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Spectral analysis of thin heterogeneous

elastic structures

DOCTORAL DISSERTATION

Supervisor:

Igor Velčić
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Summary

This thesis consists of two parts. In the first part of the thesis, we analyse the behaviour

of thin composite plates whose material properties vary periodically in-plane and possess

a high degree of contrast between the individual components. Starting from the resolvent

equations of three-dimensional linear elasticity that describe soft inclusions embedded

in a relatively sti↵ thin-plate matrix, we derive the corresponding asymptotically equiva-

lent two-dimensional plate equations. Our approach is based on recent results concerning

decomposition of deformations with bounded scaled symmetrised gradients. Using an

operator-theoretic approach, first we calculate the limit resolvent and analyse the associ-

ated limit spectrum and e↵ective evolution equations. We obtain our results under various

asymptotic relations between the size of the soft inclusions (equivalently, the period) and

the plate thickness as well as under various scaling combinations between the contrast,

spectrum, and time. In particular, we demonstrate significant qualitative di↵erences be-

tween the asymptotic models obtained in di↵erent regimes.

In the second part of the thesis, we provide resolvent asymptotics as well as various

operator-norm estimates for the system of linear partial di↵erential equations describing

the thin infinite elastic rod with material coe�cients which periodically highly oscillate

along the rod. The resolvent asymptotics is derived simultaneously with respect to the

thickness of the rod and the period of material oscillations. These two parameters are

taken to be of the same order. The analysis is carried out separately on two invariant

subspaces pertaining to the out-of-line and in-line displacements, under some additional

assumptions, as well as in the general case where these two sorts of displacements inter-

twine inseparably.

Keywords Homogenisation · Dimension reduction · Two-scale convergence · High-

contrast · Resolvent asymptotics · Elastic heterogeneous rods and plates
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Sažetak

Ovaj rad sastoji se od dva dijela. U prvom dijelu rada analiziramo ponašanje tankih

kompozitnih ploča čija svojstva materijala periodično variraju u ravnini i posjeduju vi-

sok stupanj kontrasta izmedu pojedinih komponenti. Polazeći od rezolventnih jednadžbi

trodimenzionalne linearne elastičnosti koje opisuju meke inkluzije ugradene u relativno

krutu matricu tanke ploče, izvodimo odgovarajuće asimptotski ekvivalentne jednadžbe

dvodimenzionalne ploče. Naš pristup temelji se na nedavnim rezultatima o dekompozi-

ciji deformacija s ograničenim simetriziranim gradijentima. Koristeći pristup teorije op-

eratora, najprije izračunavamo limes rezolventu te analiziramo pridruženi limes spektar i

efektivne evolucijske jednadžbe. Naše rezultate dobivamo pod različitim asimptotičkim

odnosima izmedu veličine mekih inkluzija (perioda oscilacija) i debljine ploče, kao i

pod različitim kombinacijama skaliranja izmedu kontrasta, spektra i vremena. Takoder

pokazujemo značajne kvalitativne razlike izmedu asimptotskih modela dobivenih u ra-

zličitim režimima.

U drugom dijelu rada izvodimo asimptotiku rezolventi kao i razne ocjene u opera-

torskim normama za sustav linearnih parcijalnih diferencijalnih jednadžbi koje opisuju

tanki beskonačni elastični štap s materijalnim koeficijentima koji periodično jako oscili-

raju duž štapa. Rezolventnu asimptotiku izvodimo simultano s obzirom na debljinu štapa

i period oscilacija materijala. Uzimamo da su ova dva parametra istog reda. Analizu

provodimo zasebno na dva invarijantna podprostora koji se odnose na pomake duž prosti-

ranja štapa i pomake okomite na prostiranje štapa, pri čemu pretpostavljamo neke dodatne

pretpostavke. Takoder provodimo analizu i u općem slučaju kada se ove dvije vrste po-

maka neraskidivo isprepliću.

Ključne riječi Homogenizacija · Redukcija dimenzije · Dvoskalna konvergencija ·

Visoki kontrast · Rezolventna asimptotika · Elastični heterogeni štapovi i ploče
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1. Introduction

1.1. Motivation

The main objective of this thesis is to provide rigorous derivation of the lower dimensional

homogeneous models for thin elastic structures and establish the approximation properties

of various interesting objects such as the spectra of underlying operators, their resolvents

and associated semigroups. We employ the methods of simultaneous homogenization and

dimension reduction in order to answer some of the pending questions regarding the be-

havior of the spectrum of composite thin elastic structures, when the physical parameters

related to the thickness of the material and the period of material oscillations are fairly

small.

The models for thin heterogeneous structures, where the heterogeneity is of periodic

nature, are accompanied by the two parameters " > 0, h > 0, where the former represents

the period of material oscillations, while the latter plays the role of the thickness of the

material in one or several directions. Depending on the mutual relation between the orders

of magnitude of these parameters, namely:

h⌧ ", h ⇠ ", h� ",

one obtains quite di↵erent e↵ective models for these structures. The e↵ective models,

which we are interested in, are the models of lower dimensional homogeneous structures,

which in a certain way, to a certain degree approximate the behaviour of the starting

structure. Homogenization and dimension reduction is performed simultaneously in order

to derive physically relevant models.

In material sciences, it is of great importance to understand the behavior of thin elas-

tic structures. When developing lower dimensional models, one has to recognize the
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appropriate scaling of variables in the corresponding system of partial di↵erential equa-

tions, which also leads to the scaling of spectrum of the underlying operator and external

forces. This theory is well understood, with many developed techniques for its analysis.

Composite elastic structures are often modeled with partial di↵erential equations with

rapidly oscillating coe�cients. It is known that composite materials often exhibit prop-

erties which are very di↵erent from their constitutive parts. Homogenization theory has

extensively been used in order to derive e↵ective models which approximate the original

oscillating models in some sense. Various methods have been developed for this cause

including the method of two-scale convergence introduced by Nguetseng [50], Allaire [1]

as well as the theory of Gamma convergence introduced by De-Giorgi.

The analysis and characterization of spectrum of the underlying di↵erential operators

is of much importance for engineering and material sciences. Therefore, it is important

to answer a question in which sense the spectrum of the e↵ective operators approximates

the spectrum of operators which model oscillating composite structures. The question of

spectral convergence and the approximation of evolution equations can be answered by

observing the convergence of the corresponding resolvents. In some cases, these results

can be quantified by providing the exact estimates on the distance of the associated re-

solvens to their e↵ective counterparts in various operator norms. Such results yield even

greater benefits for understanding the matter, such as the bounds on the spectral gaps and

the estimates on the associated semigroups.

Dimension reduction in elasticity always requires a special treatment, due to the de-

generacy of the problem as a consequence of the fact that the constant in the Korn’s

inequality blows up as the domain thickness goes to zero. From the point of view of

spectral analysis, the operator of the associated problem on a rescaled domain of finite

thickness has spectrum of order h2, with the associated eigenfunctions which describe

the so-called bending deformations. A standard physical interpretation is that bending

deformations carry very small energy in comparison with their magnitude, while on the

other hand, the magnitude of the so-called stretching deformations is comparable to their

energy. Thus for bounded thin elastic structures there are two distinct orders of eigenval-

ues/characteristic frequencies: ones of order h2 and the rest of order one. (On the infinite

plates or rods there is no natural way to scale the spectrum, see [20].) As a result, in the

2



evolution analysis, one would scale time (or mass density) accordingly, in order to capture

the motion occurring on di↵erent time-scales.

Particularly interesting phenomena occur when the coe�cients of materials which

constitute the heterogeneous material are in high contrast. This means that their mate-

rial coe�cients have values on entirely di↵erent scales from one another. Since these

materials exhibit peculiar, somewhat nonphysical properties, they are widely called meta-

materials. Such composites possess macroscopic, or ”e↵ective”, material properties not

commonly found in nature, such as time the non-locality (leading to ”memory” e↵ects) or

negative refraction, which motivates their use in the context of electromagnetic or acous-

tic wave propagation for the development of novel devices with cloaking and superlensing

properties.

3



1.2. Literature overview

Derivation of limit models for thin structures in linear and non-linear elasticity is a well-

established topic (for example, for the approach via formal asymptotics, see [23, 24] and

references therein). As part of recent related activity, there appeared a number of works

that derive models of (highly) heterogeneous thin structures by simultaneous homogeni-

sation and dimension reduction, see [10, 33, 48, 49, 69]; for the older work see also [11].

In this thesis, we continue in this direction with the derivation of e↵ective models for

thin plates with high-contrast inclusions in the context of spectral and evolution analy-

sis. Simultaneously with the above activity in relation to the analysis of thin structures,

the past two decades have seen a growing interest to the analysis of materials with high-

contrast inclusions (for early papers on this subject, see [9,70,71]) that exhibit frequency-

dependent material properties (equivalently, time-nonlocal evolution), which is represen-

tative of what one may refer to as “metamaterial” behaviour [12]. Furthermore, as was

recently discussed in [18], high contrast in material parameters corresponds to regimes

of length-scale interactions, when parts of the medium exhibit resonant response to an

external field. Due to the dependence of the e↵ective parameters on frequency, the wave

propagation spectrum of these materials has a characteristic band-gap structure (i.e.waves

of some frequencies do not propagate through the material, see also [3, 61]).

There have been several works dealing with high-contrast inclusions in the context

of elasticity: spectral analysis on bounded domains is given in [3], in the whole space

in [73], see also [61] for treating partial degeneracy (when “directional localisation” takes

place), for di↵erent models of high-contrast plates (where the starting equations are two-

dimensional equations for an “infinitely thin” elastic plate), see [56, 57]. In subsequent

developments, [25] deals with high-contrast inclusions with partial degeneracy, when only

one of several material constants (namely, the shear modulus) is relatively small, [22] dis-

cusses the limit spectrum of planar elastic frameworks made of rods and filled with a soft

material, and [15] derives an e↵ective model for the case of of high-contrast inclusions in

the sti↵ matrix in the context of non-linear elasticity, under an assumption of small loads.

In the more recent push towards a quantitative description of metamaterials, elliptic dif-

ferential equations with high contrast have been analysed in the sense of approximating

4



the associated resolvent with respect to the operator norm (see [18], [21]). In the related

papers, using the Gelfand transform as a starting point, a new operator family was con-

structed that approximates the resolvent of the original one and that cannot be obtained

directly from the standard limit operator inferred from the earlier qualitative analysis.

However, these results are by now obtained only for the whole-space setting and for the

particular case of the di↵usion operator. In relation to quantifying the resolvent behaviour

with respect to the operator norm, we should also mention [40], where the dimension re-

duction for a class of di↵erential operators is carried out in the abstract setting (on a finite

domain) and [20], where thin infinite elastic plates in moderate contrast are analysed.

In terms of understanding the structure of two-scale limits of partial di↵erential oper-

ators with high contrast, we refer to [38], where an approach to spectral analysis and its

consequences for materials with high-contrast inclusions (including partial degeneracies)

on bounded domains is presented, via two-scale convergence. While addressing the de-

scription of the limit spectrum only partially, [38] provided a general framework for the

analysis of the limit resolvent, on which new results concerning elasticity and other phys-

ically relevant setups could subsequently build. Finally, the subject of homogenisation of

stochastic high-contrast media, which naturally follows the analysis of periodic setups,

was recently initiated in [16] and further developed in [17].

In this thesis, namely in Chapter 2, we assume that all elastic moduli of the soft com-

ponent are of the same order (unlike in [25, 61]). While we do not apply any additional

scaling to either elastic moduli or the mass densities, we do discuss models obtained on

di↵erent time scales. Note that this kind of time scaling is sometimes interpreted as a

scaling of the mass density (see [24, 54]).

The theory of operator type estimates in homogenisation is studied in the series of

papers [5], [6], [7] in which the authors use the spectral approach to the derivation of the

estimates. Firstly it is done in whole space setting and later these estimates were used

to obtain the estimates on the finite domain in the works [65] and [67]. The approach

initiated by Birman and Suslina has proven to be fruitful in obtaining operator-norm and

energy estimates for a number of related problems: boundary-value operators [65], [67],

parabolic semigroups [64], [62], [43], hyperbolic groups [6], [45], [44], perforated do-

mains [66]. The key technical milestones for this progress are boundary-layer analysis

5



for bounded domains (as in [65], [67]) and two-parametric operator-norm estimates [63].

It seems natural to conjecture that similar developments could be pursued in the con-

text of thin plates and rods, both infinite and bounded, by taking either the spectral germ

approach or the one which was used in [20] and in this thesis, namely Chapter 3 (see,

however, Section 3.1.6 for comparison).

An overview of the existing approaches to obtaining operator-norm estimates would

not be complete without mentioning also the works [32], [72], [39], whose methods could

also be considered in the context of thin structures.

The rigorous study of thin elastic rod is quite an old topic, see [24] and references

therein for the linear theory. An overview of the derivation of various rod models in the

static and evolution case can be found in the works [37], [35], [36] and [68]. Spectral

analysis for the case of finite plates, together with estimates on eigenvalues, is done in

[27], where the considered material is homogeneous and isotropic. The derivation of

di↵erent models of rods, starting from 3D non-linear elasticity is done in [47], [46], [58]

and [59] by means of �-convergence.

In this thesis, in Chapter 3, we assume that the elastic material is heterogeneous with

the coe�cients being in moderate contrast, while the oscillations of the material are of the

same order as the thickness, and for this setup we carry out simultaneous homogenisation

and dimension reduction. In [11] the author derives limit plate model by doing simulta-

neous homogenisation and dimension reduction, only for the case of isotropic material.

In [26], the authors also perform the simultaneous homogenisation and dimension reduc-

tion in the case of plates without the assumption on periodicity and using material (planar)

symmetries of the elasticity tensor, by introducing the notion of H-convergence adapted

to dimension reduction. Derivation of the non-linear plate model in von Kármán regime

by simultaneous homogenisation and dimension reduction is obtained in [49]. In [10] the

authors derive the limit plate models by doing simultaneous homogenisation and dimen-

sion reduction in the general case by means of �-convergence (the analysis presented there

also covers some non-linear models). The derivation of the model of the non-linear rod in

the bending regime by doing simultaneous homogenisation and dimension reduction and

without the assumption on periodicity is given in [42].

For an extensive overview of models of composite structures, one can consider the

6



book by Panasenko [52] in which one can find thorough exposure of asymptotic expan-

sions for the models of thin heterogeneous elastic structures, where the full asymptotics

with error estimates and boundary layer analysis is given. However, the constants in the

error estimates obtained there in the case of heterogeneous plates and rods with oscillating

material depend non-linearly on the loads, which makes these estimates not useful for the

spectral analysis.

7



1.3. Thesis overview

The thesis consists of two parts. The first part is related to establishing rigorous qualitative

approximation properties for the models of thin heterogeneous plates in various regimes

by means of two-scale resolvent convergence. The heterogeneity of the analysed material

is of high contrast and therefore ”metamaterial” e↵ects are present in the limit model.

This part is covered in the Chapter 2.

Adopting the operator-theoretic perspective, we start by deriving the limit resolvent in

di↵erent scaling regimes. To that end, we combine suitable decompositions of deforma-

tions that have bounded symmetrised gradients with some special properties of two-scale

convergence (see Appendix and the references therein). Here we obtain di↵erent mod-

els depending on the e↵ective parameter � 2 [0,1], which is the limit ratio between the

thickness of the domain h and the period ", where " tends to zero simultaneously with h.

In order to obtain high-contrast e↵ects for “small” spectrum, we also treat a non-standard

scaling of the coe�cients of high-contrast inclusions (”higher” contrast).

In order to derive the limit spectrum, we employ elements of the approach of [70,

71]. Surprisingly, in the regime � = 1, the limit spectrum does not coincide with the

spectrum of the limit operator, which necessitates additional analysis (see Section 2.2.3.5

and Remark 2.3.3). This, however, is not specific for elasticity and would also happen if

one carried out simultaneous high-contrast homogenisation and dimension reduction for

the di↵usion equation.

Suitably adapting the approach of [53] to dimension reduction in linear elasticity (see

Appendix for details), we use our results on resolvent convergence to derive appropriate

limit evolution equations. To infer weak convergence of solutions from the weak con-

vergence of initial conditions and loads, we use the fact that the resolvent is the Laplace

transform of the evolution operator, while for deriving strong convergence of solutions for

all times t (from the strong convergence of initial conditions and loads), one needs to show

the strong convergence of exponential functions on the basis of the strong convergence of

resolvents. Both these implications are analysed in [53] in an abstract form, which guides

our study in the specific context of dimension reduction.

In Chapter 2, we first present the results (e↵ective tensors, limit resolvent, limit spec-

8



trum, limit evolution equations in di↵erent regimes), see Sections 2.2, and then, in Section

2.3, we provide the proofs of all statements.

The second part of the thesis is centered around deriving the precise sharp estimates on

the distance between the resolvents of " problems and homogenised resolvents in operator

norms. Here, we analyse infinite heterogeneous elastic rods, where the heterogeneity is of

moderate contrast, namely, the tensor of material coe�cients is uniformly positive defi-

nite. We use the approach started in [20] and adapt it to the case of rods. A fairly large part

of the analysis is the development of the asymptotic procedure for calculating the correc-

tor operators which contribute to the approximation of the resolvent operator in stronger

operator norms. This part of the thesis is covered in Chapter 3. We assume that the het-

erogeneity of the rod appears in a periodic manner along the rod. The norm-resolvent

asymptotics is performed with respect to a small parameter that simultaneously plays the

role of the rod thickness as well as the period of material oscillations. We first focus on

the case when material symmetries are assumed. This yields a separation of the problem

into the two mutually orthogonal problems, from which we draw the motivation for tack-

ling the general case. These two orthogonal problems pertain to describing the in-line

and out-of-line displacements, which in the general case intertwine. The norm-resolvent

estimates are obtained in various operator norms, from where one can see interesting new

nonstandard corrector terms appearing in the approximation.

In Section 3.1 we introduce the problem and the methods and state the main results. In

Section 3.2 we provide apriori estimates necessary for the asymptotic expansions of the

resolvents, as well as spectral estimates which serve as the motivation for di↵erent prob-

lem scalings. In Section 3.3 we establish the resolvent asymptotics with respect to the

parameter of quasimomentum in the case of additional assumptions on the material sym-

metries. In Section 3.4 we combine the obtained results into the norm-resolvent estimates

in the real domain, but only in the case of additional material symmetries. In Section 3.5

we finally are able to repeat the procedure and derive the norm-resolvent estimates for the

case of general tensor.

The third part of the thesis, namely Chapter 4, is the Appendix in which we collected

auxiliary results which we use in the proofs throughout the thesis. These results consist

of useful claims about decomposition of displacements with bounded scaled symmetric

9



gradients, two-scale convergence, extension operators and operator theoretical approach

to high-contrast.
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2. Spectral and evolution analysis of

elastic plates in the high-contrast

regime

2.1. Notation and setup

In this section we introduce the notaion which we will use throughout Chapter 2. Let

!⇢R2 be a bounded Lipschitz domain and consider the open interval I = (�1/2,1/2)⇢R.

Given a small positive number h > 0, we define a three-dimensional plate

⌦h := !⇥ (hI),

whose boundary consists of the lateral surface �h := @!⇥ (hI) and the transverse boundary

!⇥ @(hI). We assume that the part of the boundary of ⌦h on which the Dirichlet (zero-

displacement) boundary condition is set has the form �h
D := �D⇥ (hI) ⇢ �h, where �D ⇢ !

has positive (one-dimensional) measure.

For a vector a 2 Rk, we denote by a j, j = 1, . . . ,k, its components, so a = (a1, . . . ,ak).

Similarly, the entries of a matrix A 2 Rk⇥k, are referred to as Ai j, i, j = 1, . . . ,k. We de-

note by x = (x1, x2, x3) =: (x̂, x3) the standard Euclidean coordinates in R3. (Note that we

reserve the boldface for vectors and matrices representing elastic displacements and their

gradients and regular type for coordinate vectors in the corresponding reference domains.)

The unit basis vectors in Rk are denoted by ei, i = 1, . . . ,k. Furthermore, for a, b 2 Rk we

denote by a⌦ b 2 Rk⇥k, the matrix whose i j-entry is aib j :

a⌦ b = {aib j}ki j=1.

11



For A 2 Rk⇥l, by A> we denote its transpose and for the case k = l we denote by sym A =

(A+ A>)/2 the “symmetrisation” of A.

For an operator A (or a bilinear form a) the domain of A (respectively a) is denoted

byD(A) (respectivelyD(a)).

Throughout the chapter, we use the notation "h interchangeably with ", to emphasize

the fact that " goes to zero simultaneously with h.

Furthermore, when indicating a function space X in the notation for a norm k · kX, we

omit the physical domain on which functions in X are defined whenever it is clear from

the context. For example, we often write k · kL2 , k · kH1 instead of k · kL2(⌦;Rk), k · kH1(⌦;Rk),

k = 2,3.

Finally, we use the label C for all constants present in estimates for functions in various

sets. In such cases C can be shown to admit some positive value independent of the

function being estimated.

2.1.1. Di↵erential operators of linear elasticity

Consider the reference cell Y := [0,1)2. Let Y0 ⇢ Y be an open set with Lipschitz boundary

(unless otherwise stated) such that its closure is a subset of the interior of Y, and set

Y1 = Y \Y0. We denote by �Y0 the characteristic function of Y0 and by �Y1 the characteristic

function of Y1. For any subset of A ⇢ Rk, we denote by �A the characteristic function of

the set A. The domain ⌦h is then divided into two subdomains ⌦h,"h
0 and ⌦h,"h

1 :

⌦
h,"h
0 :=

[

z2Z2:"h(Y+z)⇢!

�
"h(Y0+ z)⇥hI

 
, ⌦

h,"h
1 :=⌦h\⌦h,"h

0 .

Furthermore, we denote

⌦
"h
0 :=⌦1,"h

0 , ⌦
"h
1 :=⌦1,"h

1 .

By ⇢h,"h we denote function representing the mass density of the medium. We then define

⇢h,"h(x) = ⇢0 (x̂/"h)�
⌦

h,"h
0
+⇢1 (x̂/"h)�

⌦
h,"h
1
, x 2⌦h,

where ⇢0,⇢1 are periodic positive bounded functions, defined on Y0 and Y1 respectively

and extended via periodicity. Namely, there exist c1,c2 > 0 such that

c1 < ⇢0(y) < c2 8y 2 Y0, c1 < ⇢1(y) < c2 8y 2 Y1.

12



We also denote ⇢ := ⇢0�Y0 +⇢1�Y1 , ⇢"h := ⇢1,"h . We make use of the variational space with

zero Dirichlet boundary conditions, defined as:

H1
�h

D
(⌦h,R3) :=

¶
v 2 H1(⌦h;R3) : v = 0 on �h

D

©
.

The elastic properties of periodically heterogeneous material are stored in the elasticity

tensor Cµh , which is assumed to be of the form:

Cµh(y) =

8
><

>:

C1(y), y 2 Y1,

µ2
hC0(y), y 2 Y0.

where µh is a parameter that goes to zero simultaneously with h,"h. The tensor Cµh is then

extended to R2 via Y-periodicity. The tensors C0 and C1 are assumed to be uniformly

positive definite on symmetric matrices, namely there exists ⌫ > 0 such that

⌫|⇠|2  C0,1(y)⇠ : ⇠  ⌫�1|⇠|2 8⇠ 2 R3⇥3, ⇠> = ⇠. (2.1)

It is well known that for a hyperelastic material the following symmetries hold, which we

assume henceforth:

C↵,i jkl = C↵, jikl = C↵,kli j, i, j,k, l 2 {1,2,3}, ↵ 2 {0,1}.

The focus of our analysis is the di↵erential operator of linear elasticity Ah
"h

corre-

sponding to the di↵erential expression

�
�
⇢h,"h

��1 div
�
Cµh(x̂/"h) symr

�
,

It is defined as an unbounded operator in L2(⌦h,R3) (where the inner product is weighted1

by the mass density function ⇢h,"h) with domain

D(Ah
"h

) ⇢ H1
�h

D
(⌦h;R3),

via the bilinear form

ah
"h

(U,V) :=
ˆ

⌦h

C"h

Å
x̂
"h

ã
symrU(x) : symrV(x)dx,

U,V 2D(ah
"h

) = H1
�h

D
(⌦h;R3) =D

�
(Ah

"h
)1/2�,

1(u,v)"h :=
´
⌦h ⇢h,"huv.
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with zero Dirichlet boundary condition on the part �h
D of the boundary, which corresponds

to the partially clamped case. For a given pair (h,"h) we denote by U"h any “deformation

field” on ⌦h, i.e. the solution to the integral identity

ah
"h

(U"h ,V) =
ˆ
⌦h

F(x) ·V(x)dx 8V 2 H1
�h

D
(⌦h;R3),

for some F 2 L2(⌦h;R3).

We assume that the following limits for the ratio of the period "h and the thickness h

exist:

lim
h!0

h
"h
=: � 2 [0,1], lim

h!0

h
"2

h
=:  2 [0,1]

and will discuss di↵erent asymptotic regimes in terms of the values of �, .

The asymptotic regime µh =O(1) corresponds to the standard case of moderate-contrast

(i.e. uniformly elliptic) homogenisation. However, in the present chapter we are interested

in the “critical” case µh = "h, which corresponds to high contrast in material coe�cients.

In addition to this, due to the the dimension reduction in elasticity, higher orders of con-

trast will also be of interest, namely µh = "hh for � > 0 and µh = "2
h for � = 0, see the table

in Section 2.1.3.

Parts of the following assumption will be used occasionally to showcase special situ-

ations.

Assumption 2.1.1. (1) The elasticity tensor is planar symmetric:

C↵,i jk3 = 0,C↵,i333 = 0, i, j,k 2 {1,2}, ↵ 2 {0,1}.

(2) The inclusion set Y0 has a “centre point” y0 = (y0
1,y

0
2) 2 Y0, such that Y0 is symmetric

with respect to the lines y1 = y0
1, y2 = y0

2. We also assume that the elasticity tensor

y 7! C0(y) and density y 7! ⇢0(y) are invariant under the corresponding symmetry

transformations.

(3) The inclusion set Y0 is invariant under the rotations with respect to the angle ⇡/2

around the point (y0
1,y

0
2). Additionally, assume that the following material symme-

tries hold:

C0,11i j = C0,22i j, C0,12kk = 0, i, j,k 2 {1,2,3},

and that the function y 7! ⇢0(y) is symmetric with respect to the rotation through

⇡/2 around the point (y0
1,y

0
2).
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We define the following subspaces of L2(⌦h;R3):

L2,bend(⌦h;R3) :=
¶

V = (V1,V2,V3) 2 L2(⌦h;R3); V1,V2 are odd w.r.t. x3, V3 is even w.r.t. x3
©
,

L2,memb(⌦h;R3) :=
¶

V = (V1,V2,V3) 2 L2(⌦h;R3); V1,V2 are even w.r.t. x3, V3 is odd w.r.t. x3
©
.

Similarly, we define L2,bend(⌦⇥Y;R3), L2,memb(⌦⇥Y;R3), L2,bend(I⇥Y0;R3),

L2,memb(I⇥Y0;R3).

Remark 2.1.1. Part (1) of Assumption 2.1.1 is needed to infer that the spaces L2,bend(⌦h;R3),

L2,memb (⌦h;R3) are invariant for the operator Ah
"h

. Part (2) of the same assumption will

additionally be used when we want to infer that the values of the Zhikov function �, see

(2.17), are diagonal matrices, and part (3) will be used in combination with parts (1) and

(2) when we want to infer that the (1,1) and (2,2) entries of the Zhikov function are equal.

Although we do not assume the dependence on the x3 variable, our analysis can be easily

extended to this case (at the expense of obtaining more complex limit equations in some

cases). In the case of planar symmetries, a natural assumption would be that the elasticity

tensor is even in the x3 variable.

In order to work in a fixed domain ⌦ := ⌦1, � := �1, �D := �1
D, we apply the change

of variables

(x1, x2, x3) := (xh
1, x

h
2,h
�1xh

3), (xh
1, x

h
2, x

h
3) 2⌦h,

and define u"h(x) := U"h(xh). In the new variables, we will be dealing with a scaled

symmetrized gradient and scaled divergence, given by

symrU"h(xh) = symrhu"h(x), divU"h(xh) = trrhu"h(x) =: divh u"h(x),

where for a given function u we use the notation rhu :=
�
rx̂u|h�1@x3u

�
for the gradient

scaled “transversally”, and tr denotes the trace of a matrix. Thus, we are dealing with an

operator A"h in L2(⌦;R3) (where the inner product is defined with the weight function

⇢"h) whose di↵erential expression and domain are given by

�
�
⇢"h

��1 divh
�
C"h(x̂/"h) symrh

�
, D(A"h) ⇢ H1

�D
(⌦;R3),

respectively. The operatorA"h is defined by the form

a"h(u,v) :=
ˆ

⌦

C"h

Å
x̂
"h

ã
symrhu(x) : symrhv(x)dx, u,v 2D(a"h)=H1

�D
(⌦;R3)=D

�
A1/2
"h

�
.
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As in Remark 2.1.1, under Assumption 2.1.1 (1) the spaces L2,bend(⌦;R3), L2,memb(⌦;R3)

are invariant for the operator A"h . We will also say that the operator A"h represents the

bilinear form a"h (a symmetric bilinear form defines a self-adjoint densely defined un-

bounded operator, see e.g. [60]). In connection with A"h we define the operator Ã"h

as the restriction of A"h onto the space L2,memb(⌦;R3). Additionally, we define the self-

adjoint operators Å"h in L2(I⇥Y0;R3) whose di↵erential expression and domain are given

by

�⇢�1
0 div h

"h

Å
C0(y) symr h

"h

ã
, D(Å"h) ⇢ H1

00(I⇥Y0;R3),

as the operators represented by the respective bilinear forms

å"h(u,v) =
ˆ

I⇥Y0

C0(y) symr h
"h

u : symr h
"h

vdx3dy, u,v 2D(å"h) =
�
H1

00(I⇥Y0;R3)
�2
,

where H1
00(I ⇥ Y0;Rk) stands for the subspace of H1(I ⇥ Y0;Rk) consisting of functions

with zero trace on I ⇥ @Y0. Finally, we define ˚̃A"h as the operator corresponding to the

same di↵erential expression as Å"h but acting in the space L2,memb(I ⇥ Y0;R3), hence

representing an appropriate bilinear form

˚̃a"h :
Ä

H1
00(I⇥Y0;R3)

ä2
\
Ä

L2,memb(I⇥Y0;R3)
ä2
! R.

2.1.2. Additional notation

The inner product of x,y 2 Rn is denoted by (x,y) :=
Pn

i=1 xiyi. For a function f 2 L1(A)

(and similarly for f 2 L1(A;R3)), we denote by
 

A
f :=

1
|A|

ˆ
A

f ,

its mean over A.We will also use the shorthand notation

f :=
ˆ

I
f (x3)dx3, h f i :=

ˆ

Y

f (y)dy, f⇤ :=

Ñ
f 1

f 2

é
,

where in the last expression it is assumed that f is a (three-component) vector-valued

function. In line with (2.1.2), the notation f and h f i is naturally extended to vector-valued

functions.
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Next, denote by ◆ the “embedding” operator

◆ : R2⇥2! R3⇥3, ◆

Ñ
a11 a12

a21 a22

é
:=

à
a11 a12 0

a21 a22 0

0 0 0

í

.

Similarly, we define an operator ◆ : R3⇥2! R3⇥3.We use the same notation for this oper-

ator and the operator defined in (2.1.2), as it will be clear from the context which of the

two embeddings is used in each particular case. For a 2 R3 we denote by ◆1 the mapping

◆1 : R3! R3⇥3, ◆1(a) =

á
0

a1

a2

a1 a2 a3

ë

.

Furthermore, for l > 0 we define the “scaling” matrix

⇡l :=

à
l 0 0

0 l 0

0 0 1

í

.

We also define the space H1
�D

(!;R2) of R2-valued H1 functions vanishing on �D and the

space H2
�D

(!) of scalar H2 functions vanishing on �D together with their first derivatives.

In what follows, we denote by Y the flat unit torus in R2, by Y1 the flat unit torus

in R2 with a hole corresponding to the set Y1, by Rn⇥n
sym the space of symmetric matrices,

Rn⇥n
skew the space of skew-symmetric matrices, by In⇥n the unit matrix in Rn⇥n, and by �↵�

the Kronecker delta function. Furthermore, H1(Y), H2(Y) denote the spaces of periodic

functions in H1(Y), H2(Y). Similarly, we denote by H1(I ⇥Y) the space of functions in

H1(I⇥Y) that are periodic in y 2 Y. The spaces Ḣ1(Y), Ḣ1(I⇥Y) are defined to consist of

functions in H1(Y), H1(I⇥Y) whose mean value is zero. Similarly, we define the spaces

Hk(Y1) for k = 1,2. Note that every function in H1
00(I⇥Y0;Rk) can be naturally extended

by zero to a function in H1(I⇥Y;Rk).

The space Ck(Y) denotes the space of smooth functions on the torus Y that have

continuous derivatives up to order k. In a similar way we define the space Ck(I ⇥Y).

Furthermore, Ck
00(I ⇥Y0) denotes the space of k-di↵erentiable functions on I ⇥Y0 whose
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derivatives up to order k are zero on I ⇥ @Y0. For A ⇢ Rn, the space Ck
c(A) consists of

functions with compact support in A that have continuous derivatives up to order k.

For a function u 2H1(I⇥Y;R3),we use the notation er� for the “anisotropically scaled”

gradient whose third column is obtained from the usual gradient by scaling with ��1 :

er�u :=
Ä
ryu|��1@x3u

ä
.

Next, for ' 2 L2(!; H1(I⇥Y;R3)), we denote

C�(') = symer�',

and for '1 2 L2(!; H1(Y;R2)), '2 2 L2(!; H2(Y)), g 2 L2(⌦⇥Y;R3), we use the notation

C0('1,'2, g)(x,y) :=

à

symry'1(x̂,y)� x3r2
y'2(x̂,y)

g1(x,y)

g2(x,y)

g1(x,y) g2(x,y) g3(x,y)

í

.

Furthermore, for w 2 L2(⌦; Ḣ1(Y;R3)), g 2 L2(⌦;R3), we define

C1(w, g)(x,y) :=

à

symryw⇤(x,y)
g1(x)+@y1w3(x,y)

g2(x)+@y2w3(x,y)

g1(x)+@y1w3(x,y) g2(x)+@y2w3(x,y) g3(x)

í

,

where w⇤ is defined via (2.1.2).

For di↵erent values of �,, we introduce the spaces

C�(⌦⇥Y) :=

8
>>>>>>>>>><

>>>>>>>>>>:

�
C�(') : ' 2 L2(!; H1(I⇥Y;R3))

 
, � 2 (0,1),

¶
C0('1,'2, g) : '1 2 L2(!; H1(Y;R2)),'2 2 L2(!; H2(Y)), g 2 L2(⌦⇥Y;R3)

©
,

� = 0,

�
C1(w, g) : w 2 L2(⌦; Ḣ1(Y;R3)), g 2 L2(⌦⇥Y;R3)

 
, � =1;

V1,�,(!⇥Y) :=

8
>>>>>><

>>>>>>:

H1
�D

(!;R2)⇥L2(!), � 2 [0,1],  =1,

H1
�D

(!;R2)⇥L2(!; H2(Y1)⇥L2(Y0)), � = 0,  2 (0,1),

H1
�D

(!;R2)⇥L2(!⇥Y), � = 0,  = 0;
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V2,�(⌦⇥Y0) :=

8
>>>>>><

>>>>>>:

L2(!; H1
00(I⇥Y0;R3)), � 2 (0,1),

L2(⌦; H1
0(Y0;R3)), � =1,

L2(!; H1
0(Y0;R2))⇥L2(!⇥Y0), � = 0;

H�,(⌦⇥Y) :=

8
>>>>>><

>>>>>>:

L2(!;R3)+L2(⌦⇥Y0;R3), � 2 (0,1],  =1,

L2(!;R3)+L2(!⇥Y0;R3), � = 0,  =1,
�
L2(!;R2)+L2(!⇥Y0;R2)

�
⇥L2(!⇥Y), � = 0,  2 [0,1),

where functions defined on ! are assumed to be constant across the plate whenever they

are considered in⌦. (In other words, L2(!⇥Y) is treated as naturally embedded in L2(⌦⇥

Y).) We denote by P�, and P0 the orthogonal projections P�, : L2(⌦⇥Y;R3)! H�,(⌦⇥

Y) and P0 : L2(⌦⇥Y)! L2(!)+L2(!⇥Y0), respectively. The mappings

L2(⌦)+L2(⌦⇥Y0) 3 u(x)+ ů(x,y) 7! u(x) 2 L2(⌦)

and

L2(⌦)+L2(⌦⇥Y0) 3 u(x)+ ů(x,y) 7! ů(x,y) 2 L2(⌦⇥Y0)

are labelled by S 1 and S 2, respectively. For Hilbert spaces V,W and a linear operator

A : V !W, we denote by R(A) ⇢W its range, and for a linear operator A : V ! V, we

denote by �(A) its spectrum. Furthermore, �ess(A) and �disc(A) denote the essential and

discrete spectrum of A, respectively. Throughout, we denote by I the identity operator

on the appropriate ambient space.

For the definition of two-scale convergence, the related notation and properties of

importance for our analysis, we refer the reader to Appendix (for the basic properties and

introduction, see also [1]). Finally, for a Hilbert space V , we denote by V⇤ its dual, and

*,! denote, respectively, the weak and strong convergence.

2.1.3. Section guide for di↵erent scaling regimes

The table below shows the di↵erent scalings considered in this chapter for the period

of oscillations "h with respect to the thickness h as well as appropriate scalings of the

contrast, time, and spectrum.
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Time h⌧ "h

(� = 0)

Spec Time h ⇠ "h

(0 < � <1)

Spec Time h� "h

(� =1)

Spec

µh = "h

Non-

scaled:

2.2.4.2

⌧ = 0 :

2.2.2.2.A

2.2.3.3 Long:

2.2.4.1

——–

Non-

scaled:

2.2.4.2

⌧ = 2 :

2.2.2.1.A

——–

⌧ = 0 :

2.2.2.1.B

⌧ = 2 :

2.2.3.2

——–

⌧ = 0 :

2.2.3.3

Non-

scaled:

2.2.4.2

⌧ = 0 :

2.2.2.3.A

2.2.3.54

µh = "hh

***** ***** **** Long:

2.2.4.3

⌧ = 2 :

2.2.2.1.C

2.2.3.4 Long:

2.2.4.3

⌧ = 2 :

2.2.2.3.B

2.2.3.5

µh = "2
h

Long:

2.2.4.4

⌧ = 2 :

2.2.2.2.B

2.2.3.4 ***** ***** ***** ***** ***** ****

Table 2.1: Overview of sections and results in Chapter 2
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2.2. Main results

2.2.1. E↵ective elasticity tensors

In this section we will define limit elasticity tensors that will appear in various regimes.

For � 2 (0,1), we define a symmetric tensor Chom
� via

Chom
� (A,B) : (A,B) :=

= min
'2H1(I⇥Y;R3)

ˆ

I

ˆ

Y1

C1(y)
î
◆ (A� x3B)+ symer�'

ó
:
î
◆ (A� x3B)+ symer�'

ó
dydx3,

A,B 2 R2⇥2
sym,

(2.2)

as well as tensors Cmemb
� , Cbend

� via

Cmemb
� A : A := Chom

� (A,0) : (A,0), A 2 R2⇥2
sym,

Cbend
� B : B := Chom

� (0,B) : (0,B), B 2 R2⇥2
sym.

Remark 2.2.1. Under an additional assumption on the material symmetries, namely As-

sumption 2.1.1 (1), the tensor Chom
� can be written as the orthogonal direct sum

Chom
� = Cmemb

� �Cbend
� ,

in the sense that

Chom
� =

2

4
Cmemb
� 0

0 Cbend
�

3

5 ,

i.e.

Chom
� (A,B) : (A,B) = Cmemb

� A : A+Cbend
� B : B, A,B 2 R2⇥2

sym.

For the case �= 0 the following tensor Chom,r will be important (in this case we assume

that Y0 is of class C1,1):

Chom,r(A,B) : (A,B) :=

=min
ˆ

I

ˆ

Y1

C1(y)
⇥
◆ (A� x3B)+C0('1,'2, g)(x3,y)

⇤
:
⇥
◆ (A� x3B)+C0('1,'2, g)(x3,y)

⇤
dydx3,

A,B 2 R2⇥2
sym,

(2.3)
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where the minimum is taken over '1 2 Ḣ1(Y;R2), '2 2 Ḣ2(Y), g 2 L2(I⇥Y,R3). Note that

in (2.3) the definition (2.1.2) of C0 is used with '1, '2, g independent of x̂. Furthermore,

we define a tensor function Cred
0 (y), y 2 Y0, by the formula

Cred
0 (y)(A,B) : (A,B) :=

= min
g2L2(I;R3)

ˆ

I

C0(y)
⇥
◆ (A� x3B)+ ◆1(g(x3))

⇤
:
⇥
◆ (A� x3B)+ ◆1(g(x3))

⇤
dx3,

A,B 2 R2⇥2
sym.

(2.4)

In addition, for ↵ = 0,1 we define a tensor-valued function Cr
↵(y), y 2 Y , via the formula

Cr
↵(y)A : A = min

d2R3
C↵(y)[◆(A)+ ◆1(d)] : [◆(A)+ ◆1(d)], A 2 R2⇥2

sym, y 2 Y↵.

Remark 2.2.2. It is easily seen that for a '1, '2, g on which the minimum in (2.3) is

attained, one has g(x3,y) = g0(y)+ x3 g1(y), for some g0, g1 2 L2(Y,R3). It follows that

Chom,r(A,B) : (A,B) = Cmemb,r
1 A : A+Cbend,r

1 B : B, A,B 2 R2⇥2
sym,

where

Cmemb,r
1 A : A := Chom,r(A,0) : (A,0)

= min
'12Ḣ1(Y;R2)

ˆ
Y1

Cr
1(y)[A+ry'1(y)] : [A+ry'1(y)]dy, A 2 R2⇥2

sym,

Cbend,r
1 B : B := Chom,r(0,B) : (0,B)

= min
'2Ḣ2(Y)

1
12

ˆ
Y1

Cr
1(y)[B+r2

y'(y)] : [B+r2
y'(y)]dy, B 2 R2⇥2

sym.

Similarly to the above, it is seen that the minimum in (2.4) is attained on the vector fields

of the form g(x3) = g0 + x3 g1, where g0, g1 2 R3. Furthermore, we have the following

decomposition:

Cred
0 (y)(A,B) : (A,B) = Cmemb,r

0 (y)A : A+Cbend,r
0 (y)B : B, A,B 2 R2⇥2

sym, y 2 Y0,

where

Cmemb,r
0 (y)A : A :=Cr

0(y)A : A, Cbend,r
0 (y)B : B :=

1
12
Cr

0(y)B : B, A,B 2R2⇥2
sym, y 2Y0.
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For the case � =1, a tensor Chom,h will be important, which is defined by

Chom,h(A,B) : (A,B) :=

=min
ˆ

I

ˆ

Y1

C(y)
⇥
◆ (A� x3B)+C1(w, g)(x3,y)

⇤
:
⇥
◆ (A� x3B)+C1(w, g)(x3,y)

⇤
dydx3,

A,B 2 R2⇥2
sym,

(2.5)

where the minimum is taken over w 2 L2(I; Ḣ1(Y;R3)), g 2 L2(I;R3). (As in the case of

the expression C0 entering (2.3), for the expression C1 in (2.5) we take the functions w,

g to be independent of x̂.)

Remark 2.2.3. It is easily seen that the minimum in (2.5) is attained on g = g0 + x3 g1,

w = w0(y)+ x3w1(y), for some g0, g1 2 R3, w0, w1 2 L2(Y;R3). It follows that

Chom,h(A,B) : (A,B) = Cmemb,h A : A+Cbend,hB : B, A,B 2 R2⇥2
sym,

where

Cmemb,h A : A := Chom,h(A,0) : (A,0)

= min
w2H1(Y,R3),g2R3

ˆ
Y1

C(y)[A+C1(w, g)] : [A+C1(w, g)]dy, A 2 R2⇥2
sym,

Cbend,hB : B := Chom,h(0,B) : (0,B)

= min
w2H1(Y,R3),g2R3

1
12

ˆ
Y1

C(y)[B+C1(w, g)] : [B+C1(w, g)]dy, B 2 R2⇥2
sym.

The following proposition is proved in Section 2.3.1.

Proposition 2.2.4. The tensor Chom
� (and consequently the tensors Cmemb

� , Cbend
� as well)

is bounded and coercive, i.e., there exists ⌫ > 0 such that

⌫
�
|A|2+ |B|2

�
 Chom

� (A,B) : (A,B)  ⌫�1�|A|2+ |B|2
�

8A,B 2 R2⇥2
sym.

Analogous claims are valid for tensors Chom,r, Chom,h, Cred
0 (and consequently tensors

Cmemb,r
1 , Cbend,r

1 , Cmemb,h, Cbend,h, Cmemb,r
0 , Cbend,r

0 ).
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2.2.2. Limit resolvent equations

Our starting point is the following resolvent formulation. For ⌧,� > 0 and a given f "h 2

L2(⌦;R3), find u"h 2 H1
�D

(⌦;R3) such that the following variational formulation holds:

1
h⌧

ˆ

⌦

Cµh

Å
x̂
"h

ã
symru"h : symrhvdx+�

ˆ

⌦

⇢"hu"h ·vdx=
ˆ

⌦

f "h ·vdx 8v 2H1
�D

(⌦;R3).

(2.6)

We derive the limit resolvent equation, as h! 0, depending on various assumptions

about the parameter � = h/"h, the exponent ⌧, and the scaling of the load density f "h . In

Section 2.2.3 we discuss implications of these results for the limit spectrum and evolution

equations. Di↵erent scalings of the operator will, in particular, yield di↵erent scalings of

the spectrum and the time variable (or mass density) in the evolution problems. Note that

the load density scaling will also depend on the asymptotic regime considered.

It is standard in the theory of plates that one discusses limit equations (both static

and dynamic) depending on an appropriate scaling of the external loads. Furthermore,

we will see that the limit resolvent equation is always degenerate in some sense. From

the mathematical point of view, this is a consequence of the fact that for thin domains the

constant in Korn’s inequality blows up and by further analysis one can see that this implies

that the out-of-plane and in-plane components of the solution are scaled di↵erently in the

limit problem. From the physical point of view, it is much easier (i.e. energetically more

convenient) for the plate to bend then to stretch. As a result, bending and membrane

waves propagate through the medium on di↵erent time scales. The e↵ect of high-contrast

is also non-negligible, yielding di↵erent behaviour depending on the asymptotic regime:

the small elastic inclusions behave like three-dimensional objects (regime h ⇠ "h) or like

small thin plates (regime h⌧ "h). We next present our main results.

2.2.2.1 Asymptotic regime h ⇠ "h

A. “Bending” scaling: µh = "h,⌧ = 2

The following proposition provides an appropriate compactness result, namely a bound

on the sequence of energies for a fixed value of �, see (2.1.1), and its consequences in

terms of two-scale convergence.
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Proposition 2.2.5. Consider a sequence {(h,"h)} such that � = limh!0 h/"h 2 (0,1), and

suppose that µh = "h, ⌧ = 2. The following statements hold:

1. There exists C > 0, independent of h, such that for any sequence ( f "h)h>0 ⇢ L2(⌦;R3)

of load densities and the corresponding solutions u"h to the resolvent problem (2.6)

one has

h�2a"h(u"h ,u"h)+ ku"hk2L2 <C
���⇡h f "h

���2
L2 .

2. If

limsup
h!0

Ä
h�2a"h(u"h ,u"h)+ ku"hk2L2

ä
<1, (u"h)h>0 ⇢ H1

�D
(⌦;R3),

then there exist functions a 2 H1
�D

(!;R2), b 2 H2
�D

(!), C 2 C�(⌦⇥Y), ů 2 V2,�(⌦⇥

Y0), such that for a subsequence, which we continue labelling with "h, one has

u"h = ũ"h + ů"h , ũ"h , ů 2 H1
�D

(⌦;R3), ů"h |
⌦
"h
1
= 0,

⇡1/hũ"h
L2

��!
�
a1(x̂)� x3@1b(x̂),a2(x̂)� x3@2b(x̂),b(x̂)

�>
,

h�1ů"h(x)
dr�2����* ů(x,y),

h�1 symrhũ"h(x)
dr�2����* ◆

�
symrx̂a(x̂)� x3r2

x̂b(x̂)
�
+C(x,y),

"hh�1 symrhů"h(x)
dr�2����* symer� ů(x,y),

(2.7)

where
dr�2����* stands for the “dimension-reduction two-scale convergence” defined

in Appendix 4.3.

3. If, additionally to 2, one assumes that

lim
h!0

Ä
h�2a"h(u"h ,u"h)+ ku"hk2L2

ä
= ab�(b,b)+ kbk

2
L2 ,

where the form ab� is defined in (2.11), then one has the strong two-scale conver-

gence (cf. Appendix 4.3)

⇡1/hu"h
dr�2����!

�
a1(x̂)� x3@1b(x̂),a2(x̂)� x3@2b(x̂),b(x̂)

�>
,

with a = ab (for the definition of ab see (2.10) below).

Remark 2.2.6. It can be seen from the proof of Proposition 2.2.5 that the assumption in

its third statement is equivalent to the convergence

h�1 symrhu"h�⌦1
"h

dr�2����! ◆
�
symrx̂a(x̂)� x3r2

x̂b(x̂)
�
�I⇥Y1 +C(x,y)�I⇥Y1 ,
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"hh�1 symrhů"h
dr�2����!0,

⇡1/hu"h
dr�2����!

�
a1(x̂)� x3@1b(x̂),a2(x̂)� x3@2b(x̂),b(x̂)

�>
.

Here a = ab and C(x, ·) solves the minimization problem (2.2) with A = symrx̂a(x̂) and

B = r2
x̂b(x̂). The analogous claim is valid in all other regimes. As we do not explicitly

use it in what follows, we shall omit it.

The following theorem provides the limit resolvent equation. It can be seen that the

limit equations do not couple (a,b) and ů. This is not usual in high-contrast analysis

and is a consequence of setting ⌧ = 2. This case is thus less interesting and we shall

omit its analysis in other regimes (� = 0 and � =1). However, we will study it here, as

it resembles the standard model of a moderate-contrast plate (and so the corresponding

evolution is obtained on a longer time scale).

Theorem 2.2.7. Under the notation of Proposition 2.2.5, suppose that � 2 (0,1), µh = "h,

⌧ = 2, and consider a sequence ( f "h)h>0 of load densities such that

⇡h f "h
dr�2����* f (x,y) 2 L2(⌦⇥Y;R3). (2.8)

Then the sequence of solutions to the resolvent problem (2.6) converges in the sense of

(2.7) to the unique solution of the following problem: Determine a 2 H1
�D

(!;R2), b 2

H2
�D

(!), ů 2 V2,�(⌦⇥Y0), such that
ˆ
!

Chom
�

Ä
symrx̂a(x̂),r2

x̂b(x̂)
ä

:
Ä

symrx̂✓⇤(x̂),r2
x̂✓3(x̂)

ä
dx̂+�

ˆ
!

h⇢ib(x̂)✓3(x̂)dx̂

=

ˆ
!

h f i(x̂) ·
�
✓⇤(x̂),✓3(x̂)

�> dx̂�
ˆ
!

hx3 f⇤i(x̂) ·rx̂✓3(x̂)dx̂ 8✓⇤ 2 H1
�D

(!,R2), ✓3 2 H2
�D

(!),

ˆ

I

ˆ

Y0

C0(y) symer� ů(x,y) : symer� ⇠̊(x3,y)dydx3

=

ˆ

I

ˆ

Y0

f (x,y) ·
�
⇠̊1(x3,y), ⇠̊2(x3,y),0

�> dydx3 8⇠̊ 2 H1
00(I⇥Y0;R3), a.e. x̂ 2 !.

(2.9)

If additionally one assumes the strong two-scale convergence in (2.8), then one has

⇡1/hu"h
dr�2����!

�
a1(x̂)� x3@1b(x̂)+ ů1,a2(x̂)� x3@2b(x̂)+ ů2,b(x̂)

�>
.
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Remark 2.2.8. Under Assumption 2.1.1 (1) the first identity in (2.9) uncouples into two

independent identities (see Remark 2.2.1)ˆ
!

Cmemb
� symrx̂a(x̂) : symrx̂✓⇤(x̂)dx̂ =

ˆ
!

h f⇤i(x̂) ·✓⇤(x̂)dx̂ 8✓⇤ 2 H1
�D

(!,R2),

ˆ
!

Cbend
� r2

x̂b(x̂) : r2
x̂✓3(x̂)dx̂+�

ˆ

⌦

h⇢ib(x̂)✓3(x̂)dx̂

=

ˆ
!

h f 3i(x̂)✓3(x̂)dx̂�
ˆ
!

hx3 f⇤i(x̂) ·rx̂✓3(x̂)dx̂ 8✓3 2 H2
�D

(!).

In connection with the limit problem, we consider a self-adjoint operator Ahom
� de-

fined on the h⇢i-weighted space L2(!;R2)⇥ L2(!) and corresponding to the di↵erential

expression2

h⇢i�1 (�divx̂,divx̂ divx̂)Chom
�

Ä
symrx̂,r2

x̂

ä
.

More precisely, the operatorAhom
� is defined via the bilinear form

ahom
�

�
(u,v), (⇣,⇠)

�
:=

ˆ
!

Chom
�

Ä
symrx̂u(x̂),r2

x̂v(x̂)
ä

:
Ä

symrx̂⇣(x̂),r2
x̂⇠(x̂)

ä
dx̂,

ahom
� :

Ä
H1
�D

(!;R2)⇥H2
�D

(!)
ä2
! R.

We also make use of the following observation. Plugging ✓3 = 0 into the first equation

in (2.9) and using linearity, we decompose a = ab + a f⇤ , where ab,a f⇤ 2 H1
�D

(!;R2) are

solutions to the integral identitiesˆ
!

Cmemb
� symrx̂a

b(x̂) : symrx̂✓⇤(x̂)dx̂

= �
ˆ
!

Chom
�

Ä
0,r2

x̂b(x̂)
ä

:
�
symrx̂✓⇤(x̂),0

�
dx̂ 8✓⇤ 2 H1

�D
(!;R2),

ˆ
!

Cmemb
� symrx̂a

f⇤(x̂) : symrx̂✓⇤(x̂)dx̂ =
ˆ
!

⌦
f⇤
↵
(x̂) ·✓⇤(x̂)dx̂ 8✓⇤ 2 H1

�D
(!;R2).

(2.10)

Notice that the in-plane deformation ab can be calculated from the out-of-plane deforma-

tion b by solving the first identity alone. It is easily seen that the solutions ab, a f⇤ satisfy

the estimates
��symrx̂a

b
��

L2(!;R2) C
��r2

x̂b
��

L2(!),
��symrx̂a

f⇤
��

L2(!;R2) C
�� f⇤

��
L2(!).

2The repeated divergence divx̂ divx̂ is applied to matrices and corresponds to the usual divergence applied

row-wise and column-wise sequentially.
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The first identity in (2.10) defines a bounded linear operatorAa;b� : H2
�D

(!)! H1
�D

(!;R2)

by the formulaAa;b� b := ab. Furthermore, the bilinear form ab� :
�
H2
�D

(!)
�2! R given by

ab�(b,✓) :=
ˆ
!

Chom
�

Ä
symrx̂Aa;b� b(x̂),r2

x̂b(x̂)
ä

:
Ä

0,r2
x̂✓(x̂)
ä

dx̂

=

ˆ
!

Chom
�

Ä
symrx̂Aa;b� b(x̂),r2

x̂b(x̂)
ä

:
Ä

symrx̂Aa;✓� ✓,r2
x̂✓(x̂)
ä

dx̂,
(2.11)

defines positive definite (as a consequence of Proposition 2.2.4) self-adjoint operator on

L2(!), which we denote by Ab,hom
� . The first identity in (2.9) can now be written as

follows:

ab�(b,✓)+�
ˆ
!

h⇢ib(x̂)✓(x̂)dx̂ =
ˆ
!

Chom
�

Ä
symrx̂a

f⇤ ,0
ä

:
Ä

0,r2
x̂✓(x̂)
ä

dx̂

+

ˆ
!

h f3i(x̂)✓(x̂)dx̂�
ˆ
!

hx3 f⇤i(x̂) ·rx̂✓(x̂)dx̂ =: F�( f )(✓),

8✓ 2 H2
�D

(!).
(2.12)

Notice that for f 2 L2(⌦;R3) the right-hand side of (2.12) can be interpreted as an element

of (H2
�D

(!))⇤, which we denoted by F�( f ). This reveals the resolvent structure of the limit

problem (2.9).

