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Summary

In this thesis we study the parameter dependent Hermitian quadratic eigenvalue problem
(PEQP) given by (λ 2(p)M(p)+λ (p)C(p)+K(p))x(p) = 0, where p∈Rm is a vector of parame-
ters. Through this thesis matrices M(p),C(p), K(p)∈Rn arise from corresponding (vibrational)
mechanical system represented by M(p)q̈(p; t)+C(p)q̇(p; t)+K(p)q(p; t) = 0 and represent
mass, damping, and stiffness, respectively. Usually matrices M(p), K(p) are Hermitian positive
definite and C(p) is Hermitian positive semidefinite matrix.

After a brief introduction and problem formulation we give three approximation approaches
for efficient computation of eigenpairs. These approaches preserve structure and allow com-
putation of eigenpairs, for different sets of parameters, that is computationally efficient and
at the same time they provide satisfactory relative accuracy. The first approach is based on
dimension reduction, the second on first order approximation, while the third one uses modified
Rayleigh quotient iterations for structured damping matrices. For the first and the third approach
we need to linearize PQEP. Within the first approach we distinguish two very important cases.
In the first case we consider efficient approximation for eigenvalues for the selected part of the
undamped spectrum. In the second case, we consider efficient approximation of all eigenvalues.
The first order approximation considered in second approach is based on Taylor’s theorem and
it is efficient for eigenvalue computation when the change in parameter is small enough. In
the third approach we provide an efficient method of eigenvalue computation of the diagonal-
plus-rank-one matrices (DPR1), and show how one can apply this method on corresponding
linearized eigenvalue problem, by exploiting the structure of the damping matrix. Numerical
experiments confirm efficiency and accuracy of these approahes.

Further on, we use obtained first order approximation bounds for efficient estimations of the
gap functions that appear in different perturbation bounds for the quadratic eigenvalue problem.
These estimations of the gap functions are based on removing perturbed quantities from them.
Accuracy and efficiency of these estimations are given in numerical examples.

Last we focus on damping optimization. Two different optimization criteria are considered:
minimization of total average energy, and frequency isolation, which will determine the damping
matrix which ensures vibration decay is as fast as possible. While dealing with the minimization
of total average energy we provide an approximation of the solution of the structured Lyapunov
equation, which can be efficiently computed. Frequency isolation is eigenvalue based criterion
so we use obtained eigenvalue approximations to determine the optimal damping, while the
areas from which we isolate the frequencies are ellipses with centers on the imaginary axis.
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Summary

Both approaches are illustrated on numerical examples.

Keywords: quadratic eigenvalue problem, vibrational mechanical systems, eigenvalue
approximation, dimension reduction, first order approximation, modified RQI, estimation of
gap function, damping optimization, frequency isolation, total average energy minimization
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Prošireni sažetak

Kvadratni svojstveni problem se pojavio već u 30-tim godinama 20. stoljeća kada su Frazer,
Duncan i Collar istraživali vibracije zakrilca u zračnim letjelicama te zajedno objavili knjigu
[33], a Taussky i Lancaster su ga prvi riješili za male dimenzije [95], [44]. Osim u aerodinamici,
kvadratni svojstveni problem ima brojne primjene u proučavanju dinamike mehaničkih sustava,
kao što su na primjer zgrade i mostovi. Pješački Milenijski most u Londonu zatvoren je samo
2 dana nakon što je pušten u promet, zbog prejakog podrhtavanja. Podrhtavanje je posljedica
rezonancije, odnosno nestabilnosti sustava do koje je došlo zato što su frekvencije sustava
pod utjecajem vanjske sile, koja je djelovala na sustav (ljudi koji su hodali po mostu), bile
vrlo blizu prirodnim frekvencijama sustava. Vibracije vrlo često nisu poželjne, jer u slučaju
rezonancije može doći do urušavanja. Veza izmed̄u kvadratnog svojstvenog problema i problema
izbjegavanja rezonancije sustava je u tome što su prirodne frekvencije sustava i frekvencije
sustava pod utjecajem vanjske sile rješenja kvadratnog svojstvenog problema.

Prigušenje je utjecaj na vibracijski sustav koji kao posljedicu ima ublažavanje, ograniča-
vanje ili onemogućavanje vibracija. Prilagod̄avanjem viskoznosti prigušenja možemo promi-
jeniti prirodne frekvencije sustava te na taj način izbjeći opasne vibracije, tj. možemo izbjeći
frekvencije mogućih vanjskih podražaja, tj. sila koje djeluju na sustav, kao što su frekvencije
kretanja pješaka po mostu, frekvencije vjetra ili potresa. Ovisno o primjeni mogu se koristiti
različiti kriteriji pri optimiazciji prigušenja, kao što su minimizacija ukupne energije sustava,
minimizacija amplitude vibracija u sustavu, izolacija opasnih frekvencija, itd.

U ovoj radnji proučavat će se parametarski ovisan hermitski kvadratni svojstveni prob-
lem (PQEP) koji opisuje navedene mehaničke sustave, a dan je s (λ 2(p)M(p)+ λ (p)C(p)+
K(p))x(p) = 0, pri čemu je p ∈ Rm vektor parametara. Kroz radnju će se proučavati vibracijski
mehanički sustav zadan diferencijalnom jednadžbom drugog reda: M(p)q̈(p; t)+C(p)q̇(p; t)+
K(p)q(p; t) = 0, pri čemu matrice M(p),C(p),K(p) redom predstavljaju masu, prigušenje i kru-
tost, q(p; t) je stanje sustava, a p je parametar o kojem sustav ovisi. Ukoliko se parametar nalazi
samo u matrici C(p) tada on najčešće sadrži viskoznosti prigušivača. Vrlo često su matrice
M(p), K(p) hermitske pozitivno definite, a C(p) je hermitska pozitivno semidefinitna.

Matricu prigušenja možemo modelirati na više različitih načina. Najčešće je zadajemo kao
sumu unutarnjeg i vanjskog prigušenja, tj. C(p) = Cint +Cext(p), pri čemu matrica vanjskog
prigušenja ovisi o viskoznostima i pozicijama prigušivača. Matrica unutarnjeg prigušenja se
može modelirati na različite načine, ali najčešće je modeliramo kao mali postotak kritičnog
prigušenja, koje je zadano s Ccrit = 2M

1
2

√
M−

1
2 KM−

1
2 M

1
2 .
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Sažetak

Nakon kratkog uvoda i formulacije problema navodimo tri različita aproksimacijska pristupa
za efikasno računanje svojstvenih vrijednosti i svojstvenih vektora, koje čuvaju strukturu ma-
trica sustava. Istovremeno navedeni aproksimacijski pristupi pružaju zadovoljavajuću relativnu
točnost. Prvi pristup je baziran na redukciji dimenzije, drugi na aproksimaciji prvog reda, a
treći pristup koristi modificiranu verziju iteracija Rayleighjevog kvocjenta za slučaj kada je
matrica prigušenja strukturirana. Za prvi i treći pristup trebamo linearizirati PQEP. U navedenoj
linearizaciji koristimo istovremenu dijagonalizaciju matrica M i K.

Prvi pristup baziran je na idejama iz radova [12] i [13], te razlikujemo dva slučaja. U prvom
slučaju proučavamo efikasnu aproksimaciju svojstvenih vrijednosti za izabrni dio neprigušenog
spektra, dok u drugom slučaju proučavamo efikasnu aproksimaciju svih svojstvenih vrijednosti.

Aproksimacija prvog reda koje koristimo u drugom aproksimacijom pristupu bazirana je
na Taylorovom teoremu i vrlo je efikasna za računanje svojstvenih vrijednosti u slučaju kada
imamo malu promjenu u parametru. Slične aproksimacije prvog reda koriste se u perturbacijskoj
teoriji, npr. [14]. Jedina razlika je što se perturbacija ne vrši u parametru, kao u našem slučaju,
nego u samim matricama sustava.

Treći pristup baziran je na radu [47], gdje autori predlažu modificiranu verziju iteracija
Rayleighjevog kvocjenta kao efikasanu metodu računanja svojstvenih vrijednosti matrica koje
su oblika: dijagonala plus matrica ranga jedan (DPR1). Pristup iz [47] svodi se na par it-
eracija standardnog Rayleighjevog kvocjenta te nakon toga se provodi modificirana verzija, dok
se pristup opisan u Sekciji 2.3 bazira na prilagodbi duljine koraka u modificiranoj verziji it-
eracija Rayleighjevog kvocjenta. Takod̄er prikazujemo kako se ova metoda može primijeniti
na odgovarajući linearizirani svojstveni problem iskorištavanjem strukture matrice prigušenja.
Numerički primjeri potvrd̄uju efikasnost i točnost navedenih pristupa.

Nadalje, u Poglavlju 3 primjenjujemo aproksimacije prvog reda u perturbacijskoj teoriji
kvadratnog svojstvenog problema, točnije koristimo aproksimacije prvog reda kako bismo pro-
cijenili približnu vrijednost gap funkcija koje se pojavljuju u brojnim perturbacijskom ocjenama.
Ove procjene gap funkcija baziraju se na uklanjanju perturbiranih vrijednosti iz ocjene, jer že-
limo ocjene koje se mogu računati bez potrebe za poznavanjem perturbiranih vrijednosti. Gap
funkcije koje ćemo približno procijenjivati se nalaze u perturbacijskom ocjenama iz radova
[102] i [101], koje su prikazane u Sekciji 3.2.3. Točnost i efikasnost ovih približnih vrijednosti
perturbacijskih ocjena su prikazane u numeričkim primjerima.

Nadalje, u Poglavlju 4 glavni fokus je na optimizaciji prigušenja pri čemu razmatramo dva
različita optimizacijska kriterija koja će odrediti matricu prigušenja tako da se vibracije u sustavu
primire što je prije moguće. Prvi kriterij je minimizacija ukupne prosiječne energije sustava
koji povezujemo s minimizacijom traga rješenja pripadne Ljapunovljeve jednadžbe. S obzirom
da optimizacija prigušenja uz navedeni kriterij zahtijeva rješavanje Ljapunovljeve jednadžbe za
svaku promjenu u parametru, vrlo je bitno doći do rješenja na efikasan način. U Sekciji 4.1.1
dajemo efikasnu aproksimaciju traga rješenja Ljapunovljeve jednadžbe za slučaj kada je sustav
blizu modalno priušenom sustavu, čime izbjegnemo rješavanje same jednadžbe.
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Sažetak

Drugi razmatrani kriterij je izolacija frekvencija. Cilj izolacije frekvencija je optimizacija
viskoznosti u sustavu tako da su svojstvene vrijednosti uklonjene iz opasnog područja, pri čemu
opasnim područjem smatramo područje koje je blizu opasne frekvencije. Promatrat ćemo elipse
s centrom na imaginarnoj osi, u opasnoj frekvenciji, kao opasno područje. Izolacija frekvencija
je proučavana u [49], [32] i [69]. U [49], autori proučavaju strukture koje vibiraju na niskim
frekvencijama, dok u [32], autori predlažu metodu baziranu na inverznom problemu, tj. un-
aprijed je zadan spektar koji želim dostići, a koji je daleko od opasnih frekvencija. Izolacija
frekvencija je kriterij baziran na svojstvenim vrijednostima stoga ćemo u njemu koristiti aproksi-
macije svojstvenih vrijednosti prikazane u Sekciji 2.3. Oba kriterija su ilustrirana u numeričkim
primjerima.

Ključne riječi: kvadratni svojstveni problem, vibracijski sustavi, aproksimacija svojstvenih
vrijednosti, redukcija dimenzije, apoksimacije prvog reda, modificirani RQI, estimacija gap

funkcija, optimizacija prigušenja, izolacija frekvencija, minimizacija ukupne prosječne energije
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Nomenclature

In this thesis we use the following notation:

A,B, . . . ,Φ,Ξ, . . . matrices of dimension n, if not defined differently (Latin and Greek
capital letters)

A,B, . . . matrices of dimension 2n×2n

y,w, . . . vectors of dimension 2n

[v;vM;vK] vector of parameters where next parameter is concatenated with the pre-
vious one, (MATLAB notation)

p,v,vM,vK, . . . parameters (vector columns)

v,c one dimensional parameter

σ(·) spectrum

µ,µ,τ,π, . . . vectors of indices

λ (·),ρ(·) eigenvalue

λ̃ (·),λ (·) approximation of eigenvalue

α,β , . . . scalars

A(p,q) the submatrix of A obtained by intersection of rows determined with
vector p and columns determined with vector q

A(:, i) the ith column of matrix A

A(i, :) the ith row of matrix A

i : j vector of integers from i to j

A† Moore-Penrose pseudo-inverse of a matrix

Is s dimensional identity matrix

|| · ||2 2-norm

x



Nomenclature

⊕ the direct sum

⊗ the Kronecker product

κ2(·) condition number of a matrix in 2-norm

J (·) the gradient vector

H(·) the Hessian matrix

R+ all positive real numbers, i.e., R+ = {a ∈ R : a > 0}

xi



C H A P T E R 1

Introduction

1.1 Motivation
The quadratic eigenvalue problem first appeared in 1930’s when Frazer, Duncan, and Collar

researched the flutter of airplane wings and published a book [33] together. The first to solve
a quadratic eigenvalue problem of small dimension were Taussky and Lancaster, see e.g. [95],
[44]. Apart from aerodynamics, quadratic eigenvalue problem appears in the dynamic analysis
of acoustic systems, fluid mechanics, electrical circuit simulation, modeling microelectronic
mechanical systems, signal processing, and most importantly for this thesis, in the dynamic
analysis of different mechanical systems, mainly buildings and bridges.

Millennium bridge in London was closed only two days after opening in 2000 due to alarming
wobbling of the bridge. The wobbling of the bridge was the result of the phenomenon called
resonance i.e., the amplitude of the systems vibrations were amplified because the bridge was
excited by external force induced by pedestrian movements, whose frequencies became close
to the natural frequencies of the bridge. A natural frequency is a frequency at which a system
prefers to vibrate. Resonant vibrations can be dangerous for structures and lead to collapse,
as was the case for the Tacoma Narrow bridge in 1940 (for more see [20]). This event is
an example of elementary forced resonance. The bridge collapsed because winds produced
aeroelastic flutter that matched the natural frequency of the bridge. Two more recent examples
of undesirable vibrations are the Franjo Tud̄man bridge in Dubrovnik in 2005, and the bridge
over the Volga River in 2010.

The connection between vibrations in mechanical system and the quadratic eigenvalue prob-
lem is that the natural modes and frequencies of the structure are solutions of quadratic eigen-
value problem, for more see [97]. A normal mode of an vibrational mechanical system is a
pattern of motion in which all parts of the system move sinusoidally with the same frequency,
for more see [112].

By adjusting the damping parameters in the structure we can change natural frequencies of
the system. This way we can avoid dangerous vibrations, i.e. we can avoid all possible frequen-
cies which external force can induce. Damping is an influence within or upon an vibrational
mechanical system that has the effect of reducing, restricting or preventing its oscillations. Ob-

1



Chapter 1. Introduction

taining the optimal parameter for a certain optimization criteria (frequency isolation, reduction
of average total energy, for an overview of the criteria see [112], [73]) is a process of damping
optimization.

1.2 Problem formulation
We consider the following parameter dependent quadratic eigenvalue problem (PQEP)

(λ (p)2M(p)+λ (p)C(p)+K(p))x(p) = 0, x(p) 6= 0, (1.1)

where M(p), K(p) are positive definite Hermitian matrices of order n and C(p) is a Hermitian
positive semidefinite matrix of order n, for all p ∈ Rm, where m is number of parameters. Let
Λ(p) be the spectrum of (1.1) for given p.

Such an eigenvalue problem usually arises if one studies parameter dependent mechanical
systems, which is usually described with the following second-order differential equation

M(p)q̈(p; t)+C(p)q̇(p; t)+K(p)q(p; t) = 0,

q(p;0) = q0(p) and q̇(p;0) = q̇0(p),
(1.2)

where q0(p) and q̇0(p) are initial conditions. Here matrices M(p), C(p), and K(p), correspond
to mass, damping, and stiffness matrices, respectively.

It is common that some parameters do not influence all matrices, i.e., M(p)=M(vM), C(p)=
C(v) and K(p) = K(vK), where vM,v,vK , are vectors of dimension sM,s,sK respectively. For
the sake of simplicity we will use mentioned notation and we denote p = [vM;v;vK] as a single
vector, where

pi =


(vM) j, for i = j, j = 1, . . . ,sM,

(v) j, for i = sM + j, j = 1, . . . ,s,

(vK) j, for i = sM + s+ j, j = 1, . . . ,sK.

PQEP (1.1) is obtained from (1.2) simply by substituting q(p; t) = eλ (p)tx(p).
The damping matrix can be defined in several different ways. One of the most common

ways is that C(p) =Cint +Cext(v), where Cint represents internal damping and only the external
damping part depends on parameters vi > 0 for i = 1, . . . ,s (called viscosities), where v =

[v1, . . . ,vs]
T . Moreover, external damping can be written as

Cext(v) = v1C1 + v2C2 + · · ·+ vsCs, (1.3)

where each Ci determines the geometry of the ith damper and it has a small rank, so that Cext(v)
is a semidefinite matrix in general.

2



Chapter 1. Introduction

Throughout this thesis, along with PQEP, we will consider the corresponding linearized
parameter dependent generalized eigenvalue problem (PGEP). In damping optimization we
(usually) only have the viscosity parameter in the damping matrix, i.e., p = v, which means that
mass and stiffness matrices are constants, i.e., M(p) = M and K(p) = K, respectively. Thus, we
consider PGEP only in the case when p = v when simultaneous diagonalization of matrices M

and K does not depend on parameter p. If we let matrices M and K depend on parameter p then
for each change in parameter we need to do new simultaneous diagonalization which is time
consuming, O(n3).

Now, let Φ be a matrix that simultaneously diagonalizes M and K, i.e., [112]

Φ
T KΦ = Ω

2 = diag(ω2
1 , . . . ,ω

2
n ) and Φ

T MΦ = I, (1.4)

where

ω1 ≤ . . .≤ ωn (1.5)

are eigenfrequencies of undamped mechanical system, i.e., Mq̈(t)+Kq(t) = 0, while columns
of Φ are its modes.

Then the linearized parameter dependent generalized eigenvalue problem (PGEP), which
corresponds to (1.1), is obtained from

(λ 2(v)ΦT MΦ+λ (v)ΦTC(v)Φ+Φ
T KΦ)Φ−1x(v) = 0, (1.6)

i.e,

(λ 2(v)I +λ (v)ΦTC(v)Φ+Ω
2)Φ−1x(v) = 0, (1.7)

simply by substituting y1(v) = ΩΦ−1x(v) and y2(v) = λ (v)Ω−1y1(v) which gives us the fol-
lowing form of (1.7)

Ωy2(v) = λ (v)y1(v),

−Ωy1(v)−Φ
TC(v)Φy2(v) = λ (v)y2(v),

(1.8)

Then (PGEP) follows directly from (1.8) and is given by:

A(v)y(v) = λ (v)y(v) , (1.9)

where

A(v) =

[
0 Ω

−Ω −ΦTCintΦ−ΦTCext(v)Φ

]
, and y(v) =

[
y1(v)
y2(v)

]
, (1.10)
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Chapter 1. Introduction

but now the dimension of the eigenvalue problem is doubled. Similarly we can transform (1.2)
into 2n-dimensional first-order differential equation. By setting

w1(v; t) = ΩΦ
−1q(v; t), w2(v; t) = Φ

−1q̇(v; t), (1.11)

system (1.2), i.e.,

Φ
T MΦΦ

−1q̈(v; t)+Φ
TC(v)ΦΦ

−1q̇(v; t)+Φ
T KΦΦ

−1q(v; t) = 0,

Φ
−1q̈(v; t)+Φ

TC(v)ΦΦ
−1q̇(v; t)+Ω

2
Φ
−1q(v; t) = 0,

(1.12)

can be written as

ẇ1(v; t) = ΩΦ
T q̇(v; t)

= Ωw2(v)

ẇ2(v; t) = Φ
−1q̈(v; t)

=−Φ
TC(v)ΦΦ

−1q̇(v; t)−Ω
2

Φ
−1q(v; t)

=−Φ
TC(v)Φw2(v; t)−Ωw1(v; t)

(1.13)

i.e.,
ẇ(v; t) = A(v)w(v; t), (1.14)

where

w(v; t) =

[
w1(v; t)
w2(v; t)

]
, A(v) =

 0 Ω

−Ω −ΦTCintΦ−ΦTCext(v)Φ

 , (1.15)

with the solution

w(v; t) = eA(v)t w0, (1.16)

where

w0 =

[
w1(v;0)
w2(v;0)

]
=

[
ΩΦ−1q(v;0)
Φ−1q̇(v;0)

]
=

[
ΩΦ−1q0

Φ−1q̇0

]
is the initial data. (1.17)

Furthermore, for the mechanical system given by (1.2) it can be shown that matrix A is
(asymptotically) stable (Hurwitz), see [112], [19]. We say that the matrix A is stable if all
eigenvalues of A from (1.9) are in the left half of the complex plane, i.e.,

Re(λ (v))< 0, ∀λ (v) ∈ Λ(v).

The damping part that contains damping positions and viscosities is denoted by
ΦTCext(v)Φ, where Φ is given in (1.4) and Cext(v) is given by (1.3).
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Chapter 1. Introduction

The internal damping Cint can be modeled in different ways. The usual assumption on
internal damping is that it corresponds to the so-called modally damped case. Modally damped
systems are systems that satisfies the following identity:

MK−1C(v) = C(v)K−1M, (1.18)

for more see [23], [112]. In [112, Theorem 2.3] author shows that so-called commuting con-
dition (1.18) is equivalent to the fact that all three matrices M, C(v), K can be simultaneously
diagonalized.

Furthermore, in [113] authors shown that identity (1.18) is equal to commutation of matrices
Ω and ΦTC(v)Φ, i.e.

ΩΦ
TC(v)Φ = Φ

TC(v)ΦΩ, (1.19)

and this is equivalent with the fact that matrix Φ diagonalizes the matrix Cint. The usual assump-
tion is that internal damping is a small multiple of the critical damping, i.e., in the case of critical
damping

Cint = αcCcrit, (1.20)

Ccrit = 2M
1
2

√
M−

1
2 KM−

1
2 M

1
2 (1.21)

see, e.g., [107], [8], [112], [57], [1]. In this thesis we are focused on internal damping which is
small multiple of critical damping, then ΦTCintΦ = 2αcΩ holds, but our results can be easily
extended to other cases of internal damping that correspond to the modally damped case, such as
proportional damping (Rayleigh damping) Cint = αM+βK, where ΦTCintΦ = αI+βΩ2 holds.
More details regarding the considered model can be found in [110] where author considers
corresponding inverse quadratic eigenvalue problem.

Damping optimization was widely studied in the last few decades. In the most general
context, the problem is for given mass and stiffness to determine the damping matrix that
ensures evanescence of unwanted vibrations, i.e., we want to determine the optimal dampers’
positions and viscosities. This requires proper optimization criterion and the choice of proper
criterion strongly depends on applications, but there are some cases where particular criteria
were used. For example, in [67] the question of placement of damping elements was investigated,
while in [52] the problem of periodic optimal control, which maximizes energy dissipation, was
considered. An overview of different damping optimization criteria can be found, e.g., in [112]
and [73].

For the non-stationary case, which means that the system is additionally excited, damping
optimization was also studied in [105] and [58], where the authors derived explicit formulas for
objective functions for particular types of mechanical systems, while in [78] it was shown how
to compute eigenfrequencies of structures composed of a series of inclined cables. In the case
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Chapter 1. Introduction

of multiple input multiple output systems one can use standard system norm, such asH2 orH∞

system norms as a criterion, as it was considered in [18], [99], [8] and [74].
Furthermore, regarding the non-stationary case one can minimize the objective function:

1
τ

∫
τ

0
‖q(v; t)‖2dt , (1.22)

which is usually called the “average displacement amplitude”. This approach was studied in
[51] where authors compare the heuristics from [105], [98] and [11] with the mixed-integer
programming approach from [50]. All approaches give us, at the same time, both optimal
positions and optimal viscosities of the dampers, but viscosities are chosen among predetermined
candidates.

Our problem described by (1.2) corresponds to stationary case for which one can consider
different optimization criteria. One of the criteria is minimization of the total energy of the
system, i.e.,

∞∫
0

E(v; t)dt→min, (1.23)

where E(v; t) is the total energy of the system at given time t

E(v; t) =
1
2

q̇(v; t)T Mq̇(v; t)+
1
2

q(v; t)T Kq(v; t), (1.24)

i.e., it is a sum of kinetic energy and elastic potential energy. Further on,

‖w(v; t)‖2 =
[
wT

1 (v; t)wT
2 (v; t)

][w1(v; t)
w2(v; t)

]
(1.25)

= w1(v; t)T w1(v; t)+w2(v; t)T w2(v; t) (1.26)

= (ΩΦ
−1q(v; t)T

ΩΦ
−1q(v; t)+(Φ−1q̇(v; t))T

Φ
−1q̇(v; t) (1.27)

= q(v; t)T
Φ
−T

Ω
2
Φ
−1q(v; t)+ q̇(v; t)T

Φ
−T

Φ
−1q̇(v; t) (1.28)

= q̇(v; t)T Mq̇(v; t)+q(v; t)T Kq(v; t) (1.29)

= 2E(v; t), (1.30)

i.e., the square of Euclidian norm of this phase space representation of the solution of system
(1.2) equals twice the total energy of the system. Phase space is a space in which all possible
states of a system are represented by their position and momentum, i.e., each possible state is
represented by an unique point in phase space. Matrix A from (2.64) is called phase space matrix
of the system (1.2). Matrix A from (1.14) is not the only phase space matrix, but all phase space
matrices are unitary equivalent, see [113].

Since criterion (1.23) depends on the initial condition, the simplest way to correct this is to
take the average of (1.23) over all initial states of the unit total energy and a given frequency
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range, i.e.,

∫
‖w0‖=1

∞∫
0

E(v; t)dtdσ , (1.31)

where σ is some probability measure on the unit sphere in R2n. It can be shown that this average
corresponds to the trace of the solution of the corresponding Lyapunov equation [111], [73].

Therefore, the minimization of the total energy (1.23) is equivalent to the minimization of
the trace of the solution of the corresponding Lyapunov equation. more details can be found in
[73], [100], [106], [113], [22].

It can be shown that the criterion of the minimization of the total energy (1.23) is equivalent
to

tr(ZXΦ(v))→min, (1.32)

where XΦ(v) is the solution of the following Lyapunov equation

AT (v)XΦ(v)+XΦ(v)A(v) =−I, (1.33)

and Z is a symmetric positive semidefinite matrix that determines which undamped eigenfre-
quencies have to be damped. Furthermore, Z may be normalized to have a unit trace, for more
detail see [73]. Furthermore, it is easy to show that

tr(ZXΦ(v)) = tr(Y(v)),

where Y(v) is a solution of the so-called dual Lyapunov equation

A(v)Y(v)+Y(v)AT (v) =−Z. (1.34)

The structure of the matrix Z has been studied in detail in [73] and some of these results are
presented in [100].

Throughout this thesis we will assume that the matrix Z has the following form

Z =



0t1 0 0 0 0 0
0 It2 0 0 0 0
0 0 0t3 0 0 0
0 0 0 0t1 0 0
0 0 0 0 It2 0
0 0 0 0 0 0t3


, (1.35)

where It2 is the t2-dimensional identity matrix, and 0ti is the ti-dimensional (i = 1,3) zero matrix,
with t1 and t3 defined such that the eigenfrequencies from (1.5) smaller than ωt1 and greater than

7



Chapter 1. Introduction

ωt1+t2 are not dangerous (observe that t3 = n− t1− t2).
There exist several methods for solving the Lyapunov equation. Standard direct approaches

for solving the Lyapunov equation use Schur form, such as Bartels–Stewart algorithm [7] and
Hammarling algorithm [40], [55], an overview of the direct approaches can be found in [3]. On
the other hand, the structured Lyapunov equation can be solved by iterative approaches, such as,
sign function method [53], [10], [30], projection-type method based on Krylov subspaces [89]
and several versions of ADI (alternating direction implicit) method [79], [62].

Criterion based on minimization of total energy was considered in [22], [12], [13], [11] [100],
[111], [106], [107], [113], [19]. Approximations of the trace of the solution of the Lyapunov
equation (1.34) based on modal eigenvectors and dimension reduction was considered in [12]
and [13]. These approaches provide an efficient calculation of the objective function, [12] in the
case where parameter is one-dimensional and [13] in case of multidimensional parameter and
low-rank right hand side of the Lyapunov equation (1.34).

The algorithm presented in [111], [100] or [107] explicitly calculates the trace of the solution
of the corresponding Lyapunov equation and they consider the case with one or more dampers
with the same viscosity.

