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Summary

Two-phase flow in porous media appears in many petroleum and environment engineering
problems, like secondary and tertiary oil recovery, the disposal of radioactive waste, sequestra-
tion of CO; etc. This thesis covers both mathematical and numerical analysis of this type of
flows.

Significant part of this thesis is devoted to the mathematical modeling and analysis of multi-
phase flows, precisely to a formulation of a two-phase, two-component model with exchange of
the mass between the phases and to study the existence of weak solutions to this model. Specif-
ically, flow of the fluid composed of water and gas with possible dissolution of the gas in water
is considered. The model is completed with the assumption of the low solubility of the gas.

Numerical simulation often represents the only viable approach to the mathematical model-
ing of multiphase flows due to the nonlinearity of equations governing these flows, as well as
heterogeneity of the domains where these flows occur. Therefore, an important part of this the-
sis is devoted to numerical analysis of the model describing immiscible compressible two-phase
flow in porous media by the concept of the global pressure. More precisely, the convergence
of a fully coupled fully implicit petroleum engineering finite volume method based on the cell-
centered discretization is studied and the result is proved under standard assumptions. A similar
proof was given in [76] with different techniques.

As a groundwork for future research regarding compositional flow in this thesis we also
consider the fractional flow formulation with the global pressure as a primary variable in the case
of immiscible compressible flow. An efficient numerical method is obtained once again through
a cell-centered finite volume discretization. The proposed method is verified on important 1D,
2D and 3D benchmark test cases modeling different scenarios of water-gas (hydrogen) flow in
porous media. For the code development we have used the DuMu*, programming framework for
implementation of the models describing the flow and transport processes in porous media, see
[43] and [66].
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ProSireni sazetak

Dvofazni tok fluida u poroznoj sredini javlja se u brojnim problemima vezanim za naftno in-
Zenjerstvo 1 hidrologiju, kao 1 u brojnim problemima vezanim za zaStitu okoliSa. Neki od prim-
jera su sekundarno i tercijarno izvlacenje nafte, odlaganje radioaktivnog otpada, sekvestracija
CO; itd. U ovoj disertaciji je dana matemati¢ka i numeric¢ka analiza matematickih modela koji
opisuju navedene tokove.

Znacajan dio disertacije posvecen je matematickom modeliranju i analizi viSefaznih tokova,
preciznije formulaciji dvofaznog, dvokomponentnog modela s izmjenom mase izmedu faza te
analizi egzistencije rjeSenja predloZenog modela. Preciznije, proucavan je tok fluida sastavl-
jenog od vode i plina uz moguénost otapanja plina u vodi. Model je upotpunjen pretpostavkom
slabe topljivosti plina koja se koristi u dokazu egzistencije rjeSenja predloZenog modela. Ovoj
pretpostavci je dano precizno matematicko znacenje. Pretpostavka slabe topljivosti je kljucna za
izvod energetske ocjene bez ikakvih nefizikalnih pretpostavki na difuzijske ¢lanove u modelu.
Prilikom proucavanja viSekomponentnih modela poseban tretman zahtjeva nestanak i ponovno
pojavljivanje pojedine faze. U ovom radu taj je problem rijeSen primjenom perzistentnih varijabli
koje su dobro definirane i u jednofaznim i u dvofaznim podrucjima.

Numericke simulacije ¢esto predstavljaju jedini izvedivi pristup matematickom modeliranju
viSefaznih tokova zbog nelinearnosti jednadzbi koje opisuju doti¢ne tokove, kao i izrazite het-
erogenosti domena u kojima se javljaju. Upravo iz tih razloga, dio ove radnje je posvecen nu-
merickoj analizi modela koji opisuju nemjesivi, stlacivi, dvofazni tok fluida u poroznoj sredini.
Jedna od najcesce koriStenih diskretizacijskih tehnika pri simulacijama tokova u poroznoj sre-
dini je metoda konac¢nih volumena, koja je koriStena u ovom radu. Preciznije, prouCavana je
konvergencija metode konac¢nih volumena centriranih u srediStu elemenata za klasicnu inZenjer-
sku shemu. Slican problem je proucavan u radu [76], gdje je koriStena druga verzija globalnog
tlaka, definirana u [36]. Globalni tlak je umjetna varijabla koja je kljucna za izvod energetske

ocjene, i u tu svrhu se Cesto koristi. Dokaz predstavljen u ovom radu se temelji na globalnom

v



ProSireni sazetak

tlaku koji je definiran u [5].

Globalni tlak takoder ima veliku ulogu u modeliranju viSekomponentnog toka zbog ¢injenice
da se moZe korisiti kao perzistentna varijabla. U ovoj disertaciji globalni tlak je koriSten za simu-
laciju nesto jednostavnijeg modela za nemjesivi, stlacivi, dvofazni tok fluida. Taj dio radnje nam
sluzi kao temelj za buduca istraZivanja vezana za visefazni, viSekomponentni tok. Primijenjena
numericka metoda je dobivena koriStenjem diskretizacije konacnim volumenima. PredloZena
metoda je verificirana na poznatim testnim primjerima iz literature.

Struktura ove radnje je sljedeca. U poglavlju 1 su dane osnovne definicije i svojstva porozne
sredine. Takoder su predstavljeni modeli koji opisuju jednofazni i dvofazni tok u poroznoj sre-
dini, kao 1 viSekomponentni tok. U ovom poglavlju predstavljeni su i razliciti sustavi koji se
mogu koristiti za modeliranje toka fluida, temeljeni na razli¢itom izboru primarnih nepoznanica.

U poglavlju 2 predstavljen je teorem egzistencije rjeSenja modela koji opisuje dvofazni,
dvokomponentni tok fluida u poroznoj sredini uz pretpostavku slabe topljivosti plina. Dokaz
teorema se sastoji od nekoliko koraka. U prvom koraku sustav je regulariziran zajedno s vremen-
skim derivacijama kako bi se dobio niz elipti¢kih sustava. Teorem egzistencije rjeSenja spomenu-
tih eliptickih sustava je dokazan koriStenjem Schauderovog teorema o fiksnoj tocki. Uvedene su
dodatne regularizacije i1 specijalne test funkcije su primijenjene s ciljem dobivanja energetske
ocjene na kojoj se temelji dokaz teorema. PuStanjem limesa u regularizacijskim parametrima
eliminirane su vremenska diskretizacija i inicijalna regularizacija kako bi se na limesu dobilo
slabo rjesenje inicijalo rubne zadace za dvofazni, dvokomponentni tok fluida.

U poglavlju 3 analizirana je konvergencija klasi¢ne inZenjerske numericke metode za nem-
jesivi, stlacivi, dvofazni tok fluida u poroznoj sredini. Na pocetku poglavlja je predstavljena
prostorna diskretizacija konacnim volumenima centriranim u srediStu elemenata, kao 1 vremen-
ska diskretizacija temeljena na implicitnoj Eulerovoj metodi. Nakon toga je definiran globalni
tlak koji je kljuCan za izvod energetske ocjene. Sljedeci korak u dokazu konvergencije je dokaz
principa maksimuma za zasicenje. Primjenom odgovarajucih test funkcija izvedena je energet-
ska ocjena, koja je medu ostalim koriStena i u dokazu egzistencije rjeSenja sustava diskretnih jed-
nadzbi. Nakon toga je predstavljen dokaz kompaktnosti diskretnog rjeSenja ¢ime je omogucéen
prijelaz na limes u diskretnim jednadZbama. Na limesu je dobivena slaba formulacija polazne
kontinuirane zadace.

U poglavlju 4 je predstavljena numericka metoda koja direktno koristi globalni tlak. Pred-
stavljeni su numericki rezultati dobiveni metodom konacnih volumena primjenjenom na nem-

jesivi, stlacivi, dvofazni model. Na pocetku poglavlja opisana je koriStena numericka metoda.
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Nakon toga su predstavljeni numericki rezultati za testne primjere u kojima je domena homogena.
Predstavljeni testovi su insipirirani poznatim primjerima iz literature. Zatim je promatran slucaj
heterogene domene, odnosno domene koja je sastavljena od viSe razliCitih tipova stijena. Kod
ovakvih testnih primjera javlja se potreba za specijalnim tretmanom granice koja razdvaja pod-
domene sastavljene od razlicitih tipova stijena, koji je potanko opisan u ovom poglavlju. Nakon
toga su predstavljeni numericki rezultati dobiveni za testne primjere s heterogenom domenom.
Na samom kraju disertacije dan je kratki opis implementacije numericke metode u biblioteci
DuMu* ([43], [66]).

Kljucne rijeci: tok u poroznoj sredini, dvofazni,nemjesivi, stlacivi tok, mjesivi tok, perzis-
tentne varijable, slaba topljivost, metoda konac¢nih volumena, globalni tlak, diskontinuitet u kapi-

larnom tlaku.
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Introduction

This thesis is closely related to the area of modeling, analysis, and numerical simulations
of two-phase flow in porous media. This type of flow appears in many petroleum and environ-
ment engineering problems. Some of these problems are secondary and tertiary oil recovery,
the disposal of radioactive waste, sequestration of CO, etc. Main focus of this work will be
on problems regarding nuclear waste management, based on the disposal of the nuclear waste
in deep geological formations, see [2]. The design of these storage units is based on the series
of impervious barriers which are made from engineered and natural materials. The resulting
repository is then a highly heterogeneous porous medium which is almost fully saturated with
water. In such conditions the corrosion of the ferrous materials, which are used for manufactur-
ing waste containers, will appear in time. As a result of the corrosion significant amount of the
gas, most commonly hydrogen, will appear in the repository. In order to prevent overpressure
and possible damage of the metal canisters, which could cause entering of the radionuclides into
the biosphere, water-hydrogen flow in host rock should be considered. There are two approaches
in modeling water-hydrogen flow in the host rock. Simplified version consists in considering
immiscible two-phase flow, but it is also important to note that even though the gas component
(hydrogen) is weakly soluble in water, the solubility is still highly important for long term gas
migration and the repository pressurization. Therefore, a more complex approach would be to
take exchange of the mass between phases into account which leads to partially miscible flow
models. When studying the partially miscible fluid flow, the Henry law will be used to determine
the amount of the dissolved gas in the liquid.

The mass balance law and the Darcy-Muskat law for each phase are used for modeling two-
phase immiscible flow in porous media. The system is completed by adding the equation of state,
in order to take compressibility of the fluid into consideration, and the capillary pressure law,
which describes the phase pressure difference. In the proposed system there are various options

for primary variables choice, such as phase pressures or phase pressure of the one phase and



Introduction

the saturation of the other phase. Another possibility is an introduction of the artificial variable
called the global pressure, which can be used as a primary variable, alongside for example the
saturation of one phase. The latter variable is of special importance in models describing two-
phase flow with exchange of the mass between phases, due to the possible phase disappearance
and appearance. In such systems the global pressure can be used as one of the persistent variables,
meaning it is well defined even in the case when only one phase is present.

The mathematical theory of incompressible, immiscible, and isothermal two-phase flow
through porous media is developed in extensive literature and summarized in several monographs
[15, 36, 49] and articles [37, 38, 33, 16]. An analysis of a nonisothermal immiscible incompress-
ible model is presented in [11] where we can find a recent review on the subject. Development
of a mathematical theory for compressible, immiscible two-phase flow started with the work of
Galusinski and Saad [50, 52, 53] and is further developed in [3, 6, 8, 9, 63, 64, 69, 41, 78, 65].
For the two-phase partially miscible flow model there are far fewer publications. First results for
simplified models were obtained in [80] and [71]. More complete two-phase, two-component
models were considered in articles [34] and [35]. In [34] the authors replace the phase equi-
librium by the first order chemical reactions which are supposed to model the mass exchange
between the phases. In [35] the phase equilibrium model is taken into account but the degener-
acy of the diffusion terms is eliminated by some nonphysical assumptions. As the diffusion terms
in the flow equations are multiplied by the liquid saturation they can be arbitrary small, therefore
they do not add sufficient regularity to the system. In this work this degeneracy of the diffusive
terms is compensated by the low solubility of the gas component in the liquid phase which keeps
the liquid phase composed mostly of the liquid component (water). This compensation allows us
to treat the complete two-phase two-component model without any unphysical assumptions on
the diffusive parts of the model.

Numerical simulations of two-phase fluid flows have been a subject of an extensive scientific
research for a long time. One of the most commonly used discretization technique is the finite
volume method. The basic theory and mathematical analysis of the finite volume method on
admissible orthogonal meshes is given in [45]. In this thesis the cell-centered finite volume
method is used for the discretization of the system of equations describing two-phase flow in
porous media. A convergence analysis of the cell-centered finite volume method for classical
phase-by-phase upwind scheme in the case of compressible two-phase flow was given in [76],
and also in [22] for a simplified model where the gas density depends on the global pressure. In

these two references the authors use the global pressure based on the total velocity, defined in
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[36]. Here we address the question of the convergence of the classical phase-by-phase upwind
scheme by a different technique, using the new compressible model introduced in [5] based
on the concept of the global pressure. Additionally, we use an upwind approximation of the
phase density, which is more natural approximation than the one presented in [76]. We show
convergence of the method for an isotropic model with a piecewise continuous function with
finitely many surfaces of discontinuity for absolute permeability, while an isotropic model with
constant absolute permeability throughout domain was considered in [76]. We also mention two
important articles where authors consider anisotropic model [77, 56].

Final topic covered by this work is a cell-centered finite volume discretization of the two-
phase flow equations based on the fractional flow formulation which was introduced in [5]. The
main difference between this formulation and the classical engineering formulation is that the up-
wind is performed with respect to the total flux instead of the phase fluxes. It was expected that
such formulation would outperform the classical one in terms of numerical efficiency, since the
use of the global pressure reduces the coupling between the partial differential equations in the
fractional flow formulation. However, up to now, this formulation did not perform as expected
in the case of immiscible compressible two-phase flow. Despite some shortcomings regarding
running times seen in numerical simulations in the case of immiscible flow, due to the computa-
tion of the global pressure, it is strongly believed that these shortcomings will be insignificant in
comparison to the advantages that the global pressure as a persistent variable can bring in case of
the two-phase flow with mass exchange between the phases. With this motivation, we present the
method, its implementation in DuMu* and results of numerical simulations for immiscible com-
pressible two-phase flow in homogeneous and heterogeneous domains. Numerical methods for
heterogeneous domains may need special treatment of the interfaces between control volumes.
These kinds of methods are presented in numerous papers, and here we mention the two most
relevant for our work. In [30] the authors present the cell-centered finite volume approximation
for an immiscible incompressible two-phase flow with discontinuous capillary pressure and in
[7] the authors consider a compressible case with vertex-centered finite volume approximation.
We also address the question of discontinuous capillary pressure in the numerical model based
on the fractional flow formulation with the global pressure as primary variable, which brings
additional complexity to the model.

The outline of this thesis is as follows: Chapter 1 contains the basic definitions and properties
of a porous medium. Since fluid flow through porous media can be modeled at different scales, a

short description of the main differences and connections between these approaches is given. The
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models describing one-phase and two-phase flow in porous media are also presented, both in case
of a single component flow and multicomponent flow. Different choices of primary variables are
also discussed in this chapter.

Chapter 2 contains an existence result for two-phase two-component flow in porous media
with the low solubility assumption. This result was published in [61]. The main result is proved
in several steps. First, the system is regularized and the time derivatives are discretized, obtaining
thus a sequence of elliptic problems. Then an existence theorem for the elliptic problems is
proved by an application of the Schauder fixed point theorem. Some additional regularizations
are performed and special test functions are applied in order to obtain the energy estimate on
which the existence theorem is based. By passing to zero in the regularization parameters, the
time discretization and the initial regularization of the system are eliminated. At the limit, a
weak solution to the initial boundary value problem for two-phase, two-component flow model
is obtained.

Chapter 3 contains the convergence analysis of the classical engineering numerical finite
volume method for immiscible, compressible, two-phase flow in porous media model. First,
the spatial discretization based on the cell-centered finite volume method is presented, along the
implicit Euler method for the time discretization leading to a fully coupled fully implicit scheme.
Then, a discretization of the corresponding fractional flow formulation is developed, which is
used in the convergence proof. In the following section the maximum principle for the water
saturation is proved. By applying suitable test functions the energy estimate is derived, and it
is used to prove the existence of a solution to discrete equations. Afterwards, the compactness
of the solution vector is proved and after passing to the limit in the discrete equations, the weak
formulation for the initial boundary value problem for immiscible, compressible, two-phase flow
model is obtained.

At the beginning of Chapter 4 a cell-centered finite volume method for the fractional flow
formulation describing immiscible, compressible, two-phase fluid flow through porous media
is developed. The method is based on the global pressure as a primary variable. Afterwards,
numerical results obtained by the proposed method are presented in tests involving homogeneous
domains. Presented test cases are inspired by some known benchmark problems from [28, 56,
58, 13]. Domains composed of multiple rock types are then considered and a special treatment of
the interface between different rock types is developed. The method is tested on test cases from
the literature [28]. At the end, in the Appendix, we give a brief description of implementation of

the numerical method in the platform DuMu*.



Chapter 1
Modeling two-phase flow in porous media

This chapter gives the basic definitions and equations for modeling immiscible compressible
two-phase flow in porous media. In section 1.1 we give the definition of a porous medium and
its basic properties and in section 1.2 we give main laws for modeling one-phase flow in porous
media. In section 1.3 we present model describing two-phase flow, both for immiscible and
partially miscible fluid flows. This chapter follows references [18], [19], [20], [36], and [84].

1.1 Porous media

In this section we describe the main properties of porous media. We also give few examples
of porous media domains and introduce different scales that can be used to model fluid flow

through porous media.

1.1.1 Basic definitions

A porous medium is a medium composed of a solid matrix and a void space or pore space.
The solid matrix represents a persistent solid part, while the pore space can be occupied by
a single fluid, or by a number of fluids. Some of the examples are soil, sand, fissured rock,
cemented sandstone, etc.

In [20] a phase is defined as a chemically homogeneous portion of a system under consid-
eration that is separated from other such portions by a definite physical boundary (interface, or
interphase boundary). This definition allows us to consider the solid matrix as a solid phase.

When studying single phase flow we distinguish the case when the system is composed of only
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one fluid and the case when the system is composed of several fluids completely miscible with
each other (e.g. several gases). If the void space is occupied by two or more fluids which are
immiscible with each other, we talk about multiphase flow.

A component is defined as part of a phase that is composed of an identifiable homogeneous
chemical species, or of an assembly of species, see [20]. It is also noted that each phase can
be a molecular mixture of several identifiable components, e.g., ions or molecules of different
chemical species in a liquid solution, or in a mixture of gases, or labelled particles of a phase.

The main properties that need to be satisfied in order to derive mathematical models for fluid

flow through porous media are given in [40] and [18]:
e The void space is interconnected.

e The dimensions of the void space must be large compared to the mean free path length
of the fluid molecules. This property allows application of the continuum approach to

modeling of fluid flow.

o The dimensions of the void space must be small enough so that the fluid flow is controlled
by adhesive forces at fluid—solid interfaces and cohesive forces at fluid—fluid interfaces
(multiphase systems). This property eliminates network pipes from domains considered to

be a porous medium.

1.1.2 Continuum approach

The basic definitions and concepts modeling fluid flow through porous media can be given
at molecular, microscopic and macroscopic scale. A discussion about the main differences and
connections between these approaches is given in [59] and we here present a brief summary of
the given ideas.

Some fluid properties, such as viscosity, density, binary diffusion coefficients, are based on
molecular variables, which means that they are determined at the molecular scale. Due to the
large number of molecules, consideration of individual molecules for description of fluid flow
is not feasible. Therefore, consideration of the continuum is taken into account. This concept
is based on the averaging process, which consists of replacement of the properties that are im-
portant for molecular consideration by combined properties of a larger number of molecules.
This means that the individual molecules on the molecular scale are replaced by a hypothetical

continuum on the microscopic scale, as explained in [18]. This process leads to Navier-Stokes

6
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equations, with assigned boundary conditions. The solving of the Navier-Stokes equations at the
microscopic scale is also not practical, since the pore space geometry is unknown. Therefore,
one usually used is the macroscopic scale model. In this model a different kind of continuum
is considered. Instead of averaging over a large number of molecules, averaging is done over
elementary volume. In the macroscopic scale model each point in the continuum is associated to
the elementary volume which is composed of both solid matrix and pore space. Average values
of quantities on the microscopic scale are assigned to the elementary volume. Process of averag-
ing on the macroscopic scale is described more precisely in the next subsection 1.1.3 by defining
porosity of the porous medium. The transition from microscopic to macroscopic scale leads to

the new set of equation (e.g. Darcy’s law) with new variables (e.g. saturation).

1.1.3 Porous medium properties

One of the basic macroscopic properties of porous media is porosity. In order to define this

quantity, we first introduce the pore space indicator function on the microscopic scale

1 ifx € pore space
o(x) = Vx € Q, (1.1)
0 if x € solid matrix
where we have supposed that a porous medium fills the domain Q. Now we give the definition

of the porosity ®(xg) at the position x

1

) = G /K RO (12)

The averaging volume K (xq, r) is called representative elementary volume (REV). In order to set
fluid flow equations on the macroscopic level, REV has to be identified. This rises a question of
the size of the radius of the averaging volume. In [19] it has been shown that if we denote the
characteristic dimension of the REV by d (e.g. diameter of a sphere), the length characterizing
the microscopic structure of the void space by [ (e.g. the hydraulic radius which is equal to the
reciprocal of the specific surface area of the void space), and by L a characteristic length of the
porous medium domain, over which significant changes in averaged quantities of interest occur,

we have upper and lower bound for size d:

1 <d<L.
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Another macroscopic property of the porous medium, which depends solely on properties of the
solid matrix, is the absolute permeability K. The absolute permeability measures the ability of
the porous medium to transmit the fluid.

A porous medium is said to be homogeneous if its macroscopic properties do not vary in
space or time. Otherwise, it is said to be heterogeneous. The absolute permeability K is usually
a symmetric tensor. This quantity can vary with direction, and in that case the porous medium
is said to be anisotropic. 1f the absolute permeability does not vary with direction, meaning

K = kI, the porous medium is said to be isotropic.

1.2 One-phase flow in porous media

In this section macroscopic equations and laws describing flow and transport of the single-

phase fluid in porous media are considered.

1.2.1 Mass conservation law

If only one phase is present in a porous medium Q C R/ the macroscopic mass conservation

law is valid and it states [18], [36]:

0
@% +div(p(p)q) = F. (1.3)

The quantities that appear in the previous equation, which have not been mentioned before are

described here:

e p - mass density of the fluid in kg/m>. Mass density of the fluid generally depends also
on the temperature of the fluid 7', beside the fluid pressure p. Since, in this work only
isothermal flow is considered, we omit writing dependence of density on the temperature.
For incompressible fluid the mass density p is constant and in case of compressible fluid it
will be given by the equation of state p = p(p), where p is the fluid pressure. One of the
possible equations of state for a gas phase is the ideal gas law which states

p(p) =22,

where R is the universal gas constant (R = 8.21JK~'mol~!) and M is the fluid molar mass.
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e ( - macroscopic apparent velocity. It is given by Darcy’s law that will be described in
subsection 1.2.2. Macroscopic velocity is given by q/® since only pore space in REV is
filled with fluid.

e [ - source/sink term.

1.2.2 Darcy’s law

Darcy’s law gives the relation between the macroscopic apparent velocity, also called Darcy

velocity, and the gradient of fluid pressure, see e.g. [82],
1
qz—HK(Vp—pg), (1.4)

where g is the gravitational, downward-pointing, constant vector and U is dynamic viscosity of
the fluid in Pa-s. The dynamic viscosity can depend on temperature and pressure of the fluid,
but in this work it will be taken as a constant value. Introducing (1.4) into (1.3) we obtain the

model that describes single-phase flow in porous media

@#—div (%K(Vp—p(p)g)) =F inQ. (1.5)

Initial and boundary conditions have to be assigned to this equation e.g.

p(x,O):pO(x), p(x,t):pD(x,t)onFD, p(p)q‘n:qNonFN,

where the domain boundary is composed of the Dirichlet and the Neumann boundary dQ =

I'pUly.

1.2.3 One-phase multicomponent flow

In this subsection we consider the flow of a single fluid which is a mixture of different com-
ponents, e.g. mixture of different gases. Transport of each component in the mixture is a result
of a phase transport and also interactions between components inside the mixture.

In order to describe a phase composition we introduce, like in [18], a fraction of the compo-

nent in the mixture, precisely

e volume fraction of the component i

Cilx.1) volume of the component i in REV
X =
’ volume of the mixture in REV '
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e mass fraction of the component i

i (1) = mass of the component i in REV

mass of the mixture in REV

With the same purpose the mass concentration of the component i in the mixture in kg/m? is
defined as

1

; _ mass of the component i in REV (1.6)
~ volume of the mixture in REV )

In this work we will mainly use the mass concentration of the component, therefore we will give
here a governing equation in terms of this quantity.
Using definition (1.6) the mass density of the fluid composed of n» components can be written

as
n .
p=Yp'"
i=1
Inside the mixture different components have different velocities, therefore the mass balance
law for each component have to be taken into consideration. In order to simplify notation in the
rest of the section, we will consider the fluid composed of only two components. Components

will be denoted by upper indicies 1 and 2. If the Darcy velocity of the mixture is denoted by q

the mixture flux is a sum of the fluxes of each component (see [24])
pqa=p'q' +p°q*.
This equation enables as to rewrite the component fluxes in the following way
pld =pla+j’, j'=p'd—aq), i=1>2. (1.7)

The first part in expression for piq is called convective flux and the remaining part j’ is called

diffusive flux. The diffusive fluxes satisfy
i'+it=0,
and they can be given by the Fick law (see [24, 20])
jl = —®pD, VX!, j? =DdpD,y VX2 (1.8)

Since j' +j> =0 and X' + X2 = 1, we have D1, = D, = D. The coefficient D is called diffusion

coefficient. More elaborate description of the diffusion coefficient D can be found in [59].

10
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The mass conservation law for component i is given by equation
@9, p' +div(p'q’) = F', (1.9)

where F' is the source/sink term of the component i. Introducing (1.7), (1.8), and p’ = pX' in

(1.9), the mass balance equation can be written as
9, (pX') +div (pX'q — PpDVX') = F". (1.10)

By summing equations (1.10) over components, the mass conservation law for mixture is ob-

tained:

®9,p +div(pq) = F' + F2.

1.3 Two-phase flow in porous media

In this section we will consider flow of two different fluids, which fill the whole pore space.
Since each point on the macroscopic scale represents one representative elementary volume, we
will have the presence of two different fluids in the macroscopic point. In the rest of this section
we will denote different phases by lower indices 1 and 2. In order to describe this kind of flow,

additional quantities have to be introduced.

1.3.1 Saturation

Saturation S; describes quantity of phase i at the point x( of the porous medium,

volume of phase i in REV

™ Volume of the pore space in REV'

We can rewrite more precisely this definition if we first define indicator function of phase i like
in [18] and [84]
1 if x € phase i at time ¢

Yi(x,1) = , Xx€EQ.
0 otherwise

With this definition we obtain

o fK(xo,r) ’Yi(xv l)dx

Si('x07t) - fK(ijr) (p(x)dx Y (111)

11



Chapter 1. Modeling two-phase flow in porous media

where the function ¢ is given by (1.1). Like it is already been said, in this work we will assume

that there is no void space present, which means that

Si+S=1.

1.3.2 Capillary pressure

In a two-phase system considered on the microscopic scale, two fluids are separated by the
curved interface. Shape of the interface is determined by the surface tension o, which is defined
(see [21]) as the ratio of the amount of work AW necessary to enlarge the area of the interface by
AA,

AW
BUVE

Due to this phenomena we distinguish wetting and nonwetting phase in the two-phase system.

c (1.12)

The fluid on the concave side of the interface is called the nonwetting fluid because it is less
attracted to the solid than the other fluid and the fluid on the convex side of the interface is
called the wetting fluid since it preferentially wets the solid, see [21, 74]. In accordance with
the previous definition, we will use indices w and n instead of the indices 1 and 2, in order to
distinguish wetting and nonwetting fluid, and associated properties.

The interface between phases is related to the discontinuity in the microscopic pressure of

the existing phases. This jump in the microscopic pressure is called the capillary pressure

Pc = Pn— DPw, (1.13)

and it is given by the Young—Laplace law

pc:G(Ril—’_Riz>’ (1.14)
where R; and R, are principal radii of the curvature of the interface between two fluids. As
already mentioned, the macroscopic phase pressures represent average values over the represen-
tative elementary volume of the microscopic phase pressures. Therefore, (1.13) is also used as
the definition of the macroscopic capillary pressure. Since there is no interface between phases
on the macroscopic scale, the Young—Laplace law is not valid. The macroscopic capillary pres-
sure is usually taken as a decreasing function of the wetting phase saturation (or an increasing

function of the nonwetting phase saturation)
Pe = Pe(Sw)-

12
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This assumption can be justified as in [21, 74], if one considers the case when both phases are
present in a porous medium made up of sand grains. Based on the microscopic consideration of
the capillary pressure, one would expect that the wetting phase will be drawn into the smaller
pores. When the wetting phase is in the smaller pores the curvature of the interface between two
phases will be greater than when it is in the larger pores, therefore the capillary pressure will be
higher. This also means that as the relative amount of wetting phase decreases, the more high
curvature interfaces will appear between the phases.

An attempt of draining completely the wetting phase from the domain by introducing the
nonwetting phase may leave some residual wetting phase in the pore space at some low saturation
Swr, usually greater than zero. This value is called the wetting phase residual saturation. The
capillary pressure function has vertical asymptote at S,,. Instead of drainage of the wetting
phase, one can consider the opposite process, imbibition. Again, the complete displacement of
the nonwetting phase is usually not possible, which means that the saturation of the nonwetting
phase cannot be below the nonwetting phase residual saturation Sy,

Driven by previous considerations the effective saturation of the phase can be defined with

Sw—Swr Sn— Snr

Spe = — 2 OWT G = O
e =Sy — Snr7 " 1 —Syr — Snr

(1.15)

Let us note that for the effective saturation we also have S,,. + Sy = 1. The capillary pressure
curve is usually given as a function of S,,,. Most commonly used models for capillary pressure
curve are the Van Genuchten model, see e.g. [81],

1

| 1
Pe(Swe) = E( we' —1)7, Sye € (0,1], (1.16)
where m =1 — %, and the Brooks—Corey model, see e.g. [32],
1
pc(Swe) = PdSwe)' 5 Swe € (07 1]- (1~17)

Remark 1.3.1. For the purposes of numerical analysis we will assume for simplicity that the cap-
illary pressure function satisfies p. € C'([0,1]). Let us note that this assumption is not completely
arbitrary, since it is standard procedure to regularize capillary pressure curve when performing
numerical simulations, even though the physical capillary pressure has vertical asymptote at
Swr. By performing more detailed analysis this assumption can be eliminated in most of the

applications.

13
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1.3.3 Darcy—-Muskat’s law

It has been shown experimentally that Darcy’s law stays valid in the case of a two-phase flow,
see e.g. [20, 21, 36], and has the form:

kr, (S,

q, = —LK(Vpn—png), (1.18)
kry,(Sy

q, =— ( )K(pr_pwg)u (1.19)

where kr,,(S,,) and kr,,(S,,) are the relative permeability functions. The ratio Ay (Sy,) = krg(Sw)/
¢ is referred to as the mobility of the phase o, oo = w, n, and the sum of the mobilities A(S,,) =
An(Syw) + Ay (Sy) as the total mobility. The relative permeability of the phase is used to model the
fact that phase will be more mobile, as the phase saturation in a porous medium is increasing. If

the phase is missing, its relative permeability function vanishes,
kry(Swe =0) =0, kry(S,e =0)=0.
The most commonly applied models are the Brooks—Corey:

2431
krw(Swe) = Swe}L s
- (1.20)
krn(Swe) = (1 _Swe)2 (1 _Swé ) ,

where A is the coefficient from the Brooks—Corey p. — S, relationship, and the Van Genuchten

| mN\ 2
krw(Swe):vae(l—<1—S$e) ) ,
(1.21)

2m
1
krp(Swe) = (1= Sye)? (1 —S{;‘e) ,

where the parameter m is the parameter from the Van Genuchten capillary pressure function. The

model,

remaining two parameters € and 7y describe the connectivity of the pores. The most commonly

used values are € = % and vy = %, see more in [59].

Remark 1.3.2. For simplicity we have assumed in mathematical and numerical analysis that
Swr =0 and S, = 0, meaning S,, = Sy and S, = Spe. It is also standard to assume that rela-
tive mobilities Ay, A, are Lipschitz continuous functions from [0,1] to RY, A,,(S,, = 0) = 0 and
M(Sn = 0) =0; Aj is a nondecreasing functions of S;. Moreover, we assume that there exist

constants Ayy > Ay, > 0 such that for all S, € [0, 1]

0 < A < A(Sy) + Aa(Sw) < Aas.

14



Chapter 1. Modeling two-phase flow in porous media

1.3.4 Two-phase flow governing equations

Let the porous medium fills domain Q C R!. Two-phase flow in domain Q7 = Q x (0,7T),
for some T' > 0, is modeled by the mass conservation law for each phase, the Darcy—Muskat law

and the capillary pressure law

o215 div (p,q,) = . (1.22)

o/Pr5) | v (p,q,) = Fu. (1.23)
q, = _An<Sw)K (Vpn - png) ) (1.24)

q, = _)LW(SW)K (pr - ng) ) (125)
pC(Sw) = Pn— Pw, (1.26)

where F, and F,, are the source terms. Additionally, we have S,, + S, = 1.

If we look closely at the given system of equations, we observe that we can choose two
primary variables and we can use them to compute the remaining unknowns. In [59] it is given
an elaborate description of different choices of the primary variables. Most commonly used is,
so-called saturation-pressure formulation, which uses pressure of the one phase and saturation
of the other phase as primary unknowns. If we choose p, and S,, as primary variables we will

obtain following system of equations:

a(Pn(pn;(tl — SW)) —div (pn(Pn))Ln(Sw)K (Vpn - pn(Pn)g)) = F, (1.27)

a(pW(pn - pC(SW))SW)
Jt

P

>

—div <pw(pn — pe(Sw)) A (Sw)K(Vpn — Vpe(Sw))
(1.28)
~Pulpn = pe(Sw)B) ) = Fu.

This system has to be completed with initial and boundary conditions. The most commonly

used choice is
pn(x,O) = pg(x), Sw(x,O) = S(v)v(x)7
pu(x,t) = pf(x,t), Sw(x,t) = Sg(x,t) onIp,
p(pn)qnn:qgv p(pw)qw'n:qlv\tfonrl\/v

where domain boundary is subdivided as dQ = I'p UT'y. One of the possible choices for the
primary unknown is also an artificial variable called global pressure, which can be defined in

two different ways. We will closely describe these two formulations in the next subsection.

15



Chapter 1. Modeling two-phase flow in porous media

1.3.5 Global pressure formulation

Global pressure definition based on the total velocity. In order to present the first definition
of the global pressure from [15], we will first introduce the term fotal velocity q = q,, + q,,. After
introducing (1.18) and (1.19) in the total velocity definition we obtain

q=—-AK (pr + fuVpe— bgg> ; (1.29)

where the following notation has been used

fw(Sw> = /FLW(SW)/A’(SW))

Jn(Sw) = An(Sw) /A(Sw), (130,
bg(SW7PW7Pn) = pw(pw)kw(sz)(;_wf))n(Pn)ln(Sw) .

The functions f,,(S,,) and f,(S,,) are called fractional flow functions. The equation (1.29) can be

written as the Darcy law of some artificial pressure p, so-called global pressure, by imposing
Vp=Vpy+ faVpe.
For this equation to hold it is sufficient to define the global pressure p as,
_ _ 1
p=putP(S). PSi) =~ [ Fo)pL)ds 131

It can easily be shown that the global pressure p given by (1.31) satisfies

Pw <P < Pa
By introducing the functions
A (S Sw Sw
7(5) = | S (s, = —psp(s) and s = [ atds 1.3

one can write formally

A (Sw)V Pn = A (Sw) VP — 7(Sw)VB(Sw),
A‘W(SW)VPW = A‘W(SW)VP + Y(SW)VB (Sw)'

These two equations hold true a.e. in Qr if p,B(S,) € H'(Q) for ae. t € (0,T). From here

(1.33)

one can easily conclude that the equality (1.34) holds, which is of fundamental importance in the

two-phase flow existence theory:
lW(SW)]KVPW -V + 24, (SW)KVPI’Z -Vpp =42 (SW)KVP -Vp+KVp (Sw) -VB (Sw)- (1.34)

16
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By summing the equations (1.22) and (1.23) and introducing

q=—-AK(Vp—b,g),

a,= a5 (18.)VB(S.) + 25 (o p g},

q, = fwq+K (Y(SW)VB (Sw) + W(pw - pn)g) 3

we obtain the equation in terms of the global pressure and the saturation:

DI, (PnSn + PwSw) — div((PnAn + PuwA) VP — (Pw — Pu) Y(Sw)KVB(Sy))

(1.35)
+div (02 Aw + p2An)KE) = Fy + Fy.

