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University of Zagreb,
Faculty of Science,
Department of Mathematics,
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Matematički odsjek,
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Chapter 1

Introduction

Lévy processes constitute a rich class of space-time homogeneous Markov processes

and have become increasingly important both in theory and applications. Lévy processes

have independent stationary increments and can therefore be thought of as random walks

in continuous time. Some of the best known examples of Lévy processes are Brownian

motion, Poisson process and stable Lévy process. Their applications range from math-

ematical finance to biology, biomedicine, geology, hydrology, etc. Recently, a new class

of discontinuous Markov processes derived from stable Lévy processes has been intro-

duced in [BBC03]. This process is called the censored or resurrected stable process and

is obtained by suppressing jumps of a stable Lévy process outside of some open set. The

main goal of this thesis is to introduce censored processes corresponding to a wider class

of discontinuous Lévy processes, as well as consider their boundary behavior and some

results from potential theory.

1.1 Overview

In Chapter 2 we give some preliminary results and definitions regarding Markov and

Lévy processes. We refer to the classical textbooks [Ber98], [Sat99], [App09] for general

theory of Lévy processes, [BG68], [CW05], [CZ95], [Jac02] for potential theory of Markov

processes, [FOT10], [CF12] for theory of Dirichlet forms and [Far02], [JW84], [Tri78],

[Tri10], [Jac01] for theory of Besov spaces and their generalizations.

In Chapter 3 we define the censored process on an open set D corresponding to

a rotationally symmetric Lévy process and analyze its behavior near the boundary ∂D.

In Section 3.1 we consider three equivalent constructions of a censored process - via the

corresponding Dirichlet form (i.e. restricting the jumping measure of the Lévy process

to set D), through the Feynman-Kac transform of the Lévy process killed outside of set

D and from the same killed process by the Ikeda-Nagasawa-Watanabe piecing together

procedure. From this point on we restrict ourselves to censored process corresponding to

a subordinate Brownian motion with the Laplace exponent of the subordinator φ ∈ CBF

1



1.1 Overview

satisfying one or both of the following scaling conditions:

(H1): There exist constants a1, a2 > 0 and 0 < δ1 ≤ δ2 < 1 such that

a1λ
δ1 ≤ φ(λr)

φ(r)
≤ a2λ

δ2 , λ ≥ 1, r ≥ 1,

(H2): There exist constants a3, a4 > 0 and 0 < δ3 ≤ δ4 < 1 such that

a3λ
δ3 ≤ φ(λr)

φ(r)
≤ a4λ

δ4 , λ ≥ 1, r ≤ 1.

In Section 3.2 and Section 3.3 we give basic definitions and results regarding Besov spaces

of generalized smoothness and prove the trace theorem for a special subclass of these

spaces on a n-set D. This result gives us necessary tools to address the problem of

boundary behavior of the censored subordinate Brownian motion in Section 3.4.

In Chapter 4 we prove the so called 3G inequality for transient subordinate Brownian

motion X on bounded κ-fat open sets. We show that for r > 0 and every bounded

κ-fat open set B with characteristics (R, κ) and diam(B) ≤ r there exists a constant

c = c(r, n,R, κ, φ) > 0 such that

GB(x, y)GB(y, z)

GB(x, z)
≤ c

Φ(|x− y|)Φ(|y − z|)
Φ(|x− z|)

|x− z|n

|x− y|n|y − z|n
,

where Φ(|x|) = 1
φ(|x|−2)

. A similar result was proved in [KSV16], as well as in [KL07]

under stronger conditions on the Lévy exponent φ, but with the constant c depending on

diam(B). Using this result in Section 4.2 for open balls of small radius we prove the scale

invariant Harnack inequality for nonnegative harmonic functions for the censored process

Y . More precisely, we say that the nonnegative Borel function h is harmonic in E for Y

if for any bounded open subset B ⊂ B ⊂ E

h(x) = Ex [h(YτB)] , x ∈ B.

We show that for any L > 0 there exists a constant c = c(n, φ, L) > 1 such that the

following is true: If x1, x2 ∈ D and r ∈ (0, 1) are such that B(x1, r) ∪ B(x2, r) ⊂ D and

|x1 − x2| < Lr, then for every nonnegative function h which is harmonic with respect to

Y on B(x1, r) ∪B(x2, r), we have

c−1
12 h(x1) ≤ h(x2) ≤ c12h(x1).

Note that due to jumps of the censored process Y the open set B(x1, r) ∪ B(x2, r) may

be disconnected.

Finally, in Chapter 5 we consider a one-dimensional subordinate Brownian motion

X with 0 being regular for itself and two related processes - the censored process Y on

2



1.2 Notation

(0,∞) and process Z which is equal to the absolute value of X killed at 0. In Section

5.1 we prove several properties of the first exit time of process Z from a finite interval in

terms of the harmonic function h,

h(x) =
1

π

∫ ∞
0

1− cos(λx)

φ(λ2)
dλ.

In the following section we introduce several Kato classes of functions for the killed pro-

cesses X(a,b) and Y (a,b), where 0 < a < b < ∞. Using the conditional gauge theorems

from [Che02] for continuous and discontinuous Feynman-Kac transforms we prove that

the Green functions of processes X(a,b), Y (a,b) and Z(a,b) are comparable, i.e.

GZ
(a,b) � GY

(a,b) � GX
(a,b).

Applying these results in the last section we obtain the Harnack inequality and the bound-

ary Harnack principle for the killed process Z(a,b).

1.2 Notation

For n ∈ N denote by B(Rn) the Borel σ-algebra, i.e. the smallest σ-algebra containing

all open sets in Rn. The inner product on Rn is denoted by x·y =
∑n

i=1 xiyi. The diameter

of a set D ⊂ Rn and distance of a point to set D are defined by

diam(D) = sup{|x− y| : x, y ∈ D},

d(x,D) = inf{|x− y| : y ∈ D}, x ∈ Rn

respectively. Denote by x ∧ y = min{x, y} and x ∨ y = max{x, y}.
For a measure space (E, E , µ) and p ∈ [1,∞] let

Lp(E, µ) = {f : E → R : f is (E ,B(R))−measurable and ||f ||Lp(E,µ) <∞}

where

||f ||Lp(E,µ) =

(∫
E

|f(x)|pµ(dx)

) 1
p

, 1 ≤ p <∞

||f ||L∞(E,µ) = ess supf = inf{x ∈ R : µ(f−1(x,∞)) = 0}.

Here we use the convention that two functions in Lp(E, µ) are equal if they are equal

µ-almost everywhere. Spaces (Lp(E, µ), || · ||Lp(E,µ)) are Banach spaces. For Lebesgue

measure λ on Rn and (E, E , µ) = (Rn,B(Rn), λ) we use a shorter notation Lp(Rn).

We say that functions f : Rn → R and g : Rn → R are comparable and denote

3



1.2 Notation

f � g if there exists a constant c > 1 such that for all x

c−1 ≤ f(x)

g(x)
≤ c.

Denote by C(Rn), C0(Rn) and Cc(Rn) the spaces of continuous functions, continuous

functions vanishing at infinity and continuous functions with compact support, respec-

tively. The space (C0(Rn), || · ||∞) with uniform norm

||f ||∞ = sup
x∈Rn
|f(x)|

is a Banach space. For a multi-index α = (α1, ..., αn) ∈ Nn
0 let

Dαf(x) =
∂α1

∂xα1
1

...
∂αn

∂xαnn
f(x)

and |α| = α1 + ... + αn. For k ∈ N ∪ {∞} denote by Ck(Rn) the space of k times

differentiable functions and

Ck
c (Rn) = {f ∈ Ck(Rn) : Dαf ∈ Cc(Rn), |α| ∈ {0, 1, ..., k}}.

Also for k ∈ N0, a multi-index α = (α1, ..., αn) ∈ Nn
0 and f ∈ C∞(Rn) set

||f ||k,α = sup
x∈Rn

(1 + |x|2)
k
2 |Dαf(x)|.

The Schwartz space or the space of rapidly decreasing functions on Rn

S(Rn) = {f ∈ C∞(Rn) : ||f ||k,α <∞ for all k ∈ N0 and all multi-indices α ∈ Nn
0}.

is a Fréchet space space whose topology is defined by the countable family of semi-norms

|| · ||k,α. The family of tempered distributions S ′(Rn) is a collection of all complex-valued

linear continuous functionals T over S(Rn).

For a function f ∈ L1(Rn) the Fourier transform Ff of f is defined as

f̂(ξ) = Ff(ξ) :=
1

(2π)n

∫
Rn
eix·ξf(x)dx, ξ ∈ Rn.

We use the same notation to denote the continuous extension of the Fourier transform

F : S → S to a unitary map from L2(Rn) to itself.

4



Chapter 2

Preliminaries

2.1 Markov processes

Let (Ω,F ,P) be a probability space. A stochastic process with values in Rn is a

family X = (Xt)t≥0 of (F ,B(Rn))-measurable functions Xt : Ω → Rn, t ≥ 0. The family

F = (Ft)t≥0 of σ-algebras is a filtration on (Ω,F) if for every 0 ≤ s ≤ t <∞

Fs ⊆ Ft ⊆ F .

A stochastic process X is F-adapted if the random variables Xt are (Ft,B(Rn))-

measurable, for all t ≥ 0. For a stochastic process X we define the natural filtration

F = {Ft}t≥0 as

Ft = σ{Xs : s ≤ t}, t ≥ 0.

It is easy to see that every process is adapted with respect to the corresponding natural

filtration.

Definition 2.1 A family p = (ps,t : 0 ≤ s < t) of functions ps,t : Rn × B(Rn) → [0, 1] is

called a Markov kernel (or a Markov transition function) on (Rn,B(Rn)) if

(i) x 7→ ps,t(x,B) is (F ,B(Rn))-measurable for all B ∈ B(Rn) and all s, t such that

0 ≤ s < t,

(ii) B 7→ ps,t(x,B) is a probability measure on (Rn,B(Rn)) for all x ∈ Rn and all s, t

such that 0 ≤ s < t,

(iii) the Chapman-Kolmogorov identity holds, i.e. for all x ∈ Rn, B ∈ B(Rn) and all s, t,

u such that 0 ≤ s < t < u

ps,u(x,B) =

∫
Rn
pt,u(y,B)ps,t(x, dy),

(iv) pt(x,Rn) = 1.

5



2.1 Markov processes

Additionally, for t ≥ 0 and x ∈ Rn we set pt,t(x, ·) := δx(·). The Markov kernel p is

temporally homogeneous if for all x ∈ Rn, B ∈ B(Rn) and all s, t such that 0 ≤ s < t

ps,t(x,B) = p0,t−s(x,B) =: pt−s(x,B).

Remark 2.2 In general, if instead of (iv) pt(x,Rn) < 1 holds for some x ∈ Rn and t ≥ 0

we call the kernel sub-Markovian. By introducing the cemetery ∂ 6∈ Rn and redefining pt

to a function on (Rn∪{∂})×σ (B(Rn) ∪ {∂}) every sub-Markov kernel can be considered

as a Markov kernel on the extended domain. From now on we will always implicitly

consider Markov kernels on the extended domain.

Definition 2.3 Let F = (Ft)t≥0 be a filtration, X = (Xt)t≥0 a F-adapted stochastic

process and p = (ps,t : 0 ≤ s < t) a Markov kernel. The structure (Ω,F ,P,F, p,X) is

called a Markov process if the the Markov property holds, i.e. for every B ∈ B(Rn) and

0 ≤ s < t

P(Xt ∈ B|Fs) = ps,t(Xs, B), P-a.s. (2.1)

From now on we only look at temporally homogeneous Markov processes X, i.e. Markov

processes with temporally homogeneous Markov kernels.

Given a Markov kernel p and using the Kolmogorov extension theorem we can

construct the canonical Markov process starting from x with Markov kernel p in the

following way. Let Ω = (Rn)[0,∞) and F = (B(Rn))[0,∞). For t ≥ 0 define the function

Xt : Ω→ Rn as

Xt(ω) = ω(t), ω ∈ Ω

and let F be the natural filtration of the process X. For x ∈ Rn, k ∈ N and 0 < t1 < t2 <

... < tk we define a probability measure on (B(Rn))k by

Px,t1,...,tk(B1, ..., Bk) =

∫
B1

pt1(x, dx1)

∫
B2

pt2−t1(x1, dx2)...

∫
Bk

ptk−tk−1
(xk−1, dxk)

for B1, ..., Bk ∈ B(Rn). The Kolmogorov extension theorem implies that there exists a

unique probability measure Px on (Ω,F) such that

Px(Xt1 ∈ B1, ..., Xtk ∈ Bk) = Px,t1,...,tk(B1, ..., Bk),

for every k ∈ N, 0 < t1 < t2 < ... < tk and B1, ..., Bk ∈ B(Rn). Therefore every Markov

process starting from x with Markov kernel p has the same finite-dimensional distribution

as the corresponding canonical Markov process X starting from x. Since

Px(Xt ∈ B) = pt(x,B)

6



2.1 Markov processes

for all t > 0, x ∈ Rn and B ∈ B(Rn) and x 7→ Px is a Borel function we can rewrite the

Markov property (2.1) as

Px(Xt+s ∈ B|Fs) = PXs(Xt ∈ B), Px-a.s. (2.2)

for all s, t ≥ 0, x ∈ Rn and B ∈ B(Rn). For a Markov process X define the shift operators

(θt)t≥0 as (F ,F)-measurable functions θt : Ω→ Ω, t ≥ 0 such that

Xt ◦ θs = Xt+s

for all s, t ≥ 0. Using the shift operator for a Markov process X the identity (2.2) is

equivalent to

Ex [f(Xt) ◦ θs|Fs] = EXs [f(Xt)] , Px-a.s.

for all s, t ≥ 0, x ∈ Rn and every bounded (B(Rn),B(R))-measurable function f . From

now on we can denote the Markov process as X = ((Xt)t≥0,F, (Px)x∈Rn). If the filtration

F is omitted in the notation, we consider the natural filtration for X.

If the Markov process X satisfies the condition (iv) from Definition 2.1 we say that

the Markov process X is conservative. Note that this is equivalent to

Px(ζ <∞) = 0, ∀x ∈ Rn,

where ζ = inf{t ≥ 0 : Xt = ∂} is the lifetime of the process X.

A function T : Ω→ [0,∞] is called a stopping time with respect to the filtration F
if {T ≤ t} ∈ Ft for all t ≥ 0. For a stopping time T define the family FT as

FT = {F ∈ F : F ∩ {T ≤ t} ∈ Ft for all t ≥ 0}

and let GT = {F ∈ F : F ⊂ {T < ∞}}. Note that both FT and GT are σ-algebras.

We can think of FT as information up to random time T and GT as that information

conditioned on {T <∞}.

Definition 2.4 A Markov process X is a strong Markov process if for every stopping

time T

(i) XT is (GT ,B(Rn))-measurable

(ii) the strong Markov property holds, i.e. for all t ≥ 0, x ∈ Rn and B ∈ B(Rn)

Px(XT+t ∈ B|GT ) = PXT (Xt ∈ B), Px-a.s. on {T <∞}.

7



2.1 Markov processes

Again, using the shift operator, we can rewrite the strong Markov property as

Ex [f(Xt) ◦ θT |FT ] = EXT [f(Xt)] , Px-a.s. on {T <∞}

for every stopping time T , t ≥ 0, x ∈ Rn and every bounded (B(Rn),B(R))-measurable

function f .

For t ≥ 0 and x ∈ Rn we define the augmentation of the σ-algebra Ft with respect

to Px as the smallest σ-algebra containing Ft and the family Nx of all Px-null sets,

Fxt = σ(Ft ∪Nx).

Definition 2.5 A Markov process X is a Hunt process if

(i) it is right-continuous Px-a.s. for all x ∈ Rn,

(ii) it is a strong Markov process,

(iii) it is quasi left-continuous, i.e. for every x ∈ Rn and every sequence of increasing

stopping times (Tn) such that lim
n
Tn = T Px-a.s.

lim
n→∞

XTn = XT , Px-a.s. on {T <∞},

(iv) the filtration F is right-continuous, i.e.

Ft =
⋂
s>t

Fs, ∀t ≥ 0

and

Ft =
⋂
x∈Rn
Fxt , ∀t ≥ 0.

For a Hunt process X and B ∈ B(Rn) we define the first exit time from B as

τB = inf{t > 0 : Xt 6∈ B}, (2.3)

and first hitting time of B as

σB = inf{t > 0 : Xt ∈ B}. (2.4)

By [BG68, Theorem I.10.7] it follows that τB and σB are stopping times with respect to

the augmented filtration F.

Definition 2.6 Let B be a Banach space with norm || · ||. A family of operators (Tt)t≥0

on B is called a normal contraction semigroup if

8



2.1 Markov processes

(i) T0u = u, for all u ∈ B,

(ii) it satisfies the semigroup property, i.e. TtTs = Tt+s for all t, s ≥ 0,

(iii) it satisfies the contraction property, i.e. ||Ttu|| ≤ ||u|| for all t ≥ 0 and u ∈ B.

The contraction semigroup is strongly continuous if ||Ttu− u|| → 0 when t ↓ 0, for every

u ∈ B.

The infinitesimal generator A with domain D(A) of a strongly continuous normal

contraction semigroup (Tt)t≥0 is a linear operator A : D(A)→ B defined by

Au = lim
t→0

Ttu− u
t

D(A) = {u ∈ B : Au exists as a strong limit in B}.

For a Markov process X we define a family of operators (Pt)t≥0 on L∞(Rn) as

Ptf(x) = Ex [f(Xt)] =

∫
Rn
f(y)pt(x, dy), t ≥ 0, x ∈ Rn.

The family of linear operators (Pt)t≥0 is a normal contraction semigroup and additionally

preserves positivity, i.e. Ptf ≥ 0 for all t ≥ 0 and all positive functions f ∈ L∞(Rn). Note

that the Markov process X is conservative if and only if Pt1 = 1. We say that the process

X is symmetric if the corresponding transition semigroup satisfies the condition∫
Rn
Ptu(x)v(x)dx =

∫
Rn
u(x)Ptv(x)dx,

for all t ≥ 0 and all non-negative (B(Rn),B(R))-measurable functions u and v.

In general, every semigroup (Tt)t≥0 satisfying the condition

u ∈ L2(Rn), 0 ≤ u ≤ 1 ⇒ 0 ≤ Ttu ≤ 1, ∀t ≥ 0

is called a Markovian semigroup.

Definition 2.7 A Markovian semigroup (Tt) is said to have the Feller property if

(i) the C0-Feller property holds, i.e. Ttf ∈ C0(Rn) for every t ≥ 0 and f ∈ C0(Rn),

(ii) it is strongly continuous on C0(Rn), i.e. lim
t→∞
||Ttf − f ||∞ = 0 for all f ∈ C0(Rn).

Markov process whose corresponding semigroup has the Feller property is called the Feller

process. By [CW05, Chapter 2] every Feller process is a Hunt process.

9



2.2 Dirichlet forms

Definition 2.8 A Markov process is said to be irreducible if

Ex
[∫ ∞

0

1B(Xt)dt

]
> 0

for every x ∈ Rn and B ∈ B(Rn) with positive Lebesgue measure. An irreducible Markov

process is recurrent if for all B ∈ B(Rn), λ(B) > 0 and x ∈ Rn

Ex
[∫ ∞

0

1B(Xt)dt

]
=∞,

otherwise it is transient.

2.2 Dirichlet forms

A Dirichlet form (E ,D(E)) is an analytic object that can be used to construct and

study certain Markov processes. Dirichlet forms use a quasi-sure analysis, meaning that

we are permitted to ignore certain exceptional sets which are not visited by the process,

which can sometimes have certain advantages.

Definition 2.9 A symmetric form on L2(Rn) is a function E : D(E) × D(E) → R such

that

(i) D(E) is dense in L2(Rn),

(ii) E(u, v) = E(v, u) for all u, v ∈ D(E),

(iii) E(au+ v, w) = aE(u,w) + E(v, w) for all u, v, w ∈ D(E) and a ∈ R,

(iv) E(u, u) ≥ 0 for all u ∈ D(E).

For α > 0 denote by Eα a new symmetric form on L2(Rn) with domain D(E)

Eα(u, v) = E(u, v) + α(u, v)L2(Rn), u, v ∈ D(E)

and note that forms Eα and Eβ are comparable for different α, β > 0. Then the space

(D(E), E1) is a pre-Hilbert space with inner product E1. A symmetric form E is said to

be closed if D(E) is complete with respect to the norm induced by E1. The space D(E) is

then a Hilbert space with inner product Eα for every α > 0.

Definition 2.10 A closed symmetric form (E ,D(E)) on L2(Rn) is a Dirichlet form if it

is a unit contraction, i.e.

u ∈ D(E), v = (u ∨ 0) ∧ 1 ⇒ v ∈ D(E), E(v, v) ≤ E(u, u).

10



2.2 Dirichlet forms

A Dirichlet form is regular if it possesses a core, i.e. if there exists a subset C of D(E) ∩
Cc(Rn) such that

(i) C is dense in D(E) with respect to the E1-norm,

(ii) C is dense in Cc(Rn) with respect to the uniform norm.

A core C of E is said to be standard if it is a dense linear subspace of Cc(Rn).

A general representation theorem of regular Dirichlet forms is due to Beurling and

Deny, [FOT10, Section 3.2]. Any regular Dirichlet form E on L2(Rn) can be expressed as

E(u, v) = E (c)(u, v) +

∫
Rn×Rn\d

(u(x)− u(y))(v(x)− v(y))J(dx, dy) +

∫
Rn
u(x)v(x)κ(dx),

(2.5)

for u, v ∈ D(E). Here

(i) E (c) is the local part of E , i.e. a symmetric form with domain D(E (c)) = D(E)∩Cc(Rn)

which satisfies the strong local property:

E (c)(u, v) = 0 for all u, v ∈ D(E (c)) such that v is constant on U ⊂ Rn, supp[u] ⊂ U,

(ii) J is a symmetric positive Radon measure on Rn × Rn off the diagonal d, called the

jumping measure,

(iii) κ is a positive Radon measure on Rn called the killing measure.

Such E (c), J and κ are uniquely determined by E .

By [FOT10, Theorem 1.3.1] there is a one-to-one correspondence between the family

of closed symmetric forms (E ,D(E)) on L2(Rn) and the family of non-positive definite self-

adjoint operators (A,D(A)) on L2(Rn). The correspondence is determined by:

D(E) = D(
√
−A)

E(u, v) = (
√
−Au,

√
−Av), u, v ∈ D(E).

(2.6)

This correspondence can be also characterized by

E(u, v) = (−Au, v), u ∈ D(A), v ∈ D(E), D(A) ⊂ D(E).

Given (2.6), the closed symmetric form (E ,D(E)) can be directly described in terms of the

strongly continuous semigroup Tt corresponding to A. Define the approximation forms

E (t) determined by Tt as

E (t)(u, v) =
1

t
(u− Ttu, v), u, v ∈ L2(Rn).

11



2.3 Killed Hunt processes

By [FOT10, Lemma 1.3.4] it follows that the closed symmetric form E corresponding to

A can be defined as

D(E) = {u ∈ L2(Rn) : lim
t↓0
E (t)(u, u) <∞}

E(u, v) = lim
t↓0
E (t)(u, v), u, v ∈ D(E).

(2.7)

Furthermore, by [FOT10, Theorem 1.4.1.] the strongly continuous semigroup Tt is Marko-

vian if and only if the closed symmetric form (E ,D(E)) is Markovian, that is (E ,D(E)) is

a Dirichlet form.

Therefore, given a symmetric Hunt process X there exists a unique Dirichlet form E
in L2(Rn) associated with X. By [FOT10, Theorem 4.2.8] two symmetric Hunt processes

X(1) and X(2) possessing a common regular Dirichlet form are equivalent in the sense that

their transition functions p(1) and p(2) coincide outside of a common properly exceptional

set N , i.e. a set N of Lebesgue measure zero such that

P
(i)
t (u1Nc) = 1NcP

(i)
t u a.e.

for any u ∈ L2(Rn) and i = 1, 2. In general, given a Dirichlet form on L2(Rn) it is not

possible to construct a Feller transition kernel such that (2.7) holds. But with regularity

we are able to ignore sets of E-capacity zero and construct a Hunt process outside of some

set of zero E-capacity.

Theorem 2.11 [FOT10, Theorem 7.2.1] Given a regular Dirichlet form E there exists a

symmetric Hunt process X with Dirichlet form E .

2.3 Killed Hunt processes

Let X = (Xt)t≥0 be a symmetric Hunt process and D an open set in Rn. The process

XD obtained by killing X upon exiting D is defined by

XD
t (ω) =

{
Xt(ω), t < τD(ω)

∂, t ≥ τD(ω)
, ω ∈ Ω,

where τD is the first exit time of X from D defined by (2.3). The corresponding transition

semigroup PD
t is given by

PD
t u(x) = Ex[u(XD

t )] = Ex[u(Xt) : t < τD]

for t ≥ 0, x ∈ D and u ∈ L∞(Rn). Let (E ,D(E)) be the Dirichlet form corresponding to

X. By [FOT10, Theorem 4.4.3] the Dirichlet form (ED,D(ED)) corresponding to XD is

12



2.4 Capacity and polar sets

actually the part of the Dirichlet form E on D, i.e.

D(ED) = {u ∈ D(E) : u = 0 q.e. on Dc}

ED(u, v) = E(u, v), u, v ∈ D(ED).
(2.8)

By [FOT10, Theorem 4.4.3] the Dirichlet form (ED,D(ED)) is regular and if C is a special

standard core for (E ,D(E)) then

CD = {u ∈ C : u = 0 q.e. on Dc}

is a special standard core for (ED,D(ED)).

Suppose that the transition kernel of X is absolutely continuous with respect to the

Lebesgue measure. Then the corresponding transition density pt(x, y) is symmetric, i.e.

pt(x, y) = pt(y, x) for a.e. x, y ∈ Rn.

By a version of [CZ95, Theorem 2.4] the killed process XD also has an absolutely contin-

uous transition kernel with a symmetric density

pDt (x, y) = pt(x, y)− Ex[pt−τD(XτD , y) : τD < t], x, y ∈ D, t > 0. (2.9)

2.4 Capacity and polar sets

In this section we will recall several definitions of capacity and discuss their relations.

Definition 2.12 Let (E ,D(E)) be a regular Dirichlet form on L2(Rn).

(i) E-capacity (1-capacity) of a set is defined in the following way; for an open set

U ⊂ Rn

CapE(U) = inf{E1(u, u) : u ∈ D(E), u ≥ 1 a.e. on U},

and for A ⊂ Rn arbitrary set

CapE(A) = inf{CapE(U) : A ⊂ U open }.

If X is the symmetric Hunt process associated with (E ,D(E)), we will sometimes

use the notation CapX instead of CapE .

(ii) We say that a statement depending on x ∈ A holds E-quasi-everywhere (q.e.) on A

if there exists a set N ⊂ A of zero E-capacity such that the statement is true for

every x ∈ A \N .

13



2.5 Lévy processes

By [FOT10, (2.1.6)] capacity of any Borel set A can be calculated as

CapE(A) = sup{CapE(K) : K ⊂ A, K is compact}. (2.10)

Also for ED from (2.8), by [FOT10, Theorem 4.4.3] a set B ⊂ D is of ED-capacity zero if

and only if it is E-capacity zero.

Definition 2.13 We say that u ∈ D(E) is quasi continuous if for every ε > 0 there exists

an open set U such that CapE(U) < ε and u|Uc is continuous.

By [FOT10, Theorem 2.1.3] every function u ∈ D(E) admits a quasi-continuous

modification ũ, i.e. there exists a quasi-continuous function ũ ∈ D(E) such that u = ũ a.e.

Definition 2.14 Let (E ,D(E)) be a regular Dirichlet form on L2(Rn) corresponding to

the Hunt process X.

(i) A set A is called E-polar if there is a Borel measurable set B ⊃ A such that∫
Rn

Px(σXB <∞)dx = 0.

(ii) A set A is called polar for the process X if there is a Borel measurable set B ⊃ A

such that

Px(σXB <∞) = 0, ∀x ∈ Rn.

Remark 2.15 If the symmetric Hunt process X has a continuous transition density then

by [FOT10, Theorem 4.1.2] two definitions of polarity coincide.

2.5 Lévy processes

Definition 2.16 A stochastic process X = (Xt)t≥0 on a probability space (Ω,F ,P) is a

Lévy process if

(i) P(X0 = 0) = 1,

(ii) it has independent increments, i.e. for any n ∈ N and 0 ≤ t1 < t2 < . . . < tn,

Xt1 , Xt2 −Xt1 , . . . , Xtn −Xtn−1 are independent,

(iii) it has stationary increments, i.e. for any 0 ≤ s < t,

Xt −Xs
d
= Xt−s,

(iv) the function t 7→ Xt is P-a.s. càdlàg, i.e. right continuous with left limits.
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2.5 Lévy processes

Conditions (i), (iii) and (iv) together imply that the Lévy process X is also stochastically

continuous, i.e.

Xs
(P)−→ Xt, s→ t.

The primary tool in the analysis of distributions of Lévy processes are the characteristic

functions, that is Fourier transforms of the distributions. The characteristic function of

Xt is equal to

E[eiξ·Xt ] = e−tψ(ξ), ξ ∈ Rn,

where the function ψ is called the characteristic exponent of the process X. By the

Lévy-Khintchine formula the characteristic exponent is of the form

ψ(ξ) = iξ · γ +
1

2
Aξ · ξ +

∫
Rn\{0}

(1− eiξ·x + iξ · x1{|x|≤1})ν(dx), (2.11)

where γ ∈ Rn, A ∈ Mn(R) is a symmetric and nonnegative-definite matrix and ν is a

measure on B(Rn), called the Lévy measure, such that

ν({0}) = 0 and

∫
Rn\{0}

(1 ∧ |x|2)ν(dx) <∞.

