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Summary
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In three spatial dimensions, particles are classified into bosons and fermions. Bosons have

integer spin and obey Bose-Einstein statistics, while fermions have half-integer spin and obey

Fermi-Dirac statistics. In two-dimensional systems, particles with properties continuously inter-

polating from bosons to fermions are theoretically allowed to exist and they are called anyons.

Anyons are characterized by a fractional spin, or more generally, by fractional quantum num-

bers. Apart from the fundamental interest, the main motivation for studying anyons comes from

their potential importance in fault-tolerant topological quantum computing.

The work presented in this thesis contributes to the study of less traditional schemes for

realization and manipulation of anyons. The first part focuses on new mechanisms for the

realization and signatures of anyons in non-interacting systems. We propose an experimental

realization of the original Wilczek’s model for Abelian anyons. This proposal is implemented

in two-dimensional electron gas placed in a perpendicular magnetic field which gives rise to the

integer quantum Hall effect. Then we present exact solutions of a model for synthetic anyons in

a non-interacting quantum many-body system. The model is represented by the Hamiltonian for

non-interacting electrons in two dimensions, in a uniform magnetic field, pierced with specially

tailored localized probes, solenoids with a magnetic flux that is a fraction of the flux quantum.

Here we show that synthetic anyons cannot be considered as emergent quasiparticles. The

second part of the thesis concentrates on a system of one-dimensional bosons coupled to syn-

thetic gauge fields. In particular, we investigate a system of strongly interacting bosons placed

on a one-dimensional ring pierced by a synthetic magnetic flux tube. An external localized

delta-function potential barrier is placed on the ring and we explore the Berry phase associated

to its adiabatic motion. The barrier produces a cusp in the density, where we show that the

corresponding missing charge cannot be identified as a quasihole. This result is associated with

the previous studies of synthetic anyons in non-interacting systems.
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Chapter 1

Introduction

1.1 Introduction to fractional statistics

Quantum statistics has a fundamental theoretical importance in the quantum mechanical view

of the world. Namely, the physical behaviour of collections of identical particles is governed

not only by interactions but also by the particle statistics. Identical particles are those particles

whose Hamiltonian is symmetric under exchange of one particle with the other, assuming they

have identical intrinsic properties [1]. Contrary to classical physics, where we can always fol-

low each particle at any time, in quantum mechanics there is no trajectory. Since one is not

able to track identical particles separately, they are considered to be indistinguishable. This

fact imposes definite symmetry requirements on the many-body wave function describing a

system of many identical particles under interchange of any two particles. In three dimensions

[(3+1)D] only two symmetries are possible and particles are classified into bosons and fermi-

ons depending on the statistics they obey. Bosons follow the Bose-Einstein and fermions the

Fermi-Dirac statistics [1]. While Fermi and Bose formulated their theories in terms of the occu-

pation number, i.e., the number of particles which may occupy the same energetic level, Dirac

reformulated this problem in terms of the structure of the many-body wave functions. The wave

functions turn out to be symmetric under permutations of identical bosons, and antisymmetric

under permutations of identical fermions. The symmetry requirements are closely connected

with the spin of the particles. According to the spin-statistics connection, bosons are particles

with integer spin and fermions with half-integer spin. This connection can be proved by relativ-

istic arguments [2], but in the frame of nonrelativistic quantum mechanics, it is accepted as an

empirical postulate.

For a long time, bosons and fermions have been considered to be the only reasonable possib-

ilities. This is true when particles move in at least three dimensions (3D), but in two dimensions

(2D) the situation becomes more intriguing. Namely, the quantum statistics turns out to be

a continuous interpolation between Bose-Einstein and Fermi-Dirac statistics. Particles which

obey any fractional statistics in between are called anyons [3–5]. This doctoral thesis deals with
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anyons. If one incorporates the concept of the spin-statistics connection, it may be assumed that

anyons are represented by a fractional spin, i.e., by fractional quantum numbers. These special

cases for spin and statistics were understood in the 1970s, when Leinaas and Myrheim explained

that the root of the concept of fractional statistics lies in the special topological properties of

the configuration space of collections of identical particles [6]. Most of the great interest that

anyons have attracted recently derives from the fact that non-Abelian anyonic quasiparticles

of topological states of matter could become the building blocks of fault-tolerant topological

quantum computers [7, 8].

1.1.1 Exchange statistics

The concept of exchange statistics refers to the phase that a many-body wave function describ-

ing identical particles acquires when any two particles are adiabatically transported giving rise

to the exchange [9]. The wave function of two identical hard-core particles with definite angular

momentum is given as ψ(r1,r2). Hard-core condition implies that two or more particles cannot

occupy the same point in space. When one particle is moved around another by an azimuthal

angle ∆ϕ , as shown in Fig. 1.1, the wave function transforms in the following way:

ψ(r1,r2)→ ψ
′(r1,r2) = eiθ∆ϕ

ψ(r1,r2). (1.1)

Figure 1.1: Particle 2 moves around particle 1 by an angle ∆ϕ .

The parameter θ denotes the statistics of the particles. The definition where exchange stat-

istics is associated with the phase acquired by the wave function under permutation of the

particles, i.e., when all the quantum numbers of the particles are exchanged, is equivalent to the

first one in 3D, but in 2D these definitions are different.

1.1.2 Path integrals

The problem of quantum statistics and quantum motion can be studied from the perspective

of path integrals in quantum mechanics [10]. The probability amplitude for the system which

evolves from the configuration c at time t to the configuration c′ at time t ′ is represented by the

propagator [11]

P(c′, t ′;c, t) =
∫

c(t)=c;c(t ′)=c′
Dce

i
h̄
∫ t′

t dτL [c(τ),ċ(τ)] = ∑
all paths

e
i
h̄
∫ t′

t dτL [c(τ),ċ(τ)]. (1.2)

2



∫
c(t)=c;c(t ′)=c′Dc denotes the sum over all potential paths connecting space-time points c at

time t to c′ at time t ′ and L (c, ċ) the Lagrangian density for the N−particle system. Md
N is

the configuration space of N identical hard-core particles moving in d dimensions. Then the

propagator P(c′, t ′;c, t) evolves the single-valued wave function ψ(c, t) as

ψ(c′, t ′) =
∫

Md
N

dc〈c′, t ′|c, t〉〈c, t|ψ〉=
∫

Md
N

dcP(c′, t ′;c, t)ψ(c, t).

1.1.3 Quantum statistics

We continue to study the statistics by following [12]. Two points in Md
N are c and c′. One may

select c = c′ and define loops in Md
N . If a continuous deformation converts one loop into the

other one, these two loops are homotopic or equivalent. One class consists of all homotopic

loops, while the set of all such classes forms the fundamental group π1. In the set π1, if α1 and

α2 refer to two classes with representatives c1 and c2, then a product α1 ·α2 denotes the class

with the representative loop c1c2. If one denotes the homotopic classes by α ∈ π1(Md
N), the

amplitude P(c, t ′;c, t) in Eq. (1.2) can be decomposed into a sum of subamplitudes Pα(c, t ′;c, t),

which consists of contributions of homotopic loops, i.e., the amplitude is split into contributions

from homotopically inequivalent path sectors labeled by elements on π1(Md
N). Specifically, the

amplitude takes the form [11]

P(c, t ′;c, t) = ∑
α∈π1(Md

N)

χ(α)Cα(c, t ′;c, t), (1.3)

where χ(α) represent complex weight factors. In order to have the usual rule for combining

probabilities

P(c′′, t ′′;c, t) =
∫

Md
N

dc′〈c′′, t ′′|c′, t ′〉〈c′, t ′|c, t〉=
∫

Md
N

dc′P(c′′, t ′′;c′, t ′)P(c′, t ′;c, t),

the weights χ(α) should satisfy for any α1 and α2

χ(α1)χ(α2) = χ(α1 ·α2), with |χ(α1)|= 1.

Interpretation of this statement is that the weight factors of partial amplitudes χ(α) form a

one-dimensional unitary representation of the fundamental group π1(Md
N) [11].

Therefore, we want to determine Md
N and its fundamental group [12]. We consider a system

of N identical hard-core particles in the Euclidean d-dimensional space Rd . Cartesian product

of the one-particle spaces (Rd)N specifies a configuration of a system. Hard-core requirement

implies that the generalized diagonal has to be eliminated

D = {(r1, . . .rN) ∈ (Rd)N : rJ = rK for some J 6= K}. (1.4)

3



Moreover, one should identify configurations which are different only in the ordering of the

particles because the particles are identical and indistinguishable. Therefore, we divide the

configuration space by the permutation group SN for N identical particles and arrive at the

configuration space of our system

Md
N =

(Rd)N−D
SN

. (1.5)

The fundamental group of this space is [13, 14]

π1(Md
N) =

SN , if d ≥ 3

BN , if d = 2.
(1.6)

BN is Artin’s braid group of N objects and the permutation group SN is a finite subgroup [15,16]

of BN .

In order to have a better understanding of this result, we limit our discussion to the case of

a two-particle system [6]. First we consider particles confined in two dimensions. The centre-

of-mass coordinate is R = 1
2(r1 + r2) ∈ R2, and the relative coordinate r = r1− r2 ∈ R2−{0},

where r1 and r2 represent the coordinates of two particles. We exclude the singular point 0 due

to the hard-core condition. The configuration space M2
2 can be decomposed into a Cartesian

product

M2
2 = R2× r2

2,

of the center of mass space and relative space r2
2 defining the two degrees of freedom of the

relative motion of the two particles. Now we look more closely at the topology of the con-

figuration space r2
2. If the difference of two configurations is only the ordering of the particle

indices, these configurations are indistinguishable. Therefore, the relative space r2
2 is the plane

R2 where the points r and −r are identified. This identification can be achieved if one cuts the

plane along a line s from the origin O and then fold it into a cone of half-angle π/6. The relative

space r2
2 is shown on Fig. 1.2.

In agreement with Eq. (1.1.3), one may categorize loops in M2
2 by the number of times they

wind around the cone r2
2. If two loops c and c′ differ in winding numbers, they are homotopically

inequivalent. Namely, since the tip of the cone is removed, one cannot continuously deform one

loop into the other. The spaces r2
2 and R2× r2

2 are infinitely connected, and

π1(M2
2) = Z∼= B2,

where Z is the group of integers under addition. B2 allows a whole variety of 1D representations

and this represents the root of fractional statistics.

Now we put into a consideration the case of two particles in 3D. We introduce the center-of-

mass coordinate R ∈ R3 and the relative coordinate r ∈ r3
2, where r and −r are identified. For

4



Figure 1.2: The manifold r2
2 describing the relative coordinate of two identical particles in two

dimensions.

the configuration space M3
2 we can write

M3
2 = R3× r3

2.

r3
2 is the product of the semiinfinite line describing |r| and of the projective space P2, which

defines the orientation of ±r/|r|. P2 can be seen as the hemisphere where the opposite points

on the equator are identified.

Figure 1.3: The projective space P2 with the examples of contractible (c1) and non-contractible
(c2) loops.

P2 is doubly connected. There are loops (c1) which can be contracted to a point by a

continuous transformation and those which cannot (c2), as shown in Fig. 1.3. Both curves c1

and c2 are closed loops since the two end points on the equator are identified. Since the square

of a non-contractible loop is contractible, no other classes are possible. Therefore,

π1(M3
2) = π1(R3× r3

2) = Z2 ∼= S2,

where Z2 is the cyclic group of order 2, and one can only find bosons and fermions in 3D. Bo-

sons correspond to contractible loops, while fermions correspond to non-contractible loops. As

5



we have presented, the core of anyonic statistics is the braid group BN instead of the permutation

group SN . The following subsection will consider the braid group more closely.

1.1.4 Braid group

The braid group BN on N strands, also known as the Artin’s braid group, is an infinite group

whose group operation is a composition of braids [15, 16]. It can be represented algebraically

in terms of generators σi, with 1≤ i≤ N−1. Two defining relations satisfied by the generators

σi of the braid group are

σiσi+1σi = σi+1σiσi+1 1≤ i≤ N−1, (1.7)

and

σiσ j = σ jσi |i− j| ≥ 2.

σ
−1
i denotes the inverse of σi, and 1 is identity. In order to describe the generators σi, we

represent the elements graphically. As shown in Fig. 1.4 (a), the generator σi acts on N ver-

(a) (b)

Figure 1.4: (a) Graphical representation of the elementary move σi. (b) Graphical representation
of the inverse generator σ

−1
i .

tical strands by braiding the i-th strand around the (i+ 1)-st in a counterclockwise direction.

Fig. 1.4 (b) shows the inverse σ
−1
i which acts in a clockwise direction, while Fig. 1.5 represents

the braid relation in Eq. (1.7). We point out that generally σ2
i 6= 1. If the equality σ2

i = 1 holds

for all i, then the braid group BN becomes the permutation group SN . This difference between

SN and BN leads to the result that the permutation group is finite and the number of elements in

the group is |SN |= N!. On the contrary, the braid group is infinite.

1.1.5 Anyons

The braid group BN is the group of inequivalent paths that arise in the adiabatic transport of N

particles. Namely, the elements of the braid group BN can be uniquely related to the topological

classes of paths which take N particles from positions r1, . . . ,rN at time t0 to positions r1, . . . ,rN

at time t1. Therefore, one can understand the diagrams of the braid group, such as diagrams in

6



=

Figure 1.5: Graphical representation of the braid relation σiσi+1σi = σi+1σiσi+1.

Fig. 1.4 and Fig. 1.5, as they describe the time evolution of identical particles if one perceives

the strands as world-lines which begin at initial positions and end at final positions. The initial

time is at the bottom, while the final time is at the top. Generators of the braid group represent

exchanges of neighbouring particles. With this, each set of trajectories of N particles becomes

a braid. Group multiplication is defined as following one trajectory by another in time. We can

understand that σiσ
−1
i = 1 and σN

i 6= 1, which is why any statistics is allowed in 2D.

Now we determine how the braid group operates on the states of the quantum system. A

1D representation is related to scalar quantum mechanics when the wave functions are one-

component objects. The 1D representation of the braid group BN is given by

χ(σi) = eiθ

for any i = 1, . . . ,N − 1, where the phase θ is a real parameter defined mod 2. θ may be

any arbitrary number because of σ2
i 6= 1. Therefore, particles with any exchange statistics

governed by the braid group have been called anyons [3–5]. In the elementary move σi, the

wave function accumulates the phase θ when the i-th particle is exchanged with the (i+ 1)-st

in a counterclockwise manner. Specific cases of anyons with θ = 0 and π correspond to bosons

and fermions. We point out that these representations are Abelian.

Exchange statistics described by higher-dimensional irreducible representations of the braid

group gives rise to non-Abelian anyons and non-Abelian braiding statistics [17]. Such repres-

entations appear when the wave functions are multiplets, i.e., when there is a degenerate set of

l quantum states. The i-th element of the braid group is represented by a (l× l)-dimensional

unitary matrix ρ(σi). Such matrix defines unitary transformation within the subspace of de-

generate ground states. If two matrices ρ(σi) and ρ(σi+1) do not commute, the particles obey

non-Abelian braiding statistics, and the braiding of particles gives rise to nontrivial rotations in

the degenerate Hilbert space.

7



1.1.6 Fusion of anyons

When N identical Abelian anyons with individual statistics θ are brought close together, they

can be approximated as a single anyon with statistics N2θ . Namely, if two such composite

anyons are rotated counterclockwise, there are N2 pairs of individual anyons. Each pair con-

tributes a phase eiθ . An analogous analysis applies to the fusion of different Abelian anyons.

In general, since a system with anyonic particles provides various types of anyons, a complete

characterization of such a system includes also other possible higher particle types. Abelian

anyons composed by building successively larger composites of θ particles obey the fusion rule

n2θ ×m2θ = (n+m)2θ . When considering non-Abelian anyons, different combinations of to-

pological quantum numbers are possible, and they are named fusion channels. If × represents

the fusion, we may formally write

φa×φb = ∑
c

Mc
abφc,

which means that, if a particle of type a fuses with the other of type b, the product may be

a particle of type c when Mc
ab 6= 0. Here φc symbolizes all anyons in a representative set,

while Mc
ab is called the fusion multiplicity of the occurence of anyon φc. The non-negative

integers Mc
ab denote the fusion rules of the system. When considering Abelian anyons, the

fusion multiplicities are Mc
ab = 1 for single value of c, while Mc′

ab = 0 for all other c′ 6= c. In

case of non-Abelian anyons, there is always at least one a,b so that various fusion channels c

with Mc
ab 6= 0 arise. A broader review of fusion for non-Abelian anyons can be found in [7,18].

In this thesis we focus on Abelian anyons.

1.2 Quantum mechanics of a charged particle in an electro-
magnetic field

1.2.1 Classical charged particle in an electromagnetic field

In the framework of classical electrodynamics, a charge q of mass m behaves in an electromag-

netic field according to the spatial and temporal dependence of the electric E(r, t) and magnetic

B(r, t) fields, which satisfy Maxwell equations. The fields B and E can be defined in terms of

the vector potential A(r, t) and scalar potential φ(r, t) as [19]

B = ∇×A (1.8)

E =−∇φ − ∂A
∂ t

. (1.9)

The potentials are not uniquely defined by these equations. Namely, we are free to impose extra

conditions on φ and A as long as E and B are unchanged. The fields E and B remain unchanged
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if the potentials are transformed together using a scalar function χ(r, t),

A→ A′ = A+∇χ (1.10)

φ → φ
′ = φ − ∂ χ

∂ t
. (1.11)

This transformation is called a gauge transformation, and the invariance of the field under such

transformations gauge invariance. Lagrangian for a charge in an electromagnetic field is

L(r, ṙ) =
1
2

mṙ2−qφ +qṙ ·A. (1.12)

Euler-Lagrange equations lead to an equation of motion which depends only on the fields mr̈ =
q(E+ ṙ×B). Lagrangian in Eq. (1.12) gives the canonical momentum p,

p = ∇ṙL = π +qA, (1.13)

where π = mṙ represents the kinetic momentum. A Legendre transformation is used to obtain

the Hamiltonian for a charged particle in an electric and magnetic field

H(r,p) = pṙ−L =
1
2

m(p−qA)2 +qφ . (1.14)

This equation proposes the principle of minimal substitution - the Hamiltonian for a charged

particle of charge q in an external electromagnetic field and an external potential V (r, t) can be

derived from the Hamiltonian for an uncharged particle by using the substitutions

p→ p−qA(r, t), V (r, t)→V (r, t)+qφ(r, t). (1.15)

1.2.2 Quantum charged particle in an electromagnetic field

In quantum mechanics, the position r and canonical momentum p are related to the operat-

ors r̂ and p̂. In order to make the transition to quantum mechanics, we perform the standard

substitution p̂ =−ih̄∇r, so that the quantization rule

[r̂ j, p̂k] = ih̄δ jk, (1.16)

holds for any j,k ∈ {x,y,z} [1]. The Schrödinger equation for a charged particle in an electro-

magnetic field is

ih̄
∂ψ

∂ t
=

1
2m

[−ih̄∇−qA(r, t)]2ψ +qφ(r, t)ψ,

where ψ(r, t) is the wave function, which is gauge dependent. Schrödinger equation is invariant

if one simultaneously applies the gauge transformation of the potential as in Eq. (1.11) and the
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local phase transformation of the wave function

ψ(r, t)→ ψ
′(r, t) = ei q

h̄ χ(r)
ψ(r, t). (1.17)

1.2.3 Aharonov-Bohm phase

In classical electrodynamics, electromagnetic fields are the physical quantities affecting the

motion of a particle, while potentials A and φ are considered as unphysical. However, potentials

become basic parts of the physical formalism in quantum mechanics. In quantum mechanics

their presence can be directly measured even if particles have never passed through the place of

non-zero electromagnetic field.

This is the subject of the Aharonov-Bohm effect. Namely, if a quantum charged particle

travels along a path P , such that the magnetic field is zero B = ∇×A = 0 and the vector

potential A is non-zero, the wave function obtains a phase [1]

φ =
q
h̄

∫
P

A ·dr.

Originally, Aharonov and Bohm considered two electronic wavepackets encircling a mag-

netic field that is confined to an inaccessible and infinitely long flux line of magnetic flux Φ [20].

By using Stoke’s theorem, the wavepackets acquire a relative phase of

φAB =
qΦ

h̄
, (1.18)

and this phase, known as the Aharonov–Bohm phase, can be observed through interference

effect when they close the loop. The Aharonov–Bohm phase is topological since it does not

depend on the shape, or more generally, geometric characteristics of the path. Provided that the

particle moves in a field-free region, it is determined only by its topological invariants. This

phase emphasizes the unique role of electromagnetic potentials in quantum mechanics. It is a

particular case of the Berry geometric phase acquired when a quantum system is adiabatically

transported around a cyclic circuit in the parameter space, which we additionally address in

Section 2.1.

1.3 Realizations of anyons

1.3.1 Wilczek’s anyons

In this section we consider the prototype for anyons introduced by Frank Wilczek. He proposed

a physical picture of a charged particle interacting with an infinitely long magnetic solenoid [3–

5]. This system has been named a cyon [21]. In the following, it will be shown that Wilczek’s

anyon may obey fractional statistics. In the framework of non-relativistic quantum mechanics,
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we consider a spinless particle of mass m and electric charge q. The particle is exposed to

the magnetic field B of a cylindrically symmetric, infinitely long and thin solenoid placed at

the origin and aligned along the z−axis where Φ is the magnetic flux through the solenoid. If

one excludes the motion along the solenoid, the dynamics is confined to the xy-plane and the

particle, with the position vector r = xx̂+yŷ, orbits around the solenoid. In a symmetric gauge,

the vector potential A of the solenoid is given by

A(r) =
Φ

2π

( −y
x2 + y2 x̂+

x
x2 + y2 ŷ

)
, (1.19)

where x̂ and ŷ are the unit vectors. The magnetic field is B = Φδ (2)(r). In order to find the

orbital angular momentum of a particle, we use the following physical argument. When there

is no current in the solenoid, the orbital angular momentum is quantized as an integer in units

lz ∈ Z [3]. According to the Faraday’s law, when a current is slowly increased, the charged

particle will be exposed to the electric field

E =− Φ̇

2π|r| ẑ× r.

This produces the change in angular momentum l̇z = [r× (qE)]z =− q
2π

Φ̇. Therefore, the total

change in angular momentum is ∆lz =−qΦ/2π . Accordingly, the quantized angular momenta

lz become

lz = m− qΦ

2π
, m ∈ Z.

The same result can be obtained in a different way. Covariant angular momentum lz =−ih̄∂/∂ z−
qAφ generates rotations around z-axis. The vector potential (1.19) expressed in cylindrical co-

ordinates outside the solenoid is

Aφ (r) =
Φ

2πr
,

and the azimuthal dependence of the electron wave function is ψn ∝ einφ , where n ∈ Z because

of continuity. Then we have lzψn = (n−qΦ/2π)ψn, confirming the previous conclusion.