In [111] author gave an efficient algorithm for computation of optimal viscosity v (dimension
of the parameter is one), where C(v) = vccT , i.e., Cint = 0 and rank C(v) = 1. The author also
gave an explicit formula for the trace of the corresponding Lyapunov equation. In [100], the
author considers the case where rank C(v) > 1, but the dimension of the parameter is again
one, and gave an efficient algorithm which derives a formula for the trace of the solution of
the Lyapunov equation, based on Bartels-Stewart given in [7]. Similarly, but for low-rank right
hand side of the Lyapunov equation (1.34), in [107] authors gave an efficient algorithm which
computes the trace of the solution of Lyapunov equation, but this time it is based on CF-ADI
(Cholesky factor ADI) given in [62]. On the other hand, a more general case with the damping
matrix

C(v) =Cint +C0diag(v1, . . . ,vs)CT
0

has been considered in [19] and it is a Newton-type algorithm. As shown in [107], the algorithm
proposed in [19] can produce a poor result due to the problems with determination of the starting
point.

The existence and the uniqueness of the global minimum, if the damping varies over the
set of all possible positive definite matrices was considered in [113] and [22]. In [106] authors
showed that the trace of a corresponding Lyapunov equation can be represented as a rational
function of viscosity.

Note that the solution of the Lyapunov equation (1.34) is a function of several variables,
damper positions and corresponding viscosities. Thus, simultaneous optimization of damper
positions and viscosity can be computationally very demanding. Since up to date an efficient
general algorithm for the optimization of damping does not exist, i.e., available algorithms opti-
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mize only viscosities of dampers, not their positions, although for estimation of optimal viscosity
for given damper positions in [11] authors propose the algorithm based on the dimension reduc-
tion of the corresponding Lyapunov equation, given in [12] and [13], while for the optimization
of damper positions they proposed two heuristics. Both algorithms unfortunately do not have
bounds for their accuracy.

On the other hand, we consider eigenvalue-based criteria, which also play a very important
role, e.g., in [75], [39], [30]. One example of an eigenvalue-based criterion is the spectral
abscissa criterion that minimizes the maximal real part of all eigenvalues, i.e.,

min
v∈Rs

+

αMCK(v), where αMCK(v) = max
λ (v)∈Λ(v)

Re(λ (v)), (1.36)

which is connected to the rate of decay of the total energy. Since it is known that E(v; t) ≤
κE(v;0)e2ηt for some finite κ > 0 and η < 0 independently of the chosen initial data, we define
the decay rate as a function of C(v), i.e.,

η(C(v)) = min{η : ∃κ.s.t.E(v; t)≤ κE(v;0)e2ηt , ∀ t > 0}, (1.37)

where E(v; t) is total energy defined in (1.24). In [23] author shows that decay rate of total
energy is spectral abscissa, i.e.,

η(C(v)) = max
λ (v)∈Λ(v)

Re(λ (v)).

This means that spectral abscissa is considered as a criterion in order to judge vibrations and
their decay as in [34],[23].

Similar criterion i.e., also based on corresponding eigenvalues requires minimization of the
objective function

max
λ (v)∈Λ(v)

Re(λ (v))
|λ (v)|

.

This criterion is designed to minimize the number of oscillations before the system comes to rest.
Objective functions sometimes depend on additional constraints. For example one can consider
a constraint based on

| max
λ (v)∈Λ(v)

Im(λ (v))| ≤ a,

for some positive number a (see e.g. [19, 70, 73]). All these eigenvalue-based criteria are
independent of initial condition of the system.

Eigenvalues λ (v) correspond to a natural frequencies of the system (1.2) for viscosity vector
v, i.e., these are the frequencies on which the system prefers to vibrate. Vibrations can be
increased if the system is excited by an external force whose frequencies are close to its natural
frequencies. All frequencies of the external forces which can significantly excite the system are
called dangerous frequencies (e.g., frequency induced by pedestrian movements, wind induced
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frequency, frequencies induced by earthquakes etc.).
The frequency isolation problem corresponds to the problem of parameter optimization in

such a way that the new system has no eigenvalues close to the dangerous frequencies (dangerous
areas). This problem has been previously studied in [49] and [32]. In [49], the author proposed
a Newton-type method for structures vibrating at low frequencies, while in [32], the authors
proposed a less costly inverse eigenvalue method: a target spectrum away from the resonance
band is fixed in advance. The frequency isolation problem in undamped vibrational systems was
considered in [69], where authors consider intervals as the dangerous areas. We would like to
use frequency isolation in a more general case which means that we vary parameters also in the
external damping matrix. Further more, we will use ellipses with their centers on the imaginary
axis as dangerous areas, where these centers are dangerous frequencies of the undamped system.

As one can see, eigenvalues play a very important role in damping optimization and there are
different approaches for their computation: direct and iterative methods. Also one can differ the
methods in those that solve the quadratic eigenvalue problem (QEP) directly and those that work
with its linearized form. Most of the methods that deal directly with QEP are based on Newton’s
method, such as methods from [56], [84], [80], [88] or [30], where author uses Aberth–Ehrlich
method to find roots of the corresponding characteristic polynomial. As we already said there
are also methods that work on the linearized form of QEP and once we obtain the linearized
form we can apply one of many direct methods for solving generalized eigenvalue problems,
such as the QZ algorithm, for more on QZ algorithm see [68], [37] or the QR algorithm with
column pivoting [37]. On the other hand there are iterative methods for solving the linearized
form of QEP, e.g., Lanczos [60], Arnoldi [4], rational Krylov [85] or Jacobi–Davidson method
[90]. There exists several Arnoldi type methods, e.g., IRA (Implicitly Restarted Arnoldi) [61],
SOAR (Second Order Arnoldi) [5], TOAR (Two level orthogonal Arnoldi) [31]. A nice overview
of all methods is given in [66], [87], [97].

Additionally, there are methods that approximate eigenvalues, e.g., methods presented in
[75], [94], [112, Chapter 19].

1.3 Organization of the thesis
In this section we present the organization of the thesis. This thesis is based on works that

have either published or been submitted for publication:

[104] Truhar, N., Tomljanović, Z., Puvača, M. (2018), Approximation of damped quadratic
eigenvalue problem by dimension reduction, Applied mathematics and computation, 374,
40-53.

[82] Puvača, M., Truhar, N., Tomljanović, Z. (2019), Efficient Approximation of Novel Resid-
ual Bounds for Parameter Dependent Quadratic Eigenvalue Problem, submitted in Journal

of Computational and Applied Mathematics.
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[103] Truhar, N., Tomljanović, Z., Puvača, M. (2017), An Efficient Approximation For Opti-
mal Damping In Mechanical Systems, International journal of numerical analysis and

modeling, 14(2), 201-217.

[81] Puvača, M., Jakovčević Stor, N., Tomljanović, Z., Mitchell T. (2020), Frequency-weighted
damping via non smooth optimization and fast computation of QEPs with low rank updates,
in preparation

In Chapter 2 we present three different approximation approaches of the parameter dependant
quadratic eigenvalue problem (PQEP). The first one is based on dimension reduction, and this
result is available in [104]. The second approach is based on first order approximations (result
is available in [82]), and the third approach is based on computation of eigenvalues of diagonal
plus rank one matrices (DPR1), i.e., it is based on exploiting the structure of the damping matrix.
This result is available in [81].

In Chapter 3 we present an application of approximations of parameter dependant quadratic
eigenvalue problem (PQEP) in perturbation theory, i.e., we use error bounds of the approxi-
mations from Section 2.2 to obtain the efficient estimation of perturbation bounds, that do not
contain perturbed eigenvalues and eigenvectors in the bound itself. Some results from Chapter
3 are also available in [82].

In Chapter 4 we deal with damping optimization and different optimization criteria, one of
the criteria is minimization of total average energy and the other one is frequency isolation, i.e.,
it is eigenvalue-based. For the second criterion we will use approximations of eigenvalues of
PQEP given in Section 2.3. We will distinguish two different criteria for frequency isolation,
first one is the minimization of spectral abscissa when there are no eigenvalues in fixed ellipses.
The second criterion is maximization of the major axes of these ellipses when there are no
eigenvalues in them and spectral abscissa is less then a given tolerance. This result is available
in [81]. The result in Chapter 4 based on minimization of total average energy is available in
[103].

We state PQEP as in (1.1) with parameter p in all matrices M(p), C(p), K(p), since in
Chapter 3 we discus perturbation theory of PQEP where perturbation can be in all three matrices.
Also, since in Chapter 3 we use error bounds of the approximations from Section 2.2 so in that
section parameter p will also be in all there matrices. On the other hand in all other sections
we are mainly focused on damping optimization, thus we will have parameter only in damping
matrix, i.e., p = v (v corresponds to viscosity parameter in damping matrix).
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C H A P T E R 2

Efficient approximations of PQEP

In this chapter we present three different approximation approaches of the parameter depen-
dant quadratic eigenvalue problem (PQEP) (1.1).

Since our goal is the application of eigenvalues in damping optimization where we need to
vary parameters to obtain the optimal one, the main issues we are addressing in this chapter are:
“How one can efficiently calculate the eigenvalues λi(p) (for all i = 1, . . . ,2n, or just for one
important part of the spectrum) for a large variety of parameters p?”, ”How one can efficiently
calculate eigenvalues λi(p), for all i= 1, . . . ,2n, if we already have eigenvalues λi(p0) calculated,
for all i = 1, . . . ,2n, and the change in parameter is small enough, i.e., ‖p−p0‖ ≤ εp0 , for given
tolerance εp0 ?” and ”How can we exploit the structure of the damping matrix to speed up the
computation of eigenvalues for different parameter p ?”

As we already mentioned, the above problem is related to the efficient solution of various
problems connected with damped mechanical systems (1.2), such as

1. efficient calculation of approximations of all eigenvalues or just of selected “most impor-
tant undamped eigenfrequencies” with corresponding error bounds,

2. efficient damping optimization where optimization criteria is minimization of spectral
abscissa, i.e., minimization of the (penalty) function αMCK(p) = max

i=1,...,2n
Re(λi(p)), where

λ (p) are eigenvalues from eigenvalue problem (1.1), or frequency isolation or some other
spectrum dependant penalty functions.

This chapter is mainly devoted to the problems from item 1. A similar problem of efficient
calculation of eigenvalues λi(v), depending only on parameter of viscosity, has been considered
in [75] and [94]. In [75] authors present two different approximations, one for the case when
0 ≤ vi � 1, and one for vi � 1, i = 1, . . . ,s, while in [94] only the case vi � 1 has been
considered.

In [112, Chapter 19] and [75] the authors consider the approximation of eigenvalues λi(v)
for 0 < vi� 1 using the approach based on so-called modal approximation.

Approximations that will be presented in this chapter will be used in Chapter 4 considering
item 2.
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This chapter is organized as follows. Section 2.1 related to approximations of eigenvalues by
dimension reduction is divided into three subsections, where in Subsection 2.1.2 we calculate
all eigenvalues and in Subsection 2.1.1 we calculate just selected part of the eigenvalues. The
main result of Subsections 2.1.1 and 2.1.2 are a certain generalization of the results from [75]
and [112] that holds for vi� 1 on the set of parameters of modest magnitudes. We present an
approach that can be used for the efficient calculation of the whole spectrum or just a part of the
spectrum for problem (1.1), where parameters vi, i= 1, . . . ,s, are of modest magnitude. However,
the notion of modest magnitude for viscosity parameters depends strongly on applications.

To the best of authors’ knowledge, the calculation of all eigenvalues with available algorithms
will not be always fully satisfactory for such a large parameter space. On the other hand, if one
is interested in calculation of just a few eigenvalues, some of the existing approaches like [38]
can be superior to our approach.

The approximations of eigenvalues that are presented in the next section are based mainly on
the ideas from papers [12] and [13], where the authors have considered damping optimization
based on the minimization of the total average energy.

Moreover, each of these subsections will provide error bounds based on the standard Ger-
shgorin type of bounds (see e.g. [37], [92]) and perturbation bounds like in [63], for given
approximations.

In Subsection 2.1.3 we illustrate, the performance of the approximations presented in Sub-
sections 2.1.1 and 2.1.2, and the quality of the given bounds.

In Section 2.2 we present a first order approximation based on Taylor’s theorem and corre-
sponding error bound. This section answers the question of efficient computation of eigenvalues
when the change in viscosity is small enough. In Subsection 2.2.1 we compare this first order
approximation with the first order approximation that appears in perturbation theory. Also, in
this section we illustrate accuracy of these approximations and error bounds.

In Section 2.3 we present an approach to efficient computation of eigenvalues and eigenvec-
tors in a case when we have the special structure of a matrix, i.e., if a matrix is diagonal plus
rank one (DPR1). Efficiency of this approach is illustrated in examples in Subsection 2.3.1.

2.1 Approximations by dimension reduction
Since our goal is to apply our approximations to damping optimization where only parameter

is viscosity v, in this section we will assume that mass and stiffness matrices are independent of
parameter p and that parameter p represents only viscosity of the damping matrix, i.e., p = v,
which means that M(p) = M and K(p) = K.

In this section, instead of analyzing PQEP (1.1), we consider the corresponding linearized
parameter dependent generalized eigenvalue problem (PGEP) (1.9).

Also, in this section we avoid writing the dependence of matrices and eigenvalues (and other
quantities of interest) on viscosity parameters for the sake of easier notation. This dependence
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is assumed and it will only be sometimes written explicitly for emphasis.
The PGEP is given by (1.9) where

A(v) =

[
0 Ω

−Ω −ΦTCintΦ−Ĉ(v)

]
.

Here the damping part that contains damping positions and viscosities is denoted by
Ĉ(v) = ΦTCext(v)Φ, where Φ is given in (1.4) and Cext(v) is given by (1.3).

We distinguish two very important cases. In the first case we consider efficient approximation
for eigenvalues for the selected part of the undamped spectrum. Within the second case, we
consider efficient approximation for all eigenvalues. The procedures for approximations and
corresponding error bounds are given in the next two subsections.

2.1.1 The approximation of the selected part of the eigenvalues

Before we present the main result in this subsection, we briefly present results on dimension
reduction from [13], which allow us to efficiently approximate selected eigenvalues of the
parameter dependent generalized eigenvalue problem (PGEP). Here by dimension reduction we
mean that we replace the original problem containing matrices of dimension n by a problem
with matrices that have much smaller dimension.

In order to introduce this approximation, first we consider matrix P, i.e, the perfect shuffle
permutation, defined by

P = [e1,en+1,e2,en+2, . . . ,en,e2n], (2.1)

where ei denotes i-th canonical vector. The perfect shuffle permutation is the permutation that
splits a set of even cardinality into two sets of equal cardinality and interleaves them, precisely,

it maps k 7→

2k−1, if k ≤ n

2(k−n), if k > n.
, for more see e.g. [13]. Then instead of the PGEP from (1.9),

we consider a permuted one of the form

PT APPT y = λPT y, (2.2)

where A is given by (1.10).
Our approach is based on dimension reduction of the PGEP (2.2), for that purpose, we con-

struct an approximation of the matrix PT AP. In order to obtain an appropriate approximation,
first we need to introduce an additional permutation denoted by matrix P̂. The additional permu-
tation takes into account the magnitude of elements of matrix Ĉ(v) = ΦTCext(v)Φ, which plays
important role in our approximation. Moreover, the elements of the matrix Φ are closely related
to displacements of the corresponding modes and very often one can expect big differences in
magnitude of elements in matrix Ĉ(v) (for more details on this approximation see [12], [13],
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[35]).
Let the vectors µ ∈ Nr and µ ∈ Nn−r be chosen such that the following conditions hold:

i) µ ∪µ = {1,2, . . . ,n}.

ii) µ is the vector of indices of dimension r (l ≤ r), where the first l elements of µ correspond
to the indices of eigenfrequencies of our interest (for example, eigenfrequencies which
have to be damped or excluded form some interval).

iii) µ and µ are index vectors such that max
i, j
|Ĉ(µ(i),µ( j))| ≤ tol, for a given tolerance tol.

The vectors µ ∈ Nr and µ ∈ Nn−r should be chosen such that r is as small as possible for
given parameters l and tol. A strategy for determining µ,µ is discussed below.

Let us define a vector τ ∈ Nn by τ(i) = µ(i) for i = 1, . . . ,r and τ(i) = µ(i− r) for i =

r+1, . . . ,n.
The matrix P is the perfect shuffle permutation matrix and P̂ = I(:,τ)⊗ I2. Now for these

permutations it holds

AP =



0 ωτ(1) 0 0 . . . 0 0
−ωτ(1) −2αcωτ(1)− ĉτ(1),τ(1) 0 −ĉτ(1),τ(2) . . . 0 −ĉτ(1),τ(n)

0 0 0 ωτ(2) . . . 0 0
0 −ĉτ(2),τ(1) −ωτ(2) −2αcωτ(2)− ĉτ(2),τ(2) . . . 0 −cτ(2),τ(n)
...

...
. . .

...
...

...
...

...
...

...
0 0 0 0 . . . 0 0
0 −ĉτ(n−1),τ(1) 0 −ĉτ(n−1),τ(2) . . . 0 −ĉτ(n−1),τ(n)

0 0 0 0 . . . 0 ωτ(n)

0 −ĉτ(n),τ(1) 0 −ĉτ(n),τ(2) . . . −ωτ(n) −2αcωτ(n)− ĉτ(n),τ(n)



, (2.3)

with AP = P̂T PT APP̂, for more see [12], [13] .
We are interested in dimension reduction which allows us to approximate eigenvalues effi-

ciently, thus we define an approximation matrix with

ÃP =

[
A11 0
0 A22

]
, (2.4)

where

A11 = AP(1 : 2r,1 : 2r) and A22 = AP(2r+1 : 2n,2r+1 : 2n) (2.5)

for AP given as in (2.3).
By this approach we reduce dimension from 2n to 2r, since we compute eigenvalues of A11

instead of AP. The parameter r is called the reduced dimension. Note that the more elements of
Ĉ are small by magnitude, the smaller the reduced dimension is.

Therefore, our approach is efficient when we have large amount of small elements in the
matrix Ĉ. This is often the case in non homogeneous systems, for more see [12], [13], [35]. On
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the other hand, when this is not the case, our approach will not be that efficient, e.g., in cases
with Gyroscopic system [6], [97].

Vectors µ and µ can be calculated adaptively using Algorithm 1, which can be found in
[13, Algorithm 1], where the indices that correspond to the selected part are included in the
vector µ based on important (significant) undamped eigenfrequencies of our interest (for exam-
ple, those which have to be damped). These indices usually correspond to a certain percentage
of the undamped spectra, e.g. a certain percentage of the smallest undamped eigenfrequencies
or undamped eigenfrequencies within some interval. In order to achieve an efficient approxi-
mation, we ensure that all elements of the matrix Ĉ to be omitted are smaller up to the chosen
tolerance, i.e., we have that max

i, j
|Ĉ(µ(i),µ( j))|< tol, which will have a direct impact on the

corresponding error bound.

Algorithm 1: Construction of µ and µ

Require: tol;
vi, Ci, i = 1, . . . ,s – viscosity and the external geometry matrix for the ith damper;
µ(1),µ(2), . . . ,µ(l) – indices of the eigenfrequencies which have to be damped;

Ensure: µ,µ
1: µ = [µ(1),µ(2), . . . ,µ(l)]
2: Determine vector µ such that µ ∪µ = {1,2, . . . ,n}
3: T = 1
4: Ĉ = ΦT (v1C1 + v2C2 + · · ·+ vsCs)Φ,
5: while T = 1 do
6: M = max

i j
|Ĉ(µ(i),µ( j))|

7: if M > tol then
8: Determine indices i0, j0 such that M = |ĉi0, j0|, while ensuring that j0 is not used

before and i0 contained in µ

9: µ = [µ, j0]
10: Determine vector µ such that µ ∪µ = {1,2, . . . ,n}
11: else
12: T = 0
13: end if
14: end while

Once we have obtained vectors µ and µ , we can introduce Algorithm 2 for calculation of
eigenvalue approximations.

The following subsubsection provides two error bounds for the approximations obtained by
Algorithm 2.

2.1.1.1 Error bound for approximation of selected eigenfrequencies

The bounds for approximations of selected eigenfrequencies can be derived using several
different approaches usually used for error estimation in the eigenvalue approximation. One
approach is based on the standard Gershgorin type of bounds, like, e.g., in [37] and [92]. Another
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Algorithm 2: Approximation of eigenvalues that correspond to selected eigenfrequen-
cies

Require: αc, Φ – such that ΦT KΦ = Ω2 = diag(ω2
1 , . . . ,ω

2
n ) and ΦT MΦ = I;

vi, Ci, i = 1, . . . ,s – viscosity and the external geometry matrix for the ith damper;
µ(1),µ(2), . . . ,µ(l) – indices of the eigenfrequencies which have to be damped;
tol – tolerance needed for Algorithm 1.

Ensure: approximation of eigenvalues
1: Determine vectors µ ∈ Nn−r and µ ∈ Nr using Algorithm 1,
2: Ωr = diag(ωµ(1),ωµ(2), . . . ,ωµ(r)),
3: Ĉ = ΦT (v1C1 + v2C2 + · · ·+ vsCs)Φ,

4: Calculate all eigenvalues of matrix
[

0 Ωr
−Ωr −2αcΩr−Ĉ(µ,µ)

]
.

approach is based on perturbation bounds from [63].
First, we present a bound based on the bound from [63, Theorem 4.1]. In order to derive the

error bound, here we consider matrix

AP =

[
A11 A12

A21 A22

]
(2.6)

that corresponds to block partition of matrix (2.3), where A11 is block of dimension 2r. Moreover,
let ÃP correspond to the perturbed equation (2.4).

We establish a bound on |λ̃ −λ |, where λ is an eigenvalue of AP and λ̃ is an eigenvalue of
ÃP.

Theorem 2.1 Let AP and ÃP be as in (2.6) and (2.4) (i.e., ÃP is obtained by Algorithm 2).
Furthermore, let matrices AP and ÃP be diagonalizable. If λ̃i is an eigenvalue of A11, and if

η2(λ̃i) = min
ρ∈σ(A22)

|λ̃i−ρ|> 0 ,

then AP has an (exact) eigenvalue λπ(i) such that

|λ̃i−λπ(i)| ≤ κ2(X)
‖A12‖2‖A21‖2

η2(λ̃i)
, (2.7)

where matrix X is a matrix that diagonalizes ÃP.

Proof. The proof follows directly from [63, Theorem 4.1], where the bound for diagonalizable
non-Hermitian pencils A−λB, has been presented, by setting B = I and δB = 0.

The application of bound (2.7) makes sense if κ2(X) has the modest magnitude and if gap
η2(λ̃i) can be calculated efficiently and is not too small. For the purpose of clarifying this, we
present the following remark.
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Remark 2.1. Since throughout this section we are interested in calculation of the approximation
of the part of the spectrum (λ̃i, i = 1, . . . ,r), we can assume that X can be written as

X =


2r 2n−2r

2r X11

2n−2r I

,

where X11 diagonalizes A11. Then it follows from (2.7) in Theorem 2.1 that

|λ̃i−λπ(i)| ≤ κ2(X11)
‖A12‖2‖A21‖2

η2(λ̃i)
, (2.8)

where
η2(λ̃i) = min

ρ∈σ(Ã22)
|λ̃i−ρ|> 0 .

On the other hand, one can notice that in general calculation of the gap η2(λ̃i) can be
demanding, especially if r� n, i.e., when A22 has “significant” dimension.

If that is the case, bound (2.7) or (2.8) can be applied using the simple estimation for η2(λ̃i)

based on the approximation of the spectrum of the matrix A22, which can be obtained easily.
As we explain in more detail in the next section, one example of a matrix with the “significant”
dimension is A22 of the following form

A22 =
n⊕

i=r+1

Ψτ(i)+E22, where Ψi =

[
0 ωi

−ωi −γi− ĉii

]
,

and where ‖E22‖ has a modest magnitude. The spectrum of the matrix A22 can be easily approx-
imated with eigenvalues of Ψi. Here parameter γi depends on internal damping. In particular, if
internal damping is a small multiple of critical damping defined in (1.20), then γi = 2αcωi.

We would like to note that bounds (2.7) and (2.8) can be useful if the gap η2(λ̃i) can be
estimated efficiently and accurately, which in general will not be possible. Thus, in what follows
we present an error bound in terms of Gershgorin eigenvalue bounds. Similarly to the above, we
assume that we have determined index vectors µ and µ such that max

i j
|Ĉ(µ(i),µ( j))| ≤ tol for

a given tolerance tol. Then, in order to apply the Gershgorin bound, we diagonalize the block
A11, and for this we assume that all eigenvalues from the block A11 are simple. In most cases,
this is true. But even if the eigenvalues are not simple, we can still obtain the approximations,
but without this error bound. Let X11 be such that

A11 = X11Λ11X−1
11 , (2.9)

where A11 is given by (2.5). Here, diagonal elements of the matrix Λ11 = diag(λ̃1, . . . , λ̃2r)
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provide approximations of desired eigenvalues given by Algorithm 2. Then, using the block
diagonal matrix

X1 =

[
X11 0
0 I

]
we obtain

X−1
1 APX1 =

[
Λ11 X−1

11 A12

A21X11 A22

]
.

In order to obtain an error bound that separately provides an error for each eigenvalue, we
apply the Gershgorin theorem (see, e.g. [37], [92]). Here, we use a row version of the Gershgorin
bound; thus, for each i there exists an index π(i) such that the following bound holds:

|λ̃i−λπ(i)(AP)| ≤
2n−2r

∑
j=1
|(X−1

11 A12)i j| , (2.10)

for i = 1, . . . ,2r, where A12 and X11 are given by (2.6) and (2.9), respectively.
Now, once we have the two error bounds, a legitimate question is which of the bounds, (2.8)

or (2.10), is better? As we will show in Subsection 2.1.3, sometimes bound (2.8) is better and
sometimes it is (2.10), thus the best option would be to take the minimum of both derived bounds
for the given eigenvalue approximation.

2.1.2 The approximation of all eigenvalues

As before, we apply the perfect shuffle permutation matrix P and add an additional permuta-
tion that allows us to approximate all eigenvalues. In order to achieve that, we need to determine
all elements from the matrix Ĉ = ΦTCextΦ with absolute value larger than a given tolerance.
Thus, apart from the permutations from the previous section, here we determine vectors µ ∈ Nr

and µ ∈ Nn−r chosen such that the following conditions hold:

i) µ ∪µ = {1,2, . . . ,n}.

ii) µ and µ are index vectors such that max
i j
|Ĉ(µ(i),µ( j))| ≤ tol for a given tolerance tol.

iii) µ and µ are index vectors such that max
i j
|Ĉoff(i, j)| ≤ tol for a given tolerance tol, where

matrix Ĉoff ∈ R(n−r)×(n−r) contains off-diagonal elements from matrix Ĉ(µ,µ), i.e., it is
given by

Ĉoff(i, j) =

{
Ĉ(µ(i),µ( j)), i 6= j,

0, i = j.

Here we also try to obtain vectors µ ∈ Nr and µ ∈ Nn−r, such that r is as small as possible,
but since we are interested in all eigenvalues we will obtain the reduced dimension which is
always at least as large as in the case of approximation of the important (significant) part of the
spectrum.
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Moreover, since we have more demanding conditions for the determination of the first r

indices, it is more likely that the final reduced dimension is larger than in the previous section.
On the other hand, we are able to approximate all eigenvalues, so it is natural to expect that the
bigger reduced dimension is needed.

Now, similarly to the previous section, we define a vector τ ∈ Nn by τ(i) = µ(i) for i =

1, . . . ,r and τ(i) = µ(i− r) for i = r+1, . . . ,n. With this permutation, our aim is to approximate
all eigenvalues of the matrix AP from (2.3).

In this case, we approximate the matrix AP by the matrix

AP =

[
A11 0
0 A22

]
,

with

A11 = AP(1 : 2r,1 : 2r) , (2.11)

A22 =
n⊕

i=r+1

Ψτ(i) ,

Ψi =

[
0 ωi

−ωi −γi− ĉii

]
. (2.12)

Due to the block structure of our approximated matrix AP, in order to efficiently determine
approximation of all eigenvalues, we need to determine eigenvalues of the matrix A11, while
eigenvalues of the matrix A22 can be calculated by a formula. Thus, the matrix Ψτ(i) given by
(2.12) has eigenvalues

λ̃2i−1 =
−γi− ĉii−

√
(γi + ĉii)2−4ω2

i

2
for i = r+1, . . . ,n,

λ̃2i =
−γi− ĉii +

√
(γi + ĉii)2−4ω2

i

2
for i = r+1, . . . ,n,

(2.13)

where ĉii = ∑
s
i=1 viΦ(:, i)TCiΦ(:, i) and γi = 2αcωi.

All of the above-mentioned is summarized in Algorithm 3, which calculates approximation
of all eigenvalues.

In the next subsubsection we provide an error bound for the approximations given by Algo-
rithm 3.

We would like to emphasize that in general the new approach (summarized in Algorithm 3)
improves the approximation technique studied in [75] and [112] (derived specifically for a small
viscosity v� 1). More precisely, using Algorithm 3 with a tolerance tol large enough, one can
obtain approximations of the same quality as in [75] and [112]. On the other hand, a smaller
tolerance tol leads to the reduced dimension r > 0, that further ensures a better approximation
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Algorithm 3: Approximation of all eigenvalues
Require: αc, Φ – such that ΦT KΦ = Ω2 = diag(ω2

1 , . . . ,ω
2
n ) and ΦT MΦ = I;

vi, Ci, i = 1, . . . ,s – viscosity and the external geometry matrix for the ith damper;
tol – tolerance needed for determination of the vector τ .

Ensure: approximation of eigenvalues
1: Each index i ∈ {1, . . . ,n} such that |ĉi j|> tol for some index j 6= i, is included in vector of

indices µ . The number of elements in µ determines r and µ is such that
µ ∪µ = {1,2, . . . ,n}.