B. “Membrane” scaling: µh = "h,⌧ = 0

To formulate the convergence result for the present scaling, we consider a non-negative

self-adjoint operatorA�,1 defined by the bilinear form

a�,1((a,b)+ ů, (✓,')+ ⇠̊) :=
ˆ
!

Cmemb
� symrx̂a(x̂) : symrx̂✓(x̂)dx̂

+

ˆ

⌦

ˆ

Y0

C0(y) symer� ů(x,y) : symer� ⇠̊(x,y)dydx,

a�,1 :
�
V1,�,1(!⇥Y)+V2,�(⌦⇥Y0)

�2! R.

(2.13)

Notice thatA�,1 is degenerate with an infinite-dimensional kernel:

A�,1(0,0,v) = 0 8v 2 L2(!).

However, the restriction of A�,1 on the space H�,1(⌦⇥Y)\ L2,memb(⌦⇥Y;R3) does not

exhibit such degeneracies (under Assumption 2.1.1 (1)).
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The following proposition gives a suitable compactness result, similar to Proposition

2.2.5.

Proposition 2.2.9. Consider a sequence {(h,"h)} such that � = limh!0 h/"h 2 (0,1), and

suppose that µh = "h, ⌧ = 0. The following statements hold:

1. There exists C > 0, independent of h, such that for any sequence ( f "h)h>0 ⇢ L2(⌦;R3)

and the corresponding solutions u"h to the problem (2.6) one has

a"h(u"h ,u"h)+ ku"hk2L2 Ck f "hk2L2 .

2. If a sequence (u"h)h>0 ⇢ H1
�D

(⌦;R3) is such that

limsup
h!0

Ä
a"h(u"h ,u"h)+ ku"hk2L2

ä
<1,

then there exist functions (a,b)> 2 V1,�,1(!⇥ Y), C 2 C�(⌦⇥ Y), ů 2 V2,�(⌦⇥ Y0)

such that, up to extracting a subsequence, one has

u"h = ũ"h + ů"h , ũ"h , ů 2 H1
�D

(⌦;R3), ů"h |
⌦
"h
1
= 0,

ũ"h
⇤

L2

��!a,

ũ"h
3

dr�2����*b(x̂),

ů"h(x)
dr�2����* ů(x,y),

symrhũ"h(x)
dr�2����* ◆

�
symrx̂a(x̂)

�
+C(x,y),

"h symrhů"h(x)
dr�2����* symer� ů(x,y).

(2.14)

3. If, additionally to 2, one has

lim
h!0

Ä
a"h(u"h ,u"h)+ ku"hk2L2

ä
= a�,1

�
(a,0)>+ ů, (a,0)>+ ů

�
+
���(a,b)>+ ů

���2
L2 ,

where a�,1 is defined in (2.13), then the strong two-scale convergence

u"h
dr�2����! (a,b)>+ ů

holds.

The following theorem provides the limit resolvent equation.
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Theorem 2.2.10. Under the notation of Proposition 2.2.9, suppose that � 2 (0,1), µh = "h,

⌧ = 0, and consider a sequence ( f "h)h>0 of load densities such that

f "h(x)
dr�2����* f (x,y) 2 L2(⌦⇥Y;R3). (2.15)

Then the sequence of solutions (u"h)h>0 to the resolvent problems (2.6) converges in the

sense of (2.14) to the unique solution of the following problem: Determine (a,b)> 2

V1,�,1(!⇥Y), ů 2 V2,�(⌦⇥Y0), such thatˆ
!

Cmemb
� symrx̂a(x̂) : symrx̂✓(x̂)+�

ˆ
!

h⇢ia(x̂) ·✓(x̂)dx̂+�
ˆ
!

h⇢0ů⇤i(x̂) ·✓(x̂)dx̂

=

ˆ
!

h f⇤i(x̂) ·✓(x̂)dx̂ 8✓ 2 H1
�D

(!;R2),

h⇢ib(x̂)+ h⇢0ů3i(x̂) = ��1h f 3i(x̂) a.e. x̂ 2 !.
ˆ

I

ˆ

Y0

C0(y) symer� ů(x,y) : symer� ⇠̊(x3,y)dydx3

+�

ˆ

I

ˆ

Y0

⇢0(y)
�
a1(x̂),a2(x̂),b(x̂)

�> · ⇠̊(x3,y)dydx3

+�

ˆ

I

ˆ

Y0

⇢0(y)ů(x,y) · ⇠̊(x3,y)dydx3

=

ˆ

I

ˆ

Y0

f (x,y) · ⇠̊(x3,y)dydx3 8⇠̊ 2 H1
00(I⇥Y;R3), a.e. x̂ 2 !.

(2.16)

If, additionally, one assumes the strong two-scale convergence in (2.15), then one has

u"h(x)
dr�2����! (a,b)>+ ů(x,y).

Corollary 2.2.11. Under Assumption 2.1.1 (1) and provided ( f "h)h>0 ⇢ L2,memb(⌦;R3),

in addition to the convergences in Proposition 2.2.9 one has

ũ"h
3

H1

��* 0,

and thus b = 0 in the limit equations (2.16).

Remark 2.2.12. The limit system (2.16) can be written as a resolvent problem on the

space H�,1(⌦⇥Y), as follows:3

�
A�,1+�I

�
u = P�,1 f , u = (a,b)>+ ů

3Notice that this requires to take the inner product with the weight function h⇢i�Y1 +⇢0�Y0 .
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which is the usual structure for the limit problem in the high-contrast setting (see [53] and

Section 4.5).

Next, the operator Ã� on the space H�,1(⌦⇥Y)\L2,memb(⌦⇥Y;R3) is defined via the

form ã� given by the expression in (2.13) with a di↵erent domain:

ã� :
Ä

H1
�D

(!;R2)⇥ {0}+V2,�(⌦⇥Y0)
ä2
\
Ä

L2,memb(⌦⇥Y;R3)
ä2
! R.

This operator can only be defined under Assumption 2.1.1 (1).

In relation to the limit problem, we also define the following operators. The operator

A00,�, referred to as the Bloch operator, corresponds to the di↵erential expression4

�(⇢0)�1›div2,�
�
symer�

�
,

and is defined via the bilinear form

a00,�(u,v) :=
ˆ

I⇥Y0

C0(y) symer�u(x3,y) : symer� v(x3,y)dx3 dy, a00,� :
Ä

H1
00(I⇥Y0;R3)

ä2
! R.

Similarly to the way the form ã� and the associated operator Ã� were defined by restrict-

ing the form a�,1, we define a form

ã00,� :
Ä

H1
00(I⇥Y0;R3)

ä2
\
Ä

L2,memb(I⇥Y0;R3)
ä2
! R,

and the associated operator Ã00,� by restricting the form a00,�. We also define a positive

self-adjoint operatorAmemb
� on L2(!;R2) corresponding to the di↵erential expression

�h⇢i�1 divx̂
�
Cmemb
� symrx̂

�
,

as the one defined (on an appropriate weighted L2 space) by the bilinear form

amemb
� (u,v) :=

ˆ
!

Cmemb
� symrx̂u(x̂) : symrx̂v(x̂)dx̂, amemb

� :
�
H1
�D

(!;R2)
�2! R.

In order to simplify the system (2.16), one is led to first solve the equation (where we

replace � with ��)

(A00,���I)ů = �
�
a(x̂),b(x̂)

�>
+ (⇢0)�1 f (x̂, ·),

4The di↵erential expression›div2,� stands for er�· (applied row-wise), i.e. it is in the same relation to the

gradient er� as the standard divergence is in the relation to the standard gradient.
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where the variable x̂ is treated as a parameter (see e.g. [73]). When f |Y0 = 0 and � 2C\R+,

the equation (2.2.2.1) can be solved via the more basic problems

(A00,���I)b�i = ei, i = 1,2,3.

The following matrix-valued function �� taking values in R3⇥3 will be important for char-

acterizing the spectrum of the limit operator:

�
��(�)

�
i j = �h⇢i�i j+�

2⌦⇢0(b�i ) j
↵
, i, j = 1,2,3.

We refer to �� as “Zhikov function”, to acknowledge its scalar version appearing in [71].

Its significance will be clear in the next section. We can obtain an alternative representa-

tion of the Zhikov function as follows.

First, separate the spectrum ofA00,� into two parts:

�(A00,�) = {⌘1,⌘2, ...}[ {↵1,↵2, ...},

where the second subset corresponds to eigenvalues with all associated eigenfunctions

having zero ⇢0-weighted mean in all components. In each of the two subsets the eigen-

values are assumed to be arranged in the ascending order. Next, denote by ('n)n2N the set

of orthonormal eigenfunctions corresponding to the eigenvalues from the set {⌘1,⌘2, ...}

in (2.2.2.1), repeating every eigenvalue according to its multiplicity. Using the spectral

decomposition, one obtains

�
��(�)

�
i j = �h⇢i�i j+

1X

n=1

�2

⌘n��
⌦
⇢0('n)i

↵
·
⌦
⇢0('n) j

↵
, i, j = 1,2,3. (2.17)

Under Assumption 2.1.1 (1), one is actually only interested in the operator Ã00,�. We

can then define a version of the Zhikov function, denoted by �̃memb
� and taking values in

R2⇥2 (dropping the third row and the third column of ��, which necessarily vanish as a

consequence of symmetries) as the one associated with this operator. Eliminating those

values ⌘n and ↵n in (2.2.2.1) whose eigenfunctions belong to the subspace L2,bend(I ⇥

Y0,R3), we write

�(Ã00,�) = {⌘̃1, ⌘̃2, . . . }[ {↵̃1, ↵̃2, . . . }.

Here, similarly to the above, the eigenvalues in the second set are those whose all eigen-

functions have zero weighted mean in all of their components. (Note that due to sym-

metry the third component has zero weighted mean automatically.) We use the notation
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�(Ã00,�)0 for the set of such eigenvalues:

�(Ã00,�)0 = {↵̃1, ↵̃2, . . . }.

Analogously to (2.17), we can write a formula for the function �̃memb
� . Notice, in particu-

lar, that
�
�̃memb
�

�
↵� =

�
��
�
↵�, ↵,� = 1,2.

C. “Strong high-contrast bending” scaling: µh = "hh, ⌧ = 2

As was shown above, in the case µh = "h, ⌧ = 2 one does not see e↵ects of high-

contrast inclusions in the limit equations (i.e the limit equations are not coupled). Here we

consider an asymptotic regime of higher contrast, where the limit equations are coupled.

Proposition 2.2.13 below provides the relevant compactness result. Before proceeding to

its statement, we introduce some auxiliary objects.

In order to analyse the spectral problem, we will require a positive self-adjoint op-

erator Â� on the Hilbert space {0}2 ⇥ L2(!)+ L2(⌦⇥ Y0,R3), as the one defined by the

bilinear form

â�
�
(0,0,b)>+ ů, (0,0,✓)>+ ⇠̊

�
= ab�(b,✓)+

ˆ
!

a00,�(ů, ⇠̊)dx̂,

â� :
Ä
{0}2⇥H2

�D
(!)+V2,�(!⇥Y0)

ä2
! R. (2.18)

We also define a scalar Zhikov function �̂� associated with this problem. Namely, we

eliminate the eigenvalues of A00,� all of whose eigenfunctions have zero weighted mean

in the third component and set

�̂� := ��,33.

We also define �̂(A00,�) as the set of the eigenvalues ofA00,� all of whose eigenfunctions

have zero weighted mean in the third component.

Proposition 2.2.13. Consider a sequence {(h,"h)} such that � = limh!0 h/"h 2 (0,1), and

suppose that µh = "hh, ⌧ = 2. The following statements hold:

1. There exists C > 0, independent of h, such that for any sequence ( f "h)h>0 ⇢ L2(⌦;R3)

of load densities and the corresponding solutions u"h to the problem (2.6) one has

h�2a"h(u"h ,u"h)+ ku"hk2L2 Ck f "hk2L2 .
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2. If

limsup
h!0

Ä
h�2a"h(u"h ,u"h)+ ku"hk2L2

ä
<1, (u"h)h>0 ⇢ H1

�D
(⌦;R3),

then there exist functions a 2 H�D(!;R2), b 2 H2
�D

(!), C 2 C�(⌦⇥Y), ů 2 V2,�(⌦⇥

Y0), such that (up to a subsequence):

u"h = ũ"h + ů"h , ũ"h , ů 2 H1
�D

(⌦;R3), ů"h |
⌦
"h
1
= 0,

⇡1/hũ"h
L2

��!
�
a1(x̂)� x3@1b(x̂),a2(x̂)� x3@2b(x̂),b(x̂)

�>
,

ů"h(x)
dr�2����* ů(x,y),

h�1 symrhũ"h(x)
dr�2����* ◆

Ä
symrx̂a(x̂)� x3r2

x̂b(x̂)
ä
+C(x,y),

"h symrhů"h(x)
dr�2����* symer� ů(x,y).

(2.19)

3. If, additionally to 2, one assumes that

lim
h!0

Ä
h�2a"h(u"h ,u"h)+ ku"hk2L2

ä
= â�((0,0,b)>+ ů, (0,0,b)>+ ů)+ k(0,0,b)>+ ůk2L2 ,

where â� is defined in (2.18), then one has the strong two-scale convergence

u"h
dr�2����! (0,0,b)>+ ů.

The following theorem describes the limit resolvent equation.

Theorem 2.2.14. Suppose that � 2 (0,1), µh = "hh, and ⌧ = 2, and consider a sequence

( f "h)h>0 of load densities such that

f "h
dr�2����* f 2 L2(⌦⇥Y;R3). (2.20)

Then the sequence of solutions to the resolvent problem (2.6) converges in the sense of

(2.19) to the unique solution of the following problem: Determine a 2 H1
�D

(!;R2), b 2
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H2
�D

(!), ů 2 V2,�(⌦⇥Y0) such that
ˆ
!

Chom
�

Ä
symrx̂a(x̂),r2

x̂b(x̂)
ä

:
Ä

symrx̂✓⇤(x̂),r2
x̂✓3(x̂)

ä
dx̂+�

ˆ
!

�
h⇢ib(x̂)+ h⇢0ů3i(x̂)

�
✓3(x̂)dx̂

=

ˆ
!

h f 3i(x̂)✓3(x̂)dx̂ 8✓3 2 H2
�D

(!),

ˆ

I

ˆ

Y0

C0(y) symer� ů(x,y) : symer� ⇠(x3,y)dydx3+�

ˆ

I

ˆ

Y0

⇢0(y)b(x̂) · ⇠̊3(x3,y)dydx3

+�

ˆ

I

ˆ

Y0

⇢0(y)ů(x,y) · ⇠̊(x3,y)dydx3

=

ˆ

I

ˆ

Y0

f (x,y) · ⇠̊(x3,y)dydx3 8⇠̊ 2 H1
00(I⇥Y0;R3), a.e. x̂ 2 !.

(2.21)

In the case when the strong two-scale convergence holds in (2.20), one has

u"h
dr�2����! (0,0,b)>+ ů.

Remark 2.2.15. The limit problem (2.21) can again be written as the resolvent problem

on {0}2⇥L2(!)+L2(⌦⇥Y0;R3):

(Â�+�I)u =
�
S 2(P�,1 f )1,S 2(P�,1 f )2, (P�,1 f )3

�>
, u = (0,0,b)>+ ů

which is again the general desired structure.

Remark 2.2.16. Under Assumption 2.1.1 (1), the first equation in (2.21) decouples from

the second (see Remark 2.2.1) and one has

a = 0,ˆ
!

Cbend
� r2

x̂b(x̂) : r2
x̂✓3(x̂)dx̂+�

ˆ
!

�
h⇢ib(x̂)+ h⇢0ů3i(x̂)

�
✓3(x̂)dx̂ =

ˆ
!

h f 3i(x̂)✓3(x̂)dx̂ 8✓3 2 H2
�D

(!).

In the following sections we will analyse only those two cases for each regime when

there is a coupling between the deformations inside and outside the inclusions.

2.2.2.2 Asymptotic regime h⌧ "h : “very thin” plate

Throughout this section, we additionally assume that the set Y0 has C1,1 boundary, to

ensure the validity of some auxiliary extension results, see Appendix 4.4.
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A. “Membrane” scaling: µh = "h,⌧ = 0

Similarly to Part B of Section 2.2.2.1, where the membrane scaling is discussed for

the regime h ⇠ "h, we define the following objects using the limit resolvent in Theorem

2.2.19 below (expression (2.24) for the limit resolvent) :

• For each  2 [0,1], a form a0, :
�
V1,0,(!⇥Y)+V2,0(⌦⇥Y0)

�2! R and the associ-

ated operator A0, on the space V0,(⌦⇥Y), analogous to a�,1 and A�,1 of Part B,

Section 2.2.2.1. In this way the limit problem (2.24) can be written in the form

(A0,+�I)u = P�, f , u = ((a,b)>+ ů);

• A form

ã0 :
�
H1
�D

(!;R2)+L2(!; H1
0(Y0;R2))

�2! R

and the associated operator Ã0 on L2(!;R2)+ L2(!⇥Y0;R2) (analogous to ã� and

Ã�) — these are correctly defined under Assumption 2.1.1(1);

• A bilinear form amemb
0 :

�
H1
�D

(!;R2)
�2! R and the associated operator Amemb

0 on

L2(!;R2) (analogous to amemb
� andAmemb

� );

• A bilinear form ã00,0 :
�
H1

0(Y0, ;R2)
�2 ! R and the associated operator Ã00,0 on

L2(Y0;R2) (analogous to ã00,� and Ã00,�);

• Functions �0, �̃memb
0 , by analogy with ��, �̃memb

� ;

• A set �(Ã00,0)0, by analogy with �(Ã00,�)0.

We do not write these definitions explicitely, since we assume their definition is natural.

The following proposition provides a compactness result for solutions to (2.6).

Proposition 2.2.17. Suppose that � = 0, µh = "h, ⌧ = 0. The following statements hold:

1. There exists C > 0, independent of h, such that for a sequence ( f "h)h>0 ⇢ L2(⌦;R3)

of load densities and the corresponding solutions u"h to the problem (2.6) one has

a"h(u"h ,u"h)+ ku"hk2L2 Ck f "hk2L2 .
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2. If

limsup
h!0

Ä
a"h(u"h ,u"h)+ ku"hk2L2

ä
<1, (u"h)h>0 ⇢ H1

�D
(⌦;R3),

then there exist (a,b)> 2 V1,0,(!⇥ Y), '1 2 L2(!; Ḣ1(Y;R2)), '2 2 L2(!; Ḣ2(Y)),

ů 2 V2,0(⌦⇥Y0), g̊ 2 L2(⌦⇥Y;R3), g̊|⌦⇥Y1 = 0 such that (up to a subsequence)

u"h = ũ"h + ů"h , ũ"h , ů 2 H1
�D

(⌦;R3), ů"h |
⌦
"h
1
= 0,

ũ"h
⇤

L2

��!a,

ũ"h
3

dr�2����*

8
>><

>>:

b(x̂),  =1,

b(x̂,y),  2 [0,1),

(2.22)

symrhũ"h(x)
dr�2����*

8
>>>>>><

>>>>>>:

◆
�
symrx̂a(x̂)

�
+C0('1,'2, g)(x,y),  =1,

◆
�
symrx̂a(x̂)

�
+C0('1,b, g)(x,y),  2 (0,1),

◆
�
symrx̂a(x̂)

�
+C0('1,0, g)(x,y),  = 0,

ů"h
dr�2����* ů(x̂,y),

"h symrhů"h
dr�2����*C0(ů⇤,0, g̊)(x,y).

3. If, additionally to 2, one assumes that

lim
h!0

Ä
a"h(u"h ,u"h)+ ku"hk2L2

ä
= a0,((a,b)>+ ů, (a,b)>+ ů)+ k(a,b)>+ ůk2L2 ,

where the form a0, is defined above, then one has

u"h
dr�2����! (a,b)>+ ů.

Remark 2.2.18. In the regimes h⇠ "2
h and h⌧ "2

h we are not able to identify the functions

b(x̂,y) and ů3 separately on !⇥Y0 (in the following theorem). However, we are able to

identify their sum, which is the only relevant object, since the third component of solution

converges to their sum. Thus we artificially set b(x̂,y) = 0 on !⇥Y0, to have uniqueness

of the solution of the limit problem. In the case when b is a function of x̂ only, the

decomposition b(x̂)+ ů3(x̂,y) is unique in L2(!⇥Y), since we know that ů3|!⇥Y1 = 0.

The limit resolvent problem for the model of homogenized plate is given by the fol-

lowing theorem.
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Theorem 2.2.19. Let � = 0, µh = "h, ⌧ = 0 and suppose that the sequence of load densities

converge as follows:

f "h
dr�2����* f 2 L2(⌦⇥Y;R3). (2.23)

Then the sequence of solutions to the resolvent problem (2.6) converges in the sense of

(2.22) to the unique solution (see also Remark 2.2.18) of the following problems: Find

(a,b)> 2 V1,0,(!⇥Y), ů 2 V2,0(⌦⇥Y0) such that
ˆ
!

Cmemb,r
1 symrx̂a(x̂) : symrx̂✓⇤(x̂)dx̂+�

ˆ
!

�
h⇢ia(x̂)+ h⇢0ů⇤i

�
·✓⇤(x̂)dx̂

=

ˆ
!

h f ⇤i(x̂) ·✓⇤(x̂)dx̂ 8✓⇤ 2 H1
�D

(!;R2),

ˆ

Y0

Cmemb,r
0 (y) symryů⇤(x̂,y) : symry⇠̊⇤(y)dy+�

ˆ
Y0

⇢0(y) (a(x̂)+ ů⇤(x̂,y)) · ⇠̊⇤(y)dy,

=

ˆ

Y0

f⇤(x̂,y) · ⇠̊⇤(y)dy 8⇠̊⇤ 2 H1
0(Y0;R2), a.e. x̂ 2 !,

h⇢ib(x̂)+⇢0(y)ů3(x̂,y) = ��1P0 f 3(x̂,y),  =1,

2

12
´
Y1

Cr
1(y)r2

yb(x̂,y) : r2
yv(y)dy+�

´
Y1

⇢1(y)b(x̂,y)v(y)dy

=
´
Y1

f 3(x̂,y)v(y)dy 8v 2 H2(Y), a.e. x̂ 2 !.

⇢0(y)ů3(x̂,y) = ��1 f 3(x̂,y), b(x̂,y) = 0, y 2 Y0

9
>>>>>>>=

>>>>>>>;

 2 (0,1),

⇢1(y)b(x̂,y)+⇢0(y)ů3(x̂,y) = ��1 f 3(x̂,y); b(x̂,y) = 0, y 2 Y0,  = 0.
(2.24)

If additionally we assume the strong two-scale convergence in (2.23), then we additionally

have the strong two-scale convergence

u"h(x)
dr�2����! (a,b)>+ ů(x,y).

Corollary 2.2.20. Under the Assumption 2.1.1 (1) and provided ( f "h)h>0 ⇢ L2,memb(⌦h,R3),

in addition to the convergences stated in Proposition 2.2.17, we have

ũ"h
3

H1

��* 0, ů"h
3

L2

��! 0,

and thus we also have that b = ů3 = 0 in the limit equations (2.24).
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B. “Bending” scaling: µh = "2
h,⌧ = 2

In the regime h⌧ "h the band gap structure of the spectrum for the spectrum of order

h2 appears when we scale the coe�cients in inclusions with "4
h. This can be seen from the

a priori estimates obtained in Appendix.

We define, for every f 2 L2(⌦;R3),

F0( f )
�
(0,0,✓)>+ ⇠̊

�
:=

ˆ
!
h f 3i✓dx̂+

ˆ
!

ˆ

Y0

f⇤(x̂,y) · ⇠̊⇤(x,y)dydx̂,

+

ˆ
!

ˆ

Y0

f 3(x̂,y) ⇠̊3(x̂,y)dydx̂�
ˆ
!

ˆ

Y0

x3 f ⇤(x̂,y) ·ry⇠̊3(x̂,y)dydx̂,(2.25)

[0.35em]✓ 2 L2(!), ⇠̊ = (⇠̊⇤,⇠3) 2 L2�!; H1
0(Y0;R2)⇥H2

0(Y0)
�
.

Furthermore, in connection with the limit problem described in Theorem 2.2.22 ( expres-

sion (2.28) below), we introduce several objects:

• A bilinear form

ahom
0 :

�
H2
�D

(!)
�2! R

and the associated operatorAhom
0 on L2(!), analogous to ahom

� andAhom
� of Part A,

Section 2.2.2.1 (notice that here the situation is simpler since necessarily a = 0);

• The bilinear form

â00,0(ů, ⇠̊) :=
1

12

ˆ

Y0

Cbend,r
0 (y) symr2

yů : symr2⇠̊dy, â00,0 :
�
H2

0(Y0)
�2! R

and the associated “Bloch operator” Â00,0 on L2(Y0).

• A scalar Zhikov function �̂0 defined via the operator Â00,0 (analogous to �̂� defined

via the operatorA00,�, see Part C, Section 2.2.2.1);

• A set �̂(Â00,0) (analogous to �̂(A00,�));

• The bilinear form

â0
�
b+ ů,✓+ ⇠̊

�
= ahom

0 (b,✓)+
ˆ
!

â00,0(ů, ⇠̊), â0 :
Ä

H2
�D

(!)+L2(!; H2
0(Y0))

ä2
!R.

and the corresponding operator Â0 on L2(!)+L2(!; H2
0(Y0)).

39



The following proposition gives a suitable compactness result for the regime h⌧ "h.

Proposition 2.2.21. Let � = 0, µh = "2
h, ⌧ = 2. The following statements hold:

1. There exists C > 0, independent of h, such that for any sequence ( f "h)h>0 ⇢ L2(⌦;R3)

of load densities and the corresponding solutions u"h to the problem (2.6) one has

h�2a"h(u"h ,u"h)+ ku"hk2L2 C
���⇡h/"h f "h

���2
L2(⌦;R3).

2. If

limsup
h!0

Ä
h�2a"h(u"h ,u"h)+ ku"hk2L2

ä
<1, (u"h) ⇢ H1

�D
(⌦;R3),

then there exist a 2 H1
�D

(!;R2), b 2 H2
�D

(!), C 2 C0(⌦⇥Y), ů↵ 2 L2(!; H1
0(Y0)), ↵ =

1,2, ů3 2 L2(!; H2
0(Y0)), g̊ 2 L2(⌦⇥Y;R3), g̊|⌦⇥Y1 = 0 such that (up to subsequence)

u"h = ũ"h + ů"h , ũ"h , ů"h 2 H1
�D

(⌦;R3), ů"h |
⌦
"h
1
= 0,

⇡1/hũ"h
L2

��!
�
a1(x̂)� x3@1b(x̂),a2(x̂)� x3@2b(x̂),b(x̂)

�>
,

⇡"h/hů"h
dr�2����*

�
ů1(x̂,y)� x3@y1 ů3(x̂,y), ů2(x̂,y)� x3@y2 ů3(x̂,y), ů3(x̂,y)

�>

h�1 symrhũ"h(x)
dr�2����* ◆

�
symrx̂a(x̂)� x3r2

x̂b(x̂)
�
+C(x,y),

"2
hh�1 symrhů"h

dr�2����*C0(ů⇤, ů3, g̊)(x,y).

(2.26)

3. If additionally to 2, one has

lim
h!0

Ä
h�2a"h(u"h ,u"h)+ ku"hk2L2

ä
= â0(b+ ů3,b+ ů3)+ kb+ ů3k2L2 ,

where â0 is defined below, then the strong two-scale convergence holds:

⇡"h/hu"h
dr�2����! (0,0,b+ ů3)>.

The following theorem provides the limit resolvent equation.

Theorem 2.2.22. Let � = 0, µh = "2
h, ⌧ = 2 and let the sequence of load densities satisfy

⇡h/"h f "h
dr�2����* f 2 L2(⌦⇥Y;R3). (2.27)
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Then the sequence of solutions to the resolvent problem (2.6) converges in the sense of

(2.26) to the unique solution of the following problem: Determine a 2 H1
�D

(!;R2), b 2

H2
�D

(!), ů↵ 2 L2(!,H1
0(Y0)), ↵ = 1,2, ů3 2 L2(!,H2

0(Y0)) such that

a = 0,
1

12

ˆ
!

Cbend,r
1 r2

x̂b(x̂) : r2
x̂✓3(x̂)dx̂+�

ˆ
!

�
h⇢ib(x̂)+ h⇢0ů3i(x̂)

�
✓3(x̂)dx̂

=

ˆ
!

h f 3i(x̂)✓3(x̂)dx̂ 8✓3 2 H2
�D

(!),

ˆ

Y0

Cmemb,r
0 (y) symryů⇤(x̂,y) : ry⇠̊⇤(y)dy =

ˆ

Y0

f⇤(x̂,y) · ⇠̊⇤(y)dy 8⇠̊⇤ 2 H1
0(Y0;R2), a.e. x̂ 2 !.

1
12

ˆ

Y0

Cbend,r
0 (y)r2

yů3(x̂,y) : r2
y ⇠̊3(y)dy+�

ˆ

Y0

⇢0(y)
�
b(x̂)+ ů3(x̂,y)

�
⇠̊3(y)dy

=

ˆ

Y0

f 3(x̂,y)⇠̊3(y)dy�
ˆ

Y0

x3 f ⇤(x̂,y) ·ry⇠̊3(y)dy 8⇠̊3 2 H2
0(Y0), a.e. x̂ 2 !.

(2.28)

If the strong two-scale convergence in (2.27) holds, then additionally one has

⇡"h/hů"h
dr�2����!

�
ů1(x̂,y)� x3@y1 ů3(x̂,y), ů2(x̂,y)� x3@y2 ů3(x̂,y), ů3(x̂,y)

�>
.

The right-hand side of (2.28) can be interpreted as the element of dual of

{0}2⇥L2(!)+L2(!; H1
0(Y0;R2)⇥H2

0(Y0)).

Notice that the second equation in (2.28) is completely separated from the rest of the

system.

2.2.2.3 Asymptotic regime "h⌧ h : “moderately thin” plate

A. “Membrane” scaling: µh = "h, ⌧ = 0

Similarly to Section 2.2.2.1, we define the following objects using Theorem 2.2.24

(the expression for the limit resolvent (2.31)) :

• A bilinear form

a1,1 :
�
V1,1,1(!⇥Y)+V2,1(⌦⇥Y0)

�2! R
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and the associated operatorA1,1 on the space H1,1(⌦⇥Y), analogous to a�,1 and

A�,1 of Part B, Section 2.2.2.1. In this way the limit problem (2.31) can be written

in the form

(A1,1+�I)u = P1,1 f , u = (a,b)>+ ů;

• A bilinear form

ã1 :
Ä

H1
�D

(!;R2)⇥ {0}+V2,1(⌦⇥Y0)
ä2
\
Ä

L2,memb(⌦⇥Y,R3)
ä2
! R,

and the associated operator Ã1 on the space

Ä
L2(!;R2)⇥ {0}+L2(⌦⇥Y0;R3)

ä
\L2,memb(⌦⇥Y,R3)

(analogous to ã� and Ã�) — these are correctly defined under Assumption 2.1.1 (1);

• A bilinear form amemb
1 : (H1

�D
(!;R2))2 ! R and the associated operator Amemb

1 on

L2(!;R2) (analogous to amemb
� andAmemb

� );

• A bilinear form ã00,1 : (H1
0(Y0;R3))2 ! R and the associated operator Ã00,1 on

L2(Y0;R3) (analogous to ã00,� and Ã00,�);

• Functions �1, �̃memb
1 , by analogy with ��, �̃memb

� ;

• A set �(Ã00,1)0, by analogy with �(Ã00,�)0.

As in the case of other regimes, we first prove an appropriate compactness result, as

follows.

Proposition 2.2.23. Let � =1, µh = "h,⌧ = 0. The following statements hold:

1. There exists C > 0, independent of h, such that for any sequence ( f "h)h>0 ⇢ L2(⌦;R3)

of load densities and the corresponding solutions u"h to the problem (2.6) one has

a"h(u"h ,u"h)+ ku"hk2L2 Ck f "hk2L2 .

2. If

limsup
h!0

Ä
a"h(u"h ,u"h)+ ku"hk2L2

ä
<1, (u"h)h>0 ⇢ H1

�D
(⌦;R3),
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there exist (a,b)> 2 V1,1,1(!⇥Y), ů 2 H1,1(⌦⇥Y), C 2 C1(⌦⇥Y) such that (up

to subsequence)

u"h = ũ"h + ů"h , ũ"h , ů 2 H1
�D

(⌦;R3), ů"h |
⌦
"h
1
= 0,

ũ"h
⇤

L2

��!a,

ũ"h
3

dr�2����*b(x̂),

ů"h
dr�2����* ů,

symrhũ"h(x)
dr�2����*◆

�
symrx̂a(x̂)

�
+C(x,y),

"h symrhů"h
dr�2����* sym ◆(ryů).

(2.29)

3. If, additionally to 2, one has:

lim
h!0

Ä
a"h(u"h ,u"h)+ ku"hk2L2

ä
= a1,1

�
(a,0)>+ ů, (a,0)>+ ů

�
+
���(a,b)>+ ů

���2
L2 ,

where the form a1,1 is defined above, then we have strong two-scale convergence

u"h
dr�2����! (a,b)>+ ů.

The following theorem provides the limit resolvent equation.

Theorem 2.2.24. Let � =1, µh = "h,⌧ = 0 and let the sequence of load densities satisfy

the following convergence:

f "h
dr�2����* f 2 L2(⌦⇥Y;R3). (2.30)

The sequence of solutions to the resolvent problem (2.6) converges in the sense of (2.29) to

the unique solution of the following problem: Find (a,b)> 2 V1,1,1(!⇥Y), ů 2 V2,1(⌦⇥
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Y0) such that
ˆ
!

Cmemb,h symrx̂a(x̂) : symrx̂✓⇤(x̂)dx̂+�
ˆ
!

Ä
h⇢ia(x̂)+ h⇢0ů⇤i(x̂)

ä
·✓⇤(x̂)dx̂

=

ˆ
!

h f ⇤i(x̂) ·✓⇤(x̂)dx̂ 8✓⇤ 2 H1
�D

(!;R2),

h⇢ib(x̂)+
⌦
⇢0ů3

↵
(x̂) = ��1h f 3i(x̂),

ˆ

Y0

C0(y) sym ◆
�
ryů(x,y)

�
: sym ◆

�
ry⇠̊(y)

�
dy

+�

ˆ
Y0

⇢0(y)
�

(a1(x̂),a2(x̂),b(x̂))>+ ů(x,y)
 
· ⇠̊(y)dy

=

ˆ

Y0

f (x,y) · ⇠̊(y)dy ⇠̊ 2 H1
0(Y0;R3), a.e. x 2⌦.

(2.31)

If we assume the strong two-scale convergence in (2.30), then the strong two-scale con-

vergence

u"h(x)
dr�2����! (a,b)>+ ů(x,y)

holds.

Corollary 2.2.25. Under Assumption 2.1.1 (1) and provided ( f "h)h>0 ⇢ L2,memb(⌦;R3),

in addition to the convergences in Proposition (2.2.23) we have

ũ"h
3

L2

��! 0,

and thus b = 0 in the limit equations (2.31).

Notice that the variable x3 is also just the parameter in the last equation in (2.31).

B. “Strong high-contrast bending” scaling µh = "hh, ⌧ = 2

Here we define the following objects using Theorem 2.2.27 (the expression (2.34) for

the limit resolvent):

• A bilinear form ahom
1 : (H2

�D
(!))2! R and the associated operator Ahom

1 on L2(!),

analogous to ahom
� andAhom

� of Part A, Section 2.2.2.1 (notice that here the situation

is simpler since necessarily a = 0);
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• A scalar Zhikov function �̂1, analogous to �̂� of Part C, Section 2.2.2.1, so similarly

to (2.2.2.1) we have

�̂1 = �1,33;

• A set �̂(A00,1), analogous to �̂(A00,�);

• The operator Â1 on {0}2⇥L2(!)+L2(⌦⇥Y0;R3) defined via the bilinear form

â1
�
(0,0,b)>+ ů, (0,0,✓)>+ ⇠̊

�
= ahom
1 (b,✓)+

ˆ
⌦

ã00,1(ů, ⇠̊),

â1 :
Ä
{0}2⇥H2

�D
(!)+V2,1(⌦⇥Y0)

ä2
! R.

Similarly to the regimes discussed above, a suitable compactness result is proved.

Proposition 2.2.26. Let � =1, µh = "hh, ⌧ = 2. The following statements hold:

1. There exists C > 0, independent of h, such that for a sequence ( f "h)h>0 ⇢ L2(⌦;R3)

of load densities and solutions u"h to the problem (2.6) one has

h�2a"h(u"h ,u"h)+ ku"hk2L2 Ck f "hk2L2 .

2. If

limsup
h!0

Ä
h�2a"h(u"h ,u"h)+ ku"hk2L2

ä
<1, (u"h)h>0 ⇢ H1

�D
(⌦;R3),

then there exist functions a 2 H1
�D

(!;R2), b 2 H2
�D

(!), ů 2 V2,1(⌦⇥Y0), C 2 C1(⌦⇥

Y) such that (up to subsequence)

u"h = ũ"h + ů"h , ũ"h , ů"h 2 H1
�D

(⌦;R3), ů"h |
⌦
"h
1
= 0,

⇡1/hũ"h
L2

��!
�
a1(x̂)� x3@1b(x̂),a2(x̂)� x3@2b(x̂),b(x̂)

�>
,

ů"h(x)
dr�2����* ů(x,y),

h�1 symrhũ"h(x)
dr�2����* ◆

Ä
symrx̂a(x̂)� x3r2

x̂b(x̂)
ä
+C(x,y),

"h symrhů"h(x)
dr�2����* sym ◆

�
ryů(x,y)

�
.

(2.32)

3. If, additionally to 2, one has

lim
h!0

Ä
h�2a"h(u"h ,u"h)+ ku"hk2L2

ä
= â1((0,0,b)>+ ů, (0,0,b)>+ ů)+k(0,0,b)>+ ůk2L2 ,
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where â1 is defined in (2.2.2.3), then the strong two-scale convergence

u"h
dr�2����! (0,0,b)>+ ů

holds.

The following theorem provides the limit resolvent equation.

Theorem 2.2.27. Let � =1, µh = "hh, ⌧ = 2 and let the sequence of load densities satisfy

the following convergence:

f "h
dr�2����* f 2 L2(⌦⇥Y;R3). (2.33)

Then the sequence of solutions to the resolvent problem (2.6) converges in the sense of

(2.32) to the unique solution of the following problem: Determine a 2 H1
�D

(!;R2), b 2

H2
�D

(!), ů 2 V2,1(⌦⇥Y0) such that

a = 0,
1

12

ˆ
!

Cbend,hr2
x̂b(x̂) : r2

x̂✓3(x̂)dx̂+�
ˆ
!

�
⇢0(y)b(x̂)+ h⇢0ů3i(x̂)

�
✓3(x̂)dx̂

=

ˆ
!

h f 3i(x̂)✓3(x̂)dx̂ 8✓3 2 H2
�D

(!),

ˆ

Y0

C0(y) sym ◆
�
ryů(x,y)

�
: sym ◆

�
ry⇠̊(y)

�
dy+�

ˆ

Y0

⇢0(y)b(x̂) ⇠̊3(y)dy+�
ˆ

Y0

⇢0(y)ů(x,y) · ⇠̊(y)dy

=

ˆ

Y0

f (x,y) · ⇠̊(y)dy 8⇠̊ 2 H1
0(Y0;R3), a.e. x 2⌦.

(2.34)

If strong two-scale convergence takes place in (2.33), then one additionally has

u"h(x)
dr�2����! (0,0,b)>+ ů(x,y).

Remark 2.2.28. The limit resolvent equations exhibit several di↵erences between the

regimes discussed: beside di↵erent e↵ective tensors (this also happens in the moderate-

contrast setting, see, e.g., [49] in the case of nonlinear von Kármán plate theory), one

has di↵erent kinds of behaviour on the inclusions: in the regime h ⇠ "h the inclusions

behave like three-dimensional objects, while for � = 0 they can be seen as small plates.
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Furthermore, di↵erent scalings of load densities are required in di↵erent regimes, which

does not happen in the case moderate contrast. Finally, the case � = 0 has an additional

e↵ective parameter ; when  2 (0,1) the elastic energy only resists to oscillatory (spatial)

motion (i.e. oscillations on the level of periodicity cells) in the out-of-plane direction.

2.2.3. Limit spectrum

In this section we will use the above resolvent convergence results to infer convergence of

spectra of the operators A"h . As we shall see below in the proofs of the spectral conver-

gence, one does not need to apply di↵erent scalings to di↵erent components of external

loads, and thus only simplified versions of the limit resolvent equations will be necessary.

Also, the presence of a spectrum of order h2 implies that any other scaling will cause the

limit set to be the whole positive real line (see [14]). Thus, for the case when µh = "h in

(2.1.1), in order for the limit spectrum to have a “band-gap” structure we are forced to

restrict ourselves to the “membrane” subspace L2,memb, which is possible under Assump-

tion 2.1.1 (1) concerning material symmetries. Otherwise, for the same case, the limit

resolvent captures only the order-one part of the limit spectrum. This is consistent with

the standard result that the strong resolvent convergence only implies that the spectrum of

the limit operator is contained in limit spectrum forA"h , while an additional compactness

argument is necessary for the opposite inclusion (see, e.g, [71]). In our setting, compact-

ness of eigenfunctions is lost when passing from the spectrum of order h2 (or order-one

spectrum for the restriction to L2,memb) to the order-one spectrum for the full operator, as

the transversal component of an eigenfunction would converge only weakly two-scale.

Under Assumption 2.1.1, for the membrane scalings of Part B of Section 2.2.2.1 and

Parts A of Sections 2.2.2.2, 2.2.2.3, the resolvent equation can be restricted to the invariant

subspace L2,memb, where the solutions happen to be compact in the strong topology, see

Corollaries 2.2.11, 2.2.20, 2.2.25. This compactness property enables one to prove the

convergence of spectra of order one for this restriction. Notice that in the regime h⌧

"h there are di↵erent types of limit resolvents (distinguished by di↵erent values of the

parameter ) when Assumption 2.1.1 is not satisfied. In this regime, the convergence of

the third component of the displacements is only weak two-scale, which is the reason why

we do not invoke di↵erent resolvent limits in the analysis of the convergence of spectra
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in the mentioned regime. However, we will use this information in our study of the limit

evolution equations.

Remark 2.2.29. For the case of spectra of order h2, in order to be able to obtain limit

spectra with band gaps, one needs to consider di↵erent scalings of the coe�cients on

high-contrast inclusions. This motivated us for the analysis of this situation in Part C of

2.2.2.1 and Parts B of Sections 2.2.2.2, 2.2.2.3.

2.2.3.1 Preliminaries on spectral convergence

The Lax-Milgram theorem (see [51]) implies that for each f 2 L2(⌦;R3) the equation

A"hu = f

has a unique solution u 2 H1
�D

(⌦;R3) understood in the weak sense. The operator

T"h : L2(⌦;R3)! H1
�D

(⌦;R3), T"h f := u,

is compact due to the compact embedding H1
�D

(⌦;R3) ,! L2(⌦;R3) (this compactness

will be lost in the limit problem, except for the first case analysed). Therefore, T"h has

countably many eigenvalues forming a non-increasing sequence of positive numbers con-

verging to zero, the only remaining element of the spectrum T"h . Therefore, the spectrum

of A"h consists of eigenvalues ordered in a non-decreasing positive sequence �"h
n that

tends to infinity.

In what follows, we are interested in understanding the relationship between the spec-

tra of A"h as h! 0 and eigenvalues of the limit operators discussed in Section 2.2.2. To

this end, the following standard notion of convergence will be referred to throughout.

Definition 2.2.1. We say that a sequence of sets S h (e.g. S h = �(A"h)) converges in the

Hausdor↵ sense to the set S if:

• (H1) For any � 2 S , there exists a sequence of �h 2 S h convergent to � (as h! 0.)

• (H2) The limit of any convergent sequence of �h 2 S h is an element of S .

For various scalings of Section 2.2.2, we will discuss the convergence in the Hausdor↵

sense of �(A"h) to the spectrum of the corresponding limit operator.
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The first property of Hausdor↵ convergence of spectra is normally a direct conse-

quence of the strong resolvent convergence, while the second property requires the com-

pactness of the sequence of eigenfunctions in an appropriate topology.

2.2.3.2 Asymptotic regime � 2 (0,1), scaling ⌧ = 2

In this section we will analyse the limit spectrum of order h2 for "2
h-scaling of the coe�-

cients in the inclusions. We will show that the high-contrast has no e↵ect on the limit, in

that the (scaled) limit spectrum is of the same type as for the ordinary plate (i.e. homoge-

neous or with moderate contrast), in particular the limit operator has compact resolvent.

This is precisely the reason why we analyse this combination of scalings of the spectrum

and the coe�cients only for the asymptotic regime h ⇠ "h (i.e. � 2 (0,1)).

On the one hand we would like to show that in the case of an ordinary plate the re-

solvent approach can also provide information about the convergence of spectra (alterna-

tively to, say, using Rayleigh quotients), and on the other hand we aim at demonstrating

that in the mentioned case the limit problem does not exhibit spectral gaps and thus a

di↵erent scaling of the coe�cients is required for them to appear.

The following theorem provides the relevant result concerning spectral convergence.

Theorem 2.2.30. Let limh!0 h/"h = � 2 (0,1), µh = "h. The spectra �
�
h�2A"h

�
con-

verge in the Hausdor↵ sense to the spectrum of Ab,hom
� , as h! 0, which is an increasing

sequence of positive eigenvalues (��,n)n2N that tend to infinity, each of finite multiplic-

ity. More precisely, if by �"h
n we denote the n-th eigenvalue of A"h (by repeating each

eigenvalue according to its multiplicity), then

h�2�"h
n ! ��,n, h! 0,

where ��,n is n-th eigenvalue of Ab,hom
� (again repeated in accordance with multiplicity).

Furthermore, for any fixed n and any choice of normalised eigenfunctions with eigenval-

ues �"h
n , there is a (h-indexed) subsequence such that the corresponding eigenfunctions

converge, as h! 0, to an eigenfunction with the eigenvalue ��,n of the limit problem.
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2.2.3.3 Asymptotic regime � 2 [0,1), scaling µh = "h, ⌧ = 0

In this section we analyse the operator A"h in the space L2,memb(⌦;R3). In the regime

� = 0 we require that the component Y0 has C1,1 boundary. We define the following

generalized eigenvalue problem: Find � > 0 and a 2 H1
�D

(!,R2) such that
ˆ
!
Cmemb
� symrx̂a(x̂) : symrx̂'(x̂)dx̂ =

ˆ
!
�̃memb
� (�)a(x̂) ·'(x̂)dx̂, 8' 2 H1

�D
(!;R2).

(2.35)

(In the case � = 0 we put Cmemb,r
1 instead of Cmemb

� , in the case when � =1 we put Cmemb,h

instead of Cmemb
� , see Section 2.2.1 for the relevant definitions.) The following theorem

contains the spectral convergence result for the regime considered here.

Theorem 2.2.31. Suppose limh!0 h/"h = � 2 [0,1), µh = "h and let Assumption 2.1.1 (1)

be valid. The set of all � > 0 for which the problem (2.35) has a non-trivial solution

a 2 H1
�D

(!;R2) is at most countable. The spectra of the operators Ã"h converge in the

Hausdor↵ sense to the spectrum of Ã�, and one has

�(Ã�) = �(Ã00,�)0 [ {� > 0 : The generalized eigenvalue problem (2.35) is solvable.}.

(2.36)

Additionally, under Assumption 2.1.1 (2,3), the matrix �̃memb
� (�) is scalar and

�(Ã�) = �(Ã00,�)0 [
¶
� > 0 : �̃memb

�,11 (�) 2 �(Amemb
� )

©
.

Remark 2.2.32. It was shown in [31] that each non-empty interval of the form (!̃n, !̃n+1),

n 2N, contains a subinterval (!̃n,↵), !̃n  ↵ < !̃n+1 in which both eigenvalues of the ma-

trix �̃memb
� are negative, a subinterval (↵,�), ↵ < �  !̃n+1 in which one of its eigenvalues

is negative while the other is positive, and the interval (�, !̃n+1) in which both its eigen-

values are positive. It follows, as is explained in [31], that in the interval (!̃n,↵) there

is no wave propagation in any direction, while in the interval (↵,�) one has evanescent

solutions in the direction of the negative eigenvectors, and finally in the intervals (�, !̃n+1)

all directions allow wave propagation.

Under Assumption 2.1.1 (1–3), the above spectral structure can be quantified in a

straightforward way and !̃n < ↵ = � < !̃n+1, see [70, 71]. In this case the matrix �̃memb
� is
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scalar and

lim
�!!̃+n

�̃memb
�,11 (�) = �1, lim

�!!̃�n+1

�̃memb
�,11 (�) = +1,

where �̃memb
�,11 is one of the two equal diagonal elements, and the limits are taken as �

approaches !̃n on the right and on the left, respectively.

The above properties of the limit spectrum are relevant in a variety of applications,

such as noise suppression. Being peculiar to wave propagation in high-contrast media,

they are often referred to as “high-contrast e↵ects”.

2.2.3.4 Asymptotic regime � 2 (0,1), scaling µh = "hh, ⌧ = 2 and asymptotic regime

� = 0, scaling µh = "2
h, ⌧ = 2

For the regimes considered here, we show that high-contrast e↵ects occur in the limit as

h! 0.As before, when �= 0 we assume that Y0 has C1,1 boundary. We have the following

theorem.

Theorem 2.2.33. Let limh!0 h/"h = � 2 [0,1). In the cases � = 0, � > 0 we assume that

µh = "2
h and µh = "hh, respectively. The spectrum of the operator h�2A"h converges in the

Hausdor↵ sense to the spectrum of the operator Â�, given by

�(Â�) =

8
><

>:

�̂(A00,�)[
¶
� > 0 : �̂�(�) 2 �(Ab,hom

� )
©
, � 2 (0,1),

�̂(Â00,0)[
�
� > 0 : �̂0(�) 2 �(Ahom

0 )
 
, � = 0.

Remark 2.2.34. The operatorAb,hom
� is non-local when Assumption 2.1.1 is not satisfied.

It is not known to us whether this has been commented on in the existing literature, even

in the case of a homogeneous plate.

2.2.3.5 Asymptotic regime � =1

As we see below, in the case � =1, the limit spectrum has points outside spectrum of the

limit operator. From the intuitive point of view, the e↵ective behaviour is similar to that

of a cuboid with disjoint soft inclusions in the shape of long thin rods arranged parallel to

each other and connecting two opposite sides of the body.

In order to formulate the result of this section, we define:
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• An operator as the one defined via the bilinear form

åstrip =

ˆ
R⇥Y0

C0(y) symru : symrvdx3dy, åstrip :
Ä

H1
00(R⇥Y0;R3)

ä2
! R;

• An operator Å+strip on L2(R+0 ⇥Y0;R3) as the one defined via the form

å+strip =

ˆ
R+0⇥Y0

C0(y) symru : symrvdx3dy, å+strip :
Ä

H1
00(R+0 ⇥Y0;R3)

ä2
! R;

• An operator Å�strip on L2(R�0 ⇥Y0;R3) as the one defined via the form

å�strip =

ˆ
R�0⇥Y0

C0(y) symru : symrvdx3dy, å�strip :
Ä

H1
00(R�0 ⇥Y0;R3)

ä2
! R.

• The restriction ˚̃Astrip of the operator Åstrip to the membrane subspace L2,memb(R⇥

Y0;R3), whenever Assumption 2.1.1 (1) holds.

First, we give characterisations of the limit spectra of Å"h and ˚̃A"h , which in this

regime play significant roles.

Theorem 2.2.35. Suppose that "h⌧ h. Then one has

lim
h!0

�(Å"h) = lim
h!0

�( ˚̃A"h) = �(Åstrip)[�(Å+strip)[�(Å�strip). (2.37)

Moreover, one has

�ess(Å±strip) = �(Åstrip), (2.38)

and there exists m0 > 0 such that

�(Åstrip) = �ess(Åstrip) = [m0,+1).

Under Assumption 2.1.1 (1), one additionally has

�(Å+strip) = �(Å�strip) � �( ˚̃Astrip) = �ess( ˚̃Astrip) = �
�
Åstrip

�
. (2.39)

Next we provide a characterisation of the limit spectrum forA"h .

Theorem 2.2.36. Let "h⌧ h, µh = "h and ⌧ = 0. The set of all � > 0 for which the problem

(2.35) obtains a nontrivial solution a 2 H1
�D

(!;R2) is at most countable. The spectra of

Ã"h converge in the Hausdor↵ sense to �(Å+strip)[�(Ã1), where

�(Ã1) = �(Ã00,1)0 [ {� > 0 : The generalized eigenvalue problem (2.35) is solvable.}.

(2.40)
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Under Assumption 2.1.1 (2, 3), the matrix �̃memb
1 (�) is scalar and

�(Ã1) = �(Ã00,1)0 [
¶
� > 0 : �̃memb

1,11 (�) 2 �(Amemb
� )

©
. (2.41)

Furthermore, one has �(Ã00,1) ⇢ �(Å+strip).

Theorem 2.2.37. Suppose that "h⌧ h, µh = "hh, ⌧ = 2. The spectra of h�2A"h converge

in the Hausdor↵ sense to �(Å+strip)[�(Å�strip)[�(Â1) and

�(Â1) = �̂(A00,1)[
�
� > 0 : �̂1(�) 2 �(Ahom

1 )
 
.

Remark 2.2.38. As is shown in Lemma 2.3.2, the set limh!0�(Å"h) (appropriately

scaled) is always a subset of the limit spectrum. In the regime � =1, the operator has a

scaling factor "h/h in front of the derivative in x3. This allows eigenfunctions to oscillate

in the out-of-plane direction (and thus weakly converge to zero). This is the reason for

so-called “spectral pollution” (see e.g. [2]).

2.2.4. Limit evolution equations

It is expected from the results of Section 2.2.2 concerning the resolvent convergence for

the operators A"h that the limit evolution equations have the form of a system that links

the behaviour on the sti↵matrix and the soft inclusions by means of coupled solution com-

ponents, which can be viewed as macroscopic and microscopic variables. Representing

the system in terms of the macroscopic component only leads to a non-trivial e↵ective de-

scription exhibiting memory e↵ects. This is one of the reasons what makes high-contrast

materials interesting in applications.

The present section aims at providing a detailed study of the consequences of the form

of the limit resolvent equations obtained for di↵erent asymptotic regimes in Section 2.2.2

on the limit evolution equations in the corresponding regimes. On the abstract level, this

connection has been analysed in [53]. A key fact used in that paper is that the resolvent

is the Laplace transform of the exponential function of the operator of the wave equation,

obtained from an equivalent system of equations of first order in time. In what follows, we

adjust our analysis to these general results, in order to account for the particular features of

our setup due to dimension reduction in linear elasticity. As we see below, in this context
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di↵erent scalings of spectra imply di↵erent scalings of time (i.e. bending waves propagate

on a slower time scale than in-plane, “membrane”, waves). As far as we know, the e↵ect

of considering di↵erent time scalings has not been addressed in the literature; see [54]

for the analysis of limit evolution of isotropic homogeneous plates for the commonly

considered “long” time scaling of order h�1.

It should also be noted that some load density scalings prevent us from using the

results of [53], in which case separate analysis is necessary to show weak convergence

of solutions (see e.g. the proof of Theorem 2.2.39). This happens for the case ⌧ = 2 (i.e.

for long times of order h�1) in the regimes � 2 (0,1), µh = "h and � = 0, µh = "2
h. For

these, to prove weak convergence we use the Laplace transform directly, following the

same overall strategy as the one adopted in [53] in the abstract setting, see Apprendix.

However, due to the said load density scalings, a modification of the results of [53] is

required, in order to account for the specific structure of the right-hand side of the limit

problem; this is also discussed in Appendix, see in particular Theorems 4.5.4, 4.5.15.

The starting point of this section is the family of Cauchy problems (h > 0)
8
><

>:

@ttu"h(t)+h�⌧A"hu"h(t) = f "h(t),

u"h(0) = u"h
0 , @tu"h(0) = u"h

1 ,
(2.42)

understood in the weak sense. The term f "h(t) represents the load density at time t > 0. For

each h, we suppose that f "h is provided on the time interval [0,Th], Th > 0. The functions

u"h
0 ,u

"h
1 are the initial data for the displacement and velocity fields, respectively. We make

the following assumptions:

u"h
0 2D(A1/2

"h ) = H1
�D

(⌦;R3), u"h
1 2 L2(⌦;R3), f "h 2 L2(0,T ; L2(⌦;R3)),

In what follows, we shall analyse the “critical” cases ⌧ = 2 and ⌧ = 0 for the time scal-

ing. Conditions for well-posedness of the problem (2.42) can be found in Appendix, see

Section 4.5.