When the distance between the charged particle and the solenoid is reduced to zero, one may

consider this system as a single composite object - a charge-flux-tube composite, which can have

any fractional angular momentum. This angular momentum is called the spin of the charge-flux-

tube composite [3–5]. Assuming there is a generalized spin-statistics connection, we expect

that these composites have fractional statistics due to the fractional angular momentum. In

order to determine its statistical properties, now we study the quantum mechanics of two such

composites. We assume that two such composites are described by a symmetric wave function

ψ , and such wave function ψ is single-valued, i.e.,

Hψ = Eψ, (1.20)

11



and

ψ(r1,r2) = ψ(r2,r1).

We suppose that the electrostatic forces are small and can be treated as a perturbation, i.e.,

we consider the limit q→ 0, where qΦ is fixed. We neglect interactions between charges and

interactions between vortices. Now we slowly move one composite around the other on the

closed loop. According to Aharonov and Bohm [20], when the first particle moves around the

second solenoid on a closed loop Γ, a phase acquired by the wave function is

γ = exp
(
−i

q
h̄

∫
Γ

A ·dr
)
= exp

(
− iqΦ

h̄

)
.

However, when the particles are rotated around each other, the same phase arises from the

motion of quantum-mechanical solenoid which orbits around a fixed charge. Therefore, the

total phase acquired by the wave function ψ(r1,r2) is

exp
(
−2iqΦ

h̄

)
. (1.21)

Taking into account these assumptions and approximations, this system can be described by the

following Hamiltonian

H =
1

2m

2

∑
i=1

[
pi−2q

2

∑
j 6=i

A(ri− r j)

]2

, (1.22)

where the vector potential is

A(ri− r j) =
Φ

2π

ẑ× (ri− r j)

|ri− r j|2
.

From Eq. (1.21) and Eq. (1.1), one concludes that the statistics of the composite is

ν =−2qΦ

h
,

implying that Wilczek’s composites behave as anyons. The statistics ν and the spin s of the

composite are related as ν = 2s, satisfying the usual spin-statistics connection.

Now we show that fractional statistics can be described by complicated boundary conditions

which replace the effective interaction [22]. This is usually called the anyon gauge description

of fractional statistics. To eliminate the long-range vector potential between anyons, we perform

a singular gauge transformation so that

A→ A′ = A−∇Λ(r,ϕ), where Λ(r,ϕ) =
Φ

2π
ϕ. (1.23)
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The gauge potential vanishes completely and the Hamiltonian (1.22) becomes

H =
2

∑
i=1

1
2m

p2
i .

The transformed wave function is

ψ
′ = e−iqΦϕ12/π h̄

ψ, (1.24)

where ϕ12 is the azimuthal angle of the relative vector r1− r2. The wave function ψ ′ is multi-

valued and satisfies the boundary condition

ψ
′(r2,r1) = e−iqΦ/h̄

ψ
′(r1,r2). (1.25)

From Eq. (1.25) we see that ψ ′ carries an Abelian representation of the braid group, implying

that ψ ′ is an anyonic wave function. In the system of N composites, the transformed wave

function (1.24) becomes

ψ
′ =

N

∏
i< j

e−iqΦϕi j/π h̄
ψ, (1.26)

where ϕi j is the azimuthal angle of the relative vector ri− r j. This wave function may also be

written in a way which is more practical for applications. For each particle we introduce the

complex coordinates zI = xI + iyI and z̄I = xI − iyI . One can notice that zIJ = |zI − zJ|eiϕIJ , so

Eq. (1.26) can be written as

ψ
′ = ∏

I<J
(zI− zJ)

−qΦ/π h̄ f (zI, z̄I), (1.27)

where f (zI, z̄I) = ψ ∏I<J |zIJ|qΦ/π h̄ is a single-valued function of the particle positions. In case

when all the fields describing the solenoid and charged particle are bosonic, f (zI, z̄I) is sym-

metric in the pairs (zI, z̄I). On the contrary, if charged particle is fermionic, f (zI, z̄I) is antisym-

metric. The general form of the wave function in Eq. (1.27) is the rule for many-body wave

functions following ν statistics.

1.3.2 Physical realizations of anyons

So far we have demonstrated that anyonic braiding statistics is theoretically possible in 2D. Now

we present several candidates for physical realizations of particles with anyonic properties.

The most important anyonic physical objects are the quasielectron and quasihole excitations

of 2D systems of electrons in a strong magnetic field exhibiting the fractional quantum Hall

effect (FQHE) [23–25]. The manifestation of the FQHE is a plateau in the Hall conductivity

at σ = νe2/h, where the filling factor ν is a fraction. These plateaus of quantized resistance

13



indicate where the 2D electron gas (2DEG) acts as an incompressible fluid, implying that all

charged excitations have a finite energy gap. For a fractional filling ν = 1/m for m odd, the

charge of the quasielectron or a quasihole turns out to be e∗ = ∓e/m, while the statistics of

these Abelian anyons is θ = 1/m [26–28].

According to the theoretical predictions, non-Abelian anyons arise in FQHE at specific

filling fractions [29–40]. This was first discovered for the ν = 5/2 state [29], while the following

work anticipated non-Abelian anyons at other filling fractions such as ν = 12/5 [30]. The braid-

ing properties of the non-Abelian quasiparticles were derived for filling fractions ν = 5/2 [36]

and ν = 12/5 [37]. This subject will be explained more thoroughly in the subsection 2.2.5.

Theoretical proposals of anyons based on emulating the FQHE have been reported in ul-

tracold atomic gases [41, 42]. Moreover, it was shown that non-Abelian potentials which act

on ultracold gases with two hyperfine levels can lead to ground states with non-Abelian any-

onic excitations [43]. Different mechanisms to achieve FQH states of light have also been

proposed [44, 45].

Apart from the systems inspired by the FQHE, there are other proposals of systems that

may be able to host fractional braiding statistics. Most of them are based on surface codes for

encoding quantum information in the collective state of interacting spins on a surface. Lattice

models include Kitaev toric code model defined on a 2D spin lattice [8, 46] where the low en-

ergy excitations of the Hamiltonian can be Abelian or non-Abelian quasiparticles. This model

is a platform to perform topological quantum computing employing non-Abelian anyons. Phys-

ical constructions of this model were proposed using atomic [47–49] and molecular arrays [50].

The minimal variant of the model was experimentally achieved in ultracold atomic gases [51],

and with trapped ions applying dissipative pumping processes [52]. Fractional statistics of

anyonic excitations in the Kitaev toric model was demonstrated using a photonic quantum sim-

ulator [53, 54] and superconducting quantum circuits [55]. Anyons were observed in Kitaev

paramagnetic state of the honeycomb magnet RuCl3 [56]. There are also other methods to con-

struct spin lattice models, which encode the fusion rules of anyons [57,58]. In one such model,

known as the string-net model, Levin and Wen [59,60] built an exactly solvable model of spins

which is a non-Abelian generalization of Kitaev’s toric code model. This model is a realiza-

tion of a non-Abelian phase supporting Fibonacci anyons, which allows universal topological

quantum computation. A simulation of this model by using nuclear magnetic resonance has

been reported [61].

Another paradigm od anyonic systems includes Majorana zero modes. Non-abelian anyons

called Ising anyons [62–64] appear as quasiparticles or defects supporting a Majorana zero

mode in several model systems which could be implemented in real many-body systems. Their

observation has been reported in solid state nanowire devices, as well as a proposal for their

manipulation in solid state system and cold atom-molecular system (for a review see [64]).

In addition to the localised excitations of an interacting quantum Hamiltonian, anyons can

arise as defects in an ordered system [65, 66]. Some of these less traditional schemes for real-
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izing anyons in condensed matter experiments are worth mentioning [67–69]. It was proposed

that anyons could be synthesized by coupling weakly interacting electrons to a topologically

nontrivial background, or noninteracting electrons to topologically nontrivial external perturb-

ations [67–69]. Another scheme is by using topological defects in graphene [70].

Anyons [71–79] in 1D have also stirred up interest, especially in 1D optical lattices [76–

79]. In anyon-Hubbard model anyons emerge as low-energy elementary excitations [76–79]

from occupation-dependent hopping amplitudes, which could be realized by using laser-assisted

tunneling [76, 78], or Floquet modulation [79].

1.3.3 Topological quantum computing

In recent years there has been a surge of interest in anyons, driven by the possibility of using

non-Abelian anyons as a resource for topological quantum computing [7, 62, 80]. Namely, Kit-

aev proposed the idea that the Hilbert space of non-Abelian anyons can be seen as the collection

of qubits. In this perspective, the fusion and braiding operations of non-Abelian anyons are the

unitary operations that act as quantum gates [8]. The unitary transformations are determined

only by the topological class of the braid, and consequently, transformations are fault tolerant.

This topological immunity is protected by an energy gap in the system and a length scale. In

this scheme the information is not stored locally and the non-local state space is immune to

local perturbations. As a result, the qubit encoded there is topologically protected from errors.

It is immune to decoherence and other errors which damage calculations since this noise arises

from local interactions. This approach to fault-tolerant quantum computation where the unitary

quantum gates result from the braiding of non-Abelian anyons is known as topological quantum

computation [7, 62, 80]. However, there is still a lot to be done until experiments will manage

to precisely detect and manipulate anyons for fault tolerant quantum computation [7, 62]. As a

consequence, it may be interesting to investigate some less conventional schemes for realization

and manipulation of anyons, and this is the primary focus of this thesis.

1.4 Objectives and results

The objective of this research is to investigate new proposals for realization and signatures

of anyons. In the first part of this thesis, we consider new mechanisms for the realization of

anyons in 2D non-interacting systems exhibiting the integer quantum Hall effect (IQHE). We

find that the original Wilczek’s model for anyons can be achieved in 2D electron gas placed in

a perpendicular magnetic field, which gives rise to the IQHE. Next, we present exact solutions

of a model for synthetic anyons in a non-interacting quantum many-body system and show that

these synthetic anyons cannot be considered as emergent quasiparticles. In the second part,

we turn to the 1D quantum many-body system. The contribution of this part is twofold. This

research explores the Berry phase in 1D quantum many-body models coupled to gauge fields,
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but also provides deeper understanding of synthetic anyons in non-interacting systems.

In Chapter 2, we explain the concept of the Berry phase and then we review the quantum

Hall effect, both integer and fractional. We describe the quasiparticles emerging in FQHE

which show anyonic behavior. In Chapter 3 we consider new mechanisms for the realization

and signatures of anyons. We propose an experimental realization of the original Wilczek’s

model for Abelian anyons, composites formed from charged particles and magnetic flux tubes.

This is proposed in a 2D electron system, exhibiting the IQHE, which is sandwiched between

two blocks of the high-µr material. As the signature of Wilczek’s anyons we propose a slight

shift of the resistivity at the plateau of the IQHE. Then, we present exact solutions of a model for

synthetic anyons in a non-interacting quantum many-body system. This model is represented

by the Hamiltonian for non-interacting electrons in two dimensions, in a uniform magnetic

field, pierced with solenoids with a magnetic flux that is a fraction of the flux quantum. We

show that these synthetic anyons cannot be considered as emergent quasiparticles. Chapter 4

deals with a system of 1D bosons coupled to synthetic gauge fields. We review the physics

of 1D interacting bosonic systems. We investigate a particular system of strongly interacting

bosons placed on a 1D ring pierced by a synthetic magnetic flux tube. An external localized

delta-function potential barrier is placed on the ring. We study the Berry phase associated to

the adiabatic motion of the delta-function barrier around the ring as a function of the strength

of the potential and the number of particles. We show that the barrier produces a cusp in the

density to which one can associate a missing fractional charge, and this missing charge cannot

be identified as a quasihole. Finally, in Chapter 5 we summarize.
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Chapter 2

Anyons and the quantum Hall effect

2.1 Berry phase

Berry phase is a subject which should be reviewed before we describe anyons in the quantum

Hall effect. The cyclic evolution of external parameters in physical system generates a phase

which depends only on the geometry of the path taken in parameter space, i.e., the phase does

not depend on the velocity at which different parts of the path are traversed. This phase is called

the geometric phase [81–83]. Geometric phase was predicted in different fields of physics [84],

and the most remarkable example comes from classical electromagnetism where Pancharatnam

studied consecutive changes in the polarization of a light beam transmitted through a sequence

of crystal plates [85]. The geometric phase was independently discovered by Longuet-Higgins

in the framework of molecular electronic degeneracies [86].

The idea of quantum geometric phase was generalized by Michael Berry in 1984 [87]. In

quantum system where the external parameters are slowly changing and which is exposed to a

cyclic adiabatic evolution, there is a nontrivial geometric phase that depends on the details of

the evolution path. This phase is called the Berry phase. It is an Abelian geometric phase, and it

refers to the adiabatic cyclic evolution of non-degenerate quantum states. In the following years,

the subject of geometric phase was further generalized. Namely, Wilczek and Zee removed the

restriction to non-degenerate states by studying a cycle which includes a set of N states that

are degenerate for all points on the cycle, yielding non-Abelian phases [88]. Furthermore,

Aharonov and Anandan removed the restriction to slow cycles by rephrasing the geometric

phase in terms of a circuit in the projective quantum Hilbert space of states, rather than of

the space of the Hamiltonian’s parameters [89]. Next step was a research explaining that the

evolution of the quantum system has to be neither cyclic nor unitary [90].

A classical analogue of the geometric phase is the Hannay angle [91]. Hannay studied the

case of non-chaotic dynamics, where motion for fixed parameters is oscillatory and described

by angles. When the parameters in the system are slowly cycled, final angle is different from

the one acquired when calculated from the instantaneous frequency. This difference is called
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the Hannay angle and it depends on the geometry of the cycle. An example of the Hannay angle

is the precession of a Foucault pendulum.

2.1.1 Derivation of the Berry phase

In the following, we will derive a general expression for a Berry phase in an adiabatic process.

First, let us consider a quantum system described by a Hamiltonian H =H(x,R), which depends

on two different kinds of variables [83, 87]. The x are degrees of freedom of the system, while

R = (R1,R2, ...) represents the set of parameters describing the environment. We want to solve

the time-dependent Schrödinger equation

ih̄
∂

∂ t
|Ψ〉= H(R)|Ψ〉, (2.1)

with the initial condition |Ψ〉= |Ψ0〉 for t = 0. For a fixed t, the Hamiltonian can be diagonalized

as

H(R)|ψn(R)〉= En(R)|ψn(R)〉, (2.2)

where we obtain R-dependent orthonormal stationary states and energies, and we assume that

the spectrum is non-degenerate for all times. A system governed by cyclic adiabatic evolution

is characterized by a time-dependent set of parameters R(t), which move adiabatically slowly

on the closed path C in the space of parameters. In the adiabatic assumption, the initial state is

a non-degenerate energy eigenstate of the Hamiltonian, i.e.,

|Ψ0〉= eiφ0|ψn(R(0))〉, (2.3)

where φ0 is some phase. According to the adiabatic theorem, if the parameters are varied

sufficiently slowly, the system will remain in the instantaneous eigenstate, i.e.,

|Ψ(t)〉 ≈ eiφ(t)|ψn(R(t))〉. (2.4)

From the time-dependent Schrödinger equation, it follows that the instantaneous eigenstate will

accumulate the phase during such evolution,

φ(t) = φ0−
∫ t

0

En(R(t ′))dt ′

h̄
+ i
∫ R(t)

R(0)
〈ψn(R)|∇Rψn(R)〉 ·dR.

The second term represents the dynamical phase. The third term is characterized by the Berry

connection, which is defined as

A n(R) = i〈ψn(R)| ∂

∂R
|ψn(R)〉.
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Now we calculate the overlap of the state |Ψ(t)〉 with the initial state |Ψ0〉. We have

〈Ψ0|Ψ(t)〉= ei(φ(t)−φ0)〈ψn(R(0))|ψn(R(t))〉. (2.5)

If we write 〈ψn(R(0))|ψn(R(t))〉= r(t)eiδn(t) and 〈Ψ0|Ψ(t)〉= r(t)eiΦn(t) for the phase of over-

lap, we obtain

Φn(t) = δn(t)−
∫ t

0

En(R(t ′))
h̄

dt ′+ i
∫ R(t)

R(0)
〈ψn(R)|∇Rψn(R)〉 ·dR. (2.6)

Now we assume that there exists a time t = τ for which the Hamiltonian is the same as the

initial Hamiltonian, H(R(τ)) = H(R(0)). This means that the system has returned to its initial

state. We allow that the initial and final parameters differ R(τ) 6= R(0). The stationary states

will differ in these two times, but only by a phase, since they represent the same system,

|ψn(R(τ))〉= ei∆n|ψn(R(0))〉,

with ∆n = δn(τ) and r(τ) = 1. Consequentially, we will also have

|Ψ(τ)〉= ei(γn+φd(τ))|Ψ0〉,

with φd(τ) =−
∫

τ

0
En(R(t))

h̄ dt being dynamical phase and

γn = ∆n + i
∫ R(τ)

R(0)
〈ψn(R)|∇Rψn(R)〉 ·dR, (2.7)

which is called the geometric phase.

2.1.2 Invariance of the geometric phase

This geometric phase is invariant under the time reparameterization R(t)→ R( f (t)), meaning

that it does not depend on the velocity we go around the closed path, as long as the adiabatic

approximation holds. Moreover, it is invariant under arbitrary phase transformation of the sta-

tionary states. Let us use some other basis, which may or may not be single-valued in R,

|ψ ′n(R)〉= eiλ (R)|ψn(R)〉. (2.8)

Since

∆
′
n = ∆n +λ (R(τ))−λ (R(0)), (2.9)
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and

〈ψ ′n(R)|∇Rψ
′
n(R)〉= 〈ψn(R)|∇Rψn(R)〉+ i∇Rλ (R), (2.10)

the two extra contributions cancel in the expression (2.7) for γ ′n and the geometric phase re-

mains the same, i.e., γ ′n = γn. Therefore, the Berry phase angle γn is gauge invariant. It must be

noted that the Berry connection is a gauge-dependent quantity, and consequently does not cor-

respond to an observable. However, the gauge invariant Berry phase angle represents a physical

observable [83].

2.1.3 Aharonov-Bohm phase

Previously mentioned Aharonov-Bohm effect shows that in quantum mechanics vector poten-

tials are physically relevant [20]. In the original paper by Aharonov and Bohm, this result was

obtained by solving the Schrödinger’s equation exactly for scattering in the flux line’s vector

potential [20]. However, Berry gave an alternative interpretation of the Aharonov-Bohm ef-

fect [87]. Aharonov-Bohm phase can be seen as a manifestation of Berry’s geometric phase

accumulated when a particle of charge q confined to a box is transported around a line of mag-

netic flux Φ.

The box is placed at position r = R and the flux line does not pass through it. When there is

no flux, i.e., A = 0, Hamiltonian of the particle is

Ĥ = H(p̂, r̂−R), (2.11)

where r̂ is a position and p̂ a conjugate momentum. The wave functions of states |n(R)〉 local-

ised around R are ψn(r−R), while energies En are independent of R. In the presence of flux,

states |n(R)〉 are solutions of the Schrödinger equation

H(p−qA(r̂),r−R)|n(R)〉= En|n(R)〉. (2.12)

It is easy to prove that this equation can be solved exactly if ψn is multiplied by Dirac phase

factor

ψ
′
n(r−R) = 〈r|n(R)〉= exp

(
iq
h̄

∫ r′=r

r′=R
A(r′) ·dr′

)
ψn(r−R). (2.13)

Next we move the box around a circuit P which encloses the flux line and calculate the Berry

connection

A n(R) = i〈ψ ′n(R)| ∂

∂R
|ψ ′n(R)〉= qA(R)/h̄. (2.14)

In this case, the Berry connection is identified with the electromagnetic vector potential. This
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gives rise to the Berry phase, i.e., the Aharonov-Bohm phase,

γn(C) =
q
h̄

∮
P

A(R) ·dR = qΦ/h̄. (2.15)

Here we recognize that the Aharonov-Bohm phase is topological because it does not depend on

the geometric properties of the path. It depends only on its topological invariants as long as the

particle moves in a region of zero field.

2.1.4 Berry phase as a holonomy

There is a strong connection between geometric phases and the topological structure made by a

Hilbert space H of the quantum system and the space of its parameters R. The name of this to-

pological structure is a vector bundle and it includes the manifold P, which denotes some region

of parameter space [92], contained within the space P×H . Bundle specifies the group of the

Hilbert spaces defined for particular values of R, where every space is related to the parameter

space P by the wave functions ψ(R) [92,93]. In geometry, a parallel transport of a tangent vec-

tor refers to the transport of the vector along the closed loop in the plane tangent to the surface

of the closed surface, where the vector is not allowed to rotate with respect to the normal [93].

An example is the dynamical evolution of the Foucault pendulum, where the tangent vector giv-

ing the direction of swinging of the pendulum undergoes a parallel transport along the circle. A

connection is an operation describing the way of transporting data such as vectors along a curve

in a parallel and consistent manner [93]. When the vector completes a full cycle, it may happen

that the vector points in a direction different from its original one. A name of this phenomenon

is a holonomy of the connection [93]. The geometric Berry phase precisely corresponds to the

holonomy in the Hermitian line bundle over the parameter space [92]. Connections provide a

particular way of parallel transport of the wave functions ψ(R) within a vector bundle, i.e., from

one Hilbert space in P×H to another. The process of parallel transport is possible if a smooth

path between both spaces γ is specified, and in quantum mechanics, γ is smooth because of

the adiabatic theorem. Parallel transport on a closed path maps a state ψ(R) to H(γ,D)ψ(R),

where D is a connection and a linear map H(γ,D) is the holonomy of the path. The holonomy

is the geometric phase acquired by ψ(R). Therefore, the Berry’s phase represents an important

example of holonomy identified in quantum mechanics [92].

2.2 The quantum Hall effect and anyons

This research is strongly related to the quantum Hall effect (QHE), and here we provide a short

review of some important concepts. The FQHE is the most relevant example of anyonic sys-

tems [23–25]. Namely, the quasiparticle and quasihole excitations of 2D systems of electrons

exhibiting the FQHE are the physical objects which may be described as anyons. In the follow-
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ing, we will focus on the application of anyons to the theory of the FQHE (for a review of the

QHE, see e.g. [94, 95]).

Figure 2.1: The dependence of the Hall resistance Rxy = Vy/Ix and the magnetoresistance
Rxx = Vx/Ix of a 2D electron gas on the magnetic field (n = 52.333× 1011cm−2,T = 85mK).
The filling factors ν are identified for the most important quantum Hall states. Rxy shows plat-
eaus quantized to h/(νe2) which are connected with the minima of vanishing Rxx. From [J.
P. Eisenstein, H. L. Stormer, Science 248, 1510 (1990) [96]]. Reprinted with permission from
AAAS.

The IQHE [97, 98] and the FQHE [23, 25] were discovered in the specific context of semi-

conductor heterostructures (IQHE in Si MOSFET [97] and FQHE in GaAs-AlGaAs [23] het-

erojunction), subjected to very strong magnetic fields (∼ 10T or even more) while held at mil-

likelvin temperatures (∼ mK). In this effect, a layer of electrons may be trapped at the interface

between two semiconductors, known as a heterojunction, or between a semiconductor and an

insulator. Conditions of the strong magnetic field and the low temperature block the motion

along the direction perpendicular to the layer and restrict dynamics to the plane. Electrons in

this layer can be described as a 2D gas with Coulomb repulsion.