2: Ωr = diag(ωµ(1),ωµ(2), . . . ,ωµ(r)),
3: Ĉ = ΦT (v1C1 + v2C2 + · · ·+ vsCs)Φ,
4: Calculate all eigenvalues of matrix[

0 Ωr
−Ωr −2αcΩr−Ĉ(p, p)

]
,

5: Calculate other eigenvalues using formulas (2.13).

than the one from [75] and [112], as we will illustrate in the numerical experiments.
The benefits of the new approximation technique over the approach, which has been derived

specifically for small viscosities vi in [75] and [112], are illustrated in the Subsection 2.1.3,
especially Figure 2.3 illustrates the eigenvalue behavior obtained by formulas (2.13) as well as
the approximations that were also obtained by Algorithm 3 for the tolerance tol large enough.

2.1.2.1 Error bound for approximation of all eigenvalues

In this subsubsection, we present error bounds for the eigenvalue approximations made by
Algorithm 3 in the sense of Gershgorin. We assume that for the fixed viscosity v we have
determined index vectors µ and µ as in Algorithm 3.

Similar to (2.3) our matrix of interest can be written in the block diagonal form as:

AP =

[
A11 A12

A21 A22

]
,

where A11 is a matrix of dimension 2r×2r. Now, our approximation corresponds to a matrix

AP =

[
A11 0
0 ⊕n

i=r+1Ψτ(i)

]
,

where Ψi is given by (2.12).
As in the previous section, we assume that all eigenvalues of AP are simple.
In order to apply the Gershgorin bound we need to diagonalize all diagonal blocks of the
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matrix AP. Thus, we first diagonalize the block A11, i.e., we calculate the matrix X11 such that

A11 = X11diag(λ̃1, . . . , λ̃2r)X−1
11 , (2.14)

where elements

λ̃1, . . . , λ̃2r (2.15)

provide the approximations of true eigenvalues.
Moreover, we need to diagonalize all two-by-two matrices Ψτ(i) for i = r + 1, . . . ,n. For

that, we assume that (γτ(i)+ ĉτ(i)τ(i))
2−4ω2

τ(i) 6= 0 for i = r+1, . . . ,n; thus there exist matrices
Yr+1,r+1, . . . ,Yn,n such that

Ψτ(i) = Yiidiag(λ̃2i−1, λ̃2i)Y−1
ii , i = r+1, . . . ,n,

where Ψτ(i) and λ̃2i−1, λ̃2i are given in (2.12) and (2.13), respectively.
Then, using a block diagonal matrix

X̂ =

[
X11 0
0 X̂22

]
with X̂22 =

(
n⊕

l=r+1

Yll

)
(2.16)

we obtain

X̂−1APX̂ =

[
Λ11 X−1

11 A12X̂22

X̂−1
22 A21X11 AY

]
with

AY = X̂−1
22 A22X̂22, (2.17)

where X̂22 is given by (2.16).
Similarly to the previous section, we apply the Gershgorin theorem. To the upper and

the lower diagonal block we apply a row version of the Gershgorin bound; thus, for each i ∈
{1,2, . . . ,2n} there exists index π(i) ∈ {1,2, . . . ,2n} such that the following bound holds:

|λ̃i−λπ(i)(AP)| ≤
2n

∑
j=r+1

∣∣∣(X−1
11 A12X̂22)i j

∣∣∣ , i = 1, . . . ,2r,

|λ̃2i−1−λπ(2i−1)(AP)| ≤
2r

∑
j=1

∣∣∣∣(X̂−1
22 A21X11

)
2i−2r−1, j

∣∣∣∣
+

n−2r

∑
j=1,

j 6=2i−2r−1

|(AY )2i−2r−1, j|, i = r+1, . . . ,n, (2.18)

|λ̃2i−λπ(2i)(AP)| ≤
2r

∑
j=1

∣∣∣∣(X̂−1
22 A21X11

)
2i−2r, j

∣∣∣∣
22
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+
n−2r

∑
j=1

j 6=2i−2r

∣∣(AY )2i−2r, j
∣∣ , i = r+1, . . . ,n,

where r is the number of elements in the vector µ and AY and X̂22 are given by (2.17), (2.16),
respectively.

In what follows we will present another bound of similar type (Gershgorin type bound) from
[94], which will be used for the comparison in the next subsection. In [94] author considers
following quadratic eigenvalue problem

(λ 2(v)M+λ (v)vC+K)x(v) = 0, (2.19)

where v is a positive real number that represents viscosity. In order to apply Gershgorin type
bound, (2.19) is linearized in the following way[

B
1
2

−B
1
2 −vA

]
z = λ z, (2.20)

where A = M−
1
2CM−

1
2 , B = M−

1
2 KM−

1
2 and rankC = r̂. Let ρ1,ρ2, . . . ,ρr̂ be nonzero eigen-

values of −vA, then [94, Lema 3.3.1] gives Gershgorin type bound. For each i ∈ {1,2, . . . ,2n}
there exists index π(i) ∈ {1,2, . . . ,2n} such that the following bounds hold

|λ̃i| ≤ ||B||
1
2
2 , i = 1, . . . , r̂,

|λ̃i−ρπ(i)| ≤ ||B||
1
2
2 , i = r̂+1, . . . ,2n,

(2.21)

where
0,ρ1,ρ2, . . . ,ρr̂ (2.22)

are approximations of eigenvalues of (2.19) where multiplicity of eigenvalue 0 is 2n− r̂.

2.1.3 Numerical experiments

In this subsection, we present two examples. In these examples we will compare our approx-
imations with exact eigenvalues obtained by MATLAB’s function eig in double precision, for
more on eig see [37],[27].

In the first example, we consider the eigenvalue behavior for all eigenvalues considered in
Subsection 2.1.2 and we compare our bounds given in (2.18) with the bounds given in (2.19). In
the second example we illustrate the quality of eigenvalue approximation given by Algorithm 2,
where we are interested in the behavior only of the part of the undamped eigenfrequencies.

Example 2.1 We consider an n-mass oscillator or oscillator ladder with two dampers, which
describes the mechanical system of n masses and n+ 1 springs, shown in Figure 2.1. Similar
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models were considered e.g. in [12], [13], [107] and [112].
For this mechanical system, the mathematical model is given by (1.1), where the mass and

stiffness matrices are

M = diag(m1,m2, . . . ,mn),

K =



k1 + k2 −k2

−k2 k2 + k3 −k3
. . . . . . . . .

−kn−1 kn−1 + kn −kn

−kn kn + kn+1


.

Mass and stiffness are given by the following configuration

n = 1000; ki = 1, i = 1, . . . ,n+1; mi =

{
1200−2i, i = 1, . . . ,200,
4i, i = 201, . . . ,n.

m1 m2 mn−1 mn
k1

v1

k2

v2

kn kn+1

Figure 2.1: n mass oscillator

We present two cases: in case a) we show the quality of the obtained approximation and the
eigenvalue behavior while we vary viscosity parameters and in case b) we compare our approxi-
mations given by (2.13) to the approximations given by (2.22) and our bound given in (2.18) to
the bound given in (2.21).

Case a)

The damping matrix is C(v) =Cint +Cext(v), where the internal damping Cint is defined as
in (1.20) with αc = 0.02. We consider two dampers of different viscosities, i.e., v = [v1,v2];
thus external damping introduced in (1.3) is defined by Cext(v) = v1eieT

i + v2e jeT
j , where 1 ≤

i < j ≤ n. We can consider different damping positions, but in order to illustrate benefits of our
approximation technique, while we vary viscosities, we fix damping positions to i = 600 and
j = 900, with viscosities which vary over the feasible interval.

For the purpose of an easier illustration of the eigenvalue behavior, we consider the following
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configurations of viscosities:

(v1,v2) =
(v

4
,v
)
, v = 1,2, . . . ,100. (2.23)

For the tolerance needed in Algorithm 3 we use tol= 5 ·10−4.
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Figure 2.2: Eigenvalue behavior for Example 2.1

First, in Figure 2.2 we illustrate the eigenvalue behavior when parameter v varies as it
is given by (2.23). The exact eigenvalues are denoted by red circles, on the other hand, the
approximations obtained by formulas (2.13) are denoted by black x-es, while the approximations
obtained by solving a small eigenvalue problem defined by matrix A11 from (2.11) are denoted
by blue dots. Here we should note that we plot the eigenvalue behavior only for small parts of
considered eigenvalues, since otherwise it would be hard to follow all eigenvalues in one figure.

In Figure 2.3, we illustrate the benefits of our approximation technique over the approach
derived specifically for a small viscosity v, which was studied in [75] and [112]. We plot
the eigenvalue behavior obtained by using modal approximation from [112]. The following
approximation can also be obtained by Algorithm 3 by setting large enough tolerance tol. We
can conclude that modal approximation does not capture the main behaviour of eigenvalues,
while our approach achieves eigenvalue tracking efficiently.

Figure 2.4 shows the relative errors for the eigenvalues and the upper bounds for the relative
errors for the viscosity v = 10, where the reduced dimension is r = 416. We plot relative errors
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Figure 2.3: Eigenvalue behavior for Example 2.1 for the approximation obtained using only
formulas (2.13)

greater than 10−12 only for a half eigenvalues, because they are all symmetric with respect to
real axis, which implies the errors are also symmetric.

In order to illustrate the magnitude of the reduced dimension while we vary parameter v as
in (2.23), we show reduced dimension r in Figure 2.5, where r varies from r = 0 (meaning that
we use only formulas (2.13)) to r = 733, which is 73.3% of the full dimension.

Case b)

In this case the damping matrix contains only external damping C(v) =Cext(v), so we can
compare our bounds given in (2.18) with the bounds given in (2.21).

We consider two blocks of dampers with different viscosities, i.e., v = [v1,v2]; thus external
damping is defined by Cext(v) = v1(eieT

i + · · ·+ei+49eT
i+49)+v2(e jeT

j + · · ·+e j+49eT
j+49), where

1≤ i < j ≤ n . We could consider different positions of blocks, but in order to illustrate benefits
of our approximation technique while we vary viscosities, we fix block positions to i = 600 and
j = 900 with viscosities which vary over the feasible interval.

For the purpose of an easier illustration of the eigenvalue behavior, we consider the following
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Figure 2.4: Relative error for Example 2.1 for v = 10, r = 416.

configurations of viscosities:

(v1,v2) =
(v

4
,v
)
, v = 1,2, . . . ,100. (2.24)

For the tolerance needed in Algorithm 3 we use tol= 10−5.
Figure 2.6 shows the relative errors for the approximations of eigenvalues given in (2.13) and

(2.15) and the corresponding upper bound given in (2.18) for the relative errors, furthermore, it
shows the relative errors for the approximations of eigenvalues given in (2.22) and corresponding
upper bound given in (2.21) for the relative error, for the viscosity v = 1000. For this viscosity,
the reduced dimension for the above given tolerance was r = 750. We plot all relative errors
greater than 10−12 for all real eigenvalues (from 901 to 1100 on Figure 2.6) and only the half of
the errors for complex eigenvalues (from 1 to 900 on Figure 2.6), due to the symmetry.

In the previous example, we have considered the eigenvalue behavior of all eigenvalues. In
the next example, we illustrate our approach on the case when one is interested in calculation of
a part of the spectrum.
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Figure 2.5: Reduction dimensions r for Example 2.1 for v = 1,2,3, . . . ,100

Figure 2.6: Relative error for Case a) in Example 2.1 for v = 1000, r = 750.
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Example 2.2 We consider a mechanical system shown in Figure 2.7 with three rows of d masses,
which gives 3d + 1 masses and 3d + 4 springs. Here we consider three dampers of the same
viscosity. In each row damper acts only on one mass. Each row has springs of the same stiffness
equal to k1,k2,k3, respectively. The last mass m3d+1 is connected to the fixed base with the
spring with stiffness k4.

md+1 md+2 m2d m3d+1
k2 k2 k2 k4

v

m1 m2 md
k1 k1 k1

v

v

m2d+1 m2d+2 m3d
k3 k3 k3

Figure 2.7: 3d +1 mass oscillator

A mathematical model for the considered vibrational system is given by (1.2), where the
mass matrix is

M = diag(m1,m2, . . . ,mn).

The stiffness matrix is defined as

K =


K11 −κ1

K22 −κ2

K33 −κ3

−κT
1 −κT

2 −κT
3 k1 + k2 + k3 + k4

 ,

where

Kii = ki



2 −1
−1 2 −1

. . . . . . . . .

−1 2 −1
−1 2


, κi =


0
...
0
ki

 , i = 1,2,3.
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We consider the following configuration

d = 400, n = 3d +1 = 1201,

mi = i, i = 1, . . . ,n,

k1 = 1, k2 = 20, k3 = 40, k4 = 50.

Similarly to the previous example, for the sake of easier illustration of the obtained results, we
fix damper positions. We set them to 840,960,1200. Since the three dampers have the same
viscosity v, the damping matrix is equal to

C(v) =Cint +Cext(v), with, Cext(v) = ve840eT
840 + ve960eT

960 + ve1200eT
1200,

where internal damping is given by (1.20) with αc = 0.001. In this example, in Algorithm 2, we
use tolerance tol= 10−4.

0 20 40 60 80 100 120

eigenvalue index

10
-15

10
-10

10
-5

10
0

relative error bound (2.10)

relative error bound (2.8)

relative error

Figure 2.8: Relative error for Example 2.2 for v = 1.9, r = 60.

We illustrate the quality of eigenvalue approximation given by Algorithm 2, where we
are interested in the behavior (in damping) only of the part of the undamped eigenfrequencies
larger than 0.1 and smaller than 0.11. In this example this means that we need to consider the
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eigenvalue behavior of only 49 undamped eigenfrequencies which gives the parameter l = 49
in Algorithm 2. Undamped eigenfrequencies ωi for i = 335, . . . ,383, where ωi from (1.4) are
sorted in increasing order and their indices define vector µ required in Algorithm 2.

Figure 2.8 contains the relative errors and the bounds derived in Subsection 2.1.1.1. In partic-
ular, red circles denote true relative errors with respect to eigenvalues calculated by MATLAB’s
function eig. Blue dots show the relative errors for the bound given by (2.10) while the error
bound given by (2.8) is presented by green triangles. The figure shows the quality of the derived
upper bound for the fixed viscosity v = 1.9, where Algorithm 1 returned the reduced dimension
r = 60. Thus, instead of only 98 eigenvalues, that we would like to track, we have obtained
approximations for all together, 120 eigenvalues.

As one can see from Figure 2.8, there exist eigenvalues for which bound (2.10) is better,
but there also exist eigenvalues for which bound (2.8) gives a better estimation for the error.
In general, this can vary as we change the viscosity v, so the best option would be to take the
minimum of both derived upper bounds. Moreover, there are cases where the bound (2.10) is
less then the error, which is the result of the tolerance taken into account in Algorithm 2.
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exact eigenvalues

approximation by Algorithm 2

Figure 2.9: Eigenvalue behavior for Example 2.2

The eigenvalue behavior is shown in Figure 2.9, where blue dots denote approximations
obtained by Algorithm 2, while red circles denote exact eigenvalues. We would like to note that
the reduced dimension was r = 60 while v = 0.05+ 0.1 · i, i = 0, . . . ,30. Moreover, since we
consider the undamped eigenfrequencies larger than 0.1 and smaller than 0.11, in Figure 2.9 we
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plot eigenvalues whose imaginary parts belong between 0.1 and 0.11. From this figure, but also
from Figure 2.2, we can note that we have achieved satisfactory eigenvalue tracking even for
moderate viscosities v, while we ensure efficient error bounds for the obtained approximation.

In this section we presented how one can compute approximations of eigenvalues (all or just
a selected part of them) when the parameter is of the modest magnitude. This is an addition
to the work presented in papers [75], [94] where authors present approximations for the cases
when, respectively, parameter is very small and very large.

The quality of the error bounds as well as the accuracy of the achieved eigenvalues was
illustrated in several numerical experiments.

Furthermore, in the next section we present first order approximation of eigenvalues which
can be used to see how eigenvalue will change if we make a small change in the parameter.

2.2 First order approximations of eigenvalues
In this section we present the first order approximation of eigenvalues, based on Taylor’s

formula for multivariate functions, and the corresponding left and right eigenvectors. This result
leads to efficient approximation of parameter dependent eigenvalues and answers the second
question from the beginning of this chapter: ”How one can efficiently calculate eigenvalues
λi(p), for all i = 1, . . . ,2n, if we already have eigenvalues λi(p0) calculated, for all i = 1, . . . ,2n,
and the change in parameter is small enough, i.e., ‖p−p0‖ ≤ εp0 , for given tolerance εp0 ?”

For details on Taylor’s formula see [83, 54]. In this section, for the sake of generality, we
again assume that all matrices M(p), C(p), and K(p) depend on parameter p.

Let x(p) and y(p) be the right and left eigenvector, respectively, that correspond to the
eigenvalue λ (p) of the PQEP for a given parameter p = [p1, p2, . . . , pm]

T ∈ Rm .
The PQEP has 2n eigenvalues, so we denote i-th eigenvalue with λi(p) for all i ∈ {1, . . . ,2n}.

For the i-th eigenvalue and corresponding eigenvector (1.1) can be written as:

(λ 2
i (p)M(p)+λi(p)C(p)+K(p))xi(p) = 0, xi(p) 6= 0. (2.25)

We assume that eigenvalues given by (2.25) are all simple. Furthermore, since we are using
Taylor’s formula for eigenpair approximation, we need to assume or prove that the derivatives
exist.

Theorem 2.2 ([2]) If λ (p0) is a simple eigenvalue of (2.25) for p = p0 then there is a neigh-
borhood of p0 on which there exists an eigenvalue function λi(p) and right and left eigenvector
function that are all analytic functions of p.

In [2], the authors state a general version of Theorem 2.2. However, the detailed proof is not
given.
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For easier notation in the following lemma and theorem we denote

P(λ (p)) = λ
2(p)M(p)+λ (p)C(p)+K(p). (2.26)

Lemma 2.3 ([2]) Let λ (p0) be a semisimple eigenvalue of P(λ (p)) and x(p0)∈Ker(P(λ (p0))),
x(p0) 6= 0. Then (2λ (p0)M(p0)+C(p0))x(p0) /∈ Im(P(λ (p0))).

Proof. We need to use the ”local Smith form” for P(λ (p)) [36]. In a neighbourhood of an
eigenvalue λ (p0) we have

P(λ (p)) = E(λ (p))D(λ (p))F(λ (p)), (2.27)

where

D(λ (p)) = diag[(λ (p)−λ (p0))α1 , . . . ,(λ (p)−λ (p0))αn], (2.28)

E(λ (p)) and F(λ (p)) are matrix polynomial invertible at λ (p0) and α1 ≥ α2 ≥ . . .αn ≥ 0 are
the ”partial multiplicities” of λ (p0)(see [36] for more details). Since properties of P(λ (p)) at
a fixed p are all that are required here, we omit p in further notations.

Let E0 = E(λ (p0)),F0 = F(λ (p0)) and λ (p0) be a semisimple eigenvalue. Thus, for some
k, α1 = · · ·= αk = 1 and αk+1 = · · ·= αn = 0. Thus, if D1 =

∂D(λ (p0))
∂λ

= diag[Ik,0] and D2 =

D(λ (p0)) = diag[0, In−k], then

P(λ (p0)) = E0D2F0, (2.29)

and P(λ (p0))x(p0) = 0 implies D2F0x(p0) = 0, since E0 is regular. Thus

∂P(λ (p0))

∂λ
x(p0) =(2λ (p0)M(p0)+C(p0))x(p0)

=

(
∂E(λ (p0))

∂λ
D2F0 +E0D1F0 +E0D2

∂F(λ (p0))

∂λ

)
x(p0)

=(E0D1F0)x(p0)+

(
E0D2

∂F(λ (p0))

∂λ

)
x(p0).

(2.30)

Let us assume that (2λ (p0)M(p0)+C(p0))x(p0) ∈ Im(P(λ (p0))) then there exists u such that
∂P(λ (p0))

∂λ
x(p0) = P(λ (p0))u. Furthermore, from (2.30), (2.29) and the face that E0 is regular

we obtain (
D1F0 +D2

∂F(λ (p0))

∂λ

)
x(p0) = D2F0u. (2.31)
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Now from

D1F0x(p0) = D2

(
F0u− ∂F(λ (p0))

∂λ

)
(2.32)

it follows that D1F0x(p0) = 0, since D1 annihilates (k+1)st to nth element in a vector and D2

annihilates first k elements of a vector, which means that both sides od equality (2.32) have to
be 0. As we know D2F0x(p0) = 0, we can conclude that F0x(p0) = 0, i.e. since F0 is regular,
x(p0) = 0 which is contradiction.

Therefore, if P(λ (p0))x(p0) = 0, and x(p0) 6= 0 then

(2λ (p0)M(p0)+C(p0))x(p0) /∈ Im(P(λ (p0))). (2.33)

Theorem 2.4 ([2]) P(λ (p)) has a simple eigenvalue λ (p0) if and only if P(λ (p0)) has rank
n− 1, and y(p0)∗(2λ (p0)M(p0)+C(p0))x(p0) 6= 0 where x(p0) and y(p0) are right and left
eigenvector of P(λ (p0)), respectively.

Proof. [ =⇒ ] Let λ (p0) be a simple eigenvalue, then it is also semisimple eigenvalue, so
in (2.28) we have α1 = 1, α2 = · · · = αn = 0, and rankP(λ (p0)) = n− 1. If x(p0) is right
eigenvector that corresponds to λ (p0), then, from Lemma 2.3 follows that (2λ (p0)M(p0) +

C(p0))x(p0) /∈ Im(P(λ (p0))). If y(p0) is left eigenvalue that corresponds to λ (p0), i.e.,
y(p0)∗P(λ (p0)) = 0, y(p0) 6= 0, then y(p0) is orthogonal to the (n− 1) - dimensional sub-
space ImP(λ (p0)), but not to the vector (2λ (p0)M(p0)+C(p0))x(p0) since (2.33). Therefore,
y(p0)∗(2λ (p0)M(p0)+C(p0))x(p0) 6= 0.
[⇐= ] Let y(p0)∗(2λ (p0)M(p0)+C(p0))x(p0) 6= 0 holds. If rankP(λ (p0)) = n−1, then from
(2.28) follows that α2 = · · · = αn = 0. If α1 ≥ 2, which means that eigenvalue is semisimple,
then from Lemma 2.3

∂P(λ (p0))

∂λ
x(p0) =(2λ (p0)M(p0)+C(p0))x(p0)

=

(
∂E(λ (p0))

∂λ
D2F0 +E0

∂D(λ (p0))

∂λ
F0 +E0D2

∂F(λ (p0))

∂λ

)
x(p0)

=

(
∂E(λ (p0))

∂λ
D2F0

)
x(p0)+

(
E0D2

∂F(λ (p0))

∂λ

)
x(p0),

(2.34)

since
∂D(λ )

∂λ
= diag[α1(λ (p)−λ (p0))α1−1,0, . . . ,0]

and α1 ≥ 2 i.e.,

D1 =
∂D(λ (p0))

∂λ
= 0.

Furthermore, P(λ (p0))x(p0) = 0 implies D2F0x(p0) = 0 and y(p0)∗P(λ (p0)) = 0 implies
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E0D2x(p0)= 0, since both E0 and F0 are regular, and thus y(p0)∗(2λ (p0)M(p0)+C(p0))x(p0)=

0, which is contradiction. Hence y(p0)∗(2λ (p0)M(p0)+C(p0))x(p0) 6= 0 implies α1 = 1, and
λ (p0) is simple eigenvalue.

According to Theorem 2.2 and Theorem 2.4 we assume that all eigenvalues are simple,
which imply

rank(λ 2
i (p)M(v)+λi(p)C(p)+K(p)) = n−1 .

Now, using the partial derivative of (2.25) with respect to pk we get(
2λi(p)

∂λi

∂ pk
(p)M(p)+λ

2
i (p)

∂M
∂ pk

(p) +

∂λi

∂ pk
(p)C(p)+λi(p)

∂C
∂ pk

(p)+
∂K
∂ pk

(p)
)

xi(p)+(
λ

2
i (p)M(p)+λi(p)C(p)+K(p)

) ∂xi

∂ pk
(p) = 0.

(2.35)

From this we get the following lemmas.

Lemma 2.5 ([2]) Let λi(p) denotes function λi : Rm→C that corresponds to the i-th eigenvalue
which is simple. Furthermore, let xi(p),yi(p) denote functions xi : Rm → Cn,yi : Rm → Cn

that correspond to the i-th right and left eigenvector, respectively and y∗i (p)(2λi(p)M(p) +
C(p))xi(p) 6= 0, for all i ∈ {1, . . . ,2n}, then for p ∈ Ωp0 = {p ∈ Rm : ||p−p0|| ≤ εp0}, where
εp0 is given tolerance, the partial derivative of λi(p) with respect to pi is given by

∂λi

∂ pk
(p) =−

y∗i (p)
(

λ 2
i (p)

∂M
∂ pk

(p)+λi(p) ∂C
∂ pk

(p)+ ∂K
∂ pk

(p)
)

xi(p)

y∗i (p)(2λi(p)M(p)+C(p))xi(p)
, i = 1, . . . ,2n. (2.36)

Proof. By multiplying the equation (2.35) by y∗i (p) from the left side one obtains

y∗i (p)
(

∂λi

∂ pk
(p)(2λi(p)M(p)+C(p))+λ

2
i (p)

∂M
∂ pk

(p) +

λi(p)
∂C
∂ pk

(p)+
∂K
∂ pk

(p)
)

xi(p) = 0,
(2.37)

since y∗i (p)
(
λ 2

i (p)M(p)+λi(p)C(p)+K(p)
)
= 0. Now, (2.35) follows directly from (2.37).

The similar formula for derivative of eigenvalue for p∈R can be found in [112], and in [109]
Aa et al. derived formulas for eigenvalue and eigenvector derivatives for a general complex-
valued eigensystem. In [65] authors present a numerical way of computing partial derivative of
eigenvectors.
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Lemma 2.6 ([2]) Let the assumptions from Lemma 2.5 hold, then the partial derivative of xi(p)
over pk is given by

∂xi

∂ pk
(p) =PIi(p)

(
2λi(p)

∂λi

∂ pk
(p)M(p)+

∂λi

∂ pk
(p)C(p) +

λ
2
i (p)

∂M
∂ pk

(p)+λi(p)
∂C
∂ pk

(p)+
∂K
∂ pk

(p)
)

xi(p) , i = 1, . . . ,2n,
(2.38)

where

PIi(p) =−
(
λ

2
i (p)M(p)+λi(p)C(p)+K(p)

)†
. (2.39)

Proof. The proof follows directly from (2.35).

Term PIi(p) includes Moore-Penrose pseudo-inverse of a matrix. For a matrix A, pseudo-
inverse is denoted by A†, more details on pseudo-inverse of a matrix can be found, e.g., in [29].
From Lemma 2.5 and Lemma 2.6 we can write gradient vectors of functions λi(p) and x(l)i (p)
in the following way:

J (λi(p)) =
[

∂λi
∂ p1

(p) ∂λi
∂ p2

(p) . . . ∂λi
∂ pm

(p)
]
, (2.40)

J (x(l)i (p)) =
[

∂x(l)i
∂ p1

(p) ∂x(l)i
∂ p2

(p) . . .
∂x(l)i
∂ pm

(p)
]
, (2.41)

where x(l)i (p) is lth component of vector xi(p), l = 1, . . . ,n.
Since we assumed that eigenvalues of PQEP (2.25) are simple, and therefore analytical with

corresponding partial derivatives, we can obtain the first order approximation based on Taylor’s
theorem for multivariate functions. More precisely, the following theorem holds.

Theorem 2.7 ([2]) Let the assumptions from Lemma 2.5 hold. Moreover let H(λi(p)) be the
Hessian matrix of function λi(p). For parameters p ∈ Rm and p0 ∈ Rm there exist scalars
0≤ t1, t2 ≤ 1 such that

λi(p) =λi(p0)+J (λi(p0))(p−p0)+

1
2
(p−p0)TH(λi(p0 + t1(p−p0)))(p−p0),

(2.42)

x(l)i (p) =x(l)i (p0)+J (x(l)i (p0))(p−p0)+

1
2
(p−p0)TH(x(l)i (p0 + t2(p−p0)))(p−p0) for l = 1, . . . ,n.

(2.43)

Where J (λi(p0)) and J (x(l)i (p0)) are given by (2.40) and (2.41), respectively.
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Now, we are able to calculate approximations of the eigenvalues and provide error bounds
for obtained approximations.

Corollary 2.8 Let the assumptions from Lemma 2.5 hold, then the approximation of eigenvalue
λ̃i(p) can be calculated as

λ̃i(p) = λi(p0)+J (λi(p0))(p−p0), (2.44)

and the error bound is given by

|λi(p)− λ̃i(p)|/
1
2

Mi‖(p−p0)‖2, (2.45)

where Mi = max
t∈[0,1]

(‖H(λi(p0 + t(p−p0))‖). Approximation of eigenvector x̃i(p) can be calcu-

lated using

x̃i(p) = xi(p0)+


J (x(1)i (p0))

J (x(2)i (p0))
...

