theorem 4.5.13 or
Theorem 4.5.15 directly (i.e. using Proposition 2.2.5 and Theorem 2.2.7) and we will
provide a direct proof instead, using Laplace transform similarly to how it was done in the
proofs of these theorems. The reason why we cannot put the first claim in the framework
of Theorem 4.5.13 or Theorem 4.5.15 directly comes from the fact that f, # 0 and they
influence the (quasistatic) behavior of the part of in-plane deformation.

For every g, > 0, we write the system (2.42) for u; = &, T = 2, using the formula
(4.32), where A = A, is given by formula (4.26) and the associated operator A is given
by h_zﬂgh. Furthermore, we set Hy, = LX(Q:R3), Ve, = Z)(ﬂé,{z) = H}D(Q;R3), H =
LAQXY;R3), Hy = (0P X L2(w), V = (0P X D(A"™)/2) = {0}> x H2_ (w). The space
Hyg, is equipped with the L? inner product with weight p”, while the space H is equipped
with the L? inner product with weight p.

In accordance with the abstract approach of Section 4.5, for v € V;, we set ||v||vgh =
(A2 A, + 1)'/?v|l;2 and, similarly, for v € V we set [lly := |(A"™ + 1)!/?v]>. Fur-
thermore, the convergence ﬂ\ is given by two-scale convergence. Next, for f € R?, we

define the vectors f, := (0,0, f3)7, f), := (f.,0)T. We apply the estimate (4.34) to the case
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of the loads f%" and initial conditions ”0 , u," and the estimate (4.37) to the case of the

loads f;" and zero initial conditions. This y1elds

0072 Ay 4 DV 11, + 100 000, <
Ce™ ([|n2 Az, + ', + e, 1 iqo i, (2.81)
+||(n A, +I)_1/2fzh(0)||H8h + | A, +I)_l/zaffzh”Ll([o,T];th) )

In order to obtain the boundedness of the last two terms in (2.81), notice that for I" € V

one has

2 A, + D) P2, = B 2ag, (5%, 55 + (557, 5, (2.82)
€h

where s%t € Z)(ﬂl/ 2) is the solution of the problem
W25, (s7,v) + (5% V), =17(0), Vv eV, (2.83)

Combining the result of Proposition 2.2.5 (1) with (2.82) and (2.83), we obtain the exis-

tence of C > 0, independent of A, such that

[(h* A, + 1)~ 21|

2
H, < Cllmal®7, . 1% € H,,. (2.84)

Taking into account (2.44) and (2.45), this implies the stated boundedness property. Also,

a consequence of (2.44) and (2.45), we have

t,00,dr-2 t,dr-2
Fhfih —— [ TnOf" —— 0if

From (2.81) and Corollary 4.2.5 we conclude that 7y /,u®" is bounded in L*([0,7T]; V,)
and Ju®" is bounded in L*([0,T]; Hy, ), and hence there exists u; € L*([0,T];V), 0 €
L*®([0,T]; H) such that

t,00,dr—2 t,00,dr—2
Ty /hu Eh uj, 6,u h —\6tul

As in Section 4.5, we use the notation #°" := (u®",,u®"). Similarly, we introduce ﬁ’gh, i,
u;, i, as well as
T 28 T
mpd = (myu®, 0, f 7 =(0,0,0,()7)
2&h T 28 T
£ =(0,0,0,(/iH7) ", fy =(0,0,0,£7") .
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We then follow the proof of Theorem 4.5.13 or Theorem 4.5.15. On the one hand, for

every 4> 1, we have

dr-2

701 LAY = Lyt ™)) L@p) as h—0,

where L denotes the Laplace transform. On the other hand, by combining
LG = (b, +AD T LE YD) + (B, + D 'd; VA>T,
the representation (4.29), and Theorem 2.2.7, we obtain
7 L@ )(A) = Ly ™ )(A) T2y Va1,

where @ = (a; — x301b + i1, a3 — x392b + i15,0,0,0,0,b) T, with the functions a, b, @ being
the solutions of the equations (2.48)—(2.50) for the loads f. It follows that i; = u.

The existence and uniqueness of the solution of the limit problem follows from Theo-
rem 4.5.1 and Theorem 4.5.4. Note that one can split the limit problem into two: the one
with initial conditions ug 3, S 1 Pseou1,3 and out-of-plane loads, given by the part of F5(f)
depending on f3 (where we apply Theorem 4.5.1), and the one with zero initial conditions
and in-plane loads, given by the part of F5(f) depending on f, (where we apply Theorem
4.5.4.) The last claim of the theorem follows by combining Theorem 4.5.14 applied to

initial conditions u2"

0 u‘fh and loads f7" and the second claim of Theorem 4.5.15 applied

to initial conditions equal to zero and loads f Zh (using the resolvent compactness and con-
vergence proved in Proposition 2.2.5 and Theorem 2.2.7). The conditions (4.48) follow
by applying (2.84) to I?* = f}"(0) and I°*(r) = 8,f,"(r) and integrating over the interval
[0,T7].

B. Proof of Corollary 2.2.40

Proof. The proof follows from the first part of Theorem 4.5.15 for the weak convergence
and from the second part of the same theorem for the strong two-scale convergence. We
will just briefly outline the proof of the weak convergence. From (4.37) we obtain the

estimate

-2 1/2.. & g
”(h Ag, + 1) u h||L°°([O,T];Hsh)+”atu h”Lw([O’T];H%)
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< C6T<||(h_2ﬂgh +I)_1/2g8h(g8h)(0)”H£h + ”(h_zﬂsh +])—1/2(9tg(g8h)”Ll([

Similarly to the argument of Section A above (see (2.3.4)), we have

t,00,dr-2 t,dr-2
g ——— g, mpog™ —— 0,8.

Furthermore, using (2.82) and (2.83) we infer by Theorem 4.4.1, Remark 4.4.5, and
Corollary 4.2.5 that for I € L?(w x {—1/2,1/2};R?) one has

) —1/27e||? 2
2 A, + 7Y leh”th <R N -1 2,1 2183

The remainder of the argument follows the proof of Theorem 2.2.39, using Remark 2.3.1.

C. Proof of Theorem 2.2.47 and Theorem 2.2.51

Proof. The claims are established directly by applying Theorem 4.5.13, Theorem 4.5.14,
and the results of Section 2.2.2 concerning resolvent convergence. For example, in the
case 6 € (0,00), pup = &, T = 0 we set H, = L>(Q;R3), Ap = Ay, A= As o, H=L*QX

H51 .
Y;R3), Hy = Vs.00(€2 X Y), and the convergence —" is the two-scale convergence. [ |

D. Proof of Theorem 2.2.53

Proof. The argument follows the proof of Theorem 2.2.39. The first part of the statement,
which concerns weak two-scale convergence, is proved separately, by using the Laplace
transform, Proposition 2.2.21, and Theorem 2.2.22 while separating out-of-plane and hor-
izontal forces. The proof of the second part is carried out using Theorem 4.5.14 and the

second part of Theorem 4.5.15. We leave the details to the interested reader. [

0.T):Hz,) ) :
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3. (OPERATOR-NORM RESOLVENT ESTIMATES
FOR THIN ELASTIC PERIODICALLY
HETEROGENEOUS RODS IN MODERATE

CONTRAST

3.1. SETTING AND MAIN RESULTS

In this section we state the main results of this chapter along with the setup for studying

the matter of elastic heterogeneous rods.

3.1.1. Elastic heterogeneous rod

We state the definition of the domain representing the infinite thin rod. Fix 4 > 0 (the
width of the rod), w c R? a bounded Lipschitz domain and denote with w”" the contraction
of w such that |w"| = h?|w| (For example: w = I x1,I c R interval ,w" = hl x hI). We take
w to be central symmetric with respect to the origin, which can be neatly expressed with

the following central symmetry operator:
S:R* >R S(x1,x) = (=x1,—x2),

and stating:

S(w) = w.

The consequence of this is the following:

/xle, /XQZO.
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Additionally, one can choose the rotation of the coordinate system (xp,x2) = (X¥; cos¢ +

Xo sing, —X1 sing + X, cos ¢) as to achieve

/ X1X2 = 0.
w
This is done by choosing

1
Q= Earctan (—2/ xlxz//(x%—x%))
w w

We also take |w| = 1, and define the following constants:

cl(a))::/x%, cz(a))::/x%.

The thin infinite rod is represented with Q" := w” x R. The heterogeneity of the rod is
introduced in the following way: fix € > 0 (the period of material oscillation) and let
Y = [—%, %] C R be a "unit cell”. The elastic properties of the heterogeneous material are

given with the elasticity tensor

C . Y N R3X3X3X3 C c LOO(Y R3X3><3><3)

defined on the unit cell and then extended via Y—periodicity. We assume that C is uni-

formly positive definite on symmetric matrices, namely: Jv > 0 such that

1
VI < CE: € < ;Iélz, VeeRYS T = ¢, (3.1)

In addition, we require the following restrictions on the material coefficients:

Ciju) = Cjin(y) = Crij(y), VyeY, i, jkle{l,2,3}.

For any point (x1,x3,x3/€) € Q" the elasticity tensor is given with C(x1,x2,x3/¢€) :=
C(x3/g). The following assumption yields significant simplification in the analysis, as
we will see later. However, the assumption is physically relevant as it covers materials
such as isentropic materials and more. Still, we carry out the analysis with and without

this assumption as to showcase the different phenomena occurring in the rod dynamics.

Assumption 3.1.1. The elasticity tensor satisfies the following material symmetries:

Cijks(») =0,Ci333(») =0, VyeY, i, jkefl,2}.
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In this chapter, we are interested only in the regime where the period of material
oscillations is of the same order as the thickness of the rod. Therefore we assume € = A.
We study the system of resolvent equations for the operator of 3D linear elasticity on the
domain Q° defined with the bilinear form:

HY (0 xR;RH X H (w0 xR:;R?) 3 (u,v) > C (%3) symVu : sym Vvdx.
QS
As it is standard in the dimension reduction, we transform the problem onto the canonical

domain:

1 1
W® xR 3 (x],x5,x5) = x° — x = (x1,x2,x3) = (547, 5 X3, %5) EwXR.

This change of coordinates allows us to work on the fixed domain. With these new coor-

dinates, we define the following bilinear form:

as . Hl(a)xR;R3) le(wa;R3) - R, au,v)= / C (%) symV u : symVvdx,
wXR
3.2)

where the scaled gradient V, is defined with:

1 1
561u1 g@zul 63u1
Veu(x) := éaluz %62u2 osuy

1 1
013 o3 Osus

The associated operator A : D(A,) — [*(wxR;R3) is closed, densely defined in L2 (wx
R;R?) and self-adjoint.
In our analysis, we will make use of the orthogonal decomposition of the space L*(w X

and L2 defined with:

. 2
R;R?) into two spaces L stretch®

bend

Lpena = {# € PXRRY),  ua(S0x1,30) = wo(x1, 12),0 = 1,2, u3(S(x1,%2)) = ~u3(x1, %)}

Lreien = {# € AA@XRRY),  ua(S(r1,32) = —tte(x1, Xa)0 = 1,2, ua(S(x1,x2)) = u3(x1,%2)}

stretch —

Functions belonging to these two spaces play the role of in-line forces and out-of-line
forces, which, under some additional assumptions on the symmetry of the material re-
sponse tensor, cause the rod to deform in the same way. We refer to these deformations

as stretching and bending deformations, respectively.
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3.1.2. Homogenised operators

In order to define homogenized limit operators, we make use of the following inclusion

matrices:
00 0 0 0 %
bend 2 stretch / o —
JEd ®= [0 0 0 L gieh@y =0 0 =um
0 0 —xym—xom —xzé" E —_x12m3 ma
Xpms3
0 0 ==
Twi®=10 0 s . m=(mi,my,m3,my) €RY, few.
Xom —X1m
5t o mag—ximy - xomy

The homogenized tensor C™Y containing the material properties of homogeneous rod is

defined in the following way: For m,d € R* we define the form:
Ym, d) := / YC(y) (j;;’d(fc) +sym Vum) L TR dxdy,
wX
where u” € H ;(Y sHY(w;RY)) is the unique solution of:
/ YC(y) (T59(2) +symVu™) : symVvdidy =0, Vv e Hy(Y:H'(w:R?).  (3.3)
wX

Proposition 3.1.1. The form ¢ is a positive bilinear form on R* x R*, uniquely repre-

sented with a positive definite tensor C™% € R4, namely, there exists > 0 such that
m,d) = C%m-d, Cm-m > nmf.
Proof. First we show that ¢™d(-,-) is bilinear. For that we consider:
m+an,d) = / o) (Tm08,, (8 +sym V™) - T4(R)didy, m.neR*a€eR,
wX
/ YC(y) (j,ffan(fc) + symVu’") :symVvdidy =0, Vve H;(Y;Hl(w;l[@)).
wx

But J©4 (x) = J09(x) + @J@(x), and by the uniqueness of the solution of (3.3), we

conclude that

um+a'n — um + a,un
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and thus:
¢*(m+an,d) = / ) (T8 +symVu" ) : T (R)d iy
wXxY

+a / C) (T @) +sym V") : TP (R)dsdy = ¢ (m, d) + ac™(n, d).
wXY

Therefore

Crod(m d) — Crodm -d Crod c R4X4

and the entries of the tensor C™4m - d can be represented with [Crodyy . dlij= Crode; . ¢ -

Notice that, since C(y) is symmetric, C¢ is symmetric as well. Namely:
Crodpy.d = / C) (Td®) +symVa™) : (J5(R) +sym Vu! ) didy
wxY
= / CO) (TP +symVa? ) : (%) +symVa™ ) didy = Cd - m.
wXxY

Now we see that C™y - d is actually uniquely defined with expressions of type C™m - m,

m € R*. This is because:
1
Cdpy.d = 3 [Cmm+Cd - d+ Cm - d) - (m—d))| .
Notice now that the expression

/ C) (T4() +symVg) : sym Vvd idy
wXY

is a first variation of the quadratic functional:

o [ COY(TRE) +symVe) : (T(R)+symVe) didy, ¢ e Hy(Y:H' (w:R)).

wXY

Thus we have that:
Cm-m = / CO) (T +symVu™) : (TE9(%) +symVa™ ) didy
wXY
- inf / CO) (T3 +symVe) : (%) +symVg), meR",
$eH L (Y:H (wiR3) J wxy

(3.4)

Therefore the expression (3.4) defines the tensor C™¢ uniquely. It is straight forward to

show that the tensor C™ is positive definite. To see this, we use the pointwise coercivity
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estimate (3.1):
C . = / CO) (T +symVu™) : (%) +sym Va™) didy
wXY

2
ZCH rod £y 4 sym V'™
T (R)+8y (¥R

>C (lxams = (91 + 0307") || 12 ey, + | =x1m3 = (@205 +3505) | 2 )
+C HI’I’L4 —X1mp —XxXomyp — ‘93”’;||i2(wxn .
It is clear that ('93ug” 1 ma—xym —xomy in L2(wx Y), so we have:
||ma = x1my — xamy - 03“?!]%2(0)”) > |lma — xymy — x2m2”i2(wxy) >C (|m1 I+ lmaf* + |m4|2) :
On the other hand, we have:
([xam3 — (91u5 +dsul') Hi2(w><y) +{|=x1m3 — (92u5 +dsuy) Hi2(w><Y) =
2
m
m3 " ~d3 | | = Vius
m
— o) [2(wXY:R2)

Consider the projection operator Pg on L*(w;R?) onto the set G := {Vv,v €eH 1(a))}. The

operator I — P is bounded since G+ is closed. We have:

2 2
X2 ul X2 ul'
m3 - 03 . —Vius >C\|(I=Pg)| ms - 03 .
— ) L2(wXY:R2) — ) L2(wXY:R2)

2 2

X2 T
=C ms3 (]—PG) + (]—PG)33
—X1 u
d N 2(wxY:R2) 2 1 l12(wxY:R2)
X2 T
+C m3(I — Pg) ,(I = Pg)03
Y _ m
X1 u2 L2(w;R2)
But,
X2 uiln X2 u'ln
m3(I — Pg) ,(I = Pg)03 . = m3(I — Pg) ,03 .
Y - Y _
X1 u2 L2(w:R2) X1 _u2 L2(w;R2)
X2 u’ln
=m3 (I-Pg) ,03 =0.
_ m
“ X1 u2 L2(Y;R2)
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So:
X2 um
ms3 —03 !
—X1 u?

—Vius > C|m3|2.
L2(wxY;R2)
|

In the case of material symmetries 3.1.1 we make use of the following matrices of
order 2:

bend T T
C*™™(my1,mp)" - (my,my)

= inf CHy) (g (£ +symVe) : (T (£)+sym V),
¢€Hé(Y;H‘<w;R3>)/wxy 0) (T, (D) +sym Vo) : (T305,(0) +sym¥e). 3.5)

(m1,m) € R

C M mz, my)" - (m3,ma)”

= ¢€H1(Yi‘II}Ifl‘(w'R3)) /(;)Xy C(y) (j,srgitﬁl(ﬁ) +sym V¢> : (j’g’giz’fjl(ﬁ) +sym V¢)36)
#\ s >

(m3,my) € R,

We have an easy consequence:

Corollary 3.1.2. There exists a constant v > 0 such that

bend T T 2 tretch T T 2
C*"my,mp)" - (m1,m2)" = vi(my,m)|~, C*Nmz,ma)" - (m3,ma)" = vi(m3,mg)|".

The homogenised matrices (3.5) and (3.6) can equivalently be defined with:

C*my,mp)! - (dy,do)! := / C) (TR, () +5ym Vit my ) 1 oS (),

mp,my
wXY

(m1,my),(d1,d>) € R?,
C N m, ma)T - (m3,ma) = / CO) (T (@) + sym Vit m, ) : T (),

m3,m4
wXY

(m3,my), (d3,dy) € R?,

where the functions u,,, ,», and u,,, ,,, are the solutions to the cell problems:

/ C) (TRenS, () +Sym Vit my )  symVvdidy =0, Vv € Hy(Y:H' (w:R?)).
wXY

/ C) (TR (R) + 5ym Vit m, ) : symVvdidy =0, Vv € Hy(Y; H' (w;RY).
wXY
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It is clear that we have the following decompositions:

C™(my,my,0,0)7 - (dy,d>,0,0) = C*™(my,my)T - (dy,d>)T,
C™4(0,0,m3,mq)" - (0,0,d3,ds)T = CN(mz, my)T - (d3.dy)T,

while in the case of the material symmetries 3.1.1:
C%m-d = C*M(m1,mp)" - (dy,do)" +C N (m3,ma)" - (d3.da)".

Next we define the homogenized limit differential operators given with the following

differential expressions:

ﬂbend — d_z(cbendd_2 ﬂstretch — icstretchi

dx3 dx; ’ dx3 dxz’

goi_ (P d A\ g P P4 d\
¢ dx3’ dx3’ dxs’ dxs dx2’ dx} dx3’ dxs

with the domains:

DA := HHR;R?), DA = H*(R;R?), DALY = HY(R;R*) x H*(R;R).

3.1.3. Gelfand transform and periodic decomposition

We denote the Sobolev space of Y —periodic functions in third variable with H ;(Y cH'(w;CY)).
For every parameter y € [—mr, ], we define the parametrized family of Sobolev spaces of

Y —quasiperiodic functions:
H;(Y;Hl(w;(ﬁ)) = {e’)(yu(xl,xz,y), ue H#(Y;Hl(w;(?))} . X €l-m,n].

Analogously, we define spaces Lﬁ(Y;Lz(w;C?’)) and L)z((Y; L% (w;C3)).

For fixed £ > 0 we define the operator G on L*(wx R;R3) with the formula:

& .
(Get)(x1,X2,Y,%) = 1/ e Ze lX(y+”)u(x1,x2,8(y+n)), (x1,x2,y) EwXR, y€[-m,nx].

nez

We refer to this operator as the scaled Gelfand transform. Note that the scaled Gelfand

transform G, transforms functions into Y —periodic functions in variable y, namely:

(gsu)(xl’x%)"“ 1’)() = (qu)(xl,xz’)’»)(), a.e.
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The scaled Gelfand transform is an isometry

&
G: : LA(wxR;RY) — L*([-m, 7], L(Y; L* (w3 CY))) = / L2(Y, x; L*(w; C))dy.

[—7,7]

in the sense that:

/s
W V) 2 oxpR?) = / (Golt. GeV) puyicyydxs Yy € (WX RiRY).
-

The original can be reconstructed with the following formula:

1
V2re

This formula can be interpreted as decomposing L*(w x R,R?) into a direct integral

T
u(xy,xp,x3) = / eXIE(Gou)(x1, x0, X3/ €, ) )d.
/4

%)
L2(wxR;R%) = / Ly(Y,x; L*(w; C))dy.

[—7,x]

Also, by noting that the scaled Gelfand transform commutes with derivatives in the fol-

lowing way:
1
gs(axa)u = axa(gau), gs(a)@u) = g(ay(gsu) + l;\/gsu),

we can see that
1
as(u’v) = ;a/\/(gé‘uagé‘v}a VX € [_ﬂ-’ﬂ]’

where
a,(u,v) := / Cy)(symV +iX,u : (symV +iX, )y, u,ve H#(Y;Hl(w;@)).
wXY
The operator X, acting on the space L*(wx Y;C?) is defined with:
0 0 Iy
Xeu=1 0 0 xu
Sxui syuy  yus

For a fixed y € [, ], we define the operator

Ay, = (symV +iX,) CO)symV +iX,) : D(A,) € Hy(Y; H (w;C)) - LA(wx ¥,C?)

associated with this form.
The scaled Gelfand transform, applied to the resolvent problem, can be depicted with the

following equality:

AA+D ' =g;! (/@ (iﬂ +I>_1d )g (3.7)
° e [—m,m] & ~ X “ '
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We interpret this in the following way: by using Gelfand transform for transforming
the problem, we have decomposed the resolvent operator (A, + D)~! into the continuous
family of resolvent operators (S%?IX +1 >_1 indexed by y € [-m,7]. As we will see, in
contrast to the original resolvent operator, this family consists of compact operators with
discrete spectrum.

Closely related to the scaled Gelfand transform is the scaled Floquet transform defined
with:

For s
(Fax1,x0,3.0) = \[ 5= > e Mulanx.em), (w2 €wxy, yel-mal

nez

For every y € [-n,n], the function (F.u)(x1,x2,y,x) belongs to the space of quasiperi-
odic functions H;(Y; H'(w;C3)). The link between Floquet and Gelfand transform is the
following identity:

Fott = eX¥Gou, Yu € L(wxR;RY).

The scaled Floquet transform is an isometry as well:
T
UV 2 (xRRY) = / (Fetl, FeV) 12 (wxy.ch)dX-
-

Similarily we have:

1
as(u’ V) = ;a(%u’ 7jsv)’

where

a(u,v) := / C(y)symVu : symVv, wu,ve H;(Y;Hl(w;@)).
wXY
This is due to the following formulae:
1
Fe(Ox,u = 0x,(Feut), Fe(Oxsu) = gé‘y(?}u)-

The importance of the operator X, lies in the fact that for quasiperiodic functions w €

HY(Y;H'(w;C)), namely w = ®®u(xy, x2,y), where u € H,(Y; H'(w; C?)) we have:
sym Vw = e (sym Vu + iXu).
Also note that for all u € L2(w x Y;C3) we have:
Crlellleellz2(xy:csy < IXyttllr2wxy.cs) < Colxllleell2xycs)-

For an overview of the use of Gelfand and Floquet transform one can consult the works

[30], [41].
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3.1.3.1 Formulation in terms of scaled quasimomenta

Here we note the alternative definition of Gelfand transform in terms of scaled quasimo-

mentum 6 := y/e:

Gean)(x1,x2.3.0) = [ 3= D e P uCx ol 4m),  (1x2)) €WXR, O [-/5,/s],
T

nez
where the inverse is given with:

n/e
(65'0) (1, x2,33) = zi / "3 U(x1, %2, %3/ £,6)d6.
T J-n/e

It is straightforward to link the Gelfand transform with the Fourier transform:

& —i0s(y+n
/(gsu)(xl,xz,yye)dy =/ \/ - Ze 020+ my (x1, x2, £(y + n))dy
Y Y T

nez

=V = Z/e_igg(y+")u(x1,x2,8(y+”))dy
2 Y
nez
1

e~ u(xy,x2,y)dy

- V2re ; e(Y+n)

1 / —ify
e "u(xy, x2,y)dy =
V2re JR

where @1 denotes the Fourier transform of u.

u(xy,x2,0/2n),

1
V2re

3.1.4. Smoothing operator

We define the following smoothing operator Z, : L*(wxR) - L*(wxR):

Bef =G5! /Y (G:1))dy,

which appears in the approximative problem definition. The purpose of = is cutting of

the high frequencies in a function, namely frequencies higher than 2%9 To see this, we

calculate:
1

V2ne

1

1 (& .0 ~ % o
o / " f0/2m)d6 = / O f(6)do

2¢e

Eef =G5 / (G=HYdy =G5! ( f(e/zm)
Y

Ty

=1 1
2e°2e

where ¥ denotes the inverse Fourier transform.

103



3.1.5. Main results of Chapter 3

In order to provide the link between the & problem and the homogenized limit problem,

we define the following force momentum operators:

fi . fi -
Mbend f R / fl — & dLXS‘fé Mstretch . / x2f1 _xlfz
& 20 d ’ & f2 T ’
p w | fa—exagzsf3] f w fi ]
3 3
. f-exidfy
1
Mrod £l = Mgendf _ / f2 —8)@%]03
) f2 Mtreteh £ o | xf—xif,
3
i i f3 |

Note that for f3 € [*(wxR;R), Mge“d f takes values in H “l(wxR;R?).
In order to display the possibility of obtaining the full physical model by allowing the

heterogeneity in the order of force terms, we make use of the following scaling matrix:

1 0 O
Sé‘:: O 1 0 ’ 8>O'
0 0 1/e

We label with P; : R? — R the projection on the i — th coordinate, as well as 7; : R* — R.

We are able to prove the following results:

Theorem 3.1.3 (L?> — L? norm-resolvent estimate). Lety > —2 be the parameter of spec-
tral scaling. Let 6 > 0 be the parameter of force term scaling. There exists C > 0 such that

for every € > 0 we have:

1 B a1 oa ot Nk rod cs'T. =12
P; (53{8”) — (MY <8—yﬂg’ +C" (w)> MPIE, < V2
1212 Ce2, i=3
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Under the additional assumption of the material symmetries 3.1.1 we have:

-1 -1
H (iyﬂa N I) P Mstretch)* <iy Astreteh Cstretch ( w)> Mstretch =, <Ceg 2,
> stretch &

1 B bendvs [ 1 bend b bende
Pi((g—yﬂg+l> |L§end_(M£en) <—87_2ﬂ en +I) MEYE, | S

12512

y+2 r2
Ce 4 max{s _,1}, i=1,2;

IA

Remark 3.1.4. In the Theorem 3.1.3, the operators (MP%)*, (MB4)* and (Mstretchy*
denote the adjoints of force momentum operators. The link between the Kirchoftf-Love

expression for rods and the associated force moments is given with the following opera-

tors:
uj
up
bend . 17l /p.mw2 2 .3 bend _
I H R;RY) —» L y(wXRRY), I = u> ,
u d
_—8E(x1u1 + X2u2)
B XoU3
us
stretch . 1 .2 2 .3 stretch _
I H (R,R ) e LStretCh(wXR’R ), I = |—x1uj3
Uy
| iy
Note that we have the following duality relations:
fi ui f1
Ibend ui _
£ | S - ur f2
u) wxR d
f3 —eqn(iur+xuz) | | f3
- J i
:/ “ / fl_‘gxlﬁj% ui Mbend f
d e 2
R luy w fz—EXQEfé u
) /3]
fi Xous3 fi
us3
stretch _
I s f2 _/ —X1u3 f2
Uy wXR
f3 uy f3

105



fi

us xzf 1~ xlf 2 3 stretch
:/ / = ’M fZ
R luy w 3 4
f3

These relations show that, in the suitable sense, we have the following duality:

S

<

Istretch — ( Mstretch)*’ _z-gend — ( Mgend)*.

