
Parallel Jacobi-type algorithms for the singular and
the generalized singular value decomposition

Novaković, Vedran

Doctoral thesis / Disertacija

2017

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of
Zagreb, Faculty of Science / Sveučilište u Zagrebu, Prirodoslovno-matematički fakultet

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:217:515320

Rights / Prava: In copyright / Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-07-12

Repository / Repozitorij:

Repository of the Faculty of Science - University of
Zagreb

https://urn.nsk.hr/urn:nbn:hr:217:515320
http://rightsstatements.org/vocab/InC/1.0/
http://rightsstatements.org/vocab/InC/1.0/
https://repozitorij.pmf.unizg.hr
https://repozitorij.pmf.unizg.hr
https://repozitorij.unizg.hr/islandora/object/pmf:5769
https://dabar.srce.hr/islandora/object/pmf:5769

Faculty of Science
Department of Mathematics

Vedran Novaković

Parallel Jacobi-type algorithms for the
singular and the generalized singular

value decomposition

DOCTORAL THESIS

Zagreb, 2017

Faculty of Science
Department of Mathematics

Vedran Novaković

Parallel Jacobi-type algorithms for the
singular and the generalized singular

value decomposition

DOCTORAL THESIS

Supervisor: prof. Sanja Singer, PhD

Zagreb, 2017

Prirodoslovno–matematički fakultet
Matematički odsjek

Vedran Novaković

Paralelni algoritmi Jacobijeva tipa za
singularnu i generaliziranu singularnu

dekompoziciju

DOKTORSKI RAD

Mentor: prof. dr. sc. Sanja Singer

Zagreb, 2017.

A note on the supervisor and the
committees (O mentoru i komisijama)

Sanja Singer was born in Zagreb on December 27th, 1963, where she earned BSc.
(1986), MSc. (1993) and PhD. (1997) in mathematics at the University of Zagreb,
Faculty of Science, Department of Mathematics.

From December 1987 to September 1989 she was employed as a junior assistant
at the University of Zagreb, Faculty of Economics. Since September 1989 she has
been affiliated with the University of Zagreb, Faculty of Mechanical Engineering
and Naval Architecture, first as a research assistant, then assistant professor (2001–
2007), associate professor (2007–2013) and full professor (2013–).

She has co-authored 27 papers, 17 of them published in journals. Her research
interests are the algorithms for the dense matrix factorizations, eigenvalues and
singular values, and efficient parallelization of those algorithms.

Sanja Singer rođena je u Zagrebu 27. prosinca 1963., gdje je diplomirala (1986.),
magistrirala (1993.) i doktorirala (1997.) na Matematičkom odsjeku Prirodoslovno–
matematičkog fakulteta Sveučilišta u Zagrebu.

Od prosinca 1987. do rujna 1989. bila je zaposlena kao asistentica pripravnica
na Ekonomskom fakultetu Sveučilišta u Zagrebu. Od rujna 1989. zaposlena je na
Fakultetu strojarstva i brodogradnje Sveučilišta u Zagrebu, prvo kao znanstvena
novakinja, a zatim kao docentica (2001.–2007.), izvanredna (2007.–2013.) i redovita
profesorica (2013.–).

Koautorica je 27 znanstvenih radova, od kojih je 17 objavljeno u časopisima. Nje-
zin znanstveni interes su algoritmi za računanje matričnih faktorizacija, svojstvenih
i singularnih vrijednosti, te njihova efikasna paralelizacija.

The evaluationE and defenseD committees (komisije za ocjenuE i obranuD rada):

1. E,D Vjeran Hari, University of Zagreb (PMF-MO), full professor, chairman

2. E,D Enrique S. Quintana Ortí, Universitat Jaume I, Spain, full professor

3. E Zvonimir Bujanović, University of Zagreb (PMF-MO), assistant professor

4. D Sanja Singer, University of Zagreb (FSB), full professor, supervisor

This thesis was submitted on September 4th, 2017, to the Council of Department of
Mathematics, Faculty of Science, University of Zagreb. Following a positive review
by the evaluation committee, approved by the Council on November 8th (at its 2nd

session in academic year 2017/18), and after the submission of the thesis in its
present (revised) form, the public defense was held on December 15th, 2017.

Acknowledgments

I would like to express my gratitude and dedicate this work to Sanja Singer, for trying
and succeeding to be a proactive, but at the same time not too active supervisor,

For drawing many of the figures shown here with METAPOST from handmade
sketches, helping when all hope seemed to be lost while debugging the code, sorting
out the bureaucratic hurdles, financing herself the research efforts when there was
no other way, and encouraging me for many years to finish this manuscript,

But also for stepping aside when it was best for me to discover, learn, and do things
the hard way myself, knowing that such experience does not fade with time,

And for being a friend in times when friendship was scarce.

This work has been supported in part by Croatian Science Foundation under the
project IP-2014-09-3670 (“Matrix Factorizations and Block Diagonalization Algo-
rithms” – MFBDA); by grant 037–1193086–2771 (“Numerical methods in geophysi-
cal models”) from Ministry of Science, Education and Sports, Republic of Croatia;
by an NVIDIA’s Academic Partnership Program hardware donation (arranged by
Zlatko Drmač) to a research group from University of Zagreb, Croatia; and by the
travel grants from Swiss National Science Foundation, Universitat Jaume I, Spain,
and The University of Manchester, United Kingdom.

The completion of this work would not be possible without the author having
generously been granted allocation of the computing resources and administrative
support from Department of Mathematics, Faculty of Science, and from Faculty of
Mechanical Engineering and Naval Architecture (by Hrvoje Jasak), University of
Zagreb, Croatia; from Universitat Jaume I, Spain (by Enrique S. Quintana Ortí);
and by the Hartree Centre and its staff at the Daresbury Laboratory of the Science
and Technology Facilities Council, United Kingdom.

I am indebted to Saša Singer for fruitful advice, and for proofreading and cor-
recting the manuscripts of the papers leading to this dissertation, alongside with
Neven Krajina; and to Zvonimir Bujanović for GPU-related and Vjeran Hari for
mathematical discussions, all of University of Zagreb. Norbert Juffa of NVIDIA has
kindly provided an experimental CUDA implementation of the rsqrt routine.

The people of NLAFET Horizon 2020 project and others who happened to be in
my vicinity should be thanked for bearing with me while finishing this manuscript.

“Hope. . . is not the conviction that something will turn out well, but the certainty
that something makes sense, regardless of how it turns out .” — Václav Havel

Abstract

In this thesis, a hierarchically blocked one-sided Jacobi algorithm for the singular
value decomposition (SVD) is presented. The algorithm targets both single and
multiple graphics processing units (GPUs). The blocking structure reflects the levels
of the GPU’s memory hierarchy. To this end, a family of parallel pivot strategies on
the GPU’s shared address space has been developed, but the strategies are applicable
to inter-node communication as well, with GPU nodes, CPU nodes, or, in general,
any NUMA nodes. Unlike common hybrid approaches, the presented algorithm in
a single-GPU setting needs a CPU for the controlling purposes only, while utilizing
the GPU’s resources to the fullest extent permitted by the hardware. When required
by the problem size, the algorithm, in principle, scales to an arbitrary number of
GPU nodes. The scalability is demonstrated by more than twofold speedup for
sufficiently large matrices on a four-GPU system vs. a single GPU.

The subsequent part of the thesis describes how to modify the two-sided Hari–
Zimmermann algorithm for computation of the generalized eigendecomposition of a
symmetric matrix pair (A,B), where B is positive definite, to an implicit algorithm
that computes the generalized singular value decomposition (GSVD) of a pair (F,G).
In addition, blocking and parallelization techniques for accelerating both the CPU
and the GPU computation are presented, with the GPU approach following the
Jacobi SVD algorithm from the first part of the thesis.