This means that the distribution of the process X is characterized by the generating triplet

(γ,A, ν) and formula (2.11).

By [Ber98, Proposition I.6 and Proposition I.7] Lévy processes are Hunt processes

with respect to the augmented natural filtration F and family of probability measures

(Px)x∈Rn , where

Px(Xt1 ∈ B1, ..., Xtk ∈ Bk) = P(x+Xt1 ∈ B1, ..., x+Xtk ∈ Bk)

for every k ∈ N, t1, ..., tk ≥ 0, x ∈ Rn and B1, ..., Bk ∈ B(Rn). By [Ber98, Proposition

16] a Lévy process is either transient or recurrent. From [Sat99, Section 35] we get the

following characterization of recurrence and transience of Lévy processes.

Proposition 2.17 A Lévy process is

(a) recurrent if and only if

lim inf
t→∞

|Xt| = 0 a.s.,

(b) transient if and only if

lim
t→∞
|Xt| =∞ a.s.
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2.5 Lévy processes

For a symmetric Lévy process X we also have a recurrence criterion of Chung-Fuchs type,

i.e. the process X is recurrent if and only if for some r > 0∫
B(0,r)

1

ψ(ξ)
dξ =∞. (2.12)

Note that if a Lévy processes possesses a strictly positive transition density function with

respect to the Lebesgue measure, it is also irreducible.

Let (Pt)t≥0 be the transition semigroup of the Lévy process X, i.e.

Ptf(x) = Ex[f(Xt)] = E[f(x+Xt)], f ∈ L∞(Rn)

and (L,D(L)) the corresponding infinitesimal generator. From [App09, Theorem 3.3.3]

(also [Sat99, Theorem 21.5]) it follows that S(Rn) ⊂ D(L) and that for t ≥ 0 and

u ∈ S(Rn)

Ptu(x) =

∫
Rn
eix·ξe−tψ(ξ)û(ξ)dξ and

Lu(x) = −
∫
Rn
eix·ξψ(ξ)û(ξ)dξ,

so the generator L is a pseudo-differential operator and

Lu(x) = iγ · ∇u(x) + A∇u(x) · ∇u(x) +

∫
Rn\{0}

(u(x+ y)− u(x) + i∇u(x) · y1|y|<1)ν(dy).

If the Lévy process is additionally symmetric with generating triplet (0, A, ν) there exists

a unique regular Dirichlet form E corresponding to X. Using the approximation method

from (2.7) and the Parseval formula it follows that for u ∈ L2(Rn) and t ≥ 0

E (t)(u, u) =
1

t
(u− Ptu, u) =

1

t
(û− P̂tu, û) =

1

t

∫
Rn

(û(ξ)− e−tψ(ξ)û(ξ))û(ξ) dξ

=

∫
Rn
|û(ξ)|2 1− e−tψ(ξ)

t
dξ.

For given u ∈ L2(Rn) the function t 7→ E (t)(u, u) is increasing so by the Lebesgue monotone

convergence theorem,

E(u, u) = lim
t↓0
E (t)(u, u) =

∫
Rn
|û(ξ)|2ψ(ξ) dξ

D(E) =

{
u ∈ L2(Rn) :

∫
Rn
|û(ξ)|2ψ(ξ) dξ <∞

}
.

(2.13)

Example 2.18 (i) When A = I and ν = 0 the corresponding Lévy process is called

the Brownian motion and has the characteristic exponent ψ(ξ) = |ξ|2 and transition
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2.5 Lévy processes

density

pt(x, y) =
1

(4πt)
n
2

exp

(
−|x− y|

2

4t

)
.

Then the Dirichlet form (2.13) reduces to the form (D, H1(Rn)) where D is the

Dirichlet integral,

D(u, v) =
n∑
i=1

∫
Rn
∂iu(x)∂iv(x)dy

and H1(D) is the Sobolev space of order 1,

H1(D) = {u ∈ L2(Rn) : ∂iu ∈ L2(Rn), i = 1, ..., n}.

(ii) When X is a purely discontinuous symmetric Lévy process with generating triplet

(0, 0, ν) the Dirichlet form (2.13) can be rewritten as

E(u, v) =
1

2

∫
Rn

∫
Rn\{0}

(u(x+ y)− u(x))(v(x+ y)− v(x))ν(dy) dx,

D(E) =

{
u ∈ L2(Rn) :

∫
Rn

∫
Rn\{0}

(u(x+ y)− u(x))2ν(dy) dx <∞
}
.

To show this, note that for u ∈ L2(Rn), y ∈ Rn and vy(x) := u(x + y) − u(x) the

Fourier transform of function vy is equal to v̂y(ξ) = û(ξ)(e−iξ·y − 1). Since the Lévy

measure ν is symmetric, by Parseval formula (2.13) reduces to

E(u, u) =

∫
Rn
|û(ξ)|2

∫
Rn\{0}

(1− cos(ξ · y))ν(dy) dξ

=
1

2

∫
Rn
|û(ξ)|2

∫
Rn\{0}

|e−iξ·y − 1|2ν(dy) dξ

=
1

2

∫
Rn

∫
Rn\{0}

(u(x+ y)− u(x))2ν(dy) dξ.

In the following chapters we will concentrate on purely discontinuous rotationally

symmetric Lévy processes in Rn with generating triplet (0, 0, ν), where the measure ν has

a radial density j. The characteristic exponent ψ of such a processes is equal to

ψ(ξ) =

∫
Rn\{0}

(
1− eix·ξ + ix · ξ1|x|<1

)
ν(dx)

=

∫
Rn\{0}

(1− cos (xξ)) j(|x|)dx, ξ ∈ Rn.

A special example of such a process is the subordinate Brownian motion which we will

address in the following section.
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2.6 Subordinate Brownian motion

2.6 Subordinate Brownian motion

Definition 2.19 A subordinator is a Lévy process S taking values in [0,∞), which implies

that its sample paths are P-a.s. nondecreasing.

Since the subordinator is almost surely nonnegative, we can consider the Laplace trans-

form of the transition probability of S, which is of the form

E[e−λXt ] = e−tφ(λ), λ ≥ 0.

Here φ is called the Laplace exponent and is given by

φ(λ) = bλ+

∫
(0,∞)

(1− e−λx)ν(dx),

where b ≥ 0 is called the drift coefficient and ν is the Lévy measure satisfying

ν((−∞, 0]) = 0 and

∫
(0,∞)

(1 ∧ x)ν(dx) <∞. (2.14)

Definition 2.20 A function f : (0,∞)→ R is

(i) a completely monotone function if f is of class C∞ and for all λ > 0 and n ∈ N0

(−1)nf (n)(λ) ≥ 0.

We will denote the family of completely monotone functions by CM.

(ii) a Bernstein function if f ≥ 0 and f ′ ∈ CM. Denote by BF the collection of

Bernstein functions.

By [SSV09, Theorem 3.2] f ∈ BF if and only if it admits a representation of the form

f(λ) = a+ bλ+

∫
(0,∞)

(1− eλy)ν(dy), (2.15)

where a, b ≥ 0 and the measure ν satisfies (2.14). Therefore, a function φ : (0,∞) →
(0,∞) is the Laplace exponent of the subordinator if and only if φ ∈ BF and a = 0.

Definition 2.21 A Bernstein function is complete if its Lévy measure ν in (2.15) has

a completely monotone density ν(t). We will use CBF to denote the collection of all

complete Bernstein functions.

Let S = (St)t≥0 be the subordinator with Laplace exponent φ ∈ CBF defined on

the probability space (Ω,G,P). Let B = (Bt)t≥0 be the standard Brownian motion in Rn
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2.7 Green function and harmonic functions

defined on the same probability space, independent of S. A process X = (Xt)t≥0 defined

by

Xt(ω) = BSt(ω)(ω), t ≥ 0, ω ∈ Ω

is called a subordinate Brownian motion. It is easy to see that X is again a Markov

process with the associated transition semigroup

P φ
t u(x) = Ex [u(BSt)] =

∫
(0,∞)

Ex[u(Bs)]P(St ∈ ds) =

∫
(0,∞)

PB
s u(x)P(St ∈ ds).

The semigroup Pφt is said to be subordinate in the sense of Bochner to the semigroup PB
t

with respect to the complete Bernstein function φ. It follows that

Ex
[
eiξ·Xt

]
=

∫
(0,∞)

Ex
[
eiξ·Bs

]
P(St ∈ ds) =

∫
(0,∞)

e−s|ξ|
2P(St ∈ ds) = e−tφ(|ξ|2)

so X is a Lévy process with the generating triplet (0, A, j(|x|)dx), where A = bI and

j(r) =

∫ ∞
0

(4πs)−n/2e−
r2

4s2 ν(s)ds, r > 0.

Note that the density j is a decreasing function.

2.7 Green function and harmonic functions

Let X be a symmetric Hunt process in Rn.

Definition 2.22 For every x ∈ Rn we define a potential measure G(x, ·) for X by

G(x,B) = Ex
[∫ ∞

0

1{Xt∈B}dt

]
, B ∈ B(Rn).

If the potential measure G(x, ·) is absolutely continuous for all x ∈ Rn then we call the

corresponding density G(x, y) the Green function for X.

Suppose that the Green measure is finite and that X has a transition density pt(x, y).

By Fubini’s theorem

G(x,B) =

∫ ∞
0

Px(Xt ∈ B)dt =

∫
B

∫ ∞
0

pt(x, y)dt dy, B ∈ B(Rn),

so the potential measure is absolutely continuous for all x ∈ Rn and the Green function

is equal to

G(x, y) =

∫ ∞
0

pt(x, y)dt, x, y ∈ Rn.
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2.7 Green function and harmonic functions

Let D be an open set in Rn and XD the corresponding killed process. The potential

measure of XD is defined in the same way:

GD(x,B) = Ex
[∫ ∞

0

1{XD
t ∈B}dt

]
= Ex

[∫ τD

0

1{Xt∈B} dt

]
=

∫ ∞
0

Px(Xt ∈ B : t < τD) dt.

Since the killed process XD has a transition density pDt (x, y) given by (2.9), GD(x, ·) is

absolutely continuous and the corresponding Green function GD(x, y) is given by

GD(x, y) =

∫ ∞
0

pD(t, x, y) dt =

∫ ∞
0

p(t, x, y) dt−
∫ ∞

0

Ex[pt−τD(XτD , y) : τD < t] dt

= G(x, y)− Ex[G(XτD , y) : τD <∞], x, y ∈ D. (2.16)

We call GD(x, y) the Green function of the set D.

Recall the representation of Beurling-Deny and LeJan from (2.5). If the Green func-

tion for X on B exists then the jumping measure J for X has the following representation.

By [FOT10, Theorem 4.5.2, Lemma 4.5.5] the jumping measure is a unique symmetric

positive Radon measure such that

Ex[f(XτB−)g(XτB) : τB <∞] = 2

∫
B
c

∫
B

f(y)g(z)GB(x, y)J(dy, dz) (2.17)

for every x ∈ B, f and g bounded nonnegative Borel measurable functions such that

supp f ⊂ B and supp g ⊂ B
c
. Also by [FOT10, Lemma 4.5.2] the killing measure κ of

XB is a unique positive Radon measure such that

Ex[f(XτB−) : τB <∞] =

∫
B

f(y)GB(x, y)κ(dy). (2.18)

for every positive Borel function f .

By Definition 2.8 the potential measure of a Lévy process X is finite for all x ∈ Rn

if and only if X is transient. Let X be a rotationally symmetric pure jump Lévy process

with the generating triplet (0, 0, j(|x|)dx) and D an open set in Rn. For an open set

B ⊂ B ⊂ D by Remark 2.18(ii) and (2.17) the joint distribution of (XτB−, XτB) restricted

to the event {XτB− 6= XτB , τB <∞} is given by the Ikeda-Watanabe formula

Ex[f(XτB−)g(XτB)] =

∫
Bc

∫
B

f(y)g(z)GB(x, y)j(|y − z|)dydz (2.19)

for all nonnegative Borel measurable functions f and g on Rn. If B is a Lipschitz domain

(for example a ball) then by [Szt00, Theorem 1]

Px(XτB ∈ ∂B) = 0, ∀x ∈ B.
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2.7 Green function and harmonic functions

Then the density function of the Px-distribution of XτB is determined by the Poisson

kernel KB,

KB(x, z) =

∫
B

GB(x, y)j(|y − z|)dy, x ∈ B, z ∈ Bc
. (2.20)

Furthermore, let X be a transient subordinate Brownian motion and let φ ∈ CBF be the

Laplace exponent of the subordinator S. By the Chung-Fuchs-type criteria (2.12) X is

transient if and only if ∫ a

0

λ
n
2
−1

φ(λ)
dλ <∞

for all a > 0. This is always true for n ≥ 3 and depending on the subordinator, may be

true for n = 1 or n = 2. The potential measure of the subordinator S is given by

U(A) = E
[∫ ∞

0

1{St∈A}dt

]
=

∫ ∞
0

pSt (A)dt, A ∈ B([0,∞))

with Laplace transform

LU(λ) =

∫ ∞
0

e−λtU(dt) = E
[∫ ∞

0

e−λSt dt

]
=

∫ ∞
0

e−tφ(λ) dt =
1

φ(λ)
.

By [KSV12, Corollary 2.3] if φ ∈ CBF has a generating triplet (0, b, ν) such that

b > 0 or ν(0,∞) =∞

then the potential measure U has a completely monotone density u. Since X is transient

the Green measure is finite on all bounded sets and

G(x,A) = Ex
[∫ ∞

0

1{Xt∈A}

]
=

∫
A

∫ ∞
0

pt(x, y)U(dt)dy,

for x ∈ Rn, A ∈ B(Rn) and p the transition density of the Brownian motion. Then the

Green function of X is given by

G(x, y) = G(|x− y|),

where

G(r) = (4π)−
n
2

∫ ∞
0

t−
n
2 e−

r2

4tU(dt).

Note that the function G is a positive nonincreasing function.

Definition 2.23 Let D be an open subset of Rn. A Borel function h : Rn → [0,∞) is

said to be harmonic in D for X if for any bounded open subset B ⊂ B ⊂ D

h(x) = Ex [h(XτB)] , (2.21)
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2.8 Feynman-Kac transforms

for all x ∈ B. If the previous equality additionally holds for B = D then we say that h is

regular harmonic for X in D.

Here we use the convention that X∞ = ∂. We will always make a tacit assumption about

all functions that they take value 0 at the cemetery point ∂ and that the expectation in

(2.21) is absolutely convergent and so finite.

Remark 2.24 Suppose that the Green function G(x, y) is continuous on Rn × Rn \ d,

where d is the diagonal in Rn. This is true, for example, when the subordinator has a

potential density u. From the strong Markov property and formula (2.16) it follows that

the function u(x) = GD(x, y) is harmonic in D \ {y}.

Definition 2.25 A nonnegative function h is said to be excessive if

(i) Ex[h(Xt)] ≤ h(x) for all x ∈ Rn and t ≥ 0,

(ii) lim
t↓0

Ex[h(Xt)] = h(x) for all x ∈ Rn.

2.8 Feynman-Kac transforms

Let X be a symmetric Hunt process with respect to the filtration F and lifetime

ζ. Let p be the corresponding transition density and suppose that the corresponding

Dirichlet form (E ,D(E)) is regular.

Definition 2.26 A = (At)t≥0 is a positive continuous additive functional (PCAF) for X

if

(i) At is Ft-measurable,

(ii) A is [0,+∞]-valued,

(iii) t 7→ At is continuous on [0, ζ),

(iv) At+s = At ◦ θs + As, where θt is the time shift operator for X.

By [FOT10, Theorem 5.1.4] for every PCAF A there exists a measure µ, called the Revuz

measure corresponding to A such that

lim
t→0

1

t

∫
Rn

Ex
[∫ t

0

f(Xs)dAs

]
h(x)dx =

∫
Rn
h(x)f(x)µ(dx),

for all excessive functions h and positive Borel functions f .

Let κ : Rn → R be a nonnegative and continuous function. Define a functional

A = (At)t≥0 of X by

At =

∫ t

0

κ(Xs)ds, t ≥ 0. (2.22)
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2.8 Feynman-Kac transforms

It is easy to see that A is a positive continuous additive functional (PCAF) for X with

Revuz measure κ(x)dx. The function κ is sometimes called the potential of the PCAF A.

Furthermore, (eκ(t))t≥0

eκ(t) = eAt

is a multiplicative functional for Y , i.e. eκ(t) is Ft-measurable and

eκ(t+ s, ω) = eκ(t, θs ◦ ω)eκ(s, ω)

for all ω ∈ Ω, and t, s ≥ 0. Next we state a well-known result, known as Khasminskii’s

lemma, which will play an important role in the following sections.

Lemma 2.27 [CZ95, Lemma 3.7] Let τ be a stopping time for X, κ ≥ 0 and suppose

that Ex[Aτ ] <∞ for all x. Then for every n ∈ N0

sup
x

Ex[Anτ ] ≤ n! sup
x

(Ex[Aτ ])n .

Furthermore if

sup
x

Ex[Aτ ] = α < 1

then

sup
x

Ex
[
eAτ
]
≤ 1

1− α
.

Proposition 2.28 [CZ95, Proposition 3.8] If

lim
t→0

sup
x

Ex[At] = 0 (2.23)

then

lim
t→0

sup
x

Ex[eκ(t)] = 1

and there exist positive constants C0 and C1 such that for all t > 0

sup
x

Ex[eκ(t)] ≤ C0e
C1t. (2.24)

If (2.23) holds we can define the Feynman-Kac semigroup (Tt)t≥0 on L2(Rn) as

Ttu(x) = Ex[eκ(t)u(Xt)],

for t ≥ 0, x ∈ Rn and u ∈ L2(Rn). By [CZ95, Theorem 3.10 and Proposition 3.12] Tt is

a strongly continuous symmetric Markov semigroup and if X is a Feller process then the

semigroup Tt also has the Feller property. Furthermore, if the transition probability of

the process X has a density then so does the Feynman-Kac semigroup Tt.
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2.8 Feynman-Kac transforms

We use the approximation principle (2.7) to calculate the Dirichlet form correspond-

ing to the Feynman-Kac semigroup. Note that∫ t

0

eAsκ(Xs)ds = eAt − 1, a.s. (2.25)

For u, v ∈ L2(Rn)

Eκ,(t)(u, v) =
1

t
(u− Ttu, v)L2(Rn) =

∫
Rn

Ex
[
u(x)− eAtu(Xt)

t

]
v(x)dx

=

∫
Rn

Ex
[
u(x)− eAtu(x)

t

]
v(x)dx+

∫
Rn

Ex
[
eAt

u(x)− u(Xt)

t

]
v(x)dx

(2.25)
= −

∫
Rn

Ex
[

1

t

∫ t

0

eAsκ(Xs)ds

]
u(x)v(x)dx+

∫
Rn

Ex
[
eAt

u(x)− u(Xt)

t

]
v(x)dx.

From (2.24) by the dominated convergence theorem it follows that

Eκ(u, v) = − lim
t↓0

∫
Rn

Ex
[

1

t

∫ t

0

eAsκ(Xs)ds

]
u(x)v(x)dx+ lim

t↓0

∫
Rn

Ex
[
eAt

u(x)− u(Xt)

t

]
v(x)dx

= −
∫
Rn
κ(x)u(x)v(x)dx+ E(u, v) (2.26)

and

D(Eκ) = D(E) ∩ L2(Rn, κ(x)dx).

By [FOT10, Theorem 6.1.2] the Dirichlet form (Eκ,D(Eκ)) is regular and every special

standard core for (E ,D(E)) is also a special standard core for (Eκ,D(Eκ)). We say that

the corresponding symmetric Hunt process Xκ is obtained by resurrecting X at a rate κ.

Analogously, if we consider the semigroup generated through the bounded multiplicative

functional e−At the corresponding symmetric Hunt process Xκ is a subprocess of X, i.e.

Ex[f(Xκ
t )] ≤ Ex[f(Xt)], t ≥ 0, x ∈ Rn, u ∈ L∞(Rn),

and we say that Xκ is obtained by killing X at a rate κ.

Let p be the transition measure of the rotationally invariant purely discontinuous

Lévy process X with the generating triplet (0, 0, j(|x|)dx) and D an open set in Rn. Let

h be a harmonic function for XD and Eh = {x ∈ D : 0 < h(x) <∞}. Define

pD,ht (x, y) =
h(y)

h(x)
pDt (x, y), t > 0, x, y ∈ Eh.

Clearly pD,h is Borel measurable and satisfies the Chapman-Kolmogorov identity. Fur-

thermore, for an increasing sequence Dn ⊂ Dn ⊂ D of bounded open sets such that
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2.8 Feynman-Kac transforms

D =
⋃
n

Dn it follows that

Ex[h(Xt) : t < τD] = lim
n→∞

Ex[h(Xt) : t < τDn ] = lim
n→∞

Ex[EXt [h(XτDn
) : t < τDn ]]

≤ lim
n→∞

Ex[h(XτDn
) : t < τDn ] = h(x).

Therefore, pD,h is a sub-Markovian kernel, i.e.∫
Eh

pD,ht (x, y)dy =
1

h(x)
Ex[h(Xt) : t < τD] ≤ 1

h(x)
h(x) = 1.

The corresponding process Xh on Eh is called the Doob’s h-transformed process of X

or the h-conditioned process. For x ∈ D we denote by Phx and Ehx the probability and

expectation for the h-conditioned process starting from x respectively. By the monotone

class argument, as in [CZ95, Proposition 5.2] it follows that

Ehx[Φ : t < τD] =
1

h(x)
Ex[Φh(Xt) : t < τD] (2.27)

for every Ft-measurable function Φ : Ω→ [0,∞). Suppose X is transient and the Green

function GB is continuous for some open set B ⊂ B ⊂ D. Let

h(·) = GB(·, y)

for some y ∈ B and denote the corresponding probability and expectation as Pyx and Eyx.
For the PCAF A from (2.22) with Revuz potential

κ(x) =

∫
Dc
j(|x− z|)dz

we define the conditional gauge function u : Rn × Rn → [−∞,∞] as

u(x, y) = Eyx [eκ(τB)] . (2.28)

Proposition 2.29 For Φ ≥ 0 measurable with respect to FτD− and any nonnegative

Borel function f

Ex[f(XτD)Φ : XτD− 6= XτD ] = Ex[f(XτD)EXτD−x [Φ] : XτD− 6= XτD ], x ∈ D. (2.29)

Proof. Using the monotone class argument it is enough to prove (2.29) for Φ of the form

Φ = Φt1{t<τD}, for some Ft-measurable nonnegative function Φt. By (2.27) the function

y 7→ Eyx[Φ] is Borel measurable. Let κ be the killing measure for the killed symmetric
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2.8 Feynman-Kac transforms

Hunt process XD. For A ∈ B(D) it follows that

Ex[Φ : XτD− ∈ A] = Ex[Φt1{t<τD} : XτD− ∈ A] = Ex[ΦtEXt [1{XτD−∈A}] : t < τD]

(2.18)
= Ex

[
Φt

∫
A

GD(Xt, y)κ(y)dy : t < τD

]
=

∫
A

Ex[ΦtGD(Xt, y)κ(y) : t < τD]dy

(2.27)
=

∫
A

Eyx[Φ]GD(x, y)κ(y)dy

(2.18)
= Ex

[
EXτD−x [Φ] : XτD− ∈ A

]
an therefore

Ex[Φ|XτD−] = EXτD−x [Φ], Px-a.s.

Finally, we have

Ex[f(XτD)Φ : XτD− 6= XτD ] = Ex[f(XτD)Ex[Φ|XτD−] : XτD− 6= XτD ]

= Ex[f(XτD)EXτD−x [Φ] : XτD− 6= XτD ].

2

From Proposition 2.29 and (2.17) (also by [Che02, Lemma 3.5.]) it follows that the

Green function for Xκ on B is equal to

Gκ
B(x, y) = GB(x, y)u(x, y). (2.30)

So the function u can be interpreted as the conditional expectation of the Feynman-Kac

transform of X by κ and it is also the ratio of the Green functions of Xκ and X. The

conditional gauge theorem which we will introduce in the following sections says that

under suitable conditions on X and κ, either u is identically infinite or u is bounded

between two positive numbers.
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Chapter 3

Construction and boundary behavior

of the censored process

In the first part of this chapter we will define the censored rotationally symmetric

Lévy process Y on an open set D and discuss three equivalent construction procedures

for such a process.

In the following sections we will present results regarding boundary behavior of the

censored subordinate Brownian motion Y . In order to do so, we introduce a new process

called the reflected process through its Dirichlet form (E ref,F ref
a ). Section 2.2 is devoted to

the theory of Besov spaces of generalized smoothness which are closely related to Dirichlet

spaces corresponding to Lévy processes and their censored counterparts. The main result

of Section 2.3 is the trace theorem for a certain type of Besov spaces of generalized

smoothness. Using this result in Section 2.4 we prove that, under certain conditions on

the subordinator, the Dirichlet form (E ref,F ref
a ) is actually the active reflected Dirichlet

form corresponding to the censored process Y . When D is an open n-set in Rn, using this

connection between Y and the reflected process, we can determine under which conditions

the process Y approaches the boundary ∂D in finite time.

3.1 Construction

Let (Ω,G,P) be a probability space and X = (Xt)t≥0 be a rotationally symmetric

Lévy process in Rn with the generating triplet (0, 0, ν), where ν(dx) = j(|x|)dx. The

Fourier transform of the transition probability of X is characterized by the characteristic

exponent ψ;

E
[
eiξ·Xt

]
=

∫
Rn
eiξxpt(dx) = e−tψ(ξ),

ψ(ξ) =

∫
Rn\{0}

(
1− eix·ξ + ix · ξ1|x|<1

)
ν(dx)
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3.1 Construction

=

∫
Rn\{0}

(1− cos (x · ξ)) j(|x|)dx, ξ ∈ Rn.

The regular Dirichlet form (C,FRn) associated with X (see Example 2.18) is given by

C(u, v) =
1

2

∫
Rn

∫
Rn\{0}

(u(x+ y)− u(x))(v(x+ y)− v(x))j(|y|)dy dx

FRn =
{
u ∈ L2(Rn) : C(u, u) <∞

}
.

Note that j(x, y) = 2j(|x− y|) is the density of the jumping measure from the Beurling-

Deny representation (2.5) of C. Let D ⊂ Rn be an open set and XD the process X killed

upon exiting D. Recall from Section 2.3 that

Xt(ω) =

Xt(ω), t < τD(ω)

∂, t ≥ τD(ω)

for τD(ω) = inf{t > 0 : Xt(ω) 6∈ D} the first exit time of X from D. The Dirichlet form

for XD is (C,FD), where

FD = {u ∈ FRn : u = 0 q.e. on Dc}.

Since C∞c (Rn) is a special standard core for (C,FRn) it follows that C∞c (D) is a special

standard core for (C,FD). So FD is the closure of C∞c (D) under the norm generated by

C1 = C + (·, ·)L2(D). For u, v ∈ FD we can write

C(u, v) =
1

2

∫
D

∫
D

(u(x)− u(y))(v(x)− v(y))j(|x− y|)dxdy

+
1

2

∫
D

∫
Dc

(u(x)− u(y))(v(x)− v(y))j(|x− y|)dxdy

+
1

2

∫
Dc

∫
D

(u(x)− u(y))(v(x)− v(y))j(|x− y|)dxdy

+
1

2

∫
Dc

∫
Dc

(u(x)− u(y))(v(x)− v(y))j(|x− y|)dxdy

=
1

2

∫
D

∫
D

(u(x)− u(y))(v(x)− v(y))j(|x− y|)dxdy +

∫
D

u(x)v(x)κD(x)dx,

where κD(x) =
∫
Dc
j(|x − y|)dy is called the killing density of XD. It is also the density

of the killing measure from the Beurling-Deny representation (2.5) of a Dirichlet form.

By removing the killing part from the Dirichlet form (C,FD) we obtain a new

Dirichlet form: for every u, v ∈ C∞c (D) let

E(u, v) =
1

2

∫
D

∫
D

(u(x)− u(y))(v(x)− v(y))j(|x− y|)dx dy.
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3.1 Construction

By Fatou’s lemma the symmetric form (E , C∞c (D)) is closable in L2(D), i.e. for every

sequence un ∈ C∞c (D) such that un
L2

−→ 0

E(un − um, un − um)
n,m→∞−−−−→ 0 ⇒ E(un, un)

n→∞−−−→ 0,

so we take F to be the closure of C∞c (D) under the inner product E1 = E + (·, ·)L2(D).

From [FOT10, Section 1.4] it follows that the closed symmetric form (E ,F) is Markovian

since it operates on a normal contraction, i.e. for u ∈ F and v ∈ L2(Rn),

|v(x)− v(y)| ≤ |u(x)− u(y)|, |v(x)| ≤ |u(x)|, ∀x, y ∈ Rn ⇒ E(v, v) ≤ E(u, u).

Therefore, the form (E ,F) is a Dirichlet form. By Theorem 2.11 there exists a symmetric

Hunt process Y associated with the regular Dirichlet form (E ,F), taking values in D

with lifetime ζ. We call Y the censored (resurrected) process associated with X. So the

censored process Y can be interpreted as the process obtained from the Lévy process X

by restricting its jumping measure to D.

The following theorem gives us two alternative constructions for the process Y ; by

using the Ikeda-Nagasawa-Watanabe piecing together procedure and the Feynman-Kac

transform.

Theorem 3.1 The following processes have the same distribution

(i) The symmetric Hunt process Y associated with the regular Dirichlet form (E ,F) on

L2(D).