Remark 3.1.5. The matrices C*"®"(w) and C™9(w) represent additional effects coming
from the torsion deformations and the shape of the domain w, and will be formally defined

in the continuation of the text, namely (3.11).

Remark 3.1.6. Notice that in the Theorem 3.1.3, the operator M2 is composed with
the smoothing operator Z,. Thus, for f € L>(w xR;R3), the resulting loads Mge“dEE f
belong to [*(wxR;R?) (instead of H ' (w xR;R?)).

Remark 3.1.7. The role of the parameter of force scaling ¢ is to enrich the model. It is
known in the analysis of thin structures (plates and rods), as a consequence of anisotropy,
one needs to incorporate different scalings of loads depending on the direction, which
yields the richer structure of the limiting model, see [23,52,68]. One could argue that the
most interesting cases of parameters y, 6 would be y =0, 6 =0 and y =2, § = 1, since
these are the standard regimes which emerge when studying thin structures on a finite
domain, see [68]. However, in the case of infinite rod (similarly like in the case of infinite
plate [20]), there is no natural spectral scaling. The role of the parameter y becomes clear
in the case of evolution, where it serves to obtain the models in different time scales (the

evolution models of plates and rods are usually analyzed with y = 2, see [54], [68] )

Remark 3.1.8. Actually, the smoothing operator Z. can be removed from the estimates in
Theorem 3.1.3 while preserving the order of the estimates. This is shown in the Corollary
3.4.5. One easy consequence of the Theorem 3.1.3 are the estimates on the band gaps in

the spectrum. See Corollary 3.4.8.

Remark 3.1.9. It is possible to obtain the the same estimates as in the Theorem 3.1.3,
even in the case when the ratio g belongs to the fixed interval [a,[], but the constant in
the estimates will depend on the @ and 8. See Section 8 in [20]. The same is true for

Theorem 3.1.10 and Theorem 3.1.11.
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3.1.5.1 Higher precision estimates

We also find the resolvent estimates in the L2 — H! operator norm, as follows:

Theorem 3.1.10 (L> — H' norm-resolvent estimate). Let y > —2 be the parameter of
spectral scaling. Let 6 > 0 be the parameter of force term scaling. There exists C > 0 such

that for every € > 0 we have:

1 - 1 -
Pi(<—ﬂg+1) — (MY (—ﬂf;’dwmd(w)) MPIE, - fgg%s))
&Y &Yy

L2—H!
v+2
Ce 4, i=12;
=\ .
Ce 2, i=3.

Under the additional assumption of the material symmetries 3.1.1 we have:

stretch

1 ! 1 !
H (8_7 A+ I) |L§tremh —( Mstretch)* (6_y ﬂstretch + Cstretch ( w)> Mstretch =, — Ao (&)

[2>H!

e
SCmax{éer ,E 2 },

ey—2

1 -1 1 -1
P ((73" R e ) —ﬂﬁ‘gﬁd(«e)) P

[2-H!
2y 2
Cmax{s 4 ,82}max{s 4 ,1}, ifi=1,2;

= Y2 3y+2 72
Cmax{e2 ,& 4 }max{s4 ,1}, ifi=3.

The operators Ay (e) and AL | (&) are standard first order correctors in the theory
of homogenisation, defined in the following text with the expression (3.37).

Our asymptotic analysis resulted in obtaining correctors which allow us to calculate
L? — L? norm resolvent estimates with even higher precision. These corrector terms were
previously unknown in the theory of heterogeneous elastic rods, however they resemble

the higher order correctors which appear in the works of Birman and Suslina. For the

precise definition of these corrector operators consider (3.39).

Theorem 3.1.11 (Higher order L?> — L? norm-resolvent estimate). Let y > —2 be the

parameter of spectral scaling. Let 6 > 0 be the parameter of force term scaling. There
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exists C > 0 such that for every € > 0 we have:

1 ! a! -
P; ( (5% + 1) — (MY < AR+ cmd(w)) MPIE, — A (g) — 5400“(8)>

1212
y+2
Ce 2, i=1,2;
< 3(y+2)
Ce 4 |, i=3.

Under the additional assumption of the material symmetries 3.1.1 we have:

-1
H (i A+ I> |2 —( Mstretch)* (i ﬂstretch + Cstretch( w)> Mstretch
o L & e

stretch

Acorr (8) corr (8) < C87+2’

stretch stretch

[P—]?

1 - 1
”P,- ((5ﬂ8+1> 2, —ME)’ < A 4 1) MEME, - A (5) — ﬂgggd(g)> e

1212
y+2 2
Ce 2 max{84 ,1}, i=1,2;

3(y+2) y+2 s
Ce 4 max{g4_,1}, i=3.

IA

3.1.6. The methodology and the strategy of the proofs

Out approach begins with the application of the Gelfand transform in order to decompose
the resolvent problem for the operator defined with (3.2) into the continuous family of
resolvent problems posed in the space of periodic functions on a unit cell, in the sense
of (3.7). The next step would be to analyse the problem for each fibre y in order to
provide the approximation of resolvent operators with a homogenised resolvents. all while
estimating the difference between the two in the operator norm topology.

Even though the results which we aim to obtain are the estimates with respect to the
physical parameter € (playing the role of the thickness of the rod as well as the period of
material oscillations), the general agenda is to first provide the estimates with respect to
the quasimomentum variable y, for each fibre y € [—m,]. These estimates are then trans-
lated into the desired norm-resolvent estimates by the means of Cauchy integral formula.

The approximation with respect to the quasimomentum y is done by performing care-
fully devised asymptotic procedure adapted for handling the particularities arising from

the the fact that the rod is thin and oscillating in one direction only.
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All of this is first carried out in the case of the assumption 3.1.1, under which the prob-
lem separates into two relatively simpler problems to handle. For example, the asymptotic
procedure can be carried out separately for these two problems and is much simpler.

In order to gain insight into the spectral properties of the underlying operators and also
to be able to prove the desired estimates, we first derive needed Korn-type inequalities
depending on the quasimomentum y.

The structure of the chapter is the following:

e In Section 3.2 we derive the Korn-type inequalities in the general case, but also for
the bending and stretching deformations in the case of material symmetries. With
the use of these inequalities, we estimate the spectrum by the means of Rayleigh
quotients. The outcome of the analysis is the conclusion on the orders of magni-
tudes of eigenvalues and the revelation of the appropriate scalings of the operators
in the next step. The difference with respect to [5], [7] comes from the fact that the
lowest eigenvalues appear with different order in || (two of them of order |y|* and
two of them of order [y|?). Due to this, the approach by spectral germ is not directly
applicable, since the usual assumption on regularity of spectral germ implies that

all the eigenvalues of the lowest order have the same order, namely [y|°.

e In Section 3.3 we approximate the resolvent operators by performing the iterative
asymptotic procedure used for gradually defining the approximations of the solu-
tion to the original problem, where the bounds depend only on the norm of the loads
and the quasimomentum ) (with increasing order of magnitude). Here the analy-
sis is done only in the case of Assumption 3.1.1, separately for the two invariant
spaces. The case of stretching deformations resembles in a way to the bulk case,
primarily with regard to the order of the operator scaling. Like in [20] we use y-
dependent asympotics, which is a natural choice as a consequence of apriori bounds
and enables us to perform the asymptotics up to any order in |y|. This makes these
approaches different with respect to the approach in [18], where the e-dependent

asymptotics is done.

e In Section 3.4 we dissect the obtained estimates and combine them with the Cauchy

integral formula in order to make the estimates depend only on the physical parame-
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ter £. We use different parts of the obtained asymptotic expansions in order to define
the corrector operators appearing in the Theorem 3.1.10 and the Theorem 3.1.11.
Then we combine all the fiberwise estimates back onto the physical domains. Here

we also deal only with invariant subspaces under the Assumption 3.1.1.

In the last section, namely Section 3.5, we repeat the procedure but only this time
under no additional assumptions. This requires us to perform two simultaneous
asymptotic procedures, with different scalings, and then combine them together in

the end. The last step is again the Cauchy integral formula.
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3.2. AUXILIARY RESULTS AND APRIORI ESTIMATES

In this section we provide Korn-type inequalities in before mentioned spaces in order to
deduce apriori estimates on the solutions to relevant resolvent problems. The following is

the expression for rigid motions in w X Y:

0 d a X1 C1l dxp +ax3+cy
v(x1,x2,x3):=Ax+c=|-d 0 b xo| tlea| = |—dxi+bxs+ca| s a,b,c1,c2,c3,deC.
—a -b 0| |x3 c3 —ax)1 —bxy+c3

(3.8)
Rigid motions are deformations consisting of only rotations (skew symmetric matrix A)
and translations (vector c¢). These deformations belong to the kernel of the operator sym V.

We state the second Korn inequality in the following form:

Proposition 3.2.1. For every u € H' (wx Y;C?) we have the following estimate:

6(x) = (Ax + €)1 oy < CllSYm Vaell 2y o33

where
0 d a C1
A: _d O b s c= c2 > C]:/ (uj)5 j:]~92939
wXY
-a -b 0 c3

61:/ (O3u1 —01u3), b=/ (O3uy — Oru3), d=/ (Oruy — 01u2),
wXY wXY wXY

The constant C depends only on the domain w X'Y.

In order to make proofs in this section more elegant, we have decided to present the
results with respect to quasiperiodic functions, namely the image of Floquet transform.

This is obviously equivalent to the approach with periodic functions via:
H;(Y;Hl(a);C3)) — H;(Y;Hl(w;C3)), Fe ¢ Gs, symV «—symV +iX,.

The following lemma provides estimates for the approximating rigid motions of quasiperi-

odic functions in y variable with respect to the norm of the symmetrized gradient.
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Lemma 3.2.2. There is a constant C > 0 such that Vy € [—n,n]\{0}, Yu € H;(Y; H'(w;C?))
we have that
lle =Vl wxy;c3y < Clisym Vael| 2y, o33,
where v is a rigid motion defined with (3.8) with the coefficients satisfying the following
estimates:
max {lal, b, 1d], |e3} < %CllsymVulle(wxy;csxs)
(€™ = D)cz = bl < Clisym Vaul| 2y -39
(€™ = Dt —al < Clisym Vaull 2 y:c33)
1

max {[c1l, ez} £ — Clisym Vaull 2w y.c3%3).-

" P
Proof. By using the trace theorem for functions in H)l((Y :H'(w;C3)), as well as Korn’s

inequality, we conclude that for w supplied by the Proposition 3.2.1 we have:

”u — W||L2(wx{y=1}) < C||SymVu||Lz(wa;@3x3),
||u - w||L2(u)><{y=0}) < C||Symvu||L2(wa;c3><3).

Furthermore, for smooth quasiperiodic # we have:
u(xi,x2,1) = eXu(x1,x,0), V(x1,x) € w,
thus:
w(x1,x2, 1) —eXw(xr, x2,0)] < (1, x2, 1) =w(xp, x2, DI +[eX @(x1, x2,0)—w(x1, x2,0))\,
for every x1,x> € w. Thus, extending this to all u € H;(Y;Hl(a);(‘?)) gives:
lIw(x1,x2,1) - elXW(XI»XZ,O)HLZ(w;@) < lue - W||L2(w><{y:1};c3) +|u - W||L2(w><{y:0};<c3)

and therefore

Iw(x1,x2,1) = eXw(x1,22,0)l| 2003 < Cllsym Vaell 2 y-c3)-

Componentwise, this means that

A

/w (X = 1)(e1 +dxo) —alPdxidx, < CllsymValll, o v

A

/w (€ = 1)(c2—dx) = bPdxidxy < CllsymVallZ, o5,
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/w (€% = 1)(c3 —ax; —bx)PPdxidxy < CllsymVally oo

Recall that we are using the coordinate system with the following symmetries:

/X1=O, /X2=0, /X1X2=O.
w w w

Also, by using Taylor expansion we note that there exist constants C1,C, > 0 such that

for all y € [-n, 7] we have

Cilyl <X — 1] < Calyl.

These remarks allow us to deduce:

(€% = 1)y —al* + ClyPldl> < C / (e = 1)(c1 +dx2) — al*dx;dx,
w
(€% = 1)cy = bI* + ClyldI* < C / (e — 1)(ca — dxy) — bl*dx1dx>
w
*(e3l? +lal* + b)) < C / (€% = 1)(c3 — ax; — bxy)Pdxidxs.
w

which yield the final estimates.

3.2.1. The leading order term

Proposition 3.2.3. There is a constant C > 0 such that for every y € [-n,n]\ {0}, u €
HY(Y;H (w;C?)) there exist a function w € Hy(Y;H' (w;C?)),

dx> cl
w(xla-x27y) = el)(y —dX1 + (6] ’ c1,C2, c37d € Ca
c3 —ix(c1x1 +c2x2)

such that

||ll - w”Hl(wa;C3) < CllsymVulle(wxy;@w),

max ld.les) < ﬁcusymwny(wxy;@sxs),
max {|c1],|ca]} < #CllsymVulle(wxy;@m).
Proof. By using the estimations of error in Taylor expansion:
¥ =L+ = 00?), €% =1]=O0).
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we can deduce the following:
liyci —al < H(eiX -1y —aH + “(eix—(l +ix))ci H

1
< Cillsym Vu||L2(wXY;C3><3) + C2|)(|2—2||sym Vulle(wa;C3x3)
x| (3.9)

< Cllsym Vul| 12y y-:c373)s

liyco —b| < C||symVu||Lz(wa;@3x3)

In other words, we have that u can be approximated in H! norm with the rigid motion

whose coefficients satisfy the above estimates, namely:

0 d al |x c1
lleeCxr, x2,¥) = v(x1, X2, Wl g1 w3y = ||#(xn, x2,y) = -d 0 b| |x|+t|a
—-a -b 0 y c3 H (oxy:C)
ui(x1,x2,y) —dxy—ay—cj
= || | wa(x1,x2,y) +dx; =by—c2 < Clisym Vel 12y, c33)-

uz(x1,x2,y)+ax; +bxy—c
3(x1,X2,Y) 1 27 S 1 (wxycd)

But, the estimates (3.9) allow us to eliminate coefficients @ and b in the above estimate
with respect to c1, ¢ in H'(wx Y;C?) norm:

The following calculation proves this:

Hay— (eiXy — 1) 1

Hay+cl —eiXycl‘

L2(wxY;C3) [2(wxY;C3)

’i)(ycl - (eiXy -1) c1’

IA

ay—iyycilly2 ot
” y =Xy 1||L (wxY;C>) LZ((A)XY;CS)

Iy(a=ixedllzerey + | (o= (@ =D)er| o

IA

1
Cillsym Vel 2 y:coxs) + szzwusym Vaul| 2 xyc

IA

CIIsymVuIILz(wa;Csxs).

0, (ay+ci —eXc = Ha—i eXVe
H y< yra 1) L2(wxY:C3) X M 2 wxy:c3)
. . _ Yy
S ||a lXc1||L2(w><Y;C3) +‘ ZX (1 € C]) LZ(wXY;CS)
1
< Cillsym Val| 2y + CzlxlzwllsymVull L2 (¥ :C5
<

Cllsym Vu||L2(wa;C3><3).
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Therefore:

Hay+01 —e’Xycl“ < Cllsym Vaull 2 sy:c33)-

HY(wxY;C3)
Similarly:

Hby+cz—e’)‘y62‘

Hl(wXY;C3) < C”Sym Vulle(wxy;@w).

Next, we calculate:

Ha)q +bxy —eViy(xicy + xzcz)‘

L2(wxY;C3)
< Alx1 (a-eXiyce ‘ +Hx b—eiye
H 1( X 1) [2(wxY;C3) 2( X 2) L2(wxY:;C3)
< Cillsym Vull 2 yxy.c3x3) + Callsym Vall 2 uy.c3)
< C”SYIIIVU”LZ(wa;C}x}),
Oy, (axi +bxy —eXiv(xic1 + xac < Ha—ei)‘yi c ’
’ w (ax1+bxa Y(x1C1+x202)) 2(xy:CY) XU o ricoy
< Cllsymvu”LZ(wxy;C3X3),
O, (axy +bxy —eXiy(x1c1 + X3¢ Hb—ei)‘yi c ‘
‘ vy (ax1+bx Y (x1c1+x22)) 2oxyich) X oyt
< CllsymVuIILz(wxy;@m),
9y (axy +bxs — eXViy(xic1 + xac H 26X (x1¢1 + x20 ‘
H v (ax1 +bxa y(xic1 +x2¢2)) 2(xy:CY) €™ (x1c1 + x202) 2oxyicH)
1
2
< Cll W”Symvu”LZ(wxy;CSXS)
<

Clisym V|25 y-c373)-

Therefore, we have:

Haxl +bxy — iy (xicp + xzcz>( < Cllsym Varl| 2 y:cox3)-

HY(wxY;C3) —

Remark 3.2.4. We will denote this approximation of u € H;(Y H 1(a);C3)) as: rod(n),
namely:

rod(u) := eiXy(dxz, —dxy,c) T+ eiXy(Cl,cz, —iy(c1X1 + coxo))T.

We interpret the previous proposition in the following fashion:

u =rod(u)+ O(llsymVuIILz(wa;Csxs)).
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3.2.2. Invariant subspaces

In the case of certain symmetries of the elastic properties of the material 3.1.1 one can
reduce the problem to two simpler problems. We are able to isolate two orthogonal sub-
spaces which then turn out to be invariant under the operator of elasticity. These subspaces
consist of “out of line” displacements, which we refer to as bending displacements, and
”in line” displacements, which we refer to as stretching displacements. We begin with
decomposing the space L*(w x Y;C?) into two orthogonal subspaces Lﬁen 4 and Lgtretch

defined as follows:
Lpena = {# € P@X YT, ua(S0r1,x2) =ua(x1,x0),0 = 1,2, u3(S(x1,x2)) = —u3(x1,%)}

stretch —

L2 = {u e LA(wxY;C%), uy(S(x1,x2)) = =ug(x1,2),0 = 1,2, u3(S(x1,%2)) = u3(x1,x2)}

Here we make a small remark noting that these spaces are mutually orthogonal also in

Hy(Y;H (w;C)):

(HAY:H @ C)N L) = HAY:H (@ C)N L]

stretch?®

Notice that, for u € H)l((Y : H'(w;C?)), we have rod(#) = #pend + Ustretch, Where

2

i . T _ 2
retchs  Hbend = €7 (c1,c0,—ix(c1x1 +c2x2))" € L, g

Usiretch := €7 (dxy, _dxl,c3)T €L

By simple calculation we find that

0 0 iycy

Vitpena =€ | 0 0 iycs

_—i)(cl —iyca —(i)()2(01x1 +C2x2)
0 0 0

sym Vitpend = €X' [0 0 0

0 0 —(ix)*(crxi +cax2)

(0 a4 ivdn

Visgrereh = € | -d 0 —iydx

0 0 iyecs
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0 0 Tivdx,
sym Vilsrerch = e 0 0 - % iydx

%i)(dxz —%i)(dxl iycs

Here we make the observation that sym Vuegyeren = Xy Ugrerch. We can easily calculate the

following L? estimates:
1
||ubend||L2(wa,<c3) < Cmax{lcyl,lezl} < CWIISymVuIILz(wxy;Csxs),
1
sl < Cmax {ldhlesl) < Coolsym Vull e

2
lIsym Vaependllp2(xyc3y < xI” maxflerl,leal} < Cllsym Vall 2w y.c3x3)
||SymVustretch||L2(wxxc3><3) < lylmax{|d|,|c3]} < C||Symvu||L2(wa;c3x3)~

Next, we define the following subspaces:
Ve = {(c1, 0. —ix(crx1 +cax) €W c1,c2 € C} < HY(Y: H' (w3 C)),

vt .= {(dxy, —dxy,c3)" e".d,c3 € C} < H(Y:H' (w;C)).

Note the following facts:
. bend _ q: stretch __ bend stretch
dim VX =dim VX =2, VX 1 VX ,

bend 2 stretch 2
VX < Lbend > VX < Lstretch .

The following estimates are crucial for the spectral analysis.
Proposition 3.2.5. There exists a constant C > 0 such that:

e Foreveryu e H;(Y;Hl(a);C3)) we have:
C
||u||L2(wxxc3) < WllsymVulle(wxy;@x.s),
bendy\.L .
e Foreveryu € (V)*"%)".
C
||u||L2(a)><Y,C3) < mllsymvu||L2(wa;(c3X3)a
e Foreveryu € (V}(’end ] V;tretCh)L:

||"||L2(w><Y,C3) < Cl|sym Vulle(wa;Csxs),

(3.10)
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Proof. The proof relies on the following reasoning:
uc H;(Y;HI(Q);C%) = |l — Ustrerch _ubend”LZ(wa,@) < CllsymVulle(wxy;@w)-

We see that

||u||L2(a)><Y,C3) < |l = Ustrerch — ubend”LZ(wxx@) + ||ubend||L2(w><xc3) + ||ustretch||L2(w><xc3)

1
< C—2||symVu||L2(wa;C3x3).
¥l
Foru € (V}(’end)L we have

2 2 2 2
”u - ustretch”Lz + ”ubend”Lz = ”u — Ustretch — ubendlle(wxxcs) < C||Symvu||L2(wa;C3x3)’

Therefore

[|ee — ustretch||L2(w><Y,C3) < Cllsym Vu||142(w><Y;(C3’X3)’

SO

1
||u||L2(a)><KC3) <llu _ustretch”LZ(waC3) + ||ustretch||L2(w><KC3) < lelsymVulle(wa;Csxs)-

Last, foru € (V)l(’end ] V;‘retCh)L:

2 2 2 2
||u”L2(w><Y,C3) + ||uStretCh”L2((u><Y,C3) + ||ubend”L2(a)><Y,C3) = ”u — Ustretch — ubend”Lz(wa,C3)

2

< C”Sym Vu”LZ(wa;CBSXB)'

Remark 3.2.6. Under additional assumptions on the symmetries of the elasticity tensor
C(y) 3.1.1, we can separately analyze the problem on each of these two orthogonal sub-

and L2

stretch are invariant

spaces. Actually, under the assumptions 3.1.1, the spaces Lgen d

for the operator A,. Let S : L*(wxY,C* — L*(wx Y,C?) be the symmetry operator
defined with

Su)(x1,x2,y) := (—u1(S(x1,x2),y), —u2(S(x1,x2),y),u3(S(x1, x2),y)).
It is clear that

L%end = {u eLz(wa,C3);Su = —u}, 12 = {u eLz(wx Y,C3);Su :u}.

stretch —
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The invariance for these spaces means that

ay(Su,v) =a,@,Sv), a/(Su,Sv)=ay@w,v), Vu,yeH(Y:H (w;C)).

2

bend and

Note that the operator S is continuous operator on L>(€) and that §> = 1. Spaces L
L? are mutually orthogonal also with respect to the form a,. As a consequence, the
stretch X

resolvent problem splits into two separated problems on each of these invariant subspaces.

3.2.3. Spectral estimates

By Rellich-Kondrachev we have that H ;(Y; HY(w;C3))is compactly embedded into L)Z((Y :L2(w;CY)).
Thus, by the theorem of spectrum of compact operators, we deduce that the spectrum of
A, consists of nondecreasing sequence of eigenvalues (A¥),, which tends to infinity.
Here we can state some results on the structure of the spectrum and its scaling. Recall
the definition of the Rayleigh quotient associated with the bilinear form a,, namely:

R, () = ay(u,u)

- 2

, UE H;(Y;Hl(a);C3)).

The Rayleigh quotient is closely related with the spectrum via the following characteriza-
tions:

A = min max R, (v
" verrvev X )

Ay =min {R,(v): v Lviin wxY;C?), 1<i<n-1},
where L" denotes the family of n—dimensional subspaces of H;(Y cHY(w;CY)).

Remark 3.2.7. Here we note that the function y — A% is continuous for all n € N. For

that reason, we conclude that the spectrum of the operator A, is a union of intervals

L= | A new
XE[—]T,]T]

[4

—_n?’

The presence of the previously defined subspaces V};e“d, V;“et‘:h yields inhomogene-
ity in the order of magnitude of eigenvalues with respect to the quasimomentum y. In

particular, we have the following proposition:

Proposition 3.2.8. There exist constants C1 > Cy > 0 such that:
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Yu € Hy(Y;H' (0;C%),  Ry(u) = Colyl*,

Yue Vi R (u) < Cilyl*,

Yue (VDL R () = Colyl%,

Yu e VUh R, (u) < Crlxl,

Yu € (VP U Vet L R () > O,

Proof. By using the uniform positive definiteness of the tensor C together with the esti-

mates (3.10) we get the following:

a,(u,u) I Symvu”LZ(wa@)

> Cvly[*.

R (u) =

ee ||L2(w><YC3) e ||L2(w><YC3)

For arbitrary u = (c1, ¢, —iy(c1 X1 + c2x2)) " eX) € V};end we calculate:

||sym Vu”LZ(wxy;C3><3) < max { \/Cl((l)) " \/CZ((U)} I)('Z /C% +C%

IVl 2xrcs) = letl+leal + min{ep(w), ca(@) il \/ e +¢5 = letl+leal = (/i +c3.

Combined, we see that

1 lsym Valf

a,(u,u) [2(wXY: C3X3) C(w)

R, (1) = !

Y %
ee ”L2( xY,C3) e ”L2(wa@

Now take arbitrary v = (dxa, —dx1,c3)"eXY € V;trewh. We have:

||symVu||Lz(wa;@3x3) <yl max{ vep(w)+ e (w), 1} \/d? +c§,

while
||v||L2(w><Y,C3) > min { Cl(a)) + CZ((U) , 1} /d? + C‘% )

Combined, we have that

Ry < <.

These calculations, together with results from Proposition 3.2.5 finish the proof. [

The previous proposition allows us to deduce the following result on the structure and

the scaling of the spectrum:
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Theorem 3.2.9. The spectrum o(A,) consists of two eigenvalues of order O(x|*), o
eigenvalues of order O(|y|%) and the rest of order O(1).

Under the additional assumptions on the material symmetries 3.1.1, the spectrum o {ﬂX}
is a disjoint union of spectra o {ﬂXI 2 } and o {ﬂXI 2 } The spectrum o {.?IXI L }
contains two eigenvalues of order O(|x|*) and the rest of order O(1). On the other hand,
the spectrum O'{ﬂ)(l 12 } consists of two eigenvalues of order O(|y|?) and the rest of

stretch
order O(1).