For triangular matrix pairs of a moderate size, numerical tests show that the
double precision sequential pointwise algorithm is several times faster than the es-
tablished DTGSJA algorithm in LAPACK, while the accuracy is slightly better, espe-
cially for the small generalized singular values. Cache-aware blocking increases the
performance even further. As with the one-sided Jacobi-type (G)SVD algorithms
in general, the presented algorithm is almost perfectly parallelizable and scalable
on the shared memory machines, where the speedup almost solely depends on the
number of cores used. A distributed memory variant, intended for huge matrices
that do not fit into a single NUMA node, as well as a GPU variant, are also sketched.

The thesis concludes with the affirmative answer to a question whether the one-
sided Jacobi-type algorithms can be an efficient and scalable choice for computing
the (G)SVD of dense matrices on the massively parallel CPU and GPU architectures.

Unless otherwise noted by the inline citations or implied by the context, this
thesis is an overview of the original research results, most of which has already been
published in [55, 58]. The author’s contributions are the one-sided Jacobi-type GPU
algorithms for the ordinary and the generalized SVD, of which the latter has not yet
been published, as well as the parallelization technique and some implementation
details of the one-sided Hari–Zimmermann CPU algorithm for the GSVD. The rest
is joint work with Sanja and Saša Singer.

Key words: one-sided Jacobi-type algorithms, (generalized) singular value decom-
position, parallel pivot strategies, graphics processing units, (generalized) eigenvalue
problem, cache-aware blocking, (hybrid) parallelization.

Sažetak (prošireni)

Singularna dekompozicija, katkad zvana prema engleskom originalu i dekom-
pozicija singularnih vrijednosti, ili kraće SVD, jedna je od najkorisnijih matričnih
dekompozicija, kako za teorijske, tako i za praktične svrhe. Svaka matrica G ∈ Cm×n

(zbog jednostavnijeg zapisa, uobičajeno se smatra da je m ≥ n; u protivnom, traži
se SVD matrice G∗) može se rastaviti u produkt tri matrice

G = UΣV ∗,

gdje su U ∈ Cm×m i V ∈ Cn×n unitarne, a Σ ∈ Rm×n je ‘dijagonalna’ s nenegativnim
dijagonalnim elementima. Osim ovog oblika dekompozicije, koristi se i skraćeni oblik

G = U ′Σ′V ∗,

pri čemu je U ′ ∈ Cm×n matrica s ortonormiranim stupcima, a Σ′ = diag(σ1, . . . , σn),
σi ≥ 0 za i = 0, . . . , n, je sada stvarno dijagonalna.

Izvan matematike, u ‘stvarnom’ životu, SVD se koristi u procesiranju slika (re-
konstrukciji, sažimanju, izoštravanju) i signala, s primjenama u medicini (CT, tj.
kompjuterizirana tomografija; MR, tj. magnetna rezonancija), geoznanostima, zna-
nosti o materijalima, kristalografiji, sigurnosti (prepoznavanje lica), izvlačenja infor-
macija iz velike količine podataka (na primjer, LSI, tj. latent semantic indexing), ali
i drugdje. Većina primjena koristi svojstvo da se iz SVD-a lako čita najbolja aprok-
simacija dane matrice matricom fiksnog (niskog) ranga. Čini se da je lakše reći
gdje se SVD ne koristi, nego gdje se koristi, stoga se SVD često naziva i “švicarskim
nožićem matričnih dekompozicija”.1

Prvi počeci razvoja SVD-a sežu u 19. stoljeće, kad su poznati matematičari Euge-
nio Beltrami, Camille Jordan, James Joseph Sylvester, Erhard Schmidt i Herman
Weyl pokazali njezinu egzistenciju i osnovna svojstva (za detalje pogledati [74]).

Pioniri u numeričkom računanju SVD-a su Ervand George Kogbetliantz, te Gene
Golub i William Kahan, koji su razvili algoritam za računanje (bidijagonalni QR),
koji je dvadeset i pet godina vladao scenom numeričkog računanja SVD-a. U to
vrijeme, sveučilište Stanford (gdje je Gene Golub radio) bilo je ‘glavno sjedište’ za
razvoj primjena SVD-a.

Početkom devedesetih godina, ‘sjedište SVD-a’ preseljeno je u Europu, nakon
objave članka [21] o relativnoj točnosti računanja svojstvenih vrijednosti simetrič-
nih pozitivno definitnih matrica korištenjem Jacobijeve metode. Naime, problem
računanja svojstvene dekompozicije pozitivno definitne matrice i problem računa-
nja SVD-a usko su vezani. Ako je poznata dekompozicija singularnih vrijednosti
matrice G punog stupčanog ranga, G ∈ Cm×n = UΣV ∗, pri čemu je G faktor
matrice A, A = G∗G, onda je A simetrična i pozitivno definitna i vrijedi

A = G∗G = V ΣTU∗UΣV ∗ = V diag(σ2
1, . . . , σ

2
m)V ∗.

1Diane O’Leary, 2006.

Matrica V je matrica svojstvenih vektora, a svojstvene vrijednosti su kvadrati sin-
gularnih vrijednosti. Stoga se algoritmi za računanje svojstvenih vrijednosti, kod
kojih se transformacija vrši dvostranim (i slijeva i zdesna) djelovanjem na matricu
A, mogu napisati implicitno, tako da se transformacija vrši ili zdesna na faktor G
ili slijeva na faktor G∗.

U svojoj doktorskoj disertaciji Drmač [24] je napravio daljnju analizu, ne samo
singularne dekompozicije računate Jacobijevim algoritmom, nego i generalizirane
singularne dekompozicije (GSVD). Temeljem tih istraživanja, SVD baziran na Ja-
cobijevim rotacijama ušao je i u numeričku biblioteku LAPACK.

U međuvremenu, gotovo sva računala postala su višejezgrena, a moderni klasteri
računala za znanstveno računanje sastoje se od nekoliko tisuća do nekoliko stotina
tisuća višejezgrenih procesora2, pa standardni sekvencijalni algoritmi nipošto više
nisu primjereni za numeričko računanje. Stoga se ubrzano razvijaju paralelni al-
goritmi koji poštuju i hijerarhijsku memorijsku strukturu odgovarajućih računala,
težeći iskoristiti brzu cache memoriju za procesiranje potproblema u blokovima, na
koje je moguće primijeniti BLAS-3 operacije. Ideja blokiranja je u primjeni što više
(tipično, kubično u dimenziji matrice) numeričkih operacija nad podacima u brzoj
memoriji. Nadalje, pojavom grafičkih procesnih jedinica namijenjenih znanstvenom
računanju, kao i drugih visokoparalelnih numeričkih akceleratora (npr. Intel Xeon
Phi), otvorio se novi segment istraživanja, koji poštuje njihov masivni paralelizam,
s pojedinačno slabašnom snagom svake dretve u odnosu na središnji procesor.

Generaliziranu singularnu dekompoziciju (GSVD) uveli su Van Loan [77], te
Paige i Saunders [62]. Definicija GSVD-a nešto je manje poznata. Ako su zadane
matrice F ∈ Cm×n i G ∈ Cp×n, za koje vrijedi

K =

[
F
G

]
, k = rank(K),

tad postoje unitarne matrice U ∈ Cm×m, V ∈ Cp×p, i matrica X ∈ Ck×n, takve da
je

F = UΣFX, G = V ΣGX, ΣF ∈ Rm×k, ΣG ∈ Rp×k.

Elementi matrica ΣF i ΣG su nula, osim dijagonalnih elemenata, koji su realni i
nenegativni. Nadalje, ΣF i ΣG zadovoljavaju

ΣT
FΣF + ΣT

GΣG = I.

Omjeri (ΣF)ii/(ΣG)ii su generalizirane singularne vrijednosti para (F,G). Ako je
G punog stupčanog ranga, tada je rank(K) = n i generalizirane singularne vrijed-
nosti su konačni brojevi. Ako je par (F,G) realan, onda su realne sve matrice u
dekompoziciji. Odavde nadalje, zbog jednostavnoti pretpostavlja se da je par realan.