J (x(n)i (p0))

(p−p0). (2.46)

Moreover elements of H(λi(u)), where u = p0 + t(p−p0), t ∈ [0,1], are given by the fol-
lowing formula

H(λi(u))k, j =
∂ 2λi

∂ pk∂ p j
(u)

=−
y∗i (u)

(
∂λi
∂ pk

(u) ∂λi
∂ p j

(u)2M(u)+Zk j(u)
)

xi(u)

y∗i (u)(2λi(u)M(u)+C(u))xi(u)

−
y∗i (u)

(
λ 2

i (u)
∂ 2M

∂ pk∂ p j
(u)+λi(u) ∂ 2C

∂ pk∂ p j
(u)+ ∂ 2K

∂ pk∂ p j
(u)
)

xi(u)

y∗i (u)(2λi(u)M(u)+C(u))xi(u)

−
y∗i (u)(−Nk(u)PIi(u)N j(u)−N j(u)PIi(u)Nk(u))xi(u)

y∗i (u)(2λi(u)M(u)+C(u))xi(u)
,

(2.47)

where

Zk j(u) =
∂λi

∂ pk
(u)
(

2λi(u)
∂M
∂ p j

(u)+
∂C
∂ p j

(u)
)
+

∂λi

∂ p j
(u)
(

2λi(u)
∂M
∂ pk

(u)+
∂C
∂ pk

(u)
)
,

N j(u) = 2λk(u)
∂λi

∂ p j
(u)M(u)+

∂λi

∂ p j
(u)C(u)+

λ
2
i (u)

∂M
∂ p j

(u)+λi(u)
∂C
∂ p j

(u)+
∂K
∂ p j

(u) k, j = 1, . . . ,m,
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and PIi(u) for i = 1, . . . ,2n is given by (2.39). In general, computing Mi is not easy, since we
maximize norm of the Hessian over parameter t and for each computation of Hessian we need
eigenvalues and eigenvectors that correspond to PQEP (1.1) with parameter p0 + t(p−p0), for
given p,p0, i.e., computation of Mi requires solutions of a sequence of related PQEPs, which is
time consuming. As a result instead of computing Mi, we approximate Mi by using λ̃i(p) instead
of λi(p), i.e.,

M̃i = max
t∈[0,1]

(‖H(λ̃i(p0 + t(p−p0))‖). (2.48)

In Chapter 3 we will need the bound for

|λi(p)− λ̃i(p)| (2.49)

for the efficient estimation of the perturbation bounds related to quadratic eigenvalue problem.
For this estimation of the perturbation bounds, we could also use the Gershgorian type bounds
given by (2.18), where we computed all approximations of eigenvalues by dimension reduction.
The bounds given by (2.18) are not efficient for computation if we want high accuracy, i.e., the
higher accuracy we want, the higher reduced dimension r is (we need to solve bigger eigenvalue
problem in step 4 of Algorithm 3). Thus, we will use the bound (2.45) with the approximation
(2.48) instead Mi since it can be efficiently computed. The accuracy of the approximation M̃i

will be shown in the next subsection.

2.2.1 Comparison with the first order approximations from perturba-
tion theory

In [14] authors consider the perturbation theory for the polynomial eigenvalue problem

(λ n(An +∆An)+ · · ·+λ (A1 +∆A1)+(A0 +∆A0))x = 0, x 6= 0 (2.50)

and provide different first order approximation for the perturbed eigenvalue λ +∆λ . For the
case of quadratic eigenvalue problem, this approximation is given by

λ̃ = λ − y∗(λ 2∆M+λ∆C+∆K)x
y∗(2Mλ +C)x

, (2.51)

where

|λ +∆λ − λ̃ |/O(‖[∆M,∆C,∆K]‖2
F). (2.52)

Since we assumed that the change in the parameter is small enough, we will consider the first
order approximation of an eigenvalue

λ̃ (p) = λ (p0)+J (λ (p0))(p−p0),
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given by (2.44) as the approximation of the perturbed eigenvalue λ (p), i.e., we have the per-
turbation in parameter, p = p0 +∆p, where p0 = [v0

M;v0;v0
K] is parameter of unperturbed sys-

tem and p = [vM;v;vK] is parameter of perturbed system and ∆p is the perturbation of the
parameter. Thus, mass, damping and stiffness matrices of the perturbed system are M(p) =
M(vM) = M(v0

M) +∆M, C(p) = C(v) = C(v0) +∆C, and K(p) = K(vK) = K(v0
K) +∆K, re-

spectively, where ∆M,∆C,∆K are corresponding perturbation matrices and M(p0) = M(v0
M),

C(p0) =C(v0), K(p0) = K(v0
K) are matrices of unperturbed system.

To distinguish the approximations (2.44) and (2.51) we will denote one from (2.51) with µ̃ ,
and empathize the parameter dependence, i.e.,

µ̃ = λ (p0)− y∗(p0)(λ 2(p0)∆M+λ (p0)∆C+∆K)x(p0)

y∗(p0)(2M(p0)λ (p0)+C(p0))x(p0)
. (2.53)

In the following we show the similarities and differences of these two approximations. Since
first order approximation can be written as (2.44), i.e.,

λ̃ (p) = λ (p0)− y∗(p0)Bx(p0)

y∗(p0)(2λ (p0)M(p0)+C(p0))x(p0)
, (2.54)

where B =
m
∑

k=1

(
λ 2(p0) ∂M

∂ pk
(p0)+λ (p0) ∂C

∂ pk
(p0)+ ∂K

∂ pk
(p0)

)
(pk− p0

k).

Now we see that approximations from (2.54) and (2.53) are equal if and only if

B = (λ 2(p0)∆M+λ (p0)∆C+∆K)x(p0). (2.55)

If we write B as

B =λ
2(p0)

m

∑
k=1

∂M
∂ pk

(p0)(pk− p0
k)+λ (p0)

m

∑
k=1

∂C
∂ pk

(p0)(pk− p0
k)

+
m

∑
k=1

∂K
∂ pk

(p0)(pk− p0
k),

(2.56)

then (2.55) holds if and only if

∆M =
m

∑
k=1

∂M
∂ pk

(p0)(pk− p0
k),

∆C =
m

∑
k=1

∂C
∂ pk

(p0)(pk− p0
k),

∆K =
m

∑
k=1

∂K
∂ pk

(p0)(pk− p0
k).

(2.57)

In the following example we show the case when equality (2.55) holds and the case when it
doesn’t.

39



Chapter 2. Efficient approximations of PQEP

Example 2.3 In the first case we consider affine parameter-dependance in system matrices, and
in the second case we consider quadratic parameter-dependance only in damping matrix.

Case 1: As we said first we have affine parameter-dependance, i.e.,

M(p) = M0 +
m

∑
k=1

Mk pk, C(p) =C0 +
m

∑
k=1

Ck pk, K(p) = K0 +
m

∑
k=1

Kk pk,

M(p0) = M0 +
m

∑
k=1

Mk p0
k , C(p0) =C0 +

m

∑
k=1

Ck p0
k , K(p0) = K0 +

m

∑
k=1

Kk p0
k .

(2.58)

From (2.58) follows

∆M =
m

∑
k=1

Mk(pk− p0
k), ∆C =

m

∑
k=1

Ck(pk− p0
k), ∆K =

m

∑
k=1

Kk(pk− p0
k),

and since

∂M
∂ pk

(p0) = Mk,
∂C
∂ pk

(p0) =Ck,
∂K
∂ pk

(p0) = Kk, for k = 1, . . . ,m,

we conclude that (2.57) holds, i.e., approximations are equal.

Case 2: In this case for the sake of simplicity we consider arbitrary parameter-dependance only
in damping matrix, i.e.,

M(p) = M(p0), K(p) = K(p0),

C(p) =C0 +
m

∑
k=1

Ck f (pk), C(p0) =C0 +
m

∑
k=1

Ck f (p0
k),

(2.59)

where f : R→ R is any function. Then from (2.59) follows

∆M = 0, ∆C =
m

∑
k=1

Ck( f (pk)− f (p0
k)), ∆K = 0,

and since

∂M
∂ pk

(p0) = 0,
∂C
∂ pk

(p0) = f ′(p0
k)Ck,

∂K
∂ pk

(p0) = 0, for k = 1, . . . ,m.

Since
m

∑
k=1

∂C
∂ pk

(p0)(pk− p0
k) =

m

∑
k=1

f ′(p0
k)Ck(pk− p0

k)

we conclude that (2.57) holds if and only if f ′(p0
k)(pk− p0

k) = f (pk)− f (p0
k), for k =

1, . . . ,m, which is not always satisfied, but when ∆p→ 0 |λ̃ (p)− µ̃| → 0.

One can notice that only for affine parameter-dependance, approximations µ̃ and λ̃ (p) will
be equal. Furthermore, a significant advantage of our approximation λ̃ (p) is that we provided
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the upper bound for

|λ (p)− λ̃ (p)|/ 1
2

M̃i‖(p−p0)‖2,

where M̃i is given by (2.48), which can be efficiently computed.

2.2.2 Numerical experiments

In this subsection, we illustrate the accuracy of the first order approximation of the perturbed
eigenvalue problem. We consider the mechanical system, the so-called the n-mass oscillator

shown in Figure 2.10.

m1 m2 m3 m4 mn
2k k k k

k

k

k

k 2k

v0
2v0

1

Figure 2.10: n-mass oscillator

Example 2.4 The dimension of the system is n = 100. In this example the mass matrix does not
depend on the vector of parameters and it is denoted by

M = diag(m1, . . . ,mn), where mi = 2 · i, i = 1, . . . ,n.

The stiffness matrix is given by

K0 = K(p0) = K + p0
3 · K̃(p0), (2.60)

where

K =



4k −k −k

−k 4k −k −k

−k −k 4k −k −k
. . . . . . . . . . . . . . .

−k −k 4k −k −k

−k −k 4k −k

−k −k 4k


, K̃ =

 0 0 0
0 K̃1 0
0 0 0

 ,
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K̃1 = K̃(30 : 55,30 : 55) =



2k 0 −k

0 2k . . . . . .

−k . . . . . . . . . −k
. . . . . . . . . 0
−k 0 2k


,

where k = 0.1 and parameter dependant block of the stiffness matrix in our mechanical system
is shown in Figure 2.11.

m30 m31 m32 m33 m55
k k k

k+ kp0
3

k+ kp0
3

k+ kp0
3

k

Figure 2.11: Block that contains parameter p0
3 within n-mass oscillator represented by matrix

in (2.60), i.e., K0(30 : 55,30 : 55)

Finally, denote the damping matrix C(p0) = Cint +Cext(v0), where p0 = [v0
1,v

0
2, p0

3]
T , and

internal damping Cint = αcCcrit, with αc = 0.002 and Ccrit in given by (1.21). Matrix Cext(v0)

has only two nontrivial elements on positions (35,35) and (50,50). This means that we put two
grounded dampers on the 35th and the 50th mass with viscosities v0

1,v
0
2, respectively, i.e.,

Cext(v0) = v0
1e35eT

35 + v0
2e50eT

50.

We consider the following (perturbed) QEP:

(λ 2(p)M+C(p)λ (p)+K(p))x(p) = 0, (2.61)

with a small change δ in parameter p, i.e., p = p0 + δ . In this example, we consider the case
where p = ( v

4 +δ ,v+δ ,δ ) and p0 = ( v
4 ,v,0).

Figure 2.12 shows the relative true error between perturbed eigenvalue and its approximation
calculated in MATLAB with double precision. It also shows the relative approximation of the
error bounds for eigenvalues of the system given in (2.48). Figure 2.12 doesn’t show relative
errors for all the eigenvalues, but only for the eigenvalues that have relative true error greater
than 10−13.

In the first subplot of Figure 2.12 the viscosity parameter is v = 10 and perturbation is
δ = 0.005. For example, for 193th eigenvalue we obtain the maximal approximated relative
error bound, i.e.,

1
2

M̃193||p−p0||2

|λ193(p)|
= 5.2836 ·10−3,

42



Chapter 2. Efficient approximations of PQEP

0 20 40 60 80 100 120 140 160 180 200

10
-10
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-5

0 20 40 60 80 100 120 140 160 180 200

10
-10

10
-5

relative true error

relative approximated error bound

Figure 2.12: Comparison of relative true error |λ (p)−λ̃ (p)|
|λ (p)| and relative approximated error

bound of eigenvalues, where v = 10 and δ = 0.005, and v = 100 and δ = 0.005

and relative true error for 193th eigenvalue is

|λ193(p)− λ̃193(p)|
|λ193(p)|

= 1.5986 ·10−3.

In the second subplot of Figure 2.12 the viscosity parameter is v = 100 and perturbation is
δ = 0.005. In this case the maximal approximated relative error bound is obtained for the 111st
eigenvalue, i.e.,

1
2

M̃111||p−p0||2

|λ111(p)|
= 1.7910 ·10−3.
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and relative true error for the 111st eigenvalue is

|λ111(p)− λ̃111(p)|
|λ111(p)|

= 5.9159 ·10−4.

From Figure 2.12 we can conclude that approximated error bounds track the true error when we
change viscosity.

1 6 11 16 21 26 31 36 41 46 51

10−8

10−7

10−6

10−5

configurations (v,d) given by (2.62)

maximal error bound maxvalue
approximation of error bound
true error

Figure 2.13: Comparison of maximal error bound and corresponding approximation of error
bound with corresponding true error for different perturbation and viscosity parameters, e.g.,
points with axis 1, . . . ,5 correspond respectively to configurations (10,5),(10,4), . . . ,(10,1).

In Figure 2.13 we consider configurations

(v,d), for v ∈ {10, . . . ,100}, d ∈ {5, . . . ,1} (2.62)

where d determines magnitude of perturbation, i.e., perturbation is 0.01
2d , and c corresponds to vis-

cosity parameter. For these configurations we calculated maximal error bound
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maxvalue =
1
2Mi||p−p0||2, corresponding approximation of error bound 1

2M̃i||p−p0||2 and cor-
responding true error, |λi(p)− λ̃i(p)| . Here i is chosen among all 200 eigenvalues, i.e.

maxvalue =
1
2

Mi||p−p0||2 = max
l=1,...,2n

1
2

Ml||p−p0||2, (2.63)

for all configurations (2.62). We should note that if we fix the viscosity parameter and we variate
perturbation, i for which we obtain maxvalue in (2.63) doesn’t have to be the same. From Figure
2.13, we can see that the exact error bound can easily be replaced with its approximation.

In this section we have shown the approximation of the eigenvalues of the PQEP (1.1)
which can be used when we have a small change in the parameter, and also we have shown
approximation of the corresponding error bound which can be used in perturbation theory of
PQEP.

In contrast to approximations from this section and from Section 2.1 in the following section
we assume that the damping matrix has the structure that can be efficiently exploited, which is
shown in Subsection 2.3.1.

2.3 Approximations by modified Rayleigh quotient
In this subsection we show how one can use the structure of the damping matrix to accelerate

the computation of the eigenvalues of the PQEP (1.1). We assume that matrices Ci, i = 1, . . . ,s
in the external damping (1.3) are matrices of rank one, i.e.,

Ci = gigT
i , i = 1, . . . ,s,

where gi ∈ Rn is a vector that determines the geometry of the ith damper. In this case we can
transform our PQEP (1.1) into multiple connected diagonal plus rank one (DPR1) eigenvalue
problems, which is described later in this subsection. Therefore, in this subsection we propose
an efficient way of eigenvalue computation based on eigenvalue computation of DPR1 matrices.

Since we have a special structure of the external damping (1.3), again as in Subsection 2.1
our parameter p = v, i.e., we have only viscosities of the dampers as parameters.

To understand our new method, we first describe the following method of [47] for com-
plex symmetric DPR1 (CSymDPR1) matrices, as an modified version of this will be a major
subroutine of our approach.

Before dealing with the transformation of PQEP (1.1) into multiple CSymDPR1 eigenvalue
problem, we present an algorithm for efficient eigenvalue computation of CSymDPR1 matrices.

Let A be an 2n×2n complex symmetric matrix of the form

A = D+ζ uuT , (2.64)

where D= diag(d1,d2, . . . ,d2n) is a diagonal matrix of order 2n, u= [u1,u2, · · · ,u2n]
T is a vector
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and ζ 6= 0 is a scalar. Without loss of generality, we make the following assumptions:

- ζ > 0 (otherwise we consider the matrix A =−D−ζ uuT ),

- A is irreducible, i.e., ui 6= 0, i = 1, . . . ,2n, and di 6= d j, for all i 6= j, i, j = 1, . . . ,2n.

Indeed, if ui = 0 for some i, then the diagonal element di is an eigenvalue whose correspond-
ing eigenvector is the i-th canonical vector, and if di = d j, then di is an eigenvalue of the matrix
A, see [46].

Let us assume that A is diagonalizable matrix, i.e.,

A = WΛWT

is the eigenvalue decomposition of A, where Λ = diag(λ1,λ2, . . . ,λ2n) is a diagonal matrix
whose diagonal elements are the eigenvalues of A, and W =

[
w1 · · · w2n

]
is a matrix whose

columns are the corresponding eigenvectors.
The eigenvalue problem for a CSymDPR1 matrix A can be solved by any of the standard

methods for the symmetric eigenvalue problems (see, e.g., [114]). However, because of the
special structure of diagonal-plus-rank-one matrices, we can use the following approach (see,
e.g., [24], [37]). The eigenvalues of A are the zeros of the secular function:

f (λ ) = 1+ζ

2n

∑
i=1

u2
i

di−λ
= 1+ζ uT (D−λ I)−1u, (2.65)

and the corresponding eigenvectors are given by

wi =
xi

‖xi‖2
, where xi = (D−λiI)−1u, i = 1, . . . ,2n. (2.66)

The secular function (2.65) can be solved by, for example, mpsolve from the package MPSolve
([16], [17]).

Eigenvector matrix of CSymDPR1 matrices has a Cauchy-like structure. More on Cauchy-
like matrices can be found in [76]. This structure can be useful in acceleration of matrix multi-
plication.

If A is a real matrix, the diagonal elements of the matrix D, are called poles of the function f

and for ζ > 0, f is strictly increasing between the poles, implying the strict interlacing property
λ1 > d1 > λ2 > d2 > · · · > λ2n > d2n and eigenvalues can be computed highly accurately by
bisection (for more details see [46]). Orthogonality of eigenvectors depends on accuracy of
eigenvalues.

In the complex symmetric case there is no interlacing. In this case for eigenvalues computa-
tion, we use Modified Rayleigh Quotient Iteration (MRQI) as follows:

ρ = η
xT Ax
xT x

, where x := (D−ρI)−1u, (2.67)
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where η ∈ R is a step size that enhances the convergency of ρ . Once ρ has converged, it can be
deflated (see formulas in [77]), thus obtaining CSymDPR1 of size 2n−1. In the method from
[47] the parameter η doesn’t change, i.e., η = 1, first few steps use RQI (see [47, Section 3.2]),
then MRQI is used until convergence. The change in step size and the fact that we use MRQI in
each step are the differences between our method and the existing method.

The deflation formula comes from shifted inverse power method (see, e.g., [15]) where we
recompute components of u. For example if we computed the approximation of the eigenvalue
λ1 by using the shift d1 then the obtained CSymDPR1 of size 2n−1, i.e., the deflated A has the
following form:

Ad = Dd +ζ uduT
d , (2.68)

where

Dd = diag(d2, . . . ,d2n) and (ud)i = ui

√
di−d1

di−λ1
, i = 2, . . . ,2n. (2.69)

By applying Sherman-Morrison-Woodbury formula to compute A−1 one obtains

A−1 = D−1 + γD−1uuT D−1, γ =− ζ

1+ζ uT D−1u
,

which is again a CSymDPR1 matrix and can be computed in O(2n) operations, i.e., it is enough
to compute the new scalar and two vectors, one is the diagonal of the diagonal matrix and the
other one is the rank 1 update, to know the CSymDPR1 matrix.

We now show how to transform our PQEP (1.1) into multiple connected DPR1 eigenvalue
problems. Let Φ be the matrix that simultaneously diagonalizes M and K, as in (1.4).

As already mentioned in Section 1.2 we obtain the following:

A(v)y(v) = λ (v)y(v) ,

where

A(v) =

[
0 Ω

−Ω −ΦTCintΦ−Ĉ(v)

]
(2.70)

=

[
0 Ω

−Ω −αΩ

]
−

[
0

ΦT G

]
v1

. . .

vs

[0 GT Φ

]
,

y(v) =

[
y1(v)
y2(v)

]
=

[
ΩΦ−1x(v)

λ (v)Φ−1x(v)

]
, (2.71)
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Algorithm 4: Eigensolver for CSymDPR1 matrices
Require: D = diag(d1, . . . ,d2n), u ∈ C2n , ζ ∈ R+ from(2.64),
Ensure: Eigenvalues Λ = diag(λ1, . . . ,λ2n) and eigenvectors W =

[
w1 · · · w2n

]
of A.

1: for l = 1 : 2n, (loop for each eigenvalue) do
2: for i = 1 : 2n, (loop for each diagonal element) do
3: µ = max

i=1,...,2n
|di| (shift in a diagonal element)

4: d̂i = di−µ

5: end for
6: set initial values: zu unit vector, δ = 1, γ = 0, η = 1
7: while not converged do
8: if progress is too slow then
9: η = η

2
10: reset initial values: zu unit vector, δ = 1, γ = 0,
11: end if
12: δ = ηzT

u (D̂+ζ uuT )zu/‖zu‖2

13: γ = γ +δ

14: zu = (D̂−δ I)−1u
15: end while
16: λl = µ + γ (computing λ )
17: Compute eigenvector wl by formula (2.66)
18: Deflate λl from D+ζ uuT via the procedure given in [77, Section 7.5]
19: end for

where G =
[

g1 · · · gs

]
is a matrix whose columns are vectors gi that determine the

geometry of the ith damper. Notice that we doubled the dimension of our eigenvalue problem.
Let P be the perfect shuffle permutation as given in (2.1). Now, instead of PQEP (1.1) we

consider the following eigenvalue problem

PT A(v)PPT y(v) = Â(v)PT y(v) = λ (v)PT y(v). (2.72)

where the structure of Â(v) is given by:

Â(v) =


D1

. . .

Dn

− Ĝ


v1

. . .

vs

 ĜT , (2.73)

where

Di =

[
0 ωi

−ωi αωi

]
, i = 1, . . . ,n, (2.74)
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Ĝ =



0 . . . 0
(ΦT G)11 . . . (ΦT G)1s

0 . . . 0
(ΦT G21 . . . (ΦT G)2s

... . . . ...
0 . . . 0

(ΦT G)n1 . . . (ΦT G)ns


=
[
ĝ1 . . . ĝs

]
, (2.75)

where ĝl is l-th column of matrix Ĝ.
Now the PQEP (1.1) has the following form


D1

. . .

Dn

− s

∑
l=1

vl ĝl ĝT
l

PT y(v) = λ (v)PT y(v). (2.76)

Let Ψi ∈ R2×2 be the matrix that diagonalizes matrix Di, then matrix

Ψ =


Ψ1

. . .

Ψn

 (2.77)

diagonalizes block diagonal matrix from (2.76) and transforms that eigenvalue problem into

Ã(v)w(v) = λ (v)w(v), (2.78)

where

Ã(v) = (D− v1Ψ
−1b̂1b̂T

1 Ψ−·· ·− vsΨ
−1b̂sb̂T

s Ψ), (2.79)

w(v) = Ψ−1PT y(v) and

D = Ψ
−1


D1

. . .

Dn

Ψ.

Since matrices Φ, P, Ψi, Di, i = 1, . . . ,n are not dependant on parameter v, this previous part
can be done off-line in the process of damping optimization, which is shown in Chapter 4.

In the following part we show how one can iteratively apply Algorithm 4 on matrix (2.79) to
compute eigenvalues and eigenvectors and this is done on-line in optimization process for each
change in parameter v. For the sake of easier notation we won’t write dependence on parameter
v in the following description of iterative application of Algorithm 4.

Let ξ1 and L1 be eigenvectors and diagonal matrix containing eigenvalues of the DPR1 matrix
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Algorithm 5: Approximation of eigenvalues and eigenvectors of PQEP (1.1)
Require: M,K ∈ Rn×n, α ∈ R for Cint , bl ∈ Rn and parameter vl, l = 1, . . . ,s, Φ ∈ Cn×n

such that (1.4) hold, perfect shuffle matrix P from (2.73), Ψ from (2.77) so we can

obtain matrix D−
s
∑

l=1
vlΨ

−1ĝl ĝT
l Ψ

Ensure: approximation of eigenvalues L and eigenvectors X
1: L0 = D
2: U := [u1, . . . ,un] = Ψ−1[ĝ1, . . . , ĝs],Z := [z1, . . . ,zn] = ΨT [ĝ1, . . . , ĝs], v = [v1, . . . ,vs]

T

3: for l = 1, . . . ,s do
4: if ul 6= zl then
5: ẑl = Sul , where S is given by (2.82)
6: end if
7: compute Ll and ξl by using Algorithm 4 on (Ll−1, ẑl,vl)
8: ξl = S−1ξl
9: U = ξ

−1
l U , Z = ξ T

l Z
10: end for
11: L = D, X = ΦΩ−1[PΨξ1ξ2 . . .ξs](1 : n, :)1

1[PΨξ1ξ2 . . .ξs](1 : n, :) takes first n rows of matrix [PΨξ1ξ2 . . .ξs]

D− v1Ψ−1ĝ1ĝT
1 Ψ, respectively, then(

L1− v2ξ
−1
1 Ψ

−1ĝ2ĝT
2 Ψξ1−

s

∑
l=3

vlξ
−1
1 Ψ

−1ĝl ĝT
l Ψξ1

)
ξ
−1
1 w = λξ

−1
1 w. (2.80)

Next we compute eigenvalues and eigenvectors of L1−v2ξ
−1
1 Ψ−1ĝ2ĝT

2 Ψξ1. If we denote ξ0 = I

and L0 = D then we can write this iterative application of Algorithm 4 as follows. Compute ξi

and Li, which are respectively eigenvectors and diagonal matrix containing eigenvalues of the

Li−1− viξ
−1
i−1Ψ

−1ĝiĝT
i Ψξ i−1, (2.81)

where ξ i−1 = ξ1 . . .ξi−1, for i= 1, . . . ,s. In the last step we obtain Ls, which contains eigenvalues
and ξs from which one can obtain eigenvectors of QEP (1.1) as shown in Algorithm 5.

This iterative application of Algorithm 4 on matrix with a structure (2.79) is summarised in
Algorithm 5.

Remark 2.2. One can notice that every DPR1 matrix can be rewritten as CSymDPR1 with the
same eigenvalues, i.e., if we have matrix D+ρuzT , then we set

S = diag
(√

z1

u1
, . . . ,

√
z2n

u2n

)
(2.82)

and obtain CSymDPR1 D+ρ ẑẑ, where ẑ = Su and also uT S2 = zT holds. Now if (λ ,x) is the
eigenpair of D+ρuzT , then (λ ,Sx) is the eigenpair of D+ρ ẑẑ.
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2.3.1 Numerical experiments

In this subsection, we show how accurate and efficient Algorithm 5 is. In this examples we
consider the mechanical system, so-called n−mass oscillator as shown in Figure 2.14.

m1 m2 mn−1 mn
k1

v1

k2

v2 v3

kn kn+1

Figure 2.14: n-mass oscillator

Matrices that correspond to this mechanical system are:

M = diag(m1,m2, . . . ,mn),

K =



k1 + k2 −k2

−k2 k2 + k3 −k3
. . . . . . . . .

−kn−1 kn−1 + kn −kn

−kn kn + kn+1


,

Cext = v1ekeT
k + v2(e j− e j+1)(e j− e j+1)

T + v3eleT
l ,

where ekeT
k and eleT

l means that grounded dampers are on masses mk and ml and (e j−e j+1)(e j−
e j+1)

T means that one damper is between masses m j and m j+1. For k = 1, j = 1, l = n−1 we
have configuration as it is given by Figure 2.14.

All computations have been performed on the machine Intel Core i7-6500 CPU with 8GB of
RAM with MATLAB R2018a on Windows 10. We don’t show the difference between Algorithm
5 and algorithm from [47], since latter algorithm didn’t converge all the time.

Example 2.5 We consider the mechanical system shown in Figure 2.14 for dimensions n =

50 · i, i = 1, . . . ,20, ki = 0.01, i = 1, . . . ,n+ 1 and mi = 10+ 990
n−1 · (i− 1), i = 1, . . . ,n, and in

internal damping given by (1.20), αc = 0.002. To show robustness of our approach we tested it on
a random viscosity vr = [vr

1,v
r
2,v

r
3]

T , where vr
1,v

r
2,v

r
3 ∈ [0.1,1.1] for two different configurations

of damper’s positions.

ConfigurationA : (k, j, l) =
(

n
10

,
3n
10

,
5n
10

)
,

ConfigurationB : (k, j, l) =
(

5n
10

,
7n
10

,
9n
10

)
,

(2.83)
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Figure 2.15: Average relative error in eigenvalues for different system dimension

In order to show how accurate Algorithm 5 is, Figure 2.15 shows average relative error in
eigenvalues for two different configurations (2.83). Relative errors are computed using

|λ p
j (v)−λ j(v)|
|λ p

j (v)|
, j = 1, . . . ,2n,

where λ j(v) are eigenvalues computed with Algorithm 5 and λ
p
j (v) are eigenvalues computed

with MATLAB’s function polyeig (for more see [97], [96], [28]). The average is taken over all
j = 1, . . . ,2n. One can notice a slight increase in relative error as dimension increases, but it is
still around 10−13 which gives good accuracy.