Proof. The proof relies on the estimates on Rayleigh quotients and the characterization

of eigenvalues via min-max principle. [

Under the symmetry assumptions, the spectrum of the operator A, can be decom-

posed into two sets o(Ayl;2 ) and o(Ayl;2 ) soitis of interest to perform the asymp-
bend stretch

totic analysis of the resolvent problems for the scaled operators ﬁﬂﬂ % and #fﬂxl 12

end stretch

The following proposition provides us with Korn type inequalities which are crucial for

calculating apriori estimates for the resolvent problems.

Proposition 3.2.10. There exists C > 0 such that for every y € [-n, 7]\ {0} we have:
For every u € H;(Y;Hl(w;C3)) NL2

stretch g
C
||u||H1 (wXY,C3) < mllsym VullLZ(wa;C3><3) .

For every u € H;(Y;HI(W;C%) N Lﬁendf

¢ C
”ul“Hl(wXY,C) < WHSymVuHLz(wxy;csxs), ||u2”H1(u)><Y,C) < Wllsymvu“LZ(wxy;c3x3),
C
el oy <7 Isym Vallz xycoo)

2

stretch and

Proof. The proof relies on the orthogonality of spaces H;(Y sHY (w0;C3) N L

H)]((Y;Hl (w;C3))N Lﬁend in H'(wx Y;C3) scalar product. [ |

Remark 3.2.11. This heterogeneity in componentwise estimates allows the scaling of the

third component of the force terms in the bending case.
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3.3. ASYMPTOTIC ANALYSIS OF RESOLVENTS

3.3.1. Helpful definitions

The purpose of this section is to establish the estimates on the distance of the solution of
the resolvent problem u to the leading order term, which is the solution to the homoge-
nized problem. The distance is estimated with respect to the quasimomentum y and the
norm of the force term. This will, in return, have as a consequence the estimates on the
resolvent operators in the operator norm topology. In order to do this, we will perform
the asymptotic expansion of # with respect to the quasimomentum y, starting with the
solution to the homogenized problem. Therefore, we proceed with the definition of the
homogenized material response matrices. Fix m = (m,my,m3,my) € C*. We define the

following embedding operators:

ny
mj
bend . ~2 2 .3 bend _
IX C _)Lbend(wXY’C )’ IX - m2 ’
ny
—ix(xymy + xpmy)
Xom3
m3
stretch , ~2 2 .3 stretch _
I 1C7 o L en (X Y;C0), T = |—xym3| »
mq
ng
mi m3
I/r\/od . C4 N LZ(w xY; C3), I)r(odm — I)t;end +]-stretch
my my

These operators serve as a link between the appropriate Euclidean spaces and the finite
dimensional subspaces of rod displacement approximations. We define the complex force

momentum operators in the following way: for each y € [, 7], f € L>(w x Y;C?) we
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have:

S _ S r 7
M)'?end £l = / fi1+ixfzx cc?. M;tretch £l = / xof1—x1f> cC2,
XV | fr+ixf3x wx¥ /3
VE f3 - B
f f1tixfsx
I .
Ad MEMf L frt+ixfzx e
X f2 - stretch - )
s MRS ox¥ | xp f1—x1f?
3
Sz

These momentum operators satisfy the following estimates:

HMEende = ”fl HL2(u)><Y) + ||f2||L2(a)><Y) + ||f3||L2(a)><Y)’

Mg p | < W lricnys ([P < Wl
We have the following:
g;lM)l;endggf — Q;l/ gz-:fl +i)(gsf3xl _ / 9;1 fygsfl +X1§§1 (l.)(fygsfé)
wx¥ gsf2+i)(gsf3x2 w ggl fygsfz"'nggl (l'/\/fygs.fF))

g;l fygafl —&X] %Q;l fygaf3
Similarly we have:

— MbendEg f
G.' [yGef2—ex235G." [y Gef

-1 h h— -1 d d—
gg Mj/tretc gé‘f = M:‘tretc ‘:‘8f9 g{-; M;O gé‘f = M;O ‘:‘.S‘f-

We also define the following matrices, which appear in the calculations and contain

information on the cross section of the domain w.

Cstreteh _ ci(w)+c2(w) 0 L e = 1+ |ylei(w) 0 |
0 0 L+ yPer(w) |
[1+lPei@) 0 0 0]
() 1= CeMw) 0| 0 1+ yPer(w) 0 0
0 e 0 0 clw)+erw) 0
0 0 0 1]
(3.11)
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We will also make use of the notation C™%(w) := Cf)"d(w).

For every m = (my1,ma,mz,ms)!, d = (dy,dr,dz,ds)T € C*, we have:

m d m | |d
/ I/l;end 1 . I)l;end 1 dxdy — C)l;end ((,L)) 1 . 1 ,
wxY my d> 2 &

/ Istretch m3 . _Z'stretch d3 dx dy — Cstretch ms3 . d3
wXY m

4 dy my| |da
rod rod _ rod -3
/ IX m-Iy ddxdy—CX (wym-d.
wXY
Notice that, for every f € Lz(a) xXY; C3), d=(d,dr,d3,ds) € C*, we have the following:
bend bend dl
f-I dxdy = M7 f- ,

d3 d3
/ f I stretch dxdy — M)s(tretch f . i
wXxY _d4_ dy
[T dxdy = MXf -d.
wXY
Note that these are, in fact, the following dualities:
Ibend n f — ! Mbend f
X b b X b
mp 12 ) o2
J-stretch m3 f — < mj Mstretch f
ma L2 m C2
rod _ rod
(Im. f) o = (mMPS)

Due to these relations, we conclude:

Istretch — ( Mstretch)*, ]-)t;end — ( M/t\;end)*, ]-/r\/od — ( M;Od)*.

We also make use of the following matrices which contain the information on the sym-
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metrized gradient of Kirchoff-Love deformations:

0 0o == 0 0 0
tretch (i - bend (12
A;,rf?e13cgm4(x)'_ @) | 0 0 % ’ AX?;l,mz(x)-— )10 0 0
TS om 0 0 —mx;—maxy

d ._ A bend stretch
N () =G oy () + A, (X)-

It is clear that:

Abend (X) — (iX)Zjbend Astretch (x) — (iX)jstretch

X512 X.my,my? X51M3,1M4 X-Mm3,m4 "
Here we note that
msxp ms3xp
symV —m3X] +iXX —m3X]
my my
0 m3 O 0 0 %i)(m3 X2
=sym|-m3 0 O|+| 0 0 ~Liymaxr | = A (%),
0 0 O %i)(mg, Xy - % iymsxy iymy
also,
mi mq
Sym \Y my + iXX my
—ix(mix1 +myx;) —ix(mix1 +myx)
0 0 - % iymi 0 0 %i)(ml
= 0 0 — % iymy | + 0 0 %i)(mz = A;?,r,f,mz (x).
—Yixmy  —%iyms 0 sixmy  zixmy x*(mixy+myxy)

Easily, we can calculate the following estimates
Cr@)Plmy,m)| < IAX . (Ol 2xy:coxy < Co(@)Plimy,mo),
Cr(@)ll(mz, ma)] < AT (Ol 2xy:co) < Co(@)lyll(m3,ma)],
Now, consider the problem of finding u € H #(Y;H (w;C3)) such that:

/ C(y)symVu : symVy = fv, VYrve H#(Y;Hl(w;(?)).
wXY

wXY
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In order for this problem to be well posed, the right hand side f must be orthogonal to
the kernel of the operator sym V. The kernel of this operator consists of rigid motions, but

since we are dealing with functions periodic in y, we have:

dxy+cy
Hy(Y;H' (0;C*) nker(symV) = { | ~dx; +c2 | »c1¢2,¢3,d € C p < HY(Y; H (0;C)).
3
We define the following space:
H = [H#(Y;Hl(w;C%) ﬂker(symV)} -

= {u € Hy(Y; H' (w;C%)); u= 0,/ XoU| — X1Up = 0} .
wXY wXY

Note that H is closed subspace of a Hilbert space H. ;(Y; H'(w;C?)) and that Korn’s in-
equality, as well as Poincare inequality hold on H. For f € H, Lax-Milgram theorem
yields the existence of unique solution u € H of the above problem, with test functions
taken in the space H. But, since, f € H, this is equivalent to allowing arbitrary test func-
tions v € H;(Y;Hl(w;C3)).

This argumentation allows us to consider the following well posed problem: Find u, ,, €

H, such that:
/ C) (sym Vg + ARS(x)) : symVrdxdy =0, Vv e H.
wXY

The above problem has a unique solution and can be equivalently rewritten by using the

adjoint of the operator symV, namely
symV* : Lﬁ(Y;Hl(a);C3)) — H,
as follows:
symV*C(y)symVu, ,, = —sym V*C(y)/\)r(%(x), uym€H.
Next, we define the matrix C)r("d e C** with the formula for the bilinear form:
Crodm g = /w o (sym Vary, + A4 () - %dxdy

In order to analyze the problem separately on two invariant subspaces we also make use

of the following spaces:

stretch

Hstretch - [H;(Y;Hl(w;c3))mker(symV)ﬂL2 :|J_
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= {ueHé(Y;Hl(w;@));/ us =0,/ X1y — Xou =0},
wxY wxY
1
H*™ = [ HY(Y H (0:C%) nker(sym V) N LE |

= {uGH#(Y;HI(w;Cg)));/ u =0,/ uzz()}.
wXY wXY

Notice that
c1
HYy(Y;H (0;C)) Nker(symV)NLE =1 |y | sc1,c2€C 3 < HAY; H (w;C?)).
0

dx»
HYy(Y;H (w;C) nker(sym V)N L2 =< |—dx; | ,c3,d €C p < HAY;H' (w;C?)).
c3

We consider the solutions of the following equations:

Sym V C(y) Sym V bend _ Sym V*C(y)Abend (x) ubend c Hbend’

X my,my = X111, X111,
sym V*C(y) sym Vu)s(tr,%d;n , = —sym V*C(y)A)S;r,ZgCZ (%), u)s(tr,zgd,ln . € Hsreteh,
Note that the well posedness of the above problems requires invoking material symme-
tries in order to see that nontrivial unique solutions exist. Thus, by defining the matrices

Chend, ctreteh ¢ €222 with the following bilinear forms:

C)l;end(ml,mz)T (dy,dr)T = / C(y) (sym yyubend | Abend (x)) Abendd (x)dxdy

X7m1,m2 XM,
wxY
s, ma)! - (ds, da)] = / CO) (sym Ve, + A, (0) « A5G, (Odxdy.
wXY
under the assumptions 3.1.1, we have the following decomposition :

Cm-d = CX™(my,ma)" - (di,do)T +Cy P m3,my)" - (d3,da)T .

Remark 3.3.1. We make a small remark on noting the following properties of these ma-

trices: First, we can easily see that the matrix C;Od is hermitian.

Cm-d = / CO) (sym Ve + ARS(x)) - Arod(x)dxdy
wXY

= / C(y) symVu,, , + A)r(‘f,i(x)) : sym Vud + A;‘?g(x)dxdy

wXY

:/ C(y) symVud+Aro (x)) : sym Vi, + AR5, (x)dxdy

wXY

/ (C(y) sym Vud + Amd(x)) : A)r(‘fgn(x)dxdy = C)r("dd -m.
wXY
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The same is true for the matrices C)S(tre“h, C};e“d. Second, from the structure of matrices

bend stretch o
AT my (DandAy55 o (x) we see the following:

C1(0,0,m3,m4)" +(0,0,d3,d5)T = (ix)*C™4(0,0,m3,m4)" - (0,0,ds,ds)7,
C(my,m,0,0)" - (d1,d,0,0)T = (ix)*C(m1,m,0,0)" - (d1,d>.0,0),
For that reason it is clear that:
Cr()l*|(m1,mo)* < C¥™(my,my) - (m1,m)T < Co(w)yl*|(my,ma)P,
Cr(@)yPlm3,ma)> < CY M (m3,ma) - (m3,ma)T < Cow)y*1(mz, ma)l.
We conclude this remark with the fact that these two matrices both have two real eigen-

values, where these eigenvalues are of the order |y|*, for the bending case, and |y|? for the

stretching case.
We have the following estimate:

Proposition 3.3.2. There exist a constant u > 0 such that Ym = (my,my, ms,ma)! € C3 we

have:
1
w1 (Wl10m, o) + e Ploms, ma)? ) < Cm-im < ; (bet*1ms, mo)P + L Ploms, ma)P?)

Proof.

Cm-m = / C(y) (sym Vi + Ajj;in(x)) : sym Va" + A9 (x)dxdy
wXY

2

m

>C [sym Vs + Al ()

[2(wXY;R33)

>C (||i)(x2m3 + (01w m)3 + 03y m)1) ||i2(wxy) + ||[—ixxims + (02(ym)3 + 03(wym)2) HiZ(wxy))
2

. 2
+CHle4_(lX) (x1my = xomp) — 03Uy m)3 [2(wxY)

Due to orthogonality, it is clear that

2
Hi)(m4 —(ix)? (xymy — xamp) — 93(wy )3

Paoxy) > c (I)(I2|m4|2 + IX|4|(m1,m2)|2> ,

By using similar trick as before, one can obtain the following inequality as well:

\|ixxam3 + (01 ym)3 + 03y m)1) HiZ(wxy) + || —ixxims + (82t m)3 + 03y m)2) HiZ(wxy)

> ClyPlm3]*.
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Notice that by applying the scaled Gelfand transform to the homogenized operators

we get the following formulae:
1

bend—= -1 bend

G AEG, u= pr CXen /u,
Y
1

tretch— -1 tretch

G AT NE G, u = SZC;EC /Yu

This is seen also by examining formulae:

d? d? 1
Pc2g3ﬂbendgglpc2 = P(Cngg (( > Cbend ( >> Q_ Pc2 _Pczcbendpc2,

dx% dx?

d d 1
h ~-1 h -1 h
PC2 ggﬂstretc gé‘ I)C2 — PCZQE < (dx3 ) Cstretc (dx3 > ) gs PCZ — ;PC2 C;U'GIC PC2 ,

1 1 !
PesGeA™G  Prs = <—2PC2 C;enchz , = Pc2 C)S(tretChPCz> ,  (under the Assumption 3.1.1).
€ €

3.3.2. The asymptotics in the stretching space

Here we provide the estimates for the error in the approximation of the solution to the

following resolvent equation posed in the space of stretching deformations:

Find u € Hy(Y; H (w; cH)N L2

stretch

1
— C(symVu +iX,u) : (symVv +iX,v) +/
IXl wXY w

uy = / fv, (3.14)
XY wXY

For all v € H{(Y; H (w;C*))N L2

stretch*

This can be rewritten, using the adjoint of the operator symV +iX,, as a problem of

finding u € Hl(Y HY(w;C))N L2 , such that

1 - * .
I/\,/|2 (symV ( ) )C(y) (symV+1XX)u+u =f.
Remark 3.3.3. We test the above equation with the solution # and employ Proposition

3.2.10 to obtain:
L\(|2 ” (Symv +iX ) u”LZ(wa C’%XX) + ”u”LZ(wXYC3) = C”f”Lz((,_))(YC%)”u||L2(w><YC3)

C
|)(| ||f||L2(w><YC3)|| (symV +iX ) u||L2(w><Y C3x3)»
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SO:
” (symV + ZXX) u||L2(w><Y;C3><3) < CIXIIIf”Lz(u)XY,C3)'

Again, by Proposition 3.2.10 we deduce the following apriori estimate:

||”||H1(w><K(C3) < C”f”LZ(wa,@)

We want to construct a function which approximates the solution to the given problem
with the error of the order |y|>. This can be done by several steps, introducing corrector
terms which can be calculated with the procedure explained below. The leading order

term in the approximation is given with the expression for the stretching rigid motion.

1) The leading order term and first order corrector

Consider the solution (m3,m4)7 to the following equation:

1 m3

stretch stretch _ stretch

<_le2 cyretch 4 ¢ = M,
my

By testing this equation against (m3,my4)”, it is clear that we have the estimate:

|(m3,mg)7| < Cllf 1 2 (wxy:c3)-

m3 . .
Set u := Jstretch and note that it can be estimated
my

ol 1 wxyc3y < CFll2xy.c3)-

tretch

Define the first order corrector term u € H® as the solution to the well posed problem

Sym V*C(y) sym Vul = —sym V*C(y)AStretCh (X), u € Hstretch'

XM3,14

The well posedness of the above problem comes from the fact that the range of the oper-

ator sym V* is orthogonal to the kernel of symV. Also, it is clear from the definition of
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C3treteh that the following holds:

1 m3x; dz x>
P /w ><YC()’) (SYmVu1+A§f,;°1§,C},L4(x)> :A)S;r;;f54(x)dxdy+ /w MR —dsx | dxdy

my dy

fi d3x;
= / ol - | —dsx; | dxdy

wXY
f3] | da

(3.15)

2

The corrector term u; belongs to the space Lstretch

due to the structure of the elasticity

tensor C. Elliptic estimates yield the following:

|LZ31 ||[-11(w><y;c3) < CI)(|||f||L2(wxy;C3)-

Define the functional

(iX)"CO) (symVay + ASh (1)) —uo+ £, fi =LA (wxY;C}) > C.

XM3,14

o 1

Fi=-r3
12

It is clear that f, vanishes when tested against stretching rigid motions, which follows

directly from (3.15).

2) Second order corrector

In view of the equation (3.14) we define the second order corrector term u, € H5™M with

the following equation:

1 .
W sym V*C(y)sym Vu,

XM3,1m4

= —# ((iXX)*C(y) symVuy +sym V' C(y)iX,u + (iXX)*C(y)AStretCh (x)) —uo+f,

u, € Hstretch

(3.16)

The right hand side is equal to the functional f; — ﬁ (symV*C(y)iXyu1) which clearly

vanishes when tested against functions in H5"eh,

Therefore this problem is well posed and the corrector term u, satisfies the following

estimate:

el g1 (oxy:c3y < Cl)(|2||f||L2(wa;<c3)-
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Remark 3.3.4. The definition of the leading order term might seem like it was introduced
blindly. However it is very well motivated, which can be justified with the following

reasoning: The first requirement for u is to solve:
sym V*C(y)sym Vug = 0.

From this we see the structure ug = (¢| + dxa,c» —dxy,c3)! since these are the only rigid
motions which are periodic in y. Next, since u belongs to Lgen JWXY; C3), we conclude
that ug = (dx2, —dx1,c3)" . Here we are left with two degrees of freedom in determining the
precise values of the constants d and c3. But it turns out that these two degrees of freedom
are enough to fulfill the well posedness condition for the problem (3.16). Moreover, the
well posedness condition for (3.16) uniquely determines the values of d and c¢3 via the
equation (3.15), which directly translates to (3.3.2). It is somewhat evident that, since we
have depleted our spare degrees of freedom, there would be issues with continuation of

this procedure.

The total approximation built up so far uapprox := uo +u1 +uy satisfies the following

equation:

1 * .
W (symV* + (iXX) ) C(y) (symV + zXX) Wapprox + Uapprox — f = Ry

The residual R, can be calculated and is given with the following expression:

1
B e

+up+u).

It also satisfies the estimate

IR Nz (wy:c3) < CUAl2wxy:c3)-
These approximation is not satisfactory since the order of the error is, for our purposes,

not large enough with respect to y. We have to proceed further with the approximation

calculation in order to reduce the error. Unfortunately, the problem

1
NE sym V*C(y) sym Vu3

Tl

((iXy)" C()sym Vuy +sym V*Cy)iXuz + (iXy) CONiXour + (X)) COiXur)

=——5 ((iXy)" sym vu ] ] ' —uy, s .
1 (( X)() Cy) \% +symV*C(y)lXXu2+ (ZXX)*C()’)IXXuI) u us e H tretch
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is ill posed and the procedure must be terminated here. In order to define better approxi-

mation we must restart the procedure.

Remark 3.3.5. Here we note that the continuation of the procedure is only necessary if

one wishes to calculate higher precision norm-resolvent estimates. The approximation de-

fined so far is enough for the L? — L? norm-resolvent estimates displayed in the Theorem

3.1.3.

3) Reseting the procedure

We proceed with the correction of the leading order term in the following way:

] O
Set uél) .= gstretch (31) , where (31) satisfies:
my | my
[ ()
1 stretch stretch m; d3 1 : stretch
<WCX +C L . 4 = _W waC(y) (symVu2+zXXu1) .AX’dS’d4(x)dxdy,
|74
(3.17)
V(ds,ds)" € C2.
It is easy to see that ugl) defined in this way satisfy the following:
1
e a1 o) < Oy o).
The next correction is the function u(ll) which is the solution to the problem:
\val@] \vj I _ V*C Astretch (D Hstretch
Sym (y)sym u,’=-—-sym ) ) m(l)(x)’ u, < .
M3 iy
It satisfies
e <l
D wxyc3y < C Il 2gxy:cy-
It is easy to check that these two equations yield
mgl)xg d3xp
1 1 h 1
P / o) (symVu§ S A mmx)) P AR (x)dxdy + / . —m{xy | - |~daxy | dxdy
wX 73 T4 wX
w ||

__
e

~ . A stretch
/waC(y) (symVuy +iXuy) : A;:f;;,cd4(x)dxdy,

V(ds,dy)T € C?,
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which means that the functional fz = Lz(w XY; ©3) — C, defined with:

1 ) o NE
foi= —W<(iXX) Cy)sym V(s +ul) + (iX, )" @(y)AS“etg? (,)(x)+(zXX) C(y)zXXm)

—_uD_
uo ui,

vanishes on stretching rigid motions. This fact allows us to pose the following problem:

i ) 1o e
|X_|SYmV C(y)symVu(l) Mz <(ZXX) C(y)sym V(u; +u(]1))+symV CL)iX, (uz +u(ll)))

1 .
-— | (ix C(y)AStret, " 0+ (iX,) COIiXpur ) —ul —uy, ul e BN,

The problem is well posed and the solution satisfies:
1 3
1Sl vy < COPIF 2 ey

4) Final approximation

With these corrections defined, we are done with the approximation procedure. We define

the function

1)

~ . (L
uapprox = u() + uo

()

+uytug uytu,

This approximation i@ pprox NOW satisfies

1
e

The residual R’X is now given with the following expression:

(symV* + (iXy)") CO») (sym V +iX, ) ftapprox + fapprox — f = Ry

~ 1 E3 * . . * . . * .
Re=im ((iX,)"Co)symVal” + sym V' CyiXus” + (iX,) " CoiXus” + (iX,) " Co)iX sz )

L (ix "CiXur+ (iX,) COiXu) +uld +us +ull.
2 X X X x4

It also satisfies the estimate

IIR’XIIH Ly < CHPI Nl 2xrcs)-

Define the error of the approximation

Uerror := U — Ugpprox-
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The function uqor satisfies

1 * _
NE (symV* + (iXy)") C(y) (symV +iXy ) Uerror + Uerror = =R,

Remark 3.3.6. Notice that by testing the previous equation with the solution ueror, We

obtain:
. 2 2
I (SymV + lX)() uerror”Lz(wa;@xs) + ||uerror||L2(wxy;C3)

: 2 2
< W” (SymV + lX)() uerror||L2(w><Y;C3x3) + ||uerror||L2(wxy;c3)

< C||RX||H;I(wxy;@)”uerror”Hl(a)><Y;(C3)'

On the other hand

2 . 2 2 2
||SymV”error”Lz(wa;@m) <C <|| (SymV + lXX) uerror||L2(wxy;©3x3) + x| ”uerror”Lz(wxy;@)) )

which yields

2 2 2 : 2
”Sym VueITOI'”LZ(wXY;CGXS) _CI/Yl ||uerror||L2(wxy;C3) = C (” (Symv + lX)() uerror”Lz(wxy;C3x3)) .

Therefore
2 2 2
||SymVuerror“Lz(wxy;C3x3) + <1 —Cly] ) ||uerr0r||L2(wa;@3)

< C”RX”H;l(wxy;CB)”uerror”Hl(wxy;(c3)~
Since for ueror € H, ;(Y - H'(w;C?)) we have Korn’s inequality

2 2 2
||uerror||H1(w><Y;C3) <C (”SymVuerror”Lz(wa;@xs) + ”uerror”Lz(wxy;@)) s

it is clear that, for |y| < 7, where 7 is a fixed small constant, we obtain
eterrorlr (wxricsy < CURM 1 ey oy (3.18)
where the constant C > 0 depends on 1 > 0.
We can now employ the estimate (3.18) to deduce

2
”uerror”]—]l(wxy;CS) < CIX' ||f||L2(a)><Y;C3)'

By leaving out higher order terms, we can estimate the error in the approximation by

lower order terms:
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Proposition 3.3.7. Letu € H ;(Y : H'(w;C3)) be the solution of problem (3.14). Then, the

following estimates are valid:

stretch ms3
u—-7I < CIX|||f||L2(a)xy;@3),
na H!(wxY,C3)
_ 0 ’ (3.19)
m3+m
u— Istretch ?l) —u < CIX|2||f||L2(w><Y;C3)9
|14y H(wxY,C3)
where m3,m4,mgl),mgl),u1 are defined with the approximation procedure above.
Remark 3.3.8. The first estimate in (3.19) can be rewritten as:
1 - stretch \ * 1 stretch stretch B stretch
W‘ﬂ* )l T (AMeer) WCX +C My = Clyl
L?—H!
(3.20)

The second estimate can be rewritten as:

-1 -1
1 « (1 _
stretch stretch stretch stretch stretch stretch
H (_IX|2 Au+l) I - (Mreteh) P cytretch 4 ¢ Mtretch _ gtretch _ ggstretct

I2—>H!
< Clyl%,
where the bounded operators ﬂ;“ceéﬁ’ and ﬁfgfgg;h are defined with the asymptotic proce-
dure above with:
-~ 1
Aot =, AL =y,
3.3.3. The analysis in the bending space
We analyze the following problem: find u € H ;(Y : H'(w;C3)) such that
— C(symVu +iX,u) : (SymVu +iX,u) +/ uy = / Swfv,
1* Joxy wxY wxY
for v € Hy(Y;H'(w;C?) N Lﬁen 4 Where f € Lﬁen 4 We denote the scaled forces with
Swf =1, f2 ﬁfQT. The problem can be rewritten as before: findu € H(Y; H' (w; C*))N
Lgen d such that
1 *
W (symV* + (iXX) ) C(y) (symV + iXX) u+u=Syf. (3.21)
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It is clear from the material properties that the solution u posses the same symmetry prop-
erties as the force term f. In bending space we want to construct a function which approx-
imates the solution to the given problem with the error in H' norm of the order [y|*. We
are repeating the approximation heuristic. The leading order term in the approximation is

given with the expression for the bending rigid motion.

Remark 3.3.9. By testing (3.21) against the solution # and applying Proposition 3.2.10,

we arrive at:
in(s mV +iX, ) ull? + ||| 2
IV y x ) W2 oxy o) L2(wxY.C3)

1
<C (Hfl”Lz(wa,C)”ul ||L2(w><KC) + ||f2||L2(w><KC)””2”L2(w><K(C) + m||f3||L2(w><K<C)”u3||L2(w><KC)>

C .
S@“f”LZ(wa,@)” (symV + lXX) u||L2(wa;@3x3).