In conclusion of this section, we reiterate that there are two ways to interpret the scal-

ing h�⌧ of the di↵erential expression in (2.42): by scaling the density of the material

(with h⌧) or by introducing the new time scale t̃ = t/h⌧/2. We adopt the latter interpreta-

tion throughout. Multiplying (2.42) by h⌧ and replacing t by t̃, we obtain the family of
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problems (h > 0) 8
><

>:

@t̃t̃u"h(t̃)+A"hu"h(t̃) = f̃ "h(t̃),

u"h(0) = u"h
0 , @t̃u"h(0) = ũ"h

1 ,
(2.43)

where f̃ "h(t̃) := h⌧ f "h(h⌧t̃), ũ"h
1 := h⌧/2u"h

1 . Thus discussing the solution of (2.42) on a time

interval [0,T ] (with an appropriate scaling of the load density) is equivalent to discussing

the solution of (2.43) on the time interval [0,T/h⌧/2] (with the corresponding scaling of

the loads). While from now on we shall work in the framework of the equation (2.42),

which is convenient from the mathematical point of view, it is the equation (2.43) that

represents the actual physical wave motion, which thereby takes place on an appropriate

time scale of order h�⌧/2.

2.2.4.1 Long-time behaviour for the regime � 2 (0,1), µh = "h, ⌧ = 2

The case analysed here resembles the standard (moderate-contrast) plate model. The

following convergence statement holds for the evolution problem.

Theorem 2.2.39. Suppose that � 2 (0,1), µh = "h, ⌧ = 2. Let (u"h)h>0 be a sequence of

solutions to (2.42) and assume that

�
h@t f "h

↵

�
h>0 ⇢ L2([0,T ]; L2(⌦⇥Y)) bounded, ↵ = 1,2, (2.44)

⇡h f "h
t,dr�2�����* f 2 L2([0,T ]; L2(⌦⇥Y;R3)), (2.45)

u"h
0

dr�2����*u0(x̂) 2 {0}2⇥H2
�D

(!), (2.46)

u"h
1

dr�2����*u1(x,y) 2 L2(⌦⇥Y;R3), (2.47)

and assume additionally that

limsup
h!0

Ä
h�2a"h(u"h

0 ,u
"h
0 )+ ku"h

0 k
2
L2

ä
<1.

Then one has

⇡1/hu"h
t,dr�2�����*

à
a1(t, x̂)� x3@1b(t, x̂)+ ů1(t, x,y)

a2(t, x̂)� x3@2b(t, x̂)+ ů2(t, x,y)

b(t, x̂)

í

,

@tu"h
t,dr�2�����*

�
0,0,@tb(t, x̂)

�>
,
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where a 2C([0,T ]; H1
�D

(!;R2)), b 2C([0,T ]; H2
�D

(!)), ů 2C([0,T ]; L2(!; H1
00(I⇥Y0;R3)))

are determined uniquely by solving the problem

@ttb(t)+Ab,hom
� b(t) = F�

�
f (t)

�
, (see (2.10)) (2.48)

b(0) = u0,3 2 H2
�D

(!), @tb(0) = S 1(P�,1u1)3 2 L2(!),

a(t) = ab(t)+a f⇤(t), (see (2.12)) (2.49)

A00,�ů(t, x̂, ·) = ( f ⇤(t, x̂, ·),0)>, (2.50)

so that @tb 2C([0,T ]; L2(!)). One also has

limsup
h!0

ˆ T

0

Ä
h�2a"h(u"h(t),u"h(t))+ ku"h(t)k2L2

ä
dt <1.

If one assumes strong two-scale convergence of load densities

⇡h f "h
t,dr�2�����! (0,0, f )> 2 L2

Ä
[0,T ]; L2(!;R3)

ä
,

h@t f "h
↵ �! 0 strongly in L2

Ä
[0,T ]; L2(⌦)

ä
, ↵ = 1,2,

(2.51)

strong two-scale convergence of the initial data in (2.46), (2.47), where (u1)⇤ = 0, u1,3 2

L2(!), and the condition

lim
h!0

Ä
h�2a"h(u"h

0 ,u
"h
0 )+ ku"h

0 k
2
ä
= ab�

�
b(0),b(0)

�
+ kb(0)k2L2 ,

then one has

⇡1/hu"h
t,dr�2�����! (ab1� x3@1b,a

b
2� x3@2b,b)>, @tu"h

t,dr�2�����! (0,0,@tb)>. (2.52)

Moreover, the following convergence of energy sequences holds for all t 2 [0,T ] :

lim
h!0

Ä
h�2a"h(u"h(t),u"h(t))+ ku"h(t)k2L2

ä
= ab�

�
b(t),b(t)

�
+ kb(t)k2L2 .

Corollary 2.2.40. Suppose that for each h> 0, a surface load densityG"h 2 L2([0,T ]; (H1
�D

(⌦;R3)⇤)

is added to the right-hand side of (2.42). We assume that G"h is generated by an L2-

function g"h (representing the “true” surface load) so that

G"h(g"h)(✓) =
ˆ
!⇥{�1/2,1/2}

g"h✓dx̂, ✓ 2 H1
�D

(⌦;R3),

where an obvious shorthand for a sum of two integrals over ! is used, and make the

following additional assumptions on g"h :

⇡h@t g"h
↵ ⇢ L2

Ä
[0,T ]; L2�!⇥

�
�1/2,1/2

 
⇥Y;R3�ä is bounded ,
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⇡h g"h
t,dr�2�����* g 2 L2

Ä
[0,T ]; L2�!⇥

�
�1/2,1/2

 
⇥Y;R3�ä.

Then a variant of Theorem 2.2.39 holds, where in the limit equations (2.48) the right-

hand side has an additional term G1
�(g) 2 L2([0,T ]; (H2

�D
(!))⇤), represented by a limiting

surface load L2 vector function g = (g1,g2,g3) so that

G1
�(g)(t)(✓) =

ˆ
!

�⌦
g3(t, x̂,�1/2, ·)+g3(t, x̂,1/2, ·)

↵�
✓(x̂)dx̂

+
1
2

ˆ
!

�⌦
g1(t, x̂,�1/2, ·)�g1(t, x̂,1/2, ·)

↵�
@1✓(x̂)dx̂

+
1
2

ˆ
!

�⌦
g2(t, x̂,�1/2, ·)�g2(t, x̂,1/2, ·)

↵�
@2✓(x̂)dx̂

+

ˆ
!

Chom
�

�
symrx̂a

g⇤(t),0
�

:
�
0,r2

x̂✓(x̂)
�

dx̂, ✓ 2
�
H2
�D

(!)
�⇤
.

In the above formula, for every t 2 [0,T ], the function ag⇤(t) 2 H1
�D

(!;R2) is the solution

to the problemˆ
!

Cmemb
� symrx̂a

g⇤(t)(x̂) : symrx̂✓⇤(x̂)dx̂ = G2
�(g⇤)(t)(✓⇤) 8✓⇤ 2 H1

�D
(!;R2),

where the functional G2
�(g⇤)(t) is defined by the formula

G2
�(g⇤)(t)(✓⇤) =

ˆ
!

�⌦
g1(t, x̂,�1/2, ·)+g1(t, x̂,1/2, ·)

↵�
✓1 dx̂

+

ˆ
!

�⌦
g2(t, x̂,�1/2, ·)+g2(t, x̂,1/2, ·)

↵�
✓2 dx̂, ✓⇤ 2 H1

�D
(!;R2).

Also, the right-hand side of (2.49) contains ag⇤(t) 2 L2([0,T ]; H1
�D

(!,R2)) as an additional

term, while on the right-hand side of (2.50) one additionally hasG3(g⇤) 2 L2([0,T ]; (H1
00(I⇥

Y0;R3)⇤) defined by

G3(g⇤)(t, x̂)(⇠)=
ˆ
{�1/2,1/2}⇥Y0

g⇤(t, x̂, ·) ·⇠⇤(·), ⇠ 2H1
00(I⇥Y0;R3), t 2 [0,T ], x̂ 2!.

Remark 2.2.41. For each of the other regimes studied, a statement analogous to Corollary

2.2.40 is valid.

Remark 2.2.42. The statement of Theorem 2.2.39 can be strengthened as follows. The

boundedness and convergence conditions (2.44) and (2.45) can be replaced by the re-

quirement of boundedness and convergence, respectively, of the sequences (⇡h f "h)h>0
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and (h@t f "h
↵ )h>0 in the corresponding spaces of L1 functions on [0,T ]. Under this weaker

assumption, a still stronger version of (2.2.39), (2.2.39) holds, where the weak conver-

gence in L2 spaces on [0,T ] is replaced by a weak* convergence in the corresponding L1

spaces on [0,T ], see the comment following Definition 4.3.2.

Similarly, the L2 convergences (2.51) can be replaced by the weaker conditions

⇡h f "h
t,1,dr�2������! (0,0, f )> 2 L1

Ä
[0,T ]; L2(!;R3)

ä

h@t f "h
↵ �! 0 strongly in L1

Ä
[0,T ]; L2(⌦)

ä
, ↵ = 1,2,

to obtain a strong two-scale convergence
t,1,dr�2������! for both sequences in (2.52); see the

same comment at the end of Section 4.3 for the definition of
t,1,dr�2������!.

These stronger versions of the claims in Theorem 2.2.39 follow immediately from a

priori estimates, see also Remark 4.5.16, Remark 4.5.17, however we choose to remain in

the L2 setting.

A version of the discussion within this remark applies also to Theorem 2.2.47, Theo-

rem 2.2.51, and Theorem 2.2.53.

Remark 2.2.43. The limit equations (2.48)–(2.50) are obtained on a long time scale. The

sti↵ component behaves like a perforated domain, and there is no coupling between its

deformation and the deformation of the inclusions. The deformation of the inclusions and

the even part of the in-plane deformation of the sti↵ component behave quasi-statically

(i.e. without an inertia term), as a consequence of small forces slowly varying in time.

(Recall that the physical equation is (2.43) with the right-hand side f̃ "h subject to an ap-

propriate version of the condition (2.44).) Since there is no coupling in the limit between

the inclusions and the sti↵ component, there are no memory e↵ects in the time evolution.

However, it is expected that high-contrast e↵ects would be seen in higher-order terms

(“correctors”) of the deformation, which we do not pursue here.

Without making additional symmetry assumptions about the material properties, the

limit operator for the evolution of the out-of-plane component is spatially non-local, due

the coupling between the in-plane and out-of-plane components.

Remark 2.2.44. We are not able to obtain pointwise in time convergence without ad-

ditional assumptions on the load density. This is expected (replacing weak two-scale
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convergence with strong two-scale convergence) also as a consequence of the analysis

presented in [53].

Remark 2.2.45. The influence of in-plane forces on the limit model is seen through

their mean value across the plate, represented above by an integral over the interval

I = [�1/2,1/2], as well as through the mean value of their moments over the same in-

terval I. In the case of planar symmetries, see Assumption 2.1.1 (1), moments of in-plane

forces have the same e↵ect on the limit deformation as out-of-plane forces, i.e., they pro-

duce out-of-plane displacements. This is expected from the physical point of view and is

standard for plate theories (see, e.g., [23]).

Remark 2.2.46. Considering whether di↵erent components of the load density should

be scaled di↵erently is important from the modelling perspective. Indeed, if its in-plane

and out-of-plane components had the same magnitude, one would not see the e↵ects of

the in-plane components in the (leading order of the) deformation. On the other hand,

it is expected that su�ciently large in-plane loads do influence the limit deformation.

However, for some of the asymptotic regimes analysed here the e↵ects on the in-plane

and out-of-plane loads on the limit deformation are similar, in which case these loads are

set to have the same magnitude in the equations. This kind of situation also occurs in the

context of linear elastic shells, see [24] for shells as compared to the case of linear elastic

plates [23].

2.2.4.2 Real-time behaviour for µh = "h, ⌧ = 0 in di↵erent regimes

Here we discuss a class of evolution problems with “non-standard” e↵ective behaviour,

which manifests itself, in particular, through time non-locality.

Theorem 2.2.47. Suppose that µh = "h, ⌧ = 0, �, 2 [0,1], and consider the sequence

(u"h)h>0 of solutions to the problem (2.42), assuming that

f "h
t,dr�2�����* f 2 L2([0,T ]; L2(⌦⇥Y;R3)), (2.53)

u"h
0

dr�2����*u0(x,y) 2 V1,�,(!⇥Y)+V2,�(⌦⇥Y0),

u"h
1

dr�2����*u1(x,y) 2 L2(⌦⇥Y;R3). (2.54)
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Assume also that

limsup
h!0

�
a"h(u"h

0 ,u
"h
0 )+ ku"h

0 kL2
�
<1.

Then one has

u"h
t,dr�2�����* (a,b)>+ ů, (2.55)

@tu"h
t,dr�2�����*@t

�
(a,b)>+ ů

�
, (2.56)

where (a,b)>+ ů 2C([0,T ];V1,�,(!⇥Y)+V2,�(⌦⇥Y0)) is the unique weak solution of the

problem

@tt
�
(a,b)>+ ů

�
(t)+A�,

�
(a,b)>+ ů

�
(t) = P�, f (t),

�
(a,b)>+ ů

�
(0) = u0(x,y), @t

�
(a,b)>+ ů

�
(0) = P�,u1(x,y),

such that @t
�
(a,b)>+ ů

�
2C([0,T ]; H�,(⌦⇥Y)). Furthermore, the following limit energy

bound holds:

limsup
h!0

ˆ T

0

Ä
a"h

�
u"h(t),u"h(t)

�
+ ku"h(t)k2L2

ä
<1.

If strong two-scale convergence holds in (2.53)–(2.54) with f 2 L2([0,T ]; H�,(⌦⇥Y)),

u1 2 H�,(⌦⇥Y), and

lim
h!0

Ä
a"h

�
u"h

0 ,u
"h
0
�
+ ku"h

0 k
2
L2

ä
= a�,

�
((a,0)>+ ů)(0), ((a,0)>+ ů)(0)

�
+
���
�
(a,b)>+ ů

�
(0)
���2

L2 ,

then strong two-scale convergence holds in (2.55)–(2.56). Moreover, one has

lim
h!0

Ä
a"h

�
u"h(t),u"h(t)

�
+ku"h(t)kL2

ä
= a�,

�
((a,0)>+ů)(t), ((a,0)>+ů)(t)

�
+
���
�
(a,b)>+ů

�
(t)
���2

L2 ,

for every t 2 [0,T ].

Remark 2.2.48. The models obtained here are degenerate with respect to the out-of-plane

component of the displacement. Indeed, in the static case it is substantially easier for the

plate to bend than to extend in-plane; however, in the dynamic case in real time, for the

forces of magnitude one, there is no elastic resistance to out-of-plane motions, which are

therefore entirely due to external loads.

It is also worthwhile noting that in the high-contrast setting out-of-plane loads f =

(0,0, f3) for which f 3 = 0 do produce some in-plane motion in the case when � 2 (0,1],
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as a consequence of the coupling between the deformations on the sti↵ component and

on the inclusions, which is not possible in the setting of homogenisation with moderate

contrast. (In the regime � = 0, inclusions behave like small plates and thus only the e↵ects

of the average loads f in the variable x3 are seen in the limit.) On a related note, from the

point of view of quantitative analysis, it is not expected that the e↵ect elastic resistance to

out-of-plane motions disappears entirely, as it may manifest itself in lower-order terms,

see [20] for a quantitative analysis of the resolvent equation for a thin infinite plate in

moderate contrast.

Remark 2.2.49. To the best of our knowledge, dynamic models representing “real time

behaviour” have not been discussed in the literature, even in the case of an ordinary plate.

Certainly, these models are not as physically relevant as those in which elastic resistance

to out-of-plane motions is observed. This might be due to the fact that for most materials

mass density is much smaller than Lamé constants (in dimensionless terms). However,

since these models exhibit high-contrast e↵ects, which does not happen when the time

is scaled (unless the coe�cients on the inclusions are scaled in a non-standard way in

relation to the coe�cients on the sti↵ component), we find it is important to discuss them

also.

Remark 2.2.50. In the limit problem, due to the coupling of the deformation on the

sti↵ component, given by (a,b)>, and the oscillatory part of the deformation on the soft

component, given by ů, there are memory e↵ects (under the assumption that the micro-

variable ů is unknown). The emergence of these memory e↵ects can be seen as follows.

If one would like to know the deformation on the sti↵ component at time T, given by

(a,b)>(T ), one would not only require the initial data (deformation and speed) on the

sti↵ component at an “initial” time t0 < T and loads f on the time interval [t0,T ], but

also the value of the micro-variable ů and its speed at time t0. It one cannot measure this

micro-variable (which is a physically meaningful scenario), then the corresponding degree

of freedom becomes “hidden” internally, which results in a non-local time dependence

macroscopically.
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2.2.4.3 Long-time behaviour for � 2 (0,1], µh = "hh, ⌧ = 2

Here we demonstrate that by varying the contrast between material properties of the two

components (“sti↵” and “soft”), the evolution problem may be shown to exhibit time

non-locality also in the regime of long times.

Theorem 2.2.51. Suppose that � 2 (0,1], µh = "hh, ⌧= 2, and let (u"h)h>0 be the sequence

of solutions of the problem (2.42), assuming that

f "h
t,dr�2�����* f 2 L2�[0,T ]; L2(⌦⇥Y;R3)

�
, (2.57)

u"h
0

dr�2����*u0(x̂)+ ů0(x,y) 2 {0}2⇥H2
�D

(!)+V2,�(⌦⇥Y0),

u"h
1

dr�2����*u1(x,y) 2 L2(⌦⇥Y;R3). (2.58)

Assume also that

limsup
h!0

�
a"h(u"h

0 ,u
"h
0 )+ ku"h

0 kL2
�
<1.

Then one has

u"h
t,dr�2�����* (0,0,b)>+ ů, (2.59)

@tu"h
t,dr�2�����*@t

�
(0,0,b)>+ ů

�
, (2.60)

where (0,b)> + ů 2 C([0,T ]; {0}2 ⇥H2
�D

(!)+V2,�(⌦⇥Y0)) is the unique weak solution to

the problem

@tt
�
(0,0,b)>+ ů

�
(t)+ Â�

�
(0,0,b)>+ ů

�
(t) =

�
S 2(P�,1 f (t))1,S 2(P�,1 f (t))2, (P�,1 f (t))3

�>
,

�
(0,0,b)>+ ů

�
(0) = u0(x,y), @t

�
(0,0,b)>+ ů

�
(0) =

�
S 2(P�,1u1)1,S 2(P�,1u1)2, (P�,1u1)3

�>(x,y),

such that @t
�
(0,0,b)>+ ů

�
2 C([0,T ]; H�,1(⌦⇥Y)). Furthermore, the following limit en-

ergy bound holds:

limsup
h!0

ˆ T

0

Ä
h�2a"h(u"h(t),u"h(t))+ ku"h(t)k2L2

ä
<1.

If strong two-scale convergence holds in (2.57)–(2.58) with f 2 L2([0,T ]; H�,1(⌦⇥

Y)), u1 2 H�,1(⌦⇥Y), and

lim
h!0

Ä
h�2a"h(u"h

0 ,u
"h
0 )+ ku"h

0 k
2
L2

ä
= â�

�
((0,0,b)>+ů)(0), ((0,0,b)>+ů)(0)

�
+
���
�
(0,0,b)>+ů)(0)

���2
L2 ,
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then strong two-scale convergence holds in (2.59)–(2.60). Moreover, for every t 2 [0,T ]

one has

lim
h!0

Ä
h�2a"h(u"h(t),u"h(t))+ ku"h(t)k2L2

ä

= â�
�
((0,0,b)>+ ů)(t), ((0,0,b)>+ ů)(t)

�
+
���
�
(0,0,b)>+ ů)(t)

���2
L2 .

Remark 2.2.52. The above limit model exhibits memory e↵ects, due to the coupling of

the deformations on the sti↵ component and on the inclusions, similarly to what happened

in Section 2.2.4.2. As before, see Remark 2.2.43, in the case when � 2 (0,1) and no

additional symmetries are imposed on the material properties, the limit macro-operator

Â� is spatially non-local.

2.2.4.4 Long-time behaviour for � = 0, µh = "2
h, ⌧ = 2

Here we discuss an analogue of the result of the previous section for the case � = 0, in

which we need to apply di↵erent scalings to the in-plane and out-of-plane loads. As

already emphasized in Sections 2.2.2.2 (resolvent convergence), 2.2.3.4 (limit spectrum),

in this regime we require that Y0 have C1,1 boundary.

Theorem 2.2.53. Suppose that � = 0, µh = "2
h, ⌧ = 2, and let (u"h)h>0 be the sequence of

solutions to the problem (2.42), assuming that

�
(h/"h)@t f "h

↵

�
h>0 ⇢ L2([0,T ]; L2(⌦⇥Y)) is bounded, ↵ = 1,2,

⇡h/"h f "h
t,dr�2�����* f 2 L2([0,T ]; L2(⌦⇥Y;R3)),

u"h
0

dr�2����*u0(x̂,y) 2 {0}2⇥H2
�D

(!)+ {0}2⇥L2(!⇥Y0), (2.61)

u"h
1 (x)

dr�2����*u1(x,y) 2 L2(⌦⇥Y;R3), (2.62)

and assume additionally that

limsup
h!0

Ä
h�2a"h(u"h

0 ,u
"h
0 )+ ku"h

0 kL2

ä
<1.

Then one has

⇡"h/hu"h
t,dr�2�����*

à
ů1(t, x̂,y)� x3@y1 ů3(t, x̂,y)

ů2(t, x̂,y)� x3@y2 ů3(t, x̂,y)

b(t, x̂)+ ů3(t, x̂,y)

í
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@tu"h
t,dr�2�����*

�
0,0,@t (b(t, x̂)+ ů3(t, x̂,y))

�>
,

where the pair b 2C([0,T ]; H2
�D

(!)), ů 2C([0,T ]; L2(!; H1
00(I⇥Y0;R3))) form the unique

weak solution of the problem

@tt (b+ ů3) (t)+ Â0 (b+ ů3) (t) = F0( f ), (see (2.25))

(b+ ů3) (0) = u0,3 2 H2
�D

(!)+L2(!⇥Y0), @t(b+ ů3)(0) = P0u1,3 2 L2(!)+L2(!⇥Y0),

Ã00,0ů⇤(t, x̂, ·) = f ⇤(t, x̂, ·), (2.63)

such that @t(b(t, x̂)+ ů3(t, x̂,y)) 2C([0,T ]; L2(!)+L2(!⇥Y0)). Furthermore, the following

limit energy bound holds:

limsup
h!0

ˆ T

0

Ä
h�2a"h(u"h(t),u"h(t))+ ku"h(t)k2L2

ä
dt <1.

If one additionally assumes that

⇡h/"h f "h
t,dr�2�����! (0,0, f )> 2 L2

Ä
[0,T ]; L2(!;R3)+L2(!⇥Y0;R3)

ä
,

(h/"h)@t f "h
↵ �! 0 strongly in L2

Ä
[0,T ]; L2(⌦)

ä
, ↵ = 1,2,

the two-scale convergence in (2.61) and (2.62) holds in the strong sense with (u1)⇤ = 0,

u1,3 2 L2(!)+L2(!⇥Y0), and that

lim
h!0

Ä
h�2a"h(u"h

0 ,u
"h
0 )+ ku"h

0 k
2
ä
= ab�

�
(b+ ů3)(0), (b+ ů3)(0)

�
+
���(b+ ů3)(0)

���2
L2 ,

then one has

u"h
t,dr�2�����! (0,0,b(t, x̂)+ ů3(t, x̂,y))>, @tu"h

t,dr�2�����! (0,0,@t(b(t, x̂)++ů3(t, x̂,y)))>.

Moreover, for every t 2 [0,T ] the convergence

lim
h!0

Ä
h�2a"h(u"h(t),u"h(t))+ ku"h(t)k2L2

ä
= ab�

�
(b+ ů3)(t), (b+ ů3)(t)

�
+
���(b+ ů3)(t)

���2
L2

holds.

Remark 2.2.54. In the regime � = 0 inclusions behave like small plates and thus the cor-

responding deformation satisfies a version of the classical Kirchho↵-Love ansatz. Using

the rationale discussed in Remark 2.2.46, we argue that in order to see the e↵ects of both
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in-plane and out-of-plane components of loads in the limit model, we should scale them

di↵erently to one another.

Similarly to the regime � 2 (0,1), µh = "h, ⌧ = 2, we impose a restriction on the

time derivatives of in-plane forces, see (2.2.53), which in terms of the “physical” time

corresponds to slowly acting loads. This results in a (partial) quasi-static evolution in

the limit, see (2.63). Furthermore, in order to obtain strong two-scale convergence of

solutions, akin to (2.52), we impose a further restriction that properly scaled in-plane

forces together with their time derivatives, in the spirit to (2.51), go to zero as h! 0.
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2.3. Proofs

2.3.1. Proof of Proposition 2.2.4

Proof. We provide the proof for the case � 2 (0,1); the other cases are dealt in a similar

fashion, bearing in mind Remark 2.2.2 and Remark 2.2.3.

Consider the minimiser ' 2 H1(I ⇥Y;R3) in the variational formulation (2.2). Then

for arbitrary symmetric matrices A,B 2 R2⇥2
sym one has a lower bound for elastic stored

energy density, as follows:

Chom
� (A,B) : (A,B) �C

ˆ

I

���◆(A� x3B)+ symer2,�'(x3, ·)
���

2

L2(Y1;R3⇥3)
dx3

�C
ˆ

I

��A� x3B+ symry'⇤(x3, ·)
��2

L2(Y1;R2⇥2) dx3,
(2.64)

due to the coercivity of the tensor C1 representing the elastic properties on the sti↵ com-

ponent. In order to eliminate the corrector '⇤ from the bound (2.64), we first con-

struct an extension for it from Y1 to the whole cell Y for each x3 2 I. To this end,

we first define the symmetric a�ne part of an arbitrary H1 function, as follows. For

⇠ = (⇠1,⇠2)> 2 H1(Y1;R2), we consider the function ⇠̂ 2 H1(Y;R2) defined by

⇠̂(y) :=
 

Y1

⇠(y)dy+
 

Y1

symry⇠(y)dy
Å

y�
 

Y1

ydy
ã
.

Notice that the operator ·̂ is linear and satisfies the following properties:

ry⇠̂ = symry⇠̂ =

 

Y1

symry⇠(y)dy,
 

Y

⇠̂(y)dy =
 

Y1

⇠(y)dy,

��symry⇠̂
��

L2(Y;R2⇥2)  |Y |/|Y1|
��symry⇠

��
L2(Y1;R2⇥2) .

Now we define the extension operator Ê : H1(Y1;R2)! H1(Y;R2), via

Ê⇠ := E(⇠� ⇠̂)+ ⇠̂,

where E is the extension operator from [51, Lemma 4.1], which satisfies the estimate

��symry(E⇠)
��

L2(Y;R2⇥2) C
��symry⇠

��
L2(Y1;R2⇥2) .
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It is easy to see that

��symry(Ê⇠)
��2

L2(Y;R2⇥2) C
��symry⇠

��2
L2(Y1;R2⇥2) . (2.65)

Next, consider the function

 (y) := (A� x3B)y+'⇤(y).

Clearly, one has

Ê (y) = E('⇤ � '̂⇤)(y)+ (A� x3B)y+ '̂⇤(y) = Ê'⇤(y)+ (A� x3B)y.

Furthermore, from (2.65) one has

��symry(Ê )
��2

L2(Y;R2⇥2) C
��symry 

��2
L2(Y1;R2⇥2) =C

��A� x3B+ symry'⇤
��2

L2(Y1;R2⇥2) .

(2.66)

At the same time, the following bound holds:
��symry(Ê )

��2
L2(Y;R2⇥2) =

��symry(Ê'⇤)+ (A� x3B)
��2

L2(Y;R2⇥2)

=
��symry(Ê'⇤)

��2
L2(Y;R2⇥2)+ kA� x3Bk2L2(Y;R2⇥2) � |A� x3B|2.

(2.67)

Integrating (2.67) over I and taking into account (2.66) and then (2.64), the claim follows.

⌅

2.3.2. Proofs for Section 2.2.2

A. Proof of Proposition 2.2.5

Proof. Notice first that using u"h as a test function in (2.6) immediately yields

h�2a"h(u"h ,u"h)+ ku"hk2L2(⌦;R3) C k⇡h f "hkL2(⌦;R3)k⇡1/hu"hkL2(⌦;R3). (2.68)

Next, we define ũ"h by applying Theorem 4.4.1 to extend u"h |
⌦
"h
1

to the whole domain ⌦

and set

ů"h := ũ"h �u"h .

Furthermore, Theorem 4.4.1 and Lemma 4.4.4 imply

ksymrhũ"hk2L2 Ca"h(u"h ,u"h), h�2ků"hk2L2 +krhů"hk2L2 Ch�2a"h(u"h ,u"h). (2.69)
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Combining Corollary 4.2.5 with (2.69), we obtain

k⇡1/hu"hk2L2  2k⇡1/hũ"hk2L2 +2k⇡1/hů"hk2L2  h�2a"h(u"h ,u"h). (2.70)

The claim in part 1 now follows directly from (2.68) and (2.70).

Proceeding to the proof of part 2, we notice that the fourth convergence in (2.7) is

a direct consequence of (2.69) and Theorem 4.3.1 (1b). To prove the first and second

convergence in (2.7), we use Lemma 4.2.8 and (2.69). Lemma 4.2.8 (3) now yields the

following decomposition of the sequence ũ"h :

1
h

ũ"h(x) =

à
�x3@1b

�x3@2b

h�1b

í

+

à
a1

a2

0

í

+ "h ,

1
h

symrhũ"h = ◆
Ä

symrx̂a� x3r2
x̂b
ä
+ symrh 

"h ,

where b 2 H2
�D

(!), a 2 H1
�D

(!;R2), and ( "h)h>0 ⇢ H1
�D

(⌦;R3) is such that h⇡1/h "h �! 0

in L2.

To prove the third convergence in (2.7), we first assume that ! has C1,1 bound-

ary. By virtue of Lemma 4.2.10 (3), there are sequences ('"h)h>0 ⇢ H2
�D

(!), ( ̃"h)h>0 ⇢

H1
�D

(⌦;R3), (o"h)h>0 ⇢ L2(⌦;R3⇥3) such that

symrh 
"h = �x3◆

�
r2

x̂'
"h
�
+ symrh ̃

"h + o"h ,

where

'"h
L2

��! 0, rx̂'
"h

L2

��! 0, kr2
x̂'

"hkL2 C,

 ̃
"h L2

��! 0, krh ̃
"hkL2 C,

o"h
L2

��! 0.

In view of Lemma 4.3.3 (1) and Theorem 4.3.1 (1a), there exist z 2 L2(!; H2(Y)) and

 ̃ 2 L2(!; H1(I⇥Y;R3)) such that (up to extracting a subsequence)

r2
x̂'

"h(x̂)
dr�2����*r2

yz(x̂,y),

symrh ̃
"h(x)

dr�2����* symer�  ̃(x,y).
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Introducing the function

'(x,y) :=

à
�x3@y1z(x̂,y)

�x3@y2z(x̂,y)

��1z(x̂,y)

í

+  ̃(x,y),

we have

symer�'(x,y) = �x3◆
�
r2

yz(x̂,y)
�
+ symer�  ̃(x,y),

from which the third convergence in (2.7) follows.

Next we can extend this result to the case of an arbitrary Lipschitz domain. In the

general case we can only conclude that since h�1 symrhũ(x) is bounded in L2(⌦;R3)

there exists C 2 L2(⌦⇥Y;R3⇥3) such that

h�1 symrhũ"h(x)
dr�2����* ◆

�
symrx̂a(x̂)� x3r2

x̂b(x̂)
�
+C(x,y).

Take a sequence (!n)n2N of increasing domains with C1,1 boundary such that !n ⇢ !,

[n2N!n = !. By the preceding analysis we conclude that for every n 2 N there exists

'n 2 L2(!n; H1(I⇥Y;R3)) such that

C(x,y) = symer2,�'
n(x,y) a.e. x̂ 2 !n, (x3,y) 2 I⇥Y.

Furthermore, notice that
��symer2,�'

n��
L2(!n⇥I⇥Y;R3⇥3)  kCkL2(⌦⇥Y;R3⇥3), 8n 2 N.

Finally, we extend 'n by zero outside!n⇥ I. The claim follows from the fact thatC�(⌦⇥ I)

is weakly closed, which in turn is a consequence of Korn’s inequality for functions in

Ḣ1(I⇥Y;R3) (see [48, Theorem 6.3.8]).

To prove part 3, we first notice that

lim
h!0

h�2a"h(u"h ,u"h) = ab�(b,b).

Using lower semicontinuity of convex functionals with respect to weak two-scale conver-

gence and the definition of ab�, we conclude that symer� ů(x,y) = 0, a = ab and that C(x, ·)

solves the minimisation problem (2.2) with A = symrx̂a(x̂) and B = r2
x̂b(x̂).

The strong two-scale convergence claim of part 3 as well as Remark 2.2.6 follow from

the strict convexity of the tensors C↵, ↵ = 1,2, viewed as quadratic forms on symmetric

matrices. ⌅
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B. Proof of Theorem 2.2.7

Proof. We choose the test function v in (2.6) to be of the form

v"h(x) =

à
h✓1(x̂)�hx3@1✓3(x̂)

h✓2(x̂)�hx3@2✓3(x̂)

✓3(x̂)

í

+h"h ⇣

Å
x,

x̂
"h

ã
+h⇠̊
Å

x,
x̂
"h

ã
,

where ✓⇤ 2 C1
c (!;R2), ✓3 2 C2

c (!), ⇣ 2 C1
c (⌦;C1(I ⇥Y;R3)), ⇠̊ 2 C1

c (!;C1
00(I ⇥ Y0;R3)).

The arbitrary choice of ⇣ and a density argument imply
ˆ

I

ˆ

Y1

C1(y)
î
◆
Ä
rx̂a� x3r2

x̂b
ä
+C(x̂, ·)

ó
: symer� ⇣ dydx3 = 0 a.e.x̂ 2 !,

from which the e↵ective tensor Chom
� is then obtained. Another density argument and

Proposition 2.2.5 now provide the validity of the equations (2.9). The uniqueness of the

solution to (2.9) follows from Lax-Milgram and Proposition 2.2.4, while the last claim

follows by energy considerations or by duality arguments [70, Proposition 2.8], see also

the proof of Theorem 2.2.33. ⌅

Remark 2.3.1. It is not di�cult to incorporate surface loads into the statement of Theo-

rem 2.2.7. Namely, if one adds to the right-hand side of (2.6) the term
ˆ
!⇥{�1/2,1/2}

g"h✓dx̂, ✓ 2 H1
�D

(⌦;R3),

where g"h 2 L2(!⇥ {�1/2,1/2};R3) and the integral over !⇥ {�1/2,1/2} represents a sum

of two integrals over !, and assumes that

⇡h g"h
t,dr�2�����* g 2 L2(!⇥ {�1/2,1/2}⇥Y;R3),

then using the proof of Theorem 2.2.7 and Remark 4.4.5, one concludes that the limit

equations (2.9) have an additional term
ˆ
!⇥{�1/2,1/2}

hgi(x̂) ·✓(x̂)dx̂�
ˆ
!

�
hg⇤(x̂,1/2,y)i� hg⇤(x̂,�1/2,y)i

�
·rx̂✓3(x̂)dx̂,

in the first equation and
ˆ

Y0

g(x̂,�1/2,y) ·
�
⇠̊1(�1/2,y), ⇠̊2(�1/2,y),0

�>
+

ˆ
Y0

g(x̂,1/2,y) ·
�
⇠̊1(1/2,y), ⇠̊2(1/2,y),0

�> dy,

in the second equation.
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C. Proof of Proposition 2.2.9 and Corollary 2.2.11

Proof. The proof partially follows the proof of Proposition 2.2.5. Part 1 is obtained im-

mediately by plugging v"h = u"h in (2.6).

Proceeding to part 2, we perform an extension procedure similar to that undertaken in

the proof of Proposition 2.2.5. Using Theorem 4.4.1, we define ũ"h as the extension of

u"h |
⌦
"h
1

to the whole domain ⌦ and then set

ů"h := ũ"h �u"h .

Theorem 4.4.1 and Lemma 4.4.4 now imply the estimates (2.69).

Next, we characterise the behaviour of the sequence ũ"h . To this end, notice that

Lemma 4.2.8 yields the following decomposition of the sequence ũ"h :

ũ"h(x)=

à
�x3@1b̃

�x3@2b̃

h�1b̃

í

+

à
a1

a2

0

í

+ "h , symrhũ"h = ◆
�
�x3rx̂b̃+symrx̂a

�
+symrh 

"h ,

where b̃ 2H2
�D

(!), a 2H1
�D

(!;R2), ( "h)h>0 ⇢H1
�D

(⌦;R3), and h⇡1/h "h �! 0 in L2. Since

u"h
3 , and hence ũ"h

3 as well, is bounded in L2(⌦;R3) (see Lemma 4.4.4), we infer that

b̃ = hũ"h
3 �h "h

3
L2

��! 0,

so consequently b̃ = 0. By Theorem 4.2.3, we can decompose the third component as

ũ"h
3 =  ̂

"h
3 +  ̄

"h
3 , where  ̂"h

3 =
´

I ũ"h
3 and k ̄"h

3 kL2(⌦) Ch. Thus, by two-scale compactness,

we conclude that there exists b 2 L2(!⇥Y;R3) such that

ũ"h
3 (x) =  "h

3
dr�2����*b(x̂,y).

Furthermore, by invoking Remark 4.2.7 and applying Lemma 4.3.2 (1), we note that

b(x̂,y) = b(x̂). The rest of the proof is analogous to that of Proposition 2.2.5.

To prove Corollary 2.2.11, we invoke Remark 4.2.6, Remark 4.4.3, as well as the sym-

metries of the solution due to the assumption concerning the symmetries of the elasticity

tensor. ⌅

D. Proof of Theorem 2.2.10
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Proof. We begin by plugging in (2.6) test functions of the form

v"h(x) =

à
✓1(x̂)�hx3@1✓3(x̂))

✓2(x̂)�hx3@2✓3(x̂)

✓3(x̂)

í

+"h ⇣

Å
x,

x̂
"h

ã
+ ⇠̊

Å
x,

x̂
"h

ã
,

where ✓⇤ 2C1
c (!;R2), ✓3 2C2

c (!), ⇣ 2C1
c (⌦;C1(I⇥Y;R3)), ⇠̊ 2C1

c (!;C1
00(I⇥Y0;R3)), and

using the compactness result from Proposition 2.2.9. The rest of the argument follows the

proof of Theorem 2.2.7. ⌅

E. Proof of Proposition 2.2.13 and Theorem 2.2.14

Proof. To obtain part 1 of Proposition 2.2.13, we plug u"h in (2.6). The rest of the proof

of Proposition 2.2.13 and the proof of Theorem 2.2.14 follow the steps of the proofs of

Proposition 2.2.5 and Theorem 2.2.7, respectively. ⌅

F. Proof of Proposition 2.2.17

Proof. To prove part 1, we first plug in v"h = u"h in (2.6). Next, using Theorem 4.4.6,

Corollary 4.2.5, and Remark 4.4.8, we obtain the following a priori bounds:

u"h = ũ"h + ů"h , ũ"h = E"hu"h ,

���symrhũ"h
���

L2 +h2
���⇡1/hũ"h

���2
H1 + kũ"hk2L2 C

Ä
a"h(u"h ,u"h)+ ku"hk2L2

ä
,

ů"h =

à
�"hx3@1v̊"h

�"hx3@2v̊"h

h�1"hv̊"h

í

+  ̊
"h ,

kv̊"hk2L2 +"
2
h

���rv̊"h
���2

L2 +"
4
h

���r2v̊"h
���2

L2 +
��� ̊"h
���2

L2 +"
2
hkrh ̊

"hk2L2 C"2
hksymrhů"hk2L2 Ca"h(u"h ,u"h),

h�1"hkv̊"hk2L2 C
�
a"h(u"h ,u"h)+ ku"hkL2

�
,

where v̊"h 2 H2(!),  ̊ 2 H1(⌦;R3), v̊"h =  ̊ = 0 on ⌦"h
1 .

Proceeding to part 2, we note that the first convergence in (2.22) follows directly from

Theorem 4.2.3 and Remark 4.2.7. To prove the remaining convergence statements, by
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analogy with the argument of Proposition 2.2.5 we first assume that ! has C1,1 boundary.

Using Lemma 4.2.8 and Lemma 4.2.10, 3 we have

ũ"h
3 = h�1'"h +w"h +  ̃"h

3 ,

where ('"h)h>0 is bounded in H2(!), (w"h)h>0 is bounded in H1(!) and  ̃"h
3

L2

��! 0. Since

h�1'"h is bounded in L2, the first part of the second convergence in (2.22) follows from

Lemma 4.3.2 (2). Furthermore, the first part of the third convergence in (2.22) follows

from Remark 4.2.7, Remark 4.2.9, Theorem 4.3.1 (2) and Lemma 4.3.3 (1) (in addition to

the more standard Lemma 4.2.8 and Lemma 4.2.10 (3).) The second and third parts of the

third convergence statement in (2.22) need to be additionally combined with the second

convergence statement in (2.22) through Lemma 4.3.3 (2). Finally, the fourth and fifth

convergence in (2.22) follow from Lemma 4.3.3 (3) and Lemma 4.3.4 (1) by noticing that

v̊"h �! 0 in L2 as a consequence of the fact h⌧ "h. This concludes the proof of part 2 for

the case when ! has C1,1 boundary. For the general case of ! with Lipschitz boundary,

we now use Lemma 4.2.10 (3), Theorem 4.3.1 (2) and Lemma 4.3.3 (1) in combination

with the approach of the proof of Proposition 2.2.5.

The argument for part 3 is analogous to that for Proposition 2.2.5. ⌅

G. Proof of Theorem 2.2.19

Proof. The proof is carried out by taking appropriate vest functions v= v"h in 2.6 and then

passing to the limit as h! 0, for which we invoke a combination of Proposition 2.2.17,

Remark 2.2.2, and a density argument.

Di↵erent equations in (2.24) are obtained by using di↵erent kinds of test functions.

For the first equation, we use test functions of the form

v"h(x̂) =
�
✓1(x̂),✓2(x̂),0

�>
+"h

Å
⇣1

Å
x̂,

x̂
"h

ã
,⇣2

Å
x̂,

x̂
"h

ã
,0
ã>

+"h

Å
�x3@y1 

Å
x̂,

x̂
"h

ã
,�x3@y2 

Å
x̂,

x̂
"h

ã
,
1
h
 

Å
x̂,

x̂
"h

ãã

+h
ˆ x3

0
r
Å

x,
x̂
"h

ã
dx3,

where ✓ 2C1
c (!;R2), ⇣ 2C1

c (!;C2(Y;R2)),  2C1
c (!;C1(Y)), r 2C1

c (⌦;C1(Y;R3)). Next,

for the second equation we use test function of the form

v"h(x) =
Å
⇠̊1

Å
x̂,

x̂
"h

ã
, ⇠̊2

Å
x̂,

x̂
"h

ã
,0
ã>
+

h
"h

ˆ x3

0
r̊
Å

x,
x̂
"h

ã
dx3,
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where ⇠̊ 2C1
c (!;C1

c (Y0;R2)), r̊ 2C1
c (⌦;C1

c (Y0;R3)) . Further, for the third equation (=1)

we use test equation of the form

v"h(x)= (�hx3@1✓(x̂),�hx3@2✓(x̂),✓(x̂))>+
Å
� h
"h

x3@y1 ⇠̊

Å
x̂,

x̂
"h

ã
,� h
"h

x3@y1 ⇠̊

Å
x̂,

x̂
"h

ã
, ⇠̊

Å
x̂,

x̂
"h

ãã>
,

where ✓ 2 C2
c (!), ⇠̊ 2 C1

c (!;C2
c (Y0)). For the fourth equation ( 2 (0,1)) we use test

functions of the form

v"h(x) =
Å
� h
"h

x3@y1v
Å

x̂,
x̂
"h

ã
,� h
"h

x3@y2v
Å

x̂,
x̂
"h

ã
,v
Å

x̂,
x̂
"h

ãã>
,

where v 2 C1
c (!,C2(Y)). For the fifth equation ( 2 (0,1)) we use test functions of the

form

v"h(x) =
Å
� h
"h

x3@y1 ⇠̊

Å
x̂,

x̂
"h

ã
,� h
"h

x3@y1 ⇠̊

Å
x̂,

x̂
"h

ã
, ⇠̊

Å
x̂,

x̂
"h

ãã>
,

⇠̊ 2C1
c (!,C2

c (Y0)). Finally, for the sixth equation ( = 0) we use test functions of the form

v"h(x) =
Å
� h
"h

x3@y1v
Å

x̂,
x̂
"h

ã
,� h

"h
x3@y1v

Å
x̂,

x̂
"h

ã
,v
Å

x̂,
x̂
"h

ãã>

+

Å
� h
"h

x3@y1 ⇠̊

Å
x̂,

x̂
"h

ã
,� h
"h

x3@y1 ⇠̊

Å
x̂,

x̂
"h

ã
, ⇠̊

Å
x̂,

x̂
"h

ãã>
,

where v 2 C1
c (!;C2(Y)), ⇠̊ 2 C1

c (!;C2
c (Y0)). The proof of the remaining claims follow an

analogous part of the proof of Theorem 2.2.7. ⌅

H. Proof of Corollary 2.2.20

Proof. The proof follows easily from Remark 4.2.6, Remark 4.2.11, and Remark 4.4.9.

⌅

I. Proof of Proposition 2.2.21

Proof. Part 1 follows easily from Theorem 4.4.6 (in particular, (4.16)–(4.18)) and Corol-

lary 4.2.5, after plugging v"h = u"h into (2.6). To justify the scaling, notice that as a

consequence of the above mentioned statements we have

k⇡"h/hu"hkL2 Ch�2a"h(u"h ,u"h),
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see also the last expression in (2.71) below. To prove part 2 we use Theorem 4.4.6 and

Corollary 4.2.5 again and obtain

u"h = ũ"h + ů"h , ũ"h = E"hu"h ,

���⇡1/hũ"h
���2

H1(!;R3) Ch�2
���sym ũ"h

���2
L2(⌦;R3) Ch�2a"h(u"h ,u"h),

ů"h =

à
�"hx3@1v̊"h

�"hx3@2v̊"h

h�1"hv̊"h

í

+  ̊
"h ,

���h�1"hv̊"h
���2

L2(!)+"
2
h

���h�1"hrv̊"h
���2

L2(!;R2)+"
4
h

���h�1"hr2v̊"h
���2

L2(!;R2)+
���h�1"h ̊

"h
���2

L2(⌦;R3)

+"2
h

���h�1"hrh ̊
"h
���2

L2(⌦;R3⇥3) Ch�2"4
h

���symrhů"h
���2

L2(⌦;R3⇥3) Ch�2a"h(u"h ,u"h),
(2.71)

where v̊"h 2 H2(!),  ̊ 2 H1(⌦;R3), v̊"h =  ̊ = 0 on ⌦"h
1 . Assuming first that ! has C1,1

boundary, part 2 follows by using Lemma 4.2.8, Lemma 4.2.10 (3), Theorem 4.3.1 (2),

Lemma 4.3.3 (1,3), Lemma 4.3.4 (1), and Theorem 4.4.6. For general Lipschitz domains

we follow the approach of Proposition 2.2.5 and Proposition 2.2.17. Finally, part 3 is

obtained the same way as part 3 of Proposition 2.2.5. ⌅

J. Proof of Theorem 2.2.22

Proof. Proof follows the approach of the proof of Theorem 2.2.7, by using Proposition

2.2.21, Remark 2.2.2, and test functions of the form

v"h(x) =
�
h✓1(x̂)�hx3@1✓3(x̂),h✓2(x̂)�hx3@2✓3(x̂),✓3(x̂)

�>
+h"h

Å
⇣1

Å
x̂,

x̂
"h

ã
,⇣2

Å
x̂,

x̂
"h

ã
,0
ã>

+"h

Å
�hx3@y1 

Å
x̂,

x̂
"h

ã
,�hx3@y2 

Å
x̂,

x̂
"h

ã
, 

Å
x̂,

x̂
"h

ãã>
+h2

ˆ x3

0
r
Å

x,
x̂
"h

ã
dx3

+

Å
h
"h

Å
⇠̊1� x3@y1 ⇠̊3

Å
x̂,

x̂
"h

ãã
,

h
"h

Å
⇠̊2� x3@y2 ⇠̊3

Å
x̂,

x̂
"h

ãã
, ⇠̊3

Å
x̂,

x̂
"h

ãã>

+
h
"h

ˆ x3

0
r̊
Å

x,
x̂
"h

ã
dx3,

where ✓⇤ 2C1
c (!;R2), ✓3 2C2

c (!), ⇣ 2C1
c (!;C1(Y;R2)),  2C1

c (!;C1(Y)), r 2C1
c (!;C1(Y;R3)),

⇠̊⇤ 2C1
c (!;C1

c (Y0;R2)), ⇠̊3 2C1
c (!;C2

c (Y0)), r̊ 2C1
c (⌦;C1

c (Y0;R3)). ⌅

K. Proof of Proposition 2.2.23 and Corollary 2.2.25
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Proof. The proof proceeds in the same way as the proofs of Proposition 2.2.9 or Propo-

sition 2.2.5 by invoking additionally Theorem 4.3.1 (3), Theorem 4.4.10, and Lemma

4.3.4 (2). In order to conclude the form of C1 from Lemma 4.2.8, Lemma 4.2.10 (3), and

Theorem 4.3.1 (3), it is also important to see that the following simple identity holds:

x3r2
y'(x̂,y) = ry(x3@y1', x3@y2',0)>, 8' 2 L2(!; H2(Y)).

The proof of Corollary 2.2.25 uses Remark 4.2.6, Remark 4.4.11, and symmetries of the

solution, as a consequence of the assumption on symmetries of the elasticity tensor. ⌅

L. Proof of Theorem 2.2.24

Proof. The proof is similar to the proof of Theorem 2.2.10, by invoking Remark 2.2.3

and plugging in (2.6) test functions of the form

v"h(x) =

à
✓1(x̂)�hx3@1✓3(x̂)

✓2(x̂)�hx3@1✓3(x̂)

✓3(x̂)

í

+"h ⇣

Å
x,

x̂
"h

ã
+h

ˆ x3

0
r(x)dx3+ ⇠̊

Å
x,

x̂
"h

ã
,

where ✓ 2 C1
c (!;R2), ✓3 2 C2

c (!), ⇣ 2 C1
c (⌦;C1(I ⇥Y;R3)), r 2 C1

c (⌦), ⇠̊ 2 C1
c (!;C1

00(I ⇥

Y0;R3)). ⌅

M. Proof of Proposition 2.2.26

Proof. The proof is carried out similarly to the proof of Proposition 2.2.9 and Proposi-

tion 2.2.5, where we additionally use Theorem 4.3.1 (3), Theorem 4.4.10, and Lemma

4.3.4 (2). ⌅

N. Proof of Theorem 2.2.27

Proof. The proof follows the proof of Theorem 2.2.10, by using Remark 2.2.3 and by

plugging in (2.6) test functions of the form

v"h(x) =

à
h✓1(x̂)�hx3@1✓3(x̂)

h✓2(x̂)�hx3@1✓3(x̂)

✓3(x̂)

í

+h"h ⇣

Å
x,

x̂
"h

ã
+h2

ˆ x3

0
r(x)dx3+ ⇠̊

Å
x,

x̂
"h

ã
,

where ✓ 2 C1
c (!;R2), ✓3 2 C2

c (!), ⇣ 2 C1
c (⌦;C1(I ⇥Y;R3)), r 2 C1

c (⌦), ⇠̊ 2 C1
c (!;C1

00(I ⇥

Y0;R3)). ⌅
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2.3.3. Proofs for Section 2.2.3

A. Proof of Theorem 2.2.30

Proof. It is easy to see from Proposition 2.2.4 that the operatorAb,hom
� is positive definite,

coercive, and has compact inverse. This, in particular, allows one to obtain immediately

a characterization of its spectrum, which we omit.

From Proposition 2.2.5 and Theorem 2.2.7 we infer that if f "h �! f in L2, then the

sequence of solutions (u"h)h>0 of (2.6) for �= 1 satisfies u"h! (0,0,b)>, where b 2H2
�D

(!)

solves
�
Ab,hom
� +I

�
b = h⇢i�1 f 3.

Using the proof of [70, Proposition 2.2], we show that the property (H1) in Definition 2.2.1

holds. To prove the property (H2), we take a sequence �"h of eigenvalues of the operator

h�2A"h converging to � > 0. Next, consider the sequence (u"h)h>0 of the corresponding

eigenfunctions

h�2A"hu"h = �"hu"h , ku"hkL2 = 1.

Multiplying the above equation by u"h , using the compactness result from Proposition

2.2.5, and invoking an argument similar to that of Theorem 2.2.7, we conclude that u"h �!

(0,0,b)> in L2, where b 2 H2
�D

(!) solves

Ab,hom
� b = �b, kbkL2 = 1,

which completes the proof of (H2). This also proves the convergence of eigenfunctions.

To prove a refined version of the Hausdor↵ convergence concerning the convergence

of eigenvalues ordered in the increasing order, we take an arbitrary closed curve � ⇢ C,

intersecting an interval in (0,1) and not passing through any of the eigenvalues ��,n and

define the following projection operators:

P"h
�
= � 1

2⇡i

˛
�

Å
1
h2A"h � zI

ã�1
dz, P� = �

1
2⇡i

˛
�

Ä
Ab,hom
� � zI

ä�1
dz.

We claim that for small enough "h > 0 the dimensions of the ranges R(P"h
�

) and R(P�)

coincide. (Note that they are finite by the compactness of the resolvent.) Indeed, from the

compactness result in Proposition 2.2.5 and Lebesgue theorem on dominated convergence
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it follows that if ( f "h)h>0 ⇢ L2(⌦;R3), (v"h)h>0 ⇢ L2(⌦;R3) are such that f "h * f , v"h * v

weakly in L2, then one has
�
P"h
�

f "h ,v"h
�
! (P� f ,v).

It follows that P"h
�

f "h �! P� f in L2. This immediately implies that the dimensions of

R(P"h
�

) and R(P�) coincide for su�ciently small "h.

Next, fix a closed curve ��,n ⇢ C containing in its interior the eigenvalue ��,n and no

other eigenvalues, intersecting the real line at w1 and w2 such that ��,n�1 <w1 < ��,n <w2 <

��,n+1, where we set ��,0 = 0. The multiplicity k�,n of this eigenvalue equals dimR(P��,n).

By using the above claim, we know that for small enough "h exactly k�,n eigenvalues of

h�2A"h (including their multiplicities) are contained in the interval (w1,w2). ⌅

Before giving the rest of the proofs we will state and prove one helpful lemma:

Lemma 2.3.2. 1. If µh = "h, one has

lim
h!0

�( ˚̃A"h) ⇢ lim
h!0

�(Ã"h).

2. If � 2 (0,1], µh = "hh, one has

lim
h!0

�(Å"h) ⇢ lim
h!0

h�2�(A"h).

3. If � = 0, µh = "2
h, one has

lim
h!0

h�2"2
h�(Å"h) ⇢ lim

h!0
h�2�(A"h).

Proof. We prove part 1 for the case � 2 (0,1) only, as the cases � = 0 and � = 1 are

dealt with by similar arguments. We take �"h 2 �( ˚̃A"h) such that �"h ! � and ů"h
r 2

H1
00(I⇥Y0;R3) such that ků"h

r kL2 = 1 and ˚̃A"hů"h
r = �

"hů"h
r . The convergence properties of

�"h and ů"h
r immediately imply that the sequence

Ä
ksymr h

"h
ů"h

r kL2

ä
h>0

is bounded.5 For each h we take a cube Qh = qh ⇥ I such that qh ⇢ ! has vertices in

"hZ2 and side length 2nh"h, where nh is an integer. Furthermore, we assume that nh"h

5Actually it can be concluded that the sequence (ků"h
r kH1 )h>0 is bounded, see [20, Section 7].
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converge to some positive number as h! 0. We define u"h as follows. Consider z 2 Z2

such that the cube of size "h whose left corner is at "hz is contained in qh.On the inclusion

"h(Y0 + z)⇥ I, we set u"h to be equal to ů"h
r (x̂/"h � z, x3) if z1 (the first coordinate of z) is

even and to �ů"h
r (x̂/"h�z, x3) if z1 is odd. We then extend u"h by zero outside "h(Y0+z)⇥ I.