The equation (1.35) is usually referred to as the global pressure equation. The system is com-
pleted by the so-called saturation equation which can be taken as either one of the equations
(1.22) and (1.23), where the phase pressures are expressed in terms of the global and capillary

pressure. In that way the following system is obtained:
DI, (PnSn + PwSw) — div((Pndn + Pwhn) VD — (Pw — Pn) Y(Sw)KVB(Sy))
+div ((pv%afw + p;%ln)Kg) =F, +Fwa

@0,(p,5) + v (pa (fra — X (1(S.)VB(5.) + W@w —pog))) = Fo (137

(1.36)

For the primary variables in the system one can take the global pressure and the capillary
pressure or the saturation of one of the phases. Let us note that in the incompressible case the

system (1.36)—(1.37) can be rewriten as:

F, F,
—div(AK (Vp—b,g)) = — +

Pn p_w7
a n . w n w n
@ aiv (fra K (1SVB(.) + 50 (o pg) ) =2 (139

n

(1.38)

The system (1.38)—(1.39) has a clear mathematical form: an elliptic equation, (1.38), for the
pressure p and a convection-diffusion equation, (1.39), for the saturation S,,. In the compressible
case this simple form is lost.

The global pressure based on total velocity has been used in the numerous scientific papers
describing two-phase flow in porous media and here we will mention some of the most important
results. In an analysis of the immiscible, incompressible two-phase flow we highlight [15, 16, 37,

38, 41]. In the immiscible, compressible fluid flow analysis we mention [50, 51, 53] where some

17
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approximate models based on the global pressure were considered. Some more general models
were considered in [54, 63, 64], where the global pressure was used in the existence proof.
Recently immiscible, compressible two phase flow with mass exchange between the phases has
been considered in [34, 35, 61], where also the global pressure was used in the existence proof.
For numerical simulations based on the concept of the global pressure we mention [56, 30, 72].
We would also want to highlight results from [46, 76, 22] where the global pressure was used in

the convergence proof of numerical methods.

Global pressure definition based on the total flux. The second, slightly different, approach

in defining global pressure from [5] is based on introducing total flux

Q: = pw(pw)ay, + Pu(pn)a,

and on summation of the equations (1.22)—(1.23) which leads to the following equations:

DI, (SwPw(Pw) +SnPn(pn)) — div(A (S, Pn)K(VPu — fuw(Sw, Pn) VP (Sw)))
+div(A (S, pn)P (Sw, pn)Kg) = F, + F,

D0, (Sppn(pn)) +div(fu(Sw, pn)Qr — bg(Smpn)Kg) +div(a(Sy, pa)KVS,,) = F,, (1.41)

(1.40)

where we have denoted

Q= _A(Smpn) (Vpn fw( W7pn)VpC(SW) _P(SWapn)g)- (1.42)

In the system (1.40)—(1.41) following notation was used (for simplicity some notations are the

same as in the first part of the subsection)

(Sw, Pn) = Pw(Pw) M (Sw) + Pn(Pn) An(Sw),
Jw(Sw, Pn) = Pw(Pw)Aw(Sw) /A (S, Pn),
Tu(Sws Pn) = Pu(Pn) An(Sw) /A (Sw, Pn),
P(Sw: Pn) = (Aw(Sw)Prw(Pw) + 2a(Sw)Pu(Pn)*) /A (S, Pn), (1.43)
(Sws Pn) = Pw(Pw)Pn(Pn) Aow(Sw) An (Sw) /A (Sw P),
bg(Sw,pn) = (Pw(pw) = Pn(Pn)) C(Sw, Pn),
a(Sws pn) = —0(Sw, Pn) Pe(Sw)-

18
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The phase fluxes can also be expressed as fractions of the total flux Q;:

pw(pw)qw = fw(SW7pn)Qt - a(SW7pn)KVSW + bg(Smpn)Kga (1.44)
pn(l)n)qn = fn(vapn)Qt +a(SW7pI’l>KVSW - bg(SWapn)Kg- (1.45)

By using the same reasoning as in the first part, one can take the following equality as the

definition of the global pressure p:

Vpn_fw(Smpn)pé(Sw)VSw = a)(SW,p)Vp, (1.46)

where the function @(S,,, p) is needed and will be defined later in this subsection. The equation
(1.46) can be satisfied if the global pressure p and the nonwetting phase pressure p, are related
by

Pn=T7(Sw,p),

where the function 7 is given as a solution to the Cauchy problem:

dn(Sw,p) _ Pw(T(Sw, p) _pc‘(Sw))A'w(Sw)pé(Sw) S<1
dSy, Pw (7 (S, p) _pc(Sw)))'w(Sw)+pn(7r(SW7p)))kn(Sw), (1.47)
n(1,p) = p.

Here we assume that p.(S,, = 1) = 0; for the case p.(S,, = 1) # 0 see Remark 1.3.5.

Remark 1.3.3. From (1.47) and Remark 1.3.1 it easily follows that there exists a constant M > 0
such that
p—M<py<p, p<p<p+M.

The function @(S,,, p) is given by

Im(Sy, I pw(Sw,
o (S, p) = <ap P) _ pép P), (1.48)

In [5] it is shown that @(S,,, p) solves the problem

Q0w) — 3 £ (S (S P)) PL(Sw) (S )
o(l,p)=1,

(1.49)

and it can be written as,

@(Sw,p) = exp (/Sl (Vu(s, ) — Viu(s,p)) pW(pW(S’p))p"(pn(s’p))ln(s)lw(s)pé(sg ds) :

(Pw (P (85 2)) A (5) + P (P (8: 2)) An(s))
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where the following notation is used

_ Py, (T(Sw, p) — pe(Sw)) _
VW(SW’p) B pw(Tc(Sw:p) _pc(Sw)), Vn(SW>p) N

Remark 1.3.4. For purposes of numerical analysis we assume that p,, p,, € C' (R) are increasing

functions and that there are constants Py, Pm, pff,[ > 0 such that for all p € R it holds

P < Pa(p) <pu,  Pu(p) <pi,  a=w,n.

Then it is easy to see that there are constants Wy, @y such that for all S € [0,1] and p € R, it
holds

0< @, <o(S,p) <oy < .

With this approach one has to define saturation potential in a slightly different way since in

this case the total mobility A depends on the global pressure. We set

- Sw
B(Sy) = /0 /2 (5)Aon () L (5) s,

which leads to the following fundamental equality:

Pn(Pn) 2 (Sw)KV Py - VDo + py(pw) A (Sw)KVpy, -V,

PulPn)PulPu) v (5. ) VB (S,).

= A(Sy, p)O(S,, p)KVp-Vp+
(Sw,p)@ (S, p)KVp-Vp 25w p)

By solving differential equation (1.47) the nonwetting phase pressure p, can be computed
from the global pressure p and the wetting phase saturation S,,. This implies that the global
pressure p and the wetting phase saturation S,, can be used as primary unknowns in the system
(1.40)—(1.41). However, due to degeneracy of the system obtained in that way we replace the
wetting phase saturation by the saturation potential B (Sy) as a primary variable, which leads to

the following equations:

DI, (SwPw (P (Sws P)) + SnPn(Pn(Sw, P)))
—div(A(Sw, p)K(@(Sw, p)VP — P (Sw,P)8)) = Fw + Fu,

DI, (SuPn(Pn(Sws ) +div(fu(Sw, P)Qr — be(Sw, p)Kg))
v <pw(pw>pn<pn> T (Su) 2 (S0

(1.51)

(1.52)

ASur) “r <SW)> e
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Chapter 1. Modeling two-phase flow in porous media

where the total flux Q; becomes

Qi = —A(Sw, p)K(0(Sw,p)Vp—p(Sw,p)g) - (1.53)

For simplicity the same notation is used for the most of the coefficients in the system as in
(1.40)—(1.41), even though functional dependence on the pressure p, is replaced by the depen-
dence on the global pressure p. Let us also note that one can use the mass balance equation for

the wetting phase instead of (1.52),

o (PSwpw(Pw(Sw, p))) +div (fiu(Sw, P)Qr + bg(vap)Kg))

. Pw(Pw)Pn(Pn)\/ A (Sw) Ag(Sw)
*d”( AGen)

(1.54)

KVE(SW)> =F,.

Formulation (1.51)—(1.52) is sometimes referred to as a fractional flow formulation. Let
us note that in the system (1.51)—(1.52) for compressible flow the coupling remains significant
since the equation (1.51) does not have a clear type, although it can be interpreted as a nonlinear
parabolic equation for the global pressure with some source terms. The saturation equation (1.52)
is again of a nonlinear convection-diffusion type. However it is worth noticing that the coupling
is clearly reduced in comparison to the system (1.36)—(1.37) since the saturation gradient is

eliminated from (1.51).

Remark 1.3.5. Previously defined relation between the global pressure p and the phase pres-
sures p,, and p, are given under the assumption p.(S,, = 1) = 0. This is not the case for all
known capillary pressure models, e.g. for the Brooks—Corey capillary pressure model. If this
assumption is not satisfied, meaning p.(S,, = 1) = po for some entry pressure py > 0, the initial

condition in (1.47) is set to be ©(1,p) = p+ po.

The existence result for the second global pressure formulation is given in [6] and numerical
simulations of the water—gas flow in heterogeneous porous media with discontinuous capillary
pressures are presented in [7]. An application of the global pressure to the modeling of the
compositional, compressible, two-phase flow based on the concept of the global pressure is given
in [10].

1.3.6 Two-phase multicomponent flow

In this subsection we consider flow of two different fluids, which are composed of different

species. We have already given a brief description of a model for single-phase compositional
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Chapter 1. Modeling two-phase flow in porous media

flow. Similar relations are valid for the two-phase flow with additional complication due to
possible exchange of the mass between phases.

We will start with definition of fraction of the component i, but this time in phase ¢, & =w,n

e volume fraction of the component i in phase O,

Ci (x,1) volume of the component i in phase & in REV
X =
A volume of phase ¢ in REV ’

e mass fraction of the component i

i (x,1) mass of the component i in phase ¢ in REV
X =
o mass of the phase & in REV

Mass concentration of the component i in phase  is defined by

_mass of the component i in phase & in REV

i
t) =
Pa(x:1) volume of the phase ¢ in REV ’

and the mass density of the phase & composed of ky species is obtained as the sum of mass

concentrations
ka .
Pa =Y Pe-
i=1
Now we state the mass conservation law for the component i in form (see [59])
@9, (Zpaxasa) +)div (PaXbq +ia) = F, (1.55)
o o

where F' represents the source and sink term with respect to the component i. Phase velocities

are given by the Darcy-Muskat law
Aq = —2a(Sw)K(Vpa — pa(pa)g) . (1.56)
and diffusive fluxes are given by the Fick law
jt, = —®SeD. pa VXL, (1.57)

We will give a more elaborate description of the model of compositional flow for particular case
of the two-phase two-component in the next subsection since it will be the subject of the next

chapter in this thesis.
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Chapter 1. Modeling two-phase flow in porous media

1.3.7 Two-phase two-component flow

Here we give a detailed description of the system of equations governing liguid and gas flow
in porous media. According to the application we have in mind (see [26]), we consider a fluid
mixture of two components water and hydrogen. In order to emphasize the fluid system that
we are considering we will denote the phases by the indices, / for liquid and g for gas. The
components will be denoted by upper indices w and &, suggesting water and hydrogen. In this

case (1.55) becomes

D0, (S} +Sgpy) +div () a; +pya, +3) +3y ) = F¥, (1.58)
@9, <Slp,h + Sgpg) +div <plhq, +pla, +il + jZ) —Fh (1.59)

The phase velocities are given by (1.56) and diffusive fluxes are given by (1.57). Combining
(1.58) and (1.59) with S;+ S, = 1 and with capillary pressure law p.(S;) = p, — p; We obtain
totally four equations with eight unknowns: S;, S¢, pe, pi, plW , plh, p;” , and p;}. To close the
system we use thermodynamic properties of the phases, meaning the composition of the both
phases is assumed to be in a local thermodynamic equilibrium. Dalton’s law states that the total

gas pressure is equal to the sum of the partial pressures of the individual gases,

pe =Py + P, (1.60)

where p;’ and pg are the vaporized water and hydrogen partial pressures in the gas phase. Addi-
tionally we assume that the ideal gas law is applicable,
w_ Pe

Py =

h
n_ Pe

where T is the temperature, R is the universal gas constant, and M" and M" are the water and
hydrogen molar masses. In order to determine the quantity of the dissolved hydrogen in water,
one can apply Henry’s law, which states that the amount of the dissolved gas is proportional to

the partial pressure of that same gas in the gas phase
pl' =H(T)M"pt, (1.62)

where H(T) is Henry’s law constant, which depends only on the temperature. For the liquid
phase, one can apply Raoult’s law, which states that the water vapor pressure is equal to the

vapor pressure of the pure solvent at given temperature ﬁg(T) multiplied by the mole fraction of
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Chapter 1. Modeling two-phase flow in porous media

the solvent,

P’
p) + (M»/M")ph

pg =Py (T) (1.63)
By adding relations plh +p;" = p; and p;,’ +pg = pg and assuming water compressibility p; =
™ /B,(p)), the initial system is completed.

The main difficulty of the previously stated formulation is a treatment of the phase disappear-
ance and reappearance, precisely adequate primary variable choice, which can be different in the
saturated (only one phase present) and unsaturated (both phases present) zones. If the quantity of
the dissolved gas is smaller than the hydrogen quantity at equilibrium, then the Henry law does
not apply. In this case S, is equal to the zero and S, can not be taken as an unknown. Instead of
the saturation S, one could take plh as an independent variable. Similar observations apply when
the liquid phase is missing. One of the possible solution to this problem is primary variable
switch based on the phase presence like in [75, 39]. The main challenge with this approach is
detection of the unsaturated flow.

In [60] and [55] a model with neglected water vaporization was considered. Authors pro-
pose closing the system of nonlinear partial differential equations (conservation equations and
Darcy-Muskat laws) by the complementarity constraints, which describe the transfer of hydrogen

between the two phases
(1-S)(H(T)M"pg—pl) =0, 1-8,>0, H(T)M"p,—pl'>0. (1.64)

The main idea behind complementarity constraints is introduction of additional relations and
variables in order to keep all natural variables of the system in saturated and unsaturated zones.
In this example, alongside p, and S; one can introduce plh as primary variable and use (1.64) to
relate these variables. In [68] authors have used this model in terms of mole fractions, which are
defined as the amount of the component i (expressed in moles), n;, divided by the total amount
of the phase « (also expressed in moles), ng,

xa::—;, a=1lg i=wh. (1.65)
The system (1.58)-(1.59) can easily be written in terms of the mole fraction by introducing rela-

tion pl, = xi,paM; /My = x’('XM,-pa,mol. Following system of equations is obtained

q)at (Slpl,molx;v + Sgpg,molxzrv) +div (pl,molx;‘}ql + pg,molxgqg +.];V +J};) = FW/MW7 (166)
do, (Slpl,molx;l + Sgpg,molxg> +div (pl,molx?ql + pg,molxzqg +.]? "‘.]Z) = Fh/Mh7 (1.67)
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Chapter 1. Modeling two-phase flow in porous media

with Fick’s law written as j’;x = —CIDSaDapmm(,IVx’;X. In [68] following complementarity condi-

tions have been imposed

2 2
1_2)(%5207 SaZO, Sa (1—2)6'&):0, a:l,g
=1

i=1 i=

Another solution to the phase disappearance problem is definition of the new variables, so-
called persistent variables, that will be well defined in both saturated and unsaturated regions.
This approach was described in [26] for a simplified case without water vaporization. Authors
propose liquid phase pressure p; and total hydrogen mass density X = Slplh + Sgpg,’ as the pri-
mary variables. Extension to this approach without simplification regarding water vaporization
was presented in [10]. The main idea is to replace the liquid phase pressure p; as the primary
unknown, by the global pressure which is well defined in both one-phase and two-phase regions.

Similar way to address this issue is presented in [14] where the authors neglect evaporation,
meaning that p, = pg. They propose a different set of persistent variables by using relation
(1.62) to define the gas pressure even in the case where the gas phase is nonexistent. The gas
pseudopressure defined by (1.62) is an artificial variable proportional to the concentration of
the dissolved gas in the one-phase region and equal to the gas phase pressure in the two-phase
region. In that way one avoids using directly the concentration of the dissolved gas plh as a
primary variable and uses more traditional gas pressure, suitably extended in one-phase region.
For another primary unknown, one can take liquid phase pressure p; that can be used as the
persistent variable in case where there is no water vaporization. Let us note that this would
not be a good approach in the general case with water vaporization. This choice of primary
unknowns is also taken in this thesis in chapter 2.

Similar idea is presented in [73] where the capillary pressure p, is taken as a primary variable.
In this paper the authors have also used the governing equations in terms of molar fractions
(1.66)—(1.67). The capillary pressure curve has an entry pressure pen;ry > 0, which is a critical
capillary pressure for appearance of the nonwetting phase. Authors distinguish the cases p. <
Pentry» Where S = 0 and only wetting phase exists, and p. > pepsry, Where S, > 0 and both
phases exist. It has been shown that in both of these cases extended gas phase pressure p, and
the capillary pressure p. can be used as persistent variables.

A different set of persistent variables was presented in [70]. The authors introduce mean

pressure p, which equals the pressure of the remaining phase when one of them disappears

pP= ’}/(Sw)pg + (1 - ’}/(Sw))Pla
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where y(S,,) is a weight function, e.g. ¥(S,) = S,,. Since the mole fraction formulation was
used, the authors propose for the second primary unknown the total molar fraction of the gas

component
MxtS, + Mx]'S,
SeMy+SIM;

Both of these unknowns are well defined both in saturated and in unsaturated regions.

X =

In [1] the standard variables S,, and p, are used as persistent variables but they are given
different meaning in saturated regions. Authors propose an extension of the phase saturation S,
allowing negative values and values greater than one in order to avoid degeneracy in the system
(1.58)—(1.59) in the one-phase region. With this extension the saturation can also be used as a

primary unkonwn.

1.4 Conclusion

In this chapter the basic properties of porous media were presented, alongside main models
that are used for description of the one-phase and the two-phase flows. We have also presented
models based on the concept of the global pressure which will be steadily referenced in this work.
A special emphasis in this chapter was given to the description of the two-phase two-component
flow, since the next chapter of this thesis deals with the existence proof of the proposed model
in the case of the flow with low solubility of the gas component in the liquid phase where water

vaporization is neglected.
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Chapter 2

Mathematical analysis of two-phase
two-component flow in porous media in low

solubility regime

In this chapter we study a system of equations governing liquid and gas flow in porous media.
The gas phase is homogeneous, while the liquid phase is composed of a liquid component and a
dissolved gas component. It is assumed that the gas component is weakly soluble in the liquid.
We formulate a weak solution of the initial boundary value problem and prove the existence
theorem by passing to the limit in regularizations of the problem. This chapter mainly contains
results published in [61].

Recently, two-phase, two-component models were considered in articles [34] and [35]. In
[34] the authors replace the phase equilibrium by the first order chemical reactions which are
supposed to model the mass exchange between the phases. In [35] the phase equilibrium model
is taken into account but the degeneracy of the diffusion terms is eliminated by some nonphysical
assumptions. As the diffusion terms in the flow equations are multiplied by the liquid saturation
they can be arbitrary small, which can be seen in (2.8), therefore they do not add sufficient
regularity to the system. In this work this degeneracy of the diffusive terms is compensated
by the low solubility of the gas component in the liquid phase which keeps the liquid phase
composed mostly of the liquid component (water). The hypothesis of low solubility is given
precise mathematical meaning.

An important consideration in the modeling of fluid flow with mass exchange between phases

is the choice of the primary variables that define the thermodynamic state of the fluid system [83].
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Chapter 2. Two-phase flow in low solubility regime

When a phase appears or disappears, the set of appropriate thermodynamic variables may change.
In mathematical analysis of the two-phase, two-component model presented in this chapter we
choose a formulation based on persistent variable approach [26, 27, 14]. Namely, we use the
liquid phase pressure and the gas pseudopressure (introduced in section 2.1) as two variables
capable of describing the fluid system in both one-phase and two-phase regions.

The outline of this chapter is as follows. In Section 2.1 we give a short description of the
physical and mathematical model of two-phase, two-component flow in porous media considered
in this study. We also introduce the global pressure that plays an important role in mathematical
study of the model, general assumptions on the data, and some auxiliary results. In Section
2.2 we present the main result of this chapter, the existence of a weak solution to an initial
boundary value problem for the considered two-phase, two-component flow model. This theorem
is proved in the following sections. In Section 2.3 we regularize the system and discretize the
time derivatives, obtaining thus a sequence of elliptic problems. In Section 2.4 we prove the
existence theorem for the elliptic problems by an application of the Schauder fixed point theorem.
In this section we perform further regularizations and apply special test functions which lead to
the energy estimate on which the existence theorem is based. In Sections 2.5 and 2.6 we eliminate
the time discretization and the initial regularization of the system by passing to zero in the small
parameters. At the limit we obtain a weak solution of the initial two-phase, two-component flow

model.

2.1 Mathematical model

We consider herein the model described in 1.3.7, meaning we observe a porous medium
saturated with a fluid composed of 2 phases, liquid and gas. The fluid is a mixture of two
components: a liquid component which does not evaporate and a low-soluble component (such as
hydrogen) which is present mostly in the gas phase and dissolves in the liquid phase. The porous
medium is assumed to be rigid and in the thermal equilibrium, while the liquid component is
assumed incompressible. The notation is the same as in Subsection 1.3.7. The phase volumetric
fluxes ¢ are given by (1.56), and since we have assumed that there is no void space in the porous
medium the phase saturations satisfy S; +S, = 1.

The phase pressures are connected through the capillary pressure law (see [21, 36])

Pe(S1) = pg — p1, (2.1
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Chapter 2. Two-phase flow in low solubility regime

where the function p, is a strictly decreasing function of the liquid saturation, p.(S;) < 0.
In the gas phase, we neglect the liquid component vapor such that the gas mass density

depends only on the gas pressure:
Pg = Pe(Py); (2.2)

where in the case of the ideal gas law we have py(pg) = C,p, with C, = M"/(RT), where M" is
the molar mass of the gas component, T is the temperature, and R is the universal gas constant.
In order to simplify notation we will denote plh by u. The assumption of thermodynamic

equilibrium leads to functional dependence,

u=1i(py), (2.3)

if the gas phase is present. In the absence of the gas phase u must be considered as an independent
variable. If the Henry law is applicable, then the function & can be taken as a linear function
u = Cypg, where Cj, = HM" and H is the Henry law constant. We suppose that the function
Pg — Ui(pg) is defined and invertible on [0, ) and therefore we can express the gas pressure as a

function of u,

Py = Pg(u), 2.4)

where p, is the inverse of . We use (2.4) to define the gas pseudopressure as an artificial
variable proportional to the concentration of the dissolved gas in the one-phase region and equal
to the gas phase pressure in the two-phase region. In that way one avoids using directly the
concentration of the dissolved gas u as a primary variable and uses more traditional gas pressure,
suitably extended in one phase region.

For the liquid density, due to the hypothesis of small solubility and the liquid incompressibil-

ity we may assume constant liquid component mass concentration, i.e.,

i =pi", (2.5)

where pf’d is the standard liquid component mass density (a constant). The liquid mass density

is then p; = p;'¥ +u.
Finally, the mass conservation for each component leads to the following partial differential
equations:

IS . .
pro S 4 div (p;’dq, +J}V) — P, 2.6)
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0 . .
B2 (uSi+PySy) +div (uay + peag +if ) = ", 2.7

where the phase flow velocities, q; and qg, are given by the Darcy—Muskat law (1.56), F k and
j;‘ , k € {w, h}, are respectively the k—component source terms and the diffusive flux in the liquid
phase. The diffusive fluxes are given by the Fick law, which can be expressed through the

gradient of the mass fractions X' = u/p; and X}* = p}" /p; as in [20, 26]:
il = —@SiDpVX], i = —@SIDpVXY, 2.8)

where D is a molecular diffusion coefficient of dissolved gas in the liquid phase, possibly cor-
rected by the tortuosity factor of the porous medium (see [20]). Note that we have th +X" =1,

leading to j;’ +J;" = 0. The source terms F" and F " will be taken in the usual form:
FY = p"Fy — pf'iSiFp, F"= —(uS;+peSg)Fp, Fi,Fp >0, (2.9)

where Fj is the rate of the fluid injection and Fp is the rate of the production. For simplicity we
supposed that only the wetting phase is injected, while composition of the produced fluid is not
a priori known.

We consider the liquid pressure p; and the gas pseudopressure p, as primary variables from

which we calculate several secondary variables:

Si=p."(pe— 1), Sg=1=S;, u=10(pg), g = Pe(pg), P = p;"* +it(py). (2.10)

Note that in the two-phase region we can recover the liquid saturation by inverting the capillary
pressure curve, S; = p. !( Pg — pi1)- In the one-phase region we set the liquid saturation to one,
which amounts to extending the inverse of the capillary pressure curve by one for negative pres-
sures (see (A.4)), as described in [27]. As a consequence we have 0 < §; < 1 by properties of the

capillary pressure function (see (A.4)).

2.1.1 Problem formulation

Let Q C R, forl = 1,2,3, be a bounded Lipschitz domain and let 7 > 0. We assume that
dQ =TpUTy is a regular partition of the boundary with [['p| > 0. We consider the following
initial boundary value problem in Q7 = Q x (0, T) for the problem (2.6)—(2.9) written in selected
variables:

as;

1
oL div (/ll(Sl)K(Vpl —pig) — CI>S,—DVu> +S,Fp=F,, (2.11)
ot pi
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0 .
= (uS)+ Py S) — div <u;L,(S,)K(Vp, — p18) + Pele (K (V pg — pgg))
wd 2.12)

—div ((I)S[ p[; DVM) + (MS[ +pgSg)Fp =0,
/

with homogeneous Neumann’s boundary condition imposed,

1
<7LZ(SI)K(VP1 —pig) — ¢SIEDVM> ‘n=0,
o (2.13)

P
(MAI(SZ)K(VPI - Plg) + Pg)Vg(Sg)K(VPg - ng) + DS, 1131 DVU) ‘n=0,
on I'y and
P = 07 Pg = 07 (214)
on I'p. We impose initial conditions as follows:
pi(x,0) = pP(x), pglx,0) = p)(x). (2.15)

All the secondary variables S, Sg, u, pg, and p; in (2.11), (2.12) are calculated from p; and
Pg by (2.10). The boundary condition pg = 0 on I'p is equivalent to the condition # = 0, which

impose that there is no dissolved gas on the boundary (see (A.5)).

2.1.2 Main assumptions

(A.1) The porosity ® belongs to L*(Q), and there exist constants, @y > ¢, > 0, such that ¢, <
®(x) < gy a.e. in Q. The diffusion coefficient D belongs to L*(Q), and there exists a
constant Dy > 0 such that D(x) > Dy a.e. in Q.

(A.2) The permeability tensor K belongs to (L* (Q))M, and there exist constants ky > k,, > 0
such that for almost all x € Q and all £& € R/ it holds that

knl &P <K (x)& - € < ku|E[.

(A.3) Relative mobilities A;, A, are defined as A;(S;) = kr;(S;)/w; and A4 (S;) = krg(S;)/ g, Where
the constants ; > 0 and p, > 0 are the liquid and the gas viscosities, and kr;(S;), kr,(S;)
are the relative permeability functions, satisfying kr;,kry € C([0,1]), kr;(0) = 0, and
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(A.4)

(A.5)

(A.6)

(A7)

(A.8)

krg(1) = 0; the function kr; is a nondecreasing and kr, is a nonincreasing function of ;.

Moreover, there is a constants kr,, > 0 such that for all S; € [0, 1]
k}"m < krl(Sl) +krg(S]).
We assume also that there exists a constant ¢; > 0 such that for all S; € [0, 1]

@87 < kry(S)). (2.16)

The capillary pressure function, p. € C'(0,1) NC%((0, 1]), is a strictly monotone decreas-
ing function of S; € (0, 1], unbounded at S; = 0, satisfying p.(1) = 0, p.(S;) > 0 for
S; € (0,1) and pl.(S;) < —Mp < 0 for S; € (0,1) and some constant My > 0. There ex-

ists a positive constant M), such that
1
/ pe(s)ds =M, < +oo. (2.17)
0
The inverse functions p_ ! is extended as p.!(c) = 1 for o < 0.

The function @(p,) is a strictly increasing C! function from [0, +0) to [0, +0) and #(0) =
0. There exist constants u,4x > 0 and M, > 0 such that for all o > 0 it holds that

()] < thar, 0 < @(5) < M.

For o < 0 we extend (o) as a smooth, sufficiently small, bounded monotone increas-
ing function having global C! regularity. The main low solubility assumption is that the

constant My is sufficiently small, namely, that the inequality (2.23) holds.

The function P, (p,) is a C! strictly increasing function on [0, o), and there exist constants
pm > 0 and pg"“* > 0 such that for all p, > 0 it holds that

do
ﬁg(c)

< oo,

1
0<pelpe) Spw IBUpPII < PP, P =0, [
For 6 <0 we set py(0) =0forall o <O0.
Fp Fp e LZ(QT) and F],Fp,pg >0a.e. in Or.

The function a(S;) defined in (1.32) satisfies & € C°([0,1]), @(0) = (1) =0, and o(S) >
0 for S € (0, 1). The inverse of the function 3(S;), defined in (1.32), is a Holder continuous
function of order 7 € (0, 1), which can be written as (for some positive constant C > 0.)

/:2 o(s)ds

T

C > |81 — 82 (2.18)
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Remark 2.1.1. Boundedness of the function ii from (A.5) is a simplification that is not restrictive

since upyqyx can take arbitrary large values. The same is true for boundedness of the gas density

in (A.6).

Remark 2.1.2. The function i(pg) from (A.5) has a physical meaning only for nonnegative
values of the pseudopressure p,. Regularizations applied in section 2.4 destroy the minimum
principle that enforces p, > 0 and therefore we need to extend ii(p,) for negative values of pq as
a smooth function. This extension is arbitrary and we take it sufficiently small, such that

d d
0 < p" —ttmin < pr=p;"

for some constant 0 < uy;, < pl“d and Upin < Upmax. For reasons which appear in the proof of

Lemma 2.1.6 we also suppose ty,;, < pf’d(l — 1/\/5)

+ ﬁ(pg) < plﬂd + Umax,

Remark 2.1.3. By (A.4) the capillary pressure function is unbounded at S; = 0 and consequently
the wetting phase cannot be displaced completely by the non wetting phase. This assumption will

be used in the proof of Lemma 2.4.8.

2.1.3 The global pressure

We will use the notion of the global pressure p as given in [36], which was introduced in
chapter 1 by (1.31). From (1.31) and (A.4) in section 2.1.2 it follows that p; < p and p = p;
in the area where p, < p;. In other words, when the gas pseudopressure falls below the liquid
pressure, and only the liquid phase remains, then the global pressure coincides with the liquid
pressure.

In the part of the domain where p; > p; we have another representation of the global pressure
based on total velocity,

Y u(s)
5 A"
but in the domain area where p, < p; formula (2.19) does not hold true as there the global

P:Pg"‘ﬁ(sl)a p(Sl) =

(s)ds, (2.19)

pressure stays equal to the liquid pressure. From (1.31) we have a.e.

Ag(S1)
= — \Y .
and from (2.19) it follows that
M(S
Vp,=Vp+ %Vpc(&) (2.21)

in the part of Q7 where p, > p;.
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Lemma 2.1.4. Under assumptions (A.4) and (A.8) there exists a constant C > 0 such that the
following bounds hold true:

Py <Ipl+C, Sl < |pl+C,  [Sgpel < |pl+C,  pir < p <max(py,pg). (2.22)

Proof. From (2.19) we have for p, > py,

172 2 (s U A(s
v <ol [ G ries— [ s

From (A.8) it follows that the first integral on the right-hand side is bounded and therefore we

have
Py <|pl+C+pc(1/2).

The same inequality obviously holds also for p, < p; = p.

From (1.31) we have

A

Ae(s) ),
: o lplslds

1 1
Sipil < |pl+ S/ '(s)ds| < +/
1Sipi1l < |pl+1S; s A0) pe(s)ds| < |p S

Due to (A.4) the right-hand-side integral is bounded, which proves the second inequality. The
third inequality follows in the same way from (2.19) and the fact that due to (A.4) and (A.8)
the function P(S;) is bounded on (0, 1). Finally, the last inequality follows directly from (2.19),
(1.31). This proves the lemma. O

To the assumptions (A.1)—(A.8) we add the following assumption concerning the global pres-

sure:

(A.9) The function (1 — S;)P(S;), where P(S;) is defined in (2.19), is Holder continuous for
S; € (0,1) with some exponent T € (0, 1].

Remark 2.1.5. Assumptions on Holder continuity in (A.8) and (A.9) are needed in the com-
pactness proof in section 2.6. Assumption (A.8) is usual in the two-phase flow models, while
assumption (A.9) is fulfilled if (1 —S;)pl.(S;) is an L? function, for ¢ > 1, away from S; = 0. This
assumption is a consequence of (A.8) (a(1) =0) if, for example, krg(S;) > C(1—S;) for some
O<y<2

Lemma 2.1.6. Let the assumptions (A.1)-(A.8) be fulfilled and let u = li(pg) and p; = pl“d +

i(pg). By z we denote the number

— min (k
= min (krg(S1)+51),
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Chapter 2. Two-phase flow in low solubility regime

and we suppose that Mg in (A.5) is sufficiently small, namely, we assume

oD 1 1 1
— - ——max pl;/ld —, Fe < —. (2.23)
Pk / g paiz \ W Jaiz M,
Then the following inequalities hold:

1
ep|Vul* < A (S))KVp, - Vp, +S,c1>Dp—vpg -Vu, (2.24)
8

1
< 5A,(S,)]Kvp, -Vpi+ qep|Vul?, (2.25)

1
—®S,DVu-Vp,
pi

for some 0 < g < 1, where

DDy

Proof. We have
1 1 1
Ag(S1)KVpg-Vpg+ 8§ PD—Vpy-Vu > <A—kr (S1)km +SI‘DDA—) |V”|2,
¢ § s pg ¢ gl (pg)?* Peit' ()
from where it follows

)\.g(Sl)KVpg “Vpe+ S]q)Dpingg -Vu > zmin (%};}g, l;;;—}ﬁg) ’Vu’z-

Estimates (2.24) and (2.26) follow immediately from
P (k—’" 2) . 2.27)
() kmay peMZ’ ppyMy

It is easy to show that (2.27) follows from (2.23) and the fact that a; can be taken arbitrary small,

such that a;z < 1; this proves (2.24).

To prove (2.25) we note that since the extension of the function # into negative pseudopres-
sures can be taken arbitrary small, we have p; > plstd(l —¢),for0<e= um,-,,/pf’d <1-1/V2

(see Remark 2.1.2). Therefore we can estimate

1
i (1 —&)\/kmhi(S1)

<

DS;D\/ ki (S1) (pg)Vpg - Vi

1 D257D?
2(1—€)2 (p) 2k My (S))

1
< ill(Sl)KVPz -Vpi+qep|Vul?,

1
—(I)SZDVM : Vpl
P

1 n
< Skt (S)Vpr- Vi + i (pg)*Vpg - Vpg

where in the last step we have used (2.16), and ¢ =0.5/(1 —£)? < 1. Lemma 2.1.6 is proved. [J
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Chapter 2. Two-phase flow in low solubility regime

Remark 2.1.7. Exact meaning of the low solubility hypothesis is given by (2.23). The solubil-
ity bound M, must be small enough so that 1/M, is larger than a ratio of diffusivity ®D and

hydraulic conductivity pl‘”dkm /W multiplied by generally small nondimensional factor.

Remark 2.1.8. If we take as an example the flow of water and hydrogen modeled by the Henry
law, ti(pg) = H(T)M" p,, we can check that the inequality (2.23) is realistic. Some typical values
for corresponding parameters (at T = 303K) are the following: H(T) = 7.65-10~® mol/m?Pa,
pf'd =103 kg/m3, M" =2-1073 kg/mol, y; = 1073 and py = 6-107° Pa-s, ky, = 1071 m?,
®=0.1,D=3-10""m?/s, a; = 1, and z = 0.1. With these values of the parameters we get that
1/My should be bigger than 3 - 10%, while My = H(T)M" = 15.3-107° (see [2]).

