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1. INTRODUCTION 

 

Recent changes in ecosystems (especially aquatic ones) are becoming widespread in alarming 

proportions, being distractedly induced by anthropogenic influence. The effects of growing 

anthropogenic pollution can be observed across all levels of biological organization, and early 

detection of disturbances in organism homeostasis is reasonably desirable. It facilitates not only 

understanding, but also prediction and prevention of impacts that environmental alteration can 

exert at population and ecosystem level.  

Environmentally caused stress is a common phenomenon, especially during the establishment 

and spread of a species in a non-native environment (Reznick and Endler 1982, Hendry et al., 

2000, Huey et al., 2000, Carroll et al., 2001, Koskinen et al., 2002, Lee et al., 2003, Bossdorf et 

al., 2005, Calsbeek et al., 2011, Matesanz et al., 2012, Sultan et al., 2013, Lucek et al., 2014). It 

can arise from both biotic (parasites, pathogens, predators, intra and interspecific competition) 

and abiotic (light, oxygen deficiency, deficit of mineral substances, the presence of heavy metals, 

salinity, temperature, mechanical activity; waves, sea currents, pollutants) factors (Hoffman and 

Parsons, 1991). As a response to changing environment, phenotypic traits can vary at different 

levels, such as morphology, biochemistry, behavior, life history (e.g. longevity, age and size at 

first reproduction, number and size of offspring), physiological change in metabolism and 

functional diversity. Moreover, biological systems are continuously influenced by seasonally and 

spatially variable natural environmental factors (e.g. temperature, salinity, food availability), 

which are in further complex interactions with biological endogenous factors (e.g. sex, age, 

reproductive status). The described complexity makes somewhat difficult to pinpoint phenotypic 

responses toward specific environmental alterations, including pollution. Still, scientists are 

actively improving their knowledge in this respect, whereas interactions between the organism’s 

phenotype and environment are drivers of the eco-evolutionary dynamics. Phenotypic variation 

could represent the effect of phenotypic plasticity (capacity of a single genotype to produce a 

range of phenotypes), selection, or both. Phenotypic plasticity facilitates colonization of different 

habitats by genetically similar or identical individuals and sometimes impedes genetic 

differentiation between ecologically distinct populations (Wund, 2012, Huang et al., 2015). On 

the other hand, environments can favor individual phenotypes with the highest fitness through 

natural selection (Levins, 1968, Endler, 1986), and sorting of the preexisting alleles can lead to 
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adaptive and heritable phenotypic differentiation (Nosil, 2012). Natural selection can act upon a 

variety of environmental changes driven by natural or anthropogenic environmental 

modifications and lead to evolution. However, demonstrating the evidence for natural selection 

in promoting the evolution is difficult and technically challenging. It requires several conditions 

to be met in the system of interest: (i) phenotypic variation among the traits that results in 

different survival and reproduction (i.e. fitness) (ii) additive genetic variation among traits 

(Endler, 1986, Hoffmann and Sgrò, 2011). A trait’s genetic architecture (i.e. mapping of its 

genotype to its phenotype) provides a description of how many loci underlie traits, and the effect 

size of each locus – that is, the proportion of phenotypic variance each locus controls,  patterns 

of pleiotropy, dominance and epistasis (Flint and Mackay, 2009). Furthermore, it can provide 

insight into how evolutionary change might proceed in specific traits, as the genetic architecture 

of a trait can be a major determinant of its evolutionary potential (Hansen, 2006). There are two 

main ways in which researchers can map the genetic architecture of a trait. Linkage mapping 

allows researchers to pinpoint the genetic loci that co-vary with phenotypic variation, as well as 

estimating the effect size of each locus, using linkage disequilibrium (LD) resulting from genetic 

crosses (Mackay, 2001, Slate, 2005). Genome-wide association studies (GWAS) provide similar 

information, yet they rely on mating, to cause admixture/recombination in populations; because 

all the alleles in the population are tested at the same time, multiple alleles at each locus can be 

compared.  

Main aim of this research was to address many environmental variables (including pollution) as 

the evolutionary forces in marine ecosystems. By combining evolutionary and eco-toxicological 

approaches with the latest genomic technologies (i.e. ‘next-generation-sequencing’ NGS) and 

computational biology, aim was to test how environment affects the evolution, ecology and 

genetic characteristics of Mytilus galloprovincialis populations (Figure 1) along the Croatian 

eastern Adriatic coast.   

 

file:///C:/Users/Drorotea/Desktop/DOKTORAT/FINAL_VERSIONS/PhD_INTRODUCTION_and_LITERATURE_REVIEW_041118.docx%23_ENREF_38
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Figure 1. Native population of Mytilus galloprovincialis Lamarck, 1819 

 

Bivalves provide a good model system to understand the value of phenotypic diversity. There is 

well documented great phenotypic variation, both inter- and intraspecific (Seed, 1968). Bivalves 

are sessile, intertidal filter-feeding organisms, owing the ability to transmit large amounts of 

water through the mantle cavity. They are capable to accumulate and tolerate high concentrations 

of many organic and inorganic pollutants in their tissues (Livingstone, 1991), which makes the 

state of oxidative stress sort of norm rather than an exception. These organisms fulfill the 

requirements which make them useful bioindicators of chemical pollution. Bivalves have a wide 

geographical distribution in brackish and sea water environments, are ecologically relevant, easy 

to collect and simple to retrieve with a facile access to the gametes. They are suitable for caging 

experiments in field sites (Livingstone, 1993, Hamza-Chaffai, 2014, Rossi et al., 2016).  

Due to their global distribution and the commercial use, bivalves are frequently studied 

organisms, in particular, mussels belonging to the genus Mytilus (Alcapán et al., 2007, Zieritz 

and Aldridge, 2009, Zieritz et al., 2010, Brown et al., 2011,).  
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Shell morphology is a central tenet of bivalve biology in fields such as taxonomy, evolution, and 

functional anatomy (Márquez et al., 2010, Fassatoui et al., 2014). However, little is known about 

the heritability of their variation within particular species, and specific effects of phenotypic 

plasticity and phenotypic selection have not been successfully disentangled so far. 

 

1.1. Objective and hypothesis  

 

Objective of this research is to estimate the associations between genotype, phenotype and 

environment that underlie phenotypic diversity of Mytilus galloprovincialis, using a combination 

of transplant experiments and genome wide association mapping. With many factors affecting 

phenotype (which in this research is consisted of morphology and biochemical and cellular 

biomarkers) disentangling the genotypic and environmentally induced effects may provide 

insights into the evolutionary processes. Combining information’s on both the genetic 

architecture and natural history of traits can help estimate theoretical predictions of the genetics 

of adaptation. This study also promotes the importance of combining quantitative genetics with 

experimental approaches to obtain insightful data on both phenotypic plasticity and adaptive 

responses. 

To accomplish the objective of this research, three specific hypotheses were tested (patterns and 

experiments used to support each of them are explained in the next paragraph): 

H1: Substantial phenotypic variation exists between and within mussel populations and is 

driven by numerous environmental factors.  

H2: Environment affects mussel’s phenotypic variation both through the phenotypic plasticity 

and natural selection in the face of high gene flow. 

H3: Genetic architecture of morphological traits in Mediterranean mussel is highly polygenic. 

    

 

 

 

 



5 
 

1.2. Methods  

 

Fifteen native populations of Mediterranean mussel (Mytilus galloprovincialis) were sampled 

along the Eastern Adriatic coast, in two seasons, in order to test first hypothesis (H1), and gain 

insight into pollution-driven population’s biomarker responses. First, biochemical and cellular 

change between and within mussel populations was assessed by sampling 100 individuals per 

population (15 populations collected in fall 2013, 1400 mussels analysed in total), and analysing 

15 morphometric traits related to shell shape and position and size of retractor and adductor 

muscles. Standard tools for geometric morphometry were used based on landmark data to 

analyze morphological traits. Digital photographs of inner shell side were taken for each 

individual under standard light conditions. From these standardized images we collected most of 

the phenotypic measurements using the software Image J (v. 1.48).  

Further, the role of specific environmental factors and metals accumulated in mussel’s tissue in 

expressed morphological variability was examined. In that regard, Partial least squares 

regression (PLS-R2) analysis was ran on 15 native populations, with the aim to determine how, 

and to what extent, the response variables (morphological traits) vary as a function of changes in 

the predictor variables (here set of environmental variables and set of bioaccumulated metals). 

To do so, bioclimatic variables and bioaccumulated pollutants were analysed as proxy for 

environmental conditions that could all contribute to morphological differences. Data for 

bioclimatic variables were compiled from Bio-Oracle, online database. 

Considering that most of the morphological traits were measured on both shells, additional 

attention was given to determination of fluctuating asymmetry (FA), measure of developmental 

stability promoted as a useful bioindicator of stressors in habitats. 

Seven biomarkers, indicators of oxidative stress (catalase, glutathione reductase, glutathione S-

transferase, content of malondialdehyde and carbonyls), genotoxicity (Comet assay), and 

neurotoxicity (acetylcholinesterase) were analysed to get an insight into populations responses 

on molecular and cellular level toward differing environmental conditions. Biomarkers were 

analysed in 15 native populations sampled from polluted and reference (“clean”) habitats in two 

seasons (fall and spring) upon life – long in situ exposure at sites characterised for various 

environmental variables.  
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Specifically, to test how mussel’s biomarker status in different seasons depends on the pollution 

status, the multivariate biomarker activity data and their covariation were examined, using the 

phenotypic trajectory analysis (PTA). Transplant experiments both in wild and in mesocosm 

were done to test the second hypothesis (H2). To do so, 1) one population was exposed for four 

weeks in transplant experiment (polluted vs. clean sites in three geographic regions); 2) two 

source populations were exposed to contrasted environments (clean vs. polluted) in one week 

mesocosm study. First, mussel’s plasticity in biomarker response was assessed toward differing 

environmental conditions by evaluating biomarker response in transplant experiment conducted 

in wild (under realistic environmental conditions). Second, population effect of morphological 

and  stress responses was estimated by comparing morphological traits and biomarker responses 

of two different source populations in controlled mesocosm study. To concisely determine 

biomarker status of populations in both experiments, biomarkers were analysed through 

integrated biomarker response index (IBR), which combines and summarizes them in the form of 

a multivariate dataset. Additionally, the role of specific environmental factors and metals 

accumulated in mussel’s tissue regarding the biomarker response variability was examined. 

Aiming to do so, as for the morphological traits, Partial least squares regression (PLS-R2) 

analysis was done. 

By further measuring survival on air of individuals from mesocosm and transplant experiment in 

‘stress on stress’ experiment, an estimation of individuals fitness under the exposure to severe 

stress was set.  

In order to test the third hypothesis (H3) and unravel the genetic architecture of morphologic 

traits in Mediterranean mussel, the tool of multilocus genome-wide association study (GWAS) 

was implemented. GWAS was implemented using the genotyping by sequencing approach 

(GBS) on five data sets; Gruž population used in mesocosm experiment (394 individuals, 19129 

SNPs), Marina population used in mesocosm experiment (377 individuals, 19129 SNPs), Marina 

population used in transplant experiment (883 individuals, 18850 SNPs), a large-scale pool of 

Marina individuals used in both experiments (1258 individuals, 18728 SNPs) and on 15 native 

populations (288 individuals, 18655 SNPs).  

The phenotypic and genotypic data were processed in the software GEMMA (Genome-wide 

Efficient Mixed Model Association; Zhou et al., 2013) configured to use Bayesian sparse linear 

mixed models and Markov chain Monte Carlo. GEMMA estimates three hyperparameters 
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describing the genetic architecture of the phenotypes measured: the total phenotypic variation 

explained by all SNPs in the model (PVE), the proportion of the variation that is explained by 

‘sparse effect’ SNPs (PGE), and the number of ‘sparse effect’ SNPs (n – SNP). By identifying 

number of loci that influence phenotypic variation and the strength of their effects, we tested the 

third hypothesis (H3) – that morphological traits in M. galloprovincialis are highly polygenic.  

 

2. LITERATURE OVERVIEW 

2.1. Source of phenotypic variation  

2.1.1. Phenotypic plasticity 

 

Beneficial phenotypes may be expressed through phenotypic plasticity, capacity of a genotype to 

produce different phenotypes in response to diversity of multiple environmental variables (Price 

et al., 2003, Pfennig et al., 2010, Matesanz et al., 2012). The set of phenotypes  into which single 

genotype can be mapped, as the environment varies, is described by reaction norms - the 

property of a genotype. As such, by providing information about the magnitude of trait plasticity 

and the presence of genotype × environment interactions on the phenotypic expression of a given 

trait (de Jong, 2005), norms of reaction have great potential to increase our understanding of the 

ability of genotypes, and ultimately populations and species, to respond adaptively to natural and 

human-induced environmental variability, including climate change (Visser, 2008). 

Plasticity is physiological process, but can be manifested as changes in morphology, 

biochemistry, physiology, behavior, or life history. It is a key mechanism with which organisms 

can confront a changing climate, as it allows individuals to respond to variations within their 

lifetime (Gienapp et al., 2008, Hendry et al., 2008, Merila, 2012). For instance, Teplitsky et al. 

(2008) provided evidence that climate-driven plastic decreases in the body size of red-billed 

gulls (Larus novaehollandiae) were likely the result of environmental stress, rather than genetic 

adaptive responses. This is thought to be particularly important for species with long generation 

times, as evolutionary responses via natural selection may not produce change fast enough to 

mitigate the current effects of a climate change.  
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One of the theories behind phenotypic plasticity is that it is more beneficial to sessile organisms, 

as those that migrate can behaviorally avoid non-optimum conditions (Gregorius and 

Kleinschmit, 1999). After the pelagic larvae stage, mussels become sessile and have relatively 

little ability to migrate from their initial attachment site. Therefore, morphological plasticity can 

ameliorate the effects of some abiotic or biotic factors (e.g. wave exposure, predators’ pressure). 

Early scientific quests were focused on traits believed to be unaffected by the environment. Even 

more, environmentally affected phenotypes were considered less important because of their 

‘apparent’ lack of a genetic basis. Today, evolutionary biologists rejected this assumption, 

because phenotypic plasticity often has a genetic basis (Agrawal et al., 2001), and it has been 

promoted not only as a product, but also a co-driver of genetic evolution (West-Eberhard, 2003, 

Ghalambor et al., 2007, Pfennig et al., 2010, Wennersten and Forsman 2012, Wund, 2012). It is 

generally not plasticity itself that is the key to differentiation. The basic idea is that new 

phenotypes first appear as a result of environmental induction and once expressing multiple 

phenotypes, plasticity may reach new adaptive peaks through ‘genetic assimilation’ (Grether, 

2013) or can be fixed via ‘genetic accommodation’ (Kopp and Matuszewski, 2014). Genetic 

assimilation is a phenomena where a phenotype created by an environmental cue is refined 

through quantitative genetic changes into an adaptive phenotype that becomes “inherited” (i.e., 

canalized) after a number of generations of exposure to the environmental stimulus (Pfennig et 

al., 2010). Genetic accommodation is a more general ‘fine-tuning’ of the novel phenotype via 

changes in allele frequencies, potentially facilitated by a release of hidden genetic variation 

(Hermisson and Wagner 2004, West-Eberhard, 2005, Crispo, 2007, Ghalambor et al., 2007, 

Moczek, 2007). Plasticity leading to ecological success in a novel habitat is a simple concept; 

however, the prospect of evolutionary divergence in novel habitats due to plasticity is not as 

straightforward (Agrawal, 2001). Relatively little is known about the developmental mechanisms 

that produce phenotypic plasticity or how it is related with ontogeny (Nijhout, 2003, Boege and 

Marquis, 2005, Hoverman and Relyea, 2007). The most common approaches to studying 

phenotypic plasticity are controlled experimental conditions, yielding the information on the 

phenotypes produced by a given genotype under certain conditions. Such experiments are the 

most effective for inbred lines or clones, because a single genotype can be examined in multiple 

environments (Hendry, 2016).  
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Examples of phenotypic plasticity include monarch butterflies, which develop increased wing 

melanisation in low temperatures (Davis et al., 2005), and swallowtail butterflies, whose larvae 

are significantly darker when reared in autumnal conditions rather than midsummer conditions 

(Hazel, 2002). The latter species responds to both temperature and photoperiod. Freshwater 

mussels (Unionoida) show high intraspecific morphological variability, and some shell traits are 

believed to be associated with habitat conditions. It was not known whether and which of these 

eco-phenotypic differences reflect underlying genetic differentiation or are the result of 

phenotypic plasticity. Using 103 amplified fragment length polymorphism (AFLP) markers, 

Zieritz et al., (2010) studied population genetics of three paired Unio pictorum populations 

sampled from two different habitat types (marina and river) along the River Thames. They found 

genetic differences along the Thames which were consistent with a pattern of isolation by 

distance and probably reflected limited dispersal via host fish species upon which unionoid 

larvae are obligate parasites. No consistent genetic differences were found between the two eco-

morphs inhabiting different habitat types, suggesting that morphological differences in the 

degree of shell elongation and the shape of dorso-posterior margin are caused by phenotypic 

plasticity. 

2.1.2. Genetic adaptation 

Through the process of natural selection, phenotypes exhibiting sub-optimal, or maladapted 

phenotypes, will be selected against. A central parameter in estimating responses to selection and 

summarizing the proportion of variance due to genetics is heritability (Wright, 1920, Falconer 

and Mackay, 1996, Lynch and Walsh 1998, Hill, 2010). Two different terms shall be 

distinguished: broad sense heritability and narrow sense heritability. Broad sense heritability (H2) 

is defined as the proportion of trait variance that is due to all genetic factors including dominance 

and gene-gene interactions. Narrow sense heritability (h2) is defined as the proportion of trait 

variance that is due to additive genetic factors. Both kinds of heritability are highly complex to 

estimate and to interpret. An estimate of the heritability of a trait is specific to population and 

environment, and it can change over time as circumstances change. Heritability estimates range 

from zero to one. Being close to zero indicates that almost all of the variability in a trait among 

individuals is due to environmental factors, with very little influence from genetic differences. 

Heritability closer to one indicates that most of the phenotypic variance is attributable to a 

file:///C:/Users/Drorotea/Desktop/DOKTORAT/FINAL_VERSIONS/PhD_INTRODUCTION_and_LITERATURE_REVIEW_041118.docx%23_ENREF_12
file:///C:/Users/Drorotea/Desktop/DOKTORAT/FINAL_VERSIONS/PhD_INTRODUCTION_and_LITERATURE_REVIEW_041118.docx%23_ENREF_23
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variance in genetic background. Genomic-based estimates of heritability, together with the 

ability to collect genome - scale polymorphism data can make precise estimates of heritability, 

practical even for natural populations of long-lived non-model species. Such estimates may be 

valuable for understanding evolution in natural populations and predicting population responses 

to environmental perturbations including ongoing climate change (Lavergne et al., 2010, Shaw 

and Etterson, 2012). In case of marine bivalves, many studies reported fairly high values of h2 for 

body mass and size (Lannan, 1972, Longwell and Stiles, 1973, Newkirk et al., 1977, Mallet et 

al., 1986, Toro and Newkirk, 1990, Toro and al., 1995, Toro and Paredes, 1996). Depending on 

the strength of selection and the heritability of the trait, a population can rapidly adapt to new 

environmental conditions if the trait is oligogenic. 

Distinguishing genetic responses to natural selection from those of other evolutionary forces can 

be challenging, because selection does not frequently leave distinguishable footprints in the 

genome. Adaptation can be locally impeded or even offset by gene flow (i.e. ‘gene swamping’, 

Lenormand, 2002). Gene flow is any movement of individuals, and/or the genetic material they 

carry, from one population to another. When gene versions are carried to a population where 

they previously did not exist, gene flow can be a very important source of genetic variation. 

Selection processes may be particularly effective in marine invasive species, which generally 

display large population’s size and a high level of genetic diversity (e.g. Simon-Bouhet et al., 

2006). Large population sizes and dispersive phases of many marine species mean that 

populations are connected by high gene flow, opposing local adaptation (Nielsen et al., 2009). 

Most marine species have therefore traditionally been viewed as a collection of demographically 

open populations that are interconnected by high gene flow. This expectation followed from the 

apparent lack of dispersal barriers in marine systems and the fact that most marine invertebrates 

and fishes have planktonic larvae that spend days to months in the water column (Grosberg and 

Cunningham, 2001). However, this paradigm of well-mixed marine populations has changed 

considerably in recent decades (Palumbi, 2004, Levin, 2006). Recent theoretical and empirical 

studies have shown that even in the face of considerable gene flow and no differentiation at 

neutral loci, selection from environmental heterogeneity can still result in adaptation (Nosil et al., 

2009, Michel et al., 2010, Yeaman and Whitlock, 2011, Feder et al., 2012). This is because 

different regions across the genome will show variability, where some genomic regions are more 

affected by genetic drift and gene flow, and less by selection, while other regions (or regions 
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linked by linkage disequilibrium) are more strongly influenced by selection (Nosil et al., 2009, 

DeFaveri et al., 2013). Selection acting on a few large effect genes can make them rapidly 

increase in frequency in the population, which can further boost divergence in the face of gene 

flow (Nosil et al., 2009, Comeault et al., 2014). Luttikhuizen et al. (2003) aimed to use a 

quantitative approach to test to what extent additive genetic variance contributed to observed 

shell shape variation for the bivalve Macoma baltica. Through a common garden experiment, 

and molecular variance they deduced that gene flow was on-going. This would lead to the 

assumption that the shell variation was due to phenotypic plasticity. However that hypothesis had 

to be rejected on the grounds that shell shape has shown a genetic component and those ecotypes 

were genetically different (heritability estimated at 23%). Supporting this, the offspring with 

distinct morphs when reared in a common garden maintained the shell shape exhibited by their 

parents. This highlights that even with on-going gene flow and high levels of dispersal, genetic 

variations among habitats exist. It also promotes the importance of combining quantitative 

methods with morphometric analyses to obtain insightful data on phenotypic plasticity and 

evolutionary mechanisms. 

Disentangling and simultaneous quantification of the relative contributions of plasticity and 

genetic differentiation have been studied a lot recently, especially from the point of adaptation to 

climate change. Experimental approaches can provide powerful tests of local adaptation. These 

approaches generally take two forms: “common garden” experiments in the laboratory, and 

reciprocal transplant experiments in the field.  

Assessing the association between genotype, phenotype and environment can help disentangle 

the relative effects of genetics and environment, which is important because biological invasions 

that lead to the formation of distinct ecotypes can sometimes lead to ecologically differentiated 

species (Adams and Huntingford, 2004) and even to adaptive radiations (Simpson, 1953, 

Schluter, 2000, Yoder et al., 2010, Lucek et al., 2014). 
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2.2. Mytilus galloprovincialis Lamarck, 1819 

species: Mytilus galloprovincialis Lamarck, 1819  

genus: Mytilidae  

order: Mytilioida  

class: Mollusca 

 

The Mediterranean mussel, Mytilus galloprovincialis Lamarck, 1819, is one of the three 

commercially and ecologically important sibling species in the M. edulis species complex; 

together with M. edulis Linnaeus, 1758, and M. trossulus Gould, 1850. Based on Me 15/16 locus 

as a genetic marker, Hamer et al., (2012) showed that M. galloprovincialis is the most common 

mussel species in the Adriatic sea. As inhabitants of the mediolitoral zone, these organisms 

endure extreme environmental conditions, such as occasional drought, great differences in 

temperature and strong wave influence (Petricioli, 2007). Being marine broadcast spawners, 

reproduction involves gametes releasing directly into the water column, where they are exposed 

to turbulent environment. On such occasions, a sexually mature female can release over 25 

million eggs (Ceccherelli and Rossi, 1984), from which, upon fertilization, planktonic larvae 

develop and freely float in the water column. This occurrence is important in many ways, in 

particular because of the species dispersal. Larval transport of the Mediterranean mussel can be 

manifested via ballast water, ship hull fouling, and, as it is commonly cultured, through 

aquaculture activities. It is traditionally grown in aquaculture throughout the Mediterranean, and 

more recently in the other parts of the world. Native to the Mediterranean Sea, M. 

galloprovincialis has also been introduced to the southern hemisphere (New Zealand, Australia, 

South Africa, Chile), the Northwest Pacific Ocean (Russia, Japan, Korea, and China), and the 

Northeast Pacific Ocean (British Columbia to Baja California, Mexico, with the apparent 

exception of Oregon and perhaps northernmost California) (Fofonoff et al., 2016).  

Morphologically, they are characterized by the presence of a triangular, dark blue, brown or 

black bivalve shell, filtrating gills, no differentiated head, and a lack of radula. Other anatomical 

features such as adult byssal attachment and mantle fusion also play an important role in their 

adaptation as filter feeders and burrowers, respectively (Murgarella et al., 2016). Individual size 

is greatly affected by the characteristics of the biotope itself. The average height of the shell is 5-

8 cm, but some individuals can grow up to 15 cm. 
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Some bivalves, as does M. galloprovincialis, show an atypical double uniparental inheritance 

(DUI) of mitochondria. In these species, all progeny inherit one mitochondrial genome from the 

mother (F-type), while males also receive a mitochondrial genome from their father (M-type). 