Može se pokazati da, ako je k = n, tada se relacija između GSVD-a i reducirane
forme CS (kosinus-sinus) dekompozicije (vidjeti, na primjer, [26]) može iskoristiti za
njezino računanje (pogledati, na primjer članke Stewarta [72, 73] i Suttona [75]).

Slično kao i SVD, generalizirana singularna dekompozicija ima primjene u mno-
gim područjima, kao što je usporedna analiza podataka vezanih uz genome [1],

2https://www.top500.org

viii

nepotpuna singularna metoda rubnih elemeneata [47], ionosferna tomografija [9], ali
i mnogo drugih.

GSVD para matrica (F,G) blisko je vezana s hermitskim generaliziranim svoj-
stvenim problemom za par (A,B) := (F ∗F,G∗G), tako da se metode za istovremenu
dijagonalizaciju para (A,B) mogu modificirati za računanje GSVD-a para (F,G).
U ovoj radnji razvijen je brzi i efikasan algoritam za računanje generalizirane sin-
gularne dekompozicije realnog para (F,G).

Metoda razvijena u radnji bazirana je na algoritmu za računanje generalizirane
svojstvene dekompozicije,

Ax = λBx, x 6= 0, (1)

gdje su A i B simetrične matrice, a par je definitan, tj. postoji realna konstanta µ
takva da je matrica A−µB pozitivno definitna. Članke s metodom objavili su 1960.
Falk i Langemeyer [31, 32] u slabo poznatom priručniku. Kad je paralelna verzija
metode testirana, pokazalo se da pati zbog problema rastuće skale stupaca matrice
tijekom procesa ortogonalizacije. Treba još primijetiti da pozitivna definitnost ma-
trice B odmah znači da je definitan i par (A,B).

Gotovo desetljeće nakon Falka i Langemeyera, Katharina Zimmermann je u svo-
joj doktorskoj disertaciji [81] grubo skicirala metodu za rješavanje generaliziranog
svojstvenog problema (1) ako je B pozitivno definitna. Gose [34] je predložio op-
timalnu ne-cikličku pivotnu strategiju i dokazao globalnu konvergenciju originalne
metode. Hari je u svojoj disertaciji [37], potaknut Zimmermanninom skicom me-
tode, izveo algoritam i pokazao njegovu globalnu i kvadratičnu konvergenciju uz
cikličke pivotne strategije.

Kvadratičnu konvergenciju originalne Falk–Langemeyerove metode dokazao je
1988. Slapničar u svojem magisteriju, četiri godine nakon dokaza konvergencije
Hari–Zimmermann metode. Hari je u [37] pokazao ključnu vezu između Hari–
Zimmermannine i Falk–Langemeyerove varijante algoritma. Ako je matrica B obos-
trano skalirana dijagonalnom matricom D, tako da su joj dijagonalni elementi jed-
naki 1 prije svakog koraka poništavanja u Falk–Langemeyerovoj metodi, dobiva se
Hari–Zimmermannina metoda. Dakle, nova metoda imala je ključno svojstvo nor-
miranosti stupaca barem jedne matrice, što se pokazalo iznimno bitnim za uspjeh
algoritma (izbjegavanje skaliranja matrica tijekom procesa ortogonalizacije).

Treba reći da se GSVD može računati i na druge načine. Drmač je u [26] iz-
veo algoritam za računanje GSVD-a para (F,G), kad je G punog stupčanog ranga.
Algoritam transformira problem na samo jednu matricu, a nakon toga primjenjuje
jednostrani Jacobijev SVD algoritam. Taj algoritam računa generalizirane singu-
larne vrijednosti s malom relativnom greškom. Algoritam svođenja na jednu matricu
sastoji se od tri koraka: skaliranje stupaca matrica F i G, QR faktorizacije sa stup-
čanim pivotiranjem već skalirane matrice G, i konačno, rješavanjem trokutastog
linearnog sustava s k desnih strana. Posljednja dva koraka su sekvencijalna i vrlo
ih je teško paralelizirati.

Sama ideja korištenja implicitne (tj. jednostrane) Falk–Langemeyerove metode
za GSVD para (F,G), s G punog stupčanog ranga, sreće se u disertaciji Annette
Deichmöller [17], međutim, tamo se ne spominju usporedbe te metode s drugim
metodama.

ix

S druge strane, algoritam za računanje GSVD-a u biblioteci LAPACK (potpro-
gram xGGSVD), je modificirani Kogbetliantzov algoritam (vidjeti Paige [61]) s obvez-
nim pretprocesiranjem (vidjeti Bai i Demmel [5]). Algoritam pretprocesiranja [6]
transformira zadani matrični par (F0, G0) u par (F,G), takav da su F i G gornje-
trokutaste, a G je i nesingularna. Ako se unaprijed zna da je G punog stupčanog
ranga, i implicitna Falk–Langemeyerova i implicitna Hari–Zimmermannina metoda
će raditi i bez pretprocesiranja. Ako su F i G vitke (engl. “tall and skinny”), QR
factorizacija obje matrice će ubrzati ortogonalizaciju. Ako G nije punog ranga, onda
treba koristiti isto pretprocesiranje kao u LAPACK-u, budući da puni stupčani rang
matrice G garantira pozitivnu definitnost matrice B := GTG.

∗ ∗ ∗

U ovoj radnji razvijen je i hijerarhijski, blokirani jednostrani algoritam za raču-
nanje SVD-a. Opisani algoritam može raditi na višeprocesorskom računalu, računal-
nim klasterima, jednoj ili više grafičkih procesnih jedinica. Princip rada algoritma
na svim arhitekturama je sličan. Posebno je opisan algoritam koji radi na grafičkim
procesnim jedinicama. Struktura blokiranja reflektira razine memorijske strukture
grafičke procesne jedninice. Da bi se to postiglo, razvijene su familije paralelnih
pivotnih strategija za dijeljenu (engl. shared) memoriju grafičkih procesnih jedinica.
Uz dodatak rasporeda po procesima, strategije se mogu koristiti i kao strategije
za komuniciranje među računalnim čvorovima (bili oni grafičke procesne jedinice,
jezgre procesora ili tzv. NUMA čvorovi).

Razvijeni algoritam nije hibridni, tj. centralnu procesnu jedinicu koristi samo za
kontrolne svrhe, a cjelokupno računanje odvija se na grafičkoj procesnoj jedinici.
Kad je zbog veličine problema potrebno, algoritam se može rasprostrijeti (skalirati)
na proizvoljan broj grafičkih procesnih jedinica. Na dovoljno velikim matricama,
skalabilnost je pokazana ubrzanjem od preko dva puta na četiri grafičke procesne
jedinice, obzirom na jednu.

U drugom dijelu radnje opisuje se jedan način modifikacije dvostranog Hari–
Zimmermanninog algoritma za računanje generalizirane svojstvene dekompozicije
matričnog para (A,B), gdje su obje matrice simetrične, a B je pozitivno definitna.
Implicitni algoritam računa GSVD para (F,G), pri čemu je (A,B) := (F TF,GTG).
Nadalje, pokazuje se kako treba blokirati algoritam, te kako ga paralelizirati, i u
slučaju standardnih, i u slučaju grafičkih procesora.

Za trokutaste matrične parove srednje velikih dimenzija (približno 5 000), poka-
zano je da je već sekvencijalni, neblokirani algoritam u dvostrukoj točnosti, predlo-
žen u radnji, nekoliko desetaka puta brži no što je to LAPACK potprogram DTGSJA
i pritom ima nešto bolju točnost, posebno za male generalizirane singularne vri-
jednosti. Blokiranje algoritma koje odgovara cacheima znatno ubrzava algoritam.
Pokazuje se da je i ovaj algoritam, slično kao jednostrani Jacobijev algoritam za
SVD, gotovo idealno paralelizabilan i skalabilan na računalima s dijeljenom memo-
rijom, te da njegovo ubrzanje gotovo isključivo ovisi o broju korištenih jezgara. U
vrijeme testiranja, pokazalo se da je paralelizirani i blokirani Hari–Zimmermannin
algoritam preko sto puta brži od LAPACK potprograma DTGESJA s višedretvenim
BLAS potprogramima. Varijanta algoritma za razdijeljenu (engl. distributed) me-
moriju namijenjena je ogromnim matricama koje ne stanu u jedan NUMA čvor.

x

Također, skicirana je i GPU varijanta algoritma, koja je vrlo slična jednostranom
Jacobijevom algoritmu za SVD.

