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Zagreb, 2020.



PRIRODOSLOVNO–MATEMATIČKI FAKULTET
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SUMMARY

This work contributes to the theory of entangled multilinear singular integral forms by

giving the first characterizations of Lp boundedness of dyadic versions of these forms

associated with hypergraphs. Moreover, it establishes the first weighted estimates and

sparse domination results for such forms. The work proceeds by applying the obtained

characterizations to an open problem in probability theory. It introduces the notion of

ergodic-martingale paraproducts and establishes their boundedness and convergence in

a certain range of the Lp norms. This gives a possible answer to a classical question

by Kakutani. Finally, the work discusses connections with the removal lemmas from

arithmetic combinatorics and graph theory.

Keywords: hypergraph, singular integral forms, entangled multilinear singular inte-

gral forms, T(1)-type conditions, ergodic-martingale paraproduct, Kakutani’s question,

Lp estimates, removal lemmas
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SAŽETAK

Ovaj rad doprinosi teoriji zapetljanih multilinearnih singularnih integralnih formi tako

što daje prve karakterizacije Lp omedenosti dijadskih verzija tih formi pridruženih hiper-

grafovima. Nadalje, dokazuje prve težinske ocjene i dominaciju rijetkim operatorima za

takve forme. Rad potom primjenjuje dobivene karakterizacije na jedan otvoreni problem

u teoriji vjerojatnosti. Uvodi se pojam ergodičko-martingalnih paraprodukata i pokazuje

njihovu omedenost i konvergenciju u izvjesnom rasponu Lp normi. To daje jedan mogući

odgovor na klasično Kakutanijevo pitanje. Konačno, rad diskutira veze s lemama o uk-

lanjanju iz aritmetičke kombinatorike i teorije grafova.

Ključne riječi: hipergraf, singularne integralne forme, zapetljane multilinearne sin-

gularne integralne forme, T(1) uvjeti, ergodičko-martingalni paraprodukt, Kakutanijevo

pitanje, Lp ocjene, leme o uklanjanju
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INTRODUCTION

Entangled multilinear singular integral forms have been studied by several authors over

the last ten years; see the papers by Kovač [34], [33], Kovač and Thiele [37], Dur-

cik [10], [12], and Durcik and Thiele [18]. They recently found applications in ergodic

theory [35], [16], in arithmetic combinatorics [13], [14], to stochastic integration [38],

and within the harmonic analysis itself [15], [17]. Therefore, it would be useful to have

a reasonably general theory establishing (or characterizing) Lp bounds for these objects.

As a step in this program we take results from the papers [34] and [37], where the forms

are dyadic and indexed by bipartite graphs, and generalize them to r-partite r-uniform

hypergraphs. Some higher-dimensional instances of dyadic entangled forms were already

discussed by Kovač [33] and Durcik [11], but our hypergraph generalization prefers a

combinatorial description of the structure over a geometric one. Consequently, we can

study less symmetric entangled forms and show their estimates in an open range of Lp

spaces.

Working in a dyadic model certainly limits the applicability of our results, but this

choice is justified in several ways. First, quite often dyadic models help in developing the

techniques that are used later to approach the original, continuous-type problems. The

reader can compare the result from Chapter 2 with the work of Durcik and Thiele [18],

which is the current state-of-the-art on the continuous singular entangled forms. Second,

in some applications it is possible to transfer an estimate easily from dyadic to continuous

setting; see [33] and [17]. Third, below we formulate an entangled T(1) theorem for

dyadic forms associated with hypergraphs. Even its particular case dealing with graphs,

which was discussed in [37], has not yet been formulated in the continuous setting and

leaves an interesting open problem.

The general theory that we develop has one interesting application on the verge of
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Introduction

both probability theory and ergodic theory. There are many similarities in the behaviors

of ergodic averages and (forward or backward) martingales. Back in 1950 they inspired

Kakutani [32] to formulate an open-ended problem of finding a single concept that gener-

alizes both of these notions. He was primarily looking for “a general theorem which con-

tains both the maximal ergodic theorem and the martingale theorem” (a quote from [32]),

and both of these are results on convergence almost surely. However, one can understand

his question in a broader sense, by also considering other modes of convergence. Kaku-

tani’s question was answered in versatile ways by many different authors over the course

of the last 70 years. The most notable unifying theories were developed by Jerison [27],

Rota [48], A. and C. Ionescu Tulcea [26], Petz [45], Kachurovskii [30], and Kachurovskii

and Vershik [61]; see the survey by Kachurovskii [31]. It is also interesting to mention

a largely forgotten paper of Neveu [44], who deduced almost sure convergence of back-

ward martingales from the pointwise ergodic theorem for contractions. The question of

unifying ergodic averages and martingales still attracts some attention of the mathemati-

cal community; see the more recent papers by Podvigin [46,47], Ganiev and Shahidi [52],

and Shahidi [51].

This work attempts to approach the aforementioned question of Kakutani via bilinear

operators and in the spirit of classical harmonic analysis. Quite surprisingly, already the

simplest nontrivial bilinear objects formed by ergodic averages and discrete martingales

turns out to be somewhat involved.

In Chapter 1 we will present definitions and results needed for this dissertation. Most

of them are about very common objects and fundamental results in analysis and proba-

bility theory, which we are going to cite from [21] and [19], while other statements are

results from recent scientific articles. Along with that, we will introduce a hypergraph

setting by giving the definition of a hypergraph, which will turn out to be a direct general-

ization of a standard object from the graph theory, and certain assumptions on hypergraphs

that we consider, which will be our requirements needed for the proofs to work. We will

also shortly discuss the connections of results in this dissertation with removal lemmas,

which are another interesting topic, this time in combinatorics. These lemmas inspired

the proofs of the aforementioned results on multilinear singular integrals.
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Introduction

In Chapter 2 we will introduce a singular integral form corresponding to a perfect

dyadic Calderón-Zygmund kernel K and associated with a hypergraph H =(V,E) in a way

that its formula will be expressed in terms of the set of edges E, along with corresponding

vertices that each edge e ∈ E contains. At the level of a precise formula, it will be defined

as

ΛE (F) :=
∫
Rn

Å
∏
e∈E

Fe(xe)

ã
K(x)dx.

We will consider Lp boundedness of this form where the range of exponent pe for each

function Fe will be 〈de,∞], where de is a constant determined by the structure of the given

hypergraph. In Section 2.1 we will state the main result, which was also published in

the form of an article [58]. We will show that the boundedness is equivalent to several

other conditions, such as: the weak boundedness property and the T(1)-type condition; Lp

boundedness for only one choice of exponents in stated range; domination by the sparse

form; the weighted Lp boundedness for certain tuples of Muckenhoupt weights. In order

to obtain such result, in Section 2.2 we are proving Lp boundedness of a similarly defined

form ΛE,S where the kernel K will be replaced with a much simpler one; more precisely,

with

∑
Q=I1×···×Ir∈Cr

|Q|
r

∏
i=1

(
∏

v(i)∈S(i)
h1

Ii
(xv(i)) ∏

v(i)∈(S(i))c

h0
Ii
(xv(i))

)
,

where h0 and h1 are L1-normalized Haar functions; see (1.16). We are going to show

estimates using an induction on a certain collection of hypergraphs, a telescoping formula

for certain expressions and estimates of the form that is localized on a finite convex tree,

where we will also apply a stopping time argument. In Section 2.3 we are going to

consider paraproducts ΛS
E which sum over all observed tuples of vertex-sets S, decompose

the form ΛE of main interest, and lead to localized estimates for ΛE . In Section 2.4 we

will prove the required characterizations of Lp boundedness.

In Chapter 3 the main object of interest are the ergodic-martingale paraproducts, de-

fined as the sequence (Πem
n )n∈N0 of bilinear operators given with

Π
em
n ( f ,g) :=

n−1

∑
i=0

(Abaic f )(E(g|Gi+1)−E(g|Gi)).

Here An f stands for n-th Cesàro average of a function f , with a certain transformation

given, and (Gi)i∈N0 is a decreasing sequence of σ -algebras, so that E(g|Gn) stands for the

3
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n-th term of a backward martingale (E(g|Gi))i∈N0 . We will give a proof (later published

in the form of the paper [36]), that the sequence (Πem
n ( f ,g))n∈N0 converges in Lr space

for r ∈
[
1, 4

3

]
and p,q∈

[4
3 ,4
]
, for every f ∈ Lp and g∈ Lq, and assuming 1

r =
1
p +

1
q . The

question of convergence will turn out to be equivalent to the same question for a similar

paraproduct (Πme
n ( f ,g))n∈N0 where

Π
me
n ( f ,g) :=

n−1

∑
i=0

(Abai+1c f −Abaic f ))E(g|Gi+1),

which is why the main focus in the proofs will be only on the first sequence mentioned.

The convergence of this sequence will follow from its Lr boundedness, which we will

show by gradually performing various reductions. In Subsection 3.2.6 we will deduce the

estimate for the triple of exponents (p,q,r) = (4,2,4) and then, in Subsection 3.2.7, we

will use additional techniques (such as multilinear interpolation) of expanding the region

of exponents in order to obtain the required estimate.

4



1. DEFINITIONS AND PRELIMINARY

RESULTS

In this chapter we will list definitions of basic objects that we plan to work with in this

dissertation and we will state various results from the analysis, probability theory, and

ergodic theory. Most of these definitions and results are fundamental and commonly

applied in various texts, while some of them are objects of interest in most recent articles.

We will also introduce hypergraph setting with conventions required for the proofs to

follow.

Some results in this section will be accompanied with complete proofs, while the

others will come with references to the existing literature. We will prefer to prove those

results that are either slightly non-standard, or will be applied in slightly nonstandard

formulations.

1.1. ANALYSIS

For a locally integrable function F and any bounded measurable set S ⊆ Rr of strictly

positive Lebesgue measure |S|> 0 we introduce the notation

[F ]S :=
1
|S|

∫
S

F(x)dx.

In words, [F ]S is simply the average of F on S.

For nonnegative quantities A and B we write A. B if A≤CB holds with some unim-

portant finite constant C. If we wish to emphasize that the exact value of the constant C

depends on some of the parameters that appear in our calculations, we are going to write

those parameters as lower indices of the symbol.. For example, if A≤C(p,q,r)B, where

5



Definitions and preliminary results Analysis

C(p,q,r) is a constant that depends (only) on p,q and r, we will write A.p,q,r B.

With this notation our goal will be to write down all the parameters that influence

the value of the constant, but also to indirectly imply that the constant does not depend

on other factors appearing in the calculations. This will be important for some estimates

where the dependance on certain parameters might affect proofs in undesireable ways.

For the rest of this section let us observe a fixed measure space (X ,F ,µ). Recall that

the measure space is finite if µ(X) < ∞ and it is a probability space if µ(X) = 1. If not

stated otherwise, definitions and results in this section, as well as some additional details,

can be found in [21].

The next theorem is a well known result in real analysis theory, which we are going

to use in two of its variants. One is commonly stated as follows.

Theorem 1.1.1. (Jensen’s inequality) Let (X ,F ,µ) be a probability space, g : X → R

an F -measurable function such that
∫

X |g(x)|dµ(x)< ∞, and let F : R→R be convex on

[a,b], meaning F(λ s+(1−λ )t)≤ λF(s)+(1−λ )F(t) for each s, t ∈ [a,b] and λ ∈ [0,1].

Then we have

F
Å∫

X
gdµ

ã
≤
∫

X
F ◦gdµ.

In completely analogous way it can be shown that if F is a concave on [a,b], meaning

the reverse inequality F(λ s+(1−λ )t)≥ λF(s)+(1−λ )F(t) is valid for each s, t ∈ [a,b]

and λ ∈ [0,1], then we have the reverse integral inequality F (
∫

X gdµ)≥
∫

F ◦gdµ.

Definition 1.1.2. If for a certain statement exists a set E ∈F such that the statement

is valid for all x ∈ E and µ(Ec) = 0, then we will say that the statement is true almost

everywhere.

If µ(X) = 1, then we will say that the stament is true almost surely.

One of the most fundamental functional spaces in real analysis is defined as follows.

First, assume that p ∈ 〈0,∞〉 and denote

‖F‖p :=
Å∫

X
|F |p(x)dµ(x)

ã 1
p

and

‖F‖∞ := inf{t ∈ [0,∞] : µ({x ∈ X : |F(x)|> t}) = 0}.

6



Definitions and preliminary results Analysis

We define the Lebesgue space as

Lp(X) := {F : X → C : F is measurable and ‖F‖p < ∞}.

It can be shown that Lp(X) is a vector space for each p ∈ 〈0,∞]; moreover, in cases

p ∈ [1,∞] it is a normed vector space with additional identification that two functions are

considered the same if they are identical µ-almost everywhere. Also, the value ‖F‖∞

turns out to coincide with

‖F‖∞ = ess supx∈X |F(x)|

where ess supx∈X stands for supremum on X up to sets of µ-measure 0.

For each p ∈ 〈0,∞〉 we define the additional quantity

‖F‖p,∞ :=

Ç
sup

α∈〈0,∞〉
α

p
µ({x ∈ X : | f (x)|> α})

å 1
p

.

Now we define the weak Lebesgue space as

Lp,∞(X) := {F : X → C : F is measurable and ‖F‖p,∞ < ∞}.

To be more precise and to emphasize the underlying set on which we observe each of these

values, we introduce additional notations ‖F‖Lp(X) := ‖F‖p and ‖F‖Lp,∞(X) := ‖F‖p,∞.

Another variant of such spaces that we will consider is known as the weighted Lp

space along with the weight w, denoted as Lp(w) and defined as the standard Lp space

according to the measure ν such that dν = wdλ , w being a nonnegative function and λ

being the standard Lebesgue measure.

One of the most important inequalities in the measure theory is the well known

Hölder’s inequality which gives an L1 estimate of the product of two functions. For the

purposes of our proofs we will state its more general version.

Theorem 1.1.3. (Generalized Hölder’s inequality) Let n ∈ N, r ∈ [1,∞] and suppose

that p j ∈ [1,∞] for each j ∈ {1, . . . ,n} such that ∑
n
j=1

1
p j

= 1
r . If f j ∈ Lp j(X) for each

j ∈ {1, . . . ,n}, then ∏
n
j=1 f j ∈ Lr(X) and ‖∏

n
j=1 f j‖Lr(X) ≤∏

n
j=1 ‖ f j‖Lp j (X).

The most common application of this theorem will be for n = 2,r = 1 and p1 = p2 = 2

which, in real analysis theory, is also known as the Cauchy-Schwarz inequality.

A direct consequence of Hölder’s inequality is that the function p 7→ Lp(X) on [1,∞]

is decreasing with respect to the set inclusion if the initial measure space is finite.

7



Definitions and preliminary results Analysis

Proposition 1.1.4. If µ(X)< ∞ and 0 < p < q≤∞ then Lq(X)⊆ Lp(X) and ‖ f‖Lp(X)≤

‖ f‖Lq(X)µ(X)
1
p−

1
q .

Each F -measurable function f : X → C that takes finitely many values is called a

simple function. Equivalently, f is a finite linear combination of indicator functions of

sets from F .

Lemma 1.1.5. (a) If f : X→ [0,∞] is measurable, there is a sequence (ϕn)n∈N of sim-

ple functions such that 0≤ ϕn ≤ ϕn+1 ≤ f for each n∈N, limn→∞ ϕn = f pointwise

and limn→∞ ϕn = f uniformly on any set on which f is bounded.

(b) If f : X → C is measurable, there is a sequence (ϕn)n∈N of simple functions such

that 0≤ |ϕn| ≤ |ϕn+1| ≤ | f |, limn→∞ ϕn = f pointwise and limn→∞ ϕn = f uniformly

on any set on which f is bounded.

As a consequence, the family of all simple functions is dense in Lp(X), meaning that

there exists a sequence (ϕn)n∈N of simple functions such that limn→∞ ‖ f −ϕn‖Lp(X) = 0.

One of the most interesting topics in harmonic analysis is obtaining Lp estimates for

certain operators. Usually we try to make the range of p ∈ [1,∞] as large as possible for

which we have boundedness of the operator, which may also give us the answers to some

related interesting questions. The following theorem shows that it is enough to prove

boundedness for two different pairs of exponents in order to derive the conclusion for all

intermediate values.

Theorem 1.1.6. (The Marcinkiewicz interpolation theorem) Let (X ,M ,µ), (Y,N ,ν)

be measure spaces and p0, p1,q0,q1 ∈ [1,∞] such that p0 ≤ q0, p1 ≤ q1 and q0 6= q1 and

1
p
=

1− t
p0

+
t
p1

and
1
q
=

1− t
q0

+
t

q1
where 0 < t < 1.

If T is a sublinear map from Lp0(X)+Lp1(X) to the space of measurable functions on Y

and if there exist constants C0,C1 ∈ 〈0,∞〉 such that for each measurable function f we

have

‖T f‖Lq0,∞(X) ≤C0‖ f‖Lp0(X) and ‖T f‖Lq1,∞(X) ≤C1‖ f‖Lp1(X), (1.1)

then there exists a constant Cp ∈ 〈0,∞〉 such that for each measurable function f we have

‖T f‖Lq(X) ≤Cp‖ f‖Lp(X).

8



Definitions and preliminary results Analysis

Another variant of this theorem is stated with the assumption that T is the linear opera-

tor and that we have ‖T f‖Lq0(X) and ‖T f‖Lp0(X) in place of ‖T f‖Lq0,∞(X) and ‖T f‖Lp0,∞(X)

in (1.1), in which case it is also known as the Riesz-Thorin theorem.

A dyadic BMO-seminorm is defined as

‖F‖BMO(Rr) := sup
Q∈Cr

Ç
1
|Q|

∫
Q

∣∣∣∣F(x)− 1
|Q|

∫
Q

F(y)dy
∣∣∣∣2 dx

å 1
2

. (1.2)

Here, Cr stands for a collection of dyadic cubes; see (1.15) for precise definition.

Before we give a useful proposition related to these seminorms, let us state a useful

estimate that can be found in [57].

Lemma 1.1.7. (The John-Nirenberg inequality) There exist constants C1,C2 ∈ 〈0,∞〉

such that for each t ∈ 〈0,∞〉 and each dyadic cube Q ∈ Cr we have

|{x ∈ Q : | f (x)− [ f ]Q|> t}| ≤C1e
− C2t
‖ f‖BMO |Q|.

The previous lemma helps us giving a valuable characterization of the BMO-semi-

norm (which works not only for the dyadic variant that we consider here, but also in

greater generality).

Proposition 1.1.8. For each p ∈ [1,∞〉 we have

‖F‖BMO(Rr) ∼p sup
Q∈Cr

Å
1
|Q|

∫
Q

∣∣∣∣F(x)− 1
|Q|

∫
Q

F(y)dy
∣∣∣∣p dx
ã 1

p

.

This means that the BMO-seminorm could be defined with any exponent p that we

prefer. For the proofs to follow the best choice for the definition seems to be p = 2 while

in the literature it is also common to define the BMO space with p = 1.

Proof. Let us denote

‖F‖BMO,p := sup
Q∈Cr

Å
1
|Q|

∫
Q

∣∣∣∣F(x)− 1
|Q|

∫
Q

F(y)dy
∣∣∣∣p dx
ã 1

p

and fix Q ∈ Cr. By Proposition 1.1.4 applied to the measure Q 7→ 1
|Q|λ , where λ is the

Lebesgue measure,

1
|Q|

∫
Q

∣∣∣∣F(x)− 1
|Q|

∫
Q

F(y)dy
∣∣∣∣dx≤

Å
1
|Q|

∫
Q

∣∣∣∣F(x)− 1
|Q|

∫
Q

F(y)dy
∣∣∣∣p dx
ã 1

p

.
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Let us try to obtain some form of inverse inequality (up to a multiplicative constant). We

are going to use the well known layer cake representation (which is an easy consequence

of the Fubini-Tonelli theorem) which, for a general measure space (X ,F ,µ) and an F -

measurable function f gives us:

‖ f‖p
Lp(X)

=
∫

∞

0
pt p−1

µ({x ∈ X : | f (x)|> t})dt.

Let us apply this to the function x 7→ F(x)− [F ]Q on a space of Lebesgue measure

(Rr,B(Rr),λ ) restricted to the set Q. Additionally, the application of Lemma 1.1.7 gives

us ∫
Q
|F(x)− [F ]Q|pdx = p

∫
∞

0
t p−1 |{x ∈ Q : |F(x)− [F ]Q}|> t|dt

≤C1 p|Q|
∫

∞

0
t p−1e

− C2t
‖F‖BMO,1 dt.

By substituting s := C2t
‖F‖BMO,1

we obtain

1
|Q|

∫
Q
|F(x)− [F ]Q|pdx≤

Ç
C1 p

Cp−1
2

∫
∞

0
sp−1e−sds

å
‖F‖p

BMO,1.

The integral appearing inside the brackets on the right side of the inequality is convergent

and can be recognized as the value of the Gamma function at p.

Finally, by taking the supremum over all Q ∈ Cr we obtain

‖F‖BMO,1 ≤ ‖F‖BMO,p ≤Cp‖F‖BMO,1

where Cp :=
Å

C1 p
Cp−1

2

∫
∞

0 sp−1e−sds
ã 1

p
. The statement of this Proposition follows by recog-

nizing ‖F‖BMO,2 = ‖F‖BMO(Rr) and

‖F‖BMO(Rr) ≤C2‖F‖BMO,1 ≤C2‖F‖BMO,p ≤C2Cp‖F‖BMO,1 ≤C2Cp‖F‖BMO(Rr).

�

Let us close this section with definitions of a few less familiar objects that we are

going to observe in this thesis.

The notion of sparse collections of cubes and the associated sparse forms was in-

troduced by Lerner [40]; the reader can also compare the dyadic setting of Lerner and

Nazarov [41]. Since we are dealing with multilinear forms, we will need the multilinear

modification of the theory developed by Culiuc, Di Plinio, and Ou [8], so several major

concepts and many ideas of proofs will be adapted from that paper.

10
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Definition 1.1.9. For a fixed c > 0 we say that S ⊆ Cr is a sparse family if it is a

collection of dyadic cubes such that, for each Q∈S , there exists a measurable set EQ⊆Q

with the following properties:

• for each Q ∈S we have |EQ| ≥ c|Q|,

• for each Q,Q′ ∈S ,Q 6= Q′, sets EQ and EQ′ are mutually disjoint.

A sparse (multisublinear) form associated with S is given by

ΘS (F) := ∑
Q∈S
|Q|∏

e∈E
[|Fe|de]

1
de
Q ,

where de ∈ [1,∞〉, e ∈ E are some numbers, while F = (Fe)e∈E is a tuple of measurable

functions.

Intuitively, elements of sparse family are those dyadic cubes that are mutually disjoint

in certain volumes that are large enough in terms of the Lebesgue measure (i.e., that take

at least 100 · c percent of the whole cube).

Once again, we merely adapt the trilinear setting from the paper [8] by Culiuc, Di

Plinio, and Ou. Given the set E and a tuple of integers d = (de)e∈E , let p = (pe)e∈E be an

arbitrary tuple of exponents from [1,∞] such that pe > de for each e ∈ E and ∑e∈E
1
pe
= 1.

Also, let w = (we)e∈E be a tuple of strictly positive functions satisfying

∏
e∈E

w
1
pe
e ≡ 1. (1.3)

We will define the multilinear Muckenhoupt constant of the tuple w to be an expression

[w]p,d := sup
Q∈Cr

∏
e∈E

[
w
−de

pe−de
e

] 1
de−

1
pe

Q .
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1.2. PROBABILITY

In this section we are going to consider a fixed probability space, denoted as (Ω,F ,P).

All of the definitions and results, as well as some of the comments in this section, with

the exception of the last stated Theorem 1.2.13, are from [19].

Definition 1.2.1. Let X be a random variable such that E|X | < ∞ and let G ⊆F be a

σ -algebra. A conditional expectation of X with respect to G is any G -measurable random

variable Y such that we have

E(X1A) = E(Y1A) for each A ∈ G .

Such random variable exists and is unique P|G -almost everywhere; P|G stands for a

probability obtained by restricting P to σ -algebra G . We introduce the notation E[X |G ]

for such Y .

Notice from this definition that, if X is G -measurable, then E(X |G ) = X P-almost

surely. In fact, we have a slightly more general statement.

Theorem 1.2.2. If X is G -measurable and Y is any random variable such that Y,XY ∈

L1(Ω), then

E(XY |G ) = XE(Y |G ).

Definition 1.2.3. A sequence (Gn)n∈N0 is a filtration if it is an increasing sequence of

σ -algebras, meaning Gn ⊆ Gn+1 for each n ∈ N0.

A sequence X = (Xn)n∈N0 of random variables is a martingale if for each n ∈ N0 we

have E|Xn|< ∞, Xn is Gn-measurable and

E(Xn+1|Gn) = Xn.

If the sign “=” in this equation is replaced with “≤” or “≥”, then X is called, respectively,

supermartingale or submartingale.

Intuitively, the best prediction of value Xn+1(ω) for each ω ∈Ω (the value of the mar-

tingale at the following moment n+1), considering information that we have at moment

n (which is what Gn contains) would be to go for the value Xn(ω) (the value at the current

moment n).

12
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In a similar way we can look at martingales reversed in time, which motivates the

following similar definition.

Definition 1.2.4. A sequence (Gn)n∈N0 is a backward filtration if it is a decreasing se-

quence of σ -algebras, meaning Gn ⊇ Gn+1 for each n ∈ N0, and such that G0 = F .

A sequence X = (Xn)n∈N0 of random variables is a backward martingale if for each

n ∈ N0 we have E|Xn|< ∞, Xn is Gn-measurable and

E(Xn|Gn+1) = Xn+1.

If the sign “=” in this equation is replaced with “≤” or “≥”, then X is called, respectively,

backward supermartingale or backward submartingale.

In order to emphasise which of these two objects we are observing, sometimes we

will refer to the objects from Definition 1.2.3 as the forward filtration and the forward

martingale. The most common example of both forward and backward martingale (de-

pending on whether (Gn)n∈N0 is a forward or a backward filtration) and also the one we

are going to observe in this dissertation is (E( f |Gn))n∈N0 for any function f ∈ Lp(Ω),

where p ∈ [1,∞〉. It can be shown that every Lp-bounded backward martingale arises this

way.

Proposition 1.2.5. (a) Let (Xn)n∈N0 be a (forward) martingale. For each i, j ∈ N0,

j < i we have

E
(
E( f |Gi)|G j

)
= E

(
E( f |G j)|Gi

)
= E( f |G j).

(b) Let (Xn)n∈N0 be a backward martingale. For each i, j ∈ N0, j < i we have

E
(
E( f |Gi)|G j

)
= E

(
E( f |G j)|Gi

)
= E( f |Gi).

Take any n,m ∈ N0 such that n > m. From Definition 1.2.3 and Proposition 1.2.5,

since Xm is Gm-measurable, we can notice that

E(Xn|Gm) = E(E(Xn|Gn−1)|Gm) = E(Xn−1|Gm).

We can continue lowering the index of a random variable inside conditional expectation

by repeating this procedure n−m−1 times in order to get

E(Xn|Gm) = E(Xm|Gm) = Xm.

13
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It is also well known that the conditional expectation is a contraction in Lp(Ω). The

proof easily follows by using Jensen’s inequality for conditional expectation.

Theorem 1.2.6. Let p ∈ [1,∞]. We have

‖E(g|F )‖Lp(Ω) ≤ ‖g‖Lp(Ω).

Notice that, for any p ∈ [1,∞], n ∈ N0 and a (forward) martingale (Xn)n∈N0

‖Xn‖Lp(Ω) = ‖E(Xn+1|Gn)‖Lp(Ω) ≤ ‖Xn+1‖Lp(Ω),

from which follows that (‖Xn‖Lp(Ω))n∈N0 is an increasing sequence of nonnegative real

numbers.

We are going to use the following two theorems on martingale convergence.

Theorem 1.2.7. (Martingale convergence theorem) If (Xn)n∈N is a submartingale with

supn∈NEX+
n < ∞, then (Xn)n∈N0 converges almost surely to a limit X with E|X |< ∞.

Consequently, if (Xn)n∈N is a nonnegative supermartingale, the sequence converges

almost surely.

Theorem 1.2.8. (Dominated convergence theorem for conditional expectations) Sup-

pose Xn,X and Z, n ∈ N, are random variables such that limn→∞ Xn = X P-almost surely

and |Xn| ≤ Z for all n ∈ N0 where EZ < ∞. Let (Gn)n∈N0 be a (forward) filtration and

denote G∞ := σ(∪∞
n=0Gn). We have

lim
n→∞

E(Xn|Gn) = E(X |G∞) P− almost surely.

We will need a theorem of convergence similar to the previous one, for backward

filtration.

Theorem 1.2.9. Let X be a random variable and let (Gn)n∈N0 be a backward filtration.

Denote G∞ := ∩∞
n=0Gn. We have

lim
n→∞

E(X |Gn) = E(X |G∞) P− almost surely and in L1(Ω).

Because of Proposition 1.1.4 we can conclude that the convergence in Theorem 1.2.9

is also valid in Lp(Ω) for each p ∈ [1,∞].

14
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Definition 1.2.10. Let (Gn)n∈N0 be a (forward) filtration. A stopping time is any random

variable N : Ω→ N0∪{∞} such that {N = n} ∈Fn for each n ∈ N0.

For any sequence (Xn)n∈N0 we define XN as the random variable such that

XN = Xn on {N = n}, n ∈ N0.

Additionally, if P(N = ∞)> 0 and if limn→∞ Xn exists almost surely on {N = ∞}, then we

define XN = limn→∞ Xn on {N = ∞}.

It is easy to verify that, by replacing the condition {N = n} ∈Fn in the definition of

the stopping time with {N ≤ n} ∈Fn, we obtain the equivalent definition.

Theorem 1.2.11. If (Xn)n∈N0 is a martingale, then for any stopping time N the sequence

(Xmin{N,n})n∈N0 is also a martingale with respect to the same filtration.

Theorem 1.2.12. If (Xn)n∈N0 is a martingale such that Xn ∈ Lp(Ω) for each n ∈N0, then

a martingale (Xmin{N,n})n∈N0 also satisfies Xmin{N,n} ∈ Lp(Ω) for each n∈N0 and we have

‖Xmin{N,n}‖Lp(Ω) ≤ ‖Xn‖Lp(Ω).

The next theorem is a result from [24]. We are going to use a statement and present a

proof that can be found in [25].

Theorem 1.2.13. (The Gundy decomposition) Let f =( fn)n∈N0 be a martingale in L1(Ω)

on a probability space (Ω,F ,P). For every α > 0 there exists a decomposition

f = g+b+h,

where g, b and h are martingales with respect to the same filtration, such that

g0 = f0, b0 = h0 ≡ 0,

and the following estimates hold for all n ∈ N0:

‖gn‖L∞(Ω) ≤ 2α, ‖gn‖L1(Ω) ≤ 4‖ fn‖L1(Ω), (1.4)

P( max
0≤m≤n

|bm|> 0)≤ 3α
−1‖ fn‖L1(Ω), (1.5)

n−1

∑
m=0
‖hm+1−hm‖L1(Ω) ≤ 4‖ fn‖L1(Ω). (1.6)
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Proof. We will first prove the theorem in the case when | f0| < α P-almost everywhere.

Let us define stopping times

T := min{n ∈ N0 : | fn|> α},

S := min
ß

n ∈ N0 :
n+1

∑
k=1

E(1{T=k}| fk− fk−1||Gk−1)> α

™
.

Note that T ≥ 1. Now, let

g0 := f0, gn := fmin{n,S,T−1}+
min{n,S}

∑
k=1

E(1{T=k}( fk− fk−1)|Gk−1), n ∈ N,

bn := fn− fmin{n,S,T}, n ∈ N0,

hn := 1{T≤min{n,S}}( fT − fT−1)−
min{n,S}

∑
k=1

E(1{T=k}( fk− fk−1)|Gk−1), n ∈ N0.

We can readily check that b0 = h0 ≡ 0 P-almost everywhere. Also, for each n ∈ N,

gn +bn +hn = fn +1{T≤min{n,S}}( fT − fT−1)− ( fmin{n,S,T}− fmin{n,S,T−1}) = fn.

We also need to confirm that these three constructed sequences are indeed martingales.

We have

E(gn+1|Gn) = E
Å

fmin{n+1,S,T−1}+
min{n+1,S}

∑
k=1

E(1{T=k}( fk− fk−1)|Gk−1)

∣∣∣∣Gn

ã
=E
Å

f0 +
n+1

∑
k=1

1{k≤min{S,T−1}}( fk− fk−1)+
min{n,S}

∑
k=1

E(1{T=k}( fk− fk−1)|Gk−1)

+1{S≥n+1}E(1{T=n+1}( fn+1− fn)|Gn)

∣∣∣∣Gn

ã
= f0 +

n+1

∑
k=1

E(1{k≤S}1{k+1≤T}( fk− fk−1)|Gn)

+E
Å n

∑
k=1

1{k≤S}E(1{T=k}( fk− fk−1)|Gk−1)

∣∣∣∣Gn

ã
+E(1{S≥n+1}E(1{T=n+1}( fn+1− fn)|Gn)|Gn)

= f0 +
n

∑
k=1

1{k≤S}1{k+1≤T}E( fk− fk−1|Gn)+1{n+1≤S}E(1{n+2≤T}( fn+1− fn)|Gn)

+
n

∑
k=1

1{k≤S}E(E(1{T=k}( fk− fk−1)|Gk−1)|Gn)

+1{S≥n+1}E(1{T≥n+1}( fn+1− fn)|Gn)−1{S≥n+1}E(1{T>n+1}( fn+1− fn)|Gn)
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= f0 +
n

∑
k=1

1{k≤min{S,T−1}}( fk− fk−1)+1{n+1≤S}E(1{n+2≤T}( fn+1− fn)|Gn)

+
n

∑
k=1

1{k≤S}E(1{T=k}( fk− fk−1)|Gk−1)+1{S≥n+1}1{T≥n+1}(E( fn+1|Gn)− fn)

−1{S≥n+1}E(1{T≥n+2}( fn+1− fn)|Gn)

= fmin{n,S,T−1}+
min{n,S}

∑
k=1

E(1{T=k}( fk− fk−1)|Gk−1) = gn.