(ii) The strong Markov process obtained from the symmetric Levy process XD in D

through the Ikeda-Nagasawa-Watanabe piecing together procedure.

(iii) The process obtained from XD through the Feynman-Kac transform e
∫ t
0 κD(XD

s )ds.

Proof. First we prove that (i) is equivalent to (ii). Define a functional A = (At)t≥0 of Y

by

At =

∫ t

0

κD(Ys)ds.

From Section 2.8 it follows that A is a positive continuous additive functional for Y with

Revuz measure κD(x)dx. So e−At is a decreasing multiplicative functional for Y and it

uniquely determines a probability measure P̂x on Ω for E-q.e. x ∈ D, such that

Êx[f(Yt)] = Ex
[
e−Atf(Yt)

]
(3.1)

for every function f ∈ L∞(D). Let Y κ be the process with distribution P̂x and lifetime

ζκ. Then Y κ is a symmetric Hunt process obtained from Y by killing with rate κD. Recall
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3.1 Construction

from (2.26) that the associated Dirichlet form on L2(D) is given by

Eκ(u, v) = E(u, v) +

∫
D

u(x)v(x)κD(x)dx

Fκ = F ∩ L2(D, κD(x)dx).

The Dirichlet form (Eκ,Fκ) is regular on L2(D) with special standard core C∞c (D). Since

Eκ = C on Fκ ∩ FD and C∞c (D) ⊂ Fκ ∩ FD

it follows that

(Eκ,Fκ) = (C,FD). (3.2)

This implies that the processes Y κ and XD are equivalent, i.e. they have the same distri-

bution q.e. Since Y κ is a subprocess of Y , by [BG68, Section III.3.] we can alternatively

obtain the process Y κ by killing Y at the random time ζκ. Actually, ζκ is the lifetime of

Y κ and

ζκ ≤ ζ a.s.,

Px(ζκ > 0) = 1, ∀x ∈ D

t+ ζκ ◦ θt = ζκ on {ζκ > t}, for all t ≥ 0.

Let (Y κ,j)j∈N be a sequence of independent copies of the process Y κ and let ζκ,j be the

lifetime of Y κ,j. Define the sequence of random times (τj)j∈N as

τ1 = ζκ,1,

τj+1 =

{
τj + ζκ,j+1 ◦ θτj , τj < ζ

ζ, otherwise
, j ∈ N.

We will show that this increasing sequence converges almost surely to ζ. Denote by

η = lim
j→∞

τj and note that η ≤ ζ a.s. Define a subprocess Z of Y by

Zt(ω) =

{
Yt(ω), t < η(ω)

∂, t ≥ η(ω)
, t ≥ 0, ω ∈ Ω.

Process Z is again a symmetric Hunt process so by its quasi-left continuity

P(η < ζ) = P(Zη− ∈ D, η <∞) = P
(

lim
j→∞

Zτj ∈ D, η <∞
)

= P(Zη ∈ D, η <∞) = 0.

Therefore η = ζ a.s. Next Using the Ikeda-Nagasawa-Watanabe piecing together proce-

dure from [INW66] we define a new process Y (1) in the following way. Let x ∈ D be
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3.1 Construction

an arbitrary starting point for Y . For a given ω ∈ Ω we start the processes Y κ,j at the

following points:

Y κ,1
0 (ω) = x

Y κ,j+1
0 (ω) = Y κ,j

ζκ,j(ω)−(ω).

Define

Y
(1)
t (ω) =


Y κ,1
t (ω), 0 ≤ t < τ1(ω)

Y κ,j+1
t−τj(ω)(ω), τj(ω) ≤ t < τj+1(ω), τj(ω) < ζ(ω)

∂, t ≥ ζ(ω)

.

Note that the piecing together procedure is repeated countably many times. By [INW66,

Proposition 4.2] process Y (1) is a symmetric Hunt process on D with lifetime ζ. From the

construction of Y κ it follows that for j ∈ N0

Yt
d
= Y κ,j+1

t−τj on {τj ≤ t ≤ τj + ζκ,j+1 ◦ τj, Yτj = Y κ,j
0 },

so by the strong Markov property it follows that Y (1) is a version of the process Y corre-

sponding to the Dirichlet form (E ,F)

Next we show the equivalence of (i) and (iii). Let Y (2) be the Feynman-Kac trans-

form of XD through the positive continuous additive functional Bt =
∫ t

0
κD(XD

s )ds. Then

for any function f ∈ L∞(D)

Ex[f(Y
(2)
t )] = Ex

[
e
∫ t
0 κD(XD

s )dsf(XD
t )
]

(3.2)
= Ex

[
e
∫ t
0 κD(Y κs )dsf(Y κ

t )
]

(3.1)
= Êx

[
e
∫ t
0 κD(Ys)dsf(Yt)

]
= Ex

[
e−

∫ t
0 κD(Ys)dse

∫ t
0 κD(Ys)dsf(Yt)

]
= Ex[f(Yt)],

that is Y (2) D
= Y . Therefore Y can also be obtained from XD by creation at the rate κD

through the Feynman-Kac transform with PCAF Bt. 2

From the construction of the censored process Y through the Ikeda-Nagasawa-

Watanabe piecing together procedure it follows that the censored process Y can be

obtained from the symmetric Lévy process X by suppressing its jumps from D to the

complement Dc. Several useful properties of the censored process follow directly from

Theorem 3.1.

Remark 3.2 If the Levy process X has a transition density then by Section 2.3 so does

the process XD. By [CZ95, Theorem 3.10.] and Theorem 3.1(iii) it follows that the

corresponding censored process Y also has an absolutely continuous transition measure.

The censored process Y is also irreducible.
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3.2 Besov spaces of generalized smoothness

Let X be the subordinate Brownian motion. In order to investigate the boundary

behavior of the corresponding censored process we introduce a new type of process through

its Dirichlet form. Let (E ref,F ref
a ) be a Dirichlet form on L2(D) defined by

F ref
a =

{
u ∈ L2(D) :

1

2

∫
D

∫
D

(u(x)− u(y))2j(|x− y|)dx dy <∞
}

E ref(u, v) =
1

2

∫
D

∫
D

(u(x)− u(y))(v(x)− v(y))j(|x− y|)dx dy, u, v ∈ F ref
a .

The Dirichlet form (E ref,F ref
a ) is not necessarily regular for every open set D. By an

analogue of [BBC03, Theorem 2.2], [CF12, Theorem 6.2.13] we will show that, under

certain conditions, (E ref,F ref
a ) is the active reflected Dirichlet form for (E ,F) in the sense

of Silverstein and [CF12]. This implies that there exists a compactification D∗ of D

such that (E ref,F ref
a ) is regular on L2(D∗) and we refer to the corresponding process Y ∗

as the reflected process related to Y . When D is an open n-set, the process Y can be

represented as the process Y ∗ killed upon hitting the boundary ∂D. To show this we relate

the domains FRn , F ref
a and F with the corresponding ψ-Bessel potential spaces Hψ,1 of

order 1 studied in [Jac01] and prove the trace theorem for these spaces.

3.2 Besov spaces of generalized smoothness

The domain FRn of the Dirichlet form C is a type of a much more general class of

function spaces called Besov spaces of generalized smoothness. These spaces were intro-

duced in the seventies by M.L. Goldman and G.A. Kalyabin as a generalization of the

classical Sobolev and Besov spaces. Since then they have been studied by many authors

from various points of view. Here we adopt the standpoint of a Fourier analytic charac-

terization considered by Farkas and Leopold in [Far02] and [FL06]. First we introduce

these spaces in their generalized form.

Definition 3.3 A sequence (γj)j∈N0 of positive real numbers is called

(i) almost increasing if there exists d0 > 0 such that

d0γj ≤ γk, ∀j ≤ k;

(ii) strongly increasing if it is almost increasing and in addition there exists a κ0 ∈ N
such that

2γj ≤ γk, j + κ0 ≤ k;

(iii) of bounded growth if there are positive constants d1 and J0 ∈ N0 such that

γj+1 ≤ d1γj, ∀j ≥ J0;
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3.2 Besov spaces of generalized smoothness

(iv) an admissible sequence if both (γj)j∈N0 and (γ−1
j )j∈N0 are of bounded growth and

J0 = 0, i.e. there exist positive constants d0 and d1 such that

d0γj ≤ γj+1 ≤ d1γj, ∀j ∈ N0.

Definition 3.4 Let N = (Nj)j∈N0 be a strongly increasing sequence. Define

ΩN
0 = {x ∈ Rn : |x| ≤ N0}

ΩN
j = {x ∈ Rn : Nj−1 ≤ |x| ≤ Nj+1}, j ∈ N.

Let ΦN be a collection of all partitions of unity of C∞c (Rn) functions associated with this

decomposition.

Definition 3.5 Let N = (Nj)j∈N0 and σ = (σj)j∈N0 be a strongly increasing and admissi-

ble sequence respectively and (ϕNj )j∈N0 ∈ ΦN . The Besov space of generalized smoothness

associated with N and σ is

Bσ,N
2 = {g ∈ S ′(Rn) : ||g||B,σ,N := ||(σjϕNj (D)g)j∈N0|l2(L2(Rn))|| <∞},

where ϕ(D)g(x) = (ϕ(·)ĝ)∨(x) and

||(fj)j∈N0|l2(L2(Rn))|| =

(
∞∑
j=0

||fj||2L2(Rn)

) 1
2

.

By [Far02, Remark 10.1.2.] the space Bσ,N
2 is independent of the choice of system (ϕNj )j∈N0

in the sense of equivalent norms. This is why we omit in our notation the subscript

(ϕNj )j∈N0 . We will restrict ourselves to a special subclass of spaces Bσ,N
2 associated to an

admissible symbol.

Definition 3.6 A non-negative function a ∈ C∞(Rn) is an admissible symbol if the

following hold

(i) lim
|x|→∞

a(x) =∞,

(ii) a is almost increasing in |x|, i.e. there exist constants δ0 ≥ 1 and R > 0 such that

a(x) ≤ δ0a(y) if R ≤ |x| ≤ |y|,

(iii) there exists an m > 0 such that x→ a(x)
|x|m is almost decreasing in |x|,

(iv) for every multi-index α ∈ Nn
0 there exist constants cα > 0 and R > 0 such that

|Dαa(x)| ≤ cα
a(x)

(1 + |x|2)|α|/2
, ∀|x| ≥ R.
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3.2 Besov spaces of generalized smoothness

The family of all admissible functions will be denoted by A.

Lemma 3.7 [FL06, Lemma 3.1.17, Remark 3.1.18]

For a function a ∈ A and r > 0 the sequence (Na,r
j )j∈N0 ,

Na,r
j = sup{|x| : a(x) ≤ 2jr}, j ∈ N0,

is strongly increasing.

Therefore, for a ∈ A we can define the Besov space of generalized smoothness asso-

ciated with a as

Ha,1(Rn) := Bσ,Na,2

2 (Rn),

where σ = {2j}j∈N0 is an admissible sequence. These spaces have two useful representa-

tions in the sense of equivalent norms; one given by the Littlewood-Paley-type theorem

and the other by means of differences.

Proposition 3.8 [FL06, Theorem 3.1.20, Corollary 3.1.21]

Let a ∈ A, N = Na,2 the strongly increasing sequence associated with a, α > 0 and

σα = {2αj}j∈N0 an admissible sequence. Then the norm || · ||a,α,

||u||a,α := ||(id+ a(D))α/2u||L2(Rn) =

(∫
Rn

(1 + a(ξ))α|û(ξ)|2dξ
) 1

2

, (3.3)

is equivalent to || · ||B,σα,Na,2 on Ha,α(Rn) = Bσα,Na,2

2 (Rn).

Definition 3.9 For a function f on Rn, h ∈ Rn and k ∈ N we define the k-th difference

of the function f as

(∆k
hf)(x) :=

k∑
j=0

(
k

j

)
(−1)k−jf(x+ jh) = ∆1

h(∆
k−1
h f)(x), x ∈ Rn.

The k-th modulus of continuity of a function f ∈ L2(Rn) is defined as

ωk(f, t) = sup
|h|<t
||∆k

hf ||L2(Rn), t > 0.

Also, for an admissible sequence (γj)j∈N0 let

γj = sup
k≥0

γj+k
γk

and γ
j

= inf
k≥0

γj+k
γk

we define the lower and upper Boyd index respectively,

s(γ) := lim
j→∞

log γ
j

j
and s(γ) := lim

j→∞

log γj
j

.
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3.2 Besov spaces of generalized smoothness

Since γj+i+k ≤ γjγi+k for all i, j, k ∈ N0 it follows that

γj+i ≤ γjγi

so the sequence log γj is subadditive. By Fekete’s subadditive lemma the sequence
(

log γj
j

)
j

converges to inf
j

log γj
j

, so the upper index s(γ) is well defined. The analogous conclusion

follows for the lower index s(γ), since log γ
j

= − log
(
γ−1

j

)
.

Theorem 3.10 [Mou07, Theorem 4.1]

Let σ and N be admissible sequences and N1 = inf
k≥0

Nk+1

Nk
> 1 and

s(σ)

s(N)
> 0. Let k be an

integer such that k >
s(σ)

s(N)
. Then the norm || · ||B,σ,N on Bσ,N

2 is equivalent to

||u||L2(Rn) +

(
∞∑
j=0

σ2
jωk(u,N

−1
j )2

) 1
2

.

Remark 3.11 Note that for every a ∈ A the sequence Na,r satisfies the assumption

Na,r
1 > 1.

We want to generalize the trace theorem for an important subclass of continuous

negative definite functions of the form

ψ(ξ) = φ(|ξ|2),

where φ ∈ CBF , Section 2.6. Also, suppose that the killing term and drift of φ are zero,

that is

φ(λ) =

∫ ∞
0

(1− e−λt)ν(t)dt.

The corresponding process X is the subordinate Brownian motion with the subordinator

having the Laplace exponent φ. The density of the Levy measure is given by

j(x) =

∫ ∞
0

(4πt)−n/2e−x
2/4tν(t)dt.

Note that j is continuous and decreasing on (0,∞). Also, by [KSV15, Lemma 2.1] for

every λ, r > 0

1 ∧ λ ≤ φ(λr)

φ(r)
≤ 1 ∨ λ. (3.4)

By [SSV09, Theorem 7.13] function φ̃,

φ̃(λ) = φ
1
2 (λ)λ

1
4 , λ > 0 (3.5)
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3.2 Besov spaces of generalized smoothness

is also a complete Bernstein function. Define a function a : Rn → R as

a(x) := φ(|x|2)|x| = φ̃(|x|2)2. (3.6)

Lemma 3.12 Let φ be a Bernstein function such that lim
x→∞

φ(x) =∞. Functions ψ(·) =

φ(| · |2) and a from (3.6) are admissible symbols.

Proof. That ψ is an admissible symbol follows from [FL06, Lemma 3.1.13]. Properties

(i)-(iii) for the function a follow directly. For a multi-index α ∈ Nn
0 by the generalized

Leibniz rule

Dαa(x) =
∑
{β:β≤α}

(
α

β

)
Dβφ̃(|x|2)Dα−βφ̃(|x|2).

Since φ̃(| · |2) ∈ A there exist R > 0 and constants cβ > 0, β ∈ Nn
0 , such that

|Dαa(x)| ≤
∑
{β:β≤α}

(
α

β

)
cβ

φ̃(|x|2)

(1 + |x|2)|β|/2
· cα−β

φ̃(|x|2)

(1 + |x|2)|α−β|/2

≤
∑
{β:β≤α}

(
α

β

)
cβcα−β

a(x)

(1 + |x|2)|α|/2
.

2

By Proposition 3.8 Besov spaces of generalized smoothness associated with ψ and a can

be characterized as

Hψ,1(Rn) =

{
u ∈ S ′(Rn) : ∃f ∈ L2(Rn) such that û =

1√
1 + ψ

f̂

}
Ha,1(Rn) =

{
u ∈ S ′(Rn) : ∃f ∈ L2(Rn) such that û =

1√
1 + a

f̂

}
.

Since the function x 7→ (1+x)−α is completely monotone for every α > 0, by [SSV09, The-

orem 3.7] functions (1+φ)−α and (1+φ̃)−α are also completely monotone. By Schoenberg’s

theorem, [Sch38, Theorem 2], functions (1 + ψ)−α and (1 +
√
a)−α are positive definite

functions and therefore Fourier transforms of integrable functions, [SSV09, Theorem 4.14].

Denote

K̂ψ(ξ) =
1√

1 + ψ(ξ)

and

K̂a(ξ) =
1

1 +
√
a(ξ)

.

Since for every α > 0

(1 + a(x))α � (1 +
√
a(x))2α,

36



3.2 Besov spaces of generalized smoothness

spaces Hψ,1(Rn) and Ha,1(Rn) can be characterized as convolution spaces via the ψ-Bessel

convolution kernel Kψ and a-Bessel convolution kernel Ka respectively, i.e.

Hψ,1(Rn) = {Kψ ∗ f : f ∈ L2(Rn)}, ||Kψ ∗ f ||ψ,1 := ||f ||L2(Rn),

Ha,1(Rn) = {Ka ∗ f : f ∈ L2(Rn)}, ||Ka ∗ f ||a,1 := ||f ||L2(Rn).
(3.7)

Furthermore, if we assume additional conditions on the complete Bernstein function φ

we can obtain estimates for the kernels Kψ and Ka. These conditions also imply a useful

characterization of the spaces Hψ,1(Rn) and Ha,1(Rn) via differences, as well as estimates

of the kernels Kψ and Ka. From now on we impose the following two conditions:

(H1): There exist constants a1, a2 > 0 and 0 < δ1 ≤ δ2 < 1 such that

a1λ
δ1 ≤ φ(λr)

φ(r)
≤ a2λ

δ2 , λ ≥ 1, r ≥ 1,

(H2): There exist constants a3, a4 > 0 and 0 < δ3 ≤ δ4 < 1 such that

a3λ
δ3 ≤ φ(λr)

φ(r)
≤ a4λ

δ4 , λ ≥ 1, r ≤ 1.

Conditions (H1) and (H2) are called the upper and lower scaling condition respectively

and were used in [KSV14]. It is easily shown that together (H1) and (H2) are equivalent

to the global scaling condition (H),

(H): There exist constants a5, a6 > 0 such that

a5λ
δ1∧δ3 ≤ φ(λr)

φ(r)
≤ a6λ

δ2∨δ4 , λ ≥ 1, r > 0.

Also, without loss of generality let φ(1) = 1. Since a is a radial function we will abuse

the notation by using a(x) = a(|x|). By (H1) and (H2) it follows that

a1λ
2δ1+1 ≤ a(λr)

a(r)
≤ a2λ

2δ2+1, λ ≥ 1, r ≥ 1, (3.8)

and

a3λ
2δ3+1 ≤ a(λr)

a(r)
≤ a4λ

2δ4+1, λ ≥ 1, r ≤ 1. (3.9)

The following estimates for the kernel Kψ were obtained in [KZ06, Remark 33, Remark

34].

Lemma 3.13 Let α > 0 and K̂ψ,α = (K̂ψ)α. If αδ2 < n then for every R > 0 there

exist constants ci = ci(φ, α, n,R) > 0, i = 1, 2, such that for all x ∈ B(0, R) ⊂ Rn and
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3.2 Besov spaces of generalized smoothness

0 ≤ j ≤ n

|Kψ,α(x)| ≤ c1

|x|nφ(|x|−2)α/2
,

|(Kψ,α(x))′xj | ≤
c2

|x|n+1φ(|x|−2)α/2
.

Proof. For x ∈ Rn let gn(|x|) = Kψ,α(x) and Bn(|x|) = K̂ψ,α(x). The function K̂ψ,α is a

positive definite radial function on Rn so by [Gra08, Section B.5]

Bn(r) =

∫ ∞
0

(2π)
n
2

λ
n
2
−1
Jn

2
−1(λr)r

n
2 gn(r)dr =

∫ ∞
0

Yn
2
−1(λr)Gn(dr),

where Jn
2
−1 and Yn

2
−1 are the Bessel and spherical Bessel function respectively and

Gn(λ) =

∫ λ

0

2π
n
2

Γ(n
2
)
rn−1gn(r)dr.

By [Leo99, Lemma 1.4.11] for y > 0

Ĝn(iy) = A(n)y

∫ ∞
0

un−1

(u2 + y2)
n+1
2

Bn(u)du

for some constant A(n). Let L : (0,∞)→ (0,∞),

L(λ) =
1

φα/2(λ2)

and note that Bn(λ) ∼ L(λ) as λ → ∞ and Bn(λ) ≤ L(λ) for all λ > 0. We will show

that this implies that G′n(λ) ∼ 1
λ
L( 1

λ
), λ→ 0. First note that

Ĝn(iy)

L(y)
= A(n)

∫ ∞
0

tn−1

(t2 + 1)
n+1
2

Bn(ty)

L(y)
dt ≤ A(n)

∫ ∞
0

tn−1

(t2 + 1)
n+1
2

L(ty)

L(y)
dt

(H)

≤ A(n)a
α/2
6

∫ 1

0

tn−1−α(δ2∨δ4)

(t2 + 1)
n+1
2

dt+
A(n)

a
α/2
5

∫ ∞
1

tn−1−α(δ1∧δ3)

(t2 + 1)
n+1
2

dt = c̃1

where c̃1 is a positive finite constant since αδ1 < n. For R > 1 let cR > 0 be such that

cRL(y) ≤ Bn(y) for all y ≥ R. It follows that

Ĝn(iy)

L(y)
≥ A(n)

∫ ∞
1

tn−1

(t2 + 1)
n+1
2

Bn(ty)

L(y)
dt ≥ A(n)cR

∫ ∞
1

tn−1

(t2 + 1)
n+1
2

L(ty)

L(y)
dt

≥ A(n)cR
1

a
α/2
2

∫ ∞
1

tn−1−αδ2

(t2 + 1)
n+1
2

dt = c̃2
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3.2 Besov spaces of generalized smoothness

where c̃2 is a positive finite constant since αδ2 < n. By a variation of the Karamata

Tauberian theorem for O-regularly varying functions, [BGT87, Theorem 2.10.2, de Haan-

Stadtmüller Theorem], since for all λ ≥ 1

0 < lim inf
t→∞

Gn(λt)

Gn(t)
≤ lim sup

t→∞

Gn(λt)

Gn(t)
<∞

it follows that L(G′n)(1
· ) and L(G′′n)(1

· ) are also O-regularly varying functions. Further-

more,

G′n(λ) ∼ L(G′n)

(
1

λ

)
∼ 1

λ
L

(
1

λ

)
, λ→ 0

G′′n(λ) ∼ L(G′′n)

(
1

λ

)
∼ 1

λ2
L

(
1

λ

)
, λ→ 0,

which implies that

|gn(r)| =
Γ(n

2
)

2π
n
2

∣∣∣∣G′n(r)

rn−1

∣∣∣∣ ≤ c̃3

L(1
r
)

rn

and

|g′n(r)| ≤
Γ(n

2
)n

2π
n
2

(∣∣∣∣G′′n(r)

rn−1

∣∣∣∣+

∣∣∣∣G′n(r)

rn

∣∣∣∣) ≤ c̃4

L(1
r
)

rn+1
.

2

Remark 3.14 Lemma 3.13 applied to the function φ̃ from (3.5) gives us estimates for

the Bessel kernel Ka,α. For α > 0 such that α(δ2 + 1
2
) < n and R > 0 it follows that

|Ka,α(x)| ≤ c1

|x|na(|x|−1)α/2
,

|(Ka,α(x))′xj | ≤
c2

|x|n+1a(|x|−1)α/2
,

for some c1, c2 > 0 and all x ∈ B(0, R).

Next we will consider the characterization of spaces Hψ,1(Rn) and Ha,1(Rn) via

differences. By [Jac01, Thm 3.10.4.] space Hψ,1(Rn) is continuously embedded in L2(Rn)

and it is a Hilbert space with the inner product

(u, v)ψ,1 =

∫
Rn

(1 + ψ(ξ))û(ξ)v̂(ξ)dξ. (3.10)
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3.2 Besov spaces of generalized smoothness

As in Example 2.18(ii) it follows that for u ∈ Hψ,1(Rn)

||u||ψ,1 ≤ ||u||L2(Rn) +

(∫
Rn
|û(ξ)|2ψ(ξ)dξ

) 1
2

= ||u||L2(Rn) +

(∫
Rn

∫
Rn
|û(ξ)|2(1− cos(ξy))j(y)dy dξ

) 1
2

= ||u||L2(Rn) +

(
1

2

∫
Rn

∫
Rn
|û(ξ)|2|1− eiξy|2j(y)dy dξ

) 1
2

which is by Parseval’s identity equal to

||u||L2(Rn) +

(
1

2

∫
Rn

∫
Rn

(u(x+ y)− u(x))2j(y)dydx

) 1
2

.

This implies that the ψ-Bessel potential space (Hψ,1(Rn), || · ||ψ,1) is equivalent to the

Dirichlet space (FRn ,
√
C1). We also introduce an equivalent norm on Hψ,1(Rn) which we

will later use in the proof of the trace theorem. For u ∈ Hψ,1(Rn) let

||u||(1) = ||u||L2(Rn) +

 ∫∫
|x−y|<1

|u(x)− u(y)|2φ (|x− y|−2)

|x− y|n
dxdy


1
2

.

Lemma 3.15 Norms || · ||ψ,1 and || · ||(1) on Hψ,1(Rn) are equivalent.

Proof. By [KSV12b, Theorem 2.3.] for every R > 0 there exists a constant c̃ (R) > 1

such that for all |x| < R

c̃(R)−1φ(|x|−2)

|x|n
< j(|x|) < c̃(R)

φ(|x|−2)

|x|n

and therefore for c̃ = c̃(1)

||u||ψ,1 ≤ ||u||L2(Rn) +

 c̃

2

∫∫
|x−y|<1

|u(x)− u(y)|2φ (|x− y|−2)

|x− y|n
dxdy


1
2

+

 1

2

∫∫
|x−y|≥1

|u(x)− u(y)|2j(|x− y|)dxdy


1
2

.

Since∫∫
|x−y|≥1

|u(x)− u(y)|2j(|x− y|)dxdy ≤
∫
|z|≥1

(∫
Rn

2
(
u(y + z)2 + u(y)2

)
dy

)
j(|z|)dz

40



3.2 Besov spaces of generalized smoothness

≤ 4||u||2L2(Rn)

∫
|z|≥1

j(|z|)dz,

it follows that

||u||ψ,1 ≤


 c̃

2
∨ 4

∫
|z|≥1

j(|z|)dz


1
2

+ 1

 ||u||(1).

For the other inequality we get

||u||ψ,1 ≥ 2−
1
2 ||u||L2(Rn) +

 c̃−1

4

∫∫
|x−y|<1

|u(x)− u(y)|2φ (|x− y|−2)

|x− y|n
dxdy


1
2

≥ (c̃−1 ∧ 2)
1
2

2
||u||(1).

2

Recall that σ = (2j)j∈N0 is an admissible sequence and by Lemma 3.7 the sequence

Na,2 = (a−1(22j))j∈N0
is strongly increasing. Since a is strictly increasing when considered

as a radial function and

a1

(
a−1(λx)

a−1(x)

)2δ1+1

≤ λ =
a(a−1(λx))

a(a−1(x))
≤ a2

(
a−1(λx)

a−1(x)

)2δ2+1

, λ ≥ 1

it follows that for j ∈ N and k ∈ N0(
1

a2

22j

) 1
2δ2+1

≤
Na,2
j+k

Na,2
k

≤
(

1

a1

22j

) 1
2δ1+1

(3.11)

so the sequence Na,2 is also admissible. Furthermore,

s(σ)

s(Na,2)
≥ log 2

2
2δ1+1

log 2
=

2δ1 + 1

2
> 0 and

s(σ)

s(Na,2)
≤ log 2

2
2δ2+1

log 2
=

2δ2 + 1

2
< 2

so Theorem 3.10 holds for k = 2. For simpler notation, denote Nj = Na,2
j . Moreover,

||u||L2(Rn) +

(
∞∑
j=0

22j sup
|H|<N−1

j

||∆2
Hu||2L2(Rn)

) 1
2

= ||u||L2(Rn) +

2

3

∞∑
j=0

∫
2−(j+1)≤t<2−j

1

t3
sup

|H|<N−1
j

||∆2
Hu||2L2(Rn)dt


1
2
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3.2 Besov spaces of generalized smoothness

� ||u||L2(Rn) +

(∫ 1

0

1

t3
sup

|H|<1/a−1(t−2)

||∆2
Hu||2L2(Rn)dt

) 1
2

, (3.12)

since by (3.11)

2−(j+1) ≤ t < 2−j ⇒
(a1

4

) 1
2δ1+2

N−1
j ≤

1

a−1(t−2)
< N−1

j .

By change of variable t−2 = a(|h|−1) it follows that (3.12) is comparable to

||u||L2(Rn) +

1

2

∫
|h|<1

a′(|h|−1)

|h|n+1
sup
|H|<|h|

||∆2
Hu||2L2(Rn)dh


1
2

.

Since a′(t) = φ′(t)
√
t + φ(t)

2
√
t

and φ′(t) ≤ φ(t)
t

it follows that a(t)
2t
≤ a′(t) ≤ 3a(t)

2t
, so the last

line is comparable to

||u||L2(Rn) +

 ∫
|h|<1

a(|h|−1)

|h|n
sup
|H|<|h|

||∆2
Hu||2L2(Rn)dh


1
2

, (3.13)

which is by the generalization of [Tri10, Theorem 2.6.1] equivalent to

||u||(1),a := ||u||L2(Rn) +

 ∫
|h|<1

a(|h|−1)

|h|n
||∆2

hu||2L2(Rn)dh


1
2

. (3.14)

Before we prove this assertion we note the following Remark.