This procedure is repeated for all z 2 Z2 with the above property, and finally u"h is set to

zero on ⌦ \Qh.

It can be easily checked that for ⇠ 2 H1
�D

(⌦;R3)\L2,memb(⌦;R3) one hasˆ

⌦

Cµh

Å
x̂
"h

ã
symrhu"h(x) : symrh⇠(x)dx��"h

ˆ
⌦
⇢u"h ·⇠ (2.72)

=

ˆ
Qh\⌦"h

0

Cµh

Å
x̂
"h

ã
symrhu"h(x) : symrh⇠̃(x)dx��"h

ˆ
Qh\⌦"h

0

⇢0u"h · ⇠̃dx,

where ⇠ = ⇠̃+ ⇠̊, with ⇠̃ being the extension provided by Theorem 4.4.1. Recall that, as a

consequence of Corollary 4.2.5,
���⇠̃
���

H1 C
���symrh⇠̃

���
L2 ,

where C > 0 does not depend on h. Using this fact and the definition of u"h (noting that

the mean value of u"h is zero on each two neighbouring small cubes of size "h in the x1

direction) it can be easily seen that the right hand side of (2.72) can be written in the formˆ
⌦

f "h
1 : symrh⇠̃dx+

ˆ
⌦

f "h
2 · ⇠̃dx,

where f "h
1 2 L2(Qh;R3⇥3), f "h

2 2 L2(Qh;R3), and k f "h
1 kL2 ! 0, k f "h

2 kL2 ! 0 as h! 0. To

see this, we divide the domain into small rectangles containing two neighbouring cubes,

where the first coordinate of the left corner is even and odd respectively, and apply the

Poincaré inequality. This yields an estimate for the right-hand side of (2.72) by the ex-

pression C"h(krh⇠̃kL2 + k⇠̃kL2), where C > 0 is h-independent. By using the Riesz repre-

sentation theorem (applied first on the physical domain and then moved on the canonical

domain) and the fact that on Qh the norm k · kL2 + krh(·)kL2 is equivalent to the norm

k · kL2 + ksymrh(·)kL2 , we conclude that the right-hand side of (2.72) can be written in the

form

"h

Çˆ
Qh

symrhr"h(x) : symrh⇠̃(x)dx+
ˆ

Qh
r"h · ⇠̃dx

å
,

where ksymrhr"hkL2 + kr"hkL2 is bounded independently of h. The claim follows by tak-

ing f "h
1 = "h symrhr"h and f "h

2 = "hr"h in (2.3.3).
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To conclude the proof of part 1, we note that there exists C > 0 such that ku"hkL2 � C

and hence, by applying a suitable version of Lemma 4.6.4 (see also Remark 4.6.5), one

has

dist
�
�"h ,�(Ã"h)

�
! 0 as h! 0.

The proof of part 2 proceeds in a similar way. Part 3 requires an additional explana-

tion while following the same kind of argument. We again take �"h 2 �("2
hh�2 ˚̃A"h) such

that �"h ! � and ů"h
r 2 H1

00(I ⇥Y0;R3) such that ků"h
r kL2 = 1 and "2

hh�2 ˚̃A"hů"h
r = �

"hů"h
r .

Using the same argument as in the proof of Theorem 2.2.30 (notice that here the n-th

eigenvalue is of order h�2"2
h), we infer immediately that

�
"hh�1ksymr h

"h
ů"h

r kL2
�

h>0 is

bounded. Furthermore, invoking Corollary 4.2.5, we obtain
�����

Å
"h

h
ů"h

r,1,
"h

h
ů"h

r,2, ů
"h
r,3

ã�����
H1
C

"h

h

����symr h
"h

ů"h
r

����
L2

for some C > 0 independent of h. The rest of the proof follows the proof of part 1. ⌅

Remark 2.3.3. Using a standard approach (resolvent convergence and compactness of

eigenfunctions), it can be easily shown that when � 2 (0,1) one has limh!0�( ˚̃A"h) =

�(Ã00,�) and limh!0�(Å"h) = �(A00,�). To obtain this result one needs to use uniform

(in �) Korn inequality, see e.g. [20, Section 7].

In the case �= 0 one can prove (similarly to the proof of Theorem 2.2.30) that limh!0�( ˚̃A"h)=

�(Ã00,0) and limh!0 "2
hh�2�(Å"h) = �(A00,0).

The analogous claim is not valid for � = 1. This is the main reason why in this

regime the limiting spectrum is di↵erent than the spectrum of the limit operator. Here,

due to the fact that only resolvent convergence (as in Theorem 2.2.24) holds and no

compactness of eigenfunctions is available, one only has �(Ã00,1) ⇢ limh!0�( ˚̃A"h),

�(A00,1) ⇢ limh!0�(Å"h).

B. Proof of Theorem 2.2.31

Proof. The countability of the solutions of (2.35) is proved in Proposition 4.6.3.

The equality (2.36) is proved in the same way as in [71, Section 8], by analysing the

resolvent equation for the limit operator.

The proof of the Hausdor↵ convergence consists of two parts: the statement (H1) is

the direct consequence of the strong resolvent convergence established in Theorem 2.2.10
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and Theorem 2.2.19. The statement (H2) is proved by following the strategy of Theorem

2.2.30: taking the sequence of the solutions to

Ã"hu"h = �"hu"h , ku"hkL2 = 1,

where �"h ! �. One only needs to establish that the L2 weak limit of u"h is not zero, so

(H2) then follows by letting "h! 0 in (2.3.3). This claim is verified by proving that the

sequence (u"h)h>0 converges strongly two-scale to the limit u, i.e.

u"h
dr�2����!u.

Note that, due to Lemma 2.3.2, one can assume without loss of generality that � <

limh!0�( ˚̃A"h) = �(Ã00,�). One can then prove (2.3.3) in the same way as in [71, Lemma

8.2], see also [16, Theorem 6.2] for an analogous proof in the stochastic setting as well as

the proof of Theorem 2.2.33 below. It is important to emphasize that the proof requires

strong convergence in L2 of the sequence of extensions (ũ"h)h>0, which can be ensured by

imposing Assumption 2.1.1 (1) and using Corollary 2.2.11 and Corollary 2.2.20.

The claim about the symmetry of �̃memb
� is a direct consequence of Assumption 2.1.1.

⌅

C. Proof of Theorem 2.2.33

Proof. The proof follows the lines of the proof of Theorem 2.2.31. The analysis of the

spectrum of limit operator is carried out as in [71, Section 8], by studying the limit resol-

vent equations in Theorem 2.2.14 and Theorem 2.2.22. Furthermore, in Theorem 2.2.22

we take f⇤ = 0, which implies ů⇤ = 0. Strong resolvent convergence is then obtained as

the last statement in the mentioned theorem, and compactness of an appropriate sequence

of eigenfunctions can be proved by invoking [71, Lemma 8.2]. The only fact we will

additionally comment on is the strong two-scale convergence of the eigenfunctions in the

regime � = 0. We take �"h 2 �(h�2A"h) such that liminfh!0 dist(�"h ,h�2"2
h�(Å"h)) > 0

(this is again the only situation that requires special analysis, due to Lemma 2.3.2) and

�"h ! �. Next, we take u"h 2D(A"h), such that ku"hkL2 = 1 and h�2A"hu"h = �"hu"h . In

order to prove that � is in the spectrum of the limit operator, we show that the sequence u"h

is compact in the sense of strong two-scale convergence. We decompose u"h = ũ"h + ů"h ,
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where ũ"h = E"hu"h , where E"h is an extension given in Theorem 4.4.6. In the same way

as in Proposition 2.2.21, we infer that (2.71) holds. Taking test function ⇠̊ 2 H1
�D

(⌦;R3)

that vanish on ⌦"h
1 , we conclude that

1
h2

ˆ

⌦
"h
0

Cµh

Å
x̂
"h

ã
symrhů"h(x) : symrh⇠̊

"h(x)dx��"h

ˆ
⌦
"h
0

⇢ů"h · ⇠̊dx =

1
h2

ˆ
⌦
"h
0

Cµh

Å
x̂
"h

ã
symrhũ"h(x) : symrh⇠̊

"h(x)dx��"h

ˆ
⌦
"h
0

⇢ũ"h · ⇠̊dx.

(2.73)

To prove the strong two-scale convergence, we shall use a duality argument. To this end,

consider the identity

1
h2

ˆ

⌦
"h
0

Cµh

Å
x̂
"h

ã
symrh z̊"h(x) : symrh⇠̊(x)dx��"h

ˆ
⌦
"h
0

⇢ z̊"h · ⇠̊dx =
ˆ
⌦
"h
0

f̊ "h · ⇠̊dx,

8⇠̊ 2 H1
�D

(⌦;R3), ⇠̊ = 0 on ⌦"h
1 ,

(2.74)

where f̊ "h 2 L2(⌦;R3) and z̊"h 2 H1
�D

(⌦;R3), z̊"h = 0 on ⌦"h
1 . Denoting by ů"h

c the solution

of (2.74) with f̊ "h
= ��"h⇢ũ"h , subtracting (2.74) from (2.73), and using an appropriate

version of Lemma 4.6.4 (see Remark 4.6.5), we obtain that

"h
���symrh(ů"h � ů"h

c )
���

L2 +
���ů"h � ů"h

c
���

L2 ! 0 as h! 0.

Notice also that ů"h
⇤

L2

! 0 as the consequence of apriori estimates, see also (2.71). We now

take g̊"h 2 L2(⌦;R3) such that g̊"h
dr�2����* g̊ 2 L2(⌦⇥Y;R3). Furthermore, we take s̊"h as

the solution of (2.74) with f̊ "h
= g̊"h . Substituting s̊"h as a test function in the equation for

ů"h
c and ů"h

c as a test function in the equation for s"h , we obtain by the same argument as

in the proof of Theorem 2.2.22 that

1
12

ˆ

!⇥Y0

Cbend,r
0 (y)r2

yů3(x̂,y) : r2
y s̊3(x̂,y)dx̂dy��

ˆ

!⇥Y0

⇢0(y)ů3(x̂,y) · s̊3(x̂,y)dx̂dy

= ��
ˆ

!⇥Y0

⇢0(y)ũ3(x̂,y) · s̊3(x̂,y)dx̂dy =
ˆ

!⇥Y0

g̊3(x̂,y) · ů3(x̂,y)dx̂dy,

where ů3, s̊3 2 L2(!; H2
0(Y0)) are weak two-scale limits of ů"h

3 , s̊"h
3 while s̊"h

⇤ �! 0 in L2,

and ũ3 2 H2
�D(!) is the strong limit of ũ"h

3 while ũ"h
⇤ �! 0 in L2. It follows that

lim
h!0

ˆ
⌦

g̊"h ·ů"h dx=�� lim
h!0

ˆ
⌦
⇢ũ"h · s̊"h dx=��

ˆ

⌦⇥Y

⇢ũ3(x̂,y) · s̊3 =

ˆ
⌦⇥Y

g3(x,y)ů3(x̂,y)dx̂dy.
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Therefore, the sequence ů"h , and consequently u"h , converges strongly two-scale. Passing

to the limit in the (weak formulation of the) equation h�2A"hu"h = �"hu"h ,we immediately

obtain Â0u = �u, where u , 0 is the two-scale limit of u"h . ⌅

D. Proof of Theorem 2.2.35

Proof. The proof uses some ideas given in [2] adapted to the present, simpler, setup.

We start by characterising the sets �(Åstrip), �ess(Å+strip), and �ess(Å�strip). By apply-

ing the Fourier transform, it is easily seen that the generalised eigenfunctions of Åstrip are

of the form

u⌘strip(y1,y2, x3) = ei⌘x3u⌘(y1,y2), ⌘ 2 R,

where u⌘ 2 H1
0(Y0;C3) is an eigenfunction of the self-adjoint operator Å⌘

strip on L2(Y0;C3)

defined via the bilinear form

å⌘strip(u,v) =
ˆ

Y0

C0(y) sym
�
@y1u |@y2u | i⌘u

�
: sym

�
@y1v |@y2v | i⌘v

�
dy,

å⌘strip : H1
0(Y0;C3)⇥H1

0(Y0;C3)! C.

It is easily seen that for each ⌘ 2 R the operator Å⌘
strip is positive definite and has compact

resolvent, and thus it has an increasing sequence of eigenvalues {↵⌘1,↵
⌘
2, . . . } diverging to

+1. It follows that

�(Åstrip) =
[

⌘2R

�
↵⌘1,↵

⌘
2, . . .

 
.

By using a suitable Korn’s inequality on the on I⇥Y0 (applied to the function (x3,y1,y2) 7!

ei⌘x3u(y1,y2)) and (2.1), we obtain that there exists a constant C > 0, which is independent

of ⌘, such that

kuk2L2 +
���
�
@y1u |@y2u | i⌘u

����2
L2 Cå⌘strip(u,u) 8u 2 H1

0(Y0;C3).

Furthermore, using the characterisation of eigenvalues through a Rayleigh quotient, we

obtain

↵⌘1 = min
u2H1

0(Y0;C3)

å⌘strip(u,u)

kuk2
L2

.

Combining this with (2.3.3), we infer that there exists c > 0, independent of ⌘, such that

↵⌘1 � c min
u2H1

0(Y0;C3)

���
�
@y1u |@y2u | i⌘u

����2
L2

kuk2
L2

.
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Finally, using Poincaré’s inequality on Y0, we obtain the existence of c > 0 such that

↵⌘1 � c+ ⌘2. The continuity of ↵⌘1 with respect to ⌘ (which can also be inferred from

(2.3.3)) implies that the range of the mapping ⌘ 7! ↵⌘1 is [m0,+1) for some m0 > 0. This

concludes the characterisation of the set �(Åstrip), provided by (2.2.35).

Proceeding to the discussion of the sets �ess(Å±strip),we show that they in fact coincide

with �(Åstrip). The proof of this claim, for which we just provide a sketch, is similar to the

argument of [2, Proposition 7.5]. Consider a Weyl sequence associated to � 2�ess(Å+strip),

i.e., (u+,n)n2N 2D(Å+strip) such that

ku+,nkL2 = 1, u+,n L2

��*0,
���Å+stripu+,n��u+,n

���
L2 ! 0. (2.75)

The properties (2.75) imply that (u+,n)n2N is bounded in H1. Next, take a smooth positive

function  :R+0 !R that takes zero values on (�1,1] and is equal to unity on [2,+1) and

show that for all v 2 H1
00(R+0 ⇥Y0;R) one has

ˆ
R+0⇥Y0

C0(y)r( u+,n) : rvdx3dy��
ˆ
R+0⇥Y0

⇢0( u+,n) · vdx3dy

=

ˆ
R⇥Y0

C0(y)r( u+,n) : rvdx3dy��
ˆ
R⇥Y0

⇢0( u+,n) · vdx3dy

=

ˆ
[1,2]⇥Y0

C0(y) sym
�
0 |0 |@x3 u+,n

�
: symrvdx3dy

+

ˆ
[1,2]⇥Y0

C0(y) symru+,n : sym
�
0 |0 |@x3 v

�
dx3dy.

(2.76)

Combining (2.75) with compact embedding of H1 into L2 on bounded domains, we con-

clude that for all bounded sets A one has ku+,nkL2(A) ! 0. Furthermore, considering a

smooth non-negative compactly supported function  A that is equal to one on A and not-

ing that by virtue of (2.75) one has
ˆ
R+0⇥Y0

�
Å+stripu+,n��u+,n

�
 Au+,n! 0,

we obtain that actually ku+,nkH1(A)! 0.

Thus we conclude that the right-hand side of (2.76) can be written in the form
ˆ

[1,2]⇥Y0

f n
1 : symrvdx3dy+

ˆ
[1,2]⇥Y0

f n
2 · vdx3dy,
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where k f n
1kL2 ! 0 and k f n

2kL2 ! 0 as n!1. By combining a suitable version of Lemma

4.6.4 with (2.76), we conclude that � 2 �(Åstrip). In a similar fashion, starting from the

generalised eigenfunction (2.3.3), we conclude that �(Åstrip) ⇢ �(Å+strip).

By repeating the above argument forA�strip, we also obtain

�ess
�
Å�strip

�
= �

�
Åstrip

�
.

This establishes the property (2.38). We now proceed to proving (2.39).

First, by virtue of the symmetries of the elastic tensor (and considering appropriate

Weyl sequences), we easily obtain the equality �(Å+strip) = �(Å�strip). Next we show that

�ess
�
Å+strip

�
⇢ �

� ˚̃Astrip
�
, �

� ˚̃Astrip
�
= �

�
Åstrip

�
(2.77)

To show the first inclusion in (2.77), we take a Weyl sequence associated to the � 2

�ess(Å+strip), i.e. (u+,n)n2N ⇢D(Å+strip) such that

ku+,nkL2 = 1, u+,n L2

��*0,
���Å+stripu+,n��u+,n

���
L2 ! 0.

Using the elastic symmetries once again, we infer that for the functions

u�,n⇤ (x3,y) := u+,n⇤ (�x3,y), u�,n3 (x3,y) := �u+,n3 (�x3,y), (x3,y) 2 R+0 ⇥Y0,

one has

ku�,nkL2 = 1, u�,n L2

��*0,
���Å�stripu�,n��u�,n

���
L2 ! 0.

We also note that the sequences (u±,n)n2N are bounded in H1. We now define

un(x3,y) :=  (x3)u+,n(x3,y)+ (�x3)u�,n(x3,y), (x3,y) 2 R⇥Y0.

In the same way as in (2.76), we conclude that for every v 2 H1
00(R+0 ⇥Y0;R) one hasˆ

R⇥Y0

C0(y)run : rvdx3dy��
ˆ
R⇥Y0

⇢0unvdx3dy

=

ˆ
([1,2][[�2,�1])⇥Y0

f n
1 : symrvdx3dy+

ˆ
([1,2][[�2,�1])⇥Y0

f n
2vdx3dy,

where k f n
1kL2 ! 0 and k f n

2kL2 ! 0 as n!1, from which it follows that � 2 �( ˚̃Astrip).

For the last equality in (2.77) it su�ces to argue that �(Åstrip) ⇢ �( ˚̃Astrip). To this

end, we apply the Fourier transform and for ⌘ 2 R we consider generalised eigenfunctions

of the operator Åstrip of the form

u⌘strip(x3,y) = ei⌘x3u⌘(y), (x3,y) 2 R⇥Y0,
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where u⌘ 2 H1
00(Y0;C3) is an eigenfunction of the operator Å⌘

strip, i.e., Å⌘
stripu⌘(y1,y2) =

↵⌘i u⌘(y1,y2), u⌘ , 0, for some i 2N. Invoking the symmetries, we infer that for each ⌘ 2 R

(u�⌘strip)⇤(x3,y) := (u⌘strip)⇤(�x3,y), u�⌘strip,3(x3,y) :=�u⌘strip,3(�x3,y), (x3,y) 2R⇥Y0,

is also a generalised eigenfunction of the operator Åstrip associated with the same eigen-

value ↵⌘i . Therefore, the function
�
u⌘strip +u�⌘strip

�
/2 is a generalised eigenfunction of the

operator ˚̃Astrip (and hence the operator Åstrip) associated with the same eigenvalue. Since

every element of the spectrum of the operator Åstrip coincides with ↵⌘i for some ⌘ 2 R

and i 2 N, we conclude that �(Åstrip) ⇢ �( ˚̃Astrip). This construction also proves that

�ess( ˚̃Astrip) = �
�
Åstrip

�
. Since we have already established that �

�
Åstrip

�
⇢ �

�
Å+strip

�
,

the property (2.39) follows.

Next we establish the property (2.37). We start by proving the inclusion

lim
h!0

�(Å"h) ⇢ �(Åstrip)[�(A+strip)[�(A�strip). (2.78)

Let us take �"h 2 �(Å"h) and u"h 2D(Å"h) such that �"h ! � and

Å"hu"h = �"hu"h , ku"hkL2 = 1.

Consider smooth positive functions  i, i= 1,2,3 onR such that  1+ 2+ 3 = 1, supp  2 ⇢

[�1/4,1/4], supp  1 ⇢ (�1,�1/8], supp  3 ⇢ [1/8,1), and  3(x3) =  1(�x3). Then there

exists i 2 {1,2,3} such that (up to a subsequence)

��� iu"h
���

L2 �
1
3
8h.

If i = 2, we extend  2u"h by zero on R⇥Y0 and, by scaling the variable x3, define

u"h
strip(x3,y) =

 
h
"h
 2

Å
"h

h
x3

ã
u"h

Å
"h

h
x3,y
ã
, (x3,y) 2 R⇥Y0.

It is straightforward to see that
���u"h

strip

���
L2 �

1
3

and that for all v 2 H1
00(R⇥Y0;R3) one has

ˆ
R⇥Y0

C0(y)ru"h
strip :rvdx3dy��"h

ˆ
R⇥Y0

⇢0u"h
stripvdx3dy=

ˆ
R⇥Y0

f "h
1 : symrvdx3dy+

ˆ
R⇥Y0

f "h
2 v,
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where k f "h
1 kL2 ! 0, k f "h

2 kL2 ! 0 as h! 0. By using an appropriate analogue of Lemma

4.6.4 (see also Remark 4.6.5) adapted to the operator Å"h , we conclude that

� 2 �
�
Åstrip

�
.

If i = 1 or i = 3 we argue similarly that � 2 Å+strip, i.e. � 2 Å�strip respectively.

Next, we prove that �(Åstrip) ⇢ limh!0�(Å"h). Considering ↵⌘i and u⌘ 2 D(Å⌘
strip)

such that

Å⌘
stripu⌘ = ↵⌘i u⌘, ku⌘kL2 = 1

we set

u⌘strip(x3,y) = ei⌘x3u⌘(y), (x3,y) 2 R⇥Y0.

It is easily seen that Åstripu⌘strip = ↵
⌘
i u⌘strip. We define

u"h(x3,y) =
����� 2(x3)u⌘strip

Å
h
"h

x3,y
ã�����

L2

�1
 2(x3)u⌘strip

Å
h
"h

x3,y
ã
, (x3,y) 2 I⇥Y0.

It then follows easily that for every h > 0 and v 2 H1
00(I⇥Y0;C3) one has

ˆ
I⇥Y0

C0(y)r h
"h

u"h : r h
"h

vdx3dy�↵⌘i
ˆ

I⇥Y0

⇢0u"h · vdx3dy

=

ˆ
I⇥Y0

f "h
1 : symr h

"h
vdx3dy+

ˆ
I⇥Y0

f "h
2 · v,

(2.79)

where k f "h
1 kL2 ! 0, k f "h

2 kL2 ! 0 as h! 0. By using a result analogous to Lemma 4.6.4

(see also Remark 4.6.5) we obtain

dist
�
↵⌘i ,�(Å"h)

�
! 0 as h! 0.

It can be also easily deduced that �disc(Å+strip)⇢ limh!0�(Å"h). Namely, for an eigen-

value ↵+strip of Å+strip and associated eigenfunction u↵+strip 2 D(Å+strip), ku↵+stripkL2 = 1, i.e.

Å+stripu↵+strip = ↵
+
stripu↵+strip, it can be easily shown that the sequence

u"h(x3,y)=
����� 1(x3)u↵

+

strip

Å
h
"h

Å
x3+

1
2

ã
,y
ã�����

L2

�1
 1(x3)u↵

+

strip

Å
h
"h

Å
x3+

1
2

ã
,y
ã
, (x3,y) 2 I⇥Y0,

satisfies (2.79) with k f "h
1 kL2 ! 0, k f "h

2 kL2 ! 0 as h! 0 and with ↵⌘i replaced by �. It

follows that � 2 limh!0�(Å"h). In view of (2.38), we obtain the opposite inclusion in

(2.78).
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It remains to prove, under the Assumption 2.1.1 (1), the characterisation of limh!0�( ˚̃A"h)

provided by (2.37). By the same argument as in the case without planar symmetries, we

obtain

lim
h!0

�
� ˚̃A"h

�
⇢ �

� ˚̃Astrip
�
[�

�
Å+strip

�
[�

�
Å�strip

�
, (2.80)

and �( ˚̃Astrip) ⇢ limh!0�( ˚̃A"h). By virtue of (2.38) and (2.39), it remains to prove the

inclusion

�disc
�
Å±strip

�
⇢ lim

h!0
�
� ˚̃A"h

�
.

This will be done by a slightly di↵erent argument, as follows. For ↵ 2 �disc(Å+strip) we

take the associated eigenfunction u↵,+strip 2 D(Å+strip), ku↵,+stripkL2 = 1, of the operator Å+strip

i.e. Å+stripu↵,+strip = ↵u↵,+strip. Using the elastic symmetries, we infer that the functions u↵,�strip

defined by

u↵,�⇤ (x3,y) := u↵,+⇤ (�x3,y), u↵,�3 (x3,y) := �u↵,+3 (�x3,y), (x3,y) 2 R+0 ⇥Y0,

satisfy u↵,�strip 2D(Å�strip), ku↵,�stripkL2 = 1 and Å�stripu↵,�strip = ↵u↵,�strip. Finally, we define

u"h(x3,y)=
 1(x3)u↵,+strip

Å
h
"h

Å
x3+

1
2

ã
,y
ã
+ 3(x3)u↵,�strip

Å
h
"h

Å
x3�

1
2

ã
,y
ã

����� 1(x3)u↵,+strip

Å
h
"h

Å
x3+

1
2

ã
,y
ã
+ 3(x3)u↵,�strip

Å
h
"h

Å
x3�

1
2

ã
,y
ã�����

L2

, (x3,y) 2 I⇥Y0,

and use an argument similar to that employed for showing that ↵ 2 limh!0�( ˚̃A"h) under

no symmetry assumptions.

Similarly, we demonstrate that

�disc(Å�strip) ⇢ lim
h!0

�( ˚̃A"h),

which concludes the proof of the opposite inclusion in (2.80). ⌅

Remark 2.3.4. In the same way as in [2, Proposition 7.5], it can be shown that eigenfunc-

tions associated with eigenvalues in �(Å±strip) have exponential decay at infinity.

E. Proof of Theorem 2.2.36 and Theorem 2.2.37

Proof. The equality (2.40) is proved in the same way as in [71, Section 8]. The inclusion

�(Ã1)⇢ limh!0�(Ã"h) follows from resolvent convergence provided by Theorem 2.2.24
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and Corollary 2.2.25, while the inclusion �(Å+strip) = limh!0�( ˚̃A"h) ⇢ limh!0�(Ã"h) fol-

lows from Theorem 2.2.35 and Lemma 2.3.2.

It remains to show that limh!0�(Ã"h) ⇢ �(Å+strip)[�(Ã1). To this end, consider

�"h 2 �(Ã"h) such that

liminf
h!0

dist
�
�"h ,�( ˚̃A"h)

�
> 0

(which is the only case that requires analysis, due to Lemma 2.3.2) and �"h ! �. Fur-

thermore, consider u"h 2D(Ã"h) such that ku"hkL2 = 1 and Ã"hu"h = �"hu"h . The strong

two-scale compactness of u"h is proved in the same way as in the proof of Theorem 2.2.33

by combining (2.3.3) with Lemma 4.6.4, see also Remark 4.6.5. The equation (2.41) is a

direct consequence of the symmetry assumptions.

The proof of Theorem 2.2.37 is carried out in a similar fashion. ⌅

2.3.4. Proofs for Section 2.2.4

A. Proof of Theorem 2.2.39

Proof. It is not possible to put the first claim in the framework of Theorem 4.5.13 or

Theorem 4.5.15 directly (i.e. using Proposition 2.2.5 and Theorem 2.2.7) and we will

provide a direct proof instead, using Laplace transform similarly to how it was done in the

proofs of these theorems. The reason why we cannot put the first claim in the framework

of Theorem 4.5.13 or Theorem 4.5.15 directly comes from the fact that f ⇤ , 0 and they

influence the (quasistatic) behavior of the part of in-plane deformation.

For every "h > 0, we write the system (2.42) for µh = "h, ⌧ = 2, using the formula

(4.32), where A = A"h is given by formula (4.26) and the associated operator A is given

by h�2A"h . Furthermore, we set H"h = L2(⌦;R3), V"h = D(A1/2
"h ) = H1

�D
(⌦;R3), H =

L2(⌦⇥Y;R3), H0 = {0}2 ⇥ L2(!), V = {0}2 ⇥D((Ab,hom
� )1/2) = {0}2 ⇥H2

�D
(!). The space

H"h is equipped with the L2 inner product with weight ⇢h, while the space H is equipped

with the L2 inner product with weight ⇢.

In accordance with the abstract approach of Section 4.5, for v 2 V"h we set kvkV"h
:=

k(h�2A"h +I)1/2vkL2 and, similarly, for v 2 V we set kvkV := k(Ab,hom
� +I)1/2vkL2 . Fur-

thermore, the convergence
H"h���* is given by two-scale convergence. Next, for f 2 R3, we

define the vectors f v := (0,0, f3)>, f h := ( f ⇤,0)>. We apply the estimate (4.34) to the case
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of the loads f "h
v and initial conditions u"h

0 , u"h
1 and the estimate (4.37) to the case of the

loads f "h
h and zero initial conditions. This yields

���(h�2A"h +I)1/2u"h
���

L1([0,T ];H"h )+ k@tu"hkL1([0,T ];H"h ) 

Ce>
Ä���(h�2A"h +I)1/2u"h

0

���
H"h
+ ku"h

1 kH"h
+ k f "h

v kL1([0,T ];H"h )

+
���(h�2A"h +I)�1/2 f "h

h (0)
���

H"h
+
���(h�2A"h +I)�1/2@t f "h

h

���
L1([0,T ];H"h )

ä
.

(2.81)

In order to obtain the boundedness of the last two terms in (2.81), notice that for l"h 2 V⇤"h

one has
���(h�2A"h +I)�1/2 l"h

���2
H"h
= h�2a"h(s"h , s"h)+ (s"h , s"h), (2.82)

where s"h 2D(A1/2
"h ) is the solution of the problem

h�2a"h(s"h ,v)+ (s"h ,v)H"h
= l"h(v), 8v 2 V"h . (2.83)

Combining the result of Proposition 2.2.5 (1) with (2.82) and (2.83), we obtain the exis-

tence of C > 0, independent of h, such that

���(h�2A"h +I)�1/2 l"h
���2

H"h
Ck⇡h l"hk2H"

, l"h 2 H"h . (2.84)

Taking into account (2.44) and (2.45), this implies the stated boundedness property. Also,

a consequence of (2.44) and (2.45), we have

⇡h f "h
h

t,1,dr�2������! f h, ⇡h@t f "h
t,dr�2����* @t f h.

From (2.81) and Corollary 4.2.5 we conclude that ⇡1/hu"h is bounded in L1([0,T ];V"h)

and @tu"h is bounded in L1([0,T ]; H"h), and hence there exists ul 2 L1([0,T ];V), @tul 2

L1([0,T ]; H) such that

⇡1/hu"h
t,1,dr�2������* ul, @tu"h

t,1,dr�2������* @tul.

As in Section 4.5, we use the notation ~u"h := (u"h ,@tu"h). Similarly, we introduce ~u"h
0 , ~u0,

~ul, ~u, as well as

⇡1/h~u"h :=
�
⇡1/hu"h ,@tu"h

�>
, ~f

"h :=
�
0,0,0, ( f "h)>

�>
,

~f
"h
v :=

�
0,0,0, ( f "h

v )>
�>
, ~f

"h
h :=

�
0,0,0, f "h

h

�>
.
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We then follow the proof of Theorem 4.5.13 or Theorem 4.5.15. On the one hand, for

every � > 1, we have

⇡1/hL(~u"h)(�) =L(⇡1/h~u"h)(�)
dr�2����*L(~ul)(�) as h! 0,

where L denotes the Laplace transform. On the other hand, by combining

L(~u"h)(�) = (A"h +�I)
�1L(~f

"h)(�)+ (A"h +�I)
�1~u"0 8� > 1,

the representation (4.29), and Theorem 2.2.7, we obtain

⇡1/hL(~u"h)(�) =L(⇡1/h~u"h)(�)
dr�2����*L(~u)(�) 8� > 1,

where ~u = (a1 � x3@1b+ ů1,a2 � x3@2b+ ů2,b,0,0,@tb)>, with the functions a, b, ů being

the solutions of the equations (2.48)–(2.50) for the loads f . It follows that ~ul = ~u.

The existence and uniqueness of the solution of the limit problem follows from Theo-

rem 4.5.1 and Theorem 4.5.4. Note that one can split the limit problem into two: the one

with initial conditions u0,3, S 1P�,1u1,3 and out-of-plane loads, given by the part of F�( f )

depending on f 3 (where we apply Theorem 4.5.1), and the one with zero initial conditions

and in-plane loads, given by the part of F�( f ) depending on f⇤ (where we apply Theorem

4.5.4.) The last claim of the theorem follows by combining Theorem 4.5.14 applied to

initial conditions u"h
0 , u"h

1 and loads f "h
v and the second claim of Theorem 4.5.15 applied

to initial conditions equal to zero and loads f "h
h (using the resolvent compactness and con-

vergence proved in Proposition 2.2.5 and Theorem 2.2.7). The conditions (4.48) follow

by applying (2.84) to l"h = f "h
h (0) and l"h(t) = @t f "h

h (t) and integrating over the interval

[0,T ].

⌅

B. Proof of Corollary 2.2.40

Proof. The proof follows from the first part of Theorem 4.5.15 for the weak convergence

and from the second part of the same theorem for the strong two-scale convergence. We

will just briefly outline the proof of the weak convergence. From (4.37) we obtain the

estimate

���(h�2A"h +I)1/2u"h
���

L1([0,T ];H"h )+ k@tu"hkL1([0,T ];H"h )
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Ce>
Ä���(h�2A"h +I)�1/2G"h(g"h)(0)

���
H"h
+
���(h�2A"h +I)�1/2@tG(g"h)

���
L1([0,T ];H"h )

ä
.

Similarly to the argument of Section A above (see (2.3.4)), we have

⇡h g"h
t,1,dr�2������! g, ⇡h@t g"h

t,dr�2����* @t g.

Furthermore, using (2.82) and (2.83) we infer by Theorem 4.4.1, Remark 4.4.5, and

Corollary 4.2.5 that for l"h 2 L2(!⇥ {�1/2,1/2};R3) one has

���(h�2A"h +I)�1/2 l"h
���2

H"h
 k⇡h l"hk2L2(!⇥{�1/2,1/2};R3).

The remainder of the argument follows the proof of Theorem 2.2.39, using Remark 2.3.1.

⌅

C. Proof of Theorem 2.2.47 and Theorem 2.2.51

Proof. The claims are established directly by applying Theorem 4.5.13, Theorem 4.5.14,

and the results of Section 2.2.2 concerning resolvent convergence. For example, in the

case � 2 (0,1), µh = "h, ⌧ = 0 we set H"h = L2(⌦;R3),A" =A"h ,A =A�,1, H = L2(⌦⇥

Y;R3), H0 = V�,1(⌦⇥Y), and the convergence
H"h���* is the two-scale convergence. ⌅

D. Proof of Theorem 2.2.53

Proof. The argument follows the proof of Theorem 2.2.39. The first part of the statement,

which concerns weak two-scale convergence, is proved separately, by using the Laplace

transform, Proposition 2.2.21, and Theorem 2.2.22 while separating out-of-plane and hor-

izontal forces. The proof of the second part is carried out using Theorem 4.5.14 and the

second part of Theorem 4.5.15. We leave the details to the interested reader. ⌅
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3. Operator-norm resolvent estimates

for thin elastic periodically

heterogeneous rods in moderate

contrast

3.1. Setting and main results

In this section we state the main results of this chapter along with the setup for studying

the matter of elastic heterogeneous rods.

3.1.1. Elastic heterogeneous rod

We state the definition of the domain representing the infinite thin rod. Fix h > 0 (the

width of the rod), ! ⇢ R2 a bounded Lipschitz domain and denote with !h the contraction

of ! such that |!h| = h2|!| (For example: ! = I⇥ I, I ⇢ R interval ,!h = hI⇥hI). We take

! to be central symmetric with respect to the origin, which can be neatly expressed with

the following central symmetry operator:

S : R2! R2, S(x1, x2) := (�x1,�x2),

and stating:

S(!) = !.

The consequence of this is the following:ˆ
!

x1 = 0,
ˆ
!

x2 = 0.
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Additionally, one can choose the rotation of the coordinate system (x1, x2) = (x̃1 cos'+

x̃2 sin',�x̃1 sin'+ x̃2 cos') as to achieve
ˆ
!

x1x2 = 0.

This is done by choosing

' =
1
2

arctan
Å
�2

ˆ
!

x1x2
¿ˆ

!
(x2

1� x2
2)
ã
.

We also take |!| = 1, and define the following constants:

c1(!) :=
ˆ
!

x2
1, c2(!) :=

ˆ
!

x2
2.

The thin infinite rod is represented with ⌦h := !h ⇥R. The heterogeneity of the rod is

introduced in the following way: fix " > 0 (the period of material oscillation) and let

Y := [�1
2 ,

1
2] ⇢ R be a ”unit cell”. The elastic properties of the heterogeneous material are

given with the elasticity tensor

C : Y ! R3⇥3⇥3⇥3, C 2 L1(Y;R3⇥3⇥3⇥3),

defined on the unit cell and then extended via Y�periodicity. We assume that C is uni-

formly positive definite on symmetric matrices, namely: 9⌫ > 0 such that

⌫|⇠|2  C(y)⇠ : ⇠  1
⌫
|⇠|2, 8⇠ 2 R3⇥3,⇠T = ⇠. (3.1)

In addition, we require the following restrictions on the material coe�cients:

Ci jkl(y) = C jikl(y) = Ckli j(y), 8y 2 Y, i, j,k, l 2 {1,2,3} .

For any point (x1, x2, x3/") 2 ⌦h, the elasticity tensor is given with C(x1, x2, x3/") :=

C(x3/"). The following assumption yields significant simplification in the analysis, as

we will see later. However, the assumption is physically relevant as it covers materials

such as isentropic materials and more. Still, we carry out the analysis with and without

this assumption as to showcase the di↵erent phenomena occurring in the rod dynamics.

Assumption 3.1.1. The elasticity tensor satisfies the following material symmetries:

Ci jk3(y) = 0,Ci333(y) = 0, 8y 2 Y, i, j,k 2 {1,2} .
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In this chapter, we are interested only in the regime where the period of material

oscillations is of the same order as the thickness of the rod. Therefore we assume " = h.

We study the system of resolvent equations for the operator of 3D linear elasticity on the

domain ⌦" defined with the bilinear form:

H1(!"⇥R;R3)⇥H1(!"⇥R;R3) 3 (u,v)!
ˆ
⌦"
C
� x3
"

�
symru : symrvdx.

As it is standard in the dimension reduction, we transform the problem onto the canonical

domain:

!"⇥R 3 (x"1, x
"
2, x

"
3) = x"! x = (x1, x2, x3) = (1

" x"1,
1
" x"2, x

"
3) 2 !⇥R.

This change of coordinates allows us to work on the fixed domain. With these new coor-

dinates, we define the following bilinear form:

a" : H1(!⇥R;R3)⇥H1(!⇥R;R3)! R, a"(u,v) =
ˆ
!⇥R
C
� x3
"

�
symr"u : symr"vdx,

(3.2)

where the scaled gradient r" is defined with:

r"u(x) :=

2

6664

1
"@1u1

1
"@2u1 @3u1

1
"@1u2

1
"@2u2 @3u2

1
"@1u3

1
"@2u3 @3u3

3

7775 .

The associated operatorA" :D(A")! L2(!⇥R;R3) is closed, densely defined in L2(!⇥

R;R3) and self-adjoint.

In our analysis, we will make use of the orthogonal decomposition of the space L2(!⇥

R;R3) into two spaces L2
bend and L2

stretch, defined with:

L2
bend =

¶
u 2 L2(!⇥R;R3), u↵(S(x1, x2)) = u↵(x1, x2),↵ = 1,2, u3(S(x1, x2)) = �u3(x1, x2)

©

L2
stretch =

¶
u 2 L2(!⇥R;R3), u↵(S(x1, x2)) = �u↵(x1, x2),↵ = 1,2, u3(S(x1, x2)) = u3(x1, x2)

©

Functions belonging to these two spaces play the role of in-line forces and out-of-line

forces, which, under some additional assumptions on the symmetry of the material re-

sponse tensor, cause the rod to deform in the same way. We refer to these deformations

as stretching and bending deformations, respectively.
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3.1.2. Homogenised operators

In order to define homogenized limit operators, we make use of the following inclusion

matrices:

Jbend
m1,m2

(x̂) =

2

6664

0 0 0

0 0 0

0 0 �x1m1� x2m2

3

7775 , J
stretch
m3,m4

(x̂) =

2

6664

0 0 x2m3
2

0 0 �x1m3
2

x2m3
2

�x1m3
2 m4

3

7775

J rod
m (x̂) =

2

6664

0 0 x2m3
2

0 0 �x1m3
2

x2m3
2

�x1m3
2 m4� x1m1� x2m2

3

7775 , m = (m1,m2,m3,m4) 2 R4, x̂ 2 !.

The homogenized tensor Crod containing the material properties of homogeneous rod is

defined in the following way: For m,d 2 R4 we define the form:

crod(m,d) :=
ˆ
!⇥Y
C(y)
Ä
J rod

m (x̂)+ symrum
ä

:J rod
d (x̂)dx̂dy,

where um 2 H1
#(Y; H1(!;R3)) is the unique solution of:

ˆ
!⇥Y
C(y)
Ä
J rod

m (x̂)+ symrum
ä

: symrvdx̂dy = 0, 8v 2 H1
#(Y; H1(!;R3)). (3.3)

Proposition 3.1.1. The form crod is a positive bilinear form on R4 ⇥R4, uniquely repre-

sented with a positive definite tensor Crod 2 R4⇥4, namely, there exists ⌘ > 0 such that

crod(m,d) = Crodm ·d, Crodm ·m � ⌘|m|2.

Proof. First we show that crod(·, ·) is bilinear. For that we consider:

crod(m+↵n,d) =
ˆ
!⇥Y
C(y)
Ä
J rod

m+↵n(x̂)+ symrum+↵n
ä

:J rod
d (x̂)dx̂dy, m,n 2 R4,↵ 2 R,

ˆ
!⇥Y
C(y)
Ä
J rod

m+↵n(x̂)+ symrum
ä

: symrvdx̂dy = 0, 8v 2 H1
#(Y; H1(!;R3)).

But Jrod
m+↵n(x) = Jrod

m (x) + ↵Jrod
n (x), and by the uniqueness of the solution of (3.3), we

conclude that

um+↵n = um+↵un
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and thus:

crod(m+↵n,d) =
ˆ
!⇥Y
C(y)
Ä
J rod

m (x̂)+ symrum
ä

:J rod
d (x̂)dx̂dy

+↵

ˆ
!⇥Y
C(y)
Ä
J rod

n (x̂)+ symrun
ä

:J rod
d (x̂)dx̂dy = crod(m,d)+↵crod(n,d).

Therefore

crod(m,d) = Crodm ·d, Crod 2 R4⇥4

and the entries of the tensor Crodm · d can be represented with [Crodm · d]i, j = Crodei · e j.

Notice that, since C(y) is symmetric, Crod is symmetric as well. Namely:

Crodm ·d =
ˆ
!⇥Y
C(y)
Ä
J rod

m (x̂)+ symrum
ä

:
Ä
J rod

d (x̂)+ symrud
ä

dx̂dy

=

ˆ
!⇥Y
C(y)
Ä
J rod

d (x̂)+ symrud
ä

:
Ä
J rod

m (x̂)+ symrum
ä

dx̂dy = Crodd ·m.

Now we see that Crodm ·d is actually uniquely defined with expressions of type Crodm ·m,

m 2 R4. This is because:

Crodm ·d = 1
2

î
Crodm ·m+Crodd ·d+Crod(m�d) · (m�d)

ó
.

Notice now that the expression
ˆ
!⇥Y
C(y)
Ä
J rod

m (x̂)+ symr�
ä

: symrvdx̂dy

is a first variation of the quadratic functional:

� 7!
ˆ
!⇥Y
C(y)
Ä
J rod

m (x̂)+ symr�
ä

:
Ä
J rod

m (x̂)+ symr�
ä

dx̂dy, � 2 H1
#(Y; H1(!;R3)).

Thus we have that:

Crodm ·m =
ˆ
!⇥Y
C(y)
Ä
J rod

m (x̂)+ symrum
ä

:
Ä
J rod

m (x̂)+ symrum
ä

dx̂dy

= inf
�2H1

#(Y;H1(!;R3))

ˆ
!⇥Y
C(y)
Ä
J rod

m (x̂)+ symr�
ä

:
Ä
J rod

m (x̂)+ symr�
ä
, m 2 R4.

(3.4)

Therefore the expression (3.4) defines the tensor Crod uniquely. It is straight forward to

show that the tensor Crod is positive definite. To see this, we use the pointwise coercivity
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estimate (3.1):

Crodm ·m =
ˆ
!⇥Y
C(y)
Ä
J rod

m (x̂)+ symrum
ä

:
Ä
J rod

m (x̂)+ symrum
ä

dx̂dy

�C
���J rod

m (x̂)+ symrum
���

2

L2(!⇥Y;R3⇥3)

�C
Ä��x2m3�

�
@1um

3 +@3um
1
���2

L2(!⇥Y)+
���x1m3�

�
@2um

3 +@3um
2
���2

L2(!⇥Y)

ä

+C
��m4� x1m1� x2m2�@3um

3
��2

L2(!⇥Y) .

It is clear that @3um
3 ? m4� x1m1� x2m2 in L2(!⇥Y), so we have:

��m4� x1m1� x2m2�@3um
3
��2

L2(!⇥Y) � km4� x1m1� x2m2k2L2(!⇥Y) �C
Ä
|m1|2+ |m2|2+ |m4|2

ä
.

On the other hand, we have:
��x2m3�

�
@1um

3 +@3um
1
���2

L2(!⇥Y)+
���x1m3�

�
@2um

3 +@3um
2
���2

L2(!⇥Y) =
������

m3

2

4 x2

�x1

3

5�@3

2

4um
1

um
2

3

5�rx̂u3

������

2

L2(!⇥Y;R2)

.

Consider the projection operator PG on L2(!;R2) onto the set G :=
�
rv,v 2 H1(!)

 
. The

operator I�PG is bounded since G? is closed. We have:
������

m3

2

4 x2

�x1

3

5�@3

2

4um
1

um
2

3

5�rx̂u3

������

2

L2(!⇥Y;R2)

�C

������
(I�PG)

Ñ
m3

2

4 x2

�x1

3

5�@3

2

4um
1

um
2

3

5

é������

2

L2(!⇥Y;R2)

=C

Ö

m3

������
(I�PG)

2

4 x2

�x1

3

5

������

2

L2(!⇥Y;R2)

+

������
(I�PG)@3

2

4um
1

um
2

3

5

������

2

L2(!⇥Y;R2)

è

+C
ˆ

Y

∞
m3(I�PG)

2

4 x2

�x1

3

5 , (I�PG)@3

2

4um
1

um
2

3

5

∫

L2(!;R2)

.

But,

ˆ
Y

∞
m3(I�PG)

2

4 x2

�x1

3

5 , (I�PG)@3

2

4um
1

um
2

3

5

∫

L2(!;R2)

=

ˆ
Y

∞
m3(I�PG)

2

4 x2

�x1

3

5 ,@3

2

4um
1

um
2

3

5

∫

L2(!;R2)

= m3

ˆ
!

∞
(I�PG)

2

4 x2

�x1

3

5 ,@3

2

4um
1

um
2

3

5

∫

L2(Y;R2)

= 0.
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So: ������
m3

2

4 x2

�x1

3

5�@3

2

4um
1

um
2

3

5�rx̂u3

������

2

L2(!⇥Y;R2)

�C|m3|2.

⌅

In the case of material symmetries 3.1.1 we make use of the following matrices of

order 2:

Cbend(m1,m2)T · (m1,m2)T

:= inf
�2H1

#(Y;H1(!;R3))

ˆ
!⇥Y
C(y)
Ä
Jbend

m1,m2
(x̂)+ symr�

ä
:
Ä
Jbend

m1,m2
(x̂)+ symr�

ä
,

(m1,m2) 2 R2.

(3.5)

Cstretch(m3,m4)T · (m3,m4)T

:= inf
�2H1

#(Y;H1(!;R3))

ˆ
!⇥Y
C(y)
Ä
J stretch

m3,m4
(x̂)+ symr�

ä
:
Ä
J stretch

m3,m4
(x̂)+ symr�

ä
,

(m3,m4) 2 R2.

(3.6)

We have an easy consequence:

Corollary 3.1.2. There exists a constant ⌫ > 0 such that

Cbend(m1,m2)T · (m1,m2)T � ⌫|(m1,m2)|2, Cstretch(m3,m4)T · (m3,m4)T � ⌫|(m3,m4)|2.

The homogenised matrices (3.5) and (3.6) can equivalently be defined with:

Cbend(m1,m2)T · (d1,d2)T :=
ˆ
!⇥Y
C(y)
Ä
Jbend

m1,m2
(x̂)+ symrum1,m2

ä
:Jbend

m1,m2
(x̂),

(m1,m2), (d1,d2) 2 R2,

Cstretch(m3,m4)T · (m3,m4)T :=
ˆ
!⇥Y
C(y)
Ä
J stretch

m3,m4
(x̂)+ symrum3,m4

ä
:J stretch

m3,m4
(x̂),

(m3,m4), (d3,d4) 2 R2,

where the functions um1,m2 and um3,m4 are the solutions to the cell problems:
ˆ
!⇥Y
C(y)
Ä
Jbend

m1,m2
(x̂)+ symrum1,m2

ä
: symrvdx̂dy = 0, 8v 2 H1

#(Y; H1(!;R3)).

ˆ
!⇥Y
C(y)
Ä
J stretch

m3,m4
(x̂)+ symrum3,m4

ä
: symrvdx̂dy = 0, 8v 2 H1

#(Y; H1(!;R3)).
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It is clear that we have the following decompositions:

Crod(m1,m2,0,0)T · (d1,d2,0,0)T = Cbend(m1,m2)T · (d1,d2)T ,

Crod(0,0,m3,m4)T · (0,0,d3,d4)T = Cstretch(m3,m4)T · (d3,d4)T ,

while in the case of the material symmetries 3.1.1:

Crodm ·d = Cbend(m1,m2)T · (d1,d2)T +Cstretch(m3,m4)T · (d3,d4)T .

Next we define the homogenized limit di↵erential operators given with the following

di↵erential expressions:

Abend =
d2

dx2
3
Cbend d2

dx2
3
, Astretch =

d
dx3
Cstretch d

dx3
,

Arod
" =

Ç
"

d2

dx2
3
,"

d2

dx2
3
,

d
dx3
,

d
dx3

åT

Crod
Ç
"

d2

dx2
3
,"

d2

dx2
3
,

d
dx3
,

d
dx3

åT

.

with the domains:

D(Abend) := H4(R;R2), D(Astretch) := H2(R;R2), D(Arod
" ) := H4(R;R2)⇥H2(R;R2).

3.1.3. Gelfand transform and periodic decomposition

We denote the Sobolev space of Y�periodic functions in third variable with H1
#(Y; H1(!;C3)).

For every parameter � 2 [�⇡,⇡], we define the parametrized family of Sobolev spaces of

Y�quasiperiodic functions:

H1
�(Y; H1(!;C3)) :=

¶
ei�yu(x1, x2,y), u 2 H1

#(Y; H1(!;C3))
©
, � 2 [�⇡,⇡].

Analogously, we define spaces L2
#(Y; L2(!;C3)) and L2

�(Y; L2(!;C3)).

For fixed " > 0 we define the operator G" on L2(!⇥R;R3) with the formula:

(G"u)(x1, x2,y,�) :=
…

"

2⇡

X

n2Z
e�i�(y+n)u(x1, x2,"(y+n)), (x1, x2,y) 2!⇥R, � 2 [�⇡,⇡].

We refer to this operator as the scaled Gelfand transform. Note that the scaled Gelfand

transform G" transforms functions into Y�periodic functions in variable y, namely:

(G"u)(x1, x2,y+1,�) = (G"u)(x1, x2,y,�), a.e.
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The scaled Gelfand transform is an isometry

G" : L2(!⇥R;R3)! L2([�⇡,⇡]; L2
#(Y; L2(!;C3))) =

ˆ �
[�⇡,⇡]

L2
#(Y,�; L2(!;C3))d�.

in the sense that:

hu,viL2(!⇥R;R3) =

ˆ ⇡

�⇡
hG"u,G"viL2

#(!⇥Y;C3) d�, 8u,v 2 L2(!⇥R;R3).

The original can be reconstructed with the following formula:

u(x1, x2, x3) =
1
p

2⇡"

ˆ ⇡

�⇡
ei�x3/"(G"u)(x1, x2, x3/",�)d�.

This formula can be interpreted as decomposing L2(!⇥R,R3) into a direct integral

L2(!⇥R;R3) =
ˆ �

[�⇡,⇡]
L2

#(Y,�; L2(!;C3))d�.

Also, by noting that the scaled Gelfand transform commutes with derivatives in the fol-

lowing way:

G"(@x↵)u = @x↵(G"u), G"(@x3u) =
1
"

(@y(G"u)+ i�G"u),

we can see that

a"(u,v) =
1
"2 a�(G"u,G"v), 8� 2 [�⇡,⇡],

where

a�(u,v) :=
ˆ
!⇥Y
C(y)(symr+ iX�)u : (symr+ iX�)v, u,v 2 H1

#(Y; H1(!;C3)).

The operator X�, acting on the space L2(!⇥Y;C3) is defined with:

X�u =

2

6664

0 0 1
2�u1

0 0 1
2�u2

1
2�u1

1
2�u2 �u3

3

7775 .

For a fixed � 2 [�⇡,⇡], we define the operator

A� := (symr+ iX�)⇤C(y)(symr+ iX�) :D(A�) ⇢ H1
#(Y; H1(!;C3))! L2(!⇥Y,C3)

associated with this form.

The scaled Gelfand transform, applied to the resolvent problem, can be depicted with the

following equality:

(A"+ I)�1 = G�1
"

Çˆ �
[�⇡,⇡]

Å
1
"2A�+ I

ã�1
d�
å
G". (3.7)
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We interpret this in the following way: by using Gelfand transform for transforming

the problem, we have decomposed the resolvent operator (A"+ I)�1 into the continuous

family of resolvent operators
Ä

1
"2A�+ I

ä�1
indexed by � 2 [�⇡,⇡]. As we will see, in

contrast to the original resolvent operator, this family consists of compact operators with

discrete spectrum.

Closely related to the scaled Gelfand transform is the scaled Floquet transform defined

with:

(F"u)(x1, x2,y,�) :=
…

"

2⇡

X

n2Z
e�i�nu(x1, x2,"(y+n)), (x1, x2,y) 2!⇥Y, � 2 [�⇡,⇡].

For every � 2 [�⇡,⇡], the function (F"u)(x1, x2,y,�) belongs to the space of quasiperi-

odic functions H1
�(Y; H1(!;C3)). The link between Floquet and Gelfand transform is the

following identity:

F"u = ei�yG"u, 8u 2 L2(!⇥R;R3).

The scaled Floquet transform is an isometry as well:

hu,viL2(!⇥R;R3) =

ˆ ⇡

�⇡
hF"u,F"viL2

�,y(!⇥Y;C3) d�.

Similarily we have:

a"(u,v) =
1
"2 a(F"u,F"v),

where

a(u,v) :=
ˆ
!⇥Y
C(y) symru : symrv, u,v 2 H1

�(Y; H1(!;C3)).

This is due to the following formulae:

F"(@x↵)u = @x↵(F"u), F"(@x3u) =
1
"
@y(F"u).

The importance of the operator X� lies in the fact that for quasiperiodic functions w 2

H1
�(Y; H1(!;C3)), namely w = ei�yu(x1, x2,y), where u 2 H1

#(Y; H1(!;C3)) we have:

symrw = ei�y(symru+ iX�u).

Also note that for all u 2 L2(!⇥Y;C3) we have:

C1|�|||u||L2(!⇥Y;C3)  ||X�u||L2(!⇥Y;C3) C2|�|||u||L2(!⇥Y;C3).

For an overview of the use of Gelfand and Floquet transform one can consult the works

[30], [41].
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3.1.3.1 Formulation in terms of scaled quasimomenta

Here we note the alternative definition of Gelfand transform in terms of scaled quasimo-

mentum ✓ := �/":

(G"u)(x1, x2,y,✓) :=
…

"

2⇡

X

n2Z
e�i✓"(y+n)u(x1, x2,"(y+n)), (x1, x2,y) 2!⇥R, ✓ 2 [�⇡/",⇡/"],

where the inverse is given with:
Ä
G�1
" U
ä

(x1, x2, x3) =
…

"

2⇡

ˆ ⇡/"

�⇡/"
ei✓x3U(x1, x2, x3/",✓)d✓.