This DUI, initially described in M. edulis (Skibinski et al., 1994), has been extensively studied in 

the genus Mytilus (Zouros, 2000, Breton et al., 2006).  

Despite the commercial and scientific interest in mussels in biology and aquaculture, the number 

of genomic resources available in public databases for these organisms is quite limited, and 

usually restricted to their transcriptomes. However, a draft genome is available for the M. 

galloprovincialis (Murgarella et al., 2016), as well as a transcriptome (Moreira et al., 2015). 

Murgarella et al., (2016) carried out a whole-genome sequencing study and shed some light onto 

the genome complexity and (partial) gene repertoire of M. galloprovincialis. Mediterranean 

mussel de novo genome can be used to provide first insights into the composition and structure 

of genomes in non-model organisms. Authors estimated the genome size to be 1.6 Gb from the 

k-mer count data, but discrepancies between genome sizes estimated from sequencing and 

experimental data have been previously reported (Elliott and Gregory, 2015). Using flow 

cytometry, M. galloprovincialis was proposed to have a genome size of either 1.4 Gb (Ieyama et 

al., 1994) or 1.9 Gb (Rodríguez-Juíz et al., 1996). The genome size of M. galloprovincialis is 

only comparable with Aplysia californica genome, while those of Pinctada fucata, Crassostrea 

gigas and Lottia gigantea are 33, 66 and 75% smaller, respectively (Murgarella et al., 2016). The 

comparative analyses of the genomic features observed in M. galloprovincialis with other marine 

molluscs have shown that an important part of the genome in these organisms contains a large 

number of repetitive sequences (~30% of the genome), a feature that is also shared with many 

other marine molluscs. A comparative analysis with other molluscs further revealed a gene 

enrichment of gene ontology categories related to multixenobiotic resistance, glutamate 

biosynthetic process, and the maintenance of ciliary structures. Another notable characteristic is 

their natural resistance to diseases. The immune system of bivalves is solely based on innate 

defences, which play a prominent role in protecting these animals against invading 

microorganisms (Murgarella et al., 2016). 
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2.3. Environmental influence on morphology and internal anatomy  

 

The calcitic and/or aragonitic shell of species in phylum Mollusca is an important characteristic 

as it protects against predators, parasites and environmental stress. It is a substratum for 

attachment of epibionts and transport of solutes and particles in the benthic environment. Shells 

also play a systemic role in the metabolism of molluscs, participating in the capture and 

deposition of respiratory CO2 in the shell mineral (Wilbur, 1964, Wheeler, 1992) and in 

buffering of extracellular pH during environmental anaerobiosis (Crenshaw, 1972). The shells 

are produced by specialized epithelial cells of the mantle with the assistance of CaCO3-

transporting hemocytes (blood cells) (Wheeler, 1992). They consist of 3 major layers: the 

outermost proteinaceous layer called periostracum, and 2 mineralized layers called ostracum 

(middle layer) and hypostracum (inner layer), composed primarily of CaCO3 crystals (Wheeler, 

1992).  

A few specific shell characteristics have been extensively studied (McDonald et al., 1991), such 

as thickness (Zieritz et al., 2010), width, length, height or their ratios (Blythe et al., 2008, 

McDonald et al., 1991, Zieritz et al., 2010). The internal anatomy of bivalves is also subjected to 

environmental variation, especially the ligament, and position and size of adductor and retractor 

muscles (Innes and Bates, 1999, Freeman, 2007). Ligament connects the separated shell plates 

and the adductor muscles control the opening and closing of the shell plates. In the planktonic 

veliger larva, the adductor muscle typically appears in two parts (the anterior and posterior 

adductor muscle) and is retained in post-metamorphic stage, although, in some species, one of 

the adductor muscles is lost after settlement (Baker and Mann, 1997). Anterior and posterior 

pedal retractors are the muscles mainly responsible for movement of the foot. They retract the 

foot and effect back-and-forth movements. It is known that mussels living in the subtidal zones 

have thicker shells and a wider posterior muscle than the mussels living in intertidal 

environments (Beadman et al., 2003, Savoya, 2012).  

There are numerous environmental factors leading to hypothesis that mussels shell size and 

shape (together with mentioned muscles) are only partially heritable. Usually in nature, not only 

one of them changes and affects phenotype, but they rather alter simoultaniously. However, 

thanks to many explorations regarding mussel’s phenotypic variability, literature history appoints 

to many specific environment – phenotype relations.  
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2.3.1. Ocean acidification 

 

Seawater has substantial buffering capacity. However, variation in seawater chemistry due to 

factors such as elevated carbon dioxide (CO2) levels caused by biological activity, freshwater 

inputs, and runoff from acidic soils, leads to shifts of seawater pH. Previous studies have shown 

significant effects of seawater acidification on genetic expression, changes in physiological 

responses, reduction of metabolic rate, as well as mortality of larvae (Hiebenthal et al., 2011, 

Byne, 2011, Melzner et al., 2012). An increase in the CO2 concentration in seawater can impair 

shell deposition and increase shell dissolution rates, weakening the shells and affecting their 

functional properties in bivalves (Orr et al., 2005, Ries et al., 2009). Moreover, the energy costs 

of biomineralization may contribute to the basal metabolic costs of marine calcifiers, especially 

when CaCO3 is lost due to erosion in acidic seawater (Wood et al., 2008). Beniash et al. (2010) 

demonstrated that the increase in CO2 partial pressure (pCO2) in seawater, and associated 

decrease in pH, have negative effects on physiology, rates of shell deposition and mechanical 

properties of the shells of eastern oysters Crassostrea virginica (Gmelin). High CO2 levels (pH 

~7.5, pCO2 ~3500 μatm) inhibited both shell and soft-body growth compared to the control 

conditions (pH ~8.2, pCO2 ~380 μatm). The high CO2 conditions also led to changes in the 

ultrastructure and mechanical properties of shells, including increased thickness of the calcite 

laths within the hypostracum and reduced hardness and fracture toughness of the shells. These 

data strongly suggest that the rise in CO2 can impact physiology and biomineralization in marine 

calcifiers such as eastern oysters, threatening their survival and potentially leading to profound 

ecological and economic impacts in ecosystems. 

 

2.3.2. Predators 

 

Predator–prey interactions are one of the most important biotic ecological features in shaping 

biologic diversity (Liew and Schilthuizen, 2014). Substantial work has been undertaken to 

understand inducible predator defences in adult bivalves (Freeman, 2007, Caro et al., 2008, 

Freeman et al., 2009, Brown et al., 2011). Mussels respond to predators foraging strategy with 

specific morphological defences (Freeman et al., 2009). There are a specific sets of responses to 

predator that have been observed in detail, including thickening of the shell, increased adductor 
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muscle mass, aggregation behaviors and the increased production of byssus threads (Caro et al., 

2008).  

In order to maximize their rate of energy intake, foraging predators must select prey that yields 

the maximum amount of energy for the minimum amount of time taken to search for and handle 

(MacArthur and Pianka, 1966, Krebs, 1978). ‘Handling time’ for prey of a certain size or 

morphology, and consequently, ‘optimal prey size/morphology’ will differ depending on the type 

of foraging technique used by a given predator (Zieritz et al., 2012). Generally, the studies focus 

on a single predator interaction (Freeman and Byers, 2006, Brown et al., 2011, Eschweiler and 

Christensen, 2011) and search for induced responses. However, in natural world, single predator 

environments are uncommon, unless the organism is near the apex of the trophic web. Therefore, 

it is important to understand what the induced responses would be to multiple predators at the 

same time. Freeman et al., (2009) investigated the induced response of M. edulis to multiple 

predator effluents simultaneously. The result of this study showed poor phenotypic integration, 

which is indicative of a trade-off in predator resistance (DeWitt et al., 2000), and not an inability 

to recognise cues.  Moreover, the volume of previous studies on single predator recognition and 

defence serves in support of this hypothesis. Specifically, Freeman and colleagues (2009) 

presented M. edulis with multiple potential predators in pairwise combinations and obtained data 

on shell thickness adductor muscle mass and behaviours. In response to the crab Carcinus spp. 

alone mussels developed thicker shells, whereas when alone with the sea star Asterias spp. they 

developed larger adductor muscles. During simultaneous exposure to both predators, thickening 

of the shell was not observed; even when functionally similar groups such as other species of 

crab, like Cancer spp. were in combination. This counterintuitive find of functional groups 

suggested to the authors that the inducible defences are species dependent and often lead to 

poorly integrated responses to combinations of predators. One method that may be more 

beneficial to mussels is not to devote energy into specific shell defences that only protect against 

one predator, but to grow bigger. If an organism achieves size refuge then the morphological 

defences are not required (Hoverman et al., 2014). It is likely that with more than one species of 

predator present in natural communities mussels invest in the more likely predator and become 

phenotypically specialist. They may also attempt to reduce likelihood of predation through 

attaining a size protection. Either way using quantitative and molecular techniques could shed 

light on the processes on evolution at work.  
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2.3.3. Community structure and food availability  

 

Mussel’s sedentary filter-feeding life style allows them to feed on a wide spectrum of planktonic 

organisms; phytoplankton, zooplankton, bacteria, and dissolved organic matter (Gavrilović et al., 

2011). The growth rate of M. galloprovincialis depends on intra-specific competition due to the 

density of animals within the mussel bed. It is shown that density is an important environmental 

factor for the genus Mytilus (Seed, 1968), whereby the higher population density and the smaller 

quantity of available food lead to narrower and elongated shells compared to those growing in 

conditions of low density. Additionally, it is likely that during strong pCO2 stress coupled to 

food limited conditions, energy is allocated to more vital processes (e.g. somatic mass 

maintenance) over inner shell surface integrity (Melzner et al., 2011).. The extension of the shell 

can also provide a more favorable position of siphon with regard to food access (Senechal et al., 

2008) which is also considered to be adaptation to food competition at high population density 

(Alunno-Bruscia et al., 2001). High-density mussels can be stretched to the edge of the 

population where there are less restrictions for opening the valves (Lauzon-Guay et al., 2005).  

2.3.4. Wave exposure 

 

In communities that inhabit the tidal zone, there hydrodynamic changes caused by waves are 

constantly present (Gaylord et al., 1994). Waves are not only moving organisms, but also 

regulate food supply and pathogen delivery, and play a key role in shaping the structure and 

dynamics of life communities (Paine and Levin, 1981). Therefore, wave force has been reported 

as another factor influencing the characteristics of the shell shape (Bell and Gosline, 1997). 

Akester and Martel (2000) determined striking differences in shell morphology between M. 

trossulus collected from wave-exposed and sheltered sites. M. trossulus shells tended to be 

thicker and have lower shell height / shell width ratio at wave-exposed sites, perhaps reducing 

the effect of hydrodynamic forces (Akester and Martel, 2000, Steffani and Branch, 2003). 

Mussels from wave-exposed sites had a thicker hinge ligament as well (Akester and Martel, 

2000). These observations suggest that wave exposure could be the cause of the observed 

phenotypic plasticity in both shell morphology and ligament thickness.  
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2.3.5. Salinity and temperature 

 

Seawater salinity and temperature are the most important environmental factors for organisms 

distribution in the rocky coastline (Hiebenthal et al., 2012). Hamer et al., (2010) showed that the 

salinity is relativelyconstant in the open waters of the Adriatic sea, but varied in intertidal zones, 

estuaries, locations close to under-sea freshwater springs and during rainy days in closed lagoons 

on different locations along the coast. Salinity changes are affecting organism’s size, age, 

phenotypic, and genetic structure and geographical distribution (Shurova, 2001). Researchers 

showed that lower salinity reduces shell stability (Blythe and Lea 2008), probably due to lower 

availability of calcium and carbonate for biomineralization (Bayne 1976, Shields et al., 2008). 

More specifically, carbon (δ13C) in mussel’s shell might be used as an indicator of 

environmental salinity and hypo-osmotic stress (Hamer et al., 2010). Furthermore, the 

morphometric shell variability has shown a correlation with the gradient of salinity, according to 

which elongated specimens are found in the area of lower salinity (Valladares et al., 2010). 

Temperature is another factor influencing physiological and biochemical processes at seawater 

organisms (Petes et al., 2007). Seasonal decline in population may be related to temperature, i.e. 

thermal stress as a cause of mortality in mussels (Shields et al., 2008). 

 

2.3.6. Pollution 

 

Due to their non-selective filter-feeding nature and accumulation of chemical contaminants from 

a large quantity of seawater, environmental quality is a key factor in the growth and development 

of the mussels. The concentration of chemicals in their tissue (organic and inorganic substances, 

heavy metals such as Cu, Zn and Hg; Steinert et al., 1998) can reach 1000 times the seawater 

concentrations.  

Metals represent one of the most studied groups of molecules. Metal contamination is a matter of 

huge concern, especially in marine environments, due to their abundance, persistence and 

subsequent bioaccumulation (Barlas et al., 2005, Khedher et al., 2014). They can either be 

accumulated and persist in the sediments, and/or be released from sediments, acting as a back 

source to the overlying water during natural or anthropogenic disturbance (Chalghmi et al., 

2016). Furthermore, it is also important to understand the interactions between metals and their 

spatio-temporal variation in coastal environments. At a cellular level, metal toxicity mainly 



19 
 

involves the generation of oxidative stress, leading to reactive oxygen species (ROS) generation, 

which can cause adverse cellular effects such as DNA damage, protein oxidation and/or lipid 

peroxidation. The sources of heavy metal pollution are the anti-fouling colors, communal waters 

of urban areas, industrial waste water, and natural rock wear. Today, copper and zinc are used as 

active ingredients in biocides (Chen et al., 2011). Such chemicals also have a toxic effect on 

organisms, inhibiting the Krebs cycle, inducing oxidative stress and related mutations and 

affecting the proper functioning of the reproductive system (Fitridge et al., 2012). There is 

currently no convention to regulate the entry of these heavy metals into the marine environment. 

However, exposure to contaminants for a prolonged period can lead to acclimatization 

(phenotypic change during a lifetime of given genotype) and some level of adaptation (refers to 

change over several generations - evolutionary process - within a populations or species). Thanks 

to acclimatization, individuals in the polluted environment are more physiologically tolerant and 

have longer lasting survival in the air than individuals collected in non-polluted areas 

(Koukouzika and Dimitriadis, 2005). For example, mussels from polluted sites show elevated 

values of LT50 (Koukouzika and Dimitriadis, 2005, Hiebenthal et al., 2012), a fact that supports 

the assumption that some degree of adaptation to pollution can be developed in mussels. 

 

2.4. Morphometry 

Shell shape is routinely used for morphological recognition in the taxonomy of bivalves. It is 

particularly useful in those cases when genetic studies cannot be performed, as happens with 

fossil and many archaeological records (Gardner, 2004). Shell shape is a key morphological 

characteristic reflecting phylogenetic history, function and life habit (Crampton and Maxwell, 

2000) and has been used for discrimination among species of genus Mytilus (McDonald et al., 

1991, Innes and Bates, 1999, Gardner, 2004, Krapivka et al., 2007, Beaumont et al., 2008, 

Valladares et al., 2010). Variations in shell shape have been examined using ratios of shell 

length, height and width (Seed, 1968, Beaumont et al., 1989). Direct analysis of bivalve shell 

shape, based on a digitized outline, has been developed using elliptic Fourier analysis (Ferson et 

al., 1985, Crampton, 1995), which analyses complex outlines with little loss of shape information 

(Rohlf and Archie 1984, McLellan and Endler, 1998). Innes and Bates (1999), for instance, 

found morphological differences between Mytilus edulis and Mytilus trossulus from a sympatric 
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population, proving the existence of differentiation in shell morphology related to the mussels 

genotype of the mussels even under similar environmental conditions.  

2.4.1. Traditional morphometry 

 

Traditional morphometry applies multivariate statistical methods (e.g., principal components 

analysis, canonical variety analysis, discriminant function analysis, or multivariate analysis of 

variance) to a set of traits measured on each individual (Parsons et al., 2003). In many instances, 

these traits are linear distances measured between pairs of landmarks on the body, or body parts. 

The measurements are usually taken with a floating point or calliper, a hand-held measuring 

instrument with a precision of less than one millimeter. The results are mostly expressed 

numerically and graphically in terms of linear combinations of the measured variables. 

 Increased computing power drove the development of traditional morphometrics in the 1960s 

and 1970s to the point that permitted simultaneous analysis of multiple traits, which was an 

obvious improvement over univariate approaches (e.g., Jolicoeur 1963, Parsons et al., 2003). 

However, limitations relating to these traditional methods became increasingly obvious (e.g. 

linear lengths are strongly positively related to body size, the same set of lengths measures could 

be obtained from two different shapes because the location of where the lengths were made 

relative to one another was not included in the data.). These issues may be overcomed using a 

geometric morphometric method, which allows analysis of the overall shape of the individual, 

independently of its size (Rohlf and Marcus, 1993, Bookstein, 1996, Adams et al., 2004).  

2.4.2. Geometric morphometry 

 

Geometric morphometric methods focus on the geometry of form estimated using the relative 

locations of landmarks (and sometimes outlines) rather than on linear measurements taken 

between landmarks. In a review Rohlf and Marcus (1993) emphasized applications of geometric 

morphometric to exploratory studies in taxonomy and evolution. Data are recorded to capture the 

geometry of the structure being studied. This is in the form of two dimensional (2-D) or three-

dimensional (3-D) coordinates of morphological landmark points. One can check their adequacy 

in covering the structures of interest by a visual evaluation of a graphical display of the 

landmarks. Rather than just reporting that the shape is different, one can report that certain 
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structures have moved relative to others. If one is interested in the overall outline or surface of a 

structure (or of just parts of a structure between landmarks in 2-D or a surface in 3-D), then this 

can be captured by a sequence of points along the outline or over a surface.  

Geometric methods still require the same set of homologous landmarks on all specimens. 

Unfortunately, specimens can be missing landmarks if they are broken, poorly preserved, if 

structures are articulated differently, or landmarks found on one taxa are not present on another. 

Options are limited in these cases. Variant landmarks are either eliminated from the analysis 

(effectively reducing shape information), or damaged specimens missing landmarks are 

eliminated from the data set when rare, or missing landmarks are estimated using sample means 

(Adams et al., 2004). Despite these problems, proponents of the geometric methods have claimed 

significant progress at solving many of the limitations of traditional morphometric methods 

(Rohlf and Marcus, 1993, Adams et al., 2004). 

2.4.3. Fluctuating asymmetry (FA) 

 

Phenotypic variation of a species can be examined at different organizational levels: (i) among 

populations; (ii) among individuals within a population; and (iii) within an individual. Most 

studies take place at the first level, i.e., comparing populations described by the mean values of 

morphological characters. The third level - variation within an individual - expresses differences 

between an individual’s symmetrical structures, i.e., as fluctuating asymmetry (FA), the random 

non-directional deviations from perfect symmetry (Van Valen, 1962). FA has been examined in 

a variety of plants and animals, and promoted as a useful bioindicator of exogenous stressors in 

habitats, whether of natural or anthropogenic origin (Allenbach, 2011). The homeostatic control 

of morphological development, or developmental stability (DS), may be perturbed when 

naturally-occurring or anthropogenic stressors are experienced during development. 

Consequently, development does not follow its pre-programmed trajectory, and aberrant 

phenotypes, including deviations of bilateral asymmetry, may result. While no bilateral structure 

is perfectly symmetrical, the inference is that greater degrees of asymmetry arise when 

organisms are exposed to exogenous environmental stressors during development (Allenbach, 

2011). FA has generated interest among population biologists because it potentially reflects one 

of the components of fitness - developmental stability, i.e., the ability of an organism to 
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consistently produce an ‘ideal’ phenotype in a given environment. Although an association 

between FA and fitness is not always observed in empirical studies, recent reviews concluded 

that, overall, FA can be considered a useful tool for assessing a population’s average fitness 

(Allenbach, 2011, Graham et al., 2010). A number of reviews examine the relationship between 

FA and environmental stressors across broad phylogenetic scales (e.g., Leary and Allendorf, 

1989, Graham et al., 1993b, Møller, 1997, Moller and Thornhill, 1998, Hoffmann and Woods, 

2003, Graham et al., 2010). 

2.5. Oxidative stress 

 

In polluted environments and especially in coastal waters, living organisms are often exposed to 

complex mixtures of chemical contaminants. Because of the diversity and variability of the 

chemical threat, defense mechanisms exhibit considerable versatility and adaptability. Among 

the strategies that have been developed by organisms at the cellular level to protect themselves 

from the toxic effects of anorganic or organic compounds, the major ones are the antioxidant 

defense systems. Excessive production of reactive oxygen species (ROS), caused by 

environmental stress or large amounts of xenobiotics, can trigger a change in the balance 

between oxidants and antioxidants, resulting in oxidative stress.  Oxidative stress therefore 

delineates an imbalance between the production of ROS and the organism’s antioxidant defence 

(Betteridge, 2000). ROS are unstable atoms or molecules that contain an unbalanced electron in 

the outer shell. In order to become more stable, they can take electrons from other molecules, 

causing the formation of new radicals and oxidation chains (Halliwell and Gutteridge, 1984). 

ROS naturally occur during the cellular aerobic metabolism as a result of partial oxygen 

reduction to water, or as a by-product during the certain xenobiotics metabolism (Livingstone et 

al., 1990). The main reactive oxygen species, formed by the metabolism or contaminants, are 

superoxide anion (O2¯), hydrogen peroxide (H2O2), hydroxyl radicals (OH-), peroxyl radicals 

(ROO-), alkoxyl radicals (RO-) and peroxynitrite (OONO-) (Camus et al., 2004). Low levels of 

free radicals are necessary for maintenance of the cell homeostasis (Ames et al., 1993), signaling 

mechanisms and regulation of various cellular functions such as secretion, growth and gene 

expression (Halliwell and Gutterigde, 1997). However, longer exposure leads to oxidative 

damage on DNA, lipids and proteins (Kaloyianni et al., 2009). In that case, ROS can induce 

tissue damage, change physiological and chemical properties of cell membranes and disrupt vital 
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organs (Manduzio et al., 2005). A complex defence system, consisted of non-enzymatic 

components and antioxidative enzymes, provides a cell protection from the free radical toxicity 

(Regoli, 1998). Specifically, in the mussels, the antioxidative defense system contains enzymes 

such as catalase, glutathione S-transferase, superoxide dismutase, glutathione reductase, and non-

enzymatic glutathione molecule (Livingstone, 2001). Many studies have shown a positive 

correlation between the degree of antioxidative defense and the presence of xenobiotics in the 

organism (Orbea et al., 2002). Measurements of oxidative damage, such as lipid peroxidation, 

protein carbonylation, and antioxidative response are often used as biomarkers in 

ecotoxicological researches and considered a good method for analyzing the various 

environmental impacts on the individuals (Vidal-Liñán et al., 2010). 

 

2.5.1. Oxidative stress biomarkers 

 

Biological threat of the high number of chemicals and their complex mixtures can only be 

partially monitored through chemical methods (Muir and Howard, 2006), because they do not 

provide a true indication of the toxic effects on the marine ecosystems (Livingstone, 2001). 

Concentration of contaminants in the organism’s tissues does not provide explicit information of 

its biological significance or exact harmful effects. In order to overcome this limitation, 

biological responses must be used in monitoring programs in addition to chemical analyses (Ices, 

2008). To achieve this, many biological monitoring methods have been developed, ranging from 

the biological feedback on the sub-cellular level, to the whole organism responses. Biomarkers 

reveal environmental stress caused by chemical contaminants, as well as other environmental 

variables. Thus, integration of biomarkers and chemical analysis is essential in order to establish 

links between stress and pollution (Galloway et al., 2004). Biomarkers may be defined as 

quantitative measurements of changes occurring at cellular, biochemical, molecular, or 

physiological levels, that can be measured in cells, body fluids, tissues or organs and that may be 

indicative of xenobiotic exposure and/or effect (e.g. McCarthy and Shugart, 1990, Lam and 

Gray, 2003, Allen and Moore, 2004).  

The main function of the biomarkers is to give early alert signals to significant biological 

changes, as it is considered that responses at lower levels of organisms come before those at 

higher levels of biological organization (e.g. population, community, or ecosystem). The 
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biomarker techniques are further complicated by a range of natural environmental and biological 

factors and processes (e.g. seasonality, reproductive cycle, body mass, quality of available food, 

etc.) potentially interfering with the effects of contaminants on the biological responses of 

monitored organisms (Viarengo et al., 1991, Astley et al., 1999, Shaw et al., 2004, Lesser, 2006). 

Most studies on biomarkers have been carried out on fish (Lemaire and Livingstone, 1993, 

Rodriguez-Ariza et al., 1993, Fenet et al., 1996, Van der Oost et al., 1996, Eufemia et al., 1997) 

and marine invertebrates (Livingstone et al., 1990, Porte et al., 1991, Ribera et al., 1991, 

Livingstone et al., 1992, 1995, Regoli and Principato, 1995, Labrot et al., 1996, Fitzpatrick et al., 

1997, Telli Karakoc et al., 1997). 