We have applied Theorem 1.2.2 on several occasions: in fourth equality, since {k ≤ S}=

{S > k− 1} = {S ≤ k− 1}c ∈ Gk−1 ⊆ Gk for each k ∈ {1, . . . ,n+ 1} and, analogously,

{k+1≤ T} ∈ Gk ⊆ Gn for each k ∈ {1, . . . ,n}, and again in fifth equality as {T ≥ n+1} ∈

Gn. Notice that the obtained inequality is also valid for n = 0. This means that (gn)n∈N0 is

indeed a martingale with respect to the filtration (Gn)n∈N0 . Now we can easily verify that

the sequences (bn)n∈N0 and (hn)n∈N0 are martingales, as well. Indeed, directly from the

Definition 1.2.3 we can verify that the sum and the difference of two martingales is also a

martingale, which, along with Theorem 1.2.11 proves that (bn)n∈N0 is a martingale. Same

conclusion follows for (hn)n∈N0 as hn = fn−gn−bn for each n ∈ N0.

Now let us show the required estimates in stated order. We can readily check that

‖g0‖L∞(Ω) = ‖ f0‖L∞(Ω) < 4α and ‖g0‖L1(Ω) = ‖ f0‖L1(Ω) ≤ 4‖ f0‖L1(Ω). Notice that, by

Theorem 1.2.6,

‖gn‖L∞(Ω) ≤ ‖ fmin{n,S,T−1}‖L∞(Ω)+

∥∥∥∥min{n,S}

∑
k=1

E(1{T=k}| fk− fk−1||Gk−1)

∥∥∥∥
L∞(Ω)

≤ α +α = 2α.

The last inequality follows from the definitions of T and S, since they present the smallest

number n ∈ N0 for which these inequalities are valid (given ω ∈Ω). In order to estimate

L1(Ω) norm of gn, first note that

‖ fmin{n,S,T−1}‖L1(Ω) ≤ ‖1{T>n} fmin{n,S,T−1}‖L1(Ω)+‖1{T≤n} fmin{n,S,T−1}‖L1(Ω)

≤ ‖ fmin{n,S,T−1}‖L1(Ω)+‖1{T≤n}α‖L1(Ω) ≤ ‖ fn‖L1(Ω)+αP(T ≤ n)

= ‖ fn‖L1(Ω)+αP( max
0≤m≤n

| fm|> α)≤ 2‖ fn‖L1(Ω).

In the second row we used the definition of T and, after that, Theorem 1.2.12. In the last
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inequality we applied Doob’s inequality, stated as Theorem 1.5.7. Also,∥∥∥∥min{n,S}

∑
k=1

E(1{T=k}( fk− fk−1)|Gk−1)

∥∥∥∥
L1(Ω)

≤
∫

Ω

min{n,S}

∑
k=1

|E(1{T=k}( fk− fk−1)|Gk−1)|dP

≤
∫

Ω

n

∑
k=1
|E(1{T=k}( fk− fk−1)|Gk−1)|dP=

n

∑
k=1
‖E(1{T=k}( fk− fk−1)|Gk−1)‖L1(Ω)

≤
n

∑
k=1
‖1{T=k}( fk− fk−1)‖L1(Ω) =

n

∑
k=1
‖1{T=k}( fT − fT−1)‖L1(Ω)

= ‖1{T≤n}( fT − fT−1)‖L1(Ω) ≤ ‖1{T≤n} fT‖L1(Ω)+‖1{T≤n} fT−1‖L1(Ω)

≤ ‖ fmin{T,n}‖L1(Ω)+α < 2‖ fn‖L1(Ω).

The inequality in the third row follows from Theorem 1.2.6 while the first inequality in

the last row follows from Theorem 1.2.12. Notice that, comparing third and last row, we

have also shown
n

∑
k=1
‖1{T=k}| fT − fT−1|‖L1(Ω) ≤ 2‖ fn‖L1(Ω), (1.7)

which we are going to need again in the rest of the proof. Overall,

‖gn‖L1(Ω) ≤ ‖ fmin{n,S,T−1}‖L1(Ω)+

∥∥∥∥min{n,S}

∑
k=1

E(1{T=k}( fk− fk−1)|Gk−1)

∥∥∥∥
L1(Ω)

≤ 2‖ fn‖L1(Ω)+2‖ fn‖L1(Ω) = 4‖ fn‖L1(Ω).

This completes the proof of (1.4). Notice that, for each n ∈N0 and by the definition of bn,

{bn 6= 0} ⊆ {n 6= min{n,S,T}}= {min{S,T}< n}= {S < n}∪{T < n}.

Let us estimate the P-measures of these two sets. We have

P(S < n) = P
Å n

∑
k=1

E(1{T=k}| fk− fk−1||Gk−1)> α

ã
≤ α

−1
∥∥∥∥ n

∑
k=1

E(1{T=k}| fk− fk−1||Gk−1)

∥∥∥∥
L1(Ω)

≤ α
−1

n

∑
k=1
‖1{T=k}| fk− fk−1|‖L1(Ω) ≤ 2α

−1‖ fn‖L1(Ω),

by Theorem 1.2.6 and (1.7). Also,

P(T < n) = P( max
0≤m≤n−1

| fm|> α)≤ α
−1‖ fn−1‖L1(Ω) ≤ α

−1‖ fn‖L1(Ω),
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by Theorem 1.5.7 applied to the martingale (E( fn−1|Gm))m∈N0; recall that E( fn−1|Gm) =

fn−1 for each m≥ n−1 and E( fn−1|Gm) = fm otherwise. Therefore,

P( max
0≤m≤n

|bm|> 0) = P(∪n
m=0{|bm|> 0})≤ P(∪n

m=0{m 6= min{m,S,T}})

≤ P(n 6= min{n,S,T})≤ P({S < m}∪{T < m})

≤ P(S < n)+P(T < n)≤ 3α
−1‖ fn‖L1(Ω),

which shows (1.5). Now, for m ∈ N0 we have

hm+1−hm = 1{T=m+1<S}( fT − fT−1)−1{S≥m+1}E(1{T=m+1}( fm+1− fm)|Gm)

≤ 1{T=m+1}1{m+1<S}( fm+1− fm)−1{S≥m+1}E(1{T=m+1}( fm+1− fm)|Gm)

= 1{S≥m+1}(1{T=m+1}( fm+1− fm)−E(1{T=m+1}( fm+1− fm)|Gm)).

By this and by Theorem 1.2.6 and (1.7),

n−1

∑
m=0
‖hm+1−hm‖L1(Ω) ≤

n−1

∑
m=0
‖1{T=m+1}( fm+1− fm)‖L1(Ω)

+
n−1

∑
m=0
‖E(1{T=m+1}( fm+1− fm)|Gm)‖L1(Ω)

≤2
n−1

∑
m=0
‖1{T=m+1}( fm+1− fm)‖L1(Ω) ≤ 4‖ fn‖L1(Ω).

By showing (1.6) the proof of this theorem is complete, however, with the additional

assumption that | f0|< α P-almost everywhere. In general case let A := {| f0|< α}. Note

that A ∈ Gn for each n ∈ N0, so, by Theorem 1.2.2,

E( fn+11Ac|Gn) = 1AcE( fn+1|Gn) = 1Ac fn, (1.8)

which shows that ( fn1Ac)n∈N0 is also a martingale in respect to the filtration (Gn)n∈N0 .

Moreover, this martingale belongs to the case for which we already obtained the statement

of this theorem, so there exists its decomposition (g0
n)n∈N0 , (b0

n)n∈N0 and (h0
n)n∈N0 with

analogous properties. We claim that the required composition for the starting martingale

( f 0
n )n∈N0 is given with

gn := g0
n, bn := b0

n + fn1A, hn := h0
n, n ∈ N0.

We can directly see that (gn)n∈N0 and (hn)n∈N0 are martingales with respect to (Gn)n∈N0 ,

but so is (bn)n∈N0 as sum of two martingales (b0
n)n∈N0 and ( fn1A)n∈N0 ; the fact that the
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latter sequence is also a martingale follows from the analogous identities as in (1.8). Since

‖ fn1Ac‖L1(Ω) ≤ ‖ fn‖L1(Ω), we can immediately see that (1.4) and (1.6) are satisfied. As

( fm1A)m∈N0 is a martingale, we have
∫

Ω
| f0|1AdP≤

∫
Ω
| fn|1AdP, so

P( max
0≤m≤n

|bm|> 0)≤ P( max
0≤m≤n

|b0
m|> 0)+P( max

0≤m≤n
| fm|1A > 0)

≤ 3α
−1‖ fn1Ac‖L1(Ω)+P(1A > 0) = 3α

−1‖ fn1Ac‖L1(Ω)+P(A)

≤ 3α
−1
∫

Ω

| fn|1AcdP+α
−1
∫

Ω

| f0|1AdP≤ 3α
−1
∫

Ω

| fn|1AcdP+α
−1
∫

Ω

| fn|1AdP

≤ 3α
−1
∫

Ω

| fn|dP= 3α
−1‖ fn‖L1(Ω).

Therefore, (1.5) is valid and so is the statement of this theorem. �

The previous theorem gives a decomposition of a martingale into three martingales

which intuitively present, in order, good, bad and harmless part. The first part can be

considered good as it belongs to Lp(Ω) for each p ∈ [1,∞], which is a property we would

hope for from the martingale that we started with (the fact that we cannot guarantee that is

a reason to perform the decomposition). The bad part of the martingale cannot affect the

starting martingale much because the measure of its support is not large. In the end, there

is the third part remaining, which we cannot bound in Lp(Ω) and the support of which we

cannot estimate, but still we have the last inequality guaranteeing the control of its total

variation in the L1 norm; therefore it is still harmless in a certain way.
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1.3. ERGODIC THEORY

Let (Ω,F ,P) be a probability space. For n ∈ N0 and for a complex F -measurable func-

tion f we define a Cesàro average An with respect to the iterates of a (F ,F )-measurable

transformation T : Ω→Ω as

An f :=
1
n

n−1

∑
i=0

f ◦T i (1.9)

and additionally A0 f ≡ 0. In this section as well as throughout Chapter 3 we will be

interested in the transformation T such that it preserves measure P, meaning that T is

(F ,F )-measurable and that for each A ∈F we have P(T−1(A)) = P(A).

One of the biggest and most interesting results in the ergodic theory is the convergence

of sequence (An f )n∈N0 , P-almost surely and in Lp(Ω) for p ∈ [1,∞〉. On the way to

showing this result, one can observe a maximal operator which, for f ∈ L1(Ω), is defined

as

MC f := sup
n∈N
|An f |.

In Section 1.5 we are going to observe some other maximal operators and deduce their

(strong or weak) Lp estimates. Here we are going to present the same result for the

operator MC, in order to give an additional illustration to the ideas that we plan to use

in these thesis, such as the Marcinkiewicz’s interpolation theorem and an idea from [6]

known as a Calderón’s transference principle.

Theorem 1.3.1. For each p ∈ 〈1,∞] we have

‖MC f‖L1,∞(Ω) . ‖ f‖L1(Ω) and ‖MC f‖Lp(Ω) .p ‖ f‖Lp(Ω).

Proof. Trivially,

‖An f‖L∞(Ω) ≤
1
n

n−1

∑
i=0
‖ f ◦T i‖L∞(Ω) = ‖ f‖L∞(Ω),

as T is P-measure invariant, so ‖ f ◦T i‖L∞(Ω) = ‖ f‖L∞(Ω) for each i ∈ N0. Therefore,

‖MC f‖L∞(Ω) ≤ ‖ f‖L∞(Ω).

If we obtain the inequality ‖MC f‖L1,∞(Ω) . ‖ f‖L1(Ω) then the claim of this theorem will

follow from Theorem 1.1.6.
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Let g : Z→ R and n ∈ N be arbitrary. For k ∈ Z define discrete averages Ãn as

Ãng(k) :=
1
n

n−1

∑
i=0

g(k+ i).

Furthermore, let h : R→ R be a function given with h := ∑k∈Z g(k)1[k,k+1〉. Note that, if

∑k∈Z |g(k)|< ∞, by Lebesgue domination theorem,

‖h‖L1(R) =
∫
R

∑
k∈Z
|g(k)|1[k,k+1〉(x)dλ (x) = ∑

k∈Z
|g(k)|

∫
[k,k+1〉

dλ (x) = ‖g‖`1(Z), (1.10)

where λ is the Lebesgue measure on R and `1(Z) is the Lebesgue space L1(Z) equipped

with counting measure. Similarly,

1
n

∫
[k,k+n〉

h(x)dλ (x) =
1
n

n−1

∑
i=0

g(k+ i) = Ãng(k). (1.11)

Let us introduce the uncentered Hardy-Littlewood maximal operator Mnc with

Mnc f (x) := sup
y′∈R,r∈〈0,∞〉

x∈B(y′,r)

[| f |]B(y′,r) = sup
y′∈R,r∈〈0,∞〉

x∈B(y′,r)

1
|B(y′,r)|

∫
B(y′,r)

| f (y)|dy for x ∈ Rr,

where B(y′,r) := {y ∈ R : |y− y′| < r} = 〈y′− r,y′+ r〉 is an open ball in R (given Eu-

clidean metric) with center y′ and radius r. The reader can compare this operator with the

one defined in (1.17), with slight difference being the collection of sets over which the

supremum is taken (or, from a different point of view, the only difference being the metric

on space R). With a similar proof as in Theorem 1.5.1 (see details in [57]) we can show

that

‖Mnch‖L1,∞(R) . α
−1‖h‖L1(R). (1.12)

Additionally, note the following. Take any α ∈ 〈0,∞〉 and assume that n ∈ N0 and k ∈ Z

is such that |Ãng(k)| > α . By (1.11) we see that Mnch(x) > α for each x ∈ 〈k,k+1〉 (by

taking the ball 〈k,k+n〉 in the supremum that defines Mnc). With this, we can notice that

card({k ∈ Z : sup
n∈N
|Ãng(k)|> α})≤ λ ({Mnch > α}).

By (1.12) and (1.10),

card({k ∈ Z : sup
n∈N
|Ãng(k)|> α}). α

−1‖h‖L1(R) = α
−1‖g‖`1(Z). (1.13)
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Now, for ω ∈Ω and N ∈ N let us define gω,N : Z→ R along the trajectory of ω with

gω,N(n) := f (T n
ω)1{0,1,...,2N−1}(n), n ∈ Z. (1.14)

Note that, for n ∈ {1,2, . . . ,N} and k ∈ {0,1, . . . ,N−1},

An f (T k
ω) =

1
n

n−1

∑
i=0

f (T i+k
ω) =

1
n

n−1

∑
i=0

gω,N(k+ i) = Ãngω,N(k).

Now, by P-invariance of T , Fubini-Tonelli theorem, (1.13) and (1.14) we conclude that

P({ max
n∈{1,2,...,N}

|An f |> α}) = 1
N

N−1

∑
k=0

P({ω ∈Ω : max
n∈{1,2,...,N}

|An f (T k
ω)|> α})

=
1
N

∫
Ω

card({k ∈ {0,1, . . . ,N−1} : max
n∈{1,2,...,N}

|Ãngω,N(k)|> α})dP(ω)

.
1
N

∫
Ω

α
−1‖gω,N‖`1(Z)dP(ω) = α

−1 · 1
N

2N−1

∑
i=0

∫
Ω

| f (T n
ω)|dP(ω) = 2α

−1‖ f‖L1(Ω).

With this, the statement of this theorem follows. �

The following two corrolaries are the results on convergence of the sequence of Cesàro

averages, proven by Birkhoff in [4] and by von Neumann in [43]. Interestingly, the limit

turns out to be the conditional expectation E( f |C ) where C is σ -algebra on X consisting

of all T -invariant sets; in other words, sets A ∈ C for which T−1(A) = A P-almost surely;

details can be found in [19].

Corollary 1.3.2. (Birkhoff’s pointwise ergodic theorem) For each f ∈ L1(Ω) the se-

quence (An f )n∈N0 converges P-almost surely.

Corollary 1.3.3. (von Neumann’s mean ergodic theorem) For each p ∈ [1,∞〉 and f ∈

Lp(Ω) the sequence (An f )n∈N0 converges in Lp(Ω).

A similarly sounding problem is the convergence of the sequence (Bn( f ,g))n∈N0 of

bilinear ergodic averages

Bn( f ,g) :=
1
N

n−1

∑
i=0

( f ◦T n)(g◦Sn),

where S and T are commuting measure-preserving transformations on (Ω,F ,P) and

f ,g ∈ L∞(Ω). This, however, is still pretty much an open question. The L2-convergence
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was proven by Conze and Lesigne in [7]. Another proof of this result, in a more quan-

titative manner, can be found in [16]. The proof from that article reduces estimates for

Bn to bounds for paraproduct-like operators similar to those defined in (3.1) and (3.2).

In Chapter 3 we will be interested in Lp convergence of those two paraproducts while

the convergence P-almost surely remains open; because of the similarities with proofs

from the latter mentioned article, it is reasonable to believe that these two problems have

similar answers.
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1.4. DYADIC SETTING

For r ∈ N, we define the set of dyadic cubes in Rr as

Cr :=
ß r

∏
i=1

[
2kli,2k (li +1)

〉
: k, li ∈ Z, i = 1,2, . . . ,r

™
. (1.15)

The elements of Cr will usually be denoted as I1× I2×·· ·× Ir = ∏
r
i=1 Ii, with I1, . . . , Ir ∈

C1. For I ∈ C1, let

h0
I :=

1
|I|
1I, h1

I :=
1
|I|

(1IL−1IR) , (1.16)

where IL and IR are, in order, left and right halves of the interval I; more precisely, if

I = [a,b〉 for some a,b ∈R, then IL :=
î
a, a+b

2

∂
and IR :=

î
a+b

2 ,b
∂

. Function h0
I is simply

the L1-normalized characteristic function of I, while h1
I is the so-called Haar function,

normalized in the L1 sense, as well. We will also call these, in order, non-cancellative and

cancellative Haar functions.

For each r ∈ N and Q ∈ Cr there exist exactly 2r disjoint cubes Q1, . . . ,Q2r ∈ Cr such

that |Q1|= · · ·= |Q2r |= 2−r|Q| and Q1, . . . ,Q2r ⊆ Q. These Qi, i ∈ {1, . . . ,2r} are called

the children of Q, while Q is the parent of Q1, . . . ,Q2r . The family of children of a cube

Q will be denoted as C (Q).

Definition 1.4.1. Let r ∈ N. A tree is a family T ⊆ Cr for which there exists QT ∈ T

such that Q⊆ QT for every Q ∈T ; such QT is called a root of the tree T .

A tree T is called convex if for every Q1,Q3 ∈ T and Q2 ∈ Cr the inclusion Q1 ⊆

Q2 ⊆ Q3 implies Q2 ∈T .

A leaf of the tree T is any Q ∈ Cr\T with the parent Q′ ∈ T . A family of these

cubes will be marked as L (T ).

If we consider families of dyadic subcubes of [0,1〉 of side lengths between 2−k and

1, we get an interesting example of (forward) filtration.

Definition 1.4.2. A dyadic filtration on [0,1〉r is a (forward) filtration (D r
k)i∈N0 given as

D r
k := σ

Åß r

∏
i=1

[
2−kli,2−k (li +1)

〉
: li ∈ {0, . . . ,2k−1}, i = 1,2, . . . ,r

™ã
, k ∈ N0.

For our proofs it will be enough to consider a dyadic filtration for r = 1 in which case

we will write Dk = D r
k for k ∈ N0. From this definition we can see that this filtration
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has some practical properties that will also appear to be useful later. For example, each

σ -algebra D r
k is finitely generated and each of its atoms can be presented as a disjoint

union of exactly 2r atoms from D r
k+1; precisely,

r

∏
i=1

[
2−kli,2−k (li +1)

〉
=

⋃
( j1,..., jr)∈{0,1}r

r

∏
i=1

[
2−k−1 (2li + ji) ,2−k−1 (2li + ji +1)

〉
.
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1.5. MAXIMAL AND SQUARE FUNCTION

OPERATORS

In this section we are going to define several variants of maximal function operators. As

there are various results in harmonic analysis about these operators being bounded, it is a

common trick to estimate a value of a certain expression with a specific maximal operator

in order to obtain the required result. Another interesting thing is that the boundedness

of those operators is sometimes equivalent with other interesting problems in harmonic

analysis such as the convergence of certain sequence of functions; see Stein’s maximal

principle [55].

The most well known operator is the Hardy-Littlewood maximal operator, which maps

a locally integrable function into a function defined by the supremum of all averages over

a family of sets of our interest. We are interested in the dyadic variant of this operator,

formally defined as

MdyadicF(x) := sup
Q∈Cr
x∈Q

[|F |]Q = sup
Q∈Cr
x∈Q

1
|Q|

∫
Q
|F(y)|dy for x ∈ Rr. (1.17)

We can show the following.

Theorem 1.5.1. For each p ∈ 〈1,∞] we have

‖MdyadicF‖Lp(Rr) .p ‖F‖Lp(Rr).

Proof. For each Q ∈ Cr we have 1
|Q|
∫

Q |F(y)|dy≤ ‖F‖L∞(Rr), therefore

‖MdyadicF‖L∞(Rr) ≤ ‖F‖L∞(Rr).

If we show that

‖MdyadicF‖L1,∞(Rr) . ‖F‖L1(Rr),

then we can apply Theorem 1.1.6 in order to complete the proof of the theorem. Let

α ∈ 〈0,∞〉, Eα := {x∈Rr : MdyadicF(x)> α} and x∈ Eα . Then there exists a dyadic cube

x ∈ Qx ∈ Cr such that [|F |]Qx > α . A collection {Qx : x ∈ Eα} is contained in Cr which

is countable, so there exists a sequence (xn)n∈N in Eα such that {Qx : x ∈ Eα} = {Qxn :
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n ∈ N}. Moreover, we can take subsequence (nm)m∈N such that ∪n∈NQxn = ∪m∈NQxnm

and that Qxnm
,m ∈ N are mutually disjoint. Indeed, we can take those points xnm so that

{Qxnm
: m ∈ N} is a family of maximal cubes in {Qxn : n ∈ N} - those dyadic cubes that

are not subset of any other cube in that collection. As we know, if two dyadic cubes are

not disjoint, then one is contained in the other. This ensures that the maximal cubes are

indeed disjoint and also that they contain all of the cubes from the collection. Now we

can estimate

|Eα | ≤ |∪x∈Eα
Qx|=

∣∣∪m∈NQxnm

∣∣= ∑
m∈N

∣∣Qxnm

∣∣≤ ∑
m∈N

1
α

∫
Qxnm

|F(y)|dy

=
1
α

∫
∪m∈NQxnm

|F(y)|dy≤ 1
α

∫
Rr
|F(y)|dy.

Multiplying this inequality with α and taking supremum over all α ∈ 〈0,∞〉 gives us the

required inequality. �

Let w be a measurable strictly positive function on Rr. We will also consider a gener-

alized version of Hardy-Littlewood maximal operator, known as weighted maximal oper-

ator and defined as

MwF(x) := sup
Q∈Cr
x∈Q

[|F |w]Q
[w]Q

for x ∈ Rr.

This operator is also bounded; the result can be found in [42].

Theorem 1.5.2. For each p ∈ 〈1,∞] we have

‖MwF‖Lp(w) .p ‖F‖Lp(w).

It is worth noticing that this estimate is actually a Doob’s martingale inequality in

disguise. Indeed, if the measure ν is the measure corresponding to the weighted Lp space

Lp(w) is probabilistic and if (Fm)m∈N0 is a dyadic filtration on the same probabilistic

space, then the estimate from Theorem 1.5.2 can actually be rewritten as the one in The-

orem 1.5.7.

Now we are going to mention several operators expressed as `2 quantities made of dif-

ferences of various sequences. Intuitively, they sum up the jumps between neighbouring

elements of the sequence.
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The first operator we are going to mention is

f 7→
( ∞

∑
i=1
|ANi+1 f −ANi f |2

)1/2
,

for an arbitrary strictly increasing sequence of positive integers (Ni)i∈N. We will state the

Lp boundedness covered by two papers. The first bound was shown by Jones, Ostrovskii,

and Rosenblatt [29, Theorem 2.6] for p ∈ 〈1,2]. After that, Jones, Kaufman, Rosenblatt,

and Wierdl [28, Theorem 4.6 for A1] extended the result for the range p ∈ 〈2,∞〉.

Theorem 1.5.3. For each p ∈ 〈1,∞〉 we have

sup
Ni∈N for i∈N

(Ni)i∈N is strictly increasing

∥∥∥( ∞

∑
i=1
|ANi+1 f −ANi f |2

)1/2∥∥∥
Lp(Ω)

.p ‖ f‖Lp(Ω).

Since T preserves measure P, the statement of this theorem in case p = 2 follows from

the following proposition.

Proposition 1.5.4. Let U be a unitary operator on complex Hilbert space H. For n ∈ N

we define

Tnv :=
1
n

n−1

∑
k=0

Ukv, v ∈ H.

We have Å
sup
M∈N

1≤n0<···<nM

M

∑
j=1
‖Tn jv−Tn j−1v‖2

H

ã 1
2

. ‖v‖H , v ∈ H. (1.18)

Proof. First let us assume that H = C, v = 1 and U : C→ C is given by Uz = eiθ z for

θ ∈ [0,2π〉. In case of θ = 0 the operators U and Tn, n ∈ N are identity operators on H;

therefore the left side of the inequality (1.18) equals zero, so the inequality is trivially

valid. If θ 6= 0, then Tn1 = 1
n ∑

n−1
k=0(e

iθ )k = 1−eniθ

n(1−eiθ )
. The inequality (1.18) then turns into

sup
M,n0,n1,...,nM∈N

n0<n1<···<nM

M

∑
j=1

∣∣∣∣ 1− en jiθ

n j(1− eiθ )
− 1− en j−1iθ

n j−1(1− eiθ )

∣∣∣∣2 . 1. (1.19)

Notice that the expression on the left side of the inequality is invariant under reflection

θ 7→ 2π − θ , so it is enough to observe the case θ ∈ 〈0,π〉. As |1− eiθ |2 = 4sin2 θ

2 ≥

4
( 2

π
· θ

2

)2
= 4

π2 θ 2, it is enough to prove

sup
M,n0,n1,...,nM∈N

n0<n1<···<nM

M

∑
j=1
|F(n jθ)−F(n j−1θ)|2 . 1
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where F(t) := 1−eit

t . Take any M ∈ N and n0, . . . ,nM ∈ N,n0 < n1 < · · ·< nM. Let

J1 :=
{

j ∈ {1, . . . ,M} : n j−n j−1 <
1
θ

}
and

J2 :=
{

j ∈ {1, . . . ,M} : n j−n j−1 ≥
1
θ

}
.

As F ′(t) = −iteit−1+eit

t2 , by Theorem 1.1.1 applied to the normalized Lebesgue measure on

〈n j−1θ ,n jθ〉 and by definition of J1,

∑
j∈J1

|F(n jθ)−F(n j−1θ)|2 = ∑
j∈J1

∣∣∣∣∫ n jθ

n j−1θ

F ′(t)dt
∣∣∣∣2 ≤ ∑

j∈J1

(n j−n j−1)θ
∫ n jθ

n j−1θ

|F ′(t)|2dt

< ∑
j∈J1

∫ n jθ

n j−1θ

|F ′(t)|2dt ≤
∫

∞

0
|F ′(t)|2dt

=
∫

∞

0

(t sin t−1+ cos t)2 +(−t cos t + sin t)2

t4 dt

=
∫

∞

0

t2 +2−2cos t−2t sin t
t4 dt .

∫
∞

0

min{t4, t2}
t2 dt . 1.

Indeed, for t ∈ 〈0,1〉 we have

t2 +2−2cos t−2t sin t ≤ t2 +2−2
(

1− 1
2

t2 +
( 1

24
− 1

720

)
t4
)
−2t

(
t− 1

6
t3
)
=

91
360

t4,

while for t > 1 we estimate

t2 +2−2cos t−2t sin t ≤ t2 +2+2+2t ≤ 7t2.

As for the second case, denote all elements of J2 as j1, j2, . . . , jL. We can see that, for each

l ∈ {2, . . . ,L} we have n jl ≥
1
θ
+ n jl−1 ≥ 1

θ
+ n jl−1 and, if we apply the same inequality

for additional l− 2 times, we get n jl ≥
l−1
θ

+ n j1 ≥ l−1
θ

+ 1
θ
+ n j1−1 ≥ l

θ
. Additionally,

note that |F(t)|= 2|sin t
2 |

|t| ≤min
{ 1
|t| ,1

}
for each t ∈ R\{0}. Now,

∑
j∈J2

|F(n jθ)−F(n j−1θ)|2 = ∑
j∈J2

(|F(n jθ)|2−2|F(n jθ)||F(n j−1θ)|+ |F(n j−1θ)|2)

≤ ∑
j∈J2

2(|F(n jθ)|2 + |F(n j−1θ)|2)

≤ 2
Å L

∑
l=1

Å
2

n jl θ

ã2

+
L

∑
l=2

Å
2

n jl−1θ

ã2

+ |F(n0θ)|2
ã

≤ 2
Å L

∑
l=1

8
l2 +

L

∑
l=2

8
l2 +1

ã
. 1.
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This gives

M

∑
j=1
|F(n jθ)−F(n j−1θ)|2 = ∑

j∈J1

|F(n jθ)−F(n j−1θ)|2+ ∑
j∈J2

|F(n jθ)−F(n j−1θ)|2 . 1,

which is what we were required to prove.

To prove this proposition in general case, first we will mention some definitions and

agreements from the spectral theory. In general, a projection-valued measure is a function

P defined on a σ -algebra F on set H such that, for each E ∈F , P(E) is a projection

operator on space H and which also satisfies P(X) = 1H and P(∪∞
n=1En) = ∑

∞
n=1 P(En)

for each pairwise-disjoint sets En ∈F ,n ∈ N. It is easy to notice that, for each v1,v2 ∈ H

the mapping E 7→ 〈P(E)v1,v2〉H is a complex measure. For E ∈F we can denote∫
E

d〈Pv1,v2〉H(α) = 〈P(E)v1,v2〉H ,

which can be generalized to∫
E

f (α)d〈Pv1,v2〉H(α) =

≠Å∫
E

f (α)dP(α)

ã
v1,v2

∑
H

where f is the F -measurale function. Similarly, we can introduce the identification∫
E

f (α)dP(α) = f (P(E)).

Details can be found in [20].

Now we can apply the spectral theorem. Let S1 := {α ∈ C : |α|= 1}. There exists a

regular Borel projector-valued measure P on S1 such that for any bounded Borel function

f we have

f (U) =
∫

S1
f (α)dP(α).

Specifically, for f (α) = αn and f (α) = α
n, n ∈ N, we have

Un =
∫

S1
α

ndP(α),(Un)∗ =
∫

S1
αndP(α).

Note that

C‖v‖2
H−‖Tn j−1v−Tn jv‖

2
H =

≠Å
100I−

M

∑
j=1

(Tn j−1−Tn j)
∗(Tn j−1−Tn j)

ã
v,v
∑

H

=
∫

S1

Å
C−

M

∑
j=1

∣∣∣∣ 1
n j−1

n j−1−1

∑
k=0

α
k− 1

n j

n j−1

∑
k=0

α
k
∣∣∣∣2ã︸ ︷︷ ︸

≥0

d〈Pv,v〉H(α)≥ 0,
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where C is the constant that is implicit in (1.19) and the inequality follows from (1.19).

The proof of inequality (1.18) and therefore the proof of this proposition is complete. �

Another such operator is the martingale square function operator, defined as

F 7→
( ∞

∑
k=0
|E(F |Gk+1)−E(F |Gk)|2

)1/2
.

The following theorem is a result of Burkholder and can be found in [5].

Theorem 1.5.5. For each q ∈ 〈1,∞〉 we have∥∥∥( ∞

∑
k=0
|E(F |Gk+1)−E(F |Gk)|2

)1/2∥∥∥
Lq(Ω)

.q ‖F‖Lq(Ω).

Another useful estimate was shown by Jones, Kaufman, Rosenblatt, Wierdl in [28,

Theorem C]. Here, (D j) j∈N0 stands for the dyadic filtration on [0,1〉 from Definition

1.4.2 and ‖ · ‖Lp
x (R) stands for the norm on the space Lp(R) taken over the variable x.

Theorem 1.5.6. For each p ∈ 〈1,∞〉 we have∥∥∥∥Å ∞

∑
j=0

∣∣∣2 j
∫ 2− j

0
h(x+ y)dy−E(h|D j)(x)

∣∣∣2ã1/2∥∥∥∥
Lp

x (R)
.p ‖h‖Lp(R).

The next result can be found as Theorem 6 in [56], but it is also present in any other

book on basic probability theory.

Theorem 1.5.7. (Doob’s inequality) For each α ∈ 〈0,∞〉 and p ∈ 〈1,∞] we have

P( sup
m∈N0

|E(F |Fm)|> α)≤ 1
α
‖F‖L1(Ω),

‖ sup
m∈N0

|E(F |Fm)|‖Lp(Ω) .p ‖F‖Lp(Ω).
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1.6. HYPERGRAPH SETTING

Definition 1.6.1. A hypergraph is an ordered pair (V,E), where V is a finite set of ele-

ments, which we call vertices, and E is a collection of nonempty subsets of V; the elements

of E are called edges. Let r ∈ N. A hypergraph (V,E) is called r-partite if there exists a

partition of V into r nonempty parts
Ä
V (i)
ä

1≤i≤r
such that one cannot find i ∈ {1,2, . . . ,r}

and vertices x,y ∈ V (i),x 6= y for which there would exist e ∈ E such that x,y ∈ e. A

hypergraph (V,E) is called r-uniform if each edge e ∈ E has the cardinality |e|= r.

Notice that every edge e of an r-partite r-uniform graph (V,E) with an associated r-

partition of the vertex set V =
⋃r

i=1V (i) satisfies card(e∩V (i)) = 1 for every i ∈ {1,2, . . . ,

r}. In other words, each edge contains exactly one vertex from each of the vertex-partition

parts. In this situation each edge can be identified with an element of V (1)×V (2)×·· ·×

V (r) = ∏
r
i=1V (i).

Definition 1.6.2. A labeled hypergraph is any hypergraph (V,E) along with sets LV and

LE , an injective function lV : V → LV and an arbitrary function lE : E→ LE . The elements

of sets LV and LE will be called, in order, vertex labels and edge labels. Note that vertex

labels are required to be different, but we allow the repetition of edge labels.

Given an r-partite hypergraph (V,E) and the corresponding partition
Ä
V (i)
ä

1≤i≤r
of

V , we will usually denote vertices as V (i) =
{

v(i)1 ,v(i)2 , . . . ,v(i)ni

}
for each i ∈ {1,2, . . . ,r}.

Similarly, we will write LV := ∪r
i=1L(i)

V and L(i)
V := {x(i)j : j ∈ N} for each i ∈ {1, . . . ,r};

with this notation, we will assume that lV (V (i))⊆ L(i)
V for each i ∈ {1, . . . ,r}.