Remark 3.16 (i) By Theorem 3.10 and calculation above norms of the form

||u||L2(Rn) +

 ∫
|h|<1

a(|h|−1)

|h|n
sup
|H|<|h|

||∆k
Hu||2L2(Rn)dh


1
2

are equivalent for all k ≥ 2.

(ii) Since the function a(| · |−1)
| · |n is continuous and ||∆2

hu||L2(Rn) ≤ 4||u||L2(Rn) the norms

|| · ||h0(1),a,

||u||h0(1),a := ||u||L2(Rn) +

 ∫
|h|<h0

a(|h|−1)

|h|n
||∆2

hu||2L2(Rn)dh


1
2

,
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3.2 Besov spaces of generalized smoothness

are equivalent for all h0 > 0.

Lemma 3.17 The norms || · ||a,1 and || · ||(1),a are equivalent on Ha,1(Rn).

Proof. By calculation above it is enough to prove that norms in (3.13) and (3.14) are

equivalent. Obviously, the norm (3.14) is dominated by (3.13). For the other inequality

note that

I =

∫
|h|<1

a(|h|−1)

|h|n
sup
|H|<|h|

||∆2
Hu||2L2(Rn)dh

≤
∫
|h|<1

a(|h|−1)

|h|n
sup

|h|
2
<|H|<|h|

||∆2
Hu||2L2(Rn)dh+

∫
|h|<1

a(|h|−1)

|h|n
sup
|H|< |h|

2

||∆2
Hu||2L2(Rn)dh

=

∫
|h|<1

a(|h|−1)

|h|n
sup

|h|
2
<|H|<|h|

||∆2
Hu||2L2(Rn)dh+ 2

∫
|h|< 1

2

a(2−1|h|−1)

2n|h|n
sup
|H|<|h|

||∆2
Hu||2L2(Rn)dh

≤
∫
|h|<1

a(|h|−1)

|h|n
sup

|h|
2
<|H|<|h|

||∆2
Hu||2L2(Rn)dh+

I

2n
. (3.15)

By [CL09, (3.3.8)] there exists a constant c̃1 > 0 such that

||∆2k
H u||2L2(Rn) ≤ c̃1

(
||∆k

H0
u||2L2(Rn) + ||∆k

H1
u||2L2(Rn)

)
for every H > 0 and H0 +H1 = H. For |h|

2
≤ |H| ≤ |h| it follow that∫

|h|
8
≤|x|≤ |h|

4
|H−x|<|h|

||∆4
Hu||2L2(Rn)dx ≤ c̃1

∫
|h|
8
≤|x|≤ |h|

4
|H−x|<|h|

(
||∆2

xu||2L2(Rn) + ||∆2
H−xu||2L2(Rn)

)
dx

≤ 2c̃1

∫
|h|
8
≤|x|≤|h|

||∆2
xu||2L2(Rn)dx,

so for some c̃2, c̃3 > 0

sup
|h|
2
≤|H|≤|h|

||∆4
Hu||2L2(Rn) ≤ c̃2|h|−n

∫
|h|
8
≤|x|≤|h|

||∆2
xu||2L2(Rn)dx ≤ c̃3

∫ 1

1
8

∫
B(0,1)

||∆2
|h|yωu||2L2(Rn)dωdy.

(3.16)

By Remark 3.16(i) there exists a constant c̃4 > 0 such that

I
(3.15)

≤ 2n

2n − 1

∫
|h|<1

a(|h|−1)

|h|n
sup

|h|
2
<|H|<|h|

||∆2
Hu||2L2(Rn)dh
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≤ 2n

2n − 1
c̃4

∫
|h|<1

a(|h|−1)

|h|n
sup

|h|
2
<|H|<|h|

||∆4
Hu||2L2(Rn)dh

(3.16)

≤ 2n

2n − 1
c̃3c̃4

∫
|h|<1

∫ 1

1
8

∫
B(0,1)

a(|h|−1)

|h|n
||∆2
|h|yωu||2L2(Rn)dωdydh

=
2n

2n − 1
c̃3c̃4

∫ 1

0

∫ 1

1
8

∫
B(0,1)

a(h−1)

h
||∆2

hyωu||2L2(Rn)dωdydh

≤ c̃5

∫
|h|<1

a(|h|−1)

|h|n
||∆2

hu||2L2(Rn)dh,

for some c̃5 > 0. 2

3.3 The trace theorem

In the previous section we identified the space (F ,
√
C1) with the ψ-Bessel potential

space (Hψ,1(Rn), || · ||ψ,1). We will show that the space (F ref
a ,
√
E ref

1 ) is the trace space of

(F ,
√
C1) on D when D is an open n-set on Rn. First we introduce the notion of the trace

space.

Definition 3.18 Let µ be a positive Radon measure on D ⊂ Rn. For f ∈ S(Rn) we

denote the pointwise trace of f on D by trDf . If there is a constant c > 0 such that

||trDf ||L2(D,µ) ≤ c||f ||ψ,1, ∀f ∈ S(Rn)

then we call the continuous extension trD of this mapping to Hψ,1(Rn) the trace operator

and the trace space of Hψ,1(Rn) on D is given by

Hψ,1(D,µ) =
{
u ∈ L2(D,µ) : u = trDf µ-a.e. on D for some f ∈ Hψ,1(Rn)

}
||u||ψ,1,D,µ = inf

{
||f ||ψ,1 : f ∈ Hψ,1(Rn), u = trDf µ-a.e. on D

}
.

Remark 3.19 Since C∞c (Rn) ⊂ Hψ,1(Rn), Hψ,1(D,µ) is a Banach space containing

C∞c (D). Furthermore, ||u||ψ,1,D,µ satisfies the parallelogram identity,

2||u||2ψ,1,D,µ + 2||v||2ψ,1,D,µ = inf
u=trDf
v=trDg

(
2||f ||2ψ,1 + 2||g||2ψ,1

)
= inf

u=trDf
v=trDg

(
||f + g||2ψ,1 + ||f − g||2ψ,1

)
≥ inf

u=trDf
v=trDg

||f + g||2ψ,1 + inf
u=trDf
v=trDg

||f − g||2ψ,1 ≥ inf
u+v=trDh

||h||2ψ,1 + inf
u−v=trDh

||h||2ψ,1

= ||u+ v||2ψ,1,D,µ + ||u− v||2ψ,1,D,µ,
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where the other inequality follows by taking ũ = u+v
2

and ṽ = u−v
2

. Therefore, Hψ,1(D,µ)

is also a Hilbert space.

We will limit ourselves to a special class of open sets D called d-sets.

Definition 3.20 Let D be a non-empty Borel subset of Rn and d such that 0 < d ≤ n.

A positive Borel measure µ on D is called a d-measure if there exist positive constants c1

and c2 such that for all x ∈ D and r ∈ (0, 1],

c1r
d ≤ µ(D ∩B(x, r)) ≤ c2r

d.

A non-empty Borel set D is called a d-set if there exists a d-measure µ on D. Note that

by definition all d-measures on D are equivalent to the restriction of the d-dimensional

Hausdorff measure to D.

For a d-set D in Rn with d-measure µ let

H(D,µ) = {u ∈ L2(D,µ) : ||u||(1),D,µ <∞},

||u||(1),D,µ = ||u||L2(D,µ) +

 ∫∫
|x−y|<1

|u(x)− u(y)|2φ (|x− y|−2)

|x− y|2d−n
µ(dx)µ(dy)


1
2

.

and

Ha(D,µ) = {u ∈ L2(D,µ) : ||u||(1),a,D,µ <∞},

||u||(1),a,D,µ = ||u||L2(D,µ) +

 ∫∫
|x−y|<1

|u(x)− u(y)|2a (|x− y|−1)

|x− y|2d−n
µ(dx)µ(dy)


1
2

.

When µ is the Lebesgue measure λD on a n-set D by similar calculations as in Lemma

3.15 it follows that the space (H(D,λD), || · ||(1),D,λD) is equivalent to (F ref
a ,
√
E ref

1 ).

Example 3.21 For a rotationally symmetric α-stable Lévy process X, i.e. ψ(ξ) = |ξ|α,

α ∈ (0, 2), space Hψ,1(Rn) is the fractional Sobolev space Wα/2,2(Rn). By the trace

theorem for Besov spaces, [JW84, Theorem V.1.1.], for any open n-set D the trace space

of Wα/2,2(Rn) on D is equal to F ref.

Before we state the trace theorem for ψ-Bessel potential space Hψ,1(Rn) we prove

the following useful lemma.
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Lemma 3.22 Let c > 0 and N ∈ Z. The norm || · ||c,N(2),D,µ on H(D,µ) defined by

||u||c,N(2),D,µ = ||u||L2(D,µ) +

 ∞∑
j=N

φ
(
22j
)

2(2d−n)j

∫∫
|x−y|<c2−j

|u(x)− u(y)|2µ(dx)µ(dy)


1
2

(3.17)

is equivalent to the norm || · ||(1),D,µ. The same statement is true for the corresponding

norms || · ||(1) and || · ||c,N(2),Rn,λ on Hψ,1(Rn), as well as for || · ||(1),a,D,µ and || · ||c,N(2),a,D,µ on

Ha(D,µ),

||u||c,N(2),a,D,µ = ||u||L2(D,µ) +

 ∞∑
j=N

a
(
2j
)

2(2d−n)j

∫∫
|x−y|<c2−j

|u(x)− u(y)|2µ(dx)µ(dy)


1
2

Proof. First note that for all c > 0 and N ∈ N by similar calculations as in Lemma 3.15

|| · ||(1),D,µ � ||u||L2(D,µ) +

∫∫
|x−y|<c2−N

|u(x)− u(y)|2φ (|x− y|−2)

|x− y|2d−n
µ(dx)µ(dy).

Let 2d > n. Since φ is nondecreasing it follows that∫∫
|x−y|<c2−N

|u(x)− u(y)|2φ (|x− y|−2)

|x− y|2d−n
µ(dx)µ(dy) =

=
∞∑
j=N

∫∫
c2−j−1≤|x−y|<c2−j

|u(x)− u(y)|2φ (|x− y|−2)

|x− y|2d−n
µ(dx)µ(dy)

≤
∞∑
j=N

φ
(
c−222(j+1)

)
c−(2d−n)2(2d−n)(j+1)

∫∫
c2−j−1≤|x−y|<c2−j

|u(x)− u(y)|2µ(dx)µ(dy)

≤
(3.4)

(
1 ∨ 4

c2

)
2(2d−n)

c(2d−n)

∞∑
j=N

φ
(
22j
)

2(2d−n)j

∫∫
c2−j−1≤|x−y|<c2−j

|u(x)− u(y)|2µ(dx)µ(dy)

≤
(

1 ∨ 4

c2

)
2(2d−n)

c(2d−n)

∞∑
j=N

φ
(
22j
)

2(2d−n)j

∫∫
|x−y|<c2−j

|u(x)− u(y)|2µ(dx)µ(dy).

Analogously,

∞∑
j=N

φ
(
22j
)

2(2d−n)j

∫∫
|x−y|<c2−j

|u(x)− u(y)|2µ(dx)µ(dy) =

=
∞∑
j=N

φ
(
22j
)

2(2d−n)j

∞∑
i=j

∫∫
c2−i−1≤|x−y|<c2−i

|u(x)− u(y)|2µ(dx)µ(dy) =
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=
∞∑
i=N

i∑
j=N

φ
(
22j
)

2(2d−n)j

∫∫
c2−i−1≤|x−y|<c2−i

|u(x)− u(y)|2µ(dx)µ(dy)

≤
∞∑
i=N

φ
(
22i
) 2(2d−n)(i+1) − 1

22d−n − 1

∫∫
c2−i−1≤|x−y|<c2−i

|u(x)− u(y)|2µ(dx)µ(dy)

≤22d−n
∞∑
i=N

φ
(
22i
)

2(2d−n)i

∫∫
c2−i−1≤|x−y|<c2−i

|u(x)− u(y)|2µ(dx)µ(dy)

≤
(3.4)

22d−nc2d−n(1 ∨ c2)
∞∑
i=N

φ
(
(c2−i)−2

)
(c2−i)−(2d−n)

∫∫
c2−i−1≤|x−y|<c2−i

|u(x)− u(y)|2µ(dx)µ(dy)

≤22d−nc2d−n(1 ∨ c2)
∞∑
i=N

∫∫
c2−i−1≤|x−y|<c2−i

|u(x)− u(y)|2φ (|x− y|−2)

|x− y|2d−n
µ(dx)µ(dy) =

=22d−nc2d−n(1 ∨ c2)

∫∫
|x−y|<c2−N

|u(x)− u(y)|2φ (|x− y|−2)

|x− y|2d−n
µ(dx)µ(dy).

The similar calculation follows through for 2d ≤ n. 2

Theorem 3.23 Trace theorem

Let D be a n-set in Rn, λD the Lebesgue measure on D and φ a complete Bernstein

function such that (H1) and (H2) hold. Then the trace space (Hψ,1(D,λD), || · ||ψ,1,D,λD)

of (Hψ,1(Rn), || · ||ψ,1) on D is equivalent to the space (H(D,λD), || · ||(1),D,λD).

Remark 3.24 (i) To prove that H(D,λD) is truly the trace space of Hψ,1(Rn) on D we

will define operators R : Hψ,1(Rn)→ H(D,λD) and E : H(D,λD)→ Hψ,1(Rn) such that

Ru = u a.e. on D and ||Ru||(1),D,λD ≤ C1||u||ψ,1, ∀u ∈ Hψ,1(Rn) (3.18)

Eu = u a.e. on D and ||Eu||ψ,1 ≤ C2||u||(1),D,λD , ∀u ∈ H(D,λD) (3.19)

for some constants C1, C2 > 0 and that

REu = u a.e. on D for all u ∈ H(D,λD). (3.20)

Operator R satisfying 3.18 is called the continuous restriction operator and operator E

satisfying 3.19 and 3.20 is called the continuous extension operator.

(ii) Note that D̃ = D× {0} is a n-set in Rn+1 and that every function u ∈ H(D,λD) can

be represented as a function ũ in Ha(D̃, µ) such that

ũ(x̃) = u(x), x̃ = (x, 0), x ∈ D
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and

||ũ||(1),a,D̃,µ = ||ũ||(1),D,λD (3.21)

where µ is the restriction of the n-dimensional Hausdorff measure in Rn+1 to D̃ and a is

defined by (3.6). Analogously, the space Hψ,1(Rn) can be represented as Ha(Rn×{0}, µ̄),

where µ̄ is the restriction of the n-dimensional Hausdorff measure in Rn+1 to Rn × {0}.
(iii) The proof of the trace theorem consists of four parts and follows the proof of the trace

theorem for Besov spaces, [JW84]. First we define the restriction operator R and prove

its continuity. In the same way, we prove the continuity of restriction operators R̃ and

R̄ from Ha,1(Rn+1) to Ha(D̃, µ) and Ha(Rn × {0}, µ̄) respectively, which we later use in

the definition of the extension operator E. Here µ̄ is the restriction of the n-dimensional

Hausdorff measure in Rn+1 to Rn × {0}. Using the approach in [JW84] we can directly

prove the continuity of the extension operator only in the case when D is a d-set of order

strictly less then the dimension of the space, that is d < n. This is why we first prove the

continuity of the operator Ẽ from Ha(D̃, µ) to Ha,1(Rn+1) and later define the operator

E using Ẽ and restriction operators R̃ and R̄.

Assuming the conditions from Theorem 3.23 and notation from Remark 3.24 we

state the restriction theorem.

Theorem 3.25 There exist continuous restriction operators R : Hψ,1(Rn)→ H(D,λD),

R̃ : Ha,1(Rn+1)→ Ha(D̃, µ) and R̄ : Ha,1(Rn+1)→ Ha(Rn × {0}, µ̄).

First we prove the following useful Lemma.

Lemma 3.26 Let d ≤ n, D a d-set in Rn and µ the restriction of the d-dimensional

Hausdorff measure on D. Let φ be a complete Bernstein function such that (H) holds

and α > 0 such that
n− d

2
< αδ1 ≤ α(δ2 ∨ δ4) <

n− d
2

+ 1. (3.22)

Then there exists a constant c > 0 such that for all r ≤ 1 and f ∈ L2(Rn)∫∫
|x−y|<r

(Kψ,α ∗ f(x)−Kψ,α ∗ f(y))2µ(dx)µ(dy) ≤ c
r2d−n

φα(r−2)
||f ||2L2(Rn)

Proof. Without loss of generality, we will consider the measure µ as a measure on Rn

with support on D and assume that µ(B(0, 1)) = 1
d
. Note that∫∫

|x−y|<r

(Kψ,α ∗ f(x)−Kψ,α ∗ f(y))2µ(dx)µ(dy)

=

∫∫
|x−y|<r

(∫
(Kψ,α(x− t)−Kψ,α(y − t))f(t)dt

)2

µ(dx)µ(dy)

48



3.3 The trace theorem

≤ 2

∫∫
|x−y|<r

 ∫
|y−t|<2r

(Kψ,α(x− t)−Kψ,α(y − t))f(t)dt


2

µ(dx)µ(dy)

+ 2

∫∫
|x−y|<r

 ∫
2r≤|y−t|

(Kψ,α(x− t)−Kψ,α(y − t))f(t)dt


2

µ(dx)µ(dy)

= 2(A+B) (3.23)

Also, by the Cauchy-Schwartz inequality, for every 0 < a < 1( ∫
(Kψ,α(x− t)−Kψ,α(y − t))f(t)dt

)2

≤
∫
|Kψ,α(x− t)−Kψ,α(y − t)|2af 2(t)dt

·
∫
|Kψ,α(x− t)−Kψ,α(y − t)|2(1−a)dt.

First we estimate the integral A. Let |x − y| < r and c1 = c1(φ, α, n, 3) be the constant

from Lemma 3.13. It follows that∫
|y−t|<2r

|Kψ,α(x− t)−Kψ,α(y − t)|2(1−a)dt

≤
(
1 ∨ 22(1−a)−1

)(∫
|x−t|<3r

|Kψ,α(x− t)|2(1−a)dt+

∫
|y−t|<2r

|Kψ,α(y − t)|2(1−a)dt

)
≤ 2

(
1 ∨ 22(1−a)−1

) ∫
|z|<3r

|Kψ,α(z)|2(1−a)dz

≤ 2
(
1 ∨ 22(1−a)−1

)
c

2(1−a)
1

∫
|z|<3r

(
1

|z|nφα
2 (|z|−2)

)2(1−a)

dz,

(H1)

≤
2
(
1 ∨ 22(1−a)−1

)
c

2(1−a)
1

a
α(1−a)
1

(3r)−2αδ1(1−a)(
φ
α
2 ((3r)−2)

)2(1−a)

∫
|z|<3r

(
1

|z|n−αδ1

)2(1−a)

dz

(3.4)

≤
2
(
1 ∨ 22(1−a)−1

)
c

2(1−a)
1

a
α(1−a)
1

(3r)−2αδ1(1−a)(
3−αφ

α
2 (r−2)

)2(1−a)

2π
n
2

Γ(n
2
)

∫ 3r

0

z2(1−a)(αδ1−n)+n−1dz

≤
2
(
1 ∨ 22(1−a)−1

)
c

2(1−a)
1 32(1−a)(α−n)+n2π

n
2

a
α(1−a)
1 (2(1− a)(αδ1 − n) + n)Γ(n

2
)

rn(
rnφ

α
2 (r−2)

)2(1−a)
,

for a such that

2(1− a)(n− αδ1) < n. (3.24)

Analogously, if

2a(n− αδ1) < d (3.25)

49



3.3 The trace theorem

it follows that for all t ∈ Rn∫∫
|x−y|<r
|y−t|<2r

|Kψ,α(x− t)−Kψ,α(y − t)|2aµ(dx)µ(dy)

≤ (1 ∨ 22a−1)


∫∫

|x−y|<r
|y−t|<2r

|Kψ,α(x− t)|2aµ(dx)µ(dy) +

∫∫
|x−y|<r
|y−t|<2r

|Kψ,α(y − t)|2aµ(dx)µ(dy)


≤ 2(1 ∨ 22a−1)µ(B(0, r))

∫
|z|<3r

|Kψ,α(z)|2aµ(dz)

Lem3.13

≤ 2(1 ∨ 22a−1)µ(B(0, r))c2a
1

∫
|z|<3r

(
1

|z|nφα
2 (|z|−2)

)2a

µ(dz)

(H1)

≤ 2(1 ∨ 22a−1)c2a
1

aαa1

µ(B(0, r))(3r)−2αaδ1(
φ
α
2 ((3r)−2)

)2a

∫
|z|<3r

1

|z|2a(n−αδ1)
µ(dz)

(3.4)

≤ 2(1 ∨ 22a−1)c2a
1

aαa1

µ(B(0, r))(3r)−2αaδ1(
3−αφ

α
2 (r−2)

)2a

∫ 3r

0

z2a(αδ1−n)+d−1dz

≤ 2(1 ∨ 22a−1)c2a
1 32a(α−n)+d

aαa1 (2a(αδ1 − n) + d)

µ(B(0, r))rd(
rnφ

α
2 (r−2)

)2a .

It follows that for some c̃1 > 0

A ≤ c̃1
rn(

rnφ
α
2 (r−2)

)2(1−a)

r2d(
rnφ

α
2 (r−2)

)2a

∫
f 2(t)dt

= c̃1
r2d−n

φα(r−2)
||f ||2L2(Rn).

For the second part, integral B, by the mean value theorem and Lemma 3.13 for

c2 = c2(φ, α, n, 3) it follows that∫∫
|x−y|<r
2r<|y−t|

|Kψ,α(x− t)−Kψ,α(y − t)|2aµ(dx)µ(dy)

≤ c2a
2 r

2a

∫∫
|x−y|<r
2r<|y−t|

(
1

|zx,y|n+1φ
α
2 (|zx,y|−2)

)2a

µ(dx)µ(dy),

(H)

≤ c2a
2 r

2a ãαa6(
rαδφ

α
2 (r−2)

)2a

∫∫
|x−y|<r
2r<|y−t|

(
1

|zx,y|n+1−αδ

)2a

µ(dx)µ(dy) (3.26)
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where zx,y = y−t+θx,y(x−y) for some θx,y ∈ (0, 1) and δ = δ2∨δ4. Since |zx,y| ≤ 2+r < 3

and

|zx,y| ≥ |y − t| − |x− y| ≥ |y − t| − r ≥
|y − t|

2
.

it follows that (3.26) is less than

≤ c2a
2

aαa6 22a(n+1−αδ)(
φ
α
2 (r−2)

)2a r2a(1−αδ)
∫∫

|x−y|<r
2r<|y−t|

(
1

|y − t|n+1−αδ

)2a

µ(dx)µ(dy)

≤ c2a
2

aαa6 22a(n+1−αδ)(
φ
α
2 (r−2)

)2a r2a(1−αδ)µ(B(0, r))

∫ ∞
2r

zd−1−2a(n+1−αδ)dz

= c2a
2

aαa6 22a(n+1−αδ)(
φ
α
2 (r−2)

)2a r2a(1−αδ)µ(B(0, r))
(2r)d−1−2a(n+1−αδ)

2a(n+ 1− αδ)− d

≤ c2a
2

aαa6 2d

2a(n+ 1− αδ)− d
µ(B(0, r))rd(
rnφ

α
2 (r−2)

)2a

if

2a(n+ 1− αδ) > d. (3.27)

Similarly, if

2(1− a)(n+ 1− αδ) > n (3.28)

then for x and y such that |x− y| < r

∫
2r<|y−t|

|Kψ,α(y − t)−Kψ,α(x− t)|2(1−a)dt ≤ c
2(1−a)
2 a

α(1−a)
6 2n

n− 2(1− a)(n+ 1− αδ)
rn(

rnφ
α
2 (r−2)

)2(1−a)
.

In the same way as in the estimate of A, this implies that there exists a constant c̃2 > 0

such that

B ≤ c̃2
r2d−n

φ(r−2)
||f ||2L2(Rn).

Since n−d
2
< αδ1 ≤ αδ < n−d

2
+ 1 it follows that(

d

2(n+ 1− αδ)
, 1− n

2(n+ 1− αδ)

)
∩
(

1− n

2(n− αδ1)
,

d

2(n− αδ1)

)
6= ∅,

so we can choose a such that (3.24), (3.25), (3.27) and (3.28) hold. Combining the bounds

for A and B we get the statement of the Lemma. 2
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3.3 The trace theorem

Proof of Theorem 3.25: Let Ru be the pointwise restriction on D of the strictly defined

function corresponding to u ∈ Hψ,1(Rn), i.e.

Ru(x) = lim
r→0

1

λ(B(x, r))

∫
B(x,r)

u(y)dy, x ∈ D.

Since u ∈ L1
loc, by the Lebesgue differentiation theorem it holds that Ru = u a.e. on

D. Using the classical interpolation theorem for a special class of spaces associated with

Hψ,1(Rn) we will show that the restriction operator R from Hψ,1(Rn) to H(D,λD) is

continuous, i.e. that there exists a constant c̃1 > 0 such that

||Ru||1,1(2),D,λD
≤ c̃1||u||ψ,1, ∀u ∈ Hψ,1(Rn), (3.29)

where ‖ · ‖1,1
(2),D,λD

is defined in (3.17). Denote by aj(x, y) = |Ru(x) − Ru(y)|1|x−y|<2−j ,

j ∈ N0 and L = L2(D ×D,λD × λD). Since Ru = u a.e. on D for every u ∈ L2(Rn), by

Lemma 3.26 there exists a constant c̃2 > 0 such that

sup
j∈N0

φα (22j
)

2j(2d−n)

∫∫
|x−y|<2−j

|Ru(x)−Ru(y)|2µ(dx)µ(dy)

 ≤ c̃2||f ||2L2(Rn)

for all u = Kψ,α ∗ f , f ∈ L2(Rn) and α > 0 satisfying condition (3.22), i.e.

0 < αδ1 ≤ α(δ2 ∨ δ4) < 1.

For such α it follows that

(aj)j ∈ lφ,α∞ (L) = {(ξj)j∈N0 : ξj ∈ L, ||ξ||lφ,α∞ (L) = sup
j∈N0

φα
(
22j
)

2nj||ξj||2L <∞}

and that the operator T

Tu = (aj)j∈N0

is bounded from Hψ,α(Rn) = {Kψ,α ∗ f : f ∈ L2(Rn)} to lφ,α∞ (L), i.e.

||(aj)j∈N0||lφ,α∞ (L) ≤ c̃2||Kψ,α ∗ f ||ψ,α := c̃2||f ||L2(Rn).

We can choose α0 < 1 < α1 such that

0 < δ1α0 ≤ (δ2 ∨ δ4)α1 < 1,

for which the operator T is bounded from Hψ,αi(Rn) to lφ,αi∞ (L), i = 0, 1.
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3.3 The trace theorem

As in [Tri78, Section 1.3, p.23] we define the K-interpolation space (X1, X2)θ,p of

Banach spaces X1 and X2 for some θ ∈ (0, 1) and 1 ≤ p ≤ ∞ as

(X1, X2)θ,p = {a : a ∈ X1 +X2, ||a||(X1,X2)θ,p <∞}

||a||(X1,X2)θ,p =

(∫ ∞
0

(t−θK(t, a))q
dt

t

) 1
q

, 1 ≤ p <∞

||a||(X1,X2)θ,p = sup
0<t<∞

t−θK(t, a), p =∞

where the Peetre K-functional is defined by

K(t, a) = inf
a=a1+a2

(||a1||X1 + t||a2||X2).

Let θ = α1−1
α1−α0

∈ (0, 1). By [Tri78, Theorem 1.3.3(a)] (also [AC10, Lemma 4.1]), operator

T is bounded from (Hψ,α0(Rn), Hψ,α1(Rn))θ,2 to (lφ,α0
∞ (L), lφ,α1

∞ (L))θ,2. By a version of

[Tri78, Theorem 1.18.2],

(lφ,α0
∞ (L), lφ,α1

∞ (L))θ,2 = lφ,12 (L)

and

(lφ,α0

2 (L2(Rn)), lφ,α1

2 (L2(Rn)))θ,2 = lφ,12 (L2(Rn)), (3.30)

where

lφ,α2 (L) =

(ξj)j∈N0 : ξj ∈ L, ||ξ||lφ2 (L) =

(∑
j∈N0

φα
(
22j
)

2nj||ξj||2L

) 1
2

<∞

 .

This result has been also proved in [CF88, Theorem 5.2] in a more general setting. Fur-

thermore, by [CF88, Theorem 2.5 and Theorem 3.4] it follows that the space Hψ,α(Rn) is

a retract of the space lφ,α2 (L2(Rn)) and therefore by [CF88, Theorem 5.3] the interpolation

identity

(Hψ,α0(Rn), Hψ,α1(Rn))θ,2 = Hψ,1(Rn)

follows from (3.30). This result was shown using the so-called retraction and co-retraction

method and [CF88, Theorem 5.2].

Therefore, there exists a constant c̃3 > 0 such that

∞∑
j=0

φ
(
22j
)

2j(2d−n)

∫∫
|x−y|<2−j

|Ru(x)−Ru(y)|2λD(dx)λD(dy) ≤ c̃3||u||2ψ,1

which implies (3.29).
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3.3 The trace theorem

Next we define the operator R̃ on Ha,1(Rn+1) as

R̃u(x) = lim
r→0

1

λ(B(x, r))

∫
B(x,r)

u(y)dy, x ∈ D̃.