The QHE shows that when the magnetic field varies at fixed electron density, the Hall res-

istance Rxy =Vy/Ix does not vary smoothly, as semiclassical theory predicts, but rather remains

constant over finite intervals as presented in Fig. 2.1. There are continuous intervals between

the plateaus. The Hall conductance σxy on the plateaus is

σxy = ν
e2

h
, (2.16)

where the quantum number ν is an integer for the IQHE [97, 98] or a rational number with odd

denominator for the FQHE [23, 25]. At the plateaus, the conductance tensor is off-diagonal,
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implying that a dissipationless transverse current flows in response to an applied electric field.

The Hall coefficient is expressed in terms of fundamental physical quantities, where it can

be shown that the quantization rule of the QHE is a topological quantization [99–102]. This

relation is experimentally observed with extremely high accuracy at the National Institute of

Standards and Technology with relative uncertainty of one part in 1010 [103]. The ratio h/e2 is

known as the fundamental unit of resistance, called the von Klitzing constant (RK) [104].

2.2.1 Landau levels

In order to understand the QHE, we recall the elementary quantum mechanics of charged

particles in a constant magnetic field. The Hamiltonian for a single electron of charge e confined

to 2D plane in a perpendicular magnetic field is given by

H =
1

2mb
[p− eA(r)]2.

The vector potential A is given by ∇×A = B = Bẑ and mb denotes the band mass of the

electron. In the presence of a magnetic field, the continuous spectrum of a free particle breaks

up into discretely and equally spaced, highly degenerate levels known as Landau levels [1]. The

eigenenergies are En = h̄ωc(n+1/2), where ωc = eB/mb denotes the cyclotron frequency, and

n = 0,1, . . . the index of the Landau level.

In a symmetric gauge, A(r) = 1
2B×r, a basis of single-particle wave functions in the lowest

Landau level (LLL) is

ϕm(z) = f (z)e
− |z|

2

4l2B ,

where z = x+ iy is a complex coordinate for the electron, and f (z) any holomorphic function.

An unnormalized basis of LLL wave functions expressed in terms of monomials is

ψLLL,m = zme
− |z|

2

4l2B , m = 0,1,2, . . . (2.17)

These states are also the eigenstates of angular momentum. For samples of finite area A pierced

by magnetic flux BA, the number of states in each Landau level is

N =
eBA
2π h̄

=
BA
Φ0

=
A

2πl2
B
,

where Φ0 = 2π h̄/e is called the quantum of flux and lB =
√

h̄/eB the magnetic length. In the

absence of disorder, the single-particle states are degenerate. If one considers many independent

electrons, the ground state is obtained by filling up the lowest energy single particle orbitals,

with the condition that no orbital is occupied by more than one electron as required by the Pauli

principle. The number of filled Landau levels is called the filling factor ν and it plays a central
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role in the QHE. It is defined as

ν =
N
N

= 2πl2
Bn, (2.18)

where n = N/A is the electron density. One can prove that the filling factor is the quantum

number appearing in Eq. (6.3), using a rigorous derivation as in [94]. Since all combinations

of electrons in the highest partially filled Landau level have the same energy, the many-particle

ground state is infinitely degenerate. The special case is at an integral filling factor ν = n, with

unique ground state which has a gap to excitations.

2.2.2 Integer quantum Hall effect

In 1980 von Klitzing discovered the IQHE [97]. This phenomenon emerges when ν is in-

teger, i.e., an integer number of Landau levels is completely filled [97, 98]. If the chemical

potential lies between the ν-th and (ν + 1)-th Landau levels, the Hall conductivity takes the

quantized value σxy = νe2/h while σxx = 0. The IQHE can be explained in the context of an

independent electron model and it becomes a manifestation of the previously explained Landau

quantization for non-interacting electrons in a magnetic field. In the absence of disorder, the

single-particle states in Landau levels are degenerate. The many-particle ground state is unique,

the system is incompressible and develops a gap to excitations. The many-particle wave func-

tion for non-interacting electrons is built as a Slater determinant, antisymmetrized product of

N single particle states ψi(x), with i = 1, . . . ,N [1]. When electrons are placed in the states

of the lowest Landau level ψLLL,m in Eq. (2.17), the resulting Slater determinant produces an

unnormalized state

ψ(z1, . . .zN) =

∣∣∣∣∣∣∣∣∣∣
z0

1 z0
2 · · · z0

N

z1 z2 · · · zN
...

... . . . ...

zN−1
1 zN−1

2 · · · zN−1
N

∣∣∣∣∣∣∣∣∣∣
exp

(
−

N

∑
i=1

|zi|2
4l2

B

)
= ∏

1≤i< j≤N
(zi− z j)exp

(
−

N

∑
i=1

|zi|2
4l2

B

)
.

(2.19)

The fully antisymmetric polynomial product factor is known as the Vandermonde determinant.

In this way, one can obtain the wave function for a completely filled LLL. Although the origin

of the IQHE is the opening of a gap, a periodic potential or a finite amount of disorder is needed

to build the plateaus. Namely, in the absence of disorder, the calculation of the current gives

the classical value of the Hall conductivity σ = ne/B with no plateaus [18]. In the presence of

a periodic potential or disorder, Landau levels broaden into bands. There are extended states

at the centers of bands and localized states at all other places [94]. When the Fermi energy is

placed in the region of localized states, a change of the number of electrons only increases or

decreases the number of localized states which carry no current. The magnitude of the current is

frozen at the value corresponding to the full Landau level, as we can understand by introducing
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the impurities continuously from zero. Provided that no extended states cross the Fermi energy

when the impurity potentials are introduced, the current stays at the value when the impurities

are not present. Laughlin gave a more accurate explanation of the plateau. He demonstrated

that the Hall conductivity is quantized at σH = ne2/h when the Fermi level lies in the localized

states, where n is the number of extended bands under the Fermi level [98]. Thus, when the

chemical potential lies in the region of localized states between the centers of the ν-th and

(ν +1)-th Landau bands, the Hall conductance has the value σxy = νe2/h, while σxx = 0.

2.2.3 Fractional Quantum Hall Effect

In 1982 Tsui, Stormer and Gossard discovered FQHE by observing a plateau at σ = e2/3h [23].

Plateaus at new fractions r of quantum conductance were later observed in the neighborhood of

filling factor ν ≈ r. Observed plateaus occur in the following series of fractions

r =
n

2pn±1
.

In addition to these fractions, the FQHE has also been detected at r = 5/2. According to the

IQHE, the plateau at σ = re2/h with fraction r arises because of the opening of a gap at ν = r.

Therefore, there is a motivation to explain why the gaps emerge in a partially filled Landau level,

and why they emerge at certain series of odd-denominator fractions. When an integer number

of Landau levels is filled and the energy splitting between Landau levels h̄ωB much larger than

the scale of the Coulomb energy e2/lB, the neglect of Coulomb interactions is justified. How-

ever, when the electron density is such that the Landau level is only partially filled, Coulomb

interactions become important. While IQHE is achievable with independent electrons, gaps at

fractional filling factors are created because of interactions. Therefore, one should consider a

more complete problem of interacting electrons. In the absence of interaction, the ground state

of each partially filled Landau level is macroscopically degenerate. This degeneracy is broken

by Coulomb interaction between electrons, resulting in a spectrum of states with gaps at the

filling fractions where quantum Hall states are observed [94].

Laughlin made the first approach to the FQHE at filling fraction ν = 1/m in 1983 [25].

When electrons interact through Coulomb repulsion, the ground state can be described precisely

by Laughlin’s variational wave function for ν = 1/m

ψm = ∏
i< j

(zi− z j)
m exp

(
−

N

∑
i=1
|zi|2/4l2

B

)
,

up to normalization. Laughlin wave function is known to be an exact ground state for a repulsive

ultra-short-ranged model interaction [94].

Here m is an odd integer, and therefore, ψm is totally antisymmetric describing ordinary

fermions. If m is an even integer, this state can be considered as a quantum Hall state for
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bosons. The prefactor ∑i< j(zi− z j)
m is analytic, implying that all particles are in the LLL. It

has a zero of order m when the points coincide (zI = zJ), indicating that electrons favor to repel

each other in a way that is suitable to minimize the Coulomb interaction. These ground states

exist even when there is a disorder that is weak enough compared to the gap to excited states,

i.e., h̄ωB� ECoulomb�Vdisorder. It is important to note that Laughlin wave function represents

an incompressible quantum liquid, what is the essence of the FQHE [94].

Measurements of many fractions different from 1/m implied the presence of a more general

structure. In 1989 Jain suggested a theory of composite fermions [105]. A term composite

fermion refers to the bound state of an electron and an even number of the flux quanta. In

this theory, flux quanta, i.e., vortices, are absorbed by strongly interacting electrons in LLL,

transforming electrons into weakly interacting composite fermions in a reduced magnetic field.

Therefore, the fractional Hall conductivity is described as a manifestation of the IQHE of such

composite fermions [105–108].

2.2.4 Plasma analogy

The approach of plasma analogy gives numerous phenomenological results of the Laughlin

wave function [18, 25]. In this approach quantum probability density |ψm|2 is understood as a

Boltzmann distribution with potential energy Um,

|ψm|2 = e−βUm,

where

βUm =−2m
N

∑
i< j

log
( |zi− z j|

lB

)
+

1
2l2

B

N

∑
i=1
|zi|2. (2.20)

One can recognize that the prefactor of ψm leads to the logarithmic terms of Um, and the ex-

ponential to the last term. Potential of a 2D one-component plasma of particles with charge q

which move in a neutralizing background of density n0 is

Uplasma =−q2
∑
i< j

log
( |zi− z j|

lB

)
+

1
2

πn0q2
∑

i
|zi|2. (2.21)

Coulomb interaction in two dimensions between two particles of charge q is expressed in the

first term. The second term describes the interaction of the particles with the neutralizing back-

ground of constant density n0.

In the statistical mechanics β is inverse temperature. If in Eq. (2.20) we take β to take
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particular value of β = 2/m, the potential is then

Um =−m2
∑
i< j

log
( |zi− z j|

lB

)
+

m
4l2

B

N

∑
i=1
|zi|2. (2.22)

Since the forms of equations (2.21) and (2.22) are the same, we may look at Um as the potential

of plasma of particles with charge q = m in a neutralizing background of charge density

ρ0 =
1

2πl2
B
. (2.23)

In order to minimise the energy, the plasma tries to neutralize the background charge density.

The compensating density of particles n should be mn = ρ0, i.e.,

n =
1

2πl2
Bm

. (2.24)

For a state at filling fraction ν = 1/m, this corresponds to the expected density, and it is constant.

Laughlin state m = 1 agrees with the wave function for a completely filled LLL in Eq. (2.19).

Therefore, by employing plasma analogy, we obtain the density in the ν = 1 IQHE, n = 1/2πl2
B.

2.2.5 Quasiparticles in the FQH state

Electrons in the FQH regime build an incompressible fluid state which allows localized ex-

citations [25]. In the FQH regime, electrons form an incompressible fluid state that supports

localized excitations [25]. Deviations from the density in Eq. (2.24) lead to the creation of loc-

alized quasiparticles, quasiholes and quasielectrons, with a gap in the spectrum that is related to

the energy cost of a quasiparticle. It can be shown that these excitations have fractional charge

and fractional statistics, implying that they are anyons.

In the simplest case, they can be obtained if we insert an infinitesimally thin flux-tube in

a nondegenerate state at a point z0 and then adiabatically increase flux φ from zero to one

unit, φ = 0→ φ =±φ0 =±h/e, so that the system continues to be an instantaneous eigenstate

of the varying Hamiltonian [25]. This creates a vortex or an antivortex. Namely, because

of the Faraday law, the change of the flux results in a circular electric field around the point

z0. Depending on the sign of φ , the particles will move outwards or inwards, and negative or

positive charge will gather around z0. A gauge transformation can take care of the variation

of flux by one quantum φ0, implying that the final state may be regarded as an excited state

of the initial Hamiltonian. Originally, it was shown that in the incompressible fluid at filling

ν = 1/m described by ψm, the excitation is a quasihole or a quasielectron with charge e∗ =

∓νe =∓e/m [25]. More generally, at ν = n/(2pn±1), the value of the charge is |e∗|= νe =

e/(2pn±1) [94, 106].

The wave function describing a quasihole excitation above the ground state ψm at filling
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ν = 1/m with a quasihole at the point z0 is given by

ψ
h,z0
m = Nh ∏

i
(zi− z0)ψm, (2.25)

where Nh is a normalization factor [25]. On the other hand, the wave function for the state at

ν = 1/m with a quasielectron at z0 is

ψ
e,z0
m = Ne ∏

i

(
2l2

B
∂

∂ zi
− z̄0

)
ψm. (2.26)

The charge of the excitations of the FQHE can be obtained by applying the plasma analogy

directly to Eq. (2.25) and Eq. (2.26) [25]. For the quasihole wave function ψ
h,z0
m , the plasma

potential energy is

Um,h =−m2
∑
i< j

log
( |zi− z j|

lB

)
+

m
4l2

B

N

∑
i=1
|zi|2−m∑

i
log
( |zi− z0|

lB

)
.

In comparison with Eq. (2.22), we recognize an additional term. This term may be interpreted

as interaction of plasma with an impurity having charge 1. Since the charge of an electron in

plasma is q = m, one concludes that the impurity carries 1/m of the charge of electron. In

order to preserve the charge neutrality in the system, mobile charges in plasma repel from the

impurity (or equivalently, we can define mobile hole charges in plasma which are attracted to the

impurity). Consequentially, the effects of the impurity cannot be observed at far distances and

this effect is called screening. The free energy of the plasma does not depend on the positions of

the impurities. In plasma with particles of charge m, the screening cloud will have a depletion

of 1/m particles, i.e., the compensating charge is −1/m. Therefore, each z0 corresponds to a

quasihole with charge e∗ =−e/m [109].

The same result can be obtained by applying the concept of Berry phase in a method which

was proposed by Arovas, Schrieffer and Wilczek in 1984 [27]. This method computes also

the statistics of the quasiparticles. In this approach the charge of the quasihole is found by

calculating the Berry phase of the wave function ψ
h,z0
m as the quasihole position z0 adiabatically

traverses a closed loop, and thereby encloses a flux φ . When this phase is identified with the

Aharonov-Bohm phase, one can determine the charge of the quasihole.

This approach is also a method to determine the statistics of the quasiparticles. We examine

the state with a quasihole at the point z0 and a quasihole at the point z1. The wave function is

then given as

ψ
h,z0,z1
m = N0,1 ∏

i
(zi− z0)(zi− z1)ψm.

We consider the case where the quasihole at z0 adiabatically undergoes a closed loop and the

quasihole at z1 remains fixed. First, one calculates the Berry phase if in its motion z0 does

not encircle z1. Then, the Berry phase is found if the quasihole at z1 is contained in the loop.
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The difference between these two phases may be interpreted as the statistical effect, where the

two quasiholes are exchanged twice. The statistics turns out to be 1/m, confirming that the

quasiparticles and quasiholes are Abelian anyons of fractional statistics ν = 1/m. As may be

seen, the statistics is directly associated with the fraction of electrons composing a quasihole

or a quasielectron. The measurement of the fractional charge of quasiparticles in the ν = 1
3

Laughlin state was performed in resonant tunneling experiments [110], and in shot noise exper-

iments [111]. The measurement of the fractional braiding statistics has been reported [28,110].

2.2.6 Non-Abelian anyons in FQHE

Now we review very briefly more complicated case of non-Abelian anyons in FQHE. The state

of ν = 5/2 Hall plateau is the first FQHE state assumed to be non-Abelian [29]. In 1991 Moore

and Read constructed the trial wave function for the state at ν = 5/2 using a conformal field the-

ory [29]. This construction was generalized by Read and Rezayi to a sequence of non-Abelian

states, the sequence of spin polarized states at filling factors ν = 2+k/(k+2) [30], and to other

non-Abelian states, which include spin-singlets states [31–33]. It was shown numerically that

ν = 5/2 and ν = 12/5 ground states have a very good overlap with the exact ground states

obtained from the numerical diagonalization of small systems [34, 35]. The braiding behavior

of quasiholes of the ν = 5/2 and ν = 12/5 states was studied in depth in [36], as well as the

behavior of other states in the Read-Rezayi series in [37]. Since the Moore-Read state can be

mapped onto a p-wave superconductor of composite fermions [38], this enabled alternative ex-

plicit calculations of the non-Abelian exchange statistics of quasiparticles in this state in the

context of unpaired, zero-energy Majorana modes related to the vortex cores [39, 40].
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Chapter 3

Proposals for realization of anyons

The work presented in this chapter has been published in the following papers:

• M. Todorić, D. Jukić, D. Radić, M. Soljačić, and H. Buljan, Quantum Hall Effect with

Composites of Magnetic Flux Tubes and Charged Particles, Phys. Rev. Lett. 120, 267201

(2018).

• F. Lunić, M. Todorić, B. Klajn, T. Dubček, D. Jukić, H. Buljan, Exact solutions of a model

for synthetic anyons in noninteracting systems, Phys. Rev. B 101, 115139 (2020).

In the search for the physical realization of anyons, quasiparticle excitations in 2D interact-

ing many-body systems play a major role [7]. A paradigm of quasiparticles with fractional stat-

istics are excitations in the FQHE [23–28]. As explained in subsection 2.2, the manifestation of

both the IQHE and FQHE is a plateau in the Hall conductivity at νe2/h, where the filling factor

ν is an integer for the IQHE, and a fraction for the FQHE. The key ingredients in the FQHE

are 2D electrons in a strong uniform magnetic field [23] and Coulomb interactions [24, 25]. In

contrast, Coulomb interactions are not needed to explain the IQHE [97, 98]. Subsection 2.2

provides an overview of proposals for the realization of anyons. Some more recent examples

for realizing anyons include spin systems [8, 46, 51, 56] and Majorana zero modes [62, 63]. We

emphasise a few examples of the condensed matter experiments for realizing and manipulating

anyons in a weakly interacting or noninteracting system [67–69]. However, there is still a long

way to go before experiments will be able to efficiently detect and manipulate anyons, espe-

cially for fault tolerant quantum computing [7, 62]. Thus, there is an interest to explore some

less traditional schemes for realizing and manipulating anyons.

Motivated by the IQHE, in this chapter we consider new mechanisms for the realization and

signatures of anyons in non-interacting systems. In Section 6.3.1 we propose an experimental

realization of the original Wilczek’s model for anyons in 2D electron gas placed in a perpen-

dicular magnetic field, which gives rise to the IQHE. We show that the signature of anyons
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is a slight shift of the Hall resistance. In Section 3.2 we present exact solutions of a model

for synthetic anyons in a noninteracting quantum many-body system, which was considered

in [67, 68]. Synthetic anyons occur when the noninteracting system is perturbed with specially

tailored localized probes. We show that the ground state is anyonic in the coordinates of the

probes.

3.1 Quantum Hall effect with composites of magnetic flux
tubes and charged particles

In this section we propose an experimental realization of the original Wilczek’s model for

(Abelian) anyons, composites formed from charged particles and magnetic flux tubes [3–5].

First, we propose a scheme for realizing charged flux tubes, in which a charged object with

an intrinsic magnetic dipole moment is placed between two semi-infinite blocks of a high-

permeability (µr) material, and the images of the magnetic moment create an effective flux

tube. This scheme is used in a particular system to develop a proposal for a realization of

Wilczek’s anyons. A 2D electron gas (2DEG) is placed in a perpendicular uniform magnetic

field, which gives rise to the IQHE [97, 98]. Suppose that we sandwich the 2DEG between two

semi-infinite blocks of high-µr material, assumed to have a fast temporal response (in the cyclo-

tron and Larmor frequency range). The electron spins (i.e., magnetic dipole moments) will be

aligned due to the Zeeman effect, while the high-µr material will induce a flux tube attached

to each electron. For this system, we exploit the exact many-body wave function. We find a

signature of the presence of anyons in this system - the Hall conductance. The Hall resistance

at the plateau of the IQHE, which serves as a standard of electrical resistance [97, 103, 104],

would be slightly shifted. We discuss possible implementations of the proposed system, the

obstacles, and possible ways to overcome them. The quest for high-µr materials at high fre-

quencies, which is underway in the field of metamaterials, and the quest for anyons, are here

found to be on the same avenue.

3.1.1 Scheme for creating Wilczek’s composites

Our scheme for creating charged flux tubes involves two semi-infinite blocks of a high per-

meability (high-µr) material (µr � 1), which are separated by some distance d, and a charged

object with an intrinsic magnetic dipole moment. The object is located in the center of the slab

between the high-µr materials, and its magnetic dipole moment is perpendicular to the surface

of the blocks. Method of images was first introduced in the 19th century by Lord Kelvin in the

course of solving electrostatic problems. The application of the method of images is later ex-

tended to numerous problems in magnetostatics. Here we use the method of current images to

calculate the magnetic field of the magnetic dipole moment in the presence of high-permeability
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material.

Figure 3.1: The scheme which gives rise to Wilczek’s flux-tube-charge composites. A charged
object with an intrinsic magnetic dipole (blue circle with a red arrow) induces an array of image
magnetic dipole moments within high-µr blocks (shaded gray), which can be interpreted as a
flux-tube-charge composite.

The image potential of one such magnetic moment, arising from the high-µr material, cre-

ates an effective flux tube, thereby realizing a flux-tube-charge composite, as illustrated in

Fig. 3.1. The object could, for example, relate to an electron or a trapped ion, which have

intrinsic magnetic moments.

3.1.2 Realization of Wilczek’s anyons

We use this scheme in a particular system to develop a proposal for a realization of Wilczek’s

anyons. We propose to convert electrons into anyons by introducing an electron-electron (e−e)

vector potential mediated by the high-µr material. Our starting point is a 2DEG (in the z = 0

plane) in a magnetic field B0 = B0ẑ (B0 < 0) exhibiting IQHE. We assume that the electrons

populate only the lowest Landau level; i.e., the filling factor is ν = 1. The two semi-infinite

blocks of high-µr material with µr� 1 are then introduced in the region |z|> d/2, see Fig. 3.2.

The method of current images from classical electrodynamics models the influence of high-

µr blocks on electrons and allows one to calculate the magnetic vector potential A(r) in the

|z| < d/2 slab due to the magnetic dipole moment of a single electron [19]. For a stationary

magnetic dipole m = mẑ located at the origin, in the limit µr→∞, A(r) is identical to that of an

infinite array of magnetic moments deep within semi-infinite blocks. These virtual images are

equal in magnitude and direction to the original magnetic moment, and equally spaced by d, as

illustrated in Fig. 3.1. Thus, for r = |r| sufficiently larger than d, an array of magnetic moments
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can be viewed as a flux tube with A(r) ≈ Φ/2πrφ̂ , where the flux is Φ = µ0m/d. For a finite

value of µr, the vector potential in the z = 0 plane is given by

A(r) =
Φrd
4π

∑
n∈Z

(
µr−1
µr +1

)|n| 1

(r2 +n2d2)
3
2

φ̂ .