It is straightforward to link the Gelfand transform with the Fourier transform:
ˆ

Y
(G"u)(x1, x2,y,✓)dy =

ˆ
Y

…
"

2⇡

X

n2Z
e�i✓"(y+n)u(x1, x2,"(y+n))dy

=

…
"

2⇡

X

n2Z

ˆ
Y

e�i✓"(y+n)u(x1, x2,"(y+n))dy

=
1
p

2⇡"

X

n2Z

ˆ
"(Y+n)

e�i✓yu(x1, x2,y)dy

=
1
p

2⇡"

ˆ
R

e�i✓yu(x1, x2,y)dy =
1
p

2⇡"
bu(x1, x2,✓/2⇡),

where û denotes the Fourier transform of u.

3.1.4. Smoothing operator

We define the following smoothing operator ⌅" : L2(!⇥R)! L2(!⇥R):

⌅" f := G�1
"

ˆ
Y

(G" f )(y)dy,

which appears in the approximative problem definition. The purpose of ⌅" is cutting of

the high frequencies in a function, namely frequencies higher than 1
2" . To see this, we

calculate:

⌅" f := G�1
"

ˆ
Y

(G" f )(y)dy = G�1
"

Å
1
p

2⇡"
bf (✓/2⇡)

ã

=
1

2⇡

ˆ ⇡
"

� ⇡"
ei✓x bf (✓/2⇡)d✓ =

ˆ 1
2"

� 1
2"

e2⇡i✓x bf (✓)d✓

=

◊�
î
�1
2" ,

1
2"

ó ⇤ f ,

where
b
· denotes the inverse Fourier transform.
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3.1.5. Main results of Chapter 3

In order to provide the link between the " problem and the homogenized limit problem,

we define the following force momentum operators:

Mbend
"

2

6664

f 1

f 2

f 3

3

7775 :=
ˆ
!

2

4 f 1�"x1
d

dx3
f 3

f 2�"x2
d

dx3
f 3

3

5 , Mstretch
"

2

6664

f 1

f 2

f 3

3

7775 :=
ˆ
!

2

4x2 f 1� x1 f 2

f 3

3

5 ,

Mrod
"

2

6664

f 1

f 2

f 3

3

7775 :=

2

4M
bend
" f

Mstretch
" f

3

5 =
ˆ
!

2

6666664

f 1�"x1
d

dx3
f 3

f 2�"x2
d

dx3
f 3

x2 f 1� x1 f 2

f 3

3

7777775
.

Note that for f3 2 L2(!⇥R;R),Mbend
" f takes values in H�1(!⇥R;R2).

In order to display the possibility of obtaining the full physical model by allowing the

heterogeneity in the order of force terms, we make use of the following scaling matrix:

S " :=

2

6664

1 0 0

0 1 0

0 0 1/"

3

7775 , " > 0.

We label with Pi : R3! R the projection on the i� th coordinate, as well as ⇡i : R2! R.

We are able to prove the following results:

Theorem 3.1.3 (L2! L2 norm-resolvent estimate). Let � > �2 be the parameter of spec-

tral scaling. Let � � 0 be the parameter of force term scaling. There exists C > 0 such that

for every " > 0 we have:

�����Pi

ÇÅ
1
"�
A"+ I

ã�1
� (Mrod

" )⇤
Å

1
"�
Arod
" +Crod(!)

ã�1
Mrod

" ⌅"

å�����
L2!L2



8
><

>:

C"
�+2

4 , i = 1,2;

C"
�+2

2 , i = 3.
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Under the additional assumption of the material symmetries 3.1.1 we have:
�����

Å
1
"�
A"+ I

ã�1
|L2

stretch
� (Mstretch)⇤

Å
1
"�
Astretch+Cstretch(!)

ã�1
Mstretch⌅"

�����
L2!L2

C"
�+2

2 ,

�����Pi

ÇÅ
1
"�
A"+ I

ã�1
|L2

bend
� (Mbend

" )⇤
Å

1
"��2A

bend+ I
ã�1
Mbend

" ⌅"

å
S "�

�����
L2!L2



8
>><

>>:

C"
�+2

4 max
ß
"
�+2

4 ��,1
™
, i = 1,2;

C"
�+2

2 max
ß
"
�+2

4 ��,1
™
, i = 3.

Remark 3.1.4. In the Theorem 3.1.3, the operators (Mrod
" )⇤, (Mbend

" )⇤ and (Mstretch)⇤

denote the adjoints of force momentum operators. The link between the Kircho↵-Love

expression for rods and the associated force moments is given with the following opera-

tors:

Ibend
" : H1(R;R2)! L2

bend(!⇥R;R3), Ibend
"

2

4u1

u2

3

5 =

2

6664

u1

u2

�" d
dx3

(x1u1+ x2u2)

3

7775 ,

Istretch : H1(R;R2)! L2
stretch(!⇥R;R3), Istretch

2

4u3

u4

3

5 =

2

6664

x2u3

�x1u3

u4

3

7775 .

Note that we have the following duality relations:
≥

Ibend
"

2

4u1

u2

3

5 ,

2

6664

f 1

f 2

f 3

3

7775

Ω

=

ˆ
!⇥R

2

6664

u1

u2

�" d
dx3

(x1u1+ x2u2)

3

7775 ·

2

6664

f 1

f 2

f 3

3

7775

=

ˆ
R

2

4u1

u2

3

5 ·
ˆ
!

2

4 f 1�"x1
d

dx3
f 3

f 2�"x2
d

dx3
f 3

3

5 =

≥
2

4u1

u2

3

5 ,Mbend
"

2

6664

f 1

f 2

f 3

3

7775

Ω

.

≥

Istretch

2

4u3

u4

3

5 ,

2

6664

f 1

f 2

f 3

3

7775

Ω

=

ˆ
!⇥R

2

6664

x2u3

�x1u3

u4

3

7775 ·

2

6664

f 1

f 2

f 3

3

7775
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=

ˆ
R

2

4u3

u4

3

5 ·
ˆ
!

2

4x2 f 1� x1 f 2

f 3

3

5 =

≥
2

4u3

u4

3

5 ,Mstretch

2

6664

f 1

f 2

f 3

3

7775

Ω

.

These relations show that, in the suitable sense, we have the following duality:

Istretch = (Mstretch)⇤, Ibend
" = (Mbend

" )⇤.

Remark 3.1.5. The matrices Cstretch(!) and Crod(!) represent additional e↵ects coming

from the torsion deformations and the shape of the domain!, and will be formally defined

in the continuation of the text, namely (3.11).

Remark 3.1.6. Notice that in the Theorem 3.1.3, the operatorMbend
" is composed with

the smoothing operator ⌅". Thus, for f 2 L2(!⇥R;R3), the resulting loads Mbend
" ⌅" f

belong to L2(!⇥R;R2) (instead of H�1(!⇥R;R2)).

Remark 3.1.7. The role of the parameter of force scaling � is to enrich the model. It is

known in the analysis of thin structures (plates and rods), as a consequence of anisotropy,

one needs to incorporate di↵erent scalings of loads depending on the direction, which

yields the richer structure of the limiting model, see [23,52,68]. One could argue that the

most interesting cases of parameters �, � would be � = 0, � = 0 and � = 2, � = 1, since

these are the standard regimes which emerge when studying thin structures on a finite

domain, see [68]. However, in the case of infinite rod (similarly like in the case of infinite

plate [20]), there is no natural spectral scaling. The role of the parameter � becomes clear

in the case of evolution, where it serves to obtain the models in di↵erent time scales (the

evolution models of plates and rods are usually analyzed with � = 2, see [54], [68] )

Remark 3.1.8. Actually, the smoothing operator ⌅" can be removed from the estimates in

Theorem 3.1.3 while preserving the order of the estimates. This is shown in the Corollary

3.4.5. One easy consequence of the Theorem 3.1.3 are the estimates on the band gaps in

the spectrum. See Corollary 3.4.8.

Remark 3.1.9. It is possible to obtain the the same estimates as in the Theorem 3.1.3,

even in the case when the ratio h
" belongs to the fixed interval [↵,�], but the constant in

the estimates will depend on the ↵ and �. See Section 8 in [20]. The same is true for

Theorem 3.1.10 and Theorem 3.1.11.
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3.1.5.1 Higher precision estimates

We also find the resolvent estimates in the L2! H1 operator norm, as follows:

Theorem 3.1.10 (L2 ! H1 norm-resolvent estimate). Let � > �2 be the parameter of

spectral scaling. Let � � 0 be the parameter of force term scaling. There exists C > 0 such

that for every " > 0 we have:
�����Pi

ÇÅ
1
"�
A"+ I

ã�1
� (Mrod

" )⇤
Å

1
"�
Arod
" +Crod(!)

ã�1
Mrod

" ⌅"�Acorr
rod (")

å�����
L2!H1



8
><

>:

C"
�+2

4 , i = 1,2;

C"
�+2

2 , i = 3.

Under the additional assumption of the material symmetries 3.1.1 we have:
�����

Å
1
"�
A"+ I

ã�1
|L2

stretch
� (Mstretch)⇤

Å
1
"�
Astretch+Cstretch(!)

ã�1
Mstretch⌅"�Acorr

stretch(")

�����
L2!H1

C max
ß
"�+1,"

�+2
2

™
,

�����Pi

ÇÅ
1
"�
A"+ I

ã�1
|L2

bend
� (Mbend

" )⇤
Å

1
"��2A

bend+ I
ã�1
Mbend

" ⌅"�Acorr
bend(")

å
S "�

�����
L2!H1



8
>><

>>:

C max
ß
"
�+2

4 ,"
�
2

™
max
ß
"
�+2

4 ��,1
™
, if i = 1,2;

C max
ß
"
�+2

2 ,"
3�+2

4

™
max
ß
"
�+2

4 ��,1
™
, if i = 3.

The operatorsAcorr
bend(") andAcorr

stretch(") are standard first order correctors in the theory

of homogenisation, defined in the following text with the expression (3.37).

Our asymptotic analysis resulted in obtaining correctors which allow us to calculate

L2! L2 norm resolvent estimates with even higher precision. These corrector terms were

previously unknown in the theory of heterogeneous elastic rods, however they resemble

the higher order correctors which appear in the works of Birman and Suslina. For the

precise definition of these corrector operators consider (3.39).

Theorem 3.1.11 (Higher order L2 ! L2 norm-resolvent estimate). Let � > �2 be the

parameter of spectral scaling. Let � � 0 be the parameter of force term scaling. There
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exists C > 0 such that for every " > 0 we have:
�����Pi

ÇÅ
1
"�
A"+ I

ã�1
� (Mrod

" )⇤
Å

1
"�
Ahom

rod,"+C
rod(!)

ã�1
Mrod

" ⌅"�Acorr
rod (")� ‹Acorr

rod (")
å�����

L2!L2



8
><

>:

C"
�+2

2 , i = 1,2;

C"
3(�+2)

4 , i = 3.

Under the additional assumption of the material symmetries 3.1.1 we have:
����
Å

1
"�
A"+ I

ã�1
|L2

stretch
� (Mstretch)⇤

Å
1
"�
Astretch+Cstretch(!)

ã�1
Mstretch⌅"

�Acorr
stretch(")� ‹Acorr

stretch(")
����

L2!L2
C"�+2,

������Pi

ÇÅ
1
"�
A"+ I

ã�1
|L2

bend
� (Mbend

" )⇤
Å

1
"��2A

bend+ I
ã�1
Mbend

" ⌅"�Acorr
bend(")� ‹Acorr

bend(")
å

S "�

������
L2!L2



8
>><

>>:

C"
�+2

2 max
ß
"
�+2

4 ��,1
™
, i = 1,2;

C"
3(�+2)

4 max
ß
"
�+2

4 ��,1
™
, i = 3.

3.1.6. The methodology and the strategy of the proofs

Out approach begins with the application of the Gelfand transform in order to decompose

the resolvent problem for the operator defined with (3.2) into the continuous family of

resolvent problems posed in the space of periodic functions on a unit cell, in the sense

of (3.7). The next step would be to analyse the problem for each fibre � in order to

provide the approximation of resolvent operators with a homogenised resolvents. all while

estimating the di↵erence between the two in the operator norm topology.

Even though the results which we aim to obtain are the estimates with respect to the

physical parameter " (playing the role of the thickness of the rod as well as the period of

material oscillations), the general agenda is to first provide the estimates with respect to

the quasimomentum variable �, for each fibre � 2 [�⇡,⇡]. These estimates are then trans-

lated into the desired norm-resolvent estimates by the means of Cauchy integral formula.

The approximation with respect to the quasimomentum � is done by performing care-

fully devised asymptotic procedure adapted for handling the particularities arising from

the the fact that the rod is thin and oscillating in one direction only.
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All of this is first carried out in the case of the assumption 3.1.1, under which the prob-

lem separates into two relatively simpler problems to handle. For example, the asymptotic

procedure can be carried out separately for these two problems and is much simpler.

In order to gain insight into the spectral properties of the underlying operators and also

to be able to prove the desired estimates, we first derive needed Korn-type inequalities

depending on the quasimomentum �.

The structure of the chapter is the following:

• In Section 3.2 we derive the Korn-type inequalities in the general case, but also for

the bending and stretching deformations in the case of material symmetries. With

the use of these inequalities, we estimate the spectrum by the means of Rayleigh

quotients. The outcome of the analysis is the conclusion on the orders of magni-

tudes of eigenvalues and the revelation of the appropriate scalings of the operators

in the next step. The di↵erence with respect to [5], [7] comes from the fact that the

lowest eigenvalues appear with di↵erent order in |�| (two of them of order |�|4 and

two of them of order |�|2). Due to this, the approach by spectral germ is not directly

applicable, since the usual assumption on regularity of spectral germ implies that

all the eigenvalues of the lowest order have the same order, namely |�|2.

• In Section 3.3 we approximate the resolvent operators by performing the iterative

asymptotic procedure used for gradually defining the approximations of the solu-

tion to the original problem, where the bounds depend only on the norm of the loads

and the quasimomentum � (with increasing order of magnitude). Here the analy-

sis is done only in the case of Assumption 3.1.1, separately for the two invariant

spaces. The case of stretching deformations resembles in a way to the bulk case,

primarily with regard to the order of the operator scaling. Like in [20] we use �-

dependent asympotics, which is a natural choice as a consequence of apriori bounds

and enables us to perform the asymptotics up to any order in |�|. This makes these

approaches di↵erent with respect to the approach in [18], where the "-dependent

asymptotics is done.

• In Section 3.4 we dissect the obtained estimates and combine them with the Cauchy

integral formula in order to make the estimates depend only on the physical parame-
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ter ". We use di↵erent parts of the obtained asymptotic expansions in order to define

the corrector operators appearing in the Theorem 3.1.10 and the Theorem 3.1.11.

Then we combine all the fiberwise estimates back onto the physical domains. Here

we also deal only with invariant subspaces under the Assumption 3.1.1.

• In the last section, namely Section 3.5, we repeat the procedure but only this time

under no additional assumptions. This requires us to perform two simultaneous

asymptotic procedures, with di↵erent scalings, and then combine them together in

the end. The last step is again the Cauchy integral formula.
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3.2. Auxiliary results and apriori estimates

In this section we provide Korn-type inequalities in before mentioned spaces in order to

deduce apriori estimates on the solutions to relevant resolvent problems. The following is

the expression for rigid motions in !⇥Y:

v(x1, x2, x3) := Ax+ c=

2

6664

0 d a

�d 0 b

�a �b 0

3

7775

2

6664

x1

x2

x3

3

7775+

2

6664

c1

c2

c3

3

7775=

2

6664

dx2+ax3+ c1

�dx1+bx3+ c2

�ax1�bx2+ c3

3

7775 , a,b,c1,c2,c3,d 2C.

(3.8)

Rigid motions are deformations consisting of only rotations (skew symmetric matrix A)

and translations (vector c). These deformations belong to the kernel of the operator symr.

We state the second Korn inequality in the following form:

Proposition 3.2.1. For every u 2 H1(!⇥Y;C3) we have the following estimate:

ku(x)� (Ax+ c)kH1(!⇥Y;C3) CksymrukL2(!⇥Y;C3⇥3),

where

A =

2

6664

0 d a

�d 0 b

�a �b 0

3

7775 , c =

2

6664

c1

c2

c3

3

7775 , c j =

ˆ
!⇥Y

(u j), j = 1,2,3,

a =
ˆ
!⇥Y

(@3u1�@1u3), b =
ˆ
!⇥Y

(@3u2�@2u3), d =
ˆ
!⇥Y

(@2u1�@1u2),

The constant C depends only on the domain !⇥Y.

In order to make proofs in this section more elegant, we have decided to present the

results with respect to quasiperiodic functions, namely the image of Floquet transform.

This is obviously equivalent to the approach with periodic functions via:

H1
�(Y; H1(!;C3)) ! H1

#(Y; H1(!;C3)), F" ! G", symr ! symr+ iX�.

The following lemma provides estimates for the approximating rigid motions of quasiperi-

odic functions in y variable with respect to the norm of the symmetrized gradient.
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Lemma 3.2.2. There is a constant C > 0 such that 8� 2 [�⇡,⇡]\{0}, 8u 2H1
�(Y; H1(!;C3))

we have that

||u� v||H1(!⇥Y;C3) CksymrukL2(!⇥Y;C3⇥3),

where v is a rigid motion defined with (3.8) with the coe�cients satisfying the following

estimates:

max {|a|, |b|, |d|, |c3|} 
1
|�|CksymrukL2(!⇥Y;C3⇥3)

|(ei��1)c2�b| CksymrukL2(!⇥Y;C3⇥3)

|(ei��1)c1�a| CksymrukL2(!⇥Y;C3⇥3)

max {|c1|, |c2|} 
1
|�|2

CksymrukL2(!⇥Y;C3⇥3).

Proof. By using the trace theorem for functions in H1
�(Y; H1(!;C3)), as well as Korn’s

inequality, we conclude that for w supplied by the Proposition 3.2.1 we have:

||u�w||L2(!⇥{y=1}) CksymrukL2(!⇥Y;C3⇥3),

||u�w||L2(!⇥{y=0}) CksymrukL2(!⇥Y;C3⇥3).

Furthermore, for smooth quasiperiodic u we have:

u(x1, x2,1) = ei�u(x1, x2,0), 8(x1, x2) 2 !,

thus:

|w(x1, x2,1)�ei�w(x1, x2,0)| |u(x1, x2,1)�w(x1, x2,1)|+ |ei�(u(x1, x2,0)�w(x1, x2,0))|,

for every x1, x2 2 !. Thus, extending this to all u 2 H1
�(Y; H1(!;C3)) gives:

||w(x1, x2,1)� ei�w(x1, x2,0)||L2(!;C3)  ||u�w||L2(!⇥{y=1};C3)+ ||u�w||L2(!⇥{y=0};C3)

and therefore

||w(x1, x2,1)� ei�w(x1, x2,0)||L2(!;C3) CksymrukL2(!⇥Y;C3).

Componentwise, this means that
ˆ
!
|(ei��1)(c1+dx2)�a|2dx1dx2  Cksymruk2L2(!⇥Y;C3⇥3)ˆ

!
|(ei��1)(c2�dx1)�b|2dx1dx2  Cksymruk2L2(!⇥Y;C3⇥3)
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ˆ
!
|(ei��1)(c3�ax1�bx2)|2dx1dx2  Cksymruk2L2(!⇥Y;C3⇥3).

Recall that we are using the coordinate system with the following symmetries:
ˆ
!

x1 = 0,
ˆ
!

x2 = 0,
ˆ
!

x1x2 = 0.

Also, by using Taylor expansion we note that there exist constants C1,C2 > 0 such that

for all � 2 [�⇡,⇡] we have

C1|�|  |ei��1| C2|�|.

These remarks allow us to deduce:

|(ei��1)c1�a|2+C|�|2|d|2 C
ˆ
!
|(ei��1)(c1+dx2)�a|2dx1dx2,

|(ei��1)c2�b|2+C|�|2|d|2 C
ˆ
!
|(ei��1)(c2�dx1)�b|2dx1dx2

|�|2(|c3|2+ |a|2+ |b|2) C
ˆ
!
|(ei��1)(c3�ax1�bx2)|2dx1dx2.

which yield the final estimates.

⌅

3.2.1. The leading order term

Proposition 3.2.3. There is a constant C > 0 such that for every � 2 [�⇡,⇡] \ {0}, u 2

H1
�(Y; H1(!;C3)) there exist a function w 2 H1

�(Y; H1(!;C3)),

w(x1, x2,y) = ei�y

á2

6664

dx2

�dx1

c3

3

7775+

2

6664

c1

c2

�i�(c1x1+ c2x2)

3

7775

ë

, c1,c2,c3,d 2 C,

such that

||u�w||H1(!⇥Y;C3) CksymrukL2(!⇥Y;C3⇥3),

max {|d|, |c3|} 
1
|�|CksymrukL2(!⇥Y;C3⇥3),

max {|c1|, |c2|} 
1
|�|2

CksymrukL2(!⇥Y;C3⇥3).

Proof. By using the estimations of error in Taylor expansion:

|ei�� (1+ i�)| = O(�2), |ei��1| = O(�),
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we can deduce the following:

|i�c1�a| 
���(ei��1)c1�a

���+
���(ei�� (1+ i�))c1

���

C1ksymrukL2(!⇥Y;C3⇥3)+C2|�|2
1
|�|2
ksymrukL2(!⇥Y;C3⇥3)

CksymrukL2(!⇥Y;C3⇥3),

|i�c2�b| CksymrukL2(!⇥Y;C3⇥3)

(3.9)

In other words, we have that u can be approximated in H1 norm with the rigid motion

whose coe�cients satisfy the above estimates, namely:

ku(x1, x2,y)� v(x1, x2,y)kH1(!⇥Y;C3) =

���������

u(x1, x2,y)�

á2

6664

0 d a

�d 0 b

�a �b 0

3

7775

2

6664

x1

x2

y

3

7775+

2

6664

c1

c2

c3

3

7775

ë���������
H1(!⇥Y;C3)

=

���������

2

6664

u1(x1, x2,y)�dx2�ay� c1

u2(x1, x2,y)+dx1�by� c2

u3(x1, x2,y)+ax1+bx2� c3

3

7775

���������
H1(!⇥Y;C3)

CksymrukL2(!⇥Y;C3⇥3).

But, the estimates (3.9) allow us to eliminate coe�cients a and b in the above estimate

with respect to c1, c2 in H1(!⇥Y;C3) norm:

The following calculation proves this:

���ay+ c1� ei�yc1

���
L2(!⇥Y;C3)

=
���ay�

�
ei�y�1

�
c1

���
L2(!⇥Y;C3)

 kay� i�yc1kL2(!⇥Y;C3)+
���i�yc1�

�
ei�y�1

�
c1

���
L2(!⇥Y;C3)

= ky (a� i�c1)kL2(!⇥Y;C3)+
���
�
i�y�

�
ei�y�1

��
c1

���
L2(!⇥Y;C3)

 C1ksymrukL2(!⇥Y;C3⇥3)+C2|�|2
1
|�|2
ksymrukL2(!⇥Y;C3⇥3)

 CksymrukL2(!⇥Y;C3⇥3).

���@y
�
ay+ c1� ei�yc1

����
L2(!⇥Y;C3)

=
���a� i�ei�yc1

���
L2(!⇥Y;C3)

 ka� i�c1kL2(!⇥Y;C3)+
���i�

�
1� ei�yc1

����
L2(!⇥Y;C3)

 C1ksymrukL2(!⇥Y;C3⇥3)+C2|�|2
1
|�|2
ksymrukL2(!⇥Y;C3⇥3)

 CksymrukL2(!⇥Y;C3⇥3).
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Therefore: ���ay+ c1� ei�yc1

���
H1(!⇥Y;C3)

CksymrukL2(!⇥Y;C3⇥3).

Similarly: ���by+ c2� ei�yc2

���
H1(!⇥Y;C3)

CksymrukL2(!⇥Y;C3⇥3).

Next, we calculate:

���ax1+bx2� ei�yi�(x1c1+ x2c2)
���

L2(!⇥Y;C3)


���x1

�
a� ei�yi�c1

����
L2(!⇥Y;C3)

+
���x2

�
b� ei�yi�c2

����
L2(!⇥Y;C3)

 C1ksymrukL2(!⇥Y;C3⇥3)+C2ksymrukL2(!⇥Y;C3)

 CksymrukL2(!⇥Y;C3⇥3),

���@x1

�
ax1+bx2� ei�yi�(x1c1+ x2c2)

����
L2(!⇥Y;C3)


���a� ei�yi�c1

���
L2(!⇥Y;C3)

 CksymrukL2(!⇥Y;C3⇥3),���@x2

�
ax1+bx2� ei�yi�(x1c1+ x2c2)

����
L2(!⇥Y;C3)


���b� ei�yi�c2

���
L2(!⇥Y;C3)

 CksymrukL2(!⇥Y;C3⇥3),���@y
�
ax1+bx2� ei�yi�(x1c1+ x2c2)

����
L2(!⇥Y;C3)


����2ei�y (x1c1+ x2c2)

���
L2(!⇥Y;C3)

 C|�|2 1
|�|2
ksymrukL2(!⇥Y;C3⇥3)

 CksymrukL2(!⇥Y;C3⇥3).

Therefore, we have:

���ax1+bx2� ei�yi�(x1c1+ x2c2)
���

H1(!⇥Y;C3)
CksymrukL2(!⇥Y;C3⇥3).

⌅

Remark 3.2.4. We will denote this approximation of u 2 H1
�(Y; H1(!;C3)) as: rod(u),

namely:

rod(u) := ei�y(dx2,�dx1,c3)T+ ei�y(c1,c2,�i�(c1x1+ c2x2))T.

We interpret the previous proposition in the following fashion:

u = rod(u)+O(ksymrukL2(!⇥Y;C3⇥3)).
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3.2.2. Invariant subspaces

In the case of certain symmetries of the elastic properties of the material 3.1.1 one can

reduce the problem to two simpler problems. We are able to isolate two orthogonal sub-

spaces which then turn out to be invariant under the operator of elasticity. These subspaces

consist of ”out of line” displacements, which we refer to as bending displacements, and

”in line” displacements, which we refer to as stretching displacements. We begin with

decomposing the space L2(!⇥ Y;C3) into two orthogonal subspaces L2
bend and L2

stretch

defined as follows:

L2
bend =

¶
u 2 L2(!⇥Y;C3), u↵(S(x1, x2)) = u↵(x1, x2),↵ = 1,2, u3(S(x1, x2)) = �u3(x1, x2)

©

L2
stretch =

¶
u 2 L2(!⇥Y;C3), u↵(S(x1, x2)) = �u↵(x1, x2),↵ = 1,2, u3(S(x1, x2)) = u3(x1, x2)

©

Here we make a small remark noting that these spaces are mutually orthogonal also in

H1
�(Y; H1(!;C3)):

Ä
H1
�(Y; H1(!;C3))\L2

bend

ä?
= H1

�(Y; H1(!;C3))\L2
stretch,

Notice that, for u 2 H1
�(Y; H1(!;C3)), we have rod(u) = ubend+ustretch, where

ustretch := ei�y(dx2,�dx1,c3)T 2 L2
stretch, ubend = ei�y(c1,c2,�i�(c1x1+c2x2))T 2 L2

bend.

By simple calculation we find that

rubend = ei�y

2

6664

0 0 i�c1

0 0 i�c2

�i�c1 �i�c2 �(i�)2(c1x1+ c2x2)

3

7775

symrubend = ei�y

2

6664

0 0 0

0 0 0

0 0 �(i�)2(c1x1+ c2x2)

3

7775

rustretch = ei�y

2

6664

0 d i�dx2

�d 0 �i�dx1

0 0 i�c3

3

7775
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symrustretch = ei�y

2

6664

0 0 1
2 i�dx2

0 0 �1
2 i�dx1

1
2 i�dx2 �1

2 i�dx1 i�c3

3

7775 .

Here we make the observation that symrustretch = iX�ustretch.We can easily calculate the

following L2 estimates:

||ubend||L2(!⇥Y,C3) C max {|c1|, |c2|} C
1
|�|2
ksymrukL2(!⇥Y;C3⇥3),

||ustretch||L2(!⇥Y,C3) C max {|d|, |c3|} C
1
|�|ksymrukL2(!⇥Y;C3⇥3),

||symrubend||L2(!⇥Y,C3⇥3)  |�|2 max {|c1|, |c2|} CksymrukL2(!⇥Y;C3⇥3)

||symrustretch||L2(!⇥Y,C3⇥3)  |�|max {|d|, |c3|} CksymrukL2(!⇥Y;C3⇥3).

Next, we define the following subspaces:

Vbend
� :=

�
(c1,c2,�i�(c1x1+ c2x2))T ei�y,c1,c2 2 C

 
 H1

�(Y; H1(!;C3)),

Vstretch
� :=

�
(dx2,�dx1,c3)T ei�y,d,c3 2 C

 
 H1

�(Y; H1(!;C3)).

Note the following facts:

dimVbend
� = dimVstretch

� = 2, Vbend
� ? Vstretch

� ,

Vbend
� < L2

bend, Vstretch
� < L2

stretch.

The following estimates are crucial for the spectral analysis.

Proposition 3.2.5. There exists a constant C > 0 such that:

• For every u 2 H1
�(Y; H1(!;C3)) we have:

||u||L2(!⇥Y,C3) 
C
|�|2
ksymrukL2(!⇥Y;C3⇥3), (3.10)

• For every u 2 (Vbend
� )?:

||u||L2(!⇥Y,C3) 
C
|�|ksymrukL2(!⇥Y;C3⇥3),

• For every u 2 (Vbend
� [Vstretch

� )?:

||u||L2(!⇥Y,C3) CksymrukL2(!⇥Y;C3⇥3),
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Proof. The proof relies on the following reasoning:

u 2 H1
�(Y; H1(!;C3))) ||u�ustretch�ubend||L2(!⇥Y,C3) CksymrukL2(!⇥Y;C3⇥3).

We see that

||u||L2(!⇥Y,C3)  ||u�ustretch�ubend||L2(!⇥Y,C3)+ ||ubend||L2(!⇥Y,C3)+ ||ustretch||L2(!⇥Y,C3)

C
1
|�|2
ksymrukL2(!⇥Y;C3⇥3).

For u 2 (Vbend
� )? we have

||u�ustretch||2L2 + ||ubend||2L2 = ||u�ustretch�ubend||2L2(!⇥Y,C3) Cksymruk2L2(!⇥Y;C3⇥3),

Therefore

||u�ustretch||L2(!⇥Y,C3) CksymrukL2(!⇥Y;C3⇥3),

so

||u||L2(!⇥Y,C3)  ||u�ustretch||L2(!⇥Y,C3)+ ||ustretch||L2(!⇥Y,C3) C
1
|�|ksymrukL2(!⇥Y;C3⇥3).

Last, for u 2 (Vbend
� [Vstretch

� )?:

||u||2L2(!⇥Y,C3)+ ||ustretch||2L2(!⇥Y,C3)+ ||ubend||2L2(!⇥Y,C3) = ||u�ustretch�ubend||2L2(!⇥Y,C3)

Cksymruk2L2(!⇥Y;C3⇥3).

⌅

Remark 3.2.6. Under additional assumptions on the symmetries of the elasticity tensor

C(y) 3.1.1, we can separately analyze the problem on each of these two orthogonal sub-

spaces. Actually, under the assumptions 3.1.1, the spaces L2
bend and L2

stretch are invariant

for the operator A�. Let S : L2(!⇥ Y,C3) ! L2(!⇥ Y,C3) be the symmetry operator

defined with

(S u)(x1, x2,y) := (�u1(S(x1, x2),y),�u2(S(x1, x2),y),u3(S(x1, x2),y)).

It is clear that

L2
bend =

¶
u 2 L2(!⇥Y,C3);S u = �u

©
, L2

stretch =
¶

u 2 L2(!⇥Y,C3);S u = u
©
.
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The invariance for these spaces means that

a�(S u,v) = a�(u,S v), a�(S u,S v) = a�(u,v), 8u,v 2 H1
�(Y; H1(!;C3)).

Note that the operator S is continuous operator on L2(⌦) and that S 2 = I. Spaces L2
bend and

L2
stretch are mutually orthogonal also with respect to the form a�. As a consequence, the

resolvent problem splits into two separated problems on each of these invariant subspaces.

3.2.3. Spectral estimates

By Rellich-Kondrachev we have that H1
�(Y; H1(!;C3)) is compactly embedded into L2

�(Y; L2(!;C3)).

Thus, by the theorem of spectrum of compact operators, we deduce that the spectrum of

A� consists of nondecreasing sequence of eigenvalues (��n)n, which tends to infinity.

Here we can state some results on the structure of the spectrum and its scaling. Recall

the definition of the Rayleigh quotient associated with the bilinear form a�, namely:

R�(u) =
a�(u,u)
||u||2

L2(!⇥Y,C3)

, u 2 H1
�(Y; H1(!;C3)).

The Rayleigh quotient is closely related with the spectrum via the following characteriza-

tions:

��n = min
V2Ln

max
v2V
R�(v),

��n =min
¶
R�(v); v ? vi in L2(!⇥Y;C3), 1  i  n�1

©
,

where Ln denotes the family of n�dimensional subspaces of H1
�(Y; H1(!;C3)).

Remark 3.2.7. Here we note that the function �! ��n is continuous for all n 2 N. For

that reason, we conclude that the spectrum of the operatorA" is a union of intervals

[�n,�n] :=
[

�2[�⇡,⇡]
��n , n 2 N.

The presence of the previously defined subspaces Vbend
� , Vstretch

� yields inhomogene-

ity in the order of magnitude of eigenvalues with respect to the quasimomentum �. In

particular, we have the following proposition:

Proposition 3.2.8. There exist constants C1 >C2 > 0 such that:
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• 8u 2 H1
�(Y; H1(!;C3)), R�(u) �C2|�|4,

• 8u 2 Vbend
� , R�(u) C1|�|4,

• 8u 2 (Vbend
� )?, R�(u) �C2|�|2,

• 8u 2 Vstretch
� , R�(u) C1|�|2,

• 8u 2 (Vbend
� [Vstretch

� )?, R�(u) �C2,

Proof. By using the uniform positive definiteness of the tensor C together with the esti-

mates (3.10) we get the following:

R�(u) =
a�(u,u)
||u||2

L2(!⇥Y,C3)

� ⌫
||symru||2L2(!⇥Y,C3)

||u||2
L2(!⇥Y,C3)

�C⌫|�|4.

For arbitrary u = (c1,c2,�i�(c1x1+ c2x2))?ei�y 2 Vbend
� we calculate:

ksymrukL2(!⇥Y;C3⇥3) max
¶p

c1(!) ,
p

c2(!)
©
|�|2
»

c2
1+ c2

2

||v||L2(!⇥Y,C3) � |c1|+ |c2|+min {c1(!),c2(!)} |�|
»

c2
1+ c2

2 � |c1|+ |c2| �
»

c2
1+ c2

2 .

Combined, we see that

R�(u) =
a�(u,u)
||u||2

L2(!⇥Y,C3)

 1
⌫

ksymruk2L2(!⇥Y;C3⇥3)

||u||2
L2(!⇥Y,C3)

 C(!)
⌫
|�|4

Now take arbitrary v = (dx2,�dx1,c3)?ei�y 2 Vstretch
� . We have:

ksymrukL2(!⇥Y;C3⇥3)  |�|max
¶p

c1(!)+ c2(!) ,1
© »

d2+ c2
3 ,

while

||v||L2(!⇥Y,C3) �min
¶p

c1(!)+ c2(!) ,1
© »

d2+ c2
3 .

Combined, we have that

R�(v)  C(!)
⌫
|�|2.

These calculations, together with results from Proposition 3.2.5 finish the proof. ⌅

The previous proposition allows us to deduce the following result on the structure and

the scaling of the spectrum:
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Theorem 3.2.9. The spectrum �(A�) consists of two eigenvalues of order O(|�|4), two

eigenvalues of order O(|�|2) and the rest of order O(1).

Under the additional assumptions on the material symmetries 3.1.1, the spectrum�
�
A�

 

is a disjoint union of spectra�
n
A�|L2

bend

o
and�

n
A�|L2

stretch

o
. The spectrum�

n
A�|L2

bend

o

contains two eigenvalues of order O(|�|4) and the rest of order O(1). On the other hand,

the spectrum �
n
A�|L2

stretch

o
consists of two eigenvalues of order O(|�|2) and the rest of

order O(1).

Proof. The proof relies on the estimates on Rayleigh quotients and the characterization

of eigenvalues via min-max principle. ⌅

Under the symmetry assumptions, the spectrum of the operator A� can be decom-

posed into two sets �(A�|L2
bend

) and �(A�|L2
stretch

) so it is of interest to perform the asymp-

totic analysis of the resolvent problems for the scaled operators 1
|�|4A�|L2

bend
and 1

|�|2A�|L2
stretch

.

The following proposition provides us with Korn type inequalities which are crucial for

calculating apriori estimates for the resolvent problems.

Proposition 3.2.10. There exists C > 0 such that for every � 2 [�⇡,⇡] \ {0} we have:

For every u 2 H1
�(Y; H1(!;C3))\L2

stretch:

||u||H1(!⇥Y,C3) 
C
|�|ksymrukL2(!⇥Y;C3⇥3).

For every u 2 H1
�(Y; H1(!;C3))\L2

bend:

||u1||H1(!⇥Y,C) 
C
|�|2
ksymrukL2(!⇥Y;C3⇥3), ||u2||H1(!⇥Y,C) 

C
|�|2
ksymrukL2(!⇥Y;C3⇥3),

||u3||H1(!⇥Y,C) 
C
|�|ksymrukL2(!⇥Y;C3⇥3).

Proof. The proof relies on the orthogonality of spaces H1
�(Y; H1(!;C3))\ L2

stretch and

H1
�(Y; H1(!;C3))\L2

bend in H1(!⇥Y;C3) scalar product. ⌅

Remark 3.2.11. This heterogeneity in componentwise estimates allows the scaling of the

third component of the force terms in the bending case.
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3.3. Asymptotic analysis of resolvents

3.3.1. Helpful definitions

The purpose of this section is to establish the estimates on the distance of the solution of

the resolvent problem u to the leading order term, which is the solution to the homoge-

nized problem. The distance is estimated with respect to the quasimomentum � and the

norm of the force term. This will, in return, have as a consequence the estimates on the

resolvent operators in the operator norm topology. In order to do this, we will perform

the asymptotic expansion of u with respect to the quasimomentum �, starting with the

solution to the homogenized problem. Therefore, we proceed with the definition of the

homogenized material response matrices. Fix m = (m1,m2,m3,m4) 2 C4. We define the

following embedding operators:

Ibend
� : C2! L2

bend(!⇥Y;C3), Ibend
�

2

4m1

m2

3

5 =

2

6664

m1

m2

�i�(x1m1+ x2m2)

3

7775 ,

Istretch : C2! L2
stretch(!⇥Y;C3), Istretch

2

4m3

m4

3

5 =

2

6664

x2m3

�x1m3

m4

3

7775 ,

Irod
� : C4! L2(!⇥Y;C3), Irod

� m = Ibend
�

2

4m1

m2

3

5+Istretch

2

4m3

m4

3

5 .

These operators serve as a link between the appropriate Euclidean spaces and the finite

dimensional subspaces of rod displacement approximations. We define the complex force

momentum operators in the following way: for each � 2 [�⇡,⇡], f 2 L2(!⇥ Y;C3) we
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have:

Mbend
�

2

6664

f 1

f 2

f 3

3

7775 :=
ˆ
!⇥Y

2

4 f 1+ i� f 3x1

f 2+ i� f 3x2

3

5 2 C2, Mstretch
�

2

6664

f 1

f 2

f 3

3

7775 :=
ˆ
!⇥Y

2

4x2 f 1� x1 f 2

f 3

3

5 2 C2,

Mrod
�

2

6664

f 1

f 2

f 3

3

7775 :=

2

4M
bend
� f

Mstretch
� f

3

5 =
ˆ
!⇥Y

2

6666664

f 1+ i� f 3x1

f 2+ i� f 3x2

x2 f 1� x1 f 2

f 3

3

7777775
2 C4.

These momentum operators satisfy the following estimates:
���Mbend

� f
��� 

�� f 1
��

L2(!⇥Y)+
�� f 2

��
L2(!⇥Y)+ |�|

�� f 3
��

L2(!⇥Y) ,
���Mstretch

� f
���  k fkL2(!⇥Y;C3) ,

���Mrod
� f

���  k fkL2(!⇥Y;C3) .

We have the following:

G�1
" Mbend

� G" f = G�1
"

ˆ
!⇥Y

2

4G" f 1+ i�G" f 3x1

G" f 2+ i�G" f 3x2

3

5 =
ˆ
!

Ñ2

4G
�1
"

´
YG" f 1+ x1G�1

"

�
i�
´

YG" f 3
�

G�1
"

´
YG" f 2+ x2G�1

"

�
i�
´

YG" f 3
�

3

5

é

=

ˆ
!

Ñ2

4G
�1
"

´
YG" f 1�"x1

d
dx3
G�1
"

´
YG" f 3

G�1
"

´
YG" f 2�"x2

d
dx3
G�1
"

´
YG" f 3

3

5

é
=Mbend

" ⌅" f .

Similarly we have:

G�1
" Mstretch

� G" f =Mstretch
" ⌅" f , G�1

" Mrod
� G" f =Mrod

" ⌅" f .

We also define the following matrices, which appear in the calculations and contain

information on the cross section of the domain !.

Cstretch =

2

4c1(!)+ c2(!) 0

0 1

3

5 , Cbend
� (!) =

2

41+ |�|2c1(!) 0

0 1+ |�|2c2(!)

3

5 ,

Crod
� (!) :=

2

4C
bend
� (!) 0

0 Cstretch

3

5 =

2

6666664

1+ |�|2c1(!) 0 0 0

0 1+ |�|2c2(!) 0 0

0 0 c1(!)+ c2(!) 0

0 0 0 1

3

7777775
.

(3.11)
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We will also make use of the notation Crod(!) := Crod
0 (!).

For every m = (m1,m2,m3,m4)T , d = (d1,d2,d3,d4)T 2 C4, we have:

ˆ
!⇥Y
Ibend
�

2

4m1

m2

3

5 · Ibend
�

2

4d1

d2

3

5dxdy = Cbend
� (!)

2

4m1

m2

3

5 ·

2

4d1

d2

3

5,

ˆ
!⇥Y
Istretch

2

4m3

m4

3

5 · Istretch

2

4d3

d4

3

5dxdy = Cstretch

2

4m3

m4

3

5 ·

2

4d3

d4

3

5,

ˆ
!⇥Y
Irod
� m · Irod

� d dxdy = Crod
� (!)m ·d.

Notice that, for every f 2 L2(!⇥Y;C3), d = (d1,d2,d3,d4)T 2 C4, we have the following:

ˆ
!⇥Y

f · Ibend
�

2

4d1

d2

3

5dxdy =Mbend
� f ·

2

4d1

d2

3

5,

ˆ
!⇥Y

f · Istretch

2

4d3

d4

3

5dxdy =Mstretch
� f ·

2

4d3

d4

3

5,

ˆ
!⇥Y

f · Irod
� d dxdy =Mrod

� f ·d.

Note that these are, in fact, the following dualities:
∞
Ibend
�

2

4m1

m2

3

5 , f

∫

L2

=

∞2
4m1

m2

3

5 ,Mbend
� f

∫

C2

,

∞
Istretch

2

4m3

m4

3

5 , f

∫

L2

=

∞2
4m1

m2

3

5 ,Mstretch f

∫

C2

,

¨
Irod
� m, f

∂
L2 =
¨

m,Mrod
� f
∂
C4 .

Due to these relations, we conclude:

Istretch = (Mstretch)⇤, Ibend
� = (Mbend

� )⇤, Irod
� = (Mrod

� )⇤.

We also make use of the following matrices which contain the information on the sym-
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metrized gradient of Kircho↵-Love deformations:

⇤stretch
�,m3,m4

(x) := (i�)

2

6664

0 0 x2m3
2

0 0 �x1m3
2

x2m3
2

�x1m3
2 m4

3

7775 , ⇤
bend
�,m1,m2

(x) := (i�)2

2

6664

0 0 0

0 0 0

0 0 �m1x1�m2x2

3

7775 ,

⇤rod
�,m(x) :=⇤bend

�,m1,m2
(x)+⇤stretch

�,m3,m4
(x).

It is clear that:

⇤bend
�,m1,m2

(x) = (i�)2Jbend
�,m1,m2

, ⇤stretch
�,m3,m4

(x) = (i�)J stretch
�,m3,m4

.

Here we note that

symr

2

6664

m3x2

�m3x1

m4

3

7775+ iX�

2

6664

m3x2

�m3x1

m4

3

7775

= sym

2

6664

0 m3 0

�m3 0 0

0 0 0

3

7775+

2

6664

0 0 1
2 i�m3x2

0 0 �1
2 i�m3x1

1
2 i�m3x2 �1

2 i�m3x1 i�m4

3

7775 = ⇤
stretch
�,m3,m4

(x),

also,

symr

2

6664

m1

m2

�i�(m1x1+m2x2)

3

7775+ iX�

2

6664

m1

m2

�i�(m1x1+m2x2)

3

7775

=

2

6664

0 0 �1
2 i�m1

0 0 �1
2 i�m2

�1
2 i�m1 �1

2 i�m2 0

3

7775+

2

6664

0 0 1
2 i�m1

0 0 1
2 i�m2

1
2 i�m1

1
2 i�m2 �2(m1x1+m2x2)

3

7775 = ⇤
bend
�,m1,m2

(x).

Easily, we can calculate the following estimates

C1(!)|�|2|(m1,m2)|  ||⇤bend
�,m1,m2

(x)||L2(!⇥Y;C3⇥3) C2(!)|�|2|(m1,m2)|,

C1(!)|�||(m3,m4)|  ||⇤stretch
�,m3,m4

(x)||L2(!⇥Y;C3⇥3) C2(!)|�||(m3,m4)|,

Now, consider the problem of finding u 2 H1
#(Y; H1(!;C3)) such that:ˆ

!⇥Y
C(y) symru : symrv =

ˆ
!⇥Y

fv, 8v 2 H1
#(Y; H1(!;C3)).
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In order for this problem to be well posed, the right hand side f must be orthogonal to

the kernel of the operator symr. The kernel of this operator consists of rigid motions, but

since we are dealing with functions periodic in y, we have:

H1
#(Y; H1(!;C3))\ker(symr) =

8
>>><

>>>:

2

6664

dx2+ c1

�dx1+ c2

c3

3

7775 ,c1,c2,c3,d 2 C

9
>>>=

>>>;
< H1

#(Y; H1(!;C3)).

We define the following space:

H :=
î
H1

#(Y; H1(!;C3))\ker(symr)
ó?

=

ß
u 2 H1

#(Y; H1(!;C3));
ˆ
!⇥Y

u = 0,
ˆ
!⇥Y

x2u1� x1u2 = 0
™
.

Note that H is closed subspace of a Hilbert space H1
#(Y; H1(!;C3)) and that Korn’s in-

equality, as well as Poincare inequality hold on H. For f 2 H, Lax-Milgram theorem

yields the existence of unique solution u 2 H of the above problem, with test functions

taken in the space H. But, since, f 2 H, this is equivalent to allowing arbitrary test func-

tions v 2 H1
#(Y; H1(!;C3)).

This argumentation allows us to consider the following well posed problem: Find u�,m 2

H, such that: ˆ
!⇥Y
C(y)
Ä

symru�,m+⇤rod
�,m(x)

ä
: symrvdxdy = 0, 8v 2 H.

The above problem has a unique solution and can be equivalently rewritten by using the

adjoint of the operator symr, namely

symr⇤ : L2
#(Y; H1(!;C3))! H,

as follows:

symr⇤C(y) symru�,m = �symr⇤C(y)⇤rod
�,m(x), u�,m 2 H.

Next, we define the matrix Crod
� 2 C4⇥4 with the formula for the bilinear form:

Crod
� m ·d =

ˆ
!⇥Y
C(y)
Ä

symru�,m+⇤rod
�,m(x)

ä
: ⇤rod

�,d(x)dxdy

In order to analyze the problem separately on two invariant subspaces we also make use

of the following spaces:

Hstretch :=
î
H1

#(Y; H1(!;C3))\ker(symr)\L2
stretch

ó?
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=

ß
u 2 H1

#(Y; H1(!;C3));
ˆ
!⇥Y

u3 = 0,
ˆ
!⇥Y

x1u2� x2u1 = 0
™
,

Hbend :=
î
H1

#(Y; H1(!;C3))\ker(symr)\L2
bend

ó?

=

ß
u 2 H1

#(Y; H1(!;C3));
ˆ
!⇥Y

u1 = 0,
ˆ
!⇥Y

u2 = 0
™
.

Notice that

H1
#(Y; H1(!;C3))\ker(symr)\L2

bend =

8
>>><

>>>:

2

6664

c1

c2

0

3

7775 ,c1,c2 2 C

9
>>>=

>>>;
 H1

#(Y; H1(!;C3)).

H1
#(Y; H1(!;C3))\ker(symr)\L2

stretch =

8
>>><

>>>:

2

6664

dx2

�dx1

c3

3

7775 ,c3,d 2 C

9
>>>=

>>>;
 H1

#(Y; H1(!;C3)).

We consider the solutions of the following equations:

symr⇤C(y) symrubend
�,m1,m2

= �symr⇤C(y)⇤bend
�,m1,m2

(x), ubend
�,m1,m2

2 Hbend,

symr⇤C(y) symrustretch
�,m3,m4

= �symr⇤C(y)⇤stretch
�,m3,m4

(x), ustretch
�,m3,m4

2 Hstretch.

Note that the well posedness of the above problems requires invoking material symme-

tries in order to see that nontrivial unique solutions exist. Thus, by defining the matrices

Cbend
� ,Cstretch

� 2 C2⇥2 with the following bilinear forms:

Cbend
� (m1,m2)T · (d1,d2)T =

ˆ
!⇥Y
C(y)
Ä

symrubend
�,m1,m2

+⇤bend
�,m1,m2

(x)
ä

: ⇤bend
�,d1,d2

(x)dxdy

Cstretch
� (m3,m4)T · (d3,d4)T =

ˆ
!⇥Y
C(y)
Ä

symrustretch
�,m3,m4

+⇤stretch
�,m3,m4

(x)
ä

: ⇤stretch
�,d3,d4

(x)dxdy,

under the assumptions 3.1.1, we have the following decomposition :

Crod
� m ·d = Cbend

� (m1,m2)T · (d1,d2)T +Cstretch
� (m3,m4)T · (d3,d4)T .

Remark 3.3.1. We make a small remark on noting the following properties of these ma-

trices: First, we can easily see that the matrix Crod
� is hermitian.

Crod
� m ·d =

ˆ
!⇥Y
C(y)
Ä

symru�,m+⇤rod
�,m(x)

ä
: ⇤rod

�,d(x)dxdy

=

ˆ
!⇥Y
C(y)
Ä

symru�,m+⇤rod
�,m(x)

ä
: symrud +⇤rod

�,d(x)dxdy

=

ˆ
!⇥Y
C(y)
Ä

symrud +⇤rod
�,d(x)

ä
: symru�,m+⇤rod

�,m(x)dxdy

=

ˆ
!⇥Y
C(y)
Ä

symrud +⇤rod
�,d(x)

ä
: ⇤rod

�,m(x)dxdy = Crod
� d ·m.
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The same is true for the matrices Cstretch
� , Cbend

� . Second, from the structure of matrices

⇤bend
�,m1,m2

(x)and⇤stretch
�,m3,m4

(x) we see the following:

Crod
� (0,0,m3,m4)T · (0,0,d3,d4)T = (i�)2Crod(0,0,m3,m4)T · (0,0,d3,d4)T ,

Crod
� (m1,m2,0,0)T · (d1,d2,0,0)T = (i�)4Crod(m1,m2,0,0)T · (d1,d2,0,0)T ,

For that reason it is clear that:

C1(!)|�|4|(m1,m2)|2  Cbend
� (m1,m2) · (m1,m2)T C2(!)|�|4|(m1,m2)|2,

C1(!)|�|2|(m3,m4)|2  Cstretch
� (m3,m4) · (m3,m4)T C2(!)|�|2|(m3,m4)|2.

We conclude this remark with the fact that these two matrices both have two real eigen-

values, where these eigenvalues are of the order |�|4, for the bending case, and |�|2 for the

stretching case.

We have the following estimate:

Proposition 3.3.2. There exist a constant µ > 0 such that 8m = (m1,m2,m3,m4)T 2 C3 we

have:

µ
Ä
|�|4|(m1,m2)|2+ |�|2|(m3,m4)|2

ä
 Crod

� m ·m  1
µ

Ä
|�|4|(m1,m2)|2+ |�|2|(m3,m4)|2

ä
.

Proof.

Crod
� m ·m =

ˆ
!⇥Y
C(y)
Ä

symru�,m+⇤rod
�,m(x)

ä
: symrum+⇤rod

�,m(x)dxdy

�C
���symru�,m+⇤rod

�,m(x)
���

2

L2(!⇥Y;R3⇥3)

�C
Ä��i�x2m3+

�
@1(u�,m)3+@3(u�,m)1

���2
L2(!⇥Y)+

���i�x1m3+
�
@2(u�,m)3+@3(u�,m)2

���2
L2(!⇥Y)

ä

+C
���i�m4� (i�)2 (x1m1� x2m2)�@3(u�,m)3

���
2

L2(!⇥Y)
.

Due to orthogonality, it is clear that
���i�m4� (i�)2 (x1m1� x2m2)�@3(u�,m)3

���
2

L2(!⇥Y)
�C
Ä
|�|2|m4|2+ |�|4|(m1,m2)|2

ä
.

By using similar trick as before, one can obtain the following inequality as well:
��i�x2m3+

�
@1(u�,m)3+@3(u�,m)1

���2
L2(!⇥Y)+

���i�x1m3+
�
@2(u�,m)3+@3(u�,m)2

���2
L2(!⇥Y)

�C|�|2|m3|2.

⌅
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Notice that by applying the scaled Gelfand transform to the homogenized operators

we get the following formulae:

G"Abend⌅"G�1
" u =

1
"4C

bend
�

ˆ
Y

u,

G"Astretch⌅"G�1
" u =

1
"2C

stretch
�

ˆ
Y

u.

This is seen also by examining formulae:

PC2G"AbendG�1
" PC2 = PC2G"

ÇÇ
d2

dx2
3

å
Cbend

Ç
d2

dx2
3

åå
G�1
" PC2 =

1
"4 PC2Cbend

� PC2 ,

PC2G"AstretchG�1
" PC2 = PC2G"

ÅÅ
d

dx3

ã
Cstretch

Å
d

dx3

ãã
G�1
" PC2 =

1
"2 PC2Cstretch

� PC2 ,

PC4G"ArodG�1
" PC4 =

Å
1
"2 PC2Cbend

� PC2 ,
1
"2 PC2Cstretch

� PC2

ãT
, (under the Assumption 3.1.1).

3.3.2. The asymptotics in the stretching space

Here we provide the estimates for the error in the approximation of the solution to the

following resolvent equation posed in the space of stretching deformations:

Find u 2 H1
#(Y; H1(!;C3))\L2

stretch

1
|�|2

ˆ
!⇥Y
C(symru+ iX�u) : (symrv+ iX�v)+

ˆ
!⇥Y

uv =
ˆ
!⇥Y

fv, (3.14)

For all v 2 H1
#(Y; H1(!;C3))\L2

stretch.

This can be rewritten, using the adjoint of the operator symr + iX�, as a problem of

finding u 2 H1
#(Y; H1(!;C3))\L2

stretch such that

1
|�|2

�
symr⇤+

�
iX�

�⇤�
C(y)

�
symr+ iX�

�
u+u = f .

Remark 3.3.3. We test the above equation with the solution u and employ Proposition

3.2.10 to obtain:

1
|�|2
k
�
symr+ iX�

�
uk2L2(!⇥Y;C3⇥3)+ ||u||

2
L2(!⇥Y,C3) Ck fkL2(!⇥Y,C3)||u||L2(!⇥Y,C3)

 C
|�|k fkL2(!⇥Y,C3)k

�
symr+ iX�

�
ukL2(!⇥Y;C3⇥3),
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so:

k
�
symr+ iX�

�
ukL2(!⇥Y;C3⇥3) C|�|k fkL2(!⇥Y,C3).