A battery of biomarkers, including both enzymatic and molecular parameters, is used in 

environmental risk assessment. 

Catalase (CAT) is a commonly studied antioxidant enzyme involved in the initial antioxidative 

mechanism and widely used as a biomarker in mussel (Cajaraville et al., 2000, Khessiba et al., 

2001, Nasci et al., 2002, Lau and Wong, 2003, Roméo et al., 2003). It reduces H2O2, originated 

from the superoxide dismutase enzyme (SOD), to produce water and oxygen. This enzyme can 

also act as peroxidase, for which several organic substances, especially ethanol, can act as a 

hydrogen donor. It occurs in almost all aerobically respiring organisms and is localized in 

peroxisomes (Jourmi et al., 2015). 

The glutathione-S-transferases (GST) are a group of quantitatively the most important 

biotransformation enzymes, involved in the metabolism of lipophilic organic contaminants 

(Fitzpatrick et al., 1997). These enzymes also play a role in protection against oxidative stress by 

catalyzing a selenium-independent glutathione-peroxidase activity (Prohaska, 1980). They 

catalyse conjugation reaction of glutathione with various organic compounds including PAH.  

Glutathione reductase (GR) does not play a direct role in the elimination of oxygen radicals. 

However, it is considered as an essential antioxidant enzyme because it reduces oxidative 

glutathione (GSSG) and maintains the balance of GSSG / GSH that is necessary for homeostasis 

and other enzymes activity (Winston and Di Giulio, 1991). Cell redox status is generally 

determined by the ratio of reduced (GSH) and oxidized glutathione. In that sense, GR and 
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NADPH maintain this ratio in favor of GSH (Schafer and Buettner, 2001). If the ratio is more in 

favor of the GSSG, apoptosis may occur (Matés and Sánchez-Jiménez, 2000). 

Malondialdehydes (MDA) are a naturally occurring products of lipid peroxidation and 

prostaglandin biosynthesis, that are mutagenic and carcinogenic (Marnett, 1999). They react with 

DNA to form adducts (Marnett, 1999). Increasing amount of MDA in the tissues can be 

associated with environmental degradation and decreased water quality (Charissou et al., 2004). 

Research has shown that lipid peroxidation is a relevant index of biochemical damage induced 

by toxins (Pedrajas et al., 1995). They are considered useful biomarkers for measuring the level 

of oxidative stress (Del Rio et al., 2005). 

The effect of oxidative damage on proteins is the formation of carbonyl groups (Stadtman and 

Berlett, 1998, Zusterzeel et al., 2001). Exposure to ROS can cause irreversible modifications of 

protein’s aminoacid side chains (mostly lysine, arginine, proline and histidine) into aldehyde and 

ketone groups (carbonylation), which can lead to aggregation, inactivation or degradation of 

proteins (Levine et al., 1990). One such modification is formation of carbonyl moieties (-C=O) at 

amino acid side chains. Carbonyl groups can be introduced in proteins by a number of different 

pathways, predominantly via metal catalysed oxidation (MCO) but also via adduction of 

oxidized lipids or sugars containing carbonyls (Requena et al., 2003). Protein carbonyls can also 

form via secondary mechanisms resulting from reactions of free radicals with other cellular 

constituents, such as lipids, carbohydrates and nucleic acids (Grune, 2000). An increase in the 

number of carbonyl groups correlates well with protein damage caused by oxidative stress 

(Shacter et al., 1994). The formation of carbonyl derivatives is non-reversible, causing 

conformational changes, decreased catalytic activity in enzymes and ultimately resulting in 

breakdown of proteins by proteases due to increased susceptibility (Almroth et al., 2005). 

2.5.2. Neurotoxicity biomarker - Acetylcholinesterase (AChE) 

 

Acetylcholinesterase (AChE) is an essential enzyme for the correct transmission of nerve 

impulses since it catalyzes the degradation of acetylcholine, the most important neurotransmitter 

in the nervous system of many animals (Bocquené and Galgani, 1991). AChE is commonly 

found as a transmembrane protein in various cell membranes of the invertebrates, such as 
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membrane glands and digestive glands and hemolymph. Since AChE is susceptible to neurotoxic 

substances, measurement of its activity is widely used as a sensitive neurotoxicity biomarker in 

mollusks (Valbonesi et al., 2003, Rickwood and Galloway, 2004). Inhibition of AChE is directly 

related to the toxic effects of organophosphate, carbamate pesticides (Galgani and Bocquené, 

1989) and some metals and hydrocarbons (Jebali et al., 2006, Banni et al., 2010). 

2.5.3. Genotoxicity biomarker – DNA damage  

 

In a process of determining stress caused by contaminants in living organisms assessment of 

DNA damage is of great importance. In order to monitor genotoxicity in marine systems, the 

single-cell gel electrophoresis assay method (comet assay) can be used. The comet-assay is a 

method based on the mobility of damaged DNA portions, in the electrical field, resulting in their 

separation from nucleoids that are immobilized in agarose gel. It is possible to detect 

cumulatively various forms of DNA damage in particulate cells, in many organisms and various 

cell types. Comet-assay is capable of detecting single-stranded and double-stranded DNA 

fractures, DNA-proteins or DNA- DNA cross-linking and lysine-sensitive sites (apurin or 

apurimidine sites), depending on the pH buffer during the denaturation and electrophoresis of 

DNA (Rojas et al., 1999, Tice et al., 2000). 

2.6. Survival as the proxy for fitness 

 

Within evolutionary biology, fitness can be interpreted as the quantitative representation of 

natural and sexual selection (Williams, 1996) because it merges selection related concepts (e.g. 

survival, reproduction) into one idea. Selection tends to make alleles underlying traits that confer 

higher fitness more common over time, resulting in Darwinian evolution. Term fitness is also 

used to describe how good a particular genotype is at leaving offspring in the next generation - 

‘Survival of the fittest’ (Eertmann and de Zwaan, 1994). Therefore, the fittest individual is not 

necessarily the strongest, fastest, or biggest. A genotype's fitness includes its ability to survive, 

find a partner, produce offspring — and ultimately leave its genes in the next generation. It might 

be tempting to think of natural selection acting exclusively on survival ability — but, as the 

concept of fitness shows, that anyhow is a half of the story 

(https://evolution.berkeley.edu/evolibrary/article/evo_27). While the reproductive success of 
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mussels cannot be directly measured, many studies use the estimates of growth and survival as 

proxies for fitness (Gardner and Skibinski 1990, Gardner et al., 1993, Arnold, 1997). Survival 

time in air can indicate the general health of marine organisms (Viarengo et al., 2007). Species 

from genus Mytilus are able to survive aerial exposure for many days, but under sustained aerial 

exposure the mussels will eventually die. The ‘Stress on stress’ (SOS) test is a physiological 

biomarker used to evaluate mussel resistance to air exposure (Eertman et al., 1993). Various 

studies have demonstrated that bivalves exposed to contaminants have reduced tolerance to 

anoxia. Stress on stress response can therefore be proposed as an index of general stress at the 

organism level which can be applied as a monitoring tool for the assessment of contaminated 

coastal areas (Viarengo et al., 1995). The SOS response was first experimentally tested in 

mussels by Veldhuizen-Tsoerkan et al. (1991). Short term laboratory exposure to cadmium and 

long term exposure to PCBs resulted in a significantly reduced tolerance to aerial exposure. The 

first application of the “Survival in air” response of mussels following field exposure produced 

significant inverse correlations between tissue contaminant concentrations and tolerance to aerial 

exposure (Smaal et al., 1991) confirming the potential of this parameter as stress indicator in 

coastal waters (Eertman et al., 1993). 

 

2.7. Genetic architecture 

 

Ecology and conservation biology have developed greatly in recent decades through the use of 

genetic markers in investigating organisms and evaluating the effect of environmental 

disturbances (Narum et al., 2013). However, many of these studies have been limited to narrow 

regions of the genome, making it difficult to generalize about the organisms and their 

evolutionary history. Advances in sequencing technology (i.e. next-generation sequencing; NGS) 

have enabled to sample the genome much more densely, and observe the patterns of genetic 

variation that results from the full range of evolutionary processes acting across the genome 

(Allendorf et al. 2010, Stapley et al. 2010). Yet, uncovering the evidence of genetic adaptation is 

almost always hampered by the effects of evolutionary phenomena such as genetic drift, 

phenotypic plasticity, complex demographic history and complex genetic architecture 

(Villemereuil and Gaggiotti, 2015). 
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Genetic architecture refers to the underlying genetic basis of a phenotypic trait and its variation 

(Hansen, 2006). A description of genetic architecture may include statements about gene and 

allele number, the distribution of allelic and mutational effects, patterns of pleiotropy, 

dominance, and epistasis. Despite the obvious complexity of the developmental processes that 

underlie the genetic architecture, it is necessary to understand it for many biological questions, 

including speciation, the survival of small populations, inbreeding, understanding diseases, 

understanding the processes and genetics of adaptation and population differentiation. Because it 

describes or determines the phenotypic traits variations, and thus their evolutionary potential, 

understanding the evolution itself depends upon understanding the evolution of genetic 

architecture. R. A. Fisher’s (1930) geometric theory was one of the first into explaining how 

genetic architecture is shaped by – and can shape – adaptive evolution. He mathematically 

reasoned that many genes of small effect were likely to control traits (Agrawal et al., 2001). On 

the other hand, it is thought that mutations in large-effect loci play an important role in allowing 

populations, which are far from their phenotypic optimum, to rapidly adapt (Orr, 1998). Because 

of this, large-effect loci are thought to be important during initial stages of adaptation to a new 

environment; these traits will later be tweaked to an optimum state by changes at small-effect 

loci (Nadeau and Jiggins, 2010). Large-effect loci might also play an important role during 

divergence with gene flow. If the effect of a locus on fitness has a magnitude greater than the 

rate of gene flow, then adaptive divergence can occur with greater ease (Slatkin, 1987). 

2.7.1. Genotyping-by-sequencing (GBS) 

 

Understanding the genetics basis has been limited by the high cost of de novo genotyping of 

species with limited marker data. Non-resource-prohibitive methods that overcome the limitation 

of genotyping are now available. The ability to screen genome polymorphism data through 

genotyping such as RAD-tag, multiplexed shotgun genotyping or genotype-by-sequencing 

(GBS) (Baird et al., 2008, Andolfatto et al., 2011, Elshire et al., 2011), allows  estimates of 

heritability even for natural populations of non-model species. Genotyping-by-sequencing (GBS) 

has been developed as a rapid and robust approach for sequencing of samples that combines 

genome-wide molecular marker discovery and genotyping (Poland and Rife, 2012). The 

flexibility and low cost of GBS makes this an excellent tool for many applications and research 
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questions. It can offer the screening of thousands of polymorphisms throughout the genome. 

Single nucleotide polymorphism (SNP) is a variation in a single nucleotide that occurs at a 

specific position in the genome, where each variation is present to some appreciable degree 

within a population. Such ‘variable’ SNPs are particularly valuable for quantitative genetic and 

evolutionary studies, because they represent the most abundant class of genetic variations in 

eukaryotic genomes and have a great potential for quickly identifying causal genes responsible 

for either complex traits or adaptive evolution (Jiao et al., 2014). However, SNP markers have 

been insufficiently developed for molluscs in comparison with well-studied model organisms.  

There is increasing number of studies utilizing genome scans to search for potentially adaptive 

genetic variation in a population genomics context, as well as to estimate demographic 

parameters. Various species of plants, marine invertebrates, marine and freshwater fish, and 

small mammals are included, making novel inferences regarding selection in natural populations 

using genetic markers (Catchen et al., 2013, Corander et al., 2013, De Wit and Palumbi, 2013, 

Hyma and Fay, 2013, Keller et al., 2013, Reitzel et al., 2013, Roda et al., 2013). Multiple papers 

demonstrate the utility of GBS for phylogenetic reconstruction across species (Jones et al., 2013, 

Keller et al., 2013, Ogden et al., 2013, Roda et al. 2013). Additionally, some papers take 

advantage of GBS to identify genomic regions involved in hybridization (Hohenlohe et al., 

2013), speciation (Jones et al., 2013) and divergent adaptation (Keller et al., 2013). GBS has also 

been shown as useful to reveal how heterogeneous recombination rates can modulate 

consequences of selection and influence outlier tests for positive selection in stickleback 

populations (Roesti et al., 2013). 

2.7.2. Genome – wide association study (GWAS) 

 

Linking underlying genetic architecture to phenotypic variation is a key component to 

understanding the evolutionary responses. Identifying genetic basis of a trait can answer the 

question whether traits are largely controlled by many loci of small effect (polygenic genetic 

architecture), or by few loci of large effect (oligogenic architecture). Fortuitously, methods to 

estimate quantitative genetic parameters in natural populations have evolved rapidly during the 

last 10 years in parallel with advances in genomic technology. Two main approaches are used to 

disentangle relative contribution of genotype and environment on a phenotype; quantitative trait 
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loci (QTL), and genome wide association (GWA) studies. QTL analyses are accomplished by 

scanning recombinant mapping created from controlled (e.g., laboratory) genetic crosses for 

genetic regions that are associated with phenotypic variation (Barton and Keightley, 2002, Slate, 

2005, Comeault et al., 2014). Although QTL studies have benefits, they require either a detailed 

population genealogy or controlled crosses (Slate, 2005), often lack sufficient recombination for 

fine-scale mapping (Buerkle and Lexer, 2008), and characterize genetic variation that is not 

necessarily representative of that found in natural populations (Rockman, 2012).  

 Genome-wide association study (GWAS) is a powerful way to estimate the genetic 

architecture of morphological traits and search for statistical associations between genotypes at 

specific loci in natural populations (Hirschhorn and Daly, 2005). This method identifies 

numerous genetic variants (e.g., SNPs), associated with traits. A substantial fraction of these 

identified loci often display association with more than one trait — a phenomenon known as 

pleiotropy (Solovieff et al., 2013). GWAS takes advantage of potentially lower levels of linkage 

disequilibrium (LD) due to longer histories of recombination existing within natural populations 

than in controlled crosses (e.g. Cho et al., 2009, Brachi et al., 2010, Fournier-Level et al., 2011). 

It has been primarily carried out in model genetic systems and employed to understand the 

genetic underpinnings of complex human diseases, although studies of non-model species are 

rapidly accumulating. Now, with the advent of RADseq and GBS it is technically feasible in any 

system (Kingston, 2017) and can be achieved in a large number of individuals (e.g., Gompert et 

al., 2010, Hohenlohe et al., 2010, Elshire et al., 2011, Andolfatto et al., 2011). GWAS in 

Arabidopsis thaliana provided some of the best examples of the genetic architecture of complex 

traits in nature and it has been shown that numerous loci of minor effect underlie traits variation 

(Brachi et al., 2010, Fournier-Level et al., 2011). Berg and Coop (2014) have further combined 

knowledge from GWAS with robust population genetic modeling to identify human traits that 

show putative signals of local adaptation. Comeault and colleagues (2014) described the genetic 

architecture of traits that are subject of differential selection between host plant species in stick 

insect Timema cristinae, to better understand the evolution of adaptive traits and how trait 

divergence between natural populations on different hosts occurs in the genome. They assert that 

employing the GWAS is a powerful way to estimate the genetic architecture of complex traits 

controlled by many loci with minor phenotypic effects, as exemplified also by recent GWAS in 

model genetic systems. GWAS are now routinely applied in a range of model organisms and to 
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non-model systems; Arabidopsis (Atwell et al., 2010), mouse (Flint and Eskin, 2012), crops 

(Wang et al., 2012), cattle (Olsen, 2011). SNPs associated with disease resistance, heat tolerance, 

head size, and hypoxia tolerance were reported in catfish (Geng et al., 2016, Jin et al., 2017, 

Wang et al., 2017, Zhou et al., 2017), and SNPs associated with propensity to migrate, survival 

under thermal stress, and bacterial cold water disease resistance were reported in trout (Hecht et 

al., 2013, Narum et al., 2013); similar researches were carried out in Atlantic salmon (Ayllon et 

al., 2015, Tsai et al., 2015). However, there are only a few papers discussing genetic components 

affecting bivalve’s morphology. Already discussed example, by Luttikhuizen and colleagues 

(2003), used a quantitative approach to test if genetic background contributed to observed shell 

shape variation in the bivalve Macoma balthica in presence of high gene flow. They have 

concluded that these morphological variants originate at least partly due to divergent phenotypic 

selection and that intraspecific adaptive genetic differentiation in marine broadcast spawners is 

apparently not constrained by a high gene flow. Jones and colleagues (2013) investigated the 

genetic architecture of complex pearl quality traits in the pearl oyster, Pinctada maxima and 

presented quantitative trait loci (QTL) and genetic association for these traits. The results 

provided strong evidence that pearl quality traits have a low to moderate additive genetic 

component (h2 from 0.14 to 0.34), and also supported previous quantitative genetic studies that 

these traits are polygenic in nature. Kingston et al., (2017) used GWAS on Mytilus edulis and M. 

trossulus, native to the Gulf of Maine (GOM). Aim of their study was to reveal the genetic basis 

of a trait predicted to be under strong, multifarious selection in the next 100 years - the net rate of 

calcification. They used predictions from the global circulation models under high emissions 

scenarios to guide simulated physical and biological conditions likely to occur in the Gulf of 

Maine (GOM) by the year 2100. Authors expected natural selection to maximize net calcification 

(calcification minus any CaCO3 lost through dissolution) under increasing environmental stress. 

They found that under projected climate stress from multiple variables, blue mussels from the 

(GOM) exhibit extensive variability in calcification rate phenotype, and this variation is linked to 

a handful of loci of moderate effect. Estimates of narrow-sense heritability for this key trait were 

on the order of 30% – indicating that substantial genetic variation for calcification under climate 

stress exists within these populations. 

A potential limitation of using GWAS in new systems or traits is the statistical power to detect 

QTL with potentially small effects. A working assumption is that most organisms are well-
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adapted to long term, stable conditions; however, there may be rare alleles segregating in the 

population that will be acted upon by selection as conditions change. The power to detect loci of 

moderate effects with a GWAS will increase when the phenotypic variance is maximal. Kingston 

et al. (2017) have shown that the phenotypic response under multivariate climate stress was 

significantly more variable than under more ideal control conditions. Related to this increased 

variance under stress, environmental changes can uncover novel genetically determined 

phenotypes for selection to act upon (Waddington, 1956). 
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3. MATERIALS AND METHODS  

 

3.1. Sampling design 

 

In October 2013 and March 2014 native populations of Mediterranean mussels Mytilus 

galloprovincialis were collected at 14 and 15 sites respectively, along the Eastern Adriatic coast 

(Figure 2). Sampling sites were chosen to cover wide range of geographical locations with 

different pollution intensity, characterized as clean or polluted, based on the historical and 

literature data (Petrović et al., 2004, Klobučar et al., 2008, Štambuk et al., 2013).  

 

Figure 2. A map of the study populations and location of sampling sites.A map of the study 

populations and location of sampling site:clean sites are marked by blue color – Lim Bay (LB), 

Ičići (IC), Zadar Seline (ZB), Marina (MA), Ston (SU), Mali Ston (MS), Babine kuće (SA, 

National park Mljet); polluted sites are marked by red color – Rijeka (RJ), Viktor Lenac (VL), 

Pula (PL), Zadar marina (ZM), Trogir (TM), Adriavinil (AD), Split (SL), Gruž (GZ).  
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Reference sites were mainly represented by native populations sampled at aquaculture sites, as 

those are regularly monitored for pollutant occurrence - Lim Bay (LB), Zadar Seline (ZB), 

Marina (MA), Ston (SU, sampled only in spring), marine protected areas (national parks and 

special reserve) - Babine kuće (SA, National park Mljet), and small villages without any 

industrial plants - Ičići (IC), Mali Ston (MS). Those sites are further through text referred as 

“clean”. Polluted sites were represented by populations sampled at heavily trafficked harbours 

and marinas with high boat maintenance activities - Pula (PL), Rijeka (RJ), Zadar marina (ZM), 

Trogir (TM), Split (SL), Gruž (GZ), big shipyard - Viktor Lenac (VL) and polluted industrial 

area Adriavinil (AD). Most of those sites have previously been characterised as polluted or 

pinpointed as the pollution hotspots in Adriatic (Petrović et al., 2004, Klobučar et al., 2008, 

Kljaković-Gaspić et al., 2010, Štambuk et al., 2013). Mussels were collected from 0.5 to 1 m 

depth at each site using metal clutch. Ten individuals per population were sampled for all 

biomarkers analyses at each site, in both seasons, and 290 native mussels were analysed in total. 

First, hemolymph was taken by syringe from the posterior adductor muscle of the animals. They 

were dissected, and digestive glands were frozen in liquid nitrogen and stored at -80 °C for 

subsequent assessment of biomarkers activity. The digestive gland was selected because it is 

considered the target organ in environmental pollution assessment. Additional 15 individuals 

from each population were dissected and their wet soft tissues were used to determine the 

concentration of certain metals and metalloids. For GWA analysis 20 individuals per population 

collected in fall, and 20 individuals from SU (collected only in spring) were sampled (300 

individuals in total) by taking the hemolymph for DNA isolation. Further mussels were sampled 

for GWAS during the transplant and mesocosm experiment (please see below). To assess larger 

scale phenotypic variation (between and within mussel populations) through analysing 

morphometric traits, 100 individuals per population were sampled in fall, and 1400 mussel's 

shells were analysed in total.  
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3.1.1. Sampling sites description 

 

Lim Bay (LB) is a semi-enclosed embayment. It is located on the west side of the Istrian 

peninsula in the north-eastern Adriatic, protected and proclaimed a special marine reserve park 

from 1979. Mussels and fish farming are present in the inner and middle parts of the Bay 

(Krajnović-Ozretić et al., 2001), also known for providing a good spawning ground, as well as a 

hiding place for many commercial fish (Huljev and Strohal, 1983). According to the data 

collected by Kuzmanović (1985) the water exchange within the bay is rapid. Comparison of the 

physico-chemical properties and phytoplankton dynamics between Lim Bay and other locations 

in the middle Adriatic Sea have indicated moderate eutrophication in Lim Bay (Bosak et al., 

2009). Petrović et al., 2004 affirmed that mussels from referent sites situated in the Lim bay are 

in good physiological condition, could easily cope with natural stressors and preserve the 

integrity and stability of lysosomal membranes, exhibiting small oscillations throughout year.  

Aquaculture Zadar Seline (ZB) is located in the south-eastern part of the Velebit Channel. This 

site is about 40 meters away from the coast, without significant anthropogenic pollution. Sea 

depth of the area is about 10 meters or more. An important condition for mussel farming in this 

area is the freshwater inflow from Novsko Ždrilo that brings nutrients and decrease salinity of 

seawater. More than that, significant changes in salinity can occur during the activity of 

freshwater springs, however, in relatively limited sphere. Hence the whole area has balanced 

salinity of 37-38 ‰. 

Aquaculture Marina (MA) is located 12 kilometers west of town Trogir, on the inner part of the 

Marinski Bay. Physico-chemical parameters (seawater temperature, salinity, dissolved oxygen), 

microbiological quality, biotoxins and heavy metals (Cd, Hg, Pb, Cu, As) did not show 

measurable anthropogenic influence.  Apart from mussels, there is a breeding ground for white 

fish (European bass and Gilt-head seabream).  

Babine kuće (SA) is a site located in the area of the National Park Mljet. Due to the absence of 

any sources of pollution, the site is considered as a reference (“clean”) site. 

Ston (SU) is located within the 28 km long Malostonian Gulf, with the maximum depth of 29 

meters. The exterior and middle parts of the bay are periodically under the stronger influence of 

the river's fresh water, and therefore ecological conditions are more affected by the land and less 

by the open sea. The hydrophysical and ecological relationships of the inner part are more 
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affected by the strong fresh underwater runoff. According to the nutrient concentration and the 

phytoplankton amount, the bay can be qualified as a moderately eutrophicated system. Due to the 

very low population density in the surrounding area, the bay is not exposed to a stronger 

anthropogenic eutrophication. In the production area mussels and oysters are grown, such as 

Venus verrucosa, Arca noe, and Ruditapes decussatus. 

Mali Ston (MS) is a small village with dozens of berths for local boats. It has an anthropogenic 

impact, though it is very low. However, there are no known sources of greater pollution on this 

station, so it is considered a reference site. 

Ičići (IC) is a small place on the Opatija Riviera. Low intensity of anthropological and sea traffic 

activities exists because it has ACI marina and a small harbor for local boats. The Wastewater 

Treatment Facility was constructed as part of the Adriatic Project, providing the first stage of 

wastewater purification. 

Pula (PL) is the largest city in the Istrian peninsula, notable for shipyard Uljanik Pula and 

mechanical engineering Uljanik Strojogradnja, whose releases are poured out into the sea. 

Moreover, Pula has its own big port (Luka Pula), whose traffic contributes to pollution. 

Rijeka (RJ) is the largest Croatian port with an annual turnover of more than 6 million tons. In 

the area of the city, refinery INA Rafinerija Mlaka and the industry of grease and bitumen are 

pouring their releases into the sea, and their waste waters are purified with only a first stage of 

purification. 