In order to estimate the validity of the approximation A(r)≈Φ/2πrφ̂ , in Fig. 3.3 we plot

∆= e
π h̄
∮

A ·dl as a function of r and µr (e < 0); the integral is taken around the circle of radius r

centered at the origin. Evidently, for µr=∞, ∆ is essentially a constant independent of r (except

for r<d), verifying that the flux Φ=
∮

A ·dl is concentrated close to the origin, and the approx-

imation is excellent. For finite values of µr = 104−105, ∆ changes very slowly over a large span

of values of r from d up to the mean free path lm. f .p. in standard QHE samples [118], which

underpins the approximation in realistic circumstances. For concreteness, we plot Fig. 3.3 for

d=10 nm, and −∆ is plotted up to 10000 nm, but similar results are obtained for a span of

values d=10−100 nm. We assume that the medium has sufficiently fast response, so that this

picture is valid for a moving electron as well. This gives rise to the vector potential interactions

between the electrons. The viability of the proposal and approximations are discussed below.

Figure 3.2: A 2DEG in a uniform magnetic field B0 (in the IQHE state) is sandwiched between
two blocks of high-µr material (shaded grey). Dipole magnetic moments of the electrons (illus-
trated as red arrows) are aligned with B0 and behave as Wilczek’s flux-tube-charge composites.

If an electron encircles a fixed solenoid of flux Φ, its wave function accumulates the Aharonov-

Bohm phase exp(ieΦ/h̄), but the same phase arises also from a quantum-mechanical solenoid

orbiting around a fixed charge. Thus, the e−e vector potential mediated by the high-µr material

is equivalent to that of a charge interacting with twice the flux in one flux tube [21,119], that is,

the interaction is 2eA(ri− r j), where

A(ri− r j) =
Φ

2π

ẑ× (ri− r j)

|ri− r j|2
. (3.1)
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In the presence of a magnetic field, the electron energies of the up and down spins split due to the

Zeeman effect. In large magnetic fields, large energies are needed to flip the spin; restricting to

low energies, we can neglect electrons with magnetic moments opposite to that of the magnetic

field. Under the assumptions and approximations stated above, the system is described by the

Hamiltonian

H =
n

∑
i=1

1

2m

[
p− eA0(ri)−2e ∑

j �=i
A(ri − r j)

]2
, (3.2)

with the symmetric gauge vector potential A0 =
1
2B0 × r for the constant magnetic field.

Figure 3.3: Parameter −Δ=− eπ−1h̄−1 ∮ A · dl as a function r/d, for three values of μr;

d=10 nm.

Electron-electron vector potential in Eq. (3.2) is eliminated by a singular gauge transforma-

tion,

ψ ′(r1, ...,rn) = ∏
i< j

e−iφi jΔψ(r1, ...,rn), (3.3)

where φi j is the azimuthal angle of the relative vector ri−r j and ψ({ri}) is the fermionic wave

function in the regular gauge. The ground state of the Hamiltonian (3.2), in the singular gauge

is [113, 115–117]

ψ ′({zi}{z∗i }) = ∏
i< j

(zi − z j)
αexp(− 1

4l2
B
∑

l
|zl|2), (3.4)

where we have introduced complex coordinates zi=xi−iyi, the magnetic length lB=
√−h̄/eB0,

and the statistical parameter α=1+Δ. The energy of this state is E=nh̄ωc/2, where ωc=−
eB0/m is the cyclotron frequency. Here we assumed that the electrons in the initial IQHE

system, which we started with, populate only the LLL.
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3.1.3 Signature of anyons

In the following, we demonstrate that the Hall conductance for this state is

σH =
1
α

e2

h
. (3.5)

To calculate the Hall conductance in this system, we use the Laughlin pumping argument

in the Corbino ring geometry [18, 98]. Suppose that we introduce an infinitely thin solenoid at

z = 0, and adiabatically increase the flux from 0 up to Φ0 = −2π h̄/e (one flux quantum). The

state (3.4) adiabatically evolves into

ψ
′
z0
({zi}{z∗i }) = ∏

i
(zi− z0)ψ

′({zi}{z∗i }), (3.6)

which is an eigenstate of the system with the same energy. In this process, charge q∗ is pumped

from the solenoid (at z = 0) to the edge of the ring. It can be calculated from the single particle

densities, ρα for the state in Eq. (3.4), and ρα,0 for the state in Eq. (3.6). The calculation is

performed analytically in the thermodynamic limit N → ∞ by using the plasma analogy, first

introduced by Laughlin [25] (see Refs. [120, 121] for details),

ρα(x,y) =
1

2παl2
B

and

ρα,0(x,y) =
1
α

(
1

2πl2
B
−δ (x)δ (y)

)
.

Evidently, the missing charge at z = 0 is q∗ = e/α , which yields

σH = q∗
e
h
=

1
α

e2

h

for the Hall conductivity. Thus, before we place the two high-µr blocks in the system, the

initial value of the Hall conductivity is νe2/h with ν = 1 by assumption. After placing the

blocks, which induce the e− e vector potential, the Hall conductivity at the plateau shifts from

ν = 1 to 1/α = 1/(1+∆) ≈ 1−∆ . The shift -∆ is plotted in Fig. 3.3, and it has the value

10−7−10−6. Despite the fact that the shift is small, ∆σH ∼ 10−7×e2/h, measurements indicate

that the value of the quantized Hall resistance can be reproduced within a relative uncertainty

of one part in 1010 [103], meaning that the shift in the Hall conductance could be detectable

as the signature of Wilczek’s anyons. In addition, we note that as the e− e vector potential is

introduced (a flux tube with flux Φ is adiabatically attached to every electron), according to the

adiabatic principle developed by Greiter and Wilczek [114], the system remains gapped; i.e.,

incompressible quantum Hall states remain incompressible.
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3.1.4 Implementation of the system

Now we discuss possible implementations of this system, the obstacles, and possible routes

to overcome them. We have assumed that the e− e vector potential picture is valid also for

electrons moving in the 2DEG, even though it was derived for static electrons. In the clas-

sical picture, electrons exhibiting the Hall effect move in circular orbits with the cyclotron

frequency, giving rise to oscillating fields that material should respond to. In the quantum pic-

ture, electrons are in the Landau level states. Recent experiments [122] have demonstrated that

the currents corresponding to electrons promoted in Landau level states oscillate at cyclotron

(ωc = −eB/m∗) and Larmor frequencies (Ω = −eB/2m∗), depending on the particular state;

here m∗ is the effective mass of electrons. Therefore, we conclude that the demanded high-µr

material should have a strong magnetic response in the frequency range corresponding to cyclo-

tron motion. A typical system for the QHE is the interface of a GaAs/AlGaAs heterojunction

where m∗ = 0.067me [123], and the frequencies are in the terahertz range. Unfortunately, the

magnetic response of most conventional materials is beginning to tail off in the gigahertz re-

gion [124]. A few natural magnetic materials that respond above microwave frequencies have

been reported, but the magnetic effects in these materials are typically weak (see Ref. [125] and

references therein).

These restrictions can in principle be overcome by using metamaterials, artificial structures

which can be constructed to have a strong effective magnetic response µe f f (ω) at high frequen-

cies (ranging from gigahertz to terahertz) [124–126]. Another advantage of using metamaterials

in this context is that their response is usually not broadband. Therefore, a high-µr metamaterial

at terahertz frequencies is likely to have low response (or none) at zero frequency (for example,

see Ref. [127]) and would not be affected by the constant magnetic field used to create the IQHE

state. One possible route for constructing a desirable metamaterial could be photonic doping,

recently used to construct a material with effective µe f f → ∞ [127] for polarization where the

magnetic field is parallel to the surface (here we demand that the magnetic field be perpendic-

ular to the surface). The characteristic scale of the building constituents of the metamaterial

should be smaller than the magnetic length lB, so that the concept of the effective macroscopic

permeability remains valid. Another possibility to overcome the obstacle of fast material re-

sponse is to reduce the Fermi velocity and thereby the cyclotron frequency by involving heavy

fermion materials, in which electrons have a large enough effective mass. The cyclotron fre-

quency scales as 1/m∗; thus, to bring the cyclotron frequency down to the gigahertz range, by

using typical numbers from above, the effective mass of the electrons should be m∗ ∼ 102me.

An important parameter, which should be tuned to get the desired effect, is the distance

between the high-µr materials d. The flux tube approximation A(r) ≈ Φ/2πrφ̂ for the vector

potential of an electron, which is illustrated in Fig. 3.3, is excellent already for r > d. We find

that for values of µr ∼ 104 and larger, it is excellent up to r ∼ lm. f .p. and more (this depends on

µr). It gives rise to the e− e interactions in Eq. (3.1). Hence, the average separation between
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electrons should be greater than d for Eq. (3.1) to apply. In standard IQHE experiments, the

electron density is 1011− 1012 so that the average separation is of the order of 20 nm, but in

principle it could be larger. For larger values of d (say d ∼30-60 nm), the flux tube approx-

imation is even better at scales from d to lm. f .p. However, the shift in the Hall conductivity

∆σH , which is the signature of the effect, scales as 1/d. Thus, we must find an appropriate

value for d smaller than the average separation between electrons, and small enough for the

effect to be measurable, but large enough to be possible to sandwich a thin material with IQHE

between two blocks of high-µr material. This is a viable task according to the parameters used

in Fig. 3.2. Moreover, assuming one could tune d in an experiment, a measurement yielding

∆σH ∼ 1/d would be a clear evidence of Wilczek’s anyons in this system. Since the area of the

IQHE sample is finite and ∇ ·B = 0, when r→ ∞, −∆→ 0. Thus, the high-µr materials should

have a large aspect ratio (height much larger than the square root of the area) to properly steer

the magnetic streamlines.

We note that a promising possibility to observe Wilczek’s flux tubes is to engineer 2D ma-

terials [128]. To this end, we propose to intercalate a metallic monolayer between two lay-

ers of hexagonal boron nitride (h-BN); this could be Li, K, Na or some other metallic mono-

layer [129, 130]. The density-functional theory calculations for an h-BN–Li–h-BN monolayer

show structural stability and a parabolic band dispersion [131]. The principle of intercalation

is here very similar to such intercalation in graphite, which has been extensively studied [132].

The h-BN–metallic monolayer–h-BN structure can in principle be sandwiched between two

blocks of the high-µr material, thus constituting a candidate for observing anyons according to

our scheme. Another route could be to grow a metallic monolayer on the film of a semicon-

ductor as in Ref [133], and to place it between the high-µr blocks (the semiconductor should be

sufficiently pure not to conduct). Viable paths could also be conceived with layered dichalco-

genides [128].

For concreteness, our theoretical analysis above is based on the QHE with electrons in

a 2D parabolic band. The most famous 2D material—graphene—has a conical band struc-

ture [134–136]. However, graphene sandwiched between two blocks of high-µr material could

also be a candidate for exploring (Wilczek-Dirac type) anyons according to the present proposal.

Although the quantum Hall effect in graphene is distinctive, as it occurs at half-integer filling

factors [134, 135], the Landau-level wave functions for low-energy electrons in graphene have

the same mathematical structure as in the 2DEG (up to the coefficients that enter these wave

functions [136]). Thus, we conjecture that the signature of Wilczek’s flux tubes in this system

would also be a small shift of the resistance at the plateau. Graphene also has the possibility

to be strained [137] and induce effective gauge fields, which is an additional useful degree of

freedom when tinkering with this system.

∼
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In conclusion, we have proposed a scheme for creating flux-tube-charge composites, which

employs a material with high magnetic permeability µr. Thus, advances in developing high-

µr metamaterials could lead to novel ways for creating anyons. We have calculated the Hall

conductivity for a 2DEG in the IQHE regime, sandwiched between two semi-infinite blocks

of high-µr metamaterial with a fast temporal response, and found that the Hall resistance at

the plateau would exhibit a small but detectable shift, which is to some extent a striking con-

sequence because it serves as a standard of electrical resistance [97,103,104]. Finally, we would

like to note that the quest for anyons is of broad interest and underway in many systems includ-

ing ultracold atomic gases [41, 43, 51], photonic lattices [138] and quantum spin liquids [56].

Our scheme for creating charged flux tubes has potential to be used in other systems such as

trapped ions. Here we have addressed Abelian anyons. We believe that further studies inspired

by this proposal could yield schemes for realizing non-Abelian anyons for topological quantum

computing [7].
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3.2 Exact solutions of a model for synthetic anyons in a non-
interacting system

In the context of some less traditional schemes for realizing and manipulating anyons, let us

mention a few examples of the condensed matter experiments for realizing and manipulating

anyons in weakly (or noninteracting) system. It was proposed that anyons could be synthesized

by coupling weakly interacting (or noninteracting) electrons to a topologically nontrivial back-

ground (or topologically nontrivial external perturbations) [67–69]. In Refs. [67, 68], anyons

are proposed in a system of an artificially structured type-II superconducting film, adjacent to a

two-dimensional electron gas (2DEG) in the IQHE with unit filling fraction [67, 68]. A peri-

odic array of pinning sites imprinted on the superconductor will structure an Abrikosov lattice

of vortices [67]. Anyons are bound by vacancies (interstitials) in the vortex lattice, which carry

a deficit (surplus) of one-half of a magnetic flux quantum [67]. In Ref. [69] anyons were pro-

posed in integer QHE magnets [69]. Magnetic vortices in this system are topologically stable

and have fractional electronic quantum numbers yielding anyonic statistics. Anyons were also

proposed by using topological defects in graphene [70].

In this section we study a theoretical model for synthetic anyons in a noninteracting quantum

many-body system. We present exact solutions of a model for synthetic anyons, which was

considered in Refs. [67, 68]. Synthetic anyons can occur in a noninteracting system when it is

perturbed with specially tailored localized probes, which supply the demanded nontrivial topo-

logy in the system. The model is represented by the Hamiltonian for noninteracting electrons in

two dimensions, in a uniform magnetic field, pierced with solenoids with a magnetic flux that is

a fraction of the flux quantum. In a potential experimental realization of the model, there should

be a mechanism fixing the flux in all solenoid probes to an identical value for these perturbations

to represent synthetic anyons. We find analytically the ground state of the model when only the

lowest Landau-level states are occupied. We calculate the statistical parameter by using the

Berry phase, and show that the ground state is anyonic in the coordinates of the probes. These

results are confirmed numerically. We show that these synthetic anyons cannot be considered

as emergent quasiparticles. The fusion rules are discussed for different microscopic realizations

of the fusion process.

3.2.1 Ground-state wave function

In our theoretical model we consider Ne noninteracting spin-polarized electrons in 2D con-

figuration space (in the xy plane), in a uniform magnetic field B0 = ∇×A0 = B0ẑ, where

A0(r) = B0× r/2 is the vector potential in the symmetric gauge (B0 > 0). The system is per-

turbed with N very thin solenoids at locations ηηηk = ηx,kx̂+ηy,kŷ. The vector potential of each
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solenoid is

Ak(r) =
Φ

2π

ẑ× (r−ηηηk)

|r−ηηηk|2
, (3.7)

where Φ is the magnetic flux through a solenoid. The Hamiltonian representing the model is

then

H =
Ne

∑
j=1

1
2m

(
p j−qA0(r j)−q

N

∑
k=1

Ak(r j)

)2

+
Ne

∑
j=1

V (r j), (3.8)

where V (r) is zero for r < Rmax, and infinite otherwise; q < 0 (m) is the electron charge (mass,

respectively). The system is illustrated in Fig. 3.4(a). We assume that the Fermi level is such

that only the states from the lowest Landau level (LLL) of energy h̄ωB/2 are populated (ωB =

−qB0/m), and we assume they are all populated. The many-body ground state of this system

is denoted by ψ({z j},{z̄ j};{ηk},{η̄k}), where z j = x j + iy j and z̄ j = x j− iy j are the electron

coordinates, and ηk = ηx,k + iηy,k and η̄k = ηx,k− iηy,k are the probe coordinates in complex

notation.

(a) (b)

(c) (d)

Figure 3.4: Sketch of the model. (a) We explore a 2DEG in a magnetic field B0, on a disc of
radius Rmax. The solenoid probes with flux Φ, pierce the 2DEG at positions η j (coordinates are
in complex notation). (b) The contour path of one probe, which adiabatically traverses a closed
loop in space; we are interested in the Berry phase accumulated along such paths. Illustration
of the contours corresponding to γin (c), and γout (d).

In this section we demonstrate that the ground state wave function with energy Neh̄ωB/2 is
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given by

ψ =
1√

Z({ηk},{η̄k})

[
Ne

∏
j=1

N

∏
k=1
|z j−ηk|−αz j−ηk

]

×
[

Ne

∏
i< j

(z̄i− z̄ j)

]
exp

(
−

Ne

∑
i=1

|zi|2
4l2

B

)
, (3.9)

where lB =
√
−h̄/B0q is the magnetic length, α = Φ/Φ0, Φ0 = −2π h̄/q is the flux quantum,

and Z({ηk},{η̄k}) accounts for normalization. We consider α ∈ 〈0,1〉; results for fractional

values outside of the 〈0,1〉 interval are easily deduced.

α

(a) (b)

Figure 3.5: Sketch of the energy scales and the spectral flow for just one probe. (a) A probe is
centered in the system, its flux is such that 0 ≤ α = Φ/Φ0 ≤ 1. (b) As α is increased, there is
a spectral flow as illustrated. The Fermi energy EF is always set such that only the LLL states
are populated.

For the clarity of the presentation, we first present what happens with the system when only

one probe is placed in the system, and subsequently what happens when two probes are inserted.

For a single probe, the single particle states of the system at the LLL energy are given by

ψm = |z−η |−αz−η z̄m exp
(
−|z|

2

4l2
B

)
, m = 0,1,2, . . . . (3.10)

There is one state localized at the position of the probe, with energy h̄ωB(1+2α)/2 in between

the LLL and the first excited Landau level:

ψLS = |z−η |α exp
(
−|z−η |2 + η̄z−η z̄

4l2
B

)
.

Suppose that one introduces the solenoid probe at some point in time, and adiabatically in-

creases the flux through it. As α increases from zero to one, there is a spectral flow illustrated
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in Fig. 3.5; one state from the LLL rises in energy and starts flowing towards the first Landau

level. When α = 1, this flux is just gauge, and the energies map back onto those at α = 0. This

scenario is well known from studies of the QHE [18]. Here we assume that the flux is fixed

at some value α , and the Fermi energy is between LLL energy and h̄ωB(1+ 2α)/2; thus, this

localized state is not populated. The many-body ground state is constructed by inserting all

LLL states in a Slater determinant; it is given by Eq. (3.9) for N = 1.

For the case of two probes, the single particle states of the system at the LLL energy are

ψm = |z−η1|−α |z−η2|−αz−η1z−η2

×z̄m exp
(
−|z|

2

4l2
B

)
,m = 0,1,2, . . . (3.11)

Now there are two localized states in between the LLL and the first excited Landau level. We

did not find analytical expressions for these states but they are visible in numerical calculations.

The energies of these localized states are in the gap, between the LLL and the first excited LL.

They increase with increasing alpha and join the first excited LL when α = 1 as expected. The

many-body ground state is given by Eq. (3.9) for N = 2.

Now we generalize our results for any number of the probes N. To this end, we employ the

following singular gauge transformation:

ψ
′ = ψ ∏

1≤i≤Ne

∏
1≤ j≤N

exp(iαφi j); (3.12)

here φi j denotes the argument of zi−η j = |zi−η j|exp(iφi j). In this gauge, the vector potential

of the probes is A′k = 0 everywhere except at the positions of the probes, and the Hamiltonian

H ′ is given by Eq. (3.8) with Ak replaced by A′k = 0. It is straightforward to verify that ψ ′ is an

eigenstate of H ′ with energy NωB/2, and hence the ground state.

It should be pointed out that in the limit α→ 0 the wave function 3.9 does not approach the

IQHE ground state with all LLL states filled, but rather it becomes an IQHE state with N of the

LLL states left empty. Namely, the localized states which appear at the position of the probes

for α > 0 are not included in the Slater determinant used to construct the ground state 3.9, as

discussed above. For α = 0 they enter the LLL, but since they were not used in constructing

3.9, the wave function 3.9 does not approach the IQHE ground state (with all LLL states filled)

in the limit α → 0. Strictly speaking, Eq. 3.9 is the ground state for α ∈ 〈0,1〉, provided that

only the LLL states are filled; it is not the ground state for α = 0 and all LLL states filled.

In a potential experimental implementation of the proposed system, one should not popu-

late the localized states such as ψLS. With this state populated, the ground state is no longer

anyonic in the coordinates of the probes. For this state to remain empty, the temperature must

be sufficiently low such that kT � h̄ωBα , which is difficult to obtain for small α . However,

an additional localized repulsive scalar potential at the location of the probes (e.g., the delta
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function potential), which may be present naturally depending on the realization, would lift the

energies of the localized states to remedy this issue.

−2πq
l2B

−15 −10 −5 0 5 10 15

r/lB

−2πq
l2B

Figure 3.6: The single-particle densities (cross sections) of the ground states with one probe (at

r = 0) and two probes (at r = 0 and 5.264lB). The flux through the probes is given by α = 0.7.

The horizontal dashed line depicts the density of an infinite system.

In Figure 3.6 we illustrate the single particle density (cross section) for the system with

one and two probes. Clearly, the single particle density has a cusp-like dip at the position

of a probe, i.e., a missing electron charge Δq. It is tempting to identify the composite of a

missing electron charge Δq and the probe with flux Φ with Wilczek’s charge-flux-composite

anyons [139], however, a careful analysis of the Berry phase below shows that this is not the

case.

To end this section, let us mention that when calculating the single-particle states of the

LLL, which enter the Slater determinant used to construct the ground state (3.9), one encounters

a spurious single particle state of the form

ψspur = |z|−α exp

(
−|z|2

4l2
B

)
, (3.13)

which, although normalizable, has divergent density. The form (3.13) corresponds to a system

with a single probe centered at the origin. A more careful analysis shows that this state is, in

fact, not an eigenstate of the Hamiltonian and should not be used in the construction of the

Slater determinant. If this state was physical and present in the ground state, the ground state

would not be anyonic in the coordinates of the probes. In that case, however, the aforementioned

additional localized repulsive scalar potential at the location of the probes could be used to lift

it in energy and remove it from the ground state. We should note that in Ref. [67] this spurious

state was used to construct the many-body ground state, and as a result the ground state from

Ref. [67] is in fact not anyonic.

43



3.2.2 Anyonic properties of the wavefunction - calculation of the Berry
phase

Here we calculate the Berry phase as one of the probes undergoes adiabatically a closed loop

in space as illustrated in Fig. 3.4(b). The Berry phase depends on how many other probes are

contained in the loop. More specifically, following the calculation of Arovas et al. [27], we

calculate the Berry phase when a single probe is within the loop (call it γin, see Fig. 3.4(c)),

and when all of the other probes are outside of the loop (call it γout , see Fig. 3.4(d)). The

difference between the two phases is the statistical phase, which we find to be γS = γin− γout =

2π(α − 1), where α = Φ/Φ0; this result means that in the coordinates of the external probes,

the wavefunction ψ is anyonic when α is fractional.

1 Plasma analogy First we consider a normalized state with N probes given by (3.9). Us-

ing the plasma analogy, normalization factor Z({ηk},{η̄k}) can be interpreted as the partition

function of the 2D one-component plasma (electrons) at {zi} at an inverse temperature β = 2,

interacting with charged impurities (probes) at ηk [18,25]. The potential energy for this system

is given by

U(zi) =
1

4l2
B

N

∑
i
|zi|2−

N

∑
k<l

log
( |zk− zl|

lB

)
− (1−α)

N,2

∑
i, j

log
( |zi−η j|

lB

)
.