Figure 2.16 shows run times for computation of eigenvalues and eigenvectors with Algorithm
5 and MATLAB’s function polyeig and quadeig (more details on quadeig in [41]), for 2
different positions of dampers, i.e., for fixed configuration of positions of dampers, we increased
system dimension and recorded run-times needed to run Algorithm 5, and run-times needed to

52



Chapter 2. Efficient approximations of PQEP

0 100 200 300 400 500 600 700 800 900 1000

0

20

40

60

80

100

120

140

160

system dimension n

tim
e

in
se

c
Algorithm 5 time, confA
polyeig time, confA
quadeig time, confA
Algorithm 5 time, confB
polyeig time, confB
quadeig time, confB

Figure 2.16: Computation time depending on system dimension

run quadeig and polyeig.
From Figure 2.16 one can see that for lower dimension times are almost the same, but

with the increase of dimension the Algorithm 5 is much faster then polyeig and quadeig.
Overall, Figure 2.16 verifies our new eigenvalue computation is much faster than alternative
eigensolvers, since it shows a significant gain even when we just solve a single problem. This
is very important since we want to apply our approximation to damping optimization where we
repetitively compute eigenvalues and eigenvectors to determine which parameter is the optimal
one, and the speed up is more significant.

2.4 Conclusion
In this chapter, we have shown how one can efficiently approximate the whole or just one

important part of the spectrum of the parameter dependent quadratic eigenvalue problem, for a
variety of viscosity parameters v = [v1, . . . ,vs]

T , vi ∈R+. Furthermore, we have shown how one
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can efficiently approximate eigenvalues when the change in parameter is small. Also we have
shown how one can exploit the structure of the damping matrix for efficient computation of the
approximations of the eigenvalues.

Our approach from Section 2.1 generalizes the results from [75] and [112], which are given
for vi� 1, on the vi of the modest magnitude. Moreover, even for the case when vi� 1, our
approximations are more accurate than those in [75] and [112]. At the same time, for all three
approximation approaches we have derived the corresponding error bounds. The quality of
the error bounds as well as the accuracy of the achieved eigenvalues was illustrated in several
numerical experiments.

Approximations from Section 2.2 are appropriate in case when we have a small change in
parameter p (perturbation in parameter p). These approximations and the corresponding error
bounds are applied in the next chapter, which is related to perturbation theory.

The approach for computation of eigenvalues from Section 2.3 exploits the structure of
damping matrix and it is shown in numerical experiment that this approach is very efficient and
applicable in damping optimization, which will be shown in Chapter 4.
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Perturbation bounds of PQEP

In this chapter we present results related to perturbation theory of PQEP (1.1). Perturbation
theory arises when it comes to the sensitivity of a problem as well as the stability and robustness
of numerical methods. Sensitivity of a problem to perturbations in data is measured by the
conditioning number. A condition number of a problem quantifies the rate of change of the
solution with respect to the input data. On the other hand the stability of a method for solving
the problem is characterized by backward error. Backward error measures how far a problem
has to be perturbed for an approximate solution to be an exact solution of the perturbed problem.
The combination of backward error estimate and a condition number provides an approximate
upper bound on the error in a computed solution, i.e.,

error in solution / condition number ×backward error.

For a numerical method we say that it is robust if it does not produce a large perturbation in
the solution for a very small perturbation in data.

Since we consider PQEP (1.1) where all matrices depend on parameters, we have the pertur-
bation in parameter, p = p0 +∆p, where p0 = [v0

M;v0;v0
K] is parameter of unperturbed system

and p = [vM;v;vK] is parameter of perturbed system and ∆p is the perturbation of the parameter.
Thus, mass, damping and stiffness matrices of the perturbed system are M(p) = M(vM) =

M(v0
M) + ∆M, C(p) = C(v) = C(v0) + ∆C, and K(p) = K(vK) = K(v0

K) + ∆K, respectively,
where ∆M,∆C,∆K are corresponding perturbation matrices and M(p0) = M(v0

M), C(p0) =

C(v0), K(p0) = K(v0
K) are matrices of unperturbed system.

Thus, the PQEP of an unperturbed system is given by:

(λ 2(p0)M(p0)+λ (p0)C(p0)+K(p0))x(p0) = 0 , x(p0) 6= 0, (3.1)

while

(λ 2(p)M(p)+λ (p)C(p)+K(p))x(p) = 0 , x(p) 6= 0 (3.2)

is the PQEP of the perturbed system. One can see that first order approximations of eigenval-
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ues, λ̃ (p) given in Section 2.2 can be taken as approximations of the eigenvalues λ (p) of the
perturbed PQEP.

Usually in perturbation theory of the quadratic eigenvalue problem the following is consid-
ered:

((λ +∆λ )2(M+∆M)+(λ +∆λ )(C+∆C)+(K +∆K))(x+∆x) = 0, (3.3)

where (x+∆x) 6= 0 and perturbation matrices are ∆M, ∆C, ∆K, see [97]. The following back-
ward error and eigenvalue condition number are given in their original form as in [97, 43].
Furthermore, let us consider an approximate eigenpair (λ̃ , x̃) of

(λ 2M+λC+K)x = 0, x 6= 0. (3.4)

We can interpret (λ̃ , x̃) as an approximation of an exact eigenpair of perturbed quadratic eigen-
value problem (3.3), where choice of perturbations ∆M, ∆C, ∆K is not unique. Backward error
of eigenpair (λ̃ , x̃) is defined as the size of the smallest perturbations given in a following way:

η(λ̃ , x̃) = min{ε : (λ̃ 2(∆M+M)+λ (∆C+C)+(∆K +K))x̃ = 0, x̃ 6= 0,

‖∆M‖ ≤ ε‖M‖, ‖∆C‖ ≤ ε‖C‖, ‖∆K‖ ≤ ε‖K‖}

=
‖(λ̃ 2M+ λ̃C+K)x̃‖

(|λ̃ |2‖M‖+ |λ̃ |‖C‖+‖K‖)‖x̃‖
,

(3.5)

while eigenvalue condition number is given by:

κ(λ ) = limsup
ε→0

{
|∆λ |
ε|λ |

: (3.3) holds ,‖∆M‖ ≤ ε‖M‖, ‖∆C‖ ≤ ε‖C‖, ‖∆K‖ ≤ ε‖K‖
}

=
(|λ |2‖M‖+λ‖C‖+‖K‖)‖y‖‖x‖

|λ ||y∗(2λM+C)x|
.

(3.6)

Furthermore, proofs of equalities in (3.5) and (3.6) can be found in [96]. An overview on
perturbation theory for the quadratic eigenvalue problem is presented in [97], [91] and for
hyperbolic quadratic eigenvalue problem is presented in [64]. The perturbation theory for the
quadratic eigenvalue problem has been considered in [64], [45], while the relative perturbation
theory has been studied in [9], [101], [102]. Moreover, the perturbation theory for the polynomial
and nonlinear eigenvalue problems have been considered in [71], [42], [14]. In [14] authors
provide a first order approximation of a perturbed eigenvalue λ +∆λ when the eigenvalue is
simple which was compared with our first order approximation (2.44) in Subsection 2.2.1.

Further on, we continue with our setting, where perturbed quantities depend on p and un-
perturbed quantities depend on p0. In [9], [101], [102] authors measure the relative error in
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eigenvalue, which can be defined as

|λ (p)−λ (p0)|
|λ (p0)|

or
|λ (p)−λ (p0)|
|λ (p)|

(3.7)

and also the perturbation of invariant subspaces. For the perturbation of invariant subspaces
we need to define the distance between two subspaces (see [93], [37]). Let X (p) and Y(p) be
subspaces of Cn and that dim(X (p)) = dim(Y(p)) = l. We define distance between these two
spaces by

dist(X (p),Y(p)) = ‖PX (p)−PY(p)‖, (3.8)

where PX (p), PY(p) are orthogonal projection ontoX (p),Y(p), respectively. If we denote Θ(p)=
diag(θ1(p), . . . ,θl(p)), where θi(p), i = 1, . . . , l, are canonical angles between X (p) and Y(p),
then

‖PX (p)−PY(p)‖= sinθ1(p) = ‖sinΘ(p)‖= sin^(X(p),Y (p)). (3.9)

The greatest canonical angle, θ1, is defined by:

cosθ1(p) = min
x(p)∈X (p),

x(p)6=0

max
y(p)∈Y(p),

y(p)6=0

y(p)∗x(p)
‖x(p)‖‖y(p)‖

. (3.10)

Very often the perturbation bound for eigenvalues (3.7), and also the perturbation bound
for invariant subspaces (3.9) depend on perturbed (depending on p) as well as unperturbed
(depending on p0) quantities, making them difficult to use even for

‖∆p‖= ‖p−p0‖� εp, (3.11)

where εp is given tolerance, since the quantities of the perturbed system are suppose to be un-
known. This dependence on perturbed parameter p is usually in a gap function. The perturbation
bound for invariant eigensubspaces X(p),X(p0) is usually given in a following form

sin^(X(p),X(p0))≤ residual

gap

as in [72], [21], where authors consider residual of certain linearization of the PQEP (1.1) as
the residual and the measures of the separation between eigenvalues is denoted as gap. In
a similar way there are gap functions in the denominator of the bounds given in [101], [102]
which will be shown later in this chapter.

This chapter is organized as follows. Section 3.1 presents new type of perturbation bounds
between individual unperturbed and perturbed eigenvectors of PQEP (1.1).
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To overcome the problem of the dependence on perturbed parameter p in gap functions, in
Subsection 3.1.1 we present a set of bounds for different gap functions, where only unperturbed
quantities are incorporated in the bounds. Results from Subsection 3.1.1 are based on the
triangular inequality and the first order approximation of involved perturbed eigenvalues, from
Section 2.2 given by (2.44) and the corresponding error bound given by (2.45).

The same approach can be used for efficient computation of bounds for gap functions that
occur in perturbation bounds from [102] and [101], which is shown in Section 3.2.3.

3.1 New eigenvector perturbation bounds
In this section we present a new type of perturbation bounds between individual unperturbed

and perturbed eigenvector of PQEP (1.1) and also upper bounds for gap functions that occur in
this bound. We then apply our new approach regarding the gap functions to existing bounds
given in [102] and [101], in order to improve efficiency of their calculation.

First, we discuss a certain residual type of bound for the unperturbed and perturbed eigen-
vectors respectively from PQEPs (3.1) and (3.2).

For the purpose of simplifying notation, x(p0) is denoted by x and it represents an eigenvec-
tor from the unperturbed system given by (3.1) and x(p) is denoted by x̂ and it represents an
eigenvector from the perturbed system given by (3.2), while the perturbed eigenvalues of λ (p0)

are denoted by λ (p).
Let (λi(p0),xi) and (λ j(p0),y j) be the i-th right and the j-th left eigenpair of the unperturbed

PQEP (3.1), respectively, for i, j = 1, . . . ,2n.
Since, the xi and y j are right and left eigenvectors, respectively, the following equalities hold

λ
2
i (p

0)M(p0)xi +λi(p0)C(p0)xi +K(p0)xi = 0, (3.12)

λ
2
j (p

0)y∗jM(p0)+λ j(p0)y∗jC(p0)+ y∗jK(p0) = 0. (3.13)

Now multiplying the first equality from the left with y∗j and the second equality from the right
with xi and subtracting them, we obtain

(λ 2
i (p

0)−λ
2
j (p

0))y∗jM(p0)xi +(λi(p0)−λ j(p0))y∗jC(p0)xi = 0 .

If

λi(p0) 6= ±λ j(p0) ,

then the following equality holds

y∗j

(
M(p0)+

C(p0)

λi(p0)+λ j(p0)

)
xi = 0, (3.14)
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for all i 6= j.

Remark 3.1. Note that in a similar way as we obtained (3.14) from (3.12) and (3.13), instead of
annihilating K(p0) we can annihilate M(p0) or C(p0) and obtain

y∗j

(
M(p0)− K(p0)

λi(p0)λ j(p0)

)
xi = 0,

y∗j

C(p0)+
K(p0)

λi(p0)+λ j(p0)

λi(p0)λ j(p0)

xi = 0,

respectively, under additional assumption that all λi(p0) 6= 0, i = 1, . . . ,2n.

Let us denote

Ti j =
C(p0)

λi(p)+λ j(p0)
, T 0

i j =
C(p0)

λi(p0)+λ j(p0)
.

Theorem 3.1 For the PQEP given by (3.1) with simple eigenvalues λ j(p0) with corresponding
right eigenvectors xi and left eigenvectors y j, let (3.2) correspond to the perturbed PQEP with
simple eigenvalues λi(p) with corresponding right eigenvectors x̂i such that ‖xi‖=‖x̂i‖= 1 for
all i, j ∈ {1, . . . ,2n}, where λi(p) 6=±λ j(p0) and λi(p0) 6=±λ j(p0). Denote

γi j =
J (λi(p0))∆p+ 1

2(p−p0)TH(ξ )(p−p0)

λi(p0)+λ j(p0)
(3.15)

where ∆p = p−p0, ξ = λk(p0 + t1∆p), t1 ∈ [0,1] and assume |γi j|< 1. Then, for perturbation
δ = max{‖∆p‖,‖∆M‖,‖∆C‖,‖∆K‖}, small enough the following inequality holds,

∣∣y∗j (M(p0)+T 0
i j
)

x̂i
∣∣/ ∣∣∣∣y∗j(T 0

i j
Ji(p0)∆p

λi(p0)+λ j(p0)

)
xi

∣∣∣∣+ ‖y∗j∆Mxi‖
|λ 2

j (p0)−λi
2(p)|

|λi
2(p)|

+
‖y∗j∆Cxi‖
|λ 2

j (p0)−λi
2(p)|

|λi(p)|

+
‖y∗j∆Kxi‖

|λ 2
j (p0)−λi

2(p)|
, for i 6= j,

(3.16)

where J (λi(p0))∆p =
m
∑

k=1

∂λi
∂ pk

(p0)(pk − p0
k) and ∆M = M(p)−M(p0), ∆C = C(p)−C(p0),

∆K = K(p)−K(p0).

Proof. The following equalities hold:

λ
2
i (p)M(p)x̂i +λi(p)C(p)x̂i +K(p)x̂i = 0,

λ
2
j (p

0)y∗jM(p0)+λ j(p0)y∗jC(p0)+ y∗jK(p0) = 0.

Now, by multiplying the first equality from the left with y∗j and the second from the right with
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x̂i, one gets

(λ 2
i (p)−λ

2
j (p

0))y∗jM(p0)x̂i +(λi(p)−λ j(p0))y∗jC(p0)x̂i =

−λ
2
i (p)y

∗
j(M(p)−M(p0))x̂i−λi(p)y∗j(C(p)−C(p0))x̂i− y∗j(K(p)−K(p0))x̂i.

Therefore we obtain the following equality

y∗j
(
M(p0)+Ti j

)
x̂i =

y∗j∆Mx̂i

λ 2
j (p0)−λi

2(p)
λi

2(p)

+
y∗j∆Cx̂i

λ 2
j (p0)−λi

2(p)
λi(p)

+
y∗j∆Kx̂i

λ 2
j (p0)−λi

2(p)
. (3.17)

Now, if we use first order approximation for λi(p) given by (2.42) we obtain

Ti j =
C(p0)

λi(p0)+J (λi(p0))∆p+ 1
2(p−p0)TH(ξ )(p−p0)+λ j(p0)

=
C(p0)

(λi(p0)+λ j(p0))

(
1+ J (λi(p0))∆p+ 1

2 (p−p0)TH(ξ )(p−p0)

λi(p0)+λ j(p0)

) (3.18)

= T 0
i j

1
1+ γi j

.

Since |γi j|< 1,

Ti j = T 0
i j +T 0

i j

∞

∑
k=1

(−γi j)
k

= T 0
i j−T 0

i j
J (λi(p0))∆p

λi(p0)+λ j(p0)
+O(‖∆p‖2). (3.19)

Now, by applying (3.19) in (3.17), we obtain

y∗j
(
M(p0)+T 0

i j
)

x̂i = y∗j

(
T 0

i j
J (λi(p0))∆p

λi(p0)+λ j(p0)

)
x̂i +

y∗j∆Mx̂i

λ 2
j (p0)−λi

2(p)
λi

2(p)

+
y∗j∆Cx̂i

λ 2
j (p0)−λi

2(p)
λi(p)

+
y∗j∆Kx̂i

λ 2
j (p0)−λi

2(p)
+O(‖∆p‖2) .

(3.20)

Considering (2.43) let

x̂i = xi +∆xi (3.21)
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where ‖∆xi‖=O(‖∆p‖2). If we substitute (3.21) in (3.20) we obtain

y∗j
(
M(p0)+T 0

i j
)

x̂i = y∗j

(
T 0

i j
J (λi(p0))∆p

λi(p0)+λ j(p0)

)
xi +

y∗j∆Mxi

λ 2
j (p0)−λi

2(p)
λi

2(p)

+
y∗j∆Cxi

λ 2
j (p0)−λi

2(p)
λi(p)

+
y∗j∆Kxi

λ 2
j (p0)−λi

2(p)
+O(δ 2) .

(3.22)

Now, for δ small enough by taking the norm we obtain (3.16).

Furthermore, let the matrix X = [xi1 , . . . ,xiq] (Y = [y j1, . . . ,y jp ]) contain linearly independent
right (left) eigenvectors of PQEP (3.2) which correspond to eigenvalues λi1(p0), . . . ,λiq(p0), (
λ j1(p0), . . . ,λ jp(p0)). We assume that rankX = p (rankY = q), i.e., matrix X has the full column
rank. Suppose ik 6= jl for k = 1, . . . ,q, l = 1, . . . , p.

By bounding the denominators on the right-hand side of (3.16) we have the following corol-
lary.

Corollary 3.2 For chosen i∈ {i1, . . . , ip}, j ∈ { j1, . . . , jq}, let assumptions from Lemma 3.1 hold.
The following inequality holds

∣∣y∗j (M(p0)+T 0
i j
)

x̂i
∣∣/ ∣∣∣∣∣∣∣∣y∗j(T 0

i j
J (λi(p0))∆p

λi(p0)+λ j(p0)

)
xi

∣∣∣∣∣∣∣∣
+
‖y∗j∆Mxi‖

g1
+
‖y∗j∆Cxi‖

g2
+
‖y∗j∆Kxi‖

g3
,

(3.23)

where

g1 = min
i=i1,...,ip
j= j1,..., jq

i6= j

|λ 2
j (p0)−λi

2(p)|
|λ 2

i (p)|
, (3.24)

g2 = min
i=i1,...,ip
j= j1,..., jq

i6= j

|λ 2
j (p0)−λi

2(p)|
|λi(p)|

, (3.25)

g3 = min
i=i1,...,ip
j= j1,..., jq

i6= j

|λ 2
j (p

0)−λi
2(p)|. (3.26)

Proof. The proof follows directly from Theorem 3.1.

Note that in bounds (3.16) we apply a first order approximation on perturbed eigenvector,
while the right hand side still possesses perturbed and unperturbed eigenvalues. Also, the right
hand side in bound (3.23) possesses perturbed and unperturbed eigenvalues in the gap functions
(3.24), (3.25), (3.26). Our result in the next subsection demonstrates how one can avoid using
perturbed eigenvalues in bounds, i.e., we derive a new bound that depends only on unperturbed
eigenvalues for small enough perturbation.
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3.1.1 Application of first order approximation bounds

In this subsection we present a lower bound for gap functions, that contain unperturbed
eigenvalues and approximation of perturbed eigenvalues given in Corollary 2.8 by (2.44) and
corresponding error bound given by (2.45).

As we already mentioned λ (p) represents an eigenvalue of the perturbed PQEP, then if we
denote the approximation of an eigenvalue λ (p) with λ̃ (p), then the following corollary holds:

Corollary 3.3 Let all assumptions from Theorem 3.1 and Lemma 2.5 hold and let λ̃i(p) be first
order approximation of eigenvalue λi(p) given by (2.44) with corresponding error bound (2.45).
Furthermore, let the perturbation δ be small enough such that |λ 2

j (p0)− λ̃ 2
i (p)|−M(2)

i ≥ 0 for
all i = i1, . . . , ip, j = j1, . . . , jq, i 6= j.

Then the following inequalities hold

g1 ' min
i=i1,...,ip
j= j1,..., jq

i 6= j

|λ 2
j (p0)− λ̃ 2

i (p)|−M(2)
i

|λ̃ 2
i (p)|+M(2)

i

, (3.27)

g2 ' min
i=i1,...,ip
j= j1,..., jq

i 6= j

|λ 2
j (p0)− λ̃ 2

i (p)|−M(2)
i

|λ̃i(p)|+M(1)
i

, (3.28)

g3 ' min
i=i1,...,ip
j= j1,..., jq

i 6= j

(|λ 2
j (p

0)− λ̃
2
i (p)|−M(2)

i ). (3.29)

where M(1)
i = 1

2Mi‖p−p0‖2 and M(2)
i = Mi(Mi +2|λ̃i(p)|).

Proof. By applying the triangle inequality we get the following inequalities:

|λ̃ 2
i (p)−λi

2(p)|= |λ̃i(p)−λi(p)||λ̃i(p)+λi(p)|

/ M(1)
i (M(1)

i +2|λ̃i(p)|) = M(2)
i ,

|λi
2(p)|/ M(2)

i + |λ̃ 2
i (p)|,

|λi(p)|/ M(1)
i + |λ̃i(p)|,

|λ 2
j (p

0)− λ̃
2
i (p)|/ |λ 2

j (p
0)−λi

2(p)|+M(2)
i .
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Here, by applying the above inequalities we get the following:

|λ 2
j (p0)−λi

2(p)|
|λi

2(p)|
'
|λ 2

j (p0)− λ̃ 2
i (p)|−M(2)

i

|λ̃ 2
i (p)|+M(2)

i

,

|λ 2
j (p0)−λi

2(p)|
|λi(p)|

'
|λ 2

j (p0)− λ̃ 2
i (p)|−M(2)

i

|λ̃i(p)|+M(1)
i

,

|λ 2
j (p

0)−λi
2(p)|' |λ 2

j (p
0)− λ̃

2
i (p)|−M(2)

i .

(3.30)

By taking the minimum of both sides we obtain inequalities (3.27)-(3.29).

Now we can present two upper bounds for the expression

∣∣y∗j (M(p0)+T 0
i j
)

x̂i
∣∣

such that we can efficiently calculate them for different parameters p. Moreover, in order to
have an upper bound that can be efficiently implemented, in derived upper bounds (3.27)-(3.29)
instead of using Mi we can use approximation M̃i from (2.48). In the next corollaries we state
an estimation of the upper bound.

Corollary 3.4 For chosen i, j ∈ {1, . . . ,2n}, i 6= j, let assumptions from Corollary 3.3 hold. Then
the following inequality holds

∣∣y∗j (M(p0)+T 0
i j
)

x̂i
∣∣/ ∣∣∣∣∣∣∣∣y∗j(T 0

i j
J (λi(p0))∆p

λi(p0)+λ j(p0)

)
xi

∣∣∣∣∣∣∣∣+ ‖y∗j∆Mxi‖
|λ̃ 2

i (p)−λ 2
j (p0)|−M(2)

i

|λ̃ 2
i (p)|+M(2)

i

+
‖y∗j∆Cxi‖

|λ̃ 2
i (p)−λ 2

j (p0)|−M(2)
i

|λ̃i(p)|+M(1)
i

+
‖y∗j∆Kxi‖

|λ̃ 2
i (p)−λ 2

j (p0)|−M(2)
i

, (3.31)

where M(1)
i = 1

2Mi‖(p−p0)‖2 and M(2)
i = M(1)

i (M(1)
i +2|λ̃i(p)|).

Proof. Proof follows directly from application of inequalities (3.30) in Theorem 3.1.

Corollary 3.5 For chosen i, j ∈ {1, . . . ,2n}, i 6= j, let assumptions from Corollary 3.3 hold. Then
the following inequality holds

∣∣y∗j (M(p0)+T 0
i j
)

x̂i
∣∣/ ∣∣∣∣∣∣∣∣y∗j(T 0

i j
J (λi(p0))∆p

λi(p0)+λ j(p0)

)
xi

∣∣∣∣∣∣∣∣
+

‖y∗j∆Mxi‖

min
i=i1,...,ip
j= j1,..., jq

i 6= j

|λ̃ 2
i (p)−λ 2

j (p0)|−M(2)
i

|λ̃ 2
i (p)|+M(2)

i
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+
‖y∗j∆Cxi‖

min
i=i1,...,ip
j= j1,..., jq

i 6= j

|λ̃ 2
i (p)−λ 2

j (p0)|−M(2)
i

|λ̃i(p)|+M(1)
i

(3.32)

+
‖y∗j∆Kxi‖

min
i=i1,...,ip
j= j1,..., jq

i 6= j

(|λ̃ 2
i (p)−λ 2

j (p0)|−M(2)
i )

,

where M(1)
i = 1

2Mi‖(p−p0)‖2 and M(2)
i = M(1)

i (M(1)
i +2|λ̃i(p)|).

Proof. Proof follows directly from application of the lower bounds from Corollary 3.3 and
Corollary 3.2.

The quality of these upper bounds will be illustrated with a the next section in numerical
example.

3.1.2 Numerical experiments

In this example we show how accurate the bounds from (3.23) and (3.16) are. Since in
bounds (3.32) and (3.31) we have Mi, i = 1, . . . ,2n, which is difficult to calculate because it
implies multiple computation of new (perturbed) eigenvalues, as we have already mentioned in
Section 2.2 we can use its approximation, M̃i. Moreover, we already shown in Example 2.4 that
we can use the approximation M̃i instead of Mi, when the perturbation is small enough.

Example 3.1 Consider the mechanical system shown in Figure 3.1 as in Example 2.4.

m1 m2 m3 m4 mn
2k k k k

k

k

k

k 2k

v0
2v0

1

Figure 3.1: n-mass oscillator

Once again the dimension of the system is n = 100. In this example the mass matrix does
not depend on the vector of parameters and it is given by

M = diag(m1, . . . ,mn), where mi = 2 · i, i = 1, . . . ,n.
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The stiffness matrix is given by

K0 = K(p0) = K + p0
3 · K̃(p0), (3.33)

where

K =



4k −k −k

−k 4k −k −k

−k −k 4k −k −k
. . . . . . . . . . . . . . .

−k −k 4k −k −k

−k −k 4k −k

−k −k 4k


, K̃ =

 0 0 0
0 K̃1 0
0 0 0

 ,

K̃1 = K̃(30 : 55,30 : 55) =



2k 0 −k

0 2k . . . . . .

−k . . . . . . . . . −k
. . . . . . . . . 0
−k 0 2k


,

where k = 0.1 parameter dependant block of the stiffness matrix in our mechanical system is
shown in Figure 2.11.

Finally, denote the damping matrix C(p0) = Cint +Cext(v0) where p0 = [v0
1,v

0
2, p0

3]
T , v0 =

[v0
1,v

0
2]

T , while internal damping Cint = αcCcrit, with αc = 0.002 and Ccrit is given by (1.21). We
put two grounded dampers on the 35th and the 50th mass with viscosities v0

1,v
0
2, respectively,

i.e.,
Cext(p0) = v0

1e35eT
35 + v0

2e50eT
50.

We will consider the following perturbed QEP:

(λ 2(p)M+C(p)λ (p)+K(p))x(p) = 0. (3.34)

In this example, we consider the case where p = ( v
4 +δ ,v+δ ,δ ) and p0 = ( v

4 ,v,0).

Figure 3.2 shows the left-hand side (LHS) of inequality (3.16) for different combinations
of y j and x̂i, together with corresponding right-hand sides (RHS) given in (3.23) and (3.16)
as well as corresponding approximation bound of RHS, given in (3.32) and (3.31), for v = 10
and δ = 0.01

28 . Here we have used approximated M̃k instead of real Mk, from Corollary 2.8, for
calculation of RHS in (3.32) and (3.31).
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Figure 3.2: Left-hand side (LHS) and right-hand sides (RHS) of inequalities (3.23) and (3.16)
and approximation bound of right-hand sides of inequalities (3.32) and (3.31) for different

combinations of (y j, x̂i), where j = 4 · k, i = k+160 and k = 1, . . . ,40

As one can see from Figure 3.2, for all but six combinations of eigenvectors y j and x̂i,
we obtained the satisfactory behaviour of the approximation bounds given by (3.32), (3.31)
since those bounds follow the theoretical bounds given by (3.23), (3.16). For the other six
combinations LHS is greater than RHS. The reasons are following:

1) we assumed that equalities (3.2) and (3.1) hold, but numerically the RHS of these equalities
is equal to O(10−14), instead of 0,

2) in our bounds we neglect everything i.e., O(δ 2), where δ = ‖∆p‖.

Furthermore, in next section we apply the approach from Section 3.1.1 to bound gap func-
tions that occur in already existing perturbation bounds from [101] and [102].
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3.2 Estimation of existing bounds
In this section we show some applications of derived approximations. As we already men-

tioned, very often in perturbation analysis one can obtain perturbation bounds that depend on
gap functions.