Therefore:
I(symV +iX, ) ull 2 y:cv) < CUPIFl2oxrco-

Finally, again by Proposition 3.2.10, we have:

el wxrc) < Clfll2wsyesys 20l wxyey < Cllfll2wxycd)s (3.22)

sl wxrcy < CANFI L2 wxrcd)-

1) The leading order term and second order corrector
The leading order term is defined with the following equation:

Find all (m;,m>)" € C? which satisfy:

_ A4bend
l* ¥ my =M

The solution satisfies the estimate

m1,m2)"| < ClfNl 2 (oxrcs)

. mj .. .
By setting ug = 1 ;e“d , it is clear that we have the estimates:
myp

”(uO)a'”H'(wa;C3) < C||f||L2(wxy;c3), ||(u0)3||H1(wxy;©3) < CI)(|||f||L2(wxy;@3)-
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We define the first order corrector as the solution to the following:

sym V*C(y)sym Vu; = —sym V*C()AYM  (x), w1 € Hypena.

XM,

This problem is well posed and the solution satisfies

11271 oxcr:c3y < CPIA 2oy -co)-

It is clear from the definition of C)l;e“d that the following holds:

! bend _Abend
o /w XIV@(y) (symVuy + A2, () - AP0 (x)dxdy
7 di S dy
+/ mz ) d> dxdy = / fr |- d> dxdy,
wXY wXY
—ix(mix;+myxz) | | —ix(dix1 +drx2) ﬁfs —ix(dyx1 +dax2)

for every (dj ,d)! e C2. Here, we note that
0 0 LixCy
iX,(C1,C2,00" = | 0 0 LiyCy| ==symV(0,0,=ix(Cix1 +Cax2))"
1ixCi 3ixCi 0

From this we conclude that:

AP (%) = iX, (0,0, ~ix(Crx1 +Caxa))

2) Higher order correctors

In view of the equation (3.21) we define the third order corrector term u; in the following

way: Define the functional

1 k k
fzz—W((iXX) C(y)sym Va +sym V' C()iXyu; + (iX,) COIAZD (1))
1

™ ), fr=L*Q) —=C.

—(0,0, =iy (myx1 +mpx2))! +(0,0,
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This functional vanishes when tested against constant functions of type (C1,C5,0)". To

see this, we do the following calculation:

((iXy)" COYsymVay + (iX,) " COHIALD () (C1.C2.0)"

- / C(y) (symVu1+A)‘;e;?m2(x)) 1 iX,(C1,Ca,0)T dxdy
wXY

X1y ,m2

= —/ C(y) (symVul + Abend (x)) :symV(0,0, —ix(Cx1 + Cax2))T dxdy
wXY

— (symV*C(y)sym Vary +sym V"COHALR | (x)) (0.0,~ix(Crx1 + Coxp))T =

X112
The last equality follows from the definition of the corrector term u; and the fact that
(0,0,ixy(Cyx1 + szz))T e H"d  Next we define the corrector u, as the solution to the

following well posed problem:

|X| — symV*C(y)symVuy = f5, up € H*™.

The corrector term u; satisfies the following estimate:

||u2||H‘(w><Y 03 = CIX| ||f||L2(w><Y :C3)-

We are able to define even higher order corrector term in order to cancel out more of
the residual parts and to decrease the error. The corrector term u3 is defined with the

following equation:

|X|4 symV*C(y)symVus = f5, wuz € H*™,

where the right hand side f5 is defined with:

1 * *
f3= i ((iX,)" C(y)symVu +sym V*Cy)iX,uz + (iX, ) C»)iX,u1)

—(m1,mp, 0" +(f1, f2,0)".
In order to show

{f3,(C1,C2,0)") =0,

we do the following calculation:
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1

M / C(y) (symVaus +iXu1) : iX,(C1,C2,0)”
wxY

L
1
1 . ,
= / YC(y) (symVay + A% () 1 iX,(0,0,~ix(Cx1 + Cox0))
wX

/ C(y) (symVuz +iXu1) : symV(0,0,—ix(Cix1 + C2x2))”
wXxY

+/ (0,0, —ix(myx1 +max2))" (0,0, —ix(C1x1 + Cax2))T
wXY

1
- / (0,0, — f3)7 - (0,0, —ix(C1x1 + Cox2))T
wXY IXl

= ! bend CAbend o
=—a /w E) (symVay +AXRS (%)) : AP0 (x)dxdy

+/ (0,0, —ix(myx1 +max2))" - (0,0, —ix(C1x1 + Cax))T
wXY

1
- / (0,0, — f3)" - (0,0,~ix(C1x1 + Cox2))T
wXY IXl

=—/ (m1,mz,0)T-(C1,Cz,0)T+/ (f1:.f2,0)" - (C1,C2,0)7.
wXY wXY

This proves that the problem is well posed and the solution satisfies the following

estimate:
4
||u3||H1(w><y;C3) < Clyl ||f||L2(w><y;(c3)-
The total approximation built up so far uapprox := #o +u1 +us +us satisfies the the follow-

ing equation:

1 «
M (symV*+ (iX,)") C(y) (symV +iX, ) approx + Happrox — S .S = Ry

where the residual is given with the following expression:

R, ((iXy) " CO)iXyua + (iXy)  C(y)sym Vus +sym VC(y)iX, usz + (iXy) CO)iXyu3)

1
e[+

+u+urt+us.

It satisfies the estimate:

IR N sy < CAl2wxre)-

Here, we must restart the procedure in order to further develop the approximation.
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3) The first restart of the approximation procedure

In order to eliminate low order terms in the residual, we gradually define better approx-
M

m
imation by updating the leading order term. We do this by defining ugl) = ybend (11) ,
m,
mD
where 11 is the solution of the following problem:
e
< cbend | Cbend( )> m(ll) di ! / C(y) ( v X ) X, (dy,d O)T
- w . = —— Sym us+1 uy):i 1,42, >
Wi X X V| | W Jaxr * N
(3.23)

Y(d;,d>)T € C2. We have

1 1
mY . m5P| < CIAl 2scrco):
1
16l oxricr < Clflzricny @ = 0,1,
1 2
101831 vy < CUPI 2y

ey

] with the relation:

We define the next corrector u
sym V*C(y)sym Va{" = symV*C(y)Aben(l) e u(D € Hoend,
This yields the estimate

1
||u(1 )||H1(w><Y C3) S < Clef? A2 xrcoy

These correctors satisfy the following:

! (1), Abend ed T
v /w XYC(y) <symVu Aenm (1)(x) A;e;;f 4, (Vdxdy

e i
+/ m(zl) . d> dxdy
wXY ' ) ‘
—ix(m; 'x1 +m2 )| | —ix(dix +daxo)

1 . 669696969
= W / CO) (symVuz +iX,us) : iX,(d1,d»,0) dxdy, V(di,d»)" € C%.
wXY

The continuation of the approximation procedure is similar as before. We progressively

define two more corrections u (1) (1) €EH ;(Y; H'(w;C3)) as solutions of a well posed
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problemS'

|X|4 sym V*C(y) sym Vu( )

:—ﬁ((iXX)*C(y)symVu(l)+symV*(C(y)lXXu() ( ) C()’)Abem(il) (1)(x))

. 1 1
= (0,0, ~ix(m\xy +m{ o)),

IXI“
L
bt

u(21) c Hbend_

1 x
sym V*C(y) sym Vu(l) W ((iXX) C(y)sym V(u(zl) +u3)+ symV*C(y)iXX(u(zl) + u3))

(%) COiX, @\ +u)) = P, miD,0)7 . u € e,

The solutions satisfy the following estimates:

1
||u(2 )||H1(w><Y C3) =S < Clf* A2 xrcoy

1
I3 e ety < CPIS 2oy

For our purposes it is necessary to further decrease the error for which we again need to

restart the procedure:

4) The second restart of the approximation procedure

Here, we provide the definitions for the correctors which eliminate the remaining low or-

der terms in the residual, thus achieving the desired error in the approximation.

)
(2) _ 7bend 1
The correctors u, = I ¥ @
m,
lowing relations:

U

gz)’u(zz)’ugz) HY"4 are gradually built with the fol-

< 1 cbend 4 cbend w)> mgz)
IX|4 X X m(z)
2

Y(d;,dr)T e C2.

sym V*C(y) sym Vu(lz)

sym V*C(y) sym Vu(z)

L‘(I4

d

17)

:_/ Co) (symVal” +iX,ul" +iX,u3) : iX,(dy,da,0)"
wXY

* 2
smNC@M%DMn u? e H,

1 o\ . . o\
— _W <(ZXX) C(y) symVu(lz) +symV C(y)zXXu(lz) + (zXX) C(y)Abe“‘(iz) m(x))

= (0,0, ~ix(m'Px +mPx2),

(2) Hbend
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1 ]
W sym V*C(y) sym Vugz)

1 . * E
= W ((zXX) C(y)sym V(u( )+ uy Dy +symVv C(y)iX, (u(z) + u31)))
| I :
o ((ixy)"CoNiXy@? +u’ +us)) = (nP .m0 —uy,  u € H*™.
All of these problems are well posed which can be seen by reviewing the relations through-
out the process, thus concluding that the right hand sides vanish when tested against func-

tions in H*"d, These approximations satisfy the following estimates:

2
1@ el ey < CUPI Il 2exr:csy M@l wxy:cs) < COPI I 2wxrcs)

2 :C3)
||u(1 )”Hl(a)xY ;C3) = C|X| ||f||L2(w><Y ?
2 5
||u(2 )||H1(w><Y;C3) <Clxl ”f”Lz(wXY?@)'

2
||u§ )||H1(w><Y C3) S < Clyl° A2 oxrcoy

5) Final approximation

We have finished the approximation procedure and define the function

fapprox := U +u(1)+u(2)+u1+u(”+u(2)+u2+u(”+u<22>,

This approximation & ,pprox satisfies

2 (X)) o . ~
where the residual RX is given with the following expression:

~ 1 . * . * . *
R, = M <(’XX) C(y)zXX(u(1)+u(22)+u(2))+symV C(y)i Xugz) + (iXy) C(y)symVug2)>

1 )y u® 4 (2)

3

@ @

(1
+u, uy”’,

+u2+u3+u +u +u

and can be estimated with:

”RX”H Lwxy;c3) = CIX| ||f||L2(w><YC3)

The error of the approximation

Uerror := U — Ugpprox-

143



satisfies

1 k
W (sym V*+ (iXX) ) C() (symV + iXX) Uerror + Uerror = —Ry.

Here, like in (3.18), one can easily derive estimate on the approximation error:

3
||uerror||1-11(w><x©) < Cly ||f||L2(w><K(C3)-

The following proposition concludes our work as it gives final estimates on the approxi-

mation.

Proposition 3.3.10. Ler u € Hy(Y;H'(w;C?)) be the solution of problem (3.21). Then,

the following estimates are valid:

P; | w—bend i < Cllfll2xycay,  i=1.2;
2 -
m2 Hl(a)XY,CZ) CIXl ||f||L2(w>(Y’C3), 1= 3
] (1 2 . .
Pl u _Ibend mi _Ibend m, —u, < CI,\/l ||f”L2(a)><Y;C3)’ i=1,2;
AN ) B T WPl =3
- 2 H'(wxY,C?) L*(wxY;C°)»
(3.24)

where ml,mz,m(ll),m(zl),ul are defined with the approximation procedure above.

Remark 3.3.11. Note that, due to the scaling of the operator, the previous estimates are

(11)’m(21) with solutions ml,mz,m‘l“,mg) to the analogous

valid also if we replace m,my,m
homogenized problem with C’)l;e“d(a)) =1

Plugging (m| —my,my — )T as a test function we get:

1 pena |M1 1| My =i NV cilw) 0 my| | m =y 0
l* ¥ 5 7 ol
my — iy my — iy 0 ow| |m my — iy
Therefore:
mi —my

< CIX|2||f||L2(w><Y;C3)
my —my

Remark 3.3.12. The first estimate in (3.24) can be rewritten as:

: B « (1 -1
P; ((Wﬂx-i'I) |L§end - (M/l;end) <@C};€nd+l> M/t\;end) S[,\/|

L2—H!
(3.25)
Clyl, i=12;
<
Clyl>, i=3.
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The second estimate can be rewritten as:

1 -1 " 1 -1
P; ((Wﬂx + I) |L§end - (M)k;end) (_Cbend + I) M;end - ﬂ;?cngrr - @?ggn> S Il

IX|4 X L2—>Hl
Cly, i=1,2;
ClyP?, i=3,

where the bounded operators ﬂ)‘g?ggr and ﬁ}f&% are defined with the asymptotic procedure
above with:

bend p._ gbend ,._ (1)
Ay corS =u1, AlconS =0y’

Remark 3.3.13. We note that the absence of the scaling term S, is the same as the
absence of the out-of-line force term, when we consider the H' estimate for the distance
between the unhomogenised and homogenised resolvents. Consider the following two

problems:

m m
<chend +1> 1 _ M)]?endf, <chend +1> 1 _ M)]?endS oof :/ fl ,

it ity it 7 wxt | £,
where
1 00
Soo = 0 1 0
0 0O

The difference (/1) — 7ity, iy — 7in) T satisfies the following:
(LCbend_i_I) ity =iy :/ xf3xi
X ) ’
SO
|Gy =g iy = )T | < C Il 2oy -

In other words, we have:

_J-bend
o 2 .
CIX' ||f||L2(w><y;@3), i=3.

Pi ]-Eend
1y iy

HY(wxY;C?)
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Therefore

«f 1 -1 Clyl, i=12;

P (M) (—4c)‘§end+1> MEM (I =S ) D

1 2oH! Clyl?, i=3.

Similarly, due to (3.22) we have:
1 -1 Clyl, i=12;
Pi| —A, +1) (I-S&) < (3.26)
Vi ¢
v 2—H! Clyl?>, i=3.

Remark 3.3.14. We emphasise here that the asymptotic procedure, performed in this
section, eventually stabilises and can be extended to an approximation of arbitrary order in
lx], thus generating the series of approximations. One can write down explicit recurrence
relations which define these correctors up to any order in |y|. This leads to approximation

in arbitrary precision, however with physically unambiguous terms.
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3.4. NORM-RESOLVENT ESTIMATES UNDER MATERIAL

SYMMETRIES

In this section, we provide the norm-resolvent estimates for the operators on the original
domain w X R. This is being done by chosing optimal estimates with respect to € for each
small y, and then applying the Gelfand pullback in order to rephrase the estimates in the

original physical setting.

3.4.1. L> — L? norm-resolvent estimates

We start with the stretching case.

Theorem 3.4.1. Suppose that the assumptions on the material symmetries 3.1.1 hold and

that the forces f belong to L> Let y > =2 be the parameter of spectral scaling. Then

stretch®

we have the following estimate:

1 -1 1 -1 - y+2
P SAcet) poom (S o) sl T g,
L2(wxR)
1 ! 1 stretch . stretch ) p gstretch 72
P2 (8_y~7[8+1> f+x1ﬂ'1 (;ﬂsrec +CSI'6C ) MSI‘eC ng <g?2 ||f||L2(wa;R3)’
L2(wxR)
1 - | _suetch , pstretch ) p gstretch r2
P3 <5ﬂ8+1> f_ﬂz (8_7315 retc +CSI’6C ) MSl‘eC Hgf Ss 2 ||f||L2(w)<R;R3)
L2(wxR)
(3.27)

Proof. We recall the estimates (3.19) for the weak solutions of the resolvent equations:

(I)(1|2ﬂX+I> u=f;

1 tretch tretch T tretch
<I)(|2C;rec 4+ Cstrete (ml,mZ) :M;rec f

Now, from (3.20) we see that we have the following norm-resolvent estimates:

-1 1
( L\/lzﬂ)( + I) f — Xomy <IX|ZC/S\/tretch + Cstretch) M;tretchf < IX”lf”Lz(wa;@)’
L2(wXxY)

-1 -1
1
P (lezﬂ + 1) f+ X171 (L\/lzc)s(tretch +Cstretch) M)s(tretchf < IX'”f”LZ(wa;C3)’
L2(wxY)
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1 -1 1 -1
P3 <W ﬂ){ + I> f -1 (W C)s(tretch + Cstretch> M)s(tretch f

L2(wxY)

Recall that the operator A, is selfadjoint, positive, with compact resolvent, so its spectrum
consists of real nonnegative eigenvalues, all of which are of order O(1) except for the two
smallest, /l)l( ,/1)2( , which are of order O([,ylz). (We know the precise fixed interval in which
A/ly1* and A% /|y|* can be found, uniformly on [y).

For every fixed € > 0, y # 0 we define the function

8y+2

M& -
8ex(2) 1= <—z+ 1) , R(2)>0 (3.28)

for which we have the following: For every fixed n > 0, function g, is bounded on the

halfplane: {z €C,R(z) > 17},

2 -1
Ige (D <C (max {% 1}) .

This is due to the following calculation

2 2 IX|2 if |)(|2 N 87+2.
gy = 1 d ’
gS,X < - y+2z

+1>2—5n+12
£ grt? 1 if a2 x|y
Due to the bounds on the both eigenvalues of A, of order L\/lz, we deduce that two smallest

1
l?

right halfplane, with the interval not depending on y nor &. The same is true for the two

eigenvalues of the operator —> A, are uniformly positioned in the fixed interval in the

eigenvalues Z)f, 72( of the matrix C)S(tremh. The uniform bounds on these eigenvalues allow
us to deduce that there exists a closed contour I" C {z € C,R(2) > O} and a constant u > 0,

such that for every y € [—u,u] \ {0} one has the following properties:

e [ encloses the two smallest eigenvalues of both the operators ﬁﬂx and ﬁ@;‘rewh.

e ["does not enclose any other eigenvalue (of higher order).

o Jpo >0, infrerlz— 1> 0, infoerlz— ;| > po, i = 1,2.

S LV”'flle(wa;C3)'
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Notice that g, . is analytic on the right half plane, thus for a € C inside I' the Cauchy

8y, s(a) = ! é gX,g(Z) dz

2mi z—a

integral formula gives us:

The similar is valid for g, . taken as the function of operator:

1 _
e AP = o 5@ 8. - A dz,

where Pr is the projection operator onto the eigenspace spanned with eigenfunctions cor-

responding with those eigenvalues enclosed with I'. Note that

1 s
mﬂ/\/+l 7+2 IXlzﬂX +1.

Thus we can write

Pr (#ﬂx+1)_'prle¢gxg(z) <ZI [/\/|2ﬂ ) 1fdz'

Due to the uniform estimates on the spectrum of A,,, we have:

l

so we will omit the projection Pr since the resolvent estimate is valid for the whole opera-

Cstretch +Cstretch) 1

-1

-1 -1
(Wzﬂxu) —Pr< ! &’(X+I> Pr (- Pr)< ﬂ){+l> (I-Pp)

L2—H!

< Ce"*?,

L2>H!

tor. Notice that the integral formula can also be applied to the resolvent (Lvlz

despite its not standard structure. We have the following result:

1 B 1 stretch stretch B stretch
P (Wﬂx—i_l) f—xzm (ECX +C ) MX f

[2(wxY)

dz
L2(wXY)

W2 1) 122
< Clyl | max w,l Wl 2@wxr:c3y < Ce 2 1l 2wxy:cys

1 -1 1
p1 <ZI _ W‘ﬂ)(> f — X7M| (ZCstretch IXlz C)s(tretch) M)s(tretchf

1
<
s zﬂ_%_lg)(,s(z)l

where the bound is the sharpest when |y|> ~ £7*2. For the second and third component we
have an analogous result:

-1 -1
1 1
stretch stretch stretch
(87+2ﬂx+1 f+X17T1 87+2CX +C MX f

L2(wxY)
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y+2
< Ce 2 |Ifll2wxy:cd)

1 B 1 stretch stretch - stretch
P3 (mﬂx+l> f—71'2 <m@x +C > MX f

[2(wxY)
Y2
S C8 2 ||f||L2(w)<Y;C3)9

The statement follows from

-1
g;l ( 1 Cstretch +Cstretch> Qg,

-1
1
stretch stretch
( A +C 87+2 X

&Y

. T . (3.29)
(o) -6z (o)
and consequently
1 -l 1 -1
g;l ( Py ( e ﬂ){ + I) — X7y < e C)s(tretch + Cstretch> M)s(tretch) G-
E E
-1 -1
= P, ( iy A, + I) — X1y (iy ﬂstretch + Cstretch) Mstretch 2,
& &
-1 -1
-1 1 1 stretch stretch stretch

o o £

Qa Py 87+2ﬂ)(+1 +x1m1 87+2CX +C MX Q

-1 -1
=P, (iy ﬂs + I) + X7 (iy ﬂstretch + Cstretch) MstretchES’
& &
-1 -1
g—l P 1 A +1 —r 1 Cstretch + Cstretch Mstretch G
£ 3 gy +2 X 2 eyt2 X X &
-1 -1
= P, <i7 A, + I) -1 <i7 ﬂstretch + Cstretch) MstretchES,
E &
as well as the fact that the Gelfand transform is an isometry. [ |
y

Next, we analyse the bending case.

Theorem 3.4.2. Suppose that the assumptions on the material symmetries 3.1.1 hold. Let

2

vend: L€ty > =2 be the parameter of spectral scaling. Let 6 >0

the forces f belong to L
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be the parameter of force scaling. Then we have the following estimates:

1 -1 1 -1
Pi<gﬂ£+1) S of - 7rl< ﬂbendﬂ) Moend= g 5 f

[2(wxR)

y42 2,
<Ce 4 max {8 4 , 1} ||f||L2(u)><R;R3)’ 1= 1,2,

T

P <81—yﬂ8+1)_1585f+g 2 L4 <Lﬂbend+1> MENES
[2(wxR)
{87_6, 1} 1l 22 (oxror3)-

(3.30)

Proof. It is clear from (3.25) that we have the following norm-resolvent estimates:

1 ! I 1
Pi<wﬂx+1) Sb(lf_”i< Cbend+l> M f < ClelIA I z2(xy:c3)

I/Y|4 X L2—>L2
i=1,2,
- X1 bend . 1) asbend 2
(L\/|4ﬂx+l> S|X|f+l/\/ (WCXG:H I) MXen SIle < CI,\/l ||f||L2(w><Y;C3)'
2 L2—12
For each fixed € > 0, y # 0 we define the function
i\
fex(@) = < —5z+ 1) , R(z) > 0. (3.31)

Similarly as before, we have that for every fixed > 0, function f, is bounded on the

halfplane {z € C,R(2) > n},

4 -1
Ifex @I <C (max {% 1}) )

Due to the bounds on both the eigenvalues ¥, /1)2( of A, of the order lvl*, and the eigen-
values 7(, 72( of the matrix C};end, there exists a closed contour I' C {z € C,R(2) > 0} and

a constant u > 0 such that for every y € [—u,u] \ {0} one has the following properties:

Z Ay and Ly Cbend,

e [ encloses the two smallest eigenvalues of both the operators 7 Cx

L\/|4

e ["does not enclose any other eigenvalue (of higher order).
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o Ipp > 0. infrerlz= 2! > po. infeerle— 21 2 po. i = 1.2.

Due to the fact that f, . is analytic on the right halfplane, the Cauchy integral formula

gives us:

1
Prfy e(A)Pr = T §I§ fee@@l =AY dz.

We make the following observations:

1 l*
WﬂX‘i_I_ 7+2<L\/|4ﬂX) Sgof:deSEd/b(lf

Note that:
¥l
||Ss‘5/[,y|f”L2(w><Y;C3) < max {1, ; ||f||L2(a)><Y;C3)'

Thus we can write

I -l L\
Pr( ﬂX+I> PrSpf = ygf)(g(Z) ol - Lv“ﬂ’() S 1S oo dz.

In the same fashion as before, we omit writing the projection operator since the estimates
are valid for the whole operator.

For i = 1,2 we calculate:

1 -1 1 -1
Fi (87+2 A+ I) Seof =7 ( y+2 ey I) MES sof

<_ % |f8)((z)|

(ZI - WCEend) M}\)/ends |/\/|S85/L\/|f dZ
L2(wxY)

L‘(I4
<Clx| (max { +2, ||Sgé/LV|f||L2(w><y :C3)

4
<Clyl (max { I)(Jlrz , }) ||f||L2(w><Y :C3)

r+2 2
<Ce 4 max {8 ,1} ||f||L2(a)><YC3)’

[2(wxY)

1
IX|4 > SLV|585/D(|f
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where the bound is the sharpest when |y|* ~ ¥*2. For the third component we have:

1 -1 ES 1 -1
P3 (wﬂ)(+l> S, of +ix -(87+2c}gend+1> MEMS s f

2 L2(wxY)
<ly§|f<)|P<1 lﬂ)_lss s
= )t sx & 3\% Vak W1 &9 /|y
. X1 1 bend ! bend
+1y -zl - 4CX MX SIX|S86/|,\/|f dZ
X lxl [2(wxY)

-1
I |X|
< Clyl? <max {—4, 1 max Lol ll2wxrics)
£
v+2 2
<Ce 2 max {s 4 ,1} ||f||L2(¢u><Y;C3)'

Since

1 bend - bend -
(87 —A cn +I) =G, ( y+ZCXe“ +1) G,

1 -1 -1
<5ﬂ8+1> =§81<7+2ﬂx+1> Ge,

we also have:

1 - 1 -
-1 bend bend
o (P"<m5“x”> - (merter) MXen>g‘9

X » . (3.32)
=P; (_yﬂs +1> — 7 ( 2ﬂbend +1> Mgendag’
g 24
-1 1 R ES 1 bend L pend
G. | P3 mﬂ)ﬁl +iy : WCX +1) M Ge
X2
(3.33)

1 -1 xi| d (1 -1
=P3 (—ﬂg + 1) e L ( Abend 4 1) Mbendz
g xy| dx3 \er” 2

In order to finish the proof we use the fact that the Gelfand transform is an isometry. =

Remark 3.4.3. By using the notation introduced in the Remark 3.1.4, we can rephrase

the estimates (3.27) and (3.30) in a more compact way as follows:

-1
( /\/(stretc:h)>l< <iy ﬂstretch + Cstretch) MstretChEE
E

stretch

1 -1

1212
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1 -l 1 -l
P; < (Zyﬂs + 1) - (Mbendy (mﬂb"“d + 1) M';e“dag> S

[2—]?

y+2 ¥2
Ce 4 max{s 4 ,1}, i=1,2;

IA

y+2

2
Ce 2 max{s 4 _,1}, i=3.

Remark 3.4.4. It is clear that, due to (3.26), in the case 6 = 0, in addition to the estimate:

[2—]12
y+2
Ced, i=1,2;
=\ .
Ce 2, i=3,

one also has:

1 -l 1 -l
P; ((;ﬂg +I> ng d _ (Mgend)* (_ﬂbend +I> MgendEESOO)

-2
&7 1212
y+2
Ce 4, i=1,2;
= y+2
Ce2, i=3,

Namely, this is the norm-resolvent estimate in the abscence of out-of-line force terms.

We show that the smoothing operator =, appearing in the above norm-resolvent esti-

mates can be neglected with the estimates still being valid.