Zadar marina (ZM) is located in the city of Zadar, one of the largest ferry ports in the central 

Adriatic. There is also a transport company Tankerska plovidba d.d. with 15 tankers and dry 

cargo ships. The marina itself, with 300 berths, is a site with unconcerned level of pollution. 

Colors used for antifouling coatings contain copper components and other organic bioactive 

substances. Waste waters are purified through two wastewater treatment plants - Borik (pre-

purification and I degree of purification) and Centar (pre-purification and II degree purification). 

In this research the mussels were collected directly below the raft in the center of the marina, 

where the berths are blue from the washed over antifouling colours. 

The site Trogir (TM) is located at the nautical port in city of Trogir. Since there are more than 

200 berths in the marina, it is considered to be a contaminated site. Additional pollution is 

connected with the immediate vicinity of the Trogir shipyard. 
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Split (ST) is the second largest city in Croatia, and the third port in the Mediterranean by 

passenger traffic. There are still several water outlets in the Split area, of which the Katalinića 

Brig discharge has a mechanical purification plant, and it drains to 1300 meters from the shore, 

while the smaller discharge in the port and the Lora discharge does not have purification 

facilities. 

The Gruž (GZ) site is located in Dubrovnik, in the port of Gruž, that has a role of acceptance of 

passenger ships (ferry services, yachts, special purpose vessels), and an increasing number of 

cruisers. In 2014, it exceeded 1 300 000 passengers and was declared tenth the busiest cruising 

pinch of the world in 2008. In the wider Dubrovnik area, municipal waste waters are poured out, 

passing only through the process of mechanical purification. Measurements of average mass of 

heavy metals (Cd, Pb, Cu, Zn, Cr and Hg) in mussels’ tissue for the period 2000 - 2009 were 

above average values (Initial Assessment of Marine Condition and Stress Croatian part of 

Adriatic Sea 2012). 

Viktor Lenac (VL) is a shipyard, established in 1896 and was one of the first in the world to deal 

with ship's upgrading and extension. It is also one of the largest Croatian shipyards with already 

known negative impacts on the marine environment, and therefore considered a polluted site. 

Site Adriavinil (AD) is located in the Kaštelan Gulf, near the factory of polyvinylchloride masses 

Adriachem, whose drainage is nearby. In the period from 1949 to 1990 there was another plant in 

the area, Adriavinil (formerly Jugovinil), and it is estimated that during that decade about 200 t 

of mercury has passed through Kaštelan Gulf (Zvonarić, 1991). 

3.2. Experiments 

 

3.2.1. Transplant experiment  

 

In transplant experiment (April 2014), native mussels originating from the same reference site, 

Marina (MA), were exposed to 6 realistic environmental conditions using paired block design 

(polluted vs. clean sites in three geographic regions) (Figure 3). Sites were selected according to 

their environmental quality status. Lim Bay (LBT), Zadar Seline (ZBT) and Ston (SUT) were 

considered as “clean”, Pula (PLT), Zadar marina (ZMT) and Gruž (GZT) were considered 

polluted sites.  
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Figure 3. Transplant experiment scheme and exposure sites. Yellow dot on the map represent 

source population Marina– aquaculture site, from which mussels were exposed to 6 realistic 

environmental conditions using paired block design - polluted (PLT, ZMT, GZT) vs. clean 

(LBT, ZBT, SUT) sites in three geographic regions (North, Middle, South Adriatic). 

Mussels were transported in cold boxes from the source reference site Marina and, after the 

initial sorting, divided into groups (of about 200 individuals each), placed in 50x50m cages 

constituted of polyethylene netting, immersed at 1 - 1.5 m depth and secured by anchor and rope 

at each site. Animals were collected after 4 weeks of exposure, brought on ice to the laboratory 

in each of the regions, where haemolymph was taken from the posterior adductor muscle and 

digestive glands (N = 10 per site) were dissected and immediately frozen in liquid nitrogen and 

stored at -80 °C.  

3.2.2. Mesocosm experiment 

 

To evaluate population effect of phenotypic stress responses, 800 mussels in total were collected 

in April 2014 from two source populations; Marina (MA) –aquaculture area representing clean 

site, and Gruž (GZ) harbour, representing polluted site (Figure 4).  
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Figure 4. Mesocosm experiment scheme. Mussels were collected in April 2014 from two source 

populations (400 individuals per population); Marina (MA) – representing a clean site, and Gruž 

(GZ) harbour - representing polluted site. After acclimation, 100 mussels from each source 

population were exposed to either copper (Cu) or clean seawater, in two replicates per 

population. 

Mussels were acclimated during 4 weeks in tanks containing 150 L of natural seawater. Seawater 

was constantly aerated, and half of it replaced with fresh quantity daily. Water quality was 

analysed daily by measuring salinity (34 ± 0.1), temperature (16.1 ± 0.4 ◦C) and pH (7.9 ± 0.34). 

Mussels were fed with 1.5 ml of a concentrated algal paste (Shellfish Diet 1800, Reed 

Mariculture Co., USA) daily. After acclimation, 100 mussels, separated by a partition in same 

tank, were exposed to daily dose of 100 µgL-1 copper or clean seawater in two replicates per 

population/exposure (N=200 per population per treatmant). One half of the total seawater 

volume (75 L) was replaced with fresh quantity and copper was re-administered daily. Exposure 

experiments were conducted in controlled conditions under 12h : 12h light/dark cycles. Seawater 

quality was analysed daily by measuring salinity (35 ± 0.07), temperature (15.8 ± 0.5 °C) and pH 

(8.07 ± 0.1). Every day, mussels were fed with the same concentrated algal paste as was used 

during the acclimatization period. After 8 days of exposure, haemolymph was taken from the 

posterior adductor muscle for Comet assay and digestive glands were dissected for each 

100 100 

100 100 

100 100 

100 100 

Cu, 100 µg/L 

CONTROL 
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population (N=10; 5 per replica) and treatment. Digestive glands were immediately frozen in 

liquid nitrogen and stored at −80°C until further analysis.  

3.2.3. ‘Stress on stress’ response 

 

The survival in air (stress on stress - SOS) test was performed on mussels from mesocosm 

(N=800) and transplant experiment (N=900). After exposure period, mussels shells were 

scratched from periphyton, washed in ethanol and labeled with Brother TZe-221 Label Tape, 

6mm (0.25") Black on White using Brother P-Touch PT-H75 Labelmaker. The labeled mussels 

were placed on ice in portable fridges and transferred to aquarium in Pula where they were left in 

the air (constant room temperature of 18 ± 1 °C) on wet filter paper (re-soaked daily). Survival 

was checked every 24h until 100% mortality was reached (Figure 5). Mussels were considered 

dead when the valves gaped and an external stimulus (squeezing of valves) did not show any 

vital response.  

 

 

Figure 5. Stress on stress (SOS) experiment. After exposure period in transplant and mesocosm 

experiments, mussels were left in the air on wet filter paper where survival was checked daily. 

3.3. Extract preparation and biomarkers activity measurements 

 

For protein extraction, digestive glands were homogenized in Tissue Lyser MM300 (Qiagen-

Retsch) in 1.2 mL of 50 mM potassium phosphate buffer (pH 7.0) with 0.1 mM EDTA. The 

homogenate was centrifuged at 10000 × g for 12 min at 4 °C. Supernatant was collected and 

used for the following assays. 
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For enzyme assays supernatants were diluted with extraction buffer 1:5 (v/v). Catalase (CAT) 

activity was assayed by measuring the decrease in absorbance at 240 nm (ε = 36 mM−1cm−1) 

according to Aebi (1984) with minor modifications. Glutathione reductase (GR) activity was 

determined by the oxidation of NADPH at 340 nm (ɛ = 6,22 mM-1cm-1) according to Ramos-

Martinez et al., (1983). Glutathione S-transferase (GST) activity was assayed by measuring the 

decrease in absorbance at 340 nm (ɛ = 9,6 mM-1cm-1) according to Habig et al., (1974). 

Acetylcholinesterase (AChE) activity was assayed by measuring the decrease in absorbance at 

412 nm (ɛ = 0,07 mM-1cm-1), according to Ellman et al., (1961). For carbonyl quantification, 

dinitrophenylhydrazine (DNPH) reaction was used as described by Levine et al., (1994). The 

level of lipid peroxidation was determined indirectly as the formation of malondialdehyde 

(MDA) in a reaction with thiobarbituric acid (TBA), according to Buege and Aust (1978). Total 

protein content was determined by Bradford method (Bradford 1976). 

To perform the alkaline Comet assay (single cell gel electrophoresis assay), 200 μL of 

hemolymph was taken by subcutaneous injection needle from the adductor muscle of 10 

individuals per population. Immediately after extraction, hemolymph was transferred to labelled 

microcentrifuge tubes on the ice, and the comet assay was performed according to Štambuk et al. 

(2013). Prior to examination, the slides were rehydrated and stained with 10 µgmL-1 ethidium 

bromide and examined using a Zeiss Axioplan epifluorescence microscope. At least 100 cells 

were examined per single slide. The extent of DNA migration was determined as a percentage of 

DNA in the tail (% tDNA) using an image analysis system Komet 5, Kinetic Imaging Ltd. 

3.4. Geometric morphometrics (GM) 

 

For geometric morphometrics (GM) the right shells of 20 individuals per population sampled in 

fall (N=280) were analysed. 800 individuals from mesocosm and 900 from transplant experiment 

were used for both GM and FA analyses (both shells were measured, right shell analysef for GM 

and both for FA for these 1700 individuals).  

All individuals were photographed using the Olympus digital camera 7.2V (model NO. E-PL1, 

lens M. ZUIKO DIGITAL 14-22 mm). The inner side of both shells was photographed, with 

clearly visible imprints of the adductor and retractor muscles, pallial line and ligament. To ensure 
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consistent quality and uniformity of the photographs, darkroom lighting was used, dark 

background, color calibration tape and millimeter paper, placed for scaling.  

These digital images were utilized to obtain landmarks using the software Image J (v. 1.48) 

(Figure 6). Seventeen landmarks were placed along the shell and muscles outline and assigned as 

x,y coordinates. The coordinates of two specific landmarks were used for calculating the distance 

between them, which denotes the given traits. 

 

 

Figure 6. Geometric morphometrics. Digital images of the inner side of mussel’s shells were 

utilized to obtain landmark coordinates in software Image J 

Twelve shell characters measured by landmark-based GM approach were (Figure 7): distance 

between umbo and posterior end of the ligament - LIG, distance between pallial line and ventral 

shell margin midway along shell – PAL,  distance between ventral  muscle scar and ventral shell 

margin – PADV, length of posterior adductor muscle scar – PAD, distance between anterior edge 

of posterior adductor muscle scar and posterior shell margin – PADP, distance between posterior 

edge of posterior adductor muscle scar and posterior shell margin – PPAD, length of posterior 
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retractor muscle scar – LPR, width of posterior retractor muscle scar - WPR, distance between 

ventral edge of posterior retractor muscle scar and dorsal shell margin – VPR, distance between 

the anterior end of posterior retractor muscle scar and dorsal shell margin – DPR, shell height – 

H and shell length – L (used to standardize the variables for size and FA analysis). 

 

Figure 7. Shell morphological traits measured by landmark-based geometric morfometrics 

approach: distance between umbo and posterior end of the ligament - LIG, distance between 

pallial line and ventral shell margin midway along shell – PAL,  distance between ventral  

muscle scar and ventral shell margin – PADV, length of posterior adductor muscle scar – PAD, 

distance between anterior edge of posterior adductor muscle scar and posterior shell margin – 

PADP, distance between posterior edge of posterior adductor muscle scar and posterior shell 

margin – PPAD, length of posterior retractor muscle scar – LPR, width of posterior retractor 

muscle scar - WPR, distance between ventral edge of posterior retractor muscle scar and dorsal 

shell margin – VPR, distance between the anterior end of posterior retractor muscle scar and 

dorsal shell margin – DPR, shell height – H and shell length – L (used to standardize the 

variables for size and FA analysis).  
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All variables were log-transformed and standardized to shell length, as proxy for individuals 

size. Additionally, three morphological characteristics were hand-measured; both shells were 

weighted (MASS) (data was standardized as described), width was measured with vernier 

calipers (±0.01 mm), log-transformed and standardized for size (WL) and height (WH) and shell 

volume was calculated using formula: V = log((4/3*π)*shell height*width*lenght)/log (shell 

length) (Shields et al., 2008). Applying the measured values of 13 morphological characteristics 

(WH, WL, V not included), the subtraction between left and right shell for each morphological 

characteristic was calculated, and obtained absolute value to estimate the level of fluctuating 

asymmetry. 

3.5. Environmental variables assemble 

 

Quantitative environmental data were collected from Bio–Oracle (Tyberghein et al., 2012) online 

database. Bio–Oracle is a set of GIS rasters providing geophysical, biotic and environmental data 

for surface and benthic marine realms, based on monthly averages in the time period between 

2000 and 2014, at a spatial resolution of 5 arcmin (approximately 9.2 km at the equator).  

Variables considered in our study were: currents - current velocity (mean at min depth), light - 

light at bottom (mean at min depth), SST - sea surface temperature (mean), T_max - sea water 

temperature (maximum at min depth), salinity - sea water salinity (mean at min depth), Chl_a - 

chlorophyll concentration (mean), O2 - dissolved oxygen concentration (mean), silicates - silicate 

concentration (mean at min depth), phosphates - phosphate concentration (mean), nitrates - 

nitrate concentration (mean). 

3.6. Metals and metalloids determination 

 

In order to determine the concentration of certain metals and metalloids, a pool of the wet soft 

tissues of 5 mussels per sample site (triplicates for all, N=15) were digested in a flask with 10 ml 

of Aqua regia, a mixture of nitric acid and hydrochloric acid in optimal molar ratio of 1:3, and 

placed in a microwave (Multiwave 3000, Anton Paar, Graz, Austria).  After digestion samples 

were diluted with Mili-Q water and Indium was added (1 μgL-1) as a standard for inductively 

coupled plasma mass spectrometry (ICPMS) measuring (instrument Element2, Thermo, Bremen, 

Deutschland). In order to eliminate spectral interference, specific isotopes were measured in 
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three different resolutions (R, ability to distinguish two peaks of slightly different mass-to-charge 

ratios, in a mass spectrum): low (7Li, 107Ag, 111Cd, 120Sn, 208Pb, 209Bi), medium (51V, 52Cr, 59Co, 

60Ni, 63Cu, 66Zn, 121Sb) and high (27Al, 39K, 56Fe), where R = 300, 4000, and 10000, respectively.  

3.7. DNA isolation 

 

In order to isolate genomic DNA, 500 µl of hemolymph was collected by syringe from the 

posterior adductor muscle of the animals and mixed with an equal volume of 96% EtOH into 1.5 

mL micro-tubes. Suspension was centrifuged at 10000xg for 2 min (at 4 ◦C). Supernatants were 

pipetted out before the resulting pellets were frozen with liquid nitrogen, crushed with scissors 

and handled for DNA isolation using a kit of DNA isolation reagents (GenEluteTM Mammalian 

Genomic DNA Miniprep Kit, Sigma-Aldrich) according to the instructions. Isolated DNA was 

preserved in micro-tubes at 4 ◦C. 

Concentration and purity of the DNA was measured spectrophotometrically on a Nanodrop 

(NanoDrom(TM) 2000 c Thermo Scientific). The concentration of DNA in all samples was over 

50 ng/µL. Purity of DNA was defined according to calculated A260 / A280 values (range 1.6-1.9 

means that DNA is pure), and all tested samples were satisfied for purity.  

3.8. Genotype-by-sequencing (GBS) library preparation 

 

To generate genome-wide SNP data, reduced complexity genomic libraries were sequenced for 

1700 individuals from experiments and 300 native individuals that were scored for phenotypic 

traits. The library preparation protocol of Parchman et al. (2012) that is designed for Illumina 

sequencing chemistry was used.  

Genomic DNA was digested with the restriction endonucleases MseI and EcoRI (New England 

Biolabs). Adaptor sequences and their reverse complements that allowed for ligation to the 

restriction sites were annealed to each other by incubating at 95 ° C for five minutes and slow 

cooling to room temperature. The restriction digests were incubated with T4 DNA ligase (New 

England Biolabs) and oligonucleotides containing the first Illumina adaptor sequence followed 

by eight, nine, or 10 bases of barcode sequence, and the EcoR1 cut site and oligonucleotides 

containing the second Illumina adaptor and the MseI cut site. Restriction and ligation were 

accomplished simultaneously to 12 hours of incubation, followed by dilution with 189 μ L 

https://en.wikipedia.org/wiki/Summit_(topography)
https://en.wikipedia.org/wiki/Mass-to-charge_ratio
https://en.wikipedia.org/wiki/Mass-to-charge_ratio
https://en.wikipedia.org/wiki/Mass_spectrum
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0.1×TE buffer. Fragments were then amplified via polymerase chain reaction (PCR; 30 total 

cycles) using standard Illumina primers (Illumina, Inc.); 

Illpcr1(Forward): A*A*TGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT 

Selective Illpcr2 (Reverse): C*A*AGCAGAAGACGGCATACGAGCTCTTCCGATCTGTAAG  

 

PCR amplicons were checked on gel, and barcoded PCR products were pooled to be sequenced 

per lane. In total, 2000 individuals were sequenced across 9 lanes. Sequencing was accomplished 

on at the National Center for Genome Resources (NCGR) in Santa Fe, NM. Quality control, 

alignment, variant detection and population differentiation were done by project collaborators at 

University of Sheffield, UK (Table S1, Figures S12 and S13, Supplementary materials)    

3.9. Genetic architecture of Mytilus galloprovincialis morphological traits estimated using 

GWAS           

 

To describe the genetic architecture of mussel's morphological traits, GWAS was performed on 

different data sets (including only SNPs with minor allele frequencies ≥0.05): 1) population 

effect has been addressed by comparing genetic architecture in two populations inhabiting 

contrasting environments, using  individuals from Gruž (394 individuals, 19129 SNPs) and 

Marina population (377 individuals, 19129 SNPs) in mesocosm experiment; 2) great-scale subset 

has been performed on Marina population used in transplant experiment (883 individuals, 18850 

SNPs), and 3) a large-scale pool of Marina individuals used in both experiments (1258 

individuals, 18728 SNPs); 4) population effect has been further addressed in a sample of 15 

native populations inhabiting various environments (288 individuals, 18655 SNPs). Genome-

wide SNP data was implemented to test for associations with mussel’s traits, related to shell 

height and width, shell shape and position and size of retractor and adductor muscles.  

To describe the genetic architecture of traits multi-locus Bayesian sparse linear mixed models 

(BSLMMs) was used. It was implemented in the software package gemma (Zhou and Stephens, 

2012, Zhou et al., 2013). BSLMMs allow for multi-SNP mapping and was used to estimate three 

hyperparameters that describe aspects of the genetic architecture of a given trait (Zhou and 

Stephens, 2012, Zhou et al., 2013). First, the model estimates the proportion of variance 

(proportion of phenotypic variation explained; PVE) explained by all the SNPs (both ‘sparse 

(i.e., detectable) and SNPs with minor effects (i.e., infinitesimal and undetectable) included in 
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the model. Second, gemma estimates the proportion of the total phenotypic variation that can be 

explained only by ‘large-effect’ SNPs (proportion of genetically-explained variation; PGE). 

Third, gemma estimates the number of SNPs (n-SNP) that have non-zero effects on phenotypic 

variation (i.e. the number for which the relationship between genotype and phenotype is greater 

than zero). In addition to the hyperparameters described above, gemma provides the posterior 

inclusion probability (PIP; γ parameter in the BSLMMs) of each SNP that is identified to have a 

non-zero effect on phenotypic variation. This is the proportion of MCMC steps that a SNP is 

retained as being trait associasted, i.e., having a detetable or sparse effect. SNPs that are more 

strongly associated with phenotypic variation will have larger PIPs and these SNPs are the 

strongest candidates of being linked to the functional variant(s) underlying phenotypic variation.  

For each trait BSLMMs were implemented in gemma with 10 independent Markov-chain Monte 

Carlo (MCMC) chains, ran for 20 million steps with an initial burn-in period of 5 million steps. 

All additional options in gemma remained at default values. Prediction analyses were carried out 

to test the strength of the genetic signal in our data set to accurately estimate hyperparameters. A 

permutation test was conducted using GWA mapping in gemma as described above with 

Marina_pool data, generated by randomly permuting phenotypic scores for each individual.  

3.9.1. Single-SNP GWA mapping 

 

To validate results from BSLMM analyses, we also carried out the EIGENSRAT method in the 

R package GENABEL v1.8.0 (Aulchenko et al., 2007) to perform single locus GWA mapping 

analyses. Briefly, genotype probabilities were recoded into genotype values accepted by 

GENABEL using a custom Perl script. Transformed genetic probabilities were filtered using 

GENABEL quality control function. SNPs with MAF inferior or equal to 1%, were excluded 

from analysis. Individuals with extreme heterozygosity at a false discovery rate <1% and with 

too high an identity by state (hereafter IBS>=0.95, calculated on a subset of 2000 SNPs), were 

discarded from analysis. Analyses were run both controlling for population structure (using the 

GENABEL egscore function (Price et al., 2006)) and not controlling for population structure 

(using the GenABEL qtscore function). The egscore function extracts principal components of a 

kinship matrix (here IBS indices) calculated using a subset of 2000 SNPs. The principal 

components are then used as covariates in the GWA linear models.   
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3.9.2. Cross validation (predictive power of the models) 

 

To quantified the predictability of the models, cross validation was performed on the largest data 

set – Marina_pool, using the genomic prediction function in GEMMA. Cross validation was 

based on results from 10 independent MCMC chains, ran for 20 million steps with an initial 

burn-in period of 5 million steps. 

3.10. Statistical analysis 

3.10.1. Morphological multivariate analysis 

 

All results were obtained and plotted using R v. 3.2.0. A threshold of p< 0.05 is considered as 

significant in all analysis. 

Multivariate analyses of the morphometric data were carried out using principal component 

analysis (PCA) and linear discriminant analysis (LDA). PCA was applied for the interpretation 

of data variability (Reid and Spencer, 2009). It is widely used to rotate and project data into 

subspace of variants of reduced dimensionality. Reducing the data to dominant components or 

factors is achieved by suppressing parts of the total variance in the data and results in a more 

interpretable output for exploratory purposes. Significant principal components were determined 

by the broken stick method (Farinas-Franco et al., 2016) of the scree plot (components plotted 

against eigenvalues). In addition, linear discriminant analysis (LDA) was used to evaluate the 

influence of the sites and regions on the grouping of data into classes. This analysis computes a 

linear projection for one or more predictors and yields a new set of transformed data for grouping 

them according to classes (Wang and Mizaikoff, 2008) without dimensional reduction. A 

jackknife-based classification (i.e. leave-one-out cross-valdation) was applied to estimate the 

accuracy of the discrimination between sampling sites and regions. Finally, we calculated the 

canonical scores (also known as canonical discriminant function coefficients; Zuur et al., 2007) 

to better interpret the relationship between group discrimination and morphological variation. 

Further packages were used in R: MASS, ggplot2, scales, ggpubr, ggfortify, gridExtra, mvtnorm, 

Momocs. To test for significance ANOVA on principal component scores of morphological 

traits was performed. Significant difference for 15 morphological traits between Marina and 

Gruž populations, exposed to copper in mesocosm experiment, was obtain with post hoc Tukey 

test (using “agricolae” package) and indicated by asterix above represented plots.  
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The Partial Least Squares Regression approach (PLS-R2) was used in order to analyze the effects 

of linear combinations of environmental factors and several metals and metalloids (predictors - 

X) on morphological data and biomarkers (response - Y). Analysis was performed using the 

“plsdepot” package in statistical software R according to (Sanchez, 2012). The PLS scores 

associated with the first two PLS components, generated in the model, are new variables 

summarizing the X variables. Scores contain the information about the objects and their 

similarity (Wold et al., 2001) and were therefore used for the interpretation of the PLS-R2 

model. We performed glm analysis fitted with aov function on PLS scores to test for the 

significance of status and regions specifics in 'response-predictor' relation. 

3.10.2. Biomarkers 

 

PTA was performed according to (Adam and Collyer, 2009). Here, it was conducted by using PC 

scores derived from Principal component analysis (PCA) on the centred and scaled biomarkers 

data set. The centroid averages of the PC scores were plotted for each of pollution status (clean 

vs. polluted), in each season (fall and spring). The benefit of using PC scores lies in the 

simplified visual interpretation (Dennis et al., 2010). Assessment of trajectories is calculated 

based on the multidimensional properties of the entire dataset simultaneously and is supported 

statistically by permuting the residuals of a simplified model to estimate the probability of fitting 

the same trajectory by chance. Analysis was conducted using R v. 3.2.0. For plotting the results 

“ggbiplot” package was used. 