By calculations as in Lemma 3.26, there exists a constant c̃4 > 0 such that

||u||L2(D̃,µ) ≤ c̃4||f ||L2(Rn+1)

for every u = Ka ∗ f , f ∈ L2(Rn+1). By [FOT10, Theorem 2.1.3] every function u ∈
Ha,1(Rn+1) has a quasi continuous modification. That means that there exists a function

ũ ∈ Ha,1(Rn+1) such that for every ε > 0 there exists an open set N such that

Capa,1(N) = inf{||v||a,1 : v ∈ Ha,1(Rn+1), v ≥ 1 a.e. on N} < ε,

ũ = u a.e. and the set of Lebesgue points for ũ is of capacity zero. This means that outside

of some set N , Capa,1(N) = 0, function u can be strictly defined and that R̃u = u. We

will show that this implies R̃u = u µ-a.e. It follows that for every ε > 0 there exists a

function v ∈ C∞c (Rn+1) such that v ≥ 1 on N and ||v||a,1 < ε
c̃4

. Therefore,

µ(N) ≤
(∫

N

|v(x)|2µ(dy)

) 1
2

≤ c̃4||v||a,1 < ε,

that is µ(N) = 0. Next we show that R̃ is continuous, i.e. there exists a constant c̃4 > 0

such that

||R̃u||1,1
(2),a,D̃,µ

≤ c̃4||u||a,1, ∀u ∈ Ha,1(Rn+1). (3.31)

By applying Lemma 3.26 to the Bernstein function φ̃ from (3.5) and 2α instead of α there

exists a constant c̃5 > 0 such that

sup
j∈N0

aα(2j)2j(n−1)

∫∫
|x−y|<2−j

|R̃u(x)− R̃u(y)|2µ(dx)µ(dy)

 ≤ c̃5||f ||2L2(Rn+1)

for all u = Ka,α ∗ f , f ∈ L2(Rn+1) and α > 0 satisfying condition (3.22),

1

2
< α

(
δ1 +

1

2

)
≤ α

(
δ2 ∨ δ4 +

1

2

)
<

3

2
.

The continuity of R̃ follows using the same interpolation argument as in the case of the

restriction operator R.

Analogously, since Rn × {0} is a n-set in Rn+1 the restriction operator R̄ from

Ha,1(Rn+1) to Ha(Rn × {0}, µ̄) is also continuous. 2

54



3.3 The trace theorem

Next we prove the first part of the extension theorem. Again, we assume the condi-

tions from Theorem 3.23 and notation from Remark 3.24.

Theorem 3.27 There exists a continuous operator Ẽ from Ha(D̃, µ) to Ha,1(Rn+1) such

that for all u ∈ Ha(D̃, µ)

Ẽu = u, µ-a.e. on D̃.

Proof. If B is a d-set in Rn+1 then by [JW84, Proposition VIII.1.1] the closure B of B

is also a d-set and µ(B \ B) = 0 for every d-measure µ. Therefore, it is enough to prove

the theorem for a closed n-set D̃.

We define the operator Ẽ from Ha(D̃, µ) to Ha,1(Rn+1) using the Whitney decom-

position of D̃c with some additional properties. Denote by xi the center of the cube Qi

and by li and si its diameter and the side length. Let {Qi}i∈N be a collection of closed

cubes, with disjoint interiors and sides parallel to the axes such that D̃c = ∪Qi, si = 2−Mi

for some Mi ∈ Z and

li ≤ d(Qi, D̃) ≤ 4li.

Let ε ∈ (0, 1
4
) and denote by Q∗i = (1+ε)Qi the cube with the same center as Qi expanded

by factor 1 + ε. If x ∈ Qk ∩Q∗i then

1/4sk ≤ si ≤ 4sk (3.32)

and Qi and Qk touch each other. This implies that every point in D̃c is covered by N0

cubes Q∗i , where N0 ∈ N depends only on n.

By [JW84, Section I.2.3] we can associate with decomposition {Q∗i } a partition

of unity {ϕi}i∈N ⊂ C∞c (Rn), i.e. a family of nonnegative functions with the following

properties:

supp ϕi ⊂ Q∗i ,∑
ϕi = 1 on D̃c,

|Djϕi| ≤ c̃l
−|j|
i for some c̃ > 0.

(3.33)

Let ωi = µ(B(xi, 6li))
−1 and I = {i ∈ N : si ≤ 1}. Note that c−1

2 (6li)
−n ≤ ωi ≤ c−1

1 (6li)
−n,

i ∈ N, where c1 and c2 are constants from Definition 3.20. For u ∈ Ha(D̃, µ) define

Ẽu(x) =


u(x), x ∈ D̃∑
i∈I

ϕi(x)ωi

∫
|y−xi|<6li

u(y)µ(dy), x 6∈ D̃.
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3.3 The trace theorem

Note that supp Ẽu is bounded for every function u with bounded support. Since ϕi ∈
C∞c (Rn), it follows that for u ∈ C∞c (D̃)

Ẽu ∈ C∞c (Rn). (3.34)

We will show that Ẽ is a continuous operator from (Ha(D̃, µ), || · ||c,N
(2),a,D̃,µ

) for some c and

N to (Ha,1(Rn+1), || · ||h0(1),a) for h0 = 2−6, i.e. that there exists a constant c̃1 such that

||Ẽu||h0(1),a ≤ c̃1||u||c,N(2),a,D̃,µ
, ∀u ∈ Ha(D̃, µ). (3.35)

Recall that by Lemma 3.22, norms of the form || · ||c,N
(2),a,D̃,µ

are equivalent to the norm

|| · ||(1),a,D̃,µ. Since D̃ is of Lebesgue measure zero in Rn+1 it is enough to prove (3.35) for

Ẽu1D̃c .

For every x ∈ D̃c there exists a k such that x ∈ Qk. If sk > 4 then by (3.33)

x 6∈ Q∗i for all i ∈ I and Ẽu(x) = 0.

Therefore it is enough to consider the case when sk ≤ 4. Also for sk < 1/4,∑
i

ϕi(x) =
∑
i∈I

ϕi(x).

Let x ∈ Qk and let i ∈ I be such that φi(x) 6= 0. Then for all y ∈ B(xi, 6li) we have

|y − xk| ≤ |y − xi|+ |xi − x|+ |x− xk| ≤ 6li + li + lk ≤ 29lk, (3.36)

which implies that

|Ẽu(x)| ≤
∑
i∈I

ϕi(x)ωi

∫
|y−xi|<6li

|u(y)|µ(dy)

≤
∑
i∈I

ϕi(x)c−1
1 6−nl−ni

∫
|y−xk|<29lk

|u(y)|µ(dy)

≤
(3.32)

∑
i∈I

ϕi(x)c−1
1 6−n4nl−nk

∫
|y−xk|<29lk

|u(y)|µ(dy)

≤ c−1
1 6−n4nl−nk

∫
|y−xk|<29lk

|u(y)|µ(dy)

≤ c−1
1 6−n4n(c229n)

1
2

(
l−nk

∫
|y−xk|<29lk

u2(y)µ(dy)

)1/2

.

Let ∆j =
⋃

{k:sk=2−j}

Qk. Note that there exists an integer N1 depending only on n such

that every point y ∈ D̃c is covered by at most N1 balls B(xk, 29lk) where Qk ⊂ ∆j. This
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3.3 The trace theorem

follows from the fact that |xk − xk′| ≥ 2−j and lk =
√
n+ 12−j, for all Qk, Qk′ ⊂ ∆j. By

previous calculations it follows that∫
D̃c
|Ẽu(x)|2dx =

∞∑
j=−2

∑
Qk⊂∆j

∫
Qk

|Ẽu(x)|2dx

≤
∞∑

j=−2

∑
Qk⊂∆j

∫
Qk

(
c2

c2
1

(
116

9

)n
l−nk

∫
|y−xk|<29lk

u2(y)µ(dy)

)
dx

=
∞∑

j=−2

∑
Qk⊂∆j

c2

c2
1

(
116

9

)n
l−nk sn+1

k

∫
|y−xk|<29lk

u2(y)µ(dy)

≤
∞∑

j=−2

c2

c2
1

(
116

9
√
n+ 1

)n
2nj2−(n+1)j

∑
Qk⊂∆j

∫
|y−xk|<29lk

u2(y)µ(dy)

≤ c2

c2
1

(
116

9
√
n+ 1

)n
N1||u||2L2(D̃,µ)

∞∑
j=−2

2−j

≤ c223N1

c2
1

(
116

9
√
n+ 1

)n
||u||2

L2(D̃,µ)
,

that is

||Ẽu1D̃c ||
2
L2(Rn+1) ≤

(
c223N1

c2
1

(
116

9
√
n+ 1

)n
+ 1

)
||u||2

L2(D̃,µ)
. (3.37)

Next, for x ∈ ∆i, y ∈ ∆j and |x− y| < 2−i/2 we have

2−j
√
n+ 1 ≤ d(∆j, D̃) ≤ d(y, D̃) ≤ d(x, y) + d(x, D̃)

≤ d(x, y) + 5
√
n+ 12−i ≤ 11

2

√
n+ 12−i,

so j ≥ i− 2. Analogously,
√
n+ 12−i ≤ 5

√
n+ 12−j + 1

2
2−i so

2−i ≤ 5

√
2√

2− 1
2

2−j < 2−j+3,

that is j ≤ i+ 2. Therefore,

x ∈ ∆i, |x− y| < 2−i/2⇒ y ∈
i+2⋃
j=i−2

∆j. (3.38)

Since Ẽu(x) = 0 for for x ∈ ∆i, i ≤ −3 it follows that for x ∈ ∆i, i ≤ −5,

Ẽu(y) = 0 if |x− y| < 2−i/2

and

∆2
h(Ẽu)(x) = 0 if |h| < 25/4.
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3.3 The trace theorem

Therefore, ∫
D̃c

∫
|h|<h0

|∆2
h(Ẽu)(x)|2a (|h|−1)

|h|n+1
dh dx

≤
∞∑

i=−4

∫∫
x∈∆i

|h|<2−4/4

|∆2
h(Ẽu)(x)|2a (|h|−1)

|h|n+1
dh dx

≤
∞∑

i=−4

∫∫
x∈∆i

|h|<2−i/4

|∆2
h(Ẽu)(x)|2a (|h|−1)

|h|n+1
dh dx

+
∞∑
i=5

∫∫
x∈∆i

2−i/4≤|h|<2−4/4

|∆2
h(Ẽu)(x)|2a (|h|−1)

|h|n+1
dh dx

= A+B.

Let hi = 2−i/4. Then

B =
∞∑
i=5

i−1∑
m=4

∫
hm+1≤|h|<hm

a (|h|−1)

|h|n+1

∫
x∈∆i

|∆2
h(Ẽu)(x)|2dx dh

=
∞∑
m=4

∞∑
i=m+1

∫
hm+1≤|h|<hm

a (|h|−1)

|h|n+1

∫
x∈∆i

|∆2
h(Ẽu)(x)|2dx dh

=
∞∑
m=4

∫
hm+1≤|h|<hm

a (|h|−1)

|h|n+1

∫
x∈Fm+1

|∆2
h(Ẽu)(x)|2dx dh

(3.4)

≤ 23n+9

∞∑
m=4

a (2m) 2m(n+1)

∫∫
x∈Fm+1

hm+1≤|h|<hm

|∆2
h(Ẽu)(x)|2dx dh.

Similarly as in (3.38), for x ∈ Fi+1 =
∞⋃

j=i+1

∆j and |h| < hi it follows that x, x+ h, x+ 2h ∈ Fi−2.

Since

|∆2
h(Ẽu)(x)|2 ≤ 2

(
|Ẽu(x)− Ẽu(x+ h)|2 + |Ẽu(x+ h)− Ẽu(x+ 2h)|2

)
,

B ≤ 23n+11

∞∑
m=4

a (2m) 2m(n+1)

∫∫
x,y∈Fm−2

|x−y|<hm

(Ẽu(x)− Ẽu(y))2dx dy.
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3.3 The trace theorem

For x ∈ ∆k and y ∈ ∆m, k,m ≥ 2, since
∑

i∈I ϕi(x) =
∑

i ϕi(x) = 1 and
∑

i∈I ϕi(y) =∑
i ϕi(y) = 1 it follows that

|Ẽu(x)− Ẽu(y)| =

∣∣∣∣∣∣∣
∑
i

ϕi(x)ωi

∫
|s−xi|<6li

u(s)µ(ds)−
∑
j

ϕj(y)ωj

∫
|t−xj |<6lj

u(t)µ(dt)

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
∑
i

∑
j

ϕi(x)ϕj(y)ωiωj

∫∫
|s−xi|<6li
|t−xj |<6lj

u(s)µ(ds)µ(dt)−
∑
j

∑
i

ϕj(y)ϕi(x)ωjωi

∫∫
|t−xj |<6lj
|s−xi|<6li

u(t)µ(dt)µ(ds)

∣∣∣∣∣∣∣∣∣
≤
∑
i

∑
j

ϕi(x)ϕj(y)ωiωj

∫∫
|s−xi|<6li
|t−xj |<6lj

|u(s)− u(t)|µ(ds)µ(dt)

Since

x ∈ ∆k, ϕi(x) 6= 0⇒ 1

8
lk ≤ li ≤ 64lk (3.39)

there exist c̃2, c̃3 > 0 such that

|Ẽu(x)− Ẽu(y)|
(3.36)

≤ c̃2

∑
i

∑
j

ϕi(x)ϕj(y)l−nk l−nm

∫∫
|s−xk|<29lk
|t−xm|<29lm

|u(s)− u(t)|µ(ds)µ(dt)

= c̃2l
−n
k l−nm

∫∫
|s−xk|<29lk
|t−xm|<29lm

|u(s)− u(t)|µ(ds)µ(dt)

≤ c̃3

l−nk l−nm

∫∫
|s−xk|<29lk
|t−xm|<29lm

(u(t)− u(s))2µ(dt)µ(ds)


1/2

.

Here xk, xm are the centers and lk, lm diameters of cubesQp ⊂ ∆k andQr ⊂ ∆m containing

x and y respectively. Now it follows that for i ∈ N, y ∈ ∆m and k,m ≥ 2∫
x∈∆k,
|x−y|<2−i

|Ẽu(x)− Ẽu(y)|2dx ≤ c̃2
3

∫
x∈∆k

|x−y|<2−i

l−nk l−nm

∫∫
|s−xk|<29lk
|t−xm|<29lm

(u(t)− u(s))2µ(dt)µ(ds)dx

≤ c̃2
3l
−n
k l−nm N0

∫
x∈Qp

dx

∫∫
|s−y|<30

√
n+12−k+2−i

|t−xm|<29lm

(u(t)− u(s))2µ(dt)µ(ds)

≤ c̃2
3(n+ 1)−n/2N02k(n−(n+1))l−nm

∫∫
|s−y|<c2−k+2−i

|t−xm|<29lm

(u(t)− u(s))2µ(ds)µ(dt),

59



3.3 The trace theorem

where c = 30
√
n+ 1. Analogously, we get∫∫

x∈∆k, y∈∆m

|x−y|<2−i

|Ẽu(x)− Ẽu(y)|2dxdy ≤ c̃2
3(n+ 1)−nN2

0 2−k2−m
∫∫

|t−s|<2−i+c2−k+c2−m

(u(t)− u(s))2dµ(s)dµ(t).

This implies that for i ≥ 4∫∫
x,y∈Fi−2

|x−y|<2−i

|Ẽu(x)− Ẽu(y)|2dx dy =
∞∑

k,m=i−2

∫∫
x∈∆k, y∈∆m

|x−y|<2−i

|Ẽu(x)− Ẽu(y)|2dxdy

≤
∞∑

k,m=i−2

c̃2
3(n+ 1)−nN2

0 2−k2−m
∫∫

|t−s|<2−i+c2−k+c2−m

(u(t)− u(s))2µ(ds)µ(dt)

≤ c̃2
3(n+ 1)−nN2

0

(
∞∑

k,m=i−2

2−k2−m

) ∫∫
|t−s|<(8c+1)2−i

(u(t)− u(s))2µ(ds)µ(dt)

≤ c̃2
3(n+ 1)−nN2

0 2−2(i−2)+2

∫∫
|t−s|<(8c+1)2−i

(u(t)− u(s))2µ(ds)µ(dt)

and therefore

B ≤ 23n+11

∞∑
i=4

a
(
2i
)

2i(n+1)

∫∫
x,y∈Fi−2

|x−y|<2−i

|Ẽu(x)− Ẽu(y)|2dx dy

≤ c̃2
3(n+ 1)−nN2

0 23n+17

∞∑
i=4

a
(
2i
)

2i(n−1)

∫∫
|t−s|<(8c+1)2−i

(u(t)− u(s))2µ(ds)µ(dt)

≤ c̃2
3(n+ 1)−nN2

0 23n+17

∞∑
i=4

φ
(
22i
)

2in
∫∫

|t−s|<(8c+1)2−i

(u(t)− u(s))2µ(ds)µ(dt). (3.40)

Next, by the mean value theorem there exists a constant c̃4 > 0 such that

A =
∞∑

i=−4

∫∫
x∈∆i

|h|<2−i

|∆2
h(Ẽu)(x)|2a (|h|−1)

|h|n+1
dx dh

≤ c̃4

∞∑
i=−4

∫
|h|<2−i

∑
|j|=2

∫
∆i

∫ 1

0

∫ 1

0

|h|4|Dj(Ẽu)(x+ (t1 + t2)h)|2dt1 dt2 dx

 a (|h|−1)

|h|n+1
dh

(3.38)

≤ c̃4

∞∑
i=−4

∫
|h|<2−i

|h|4

∑
|j|=2

∫ 1

0

∫ 1

0

∫
Fi−2\Fi+3

|Dj(Ẽu)(z)|2dz dt1 dt2

 a (|h|−1)

|h|n+1
dh
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= c̃4

∞∑
i=−4

∫
|h|<2−i

|h|4

∑
|j|=2

∫
Fi−2\Fi+3

|Dj(Ẽu)(z)|2dz

 a (|h|−1)

|h|n+1
dh.

Since Dj(Ẽu)(z) = 0 if z ∈ ∆i and i ≤ −3, we get

A ≤ 5c̃4

∞∑
i=−2

∫
|h|<2−i

a (|h|−1)

|h|n−3
dh
∑
|j|=2

∫
∆i

|Dj(Ẽu)(z)|2dz.

By (3.8) there exists a constant ã2 > 0 such that

a(λr)

a(r)
≤ ã2λ

2δ2+1, λ ≥ 1, r ≥ 1

4

so

A ≤ 5c̃4ã2

∞∑
i=−2

a(2i)2−i(2δ2+1)

∫
|h|<2−i

1

|h|n−2+2δ2
dh
∑
|j|=2

∫
∆i

|Dj(Ẽu)(z)|2dz

≤ 5c̃4ã2
2π

n+1
2

Γ(n+1
2

)(3− 2δ2)

∞∑
i=−2

a(2i)2−4i
∑
|j|=2

∫
∆i

|Dj(Ẽu)(z)|2dz.

Take z ∈ ∆k and y ∈ ∆l, k, l ≥ 2 and |j| = 2. Since
∑
i

Djϕi(z) = 0 it follows that

|Dj(Ẽu)(z)| =

∣∣∣∣∣∣∣
∑
i

Djϕi(z)ωi

∫
|s−xi|<6li

u(s)µ(ds)

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
∑
i

Djϕi(z)ωi

∫
|s−xi|<6li

u(s)µ(ds)−
∑
i

Djϕi(z)Ẽu(y)

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
∑
i

Djϕi(z)ωi

∫
|s−xi|<6li

(u(s)− Ẽu(y))µ(ds)

∣∣∣∣∣∣∣
≤
∑
i

∑
m

|Djϕi(z)|ϕm(y)ωiωm

∫∫
|s−xi|<6li
|t−xm|<6lm

|u(s)− u(t)|µ(ds)µ(dt)

≤
∑
i

∑
m

|Djϕi(z)|ϕm(y)

ωiωm
∫∫

|s−xi|<6li
|t−xm|<6lm

|u(s)− u(t)|2µ(ds)µ(dt)


1
2

.
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3.3 The trace theorem

There are at most N0 indices i for which z ∈ Q∗i and Djϕi(z) 6= 0. By (3.32) and (3.33)

z ∈ Q∗i implies ωi � l−nk and |Djϕi(z)| ≤ c̃l
−|j|
i ≤ c̃

(
1
4
lk
)−|j|

. Also, by (3.39) ωm � l−nl for

m such that ϕm(y) 6= 0. Therefore, there exists a constant c̃5 > 0 such that

|Dj(Ẽu)(z)|
(3.36)

≤ c̃5N0c̃4
2l−2
k

∑
m

ϕm(y)

l−nk l−nl

∫∫
|s−xk|<29lk
|t−xl|<29ll

|u(s)− u(t)|2µ(ds)µ(dt)


1
2

≤ 16c̃5N0c̃l
−2
k

l−nk l−nl

∫∫
|s−xk|<29lk
|t−xl|<29ll

|u(s)− u(t)|2µ(ds)µ(dt)


1
2

.

Let xm and lm be the center and the diameter of cube Qm ⊂ ∆i, i ≥ 2. Then there

exists a constant c̃6 > 0 such that for z ∈ Qm

|Dj(Ẽu)(z)|2 ≤ c̃6

(n+ 1)n+2
24i+2in

∫∫
|s−xm|<29lm
|t−xm|<29lm

|u(s)− u(t)|2µ(ds)µ(dt).

and

∞∑
i=2

a(2i)2−4i
∑
|j|=2

∫
∆i

|Dj(Ẽu)(z)|2dz

≤ c̃6

(n+ 1)n+2

∞∑
i=2

a(2i)2−4i
∑
|j|=2

∑
Qm⊂∆i

∫
Qm

24i+2in

∫∫
|s−xm|<29lm
|t−xm|<29lm

|u(s)− u(t)|2µ(ds)µ(dt)dz

=
c̃6

(n+ 1)n+2

∞∑
i=2

a(2i)2−4i (n+ 1)(n+ 2)

2

∑
Qm⊂∆i

∫
Qm

24i+2in

∫∫
|s−xm|<29lm
|t−xm|<29lm

|u(s)− u(t)|2µ(ds)µ(dt)dz.

Since every s ∈ D̃c is covered by at most N1 balls B(xm, 29lm) the last line is less

than

c̃6(n+ 2)

2(n+ 1)n+1
N1

∞∑
i=2

a(2i)2−4i24i+2in2−i(n+1)

∫∫
|s−t|<60

√
n+12−i

|u(s)− u(t)|2µ(ds)µ(dt)

=
c̃6(n+ 2)

2(n+ 1)n+1
N1

∞∑
i=2

a(2i)2(2n−(n+1))i

∫∫
|s−t|<60

√
n+12−i

|u(s)− u(t)|2µ(ds)µ(dt)

=
c̃6(n+ 2)

2(n+ 1)n+1
N1

∞∑
i=2

φ(22i)2in
∫∫

|s−t|<60
√
n+12−i

|u(s)− u(t)|2µ(ds)µ(dt). (3.41)
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3.3 The trace theorem

For the remaining part in A, take z ∈ ∆k, k ≥ −2. By the same arguments as before,

there exists a constant c̃7 > 0 such that

|Dj(Ẽu)(z)| ≤
∑
i

|Djϕi(z)|ωi
∫

|s−xi|<6li

|u(s)|µ(ds)
(3.33)

≤ c̃
∑
i

l−2
i

ωi ∫
|s−xi|<6li

|u(s)|2µ(ds)


1
2

≤ c̃722k

2nk
∫

|s−xk|<29lk

|u(s)|2µ(ds)


1
2

and
1∑

i=−2

∫
∆i

|D(Ẽu)(z)|2dz ≤ c̃8||u||L2(D̃,µ)

for some c̃8 > 0. This inequality together with (3.37), (3.40) and (3.41) implies (3.35) for

h0 = 2−6, N = 2 and c = 240
√
n+ 1 + 1. 2

Next we have to prove that Ẽ is truly the extension operator for R̃.

Theorem 3.28 For every u ∈ Ha(D̃, µ)

R̃Ẽu = u, µ-a.e.

Proof. Take t0 ∈ D̃, u ∈ Ha(D̃, µ) and r > 0 small enough. Similarly as in the proof of

Theorem 3.27 it follows that there exist constants c̃1, c̃2 > 0 such that for k ≥ 2

∫
x∈∆k
|x−t0|≤r

(Ẽu(x)− u(t0))2dx =

∫
x∈∆k
|x−t0|≤r

(∑
i

ϕi(x)ωi

∫
|t−xi|<6li

u(t)µ(dt)− u(t0)

)2

dx

≤ c̃1

∫
x∈∆k
|x−t0|≤r

N2
0 22kn

(∫
|t−xk|<29lk

|u(t)− u(t0)|µ(dt)

)2

dx

≤ c̃22−k(n+1)2kn
∫
|t−t0|<r+29lk

(u(t)− u(t0))2µ(dt).

Let i0 ≥ 2 be such that

li0 ≤ r < li0−1.

Since t0 ∈ D̃, {x ∈ D̃c : |x− t0| < r} ⊂
∞⋃
i=i0

∆i, and therefore

∫
|x−t0|≤r

(Ẽu(x)− u(t0))2dx ≤
∞∑
i=i0

c̃22−i
∫
|t−t0|<r+29li

(u(t)− u(t0))2µ(dt)
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≤
∞∑
i=i0

c̃22−i
∫
|t−t0|<30r

(u(t)− u(t0))2µ(dt)

≤ c̃22−i0+1

∫
|t−t0|<30r

(u(t)− u(t0))2µ(dt)

≤ 2c̃2√
n+ 1

r

∫
|t−t0|<30r

(u(t)− u(t0))2µ(dt)

(3.4)

≤ 2c̃830n+2

√
n+ 1

rn+1

φ(r−2)

∫
|t−t0|<30r

(u(t)− u(t0))2a(|t− t0|−1)

|t− t0|n−1
µ(dt).

Since u ∈ Ha(D̃, µ) the last integral is finite for µ-almost all t0. Also, this integral is

decreasing as r goes to 0. Therefore, since lim
r→0

1

φ(r−2)
= 0

|RẼu(t0)− u(t0)| = lim
r→0

∣∣∣∣ 1

λ(B(t0, r))

∫
B(t0,r)

Ẽu(x)dx− u(t0)

∣∣∣∣
≤ lim

r→0

Γ(n+1
2

+ 1)

π
n+1
2

(
r−(n+1)

∫
|x−t0|≤r

(Ẽu(x)− u(t0))2dx

)1/2

= 0

for µ almost all t0. 2

Finally, we can define the extension operator E and prove it is bounded.

Theorem 3.29 There exists a continuous extension operator E from H(D,λD) to

Hψ,1(Rn).

Proof. Take u ∈ H(D,λD) and let ũ be the corresponding function in Ha(D̃, µ), Remark

3.24(ii). By Theorem 3.27 function ũ can be extended to a function Ẽũ ∈ Ha,1(Rn+1),

which can then be restricted to a function in Ha(Rn × {0}, µ̄) applying the continuous

restriction operator R̄, Theorem 3.25. Since the function space Ha(Rn × {0}, µ̄) can be

considered as Hψ,1(Rn), we define the extension operator E as

(Eu)(x) = (R̄Ẽũ)(x, 0), x ∈ Rn.

Note that by (3.34),

x ∈ C∞c (D)⇒ Eu ∈ C∞c (Rn). (3.42)

Also the continuity of E follows from the continuity of the extension and restriction

operators Ẽ and R̄.

Finally, we show that E is truly the extension operator for R. Since

RR̄u = R̃u
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3.4 The active reflected Dirichlet form and the boundary behavior of the censored
process

for all u ∈ C∞c (Rn+1) and C∞c (Rn+1) is dense in Ha,1(Rn+1) it follows that

REu = u

almost everywhere for all u ∈ Hψ,1(Rn). 2

Proof of Theorem 3.23: The proof follows directly from Theorem 3.25 and Theorem

3.29 combined with Remark 3.24(i). 2

Finally, recall that F is the closure of C∞c (D) under the inner product E1. Therefore,

the Dirichlet space (F ,
√
E1) is equivalent to (H0(D,λD), || · ||(1),D,λD), where H0(D,µ) is

the closure of C∞c (D) in (Hψ,1(D,µ), ||u||ψ,1,D,µ).

3.4 The active reflected Dirichlet form and the bound-

ary behavior of the censored process

Let ψ(ξ) = φ(|ξ|2), where φ is a complete Bernstein function satisfying (H1) and

(H2). First we show that (E ref,F ref
a ) is the active reflected Dirichlet form associated with

(E ,F) in the sense of [CF12, Theorem 6.2.13 and Section 6.3], when D is an arbitrary

open set. The corresponding result in the stable case was proven in [BBC03, Theorem

2.2].

Definition 3.30 We say that the function f is locally in F , f ∈ Floc if for every relatively

compact open set D0 in D there exists a function f0 ∈ F such that f = f0 a.e. on D0.

Theorem 3.31 Let D be an open set in Rn. The Dirichlet form (E ref,F ref
a ) is the active

reflected Dirichlet form associated with (E ,F), i.e.

F ref
a = {u ∈ L2(D) : uk = ((−k) ∨ u) ∧ k ∈ Floc and sup

k
E ref(uk.uk) <∞}

E ref(u, u) = lim
k→∞
E ref(uk, uk).

Proof. Since

{u ∈ L2(D) : uk = ((−k) ∨ u) ∧ k ∈ Floc, sup
k
E ref(uk.uk) <∞} ⊂ F ref

a

it is enough to show that u ∈ F ref
a ∩L∞(D) ⊂ Floc. For any relatively compact open subset

D0 of D, there exists a relatively compact smooth open n-set U0 such that D0 ⊂ U0 ⊂ D

and a function ϕ ∈ C∞c (D) such that ϕ ≤ 1, ϕ = 1 on D0 and supp[ϕ] ⊂ U0. Since U0 is

a smooth set and therefore a n-set on Rn, by Theorem 3.23 we can extend the function

u1U0 to a function v ∈ Hψ,1(Rn) ∩ L∞(Rn) such that u = v a.e. on U0. Since C∞c (Rn)
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process

is C1-dense in Hψ,1(Rn), there is a sequence {vk}k∈N ⊂ C∞c (Rn) C1-convergent to v. This

implies that for some k0 ∈ N

C1(vk, vk) < C1(v, v) + 1, ∀k ≥ k0

that is

sup
k
E1(ϕvk, ϕvk) ≤ sup

k
C1(vk, vk) <∞.