Corollary 3.4.5. Suppose that the assumptions on the material symmetries 3.1.1 hold.
Let y > =2 be the parameter of spectral scaling. Then there exists C > 0 such that for

every € > 0 we have:

1 B o (1 h p) h 742
(_ A+ I) |L2 —( Mstrete )* (_ Astretch | ostrete ) Astrete <Ces7,
&Y stretch &Y
122
1 -1 1 -1
P; ((—ﬂg+l> 2 — (MR (—_zﬂbend+l> M};e“dsoo)
&Y bend &Y
212
r+2 (3.35)
Ce 4, i=12
< 742
Ce 2, (=3,
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Proof. The application of the Fourier transform to the limit resolvent in the stretching

case yields:

—1 A
( ( Mstretch)* (giy ﬂstretch + Cstretch) Mstretch (I-2,) f) &)
-1
= Mstretch)* (i_jcstretch + Cstretch) MStretCh?'(g)ﬂ <_oo LUl Oo> (é:)
> 2e-712e0
But, for |£] > i and y > -2, we have:
2 2 C
(f_cstretch_'_cstretch) m'mT > §_C|m|2 > _2|m|2’

P gy Yt

and hence:

< Ce"*2,

-1
2
( f_ Cstretch + Cstretch>
Y

&

With all of this combined we have:

<Ce?||f

% 1 ) 1 = '
H ( ( Mstretch) (5 ﬂstretch + Cstretch) Mstretch (I- :4.9) f)

12
so E¢ can be removed from (3.34). Similarly as in the stretching case, one can eliminate
the smoothing operator from the norm-resolvent estimate in the case of absence of out-

of-line force terms. For i = 1,2 one has:

1

1 -1
Meend(r_ =) oo) ( ALend 4 ) (I-E,).

gy2

Now:

-1 A é-' _1/\
(ﬂ <87 2\?(bend ) (]—Eg)f> &) = < = Cbend I) f(‘f)]l<_oo,_%€]u[2_18’m>(§).

But,for |£| > 2% and y > -2, we have:
C
( 54 Cbend+1> m- mT 64 C|m|2 |m|2
gy2 ey~
Finally, we obtain:

< C87+2 7
12

-1 A
((Mbend) < ﬂbend 1) Mgend(l -5.)S oof> =1,2.
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Same can be done in the case i = 3,

1 -1
P ((Mgend)* <8y_2 ﬂbend + I) Mgend(l _ Eg)Soo>
T

x d (1 -1
e <—2ﬂbend + 1) (I-E,),
X dxz \ g~

where we have:

_ T A

1
N (Lﬂbendu) I-z0f | ©

S 2
x> dxz \g¥

1T
X1

4 -1
= 86 . <§_Cbend +]) f(é:)]l<—oo,—i]u[2lg,oo> (f)

-2
X2 g’

The following result is an easy consequence:

Corollary 3.4.6. Suppose that the assumptions on the material symmetries 3.1.1 hold.
Let y > =2 be the parameter of spectral scaling. Then there exists C such that for every

e >0 we have:
iﬂ +7 —1| _(Mbend)* 1 ﬂbend+l _1Mbend
&v & le)end 0 87_2 0
Proof. The ellipticity of the operator A" yields that the solution b € H*(R;R?) of

1
(mﬂbend_i_I) b — g,

y+2

+
<Ceg 4 . (3.36)
1212

satisfies:

r=2
”b”LZ(R;RZ) < C||g||L2(R;R2), ”Vzb”LZ(R;RbQXZ) <Cg:2 ”g”LZ(R;Rz)'
By using the interpolation inequality

IVBII7 g z22y < CIVBll2 iz 1Bl @iz,

we clearly have

y+2
1EVEl 2022y < C& gl 20m2)-

In other words, by replacing M™™ with Mge“d in (3.35), the error of approximation

. r+2
remains of order £ ¥ at worst. |
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Remark 3.4.7. Here we make a remark regarding the spectrum of the limit resolvents.

First, notice that the force momentum operator Mge“d is clearly a partial isometry since
bend bend ) * 2 2
MM (ME™) =1, on HA(R:R?).

Due to this and the fact that o (ﬁ;@end) = [0, c0) (a simple argument via Fourier trans-

form), it is evident that

1 -1 1 -1
o ((Mge“d)* (mﬂbend - 1) Mgend) =0 <<mﬂbend - 1) ) =[0,1].

On the other hand, by defining a inner product
(U, V)stretch -= /Cstretchu v, u,ve Lz(R;Rz),
R

one clearly has

-1
( Mstretch)* ( 1 ﬂstretch + Cstretch> Mstretch
ey2

=( /\/(Stretch)4< < 1 <Cstretch)_1 ﬂstretch n I> (Cstretch)_l Mstretch

ey—2

. . . . -1 :
and can easily verify that (M"®h)* is the adjoint of (CSe°h)™" AsUeteh with respect
to the inner product (-, )syetch on L2(R;R?) (in pair with the usual inner product on

L%(R;R3)). Notice that
(Cstretch>_1 Mstretch( Mstretch)* —7I

-1 ) ) ) )
The operator (Cstreteh)™" gstreteh s clearly symmetric (with respect to the inner product
P y sy P |y

(-, )stretch ), and again we have
-1
o (( Mstretch)* ( )/1_2 ﬂstretch + Cstretch) Mstretch) — [O, 1]
E

The norm-resolvent estimates allow us to easily estimate the gaps in the spectrum of

the operator A, for every € > 0.

Corollary 3.4.8. Suppose that the assumptions on the material symmetries 3.1.1 hold.

Let y > =2 be the parameter of spectral scaling. Let M > 0. Then

o Sr+2 9 3r+2
sup [a,b]] < C(M +1)-e™ 4, sup [[a,b]] < C(M + 1) .
[a,b]C[0,M&"] [a,b]C[0,M&"]
[a,b]ﬂo'(ﬁsl% d)=@ [a,b]ﬁo'(ﬂlezt lh)=®
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Proof. 1t is known that, for a bounded perturbation A of a self-adjoint operator H in a

Hilbert space H, one has the following spectral inclusion:
o(H+A) c{aA: dist(1,0(H)) <||A]l}.

Thus, by plugging

1 -1

bend
-1 1
A= <lﬂ +1) | , - (Mbend)* < 1 ﬂbend +1> Mbend
&Y & Lbend 0 87_2 0 ’

and employing the norm-resolvent estimate (3.36), we obtain:

1 -1 N
[0.1] ¢ {/le [0.1], dist </1,0'<<—ﬂ8+1> B )) <cg¥},
gr bend

+2
We have that in each interval of size C&'# in [0, 1] there must exist a member of the

-1 .
spectrum of the operator (giyﬂg +1 ) | 2 In other words, the maximal gap between

y+2

-1 :
the members of the spectrum of (LA +1) |,» isCeT .
bend

Let 41,42 € 0(As| 2 ) be such that A1, 5.0 < M. (A1, 42) N o(Ag) = 0. Due to the

fact that | |
A — A2 _ 1 el
(L/11+1) (L/12+1) - L/11+1 i/12+1 B ’
524 &gy &Y &Y
we have:
1 +2
— A ——A| <CeT (M+ 1),
gr gy
hence

Sy+2 2
A=A <Ce™a (M+1).

The stretching case goes analogously.

3.4.2. L — H! norm resolvent estimates

In order to state the results we define the following operators which take the zero order

terms to the associated first order corrector terms:

B)l(,ggzrmh . C2 N Hstretch, B/}/,gzll;rd . C2 s Hbend’
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with the following identities:

3
B etch i=uy, symV'C(y)symVu; = —symV'Cy)ATmcn (x), uy € H",
my
ny
B bend i=uy, symV*C(y)symVu; = —symV*CO)AYN (), ueH*™.
my

Thus, the first order corrector operators depending on the spectral parameter z € C can be

defined for each fibre y € [—m, 7]\ {0} with the following formulae:

-1
1
stretch . _ @X-corr stretch stretch stretch
AN () = B (zC -—C Mreteh,

1,stretch IXlZ X
bend 1 pend) ™y jbend
en . QX,coIT _ = rben en
ﬂ)(,corr(z)‘_ Bl,bend <ZI IX|4CX ) MX :

Next we define the rescaled versions:

tretch tretch bend bend
‘ﬂ)s(,r;,ccorr = émmh gs%(z)‘ﬂ)s(,rceoﬁr (2)dz, ‘ﬂ)(?sn,corr = ébend fg’X(Z)ﬂX?Oﬂ(z)dz, >0,

where [Pend | pstretch 5r6 oontours which uniformly enclose the scaled eigenvalues of C)'iend,

C)S(“ewh, respectively. Notice here that we have:

-1 -1

1 1

ﬂstretch . @X-COoIT stretch stretch stretch ﬂbend . @X-CoIT bend bend
X -E,COIT * Bl,stretch (82 CX +C M)( > X -E,COIT * Bl,bend &t CX +1 MX :

Finally we are able to define the following corrector operators:

_ 1 gstretch _ 1 gbend
Asretch® = Gz A oconGes Apena(€) = G AL pconGer  £> 0. (3.37)
Let us start with the stretching case. Our goal is to prove the following theorem:

Theorem 3.4.9. Suppose that the assumptions on the material symmetries 3.1.1 hold and

that the forces f belong to L? Let y > =2 be the parameter of spectral scaling. Let

stretch”
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0 > 0 be the parameter of force scaling. Then we have the following estimates:

1
MStretChng _ Plﬂcorr (€)f

stretch

1 -1 1
P1 (8_7“?{8 + I) f_ X7 <;ﬂstretch +Cstretch>

H'(wxR)
y+2
I
< Cmax {87+ ,E 2 } ||f||L2(w><R;R3)’

stretc

1 ! 1 -
P, (E_Vﬂs n I) f + X7y <;ﬂstretch + Cstretch> MStretChEEf _ Pzﬂcorr h(g)f

H'(wxR)
+2

Y
1
< Cmax {67+ ,& 2 } AN 22 xrsmys

I ! 1 -
Ps <8_y A+ 1) f — 75 (5 ﬂstretch + Cstretch) Mstretch E, f — Ps Aot (©) f

stretch

H'(wxR)

} ||f”L2(w><R;R3)-

pas
2

< Cmax {67”,8

Proof. In order to prove the H I(wxR3) estimate from the statement of the above The-
orem, the first resolvent estimate in (3.19) does not suffice, the reason being that, the
Gelfand pullback would ruin the order of the estimate in the third variable. On the other
hand, we do not need the whole expression in the second estimate from (3.19), either.
This is because we can neglect the element u(()l) in the H'(w x Y;C3) norm. Indeed, from

(3.17) we note that:

1 1
el 2oy < CWIA N 2oty 105t 2oxcricsy < CWIAl2xyscsys @ = 1,2,
1
”ay”é )”Lz(wxy;@) =0,

Hence the useful estimates which we obtain from (3.19) are

u m3x; (i)
O, uy| = |=maxi| — | @) < ClIA Nl 2wy :c3)-
U3 | my || (@1)3 L ox¥C)
u m3x; (i)
O | |ua| - |-maxi| = | @) < CWPIfl 2 xy-cyy  (3.38)
us| | ma | (u1)3 Loxt )

We will focus only on the norm of derivative with respect to y. For this derivative, we

need a higher order estimate in |y| in order to obtain the desired estimate by applying
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the inverse of scaled Gelfand transform. By rewriting the estimate (3.38) we are able to

deduce:

-1
1
ay < <LY|2 &Z(X + I) — XMy < IX|2 C)s(tretch + Cstretch) Mstretch P ﬂi}rceé?) f

L2(wxY)

< CPIA 2 xy e

1 -1 1
ay (Pz <lX|2ﬂX + I) + X171 <IX|2 C)s(tretch + Cstretch) Mstretch P ﬂ;trgégl) f

We use the method introduced in the estimates for L?> — L? operator norm. By defining

L2(wXxY)

< CI/\/l ||f||l Z(wXY;C3)’
1 ch
1 C
< (IX| g()( ) <IX| C;tret h Cstretch) Mstret — P3 ?‘;trcérr ) f

< CUPI Nl 2oxy-co-

L2(wxY)

the function g, , () as in (3.28), choose I' C C such that:

1 -1 1
6y (Pl <87+2ﬂ)( +I> — XMy ( e C;tretch Cstretch) Mstretch P ﬂ)s(n:tcc;lrr) f

[2(wxY)

-1 -1
1
< — yg |ga,\((Z)| Pl ( ] — L\/lz ) — Xom) <ZCstretch IXlz C)s(tretch) M)s(tretch
X ,COIT stretch _ stretch stretch
-pP B1 stretch <ZC IX|2 C)( ) MX )f dz
L2(wxY)

W
< CI/le max {87_'_2 s 1 ||f||L2(w><Y;C3)

+2
< ng ”f”LZ(wa;CS).

By applying the Gelfand transform we obtain:

1 ! 1 !
6x3 <P] (gﬂs + 1) f — X1y (g_yﬂstretch + Cstretch) Mstretchf — Py ﬂgggrwh(g)f>

L2(wxR)

1
< Ce" Al wxrsrs)

For the second and the third component we have analogous results:

1 ! 1 o
6x3 <P2 <8_y\-7{‘9 n I) f + X7 <;ﬂstretch + Cstretch) Mstretchf _P ﬂ:t(;rertch(g)f>

[2(wxR)
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1
<Ce™ ||f||L2(w><R;R3)’

1 -1 1 \ -1
9x3 (P3 ( yﬂé‘ I> f 5 ( . ﬂstretch Cstretch) Mstretchf Ps ﬂ(s:t(;rretch( )f)
; L2(wxR)

1
<Ccet ||f||L2(w><R;R3)’

due to (3.29), (3.37) and from the fact that saix3 = ggla%gg + O(xe). For the remaining

derivatives we obtain the estimates similarly as in Theorem 3.4.1. [
Next is the analogous result for the bending case.

Theorem 3.4.10. Suppose that the assumptions on the material symmetries 3.1.1 hold.
Let the forces f belong to Lgen g Let y > =2 be the parameter of spectral scaling. Let

0 > 0 be the parameter of force scaling. Then we have the following estimates:

1 ! 1 !
P; (8—7?18 + I) S of =i (mﬂbend +1 ) MEMELS s f = PG (€)S oo f

H(wxR)

Y2y 2
< Cmax {8 4 ,82}maX {8 4 ’l}llf“Lz(wa;R?’)’ i=1,2,

1 -1 x| d (1 -1 _
P3 (873{8 +1 ) Ssefre| | am (ﬁﬂbm +1 > MEMELS oo f = Py Aoy (8)S oo f
2 H!(wxR)

vz 3r+2 VALEP
< Cmax {s 2 e 4 }max {s 4 ,l}llflle(wa;R,z).

Proof. We start with the second couple of estimates in (3.24) and we neglect the corrector

)

0 in the H'(w x Y;C3) norm. The argument for this is again that from (3.23) we

term u

have fora =1,2:

1 1
ety illzacr < CoM zrcsy Mg Dallizury < CUPIllier.co)
1 1
10, e il 2y < CUIAN 2 cvicry 1053l 2oy < CUP I 2 ey
1 1
||(9y(u(() ))i||L2(w><Y) =0, ||3y(”§) ))3||L2(w><Y) =0.

Again we focus only on the norm of the derivative with respect to y. Thus we consider

the estimates

uj mi (i)
4, M- < CPIf N 2oxrico):
u my (1) L2(wxY,C2)
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|0y (3 + ix(mix) +maxy) — (u1)3)HLz(wa) < CPIAN 2y

In other words, we have that the following estimates hold fori = 1,2:

1 ! 1 -
o () o (o) et

[2(wxY)

2
< x| ||f||L2(a)><Y;C3)’
T

1 B 2 1 -

oo P(geer) o L] () memoram s
X2

L2(wxY)

3
< WPl 2y )

By defining the function f ,(z) as in (3.31), we can provide norm resolvent estimates for

the operators

1 - 1 bend . 1\~ aybend bend ~
dy (Pi <mﬂx +1> T (mCXen +I> MXen _Piﬂ/\{igcorr , i=12,
T
1 B . X1 1 bend - bend bend
ﬁy P3 Wﬂ/\/ +1 +1y | —C +1 MX - P3ﬂx,&corr

+2 X
X2 ev

Indeed we have that fori =1,2:

1 -1 1 -
dy <Pi <mﬂx +I> — T <mc)b(end +I> M)l;end_Piﬂ/l\)/?ggorr) Sef

L2(wxY)

1 1 - 1 bend - bend
< Z‘l’ ﬁ |fs,/\((Z)| ay (Pi (Zl— WﬂX> — 7 <ZI_ WCX ) MX
1 -1
X ,COIT bend bend
~PiB ' ond (ZI—WC;H ) MEN)S S oo f = Y)dz
wX

-1
! -
< Clyl? (maX {%1 max { 1™, 1HIfll 2y

r+2 *2 5
<Ce 2 max {s 4 ,1} ||f||L2(a)><Y;C3)'
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Analogously for the third component we have

T
1 B . X1 1 bend ! bend bend
Oy | P3 e Ay +1 —iy 55 Cyo+1 MX —P3 A o | Se f
€ X2 € L2(wxY)
1 r 1
1 55 1 R R 1 bend)  xbend
< =P lfe@||0 P3<zl——ﬂ) —iy -(zl——C en MPED
2r Jr &X y( IX|4 X X IX|4 X X
1 -1

-P 38)1(’132:(1 <ZI B _4C£end> M;end>5 S &8 i dz

’ il L2(wxY)

-1
! -
<t (s { 25| ) e e W

3042 2 5 4 2
<Ce 4 max {8 4 - ,1} ||f||L2(wa;Cz) (when |y|* ~ £7%%).

Now by passing back to the real domain we obtain:

1 -1 1 -1
Oz, <P,~ (;ﬂg + 1> — <ﬁﬂbmd + 1) Moz, — Piﬂgﬁ;‘f(s)) Sof

L2(wxR)
y+2

Y _
< Ce2 max {8 4 5, 1} ||f||L2(w><R;R3)'

Analogously:

1 L d 1 bend . )« gbende bend
8x3 P; (5.?(84-]) + “ '8% (ﬁﬂ on +I> Mgen .Z.g—P?,ﬂcg?r (8) Sgdf

[2(wxR)

3y+2 PAZIIN
<Ce 4 max {s 4 ,1}||f||Lz(wa;R3).

The original statement follows using (3.32), (3.33) and the definition of the corrector

operator. [ ]

3.4.3. Higher order L?> — L? norm resolvent estimates

We define the leading order term corrector operators as follows:

AT [Hwx ¥:C) - LAwxY:CY), A [AwxY:C) - LAwxY:CY)

X COLT y.corT
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such that according to the asymptotic procedure in the last section (equations (3.17) and

(3.23)) we have:

gstretch ¢ (1) gbend ¢ ._ (1
ﬂ)b(,rgogrf'— (ué )stretchs ﬂ)félorr Y= (uf) ))bend~

We reflect on the asymptotic procedure from the last section and consider now the resol-
vent problems depending on the spectral parameter z € C. Our aim is to vaguely express
the operators ﬁj(trfé??(z) and ﬁ};‘fggr(z) in a closed form, where z € C is a spectral parame-
ter. To this end, we focus first on the stretching case.

Notice that, due to the structure and linearity of the equation (3.16), one can express

the corrector term u5(z) as

1

-1
) stretch _ stretch stretch X >COIT
ur(2) = By (zC G > M4 BT Py,

where 8 ', 18 a bounded linear operator which can be defined through (3.16). Furthermore,

due to (3.17), we have:

-1 -1
ué 1)( 7) = ( M;tret:;h) * ( ZCstretch _ Lcstretch) ‘é)( < ZC.stretch _ Lcstretch> M)s(tretch f

M b
-1
+ < M?retch) * < chtretch _ #C;tretch> ‘ZEX f.

where the bounded operators g}(, ZVBX are introduced via (3.17). Equivalently:

-1 -1
Zrstretch _ stretch | * stretch 1 stretch @ stretch 1 stretch stretch
AN () = (Mfreeh) (zC C ) B, <zC C M

X,CorIT IX|2 X IX|2 X
-1
stretch ) * stretch 1 stretch 3
+ (MX ) (ZC — WCX > BX’

The same structure is valid for the operator ﬁ;f’g‘gn(z) as well. Next, since we are dealing

with a finite dimensional spaces, it is clear that we have the following matrix structure:

1 1 X X
<chtretch _ Lcstretch) EX (ZCStretch _ Lcstretch> _ BX Bl,l () B],Z(Z) DX,

2 > B4 () BY,()

where the coordinate functions depend on the spectral parameter z € C in the following

way:
BX (Z) _ i,j + b/l\jj + ci(,j
b (z— #f{ 2 (z— #I{ )z — ﬁa’g) (z— ﬁxg)z’
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where /1)1( and /1)2( are the eigenvalues of the matrix C)S(tremh. Recall that those two eigenval-

ues, when scaled with 1/[y|? are positioned in a fixed interval uniformly in y.

Lemma 3.4.11. Let T be a closed contour enclosing both eigenvalues XY, /1)2( of the matrix

C)S(tret‘:h uniformly in y. Then we have the following:

1 8ex(2) I? 1 .
P ot e T T2
7 Jr (Z_ IX|2/1 ) & (m/ll + 1)
L gsx(z) de = — IX|2 1
2 Jr @@= d) & (e + DG+ 1)
1 z 4 1
L fsx()X4dZ:_b(l+2 L
qu r (Z IX|4/1 ) 87 ( }/-%—2/1 + 1)
1 Jex (@) _ Wl 1
7 Jr o= e ) O R DGR D)

Similar is true for the matrix C)t;end if we replace g, with fe,.

The previous Lemma allows us to conclude the following structure:
1 Zstretch
? gE,X(Z)ﬂX COoIT (Z)dZ

-1 -1
IX| stretch stretch stretch @ 1 stretch stretch stretch
= (Mgtreteh)™ (gt 4 ¢ B, (=5 M;

87+2 87+2 X eyt2 X

1
n < /\/(stretch>>'< ( 1 Cstretch i Cstretch) @ ﬂstretch

2 X X,&,COrT?

— yﬁf”(@ﬁ?@?&(z)dz

-1 -1
bend bend D bend bend
8y+2 (M ) <gy+2 CX + I) BX (8y+2 CX I) MX

" (M)t;end)* < Cbend i I> B ‘é)( — \’ﬂ?bend

ey t2 X X.&,CorT?

We denote the Gelfand pullback of these operators:

AL () = Gy AN G, AT (e) = G AT G, (3.39)

stretch 'Y ,E,COIT!

Remark 3.4.12. Using the above expressions as well as (3.16), (3.17) and (3.23) we can
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conclude that there exist operators K1, K> : L*(R;R") — L*(R;R") such that

AL (©)f

stretc

-1 3 -1
- . 1 : d 1 , —
— 81 Y ( Mstretch)* <_ ﬂstretch + Cstretch A |l = ﬂstretch + Cstretch /\/(stretch‘:“9 f
[>24 d X3 fo24

-1 3
_ S 1 d
+ 81 y( Mstretch) ﬂstretch + Cstretch A2 =K f,
ert+2 d x;

~ 1 o -
f)g;rd(g)f — 83—7(Mgend)* <8y_2 ﬂbend + I> A3ﬁ <87_2 ﬂbend + I> Ml;endng
3

1 -1 dS
+ 83—7(Mbend)* <_7_2 APend +1> A4_SE(-)K2f’
£ dx3

where A; e R?2 fori=1,...,4 are diagonal matrices.
Much in the similar fashion as before we are able to prove the following result:

Theorem 3.4.13 (Higher order L> — L? norm-resolvent estimate). Suppose that the as-
sumptions on the material symmetries 3.1.1 hold. Lety > —2 be the parameter of spectral
scaling. Let 6 > 0 be the parameter of force scaling. Then there exists C > 0 such that for

every € > 0 we have:

1 ! 1 !
H (8_7 A+ I) |L2 —( Mstretch)* (6_y ﬂstretch + Cstretch) Mstretchgg I (€)— Ao (&)

stretch stretch stretch

12]2

< Ce’*?,

~

1 -1 1 -1 _

1212
y+2 2
Ce 2 max{64 ,1}, i=1,2;

3(y+2) y+2 s
Ce 4 max{s4_,1}, i=3.

IA

167



3.5. THE ANALYSIS OF THE GENERAL ELASTICITY TENSOR

In this section, we drop the assumptions on the material symmetries 3.1.1. Separately,
we investigate and develop asymptotics for the solution of two resolvent problems with

different scalings, one for each of the orders of magnitudes of the operator eigenspaces.

3.5.1. The asymptotics of |y|* resolvent problem

We begin with the asymptotics for the following resolvent problem:

Findu € H;(Y;Hl(cu;C3)) such that

1
—2/ C(symVu+iX,u): (syva+iXXv)+/ u?z/ fv, VveH;(Y;Hl(w;(C‘?)),
IX' wxY wXY wXY
(3.40)
or, equivalently:
1 % (e \* .
W (symV + (ZXX) )C(y) (symV+ zXX) u+u=f.
1) The first approximation cycle
Consider the solution m € C* to the following equation:
1
(Wc;od +c§(°d(w)> m= M. (3.41)

The solution satisfies the estimate:

Iml| < Cllf1l 2wy :c3)-

The following estimate is crucial for the continuation of our procedure since it allows us
to disregard this term from the definition of the corrector term u», thus obtaining a well
posed problem. This term will, however, need to be canceled at some point, and it indeed

will, with the definition of the corrector term u(zl).

Lemma 3.5.1. The solution m € C* of (3.41) satisfies:

my waYfl
my| = fwafZ = CIX|||f||L2(w><Y;C3)- (3.42)
0 0
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Proof. The estimate is proven by testing the equation (3.41) with a constant vector d :=

(m1 - fwafl My — wxyfz,O)T, to obtain:

(ml _/wXYfl)z + <m1 —/wxyfz)z = <Cl(w)m1 (ml _/waf1> +co(w)my (mz _/a)XYf2>)
o) )0 ) 1)

and noticing that

o d < [y Pl \/ (1m - /w ny1)2+ (1 - /w nyz)z.

[ ]
The leading order term
uo 1= I™m) € Hy(Y; H' (w;C?))
clearly satisfies:
lleol| i1 (wer:c?y < CllFll2wxy:cd)-
The correctors are defined with the following set of equations:
symV*C(y)symVu; = —symV*C(y)A, ui € H. (3.43)

1 . 1 /. o oy
Wsymv C(y)sym Vu, = amE ((iX,)" CO)sym Vay +sym V' C)iXyuy + (iX,) " CHIALS ()

m3x; S1= Joxy Frdxdy
- —m3Xxy |2 Joxy fadxdy| . uz€H.
ma — iy(mixy +maxo) f3
(3.44)

It is easy to check that the right hand side of (3.43) is orthogonal to Y-periodic rigid
motions, making this a well posed problem. The orthogonality with respect to (C1,C,,0)”

is due to (3.43), while the orthogonality with respect to (C3x2, —C3x1, C)T is due to (3.43)
and (3.41). We have the following estimates:

||u1||1-11(w><y;©3) < CM”f”LZ(wa;cS)’ ||u2||Hl(wxy;CS) < CI)(|2||f||L2(wa;c3),-
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2) The second approximation cycle

Next, we update the leading order term with m!) € C* satisfying:

— 1
d d D _ . . d 4
<|X|2 C)r(o + C)r(O (w)) m . dT = __I)(Iz /waC(y) (symVuz + lXXul) .A)r(‘fd(x)dxdy, YdeC".

By testing with m(! and by using the ellipticity estimates of C'°4, as well as estimates on

the right hand side, we see that:

m )] < A 2y

Additionally, by setting the stretching components d3,ds to 0, we obtain a sharper esti-

mate:
1 1
", m1 < CPIA 2 ocrc)-

Nevertheless, for uél) = 7704 (D we have:

"

H(wxY;C3) < CIX”lf”LZ(wxy;@).