2.2 Existence theorem

Let us recall that the primary variables are p; and p,. The secondary variables are the global
pressure p defined by (1.31) and the functions u, p,, S;, and S, defined as u = ii(py), Py = Po(Pg),
S;=p.! (pg—p1), and S; =1 —5;. By (A.5) and (A.6) the functions u and p, are bounded and
for S}, due to (A.4) (see also Remark 2.1.3), we have

0<$ <1 (2.28)

A variational formulation is obtained by standard arguments. Taking test functions @,y €
C'([0,T],V) where
V={pecH(Q): ¢=00nTp}

we get the following theorem.

Theorem 2.2.1. Let (A.1)-(A.9) hold true and assume (p?,pg) € L*(Q) x L*(Q), pg >0a.e. in
Q. Then there exist functions p; and pg satisfying

pl7pg€L2(QT)7 p,u,ﬁ(Sl) €L2(07T;V)7
D0, (uS; + pgS;), ®I,S; € L*(0,T;V'),

VA(S)Vpr, v/ A(S)Vpy € L*(Qr),

such that for all ¢ € L*(0,T;V)
r as; 1
/ o2 o \dr + / 24(S)KV p; — DS, —DVu| - Vodxd
0 ot Or pi (2.29)
+/ S1Fpodxdt :/ F](dedt—|—/ plll(Sl)KgV(pdxdt;
Or Or Or
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Chapter 2. Two-phase flow in low solubility regime

forall y € L*(0,T;V)

r/ o
/0 <CDE (uS;+pgSs) 1//> dt
o

+ /Q (uS) + PgSg) Fpydxdi = /Q (Pruha(S1) + P2 (1)) Kg- Vydxdr.
T

T

std

i (S)KV p; + pog(S)KV pg + BS; - P > DVu

- Vydxdt (2.30)

Furthermore, for all y €V the functions

tr—>/CI>Sll//dx, tr—>/d>((u—pg)Sl+pg)1//dx
Q Q

are continuous in [0, T| and the initial condition is satisfied in the following sense:

( / dDSlwdx) (0) = / s ydx, 2.31)
Q Q

< / D(uS; + PgSe t/fdx> / D(i(py)so + Pe(pg) (1 — 50)) yelx (2.32)
forall y €V, where so = p: (pg —pY).

The first step in proving correctness of the proposed model for the two-phase compositional
flow is to show that the weak solution defined in Theorem 2.2.1 satisfies p, > 0 a.e. in Qr if the

initial and the boundary conditions satisfy the corresponding inequality.

Lemma 2.2.2. Let p; and pg be given by Theorem 2.2.1. Then, pgs > 0 a.e. in Q7.

2
Lemma 2.2.2 can be proved by a standard technique using the test function ¢ = M

in (2.29) and the function ¥ = min(#(p,),0) in (2.30). The proof is omitted here since it will be
given in the discrete case in Lemma 2.4.8.

The proof of Theorem 2.2.1 is based on an energy estimate obtained by the use of test func-

tions
@ =pi—N(pg), W=M(pg),
with . .
M(p,) = /0 e pgéo) do N(pg) = /0 e ;g((?)da. (2.33)

It is assumed that the functions M and N are extended by zero for negative pressures. For M and

N we have the following bounds.
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Lemma 2.2.3. The functions (2.33) satisfy

A

IN(Pg)| < Cottmax(pg +1),  [M(pg)| < Colpf +1), (2.34)

where Cy = max(Ji d6 /py(0),1/pg(1)

Proof. Due to (A.5) and (A.6) we have

max pg, l:i(O') 1 1 1
N(po)| < —1—/ — dGSu (/ — do + — p+>,
IN(pg)| < Pg o) "\ Jo pg(o) Po(1)"8
max pg, 1 1 1
M(p )|_/ 576770 +/ d6</ . dot——pt.
# Pg(G pg(0) pg(1)"8
Lemma 2.2.3 is proved. [

The key property of the test functions p; — N(pg) and M(py) is given by the relation

N ) )
S (Pr=N(pe)) + 5 (uSi-+PeSe) M(pe) = 5.8 (pr. pe). (2.35)

where the function & is given by

(o1, pe) = 1 M (pe) ~ N(pe)) + 52 (el pM(p) — pe) — [ pels)ds. 236
Lemma 2.2.4. The function & defined in (2.36) satisfies
—Mp, < E(pi1,pg) < C(|pgl+1) (2.37)
forall p; € R and py > 0, where the constant C depends on way, Pm, C'g, and M, .

Proof. Using monotonicity of the gas mass density we have

P 1 Pz (o) P 1 P 1
@ A—dc—/ A—dczu/ A—do—u/ —_do—0.
e e e L e T

By the same argument,

A —_ . A *

Therefore, we have the estimate

S
&(p1.pg) > —/0 pe(s)ds > —M,,.

The upper bound follows directly from the estimates on the functions M and N in Lemma 2.2.3.

Lemma 2.2.4 is proved. ]
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Chapter 2. Two-phase flow in low solubility regime

By the use of above test functions one can formally prove the following a priori estimates:

Lemma 2.2.5. Let the assumptions (A.1)-(A.8) be fulfilled and let the initial conditions p? and
pg be such that &(p?, pg) € L'(Q). Then there is a constant C such that each solution of (2.29),
(2.30) satisfies:

/Q {A(S)|Vpi* + A (S1) |V pg|* + |Vul*} < C, (2.38)
T
/Q {IVpP+ V(S +|VuP} <, (2.39)
T
||at(q)[usl +pgSg]) HLZ(()J’;H*I(Q)) + Hat(q)sl)||L2(O,T;H*1(Q)) <C. (2.40)

We shall not give a direct proof of Lemma 2.2.5 since it will be proved for the regularized

problem and then inferred by passing to the limit in a regularization parameter.

2.3 Regularized n-problem and time discretization

The system of (2.11), (2.12) contains several degeneracies and, as a consequence, the phase
pressures do not belong to L2(0,T;H'(Q)) space; the same is true for the capillary pressure
and the saturation. As in [35], in the first regularization step we will add some terms into the
governing equations that will make the capillary pressure L?(0,7; H'(Q)) function. Then, using
(2.20), we may conclude that the regularized phase pressures are also L?(0,T; H'(Q)) functions.

The regularized system is as follows:

aS? : w,n n
(DW +divQ™" + S, F, = Fp, (2.41)
J ngm_ Hngn ivO™" ngh 4 pngn
D (1S +pg'S]) +divQ™ " + (uS] + il S Fp =0, (2.42)
where the fluxes are given by

1
Q™1 = (S E(Vp] —pi'e) + @S] DVl +0V (] = p)), (2.43)

!

Q"M =—u"(SHK (Vo - p'g) — pg (S VK (V] —pJlg)
o . (2.44)
— ] p—nDVu" —n(p] —u")V(pg —p/).
l
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Chapter 2. Two-phase flow in low solubility regime

The system is completed with the initial and the boundary conditions:
p?(x,()) :p?(x), PQ(X,O) :Pg(x) in Q,
pl(x,t)=0, pl(x,t)=0  on(0,T)xIp, (2.45)
Q" .n=0, Q""-n=0 on (0,T) xI'y.
The secondary variables used in (2.41)—(2.44) are defined as

u = a(p}), p' = pi" +u, pg = po(p]), S] = b (P —p)), ST =15

We shall first prove the following theorem, which states the existence of a weak solution to
the problem (2.41)—(2.45) and then, by passing to the limit as small parameter 1) tends to zero,

the existence of a weak solution to the degenerated system (2.11)—(2.15).

Theorem 2.3.1. Let (A.1)-(A.8) hold and assume (p(l),pg) cH' (Q)xH'(Q), p(g) > 0. Then for
all m > 0 there exists ( p?, pd) with pg > 0 a.e. in Qr, satisfying
pl,plu € L*(0,T;V),
D3, (uS] + pJST), @I, (S]) € L*(0,T; V"),
S +pd st € C°([0,T];L*(Q)), 8] € C°([0, T];L*(Q)).

For all ¢ € L*(0,T;V),

T/ oS! 1
/0 <<I>a—tl,(p>dt+/ M(SHKVp] — @S] —DVul —nV(pd — p}')| - Vodxdt
Or Py (2.46)
+/ S?Fp(pdxdt:/ F[(pdxdt—f—/ p; A (S Kg - Vedxdt.
Or Oor Or
For all y € L*(0,T;V),
! J ngn nqn
/O <cp§ (u"S] —l—pgSg),I//>dt
pstd
+ [ U A(SHKVP]! 4 pg Ag (S]KV p)! + @S] =DV | - Vydxdi
Or P (2.47)

s (pd —u")V(pd —p]) - Vydxdt
T
+ ) (uns}?+pgsg)prdxdt:/Q (P (ST + (P4 (S])) Kg - Vydxd.
T T

Furthermore, u"S] + pg(1 —S}) = ﬁ(pg)S? + ﬁg(pg)(l — 8% ae in Q fort =0, and
S} (x,0) =SV a.e. in Q.
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Chapter 2. Two-phase flow in low solubility regime

In the proof of Theorem 2.3.1 we will first discretize the time derivative (see [35]), reduc-
ing the problem to a sequence of elliptic problems, which will be solved by an application of
the Schauder fixed point theorem. In order to simplify the notation we will omit writing the
dependence on the small parameter 1 until the passage to the limit as 1 — 0.

The time derivative is discretized in the following way. For each positive integer M we
divide [0,T] into M subintervals of equal length 61 = T /M. We set t, = ndt and J, = (t,—1,1]
for 1 <n < M, and we denote the time difference operator by

v(t+8t) —v(t) ‘

ot _
2°v(t) = 5

For any Hilbert space .7 we denote
ls:() ={veL™(0,T;7): vis constant in time on each subinterval J,, C [0,T]}.

For v¥' € I5,() we set v =v%|; and, therefore, we can write
o ) 0
t
= ZVnX(t,,,htn](t)a vor(0) =v".
n=1
To function v¥ € ls;(7) one can assign a piecewise linear in time function

~Ot u In—0 y1 [ IT—=In—1 p ~Ot 0
=3 =5V V) K (t), ¥°(0)=1". (2.48)
=1 t t
Then we have 9,79 (1) = d~%v%(¢) for t # ndt,n =0,1,...,N. Finally, for any function f €
LY(0,T;.5¢) we define % € I5,(€) by

o) 5:/ f(r t ey

The discrete secondary variables are denoted as before by

ot A(

W= std ot A ( 8t>

P2, pft = pi+u®, pd = p, S =p(pd —pf").

The weak formulation of the discrete in time system is as follows. For given p(l) and pg find

ft € ls (V) and pgt € 15, (V) satisfying

1
D9~ (S ) pdxdt + / M(S)KRVpY — 8P —DVu® | -Vedxdt
p

QT 1

-7 / P —pP"] - Vedxdt + / SRS pdxdt (2.49)
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= Flﬁt(Pdth+/ Pf%l(Sl‘S’)Kg-V(pdxdt
Or Or

forall ¢ €15,(V);

, ®d 0 (s} + (1 57")) ydxdr

T

+ (u&?tl(S DKV +pg%g(sf’)Kvp§f) Vydxd
Or

+f (ostP e
QT Pl

*, WO + p2 SO FR ydxdt
T

=/, (PP 2u(ST) + (P22 (SY) ) K- Vydar
T

Dvu5f> Vdxdi+1 / 3wVl — p")) - Vydxdr (250)

for all y € I5,(V). Fort<0wesetpl =pY, pg —pg

We will prove the following theorem, Theorem 2.3.2, and then, by passing to the limit as
ot — 0, we will establish Theorem 2.3.1.

Theorem 2.3.2. Assume (A.1)—(A.8), pg,pl € L*(Q), and pg > 0. Then for all Ot there exist
functions pl ,pg €ls (V), pgt > 0 a.e. in Qr, satisfying (2.49), (2.50).

The solution of the problem (2.49), (2.50) is built from a sequence of elliptic problems that
we write here explicitly for the readers convenience. Let us fix 1 < k < M. We need to establish

the existence of functions pé‘ , pfg‘, € V that satisfy

1 k k-1 /

—T[/[Vplg—Vpﬂ-V(pdx—f—/ SKFS@dx (2.51)
Q Q

— | Fodx+ [ piu(shie: Vo
Q Q

-Vodx

1
A(SHKV ph — cpsfﬁz)vuk
l

forall ¢ €V and
1

E/ﬁd)((u"S’Urpg(l—Sf‘)) — (s et =S )
+ / % (SHKVpf +piie (Sk)KVplg,) -Vydx
std
v / (cpskp LDV ) Vydx (2.52)
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+n/ pg—uk V( pl)> Vl//dx-l-/ (u"Sf + psSk)Fpydx
= [ (phu(sh) +(phAy(s)) Ke: Vs

for all y € V. Here, as always, we use the notation

uk std

=a(pt), pf = p™ +a(pt), pf = pe(pl). S¥ = p: ' (pk - p)).

2.4 Application of the Schauder fixed point theorem

In this section we prove Theorem 2.3.2 by proving the existence of at least one solution to the
problem (2.51)—(2.52). The existence of the solution (p}, p%) for the system (2.51)(2.52) will
be proved by the Leray—Schauder fixed point theorem. This technique is common and is used in

[11], [35], [63] and similar papers. We cite the Leray—Schauder theorem formulation from [11].

Theorem 2.4.1. Let 7 be a continuous and compact map of a Banach 9 space into itself.
Suppose that a set of x € B such that x = 6 7 x is bounded for some & € [0, 1]. Then the map
has a fixed point.

In the construction of the fixed point map .7 we use several regularizations. First, we intro-

duce a small parameter € > 0 and replace A;(S;) and p,(pg) by

AL (S1) = M(S)) +e, p;(Pg) = Pg(pg) +&.

The function A, (S;) is implicitly regularized with the parameter € by the addition of a new term
in the equation for the gas component (see (2.55)).
Finally, we use the operator Py defined as an orthogonal projector in L?(Q) on the first N

eigenvectors of the eigenproblem (see [63]),

—Ap;=Aip; in &
pi=0 on Ip; (2.53)
Vpi-n=0 on I},

and replace several functions by its projections.

It is easy to verify that the operator Py satisfies the following properties:

(P.1) There exists a constant Cy such that for all p € I? (Q) and g € V it holds that
VPN [Pz ) < CnIPlzg), VPNl 2 @) < (Vallz o)
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(P.2) Forall p €V we have
[ vPulp)-Vpdx= [ [vPu(p) P
o Q
(P.3) For p, ¢ € L*>(Q) we have
/ P lpledx = / pPn (o] dx.
Q Q

From now on, in order to simplify the notation we will omit the superscript k in (2.51)—(2.52)
and assume k, 0¢, and 7 are fixed. All quantities on the preceding time level will be denoted by a
star (¥~ ! replaced by u*, etc.). In order to simplify further notation we will denote the function
S; by S in the rest of the section.

Let p; and p, be given functions from L?(Q). We define secondary variables as

S*=p (i —p), wt =a(p}), pf = pi" +u*, pE* = pE(py).

We define the mapping .7 : L?(Q) x L*(Q) — L*(Q) x L*(Q) by T (P1,Pg) = (P1,pg)> Where
(p1, pg) is the unique solution of the linear system (2.54)—(2.55) below. In this system we use the

following notation:

S=p: PP T=(p,). PL=PL(P). Pi=pi" T

We also set p, = Py[pg| and consequently f)g = Pn[P,], which leads to the following shorthand

notation:

= i(By). Py =Pe(Pe)s Pr=pi"+ i

With this notation the linearized and regularized variational problem that defines the mapping .7

is given by the following set of equations:

1 [@E-5)0dr+ [ £ (S)KYV py — BS—DVi] - Vg dx
ot Jo Q o
1 /Q V5, — V) Vodx+ /Q SFr@dx (2.54)
— | Rodx+ | pi()Ke-Vods
Q Q
forall ¢ €V and
1 — —& o * ok 87* _ %
E/QQD(@S—I—pg(l—S))—(u §'+pE(1-5")) ) wax
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std

-I-/ (ull )KVpl-l—pg?L( )KVpg—I—Sngpg-i-CIDSp

DVii | -Vydx (2.55)
Py

+n/ pe— i) (Vh,~ Vi) Vl//dx—l-/ (@S +PE(1 —S5) Foydx
= [ (Pin(®)+ (2)*4(5) ) Ke: Vs

for all y € V. We note that (2.54) and (2.55) are linear and uncoupled. Different terms in these
equations are carefully linearized in order to keep the symmetry present in original equations
that allows us to use the test functions given by (2.59) and the orthogonality (P.2).

First we will show that the mapping .7 is well defined. Note that (2.54) is a linear elliptic
problem for the function p;, which can be written as A1 (p;, ¢) = fi(¢) with

Ai(p1, @) = /Q%S(EI)KVPZ -Vodx,

where the functional fj(¢) is given by the remaining terms in (2.54). Using boundedness of the
functions # and fy, Py > P — iy > 0 and estimates HV‘g’ l2(0) < Cw||E I22(q) for & = p1, pe, u,

one can easily prove the boundedness of the linear functional f1.

1f1(@)] < Cllollv

for all ¢ € V. By the Lax—Milgram lemma, (2.54) has a unique solution p; € V.
Similarly, since p; is known from (2.54), (2.55) can be written as A»(pg, ¥) = f2(y) with

Molpe¥) = [ PyVpe-Vyrd, (2.56)

where the linear functional f>(y) is given by the remaining terms in (2.55). Using the same
arguments as in the estimate for f; we get the boundedness of f> and by the Lax—Milgram
lemma the existence of a unique solution p, € V to (2.55). This ensures that the map .7 is well
defined on L?(Q) x L*(Q).

Continuity and compactness. Let (p;,, P, ,) be a sequence in (L*(Q))? that converges to
some (P, pg) in (L?(Q))?. Then we can find a subsequence such that (p; », Pg.n) = T (PrnsPen)
converges weakly in H'(Q)? to some functions (p;, Pg). Using the continuity and the bound-
edness of all the coefficients in (2.54), (2.55), and the continuity of the operator Py, one can
easily prove that (p;, pg) = 7 (P}, P,)- The uniqueness of the solution to (2.54)—(2.55) gives the
convergence of the whole sequence. This proves the continuity of the map .7; the compactness

follows from the compact embedding of H!(Q) into L?(Q).
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A priori estimate. Assume that for chosen o € (0, 1] there exists a pair (p;, pg) satisfying

(p1,pg) = 07 (p1, Pg), Which can be written as

/q>s $%) (pdx+/ {)L, KV&—QDS; DVu} Vodx

—n/Q[Vp“g—Vﬁl]-V(pdx+ /QSFp(pdx (2.57)
:/Fl(pdx—l—/pl/ll(S)Kg-V(pdx
Q Q
forall ¢ €V, and

%/ @ ((uS+pE(1—5)) — (u'S* +p&*(1-5))) wdx

std
P

+/ (ull )Kvpl +Pg Ag (S )KVpg+8p£Vpg +PS—— 5 DVu) -Vydx (2.58)

+n/ £ ) (Vi — V) Vl//dx+/ (uS+ pE(1 — S))Fpyrdx
= [ (pui(5)+ (35)24(5)) Ke- Vyx

for all y € V. Note that in the system (2.57)—(2.58) we have two kinds of secondary quantities:

= 1(py), Pg?:ﬁ;(l?g), pr= Psrd‘*'”

and
i=0(pg), Pg=Ps(Pe), P1= pi' +i.
We will use the test functions ¢ = p; — N¢(p,) and y = M*?(p,) given by

Pz (o) pg 1
NE(py) :/ NO) s ME(py) :/ —_do. (2.59)
*Jo pE(o) o pE(o)
For any p, € R they satisfy € dependent bounds:
u 1
IN®(pg)| < maxypg| IM*(pg)| < E‘Pg’- (2.60)

We get

1 i
q) * € / KV——QD DV Vp,——Vp
&/ S—S8)(p1 —N®(pg))dx+ { 5 Sp u} ( DI 5 pg> dx

i
—T[/ [Vﬁg—Vﬁ[] . <Vpl— TEVﬁg> a’x+/ SFP(pl—NE(ﬁg)> dx
Q pg Q
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Chapter 2. Two-phase flow in low solubility regime

8

:/QFI(PI—NS(ﬁg»dx‘l‘/gplll(S)Kg- (sz—p—V > dx
and
%/gde((uS-l-pgg(l—S))—(u*S*-I—p;f’*(l—S*)))Ms(p”g)dx

std 1
+/ (m,t‘( SKvZ +p £ (S )KVﬁngsp;V&er:Spl DVi ) —Vpedx
Q o B P

1
8

1
—/ P (S) + (Pg ) Ag(S ))Kg-EVﬁgdx.
2

After summation we get (cancellation of four terms and summation of two terms)

1 € _
/Q {EAIE(S)KVM -V + ngngg] dx

A

+n/ [Vpg—v,al].(v,sg—vp,)dx:—/ SFp(p1 — N&(By)) dx

dx

1 1
—CDSEDVIZ -Vpi+ CI)SEDVIZ -Vpe+ A, (S)Kvﬁg -Vpg
l g

+/Fz p1—N(Py) dx+/pz/lz )Kg- szdx——/<I>S §*)(p1— N*(pg)) dx
dD((uS+pg(1— S)) — (u*S* +pg™ (1 —S%))) M®(p,) dx
—I—/p Kg.Vﬁgdx—/Q(uS—l—pg(l—S))Fng(ﬁg)dx.
By Lemma 2.1.6 we have for sufficiently small €

1
(DSEDV”Y Vg + A (SYKV pg - Vg > ep| Vil
2

1 1
|CDSEDVﬁ-Vp1\ < EAIS(S)KVpl-Vpl +qcp| Vi,

with 0 < g < 1, which leads to

1

£
/ [(E - 5)))“1 (S)KVp;-Vp+ (1 —q)ep|Vil]* + 5 VPsVhg| dx

41 [ (V5= Vi) (Vi —Vpi)dv < RHS,
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Chapter 2. Two-phase flow in low solubility regime

where
RHS == [ SFo(p=N*(5)dx+ | Filpi—N°(50)dx
~ [ S+ Pz (1= SN FME () dv— 5. [ B(S—5) (1~ () dx
—= QCID((uS—i—p;(l—S))—(u*S*—i—p;’*(l—S*)))Mg(ﬁg)dx

+ /Q p2(S)Kg - Vprdx+ /Q BEd(S)Kg - Vg dx.

Using orthogonality of the spectral functions (P.2), multiplying by &, and using ¢ < 1, we get
1
/Q {Eskm|Vpl|2 +o(1=q)ep|Vil +e|vlsg|2] dx + na/Q IV, — V> dx < |RHS|.
Since we need an estimate independent of ¢ it is enough to consider

1
7€ | Vi + V5 Pl < |RHS). 2.61)

In the estimates of the right-hand side we use boundedness of the coefficients and bounds for

function M? and N¥¢ given in (2.60). For example, we can estimate

~ u -
[ st poya| < [ (Folpi + Fo21p,]) s
< éHVle%Z(Q) +é||VP~g||1%2(Q) +CHFP||%,2(Q)

with & small enough, depending on €, and C = C(upqy, Co, €), Where Cg is the constant from the
Poincaré inequality. Note that C is independent of N and 7. All the other integrals can be treated

in similar way, obtaining
= 2 va |12
|IRHS| < 8||Vpl||L2(Q) +8||VngL2(Q) +C,

where the constant C depends on €, but it is independent of ¢, N, and 17. As a consequence we

get from (2.61) (for € sufficiently small)
1
7€ | lnlVpiP+ V5 Pldx < . 2.62)

with C independent of &, N, and 7).
By setting ¥ = p, in (2.58) we get

epE|Vp,|*dx
| epsivpd
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Chapter 2. Two-phase flow in low solubility regime

std

__ / (m;?(S)Kvp, + 0PEA(S)KV g + oS ;5
Q l

DVﬂ) “Vpedx

_3/ O ((uS+pE(1—5)) — (u'S" +pE*(1—5%))) pedx
—0'17/ ) (VPg — Vﬁl)-Vpgdx—O'/Q(uS+pg8(1—S))Fppgdx
+0o /Q (Puiidy(S) + (BE)*Ag(S)) Kg- Vpgdx.
Using Holder and Poincaré inequalities we get for any € > 0,
82/Q|Vpg|2dx§é/g|vpg|2dx+c(/Q(|VPl’2+’Vﬁ|2+|vﬁg!2+|vﬁ1|2) dx+1>.
Using ||V 20y < Mgl VB¢l 2 191200 < 9P1ll120y. and (2.62) we obtain

/ VpePdx < C, (2.63)
Q

where C depends on € but it is independent of o, N, and 1. From (2.62) and (2.63) we conclude
that all assumptions of the Schauder fixed point theorem are satisfied, which proves the following

proposition.

Proposition 2.4.2. For given (pj],p;) € L*(Q) x L*(Q) there exists (p;,pg) € V X V that solve
(2.64), (2.65):

1 1

— [ ®(S-S5Y)od —|—/ AE(SYKVp; — dS DVia(?P -Vod

57 2= 10dxt || A ST pi— @S S DViPrIpd) | Vs
—1 [ (VOulpd = VOulpil-Vods+ | SFrpds (2.64)

Z/QE(PdXJF/QPMl(S)Kg'V‘PdX

forall p €V and
1
5 o @UuSTpE(1 =) = ('S +pE"(1=5) v+ | a(@N[p A (IKVpy-Vydx

+ [ (BEPMpDA(SKIPrlpe] + e (Pulpd) Vpe) - Vv
std

+/ std+u TN[ ])
1 [ (PE@nlpd) = i(Prlpd)) (VOulpd = Voulpi) - Vi

DVi(Py[pe]) - Vwdx (2.65)
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Chapter 2. Two-phase flow in low solubility regime

+ /Q(uS-i-pgg(l —8))Fpydx
= [ (Pra(Py [P () + (BE(Prlped) *Ae(S) K-V i
for all y € V. The secondary variables in equations (2.64), (2.65) are given by

S=le(Pg—pz), u=1(pg), P§=I3§(Pg), plzplﬂd‘f‘ﬁ(l’g)-

Note that p; and p, depend on 1, €, and N. However, we omit this dependency in writing
for simplicity until passing to the limit in some of the parameters, when the parameter of interest

will be denoted explicitly.

2.4.1 Step 2. Limitas N — o

By applying a priori estimates (2.62) and (2.63) given in the proof of Proposition 2.4.2 for

o =1 we get the following result.

Corollary 2.4.3. There is a constant C > 0 independent of N and 1 (but depending on €) such
that any solutions ( pfv , pg ) € V XV to the problem (2.64), (2.65) satisfy

/|VTN[P§/]|2dx,/|Vp§]2dx,/|fovzdx§C.
Q Q Q

We consider behavior of the solution to (2.64)—(2.65), pév and p? , as N — oo, while all other
regularization parameters, €, 17, and ¢, are kept constant. We also denote the secondary variables

as

N =a(py), pg =pg(py). P =P +alpy), SV =p (P - D).

The uniform bounds (with respect to N) from Corollary 2.4.3 imply that there is a subsequence,

still denoted by N, such that as N — oo,

pg — pg weakly in V, strongly in L*(Q) and ae. inQ,
pY — p; weakly in V, strongly in L*(Q) and a.e. in Q,
Py [pfgv] — & weakly in V, strongly in L?(Q) and a.e. in Q,

for some p;, p,, & € V. Using the property (P.3) of the projection operator we find that & = p,.
Due to the properties (A.5) and (A.6) we have

SN S=p(py—p)) ae in Q,
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Chapter 2. Two-phase flow in low solubility regime

u — u=1i(p,) weaklyinV andae. in Q,

pY = pf =pE(p,) ae.in Q,
1/pl" = 1/p;=1/(p" +i(ps)) ae.in Q.

These convergences are sufficient to pass to the limit as N — oo in (2.64)—(2.65), and we get
% /Q D(S— ") pdx+ /Q AE(S)KVp, —q)SéDVﬁ(pg)] Vodx
—n /Q[Vpg _Vpl]-Vodx+ /QSFp(pdx (2.66)
= /QFlfpdx+ /QPMI(S)Kg Vodx
forall ¢ €V and

%/ @ ((uS+pE(1—5)) — (u'S* +p&*(1-5))) wdx

std
+/ (u/l, S)KVp;+ psAg(S)KVpy + £p§ Vpg—f-q)Spll)

Dvu> Vydx (2.67)

+n/ £ 1) (Vpg—Vpy)- Vl//dx—i—/ (uS+pE(1 — S))Fpyrdx

= [ (punhi(5)+ (p524(5)) Ke- Vi
for all y € V, where

=i(pg), PE=Pi(pg), P1=p""+i(ps), S=p.'(pg—p1)- (2.68)

We have proved the following result.

Proposition 2.4.4. For given (pj],p;) € L*(Q) x L*(Q) there exists (p,pg) € V XV that solve
problem (2.66), (2.67), and (2.68).

24.2 Step3. Limitas e — 0

For the passage to the limit as € — 0 we need to refine a priori estimates since they are
not independent of €. This will be achieved by using the test functions ¢ = p; — N¥(p,) and
v = M*#(p,) in (2.66) and (2.67), which lead to the following estimate.

Lemma 2.4.5. There is a constant C independent of 0t, 1, and € such that each solution to the
problem (2.66), (2.67), and (2.68) satisfies

1 * *
E/Qq)[@@g(l?lvpg) — &(p[,py)]dx
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Chapter 2. Two-phase flow in low solubility regime

n /Q[QLZ(S)KVpl V14 Ao (S)KV py - Vg +cp|Vul> + €|V pg|?] dx (2.69)
+n/Q Vpe—Vpi[?dx <C,
where the function &€ is given by

EE(p1,pg) = Sli(pg)M* (pg) — N¥(pg)] + (1 —=S)[Pg (Pg)M* (pg) — pg]

—/OSpC(G)dG.

Proof. After introducing the test functions ¢ = p; — N®(p,) and y = M*®(p,) in (2.66) and (2.67)

(2.70)

and summation of the two equations, we get the following equation:
1
— [ d(S-5F — N°¢ d
57 [ =5 (p =N (py)) dx
1 A * ook * *
5 | @S +p5PI(1 =) = (u'S" +pE " (1-59)] ME(p) d

S
—|—/Q{lf(S)KVpl-Vpl—CIDEDVM-Vpl+7Lg(S)KVpg-Vpg+€|Vpg|2 dx (2.71)
1

oSD
—1—/ - Vu-Vpgdx—i-n/ |Vpg—Vpl|2dx:RHS,
Q ps Q

where RHS = I} + 1, + I5 with
I :/FI (p1—N®(py))dx,
/ SFp(p1 — N¥(pg)) dx — / (uS + pE(1 — 8)) FpM® (pg) dx, 2.72)
I :/Qplll (S) Kg'Vpldx—k/gp;lg(S)Kg'Vpgdx.
First we consider the accumulation terms in (2.71) in which we will use shorthand notation:
I = (S—S8)(p1 =N (pg)) + [(uS+pg (pg) (1 =5)) — (u"S" +pg" (1 = 87))] M*(py).
Then, by simple manipulations we get
J = Spi+SuM*®(pg) — N (pg)) + (1= 5)pg (pg)M*(pg)
— [$7p +S"(u"ME(py) — N€(py)) + (1= S")pg *M* (py)]
+8*(pf — p1) + 8" ([u"ME(py) — N¥(py)] — " M* (pg) — N¥(py)])
+(1=8)pg ™ [M*(py) — M*(p,)].
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Chapter 2. Two-phase flow in low solubility regime

Note that from (A.5) we get

"M () = N¥ ()~ "M () = N¥(p)) = () |

and from (A.6)

(1= )05 M ()~ M*(p)] = (1 =505 (7)) [ 5605
& Fg

leading to

J > S(uM*(pg) — N(pg)) + (1= S)(Pg (e )M (pg) — Pg)
— [S* (WM (pg) — N%(pg)) + (1 = S*)(pg "M®(pg) — pi)] + (8™ = S)(pg — p1)-

Using (A.4) one can estimate

.
(S 8)(pg—p1) > (S* — S)pe(S) > /S pe(0)do,

and therefore we can estimate the accumulation term as follows:

1 1
— | ® Fdx> - | P|EF —&%(p;,pi)]d 2.73
51’/(2 / X Z 5l/Q [ (Phpg) (pl7pg)] X, ( )
where the function & is given by (2.70).

We consider now the third and the fourth integrals in (2.71). Applying Lemma 2.1.6 we get

oSD

€
8

)‘DSDLVM : Vpl
P

Vu-Vpe+ A (S)KVpg - Ve > cp|Vul?,

1
< EXIS(S)KVpl -Vp; —|—qcD\Vu]2.

If we denote the sum of the third and fourth integral in (2.71) by ., then we easily get

1 1—
JZ/ {—lf(S)KVpl-Vpl—i-—qlg(S)KVpg-Vpg dx
Q[2 2 (2.74)

1—
+/ { qcD|Vu|2+8|Vpg|2] dx.
Q 2

Finally, let us estimate the right-hand side in (2.71). From F; > 0, p; < p and since N¥(pg) >0

for p, € R we can estimate

€
I = 0 Fi(pi —N®(pg))dxdt < 0 Fipdxdt §C1+§||PH%2(QT) (2.75)
T T
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for an arbitrary £, and Cy = C1(||Fil|12(g,), €)-

The term /, can be rearranged as follows:

L= —ASFszdX+/ngFP(N8(pg)—ﬁ(pg)Mg(pg))dx—/QP;(l—S)FPMS(pg)dX-
Since the function 7 is nondecreasing on R we have N®(p,) —i(pg)M*(p,) <0 and Fp > 0 gives

: SFp (N®(pg) — (pg)M®(pg))dxdr < 0. (2.76)

From Lemma 2.1.4 we can estimate the terms with the liquid pressure by the global pressure

as follows:

g
_ SFppldxdtS/ Fp(|p|+C)dxdt < Co+ 2 |Ipllz2 o,
Or Or 4

for some & > 0 and C; = Co([|Fp|| 120, ), €)-
The last term in I, is nonpositive for p, > 0, and in the region where p, < 0 by Lemma 2.1.4
it holds that

- / Pz (Pg)SgFpME (pg)dxdt = / Fp|S,pg|dxdt
Oor or
g
S/Q FP(\p|+C)dxdt§C3—|—Z||p\|i2(QT)
T

for arbitrary € > 0 and C3 = G3([|Fp||12(¢,): €)- Therefore, we conclude that for arbitrary € > 0
we have the estimate .
£

143 §C4+§’|p”i2(QT); (2.77)

where Cs = Cy([|Fp|12(g,), €)-

A straightforward estimate, based on boundedness of the gas and the liquid densities, gives

L <Cs+¢& lg(S)KVpg “Vpedxdt + 5 M(S)KVp; - Vp,dxdt (2.78)
Or Or

for an arbitrary &.

The global pressure norm can be estimated by the Poincaré inequality and (1.34) as follows:

1Pl g, <€ /Q (A (SYKV p; - Vs + Ao (SYKV pg - V) . (2.79)

From the estimates (2.73), (2.74), (2.75), (2.77), (2.78), and (2.79), taking sufficiently small
€ and € we obtain the estimate (2.69). Lemma 2.4.5 is proved. ]
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Chapter 2. Two-phase flow in low solubility regime

Remark 2.4.6. Note that by using Lemma 1.34 we can write the estimate (2.69) also as follows:
1 € E/. x %
5 /ch[cf (P1,pg) — & (Pl Py)ldx
+ | A(SKVp-Vp+KVB(S): VB(S) + cp|Vu + €] Vg dx

—f-T[/Q|Vpg—Vpl|2dx <C.