Disertacija završava zaključkom da su ovi algoritmi Jacobijevog tipa efikasni i
skalabilni i izvrstan su izbor za računanje (G)SVD-a punih matrica na masivno
paralelnim standardnim arhitekturama i na grafičkim procesnim jedinicama.

Ova doktorska disertacija bazirana je na originalnim znanstvenim radovima [55,
58], te proširena nekim novim rezultatima. Autorov doprinos u ovoj disertaciji
su novi paralelni algoritmi za (G)SVD za grafičke procesne jedinice, tehnike para-
lelizacije, te detalji implementacije jednostranog Hari–Zimmermannina algoritma.
Ostatak je zajednički rad sa Sanjom Singer i Sašom Singerom.

Ključne riječi: jednostrani algoritmi Jacobijeva tipa, (generalizirana) dekompozi-
cija singularnih vrijednosti, paralelne pivotne strategije, grafičke procesne jedinice,
(generalizirani) problem svojstvenih vrijednosti, blokiranje obzirom na cache me-
moriju, (hibridna) paralelizacija.

xi

Contents

1. Introduction . 1

2. The Jacobi-type multilevel (H)SVD algorithm for the GPU(s) 8
2.1. Jacobi–type SVD algorithm . 8
2.2. Parallel pivot strategies . 11

2.2.1. Generating the Jacobi p-strategies 16
2.3. A single-GPU algorithm . 31

2.3.1. The Cholesky factorization . 33
2.3.2. The QR factorization . 35
2.3.3. The orthogonalization . 36
2.3.4. The Jacobi rotations . 40
2.3.5. The postmultiplication . 42
2.3.6. A GPU-wide convergence criterion 42
2.3.7. An illustration of the algorithm’s execution 45

2.4. A multi-GPU algorithm . 46
2.5. Numerical testing . 50

2.5.1. Modern CUDA on modern hardware 56
2.6. Parallel norm computation . 58

3. The implicit Hari–Zimmermann algorithm for the GSVD 61
3.1. The Jacobi–type sequential algorithms for GEP 61

3.1.1. The Falk–Langemeyer algorithm 61
3.1.2. The Hari–Zimmermann algorithm 62

3.2. The Jacobi–type algorithms for GSVD 66
3.2.1. The implicit Hari–Zimmermann algorithm 66
3.2.2. Blocking in the one-sided algorithm 70

3.3. The parallel algorithms . 77
3.3.1. A shared memory algorithm . 77
3.3.2. A distributed memory algorithm 80

3.4. Numerical testing . 82
3.5. An implicit Hari–Zimmermann algorithm for the GPU(s) 88

4. Conclusions and future work . 92
4.1. Conclusions . 92
4.2. A work in progress . 93

4.2.1. A new hierarchy for the Jacobi-type processes 93
4.3. A note on the figures and the software 99

5. Bibliography . 100

6. Biography . 109

1. Introduction

Why this thesis? Apart to fulfill one of the requirements for a doctoral degree, of
course. . . ? Out of a conviction that the results it summarizes are useful to a diverse
audience that tries to compute the large singular value decompositions (SVDs) and
the generalized singular value decompositions (GSVDs), or many small, similar-sized
ones, arising from a plethora of the real-life problems, as fast as possible, and/or
as accurately as possible, on a wide range of dense matrices, on almost any modern
high performance computing hardware.

The main part and contribution of the thesis is contained in chapters 2 and 3, in
which the one-sided Jacobi-type SVD algorithm for the graphics processing units,
and the implicit Hari–Zimmermann method for the GSVD, respectively, are devel-
oped. In the following, after a short overview of the singular value decomposition,
those chapters are independently introduced, while each chapter on its own starts
with a summary of its contents.

The thesis concludes with some directions for the future work on fully utilizing
the vectorization capabilities of the CPUs for the Jacobi-type (G)SVD algorithms.

About the singular value decomposition

The SVD is one of the most useful matrix decompositions, for theoretical as well
as practical considerations. Any matrix G ∈ Cm×n (to simplify the notation, assume
m ≥ n; otheriwse, take the SVD of G∗ instead) can be decomposed as a product of
three matrices

G = UΣV ∗,

where U ∈ Cm×m and V ∈ Cn×n are unitary, and Σ ∈ Rm×n is a ‘diagonal’ matrix,
with the non-negative diagonal elements. Apart from this form of the decomposition,
a ‘truncated’ form

G = U ′Σ′V ∗

is also widely used, where U ′ ∈ Cm×n is a matrix with the orthonormal columns,
and Σ′ = diag(σ1, . . . , σn), σi ≥ 0 for i = 0, . . . , n, is now truly diagonal.

It is often repeated that the “SVD is the Swiss Army knife of matrix decomposi-
tions”.1 And indeed, it would be easier to enumerate the applications of numerical
linear algebra as such that do not benefit from the SVD either directly or indirectly,
than to list those that do.

Outside of the realm of mathematics, in the ‘real-life’ domains, the SVD is used
in image (reconstruction, compression, deblurring) and signal processing, with appli-
cations in medicine (CT, i.e., computed tomography; MRI, i.e., magnetic resonance
imaging), geosciences, material science, crystallography, security applications (facial
recognition), information retrieval from big datasets (e.g., LSI, i.e., latent semantic

1Diane O’Leary, 2006.

1. Introduction

indexing), and elsewhere. Most applications rely on a property that the SVD pro-
vides an easy method of computing the best approximation of a given matrix by a
matrix of the fixed (low) rank.

The first developments of a concept of the SVD date back to the 19th century,
when the well-known mathematicians Eugenio Beltrami, Camille Jordan, James
Joseph Sylvester, Erhard Schmidt, and Herman Weyl showed the decomposition’s
existence and some of its basic properties (see [74] for details).

Alongside Ervand George Kogbetliantz, the pioneers of the numerical compu-
tation of the SVD were Gene Golub and William Kahan, who had developed an
effective algorithm (the bidiagonal QR), which dominated the computational scene
for twenty five years. At that time, the Stanford University (where Gene Golub was
teaching) was the ‘headquarters’ for development of the SVD’s applications.

At the begining of 1990s, the ‘SVD headquarters’ moved to Europe, after the
paper [21] had been published, concerning the relative accuracy of the computation
of the eigenvalues of Hermitian positive definite matrices by the Jacobi method.

Computation of the eigenvalue decomposition (EVD) of a positive definite matrix
and computation of the SVD are closely related. If the SVD of a matrix G of the
full column rank is given, G ∈ Cm×n = UΣV ∗, where G is a factor of the matrix A,
A = G∗G, then A is a Hermitian positive definite matrix, and it holds that

A = G∗G = V ΣTU∗UΣV ∗ = V diag(σ2
1, . . . , σ

2
m)V ∗.

The eigenvalues here are the squares of the singular values, and the eigenvectors
are the columns of the matrix V . Therefore, the eigendecomposition algorithms,
which transform the matrix A from both the left and the right side (the “two-sided”
approach), can also be rewritten in an ‘implicit’ way (the “one-sided” approach),
such that either the factor G (i.e., its columns) is transformed from the right side,
or the factor G∗ (i.e., its rows) is transformed from the left side, only.

In his doctoral thesis Drmač [24] has provided a more detailed analysis, not only
of the SVD computed by the Jacobi algorithm, but also of the generalized singular
value decomposition (GSVD). Following that research, the SVD based on the Jacobi
rotations has been included in the LAPACK numerical subroutine library.

In the meantime, almost all processors have started to be designed as multicore
ones, while the modern clusters for high performance computing contain from a
couple of thousands up to several hundreds of thousands of multicore CPUs2.