Naturally, the next corrector is defined with:
symV*C(y)sym Va|" = —sym VICHIAL (), ul) e H. (3.45)

It satisfies
1 1l 1 ey < COPIF N 2oy

The next corrector is defined as to eliminate the remaining terms of order |y/.

1 _ : * ey * : (1
|X|2 sym V* C(y)symVu, L\/|2 <(ZXX) Cy)symV(uz +u, ") +sym V- C(y)iX, (uz +u;, ))

| N L
o ((ixy) COIAS () + (iX,) CONXu)
mgl)x2 mi fwafIdXdy
B - | ma| + | [y fodudy| —ur, uy €H.
(1) lX(m(l)X1+m(21)x2) 0 0

(3.46)

Obviously, due to (3.45), the right hand side of (3.46) is orthogonal to stretching rigid

motions. In order to verify that it is orthogonal to (C 1,C2,O)T, C1,C, € C, we make the
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following calculation:

L
2

Ci
(1)), Arod : iy
/ CO) (sym Vi +ui) + A% () +iXyur )  iXy | C2
wXxY ’

0

/waC(y) (sym V(uy + u(ll)) + A;fn(l)(x) + iXXul) :symV

/ C(y) (symVuz + iXXul) :symV
wXY

0
0

—1iy(C1x1 +Cax2)

0
0

—ix(Cix1 +Cax2)

(due to (3.45))

0
=—— [ CO)(symVu; + AP (x)) :iX 0
7 L T (ymV A 0) %,
—ix(C1x1 + Cax2)
0 0 0
—/ 0 0 +/ 0
wXY wXY
—ix(mix1 +max2) | | =ix(Cix1 +Cax2) f3
(due to (3.44))
1 -
=—i7 wxyc(y) (symVu L+ A;(?;'}l(x)) L Abend ()
0 0 0
—/ 0 0 +/ 0
wXY wXY
—ix(mix; +maxz) | | —ix(Cixi +Caxz) f3
mi Ci f&
:/ my &) _/ fz
wXY wXY
—ix(mix1 +myx) | | —ix(C1x1 + Cax2) /3
0 0 0
—/ 0 0 +/ 0
wXY wXY

—ix(Ci1x1 +Caxz)

0
0
—ix(Ci1x1 + Caxz)

—ix(mxy +mpx2) |

(due to (3.41), (3.43))

Ci

mi jQfol
= |ma| |C2| = | Juxr f2
ol o 0

—ix(C1x1 + Cax2)

Cq m
Cy| = my
0 0

j;ufo1

f(ufo2
0

Cy
6))
| —ix(C1x1 +Cax2)

0
0
—ix(C1x1 + Cax2)
Ci
G-
0



Thus, the problem is well posed and the solution satisfies:

1 3

where we have used (3.42) in order to obtain this estimate.

4) The final approximation

The final approximation

- 1 1 1
i approx ::uo+uf))+u1+u(1 )+u2+u(2)

satisfies the following equation:

1 * . ~ ~ D
W (symV* + (iXX) ) CW) (symV + zXX) fLapprox + Wapprox — f = Ry,

with the residual RX given with:

1 * . * . . * .
RX:W((,'XX) C(y)symVay +sym V*CoiX,ul + (iX,) CoiXyul” + (iX,) C(y)lXXuz)

! iX,)" ; iy )\ iy (D) a1 WD (1)
+W((1XX) COiXua + (iXy) CO)iXyuy >+(m1 Jmy 00 +u +uy+uy

We have the following estimate on the residual:

D 2
”R)(”H;l(wxy,(@) < CIXl ||f||L2(wa;C3)9

for which the error of the approximation:

Uerror := U — Ugpprox

can be calculated from:

1 * . * . ~
W (symV + (lXX) ) C(y) (symV + lXX) Uerror + Uerror = —Ry.
By employing the estimates from (3.18), we can deduce the estimate on the error:

2
||uerror||H1(a)xy;c3) < CIX| ||f||L2(wxy;(c3)-

By leaving out higher order terms, we can estimate the error in the approximation by

lower order terms:
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Proposition 3.5.2. Let u € H;(Y :H'(w;C?)) be the quasiperiodic solution of problem

(3.40). Then, the following estimates are valid:

Ju-eerom

<C 2 31,
e < O lzer.co

3.47
Hu_]-rodm_]-rodm(l) _ ooy, ‘ (347)
X X I

Hl( YC3) IXl ||f||L2(w)<Y C3)’

where m,mV,u; are defined with the approximation procedure above.

3.5.2. The asymptotics of |y|* resolvent problem

Here we focus on deriving the asymptotics for the following resolvent problem:

Find u € H}(Y; H'(w; C?)) such that

1
—/ C(symVu+iXXu):(syva+iXXv)+/
wxY

- uv:/ Syfv.  WveHy(Y;H (w;C%)),
IXl wXY wXY

(3.48)

or, equivalently:

1 *
NE (symV* + (iX,) ) C(y) (symV +iXy ) u+u =S, f.

1) The first approximation cycle

The leading order term in the asymptotic expansion is defined with the solution to the

following homogenized equation:

1
<WC§‘M + cmd(w)> m=MSf.

By using the apriori estimates on C)r((’d we derive the following estimates by testing with

m€C4:

(LYI \(m1,m)" 1P + Pl (m3,ma)T | >§||f||L2(wxy;c3) <|(m1,lm) |+|m3,mm4|>

< A2 wxy:cy <|(m1 ma)" |+m|(m3,m4) |>

I

from where we read:
T T
|(my,m2)" | < ||f||L2(wxy;(c3) , (m3,mg)" | < IX| ||f||L2(wxy;©3)-
The leading order term, defined with ug := 7 )T(Odm satisfies the following estimates:

||(u0)a||Hl(wxy;c3) < C||f||L2(w><y;C3), ||(u0)3||Hl(w><Y C3) = CIX|||f||L2(w><Y :C3)
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Next two corrector terms are defined as the solutions to the following set of well posed
problems:

symV*C(y)symVu; = —symV*C()AL G (x), u1 €H,

W sym V*C(y)sym Vu, = _l)(_ ((iXX) C(y)symVuy +symV*C(y)iX, u + (zXX) C(y)AL?i(x))

z
m3x; J1= J oy Frdxdy
- —m3x] | fo= foy frodxdy| s
my — ixy(mix1 +maxy) ﬁf3

These correctors satisfy:
2 3
||"1||Hl(w><y;(c3) < Cly| ||f||L2(w><y;@3), ||u2||Hl(w><y;<c3) < Cly| ||f||L2(w><y;c3)-

2) The second approximation cycle

We proceed with the leading order term update: Define u(()l) =7 )r("dm(l), where mD is the

solution of the following problem:

1 rod | rrod M G 1 , rod 4
(Wcivo +CY (w))m .d_—W wxy@(y) (symVus +iX,u,) tAYG(Vdxdy, VdeC”.

We have

H o D
.1 < Co N2y IS )< CUR I 2 rics)
1 1
||(u5) ))a||Hl(w><Y;(C3) < CIA 1 z2(wxy:c3)s ||(u(0 ))3”H1(w><Y;C3) = CIX|2||f||L2(w><Y;(C3)

(1

] ) with the relation:

We define the next corrector u

symV'C(y)symVau{" = —symV'CHAS (), u}’ € H.

This yields the estimate

1 3
et i oricny < Oz oxricoy
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The next corrector is defined with:

e symV* C(y)symVu(l) i ((zXX) C(y)symV(u2+u(11))+symV C(y)lXX(u2+u(ll)))
Il ((lXX) C(y)Aj(ffnm(x) + (iXy) C(y)zXXul)
1
s Jopey Frddxdy| |
1
_ ,71;1)x1 + | [y fadxdy| = |ma | u(2 ) e H.
m)) —ixy(mVxy +mixy) 0 0

The solution satisfies the following:
1 4
1 L ey < U2 ey

3) The third approximation cycle

]'rod ) u(z)

The correctors ”o U u

) € H further decrease the error of approximation.

They are gradually built with the followmg relations:

1 rod | prod @ 1 My D . Arod
<WC§(0 +Cr0 (w)) d=- |)(|4 - C(y) (syrnVu2 +iXyu, +zXXu2) .A)r(‘?d(x)a’xa’y,

Vd e C*,

symV*C(y)symVu? = —sym V*C(y)/\ffim (), ueH.

1 1 X
Ve sym V*C(y) sym Vu(z) W ( (iX,) C(y)sym V(u(lz) + u(zl)) +sym V*C(y)iXX(u(lz) + u(zl))>

L (ix) d XV OO (M
_W<(1x){) COIARS () + (iXy) CONX, (2 +u))
m(ll) (2)
—|m"| - _mg% , uleH.
0 (2) zx(m(z)xl + m(zz)xz)

All of these problems are well posed which can be seen by reviewing the relations through-
out the process, thus concluding that the right hand sides vanish when tested against func-
tions in H. These approximations satisfy the following estimates:

106 el crcsy < COPI ey 103l wxyics) < CWP Il 2goxyic)
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2 4
121 1 vy < COAIF 2oy o).
||u2 “Hl(a)XY C3) = CI/V' ||f||L2(u)XY ;C3)-
4) The fourth approximation cycle

The final approximation cycle consists of defining the corrector terms ug') =7 )T(Odm@), u(IS), u(23) €

H with the following relations:

1 _
<le Ol 4 c;;’d(w)> m<3>-d:—W / o) (sym Vel +iX,u'® +iX,ul") : APS(x)dxdy,
WX

T __
+ (—i)(/ Xlul,—i)(/ X2u2> (d1,dr)T.
wXY wXY

sym V*C(y) symVu(13) = - SymV*C()’)A)r(Oio) (%), ”(13) €.

1 o\ * % .
|X|4 sym V*C(y) sym Vu(3) D(|4 ( (ZXX) C(y)sym V(u(]3) + u(zz)) +symV C(y)zXX(u(l3) + u(zz)))
1 o \F .
ae (%) COIN (0 + (iXy) CONX @l +u))
m(lz) m(33)x2
- (22) - —m(3)xl —-uj, u(22) € H.
0 (3) t)((m(3)x1 +m2 xz)

All of these problems define unique correctors which satisfy the following estimates:
3
1@ all it wxrcy) < CUPIA2xrcsy 1@l wxrcs) < COIF Il 2@xrcs)

; 5
5 a1 i) < CWPI 2 ncrcoy

||"2 1 (wxr:c3y < CWCIA 2 0oycoy-

5) The final approximation

The function #@,pprox, defined with:

@, . @2)

. 3
Bapprox := U0 +Uy +Ug

1

vuy+u® +u? 40 M, 0, 0

+u uy fuytuy us +u

+ll ) 9 s

is the solution to the following problem:

1 * . ~ ~ D
W (symV* + (iXX) ) C(y) (symV + lXX) fLapprox + Bapprox = S [y1.f = Ry,
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where the residual R, is given with:

R, = # ((iXy)"COYsymVas) +sym V' C@)iXyus” + (iX,) " COINXuy + (iX,) " CO)Xus)

3)
nmy

1 v )* : @, (:yv \* : 3) 3 @, .o, 0, 2 0, 03
+W<(’XX) CONXyuy + (iXy) CONX >+ mS) | vurruy vuy) +ul” vy vuy s
0

The final estimate on the residual is:

> 3
||RX”H;1(w><Y;C3) < CIX| ”f”Lz(wa,@)-

The error of the approximation

Uerror “= U — Ugpprox -

satisfies

1 * ~
P (symV*+ (iX,)") C(y) (symV +iXy ) Uerror + Uerror = =R,

Finally, by using (3.18), we have:

3
||uerr0r||H1(wa;(C3) < Clyl ||f||L2(wxy;©3)-
Easily, we obtain the error in the approximation by lower order terms:

Proposition 3.5.3. Let u € H;(Y :H'(w;C) be the quasiperiodic solution of problem

(3.48). Then, the following estimates are valid:

|

P; (u - e’XyI)r(Odm - e'XyI/rYOdm(l) - e’qu1> ‘

< CIX”lf”Lz(wa,(C?’)’ l: 1,2,
H'(wxY,C?) ~ CIX|2”f”L2(w><Y;(C3), i=3

< CIX|2||f||L2((J)XY7C3)’ l: 1,2,
HY(wxY,C?) CIX|3||f||L2(w><Y;C3)’ i=3

(3.49)

P (- 1)

|

where m,mV,uy are defined with the approximation procedure above.
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3.5.3. Norm resolvent estimates for the general elasticity tensor

Theorem 3.5.4 (L> — L? norm-resolvent estimate). Lety > —2 be the parameter of spec-

tral scaling. There exists C > 0 such that for every € > 0 we have:

1 -l a1 oa ot N rod cs'T, =12
P; (5%“) — (MY <8—yﬂg° +C" (w)> Mz, < 2
[2>12 C8T, i=3.
(3.50)

Proof. As the proof of this result goes analogously as the proofs of the Theorem 3.1.3,
we will focus only on the differences. First, we substitute ¢4 with I much in the same
manner as before. Here in the case of general elasticity tensor, the operator A, has a
spectrum consisting of two eigenvalues of order |y|*, two eigenvalues of order [y|> and
the rest of order one. Thus, by providing estimates of the scaled resolvent problems
(3.40) and (3.48), we have actually estimated the resolvents in these two eigenspaces
with eigenvalues of different orders. In order to combine the two, we make the following
argument:

By using the uniform estimates on the eigenvalues, obtained by the Proposition 3.2.8,
we can obtain a closed contour I'; p surrounding the two eigenvalues of order one of the
operator ﬁﬂx, and a closed contour I';, 4 surrounding the two eigenvalues of order one
of the operator ﬁﬂx. Even the notation suggests that these contours depend on |y|, this
is not the case. The notation here is purely aesthetic. Next, we use the scaling functions

8ey» Je, Which are analytic on the neighbourhoods of FM4, sz, given with:

y+2 -1 2 -1
ﬁ%@>::<ﬁgra+1) , g&xo::<£§5z+1) L R@ >0

It is clear that

-1
(PFW + Prmz) <87—1+2ﬂ)( + 1) (Prw +Pr )
-1

1 - 1
= PFLY|2 <mﬂ/\/ +1> PFLHZ +PFIX|4 (mﬂ/y-l-l) PFLV|4 (351)

1 -1 1 1 -1
= — &@GF—ﬂ>dﬁ—¢‘ﬂ@@%—ﬂ>&.
i sz X>E IX|2 X i FM4 X-€ b(|4 X
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Also:

1 - 1 B
H <_87+2 A, + 1) - (Prw +Pr ) (_ngﬂx + 1) (PFW + Prmz)
L2—H!
< Ce"*2,
L2—H!
so it is enough to estimate only the projections on these two eigenspaces. The optimal

1 -1
(I_PFLVI4 - Prmz) <mﬂx + I) (I— PFIXI“ - PFIXIZ)

estimate is obtained by separately estimating the two terms in (3.51). For this, we em-
ploy the first row of fiberwise norm-resolvent estimates in (3.49), (3.47). By using the

estimates of functions functions gg ,, fs,, we are able to get the following:

1 B rody * 1 hom rod B rod
Pl<<mﬂx+1) _(MX ) (mc)( +C ((1))) MX

1212
' W Y [N S S
Cly| ( max ay+2’1 + Cly| | max ng,l , 1=1,2;
<
- P 1) 2 W N\ s
Cly| | max o | + Cly|* ( max o | , 1=3;
\
(2
Ce 4, i=1,2;
=\ .
Ce 2, (=3
\
The proof is finished after applying the inverse Gelfand transform. [

Remark 3.5.5. The results for the L> — H' norm and higher accuracy in L?> — L? norm
are done analogously as in the case of invariant subspaces, and combining with the argu-

mentation provided in the Theorem 3.5.4.

Remark 3.5.6. A similar argument as in the Corollary 3.4.5 can be used to demonstrate
that one can drop the smoothing operator from the L> — L? norm-resolvent estimates
(3.50) while keeping the same order of accuracy. Namely, there exists C > 0 such that for

every € > (0 we have:

1 - rodve [ 1 rod rod - rod C37T+2, i=1,2;
1212 Ce 2, =3

Remark 3.5.7. Much in the same fashion as in Corollary 3.4.8, one can prove the follow-
ing bound on the spectral gaps in the general case: Let y > —2 be the parameter of spectral

scaling. Let M > 0. Then

9 Sr+2

sup la,bll < C(M + 1) e 4.
[a,b]C[0,MeY]
[a,b]No(A)=0
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4. APPENDIX

4.1. OPERATORS, FORMS AND RESOLVENT FORMALISM

Let a be a densely defined non-negative bilinear form on a subspace D(a) < H, a : D(a) X

PD(a) — R. We define the subspace D(A) < H with the following expression:
D(A) :={uecPD(a); veH, suchthat: a(u,w)=y,w)y, Ywe D(a)}.

Since the set D(a) is dense in H, the vector v € H, representing the form a, is unique.

Therefore, we can define a map A : D(A) — H with: Au :=v. We have:
a(u,v) = (Au,v), Yu e D(A),Yv € D(a).
We refer to this linear operator as the operator associated with the bilinear form a.

Theorem 4.1.1. Let a be densely defined on H, continuous on D(a) with respect to ||||q :=
V-l +a(-,-), closed bilinear form such that a(u,u) >0, Vu € D(a). Then the associated
operator A : D(A) — H is closed, densely defined and

1
{AeR, A1<0}Cp(A), |(A+al) <=, Va>O0.
a

For a closed operator ‘A on a Banach space X, with domain D(A), we associate its
resolvent set

p(A) = {z € C; @l - A) : D(A) — X is bijective }.

For every z € p(A), the resolvent of A is given with:

R(z, A) := (zI—&Zl)_1 X - X
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It is known that we have the following two identities:

First resolvent identity:  R(z, A) — R(w, A) = (W —2)R(z, A)R(w, A), Vz,w € p(A),

Second resolvent identity:  R(z,:A) — R(z,B) = R(z, A)(B—A)R(z,B), Vze€p(A) Np(B).

To establish a norm-resolvent estimate is to provide the estimate for the difference of
two resolvents in a strong operator norm topology. We make a remark here that estimates
of resolvents which depend on the spectral parameter z € C can all be reduced to a single
resolvent estimate where the dependance on the spectral parameter is hidden in the right

hand side. Namely, we have the following Lemma:

Lemma 4.1.2. Let w,z € p(A) N p(B), where A, B are closed operators on X. Then we

have:

IR(z, A) = R(z, B)llx < C(z,w)[[R(w, A) —R(w, B)llx
where
C(z,w) := max {1,%} max {1, %} .
Proof. We have the following identity:
R(z,A) - R(z, B) =R(z, A) — R(w, A) + R(w, A) — R(w, B) + R(w, B) — R(z, B)
= (w—2R(z, OR(W, A) + R(w, A) — R(w, B) + (z— w)R(w, B)R(z, B)
= (W =2 [R(z, DR(W, A) — R(w, B)R(z, B)] + R(w, A) — R(w, B).

A clear consequence of the first resolvent identity is the following:
R(z, BR(W,B) = R(w,B)R(z, B).
We have the following:

R(z, A)R(w, A)—R(z, BIR(W, B) = R(z, A) [R(w, A) — R(w, B)] + [R(z, A) — R(z, B)] R(w, B)

By combining this, we obtain:

(R(z, A) = R(z, B)) I —(w—2)R(w, B)] = [I + (W — 2)R(z, )1 (R(W, A) — R(w, B)) .
From this we have:

R(z,A) - R(z, B) = [I + (W= 2Rz, A (R(w, A) = R(w, B) [] - (w— 2)R(w,B)] .
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For the norm we have:

IR, ) = Rz, B)lx < M + (0w = DR Al [RO0w, 70 = ROv, Bl (1 = (w=2R0, B) 7!

We define the following complex function:
w—z w-4 w—z\"1
foa(D=14 272 W22 (1 - —) . 1eC\(p(A)Np(B)).
z—4 z—A4 w—A4
It is clear that:
foelA) =T+W=2)R@,A), fpAB)=U-(w—-2)Rw,B))"".
From this, we conclude that:
lz—wl }
1 -2)R < l,—
|| + (W Z) (Z,ﬂ)llx < max { ) diSt(Z,O’(ﬂ)) s
_ lz—wl
1= v-aRon B < max {12
H( w=2Rw.B)) || s max (Lo %)
]

For an extensive overview of operator theory and spectral theory we refer to books [8]

and [29].

¥
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4.2. GRISO’S DECOMPOSITION

Theorem 4.2.1 (Korn inequalities). [34] Let p > 1, Q C R" and suppose that ' C 0Q has

a positive measure. There exist positive constants C Il< C 12< and C E, which depend on p, Q,

and T only, such that then the following inequalities hold for all y € WHP(Q;R™) :

I11E 1, < Cy (W17, +Ilsym VilI7, )

inf —Ax_bp Scz S mv p , 41
AeRg;;v,beRn”lﬁ 1, < Cklisym Vi, 4.1
W10 1oy < Cic (W1 + lsym Vil ). 4.2)

Within this appendix, we will also use the following version of Korn’s inequality.

Proposition 4.2.2. Suppose that w € R* has Lipschitz boundary. Then for every ¥ €

H'"(w;R?) one has
o1

where C > 0 depends only on w,

'L2 < C(lIsym Vil 2 +dist(. ).

G=1{V¢:¢eH ()},
and the distance is understood in the sense of the L* metric.

Proof. The proof follows a standard contradiction argument. Suppose the claim is false,

i.e. there exists a sequence (Y"),eny C H L(w;R?) such that

LW=Q

"Il 2 > n(|| sym Vy'||;2 +dist(¢",§)) ¥n e N. (4.3)

Without loss of generality,
I ll2 = 1.

and (4.3) can be written as

|sym V|| 2 +dist@",G) <n™'  VneN.
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By Korn’s inequality, it follows that ¥ —, weakly in H'(w;R?). Combining this with
(4.3), we infer that symVy = 0 and ¥ € G. From sym V¢ = 0 we obtain

W = (—axy,ax))" +b, a€Rbe R2.
Together with (4.2) and ¢ € G this implies ¥ = 0, which contradicts (4.2). [ |

Theorem 4.2.3 (Griso’s decomposition, [31]). Let w C R? with Lipschitz boundary and
Ye HY(Q;R3). Then one has

U1(x) + ra(x)x3 + g1 (x),
¥ =P +r() Axses +P(0) = 4 Po(x) = r(¥)x3 + (), (4.4)
J3(x) +3(x),
where
Y(x') = /1 Y, x3)dxs, r(x)= % /1 x3e3 AY(x, x3)dxs,

the following inequality holds for arbitrary h > 0, with a constant C > 0 that depends on

w only:

lsym VaGh+r A xses)||j + Vil oqmsns, + B2 0012 < CllsymVigll.. @4.5)
Remark 4.2.4. Notice that

" A A 1
lsym Vi -+ A xsenyz = [sym Vi) + 5 lsym Vatra =)l

(4.6)
+ 72|61 (i) + r2||i2 +h™2||02(hijr3) — ry ”iz
Thus from Korn’s inequality it follows
||t i 21 +||(ri, FZ)THZI +h72|61 (i) + r2||i2 +h 72|02 (h3) — ry ”iz
< C (|lsym Vil +r A xses)|[2s + I, + 21w b2 @7

<C <||syth(«ﬁ+r/\x3e3)||iz +h2||ﬂ1/h‘/’||iz> .

The following corollary is the direct consequence of (4.5), (4.7), and Korn inequali-

ties.
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Corollary 4.2.5 (Korn’s inequality for thin domains). Suppose that w c R? is such that
v C 0w has positive measure. Then there exist constants Cr, C% > 0 that depend on w and

y only, such that the following inequalities hold for all y € H'(Q;R?) :
eyl < Cr (a2, + h=2 ) sym Vg2, )
_ 2
el < CF (s oy + 172 [sym Vi)

Remark 4.2.6. If it is known that the components ¥, @ = 1,2, are even in x3 and ¥3 is

odd in x3, then additionally r = 0, {3 = 0.

Remark 4.2.7. If a sequence of deformations (l/lh)h>() is such that (¢h)h>0 and (sym Vhlllh)h>()

are bounded in L? and if r", !/A/h and !/_/h are the terms in the decomposition (4.4), then the

1 1
relations (4.5)—(4.7) imply that #* 7~ 0 and k" % 0.

The following lemma provides additional information on the weak limit of sequences
with bounded symmetrised scaled gradients and is proved in [10, Lemma A.4] as a direct

consequence of Griso’s decomposition.

Lemma 4.2.8. Consider a bounded set w C R? with Lipschitz boundary. Suppose that a

sequence (l/lh)h>() C H,}D (Q:R3) is such that
limsup”sythlﬁh”L2 < 0.
n—>o0

Then there exists a subsequence (still labelled by h > 0) for which

a; —x3010
~h
Qﬁh = as — x3070 +y,
1o

in particular

sym Vht//h = z(—x3V§b +sym V;Ca) +sym Vh:/}h,

~h .
for some b € H%D(a)), ac H;D(a);RZ), and the sequence (Y )p=o C H)I,D(Q;R3) satisfies

~h L2
hy" =5 0.

Remark 4.2.9. It can be easily seen that a is the weak limit of ((ﬁh,@g)T in H'(w;R?)

A Hl
and b is the weak limit on hwé’ in H'(w). (More precisely, in this case (=, T = x3 VD,

27
where r* and 1/A/h come from the decomposition (4.4) of y".)
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We will now establish a decomposition that can be viewed as a consequence of Griso’s
decomposition. Note that another proof of the first part of Lemma 4.2.10 is given in [13].

The proof provided here uses the strategy of [69].

Lemma 4.2.10. Suppose that w C R? is a connected set with CY' boundary and ¢ €
H'(Q;RY).

1. There existacR3, B¢ R‘;’E;v, ve H*(w), ¥ € H'(Q;R3) such that

X1 —x301V
Yy=a+B xo + — X307V +, (4.8)
hxs hly

and the estimate
VI + W17, + IV, < C(w)llsym Vill7,
holds for some C(w) > 0.

2. Ify e HI(Q,R3), Y =0o0ndwxl, then in (4.8) one can take a = B = 0. In addition,

v, ¥ can be chosen so that v=Vv =0 on dw and =0 on dw X .

3. If a sequence ((//h)h>0 c HY(Q;R3) is such that
hm/hxph £2> 0, limsup”symvhaﬁh”L2 < 00,
n—oo
then there exist sequences ((,oh)h>0 c H*(w), (l/?h)h>0 c H'(Q;R3) such that
sym Vh«ph = —xy(V%cph) +sym Vh«]/h +ol",

where (0M)y0 € L>(Q;R33) is such that o" £2> 0, and the following properties hold:

tim (1"l +19"1.2) = 0, limsup (1l +198"1,2) < Clim suplfsym Vit

where C > 0 depends on w only. Moreover, one has

o= et g,
where w" € H' (w) with
"1 < € ([lsym Vi o + [l )
for some C > 0 that depends on w only.
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Proof. We decompose ¥ as in (4.4). From (4.1), (4.5) and Proposition 4.2.2 we conclude

that there exist ¢ € R, d € R? such that

2
.
w H

T 1. 02) " = (—cxz,cx) T —d|| 0 + h_2||¢h||iz + ”Vh‘/_/”iz

+ 0201 0i3) + a2 + H20ahilis) = [ < Cllsym Vi

We do the regularization of r, i.e., we look for the solution of the problem

min A /|V;Cgo+(r2,—r1)T|2dx’.
peH (), [, 0=, Y3/ w

The Euler-Lagrange equation and the associated boundary conditions for the problem

(4.9) read

~N¢@=V;-(r,-r1)' inw, Oy =—(ry,—r1)" -v on dw.