Due to the monotonicity of the function i and the definition of the function p; we can carry

out the same steps as in the proof of Lemma 2.2.4 to show
E(p1,pg) = —Mp, (2.80)
for p;, pg € R. Also, we have the upper bound
&4 (pl,pg) < C(pg+1) (2.81)

since p, satisfies p, > 0. We can apply the previous estimates (2.80) and (2.81) to the estimate
(2.69) and obtain that each solution to the problem (2.66), (2.67), and (2.68) with pj; > 0 satisfies
the following bound:

/Q[\Vp\z—l—\Vﬁ(S)\z—l—\Vu|2+€]Vpg\2]dx—|—n/Q|Vpg—Vp1\2dx§C, (2.82)

where the constant C is independent of € and 7).
We shall now denote the solution to the problem (2.66), (2.67), and (2.68) by pj and pg. All

secondary variables will also be denoted by ¢,

€ std

and the global pressure defined by (1.31) is denoted p*.
The bounds (2.69) and (2.82) give the following bounds uniform with respect to €:

(u®)¢ is uniformly bounded in V, (2.84)

(p®)e is uniformly bounded in V, (2.85)

(B(S%))e is uniformly bounded in H'!(Q), (2.86)
(VEVpE)e is uniformly bounded in L*(Q), (2.87)
(\/Efo,)g is uniformly bounded in L>(€), (2.88)
(Vpe(SE))e is uniformly bounded in L*(Q). (2.89)

55



Chapter 2. Two-phase flow in low solubility regime

Lemma 2.4.7. Let pl8 and pg be a solution to (2.66), (2.67), and (2.68) and let the corresponding
secondary variables be denoted as in (2.83). Then there exist functions p;,pg € Lz(Q), S =
P (pg—p1), and p = p;+P(S) €V such that on a subsequence it holds that

p& —p  weaklyinV and a.e. in Q, (2.90)

Pe(SE) — pe(S)  weakly in H'(Q). (2.91)

S8 —S  ae inQ, (2.92)

B(SE) — B(S)  weakly in H' (Q) and a.e. in Q, (2.93)
pi —p ae inQ, (2.94)

pE—sp, ae inQ, (2.95)

Pg = Pg (Pg) — pg = Pg(pg) ae inQ, (2.96)

pf = plstd+ﬁ(p§) — pr=p"+i(p,) ae inQ, (2.97)
u® — u=1(pg) weaklyinV and a.e. in Q, (2.98)

Proof. The convergence (2.90) follows directly from (2.85). From (2.89) and the Dirichlet
boundary condition we conclude that p.(S¢) — & weakly in H'(Q) and a.e. in Q, for some
& € H'(Q), £ > 0. Since the function p, is invertible we can define S = p-!(&) and now (2.91)
and (2.92) follow. From (2.86) and (2.92) we obtain (2.93).

Definition of the global pressure gives

€ € ! Ag(s) Ag(s)

1
— e\ / _. .
pr=p + s 7005) + Aas) p(s)ds — p—f—/s )+ A0 ) p.(s)ds =: p;, a.e. in Q,

where we define limiting liquid pressure p; by its relation to the limiting global pressure. Simi-

larly,
Pg =P +pe(S°) — pi+ pe(S) =: pgae. in Q.

Obviously, we have § = pc_l(pg — p1)- This proves (2.94), (2.95), and (2.96) and (2.97) follow
from the continuity of the functions p, and i, and the uniform convergence of ﬁg toward Py.
Finally, (2.98) is a consequence of (2.84). L]

2.4.3 End of the proof of Theorem 2.3.2

In order to prove Theorem 2.3.2 we need to pass to the limit as € — 0 in (2.66)—(2.67) using

the convergences established in Lemma 2.4.7. This passage to the limit is evident in all terms
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except the terms containing the gradients of the phase pressures. In these terms we use relation

(1.33). For example

/ WEAE (VK pf - Vyrdx = / WE[Aa(SE)KV pE + 7(SE)KV B (SE)] - Vdx
Q Q

- / u[A(S)KV p+ 7(S)KVB(S)] - Vydx = / WA (SYKV py -V dx,
Q Q

where the limit liquid pressure p; is defined from the limit global pressure p and the limit satura-
tion S by (1.31). In this way we have proved that for given pl;_] , p’g,_' ev, p’éf_] > 0, there exists
at least one solution p?‘, p’g, €V of (2.51) and (2.52). In order to finish the proof of Theorem 2.3.2

we need to prove nonnegativity of the pseudo gas pressure pg.

Lemma 2.4.8. Let pé‘*l, pg_l ev, pf,_l > 0. Then the solution to the problem (2.51), (2.52)
satisfies pg > 0.

Proof. Let us define X = min(u*,0). We set ¢ = X?/2 in the liquid component equation (2.51)
and ¥y = X in the gas component equation (2.52). Note that the integration in these equations
is performed only on the part of the domain where pg < 0, which cancels the terms multiplied
by pé’f, since Pg(pg) = 0 for p, < 0. By subtracting the liquid component equation from the gas
component equation we get

1/q) XZSk_< k=lgh—1 k—l(l_Sk—1)>X_(Sk_Sk—1)X2 d
ot Jo " P 2 .

X2 X2
+/ q>SkD|vx\2dx+/ S"Fﬁ—dx:—/ F— dx.
Q Q 2 o 2
Due to the fact plg’l > 0and X <0 we have
_ (ukflskfl +pkl _Skq))X >0,
which leads to
1 X2 X2
—/ o (S"+S’H) dx+/ CI>S"D|VX|2dx+/ SKEEZ dx
6t Jo 2 Q Q 2

X2
g_/F,—dxgo.
o 2

Using the fact that the capillary pressure curve is unbounded at S = 0 (see (A.4)) and pC(Sk) €
H'(Q) it follows that S* > 0 a.e. in Q and therefore X =0 a.e. in Q. Lemma 2.4.8 is proved. [J

This completes the proof of Theorem 2.3.2.
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2.5 Uniform estimates with respect to 6¢

From Lemma 2.4.5 and Remark 2.4.6 it follows that there exists a constant C independent of
0t, M, and € such that each solution to the problem (2.66), (2.67) and (2.68) satisfies

1 * %
55 | OIE(PEpE) = 8 (b p)dat [ [IVPF P+ VB (S*) P+ [V P

+n/Q Vps—Vpf[Pdx < C.

In this inequality pg is not necessarily positive, but due to monotonicity of the function i we

have &¢(p}, p§) > &%(p],(p)™"). Then, it is easy to see that
/@é”e pg )dx—>/q3é" Pl Dg)dXx,

/chéae plvpg)dx_>/gq)g pl7pg)dx

as € — 0, where p; and p, are the limits from Lemma 2.4.7. Then, using the weak lower semi-

continuity of norms, at the limit we get
l * *
55 | P1E G ) = E i )+ [ [VpP+[VB(S)P + |V

+n/Q\Vpg—sz|2dx§ C,

where the constant C does not change and stays independent of 8¢ and 1. This bound can be

applied to all time levels k, leading to
55 | REGh ) — gk ] [ (VPP + VB(SHR+ Vil P ax
+n/Q IVph—Vpi|Pdx<C.
Multiplying this inequality by ¢ and summing from 1 to M we obtain
sl P dxt [ (VP4 [VB(S)P 4 |V )
+n/QT VpS' —Vpi'[Pdx < C+ /ché"’(p?,pg)dx

From Lemma 2.2.4 and pg cL*(Q), pg > 0 we get the following bound.

Lemma 2.5.1. Let p?’ and pgt be a solution to (2.49), (2.50) and let the secondary variables be

denoted by S% udt and p& . Then there exists a constant C > 0, independent of 6t and 1, such

that

/ (\vp5’\2+\Vﬁ(s5f)\2+\vu5f|2)dxdz+n/ Vpd' —Vp{'Pdxdt < C. (2.99)
Or

T
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Let us introduce the function
re = a(p§) St + pg(pf) (1—5)

and corresponding piecewise constant and piecewise linear time dependent functions which will

ot ~0t ;
be denoted by ry* and 7", respectively.

Lemma 2.5.2. Let pl& and pgt be a solution to (2.49), (2.50) from Theorem 2.3.2. Then the
following bounds uniform with respect to 8t hold:

(pét)g, is uniformly bounded in L*(0,T;V), (2.100)
(B(8%))s, is uniformly bounded in L*(0,T;H' (R)), (2.101)
(u%) s, is uniformly bounded in L*(0,T;V), (2.102)
(pe(8%)) s, is uniformly bounded in L*(0,T;V ), (2.103)
(89) s, is uniformly bounded in L*(0,T;H" (Q)), (2.104)
(§%)s, is uniformly bounded in L*(0,T;H'(Q)), (2.105)
(p®")s, is uniformly bounded in L*(0,T;V), (2.106)

(Pg')s: is uniformly bounded in L*(0,T;V), (2.107)

( f )s: is uniformly bounded in L*(0,T;H'(Q)), (2.108)

( g )s: is uniformly bounded in L*(0,T;H'(Q)), (2.109)
(99,55, is uniformly bounded in L*(0,T;H~"(Q)), (2.110)
(<I>8, t) is uniformly bounded in L*(0,T;H ' (Q)). (2.111)

Proof. The estimates (2.100), (2.101), (2.102), (2.103) are consequences of (2.99). Using (A.4)

we get
n/ pY —p¥) P dxdt = n/ \2dxdr>M0n/ VS92 dxd,

and the estimate (2.104) follows from (2.99). The estimate (2.106) is a consequence of (2.20)
and the estimates (2.100) and (2.103). The estimate (2.107) for p5’ follow from the boundedness
of the regularizing term in (2.99).

From the definition of function r% we have

8
J k k k k k k
Z (S Vi + (u —ﬁg(pg))VS +p;(pg)(1_5 )Vpg> %(tkflvlk}(t)'
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Chapter 2. Two-phase flow in low solubility regime

Due to the fact that ﬁg, i1, and ﬁé are bounded functions we conclude
1) 1) o o
197312200 < CUVE 22y HIVPE 2200y HIVSY (B2 )

where the constant C does not depend on 0z. Applying (2.102), (2.104), and (2.107) we get the
estimate (2.108). From the definitions of the functions $9t and fg’ , and the fact that pg, p? €
H'(Q), we have
GO 1)
1957 220, < CUTSY 22 gy HITS) 22 )

IV 1720059 < CUVPE 17200y FIVSY 17200y HIV LI 20y VS 17202

and therefore we obtain the estimates (2.105) and (2.109). The estimates (2.110) and (2.111)
follow from (2.102)—(2.108) and the variational equations (2.49) and (2.50). O

2.5.1 End of the proof of Theorem 2.3.1

In this section we pass to the limit as 6t — 0.

Proposition 2.5.3. Let (A.1)—(A.8) hold and assume (p?,pg) c H'(Q) x HY(Q), pg > 0. Then
there is a subsequence, still denoted (8t), such that the following convergences hold when ot

goes to zero:

S% — S strongly in L*(Qr) and a.e. in Qr, (2.112)
B(S%) — B(S) weakly in L*(0,T;H' (Q)) and a.e. in Or, (2.113)
p% — pweakly in L*(0,T;V), (2.114)
POt — p; weakly in L*(0,T; V), (2.115)
pgt — pg weakly in LZ(O, T;V)and a.e. in Qr, (2.116)
u® — u=i(pg) weakly in L*(0,T;V), (2.117)
rgt — (pg)S+ Pg(pg) (1 —S) strongly in L*(Qr) and a.e. in Or. (2.118)

Furthermore, 0 < S <1, and

®9,5% — ®9,S  weakly in L*(0,T;:H™(Q)), (2.119)
DO, — @9, (Py(pg)(1—S) +1(pg)S)  weakly in L*(0,T;H ' (Q)). (2.120)
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Chapter 2. Two-phase flow in low solubility regime

Proof. From the estimates (2.110) and (2.105) we conclude that (55’ ) is relatively compact in
L?>(Qr) and one can extract a subsequence converging strongly in L?(Qr) and a.e. in Qr to
some S € L?(Qr). Obviously we have 0 < § < 1. By applying Lemma 3.2 from [69] we find
(2.112). The weak convergences in (2.113), (2.114), (2.115), (2.116), and (2.117) follow from
Lemma 2.5.2.

The estimates (2.109) and (2.111) give relative compactness of the sequence (f&

2 )5 and, on

a subsequence,
76

gt — g strongly in Lz(QT) and a.e. in Q7.

By applying Lemma 3.2 from [69] we also have the convergence

rgt — rg strongly in L*(Qr) and a.e. in Q.

It remains to show that r, = @i(pg)S + Pg(pg)(1 —S). From the assumptions (A.5) and (A.6) we
have for any v € L2(Qr)

|, (#62s™ +pelp)(1 =)
— [(v)S% + Py (v)(1 = $7)] ) (8" — v) dxdr > 0.
After passing to the limit 8¢ — O we obtain for all v € L?(Qr),
[ (= 180+ po4)(1 = )]) (g ~ ) dxdr > 0
By setting v = p, — o'v1 and passing to the limit ¢ — 0 we get for all v; € L*(Qr)

/Q T (re — a(pe)S + e pe) (1 —5)] w1 dxd >0,

which gives rg = ii(pg)S + Pg(pg)(1 — ) and (2.118) is proved. Then obviously we also have
ﬁ(pgt)S+ﬁg(pgt)(1 —8) = l(pg)S+Pe(pe)(1—S) ae. in Qr. Since the functions & and P, are

C! increasing functions we have

i (p3)S+ Py(p3)(1-5) >0,

1)
8

(2.119) and (2.120) are consequences of the estimates (2.110), (2.111), and (2.118). O

which gives po’ — p, a.e. in Qr. Consequently we conclude that u = #i(p,). The convergences

Using the convergence results in Proposition 2.5.3 and the boundedness of all nonlinear co-
efficients, we can now pass to the limit as 6 — 0 in the variational equations (2.49), (2.50) and
find that, for all ¢,y € L? (0,T;V), (2.46) and (2.47) hold.
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Chapter 2. Two-phase flow in low solubility regime

Let us denote 7, = Pg(pg)(1 —S) + ii(pg)S. Then, from S,r, € L?(0,T; H'(Q)) and ®4;S,
®o,ry € L2(0,T;H'(Q)) it follows immediately that S, r, € C([0,T];L*(Q)). By a standard
technique, using integration by parts, we see that the initial conditions, S(0) = S and r,(0) = rg,
are satisfied a.e. in £ at t = 0. Finally, nonnegativity of the gas pseudopressure, p, > 0, follows

from the pointwise convergence. This concludes the proof of Theorem 2.3.1.

2.6 Proof of Theorem 2.2.1

Theorem 2.2.1 will be proved by passing to the limit as 7 — O in the regularized prob-
lem (2.46), (2.47). We now denote explicitly the dependence of the regularized solution on
the parameter 1. In order to apply Theorem 2.3.1, we will regularize the initial conditions
p?, pg € L*(Q) with the regularization parameter 1 and denote the regularized initial conditions
by p?’n,pg’n € H'(Q). We assume that p?’n — p? and pg’n — pg in L?(Q) and a.e. in Q, when
7N tends to zero.

As before we introduce the notation:
= a(p])S" + Py (P (1 - 57). (2.121)

By passing to the limit 8¢ — 0 to the estimate (2.99) and using the weak lower semi-continuity

of the norms we find
/ (\Vp”]2+|Vﬁ(Sn)|2+]Vun]2)dxdt—i—n/ IVpl —Vp] [Pdxdt < C, (2.122)
Or Or

where C > 0 is independent of 7. From this estimate we obtain the following bounds with respect

ton:

(p™)y is uniformly bounded in L*(0,7;V), (2.123)
(u™)y is uniformly bounded in L*(0,T:V), (2.124)
(B"(S"))y is uniformly bounded in L*(0,T;H' (Q)), (2.125)
(vVVpe(S™))y is uniformly bounded in L*(Qr)', (2.126)
(@0, (S™))y is uniformly bounded in L*(0, T H~ ' (Q)), (2.127)
(@9, (r]))y is uniformly bounded in L*(0,T:H ' (Q)). (2.128)

Through the limit process are also conserved the following estimates:

0<8T<1 ae.inQr, (2.129)
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pg >0 ae. inQr. (2.130)

Due to Lemma 2.1.4, (1.34), and (2.130) we also have
( pg)n is uniformly bounded in LZ(QT), (2.131)
(W AMSHVED a0, (\/A(S])VpR)y are uniformly bounded in L*(Qr)'. (2.132)

For the passage to the limit as 7 — 0 we need a compactness in LZ(QT) of the sequences
and (r¢ ) which will be prove an application of Lemma 4.2 in [4]. Therefore, we nee
S™) and g hich will be proved by pplicati fL 4.2 in [4]. Therefi d

the following estimates.
Lemma 2.6.1. Under the assumptions (A.1)—(A.9), we have the following inequalities:
/Q 187 (x+ Ax, 1) — S" (x, 1) [ dxdr < o (|Ax]), (2.133)
T
/Q | (x4 Ax, 1) — r (x,1)[*dxdr < &(|Ax]), (2.134)
T
for all Ax € R!, where the functions @ and @ are continuous and independent of N and satisfy
limja 0 o(|Ax|) =0 and limja, 0 ®(|Ax|) =0.
Proof. By using (A.8) and the bound (2.125) we obtain in a standard way

ST (x4 Ax, 1) — 8" (x,1) |* dxdrt < C|Ax|*7, (2.135)
Or

which proves (2.133). In order to obtain (2.134) we will consider the two parts of rg separately.
The first part, #i(p,)S, is easy to estimate using (2.135) and the bound (2.124). We get

/yﬁ(pg(x+Ax,r))S"(x+Ax,r))—ﬁ(pg(x,z))s’?(x,t)|2dxdtgc(|Ax\2+|Ax|2f). (2.136)
Or

The second term (1 —S™)P,(pg) can be written as (1 —S™)p,(p" — P(S")) in the whole domain

Qr since 1 — 8" is equal to zero in the one phase region. We have

QT\(l = ST)(x+Ax, 1)y (pd (x+Ax,1)) — (1= 8T) (x,1) Py (g (x,1))|* dxdt

S/Q (1= 8M)(x+Ax,1) (Pe(pf (x+Ax,1)) = Po(p] (x.1))) [P dxdt

" QTKSH(HA’“”)—S"(x;t))ﬁg(pQ(X,t))!dedt.
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The second term on the right-hand side is estimated by using (2.135) and the boundedness of the

function p,. In order to estimate the first term on the right-hand side we first note that by (A.6)

the function p, has bounded derivative. Then we can estimate

[(1=8M)(x+Ax, 1) (Pe (P} (x+Ax,1)) = po(p] (x.1)) [P dxdt

or
<C [ |p"(x+Ax,t)— p"(x,1)|* dxdt
or
+C [ (1 =8M)(x+Ax,0)P(ST (x + Ax,1)) — (1 — ST)(x,)P(S" (x,1))|* dx dt
Or
+C [ |(ST(x+Ax,1) — S (x,))P(ST (x,1))|> dxdt.
Or

The first integral on the right-hand side is estimated due to (2.123), and the estimate for the third

integral follows from the boundedness of the function P(S) and the bound (2.135). The second

integral on the right-hand side is estimated using the assumption (A.9), which finally leads to the

following estimate,
| et ) = )P COAXE +Ax + [Axf),
Or

and (2.134) is proved.

]

Lemma 2.6.2. (Strong and weak convergences) Up to a subsequence the following convergence

results hold:

ST — S strongly in LZ(QT) and a.e. in Qr,

rg — 4(pg)S+Pg(pg)(1—S) strongly in L*(Qr) and a.e. in Qr,

pg — pg weakly and a.e. in Qr,

p — p weakly in L*(0,T;V),

B(S™) — B(S) weakly in L*(0,T;H'(Q)),

u' — i(pg) weakly in L*(0,T;V),

p? — pra.e. in Qr,

®9, 8" — ®9,S weakly in L*(0,T;H 1 (Q)),

D0,ry — D0, (i(pg)S + Pg(pg)(1—S)) weakly in L*(0,T;H™'(Q)),

M(SHVp! — M(S)Vp, ),g(S?)Vpg — Ae(S))Vpg weakly in L*(Qr)'.

(2.137)
(2.138)
(2.139)
(2.140)
(2.141)
(2.142)
(2.143)
(2.144)
(2.145)
(2.146)
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Proof. 1f we apply Lemma 4.2 from [4] to the estimates (2.133), (2.129), and (2.127) we obtain
ST — § strongly in L*(Q7) and a.e. in Q7.

In the same way the boundedness of rg, the estimates (2.134) and (2.128) imply
rg — rg strongly in L*(Qr) and a.e. in Or.

We can extract a subsequence such that pg — pg weakly in L?(Qr) and then by using the mono-
tonicity argument, as in Proposition 2.5.3, we find that r, = ii(p4)S + Pg(pg)(1 — S) and obtain

the convergence

pg — pgae. in Qr.

All other convergences follow immediately from the bounds (2.123)—(2.128) and (2.132). The
limit liquid pressure p; is defined from the limit global pressure p and the limit saturation S;, by
(1.31). O]

By using the convergence results from the previous proposition combined with the bound-
edness of nonlinear coefficients, equality (1.34), and estimate (2.126) we can pass to the limit
n — 0in (2.46) and (2.47) to obtain the variational equations (2.29) and (2.30). Passing to the
limit 7 — O in the inequality pg > 0 we find p; > 0 a.e. in Q7. Using an integration by parts
in the regularized 1n-problem and the limit problem, with the test function of the form y(x)¢(z),
v eV, and ¢ € C!([0,T]) with (0) = 1, ¢(T) = 0, we find in a standard way that the initial
conditions (2.31), (2.32) are satisfied. This completes the proof of Theorem 2.2.1.

2.7 Conclusion

An existence result for the weak solution of the model describing flow of fluid composed of
two phases, and which is mixture of two components: liquid component and slightly soluble gas
component. The low solubility assumption is necessary for the compensation of the degeneracy
of the diffusive terms and it is essential for the energy estimate derivation. This assumption
allowed us to remove some nonphysical hypothesis on the diffusion terms that was used in some
earlier works. Compared to the proof from [35] we have relaxed the assumption on function &
regarding boundedness from below by some strictly positive constant obtaining a more physically

appropriate assumption. The boundedness from above of functions # and p, is assumed in this
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paper too, which means that the general cases of the Henry law and the ideal gas law remain an
open problem.

After analyzing the existence of the solution to the two-phase, two-component flow model,
the next step we want to address is the formulation and analysis of a numerical method for the
proposed model. This part will be left for our future research, and we will use this thesis in order
to lay the groundwork for this next step. Therefore, a slightly simpler immiscible two-phase flow
model is considered first and the next chapter of this dissertation brings convergence analysis of

a numerical method for the model in question.
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Chapter 3

Convergence of a finite volume scheme for
immiscible compressible two-phase flow in
porous media by the concept of the global

pressure

In this chapter we present a convergence proof for a cell-centered finite volume scheme for
a model describing immiscible, compressible two-phase flow in porous media. We consider
classical two-point flux discretization with “phase-by-phase” upwinding on an orthogonal mesh.
The convergence of this scheme is already considered in [46] in the incompressible case, and
in [76] for the compressible fluids. The proof presented here considers a compressible case
and compared to the proof given in [76] it is based on a different technique. Namely, we use
a fully equivalent global pressure formulation for the general case of immiscible compressible
two-phase flow which was derived in [5]. The equations are rewritten by expressing the original
equations in terms of the global pressure and the wetting saturation (see Chapter 1 Subsection
1.3.5). Here we prove the energy estimate, which is fundamental for the convergence proof, by
using the global pressure based on the total flux (see [5]) and relaying on a discrete version of
the relations between the phase pressure gradients and the global pressure gradient. With this
technique we can also remove uncommon treatment of the mass densities by the harmonic mean,
which is used in [76], by more commonly used upwind value. Unlike [76], where model with
constant absolute permeability throughout the domain was studied, we consider isotropic model

with a piecewise continuous function for absolute permeability with finitely many surfaces of
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discontinuity. We also give detailed explanation of the passage to limit in the discrete equations
in order to fix some shortcomings in the proof given in [76].

The outline of this chapter is as follows. In Section 3.1 we give a brief description of the
mathematical model for two-phase flow. More details on mathematical modeling can be found
in Chapter 1. In Section 3.2 we present the cell-centered finite volume discretization and we
define the finite volume scheme that will be studied. This approach leads to a fully coupled fully
implicit scheme. In Section 3.3 we derive discrete relations connecting the phase pressures and
the global pressure. Several auxiliary results are proven that will be used in the energy estimate
for the scheme. The maximum principle for the water saturation is proved in Section 3.4. By
applying suitable test functions and results from Section 3.3 the energy estimates are derived
in Section 3.5. In Section 3.6 these estimates are used to prove the existence of a solution to
the nonlinear discrete equations from Section 3.2. The compactness result for a sequence of the
solutions is proved in Section 3.7. Finally, in 3.8 we pass to the limit in the discrete equations,
when discretization parameters go to zero, and we find the weak solution to the continuous two-

phase flow model, which completes the convergence proof.

3.1 Mathematical formulation

We consider general two-phase flow model given by the mass balance law for each phase,

DI, (Pn(Pn)Sn) — div (An(Sw) Pn(Pn) K (VPp — Pu(Pn)8)) = Fu, (3.1)
D0 (Pw(Pw)Sw) — div (A (Sw) pw (Pw) K (VP — pw(pw)g)) = Fy, (3.2)

which was introduced in the Chapter 1. The system is completed by no void space assumption,
Sw+Sn = 1, and by the capillary pressure law p.(S,,) = pn — pw-

We consider a fixed time 7 > 0, a polyhedral domain Q and we set Q7 = Q x (0,7). The
boundary is assumed to be Lipschitz continuous and divided in two parts dQ =T’y UI'p. On I'y
homogeneous Neumann boundary condition is imposed

20 (Sw) P (Pn) K (Vpn — pn(pn)g) -m

on (0,T) x 'y, (3.3)
Aw(Sw)pw(pw)K (pr - pw(pw)g) n

=0,
—0,

and on I'p the Dirichlet boundary condition is imposed in the following way
pu(x,t) =0, pu(x,t)=0, on(0,7)xIp. (3.4)
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The sources and sinks in the model, F,, and F,, are taken in the following simple form:

o :pw(pw)(S{VFI_SWFP)7 F :pn(pn)(S;ﬁFI_SnFP), (35)

where F7 > 0 is the injection rate and Fp > 0 is the production rate. Note that the injection values
of phase saturation S%, and S, S/, + S = 1, are known but the pressures are given by the reservoir

pressures. The total source term imposed is

Fy+F, = (pW(pW)S{V + pn(Pn)sz)FI — (Pw(pPw)Sw + Pn(pn)Sn) Fp-

Finally, the initial conditions are given by

pn(0,x) =pa(x), pw(0,x)=pY(x), x€Q. (3.6)

With this formulation we obtain a system of four equations with four unknowns p,,, p,, Sy,
and S, that is usually reduced to a system of two differential equation with two unknowns, while
other two unknowns are eliminated by algebraic relations.

It has been shown in Chapter 1 that the two-phase flow model can be rewritten in terms of

the global pressure p and the water saturation S, by the following equations:
d )
CDE (ann) —div(A,puK (@Vp —pg) + b;Kg+aKVp.(Sy)) = Fy, 3.7
d .
CDE (prW) —div (A‘WPWK (va - pg) - bgKg - OCKVPC (Sw>) = Fw- (3'8)

The global pressure p is a pressure like unknown which is related to the phase pressures p, and

pw by the following equations (see (1.47)),

Sw
pw(Sw.p) =p— 1 fu(s,p)pl.(s)ds, (3.9)

Pn(Sw;p) :Pw(SWaP)—f-Pc(Sw). (3.10)

The fractional flow functions f,, and f, and the rest of the coefficients from the system of equa-
tions (3.7)—(3.8) are given by (1.43) and the function (S, p) is given by (1.48).
It 1s also important to note the relation between the gradients of phase pressures and the

gradient of the global pressure

Vp, = Q)(Sw;p)vp+fw(Sw;p)Vpc(Sw)7 (3.11)
Vp, = w(Smp)Vp _fn(SWap)Vpc(Sw)- (3.12)
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As already noted in Chapter 1 degeneracy of the system (3.7)—(3.8) leads us to replace the sat-
uration S,, with suitably defined saturation potential. Therefore, we define the function &(S,,, p)
by

_ pn(pn(Swap))pW(pW(SW7p))

(S, , (3.13)
( w p) l (SW7 P)
the saturation potential 3(S,,) by
S .
BSw) = [ M) ha(pils)ds (.14
and with these two functions we obtain the following form of the two-phase flow model:
d ) ~
P (PaSn) — div (ApuK (0Vp — pg) + b Kg + AKVB(S,,)) = Fy, (3.15)
) . ~
CDE (pwSw) — div (L,pu K (0Vp — pg) — b Kg — aKVB(S,,)) = Fy, (3.16)

which allow us to overcome degeneracy present in the diffusive part of the equations.
Note also that the relation between the gradients of phase pressures and the gradient of the

global pressure (3.11), (3.12) can be written as

20(S)Pn(Pn)V P = An(S) P (Pr) @(Sy, P)Vp + &V B(S,,), (3.17)
2«w(Sw)pw(pw)va = )’W(SW)pW<pW)w(SWap)Vp - &VB (Sw)~ (3.18)

In the whole chapter the following assumptions are taken to be true.

(A.1) The porosity & belongs to L=(Q), and there exist constants ®); > &, > 0, such that
D, < P(x) < Pyrae. in Q.

(A.2) The absolute permeability K = k(x)I, k € L*(Q), is a piecewise continuous function with
finitely many surfaces of discontinuity of finite / — 1 dimensional measure (see also Def-
inition 3.2.1, item vi). There are constants ky; > k,, > 0 such that k,, < k(x) < kys for
x e Q.

(A.3) Relative mobilities A,,, A, are Lipschitz continuous functions from [0, 1] to R™, A,,(S,, =
0) = 0 and A,,(S,, = 0) = 0; Ay is a nondecreasing functions of Sy. Moreover, there exist

constants Ay > A, > 0 such that for all S, € [0, 1]
0 < A < A(Sw) + An(Sw) < Au- (3.19)
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(A.4) The capillary pressure function p. € C'([0,1]) is a strictly monotone decreasing function.

(A.5) p, and p,, are C'(R) increasing functions, and there exist constants p,,, Ppr, p,‘f,, > 0 such
that for all p € R it holds

P < Pa(p) <pu,  Pa(p) <pip, a=wn. (3.20)
(A.6) Fp,F; € L*(Qr), p°,8° € L2(Q) with 0 < 8° < 1 and p? = p + p.(5°).

(A.7) The inverse of the function 3(S,,) is a Holder continuous function of order 7 € (1/2,1),

which can be written as (for some positive constant C > 0)
T

$2
S A ($)An(s)pL(s)ds| > |S1 — S| (3.21)

C

In order to deal with the Dirichlet boundary condition, we define the space
V={ucH (Q):u=00nTp}.
We give below definition of a weak solution to (3.1)—(3.2) from [76]

Definition 3.1.1. Let (A.1)—(A.7) hold true and assume (p2,p°) € L*(Q) x L>(Q), 0 < 8% < 1
a.e. € Q. Then the pair (py, pw) is a weak solution to problem (3.1), (3.2), (3.3), (3.4), and (3.6)

satisfying
P € L2(0,T:LX(Q)), v/ 2Aa(Sw)Vpa € (L0, T:L2(RQ))',
0<Sy<lae inQr, @(PuSn), P (pwSw) € L*(0,T;V’),
p,B(Sw)—B(1) € L*(0,T;V),

such that: for all ¢ € C'([0,T];V) with ¢(T,-) =0,
- /Q @Pu(pu)Sudgdd — [ @@ (P @)Sh(x)9(0.2)dx

1, Do (Sw) P (Pw) KV Py — oo (S) P2 (pw) K] - Vepdxdt (3.22)

4 [ pulpw)SuFrpdsdt = [ py(pu)SiFrpdsdr
Or Or
forall w € C'([0,T];V) with = w(T,-) =0,
- /Q Ppu(pn)S, 3 dxdi — [ @(0)pu(px)) (1= S, w(0.3) d
T

+ 0 [AH(SW)pn<pn)Kvpn - ln(SW)p;%(pn)Kg] -Vydxdt (3.23)

+ / Pn(Pn)SnFpydxdt = / Pn(pn)St Fpydxdt.
Oor or
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3.2 Finite volume scheme

Before the description of the finite volume scheme, we give the definition of a finite volume
mesh on Q x (0,7) from [45].

Definition 3.2.1. (Admissible mesh of Q) Let Q be an open bounded connected polyhedral subset
of RL, 1 =2, or 3. An admissible finite volume mesh of Q, denoted by T, is given by a family
of "control volumes", which are open polyhedral convex subsets of Q, a family of subsets of Q
contained in hyperplanes of R!, denoted by & (these are edges (two-dimensional) or sides (three-
dimensional) of the control volumes), with strictly positive (I — 1)—dimensional measure, and a

family of points of Q denoted by &7 satisfying the following properties:
i) The closure of the union of all control volumes is Q.

ii) For any K € T, there exists a subset & of & such that 0K = Ugcs, ©. Furthermore, & =

UkeTdék.

iii) For any (K,L) € T? with K # L, either the (I — 1)—dimensional Lebesgue measure of K NL
is 0 or KNL =G for some G € &, which will then be denoted by oy

iv) There are disjoint subsets &p C & and &y C & such that I'p = Ugecg,0 and I'y = Ugeg, O.
We denote the set of all interior sides by &= &\ (ép U &En).

v) The family & = (xi)geq is such that xx € K (for all K € T) and it is assumed that xx # xi,

and that the straight line (xg,xL) is orthogonal to Oy

vi) For any L € T, the absolute permeability k|1, is a continuous function on L. The surfaces
of discontinuity of k(x) are, therefore, exactly represented in the mesh T and they will be

denoted by &yisc C &7.

The mesh size is defined as size(T) = sup{diam(K),K € T}. We denote by N(K) the set of
neighboring volumes of K. Forany K € T and 6 € &,

K| is the [-dimensional Lebesgue measure
of K, and |o| is the (I — 1)-dimensional measure of o. If the K and L are two control volumes
we denote by d KIL distance between xg and x;; for o € &k by dg s we denote distance between

xg and o. For shorter notation we use the transmissibility

%)L = |0k|L|/dk|L and Tk o = [0]/dk 6.
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In order to simplify the treatment of the Dirichlet boundary conditions we will use the nota-
tion of the ghost volume attached to the Dirichlet side ¢ € &p. The ghost volume has the Dirichlet
values of the phase pressures attached to it, that is for the ghost volume L we set p,, ;. = p, 1 = 0.
By Np(K) 2 N(K) we denote the set of all neighboring volumes of K, including possible ghost
volumes.

For the mesh we also assume the following regularity

Jy>0 Vh YKeT VYLeN(K) diam(K)+diam(L) < ydg,
10 >0 VKeT,Voedbx dxes> (ds,

(3.24)

where

d(; - .

We denote by Hj,(Q) the space of functions from L?(Q) which are piecewise constants on
each K € T, and for function u;, € H,(Q) we denote the constant value of u;, on K by ug. For

(up,vy) € (Hy(Q))?, the inner product is defined in the following way (see [76])

(tn, Vi) Z Z TK|L up —ug)(ve —vg) +1 Z Z TK,cUKVK -
KeTLeN KeT 0€dKNT'p
The norm in H(Q) is defined by |[up||, ()= (un, ), )2
We denote by L,(Q) the space of functions from L?(Q) which are piecewise constants on

each K € T, with the inner product and the norm
(uh,vh Z \K]quK, HuhH%h(Q) = Z ‘KHL{K|2 (3.25)
KeT KeT

The discrete gradient V,u;, of a function u;, is defined on the dual mesh (see [12]) in which
the control volumes are attached to the sides ¢ € &. To the interface ok|; we associate the
volume TK| 1, constructed as a diamond upon Ok|L with xg and x;, as vertices; to 0 € &k, 0 C dQ,
we associate the volume Tk s constructed as a diamond upon o with xg as a vertex. The [-

dimensional measure of Tk, and Tk ¢ is respectively equal to
Tkl = |ok|ldgL/! and |Tk 6| = |O|dk o /1.

The discrete gradient V,u;, is defined as a function constant by dual volumes, in the following
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way:
ur—u
dxiL

Viun(x) = 4 145Ky 5 if x € Ty 5, 0 C T, (3.26)

dK,G

Engi it x € Ty,

OifxeTx s, 0 CIw,
where N and 7Nz, are unit normals to ¢ and Ok, respectively, directed outside of the volume
K. It is easy to show that
IVaunll20) = llunllg,@)-
In order to make the notation more uniform, for the ghost cell L connected to the volume K by

the side o we will denote the distance d ¢ by di;. With this convention we can write

ur — ug
Viieun == (Vaun) |1, = lTunKlb

which is valid for interior and the Dirichlet sides.

For an arbitrary vector F}q 1. € R! associated with the interface Ok|L € €\ én, which satisfies

F*K‘ L= —ﬁL| x for og L ¢ &p , one can define a piecewise constant vector function
Fp="Y Fyilr,, (3.27)
ced

and corresponding discrete divergence of the field Fj, as piecewise constant function

divg Fy = Y lokilFxi k- (3.28)

|K| LeNp(K)
In sequel we will use discrete Poincaré inequality from [45]:

Lemma 3.2.2. (Discrete Poincaré inequality) Let Q. be an open bounded polyhedral subset of
R!, | =2, or 3, T an admissible finite volume mesh in the sense of Definition 3.2.1, satisfying
(3.24), and u € H,(Q). Then

lullz2(@) < C(Q) [l 1y (0)-
where the constant C(2) depends only on Q.