With this, we will often denote ni := card(V (i)) and n := ∑
r
i=1 ni. For shorter notation

we may write xv := lV (v) for each v ∈V and also

x=
(
x

v(1)1
, . . . ,x

v(1)n1
, . . . ,x

v(r)1
, . . . ,x

v(r)nr

)
and xe := (xv(1), . . . ,xv(r)),

for e = (v(1), . . . ,v(r)) ∈ E. The elements of sets LV and LE will be substituted with real

variables and real-valued functions.

Let H = (V,E) be a labeled hypergraph with the label functions lV and lE and the set

of vertex labels marked as LV =∪r
i=1L(i)

V such that, for each i∈ {1, . . . ,r}, lV
Ä
V (i)
ä
⊆ L(i)

V .

With a slight deviation from the previous notation, this time we will write L(i)
V = {x(i)j,k :

33



Definitions and preliminary results Hypergraph setting

j,k ∈ N}. In some proofs we will square certain parts of paraproduct-type terms, making

certain variables appear more than once. To keep the practical notation of the evaluation of

the expression at certain graph, we are expanding the vertex label sets with “copies”, i.e. as

certain variable x(i)j can appear more than once (but at most ni = card(V (i)) times), so we

will mark its copies with x(i)j,k,k∈N. It will also be practical to denote L(i)
j := {x(i)j,k : k∈N}.

Let us introduce a requirement on lV and lE so that they produce “properly” labelled

hypergraphs, i.e., those that will appear later. Take any label variable x(k)ik, jk for k ∈

{1, . . . ,r} , ik, jk ∈N. As lV is an injective function, whenever x(k)ik, jk ∈ Im(lV ) we can define

v(k)ik, jk := l−1
V (x(k)ik, jk). For the set of edge labels we choose LE := {Fi1,...,ir : i1, . . . , ir ∈ N}.

With this notation, we will require the following condition to be satisfied:

lE((v
(1)
i1, j1, . . . ,v

(r)
ir, jr)) = Fi1,...,ir (1.20)

for each choice of indices ik and jk, k = 1, . . . ,r. This means that any two edges with the

same first lower indices of their vertices receive the same label from the set LE . Other-

wise, the two edges receive different labels. To make this agreement clearer and easier to

understand, an example of the 3-partite 3-uniform labeled hypergraph is given as a Figure

1.1.

Additionally, we will restrict our attention to hypergraphs that are “proper” in the

sense that we are about to define. When two variables xv1 and xv2 have the same first

lower indices (better said, when they appear to be the copies of the same variable), we

will require that their vertices v1 and v2 play identical roles in the hypergraph, i.e. inter-

changing them leads to the hypergraph isomorphic to the original one. To be precise, for

every v1,v2 ∈V we require

lV (v1), lV (v2) ∈ L(i)
j for some i ∈ {1, . . . ,r} , j ∈ N

=⇒ for each e ∈ E we have (v1 ∈ e =⇒ (e\{v1})∪{v2} ∈ E). (1.21)

Notice that this property is trivially satisfied in case of the complete hypergraph.
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v(1)1,1
x

v(1)1,1

v(1)2,1
x

v(1)2,1

v(1)3,1
x

v(1)3,1

v(2)1,1
x

v(2)1,1

v(2)1,2
x

v(2)1,2

v(3)1,1
x

v(3)1,1

v(3)2,1
x

v(3)2,1

v(2)2,1
x

v(2)2,1 v(3)3,1
x

v(3)3,1

v(3)3,2
x

v(3)3,2

F1,1,2

F2,1,1

F3,2,3

Figure 1.1: An example of the 3-partite 3-uniform labeled hypergraph. Empty circles

present selected vertices.
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1.7. REMOVAL LEMMAS

Hypergraph removal lemmas are general results of the following type: if a (hyper)graph

contains a small portion of sub(hyper)graphs isomorphic to a given pattern, then it is

possible to remove a small portion of its edges in order to make this pattern disappear

completely. The most general hypergraph removal result was shown by Gowers [22]

and many alternative proofs followed, for instance the one by Tao [59]. We will give

one possible formulation a bit later, as Lemma 1.7.8. An expository paper by Tao [60]

shows that, in fact, graph/hypergraph removal results belong to the realm of mathematical

analysis (rather than combinatorics) as both their formulations and their proofs carry over

to [0,1] with the Lebesgue measure. Obtaining “reasonable” bounds in graph/hypergraph

removal results are some of the greatest and the most important problems in combinatorics

and graph theory today, with applications to theoretical computer science; see the paper

by Alon [2]. Many particular cases have been studied in the recent literature, but almost

all of them were concerned with graphs and not with more general hypergraphs.

In this work we do not prove any new removal results. However, their formulations

and the ideas around their proofs will be quite relevant in the next chapter, so we spend

a few words on them here. Although not obvious at first, techniques used in Chapter 2

were inspired by Tao’s proof of removal lemma. They turned out to be a direct inspiration

for Kovač in his work [34], while the proofs in Chapter 2 generalize concepts from that

article.

Many elements of proof of the hypergraph removal lemma are actually a single-

scale variants of arguments from Chapter 2. The best example is so-called box-Gowers-

Cauchy-Schwarz inequality. We are going to observe techniques from [60] applied to the

space ([0,1],B([0,1]),λ ), where λ is the Lebesgue measure on [0,1]; additionally, λ (2)

is the Lebesgue measure on [0,1]2.

Definition 1.7.1. The box-Gowers norm of a real-valued function f ∈ L∞([0,1]2,

B([0,1]2),λ (2)) is defined as

‖ f‖�2 :=
Å∫

[0,1]

∫
[0,1]

∫
[0,1]

∫
[0,1]

f (x,y) f (x,y′) f (x′,y) f (x′,y′)dydy′dxdx′
ã 1

4
.

The box-Gowers inner product of real-valued functions f00, f01, f10, f11 ∈ L∞([0,1]2,
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B([0,1]2),λ (2)) is given by

[ f00, f01, f10, f11]�2

:=
∫
[0,1]

∫
[0,1]

∫
[0,1]

∫
[0,1]

f00(x,y) f01(x,y′) f10(x′,y) f11(x′,y′)dydy′dxdx′.

Theorem 1.7.2. (The box-Gowers-Cauchy-Schwarz inequality) We have

∣∣[ f00, f01, f10, f11]�2
∣∣≤ ‖ f00‖�2‖ f01‖�2‖ f10‖�2‖ f11‖�2 .

Proof. By Theorem 1.1.3 and by Fubini-Tonelli theorem we have∣∣∣∣∫
[0,1]

∫
[0,1]

∫
[0,1]

∫
[0,1]

f00(x,y) f01(x,y′) f10(x′,y) f11(x′,y′)dydy′dxdx′
∣∣∣∣

≤
∫
[0,1]

∫
[0,1]

∣∣∣∣∫
[0,1]

f00(x,y) f01(x,y′)dx
∣∣∣∣ · ∣∣∣∣∫

[0,1]
f10(x′,y) f11(x′,y′)dx′

∣∣∣∣dydy′

≤
Ç∫

[0,1]

∫
[0,1]

Å∫
[0,1]

f00(x,y) f01(x,y′)dx
ã2

dydy′
å 1

2

·
Ç∫

[0,1]

∫
[0,1]

Å∫
[0,1]

f10(x′,y) f11(x′,y′)dx′
ã2

dydy′
å 1

2

=

Å∫
[0,1]

∫
[0,1]

Å∫
[0,1]

f00(x,y) f01(x,y′)dx
ãÅ∫

[0,1]
f00(x′,y) f01(x′,y′)dx′

ã
dydy′

ã 1
2

·
Å∫

[0,1]

∫
[0,1]

Å∫
[0,1]

f10(x′,y) f11(x′,y′)dx′
ãÅ∫

[0,1]
f10(x,y) f11(x,y′)dx

ã
dydy′

ã 1
2

=

Å∫
[0,1]

∫
[0,1]

Å∫
[0,1]

f00(x,y) f00(x′,y)dy
ã

·
Å∫

[0,1]
f01(x,y′) f01(x′,y′)dy′

ã
dxdx′

ã 1
2

·
Å∫

[0,1]

∫
[0,1]

Å∫
[0,1]

f10(x′,y) f10(x,y)dy
ã

·
Å∫

[0,1]
f11(x′,y′) f11(x,y′)dy′

ã
dxdx′

ã 1
2

≤
Ç∫

[0,1]

∫
[0,1]

Å∫
[0,1]

f00(x,y) f00(x′,y)dy
ã2

dxdx′
å 1

4

·
Ç∫

[0,1]

∫
[0,1]

Å∫
[0,1]

f01(x,y′) f01(x′,y′)dy′
ã2

dxdx′
å 1

4

·
Ç∫

[0,1]

∫
[0,1]

Å∫
[0,1]

f10(x′,y) f10(x,y)dy
ã2

dxdx′
å 1

4
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·
Ç∫

[0,1]

∫
[0,1]

Å∫
[0,1]

f11(x′,y′) f11(x,y′)dy′
ã2

dxdx′
å 1

4

=

Å∫
[0,1]

∫
[0,1]

∫
[0,1]

∫
[0,1]

f00(x,y) f00(x′,y) f00(x,y′) f00(x′,y′)dydy′dxdx′
ã 1

4

·
Å∫

[0,1]

∫
[0,1]

∫
[0,1]

∫
[0,1]

f01(x,y) f01(x′,y) f01(x,y′) f01(x′,y′)dydy′dxdx′
ã 1

4

·
Å∫

[0,1]

∫
[0,1]

∫
[0,1]

∫
[0,1]

f10(x,y) f10(x′,y) f10(x,y′) f10(x′,y′)dydy′dxdx′
ã 1

4

·
Å∫

[0,1]

∫
[0,1]

∫
[0,1]

∫
[0,1]

f11(x,y) f11(x′,y) f11(x,y′) f11(x′,y′)dydy′dxdx′
ã 1

4

=‖ f00‖�2‖ f01‖�2‖ f10‖�2‖ f11‖�2.

This gives us the desired inequality. �

To notice the connection between this inequality and the one from Lemma 2.2.4 it is

good to observe that, by Theorem 1.1.3,

∫
[0,1]

∫
[0,1]

∫
[0,1]

∫
[0,1]

f (x,y) f (x,y′) f (x′,y) f (x′,y′)dydy′dxdx′

≤
Å∫

[0,1]

∫
[0,1]

∫
[0,1]

∫
[0,1]

f (x,y)2 f (x′,y′)2dydy′dxdx′
ã 1

2

·
Å∫

[0,1]

∫
[0,1]

∫
[0,1]

∫
[0,1]

f (x,y′)2 f (x′,y)2dydy′dxdx′
ã 1

2

=

Å∫
[0,1]

∫
[0,1]

f (x,y)2dydx
ã2

,

or, written in a slightly different way,

‖ f‖�2 ≤ ‖ f‖L2([0,1]2). (1.22)

Now, for any functions f00, f01, f10, f11 as before by this and Theorem 1.7.2 we have

∣∣[ f00, f01, f10, f11]�2
∣∣≤ ‖ f00‖L2([0,1]2)‖ f01‖L2([0,1]2)‖ f10‖L2([0,1]2)‖ f11‖L2([0,1]2),

which is just a special case r = 2,n1 = n2 = 2 of Lemma 2.2.4 from the following chapter.

Further particular cases of Lemma 2.2.4 were proved and used in the papers [23] and [53].

Theorem 1.7.2 also helps us in verifying the rightfulness of calling ‖ · ‖�2 a norm.
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Indeed, we can see that, for each real-valued measurable function f ,∫
[0,1]

∫
[0,1]

∫
[0,1]

∫
[0,1]

f (x,y) f (x,y′) f (x′,y) f (x′,y′)dydy′dxdx′

=
∫
[0,1]

∫
[0,1]

Å∫
[0,1]

f (x,y) f (x′,y)dy
ã2

dxdx′ ≥ 0,

therefore ‖ f‖�2 is nonnegative (more importantly, the above integral expression raised

to the power of 1
4 is well defined). It is easy to notice that ‖c f‖�2 = |c|‖ f‖�2 for every

c ∈ R. The triangle inequality follows from Theorem 1.7.2; indeed,

‖ f +g‖4
�2 ≤ ‖ f‖4

�2 +4‖ f‖3
�2‖g‖�2 +6‖ f‖2

�2‖g‖2
�2 +4‖ f‖�2‖g‖3

�2 +‖g‖4
�2

= (‖ f‖�2 +‖g‖�2)
4 .

Trivially, for f ≡ 0 λ (2)-almost everywhere we have ‖ f‖�2 = 0. Now, fix g ∈ L∞([0,1])

and h ∈ L∞([0,1]). By the box-Gowers-Cauchy-Schwarz inequality for f00 = f , f01(x,y′)

= g(x), f10(x′,y) = h(y) and f11 ≡ 1, x,y ∈ [0,1],∣∣∣∣∫
[0,1]

∫
[0,1]

f (x,y)g(x)h(y)dxdy
∣∣∣∣≤ ‖ f‖�2‖g‖L∞([0,1])‖h‖L∞([0,1]).

Here we also used the inequality ‖ f‖�2 ≤ ‖ f‖L∞([0,1]2) that follows from (1.22). If we

assume that ‖ f‖�2 = 0, then we have that the bilinear form

(g,h) 7→
∫
[0,1]

∫
[0,1]

f (x,y)g(x)h(y)dxdy

gives value zero idenitically over all g and h. Since h ∈ L∞([0,1]) was arbitrarily chosen,

we conclude that, for each choice of function g, the function

y 7→
∫

f (x,y)g(x)dx

is zero λ -almost everywhere. Moreover, we can conclude that it equals zero on the set

E ∈B([0,1]) such that λ (Ec) = 0, where E does not depend on the choice of g, if taken

from the collectionß n

∑
i=1

αi1〈ai,bi〉 : n ∈ N,αi ∈Q,a1, . . . ,an,b1, . . . ,bn ∈ [0,1]∩Q
™

because it is countable by definition. As it is also dense in L2([0,1]), we conclude that the

above function is zero λ -almost everywhere for any choice of g ∈ L∞([0,1]), which gives

39



Definitions and preliminary results Removal lemmas

f (x,y) = 0 for almost every choice of x ∈ [0,1] and for almost every choice of y ∈ [0,1].

Overall, f ≡ 0 λ (2)-almost everywhere. We conclude that ‖ · ‖�2 indeed satisfies the

properties required from a norm.

Now we are going to mention two interesting classical results in combinatorics and

show their connection with integral forms similar to those that we observe. An arithmetic

progression is any k-tuple of integers

(a,a+ k, . . . ,a+(k−1)d),

where a,d ∈Z and k∈N. The number k is also called length of the arithmetic progression.

If d = 0, then the arithmetic progression is trivial.

One of the most fundamental results of combinatorial number theory was proven by

Roth in [49].

Theorem 1.7.3. (Roth’s theorem) For each δ ∈ 〈0,∞〉 there exists n0 ∈ N depending

only on δ with the following property: if n ∈ N,n ≥ n0 and if A ⊆ {1,2, . . . ,n} satisfies

card(A)≥ δn, then A contains a nontrivial arithmetic progression of length 3.

Another interesting pattern to observe is a corner, defined as an ordered triple

((a,b),(a+d,b),(a,b+d))

where a,b,d ∈ Z. Again, if d = 0, then the corner is considered to be trivial. Ajtai and

Szemerédi [1] showed the following.

Theorem 1.7.4. (A corners theorem) For each δ ∈ 〈0,∞〉 there exists n0 ∈ N depending

only on δ with the following property: if n ∈ N,n≥ n0 and if A⊆ {1,2, . . . ,n}2 satisfies

card(A)≥ δn2, then A contains a nontrivial corner.

Interestingly, one can show that Theorem 1.7.3 follows from 1.7.4. Indeed, pick δ ∈

〈0,∞〉 and choose n0 from Theorem 1.7.4 applied for the parameter δ

4 in the place of δ .

Choose n ∈ N, n≥ n0 and A⊆ {1,2, . . . ,n} such that card(A)≥ δn. Define

Ã := {(a,b) ∈ {1,2, . . . ,2n}2 : b−a ∈ A}.

For each k ∈ A we have (1,k + 1),(2,k + 2), . . . ,(2n− k,2n) ∈ Ã; there are 2n− k ≥ n

such ordered pairs. Since card(A) ≥ δn, we conclude card(Ã) ≥ δn2 = δ

4 · (2n)2. By
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Theorem 1.7.4, there exist a,b,d ∈ {1,2, . . . ,2n} such that (a,b),(a+d,b),(a,b+d)∈ Ã.

By definition of Ã we have b− a− d,b− a,b− a+ d ∈ A which is exactly a nontrivial

arithmetic progression of length 3.

Let us for a moment observe a standard (simple undirected) graph G, which means

that its edges contain exactly two (different) vertices.

Lemma 1.7.5. (A triangle removal lemma [50]) For each ε ∈ 〈0,∞〉 there exists δ ∈

〈0,∞〉 depending only on ε with the following property: if G is a graph with n vertices

that contains fewer than δn3 triangles, then it is possible to delete less than εn2 edges

from G to create a triangle-free graph.

Intuitively, if a graph has relatively small number of triangles, then we can eliminate

all of its triangles by removing a relatively small number of edges. This lemma implies

Theorem 1.7.3 as well as Theorem 1.7.4.; see [50] and [54]. We will also elaborate the

former implication below.

A triangle removal lemma can be stated in the following, equivalent way.

Corollary 1.7.6. For each ε ∈ 〈0,∞〉 there exists δ ∈ 〈0,∞〉 depending only on ε with the

following property: if G is a graph with n vertices that contains at least εn2 edge-disjoint

triangles, then G must contain at least δn3 vertices.

From this variant of the triangle removal lemma we can deduce the corners theorem

as well as Roth’s theorem. The proof of Corrolary 1.7.6 implying Theorem 1.7.3 is also

interesting as it shows the connection of two observed objects from the graph theory and

number theory, respectively. Assume the contrary of Theorem 1.7.3 and let δ ∈ 〈0,∞〉

be the parameter from the negation of the statement. For arbitrary n0 ∈ N let n ∈ N,

n ≥ n0 and let A ⊆ {1,2, . . . ,n} be such that card(A) ≥ δn and that it does not contain a

nontrivial arithmetic progression of length 3. Let us construct a graph G = (V,E) with

V = {1,2, . . . ,3n}×{1,2,3} and all the edges can take only one of the following forms:

• {(i,1),( j,2)} ∈ E if and only if j− i ∈ A,

• {( j,2),(k,3)} ∈ E if and only if k− j ∈ A,

• {(i,1),(k,3)} ∈ E if and only if k−i
2 ∈ A.
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This way we constructed a 3-partite graph in which vertices of each triangle take form

(i,1), ( j,2) and (k,3); in other words, we take exactly one vertex from each of parti-

tion sets. Trivially, we have k−i
2 = j− i+

( k+i
2 − j

)
and k− j = j− i+ 2 ·

( k+i
2 − j

)
,

which means that, if (i,1),( j,2),(k,3) forms a triangle in G, then A contains an arith-

metic progression of length 3. By assumption, this progression has to be trivial, meaning
k+i

2 − j = 0. Now we can notice that G can contain at least δn2 triangles. Indeed, for

any choice of i ∈ {1,2, . . . ,n} and any of at least δn choices of a ∈ A we can then take

j = i+a and k that is uniquely determined by k+i
2 − j = 0. Also, all of these triangles are

edge-disjoint because any edge in G, either {(i,1),( j,2)}, {( j,2),(k,3)} or {(i,1),(k,3)},

determines unique parameters i ∈ {1,2, . . . ,n} and a ∈ A, so no two triangles can have a

mutual edge.

By Corollary 1.7.6 applied for ε = δ

81 the graph G contains at least 729δ ′n3 triangles

for certain δ ′ ∈ 〈0,∞〉 that does not depend on n. On the other hand, as A contains at most

n arithmetic progressions of length 3, we can have at most 3n2 triangles, as we have 3n

choices for vertex (i,1) after which j is determined with at most n choices and then, again,

k is uniquely determined. This means that we must have 729δ ′n3 ≤ 3n2 or, equivalently,

n ≤ 1
243δ ′ . However, as the choice of n0 was arbitrary, n can be arbitrarily large, so the

uniform upper bound for n leads us to contradiction. Theorem 1.7.3 follows.

Now we will give an analytic formulation of Lemma 1.7.5, which was stated as

Lemma 6.5 in [60].

Lemma 1.7.7. For each ε ∈ 〈0,∞〉 there exists δ ∈ 〈0,∞〉 depending only on ε such that

the following is satisfied. Let f ,g,h : [0,1]2→ [0,1] be measurable functions such that∫
[0,1]

∫
[0,1]

∫
[0,1]

f (x1,x2)g(x2,x3)h(x3,x1)dx3dx2dx1 ≤ δ . (1.23)

Then there exist E1,2,E2,3,E3,1 ∈B([0,1]2) such that

1E1,2(x1,x2)1E2,3(x2,x3)1E3,1(x3,x1) = 0 for each x1,x2,x3 ∈ [0,1] (1.24)

and ∫
[0,1]

∫
[0,1]

f (x1,x2)1Ec
1,2
(x1,x2)dx1dx2 +

∫
[0,1]

∫
[0,1]

g(x2,x3)1Ec
2,3
(x2,x3)dx2dx3

+
∫
[0,1]

∫
[0,1]

h(x3,x1)1Ec
3,1
(x3,x1)dx3dx1 ≤ ε. (1.25)
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Figure 1.2: An example of a graph with 6 vertices and the corresponding plot of squares

Si, j.

Moreover, if there exist σ -algebras U ,V ,W ⊆B([0,1]) such that f is (U ×V )-measu-

rable, g is (V ×W )-measurable, and h is (W ×U )-measurable, then one can achieve

E1,2 ∈U ×V , E2,3 ∈ V ×W , E3,1 ∈W ×U .

Interestingly, this lemma implies Lemma 1.7.5. Suppose that ε > 0 is given. Let

G = (V,E) be a graph with card(V ) = n vertices and with fewer than δn3 triangles, where

δ > 0 depends on ε and it will be chosen a bit later. Let us denote V = {v1,v2, . . . ,vn}

and let us define

f = g = h := ∑
(i, j)∈{1,2,...,n}
{vi,v j}∈E

1Si, j .

where Si, j :=
î

2i−1
2(n+1) ,

2i+1
2(n+1)

ó
×
î

2 j−1
2(n+1) ,

2 j+1
2(n+1)

ó
. Visually, these functions take value 1 on

card(E) squares Si, j with area |Si, j| = 1
(n+1)2 and with center

( i
n+1 ,

j
n+1

)
, where (i, j) ∈

{1,2, . . . ,n}2 is any pair such that {vi,v j} ∈ E; otherwise, f ,g and h equal 0. It is easy to

check that these squares are mutually disjoint up to its borders and that they are subsets

of the domain square [0,1]2 when n≥ 3, which does not restrict us since we consider the

existence of triangles in the graph G. To understand this construction easily, see Figure

1.2. Also note that the last condition of Lemma 1.7.7 is satisfied with U = V = W =

σ

Ä¶î
2i−1

2(n+1) ,
2i+1

2(n+1)

ó
: i ∈ {1,2, . . . ,n}

©ä
.

Let δ ′ ∈ 〈0,∞〉 be from Lemma 1.7.7 applied for ε

2 in the role of parameter ε and
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set δ := δ ′/6. Notice that the function (x1,x2,x3) 7→ f (x1,x2)g(x2,x3)h(x3,x1) equals 1

exactly when there exist squares Si, j,S j,k and Sk,i such that (x1,x2) ∈ Si, j, (x2,x3) ∈ S j,k,

(x3,x1) ∈ Sk,i and (vi,v j),(v j,vk),(vk,vi) ∈ E, therefore detecting all the triangles in G,

each of them precisely 6 times. The integration of this function gives∫
[0,1]

∫
[0,1]

∫
[0,1]

f (x1,x2)g(x2,x3)h(x3,x1)dx3dx2dx1

= ∑
i, j,k∈{1,2,...,n}

{vi,v j},{v j,vk},{vk,vi}∈E

(∫
[(2i−1)/2(n+1),(2i+1)/2(n+1)]

dx1

)
(∫

[(2 j−1)/2(n+1),(2 j+1)/2(n+1)]
dx2

)(∫
[(2k−1)/2(n+1),(2k+1)/2(n+1)]

dx3

)
≤6δn3 1

(n+1)3 < 6δ = δ
′,

so (1.23) is satisfied with δ ′ in the place of δ . Take E1,2,E2,3,E3,1 ∈U ×U ⊆B([0,1]2)

from Lemma 1.7.7 and define E ′ as the subset of E which satisfies the following condition:

{vi,v j} ∈ E ′ if and only if Si, j∩E1,2∩E2,3∩E3,1 = /0.

Note that, by the (U ×U )-measurability condition, for each set Ek,l and each square Si, j

we have either Si, j ⊆ Ek,l or Si, j ∩Ek,l = /0. We claim that Lemma 1.7.5 is satisfied if we

delete edges from the set E ′. First, notice that

card(E ′) =
(n+1)2

2 ∑
i, j∈{1,2,...,n}
{vi,v j}∈E ′

∫∫
Si, j

dxdy

≤(n+1)2

2

Å∫
[0,1]

∫
[0,1]

f (x1,x2)1Ec
1,2
(x1,x2)dx1dx2

+
∫
[0,1]

∫
[0,1]

g(x2,x3)1Ec
2,3
(x2,x3)dx2dx3 +

∫
[0,1]

∫
[0,1]

h(x3,x1)1Ec
3,1
(x3,x1)dx3dx1

ã
≤(n+1)2

2
· ε

2
≤ εn2,

by (1.25) and by the choice of the parameter. This means that, by the suggested procedure,

we would indeed delete less than εn2 edges. To check that the newly constructed graph

would be triangle-free, note that, if there existed a triangle {vi,v j},{v j,vk},{vk,vi} ∈ E \

E ′, i < j < k, then we would have Si, j ⊆ E1,2, S j,k ⊆ E2,3, Sk,i ⊆ E3,1, so that
( i

n+1 ,
j

n+1

)
∈

E1,2,
( j

n+1 ,
k

n+1

)
∈ E2,3 and

( i
n+1 ,

k
n+1

)
∈ E3,1, which would contradict (1.24).

Observations in this section offer another motivation to analyse integral forms asso-

ciated with graphs and actually motivate one to generalize the concept to the hypergraph
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setting, in an attempt to offer a removal lemma for this more general concept. Recall the

notation introduced in Section 1.6.

Lemma 1.7.8. Suppose that k,r are positive integers such that k≤ r. For each ε ∈ 〈0,∞〉

there exists δ ∈ 〈0,∞〉 depending only on ε such that the following holds. Let H =

(V,E) be an r-partite k-uniform hypergraph and let F = (Fe)e∈E be a tuple of measurable

functions from [0,1]k to [0,1] such that∫
[0,1]n

∏
e∈E

Fe(xe)dx≤ δ

where n = card(V ). Then there exist a tuple (Ee)e∈E of elements in B([0,1]k) such that

∏
e∈E

1Ee(xe) = 0 for each x ∈ [0,1]n

and

∑
e∈E

∫
[0,1]r

Fe(xe)1Ec
e (xe)dxe ≤ ε.

This is just a slight reformulation of Tao’s hypergraph removal lemma from [59]. Its

proof is quite involved and the reader can find it in [59]. We will not need it later in the

text.
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2. T(1) THEOREM FOR DYADIC

SINGULAR INTEGRAL FORMS

In this chapter we will study dyadic singular integral forms associated with r-partite r-

uniform hypergraphs. We will prove Lp boundedness of singular integral forms with Haar

functions in integral expressions and estimates for local entagled dyadic paraproducts.

Then we will prove characterizations of Lp boundedness of singular integral forms with

general dyadic Calderón-Zygmund kernels.

2.1. CHARACTERIZATIONS OF Lp

BOUNDEDNESS

Starting with an r-partite r-regular hypergraph H = (V,E), let (V (i))r
i=1 be an r-partition

of the set of vertices V . We assume that there are no isolated vertices, i.e., each vertex

from V belongs to some edge from E. Moreover, we also assume that each partition set

V (i) contains at least two vertices. Also, let (Hl)
k
l=1, given with Hl = (Vl,El) for each l ∈

{1, . . . ,k}, be connected components of H, meaning that there exist partitions
(
Vj
)

1≤ j≤m

of V and
(
E j
)

1≤ j≤m of E such that each subhypergraph
(
Vj,E j

)
, j ∈ {1,2, . . . ,m} is

connected (i.e. for each x,y ∈ Vj there exist n ∈ N, v1, . . . ,vn−1 ∈ Vj and e1, . . . ,en ∈ E j

such that x,v1 ∈ e1,v1,v2 ∈ e2, . . . ,vn−1,y ∈ en) and maximal (i.e. it is not contained in

any other connected subhypergraph of (V,E)). Throughout this chapter we are going to

impose the assumption that each of these connected components constitutes a complete

hypergraph. This is a serious restriction when compared with the two-dimensional case

from [37], but it keeps us far from unresolved issues related to the so-called triangular
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Hilbert transforms; see the comments in [34]. For each such l and for each i ∈ {1, . . . ,r}

we define V (i)
l := Vl ∩V (i). This makes (V (i)

l )r
i=1 an r-partition of the set Vl , which goes

along with the hypergraph Hl being r-partite as well. For each e ∈ E, taking the unique

l ∈ {1, . . . ,k} such that e ∈ El , we define

de := max
1≤i≤r

∏
1≤ j≤r

j 6=i

card(V ( j)
l ) = max

1≤i≤r

∏
1≤ j≤r

card(V ( j)
l )

card(V (i)
l )

. (2.1)

In words, de is the product of cardinalities of the r− 1 largest vertex-partition parts of

the connected component containing e. These quantities will turn out to be important in

determining the ranges of exponents of the estimates to follow.

The following setting is a higher-dimensional multilinear generalization of the dyadic

setup from the paper [3] by Auscher, Hofmann, Muscalu, Tao, and Thiele. Let us denote

n := card(V ), ni := card(V (i)) and let K : Rn→C be a perfect dyadic Calderón-Zygmund

kernel, i.e. a locally integrable, bounded and compactly supported function that is constant

on each n-dimensional dyadic cube not intersecting the diagonal

D =
{
(x(1), . . . ,x(1)︸ ︷︷ ︸

n1 times

, . . . ,x(r), . . . ,x(r)︸ ︷︷ ︸
nr times

) ∈ Rn}

and that, for each x= (x(1)1 , . . . ,x(1)n1 , . . . ,x
(r)
1 , . . . ,x(r)nr ) ∈ Rn\D, satisfies

|K(x)|.
Å r

∑
i=1

∑
1≤ j1< j2≤ni

|x(i)j1 − x(i)j2 |
ãr−n

. (2.2)

For a tuple F = (Fe)e∈E of measurable bounded functions we define

ΛE (F) :=
∫
Rn

Å
∏
e∈E

Fe(xe)

ã
K(x)dx, (2.3)

and, for fixed e0 ∈ E and for each xe0 ∈ Rr,

Te0

Ä
FE\{e0}

ä
(xe0) :=

∫
Rn−r

Å
∏

e∈E\{e0}
Fe(xe)

ã
K(x) ∏

v∈V\e0

dxv, (2.4)

where we have denoted the tuple (Fe)e∈E\{e0} simply by FE\{e0}. We can notice that we

have

ΛE (F) =
∫
Rr

Te0

Ä
FE\{e0}

ä
(xe0)Fe0(xe0)dxe0
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for each e0 ∈ E. One could say that the operators Te0 for different e0 ∈ E are multilinear

adjoints of each other. We also say that ΛE is the entangled dyadic form associated with

H and K.

Let us introduce the notation of the elementary tensor product, which, for two func-

tions f ,g : R→ C, is denoted and defined as

( f ⊗g)(x,y) := f (x)g(y) for each x,y ∈ R.

By the associativity of the operation ⊗, we will assume the notation f1⊗ f2⊗·· ·⊗ fm as

an elementary tensor product of more than two functions and also write ⊗m
i=1 fi. For what

follows, we consider all functions of the form

hS
Q := |Q|

1
2

r⊗
k=1

nk⊗
i=1

Å ⊗
v(k)i ∈S(i)

h1
I(k)i

ãÅ ⊗
v(k)i ∈(S(k))c

h0
I(k)i

ã
,

where Q = ∏
r
k=1 ∏

nk
i=1 I(k)i ∈ Cn is arbitrary and S = ((S(k))r

k=1) 6= ( /0) is an r-tuple of se-

lected vertices from the r-partitioned set of vertices, i.e. S(k)⊆V (k) for each k∈ {1, . . . ,r}.

Notice that these are the tensor products of L2-normalized Haar functions with at least one

of them being cancellative. This means that for a perfect dyadic Calderón-Zygmund ker-

nel K, being a square-integrable function over Rn, we have

K = ∑
S=(S(i))r

i=1
(∀i∈{1,...,r})S(i)⊆V (i)

(∃i0∈{1,...,r})S(i0) 6= /0

∑
Q=∏

r
i=1 ∏

ni
j=1 I(i)ji

∈Cn

¨
K,hS

Q

∂
L2(Rn)

hS
Q. (2.5)

Notice that, as K is constant on dyadic cubes not intersecting the diagonal and each of

these tensor products has a cancellation in at least one of the variables, the corresponding

scalar products equal zero, so we can actually consider this sum only over dyadic cubes

Q = ∏
r
i=1 ∏

ni
j=1 I(i)ji for which I(i)j1 = I(i)j2 for each j1, j2 ∈ {1, . . . ,ni} and i ∈ {1, . . . ,r}.

Using this and by assuming that functions Fe,e ∈ E and K are bounded and compactly

supported, we can present the form ΛE as

ΛE (F) = ∑
S=(S(i))r

i=1
(∀i∈{1,...,r})S(i)⊆V (i)

(∃i0∈{1,...,r})S(i0) 6= /0

∑
Q=∏

r
i=1(I(i))

ni∈Cn

¨
K,hS

Q

∂
L2(Rn)

∫
Rn

Å
∏
e∈E

Fe(xe)

ã
hS

Q(x)dx, (2.6)

as we can use the Lebesgue dominated convergence theorem.
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Along with the form ΛE for each tuple S we will define an entangled dyadic para-

product as

Λ
S
E (F) := ∑

Q=∏
r
i=1(I(i))

ni∈Cn

¨
K,hS

Q

∂
L2(Rn)

∫
Rn

Å
∏
e∈E

Fe(xe)

ã
hS

Q(x)dx (2.7)

Another useful way of writing this form will be

Λ
S
E (F) = ∑

Q=∏
r
i=1(I(i))

ni∈Cn

|Q|λQ [F]H,S,Q ,

with λQ defined as λQ := |Q|− 1
2
〈
K,hS

Q
〉

L2(Rn)
and [F]H,S,Q is defined as in Section 2.2.