Since V¢-(r2,—r1) € L?, by standard regularity estimates we obtain the inclusion ¢ € H*(w)

and the estimate
"¢—h][ 1/}3H < CIll g1 (im2)s
o  H2(w)

for which we require the C>! regularity of dw. In particular, one has

H(,D+7[r2x1—][r1)C2—h][lZ/3‘ r—][r
w w w w

Furthermore, from (4.9) we have the following inequalities:

<C
H?2

H! '
1019+ 12117, + 110200 = rill7 ) < 101 (a3) + rll7, + 1102(h3) = il
~ — 2 —_ ~ —
V2 (@3 —h~"0) |2 < h2101 () + rall7, + B2 11810+ a7,

+h202(h3) = rill2, + 2020 = il

< 2(101(uh3) + rall7, + K2 102 (fr3) = rill7.).

The claim follows by taking

0 —c h_lf r

T
a= (d17d23f$3) H B: C 0 _h_lfr] 3
w

—h_lfrz h_lfrl 0

187



V=g0+][7'2xl—][}’1XQ—h][l/Al3,
w w w

Y=g+ <¢A/1,l}2,12’3 —h_lso)T +(x3(r2 +019), X3(=11 + 029),0) " = (=cx2,¢x1,0)" ~(d,0)"

This finishes the proof of part 1 of the lemma. To prove part 2, we only need to note that

if ¥ =0 on dw, then r =0, tfb =0 on dw. Combining this (4.6), we infer

A A 9. =h -
P17 + 11 82) Mg + B2 172 0 ) + IV

+ 201 (u3) + o3> + h2102(huf3) = 117> < Cllsym Va2,

Furthermore, due to the condition ¢ = 0 on dw, in the “regularisation” of (ry,—r1)" pro-
vided by the variational problem (4.9) we can minimise over ¢ € H(l) (w) and we immedi-
ately obtain that

lellgz < C(@)lIrig,

which replaces (4.2).

Part 3 is proved in [69]; alternatively, one can follow the argument used for part 1, tak-
ing into account (4.7) and noting that A /hl//h — 0 in L*(Q;R?) implies the convergence
r"—0 in H'(w;R?), hnl/h«ﬁhéo in H'(w;R3), where #* and lﬁh are from the decomposi-
tion (4.4) applied to ¥". (Note that within the described argument here one can set to zero
the vectors a”, B" in the decomposition (4.8) for l/lh.)

Remark 4.2.11. Following Remark 4.2.6, we note that if ¢,, @ = 1,2, are even in the
variable and ¢3 is odd in x3 variable, then on has v =0, a3 =0, Bj3 = B3 =0 in (4.8).

Moreover, the estimate

Wall =10l = |- £33 | < Clondalia < Chlsym 9.
1

holds with C > 0 that depends on w only.
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4.3. TwO-SCALE CONVERGENCE

In this chapter we assume that Q c R", if not otherwise stated, is a bounded open set with
Lipschitz boundary. As before, we use the notation / = (—1/2,1/2). For x € R", we denote
by X the first n — 1 coordinates, thus x = (X, x,,). Depending on the context, the unit cell is

Y =[0,1)"or Y =[0,1)"!, while M/ denotes the unit flat torus in R” or R*!, respectively.

Definition 4.3.1. (dimension-reduction two-scale convergence). Let (u%).~¢ be a bounded
sequence in L2(Q). We say that u® weakly two-scale converges to u € L2(Q x Y) with

respect to Y if (in settings where ¥ = [0, 1)""1)

/us(x)¢<x,§> dx—>//u(x,y)¢(x,y) dydx Vg e CZ(QC(Y)),
QY

Q

or (in settings where Y = [0, 1)")

/us(x)¢<x,£> dx—>//u(x,y)¢(x,y) dydx Vg e CZ(Q:CY)).
QY

Q

We write

dr-2
u® ——u(x,y).

Furthermore, we say that (u¥)z-q strongly two-scale converges to u € L>(Q x Y) if

/ WO () dx — / / U, )6 (x,y) dydx,
QY

Q

dr-2 .
for every weakly two-scale convergent sequence ¢(x) SN d(x,y). We write

dr-2
u® ——u(x,y).

The following theorem is given in [48, Theorem 6.3.3].

Theorem 4.3.1. Let Q = wx I, where w C R? is bounded and has Lipschitz boundary, and
let €, > 0 be a sequence such that g, — 0 as h — 0 so that limy,_,oh/ep = 6 € [0,00]. Let
(uM)p~0 be a weakly convergent sequence in H YQ:R3) with limit u and suppose that

Tim supl|V 42|l 2z < 0. (4.10)

h—0
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1. (a) If§ € (0,00) then there exists a function w € L*(w; H' (I x Y;R?)) and a subse-

quence (not relabelled) such that
dr-2 n =
Vi (x) —— (V:u(2)10) + Vsw(x,y).
(b) If 6 € (0,00) and in addition (4.10) we assume that

limsuph™! ||u8h

) <
h—0

||L2(Q;R3

then there exists a function w € LY (w: H'(IxY;R?) and a subsequence (not

relabeled) such that
a0 L w(x,y), V() L Vw(x, y).
2. If 6 = 0 then there exits w € Lz(w;Hl(y;R3)) and g € L2(Qx Y;R3) such that
& dr-2 R
Vut(x) — (V;Cu(x)|0) + (Vyw | g).
3. If 6 = co then there exists w € LX(Q;H'(Y:R3)), ge L2(Q:R3) such that

dr=2
V,u®t(x) i’

(Vsu(®10) + (Vywlg).
We will need the following helpful lemma.

Lemma 4.3.2. 1. Suppose that (¢%)e~0 C H Q) be a bounded sequence in L2(Q) such
dr-2
that ¢° r—\(,o(x, y) € L2(Qx Y). Suppose additionally that eg° — 0 strongly in
H'(Q). Then ¢(x,y) depends on x only.

dr-2

2. Suppose (¢°)es0 CH 2(Q) be a bounded sequence in L*(Q) such that ©® o(x,y) €
L2(QxY). Suppose additionally that £¢¢ — 0 strongly in H*(Q). Then ¢(x,y) de-

pends on x only.

Proof. We write

e(x.y) = ) ax)exp(2rik,y)),  are LAQCY, / lax () < co.

kezn keZ"

We want to show that for k # 0 we have that a; = 0. We take an arbitrary b € C°(€2) and

i €{l1,...,n} such that k; # 0 and calculate

/ ar(x)b(x)dx = / ©(x,y)b(x)exp (27ri(k, y)) dxdy
Q

QxY
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- lm /f<x>b<x>exp<2ﬂi(k7S))dx

-t [ s 0 (enp (20 (13) ) )
-t { [ gouw wpioesp (2ni (5.3
[ e (k) <o

From this we infer that for k # 0, a; = 0, and the claim follows. The proof of the second

claim is similar. [
The following claim can be proved directly by integration by parts.

Lemma 4.3.3. 1. Let (¢%)gs0 C HX(Q) be a bounded sequence. Suppose that ¢¢ — @
dr-2
strongly in L*(Q) and V*>¢® ——, where y € L>(Q x Y;R™"). Then there exists
@1 € L2(Q; H*(Y)) such that

V2" T2V (1) + V21 (5. 3).
dr-2
2. Suppose that (¢°")s0 € H*(Q) is a bounded sequence such that h™' ¢ SN o(x,y)
dr
and limy,_o &, %h = k € [0, 00). Then Vzgogh —‘KVz()D(X y).

3. (a) Let (¢%)g>0C H*(w) be such that the sequences (¢°)e>0, (EV@®)eso are bounded
2 o(x,y) € LAQXY).

d
in the corresponding L* spaces. Suppose that ¢f

Then ¢ € L*(Q; H'(Y)) and €V ¢? a2, Vye(x,y).

(b) Let (¢°)es0 CH 2(w) be such that the sequences (¢°)e>0, (EVY®)es0, (82V2<,08) >0
dr-2
are bounded in L?. Suppose that 908 SN o(x,y) e L2(QXY). Then ¢ € L*(Q; H*(Y))

and eVg® @2, Vye(x,y), V2 p? 2, Vzgo(x y).
We will prove the following lemma.

Lemma 4.3.4. Let Q = wx I, where w C R? a bounded set with Lipschitz boundary and

let (W) ps0 € HY(Q) be such that there exists C > 0 such that

||w8h”L2(Q) + shllvhwgl ||L2(Q R%) - C (41 1)
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1. If h < g, then there exist Y1 € H'(wXx Y), ¥r € L2 (Q X Y) such that (on a subse-

quence)
dr-2
U —— 1, Vit —= By, U1, 0y, 01, ¥2). (4.12)

The opposite claim is also valid, i.e., for every Y1 € H'(wXx Y), Yy» € H(Q X Y) we
have that there exists (W®")p~0 C H L(Q) such that (4.11) and (4.12) are satisfied.

2. If e, < h then there exists € L*(Q, H'(Y)) such that

dr-2 dr-2
Y ——, eVt ——(0y,¥,0,,4,0). (4.13)

The opposite claim is also valid, i.e., for every € L*(Q; H' (Y;R?)) there exists
WMo € HY(Q) such that (4.11) and (4.13) hold.

dr=2
Proof. To prove the first part of the lemma, we take 1 € L>(Qx Y;R?) such that y SN U1

on a subsequence. Since, by assumption,

h
&
10,12 < Cg_h’

we immediately conclude that /1 does not depend on x3. Denote the two-scale limit of
hleno ¥ by Y. Invoking integration by parts in a standard fashion, it is easy to check

that

dr-2
(01, 00y°") —— (0,1, 0y,¥1).

In order to prove the second claim of part 1, it suffices to consider the case ¢; € C 1 (w;C 1 M)),

Yo € CH(Q;C(Y)). We can then take

X1 X2 h '3 X1 X2
wgh = lﬁl (x13x258_5_>+_/ l/’z X1,X2,8 ,8 I ds~

h Eh &nJ-12 h Eh
This completes the proof of part 1.
dr-2
To prove part 2, we take ¥ € L>(Q x Y;R3) such that y®* r—\tp on a subsequence.

Again, using integration by parts, we obtain

en(@10°, 000 L2 (8,0, 0, 0).

Next, for b € Cé(Q),v e C1(Y) we have

/Q xzwghb(x)v< dx = / w8h8x3b(x)v< ) dx — 0.

192



dr-2
It follows that 0,,y* Z2.0. To prove the last claim, we set

por =y (5 22)

Eh €h

for ¢ € cl(Q,Cc'(¥)) and pass to the limit as 4 — 0. [ |
The definition of two-scale convergence (Definition 4.3.1) naturally extends to time

dependent spaces.

Definition 4.3.2. Let (1%),-o be a bounded sequence in L>([0,T]; L*(€2)). We say that

(u®)e>0 weakly two-scale converges to u € L%([0,T]; L*(Q X Y)), and write

t,dr—2
u® ——u(t, x,y),

T T

//u (1, x)¢ )(p(t)dxdt—>///u(t,x,y)¢(x,y)go(t)dydxdt,
0 0 QY

T T

//u‘g(t,x)cp(x,z) tp(t)dxdt—>///u(t,x,y)¢(x,y)go(t)dydxdt,
0 Q 0 QY

for every ¢ € CZ(Q;C(Y)), ¢ € C(0,T). If in addition one has

if

1.e.,

dr-2
Wt x) —u(t,x,y) ae. t€[0,T]

T T )
R P N O

then we will say that (#®)s-o strongly two-scale converges to u and write

and

t,dr-2
u® ——u(t,x,y).

Similarly, we define the notions of weak two-scale convergence and strong two-scale
t,p,dr—2

convergence of sequences in LP([0, T]; L*(Q)), for any 1 < p < oo, denoted by and

t,p,dr—2 t,00,dr—2
——, respectively. The convergence

is understood in the weak* sense with
. . . oo, dr-2 . .

respect to the time variable 7, while 2T, is understood in the sense of simultaneous

pointwise convergence (4.3.2) and boundedness of ||u®(z,-)|| 2y L€ [0,T], in the space

L*(0,T). The following lemma is standard (see e.g. the proof of [53, Lemma 4.7].

Lemma 4.3.5. If (u¥)z>0 is a bounded sequence in LP([0,T); L*(Q)), p > 1, then it has a

subsequence that converges weakly two-scale in the sense of Definition 4.3.2.
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4.4. EXTENSION THEOREMS

4.4.0.1 Asymptotic regime /1 ~ g,

We use the extension theory in order to decompose the sequence of displacements into
two functions for which we can get enough compactness for passing to the limit as 7 — 0
in the original equations for displacements. We use the following result, which can be

found in [51]:

Theorem 4.4.1. For every h > O there exists a linear extension operator~: H 1(Q‘T”;R3 )—

HY(:R?) such that it = u on th and

lsym V| 2 oupisvs) < C llsym V|2 g e

Proof. The way in which we introduce the extensions here is to look at every single cell
inside the thin domain Q". The extension of the function u (defined on Q") is constructed
as follows. First we “inflate” the cell (with the scaling factors 8;1 and /! in the in-plane
and out-of plane directions, respectively) and translate it to the reference cell ¥ x /. On this
reference cell we apply a linear extension operator E : H' (Y xI) = H'(Y xI) (see [51,
Lemma4.1] to extend u to the function Eu =: #i. By passing to the original coordinates and
concatenating the extensions we construct functions & € H'(Q";R>) which is the extension

of u from Q’ll’gh to Q" and satisfy the estimate

||sym Vﬁ||L2(Qh;R3X3) <C ||sym V””U(d{'% R33)°

where the constant C does not depend on the thickness 4. We finish the proof by rescaling

the estimates back to Q. [ ]

Remark 4.4.2. It is not difficult to see that if we have a sequence {(h,&p)} such that
0 <a<h/e, < B < oo, where @, do not depend of 4, then the constant in Theorem 4.4.1

depends on a,f only.

Remark 4.4.3. By inspecting the construction of the extension operator in [51, Lemma
4.1], it can be easily seen that if u € L>P*"(Q;R?) or u € L>™™P(Q; R3), then the same

inclusion holds for .
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Using the result above we conclude the following lemma.

Lemma 4.4.4. For all it e H'(Q;R>) such that it|en = 0, the following Poincaré and Korn
1

inequalities hold:

litll;2 < CenllVaill2, (4.14)

Vil 2 < C|lsym V] ., (4.15)
where the constant C is independent of h.

Proof. We again look the problem on the physical domain Q". The function u (scaled
properly), when restricted to a single cell within the domain and then rescaled and trans-
lated to Y x I, satisfies the Poincare inequality, as well as Korn’s inequality (4.2) with a
constant determined by the domain Y x I. Scaling back to the physical domain Q" and
summing up the norms over all cells, we obtain a version of the estimates (4.14) and

(4.15) for Q". Finally, rescaling to Q, we obtain (4.14) and (4.15). [ |

Remark 4.4.5. Using continuity of embeddings into spaces on the boundary, it follows

immediately that
”ﬁ | |L2(Fm§0) < CSh | | Sym Vhl'ol | |L2(Q;R3X3)’

where I' := wx {-1/2,1/2}.

4.4.0.2 Asymptotic regime /1 < g,

In this section we assume that & < g;. We will assume that Yy C Y does not touch the
boundary of Y and is of class C»!. First, we provide an extension property, in the spirit
of Theorem 4.4.1. We denote by Qf,", a = 1,2, the same sets as in Section 2.1. We have

the following theorem.

Theorem 4.4.6. There exists a linear extension Eh : H'(Q°";R3) — H'(Q;R?) such that

1
for everyu € H'(Q,R?), Eu =u on Q" and

||sym VhES”u||L2(Q;R3X3) < C||sym th”Lz(Q}gh R (4.16)
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for some C > 0 independent of h. Moreover, there exist v € H*(w) and tﬁ e H'(Q;R3) such

that v = =0 on Q" and

—ShX381\°/
i:=u—-E"u= —&px30V +y, 4.17)
h ey
EpV
with the estimate
21002 o2 21202 2015112 o112 o 12
en 2912, + VIR, + &7 V25 + en 2|02 + [IVadb]] > < Cllsym Vait|| . (4.18)

where C depends on Y only.

Proof. We consider a domain Yo X (h/ep)I, such that ¥y has C'! boundary, Yo c ¥y, and
Yo\Yo is connected. For the extension veH Y(Yo\Yo) X I;R3), we apply the decomposi-

tion of Part 1 of Lemma 4.2.10 to obtain

—X3(91V
Yy=a+ B(Xl,X2,8}:1hX3)T + —x30,Vv +y, 4.19)

h=tev

wherea e R3, BeR¥>3 ve Hz(f/o\?o), «ﬁ € Hl((f/o\?o) x I;R3), and the following esti-

skew’

mate holds:

2 7 _ 7112 2
”v”Hz(f/o\l_/o) + ||¢”L2((YQ\Y0)XI;R3) + ”Vh/shlp||L2((Yo\?0)XI;R3X3) < C” Sym Vh/sh‘pl|L2((Y0\?0)><I;R3><3)’
(4.20)

where C depends on Yy only. It is not difficult to construct extension operators
Ei: H*Yo\Yo) > H*(Yo),  Ex:H'((Yo\Yo)xI) - H'(Yox1)
such that Ej¢ = ¢ on Y3\ Yy and Eow = w on (¥p\Yo) x I and
IE @l 27 < Cllell 27y WE1@lg) < Cllellagogy, Vo € HA(To\Yo).

”EZW”LZ()N/O)x]) < C”W”Lz((YQ\YO))XI)’

IVhsen E2Wllr2g)xrr3) < ClVR W2 50\ Fypxii3) Ywe H' (Yo\Yox D),
“4.21)
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for some C > 0. Indeed, E| is constructed by using the standard reflection principle. Also

using the reflection principle, we first construct £, : H' (Yo\Yo) — H'(¥p) such that

1E2gll 2,y < Clellzggp gy 1E2elliiy < Cllelln gz, Yoo € H' (Fo\Yo),

for some C > 0. On the basis of E,, we construct E; as follows. For w € Cz(f’o\l_/o x 1) we
set Eow(-,x3) = Eow(-, x3) for all x3 € I. It is easy to check that for w € C?(¥o\Y( x I) one
has 0., Eow = E2(0x;w), from which we infer the property (4.21) for w € C2(Yo\Yo xI).
We then extend E; to the whole of H!(Yy\Yo x 1) by density, which concludes the con-
struction.
Fory € H'(Yo\YoxI;R3), using the expression (4.19), we define E‘Shap e H(YyxI;R3)
as follows:
—x301E1v
Eo = a+B(xi,x2,8, hx3) + | —x30,Epv | +Ead. (4.22)
enh 'Ev

Recalling (4.20), we obtain the estimate

2 7112 7112 2
”EIVHHZ(YO) + ||E2¢||L2()~’0;R3) + ||Vh/shE2'//||L2(Y0;R3><3) <CJ| Sym Vh/ah¢||L2((Y0\?0)XI;R3X3)'

We construct E®»u by considering z € Z? such that &,(Y +z) C w and applying the extension

E?® to the function x — u(ep + &2, x3). In this way we obtain

—X381VZ
_ Eh | R T
Ehy Sh(f/o+z)><1_az +BZ (x1,x2,hx3) + —X302V; +!/IZ, (4.23)
1y,
with the estimate
-4 2 -2 2 2112
2 AT 0 R TR | e

-2 2 2
+&h ||¢Z||L2(ah(f’0+z)><1;R3) * ||Vhwzl|L2(8h(Y0+Z)X1;R3X3)

2

< CllsymVaslly g, 7\ gy roxrzi)’

This concludes the proof of (4.16). To prove (4.17), for each z € Z? consider the deforma-
tion
u- Eghuls(f/oﬂ)xl
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and apply the above rescaling as well as the second claim of Lemma 4.2.10. The linearity

of E®! follows from the decompositions in Theorem 4.2.3 and Lemma 4.2.10. [

Remark 4.4.7. Notice that as a consequence of Corollary 4.2.5 and the estimate (4.16),

if u =0 on yp X I, where yp C dw is the set of positive measure, then

2 2 -2 2
i E | qpsy < C(Imml g, oo+ ||symvhu||L2(QTh,R3x3)),

where C is obtained by combining C% in (4.2.5) and the constant in the extension inequal-

ity (4.16).

Remark 4.4.8. We can assume, without loss of generality, that in the above proof E;
maps affine expressions aj x| +azxy + az, for aj,as,az € R, to themselves. (Indeed, as in
the proof of Proposition 2.2.4, on the orthogonal complement of affine maps in L? the
extension is constructed by reflection.) From (4.23), recalling (4.19) and (4.22), we also

have the estimate

||E8hu||L2(Q;R3) < C (llulle(QTh;R3) + ” Symvhu”L2(QTh ;R3X3)) s

for some C > 0. From (4.17), (4.22) we then additionally obtain that

1o
o™ 1260 < € (Il 2oy + 15Ym Vil g e + Ellsym Vsl 2 s ) -

Remark 4.4.9. Following Remark 4.2.6 and Remark 4.2.11 we infer that if u, is even in
the variable x3 for @ = 1,2 and u3 is odd in the variable x3, the extension E*u has the

same properties. Noting that by Lemma 4.2.10 and Theorem 4.2.3 one has a?g = B?B =

By =vE" = § = 0 in (4.23), we also infer that

&,
B3| 2 ) < Chllsym Viull o g sy,
3l 200 < W31l 23y < Can™" hepllsym Viull 2 qupsxs) = Chllsym Vil 2 g.pax)s

for some C > 0.

4.4.0.3 Asymptotic regime ¢, < h

In this regime the extension theorem is analogous to Theorem 4.4.1.
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Theorem 4.4.10. For every g, > 0 there exists a linear extension operator

we i HY(QRY) — H'(Q;RY) such that it = u on Q" and
||Sythﬁ||L2(Q;R3><3) <C ||Sym th”LZ(Q‘lgh R3X3y

Proof. Since g, < h, the way in which we introduce the extensions here is to look at every
single cell inside the thin domain Q". The cells are g,-cubes &,(Y +2) X [kep, (k+ Ve,
where z € Z2, k € Z, are chosen so that each cube is entirely inside . We use the extension
operator on the cube Y X I (see [51, Lemma 4.1]), followed by a scaling argument. We
label the resulting extension by Ej. The problem is that we can have a mismatch at the
lines x3 = key,, where k € Z, and there are possible “boundary layers” at the sides x3 = +h/2
where the extension is not defined (due to the fact that //gj, is not necessarily an integer).

We deal with this by introducing another series of extensions to cubes

1 3
en(Y +2) % [<k+§>sh, <k+§>sh], €7 keZ,

from the complements of the corresponding “perforations”

3 5
Eh(YO +Z) X |:(k+ Z)Sh, <k+ Z)Sh] .
(On the parts

en(Yo+2) X Kk+%>8h, (k+%>8h}, en(Yo+2) X Kk+§>8h, <k+§)8h}

we continue using the extension E7.) In this way we correct the first extension and elim-

inate the mismatch. We denote the resulting extension by E;. We deal with the upper

cubes

h

layers at x3 = +h/2 in a different way, namely, we first consider the extension on the
h h h
Sh(Y+Z)X<{——8h,— U|:————+8h

2 2 2 2 )

(referring to this as E3), and then we correct the possible mismatch between E; and E3

by performing extensions to the cubes

(Y+)><<{ﬁ—§ ﬁ—l }U[_ﬁﬂ _ﬁ+§ ])
et Tz 2 2%y T 2 TRt Ty TR

from the complements of the corresponding perforations
S h 3 g [ h N 3 h N 5 D
2T gty T

Y, —_lg . —-Z
Sh(o+z)><([2 155 = 7%
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(On the part

(Y+)><<{ﬁ—E ﬁ_é }U[_ﬁjLé _ﬁ+§ D
eoTe 2 2%y T g 2 Tyt TR

we take the above extension E», while on the part

(Y+)><<[ 3 n 1 U[thl E D
enttoTz 2 g%y T o 2 T Rf Ty T

we take the extension E3.) We refer to this extension on the cube

NN NERER)
Enit T 27 2%5 2T Tt

as E4. The final extension is given by E4 on the layer

h 3 h h h 3
h . v ” e or s
{(xl,xz,x3) e x3€ {2 28;,,2} U { 775 + 28;1]}

and by E; on the remaining part of Q". The required extension on Q is now then by
scaling in x3. (A procedure analogous to this has been described in [51, Chapter 4] for

some specific domains.) [

Remark 4.4.11. It is easy to see that if u € L>*"(Q;R3) or u € L>™™(Q; R?) then the

same is valid for # (see the extension operator in [51, Lemma 4.1]).

The following statement is proved analogously to Theorem 4.4.10, see also the proof

of Lemma 4.4.4.

Lemma 4.4.12. For it € V(Q) be such that |y, = 0, the following Poincaré and Korn
1

inequalities hold:
ltll 2 < enCIVaitll 2, Vil 2 < C||sym Vi | » .
where the constant C does not depend on h.

Proof. As in the case of Theorem 4.4.10, we work on the physical domain Q". The re-
strictions of the inequalities (4.4.12) to those cylinders ;,(Yo+2z) X[-h/2+kep, —h/2+ (k+
Depl, z € Z?, k € Ny, that are contained in Q are obtained by combining a scaling argu-
ment, the Korn inequality, and the Poincare inequality on the unit cube. We similarly ob-
tain the restrictions of the inequalities (4.4.12) to the cylinders ,(Yo +2) X [h/2 — &, h/2],
z € Z?. The argument for the physical domain Q" is now completed by summing up all
above inequalities. To obtain the inequality on the canonical domain Q (where gradients

are replaced by scaled gradients), we simply perform the corresponding rescaling. [ |
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4.5. HYPERBOLIC EVOLUTION PROBLEMS OF SECOND

ORDER

Let A be a non-negative, self-adjoint operator with domain D(A) in a separable Hilbert
space H, and let A'/? its unique non-negative self-adjoint root in H. We define the fol-

lowing normon V := D(A?):
lul = ((A+ D"V u,(A+ D) u),, ueDA?).

V is a Hilbert space and the inclusion V > D(A) is dense. Let V* be the dual of V making
(V,H,V*) the Gelfand triple [4,28]. Due to the density argument, the operators A, A'/?

can be uniquely extended to bounded linear operators:
A VoV, AV H- V.

Moreover, A+71 : V — V* as well as (A+ 71 )1/ 2 AY? 4+ T, viewed both as operators
from V to H and form H to V*, are isomorphisms. Consider also the following evolution

problem:
Ouu(t) +Au(t) = f(1),
u(0)=uy, Om0)=u;, 4.24)
upeV, wui€H, felL*[0,T];V".