Thus, with derived bounds for gap functions one can improve computation efficiency of
existing perturbation bounds by following our approach.

Typically, calculation of the perturbation bounds can be inefficient since the gap functions
contain both eigenvalues of the unperturbed and perturbed problem. Therefore, we propose an
approach for the calculation of the bounds for the gap functions using the unperturbed eigenval-
ues and the first order eigenvalue approximations of perturbed eigenvalues. This can significantly
improve the calculation efficiency of perturbation bounds.

For the illustration of our approach we have chosen the bounds from [101] and [102], which
have a more theoretical aspect (both unperturbed and perturbed eigenvalues exist in them).

In this section we present the perturbation bounds from [102, Theorem 2.1] and [101, The-
orem 7]. The perturbation bound from [102] measures the difference between norms of two
M-scalar products of unperturbed and perturbed eigenvectors (usually non M-orthogonal) of
the PQEP (1.1). This bound is related to sinΘ type theorems for the eigensubspaces for the
considered quadratic eigenvalue problem, for more on this relation see [102].

The bound from [101] corresponds to the sinΘ type theorems for the eigensubspaces for the
considered quadratic hyperbolic eigenvalue problem.

3.2.1 Efficient estimation of the bounds for Hermitian QEP

Let x1,x2, . . . ,xn be n linearly independent right eigenvectors with the corresponding n

eigenvalues λ1(p0),λ2(p0), . . . ,λn(p0) of PQEP (1.1). In what follows we use the similar no-
tation as in [102] Thus, let x1, . . . ,xk, be eigenvectors, which correspond to the eigenvalues
λ1(p0), . . . ,λk(p0), i.e.,

X = [X1,X2], with X1 = [x1, . . . ,xk], X2 = [xk+1, . . . ,xn],

Λ(p0) = diag(Λ1(p0),Λ2(p0)), with

Λ1(p0) = diag(λ1(p0), . . . ,λk(p0)),

Λ2(p0) = diag(λk+1(p0), . . . ,λn(p0)).

Corresponding perturbed eigenvectors are columns of X̂ = [X̂1, X̂2], and corresponding perturbed
eigenvalues are diagonal entries of Λ(p) = diag(Λ1(p),Λ2(p)).

Under assumptions that λ
2
i (p0)−λ 2

j (p) 6= 0, λ j(p0) 6= 0 and λ j(p) 6= 0, for all j = 1, . . . ,k,
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i = k+1, . . . ,n, the following inequality holds:

∣∣∣‖X∗2 M(p0)X̂1‖2
F −‖X∗2 M(p0)X1‖2

F

∣∣∣≤ ∣∣∣∣∣‖X∗2 C(p0)X̂1‖2
F

ĝ2
0

−
‖X∗2 C(p0)X1‖2

F

ĝ2
M

∣∣∣∣∣
+

k

∑
j=1

n

∑
i=k+1

(
2
|(X∗2 C(p0)X̂1)i j|

ĝ0

(
|(X∗2 ∆MX̂1)i j|

ĝ1
+
|(X∗2 ∆CX̂1)i j|

ĝ2
+
|(X∗2 ∆KX̂1)i j|

ĝ3

)
(3.35)

+

(
|(X∗2 ∆MX̂1)i j|

ĝ1
+
|(X∗2 ∆CX̂1)i j|

ĝ2
+
|(X∗2 δKX̂1)i j|

ĝ3

)2


where ∆M = M(p)−M(p0), ∆C =C(p)−C(p0), ∆K = K(p)−K(p0) and

ĝ0 = min
j=1,...,k

i=k+1,...,n

|λ i(p0)+λ j(p)| , (3.36)

ĝM = max
j=1,...,k

i=k+1,...,n

|λ i(p0)+λ j(p0)| , (3.37)

ĝ1 = min
j=1,...,k

i=k+1,...,n

|λ 2
i (p0)−λ 2

j (p)|
|λ 2

j (p)|
, (3.38)

ĝ2 = min
j=1,...,k

i=k+1,...,n

|λ 2
i (p0)−λ 2

j (p)|
|λ j(p)|

, (3.39)

ĝ3 = min
j=1,...,k

i=k+1,...,n

|λ 2
i (p

0)−λ
2
j (p)| , (3.40)

As one can notice, the gap functions (3.36), (3.38), (3.39), (3.40), contain unperturbed and
perturbed eigenvalues, which makes them hard to compute. Since we want to avoid perturbed
eigenvalues in bound (3.35) we can bound gap functions (3.36), (3.38), (3.39), (3.40) only by
using unperturbed eigenvalues λ (p0) and approximations of perturbed eigenvalues λ̃ (p).

These bounds for (3.38), (3.39), (3.40) are obtained directly from Corollary 3.3, and follow-
ing hold:

ĝ1 ' min
j=1,...,k

i=k+1,...,n

|λ 2
i (p0)− λ̃ 2

j (p)|−M(2)
j

|λ̃ 2
j (p)|+M(2)

j

=: Bndĝ1
, (3.41)

ĝ2 ' min
j=1,...,k

i=k+1,...,n

|λ 2
i (p0)− λ̃ 2

j (p)|−M(2)
j

|λ̃ j(p)|+M(1)
j

=: Bndĝ2
, (3.42)

ĝ3 ' min
j=1,...,k

i=k+1,...,n

(|λ 2
i (p

0)− λ̃
2
j (p)|−M(2)

j ) =: Bndĝ3
. (3.43)

Furthermore, following corollary gives the bound for (3.36).
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Corollary 3.6 Let the assumptions from Theorem 3.1 hold and let the perturbation δ be small
enough such that |λ i(p0)+ λ̃ j(p)| −M(1)

j ≥ 0, for all j = 1, . . . ,k, i = k + 1, . . . ,n. Then the
following bound holds

ĝ0 ' min
j=1,...,k

i=k+1,...,n

|λ i(p0)+ λ̃ j(p)|−M(1)
j =: Bndĝ0

, (3.44)

where M(1)
i = 1

2Mi‖(p−p0)‖2.

Proof. By applying the triangle inequality

|λ i(p0)+ λ̃ j(p)| / |λ i(p0)+λ j(p)|+M(1)
j (3.45)

we obtain

|λ i(p0)+λ j(p)| ' |λ i(p0)+ λ̃ j(p)|−M(1)
j . (3.46)

Now, by taking the minimum of both sides we obtain inequality (3.44).

Now, by applying bounds (3.44), (3.41),(3.42),(3.43) we obtain the following bound

∣∣∣‖X∗2 M(p0)X̂1‖2
F −‖X∗2 M(p0)X1‖2

F

∣∣∣≤ ∣∣∣∣∣‖X∗2 C(p0)X̂1‖2
F

Bndĝ
2
0

−
‖X∗2 C(p0)X1‖2

F

ĝ2
M

∣∣∣∣∣
+

k

∑
j=1

n

∑
i=k+1

(
2
|(X∗2 C(p0)X̂1)i j|

Bndĝ0

(
|(X∗2 ∆MX̂1)i j|

Bndĝ1

+
|(X∗2 ∆CX̂1)i j|

Bndĝ2

+
|(X∗2 ∆KX̂1)i j|

Bndĝ3

)
(3.47)

+

(
|(X∗2 ∆MX̂1)i j|

Bndĝ1

+
|(X∗2 ∆CX̂1)i j|

Bndĝ2

+
|(X∗2 ∆KX̂1)i j|

Bndĝ3

)2
 := BndRHS.

Remark 3.2. Since the calculation of M j is not easy, as we already mentioned, we will denote
with B̃ndĝi

, for i = 0,1,2,3, lower bounds from (3.44), (3.41), (3.42), (3.43) in which we use

M̃ j from (2.48) instead of M j. Also, the corresponding BndRHS will be denoted as B̃ndRHS.

3.2.2 Numerical experiment

In the following example we illustrate the bound given by (3.47), which contains the bounds
for gap functions ĝi, i = 0,1,2,3, given by (3.44), (3.41), (3.42), (3.43), respectively.

Example 3.2 We again consider the mechanical system as in Example 2.4 and Example 3.1,
shown in Figure 2.10. Also again, we consider the case where p = ( v

4 +δ ,v+δ ,δ ) and p0 =

( v
4 ,v,0).

As we already mentioned, in this case we examine bounds given by (3.44), (3.41), (3.42), (3.43).
Figure 3.3 shows magnitude of relative error in the bound of the RHS given in (3.47), if we
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Figure 3.3: Relative error given by (3.48) for perturbation δ = 0.0001 and viscosities
v = 10,15,20, . . . ,100

replace Mk with M̃k in (3.44), (3.41), (3.42), (3.43), i.e.,

|BndRHS− B̃ndRHS|
|BndRHS|

. (3.48)

From Figure 3.3 one can see that we can replace BndRHS with B̃ndRHS in (3.35).
Figure 3.4 shows the LHS and RHS of inequality (3.35) denoted as red circles and blue ×s,

respectively, for viscosity v = 5 · i, i = 2,3, . . . ,20. Furthermore, black triangle represents an
approximation of BndRHS as we mentioned in Remark 3.2. As one can see, our approximation of
the bound behaves the same way as the bound (RHS) from article [102] and it does not contain
both perturbed and unperturbed eigenvalues.

3.2.3 Efficient estimation of the bounds for hyperbolic QEP

For the problem in this subsection, we need additional assumptions. Namely, we assume
that for vector of parameters p, the PQEP given by (1.1) is determined with Hermitian positive
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Figure 3.4: LHS and RHS of (3.35) with corresponding bound B̃ndRHS for perturbation
δ = 0.01 and viscosities v = 10,20, . . . ,100

definite matrices M(p), C(p), and K(p) such that

(x̂∗C(p)x̂)2−4(x̂∗M(p)x̂)(x̂∗K(p)x̂)> 0, (3.49)

holds for all eigenvectors x of PQEP. Now, [101, Theorem 7] gives the sinΘ type upper bound
for the eigensubspaces for the considered PQEP as follows. Let matrices M(p), C(p), and K(p)
determine the perturbed PQEP.

Let M(p0) = LML∗M and K(p0) = LKL∗K be Cholesky (or any other) decompositions. In [101]
the authors consider the pair (A,J), where

A =

[
L−1

K C(p0)L−∗K L−1
K LM

L∗ML−∗K 0

]
, J =

[
−I 0
0 I

]
. (3.50)
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Where the pair (Â, Ĵ) that corresponds to perturbed PQEP is given by

Â =

[
L−1

K C(p)L−∗K L−1
K LM +L−1

K (M(p)−M(p0))L−∗M

L∗ML−∗K +L−1
M (M(p)−M(p0))L−∗K 0

]
, (3.51)

Ĵ =

[
−I +L−1

K (K(p)−K(p0))L−∗K 0
0 I +L−1

M (M(p)−M(p0))L−∗M

]
.

Let X and X̂ be nonsingular matrices which simultaneously diagonalize the pairs (A,J) and
(Â, Ĵ), respectively. Then the following bound holds [101, Theorem 7] for j = 1, . . . ,2n:

|sinΘ(X(:, j), X̂(:, j))| ≤ κ2(X)κ2(X̂)

(
δaF +δcF

g2, j
+

δbF

g1, j

)
, (3.52)

where

g1, j = min
i 6= j

|λ j(p0)−λi(p)|
|λ j(p0)|

, g2, j = min
i6= j

|λ j(p0)−λi(p)|
|λi(p)|

, (3.53)

and

δaF =

√
‖L∗KM(p0)−1(M(p)−M(p0))L−∗M ‖2

F +‖L−1
M (M(p)−M(p0))L−∗M ‖2

F ,

δbF =

√
‖L−1

M (M(p)−M(p0))L−∗M ‖2
F +‖L−1

K (K(p)−K(p0))L−∗K ‖2
F ,

δcF =

√
‖L−1

M (C(p)−C(p0))L−∗K +L−1
M C(p0)M(p0)−1(M(p)−M(p0))L−∗M ‖2

F .

In order to have an upper bound for |sinΘ(X(:, j), X̂(:, j))| that can be efficiently calculated
we will additionally estimate gaps given by (3.53).

Corollary 3.7 Let M(p0),C(p0),K(p0) ∈ Cn×n be matrices given as in (3.49). Let M(p),C(p)
and K(p) be corresponding perturbed matrices where (3.49) holds for all p such that ‖p−p0‖�
εp and |λ j(p0)− λ̃i(p)|−M(1)

i ≥ 0 for i, j = 1, . . . ,2n, i 6= j, and X and X̂ nonsingular matrices
which simultaneously diagonalize the pairs (A,J) and (Â, Ĵ), respectively. Then the following
bounds hold

g1, j ' min
i 6= j

|λ j(p0)− λ̃i(p)|−M(1)
i

λ j(p0)
=: Bndĝ1, j

, (3.54)

g2, j ' min
i 6= j

|λ j(p0)− λ̃i(p)|−M(1)
i

|λ̃i(p)|+M(1)
i

=: Bndĝ2, j
, (3.55)

where M(1)
i = 1

2Mi‖(p−p0)‖2.

Proof. By applying the triangle inequality on (2.42) and the fact that ‖H(λi(p0 + t(p−p0))‖ ≤

72



Chapter 3. Perturbation bounds of PQEP

Mi we get:

|λi(p)| / |λ̃i(p)|+M(1)
i . (3.56)

Furthermore, by adding and subtracting λ j(p0) from the left hand side of (2.45) and applying
the triangle inequality we obtain

|λ j(p0)−λi(p)| ' |λ j(p0)− λ̃i(p)|−M(1)
i . (3.57)

By applying the above inequalities we get the following:

|λ j(p0)−λi(p)|
|λi(p)|

'
|λ j(p0)− λ̃i(p)|−M(1)

i

|λ̃i(p)|+M(1)
i

, (3.58)

|λ j(p0)−λi(p)|
|λ j(p0)|

'
|λ j(p0)− λ̃i(p)|−M(1)

i
|λ j(p0)|

. (3.59)

Now, by taking the minimum of both sides we obtain inequalities (3.54) - (3.55).

Now, we can apply our bounds (3.54) and (3.55) from Corollary 3.7 and obtain the upper
bound for |sinΘ(X(:, j), X̂(:, j))|, j = 1, . . . ,2n,

|sinΘ(X(:, j), X̂(:, j))| ≤ κ2(X)κ2(X̂)

(
δaF +δcF

Bndĝ2, j

+
δbF

Bndĝ1, j

)
, (3.60)

3.2.4 Numerical experiments

In this example we illustrate the bounds for g1,i and g2,i given in (3.53). We also illustrate
how accurate our bound is if we use approximation of Mi, instead of Mi.

Example 3.3 In this example we consider a hyperbolic mechanical system. The dimension of
the system is n = 100, where the mass and stiffness matrices and internal damping are defined
in the same way as in the Example 3.2. Furthermore, the external damping matrix is defined as
Cext(p0) = diag(v0

1I1,v0
2I2,v0

4I3), where Is are identity matrices with dimensions 40,50, and 10,
respectively. This means that we have put a grounded damper on each mass, but each block of
dampers corresponds to viscosities v1, v2 and v3, respectively.

In this example, parameters p and p0 are as follows p = (v, v
2 + δ ,δ ,4v + δ ) and p0 =

(v, v
2 ,0,4v).
Let RHSg denote the right-hand side of inequality (3.52), and

RHSBndĝ = κ2(X)κ2(X̂)

(
δaF +δcF

Bndĝ2, j
+

δbF

Bndĝ1, j

)
.
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Since, Corollary 3.7 holds,
RHSg ≤ RHSBndĝ .

We will illustrate how accurate RHSBndĝ bounds RHSg for both when we use Mi and its approx-
imation M̃i. Relative error is as defined:

Relerr =
|RHSg−RHSBndĝ|

RHSg
. (3.61)
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Figure 3.5: Relative error defined by (3.61)

Figure 3.5 shows relative error defined in (3.61) and corresponding relative error when we
use approximation of Mi (2.48) instead of Mi, where v = 1000 and δ = 0.00025.

From Figure 3.5 we can conclude that we can use error bounds (2.45) calculated with (2.48)
instead of the real error bounds, since in calculation of relative errors (3.61) it didn’t make many

74



Chapter 3. Perturbation bounds of PQEP

difference.

3.3 Conclusion
In this chapter we have presented a new perturbation bound between individual unperturbed

and perturbed eigenvector of quadratic eigenvalue problems. Usually, these kind of perturbation
bounds depend on unperturbed and perturbed eigenvalues and eigenvectors, which reduces their
possible applications. Therefore, in order to estimate certain gap functions, we have used the
first order approximations for eigenvalues and eigenvectors based on Taylor’s formula, and their
corresponding bounds from Section 2.2.

Using these approximations we have derived upper bounds for different gap functions that
occur in various perturbation bounds, such as the bounds from [101] and [102]. This approach
significantly improves calculation efficiency and possible application of corresponding perturba-
tion bounds. The quality of the obtained bounds have been illustrated with numerical examples.
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C H A P T E R 4

Damping optimization in mechanical
systems

As previously mentioned we consider the mechanical system described by mass, stiffness
and damping matrices as in (1.2). In this chapter we are mainly devoted to damping optimization,
therefore, our parameter contains only dampers’ viscosity, i.e., p = v and M(p) = M,C(p) =
C(v) =Cext(v)+Cint, K(p) = K. This means that PQEP (1.1) has the following form:

(λ (v)2M+λ (v)C(v)+K)x(v) = 0, x(v) 6= 0, (4.1)

In this chapter we focus on two damping optimization criteria: the minimization of total
average energy of the system and the frequency isolation which are introduced in Section 1.2.
Also we show difference between eigenvalue based criteria (the minimization of spectral abscissa
and the frequency isolation) and minimization of total average energy. Main difference between
the minimization of the spectral abscissa and the frequency isolation is the face that we push all
eigenvalues further left in complex half plane, while the frequency isolation removes eigenvalues
from the specific areas that are dangerous. First one is more appropriate for the stationary case
given by (1.2), i.e. the case where there is no external excitation, while the second one is more
suitable for the non-stationary case

Mq̈(v; t)+C(v)q̇(v; t)+Kq(v; t) = f (t),

q(v;0) = q0(v) and q̇(v;0) = q̇0(v),
(4.2)

since the external force f (t) can be approximated with a Fourier series and we assume that it is
given as the finite sum of sine and cosine functions, i.e.,

f (t) =
N

∑
j=1

f j
a cos

(
ω jt
)
+ f j

b sin
(
ω jt
)
, (4.3)

where ω j are the frequencies of the external force, i.e. the dangerous frequencies. For the details
on Fourier series one can see [83].

Furthermore, in the following example we show the difference between the minimization of
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the total average energy and the minimization of the spectral abscissa and later in Section 4.3
we compare the minimization of total average energy and the frequency isolation criteria given
in Section 4.2. It is important to emphasize that the results from these examples are illustrative
and do not represent results in general for all mechanical systems.

Example 4.1 Consider the mechanical system shown in Figure 4.1 and it differs from mechanical
system shown in Figure 2.10 in Example 2.4 only in the structure of the damping. There is a
grounded damper on each mass.

m1 m2 m3 m4 mn
2k k k k

k

k

k

k 2k

v3v2v1 v4 vn

Figure 4.1: n-mass oscillator

This time the dimension of the system is n = 20. In this example the mass matrix and the
stiffness matrix do not depend on the vector of parameters and they are given by

M = diag(m1, . . . ,mn), where

mi =

{
200−20(i−1) , i = 1, . . . ,10
201+20(i−11) , i = 11, . . . ,20

,
(4.4)

and

K =



4k −k −k

−k 4k −k −k

−k −k 4k −k −k
. . . . . . . . . . . . . . .

−k −k 4k −k −k

−k −k 4k −k

−k −k 4k


, where k = 1. (4.5)

The damping matrix is given by C(v) = Cint +Cext(v) where internal damping is given by
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Cint = αcCcrit, with αc = 0.002 and Ccrit is given by (1.21). The external damping is given by

Cext(v) = diag(v1, . . . ,vn). (4.6)

We minimized spectral abscissa and total average energy for this system, and obtained the opti-
mal viscosities vsa and vtae for each criteria respectively. The obtained value for the minimized
spectral abscissa is

αMCK(vsa) = max
λ (vsa)∈Λ(vsa)

Re(λ (vsa)) =−0.0244,

while the spectral abscissa for the system with no external damping and for the viscosity vtae are
respectively

αMCK(0) =−0.002, αMCK(vtae) =−0.0239.

The obtained value for minimized total average energy is

tr(ZXΦ(vtae)) = 356.4998,

where XΦ(vtae) is the solution of corresponding Lyapunov equation (1.33).

Z =


I10 0 0 0
0 010 0 0
0 0 I10 0
0 0 0 010

 , (4.7)

where I10 and 010 are respectively 10-dimensional identity and zero matrix. Initial condition in
considered system are

q(v;0) = e1 and q̇(v;0) = 0,

where e1 is first canonical vector of dimension n.
The Figures 4.2 and 4.3 show respectively the behaviour of the displacement and the velocity

of masses m2 and m17 over time for the stationary system. From these figures it is hard to con-
clude whether it is better to choose the minimization of the spectral abscissa or the minimization
of the total average energy as a criterion. In both figures the mass reaches the equilibrium point
faster with the viscosities obtained by minimization of the spectral abscissa, but we can also see
from Figure 4.3 that for the spectral abscissa criterion (blue line) mass m17 has larger oscillation
at the beginning than for the total average energy criterion (red, dashed line), so the choice of
the criterion will depend on the application. We also illustrate the total energy of the system
over time which is given in (1.25).

The Figure 4.4 shows the energy of the stationary system (1.2) over time for two different
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Figure 4.2: The behaviour of the displacement and velocity of the mass m2 over time for two
different sets of viscosities in stationary case

sets of viscosities. The blue line show the total energy for the case when the set of viscosities
correspond to the optimal viscosities for the minimization of the spectral abscissa, i.e., vsa, while
the red dashed line show the total energy for the case when the set of viscosities correspond to
the optimal viscosities for the minimization of the total average energy, i.e., vtae. One can see
that the spectral abscissa criterion resulted in faster decay of the total energy of the system.

On the other hand, Figure 4.5 shows the same, but for the non-stationary case (4.2), where
the external force is given by

f (t) =
5

∑
j=2

f j
a cos

(
ω jt
)
+ f j

b sin
(
ω jt
)
, (4.8)

where f j
a = f j

b = [5,5, . . . ,5]T are n-dimensional vectors, and ω j are eigenfrequencies that cor-
respond to the undamped system given by (1.5), more precisely

ω2 = 0.0490, ω3 = 0.0651, ω4 = 0.0885, ω5 = 0.1071.
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Figure 4.3: The behaviour of the displacement and velocity of the mass m17 over time for two
different sets of viscosities in stationary case

As one can see in the non-stationary case the minimization of the total average energy criterion
produces less energy. The main reason is that the minimization of the spectral abscissa criterion
doesn’t take into account the dangerous frequencies, while the left side of the Lyapunov equation
that corresponds to the minimization of the total average energy criterion takes into account the
dangerous frequencies.

Since there are cases when the minimization of the total average energy is more appropriate
than the spectral abscissa criterion, in Section 4.1, we precisely define our damping optimization
approach while using minimization of total average energy as an optimization criterion. Section
4.1.1 provides an approximation of the solution of the structured Lyapunov equation, while
Subsection 4.1.2 gives the approximation of the trace of the solution of the Lyapunov equation
when mass and damping matrices have the same eigenvector structure, i.e., we assume that
νi, i = 1, . . . ,n, are eigenvectors of both M and C(v). In Subsubsections 4.1.2.1 we provide the
approximation of the trace of the solution of the Lyapunov equation, where the damping matrix
is structured, while in Subsubsection 4.1.2.2 we have a general damping matrix. The efficiency
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Figure 4.4: The energy for the stationary system (1.2)

and performance of the proposed approach are illustrated in Subsection 4.1.3.
Furthermore in Section 4.2 we present an eigenvalue based approaches which take into

account the dangerous frequencies. These approaches are a frequency isolation in damping
optimization. First one is based on maximization of the major axis of the ellipses while there
are no eigenvalues in their interior, while the second one minimizes the spectral abscissa while
taking into account that there are no eigenvalues in the previously determined fixed ellipses.
Furthermore, in Subsection 4.2.2 we apply our efficient algorithm for eigenvalue computation
from Section 2.3 given by Algorithm 5. The efficiency of this approach is given in Subsection
4.2.3. In Section 4.3 we use both frequency isolation approaches from Section 4.2 in Example
4.1 to illustrate how the system behaves when we push its eigenvalues further away from the
dangerous frequencies.

4.1 Total average energy damping optimization
The purpose of this section is to present new results of approximation algorithms for estimat-

ing optimal damping, by using minimization of total average energy as a criterion. As we show
in some cases determination of optimal damping can be given by an explicit formula, while in
more general cases we present a numerical approach to determination of optimal damping which
can be efficiently implemented.
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Figure 4.5: The energy over time for the non-stationary system (4.2)

Our approach is based on the fact that for a modally damped mechanical system all three
matrices M, C(v) and K can be simultaneously diagonalized. Thus, the main assumption here
is that matrices M, C(v) and K are simultaneously diagonalizable or that they are close to the
case when all three matrices can be simultaneously diagonalized. Although this approach has
been widely used by different scientific communities, especially in engineering, in this section
we propose a slightly different perspective, which allows us to determine optimal damping very
efficiently for a certain structure of mechanical systems, as we demonstrate later.

Moreover, since only the damping matrix C(v) depends on parameters, usual approaches to
viscosity optimization assume preprocessing based on diagonalization of the mass and stiffness
matrices, M and K, as in (1.4). On the other hand, in this section we propose a new approach,
which is based on diagonalization of the damping matrix C(v), and then calculation of optimal
viscosities. As we show in this section, this approach can be very efficient for structured systems
which allow us to determine optimal viscosities, explicitly or numerically considerably faster.

First, in the next subsection we present a new algorithm which approximates the solution (as
well as its trace) of the corresponding Lyapunov equation, and after that in Subsection 4.1.2 we
present a new algorithm for finding optimal total average energy damping.
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4.1.1 Approximation of the solution of the structured Lyapunov equa-
tion

It is well known that linearization from (2.64) is not unique. Thus for our purpose we rewrite
(1.2) as

M
1
2 M

1
2 q̈(v; t)+C(v)q̇(v; t)+K

1
2 K

1
2 q(v; t) = 0, (4.9)

since both M and K are positive definite, and t represents the time variable. Thus, since M
1
2 is

positive definite, we obtain

Inq̈(v; t)+M−
1
2C(v)M−

1
2 q̇(v; t)+M−

1
2 K

1
2 K

1
2 M−

1
2 q(v; t) = 0. (4.10)

Now, simply by substituting y1(v; t) = K
1
2 M−

1
2 q(v; t) and y2(v; t) = q̇(v; t) we obtain the follow-

ing:

ẏ1(v; t) = K
1
2 M−

1
2 q̇(v; t)

= K
1
2 M−

1
2 y2(v; t),

ẏ2(v; t) = q̈(v; t)

=−M−
1
2C(v)M−

1
2 q̇(v; t)−M−

1
2 K

1
2 K

1
2 M−

1
2 q(v; t),

=−M−
1
2C(v)M−

1
2 y2(v; t)−M−

1
2 K

1
2 y1(v; t).

(4.11)

From (4.11) obtain the following linearization:

ẏ(v; t) = A∗(v)y(v; t), (4.12)

where

y(v; t) =

[
y1(v; t)
y2(v; t)

]
, A∗(v) =

 0 K
1
2 M−

1
2

−M−
1
2 K

1
2 −M−

1
2C(v)M−

1
2

 . (4.13)

Since we are interested in minimization of total average energy as a criterion, as we have shown
in Section 1.2, it follows that we are interested in minimization of the trace

tr(ZY(v)),

where Y(v) is a solution of the Lyapunov equation

A∗T (v)Y(v)+Y(v)A∗(v) =−I, (4.14)

and Z is defined in (1.35).
Next we present a new approach to approximation of the solution of Lyapunov equation
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(4.14), which is different from the standard ones, that are based on modal approximation of me-
chanical systems. Our approach combines two aspects, one is a modal approximation approach
and the other is an approach based on the improved error estimates, see e.g. [12], [13] and [8].

For that purpose let

M−
1
2C(v)M−

1
2 =U0(v)∆(v)UT

0 (v), ∆(v) = diag(δ1(v), . . . ,δn(v)), (4.15)

be the eigenvalue decomposition of the “damping matrix” M−
1
2C(v)M−

1
2 .

Let

T(v) =

[
I 0
0 U0(v)

]
(4.16)

be the orthogonal matrix, where U0(v) is defined in (4.15). If one multiplies Lyapunov equation
(4.14) from the left and from right by TT (v) and T(v), respectively, then one gets

AT (v)X(v)+X(v)A(v) =−I, (4.17)

where

A(v) = TT (v)A∗(v)T(v) =

[
0 NT (v)

−N(v) −∆(v)

]
, (4.18)

where N(v) =UT
0 (v)M−

1
2 K

1
2 and

X(v) =

[
X11(v) X12(v)
XT

12(v) X22(v)

]
. (4.19)

For the sake of easier notation in this section, from now on we omit writing of the parameter v,
if not necessary.