The following theorem is the main result of this work and it characterizes various

bounds for ΛE .

Theorem 2.1.1. Let (V,E) be an r-partite r-uniform hypergraph such that all its con-

nected components are complete, with an r-partition
Ä
V (i)
ä

1≤i≤r
of the set of vertices V

such that min1≤i≤r card(V (i)) ≥ 2. Furthermore, let
Ä

S(i)
ä

1≤i≤r
be a family of selected

vertices and let (de)e∈E be numbers given with (2.1). The following statements are equiv-

alent.

(a) The weak boundedness property

|ΛE(1Q, . . . ,1Q)|. |Q| for each Q ∈ Cr (2.8)

and the T(1)-type conditions

‖Te(1Rr , . . . ,1Rr)‖BMO(Rr) . 1 for each e ∈ E (2.9)

are valid.

(b) We have

‖Te0(1Q)e∈E\{e0}‖L1(Q) . |Q| for each e0 ∈ E and Q ∈ Cr. (2.10)

(c) The form ΛE satisfies the estimate

|ΛE (F) |.∏
e∈E
‖Fe‖Lpe(Rr) (2.11)

for all choices of exponents de < pe ≤ ∞,e ∈ E, such that ∑e∈E
1
pe
= 1.
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(d) The form ΛE satisfies the estimate (2.11) for some choice of exponents de < pe ≤

∞,e ∈ E, such that ∑e∈E
1
pe
= 1.

(e) For any measurable, bounded, and and compactly supported tuple of functions F

there exists a sparse form ΘS for which we have |ΛE(F)|.ΘS (F).

(f) Let p = (pe)e∈E be an arbitrary tuple of exponents from [1,∞] such that pe > de for

each e ∈ E and ∑e∈E
1
pe

= 1 and w = (we)e∈E a tuple of strictly positive functions

satisfying (1.3). For each tuple F = (Fe)e∈E we have

|ΛE(F)|. [w]
maxe∈E

pe
pe−de

p,d ∏
e∈E
‖Fe‖Lpe(we).

The implicit constants in all of the above estimates depend on the hypergraph H,

kernel K, the exponents in question, and they also mutually depend on each other.

Throughout the whole chapter we are going to work with the functions Fe,e ∈ E that

are nonnegative, as the general result will follow by representing each of these functions

as a difference of its positive and negative parts.

Because of the assumption min1≤i≤r card(V (i))≥ 2 we easily deduce that

∑
e∈E

1
de

> 1 (2.12)

is valid. Indeed, if there exists a connected component Hl = (Vl,El) such that card(V (i)
l )≥

2 for each i ∈ {1, . . . ,r}, then by denoting i0 := min1≤i≤r card(V (i)
l ), since card(El) =

∏
r
i=1 card(V (i)

l ), we have

∑
e∈E

1
de
≥ ∑

e∈El

1
de

=
card(El)card(V (i0)

l )

∏
r
i=1 card(V (i)

l )
≥ 2 > 1.

If such component does not exist, then there exist at least two different components Hl1 =

(Vl1 ,El1) and Hl2 = (Vl2,El2), l1 6= l2, in which case, with i1 := min1≤i≤r card(V (i)
l1

) and

i2 := min1≤i≤r card(V (i)
l2

), we can conclude

∑
e∈E

1
de
≥ ∑

e∈El1

1
de

+ ∑
e∈El2

1
de

=
card(El1)card(V (i1)

l )

∏
r
i=1 card(V (i)

l )
+

card(El2)card(V (i2)
l )

∏
r
i=1 card(V (i)

l )
≥ 1+1 > 1.

Theorem 2.1.1 would not give any estimates for forms associated with hypergraphs if

(2.12) failed. In the particular case dealing with bipartite graphs (without the complete-

ness assumption), i.e. when r = 2, the paper [37] proceeds by studying exceptional cases,
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so that all nondegenerate bipartite graphs are covered with some nonempty range of ex-

ponents. We are not able to do the same here, since higher dimensions bring an additional

structural complexity, and this is another reason why we find convenient to assume that

each hypergraph component is complete. Indeed, the reader can see the recent paper by

Durcik and Roos [17] for an example of an open problem in dimensions r ≥ 4, which

would be resolved if we could apply our main result to the hypergraph in question.

Example 2.1.2. Let us illustrate how the twisted paraproduct form from the paper [33]

can be represented as an entangled form associated to a hypergraph.

Suppose that each of the partition classes V (i) has precisely two vertices and suppose

that the hypergraph is complete, so that indeed E = ∏
r
i=1V (i), card(E) = 2r. Thus, the set

of edges is in a bijective correspondence with {0,1}r and we are working with a tuple of

functions F = (Fj1, j2,..., jr) j1, j2,..., jr∈{0,1}. For the kernel we take

K(x) := ∑
Q=∏

r
i=1 I(i)

|I(1)|rh1
I(1)(x

(1)
1 )h1

I(1)(x
(1)
2 )

r

∏
k=2

h0
I(k)(x

(k)
1 )h0

I(k)(x
(k)
2 ),

where the summation is performed over all dyadic cubes contained in [0,2N〉r with edge-

length at least 2−N , for some positive integer N. Since
∫
h1

I (x)dx = 0 for every dyadic

interval I, it is easy to verify that K and the associated form ΛE satisfy conditions from

part (a) of Theorem 2.1.1 with

Te(1Rr , . . . ,1Rr) = 0

for each e ∈ E. Consequently, we obtain Lp estimates for ΛE in the range 2r−1 < pe ≤ ∞

for each e ∈ E, ∑e∈E
1
pe
= 1.

The most interesting case in [33] is obtained by taking Fj1, j2,..., jr = 1Rr whenever j1+

j2 + · · ·+ jr ≥ 2, which leaves us with only r+1 nontrivial functions. For the remaining

functions we need to take pe = ∞, which makes the range of exponents empty unless

(r+1) 1
2r−1 > 1, i.e. unless r≤ 2. The case r = 3 (and without the requirement de < pe for

each e∈ E) was handled in [17], while the cases r≥ 4 are still open at the time of writing.
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2.2. Lp BOUNDEDNESS FOR A SPECIFIC KERNEL

First we are going to prove the Lp-estimate for a dyadic singular integral form where,

instead of a perfect dyadic Calderón-Zygmund kernel K, we have Haar functions defined

in 1.16. The form will be defined as follows.

Let (V,E) be an r-partite r-uniform hypergraph with a fixed r-partition; denote V (i) =

{v(i)1 , . . . ,v(i)ni } for each i ∈ {1, . . . ,r}. Let (Fe)e∈E be a tuple of measurable, bounded and

compactly supported functions from Rr to R and take S = (S(i))1≤i≤r with S(i) ⊆V (i) for

each i ∈ {1, . . . ,r} and such that there exists i0 ∈ {1, . . . ,r} such that card(Si0) ≥ 2. We

define

ΛE,S
(
(Fe)e∈E

)
:= ∑

Q=I1×···×Ir∈Cr

|Q|
∫
Rn

(
∏
e∈E

Fe (xe)
) r

∏
i=1

(
∏

v(i)∈S(i)
h1

Ii
(xv(i)) ∏

v(i)∈(S(i))c

h0
Ii
(xv(i))

)
dx,

where n = card(V ) and x and xe,e ∈ E are vectors defined in Section 1.6. For the defi-

nition of the form Λ and for the statement of the main problem we intentionally labeled

functions Fe with the set of edges E and variables xv(i) with the set of vertices V and its

r-partition (V (i))1≤i≤r. As we will see later, we will introduce a short, compact nota-

tion which encodes all important information by just defining a certain labeled (r-partite

and r-uniform) hypergraph, therefore making proofs easier to write and more practical to

visualise. With this, a tuple S of vertices will be considered as a tuple of selected vertices.

Take a tuple F = (Fl)l∈LE of nonnegative measurable compactly supported functions.

More precisely, this is a collection of functions indexed by the set LE and these functions

will be substituted in the places of edge labels in all of the following analytical expres-

sions. For Q = ∏
r
k=1 Ik ∈ Cr an evaluation of a tuple F on the hypergraph H, given S and

Q is defined as the number given by

[F]H,S,Q :=
∫
Rn

∏
e∈E

FlE(e)(xe)
r

∏
k=1

(
∏

v(k)i ∈S(i)

h1
Ii

(
x

v(k)i

)
∏

v(k)i ∈(S(i))c

h0
Ii

(
x

v(k)i

))
dx,

where S = (S(i))1≤i≤r and S(i) ⊆ V (i) for each i ∈ {1,2, . . . ,r}. This expression will also

be called paraproduct-type term. In particular, if each S(i) = /0, then the mapping A : F 7→

[F]H,S,Q will be called an averaging paraproduct-type term. Also, any linear combination

52



T(1) theorem for dyadic singular integral forms Lp boundedness for a specific kernel

of paraproduct-type terms will be called a paraproduct-type expression. Note that the

form ΛE,S that we are trying to bound has much more compact notation now:

ΛE,S (F) = ∑
Q∈Cr

|Q| [F]H,S,Q ,

where the initial labelling of edges is given by lE(e) := Fe.

Theorem 2.2.1. Let (V,E) be an r-partite r-uniform hypergraph with an r-partitionÄ
V (i)
ä

1≤i≤r
of the set of vertices V , where V (i) =

{
v(i)1 , . . . ,v(i)ni

}
for each i ∈ {1, . . . ,r}, a

family of selected vertices
Ä

S(i)
ä

1≤i≤r
and numbers (de)e∈E given with (2.1). Then, for

each tuple (pe)e∈E of positive real numbers that satisfy de < pe ≤ ∞ for each e ∈ E and

∑e∈E
1
pe
= 1 we have

∣∣ΛE,S
(
(Fe)e∈E

)∣∣.(ni),r,(pe) ∏
e∈E
‖Fe‖Lpe(Rr) .

Before obtaining this result, we are going to define additional forms which are going

to appear in the proof of this result, and we will show its specific estimates that will turn

out to be helpful for the later proof.

Given Q ∈ Cr, for an expression B = BQ (F) we define its first-order difference as

�BQ (F) := ∑
Q′∈C (Q)

1
2r BQ′ (F)−BQ (F) .

The operator � can be thought of as a certain discrete version of the Laplace operator.

Theorem 2.2.2. For any cube Q, the first-order difference of the averaging paraproduct-

type term BH,( /0),Q = [F]H,( /0),Q is the paraproduct-type expression

�BH,( /0),Q = ∑
(∀i∈{1,...,r})S(i)⊆V (i),card(S(i))even

(∃i0∈{1,...,r})card(S(i0))6= /0

[F]H,S,Q .

Proof. Let Q := ∏
r
i=1 Ii and, for each dyadic interval I ∈ C1, let νI := 1IL −1IR . Notice

that, for any α1, . . . ,αr ∈ R,

r

∏
i=1

( ni

∏
j=1

(
1+αiνIi

(
x

v(i)j

)))
= ∑

S(1)⊆V (1)
...

S(r)⊆V (r)

r

∏
i=1

∏
v(i)j ∈S(i)

α
|Si|
i νIi

(
x

v(i)j

)
.
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Indeed, the product on the left-hand side can be multiplied out. The left-hand side can

be rewritten by multiplying each term from each of the brackets, so we get each sum-

mand given on the right-hand side of the equation, depending on which of the terms

αiνIi(xv(i)j
) we selected while multiplying. Adding up these equations for every choice of

αi = ±1,1 ≤ i ≤ r, multiplying the resulting equation with
∏e∈E FlE (e)(xe)

2r|I1|n1 ...|Ir|nr and then inte-

grating in each variable x
v(i)j

over Ii, we get

∫
Q

∏e∈E FlE(e)(xe)

2r |I1|n1 . . . |Ir|nr ∑
α1=±1

...
αr=±1

r

∏
i=1

( ni

∏
j=1

(
1+αiνIi

(
x

v(i)j

)))
dx

=
∫

Q

∏e∈E FlE(e)(xe)

|I1|n1 . . . |Ir|nr ∑
S(1)⊆V (1),card(S(1))even

...
S(r)⊆V (r),card(S(r))even

r

∏
i=1

∏
v(i)j ∈S(i)

νIi

(
x

v(i)j

)
dx.

The right-hand side is the result of fixing the value of each but one αi and then adding

terms depending on whether the remaining αi equals 1 or −1; for subsets Si of odd car-

dinality the terms cancel out. This procedure is repeated by fixing each of the remaining

scalars αi. Note that

h1
I = νIh

0
I , h0

IL
= (1+νI)h

0
I , h0

IR
= (1−νI)h

0
I .

If we rewrite the above equality as

1
2r ∑

α1=±1
...

αr=±1

∫
Rn

∏
e∈E

FlE(e)(xe)
r

∏
i=1

ni

∏
j=1

(
1+αiνIi

(
x

v(i)j

))
h0

Ii
(x

v(i)j
)dx

v(i)j
dx

= ∑
S(1)⊆V (1),card(S(1))even

...
S(r)⊆V (r),card(S(r))even

∫
Rn

∏
e∈E

FlE(e)(xe)
r

∏
i=1

∏
v(i)j ∈S(i)

νIi

(
x

v(i)j

)
h0

Ii
(x

v(i)j
) ∏
v(i)j ∈(S(i))c

h0
Ii
(x

v(i)j
)dx

v(i)j
dx,

then, using the identities above,

1
2r

∫
Rn

∏
e∈E

FlE(e)(xe)
r

∏
i=1

ni

∏
j=1

(
h0
(Ii)L

(x
v(i)j

)+h0
(Ii)R

(x
v(i)j

)
)
dx

v(i)j
dx

= ∑
S(1)⊆V (1),card(S(1))even

...
S(r)⊆V (r),card(S(r))even

∫
Rn

∏
e∈E

FlE(e)(xe)
r

∏
i=1

Å
∏

v(i)j ∈S(i)

h1
Ii
(x

v(i)j
) ∏

v(i)j ∈(S(i))c

h0
Ii
(x

v(i)j
)

ã
dx

v(i)j
dx,
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which can also be written as

1
2r ∑

Q′∈C (Q)

[F]H,( /0),Q′ = ∑
S(1)⊆V (1),card(S(1))even

...
S(r)⊆V (r),card(S(r))even

[F]H,S,Q .

Substracting the expression [F]H,( /0),Q from both sides of the equality gives the desired

result. �

Another useful result is the following lemma from [34], stated in a general notation

instead of a notation using hypergraphs and selected vertices.

Lemma 2.2.3. For any m ∈ N, any I1, . . . , Im ∈ C1 and any nonnegative function f :

Rm→ R, the expression

∑
S⊆{1,...,m},card(S)even

∫
Rn

f (x1, . . . ,xm)

Å
∏
i∈S
h1

Ii
(xi)∏

i∈Sc
h0

Ii
(xi)

ã
d(x1, . . . ,xn)

is also nonnegative.

The next lemma follows from repeated application from Hölder’s inequality through-

out which we will be able to read the exact form of thresholds defined in 2.1. This is also

the part where we will require for the connected subhypergraphs to be complete; more

precisely, we will state the estimate for complete hypergraphs. The reader can compare it

with the particular case r = 2 appearing in [34].

Lemma 2.2.4. Let H = (V,E) be a complete r-partite r-uniform labeled hypergraph. If

N := ∏
r
i=1 ni and M := max

¶
N
n1
, . . . , N

nr

©
= max1≤i≤r ∏1≤ j≤r

j 6=i
n j, then for any tuple F =

(Fl)l∈LE of nonnegative measurable functions we have[
(FlE(e))e∈E

]
H,( /0),Q ≤∏

e∈E

[
FM

lE(e)
] 1

M
Q .

Proof. We can clearly assume that the edge labels are assigned via lE(e) = Fe. Differ-

ent labelling would simply account for repetition of the functions, while this is the most

general case. We will prove the claim by the mathematical induction on r ∈ N. The

inequality for r = 1 is trivial. Assume that, for some r ≥ 1, we have the inequality

from the statement of the lemma for each choice of a labeled r-partite r-uniform com-

plete hypergraph Hr = (Vr,Er, lVr) and for each choice of (Fe)e∈Er and Qr := ∏
r
k=1 Ik.
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Let Hr+1 = (Vr+1,Er+1, lVr+1) be an arbitrary (r + 1)-partite (r + 1)-uniform complete

hypergraph, let (Fe)e∈Er+1 be arbitrary and let Qr+1 = ∏
r+1
k=1 Ik ∈ Cr+1. Taken the (r+1)-

partition (V (i))1≤i≤r+1 of the set of vertices Vr+1 from the definition of the r-partite

hypergraph, define Vr := ∪r
i=1V (i), Er := ∏

r
i=1V (i) and lVr := lVr+1

∣∣
Vr

. Note that Hr :=

(Vr,Er, lVr) is an r-partite r-uniform complete hypergraph, constructed from Hr+1 by re-

moving the last part of the partition of vertices in Hr, by shortening its edges and by

removing duplicate edges. Also, let Nr := ∏
r
i=1 ni,Nr+1 := ∏

r+1
i=1 ni = Nrnr+1,Mr :=

max
¶

Nr
n1
, . . . , Nr

nr

©
and Mr+1 := max

¶
Nr+1

n1
, . . . , Nr+1

nr+1

©
= max{Mrnr+1,Nr}. Also, for e =

(v(1)i1 , . . . ,v(r+1)
ir+1

) ∈ E, let e′ := (v(1)i1 , . . . ,v(r)ir ). To additionally simplify and make the ex-

pressions as clearer as possible, we will use a different notation for the Haar function,

writing it as h0
x

v(r+1)
ir+1

∈Ir+1
, to emphasize in which variable we evaluate the function. With

that, let h0
Vr

:= ∏
r
i=1 ∏v(i)∈V (i) h

0
x

v(i)
∈Ii

. We have

[
(Fe)e∈Er+1

]
Hr+1,( /0),Qr+1

=

∥∥∥∥∥∥ ∏
e′∈Er

∏
v(r+1)

ir+1
∈V (r+1)

F
e′∪{v(r+1)

ir+1
}(h

0
x

v(r+1)
ir+1

∈Ir+1
)

1
|Er |
∥∥

L1(Rnr+1)
h0

Vr

∥∥∥∥
L1(Rn−nr+1)

≤
∥∥∥∥ ∏

e′∈Er

∥∥ ∏
v(r+1)

ir+1
∈V (r+1)

F
e′∪{v(r+1)

ir+1
}(h

0
x

v(r+1)
ir+1

∈Ir+1
)

1
Nr
∥∥

LNr (Rnr+1)
h0

Vr

∥∥∥∥
L1(Rn−nr+1)

(2.13)

=

∥∥∥∥ ∏
e′∈Er

∏
v(r+1)

ir+1
∈V (r+1)

∥∥F
e′∪{v(r+1)

ir+1
}(h

0
x

v(r+1)
ir+1

∈Ir+1
)

1
Nr
∥∥

LNr (R)h
0
Vr

∥∥∥∥
L1(Rn−nr+1)

=
[(

∏
v(r+1)

ir+1
∈V (r+1)

∥∥FNr

e′∪{v(r+1)
ir+1
}
h0

x
v(r+1)
ir+1

∈Ir+1

∥∥ 1
Nr
L1(R)

)
e′∈Er

]
Hr,( /0),Qr

≤ ∏
e′∈Er

[
∏

v(r+1)
ir+1
∈V (r+1)

∥∥FNr

e′∪{v(r+1)
ir+1
}
h0

x
v(r+1)
ir+1

∈Ir+1

∥∥Mr
Nr
L1(R)

] 1
Mr

Qr
(2.14)

= ∏
e′∈Er

∥∥∥∥ ∏
v(r+1)

ir+1
∈V (r+1)

Å∥∥FNr

e′∪{v(r+1)
ir+1
}
h0

x
v(r+1)
ir+1

∈Ir+1

∥∥Mr
Nr
L1(R)

(
h0

Vr

) 1
nr+1

ã∥∥∥∥ 1
Mr

L1(Rn−nr+1)

≤ ∏
e′∈Er

∏
v(r+1)

ir+1
∈V (r+1)

∥∥∥∥∥∥FNr

e′∪{v(r+1)
ir+1
}
h0

x
v(r+1)
ir+1

∈Ir+1

∥∥Mrnr+1
Nr

L1(R) h
0
Vr

∥∥∥∥ 1
Mrnr+1

L1(Rn−nr+1)

. (2.15)

Each of the L1 or LNr norms are considered in those variables that appear in the expres-

sion; more precisely, in those variables appearing in all of the mentioned Haar functions.
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The inequalities (2.13) and (2.15) follow by Theorem 1.1.3, while in (2.14) we used the

assumption of the mathematical induction. In case that Mrnr+1≥Nr, using Theorem 1.1.1

for probabilistic measures and the convex function x 7−→ x
Mrnr+1

Nr , we can dominate the last

term with

∏
e′∈Er

∏
v(r+1)

ir+1
∈V (r+1)

∥∥∥∥∥∥FMrnr+1

e′∪{v(r+1)
ir+1
}
h0

x
v(r+1)
ir+1

∈Ir+1

∥∥
L1(R)h

0
Vr

∥∥∥∥ 1
Mrnr+1

L1(Rn−nr+1)

.

Otherwise, if Mrnr+1 < Nr, with Jensen’s inequality for same function, which is concave

in this case, the term is dominated with

∏
e′∈Er

∏
v(r+1)

ir+1
∈V (r+1)

∥∥∥∥∥∥FNr

e′∪{v(r+1)
ir+1
}
h0

x
v(r+1)
ir+1

∈Ir+1

∥∥
L1(R)h

0
Vr

∥∥∥∥ 1
Nr

L1(Rn−nr+1)

.

Both expressions are equal to ∏e∈Er+1

[
FMr+1

e
] 1

Mr+1
Qr+1

, so the desired inequality follows. �

Without loss of generality, we will consider only those labeled hypergraphs for which

the tuple
(
card(l−1

V (L(i)
1 )),card(l−1

V (L(i)
2 )), . . . ,card(l−1

V (L(i)
mi ))

)
is decreasing for each i ∈

{1, . . . ,r}; otherwise we could interchange the roles of the vertex labels (along with their

copies) in a way that this becomes the decreasing tuple. That way we would operate with

labeled hypergraphs with same set of vertices V and same set of vertex labels LV , but

with a different label function lV . A family of such hypergraphs on the set of vertices

V = ∪r
i=1V (i) will be denoted by H(ni). We define

S :=
{

S =
(
S(i)
)

1≤i≤r :S 6= ( /0) and, for all i ∈ {1,2, . . . ,r} , S(i) ⊆V (i)

and card(S(i)) is even
}

Also, we define a binary relation � for hypergraphs H,H ′ ∈H(ni) in the following way.

H � H ′⇐⇒(
card(l−1

V (L(1)
1 )), . . . ,card(l−1

V (L(1)
m1 )); . . . ; card(l−1

V (L(r)
1 )), . . . ,card(l−1

V (L(r)
mr ))

)
≥
(
card(l

′−1
V (L(1)

1 )), . . . ,card(l
′−1
V (L(1)

m1 )); . . . ; card(l
′−1
V (L(r)

1 )), . . . ,card(l
′−1
V (L(r)

mr ))
)
,

where we consider the latter relation on m-tuples to be a standard lexicographical order.

We can notice that (H(ni),�) is a totally ordered finite set; therefore there exist minimal

and maximal hypergraphs with respect to this relation.
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In some of the proofs we will frequently change roles of vertices or switch labels of

certain vertices. However, if the hypergraph that we are working with is not complete, it

would be necessary to change the set of edges E, which might affect and change the family

of functions (Fe)e∈E we are working with (by adding or removing certain functions) and

therefore changing the forms. To avoid problems like these, we begin with a temporary

additional assumption that the hypergraph must be complete, i.e. have all possible edges.

Consequently, the numbers de are the same for all edges e and we write them simply as

d. Later, while proving the proposition on boundedness on a finite convex tree, we will

generalize the result for hypergraphs with any choice of edges. Moreover, we fix a finite

convex tree T . Any constants in the inequalities will be independent of the choice of that

tree.

Finally, let us also, for a moment, assume that all functions constituting F are normal-

ized so that

max
Q∈T ∪L (T )

[Fd
l ]

1/d
Q = 1.

for each l ∈ LE . Later we will use homogeneity to remove this normalizing condition.

Lemma 2.2.5. For every complete r-partite r-regular hypergraph H ∈H(ni) there exists

an averaging paraproduct-type term BH,( /0),Q satisfying

max
Q∈T ∪L (T )

BH,( /0),Q .(ni) 1

and such that for every δ ∈ 〈0,1〉 and for every Q ∈ Cr the following inequality holds for

some C(ni) > 0:

| [F]H,S,Q | ≤�BH,( /0),Q +C(ni)δ
−1

∑
H ′∈H(ni)

,H ′≺H
R∈S

| [F]H ′,R,Q |+C(ni)δ ∑
H ′∈H(ni)

,H ′�H
R∈S

| [F]H ′,R,Q |.

Proof. We will first cover the case for k ∈ {1, . . . ,r} and distinct i, j ∈ {1, . . . ,nk} such

that l−1
V (L(k)

i )∩ S(k) 6= /0 and l−1
V (L(k)

j )∩ S(k) 6= /0; without loss of generality, let k = 1,

i = 1, j = 2. Let v1 ∈ l−1
V (L(1)

1 )∩ S(1) and v2 ∈ l−1
V (L(1)

2 )∩ S(1). By separating products

of functions depending on whether the edge e ∈ E contains vertex v1, vertex v2 or none

of them and then applying the inequality |AB| ≤ 1
2δ

A2 + δ

2 B2 ≤ δ−1A2 + δB2 for any

A,B ∈ R, we conclude that

| [F]H,S,Q | ≤ δ
−1 [F]H ′,R,Q +δ [F]H ′′,R,Q
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F1,1

F1,2 F2,1

F2,2

F3,1 F3,2

x(1)1 x(2)1

x(1)2

x(1)3

x(2)2

H

H ′ H ′′

F1,1

F1,2 F1,1

F2,2

F3,1 F3,2

x(1)1,1 x(2)1

x(1)1,2

x(1)3

x(2)2

F2,1

F1,2 F2,1

F2,2

F3,1 F3,2

x(1)2,1 x(2)1

x(1)2,2

x(1)3

x(2)2

Figure 2.1: A construction of hypergraphs H ′ and H ′′ starting from the hypergraph H.

for labeled hypergraphs H ′,H ′′ and a tuple of subsets R defined in the following way.

Starting with hypergraph H, let the label xv2 be a copy of the label xv1 , i.e. redefine lV (v2)

in a way that lV (v2) ∈ L(1)
1 \lV (V (1)) (so that lV remains an injective function). Also,

remove all edges e∈ E for which v2 ∈ E and add edges e′ ∈ E which have v1 ∈ e′, but with

vertex v2 instead of v1. In analogous way we define labeled hypergraph H ′′. Intuitively,

starting from the hypergraph H we removed one of vertices v1 and v2 and then we doubled

the remaining vertex and its role. As for the sequence of subsets R, we take

R(1) = {v1,v2} , R(k) = /0,k ≥ 2.

This part of the proof is illustrated with the Figure 2.1.

Notice that H ′ ≺ H as the first different component from the definition of the relation

≺ got increased while constructing H ′. On the other hand, it might happen that the tuple

representing the number of times each vertex label appears for the hypergraph H ′′ did

not decrease. In that case we will interchange the roles of the vertex labels according to
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our agreement before this lemma. With that agreement, it may still happen that H ′′ � H

as well as H ′′ ≺ H, in which case we use the inequality δ < 1
δ

, which is true for any

δ ∈ 〈0,1〉. The claim would then follow by adding the remaining terms δ−1 [F]H ′,R,Q or

δ [F]H ′,R,Q to the whole expression. Note that BH,( /0),Q ≡ 0 satisfies the first inequality

required in the statement of the lemma.

The second case of possible hypergraphs H is when, for each k ∈ {1, . . . ,r}, there ex-

ists at most one ik ∈ {1, . . . ,mk} such that l−1
V (L(k)

ik )∩S(k) 6= /0. Without loss of generality,

let l−1
V (L(1)

1 )∩ S(1) 6= /0; in that case, there exist distinct v1,v2 ∈ l−1
V (L(1)

i1 )∩ S(1). If we

mark S
′(1) := {v1,v2} and S

′(k) = /0 for k ≥ 2, we can notice that

| [F]H,S,Q | ≤ [F]H,S′,Q

Since it is enough to bound the expression for S′, we will assume that S is already defined

as S′ above. Now, let BH,( /0),Q := [F]H,( /0),Q . Note that the first inequality in the statement

of this lemma is satisfied by Lemma 2.2.4 and the normalization of the functions. By

Theorem 2.2.2,

�BH,( /0),Q = ∑
R∈S

[F]H,R,Q .

We will split the family S into three parts. For each k ∈ {1, . . . ,r} we define

S (1) :=
{

S ∈S :(∃!i1 ∈ N)l−1
V (L(1)

i1 )∩S(1) 6= /0∧ (∀k ∈ {2, . . . ,r})S(k) = /0
}
,

S (2) :=
{

S ∈S :(∃k ∈ {2, . . . ,r})(∃!ik ∈ N)l−1
V (L(k)

ik )∩S(k) 6= /0

∧
(
∀k′ ∈ {k+1, . . . ,r}

)
S(k
′) = /0

}
,

S (3) :=
{

S ∈S :(∃k ∈ {1, . . . ,r})(∃ik, i′k ∈ N, ik 6= i′k) l−1
V (L(k)

ik )∩S(k) 6= /0

∧ l−1
V (L(k)

i′k
)∩S(k) 6= /0∧ (∀k′ ∈ {k+1, . . . ,r})S(k

′) = /0
}
.

Notice that S = ∪̇3
k=1S

(k) and that S ∈S (1). Take R ∈S (1); as each of the functions

Fe,e ∈ E is nonnegative, the only possible integration of negative function on a set of

positive measure happens each time when the function h1
I is involved, i.e. whenever we

include the edge which consists a selected vertex. The only selected vertices appear in

the set S(1) and all of them have the label of the form x(1)i1, j1 for even number of indices

j1 ∈ {1, . . . ,n1}. Notice that, no matter which of these variables we use to evaluate the

integral expression, by the agreement in (1.20) and (1.21) we can separate the product
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∏e∈E Fe into equal products of the form ∏v(1)i1, j1
∈e∈E

Fe. Therefore, by changing the order

of the variables and separating the integral into more integrals, each of them having only

one single variable of the form x(1)i1, j1 , we get a product of same integral which appears an

even amount of times. Having the same number to the power of the even natural number,

we conclude that the whole expression is nonnegative. This works for any R ∈ S (1),

therefore

∑
R∈S (1)

[F]H,R,Q ≥ [F]H,S,Q .

Now, let k ∈ {2, . . . ,r}. For a moment, we will consider a labeled (r− k+ 1)-partite

(r− k+ 1)-uniform hypergraph Hk on ∏
r
i=k V (i) obtained from H in a way that we keep

all vertices from vertex components V (k), . . . ,V (r) with same vertex labels and along with

edges which are reduced by removing its vertices from disregarded vertex components

V (1), . . . ,V (k−1). Also, if Q = ∏
r
i=1 Ii, define Qk := ∏

r
i=k Ii. Along with S

′(i) := /0 for

i ∈ {k+1, . . . ,r} and for fixed real numbers
(
(x

v(k
′)

i
)1≤k′≤k−2

1≤i≤nk′

)
, we define

fk−1((xv(k−1)
i

)1≤i≤nk−1) := ∑
S
′(k)⊆l−1

V (L(k)
ik

)∩S(k)

S
′(k) 6= /0 and card(S

′(k)) is even

[F]Hk,(S
′(i))k≤i≤r,Qk

.

The expression in the definition of this function is a sum of integral expressions con-

taining the variables x
v(k
′)

i
for each k′ ∈ {1, . . . ,r} and i ∈ {1, . . . ,nk′}, integrating in each

variable when k′≥ k+1. The function in though of as depending on the independent vari-

ables corresponding to k′ = k while the other variables for k′ ≤ k−1 are, at this moment,

regarded as constants. Similarly as before, this function is nonnegative, so if we apply

Lemma 2.2.3 to function fk−1, we can conclude that the function

fk−2((xv(k−2)
i

)1≤i≤nk−2) := ∑
S
′(k−1)⊆V (k−1)

card(S
′(k−1)) is even

∑
S
′(k)⊆l−1

V (L(k)
ik

)∩S(k)

S
′(k) 6= /0 and card(S

′(k)) is even

[F]Hk−1,(S
′(i))k−1≤i≤r,Qk−1

is also nonnegative, where Hk−1 is a (r−k+2)-partite (r−k+2)-uniform hypergraph on

∏
r
i=k−1V (i) and Qk1 := ∏

r
i=k−1 Ii, defined analogously as Hk and Qk before. Continuing to

apply Lemma 2.2.3 to each class of variables until we reach last function f2, in variables

x
v(1)1

, . . . ,x
v(1)n1

, we conclude that

∑
R∈S (2)

[F]H,R,Q ≥ 0.
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The case of R ∈S (3) is covered as the first case of this proof, from which follows that

| [F]H,R,Q | ≤ δ
−1

∑
H ′∈H(ni)

,H ′≺H
R′∈S

| [F]H ′,R′,Q |+δ ∑
H ′∈H(ni)

,H ′�H
R′∈S

| [F]H ′,R′,Q |.

Combining all these cases, we can conclude that

[F]H,S,Q ≤ ∑
R∈S (1)

[F]H,R,Q + ∑
R∈S (2)

[F]H,R,Q + ∑
R∈S (3)

[F]H,R,Q− ∑
R∈S (3)

[F]H,R,Q

≤�BH,( /0),Q + ∑
R∈S (3)

Å
δ
−1

∑
H ′∈H(ni)

,H ′≺H
R′∈S

| [F]H ′,R′,Q |+δ ∑
H ′∈H(ni)

,H ′�H
R′∈S

| [F]H ′,R′,Q |
ã

=�BH,( /0),Q +C(ni)δ
−1

∑
H ′∈H(ni)

,H ′≺H
R′∈S

| [F]H ′,R′,Q |+C(ni)δ ∑
H ′∈H(ni)

,H ′�H
R′∈S

| [F]H ′,R′,Q |

for C(ni),δ := card(S (3)), which is the claim of this lemma. �

Lemma 2.2.6. For every r-partite r-regular complete hypergraph H and for every ε ∈

〈0,1〉 there exist an averaging paraproduct-type expression Bε

H,( /0) satisfying

max
Q∈T ∪L (T )

Bε

H,( /0),Q .(ni),ε 1

and

∑
H ′∈H(ni)

,H ′�H
S∈S

| [F]H ′,S,Q | ≤�Bε

H,( /0),Q + ε ∑
H ′∈H(ni)

,H ′�H
S∈S

| [F]H ′,S,Q |.