(3.14)

In the thermodynamical limit (large N), the partition function Z can be obtained by using the

saddle-point technique, where the particles are driven into configuration which has the min-

imum energy [120, 121]. For N → ∞, sum over particles becomes a continuous distribution,

which equals the electron density. Minimizing the energy and using ∂

∂ zz−1 = πδ 2(z), one ob-

tains the density of particles

ρ(z) =
1

2l2
Bπ
− (1−α)

2

∑
j=1

δ
2(z−η j). (3.15)

We can recognize two contributions ρ(z) = ρ0 + δρ(z). The first one is constant and corres-

ponds to the density in the case of the IQHE, while the second one describes the charge depletion

at positions of the probes. In the presence of impurities, the charges rearrange themselves to

cluster around the impurity by accumulating an equal and opposite charge so that its effects

cannot be noticed at far distances. In order to describe the plasma with impurities, one includes

the energy cost between the impurities and the constant background charge, and the Coulomb

energy between different impurities. Corrected potential energy and partition function should
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be independent of the positions ηi. This leads us to the result for the normalization factor:

Z =C exp

(
−(1−α)2

∑
k<l

log
|ηk−ηl|2

l2
B

+
1−α

2l2
B

∑
k
|ηk|2

)
.

2 Berry phase In order to find the statistics of the probes, we pick one of the probes, for

example η1, and move it on a closed path C = ∂S. After traversing the path, the wave function

ψ =
1√
Z

χ

acquires a phase shift given by the Berry phase

eiγ = exp
(
−i
∮

C
Aη1dη1 +Aη̄1dη̄1

)
, (3.16)

where Aη1 is holomorphic and Aη̄1 anti-holomorphic Berry connection:

Aη(η , η̄) =− i
Z
〈χ| ∂

∂η
|χ〉+ i

2
∂

∂η
(logZ),

Aη̄(η , η̄) =− i
Z
〈χ| ∂

∂ η̄
|χ〉+ i

2
∂

∂ η̄
(logZ).

Calculation of the Berry phase proceeds as in [27]. The braiding phase corresponds to the

difference of the Berry phases for closed paths with and without another probe enclosed by it.

When η1 is taken around the closed path C, contributions from the normalization factors, i.e.,

partition function Z, cancel each other. Derivatives of the unnormalized wave function χ are

given as
∂ χ

∂η1
=

α

2
χ

N

∑
i=1

1
zi−η1

,

∂ χ

∂ η̄1
=

(
α−2

2

)
χ

N

∑
i=1

1
z̄i− η̄1

.

Taking the definition of the charge density

ρ(z) =
1
Z
〈χ|∑

i
δ (zi− z)|χ〉, (3.17)

one obtains

γ = i
α

2

∫
d2z

∮
C

dη1
ρ(z)

z−η1
+ i

α−2
2

∫
d2z

∮
C

dη̄1
ρ(z)

z̄− η̄1
.

If we denote the integral

J =
∮

c
dη1

∫
d2z

ρ(z)
z−η1

, (3.18)
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we have

γ = i(αReJ −J̄ ).

Concerning the contribution of ρ0 in Eq. (3.18), if η1 is integrated in anticlockwise direction,

only values of z inside this loop (z ∈ S) contribute −2πi to the integral. Then we can evaluate

the surface integral, where we use the relationship between the charge and the magnetic flux ΦS

in S for the ν = 1 IQH state. In order to find the contribution of the second term δρ(z) , first

we evaluate the surface integral and obtain a non-vanishing contribution from η j 6= η1. Contour

integral then evaluates to −2πi only if η j is inside the closed path of η1. This leads us to the

result

Jout =−2πi
Φs

Φ0

Jin =−2πi
Φs

Φ0
+2πi(1−α).

Let us denote the mean number of electrons inside the contour as 〈n〉C. Thus, when η1 traverses

a path where it does not encircle any other probe the Berry phase is

γout = 2π
Φs

Φ0
= 2π〈n〉C,out .

On the other hand, if another probe is inside the loop, the Berry phase sums up to

γin = 2π
Φs

Φ0
−2π(1−α) = 2π〈n〉C,in.

The statistical phase is the difference between these two cases:

γS = 2π(〈n〉C,in−〈n〉C,out) = 2π(α−1).

Thus, γS mod 2π is equal to 2πα . Let us briefly comment on the fact that ∆q→−q as α → 0,

and ∆q→ 0 as α→ 1, which may seem awkward at first sight. This is related to our discussion

in the previous section on the behavior of the wave function 3.9 as α → 0. When constructing

the wave function 3.9, we do not populate the localized states which appear at the position of

the probes for α > 0. Therefore, as α > 0, they are not in the Slater determinant, leaving a

hole of charge ∆q = −q at the position of the probe. When α → 1, the localized states at the

position of the probe enter the first LL (which is empty anyhow by assumption); however, the

corresponding state in the LLL below is now filled, yielding ∆q = 0, as the spectrum has flown

back to itself when α flows from zero to one.

46



Figure 3.7: Two probes at opposite radii η1 and η2 are exchanged leading to an exchange phase
π(α−1).

From the viewpoint of the relative coordinate, when one of the probes encircles the other

probe, this corresponds to a double exchange of the two probes illustrated in Fig. 3.7. Thus, we

conclude that if we exchange two of the probes adiabatically along a path illustrated in Fig. 3.7

(with no other probes within the closed contour) the exchange phase accumulated by the wave

function will be π(α − 1). This means that the wave function ψ is anyonic in the coordinates

of the probes, with the statistical parameter given by θ = π(α−1).

3.2.3 Gauge invariance

We end this section by a note on the gauge invariance of the Berry phase calculated along the

closed path C. The wave function ψ in Eq. (3.9) is a single-valued function of the positions

of the external probes ηk, provided that the normalization Z(ηk, η̄k) is also chosen to be a

single-valued function of ηk. In contrast, the singular gauge wave function ψ in Eq. (3.12) is

a multivalued function of ηk. Equation (3.16) for calculating the Berry phase yields different

results when naively used for ψ and ψ ′. However, the Berry phase calculated along a closed

path must be independent of the gauge used. This issue is resolved by noting that Eq. (3.16)

should be used only for single-valued wave functions (that is ψ in our case). If one wishes

to calculate the Berry phase in the singular gauge by using the multivalued wave function ψ ′,

there is an additional term that should be included in the Berry phase formula [see Eq. (5.12) in

Ref. [141] which ensures gauge invariance. We note that our results differ from Refs. [67, 68],

which have used multivalued wave functions and Eq. (3.16) to calculate the Berry phase.

3.2.4 Synthetic anyons are not emergent quasiparticles

From the illustration of the single-particle density in Fig. 3.6 we see that at the position of every

solenoid probe there is a cusplike dip, i.e., a missing electron charge, which is found to be ∆q =

−q(1−α) from the single-particle density. We have already noted that it is tempting to identify

the composite of a missing electron charge ∆q, and a solenoid with flux Φ with Wilczek’s
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charge-flux-composite anyon [4, 5]. Now we show that such an interpretation is erroneous.

When a probe traverses a closed path C, the system acquires the Berry phase γ = 2π〈n〉C. Let

us try to calculate the missing charge by a different route using the Aharonov-Bohm phase,

and by assuming that we are dealing with a charge-flux-composite. To this end, let us denote

the missing charge q∗, and check whether we obtain the same result as with the single-particle

density. When the charge q∗ traverses the path C, it will acquire the Aharonov-Bohm phase

q∗ΦC/h̄, where ΦC = 〈n〉CΦ0 is the total magnetic flux within the path C (we have assumed

unity filling of the LLL). To obtain the Berry phase, we should include the Aharonov-Bohm

phase acquired by the solenoid with flux αΦ0 that circulates around the charge q〈n〉C, which is

equal to q〈n〉CαΦ0/h̄. By identifying

γ = 2π〈n〉C =
q∗ΦC

h̄
+

q〈n〉CαΦ0

h̄
,

we find

q∗ =−q(1+α) 6= ∆q =−q(1−α).

This difference may come as a surprise, because an equivalent calculation for anyons in the

FQHE yields identical expressions for the missing charge from the single-particle density and

from the Aharonov-Bohm calculation of q∗.

To understand the obtained result, first we note that the external solenoid probe acts as a ladle

that stirs the electron sea around, and the Aharonov-Bohm phase depends on the movements of

the electrons in the sea, and not of the missing charge. When the missing charge corresponds

to the quasiparticle, as in the FQHE, then q∗ = ∆q because the motion of (quasi)holes uniquely

corresponds to the motion of the electron sea. However, the missing charge here is not a quasi-

hole, and we cannot interpret the missing charge attached to the solenoid probe as Wilczek’s

charge-flux-tube composite. One way to understand this difference is to assume that the elec-

tron sea is a superfluid, and the Aharonov-Bohm phase acquired by stirring the ladle would be

zero.

3.2.5 Fusion rules of synthetic anyons

The conclusion of the previous section has impact on the fusion rules of synthetic anyons. The

fusion rule states that the exchange phase ΓS of a particle formed by combining n identical any-

ons with exchange phase γS is ΓS = n2γS. The fusion rules depend on the physical microscopic

process which corresponds to the fusion.

For example, suppose that we have N = 4 solenoid probes in the system with flux αΦ0, i.e.,

we have two pairs of probes. Next, we slowly bring together (merge) two of the solenoids from

each pair, thereby forming a system with N = 2 solenoid probes with flux 2αΦ0. This system

is identical to the one we have explored with α replaced by 2α mod 1. Thus, the exchange

phase changes from π(α−1) to π[(2αmod1)−1]. This is not the exchange phase 22π(α−1)
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expected from fusing two anyons. This is related to the fact that we cannot interpret the missing

charge attached to a solenoid probe as Wilczek’s charge-flux-tube composite, because in that

case the standard fusion rules would be applicable.

Let us now consider the fusion process as pairing the solenoids two by two in the following

manner. Suppose that we have two pairs of probes, i.e., N = 4 solenoid probes, with flux αΦ0

in the system located at {η1,η2,η3,η4}. The wave function ψ is given by (3.9). Two solenoids

are paired so that they remain separated by a small constant vector. For each pair we use center-

of-mass and relative coordinates

Xc =
η1 +η2

2
, Xr =

η1−η2

2

Yc =
η3 +η4

2
, Yr =

η3−η4

2
.

If we encircle the first pair of solenoids at Xc along a circle of radius R around the second pair

at Yc, which is held static, this process can be described as

X ′c(θ) = Yc +Reiθ = Yc +λ ,

where λ is a complex coordinate which moves around the closed path C = ∂S, a circle of radius

R. Then the coordinates of the first pair are moved according to

η
′
1 = Yc +Xr +λ , η

′
2 = Yc−Xr +λ .

The Berry phase acquired in this process is given by

Γ = i
∫ 2π

0
dθ〈ψ| ∂

∂θ
ψ〉.

Since the normalization factor of the wave function is single-valued in θ , it does not contribute

to the Berry phase for a closed path. Taking into account the expression for the charge density

and the result
dη ′1,2
dθ

=
dλ

dθ
,

we obtain

Γ =i
∮

C
dλ

α

2

∫
d2z
[

ρ(z)
z−η ′1

+
ρ(z)

z−η ′2

]
+ i
∮

C
dλ̄

(
α−2

2

)∫
d2z
[

ρ(z)
z̄− η̄ ′1

+
ρ(z)

z̄− η̄ ′2

]
.

Denoting

J =
∮

dλ

∫
d2z
[

ρ(z)
z−η ′1

+
ρ(z)

z−η ′2

]
, (3.19)

49



the Berry phase is then

Γ = i(αReJ −J̄ ).

Regarding the contribution of ρ0 in Eq. (3.19), when λ is integrated anticlockwise, only values

of z inside this path contribute−4πi to the integral. After this, one calculates the surface integral

and uses the relationship between the charge and the magnetic flux ΦS for the ν = 1 IQH state.

Concerning the contribution of δρ(z), first the surface integral is evaluated. This gives us the

result

J =−4πi
Φs

Φ0
− (1−α)

∮
dλ

[
1

η3−η ′1
+

1
η4−η ′1

+

1
η3−η ′2

+
1

η4−η ′2

]
.

Evaluating the contour integral, we obtain

J =−4πi
Φs

Φ0
+8πi(1−α),

and, finally, the Berry phase is

Γ = 4π
Φs

Φ0
+8π(α−1).

We can recognize the Aharonov-Bohm phase and the statistical phase ΓS = 8π(α − 1) which

confirms the fusion rule for anyons.

3.2.6 Experimental realization

It might be interesting to discuss a potential experimental realization, and pertinent challenges,

of Hamiltonian (3.8) in ultracold atomic gases. Ultracold atomic gases have been experiment-

ally realized in two dimensions [142,143], and a viable path (although not a simple one) for im-

plementing IQHE states with ultracold atoms is to employ synthetic magnetic fields [144–147].

The missing ingredients are solenoid-like probes. The synthetic vector potential of a solenoid

can in principle be achieved with vortex laser beams nonresonantly interacting with two-level

atoms [148]. Namely, by exploring Eq. (7) in Sec. II of Ref. [145], one finds that a vortex

beam interacting with a two-level atom can yield the Berry connection which corresponds to

the vector potential of a solenoid. The vortex phase ensures proper direction of the vector po-

tential; however, to obtain the proper ∼ 1/r dependence one must in addition properly adjust

the detuning and the intensity of the laser. An additional challenge along this path would be to

ensure that the synthetic magnetic flux through every solenoid is identical, so that an exchange

of any of the two lasers would depend on the unique statistical parameter (otherwise localized

perturbations at the probes could not be referred to as synthetic anyons). The advantages of
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ultracold atomic systems are long coherence times and the possibility to relatively easily braid

the laser probes.

∼

In conclusion, we have presented exact solutions of a model for synthetic anyons in nonin-

teracting many-body systems. The key ingredients in the model are specially tailored external

potentials (that could correspond to some external localized probes), which supply the deman-

ded nontrivial topology in the system. The Hamiltonian representing the model is that of nonin-

teracting electrons in a uniform magnetic field (in the IQHE state), and the probes are solenoids

with a magnetic flux that is a fraction of the flux quantum. The Fermi level is such that only

the lowest Landau-level states are occupied; the localized states which appear at the position of

every probe, with energy in the gap, are assumed to be empty. We have found the ground state of

this system, and demonstrated that it is anyonic in the coordinates of the probes, when the flux

through solenoids is a fraction of the flux quantum αΦ0. The statistical parameter of synthetic

anyons is θ = π(α − 1). We have shown that these synthetic anyons cannot be considered as

emergent quasiparticles, and that they cannot be interpreted as Wilczek’s charge-flux-tube com-

posites. This observation has consequences on the fusion rules of these synthetic anyons, which

depend on the microscopic details of the fusion process.
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Chapter 4

Berry phase for a Bose gas on a
one-dimensional ring

The work presented in this chapter has been published in the paper:

• M. Todorić, B. Klajn, D. Jukić, and H. Buljan, Berry phase for a Bose gas on a one-

dimensional ring, Phys. Rev. A 102, 013322 (2020).

One-dimensional (1D) quantum many-body systems have intrigued mathematicians and

physicists for almost a century. Bethe determined an exact solution to the 1D Heisenberg

model of a spin-1
2 chain employing an ansatz for the wave function [149]. Many exact solu-

tions to other theoretical 1D models accompanied this one, including solution introduced by

Girardeau [150] which describes an impenetrable Bose gas. Simple 1D models whose solutions

could not be found exactly were explored in detail by effective approaches particularly fitted for

one dimension. An important example is the model introduced by Lieb and Liniger [151] which

describes a system of identical Bose particles in 1D interacting via δ -function interactions of

strength c.

These solutions were considered as nothing more than mathematical curiosities that are

not of crucial importance for the real 3D world. However, recent technological progress in

trapping ultracold atomic gases led to the experimental realization of many (quasi-)1D models

and this revived the interest in studying the theoretical 1D models [152–155] (for a review

see Ref. [156]). In experiments, ultracold atoms are loaded in tight, transversely confined,

effectively 1D atomic waveguides, where transverse excitations are strongly suppressed [152–

155]. These atomic gases are characterized by the Lieb-Liniger (LL) model [151] of contact

interactions of arbitrary strength c. In the case of infinite interaction strength (c→ ∞), such

bosonic particles may be described by the Tonks-Girardeau (TG) model [150]. The TG regime

has been experimentally achieved [153–155] with atoms at low temperatures and linear densities
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and with strong effective interactions [157–159]. In the limit of weak interaction, LL model can

be described by Gross-Pitaevskii (GP) theory [160].

In this chapter Section 4.1 introduces basic concepts needed to realize and describe 1D

quantum many-body systems. In Section 4.2 we focus on a particular system of strongly inter-

acting bosons placed on a 1D ring pierced by a synthetic magnetic flux tube. On the ring there

is an external localized delta-function potential barrier. We study the Berry phase associated to

the adiabatic motion of the delta-function barrier around the ring. This research is related to the

research on synthetic anyons in a noninteracting system in Section 3.2. The barrier produces a

cusp in the density and the corresponding missing charge (missing density) cannot be identified

as a quasihole. This result confirms the result in Section 3.2 that synthetic anyons cannot be

considered as emergent quasiparticles.

4.1 One dimensional bosons

4.1.1 Experimental techniques

We briefly present the experimental techniques for realization of low-dimensional models in ul-

tracold atomic systems. The invention of the laser enabled the development of effective methods

for cooling and trapping of atomic vapors. The methods have been developing for more than

three decades and they are based on manipulating neutral atoms with various optical (laser)

and magnetic fields [161]. Nowadays the gases can be cooled down even to the temperatures

in the nano-kelvin regime. An important progress occured in 1995 with the achievement of

Bose-Einstein condensates (BECs) in 3D systems of ultracold atoms [162–164].

A standard method to make the motion of the atoms effectively 1D or 2D is by creating an

optical potential [165–168] that produces tight confinement by freezing out motion in one or two

directions. Let us consider two oppositely directed laser beams, each with the same frequency.

The interference of two beams produces the potential that has the form of a static standing wave,

with the wave vector equal to the difference of the wave vectors of the two beams. Neutral atoms

in an electric field gain dipole moments that are determined by their polarizability. Optical

dipole traps depend on the interaction between an induced dipole moment in an atom and an

external electric field. There is an interaction of atoms with a radiation field. One can show

that the dipole force on atoms is attractive if the laser frequency is red-detuned and repulsive

in the case of a blue-detuned laser. The interference between two counter-propagating beams

will create an external periodic potential acting on the atom. When the intensity of the laser

light field is strong enough, implying a large amplitude of the potential, so that the probability

of hopping of atoms from one minimum to the neighbouring one is supressed, the 3D gas of

atoms develops into a system of many decoupled 2D disk-like trapping potentials.

A 2D optical lattice can be created when two orthogonal standing waves are superimposed.

Atoms are confined to an array of 1D potential tubes, in which the atoms can only move along
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the weakly confining axis of the potential tube, thus realizing 1D quantum behaviour. The

radial motion is totally eliminated for low-enough temperatures. A 3D optical lattice for atoms

is produced by three orthogonal optical standing waves. Atoms can also be trapped by using

atom chip traps [169, 170], where the magnetic fields trap atoms close to the surface. This trap

is based on the magnetic potential, i.e., coupling of atoms with spin and the magnetic field.

A magnetic field is created by a microfabricated structure of the chip, consisting of tiny wires

carrying electric currents. If one superimposes an external uniform field perpendicular to the

wire axis, this produces a local minimum of the total magnetic field along the line parallel to

the wire. The field minimum traps atoms in states with spin antiparallel to the magnetic field,

which are called low-field seeking spin states.

4.1.2 Interactions between atoms

Interaction between two neutral atoms at large separation is dominated by the van der Waals at-

traction, which is the result of electric dipole-dipole interaction between atoms [161]. The form

of interaction is−α/r6, where r is the atomic separation. For small separations the interactions

are dominated by a strong repulsive core due to the overlap of electron clouds. We introduce

a model potential [161] describing this system which has van der Waals form ∼ 1/r6 at large

distances, and is cut off at short distances by an infinitely hard core of radius rc:

U(r) = ∞ for r ≤ rc, U(r) =−α

r6 for r > rc.

The core radius is not a realistic representation of the short-distance behaviour of the potential,

but it can provide an insight into the main features of scattering of two neutral atoms at low

energies. In general, collisions in ultracold regime occur in the channel with the lowest angular

momentum, for bosons the scattering is of the s-wave (l = 0). In the low-energy limit, the

two-body collision problem is totally determined by the s-wave 3D scattering length a, and

the scattering amplitude f (k) = −a/(1+ ika). It can be shown that this is the exact scattering

amplitude at arbitrary values of k for the Huang’s pseudopotential [157]

V (r)ψ(r) =
4π h̄2a
2Mr

δ (r)
∂

∂ r
(rψ(r)) , (4.1)

where ψ is the wave function of the relative motion of two atoms and Mr their reduced mass.

Therefore, at low temperatures, two-body interactions in ultracold gases may be described by

a pseudopotential, where the scattering length a is usually taken as an experimentally found

parameter. The interaction is repulsive for positive and attractive for negative scattering lengths

a. Let us consider two-body collisions between cold atoms confined transversally by an atom

waveguide or highly elongated "cigar"-shaped atomic trap [157]. The system can be described

within the pseudopotential approximation and the waveguide potential is replaced by an axially
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symmetric 2D harmonic potential of a frequency ω⊥. If kBT � h̄ω⊥ and Eint� h̄ω⊥, where Eint

is the interaction energy per particle, atoms are in the ground state of transversal potential and

the system becomes effectively 1D. In this case it can be shown [157] that pseudopotential (4.1)

leads to the effective contact interaction

Vint(xi,x j) = g1Dδ (xi− x j), (4.2)

where g1D is the effective coupling strength:

g1D = 2h̄2a[ma2
⊥(1−Ca/

√
2a⊥)]−1.

Here a⊥ =
√

h̄/mω⊥ is the transverse oscillator width and C = 1.4603 [157]. Using the effect

of Feshbach resonance, it is possible to tune the scattering length by varying the strength of

an applied magnetic or electric field, and consequently change the atomic interactions [161].

Moreover, since the effective interaction depends also on the strength of transversal confine-

ment, when the system is in a weakly interacting mean-field regime for some value of ω⊥, then

by increasing ω⊥, the system may be brought to the strongly interacting Tonks-Girardeau re-

gime (g1D→ ∞) [157]. Different regimes of 1D bosonic gases are usually characterized by a

non-dimensional parameter γ = mg1D/h̄2n1D, where n1D is atomic density. For γ� 1 the gas is

in the mean-field regime, while for γ � 1 in a strongly interacting regime [151, 153–155, 157].