Therefore, the standard sequential algorithms are no longer adequate for numer-
ical computing. Such a trend has spurred the development of the parallel algorithms
that respect and follow the hierarchical structure of the computers’ memory architec-
ture, with an intent to utilize the fast cache memory for processing the subproblems
in blocks, to which the BLAS-3 operations can be applied.

The blocking idea stems from the desire to apply as many (e.g., cubically in
terms of the matrix dimension) floating-point operations over the data as possible,
while it resides in the fast memory. Furthermore, the recent advent of the graphical
processing units specifically designed for scientific computing, and other kinds of the
highly parallel numerical accelerators (e.g., Intel Xeon Phi), a whole new segment

2https://www.top500.org

2

of research has been opened, that targets that massive parallelism while bearing in
mind a relatively weak computational power of each thread, compared to a typical
CPU.

The one-sided Jacobi-type SVD for the GPU(s)

Graphics processing units (GPUs) have become a widely accepted tool of par-
allel scientific computing, but many of the established algorithms still need to be
redesigned with massive parallelism in mind. Instead of multiple CPU cores, which
are fully capable of simultaneously processing different operations, GPUs are essen-
tially limited to many concurrent instructions of the same kind—a paradigm known
as SIMT (single-instruction, multiple-threads) parallelism.

The SIMT type of parallelism is not the only reason for the redesign. Mod-
ern CPU algorithms rely on (mostly automatic) multilevel cache management for
speedup. GPUs instead offer a complex memory hierarchy, with different access
speeds and patterns, and both automatically and programmatically managed caches.
Even more so than in the CPU world, a (less) careful hardware-adapted blocking of
a GPU algorithm is the key technique by which considerable speedups are gained
(or lost).

The introductory paper [56] proposed a non-blocked (i.e., pointwise) single-GPU
one-sided Jacobi SVD algorithm. In this thesis a family of the full block [40] and
the block-oriented [39] one-sided Jacobi-type algorithm variants for the ordinary sin-
gular value decomposition (SVD) and the hyperbolic singular value decomposition
(HSVD) of a matrix is presented, targeting both a single GPU and multiple GPUs.
The blocking of the algorithm follows the levels of the GPU memory hierarchy;
namely, the innermost level of blocking tries to maximize the amount of compu-
tation done inside the fastest (and smallest) memory of the registers and manual
caches. The GPU’s global RAM and caches are considered by the midlevel, while
inter-GPU communication and synchronization are among the issues addressed by
the outermost level of blocking.

At each blocking level an instance of either the block-oriented or the full block
Jacobi (H)SVD is run, orthogonalizing pivot columns or block-columns by concep-
tually the same algorithm at the lower level. Thus, the overall structure of the
algorithm is hierarchical (or recursive) in nature and ready to fit not only the cur-
rent GPUs, but also various other memory and communication hierarchies, provided
that efficient, hardware-tuned implementations at each level are available.

The Jacobi method is an easy and elegant way to find the eigenvalues and eigen-
vectors of a symmetric matrix. In 1958 Hestenes [41] developed the one-sided Jacobi
SVD method: an implicit diagonalization is performed by orthogonalizing a factor
of a symmetric positive definite matrix. But, after discovery of the QR algorithm
in 1961–62 by Francis and Kublanovskaya, the Jacobi algorithm seemed to have no
future, at least in the sequential processing world, due to its perceived slowness [30].

However, a new hope for the algorithm has been found in its amenability to par-
allelization (including vectorization, as a way of computing multiple transformations
at once), in its proven high relative accuracy [21], and, finally, in the emergence of
the fast Jacobi SVD implementation in LAPACK, due to Drmač and Veselić [28, 29].

3

1. Introduction

In the beginning of the 1970s Sameh in [65] developed two strategies for parallel
execution of the Jacobi method on Illiac IV. The first of those, the modulus strategy,
is still in use, and it is one of the very rare parallel strategies for which a proof of
convergence exists [50].

In the mid 1980s, Brent and Luk designed another parallel strategy [12], known
by the names of its creators. The same authors, together with Van Loan [13],
described several parallel one-sided Jacobi and Kogbetliantz (also known as “the
two-sided Jacobi”) algorithms. The parallel block Kogbetliantz method is developed
in [78].

In 1987 Eberlein [30] proposed two strategies, the round-robin strategy, and
another one that depends on the parity of a sweep. A new efficient recursive divide-
exchange parallel strategy, specially designed for the hypercube topologies (and,
consequently, matrices of order 2n) is given in [33]. This strategy is later refined by
Mantharam and Eberlein in [51] to the block-recursive (BR) strategy.

Two papers by Luk and Park [50, 49] published in 1989 established equivalence
between numerous strategies, showing that if one of them is convergent, then all
equivalent strategies are convergent. In the same year Shroff and Schreiber [66]
showed convergence for a family of strategies called the wavefront ordering, and
discussed the parallel orderings weakly equivalent to the wavefront ordering, and
thus convergent.

One of the first attempts to implement a parallel SVD on a GPU was a hybrid
one, by Lahabar and Narayanan [48]. It is based on the Golub–Reinsch algorithm,
with bidiagonalization and updating of the singular vectors performed on a GPU,
while the rest of the bidiagonal QR algorithm is computed on a CPU. In MAGMA3,
a GPU library of the LAPACK-style routines, DGESVD algorithm is also hybrid, with
bidiagonalization (DGEBRD) parallelized on a GPU [76], while for the bidiagonal QR,
LAPACK routine DBDSQR is used.

In two previous papers [69, 68] the parallel one-sided Jacobi algorithms for the
(H)SVD were discussed, with two and three levels of blocking, respectively. The
outermost level is mapped to a ring of CPUs which communicate according to a
slightly modified modulus strategy, while the inner two (in the three-level case) are
sequential and correspond to the “fast” (L1) and “slow” (L2 and higher) cache levels.

At first glance a choice of the parallel strategy might seem like a technical detail,
but the tests at the outermost level have shown that the modified modulus strategy
can be two times faster than the round-robin strategy. That was a motivation to
explore if and how even faster strategies could be constructed that preserve the
accuracy of the algorithm. A class of parallel strategies is presented here, designed
around a conceptually simple but computationally difficult notion of a metric on
a set of strategies of the same order. These new strategies can be regarded as
generalizations of the Mantharam–Eberlein BR strategy to all even matrix orders,
outperforming the Brent and Luk and modified modulus strategies in the GPU
algorithm.

However, a parallel strategy alone is not sufficient to achieve decent GPU per-
formance. The standard routines that constitute a block Jacobi algorithm, like the

3Matrix Algebra on GPU and Multicore Architectures, http://icl.utk.edu/magma/

4

Gram matrix formation, the Cholesky (or the QR) factorization, and the point-
wise one-sided Jacobi algorithm itself, have to be mapped to the fast, but in many
ways limited, shared memory of a GPU, and to the peculiar way the computational
threads are grouped and synchronized. Even the primitives that are usually taken
for granted, like the numerically robust calculation of a vector’s 2-norm, present
a challenge on a SIMT architecture. Combined with the problems inherent in the
block Jacobi algorithms, whether sequential or parallel, like the reliable convergence
criterion, a successful design of the Jacobi-type GPU (H)SVD is far from trivial.

This thesis aims to show that such GPU-centric design is possible and that the
Jacobi-type algorithms for a single GPU and multiple GPUs compare favorably to
the present state of the art in the GPU-assisted computation of the (H)SVD. Since
all computational work is offloaded to a GPU, there is no need for a significant
amount of CPU ↔ GPU communication, or for complex synchronization of their
tasks. This facilitates scaling to a large number of GPUs, while keeping their load in
balance and communication simple and predictable. While many questions remain
open, the algorithms presented here might prove themselves to be a valuable choice
to consider when computing the (H)SVD on the GPUs.