Proof. As the totally ordered set (H(ni),�) is finite, we will prove this claim by induction

over the hypergraphs from this family. Before we begin, let H ∈H(ni) be arbitrary non-

maximal hypergraph and let Hs be an immediate successor of H. Let C(ni) be as in Lemma

2.2.5. Suppose that there exists an averaging paraproduct-term Bε ′

H,( /0),Q such that

∑
H ′∈H(ni)

,H ′�H
S∈S

| [F]H ′,S,Q | ≤�Bε ′

H,( /0),Q

+

Ç
ε

4C(ni)card(H(ni))card(V )

å2

∑
H ′∈H(ni)

,H ′�H
S∈S

| [F]H ′,S,Q |, (2.16)

where ε ′ :=
(

ε

4C(ni)
card(H(ni)

)card(V )

)2
and ε ∈ 〈0,1〉 is arbitrary. Applying Lemma 2.2.5

for every H ′ ∈H(ni),H
′ ≤ Hs and δ := ε

4C(ni)
card(H(ni)

)card(V ) , we have

∑
H ′∈H(ni)

,H ′�Hs
S∈S

|
[
F
]

H ′,S,Q| ≤ ∑
H ′∈H(ni)

,H ′�Hs
S∈S

�BH ′,( /0),Q
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+
4C2

(ni)
card(H(ni))

2card(V )2

ε
∑

H ′′∈H(ni)
,H ′′�H

R∈S

| [F]H ′′,R,Q |+
ε

4 ∑
H ′′∈H(ni)

R∈S

| [F]H ′′,R,Q |

(2.16)
≤ ∑
H ′∈H(ni)

,H ′�Hs
S∈S

�BH ′,( /0),Q +
4C2

(ni)
card(H(ni))

2card(V )2

ε
�Bε ′

H,( /0),Q +
ε

2 ∑
H ′∈H(ni)

S∈S

| [F]H ′,S,Q |

≤ ∑
H ′∈H(ni)

,H ′�Hs
S∈S

�BH ′,( /0),Q +
4C2

(ni)
card(H(ni))

2card(V )2

ε
�Bε ′

H,( /0),Q

+
ε

2 ∑
H ′∈H(ni)

,H ′�Hs
S∈S

| [F]H ′,S,Q |+
1
2 ∑

H ′∈H(ni)
,H ′�Hs

S∈S

| [F]H ′,S,Q |, (2.17)

where we used card(SH ′)≤ card(V ) for any H ′ ∈H(ni). Moving the last sum on the left

side of the inequality and multiplying the inequality by 2, we get

∑
H ′∈H(ni)

,H ′�Hs
S∈S

| [F]H ′,S,Q | ≤�Bε

Hs,( /0),Q + ε ∑
H ′∈H(ni)

,H ′�Hs
S∈S

| [F]H ′,S,Q |, (2.18)

with additional notation

Bε

Hs,( /0),Q := 2 ∑
H ′∈H(ni)

,H ′�Hs
S∈S

BH ′,( /0),Q +
8C2

(ni)
card(H(ni))

2card(V )2

ε
Bε ′

H,( /0),Q,

which is an averaging paraproduct-type expression.

Now we proceed to the induction. The induction basis for the minimal hypergraph Hm

is actually (2.18) with Hs = Hm and it follows from (2.17), where, instead of (2.16) (we

cannot refer to it as Hm does not have preceding elements), we use a trivial inequality

0≤�Bε ′

Hm,( /0),Q +

Ç
ε

4C(ni)card(H(ni))card(V )

å2

∑
H ′∈H(ni)

| [F]H ′,S,Q |

for Bε ′

Hm,( /0),Q := 0, which trivially satisfies the required bound. Suppose that the claim

of the lemma is satisfied for certain H ∈H(ni), i.e. we have (2.16). Then the same claim

follows from its successor Hs, which is actually (2.18), with Bε

Hs,( /0),Q, which also satis-

fies the required bound by mathematical induction. With this, the required mathematical

induction is complete. �
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Lemma 2.2.7. For every r-partite r-regular complete hypergraph H there exists an aver-

aging paraproduct-type expression BH,( /0),Q satisfying

max
Q∈T ∪L (T )

BH,( /0),Q .(ni) 1

and

∑
H ′∈H(ni)

S∈S

| [F]H ′,S,Q | ≤�BH,( /0),Q.

Proof. As discussed while defining the totally ordered set (H(ni),�), there exists a max-

imal hypergraph HM. The claim of this lemma follows from previous lemma by applying

it for any fixed ε ∈ 〈0,1〉 and then by using BH,( /0),Q := Bε

HM ,( /0),Q �

For each tuple of functions F and each finite convex tree T we define

ΛT (F) := ∑
Q∈T
|Q| [F]H,S,Q

where H = (V,E) is any r-partite r-uniform labeled hypergraph and S = (S(i))1≤i≤r is a

tuple such that S(i) ⊆V (i) for each i ∈ {1, . . . ,r} and there exists i0 ∈ {1, . . . ,r} such that

card(S(i0))≥ 2.

Lemma 2.2.8. Let H = (V,E) be a r-regular r-uniform complete labeled hypergraph

and let T be a finite convex tree. Suppose that for each Q ∈ T there exists an averaging

paraproduct-type term BH,( /0),Q such that

|[F]H,S,Q| ≤�BH,( /0),Q and max
Q∈T ∪L (T )

BH,( /0),Q .(ni) 1.

Then,

|ΛT (F)|.(ni) |QT |.

Proof. We have

|ΛT (F)| ≤ ∑
Q∈T
|Q| | [F]H,S,Q | ≤ ∑

Q∈T
|Q|�BH,( /0),Q

= ∑
Q∈T

Å
∑

Q′∈C (Q)

|Q′|BH,( /0),Q′−|Q|BH,( /0),Q

ã
= ∑

Q∈L (T )

|Q|BH,( /0),Q−|QT |BH,( /0),QT
.(ni) ∑

Q∈L (T )

|Q| ≤ |QT |,

where we also used that the averaging paraproduct-type term, given nonnegative functions

F, is also nonnegative. �
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Proposition 2.2.9. Let H = (V,E) be a r-regular r-uniform labeled hypergraph such that

its label function lE is injective and, more explicitly, lE(e) = Fe for each e ∈ E. For any

finite convex tree T with root QT we have

|ΛT (F) |.(ni) |QT |∏
e∈E

max
Q∈T ∪L (T )

[Fde
e ]

1
de
Q . (2.19)

Proof. First, we will prove the proposition in the special case when E = ∏
r
i=1{v

(i)
1 ,

. . . ,v(i)ni }, i.e. for a complete r-uniform hypergraph. In that case the hypergraph is con-

nected and for every e ∈ E the number de is same for each edge e ∈ E. First, notice that it

will be enough to prove the claim of the proposition with additional assumptions

|QT |= 1 and max
Q∈T ∪L (T )

[Fde
e ]

1
de
Q = 1 for each e ∈ E,

in which case we need to prove

ΛT (F).(ni) 1.

Starting with an arbitrary finite convex tree T and functions (Fe)e∈E , let l ∈Z be such that

|QT | = 2l . Notice that Λ is invariant under dyadic dilations, in a way that the following

relation is satisfied:

ΛT

(
(D2l Fe)e∈E

)
= 2lr

ΛTl (F) ,

where, for any l ∈ Z and any function f : Rm → R, we define (D2l f )(x1, . . . ,xm) :=

f
( x1

2l , . . . ,
xm
2l

)
for (x1, . . . ,xm) ∈ Rm and where Tl is a finite convex tree such that each

Q ∈T is replaced with

Ql = 2−lQ = {2−lx : x ∈ Q}.

We can also see that

|QT |∏
e∈E

max
Q∈T ∪L (T )

[(D2l Fe)
de ]

1
de
Q = 2lr|QTl |∏

e∈E
max

Q∈Tl∪L (Tl)
[Fde

e ]
1

de
Q = 2lr.

It follows that

ΛT (F) = ΛT

(
(D2l(D2−l Fe))e∈E

)
= 2lr

ΛTl

(
(D2−l Fe)e∈E

)
.(ni) 2lr

= |QT |∏
e∈E

max
Q∈T ∪L (T )

[
(D2l Fe)

de
] 1

de
Q .

This proves the claim for all finite convex trees T , but still requiring the assumption

max
Q∈T ∪L (T )

[Fde
e ]

1
de
Q = 1.
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For arbitrary functions (Fe)e∈E , either we have that Fe ≡ 0 for some e ∈ E, in which case

the claim of the proposition trivially follows, or M := minQ∈T ∪L (T )

[
Fde

e
] 1

de
Q > 0. We

can see that
( 1

M Fe
)

e∈E satisfies this assumption, therefore

ΛT ((Fe)e∈E) = ΛT

((
M · 1

M
Fe
)

e∈E

)
= M|E|ΛT

(( 1
M

Fe
)

e∈E

)
.(ni) M|E| |QT |∏

e∈E
max

Q∈T ∪L (T )

[( 1
M

Fe
)de
] 1

de
Q = |QT |∏

e∈E
max

Q∈T ∪L (T )

[
Fde

e
] 1

de
Q .

Now we start with the proof in the general case. We are required to dominate each term[
(Fe)e∈E

]
H,S,Q, Q∈T , from the definition of ΛT . First, notice that we do not necessarily

have S ∈S . However, if we, without loss of generality, suppose that maxi∈N card(S(1))≥

2 and take vi1,vi2 ∈ S(1) for some i1 6= i2, then using the Cauchy-Schwarz inequality we

obtain

[F]H,S,Q ≤
1
2
[F]H1,S1,Q +

1
2
[F]H2,S2,Q

for hypergraphs H1 and H2 and tuples of selected vertices S1 and S2 defined in the fol-

lowing way. For each j, j′ ∈ {1,2} , j 6= j′, a hypergraph H j has the label function

l j
V

∣∣
V\{vi j′

} := lV
∣∣
V\{vi j′

} and l j
V (vi j′ ) belongs to the same set L(1)

k as lV (vi j), but does

not take the exact same value. Also, S(1)1 = S(1)2 := {v1,v2} and S(i)1 = S(i)2 := /0 for

i ∈ {2, . . . ,r}. We can see that S1,S2 ∈ S . For Q ∈ Cr, let BH,( /0),Q be as in Lemma

2.2.7. Applying Lemma 2.2.8 and using the bound from Lemma 2.2.7, we have

ΛT (F)≤ 1
2 ∑

Q∈T
|Q|
(
[F]H1,S1,Q +[F]H2,S2,Q

)
.(ni) |QT |= 1.

Now suppose that we are given an arbitrary set of edges E. It might happen that the

hypergraph H contains isolated vertices, i.e. those that are not elements of any edge. If v is

an isolated vertex, then, by the definition of [F]H,S,Q and the injectivity of lV , the variable

lV (v) will appear either in the expression h1
I (lV (v)) or in h0

I (lV (v)) for some I ∈ C1. In

first case, integrating by that variable we get [F]H,S,Q = 0, while in the other case, since

the integral of function hIk equals one, the expression remains the same if we leave out

that variable (and the vertex) from the expression. Therefore, isolated vertices give no

significant contribution to the expression to ΛT , so we may assume that there exist k ∈N

and connected components ∏
r
i=1V (i)

j for each j ∈ {1, . . . ,k} with no isolated vertices.

Notice that each number de depends on which of the components the edge e belongs to,
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so we will also denote that number as d( j), where j ∈ {1, . . . ,k} is such that e ∈∏
r
i=1V (i)

j .

We can also suppose that these k components form complete r-partite r-uniform graphs by

adding missing edges from the set ∪k
j=1 ∏

r
i=1V (i)

j and, for those edges e, defining Fe ≡ 1.

For each j ∈ {1, . . . ,k}, let H1, . . . ,Hk be the r-partite r-uniform complete hypergraphs

representing connected components of the hypergraph H; also, let S j = (S(i)j )1≤i≤r be

defined as S(i)j := S(i)∩V (i)
j for each i ∈ {1, . . . ,r} and j ∈ {1, . . . ,k}. With the additional

notation of FE = (Fe)e∈E and FE j = (Fe)e∈E j for each j = 1, . . . ,k we can notice that

ΛT (FE) = ∑
Q∈T
|Q|

k

∏
j=1

[FE j ]H j,S j,Q.

The first case is when there exists j ∈ {1, . . . ,k} such that card(S(1)j ) ≥ 2. We can apply

this proposition to the hypergraph H j as it belongs to the first case that we already covered.

Therefore

∑
Q∈T
|Q|[FE j ]H j,S j,Q .(ni) |QT |∏

e∈E j

max
Q∈T ∪L (T )

[Fd( j)

e ]
1

d( j)

Q = 1.

As for each Q ∈T and each j′ ∈ {1, . . . ,k}\{ j}, applying Lemma 2.2.4 we get

|[FE j′ ]H j′ ,S j′ ,Q| ≤ [FE j′ ]H j′ ,( /0),Q ≤ ∏
e∈E j′

[Fd( j′)
e ]

1
d( j′)
Q ≤ 1.

It follows that

ΛT (FE) = ∑
Q∈T
|Q|[FE j ]H j,S j,Q ∏

1≤ j′≤k
j′ 6= j

[FE j′ ]H j′ ,S j′ ,Q .(ni) 1,

which proves the claim of this proposition. The second case is when there exist j1, j2 ∈

{1, . . . ,k} such that S(1)j1 6= /0 6= S(1)j2 ; without loss of generality, let j1 = 1 and j2 = 2. Using

Lemma 2.2.4 in similar way as above, we can observe that

| [FE ]H,S,Q | ≤ |[FE1 ]H1,S1,Q||[FE2]H2,S2,Q| ≤
1
2
[FE1]

2
H1,S1,Q +

1
2
[FE2]

2
H2,S2,Q.

By changing the roles of the vertices let us assume that V (i)
1 = {v(i)1 , . . . ,v(i)li

} for each

i∈ {1, . . . ,r} and that v(1)1 ∈ S(1)1 . If d(1) = 1, i.e. if l1 = · · ·= lr = 1, then, for BH1,( /0),Q :=

[F(1,...,1)]2H1,( /0),Q we have

�BH1,( /0),Q = ∑
R(1)⊆{v(1)1 }...
R(r)⊆{v(r)1 }

R=(R(i))6=( /0)

[F(1,...,1)]
2
H1,R,Q ≥ [F(1,...,1)]

2
H1,S,Q.
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Note as well that

max
Q∈T ∪L (T )

BH1,( /0),Q(F(1,...,1)) =
(

max
Q∈T ∪L (T )

[F(1,...,1)]H1,( /0),Q
)2

= 1.

Analogously, we construct BH2,( /0),Q := [F(1,...,1)]2H2,( /0),Q. The proof of the proposition

is complete in this case after we apply Lemma 2.2.8 with BH,( /0),Q := 1
2BH1,S1,Q

+ 1
2BH2,S2,Q. In the case l1 = 1 and l2 ≥ 2, using Theorem 1.1.1 for the convex func-

tion x 7−→ x2 and the integral of type
∫

Q
1
|Q|dx, we have that

[FE1 ]
2
H1,S1,Q ≤ [FE ′1

]H ′1,S
′
1,Q

.

Here, H ′1 is the r-partite r-uniform complete hypergraph with set of vertices V ′ := V ∪

{v(1)2 }, set of edges

E ′1 := E1∪{{v
(1)
2 }∪ (e\{v

(1)
1 }) : v(1)1 ∈ e ∈ E1}

and the label function lV ′ given with lV ′
∣∣
V := lV , while the value lV ′(v

(1)
2 ) can be chosen as

an arbitrary copy of x
v(1)1

, as long as lV ′ is an injective function. Also, S
′(1)
1 := {v(1)1 ,v(1)2 }

and S
′(i)
1 := /0 for i∈ {2, . . . ,r}; in short, we copied the single vertex v(1)1 from the first part

of the r-partition along with the edges that contain that vertex and selected only those two

vertices (v(1)1 with its copy) out of all vertices in the hypergraph. Notice that S′1 ∈S ; we

can apply Lemma 2.2.8 with BH ′1,( /0),Q that we get from Lemma 2.2.7. It is important to

notice that the numbers of vertices in each of the partition sets of the hypergraphs H ′1 and

H ′2 have changed, therefore affecting the exponents de and possibly changing the range

of possible exponents pe while applying Lemma 2.2.8. However, this is not the case as

we only increased l1 by one (when adding v(1)2 ) and de > l1, so the maximum from the

definition of that exponent remains the same.

The remaining case is when l1 ≥ 2. First we can bound

[FE1]
2
H1,S1,Q ≤ [FE1]

2
H1,S′1,Q

,

in a way that S′1 = ({v(1)1 }, /0, . . . , /0). Then we can group the integral expression depending

on whether any function Fe or any of the Haar functions appear to be evaluated in the

cancellative variable x
v(1)1

, the non-cancellative variable x
v(1)2

or if it has none of these
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two variables. Then, by the application of arithmetic-geometric inequality and also by

bounding the complete non-cancellative integral expression with 1, we get

[FE1 ]
2
H1,S′1,Q

≤ [FE ′′1
]H ′′1 ,S

′′
1 ,Q

.

This time, H ′′1 is the r-partite r-uniform complete hypergraph with a set of vertices V ′′ :=

(V ∪{v
′(1)
1 })\{v

(1)
2 }, a set of edges E ′′1 given with E ′′1 := {e ∈ E1 : v(1)2 /∈ e}∪{{v

′(1)
1 }∪

(e\{v(1)1 }) : v(1)1 ∈ e ∈ E1} and the label function lV ′′ such that lV ′′
∣∣
V := lV and lV ′′(v

′(1)
1 ) is

a copy of x(1)1 , in a way that lV ′ is still an injective function. With that, S
′′(1)
1 := {v(1)1 ,v

′(1)
1 }

and S
′′(i)
1 := /0 for i ∈ {2, . . . ,r}. In this case we copied the vertex v(1)1 along with the

edges that contain it and left off v(1)2 with each edge that might contain it. The selected

vertices are only the first, already selected, vertex v(1)1 along with its new copy v
′(1)
1 . Note

that, again, S′′1 ∈S , so we use Lemma 2.2.7 to get BH ′′1 ,( /0),Q and then the result of the

proposition follows by applying Lemma 2.2.8 again. As in the previous case, we can

notice that the lemma is applied for the same number de as the number of vertices in each

of the partition sets remains unchanged. �

Now we are ready to prove our simplest boundedness result on the entangled forms.

Proof of Theorem 2.2.1. For each N ∈ N we define

C N :=
ß r

∏
i=1

Ii ∈ Cr : |I1|= · · ·= |Ir| ≥ 2−N
™
. (2.20)

First we will add an additional assumption

‖Fe‖Lpe(Rn) = 1 for each e ∈ E.

Let H be the r-partite r-uniform hypergraph with set of edges E and set of vertices V ,

consisting of all vertices appearing in any edge from E, along with the injective label

functions lV and lE . Given a card(E)-tuple of integers k= (ke)e∈E , let

C N
k

:= {Q ∈ C N : 2ke ≤ sup
Q′∈C N

Q′⊇Q

[Fde
e ]

1
de
Q′ < 2ke+1 for each e ∈ E}.

Let Q ∈C N
k

and e ∈ E. By the definition of supremum, there exists Q′ ∈C N ,Q′ ⊇Q such

that [Fde
e ]

1
de
Q′ > 2ke−1. It follows that

2ke−1 < [Fde
e ]

1
de
Q′

(∗)
≤ [F pe

e ]
1
pe
Q′ = |Q

′|−
1
pe ‖Fe‖Lpe(Rn) = |Q′|

− 1
pe .
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The inequality (*) follows from the fact that the Lp norms are increasing with respect to a

probability measure, which follows from 1.1.4. From this, we have that

|Q| ≤ |Q′| ≤ 2−pe(ke−1).

As we can bound the volume of each cube Q ∈ C N
k

from above (with 2−pe(mine∈E ke−1)),

there exist maximal elements of that collection; denote a collection of such maximal

elements as M N
k

. Now, notice that, if Q ∈M N
k

, then

TQ := {Q′ ∈ C N
k

: Q′ ⊆ Q}

is a finite convex tree, which follows from the monotonicity of the function (C N
k
,⊆)−→

(R,≤) given with Q′′ 7−→ supQ′∈C N

Q′⊇Q′′
[Fde

e ]
1

de
Q′ . If Q′ ∈L (TQ) and QP is a parent of Q′, then

[Fde
e ]

1
de
Q′ ≤ 2r[Fde

e ]
1

de
QP

< 2ke+r+1.

Note that, if Q′ ∈TQ, by definition of C N
k

, we have [Fde
e ]

1
de
Q′ < 2ke+1. By Proposition 2.2.9,

ΛTQ (F).(ni) |Q|∏
e∈E

2ke+r+1 = |Q|2∑e∈E ke+(r+1)card(E),

since QTQ = Q. Note that, if Q ∈ C N\(∪
k∈Z|E|C

N
k
), then there exists e ∈ E so that supre-

mum from the definition of C N
k

equals zero, meaning that Fe ≡ 0 a.e. on Q and therefore

[F]H,S,Q = 0. Also, for each k ∈ Z|E| and for each Q1,Q2 ∈Mk,Q1 6= Q2, since they are

dyadic cubes and also maximal elements of C N
k

, we have Q1∩Q2 = /0, so trees TQ1 and

TQ2 also cover disjoint parts of space Rr. We have

∑
Q∈C N

|Q| [F]H,S,Q = ∑
k∈Zcard(E)

∑
Q∈Mk

ΛTQ (F).(ni) ∑
k∈Zcard(E)

2∑e∈E ke+(r+1)card(E)
∑

Q∈Mk

|Q|.

In this proof we will use the fact that the operator, given as

MdF(x1, . . . ,xm) := sup
Q∈Cm

(x1,...,xm)∈Q

[|F |d]
1
d
Q, (2.21)

is bounded as an operator from Lp(Rm) to Lp(Rm), for each m ∈N, p ∈ [d,∞], d ∈ [1,∞].

This follows from the relation Md =
(
M1Fd) 1

d and Theorem 1.5.1; it remains to recognize

that Mdyadic = M1. For each e ∈ E denote

Ke := {k ∈ Zcard(E) : peke ≥ p f k f for each f ∈ E}.
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Notice that Zcard(E) = ∪e∈EKe and that, for any Q ∈ C N
k

and (x(1), . . . ,x(r)) ∈ Q,

MdeFe(x(1), . . . ,x(r))≥ sup
Q′∈C N

Q′⊇Q

[|F |de]
1

de
Q′ ≥ 2ke ,

which gives us, for any e ∈ E,

∑
Q∈Mk

|Q|=
∣∣ ⋃

Q∈Mk

Q
∣∣≤ |{MdeFe ≥ 2ke}|.

It follows that

∑
Q∈C N

|Q| [F]H,S,Q .(ni),r,card(E) ∑
f∈E

∑
k∈K f

2p f k f (1−∑e∈E\{ f}
1
pe )+∑e∈E\{ f} ke|{Md f Ff ≥ 2k f }|

= ∑
f∈E

∑
k f∈Z

2p f k f |{Md f Ff ≥ 2k f }| ∏
e∈E\{ f}

∑
ke∈Z

ke≤
p f k f

pe

2ke−
p f k f

pe

.card(E) ∑
f∈E

∑
k f∈Z

2p f k f |{Md f Ff ≥ 2k f }|
(∗∗)
. (p f ) ∑

f∈E
‖Md f Ff ‖

p f

Lp f (Rr)

.(d f ),(p f ) ∑
f∈E
‖Ff ‖

p f

Lp f (Rr)
= card(E).card(E) 1.

In (**) we used the following trick (which works for any measurable function Ff ):

∑
k f∈Z

2p f k f |{Md f Ff ≥ 2k f }|= ∑
k f∈Z

∫ 2k f +1

2k f
2(p f−1)k f |{Md f Ff ≥ 2k f }|dt

≤ 2p f−1
∑

k f∈Z

∫ 2k f +1

2k f
t p f−1|{Md f Ff > t}|dt =

2p f−1

p f

∫ +∞

0
p f t p f−1|{Md f Ff ≥ t}|dt

=
2p f−1

p f
‖Md f Ff ‖

p f

Lp f (Rr)
.

Note that the value card(E) is bounded from above with a constant depending only on the

sequence (ne)e∈E . From this, it follows that

∑
Q∈C N

|Q| [F]H,S,Q .(ni),r,(pe) 1.

If F is a tuple of arbitrary functions with Fe 6≡ 0 a.e. for every e ∈ E and if we apply this

inequality to functions
( Fe
‖Fe‖L

p f (Rr)

)
e∈E , we get the result

∑
Q∈C N

|Q| [F]H,S,Q .(ni),r,(pe) ∏
e∈E
‖Fe‖Lp f (Rr).
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Note that this inequality trivially holds if Fe ≡ 0 a.e. for some e ∈ E. As this inequality

holds for any N ∈ N and as the left-hand side is increasing in N, letting N → +∞ we

obtain the same result with the sum over ∪N∈NC N = Cr; therefore

ΛE,S (F) = ∑
Q∈Cr

|Q| [F]H,S,Q .(ni),r,(pe) ∏
e∈E
‖Fe‖Lp f (Rr).

This completes the proof of our theorem. �
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2.3. ESTIMATES FOR LOCALIZED

PARAPRODUCTS

Let us return to the form ΛS
E defined in (2.7). This form will be called cancellative if

either

(C1) max
1≤i≤r

card(S(i))≥ 2, or

(C2) max
1≤i≤r

card(S(i)) = 1 and there does not exist l ∈ {1, . . . ,k} such that ∪1≤i≤rS(i) ⊆Vl .

Otherwise, it is non-cancellative, which means that

(NC) max
1≤i≤r

card(S(i)) = 1 and there exists l ∈ {1, . . . ,k} such that ∪1≤i≤rS(i) ⊆Vl .

We can consider the cancellative form as the one consisting of (at least) two different

variables that bring cancellation to the whole expression, but are not entangled in any

way (so that those cancellations do not depend on or influence each other).

While trying to obtain certain estimate for ΛS
E , again, first we are going to prove a

certain bound locally, by taking the sum only over the dyadic cubes belonging to the

certain finite convex tree T . Therefore we define the localized version of the form ΛS
E as

Λ
S
E,T (F) := ∑

Q∈T
|Q|λQ [F]H,S,Q . (2.22)

Strictly speaking, we are slightly abusing the notation λQ, as it this coefficient is

sometimes associated with a dyadic cube in Rr and sometimes with the corresponding

“diagonal” dyadic cube in Rn.

Proposition 2.3.1. Let ΛS
E be a cancellative entangled dyadic paraproduct.

(a) If (2.8) holds, then for the corresponding coefficients λ = (λQ)Q∈Cr we have

‖λ‖`∞(Cr)
. 1.

(b) For a finite convex tree T and a localized cancellative entangled dyadic paraproduct

ΛS
E,T we have

|ΛS
E,T (F) |. ‖λ‖`∞(Cr)

|QT |∏
e∈E

max
Q∈T ∪L (T )

[Fde
e ]

1
de
Q .
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Proof. (a) Let Q = ∏
r
i=1 I(i) ∈ Cr. If we take Fe := 1Q =⊗r

i=11I(i) for each e ∈ E, then

our form ΛE takes the form

|
¨

K,⊗r
i=1⊗

ni
j=1 1I(i)

∂
L2(Rn)

|= |ΛE(F)|
(2.8)
. |Q|. (2.23)

Notice that both the cancellative and the non-cancellative Haar function can be

written in the form 1
|I| (1IL±1IR) and, as left and right halves of each dyadic interval

are mutually disjoint, we can bound λQ as

|λQ| ≤ |Q|−1
∑

1≤i≤r
1≤ j≤ni

∑
I(i)j ∈{I

(i)
L ,I(i)R }

|
〈
K,⊗r

i=1⊗
ni
j=1 1I(i)j

〉
L2(Rn)

|.

In the 2r cases when I(i)1 = · · · = I(i)ni for each i ∈ {1, . . . ,r} we can apply (2.23)

to obtain boundedness of each summand by a constant. To show the same bound

for the remaining cases we can without loss of generality assume that, for a certain

k∈{1, . . . ,r}, we have I(i)1 = I(i)L and I(i)2 = I(i)R for each i∈{1, . . . ,k} and I(i)1 = · · ·=

I(i)ni for each i ∈ {k+1, . . . ,r}. Let x(i)0 be a common endpoint of I(i)L and I(i)R (i.e. a

midpoint of I(i)) for i ∈ {1, . . . ,k−1} and let x(i)j ∈ I(i) for each (i, j) ∈ {1, . . . ,r}×

{1, . . . ,ni}, (i, j) /∈ {1, . . . ,k−1}×{1,2}. Then for each i ∈ {1, . . . ,k−1} we have

|x(i)1 − x(i)2 |= |x
(i)
1 − x(i)0 |+ |x

(i)
0 − x(i)2 |,

|x(i)j − x(i)1 |+ |x
(i)
j − x(i)2 | ≥ |x

(i)
j − x(i)0 | for each j ∈ {3, . . . ,ni} .

We can use this to bound the expression under the brackets on the right hand side

of (2.2) from below with

r

∑
i=1

∑
1≤ j1< j2≤ni

|x(i)j1 − x(i)j2 | ≥
k−1

∑
i=1

ni

∑
j=1
|x(i)j − x(i)0 |+

nk

∑
j=2
|x(k)j − x(k)1 |

≥
Å k−1

∑
i=1

ni

∑
j=1
|x(i)j − x(i)0 |

2 +
nk

∑
j=2
|x(k)j − x(k)1 |

2
ã 1

2

.

Let x0 := (x(1)0 , . . . ,x(1)0︸ ︷︷ ︸
n1 times

, . . . ,x(k−1)
0 , . . . ,x(k−1)

0︸ ︷︷ ︸
nk−1 times

,x(k)1 , . . . ,x(k)1︸ ︷︷ ︸
nk−1 times

). Note that

(
k−1

∏
i=1

ni

∏
j=1

I(i)j )× (
nk

∏
j=2

I(k)j )⊆ B(x0,n|I(1)|),

where the latter set is a (n1 + · · ·+nk−1)-dimensional ball with the center x0 and

a radius n|I(1)1 |. Using this, the inequality from above that we showed earlier and
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the integration in spherical coordinates, for all possible choices of I(i)j ∈ {I
(i)
L , I(i)R },

where (i, j) /∈ {1, . . . ,k−1}×{1,2}, we get

|Q|−1
∣∣∣∣∫Rn

K(x)⊗r
i=1⊗

ni
j=11I(i)j

(x)dx
∣∣∣∣≤ |Q|−1

∫
∏

r
i=1 ∏

ni
j=1 I(i)j

|K(x)|dx

≤ |Q|−1
∫

∏
r
i=k I(i)

∫
B(x0,n|I(1)|)

|K(x)|
Å k−1

∏
i=1

ni

∏
j=1

dx(i)j ·
nk

∏
j=2

dx(i)j

ã r

∏
i=k

dx(i)1

≤ |I(1)|−r
∫

∏
r
i=k I(i)

∫ n|I(1)|

0
tr−n · t∑

k
i=1 ni−2dt

r

∏
i=k

dx(i)1

. |I(1)|−r · |I(1)|k−1 · |I(1)|r−k+1 = 1.

Since the choice of Q ∈ Cr was arbitrary, we conclude ‖λ‖`∞(Cr)
. 1.

(b) Just as we showed at the beginning of the proof of Proposition 2.2.9, we can, with-

out loss of generality, assume |QT | = 1 and maxQ∈T ∪L (T )

[
Fde

e
] 1

de
Q = 1 for each

e∈E. Also, notice that the result for the case (C1) already follows from Proposition

2.2.9, also using |λQ| ≤ ‖λ‖`∞(Cr)
for each Q ∈T .

As for the case (C2), let H1 and H2 be the connected components of H such that

each of them has at least one selected vertex. If there are k connected components

altogether, we can estimate

|
[
FE
]

H,S,Q|=
k

∏
l=1
|
[
FEl

]
Hl ,Sl ,Q

| ≤ |
[
FE1

]
H1,S1,Q

| · |
[
FE2

]
H2,S2,Q

|

≤ 1
2
(|
[
FE1

]
H1,S1,Q

|2 + |
[
FE2

]
H2,S2,Q

|2),

where we used Lemma 2.2.4 applied to the hypergraphs H3, . . . ,Hk. We can rewrite

this inequality as

|
[
FE
]

H,S,Q| ≤
1
2
(|
[
FE1

]
H ′1,S

′
1,Q
|+ |

[
FE2

]
H ′2,S

′
2,Q
|),

where H ′l is a new hypergraph consisting of two copies of the hypergraph Hl and,

similarly, S′l has same vertices as Sl along with its analogous copies, for l = 1,2.

Formally, we construct the hypergraph H ′l = (V ′l ,E
′
l) such that, for each vertex v(i) ∈

Vl we add both v(i) and a new vertex v
′(i), also keeping the agreement that, for each

newly constructed vertices v
′(i)
1 and v

′(i)
2 , the label x

v
′(i)
1

is the copy of the label x
v
′(i)
2

if and only if the label x
v(i)1

is the copy of the label x
v(i)2

; also, no label of the newly
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constructed vertex is a copy of the label of any vertex from Vl . Analogously, we

define

E ′l := El ∪{(v
′(1), . . . ,v

′(r)) : (v(1), . . . ,v(r)) ∈ E} and S′l := Sl ∪{v
′(i) : v(i) ∈ Sl}.

Note that both of the hypergraphs H ′1 and H ′2 belong to the case (C1), therefore for

each l = 1,2 we define

Λ
S′l
E ′1,T

(FE ′l
) := ∑

Q∈T
|Q|[FE ′1

]H ′l ,S
′
l ,Q

.

By Proposition 2.2.9,

|ΛS
E,T (FE) | ≤

1
2
(
Λ

S′1
E ′1,T

(FE ′1
)+Λ

S′2
E ′2,T

(FE ′2
)
)
. 1.

Notice that the thresholds de required for this result are those thresholds that we

get while applying the Proposition 2.2.9 on the modified hypergraphs. However,

with this construction the thresholds cannot increase and are still at most equal the

quantity defined in (2.1). This completes the proof of the proposition. �

Proposition 2.3.2. Let ΛS
E be a non-cancellative entangled dyadic paraproduct.

(a) If (2.9) holds, then for the corresponding coefficients λ S = (λ S
Q)Q∈Cr we have

∥∥λ
S∥∥

bmo := sup
Q0∈Cr

Å
1
|Q0| ∑

Q∈Cr
Q⊆Q0

|Q||λ S
Q|2
ã 1

2

. 1.