Now equation (4.17) can be written as[
0 −NT

N −∆

] [
X11 X12

XT
12 X22

]
+

[
X11 X12

XT
12 X22

][
0 NT

−N −∆

]
=−

[
I 0
0 I

]
, (4.20)

where

Y = T

[
X11 X12

XT
12 X22

]
TT . (4.21)

It obviously holds that tr(ZY) = tr(ZUX), where

ZU = TT ZT. (4.22)

Now, from (4.20) one gets

NT XT
12 +X12N = I, (4.23)
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−NT X22 +X11NT −X12∆ = 0, (4.24)

NX11−X22N−∆XT
12 = 0, (4.25)

NX12 +XT
12NT −∆X22−X22∆ =−I. (4.26)

Since X12N ∈ Rn, we can write it as

X12N =
X12N +NT XT

12
2

+S, (4.27)

where X12N+NT XT
12

2 is symmetric part of the matrix X12N and S =
X12N−NT XT

12
2 is skew-symmetric

part of the matrix X12N, i.e., ST =−S.
Now, from (4.23) and (4.27) it follows

NT XT
12 +X12N = I ⇐⇒ 2X12N = I +2S (4.28)

Therefore, from (4.28) it follows

X12 =
1
2

N−1 +SN−1, where S =−ST . (4.29)

Thus, if one knows the skew-symmetric matrix S from (4.29), then the solution X is known.
A new approach: as described at the beginning of the section, our approach is based on

some interesting properties of a modally damped system. As is well known (see e.g. [112,
Theorem 2.3]), the modally damped system satisfies the so-called commuting condition

CK−1M = MK−1C.

It can also be shown, provided that inverses exist, that the above equality is equivalent to

KC−1M = MC−1K and also to CM−1K = KM−1C. (4.30)

From (4.30) and (1.18) one can see that the mechanical system can be modally damped, i.e.,
that all three matrices M, C and K can be simultaneously diagonalized, even if some of them are
singular.

Next we show that this assumption is equivalent to the assumption on commuting NNT and
∆−1, i.e., we state the following lemma.

Lemma 4.1 Let N =UT
0 M−

1
2 K

1
2 and ∆ =UT

0 M−
1
2CM−

1
2U0. Then

NNT
∆
−1 = ∆

−1NNT (4.31)

if and only if the mechanical system from (1.2) is modally damped, i.e., the left equality from
(4.30) holds.
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Proof. Since N =UT
0 M−

1
2 K

1
2 and ∆ =UT

0 M−
1
2CM−

1
2U0, it follows that

NNT =UT
0 M−

1
2 KM−

1
2U0 and ∆

−1 =UT
0 M

1
2C−1M

1
2U0.

Now, simple multiplication gives

NNT
∆
−1 =UT

0 M−
1
2 KC−1M

1
2U0,

∆
−1NNT =UT

0 M
1
2C−1KM−

1
2U0,

which together gives the following equivalence

NNT
∆
−1 = ∆

−1NNT ⇐⇒ M−
1
2 KC−1M

1
2 = M

1
2C−1KM−

1
2

⇐⇒ M
1
2 · \ M−

1
2 KC−1M

1
2 = M

1
2C−1KM−

1
2 / ·M

1
2

⇐⇒ KC−1M = MC−1K.

The assumption from Lemma 4.1 is equivalent to the assumption on commuting X12 and N,
i.e., if and only if

X12N = NX12, (4.32)

then (4.30) holds, and the mechanical system is modally damped.
If X12 and N commute, i.e., if (4.32) holds, then also XT

12NT = NT XT
12 and NX12+XT

12NT = I.
Therefore, if we subtract (4.26) from (4.23) we obtain

∆X22 +X22∆ = 2I. (4.33)

Now from (4.25) we obtain

X11 = N−1X22N +N−1
∆XT

12. (4.34)

Furthermore, the assumption that (4.32) holds if and only if S from (4.29) is a zero matrix, i.e.,
if S = 0 then (4.32) trivially holds. On the other hand if (4.32) holds, then(

1
2

N−1 +SN−1
)

N = N
(

1
2

N−1 +SN−1
)
, (4.35)

1
2

I +S =
1
2

I +NSN−1, (4.36)

S = NSN−1, (4.37)

which means that S is similar to itself for every matrix N, but since N is not fixed (it depends
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on the choice of matrices M,C(v),K ) the only two matrices for which (4.37) is satisfied are the
identity and zero matrix. S is skew-symmetric, thus S = 0.

As it is shown in [23], when the system is a modally damped Lyapunov equation (4.17) has
a unique solution and the explicit formula for the solution can be obtained.

Lemma 4.2 The mechanical system is modally damped if and only if the solution of Lyapunov
equation (4.17) is

X =

[
N−1∆−1N + 1

2N−1∆N−T 1
2N−1

1
2N−T ∆−1

]
. (4.38)

Proof. Uniqueness of the solution of the Lyapunov equation follows directly from the fact that
A given by (4.18) is a Hurwitz matrix and the right hand side of the Lyapunov equation is a
negative definite matrix, see [27]. Now remains to check whether X given by (4.38) is really the
solution of Lyapunov equation (4.17).[

0 −NT

N −∆

]
X+X

[
0 NT

−N −∆

]
=

[
−1

2 I− 1
2 I −NT ∆−1 +N−1∆−1NNT

∆−1N−∆−1N −1
2 I− 1

2 I

]

=

[
−I 0
0 −I

]
,

since ∆−1 and NNT commute, N−1∆−1NNT = N−1NNT ∆−1 = NT ∆−1.

The main idea: Now we do not assume that (4.32) holds, i.e., our mechanical system is no
longer modally damped.

But if it is still “good in some sense”, or “close” to a modally damped system, we can use
the above conclusions to approximate the solution X of Lyapunov equation (4.17).

For that purpose, we approximate X12 from (4.29) with

X̃12 =
1
2

N−1. (4.39)

Further, from (4.33) it follows that

X̃22 = ∆
−1. (4.40)

Once we have derived X̃22, it is easy to derive the last unknown approximation X̃11. Indeed, from
(4.34) it follows

X̃11 = N−1X̃22N +
1
2

N−1
∆N−T = N−1

∆
−1N +

1
2

N−1
∆N−T . (4.41)
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In the next theorem, we present the residual error

Rer = ‖AT X̃+ X̃A+ I‖ (4.42)

obtained by the approximation

X̃ =

[
X̃11 X̃12

X̃T
12 X̃22

]
, (4.43)

which is equivalent to inserting approximations X̃11, X̃22 and X̃12 into (4.24).
The following theoretical results are used for error estimation made by the above approxi-

mation of the solution of the Lyapunov equation. They are also used for the a priori estimation,
whether the considered mechanical system can be approximated with a modally damped one.

Theorem 4.3 Let X̃ be the approximation of solution (4.19) of Lyapunov equation (4.20) ob-
tained by (4.39), (4.40) and (4.41). Then the residual error Rer is given by

Rer = ‖NT
∆
−1−N−1

∆
−1NNT‖. (4.44)

Proof. The proof simply follows by inserting X̃ into (4.20). Indeed, from (4.43) and (4.20) one
gets [

0 −NT

N −∆

] [
X̃11 X̃12

X̃T
12 X̃22

]
+

[
X̃11 X̃12

X̃T
12 X̃22

][
0 NT

−N −∆

]
=−

[
I Err
0 I

]
, (4.45)

where

−Err =−NT X̃22 +N−1X̃22NNT +
1
2
(
−N−1

∆+N−1
∆
)
.

Now, since

Rer = ‖AT X̃+ X̃A+ I‖

= ‖

[
0 Err
0 0

]
‖

= ‖Err‖,

(4.44) holds, which completes the proof.

As a consequence of the above theorem and Lemma 4.2, we have that Rer = 0, which implies
that X̃ = X if and only if

NNT
∆
−1 = ∆

−1NNT ,
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i.e., the system is modally damped.

4.1.2 Total average energy optimization

Using the approximation from (4.43), here we present a new approach to damping optimiza-
tion. Thus, we assume that the considered mechanical system is close to the perturbed modally
damped system, i.e., further on we assume that the residual error Rer from (4.44) is small enough,
which means that KC−1M ≈MC−1K in some sense.

For that purpose, let

M =UMΛMUT
M, UM =

[
u1 . . . un

]
, ΛM =

[
µ1 . . . µn

]
,

be the eigenvalue decomposition of the mass matrix M.
We distinguish two different cases. In the first case, we assume that the damping matrix C

has the same eigenvector structure as the mass matrix M, i.e., we assume that

CI = ν1u1uT
1 +ν2u2uT

2 + . . .+νnunuT
n , (4.46)

where νi = vi +αc, i = 1, . . . ,n.
For the damping matrix close to CI , and in the case when the number of dampers is equal to

the dimension, i.e., when s = n, we are able to derive the explicit formula for optimal damping
viscosities vi, i = 1, . . . ,n. On the other hand, for the case when the number of dampers is less
than the dimension or some viscosities are the same, we present a formula that covers these
cases in a more general setting.

Thus, back to the first case, we assume that the damping matrix C is close to CI from (4.46),
i.e.,

C ≈ (v1 +αc)u1uT
1 +(v2 +αc)u2uT

2 + . . .+(vn +αc)unuT
n . (4.47)

Below we derive a simple formula for calculation of optimal viscosities v, for which the trace
of the approximation X̃ from (4.43) is minimal.

If we are interested in damping the s undamped frequencies, then using the matrix Z from
(1.35) we obtain that for the matrix ZU from (4.22) it can be written as

ZU
.
=

[
Z1 0
0 Z2

]
,

where

Z1 = diag(0t1, It2 ,0t3) , (4.48)

Z2 =UT
0 diag(0t1 , It2,0t3)U0. (4.49)
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Since our penalty function is a trace of the solution of the corresponding Lyapunov equation,
note that for the approximation of the trace it holds that

tr(ZUX)≈ tr(ZUX̃) = tr(Z1X̃11)+ tr(Z2X̃22)

= tr(Z1X̃22)+ tr(Z2X̃22)+
1
2

tr(N−1Z1∆N−T ),

i.e.,

tr(ZUX)≈ tr(ZUX̃) = tr(Z1∆
−1)+ tr(Z2∆

−1)+
1
2

tr(Z1∆N−T N−1). (4.50)

Approximation (4.50) is our starting point, which allows us to derive an approximation for
optimal v∗ ∈ Rn

+.
Note that from (4.47) and (4.15) it follows that

M−
1
2CM−

1
2 =U0∆UT

0 , where ∆ = diag(v+αc). (4.51)

Now from (4.50) and (4.51) one gets

tr(ZUX̃(v)) =
n

∑
i=1

(Z1)ii +(Z2)ii

vi +αc
+

1
2

n

∑
i=1

(vi +αc)(Z1)iiwi, (4.52)

where wi = ‖W (:, i)‖2, W = N−1 for i = 1, . . . ,n.
Using the fact that all quantities in (4.52) are nonnegative, simply by using partial derivatives

∂ tr(ZUX̃(v))
∂vi

=−(Z1)ii +(Z2)ii

(vi +αc)2 +
1
2
(Z1)iiwi, i = 1, . . . ,n, (4.53)

and for i = 1, . . . ,n from

∂ tr(ZUX̃(v))
∂vi

= 0 (4.54)

−(Z1)ii +(Z2)ii

(vi +αc)2 +
1
2
(Z1)iiwi = 0, (4.55)

(vi +αc)
2

(Z1)ii +(Z2)ii
=

2
(Z1)iiwi

(4.56)

one gets that

v∗i =

√
2(Z1)ii +2(Z2)ii

(Z1)iiwi
−αc, i = 1, . . . ,n.
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are minimum for the trace (sinceH(tr(ZUX̃(v)))> 0), i.e.,

v∗ = argmintr(ZUX̃(v)).

The setting given by (4.46) was just a motivation for a more general case that is considered
in the next subsubsection.

4.1.2.1 Damping optimization for the structured case

Throughout this subsubsection we assume that the eigenvalue decomposition of the matrix
M−

1
2CM−

1
2 is given by

M−
1
2CM−

1
2 =U0∆UT

0 , ∆ = v1C1⊕ v2C2⊕·· ·⊕ vsCs, (4.57)

where each matrix Ci, i = 1, . . . ,s is a diagonal matrix and it has a dimension di, i = 1, . . . ,s,

respectively, with
s

∑
i=1

di = n.

The above assumption means that the matrix ∆ is a direct sum of smaller matrices that
correspond to the same viscosities and it arises from the fact that very often the damping matrix
C can have blocks of dampers which have the same viscosities. Moreover, in the assumed setting,
damping blocks with different viscosities do not interlace with each other.

Note that the setting included in (4.46) is also covered by (4.57) since we can also use this
approach in the case when di = 1, i = 1, . . . ,n, considering that all viscosities are different.
On the other hand, we would like to emphasize that damping of the form (4.57) generalizes
damping studied in the previous part, (4.46). Moreover, it also includes more general cases in
which the damping matrix C is permutation similar to the block diagonal matrix where each
block corresponds to damping parts with its own viscosity parameter.

If we are interested in damping the first s most important eigenfrequencies, then the matrix
ZU from (4.22) can be written as

ZU =

[
Z1 0
0 Z2

]
,

where Z1 and Z2 are given by (4.48) - (4.49).
Also, for the approximation of the trace it holds

tr(ZUX)≈ tr(ZUX̃) = tr(Z1X̃22)+ tr(Z2X̃22)+
1
2

tr(N−1Z1∆N−T ),

i.e.,

tr(ZUX)≈ tr(ZUX̃) = tr(Z1∆
−1)+ tr(Z2∆

−1)+
1
2

tr(Z1∆N−T N−1). (4.58)
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Now using approximation (4.58) together with (4.57) we can derive approximate optimal
parameters v∗ ∈ Rs

+.
In particular, from (4.57) and (4.58) one gets

tr(ZUX̃(v)) =
s

∑
i=1

d1+···+di

∑
j=d1+···+di−1+1

(Z1) j j +(Z2) j j

vi(Ci)k jk j +αc

+
1
2

s

∑
i=1

d1+···+di

∑
j=d1+···+di−1+1

(Z1) j jw j(vi(Ci)k jk j +αc), (4.59)

where k j determines the index that depends on j and it holds that k j = j− (d1 + · · ·+ d j−1) .
Moreover, wi is the square of the 2-norm of the column of the matrix W = N−1, i.e.,
wi = ‖W (:, i)‖2.

In general, for this function we are not able to derive an explicit formula for optimal vis-
cosities. But since in this case, where the matrix which diagonalizes the matrix M−

1
2CM−

1
2

is the same for all viscosities, we can determine optimal viscosities efficiently by a numerical
optimization procedure which is described later in Remark 4.1.

Additionally, we are also able to derive an explicit formula for a global minimum if
s

∑
i=1

rank(Ci) = n and αc = 0. In that case, our objective function has the following form:

tr(ZUX̃(v)) =
s

∑
i=1

1
vi

d1+···+di

∑
j=d1+···+di−1+1

(Z1) j j +(Z2) j j

(Ci)k jk j

+
1
2

s

∑
i=1

vi

d1+···+di

∑
j=d1+···+di−1+1

(Z1) j jw j(Ci)k jk j . (4.60)

Using the fact that all quantities in (4.59) are nonnegative, one easily obtains partial deriva-
tives

∂ tr(ZUX̃(v))
∂vi

=−
∑

d1+···+di
j=d1+···+di−1+1

(Z1) j j+(Z2) j j
(Ci)k jk j

v2
i

+
1
2

d1+···+di

∑
j=d1+···+di−1

(Z1) j jw j(Ci)k jk j , (4.61)

for i = 1, . . . ,s. Now, from

∂ tr(ZUX̃(v))
∂vi

= 0, ∀ i = 1, . . . ,s, (4.62)

one gets that

v∗i =

√√√√√ 2∑
d1+···+di
j=d1+···+di−1+1

(Z1) j j+(Z2) j j
(Ci)k jk j

∑
d1+···+di
j=d1+···+di−1

(Z1) j jw j(Ci)k jk j

, i = 1, . . . ,s, (4.63)
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are optimal viscosities, i.e.,
v∗ = argmintr(ZUX̃(v)).

Remark 4.1. The objective function given by (4.59) for the parameter αc 6= 0 can be efficiently
optimized using a numerical optimization procedure. In particular, in this case we deal with the
minimization of s functions where the ith function fi is given by

fi(vi) =
d1+···+di

∑
j=d1+···+di−1+1

(Z1) j j +(Z2) j j

vi(Ci)k jk j +αc
+

1
2

d1+···+di

∑
j=d1+···+di−1+1

(Z1) j jw j(vi(Ci)k jk j +αc), (4.64)

for i = 1, . . . ,s. Here the function fi is a strictly convex function with global minima v∗i , for
i = 1, . . . ,s respectively, where minima v∗i , for i = 1, . . . ,s can be efficiently determined using
iterative solvers. By this approach we are able to determine optimal parameters v∗i , for i= 1, . . . ,s
that minimize tr(ZUX̃(v)).

4.1.2.2 Damping optimization for the more general structure

In this subsubsection, we consider a more general case, than the two cases already presented
in Subsection 4.1.2 , but still we assume that our system corresponds to the configuration where
(4.44) is small enough, or that approximation KC−1M ≈MC−1K holds in a certain sense.

Since M is a positive definite and C is a positive semidefinite matrix, there exists an orthogo-
nal matrix U such that

M−
1
2CM−

1
2 =U∆UT , ∆ = diag(δ1, . . . ,δn). (4.65)

Apart from previous cases where we are able to derive an explicit formula for global minima,
in this subsubsection we present a numerical approach to calculation of an approximation of
optimal viscosities. The main problem within this general case is that the matrix U , which
diagonalizes the matrix M−

1
2CM−

1
2 , depends on viscosities that determine the damping matrix

C, contrary to the cases that are already presented in Subsection 4.1.2 .
Thus, let us assume that s dampers with corresponding viscosities vi, i = 1, . . . ,s are given,

which determine our external damping matrix Cext(v), i.e., the damping matrix is given by
C(v) =Cint +Cext(v). Since in general the matrix U from (4.65) depends on viscosities, let U0

be a unitary matrix which diagonalizes C(v0) for initial viscosities v0.
Now, similar to the beginning of this subsection, we can calculate approximation of the trace

of the solution of the corresponding Lyapunov equation for the given viscosities (v0). As above,
we can show that

tr(ZUX̃(v0)) =
n

∑
i=1

(Z2)ii +(Z1)ii

δi
+

1
2

n

∑
i=1

δi(Z1)iiwi, (4.66)
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where Z1 and Z2 are given by (4.48-4.49) and

M−
1
2 (C(v0))M−

1
2 =U0∆UT

0 , ∆ = diag(δ1, . . . ,δn) , (4.67)

wi = ‖W0(:, i)‖2, W0 = N−1, i = 1, . . . ,n. (4.68)

Now, we do not have an explicit formula for optimal viscosities, thus we propose the following
numerical approach to viscosity optimization.

During the optimization process, the next iteration (for viscosities) (v1) can be calculated
using corresponding matrix U1, given as

M−
1
2 (C(v1))M−

1
2 =U1∆UT

1 , ∆ = diag(δ 1
1 , . . . ,δ

1
n ),

which ensures the corresponding trace approximation. It is important to notice here that very
often, during the optimization process, the same subspace U is also good for several iteration
steps (i.e., for several viscosity updates). Thus, during the optimization process, we first check
if the same subspace is good enough, meaning that the residual error

errU = ‖MU −diag(MU
11,M

U
22, . . . ,M

U
nn)‖< tolU, (4.69)

where MU =UT
0 M−

1
2 (Cint +C(v1))M−

1
2U0 and tolU is some given tolerance.

This means that in the optimization process, if errU defined in (4.69) for viscosities v1 is
smaller than the tolerance tolU, we use the unitary matrix U0 instead of computing U1 for
approximation of the trace tr(ZUX̃(v1)).

The algorithm for the optimization of viscosities is summarized in Algorithm 6. We would
like to emphasize that the main cost in trace approximation (4.66) belongs to the calculation of
the matrix U ; thus in Algorithm 6, by using the residual tolerance tolU we can avoid calcula-
tion of the matrix U for some viscosities vi (for some i’s), which significantly accelerates the
optimization process. Moreover, as one could expect, the matrix U does not need to be calcu-
lated (up to tolerance tolU) in each step of iterations (for various viscosities vi) if a mechanical
system has some special structure or if the changes in viscosities are small (which often appears
during the optimization process).

Remark 4.2. Note that by using Algorithm 6, we can also minimize objective functions given
by (4.59). In that case, the errU is zero (up to machine tolerance) and we are able to calculate
approximation of the objective function without calculating the matrix U in each step. On the
other hand, since in this case the objective function consists of s independent functions, it is
even more efficient to use an approach described in Remark 4.1.
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Algorithm 6: Computation of optimal viscosities
Require: System matrices; tolerance tolU for updating eigensubspace U ; starting viscosities

v0.
Ensure: Approximation of optimal viscosities.

1: Calculate approximation of the trace given in (4.66) and U0 given in (4.67). Set U =U0.
2: Find optimal viscosities by using an appropriate optimization procedure (e.g. the

Nelder-Mead algorithm). Evaluate the function value using trace approximation at the
given viscosities vi as in Steps 3 to 8:

3: Calculate the error for the subspace U from

errU = ‖MU −diag(MU
11,M

U
22, . . . ,M

U
nn)‖,

where MU =UT M−
1
2 (Cint +Cext(vi))M−

1
2U .

4: if errU < tolU, then
5: Compute the function value at viscosities (vi) using

tr(ZUX̃(vi)) =
n

∑
i=1

(Z2)ii +(Z1)ii

δi
+

1
2

n

∑
i=1

δi(Z1)iiwi,

where Z1 and Z2 are given by (4.48) - (4.49) and

∆ = diag(δ1, . . . ,δn), δi = (UT M−
1
2 (Cint +Cext(vi))M−

1
2U)ii , i = 1, . . . ,n.

6: else
7: Compute new U and ∆, such that

M−
1
2 (Cint +Cext(vi))M

1
2 =U∆UT , ∆ = diag(δ1, . . . ,δn).

Compute the function value at viscosities vi using formula

tr(ZUX̃(vi)) =
n

∑
i=1

(Z2)ii +(Z1)ii

δi
+

1
2

n

∑
i=1

δi(Z1)iiwi,

where wi = ‖W0(:, i)‖2, W0 = N−1, i = 1, . . . ,n and Z1,Z2 are given by (4.48)
and (4.49).

8: end if
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4.1.3 Numerical experiments

In this subsection, we illustrate the performance of the new approach on damping optimiza-
tion based on considering minimization of total average energy. In both illustrative examples
we consider the mechanical system, the so-called the n-mass oscillator which was already men-
tioned in examples in previous chapters. In all examples, we take ZU = I.

Example 4.2 In this example, we consider the system from (1.2) with dimension n = 20, where
the mass and stiffness matrices are defined as:

M = diag(m1,m2, . . . ,mn),

mi =

{
200−20(i−1), i = 1, . . . ,10
201+20(i−11), i = 11, . . . ,20

,

K =



4 −1 −1
−1 4 −1 −1
−1 −1 4 −1 −1

. . . . . . . . . . . . . . .

−1 −1 4 −1 −1
−1 −1 4 −1

−1 −1 4


.

The structure of masses and stiffness is shown in Figure 4.6.

m1 m2 m3 m4 mn
2k k k k

k

k

k

k 2k

Figure 4.6: n-mass oscillator

Further, the damping matrix C(v) is given as C(v) = Cint +Cext(v), where the external
damping matrix has a block diagonal structure Cext(v) = diag(C1(v),C2(v), . . . ,C10(v)), where
each block has its own viscosity vi for i = 1, . . . ,10.

The blocks are defined as:

Ci(v) =

vi + vi p −vi p 0
−vi p vi +2vi p −vi p

0 −vi p vi + vi p

 , i = 1,2,3, (4.70)

Ci(v) =

[
vi + vi p −vi p

−vi p vi + vi p

]
, i = 4,5,6,7, (4.71)
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Figure 4.7: Block diagonal structure of matrix Cext(v)

Ci(v) =
[
vi + vi p

]
, i = 8,9,10, (4.72)

where p = 0.001.
The block diagonal structure of the matrix Cext(v) is shown in Figure 4.7, while the structure of
the damping for each block Ci(v) in our mechanical system, is shown in Figures 4.8, 4.9 and
4.10. The internal damping is Cint = αcCcrit, where Ccrit is given by (1.21).

mi mi+1 mi+2

vi

vi p vi p

vi vi

Figure 4.8: Block within n-mass oscillator represented by matrix (4.70)

We calculate optimal viscosities for two different cases:
Case 1 In the first case, we assume that there is no internal damping, i.e., αc = 0.
For the purpose of comparison, we present the optimal viscosity and the corresponding min-

imal trace, denoted by (v∗, tr(X̃(v∗))), obtained by direct calculations using formula (4.63) and
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mi mi+1
vi p

vivi

Figure 4.9: Block within n-mass
oscillator represented by matrix (4.71)

mi

vi + vi p

Figure 4.10: Block within n-mass
oscillator represented by matrix (4.72)

the optimal viscosity and the corresponding minimal trace denoted by (v, tr(X(v))), obtained by
the minimization of the trace of the "dual Lyapunov equation" of the Lyapunov equation (4.17)
directly with MATLAB’s function fminsearch, where we have used MATLAB’s function lyap

for solving Lyapunov equations.

For (v∗, tr(X̃(v∗))) and (v, tr(X(v))), we have obtained the following:

v∗ =



37.9626
23.3395
14.7396
19.4686
28.6084
32.6407
38.6879
45.7553
54.7100
64.6193



, tr(X̃(v∗)) = 487.4226, v =



38.1249
23.1773
14.5789
17.4601
28.4168
32.4962
38.5573
45.6625
55.0314
65.0329



, tr(X(v)) = 484.8125.

Thus, relative errors for the obtained approximations are:

errv =
||v−v∗||
||v||

= 0.0171, (4.73)

errtr =
|| tr(X̃(v∗))− tr(X(v))||

|| tr(X(v))||
= 0.0054. (4.74)

Here the residual error from (4.44) is Rer = 0.3534. This shows that even if the considered
mechanical system is not very close to the modally damped one (Rer is not significantly smaller
than 1), formula (4.63) still insures the satisfying result.

Case 2 Within the second case, we assume the existence of internal damping; thus let
αc = 0.005.

As emphasized in Remark 4.1 for the case αc 6= 0, one can not use formula (4.63) directly.
Thus we use Newton’s method for optimization of the trace approximation given by formula
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(4.64). Again by (v∗, tr(X̃(v∗))) we denote the obtained approximation for optimal viscosity and
the corresponding minimal trace. Similarly, by (v, tr(X(v))) we denote optimal viscosity and
the corresponding function value obtained by the minimization of the trace of the dual Lyapunov
equation of the equation (4.17) directly with MATLAB’s function fminsearch, where the
Lyapunov equation was solved by MATLAB’s function lyap.

Here are the obtained quantities:

v∗ =



36.1512
22.1206
14.0986
17.6473
26.2969
29.9301
35.5781
42.3487
51.1036
60.8131



, tr(X̃(v∗)) = 486.3990, v =



36.3126
21.9638
13.9714
15.8175
26.1052
29.7869
35.4482
42.2551
51.4233
61.2265



, tr(X(v)) = 483.9260.

For relative errors defined in (4.73) and (4.74), here we have:

errv = 0.0169, errtr = 0.0051.

In this example, the residual error from (4.44) has a similar magnitude, i.e., Rer = 0.3049.

In the second example, we consider a more general structure.

Example 4.3 In this example, we consider the system from (1.2) with a dimension n = 500 and
the matrices M and K defined as:

M = 103diag(m1,m2, . . . ,mn),

mi =

{
5000−20(i−1), i = 1, . . . ,250
5001+20(i−1), i = 1, . . . ,250

,

K =



10 −1
−1 10 −1

−1 10 −1
. . . . . . . . .

−1 10 −1
−1 10


.
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The damping matrix C has the block diagonal structure as follows

C =


0

C1

0
C2

0

+Cint, (4.75)

where αc = 0.005 and 0 represents a zero matrix of the corresponding dimension. The matrices
Ci are defined as:

Ci =


vi1 + vi1 p −vi1 p

−vi1 p vi1 +2vi1 p −vi1 p

−vi1 p vi1 +(vi1 + vi2)p+ vi2 −vi2 p

−vi2 p vi2 + vi2 p

 , i = 1,2, (4.76)

where p = 0.01 and the structure of damping for each block Ci in our mechanical system is
shown in Figure 4.11. Thus, each block has 2 different viscosities, which means that we have 4
different viscosity parameters to optimize.

mi mi+1 mi+2 mi+3

vi1

vi1 p vi1 p vi2 p

vi1 vi1 + vi2 vi2

Figure 4.11: Block within n-mass oscillator represented by matrix (4.76)

Again, we compare the approximation of optimal viscosities obtained by our new approach
proposed in Section 4.1.2.2 with optimal viscosity obtained by the minimization of the trace
of the "dual Lyapunov equation" of the equation (4.17) directly with MATLAB’s function
fminsearch, based on the MATLAB’s function lyap for solving Lyapunov equations.