Definition 4.5.1. We say thatu € L2([O, T1; V) is a weak solution of the problem (4.24) if

it satisfies:
ueC(0,T1;V), 0meC(0,T];H),
0;(0u(t),v)m +a(u(t),v) = (f(t),v)y=y Vv €V in the sense of distributions on (0,7),

u)=wug, u0) =u,.
(4.25)

The problem (4.24) can be restated as a first-order form, as follows. Consider the

product space E = V x H endowed with the inner product

e = (V1.2 w1w)") = (A+ D2y (A+ D) Pwy) , + 2, w2,
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and set

0 -1
A= . DA) = D(A) X DA, (4.26)
A 0

with the embedding D(A) — E being dense. It is easily seen that
(A+DV, V) = (Av,v) + (1,v1) + (v2,v2) = (V1,v2) 2 ((v1,v1) + (v2,v2))/2,  (4.27)
where by I we have denoted the identity operator on E. Moreover for 4 € R\{0} one has
A+AP=f = vi=A+2D'Af1+f2), va=vi—f, (4.28)
which implies

AA+2D A+ 22D
(A+AD7 ! = , 1#0. (4.29)
PA+PD =T AA+22D)7!

As a consequence of (4.27) we can conclude that —(A +1) is a dissipative operator in the

sense that

[AT+1+ 47|, = V2+AAE = AW, YA>0. (4.30)

The property (4.28) implies that A +1 is a closed operator. (Note that a dissipative operator
S is closed if there exists A > 0 such that the range of A7 — & is closed.) From (4.28) and

(4.30) we conclude that (4+ 1)I+ A is a bijection
[+ DI+A) Y| <!, vaso.
It follows that —(A + 1) generates a contraction semigroup (by Hille-Yosida Theorem) and
e = ete_t(A“L]D, ||e_t(A+I)|| <1, ||e_tA|| <e. 4.31)
The problem (4.24) can be formally written in the form
Ol(t) + Au(r) = f(t), i(0) = i, (4.32)

withid = (u,0:u)", Wy = (ug,uy)’, f =(0,f)" € E. The following two theorems establish

sufficient conditions for the problem (4.24) to be well posed.

Theorem 4.5.1. Under the additional assumption f € L*([0,T1; H), there exists a unique

weak solution of the problem (4.24), understood in the sense of Definition 4.5.1.
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Proof. The existence can be obtained by the variation of constants formula

T
i) = e Py + / e =94 F(5)ds. (4.33)
0

The uniqueness is given by parabolic regularisation and can be found in [28, Theorem 3,
p.572] in a more general setting, where also a proof of existence is obtained by the same

method while working directly with the problem (4.24). [

Remark 4.5.2. It can be easily seen from (4.25) that in Theorem 4.5.1 one additionally
has d,u € L>([0,T]; V*). Furthermore, if f € L®([0, T]; H) then d,u € L*([0,T]; V*).

Remark 4.5.3. It follows from (4.31) and (4.33) that there exists C > 0 such that

@]l 0.71:E) < Ce” (llﬁoll + ”f”Ll([O,T];E)) ;

from which one directly concludes that

llellzog0,71:v) + 10l oo, 7130y < Ce™ (llwolly + et + W1l o)) - (4.34)

Note that as a consequence of (4.28) the operator A + Al has bounded inverse for every

A#0.

Theorem 4.5.4. Assume that f,0.f € L2([0,T1;V*) Then, there exists a unique weak so-
lution in the sense of Definition 4.5.1 of the problem (4.24).

Proof. Notice that we actually have f € C([0,T];V*). The existence of solution follows

from the formula

T
(1) = e ity - / A +DTH9uf(5) - f(s))ds+ A+ DT ) — e A+ D7 F(0),
0
(4.35)
which can be obtained formally from (4.33) by using integration by parts. Here we also

use the fact that (see (4.29)):
A+D'0,NHT = ((A+D f,(A+ D7), (4.36)

from which it follows that if f,d,f € L*>([0,T1; V*) then (A+I1)~1(0, /)7, i.e., (A+D) 10,0, f)T
is an element of L2([0,T]; V). As in the proof of Theorem 4.5.1, the uniqueness follows
from [28, Theorem 3, p.572]. (Notice that considering the difference of the solutions
associated with two different load densities gives us a solution to the problem with zero

load density, which is then necessarily zero by the cited theorem.) [ |
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Remark 4.5.5. It can be easily seen that in Theorem 4.5.4 one additionally has d,u €

L™ ([0,T];V*). This follows from (4.25) and the fact that f € L*([0,T]; V*).

Remark 4.5.6. It follows from (4.31) and (4.35) that there exists C > 0 such that

lllz=qo.r1.) < Ce” (lldoll +ILFO)llv- +10:fll1 o710 ) »

from which one directly concludes that

llell Lo(to,71:v) + 10gatl Lo (go,71:) < Ce™ (Ilmolly + et llez + 1L Olvs +10ef N1 qo.17:v) -
4.37)

We will now give an overview of the results of [53], which we will then extend with
the concept of solution discussed in Theorem 4.5.4. While this extension is not considered
in [53], its validity follows from the formula (4.35).

Suppose that we are given a sequence of Hilbert spaces (H;)¢~o endowed with norms
Il - |z, and some type of weak convergence u® M, u € H of sequences (u®) ¢ H;. Our
assumption on this type of weak convergence is that every weakly convergent sequence
(u®)g>0 1s bounded, i.e. limsup,_,q|[u®||n, < co. We additionally assume that the “limit

space” H is separable.

Definition 4.5.2. We say that a sequence (#®).~o C H; strongly converges to u € H and

) H, . Hg
write u® — u if u® — u and

ling)(ug,vg)ﬂg = (u,v)H, (4.38)
E—

H,
for every weakly convergent sequence v — v € H,v® € H,.
Additionally, we assume the following properties of this abstract weak convergence:

o Every bounded sequence contains a weakly convergent
(compactness principle)

subsequence.

o o For every u € H, there exists a sequence (#°)s-o C Hg,
(approximation principle) H,
such that u® — u.

H .
(norm convergence)  If u® —5 u, then lm(l) g, = llullz.
E—
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. Hy .
As a consequence of these properties, to guarantee strong convergence u® — u it suffices
. H
to have the property (4.38) or, alternatively, to have u®* — u and norm convergence (see
the proof of Lemma [53, Lemma 6.3]). The following kind of operator convergence is

convenient in the analysis of parameter-dependent problems.

Definition 4.5.3. Let (A;).~0 be a sequence of non-negative self-adjoint operators acting
on the respective spaces H.. Suppose that A is a non-negative self-adjoint operator on
some closed subspace Hy of H, and consider the orthogonal projection P : H — Hy. We

say that A, converge to A in the weak resolvent sense if

V>0, (A +AD)" f2 I (A AT P, V()0 fEEH. fCofeH.
(4.39)

Similarly, we say that A, converge to A in the strong resolvent sense if

VA>0, (A+aD) f° L A+ AP, V(0. fEeHo fFo5 feH.
(4.40)

Lemma 4.5.7. The convergence (4.39) is equivalent to the convergence (4.40).

Proof. The proof is based on a duality argument. Take A > 0 and consider (f*)¢-0 such

H. H,
that f* — f and (g°)s>0 such that g¢ — g . Then one has
. £ -1 ¢ R T -1 pe e
lim (f°.(A+AD)7" g°), = lim (A +AD)7" f°.¢°)

= ((A+an~' Pf.g) = (f.(A+AD) " Pg) .

These equalities show that (4.39) implies (4.40). In a similar fashion, one shows that

(4.40) implies (4.39). [ |

Henceforth we work within the framework of Definition 4.5.3. For the sequence
(Ag)e>0 we construct the associated Hilbert spaces V, endowed with norms || -|[|y,, de-
fined as follows:

I}, = (As+ D)0’ (A + D) *u) .

Similarly, we define ||u||y, where V = DAY 1t is easily seen that, since H is separable,
the spaces Hp and V are also separable. (Indeed, H is a subspace of H, and if {h,},en 1S

a dense subset of H, then {(A+I1)"1/2h,} e is a dense subset of V)
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Definition 4.5.4. Suppose that (u®).-0 C V., u € V. We say that u® converge weakly to u

. . Ve .
in V., and write u® — u, if

u®—>u and  limsup|lu®|ly, < co.
&>0

.. . . Ve .
Additionally, we say that (u®).-o converges strongly to u in V, and write u® — u, if

v,
@ %)y, = (u,v)y forall v®—y.

The following statement is [53, Lemma 6.2, Lemma 6.3].

v H,
Lemma 4.5.8. If u® -5 u, then u® —> u. Moreover, one has

V, v
u® Su = u®—u and lee®|ly, — lluelly.

It can be shown that there exists a dense subset S C V, such that for every z € S there
. Ve
exists a subsequence (z°).~0 such that z¥2 — z (see [53, Lemma 6.5]).
We also introduce convergence notions convenient for the analysis of time-dependent

problems.

Definition 4.5.5. Suppose that a sequence (u®)z-g C L*([0,T]; H,) is bounded. We say

,H .
that (u®).~0 weakly converges to u € Lz([O, T];H), and write u® ksl u, if
T T
/ @®(1),v®)g,e(dt — / (u(0),v)p(t)dt,
0 0

He
for all v —5 v and ¢ € L*(0,T).

Definition 4.5.6. Suppose that (u®)z-o C L%([0,T]; V). We say that (u®).~o weakly con-
Ve .
verges tou € L%([0,T1;V), and write u® LA u, if
1,Hy T 1/2 1/2
u®—u and lim sup/ (A u®, A/ Uy, dt < oo.
-0 0
In the same way we can define the weak convergence in LP([0,T]; Hg) and L?([0,T]; V),

P-He P-Ve . . .
1 < p < oo (which denote by P and 22 , respectively.) The following lemma is

stated in [53, Lemma 4.7].

Lemma 4.5.9. The spaces L*([0,T];H,) and L*([0,T]; Vy) satisfy the weak compactness

principle.
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The next lemma can also be easily established, see [53, Lemma 2.3, Lemma 4.5].

H, .. . .
Lemma 4.5.10. Ifu® — u, then liminf,_,o [|u®||g, > |[u||g. The same is valid for the weak
t,He ..
convergence in Ve. If u® — u, then iminfe_o [u®ll 120 7r1.1,) = Wl 20,7111y The same

is valid for the weak convergence in Lz([(), T1,Ve).

In the natural way, by components, we define the weak and strong convergence in
E. =V:.xXH_ as well as the weak convergence in L*([0,T]; E.). Also the space Eg = VX Hy
and the projection P onto E( are defined in a natural way, the latter being given by PV =
(vi,Pv2)". In an obvious way we also define operators A, and A. The following theorem
is a basic tool for proving weak or strong convergence of solutions to &-parametrised
evolution problems, understood in the sense of Definition 4.5.1. The theorem can be
found in [53, Theorem 5.2, Theorem 7.1]. The first part is easily proved by combining

the Laplace transform and a compactness result as in Theorem 4.5.13.

Theorem 4.5.11. Let (A;)s>0 be a sequence of non-negative self-adjoint operators in H,
that converge to a non-negative self-adjoint operator A in some subspace Hy < H in the

sense of weak resolvent convergence.

s E; -

LI = F then
-1 2E Eg -1 -2
A+ f — A+ f, Va>1.

2 E. = - E ¢ 2 E. =

2. Iffg — f, then e_tAgf‘9 Lo, e APf for every T > 0. Iffg —> f € Ey, then
e_’Aé‘fs — e ™A F for every t > 0.

2e E¢ .
Remark 4.5.12. The pointwise convergence e "4« f © 2 ethp f in Theorem 4.5.11 does

not necessarily hold if we only assume that fg A f € E, see [53, p. 2267].
A version of the following theorem can be found in [53, Theorem 5.2, Theorem 5.3].

Theorem 4.5.13. Let (A;)e>0 be a sequence of non-negative self-adjoint operators in
H_ that converge to a non-negative self-adjoint operator ‘A in some subspace Hy < H in
the sense of weak resolvent convergence. Let T > 0 and (u®).~o be a sequence of weak
solutions of the evolution problems (4.24) where A is replaced by A, with initial data

ug € Ve, ui € H. and right-hand sides ffe L*([0,T]; He) such that

uf —SugeV, uf “Su eH, f©I5felX([0,T]:H). (4.41)
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Then one has
& 1,Ve 2 & 1,He 2
u®*—uel“([0,T];V), ou®— 0m e L“([0,T];Hyp), (4.42)

where u is the weak solution of the evolution problem (4.24) for the limit operator ‘A, with

the initial data uy € V, Pu| € Hy and the right-hand side Pf € L%([0,T1; Hy).

Proof. We write the problem (4.24) in the form (4.32). As a consequence of (4.41), (4.34),
and Lemma 4.5.9, there exist #; = (u;,0u;) € L*([0,T];Ep) such that the convergence

(4.42) holds. Due to above mentioned bounds and weak convergence, we have
E, R
L@ () — L)), >1, (4.43)

where £ denotes the Laplace transform (where extend f* and f by zero on (7, )). On
the one hand, the Laplace transform £ of the solution of the e-parametrised equation is

then given by
L)) = (A + A LED) + (Be+AD7'E, A> 1. (4.44)
On the other hand, the Laplace transform of the solution of the limit problem is given by
L@)A) = (A+ ) LPH) + A+ D Py, 1> 1. (4.45)

- e E; -
Using (4.29), we infer that for every sequence ( f8)8>0 C E; such that fg — feE, and

every A # 0 we have (see (4.39))
A+ F L A+ PE

Using (4.43), (4.44), (4.45), and the fact that for 2> 1 one has £(F*)(1) == £(F)(1) and
L(P f)(/l) = PL(f)(/l), we infer that for every A > 1 one has £L(i#;) = L(i), and the claim

follows. [ ]

We proceed to the strong convergence analogue of Theorem 4.5.13, see [53, Theorem

7.2].

Theorem 4.5.14. Let (A;) be a sequence of non-negative self-adjoint operators in H,
that converges to a non-negative self-adjoint operator A in some subspace Hy < H in

the sense of strong resolvent convergence. Let T > 0 and (u®)s~o be a sequence of weak
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solutions of the evolution problems (4.24) where A is replaced by A, with initial data
ug eV, u‘i’ € H, and right-hand sides f*° € L%([0,T1; H,) such that

& Ve & He
u,—ug €V, uj— uy € Hy,
" o ro (4.46)
fo() = f(eHy ae. t[0,T], / ey, ds — / £ )| ds.
0 € 0
Then for every t € [0,T] one has
Ve H.
u(t) - ut)eV, owmt)— ou(t) € Hy, (4.47)

where u is the weak solution of the evolution problem of (4.24) for the operator A, with

the initial data uy € V, uy € Hy and the right-hand side f € L*([0,T1]; Hy).

Proof. Again we use (4.32), formula (4.33) and Theorem 4.5.11. The proof follows by
using Lebesgue theorem on Dominated convergence and the fact that as a consequence of

Lemma 4.5.10 we have [ ILf*()|%, ds — [ If(s)I3,ds. for every 1< T. m
Theorem 4.5.14 can be generalized as follows.

Theorem 4.5.15. Let (A.)e>0 be a sequence of non-negative self-adjoint operators in
H_ that converge to a non-negative self-adjoint operator ‘A in some subspace Hy < H in
the sense of strong resolvent convergence. Let T > 0 and (u®)¢~o be a sequence of weak
solutions of the evolution problems (4.24) where A is replaced by A, with initial data
uf € Vs, ut € H, and right-hand sides f° € L*([0,T1; V), 0,f° € L*([0,T; V) such that
the sequences (f€)g0, (0.f%)e>0 are bounded in L*([0,T]; V:) and

& Ve & He
u0—>u0€V, ul—>u1€H,
Ve _
A+ D) fo 225 @A+ D)7 f e 120, T); V),

where f,0.f € LZ(O,T; V*). Then one has
’VS VHE
u® S e L[0T V), 0w “= du e LX([0,T1; Ho),

where u is the weak solution of the evolution problem (4.24) for the operator ‘A, with the

initial data uy € V, Puy € Hy and the right-hand side f € L*([0,T];V*). Furthermore, if
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we assume that

V, H,
u8—8>u0€V, uf—g>uleH0,

(A + I f50) 5 A+ D fO) e V,

y (4.48)
(A + D70, f500) > (A+D 0, f) eV, forae t€]0,T],

T T
/ |+ I Do) ds - / |+ o, f )| ds.
0 & 0
where f, 0.f € L*([0,T]; V*), then we have
Ve H,
u(t) > u()eV, owm(t)— ou(t)e Hy, Vtel0,T],

where u is the weak solution of the evolution problem (4.24) for the operator A, with the

initial data ug € V, uy € Hy and the right hand side f € L*([0,T]; V).

Proof. The argument follows the proofs of Theorem 4.5.13 and Theorem 4.5.14, by using
the formula (4.35) instead of (4.33) (see also (4.36)).

To prove the first part, notice that the Laplace transform of the solution #°, respectively
i, is given by formula (4.44), respectively (4.45). (Note that in (4.45) we replace P f with
f.) This is established by a density argument, using the fact that L*([0,T]; H,) is dense in
L*([0,T]; V), respectively that L*([0,T];H) is dense in L2([0,T]; V*).

To prove the second part, use the second part of Theorem 4.5.11 and notice that (4.48)

implies that for all ¢ € [0, 7] one has
Ve _
(A + D) f5(0) = A+ f(0),

/ t
/ ey + 17 (0,°(3)) Tds = / AL DT0.£() ds,
0 0

t t
/ SR (A + )7 (0,0,f%(s)) "ds = / CMA+DT0.05f(5)) " ds,
0 0

as a consequence of the dominated convergence theorem and Lemma 4.5.10. [

Remark 4.5.16. It is easy to see that in Theorem 4.5.13, Theorem 4.5.14, and Theorem

4.5.15 the sequences (|[u®|ly,)e>0 and (||0°||, )e>0 are bounded in L=(0,T).

Remark 4.5.17. The claims of Theorem 4.5.13, Theorem 4.5.14 and Theorem 4.5.15 can
,1LHg .
be strengthened slightly. Namely, it suffices to require that f* Lo fell ([O, T];H) in
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(4.41) to obtain the convergence

w SN g e 1[0, TLY), et S e L7107 Ho).

Similarly, it suffices to require [, ILfll, ds — [ ILf(s)llds in (4.46) to obtain (4.47). The

statement of Theorem 4.5.15 can also be strengthened accordingly.
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4.6. ADDITIONAL CLAIMS

In the membrane space, under no additional assumptions on the symmetries of the set Yy,
the function ™™ (1) (see (2.2.2.1) as well as the parts A of Sections 2.2.2.2, 2.2.2.3) is
a symmetric matrix that is not necessarily diagonal. We will first prove two lemmata and
then a proposition concerning the problem (2.35), which involves the function Bg“emb(/l)

defined in Section 2.2.2.
Lemma 4.6.1. There exists C > 0 such that for every 1 > 0 we have:
((Brem®) ()e.£) > Clel,  VE eR%E#0.

Proof. We will give the proof for ¢ € (0,00), and the other cases can be treated analo-

gously. Notice that for the function A — (7, —A1)~' 2% one has

/12 / ~2
o :_1+~77—nz.
nn_/l (nn_/l)

(ﬁmemb) 1) = 12><2<,0>+Z )2 <po(90n) > <p0(‘)0n) > Z<p0(‘)pn) > <p0(‘)0n)*>

neN neN

It follows that

—12x2<P1>+Z

nEN

/1)2 {po@,)x ) (Po @) -

Here $,,, n € N, are those eigenfunctions of the operator Ao associated with the eigen-

values 7j,, n € N, that satisfy

and we have used the identity

Ixo(po) = Z(Po@> {po@e) s @B=1.2.

neN

The proof of the required estimate is concluded by noting that for & # 0 one has

)
(B k) = olef+ 3. = (ool &) > (ool

neN (
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Lemma 4.6.2. Let Ay > 0 be such that there exists a nontrivial solution a € H)l,D (w;R?) of
the problem (2.35). Then there exists n > 0 such that for each A € (g, Ao+ 1) the problem

(2.35) has only the trivial solution.

Proof. The problem (2.35) can be reformulated as follows:

((AF™) 20, (AT ) = (BFm™(Da,g), Ve € Hy, (iR,

where (ﬂglemb)l/ 2 is a self-adjoint positive square root of the operator &Zlfsnemb, which has

compact inverse. Thus, the above problem can be rewritten as
<(ﬂmemb)l/2a (ﬂmemb)l/Z > <(ﬂmemb)—l/2ﬁmemb(ﬂ)a (ﬂmemb)l/Zso) ’ VQOGH)I,D(LU;RZ).

By substituting v = (ﬂg“emb)l/ 2a, we have reduced the problem (2.35) to the following
equivalent problem: find v € L?(w; R?) that is an eigenfunction for (ﬂémemb)_l/ 2Bémemb(/l)(&"léme“ﬂ’)_1/ 2

with eigenvalue u! = 1, i.e.
(ﬂmemb)—l/Zﬁmemb(ﬂ)(ﬂglemb)—lﬂv =y

The operator (ﬂg‘emb)‘” zﬁg“emb(/l)(ﬂg“emb)‘” 2 is compact and its positive eigenvalues,

in decreasing order, are characterised by the variational principle

ﬁ = max min (ﬂ

1/2 memb(/l)ﬂ 1/2 ) k=1,2,....
V<L*(w:R?), dimV=k x€V, [lxl=1 , -

mem! memb

u

Denote by ki the index of the eigenvalue 1 = ,uﬁ?, which can clearly be done due to the
assumption on Ag. Next, denote by k; the index of the next smaller eigenvalue 1“22 <1

Furthermore, notice that for A > Ap one has
(ﬂmemb) I/Zﬁmemb(/l)(ﬂmemb)—l/Z — (ﬂmemb)—l/Zﬁmemb(/l )(ﬂmemb)—l/Z
+ (A= Ag)(AT) T2 BROY (20)(AFT) T2 + 014 - ),

where [|O(]2 — A/?|| < C|A = Ap|?> for some C > 0. For this reason, by virtue of Lemma
4.6.1, one has ,uﬁl >1,.. .,,u£2_1 > 1, ,u£2 > ,ug’ whenever A € (19,19 + 1), for some 1 > 0.
Due to the continuity of ,uﬁz with respect to A, we can redefine n > 0 so that for every
A € (g, Ao +1n) we have /,Ll’:;’ < ,uﬁz < 1. Thus, for A € (1o, Ao + 1), unity is not the eigenvalue
of A_L/2 pmemb( gy 7112 n

mem memb*

213



Proposition 4.6.3. The set of all A > 0 for which the problem (2.35) has a nontrivial

solution a € H; b (w;R?) is at most countable.

Proof. Using the preceding lemma, we can define the following family of disjoint inter-

vals:
F ={[4,4+ny) cR, A>0is such that the problem (2.35) has a nontrivial solution},

where 1, is provided by Lemma 4.6.2. Such a family can be at most countable, from

which the claim follows. ]

Finally, we prove a lemma whose variants we used on several occasions within Sec-
tion 2.3.3. We begin by introducing some notation. We define the following norm and

seminorm on H}D (Q:R3):

||u||h,8h = ||u||L2(R3) + || Sym Vhﬁlle(Q;Rsxs) + Sh” Symvhﬁlle(Q;R3X3)7
leells n.e = Isym Vpit|l 2. g3x3) + Enll sym Vil 2 r3x3)s

where we have for every u € HllD a decomposition u = @& +# is employed, with both & and
iz depending on u in a linear manner. We also assume that ‘A is a non-negative self-adjoint

operator whose domain is a subset of LZ(Q;R3 ) such that there exist ¢, ¢ > 0 such that

2
s,hep

< (Au,u) < collul? Yu € D(A). (4.49)

cillell e

Lemma 4.6.4. Suppose that A is as above and let A ¢ o(A). Assume that u =@+ €

H%D (Q:R?) satisfies

(A 2u, AV2E) ~ A, &) = /Q (f1:symViE+enfysymVid+ f3-€)dx  VE=E+EeHL (QR?).
where f| € L>(QR¥>3), f, € LX(Q,R¥3) and f5 € L*(Q;R>). Then one has

c
lleellp,e, < ) (||f1||L2(Q;R3><3) + ||f2||L2(Q;R3><3) + ||f3||L2(Q;R3)) ,

dist(/l, o(A)

for some C(Q) that is bounded on bounded intervals.

Proof. By virtue of the Riesz representation theorem and (4.49), we know that there exists

f € L>(R?) and C > 0, which depends on ¢y, ¢, only, such that

||f||L2(Q;R3) <C (”fl | 2:r3x3) + ||f2||L2(Q;R3><3) + ||f3||L2(Q;R3)) )
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(Au, &) — Au,&) = / [ (AVE+E) VE€HL (QRY). (4.50)
Q

We can now use the spectral theorem (see e.g. [55]): there exists a measurable space

(M, ) with a finite measure u and a unitary operator
U : L*(Q:R) - L2(M)

and a non-negative real-valued function a, which is an element of LP(M), p € [1,0), such

that

e Y € D(A) if and only if a(-YUY() € L2(M);

o Y e UDA), UAU Y() = a(- ().
Notice that the second claim implies

o UAPUY() = Va()y().

o o(A)=EssRana:={r:¥e>0, uime M : r—e<a(m) <r+e&}>0}.
Furthermore, (4.50) implies

(at) =) Uu() = UFO)(Va() +1),

from which, by virtue of A ¢ EssRana, one has

2
(Va() +1)Uu() = fuf(o%.
Therefore, there exists C(4) > 0, which is uniformly bounded on compact intervals of A,
such that
C(1
[(A+ D], < Wnﬂm
from which the claim follows immediately. [ |

Remark 4.6.5. Throughout the paper, we also use some variants of the above lemma, see
the discussions around (2.3.3), (2.3.3), (2.3.3), (2.3.3). They generically apply to setups
that can be put the form (4.50), and they result in estimates of the type (4.6). The key
ingredient for their validity is the fact that the right-hand side of the equation is in the
dual of D(A'/? + I') with respect to the graph norm.
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CONCLUSION

The thesis consists of two parts. In the first part we have established the approximation
properties of the resolvents associated with the operators describing the heterogeneous
elastic plates in the linear theory of elasticity, in terms of two-scale convergence. In the
analysis we have covered several interesting regimes, depending on the mutual relations
of the parameters describing the thickness of the plate, the period of material oscilla-
tions and the scaling of time/density. The analysed composite materials are assumed to
be composed of the soft inclusions embedded into the stiff matrix with material coeffi-
cients being in high contrast. This property yielded various interesting phenomena in the
effective model which can all be described as “metamaterial” phenomena. These phe-
nomena include: memory effects, band-gap structure of the spectrum, the occurrence of
evanescent waves, etc. In addition to these qualitative results, what remains to be done is
to establish quantitative results in terms of the operator norm-resolvent estimates which
would then yield the complete picture on the approximation properties for such materials
by effective lower dimensional models.

However, in the second part of this thesis, sharp operator norm-resolvent estimates
are obtained in the case of thin heterogeneous elastic rods in moderate contrast. Here, by
the means of asymptotic expansion of resolvent operators, we have established estimates
on the L> — L? distance of the resolvent operators to their associated effective resolvents.
These estimates have a lot of consequences such as: estimates on the band gaps, estimates
on the associated semigroups, etc. What remains to be done here is to employ these newly
derived operator norm-resolvent estimates to answer pending questions on the evolution

of heterogeneous elastic rods.
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