Integrated biomarker response (IBR) analysis was based on major steps described in (Beliaeff et 

al., 2002), and modified according to (Pain-Devin et al., 2014). It provides a numeric value that 

integrates all responses at once, following a prior step of biomarker responses standardization 

and creation of circular permutations of k biomarkers. The IBR is the sum of the area defined by 

the k biomarkers (arranged in a radar diagram). It results in a (k −1)! matrix of IBR values that 

allows the calculation of median IBR for a site and prioritization of IBR values among sites. 

Here, a battery of six biomarkers were analysed in total (CAT, GR, GST, ACHE, MDA and 

Carbonyls) which resulted on a matrix of 120 values for all six biomarkers. All the possible 

circular permutations of biomarkers and therefore all possible IBR values, were calculated 

according to (Beliaeff et al., 2002) using “permute” and “graphic” packages in R v. 3.2.0. In 
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order to compare the results and test for significance among various sites, pollution status, region 

or treatment (depending on the data set), generalized linear model (glm) analysis was performed 

(using basic R “stats” package). The models were fitted with aov function (“stats” package), and 

analysed with post hoc Tukey test (using “agricolae” package). The results of the IBR are 

represented as boxplots (using “ggplot2” package) with different letters indicating between-site 

differences.  

3.10.3. Survival analyses 

 

Mussel’s fitness was evaluated by measuring the number of death individuals over a period of 

time spent on the air. The data were analyzed using the survival analysis in R (package 

“survival”) and visualized through Kaplan-Meier survival estimator, a non-parametric statistic 

that allows us to estimate the survival functions. The lengths of the horizontal lines along the X-

axis represent the survival duration for that interval, where the horizontal gap means that it took 

longer for one group to experience a certain fraction of deaths. The interval is terminated by the 

occurrence of the event of interest. Longer vertical gap means that at a specific time point, one 

group had a greater fraction of subjects surviving. Therefore, the vertical distances between 

horizontals are important because they illustrate the change in cumulative probability of 

surviving as the curve advances. The non-continuous nature of the Kaplan-Meier curve 

emphasizes that they are not smooth functions, but rather step-wise estimates. 
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4. RESULTS 

4.1. Phenotypic variation  

4.1.1. Phenotypic variation between native populations 

 

PCA analysis on phenotypic data of 15 native populations revealed that the first two principal 

components of the entire data set explained 42.42% of the total variance, where first one 

explained 24.2% and the second one 17.22% of the total variation (Figure 8a). Scree plot 

analysis indicated PC’s 1-3 should be considered (whenever possible) for interpreting the results 

(PC3 accounted for 13.3% of the total variation).  

 

 

Figure 8. PCA (a) and LDA (b) plots on morphological traits of 15 native populations, analyzed 

per sampling sites. Plots are showing the first two principal components and discriminant scores 

obtained in analysis, explaining 42.4% and 57.16% of the variation, respectively. 
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The plot of PC1 against PC2 showed that specimens that were separating the most belong to Ičići 

(IC) and Mali Ston (MS), as being considerably smaller regarding their age. This indicated that 

shell morphometric characteristics are highly influenced by the individuals size and, accordingly, 

their age. ANOVA on PC scores showed that traits significantly differed between sampling sites, 

pollution status and Adriatic regions. PC1 was positively correlated with almost all observed 

traits (except WH). PC2 can be considered a shape axis as it was positively correlated with HL, 

and negatively with WH, WL and V. PC loadings on first three PC’s showed that populations 

mostly split up according to the traits related to shell shape; HL, WL, WH, V and the position of 

two muscles; PADP, PPAD, DPR, VPR (Figure 9, Table 1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. PCA biplot on morphological traits of 15 native populations. Biplot shows the first two 

principal components obtained in analysis, explaining 42.42% of the variation. 

LDA analysis on morphological traits revealed that the first two discriminant scores of the entire 

data set explained 57.16% of the total variance, where first explained 36.86% and the second one 

20.3% of the variation among individuals (Figure 8b). LDA also showed greatest separation for 

Ičići (IC), Mali Ston (MS) and additionally Babine kuće (SA), which are all clean sites. 

Jackknife-based correct classification accuracy (Table 2) varied from 4.85% (TM) to 64.42% 
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(VL), and was overall 39.39%. Misclassifications were mostly higher for individuals belonging 

to same region (e.g. between MA, TM, AD, SL) or pollution status (e.g. PL-ZM, GZ-ZM, TM-

VL). The contribution of each variable to the model is showed by standardized canonical 

discriminant function coefficients (Table 1), allowing to compare variables measured on 

different scales. Coefficients with large absolute values correspond to variables with greater 

discriminating ability. Results showed the greatest discriminating ability for the traits related to 

shell shape; HL, WL, WH, V and trait related to position of the posterior adductor muscle; 

PADV. 

 

Table 1. Principal component loadings (PC1, PC2 and PC3) and standardized canonical 

discriminant function coefficients (F1, F2 and F3) on morphological traits of 15 native 

populations. Table is showing first three principal components and standardized canonical 

discriminant function coefficients for each trait. 

  PC1 PC2 PC3 F1 F2 F3 

Standard deviation 1.88 1.55 1.37  

  Proportion of Variance 0.25 0.17 0.13 

   Cumulative Proportion 0.25 0.42 0.56 

   HL 0.42 0.24 -0.15 -1.53 0.14 -0.51 

WL 0.13 -0.56 -0.23 -1.43 -0.89 0.01 

WH -0.13 -0.59 -0.11 -0.29 0.52 -0.09 

V 0.27 -0.13 -0.35 2.44 1.02 0.20 

LIG 0.11 -0.10 -0.39 0.20 -0.20 -0.23 

PAL 0.26 -0.19 0.22 -0.33 0.39 -0.23 

PADV 0.24 -0.01 0.10 -0.21 -0.36 0.69 

PAD 0.11 -0.15 -0.15 0.19 0.02 -0.03 

PADP 0.22 -0.21 0.47 0.00 0.26 0.26 

PPAD 0.21 -0.22 0.54 0.24 0.38 0.15 

LPR 0.10 -0.24 -0.09 0.25 0.16 0.22 

WPR 0.25 0.14 -0.18 0.17 -0.45 -0.34 

VPR 0.45 0.13 -0.03 -0.36 0.00 -0.04 

DPR 0.43 0.09 0.01 0.01 0.10 -0.27 
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Table 2. Jackknife-based classification, comparing field samples (rows) and the group assigned 

by the linear discriminant function (columns). The proportion of correct classification accuracy 

is provided in the last column.  

 

AD GZ IC LB MA MS PL RJ SA SL TM VL ZB ZM % corr 

AD 23 3 12 2 19 3 2 5 1 19 2 4 1 13 21.10% 

GZ 4 16 0 6 10 1 3 2 8 12 3 16 4 17 15.69% 

IC 6 0 22 1 1 0 0 1 1 0 2 1 2 3 55.00% 

LB 5 7 5 7 3 1 6 6 9 22 5 12 5 5 7.14% 

MA 11 0 1 1 64 0 3 2 5 3 8 5 9 3 55.65% 

MS 6 2 9 1 1 62 2 5 0 9 0 8 0 3 57.41% 

PL 2 1 1 1 3 3 36 2 7 13 1 6 2 26 34.62% 

RJ 7 6 9 2 10 2 5 16 6 4 6 11 5 14 15.53% 

SA 1 6 2 1 2 1 6 1 57 2 0 19 2 0 57.00% 

SL 9 4 2 4 1 1 7 5 2 56 2 4 5 9 50.45% 

TM 5 2 4 1 23 2 3 8 1 3 5 17 9 20 4.85% 

VL 0 2 1 2 2 0 5 2 4 4 1 67 10 4 64.42% 

ZB 1 0 1 2 10 1 1 2 2 2 4 17 61 3 57.01% 

ZM 3 2 4 0 3 0 12 2 0 9 2 3 2 63 60.00% 

                            

   

4.1.2. Population effect of phenotypic variation (mesocosm experiment) 

 

To evaluate population effect, morphological traits of two source populations (MA and GZ) from 

contrasting environments were compared, using large scale of 400 individuals per population. 

Upon testing for normal distribution, ANOVA’s posthoc Tukey test determined that these 

populations diverged according to most of the traits, excluding PAD and PPAD for which no 

significant difference was recorded (Figure 10). PCA analysis revealed that the first two 

principal components of the entire data set explained 46.3% of the total variance, where first one 

explained 28.7% and the second component 17.6% of the variation (Figure 11). PCA scores of 

morphological traits showed that two populations have mostly split up according to the traits 

related to shell shape; HL, WH, WL, V and the position of posterior adductor muscle; PPAD and 

PADP (Table 3). Tukey test determined that GZ and MA don’t differ according to PPAD, but 

PCA analysis revealed that this trait has a very low value of 0.05 for the first loading, and its 

strength pops-up toward third loading (0.54). This implies the importance of using different 

analysis in revealing the signal. 



55 
 

 

        

Figure 10. Plot on 15 morphological traits of Marina and Gruž populations, collected for 

mesocosm experiment. Significant difference between populations for each trait is indicated by 

asterix above plots. 

 

Figure 11. PCA biplot on morphological traits of Marina and Gruž populations. Plot is showing 

the first two principal components obtained in analysis, explaining 46.4% of the variation. 

Populations were grouped by 95% confidence interval ellipses around centroids of each sampling 

locations. Two populations are significantly different (p<0.0001). 
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Table 3. Principal Component Analysis (PCA) on morphological traits of two populations – 

Marina (MA) and Gruž (GZ), used in mesocosm experiment. Table is showing first three principal 

components for each trait.  

  PC1 PC2 PC3 

Standard deviation 2.12 1.57 1.39 

Proportion of Variance 0.30 0.16 0.13 

Cumulative Proportion 0.30 0.46 0.59 

HL -0.41 -0.26 0.03 

WL -0.25 0.35 -0.30 

WH 0.11 0.50 -0.29 

V -0.40 -0.04 -0.22 

LIG -0.26 0.10 -0.23 

PAL -0.23 -0.23 -0.10 

PADV -0.12 -0.26 0.19 

PAD 0.05 0.38 0.24 

PADP -0.16 0.22 0.54 

PPAD -0.05 0.18 0.54 

LPR -0.13 0.23 -0.08 

WPR -0.32 0.09 0.04 

VPR -0.39 -0.01 0.09 

DPR -0.30 -0.10 0.11 

MASS -0.27 0.37 0.03 

 

 

4.2. Partial least square analysis on morphological traits of native populations 

4.2.1. Environmental variables and metals contributing to morphological differences 

Environmental variables collected from Bio–Oracle online database, used for the analysis, are 

shown in Table S2 (Supplementary materials). Most environmental variables used in this research 

showed gradient data range, depending on Adriatic regions (Figure 12). Currents, nitrates, salinity 

and sea surface temperature (SST) exhibited an increase toward south. Contrary, light, O2, silicates 

and phosphates exhibited a decrease toward southern sites. Maximum sea water temperature 

(T_max) was highest in LB, PL and GZ, and it varied between the rests of the sites. Similar was 

recorded for chlorophyll a (Chl_a), with the highest concentrations in LB and PL. PCA analysis on 
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environmental data revealed that the first two principal components of the entire data set explain 

90.2% of the total variance, where first one explained 69.7% and the second one 20.5%. ANOVA 

on PC scores showed that environmental variables significantly differed between sampling sites 

and between Adriatic regions (Figure 13), but not according to pollution status (Table 4). 

 
Figure 12. Environmental variables collected from Bio–Oracle online database, based on 

monthly averages in the time period between 2000 and 2014. Variables are distributed per 15 

sample sites, shown north to south. Clean sites are marked as blue versus polluted sites which are 

marked red. 
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Figure 13. PCA plot on environmental variables significantly separated between Adriatic regions 

(2000 - 2014). Plot is showing the first two principal components obtained in analysis, explaining 

90.2% of the variation. Environmental variables significantly differed between sampling sites and 

according to Adriatic regions (p < 0.0001). 

 

Table 4. ANOVA on principal component scores of environmental variables (ENV.VAR) and 

metals. Table is showing significance for sampling sites, different contamination status and 

Adriatic regions.  

 
 
 
 
 
 

 

 

Metals and metalloids determined from the mussel’s tissue, collected at the research sites in spring 

2014, are shown in Table S3 (Supplementary materials). Concentrations were highest on sites 

previously described as contaminated. The highest antimony concentrations were found in GZ, 

and silver in RJ and ZM. Zadar Marina had also dominant concentrations of lead, bismuth, tin, 

zinc and copper. High concentrations of lead were determined in VL and PL, tin and zinc in VL, 

silver in RJ, chromium in VL, cadmium in MS and VL and nickel in VL. Concentrations of metals 

ANOVA significance p(ENV.VAR) p(METALS) 

SITE < 0.0001 < 0.0001 

STATUS 0.8 < 0.0001 

REGION < 0.0001 0.4 
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and metals that appear naturally as suspended particles were generally higher on sites previously 

determined as clean. The highest concentrations of molybdenum were in ZB and SA, where the 

highest concentration of selenium was also recorded. Concentrations of cobalt, lithium, iron, 

arsenic, rubidium, strontium and uranium were not found in higher concentrations at sites with 

strong anthropogenic influences (ports, marinas), but a bit higher values of cobalt, lithium and iron 

were recorded in VL. Manganese and aluminum had higher values in all clean sites. Titanium 

concentrations were highest at ZM and GZ, and the concentration of vanadium was dominant in 

PL. PCA analysis on metal concentration from the mussel’s tissue revealed that the first two 

principal components of the entire data set explain 44.2% of the total variance, where first one 

explained 27.9% and the second one 16.3% (Figure 14). Triplicates are grouped for each sampling 

site. ANOVA on PC scores showed that metals concentrations significantly differed between 

sampling sites and between contamination status, but not between Adriatic regions (Table 4).  

 

 

Figure 14. PCA biplot on metal concentrations accumulated in mussel’s tissue. Metals are 

grouped in triplic ates for each sampling site. Plot is showing the first two principal components 

obtained in analysis, explaining 44.2% of the variation. Metals significantly differed between 

sampling sites and according to pollution status (p < 0.0001). 
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4.2.1. Relationship between the morphological traits and two blocks of predictors 

Using PLS-R2 multivariate technique the relationship between the morphological traits and two 

blocks of predictors - environmental variables and metals has been determined. 

 

Figure 15. PLS-R2 score plots of native populations morphometric data, based on y components 

(u1 and u2). Plots are representing relationship between response variables (morphological traits) 

and predictors (environmental variables) towards sample sites (a), pollution status (clean vs. 

polluted sites – b) and spatial distribution (Adriatic regions – c).  
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ANOVA test on PLS-R2 scores showed that morphological traits significantly differed between 

sampling sites, pollution status and Adriatic regions depending on both blocks of predictors 

(Figures 15 and 16). 

 

Figure 16. PLS-R2 score plots of native populations morphometric data, based on y components 

(u1 and u2). Plots are representing relationship between response variables (morphological traits) 

and predictors (metals) towards sample sites (a), pollution status (clean vs. polluted sites – b) and 

spatial distribution (Adriatic regions – c). 
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Variable importance for the projection - VIP plots (allow to quickly identify which environmental 

variables contribute the most to the model) and standardized coefficients (show how increases of 

predictors affects response variables) are presented in Supplementary materials (Figures S1 and 

S2, respectevely). Validation model of the morphological traits vs. environmental variables 

relationship shows R² and Q² values of a given model. R2 is used to measure predictive power of 

the data, where R2 = 100% indicates perfect description of the data by the model. Q2 measures the 

global goodness of fit and the predictive quality of the model. Q2 = 100% indicates perfect 

predictability, whereas low percentages suggests that the quality of the fit varies a lot. 

Environmental variables showed higher descriptive power than metals (86.4% for environmental 

variables, 53.7% for metals) (Figure 17). Nevertheless, despite generally very low predictive 

quality for both sets of variables, metal data showed somewhat higher predictability (1% 

environmental variables, 8% for metals). 

 

Figure 17. Validation model of the morphological traits vs. environmental variables 

(green)/metals (orange) relationship using PLS-R2. The R² value of a given model is used to 

measure descriptive power of the data, and the Q² value of the model is used to assess the 

predictive power of the model. R2 = 100% indicates perfect description of the data by the model, 

whereas Q2 =100% indicates perfect predictability. 

 

 

0,86

0,01

0,54

0,08

R² Q²

Environmental var. Metals



63 
 

4.2. Fluctuating asymmetry  

4.2.1. Transplant 

 

Comparing the differences of the left and right shell morphological characteristics (on the sample 

of 900 individuals in Marina population) measures of fluctuating asymmetry (FA) were obtained. 

The highest asymmetry values were observed for MASS, PAL and WPR (Figure 18). The lowest 

asymmetry is characterized by LIG and H.  

 

Figure 18. Fluctuating asymmetry of 13 morphological traits, measured on one, large scale 

population of 900 individuals (Marina, exposed in transplant experiment). 

4.2.2. Mesocosm 

 

Additionally, FA on the samples of 800 individuals from two populations (Marina and Gruž) was 

obtained. Results showed a similar FA patterns for particulate traits for both observed 

populations. The highest asymmetry values for both populations were observed for PAL, PAD, 

WPR and L (Figure 19). These traits also have the greatest standard deviation. The lowest 

asymmetry for both populations is characterized by LIG, H and MASS. Overall, Marina 

population showed wider distribution of FA values among individuals, and somewhat higher FA 

values. 
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Figure 19. Fluctuating asymmetry of 13 morphological traits, measured on two populations (400 

individuals each) – a) Marina and b) Gruž. 

4.3. Biomarkers 

4.3.1. Seasonality in pollution-depended biomarker status  

PCA analysis on natural populations biomarker data, conducted to perform PTA, revealed that 

the first two principal components of the entire data set explained 43.6% of the total variance, 

where first one explained 25.8% and the second one 17.8% (Figure 20). The trajectories 

representing two seasons didn’t exhibit significant amounts of biochemical and cellular change 

(p=0.059).  

a) 

b) 
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Figure 20. PCA plot on natural populations biomarker data, showing how biomarker status in 

different seasons depends on the pollution status. There are two trajectories plotted, one for each 

sampling event (season; fall is the longer trajectory, indicated with darker shades while spring is 

shorter one, indicated with brighter shades). Each trajectory joins the middle of the “clean sites 

data” (blue and turquoise shades) to the “polluted sites data” (red and pink shades). Trajectory 

ends are centers of group ellipses. Plot is also showing the relationship between biomarkers 

(labelled).  

 

However, centroids of a data for clean and polluted sites move in opposite directions (p=0.046) 

along PC1 depending on the sampling season. More than that - clean sites exhibit significantly 

more similarity in biomarker response between seasons, than polluted sites (p=0.001). Moreover, 

centroids of the pollution status data move in the similar direction, between two seasons, 

indicating similar direction of the seasonal effect. 
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4.3.2. Biomarker response capacities toward pollution status 

 

Results of generalized linear model (glm) (Table 5) on paired block design showed significant 

differences between mussel’s exposed to clean and polluted sites in each region (p < 0.001), 

where populations exposed to polluted sites consistently exhibit higher IBR values (Figure 21a). 

Moreover, biomarker status also significantly differed between three Adriatic regions (p < 

0.001), showing persistent decrease in IBR values from north to south. Additionally, Tukey’s 

post hoc test revealed differences between all sites of exposure (p < 0.05) except between ZBT 

and GZT. The result of Tukey’s post hoc test on mesocosm experiment highlighted significant 

difference (p < 0.05) between individuals originating from GZ exposed to control or copper, 

while MA population didn’t demonstrate an effect upon exposure to copper (Figure 21b). The 

results of glm (Table 5) revealed population effect of biomarker response between GZ and MA 

populations (p < 0.001) with generally higher IBR in GZ, which decreased upon exposure to 

copper.  

 

Table 5. Generalized linear model fitted with aov() on IBR data. Df = degrees of freedom, Sum 

Sq = sum of squares, Mean Sq = mean squares. Means of all tested group comparisons, in both 

experiments, are significantly different; p < 0.001***  

Transplant             

   

Df Sum Sq Mean Sq F value  p value  

SITE 
  

5 4785 957 1988 <2e-16 *** 

STATUS (Clean/Polluted)   1 1832 1832 3804.8 <2e-16 *** 

REGION (North/Middle/South)     2 2490.2 1245.1 2585.9 <2e-16 *** 

STATUS:REGION 
 

2 462.8 231.4 480.6 <2e-16 *** 

Residuals     714 343.8 0.5     

        Mesocosm             

   

Df Sum Sq Mean Sq F value  P value 

TREATMENT (Control vs. Cu) 1 23.17 23.17 38.39 1.26e-09 *** 

POPULATION (Gz/Ma)   1 247.97 247.97 410.84 <2e-16 *** 

TREATMEMT:POPULATION  1 23.7 23.7 39.27  8.28e-10 *** 

Residuals             476 287.3 0.6     
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Figure 21. Boxplots for the calculated IBR index in a - transplant and b - mesocosm 

experiment.The yellow square stands for mean, bold line stands for median, the box represents 

quartiles and whiskers stand for minimum and maximum. Different letters indicate between-site 

differences, which were analysed with ANOVA’s post hoc Tukey test.  

4.3.3. The roles of environmental factors and metals in expressed biomarker status 

variability  

 

Biomarker status of mussels in paired block designed transplant experiment significantly differed 

between regions when predictor were environmental variables (Figure 22b), and between sites of 

different pollution status when predictor were metals accumulated in mussel’s tissue (Figure 

22c). We didn't observe reverse significance (Figures 22a i d). Significance representing the p 

value < 0.001 is indicated by *** on score plots obtained by PLS-R2 analysis.  

 

a) b) 
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Figure 22. PLS-R2 score plots of transplant data, based on y components (u1 and u2). Plots are 

representing relationship between response variables (biomarkers) and predictors (environmental 

variables – a,b; metals – c,d) towards pollution status (clean vs. polluted sites – a,c) and spatial 

distribution (Adriatic regions – b,d). ANOVA test on PLS-R2 scores shows the significance of 

status and regions specifics in 'response-predictor' relation, where *** represents significant  

Variable importance for the projection and standardized coefficients are presented in 

Supplementary materials (Figures S3 and S4, respectevely). Environmental variables showed 

higher descriptive power than metals (94.5% for environmental variables, 63% for metals) 

(Figure 23). Nevertheless, despite higher explanation by environmental data, metal data showed 

higher predictability (3.7% environmental variables, 18.5% for metals). 

Additionally, we ran the PLS-R2 analysis on native populations, to compare it with the results 

from transplant experiment (Figures S5-11, Supplementary materials).  

 

a) c) 

b) d) 
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Figure 23. Validation model of the biomarkers vs. environmental variables/metals relationship 

using PLS-R2. The R² value of a given model is used to measure descriptive power of the data, 

and the Q² value of the model is used to assess the predictive power of the model. R2 = 100% 

indicates perfect description of the data by the model, whereas Q2 =100% indicates perfect 

predictability. Environmental variables have higher descriptive power than metals – 94.5% for 

environmental variables, 63% for metals, with Q² - 3.7% and 18.5%, respectively.  

4.4. Stress on stress experiment 

 

After they have been pre-exposed to certain source of stress (polluted environment in transplant, 

Cu in mesocosm experiment), mussels from both experiments were left on air, and mortality was 

checked daily.  

4.4.1. Transplant  

 

Individuals exposed to polluted site Pula (PLT) had the longest survival time, with maximum of 

12 days (Figure 24a). This population is followed by individals pre-exposed to another polluted 

site - ZMT, with maximum survival time of 10 days. All the others populations (ZBT, GZT, LBT 

and SUT) had the survival time of 9 days, among which SUT had the lowest survival probability.  
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Figure 24. Kaplan-Meier’s stress on stress survival curves – transplant experiment. Plots are 

showing survival duration of mussels pre-exposed to six realistic environmental conditions (a), 

using paired block design - polluted vs. clean sites (b) in transplant experiment, and left on air 

before all individuals experienced mortality. Longer horizontal gap means that it took longer for 

one group to experience a certain fraction of deaths. The interval is terminated by the occurrence 

of mortality. Longer vertical gap means that at a specific time point, one group had a greater 

fraction of subjects surviving. 

Based on the pollution status (Figure 24b), populations pre-exposed to polluted environment 

have generally longer survival time and higher survival probability, that is, induced higher 

fitness. This pattern is repeated in each Adriatic region (Figure 25). 
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Figure 25.  Kaplan-Meier’s stress on stress survival curves – transplant experiment. Plots are sžž       

howing survival duration of mussels pre-exposed to six realistic environmental conditions using 

paired block design three geographic regions (a – North, b – Middle, c – South) in transplant 

experiment, and left on air before all individuals experienced mortality. Longer horizontal gap 

means that it took longer for one group to experience a certain fraction of deaths. The interval is 

terminated by the occurrence of mortality. Longer vertical gap means that at a specific time 

point, one group had a greater fraction of subjects surviving. 
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4.4.2. Mesocosm 

 

Source population Gruž exhibited the longest survival time for specimens in control group and 

those pre-exposed to copper, where control group had the longest survival time of 15 days, and 

highest survival probability (Figure 26a). Individuals from Gruž pre-exposed to copper lived 

maximum 12 days. Source population Marina showed the same pattern as Gruž, where exposure 

to toxicant decreased the fitness.  
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Figure 26. Kaplan-Meier’s stress on stress survival curves – mesocosm experiment. Plots are 

showing survival duration of two mussel’s populations (Marina – MA and Gruž - GZ) pre-

exposed to copper or clean seawater (a), in two replicates per population (b and c), and left on air 

before all individuals experienced mortality. Longer horizontal gap means that it took longer for 

one group to experience a certain fraction of deaths. The interval is terminated by the occurrence 

of mortality. Longer vertical gap means that at a specific time point, one group had a greater 

fraction of subjects surviving. 
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Control group had longer survival time (maximum 10 days) than group pre-exposed to copper 

(maximum 6 days). We achieved the mesocom experiment in two replicas, and both exibited the 

same pattern (Fig 30b, c). 