Remark 3.2.3. The proof of the Lemma 3.2.2 is given in [45] for the case of the Dirichlet bound-
ary conditions, meaning that V = H& (Q). It is also stated in [45] that in the case of the Dirichlet
condition on a part of the boundary only, it is still possible to prove the discrete Poincaré in-

equality provided that the set Q is connected. This particular case was considered in [23].
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Remark 3.2.4. The first constraint on the family of meshes (T},);, in (3.24) is used in compactness
proof (see [12]) in order to estimate the discrete gradient of the piecewise constant function

up = (ug) ke, with ug = ﬁ [ u(x)dx for u € WH=(Q) by
IVihunl| 2 (@) < Cl[Vull =)

The second constraint on family of meshes (T);, is used in the proof of the discrete Poincaré

inequality (see [45, 23]).

A time discretization on interval (0, 7) is given by an integer N, the time step 6t =7 /N and a
sequence of time points t* = k8t, k € {0,1,...,N}, with t¥ = T The finite volume discretization
of Q x (0,T), denoted by D, consists of an admissible mesh T of Q and a time discretization
on interval (0,T), D = D(T,N,8t,{t*}}'_,). We define size(D) = max(size(T), t), and we will
write D = Dy, where h = size(D).

We denote by X (T, 6¢) the set of functions u from Q x (0,7) to R such that there exists a
family of values {u%,K € T,k=0,1...,N} satisfying

u(x,t) = uk! for x € K and 1 € (k8t,(k+1)8t].

For a function u € X (7, t) we define discrete L?(0,7;V) norm

N—1
||MHZZ<0,T;H,1(Q>):]<ZO5I< Y L TK\L|”k+1 P Y Y

k—+1 |2
KeTLeN(K KeToedKnlp

The following lemma gives the discrete integration by parts formula (see [22]).

Lemma 3.2.5. (Discrete integration by parts formula) Let  be an open bounded polygonal
subset of R, T an admissible finite volume mesh on Q. Let Fxip €R for K € T, L € Np(K) has
the property Fgp = —Fp g if L € N(K) and let ¢ be a piecewise constant function on Q, precisely
¢©(x) = @k, x € K. Then we have

Z Z FKL(PK:% Z Z FK|L((PK—§DL)+ Z Z Fx s @k

KeT LeNp(K) KeTLeN(K) KeToedKNp

The following lemma is an easy consequence of the discrete integration by parts formula.

Lemma 3.2.6. Let ¢ € (C'(Qr))! be a function equal to zero on the Neumann boundary Ty.
Then there is a constant C depending only on ¢ and Q such that for all p, € L*(0,T;H),(Q)) it
holds,

T T
E, - ‘ / / V. pn- 0 dxdi + / / pudive dxd
0 Q 0 Q

<Ch (thHiz(O,T;Hh(Q)) + 1) . (3.29)
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Proof. Fort € (t*,t**1] we have

/phdlv(p(xt Ydx = Z /phdlvq) x,t)dx

KeTy,
=) X Pk“/ @ (s,1) - N ds
KGThLGND(K K|L
:_Z Z LHT_ phtt) / 9 (s,1) - N ds
KE‘I LeN(K OKIL
+ Z Z (p];(—H k_H /(P Sl nK|LdS— 1,
KeT,0€dKNT'p

where we have used the fact that karl 0 for 0 € dKNTI'p. For the first term in (3.29) we obtain

from the definition of the discrete gradient

1 pk+1 _p/;(-i-l
/Vhph'(P(xJ)deE Z Z lLd—/ <p(x,t)-ndex
Q KeT, LEN(K) KL Tkl

k1 k+1
Pk

DM

d (p(xut)'n[Qde::II.
KeT, 6€dKNTp K.o Tk o

Now we have

1
RS

KeT, LeEN(K)

@ (x,7) - Nk dx
|TK\L| Tk |

1

|GK|L| Ok|L

so(s,t)-nKLds)

KeT, 0€dKNI'p |TK,G| Tk ¢

1
_H/O_QD(Sut>'nKLdS>-

Due to the smoothness of ¢ one obtain

1

|TK|L| Tk

o(x,1) Mg dx — —— @(s,t) - Ngds| < Ch,

|GK\L‘ OK|L

and analogously for o € I'p, from where we conclude

N—
Eh<0h26t<2 Y okl -+ XY Jollpk - k+l|)

n=0 KeT, LeN(K) KeT,0€dKNI'p
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The previous expression can be written in the following way

|pk+1_pk+1|
Eh<Cl’lZ St(KZ‘J’,L%" ‘GK‘L’ \/_K dK|L
cJyLe

Z Z |Pk+1 - PI;(—H |
+ ‘ | V dK o
KeT, 0cdKNl'p \/

which gives the estimate

N k k k k

Exl<cn) st Y Y i - P Y Y weldst PPl

n=0 KeT, LeEN(K) KeT,0cdKNI'p
which can be rewritten as (3.29). O]
Remark 3.2.7. In order to simplify notation when applying gathering by the edges we introduce
the following notation. Let Fy € R for K €T, L € Np(K) has the property Fyp=—Fux if
L € N(K) and let ¢ be a piecewise constant function on Q, precisely ¢(x) = ¢k, x € K. We also

assume that @ = 0 for ghost elements L. Then we have

1 .
Y Y lokilFxiex = 3 Y Y 16klFxi(ox — L),
KeTLeNp(K) KeTLeNp(K)

where

s Okl ifLeN(K)
2|o]| ifo € dKNTp.

Using this definition we also introduce T = |6k |r|/dk|, and ]TK‘L] = |6k|i|dg /1. Then we

can write

Y Y TK\LFK\L(PK = Z Y, TkuFx(ex — o),

KeT LeNp(K Ke‘ILeND(K)
and

l -
lenl|Z, ) = 5 Y Y tkpluk—url, wn € Hy(Q),
KeTLeNp(K)
2 lN : Kl _ )2
lunllz2(0.7,8,(0)) Z o), ) FkplugT —ugP, w, € X(T, ).
k=0  KeTLeNp(K)
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We continue with a description of standard phase-by-phase upwind discretization of the two-
phase flow equations which can be found in a book like [17]. The upwind discretization is also
studied in [79, 29, 48, 67] and in many other publications.

The system (3.1)—(3.2) is discretized by the two-point cell-centered finite volume scheme
with implicit Euler’s time discretization. The phase mobilities A, on the interface Ok|L are

approximated by an upwind scheme with respect to the corresponding phase pressure:

kup,k o Ao (vaK) if pl&,K - pl(cx,L >0

= o =w,n. (3.30)
o, K|L ) y
)L(X<Slv€v,L) if Plfx,K - Plfx,L <0

The gradients Vpy on the edge Ok, are approximated by the two-point approximation, and
the phase mass densities are also approximated by the upwind approximation with respect to the

corresponding phase pressure:

up.k pa(pléc,K) ifpl(cx,K _pl(cx,L >0

pa,K‘L: o =w,n. (3.3

Pa(Plfx,L) if P]fx,K - Plfx,L <0

For the energy estimate presented in Section 3.5 we will also need harmonic mean approximation

used in [76], and given by

k
Pakx do .
X (Plfx,K - Plfx,L)/ /k —(G) if P]&,K 7 PQL
Po kil = Por Pa o= w,n. (3.32)
Pa (PI&,K) if Plfx,l( = Plfx,L

For the discretization of the mass density in the gravity term we will use weighted arithmetic

mean:

ok PalPlx)dko+Pa(pl)dLe
PakiL =

, (3.33)
dk|L

where gx i, = g Nk and Nz is the K-outer unit normal vector to the edge Ok The phase

mobilities in the gravity term are approximated by an upwind value with respect to the gravity:

AG’k . )“(X<S]‘/€V7K) ifgK|L > 0

— i 3.34)
o,K|L . (
Aa(S]:%L) if gK|L <0

The absolute permeability is approximated by a function &y, that is defined on the dual mesh

as in [45]. Precisely, on the dual volume Tk, the function kj, is equal to the weighted harmonic
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mean

dy|L

ke, = , 335
KIE™ dg o ki +dr.o ke (3.35)

where the values kx and k;, are defined as the mean values over the elements K and L respectively,

1
k :—/kxdx.
TR S

The corresponding function from Lj,(Q) is denoted by k.

Remark 3.2.8. In a standard way one can proof ||k — k"|| 12(Q) — 0 as h — 0. By using simple

calculation we obtain

hy2 2 2
k=R < KBy X 1Tkl + X ki — ke [T
K|L€gdisc K|L¢‘g)disc
The first term on the right-hand side tends to zero as h — 0 due to finite measure of &gisc, and the
second term goes to zero due to continuity of k outside of Egisc. It follows that ||k — ky|| 2@ — 0
ash— 0.

The finite volume scheme for the discretization of equations (3.1)—(3.2) with boundary con-

ditions (3.3), (3.4), and initial conditions (3.6) is given by the following set of equations with the

unknowns (Pl ket (P Jkers (Shk ke, and (Siid)ker, k€ {0,1,..,N—1}:

Pri =P = pe(SE), SER sk =1, (3.36)
k+1ck+l  ~k ok
pn,K Sn,K _pn,KSn,K upk+1 _upk+1, k+1 k+1
K|k St + Z 7“'K\LkKIL’ln,K\L Puk|L (Puk —Pnr)
LEND(K) 2 (3.37)
Ghk+1 [ G+l k+1
+ ) |GK\L’kK|L;Ln7K‘L (Pn’K‘L ) 8K|L = ’K|Fn} ,
LEND(K)
k1 ok+1 Ak ok
Pyk Swk — PuwkSwk upk+1 _upk+1, k+1  k+1
K| Pk St T Z TK|LkK‘LAW,K‘L PwklL (Pyk — Pur)
LEND(K) 2 (3.38)
Gh+1 [ G+l k+1
+ Z |GK|L|kK|L/lw,K\L (pw,K\L ) 8KIL = ‘K|FW,JIF( :
LEND(K)
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For ok, € I'v the Neumann boundary conditions are given by:

2
k+1 K1 k1 k+1 Gk+1 [ _Gk+1
Wik Puki Pk —Pur) T 10kiLl (Pn,K\L ) gk =0 539
5 .
k41 K41, k1 k+1 Gk+1 [ G k+1
TK|L;L::,I;(|L va:,I;QL (pwJ,rK _pwji )+ |GK|L|AW7K|L (pw,K|L ) 8K|IL =~ 0.
For oy, € I'p the Dirichlet boundary condition is implemented by setting
Pl =0, piil=0 (3.40)
in the ghost cell L. The initial conditions are given by
1 1 _
P = [ A0 = [ P0dx Shc=p Gl —pl). (B4D)
K| Jx K| Jk

In this chapter we prove the following theorem.

Theorem 3.2.9. Assume hypothesis (A.1)—(A.7) hold. Let (Dy,);, be a sequence of discretization
of @ x (0,T) such that h — 0. Then there exists a subsequence of solutions to the discrete problem
(3.36)—(3.41), which converges to a weak solution of the problem (3.1), (3.2), (3.3), (3.4), (3.6)
in the sense of Definition 3.1.1.

3.3 Preliminary results

In our approach to the convergence proof of the scheme (3.36)—(3.41) we use the global
pressure p defined in (3.10) and we need to discretize the relations (3.11) and (3.12). In order to
simplify notation we will denote S, by S in this section.

The function w is given by (1.48) and its approximation a)lkq L, on edge Ok, is given by

I’w(S];quP][(()_Pw(S][(quP][i) if pk 7§ pk

W = PP Ko (3.42)
apy K .

P (SkiL» Pi) if py = pj.-

— k k
In (3.42) we have denoted S]I{{\ L= Sk ;SL and S’[‘(| ; will be defined as S%f’k later in (3.48).

Remark 3.3.1. From Remark 1.3.4, smoothness of the functions p,,(S, p), p.(S, p), and approx-

imation (3.42) we conclude that
0 < @ < O, < Oy < +oo. (3.43)
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We want the equations that relate the global pressure gradient to the phase pressure gradients
(3.11) and (3.12), to stay valid in the discrete case too. Therefore we will use (3.11) and (3.12)
to determine suitable approximation for the fractional flow functions f, and f,,.

From (3.9) the wetting phase pressure p,, on the element K is defined as

sk
Pl x = pw(Sk.pk) = Pk — 1 fa(s, D) PL(s) ds. (3.44)

The discretization (3.42) of the function @ on o, is then given by

sk sk
« D= pb— [ fals, R pl(s)ds + [ M fu(s, ph)pl(s) ds
Ok = k &
Px — P,

Y SR AT AN ACED (3.45)

1

— ]
pl—pk

Since we want the discrete equivalent of (3.12) we assume equality
k k ko (ko k k k k
Pwk — PwL = a’K\L(PK —pL)— fn,K|L(Pc(SK) —pe(S1)), (3.46)
to determine the approximation for the function f:
k k Sk kot St ky 1 k(o k k k k ok
Ph=rh= [ Ao pkpls)ds+ [ 1o, php(s)ds = wfy, (k= ph) = £ g ok — )

where we have denoted uf = p.(S%) and u¥ = p.(S¥). By introducing (3.45) in the previous

equation, we obtain
k k Sk kN St ky 7
pk=rh= [ s phopioyds+ [ hilsphpl(s)ds
k k SI’(f\L k K\ k k k
= phe= k= [ Ul ) = s, )P s — 1 — ).
Now we have
k kK k Sk kN7 St ky o/
Rxnlde—ut) = [ nsphopiods= 1 s pbplds, 347
K|L K|L

gup.,k

Let us define the upwind value § KIL

with respect to the global pressure as

) Sk if kK _k >0
goupk _ { Kk  DPkTPL= (3.48)

KL sk if pk—pk <o,
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and corresponding upwind mobility as kgugé Ao (S%’L’ k) for o = w,n. We set Sk XL = S%{ k

in (3.47) and we get

Sk
= / Jals, Pie)Pi(s)ds, = min{pk,p; }. (3.49)
/ Ug — uL SL

In the limit S} = S} = S we have f} ;.\, = fu(S, Pk,,)-
The nonwetting phase pressure is defined by (3.10) which gives

Phx = Pn(Sk. Pk) = Pw(Sk, Pk) + Pc(Sk). (3.50)

On the interface ok, we have

k ko ok k k ok
Pnk — PnL = Pwk — Pwr tUg —uy

ko ok k k ok k ok
= ox|.(Pk — PL) — fn,K\L(”K —up) +uk —uj,

which can be rewritten as

k k k k k k k k
Pk = Pnr = Ok (Pk — L)+ fiy ki (Wk — uz), (3.51)
with f KL= fr’; KL The approximation f:; KIL for the wetting phase fractional flow function
takes form
k 1 S];( k / k : k k
Tokit= 75— /k fW(S»PK\L)Pc(S) ds, PgiL= min{p, pr}- (3.52)
Ug —uyp JSp

In the case SK = S¥ = S we have fVI;IqL = fw(S7p]1<(\L)'

We have proved the following result.

Proposition 3.3.2. Assume that p’I‘( and pf are two given values of the global pressure, ull‘{ =

pe(S&) and uk = p.(S¥) are two given values of the capillary pressure. We denote by p;K,
pl,; Iz p’fvy x> and p]v‘% 1 the corresponding values of the nonwetting and the wetting phase pressures

defined by (3.10) and (3.9). Then we have

Pﬁ,K - Pﬁ,L = w]@\L(PIIC( —pf)+ fv]E,K|L(”]1<< —uf), (3.53)
Pk = P = Ok (Pk — L) — F ko (uk — ), (3.54)
where wK\L is defined by (3.42) with S |L iu‘lzk (see (3.48)); ka\L is given by (3.49), and
faxi = 1= Frg (see (3.52)).
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Remark 3.3.3. By the relations (3.53) and (3.54) one can define another finite volume scheme for

the problem (3.1), (3.2), (3.3), (3.4), (3.6), where primary unknowns are the saturation (Sf;}(l VkeT

and the global pressure (p’,‘(“)Keqy , k€{0,1,...,N — 1}. The equations for this new scheme are

given here:
k+1 gk-+1 k  ck
‘K|CI) pn,K Sn,K _pn,KSn,K
K
ot
upk+1 _upk+1, k+1, k+1 k+1 k+1 ¢ k1 k1
—+ Z TK|LkK|L}Ln7K|L pn7[(|L (wK|L (pK pL )+fW,K|L(uK ML )> (355)
LeNp(K)
2
Gk+1 [ Gk+1 _ k+1
+ ) |okiLlkkiL A, kL (PanL) gkiL = K|F, x
LeNp(K)
k+1 gk-+1 kK qk
pW7K SWJ( _pw,KSw,K
|K|Pk
ot
upk+1 upk+1, k+1, k+1  k+1\ _ ck+1 ( k+1 k+1
-+ Z TK‘LkK|LA’W7K|L PW7K|L ((DK|L (pK Pr ) n,K\L(uK ur )) (356)
LeNp(K)
2
Gk+1 [ Gk+1 _ k+1
+ ) oKLk LA, ki1 (PW,K|L) gkiL = |K|Fk -
LeNp(K)

Next we present three auxiliary lemmas.

up,k

Lemma 3.3.4. For o € {w,n} it holds p, KIL

is defined by (3.32).

> pg’K‘L, where p" is defined by (3.31) and

p.k
o,K|L

k
Paok|L

Proof. In the case p’& K~ p]fx ; = 0, the monotonicity of the function py leads to

) = pa(pl(cx,K) = piIf\L

k k k k
pa,K_p(x,L < pa.,K_pa,L

k -1 k k
/pa,K do m (pOt,K_p(X,L
pI&,L pOC(G) ‘

k _
PakiL =

In the same way we obtain in the case p¥, , — p* ; <0

k k k k
Poax —PaL Pak ~PalL k
k a? a’ b b k 9
pa7K|L: I3 S :pa(p(x,L) :p;pqu'
pOC,K dG 1 k _ k )
[ e (Pl
Por Pa(0) '

]

Lemma 3.3.5. With the same notation as in Proposition 3.3.2, we have the following estimates:

k
P in (ke —uE) (P = PL) = fu(SEL™ i) (ke — ) (Pl — pL): (3.57)

k
T Wk —ub)(Pk = PE) < fu( ST P (e —up) (P — pL)- (3.58)
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Proof. First, we note that for p € R and sk, sz € [0,1] it holds:

fulses ) =) < [ s, PYPL(YS < flo,p)(u — ), (3.59)
fu(sz,p)(ug —ur) < SK fu(s,p)PL(s)ds < fu(sk, p)(ux —ur). (3.60)

ST,

Indeed, in the case sx — sy > 0, since the capillary pressure p. is a nonincreasing function
of s we have ug —ur < 0. Now (3.59) and (3.60) easily follow from the facts that f,, is a
nondecreasing function of s, and f; is a nonincreasing function of 5. The case sx —s; < 0 is
treated in the same way.

Using (3.52), (3.59), (3.48), and the monotonicity of the function S fW(S,p]I‘qL), we get

Sk
Faxin (ke —up) (pk — pi) = / (s, Py ) pe(s)ds(pk — pf)
> fw(SguL P K|L)(“]I(( ”L)(pK pL)
The inequality (3.58) is proved in the same way. []

The following lemma compares the phase-by-phase upwinding to the global pressure up-

winding.

Lemma 3.3.6. For o € {w,n} it holds l"pKk‘L lgu}?é

Proof. Assume that p%& — pX > 0 holds, which implies lg gé = Aa(S%), o = w,n. Then it is not

possible to have at the same time

plfl’[( —pQL < 0 and p’v‘V’K —p’f%L < 0.
Indeed, this follows from the equations (3.46) and (3.51), which are repeated here,
k k k ok k k k k
Pk — Phwr = Ok (P — PL) — fo k11 (Pe(Sk) — Pe(SL)),
k k k ok k k k k
Pk = Pn = Ok(Pk — PL) + fyy k1. (Pe(Sk) — Pe(SL)),

and the fact that @*

K\L(P];( — plli) >0, frl;,K\L >0, and f&K'L > 0. Therefore, we have three possi-

bilities:

a) plfw K~ Plfv, ;> 0and p; K~ pﬁ 1 = 0. In this case all the upwind values are the same.
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b) plx— P, >0and p  — pl ; <0. Inthis case we have /'LZ‘I’(’TL = A, (S%) and lv'z%l = A (S%),

and also
£k (pe(Sk) = pe(SE)) <0,

and consequently by using (A.4) we get SI;( > Sﬁ. Due to the monotonicity of the function A,
one has

3k ./k
A= An(S¥) > A, (8%) = ASET

. ,k b
9) plv‘%K —p’jV’L < 0and p’r‘hK —pQL > (. In this case we have ;LZII’(|L = A, (S%) and )L::f;(\L = A(SH),

and also
£k (pe(Sk) = pe(SE)) > 0,

and consequently by using (A.4) we get S’;( < Sﬁ. Due to the monotonicity of A,, one has

Al = MulSE) = A(Sh) = 2530

wK|L w,K|L"

This proves the statement in the case pk — pk > 0.

. . K .
Let us now consider the case p’,‘( — plli < 0, meaning that /'Lﬁf‘;;‘L = Ay (Slli) a = w,n. In this

case, by the same reasoning as above, we can not have

pl,{l’K _pth > 0 and pva —pl‘fv’L > 0.
We again have three possibilities:
a) plf% K= pfw ; <0and pi K~ pﬁ. ; < 0. In this case all the upwind values are the same.

b) p’v‘%K — Plfv,L >0 and p;K — pbe < 0. In this case we have

Frkip(Pe(Sk) = pe(SE)) <0,

which leads to S% > S¥. For the nonwetting phase mobility we have l:fl’(’fL = A(SK) = ?Lf;gf
and for the wetting phase mobility, which is an increasing function of the wetting phase

saturation, we have
Aol = Mo (SK) = 2(S5) = 2018

w,K|L — w,K|L"

c) p’fva - p’fv,L <0and p’;K - pﬁi > 0. In this case we have

£ (Pe(SK) = pe(SE)) > 0,
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meaning S% < S%. Now we have for the wetting phase mobility lv'i%l = A(SK) = ljf;f'f, and

since the nonwetting phase mobility is a decreasing function of the wetting phase saturation,

we have

k k
i = Mn(Sk) = Aa(SE) = AL

O

Lemma 3.3.7. Let Dy, be a finite volume discretization of Q x (0,T) and let assumptions (A.1)—
(A.7) hold. Then the following inequality holds:

)»i%fﬁ’fmw(pfﬂ( - Plfv,L)z + )“,i%fﬁi,KM(Pﬁ,K - pI:z,L)z (3.61)
> () (o) (ko — Ph) + ek — .
where we have denoted
ﬁlfx,]qL = Pa (Pa(Sf}Lfi’k»P];qL))» @ =w,n, (3.62)
(PA)iw = APk + Ak Pk
O = APk ( r]:7K|L>2 + AP kL (f VIE,K\L> "
forallK € T,Le N(K), and k € {1,...,N}. Moreover,
o (uk —up)* > Cp(B(Sk) — B(SL))?, (3.63)
where the constant Cg is given by 1/Cﬁ = % max {uiw, t}
Proof. From (3.54) we have

=k k k \2 k—k k k k ko k)2
Aliulg\pr,KM(pW,K - Pw,L) = /lvi%LPme(a’;aL(PK —PL)— fn,K|L(”K —up))

= ’lv%fﬁlfmu (wllaL) ’ (Pk — PL)?
—2AZADE ok (P — P (e — uf)
+ lvgv%fﬁﬁxm ( ,’;K|L)2 (e — uf)?

and from (3.53)

=k k k \2 h—k k (ko k k ko k)2
A,it;gLPmK\L(Pn,K—Pn,L) :A‘f’%Lpn,K\L(me(pK_pL)+fW7K\L(uK_uL))
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=28k e (0h)” ok~ ph)?
TSP i Ok (P — ) (e — )
+ Aﬂﬁfﬁﬁ,l{@ (fv]fz,K\L) ’ (”];( - ”]z)z-

After summing these two equations we obtain

gup k—k k k \2 gup.k—k k k \2
lW,K|pr71(|L(pw,K _pw,L) +ln7K‘Lpn’K\L(pn,K _pn,L)

= )k (k) ok~ ph)?

+ 2(91]2|L (li%fﬁﬁxwf v];K|L - Aj%fﬁv,l{@fil{@) (Pk — L) (uk — uf)

(A2t () AP () ) (a2
From Lemma 3.3.5 we get

n gup k—k k gup.k—=k k k ky(ok k
200k, ()“n,K\L Pk kL — A‘W7K|pr7K|Lfn7K|L> (Pk — pr)(ug —ug)
k gup k—k gup.k _k gup.k=k gup.k k k k(. k ky _
> 20k, <3~n,K\L P k(S (Skin s PiL) = ML Pwkinfn Sk ,PK|L)> (pk — pL)(ug —ug) =0,

which gives the estimate (3.61).

On the interface ok, we have

k
Sk

B(SE) ~B(SE) = | Au(s)2a(5)pl(s)ds. (3.64

St
In order to prove (3.63) let us first consider the case p% — p¥ > 0 and S% — S5 > 0. In this
k k
case we have ?Lj’"[f"L = A (S%) and /l;ib;g’L = An(S%), and

k NPT Sk / C k Sk ' ’
(B -Bis) <2250 [, mpis)ds | < aulsi | [ 2alolpits)ds )
sk i sk

w

In the same way for all the other cases from the monotonicity of the mobilities and using

S%{’k € {SK. 5K} we get

k 2 k 2
(Bisk)-Bish)” < a2(sigr ( [ montts) ds) 2205501 ( [ 2t ds>

L

An(SE0Y) sk LOMSELY) ([ sk ’
< % ( / X M(S)Plc(s)ds> T < / i Ms)p'c(s)ds) :
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The boundedness of the mass densities and the relative mobilities gives us for a € {w,n},

pa(SaP];qL) S Pm
PW<S>P]1€<|L)A'W(S) +pg(SaP11€(|L)lg(s) ~pm(1/ oy +1/1)’

giving the estimate
k k 2 —k gup.k S]’c( k / ’
(B =B(sD) < 1/ Phu(SEE | [ fuls. Phyo)plds)ds

2
_ ‘ Sk
+p]r<L7K|L)’n(S§{‘IL)7k) (/Sk fw(S,p]I(qL)plc(s) dS) }
L

This proves (3.63).

3.4 The maximum principle

Lemma 3.4.1. (Maximum principle) Let Dy, be a finite volume discretization of Q x (0,T) and
let (Pups Pwi) be a solution to the finite volume scheme (3.36)—(3.41). Assume that (SQ,K)K@ €
[0,1]. Then we have

0<Shx<1, VKeT, Vke{0,...,N}.

Proof. The maximum principle is proved by mathematical induction in the same way as in [76]
and is given here again for the completeness of the convergence proof. We use notation x* =
max(x,0) and x~ = max(—x,0) such that x = x™ —x~ and |x| = x" +x.

We assume that at the preceding time level k it holds 0 < S’fv’ x < 1. In order to show S’fv“ >0
we chose the element K such that Sfle < S’fverl for all elements L and we multiply (3.38) for the

element K by (S]v‘;}l)* which gives

Puk Suk ~PhxSh k+1 _upk+1
LS WRTWR gkt - K1 up 1 skl ko 1y —
Kk ot (SW}) T Z |GK|L|AZ,I;(|L pvl:{)IqL QWTK‘L(SWTK)
LeNp (K)
2
+ ) lorplkki A <pW,K\L> griL(Syix) = IK|F g (Sik) ™
LeNp (K)
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where we have denoted lech,FKI| L= ﬁk,q L(plfVJrKl — p’va“Ll) By neglecting —pv’; KSIV‘WK(SIEJKI)_ <0
we get
K|k k+1Sk+1(Sk+1)—_|_ Z o Mup,k%-l up7k+1Qk+1 (SkH)_
57 Pwk dwk Bk e KILIMvkiL Pwile Cwk|L\Pwk
€Np
2
G.k+1 G.k+1 k+1\— k+1 /7 ck+1\—
+ ) |okiLIkk LA, k|1 (PW,K|L) griL(Syix) ™ = IKIF ¢ (S )™
LeNp(K)
Note that (Sfle)’ > 0 if and only if Slv‘;}(l < 0. We have then Slv‘;“Kl (SijLKI)* =—[( ]:VJFKI)*]Z This
gives
K |Px k+1[(Sk+1)—]2 < Z o MMPJC-H MP,k'i‘]Qk—i-l (Sk—H)—
57 Pwk Bk < » KILIMv kL Pwill Qwk|L\Pwk
LENp(K
2
G.k+1 Gk+1 k+1\— k+1 ck+1\—
+ Z ’GK\L’kK|LA‘W7K|L (pw,K|L> gK|L(Sw,+K) _’K‘Fw}; (Swj?() .
LeNp(K)

If QY > 0 then A5 = A, (SER)) and

up,k+1ck+1\— __
AW,K|L (SWJ() - 07
since the mobility function A,,(S,,) is equal to zero at S,, = 0 and is naturally extended as zero

k+-1
w,K|L

(S]v‘le)_ is nonpositive and can be neglected.

for negative saturation values. On the other hand, for Q

up,k+1 _upk+1 ~k+1
Ak Puki QukiL

For the gravity term note that

< 0 we conclude that the term

o]

2
G+l [ G+ T
) |GK|L|kK\L)Lw,K\L (pW,K\L> gxi(Syx)” <0
LeNp (K)

if gg)r < 0 and the whole term can be neglected. If gx|; > 0 then again lfgzl = )VW(S/fVJrKl) and

Gh+1 ck+1y— _
AW,K‘L (SW7K) —O.

In that way we get

|K|CI)K k41
5t TwK

k+1\—12 k417 ck+1\—
k+1\ 7 ol k41 k41 k+1 pk+1Y  ck+1\—
= —|Klpw(Px)(Suk Fix — Sk Frx )(Sik)

k13 ck+1 k+1 [ ck+1\—
< |K|Pw(Pw,+K)SW,+KFRI+< (Swfl()
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= —|Klpw (P i) Pk [(Sile) T

where we have used va’kgl >0 and Flk}g] > 0. This finally gives

K| Pk -
il (5 + kIRt ) (st <0,

and therefore, due to F; }’f}l >0 we get S’ff,(l > 0.

To show §,, < 1 we use the equation (3.37) for the element K such that S’fj}(l > S’fVJ“Ll for all L
in the grid. By multiplying by (S¥%!)~ we get

k+1 gk+1 k

k
Prk Snk ~PnkSnK , g1y K1 _up k1 1 oht1y—
K| Dg 51 (Spx )+ Z( )|GK|L|AZ’;{|L puni Ol (Sk)
LENp(K

2
G+l [ G+l k-1 — k1 gk 1y —
+ Z ’GK|L’kK|L)\’n7K|L (pn7K|L> gK|L(Snj}() :|K’Fn.} (Snj}() )
LeNp(K)

where we have denoted QX! = LkK| ( pﬁ*KI — p’,‘lil ). By the same procedure used in the proof

n7K|L - dK‘L
of S5+1 >0 we get,

KIDxpi K 2o AUPKFL S Up kT ] [ gkt 1)
T8 (Sk) < Y okl wkiL Pukie Qo (Snk)
LeNp(K)
2
Ght1 [ G+l Jt 1\ — k1) gkt 1y—
+ Z ’GK\L’kK|L2’n,K‘L (me‘L) gK|L(Sn,+K) _’K‘Fn} (Snj(> :
LeNp(K)

By using the upwind discretization we find out that for Q’:}l‘ ; = 0 it holds lr'l”;qk; L — An (S’v‘VJrKI)

and

k+1 —
/I,Z’,’dj (1-S5i)~ =0,

since the mobility function A, (S,) is zero at S,, = 1 and it is naturally extended as zero for the

values of saturation S,, greater than one. For the gravity term we again have

2
Ght1 [ G+l f 1y —
Y |okiLlkkiLA, kL <Pn7K|L> gxL(Spx ) <0
LeND (K)

if gz < 0 and the whole term can be neglected. If gi|z, > 0 then again 7LnGI’§|JL“1 = /’Ln(S’ijl) and

G.k+1 —
/In7K‘; (1-85H )~ =0.
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Thus, we find
K| Pk pk+1 k+1y—12 k k+1\—
T[(Sn}l) P+IKIF (S~ <o.
From here we conclude
K| ®kpy i Lk+1 -
S TP Kk SR E — SR (kD) <o,
or
|K|CD pk+1

I .k+1 — —
s (Suk) P HIKIPL K (S Fik (Suid) ™ 48k ek (S ) 1) <0.

It follows that (Sk%)~ = 0, meaning S}t >0, or S} < 1.

In that way we have proved for all K € T

k+1
0< S < 1.

3.5 Energy estimate

Theorem 3.5.1. Let D, be a finite volume discretization of Q x (0,T) and let (py p, pwh) be a
solution to the finite volume scheme (3.36)—(3.41). Then, there is a constant C > 0, depending
only on Q, T, p?v > pg > St SL. Fp,Fy, such that the following estimates hold

Y |K| Pk (P g, Pivk) — Y [K|Pk A (P k. PO k)

KeT KeT
)' k N—1
pm m Z 5 Z Z TK|L|pk+1 k+1’2 (365)
p k=0 KeT LeNp(K)

Tl B(SET) = B(SETHIP< C,

4PM = Ke‘ILeND (K)

and

0 0
Z ’Klq)K%(pny7ple,K) - Z |K’¢K%(pn,K7pw,K)
KeT KeT

k41
4 )y ) m’tﬁé’}qf (PE = P2 (3.66)
pM k=0  KeTLeNp(K
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N—1
Pk ~ K1 kel k+142
B YD M MLl e e
PM 20 KeTLeNp(K)
where we have denoted

H(Pas Pw) = Sw(Puw(Pw)2(Pw) = Pu) + Su(Pa(pa)(pn) — pn) — /0 Y ps)ds (67

with Cg given in Lemma 3.3.7. The functions g(py) and h(p,) are given by
Pwv do Pn do
= —— and h = / —.
Proof. We use the functions g(p,,) and h(p,) as the test functions in (3.37) and (3.38) to obtain

Pk S — P Sk k k+1 upk+1
w, w, w,K=w, k+1 e+ K+ k41 k+1 k+1
|K|®Pg 57 8(PWTK) + Y TK|LkK|L7L::5qL PVI:,I;QL (PWJ,FK — P )g (pw?LK)

LeND (K)
2
Ght1 [ Ghtl
+ ¥ ol rlen (pokn') gxis(phi) = IKIFE s(phid)
LeND(K)
and
Pk}lsk?_PkKSkK kt1 _upk+1
nK “n, K n, k1 Kl _up kel kel ke ly g et
K| Pk 57 h(pyie )+ Y TK\LkK|L)~nM5qL P:%\L (Pok = Por (k)
LEND(K)

2

Gk+1 [ G+l k+1 k+1p (0 k+1

+ Z |GK\L‘kK\LAn7K|L <Pn7K‘L> gK\Lh(Pn}) = |K’Fn} h(PnJ;()
LeNp(K)

By summing these two equations, multiplying by 8¢ and summing over all elements and all time

levels we get:

N—1
k k k k k
Y Y KRk { (o SER — Pl aSt)s(Plid) + (PR SER — pkacSh i) h(pR) |
k=0 KeT

N—-1
J+1 A1 k-1 k+1 k+1
+ Z 6t Z Z TK|LkK‘LAIZ,I;(|L pv':f;qL ( WTK - WJ,FL )g( wer)
k=0  KeTLeNp(K)

N—1
KAl up k1, kel ktlyg okl
+Y 0t ) Y wikkipA KL Pakie (Prk — P )h(Prk)
k=0  KecTLeNp(K)
¥ Ght+1 [ Gh+1)? Kt 1
=—) ) ) |okiLlkkiLA, k1 <PW7}<‘L> gx|8(Pyik) (3.68)
k=0  KeTLeNp(K)

92



Chapter 3. Finite volume method for two-phase flow

2
G.k+1 G.k+1 k+1
- Z 5, ) |GK|L|"K\L7% wn (P ) axih(hi)
k=0 KeTLeNp(K

Ik+1 I k+1
+ Z 8t ) IKI(pu(pifc)Suk ik 8(pul) +Pu(pui)Sik ik h(Pik))
=0  KeJ

. Z St Z |K| pw< kH)SkHFng(pfle)-i-Pn( k+1)Sk+1Fk+lh( K))
k=0 KeT

In order to simplify notation we will write equation (3.68) as
A1+A2+A3:A4+A5+A6+A7

where A’ are the successive terms in equation (3.68).