This comparison has been performed for different positions of matrices C1 and C2, i.e., in
each new configuration we change the position of matrices C1 and C2. The following configura-
tions are taken into consideration:

(i, j) ∈ {(2,17),(2,67),(2,117),(2,267),(2,317),(52,67),(52,117),(52,167),(52,267),

(52,317),(52,367),(52,417),(102,117),(102,217),(102,367),(152,167),(152,267),

(152,317),(202,417),(252,267),(252,367),(252,417),(252,467),(302,367),(302,417)

(352,417),(352,467)},
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where i represents the position of the matrix C1 and j represents the position of the matrix C2.
Figure 4.12 shows the relative error

errtr =
|| tr(X(v))− tr(X̃(v∗))||

|| tr(X(v))||
,

for each configuration.
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Figure 4.12: Relative errors errtr for different positions of matrices C1 and C2

During the optimization process, using Algorithm 6, we have calculated the percentage
of updates of the matrix U with the tolerance tolU = 10−5. The number of updates for each
configuration is shown in Figure 4.13.

Moreover, in order to illustrate the quality of the new approach using the surface plot in
prescribed viscosities, we set v1 = v3, v2 = v4, while v1 ∈ [40,200] and v2 ∈ [200,340]. The
block with viscosities v1 and v2 starts at position 242 and the block with v3 and v4 starts at 470.

For the first step in iterations we have used the matrix U defined by optimal viscosities
v1 = 101.4445 and v2 = 268.3622, while during the iteration process the matrix U has been
updated with the tolerance tolU = 10−5.
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Figure 4.13: Percentage of updating matrix U for different positions of matrices C1 and C2
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Figure 4.14: Relative error of the function value
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In Figure 4.14, we can see the relative error

errrel =
|| flyap− fapprox||
|| flyap||

,

in which flyap represents the trace of the solution of the Lyapunov equation for certain viscosities
v1 and v2, by MATLAB’s function lyap and fapprox represents the trace calculated by our
algorithm. The relative error is less than 10−7.

In the next section we present eigenvalue-based approach to damping optimization. This
approach is based on frequency isolation, i.e., we are focused on dangerous natural frequencies,
which we want to avoid.

4.2 Frequency-weighted damping optimization
We consider vibrational mechanical system described by (4.2), where damping matrix C(v)

depends on parameters encoded in vector v = [v1, . . . ,vs]
T ∈ Rs

+. We assume that C(v) is given
by

C(v) =Cint +Gdiag(v)GT , (4.77)

where vi for i = 1, . . . ,s represent damping viscosities and geometry of damping positions is
described by the matrix G. Usually, there are small numbers of damping parameters compared to
full order dimension which means that s� n. Since we are interested in damping optimization,
our main focus is on the damping matrix C(v) given by (1.2) that can be written in the following
form

C(v) =Cint +
s

∑
i=1

vigigT
i , (4.78)

where gi for i = 1 . . .s, are columns of matrix G. When C(v) has the structure from (4.78) we
can easily apply our approach from Section 2.3 for fast eigenvalue computation.

In this section we would like to present a new criteria based on eigenvalues, that are motivated
by a frequency isolation problem and ensures that spectral abscissa is bounded or minimized.

The frequency isolation problem corresponds to the problem of parameter optimization in
such a way that the new system has no eigenvalues close to the dangerous frequencies (dangerous
areas). In damping optimization setting this can be achieved by optimizing damping positions
and damping viscosities. This problem has been previously studied in [49] and [32]. In [49], the
author proposed a Newton-type method for structures vibrating at low frequencies, while in [32],
the authors proposed a less costly inverse eigenvalue method: a target spectrum away from the
resonance band is fixed in advance. The frequency isolation problem in undamped vibrational
systems was considered in [69], but we would like to use it in a more general case which means
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that we vary parameters also in the external damping matrix.
The main interest of this section is to present a new approach for the frequency isolation

problem. First we will formulate a new optimization criteria that takes into account the eigen-
value behaviour with respect to dangerous areas as well as the magnitude of spectral abscissa.
Additionally we propose that dangerous frequencies are weighted in order to ensure importance
of certain frequency areas. Since that damping optimization process requires repeated solutions
of QEP for different damping parameters, we use the efficient approximation approach given
Section 2.3, which gives us the fast solution of the QEP.

We consider two different approaches to the frequency isolation problem, where the undesir-
able areas are ellipses with centers on the imaginary axis:

Approach 1:
We minimize spectral abscissa such that frequencies are isolated from a priori determined el-
lipses. Furthermore we need to emphasize that this case depends on choice of the value of the
major axis, i.e., if we choose too big major axis the optimization problem might be infeasible
or if we choose too small major axis this case comes down to basic minimization of the spectral
abscissa.

Approach 2:
The centers of the ellipses are fixed and we bound a spectral abscissa by tolsa, while we
maximize (scaled) major axis of the considered ellipses and make sure there are no eigenvalues
in them. One can notice that with one ellipse we can push away more then one eigenvalue.

First we will focus on the single ellipse case for both approaches, and in Subsection 4.2.2
we will extend this to the multiple ellipse case. The multiple case will be illustrated in Subsec-
tion 4.2.3, and single case will be illustrated in Section 4.3 where we will compare these two
approaches on Example 4.1

4.2.1 Single ellipse case

Let E = (c,a(v),b) be the ellipse in the complex plane, where c ∈ iR+, b ∈ R+ are respec-
tively constants for its center and minor axis and a(v) : Rs

+→ R+ is the major axis function,
which will be maximized. The center determines which frequency is undesirable. Since eigen-
values λ (v) ∈ C, and R2 and C are isomorphic we define the ellipse on C by

E ...
x2

a2(v)
+

(y− Im(c))2

b2 = 1, where x+ yi ∈ C. (4.79)

In both approaches described above we need to make sure that no eigenvalues are inside the
ellipse, so we need to define the distance function d(λ (v),E) that measures the distance of eigen-
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value λ (v) to the ellipse E. There is no explicit formula for distance from point to ellipse. One
can use Mahalanobis distance-like function from [86], but we will define distance as algebraic
distance, for more see [108]. Let d(λ (v),E) be defined as:

d(λ (v),E) =
Re(λ (v))2

a2(v)
+

(Im(λ (v)− c))2

b2 −1, (4.80)

which means that

d(λ (v),E)


< 0, if λ (v) is in the ellipse E,

= 0, if λ (v) is on the ellipse E,

> 0, if λ (v) is outside of the ellipse E.

(4.81)

In Approach 1 we minimize spectral abscissa such that there are no eigenvalues in a priori
determined ellipse. For the Approach 1 the major axis is fixed, i.e., a(v) = a and E = (c,a,b)

and the optimization problem is defined by

min
v∈Rs

+

αMCK(v)

such that

d(λ (v),E)≥ 0, ∀λ (v) ∈ Λ(v).

(4.82)

In Approach 2 we want to maximize the major axis of the ellipse a(v), such that there are no
eigenvalues in the ellipse. We can see that a(v) needs to satisfy the following condition

d(λ (v),E)≥ 0, ∀λ (v) ∈ Λ(v), (4.83)

i.e.,

a(v) ≤ b |Re(λ (v))|√
b2− (Im(λ (v)− c))2

, ∀λ (v) ∈ Λ(v), s.t.b > |Im(λ (v)− c))|. (4.84)

Here we would like to note that in cases when there are no eigenvalues such that Im(λ (v)) ∈
(Im(c)− b, Im(c) + b), i.e., when b ≤ |Im(λ (v)− c))| then a(v) = ∞. This means that we
obtained strip St(c,b) which is parallel to the real axis and there are no eigenvalues in it, i.e.,

Λ(v)∩St(c,b) = /0, (4.85)

where

St(c,b) = {x+ yi ∈ C : Im(c)−b≤ y≤ Im(c)+b}. (4.86)

105



Chapter 4. Damping optimization in mechanical systems

Thus, we define a(v) as:

a(v) = min
λ (v)∈Λ(v)


b |Re(λ (v))|√

b2− (Im(λ (v)− c))2
, b > |Im(λ (v)− c)|

∞, b≤ |Im(λ (v)− c)|.
(4.87)

Let dobj(v) = a(v), where a(v) defined in (4.87), then in the Approach 2 with single ellipse
the optimization problem is defined by

max
v∈R+

dobj(v)

such that

αMCK(v)≤ tolsa.

(4.88)

In following section we rewrite both approaches for the case of multiple ellipse.

4.2.2 Multiple ellipse case

Given k ellipses, k ∈ N, let Ei = (ci,ai(v),bi) be ith ellipse, where ci ∈ iR+, bi ∈ R+, are
respectively constants for its center, minor axis. Since some frequency bands are less desirable
than others, we can introduce scaling wi ∈ R+ to help optimally balance how the different
resonant bands are damped. Product ai(v) = a(v)wi represents the scaled major axis. This
means that our i th ellipse is defined by

Ei ...
x2

a2(v)w2
i
+

(y− Im(ci))
2

b2
i

= 1. (4.89)

For i = 1, . . . ,k the function ai(v) : Rs
+ → R+ calculates the maximal length of unscaled

major axis such that there are no eigenvalues in the ellipse Ei, which major axis is scaled, i.e.,

d(λ (v),Ei)≥ 0, ∀λ (v) ∈ Λ(v), i = 1, . . . ,k, (4.90)

where d is defined in (4.80). Similarly, as in the single ellipse case

a(v) = min
i=1,...,k

ai(v)
wi

, (4.91)

where

ai(v) = min
λ (v)∈Λ(v)


bi |Re(λ (v))|√

b2
i − (Im(λ (v)− ci))2

, bi > |Im(λ (v)− ci)|,

∞, bi ≤ |Im(λ (v)− ci)|.
(4.92)

Now that we have described our undesirable areas, we can formulate the optimization prob-
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lem for both cases Approach 1 and Approach 2. Let dobj(v) = a(v) where a(v) is defined by
(4.91).

Approach 1

min
v∈R+

αMCK(v)

such that

d(λ (v),Ei)≥ 0,

∀λ (v) ∈ Λ(v),

i = 1, . . . ,k,

(4.93)

Approach 2

max
v∈R+

dobj(v)

such that

αMCK(v)≤ tolsa(v).

(4.94)

For the optimization we will use gradient-based nonsmooth optimization solvers, such as
[25], and thus we will derive the gradients for all eigenvalues λ (v) and for function a j(v), such
that a(v)= a j(v)

w j
, i.e. j is the index for which we obtain minimum over all ai(v)

wi
, i= 1, . . . ,k. Since

these functions are smooth almost everywhere, we assume that these functions are evaluated at a
point where the function is smooth. Thus, the partial derivatives for the functions are given by:

∂λ

∂vl
(v) =−

y∗(v)
(
λ (v)glgT

l

)
x(v)

y∗(v)(2λ (v)M+C(v))x(v)
, (4.95)

∂a j

∂vl
(v) =sgn(Re(λ (v)))

 b jRe
(

∂λ

∂vl
(v)
)

√
b2

j − (Im(λ (v)− c j))2

+
b jIm

(
∂λ

∂vl
(v)
)

Re(λ (v))(Im(λ (v)− c j))

3
√

b2
j − (Im(λ (v)− c j))2

 , for b j > |Im(λ (v)− c j)|,

(4.96)

and

∂d
∂vl

(λ (v),E) =
2Re(λ (v))Re

(
∂λ

∂vl
(v)
)

a2 +
2Im(λ (v)− c)Im

(
∂λ

∂vl
(v)
)

b2 , (4.97)

where l = 1, . . . ,s. When a(v) = ∞, we reached the maximum, so we don’t need the derivative
of the function in that point.

One can notice that partial derivative of distance function is computed only for Approach 1,
since only in that case we need to compute the distance, and in Approach 2 positive distance is
ensured by the definition of the major axis.

Now we only need an efficient algorithm for eigenvalue computation so we can summarise
the optimization algorithm. Since the damping matrix (4.77) has the same structure as the
damping matrix from Section 2.3 we can use Algorithm 5 for eigenvalue computation.
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Algorithm 7: Frequency-weighted damping optimization algorithm
Require: M,K ∈ Rn×n, α ∈ R+ for Cint, G = [g1, . . . ,gs] ∈ Rn×s, c ∈ iRk, centers of

ellipses, b̃ ∈ Rk
+ minor axes, wi ∈ Rk

+ scaling of the ellipse, tolsa minimal spectral
abscissa, initial viscosity v0

Ensure: vector of parameters v such that goal function is minimized
Off-line stage:

1: Determine Φ ∈ Cn×n such that (1.4) hold.
2: Do perfect shuffle and construct Â from (2.73).
3: Calculate matrix Ψ from (2.77).

Online stage:
4: Compute D−

s
∑

l=1
vl ĝl ĝT

l as in (2.79)

5: Run GRANSO on (4.94) using Algorithm 5 for evaluations of eigenvalues.

Notice that the off-line stage of Algorithm 7 is done in O(n3) operations, but we only have
to incur this expense once. Since, in Step 5 we repeatedly compute eigenvalues and eigenvectors
for different viscosities v, which is the most time consuming part of our optimization, we use
Algorithm 5 for eigenvalue computation which is efficient for our structured low-rank updates,
i.e., one computation of eigenvalues and eigenvectors is done in O(n2).

For optimization, we use GRANSO1 which is optimization software, intended to be efficient
for nonsmooth constrained optimization problems. For details on GRANSO see [25], also there
are other methods that could have been used here, such as SQP-GS [26], DIRECT method [48],
Nelder-Mead [59], etc.

The quality of these optimization approaches is illustrated in the following subsection.

4.2.3 Numerical experiment

In this subsection we present an example for each optimization criteria we formulated in
Subsection 4.2.2, i.e., Approach 1 and Approach 2. In both examples we consider mechanical
system shown in Figure 2.14 with dimension n= 1000, ki = 5, i= 1, . . . ,n+1 and mi =mn+1−i =
n−i
200 , i = 1, . . . , n

2 , while parameter in the critical damping (1.21) is αc = 0.002.

Example 4.4 Let the positions of dampers be (100,200,300). For initial viscosity in Algorithm
7 we took v0 = [1,1,1]T .

The centers of ellipses are set at

c1 = 0.11 i, c2 = 0.75 i, c3 = 0.95 i,

while the minor axes of all ellipses are

b̂1 = b̂2 = b̂3 =

max
j=1,...,2n

Im(λ j(0))

n
·10 = 1.6293 ·10−2,

1software is available at https://gitlab.com/timmitchell/GRANSO/
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and tolerance on the spectral abscise is

tolsa = αMCK(0) =−4.8879 ·10−6.

Furthermore, since in this case ellipses are fixed there is no need for the scaling of the major
axes, i.e.,

a1 = 0.0004, a2 = 0.0016, a3 = 0.00205 and w1 = w2 = w3 = 1.

Figure 4.15 shows the upper half of the complex plane, since everything is symmetric on the
lower half of the complex plane. In Figure 4.15 are shown three sets of eigenvalues, black dots
represent eigenvalues of the system with no external damping, red pluses represent eigenvalues
of the system with initial viscosity v0 = [1,1,1]T and blue circles represent eigenvalues of the
system with optimal viscosity, i.e., the viscosity for which the spectral abscissa is minimized
and no eigenvalues are in the interior of the ellipses. In this case the optimal viscosity is the
following:

vFI1 =

 8.1970
1.3131

26.2544

 .
The spectral abscise of the system with no external damping is shown with black line, the

spectral abscise of the system with initial viscosity is shown with red dash-dotted line, while the
obtained optimal spectral abscise of the system is shown with blue dashed line in Figure 4.15.
The values of these spectral abscissae are following:

αMCK(0) = −4.8879 ·10−6,

αMCK(v0) = −5.8676 ·10−5,

αMCK(vFI1) = −2.1991 ·10−4.

On three plots in the lower part of Figure 4.15 one can see enlarged ellipses and that blue
circles only touch ellipses, while some of red dots are in the interior of the ellipses, which
means that we pushed all those eigenvalues that were in the interior further left in the complex
plane. One can notice that eigenvalues denoted by blue circles became closer to the ellipse with
the center c3 = 0.95, but they are still outside of the ellipse. At the same time we pushed six
eigenvalues, denoted by red plus, from the ellipse with the center c1 = 0.11 and one eigenvalue
from the ellipse with the center c2 = 0.75.
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Figure 4.15: In the upper half of the complex plane are shown the eigenvalues of the system
with no external damping, eigenvalues of the damped system with v0 and eigenvalues of the
damped system with minimized spectral abscissa, respectively represented by black dots, red

pluses and blues circles. On the three plots in the lower part are enlarged ellipses.
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Example 4.5 In this example the positions of dampers are following (100,200,900). For initial
viscosity in Algorithm 7 we also took v0 = [1,1,1]T .

The centers of ellipses are set at

c1 = 0.1 i, c2 = 0.55 i, c3 = 1.1 i,

while the minor axes of all ellipses are

b̂1 = b̂2 = b̂3 =

max
j=1,...,2n

Im(λ j(0))

n
·10 = 1.6293 ·10−2,

and the tolerance on spectral abscissa is also taken as a spectral abscissa of the system with no
external damping, i.e.,

tolsa = αMCK(0) =−4.8879 ·10−6.

Furthermore, the scaling for this example is chosen as follows:

wi = |Re(λk(0))|, such that [minvalue,k] = min
j=1,...,2n

|Im(λ j(0)− ci)|,

which means that we took the real part of the eigenvalue λk(0) whose imaginary part is closest
to the center ci, for i = 1, . . . ,3. This ensures that each ellipse moves at least few eigenvalues
further from imaginary axis. In this example the scaling was:

w1 = 1.9932 ·10−4 , w2 = 1.0997 ·10−3 , w3 = 2.1992 ·10−3 .

Figure 4.16 shows the upper half of the complex plane, since everything is symmetric on the
lower half of the complex plane. In Figure 4.16 are shown three sets of eigenvalues, black dots
represent eigenvalues of the system with no external damping, red pluses represent eigenvalues
of the system with initial viscosity v0 = [1,1,1]T and blue circles represent eigenvalues of
the system with optimal viscosity, i.e., the viscosity for which the major axes of ellipse are
maximized and there are no eigenvalues inside ellipse. In this case optimal viscosity is the
following:

vFI2 =

 5.0865
1.2139
7.4170

 ,
while the obtained maximal unscaled major axis is 2.7671 ·10−3.

The spectral abscise of the system with no external damping is shown with black line, the
spectral abscise of the system with initial viscosity is shown with red dash-dotted line, while the
obtained optimal spectral abscise of the system is shown with blue dashed line in Figure 4.15.
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Figure 4.16: In the upper half of the complex plane are shown eigenvalues of the system with
no external damping, eigenvalues of the damped system with v0 and eigenvalues of the damped
system with maximized major ellipse axes, respectively represented by black dots, red pluses

and blues circles. On the three plots in the lower part are enlarged ellipses.

112



Chapter 4. Damping optimization in mechanical systems

The values of these spectral abscissae are following:

αMCK(0) = −4.8879 ·10−6,

αMCK(v0) = −2.9116 ·10−5,

αMCK(vFI2) = −6.9199 ·10−5.

On three plots in the lower part of Figure 4.16 one can see enlarged ellipses and that the blue
circles only touch ellipses, while some of the red dots are in the interior of the ellipses, which
means that we pushed all those eigenvalues that were in the interior further left in the complex
plane and in that way we got the maximal major axes of the ellipses.

4.3 The frequency isolation vs. the minimization of
the total average energy

In this section we compare the frequency isolation approaches to damping optimization,
Approach 1 and Approach 2 from Section 4.2, with two approaches illustrated in Example 4.1,
i.e., with minimization of spectral abscissa and minimization of total average energy. Difference
between Approach 1 and Approach 2 from Section 4.2 is that Approach 1 requires the value of
the major axis of the ellipse a priori. Since the dangerous frequencies of the external function
are

ω2 = 0.0490, ω3 = 0.0651, ω4 = 0.0885, ω5 = 0.1071.

we consider the single ellipse case with c = 0.1i and b = 0.0698, but since everything is sym-
metric with respect to the real axis we actually consider two ellipses with same major and minor
axis but with centers that are conjugate pair.

For Approach 1 we need to set the value of the major axis and since

αMCK(vsa) =−0.0244,

we set a = 0.05.
From Figure 4.17 we can see that we managed to isolate eigenvalues (blue circles) from the

given ellipses and obtained optimal viscosities vFI1 with

αMCK(vFI1) =−0.0085,

black dots represent eigenvalues of the system with no external damping.
For the Approach 2 we obtained optimal viscosities vFI2 and the corresponding major axis
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Figure 4.17: Frequency isolation: Approach 1

Figure 4.18: Frequency isolation: Approach 2
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and spectral abscissa are:

a(vFI2) = ∞, αMCK(vFI2) =−0.002.
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Figure 4.19: The energy of the non-stationary system (4.2)

In Figure 4.19 we compared the energies of the system (4.2) obtained for each viscosity
parameter vsa, vtae, vFI1, vFI2. The blue line show the total energy for the case when the set of
viscosities correspond to the optimal viscosities for the minimization of the spectral abscissa, i.e.,
vsa, the red dashed line show the total energy for the case when the set of viscosities correspond
to the optimal viscosities for the minimization of the total average energy, i.e., vtae. The purple
dotted line show the total energy for the case when the set of viscosities correspond to the optimal
viscosities for the frequency isolation Approach 1, i.e., vFI1, while the black dashed dotted line
show the total energy for the case when the set of viscosities correspond to the optimal viscosities
for the frequency isolation Approach 2, i.e., vFI2. One can see that the spectral abscissa criterion
resulted in faster decay of the total energy of the system. From Figure 4.19 we can see that the
viscosity vFI2 obtained in frequency isolation Approach 2 resulted in lower energy then other
considered optimization criteria. The energy of the system over time is very similar for the other
three optimization criteria.
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Figure 4.20: The behaviour of the displacement and velocity of the mass m7 over time for two
different sets of viscosities in non-stationary case

The Figures 4.20 and 4.21 show respectively the behaviour of the displacement and the
velocity of the masses m7 and m17 over time for the non-stationary system. The masses m7 and
m17 are chosen just for illustration and we see that the system with viscosity parameter vFI2

results in lowest amplitude in displacement of the mass and in its velocity, in both cases.

4.4 Conclusion
Throughout this chapter we have considered damping optimization for the stationary me-

chanical system Mq̈(v; t)+C(v)q̇(v; t)+Kq(v; t) = 0 and non-stationary mechanical system
Mq̈(v; t)+C(v)q̇(v; t)+Kq(v; t) = f (t). We used two different approaches to damping opti-
mization:

1. minimization of total average energy,

2. frequency isolation.
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Figure 4.21: The behaviour of the displacement and velocity of the mass m17 over time for two
different sets of viscosities in stationary case

Since only the damping matrix C(v) depends on parameters, the typical (or often used, standard)
approach for viscosity optimization (v), when dealing with minimization of total average energy,
assumes preprocessing based on the diagonalization of the mass and stiffness matrices, M and K.
Contrary to this approach, we proposed the new approach, which is based on the diagonalization
of the damping matrix C(v), and then calculation of optimal viscosities. This is the main
contribution of Chapter 4.1, i.e., we have shown that a slight change in the paradigm of damping
optimization, for a certain structure, can significantly improve the performance of optimization
methods. Although, in general, the new approach can not be more efficient than the standard
one, we have shown that in the case when M, C(v) and K are close to the case when all three
can be simultaneously diagonalized (or when the mechanical system is close to modally damped
one) we can derive optimal viscosities, explicitly or numerically, very efficiently.

We have also provided the bounds which can be easily used to determine whether the consid-
ered mechanical system is suitable for applying the new approach, i.e., if the mechanical system
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under consideration is close to a modally damped one or not.
Our numerical examples from Subsection 4.1.3 show that with the proposed approach we

can obtain satisfactory approximation for optimal parameters. Moreover, we illustrate that with
our approach we can significantly accelerate the optimization process for the structured systems.

On the other hand, when dealing with frequency isolation in damping optimization, our
approach was based on frequency-weighted damping optimization, i.e., the main problem was
to achieve that eigenvalues of damped system are not close to dangerous weighted areas. We
defined the areas as the ellipses with the centers on the imaginary axis and in the first optimization
process we maximize the major axis of the ellipse such that there are no eigenvalues in the
ellipse. Major axes were weighted since some of the areas are more significant then others. The
other optimization process is based on minimization of spectral abscissa while making sure no
eigenvalues are in the fixed ellipses. In these cases we used eigenvalue approximations from
Section 2.3 since we needed both eigenvalues and eigenvectors for this approach and we needed
them to be computed efficiently. The quality and efficiency of this method was illustrated in the
examples. Last we compared all four approaches to damping optimization in Section 4.3 and
we can conclude that the system behaves in the best way if we use frequency isolation Approach
2, i.e., if we maximize the major axis of the ellipse which center is close to the dangerous
frequencies.
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[58] I. Kuzmanović, Z. Tomljanović, and N. Truhar. Damping optimization over the arbi-
trary time of the excited mechanical system. Journal of Computational and Applied

Mathematics, 304:120–129, 2016. DOI: 10.1016/j.cam.2016.03.005.

[59] J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright. Convergence properties
of the nelder-mead simplex method in low dimensions. SIAM Journal of Optimization,
9(1):112—-147, 1998.

[60] C. Lanczos. An iteration method for the solution of the eigenvalue problem of linear
differential and integral operators. J. Res. Nat. Bur. Stand, 45(4):255–282, 1950.

[61] R. B. Lehoucq, D. C. Sorensen, and C. Yang. ARPACK Users’ Guide: Solution of

Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods. SIAM
Publications, Philadelphia, 1998.

[62] J. R. Li and J. White. Low rank solution of Lyapunov equations. SIAM J. Matrix Anal.

Appl., 24(1):260—-280, 2002.

[63] R. C. Li, Y. Nakatsukasa, N. Truhar, and S. Xu. Perturbation of partitioned hermitian
generalized eigenvalue problem. SIAM Journal on Matrix Analysis and Applications,
32(2):642–663, 2011.

[64] X. Liang and R. C. Li. The hyperbolic quadratic eigenvalue problem. Forum of

Mathematics, Sigma, 3(e13), 2015.

[65] X. Lu, S. Xu, and Y. Cai. Partial derivatives of the eigen-triplet of the quadratic eigen-
value problem depending on several parameters. Applied Mathematics and Computation,
219(24):11348–11357, 1993.

[66] V. Mehrmann and H. Voss. Nonlinear eigenvalue problems: A challenge for modern
eigenvalue methods. GAMM-Mitteilungen, 27:121–152, 2004.

[67] M. H. Milman and C.-C. Chu. Optimization methods for passive damper placement and
tuning. Journal of Guidance, Control, and Dynamics, 17(4):848–856, 1994.

[68] C. B. Moler and G. W. Stewart. An algorithm for generalized matrix eigenvalue problems.
SIAM J. Numer. Anal., 10:241–256, 1973.

123



Bibliography

[69] J. Moro and J. Egana. Directional algorithams for frequency isolation problem in un-
damped vibrational systems. Mechanical Systems and Signal Processing, 75:11–26,
2016.

[70] P. C. Müller and M. Gürgöze. Optimale Dämpfungsstärke eines viskosen Dämpfers bei
einem mehrläufigen Schwingungssystem. Z. Angew. Math. Mech., 71(12), 1991.

[71] Y. Nakatsukasa and F. Tisseur. Eigenvector error bound and perturbation for polyno-
mial and rational eigenvalue problems. Technical Report METR 2016-04, Department
of Mathematical Informatics, Graduate School of Information Science and Technology,
University of Tokyo, April 2016.

[72] Y. Nakatsukasa and F. Tisseur. Eigenvector error bound and perturbation forpolyno-
mial and rational eigenvalue problems. Technical report, Department of mathematical
informatics, The Uuniversity of Tokyo, 2016.
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[87] I. Šain Glibić. Robust numerical methods for nonlinear eigenvalue problems. PhD thesis,
Faculty of Science, Department of Mathematics, University of Zagreb, 2018.

[88] K. Schreiber. Nonlinear Eigenvalue Problems: Newton-type Methods and Nonlinear

Rayleigh Functionals. PhD thesis, Technischen Universität Berlin, 2008.

[89] V. Simoncini. A new iterative method for solving large-scale Lyapunov matrix equations.
SIAM J. Sci. Comput., 29(3):1268—-1288, 2007.

[90] G. L. G. Sleijpen, G. L. Booten, D. R. Fokkema, and H. A. van der Vorst. Jacobi
davidson type methods for generalized eigenproblems and polynomial eigenproblems.
BIT, 36:595–633, 1996.

[91] V. O. Sokolov. Quadratic inverse eigenvalue problems: theory, methods, and applications.
PhD thesis, Department of Mathematical Sciences Northern Illinois University, 2008.

[92] G. W. Stewart. Matrix Algorithms. Volume II: Eigensystems. SIAM, Philadelphia, 2001.

[93] G. W. Stewart and J. Sun. Matrix Perturbation Theory. Academic Press, New York,
1990.

[94] L. Taslaman. Algorithms and theory for polynomial eigenproblems. PhD thesis, Manch-
ester Institute for Mathematical Sciences School of Mathematics, 2004.

[95] O. Taussky. How I became a torchbearer for matrix theory. Amer.Math.Monthly, 95:801–
812, 1988.

[96] F. Tisseur. Backward error and condition of polynomial eigenvalue problems. Linear

Algebra and its Applications, 309:339–361, 2000.

125



Bibliography

[97] F. Tisseur and K. Meerbergen. The quadratic eigenvalue problem. SIAM Review, 43:211–
286, 2001.
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