Hence by the Banach-Saks theorem there is a subsequence {ϕvkm}m∈N in C∞c (D) such

that Cesàro means (
1

m

m∑
i=1

ϕvkm)m∈N are E1-convergent. Therefore the limit function f is in F

and

f = ϕv = u a.e. on D0.

This implies that u ∈ Floc. Lastly, by the Lebesgue dominated convergence theorem it follows

that

Eref(u, u) = lim
k→∞

Eref(uk, uk).

2

By [CF12, Theorem 6.6.3] the active reflected Dirichlet form is a Silverstein extension of

the corresponding regular Dirichlet form. This means that Fb = F ∩ L∞(Rn) is an ideal in

F ref
a,b = F ref

a ∩ L∞(Rn), i.e.

Fb ⊂ F ref
a,b and fg ∈ Fb for every f ∈ Fb, g ∈ F ref

a,b.

Furthermore, by [CF12, Theorem 6.6.5, Remark 6.6.7] a Dirichlet form (E∗,F∗) is a Silverstein

extension of a quasi-regular Dirichlet form (E ,F) on L2(D) if and only if there exists a symmetric

Hunt process Y ∗ associated with the Dirichlet form (E∗,F∗) that extends Y to some state space

D∗ which contains D as an E∗-quasi-open subset of D∗ up to an E-polar set. Therefore, there

exists a compactification D∗ of D such that the active reflected Dirichlet form (Eref,F ref
a ) is

regular on L2(D∗) and we call the corresponding process Y ∗ the reflected process associated

with the process Y . The set D∗ \ D is Lebesgue negligible, but not necessarily of zero Eref

capacity. Note that F is the E1-closure of C∞c (D), that is F = Hψ,1
0 (D). Therefore, the process

Y ∗ killed upon leaving D has the same distribution as Y . We will use this relation to study the

boundary behavior of the process Y , when D is an open n-set.

Remark 3.32 (i) Since every compact set is of finite capacity, by [FOT10, Theorem 4.2.1]

a set A is E-polar if and only if CapY (A) = 0. This justifies the usage of the term q.e.

instead of E-q.e. The same is true for Eref-polar and C-polar sets.

(ii) The two notions of polarity are also related in this case. Since X has an absolutely

continuous transition density, so does the process Y (Remark 3.2) so by Remark 2.15

every E-polar (C-polar) is polar for the process Y (X).
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process

First we state a results which is the analogue of [BBC03, Theorem 2.4], proved for the

stable case.

Theorem 3.33 Let D be an open set in Rn with finite Lebesgue measure and ζ the lifetime of

process Y . The following statements are equivalent

(i) Px(ζ <∞) > 0 for some (and hence for all) x ∈ D;

(ii) Px(ζ <∞) = 1 for some (and hence for all) x ∈ D;

(iii) 1 6∈ F ;

(iv) F 6= F ref
a .

Proof. Trivially, (ii) implies (i). If 1 ∈ F then E(1, 1) = 0 so by [FOT10, Theorem 1.6.3] Y is

recurrent and therefore conservative. This shows that (i) implies (iii). Statement (iii) implies

(iv) since D has finite Lebesgue measure so 1 ∈ F ref
a and Eref(1, 1) = 0. Also, process Y ∗ is

irreducible, recurrent and therefore conservative. For the last implication, note that D∗ \D is

polar for Y ∗ if and only if

Px(ζ <∞) = Px(σY
∗

D∗\D <∞) = 0,

i.e. Y and Y ∗ are equivalent processes. Therefore, if F 6= F ref
a , D∗ \ D is non-polar for Y ∗ so

by [FOT10, Theorem 4.7.1(iii)] D∗ \D is visited by Y ∗ infinitely many times almost surely, so

(iv) implies (ii). 2

When D is an open n-set in Rn, Theorem 3.23 says that the reflected Dirichlet form

(Eref,F ref
a ) is actually the trace Dirichlet form of (C,FRn) on D, see [FOT10, (6.2.4)]. Since

Cc(Rn) is the special standard core in (C,FRn), by [FOT10, Theorem 6.2.1] C∞c (D) is a special

standard core for (Eref,F ref
a ), and therefore (Eref,F ref

a ) is a regular Dirichlet form on D. This

means that we can take D∗ = D and that there exists a Hunt process Y ∗ on D such that Y can

be represented as the process Y ∗ killed upon leaving D.

Since X is irreducible, by the construction of the censored process Y it follows that the

processes Y and Y ∗ are also irreducible.

Remark 3.34 If F ( F ref
a then Y is a proper subprocess of Y ∗ and ∂D is not polar for Y ∗.

This implies that

Px(Yζ− ∈ ∂D, ζ <∞) > 0, ∀x ∈ D.

Additionally, if D has finite Lebesgue measure, Y ∗ is recurrent and therefore ζ is finite almost

surely and

Px(Yζ− ∈ ∂D, ζ <∞) = 1, ∀x ∈ D.

So we see that the question of boundary behavior of the censored process Y is related to Eref-

polarity of the boundary ∂D. The following theorem gives us the characterization of Eref-polar

sets. The corresponding result for the stable case was proven in [BBC03, Theorem 2.5].
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process

Theorem 3.35 Let D be an open n-set in Rn.

(i) A set A ⊂ D is Eref-polar if and only if it is polar for the process X.

(ii) A set A ⊂ D is polar for the process Y if and only if it is polar for the process X.

(iii) If A ⊂ ∂D is polar for the process X then

Px(Yζ− ∈ A) = 0, ∀x ∈ D.

Proof.

(i) Let A ⊂ D and R and E the restriction and extension operator from Remark 3.24. We

will show that CapY ∗(A) � CapX(A) for every set A ⊂ D. By [FOT10, Lemma 2.1.5] if

LU = {u ∈ FRn : u ≥ 1 a.e. on U} 6= ∅

then there exists a unique function u0 ∈ LU such that CapX(U) = C1(u0, u0). Therefore,

CapX(U) = C1(u0, u0) ≥ Eref
1 (Ru0, Ru0)

≥ inf{Eref
1 (u, u) : u ∈ Lref

U }

= CapY ∗(U).

and

CapY ∗(A) = inf{CapY ∗(U) : A ⊂ U, U is a relatively open set in D}

≤ inf{CapX(U) : A ⊂ U, U is a relatively open set in D}

≤ inf{CapX(U) : A ⊂ U ⊂ Rn, U is open}

= CapX(A).

For the other inequality, take a compact subset K of D. Since C∞c (D) is Eref
1 -dense in F ref

a ,

by [FOT10, Lemma 2.2.7] it follows that

CapY ∗(K) = inf{Eref
1 (u, u) : u ∈ C∞c (D), u ≥ 1 on K}.

By Theorem 3.23 the extension operator E is continuous so there exists a constant c̃1 > 0

such that

C1(Eu,Eu) ≤ c̃1Eref
1 (u, u).

Recall that by (3.34) and (3.42) Eu ∈ C∞c (Rn) for every u ∈ C∞c (D). Therefore

CapY ∗(K) ≥ c̃−1
1 inf{C1(Eu,Eu) : u ∈ C∞c (D), u ≥ 1 on K}

≥ c̃−1
1 inf{C1(u, u) : u ∈ C∞c (Rn), u ≥ 1 on K}

= c̃−1
1 CapX(K).
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process

It follows that

CapY ∗(A)
(2.10)

= sup{CapY ∗(K) : K ⊂ A, K is compact}

≥ c̃−1
1 sup{CapX(K) : K ⊂ A, K is compact}

= c̃−1
1 CapX(A).

(ii) Since Y is the subprocess of Y ∗ killed upon leaving D by [FOT10, Theorem 4.4.3] a subset

A in D is E-polar if and only if it is Eref-polar. Hence by (i) A ⊂ D is polar for the process

Y if and only if it is polar for X.

(iii) Let A ⊂ ∂D be a polar set for X. By (i) it is Eref-polar and therefore there exists a nearly

measurable set B containing A such that

Px(σY
∗

B <∞) = 0 for a.e. x ∈ D.

Since σY
∗

B ≤ inf{t > 0 : Y ∗t− ∈ B} almost surely, it follows that

Px( there exists a t > 0 such that Y ∗t ∈ A or Y ∗t− ∈ A) = 0 for a.e. x ∈ D

and therefore

Px(Yζ− ∈ A) = 0 for a.e. x ∈ D.

Since Y has a transition density pY this statement holds for every x ∈ D, that is

Px(Yζ− ∈ A) = lim
t↓0

Px(Yζ− ∈ A, ζ > t)

= lim
t↓0

∫
D
Py(Yζ− ∈ A)pY (t, x, y)dy = 0.

Therefore A is polar for Y .

2

Remark 3.36 The converse of Theorem 3.35(iii) is not true, [BBC03, Remark 2.2]. Take, for

example, D to be the unit ball in R2 centered at x0, ψ(ξ) = |ξ|α and α ∈ (1, 2). Since D has

positive and finite (n−1)-dimensional Hausdorff measure it follows thatHh(∂D) =∞, where the

gauge function is equal h(x) = xn−α. By [BBC03, Remark 2.2], CapX(∂D) > 0 and therefore

Y is transient and

Px(Yζ− ∈ ∂D, ζ <∞) = 1, ∀x ∈ D.

By the rotation invariance of Y , it is easy to see that the distribution of Yζ under Px0 is the

normalized surface measure on ∂D. It follows from the Harnack inequality [BBC03, Theorem

3.2] that the distribution of Yζ under Px is absolutely continuous with respect to the surface

measure on ∂D for every x ∈ D. Let A be a Cantor set embedded into the circle ∂D. It is well

known that A has Hausdorff dimension log 2/ log 3 so Px(Yζ ∈ A) = 0 for every x ∈ D. However
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3.4 The active reflected Dirichlet form and the boundary behavior of the censored
process

when α > 2− log 2/ log 3, the set A will be visited by the symmetric α-stable process X.

Combining the results presented in this section we get the following corollary which gives

the final answer to the question of boundary behavior of the censored subordinate Brownian

motion Y .

Corollary 3.37 Let D be an open n-set in Rn and ζ lifetime of the censored process Y . Then

the following statements are equivalent.

(i) Y 6= Y ∗;

(ii) Hψ,1
0 (D,λD) ( Hψ,1(D,λD);

(iii) ∂D is not polar for process X;

(iv) Px
(

lim
t↑ζ

Yt ∈ ∂D, ζ <∞
)
> 0 for every x ∈ D;

(v) Px
(

lim
t↑ζ

Yt ∈ ∂D, ζ <∞
)
> 0 for some x ∈ D.

Proof. The equivalence (i)-(iv) follows from Theorem 3.35 and Remark 3.34. Similarly as before,

since Y has a strictly positive transition density pY statements (iv) and (v) are equivalent. Let

(v) hold. Since for some x ∈ D

lim
t↓0

∫
D
Py(Yζ− ∈ ∂D)pY (t, x, y)dy = Px(Yζ− ∈ ∂D) > 0

it follows that for all w ∈ D

Pw(Yζ− ∈ ∂D) = lim
t↓0

∫
D
Py(Yζ− ∈ ∂D)pY (t, w, y)dy > 0

so (v) implies (iv). 2
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Chapter 4

Harmonic functions for the censored

process

Let φ ∈ CBF be the Laplace exponent of the subordinator S with killing term and drift

zero, i.e.

φ(λ) =

∫ ∞
0

(1− e−λt)ν(t)dt,

such that the following conditions hold:

(H1): There exist constants 0 < δ1 ≤ δ2 < 1 and a1, a2 > 0 such that

a1λ
δ1φ(t) ≤ φ(λt) ≤ a2λ

δ2φ(t), λ ≥ 1, t ≥ 1

and ∫ r

0

λ
n
2
−1

φ(λ)
dλ <∞, for some r > 0.

Let X be a subordinate Brownian motion with subordinator S and characteristic exponent

ψ(ξ) = φ(|ξ|2). The condition (H1) is the upper scaling condition introduced in Section 3.2

which is responsible for the small time and small space behavior of the process X. The second

condition is by (2.12) equivalent to the transience property of the subordinate Brownian motion

X. Also, for easier notation we define the function Φ : (0,∞)→ (0,∞) as

Φ(λ) =
1

φ(λ−2)
.

Let D be an open set in Rn and Y the censored process on D corresponding to X. Denote by d

the diagonal in Rn ×Rn and δB(x) = d(x,Bc) for a bounded open set B ⊂ Rn. Also, let G and

GB be the Green function and the Green function of the set B for X respectively, B ∈ B(Rn).

Recall from Theorem 3.1 that the censored process Y can be obtained from the killed

process XD through the Feynman-Kac transform with the PCAF At =
∫ t

0 κD(XD
s )ds. The key

ingredient in proving the Harnack inequality for harmonic functions for the censored process is

to relate the Green functions of processes Y and XD on an open Borel set B ⊂ D through the
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conditional gauge function u, Section 2.8. Let

u(v, w) := Ewv [eκ(τB)],

where eκ is the multiplicative functional eκ(t) = eAt and Ewv is the expectation of the GB(·, w)-

conditioned process of XD. Recall from (2.30) that the Green function of the censored process

Y on B ⊂ D is of the form

GYB(x, y) = GB(x, y)u(x, y). (4.1)

To show that u is bounded, i.e. that the Green functions GYB and GB are comparable, first we

show the boundedness of the conditional expectation

Ewv [A(τB)] = Ewv
[∫ τB

0
κD(Xt)dt

]
=

∫ ∞
0

Ev
[
κD(Xt)

GB(Xt, w)

GB(v, w)
: t < τB

]
dt

=

∫
B
κD(y)

GB(v, y)GB(y, w)

GB(v, w)
dy

and then use Khasminskii’s lemma.

First we state a couple of results regarding the Green function and harmonic functions for

the subordinate Brownian motion X proved in [KSV15].

Theorem 4.1 [KSV15, Theorem 2.4]

For every R ≥ 1 there exists a constant c1(R) = c1(R,φ, n) > 1 such that for all x ∈ B(0, R)

c1(R)−1 Φ(|x|)
|x|n

≤ G(x) ≤ c1(R)
Φ(|x|)
|x|n

.

The following lemma is also true in the recurrent case.

Lemma 4.2 [KSV15, Lemma 2.7, Lemma 2.8]

Let R ∈ (0, 1) and B be a bounded open set such that diam(B) ≤ R. The Green function

GB(x, y) is finite and continuous on B ×B \ d and

(i) there exists a constant c2 = c2(R,φ, n) such that for all x, y ∈ B

GB(x, y) ≤ c2
Φ(|x− y|)
|x− y|n

,

(ii) for every L > 0 there exists a constant c3 = c3(L,R, φ, n) > 0 such that for all x, y ∈ B
with |x− y| ≤ L(δB(x) ∧ δB(y)),

GB(x, y) ≥ c3
Φ(|x− y|)
|x− y|n

.

Theorem 4.3 Scale invariant Harnack inequality [KSV15, Theorem 2.2]

Let L > 0. There exists a positive constant c4 = c(L, φ, n) > 1 such that the following is true:

If x1, x2 ∈ Rn and r ∈ (0, 1) are such that |x1 − x2| < Lr, then for every nonnegative function
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4.1 3G inequality for subordinate Brownian motion

h which is harmonic with respect to X in B(x1, r) ∪B(x2, r), we have

c−1
4 h(x2) ≤ h(x1) ≤ c4h(x2).

Theorem 4.4 Boundary Harnack principle, [KSV15, Theorem 2.3(ii)]

Let R ∈ (0, 1). There exists a positive constant c5 = c5(φ,R, n) > 0 such that for every x0 ∈ Rn,

every open set B ⊂ Rn, every r ∈ (0, R) and all nonnegative functions h, v in Rn which are

regular harmonic in B ∩B(x0, r) with respect to X and vanish a.e. in Bc ∩B(x0, r), we have

h(x)

v(x)
≤ c5

h(y)

v(y)
, x, y ∈ B ∩B

(
x0,

r

2

)
.

In the following section we will use several results proven for a special family of sets called

κ-fat open sets.

Definition 4.5 An open set D ⊂ Rn is said to be κ-fat if there exist some R > 0 and κ ∈
(
0, 1

2

]
such that for every Q ∈ ∂D and r ∈ (0, R) there exists a ball B(Ar(Q), κr) ⊂ D ∩ B(Q, r). The

pair (R, κ) is called the characteristics of the κ-fat open set D.

Note that the ball of radius r > 0 is a κ-fat open set with characteristics
(
2r, 1

2

)
. Let B

be a bounded κ-fat open set with characteristics (R, κ) and diam(B) ≤ r, for some r > 0. Fix

z0 ∈ B such that κR < δB(z0) ≤ R. By Lemma 4.2(i) and (3.4) it follows that

GB(x, z0) ≤ cr
Φ(δB(z0))

δB(z0)n
, x ∈ B \B

(
z0,

δB(z0)

2

)
where cr = 2nc2 and c2 is the constant from Lemma 4.2(i) depending only on r, φ and n. Now

we define a function gB on B by

gB(x) = GB(x, z0) ∧ cr
Φ(δB(z0))

δB(z0)n
(4.2)

and note that if |x− z0| > δB(z0)
2 then gB(x) = GB(x, z0). Let ε1 = κR

24 and for x, y ∈ B define

r(x, y) = δB(x) ∨ δB(y) ∨ |x− y| and

B(x, y) =

{ {
A ∈ B : δB(A) > κ

2 r(x, y), |x−A| ∨ |y −A| < 5r(x, y)
}
, if r(x, y) < ε1

{z0}, if r(x, y) ≥ ε1.
(4.3)

4.1 3G inequality for subordinate Brownian motion

The following 3G theorem for X will play an important role in proving the Harnack

inequality for the censored process Y , but it is also an interesting result by itself. Note that

for r > 0 the constant c6 appearing in the theorem is a uniform constant for all balls of radius

smaller than r.
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4.1 3G inequality for subordinate Brownian motion

Theorem 4.6 (3G Theorem)

Let r > 0, a > 0 and κ ∈
(
0, 1

2

]
. There exists a constant c6 = c6(r, a, κ, φ, n) > 0 such that

GB(x, y)GB(y, z)

GB(x, z)
≤ c6

Φ(|x− y|)Φ(|y − z|)
Φ(|x− z|)

|x− z|n

|x− y|n|y − z|n
� G(x, y)G(y, z)

G(x, z)
(4.4)

for every bounded κ-fat open set B with characteristics (R, κ) such that diam(B) ≤ r and
R

diam(B) ≥ a.

The proof of Theorem 4.6 is divided into several parts. The first theorem is a version

of [KSV16, Theorem 2.10] and we follow the proof of [KSV12a, Theorem 1.2] and [Han05,

Theorem 2.4].

Theorem 4.7 There exists a constant c7 = c7(r, a, κ, φ, n) > 1 such that for every bounded

κ-fat open set B with characteristics (R, κ) such that diam(B) ≤ r and R
diam(B) ≥ a and every

x, y ∈ B and A ∈ B(x, y),

c−1
7

g(x)g(y)Φ(|x− y|)
g(A)2|x− y|n

≤ GB(x, y) ≤ c7
g(x)g(y)Φ(|x− y|)
g(A)2|x− y|n

, (4.5)

where g = gB and B(x, y) are defined by (4.2) and (4.3) respectively.

Proof. Without loss of generality we can assume ε1 ≤ 1. Let

r0 :=
1

2
(|x− y| ∧ ε1).

We only consider the case δB(x) ≤ δB(y) ≤ κr0
2 , case (g) in [Han05], which implies r(x, y) =

|x− y|. The remaining cases follow analogously.

Choose Qx, Qy ∈ ∂B with |Qx − x| = δB(x) and |Qy − y| = δB(y) and let x1 = Aκr0
2

(Qx)

and y1 = Aκr0
2

(Qy). This means that x, x1 ∈ B ∩B(Qx,
κr0
2 ) and y, y1 ∈ B ∩B(Qy,

κr0
2 ). Since

|z0 −Qx| ≥ δB(z0) ≥ κR = 24ε1 > r0

and

|y −Qx| ≥ |x− y| − δB(x) ≥
(

2− κ

2

)
r0 > r0

functions GB(·, y) and GB(·, z0) are regular harmonic in B ∩ B(Qx, κr0) and vanish outside B.

Recall from (4.2) that

δB(z) <
δB(z0)

2
⇒ g(z) = GB(z, z0). (4.6)

Since δB(x1) ∨ δB(y1) < κr0
2 by the boundary Harnack principle, Theorem 4.4 we get

c−1
5

GB(x1, y)

g(x1)
≤ GB(x, y)

g(x)
≤ c5

GB(x1, y)

g(x1)
.

On the other hand, |z0 −Qy| > r0 and

|x1 −Qy| ≥ |x−Qy| − |x1 −Qx| − δB(x) ≥
(

2− κ

2

)
r0 −

κr0

2
− κr0

2
> r0,
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4.1 3G inequality for subordinate Brownian motion

so functions GB(x1, ·) and GB(·, z0) are regular harmonic on B ∩ B(Qy, κr0). Applying the

boundary Harnack principle as before we get

c−1
5

GB(x1, y1)

g(y1)
≤ GB(x1, y)

g(y)
≤ c5

GB(x1, y1)

g(y1)
.

Putting the two inequalities above together we get

c−2
5

GB(x1, y1)

g(x1)g(y1)
≤ GB(x, y)

g(x)g(y)
≤ c2

5

GB(x1, y1)

g(x1)g(y1)
.

Since δB(x1) ∧ δB(y1) ≥ κ2r0
2 , ε1|x− y| ≤ 2r0diam(B) and

|x1 − y1| ≤ |x1 − x|+ |x− y|+ |y − y1| < κr0 + |x− y|+ κr0 ≤ (1 + κ)|x− y| (4.7)

it follows that

|x1 − y1| ≤
4(1 + κ)diam(B)

κ2ε1
(δB(x1) ∧ δB(y1)) ≤ 96(1 + κ)

aκ3
(δB(x1) ∧ δB(y1))

and we can apply Lemma 4.2 on GB(x1, y1). Therefore, there exist positive constants c2 and c3

depending only on κ, R, φ and n such that

c3c
−2
5

g(x1)g(y1)|x1 − y1|nφ(|x1 − y1|−2)
≤ GB(x, y)

g(x)g(y)
≤ c2c

2
5

g(x1)g(y1)|x1 − y1|nφ(|x1 − y1|−2)
.

Applying (3.4), (4.7) and

|x1 − y1| ≥ |x− y| − |x1 − x| − |y1 − y| ≥ |x− y| − 2κr0 ≥ (1− κ) |x− y|

the previous inequality transforms to

c3c
−2
5 (1 + κ)−n(1− κ)2

g(x1)g(y1)|x− y|nφ(|x− y|−2)
≤ GB(x, y)

g(x)g(y)
≤ c2c

2
5(1− κ)−n(1 + κ)2

g(x1)g(y1)|x− y|nφ(|x− y|−2)
.

Lastly, we have to show that for all A ∈ B(x, y)

g(A)2 � g(x1)g(y1). (4.8)

Consider two cases, r0 <
ε1
2 and r0 = ε1

2 . If r0 <
ε1
2 then

r(x, y) = |x− y| < ε1, r0 =
1

2
r(x, y) and δB(x1) ∧ δB(y1) ≥ κ2r0

2
=
κ2r(x, y)

4
.

Since GB(·, z0) is harmonic on B(x1, δB(x1)) ∪B(A, δB(A)) and

|x1 −A| ≤ |x1 − x|+ |x−A| ≤ κr0 + 5r(x, y) ≤ 4

κ2

(κ
2

+ 5
)

(δB(x1) ∧ δB(A))
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4.1 3G inequality for subordinate Brownian motion

by (4.6) and the scale invariant Harnack inequality, Theorem 4.3,

c−1
4 g(x1) ≤ GB(A, z0) ≤ c4g(x1)

and therefore

c−1
4 g(x1) ≤ g(A) ≤ c4g(x1).

The analogous inequality follows for y1 in place of x1 and therefore

c−2
4 g(x1)g(y1) ≤ g2(A) ≤ c2

4g(x1)g(y1).

On the other hand, if r0 = ε1
2 then r(x, y) = |x− y| ≥ ε1, so by (4.3) and (4.2) it follows that

g(A) = g(z0) = cr
Φ(δB(z0))

δB(z0)n
.

Let v ∈ {x1, y1} and z ∈ B such that |z − z0| = δB(z0)
2 = δB(z). Since δB(v) ≥ κ2r0

2 = κ2ε1
4 it

follows that

|v − z| ≤ diam(B) ≤ 4diam(B)

κ2ε1
(δB(v) ∧ δB(z)) ≤ 96

aκ3
(δB(v) ∧ δB(z))

and by applying Theorem 4.3 we get

c−1
4 GB(z, z0) ≤ g(v) ≤ c−1

4 GB(z, z0).

Therefore, by Lemma 4.2

c̃−1 Φ(δB(z0))

δB(z0)n
≤ g(v) ≤ c̃Φ(δB(z0))

δB(z0)n

for some c̃ = c̃(r, κ, φ, n) > 1, which implies (4.8). 2

We will also need the following result from [KSV16, Lemma 2.7].

Lemma 4.8 Carleson’s estimate

Let a > 0, r > 0 and κ ∈
(
0, 1

2

]
. There exists a constant c8 = c8(r, κ, φ, n) > 0 such that for every

bounded open κ-fat set B with characteristics (R, κ) and diam(B) ≤ r, z ∈ ∂B, r0 ∈ (0, κR4 )

and y ∈ B \B(z, 3r0)

GB(x, y) ≤ c8GB(Ar0(z), y), x ∈ B ∩B(z, r0).

Proof. Let y ∈ B \ B(z, 3r0) and x ∈ B ∩ B(z, r0). Note that the functions GB(·, y) and

GB(·, A4r0/κ(z)) are regular harmonic in B ∩ B(z, 3r0) and B \ B(A4r0/κ(z), 2r0) respectively.

Since ∣∣A4r0/κ(z)− x
∣∣ ≥ δB (A4r0/κ(z)

)
− δB(x) ≥ 4r0 − r0 = 3r0 (4.9)

and ∣∣A4r0/κ(z)−Ar0(z)
∣∣ ≥ δB (A4r0/κ(z)

)
− δB (Ar0(z)) ≥ 4r0 − κr0 > 3r0, (4.10)
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4.1 3G inequality for subordinate Brownian motion

by the boundary Harnack principle, Theorem 4.4, it follows that

GB(x, y)

GB(Ar0(z), y)
≤ c5

GB(x,A4r0/κ(z))

GB(Ar0(z), A4r0/κ(z))
.

It is enough to show that
GB(x,A4r0/κ(z))

GB(Ar0(z), A4r0/κ(z))
≤ c̃ (4.11)

for some c̃ = c̃(r, κ, φ, n) > 0. By Lemma 4.2(i)

GB(x,A4r0/κ(z)) ≤ c2

Φ(|x−A4r0/κ(z)|)
|x−A4r0/κ(z)|n

,

and from (3.4), (4.9) and

|x−A4r0/κ(z)| ≤ |x− z|+ |z −A4r0/κ(z)| ≤ 5r0

it follows that
Φ(|x−A4r0/κ(z)|)
|x−A4r0/κ(z)|n

≤ 523−n
Φ(r0)

rn0
. (4.12)

On the other hand, since

|Ar0(z)−A4r0/κ(z)| ≤ 8r0/κ ≤
8

κ2
δB(Ar0(z)) =

8

κ2

(
δB(Ar0(z)) ∧ δB(A4r0/κ(z))

)
by Lemma 4.2(ii), (4.10) and (3.4) it follows that

GB(Ar0(z), A4r0/κ(z)) ≥ c3

Φ(|Ar0(z)−A4r0/κ(z)|)
|Ar0(z)−A4r0/κ(z)|n

≥ c3

(κ
4

)n Φ(r0)

rn0
,

which together with (4.12) implies (4.11). 2

Applying the Carleson’s estimate, the Harnack inequality and Lemma 4.2 the proofs of

the following lemmas follow entirely as in [KL07, Lemma 3.8-3.11]. Let B be a bounded κ-fat

open set with diam(B) ≤ r and characteristics (R, κ) such that R
diam(B) ≥ a. As in the proof of

Theorem 4.7, for x ∈ B let Qx ∈ ∂B be such that |x−Qx| = δB(x).

Lemma 4.9 There exists a constant c9 = c9(r, a, κ, φ, n) > 0 such that for every x, y ∈ B with

r(x, y) < ε1,

g(z) < c9g(Ar(x,y)(Qx)), z ∈ B ∩B(Qx, r(x, y)). (4.13)

Lemma 4.10 There exists a constant c10 = c10(r, a, κ, φ, n) > 0 such that for every x, y ∈ B

g(x) ∨ g(y) < c10g(A), A ∈ B(x, y). (4.14)

Lemma 4.11 If x, y, z ∈ B satisfy r(x, z) ≤ r(x, y), then there exists a constant c11 =
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4.2 Harnack inequality for censored subordinate Brownian motion

c11(r, a, κ, φ, n) > 0 such that

g(Ax,y) < c11g(Ay,z), for every (Ax,y, Ay,z) ∈ B(x, y)× B(y, z). (4.15)

Lemma 4.12 There exists a constant c12 = c12(r, a, κ, φ, n) > 0 such that for every x, y, z, w ∈
B and (Ax,y, Ay,z, Ax,z) ∈ B(x, y)× B(y, z)×B(x, z),

g(Ax,z)
2 < c12

(
g(Ax,y)

2 + g(Ay,z)
2
)

(4.16)

Proof of Theorem 4.6: Applying Theorem 4.7 we get

GB(x, y)GB(y, z)

GB(x, z)
≤ c3

7

g(y)2g(Axz)
2

g(Axy)2g(Ayz)2

Φ(|x− y|)Φ(|y − z|)
Φ(|x− z|)

|x− z|n

|x− y|n|y − z|n
.