4.5. Genetic architecture of Mytilus galloprovincialis morphological traits estimated using 

GWAS 

4.5.1. Hyperparameters on five Mytilus galloprovincialis data sets  

 

We described the genetic architecture of mussel's morphological traits using five data sets, with 

minor allele frequency (MAF) greater than 0.05 for GWA mapping analyses. Here we report the 

median, lower and higher 95% confidence interval (95% equal tail posterior probability intervals 

[95% ETPIs]) for the proportion of the total phenotypic variation (i.e. PVE), proportion of the 

phenotypic variation that can be explained by ‘large-effect’ SNPs alone (i.e. PGE) and number of 

SNPs (n_SNP) that have non-zero effects on phenotypic variation for each data set and 

comparisons. We also report the priors h and rho, used to estimate the proportion of variance 

explained by the model and conditional prior probability that defines the sparsity of the model, 

respectively (Tables S4 – S8, Supplementary materials).  

 

In Gruž_meso dataset (394 individuals, population Gruž, 19129 SNPs) total phenotypic variation 

being explained by genotype (PVE) varied between 8.4% (WPR) and 56.3% (PAD) (Figure 27). 

The proportion of the total phenotypic variation that can be explained only by ‘large-effect’ 

SNPs (PGE) varied between 18% (PAL) and 57% (VPR), being due to 13 (WH) – 44 (PAL) 

SNPs with measurable phenotypic effects (median estimates).  
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Figure 27. Hyper-parameter estimates of Gruž population's genetic architecture (Gruž_meso 

dataset), 394 individuals used in mesocosm experiment. Results were obtained by Gemma (Zhou 

and Stephens 2012, Zhou et al., 2013). Plot is showing proportion of the total phenotypic 

variation (PVE), proportion of the phenotypic variation that can be explained by ‘large-effect’ 

SNPs alone (PGE) and number of SNPs (N-SNPs) that have non-zero effects on phenotypic 

variation. 

 

Figure 28. Hyper-parameter estimates of Marina population’s genetic architecture 

(Marina_meso dataset), 377 individuals used in mesocosm experiment. Results were obtained by 

Gemma (Zhou and Stephens 2012, Zhou et al., 2013). Plot is showing proportion of the total 

phenotypic variation (PVE), proportion of the phenotypic variation that can be explained by 

‘large-effect’ SNPs alone (PGE) and number of SNPs (N-SNPs) that have non-zero effects on 

phenotypic variation. 
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Marina_meso dataset (377 individuals, population Marina, 19129 SNPs) had larger PVEs, that 

varied between 9% (H) and 60% (DPR) with PGE varied between 15% (PAL) and 45% (LPR), 

and being due to 13 (PADP) – 52 (PAL) SNPs with large phenotypic effects (median estimates) 

(Figure 28).  

Marina_trans dataset (883 individuals, population Marina, 18850 SNPs) had generally lower 

PVE and PGE values than Marina_meso for most of the traits, except WL and WH, with PVEs 

between 6% (H) and 48.9% (WH) and PGE between 12.3% (WL) and 61% (PPAD), being due 

to 8 (PPAD) – 88 (WH) SNPs with measurable phenotypic effects (median estimates) (Figure 

29). Also, Marina_trans had somewhat narrower PVE ETPIs than mesocosm populations. 

Marina_pool (1258 individuals, 18728 SNPs) showed PVEs between 10% (PADP) and 44.4% 

(PAL) (Figure 30). The proportion of the total phenotypic variation that can be explained only by 

‘large-effect’ SNPs varied between 2.3% (WH) and 25.4% (PADP) with n_SNPs between 7 

(WH) – 43 (WPR) (median estimates). 

Figure 29. Hyper-parameter estimates of Marina population’s genetic architecture (Marina_ 

trans dataset), 883 individuals used in transplant experiment. Results were obtained by Gemma 

(Zhou and Stephens 2012, Zhou et al., 2013). Plot is showing proportion of the total phenotypic 

variation (PVE), proportion of the phenotypic variation that can be explained by ‘large-effect’ 

SNPs alone (PGE) and number of SNPs (N-SNPs) that have non-zero effects on phenotypic 

variation. 
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General trend is quite similar when the pool of individuals is compared to separated data sets of 

Marina_meso and Marina_trans. ETPIs are lower and a bit narrower for PVEs and PGEs 

compared to other data sets (Marina_meso and Gruž_meso showed the highest ETPIs span for 

PVEs among other data sets). The most of the lower ETPIs for PGE were firmly on zero, except 

for VPR - 1.8% - Gruž population, volume - 1.5% - Marina transplant, LIG – 1% - Marina pool.  

 

Figure 30. Hyper-parameter estimates of genetic architecture analysed for all individuals of 

Marina population (Marina_pool dataset), 1258 individuals exposed in mesocosm and transplant 

experiment. Results were obtained by Gemma (Zhou and Stephens 2012, Zhou et al., 2013). Plot 

is showing proportion of the total phenotypic variation (PVE), proportion of the phenotypic 

variation that can be explained by ‘large-effect’ SNPs alone (PGE) and number of SNPs (N-

SNPs) that have non-zero effects on phenotypic variation. 

Exceptionally, data set composed of 15 native populations (288 individuals, 18655 SNPs) 

showed surprisingly high PVE values (Figure 31). This data set contains the lowest number of 

analyzed individuals among all data sets, which were in addition sampled from number of 

populations exerting phenotypic divergence). Native populations had the highest PVEs, between 

44.3% (H) and 98.5% (MASS). Results for the other hyperparameters (PGE, n-SNPs) remained 

consistent in showing small PGEs and small number of SNPs with measurable effect with the 

proportion of the total phenotypic variation that can be explained only by non zero effect SNPs 

0,0

0,2

0,4

0,6

0,8

1,0

H WL WH V LIG PAL PADV PAD PADP PPAD LPR WPR VPR DPR MASS

M
e

d
ia

n
 p

ro
p

o
rt

io
n

 v
ar

ia
n

ce
 

ex
p

la
in

ed

N-SNPs                     PVE                    PGE

23

9

37

7 33 19

15

28

24

23
24

31

43

26

17 21



78 
 

between 8% (WPR) and 35.5% (H). Number of SNPs with measurable phenotypic effects was 

between 20 (DPR) – 69 (PAD) (median estimates).  

 

 

Figure 31. Hyper-parameter estimates of native populations (288 individuals) genetic 

architecture (Native_pops dataset). Results were obtained by Gemma (Zhou and Stephens 2012, 

Zhou et al., 2013). Plot is showing proportion of the total phenotypic variation (PVE), proportion 

of the phenotypic variation that can be explained by ‘large-effect’ SNPs alone (PGE) and number 

of SNPs (N-SNPs) that have non-zero effects on phenotypic variation. 

Correlation of median hyperparameter estimates between the different data sets were not observed for 

most of the traits. Lower ETPIs for PVE in all data sets, for most of the traits, do tend to be 

above zero (Figure 32). Thereforer results on PVE continue to point to a modestly heritable basis 

at best. 

 

 

 

 

 

0,0

0,2

0,4

0,6

0,8

1,0

H WL WH V LIG PAL PADV PAD PADP PPAD LPR WPR VPR DPR MASS

M
ed

ia
n

 p
ro

p
o

rt
io

n
 v

ar
ia

n
ce

 
ex

p
la

in
ed

N-SNPs                     PVE                    PGE

21

39

61

51

61
37

54

69

68
34

53

41

31 20

55



79 
 

 

Figure 32. Comparison of the ETPI’s estimation (a) PVE, b) PGE, c) N-SNPs) between the 

datasets (Gruž_meso, Marina_meso, Marina_trans, Marina_pool, Native_pop; respectively). 

Lower and upper 95% ETPIs are represented with a black dot, median values are represented 

with a red horizontal line. Results were obtained by Gemma (Zhou and Stephens 2012, Zhou et 

al., 2013).  

For each data set top 1% SNPs (Figures S14 - S18, Supplementary materials) and number of 

SNPs with posterior inclusion probability (PIP) greater than 0.01 (SNPs that are more strongly 

associated with phenotypic variation will have larger PIPs) were calculated. Finally, we 
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examined the number of shared top1% and PIP0.01 SNPs for each trait, between data sets (Table S9 

– Supplementary materials).  

The number of overlapping SNPs was very low between most of the data sets. Number of shared 

SNPs was higher between subsets Marina_meso and Marina_pool, where number of shared 

top1% SNPs between these two data sets was between 25 (V and WH) and 48 (DPR), and the 

number of shared PIP0.01 SNPs was in range from 2 (WH) – 36 (LPR). PAD exerted high number 

of shared PIP0.01 SNPs (36) between Marina_trans and Native populations. 

The results are in accordance with overall low PIP values. Somewhat higher PIP values have 

volume in Marina_trans (max 0.8), and MASS (max 0.4) and DPR (max 0.7) in Native 

populations. 

4.5.2. Single SNP analysis 

 

Results on single SNP analysis with controlling for population structure didn’t showed 

associated SNPs at genome-wide significance. Without controlling for the population structure 

most of the traits in native populations had at least few associated SNPs, but none of them was 

shared with any other data set (Table 6). There were just few associated SNPs in Marina_pool 

and Marina_trans, and these SNPs are mainly shared between mentioned data sets, for PAL and 

PPAD. There were few associated SNPs in mesocosm data sets, and only one of them in 

Gruž_meso was shared with Marina_pool (for PAD).  

 

Table 6. Associated SNPs shared between data sets. Results were obtained within single SNP 

analysis using R package GenABEL v1.8.0, without controlling for population structure.  

 
  N of associated SNPs 

 Trait GRUZ_MESO MARINA_TRANS MARINA_POOL Shared SNPs 

pal 0 7 5 4 

ppad 0 1 2 1 

pad 1 0 1 1 
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4.5.3. Cross validation (predictive power of the models) 

 

Cross - validation results on Marina_pool dataset showed that the models have modest predictive 

power, that ranges for different traits between 0.03 (PADP) to 0.29 (LIG). Null prediction 

accuracy was observed only for H. Predictive ability was positively correlated with the PVE 

values (higher PVE is, the higher predicting power), but the opposite goes for PGE (Figure 33).  

 

 

Figure 33. Relation between PVE, PGE and prediction accuracy (Marina_pool dataset) for 14 

morphological traits of M. galloprovincialis. H was not included due to lack of predicting power. 

 

 

 

 

 

 

 

0,0

0,1

0,2

0,3

0,4

0,5

PADP VPR PAD WPR PPAD PADV MASS DPR LPR V WH WL LIG PAL

PVE
PGE
PREDICTION ACCURACY



82 
 

5. DISCUSSION 

5.1. Phenotypic variation 

It is known that shell morphometry is a good taxonomic tool, used to discriminate among species 

of genus Mytilus (McDonald et al., 1991, Sarver et al., 1993, Innes and Bates, 1999, Gardner, 

2004, Krapivka et al., 2007, Beaumont et al., 2008, Valladares et al., 2010). For example, 

McDonalds et al. (1991) analyzed individuals of mussels from locations for which allozyme 

characters indicated the presence of only a single species. They managed to distinguish M. 

galloprovincialis and M. edulis based on morphological traits and proved length of the anterior 

adductor muscle scar and length of the hinge plate to be useful for distinguishing these Mytilus 

species. The most informative morphological characters for distinguishing between M. 

galloprovincialis and M. trossulus (Sarver et al., 1993) were byssal retractor muscle scar width, 

posterior adductor muscle scar length, and byssal retractor muscle scar length. Assuming they 

allow distinction of species, these morphometric traits could be genetically conditioned to some 

extent. However, many authors also showed intraspecific phenotypic variations regarding shell 

morphological traits (discussed below).  

Results of this study are indicating very high genetic connectivity among studied populations of 

M. galloprovincialis on a relatively large geographical scale (over 500 km of maritime 

distances). This pattern of broad-scale panmixia is consistent with the hypothesis of high gene 

flow (caused by the long lived larval pelagic state), which in the eastern Adriatic basin seems to 

be strong enough to counteract neutral genetic differentiation caused by the genetic drift. 

However, prediction of significant intraspecific morphological variability among the M. 

galloprovincialis populations is confirmed (H1), not only related to the origin of samples, but 

also to pollution status and to a longitude as well (three geographic regions along the eastern 

Adriatic coast). Both environmental variables and metals contributed to that. Krapivka et al. 

(2007) showed a highly significant morphological variation between the Mytilus chilensis 

populations using a Fourier elliptical analysis on shell outline shapes. Chilean blue mussel was 

examined in eight populations covering the totality of the southeastern Pacific distribution range, 

which represents over 1800 km of its latitudinal gradient. These authors found significant 

differences in the convexity of the shell ventral margin, umbo shape and shell elongation 

(characters that were not included in this study). Karakousis et al. (1993) found a significant 
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degree of variation investigated at the morphological level, within and among eight populations 

of M. galloprovincialis, from different coasts of the Northern and Central Aegean Sea. 

Additionally, the results of their investigation indicate that morphological variation does not 

correlate with genetic variation and that the overall genetic differentiation among the populations 

is rather low. Populations of M. galloprovincialis along the Adriatic Sea were mainly 

distinguished by traits related to shell shape (HL, WL, WH, V) and position of posterior adductor 

and retractor muscles (PADP, PPAD, PADV, VPR, DPR). Comparing large samples from the 

two source populations (MA and GZ) representing contrasting environments introduced 

significant difference between populations for almost all morphological traits. Here, comparison 

between higher number of individuals provide a clearer picture of morphological disjunction, 

highlighting a few traits that are contributing the most to the variation, and emphasizing the 

importance of shell shape and position of both posterior muscles, especially adductor. Shell 

length, height, and width are measures that describe the morphology of the mussel body in three 

dimensions (Seed, 1968). Those dimensions change because of an incremental growth from shell 

deposition, which is a labile contemporary factor (Blythe and Lea, 2008). Because such 

increments culminate over time, shell dimension traits are an obvious first place to look for long 

term morphological pattern in responses to changing environment. Results of this research point 

to that. Other authors have already recognized these traits as subjected to environmentally 

induced variation. M. californianus shell height and width varied at different locations along a 

mussel bed, corresponding to intertidal height (Kopp, 1979). Measurements of pollution also 

have association with the height over the width (H/W) of the mussels M. edulis (Lobel et al., 

1991) and M. californianus (Lares et al., 2005). To round up the story, question can be address to 

the functional role of these phenotypic variations. Blythe and Lea (2008) hypothesized that the 

utility of height and width dimensions might change in response to parasites, predators and toxin 

bio-accumulation. In addition, the shell width is hypothesized to contribute to basal metabolism 

for a variety of reasons, and wider mussels have more tissue that confers metabolic cost (Blythe 

and Lea, 2008). Growth-related traits (i.e. associated to shell size), are of major interest for 

mollusc farming, and spotlight them as the object of separation between population may 

contribute to future research perspectives for improving aquaculture yields in an increasingly 

changing world. 
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Not to be ignored, except HL, WL, WH and V, this research also marked traits related to position 

of posterior muscles as responsible for phenotypic variability. Can those characters be related 

with the ones previously discussed (shell shape traits)? Freeman et al. (2009) experimentally 

compared the inducible defenses of the M. edulis from pairwise combinations of three predators. 

Predators were represented by the sea star, Asterias vulgaris, and the crabs Carcinus maenas and 

Cancer irroratus. As a response to predators, mussels did not simultaneously increase shell 

growth and adductor muscle growth, which might be suggesting that these induced traits require 

an energetic tradeoff, are phenotypically incompatible, and won’t be induced easily together. 

However, the relation between shell shape traits and the position of posterior muscles can be 

alternatively explained by the process of shell accretion. Accretion occurs in the mussel’s 

extrapallial space (near the shell margin), and progresses more rapidly at the shell margins than 

near the shell center (Wilbur and Saleuddin, 1983). As a mussel shell grows, the adductor and 

retractor muscles must migrate away from the shell hinge, toward the posterior shell margin. 

This highlights how enentually shift in position of posterior muscles can appear together with 

induced changes in shell shape.  

 

Although morphological variation in bivalve molluscs has been addressed in several studies 

dealing with changes in shell morphology, few studies have related exact factors that impact 

morphological patterns in M. galloprovincialis.  

 

This research highlighted environmental variables having a higher descriptive power than metals 

(used here as proxy for environmental pollution burden). Most important traits for population’s 

variability were highly related to nitrates, Chl_a, T_max, light and anthropogenic heavy metals. 

Environmental variables that contributed the most to phenotypic variability, in general, were 

nutrients, light, O2, salinity and sea surface temperature. Most of these environmental factors are 

in direct relationship with phytoplankton contribution in the water column, and food availability 

affects the growth rate of mussels (Dahlhoff and Menge, 1996). Under nutrient-saturated 

conditions, temperature and light are the key factors in controlling phytoplankton productivity, 

but e.g. after algal blooms, the nutrient supply is low and determines the total algal biomass 

(Sakshaug and Holm-Hansen, 1986, Graneli, 1987). For phytoplankton, light changes may cause 

variations in the photosynthesis and the respiration rate (Verity, 1982, Harris, 1986). Light itself 
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is generally important environmental feature and shell width dimension would increase the rate 

of light absorbance, because this increases the surface area that is exposed to normally incident 

solar radiation (Blythe and Lea, 2008). Price and Lakshmi (2014) found that the mussel’s growth 

along the Oregon coast is more affected by the average sea temperature than the amount of food. 

Morán at al. (2018) highlighted the phenotypic plasticity of Ameghinomya antiqua as a possible 

response to different environmental conditions, where shells morphometric differences could be 

linked to variations in wave action, tidal influences, predation pressure and/or sea surface 

temperature substrate, which all potentially modify the shape and size of this species. Variations 

in salinity have widespread effects on aquatic organisms and can influence the geographical 

distribution of mussels (M. californianus) (Young, 1941) and its genetic structure. As shown by 

Shurova (2001), variations in salinity can modify size, age, sex and phenotypic structures of 

mussel populations, a fact that can be considered as an adaptive strategy. According to Krapivka 

et al. (2007), more elongated specimens are found in lower salinity environments.  

Anthropogenic metals such as Mn, Co, Ni, Cu, Zn, Se, Sr, Pb were highlighted as most 

contributing to the phenotypic variability in this study. Additionally, Cd, Mn and As were shown 

to be negatively related to VPR, DPR, HL, PADP, PPAD, V; and Ni was positively related with 

PADV, PPAD, PADP and WL. In Jordaens et al., (2006) Zn concentration was negatively 

correlated with shell strength, shell thickness, shell dry weight and shell volume. Several 

researches found a negative correlation of mussel size with iron and copper concentrations 

(Boyden 1977, Cossa et al., 1980, Popham and D'Auria 1983, Riget et al., 1996). Metal 

bioaccumulation is influenced by numerous environmental (salinity, temperature, dissolved 

oxygen, pH, dissolved organic carbon) and biological factors (size, seasonal growth cycle, 

gender, sexual maturity, reproductive stage) (Rainbow and Phillips, 1993). As a result, the 

relationship between the size and concentration of metal often depends on the locality from 

which the mussels are sampled (Giusti et al., 1999). Along the Adriatic coast, metal 

concentration from mussels tissue significantly varied by sampled sites and pollution status, 

while Adriatic regions didn’t have significant influence. Correlations of morphometric traits with 

some metals probably point to correlation with the general state or type of environment which is 

then manifested through correlation with some of these parameters. This does not necessarily 

mean that the concentrations of particular metals directly affect the measured morphometric 

characteristics.  
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5.1.1. Fluctuating asymmetry  

 

Fluctuating asymmetry (FA) is commonly used to estimate environmentally caused stress, whose 

aftermaths can be marked as minor developmental accidents. These instabilities and 

susceptability to them differ between individuals. Scalici et al. (2017) studied how marine 

pollution affects the valve morphological alterations in the mussel M. galloprovincialis. 

Investigations on asymmetries interpreted deviations from perfect bilateral symmetry as 

environmental changes induced developmental instability. Since morphological abnormalities 

increase with pollution, deformations may be considered indicators of the organism exposition to 

pollution. Authors noted that the individual asymmetry scores (IAS) significantly varied among 

the investigated sites, where IAS showed higher values in disturbed areas than those of 

undisturbed ones. Their results are demonstrating some detrimental effects of chemicals on 

organism’s development, although the investigated morphological marker did not discriminate 

the actual source of disturbance. Ghemari et al. (2018) studied asymmetry exhibited by a species 

of woodlouse, Porcellio laevis, sampled from 15 sites belonging to Tunisian industrialized areas. 

Contrary to their expectations and hypothesis, the results showed that individuals from 

contaminated sites have a low FA level, whereas those from uncontaminated sites have a high 

FA level.  

Our results, however, showed quite consistent results between two mussels populations from 

contrasted environment (i.e. Gruž vs. Marina). We did detected FA for the same traits related to 

different features in both populations (e.g. shell length, adductor length - PAD, retractor width – 

WPR, PAL), which cannot be associated with pollution status of sampling sites, because we 

didn’t observed significant differences. Interestingly, traits that were previously discussed as 

most contributing to phenotypic variation between Adriatic populations of M. galloprovincialis 

appear to be more stable regarding FA. 

5.3. Biomarkers 

In response to oxidative stress, mussel’s antioxidant enzyme activities exhibit seasonal variations 

(Sheehan and Power, 1999) related to individual and environmental factors, such as reproductive 

status, genetic background, food availability, temperature and oxygen consumption (Regoli and 

Orlando, 1994, Bocchetti and Regoli, 2006). In addition to the highly seasonal natural processes, 
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stress in mussels can be further induced by the occurring pollutants (i.e. Manduzio et al., 2004, 

Pain-Devin et al., 2014, Jimenez et al., 2015, González-Fernández et al., 2016). Therefore, our 

aim in this study was to elucidate the effect of pollution status on mussel’s biomarker response in 

different seasons. Pollution status of sites was confirmed by metals concentration in mussel’s 

tissue, showing separations between clean and polluted sites, with higher variability among 

polluted sites. Furthermore, lower variability of biomarker state between seasons (spring and 

autumn) was observed for groups of mussels from clean than from polluted sites. This can be 

either due to different nature of pollution in respect to seasons, or due to inferences of seasonal 

natural processes and pollution. This indicates that pollution-exposed, and therefore stress 

challenged mussels, show higher temporal fluctuations of biomarker response. Similarly, 

mussels in the west coast of Algeria showed more pronounced difference in biomarker response 

between seasons at the impacted/polluted than at the reference/cleaner sites (Benali et al., 2015). 

For a long period of time, the comparison of organism’s biomarker status between seasons has 

not been straightforward because individual biomarkers tell little about the impact of mixed 

spatial and temporal variations on mussel populations (Marcogliese et al., 2005, Isaksson 2010, 

Gassó et al., 2016). Therefore, a multivariate analysis, as provided here, supplies a synthetic 

illustration improving the diagnostic of mussel’s biochemical and cellular change and 

determination of the extent to which it is affected by seasons or pollution (Guerlet et al., 2007, 

Benali et al., 2015). 

Pollution represents environmental pressure whose effect can be compensated through local 

genetic adaptation and/or through phenotypic plasticity. Previous study on the same mussel 

populations revealed the lack of significant genome wide population structure in the eastern 

Adriatic Sea (Štambuk et al., 2013), but we have no knowledge on the existence of local 

adaptation involving specific genomic regions. Here, we specifically assessed mussel’s 

biomarker response capacities (i.e. phenotypic plasticity) toward differing environmental 

conditions, and tested for population effect using experimental setups with one and two source 

populations (H2). Transplant experiments have been already successfully employed to reveal 

changes in biomarker responses of marine organisms, including mussels (Hollander and Butlin 

2010, Mayfield et al., 2012, Burford et al., 2014, Ramajo et al., 2016). Those studies pointed to a 

differential reaction norm depending on mussel’s exposure to different environmental factors, 

but also depending on different population. Our results, assembled from IBR analysis on 
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transplant experiment, demonstrated significant differences in biomarker response between 

mussels from the same population exposed to different levels of pollution, confirming the effects 

of phenotypic plasticity. Caged exposed mussels in transplant experiment uniformly exhibited 

higher responses on impacted sites in each of the regions. Similarly, IBR index in eight 

populations of zebra mussels also revealed higher biomarker response in more contaminated sites 

(Pain-Devin et al., 2014). Such response tends to arise when organisms are pushed towards 

stressful conditions (Abele et al., 2002, Oliveira et al., 2005, Heise 2006, Buttermer et al., 2010, 

Jimenez et al., 2015). In this study we identified not only a response towards pollution status, but 

also towards differing environments in respect to three geographic regions in the Adriatic Sea. 