(b) For a finite convex tree T and a localized non-cancellative entangled dyadic para-

product ΛS
E,T we have

|ΛS
E,T (F) |.

∥∥λ
S∥∥

bmo|QT |∏
e∈E

max
Q∈T ∪L (T )

[Fde
e ]

1
de
Q .

Proof. (a) Let us see what we can conclude with the assumption of (2.9). Fix e0 =

(v(1), . . . ,v(r)) ∈ E. By the definition of the operator Te0 given in (2.4), in this case

with kernel defined as in (2.5), we have

Te0

Ä
FE\{e0}

ä
(xe0) = ∑

S=(S(i))r
i=1

(∀i∈{1,...,r})S(i)⊆V (i)

(∃i0∈{1,...,r})S(i0) 6= /0

∑
Q=∏

r
i=1(I(i))

ni∈Cn

|Q|
1
2 λ

S
Q

∫
Rn−r

Å
∏

e∈E\{e0}
Fe(xe)

ã
hS

Q(x) ∏
v∈V\e0

dxv.
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We turn our attention to the case when Fe = 1Rr for each e ∈ E\{e0}. The function

appearing under the integral sign in that case is hS
Q which, up to the constant |Q| 12 ,

equals the product of functions of one variable h1
Ii

and h0
Ii

for each i ∈ {1, . . . ,r},

where Q = ∏
r
i=1(I

(i))ni ∈ Cn. Depending on whether the cancellation appears or

not, the function Te0 (1Rr , . . . ,1Rr) can either be identically equal to zero or, if

v(1), . . . ,v(s) are all the selected vertices for s ∈ N, it can be given as

Te0 (1Rr , . . . ,1Rr) = ∑
S=(S(1),...,S(s), /0,..., /0)
(∀i∈{1,...,s})S(i)⊆{v(i)}
(∃i0∈{1,...,s})S(i0) 6= /0

∑
Q=∏

r
i=1(I(i))

ni∈Cn

|Q|λ S
Q|I(1)|r−n

r⊗
i=1

hv(i)
I(i) ,

where we define hv(i)
I(i)

as h1
I(i)

if 1≤ i≤ s or as h0
I(i)

otherwise. From the definition of

the dyadic BMO-seminorm, taking care of the cancellation again (which happens

to appear in at least one variable of each summand of the above expression), we

have

‖Te0(1Rr , . . . ,1Rr)‖BMO(Rr)

= sup
Q0∈Cr

Å
1
|Q0| ∑

S=(S(1),...,S(s), /0,..., /0)
(∀i∈{1,...,s})S(i)⊆{v(i)}
(∃i0∈{1,...,s})S(i0) 6= /0

∑
Q=∏

r
i=1(I

(i))ni∈Cn

∏
r
i=1 I(i)⊆Q0

|I(1)|r|λ S
Q|2
ã 1

2

.

From this, recognizing the expression inside the brackets as the BMO-norms of the

coefficients, it follows that from each such choice of S we have∥∥λ
S∥∥

bmo ≤ ‖Te0 (1Rr , . . . ,1Rr)‖BMO(Rr) . 1.

Notice that for the preceding proof we were required to have an edge e0 ∈ E that

contains all of the selected vertices from the starting hypergraph, which is precisely

the condition (NC) together with completeness of the corresponding hypergraph

component.

(b) Without loss of generality we can assume that

|QT |= 1 and max
Q∈T ∪L (T )

[Fde
e ]

1
de
Q = 1 for each e ∈ E.

By the Cauchy-Schwarz inequality we have

|ΛS
E,T (F) |= ∑

Q∈T
|Q||λQ| [F]H,S,Q ≤

(
∑

Q∈T
|Q||λQ|2

) 1
2
(

∑
Q∈T
|Q| [F]2H,S,Q

) 1
2 .
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We can notice that

∑
Q∈T
|Q||λQ|2 ≤ ∑

Q∈Cr
Q⊆QT

|Q||λQ|2 ≤ |QT |
∥∥λ

S∥∥2
bmo =

∥∥λ
S∥∥2

bmo.

Let H ′ be a hypergraph consisting of two copies of the hypergraph H (up to the

labels of vertices and edges) and let S′ be an r-tuple consisting of the vertices from

S and their corresponding copies. This hypergraph belongs to the case (C1), for

which we already have

∑
Q∈T
|Q| [F]2H,S,Q = ∑

Q∈T
|Q| [F]H ′,S′,Q . 1.

All together, we achieve the desired claim: ΛS
E,T (F).

∥∥λ S
∥∥2

bmo. �
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2.4. PROOF OF THEOREM 2.1.1

Finally, we are ready to prove the main theorem of this chapter. We can notice that

the statement (c) trivially implies statement (d). Also, a tuple w = (we)e∈E given with

we := 1Rr for each e ∈ E satisfies (1.3), so assuming that (f) is valid and checking that

[w]p,d = 1 we obtain statement (c). In the following sections we are going to present

proof of other adequate implications so that we will form a cycle of implications of all six

statements, showing that they are all equivalent.

2.4.1. Statement (a) implies (e)

For each Q0 ∈Cr denote D(Q0) := {Q ∈ Cr : Q⊆ Q0} and M := log2(2card(E))
mine∈E de

. For a fixed

e ∈ E let us define

I e
Q0

:= {Q ∈D(Q0) : [Fde
e ]

1
de
Q > 2M[Fde

e ]
1

de
Q0
}.

Then define MQ0 to be the collection of maximal cubes in ∪e∈EI e
Q0

and finally set

M e
Q0

:= MQ0 ∩I e
Q0

. Consequently, MQ0 = ∪e∈EM e
Q0

, but the union does not have to

be disjoint. From these definitions we have

∑
Q∈M e

Q0

|Q| ≤ ∑
Q∈M e

Q0

2−Mde
[
Fde

e
]−1

Q0

∫
Q

Fe(xe)
dedxe

≤ (2card(E))−1[Fde
e
]−1

Q0

∫
Q0

Fe(xe)
dedxe =

|Q0|
2card(E)

.

In the second inequality we used the fact that the elements of M e
Q0

are mutually disjoint

(by maximality), allowing us to increase the sum to the integral over the largest cube Q0.

This gives us

∑
Q∈MQ0

|Q| ≤ ∑
e∈E

∑
Q∈M e

Q0

|Q| ≤ |Q0|
2

. (2.24)

Now, choose Q1, . . . ,Q2r ∈ Cr such that ∪2r

i=1Qi ⊃ ∪e∈E suppFe. Indeed, if the supports

of functions Fe are contained in more than one quadrant of the space Rr, we may need

at most 2r dyadic cubes that cover their supports. For each i ∈ {1, . . . ,2r} we inductively
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define

SD ,i,0 := {Qi}, SD ,i,n := ∪Q∈SD ,i,n−1MQ,n ∈ N,

SD ,i := ∪∞
n=0SD ,i,n, i ∈ {1, . . . ,2r}, SD := ∪2r

i=1SD ,i.

Let us notice that SD is a sparse family of dyadic cubes. Indeed, for any Q ∈ SD let

EQ := Q\
(
∪Q′∈MQ Q′

)
. For each two dyadic cubes Q1,Q2 ∈SD , Q1 6= Q2, we have that

they are either mutually disjoint, therefore EQ1 and EQ2 are mutually disjoint as well, or,

without loss of generality, Q2 ⊆ Q1, in which case, by construction, Q2 ⊆ Q′1 ∈MQ1 , so

Q2∩EQ1 = /0, therefore EQ1 and EQ2 are again mutually disjoint. Also, for each Q ∈SD ,

by (2.24) we have

|EQ|= |Q|− ∑
Q′∈MQ

|Q′| ≥ 1
2
|Q|.

Now, for each Q ∈SD and a fixed N ∈ N let us define

T N
Q := C N ∩D(Q)\

(
∪Q′∈MQ D(Q′)

)
,

where C N is given in (2.20). Notice that T N
Q is a finite convex tree where the set of leaves

L (T N
Q ) are either elements of MQ or they are dyadic cubes with length of each side

equal to 2−N−1. An application of Propositions 2.3.1 and 2.3.2 gives us

|ΛS
E,T N

Q
|(F). |Q|∏

e∈E
max

Q′∈T N
Q ∪L (T N

Q )
[Fde

e ]
1

de
Q′ .

If Q′ ∈T N
Q then Q′ /∈M e

Q, which means that [Fde
e ]

1
de
Q′ ≤ 2M[Fde

e ]
1

de
Q . If Q′ ∈L (T N

Q )∩SD

and Q′P is a parent of Q′, then by maximality we have

[Fde
e ]

1
de
Q′ ≤ 2

r
de [Fde

e ]
1

de
Q′P
≤ 2r+M[Fde

e ]
1

de
Q .

The remaining option is if each side of Q′ has length equal to 2−N−1. But even then its

parent Q′P satisfies Q′P /∈M e
Q, so that the above inequality is valid again. Altogether,

|ΛS
E,T N

Q
|(F). 2card(E)M|Q|∏

e∈E
[Fde

e ]
1

de
Q .

This holds for any Q ∈ SD . Note that the trees T N
Q , Q ∈ SD form a partition of(

∪2r

i=1D(Qi)
)
∩C N , therefore

|ΛS
E,(∪2r

i=1D(Qi))∩C N (F) |. 2card(E)M
∑

Q∈SD

|Q|∏
e∈E

[Fde
e ]

1
de
Q .
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As the right side of the inequality and the inequality itself does not depend on N, with

N→ ∞ we get

|ΛS
E,∪2r

i=1D(Qi)
(F) |. 2card(E)M

∑
Q∈SD

|Q|∏
e∈E

[Fde
e ]

1
de
Q .

Note that for Q ∈ Cr,Q /∈ ∪2r

i=1D(Qi) we have that the summand in (2.22) equals zero, so

by summing this inequality over each S satisfying conditions of the first sum in (2.6) we

get

|ΛE(F)|.ΘSD
(F),

with a sparse form given associated with the sparse family SD , which completes the

proof.

2.4.2. Statement (e) implies (f)

Assume that the statement (e) from Theorem 2.1.1 is valid and let ΘS be the sparse

form that bounds the form ΛE . It will be enough to prove the analogous inequality for

ΘS . Once again, it is sufficient to work with nonnegative functions Fe. For each e ∈

E let he := w
−de

pe−de
e and let Ge be a function such that Fe = Geh

1
de
e . Note that we have

‖Fe‖Lpe(we) = ‖Ge‖Lpe(he). Let us rewrite the form ΘS in the following way:

ΘS (F) = ∑
Q∈S

Å
∏
e∈E

[he]
1

de−
1
pe

Q

ãÅ
|Q|∏

e∈E

Å
[he]Q

|EQ|[he]EQ

ã 1
pe
ãÅ

∏
e∈E

(|EQ|[he]EQ)
1
pe

Å
[Gde

e he]Q
[he]Q

ã 1
de
ã
. (2.25)

We can see directly from the definition of the Muckenhoupt constant that ∏e∈E [he]
1

de−
1
pe

Q

≤ [w]p,d. To bound the expression inside the second pair of parentheses, first notice

that, by the Hölder inequality, by (1.3) and along with with re := pe−de
pede

for each e ∈ E,

r := ∑e∈E re and the constant c from Definition 1.1.9 for the given family S we can see

that

∏
e∈E

(|EQ|[he]EQ)
re
r = ∏

e∈E

Å∫
EQ

he(x)dx
ã re

r

≥
∫

EQ
∏
e∈E

he(x)
re
r dx = |EQ| ≥ c|Q|.

for each Q ∈S . Denote m := maxe∈E
1

re pe
. This gives us

∏
e∈E

Å |Q|[he]Q
|EQ|[he]EQ

ã 1
pe
≤∏

e∈E

Å |Q|
|EQ|[he]EQ

ãrem

[he]
rem
Q ≤ c−rm[w]mp,d.
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It remains to note that we have already obtained one power of the Muckenhoupt constant

and observe that

1+m = 1+max
e∈E

de

pe−de
= max

e∈E

pe

pe−de
.

We have Å
∏
e∈E

[he]
1

de−
1
pe

Q

ã
|Q|∏

e∈E

Å
[he]Q

|EQ|[he]EQ

ã 1
pe
. [w]

maxe∈E
pe

pe−de
p,d ,

with the implicit constant depending only on c. Note that the expressions in the first two

parentheses of (2.25) are bounded uniformly in Q∈S . Since the first two terms in (2.25)

are bounded independently of Q, we turn to the sum of the third terms over Q ∈S :

∑
Q∈S

∏
e∈E

Å∫
EQ

he(x)dx
ã 1

pe
Å
[Gde

e he]Q
[he]Q

ã 1
de
= ∑

Q∈S
∏
e∈E

Å∫
EQ

Å
[Gde

e he]Q
[he]Q

ã pe
de

he(x)dx
ã 1

pe

≤ ∑
Q∈S

∏
e∈E

Å∫
EQ

(Mde,heGe)(x)pehe(x)dx
ã 1

pe
.

In the last expression we introduced the notation Md,w, for d ∈ [1,∞〉 and a strictly positive

measurable function w, for the operator given as

Md,wF(x) := sup
Q∈Cr
x∈Q

Ç
[|F |dw]Q
[w]Q

å 1
d

for x ∈ Rr.

This operator is bounded on the weighted space Lp(w) for each p > d, by Theorem 1.5.2

and the identity Md,wF =
(
MwFd) 1

d . By Hölder’s inequality for the summation in Q, the

disjointness of EQ and boundedness of Mde,he the last expression is at most

∏
e∈E

Å
∑

Q∈S

∫
EQ

(Mde,heGe)(x)pehe(x)dx
ã 1

pe
≤∏

e∈E
‖Mde,heGe‖Lpe(he) .∏

e∈E
‖Ge‖Lpe(he)

= ∏
e∈E
‖Fe‖Lpe(we)

which gives the desired weighted estimate.

2.4.3. Statement (d) implies (b)

Let pe ∈ 〈de,∞] ,e ∈ E be the exponents which satisfy the statement (d) from 2.1.1 and let

e0 ∈ E and Q ∈ Cr be arbitrary. Specially, if we take Fe = 1Q for each e ∈ E\{e0}, we

82



T(1) theorem for dyadic singular integral forms Proof of Theorem 2.1.1

have∣∣∣∣∫Rr
Te0(1Q)e∈E\{e0}Fe0(xe0)(xe0)dxe0

∣∣∣∣= |ΛE(F)|. ‖Fe0‖Lpe0 (Rr) ∏
e∈E\{e0}

‖1Q‖Lpe(Rr)

= ‖Fe0‖Lpe0 (Rr)|Q|
∑e∈E\{e0}

1
pe = ‖Fe0‖Lpe0 (Rr)|Q|

1
qe0 ,

where qe0 is the conjugated exponent of pe0 . This gives us

‖Te0(1Q)e∈E\{e0}‖Lqe0 (Q) . |Q|
1

qe0 .

Combining this with Jensen’s inequality,

1
|Q|

∫
Q
|Te0(1Q)e∈E\{e0}(xe0)|dxe0 ≤

Å
1
|Q|

∫
Q
|Te0(1Q)e∈E\{e0}(xe0)|

qe0 dxe0

ã 1
qe0
. 1.

This shows that condition (2.10) is valid.

2.4.4. Statement (b) implies (a)

Note that from the inequality (2.10) for any Q ∈ Cr we have

|ΛE((1Q)e∈E)|=
∣∣∣∣∫Rr

Te0

Ä
(1Q)e∈E\{e0}

ä
(xe0)1Q(xe0)dxe0

∣∣∣∣
≤ ‖Te0

Ä
(1Q)e∈E\{e0}

ä
‖L1(Q) . |Q|.

This shows us (2.8) from the statement of Theorem 2.1.1. Take r > 0 such that the support

of the kernel K is contained in [−r,r]n. Let e0 ∈ E and Qe0 ∈ Cr be arbitrary. Define

S (Qe0) := {Q′ ∈ Cr : |Q′|= |Qe0| and |Q′∩ [−r,r]n |> 0}.

Note that

Te0((1Rr)e∈E\{e0})(xe0)1Qe0
(xe0) = ∑

e∈E\{e0}
∑

Qe∈S (Qe0)

Te0((1Qe′ )e′∈E\{e0})(xe0)1Qe0
(xe0)

= ∑
e∈E\{e0}

∑
Qe∈S (Qe0)

∫
Rn−r

Å
∏
e′∈E

1Qe′ (xe′)

ã
K(x) ∏

v∈V\e0

dxv.

As the cubes Qe′,e′ ∈ E all have equal Lebesgue measure, they are either identical or

disjoint, which means that each integral expression is of the form∫
Rn−r

Å r

∏
i=1

∏
v(i)∈V (i)

1I
v(i)
(xv(i))

ã
K(x) ∏

v∈V\e0

dxv,
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for dyadic intervals Iv(i),v
(i) ∈ V (i), i = 1, . . . ,r such that ∏

r
i=1 ∏v(i)∈V (i) Iv(i) = Qe0 . As K

is constant on dyadic cubes ∏
r
i=1 ∏v(i)∈V (i) Iv(i) for which Iv(i1) 6= Iv(i2) for some v(i1),v(i2) ∈

V (i) and some i ∈ {1, . . . ,r}, i.e. on those cubes that do not intersect the diagonal, the

above expression is the constant that coincides with its average over the same cube (the

integral over the same cube divided by its Lebesgue measure). In case that for certain

dyadic intervals I1, . . . , Ir, we have Iv(i1) = Iv(i2) = Ii for every v(i1),v(i2) ∈ V (i) and i ∈

{1, . . . ,r}, we can realize that Qe0 = In1
1 × ·· · × Inr

r = Qe for each e ∈ E, therefore the

above expression takes the form

Te0((1Qe′ )e′∈E\{e0})(xe0)1Qe0
(xe0) =

∫
Rn−r

Å r

∏
i=1

∏
v(i)∈V (i)

1Ii(xv(i))

ã
K(x) ∏

v∈V\e0

dxv

=
∫
Rn−r

Å
∏
e′∈E

1Qe0
(xe′)

ã
K(x) ∏

v∈V\e0

dxv

= Te0((1Qe0
)e′∈E\{e0})(xe0)1Qe0

(xe0).

Combining both cases, we get, for each xe0 ∈ Qe0 ,

Te0((1Rr)e∈E\{e0})(xe0)−
1
|Qe0|

∫
Qe0

Te0((1Rr)e∈E\{e0})(ye0)dye0

= Te0((1Qe0
)e∈E\{e0})(xe0)−

1
|Qe0|

∫
Qe0

Te0((1Qe0
)e∈E\{e0})(ye0)dye0.

This gives us

1
|Qe0|

∫
Qe0

∣∣∣∣Te0((1Rr)e∈E\{e0})(xe0)−
1
|Qe0|

∫
Qe0

Te0((1Rr)e∈E\{e0})(ye0)dye0

∣∣∣∣dxe0

≤ 2
|Qe0|

∫
Qe0

|Te0((1Qe0
)e∈E\{e0})(xe0)|dxe0 . 1,

where we applied (2.10). By Theorem 1.1.8, the expression

sup
Qe0∈Cr

1
|Qe0|

∫
Qe0

∣∣∣∣Te0((1Rr)e∈E\{e0})(xe0)−
1
|Qe0|

∫
Qe0

Te0((1Rr)e∈E\{e0})(ye0)dye0

∣∣∣∣dxe0

is comparable with ‖Te0((1Rr)e∈E\{e0})‖BMO(Rr). This shows us that (2.9) is valid, which,

by applying the Theorem 2.1.1 (a), in turn establishes this theorem.
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3. CONVERGENCE OF

ERGODIC-MARTINGALE

PARAPRODUCTS

In this chapter we are going to define paraproducts of our interest and give a proof of their

convergence in the Lebesgue spaces, depending on the range of exponents that we will

state.

3.1. DEFINITION AND STATEMENT

Let (Ω,F ,P) be a probability space. The paraproduct we are about to define will appear

to be a combination of two simpler, more common sequences. One sequence is a standard

backward martingale consisting of conditional expectations given a backward filtration,

while the other one consists of Cesàro averages An with respect to the iterates of an

(F ,F )-measurable and measure-P-preserving transformation T : Ω→ Ω, as defined in

(1.9). In order to obtain the main result we will require a commutativity condition of

operators f 7→ f ◦T and f 7→E( f |Gn) for each n∈N0. Although this condition may sound

a bit too restricing, it has already appeared in some other papers related to probability,

for example in Podvigin’s works in [46] and [47]. To see that this condition is not too

restricting, we can see that, in the case of T being bijective, it is equivalent to T and T−1

being (Gn,Gn)-measurable for each n ∈ N0; see Lemma 3.1.1 below. The commutativity

requirement that we just imposed is only slightly more general than the conditions of the

following lemma.
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Lemma 3.1.1. Suppose that T : Ω→ Ω is a bijective transformation such that T and

T−1 are both (F ,F )-measurable. The following two conditions are equivalent.

(1) T j is (Gn,Gn)-measurable for each j ∈ Z and n ∈ N0.

(2) E( f ◦T j|Gn) = E( f |Gn)◦T j for each f ∈ L1(Ω), j ∈ Z and n ∈ N0.

Proof. (1)⇒ (2) Fix j ∈ Z, n ∈ N0 and take any G ∈ Gn. We have∫
Ω

( f ◦T j)1G dP=
∫

Ω

( f1T j(G))◦T j dP (∗)
=
∫

Ω

f1T j(G) dP (∗∗)
=
∫

Ω

E( f |Gn)1T j(G) dP

(∗)
=
∫

Ω

(E( f |Gn)1T j(G))◦T j dP=
∫

Ω

(E( f |Gn)◦T j)1G dP.

In equalities marked as (∗) we used that P is invariant under T j, while in equality (∗∗) we

used the definition of the conditional expectation, along with T j(G) ∈ Gn which follows

from the assumption applied to T− j. By the same definition we conclude that E( f ◦

T j|Gn) =E( f |Gn)◦T j.

(2)⇒ (1) Again, fix j ∈ Z and n ∈ N0. For G ∈ Gn let f = 1G. By (2) we have

E(1G ◦T j|Gn) = E(1G|Gn)◦T j = 1G ◦T j.

This means that 1G ◦T j is (Gn,B(C))-measurable, from which it follows that

(1G ◦T j)−1({1}) = (T j)−1(G) ∈ Gn.

Therefore, T j is (Gn,Gn)-measurable. �

Let us fix a ∈ 〈1,∞〉. We are interested in the ergodic-martingale paraproduct (with

respect to T and (Gn)n∈N0) which is a sequence (Πem
n )n∈N of bilinear operators defined as

Π
em
n ( f ,g) :=

n−1

∑
i=0

(Abaic f )(E(g|Gi+1)−E(g|Gi)) (3.1)

for each n ∈ N and complex F -measurable functions f and g. We are interested in the

convergence of this sequence in Lr(Ω) space for r ∈ [1,∞〉.

Similar to the above sequence of operators is the martingale-ergodic paraproduct

(with respect to T and (Gn)n∈N0), a sequence (Πme
n )n∈N of bilinear operators which, for

each n ∈ N and complex F -measurable functions f and g, are defined as

Π
me
n ( f ,g) :=

n−1

∑
i=0

(Abai+1c f −Abaic f ))E(g|Gi+1). (3.2)
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Note that, by telescoping,

Π
em
n ( f ,g)+Π

me
n (g, f ) =

n−1

∑
i=0

(
(Abaic f )E(g|Gi+1)− (Abaic f )E(g|Gi)

+E(g|Gi+1)(Abai+1c f )−E(g|Gi+1)(Abaic f )
)

=(Abanc f )E(g|Gn)− f g. (3.3)

We already know that sequences (Abanc f )n∈N0 and (E(g|Gn))n∈N0 converge in both Lr(Ω)

and P-almost surely. The convergence of Cesáro averages follows from Corrolaries 1.3.2

and 1.3.3, while the convergence of backward martingales is a consequence of Doob’s

martingale convergence theorem from [9]. In conclusion, by (3.3) the convergence of

(Πem
n ( f ,g))n∈N is equivalent to the convergence of same type of (Πme

n (g, f ))n∈N.

We are going to show the following result.

Theorem 3.1.2. Take a ∈ 〈1,∞〉 and suppose that p,q ∈
[4

3 ,4
]
, r ∈

[
1, 4

3

]
satisfy the

Hölder scaling 1
r = 1

p +
1
q . For any functions f ∈ Lp(Ω,F ,P) and g ∈ Lq(Ω,F ,P) the

sequences (Πem
n ( f ,g))n∈N and (Πme

n ( f ,g))n∈N given by (3.1) and (3.2), respectively, con-

verge in the Lr-norm.

It is good to point out that this range is far from the largest possible one. For example,

since the measure P is finite, with Proposition 1.1.4 we can expand the range by taking

the triple (p,q,r) that satisfies the Hölder scaling and then by replacing r with any lower

value that is still larger or equal than one. However, even if we decide to work with Hölder

triplets only, it is still very likely that the range of exponents stated in the theorem could

be enlarged.
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3.2. PROOF OF THEOREM 3.1.2

3.2.1. Reducing to Lp estimates for the paraproduct

The convergence stated in this theorem will follow from the estimate

‖Πem
n ( f ,g)‖Lr(Ω) . ‖ f‖Lp(Ω)‖g‖Lq(Ω), (3.4)

where the constant in this inequality depends on constant a and the exponents p,q and r,

meaning that we will avoid the dependence on the sequence (Gi)i∈N, operator T , n and

functions f and g. Once we have this inequality, for fixed m,n ∈ N such that m < n by

inserting E(g|Gn)−E(g|Gm) in the place of g, we have

‖Πem
n ( f ,g)−Π

em
m ( f ,g)‖Lr(Ω) =

∥∥∥∥n−1

∑
i=m

((Abaic f )E(g|Gi)− (Abaic f )E(g|Gi+1))

∥∥∥∥
Lr(Ω)

=

∥∥∥∥n−1

∑
i=0

(Abaic f )(E(E(g|Gn)−E(g|Gm))|Gi+1)−E(E(g|Gn)−E(g|Gm))|Gi))

∥∥∥∥
Lr(Ω)

= ‖Πem
n ( f ,E(g|Gn)−E(g|Gm))‖Lr(Ω) . ‖ f‖Lp(Ω)‖E(g|Gn)−E(g|Gm)‖Lq(Ω).

Note that we have used the fact that (Gi)i∈N is a decreasing sequence of σ -algebras,

so by Proposition 1.2.5 we have E(E(g|Gn)|Gi+1)) = E(E(g|Gn)|Gi)) = E(g|Gn)

for each i ∈ {0, . . . ,n − 1}. Also, E(E(g|Gm)|Gi+1)) = E(g|Gm) when i < m and

E(E(g|Gm)|Gi+1)) = E(g|Gi+1) otherwise; similar conclusion follows for the expression

E(E(g|Gm)|Gi)). Since (E(g|Gn))n∈N converges in Lq(Ω) by Theorem 1.2.9, it is also

a Cauchy sequence in the same space, so (Πem
n ( f ,g))n∈N is also a Cauchy sequence in

complete space Lr(Ω) and therefore convergent.

While trying to bound Lp norms of the expressions to follow, it is good to note that

Cesáro averages and conditional expectations as operators on each Lebesgue space are

also bounded. This follows from

‖An f‖Lp(Ω) ≤
1
n

n−1

∑
i=0
‖ f ◦T i‖Lp(Ω) = ‖ f‖Lp(Ω)

by the P-measure invariance of T , and by Theorem 1.2.6.

First of all, let us assume that this inequality is valid for nonnegative simple functions

f and g. If f and g are arbitrary nonnegative functions, by Lemma 1.1.5 there exist
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sequences ( fm)m∈N and (gm)m∈N of simple functions such that fm ≤ fm+1 ≤ f and gm ≤

gm+1 ≤ g P-almost surely for each m ∈ N and that they converge to, respectively, f and g

P-almost surely as well as in each Lebesgue space. We can notice that (Πem
n ( fm,gm))m∈N

converges to Πem
n ( f ,g) P-almost surely (by using Theorem 1.2.8), so by Fatou lemma

‖Πem
n ( f ,g)‖Lr(Ω) ≤ liminf

m∈N
‖Πem

n ( fm,gm)‖Lr(Ω) . liminf
m∈N

‖ fm‖Lp(Ω)‖gm‖Lq(Ω)

= ‖ f‖Lp(Ω)‖g‖Lq(Ω).

In the general case we can split f and g into its positive and negative parts and obtain

(3.4). This is why we are going to work with nonnegative simple functions f and g in this

paper.

3.2.2. Reducing to times that are powers of 2

The next step in this proof is to show that it is enough to prove the required bound for

a = 2. For i ∈ N0 let K(i) := min{k ∈ N0 : bakc ≥ 2i} = dloga 2ie. We are going to

estimate the Lr(Ω) norm of the difference

n−1

∑
i=0

(Abaic f )(E(g|Gi+1)−E(g|Gi))−
b(n−1) log2 ac

∑
i=0

(A2i f )(E(g|GK(i+1))−E(g|GK(i)))

=
n−1

∑
i=0

(Abaic f )(E(g|Gi+1)−E(g|Gi))−
b(n−1) log2 ac

∑
i=0

K(i+1)−1

∑
j=K(i)

(A2i f )(E(g|G j+1)−E(g|G j)).

(3.5)

First, we need to notice that this expression can be written as

∑
i
(Abaic f −A2Mi f )(E(g|Gi+1)−E(g|Gi))±∑

i
(Abaic f )(E(g|Gi+1)−E(g|Gi)). (3.6)

Here, Mi is defined as nonnegative integer k for which K(k) ≤ i < K(k+ 1). In words,

we joined sums over i in (3.5) and factored out E(g|Gi+1)−E(g|Gi); as it is possible

that these two sums do not have the same amount of summands, we can have an extra

part in form of the first sum, where the sign in front of it depends on whether the first or

the second sum in (3.5) had more summands (that actually depends on whether a < 2 or

a≥ 2). At this point it is useful to notice that

K(b(n−1) log2 ac) = dloga 2b(n−1) log2 ace< loga 2blog2 an−1c+1≤ loga 2log2 an−1
+1 = n.
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Therefore, K(b(n−1) log2 ac) ≤ n−1. This means that the factor E(g|Gn)−E(g|Gn−1)

that appears in the first sum of (3.5) has to appear in the second sum as well, more pre-

cisely in the last iteration over i, when i = b(n− 1) log2 ac. Additionally, we may notice

that, when a≥ 2, then either K(i+1) = K(i) or K(i+1) = K(i)+1 for each i ∈N0, since

ak+1 ≥ 2ak implies bak+1c ≥ b2akc ≥ 2bakc for each k ∈ N0. This shows that there is no

additional part in form of the second sum in (3.6), so we can actually write the minus sign

in front to cover the case a < 2.

Let us observe the absolute value of the first sum in (3.6).

∣∣∣∣∣ b(n−1) log2 ac

∑
i=0

(Abaic f −A2Mi f )(E(g|Gi+1)−E(g|Gi))

∣∣∣∣∣
≤
b(n−1) log2 ac

∑
i=0

K(i+1)−1

∑
j=K(i)

|Aba jc f −A2i f ||E(g|G j+1)−E(g|G j)|

≤
b(n−1) log2 ac

∑
i=0

K(i+1)−1

∑
j=K(i)

Å j−1

∑
k=K(i)

|Abak+1c f −Abakc f |

+ |AbaK(i)c f −A2i f |
ã
|E(g|G j+1)−E(g|G j)|

≤
b(n−1) log2 ac

∑
i=0

K(i+1)−1

∑
j=K(i)

Å
|A2i+1 f −AbaK(i+1)−1c f |+

K(i+1)−2

∑
k=K(i)

|Abak+1c f −Abakc f |

+ |AbaK(i)c f −A2i f |
ã
|E(g|G j+1)−E(g|G j)|

≤
Å b(n−1) log2 ac

∑
i=0

K(i+1)−1

∑
j=K(i)

Å
|A2i+1 f −AbaK(i+1)−1c f |2 +

K(i+1)−2

∑
k=K(i)

|Abak+1c f −Abakc f |2

+ |AbaK(i)c f −A2i f |2
ãã 1

2
Å b(n−1) log2 ac

∑
i=0

K(i+1)−1

∑
j=K(i)

K(i+1)

∑
k=K(i)

|E(g|G j+1)−E(g|G j)|2
ã 1

2

<(loga 2+2)
Å b(n−1) log2 ac

∑
i=0

Å
|A2i+1 f −AbaK(i+1)−1c f |2 +

K(i+1)−2

∑
k=K(i)

|Abak+1c f −Abakc f |2

+ |AbaK(i)c f −A2i f |2
ãã 1

2
Å b(n−1) log2 ac

∑
i=0

K(i+1)−1

∑
j=K(i)

|E(g|G j+1)−E(g|G j)|2
ã 1

2

.

Note that in case of K(i) > K(i+ 1)− 2 the sum over parameter k will be considered

as zero; similarly with the sum over j if we even have K(i) > K(i+ 1)− 1. The value

loga 2+2 appearing after the application of the last inequality comes from the estimation
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of the number of integers from K(i) to K(i+1):

K(i+1)−K(i) = dloga 2i+1e−dloga 2ie< loga 2i+1 +1− loga 2i = loga 2+1.

The Lr(Ω) norm of the first sum in (3.6) by Hölder’s inequality can be bounded by

sup
Ni∈N for i∈N

(Ni)i∈N is strictly
increasing

∥∥∥( ∞

∑
i=1
|ANi+1 f −ANi f |2

)1/2∥∥∥
Lp(Ω)

∥∥∥( ∞

∑
i=0
|E(g|Gi+1)−E(g|Gi)|2

)1/2∥∥∥
Lq(Ω)

,

which, thanks to Theorems 1.5.3 and 1.5.5, is bounded by ‖ f‖Lp(Ω)‖g‖Lq(Ω), along with

multiplicative constant depending on p and q only. As for the bound of the second sum in

(3.6), notice that, thanks to the observation above, it may have at most K(b(n−1) log2 ac+

1)−K(b(n− 1) log2 ac) summands. However, we already estimated that this number

cannot be larger than loga 2+1. This allows us to simply apply Hölder’s inequlity and the

boundedness of operators of Cesáro averages and conditional expectations to bound the

corresponding sum with

(loga 2+1)‖ f‖Lp(Ω)‖g‖Lq(Ω),

as we allowed for the constant to depend on the parameter a. Altogether, what helps us

focus on the Πem
n ( f ,g) for a = 2 is a simple use of a triangle inequality for norms:∥∥∥n−1

∑
i=0

(Abaic f )(E(g|Gi+1)−E(g|Gi))
∥∥∥

Lr(Ω)
≤
∥∥∥n−1

∑
i=0

(Abaic f )(E(g|Gi+1)−E(g|Gi))

−
b(n−1) log2 ac

∑
i=0

(A2i f )(E(g|GK(i+1))−E(g|GK(i)))
∥∥∥

Lr(Ω)

+
∥∥∥ b(n−1) log2 ac

∑
i=0

(A2i f )(E(g|GK(i+1))−E(g|GK(i)))
∥∥∥

Lr(Ω)

So, in order to show (3.4) it will be enough to show the following bound for each n ∈ N:∥∥∥n−1

∑
i=0

(A2i f )(E(g|Gi+1)−E(g|Gi))
∥∥∥

Lr(Ω)
. ‖ f‖Lp(Ω)‖g‖Lq(Ω).