By (4.16) and (4.14),

g(y)2g(Axz)
2

g(Axy)2g(Ayz)2
≤ c12

(
g(y)2

g(Axy)2
+

g(y)2

g(Ayz)2

)
≤ 2c12c

2
10,

which proves the 3G inequality (4.4) with c6 = 2c3
7c12c

2
10 depending only on r, a, κ, φ and n.

2

4.2 Harnack inequality for censored subordinate Brow-

nian motion

As a consequence of the 3G Theorem from the previous section, we first obtain the uniform

boundedness of the conditional expectation Ewv [A(τB)] for small balls.

Lemma 4.13 There is a constant r1 = r1(n, φ) ∈ (0, 1
3), independent of D, such that for every

r ∈ (0, 1) and every ball B = B(x, r1r) ⊂ B(x, r) ⊂ D,∫
B

GB(v, y)GB(y, w)

GB(v, w)
κD(y)dy ≤ 1

2
, ∀v, w ∈ B.

Proof. Let r1 ≤ 1
3 and r ∈ (0, 1). Since rr1 <

1
3 by Theorem 4.6

GB(v, y)GB(y, w)

GB(v, w)
≤ c6

φ(|v − w|−2)

φ(|v − y|−2)φ(|y − w|−2)

|v − w|n

|v − y|n|y − w|n
, ∀v, y, w ∈ B.

First we will show that there exists a constant c̃ = c̃(n, φ) > 0 such that

φ(|v − w|−2)|v − w|n ≤ c̃
(
φ(|v − y|−2)|v − y|n + φ(|y − w|−2)|y − w|n

)
.
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4.2 Harnack inequality for censored subordinate Brownian motion

From (3.4) it follows that

φ(s−2)sn ≤ r2

s2
φ(r−2)sn ≤ φ(r−2)rn, ∀s < r ≤ 1.

Without loss of generality we can assume |v − y| ≤ |y − w|, so

|v − w| ≤ |v − y|+ |y − w| ≤ 2|y − w|.

Since |y − w| ≤ 2rr1 < 1 it follows that

φ(|v − w|−2)|v − w|n ≤ 2nφ

((
|v − w|

2

)−2
)(
|v − w|

2

)n
≤ 2nφ(|y − w|−2)|y − w|n

≤ 2n
(
φ(|v − y|−2)|v − y|n + φ(|y − w|−2)|y − w|n

)
.

Therefore for every v, w ∈ B∫
B

GB(v, y)GB(y, w)

GB(v, w)
dy ≤ c62n

∫
B

(
1

φ(|v − y|−2)|v − y|n
+

1

φ(|y − w|−2)|y − w|n

)
dy

≤ c62n

 ∫
B(v,2rr1)

1

φ(|v − y|−2)|v − y|n
dy +

∫
B(w,2rr1)

1

φ(|y − w|−2)|y − w|n
dy


≤ c̃1

∫ 2rr1

0

1

φ(s−2)sn
sn−1ds

(H1)

≤ c̃1

2a1δ1
φ((2r1r)

−2)−1,

for some c̃1 = c̃1(φ, n) > 0. Furthermore, for every y ∈ B = B(x, rr1) ⊂ D it follows that

r ≤ δD(x) = δD(y) + |x− y| ≤ δD(y) + rr1,

so B(y, r(1− r1)) ⊂ D and

κD(y) =

∫
Dc
j(|y − z|)dz ≤

∫
B(y,r(1−r1))c

j(|y − z|)dz = c̃2

∫ ∞
r(1−r1)

sn−1j(s)ds

for some c̃2 = c̃2(n) > 0. By [KSV15, Lemma 2.2] there exists a constant c̃3 = c̃3(n) > 0 such

that for all r > 0

κD(y) ≤ c̃3φ(r−2(1− r1)−2).

Finally, for r1 small enough we have∫
B

GB(v, y)GB(y, w)

GB(v, w)
κD(y)dy ≤ c̃1c̃3

2a1δ1

φ(r−2(1− r1)−2)

φ((2r1r)−2)

(H1)

≤ c̃1c̃3

2a2
1δ1

(
2r1

1− r1

)2δ1

≤ 1

2
.

2
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4.2 Harnack inequality for censored subordinate Brownian motion

By Lemma 2.27 it follow that for every r < 1, every ball B = B(x, rr1) ⊂ D and v, w ∈ B

Ewv [A(τB)] =

∫
B
κD(y)

GB(v, y)GB(y, w)

GB(v, w)
dy ≤ 1

2
,

so by Khasminskii’s lemma, Lemma 2.27

1 ≤ u(v, w) = Ewv [eA(τB)] ≤ 1

1− 1
2

= 2. (4.17)

Recall from (2.19) that the density of the joint Px-distribution of (XτB−, XτB ) restricted

to the event {XτB− 6= XτB , τB <∞} is given by

gx(y, z) = GB(x, y)j(|y − z|), (y, z) ∈ B ×Bc.

From (2.17) and (2.30) we get an analogous formula for the joint distribution of (YτB−, YτB )

restricted to the event {YτB− 6= YτB , τB <∞}, i.e. for all nonnegative Borel measurable functions

f and g on D and open Borel sets B ⊂ B ⊂ D

Ex[f(YτB−)g(YτB )] =

∫
Bc

∫
B
f(y)g(z)GB(x, y)u(x, y)j(|y − z|)dydz. (4.18)

Also, since the subordinator of X has zero drift, by [Szt00, Theorem 1] it follows that for every

ball B ⊂ B ⊂ D and all y ∈ B

Py(XτB ∈ ∂B) = Py (XτB− = XτB ) = 0.

From Theorem 3.1(iii) it follows that

Py (YτB− = YτB ) = 0, ∀y ∈ B ⊂ B ⊂ D.

Using (4.17) and (4.18) we are able to prove the scale invariant Harnack inequality for

harmonic functions with respect to the censored process Y .

Theorem 4.14 For any L > 0, there exists a constant c12 = c12(n, φ, L) > 1 such that the

following is true: If x1, x2 ∈ D and r ∈ (0, 1) are such that B(x1, r) ∪ B(x2, r) ⊂ D and

|x1 − x2| < Lr, then for every nonnegative function h which is harmonic with respect to Y on

B(x1, r) ∪B(x2, r), we have

c−1h(x1) ≤ h(x2) ≤ ch(x1).

Proof. Let r1 ∈ (0, 1
3) be the constant from Lemma 4.13 and Bi = B(xi, r1r), i = 1, 2. Let GBi

and GYBi be the Green function of X and Y on Bi respectively. Since B1 ⊂ D it follows that for

y ∈ B1

h(y) = Ey
[
h(YτB1

)
]

(4.18)
=

∫
D\B1

∫
B1

h(w)GYB1
(y, v)j(|v − w|)dv dw

(4.1)
=

∫
D\B1

∫
B1

h(w)GB1(y, v)u(y, v)j(|v − w|)dv dw
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4.2 Harnack inequality for censored subordinate Brownian motion

= Ey
[
h(XτB1

)u(y,XτB1
−)
]
.

Here we implicitly assume h = 0 on Dc. Define

w(y) = Ey
[
h(XτB1

)
]
, y ∈ B1,

and note that w is harmonic in B1 with respect to X. From (4.17) it follows that

w(y) ≤ h(y) ≤ 2w(y), ∀y ∈ B1 (4.19)

and analogously

Ey
[
h(XτB2

)
]
≤ h(y) ≤ 2Ey

[
h(XτB2

)
]
, ∀y ∈ B2. (4.20)

By [KSV15, Proposition 2.3] there exists a constant c̃1 = c̃1(n, φ) > 0 such that for any y ∈
B
(
x1,

rr1
2

)
and almost every z ∈ B(x1, rr1)

c
,

KB(x1,rr1)(y, z) ≥ c̃1KB(x1,rr1)(x1, z),

where KB is the Poisson kernel of the process X on B ×Bc
defined in (2.20). This implies that

for any y ∈ B(x1,
rr1
2 )

w(y) =

∫
D\B1

h(z)KB1(y, z)dz ≥ c̃1

∫
D\B1

h(z)KB1(x1, z)dz = c̃1w(x1) ≥ c̃1

2
h(x1). (4.21)

First we consider the case when r ≤ |x1 − x2| < Lr. It follows that B2 ∩ B(x1, r1r/2) = ∅ and

therefore

h(x2)
(4.20)

≥ Ex2
[
h(XτB2

)
]
≥ Ex2

[
h(XτB2

);XτB2
∈ B(x1, r1r/2)

]
(4.19)

≥ Ex2
[
w(XτB2

);XτB2
∈ B(x1, r1r/2)

]
(4.21)

≥ c̃1

2
h(x1)Px2

(
XτB2

∈ B(x1, r1r/2)
)

=
c̃1

2
h(x1)

∫
B(x1,r1r/2)

KB2(x2, z)dz. (4.22)

By [KSV15, Lemma 2.6] there exists a constant c̃2 = c̃2(φ, n) > 0 such that for all z ∈ Bc
2

KB2(x2, z) ≥ c̃2
j(|z − x2|)
φ((r1r)−2)

. (4.23)

Also, for z ∈ B(x1, r1r/2),

|z − x2| ≤ r(r1/2 + L) < r1/2 + L
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4.3 Generator of the censored subordinate Brownian motion

so by [KSV14, Lemma 3.2] there exists a constant c̃3 = c̃3(φ, n, L) > 0 such that

j(|z − x2|) ≥ j(r(r1/2 + L)) ≥ c̃3
φ(r−2(r1/2 + L)−2)

rn(r1/2 + L)n
. (4.24)

Combining (4.22), (4.23) and (4.24) we get

h(x2) ≥ c̃1c̃2c̃3

2

|B(x1,
rr1
2 )|

rn(r1/2 + L)n
φ(r−2(r1/2 + L)−2)

φ((r1r)−2)
h(x1)

(3.4)

≥ c̃1c̃2c̃3

2

|B(x1,
rr1
2 )|

rn(r1/2 + L)n

(
1 ∧

(
r1

r1
2 + L

)2
)
h(x1) = c12(n, φ, L)h(x1).

On the other hand, if |x1 − x2| < r take r′ = |x1 − x2| and L′ = 1. Since r′ ≤ |x1 − x2| < L′r′

the proof follows in the same way as in the previous case. 2

Remark 4.15 If for a Lipschitz domain B ⊂ B ⊂ D

inf
y∈B

∫
D\B

j(|z − y|)dz ≥ c

for some constant c > 0, then by (4.18) it follows that

1 =

∫
D\B

∫
B
GYB(x, y)j(|z − y|)dy dz ≥ c

∫
B
GYB(x, y)dy

and therefore

Ex[τYB ] =

∫
B
GYB(x, y)dy <∞, ∀x ∈ B. (4.25)

Furthermore, (4.25) holds for all x ∈ D and implies that

Px(τYB <∞) = 1, for all x ∈ D.

4.3 Generator of the censored subordinate Brownian

motion

By [Sat99, Theorem 31.5] the generator of X is a non-local operator of the form

Au(x) = P.V.

∫
Rn

(u(x+ y)− u(x))j(|y|)dy

= lim
ε↓0

∫
{|y|>ε}

(u(x+ y)− u(x))j(|y|)dy

=

∫
Rn

(u(x+ y)− u(x)−∇u(y) · y1|y|≤r)j(|y|)dy
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4.3 Generator of the censored subordinate Brownian motion

for u ∈ C2
c (Rn) and all r > 0. The restriction of the generator of the censored process Y on

C2
c (D) is analogously equal to

AY u(x) = P.V.

∫
D

(u(y)− u(x))j(|x− y|)dy

= lim
ε↓0

∫
{y∈D:|y−x|>ε}

(u(y)− u(x))j(|x− y|)dy

= P.V.

∫
Rn

(u(x+ y)− u(x))j(|y|)dy +

∫
Dc
u(x)j(|x− y|)dy

= P.V.

∫
Rn

(u(x+ y)− u(x))j(|y|)dy + u(x)κD(x).

For a C2 function u on Rn we write

||u||C2 =
∑
|j|≤2

||Dju||∞,

where j ranges over multi-indices.

Lemma 4.16 Let δ1 > 1
2 . There exists a constant c13 = c13(n, φ) > 0 such that for every

u ∈ C2(Rn)

|AY u(x)| ≤ c13||u||C2

[
1 + φ(δD(x)−2)δD(x)

]
.

Proof. By the Taylor’s expansion theorem

|Au(x)| =
∣∣∣∣P.V. ∫

Rn
(u(x+ y)− u(x))j(|y|)dy

∣∣∣∣
=

∣∣∣∣∫
Rn

(u(x+ y)− u(x)−∇u(x)y1|y|<1)j(|y|)dy
∣∣∣∣

≤ ||u||C2

∫
Rn

(1 ∧ |y|2)j(|y|)dy = c̃||u||C2 ,

for some c̃ > 1. Therefore,

|AY u(x)| ≤ |Au(x)|+
∣∣∣∣∫
Dc

(u(y)− u(x))j(|y − x|)dy
∣∣∣∣

≤ c̃||u||C2 +

∫
Dc
|u(y)− u(x)|j(|y − x|)dy

≤ c̃||u||C2 + ||u||C2

∫
Dc

(2 ∧ |y − x|)j(|y − x|)dy

≤ c̃||u||C2

(
1 +

∫
|z|>δD(x)

(2 ∧ |z|)j(|z|)dz

)
.

If δD(x) ≥ 2 then there exists a constant c̃1 > 1 such that

|AY u(x)| ≤ c̃||u||C2

(
1 + 2

∫
|z|>2

j(|z|)dz

)
= c̃1||u||C2 .
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4.3 Generator of the censored subordinate Brownian motion

By (??) for δD(x) < 2 it follows that

|AY u(x)| ≤ c̃||u||C2

1 +

∫ 2

δD(x)
φ(z−2)dz + 2

∫
|z|>2

j(|z|)dz


≤ c̃1||u||C2

(
1 +

∫ 2

δD(x)
φ(z−2)dz

)
.

By (H1) there exists a constant ã1 > 0 such that

|AY u(x)| ≤ c̃1||u||C2

(
1 + ã−1

1 φ(δD(x)−2)δD(x)2δ1

∫ 2

δD(x)
z−2δ1dz

)

≤ c̃1||u||C2

(
1 +

1

ã1(2δ1 − 1)
φ(δD(x)−2)δD(x)2δ1(δD(x)1−2δ1 + 21−2δ1)

)
≤ c̃1||u||C2

(
1 +

2

ã1(2δ1 − 1)
φ(δD(x)−2)δD(x)

)
,

which concludes the proof. 2
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Chapter 5

Potential theory of absolute value of

one-dimensional subordinate

Brownian motion killed at zero

In this chapter we consider the potential theory of two processes associated with a one-

dimensional subordinate Brownian motion X. First process is the absolute value of X killed at

zero, which we denote by Z = (Zt)t≥0 and the second is the process Y obtained by censoring X

on (0,∞). The goal is to establish the Harnack inequality and boundary Harnack principle for

Z on finite intervals. To do so, we examine a function h called the compensated resolvent kernel

and prove in Section 5.1 several properties of the first exit time of Z from a finite interval. In

Section 5.2 we prove that process Z killed outside of a finite interval (a, b), 0 < a < b, can be

obtained from Y by a combination of a discontinuous and continuous Feynman-Kac transform

and show that the corresponding Green functions are comparable. Finally, in the last section

we give the proof of the Harnack inequality and boundary Harnack principle for Z(a,b).

Let X be a 1-dimensional recurrent subordinate Brownian motion with the characteristic

exponent ψ(t) = φ(t2), t ∈ R, where φ is a complete Bernstein function. By (2.12) process X is

recurrent if and only if the Laplace exponent φ of the subordinator satisfies the condition∫ r

0

1

φ(λ2)
dλ =∞, (5.1)

for some r > 0. Let X0 be the process X killed at 0 and Z the absolute value of that process,

i.e.

Zt(ω) =

{
|Xt(ω)|, t < σ{0}(ω)

∂, t ≥ σ{0}(ω)
, t ≥ 0, ω ∈ Ω,

where σB = inf{t > 0 : Xt ∈ B} is the first hitting time of B ∈ B(R). As in Section 3.2 we will

impose the upper and lower scaling condition on the Laplace exponent φ,
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(H1): There exist constants a1, a2 > 0 and 0 < δ1 ≤ δ2 < 1 such that

a1λ
δ1 ≤ φ(λr)

φ(r)
≤ a2λ

δ2 , λ ≥ 1, r ≥ 1.

(H2): There exist constants a3, a4 > 0 and 0 < δ3 ≤ δ4 < 1 such that

a3λ
δ3 ≤ φ(λr)

φ(r)
≤ a4λ

δ4 , λ ≥ 1, r ≤ 1.

and note that they are equivalent to the global scaling condition

(H): There exist constants a5, a6 > 0 such that for δ5 = δ1 ∧ δ3 and δ6 = δ2 ∨ δ4

a5λ
δ5 ≤ φ(λr)

φ(r)
≤ a6λ

δ6 , λ ≥ 1, r > 0.

Note that for δ3 ≥ 1
2 the condition (5.1) holds and X is recurrent. Furthermore, we will only

consider the case when the point 0 is regular for itself.

Definition 5.1 Let B ∈ B(R) and x ∈ R. We say that the point x is regular for B if

Px(σB = 0) = 1. (5.2)

The point x is regular for itself if it is regular for {x}. If the probability in (5.2) is 0 then the

point x is irregular for B.

By the Blumenthal 0-1 law every point is either regular or irregular for B ∈ B(R). By

[Ber98, Corollary II.20] 0 is regular for itself if∫ ∞
1

1

φ(λ2)
dλ <∞. (5.3)

This condition is known as the Kesten-Bretagnolle condition and in our setting is actually

equivalent to point regularity, [Yan10, Lemma 3.1]. Also, note that this condition is satisfied

when δ1 >
1
2 . This regularity condition implies that 0 is not polar, that is

Px(σ0 <∞) > 0, ∀x ∈ R.

so X0 is a proper subprocess of X. If X is also recurrent then by [Yan10, Theorem 3.1]

Px(σ0 <∞) = 1, ∀x ∈ R.

From now on we will assume that both

δ1 >
1

2
and δ3 ≥

1

2
.

Let GX
0
(x, dy) and GZ(x, dy) be Green measures for X0 and Z respectively. Note that
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for every x > 0 and A ∈ B((0,∞))

GZ(x,A) =

∫ ∞
0

(Px(X0
t ∈ A) + Px(−X0

t ∈ A))dt

=

∫
A

(
GX

0
(x, y) +GX

0
(x,−y)

)
dy

and thus the Green function of Z is equal to

GZ(x, y) = GX
0
(x, y) +GX

0
(x,−y). (5.4)

Define the local time at 0 as

L(0, t) = lim
ε↓0

∫ t

0
1{|Xs|<ε}ds. (5.5)

Note that L(0, t) can be interpreted as time spent in 0 by the process X up to time t. By [Ber98,

Proposition V.2.] L is well defined and a.s. a continuous function. Let h : R → [0,∞) be a

function defined by

h(x) =
1

2
E[L(0, σ{x})].

Under our assumptions there exists a bounded and continuous density uq of the q-resolvent, i.e.

U qf(x) =

∫ ∞
0

e−qtEx[f(Xt)]dt =

∫
R
f(x)uq(x)dx.

Note that

uq(x) =

∫ ∞
0

e−qtpt(x)dt =

∫ ∞
0

e−qt
1

2π

∫
R
e−iλxe−tφ(λ2)dλ dt =

1

2π

∫
R

cos(λx)

q + φ(λ2)
dλ.

Since the transition density pt(x) is deacresing in x it follows that uq is decreasing as well.

By [Ber98, Lemma V.11] h is of the form

h(x) = lim
q↓0

(uq(0)− uq(x)) =
1

2π

∫ ∞
0

1− cos(λx)

φ(λ2)
dλ. (5.6)

The function h is symmetric and since uq is decreasing, h is also increasing on [0,∞), see

also [SV06, Proposition 1.1]. By [Yan10, Theorem 1.1] h is harmonic for the process X0 on R\{0}
and, since it is symmetric, it is also harmonic for Z on (0,∞). Furthermore, by [Yan10, Lemma

4.5] the Green function of the processes X0 and Z can be represented using the function h.

Lemma 5.2 Let X be a symmetric recurrent Lévy process with infinite Lévy measure and let

0 be regular for itself. Then the following equalities hold:

GX
0
(x, y) = h(x) + h(y)− h(y − x), x, y ∈ R \ {0}

GZ(x, y) = 2h(x) + 2h(y)− h(y − x)− h(y + x), x, y > 0. (5.7)

Proof. Let U q and U q0 be the q-resolvent measures of the processes X and X0 respectively. By
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the strong Markov property it follows that

U q(x,B) = Ex
[∫ ∞

0
e−qt1B(Xt)dt

]
= Ex

[∫ σ{0}

0
e−qt1B(X0

t )dt

]
+ Ex

[
Ex

[∫ ∞
σ{0}

e−qt1B(Xt)dt|Fσ{0}

]]

= U q0 (x,B) + Ex
[
e−qσ{0}E0

[∫ ∞
0

e−qt1B(Xt)dt

]]
= U q0 (x,B) + Ex

[
e−qσ{0}

]
U q(0, B), B ∈ B(0,∞).

Since Px(σ{0} <∞) = 1, for all x, y > 0

GX
0
(x, y) = lim

q↓0
uq0(x, y) = lim

q↓0

(
uq(x, y)− Ex

[
e−qσ{0}

]
uq(0, y)

) (5.6)
= −h(y − x) + h(y) + h(y).

By symmetry of h and (5.4) it follows that for all x, y > 0

GZ(x, y) = GX
0
(x, y) +GX

0
(x,−y) = 2h(x) + 2h(y)− h(y − x)− h(y + x).

2

We will use the following asymptotic behavior of h near zero several times in this chapter.

This statement was also proven in [GR15, Lemma 2.14].

Lemma 5.3 For every x > 0

h(x) � 1

xψ
(

1
x

) .
Proof. For every x ∈ R it follows that

h(x) ≤ 1

π

∫ ∞
0

(
ξ2x2

2
∧ 2

)
1

ψ(ξ)
dξ =

x2

2π

∫ 2
x

0

ξ2

φ(ξ2)
dξ +

2

π

∫ ∞
2
x

1

φ(ξ2)
dξ

(H)

≤ x2

2π

a6

φ(4x−2)

(
2

x

)2δ6 ∫ 2
x

0
ξ2−2δ6dξ +

2x−2δ5

a5πφ (4x−2)

∫ ∞
2
x

x−2δ5dξ

≤ c̃1
1

xφ (x−2)
.

On the other hand, by [JK15, Lemma 2.4] we have

h(x) =
1

2π
(F 1

ψ
(0)−F 1

ψ
(x)) ≥ 1

4π

∫ ∞
0

(
ξ2x2

4
∧ 1

)
1

ψ(ξ)
dξ

=
x2

π

∫ 2
x

0

ξ2

φ(ξ2)
dξ +

1

π

∫ ∞
2
x

1

φ(ξ2)
dξ

(H)

≥ x2

4π

a5

φ(4x−2)

(
2

x

)2δ5 ∫ 2
x

0
ξ2−2δ5dξ +

2x−2δ6

a6πφ (4x−2)

∫ ∞
2
x

x−2δ6dξ

≥ c̃2
1

xφ (x−2)
.
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2

From the previous lemma and (H) it follows that h also satisfies the global scaling condi-

tions, i.e. there exist constants d1, d2 > 0 such that

d1λ
2δ5−1 ≤ h(λt)

h(t)
≤ d2λ

2δ6−1, ∀λ ≥ 1, t > 0. (5.8)

The following two lemmas were also proven in [GR15, Proposition 2.2, Proposition 2.4,

Lemma 4.2].

Lemma 5.4 For every x, y > 0

h(x ∧ y) ≤ GZ(x, y) ≤ 4h(x ∧ y).

Proof. First we show that h is a subadditive function on R. By Lemma 5.2 and symmetry of h

it follows that

h(x) + h(y)− h(x+ y) = h(−x) + h(y)− h(x+ y) = GX
0
(−x, y) ≥ 0.

By (5.7) and subadditivity of h for 0 < x < y we get

GZ(x, y) = 2h(x) + 2h(y)− h(y − x)− h(y + x)

≤ 2h(x) + h(x) + h(y − x) + h(−x) + h(y + x)− h(y − x)− h(y + x) = 4h(x).

Since h is increasing,

GZ(x, y) ≥ h(x) + h(y)− h(y − x) ≥ h(x).

2

Lemma 5.5 There exist λ1 ∈
(
0, 1

2

)
and λ2 > 0 such that for every R > 0

GZ(0,R)(x, y) ≥ λ2h(R), x, y ∈ (0, λ1R)

Proof. Take λ < 1
2 and x, y ∈ (0, λR). Let τ(0,R) be the first exit time of Z from the interval

(0, R). By (2.16) it follows that

GZ(0,R)(x, y) = GZ(x, y)− Ex[GZ(Zτ(0,R)
, y)]

=2h(x) + 2h(y)− h(x+ y)− h(y − x)

− Ex[2h(Zτ(0,R)
) + 2h(y)− h(Zτ(0,R)

+ y)− h(y − Zτ(0,R)
)].
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5.1 Properties of the exit time of Z from the interval

For ε > 0 by harmonicity of h in (0,∞) it follows that

h(x) = Ex
[
h
(
Zτ(ε,R)

)]
= Ex

[
h
(
Zτ(ε,R)

)
: τ(ε,R) < σ{0}

]
.

Since h is continuous and h(0) = 0 by the dominated convergence theorem and quasi-left conti-

nuity of Z we get

h(x) = lim
ε→0

Ex
[
h
(
Zτ(ε,R)

)
: τ(ε,R) < σ{0}

]
= Ex

[
h
(
Zτ(0,R)

)
: τ(0,R) < σ{0}

]
.

so h is regular harmonic for Z in (0, R).

GZ(0,R)(x, y) =− h(x+ y)− h(y − x) + Ex[h(Zτ(0,R)
+ y)] + Ex[h(y − Zτ(0,R)

)].

Furthermore, by the monotonicity of h it follows that

h(Zτ(0,R)
− y) ≥ h(R− λR) a.s.,

h(y − x) ≤ h(λR) and

h(Zτ(0,R)
+ y) > h(x+ y) a.s.

Therefore,

GZ(0,R)(x, y) ≥ h((1− λ)R)− h(λR)
(5.8)

≥
(
d−1

2 (1− λ)2δ6−1 − d−1
1 λ2δ5−1

)
h(R) = λ2h(R),

where λ2 > 0 for λ small enough. 2

5.1 Properties of the exit time of Z from the interval

Let σ0 := σ{0} be the lifetime of Z and τ(0,R) the first exit time of Z from (0, R).

Lemma 5.6 For every R > 0 and x ∈ (0, R)

1

8

h(x)

h(R)
≤ Px

(
τ(0,R) < τ

)
≤ h(x)

h(R)
.

Proof. First we prove the right inequality. Recall from the proof of Lemma 5.5 that the function

h is regular harmonic in (0, R) for Z so

h(x) = Ex
[
h
(
Zτ(0,R)

)
: τ(0,R) < σ0

]
.

Since h is increasing it follows that

h(x) =

∫ ∞
R

h(y)Px
(
Zτ(0,R)

∈ dy : τ(0,R) < τ
)

≥ h(R)

∫ ∞
R

Px
(
Zτ(0,R)

∈ dy : τ(0,R) < τ
)
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5.1 Properties of the exit time of Z from the interval

= h(R)Px
(
τ(0,R) < τ

)
.

For the other inequality, by continuity and harmonicity of the Green function GZ(·, 2R)

on (ε,R) and Lemma 5.4, it follows that

h(x) ≤ GZ(x, 2R) = lim
ε→0

Ex
[
GZ(Zτ(ε,R)

, 2R)
]

=

∫ ∞
R

GZ(z, 2R)Px(Zτ(0,R)
∈ dz)

≤ 4h(2R)Px(τ(0,R) < τ)
(3.4)

≤ 8h(R)Px(τ(0,R) < τ).

2

The previous lemma was also proven in [GR15, Proposition 2.7].

Next we consider estimates for the tail distribution function of the lifetime of Z. Un-

der additional assumptions it is also possible to obtain estimates of the derivatives of the tail

distribution with respect to the time component. For more detail see [JK15].

Lemma 5.7 [GR15, Corollary 3.5.] If

φ(λt)

φ(t)
≥ a1λ

δ1 , ∀λ ≥ 1, t > 0

holds for some δ1 ∈ (0, 1] then there exist positive constants c1, c2 such that

c1
h(x)

h
(
1/ψ−1

(
1
t

)) ≤ Px(τ > t) ≤ c2
h(x)

h
(
1/ψ−1

(
1
t

)) (5.9)

for every x 6= 0 and t > 0 such that tψ( 1
x) ≥ 1.

Using this estimate we can easily derive estimates for the expected exit time from interval

(0, R) in terms of the function h.