1. The accumulation term A! can be written as

Z Z ’K’q)KAKv

=0 KeT
where
AK = (Pk+] PvliKSk k)& (Plfu+1{1) (Pr]f}—(lsﬁ}l Pr]fKSk )h(Pﬁ?)

—PVIZJ;(I ]fv+1<18( k+1) prSng(pr)+pk+l th( kH) PnKSﬁKh(PnK)

k k
+ pw.,KSw,K(g<pw7K> - g(pw+1(1 )) + pn,KSn,K(h(pn,K) - h(pn+1(1»
From the monotonicity of the mass densities we get

k k k+1 k+1 k k k+1 k k+1
pn k(P k) = (Pl = Pk — P Phxlg(Phk) — (PO = Plox — Py

and therefore,

1 k+1 k+1 k 1 k+1 k ok k
AK > pk+ Kg(pw+K pr ng(pw, )+p J y h(pn—i;() pn,KSn,Kh(pn,K)
k+1

)—
+SWK(pr plvchrKl) nK(an an)
)—

k+1 k k k+1 ok+1 k+1 k ¢k k
_pw} w—’—l{lg(pw—'—l(1 pWKSWKg(pw7 )—i_pn—lf—( Sn—;(h(pn—‘;{) anS Kh(an)

k41 k+1 k41 k+1 k k+1 k+1 k+1 k k+-1
SW+K W+K S _;(pn—;{ +SprwK+SnKan+(S o SW,K) i +(S X Sn,K)pnj}{'

The last two terms can be estimated as follows:
k+1 k k+1 k+1 k k+1 k+1 k+1 k+1
(SijK -8 K)pw+K +(Snj;( _S K)pnt( - (SW:FK _S )( Ny y )

PWK an
— (S~ Shape(SER) = - /

k+1
Sk

w,K
w,K

pe(s)ds,
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where in the last step we have used the monotonicity of the capillary pressure function. By using

¢ defined in (3.67) we can write

Al> Z )y IKICPK( (P Pl ) — «f“f(p’é,Kyp’fv,K))- (3.69)
=0 KeT

2. Gradient estimate. The terms A2 and A3 can be written as sums over all interior and Dirichlet’s

sides:
1N 16 Aupk-i—l upk—i—lk k+1 k+1 k+1 k+1
Z tZ Z TKIL wk|L PwkiL "KIL\Pwk ~PwL g(PwK) g(pr)
k=0 KG‘J—LEND
lN1 k+1 _upk+1 k+1 k+1 k+1 k+1
T T R (iR =it (noiid) —n(efs)).
k=0 KeTLeNp(K

where we have used notation from Remark 3.2.7.

Due to the Lemma 3.3.4 and the fact that
(p'fle p';,“) (g(p'fle) g(ﬂfj‘)) >0,

(Phid = i) (nehid) —neiih) 20 70

Y

we conclude

h4+1 k41 k+1 k+1 k+1 k+1
o) ) TK\L)LW;‘L Pkt (PR = P55 (s(pbi) — (Pl
KeT

k=0 LEND
1 k
AP +1 k+1 k+1 k+1 k+1 k+1
§ )3 TKIL nKIL Pnk|LKKIL (an an) <h<pnl() h(py1, ))
k=0 KeTLeND

From the definition of the mass densities on the interface (3.32) one concludes

k+1 k+1 k+1 k+1  k+1

k+1)> k+1 k+1

k+1 k
o (g( +1) g(Pyi) = Pl — Pt

Py kL \8\Pw.k

which leads to

| N=
2, 43 NS W S5 R N
A+A 25 Z Z Z TK|LkK\L7LWl;qL (p w+1< perL)
k=0 KeTLeNp(K
(3.71)
1\ Sl kbl kel
52 WD TK|LkK|L)Ln117<|L (Pak = Pui)
k=0  KeTLeNp(K
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From Lemma 3.3.6 we can replace the phase upwind mobilities A7 Kk‘zl by the global upwind

mobilities A8“?*T1 and then using the boundedness of the functions p, and p,, we obtain,
o,K|L g P p

2 3> kt1sk+1 o k+1_ k+1
— T LeNp (K

gupkH1=k+1 ¢ k1 k4142

2pM Z &KZT Z TKlLkK\LAn KL Puxi(Pox —Pur)™
€TLeNp(K

Finally, by using Lemma 3.3.7 we derive estimates for the global pressure discrete gradient and

the saturation potential discrete gradient

P @2k ™
A2 4 A3 > uZS Y Y (it - pih?

20m k=0 KT LeNp(K) (3.72)
C ki |
Zﬁ Z oy, ) TKIL k) = BSID)

M = KeT LeNp(K

3. Here we estimate the terms A* and A>. Using Remark 3.2.7 and Proposition 3.3.2 for A* we

get
N-1
_INs, kg AGKEL (Gt 2GR (] k]
Z Z Z ‘GK\L| KiLAv kL \PwkiL ) 8KIL wk\L(pr Pk )
k=0 KG‘ILGND
N-1
_1 S ke M9 Gk+1 Gk+1 G k+1 k41
__Z DYDY |GK\L| KiLAy kL \Pwk|L gKIL wK\LleL( — Pk )
k=0 KeTLeNp(K
N—1
1 st kg AGKET (G 2 GEHL gkl kT k]
__Z Z Z ICTKIL| Kithv ki \PwkiL ) 8KIL W,K|Lf 1<|L<”L ug')
k=0 KG‘TLEND
where
k+1 k+1
Gl _ 8(pyr) —8(Pk) 0 L<Gk+1 c L
wKI[L ™ k+1 P]fv+1<1 ’ Om wK[L — Om
— /5,
In order to estimate the term A7 we use 16kl = \/dk |6k \}L# and the Cauchy-Schwarz
K|L

inequality to obtain
AI < CT|Q| + = Z ot Z Z TK|L|pk+1 k+1 2,
k=0 KE‘TLEND
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where C = C(Ay, pM, Pm,|gl, @, k. €), and € is an arbitrary small parameter. After introducing

the definition of f k1 into the term A}‘I we obtain

K\L

k+-1

A4 Z St Z Z |G |k )LGk-l-l G.k+1 2 k+ SWK ( k+1) ( )d
=5 = KILIKkiLA ki, \Pwkin ) 8kILGykin skl Ju(S, P )P (s
k=0 S LEND

In the case gi|;, > 0 we have Aglﬁrz] = )LW(SkH) If Sk“ SkJrl the term A%, is nonpositive, so it

can be neglected. If we have S’ffl S]va“Ll, due to the monotonicity of the wetting phase mobility,

we can estimate
1 N—1 k+l

wK
Z ot Y, Z ’GK|L’kK|L< wl’éi) gK|LG]fVK|L e A (8) fu (s, P];(TLI)PC( s)ds
k=0  KeTLeNp(
_ Piylslkn '\ Sk,
M W,
< PE ey Zazz L 1o / Do (5) 2 ()Pl () d
mPr (= KeTLeNp (K

In the case gg, < 0 we have leH = A (SEED). I Sk+1 < S’v‘erLl the term A}, is negative and it

w,K|L
can be neglected. If S’ij] > S’ff] we obtain again

1 _ Gl ) Sk+1
5 Z ty Z ’GK|L’kK|L< WKTL) g1<|LG]fV7+K1|L/,{+1 A (8) fu(s, PI;(TLI)PC( s)ds

KeTLeNp(

P
< g’jl') Yoay ¥ L

k=0 KeTLeNp(K

k+l

/ o (5) A ()Pl () d

By using the same arguments as in term A? we obtain for arbitrary € > 0

~N1

A11<CT|Q|+ Z sty ) TK|LII3 (Shi) = B(SSIP

k=0 KeTLeNp(K

with C = C(par, Pms Am, ks &, €), which leads to the estimate

A4 < CT‘.Q.l—l— Z St Z Z TK|L‘pk+1 k+1’2

k=0  KeTLeNp(K)

Noi (3.73)
+> ZétZ Y wlBEE - BEEDI

k=0 KeT LeNp(K)

We now estimate the term A°,

2
Gk+1 ( G+l k+1
Z o1 Z Z |GK|L|kK‘L)LnK|L < nK|L> gK\Lh(Pn,J;()
k=0 KeT LeNp(K
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e Ght1 [ Ght+1)>
= - Z ot Z Z |GK\L|kK\L7Ln K|J£ <P,,K\J£ ) gK\L(h(Pﬁlel) h(pﬁ}]))
k=0 KeTLeNp(K

2

k1 (Gl k1 okl k]

Z o) ) |GK\L|kK\L7LnK|L (pn,K\L> 8KILG, kL (Pur — Puk )
k=0  KeTLeNp(K

where we have again denoted

k+1 k+1
Gk+1 _h(an) h(an> O 1 <Gk <
nK|L = T gl 0 9SS0k s
an an pM pm
After introducing (3.53) we can write
A5 — Gk+1 [ Gk+1 k+1 k+-1
Z o1 Z Z |GK\L|kK|LAn KL (Pn’K‘L ) gK|LGn K|L0)K\L( —Pk )

k=0  KeTLeNp(K

fk+1 ( k+1 k+1)

Ak (k1 2 B
p wK|L Ug

+5 Z&Z ) |GK|L|kK|L n.K|L n,K|L) 8k|LC K\L

k=0 KG‘ILEND

The term Af is bounded as the term A7, giving

A,<CT|Q|+ Z&Z Y TI<|LIP"+1
k=0 KETLEND

k+1 2

where C = C(Ayr, Py, Pms €|, v, kar, €). After introducing the definition of fk XL into the term

A3, we obtain

) k+1
5 Gk+1 Gk+1 k-1 k41
Ap = 2, 6t 2, Z |GK|L|kK|L nK|L (pn,K\L ) gK|LGn}L/k+1 fuls pKJIFL )Pe(s)ds.

k=0  KeTLeNp(K

In the case gg|; > 0 we have kf}?'{l = An( ’fjl) If Sk < Sk the term A3, is nonpositive

and it can be neglected. If Sk+1 S’v‘;zl we have, due to monoton1c1ty of the nonwetting phase

mobility,
k+1

sk
Gk
Ay <= Z o) Z |GK\L|kK|L< anZ ) <§’1{|LG,,KL/S,€+1 n(8) fw (s, P]}TLI)PC( s)ds.
w,K

k=0 KeTLeNp(

In the case gk, < 0 we have AGI’SF = A (Sk“). In the case Sk+1 > Sk+1 the term A3,

is nonpositive and it can be neglected. If Sk < SkJrLl we have, due to monotonicity of the
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nonwetting phase mobility

k+1
Gk wik k
A< Z o1 Z Z |6K\L’kK|L< PukiL ) 8K|L nKlL/k+1 An(8) (s, pKJ\rLl)pC( s)ds.
KeT LeNp(K Swk
Therefore, we conclude

k+l

Ap < TME—E pM!g! M Z ot Z Z |GK\L’

/ ) A5 Aa()PL5) )
k=0 KeT LeNp(K
which leads to
gt ket 1 ket 1
AH<CT|Q|+ Z oy Y TK|L|B (S ) = B(SI
KeTLeNp(K

for any € > 0 and C = C(pu, P, M, ki €, ) Consequently

A5 < CT‘Q' + = Z 61' Z Z TK|L|pk+1 —p];(+l 2
KeT LeNp(K

3L

KeTLeNp(K
4. Finally we estimate A® and A’

(3.74)
ty, ) m\ﬁ (S551) = B(SEED .

Using the estimates |py,(pyw)g(pw)| g *[pw| and |0, (pn)h(py)] §

N—1

7 k+1 k+1 _ k+1 k+1 _ _k+1

AT<CY 8t Y |KIFSE (IS P 118 Pl ]).
k=0 KeT

| Pnl we get

By using Remark 1.3.3 and the fact that Fp € L?>(Q7) we get

Al<C Z 5ty |1<HF’<+1| 1P M) < ¢ +a Z 5ty K| pi)?
= KeT

k=0

KeT
where C| =

Cl("Q“a T, pm; Pm, HFPHL2 or

). Using the discrete Poincaré’s inequality we obtain
e C N*l
7 1LQ
AT <(

k—H

k+1 |2 (375)
KE(.TLEND (K)
We note that the wetting phase term in A® is nonpositive for p’v‘jKl < 0 and then it can be
neglected. From the definition of the global pressure (3.10), (3.9) we have p,, < p < |p|. This
fact, combined with g(p,,)

< o-pwand [h(pa)|< 5

] Pul, leads to
PM

A <Py sy KIFR (1P M) <€+ 5 Y 5 Y Kk,
Pm =0 ker k=0 KeT
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where C; = C2(Q, T, P, Pms || Fill 120, ), M)- Again by using the discrete Poincaré inequality we

have

SC
A<+ 12 26 Y Y gl - pR (3.76)
k=0 KeTLeNp(K)

Finally, using (3.69), (3.72), (3.73), (3.74), (3.75), and (3.76)

N—1

k
ZZ!K\CPK( (P i) — %(p'é,K,p'fv,K)>
=0 KeT

pm/lmw km Z St Z Z TK|L|pk+l _p§+1 2

k=0  KeTLeNp(K)

5 EelBSK) —B(SL™)P
ZZZ»

sz = Ke?LeND

<2CT\Q|+SZ&Z Y et -
k=0  KeTLeNp(K)

+& Z ot Z Z Tk LB ( Skﬂ) ﬁ(SII({H”z

k=0 KE(ILGND (K)

+C1+C2+£1Cg225tz Y ek -t
k=0  KeTLeNp(K)

, Cphn'\

. . . pmlma)%km o Cﬁkm .
By taking € = €1Cq = o and € = apy Ve obtain (3.65).

The estimate (3.66) is obtained from (3.69), (3.71), (3.73), (3.74), (3.75), (3.76), and an
application of the estimate (3.65).
O]

Lemma 3.5.2. There is a constant C > 0 such that 7€ (py, pw) > —C, for all p,, p, € R.

Proof. From the monotonicity of the phase pressures one can obtain p,,(py)g(pw) — pw > 0 and

Pn(pn)h(pn) — pn > 0. By Lemma 3.4.1 and the assumption (A.4) we get

Sw
(P ) > — / pe(s)ds > —C.
0

Let us note that Theorem 3.5.1 and Lemma 3.5.2 proves the following corollary.
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Corollary 3.5.3. Let Dy, be a finite volume discretization of Q x (0,T') and let (p, y, pwn) be a so-
lution to the finite volume scheme (3.36)—(3.41). Then, there exists a constant C > 0, independent
of h, such that the following estimates hold:

Palliz0,7:m,0) €5 I1BSII200,7:8,0) < C-

3.6 Existence of a solution to the finite volume scheme

In this section we prove the existence of a solution of the finite volume scheme (3.36)—(3.41).
The proof follows [76]. First we recall classical lemma that characterizes the zeros of a vector
field (see [44]).

Lemma 3.6.1. Assume the continuous function v : Rl — Rl satisfies
vx) x>0, if [lxllp=r,
for some r > 0. Then there exists x € B(0,r) such that
v(x) =0.

Proposition 3.6.2. The finite volume scheme (3.36)—(3.41) admits at least one solution

(pﬁ?’plv{vfl(l)l(efr, ke{0,--- ,N—1}.

Proof. First we introduce the following notation M = Card(T), po = {p* }ker € RM,
Pt = {05 Yker € RM. We define the mapping B, : RM x RM — RM x RM as

Bi(Pnpts Pwpt) = ({312}1 Yrer {Buk }KG‘I> :

where we have denoted

pk?sk}l _pkKSk X . L

k+1 _ n, n, n,K*n, up,k+1 _upk+1 k+1 k+1

B,k = [K|dxk 51 + Z( )TK|LkKL)Ln,K|L Puxi \Pnk ~PnL
LENp(K

2

Gk+1 [ (G k+1 k41 ol k41 k41 k+1 k41

+ ) |okiLlkkiLA, kL (pn7K|L> ki = \Klpnx (Syx Frx —Suk Frx )
LeND (K)

k+1 ck+1 k k
3k+1 _ ‘K|CI)KPW’K SW,K _pw,KSW,K
wK T

up.k+1 _up.k+1 k1 k+1
St + ) TKILKK LA KL PukL (pw,K PW,L>
LeNp(K)
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2
G+l [ G+l k1 Glk+1 k1 ch+1 k1
T Z |GK\L‘kK\L;Lw,K\L <pw,K|L) gkl — KIPwk (Suk Frx —SuxFrk )-
LeNp(K)

The function By, is well defined and continuous. Let us introduce new vectors
k+1 M k+1 M
VM = {h(Pn,J;( ) ker € R, VM = {g(PWTK)}Ke‘I eR

and a mapping F(p, i, Pwat) = (VM vw) Which is evidently bijective. The equation
Bi(Pusts Pwae) = 0 is equivalent 0 Py (v, ne, Vi) = Bro F (v, vr) = 0 and we need
only to show

Pr(Vn e V) - (Ve V) = 0, for some || (v e, Vi) ||[gaae = 7> 0,

in order to apply Lemma 3.6.1. By the same reasoning as in proof of Theorem 3.5.1 we obtain

1
Phmat ) (nae ) 2 5 ¥ @xlK] (A5 PR = 7 (0. Phin)
KeT

¢ (1513, ) HIBSE ) €

for some constants C,C’ > 0. After applying Lemma 3.5.2, we obtain

1
j)h(vrt,J\/faVW,J\/[) : (vn,Mavw,M) Z _E Z ®K|K|%(pft,l(vp]\fv,l() +C||pl}<l+l||%lh(g)_cﬁv (377)
KeT

where C” > 0. Since the functions p,, p,, are bounded from below we have |h(p,)| < 1/pm|pal
and |g(pw)| < 1/pm|pw|, which leads to

130 v e = [1(h(2a20): 8P ene < Co (1123 152y H1PE 12y
<261 (1P 20 +C2) <265 (1P I 00 +C2)

since, due to (A.4) and (3.10), (3.9), |pw| and |p,| can be bounded by |p| + M, for some constant
M. With this inequality (3.77) becomes

1
Pr(Va vt V) - (Ve Vi) = =5 Y. @k|K|A (P} k. Phi) + Call (Vs Vi) | [2ne — Cs,
KeT

for some Cy4,Cs5 > 0. Note that the first term on the right-hand side in this inequality is indepen-

dent of ||(v, i, V)| [z, and therefore we conclude

Pr(vuat: vwat) - (Vn vt vwat) = 0,

for some r = ||(vy 20, V)| [gem > 0 large enough. The existence of a solution to (3.36)—(3.41)

follows from Lemma 3.6.1. ]
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3.7 Compactness result

In this section we prove a strong convergence of the finite volume approximation by applying
the compactness theorem of Kolmogorov, M. Riesz and Fréchet. This is an often used technique
that can be found in [45] and [76]. For convenience we recall the version of the theorem that will
be used.

We set (1,f)(x) = f(x+h), x € Rl and h € R!. We will also use notation ' € Q for Q'

compactly contained in Q.

Theorem 3.7.1. ([31]). Let Q be an open set in R! and let F be a bounded set in LP(Q) with
1 < p < oo. Assume that

1. Forall € > 0 and for all Q' € Q there exists § < d(,dQ) such that

VheR, |h <8, VfeZ, |tf—fluea) <€ (3.78)

2. Forall € > 0 there exists Q' € Q such that

vieZ, |fllveoa) <t (3.79)

Then % is relatively compact in LP (Q).

Since we will apply Theorem 3.7.1 to a family of bounded functions, depending on x and ¢,
it will be convenient to use the following specialization of Theorem 3.7.1 which is sufficient for

our goals.

Corollary 3.7.2. Let Q be an open set in R! and 0 < T < oo, Let F be a bounded set in
LY (Qx (0,T)). Assume that

1. Forall € > 0 and for all Q' € Q there exists 6 < d(Q',dQ) such that
T
Vhe R |n <8, Vfe.Z, / / |f(x+h,t)— f(x,1)|dxdt < €; (3.80)
0 JQ/
2. For all € > 0 and for all Q' € Q there exists 0 < A < T such that

T—7
V0 < T <A, VfEZ, / / fnt+7)— fx0)|dedt <e: (381)
0 Q/
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3. Forall € > 0 there exists Q' € Q such that

VfeZ, / / f(x,1)|dxdr < €. (3.82)

Then .7 is relatively compact in L' (Q x (0,T)).

Proof. Choose € >0and Q' € Q = Q x (0,T). Then one can find Q" € Q and 19, n; > 0 such
that Q' € Q' x (19, T —1N1). Let us choose & in (3.80) which corresponds to €/2 and A in (3.81),
A < min(ng,n;) which corresponds to €/2. Then for H = (h,7) which satisfies |h| < 6 and

|T| < A we have

T—Tl] T
/ Gyt +7) — f(x, )| doxdt g/ / 4 hot+ ) — (5,0 +7)|dxdt
Mo Q
T—m
/ (et +T) — fx1)| dodt < €.
From (3.82) follows (3.79) which completes the proof. O

In the proof of Theorem 3.7.9 we need the following technical result (see [45], Lemma 9.3).

Lemma 3.7.3. Let D), be a finite volume discretization on Q x (0,T). Then there are constants

0 > 0 and C > 0, independent of discretization parameter h, such that for any u;, € X (T, 0t) and

Nh_1
/Q, o) OPdxdr <C|(y|+h) ¥ 8t Y tolut — 1P (3.83)

k=0  oceé
where Q' = {x € Q,[x,x+y] C Q}.

Proof. Here we give for completeness a brief version of a proof of the Lemma 9.3 from [45].

First one defines, for & € &, the indicator function xs : Q' x R/ — {0,1} by

1 if [x,y]Nno #0
0 if [x,y]no=0.

Xc(%)’) =

For y € R/, y # 0, one has

up(x+3,1) —up(x, )| < Y xo(xe,x+y)|uf ™ —ultl|, forae. xeQ,
oEéy
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where L and K are such that 6 = ok, and k € {0, 1,...,Nj, — 1} such that t* <t <t*1. By using

the Cauchy-Schwarz inequality, one obtains

k+1 k+12
u —Uu
un(xt3,0) —un (1) <} Ko lxxy) = —E ) go(xx+))dkpco,  (3.84)
cedy K|LCo cesy

where cg = ‘nc . |§—|‘, and ng denotes the unit outer normal vector to o = Ok In [45] it has
been shown that there is C > 0,C = C(Q), such that

Y, Xo(x.x+y)dgjrco < |y +Csize(Th), /Q/%o(x,ery)de |olesyl,
CES]

for a.e. x € Q. Integrating (3.84) over Q' and applying the last two estimates we get (3.83). [

Let us define functions

Un = Pw(Pwi)Swis Vi = Pn(Pup)Snn- (3.85)

Proposition 3.7.4. Let Dy, be a finite volume discretization on Q x (0,T) and let (pyj, pw.i) be
a solution to (3.37)—(3.38). Then we have

/ UG+ y,2) — Up(x, )| dxdt < o (Jy]), (3.86)

Q'%x(0,T)

Lo Valxet ) = Vi)l dade < o(Jy), (3.87)
Q'%(0,T)

forally e R! and Q' = {x € Q, [x,x+y] C Q} and &(|y|) — 0 when |y| — 0.

Proof. Letus denote S| = S,,(x+y,1), S = S, (x,1), p1 = p(x+y,t), and p» = p(x,t). From the
definition of the function V and (A.5) we have (for simplicity we also omit writing dependence
on h)

V(x+y,1) =V (x,0)| < [(pn(Pn(S1,p1)) = Pu(Pn(S1, p2))) (1 = 51|
+[(0n(Pn(S1,P2)) = Pu(Pn(S2,p2))) (1 = S1)]
+1Pn(pn(S2,p2))[(1 = S1) = (1 = $2)]|
< piylpa(S1,p1) = Pu(S1, p2)]

+ P3| Pa(S1, p2) = Pa(S2, p2) | + Pu[S2 — 81

S
Spﬁwapl—PzHPﬁ‘/S fw(s,p2)pe(s)ds| + pu|S2 — Si].
1
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Using (A.5) we can conclude that there exists a constant C > 0 such that
/ IV (et y,0) = V (1) | doxdt
Q'x(0,T)

<O [ o ISeletnn=Suenlasd [ pteyn) - planlanar
Q'%x(0,T)

Q'x(0,T)
=FE|+E>.
The term E; can be estimated due to (A.7) as (T < 1)

E <C B (Sw(x+y:1)) = B(Sw(x,1))|* dxdt
Q'x(0,T)

<C( [, oy BSx50) = B(Su )l anar )

From Lemma 3.7.3 and the a priori estimate (3.65) we get

Ny—1 T
E §C<|y|(y+|hl) ) ot ) Tolﬁ(S'fJLl)—B(S'fJé)|2> <C(yl(y+1a[))"
k=0 CES]
In the same way we have
N,—1
Ey <Cly|(yl+1a) Y, 81 Y, wolpp™ = pic 1> < Clyl(lyl +1A]),
k=0 CES]

leading to
/ Vi (x+,8) = Vi (x,1) [ dxdt < C(([y|(y+ [2])" + Iy + |A])).-
Q'x(0,T)

The proof of (3.86) is similar to that of (3.87) and thus omitted. ]

We define piecewise linear in time representations of Uy, and V}, as,

_ Ni 1 T TR Lo
k=0 KeTj,

_ Nl T P L T

Viu(x,t) = Z Z <TVK+ —|—TVK> lQlk(x’t)’ (3.89)
k=0 KeT,

where we have denoted Q’,‘( = K x (¢k k1.
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Remark 3.7.5. By simple calculation for any Q' C Q one get

T T
| LWty = Vi) dxde < [ [ [Vireyir) = Vi)
0o J 0o Jo

51 (3.90)
£50 [ e +3.0) = Vi(x.0)

T &5t N1
/ Vi) = Vi(r.t)| dedr = /|vk+1 VE|dx
0 e (3.91)

T 51
< 2/ / Vi(x,t 4 8t) — Vi (x,1)|dxdt,
0 Q/
and the same inequalities hold for U,

Corollary 3.7.6. Let Dy, be a finite volume discretization on Q x (0,T) and let (ppj, pw,) be a
solution to (3.36)—(3.41). Then we have

[ O30~ Talxn)] dude < (1), (392
Q'x(0,T)
Lo 75220 = Vo) e < (1), (3.9
!/ 7T‘
forally e R! and Q' = {x € Q,[x,x+y] C Q} and &(|y|) — 0 when |y| — 0.
Proof. To the first term on the right-hand side in (3.90) we can apply (3.87), to obtain

/Q, 0 T)|Vh(x+y, )= Vi(x,t)|dxdt < o(|y|) + / [Vi(x+,0) = Vi (x,0)|dx.  (3.94)

In the second term on the right-hand side in (3.94) we note that Vj,(x,0) = p,(p° h)SO , and

therefore it can be bounded as follows:
[ Vil +3.0) = Vi (. 0)

SC(/QI|P9;,h(X+y) _P27h(x)|dx+/gl|52’h(x+y)—S9,7h(x)|dx>, (3.95)

where the constant C depends only on pys and pf,, (see (A.5)). The functions pg e p?v , and Sg h

are given by (3.41) and from the properties of the mean value operator it follows, for & € {w,n},

| 1pote) = pldx < [ [phx+3) = Pl a (3.96)
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The boundedness of the capillary pressure derivative will give

/Q,|53¢,h(X+y)—Sg,h(X)\dxSC/S_zlp?(ery)—p?(X)ldx, (3.97)

therefore we obtain
/Q,IVh(Hy,O)—Vh(x>0)|dx§C(/leg(ﬁy)—p%(X)IdH/Qw?(Hy)—pg(X)ldX)-

By using the continuity of the translations in L' (Q) (see [42]) it follows that the second integral
in (3.94) goes to zero as |y| — 0 uniformly in size(7T). This proves (3.93), and (3.92) is proved
in the same way.

O

Proposition 3.7.7. Let Dy, be a finite volume discretization on Q x (0,T) and let (py p, pw,) be
a solution to (3.36)—(3.41). For fixed Q' € Q we have

/ Ta(x,t+7) — T, 1) dodt < o(2), (3.98)

Q'x(0,T—7)

/ V(i +7) — Valx,1)| dxdi < (%), (3.99)
Q'%x(0,7—1)

forall T € (0,T) and o(t) — 0 when T — O.

Proof. By following the proof of Proposition 5.1. from [12], we first write (3.37) in the following

form
k+1 gk+1 k gk
Pk SnK _pn,KSn,K 1 2r+1 k-1
D 5 =K Y, okl ZgL nkp+Fk (3.100)
LeNp(K)
where we have introduced
FhH _ Pkt jup ket Plrﬁ(l _pﬁil 4 A Gkt (G 2
KL = TRKIL | Mk Puk|L dep | mKIL PukiL ) 8KIL | MkL-
Additionally, we use the following notation
Np—1 Np—1
F o Fh+1 _ k41
fh = Z Z L/’K‘L l(tk,lk'H]XTK‘L’ fh_ Z Z Fn7K l(tk,tk+l]XK'
k=0 6=K|L k=0 KeT),

If we extend U, by the U}]lv " ofor t > 5tN;, and .%;, and fn by zero for t > 6tN;, and by using

discrete divergence definition (3.28) we can rewrite equations (3.100) in the following form
®,0,U;, = divi. T+ fi. (3.101)
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The rest of the proof is the same as the proof of Lemma 4.6. from [62] with slight modification
regarding the definition of the function Uj, and is based on the construction of the function @(7)

which satisfies (3.98). First, we fix & > 0 and set

o0 o o ~+oo
I(7) :/ / Tp(x,1+7) =T (x,1)| dxdt :/ / Wi (-1)| doxdt, (3.102)
0o Jo 0o Jo
where the function Wj,(-,¢) is defined by
Wh(',f):Uh(',t+f)—Uh('7t), 1> 0.

For ¢ large enough Wj,(+,¢) = 0 due to the extension of the function U (+,t) by U, ;ZV L fort > OtNy,.
The next step in the proof is the usage of mollifiers (pg)s on R/ which are defined by

ps(x) = 8 'p(x/8) with p € C*(RY), suppp C B(0,1), p >0, and /R[p(x) dr=1.

Obviously pg satisfies |Vpg| < C/8'*!, where C does not depend on 4 and 8. One then defines
the function ¢(-,7) : R — R by

Q(t) := ps* (signW,(1)1gy),

and the corresponding discrete function by @ () = ﬁ Jx @(x,t)dx. From the definition of the
function ¢(-,7) one can conclude that ¢(¢) is null on the set {x € Q : d(x,Q’) > & + size(T})},
for all 7, which means that for all sufficiently small 4 and &, supp@,(t) C Q" € Q.

The next step of the proof is multiplication of the equation (3.101) by the |K|@k(s), integra-

tion in ¢ over [s, s + 7], summation over all K, and integration in s over (0, +oo) to obtain

/O Y. O|K]|ok(s)Wi(s)ds = /*“’ / KGT Y IKlox(s) (divi Za(r) + ((r) k) drds.

KeT,
(3.103)

Like in [62] we define Q" = (0,N;,8t) x Q" and introduce

—+oo

/ / On(x, )Wy (x,5) dxds < _/ Y @ |K|ok(s) Wi (s)ds.
KeT),
Now we have
PnL(t) — Pk ()
2@ [T T lowulookud, 0p, 0L s
§ KefThLeND (K) K|L
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+oo G 2
[TTL T lonulaxkurlon o () gxndrds

KGTh LEND K)

+ / / VFyx(¢) dids.

KG‘I},

If we gather by the edges we get
Dyl (T) <

400
Ty T ke (0, (0) (05(5) = 9u(5)) (pusl6) = pute)

KeTh LeNp(K)

2/*“’/ ) Z |0'K|LV<K\L K|L( ) (PgKL(I)Y%'L(W(S)dngdeIdS

§ KeT, LeNp(K

—+oo
+/ / Y. ox(s)Fuk(t)dtds =1+11+111.
§ KeT,

The term I can be estimated as follows,

~+o0
LT T tukaA 00, 0Oloc(s) - guls) P drds
§ KeTtheND (K)

2/+w/ Z Z 7:K|LkK|L nK|L< )Pn K|L( ) Pnk(t )—Pn,L(l‘)|2dtds.

§ KeT, LeNp(K

By using the boundedness of the functions A, and p;,, this can be further estimated as

(o)

1 + -
1< Shahpwt [ X X Fulos(s) = ouls)ds

KE‘Th LeNp(K)

(3.104)
4 kMpM / / Yy Y rmxn e (O1Pak(6) — ps (1) P deds.
S KeT, LeNp(K
In the second term on the right-hand side of (3.104), we apply the Fubini theorem
oo up )
/ / 2 (Olpk(t) — pa(0) dids
+oo up 5
_ / / Ak O1ak(6) = pas 0) P dsd
max(0,f—71)
<t [ AL Olpak@) ~ pua) P,
and by the energy estimate (3.66), we obtain
[1<ct (H(phuiz(ojﬂh(g)) + 1) <cCr (HV(thiz(Qﬁ) + 1) <Cr(1+8727%).  (3.105)
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In the second term, from the boundedness of the functions 4, and p,, we conclude

~+oo - _
11 < —/ / Tk Ll [P5) (pK(S)|dtds < Ctl|Vnllpon < crs~ L.
s Ke‘J'hLEND (K) dKIL

(3.106)

The third term can be estimated as

1< = / / Y lok(s |2dtds—|—/ / Y |Bu(r)[*deds. (3.107)
s Kefr 2 s

KG‘Th

After applying the Fubini theorem to the second integral in (3.107) we have

I <Cct(1+ Hfh||L2 ") ). (3.108)
By combining (3.105), (3.106), and (3.108) we obtain

P(r)<Ct(1+67472), (3.109)

for all 4 and 6 small enough, uniformly in A.

We want to estimate (3.102) by estimating the difference

I(7) — I3 (1) = /O+°°/Q/<|Wh(x,z>y Wi, 1)@ (x,1)) dxd. (3.110)

Let us denote Uj := {x € R : d(x,0Q) < 8} such that U C Q" C Q for all § small enough.
Without loss of generality, one can assume that the boundary of ' can be chosen regular enough

so that |Ug| — 0 as & — 0. Corollary 3.7.6 and the Frechet-Kolomogorov theorem give relative
compactness in L, .(Q) of the family < /0 " |W,(-,1)] dt) ; which leads to equi-integrability of
these functions on Q" see [47], meaning that
+oo
/0 .y |Wi,(x,2)|dxdt < @&(5), uniformly in 4 with lim ®(8) = 0.

6—0

By using the definition of ¢ one concludes
)~ @] <20)+ [ [ W5 = W) Py signWi(1)) 9

~+o0
<20(8)+ [ [ [ pslx—3) Whxn)| ~ Wi(x.0)sign Wi(y,1)| dydadr.
0o Jo\usJr!
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By using the inequality ||a| — asignb| < 2|a — b| we obtain
() =13 (<)

oo 3.111)
<20@)+2 [ [ | psle—y) Wilxr) = Wlr.o)| dydad
0o Jo\usJr!

and by setting o := (x —y)/d we obtain
(=)~ 13(7)|

. B B 3.112)
<20(8)+2 [ p(o) / / U(6,1) — Up(x— 86,1)| dxdedo.
R! o Jonu;

Corollary 3.7.6 gives existence of a continuity module @(9) such that
‘Ih(r)—l,?(’c)‘ <20(8) +20(8). (3.113)
By combining the estimates (3.109) and (3.113) we obtain [, < ®(7), where
o(1):= infC (r(l +86 22 1 20(8) + 26(6)) .

Since @(t) — 0 as T — 0, we obtain (3.98). In the same way one can prove (3.99). O

Corollary 3.7.8. Let (Dy,);, be a sequence of finite volume discretizations of Q x (0,T) such that

limy,_, size(Dy,) = 0. Then,

1U= Ul @)= 0, IVii=Vallpi@)— 0 (3.114)
Proof. For every Q' € Q the convergence

1Ur = Unlly@y= 0, Vi =Villpay= 0,

is a consequence of Proposition 3.7.7 and Remark 3.7.5. Since Q \ Q' can have arbitrary small

measure, and the functions Uy, — U}, and Vj, — V, are uniformly bounded we find (3.114). O

Theorem 3.7.9. Let (Dy,);, be a sequence of finite volume discretizations of Q x (0,T) such that
limy,_,o size(Dy,) = 0. Then there exist subsequences (pop)n, O € {w,n}, (Syw.p)n and (py)n such

that
U,— U strongly in LP(Qr), 1 < p < oo, and a.e. in Qr, (3.115)
Vi, =V strongly in LP(Qr), 1 < p < oo, and a.e. in Qr, (3.116)
Swh— Sy ae inQr, (3.117)
pn—p a.e. inQr, (3.118)

and U = pw(pW(Sw,p))Sw, V= pn(pn(Swap))(l _SW)'
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Proof. From Corollary 3.7.6, Proposition 3.7.7 and the boundedness of the sequences (U},) and
(V}1,) we can apply the Riesz-Frechet-Kolomogorov compactness theorem and conclude that the
sequences (U}) and (V) are relatively compact in L' (Q x (0,T)) (see Corollary 3.7.2). There-
fore, we can find a subsequence and functions U,V € L'(Q x (0,T)) such that

U, — U stronglyin L (Qr) and a.e. in QOr,
Vy—V strongly in L'(Qr) and a.e. in Q7.