4.1.3 Lieb-Liniger model

The simplest nontrivial model of interacting bosons in the continuum is the one introduced by

Lieb and Liniger [151]. This model describes a system of N identical bosons in 1D, which inter-

act through a δ -function potential of strength g1D. For the Lieb-Liniger model, the Hamiltonian

is given by

H =− h̄2

2m

N

∑
i=1

∂ 2

∂x2
i
+g1D

N

∑
i< j

δ (xi− x j). (4.3)

We can parametrize the interaction strength in this model using the interaction parameter c =

mg1D/h̄2. Therefore, c = 0 corresponds to free bosons, while c→ +∞ is the hard-core or

Tonks-Girardeau limit [150]. As shown by Lieb and Liniger [151], the model can be solved

for all values of interaction strength c by employing the Bethe ansatz. One can see the Bethe’s

wavefunction as the factorization of the scattering of the N particles in the gas into a series of

two particle scattering events. A set of quasimomenta determine the eigenstates. If one sets

periodic boundary conditions, the behavior of quasimomenta is governed by a set of transcend-

ental Bethe equations. Its eigenfunctions are of the form

ψB(x1, . . . ,xN) = ∑
P

A(P)ei∑n kP(n)xn,

55



or x1 < x2 < · · · < xN where the P’s are the N! possible permutations of the set {1, . . . ,N}, kn

are momenta and A(P) are coefficients. A broader review of the Lieb-Liniger model, which is

beyond the scope of this dissertation, can be found in Ref. [171]. Our research deals with two

regimes of the Lieb-Liniger model - Tonks-Girardeau limit (c→ +∞) and weakly interacting

limit c� 1 described by the Gross-Pitaevskii theory. In the following we review these models.

4.1.4 Tonks-Girardeau model

The Tonks-Girardeau model describes impenetrable 1D Bose gas, corresponding to the limit

c→ +∞. We study a system of N identical Bose particles in 1D geometry. The system is

exposed to an external potential V (x). The infinitely strong contact repulsion between the bo-

sons imposes a constraint that the bosonic many-body wave function must vanish when the

two particles are in contact. As first pointed out by Girardeau [150], this constraint can be

implemented by writing the wave function as follows

ψB(x1,x2, . . . ,xN , t) = 0 if xi = x j, 1≤ i < j ≤ N. (4.4)

Furthermore, the wave function ψB should satisfy the Schrödinger equation

ih̄
∂ψB

∂ t
=

N

∑
j=1

[
− h̄2

2m
∂ 2

∂x2
j
+V (x j)

]
ψB. (4.5)

Fermi-Bose mapping connects the Tonks-Girardeau bosonic wave function ψB and an antisym-

metric many-body wave function ψF , which describes a gas of noninteracting spinless fermions

in 1D. Let us consider a solution of Eq. (4.5) ψF(x1,x2, . . . ,xN , t), which is antisymmetric when

two coordinates xi and x j are exchanged. Unit antisymmetric function is defined as

S(x1,x2, . . . ,xN) = ∏
1≤i< j≤N

sgn(xi− x j),

where sgn(x) is the algebraic sign of the coordinate difference x = xi− x j, i.e., it is +1(−1) if

x > 0(x < 0). In Fermi-Bose mapping, the wave function

ψB(x1,x2, . . . ,xN , t) = S(x1,x2, . . . ,xN)ψF(x1,x2, . . . ,xN , t) (4.6)

satisfies Eq. (4.5), hard-core constraint in Eq. (4.4), and has Bose symmetry since the function

S(x1, . . .) compensates the sign change of ψF(x1, . . .) when any two particles are exchanged.

Therefore, it represents a solution of the Tonks-Girardeau model in arbitrary external potential

V (x), which is a sum of one-body external potentials.

This can be proved in the following way. We consider the N−dimensional configuration

space. The surfaces xi = x j divide the configuration space into N! disjoint regions. In every
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permutation sector, the function S is constant, and equal to either +1 or -1. As a result ψB

satisfies the Schrödinger equation throughout the allowed portion of configuration space [all

|xi− x j| > 0(i 6= j)], if ψF obeys it. The boundary condition is satisfied because of the Pauli

exclusion principle set on ψF . The Bose symmetry of ψB is provided by an antisymmetric

function S. Thus, we conclude that ψB is a solution of the Schrödinger equation satisfying Bose

statistics, having the same energy as ψF , and satisfying the same boundary condition.

Very often the fermionic wave function ψF can be constructed as the Slater determinant,

ψF(x1, . . . ,xN , t) =
1√
N!

N
det

m, j=1

(
ψm(x j, t)

)
, (4.7)

where ψm(x, t) are N orthonormal single-particle wave functions satisfying a set of uncoupled

single-particle Schrödinger equations.

ih̄
∂ψm

∂ t
=

[
− h̄2

2m
∂ 2

∂x2 +V (x)
]

ψm(x, t), m = 1, . . . ,N. (4.8)

As a result, because of the Fermi-Bose mapping, the many-body problem of strongly interacting

bosons in 1D is equivalent to solving the single-particle equations (4.8). We point out that the

above proof cannot be generalized to systems of particles which move in higher dimensions.

Namely, it is not possible to construct generalization of the function S in more than one di-

mension since one cannot separate the configuration space into disjoint regions by hyperplanes

xi = x j. In two or more dimensions one can hold all particles but one fixed and move the re-

maining particle about throughout the box containing the system without encountering any of

the fixed particles. On the contrary, in one dimension the motion of one particle is blocked by

the presence of other particles.

The construction of the many-body wave function through the Fermi-Bose mapping in Eq. (

4.6) may also be used in the eigenvalue equation

N

∑
j=1

[
− h̄2

2m
∂ 2

∂x2
j
+V (x j)

]
ψB = EψB,

where E denotes the energy of an eigenstate.

Due to the property |S(x1, . . . ,xN)|2 = 1, single-particle density of two systems is the same

since |ψB|2 = |ψF |2. It is important to notice that Fermi-Bose mapping gives exact solutions

for an arbitrary external potential V (x). On the other hand, for the Lieb-Liniger model [151]

it gives exact solutions when there is no external potential, i.e., when it is zero in the region

with atoms (infinite line, half-infinite line, infinitely deep box [172]). The only exception is the

linear potential [173].
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4.1.5 Gross-Pitaevskii equation

In the regime of weak interaction, i.e., when c� 1, the wave function of the system described

by the Hamiltonian should not differ greatly from the case when there is no interaction, i.e.,

from noninteracting bosonic 1D gas. At temperature T ≈ 0 K noninteracting 1D bosonic gas

is in the state of Bose-Einstein condensate (BEC) [161]. For a fully condensed system, all

particles are in the same single particle state. We assume that in the case of weak interactions

all atoms occupy the same state and we use a Hartree or mean-field approach [161]. Atoms are

placed on the x-axis and this system is described by the Hamiltonian in Eq. (4.3). The wave

function is a symmetrized product of the single-particle wave functions φ(x) and we write the

wave function of the N-particle system as

ψB(x1,x2, . . . ,xN) =
N

∏
i=1

φ(xi). (4.9)

The normalization of the wave function φ(x) is given as
∫

dx|φ(x)|2 = 1. Now we use a vari-

ational approach and assume that the condensate wave function is ψ(x) =
√

Nφ(x), and the

according particle density n(x) = |ψ(x)|2. We can neglect terms of the order of 1/N what is

valid for large atom numbers, and find the energy functional for the N-particle wave function

E(ψ,ψ∗) =
∫

dx
(

h̄2

2m
| d
dx

ψ(x)|2 +V (x)|ψ(x)|2 + 1
2

g1D|ψ(x)|4
)
.

A solution for the wave function can be found by minimizing the energy functional under vari-

ations of ψ with the constraint that the total number of particles
∫

dx|ψ(x)|2 = N stays con-

stant [174]. This is achieved with the Lagrange multiplier µ , which is the chemical potential

ensuring constancy of the particle number. One writes δE−µδN = 0, and this gives(
− h̄2

2m
d2

dx2 +V (x)+g1D|ψ(x)|2
)

ψ(x) = µψ(x).

This equation is called Gross-Pitaevskii equation (GPE). It is a type of nonlinear Schrödinger

equation, where the total potential consists of the external potential V (x) and a non-linear term

g1D|ψ(x)|2 which describes the mean-field potential of the other atoms. Here, one can notice

that the eigenvalue is the chemical potential µ , and not the mean energy per particle E/N, what

would be the case for linear equation. It has been shown that the GPE is very successful in

describing the behaviour of BEC [174].

4.1.6 Synthetic gauge fields with ultracold atoms

Atoms as electrically neutral particles are not able to directly create magnetic phenomena. How-

ever, the core of many interesting phenomena, such as the gauge invariance, or the quantum
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Hall and Aharonov-Bohm effects, is the coupling of charged particles to the electromagnetic

fields. Moreover, it has been shown that magnetism is an important direction in the search

for intriguing topologically ordered phases [175]. Therefore, it is of great interest to look for

strategies how to create synthetic gauge fields for neutral atoms. The first synthetic magnetic

fields were achieved in rapidly rotating BECs. Here, the Coriolis force mimicks the Lorentz

force. [176, 177]. Another idea is to put the atomic gas in a specially tailored laser field. Be-

cause of the atomic interactions with light, laser field behaves as an artificial magnetic field

for neutral atoms [145, 147]. The root of this method is the analogy between the Aharonov-

Bohm phase [140] and the Berry phase [87] acquired when an atom undergoes adiabatically

a closed loop in the tailored laser field [145]. Furthermore, synthetic magnetic fields can also

be created in optical lattices. Such methods engineer the complex tunneling matrix elements

between lattice sites [178–180], where the nontrivial phases of the complex tunneling paramet-

ers are described as Peierls phases. These methods involve shaking of the optical lattice [178],

laser assisted tunneling which realizes the Harper Hamiltonian in tilted lattices [179–181] or

periodical modulation of optical honeycomb lattice which realizes the Haldane model [182].

4.2 Berry phase for a Bose gas on a 1D ring

The developments of synthetic gauge fields for ultracold atoms have opened the way for invest-

igating topological states of matter in these systems [145, 147, 176–183]. The single-particle

topological phenomena are well understood [147,183]. However, strongly interacting quantum

systems coupled to gauge fields can yield intriguing correlated topological states of matter,

which are difficult to understand [175]. It is natural to ask whether exactly solvable models

coupled to gauge fields can provide some insight. We are interested in 1D quantum particles

on a ring, which is pierced with a synthetic magnetic flux-tube (in this geometry the pertin-

ent gauge field cannot be gauged out), and explore the Berry phase [87] as the quantum gas

is stirred around the ring with an external local potential. This geometry is readily found in

atomtronics - emerging field in quantum technology seeking for ultracold-gas analogs of elec-

tronic devices and circuits [184]. An important example of an atomtronic circuit is provided by

a Bose-Einstein condensate flowing in a ring-shaped trapping potential, which can be realized

using different methods [185–190]. Such systems interrupted by one or several weak barriers

and pierced by an effective magnetic flux, have been studied in analogy with the supercon-

ducting quantum interference devices (SQUIDs) [186, 191–199]. In particular, in system with

weak barriers and weak atom-atom interaction, hysteresis effects have been evidenced [193].

The persistent current phenomenon has been theoretically characterized for 1D bosons in this

geometry, for all interaction and barrier strengths [200]. Studies of the Aharonov-Bohm (AB)

effect [20] for the density excitations propagated through the ring predicted the absence of the

AB oscillations for all interaction regimes [194, 195, 201]. The presence of disorder leads to
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crossover from AB to Al’tshuler-Aronov-Spivak oscillations, investigated in the presence of

bosonic interaction [202]. This configuration can also serve to study the dynamics of vortices

in a quantum fluid [196]. For stronger interactions and higher barriers, Bose gas confined to

a ring shaped lattice, has shown the emergence of the effective two-level system of current

states, suggesting it to be a cold-atom analog of qubit [197, 198]. Moreover, the study of bo-

sonic Josephson effect in this geometry, has shown that strongly correlated 1D bosonic system

exhibits the damping of the particle-current oscillations [199, 203].

In this section we study a system of strongly interacting one-dimensional (1D) bosons on

a ring pierced by a synthetic magnetic flux tube. By the Fermi-Bose mapping, this system is

related to the system of spin-polarized non-interacting electrons confined on a ring and pierced

by a solenoid (magnetic flux tube). On the ring there is an external localized delta-function po-

tential barrier V (φ) = gδ (φ −φ0). We study the Berry phase associated to the adiabatic motion

of delta-function barrier around the ring as a function of the strength of the potential g and the

number of particles N. The behavior of the Berry phase can be explained via quantum mechan-

ical reflection and tunneling through the moving barrier which pushes the particles around the

ring. The barrier produces a cusp in the density to which one can associate a missing charge

∆q (missing density) for the case of electrons (bosons, respectively). We show that the Berry

phase (i.e., the Aharonov-Bohm phase) cannot be identified with the quantity ∆q/h̄
∮

A ·dl. This

means that the missing charge cannot be identified as a (quasi)hole. We point out to the con-

nection of this result and our studies of synthetic anyons in noninteracting systems. In addition,

for bosons we study the weakly-interacting regime, which is related to the strongly interacting

electrons via Fermi-Bose duality in 1D systems.

4.2.1 Berry phase for one particle on a ring

We start by considering a particle confined on a ring of radius R, containing a localized delta-

function potential barrier somewhere on the ring. This particle can be a boson of a synthetic

charge q subjected to a synthetic gauge field of a solenoid carrying flux Φ placed in the center

of a ring, or an electron of electric charge q coupled with a vector potential of a solenoid with

a magnetic flux Φ. In the rest of the paper we will refer to q and Φ as to charge and flux, and

we will not distinguish the electric (i.e., real) from the artificial charge and flux which can be

engineered in ultracold atomic gases. This system is described by the Hamiltonian

H =
1

2m

(
− ih̄

R
∂

∂φ
− qΦ

2πR

)2

+ ḡδ (φ −φ0), (4.10)

where φ ∈ [−π,π]. In order to simplify calculation, we introduce the dimensionless parameters

α = qΦ/h, g = (2mR2/h̄2)ḡ > 0, and dimensionless energy ε = (2mR2/h̄2)E. Our task is to
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solve time-independent dimensionless Schrödinger equation

−
[(

∂

∂φ
− iα

)2

−gδ (φ −φ0)

]
ψ = εψ. (4.11)

For φ 6= φ0, the delta term vanishes. Thus, for φ ∈ [−π,φ0〉 we have

ψl = Ae+i(
√

ε+α)φ +Be−i(
√

ε+α)φ ,

and for φ ∈ 〈φ0,π],

ψr =Ce+i(
√

ε+α)φ +De−i(
√

ε−α)φ .

For the whole domain we write

ψ = θ(φ0−φ)ψl +θ(φ −φ0)ψr. (4.12)

Next, we impose boundary conditions: continuity of the wave function ψl(−π) = ψr(+π),

continuity of its derivative ψ ′l (−π) = ψ ′r(+π), and continuity of the wave function at φ0. This

leads us to the result

ψl =N eiα(φ+π)
(
e+i
√

ε(φ+π−φ0) sin[π(
√

ε−α)]

+ e−i
√

ε(φ+π−φ0) sin[π(
√

ε +α)]
)
,

and

ψr =N eiα(φ−π)
(
e+i
√

ε(φ−π−φ0) sin[π(
√

ε−α)]

+ e−i
√

ε(φ−π−φ0) sin[π(
√

ε +α)]
)
,

where N is the normalization constant:

N =
[
2π
(
1− cos2πα cos2π

√
ε

+
sin2π

√
ε

2π
√

ε
(cos2πα− cos2π

√
ε
))]−1/2

.
(4.13)

The energy ε can be found by integrating Eq. (4.11) around φ0, which yields ψ ′r(φ0)−ψ ′l (φ0) =

gψ(φ0), i.e., an implicit equation for the energy:

cos2πα− cos2π
√

ε = g
sin2π

√
ε

2
√

ε
. (4.14)

Note that for α = 0,1,2, . . . the energy spectrum is mapped onto itself, which means that these

cases are related by a simple gauge. Therefore it is sufficient to consider flux in the domain

α ∈ [0,1].

We are interested in the Berry phase [87] γ when the delta-function travels adiabatically
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around the ring: φ0→ φ0 +2π . The Berry phase is

γ = ∆+ i
∫ +π

−π

dφ0

∫ +π

−π

dφψ
∗ ∂

∂φ0
ψ, (4.15)

where ∆ denotes the phase difference of the wave function when parameter φ0 is at the endpoints

of a closed path [87,205]. Namely, the wave function is a single-valued function of the variable

φ , but multivalued in the parameter φ0. The phases of the wave function at endpoints ±π differ

as
ψ(φ0 =+π)

ψ(φ0 =−π)
= e2πiα ,

i.e., ∆ = 2πα . By calculating the derivatives, we obtain

γ = 2πα− (2πN )2√
ε sin2πα sin2π

√
ε. (4.16)

0 10 20 30
g

0

2

4

6

γ

α=0.3
α=0.6
2π×0.3
2π×0.6

Figure 4.1: The Berry phase as a function of the barrier height g for one particle on a ring.
The parameter α describing the flux through the ring is α = 0.3 and α = 0.6. Horizontal lines
denote the asymptotic value of the Berry phase qΦ/h̄ = 2πα for g→ ∞.

The dependence of the Berry phase on the height of the potential barrier is shown in Fig. 4.1.

For the vanishing barrier, Eq. (4.14) and Eq. (4.16) give γ = 0 when α < 0.5, and γ = 2π when

α > 0.5. Both results describe vanishing Berry phase, as expected. As the potential barrier

becomes stronger, the Berry phase increases (decreases) for α < 0.5 (α > 0.5, respectively).

In the limit of infinitely strong potential barrier g→ ∞, the Berry phase saturates at the value

γ = 2πα = qΦ/h̄. This result is equal to the Aharonov-Bohm (AB) phase [140] acquired when

one particle of charge q circles around the solenoid carrying flux Φ.
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Results shown in Fig. 4.1 can be explained through the phenomena of quantum-mechanical

tunneling and reflection. As the barrier moves, in the classical sense it pushes the particle; the

particle can tunnel through, or be reflected from the barrier. Thus, the whole probability density

(i.e., the whole charge of the particle) will generally not make a full circle around the ring, but

only a part of it. The Berry phase is the AB phase acquired by the amount of probability density

that encircled the flux tube. The particle probability density reflected from the moving barrier,

also moves around the flux tube and acquires the AB phase. In contrast, the probability density

that tunneled through the barrier does not contribute to the AB phase. For the infinite barrier

there is total reflection, i.e., one particle of charge q moved around the flux Φ, resulting in the

phase qΦ/h̄.

Finally, we generalize our result and consider a situation where the solenoid of flux Φ is

inside the ring, but at the distance r < R from the center of the ring. It can be shown that

the wave function ψR for a displaced solenoid is related to the wave function ψ by a gauge

transformation,

ψR = ψ exp
{

iα
[

arctan
(

R+ r
R− r

tan
φ

2

)
− φ

2
]}
.

Energy remains the same as in Eq. (4.14); the Berry phase in Eq. (4.16) is also unchanged since

the additional gauge factor does not depend on φ0. Thus, our previous analysis is generally valid

for a particle on ring threaded by a flux tube anywhere inside the ring.

4.2.2 Berry phase for strongly interacting bosons on a ring

Now we consider a system of N indistinguishable bosons interacting via point-like interactions

in the same configuration, described by the Lieb-Liniger model [151] with an additional gauge

term:

H =
N

∑
i=1

[
1

2m

(
− ih̄

R
∂

∂φi
− qΦ

2πR

)2

+ ḡδ (φi−φ0)

]
+ c1D ∑

1≤i< j≤N
δ (φi−φ j).

(4.17)

Here c1D is the effective 1D interaction strength. By varying c1D, the system can be tuned from

the weakly interacting regime described by the mean field theory, up to the strongly interacting

TG regime with infinitely repulsive contact interactions c1D→ ∞. In the TG limit, the interac-

tion term of the Hamiltonian can be replaced by a boundary condition on the many-body wave

function [150, 156]

ΨT G(φ1,φ2, ...,φN , t) = 0 if φi = φ j
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for any i 6= j. Now, the Hamiltonian becomes

H =
N

∑
i=1

[
1

2m

(
− ih̄

R
∂

∂φi
− qΦ

2πR

)2

+ ḡδ (φi−φ0)

]
.

The bosonic wave function ΨT G satisfying the boundary condition and the Schrödinger equation

is related to the fermionic wave function ΨF , which describes a system of N noninteracting

spinless fermions through the Fermi-Bose mapping [150]:

ΨT G = ∏
1≤ j<l≤N

sgn(φ j−φl)ΨF . (4.18)

Here, ΨF is given by the Slater determinant,

ΨF =
1√
N!

det[ψk(φ j, t)],

where ψk(φ , t) denote N orthonormal single-particle wave functions obeying a set of uncoupled

single-particle Schrödinger equations

ih̄
∂ψk

∂ t
=

[
1

2m

(
− ih̄

R
∂

∂φ
− qΦ

2πR

)2

+ ḡδ (φ −φ0)

]
ψk. (4.19)

The eigenfunctions of the single-particle Schrödinger equation are given in Eq. (4.12) with

normalization constant in Eq. (4.13). The energies of the single-particle states are given by Eq.

(4.14); bosons in the TG gas occupy states from the lowest energy state up to the N-th energy

state.

We study now the Berry phase arising when the barrier potential is set into adiabatic anti-

clockwise rotation around the ring. The Berry phase is

γ = ∆+ i
∫ +π

−π

dφ0〈ΨT G|
∂

∂φ0
|ΨT G〉, (4.20)

where ∆ is the phase difference of the wave function at the endpoints [?, 205], which is for N

particles given by

∆ = N2πα.

The second term in Eq. (4.20) is calculated by using the fact that

〈ΨT G|∂/∂φ0|ΨT G〉= 〈ΨF |∂/∂φ0|ΨF〉,

i.e., one has to calculate the Berry phase for the Slater determinant wave function. This problem

was studied in detail in [206, 207], where it was shown that the Berry phase is a sum over the
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Figure 4.2: Berry phase for N Tonks-Girardeau bosons as a function of the strength of the
barrier g for α = 0.3 (upper plot) and α = 0.6 (lower plot). The insets show the energy of the
highest occupied single-particle state as a function of g.
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Berry phases of single-particle states

γ = ∆+ i
N

∑
n=1

∫ +π

−π

dφ0〈ψn|
∂

∂φ0
|ψn〉.

In the previous section, we have already solved the one particle case in Eq. (4.16), which leads

to

γ = N2πα−
N

∑
n=1

(2πNn)
2√

εn sin2πα sin2π
√

εn. (4.21)

The dependence of the Berry phase in Eq. (4.21) on the strength of the potential barrier g is

illustrated in Fig. 4.2, for different N and α . We do not plot the phase modulo 2π for clearer

view. For g = 0, the Berry phase is zero or an integer of 2π . By increasing the barrier strength,

the Berry phase monotonically increases for α = 0.3 (decreases for α = 0.6), and saturates at

the value

γ = N2πα = NqΦ/h̄ (4.22)

in the limit g→ ∞. This is the AB phase collected when N particles of charge q circle around

the solenoid with flux Φ. Results in Fig. 4.2 can again be interpreted through the tunneling and

reflection of the particle density from the moving barrier, in the same fashion as for a single-

particle.