Lemma 5.8 Then there exists constant c3 = c3(R,φ) > 0 such that

(i) Ex
[
τ(0,R)

]
≤ 4Rh(x), 0 < x < R

(ii) Ex
[
τ(0,R)

]
≥ c3h(x), for x small enough

Proof. (i) By Lemma 5.4

Ex
[
τ(0,R)

]
=

∫ R

0
GZ(0,R)(x, y)dy ≤

∫ R

0
4h(x)dy = 4Rh(x)

(ii) For the other inequality note that for all t > 0

Px(τ > t) = Px(τ > t, τ(0,R) ≥ τ) + Px(τ > t, τ(0,R) < τ)

≤ Px(τ(0,R) > t) + Px(τ(0,R) < τ)

≤
Ex
[
τ(0,R)

]
t

+ Px(τ(0,R) < τ),
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5.2 Green function for Z(a,b)

where the last line follows from the Markov’s inequality. Hence, by Lemma 5.6, Lemma 5.7 and

Lemma5.3, if tψ
(

1
x

)
> 1 there exists a constant c̃1 > 0 such that

Ex
[
τ(0,R)

]
≥ t
(
Px(τ > t)− Px(τ(0,R) < τ)

)
≥ c1t

h(x)

h
(
1/ψ−1

(
1
t

)) − t h(x)

h(R)

≥

(
c1c̃1

ψ−1
(

1
t

) − t

h(R)

)
h(x) = fR(t)h(x). (5.10)

Note that by (H1) there exist constants c̃2, c̃3 > 0 such that for all t ≥ ψ(1) and λ ≥ 1

c̃2λ
1

2δ2 ≤ ψ−1(λt)

ψ−1(t)
≤ c̃3λ

1
2δ1 .

Therefore, for all t ≤ 1

fR(t) ≥ c1c̃1c̃2ψ
−1(1)t

−1
2δ1 − t

h(R)
,

so there exists t0 = t0(φ,R) ∈ (0, 1) such that fR(t) > 0 for all t < t0. Therefore,

Ex[τ(0,R)] ≥ fR(t0)h(x), for all x <
1

ψ−1( 1
t0

)
.

2

5.2 Green function for Z(a,b)

Let Y be the censored process of a subordinate Brownian motion X on (0,∞) and X(a,b),

Y (a,b) and Z(a,b) processes X, Y and Z killed outside of interval (a, b), 0 < a < b. In this section

we show that the Green functions of processes X(a,b), Y (a,b) and Z(a,b) are comparable.

From the representation of Beurling-Deny and LeJan, (2.5) and (2.17), the jumping mea-

sure i associated with the Dirichlet form (EZ ,FZ) is of the form

i(x, y) = j(|x− y|) + j(|x+ y|). (5.11)

Furthermore,

EZ(u, v) =
1

2

∫ ∞
0

∫ ∞
0

(u(x)− u(y))(v(x)− v(y))i(x, y)dx dy.

Then the Dirichlet forms corresponding to processes X(a,b), Y (a,b) and Z(a,b) are equal to

EX(a,b)
(u, u) =

1

2

∫ b

a

∫ b

a
(u(x)− u(y))2j(|x− y|)dydx+

∫ b

a
u(x)2κ1(x)dx

EY (a,b)
(u, u) =

1

2

∫ b

a

∫ b

a
(u(x)− u(y))2j(|x− y|)dydx+

∫ b

a
u(x)2κ2(x)dx

EZ(a,b)
(u, u) =

1

2

∫ b

a

∫ b

a
(u(x)− u(y))2i(x, y)dydx+

∫ b

a
u(x)2κ3(x)dx,

(5.12)
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5.2 Green function for Z(a,b)

where κ1, κ2 and κ3 are the densities of the corresponding killing measures of X(a,b), Y (a,b) and

Z(a,b),

κ1(x) =

∫
(a,b)c

j(|x− y|)dy

κ2(x) =

∫
(0,∞)\(a,b)

j(|x− y|)dy

κ3(x) =

∫
(0,∞)\(a,b)

i(x, y)dy.

Since EX(a,b)
= EY (a,b)

+ κ(0,∞)1(a,b), where

κ(0,∞)(x) =

∫ 0

−∞
j(|x− y|)dy,

Y (a,b) can be obtained from X(a,b) by creation through the Feynman-Kac transform at the rate

κ(0,∞), i.e. for every nonnegative Borel function f

P Y
(a,b)

t f(x) = Ex
[
f
(
Y

(a,b)
t

)]
= Ex

[
f
(
X

(a,b)
t

)
e
∫ t
0 κ(0,∞)

(
X

(a,b)
s

)
ds
]

= Ex
[
f
(
X

(a,b)
t

)
eκ(t)

]
.

By (2.30) we can relate the Green functions of processes X(a,b) and Y (a,b) through a conditional

gauge function u,

GY(a,b)(x, y) = u(x, y)GX(a,b)(x, y),

where

u(x, y) = Eyx
[
eκ(τ(a,b))

]
.

Recall that Pyx denotes the probability measure of the GX(a,b)(·, y)-conditioned process starting

from x, i.e. the process with transition probability

pyt (x, z) =
GX(a,b)(z, y)

GX(a,b)(x, y)
pX

(a,b)

t (x, z).

Similarly as in Section 4.1, we want to show that the conditional gauge function u is bounded,

i.e. that the Green functions GX(a,b) and GY(a,b) are comparable. Since the interval (a, b) can be

arbitrary large, it is not possible to obtain a result equivalent to Lemma 4.13. Nevertheless, by

obtaining a somewhat weaker result and applying the conditional gauge theorem it is possible to

prove the boundedness of function u. First we introduce a special Kato class of Revuz measures

for the process X.

Definition 5.9 Let X be a transient Hunt process with the Green function G. A nonnegative

Borel function κ is said to be of the Kato class S∞(X) if for any ε > 0 there is a Borel set K of

finite measure and a constant δ > 0 such that

sup
x,z∈Rn

∫
Kc∪B

GX(x, y)GX(y, z)

GX(x, z)
κ(y)dy < ε (5.13)
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5.2 Green function for Z(a,b)

for all measurable sets B ⊂ K such that λ(B) < δ.

The following conditional gauge theorem was proved in [Che02, Theorem 3.3].

Theorem 5.10 Let X be a transient Hunt process and κ a nonnegative Borel function. Let Xy

be the G(·, y)- conditioned process with lifetime ζy. If κ ∈ S∞(X) and the conditional gauge

function u,

u(x, y) = Eyx [eκ(ζy)] ,

is finite for some (x0, y0) ∈ Rn × Rn then it is bounded on Rn × Rn \ d. We say that the pair

(X,κ) is conditionally gaugeable.

We will also need the following Green function estimates from [CKS14, Corollary 7.4 (ii)].

Theorem 5.11 Suppose that X is a one-dimensional subordinate Brownian motion with Lévy

exponent ψ(ξ) = φ(|ξ|2) with φ being a complete Bernstein function satisfying condition

(H1). Let D be a bounded C1,1 open subset of R with characteristics (R2, λ), a(x, y) =

Φ(δD(x))1/2Φ(δD(y))1/2 and Φ(x) = 1
φ(x−2)

. Suppose that for every T > 0, there is a constant

c4 = c4(T, φ) > 0 such that ∫ r

0

Φ(s)

s2
ds ≤ c4

Φ(r)

r
(5.14)

for every r ∈ (0, T ]. Then for all (x, y) ∈ D ×D,

GXD(x, y) � a(x, y)

Φ−1(a(x, y))
∧ a(x, y)

|x− y|
. (5.15)

Remark 5.12 Note that the condition (5.14) is satisfied for δ1 >
1
2 .

From (H1) one can easily see that Φ−1 satisfies the following scaling condition: for all

T > 0 there exists a constant cT = cT (T, φ) > 0 such that for all 0 < r ≤ R ≤ T

c−1
T

( r
R

)1/(2δ1)
≤ Φ−1(r)

Φ−1(R)
≤ cT

( r
R

)1/(2δ2)
. (5.16)

Theorem 5.13 Let X be a recurrent subordinate Brownian motion with Laplace exponent of

the subordinator φ ∈ CBF satisfying (H1). The function κ(0,∞) is in Kato class S∞(X(a,b)).

Therefore, the pair (X(a,b), κ(0,∞)) is conditionally gaugeable and consequently the Green func-

tions GX(a,b) and GY(a,b) are comparable.

Proof. Let δ(x) := δ(a,b)(x). From (5.15) we get the following 3G inequality,

GX(a,b)(x, y)GX(a,b)(y, z)

GX(a,b)(x, z)
≤ c̃1Φ(δ(y))

|x− z| ∨ Φ−1(a(x, z))

(|x− y| ∨ Φ−1(a(x, y)))(|y − z| ∨ Φ−1(a(y, z)))
(5.17)

for some c̃1 > 0. We will show that for every ε > 0 there exists 0 < δ < 1 and K such that for

measurable sets B ⊂ K, λ(B) < δ

sup
x,z∈(a,b)

∫
Kc∪B

GX(a,b)(x, y)GX(a,b)(y, z)

GX(a,b)(x, z)
dy ≤ ε.
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5.2 Green function for Z(a,b)

First note that for δ(y) ≤ 2δ(x),

Φ−1(a(x, y)) ≥ Φ−1

(
Φ

(
1

2
δ(y)

)1/2

Φ(δ(y))1/2

)
(3.4)

≥ Φ−1

(
1

4
Φ (δ(y))1/2 Φ(δ(y))1/2

)
(5.16)

≥ c−1
T 2
− 1
δ1 δ(y).

Since

δ(y) ≤ δ(x) + |x− y| ≤ 2(δ(x) ∨ |x− y|)

it follows that

|x− y| ∨ Φ−1(a(x, y)) ≥
(

1

2
∧ c−1

T 2
− 1
δ1

)
δ(y).

This implies that

GX(a,b)(x, y)GX(a,b)(y, z)

GX(a,b)(x, z)
≤ c̃1

(
4 ∨ c2

T 2
2
δ1

) Φ(δ(y))

δ(y)2
(|x− z| ∨ Φ−1(a(x, z)))

≤ c̃1

(
4 ∨ c2

T 2
2
δ1

)
(b− a)

Φ(δ(y))

δ(y)2
.

Let c̃2 = c̃1

(
4 ∨ c2

T 2
2
δ1

)
(b− a) and A = [a, a+ η] ∪ [b− η, b], for some η < 1. It follows that

sup
x,z∈(a,b)

∫
A

GX(a,b)(x, y)GX(a,b)(y, z)

GX(a,b)(x, z)
dy ≤ c̃2

∫
A

Φ(δ(y))

δ(y)2
dy = 2c̃2

∫ η

0

Φ(s)

s2
ds

(H1)

≤ 2c̃2

a1φ(1)

∫ η

0

s2δ1

s2
ds =

2c̃2

a1φ(1)(2δ1 − 1)
η2δ1−1.

Therefore, for η ∈
(

0,
(
a1φ(1)(2δ1−1)

2c̃2
ε
) 1

2δ1−1

)
and K = [a+ η, b− η] we get

sup
x,z∈(a,b)

∫
Kc

GX(a,b)(x, y)GX(a,b)(y, z)

GX(a,b)(x, z)
dy <

ε

2
.

Since the function s 7→ Φ(s)
s2

is continuous on [η, b−a2 ] it is uniformly bounded, i.e. there exists a

constant M > 0 such that for all B ⊂ K, λ(B) < δ = ε
2c̃1M

sup
x,z∈(a,b)

∫
B

GX(a,b)(x, y)GX(a,b)(y, z)

GX(a,b)(x, z)
dy ≤ c̃1

∫
B

Φ(δ(y))

δ(y)2
dy ≤ c̃1Mδ <

ε

2
.

Since κ(0,∞) is bounded on (a, b) this is enough to conclude that κ(0,∞) ∈ S∞(X(a,b)), so by

Theorem 5.10 the pair (X(a,b), κ(0,∞)) is gaugeable. 2
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5.2 Green function for Z(a,b)

Next, we want to associate the Green functions for processes Y (a,b) and Z(a,b). Since

EZ(a,b)
(u, u) = EY (a,b)

(u, u) +

∫ b

a

∫ b

a
(u(x)− u(y))2F (x, y)j(|x− y|)dydx+

∫ b

a
u(x)2q(x)dx,

where F (x, y) = j(|x+y|)
j(|x−y|) and q = κ3 − κ2, Z(a,b) can be obtained from Y (a,b) through the

Feynman-Kac transform driven by a discontinuous additive functional

Aq+F (t) =

∫ t

0
q(Y (a,b)

s )ds+
∑
s≤t

F (Y
(a,b)
s− , Y (a,b)

s ). (5.18)

Therefore for every Borel function f ≥ 0

PZ
(a,b)

t f(x) = Ex
[
f(Z

(a,b)
t )

]
= Ex

[
f(Y

(a,b)
t )eAq+F (t)

]
= Ex

[
f(Y

(a,b)
t )eq+F (t)

]
Let τ(a,b) be the first exit time of Y (0,∞) from (a, b). Now by [Che02, Lemma 3.9]

Ex
[∫ ∞

0
f(Z

(a,b)
t )dt

]
= Ex

[∫ ∞
0

f(Y
(a,b)
t )eq+F (t)dt

]
=

∫ b

a
GY(a,b)(x, y)Eyx

[
eq+F (τ(a,b))

]
f(y)dy

=:

∫ b

a
GY(a,b)(x, y)u(x, y)f(y)dy

and therefore

GZ(a,b)(x, y) = u(x, y)GY(a,b)(x, y).

Definition 5.14 Let X be a transient Hunt process with values in E ∈ B(R) with Green

function G and Lévy system (J,H), where Hs ≡ s. A bounded nonnegative function F on

E ×E vanishing on the diagonal is said to be in the Kato class A∞(X) if for any ε > 0 there is

a Borel subset K = K(ε) of finite measure and a constant δ = δ(ε) > 0

sup
x,w∈E

∫
A

G(x, y)G(z, w)

G(x,w)
F (y, z)J(x, dy)dz < ε (5.19)

for all measurable sets B ⊂ K such that∫
B

(∫
E
F (x, y)J(x, dy)

)
dx < δ

and A = (K ×K)c ∪ (B × E) ∪ (E ×B).

The following theorem from [Che02, Theorem 3.8] is the analogue of the conditional gauge

theorem, Theorem 5.10 for non-local perturbations corresponding to the discontinuous additive

functional Aq+F .

Theorem 5.15 Let X be a transient Hunt process with values in E ∈ B(R), κ a nonnegative

Borel function on E and F a nonnegative bounded function vanishing on the diagonal. Suppose
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5.3 Boundary Harnack principle for Z

that κ ∈ S∞(X) and F ∈ A∞(X). Then the conditional gauge function u,

Eyx[eµ+F (ζy)]

is bounded on (E × E) \ d, i.e. we say that the pair (X,Aκ+F ) is gaugeable.

2

Theorem 5.16 Let Aq+F be the discontinuous additive functional for Y (a,b) from (5.18). Then

q ∈ S∞(Y (a,b)) and F ∈ A∞(Y (a,b)) and consequently the Green functions of the processes Y (a,b)

and Z(a,b) are comparable,

GZ(a,b)(x, y) � GY(a,b)(x, y).

Proof. Since the density q is bounded on (a, b) by Theorem 5.13 it follows that q ∈ S∞(Y (a,b)).

Furthermore, since (y, z) 7→ F (y, z)j(|y−z|) is bounded on (a, b)×(a, b) it is enough to show that

for any ε > 0 there is a Borel subset K = K(ε) of finite measure and a constant δ = δ(ε) > 0

such that

sup
x,w∈(a,b)

∫
A

GY(a,b)(x, y)GY(a,b)(z, w)

GY(a,b)(x,w)
dydz < ε (5.20)

for all measurable sets B ⊂ K such that λ(B) < δ and A = (K×K)c∪ (B× (a, b))∪ ((a, b)×B).

This is shown similarly as in Theorem 5.13 using the following generalized 3G inequality derived

from (5.15)

GY(a,b)(x, y)GY(a,b)(z, w)

GY(a,b)(x,w)
≤ c̃1

GX(a,b)(x, y)GX(a,b)(z, w)

GX(a,b)(x,w)

≤ c̃2Φ
1
2 (δ(y))Φ

1
2 (δ(z))

|x− w| ∨ Φ−1(a(x,w))

(|x− y| ∨ Φ−1(a(x, y)))(|z − w| ∨ Φ−1(a(z, w)))
.

This implies F ∈ A∞(Y (a,b)). 2

5.3 Boundary Harnack principle for Z

Let τ(a,b) be the first exit time of Z from the interval (a, b) and the GZ(a,b) the Green function

of Z(a,b). The process Z can exit the interval (a, b) only by jumping out, since by [Szt00, Theorem

1]

Px
(
Xτ(a1,a2)

= ai

)
= 0, i = 1, 2
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for all x ∈ (a1, a2) ⊂ R. Recall from (2.17) and (5.12) that the transition probability of Zτ(a,b)
starting from x is equal to

Px
(
Zτ(a,b) ∈ B

)
=

∫
B
PZ(a,b)(x, z)dz, x ∈ (a, b), B ∈ B((0,∞) \ [a, b]),

where PZ(a,b) is the Poisson kernel of Z in (a, b) given by

PZ(a,b)(x, z) =

∫ b

a
GZ(a,b)(x, y)i(y, z)dy, x ∈ (a, b), z ∈ (0,∞) \ [a, b].

Using the results from the previous sections we can similarly as in [KSV10, Section 4] prove the

Harnack inequality and boundary Harnack principle for harmonic functions of process Z(a,b).

Theorem 5.17 Harnack inequality

Let R > 0 and a ∈ (0, 1). There exists a constant c5 = c5(R, a, φ) > 0 such that for all r ∈ (0, R)

and every nonnegative function u on R which is harmonic with respect to Z in (0, 3r),

u(x) ≤ c5u(y), for all x, y ∈ (ar, (3− a)r).

Proof. Let b1 = ar/2, b2 = ar, b3 = (3− a)r and b4 = (3− a/2)r. By Theorem 5.13, Theorem

5.16 and (5.15) the exists a c̃1 = c̃1(φ,R) > 1 such that

c̃−1
1

a(xi, y)

Φ−1(a(xi, y)) ∨ |x− y|
≤ GZ(b1,b4)(xi, y) ≤ c̃1

a(xi, y)

Φ−1(a(xi, y)) ∨ |x− y|
, i = 1, 2,

for all x1, x2 ∈ (b2, b3) and y ∈ (b1, b4). Furthermore, note that for i = 1, 2

ar

2
≤ δ(a,b)(xi) ≤

(3− a)r

2
and δ(a,b)(y) ≤ ar

4
⇔ |xi − y| ≥

ar

4
.

Therefore Φ−1(a(xi, y)) ∨ |xi − y| � r, i = 1, 2 so by (H1) and (5.16) there exists a constant

c̃2 = c̃2(R, a, φ) > 0 such that

GZ(b1,b4)(x1, y) ≤ c̃2G
Z
(b1,b4)(x1, y)

for all x1, x2 ∈ (b2, b3) and y ∈ (b1, b4). Consequently, we have

PZ(b1,b4)(x1, z) =

∫
(b1,b4)

GZ(b1,b4)(x1, y)i(y, z)dy

≤ c̃2

∫
(b1,b4)

GZ(b1,b4)(x2, y)i(y, z)dy

= c̃2P
Z
(b1,b4)(x2, z)

for all x1, x2 ∈ (b2, b3), z ∈ [b1, b4]c. It follows that

u(x1) = Ex1
[
u
(
Xτ(b1,b4)

)]
=

∫
(b1,b4)c

u(z)P
(b1,b4)
Z (x1, z)
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≤ c̃2

∫
(b1,b4)c

u(z)P
(b1,b4)
Z (x2, z) = c̃2u(x2)

for all x1, x2 ∈ (ar, (3− a)r). 2

Theorem 5.18 Boundary Harnack principle

Let R > 0. There exists a constant c6 = c6(R,φ) > 0 such that for all r ∈ (0, R), and every

nonnegative function u which is harmonic for Z in (0, 3r) and continuously vanishes at 0 it holds

that
u(x)

u(y)
≤ c6

h(x)

h(y)

for all x, y ∈ (0, λ1r), where λ1 is the constant from Lemma 5.5.

Proof. Let x ∈ (0, λ1r). Since u is harmonic in (0, 3r) and vanishes continuously at 0 we have

u(x) = lim
ε→0

Ex
[
u
(
Zτ(ε,r)

)]
= Ex

[
u
(
Zτ(0,r)

)]
= Ex

[
u
(
Zτ(0,r)

)
: Zτ(0,r) ∈ (r, 2r)

]
+ Ex

[
u
(
Zτ(0,r)

)
: Zτ(0,r) ≥ 2r

]
= u1(x) + u2(x).

First note that
u(x)

u(λ1r)
≤ u1(x)

u(λ1r)
+

u2(x)

u2(λ1r)

and we estimate each term separately. By the Harnack inequality (Proposition 5.17) for a = λ1
2

and Lemma 5.6

u1(x) ≤ c5Ex
[
u (λ1r) : Zτ(0,r) ∈ (r, 2r)

]
≤ c5u(λ1r)Px

(
Zτ(0,r) ≥ r

)
= c5u(λ1r)Px

(
τ(0,r) < τ

)
≤ c5u(λ1r)

h(x)

h(r)
≤ c5u(λ1r)

h(x)

h(λ1r)
.

For the second term, since j is decreasing

u2(x) =

∫ r

0

∫ ∞
2r

u(z)GZ(0,r)(x, y)i(y, z)dzdy

=

∫ r

0

∫ ∞
2r

u(z)GZ(0,r)(x, y)(j(z − y) + j(y + z))dzdy

≤
∫ r

0
GZ(0,r)(x, y)dy

∫ ∞
2r

u(z)(j(z − r) + j(z))dz

= Ex[τ(0,r)]

∫ ∞
2r

u(z)(j(z − r) + j(z))dz

≤ 4rh(x)

∫ ∞
2r

u(z)(j(z − r) + j(z))dz

where the last line follows from Lemma 5.8. By [KSV14, Theorem 3.4] there exists a constant

c̃1 = c̃1(φ) > 0 such that

c̃−1
1

φ(z−2)

z
≤ j(z) ≤ c̃1

φ(z−2)

z
, z > 0,
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so by (3.4) it follows that

j(z − r) ≤ c̃123j(z), z ≥ 2r

and

u2(x) ≤ c̃126h(x)

∫ ∞
2r

u(z)j(z)dz.

On the other hand, by Lemma 5.5

u2(x) ≥
∫ λ1r

0
GZ(0,r)(x, y)dy

∫ ∞
2r

u(z)(j(z) + j(z + r))dz

≥ λ2h(λ1r)λ1r

∫ ∞
2r

u(z)j(z)dz.

Therefore, it follows that

u(x)

u(λ1r)
≤ c5

h(x)

h(λ1r)
+
c̃126

λ1λ2

h(x)

h(λ1r)
= c̃2

h(x)

h(λ1r)
. (5.21)

On the other hand
u(x)

u(λ1r)
≥ u2(x)

u(λ1r)
.

For the other inequality, from [KSV12b, Lemma 5.1] for p = 1
3 it follows that there exists a

constant c̃3 = c̃3(φ,R) > 0 such that for all x ∈ (0, r) and y ∈ (2r, 3r)∫ y

2r
PZ(0,s)(x, y)ds ≤

∫ y

2r
(PX(−s,s)(x, y) + PX(−s,s)(x,−y))ds

=

∫ y

3r(1+1/3)/2
(PX(−s,s)(x, y) + PX(−s,s)(x,−y))ds

≤ c̃3
3r

φ((3r)−2)
j(y) ≤ 27c̃3

r

φ(r−2)
j(y).

Now by applying [KSV12b, Lemma 5.2 and Lemma 5.3] for U = B(0, 2r) and p = 1
3 it follows

that

u(x) ≤ c̃4

φ(r−2)

∫ ∞
2r

u(y)j(y)dy

for some constant c̃4 = c̃4(φ) > 0 and all x ∈ (0, r). Furthermore by Lemma 5.4

u2(x) ≥
∫ λ1r

0
GZ(0,r)(x, y)dy

∫ ∞
2r

u(z)(j(z) + j(z + r))dz ≥ λ2h(x)λ1r

∫ ∞
2r

u(z)j(z)dz.

By the last two displays, (3.4) and Lemma 5.3 we get the required inequality, i.e.

u2(x)

u(λ1r)
≥ λ1λ2rh(x)

c̃4
φ(r−2)

≥ c̃5
h(x)

h(λ1r)
. (5.22)

Combining (5.21) and (5.22) we get the statement of the theorem. 2

100



Bibliography

[AC10] A. Almeida and A. Caetano. Real interpolation of generalized Besov-Hardy spaces

and applications. Journal of Fourier Analysis and Applications, 17(4):691–719, 2010.
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processes. Preprint, arXiv:1501.04639, 2015.

[Han05] W. Hansen. Uniform boundary Harnack principle and generalized triangle property.

Journal of Functional Analysis, 226:452–484, 2005.

[INW66] N. Ikeda, M. Nagasawa, and S. Watanabe. A construction of Markov processes by

piecing out. Proc. Japan Acad., 42:370–375, 1966.

[Jac01] N. Jacob. Pseudo differential operators and Markov Processes, Vol. I, Fourier Anal-

ysis and Semigroups. Imperial College Press, London, 2001.

[Jac02] N. Jacob. Pseudo differential operators and Markov Processes, Vol. II, Generators

and Their Potential Theory. Imperial College Press, London, 2002.

[JW84] A. Jonsson and H. Wallin. Function Spaces on Subsets of Rn. Mathematical Reports

2, Part 1, Harwood Acad. Publ., 1984.
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cesses with completely monotone jumps. Electron. J. Probab., 20:1–24, 2015.

[KL07] P. Kim and Y.-R. Lee. Generalized 3G theorem and application to relativistic stable

process on non-smooth open sets. Journal of Functional Analysis, 246:113–143, 2007.
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Abstract

We examine three equivalent constructions of a censored rotationally symmetric Lévy

process on an open set D - via the corresponding Dirichlet form, through the Feynman-Kac

transform of the Lévy process killed outside of the set D and from the same killed process by

the Ikeda-Nagasawa-Watanabe piecing together procedure.

For a complete Bernstein function φ satisfying condition (H):

a1λ
δ1 ≤ φ(λr)

φ(r)
≤ a2λ

δ2 , λ ≥ 1, r > 0

for some constants a1, a2 > 0 and δ1, δ2 ∈ (0, 1), we prove the trace theorem for the Besov space

of generalized smoothness Hφ(|·|2),1(Rn) on n-sets. We analyze the behavior of the corresponding

censored Brownian motion near the boundary ∂D and determine conditions under which the

process approaches the boundary of the set D in finite time.

Under a weaker condition (H1), i.e. (H) for λ, r ≥ 1, on the Laplace exponent φ of

the subordinator we prove the 3G inequality for Green functions of the subordinate Brownian

motion on κ-fat open sets. Using this result we obtain the scale invariant Harnack inequality

for the corresponding censored process.

Finally, we consider a subordinate Brownian motion such that (H) holds and 0 is regular

for itself. We establish a connection between this process and two related processes - censored

process on the positive half-line and the absolute value of the subordinate Brownian motion

killed at zero. We show that the corresponding Green functions on finite intervals away from

0 are comparable. Furthermore, we prove the Harnack inequality and the boundary Harnack

principle for the absolute value of the subordinate Brownian motion killed at zero.



Sažetak

Cenzurirani Lévyjev proces na otvorenom skupu D dobije se suzbijanjem skokova

Lévyjevog procesa izvan skupa D restrikcijom pripadne Lévyjeve mjere na taj skup. U radu

promotramo tri ekvivalentna pristupa u konstrukciji takvih procesa - preko pripadne Dirichle-

tove forme, Feynman-Kacovom transformacijom Lévyjevog procesa ubijenog izvan skupa D te

Ikeda-Nagasawa-Watanabe procedurom spajanja nezavisnih kopija Lévyjevog procesa ubijenog

izvan skupa D.

Dokazan je teorem o tragu na n-skupovima za generalizirane Besovljeve prostore Hψ,1(Rn)

i to za karakteristične funkcije oblika

ψ(x) = φ(|x|2), x ∈ Rn

gdje je φ potpuna Bernsteinova funkcija koja zadovoljova svojstvo (H):

a1λ
δ1 ≤ φ(λr)

φ(r)
≤ a2λ

δ2 , λ ≥ 1, r > 0

za neke konstante a1, a2 > 0 i δ1, δ2 ∈ (0, 1). Takod̄er, promatran je problem graničnog ponašanja

cenzuriranog subordiniranog Brownovog gibanja s Laplaceovim eksponentom subordinatora φ,

te su dani uvjeti pod kojima se proces približava rubu skupa D u konačnom vremenu.

Uz pretpostavku da uvjet (H) vrijedi samo za λ, r ≥ 1 dokazana je 3G nejednakost za

Greenovu funkciju tranzijentnog subordiniranog Brownovog gibanja na κ-debelim otvorenim

skupovima. Korǐstenjem ovog rezultata pokazana je Harnackova nejednakost za pripadni cen-

zurirani proces.

Promatramo subordinirano Brownovo gibanje za koje je 0 regularna točka za sebe te

Laplaceov ekponent subordinatora zadovoljava uvjet (H). Uspostavlja se veza izmed̄u ovog

procesa i dva vezana procesa - cenzuriranog procesa na (0,∞) i apsolutne vrijednosti pripadnog

procesa ubijenog u nuli. Pokazano je da su pripadne Greenove funkcije procesa ubijenih izvan

konačnog intervala (a, b), za 0 < a < b, usporedive. Nadalje, dokazana je Harnackova nejed-

nakost i granični Harnackov princip za apsolutnu vrijednost subordiniranog Brownovog gibanja

ubijenog u 0.
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