Note that the replacement of the sequence (GK(i))i∈N0 with (Gi)i∈N0 does not represent a

problem as the replaced sequence is also a general backward filtration with GK(0) = G0 =

F , so the result still follows from the newly stated estimate.
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3.2.3. Calderón’s transference principle

Let n ∈ N0 and k ∈ Z be arbitrary. Notice that, by the compatibility condition (2) from

Lemma 3.1.1,

Π
em
n ( f ,g)◦T k =

n−1

∑
i=0

(A2i f ◦T k)(E(g|Gi+1)◦T k−E(g|Gi)◦T k)

=
n−1

∑
i=0

Å
1
2i

2i−1

∑
j=0

f ◦T j+k
ã
(E(g◦T k|Gi+1)−E(g◦T k|Gi)).

Take ω ∈Ω and let

F̃(k,ω) :=

 f (T kω), 0≤ k ≤ 2n+1−1,

0, otherwise,
G̃(k,ω) :=

 g(T kω), 0≤ k ≤ 2n+1−1,

0, otherwise.

By the measure invariance of P under T we have

‖Πem
n ( f ,g)‖r

Lr(Ω) =
1
2n

2n−1

∑
k=0
‖Πem

n ( f ,g)◦T k‖r
Lr(Ω) ≤

1
2n

∫
Z×Ω

∣∣∣∣n−1

∑
i=0

Å
1
2i

2i−1

∑
j=0

F̃( j+ k,ω)

ã
· (E(G̃(k, ·)|Gi+1)(ω)−E(G̃(k, ·)|Gi)(ω))

∣∣∣∣rd(ν×P)(k,ω),

where the conditional expectations are taken in the second variable of G̃. In analogous

way we can deduce that

‖ f‖p
Lp(Ω)

=
1

2n+1

2n+1−1

∑
k=0
‖ f ◦T k‖p

Lp(Ω)
=

1
2n+1

∫
Z×Ω

|F̃(k,ω)|pd(ν×P)(k,ω),

‖g‖q
Lq(Ω)

=
1

2n+1

2n+1−1

∑
k=0
‖g◦T k‖q

Lq(Ω)
=

1
2n+1

∫
Z×Ω

|G̃(k,ω)|qd(ν×P)(k,ω).

Therefore, it is enough to prove the inequality∥∥∥∥n−1

∑
i=0

Å
1
2i

2i−1

∑
j=0

F̃(k+ j,ω)

ã
(E(G̃(k,ω)|Gi+1)−E(G̃(k,ω)|Gi))

∥∥∥∥
Lr
(k,ω)(Z×Ω)

. ‖F̃‖Lp(Z×Ω)‖G̃‖Lq(Z×Ω). (3.7)

The notation ‖ · ‖Lr
(k,ω)

stands for the Lr norm taken in the pair of variables (k,ω). Also,

from this context it should be clear that the conditional expectation is taken in the second

variable ω as the only probability space that we are working at the moment has Ω as the

sample space. Now, for (x,ω) ∈ R×Ω, let

F(x,ω) := ∑
k∈Z

F̃(k,ω)1[k,k+1〉(x) and G(x,ω) := ∑
k∈Z

G̃(k,ω)1[k,k+1〉(x).
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Note that

‖F̃‖p
Lp(Z×Ω)

=
∫

Ω
∑
k∈Z
|F̃(k,ω)|pdP(ω)

=
∫

Ω

Å
∑
k∈Z

∫
[k,k+1〉

|F̃(k,ω)|p1[k,k+1〉(x)dx
ã

dP(ω)

=
∫

Ω

∫
R

Å
∑
k∈Z
|F̃(k,ω)|p1[k,k+1〉(x)dx

ã
dP(ω) =

∫
Ω

∫
R
|F(x,ω)|pdP(ω)

= ‖F‖p
Lp(R×Ω)

.

At the beginning of the second row we applied the (standard) monotone convergence

theorem. Similarly we can show that ‖G̃‖q
Lq(Z×Ω)

= ‖G‖q
Lq(R×Ω)

. This will allow us to

replace the norms on the right side of the inequality, however we will have to approximate

the left one. Let us for a moment fix ω ∈ Ω and, for the simplicity, denote F̃ω := F̃ ,

G̃ω := G̃,Fω := F and Gω := G. Take x ∈ R and m ∈ Z and define

Ãn(F̃ω , G̃ω)(m) :=
n−1

∑
i=0

Å
1
2i

2i−1

∑
j=0

F̃ω( j+m)(E(G̃ω(m)|Gi+1)−E(G̃ω(m)|Gi))

ã
,

An(Fω ,Gω)(x) :=
n−1

∑
i=0

Å
1
2i

∫ 2i

0
Fω(s+ x)ds

ãÅ
E(Gω(x)|Gi+1)−E(Gω(x)|Gi)

ã
.

Fix α ∈ [0,1〉. Observe that, for m ∈ Z,

An(Fω ,Gω)(m+α)

=
n−1

∑
i=0

Å
1
2i

∫ 2i

0
Fω(s+m+α)ds

ãÅ
E(Gω(m+α)|Gi+1)−E(Gω(m+α)|Gi)

ã
=

n−1

∑
i=0

Å
1
2i

∫ 2i

0
∑
k∈Z

F̃ω(k)1[k,k+1〉(s+m+α)ds
ãÅ

E(∑
l∈Z

G̃ω(l)1[l,l+1〉(m+α)|Gi+1)−E(∑
l∈Z

G̃ω(l)1[l,l+1〉(m+α)|Gi)

ã
=

n−1

∑
i=0

∑
k∈Z

λk

2i F̃ω(k)(E(G̃ω(m)|Gi+1)−E(G̃ω(m)|Gi)).
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Notice that the last equality follows from the previous one as m+α ∈ [l, l +1〉 only when

l = m. Here,

λk := λ ([0,2i〉∩ [k−m−α,k+1−m−α〉) =



0, k ≤ m−1 or k ≥ m+2i +1,

1, m+1≤ k ≤ m+2i−1,

α, k = m+2i,

1−α, k = m.

for each k ∈ Z. This gives us

An(Fω ,Gω)(m+α)− Ãn(F̃ω , G̃ω)(m)

≤
n−1

∑
i=0

1
2i

(
E(G̃ω(m)|Gi+1)−E(G̃ω(m)|Gi)

)(
−αF̃ω(m)+αF̃ω(m+2i)

)
.

By applying the absolute value, taking to the power of r and integrating over α ∈ [0,1〉

we get∫ 1

0

∣∣An(Fω ,Gω)(m+α)− Ãn(F̃ω , G̃ω)(m)
∣∣rdα

=
∫ 1

0

∣∣∣∣n−1

∑
i=0

1
2i

(
E(G̃ω(m)|Gi+1)−E(G̃ω(m)|Gi)

)(
− F̃ω(m)+ F̃ω(m+2i)

)∣∣∣∣rαrdα

≤
∣∣∣∣n−1

∑
i=0

1
2i

(
E(G̃ω(m)|Gi+1)−E(G̃ω(m)|Gi)

)(
− F̃ω(m)+ F̃ω(m+2i)

)∣∣∣∣r.
From this, by triangle inequality for the norm of Lr([0,1〉) space,∣∣∣∣Å∫ 1

0
|An(Fω ,Gω)(m+α)|rdα

ã 1
r

−
Å∫ 1

0
|Ãn(F̃ω , G̃ω)(m)|rdα

ã 1
r
∣∣∣∣

≤
Å∫ 1

0
|An(Fω ,Gω)(m+α)− Ãn(F̃ω , G̃ω)(m)|rdα

ã 1
r

≤
∣∣∣∣n−1

∑
i=0

1
2i

(
E(G̃ω(m)|Gi+1)−E(G̃ω(m)|Gi

)(
− F̃ω(m)+ F̃ω(m+2i)

)∣∣∣∣
≤

n−1

∑
i=0

1
2i

(
|E(G̃ω(m)|Gi+1)|+ |E(G̃ω(m)|Gi)|

)(
|F̃ω(m)|+ |F̃ω(m+2i)|

)
.

Finally, if we observe the Lr(Z×Ω) norm of (m,ω) 7→ |Ãn(F̃ω , G̃ω)(m)|,Å∫
Ω

∑
m∈Z
|Ãn(F̃ω , G̃ω)(m)|rdP(ω)

ã 1
r

≤
Å∫

Ω
∑

m∈Z

∣∣∣∣Å∫ 1

0
|An(Fω ,Gω)(m+α)|rdα

ã 1
r

−|Ãn(F̃ω , G̃ω)(m)|
∣∣∣∣rdP(ω)

ã 1
r
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+

Å∫
Ω

∑
m∈Z

∫ 1

0
|An(Fω ,Gω)(m+α)|rdαdP(ω)

ã 1
r

≤
Å∫

Ω
∑

m∈Z

Ån−1

∑
i=0

1
2i

(
|E(G̃ω(m)|Gi+1)|+ |E(G̃ω(m)|Gi)|

)
·
(
|F̃ω(m)|+ |F̃ω(m+2i)|

)ãr

dP(ω)

ã 1
r

+

Å∫
Ω

∫
R
|An(Fω ,Gω)(x)|rdxdP(ω)

ã 1
r

≤
n−1

∑
i=0

1
2i

Å∫
Ω

∑
m∈Z

Å
|E(G̃ω(m)|Gi+1)||F̃ω(m)|+ |E2(G̃ω(m)|Gi+1)||F̃ω(m+2i)|

+ |E(G̃ω(m)|Gi)||F̃ω(m)|+ |E(G̃ω(m)|Gi)||F̃ω(m+2i)|
ãr

dP(ω)

ã 1
r

+

Å∫
Ω

∫
R
|An(Fω ,Gω)(x)|rdxdP(ω)

ã 1
r

≤
n−1

∑
i=0

1
2i

Å
41− 1

r

∫
Ω

∑
m∈Z

Å
|E(G̃ω(m)|Gi+1)|r|F̃ω(m)|r + |E(G̃ω(m)|Gi+1)|r|F̃ω(m+2i)|r

+ |E(G̃ω(m)|Gi)|r|F̃ω(m)|r + |E(G̃ω(m)|Gi)|r|F̃ω(m+2i)|r
ã

dP(ω)

ã 1
r

+

Å∫
Ω

∫
R
|An(Fω ,Gω)(x)|rdxdP(ω)

ã 1
r

≤
n−1

∑
i=0

1

2i−2+ 2
r

ÅÅ∫
Ω

∑
m∈Z
|E(G̃ω(m)|Gi+1)|qdP(ω)

ã 1
q
Å∫

Ω
∑

m∈Z
|F̃ω(m)|pdP(ω)

ã 1
p

+

Å∫
Ω

∑
m∈Z
|E(G̃ω(m)|Gi+1)|qdP(ω)

ã 1
q
Å∫

Ω
∑

m∈Z
|F̃ω(m+2i)|pdP(ω)

ã 1
p

+

Å∫
Ω

∑
m∈Z
|E(G̃ω(m)|Gi)|qdP(ω)

ã 1
q
Å∫

Ω
∑

m∈Z
|F̃ω(m)|pdP(ω)

ã 1
p

+

Å∫
Ω

∑
m∈Z
|E(G̃ω(m)|Gi)|qdP(ω)

ã 1
q
Å∫

Ω
∑

m∈Z
|F̃ω(m+2i)|pdP(ω)

ã 1
p
ã

+

Å∫
Ω

∫
R
|An(Fω ,Gω)(x)|rdxdP(ω)

ã 1
r

≤
n−1

∑
i=0

1

2i−4+ 2
r

Å∫
Ω

∑
m∈Z
|G̃ω(m)|qdP(ω)

ã 1
q
Å∫

Ω
∑

m∈Z
|F̃ω(m)|pdP(ω)

ã 1
p

+

Å∫
Ω

∫
R
|An(Fω ,Gω)(x)|rdxdP(ω)

ã 1
r

.
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First, third and fifth inequality follow from the triangle inequality for the norm of Lr(Z×

Ω). In the fifth inequality we also used Hölder’s inequality and Theorem 1.2.6. Compar-

ing this with (3.7), we conclude that

∥∥∥∥n−1

∑
i=0

Å
1
2i

2i−1

∑
j=0

F̃(k+ j,ω)

ã
(E(G̃(k,ω)|Gi+1)−E(G̃(k,ω)|Gi))

∥∥∥∥
Lr
(k,ω)(Z×Ω)

≤32‖F̃‖Lp(Z×Ω)‖G̃‖Lq(Z×Ω)

+

∥∥∥∥n−1

∑
i=0

Å
1
2i

∫ 2i

0
F(x+ y,ω)dy

ã
(E(G(x,ω)|Gi+1)−E(G(x,ω)|Gi))

∥∥∥∥
Lr
(x,ω)(R×Ω)

.

In conclusion, to prove (3.7) it will be enough to prove the following inequality:

∥∥∥∥n−1

∑
i=0

Å
1
2i

∫ 2i

0
F(x+ y,ω)dy

ã
(E(G(x,ω)|Gi+1)−E(G(x,ω)|Gi))

∥∥∥∥
Lr
(x,ω)(R×Ω)

. ‖F‖Lp(R×Ω)‖G‖Lq(R×Ω). (3.8)

3.2.4. Comparing the integral with dyadic martingales

If we consider the left side of this inequality for the rescaled functions x 7→ F(2−n−1x,ω)

and x 7→ G(2−n−1x,ω) instead of x 7→ F(x,ω) and x 7→ G(x,ω), we get

∥∥∥∥n−1

∑
i=0

Å
1
2i

∫ 2i

0
F(2−n−1x+2−n−1y,ω)dy

ã
· (E(G(2−n−1x,ω)|Gi+1)−E(G(2−n−1x,ω)|Gi)))

∥∥∥∥
Lr
(x,ω)(R×Ω)

=2
n+1

r

∥∥∥∥n−1

∑
i=0

Å
1

2i−n−1

∫ 2i−n−1

0
F(x+ y,ω)dy

ã
· (E(G(x,ω)|Gi+1)−E(G(x,ω)|Gi)))

∥∥∥∥
Lr
(x,ω)(R×Ω)

.

The right side of the inequality turns to 2(n+1)
(

1
p+

1
q

)
‖F‖Lp(R×Ω)‖G‖Lq(R×Ω). As we have

1
r = 1

p +
1
q , the powers of 2 on both sides of inequalities are actually equal. Furthermore,
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note that

∣∣∣∣n−1

∑
i=0

Å
1

2i−n−1

∫ 2i−n−1

0
F(x+ y,ω)dy

ã
(E(G(x,ω)|Gi+1)−E(G(x,ω)|Gi))

∣∣∣∣
≤
∣∣∣∣n−1

∑
i=0

(E(F |Dn+1−i)(x,ω))(E(G(x,ω)|Gi+1)−E(G(x,ω)|Gi))

∣∣∣∣
+

n−1

∑
i=0

∣∣∣∣ÅÅ 1
2i−n−1

∫ 2i−n−1

0
F(x+ y,ω)dy

ã
−E(F |Dn+1−i)(x,ω)

ã
· (E(G(x,ω)|Gi+1)−E(G(x,ω)|Gi))

∣∣∣∣, (3.9)

where (Di)i∈N0 is a dyadic filtration of [0,1〉. This time the conditional expectation is

taken over variable x. To avoid further confusion, from this point on we are going to

use notations E1 and E2 for conditional expectations in, respectively, first and second

variable. Cauchy-Schwarz inequality gives us

n−1

∑
i=0

∣∣∣∣ÅÅ 1
2i−n−1

∫ 2i−n−1

0
F(x+ y,ω)dy

ã
−E1(F |Dn+1−i)(x,ω)

ã
· (E2(G|Gi+1)(x,ω)−E2(G|Gi))(x,ω)

∣∣∣∣
≤
Ån−1

∑
i=0

∣∣∣∣Å 1
2i−n−1

∫ 2i−n−1

0
F(x+ y,ω)dy

ã
−E1(F |Dn+1−i)(x,ω)

∣∣∣∣2ã 1
2

·
Ån−1

∑
i=0
|E2(G|Gi+1)(x,ω)−E2(G|Gi)(x,ω)|2

ã 1
2

.

By Hölder’s inequality we can bound the Lr norm of the expression of left side of this

inequality with ‖S1F‖Lp(R×Ω)‖S2G‖Lq(R×Ω), where

(S1F)(x,ω) :=
Ån−1

∑
i=0

∣∣∣∣Å 1
2i−n−1

∫ 2i−n−1

0
F(x+ y,ω)dy

ã
−E1(F |Dn+1−i)(x,ω)

∣∣∣∣2ã 1
2

and

(S2G)(x,ω) :=
Ån−1

∑
i=0
|E2(G|Gi+1)(x,ω)−E2(G|Gi)(x,ω)|2

ã 1
2

.

Let us point out that both of the operators S1 and S2 are bounded. Indeed, the

boundedness of the second operator follows from Theorem 1.5.5. As for the first operator,
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by Theorem 1.5.6, ‖S1F‖p
Lp(R×Ω)

equals

∫
Ω

ï∫
R

∣∣∣∣n−1

∑
i=0

∣∣∣∣Å 1
2i−n−1

∫ 2i−n−1

0
F(x+ y,ω)dy

ã
−E1(F |Dn+1−i)(x,ω)

∣∣∣∣2∣∣∣∣ p
2

dx
ò
dP(ω)

≤
∫

Ω

∥∥∥∥Å ∞

∑
i=0

∣∣∣∣Å2i
∫ 2−i

0
F(x+ y,ω)dy

ã
−E1(F |Di)(x,ω)

∣∣∣∣2ã 1
2
∥∥∥∥p

Lp
x (R)

dP(ω)

≤
∫

Ω

Cp
p‖F(x,ω)‖p

Lp
x (R)

dP(ω) =Cp
p‖F‖

p
Lp(R×Ω)

.

Combining this with (3.9), we can see that, in order to show (3.8), it will be enough to

prove∥∥∥∥n−1

∑
i=0

E1(F |Dn+1−i)(E2(G|Gi+1)−E2(G|Gi))

∥∥∥∥
Lr(R×Ω)

. ‖F‖Lp(R×Ω)‖G‖Lq(R×Ω).

(3.10)

3.2.5. Reducing the filtrations to a specific case

Since the sum under the norm is finite, we can interchange the order of summation so

that both of sequences of σ -algebras are increasing, rather than decreasing. Furthermore,

we are going to replace the dyadic σ -algebra with a more general one; precisely, we will

show that∥∥∥∥n−1

∑
i=0

E1(F |Fi)(E2(G|Gi+1)−E2(G|Gi))

∥∥∥∥
Lr(Ω1×Ω2)

. ‖F‖Lp(Ω1×Ω2)‖G‖Lq(Ω1×Ω2)

(3.11)

where (Fi)i∈N and (Gi)i∈N are forward filtrations on probability spaces, respectively,

(Ω1,F ,P1) and (Ω2,G ,P2) and, additionally, each Fi, i ∈ N, is finitely generated.

Interestingly, it is possible to replace a filtration (Gi)i∈N0 with the one where each of

its σ -algebras are also finitely generated. For that, let us notice that, if we follow the

construction from function g appearing in (3.4) to this function, for fixed ω1 ∈ Ω1 the

function G(ω1, ·) still remains a simple function. There exist mω1 ∈ N, α
ω1
1 , . . . ,αω1

mω1
∈

R and Gω1
1 , . . . ,Gω1

mω1
∈ G such that G(ω1, ·) = ∑

mω1
j=1 α

ω1
j 1Gω1

j
. Moreover, following the

construction of G from function g we can see that there are only finitely many different

fibers G(ω1, ·), therefore we can denote all scalars and sets previously mentioned with

α1, . . . ,αm and G1, . . . ,Gm for m ∈ N. Let

Hi := σ({{E2(1G j |Gl)> α} : l ∈ {0, . . . , i}, j ∈ {1, . . . ,m},α ∈Q}).
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We can notice that (Hl)l∈N0 is a filtration. Also, as for any l ∈ {0, . . . , i}, α ∈ Q and

j ∈ {1, . . . ,m} we have

{E2(1G j |Gl)> α}= (E2(1G j |Gl))
−1(〈α,+∞〉) ∈ Gl ⊆ Gi

and as those sets generate Hi, we conclude that Hi ⊆ Gi. Also, Hi is a countably gener-

ated σ -algebra. We can also show that

E2(1G j |Hi) = E2(1G j |Gi) P2− almost surely.

To show this, assume the opposite. First, let us assume that there exists α ∈Q such that a

set

B := {E2(1G j |Hi)≤ α < E2(1G j |Gi)}

has a P2-probability strictly larger than zero. Notice that B = {E2(1G j |Hi)≤ α}∩{α <

E2(1G j |Gi)} ∈Hi. That is why we can write

E2[1G j1B] = E2[E2(1G j |Gi)1B]> αP(B)≥ E2[E2(1G j |Hi)1B] = E2[1G j1B],

which is impossible. The case of P2({E2(1G j |Gi)≤ α <E2(1G j |Hi)})> 0 is completely

analogous. This obviously gives us

E2(G(ω1, ·)|Gi+1)−E2(G(ω1, ·)|Gi) =E2(G(ω1, ·)|Hi+1)−E2(G(ω1, ·)|Hi),

meaning that, without loss of generality, we can assume that every Gi, i∈N0, from (3.10),

is countably generated σ -algebra. Additionally, by application of Theorem 1.2.7 we can

work with finitely generated Gi, i ∈ N0.

Let us for a moment assume that, for each i ∈ N0, Gi is a σ -algebra generated with a

partition Ai = {G(i)
1 , . . . ,G(i)

mi} of a set Ω such that each element has a P2-measure strictly

larger than zero. As (Gi)i∈N0 is a filtration, let us furthermore assume that Ai+1 and Ai

have ki < mi same elements, while the remaining mi− ki elements of Ai are a disjoint

union of two elements of Ai+1; let us fix i ∈ N0 and, without loss of generality, assume

that G(i+1)
1 = G(i)

1 , . . . ,G(i+1)
ki

= G(i)
ki

; additionally, let G(i)
k = G(i+1)

k,1 ∪G(i+1)
k,2 where k ∈

{ki +1, . . . ,mi} and G(i+1)
k,1 ,G(i+1)

k,2 ∈A (i+1). We have

E2(G(ω1, ·)|Gi+1)−E2(G(ω1, ·)|Gi)
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=
mi+1

∑
k=0

E2[1G(i+1)
k

G(ω1, ·)]

P2(G
(i+1)
k )

1
G(i+1)

k
−

mi

∑
k=0

E2[1G(i)
k

G(ω1, ·)]

P2(G
(i)
k )

1
G(i)

k

=
mi

∑
k=ki+1

ÅÅE2[1G(i+1)
k,1

G(ω1, ·)]

P2(G
(i+1)
k,1 )

1
G(i+1)

k,1
+

E2[1G(i+1)
k,2

G(ω1, ·)]

P2(G
(i+1)
k,2 )

1
G(i+1)

k,2

−
E2[1G(i)

k
G(ω1, ·)]

P2(G
(i)
k )

1
G(i)

k

ãã
=

mi

∑
k=ki+1

ÅÅE2[1G(i+1)
k,1

G(ω1, ·)]

P2(G
(i+1)
k,1 )

−
E2[1G(i)

k
G(ω1, ·)]

P2(G
(i)
k )

ã
1

G(i+1)
k,1

+

ÅE2[1G(i+1)
k,2

G(ω1, ·)]

P2(G
(i+1)
k,2 )

−
E2[1G(i)

k
G(ω1, ·)]

P2(G
(i)
k )

ã
1

G(i+1)
k,2

ã
=

mi

∑
k=ki+1

ÅÅ
E2[1G(i+1)

k,1
G(ω1, ·)]

Å
1

P2(G
(i+1)
k,1 )

− 1

P2(G
(i)
k )

ã
−
E2[1G(i+1)

k,2
G(ω1, ·)]

P2(G
(i)
k )

ã
1

G(i+1)
k,1

+

Å
E2[1G(i+1)

k,2
G(ω1, ·)]

Å
1

P2(G
(i+1)
k,2 )

− 1

P2(G
(i)
k )

ã
−
E2[1G(i+1)

k,1
G(ω1, ·)]

P2(G
(i)
k )

ã
1

G(i+1)
k,2

ã
=

mi

∑
k=ki+1

ÅÅ
E2[1G(i+1)

k,1
G(ω1, ·)]

P2(G
(i+1)
k,2 )

P2(G
(i+1)
k,1 )P2(G

(i)
k )
−
E2[1G(i+1)

k,2
G(ω1, ·)]

P2(G
(i)
k )

ã
1

G(i+1)
k,1

+

Å
E2[1G(i+1)

k,2
G(ω1, ·)]

P2(G
(i+1)
k,1 )

P2(G
(i+1)
k,2 )P2(G

(i)
k )
−
E2[1G(i+1)

k,1
G(ω1, ·)]

P2(G
(i)
k )

ã
1

G(i+1)
k,2

ã
.

Motivated by this, let us define adapted Haar functions as

h
G(i)

1
= · · ·=h

G(i)
ki

≡ 0,

h
G(i)

k
:=

Õ
P2(G

(i+1)
k,2 )

P2(G
(i+1)
k,1 )P2(G

(i)
k )

1
G(i+1)

k,1
−

Õ
P2(G

(i+1)
k,1 )

P2(G
(i+1)
k,2 )P2(G

(i)
k )

1
G(i+1)

k,2
(3.12)

for each k = ki + 1, . . . ,mi. Notice that the non-zero functions defined like this are sup-

ported on the sets appearing in their respective indices and that they are constant on each

of two subsets from their definition formula. Also, they are cancellative and mutually

orthogonal. The cancellation is easy to notice:

Eh
G(i)

k
=

Ã
P2(G

(i+1)
k,2 )

P2(G
(i)
k )

√
P2(G

(i+1)
k,1 )−

Ã
P2(G

(i+1)
k,1 )

P2(G
(i)
k )

√
P2(G

(i+1)
k,2 ) = 0.
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To show the orthogonality, take any i, j = 1, . . . ,n and k = ki+1, . . . ,mi, l = k j +1, . . . ,m j

such that i 6= j or k 6= l. Sets G(i)
k and G( j)

l are either disjoint, soE
(
h

G(i)
k
h

G( j)
l

)
= 0 because

of disjoint support of functions, or G( j)
l ( G(i)

k ; without loss of generality, G( j)
l ⊆ G(i+1)

k,1 .

As h
G(i)

k
is constant of the support of h

G( j)
l

,

E
(
h

G(i)
k
h

G( j)
l

)
=

Õ
P2(G

(i+1)
k,2 )

P2(G
(i+1)
k,1 )P2(G

(i)
k )

Eh
G( j)

l
= 0.

Such definition of functions was motivated so that we would have

mi

∑
k=1

E2(G(ω1, ·)hG(i)
k
)h

G(i)
k
=

mi

∑
k=ki+1

E2(G(ω1, ·)hG(i)
k
)h

G(i)
k

=
mi

∑
k=ki+1

ÅÅ P2(G
(i+1)
k,2 )

P2(G
(i+1)
k,1 )P2(G

(i)
k )

E2[1G(i+1)
k,1

G(ω1, ·)]−
1

P2(G
(i)
k )

E2[1G(i+1)
k,2

G(ω1, ·)]
ã
1

G(i+1)
k,1

+

Å
− 1

P2(G
(i)
k )

E2[1G(i+1)
k,1

G(ω1, ·)]+
P2(G

(i+1)
k,1 )

P2(G
(i+1)
k,2 )P2(G

(i)
k )

E2[1G(i+1)
k,2

G(ω1, ·)]
ã
1

G(i+1)
k,2

ã
=E2(G(ω1, ·)|Gi+1)−E2(G(ω1, ·)|Gi).

Now we can see an analogy with the standard Haar function basis, as its functions are also

supported on disjoint sets which form a partition of a whole space and also their supports

split in two subsets which are elements of the succeeding σ -algebra of a standard dyadic

filtration. Returning to (3.10), we would now like to show that∥∥∥∥n−1

∑
i=0

mi

∑
k=1

E1(F |Fi)E2(GhG(i)
k
)h

G(i)
k

∥∥∥∥
Lr(Ω1×Ω2)

. ‖F‖Lp(Ω1×Ω2)‖G‖Lq(Ω1×Ω2). (3.13)

Note that this was possible with the assumption that elements of Ai either remain the same

or they can be separated in two mutually disjoint subsets of non-zero P2-measure in order

to obtain Ai+1. Let us consider more general case when there exists i0 ∈ N0 such that,

unless Ai0 =Ai0+1 (and then we have a trivial case Gi0 =Gi0+1), there are G(i0)
1 , . . . ,G(i0)

k ∈

Ai0 such that, for each j ∈ {1, . . . ,k}, there exist mutually different G(i0+1)
j,1 , . . . ,G(i0+1)

j,k j
∈

Ai0+1 such that G(i0)
j = ∪k j

l=1G(i0+1)
j,l . Let K := max1≤ j≤k k j > 2. Let us construct A ′

1

from Ai0 in a way that, for each j = 1, . . . ,k, we remove sets G(i0)
1 , . . . ,G(i0)

k and add

G(i0+1)
1,1 , . . . ,G(i0+1)

k,1 and G(i0)
1 \G

(i0+1)
1,1 , . . . ,G(i0)

k \G
(i0+1)
k,1 . Inductively, we construct each

A ′
l , l ∈ {2, . . . ,K−2} in a way that, for each j ∈ {1, . . . ,k} such that l < k j, we remove
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G(i0)
j \(∪

l−1
p=1G(i0+1)

p, j ) and then add G(i0+1)
l, j and G(i0)

j \(∪l
p=1G(i0+1)

p, j ). Now, let

G ′l :=


Gl, 0≤ l ≤ i0,

σ(A ′
l−i0), i0 +1≤ l ≤ i0 +K−2,

Gl−K+2, l ≥ i0 +K−1,

F ′
l :=


Fl, 0≤ l ≤ i0,

Fi0, i0 +1≤ l ≤ i0 +K−2,

Fl−K+2, l ≥ i0 +K−1.

This construction helped us obtain the following. As the transition from Gi0 to Gi0+1 can

happen by breaking more atoms into more than two parts, we added σ -algebras in between

so that the transition from G ′i0 from G ′i0+K (which are same σ -algebras as those that we

started with) actually happens by breaking atoms into exactly two parts, step by step. If

we replace (Gm)m∈N0 with (G ′m)m∈N0 and, additionally, (Fm)m∈N0 with (F ′
m)m∈N0 , we

can notice that

n+K−3

∑
i=0

E1(F |F ′
i )(E2(G|G ′i+1)−E2(G|G ′i )) =

i0−1

∑
i=0

E1(F |Fi)(E2(G|Gi+1)−E2(G|Gi))

+
i0+K−2

∑
i=i0

E1(F |Fi0)(E2(G|G ′i+1)−E2(G|G ′i ))

+
n−1

∑
i=i0+K+1

E1(F |Fi)(E2(G|Gi+1)−E2(G|Gi))

=
n−1

∑
i=0

E1(F |Fi)(E2(G|Gi+1)−E2(G|Gi)),

as the second sum is actually a telescoping sum:

i0+K−2

∑
i=i0

E1(F |Fi0)(E2(G|G ′i+1)−E2(G|G ′i ))

=E1(F |Fi0)
i0+K−2

∑
i=i0

(E2(G|G ′i+1)−E2(G|G ′i ))

=E1(F |Fi0)(E2(G|G ′i0+K−1)−E2(G|G ′i0))

=E1(F |Fi0)(E2(G|Gi0+1)−E2(G|Gi0)).

We can notice that, by shifting both σ -algebras and also copying Fi0 and adding inter-

mediate σ -algebras between Gi0 and Gi0+1, we still keep the property of filtration that

we wanted, but also the paraproduct remains unchanged, so we are still trying to bound

the exact same expression. As this construction required adding only finitely many new

σ -subalgebras, what we have obtained here is that not only we reduced to the case when
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σ -algebras Gi, i∈N0 are finitely generated, but also that each atom from Gi either remains

an atom in Gi+1 or can be presented as a disjoint union of exactly two atoms from Gi+1.

Once both filtrations have finitely generated σ -algebras, we are able to show a result

that will turn out to be helpful later, during the attempt of extending the range of exponents

for our main result. We can see that (3.10) will not only give us the boundedness for the

specific triple (p,q,r), but also a range that will vary for exponents q and r.

Lemma 3.2.1. Let (X ,F ,µ) and (Y,G ,ν) be probability spaces and let (Fm)m∈N0 and

(Gm)m∈N0 be filtrations on, respectively, F and G such that Fm and Gm are finitely gen-

erated for each m ∈ N0. If we have∥∥∥∥n−1

∑
i=0

Eµ(F |Fi)(Eν(G|Gi+1)−Eν(G|Gi))

∥∥∥∥
Lr(X×Y )

. ‖F‖Lp(X×Y )‖G‖Lq(X×Y ) (3.14)

for some simple (F ×G )-measurable functions F,G : X ×Y → R and p,q,r such that
1
p +

1
q = 1

r , then we have∥∥∥∥n−1

∑
i=0

Eµ(F |Fi)(Eν(G|Gi+1)−Eν(G|Gi))

∥∥∥∥
Lrt (X×Y )

. ‖F‖Lp(X×Y )‖G‖Lqt (X×Y )

for each rt =
( t

r +(1− t)
(
1+ 1

p

))−1 and qt =
( t

q + 1− t
)−1 where t ∈ 〈0,1〉 such that

rt ,qt ∈ [1,∞].

Proof. The key of the proof lies in Theorem 1.1.6 and the weak boundedness∥∥∥∥n−1

∑
i=0

Eµ(F |Fi)(Eν(G|Gi+1)−Eν(G|Gi))

∥∥∥∥
L

p
p+1 ,∞(X×Y )

. ‖F‖Lp(X×Y )‖G‖L1(X×Y ).