Here we take into account that single-particle states that contribute to the Berry phase (4.21)

have different energies, and consequently different transmission probabilities. In the inset of

Fig. 4.2 we plot the highest single-particle energy contributing to the Berry phase. For large g

this energy saturates, confirming the behavior of the Berry phase on the plot.

4.2.3 Missing density (missing charge) is not an emergent quasiparticle

The single-particle density of TG gas described by Eq. (4.18) is given as n(φ)=∑
N
k=1 |ψk|2 [150].

In Fig. 4.3 we show the single-particle density when an impenetrable delta barrier is placed at

φ0 = 0. At the position of the barrier, there is a cusp in the density. For a sufficiently large

number of particles, one can define a missing synthetic charge ∆q for the system of TG bosons,

or the missing electric charge ∆q for noninteracting electrons on the Fermi side of the mapping.

We calculate the missing charge in the thermodynamic limit, N→ ∞, R→ ∞, N/2πR = ñ0.

The coordinate space is now x = Rφ ∈ 〈−∞,∞〉. If there is no barrier, the particle density is

uniform and equal to ñ0. For simplicity, suppose that we insert an impenetrable barrier with

g→ ∞ at x = 0. In this limit, it is straightforward to calculate the single particle density,

ñ(x) = ñ0−
sin(2π ñ0x)

2πx
. (4.23)

The missing charge is

∆q = q
∫

∞

−∞

[ñ(x)− ñ0]dx =−q
2
. (4.24)
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Figure 4.3: Single-particle density for α = 0.3, N = 45 particles and infinite barrier g=∞. Inset
shows magnified view of single-particle density and horizontal blue line at (N +1/2)/2π .

Thus, the barrier induces density fluctuations which carry fractional charge −q/2.

In order to shed more light onto this result, we return to the geometry of the (finite) ring. For

N particles on the ring, in the absence of the barrier, the angular density is n0 = N/2π . We then

insert an impenetrable barrier at φ0 = 0. The energy of the k-th single-particle state for g = ∞ is

ε = k2/4, k = 1,2, . . ., and the single particle density is

n(φ) =
N

∑
k=1
|ψk|2 =

N

∑
k=1

1
2π

(1− coskφ)

=
N +1/2

2π
− 1

4π

(
sin(Nφ)

tan(φ/2)
+ cos(Nφ)

)
. (4.25)

The density n(φ) integrated over the ring gives N particles, i.e., the number of particles on

the ring is unchanged after we insert the delta barrier. The first term in Eq. (4.25), i.e., (N +

1/2)/2π , corresponds to the uniform density of N + 1/2 particles, and the second term gives

density fluctuations of the missing (−1/2) charge, in agreement with the fact that the number

of particles does not change after insertion of the barrier. This is supported with the inset

in Fig. 4.3, where we show the single-particle density n(φ), and the horizontal line at (N +

1/2)/2π , which goes through the center of the density oscillations away from the barrier.

Note that we cannot use a formula analogous to (4.24) to calculate the missing charge on

the ring, simply because
∫

π

−π
[n(φ)−n0]dφ = 0, i.e., the number of particles does not change as

we insert the delta barrier. One could try to resort to a formula such as
∫ φ∗
−φ∗[n(φ)−n0]dφ = 0,

i.e., to integrate over a region around the density dip induced by the barrier, but it is difficult

to unambiguously define the region of integration [−φ∗,φ∗] because the decay of the density

oscillations is algebraic, i.e., without a scale. However, the thermodynamic limit allows for
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an unambiguous calculation of the missing charge via Eq. (4.24), because in this limit (N +

1/2)/2πR = N/2πR = ñ0.

It may be tempting to interpret the obtained missing fractional charge as a fractional qua-

siparticle. When the delta barrier moves around the ring, one may consider the Berry phase

(or Aharonov-Bohm phase for electrons) as the phase acquired by the motion of the missing

charge. If the missing charge was caused by a quasiparticle excitation, this picture would be

correct, however, this is not the case. The Berry phase acquired for a barrier with g = ∞ is

NqΦ/h̄. On the other hand, the AB phase acquired by the motion of the missing charge around

the ring is ∆qΦ/h̄. Since ∆qΦ/h̄ 6= NqΦ/h̄ modulo 2π , we conclude that one cannot interpret

the Berry phase as the motion of the missing charge, but rather as the movement of the particles

reflected from the barrier as it pushes them around the solenoid. The cusp in the density cannot

be considered as a quasiparticle.

While this conclusion seems clear and perhaps obvious in this 1D system, we find that it

provides insight into studies of braiding of fractional fluxes in 2D electron gases in magnetic

fields [67, 204]. More specifically, consider a 2D electron gas in a magnetic field in the IQH

state. When this system is pierced with flux-tubes carrying fractional fluxes, it can be shown

that braiding of fractional fluxes has anyonic properties [204]. One can ask whether the missing

charge around these fluxes behaves as a quasiparticle [67] or not [204]. We have found, in

consistency with this report, that the missing charge around these fluxes cannot be considered

as a quasiparticle [204].

4.2.4 Berry phase for weakly interacting bosons on a ring

Now we turn to the weakly interacting regime described by the Gross-Pitaevskii theory (e.g.,

see Ref. [174]). The GP equation for our problem is given by

1
2m

(
− ih̄

R
∂

∂φ
− qΦ

2πR

)2

ψ + ḡδ (φ −φ0)ψ

+ c1DN|ψ|2ψ = µψ(φ ;φ0),

(4.26)

where µ is the chemical potential. Without loss of generality, we assumed that the solen-

oid is placed in the center of the ring. The effect of interactions is contained in a non-linear

mean field term. We are interested in the behavior of the Berry phase in dependence of the

strength of the mean field interaction c1DN. We calculate the Berry phase numerically fol-

lowing Ref. [205]. The delta barrier is approximated as a rectangular potential barrier. The

evolution parameter, angle φ0, is discretized to obtain a set of T equidistant points denoted

by φ0(t). The wave function ψ(φ ;φ0(t)), corresponding to the barrier position at φ0(t), is the

lowest single-particle eigenstate found by diagonalization of Eq. (4.26). The overlap at two
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different points is M(k, l) = 〈ψ(φ ;φ0(k))|ψ(φ ;φ0(l))〉, and the product

U = M(0,1)M(1,2)...M(T,0)

gives the Berry phase

γ0 =−arg(U).

Note that γ0 is the Berry phase per particle since we discuss now the mean field regime. The

mean-field many-body wave function is given by ∏
N
i=1 ψ(φi;φ0), from which we find the Berry

phase γ = Nγ0.

Figure 4.4: Berry phase per particle as a function of c1DN calculated in the mean field regime.
Results are shown for two values of the flux: α = 0.3 and α = 0.6, and two different barriers
corresponding to g = 10 and g = 50.

In Fig. 4.4 we show the dependence of the Berry phase per particle on the strength of the

effective potential c1DN, for different barrier strengths. With the increase of c1DN, the chemical

potential increases as well. This means that, effectively, increase of c1DN should lead to the

same trend in the behavior of the Berry phase as the decrease of the barrier strength g, since the
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states with higher energy tunnel more easily through the barrier. We see that this is indeed the

case by comparing Fig. 4.1 and Fig. 4.4. For α = 0.3 (α < 0.5), the Berry phase per particle

γ/N decreases with the increase of c1DN; the same trend occurs when g is decreased for a single

particle at α = 0.3 as depicted in Fig. 4.1. For α = 0.6 (α > 0.5), we see that γ/N increases with

the increase of c1DN; the same trend occurs when g is decreased for a single particle at α = 0.6.

This is consistent with the interpretation of the Berry phase via reflection and transmission of

the particles through the moving barrier.

∼

In conclusion, we have studied the Berry phase in a system of interacting 1D bosons on a

ring, with an external localized delta-function potential on the ring, and a synthetic solenoid

threading the ring. We have calculated the Berry phase associated to the adiabatic motion of

the delta-function potential around the ring. Results are shown for a single particle, for the

impenetrable Tonks-Girardeau bosons (where identical results hold for noninteracting spinless

electrons via Fermi-Bose mapping), and interacting bosons in the Gross-Pitaevskii mean field

regime. The behavior of the Berry phase can be explained via quantum mechanical reflection

and tunneling through the moving barrier which pushes the particles around the ring. For an

impenetrable barrier, the Berry phase is given by NqΦ/h̄, where q is the synthetic charge of

one particle, Φ is the flux through the solenoid, and N is the number of particles. These results

provide insight into systems of BECs in toroidal traps used in the context of atomtronics. In

addition, our results provide insight into the interpretation of the Berry phase obtained when

fractional fluxes piercing a 2D electron gas in the IQH state are braided [204]. An infinite

barrier expels the particle density away from itself, leading to a cusp in the density profile, to

which one can associate a missing density, i.e., a missing charge ∆q. We have shown that the

Berry phase cannot be identified with the quantity ∆q/h̄
∮

A ·dl, which shows that the missing

density (charge) cannot be identified as a (quasi)hole.
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Chapter 5

Conclusions

In three spatial dimensions particles are classified into bosons and fermions depending on

whether they obey the Bose-Einstein or the Fermi-Dirac statistics. The many-body wave func-

tion is symmetric under permutations of identical bosons, but antisymmetric under permutations

of identical fermions. According to the spin-statistics connection, bosons are particles with in-

teger spin, while fermions are particles with half-integer spin.

In 2D systems, new possibilities for statistics and spin arise. The quantum statistics is not

limited to the Bose-Einstein and the Fermi-Dirac cases, but rather it is a continuous interpolation

between bosons and fermions. Particles with any statistics in between are called anyons [3–5].

They are characterized by a fractional spin, or more generally by fractional quantum numbers.

The emergence of anyons arises from the peculiar topological properties of the configuration

space of collections of identical 2D particles [6].

The paradigmatic realization of anyons is found in the FQHE [23, 25] where localized qua-

siparticle excitations have a fractional elementary charge [25] and statistics [26, 27]. Other

systems realizing anyons are spin systems (quantum spin-liquids) which realize the Kitaev

model [8] and systems supporting Majorana zero-modes [62, 63]. Apart from the fundamental

motivation for exploring anyons, non-Abelian anyonic excitations hold potential for technolo-

gical advances, since they could be used for robust topological quantum computation [7, 8]. A

lot of work needs to be done before experiments will be able to efficiently detect and manipulate

anyons, especially for fault tolerant quantum computing [7].

In the present thesis we contribute to the study of less traditional schemes for realizing and

manipulating anyons. We have proposed an experimental realization of the original Wilczek’s

model for anyons in 2D electron gas placed in a perpendicular magnetic field, which gives rise

to the IQHE. Moreover, we have presented exact solutions of a model for synthetic anyons

in a non-interacting quantum many-body system, which was considered in [67, 68]. We have

shown that synthetic anyons cannot be considered as emergent quasiparticles. Following this

research, we have studied a system of strongly interacting bosons placed on a 1D ring pierced

by a synthetic magnetic flux tube. On the ring there is an external localized delta-function
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potential barrier and we have explored the Berry phase associated to its motion. The barrier

produces a cusp in the density and we have shown that the corresponding missing charge cannot

be identified as a quasihole.

In Chapter 1, we have reviewed the quantum statistics and introduced the concept of frac-

tional statistics and anyons. We have explained topological properties of the configuration space

of collections of identical particles, showing a crucial difference between 2D and 3D. The fun-

damental group of this space in 2D is the braid group, which is the root of anyonic statistics.

The braid group governs the exchange statistics of anyons. We have explained Abelian and non-

Abelian anyons and fusion of anyons. After the behaviour of a charged particle in an electro-

magnetic field and Aharonov-Bohm phase has been described, we have presented the prototype

of anyons, Wilczek’s charge-flux-tube composite. We have reviewed different physical realiza-

tions of anyons and described topological quantum computation, an approach to fault-tolerant

quantum computation.

In Chapter 2, we have reviewed the Quantum Hall Effect, which is the most prominent

system hosting anyons. First, we have explained the concept of the geometric phase and derived

the Berry phase when a time-dependent set of parameters is moving align a certain closed path

in the parameter space. We have interpreted Aharonov-Bohm effect in the light of the Berry

phase and defined the Berry’s phase as an important example of holonomy. Afterwards, we have

described the Quantum Hall Effect, both integer and fractional, and explained the quasiparticles

emerging in the FHQ state which behave as Abelian or non-Abelian anyons.

In Chapter 3 we have considered new mechanisms for the realization and signatures of

anyons in non-interacting systems. We have proposed an experimental realization of the original

Wilczek’s model for Abelian anyons, composites formed from charged particles and magnetic

flux tubes. First, we have proposed a scheme for realizing charged flux tubes, in which a charged

object with an intrinsic magnetic dipole moment is placed between two semi-infinite blocks of

a high-permeability µr material, and the images of the magnetic moment create an effective

flux tube. A 2D electron gas (2DEG) is placed in a perpendicular uniform magnetic field,

which gives rise to the IQHE. Then we have sandwiched the 2DEG between two semi-infinite

blocks of high-µr material, assumed to have a fast temporal response. For this system, we have

found the exact many-body wave function. We have discussed possible implementations of

the proposed system, the obstacles, and possible ways to overcome them. We have shown that

the signature of anyons is a slight shift of the Hall conductance which can be experimentally

measured. Afterwards, we have presented exact solutions of a model for synthetic anyons in

a non-interacting quantum many-body system, which was considered in [67, 68]. This model

is represented by the Hamiltonian for non-interacting electrons in 2D, in a uniform magnetic

field, pierced with solenoids with a magnetic flux that is a fraction of the flux quantum. We

have found analytically and numerically the ground state of the model when only the LLL

states are occupied. We have calculated the statistical parameter using the Berry phase and we

have shown that the ground state is anyonic in the coordinates of the probes. We have shown
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that these synthetic anyons cannot be considered as emergent quasiparticles.

Chapter 4 focuses on a system of 1D bosons coupled to synthetic gauge fields. Namely,

strongly interacting quantum systems coupled to gauge fields can yield intriguing correlated

topological states of matter which are difficult to understand. In this light, we asked whether ex-

actly solvable 1D quantum many body models coupled to gauge fields can provide some insight

into strongly correlated states. In particular, the research presented in this chapter is aimed at

deeper understanding of synthetic anyons in noninteracting systems. We have begun by review-

ing the physics of 1D interacting bosonic systems. We have explained experimental techniques

for realization of 1D models in ultracold atomic systems and how such systems can be theor-

etically described using the Lieb-Liniger model, Tonks-Girardeau model and Gross-Pitaevskii

equation. We have discussed how synthetic gauge fields can be achieved in ultracold atomic

systems. Then, we have investigated a particular system of strongly interacting bosons placed

on a 1D ring pierced by a synthetic magnetic flux tube. An external localized delta-function

potential barrier has been placed on the ring. We have studied the Berry phase associated to the

adiabatic motion of the delta-function barrier around the ring as a function of the strength of

the potential and the number of particles. The system of strongly interacting bosons has been

related to the system of noninteracting spinless fermions. We have shown that the quantum

mechanical reflection and tunneling through the moving barrier explains the behavior of the

Berry phase. Finally, we have shown that the barrier produces a cusp in the density to which we

have associated a missing charge ∆q (missing density) for the case of electrons (bosons). One

might interpret the obtained missing fractional charge as a fractional quasiparticle. However,

we have shown that the missing charge cannot be identified as a (quasi)hole. We point out that

this result is related to the studies of synthetic anyons in noninteracting systems [204], where

we have shown that local perturbations in the density around the flux tubes cannot be identified

as emergent quasiparticles.
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Poglavlje 6

Prošireni sažetak

6.1 Uvod

Kvantna statistika ima fundamentalnu teorijsku važnost u kvantno-mehaničkom pogledu na svi-

jet. Naime, fizikalno ponašanje skupine identičnih čestica nije odred̄eno samo interakcijama,

već i statistikom čestica. Identične čestice su one čestice čiji je hamiltonijan simetričan prilikom

zamjene čestica uz pretpostavku da čestice imaju ista intrinzična svojstva [1]. U kvantnoj me-

hanici identične su čestice neraspoznatljive. Ta činjenica uvodi odred̄ene simetrijske zahtjeve

na ukupnu višečestičnu valnu funkciju koja opisuje sustav mnoštva identičnih čestica prilikom

zamjene bilo koje dvije čestice. U tri prostorne i jednoj vremenskoj dimenziji [(3+1)D] postoje

samo dvije moguće simetrije i čestice su klasificirane kao bozoni i fermioni ovisno o tome prate

li Bose-Einsteinovu ili Fermi-Diracovu statistiku [1]. Višečestična valna funkcija jest simetrična

prilikom permutacije identičnih bozona te antisimetrična prilikom permutacije identičnih fer-

miona. Značajno je da su simetrijski zahtjevi blisko povezani sa spinom čestica. Prema teoremu

spina i statistike, bozoni su čestice s cjelobrojnim spinom, dok su fermioni čestice s polucje-

lobrojnim spinom [2]. Dugo vremena smatralo se da su bozoni i fermioni jedine mogućnosti

statistike. To vrijedi za čestice koje se gibaju u najmanje tri dimenzije (3D), ali u dvije dimenzije

(2D) situacija postaje zanimljivija. Naime, kvantna statistika postaje neprekidna interpolacija

izmed̄u Bose-Einsteinova i Fermi-Diracova slučaja. Čestice koje slijede necjelobrojnu statistiku

koja se javlja izmed̄u ta dva slučaja zovu se anyoni i tema su ove disertacije [3–5]. Primjenom

teorema o spinu i statistici, može se zaključiti da su anyoni karakterizirani necjelobrojnim spi-

nom, ili općenitije, necjelobrojnim kvantnim brojevima. Nove mogućnosti spina i statistike

objasnili su Leinaas i Myrheim koji su prepoznali podrijetlo koncepta necjelobrojne statistike

u neobičnim topološkim svojstvima konfiguracijskog prostora skupine identičnih čestica [6].

Veliki interes za anyonima dolazi od činjenice da ne-Abelove anyonske kvazičestice topoloških

stanja materije mogu postati grad̄evni elementi topoloških kvantnih računala koji su otporni na

greške (fault-tolerant) [7, 8]. Kvantna informacija bi u ovakvim sustavima bila topološki za-

štićena i otporna na perturbacije iz okoline. Napominjemo da se pojam statistike na zamjenu
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odnosi na fazu koju višečestična valna funkcija koja opisuje identične čestice dobije kad su bilo

koje dvije čestice adijabatski pomaknute i pritom zamijenjene [9].

Statistika se može proučiti s formalne točke gledišta [12]. Neka Md
N označava konfiguracij-

ski prostor skupine N identičnih neprobojnih čestica u d-dimenzionalnom euklidskom prostoru

Rd . Konfiguracijski prostor ovog sustava jest

Md
N =

(Rd)N−∆

SN
. (6.1)

Dvije su petlje ekvivalentne ili homotopne ako se jedna može dobiti iz druge kontinuiranom

deformacijom. Jedna klasa sastoji se od svih homotopnih petlji, a skup svih takvih klasa zove

se fundamentalna grupa π1. Petlje koje pripadaju dvama različitim elementima π1(Md
N) ne

mogu biti povezane kontinuiranim transformacijama. S točke gledišta path integrala u kvant-

noj mehanici, može se pokazati da amplituda propagatora postaje suma doprinosa pojedinih

klasa, pri čemu doprinosi imaju različite težine. Težinski faktori parcijalnih amplituda tvore

jednodimenzionalnu (1D) unitarnu reprezentaciju fundamentalne grupe π1(Md
N) [11]. Potraga

za fundamentalnom grupom tog prostora predstavlja standardni problem u algebarskoj topolo-

giji [13, 14], a citirani je rezultat

π1(Md
N) =

SN , ako d ≥ 3

BN , ako d = 2,
(6.2)

pri čemu SN označava permutacijsku grupu, a BN braid grupu N objekata.

Braid grupa BN može se algebarski predstaviti preko generatora σi, gdje je 1 ≤ i ≤ N− 1.

Generatori zadovoljavaju dvije definirajuće relacije σi braid grupe σiσi+1σi = σi+1σiσi+1 za

i = 1, . . . ,N−2 i σiσ j = σ jσi za |i− j| ≥ 2. Inverz σi označava se s σ
−1
i , element identiteta je

1, a centar BN generiran je s (σ1 . . .σN−1)
N . Bitno je napomenuti da općenito vrijedi σ2

i 6= 1.

Braid grupa BN predstavlja grupu neekvivalentnih krivulja koje se javljaju u adijabatskom

transportu N čestica. Topološke klase krivulja koje vode ove čestice of početnih položaja

R1, . . . ,RN u vremenu ti do konačnih položaja R1, . . . ,RN u vremenu t f jednoznačno se poduda-

raju s elementima braid grupe BN . Stoga se dijagrami braid brupe mogu interpretirati kao opis

vremenske evolucije identičnih čestica. Da bismo definirali kvantnu evoluciju sustava, promo-

trimo kako braid grupa djeluje na stanja kvantnog sustava. Najjednostavniji mogući slučaj je

1D reprezentacija povezana sa skalarnom kvantnom mehanikom, koja je dana kao

χ(σi) = eiθ

za sve i = 1, . . . ,N− 1, gdje je faza θ realni parametar poistovjećen sa statistikom. Kako op-

ćenito vrijedi σ2
I 6= 1, θ je bilo koji (eng. any) proizvoljni broj. Stoga se čestice s bilo kojom

statistikom zamjene definiranom braid grupom nazivaju anyoni. Ako u elementarnom pokretu
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σi jedna čestica napravi zatvorenu petlju oko druge, valna funkcija dobiva fazu 2θ . Posebni

slučajevi anyona, θ = 0,π predstavljaju bozone i fermione. 1D reprezentacija je Abelova jer re-

doslijed operacija nije važan. Ako je statistika zamjene opisana višedimenzionalnim ireducibil-

nim reprezentacijama braid grupe, imamo ne-Abelove anyone i ne-Abelovu braiding statistiku.

Takve se reprezentacije javljaju kad su valne funkcije multipleti, odnosno postoji degenerirani

skup l kvantnih stanja. Element braid grupe predstavljen je sa l× l unitarnom matricom.

6.2 Realizacije anyona

Ciklička evolucija vanjskih parametara u fizikalnom sustavu vodi na ukupnu evoluciju koja

uključuje fazu, a ovisi jedino o geometriji puta koji se prelazi u parametarskom prostoru, tj.

faza je neovisna o brzini prelaska različitih dijelova puta. Stoga se ova faza zove geometrijska

faza [81–83]. Koncept kvantne geometrijske faze generalizirao je Michael Berry 1984. go-

dine [87]. U bilo kojem kvantnom sustavu sa sporo varirajućim vanjskim parametrima koji

je podvrgnut cikličkoj adijabatskoj evoluciji, valna funkcija nakuplja netrivijalnu geometrijsku

fazu koja ovisi o detaljima evolucijskog puta, a naziva se Berryjeva faza. Berryjeva faza pred-

stavlja važan primjer holonomije u kvantnoj mehanici [92]. Aharonov-Bohm efekt predstavlja

fenomen u kojem vektorski potencijal ima fizikalno značenje iako odgovara iščezavajućem elek-

tromagnetskom polju [20]. U tom efektu valna funkcija kvantne čestice naboja q koja se giba

duž krivulje C na kojoj magnetsko polje iščezava, no vektorski potencijal A 6= 0, poprima fazni

pomak φ = q
h̄
∫
C A ·dr [1]. U radu [87] Berry je pokazao da Aharonov-Bohm faza predstavlja

manifestaciju Berryjeve geometrijske faze.