Again, by Proposition 3.2.10 we deduce the following apriori estimate:

||u||H1(!⇥Y,C3) Ck fkL2(!⇥Y,C3)

We want to construct a function which approximates the solution to the given problem

with the error of the order |�|2. This can be done by several steps, introducing corrector

terms which can be calculated with the procedure explained below. The leading order

term in the approximation is given with the expression for the stretching rigid motion.

1) The leading order term and first order corrector

Consider the solution (m3,m4)T to the following equation:

Å
1
|�|2
Cstretch
� +Cstretch

ã2
4m3

m4

3

5 =Mstretch f .

By testing this equation against (m3,m4)T , it is clear that we have the estimate:

|(m3,m4)T | Ck fkL2(!⇥Y;C3).

Set u0 := Istretch

2

4m3

m4

3

5 and note that it can be estimated

||u0||H1(!⇥Y;C3) Ck fkL2(!⇥Y;C3).

Define the first order corrector term u1 2 Hstretch as the solution to the well posed problem

symr⇤C(y) symru1 = �symr⇤C(y)⇤stretch
�,m3,m4

(x), u1 2 Hstretch.

The well posedness of the above problem comes from the fact that the range of the oper-

ator symr⇤ is orthogonal to the kernel of symr. Also, it is clear from the definition of
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Cstretch
� that the following holds:

1
|�|2

ˆ
!⇥Y
C(y)
Ä

symru1+⇤
stretch
�,m3,m4

(x)
ä

: ⇤stretch
�,d3,d4

(x)dxdy+
ˆ
!⇥Y

2

6664

m3x2

�m3x1

m4

3

7775 ·

2

6664

d3x2

�d3x1

d4

3

7775dxdy

=

ˆ
!⇥Y

2

6664

f 1

f 2

f 3

3

7775 ·

2

6664

d3x2

�d3x1

d4

3

7775dxdy

(3.15)

The corrector term u1 belongs to the space L2
stretch due to the structure of the elasticity

tensor C. Elliptic estimates yield the following:

||u1||H1(!⇥Y;C3) C|�|k fkL2(!⇥Y;C3).

Define the functional

f̃ 1 = �
1
|�|2

�
iX�

�⇤
C(y)
Ä

symru1+⇤
stretch
�,m3,m4

(x)
ä
�u0+ f , f̃ 1 := L2(!⇥Y;C3)! C.

It is clear that f̃ 1 vanishes when tested against stretching rigid motions, which follows

directly from (3.15).

2) Second order corrector

In view of the equation (3.14) we define the second order corrector term u2 2 Hstretch with

the following equation:
1
|�|2

symr⇤C(y) symru2

= � 1
|�|2
Ä�

iX�
�⇤
C(y) symru1+ symr⇤C(y)iX�u1+

�
iX�

�⇤
C(y)⇤stretch

�,m3,m4
(x)
ä
�u0+ f ,

u2 2 Hstretch.

(3.16)

The right hand side is equal to the functional f̃ 1 � 1
|�|2

�
symr⇤C(y)iX�u1

�
which clearly

vanishes when tested against functions in Hstretch.

Therefore this problem is well posed and the corrector term u2 satisfies the following

estimate:

||u2||H1(!⇥Y;C3) C|�|2k fkL2(!⇥Y;C3).
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Remark 3.3.4. The definition of the leading order term might seem like it was introduced

blindly. However it is very well motivated, which can be justified with the following

reasoning: The first requirement for u0 is to solve:

symr⇤C(y) symru0 = 0.

From this we see the structure u0 = (c1+dx2,c2�dx1,c3)T since these are the only rigid

motions which are periodic in y. Next, since u0 belongs to L2
bend(!⇥Y;C3), we conclude

that u0 = (dx2,�dx1,c3)T . Here we are left with two degrees of freedom in determining the

precise values of the constants d and c3. But it turns out that these two degrees of freedom

are enough to fulfill the well posedness condition for the problem (3.16). Moreover, the

well posedness condition for (3.16) uniquely determines the values of d and c3 via the

equation (3.15), which directly translates to (3.3.2). It is somewhat evident that, since we

have depleted our spare degrees of freedom, there would be issues with continuation of

this procedure.

The total approximation built up so far uapprox := u0 +u1 +u2 satisfies the following

equation:

1
|�|2

�
symr⇤+

�
iX�

�⇤�
C(y)

�
symr+ iX�

�
uapprox+uapprox� f = R�.

The residual R� can be calculated and is given with the following expression:

R� =
1
|�|2

��
iX�

�⇤
C(y) symru2+ symr⇤C(y)iX�u2+

�
iX�

�⇤
C(y)iX�u1+

�
iX�

�⇤
C(y)iX�u2

�

+u1+u2.

It also satisfies the estimate

||R̃�||H�1
# (!⇥Y;C3) C|�|k fkL2(!⇥Y;C3).

These approximation is not satisfactory since the order of the error is, for our purposes,

not large enough with respect to �. We have to proceed further with the approximation

calculation in order to reduce the error. Unfortunately, the problem
1
|�|2

symr⇤C(y) symru3

= � 1
|�|2

��
iX�

�⇤
C(y) symru2+ symr⇤C(y)iX�u2+

�
iX�

�⇤
C(y)iX�u1

�
�u1, u3 2 Hstretch.
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is ill posed and the procedure must be terminated here. In order to define better approxi-

mation we must restart the procedure.

Remark 3.3.5. Here we note that the continuation of the procedure is only necessary if

one wishes to calculate higher precision norm-resolvent estimates. The approximation de-

fined so far is enough for the L2! L2 norm-resolvent estimates displayed in the Theorem

3.1.3.

3) Reseting the procedure

We proceed with the correction of the leading order term in the following way:

Set u(1)
0 := Istretch

2

4m(1)
3

m(1)
4

3

5, where

2

4m(1)
3

m(1)
4

3

5 satisfies:

Å
1
|�|2
Cstretch
� +Cstretch

ã2
4m(1)

3

m(1)
4

3

5 ·

2

4d3

d4

3

5=� 1
|�|2

ˆ
!⇥Y
C(y)

�
symru2+ iX�u1

�
:⇤stretch

�,d3,d4
(x)dxdy,

(3.17)

8(d3,d4)T 2 C2.

It is easy to see that u(1)
0 defined in this way satisfy the following:

||u(1)
0 ||H1(!⇥Y;C3) C|�|k fkL2(!⇥Y;C3).

The next correction is the function u(1)
1 which is the solution to the problem:

symr⇤C(y) symru(1)
1 = �symr⇤C(y)⇤stretch

�,m(1)
3 ,m

(1)
4

(x), u(1)
1 2 Hstretch.

It satisfies

||u(1)
1 ||H1(!⇥Y;C3) C|�|2k fkL2(!⇥Y;C3).

It is easy to check that these two equations yield

1
|�|2

ˆ
!⇥Y
C(y)
Å

symru(1)
1 +⇤

stretch
�,m(1)

3 ,m
(1)
4

(x)
ã

: ⇤stretch
�,d3,d4

(x)dxdy+
ˆ
!⇥Y

2

6664

m(1)
3 x2

�m(1)
3 x1

m(1)
4

3

7775 ·

2

6664

d3x2

�d3x1

d4

3

7775dxdy

= � 1
|�|2

ˆ
!⇥Y
C(y)

�
symru2+ iX�u1

�
: ⇤stretch

�,d3,d4
(x)dxdy, 8(d3,d4)T 2 C2,
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which means that the functional f̃ 2 := L2(!⇥Y;C3)! C, defined with:

f̃ 2 := � 1
|�|2

Å�
iX�

�⇤
C(y) symr(u2+u(1)

1 )+
�
iX�

�⇤
C(y)⇤stretch

�,m(1)
3 ,m

(1)
4

(x)+
�
iX�

�⇤
C(y)iX�u1

ã

�u(1)
0 �u1,

vanishes on stretching rigid motions. This fact allows us to pose the following problem:

1
|�|2

symr⇤C(y) symru(1)
2 = �

1
|�|2
Ä�

iX�
�⇤
C(y) symr(u2+u(1)

1 )+ symr⇤C(y)iX�(u2+u(1)
1 )
ä

� 1
|�|2

Å�
iX�

�⇤
C(y)⇤stretch

�,m(1)
3 ,m

(1)
4

(x)+
�
iX�

�⇤
C(y)iX�u1

ã
�u(1)

0 �u1, u(1)
2 2 Hstretch.

The problem is well posed and the solution satisfies:

||u(1)
2 ||H1(!⇥Y;C3) C|�|3k fkL2(!⇥Y;C3).

4) Final approximation

With these corrections defined, we are done with the approximation procedure. We define

the function

ũapprox := u0+u(1)
0 +u1+u(1)

1 +u2+u(1)
2 .

This approximation ũapprox now satisfies

1
|�|2

�
symr⇤+

�
iX�

�⇤�
C(y)

�
symr+ iX�

�
ũapprox+ ũapprox� f = R̃�.

The residual R̃� is now given with the following expression:

R̃� =
1
|�|2
Ä�

iX�
�⇤
C(y) symru(1)

2 + symr⇤C(y)iX�u(1)
2 +

�
iX�

�⇤
C(y)iX�u(1)

2 +
�
iX�

�⇤
C(y)iX�u2

ä

+
1
|�|2
Ä�

iX�
�⇤
C(y)iX�u2+

�
iX�

�⇤
C(y)iX�u(1)

1

ä
+u(1)

1 +u2+u(1)
2 .

It also satisfies the estimate

||R̃�||H�1
# (!⇥Y;C3) C|�|2k fkL2(!⇥Y;C3).

Define the error of the approximation

uerror := u� ũapprox.

134



The function uerror satisfies

1
|�|2

�
symr⇤+

�
iX�

�⇤�
C(y)

�
symr+ iX�

�
uerror+uerror = �R̃�.

Remark 3.3.6. Notice that by testing the previous equation with the solution uerror, we

obtain:

k
�
symr+ iX�

�
uerrork2L2(!⇥Y;C3⇥3)+ kuerrork2L2(!⇥Y;C3)

 1
|�|2
k
�
symr+ iX�

�
uerrork2L2(!⇥Y;C3⇥3)+ kuerrork2L2(!⇥Y;C3)

CkR̃�kH�1
# (!⇥Y;C3)kuerrorkH1(!⇥Y;C3).

On the other hand

ksymruerrork2L2(!⇥Y;C3⇥3) C
Ä
k
�
symr+ iX�

�
uerrork2L2(!⇥Y;C3⇥3)+ |�|

2kuerrork2L2(!⇥Y;C3)

ä
,

which yields

ksymruerrork2L2(!⇥Y;C3⇥3)�C|�|2kuerrork2L2(!⇥Y;C3) C
Ä
k
�
symr+ iX�

�
uerrork2L2(!⇥Y;C3⇥3)

ä
.

Therefore

ksymruerrork2L2(!⇥Y;C3⇥3)+
Ä

1�C|�|2
ä
kuerrork2L2(!⇥Y;C3)

CkR̃�kH�1
# (!⇥Y;C3)kuerrorkH1(!⇥Y;C3).

Since for uerror 2 H1
#(Y; H1(!;C3)) we have Korn’s inequality

kuerrork2H1(!⇥Y;C3) C
Ä
ksymruerrork2L2(!⇥Y;C3⇥3)+ kuerrork2L2(!⇥Y;C3)

ä
,

it is clear that, for |�| < ⌘, where ⌘ is a fixed small constant, we obtain

kuerrorkH1(!⇥Y;C3) CkR̃�kH�1
# (!⇥Y;C3). (3.18)

where the constant C > 0 depends on ⌘ > 0.

We can now employ the estimate (3.18) to deduce

||uerror||H1(!⇥Y;C3) C|�|2k fkL2(!⇥Y;C3).

By leaving out higher order terms, we can estimate the error in the approximation by

lower order terms:
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Proposition 3.3.7. Let u 2 H1
#(Y; H1(!;C3)) be the solution of problem (3.14). Then, the

following estimates are valid:
������

u�Istretch

2

4m3

m4

3

5

������
H1(!⇥Y,C3)

C|�|k fkL2(!⇥Y;C3),

������
u�Istretch

2

4m3+m(1)
3

m4+m(1)
4

3

5�u1

������
H1(!⇥Y,C3)

C|�|2k fkL2(!⇥Y;C3),

(3.19)

where m3,m4,m
(1)
3 ,m

(1)
4 ,u1 are defined with the approximation procedure above.

Remark 3.3.8. The first estimate in (3.19) can be rewritten as:
�����

Å
1
|�|2
A�+ I

ã�1
|L2

stretch
�
Ä
Mstretch

�

ä⇤Å 1
|�|2
Cstretch
� +Cstretch

ã�1
Mstretch

�

�����
L2!H1

C|�|.

(3.20)

The second estimate can be rewritten as:
�����

Å
1
|�|2
A�+ I

ã�1
|L2

stretch
�
Ä
Mstretch

�

ä⇤Å 1
|�|2
Cstretch
� +Cstretch

ã�1
Mstretch

� �Astretch
�,corr � ‹Astretch

�,corr

�����
L2!H1

C|�|2,

where the bounded operators Astretch
�,corr and ‹Astretch

�,corr are defined with the asymptotic proce-

dure above with:

Astretch
�,corr f := u1, ‹Astretch

�,corr f := u(1)
0 .

3.3.3. The analysis in the bending space

We analyze the following problem: find u 2 H1
#(Y; H1(!;C3)) such that

1
|�|4

ˆ
!⇥Y
C(symru+ iX�u) : (symru+ iX�u)+

ˆ
!⇥Y

uv =
ˆ
!⇥Y

S |�| fv,

for v 2 H1
#(Y; H1(!;C3)) \ L2

bend, where f 2 L2
bend. We denote the scaled forces with

S |�| f := ( f 1, f 2,
1
|�| f 3)T . The problem can be rewritten as before: find u 2H1

#(Y; H1(!;C3))\

L2
bend such that

1
|�|4

�
symr⇤+

�
iX�

�⇤�
C(y)

�
symr+ iX�

�
u+u = S |�| f . (3.21)
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It is clear from the material properties that the solution u posses the same symmetry prop-

erties as the force term f . In bending space we want to construct a function which approx-

imates the solution to the given problem with the error in H1 norm of the order |�|4. We

are repeating the approximation heuristic. The leading order term in the approximation is

given with the expression for the bending rigid motion.

Remark 3.3.9. By testing (3.21) against the solution u and applying Proposition 3.2.10,

we arrive at:

1
|�|4
||
�
symr+ iX�

�
u||2L2(!⇥Y,C3)+ ||u||

2
L2(!⇥Y,C3)

C
Å
|| f 1||L2(!⇥Y,C)||u1||L2(!⇥Y,C)+ || f 2||L2(!⇥Y,C)||u2||L2(!⇥Y,C)+

1
|�| || f 3||L2(!⇥Y,C)||u3||L2(!⇥Y,C)

ã

 C
|�|2
k fkL2(!⇥Y,C3)k

�
symr+ iX�

�
ukL2(!⇥Y;C3⇥3).

Therefore:

k
�
symr+ iX�

�
ukL2(!⇥Y;C3⇥3) C|�|2k fkL2(!⇥Y,C3).

Finally, again by Proposition 3.2.10, we have:

||u1||H1(!⇥Y,C) Ck fkL2(!⇥Y,C3), ||u2||H1(!⇥Y,C) Ck fkL2(!⇥Y,C3),

||u3||H1(!⇥Y,C) C|�|k fkL2(!⇥Y,C3).
(3.22)

1) The leading order term and second order corrector

The leading order term is defined with the following equation:

Find all (m1,m2)T 2 C2 which satisfy:

Å
1
|�|4
Cbend
� +Cbend

� (!)
ã2
4m1

m2

3

5 =Mbend
� S |�| f .

The solution satisfies the estimate

|(m1,m2)T | Ck fkL2(!⇥Y,C3)

By setting u0 = Ibend
�

2

4m1

m2

3

5, it is clear that we have the estimates:

||(u0)↵||H1(!⇥Y;C3) Ck fkL2(!⇥Y;C3), ||(u0)3||H1(!⇥Y;C3) C|�|k fkL2(!⇥Y;C3).
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We define the first order corrector as the solution to the following:

symr⇤C(y) symru1 = �symr⇤C(y)⇤bend
�,m1,m2

(x), u1 2 Hbend.

This problem is well posed and the solution satisfies

||u1||H1(!⇥Y;C3) C|�|2k fkL2(!⇥Y;C3).

It is clear from the definition of Cbend
� that the following holds:

1
|�|4

ˆ
!⇥Y
C(y)
Ä

symru1+⇤
bend
�,m1,m2

(x)
ä

: ⇤bend
�,d1,d2

(x)dxdy

+

ˆ
!⇥Y

2

6664

m1

m2

�i�(m1x1+m2x2)

3

7775 ·

2

6664

d1

d2

�i�(d1x1+d2x2)

3

7775dxdy =
ˆ
!⇥Y

2

6664

f 1

f 2
1
|�| f 3

3

7775 ·

2

6664

d1

d2

�i�(d1x1+d2x2)

3

7775dxdy,

for every (d1,d2)T 2 C2. Here, we note that

iX�(C1,C2,0)T =

2

6664

0 0 1
2 i�C1

0 0 1
2 i�C2

1
2 i�C1

1
2 i�C1 0

3

7775 = �symr(0,0,�i�(C1x1+C2x2))T .

From this we conclude that:

⇤bend
�,C1,C2

(x) = iX�(0,0,�i�(C1x1+C2x2))T .

2) Higher order correctors

In view of the equation (3.21) we define the third order corrector term u2 in the following

way: Define the functional

f̃ 2 = �
1
|�|4
Ä�

iX�
�⇤
C(y) symru1+ symr⇤C(y)iX�u1+

�
iX�

�⇤
C(y)⇤bend

�,m1,m2
(x)
ä

�(0,0,�i�(m1x1+m2x2))T + (0,0,
1
|�| f 3)T , f̃ 2 := L2(⌦)! C.
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This functional vanishes when tested against constant functions of type (C1,C2,0)T . To

see this, we do the following calculation:

Ä�
iX�

�⇤
C(y) symru1+

�
iX�

�⇤
C(y)⇤bend

�,m1,m2
(x)
ä

(C1,C2,0)T

=

ˆ
!⇥Y
C(y)
Ä

symru1+⇤
bend
�,m1,m2

(x)
ä

: iX�(C1,C2,0)T dxdy

= �
ˆ
!⇥Y
C(y)
Ä

symru1+⇤
bend
�,m1,m2

(x)
ä

: symr(0,0,�i�(C1x1+C2x2))T dxdy

= �
Ä

symr⇤C(y) symru1+ symr⇤C(y)⇤bend
�,m1,m2

(x)
ä

(0,0,�i�(C1x1+C2x2))T = 0.

The last equality follows from the definition of the corrector term u1 and the fact that

(0,0, i�(C1x1 +C2x2))T 2 Hbend. Next we define the corrector u2 as the solution to the

following well posed problem:

1
|�|4

symr⇤C(y) symru2 = f̃ 2, u2 2 Hbend.

The corrector term u2 satisfies the following estimate:

||u2||H1(!⇥Y;C3) C|�|3k fkL2(!⇥Y;C3).

We are able to define even higher order corrector term in order to cancel out more of

the residual parts and to decrease the error. The corrector term u3 is defined with the

following equation:

1
|�|4

symr⇤C(y) symru3 = f̃ 3, u3 2 Hbend,

where the right hand side f̃ 3 is defined with:

f̃ 3 = �
1
|�|4

��
iX�

�⇤
C(y) symru2+ symr⇤C(y)iX�u2+

�
iX�

�⇤
C(y)iX�u1

�

�(m1,m2,0)T + ( f 1, f 2,0)T .

In order to show
⌦

f̃ 3, (C1,C2,0)T↵ = 0,

we do the following calculation:
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1
|�|4

ˆ
!⇥Y
C(y)

�
symru2+ iX�u1

�
: iX�(C1,C2,0)T

=� 1
|�|4

ˆ
!⇥Y
C(y)

�
symru2+ iX�u1

�
: symr(0,0,�i�(C1x1+C2x2))T

=
1
|�|4

ˆ
!⇥Y
C(y)
Ä

symru1+⇤
bend
�,m1,m2

(x)
ä

: iX�(0,0,�i�(C1x1+C2x2))T

+

ˆ
!⇥Y

(0,0,�i�(m1x1+m2x2))T · (0,0,�i�(C1x1+C2x2))T

�
ˆ
!⇥Y

(0,0,
1
|�| f 3)T · (0,0,�i�(C1x1+C2x2))T

=
1
|�|4

ˆ
!⇥Y
C(y)
Ä

symru1+⇤
bend
�,m1,m2

(x)
ä

: ⇤bend
�,C1,C2

(x)dxdy

+

ˆ
!⇥Y

(0,0,�i�(m1x1+m2x2))T · (0,0,�i�(C1x1+C2x2))T

�
ˆ
!⇥Y

(0,0,
1
|�| f 3)T · (0,0,�i�(C1x1+C2x2))T

=�
ˆ
!⇥Y

(m1,m2,0)T · (C1,C2,0)T +

ˆ
!⇥Y

( f 1, f 2,0)T · (C1,C2,0)T .

This proves that the problem is well posed and the solution satisfies the following

estimate:

||u3||H1(!⇥Y;C3) C|�|4k fkL2(!⇥Y;C3).

The total approximation built up so far uapprox := u0+u1+u2+u3 satisfies the the follow-

ing equation:

1
|�|4

�
symr⇤+

�
iX�

�⇤�
C(y)

�
symr+ iX�

�
uapprox+uapprox�S |�| f = R�,

where the residual is given with the following expression:

R� =
1
|�|4

��
iX�

�⇤
C(y)iX�u2+

�
iX�

�⇤
C(y) symru3+ symr⇤C(y)iX�u3+

�
iX�

�⇤
C(y)iX�u3

�

+u1+u2+u3.

It satisfies the estimate:

||R�||H�1
# (!⇥Y;C3) C|�|k fkL2(!⇥Y,C3).

Here, we must restart the procedure in order to further develop the approximation.
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3) The first restart of the approximation procedure

In order to eliminate low order terms in the residual, we gradually define better approx-

imation by updating the leading order term. We do this by defining u(1)
0 = I

bend
�

2

4m(1)
1

m(1)
2

3

5,

where

2

4m(1)
1

m(1)
2

3

5 is the solution of the following problem:

Å
1
|�|4
Cbend
� +Cbend

� (!)
ã2
4m(1)

1

m(1)
2

3

5 ·

2

4d1

d2

3

5 = � 1
|�|4

ˆ
!⇥Y
C(y)

�
symru3+ iX�u2

�
: iX�(d1,d2,0)T ,

(3.23)

8(d1,d2)T 2 C2. We have

|m(1)
1 ,m

(1)
2 | C|�|k fkL2(!⇥Y,C3),

||(u(1)
0 )↵||H1(!⇥Y;C) C|�|k fkL2(!⇥Y;C3), ↵ = 0,1,

||(u(1)
0 )3||H1(!⇥Y;C) C|�|2k fkL2(!⇥Y;C3).

We define the next corrector u(1)
1 with the relation:

symr⇤C(y) symru(1)
1 = �symr⇤C(y)⇤bend

�,m(1)
1 ,m

(1)
2

(x), u(1)
1 2 Hbend.

This yields the estimate

||u(1)
1 ||H1(!⇥Y;C3) C|�|3k fkL2(!⇥Y;C3).

These correctors satisfy the following:

1
|�|4

ˆ
!⇥Y
C(y)
Å

symru(1)
1 +⇤

bend
�,m(1)

1 ,m
(1)
2

(x)
ã

: ⇤bend
�,d1,d2

(x)dxdy

+

ˆ
!⇥Y

2

6664

m(1)
1

m(1)
2

�i�(m(1)
1 x1+m(1)

2 x2)

3

7775 ·

2

6664

d1

d2

�i�(d1x1+d2x2)

3

7775dxdy

= � 1
|�|4

ˆ
!⇥Y
C(y)

�
symru3+ iX�u2

�
: iX�(d1,d2,0)T dxdy, 8(d1,d2)T 2 C2.

The continuation of the approximation procedure is similar as before. We progressively

define two more corrections u(1)
2 ,u

(1)
3 2 H1

#(Y; H1(!;C3)) as solutions of a well posed
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problems:
1
|�|4

symr⇤C(y) symru(1)
2

= � 1
|�|4

Å�
iX�

�⇤
C(y) symru(1)

1 + symr⇤C(y)iX�u(1)
1 +

�
iX�

�⇤
C(y)⇤bend

�,m(1)
1 ,m

(1)
2

(x)
ã

� (0,0,�i�(m(1)
1 x1+m(1)

2 x2))T , u(1)
2 2 Hbend.

1
|�|4

symr⇤C(y) symru(1)
3 = �

1
|�|4
Ä�

iX�
�⇤
C(y) symr(u(1)

2 +u3)+ symr⇤C(y)iX�(u(1)
2 +u3)

ä

� 1
|�|4
Ä�

iX�
�⇤
C(y)iX�(u(1)

1 +u2)
ä
� (m(1)

1 ,m
(1)
2 ,0)T , u(1)

3 2 Hbend.

The solutions satisfy the following estimates:

||u(1)
2 ||H1(!⇥Y;C3) C|�|4k fkL2(!⇥Y;C3).

||u(1)
3 ||H1(!⇥Y;C3) C|�|5k fkL2(!⇥Y;C3).

For our purposes it is necessary to further decrease the error for which we again need to

restart the procedure:

4) The second restart of the approximation procedure

Here, we provide the definitions for the correctors which eliminate the remaining low or-

der terms in the residual, thus achieving the desired error in the approximation.

The correctors u(2)
0 = I

bend
�

2

4m(2)
1

m(2)
2

3

5 ,u(2)
1 ,u

(2)
2 ,u

(2)
3 2 Hbend are gradually built with the fol-

lowing relations:

Å
1
|�|4
Cbend
� +Cbend

� (!)
ã2
4m(2)

1

m(2)
2

3

5 ·

2

4d1

d2

3

5 = �
ˆ
!⇥Y
C(y)
Ä

symru(1)
3 + iX�u(1)

2 + iX�u3
ä

: iX�(d1,d2,0)T ,

8(d1,d2)T 2 C2.

symr⇤C(y) symru(2)
1 = �symr⇤C(y)⇤bend

�,m(2)
1 ,m

(2)
2

(x), u(2)
1 2 Hbend.

1
|�|4

symr⇤C(y) symru(2)
2

= � 1
|�|4

Å�
iX�

�⇤
C(y) symru(2)

1 + symr⇤C(y)iX�u(2)
1 +

�
iX�

�⇤
C(y)⇤bend

�,m(2)
1 ,m

(2)
2

(x)
ã

� (0,0,�i�(m(2)
1 x1+m(2)

2 x2))T , u(2)
2 2 Hbend.
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1
|�|4

symr⇤C(y) symru(2)
3

= � 1
|�|4
Ä�

iX�
�⇤
C(y) symr(u(2)

2 +u(1)
3 )+ symr⇤C(y)iX�(u(2)

2 +u(1)
3 )
ä

� 1
|�|4
Ä�

iX�
�⇤
C(y)iX�(u(2)

1 +u(1)
2 +u3)

ä
� (m(2)

1 ,m
(2)
2 ,0)T �u1, u(2)

3 2 Hbend.

All of these problems are well posed which can be seen by reviewing the relations through-

out the process, thus concluding that the right hand sides vanish when tested against func-

tions in Hbend. These approximations satisfy the following estimates:

||(u(2)
0 )↵||H1(!⇥Y;C3) C|�|2k fkL2(!⇥Y;C3), ||(u

(2)
0 )3||H1(!⇥Y;C3) C|�|3k fkL2(!⇥Y;C3)

||u(2)
1 ||H1(!⇥Y;C3) C|�|4k fkL2(!⇥Y;C3).

||u(2)
2 ||H1(!⇥Y;C3) C|�|5k fkL2(!⇥Y;C3).

||u(2)
3 ||H1(!⇥Y;C3) C|�|6k fkL2(!⇥Y;C3).

5) Final approximation

We have finished the approximation procedure and define the function

ũapprox := u0+u(1)
0 +u(2)

0 +u1+u(1)
1 +u(2)

1 +u2+u(1)
2 +u(2)

2 .

This approximation ũapprox satisfies

1
|�|4

�
symr⇤+

�
iX�

�⇤�
C(y)

�
symr+ iX�

�
ũapprox+ ũapprox�S |�| f = R̃�,

where the residual R̃� is given with the following expression:

R̃� =
1
|�|4
Ä�

iX�
�⇤
C(y)iX�(u(1)

3 +u(2)
2 +u(2)

3 )+ symr⇤C(y)iX�u(2)
3 +

�
iX�

�⇤
C(y) symru(2)

3

ä

+u2+u3+u(1)
1 +u(1)

2 +u(1)
3 +u(2)

1 +u(2)
2 +u(2)

3 ,

and can be estimated with:

||R̃�||H�1
# (!⇥Y;C3) C|�|3k fkL2(!⇥Y,C3).

The error of the approximation

uerror := u� ũapprox.
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satisfies
1
|�|4

�
symr⇤+

�
iX�

�⇤�
C(y)

�
symr+ iX�

�
uerror+uerror = �R̃�.

Here, like in (3.18), one can easily derive estimate on the approximation error:

||uerror||H1(!⇥Y,C) C|�|3k fkL2(!⇥Y,C3).

The following proposition concludes our work as it gives final estimates on the approxi-

mation.

Proposition 3.3.10. Let u 2 H1
#(Y; H1(!;C3)) be the solution of problem (3.21). Then,

the following estimates are valid:
������

Pi

Ñ
u�Ibend

�

2

4m1

m2

3

5

é������
H1(!⇥Y,C2)



8
<

:
C|�|k fkL2(!⇥Y;C3), i = 1,2;

C|�|2k fkL2(!⇥Y;C3), i = 3.
������

Pi

Ñ
u�Ibend

�

2

4m1

m2

3

5�Ibend
�

2

4m(1)
1

m(1)
2

3

5�u1

é������
H1(!⇥Y,C2)



8
<

:
C|�|2k fkL2(!⇥Y;C3), i = 1,2;

C|�|3k fkL2(!⇥Y;C3), i = 3.

(3.24)

where m1,m2,m
(1)
1 ,m

(1)
2 ,u1 are defined with the approximation procedure above.

Remark 3.3.11. Note that, due to the scaling of the operator, the previous estimates are

valid also if we replace m1,m2,m(1)
1 ,m(1)

2 with solutions m̃1,m̃2,m̃(1)
1 ,m̃(1)

2 to the analogous

homogenized problem with Cbend
� (!) = I.

Plugging (m1� m̃1,m2� m̃2)T as a test function we get:

1
|�|4
Cbend
�

2

4m1� m̃1

m2� m̃2

3

5 ·

2

4m1� m̃1

m2� m̃2

3

5+ |�|2
2

4c1(!) 0

0 c2(!)

3

5

2

4m1

m2

3

5 ·

2

4m1� m̃1

m2� m̃2

3

5 = 0.

Therefore: ������

2

4m1� m̃1

m2� m̃2

3

5

������
C|�|2k fkL2(!⇥Y;C3)

Remark 3.3.12. The first estimate in (3.24) can be rewritten as:
�����Pi

ÇÅ
1
|�|4
A�+ I

ã�1
|L2

bend
�
Ä
Mbend

�

ä⇤Å 1
|�|4
Cbend
� + I

ã�1
Mbend

�

å
S |�|

�����
L2!H1



8
<

:
C|�|, i = 1,2;

C|�|2, i = 3.

(3.25)
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The second estimate can be rewritten as:
�����Pi

ÇÅ
1
|�|4
A�+ I

ã�1
|L2

bend
�
Ä
Mbend

�

ä⇤Å 1
|�|4
Cbend
� + I

ã�1
Mbend

� �Abend
�,corr� ‹Abend

�,corr

å
S |�|

�����
L2!H1



8
<

:
C|�|2, i = 1,2;

C|�|3, i = 3,

where the bounded operatorsAbend
�,corr and ‹Abend

�,corr are defined with the asymptotic procedure

above with:

Abend
�,corr f := u1, ‹Abend

�,corr f := u(1)
0 .

Remark 3.3.13. We note that the absence of the scaling term S |�| is the same as the

absence of the out-of-line force term, when we consider the H1 estimate for the distance

between the unhomogenised and homogenised resolvents. Consider the following two

problems:

Å
1
|�|4
Cbend
� + I

ã2
4m̂1

m̂2

3

5 =Mbend
� f ,

Å
1
|�|4
Cbend
� + I

ã2
4m̃1

m̃2

3

5 =Mbend
� S1 f =

ˆ
!⇥Y

2

4 f 1

f 2

3

5 ,

where

S1 =

2

6664

1 0 0

0 1 0

0 0 0

3

7775 .

The di↵erence (m̂1� m̃1, m̂2� m̃2)T satisfies the following:

Å
1
|�|4
Cbend
� + I

ã2
4m̂1� m̃1

m̂2� m̃2

3

5 =
ˆ
!⇥Y

2

4i� f 3x1

i� f 3x2

3

5 ,

so

| (m̂1� m̃1, m̂2� m̃2)T | C|�|k fkL2(!⇥Y;C3) .

In other words, we have:
������

Pi

Ñ
Ibend
�

2

4m̂1

m̂2

3

5�Ibend
�

2

4m̃1

m̃2

3

5

é������
H1(!⇥Y;C3)



8
<

:
C|�|k fkL2(!⇥Y;C3), i = 1,2;

C|�|2k fkL2(!⇥Y;C3), i = 3.
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Therefore

������Pi
Ä
Mbend

�

ä⇤Å 1
|�|4
Cbend
� + I

ã�1
Mbend

� (I�S1)
������

L2!H1


8
<

:
C|�|, i = 1,2;

C|�|2, i = 3.

Similarly, due to (3.22) we have:

������Pi

Å
1
|�|4
A�+ I

ã�1
(I�S1)

������
L2!H1



8
<

:
C|�|, i = 1,2;

C|�|2, i = 3.
(3.26)

Remark 3.3.14. We emphasise here that the asymptotic procedure, performed in this

section, eventually stabilises and can be extended to an approximation of arbitrary order in

|�|, thus generating the series of approximations. One can write down explicit recurrence

relations which define these correctors up to any order in |�|. This leads to approximation

in arbitrary precision, however with physically unambiguous terms.
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3.4. Norm-resolvent estimates under material

symmetries

In this section, we provide the norm-resolvent estimates for the operators on the original

domain !⇥R. This is being done by chosing optimal estimates with respect to " for each

small �, and then applying the Gelfand pullback in order to rephrase the estimates in the

original physical setting.

3.4.1. L2! L2 norm-resolvent estimates

We start with the stretching case.

Theorem 3.4.1. Suppose that the assumptions on the material symmetries 3.1.1 hold and

that the forces f belong to L2
stretch. Let � > �2 be the parameter of spectral scaling. Then

we have the following estimate:
�����P1

Å
1
"�
A"+ I

ã�1
f � x2⇡1

Å
1
"�
Astretch+Cstretch

ã�1
Mstretch⌅" f

�����
L2(!⇥R)

 "
�+2

2 k fkL2(!⇥R;R3),

�����P2

Å
1
"�
A"+ I

ã�1
f + x1⇡1

Å
1
"�
Astretch+Cstretch

ã�1
Mstretch⌅" f

�����
L2(!⇥R)

 "
�+2

2 k fkL2(!⇥R;R3),

�����P3

Å
1
"�
A"+ I

ã�1
f �⇡2

Å
1
"�
Astretch+Cstretch

ã�1
Mstretch⌅" f

�����
L2(!⇥R)

 "
�+2

2 k fkL2(!⇥R;R3)

(3.27)

Proof. We recall the estimates (3.19) for the weak solutions of the resolvent equations:
Å

1
|�|2
A�+ I

ã
u = f ;

Å
1
|�|2
Cstretch
� +Cstretch

ã
(m1,m2)T =Mstretch

� f .

Now, from (3.20) we see that we have the following norm-resolvent estimates:
�����P1

Å
1
|�|2
A�+ I

ã�1
f � x2⇡1

Å
1
|�|2
Cstretch
� +Cstretch

ã�1
Mstretch

� f

�����
L2(!⇥Y)

 |�|k fkL2(!⇥Y;C3),

�����P2

Å
1
|�|2
A�+ I

ã�1
f + x1⇡1

Å
1
|�|2
Cstretch
� +Cstretch

ã�1
Mstretch

� f

�����
L2(!⇥Y)

 |�|k fkL2(!⇥Y;C3),
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�����P3

Å
1
|�|2
A�+ I

ã�1
f �⇡2

Å
1
|�|2
Cstretch
� +Cstretch

ã�1
Mstretch

� f

�����
L2(!⇥Y)

 |�|k fkL2(!⇥Y;C3).

Recall that the operatorA� is selfadjoint, positive, with compact resolvent, so its spectrum

consists of real nonnegative eigenvalues, all of which are of order O(1) except for the two

smallest, ��1 ,�
�
2, which are of order O(|�|2). (We know the precise fixed interval in which

��1/|�|
2 and ��2/|�|

2 can be found, uniformly on |�|).

For every fixed " > 0, � , 0 we define the function

g",�(z) :=
Ç
|�|2
"�+2 z+1

å�1

, <(z) > 0 (3.28)

for which we have the following: For every fixed ⌘ > 0, function g",� is bounded on the

halfplane:
�

z 2 C,<(z) � ⌘
 

,

|g",�(z)| C
Ç

max
®
|�|2
"�+2 ,1

´å�1

.

This is due to the following calculation

|g",�(z)|�1 = | |�|
2

"�+2 z+1| � |�|
2

"�+2⌘+1 �

8
<

:

|�|2
"�+2 if |�|2� "�+2;

1 if "�+2 ⇡ |�|2.

Due to the bounds on the both eigenvalues ofA� of order |�|2, we deduce that two smallest

eigenvalues of the operator 1
|�|2A� are uniformly positioned in the fixed interval in the

right halfplane, with the interval not depending on � nor ". The same is true for the two

eigenvalues �
�
1, �

�
2 of the matrix Cstretch

� . The uniform bounds on these eigenvalues allow

us to deduce that there exists a closed contour � ⇢
�

z 2 C,<(z) > 0
 

and a constant µ > 0,

such that for every � 2 [�µ,µ] \ {0} one has the following properties:

• � encloses the two smallest eigenvalues of both the operators 1
|�|2A� and 1

|�|2C
stretch
� .

• � does not enclose any other eigenvalue (of higher order).

• 9⇢0 > 0, infz2� |z���i | � 0 , infz2� |z��
�
i | � ⇢0, i = 1,2.
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Notice that g�," is analytic on the right half plane, thus for a 2 C inside � the Cauchy

integral formula gives us:

g�,"(a) :=
1

2⇡i

˛
�

g�,"(z)
z�a

dz.

The similar is valid for g�," taken as the function of operator:

g�,"(A)P� :=
1

2⇡i

˛
�

g�,"(z)(zI�A)�1dz,

where P� is the projection operator onto the eigenspace spanned with eigenfunctions cor-

responding with those eigenvalues enclosed with �. Note that

1
"�+2A�+ I =

|�|2
"�+2

Å
1
|�|2
A�

ã
+ I.

Thus we can write

P�
Å

1
"�+2A�+ I

ã�1
P� f =

1
2⇡i

˛
�

g�,"(z)
Å

zI� 1
|�|2
A�

ã�1
fdz.

Due to the uniform estimates on the spectrum ofA�, we have:
�����

Å
1

"�+2A�+ I
ã�1
�P�
Å

1
"�+2A�+ I

ã�1
P�

�����
L2!H1

=

�����(I�P�)
Å

1
"�+2A�+ I

ã�1
(I�P�)

�����
L2!H1

C"�+2,

so we will omit the projection P� since the resolvent estimate is valid for the whole opera-

tor. Notice that the integral formula can also be applied to the resolvent
Ä

1
|�|2C

stretch
� +Cstretch

ä�1

despite its not standard structure. We have the following result:
�����P1

Å
1

"�+2A�+ I
ã�1

f � x2⇡1

Å
1

"�+2C
stretch
� +Cstretch

ã�1
Mstretch

� f

�����
L2(!⇥Y)

 1
2⇡

˛
�
|g�,"(z)|

�����P1

Å
zI� 1
|�|2
A�

ã�1
f � x2⇡1

Å
zCstretch� 1

|�|2
Cstretch
�

ã�1
Mstretch

� f

�����
L2(!⇥Y)

dz

C|�|
Ç

max
®
|�|2
"�+2 ,1

´å�1

k fkL2(!⇥Y;C3) C"
�+2

2 k fkL2(!⇥Y;C3),

where the bound is the sharpest when |�|2 ⇡ "�+2. For the second and third component we

have an analogous result:
�����P2

Å
1

"�+2A�+ I
ã�1

f + x1⇡1

Å
1

"�+2C
stretch
� +Cstretch

ã�1
Mstretch

� f

�����
L2(!⇥Y)
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C"
�+2

2 k fkL2(!⇥Y;C3),�����P3

Å
1

"�+2A�+ I
ã�1

f �⇡2

Å
1

"�+2C
stretch
� +Cstretch

ã�1
Mstretch

� f

�����
L2(!⇥Y)

C"
�+2

2 k fkL2(!⇥Y;C3),

The statement follows from
Å

1
"�
Astretch+Cstretch

ã�1
= G�1

"

Å
1

"�+2C
stretch
� +Cstretch

ã�1
G",

Å
1
"�
A"+ I

ã�1
= G�1

"

Å
1

"�+2A�+ I
ã�1
G"

(3.29)

and consequently

G�1
"

Ç
P1

Å
1

"�+2A�+ I
ã�1
� x2⇡1

Å
1

"�+2C
stretch
� +Cstretch

ã�1
Mstretch

�

å
G"

= P1

Å
1
"�
A"+ I

ã�1
� x2⇡1

Å
1
"�
Astretch+Cstretch

ã�1
Mstretch⌅",

G�1
"

Ç
P2

Å
1

"�+2A�+ I
ã�1
+ x1⇡1

Å
1

"�+2C
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� +Cstretch

ã�1
Mstretch

�

å
G"

= P2

Å
1
"�
A"+ I

ã�1
+ x1⇡1

Å
1
"�
Astretch+Cstretch

ã�1
Mstretch⌅",

G�1
"

Ç
P3

Å
1

"�+2A�+ I
ã�1
�⇡2

Å
1

"�+2C
stretch
� +Cstretch

ã�1
Mstretch

�

å
G"

= P3

Å
1
"�
A"+ I

ã�1
�⇡2

Å
1
"�
Astretch+Cstretch

ã�1
Mstretch⌅",

as well as the fact that the Gelfand transform is an isometry. ⌅

Next, we analyse the bending case.

Theorem 3.4.2. Suppose that the assumptions on the material symmetries 3.1.1 hold. Let

the forces f belong to L2
bend. Let � > �2 be the parameter of spectral scaling. Let � � 0
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be the parameter of force scaling. Then we have the following estimates:
�����Pi

Å
1
"�
A"+ I

ã�1
S "� f �⇡i

Å
1

"��2A
bend+ I

ã�1
Mbend

" ⌅"S "� f

�����
L2(!⇥R)

C"
�+2

4 max
ß
"
�+2

4 ��,1
™
k fkL2(!⇥R;R3), i = 1,2,

�������
P3

Å
1
"�
A"+ I

ã�1
S "� f +"

2

4x1

x2

3

5
T

· d
dx3

Å
1

"��2A
bend+ I

ã�1
Mbend

" ⌅"S "� f

�������
L2(!⇥R)

C"
�+2

2 max
ß
"
�+2

4 ��,1
™
k fkL2(!⇥R;R3).

(3.30)

Proof. It is clear from (3.25) that we have the following norm-resolvent estimates:
�����Pi

Å
1
|�|4
A�+ I

ã�1
S |�| f �⇡i

Å
1
|�|4
Cbend
� + I

ã�1
Mbend

� S |�| f

�����
L2!L2

C|�|k fkL2(!⇥Y;C3) ,

i = 1,2,
������

P3

Å
1
|�|4
A�+ I

ã�1
S |�| f + i�

2

4x1

x2

3

5 ·
Å

1
|�|4
Cbend
� + I

ã�1
Mbend

� S |�| f

������
L2!L2

C|�|2 k fkL2(!⇥Y;C3) .

For each fixed " > 0, � , 0 we define the function

f",�(z) :=
Ç
|�|4
"�+2 z+1

å�1

, <(z) > 0. (3.31)

Similarly as before, we have that for every fixed ⌘ > 0, function f",� is bounded on the

halfplane
�

z 2 C,<(z) � ⌘
 

,

| f",�(z)| C
Ç

max
®
|�|4
"�+2 ,1

´å�1

.

Due to the bounds on both the eigenvalues ��1, ��2 of A� of the order |�|4, and the eigen-

values �
�
1, �

�
2 of the matrix Cbend

� , there exists a closed contour � ⇢
�

z 2 C,<(z) > 0
 

and

a constant µ > 0 such that for every � 2 [�µ,µ] \ {0} one has the following properties:

• � encloses the two smallest eigenvalues of both the operators 1
|�|4A� and 1

|�|4C
bend
� .

• � does not enclose any other eigenvalue (of higher order).
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• 9⇢0 > 0, infz2� |z���i | � ⇢0, infz2� |z��
�
i | � ⇢0, i = 1,2.

Due to the fact that f�," is analytic on the right halfplane, the Cauchy integral formula

gives us:

P� f�,"(A)P� :=
1

2⇡i

˛
�

f�,"(z)(zI�A)�1dz.

We make the following observations:

1
"�+2A�+ I =

|�|4
"�+2

Å
1
|�|4
A�

ã
+ I, S "� f = S |�|S "�/|�| f .

Note that:

kS "�/|�| fkL2(!⇥Y;C3) max
ß

1,
|�|
"�

™
k fkL2(!⇥Y;C3).

Thus we can write

P�
Å

1
"�+2A�+ I

ã�1
P�S "� f =

1
2⇡i

˛
�

f�,"(z)
Å

zI� 1
|�|4
A�

ã�1
S |�|S "�/|�| fdz.

In the same fashion as before, we omit writing the projection operator since the estimates

are valid for the whole operator.

For i = 1,2 we calculate:
�����Pi

Å
1

"�+2A�+ I
ã�1

S "� f �⇡i

Å
1

"�+2C
bend
� + I

ã�1
Mbend

� S "� f

�����
L2(!⇥Y)

 1
2⇡

˛
�
| f",�(z)|

����Pi

Å
zI� 1
|�|4
A�

ã�1
S |�|S "�/|�| f

�⇡i

Å
zI� 1
|�|4
Cbend
�

ã�1
Mbend

� S |�|S "�/|�| f
����

L2(!⇥Y)
dz

C|�|
Ç

max
®
|�|4
"�+2 ,1

´å�1

kS "�/|�| fkL2(!⇥Y;C3)

C|�|
Ç

max
®
|�|4
"�+2 ,1

´å�1

max
ß |�|
"�
,1
™
k fkL2(!⇥Y;C3)

C"
�+2

4 max
ß
"
�+2

4 ��,1
™
k fkL2(!⇥Y;C3),
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where the bound is the sharpest when |�|4 ⇡ "�+2. For the third component we have:
������

P3

Å
1

"�+2A�+ I
ã�1

S "� f + i�

2

4x1

x2

3

5 ·
Å

1
"�+2C

bend
� + I

ã�1
Mbend

� S "� f

������
L2(!⇥Y)

 1
2⇡

˛
�
| f",�(z)|

����P3

Å
zI� 1
|�|4
A�

ã�1
S |�|S "�/|�| f

+ i�

2

4x1

x2

3

5 ·
Å

zI� 1
|�|4
Cbend
�

ã�1
Mbend

� S |�|S "�/|�| f
����

L2(!⇥Y)
dz

C|�|2
Ç

max
®
|�|4
"4 ,1

´å�1

max
ß |�|
"�
,1
™
k fkL2(!⇥Y;C3)

C"
�+2

2 max
ß
"
�+2

4 ��,1
™
k fkL2(!⇥Y;C3).

Since Å
1

"��2A
bend+ I

ã�1
= G�1

"

Å
1

"�+2C
bend
� + I

ã�1
G",

Å
1
"�
A"+ I

ã�1
= G�1

"

Å
1

"�+2A�+ I
ã�1
G",

we also have:

G�1
"

Ç
Pi

Å
1

"�+2A�+ I
ã�1
�⇡i

Å
1

"�+2C
bend
� + I

ã�1
Mbend

�

å
G"

= Pi

Å
1
"�
A"+ I

ã�1
�⇡i

Å
1

"��2A
bend+ I

ã�1
Mbend

" ⌅",

(3.32)

G�1
"

Ñ
P3

Å
1

"�+2A�+ I
ã�1
+ i�

2

4x1

x2

3

5 ·
Å

1
"�+2C

bend
� + I

ã�1
Mbend

�

é
G"

= P3

Å
1
"�
A"+ I

ã�1
+"

2

4x1

x2

3

5 · d
dx3

Å
1

"��2A
bend+ I

ã�1
Mbend

" ⌅".

(3.33)

In order to finish the proof we use the fact that the Gelfand transform is an isometry. ⌅

Remark 3.4.3. By using the notation introduced in the Remark 3.1.4, we can rephrase

the estimates (3.27) and (3.30) in a more compact way as follows:
�����

Å
1
"�
A"+ I

ã�1
|L2

stretch
� (Mstretch)⇤

Å
1
"�
Astretch+Cstretch

ã�1
Mstretch⌅"

�����
L2!L2

C"
�+2

2 ,

(3.34)
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�����Pi

ÇÅ
1
"�
A"+ I

ã�1
|L2

bend
� (Mbend

" )⇤
Å

1
"��2A

bend+ I
ã�1
Mbend

" ⌅"

å
S "�

�����
L2!L2



8
>><

>>:

C"
�+2

4 max
ß
"
�+2

4 ��,1
™
, i = 1,2;

C"
�+2

2 max
ß
"
�+2

4 ��,1
™
, i = 3.

Remark 3.4.4. It is clear that, due to (3.26), in the case � = 0, in addition to the estimate:
�����Pi

ÇÅ
1
"�
A"+ I

ã�1
|L2

bend
� (Mbend

" )⇤
Å

1
"��2A

bend+ I
ã�1
Mbend

" ⌅"

å�����
L2!L2



8
><
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C"
�+2

4 , i = 1,2;

C"
�+2

2 , i = 3,

one also has:
�����Pi

ÇÅ
1
"�
A"+ I

ã�1
|L2

bend
� (Mbend

" )⇤
Å

1
"��2A

bend+ I
ã�1
Mbend

" ⌅"S1

å�����
L2!L2



8
><

>:

C"
�+2

4 , i = 1,2;

C"
�+2

2 , i = 3,

Namely, this is the norm-resolvent estimate in the abscence of out-of-line force terms.

We show that the smoothing operator ⌅" appearing in the above norm-resolvent esti-

mates can be neglected with the estimates still being valid.

Corollary 3.4.5. Suppose that the assumptions on the material symmetries 3.1.1 hold.

Let � > �2 be the parameter of spectral scaling. Then there exists C > 0 such that for

every " > 0 we have:
�����
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1
"�
A"+ I

ã�1
|L2

stretch
� (Mstretch)⇤

Å
1
"�
Astretch+Cstretch

ã�1
Mstretch

�����
L2!L2

C"
�+2

2 ,

�����Pi

ÇÅ
1
"�
A"+ I

ã�1
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bend
� (Mbend

" )⇤
Å

1
"��2A

bend+ I
ã�1
Mbend

" S1

å�����
L2!L2



8
><

>:

C"
�+2

4 , i = 1,2;

C"
�+2

2 , i = 3,

(3.35)

154



Proof. The application of the Fourier transform to the limit resolvent in the stretching

case yields:
Ç

(Mstretch)⇤
Å

1
"�
Astretch+Cstretch

ã�1
Mstretch (I�⌅") f

å^
(⇠)

= (Mstretch)⇤
Ç
⇠2

"�
Cstretch+Cstretch

å�1

Mstretchbf (⇠) ¨�1,� 1
2" ][[ 1

2" ,1
∂(⇠).

But, for |⇠| > 1
2" and � > �2, we have:
Ç
⇠2

"�
Cstretch+Cstretch

å
m ·mT � ⇠

2

"�
C|m|2 � C

"�+2 |m|
2,

and hence: �����

Ç
⇠2

"�
Cstretch+Cstretch

å�1����� C"�+2.

With all of this combined we have:
�����

Ç
(Mstretch)⇤

Å
1
"�
Astretch+Cstretch

ã�1
Mstretch (I�⌅") f

å^�����
L2

C"�+2
���bf
���

L2
,

so ⌅" can be removed from (3.34). Similarly as in the stretching case, one can eliminate

the smoothing operator from the norm-resolvent estimate in the case of absence of out-

of-line force terms. For i = 1,2 one has:

Pi

Ç
(Mbend

" )⇤
Å

1
"��2A

bend+ I
ã�1
Mbend

" (I�⌅")S1
å
= ⇡i

Å
1

"��2A
bend+ I

ã�1
(I�⌅").

Now:
Ç
⇡i

Å
1

"��2A
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ã�1
(I�⌅") f

å^
(⇠) =

Ç
⇠4

"��2C
bend+ I

å�1
bf (⇠) ¨�1,� 1

2" ][[ 1
2" ,1
∂(⇠).

But,for |⇠| > 1
2" and � > �2, we have:

Ç
⇠4

"��2C
bend+ I

å
m ·mT � ⇠4

"��2 C|m|2 � C
"�+2 |m|

2.

Finally, we obtain:
�����Pi
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(Mbend

" )⇤
Å
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"��2A
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" (I�⌅")S1 f
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���bf
���
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, i = 1,2.
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Same can be done in the case i = 3,

P3

Ç
(Mbend

" )⇤
Å

1
"��2A

bend+ I
ã�1
Mbend

" (I�⌅")S1
å

= "

2

4x1

x2

3

5
T

· d
dx3

Å
1

"��2A
bend+ I

ã�1
(I�⌅"),

where we have:
Ö

"

2

4x1

x2

3

5
T

· d
dx3

Å
1

"��2A
bend+ I

ã�1
(I�⌅") f

è^

(⇠)

= "⇠

2

4x1

x2

3

5
T

·
Ç

⇠4

"��2C
bend+ I

å�1
bf (⇠) ¨�1,� 1

2" ][[ 1
2" ,1
∂(⇠).

⌅

The following result is an easy consequence:

Corollary 3.4.6. Suppose that the assumptions on the material symmetries 3.1.1 hold.

Let � > �2 be the parameter of spectral scaling. Then there exists C such that for every

" > 0 we have:
�����

ÇÅ
1
"�
A"+ I

ã�1
|L2

bend
� (Mbend

0 )⇤
Å

1
"��2A

bend+ I
ã�1
Mbend

0

å�����
L2!L2

C"
�+2

4 . (3.36)

Proof. The ellipticity of the operatorAbend yields that the solution b 2 H2(R;R2) of
Å

1
"��2A

bend+ I
ã

b = g,

satisfies:

kbkL2(R;R2) CkgkL2(R;R2), kr2bkL2(R;R2⇥2⇥2) C"
��2

2 kgkL2(R;R2).

By using the interpolation inequality

krbk2L2(R;R2⇥2) Ckr2bkL2(R;R2⇥2⇥2)kbkL2(R;R2),

we clearly have

k"rbkL2(!;R2⇥2) C"
�+2

4 kgkL2(!;R2).

In other words, by replacing Mmemb
" with Mbend

0 in (3.35), the error of approximation

remains of order "
�+2

4 at worst. ⌅
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Remark 3.4.7. Here we make a remark regarding the spectrum of the limit resolvents.

First, notice that the force momentum operatorMbend
0 is clearly a partial isometry since

Mbend
0

Ä
Mbend

0

ä⇤
= I, on H2(R;R2).

Due to this and the fact that �
Ä

1
"��2Abend

ä
= [0,1i (a simple argument via Fourier trans-

form), it is evident that

�

Ç
(Mbend

0 )⇤
Å

1
"��2A

bend+ I
ã�1
Mbend

0

å
= �

ÇÅ
1

"��2A
bend+ I

ã�1å
= [0,1].

On the other hand, by defining a inner product

hu,vistretch :=
ˆ
R
Cstretchu · v, u,v 2 L2(R;R2),

one clearly has

(Mstretch)⇤
Å

1
"��2A

stretch+Cstretch
ã�1
Mstretch

= (Mstretch)⇤
Å

1
"��2

Ä
Cstretch

ä�1
Astretch+ I

ã�1Ä
Cstretch

ä�1
Mstretch,

and can easily verify that (Mstretch)⇤ is the adjoint of
�
Cstretch��1Mstretch with respect

to the inner product h·, ·istretch on L2(R;R2) (in pair with the usual inner product on

L2(R;R3)). Notice that

Ä
Cstretch

ä�1
Mstretch(Mstretch)⇤ = I.