The shallow northern part of the Adriatic Sea receives significant outflow of the Po river, 

providing over 50% of the freshwater input and accounting for about 50% of the total nutrients 

transported into the basin (Degobbis 1986, Degobbis and Gilmartin 1990, Viličić et al., 2002) 

thus impacting the productivity in this area. Salinity of the southern part is 38 ‰ and decreases 

towards the north, but in the north salinity varies through seasons due to periodical advections of 

high salinity water from the south (Viličić et al., 2002). Besides that, northern Adriatic shows 

typical shallow water characteristics affected by seasonal temperature variability and higher sea 

tide changes (up to 0.8 m) than the southern part, influencing biological characteristics of the 

system (Franco and Michelato, 1992). Our results are in accordance with decreasing variability 

toward oligotrophic middle and southern Adriatic offshore, showing persistent decrease in IBR 

values from north to south. To test for population effect, we implemented mesocosm experiment 

where two source populations, polluted (GZ) and clean site (MA), were exposed to common 

marine traffic pollutant – copper, after 4 weeks of acclimatization. Results confirmed population 

effect of biomarker status between GZ and MA with generally higher IBR and higher within-

group variability for GZ. Although individuals from GZ inhabited a copper rich environment 

(Carić et al., 2014), our data don’t suggest their acclimatization to the presence of high 

concentrations of metals in their natural habitat, but rather a pronounced response to it. This 

population had a higher basal activity in biochemical and cellular response than population from 

reference site (MA) after 4 weeks of acclimatization. Although copper didn’t influence low, 

baseline biomarker activity of MA originating mussels, it seemed to decrease it in the GZ 

mussels, which might be result of copper inhibitory capacities towards enzymes activity 

(Company et al., 2004). In respect to these mesocosm results, the origin of mussels must be taken 
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into consideration when studying the biochemical responses of mussels experimentally exposed 

to chemical pollutants.  

Concentrations of particular pollutants can be readily revealed by chemical analyses, and 

environmental physicochemical factors can be recorded, but it is often difficult to disentangle the 

influence of xenobiotics from natural environmental factors in shaping the mussel’s biomarker 

status (Sheehan and A. Power 1999, Camus et al., 2004, Manduzio et al., 2004, Durou et al., 

2007). Importantly, it is also very difficult to clearly separate the anthropogenic and natural 

contribution to a variation of many environmental factors, including some naturally occurring 

metals, whose environmental concentrations can additionally anthropogenically increased.  

With aim to do so, we analysed individuals from the transplant experiment - because such 

experimental design was shown to be relevant both in evaluating the biomarker responses when 

coping with natural environmental factors (Osores et al., 2017) and anthropogenic pollutants 

(Marigómez et al., 2013). In dependence on the chosen set of environmental variables, biomarker 

status significantly differed among Adriatic regions, but not among the sites of different 

pollution status. Using the same experimental design and IBR approach we already pointed out 

biomarker response divergence toward differing environments in respect to the three geographic 

regions of the Adriatic, where Northern Adriatic exhibited highest values of biomarker activity. 

Results on PLS-R2 analysis thus confirm variability in biomarker response in relation to 

geographic area, reflecting the impact of different ecological conditions other than metal 

pollution. Equally, and not less expected, in dependence on the metals accumulated in mussel’s 

tissue, biomarker status of transplanted mussels significantly differed between clean and polluted 

sites, and not among the regions. PLS-analysis further confirmed higher variability among 

individuals transplanted to polluted sites, than for the ones on clean sites. The measurement of 

the biological effects of accumulated metals should therefore be taken into consideration as 

important screening tool for distinguishing clean versus polluted environment, as well as for the 

assessment of the environmental quality per se. Transplant experiment was shown to be useful in 

disentangling the effects of other environmental variables vs. metals, and in that sense, it shall be 

considered as discerning tool for defining the relative role of these variables in expressed 

biomarker response variability toward pollution status and natural ecological pressures. 
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5.4. Survival as the proxy for fitness (SOS) 

 

Several studies of Mytilus spp. have shown that environmental effects are large determinants of 

both growth and survival (Dickie et al., 1984, Mallet and Carver, 1989, Johannesson et al., 1990, 

Stirling and Okumus, 1994). Eertman et al. (1993) and Viarengo et al. (1995) have shown that 

mussels exposed to pollutants use a large amount of energy for the detoxification process and 

have less tolerance to anoxic conditions. Despite the fact that previously field studies revealed 

decrease in survival in air caused by exposure to pollution, there are results showing that survival 

time after aerial exposure doesn’t need to be totally dependent on pollution. As it has been 

proposed by Thomas et al. (1999), mussels exposed to significantly higher pollutant 

concentrations didn’t show significantly reduced survival times compared to the reference 

groups. The SOS method on both experiments in this research performed on M. galloprovincialis 

showed that mussels pre-exposed to polluted environment (transplant) or originated from 

polluted environment (mesocosm) had longer survival time and higher survival probability. 

Mussels pre-exposed to polluted site Pula (PLT), which is a traffic harbor, influenced by poorly 

cleaned communal, industrial and shipwreck wastewater, had the longest survival time of 12 

days, among all individuals from transplant experiment. In case of individuals inhabiting the 

contaminated habitat, with presence of heavy metal contamination (e.g. Cu, Zn, Cd, Hg), an 

antioxidant defense system will be already activated, as opposed to individuals from clean 

habitats that do not have this defense capability (Viarengo, 1989). This can lead to two possible 

outlines. The contamination of pollutants can strongly impact the mussel health status and cause 

reduced survival ability in air (Pampanin et al., 2005). As it has been showed in Biomarkers 

section, in biomarker response of Gruž population, pollution can cause even a greater sensitivity 

to it. In other scenario, the mussel exposure to pollutants over a long period of time can lead to 

some level of pollution adaptation or acclimatization, increasing antioxidant capacity in both 

cases. Mussels sampled from polluted sites may be more tolerant to contamination than those 

collected in non-polluted areas and as a result they show elevated values of LT50, increased 

physical tolerance and longer lasting survival in the air (Koukouzika and Dimitriadis, 2005). On 

the other hand, species that have evolved under highly stable conditions are expected to be the 

most sensitive to environmental change and stress (Overgaard et al. 2011). This is consistent 

with performed results, in both experiments. Source population Gruž from mesocosm experiment 
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exhibit longer survival time for both the control group and individuals pre-exposed to copper, 

where control group had longer survival time of 15 days, and higher survival probability. Same 

pattern was recorded within Marina populations, and repeated in two replicates. Contrary to what 

they expected, Koukouzika and Dimitriadis (2005) found that mussels from polluted stations are 

more resistant to aerial exposure with higher LT50 values than mussels from the reference area. 

They confer that the survival in air can show a direct dependence on concentration of pollutants 

only in mussels exposed for a short time in laboratory conditions, while exposure of mussels to 

pollutants for a long time may result in some level of acclimatisation to pollution. Kamel et al., 

(2014) examined decreased resistance in survival on air in particular in mussels from more 

polluted site. However, they additionally revealed decreased resistance in survival in August, 

compared to May, which is pointing to a seasonal effect and specific environmental variables 

contribution. It is therefore possible that temperature, water currents, the availability of food, as 

well as some other ecological factors affect the response of mussels to pollutants and conceal 

differences in biomarker response.  

5.5. Genetic architecture 

 

Genetic architecture describes the characteristics of genetic variation responsible for heritable 

phenotypic variability. It depends on the number of genetic variants affecting a trait, their 

frequencies in the population, the magnitude of their effects and their interactions with each 

other and the environment. Genetic architecture is often described as falling along a continuum 

ranging from monogenic, to oligogenic to polygenic, meaning that one, few or many genetic 

variants contribute to phenotypic variability, respectively. GWAS use genome-wide genotyping 

arrays to measure genetic variation, and they are the standard platform to test the association of a 

phenotype with common genetic variants. The statistical power to detect associations between 

DNA variants and a trait depends on the experimental sample size, the distribution of effect sizes 

of (unknown) causal genetic variants that are segregating in the population, the frequency of 

those variants, and the LD between observed genotyped DNA variants and the unknown causal 

variants.  

In this research GWAS provided quantitative estimates of the M. galloprovincialis genetic 

architecture of already discussed morphological traits (H3). The fact that many traits had modest 
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PVEs and most had large ETPIs, and the fact that the number of large effect SNPs (n - SNP) 

often had a lower ETPI of zero, all pointed to predictions (both within and among data sets) that 

analysed traits are polygenic and weakly heritable (any heritable effects are likely due to many 

loci with infinitesimal effects). The recent development of SNP arrays for Pacific oyster 

(Crassostrea gigas) raised the opportunity to test genomic selection strategies for polygenic traits 

in that species. In study of Gutierrez et al., (2018), a population of 820 oysters (comprising 23 

full-sibling families) were genotyped using a medium density SNP array, and the genetic 

architecture of growth-related traits - shell height, shell length, and wet weight was evaluated. 

Heritability was estimated to be moderate for all three traits (0.26 ± 0.06 for height, 0.23 ± 0.06 

for length and 0.35 ± 0.05 for weight), and results of a GWAS indicated that the underlying 

genetic architecture was polygenic. 

For complex traits (derived from any combination of multiple genetic factors, environmental 

factors and their interactions), association signals tend to be spread across most of the genome 

(Boyle et al., 2017). As the number of genes grows very large, the contribution of each gene 

becomes correspondingly smaller, leading to Fisher’s ‘‘infinitesimal model’’, named by the limit 

of a model of Mendelian inheritance (Barton et al., 2016). Even the most important loci in the 

genome have small effect sizes and the significant hits only explain a modest fraction of the 

predicted genetic variance. This has been referred to the ‘‘missing heritability’’ (Manolio et al., 

2009). The mystery of ‘‘missing heritability’’ has been partially resolved by analyses showing 

that common single-nucleotide polymorphisms (SNPs) with effect sizes well below genome-

wide statistical significance, rare alleles and epigenetic effects account for most of the ‘‘missing 

heritability’’ of many traits (Yang et al., 2010, Shi et al., 2016). A reasonable argument for some 

weak heritability in this study lies in a fact that lower ETPIs for PVE tend to be above zero. 

Additionally, indicating significantly greater predictive power than zero, cross-validation point 

estimates suggested that shell morphological traits of M. galloprovincialis were at least modestly 

heritable. Nevertheless, all the lower ETPIs for PGE are firmly on zero. Accordingly, when the 

traits are actually so polygenic and there is no strong support for having detectable effect SNPs, 

lack of shared SNPs with detectable effects across data sets is expected. Anyhow, some shared 

SNPs are retained in the model and their effects are still rather small.  
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Though the conclusions remain comparable, results are moving a bit around among data sets. 

Inconstant results between the data sets could be the effect of the differing sample size. Bigger 

dataset (Marina_pool – 1258 individuals) is giving more reliable insights comparing to the other 

data sets. Marina_pool had lower and a bit narrower ETPIs for PVE and PGE comparing 

to Marina_meso (377 ind.) and Marina_trans (883 ind.) datasets. In this regard, the results on 

native populations are rather dubious. Kingston et al. (2017) did the simulation of GWAS power 

regarding the sample size using M. galloprovincialis as a model. Sample size of approximately 

118 individuals (due to incomplete genotype matrix), had low power, only 13.7% (at a < 4 x 10-7 

significance level), to detect loci with rare alleles. As discussed above, rare alleles could 

contribute to real heritable variation and be the part of the explanation for the missing 

heritability. To attain 50% of power, approximately 310 individuals (effective size) needed to be 

genotyped and phenotyped; an effective sample size of 900 allowed for 90% power with a 

significance level. They noted that for sufficient power to detect individual loci with intermediate 

effect sizes (0.1 - 0.2) and rare alleles, one needs to use fairly large sample sizes, on the order of 

hundreds to even thousands of individuals (similarly was discussed by Spencer et al., 2009). 

Additionally, despite the fact that genome wide population structure is weak, by using different 

populations we may be suffering from effects of cryptic population structure that can be a 

confounding factor for the results of GWAS. The kinship matrix is meant to 'control' for family 

structure (which can help show effects of overall relatedness when individual SNPs don't 

contribute strongly). Moreover, the power to detect loci of moderate effects with a GWAS will 

increase when the phenotypic variance is maximal (Kingston, 2017). We already confirmed that 

there is a significant morphological variation in observed traits among native populations. The 

fact that we could capture higher amount of infinitesimal effect loci in native populations might 

be reason for high PVE, but somewhat similar PGE values as within other data sets.  
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5. CONCLUSIONS 

H1) Substantial phenotypic variation exists between and within mussel populations and is 

driven by numerous environmental factors.  

The present study shows that despite high genetic connectivity, significant morphological and 

biochemical and cellular variability exists among the M. galloprovincialis populations along the 

eastern Adriatic coast. M. galloprovincialis populations were mainly distinguished by traits 

related to shell shape and position of posterior adductor and retractor muscles. The study 

demonstrates interactions between environmental pollution status and seasonality in their effects 

on biomarker state of native M. galloprovincialis. 

     H2) Environment affects mussel’s phenotypic variation both through the phenotypic plasticity 

and natural selection in the face of high gene flow. 

Mussel’s morphological variation between sampling sites, pollution status and Adriatic regions is 

shaped in response to both environmental variables and metals. Substantial morphological 

differentiation is revealed among populations, especially when using larger datasets. Mesocosm 

experiment showed diverse survival and biomarker response between two populations of 

different origin when exposed to common conditions, revealing population effect toward single 

stressor. Disentangling the effect of environmental variables and metals on mussel’s biomarker 

response by using paired block transplant experiment, led to a conclusion that biomarker status 

significantly differs between Adriatic regions depending on the set of environmental variables. 

Further on, biomarker activity significantly differs between sites of different pollution status 

depending on metals accumulated in mussel’s tissue. Environmental variables are highlighted as 

having a higher descriptive power on phenotypic variability than metals.  

The ‘Stress on stress’ method on transplant and mesocosm experiments showed that mussels pre-

exposed to polluted environment (transplant) or originated from polluted environment 

(mesocosm) had longer survival time and higher survival probability. Those mussels may be 

more tolerant to contamination than mussels collected in non-polluted areas.  

H3) Genetic architecture of morphological traits in Mediterranean mussel is highly polygenic. 

GWAS provided quantitative estimates of the M. galloprovincialis genetic architecture and 

pointed to three core conclusions: (i) analysed traits are polygenic and weakly heritable (ii) any 
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heritable effects are likely due to many loci with infinitesimal, not large effects (iii) strong 

environmental effects are possible.  

Data set compiled of the largest number of individuals gives narrower, therefore more reliable 

hyperparameters describing the genetic architecture of the phenotypes measured. 

Main advantage of this thesis is implementation of several multivariate data analyses in defining 

mussel’s biomarker status, morphological variability, and its underlying genetic architecture in 

highly complex marine intertidal system. Valuating a multivariate description of biomarkers 

activity and application of specific experiments allowed gaining a comprehensive insight in the 

mussel’s biomarker response to seasonality, natural environmental factors and pollution status. 

Such type of data analysis enables to characterize the response as a strategy rather than a single, 

self-contained event development.  
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8. SUPPLEMENTARY DATA 

 

Quality control 
 

Initial quality control included removing reads with greater than 5% N’s or with evidence of 

polyA regions, reads where 20% or more of the calls were considered low quality bases, adaptor 

polluted reads, overlapping reads, and duplicated reads. After removing reads containing 

contaminant sequences, 1,309,592,331 reads retained (650k/sample - 90.5% mapped) for 

analysis. 

 

Alignment and variant detection 

 

Reads were aligned to a de novo genome of the M. galloprovincialis sequenced by Murgarella et 

al., 2016.  

BWA-backtrack algorithm was implemented in bwa 0.7.5a-r405 (H. Li and R. Durbin, 2009) to 

align sequences from each individual to the Mytilus genome scaffolds. Bases were discarded 

with quality scores less than 10, allowed a maximum edit distance of 4 between the read and 

reference sequences, and only placed reads with a unique best match. We used a 20 bp seed with 

a maximum edit distance of two to increase the speed of the alignment method. We used custom 

Perl scripts along with bcftools and samtools (H. Li and R. Durbin, 2009) to call variant sites in 

the assembled contigs. samtools processes input BAM files (a compressed file format for storing 

assembly data), computes the probability of the data given each possible genotype and stores the 

probabilities in the BCF format. bcftools then executes the calling of variant sites based on a 

Bayesian model that accounts for uncertainty in the data. We defined a site as variable if the 

probability of the data under the null hypothesis (no variation at the site) was less than 0.01 using 

the full prior with F = 0.001. We required data for 85% of individuals to designate a variable 

locus, and identified variable loci separately for each mapping family. Single nucleotide variants 

were identified as follows in Table S1: 
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Table S1. Single nucleotide variants identified per data sets. 

 
Data set N of individuals SNPs 

Gruž_meso 381 72758 

Marina_meso 394 72730 

Marina_trans 883 71534 

Native_pops 288 83375 

 

Population differentiation 

 

Genome-wide genetic differentiation was quantified between 15 mussel populations by 

estimating Hudson's FST (Hudson et al., 1992, Bhatia et al., 2013), as a measure of structure in 

natural populations. It was calculated according to Soria-Carrasco et al. (2014). Genetic structure 

was assessed across populations using the ENTROPY algorithm, a hierarchical Bayesian model, 

that takes genotype likelihoods from variant calling via SAMtools/BCFtools as the starting point 

and provides a clustering solution. This model was used according to Gompert et al. (2014) for 

15 native populations (k=15). Signatures of diversifying selection were analyzed between 

populations by identifying FST-outlier SNPs, using BAYESCAN (Foll and Gaggiotti, 2008). This 

program calculates locus-specific pairwise FST between each population and a common gene 

pool of all populations. These FST coefficients are then decomposed into two components: α-

component, which is locus specific and shared by all populations considered, and β-component, 

which is population-specific and shared by all loci. If the α-component significantly differs from 

zero for a particular locus, this implies that selection is necessary to explain the population 

differentiation at this locus. Positive values of α-component indicate diversifying selection, while 

negative values indicate balancing or purifying selection (Foll and Gaggiotti 2008). Significance 

is based on FDR-corrected q-values (<0.05). 

 

 

 

 

 

 



131 
 

Table S2. Quantitative environmental data collected from Bio–Oracle online database, based on 

monthly averages in the time period between 2000 and 2014. 

 

Description ID Unit LB PL IC RJ VL ZB ZM MA TM AD SL MS SA GZ 

Current velocity                         
(mean at min depth) 

Currents m/s 0.02 0.01 0.01 0.01 0.01 0.03 0.03 0.04 0.04 0.04 0.04 0.04 0.04 0.05 

Light at bottom                                
(mean at min depth) 

Light mol/m/s 2.94 1.95 1.10 0.31 0.31 2.41 0.01 0.26 1.08 1.24 0.13 0.00 0.31 0.04 

Sea water temp.                             
(max. at min depth) 

T_max °C 27.33 27.14 26.47 26.38 26.38 26.44 26.63 26.14 26.11 26.07 26.10 26.46 26.39 26.72 

Sea water salinity                            
(mean at min depth) 

Salinity PSS 36.93 36.95 36.93 36.93 36.93 37.39 37.44 38.05 38.06 38.06 38.07 38.18 38.15 38.29 

Silicate conc.                 
(mean at min depth) 

Silicates mol/m3 19.19 19.06 22.22 22.39 22.39 17.74 17.88 12.09 12.00 11.91 11.66 10.00 10.17 9.41 

Sea surface temp.                            
(mean) 

SST °C 17.85 17.77 17.10 17.05 17.05 18.12 18.25 18.68 18.66 18.63 18.66 19.14 19.10 19.38 

Chlorophyll conc.                             
(mean) 

Chl_a mg/m3 0.53 0.40 0.17 0.17 0.17 0.25 0.21 0.14 0.16 0.18 0.20 0.28 0.22 0.22 

Dissolved O2 conc.                       
(mean) 

O2 mol/m3 247.5 244.5 242.9 242.8 242.8 239.9 238.8 235.1 235.6 235.9 236 232.9 231.9 232.3 

Phosphate conc.                                 
(mean) 

Phosphate mol/m3 0.14 0.13 0.11 0.11 0.11 0.07 0.07 0.04 0.04 0.04 0.04 0.02 0.02 0.01 

Nitrate conc.                                  
(mean) 

Nitrates mol/m3 0.05 0.04 0.00 0.00 0.00 0.07 0.05 0.09 0.10 0.14 0.20 0.58 0.43 0.59 
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Table S3. Heavy metals concentrations determinated from mussels M. galloprovincialis 

(Lamarck, 1819) tissue, by using high resolution mass spectrometry. Mussels were collected on 

sampling sites in spring 2014. Concentrations are expressed in mg/kg. 

   
 

 
LB PL IC RJ VL ZB ZM MA  TM AD SL MS SA GZ 

Li 1.52 1.20 1.45 1.28 1.00 1.37 1.86 1.78 1.40 1.22 1.26 1.55 1.44 1.53 

Rb 5.95 5.97 6.08 5.59 5.96 6.74 5.61 6.70 6.99 6.25 5.16 5.78 6.02 6.12 

Mo 0.99 1.25 5.01 1.00 2.69 7.21 3.11 2.42 1.49 1.33 1.52 1.79 9.23 1.26 

Ag 0.03 0.07 0.01 0.24 0.03 0.04 0.25 0.01 0.11 0.01 0.07 0.01 0.01 0.04 

Cd 0.72 0.64 0.96 1.02 1.30 0.88 0.95 0.69 0.70 0.94 0.86 1.96 0.72 0.65 

Sn 0.07 0.45 0.12 0.22 1.70 0.06 2.39 0.08 0.29 0.22 0.19 0.21 0.05 0.40 

Sb 0.03 0.07 0.03 0.05 0.07 0.02 0.05 0.02 0.03 0.03 0.03 0.04 0.03 0.13 

Pb 0.74 8.41 1.03 5.10 11.23 0.96 14.05 1.12 2.10 2.71 3.27 2.28 0.55 6.04 

Bi 0.01 0.03 0.02 0.02 0.03 0.01 0.13 0.02 0.02 0.02 0.04 0.02 0.01 0.04 

U 0.10 0.11 0.13 0.13 0.14 0.14 0.14 0.11 0.09 0.10 0.12 0.18 0.17 0.19 

Al 619.5 184.6 342.3 242.2 318.0 408.4 328.4 453.5 410.2 186.5 169.0 293.7 151.5 507.7 

Ti 32.40 13.10 21.50 16.40 23.10 22.60 54.20 28.70 24.00 10.10 10.70 23.40 9.10 36.50 

V 3.23 18.13 2.42 1.01 2.12 2.54 1.77 2.78 1.74 1.40 1.25 1.52 1.83 2.65 

Cr 1.44 2.48 1.61 1.82 5.17 1.26 3.13 2.26 1.66 1.72 1.70 2.77 0.81 2.90 

Mn 9.19 5.15 8.48 6.48 10.27 17.32 6.33 9.05 8.81 6.77 6.64 17.13 6.63 8.96 

Fe 425.3 235.0 274.6 264.1 661.6 284.5 386.9 304.0 280.0 179.4 207.6 345.6 143.3 388.8 

Co 0.75 0.44 1.03 0.52 1.27 0.71 0.67 0.82 0.64 0.68 0.69 1.05 0.98 0.75 

Ni 1.49 1.13 1.77 1.52 2.42 1.78 1.30 1.39 1.53 1.26 1.55 1.73 2.03 1.97 

Cu 4.76 16.21 5.88 19.28 46.65 5.24 312.98 5.08 55.82 7.49 9.78 13.31 5.20 43.99 

Zn 107.7 176.9 86.7 152.9 278.1 64.2 410.9 111.8 102.0 148.0 209.2 126.2 72.5 172.1 

Sr 33.30 65.90 47.70 56.10 56.00 36.10 80.50 80.80 84.70 60.70 55.50 65.30 95.60 55.20 

Ba 3.46 11.16 2.66 1.98 8.93 6.68 5.36 16.39 6.10 9.36 4.54 5.06 7.31 18.69 

As 24.00 23.79 31.70 27.30 27.50 32.39 24.82 29.23 23.62 26.33 27.13 23.09 22.19 27.24 
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Figure S1. Variable importance for the projection (VIP), modeled on first component (t1) of 

native populations. Plots are giving a way to classify the predictors (green – environmental 

variables, orange - metals) in terms of their explanatory power of morphological traits. The 

predictors with a VIP > 1 are considered to be the most relevant to the construction of 

morphological traits. 
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Figure S2. Standardized coefficients of native populations. Plot shows how increases of 

predictors (environmental variables, metals) affects response variables (morphological traits). 