The implicit Hari–Zimmermann method for the GSVD

The singular value decomposition (SVD) is a widely used tool in many applica-
tions. Similarly, a generalization of the SVD for a matrix pair (F,G), the gener-
alized SVD (GSVD), has applications in many areas, such as comparative analysis
of the genome-scale expression data sets [1], incomplete singular boundary element
method [47], ionospheric tomography [9], and many others.

The GSVD of a pair (F,G) is closely related to the Hermitian generalized eigen-
value problem (GEP) of a pair (A,B) := (F ∗F,G∗G), so the methods for simulta-
neous diagonalization of (A,B) can be modified to compute the GSVD of (F,G).
The aim is to develop a fast and efficient parallel algorithm for the real pair (F,G).

The definition of the GSVD (see, for example, [62]), in its full generality, is as
follows: for given matrices F ∈ Cm×n and G ∈ Cp×n, where

K =

[
F
G

]
, k = rank(K),

there exist unitary matrices U ∈ Cm×m, V ∈ Cp×p, and a matrix X ∈ Ck×n, such
that

F = UΣFX, G = V ΣGX, ΣF ∈ Rm×k, ΣG ∈ Rp×k. (1.1)

The elements of ΣF and ΣG are zeros, except for the diagonal entries, which are real
and nonnegative. Furthermore, ΣF and ΣG satisfy

ΣT
FΣF + ΣT

GΣG = I.

The ratios (ΣF)ii/(ΣG)ii are called the generalized singular values of the pair (F,G).
If G is of full column rank, then rank(K) = n, and the generalized singular values
are finite numbers. If the pair (F,G) is real, then all matrices in (1.1) are real. From
now on, it is assumed that all matrices are real.

5

1. Introduction

In 1960, Falk and Langemeyer published two papers [31, 32] on the computation
of the GEP,

Ax = λBx, x 6= 0, (1.2)

where A and B are symmetric matrices and B is positive definite. Their method
was shown in 1991 by Slapničar and Hari [71] to work for definite matrix pairs. The
pair (A,B) is definite if there exists a real constant µ such that the matrix A− µB
is positive definite.

Note that, if B is positive definite, then the pair (A,B) is definite. This can be
proved easily by using the Weyl theorem (see, for example, [43, Theorem 4.3.1, page
181]). In this case,

λi(A+ (−µ)B) ≥ λi(A) + λmin(−µB) = λi(A)− µλmax(B), (1.3)

where λi(·) denotes the i-th smallest eigenvalue of a matrix. If A is positive definite,
any µ ≤ 0 will make the pair definite. If A is indefinite, or negative definite, it
suffices to choose µ < 0 in (1.3) of such magnitude that λmin(A) − µλmax(B) > 0
holds.

Almost a decade after Falk and Langemeyer, Zimmermann in her Ph.D. the-
sis [81] briefly sketched a new method for the problem (1.2) if B is positive definite.
Gose [34] proposed some optimal non-cyclic pivot strategies and proved the global
convergence of the original method. Hari in his Ph.D. thesis [37] filled in the miss-
ing details of the method of Zimmermann, and proved its global and quadratic
convergence under the cyclic pivot strategies.

The quadratic convergence of the original Falk–Langemeyer method was proved
in 1988, by Slapničar in his MS thesis, four years after the proof of the convergence
of the Hari–Zimmermann method, and the results were extended afterwards and
published in [71]. In the same paper, Slapničar and Hari also showed the following
connection between the Hari–Zimmermann and the Falk–Langemeyer variants of the
method. If the matrix B is scaled (from both sides) so that its diagonal elements
are equal to 1, before each annihilation step in the Falk–Langemeyer method, then
the Hari–Zimmermann method is obtained.

The GSVD was introduced by Van Loan [77] and Paige and Saunders [62]. If
k = n in (1.1), then the relation between the GSVD and the reduced form of
the CS (cosine-sine) decomposition (see, for example, [26]) could be used for the
computation of the GSVD; see the papers by Stewart [72, 73] and Sutton [75].

Drmač in [26] derived an algorithm for the computation of the GSVD of a pair
(F,G), with G of full column rank. This algorithm transforms the problem to a
single matrix, and then applies the ordinary Jacobi SVD algorithm. The algorithm
produces the generalized singular values with small relative errors. The part of
the algorithm that reduces the problem to a single matrix consists of three steps: a
scaling of the columns of both matrices F and G, the QR factorization with pivoting
of the already scaled G, and, finally, a solution of a triangular linear system with k
right-hand sides. The last two steps are inherently sequential and, therefore, hard
to parallelize.

The idea of using an implicit (i.e., one-sided) version of the Falk–Langemeyer
method for the GSVD of a pair (F,G), with G of full column rank, can be found in

6

the Ph.D. thesis of Deichmöller [17], but there is no comment on how this method
performs in comparison with the other methods.

On the other hand, the state of the art algorithm xGGSVD for computing the
GSVD in LAPACK, is a Kogbetliantz-based variation of the Paige algorithm [61] by
Bai and Demmel [5], with preprocessing. The preprocessing algorithm [6] transforms
a given matrix pair (F0, G0) to a pair (F,G), such that F and G are upper triangular
and G is nonsingular. If it is known in advance that G is of full column rank,
both implicit methods, the Falk–Langemeyer and the Hari–Zimmermann method
will work without preprocessing. But, if F and G are tall and skinny, the QR
factorization of both matrices will speed up the orthogonalization. If G is not of
full column rank, the same preprocessing technique (as in LAPACK) should be used
by the implicit algorithm, since a full column rank G guarantees that B := GTG is
positive definite.

Finally, a prototype of the implicit blocked Hari–Zimmermann method has been
developed for the GPU(s), along the same lines (so much that many routines have
simply been reused) as the one-sided Jacobi-type SVD algorithm from the previous
chapter, and briefly sketched at the end of the main part of the thesis.

A comparison with the published work

The second chapter of the thesis is based on [55] and (unless stated by the
citations otherwise or implied by the context) is a sole contribution of the candidate.
The published material has been expanded, namely, by the additional considerations
with regard to the parallel strategies, and by some implementation suggestions and
new test results on the modern GPUs.

The third chapter is based on [58], where the published version has been ex-
panded, most notably by an algorithm variant that targets the GPUs. That algo-
rithm variant, as well as all software implementations (save for the modified modulus
strategy and the first-level block-partitioning), the parallelization and column sort-
ing techniques, and most of the numerical testing results are a sole contribution of
the candidate, while the rest of the chapter’s material has been prepared in collab-
oration with Sanja and Saša Singer.

7

2. The Jacobi-type multilevel (H)SVD
algorithm for the GPU(s)

This chapter is organized as follows. In section 2.1. a brief summary of the one-
sided Jacobi-type (H)SVD block algorithm variants is given. In section 2.2. new
parallel Jacobi strategies are developed: nearest to row-cyclic and nearest to column-
cyclic. The main part is contained in section 2.3., where a detailed implementation
of a single-GPU Jacobi (H)SVD algorithm is described. In section 2.4., a proof-of-
concept implementation on multiple GPUs is presented. In section 2.5., results of
the numerical testing are given. Section 2.6. completes the chapter with a parallel,
numerically stable procedure for computing the 2-norm of a vector.

2.1. Jacobi–type SVD algorithm

Suppose that a matrix G ∈ Fm×n, where F denotes the real (R) or the complex
(C) field, is given. Without loss of generality, it may be assumed that m ≥ n. If
not, instead of G, the algorithm will transform G∗.

Ifm� n, or if the column rank of G is less than n, then the first step of the SVD
is to preprocess G by the QR factorization with column pivoting [25] and, possibly,
row pivoting or row presorting,

G = PrQRPc = PrQ

[
R0

0

]
Pc, (2.1)

where Q is unitary, R0 ∈ Fk×n is upper trapezoidal with the full row rank k, while
Pr and Pc are permutations. If k < n, then R0 should be factored by the LQ
factorization,

R0 = P ′rLQ
′P ′c = P ′r

[
L0 0

]
Q′P ′c. (2.2)

Finally, L0 ∈ Fk×k is a lower triangular matrix of full rank. From the SVD of L0,
by (2.1) and (2.2), it is easy to compute the SVD of G. Thus, it can be assumed
that the initial G is square and of full rank n, with n ≥ 2.