The operator
�
Cstretch��1Astretch is clearly symmetric (with respect to the inner product

h·, ·istretch), and again we have

�

Ç
(Mstretch)⇤

Å
1

"��2A
stretch+Cstretch

ã�1
Mstretch

å
= [0,1].

The norm-resolvent estimates allow us to easily estimate the gaps in the spectrum of

the operatorA", for every " > 0.

Corollary 3.4.8. Suppose that the assumptions on the material symmetries 3.1.1 hold.

Let � > �2 be the parameter of spectral scaling. Let M > 0. Then

sup
[a,b]⇢[0,M"�]

[a,b]\�(A"|L2
bend

)=;

|[a,b]| C(M+1)2"
5�+2

4 , sup
[a,b]⇢[0,M"�]

[a,b]\�(A"|L2
stretch

)=;

|[a,b]| C(M+1)2"
3�+2

4 .
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Proof. It is known that, for a bounded perturbation A of a self-adjoint operator H in a

Hilbert spaceH , one has the following spectral inclusion:

�(H+A) ⇢ {� : dist(�,�(H))  kAk}.

Thus, by plugging

H =
Å

1
"�
A"+ I

ã�1
|L2

bend
,

A =
ÇÅ

1
"�
A"+ I

ã�1
|L2

bend
� (Mbend

0 )⇤
Å

1
"��2A

bend+ I
ã�1
Mbend

0

å
,

and employing the norm-resolvent estimate (3.36), we obtain:

[0,1] ⇢
®
� 2 [0,1], dist

Ç
�,�

ÇÅ
1
"�
A"+ I

ã�1
|L2

bend

åå
< C"

�+2
4

´
.

We have that in each interval of size C"
�+2

4 in [0,1] there must exist a member of the

spectrum of the operator
� 1
"�A"+ I

��1 |L2
bend

. In other words, the maximal gap between

the members of the spectrum of
� 1
"�A"+ I

��1 |L2
bend

is C"
�+2

4 .

Let �1,�2 2 �(A"|L2
bend

) be such that 1
"� �1,

1
"� �2  M, h�1,�2i\�(A") = ;. Due to the

fact that �������

1
"� �1� 1

"� �2
� 1
"� �1+1

�� 1
"� �2+1

�

�������
=

�������
1

1
"� �1+1

� 1
1
"� �2+1

�������
C"

�+2
4 ,

we have: �����
1
"�
�1�

1
"�
�2

����� C"
�+2

4 (M+1)2,

hence

|�1��2| C"
5�+2

4 (M+1)2.

The stretching case goes analogously.

⌅

3.4.2. L2! H1 norm resolvent estimates

In order to state the results we define the following operators which take the zero order

terms to the associated first order corrector terms:

B�,corr
1,stretch : C2! Hstretch, B�,corr

1,bend : C2! Hbend,
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with the following identities:

B�,corr
1,stretch

2

4m3

m4

3

5 := u1, symr⇤C(y) symru1 = �symr⇤C(y)⇤stretch
�,m3,m4

(x), u1 2 Hstretch,

B�,corr
1,bend

2

4m1

m2

3

5 := u1, symr⇤C(y) symru1 = �symr⇤C(y)⇤bend
�,m1,m2

(x), u1 2 Hbend.

Thus, the first order corrector operators depending on the spectral parameter z 2 C can be

defined for each fibre � 2 [�⇡,⇡] \ {0} with the following formulae:

Astretch
�,corr (z) := B�,corr

1,stretch

Å
zCstretch� 1

|�|2
Cstretch
�

ã�1
Mstretch

� ,

Abend
�,corr(z) := B�,corr

1,bend

Å
zI� 1
|�|4
Cbend
�

ã�1
Mbend

� .

Next we define the rescaled versions:

Astretch
�,",corr =

˛
�stretch

g",�(z)Astretch
�,corr (z)dz, Abend

�,",corr =

˛
�bend

f",�(z)Abend
�,corr(z)dz, " > 0,

where �bend, �stretch are contours which uniformly enclose the scaled eigenvalues of Cbend
� ,

Cstretch
� , respectively. Notice here that we have:

Astretch
�,",corr :=B�,corr

1,stretch

Å
1
"2C

stretch
� +Cstretch

ã�1
Mstretch

� , Abend
�,",corr :=B�,corr

1,bend

Å
1
"4C

bend
� + I

ã�1
Mbend

� .

Finally we are able to define the following corrector operators:

Acorr
stretch(") = G�1

" Astretch
�,",corrG", Acorr

bend(") = G�1
" Abend

�,",corrG", " > 0. (3.37)

Let us start with the stretching case. Our goal is to prove the following theorem:

Theorem 3.4.9. Suppose that the assumptions on the material symmetries 3.1.1 hold and

that the forces f belong to L2
stretch. Let � > �2 be the parameter of spectral scaling. Let
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� � 0 be the parameter of force scaling. Then we have the following estimates:
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Proof. In order to prove the H1(!⇥R3) estimate from the statement of the above The-

orem, the first resolvent estimate in (3.19) does not su�ce, the reason being that, the

Gelfand pullback would ruin the order of the estimate in the third variable. On the other

hand, we do not need the whole expression in the second estimate from (3.19), either.

This is because we can neglect the element u(1)
0 in the H1(!⇥Y;C3) norm. Indeed, from

(3.17) we note that:
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0 kL2(!⇥Y;C3) =0,

Hence the useful estimates which we obtain from (3.19) are
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We will focus only on the norm of derivative with respect to y. For this derivative, we

need a higher order estimate in |�| in order to obtain the desired estimate by applying
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the inverse of scaled Gelfand transform. By rewriting the estimate (3.38) we are able to

deduce:
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We use the method introduced in the estimates for L2! L2 operator norm. By defining

the function g",�(z) as in (3.28), choose � ⇢ C such that:
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By applying the Gelfand transform we obtain:
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For the second and the third component we have analogous results:
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due to (3.29), (3.37) and from the fact that " @
@x3
= G�1

"
@
@yG" +O(�"). For the remaining

derivatives we obtain the estimates similarly as in Theorem 3.4.1. ⌅

Next is the analogous result for the bending case.

Theorem 3.4.10. Suppose that the assumptions on the material symmetries 3.1.1 hold.

Let the forces f belong to L2
bend. Let � > �2 be the parameter of spectral scaling. Let

� � 0 be the parameter of force scaling. Then we have the following estimates:
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Proof. We start with the second couple of estimates in (3.24) and we neglect the corrector

term u(1)
0 in the H1(!⇥Y;C3) norm. The argument for this is again that from (3.23) we

have for ↵ = 1,2:

k(u(1)
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Again we focus only on the norm of the derivative with respect to y. Thus we consider

the estimates
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��@y (u3+ i�(m1x1+m2x2)� (u1)3)
��

L2(!⇥Y) C|�|3k fkL2(!⇥Y;C3).

In other words, we have that the following estimates hold for i = 1,2:
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By defining the function f",�(z) as in (3.31), we can provide norm resolvent estimates for

the operators
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Indeed we have that for i = 1,2:
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Analogously for the third component we have
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Now by passing back to the real domain we obtain:
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Analogously:
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The original statement follows using (3.32), (3.33) and the definition of the corrector

operator. ⌅

3.4.3. Higher order L2! L2 norm resolvent estimates

We define the leading order term corrector operators as follows:

‹Astretch
�,corr : L2(!⇥Y;C3)! L2(!⇥Y;C3), ‹Abend

�,corr : L2(!⇥Y;C3)! L2(!⇥Y;C3)
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such that according to the asymptotic procedure in the last section (equations (3.17) and

(3.23)) we have:

‹Astretch
�,corr f := (u(1)

0 )stretch, ‹Abend
�,corr f� := (u(1)

0 )bend.

We reflect on the asymptotic procedure from the last section and consider now the resol-

vent problems depending on the spectral parameter z 2 C. Our aim is to vaguely express
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The same structure is valid for the operator ‹Abend
�,corr(z) as well. Next, since we are dealing

with a finite dimensional spaces, it is clear that we have the following matrix structure:
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where ��1 and ��2 are the eigenvalues of the matrix Cstretch
� . Recall that those two eigenval-

ues, when scaled with 1/|�|2 are positioned in a fixed interval uniformly in �.

Lemma 3.4.11. Let � be a closed contour enclosing both eigenvalues ��1 , ��2 of the matrix
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� uniformly in �. Then we have the following:
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Similar is true for the matrix Cbend
� if we replace g",� with f",�.

The previous Lemma allows us to conclude the following structure:
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We denote the Gelfand pullback of these operators:

‹Acorr
bend(") = G�1

"
‹Abend
�,",corrG", ‹Acorr

stretch(") = G�1
"
‹Astretch
�,",corrG". (3.39)

Remark 3.4.12. Using the above expressions as well as (3.16), (3.17) and (3.23) we can
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conclude that there exist operators K1,K2 : L2(R;Rn)! L2(R;Rn) such that
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where Ai 2 R2⇥2, for i = 1, . . . ,4 are diagonal matrices.

Much in the similar fashion as before we are able to prove the following result:

Theorem 3.4.13 (Higher order L2 ! L2 norm-resolvent estimate). Suppose that the as-

sumptions on the material symmetries 3.1.1 hold. Let � > �2 be the parameter of spectral

scaling. Let � � 0 be the parameter of force scaling. Then there exists C > 0 such that for
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3.5. The analysis of the general elasticity tensor

In this section, we drop the assumptions on the material symmetries 3.1.1. Separately,

we investigate and develop asymptotics for the solution of two resolvent problems with

di↵erent scalings, one for each of the orders of magnitudes of the operator eigenspaces.

3.5.1. The asymptotics of |�|2 resolvent problem

We begin with the asymptotics for the following resolvent problem:
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#(Y; H1(!;C3)),

(3.40)

or, equivalently:

1
|�|2

�
symr⇤+

�
iX�

�⇤�
C(y)

�
symr+ iX�

�
u+u = f .

1) The first approximation cycle

Consider the solution m 2 C4 to the following equation:
Å

1
|�|2
Crod
� +Crod

� (!)
ã

m =Mrod
� f . (3.41)

The solution satisfies the estimate:

|m| Ck fkL2(!⇥Y;C3).

The following estimate is crucial for the continuation of our procedure since it allows us

to disregard this term from the definition of the corrector term u2, thus obtaining a well

posed problem. This term will, however, need to be canceled at some point, and it indeed

will, with the definition of the corrector term u(1)
2 .

Lemma 3.5.1. The solution m 2 C4 of (3.41) satisfies:
���������

2

6664

m1

m2

0

3

7775�

2

6664

´
!⇥Y f 1´
!⇥Y f 2

0

3

7775

���������

C|�|k fkL2(!⇥Y;C3). (3.42)
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Proof. The estimate is proven by testing the equation (3.41) with a constant vector d :=
�
m1�

´
!⇥Y f 1,m2�

´
!⇥Y f 2,0

�T , to obtain:

Å
m1�

ˆ
!⇥Y

f 1

ã2
+

Å
m1�

ˆ
!⇥Y

f 2

ã2
= ��2

Å
c1(!)m1

Å
m1�

ˆ
!⇥Y

f 1

ã
+ c2(!)m2

Å
m2�

ˆ
!⇥Y

f 2

ãã

+

Å
i�
ˆ
!⇥Y

f 3x1

ãÅ
m1�

ˆ
!⇥Y

f 1

ã
+

Å
i�
ˆ
!⇥Y

f 3x2

ãÅ
m2�

ˆ
!⇥Y

f 2

ã
�Crod

� m ·d,

and noticing that

Crod
� m ·d  |�|3|m|

sÅ
m1�

ˆ
!⇥Y

f 1

ã2
+

Å
m1�

ˆ
!⇥Y

f 2

ã2
.

⌅

The leading order term

u0 := Irod(m) 2 H1
#(Y; H1(!;C3))

clearly satisfies:

||u0||H1(!⇥Y;C3) Ck fkL2(!⇥Y;C3).

The correctors are defined with the following set of equations:

symr⇤C(y) symru1 = �symr⇤C(y)⇤rod
�,m, u1 2 H. (3.43)

1
|�|2

symr⇤C(y) symru2 = �
1
|�|2
Ä�

iX�
�⇤
C(y) symru1+ symr⇤C(y)iX�u1+

�
iX�

�⇤
C(y)⇤rod

�,m(x)
ä

�

2

6664

m3x2

�m3x1

m4� i�(m1x1+m2x2)

3

7775+

2

6664

f 1�
´
!⇥Y f 1dxdy

f 2�
´
!⇥Y f 2dxdy

f 3

3

7775 , u2 2 H.

(3.44)

It is easy to check that the right hand side of (3.43) is orthogonal to Y-periodic rigid

motions, making this a well posed problem. The orthogonality with respect to (C1,C2,0)T

is due to (3.43), while the orthogonality with respect to (C3x2,�C3x1,C4)T is due to (3.43)

and (3.41). We have the following estimates:

||u1||H1(!⇥Y;C3) C|�|k fkL2(!⇥Y;C3), ||u2||H1(!⇥Y;C3) C|�|2k fkL2(!⇥Y;C3), .
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2) The second approximation cycle

Next, we update the leading order term with m(1) 2 C4 satisfying:
Å

1
|�|2
Crod
� +Crod

� (!)
ã

m(1) ·dT =� 1
|�|2

ˆ
!⇥Y
C(y)

�
symru2+ iX�u1

�
:⇤rod

�,d(x)dxdy, 8d 2C4.

By testing with m(1) and by using the ellipticity estimates of Crod
� , as well as estimates on

the right hand side, we see that:

|m(1)| C|�|k fkL2(!⇥Y;C3).

Additionally, by setting the stretching components d3,d4 to 0, we obtain a sharper esti-

mate:

|m(1)
1 ,m

(1)
2 | C|�|2k fkL2(!⇥Y;C3).

Nevertheless, for u(1)
0 := Irodm(1) we have:

���u(1)
0

���
H1(!⇥Y;C3)

C|�|k fkL2(!⇥Y;C3).

Naturally, the next corrector is defined with:

symr⇤C(y) symru(1)
1 = �symr⇤C(y)⇤rod

�,m(1) (x), u(1)
1 2 H. (3.45)

It satisfies

||u(1)
1 ||H1(!⇥Y;C3) C|�|2k fkL2(!⇥Y;C3)

The next corrector is defined as to eliminate the remaining terms of order |�|.

1
|�|2

symr⇤C(y) symru(1)
2 = �

1
|�|2
Ä�

iX�
�⇤
C(y) symr(u2+u(1)

1 )+ symr⇤C(y)iX�(u2+u(1)
1 )
ä

� 1
|�|2
Ä�

iX�
�⇤
C(y)⇤rod

�,m(1) (x)+
�
iX�

�⇤
C(y)iX�u1

ä

�

2

6664

m(1)
3 x2

�m(1)
3 x1

m(1)
4 � i�(m(1)

1 x1+m(1)
2 x2)

3

7775�

2

6664

m1

m2

0

3

7775+

2

6664

´
!⇥Y f 1dxdy´
!⇥Y f 2dxdy

0

3

7775�u1, u(1)
2 2 H.

(3.46)

Obviously, due to (3.45), the right hand side of (3.46) is orthogonal to stretching rigid

motions. In order to verify that it is orthogonal to (C1,C2,0)T , C1,C2 2 C, we make the
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following calculation:

� 1
|�|2

ˆ
!⇥Y
C(y)
Ä

symr(u2+u(1)
1 )+⇤rod

�,m(1) (x)+ iX�u1
ä

: iX�

2

6664

C1

C2

0

3

7775

=
1
|�|2

ˆ
!⇥Y
C(y)
Ä

symr(u2+u(1)
1 )+⇤rod

�,m(1) (x)+ iX�u1
ä

: symr

2

6664

0

0

�i�(C1x1+C2x2)

3

7775

=
1
|�|2

ˆ
!⇥Y
C(y)

�
symru2+ iX�u1

�
: symr

2

6664

0

0

�i�(C1x1+C2x2)

3

7775 (due to (3.45))

=� 1
|�|2

ˆ
!⇥Y
C(y)
Ä

symru1+⇤
rod
�,m(x)

ä
: iX�

2

6664

0

0

�i�(C1x1+C2x2)

3

7775

�
ˆ
!⇥Y

2

6664

0

0

�i�(m1x1+m2x2)

3

7775

2

6664

0

0

�i�(C1x1+C2x2)

3

7775+
ˆ
!⇥Y

2

6664

0

0

f 3

3

7775

2

6664

0

0

�i�(C1x1+C2x2)

3

7775

(due to (3.44))

=� 1
|�|2

ˆ
!⇥Y
C(y)
Ä

symru1+⇤
rod
�,m(x)

ä
: ⇤bend

�,C1,C2
(x)

�
ˆ
!⇥Y

2

6664

0

0

�i�(m1x1+m2x2)

3

7775

2

6664

0

0

�i�(C1x1+C2x2)

3

7775+
ˆ
!⇥Y

2

6664

0

0

f 3

3

7775

2

6664

0

0

�i�(C1x1+C2x2)

3

7775

=

ˆ
!⇥Y

2

6664

m1

m2

�i�(m1x1+m2x2)

3

7775

2

6664

C1

C2

�i�(C1x1+C2x2)

3

7775�
ˆ
!⇥Y

2

6664

f 1

f 2

f 3

3

7775

2

6664

C1

C2

�i�(C1x1+C2x2)

3

7775

�
ˆ
!⇥Y

2

6664

0

0

�i�(m1x1+m2x2)

3

7775

2

6664

0

0

�i�(C1x1+C2x2)

3

7775+
ˆ
!⇥Y

2

6664

0

0

f 3

3

7775

2

6664

0

0

�i�(C1x1+C2x2)

3

7775

(due to (3.41), (3.43))

=

2

6664

m1

m2

0

3

7775

2

6664

C1

C2

0

3

7775�

2

6664

´
!⇥Y f 1´
!⇥Y f 2

0

3

7775

2

6664

C1

C2

0

3

7775 =

á2

6664

m1

m2

0

3

7775�

2

6664

´
!⇥Y f 1´
!⇥Y f 2

0

3

7775

ë2

6664

C1

C2

0

3

7775.
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Thus, the problem is well posed and the solution satisfies:

||u(1)
2 ||H1(!⇥Y;C3) C|�|3k fkL2(!⇥Y;C3),

where we have used (3.42) in order to obtain this estimate.

4) The final approximation

The final approximation

ũapprox := u0+u(1)
0 +u1+u(1)

1 +u2+u(1)
2

satisfies the following equation:

1
|�|2

�
symr⇤+

�
iX�

�⇤�
C(y)

�
symr+ iX�

�
ũapprox+ ũapprox� f = R̃�,

with the residual R̃� given with:

R̃� =
1
|�|2
Ä�

iX�
�⇤
C(y) symru(1)

2 + symr⇤C(y)iX�u(1)
2 +

�
iX�

�⇤
C(y)iX�u(1)

2 +
�
iX�

�⇤
C(y)iX�u2

ä

+
1
|�|2
Ä�

iX�
�⇤
C(y)iX�u2+

�
iX�

�⇤
C(y)iX�u(1)

1

ä
+ (m(1)

1 ,m
(1)
2 ,0)T +u(1)

1 +u2+u(1)
2 .

We have the following estimate on the residual:

||R̃�||H�1
# (!⇥Y;C3) C|�|2k fkL2(!⇥Y;C3),

for which the error of the approximation:

uerror := u� ũapprox

can be calculated from:

1
|�|2

�
symr⇤+

�
iX�

�⇤�
C(y)

�
symr+ iX�

�
uerror+uerror = �R̃�.

By employing the estimates from (3.18), we can deduce the estimate on the error:

||uerror||H1(!⇥Y;C3) C|�|2k fkL2(!⇥Y;C3).

By leaving out higher order terms, we can estimate the error in the approximation by

lower order terms:
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Proposition 3.5.2. Let u 2 H1
�(Y; H1(!;C3)) be the quasiperiodic solution of problem

(3.40). Then, the following estimates are valid:
���u� ei�Irod

� m
���

H1(!⇥Y,C3)
C|�|k fkL2(!⇥Y;C3),

���u�Irod
� m�Irod

� m(1)� ei�yu1

���
H1(!⇥Y,C3)

C|�|2k fkL2(!⇥Y;C3),
(3.47)

where m,m(1),u1 are defined with the approximation procedure above.

3.5.2. The asymptotics of |�|4 resolvent problem

Here we focus on deriving the asymptotics for the following resolvent problem:

Find u 2 H1
#(Y; H1(!;C3)) such that

1
|�|4

ˆ
!⇥Y
C(symru+iX�u) : (symrv+ iX�v)+

ˆ
!⇥Y

uv=
ˆ
!⇥Y

S |�| fv, 8v 2H1
#(Y; H1(!;C3)),

(3.48)

or, equivalently:

1
|�|4

�
symr⇤+

�
iX�

�⇤�
C(y)

�
symr+ iX�

�
u+u = S |�| f .

1) The first approximation cycle

The leading order term in the asymptotic expansion is defined with the solution to the

following homogenized equation:
Å

1
|�|4
Crod
� +Crod

� (!)
ã

m =Mrod
� S |�| f .

By using the apriori estimates on Crod
� we derive the following estimates by testing with

m 2 C4:
1
|�|4
Ä
|�|4|(m1,m2)T |2+ |�|2|(m3,m4)T |2

ä
 k fkL2(!⇥Y;C3)

Å
|(m1,m2)T |+ |m3,

1
|�|m4|

ã

 k fkL2(!⇥Y;C3)

Å
|(m1,m2)T |+ 1

|�| |(m3,m4)T |
ã
,

from where we read:

|(m1,m2)T |  k fkL2(!⇥Y;C3) , |(m3,m4)T |  |�|k fkL2(!⇥Y;C3) .

The leading order term, defined with u0 := Irod
� m satisfies the following estimates:

||(u0)↵||H1(!⇥Y;C3) Ck fkL2(!⇥Y;C3), ||(u0)3||H1(!⇥Y;C3) C|�|k fkL2(!⇥Y;C3)
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Next two corrector terms are defined as the solutions to the following set of well posed

problems:

symr⇤C(y) symru1 = �symr⇤C(y)⇤rod
�,m(x), u1 2 H,

1
|�|4

symr⇤C(y) symru2 = �
1
|�|4
Ä�

iX�
�⇤
C(y) symru1+ symr⇤C(y)iX�u1+

�
iX�

�⇤
C(y)⇤rod

�,m(x)
ä

�

2

6664

m3x2

�m3x1

m4� i�(m1x1+m2x2)

3

7775+

2

6664

f 1�
´
!⇥Y f 1dxdy

f 2�
´
!⇥Y f 2dxdy

1
|�| f 3

3

7775 ,

These correctors satisfy:

||u1||H1(!⇥Y;C3) C|�|2k fkL2(!⇥Y;C3), ||u2||H1(!⇥Y;C3) C|�|3k fkL2(!⇥Y;C3).

2) The second approximation cycle

We proceed with the leading order term update: Define u(1)
0 = I

rod
� m(1), where m(1) is the

solution of the following problem:
Å

1
|�|4
Crod
� +Crod

� (!)
ã

m(1) ·d = � 1
|�|4

ˆ
!⇥Y
C(y)

�
symru2+ iX�u1

�
: ⇤rod

�,d(x)dxdy, 8d 2 C4.

We have

|m(1)
1 ,m

(1)
2 | C|�|k fkL2(!⇥Y,C3), |m

(1)
3 ,m

(1)
4 | C|�|2 k fkL2(!⇥Y;C3)

||(u(1)
0 )↵||H1(!⇥Y;C3) C|�|k fkL2(!⇥Y;C3), ||(u

(1)
0 )3||H1(!⇥Y;C3) C|�|2k fkL2(!⇥Y;C3)

We define the next corrector u(1)
1 with the relation:

symr⇤C(y) symru(1)
1 = �symr⇤C(y)⇤rod

�,m(1) (x), u(1)
1 2 H.

This yields the estimate

||u(1)
1 ||H1(!⇥Y;C3) C|�|3k fkL2(!⇥Y;C3).
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The next corrector is defined with:
1
|�|4

symr⇤C(y) symru(1)
2 = �

1
|�|4
Ä�

iX�
�⇤
C(y) symr(u2+u(1)

1 )+ symr⇤C(y)iX�(u2+u(1)
1 )
ä

� 1
|�|4
Ä�

iX�
�⇤
C(y)⇤rod

�,m(1) (x)+
�
iX�

�⇤
C(y)iX�u1

ä

�

2

6664

m(1)
3 x2

�m(1)
3 x1

m(1)
4 � i�(m(1)

1 x1+m(1)
2 x2)

3

7775+

2

6664

´
!⇥Y f 1dxdy´
!⇥Y f 2dxdy

0

3

7775�

2

6664

m1

m2

0

3

7775 , u(1)
2 2 H.

The solution satisfies the following:

||u(1)
2 ||H1(!⇥Y;C3) C|�|4k fkL2(!⇥Y;C3).

3) The third approximation cycle

The correctors u(2)
0 = I

rod
� m(2),u(2)

1 ,u
(2)
2 2 H further decrease the error of approximation.

They are gradually built with the following relations:
Å

1
|�|4
Crod
� +Crod

� (!)
ã

m(2) ·d = � 1
|�|4

ˆ
!⇥Y
C(y)
Ä

symru(1)
2 + iX�u(1)

1 + iX�u2
ä

: ⇤rod
�,d(x)dxdy,

8d 2 C4.

symr⇤C(y) symru(2)
1 = �symr⇤C(y)⇤rod

�,m(2) (x), u(2)
1 2 H.

1
|�|4

symr⇤C(y) symru(2)
2 = �

1
|�|4
Ä�

iX�
�⇤
C(y) symr(u(2)

1 +u(1)
2 )+ symr⇤C(y)iX�(u(2)

1 +u(1)
2 )
ä

� 1
|�|4
Ä�

iX�
�⇤
C(y)⇤rod

�,m(2) (x)+
�
iX�

�⇤
C(y)iX�(u2+u(1)

1 )
ä

�

2

6664

m(1)
1

m(1)
2

0

3

7775�

2

6664

m(2)
3 x2

�m(2)
3 x1

m(2)
4 � i�(m(2)

1 x1+m(2)
2 x2)

3

7775 , u(2)
2 2 H.

All of these problems are well posed which can be seen by reviewing the relations through-

out the process, thus concluding that the right hand sides vanish when tested against func-

tions in H. These approximations satisfy the following estimates:

||(u(2)
0 )↵||H1(!⇥Y;C3) C|�|2k fkL2(!⇥Y;C3), ||(u

(2)
0 )3||H1(!⇥Y;C3) C|�|3k fkL2(!⇥Y;C3)
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||u(2)
1 ||H1(!⇥Y;C3) C|�|4k fkL2(!⇥Y;C3).

||u(2)
2 ||H1(!⇥Y;C3) C|�|5k fkL2(!⇥Y;C3).

4) The fourth approximation cycle

The final approximation cycle consists of defining the corrector terms u(3)
0 =I

rod
� m(3),u(3)

1 ,u
(3)
2 2

H with the following relations:
Å

1
|�|4
Crod
� +Crod

� (!)
ã

m(3) ·d = � 1
|�|2

ˆ
!⇥Y
C(y)
Ä

symru(2)
2 + iX�u(2)

1 + iX�u(1)
1

ä
: ⇤rod

�,d(x)dxdy,

+

Å
�i�

ˆ
!⇥Y

x1u1,�i�
ˆ
!⇥Y

x2u2

ãT
· (d1,d2)T .

symr⇤C(y) symru(3)
1 = �symr⇤C(y)⇤rod

�,m(3) (x), u(3)
1 2 H.

1
|�|4

symr⇤C(y) symru(3)
2 = �

1
|�|4
Ä�

iX�
�⇤
C(y) symr(u(3)

1 +u(2)
2 )+ symr⇤C(y)iX�(u(3)

1 +u(2)
2 )
ä

� 1
|�|4
Ä�

iX�
�⇤
C(y)⇤rod

�,m(3) (x)+
�
iX�

�⇤
C(y)iX�(u(1)

2 +u(2)
1 )
ä

�

2

6664

m(2)
1

m(2)
2

0

3

7775�

2

6664

m(3)
3 x2

�m(3)
3 x1

m(3)
4 � i�(m(3)

1 x1+m(3)
2 x2)

3

7775�u1, u(2)
2 2 H.

All of these problems define unique correctors which satisfy the following estimates:

||(u(3)
0 )↵||H1(!⇥Y;C3) C|�|3k fkL2(!⇥Y;C3), ||(u

(3)
0 )3||H1(!⇥Y;C3) C|�|4k fkL2(!⇥Y;C3)

||u(3)
1 ||H1(!⇥Y;C3) C|�|5k fkL2(!⇥Y;C3).

||u(3)
2 ||H1(!⇥Y;C3) C|�|6k fkL2(!⇥Y;C3).

5) The final approximation

The function ũapprox, defined with:

ũapprox := u0+u(1)
0 +u(2)

0 +u(3)
0 +u1+u(1)

1 +u(2)
1 +u(3)

1 +u2+u(1)
2 +u(2)

2 +u(3)
2 ,

is the solution to the following problem:

1
|�|4

�
symr⇤+

�
iX�

�⇤�
C(y)

�
symr+ iX�

�
ũapprox+ ũapprox�S |�| f = R̃�,
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where the residual R̃� is given with:

R̃� =
1
|�|2
Ä�

iX�
�⇤
C(y) symru(3)

2 + symr⇤C(y)iX�u(3)
2 +

�
iX�

�⇤
C(y)iX�u(3)

2 +
�
iX�

�⇤
C(y)iX�u(2)

2

ä

+
1
|�|2
Ä�

iX�
�⇤
C(y)iX�u(2)

2 +
�
iX�

�⇤
C(y)iX�u(3)

1

ä
+

2

6664

m(3)
1

m(3)
2

0

3

7775+u2+u(1)
1 +u(1)

2 +u(2)
1 +u(2)

2 +u(3)
1 +u(3)

2 .

The final estimate on the residual is:

||R̃�||H�1
# (!⇥Y;C3) C|�|3k fkL2(!⇥Y,C3).

The error of the approximation

uerror := u� ũapprox.

satisfies
1
|�|4

�
symr⇤+

�
iX�

�⇤�
C(y)

�
symr+ iX�

�
uerror+uerror = �R̃�.

Finally, by using (3.18), we have:

||uerror||H1(!⇥Y;C3) C|�|3k fkL2(!⇥Y;C3).

Easily, we obtain the error in the approximation by lower order terms:

Proposition 3.5.3. Let u 2 H1
�(Y; H1(!;C3)) be the quasiperiodic solution of problem

(3.48). Then, the following estimates are valid:

���Pi
Ä

u� ei�yIrod
� m
ä���

H1(!⇥Y,C2)


8
<

:
C|�|k fkL2(!⇥Y;C3), i = 1,2;

C|�|2k fkL2(!⇥Y;C3), i = 3.

���Pi
Ä

u� ei�yIrod
� m� ei�yIrod

� m(1)� ei�yu1
ä���

H1(!⇥Y,C2)


8
<

:
C|�|2k fkL2(!⇥Y;C3), i = 1,2;

C|�|3k fkL2(!⇥Y;C3), i = 3.

(3.49)

where m,m(1),u1 are defined with the approximation procedure above.
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3.5.3. Norm resolvent estimates for the general elasticity tensor

Theorem 3.5.4 (L2! L2 norm-resolvent estimate). Let � > �2 be the parameter of spec-

tral scaling. There exists C > 0 such that for every " > 0 we have:

�����Pi

ÇÅ
1
"�
A"+ I

ã�1
� (Mrod

" )⇤
Å

1
"�
Arod
" +Crod(!)

ã�1
Mrod

" ⌅"

å�����
L2!L2



8
><

>:

C"
�+2

4 , i = 1,2;

C"
�+2

2 , i = 3.
(3.50)

Proof. As the proof of this result goes analogously as the proofs of the Theorem 3.1.3,

we will focus only on the di↵erences. First, we substitute Crod with I much in the same

manner as before. Here in the case of general elasticity tensor, the operator A� has a

spectrum consisting of two eigenvalues of order |�|4, two eigenvalues of order |�|2 and

the rest of order one. Thus, by providing estimates of the scaled resolvent problems

(3.40) and (3.48), we have actually estimated the resolvents in these two eigenspaces

with eigenvalues of di↵erent orders. In order to combine the two, we make the following

argument:

By using the uniform estimates on the eigenvalues, obtained by the Proposition 3.2.8,

we can obtain a closed contour �|�|2 surrounding the two eigenvalues of order one of the

operator 1
|�|2A�, and a closed contour �|�|4 surrounding the two eigenvalues of order one

of the operator 1
|�|4A�. Even the notation suggests that these contours depend on |�|, this

is not the case. The notation here is purely aesthetic. Next, we use the scaling functions

g",�, f",� which are analytic on the neighbourhoods of �|�|4 , �|�|2 , given with:

f",�(z) :=
Ç
|�|�+2

"4 z+1
å�1

, g",�(z) :=
Ç
|�|2
"�+2 z+1

å�1

, <(z) > 0,

It is clear that

Ä
P�|�|4 +P�|�|2

äÅ 1
"�+2A�+ I

ã�1Ä
P�|�|4 +P�|�|2

ä

= P�|�|2

Å
1

"�+2A�+ I
ã�1

P�|�|2 +P�|�|4

Å
1

"�+2A�+ I
ã�1

P�|�|4

=
1

2⇡i

˛
�|�|2

g�,"(z)
Å

zI� 1
|�|2
A�

ã�1
dz+

1
2⇡i

˛
�|�|4

f�,"(z)
Å

zI� 1
|�|4
A�

ã�1
dz.

(3.51)
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Also: �����

Å
1

"�+2A�+ I
ã�1
�
Ä

P�|�|4 +P�|�|2
äÅ 1

"�+2A�+ I
ã�1Ä

P�|�|4 +P�|�|2
ä�����

L2!H1

=

�����(I�P�|�|4 �P�|�|2 )
Å

1
"�+2A�+ I

ã�1
(I�P�|�|4 �P�|�|2 )

�����
L2!H1

C"�+2,

so it is enough to estimate only the projections on these two eigenspaces. The optimal

estimate is obtained by separately estimating the two terms in (3.51). For this, we em-

ploy the first row of fiberwise norm-resolvent estimates in (3.49), (3.47). By using the

estimates of functions functions g",�, f",�, we are able to get the following:
�����Pi

ÇÅ
1

"�+2A�+ I
ã�1
� (Mrod

� )⇤
Å

1
"�+2C

hom
� +Crod(!)

ã�1
Mrod

�

å�����
L2!L2



8
><

>:

C|�|
⇣

max
n
|�|2
"�+2 ,1

o⌘�1
+C|�|

⇣
max

n
|�|4
"�+2 ,1

o⌘�1
, i = 1,2;

C|�|
⇣

max
n
|�|2
"�+2 ,1

o⌘�1
+C|�|2

⇣
max

n
|�|4
"�+2 ,1

o⌘�1
, i = 3;



8
><

>:

C"
�+2

4 , i = 1,2;

C"
�+2

2 , i = 3.

The proof is finished after applying the inverse Gelfand transform. ⌅

Remark 3.5.5. The results for the L2! H1 norm and higher accuracy in L2! L2 norm

are done analogously as in the case of invariant subspaces, and combining with the argu-

mentation provided in the Theorem 3.5.4.

Remark 3.5.6. A similar argument as in the Corollary 3.4.5 can be used to demonstrate

that one can drop the smoothing operator from the L2 ! L2 norm-resolvent estimates

(3.50) while keeping the same order of accuracy. Namely, there exists C > 0 such that for

every " > 0 we have:
�����Pi

ÇÅ
1
"�
A"+ I

ã�1
� (Mrod

" )⇤
Å

1
"�
Arod
" +Crod(!)

ã�1
Mrod

" S1

å�����
L2!L2



8
><

>:

C"
�+2

4 , i = 1,2;

C"
�+2

2 , i = 3.

Remark 3.5.7. Much in the same fashion as in Corollary 3.4.8, one can prove the follow-

ing bound on the spectral gaps in the general case: Let � > �2 be the parameter of spectral

scaling. Let M > 0. Then

sup
[a,b]⇢[0,M"�]

[a,b]\�(A")=;

|[a,b]| C(M+1)2"
5�+2

4 .
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4. Appendix

4.1. Operators, forms and resolvent formalism

Let a be a densely defined non-negative bilinear form on a subspaceD(a)  H, a :D(a)⇥

D(a)! R. We define the subspaceD(A)  H with the following expression:

D(A) := {u 2D(a); 9v 2 H, such that: a(u,w) = hv,wiH , 8w 2D(a)}.

Since the set D(a) is dense in H, the vector v 2 H, representing the form a, is unique.

Therefore, we can define a mapA :D(A)! H with: Au := v. We have:

a(u,v) = hAu,vi, 8u 2D(A),8v 2D(a).

We refer to this linear operator as the operator associated with the bilinear form a.

Theorem 4.1.1. Let a be densely defined on H, continuous onD(a) with respect to k·ka :=
p
k·kH +a(·, ·) , closed bilinear form such that a(u,u) � 0, 8u 2D(a). Then the associated

operatorA :D(A)! H is closed, densely defined and

{� 2 R, � < 0} ⇢ ⇢(A), k(A+↵I)�1k  1
↵
, 8↵ > 0.

For a closed operator A on a Banach space X, with domain D(A), we associate its

resolvent set

⇢(A) :=
�

z 2 C; (zI�A) :D(A)! X is bijective
 
.

For every z 2 ⇢(A), the resolvent of A is given with:

R(z,A) := (zI�A)�1 : X! X.
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It is known that we have the following two identities:

First resolvent identity: R(z,A)�R(w,A) = (w� z)R(z,A)R(w,A), 8z,w 2 ⇢(A),

Second resolvent identity: R(z,A)�R(z,B) = R(z,A)(B�A)R(z,B), 8z 2 ⇢(A)\⇢(B).

To establish a norm-resolvent estimate is to provide the estimate for the di↵erence of

two resolvents in a strong operator norm topology. We make a remark here that estimates

of resolvents which depend on the spectral parameter z 2 C can all be reduced to a single

resolvent estimate where the dependance on the spectral parameter is hidden in the right

hand side. Namely, we have the following Lemma:

Lemma 4.1.2. Let w,z 2 ⇢(A)\ ⇢(B), where A, B are closed operators on X. Then we

have:

kR(z,A)�R(z,B)kX C(z,w)kR(w,A)�R(w,B)kX ,

where

C(z,w) :=max
ß

1,
|z�w|

dist(z,�(A))

™
max
ß

1,
|z�w|

dist(z,�(B))

™
.

Proof. We have the following identity:

R(z,A)�R(z,B) =R(z,A)�R(w,A)+R(w,A)�R(w,B)+R(w,B)�R(z,B)

= (w� z)R(z,A)R(w,A)+R(w,A)�R(w,B)+ (z�w)R(w,B)R(z,B)

= (w� z) [R(z,A)R(w,A)�R(w,B)R(z,B)]+R(w,A)�R(w,B).

A clear consequence of the first resolvent identity is the following:

R(z,B)R(w,B) = R(w,B)R(z,B).

We have the following:

R(z,A)R(w,A)�R(z,B)R(w,B)=R(z,A) [R(w,A)�R(w,B)]+[R(z,A)�R(z,B)]R(w,B)

By combining this, we obtain:

(R(z,A)�R(z,B)) [I� (w� z)R(w,B)] = [I+ (w� z)R(z,A)] (R(w,A)�R(w,B)) .

From this we have:

R(z,A)�R(z,B) = [I+ (w� z)R(z,A)] (R(w,A)�R(w,B)) [I� (w� z)R(w,B)]�1 .
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For the norm we have:

kR(z,A)�R(z,B)kX  kI+ (w� z)R(z,A)kX kR(w,A)�R(w,B)kX
���(I� (w� z)R(w,B))�1

���
X
.

We define the following complex function:

fw,z(�) := 1+
w� z
z�� =

w��
z�� =

⇣
1� w� z

w��

⌘�1
, � 2 C \ (⇢(A)\⇢(B)) .

It is clear that:

fw,z(A) = I+ (w� z)R(z,A), fw,z(B) = (I� (w� z)R(w,B))�1 .

From this, we conclude that:

kI+ (w� z)R(z,A)kX max
ß

1,
|z�w|

dist(z,�(A))

™
,

���(I� (w� z)R(w,B))�1
���

X
max

ß
1,

|z�w|
dist(z,�(B))

™
.

⌅

For an extensive overview of operator theory and spectral theory we refer to books [8]

and [29].
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4.2. Griso’s decomposition

Theorem 4.2.1 (Korn inequalities). [34] Let p > 1, ⌦ ⇢ Rn and suppose that � ⇢ @⌦ has

a positive measure. There exist positive constants C1
K, C2

K and C�K, which depend on p, ⌦,

and � only, such that then the following inequalities hold for all  2W1,p(⌦;Rn) :

k kp
W1,p C1

K
�
k kpLp + ksymr kpLp

�
,

inf
A2Rn⇥n

skew,b2Rn
k � Ax� bkp

W1,p C2
Kksymr kpLp , (4.1)

k kp
W1,p(⌦;Rn)

C�K
Ä
k kpLp(�)+ ksymr kpLp

ä
. (4.2)

Within this appendix, we will also use the following version of Korn’s inequality.

Proposition 4.2.2. Suppose that ! ⇢ R2 has Lipschitz boundary. Then for every  2

H1(!;R2) one has
����� �

 
!
 
�����

L2
C

�
ksymr kL2 +dist( ,G)

�
,

where C > 0 depends only on !,

G :=
�
r� : � 2 H1(!)

 
,

and the distance is understood in the sense of the L2 metric.

Proof. The proof follows a standard contradiction argument. Suppose the claim is false,

i.e. there exists a sequence ( n)n2N ⇢ H1(!;R2) such that
ˆ
!
 n = 0,

k nkL2 � n
�
ksymr nkL2 +dist( n,G)

�
8n 2 N. (4.3)

Without loss of generality,

k nkL2 = 1.

and (4.3) can be written as

ksymr nkL2 +dist( n,G)  n�1 8n 2 N.
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By Korn’s inequality, it follows that  n* , weakly in H1(!;R2). Combining this with

(4.3), we infer that symr = 0 and  2 G. From symr = 0 we obtain

 = (�ax2,ax1)>+ b, a 2 R, b 2 R2.

Together with (4.2) and  2 G this implies  = 0, which contradicts (4.2). ⌅

Theorem 4.2.3 (Griso’s decomposition, [31]). Let ! ⇢ R2 with Lipschitz boundary and

 2 H1(⌦;R3). Then one has

 =  ̂(x0)+ r(x0)^ x3e3+  ̄(x) =

8
>>>><

>>>>:

 ̂1(x0)+ r2(x0)x3+  ̄1(x),

 ̂2(x0)� r1(x0)x3+  ̄2(x),

 ̂3(x0)+  ̄3(x),

(4.4)

where

 ̂(x0) =
ˆ

I
 (x0, x3)dx3 , r(x0) =

3
2

ˆ
I
x3e3^ (x0, x3)dx3,

the following inequality holds for arbitrary h > 0, with a constant C > 0 that depends on

! only:

���symrh( ̂+ r^ x3e3)
���2

L2 +
���rh ̄

���2
L2(⌦;R3⇥3)+h�2k ̄k2L2 C

���symrh 
���2

L2 . (4.5)

Remark 4.2.4. Notice that
���symrh( ̂+ r^ x3e3)

���2
L2 =
���symrx̂( ̂1,  ̂2)>

���2
L2 +

1
12

���symrx̂(r2,�r1)>
���2

L2

+h�2
���@1(h ̂3)+ r2

���2
L2 +h�2

���@2(h ̂3)� r1
���2

L2 .

(4.6)

Thus from Korn’s inequality it follows

h2
���⇡1/h ̂

���2
H1 +
���(r1,r2)>

���2
H1 +h�2

���@1(h ̂3)+ r2
���2

L2 +h�2
���@2(h ̂3)� r1

���2
L2

C
Ä���symrh( ̂+ r^ x3e3)

���2
L2 + krk2L2 +h2k⇡1/h ̂k2L2

ä

C
Ä���symrh( ̂+ r^ x3e3)

���2
L2 +h2k⇡1/h k2L2

ä
.

(4.7)

The following corollary is the direct consequence of (4.5), (4.7), and Korn inequali-

ties.
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Corollary 4.2.5 (Korn’s inequality for thin domains). Suppose that ! ⇢ R2 is such that

� ⇢ @! has positive measure. Then there exist constants CT,C
�
T > 0 that depend on ! and

� only, such that the following inequalities hold for all  2 H1(⌦;R3) :

k⇡1/h k2H1 CT
Ä
k⇡1/h k2L2 +h�2ksymrh k2L2

ä
,

k⇡1/h k2H1 C�
T

Ä
k⇡1/h k2L2(�;R3)+h�2

���symrh 
���2

L2

ä
.

Remark 4.2.6. If it is known that the components  ↵, ↵ = 1,2, are even in x3 and  3 is

odd in x3, then additionally r = 0,  ̂3 = 0.

Remark 4.2.7. If a sequence of deformations ( h)h>0 is such that ( h)h>0 and (symrh h)h>0

are bounded in L2 and if rh,  ̂h and  ̄h are the terms in the decomposition (4.4), then the

relations (4.5)–(4.7) imply that rh H1

*0 and h ̂h H1

! 0.

The following lemma provides additional information on the weak limit of sequences

with bounded symmetrised scaled gradients and is proved in [10, Lemma A.4] as a direct

consequence of Griso’s decomposition.

Lemma 4.2.8. Consider a bounded set ! ⇢ R2 with Lipschitz boundary. Suppose that a

sequence ( h)h>0 ⇢ H1
�D

(⌦;R3) is such that

limsup
n!1

���symrh 
h
���

L2 <1.

Then there exists a subsequence (still labelled by h > 0) for which

 h =

à
a1� x3@1b

a2� x3@2b

h�1b

í

+  ̃
h
,

in particular

symrh 
h = ı

�
�x3r2

x̂b+ symrx̂a
�
+ symrh ̃

h
,

for some b 2 H2
�D

(!), a 2 H1
�D

(!;R2), and the sequence ( ̃h)h>0 ⇢ H1
�D

(⌦;R3) satisfies

h⇡1/h ̃
h L2

! 0.

Remark 4.2.9. It can be easily seen that a is the weak limit of ( ̂h
1,  ̂

h
2)> in H1(!;R2)

and b is the weak limit on h ̂h
3 in H1(!). (More precisely, in this case (�rh

2,r
h
1)>

H1

* x3rb,

where rh and  ̂h come from the decomposition (4.4) of  h.)
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We will now establish a decomposition that can be viewed as a consequence of Griso’s

decomposition. Note that another proof of the first part of Lemma 4.2.10 is given in [13].

The proof provided here uses the strategy of [69].

Lemma 4.2.10. Suppose that ! ⇢ R2 is a connected set with C1,1 boundary and  2

H1(⌦;R3).

1. There exist a 2 R3, B 2 R3⇥3
skew, v 2 H2(!),  ̃ 2 H1(⌦;R3) such that

 = a+B

à
x1

x2

hx3

í

+

à
�x3@1v

�x3@2v

h�1v

í

+  ̃, (4.8)

and the estimate

kvk2H2 + k ̃k2L2 + krh ̃k2L2 C(!)ksymrh k2L2

holds for some C(!) > 0.

2. If  2 H1(⌦,R3),  = 0 on @!⇥ I, then in (4.8) one can take a = B = 0. In addition,

v,  ̃ can be chosen so that v = rv = 0 on @! and  ̃ = 0 on @!⇥ I.

3. If a sequence ( h)h>0 ⇢ H1(⌦;R3) is such that

h⇡1/h 
h L2

! 0, limsup
n!1

���symrh 
h
���

L2 <1,

then there exist sequences ('h)h>0 ⇢ H2(!), ( ̃h)h>0 ⇢ H1(⌦;R3) such that

symrh 
h = �x3◆(r2

x̂'
h)+ symrh ̃

h
+oh,

where (oh)h>0 ⇢ L2(⌦;R3⇥3) is such that oh L2

! 0, and the following properties hold:

lim
h!0

Ä
k'hkH1 + k ̃hkL2

ä
= 0, limsup

h!0

Ä
k'hkH2 + krh ̃

hkL2

ä
C limsup

n!1

���symrh 
h
���

L2 ,

where C > 0 depends on ! only. Moreover, one has

 h
3 = h�1'h+wh+  ̃h

3,

where wh 2 H1(!) with

kwhkH1 C
Ä���symrh 

h
���

L2 +
���h⇡1/h 

h
���

L2

ä
,

for some C > 0 that depends on ! only.
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Proof. We decompose  as in (4.4). From (4.1), (4.5) and Proposition 4.2.2 we conclude

that there exist c 2 R, d 2 R2 such that
�����r�

 
!

r
�����

2

H1
+
���( ̂1,  ̂2)> � (�cx2,cx1)> � d

���
H1 +h�2

��� ̄h���2
L2 +
���rh ̄

���2
L2

+h�2
���@1(h ̂3)+ r2

���2
L2 +h�2

���@2(h ̂3)� r1
���2

L2 C
���symrh 

���2
L2 .

We do the regularization of r, i.e., we look for the solution of the problem

min
'2H1(!),

´
! '=h

´
!  ̂3

ˆ
!

��rx̂'+ (r2,�r1)>
��2 dx0. (4.9)

The Euler-Lagrange equation and the associated boundary conditions for the problem

(4.9) read

��0' = rx̂ · (r2,�r1)> in !, @⌫' = �(r2,�r1)> · ⌫ on @!.

Sincerx̂ ·(r2,�r1) 2 L2, by standard regularity estimates we obtain the inclusion ' 2H2(!)

and the estimate �����'�h
 
⌦
 ̂3

�����
H2(!)

C(!)krkH1(!;R2),

for which we require the C1,1 regularity of @!. In particular, one has
�����'+

 
!

r2x1�
 
!

r1x2�h
 
!
 ̂3

�����
H2
C
�����r�

 
!

r
�����

H1
.

Furthermore, from (4.9) we have the following inequalities:

k@1'+ r2k2L2 + k@2'� r1k2L2(!)  k@1(h ̂3)+ r2k2L2 + k@2(h ̂3)� r1k2L2

���rx̂
�
 ̂3�h�1'

����2
L2  h�2k@1(h ̂3)+ r2k2L2 +h�2k@1'+ r2k2L2

+h�2k@2(h ̂3)� r1k2L2 +h�2k@2'� r1k2L2

 2(k@1(h ̂3)+ r2k2L2 +h�2k@2(h ̂3)� r1k2L2).

The claim follows by taking

a =
Å

d1,d2,

 
!
 ̂3

ã>
, B =

à
0 �c h�1� r2

c 0 �h�1� r1

�h�1� r2 h�1 � r1 0

í

,
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v = '+
 
!

r2x1�
 
!

r1x2�h
 
!
 ̂3,

 ̃ =  ̄+
Ä
 ̂1,  ̂2,  ̂3�h�1'

ä>
+ (x3(r2+@1'), x3(�r1+@2'),0)> � (�cx2,cx1,0)> � (d,0)>.

This finishes the proof of part 1 of the lemma. To prove part 2, we only need to note that

if  = 0 on @!, then r = 0,  ̂ = 0 on @!. Combining this (4.6), we infer

krk2H1 + k( ̂1,  ̂2)>kH1 +h�2k ̄hk2L2(⌦;R3)+ krh ̄k2L2

+h�2k@1(h ̂3)+ r2k2L2 +h�2k@2(h ̂3)� r1k2L2 Cksymrh k2L2 .

Furthermore, due to the condition  = 0 on @!, in the “regularisation” of (r2,�r1)> pro-

vided by the variational problem (4.9) we can minimise over ' 2 H1
0(!) and we immedi-

ately obtain that

k'kH2 C(!)krkH1 ,

which replaces (4.2).

Part 3 is proved in [69]; alternatively, one can follow the argument used for part 1, tak-

ing into account (4.7) and noting that h⇡1/h h! 0 in L2(⌦;R3) implies the convergence

rh*0 in H1(!;R2), h⇡1/h ̂
h
*0 in H1(!;R3), where rh and  ̂h are from the decomposi-

tion (4.4) applied to  h. (Note that within the described argument here one can set to zero

the vectors ah, Bh in the decomposition (4.8) for  h.)

⌅

Remark 4.2.11. Following Remark 4.2.6, we note that if  ↵, ↵ = 1,2, are even in the

variable and  3 is odd in x3 variable, then on has v = 0, a3 = 0, B13 = B23 = 0 in (4.8).

Moreover, the estimate

k 3kL2 = k ̃3kL2 =

����� ̃3�
 

I
 ̃3

�����
L2
Ck@3 ̃3kL2 Chksymrh kL2 .

holds with C > 0 that depends on ! only.
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4.3. Two-scale convergence

In this chapter we assume that ⌦ ⇢ Rn, if not otherwise stated, is a bounded open set with

Lipschitz boundary. As before, we use the notation I = (�1/2,1/2). For x 2Rn, we denote

by x̂ the first n�1 coordinates, thus x = (x̂, xn). Depending on the context, the unit cell is

Y = [0,1)n or Y = [0,1)n�1, while Y denotes the unit flat torus in Rn or Rn�1, respectively.

Definition 4.3.1. (dimension-reduction two-scale convergence). Let (u")">0 be a bounded

sequence in L2(⌦). We say that u" weakly two-scale converges to u 2 L2(⌦⇥ Y) with

respect to Y if (in settings where Y = [0,1)n�1)
ˆ

⌦

u"(x)�
Å

x,
x̂
"

ã
dx �!

ˆ

⌦

ˆ

Y

u(x,y)� (x,y) dydx 8� 2C1c
�
⌦;C(Y)

�
,

or (in settings where Y = [0,1)n)
ˆ

⌦

u"(x)�
Å

x,
x
"

ã
dx �!

ˆ

⌦

ˆ

Y

u(x,y)� (x,y) dydx 8� 2C1c
�
⌦;C(Y)

�
.

We write

u"
dr�2����*u(x,y).

Furthermore, we say that (u")">0 strongly two-scale converges to u 2 L2(⌦⇥Y) if
ˆ

⌦

u"(x)�"(x)dx!
ˆ

⌦

ˆ

Y

u(x,y)� (x,y) dydx,

for every weakly two-scale convergent sequence �"(x)
dr�2����*�(x,y). We write

u"
dr�2����!u(x,y).

The following theorem is given in [48, Theorem 6.3.3].

Theorem 4.3.1. Let ⌦ =!⇥ I, where ! ⇢R2 is bounded and has Lipschitz boundary, and

let "h > 0 be a sequence such that "h! 0 as h! 0 so that limh!0 h/"h = � 2 [0,1]. Let

(u"h)h>0 be a weakly convergent sequence in H1(⌦;R3) with limit u and suppose that

limsup
h!0

||rhu"h ||L2(⌦;R3) <1. (4.10)
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1. (a) If � 2 (0,1) then there exists a function w 2 L2(!; H1(I⇥Y;R3)) and a subse-

quence (not relabelled) such that

rhu"h(x)
dr�2����*

�
rx̂u(x̂) |0

�
+ er�w(x,y).

(b) If � 2 (0,1) and in addition (4.10) we assume that

limsup
h!0

h�1
���u"h
���

L2(⌦;R3) <1,

then there exists a function w 2 L2(!; H1(I ⇥Y;R3)) and a subsequence (not

relabeled) such that

h�1u"h(x)
dr�2����*w(x,y), rhu"h(x)

dr�2����*er�w(x,y).

2. If � = 0 then there exits w 2 L2(!; H1(Y;R3)) and g 2 L2(⌦⇥Y;R3) such that

rhu"h(x)
dr�2����*

�
rx̂u(x̂) |0

�
+
�
ryw | g

�
.

3. If � =1 then there exists w 2 L2(⌦; H1(Y;R3)), g 2 L2(⌦;R3) such that

rhu"h(x)
dr�2����*

�
rx̂u(x̂) |0

�
+
�
ryw | g

�
.

We will need the following helpful lemma.

Lemma 4.3.2. 1. Suppose that ('")">0 ⇢H1(⌦) be a bounded sequence in L2(⌦) such

that '"
dr�2����*'(x,y) 2 L2(⌦⇥Y). Suppose additionally that "'" ! 0 strongly in

H1(⌦). Then '(x,y) depends on x only.

2. Suppose ('")">0 ⇢H2(⌦) be a bounded sequence in L2(⌦) such that '"
dr�2����*'(x,y) 2

L2(⌦⇥Y). Suppose additionally that "2'"! 0 strongly in H2(⌦). Then '(x,y) de-

pends on x only.