Frank Wilczek uveo je prototip anyona, objekt koji se sastoji od nabijene čestice koja intera-

gira s beskonačno dugom zavojnicom (solenoidom) [3–5]. Kad je gibanje duž solenoida zane-

mareno, dinamika se odvija u ravnini i sustav je podvrgnut zakonima 2D svijeta. Razmotrimo

nerelativističku česticu bez spina, mase m i električnog naboja q koja se giba u magnetskom

polju B beskonačno duge, tanke, cilindrično simetrične zavojnice koja prolazi kroz ishodište

i usmjerena je duž z-osi, a Φ je tok kroz zavojnicu. Da bi se odredila statistička svojstva tog

kompozita, proučavamo kvantnu mehaniku sustava takvih dviju čestica koji je opisan jednoz-

načnom, simetričnom valnom funkcijom ψ . Postupnim pomicanjem jednog kompozita oko

drugog po punoj petlji, prema Aharonov-Bohm efektu [20], ukupna faza koju valna funkcija ψ

nakupi prilikom rotacije od 2π iznosi exp(−2iqΦ/h̄).

Može se pokazati da postoji ekvivalentan opis necjelobrojne statistike gdje je efektivna in-

terakcija zamijenjena kompliciranim rubnim uvjetima. Da bi se eliminirao dugodosežni vek-

torski potencijal izmed̄u anyona, provodi se singularna baždarna transformacija tako da je A′ =
A−∇Λ(r,ϕ) = 0. Hamiltonijan postaje hamiltonijan slobodnih čestica, a transformirana valna

funkcija je ψ ′ = exp(−iqΦϕ12/π h̄)ψ , gdje je ϕ12 azimutalni kut relativnog vektora r1− r2.

Valna funkcija ψ ′ je višeznačna i zadovoljava rubni uvjet ψ ′(r2,r1) = exp(−iqΦ/h̄)ψ ′(r1,r2).
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Iz ovog se može vidjeti da ψ ′ ima Abelovu reprezentaciju braid grupe, te predstavlja anyonsku

valnu funkciju.

Cjelobrojni kvantni Hallov efekt IQHE [97, 98] i FQHE [23, 25] otkriveni su u posebnom

kontekstu poluvodičkih heterostruktura (IQHE u Si MOSFET [97] i FQHE u GaAs-AlGaAs [23]

heterospoju), koji se nalazi u jakim magnetskim poljima(∼ 10T) i niskim temperaturama(∼
mK). Sloj elektrona zatočen je na plohi izmed̄u dvaju poluvodiča, tj. heterospoju, ili izmed̄u

poluvodiča i izolatora. Niska temperatura i jako magnetsko polje zamrznu gibanje duž smjera

okomitog na sloj te se bitna dinamika odvija se u ravnini. Elektroni se u tom sloju mogu ideali-

zirati kao 2D elektronski plin (2DEG) s Coulombovom interakcijom. Osnovno opažanje QHE

jest to da dok se magnetsko polje mijenja na fiksnoj elektronskoj gustoći, Hallov otpor ostaje

konstantan na konačnim intervalima - platoima. Platoi su razdvojeni intervalima kontinuiranog

ponašanja. Vrijednost Hallove vodljivost σxy na platoima jest

σxy = ν
e2

h
, (6.3)

gdje je kvantni broj ν cijeli broj za IQHE [97, 98] ili razlomak za FQHE [23, 25]. Pokazuje se

da ν odgovara faktoru popunjenja Landauova nivoa. Na platoima je tenzor vodljivosti nedija-

gonalan, što upućuje na nedisipativan transverzalni tok kao odgovor na primijenjeno električno

polje. Hallov koeficijent izražen je preko fundamentalnih fizikalnih veličina i pokazano je da je

kvantizacijsko pravilo za QHE topološka kvantizacija [99–102]. Ova relacija eksperimentalno

je opažena s iznimno visokom preciznošću, relativna nepouzdanost je 10−10 [103].

Postoji nekoliko kandidata za fizikalnu realizaciju čestica s anyonskim svojstvima. Naj-

važniji fizikalni objekti koji se mogu opisati kao anyoni su kvazielektronska i kvazišupljinska

pobud̄enja 2D sustava elektrona u jakom magnetskom polju koji pokazuje FQHE [23–25]. Pla-

toi kvantiziranog otpora pokazuju gdje se 2DEG ponaša kao nekompresibilni fluid, što znači

da sva nabijena pobud̄enja imaju konačni energijski procjep. Kod FQHE, za faktor popunjenja

ν = 1/m za neparan m, za naboj kvazielektrona ili kvazišupljine pokazuje se da je e∗ = 1/m,

dok je statistika ovih Abelovih anyona θ = 1/m [26–28]. Općenitije, na ν = n/(2pn±1) vri-

jednost naboja je |e∗|= νe = e/(2pn±1) [94, 106]. Teorija predvid̄a da se ne-Abelovi anyoni

pojavljuju u FQH na posebnim frakcijama popunjenja [29–40], pri čemu je prvo otkriće origi-

nalno napravljeno za ν = 5/2 stanje [29]. U ultrahladnim atomskim plinovima napravljeni su

teorijski prijedlozi anyona temeljeni na oponašanju FQHE [41, 42]. Drugi primjer sustava koji

mogu imati anyonsku statistiku jest Kitaevljev model definiran na 2D spinskoj rešetci [8, 46]

gdje niskoenergijska pobud̄enja Hamiltonijana mogu biti Abelove ili ne-Abelove kvazičestice.

Ovaj model predstavlja platformu za izvod̄enje topološkog kvantnog računanja. Nadalje, slje-

deći primjer anyonskih sustava uključuje Majorana zero modove. Ne-Abelovi anyoni imena

Isingovi anyoni [62–64] pojavljuju se kao kvazičestice ili defekti koji podržavaju Majorana

zero mod.

Posljednjih godina javio se veliki interes za anyonima zbog mogućnosti korištenja takvih
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objekata u topološkom kvantnom računanju [7, 62, 80]. Naime, Kitaev je pokazao ideju da

bi se Hilbertov prostor ne-Abelovih anyona trebao promatrati kao skup kubita, pri čemu su

operacije na ne-Abelovim anyonima unitarne operacije koje se ponašaju kao kvantna vrata [8].

U ovoj shemi informacija nije pohranjena lokalno, te je nelokalni prostor stanja neprobojan na

lokalne perturbacije, što kubit čini topološki zaštićenim od pogrešaka. Ovaj pristup kvantnom

računanju otpornom na greške (fault tolerant) pri čemu se unitarna kvantna vrata dobiju iz

braiding operacija ne-Abelovih anyona poznato je kao topološko kvantno računanje [7,62,80].

6.3 Prijedlozi realizacije anyona

Rad predstavljen u ovom odjeljku objavljen je u sljedećim radovima:

• M. Todorić, D. Jukić, D. Radić, M. Soljačić, and H. Buljan, Quantum Hall Effect with

Composites of Magnetic Flux Tubes and Charged Particles, Phys. Rev. Lett. 120, 267201

(2018).

• F. Lunić, M. Todorić, B. Klajn, T. Dubček, D. Jukić, H. Buljan, Exact solutions of a model

for synthetic anyons in noninteracting systems, Phys. Rev. B 101, 115139 (2020).

U potrazi za fizikalnom realizacijom anyona, kvazičestična pobud̄enja u 2D interagiraju-

ćim višečestičnim sustavima igraju glavnu ulogu [7]. Primjer kvazičestica s necjelobrojnom

statistikom su pobud̄enja u FQHE [23–28]. Ključni sastojci u FQHE su 2D elektroni u jakom

jednolikom magnetskom polju [23] i Coulombove interakcije [24,25]. S druge strane, Coulom-

bove interakcije nisu potrebne za objašnjenje IQHE [97, 98]. Neki noviji primjeri realizacije

anyona uključuju spinske sustave [8, 46, 51, 56] i Majorana zero modove [62, 63]. Zanimljivi su

i eksperimenti u polju kondenzirane materije u slabom ili neinteragirajućem sustavu [67–69].

Med̄utim, dug je put prije nego će eksperimenti biti u mogućnosti učinkovito detektirati i mani-

pulirati anyonima, posebno za kvantno računanje otporno na greške [7,62]. Stoga postoji interes

za istraživanjem nekih manje tradicionalnih shema za realizaciju i manipulaciju anyonima.

Motivirani IQHE, ovdje razmatramo nove mehanizme realizacije i potpisa anyona u nein-

teragirajućim sustavima. Prvo predlažemo eksperimentalnu realizaciju originalnog Wilczekova

modela anyona u 2DEG smještenom u okomitom magnetskom polju koji pokazuje IQHE. Po-

kazujemo da je potpis anyona blagi pomak Hallova otpora. Nadalje predstavljamo egzaktna

rješenja modela sintetičkih anyona u neinteragirajućem kvantnom višečestičnom sustavu, koji

je razmatran u [67, 68]. Pokazujemo da je osnovno stanje anyonsko u koordinatama proba.

6.3.1 Kvantni Hallov efekt s kompozitima zavojnica i nabijenih čestica

U ovom radu predlažemo eksperimentalnu realizaciju originalnog Wilczekova modela Abelovih

anyona, kompozita nabijenih čestica i cijevi odred̄enog magnetskog toka [3–5]. Prvo predla-

žemo shemu realizacije nabijenih zavojnica, u kojoj je nabijeni objekt s intrinzičnim magnet-
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skim dipolnim momentom smješten izmed̄u dvaju polubeskonačnih blokova materijala s vi-

sokom permeabilnosti (µr), a slike magnetskog momenta stvaraju efektivnu magnetsku cijev.

Ova shema dalje se koristi u odred̄enom fizikalnom sustavu kako bi se dobio prijedlog realiza-

cije Wilczekovih anyona. Polazišna točka jest 2D elektronski plin (2DEG) smješten u okomito

jednoliko magnetsko polje koji pokazuje IQHE [97, 98]. Pretpostavimo da smjestimo 2DEG

izmed̄u dvaju polubeskonačnih blokova magnetskih materijala s velikom permeabilnošću µr,

za koje se pretpostavlja da imaju brz vremenski odgovor (u području ciklotronske i Larmo-

rove frekvencije). Elektronski spinovi (tj. magnetski dipolni momenti) bit će poravnati zbog

Zeemanova efekta, dok će materijal s velikom permeabilnošću µr inducirati magnetsku cijev

pridruženu svakom elektronu. Za ovaj sustav koristimo egzaktnu mnogočestičnu valnu funk-

ciju. Pronalazimo potpis prisutnosti anyona u ovom sustavu - Hallovu vodljivost. Hallov otpor

na platou IQHE, koji služi kao standard električnog otpora [97, 103, 104], bit će blago pomak-

nut. Diskutiramo moguće implementacije predloženog sustava, prepreke, i moguće načine da

ih prevladamo. U ovom radu potraga za materijalima s velikim µr na visokim frekvencijama

koja je u tijeku u polju metamaterijala i potraga za anyonima nalaze se na istom putu.

6.3.2 Egzaktna rješenja modela sintetičkih anyona u neinteragirajućem
sustavu

U kontekstu manje tradicionalnih shema realizacije i manipulacije anyona, vrijedi istaknuti ne-

koliko primjera eksperimenata u kondenziranoj materiji, gdje je predložena sintetizacija anyona

vezanjem slabo interagirajućih (ili neinteragirajućih) elektrona na topološki netrivijalnu poza-

dinu (ili topološki netrivijalne vanjske perturbacije) [67–69]. U ovom radu proučavamo teorijski

model sintetičkih anyona u neinteragirajućem kvantnom višečestičnom sustavu. Predstavljamo

egzaktna rješenja modela sintetičkih anyona, koja su razmotrena u [67, 68]. Sintetički anyoni

mogu se javiti u neinteragirajućem sustavu kad je perturbiran posebno skrojenim lokaliziranim

probama, koje daju traženu netrivijalnu topologiju sustava. Ovaj model predstavljen je Hamil-

tonijanom neinteragirajućih elektrona u 2D, u jednolikom magnetskom polju, kojeg probadaju

zavojnice s magnetskim tokom koji je razlomak kvanta toka. U potencijalnoj eksperimentalnoj

realizaciji modela, trebao bi postojati mehanizam koji fiksira tok u svim probama na identičnu

vrijednost za ove perturbacije da bi predstavljale sintetičke anyone. Tražimo analitički osnovno

stanje modela kad su popunjena samo stanja najnižeg Landauova nivoa. Računamo statistički

parametar koristeći Berryjevu fazu i pokazujemo da je osnovno stanje anyonsko u koordinatama

proba. Ovi rezultati potvrd̄eni su numerički. Iz rješenja nalazimo da se oko svake probe nalazi

nedostatak elektronskog naboja ∆q. Pokazujemo da se ovaj nedostatak naboja ne može identifi-

cirati s konceptom kvazičestica tako što pokazujemo da ∆q
h̄
∮

A ·dl ne odgovara Aharonov-Bohm

fazi nakupljenoj kad proba prelazi petlju u prostoru. Kao posljedica toga što se sintetički anyoni

ne mogu smatrati kvazičesticama, diskutirana su fuzijska pravila za različite mikroskopske re-

alizacije fuzijskih procesa.
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6.4 Berryjeva faza za Boseov plin na jednodimenzionalnom
prstenu

Rad predstavljen u ovom poglavlju objavljen je u sljedećem radu

• M. Todorić, B. Klajn, D. Jukić, and H. Buljan, Berry phase for a Bose gas on a one-

dimensional ring, Phys. Rev. A 102, 013322 (2020).

1D kvantni višečestični sustavi područje su interesa matematičara i fizičara već čitavo sto-

ljeće. Bethe je odredio egzaktno rješenje za 1D Heisenbergov model spina 1
2 koristeći pretpos-

tavku za valnu funkciju [149]. Nakon toga uslijedila su mnoga egzaktna rješenja drugih teorij-

skih 1D modela, uključujući rješenje Girardeaua koje opisuje neprobojni Boseov plin [150].

Jednostavni 1D modeli čija se rješenja ne mogu naći egzaktno detaljno su istraženi učinkovi-

tim pristupima posebno prilagod̄enima jednoj dimenziji. Bitan primjer je model koji su uveli

Lieb i Liniger, a koji opisuje sustav identičnih Boseovih čestica u 1D koje interagiraju preko

interakcija oblika δ - funkcije jakosti c. Ova rješenja nisu smatrana ničim više od matematičke

znatiželje koja nije važna za stvarni 3D svijet. Med̄utim, nedavni tehnološki napredak u zato-

čenju ultrahladnih atomskih plinova vodio je do eksperimentalne realizacije mnogih kvazi-1D

modela, što je oživjelo zanimanje za proučavanje teorijskih 1D modela [152–155] (za pregled

polja vidi [156]).

U eksperimentima, ultrahladni atomi stavljaju se u uske, transverzalno zatočene, efektivno

1D atomske valovode, gdje su transverzalna pobud̄enja jako potisnuta [152–155]. Ovi atom-

ski plinovi karakterizirani su Lieb-Liniger modelom [151] kontaktnih interakcija proizvoljne

snage c. U slučaju beskonačne snage interakcije (c→ ∞), takve se bozonske čestice mogu

opisati Tonks-Girardeau modelom [150]. Fermi-Boseovo mapiranje povezuje Tonks-Girardeau

bozonsku valnu funkciju s antisimetričnom višečestičnom valnom funkcijom koja opisuje plin

neinteragirajućih fermiona bez spina u 1D. Tonks-Girardeau režim eksperimentalno je postig-

nut [153–155] s atomima na niskoj temperaturi i linearnim gustoćama, te s jakim efektivnim in-

terakcijama [157–159]. U granici slabe interakcije, LL model može se opisati Gross-Pitaevskii

teorijom [160].

Atomi kao neutralne čestice ne mogu izravno proizvesti magnetske fenomene, no srž mno-

gih zanimljivih fenomena, uključujući baždarnu invarijantnost ili kvantni Hallov efekt, jest ve-

zanje nabijenih čestica i elektromagnetskih polja. Zanimljivo je, stoga, istražiti strategije stvara-

nja sintetičkih baždarnih polja za neutralne atome. Prva sintetička magnetska polja postignuta

su u brzo rotirajućim Bose-Einsteinovim kondenzatima, gdje Coriolisova sila igra ulogu Lo-

rentzove sile [176, 177]. Druga ideja je smještanje atomskog plina u posebno skrojeno lasersko

polje, gdje se zbog atomskih interakcija sa svjetlom, lasersko polje ponaša kao umjetno magnet-

sko polje za neutralne atome [145, 147]. Nadalje, sintetička magnetska polja mogu se postići u

optičkim rešetkama, gdje se kreiraju kompleksni matrični elementi tuneliranja izmed̄u stranica

rešetke [178–182].
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Razvoj sintetičkih baždarnih polja otvorio je put istraživanju topoloških stanja materije u

ultrahladnim atomskim sustavima [145,147,176–183]. Jednočestični topološki fenomeni dobro

su objašnjeni [147, 183], med̄utim, jako interagirajući kvantni sustavi vezani za baždarna polja

mogu voditi na zanimljiva korelirana topološka stanja materije koja je teško razumjeti [175].

Prirodno je stoga pitati mogu li egzaktno rješivi modeli vezani za baždarna polja dati neki

dublji uvid u takva stanja.

6.4.1 Berryjeva faza za Boseov plin na 1D prstenu

U ovom radu proučavamo sustav jako interagirajućih 1D bozona na prstenu koji probada sinte-

tička zavojnica. Preko Fermi-Bose mapiranja, ovaj sustav povezan je sa sustavom neinteragi-

rajućih elektrona polariziranog spina zatočenih na prstenu koji probada zavojnica. Na prstenu

postoji vanjska lokalizirana potencijalna barijera oblika delta funkcije V (φ) = gδ (φ−φ0). Pro-

učavamo Berryjevu fazu pridruženu adijabatskom gibanju barijere delta funkcije oko prstena

kao funkciju jakosti potencijala g i broja čestica N. Ponašanje Berryjeve faze može se objasniti

preko kvantno mehaničkog reflektiranja i tuneliranja kroz barijeru koja se giba i gura čestice

oko prstena.

Barijera proizvodi nedostatak u gustoći kojem se može pridružiti nedostatak naboja ∆q (ne-

dostatak gustoće) za slučaj elektrona (bozona). Pokazujemo da se Berryjeva faza (tj. Aharonov-

Bohm faza) ne može poistovjetiti s veličinom ∆q/h̄
∮

A ·dl. Ovo znači da se nedostatak naboja

ne može identificirati kao (kvazi)šupljina. Ukazujemo na poveznicu ovog rezultata i istraživanja

sintetičkih anyona u neinteragirajućim sustavima. Konačno, za bozone proučavamo slabo inte-

ragirajući režim, koji je povezan s jako interagirajućim elektronima preko Fermi-Bose dualnosti

u 1D sustavima.

6.5 Zaključak

U tri prostorne dimenzije čestice se klasificiraju kao bozoni i fermioni ovisno o tome slijede li

Bose-Einsteinovu ili Fermi-Diracovu statistiku. Prema vezi spina i statistike, bozoni su čestice

cjelobrojnog spina, dok su fermioni čestice polucjelobrojnog spina. U dvije dimenzije kvantna

statistika može biti neprekidna interpolacija izmed̄u bozonske i fermionske, a čestice s takvom

statistikom zovu se anyoni [3–5]. Karakterizirani su necjelobrojnim spinom. Mogućnost pos-

tojanja anyona posljedica je neobičnih topoloških svojstava konfiguracijskog prostora skupine

identičnih 2D čestica [6]. Važnu fizikalnu realizaciju anyona predstavljaju lokalizirana kvazi-

čestična pobud̄enja u FQHE [23, 25]. Druge realizacije anyona uključuju spinske sustave koji

podržavaju Kitaevljev model [8] i sustave koji podržavaju Majorana zero modove [62, 63]. Po-

red fundamentalne motivacije istraživanja anyona, ne-Abelova anyonska pobud̄enja mogu se

koristiti za robusno topološko kvantno računanje [7, 8].

Ova disertacija proučava nove sheme realizacije i manipulacije anyona. U prvom dijelu
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predloženi su novi mehanizmi realizacije i potpisa anyona u neinteragirajućim sustavima. Prvi

prijedlog jest eksperimentalna realizacija originalnog Wilczekova modela Abelovih anyona,

kompozita tvorenih od nabijenih čestica i magnetskih zavojnica u 2D elektronskom plinu koji

je smješten u okomitom magnetskom polju te pokazuje IQHE. Realizacija kompozita temelji se

na tome da je nabijeni objekt s intrinzičnim magnetskim dipolnim momentom smješten izmed̄u

dva polubeskonačna bloka magnetskog materijala velike permeabilnosti, pri čemu slike mag-

netskog momenta stvaraju efektivnu zavojnicu. Pokazali smo da je potpis anyona blagi pomak

Hallove vodljivosti koji se može eksperimentalno mjeriti. Drugi prijedlog prezentira egzaktna

rješenja modela sintetičkih anyona u neinteragirajućem kvantnom višečestičnom sustavu, koji

je razmatran u [67, 68]. Ovaj model predstavljen je hamiltonijanom sustava neinteragirajućih

elektrona u dvije dimenzije u jednolikom magnetskom polju, koji probadaju zavojnice s mag-

netskim tokom koji je razlomak kvanta magnetskog toka. Pronašli smo analitički i numerički

osnovno stanje modela, a korištenjem Berryjeve faze izračunali smo statistički parametar i po-

kazali da je osnovno stanje anyonsko u koordinatama proba. Pokazano je da se sintetički anyoni

ne mogu smatrati kvazičesticama.

Drugi dio usmjeren je na 1D sustav bozona vezanih za sintetička baždarna polja. Motiva-

cija jest u tome što jako interagirajući kvantni sustavi vezani na baždarna polja mogu voditi

do zanimljivih koreliranih topoloških stanja materije koja je teško razumjeti. Pitanje je stoga

mogu li egzaktno rješivi 1D kvantni višečestični modeli vezani za baždarna polja dati neki uvid

u jako korelirana stanja. Točnije, ovdje nas zanima dublje razumijevanje sintetičkih anyona u

neinteragirajućim sustavima. Proučili smo sustav jako interagirajućih bozona smještenih na 1D

prstenu koji je proboden sintetičkom zavojnicom. Na prstenu postoji vanjska lokalizirana bari-

jera oblika δ -funkcije. Istražena je Berryjeva faza koja se javlja zbog gibanja barijere. Barijera

stvara nedostatak naboja u gustoći, a pokazano je da se odgovarajući nedostatak naboja ne može

poistovjetiti s kvazišupljinom. Taj rezultat povezan je s proučavanjem sintetičkih anyona u ne-

interagirajućim sustavima za koje je pokazano da se ne mogu smatrati kvazičesticama [204].
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