The one-sided Jacobi SVD algorithm for G can be viewed as the implicit two-
sided Jacobi algorithm which diagonalizes either G∗G or GG∗. Let, e.g., H := G∗G.
Stepwise, a suitably chosen pair of pivot columns gp and gq of G is orthogonal-
ized by postmultiplying the matrix

[
gp gq

]
by a Jacobi plane rotation V̂pq, which

diagonalizes the 2× 2 pivot matrix Ĥpq,

Ĥpq =

[
hpp hpq
h∗pq hqq

]
=

[
g∗pgp g

∗
pgq

g∗qgp g
∗
qgq

]
=

[
g∗p
g∗q

] [
gp gq

]
, (2.3)

such that
V̂ ∗pqĤpqV̂pq = diag(λ̂p, λ̂q). (2.4)

2.1. Jacobi–type SVD algorithm

In case of convergence, after a number of steps, the product of transformation
matrices will approach the set of eigenvector matrices. Let V be an eigenvector
matrix of H. Then

Λ = V ∗HV = (V ∗G∗)(GV), Λ = diag(λ1, λ2, . . . , λn).

The resulting matrix GV has orthogonal columns and can be written as

GV = UΣ, (2.5)

where U is unitary and Σ = Λ1/2 is a diagonal matrix of the column norms of GV .
The matrix U of the left singular vectors results from scaling the columns of GV

by Λ−1/2, so only the right singular vectors V have to be obtained, either by accu-
mulation of the Jacobi rotations applied to G, or by solving the linear system (2.5)
for V , with the initial G preserved. The system (2.5) is usually triangular, since G
is either preprocessed in such a form, or already given as a Cholesky factor. Solving
(2.5) is therefore faster than accumulation of V , but it needs more memory and may
be less accurate if G is not well-conditioned (see [27]).

The choice of pivot indices p, q in successive steps is essential for possible paral-
lelization of the algorithm. Let the two pairs of indices, (p, q) and (p′, q′), be called
disjoint , or non-colliding , if p 6= q, p′ 6= q′, and {p, q} ∩ {p′, q′} = ∅. Otherwise, the
pairs are called colliding . These definitions are naturally extended to an arbitrary
number of pairs. The pairs of indexed objects (e.g., the pairs of matrix columns) are
disjoint or (non)colliding if such are the corresponding pairs of the objects’ indices.

The one-sided Jacobi approach is better suited for parallelization than the two-
sided one, since it can simultaneously process disjoint pairs of columns. This is still
not enough to make a respectful parallel algorithm. In the presence of a memory
hierarchy, the columns of G and V should be grouped together into block-columns,

G =
[
G1 G2 · · · Gb

]
, V =

[
V1 V2 · · · Vb

]
. (2.6)

In order to balance the workload, the block-columns should be (almost) equally
sized.

Usually, a parallel task processes two block-columns Gp and Gq, indexed by a sin-
gle pivot block-pair, either by forming the pivot block-matrix Hpq and its Cholesky
factor Rpq,

Hpq =

[
G∗pGp G∗pGq

G∗qGp G∗qGq

]
=

[
G∗p
G∗q

] [
Gp Gq

]
, P ∗HpqP = R∗pqRpq, (2.7)

or by shortening the block-columns
[
Gp Gq

]
directly, by the QR factorization,

[
Gp Gq

]
P = Qpq

[
Rpq

0

]
. (2.8)

When it is easy from the context to disambiguate a reference to the (block-)columns
from a one to their (block-)indices, in what follows “the (block-)columns indexed by
a pivot (block-)pair” expression will be shortened to “a (block-)pivot pair”.

9

2. The Jacobi-type multilevel (H)SVD algorithm for the GPU(s)

The diagonal pivoting in the Cholesky factorization, or analogously, the column
pivoting in the QR factorization should be employed, if possible (see [69] for further
discussion, involving also the HSVD case). However, the pivoting in factorizations
(2.7) or (2.8) may be detrimental to performance of the parallel implementations
of the respective factorizations, so the factorizations’ nonpivoted counterparts have
to be used in those cases (with P = I). Either way, a square pivot factor Rpq is
obtained. Note that the unitary matrix Qpq in the QR factorization is not needed
for the rest of the Jacobi process, and it consequently does not have to be computed.

Further processing of Rpq is determined by a variant of the Jacobi algorithm.
The following variants are advisable: block-oriented variant (see [39]), in which
the communication (or memory access) overhead between the tasks is negligible
compared to the computational costs, and full block variant (see [40]) otherwise.

In both variants, Rpq is processed by an inner one-sided Jacobi method. In the
block-oriented variant, exactly one (quasi-)sweep of the inner (quasi-)cyclic1 Jacobi
method is allowed. Therefore, Rpq is transformed to R′pq = RpqṼpq, with Ṽpq being
a product of the rotations applied in the (quasi-)sweep. In the full block variant,
the inner Jacobi method computes the SVD of Rpq, i.e., RpqVpq = UpqΣpq. Let V ′pq
denote the transformation matrix, either Ṽpq from the former, or Vpq from the latter
variant.

Especially for the full block variant, the width of the block-columns should be
chosen such that Rpq and V ′pq jointly saturate, without being evicted from, the fast
local memory (e.g., the private caches) of a processing unit to which the block-
columns

[
Gp Gq

]
are assigned. This also allows efficient blocking of the matrix

computations in (2.7) (or (2.8)) and (2.9), as illustrated in subsections 2.3.1. and
2.3.5.

Having computed V ′pq, the block-columns of G (and, optionally, V) are updated,[
G′p G′q

]
=
[
Gp Gq

]
V ′pq,

[
V ′p V ′q

]
=
[
Vp Vq

]
V ′pq. (2.9)

The tasks processing disjoint pairs of block-columns may compute concurrently with
respect to each other, up to the local completions of updates (2.9). A task then
replaces (at least) one of its updated block-columns of G by (at least) one updated
block-column of G from another task(s). Optionally, the same replacement pattern
is repeated for the corresponding updated block-column(s) of V . The block-column
replacements entail a synchronization of the tasks. The replacements are performed
by communication or, on shared-memory systems, by assigning a new pivot block-
pair to each of the tasks.

The inner Jacobi method of both variants may itself be blocked, i.e., may divide
Rpq into block-columns of an appropriate width for the next (usually faster but
smaller) memory hierarchy level. This recursive blocking principle terminates at
the pointwise (nonblocked) Jacobi method, when no advantages in performance
could be gained by further blocking. In that way a hierarchical (or multilevel)
blocking algorithm is created, with each blocking level corresponding to a distinct
communication or memory domain (see [68]).

1See section 2.2. for the relevant definitions.

10

2.2. Parallel pivot strategies

For example, in the case of a multi-GPU system, access to the global memory
(RAM) of a GPU could be identified as slow compared to the shared memory and
register access, and data exchange with another GPU could be identified as slow
compared to access to the local RAM. This suggests the two-level blocking for a
single-GPU algorithm, and the three-level for a multi-GPU one.

The inner Jacobi method, whether blocked or not, may be sequential or parallel.
Both a single-GPU and a multi-GPU algorithm are examples of a nested parallelism.

Similar ideas hold also for the HSVD. If G ∈ Fm×n, m ≥ n, and rank(G) =
rank(GJG∗), where J = diag(±1), with the number of positive signs in J already
given (e.g., by the symmetric indefinite factorization with complete pivoting [70]),
then the HSVD of G is (see [60, 80])

G = U

[
Σ
0

]
V ∗, Σ = diag(σ1, . . . , σn), σ1 ≥ σ2 ≥ · · ·σn ≥ 0. (2.10)

Here, U is a unitary matrix of order m, while V is J-unitary (i.e., V ∗JV = J) of
order n. The HSVD in (2.10) can be computed by orthogonalization of either the
of columns of G∗ by trigonometric rotations [23], or the columns of G by hyperbolic
rotations [79].