Due to Corollary 3.7.8 we find (3.115) and (3.116) for p = 1. The limit functions U and V are
obviously in L”(Qr) and the convergence holds in any L?(Qr) for all 1 < p < o.
In [6] it has been proved that the mapping (u,v) = G(S, p) given by

u:pw(Pw(Sw>p))Sw; V:pn(pn<SW7p))(l_SW)

is a diffeomorphism and therefore (S5, ps) = G~'(Uy,V,) converge a.e. in Qr to some functions

Sy and p. In the limit it holds G(S,,, p) = (U, V). This proves the theorem. ]

3.8 Proof of the Theorem 3.2.9

In order to prove Theorem 3.2.9 we follow the approach from [76] and [12]. First we prove
some auxiliary lemmas.

From a priori estimates (3.65) we have the following convergences.

Lemma 3.8.1. Let (Dy,);, be a sequence of finite volume discretizations of Q x (0,T) such that

limy,_,q size(Dp,) = 0. Then there exists subsequences (Sy, ;) and (py)y such that

p,B(Sw)—B(1) €L*(0,T:V), 0<S, <1, (3.119)
ViB(Swn) = VB(Sy) weakly in (L*(Qr))", (3.120)
Vupn — Vp  weakly in (L*(Qr))!, (3.121)

where p and S,, are the limits from Theorem 3.7.9.

Proof. From Corollary 3.5.3 it follows that the sequence (V;p;,);, is bounded in (LZ(QT))Z, and
therefore there exists § € (LZ(QT))Z such that

Vipn — & weakly in (L*(Qr))". (3.122)
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By the discrete Poincaré inequality, Lemma 3.2.2, the sequence (pj,);, is also bounded in L?(Qr),
and therefore by Lemma 3.2.6 we conclude that £ = Vp and p € L?>(0,T;V). This weak limit is
equal to the limit in (3.118).

The same reasoning can be applied to the sequence (B(S¢.))s. From the estimate (3.65) we
can find & € (LZ(QT))Z such that

ViB(San) — & weakly in (L*(Qr))". (3.123)

By the discrete Poincaré’s inequality, since (S 4) = B(1) on I'p, the sequence (B(Sq.n))n
is also bounded in L?(Qr), and therefore by Lemma 3.2.6 we conclude that & = V(S,,) and
B(S,) —B(1) € L*(0,T;V). This weak limit is equal to the limit in (3.117). This completes the
proof. ]

Lemma 3.8.2. Functions po(pa(Sw,p)) and pa(pa(Sw,p))/A(Sw, p) are Lipschitz continuous.
Proof. i) From

Py (Pn (Sw,p))
aS,,

9Pw(pw(Sw, p))

dS,, = _Pv/u(Pw)fn(Sw,p)p’c(Sw),

= pri(pn)fw(swp)p/c(SW)a

and

apa(pgl(fmp)) :p(’x(pa)a)(Sw,P),

by (A.4) and (A.5) all derivatives of py(po(Se,p)) are bounded. ii) Due to i), (A.3), and (A.5),
A(Sy, p) is Lipschitz continuous and A(S,,, p) > pmAn. Therefore, po(po(Sw,p))/A(Sw, p) is

also Lipschitz continuous. L

Lemma 3.8.3. Let S,,;, and pj, be convergent subsequences from Theorem 3.7.9, and define the
functions gh, Sy, P and p, on the dual mesh composed of elements TK‘ . K €T, LeNpK),
defined as

Ky - k+1 ck+1 . k+1 ck+1
Sh|<rk,zk+1]xT,qL = maX{Sw,K’Sw,L ) §h|(zk,zk+1]><T,(‘L = mm{Sw,Kvsw,L h

D = k+1 k1 NG 25 By 8 |
ph|<tk,tk+l}><TK‘L T max{pK 7pL }7 Bh‘(l‘k7[k+l}><TK‘L T mln{pK 7pL }

Then there is a constant C independent of discretization such that

1B(Sk) = B(SWl2(0r) < Csize(T),  [1pn— P, ll2(or) < Csize(T).
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If Sy, and py, are any other dual mesh functions satisfying
Sp<Sh<Sw, P, <Pn<DPy
then for any continuous function <7 : [0,1] x R — R we have
A (Sp, pn) — < (Sy, p) ae. in Qr, (3.124)
where S,, and p are given limits in Theorem 3.7.9.

Proof. In order to simplify notation we will denote S,, by S. Since the function 8 is monotone
we conclude

1 M=

| 1BG)-Bs)Paxa=3 Y &Y ¥ / B(S,)dx
Or 23 KETLEN(K
Ny—1 B
I VD Wiy B ICARSIEARE
k=0  KeTocdknlp” ko
Nhl
Zétz Y TenllB(SET) = Bs

k=0 KeTLeNp(K)

From Corollary 3.5.3 we get
| 1B(S0) ~B(5))P dxdr < Csize(7)"
T
which leads to
1S, —S,| = 0ae. in QOr, (3.125)

on a subsequence when 4 — 0. In the same way we get

Ny—1

/ Pp—p,fdxdt <C Y 8y, Y |Txullpp™ —pi' P < Csize(T)?,  (3.126)
k=0  KeTLeNp(K)

and
|1_)h—£h] — O a.e. in Q7. (3.127)
Since §;, <5, < Sh, P, < pn < Pj, and &7 is a continuous function we obtain
Jz%(é'h,gh) — (S,,p)ae. in Qr, (S,,p,) — (S, p)ae.inQr,
on a subsequence when 4 — 0, and (3.124) follows. O
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Lemma 3.8.4. Let (S, p) be given by (3.13). Then following equality holds

k+1 KA1 k41 k+1 k+1\ _ = (ck+1 k+1 k+1 k+1 k+1
lrI;t,IIJ(\L prbztl;(\L fW,K|L(MK —ur ) - a(gw’]qL’BK'L)(ﬁ(SW,K) _ﬁ(SW,L )) +AK|L

where

27
Ak < €[Sk — Bk

(3.128)
<k+1 _
+C ([Sik =Sk, |+ [Pt = okt |) Bl = Bisiah)

with the constant C independent of the discretization parameters.

Proof. For simplicity of notation we will denote S,, by S and we will omit the time level index
k+ 1 since all the quantities are given on the same time level.

First we recall the definition of f,, k|1

1 S

JwklL = fw(S,PK|L)P2(S) ds.

Ug —ur Js;

There exist a € [g K| L,SK‘ L] such that

u u u pW(pW(aap ))A’W(a)
An’;qLPnl;<|wa7K\L(MK —ur) = An(SkiL)Pn (Pnl}qL) 2@ KL
’ ’ 7 , PK|L)

(ug —ur).
Since

Ak = A P Fn (g — ) — 6(Sii. 2y, )(B(SK) — B(SL)

’

we can estimate

u

Pn (pnf}qL)Pw (pw(a, pK|L))

i < R P S o ) = (B(S) BLSo)|
"”@Zﬁ‘f(’;fffjff’ P )| B5K) B(S = et +es
First we estimate cy:
e £ 282,80 @) G — )~ (BISK) — BUS1)|
p

= 202, (S0 @) — ) e — ],
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for some a; € [5 X L:Sk| L} . If we apply (A.4) and (A.7) we obtain
le1] < C|An(Skiz) Aw(@) — An(ar)Au(ar)] Sk — S|
< (k1) @) — (a2 1) |BSK) — B
From (A.3) we obtain
le1] < C[Sk —Stl1B(Sk) — B(SL)I < CIB(Sk) — B(SL)I**.

In order to bound the term ¢, we need to estimate the difference

Pn (pZ{jqu)pw (pw(a, pK|L)>

A@, pk|z)
_ pn(pijK|L)pw(pw(a’pK\L>) p”(p"(§K|L7BK‘L))pW(pW(gK‘L,BK‘L))
A(@, pk L) B ML)
P ey
, @ priL) A8k Pn)
. Puw(Pu(SkiLs Pyy))
+ Pn(Pn,IqL)_pn(p"(QK\L’EML))‘ A(§K|L’2K\L>

<C (’SK\L _§K\L‘ + ‘]_?K\L _EKILD :
where we have applied Lemma 3.8.2, (A.3), and (A.5). Therefore, we conclude
¢2 €[S = Sxie |+ [Prie = Py | ) 1B(SK) = B(SL)
which concludes the proof. ]

We now pass to the proof of Theorem 3.2.9. Let ¢ € D([0,T) x Q) and set ¢k := @ (xx,tX)
for all K € T, and k € {0,1,...,N;,}. In order to pass to the limit in (3.37) we multiply (3.37)
by 6t(p1'§“, introduce the global pressure variable by (3.53), (3.54), and sum over K € 7, and
ke {0,1,...,N, — 1} to obtain

St Sk st sh4st =0,

where we have denoted

Np—1
st=Y Y Kok (pik'Skk —phSix) ok (3.129)
=0 KeT,
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K1 up ket
Slzl: Z ot Z Z TK|LkK\L7L,ZI;qZ_ P::f;q; C(’IIETLI(PIIEH—PT])‘PIIQH (3.130)
k=0  KeT,LeNp(K)
Ny—1
K1 up ket
St=Y 6t Y Y ke Pk Sk (”2“‘”’2“)%’2“ (3.131)
k=0  KeT,LeNp(K)
Ny—1
Si= Y 8 Y K| (pEiSE S ok — ol SR FRE k) (3.132)
k=0 KeT,
= Ght1 [ Ght1)> ket 1
Ss=3 6t} Y loxplkeid, i, (Pn,}qL> SKILPK (3.133)

k=0  KeT,LeNp(K)

By making summation by parts in time and by using the fact q);(v” =0 forall K € T, we obtain

Ny—1
Si=—Y Y IKldkpy i Sk ((p?” —<P1]§> — Y [K|DPkpy kSn kPR
k=0 KeT,, KeTy,
Ny—1 pas
-~y ¥ / / Dxpl Sk (k1) dxdr — Y / D(x)p," (x)Sy" () (xx, 0) dx.
k=0 KeT, /1" /K KeT, 'K

If we denote by ¢, € C'([0,T],H,(Q)) the function defined by @k (t) := @ (xx,t) for all K € Ty,

then we can write
S}f = _/Q Cbh(x)p,i’(x,t)Smh(x,t)at(ph(x?t)dxdt — /QCI)(x)p,?’h(x)Sgh(x)(ph(x, 0) dx.
T
By smoothness of the function ¢ there is a constant C independent of / such that

sup | @n(x,0) — @(x,0)| + |0 (x,1) — I p(x,1)| < Ch. (3.134)
(x,1)eQx(0,T)

By Theorem 3.7.9, definition of the initial conditions and (3.134) we get
lim §% = /Q DD (pn (5:0))S(5.1) 9 xsr) dxdi — [ (P (p)0))S(0)p(x,0) .
T

For term SS’ we obtain after gathering by edges

Nj,—1
1 h
h ~ upk+1 jupk+1 k41, k41 k+1 k+1 k+1
$=-3 Yoy ) Tkikkid ke Pk @k Pk —pPr )@ — g )
k=0 KeT, LeNp(K)

= | T PRFL L gt gkt
_ 2 L6 up e+l Jup k1 ki1, PL kP K
) 2 o) ) 71Ok Lldk kKA i Pkl Pk ™ d
k=0 KeT, LeNp(K) K|L K|L

Np—1

—
=, up,k+1 upk+1 __k+1 k+1
Z o1 Z Z ’TK‘L’kKUJln,K\L PuxiL PkiL (VKleh nKIL)
k=0 KeT), LeNp(K)

1
2

117



Chapter 3. Finite volume method for two-phase flow

X (Vw(m,tk“)-nm) ;

where Xk is some point on the segment with the endpoints xx and x;. Using the fact

O SR TE, S —

we obtain
h 1Nh : k+1 kT k]
7 up, up, + k+1 k+1
Z o1 Z Z | TkiLlkg L, KIL Pkl PkL VKILPh VoL, )
k=0  KeT,LeNp(K)
If we introduce the piecewise constant functions SW e SWJ,, Ph» Sw,h, and p, defined on dual mesh
as
up . gk+1
Sw,h‘<tk,tk+l}><TK\L = Sw,K|L’
= =k+1 un.k =k+1 i1
. p.k+1 —=k+
SW,h|<tk,tk“]><TK|L . SW,K|Lv ph| (tk tk+1]><TK‘L pK\L where PukiL _pn(SW,K|L:pK|L)7
and
3 o okt1 k1 k+1 _ o ck+1 ~k+1
Swl ek 1)1, = Sy k| Pal; (tk ) x T, *= PKL where @ ;" = (Swmu K\L)
then we can write
h -
= [ [ k(500 Gt )OSt i) Vi (V).

From the regularity of the test function ¢ we have (V¢), — V@ in L*(Qr). By Lemma 3.8.1 we
also have weak convergence of V;p;, to Vp. Since the functions 4, p, o p,, and ® are bounded

and continuous, from Theorem 3.7.9 and Lemma 3.8.3 it follows
An(S,57) P (P (S Suiis D)) O(Suus ) = Aa(Su) PP (Ss )0 (Siw, p) ace. in QOr.

Finally, the convergence ||k — k| 2(q) — O (see Remark 3.2.8) gives

timsE= [ [ K A(S)Puon(Su, ) O(S1p) V- Ve

Using the same technique as in term S%, first we write the term Sé‘ in the following form

Nh_l

s PR pup kL gl (kL e (gl
Z&Z )y TKILkKIL A KL P ki (Uk g —op )
k=0 KeT, LeNp(K)
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By Lemma 3.8.4 we have

1Nh1

h Z 51’ Z Z %K‘LkK|La(Sk+l|L>p];{T£)(B (S];VTKl) - ﬁ(vajil))((PI]g+l (pL

k=0  KeT,LeNp(K)
=

Z 5 Y, Y Twrkepdg (o — o)

k=0 KeTy, LEND(K)

1 Np—

=5 Z oy ) \TK|LV<K\L0‘(§]L+KI‘L,P]]‘(TLl)VK\Lﬂ(Swh) Vo (g, )
k=0 KG‘ThLGND(K)
1 N1
+ Z MDY TKlLkK\LAmL(‘PIk(H o) == crten
k=0  KeT,LeNp(K)

Using (3.128) we get

N,—1
~1 k+1 k+1 k+1 k+1
e <CE ST T funi|p (55— Bsi| ok — ot
k=0 KeTLeNp(K
N,—1

k+1 k+1 —ktl k4
e kzé 6ZK§T LeNZ(K)'TK'L' (‘SWK‘L SleL‘ +"’KIL pKlLD
= h D
( W,K) ( WaL)

dy|L

k1
— ¢

dy|L

k+1
X |l Pk

and by Cauchy-Schwarz’s and Holder’s inequalities we get the following estimate:

Ny—1 T
|ci| SC{ ( Y &) Y fK|L|ﬁ(vajzl)—ﬁ(vaj}(l)|2>

k=0 KeTLeNp(K)

Ny—1 1 1-7
<Z 5t Z Z TK|L’ k+1 k+1‘”>

k=0  KeTLeNp(K)

Np—1

1/2
<k+1
IVl VB (Sl 0, (Z st | IS\ —sk“Fdx)

Ny—1 1/2
+ IVl ViB (S | 20y (): o [ 17 - gf,;+1|2dx) }

We can estimate

Ny—1 1 1-7
(Z 5t Z Z TK|L| k+1 k+1|l—r>

k=0  KecTLeNp(K)
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Ny—1 1-7
<[Vo|l ( Z O Z Z l’TK\LHdK\L‘I T )

k=0  KeTLeNp(K

< C[IVe|lh' 17,
which gives us
lcu| < C(W** ' +h)
and due to (A.7) the term cj; tends to zero when & — 0. Therefore, we get

lim $% = Ii ki (x)é(S V. B(S.,) - (Vo), dxdt.
Jim S = Jim | W(X) (S, 2, )ViB(Swn) - (V) dx

Using the same reasoning as in the term Sg we can pass to the limit and we get

lim S = / k(x)8(Sy, p)VB(Sy) - Vo dxdr. (3.135)

h—0 or

The term Sf{ can be written in the following way

si— [ ( ShFh hslhpho ) dxdr.
= Ja PPn— Py 1 On ) dx

Using (3.117) and (3.118) we can pass to the limit in this term to obtain

T
lim S* = / / (PuSnFp@ — puSLE1@) dxdt. (3.136)
h—0 Q

In the same way as for the terms S’2‘ and Sé’ we obtain for the term Sgl,

Ny—1

2
G k+1 G.k+1
- Z o1 Z Z ’GK|L’kK|L)'nK\2 (pn,K\t) gK|L(pIk(+1
k=0 KGThLEND(K)
— Nh 15 7 19 G.k+1 Gk+1 2 \V k+1
=75 Z tY, Y |Txlker kil \Pukip ) & VL@ ).

k=0  KeT,LeNp(K)

G”P SG

Again by introducing the piecewise constant functions S W

and p,? such that §W,h <

SSZP,SG < Swh and P, < ph < p;, we can rewrite the term Sgl as

T
[ k(ST 03 (a5 ) - Vi

We note that for smooth test function ¢, by Lemma 3.2.6, V¢ — V¢ weakly in L?>(Qr). Then

the same arguments as in Sg and Sh ensure

lim §% = / / S)P2(pa)g- Vo dxdt. (3.137)
h—0
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Chapter 3. Finite volume method for two-phase flow

We can perform similar calculations and reasoning in all terms of the equation (3.38) and

after passing to the limit as 4~ — O we obtain the following variational formulation

~ [ @pulp)Sidpdrar - / D () pu (9 ()8 (x) 9 (0, %) dx
+/ [K pw(pw) (Sw,p)Vp—d(SW,p)Vﬁ<Sw))—ZW(SW)pv%(pW)Kg]-V(dedt

+ /Q P (Pu)SiFr@dxdt = /Q P (py)SL, Frpdxdr:
T T

(3.138)
- / Ppu(pa)S,d v dxdi = | @(0)p,(px)) (1 i) p(0.2)dx
+ [ I a(S)PuPa)0(S,p) VP 8(S1, PIVB(S1) ~ In(S1)03 () K] Vs
+ /Q PP, Fryisds = /Q Pu(p)S, oy,

(3.139)

for all ¢,y € C'([0,T];V) with w(T,-) = ¢(T,-) = 0.

Starting from the limit global pressure p and the wetting phase saturation S,, one can define
the limit phase pressures p, and p,, by (3.10) and (3.9). From (3.17) and (3.18) we can reintro-
duce the gradients of the phase pressures into the previous variational formulation which then

reduces to the variational problem from Definition 3.1.1. Theorem 3.2.9 is proved.

3.9 Numerical simulation

This test case is taken from [56]. The spatial domain Q = (0,1)? is homogeneous with
porosity & = 0.206 and absolute permeability k = 0.15- 107'© m?. The relative permeability

laws are taken as
krn(Sy) = (1=8,)2,  krw(Sy) = S2.

The capillary pressure law is set to p.(S,) = Ppax(1 — S, ), where P, = 10° Pa. The following
properties are used for the fluid system: p,, = 107> Pa-s, u, =9-107> Pa-s, p,, = 1000 kg/m?,
pn(pn) = pr(1+c,(pn— pr)), where p, = 400 kg/m?, ¢, = 107° Pa, and p, = 1.013-10° Pa.

The initial conditions are imposed as follows
S,(x,0) =09, p,(x,0)=1.013-10°Pa, x€Q.
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Chapter 3. Finite volume method for two-phase flow

On the injection part of the boundary, which is {0} x [0.8, 1], Dirichlet boundary conditions
are imposed S, = 0.1, p, = 4.6732-10° Pa. On the extraction part of the boundary, which is
{1} x [0,0.2], we have set the capillary pressure gradient to zero and p, = 1.013 x 10° Pa. The
remaining parts of the boundary are assumed to be impervious. Time of simulation is 40 s.

The obtained results are given in Figures 3.1 - 3.4, where one can see typical displacement
of the nonwetting phase by the wetting phase. We observe that the front is not symmetric since
the injection part of the boundary is set at the left part of the boundary. The presented results
correspond to the one presented in [56] and to the one obtained by DuMu* 2p module. They also
correspond to the results obtained by the numerical method based on fractional flow formulation

and global pressure presented in Chapter 4.
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Figure 3.1: Water saturation att =2 s,105s,40 s

Figure 3.2: Capillary pressure att =25,105,40 s

3.10 Conclusion

In this chapter we have proved the convergence of the cell-centered finite volume method for

immiscible, compressible, two-phase flow. In contrast to similar result given in [76] we use in our
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proof a technique based on total flux global pressure defined in [5] for derivation of the energy

estimate. In comparison to the scheme studied in [76], our discretization uses more common

treatment of the mass densities.

123



Chapter 4

Cell-centerd finite volume discretization of
compressible two-phase flow in porous

media by the concept of global pressure

In this chapter we give discretization of the compressible two-phase flow model based on
the fractional flow formulation and the concept of the global pressure based on the total flux,
which was described in detail in Chapter 1. Aside from this dissertation, this model was only
considered in [7] in one-dimensional case with numerical method based on vertex centered finite
volume discretization. The special emphasis in [7] has been given to a domain with discontin-
uous capillary pressure curves and requirement for a special treatment of the interface between
heterogeneous parts of the domain. Similar problem was considered in numerous other papers.
Here we mention only [30], where incompressible fluid flow was considered, since similar ideas
are adapted in this chapter for compressible fluid flow. In this work for the spatial discretization
we use the cell-centered finite volume approximation and for the time discretization we use an
implicit Euler approximation. We also present test cases that were used for validation of the
numerical method, with homogeneous and heterogeneous domains. All of the test cases are in-
spired by known test cases from the literature or are taken in its original form from available
benchmarks.

The outline of this chapter is as follows. In Section 4.1 we give a brief description of the
fractional flow/global pressure formulation from [5]. In Section 4.2 we present the finite volume
discretization. The numerical results with the method described in Section 4.2 are presented in

Section 4.3. More precisely, we will present five test cases modeling different scenarios of im-
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Chapter 4. Finite volume method based on total flux

miscible compressible two-phase flow in porous media. The first test case is the injection of gas
(hydrogen) in a 2D homogeneous porous domain fully saturated with water. The second test is
quasi-1D water-hydrogen flow in a homogeneous porous domain starting from non equilibrium
state. The third test case describes secondary gas recovery by injecting water in a 2D homo-
geneous domain, while in the fourth test case we consider again water-hydrogen lock-exchange
flow but this time in a 2D domain. The last test case is the injection of the hydrogen in a 3D
homogeneous domain initially saturated with water.

Special attention is paid to the treatment of the heterogeneities and association to the numeri-
cal scheme and the transmission conditions. Therefore, in Section 4.4 we adapt the method to the
case of domains composed of multiple rock types. More precisely, we introduce new variables at
the interface between different rock types in order to enforce the flux continuity of both phases.
Numerical simulations with the method described in Section 4.4 are presented in Section 4.5.
The first test case in this part is the injection of the hydrogen in a 1D domain composed of two
media with different capillary pressure curves, porosity, and permeability that is initially satu-
rated with water. In the second test case we consider again water-hydrogen flow starting from
non equilibrium state in a heterogeneous domain composed of two different media. Finally, a

brief description of the implementation of the method is given in the Appendix A.

4.1 Mathematical formulation

The mathematical formulation describing the two-phase flow in terms of the global pressure
p based on the total flux and the saturation of the wetting phase S, as primary unknowns is given

by the system composed of the mass balance equations for both phases:

q’% (PwSw) +div (£ Qs +bgKg) = —div (aKVpe(Sw)) + Fy, @.1)
cb% (PuSn) +div (£, Qs — beKKg) = div (K V pe(Sy)) + F, 4.2)

where we have denoted the total flux by Q; = —AK(wVp—pg). A detailed description of
the considered model is given in Chapter 1. We consider the proposed model in domain Q7 =
Qx (0,T), where T > 0 is fixed time and Q is a polygonal domain. We assume that the boundary

dQ is divided in two disjoint parts dQ = I'p UT'y where we impose the Neumann boundary
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conditions
(wat + bgKg+ OCKVpC) ‘n= qw

(ant - bgKg - OCKVpC) ‘n= qn

where n presents the outward unit normal to I'y, and the Dirichlet boundary conditions

on FN,

s, = SP
" v on FD.

p=p°

Instead of the system (4.1)—(4.2) we can consider the system composed of the total mass

balance equation and the nonwetting phase mass balance equation:

d

O (puSw +PuS) —div(AK (@Vp — pg)) = F + F, (4.3)
d

O (PnSi) +div (/1Qs — beKg) = div (aKVpe) + F, (4.4)

or the system composed of the wetting phase mass balance equation and the total mass balance

equation:

d

> (PwSw) +div (£,,Q; + bgKg) = —div (aKVp.) + F,, 4.5)
d

@E(pWSW + PuSn) — div (AK (0Vp — pg)) = F,, + F,. (4.6)

For the primary variables, we can also choose the nonwetting phase saturation S, and the
global pressure p.

The phase pressures are obtained from the global pressure and the wetting phase saturation,
using the capillary pressure law and the relation between nonwetting phase pressure, the global

pressure and the saturation of the wetting phase:

DPn= ﬂ(SW7p)a
Pw =T(Sw,p) — pc(Sw).

“4.7)

The function 7 is given as a solution of the Cauchy problem (1.47). Once the phase pressures are
computed one can easily compute all the remaining coefficients in the system (4.1)—(4.2), which
are given by (1.43).

Finally, the problem is completed by the initial conditions that can be expressed in primary

or phase variables.
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4.2 Finite volume scheme

In this chapter we use the definition of the finite volume mesh on Q x (0, T') from [45], which
is already given in Definition 3.2.1. All notation regarding finite volume mesh is the same as in
Chapter 3.

We denote the weighted harmonic mean of the values ug and u;, on two adjacent volumes K

andLby MK|L
dKL
uK|L = m. (48)
ug U up

We introduce the following notation for the weighted arithmetic mean of the values ux and uy,

dg cuk +dp cur

dy|L

Let us fix an integer N and set 8§t = T /N and t* = k8¢, k € {0,1,...,N}. For simplicity we
will consider the case K = k(x)I, x € Q. For the discretization of the total velocity on the edge
Ok We use the approximation for the absolute permeability k(x) given by (3.35) and for the
function @(S,,, p), arithmetic average for the mean density p, upwinding for the total mobility
A(Sy,p), and two point approximation for the gradient of the global pressure. We obtain the
following expression

" o Pl pht
up, _
QKTL :AKTL kgL | @k|L K d—I(|LL +pKTLg'nK|L ) (4.10)

where ng; denotes the outward unit normal to edge Oz, pointing from K to L and

k+1 k+1

k1 kDY e AR = P
lup,k—i—l ;L(SW7K,pK ) if Wk|L . + K\Lg Nk >0
K|L k+1_ ket
k+1  k+1 : Px P —~k+1
)V(SWJJ 43 ) if (UK|L—K dK\LL +pK‘Lg-nK‘L <0.

For the discretization of the term with the fractional flow functions f,(S,, p) and f,(Sw,p)
we use the upwind scheme:
k+1 _k+1\~k+1 : k+1
okl { f"(Sw,K’pK )QKlL if QK|L 20

KiL k+1 k+1\Hk+1 e k1

wk+1
F, K|L

fe(Si ko i =0
FoSGLPEQ IO <.
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The capillary diffusion term is discretized as follows

De (Slvcverl) - pC(Sl:ver])

dk|L

Cl = — (AKVp(Sw) 1) |6, = — 0 ki,

K|L K|L 4.11)

Y

k+1
where o KIL

For the gravity term we use the discretization from [58] which is based on the fact that

is given by the harmonic mean (4.8).

the heavier fluid goes down and that the lighter fluid goes up. The authors have considered a
system composed of incompressible fluids. Since we have compressible fluid flow, we will use
arithmetic mean for the approximation of the phase densities on the edge k(. We propose the

following approximation

pk-l-l ﬁk—H AGJ(-HAGJ(-H
k+1 ] _(=k+1 —k+1 w,K|LF n,K|L"*w,K|L “*n,K|L )
bg7K|L - (bgKg n)|GK|L - <pw,K|L _pn7K\L> —k+1 lGJH_] 15 AGJ(‘H kK|Lg gL 4.12)
w,K|L"*w,K|L PnkiL n,K|L

Upwind values for the phase mobilities in the gravity term are given as follows

Kt ly e (kb =kt
4Gk _ A(Syx ) if <pw,K|L_pn,K|L) g g, >0

wK|L . . _
A7) (430, — A, ) ek <0,

1y e (mkHl =k
4Gk _ An(S) i <pw7K|L _Pn,K|L> g ngj. >0

nKIL . . o
An(‘ﬂif[é) if <plv€ijKl|L_pﬁ7+Kl|L>gnK|L§0

The finite volume scheme for the discretization of the problem (4.3)—(4.4) is given by the

following set of equations with the unknowns (pl;;rl )keT and (Sfle Yker, k€ {0,1,....N—1}

k+1 gk+1 k+1 gk+1 k k k ¢k
pw,K SW,K +pn,K Sn,K - (pw,KSW7K+pn,KSn,K>

K|®
o k+1 o tk+1 k+1 k41 (4.13)
+ Z |GK|L|QK|L + Z |G|q(’; = |K|FW,K +|K’Fn,K ’
LEND(K) ccdKNl'y
k+1 gk+1 k  qk
Prk Snk — PnxSnk k+1
|K| g " 57 BES 4 Z |O'K\L’F1?iL+ + ’GK|L|C1k<\+L1
LEND(K) LEND(K) (4.14)
k+1 J+1 k+1
~ Y lowtbi X lolast = KIES
LeNp(K) ocdKNI'y
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In the case of ok|z, € Np(K) \ N(K) we set p’Z“ =pP, S’fvjzl = SﬁL, dg|L = dk ¢, and d ¢ = 0.

The wetting phase mass balance equation can be discretized in the following way

Pik SWk — PiSik k+1
w,K Zw, w,K°w, y ]
K|x ot T Z( )|GKL|FI?}|L - Z( )|(7K|L|CK|+L (4.15)
LeNp(K LENp(K
K1
+ ) ’GK\L|b§}1‘L+ Y Jolgst T = |K’Fv]§}1-
LeND(K) cedKMTy

This numerical method was implemented in the DuMu* framework, precisely in DuMu* 3,
see [43, 66]. For solving the nonlinear system we have used DuMu* implementation of the
Newton method with biconjugate gradient stabilized method (BiICGSTAB) as linear solver and
Algebraic Multigrid (AMG) as preconditioner. In order to compute the nonwetting phase pres-
sure p, from the global pressure p and the wetting phase saturation S,, we have used the explicit
Runge-Kutta-Fehlberg method in order to solve the Cauchy problem (1.47). For the computation
of the function ® from (1.50) we have used composite trapezoidal rule. For a detailed description

of the implementation check the Appendix A.

4.3 Numerical simulations in homogeneous case

In this section we present test cases which are used for the validation of the proposed finite
volume scheme. In the following test cases we have assumed that the domain is homogeneous,
in a sense that we have the same capillary pressure law on the whole domain. Presented results
are validated by comparison with the results obtained with the DuMu* 2p module for two-phase,
immiscible flow. In the next section we will consider the case with different capillary pressure

curves on the different subdomains.

4.3.1 Injection of gas in homogeneous domain

The first test case is inspired by the test case from the MoMas benchmark [28], with simpli-
fication that the two-phase flow model is considered, instead of the two-phase two-component
flow model. We consider quasi-1D flow with neglected gravity effect on a domain Q = (0,200) x
(0,20). The porous domain is assumed to be homogeneous with porosity @ = 0.15 and abso-
2042

lute permeability k =5-10" . The fluid system is composed of water, which is assumed
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incompressible, and hydrogen, with density given by the ideal gas law. The capillary pres-
sure curve and the relative permeabilities are given by the Van-Genuchten law with parameters
o =0.5-10"%Pa~!, n=1.49, and S,,, = 0.4.
The domain is initially fully saturated with water, namely the following initial conditions are
taken
Sp(x,0)=1, p.(x,00=10°Pa, xeQ.

The corresponding global pressure p at initial time step is equal to 10° Pa. The duration of the
simulation is 10° years. The bottom and the top part of the boundary are assumed impermeable.
The left part of the boundary is the injection part of the boundary with the following boundary
conditions:

g" =0kg/(ms), ¢"=1.766-10""kg/(ms),

for the first 500 000 years. The Dirichlet boundary condition, identical to the initial condition, is
imposed on the right part of the boundary. The temperature of the system is set to 303 K.

In the space domain an equidistant grid with 27 = 2 m is used. The initial time step is taken
as 6t = 100 s and the maximum time step size is set to 6t = 10000 years. The obtained results
are presented in Figures 4.1 - 4.6. In Figure 4.4 we can see that initially, the liquid phase pres-
sure starts to increase, but after around 10000 years it starts to decrease, and by the end of the
simulation it is tending to its initial value of 1 MPa. The gas phase pressure is increasing during
the whole period of injection, and after the injection has finished it also tends to its initial value
of 1 MPa. The gas saturation is slightly increasing due to the small amount of injected hydrogen
near the injection boundary, but after the injection period has finished it starts to decrease. Due
to the gas saturation growth, we also observe an increase in the capillary pressure in Figure 4.2
during the injection period, and afterwards it starts to decay. It is interesting to compare obtained
results to the one of the original test case that are known from the literature. We observe that the
increase of the gas saturation in the first 100000 years of the simulation is visible throughout the
domain, and not just in the left part of the domain like in the results of the original test case, since
we neglected dissolution of gas in water. Due to the same reason gas saturation is significantly
larger in the end of the simulation than in the results of the original test case.

The correctness of the presented results is confirmed by comparison with the results obtained

by the DuMu* 2p module for the two-phase, immiscible flow.
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4.3.2 Compressible immiscible two-phase flow starting from non equilib-

rium state

This test case is also a simplified version of the test case from the MoMas benchmark [28].
In this test case an impermeable domain Q = (0, 1) x (0,0.1) is considered. The domain is again
assumed to be homogeneous with porosity ® = 0.3 and absolute permeability k = 10~ '°m?. The
gravity term is once again neglected. The considered fluid system is the same as in the previous
test case. The parameters for the capillary pressure and the relative permeability laws are given
by ¢ =0.5-10"°Pa~!, n = 1.54 and S,,, = 0.01.
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pressure on inlet over time pressure on inlet over time

The initial condition differs on the left and the right part of the domain, which represents
additional difficulty while performing simulation. On the left part the initial condition is imposed
as

S(x,0) =0.962, p,(x,0)=10°Pa, x<0.5.

On the rest of the domain, the initial condition is set to be
S(x,0) =0.842, p,(x,0)=10°Pa, x>0.5.

On the left part of the domain the initial global pressure is equal to 1.001 MPa and on the
right part of the domain the initial global pressure is equal to 1.156 MPa. The duration of the
simulation is 10° s. For the space domain, we have used an equidistant grid with 7 = 2 mm, and
the initial time step is 8 = 0.01 s. The obtained results are given in Figures 4.7 - 4.10. In Figure
4.7 we see that the gas phase starts to flow from the right part of the domain to the left part of the
domain, and by the end of the simulation it is tending to a constant value S,, = 0.1 throughout the
domain. As we see in Figure 4.8, due to the increase of the gas saturation in the left part of the
domain, the capillary pressure is also increasing, while in the right part of the domain appears
the decrease of the capillary pressure since there is also decrease in the gas phase saturation. By
the end of the simulation, the capillary pressure is tending to the constant value of 1MPa. We
observe the similar behavior for the gas phase pressure in Figure 4.9. At the beginning of the
simulation, as one can see in Figure 4.10, the liquid phase pressure starts to increase at the center

of the domain and by the end of the simulation it is tending to the constant value around 1.3 MPa.
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Validation of the results was done through comparison with the DuMu* 2p module. By

comparison with results of the benchmark MoMas we note that we obtain physically correct

behavior.
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4.3.3 The secondary recovery of gas by injecting water

This test case is taken from [56], and results for this test obtained using numerical scheme
(3.37)—(3.38) were already presented in this thesis in Section 3.9. Now we present the results
obtained by the scheme (4.13)—(4.14).
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The obtained results are given in Figures 4.11 - 4.14. In these figures one can see typical

displacement of the nonwetting phase by the wetting phase. We observe that the front is not

symmetric since the injection part of the boundary is set at the left part of the boundary. The

presented results correspond to the one presented in [56] and to the one obtained by the DuMu*

2p module and also to the one presented in Section 3.9.