Proof. We write

'(x,y) =
X

k2Zn

ak(x)exp
�
2⇡i(k,y)

�
, ak 2 L2(⌦,Cn),

X

k2Zn

ˆ
|ak(x)|2 <1.

We want to show that for k , 0 we have that ak = 0. We take an arbitrary b 2 C10 (⌦) and

i 2 {1, . . . ,n} such that ki , 0 and calculate
ˆ
⌦

ak(x)b(x)dx =
ˆ
⌦⇥Y

'(x,y)b(x)exp
�
2⇡i(k,y)

�
dxdy
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= lim
"!0

ˆ
⌦
'"(x)b(x)exp

Å
2⇡i
Å

k,
x
"

ãã
dx

= lim
"!0

ˆ
⌦

"

2⇡iki
'"(x)b(x)@xi

Å
exp
Å

2⇡i
Å

k,
x
"

ããã
dx

= � lim
"!0

¶ˆ
⌦

"

2⇡iki
@xi'

"(x)b(x)exp
Å

2⇡i
Å

k,
x
"

ãã

+

ˆ
⌦

"

2⇡iki
'"@xib(x)exp

Å
2⇡i
Å

k,
x
"

ãã©
= 0.

From this we infer that for k , 0, ak = 0, and the claim follows. The proof of the second

claim is similar. ⌅

The following claim can be proved directly by integration by parts.

Lemma 4.3.3. 1. Let ('")">0 ⇢ H2(⌦) be a bounded sequence. Suppose that '"! '0

strongly in L2(⌦) and r2'"
dr�2����* , where  2 L2(⌦⇥Y;Rn⇥n). Then there exists

'1 2 L2(⌦; H2(Y)) such that

r2'"
dr�2����*r2'0(x)+r2

y'1(x,y).

2. Suppose that ('"h)h>0 ⇢ H2(⌦) is a bounded sequence such that h�1'"h
dr�2����*'(x,y)

and limh!0 "h
�2h =  2 [0,1). Then r2'"h

dr�2����*r2
y'(x,y).

3. (a) Let ('")">0 ⇢H2(!) be such that the sequences ('")">0, ("r'")">0 are bounded

in the corresponding L2 spaces. Suppose that '"
dr�2����*'(x,y) 2 L2(⌦⇥ Y).

Then ' 2 L2(⌦; H1(Y)) and "r'" dr�2����*ry'(x,y).

(b) Let ('")">0 ⇢H2(!) be such that the sequences ('")">0, ("r'")">0, ("2r2'")">0

are bounded in L2. Suppose that '"
dr�2����*'(x,y) 2 L2(⌦⇥Y). Then ' 2 L2(⌦; H2(Y))

and "r'" dr�2����*ry'(x,y), "2r2'"
dr�2����*r2

y'(x,y).

We will prove the following lemma.

Lemma 4.3.4. Let ⌦ = !⇥ I, where ! ⇢ R2 a bounded set with Lipschitz boundary and

let ( "h)h>0 ⇢ H1(⌦) be such that there exists C > 0 such that

k "hk2L2(⌦)+"
2
hkrh 

"hk2L2(⌦;R3) C. (4.11)
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1. If h⌧ "h then there exist  1 2 H1(!⇥Y),  2 2 L2(⌦⇥Y) such that (on a subse-

quence)

 "h
dr�2����* 1, "hrh 

"h
dr�2����* (@y1 1,@y2 1, 2). (4.12)

The opposite claim is also valid, i.e., for every  1 2 H1(!⇥Y),  2 2 H1(⌦⇥Y) we

have that there exists ( "h)h>0 ⇢ H1(⌦) such that (4.11) and (4.12) are satisfied.

2. If "h⌧ h then there exists  2 L2(⌦,H1(Y)) such that

 "h
dr�2����* , "hrh 

"h
dr�2����* (@y1 ,@y2 ,0). (4.13)

The opposite claim is also valid, i.e., for every  2 L2(⌦; H1(Y;R2)) there exists

( "h)h>0 ⇢ H1(⌦) such that (4.11) and (4.13) hold.

Proof. To prove the first part of the lemma, we take  1 2 L2(⌦⇥Y;R3) such that  "h
dr�2����* 1

on a subsequence. Since, by assumption,

k@x3 
"hkL2(⌦) C

h
"h
,

we immediately conclude that  1 does not depend on x3. Denote the two-scale limit of

h�1"h@x3 
"h by  2. Invoking integration by parts in a standard fashion, it is easy to check

that

"h(@1 
"h ,@2 

"h)
dr�2����* (@y1 1,@y2 1).

In order to prove the second claim of part 1, it su�ces to consider the case  1 2C1(!;C1(Y)),

 2 2C1(⌦;C1(Y)). We can then take

 "h :=  1

Å
x1, x2,

x1

"h
,

x2

"h

ã
+

h
"h

ˆ x3

�1/2
 2

Å
x1, x2, s,

x1

"h
,

x2

"h

ã
ds.

This completes the proof of part 1.

To prove part 2, we take  2 L2(⌦⇥ Y;R3) such that  "h
dr�2����* on a subsequence.

Again, using integration by parts, we obtain

"h(@1 
"h ,@2 

"h)
dr�2����* (@y1 ,@y2 ).

Next, for b 2C1
0(⌦),v 2C1(Y) we have

ˆ
⌦

"h

h
@x3 

"hb(x)v
Å

x̂
"h

ã
dx = �

ˆ
⌦

"h

h
 "h@x3b(x)v

Å
x̂
"h

ã
dx! 0.
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It follows that @x3 
"h

dr�2����*0. To prove the last claim, we set

 "h :=  
Å

x,
x1

"h
,

x2

"h

ã

for  2C1(⌦,C1(Y)) and pass to the limit as h! 0. ⌅

The definition of two-scale convergence (Definition 4.3.1) naturally extends to time

dependent spaces.

Definition 4.3.2. Let (u")">0 be a bounded sequence in L2([0,T ]; L2(⌦)). We say that

(u")">0 weakly two-scale converges to u 2 L2([0,T ]; L2(⌦⇥Y)), and write

u"
t,dr�2�����*u(t, x,y),

if
T̂

0

ˆ

⌦

u"(t, x)�
Å

x,
x̂
"

ã
'(t)dxdt �!

T̂

0

ˆ

⌦

ˆ

Y

u(t, x,y)� (x,y)'(t)dydxdt,

i.e.,
T̂

0

ˆ

⌦

u"(t, x)�
Å

x,
x
"

ã
'(t)dxdt �!

T̂

0

ˆ

⌦

ˆ

Y

u(t, x,y)� (x,y)'(t)dydxdt,

for every � 2C1c (⌦;C(Y)), ' 2C(0,T ). If in addition one has

u"(t, x)
dr�2����!u(t, x,y) a.e. t 2 [0,T ]

and ˆ T

0

���u"(t, ·)
���2

L2(⌦) dt!
ˆ T

0

���u(t, ·)
���2

L2(⌦) dt,

then we will say that (u")">0 strongly two-scale converges to u and write

u"
t,dr�2�����!u(t, x,y).

Similarly, we define the notions of weak two-scale convergence and strong two-scale

convergence of sequences in Lp([0,T ]; L2(⌦)), for any 1  p <1, denoted by
t,p,dr�2
������* and

t,p,dr�2
������!, respectively. The convergence

t,1,dr�2������* is understood in the weak* sense with

respect to the time variable t, while
t,1,dr�2������! is understood in the sense of simultaneous

pointwise convergence (4.3.2) and boundedness of ku"(t, ·)kL2(⌦), t 2 [0,T ], in the space

L1(0,T ). The following lemma is standard (see e.g. the proof of [53, Lemma 4.7].

Lemma 4.3.5. If (u")">0 is a bounded sequence in Lp([0,T ]; L2(⌦)), p > 1, then it has a

subsequence that converges weakly two-scale in the sense of Definition 4.3.2.
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4.4. Extension theorems

4.4.0.1 Asymptotic regime h ⇠ "h

We use the extension theory in order to decompose the sequence of displacements into

two functions for which we can get enough compactness for passing to the limit as h! 0

in the original equations for displacements. We use the following result, which can be

found in [51]:

Theorem 4.4.1. For every h > 0 there exists a linear extension operator ·̃ : H1(⌦"h
1 ;R3)!

H1(⌦;R3) such that ũ = u on ⌦"h
1 and

���symrhũ
���

L2(⌦;R3⇥3) C
���symrhu

���
L2(⌦"h

1 ;R3⇥3) .

Proof. The way in which we introduce the extensions here is to look at every single cell

inside the thin domain ⌦h. The extension of the function u (defined on ⌦h) is constructed

as follows. First we “inflate” the cell (with the scaling factors "�1
h and h�1 in the in-plane

and out-of plane directions, respectively) and translate it to the reference cell Y⇥ I. On this

reference cell we apply a linear extension operator E : H1(Y1 ⇥ I)! H1(Y ⇥ I) (see [51,

Lemma 4.1] to extend u to the function Eu=: ũ. By passing to the original coordinates and

concatenating the extensions we construct functions ũ 2H1(⌦h;R3) which is the extension

of u from ⌦h,"h
1 to ⌦h and satisfy the estimate

���symrũ
���

L2(⌦h;R3⇥3) C
���symru

���
L2(⌦h,"h

1 ;R3⇥3)
,

where the constant C does not depend on the thickness h. We finish the proof by rescaling

the estimates back to ⌦. ⌅

Remark 4.4.2. It is not di�cult to see that if we have a sequence {(h,"h)} such that

0 < ↵ < h/"h < � <1, where ↵,� do not depend of h, then the constant in Theorem 4.4.1

depends on ↵,� only.

Remark 4.4.3. By inspecting the construction of the extension operator in [51, Lemma

4.1], it can be easily seen that if u 2 L2,bend(⌦;R3) or u 2 L2,memb(⌦;R3), then the same

inclusion holds for ũ.
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Using the result above we conclude the following lemma.

Lemma 4.4.4. For all ů 2 H1(⌦;R3) such that ů|
⌦
"h
1
= 0, the following Poincaré and Korn

inequalities hold:

kůkL2 C"h krhůkL2 , (4.14)

krhůkL2 C
���symrhů

���
L2 , (4.15)

where the constant C is independent of h.

Proof. We again look the problem on the physical domain ⌦h. The function u (scaled

properly), when restricted to a single cell within the domain and then rescaled and trans-

lated to Y ⇥ I, satisfies the Poincare inequality, as well as Korn’s inequality (4.2) with a

constant determined by the domain Y ⇥ I. Scaling back to the physical domain ⌦h and

summing up the norms over all cells, we obtain a version of the estimates (4.14) and

(4.15) for ⌦h. Finally, rescaling to ⌦, we obtain (4.14) and (4.15). ⌅

Remark 4.4.5. Using continuity of embeddings into spaces on the boundary, it follows

immediately that

kůkL2(�\⌦0) C"h
���symrhů

���
L2(⌦;R3⇥3),

where � := !⇥ {�1/2,1/2}.

4.4.0.2 Asymptotic regime h⌧ "h

In this section we assume that h⌧ "h. We will assume that Y0 ⇢ Y does not touch the

boundary of Y and is of class C1,1. First, we provide an extension property, in the spirit

of Theorem 4.4.1. We denote by ⌦"h
↵ , ↵ = 1,2, the same sets as in Section 2.1. We have

the following theorem.

Theorem 4.4.6. There exists a linear extension E"h : H1(⌦"h
1 ;R3)! H1(⌦;R3) such that

for every u 2 H1(⌦,R3), E"hu = u on ⌦"h
1 and

���symrhE"hu
���

L2(⌦;R3⇥3) C
���symrhu

���
L2(⌦"h

1 ,R
3⇥3). (4.16)
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for some C > 0 independent of h. Moreover, there exist v̊ 2 H2(!) and  ̊ 2 H1(⌦;R3) such

that v̊ =  ̊ = 0 on ⌦"h
1 and

ů := u�E"hu =

à
�"hx3@1v̊

�"hx3@2v̊

h�1"hv̊

í

+  ̊, (4.17)

with the estimate

"h
�2kv̊k2L2 + krv̊k2L2 +"

2
h

���r2v̊
���2

L2 +"h
�2
��� ̊
���2

L2 +
���rh ̊

���2
L2 C

���symrhů
���2

L2 , (4.18)

where C depends on Y0 only.

Proof. We consider a domain Ỹ0⇥ (h/"h)I, such that Ỹ0 has C1,1 boundary, Y0 ⇢ Ỹ0, and

Ỹ0\Y0 is connected. For the extension  2 H1((Ỹ0\Y0)⇥ I;R3), we apply the decomposi-

tion of Part 1 of Lemma 4.2.10 to obtain

 = a+B(x1, x2,"
�1
h hx3)>+

à
�x3@1v

�x3@2v

h�1"hv

í

+  ̃, (4.19)

where a 2 R3, B 2 R3⇥3
skew, v 2 H2(Ỹ0\Y0),  ̃ 2 H1((Ỹ0\Y0)⇥ I;R3), and the following esti-

mate holds:

kvk2
H2(Ỹ0\Y0)

+k ̃kL2((Ỹ0\Y0)⇥I;R3)+krh/"h ̃k2L2((Ỹ0\Y0)⇥I;R3⇥3)
Cksymrh/"h k2L2((Ỹ0\Y0)⇥I;R3⇥3)

,

(4.20)

where C depends on Y0 only. It is not di�cult to construct extension operators

E1 : H2(Ỹ0\Y0)! H2(Ỹ0), E2 : H1�(Ỹ0\Y0)⇥ I
�
! H1(Ỹ0⇥ I)

such that E1' = ' on Ỹ0\Y0 and E2w = w on (Ỹ0\Y0)⇥ I and

kE1'kL2(Ỹ0) Ck'kL2(Ỹ0\Y0), kE1'kH2(Ỹ0) Ck'kH2(Ỹ0\Y0) 8' 2 H2(Ỹ0\Y0),

kE2wkL2(Ỹ0)⇥I) CkwkL2((Ỹ0\Y0))⇥I),

krh/"h E2wkL2(Ỹ0)⇥I;R3) Ckrh/"hwkL2((Ỹ0\Y0))⇥I;R3) 8w 2 H1(Ỹ0\Y0⇥ I),
(4.21)
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for some C > 0. Indeed, E1 is constructed by using the standard reflection principle. Also

using the reflection principle, we first construct Ẽ2 : H1(Ỹ0\Y0)! H1(Ỹ0) such that

kẼ2'kL2(Ỹ0) Ck'kL2(Ỹ0\Y0), kẼ2'kH1(Ỹ0) Ck'kH1(Ỹ0\Y0) 8' 2 H1(Ỹ0\Y0),

for some C > 0. On the basis of Ẽ2, we construct E2 as follows. For w 2C2(Ỹ0\Y0⇥ I) we

set E2w(·, x3) = Ẽ2w(·, x3) for all x3 2 I. It is easy to check that for w 2C2(Ỹ0\Y0⇥ I) one

has @x3 E2w = E2(@x3w), from which we infer the property (4.21) for w 2 C2(Ỹ0\Y0⇥ I).

We then extend E2 to the whole of H1(Ỹ0\Y0 ⇥ I) by density, which concludes the con-

struction.

For 2H1(Ỹ0\Y0⇥ I;R3), using the expression (4.19), we define Ẽ"h 2H1(Ỹ0⇥ I;R3)

as follows:

Ẽ"h = a+B(x1, x2,"
�1
h hx3)>+

à
�x3@1E1v

�x3@2E1v

"hh�1E1v

í

+E2 ̃. (4.22)

Recalling (4.20), we obtain the estimate

kE1vk2H2(Ỹ0)+ kE2 ̃k2L2(Ỹ0;R3)+ krh/"h E2 ̃k2L2(Ỹ0;R3⇥3) Cksymrh/"h k2L2((Ỹ0\Y0)⇥I;R3⇥3)
.

We construct E"hu by considering z 2Z2 such that "h(Y+z)⇢! and applying the extension

Ẽ"h to the function x 7! u("h x̂+"hz, x3). In this way we obtain

E"hu
��
"h(Ỹ0+z)⇥I = a"h

z +B"h
z (x1, x2,hx3)>+

à
�x3@1vz

�x3@2vz

h�1vz

í

+ z, (4.23)

with the estimate

"�4
h kvzk2L2("h(Ỹ0+z))+"

�2
h krvzk2L2("h(Ỹ0+z);R2)+

���r2vz
���2

L2("h(Ỹ0+z);R2⇥2)

+"h
�2k zk2L2("h(Ỹ0+z)⇥I;R3)+ krh zk2L2("h(Ỹ0+z)⇥I;R3⇥3)

Cksymrhuk2L2("h(Ỹ0\Ȳ0+z)⇥I;R3⇥3).

This concludes the proof of (4.16). To prove (4.17), for each z 2 Z2 consider the deforma-

tion

u�E"hu|"(Ỹ0+z)⇥I
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and apply the above rescaling as well as the second claim of Lemma 4.2.10. The linearity

of E"h follows from the decompositions in Theorem 4.2.3 and Lemma 4.2.10. ⌅

Remark 4.4.7. Notice that as a consequence of Corollary 4.2.5 and the estimate (4.16),

if u = 0 on �D⇥ I, where �D ⇢ @! is the set of positive measure, then

���⇡1/h(E"hu)
���2

H1(⌦;R3) C
Ä
k⇡1/hu)k2L2(�D;R3)+h�2ksymrhuk2

L2(⌦"h
1 ,R

3⇥3)

ä
,

where C is obtained by combining C�
T in (4.2.5) and the constant in the extension inequal-

ity (4.16).

Remark 4.4.8. We can assume, without loss of generality, that in the above proof E1

maps a�ne expressions a1x1 + a2x2 + a3, for a1,a2,a3 2 R, to themselves. (Indeed, as in

the proof of Proposition 2.2.4, on the orthogonal complement of a�ne maps in L2 the

extension is constructed by reflection.) From (4.23), recalling (4.19) and (4.22), we also

have the estimate

kE"hukL2(⌦;R3) C
⇣
kukL2(⌦"h

1 ;R3)+ ksymrhukL2(⌦"h
1 ;R3⇥3)

⌘
,

for some C > 0. From (4.17), (4.22) we then additionally obtain that

"hh�1kv̊kL2(!) C
⇣
kukL2(⌦;R3)+ ksymrhukL2(⌦"h

1 ;R3⇥3)+"hksymrhukL2(⌦"h
0 ;R3⇥3)

⌘
.

Remark 4.4.9. Following Remark 4.2.6 and Remark 4.2.11 we infer that if u↵ is even in

the variable x3 for ↵ = 1,2 and u3 is odd in the variable x3, the extension E"hu has the

same properties. Noting that by Lemma 4.2.10 and Theorem 4.2.3 one has a"h
z,3 = B"h

z,13 =

B"h
z,23 = v"h

z = v̊"h = 0 in (4.23), we also infer that

���(E"hu)3
���

L2(⌦) ChksymrhukL2(⌦"h
1 ;R3⇥3),

ku3kL2(⌦)  k ̊3kL2(⌦;R3) C"h
�1h"hksymrhukL2(⌦;R3⇥3) =ChksymrhukL2(⌦;R3⇥3),

for some C > 0.

4.4.0.3 Asymptotic regime "h⌧ h

In this regime the extension theorem is analogous to Theorem 4.4.1.
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Theorem 4.4.10. For every "h > 0 there exists a linear extension operator

u 7! ũ : H1(⌦"h
1 ;R3)! H1(⌦;R3) such that ũ = u on ⌦"h

1 and

���symrhũ
���

L2(⌦;R3⇥3) C
���symrhu

���
L2(⌦"h

1 ;R3⇥3) .

Proof. Since "h⌧ h, the way in which we introduce the extensions here is to look at every

single cell inside the thin domain ⌦h. The cells are "h-cubes "h(Y + z)⇥ [k"h, (k+ 1)"h],

where z 2 Z2, k 2 Z, are chosen so that each cube is entirely inside⌦. We use the extension

operator on the cube Y ⇥ I (see [51, Lemma 4.1]), followed by a scaling argument. We

label the resulting extension by E1. The problem is that we can have a mismatch at the

lines x3 = k"h, where k 2Z, and there are possible “boundary layers” at the sides x3 =±h/2

where the extension is not defined (due to the fact that h/"h is not necessarily an integer).

We deal with this by introducing another series of extensions to cubes

"h(Y + z)⇥
ïÅ

k+
1
2

ã
"h,

Å
k+

3
2

ã
"h

ò
, z 2 Z2, k 2 Z,

from the complements of the corresponding “perforations”

"h(Y0+ z)⇥
ïÅ

k+
3
4

ã
"h,

Å
k+

5
4

ã
"h

ò
.

(On the parts

"h(Y0+ z)⇥
ïÅ

k+
1
2

ã
"h,

Å
k+

3
4

ã
"h

ò
, "h(Y0+ z)⇥

ïÅ
k+

5
4

ã
"h,

Å
k+

3
2

ã
"h

ò

we continue using the extension E1.) In this way we correct the first extension and elim-

inate the mismatch. We denote the resulting extension by E2. We deal with the upper

layers at x3 = ±h/2 in a di↵erent way, namely, we first consider the extension on the

cubes

"h(Y + z)⇥
Åï

h
2
�"h,

h
2

ò
[
ï
�h

2
� h

2
+"h

òã

(referring to this as E3), and then we correct the possible mismatch between E2 and E3

by performing extensions to the cubes

"h(Y + z)⇥
Åï

h
2
� 3

2
"h,

h
2
� 1

2
"h

ò
[
ï
�h

2
+

1
2
"h,�

h
2
+

3
2
"h

òã

from the complements of the corresponding perforations

"h(Y0+ z)⇥
Åï

h
2
� 5

4
"h,

h
2
� 3

4
"h

ò
[
ï
�h

2
+

3
4
"h,�

h
2
+

5
4
"h

òã
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(On the part

"(Y0+ z)⇥
Åï

h
2
� 3

2
"h,

h
2
� 5

4
"h

ò
[
ï
�h

2
+

5
4
"h,�

h
2
+

3
2
"h

òã

we take the above extension E2, while on the part

"h(Y0+ z)⇥
Åï

h
2
� 3

4
"h,

h
2
� 1

2
"h

ò
[
ï
�h

2
+

1
2
"h,�

h
2
+

3
4
"h

òã

we take the extension E3.) We refer to this extension on the cube

"h(Y + z)⇥
Åï

h
2
� 3

2
"h,

h
2

ò
[
ï
�h

2
,�h

2
+

3
2
"h

òã

as E4. The final extension is given by E4 on the layer
ß

(x1, x2, x3) 2⌦h : x3 2
ï

h
2
� 3

2
"h,

h
2

ò
[
ï
�h

2
,�h

2
+

3
2
"h

ò™

and by E2 on the remaining part of ⌦h. The required extension on ⌦ is now then by

scaling in x3. (A procedure analogous to this has been described in [51, Chapter 4] for

some specific domains.) ⌅

Remark 4.4.11. It is easy to see that if u 2 L2,bend(⌦;R3) or u 2 L2,memb(⌦;R3) then the

same is valid for ũ (see the extension operator in [51, Lemma 4.1]).

The following statement is proved analogously to Theorem 4.4.10, see also the proof

of Lemma 4.4.4.

Lemma 4.4.12. For ů 2 V(⌦) be such that ů"h |
⌦
"h
1
= 0, the following Poincaré and Korn

inequalities hold:

kůkL2  "hC krhůkL2 , krhůkL2 C
���symrhů

���
L2 ,

where the constant C does not depend on h.

Proof. As in the case of Theorem 4.4.10, we work on the physical domain ⌦h. The re-

strictions of the inequalities (4.4.12) to those cylinders "h(Y0+z)⇥[�h/2+k"h,�h/2+(k+

1)"h], z 2 Z2, k 2 N0, that are contained in ⌦ are obtained by combining a scaling argu-

ment, the Korn inequality, and the Poincare inequality on the unit cube. We similarly ob-

tain the restrictions of the inequalities (4.4.12) to the cylinders "h(Y0+ z)⇥ [h/2�"h,h/2],

z 2 Z2. The argument for the physical domain ⌦h is now completed by summing up all

above inequalities. To obtain the inequality on the canonical domain ⌦ (where gradients

are replaced by scaled gradients), we simply perform the corresponding rescaling. ⌅
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4.5. Hyperbolic evolution problems of second

order

Let A be a non-negative, self-adjoint operator with domain D(A) in a separable Hilbert

space H, and let A1/2 its unique non-negative self-adjoint root in H. We define the fol-

lowing norm on V :=D(A1/2):

kuk2V :=
�
(A+I)1/2u, (A+I)1/2u

�
H , u 2D(A1/2).

V is a Hilbert space and the inclusion V �D(A) is dense. Let V⇤ be the dual of V making

(V,H,V⇤) the Gelfand triple [4, 28]. Due to the density argument, the operators A, A1/2

can be uniquely extended to bounded linear operators:

A : V ! V⇤, A1/2 : H! V⇤.

Moreover, A+I : V ! V⇤ as well as (A+I)1/2, A1/2 +I, viewed both as operators

from V to H and form H to V⇤, are isomorphisms. Consider also the following evolution

problem:

@ttu(t)+Au(t) = f (t),

u(0) = u0, @tu(0) = u1,

u0 2 V, u1 2 H, f 2 L2([0,T ];V⇤).

(4.24)

Definition 4.5.1. We say that u 2 L2([0,T ];V) is a weak solution of the problem (4.24) if

it satisfies:

u 2C([0,T ];V), @tu 2C([0,T ]; H),

@t(@tu(t),v)H +a(u(t),v) = ( f (t),v)V⇤,V 8v 2 V in the sense of distributions on (0,T ),

u(0) = u0, @tu(0) = u1.

(4.25)

The problem (4.24) can be restated as a first-order form, as follows. Consider the

product space E = V ⇥H endowed with the inner product

(~v, ~w)E =
�
(v1,v2)>, (w1,w2)>

�
E :=

�
(A+I)1/2v1, (A+I)1/2w1

�
H + (v2,w2)H ,
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and set

A :=

2

4 0 �I

A 0

3

5 , D(A) =D(A)⇥D(A1/2), (4.26)

with the embeddingD(A) ,! E being dense. It is easily seen that

((A+ I)~v,~v)E = (Av1,v1)+ (v1,v1)+ (v2,v2)� (v1,v2) � ((v1,v1)+ (v2,v2))/2, (4.27)

where by I we have denoted the identity operator on E. Moreover for � 2 R\{0} one has

(A+�I)~v = ~f () v1 = (A+�2I)�1(� f 1+ f 2), v2 = �v1� f 1, (4.28)

which implies

(A+�I)�1 =

2

4
�(A+�2I)�1 (A+�2I)�1

�2(A+�2I)�1�I �(A+�2I)�1

3

5 , � , 0. (4.29)

As a consequence of (4.27) we can conclude that �(A+ I) is a dissipative operator in the

sense that
���(�I+ I+A)~v

���
E �

p
�2+� k~vkE � �k~vkE , 8� > 0. (4.30)

The property (4.28) implies thatA+I is a closed operator. (Note that a dissipative operator

S is closed if there exists � > 0 such that the range of �I�S is closed.) From (4.28) and

(4.30) we conclude that (�+1)I+A is a bijection

���((�+1)I+A)�1
���  ��1, 8� > 0.

It follows that �(A+ I) generates a contraction semigroup (by Hille-Yosida Theorem) and

e�tA = ete�t(A+I),
���e�t(A+I)

���  1,
���e�tA

���  et. (4.31)

The problem (4.24) can be formally written in the form

@t~u(t)+A~u(t) = ~f (t), ~u(0) = ~u0, (4.32)

with ~u = (u,@tu)>, ~u0 := (u0,u1)>, ~f = (0, f )> 2 E. The following two theorems establish

su�cient conditions for the problem (4.24) to be well posed.

Theorem 4.5.1. Under the additional assumption f 2 L2([0,T ]; H), there exists a unique

weak solution of the problem (4.24), understood in the sense of Definition 4.5.1.
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Proof. The existence can be obtained by the variation of constants formula

~u(t) = e�tA~u0+

ˆ T

0
e�(t�s)A~f (s)ds. (4.33)

The uniqueness is given by parabolic regularisation and can be found in [28, Theorem 3,

p. 572] in a more general setting, where also a proof of existence is obtained by the same

method while working directly with the problem (4.24). ⌅

Remark 4.5.2. It can be easily seen from (4.25) that in Theorem 4.5.1 one additionally

has @ttu 2 L2([0,T ];V⇤). Furthermore, if f 2 L1([0,T ]; H) then @ttu 2 L1([0,T ];V⇤).

Remark 4.5.3. It follows from (4.31) and (4.33) that there exists C > 0 such that

k~ukL1([0,T ];E) CeT
Ä
k~u0k+ k~fkL1([0,T ];E)

ä
,

from which one directly concludes that

kukL1([0,T ];V)+ k@tukL1([0,T ];H) CeT �ku0kV + ku1kH + k fkL1([0,T ];H)
�
. (4.34)

Note that as a consequence of (4.28) the operator A+�I has bounded inverse for every

� , 0.

Theorem 4.5.4. Assume that f ,@t f 2 L2([0,T ];V⇤) Then, there exists a unique weak so-

lution in the sense of Definition 4.5.1 of the problem (4.24).

Proof. Notice that we actually have f 2 C([0,T ];V⇤). The existence of solution follows

from the formula

~u(t) = e�tA~u0�
ˆ T

0
e(s�t)A(A+ I)�1

Ä
@s~f (s)�~f (s)

ä
ds+ (A+ I)�1~f (t)� e�tA(A+ I)�1~f (0),

(4.35)

which can be obtained formally from (4.33) by using integration by parts. Here we also

use the fact that (see (4.29)):

(A+ I)�1(0, f )> =
�
(A+I)�1 f , (A+I)�1 f

�
, (4.36)

from which it follows that if f ,@t f 2 L2([0,T ];V⇤) then (A+I)�1(0, f )>, i.e., (A+I)�1(0,@t f )>

is an element of L2([0,T ];V). As in the proof of Theorem 4.5.1, the uniqueness follows

from [28, Theorem 3, p. 572]. (Notice that considering the di↵erence of the solutions

associated with two di↵erent load densities gives us a solution to the problem with zero

load density, which is then necessarily zero by the cited theorem.) ⌅
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Remark 4.5.5. It can be easily seen that in Theorem 4.5.4 one additionally has @ttu 2

L1([0,T ];V⇤). This follows from (4.25) and the fact that f 2 L1([0,T ];V⇤).

Remark 4.5.6. It follows from (4.31) and (4.35) that there exists C > 0 such that

k~ukL1([0,T ];E) CeT
Ä
k~u0k+ k~f (0)kV⇤ + k@t~fkL1([0,T ];V⇤)

ä
,

from which one directly concludes that

kukL1([0,T ];V)+ k@tukL1([0,T ];H) CeT �ku0kV + ku1kH + k f (0)kV⇤ + k@t fkL1([0,T ];V⇤)
�
.

(4.37)

We will now give an overview of the results of [53], which we will then extend with

the concept of solution discussed in Theorem 4.5.4. While this extension is not considered

in [53], its validity follows from the formula (4.35).

Suppose that we are given a sequence of Hilbert spaces (H")">0 endowed with norms

|| · ||H" and some type of weak convergence u"
H"��* u 2 H of sequences (u") ⇢ H". Our

assumption on this type of weak convergence is that every weakly convergent sequence

(u")">0 is bounded, i.e. limsup"!0 ||u"||H" < 1. We additionally assume that the “limit

space” H is separable.

Definition 4.5.2. We say that a sequence (u")">0 ⇢ H" strongly converges to u 2 H and

write u"
H"��! u if u"

H"��* u and

lim
"!0

(u",v")H" = (u,v)H , (4.38)

for every weakly convergent sequence v"
H"��* v 2 H, v" 2 H".

Additionally, we assume the following properties of this abstract weak convergence:

(compactness principle)
Every bounded sequence contains a weakly convergent

subsequence.

(approximation principle)
For every u 2 H, there exists a sequence (u")">0 ⇢ H",

such that u"
H"��! u.

(norm convergence) If u"
H"��! u, then lim

"!0
ku"kH" = kukH .
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As a consequence of these properties, to guarantee strong convergence u"
H"��! u it su�ces

to have the property (4.38) or, alternatively, to have u"
H"��* u and norm convergence (see

the proof of Lemma [53, Lemma 6.3]). The following kind of operator convergence is

convenient in the analysis of parameter-dependent problems.

Definition 4.5.3. Let (A")">0 be a sequence of non-negative self-adjoint operators acting

on the respective spaces H". Suppose that A is a non-negative self-adjoint operator on

some closed subspace H0 of H, and consider the orthogonal projection P : H! H0. We

say thatA" converge toA in the weak resolvent sense if

8� > 0, (A"+�I)�1 f "
H"��* (A+�I)�1 P f , 8( f ")">0, f " 2 H", f "

H"��* f 2 H.

(4.39)

Similarly, we say thatA" converge toA in the strong resolvent sense if

8� > 0, (A"+�I)�1 f "
H"��! (A+�I)�1 P f , 8( f ")">0, f " 2 H", f "

H"��! f 2 H.

(4.40)

Lemma 4.5.7. The convergence (4.39) is equivalent to the convergence (4.40).

Proof. The proof is based on a duality argument. Take � > 0 and consider ( f ")">0 such

that f "
H"��* f and (g")">0 such that g"

H"��! g . Then one has

lim
"!0

Ä
f ", (A"+�I)�1 g"

ä
H"
= lim
"!0

Ä
(A"+�I)�1 f ", g"

ä
H"

=
Ä

(A+�I)�1 P f , g
ä

H
=
Ä

f , (A+�I)�1 Pg
ä

H
.

These equalities show that (4.39) implies (4.40). In a similar fashion, one shows that

(4.40) implies (4.39). ⌅

Henceforth we work within the framework of Definition 4.5.3. For the sequence

(A")">0 we construct the associated Hilbert spaces V" endowed with norms || · ||V" , de-

fined as follows:

ku"k2V" := ((A"+I)1/2u", (A"+I)1/2u")H" .

Similarly, we define kukV , where V =D(A1/2). It is easily seen that, since H is separable,

the spaces H0 and V are also separable. (Indeed, H0 is a subspace of H, and if {hn}n2N is

a dense subset of H, then {(A+ I)�1/2hn}n2N is a dense subset of V.)
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Definition 4.5.4. Suppose that (u")">0 ⇢ V", u 2 V . We say that u" converge weakly to u

in V", and write u"
V"��* u, if

u"
H"��* u and limsup

">0
||u"||V" <1.

Additionally, we say that (u")">0 converges strongly to u in V", and write u"
V"��! u, if

(u",v")V" ! (u,v)V for all v"
V"��* v.

The following statement is [53, Lemma 6.2, Lemma 6.3].

Lemma 4.5.8. If u"
V"��! u, then u"

H"��! u. Moreover, one has

u"
V"��! u () u"

V"��* u and ku"kV" ! kukV .

It can be shown that there exists a dense subset S ⇢ V , such that for every z 2 S there

exists a subsequence (z")">0 such that z"
V"��! z (see [53, Lemma 6.5]).

We also introduce convergence notions convenient for the analysis of time-dependent

problems.

Definition 4.5.5. Suppose that a sequence (u")">0 ⇢ L2([0,T ]; H") is bounded. We say

that (u")">0 weakly converges to u 2 L2([0,T ]; H), and write u"
t,H"���* u, if

ˆ T

0
(u"(t),v")H"'(t)dt!

ˆ T

0
(u(t),v)'(t)dt,

for all v"
H"��! v and ' 2 L2(0,T ).

Definition 4.5.6. Suppose that (u")">0 ⇢ L2([0,T ];V"). We say that (u")">0 weakly con-

verges to u 2 L2([0,T ];V), and write u"
t,V"���* u, if

u"
t,H"���* u and limsup

"!0

ˆ T

0
(A1/2

" u",A1/2
" u")H"dt <1.

In the same way we can define the weak convergence in Lp([0,T ]; H") and Lp([0,T ];V"),

1  p  1 (which denote by
t,p,H"�����* and

t,p,V"����*, respectively.) The following lemma is

stated in [53, Lemma 4.7].

Lemma 4.5.9. The spaces L2([0,T ]; H") and L2([0,T ];V") satisfy the weak compactness

principle.
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The next lemma can also be easily established, see [53, Lemma 2.3, Lemma 4.5].

Lemma 4.5.10. If u"
H"��* u, then liminf"!0 ku"kH" � kukH. The same is valid for the weak

convergence in V". If u"
t,H"���* u, then liminf"!0 ku"kL2([0,T ];H") � kukL2([0,T ];H). The same

is valid for the weak convergence in L2([0,T ];V").

In the natural way, by components, we define the weak and strong convergence in

E" =V"⇥H" as well as the weak convergence in L2([0,T ]; E"). Also the space E0 =V⇥H0

and the projection P onto E0 are defined in a natural way, the latter being given by P~v =

(v1,Pv2)>. In an obvious way we also define operators A" and A. The following theorem

is a basic tool for proving weak or strong convergence of solutions to "-parametrised

evolution problems, understood in the sense of Definition 4.5.1. The theorem can be

found in [53, Theorem 5.2, Theorem 7.1]. The first part is easily proved by combining

the Laplace transform and a compactness result as in Theorem 4.5.13.

Theorem 4.5.11. Let (A")">0 be a sequence of non-negative self-adjoint operators in H"

that converge to a non-negative self-adjoint operator A in some subspace H0  H in the

sense of weak resolvent convergence.

1. If ~f
" E"��* ~f , then

(A"+�I)�1~f
" E"��* (A+�I)�1~f , 8� > 1.

2. If ~f
" E"��* ~f , then e�tA"~f

" t,E"���* e�tAP f for every T > 0. If ~f
" E"��! ~f 2 E0, then

e�tA"~f
"! e�tA~f for every t � 0.

Remark 4.5.12. The pointwise convergence e�tA"~f
" E"��! e�tAP f in Theorem 4.5.11 does

not necessarily hold if we only assume that ~f
" E"��! ~f 2 E, see [53, p. 2267].

A version of the following theorem can be found in [53, Theorem 5.2, Theorem 5.3].

Theorem 4.5.13. Let (A")">0 be a sequence of non-negative self-adjoint operators in

H" that converge to a non-negative self-adjoint operator A in some subspace H0  H in

the sense of weak resolvent convergence. Let T > 0 and (u")">0 be a sequence of weak

solutions of the evolution problems (4.24) where A is replaced by A", with initial data

u"0 2 V", u"1 2 H" and right-hand sides f " 2 L2([0,T ]; H") such that

u"0
V"��* u0 2 V, u"1

H"��* u1 2 H, f "
t,H"���* f 2 L2([0,T ]; H). (4.41)
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Then one has

u"
t,V"���* u 2 L2([0,T ];V), @tu"

t,H"���* @tu 2 L2([0,T ]; H0), (4.42)

where u is the weak solution of the evolution problem (4.24) for the limit operatorA, with

the initial data u0 2 V, Pu1 2 H0 and the right-hand side P f 2 L2([0,T ]; H0).

Proof. We write the problem (4.24) in the form (4.32). As a consequence of (4.41), (4.34),

and Lemma 4.5.9, there exist ~ul = (ul,@tul) 2 L2([0,T ]; E0) such that the convergence

(4.42) holds. Due to above mentioned bounds and weak convergence, we have

L(~u")(�)
E"��*L(~ul)(�), � > 1, (4.43)

where L denotes the Laplace transform (where extend f " and f by zero on (T,1)). On

the one hand, the Laplace transform L of the solution of the "-parametrised equation is

then given by

L(~u")(�) = (A"+�I)�1L(~f
"
)(�)+ (A"+�I)�1~u"0, � > 1. (4.44)

On the other hand, the Laplace transform of the solution of the limit problem is given by

L(~u)(�) = (A+�I)�1L(P~f )(�)+ (A+�I)�1P~u0, � > 1. (4.45)

Using (4.29), we infer that for every sequence (~f
"
)">0 ⇢ E" such that ~f

" E"��* ~f 2 E, and

every � , 0 we have (see (4.39))

(A+�I)�1~f
" E"��* (A+�I)�1P~f .

Using (4.43), (4.44), (4.45), and the fact that for � > 1 one has L(~f
"
)(�)

E"��* L(~f )(�) and

L(P~f )(�) = PL(~f )(�), we infer that for every � > 1 one has L(~ul) = L(~u), and the claim

follows. ⌅

We proceed to the strong convergence analogue of Theorem 4.5.13, see [53, Theorem

7.2].

Theorem 4.5.14. Let (A") be a sequence of non-negative self-adjoint operators in H"

that converges to a non-negative self-adjoint operator A in some subspace H0  H in

the sense of strong resolvent convergence. Let T > 0 and (u")">0 be a sequence of weak
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solutions of the evolution problems (4.24) where A is replaced by A", with initial data

u"0 2 V", u"1 2 H" and right-hand sides f " 2 L2([0,T ]; H") such that

u"0
V"��! u0 2 V, u"1

H"��! u1 2 H0,

f "(t)
H"��! f (t) 2 H0 a.e. t 2 [0,T ],

ˆ T

0

��� f "(s)
���2

H"
ds!

ˆ T

0

��� f (s)
���2

Hds.
(4.46)

Then for every t 2 [0,T ] one has

u"(t)
V"��! u(t) 2 V, @tu"(t)

H"��! @tu(t) 2 H0, (4.47)

where u is the weak solution of the evolution problem of (4.24) for the operator A, with

the initial data u0 2 V, u1 2 H0 and the right-hand side f 2 L2([0,T ]; H0).

Proof. Again we use (4.32), formula (4.33) and Theorem 4.5.11. The proof follows by

using Lebesgue theorem on Dominated convergence and the fact that as a consequence of

Lemma 4.5.10 we have
´ t

0 k f
"(s)k2H"

ds!
´ t

0 k f (s)k2Hds, for every t  T . ⌅

Theorem 4.5.14 can be generalized as follows.

Theorem 4.5.15. Let (A")">0 be a sequence of non-negative self-adjoint operators in

H" that converge to a non-negative self-adjoint operator A in some subspace H0  H in

the sense of strong resolvent convergence. Let T > 0 and (u")">0 be a sequence of weak

solutions of the evolution problems (4.24) where A is replaced by A", with initial data

u"0 2 V", u"1 2 H" and right-hand sides f " 2 L2([0,T ];V⇤" ), @t f " 2 L2([0,T ];V⇤" ) such that

the sequences ( f ")">0, (@t f ")">0 are bounded in L2([0,T ];V⇤" ) and

u"0
V"��! u0 2 V, u"1

H"��! u1 2 H,

(A"+I)�1 f "
t,V"���* (A+I)�1 f 2 L2([0,T ];V),

where f ,@t f 2 L2(O,T ;V⇤). Then one has

u"
t,V"���* u 2 L2([0,T ];V), @tu"

t,H"���* @tu 2 L2([0,T ]; H0),

where u is the weak solution of the evolution problem (4.24) for the operatorA, with the

initial data u0 2 V, Pu1 2 H0 and the right-hand side f 2 L2([0,T ];V⇤). Furthermore, if
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we assume that

u"0
V"��! u0 2 V, u"1

H"��! u1 2 H0,

(A"+I)�1 f "(0)
V"��! (A+I)�1 f (0) 2 V,

(A"+I)�1@t f "(t)
V"��! (A+I)�1@t f (t) 2 V, for a.e. t 2 [0,T ],

ˆ T

0

���(A"+I)�1@s f "(s)
���2

V"
ds!

ˆ T

0

���(A+I)�1@s f (s)
���2

V ds,

(4.48)

where f , @t f 2 L2([0,T ];V⇤), then we have

u"(t)
V"��! u(t) 2 V, @tu"(t)

H"��! @tu(t) 2 H0, 8t 2 [0,T ],

where u is the weak solution of the evolution problem (4.24) for the operatorA, with the

initial data u0 2 V, u1 2 H0 and the right hand side f 2 L2([0,T ];V⇤).

Proof. The argument follows the proofs of Theorem 4.5.13 and Theorem 4.5.14, by using

the formula (4.35) instead of (4.33) (see also (4.36)).

To prove the first part, notice that the Laplace transform of the solution ~u", respectively

~u, is given by formula (4.44), respectively (4.45). (Note that in (4.45) we replace P~f with
~f .) This is established by a density argument, using the fact that L2([0,T ]; H") is dense in

L2([0,T ];V⇤" ), respectively that L2([0,T ]; H) is dense in L2([0,T ];V⇤).

To prove the second part, use the second part of Theorem 4.5.11 and notice that (4.48)

implies that for all t 2 [0,T ] one has

(A"+I)�1 f "(t)
V"��! (A"+I)�1 f (t),

ˆ t

0
e(s�t)A"(A"+ I)�1�0, f "(s)

�>ds
E"��!

ˆ t

0
e(s�t)A(A+ I)�1�0, f (s)

�>ds,

ˆ t

0
e(s�t)A"(A"+ I)�1�0,@s f "(s)

�>ds
E"��!

ˆ t

0
e(s�t)A(A+ I)�1�0,@s f (s)

�>ds,

as a consequence of the dominated convergence theorem and Lemma 4.5.10. ⌅

Remark 4.5.16. It is easy to see that in Theorem 4.5.13, Theorem 4.5.14, and Theorem

4.5.15 the sequences (ku"kV")">0 and (k@tu"kH")">0 are bounded in L1(0,T ).

Remark 4.5.17. The claims of Theorem 4.5.13, Theorem 4.5.14 and Theorem 4.5.15 can

be strengthened slightly. Namely, it su�ces to require that f "
t,1,H"����* f 2 L1�[0,T ]; H

�
in
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(4.41) to obtain the convergence

u"
t,1,V"�����* u 2 L1

�
[0,T ];V

�
, @tu"

t,1,H"�����* @tu 2 L1
�
[0,T ]; H0

�
.

Similarly, it su�ces to require
´ T

0 k f
"kH" ds!

´ T
0 k f (s)kds in (4.46) to obtain (4.47). The

statement of Theorem 4.5.15 can also be strengthened accordingly.
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4.6. Additional claims

In the membrane space, under no additional assumptions on the symmetries of the set Y0,

the function �̃memb(�) (see (2.2.2.1) as well as the parts A of Sections 2.2.2.2, 2.2.2.3) is

a symmetric matrix that is not necessarily diagonal. We will first prove two lemmata and

then a proposition concerning the problem (2.35), which involves the function �̃memb
� (�)

defined in Section 2.2.2.

Lemma 4.6.1. There exists C > 0 such that for every � > 0 we have:

Ä�
�̃memb
�

�0(�)⇠,⇠
ä
>C|⇠|2, 8⇠ 2 R2,⇠ , 0.

Proof. We will give the proof for � 2 (0,1), and the other cases can be treated analo-

gously. Notice that for the function � 7! (⌘̃n��)�1�2 one has
Ç

�2

⌘̃n��

å0
= �1+

⌘̃2
n

(⌘̃n��)2 .

It follows that

�
�̃memb
�

�0(�) = I2⇥2h⇢i+
X

n2N

⌘̃2
n

(⌘̃n��)2

⌦
⇢0('̃n)⇤

↵
·
⌦
⇢0('̃n)⇤

↵> �
X

n2N

⌦
⇢0('̃n)⇤

↵
·
⌦
⇢0('̃n)⇤

↵>

= I2⇥2h⇢1i+
X

n2N

⌘̃2
n

(⌘̃n��)2

⌦
⇢0('̃n)⇤

↵
·
⌦
⇢0('̃n)⇤

↵>
.

Here '̃n, n 2 N, are those eigenfunctions of the operator Ã00,� associated with the eigen-

values ⌘̃n, n 2 N, that satisfy
⌦
⇢0('̃n)⇤

↵
, 0,

and we have used the identity

I2⇥2h⇢0i =
X

n2N

⌦
⇢0('̃n)⇤

↵
·
⌦
⇢0('̃n)⇤

↵>
, ↵,� = 1,2.

The proof of the required estimate is concluded by noting that for ⇠ , 0 one has

Ä�
�̃memb
�

�0(�)⇠,⇠
ä
= h⇢1i|⇠|2+

X

n2N

⌘̃2
n

(⌘̃n��)2

Ä⌦
⇢0('̃n)⇤

↵
,⇠
ä2
> h⇢1i|⇠|2.

⌅
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Lemma 4.6.2. Let �0 > 0 be such that there exists a nontrivial solution a 2 H1
�D(!;R2) of

the problem (2.35). Then there exists ⌘ > 0 such that for each � 2 (�0,�0+⌘) the problem

(2.35) has only the trivial solution.

Proof. The problem (2.35) can be reformulated as follows:

Ä
(Amemb

� )1/2a, (Amemb
� )1/2'

ä
=
Ä
�̃memb
� (�)a,'

ä
, 8' 2 H1

�D(!;R2),

where (Amemb
� )1/2 is a self-adjoint positive square root of the operatorAmemb

� , which has

compact inverse. Thus, the above problem can be rewritten as

Ä
(Amemb

� )1/2a, (Amemb
� )1/2'

ä
=
Ä

(Amemb
� )�1/2�̃memb

� (�)a, (Amemb
� )1/2'

ä
, 8' 2H1

�D(!;R2).

By substituting v = (Amemb
� )1/2a, we have reduced the problem (2.35) to the following

equivalent problem: find v 2 L2(!;R2) that is an eigenfunction for (Amemb
� )�1/2�̃memb

� (�)(Amemb
� )�1/2

with eigenvalue µ� = 1, i.e.

(Amemb
� )�1/2�̃memb

� (�)(Amemb
� )�1/2v = v.

The operator (Amemb
� )�1/2�̃memb

� (�)(Amemb
� )�1/2 is compact and its positive eigenvalues,

in decreasing order, are characterised by the variational principle

µ�k = max
V<L2(!;R2), dimV=k

min
x2V, ||x||=1

Ä
A�1/2

memb�̃
memb(�)A�1/2

membx, x
ä
, k = 1,2, . . . .

Denote by k1 the index of the eigenvalue 1 = µ�0
k1
, which can clearly be done due to the

assumption on �0. Next, denote by k2 the index of the next smaller eigenvalue µ�0
k2
< 1.

Furthermore, notice that for � > �0 one has

(Amemb
� )�1/2�̃memb

� (�)(Amemb
� )�1/2 = (Amemb

� )�1/2�̃memb
� (�0)(Amemb

� )�1/2

+ (���0)(Amemb
� )�1/2(�̃memb

� )0(�0)(Amemb
� )�1/2+O(|���0|2),

where kO(|�� �0|2k  C|�� �0|2 for some C > 0. For this reason, by virtue of Lemma

4.6.1, one has µ�k1
> 1, . . . , µ�k2�1 > 1, µ�k2

> µ�0
k2

whenever � 2 (�0,�0+⌘), for some ⌘ > 0.

Due to the continuity of µ�k2
with respect to �, we can redefine ⌘ > 0 so that for every

� 2 (�0,�0+⌘) we have µ�0
k2
< µ�k2

< 1. Thus, for � 2 (�0,�0+⌘), unity is not the eigenvalue

ofA�1/2
memb�̃

memb(�)A�1/2
memb. ⌅
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Proposition 4.6.3. The set of all � > 0 for which the problem (2.35) has a nontrivial

solution a 2 H1
�D(!;R2) is at most countable.

Proof. Using the preceding lemma, we can define the following family of disjoint inter-

vals:

F = {[�,�+⌘�) ⇢ R, � > 0 is such that the problem (2.35) has a nontrivial solution},

where ⌘� is provided by Lemma 4.6.2. Such a family can be at most countable, from

which the claim follows. ⌅

Finally, we prove a lemma whose variants we used on several occasions within Sec-

tion 2.3.3. We begin by introducing some notation. We define the following norm and

seminorm on H1
�D

(⌦;R3) :

kukh,"h = kukL2(R3)+ ksymrhũkL2(⌦;R3⇥3)+"hksymrhůkL2(⌦;R3⇥3),

kuks,h," = ksymrhũkL2(⌦;R3⇥3)+"hksymrhůkL2(⌦;R3⇥3),

where we have for every u 2 H1
�D

a decomposition u = ũ+ ů is employed, with both ũ and

ů depending on u in a linear manner. We also assume thatA is a non-negative self-adjoint

operator whose domain is a subset of L2(⌦;R3) such that there exist c1,c2 > 0 such that

c1kuk2s,h,"h
 (Au,u)  c2kuk2s,h,"h

8u 2D(A). (4.49)

Lemma 4.6.4. Suppose that A is as above and let � < �(A). Assume that u = ũ+ ů 2

H1
�D

(⌦;R3) satisfies

�
A1/2u,A1/2⇠

�
��(u,⇠)=

ˆ
⌦

Ä
f 1 : symrh⇠̃+"h f 2 : symrh⇠̊+ f 3 ·⇠

ä
dx 8⇠ = ⇠̃+ ⇠̊ 2H1

�D
(⌦;R3).

where f 1 2 L2(⌦,R3⇥3), f 2 2 L2(⌦,R3⇥3) and f 3 2 L2(⌦;R3). Then one has

kukh,"h 
C(�)

dist
�
�,�(A)

�
�
k f 1kL2(⌦;R3⇥3)+ k f 2kL2(⌦;R3⇥3)+ k f 3kL2(⌦;R3)

�
,

for some C(�) that is bounded on bounded intervals.

Proof. By virtue of the Riesz representation theorem and (4.49), we know that there exists

f 2 L2(R3) and C > 0, which depends on c1, c2 only, such that

k fkL2(⌦;R3) C
�
k f 1kL2(⌦;R3⇥3)+ k f 2kL2(⌦;R3⇥3)+ k f 3kL2(⌦;R3)

�
,
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(Au,⇠)��(u,⇠) =
ˆ
⌦

f ·
�
A1/2⇠+⇠

�
8⇠ 2 H1

�D
(⌦;R3). (4.50)

We can now use the spectral theorem (see e.g. [55]): there exists a measurable space

(M,µ) with a finite measure µ and a unitary operator

U : L2(⌦;R3)! L2(M)

and a non-negative real-valued function a, which is an element of Lp(M), p 2 [1,1), such

that

•  2D(A) if and only if a(·)U (·) 2 L2(M);

•  2UD(A), UAU�1 (·) = a(·) (·).

Notice that the second claim implies

• UA1/2U�1 (·) =
p

a(·) (·).

• �(A) = EssRana :=
�

r : 8" > 0, µ{m 2 M : r�"  a(m)  r+"} > 0
 
.

Furthermore, (4.50) implies

�
a(·)��

�
Uu(·) =U f (·)

�p
a(·) +1

�
,

from which, by virtue of � < EssRana, one has

�p
a(·) +1

�
Uu(·) =U f (·)

�p
a(·) +1

�2

�
a(·)��

� .

Therefore, there exists C(�) > 0, which is uniformly bounded on compact intervals of �,

such that
��(A1/2+I)u

��
L2
 C(�)

dist
�
�,�(A)

�k fkL2 ,

from which the claim follows immediately. ⌅

Remark 4.6.5. Throughout the paper, we also use some variants of the above lemma, see

the discussions around (2.3.3), (2.3.3), (2.3.3), (2.3.3). They generically apply to setups

that can be put the form (4.50), and they result in estimates of the type (4.6). The key

ingredient for their validity is the fact that the right-hand side of the equation is in the

dual ofD(A1/2+I) with respect to the graph norm.

215



Conclusion

The thesis consists of two parts. In the first part we have established the approximation

properties of the resolvents associated with the operators describing the heterogeneous

elastic plates in the linear theory of elasticity, in terms of two-scale convergence. In the

analysis we have covered several interesting regimes, depending on the mutual relations

of the parameters describing the thickness of the plate, the period of material oscilla-

tions and the scaling of time/density. The analysed composite materials are assumed to

be composed of the soft inclusions embedded into the sti↵ matrix with material coe�-

cients being in high contrast. This property yielded various interesting phenomena in the

e↵ective model which can all be described as ”metamaterial” phenomena. These phe-

nomena include: memory e↵ects, band-gap structure of the spectrum, the occurrence of

evanescent waves, etc. In addition to these qualitative results, what remains to be done is

to establish quantitative results in terms of the operator norm-resolvent estimates which

would then yield the complete picture on the approximation properties for such materials

by e↵ective lower dimensional models.

However, in the second part of this thesis, sharp operator norm-resolvent estimates

are obtained in the case of thin heterogeneous elastic rods in moderate contrast. Here, by

the means of asymptotic expansion of resolvent operators, we have established estimates

on the L2! L2 distance of the resolvent operators to their associated e↵ective resolvents.

These estimates have a lot of consequences such as: estimates on the band gaps, estimates

on the associated semigroups, etc. What remains to be done here is to employ these newly

derived operator norm-resolvent estimates to answer pending questions on the evolution

of heterogeneous elastic rods.
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