The closer to the absolute value of 1 the coefficient is, the stronger the effect of that predictor on 

the response variable (controlling for other variables in the equation). 
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Figure S3. Variable importance for the projection (VIP), modeled on first component (t1) in 

transplant experiment. Plots are giving a way to classify the predictors (gree n – environmental 

variables, orange - metals) in terms of their explanatory power of biomarkers. The predictors 

with a VIP > 1 are considered to be the most relevant to the construction of biomarkers. 
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Figure S4. Standardized coefficients of transplant data. Table shows how increases of predictors 

(environmental variables, metals) affects response variables (biomarkers). The closer to the 

absolute value of 1 the coefficient is, the stronger the effect of that predictor on the response 

variable (controlling for other variables in the equation). 
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Figure S5. PLS-R2 score plots, native populations sampled in fall. Plots are representing 

relationship between response variables (biomarkers) and predictors (environmental variables – 

a,b; metals – c,d) towards pollution status (clean vs. polluted sites – a,c) and spatial distribution 

(Adriatic regions – b,d). ANOVA test on PLS-R2 scores shows the significance of status and 

regions specifics in 'response-predictor' relation, where *** represents significant effect. 

 

a) c) 

b) d) 
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Figure S6. PLS-R2 score plots, native populations sampled in spring. Plots are representing 

relationship between response variables (biomarkers) and predictors (environmental variables – 

a,b; metals – c,d) towards pollution status (clean vs. polluted sites – a,c) and spatial distribution 

(Adriatic regions – b,d). ANOVA test on PLS-R2 scores shows the significance of status and 

regions specifics in 'response-predictor' relation, where *** represents significant effect. 

 

 

a) c) 

b) d) 
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Figure S7. Variable importance for the projection (VIP), modeled on first component, of native 

populations data, sampled in fall. Table gives a way to classify the predictors (green – 

environmental variables, orange - metals) in terms of their explanatory power of biomarkers. 

Those predictors with a VIP > 1 are considered to be the most relevant to the construction of 

biomarkers. 

 

Figure S8. Variable importance for the projection (VIP), modeled on first component (t1) of 

native populations data, sampled in spring. Table gives a way to classify the predictors (a – 

environmental variables, b - metals) in terms of their explanatory power of biomarkers. Those 

predictors with a VIP > 1 are considered to be the most relevant to the construction of 

biomarkers.  
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Figure S9. Standardized coefficients of native populations sampled in fall. Table shows how 

increases of predictors (a – environmental variables, b - metals) affects response variables 

(biomarkers). The closer to the absolute value of 1 the coefficient is, the stronger the effect of 

that predictor on the response variable (controlling for other variables in the equation).  
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Figure S10. Standardized coefficients of native populations sampled in spring. Table shows how 

increases of predictors (environmental variables, metals) affects response variables (biomarkers). 

The closer to the absolute value of 1 the coefficient is, the stronger the effect of that predictor on 

the response variable (controlling for other variables in the equation). 
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Figure S11. Validation model of the biomarkers vs. environmental variables/metals relationship 

using PLS-R2. The R² value of a given model is used to measure descriptive power of the data, 

and the Q² value of the model is used to assess the predictive power of the model. R2 = 100% 

indicates perfect description of the data by the model, whereas Q2 =100% indicates perfect 

predictability. Environmental variables had higher degree of fitting the data (88.5% - fall, 90.2% 

- spring) than metals (32%– fall, 36%– spring), with Q² - 2.2% - fall, 3% - spring and 12% - fall, 

19% - spring, respectively. 

 

 

 
 

Figure S12. Admixture proportion estimates from the hierarchical Bayesian model implemented 

in ENTROPY. Each vertical bar represents an individual, and bars are colored to reflect the 

posterior medians of each individual’s admixture proportions, for each of k=15 clusters. 

Population names, as well as regions and pollution status are indicated on the top, along the 

abscissa. 
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Figure S13. Outlier SNPs inferred in BAYESCAN analysis. The vertical axis represents values 

of locus-specific F ST coefficient, and the horizontal axis indicates the logarithm of q-values. The 

vertical line corresponds to a threshold q-value assumed in each analysis. Dots correspond to 

SNPs. 
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Table S4. Hyper-parameter estimates of genetic architecture on Gruž population. Table 

shows the median, lower and higher 95% credible interval (ETPIs) of 15 traits for the prior 

h proportion of variance explained by the model, conditional prior probability that defines 

the sparsity of the model (rho), proportion of the total phenotypic variation (PVE), 

proportion of the phenotypic variation that can be explained by ‘measurable-effect’ SNPs 

alone (PGE) and number of SNPs (N-SNP) that have non-zero effects on phenotypic 

variation.  

  

  
    

trait estimate h rho PVE PGE N-SNPs 

 
median 0.147 0.440 0.124 0.291 18 

H lower 95% ETPI 0.007 0.020 0.006 0 0 
  upper 95% ETPI 0.527 0.968 0.410 0.952 256 

 
median 0.142 0.442 0.120 0.297 23 

WL lower 95% ETPI 0.007 0.020 0.005 0 0 
  upper 95% ETPI 0.523 0.969 0.415 0.954 270 

 
median 0.135 0.481 0.110 0.329 13 

WH lower 95% ETPI 0.006 0.023 0.005 0 0 
  upper 95% ETPI 0.524 0.974 0.396 0.957 258 

 
median 0.345 0.361 0.317 0.238 25 

V lower 95% ETPI 0.066 0.017 0.057 0 0 
  upper 95% ETPI 0.692 0.939 0.609 0.926 269 

 
median 0.262 0.329 0.235 0.198 30 

LIG lower 95% ETPI 0.020 0.014 0.016 0 0 
  upper 95% ETPI 0.668 0.942 0.574 0.920 271 

 
median 0.400 0.290 0.382 0.180 44 

PAL lower 95% ETPI 0.116 0.012 0.107 0 0 
  upper 95% ETPI 0.712 0.918 0.632 0.908 280 

 
median 0.164 0.435 0.140 0.285 20 

PADV lower 95% ETPI 0.010 0.020 0.007 0.000 0 
  upper 95% ETPI 0.534 0.967 0.413 0.951 267 

 
median 0.578 0.309 0.563 0.218 35 

PAD lower 95% ETPI 0.281 0.014 0.278 0 0 

 
upper 95% ETPI 0.864 0.909 0.833 0.904 276 

  median 0.269 0.406 0.250 0.299 37 
PADP lower 95% ETPI 0.037 0.018 0.032 0 0 

  upper 95% ETPI 0.602 0.959 0.519 0.954 275 

 
median 0.198 0.460 0.176 0.336 23 

PPAD lower 95% ETPI 0.015 0.022 0.012 0 0 
  upper 95% ETPI 0.542 0.968 0.443 0.959 264 

 
median 0.224 0.405 0.200 0.279 29 

LPR lower 95% ETPI 0.016 0.018 0.013 0 0 
  upper 95% ETPI 0.592 0.961 0.500 0.949 272 

 
median 0.105 0.506 0.084 0.352 18 

WPR lower 95% ETPI 0.004 0.025 0.003 0 0 
  upper 95% ETPI 0.456 0.977 0.339 0.963 251 

 
median 0.310 0.636 0.278 0.570 15 

VPR lower 95% ETPI 0.052 0.082 0.048 0.018 1 
  upper 95% ETPI 0.649 0.982 0.583 0.979 196 

 
median 0.332 0.380 0.304 0.269 31 

DPR lower 95% ETPI 0.030 0.017 0.024 0 0 
  upper 95% ETPI 0.753 0.952 0.696 0.941 267 

 
median 0.339 0.356 0.304 0.223 24 

MASS lower 95% ETPI 0.040 0.016 0.033 0 0 
  upper 95% ETPI 0.718 0.941 0.637 0.920 272 
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Table S5. Hyper-parameter estimates of genetic architecture on Marina population – 

mesocosm experiment. Table shows the median, lower and higher 95% credible interval 

(ETPIs) of 15 traits for the prior h - used to estimate the proportion of variance explained 

by the model, conditional prior probability that defines the sparsity of the model (rho), 

proportion of the total phenotypic variation (PVE), proportion of the phenotypic variation 

that can be explained by ‘measurable-effect’ SNPs alone (PGE) and number of SNPs (N-

SNP) that have non-zero effects on phenotypic variation. 

  

  
  

trait estimate h rho PVE PGE N-SNPs 

 
median 0.111 0.488 0.090 0.337 18 

H lower 95% ETPI 0.005 0.024 0.003 0 0 
  upper 95% ETPI 0.489 0.976 0.372 0.960 262 

 
median 0.363 0.398 0.339 0.291 33 

WL lower 95% ETPI 0.072 0.020 0.064 0 0 
  upper 95% ETPI 0.699 0.951 0.633 0.945 275 

 
median 0.214 0.449 0.184 0.320 14 

WH lower 95% ETPI 0.018 0.022 0.015 0 0 
  upper 95% ETPI 0.579 0.964 0.466 0.949 263 

 
median 0.356 0.337 0.331 0.229 36 

V lower 95% ETPI 0.040 0.014 0.033 0 0 
  upper 95% ETPI 0.759 0.940 0.701 0.929 274 

 
median 0.525 0.302 0.507 0.220 26 

LIG lower 95% ETPI 0.211 0.018 0.207 0 0 
  upper 95% ETPI 0.819 0.885 0.779 0.873 266 

 
median 0.551 0.240 0.539 0.150 52 

PAL lower 95% ETPI 0.259 0.010 0.258 0 

   upper 95% ETPI 0.847 0.873 0.807 0.862 282 

 
median 0.239 0.441 0.217 0.325 31 

PADV lower 95% ETPI 0.026 0.021 0.021 0 0 
  upper 95% ETPI 0.595 0.965 0.512 0.958 272 

 
median 0.349 0.435 0.320 0.333 29 

PAD lower 95% ETPI 0.032 0.024 0.027 0 0 

 
upper 95% ETPI 0.776 0.962 0.729 0.955 262 

  median 0.214 0.478 0.179 0.332 13 
PADP lower 95% ETPI 0.013 0.024 0.010 0 0 

  upper 95% ETPI 0.615 0.969 0.508 0.954 257 

 
median 0.499 0.337 0.472 0.233 38 

PPAD lower 95% ETPI 0.122 0.016 0.110 0 0 
  upper 95% ETPI 0.884 0.931 0.855 0.923 275 

 
median 0.427 0.498 0.419 0.452 50 

LPR lower 95% ETPI 0.164 0.028 0.162 0 0 
  upper 95% ETPI 0.697 0.972 0.658 0.973 270 

 
median 0.317 0.347 0.296 0.231 32 

WPR lower 95% ETPI 0.051 0.015 0.044 0 

   upper 95% ETPI 0.682 0.943 0.602 0.934 274 

 
median 0.187 0.404 0.161 0.259 23 

VPR lower 95% ETPI 0.010 0.018 0.008 0 0 
  upper 95% ETPI 0.599 0.962 0.495 0.945 269 

 
median 0.607 0.216 0.599 0.130 41 

DPR lower 95% ETPI 0.340 0.009 0.343 0 0 
  upper 95% ETPI 0.865 0.812 0.829 0.776 281 

 
median 0.266 0.502 0.247 0.430 31 

MASS lower 95% ETPI 0.020 0.029 0.016 0 0 
  upper 95% ETPI 0.637 0.972 0.588 0.969 265 
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Table S6. Hyper-parameter estimates of genetic architecture on Marina population – 

transplant experiment. Table shows the median, lower and higher 95% credible interval 

(ETPIs) of 15 traits for the prior h - used to estimate the proportion of variance explained 

by the model, conditional prior probability that defines the sparsity of the model (rho), 

proportion of the total phenotypic variation (PVE), proportion of the phenotypic variation 

that can be explained by ‘measurable-effect’ SNPs alone (PGE) and number of SNPs (N-

SNP) that have non-zero effects on phenotypic variation. 

    

 
  

trait estimate h rho PVE PGE N-SNPs 

 
median 0.078 0.455 0.060 0.248 15 

H lower 95% ETPI 0.004 0.021 0.003 0 0 
  upper 95% ETPI 0.419 0.974 0.223 0.944 262 

 
median 0.493 0.217 0.487 0.123 59 

WL lower 95% ETPI 0.330 0.010 0.335 0 0 
  upper 95% ETPI 0.735 0.765 0.633 0.683 284 

 
median 0.492 0.254 0.489 0.176 88 

WH lower 95% ETPI 0.323 0.011 0.331 0 0 
  upper 95% ETPI 0.727 0.826 0.641 0.800 287 

 
median 0.358 0.500 0.339 0.440 36 

V lower 95% ETPI 0.163 0.061 0.160 0.015 1 
  upper 95% ETPI 0.575 0.949 0.526 0.945 248 

 
median 0.230 0.298 0.208 0.148 27 

LIG lower 95% ETPI 0.057 0.012 0.049 0 0 
  upper 95% ETPI 0.577 0.916 0.388 0.877 273 

 
median 0.344 0.269 0.327 0.137 30 

PAL lower 95% ETPI 0.177 0.011 0.163 0 0 
  upper 95% ETPI 0.644 0.866 0.484 0.808 278 

 
median 0.157 0.348 0.134 0.173 23 

PADV lower 95% ETPI 0.015 0.014 0.012 0.000 0 
  upper 95% ETPI 0.516 0.948 0.319 0.911 273 

 
median 0.222 0.610 0.214 0.578 67 

PAD lower 95% ETPI 0.044 0.051 0.039 0 0 

 
upper 95% ETPI 0.443 0.980 0.399 0.979 270 

  median 0.164 0.467 0.146 0.362 24 
PADP lower 95% ETPI 0.025 0.026 0.025 0 0 

  upper 95% ETPI 0.460 0.967 0.343 0.960 266 

 
median 0.109 0.672 0.091 0.610 8 

PPAD lower 95% ETPI 0.019 0.097 0.025 0.023 1 
  upper 95% ETPI 0.356 0.986 0.246 0.981 204 

 
median 0.129 0.398 0.108 0.228 23 

LPR lower 95% ETPI 0.009 0.017 0.007 0 0 
  upper 95% ETPI 0.467 0.961 0.290 0.934 272 

 
median 0.126 0.398 0.104 0.227 21 

WPR lower 95% ETPI 0.008 0.018 0.006 0 0 
  upper 95% ETPI 0.471 0.961 0.302 0.932 272 

 
median 0.227 0.377 0.205 0.266 23 

VPR lower 95% ETPI 0.044 0.023 0.039 0.000 0 
  upper 95% ETPI 0.525 0.937 0.414 0.918 264 

 
median 0.183 0.573 0.170 0.523 38 

DPR lower 95% ETPI 0.031 0.053 0.028 0 0 
  upper 95% ETPI 0.421 0.977 0.364 0.975 256 

 
median 0.144 0.349 0.123 0.176 24 

MASS lower 95% ETPI 0.013 0.015 0.010 0 0 
  upper 95% ETPI 0.500 0.948 0.294 0.912 272 
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Table S7. Hyper-parameter estimates of genetic architecture on the Marina_pool. Table 

shows the median, lower and higher 95% credible interval (ETPIs) of 15 traits for the prior 

h - used to estimate the proportion of variance explained by the model, conditional prior 

probability that defines the sparsity of the model (rho), proportion of the total phenotypic 

variation (PVE), proportion of the phenotypic variation that can be explained by 

‘measurable-effect’ SNPs alone (PGE) and number of SNPs (N-SNP) that have non-zero 

effects on phenotypic variation. 

    

 
  

trait estimate h rho PVE PGE N-SNPs 

 
median 0.130 0.351 0.111 0.171 23 

H lower 95% ETPI 0.012 0.015 0.009 0 0 
  upper 95% ETPI 0.489 0.950 0.264 0.908 273 

 
median 0.449 0.116 0.428 0.024 9 

WL lower 95% ETPI 0.306 0.004 0.305 0 0 
  upper 95% ETPI 0.781 0.794 0.548 0.251 273 

 
median 0.428 0.122 0.404 0.023 7 

WH lower 95% ETPI 0.282 0.004 0.278 0 0 
  upper 95% ETPI 0.773 0.804 0.527 0.263 262 

 
median 0.338 0.203 0.321 0.084 37 

V lower 95% ETPI 0.188 0.008 0.184 0 0 
  upper 95% ETPI 0.675 0.823 0.457 0.683 279 

 
median 0.433 0.273 0.430 0.226 33 

LIG lower 95% ETPI 0.296 0.042 0.303 0.010 1 
  upper 95% ETPI 0.594 0.668 0.555 0.627 254 

 
median 0.459 0.131 0.444 0.036 19 

PAL lower 95% ETPI 0.313 0.005 0.314 0 0 
  upper 95% ETPI 0.771 0.766 0.570 0.368 277 

 
median 0.305 0.202 0.279 0.064 15 

PADV lower 95% ETPI 0.161 0.008 0.152 0 0 
  upper 95% ETPI 0.668 0.828 0.411 0.551 274 

 
median 0.225 0.272 0.205 0.135 28 

PAD lower 95% ETPI 0.072 0.012 0.066 0 0 

 
upper 95% ETPI 0.576 0.898 0.357 0.844 276 

  median 0.121 0.423 0.102 0.254 24 
PADP lower 95% ETPI 0.013 0.021 0.010 0 0 

  upper 95% ETPI 0.423 0.961 0.242 0.938 268 

 
median 0.238 0.251 0.217 0.111 24 

PPAD lower 95% ETPI 0.093 0.011 0.085 0 0 
  upper 95% ETPI 0.588 0.877 0.357 0.773 270 

 
median 0.317 0.208 0.302 0.086 31 

LPR lower 95% ETPI 0.177 0.009 0.173 0 0 
  upper 95% ETPI 0.654 0.820 0.432 0.664 276 

 
median 0.224 0.303 0.207 0.157 43 

WPR lower 95% ETPI 0.087 0.013 0.081 0 0 
  upper 95% ETPI 0.555 0.913 0.343 0.882 277 

 
median 0.163 0.298 0.145 0.133 26 

VPR lower 95% ETPI 0.042 0.012 0.037 0 0 
  upper 95% ETPI 0.527 0.920 0.270 0.859 276 

 
median 0.317 0.169 0.295 0.057 17 

DPR lower 95% ETPI 0.172 0.007 0.165 0 0 
  upper 95% ETPI 0.673 0.806 0.427 0.472 278 

 
median 0.316 0.195 0.294 0.073 21 

MASS lower 95% ETPI 0.163 0.008 0.156 0 0 
  upper 95% ETPI 0.667 0.432 0.432 0.610 276 
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Table S8. Hyper-parameter estimates of genetic architecture on 15 native populations. 

Table shows the median, lower and higher 95% credible interval (ETPIs) of 15 traits for 

the prior h - used to estimate the proportion of variance explained by the model, 

conditional prior probability that defines the sparsity of the model (rho), proportion of the 

total phenotypic variation (PVE), proportion of the phenotypic variation that can be 

explained by ‘measurable-effect’ SNPs alone (PGE) and number of SNPs (N-SNP) that 

have non-zero effects on phenotypic variation. 

    

 
    

trait estimate h rho PVE PGE N-SNPs 

 
median 0.451 0.408 0.443 0.355 21 

H lower 95% ETPI 0.173 0.024 0.196 0 0 
  upper 95% ETPI 0.778 0.946 0.735 0.947 267 

 
median 0.867 0.229 0.865 0.138 39 

WL lower 95% ETPI 0.563 0.010 0.579 

 
0 

  upper 95% ETPI 0.999 0.831 0.999 0.815 277 

 
median 0.650 0.241 0.640 0.150 51 

WH lower 95% ETPI 0.323 0.010 0.327 0 0 
  upper 95% ETPI 0.972 0.875 0.968 0.867 283 

 
median 0.733 0.283 0.735 0.192 61 

V lower 95% ETPI 0.454 0.012 0.478 0 0 
  upper 95% ETPI 0.985 0.914 0.984 0.918 283 

 
median 0.966 0.229 0.969 0.140 61 

LIG lower 95% ETPI 0.766 0.009 0.790 

 
0 

  upper 95% ETPI 1.000 0.847 1.000 0.852 282 

 
median 0.897 0.169 0.894 0.083 37 

PAL lower 95% ETPI 0.596 0.007 0.609 0 0 
  upper 95% ETPI 1.000 0.724 1.000 0.636 279 

 
median 0.761 0.275 0.763 0.186 54 

PADV lower 95% ETPI 0.492 0.012 0.514 0 0 
  upper 95% ETPI 0.990 0.881 0.989 0.883 280 

 
median 0.930 0.322 0.931 0.258 69 

PAD lower 95% ETPI 0.656 0.016 0.674 0 0 

 
upper 95% ETPI 1.000 0.908 1.000 0.912 281 

  median 0.829 0.338 0.834 0.273 68 
PADP lower 95% ETPI 0.558 0.016 0.585 0 0 

  upper 95% ETPI 0.998 0.922 0.998 0.929 278 

 
median 0.905 0.240 0.907 0.150 53 

PPAD lower 95% ETPI 0.645 0.010 0.669 0 0 
  upper 95% ETPI 1.000 0.842 1.000 0.839 280 

 
median 0.675 0.320 0.668 0.223 41 

LPR lower 95% ETPI 0.378 0.015 0.389 0 0 
  upper 95% ETPI 0.964 0.917 0.958 0.918 274 

 
median 0.834 0.167 0.837 0.079 31 

WPR lower 95% ETPI 0.562 0.007 0.590 0 0 
  upper 95% ETPI 0.998 0.722 0.998 0.630 278 

 
median 0.761 0.226 0.768 0.131 34 

VPR lower 95% ETPI 0.480 0.009 0.511 0 0 
  upper 95% ETPI 0.992 0.840 0.992 0.837 278 

 
median 0.849 0.417 0.844 0.302 20 

DPR lower 95% ETPI 0.572 0.057 0.596 0.022 1 
  upper 95% ETPI 0.999 0.934 0.999 0.940 239 

 
median 0.983 0.350 0.985 0.277 55 

MASS lower 95% ETPI 0.852 0.026 0.875 0.001 1 
  upper 95% ETPI 1.000 0.883 1.000 0.901 276 
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Figure S14. Posterior inclusion probability of the top 1% SNPs, in Gruž population. 
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Figure S15. Posterior inclusion probability of the top 1% SNPs, in Marina population, 

exposed in mesocosm experiment. 
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Figure S16. Posterior inclusion probability of the top 1% SNPs, in Marina population, 

exposed in transplant experiment. 
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Figure S17. Posterior inclusion probability of the top 1% SNPs, for all individuals of 

Marina population, exposed in mesocosm and transplant experiment. 
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Figure S18. Posterior inclusion probability of the top 1% SNPs, for native populations. 
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Table S9. Matrix of top 1% (upper panel) and PIP > 0.01 (lower pannel) shared SNP. Number of 

shared SNPs is shown for each trait and between all data sets (Marina meso – MM, Gruž meso – 

GM, Marina trans – MT, Marina pool – MP, native populations –N) 

 

      
            

  MM 7 2 29 2   MM 5 2 38 4 

  0 GM 0 4 5   0 GM 0 3 5 
H 0 0 MT 7 2 PADP 0 0 MT 6 5 

  3 0 1 MP 3   7 1 2 MP 4 

  0 0 0 0 N   0 5 3 3 N 

  MM 5 3 25 4   MM 5 4 46 4 

  0 GM 0 1 1   2 GM 0 3 4 
WL 2 0 MT 7 2 PPAD 1 0 MT 2 2 

  4 0 4 MP 6   25 0 4 MP 2 

  3 0 4 1 N   1 2 0 0 N 

  MM 4 4 27 5   MM 3 4 32 5 

  0 GM 0 2 3   0 GM 0 4 7 
WH 0 0 MT 9 4 LPR 2 0 MT 5 8 

  2 0 2 MP 2   36 2 0 MP 4 

  0 0 4 0 N   7 3 3 5 N 

  MM 4 3 25 2   MM 2 6 44 4 

  0 GM 0 4 5   0 GM 0 2 9 
V 2 0 MT 4 4 WPR 0 0 MT 5 3 

  18 1 5 MP 2   23 0 0 MP 1 

  2 4 4 8 N   1 0 1 0 N 

  MM 3 4 35 2   MM 1 5 26 4 

  0 GM 0 6 2   0 GM 0 5 6 
LIG 1 0 MT 3 4 VPR 1 0 MT 4 1 

  24 1 2 MP 2   4 0 2 MP 1 

  4 2 2 6 N   0 3 1 1 N 

  MM 6 0 40 6   MM 8 5 48 6 

  4 GM 0 5 7   2 GM 0 5 1 
PAL 1 0 MT 8 2 DPR 1 0 MT 1 1 

  30 3 3 MP 3 21 1 1 MP 5 

  4 7 2 0 N   5 2 2 1 N 

  MM 1 6 46 2   MM 5 0 30 5 

  0 GM 0 4 6 2 GM 0 6 3 
PADV 2 0 MT 6 2 MASS 0 0 MT 5 4 

  12 0 0 MP 1 9 3 0 MP 2 

  1 1 2 4 N   2 4 0 3 N 

   
  MM 11 3 32 5 

   
   

  7 GM 0 4 1 
   

   

PAD 5 0 MT 3 9 
   

   
  16 4 7 MP 7 

           2 3 36 10 N       
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