Figure 4.12: Capillary pressure at ¢
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Figure 4.14: Liquid phase pressure at# =2,105,40 s

4.3.4 Homogeneous two-phase compressible lock-exchange flow with vis-

cous forces, buoyancy and capillary pressure

The next test case is inspired by the test case from [58]. The domain Q = (0,100)? is ho-

mogeneous with absolute permeability k = 5- 10~!'4 m? and porosity ® = 0.4. For the capillary
1

pressure law, the Brooks Corey capillary pressure curve p.(Sye) = P.Sye" is used with parameters

P, =0.75 MPa and A = 4. The relative permeability functions are
krw(Swe) = Sxéa krn(Swe) = (1 _Swe)mza

where we have set S, =0, m; = 2.5 and my = 2. Instead of an incompressible fluid system
which was used in [58], we have used a fluid system composed of hydrogen and water. The
boundary is assumed to be impermeable. The temperature is equal to 293.15 K. The initial
pressure of the wetting phase is set to p,, = 10% Pa. An additional difficulty is introduced in this

test case by imposing a discontinuity in the initial saturation of the nonwetting phase:

0.1 ifx<S50,
Sn(0,x) =
0.9 ifx> 50.

The initial global pressure on the left part of the domain is equal to 2.5 - 10° Pa and on the right
part of the domain it is equal to 4.34 - 10° Pa. The time of simulation is 6000 days. In Figures
4.15 - 4.18, given below, one can see the obtained results. In Figure 4.15 we see that the water
starts to flow from the left to the right side of the domain, and gas starts to flow from the right
part to the left part of the domain. Since the water is heavier fluid it remains in the bottom part of
the domain and the gas flows to the upper part of the domain. In Figure 4.16 we see that during

the simulation the capillary pressure is decreasing in the bottom layers of the domain as the water
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is entering this region. Since the gas saturation is increasing in the upper layers of the domain,
we observe an increase in the capillary pressure in this region. We observe a similar behavior of
the phase pressures in the Figures 4.17 and 4.18.

Once again correctness of the presented results is confirmed by comparison with the results
obtained with the DuMu* module for two-phase, immiscible flow. Similar physical behavior was

also observed in the results presented in [58] for incompressible fluid flow.
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Figure 4.16: Capillary pressure at t = 0,500 days, 6000 days

4.3.5 Injection of the hydrogen in a domain initially saturated with water

This test case is a simplified version of the test case 3.2.6 from [13], where we have once
again used a two-phase flow model instead of a two-phase two-component flow model. A cubic
domain with the volume of 10 m? is considered. A smaller cube with the volume of 1 m? at the
bottom left corner is removed from a domain. The domain is initially fully saturated with water

and the liquid phase pressure is assumed hydrostatic. Hydrogen is being injected in the domain

136



Chapter 4. Finite volume method based on total flux

Figure 4.18: Water phase pressure at t = 0,500 days, 6000 days

through the bottom left corner, with the following Neumann boundary condition:
¢’ =0kg/(m%s), ¢"=5.35-10"""kg/(m?s).

The Dirichlet boundary conditions corresponding to the initial boundary conditions are imposed
on the top and the right part of the domain. The rest of the boundary is assumed impermeable.
The duration of the simulation is 1000 years. The permeability is set to k = 1072 m? and porosity
to 0.15. Van Genuchten’s capillary pressure curve with parameters n = 1.49 and o = 0.067 -
107° Pa~! is used. The wetting phase is composed of water which is assumed incompressible
and the gas phase is composed of hydrogen with density given by the ideal gas law.

The obtained results are shown in the Figures 4.19 - 4.21. In Figure 4.19 we can see a
decrease in the water saturation around the injection hole. This decrease is visible during the first
100 years of simulation. Afterwards we can see the gas phase flow in the bottom of the domain,
as a consequence of the imposed Dirichlet boundary conditions. In Figures 4.20 and 4.21 we can
see that the phase pressures are increasing in the left bottom corner as a consequence of the gas
injection. After around 100 years the phase pressures also start to decrease.

Validation of the results is done through comparison with the DuMu* 2p module. In the
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presented results one can observe behavior that is similar to the one presented in the results of

the original test case in [13].

— 10e+00

— 0999012

— 1.0e+00

— 10e+00

0e+00

Figure 4.19: Water saturation atr = 1 day, 1 yr, 10 yrs in the first column,
100 yrs, 500 yrs, 1000 yrs in the second column
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Figure 4.20: Gas phase pressure at t = 1 day, 1 yr, 10 yrs in the first column,
100 yrs, 500 yrs, 1000 yrs in the second column
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Figure 4.21: Liquid phase pressure at = 1 day, 1 yr, 10 yrs in the first column,
100 yrs, 500 yrs, 1000 yrs in the second column

4.4 Discontinuous capillary pressure problem

Let us now consider a porous domain composed of multiple rock types. Each rock type has

different properties, as well as different relative permeabilities and different capillary pressure
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curves. For simplicity let us consider a domain composed of two different rock types, Q =
Q1 ULQ,. We denote the interface between these two parts of the domain by I', and we emphasize
dependency of the given function on domain €; by the subscript i,i € {1,2}. For example we

will have

Pec,1 (Sw(x,t)) if x € Q
Pe2(Sw(x,1))  ifxe Q.

Pe(Sw(x:1)) = {

To simplify the notation we will denote the wetting phase saturation S,, by § in the rest of this
section. We will also omit writing the time step dependence. For simplicity, here we only
consider capillary pressure curves that satisfies p. (S, =1) =0and p.2(S,, =1) =0.
Approximation of the fluxes on the interface I" has to be done carefully due to the strong
effect of the discontinuity of the capillary pressure function on discretization of the diffusion
term. Therefore, as already seen in [30] and [7], at the interface we need to introduce new
variables in order to enforce the flux continuity of both phases. For simplicity we consider the
two neighboring elements K and L with face 0 = ok belonging to the interface I'. In the
element K we have independent variables px and Sk and in the element L we have py and S;. At

the interface ¢ we attach new variables

PK.c; SK,G7PL,G) SL,G

which represent the one-sided limits of the global pressure (pg ¢ and py. ) and the wetting phase
saturation (Sk ¢ and S7 ) at the interface . The continuity of the capillary pressure will lead
to a jump in the saturation (Sx,¢ # Sr.c) and consequently to a jump in the global pressure
(Pk.c A PL.G)-

At the interface ¢ the capillary pressure and the nonwetting phase pressure must be continu-
ous. Therefore we have:

Pek(Sk.0) = per(SLo) = o (4.16)

Pnk(Sk.6:Pk.6) = PnL(SLosPLG) = Puos
where we have denoted the corresponding material functions by indices K and L instead of 1 and
2. Notation us and p, s denote the capillary pressure and the nonwetting phase pressure at the
interface.
The fluxes at the interface will be calculated by the use of these new unknowns which will be

eliminated by imposing the continuity of the fluxes.

141



Chapter 4. Finite volume method based on total flux

The total flux is calculated in the following way

y +kxg-ng o(Ap)(Sk, Pk)-
K.o

Ok,c = kkA(Sk, Pk )@0(Sk, Pk
The total flux continuity can be expressed as
QK NeJ + QL,G =0

Similarly, the nonwetting phase flux at the interface will be calculated as follows

pc(SK) — Pc (SK,G>
de

ﬁK,G:fl’l(gK,O'ul_?K,G)QK,G_’_a(SK7pK)kK _bg,K,cr-

For the nonwetting phase fractional flow we perform upwind in the following way

- S¢ 1fQ0ks>0 pk 1 Qks>0
Sk.o = . Pkoc = )
SK,G if QK,G <0, PK.c if QK,G <O0.

For the gravity convection term, the approximation is taken as follows

G G
pW7Kpn>KA’W7K7GAI}’l7K7G
G G
pvaAWJ(,G—i—panln,K,G

bek.o = (Pwk —PnK) kxg-ng .

Upwind values for phase mobilities in the gravity term are given as follows

G Aw(Sk) if (Pwk —Pnk)g Nk >0
A’W,K,G = .
A (Sk,o) if (Pwxk —Pnk)g Nk, <0,
26, M(Sk.0) if (Pwx —Pnk)g Mg >0
nKo —

An(SK) if (pW,K - pn,K)g ‘Ng o <0.

The nonwetting phase flux continuity can be expressed as

Fko+FLoc=0.

4.17)

(4.18)

4.19)

(4.20)

(4.21)

(4.22)

Calculation procedure. First we need an efficient procedure to calculate the global pressure

as a function of the capillary pressure and the nonwetting phase pressure, therefore we introduce

the following notation

p = V(u,pp).
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Then, we consider (4.18) which gives,

Ok.c+0rc=kk(A (D)(SK,PK)pKC;(ﬂ +kxg-ng.6(Ap)(Sk, Px)
.o
PL—PLo

+k(A@)(SL, pr) +kig-nLo(Ap)(SL, pr) =0.

dL,G

We simplify the notation by introducing

Ax = kx(Aw)(Sk,pk), Gk =kkg -nkg o(Ap)(Sk,pk),

and rewriting (4.18) as

AKPK —PK,o —|—G[(+ALPL —PLo +G, =0
dK,G dL,c
or
Ak AL Ak Ap
—PKo+ 57—PLo = Pk +——pL+ Gk +GL.
dK7G dL,G de dL7G

To the side ¢ on the interface we associate two values: the capillary pressure of the interface us
and the gas pressure of the interface p, 5. These are continuous functions across the interface
and therefore have a unique value at the interface. The total flux continuity (4.18) can now be

expressed as

Ag . Ap A A
K ok (e, Prg) + =01 (e, Pro) = ———pk + —=pr + G + Gy, (4.23)
dK,O' dL,G dK,O' dL,O‘

since pg .6 = Pk (Uo, Pno)s PLo = V(Uo, Pn,o)- For fixed ugs the function
Ak AL
Pn,oc _VK(MG;Pn,G) + —VL(umPn,o)
dK,G dL,O'

is monotone increasing, and the equation (4.23) has a unique solution p, s for fixed us. By

solving the equation (4.23) we obtain p, s as a function of ug:

Pno = pAn(uG)-

If we chose us we can directly calculate Sk ¢ = p;}((ug) and Sp ¢ = pgl{(ug) By solving
the equation (4.23) we get p, ¢ and then we have px ¢ = ¥k (us, pn.o) and pr o = 1.(ts, Pn.c)-
Then we can define the total fluxes in both cells:

PK — DKo

=A
QOk.c = Ak dxo

+Gk, OQLoc=—0Oko-

143



Chapter 4. Finite volume method based on total flux

Now we have a single value to determine, the capillary pressure uq, and it will be determined

from the continuity of the nonwetting phase flux across the interface (4.22), which can be written

as
_ Sk)— pe(S
oS Pr ) 0o + xSk it K PelS)
(o2
: 4.24)
5 _ g k pc(SL> — pC(SL,G) b -0 (
+fn(SL,6,P1,6) QLo + A(SL, PrL)kL o —bgr6=0.

To simplify notation let us denote Dx = a.(Sk, px)kx, DL = o(St, pr)kr, ux = pc(Sk), ur =
pc(S), and

_ ug if Qg s >0
UK o = .
Us lf QK7G < O

Now we can rewrite equation (4.24) as W(us) = 0, where

¥(us) = (fu(Sk.0, Vk (i ,0: Pn(lik,6))) — fa(SL.o0 V(UL Pu(liLe)))) Ok o (o)

UL — hg (4.25)
- g7L70-.

MK_MG

+Dg —bek,c+DL

dK,G dL,G

Lemma 4.4.1. Let sk, s, € [0,1]. Then there exists ug € [0,max; p.;i(0)] such that ¥(us) = 0.

Proof. For the proof of the lemma we use a technique similar to the one from the proof of Lemma
2.1. in [30]. We will show that the limits of the function ¥(us) when us — 0 and us — max; p.;
have different signs and then the result follows from the continuity of the function ¥ (us).

Since the function u — V(u, p,(u«)) is continuous on [0, max; p.;(0)) we can pass to the limit

when u — 0 to obtain
PK,c = lim Vi (, pn(u)) = pu(0),
u—0
PLc = lim VL(u, pu(u)) = pn(0).
u—0

If we pass to the limit # — O in equation (4.23) we obtain

Ag . AL A A
K Pn (0) + —LPn(O) = _KPK + —LPL + Gk +Gp. (4.26)
dK,O' dL,O' dK,G dL,G

From the previous equation we conclude

A A
_KPK+ —LPL+ Gk +GyL
A dK,cr dL.,O'
pn(o) - AK AL 9
dK,c dL,G
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i.e. the function Qg () has a finite limit when us — 0. For passing to the limit us —

max; p.,;i(0) we will apply Remark 1.3.3 to obtain the following inequalities

\A’K(uc,ﬁn(”o-)) < ﬁn<“6) < ‘A/K(”Gaﬁn(uc)) + Mk, (4.27)

Vi(uo, Pn(c)) < Pnluc) < Vi(ug, Pn(us)) + My,

for some Mg, My, > 0. If we apply these estimates to (4.23) we have
Ak

: A, A A
dr o (Pnluo) = M)+ 5 (puluo) = ML) < = p+ 3= pL+Gk+Gry (428)
,0

dr s T dko drc
which leads to

Ak Ap
—pk+—pL+Gxk+GL
de dL7G

dK,G dL76

—I—max{MK,ML}.

Therefore, we conclude that Vg (ue, p,(us)) is bounded and consequently we have the bounded-
ness of the function Qg & (us) when us — max; p.;(0).
Now we consider the first term in the function ¥(u). Let us assume Qg (0) > 0. Then we

have Qk (utg) > 0 for us € [0, €), for some € > 0, and consequently

(fn(ng; \A’K(ﬁKﬁ,pAn(ﬁKﬁ))) - fn(gL,ca \A’L(ﬁLpaﬁn(ﬁL,G)))) QK,G(UG)
:fn(SK,PK)QK,G(MG) _fn(SL,GvoL(”Gaﬁn(”C)))QK,O‘(”O‘)-

Since f»(1, pn,o) =0 and the function Qk o (us) has a finite limit when us — 0 we conclude

lim fn(SLpa \A’L(umﬁn(uc)))QK,c(uc) =0,

Us —0

which leads to

im (f,(Sk.0,V(Uk.0, Pn(lik.))) = fu(SLe, Vi(lLe, Pu(liLe)))) Qk.o(us) > 0. (4.29)

us—0

In the case Qk +(0) = 0 we have

lim (f,(Sk.0 V& (ko) Pu(tik.6))) — fu(SL.o, Vi(tiL,6, Pr(tiLe)))) Ok, (Us) =0,

ug—0

and in the case Qg (0) < 0 we can apply the same reasoning as in the first case since

(fu(Sk .o, Vk (k05 Pr(Uik,6))) — fu(SL.0s VL (UL, Pu(liL,s)))) Ok,o(Us)
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= fn(SK,Ga OK(”G;pAn(MO')))QK,O'(uG) - fn(SvaL)QK,G(uG)J

which leads to a nonnegative limit at us — 0.

For the term —b, g & we have

— lim byk.o >0, (4.30)

I/to——>

since in the case (Py.x — Pn.k)8 Nk, > 0 we get (see 4.21)
/"tnK o = M(Sk.c) = 0, when ug — 0.
We can perform the same calculations for the term by ;, o, leading to

— lim bch>0 4.31)

Mc—>

From the estimates (4.29), (4.30) and (4.31) we conclude

lim W(ug) > Dy K L p, M >, (4.32)
Ug—0 dg dr s

Now we pass to the limit us — max;p.;(0) i.e. Sk — 0 and Sz 5 — 0. In the case

Ok o (max; p.;(0)) > 0 we have

lim (fn(SKapK) _fn(SL,Ga ‘A’L(umﬁn(uc))))QK,o(uc) <0 (4.33)

ug—max; pe (0

due to £,(0, pn.o) = 1, |fu(Sk, px)| < 1 and the boundedness of the function Qg (us). The case

Ok o (us) = 0 is again trivial, and for the case Qg +(uts) < 0 we get the same conclusion

lim  (fu(Sk.0, Vk (o, Pn(uc))) = fa(SL, PL)))) QK 6 (uc) <O.

ug—max; pc ;(0)

For the term —bg g ¢ we conclude

—  lim bego <O, (4.34)

ug—max; pc;(0)

since in the case (py,x — Pn.k )8 Nk,c < 0 by (4.20) we have
/’LGK o = M(Sk,6) — 0 when ug — maxpc i(0).

The same conclusion is valid for —by s, s, therefore we conclude

ug —max; pc;(0) e max; Pe,i(0)

lim Y(us) < Dk <0.
ug—max; pc,;(0) (o) < dk & dr o o
Since the function ¥ is continuous, we conclude that there exists us such that ¥(us) =0. [
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Algorithms In order to find a solution to the nonlinear equation ¥(us) = 0 by some itera-

tive procedure, in each iteration we have to find p, s from the nonlinear equation

Ak Ap Ak Ar
Vk(Ug, pno) + —Vi(Us, Pno) = —pPk + —pL+ Gk + Gy,
dK,cr dL,c dl(,c dL,o

for fixed us. Therefore, we define the function

Ag . Ar A A
K Ok (e, Pno) + —LVL(MG,Pn,o) — _KPK — _LPL -Gk —Gp.
dK,O' dL,G dK,G dL,G

8us (p’%o') =

Algorithm 1 for given ue finds p, ¢ which is the solution to the nonlinear equation g, (pn.c) =
0, using the Newton iterations. Algorithm 2 solves the equation ¥(us) = 0 by the Newton
method. So instead of solving the nonlinear system of two equations with unknowns p, s and

us we are searching for solutions of the two decoupled nonlinear equations.
Data: capillary pressure us, precision EPS, maximum number of iterations maxIter

Result: p, s

Set initial approximation:

0 _ !KPnK+ILPnL
pn7G - fK‘i‘[L

Compute g, (p) ;) and g}, (p) )
while N < maxlter do

Pl 0 _ 8us(Pno).
mo —Eno e (phe)’

Compute gy, (prlz,o) if (|gu, (prlz,o)|< EPS or |prlz,o _p(r)z,c|/|p9z,cr| < EPS ) then

— kx o _ kL.
, where tx = dea,tL =05

return prlw;
end
N=N+1;
Set P o = Puo> 8uo (Pho) = 8us(Prc) 5
Compute g}, (p}) o) 3
end

Algorithm 1: p, ; computation
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Data: unknowns on the elements K, L, precision EPS, maxlter
Result: p, ; and us

Set initial approximation:
¥ = KUKFILuL
o g+
For given u compute p)) ; by Algorithm 1;
Compute ¥ (%) and ¥ (u2);

while N < maxIter do
T R {5
o = o T Wiy

For given ul. compute p,lw by Algorithm 1 ;

_ _kk _ k.
, Where tx = de’tL =45

Compute ¥(uk) ;
if (|¥(ul)|<EPSor|ul —ul|/|ul| < EPS ) then

‘ return u) and p}m ;

end
N=N+1;
Set ug = ul,, lP(u%) = ‘I’(ug,) :

Compute ¥’ (u2);

end
Algorithm 2: u; computation

4.5 Numerical simulations in a heterogeneous case

In this section we present numerical results for test cases with heterogeneous domain. First
we present the test case based on test case from the MoMas benchmark with simplification that
the immiscible two-phase flow model is considered. In this test case heterogeneous porous do-
main / = (0,200) is composed of two media I; = (0,20] and I, = (20,200) with different capil-
lary pressure curves, porosity, and permeability. For both media we have used Van Genuchten’s
capillary pressure curves, but with different parameters. The parameters used in the simulation

are given in Table 4.1. The duration of the simulation is 10° years. The Dirichlet boundary

Table 4.1: Van Genuchten’s parameters and rock properties

n(—)  oa(l/Pa)  Su(—) Se(—) @  k(m?)
I, 154 05-10°° 0.01 0.0 03 10718
L 149 0.067-100° 04 00 0.15 5-10720
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conditions are imposed on the right part of the boundary:
pw=10%Pa, p,=15-10°Pa, x=200,
and the Neumann boundary conditions are imposed on the left part:
" =0kg/s, ¢"=1.766-10"kg/s, x=0.

The initial conditions are equal to the Dirichlet boundary conditions on the right part of the
domain. Consequently the initial global pressure in /; is equal to 1.002 MPa and in I it is
equal to 1.0 MPa. Gravity effects are neglected. For the fluid system we use the following
properties: , = 1073 Pa-s, , = 9-107° Pa-s, p,, = 1000 kg/m>, p,(ps) = cgpn, Where
cg =0.794- 106 kg/ (m3Pa). The temperature is set to 303 K.

An equidistant mesh is used for the space grid with 2z = 1 m. Initial step is taken as 67 = 1 s.
The obtained results are shown in Figures 4.22 - 4.25. In Figure 4.22 we observe that the water
saturation remains practically unchanged since the injection rate of hydrogen is very small. After
1000 years the water saturation starts to decay in the left part of the domain, and in the end of the
simulation it is equal approximately 0.87. Decrease of the water saturation in the right part of
the domain is much smaller due to the smaller absolute permeability in this part of the domain.
In Figure 4.24 we see that the gas phase pressure is increasing during the whole simulation. The
water phase pressure is increasing for the around 10° years and afterwards it starts to decay, as
one can see in Figure 4.25.

The obtained results correspond to the results obtained by the DuMu* 2p module. They also
show physical behavior close to the one seen in the results of the original test case.

The second test case is the BOBG (French acronym of Engineered Barrier Geological Bar-
rier) test case from [28]. In this test case a heterogeneous porous domain 7 = (0,1) = ;U1 is
used. The subdomains /; and I, are equal to I} = (0,0.5] and I, = (0.5,1). The fluid system is
composed of water, which is assumed incompressible, and hydrogen, with density given by the
ideal gas law. In this test case the domain boundary is assumed impermeable. Beside hetero-
geneity of the domain, an additional difficulty in this test case is heterogeneous initial condition

for the water saturation

077, x<05
Sw(x,0) =

1, x>0.5,

which is out of equilibrium and leads to high flow rate in the first few steps of the simulation.

The initial gas phase pressure is set to p,(x,0) = 0.1 MPa, x € I. The initial global pressure is
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Figure 4.22: Water saturation
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Figure 4.23: Capillary pressure

equal to —88.8449 MPa in I; and it is equal to 0.1 MPa in ;. Like in the previous test cases Van
Genuchten’s capillary pressure curves are used, but with different parameters. For the relative

permeability the following functions are used
5
kry(Sw) = (1—S,,)? (1 — S@) , kro(Sw) = (1+A(S, B —1)6)7P.

The parameters for Van Genuchten’s capillary pressure curve and relative permeability func-
tions are given in Table 4.2.
The temperature is set to 7 = 300 K. The time of simulation is 1000 years. For the space

grid we have used a mesh with 256 elements with a finer grid around the interface point. The
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Figure 4.24: Gas phase pressure
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Figure 4.25: Liquid phase pressure

initial time step is taken as 8 = 10~ s and by the end of simulation it is increased to 8¢ = 10% s.
The obtained results are given in Figures 4.26 - 4.29.

In the proposed test the right part of the domain is initially fully saturated with water as one
can see in Figure 4.26. From the very beginning of the simulation the water starts to flow to the
left part of the domain, while the gas is entering the right part of the domain. Due to this behavior
there is a significant increase of the gas pressure at the interface as one can see in Figure 4.28.
After around 10° s the gas pressure on the interface starts to decay since a significant amount

of gas has entered the right part of the domain. By the end of the simulation the gas pressure
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Table 4.2: Van Genuchten’s parameters and rock properties

Figure 4.28: Gas phase pressure Figure 4.29: Liquid phase pressure

is increasing in the right part of the domain and it is decreasing on the left part of the domain

to eventually reach the initial value of 10° Pa. During the whole simulation the water pressure

is decreasing in the right part of the domain and it is increasing in the left part of the domain
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as shown in Figure 4.29. At the end of the simulation the water pressure is tending to the value
of —20 MPa. In Figure 4.27 one can see the opposite behavior of the capillary pressure since
the amount of gas in the left part of the domain becomes smaller during the simulation, and the
amount of gas in the right part of the domain is increasing. At the end of the simulation the
capillary pressure is attaining the value of around 20 MPa. If we look closely to Figure 4.26 we
can see that the water saturation is attaining the value of S, = 0.844 on the left part of the domain
and on the right part of the domain it is equal S, = 0.548 at the end of the simulation.

The presented results show physically correct behavior and they are validated through com-

parison with the DuMu* 2p module.

4.6 Conclusion

In this chapter numerical simulations obtained by the cell-centered finite volume discretiza-
tion of the fractional flow/global pressure formulation are presented. With regard to benchmark
test cases, obtained results correspond to the known results from the literature. Regarding test
cases that were inspired by some benchmark problems, obtained results show physically correct
behavior. Results are additionally validated through comparison with results obtained by the
DuMu* 2p module. Even though the proposed method has shown some shortcomings regarding
running time, due to the computation of the global pressure, it is expected that these shortcom-
ings will be less important when the method is applied to the two-phase two-component model.
That motivation is drawn from the fact that the global pressure can be used as a persistent variable

in the model describing fluid flow with mass exchange between the phases.
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Appendix A

Implementation of the finite volume
method in DuMu*

In this section we describe the implementation in the DuMu* framework of the cell-centered
finite volume method for two-phase, immiscible, compressible flow based on the fractional flow
formulation presented in Chapter 4. The DuMu*, [43], is a platform for implementation and
application of models describing the flow and transport processes in porous media. It comes
with a number of modules for simulation of various processes in porous media and it allows
addition of new modules into the framework. In this section we describe a construction of a new

module and in particular the calculation of coefficients depending on the global pressure.

A.1 DuMu* 2p-gp module

In order to implement the cell-centered finite volume method for two-phase, immiscible flow
based on the fractional flow formulation and the concept of global pressure based on the total
flux, we have created a new DuMu* module called 2p-gp module. The new module is based
on the DuMu* 2p module which implements classical engineering finite volume scheme for
two-phase, immiscible flow. Here we give list of classes that were modified for purpose of the

implementation of our method:

e PorousMediumFlowProblemn (file dumux/porousmediumflow/problem.hh) - Base class
for all fully implicit porous media problems was altered in order to initialize computation

of tables storing the nonwetting phase pressure which will be described in detail in Section
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A2

e TwoPFormulation (file dumux/porousmediumflow/2p/formulation.hh) - class that
specifies primary variable choice was altered in order to support formulations ps1 which
uses the global pressure and the nonwetting phase saturation as primary unknowns and
ps0 which uses the global pressure and the wetting phase saturation as primary unknowns.

Default formulation is set to psO.

e ImmiscibleFluidState (filedumux/material/fluidstates/immiscible.hh) - class
that stores current state of fluid was adapted so that it provides computation of the non-
wetting phase pressure from the global pressure and the saturation and also computation
of the global pressure for given nonweting phase pressure and saturation. These processes

will be described in more detail in Section A.2.

e TwoPVolumeVariables (file dumux/porousmediumflow/2p/volumevariables.hh) -
class that computes the quantities which are constant within a finite volume was modi-
fied to use the global pressure and the saturation as primary variables. These quantities are

the phase pressures p,, and p,, and all coefficients from the system given by (1.43).

e ImmiscibleLocalResidual (file dumux/porousmediumflow/immiscible/localres-
idual.hh) - class that calculates element-wise the residual for problems was modified
to compute the fluxes in a way given by the finite volume scheme (4.13)—(4.14). The

computation of the fluxes is described in more detail in Section A .4.

e TwoPModel (file dumux/porousmediumflow/2p/model.hh) - Property system of the
TwoPModel was modified in order to take into account previously mentioned alterations
and to add new property numMaterials which is used to indicate number of different
materials in porous media. Default value for numMaterials is set to one. Here is also
defined property ReplaceCompEqIdx, which suggest which of the equations from (4.1)—
(4.2) should be replaced by the total mass balance equation. Default system is set to
the system (4.3)—(4.4) by imposing ReplaceCompEqIdx = 0. We change it by imposing
ReplaceCompEqIdx = 2 for the system (4.1)—(4.2) and ReplaceCompEqIdx = 1 for the
system (4.5)—(4.6).

The most challenging part of the implementation is a computation of the nonwetting phase

pressure from the given saturation and global pressure. Therefore, we give a detailed description
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of the corresponding implementation in the next section.

A.2 Calculation of the gas pressure and the function @

The function 7 is given as a solution of the Cauchy problem (1.47) which can be written
in a simpler form with the capillary pressure as unknown. If we denote u = p.(S,,), due to the
invertibility of the capillary pressure, we can write S,, = S,,(u). Consequently, we can replace
any function f(S,,) of the wetting phase saturation by the corresponding function of the capillary
pressure f(u) = f(S,(u)). Instead of solving the problem (1.47), we find a solution p,,(u, p) of

the following problem

dpa(u,p) _ Py (P14, p) — 1) A ()
du P (P, p) = ) s () + P, (P
P2(0,p) = p+pc(1).

(A.1)

The solution to the problem (1.47) is given by a change of variables as p,,(Sy, p) = P,,(pc(Sw), p)-

For the numerical solution of (A.1), we introduce the class
class GlobalExactTables: public GlobalTables

These two classes implement a table of values p,(u, p) for a given number of the global
pressure values ranging from pMin to pMax and a given number of capillary pressure values
ranging from O to pcMax. p, (u, p) is computed as a solution of the initial problem (A.1) by using
the GSL ODE solver [57]. These classes also contain the implementation of a table of values
o(u, p). The function @(S,, p) is given by (1.50), which can be written in a simpler way if we

introduce the change of variables u = p.(S,,) as in the system (1.47)

c(Sw) D, (1, PP, (1, p) Ay (1) A (1t
O(S.p) = exp (— [ )~ vt p)) Pl PPl D2 L )du). (A2

Therefore, in order to compute the function @(u, p) we have to perform a numerical integration.
Thereby we have used the trapezoidal rule. Let us look closely at how these computations are
done. The class GlobalTables is base class for the class GlobalExactTables. This class
does not calculate the tables, but it offers all the functions necessary for the interpolation and the

allocation of the tables:
e Allocation of the tables is done in function GlobalTables: :init ().
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e Functions GlobalTables: :gas_pressure(Scalar u, Scalar p) and
GlobalTables: :omega(Scalar u, Scalar p) provide the values p,(u, p) and ®(u, p)
from corresponding tables using cubic spline interpolation in two variables. For the inter-
polation we used ALGLIB library [25].

An important member of the class GlobalTables is the variable materialParams which stores
the parameters for the capillary pressure law and the relative permeabilities. The calculation of
the tables is implemented in the class GlobalExactTables. Let us note that in the case of the
domain with heterogeneous material law parameters, we are going to have more than one table
for p,(u, p) and more than one table for @(u, p). These tables will be stored in an object of type
ImmiscibleFluidStateGP, obtained by modification of the class ImmiscibleFluidState.

Therefore, the class ImmiscibleFluidStateGP has a member
static std::vector<GlobalExactTables> table_

which stores all necessary tables. This vector will have as many elements as there are different
rock types in domain. Variable table_ is of type static because these tables are computed
only once, at the beginning of the numerical simulation. Some of the member functions of the

class ImmiscibleFluidStateGP which are important at this point are:

e pn(Scalar sn, Scalar p, MaterialLawParams materialParams) which comput-
es the gas pressure for a given saturation of the nonwetting phase and the global pressure.
This function calls the function GlobalTables: :gas_pressure(Scalar u, Scalar

p). The parameter materialParams is necessary in order to know which table to look up.

e omega(Scalar sn, Scalar p, MateriallLawParams materialParams) which com-
putes the value of @ for a given saturation of the nonwetting phase and the global pressure.

This function calls the function GlobalTables: :omega(Scalar u, Scalar p).

e global_pressure(Scalar sn, Scalar pn, MateriallLawParams materialPar-
ams) which computes the global pressure for a given nonwetting phase saturation and a
nonwetting phase pressure using the Newton method for finding a solution of the nonlin-
ear equation pn(sn, p, materialParams) - pn = 0. Itis used only for imposing the
initial and Dirichlet boundary condition in terms of the global pressure and the saturation,

which will be further commented in Section A.3.

Computations of the tables are initialized by calling the function

157



Appendix A. Implementation of the finite volume method in DuMu*

initializeTables(std: :shared_ptr<const FVGridGeometry> fvGridGeometry)

from the class PorousMediumFlowProblemGP (modified PorousMediumFlowProblem). This
function reads from the input file values of the variables pMax, pMin, and no0fGlobalPres-
surePoints and checks the domain for different rock types. Afterwards it starts the computation
of the tables.

A.3 Implementation of initial and boundary conditions

Neumann boundary conditions in DuMu* are implemented in the class FVProblem<TypeTag>
by imposing the exact value of the flux for every equation in the system. This is done in the
function neumannAtPos (const GlobalPosition &globalPos). Therefore we do not have
to make any alteration in the DuMu* code for implementing the Neumann boundary condition
in the module based on the global pressure, but we must be careful when imposing the value
since it depends on the system of equations that we are using. As previously mentioned for im-
plementing the Dirichlet boundary condition, we have to compute the global pressure from the
gas pressure and the saturation since the boundary conditions are normally given in terms of the
phase pressures. We impose the obtained value in the function dirichletAtPos (const Glob-
alPosition &globalPos). The initial conditions for the system are given by p(x,0) = p°(x),
Sy (x,0) = 89 (x). The initial conditions are imposed in the function initialAtPos(const
GlobalPosition &globalPos).

A.4 Computation of the storage term and the fluxes

In order to calculate the storage term and the flux we have modified the class Immiscible-

LocalResidual(file dumux/porousmediumflow/immiscible/localresidual.hh) to obtain
class TwoPGPLocalResidual

In order to implement the discretization of the advective term we have modified the class CCTp-

faDarcysLaw (file dumux/discretization/cellcentered/tpfa/darcyslaw.hh) to obtain

class CCTpfaDarcysLawGP
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which is used for the computation of the term Qg ¢, given by (4.10)
(file dumux/discretization/cellcentered/tpfa/darcyslaw-gp.hh). Upwinding is im-
plemented as part of the class TwoPGPLocalResidual. The capillary and gravity terms, which

are given by (4.11) and (4.12), are implemented as part of the
class CCTpfaCapillaryFlux

(file dumux/discretization/cellcentered/tpfa/capillaryflux-gp.hh) and they are su-

mmed into overall flux in
class TwoPGPLocalResidual

For the implementation of the interface condition for discontinuous capillary pressure problem,
which is currently supported only for the system (4.3)—(4.4), we have added the function com-
puteFluxOnInterface () (file dumux/porousmediumflow/2p-gp/computefluxinterac-
e.hh). The interface between the heterogeneous parts of the domain is detected inside class
TwoPGPLocalResidual. In the function computeFluxOnInterface () is given the implemen-
tation of the algorithms 1 and 2, which are used for the calculation of the flux over the interface
using (4.17) and (4.19).
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Conclusion

This thesis offers both mathematical and numerical analysis of models describing two-phase
compressible flow in porous media. Contributions of the thesis to mathematical modeling and
analysis of multiphase, multicomponent flow in porous media are done by proving the existence
of a weak solution for a model describing two-phase two-component flow.The model is com-
pleted with the assumption of the low solubility of the gas. The low solubility assumption is
essential for the derivation of the energy estimate without any unphysical assumptions on the
diffusive parts of the model, that was imposed in some previous works on this subject.

Contribution to the numerical analysis of the finite volume methods is done through the con-
vergence analysis of a classical engineering cell-centered finite volume method for immiscible
compressible two-phase flow in porous media. The convergence proof is based on the equivalent
global pressure/fractional flow formulation, and its cell-centered finite volume discretization.
This equivalence between two different discretization was essential for the derivation of the en-
ergy estimate.

Contribution to the numerical simulation of the two-phase fluid flow is done through con-
struction and implementation of the cell-centered finite volume method for a model describing
immiscible, compressible two-phase flow based on the concept of the global pressure and frac-
tional flow form of the equations. Implementation of the method is done with use of the DuMu*
library, considering also the case of heterogeneous porous media, and it is verified on important
benchmark problems. Even though the proposed method did not meet the expectation in the case
of the immiscible two-phase flow as far as running time was concerned, it is strongly believed
that the method will bring great advantages when employed for multicomponent flow. That mo-
tivation is drawn from the fact that the global pressure can be used as a persistent variable, well
defined in both one-phase and two-phase regions. Obtained implementation will therefore be
used as the groundwork for the future research regarding multiphase, multicomponent flow in

porous media.
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