(3.15)

A specific case of one of filtrations being a dyadic filtration can be found in Kovač’s ar-

ticle [33]. However, unlike his approach of cutting dyadic intervals in halves of equal

length by Lebesgue measure, we will have to approach this problem in different way,

for general martingales. Let us assume that ‖F‖Lp(X×Y ) = ‖G‖L1(X×Y ) = 1. Recall

that F and G are finite linear combination of characteristic functions over sets from

F ×G so it is not difficult to notice that each of the conditional expectations Eµ(F |Fi)

and Eν(F |Gi) are also (F ×G )-measurable for each i = 0, . . . ,n. Following the proof

from [39], we are going to fix x ∈ X and use Theorem 1.2.13 for α = s
p

p+1 and where

s ∈ 〈0,∞〉 is arbitrary, for splitting martingale (Eν(G(x, ·)|Gm))m∈N0 into three parts:
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good part Gg(x, ·) = (Gg
m(x, ·))m∈N0 , bad part Gb(x, ·) = (Gb

m(x, ·))m∈N0 and harmless part

Gh(x, ·) = (Gh
m(x, ·))m∈N0 . They satisfy the following identities:

Eν(G(x, ·)|Gm) = Gg
m(x, ·)+Gb

m(x, ·)+Gh
m(x, ·) for each m ∈ N0,

Gg
0(x, ·) =Eν(G(x, ·)|G0),Gb

0(x, ·) = Gh
0(x, ·)≡ 0,

‖Gg
n(x, ·)‖L∞(Y ) ≤ 2s

p
p+1 ,‖Gg

n(x, ·)‖L1(Y ) ≤ 4‖Eν(G(x, ·)|Gn)‖L1(Y ),

ν( max
0≤m≤n

|Gb
m(x, ·)|> 0)≤ 3s−

p
p+1‖Eν(G(x, ·)|Gn)‖L1(Y ),

n−1

∑
m=0
‖Gh

m+1(x, ·)−Gh
m(x, ·)‖L1(Y ) ≤ 4‖Eν(G(x, ·)|Gn)‖L1(Y ).

With eventual integration over x ∈ X and taking into consideration that (X ,F ,µ) is a

probability space, we can rewrite these as

Eν(G|Gm) = Gg
m +Gb

m +Gh
m for each m ∈ N0,

Gg
0 =Eν(G|G0),Gb

0 = Gh
0 ≡ 0,

‖Gg
n‖L∞(X×Y ) ≤ 2s

p
p+1 ,‖Gg

n‖L1(X×Y ) ≤ 4‖Eν(G|Gn)‖L1(X×Y ),

(µ×ν)( max
0≤m≤n

|Gb
m|> 0)≤ 3s−

p
p+1‖Eν(G|Gn)‖L1(X×Y ),

n−1

∑
m=0
‖Gh

m+1−Gh
m‖L1(X×Y ) ≤ 4‖Eν(G|Gn)‖L1(X×Y ).

Let us observe the same paraproduct where, instead of martingale (Eν(G|Gm))m∈N0 we

have its good, bad and harmless part. From the assumption (3.14) we have

(µ×ν)

Å∣∣∣∣n−1

∑
i=0

Eµ(F |Fi)(G
g
i+1−Gg

i )

∣∣∣∣> s
2

ã
≤
Å

s
2

ã−r∥∥∥∥n−1

∑
i=0

Eµ(F |Fi)(G
g
i+1−Gg

i )

∥∥∥∥r

Lr(X×Y )

≤ 2rs−r‖F‖r
Lp(X×Y )‖G

g
n‖r

Lq(X×Y ) ≤ 2rs−r‖Gg
n‖

r(q−1)
q

L∞(X×Y )‖G
g
n‖

r
q

L1(X×Y )

≤ 2
pq

p+q s−
pq

p+q ·2
p(q−1)

p+q s
p2(q−1)

(p+1)(p+q) ·4
p

p+q‖Eν(G|Gn)‖
p

p+q

L1(X×Y )
≤ 2

p(2q+1)
p+q s−

p
p+1 . s−

p
p+1 .

Here we also used the fact that (Gg
m)m∈N0 is a martingale with respect to (Gm)m∈N0 , so

Eν(G
g
n|Gi) = Gg

i for each i ∈ {0, . . . ,n−1}. Also,

(µ×ν)

Å∣∣∣∣n−1

∑
i=0
Eµ(F |Fi)(Gb

i+1−Gb
i )

∣∣∣∣> 0
ã
≤ (µ×ν)

(
max

0≤m≤n
|Gb

m|> 0
)

≤ 3s−
p

p+1‖Eν(G|Gn)‖L1(X×Y ) . s−
p

p+1 .
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As for the harmless part,

(µ×ν)

Å∣∣∣∣n−1

∑
i=0

Eµ(F |Fi)(Gh
i+1−Gh

i )

∣∣∣∣> s
2

ã
≤
Å

s
2

ã− p
p+1
∥∥∥∥n−1

∑
i=0

Eµ(F |Fi)(Gh
i+1−Gh

i )

∥∥∥∥ p
p+1

L
p

p+1 (X×Y )

≤ 2
p

p+1 s−
p

p+1

∥∥∥∥ max
0≤m≤n−1

|Eµ(F |Fm)|
n−1

∑
i=0
|Gh

i+1−Gh
i |
∥∥∥∥ p

p+1

L
p

p+1 (X×Y )

≤ 2
p

p+1 s−
p

p+1
∥∥ max

0≤m≤n−1
|Eµ(F |Fm)|

∥∥ p
p+1
Lp(X×Y )

∥∥∥∥n−1

∑
i=0
|Gh

i+1−Gh
i |
∥∥∥∥ p

p+1

L1(X×Y )

≤ 2
p

p+1 s−
p

p+1‖F‖
p

p+1
Lp(X×Y )

Ån−1

∑
i=0
‖Gh

i+1−Gh
i ‖L1(X×Y )

ã p
p+1

≤ 2
p

p+1+2s−
p

p+1‖Eν(G|Gn)‖
p

p+1

L1(X×Y )
. s−

p
p+1 .

We used the fact that the martingale maximal operator F 7→max0≤m≤n−1 |Eµ(F |Fm)| is

bounded from Lp(X×Y ) to Lp(X×Y ) which follows from Theorem 1.5.7. Overall,

(µ×ν)

Å∣∣∣∣n−1

∑
i=0
Eµ(F |Fi)(Eν(G|Gi+1)−Eν(G|Gi))

∣∣∣∣> s
ã

≤(µ×ν)

Å∣∣∣∣n−1

∑
i=0

Eµ(F |Fi)(G
g
i+1−Gg

i )

∣∣∣∣> s
2

ã
+(µ×ν)

Å∣∣∣∣n−1

∑
i=0

Eµ(F |Fi)(Gb
i+1−Gb

i )

∣∣∣∣> 0
ã

+(µ×ν)

Å∣∣∣∣n−1

∑
i=0

Eµ(F |Fi)(Gh
i+1−Gh

i )

∣∣∣∣> s
2

ã
. s−

p
p+1 .

Since s ∈ 〈0,∞〉 was arbitrary, this gives (3.15). �

It is important to emphasize that, while we are applying the Gundy’s decomposition

for each x ∈ X and the cardinal number of X can be arbitrary, thanks to the fact that σ -

algebras G1, . . . ,Gn are finitely generated, the set of values {Eν(G|Gi) : i ∈ {1, . . . ,n}} is

finite for each n ∈ N so we are effectively decomposing only finitely many times.
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3.2.6. Estimating forms to obtain the first pair of exponents

The inequality (3.13) is equivalent to∣∣∣∣∫∫
Ω1×Ω2

n−1

∑
i=0

mi

∑
k=1

E1(F |Fi)E2(GhG(i)
k
)h

G(i)
k

Hd(P1×P2)

∣∣∣∣
. ‖F‖Lp(Ω1×Ω2)‖G‖Lq(Ω1×Ω2)‖H‖Lr′(Ω1×Ω2)

for any choice of H ∈ Lr′(Ω1×Ω2), r′ being the conjugate exponent of r.

Let {F(i)
1 , . . . ,F(i)

ni } be a collection of mutually disjoint atoms of Fi, ordered similarly

as {G(i)
1 , . . . ,G(i)

mi} have been chosen, and let h
F(i)

k
be defined analogously as in (3.12) for

each k ∈ {1, . . . ,ni} and i ∈ N.

The following idea is inspired by [33]. In order to bound the form

Λ(F,G,H) :=
∫∫

Ω1×Ω2

n−1

∑
i=0

mi

∑
k=1

E1(F |Fi)E2(GhG(i)
k
)h

G(i)
k

Hd(P1×P2)

=
∫

Ω1

∫
Ω1

∫
Ω2

∫
Ω2

n−1

∑
i=0

mi

∑
k=1

ni

∑
l=1

F(ω ′1,ω2)h
0
F(i)

l
(ω ′1)h

0
F(i)

l
(ω1)G(ω1,ω

′
2)hG(i)

k
(ω ′2)hG(i)

k
(ω2)

H(ω1,ω2)dP2(ω2)dP2(ω
′
2)dP1(ω1)dP1(ω

′
1), (3.16)

we are going to observe few additional forms:

Θ1(F1,F2,F3,F4) :=
∫

Ω1

∫
Ω1

∫
Ω2

∫
Ω2

n−1

∑
i=0

mi

∑
k=1

ni

∑
l=1

F1(ω
′
1,ω2)F2(ω1,ω

′
2)F3(ω1,ω2)

F4(ω
′
1,ω

′
2)hG(i)

k
(ω ′2)hG(i)

k
(ω2)h

0
F(i)

l
(ω ′1)h

0
F(i)

l
(ω1)dP2(ω2)dP2(ω

′
2)dP1(ω1)dP1(ω

′
1),

Θ2(F1,F2,F3,F4) :=
∫

Ω1

∫
Ω1

∫
Ω2

∫
Ω2

n−1

∑
i=0

mi

∑
k=1

ni

∑
l=1

∑
j∈{1,2}

F1(ω
′
1,ω2)F2(ω1,ω

′
2)F3(ω1,ω2)

F4(ω
′
1,ω

′
2)h

0
G(i+1)

k, j
(ω ′2)h

0
G(i+1)

k, j
(ω2)hF(i)

l
(ω ′1)hF(i)

l
(ω1)dP2(ω2)dP2(ω

′
2)dP1(ω1)dP1(ω

′
1),

Ξ
(i)(F1,F2,F3,F4) :=

∫
Ω1

∫
Ω1

∫
Ω2

∫
Ω2

mi

∑
k=1

ni

∑
l=1

F1(ω
′
1,ω2)F2(ω1,ω

′
2)F3(ω1,ω2)

F4(ω
′
1,ω

′
2)h

0
G(i+1)

k, j
(ω ′2)h

0
G(i+1)

k, j
(ω2)h

0
F(i)

l
(ω ′1)h

0
F(i)

l
(ω1)dP2(ω2)dP2(ω

′
2)dP1(ω1)dP1(ω

′
1)

for each i ∈ {0, . . . ,n}. First we are going to show that

Θ1(F1,F2,F3,F4)+Θ2(F1,F2,F3,F4) = Ξ
(n)(F1,F2,F3,F4)−Ξ

(0)(F1,F2,F3,F4). (3.17)
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Let us fix ω1,ω
′
1 ∈Ω1,ω2,ω

′
2 ∈Ω2, i ∈ {0, . . . ,n−1}, k ∈ {1, . . . ,mi} and l ∈ {1, . . . ,ni}.

Notice that

h0
G(i)

k
(ω ′2)h

0
G(i)

k
(ω2)+hG(i)

k
(ω ′2)hG(i)

k
(ω2)

=
1

P2(G
(i)
k )

(
1

G(i+1)
k,1

(ω ′2)+1G(i+1)
k,2

(ω ′2)
)(
1

G(i+1)
k,1

(ω2)+1G(i+1)
k,2

(ω2)
))

+

ÅÕ P2(G
(i+1)
k,2 )

P2(G
(i+1)
k,1 )P2(G

(i)
k )

1
G(i+1)

k,1
(ω ′2)−

Õ
P2(G

(i+1)
k,1 )

P2(G
(i+1)
k,2 )P2(G

(i)
k )

1
G(i+1)

k,2
(ω ′2)

ã
·
ÅÕ P2(G

(i+1)
k,2 )

P2(G
(i+1)
k,1 )P2(G

(i)
k )

1
G(i+1)

k,1
(ω2)−

Õ
P2(G

(i+1)
k,1 )

P2(G
(i+1)
k,2 )P2(G

(i)
k )

1
G(i+1)

k,2
(ω2)

ã
=

Å
1

P2(G
(i)
k )

+
P2(G

(i+1)
k,2 )

P2(G
(i+1)
k,1 )P2(G

(i)
k )

ã
1

G(i+1)
k,1

(ω ′2)1G(i+1)
k,1

(ω2)

+

Å
1

P2(G
(i)
k )

+
P2(G

(i+1)
k,1 )

P2(G
(i+1)
k,2 )P2(G

(i)
k )

ã
1

G(i+1)
k,2

(ω ′2)1G(i+1)
k,2

(ω2)

=
1

P2(G
(i+1)
k,1 )

1
G(i+1)

k,1
(ω ′)1

G(i+1)
k,1

(ω)+
1

P2(G
(i+1)
k,2 )

1
G(i+1)

k,2
(ω ′2)1G(i+1)

k,2
(ω2)

=h0
G(i+1)

k,1
(ω ′2)h

0
G(i+1)

k,1
(ω2)+h

0
G(i+1)

k,2
(ω ′2)h

0
G(i+1)

k,2
(ω2).

Completely analogously,

h0
F(i)

l
(ω ′1)h

0
F(i)

l
(ω1)+hF(i)

l
(ω ′1)hF(i)

l
(ω1)

= h0
F(i+1)

l,1
(ω ′1)h

0
F(i+1)

l,1
(ω1)+h

0
F(i+1)

l,2
(ω ′1)h

0
F(i+1)

l,2
(ω1).

From these two identities we can use a trivial formula:

∑
j1∈{1,2}

h0
G(i+1)

k, j1

(ω ′2)h
0
G(i+1)

k, j1

(ω2)

Å
h0

F(i)
l
(ω ′1)h

0
F(i)

l
(ω1)+hF(i)

l
(ω ′1)hF(i)

l
(ω1)

− ∑
j2∈{1,2}

h0
F(i+1)

l, j2

(ω ′1)h
0
F(i+1)

l, j2

(ω1)

ã
+h0

F(i)
l
(ω ′1)h

0
F(i)

l
(ω1)

Å
h0

G(i)
k
(ω ′2)h

0
G(i)

k
(ω2)

+h
G(i)

k
(ω ′2)hG(i)

k
(ω2)− ∑

j1∈{1,2}
h0

G(i+1)
k, j1

(ω ′2)h
0
G(i+1)

k, j1

(ω2)

ã
= 0.
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We can rewrite this expression as

h
G(i)

k
(ω ′2)hG(i)

k
(ω2)h

0
F(i)

l
(ω ′1)h

0
F(i)

l
(ω1)+ ∑

j1∈{1,2}
h0

G(i+1)
k, j1

(ω ′2)h
0
G(i+1)

k, j1

(ω2)hF(i)
l
(ω ′1)hF(i)

l
(ω1)

= ∑
j1∈{1,2}

∑
j2∈{1,2}

h0
G(i+1)

k, j1

(ω ′2)h
0
G(i+1)

k, j1

(ω2)h
0
F(i+1)

l, j1

(ω ′1)h
0
F(i+1)

l, j1

(ω1)

−h0
G(i)

k
(ω ′2)h

0
G(i)

k
(ω2)h

0
F(i)

l
(ω ′1)h

0
F(i)

l
(ω1).

By multiplying this equation with F1(ω
′
1,ω2)F2(ω1,ω

′
2)F3(ω1,ω2)F4(ω

′
1,ω

′
2), summing

over l ∈ {1, . . . ,ni}, k∈ {1, . . . ,mi} and i∈ {0, . . . ,n−1} and integrating over ω2,ω
′
2 ∈Ω2

and ω1,ω
′
1 ∈Ω1 we obtain

Θ1(F1,F2,F3,F4)+Θ2(F1,F2,F3,F4) =
n−1

∑
i=0

(Ξ(i+1)(F1,F2,F3,F4)−Ξ
(i)(F1,F2,F3,F4)),

which corresponds to (3.17). Specially, since F1,F2,F3,F4 ≥ 0, each form Ξ(i) takes non-

negative values, so specially

Θ1(F1,F2,F3,F4)+Θ2(F1,F2,F3,F4)≤ Ξ
(n)(F1,F2,F3,F4). (3.18)

The double application of Cauchy-Schwarz inequality gives us

|Θ1(F1,F2,F3,F4)| ≤
n−1

∑
i=0

mi

∑
k=1

∣∣∣∣∫
Ω1

∫
Ω1

Å∫
Ω2

F1(ω
′
1,ω2)F3(ω1,ω2)hG(i)

k
(ω2)dP2(ω2)

ã
·
Å∫

Ω2

F2(ω1,ω
′
2)F4(ω

′
1,ω

′
2)hG(i)

k
(ω ′2)dP2(ω

′
2)

ã
·

ni

∑
l=1

h0
F(i)

l
(ω ′1)h

0
F(i)

l
(ω1)dP1(ω1)dP1(ω

′
1)

∣∣∣∣
≤

n−1

∑
i=0

mi

∑
k=1

ï∫
Ω1

∫
Ω1

Å∫
Ω2

F1(ω
′
1,ω2)F3(ω1,ω2)hG(i)

k
(ω2)dP2(ω2)

ã2

·
ni

∑
l=1

h0
F(i)

l
(ω ′1)h

0
F(i)

l
(ω1)dP1(ω1)dP1(ω

′
1)

ò 1
2

·
ï∫

Ω1

∫
Ω1

Å∫
Ω2

F2(ω1,ω
′
2)F4(ω

′
1,ω

′
2)hG(i)

k
(ω ′2)dP2(ω

′
2)

ã2

·
ni

∑
l=1

h0
F(i)

l
(ω ′1)h

0
F(i)

l
(ω1)dP1(ω1)dP1(ω

′
1)

ò 1
2

≤
ïn−1

∑
i=0

mi

∑
k=1

∫
Ω1

∫
Ω1

Å∫
Ω2

F1(ω
′
1,ω2)F3(ω1,ω2)hG(i)

k
(ω2)dP2(ω2)

ã2
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·
ni

∑
l=1

h0
F(i)

l
(ω ′1)h

0
F(i)

l
(ω1)dP1(ω1)dP1(ω

′
1)

ò 1
2

·
ïn−1

∑
i=0

mi

∑
k=1

∫
Ω1

∫
Ω1

Å∫
Ω2

F2(ω1,ω
′
2)F4(ω

′
1,ω

′
2)hG(i)

k
(ω ′2)dP2(ω

′
2)

ã2

·
ni

∑
l=1

h0
F(i)

l
(ω ′1)h

0
F(i)

l
(ω1)dP1(ω1)dP1(ω

′
1)

ò 1
2

=

ï∫
Ω1

∫
Ω1

∫
Ω2

∫
Ω2

n−1

∑
i=0

mi

∑
k=1

ni

∑
l=1

F1(ω
′
1,ω2)F3(ω1,ω2)F1(ω

′
1,ω

′
2)F3(ω1,ω

′
2)

·h
G(i)

k
(ω2)hG(i)

k
(ω ′2)h

0
F(i)

l
(ω ′1)h

0
F(i)

l
(ω1)dP2(ω2)dP2(ω

′
2)dP1(ω1)dP1(ω

′
1)

ò 1
2ï∫

Ω1

∫
Ω1

∫
Ω2

∫
Ω2

n−1

∑
i=0

mi

∑
k=1

ni

∑
l=1

F2(ω
′
1,ω2)F4(ω1,ω2)F2(ω

′
1,ω

′
2)F4(ω1,ω

′
2)

·h
G(i)

k
(ω2)hG(i)

k
(ω ′2)h

0
F(i)

l
(ω ′1)h

0
F(i)

l
(ω1)dP2(ω2)dP2(ω

′
2)dP1(ω1)dP1(ω

′
1)

ò 1
2

= Θ1(F1,F3,F3,F1)
1
2 Θ1(F2,F4,F4,F2)

1
2 .

Analogously,

|Θ2(F1,F2,F3,F4)|

≤
n−1

∑
i=0

mi

∑
k=1

ni

∑
l=1

∑
j∈{1,2}

∣∣∣∣∫
Ω2

∫
Ω2

Å∫
Ω1

F2(ω1,ω
′
2)F3(ω1,ω2)hF(i)

l
(ω1)dP1(ω1)

ã
·
Å∫

Ω1

F1(ω
′
1,ω2)F4(ω

′
1,ω

′
2)hF(i)

l
(ω ′1)dP1(ω

′
1)

ã
·h0

G(i+1)
k, j

(ω2)h
0
G(i+1)

k, j
(ω ′2)dP2(ω2)dP2(ω

′
2)

∣∣∣∣
≤

n−1

∑
i=0

mi

∑
k=1

ni

∑
l=1

∑
j∈{1,2}

ï∫
Ω2

∫
Ω2

Å∫
Ω1

F2(ω1,ω
′
2)F3(ω1,ω2)hF(i)

l
(ω1)dP1(ω1)

ã2

·h0
G(i+1)

k, j
(ω2)h

0
G(i+1)

k, j
(ω ′2)dP2(ω2)dP2(ω

′
2)

ò 1
2

·
ï∫

Ω2

∫
Ω2

Å∫
Ω1

F1(ω
′
1,ω2)F4(ω

′
1,ω

′
2)hF(i)

l
(ω ′1)dP1(ω

′
1)

ã2

·h0
G(i+1)

k, j
(ω2)h

0
G(i+1)

k, j
(ω ′2)dP2(ω2)dP2(ω

′
2)

ò 1
2

≤
ïn−1

∑
i=0

mi

∑
k=1

ni

∑
l=1

∑
j∈{1,2}

∫
Ω2

∫
Ω2

Å∫
Ω1

F2(ω1,ω
′
2)F3(ω1,ω2)hF(i)

l
(ω1)dP1(ω1)

ã2
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·h0
G(i+1)

k, j
(ω2)h

0
G(i+1)

k, j
(ω ′2)dP2(ω2)dP2(ω

′
2)

ò 1
2

·
ïn−1

∑
i=0

mi

∑
k=1

ni

∑
l=1

∑
j∈{1,2}

∫
Ω2

∫
Ω2

Å∫
Ω1

F1(ω
′
1,ω2)F4(ω

′
1,ω

′
2)hF(i)

l
(ω ′1)dP1(ω

′
1)

ã2

·h0
G(i+1)

k, j
(ω2)h

0
G(i+1)

k, j
(ω ′2)dP2(ω2)dP2(ω

′
2)

ò 1
2

=

ï∫
Ω1

∫
Ω1

∫
Ω2

∫
Ω2

n−1

∑
i=0

mi

∑
k=1

ni

∑
l=1

∑
j∈{1,2}

F2(ω1,ω
′
2)F3(ω1,ω2)F2(ω

′
1,ω

′
2)F3(ω

′
1,ω2)

·h0
G(i+1)

k, j
(ω ′2)h

0
G(i+1)

k, j
(ω2)hF(i)

l
(ω ′1)hF(i)

l
(ω1)dP2(ω2)dP2(ω

′
2)dP1(ω1)dP1(ω

′
1)

ò 1
2

·
ï∫

Ω1

∫
Ω1

∫
Ω2

∫
Ω2

n−1

∑
i=0

mi

∑
k=1

ni

∑
l=1

∑
j∈{1,2}

F1(ω
′
1,ω2)F4(ω

′
1,ω

′
2)F1(ω1,ω2)F4(ω1,ω

′
2)

·h0
G(i+1)

k, j
(ω ′2)h

0
G(i+1)

k, j
(ω2)hF(i)

l
(ω ′1)hF(i)

l
(ω1)dP2(ω2)dP2(ω

′
2)dP1(ω1)dP1(ω

′
1)

ò 1
2

=Θ2(F3,F2,F3,F2)
1
2 Θ2(F1,F4,F1,F4)

1
2 .

Notice that, by Hölder’s and Jensen’s inequality,

Ξ
(i)(F,H,H,F) =

∫
Ω1

∫
Ω1

∫
Ω2

∫
Ω2

F(ω ′1,ω2)F(ω ′1,ω
′
2)H(ω1,ω

′
2)H(ω1,ω2)

·
mi

∑
k=1

h0
G(i)

k
(ω ′2)h

0
G(i)

k
(ω2)

ni

∑
l=1

h0
F(i)

l
(ω ′1)h

0
F(i)

l
(ω1)dP2(ω2)dP2(ω

′
2)dP1(ω1)dP1(ω

′
1)

≤
Å∫

Ω1

∫
Ω1

∫
Ω2

∫
Ω2

F(ω ′1,ω2)
2F(ω ′1,ω

′
2)

2

·
mi

∑
k=1

h0
G(i)

k
(ω ′2)h

0
G(i)

k
(ω2)

ni

∑
l=1

h0
F(i)

l
(ω ′1)h

0
F(i)

l
(ω1)dP2(ω2)dP2(ω

′
2)dP1(ω1)dP1(ω

′
1)

ã 1
2

·
Å∫

Ω1

∫
Ω1

∫
Ω2

∫
Ω2

H(ω1,ω
′
2)

2H(ω1,ω2)
2

·
mi

∑
k=1

h0
G(i)

k
(ω ′2)h

0
G(i)

k
(ω2)

ni

∑
l=1

h0
F(i)

l
(ω ′1)h

0
F(i)

l
(ω1)dP2(ω2)dP2(ω

′
2)dP1(ω1)dP1(ω

′
1)

ã 1
2

=

Å mi

∑
k=1

∫
Ω1

Å∫
Ω2

F(ω ′1,ω2)
2h0

G(i)
k
(ω2)dP2(ω2)

ã
·
Å∫

Ω2

F(ω ′1,ω
′
2)

2h0
G(i)

k
(ω ′2)dP2(ω

′
2)

ã
dP1(ω

′
1)

ã 1
2

·
Å mn

∑
k=1

∫
Ω1

Å∫
Ω2

H(ω1,ω2)
2h0

G(i)
k
(ω2)dP2(ω2)

ã
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·
Å∫

Ω2

H(ω1,ω
′
2)

2h0
G(i)

k
(ω ′2)dP2(ω

′
2)

ã
dP1(ω1)

ã 1
2

=

Å∫
Ω1

Å∫
Ω2

F(ω ′1,ω2)
2dP2(ω2)

ã2

dP1(ω
′
1)

ã 1
2

·
Å∫

Ω1

Å∫
Ω2

H(ω1,ω2)
2dP2(ω2)

ã2

dP1(ω1)

ã 1
2

≤ ‖F‖2
L4(Ω1×Ω2)

‖H‖2
L4(Ω1×Ω2)

.

Similarly,

Ξ
(i)(G,1Ω1×Ω,1Ω1×Ω2,G)

=
∫

Ω1

∫
Ω2

∫
Ω2

G(ω ′1,ω2)G(ω ′1,ω
′
2)

mi

∑
k=1

h0
G(i)

k
(ω ′2)h

0
G(i)

k
(ω2)dP2(ω2)dP2(ω

′
2)dP1(ω

′
1)

=
∫

Ω1

Å∫
Ω2

G(ω ′1,ω2)dP2(ω2)

ã2

dP1(ω
′
1)≤ ‖G‖2

L2(Ω1×Ω2)
.

Using (3.18) we get

Θ1(F,H,H,F)≤ ‖F‖2
L4(Ω1×Ω2)

‖H‖2
L4(Ω1×Ω2)

−Θ2(F,H,H,F),

Θ1(G,1Ω1×Ω2,1Ω1×Ω2 ,G)≤ ‖G‖2
L2(Ω1×Ω2)

−Θ2(G,1Ω1×Ω2,1Ω1×Ω2,G)

= ‖G‖2
L2(Ω1×Ω2)

,

Θ2(F,F,F,F)≤ ‖F‖4
L4(Ω1×Ω2)

−Θ1(F,F,F,F)≤ ‖F‖4
L4(Ω1×Ω2)

,

Θ2(H,H,H,H)≤ ‖H‖4
L4(Ω1×Ω2)

−Θ1(H,H,H,H)≤ ‖H‖4
L4(Ω1×Ω2)

.

The second formula follows from the cancellation of the form Θ2 and the Haar function

over the standard dyadic interval appearing in the expression. The third, and similarly the

fourth one, follow from

Θ1(F,F,F,F) =
∫

Ω1

∫
Ω1

n−1

∑
i=0

mi

∑
k=1

ni

∑
l=1

Å∫
Ω2

F(ω ′1,ω2)F(ω1,ω2)hG(i)
k
(ω2)dP2(ω2)

ã2

h0
F(i)

l
(ω ′1)h

0
F(i)

l
(ω1)dP1(ω1)dP1(ω

′
1)≥ 0.

Now,

|Λ(F,G,H)|= |Θ1(F,G,H,1Ω1×Ω2)| ≤Θ1(F,H,H,F)
1
2 Θ1(G,1Ω1×Ω2 ,1Ω1×Ω2,G)

1
2

=
(
‖F‖2

L4(Ω1×Ω2)
‖H‖2

L4(Ω1×Ω2)
−Θ2(F,H,H,F)

) 1
2‖G‖L2(Ω1×Ω2)

≤
(
‖F‖2

L4(Ω1×Ω2)
‖H‖2

L4(Ω1×Ω2)
+Θ2(H,H,H,H)

1
2 Θ2(F,F,F,F)

1
2
) 1

2‖G‖L2(Ω1×Ω2)

≤
(
‖F‖2

L4(Ω1×Ω2)
‖H‖2

L4(Ω1×Ω2)
+‖H‖2

L4(Ω1×Ω2)
‖F‖2

L4(Ω1×Ω2)

) 1
2‖G‖L2(Ω1×Ω2)

=
√

2‖F‖L4(Ω1×Ω2)
‖G‖L2(Ω1×Ω2)

‖H‖L4(Ω1×Ω2)
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This shows that we have obtained (3.13) for the triple of exponents (p,q,r′) = (4,2,4).

3.2.7. Obtaining the whole range of exponents

Similarly as we did in (3.3), we can show that

n−1

∑
i=0

E1(F |Fi)(E2(G|Gi+1)−E2(G|Gi))+
n−1

∑
i=0

E2(G|Gi+1)(E1(F |Fi+1)−E1(F |Fi))

=E1(F |Fn)E2(G|Gn)−E1(F |F0)E2(G|G0).

If we replaced the sum in the inequality (3.11) with ∑
n−1
i=0 E2(G|Gi+1)(E2(F |Fi+1)−

E2(F |Fi)), the proof would still follow and we would be able to deduct estimate for

p = 4 and q = 2. By triangle inequality and by Theorems 1.1.3 and 1.2.6,∥∥∥∥n−1

∑
i=0
E1(F |Fi)(E2(G|Gi+1)−E2(G|Gi))

∥∥∥∥
Lr(Ω1×Ω2)

≤
∥∥∥∥n−1

∑
i=0

E2(G|Gi+1)(E2(F |Fi+1)−E2(F |Fi))

∥∥∥∥
Lr(Ω1×Ω2)

+‖E1(F |Fn)E2(G|Gn)‖Lr(Ω1×Ω2)+‖E1(F |F0)E2(G|G0)‖Lr(Ω1×Ω2)

.‖F‖Lq(Ω1×Ω2)‖G‖Lp(Ω1×Ω2).

If we compare this inequality with (3.11), we can see that we managed to swap places

of functions F and G and therefore obtain additional estimate for reversed pair of ex-

ponents. We can consider following the proof from Subsection 3.2.6 onward in or-

der to conclude that we can interchange exponents for which the boundedness is ob-

tained. This gives us the bound for (p,q,r′) = (2,4,4) as well. By Marcinkiewicz’s

interpolation theorem, the same boundedness is obtained for each tuple (pt ,qt ,r′t) =(
( t

4 + 1−t
2 )−1,( t

2 + 1−t
4 )−1,( t

4 + 1−t
4 )−1) = ( 4

2−t ,
4

t+1 ,4
)

where t ∈ [0,1]. We can ad-

ditionally expand the range of exponents with Lemma 3.2.1 in order to obtain range

(p,q) ∈ ∪t∈[0,1]
{ 4

2−t

}
×
〈 4

t+2 ,
4

t+1

]
.

Moreover, by this same trick of interchanging F and G we can expand the range onto

qt =
4

t+1 and all p ∈ 〈 4
t+2 ,

4
2−t 〉. To summarize, (3.4) is valid for all exponents

(p,q) ∈
ï

4
3
,4
ò2

∩
ß
(x,y) :

3
4
≤ 1

x
+

1
y
≤ 1
™
.
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( 1
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1
4 )

(0,0)
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3
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1
4)

1
p

1
q

(2,1) (4,1)

(0,0)

(4
3 ,4) (2,4)

(4,2)
(4, 4

3)

p

q

Figure 3.1: The range of exponents for which the boundedness is shown.

The whole procedure of obtaining the exponents can be presented by the Figure 3.1.

The first result was obtained for the blue point
( 1

p ,
1
q

)
=
(1

4 ,
1
2

)
. With that and with the

swap of F and G we got the similar conclusion for the point
(1

2 ,
1
4

)
and then, by interpo-

lating, we obtained the blue line connecting two dots that present reciprocal values. By

obtaining the weak boundedness for the line from
(1

4 ,1
)

to
(1

2 ,1
)

(presented with dotted

line connecting white dots on the Figure), but restricting ourselves to the region where

r ≥ 1 we rejected the grey area and proved boundedness for the green region which, by

the same swap as before, expanded to the yellow region. This shows that we have strong

boundedness for the complete range on the diagram, including border lines and circles.
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CONCLUSION

In this thesis we obtained the first characterizations of Lp boundedness of dyadic entan-

gled multilinear singular integral forms associated with hypergraphs. We managed to

prove the Lp boundedness of such forms where the kernel is composed of products of

Haar functions and in a certain range of exponents. In case of general dyadic Calderón-

Zygmund kernels, the Lp boundedness in the same range was shown to be equivalent to

each of the following: the weak boundedness property and a T(1)-type condition; the Lp

boundedness for only one choice of exponents in the stated range; domination by a sparse

form; the weighted Lp boundedness for certain tuples of Muckenhoupt weights.

We also suggested a new approach to answering Kakutani’s question by introducing

the notion of the ergodic-martingale paraproduct and investigating its properties. By ob-

serving its Lp estimates, making several reductions and applying methods from harmonic

analysis we showed that such paraproducts converge in Lp spaces for a specific triple of

exponents. After that we applied interpolation methods in order to obtain a bigger range

of exponents satisfying the Hölder scaling property.
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