A diagonalization method for the symmetric definite (or indefinite) matrices
requires only the partial SVD (or HSVD), i.e., the matrix V is not needed. With
the former algorithm, the eigenvector matrix U should be accumulated, but with
the latter, it is easily obtainable by scaling the columns of the final G. Thus, the
hyperbolic algorithm is advantageous for the eigenproblem applications, as shown
in [69]. From the HSVD of G, as in (2.10), it immediately follows the EVD of
A := GJG∗, since (consider the case with m = n, for simplicity)

AU = (GJG∗)U = (UΣV ∗JV ΣU∗)U = UΣ2J(U∗U) = UΣ2J,

with the columns of U being the eigenvectors, and Σ2J being the eigenvalues of A.
In the following it is assumed that F = R, but everything, save the computation

of the Jacobi rotations and the hardware-imposed block sizes, is valid also for F = C.

2.2. Parallel pivot strategies

In each step of the classical, two-sided Jacobi (eigenvalue) algorithm, the pivot
strategy seeks and annihilates an off-diagonal element hpq with the largest magni-
tude. This approach has been generalized for the parallel two-sided block-Jacobi
methods [7]. However, the one-sided Jacobi algorithms would suffer from a pro-
hibitive overhead of forming and searching through the elements of H = G∗G. In
the parallel algorithm there is an additional problem of finding bn/2c off-diagonal
elements with large magnitudes, that can be simultaneously annihilated. Therefore,
a cyclic pivot strategy—a repetitive, fixed order of annihilation of all off-diagonal
elements of H—is more appropriate for the one-sided algorithms.

More precisely, let Pn be the set {(i, j) | 1 ≤ i < j ≤ n} of all pivot pairs, i.e.,
pairs of indices of the elements in the strictly upper triangle of a matrix of order

11

2. The Jacobi-type multilevel (H)SVD algorithm for the GPU(s)

n, and let τ = |Pn| be the cardinality of Pn. Obviously, τ = n(n − 1)/2. A pivot
strategy of order n is a function Pn : N→ Pn that associates with each step k ≥ 1 a
pivot pair (p(k), q(k)).

If Pn is a periodic function, with the fundamental period υ, then, for all i ≥ 1,
the pivot sequences Ci(υ) = (Pn(k) | (i−1)υ+1 ≤ k ≤ iυ), of length υ, are identical.
Consider a case where such a sequence contains all the pivot pairs from Pn. Then, if
υ = τ , Pn is called a cyclic strategy and Ci(υ) is its i-th sweep. Otherwise, if υ > τ ,
Pn is called a quasi-cyclic strategy and Ci(υ) is its i-th quasi-sweep. It follows that
a (quasi-)cyclic strategy is completely defined by specifying its (quasi-)sweep as a
pivot sequence (also called a pivot ordering , since it establishes a total order on Pn),
the properties of which are described above. Therefore, a (quasi-)cyclic strategy (a
function) can be identified with such a pivot ordering (a finite sequence).

A Jacobi method is called (quasi-)cyclic if its pivot strategy is (quasi-)cyclic. In
the (quasi-)cyclic method the pivot pair therefore runs through all elements of Pn
exactly (at least) once in a (quasi-)sweep, and repeats the same sequence until the
convergence criterion is met.

The reader is referred to the standard terminology of equivalent, shift-equivalent
and weakly equivalent strategies [66]. In what follows, a (quasi-)cyclic pivot strategy
will be identified with its first (quasi-)sweep to facilitate applications of the existing
results for finite sequences to the infinite but periodic ones.

A cyclic Jacobi strategy is perfectly parallel (p-strategy) if it allows simultaneous
annihilation of as many elements of H as possible. More precisely, let

t =
⌊n

2

⌋
, s =

{
n− 1, n even,
n, n odd,

(2.11)

and then exactly t disjoint pivot pairs can be simultaneously processed in each of the
s parallel steps (p-steps). As the p-strategies for an even n admit more parallelism
within a p-step, i.e., one parallel task more than the p-strategies for n− 1, with the
same number of p-steps in both cases, it is assumed that n is even.

A definition of a p-strategy closest to a given sequential strategy is now pro-
vided. The motivation was to explore whether a heuristic based on such a notion
could prove valuable in producing fast p-strategies from the well-known row- and
column-cyclic sequential strategies. The numerical testing (see section 2.5.) strongly
supports an affirmative answer.

Let O be the pivot ordering2 of a cyclic strategy of order n. Then, for each
pivot pair (i, j) ∈ Pn there exists an integer k such that (i, j) = (p(k), q(k)), where
(p(k), q(k)) ∈ O. For any cyclic strategy O′, and for each (p′(k), q′(k)) ∈ O′, there
is (p(`(k)), q(`(k))) ∈ O, such that

(p′(k), q′(k)) = (p(`(k)), q(`(k))). (2.12)

For 1 ≤ k ≤ τ , the values `(k) are all distinct, and lie between 1 and τ , inclusive.
For a fixed strategy O, this induces a one-to-one mapping IO, from the set of all

2In what follows, when talking about the (quasi-)cyclic pivot strategies, their corresponding
pivot orderings will be meant instead.

12

2.2. Parallel pivot strategies

cyclic strategies on matrices of order n to the symmetric group Sym(τ), as

IO(O′) = (`(1), `(2), . . . , `(k), . . . , `(τ)) ∈ Sym(τ),

with `(k) defined as in (2.12). For example, IO(O) = (1, 2, . . . , k, . . . , τ), i.e., the
identity permutation.

Definition 2.1. For any two cyclic strategies, O1 and O2, let it be said that O1 is
closer to O than O2, and let that be denoted by O1 �O O2, if IO(O1) � IO(O2), where
� stands for the lexicographic ordering of permutations.

The relation “strictly closer to O”, denoted by ≺O, is defined similarly. Note
that �O is a total order on the finite set of all cyclic strategies with a fixed n,
and therefore, each non-empty subset (e.g., a subset of all p-strategies) has a least
element. Now, take O ∈ {Rn,Cn}, where Rn and Cn are the row-cyclic and the
column-cyclic strategies, respectively. Then there exists a unique p-strategy R

‖
n

(resp. C‖n) that is closest to Rn (resp. Cn).
Interpreted in the graph-theoretical setting, a task of finding the closest p-

strategy amounts to a recursive application of an algorithm for generating all max-
imal independent sets (MIS) in lexicographic order (see, e.g., [45]). Let G be a
simple graph with the vertices enumerated from 1 to τ , representing pivot pairs
from a prescribed cyclic strategy On, and the edges denoting that two pivot pairs
collide (share an index). Note that |MIS(G)| ≤ t, where t is defined by (2.11). Then
a MIS(G) with t vertices is an admissible p-step, and vice versa. The same holds
for the graph G′ = G \ S, where S is any admissible p-step.

Since any permutation of pivot pairs in a p-step generates an equivalent (called
step-equivalent) p-strategy, the vertices in each MIS can be assumed to be sorted
in ascending order. With a routine next_lex, returning the lexicographically next
MIS with t vertices (or ∅ if no such sets are left), Algorithm 1 always produces O‖n,
the p-strategy closest to On. Note that, at the suitable recursion depths, next_lex
could prepare further candidates in parallel with the rest of the search, and parallel
searches could also be launched (or possibly canceled) on the waiting candidates.

Algorithm 1, however optimized, might still not be feasible even for the off-line
strategy generation, with n sufficiently large. However, there are two remedies:
first, no large sizes are needed due to the multi-level blocking, and, second, it will
be shown in what follows that it might suffice to generate R‖n (or C‖n) only for n = 2o,
with o odd.

Lemma 2.2. For all even n, the sequence of pivot pairs

S(1)
n = ((2k − 1, 2k) | 1 ≤ k ≤ n/2)

is the first p-step of R‖n and C
‖
n.

Proof. Note that S(1)
n is an admissible p-step, i.e., there exists a p-strategy having

S
(1)
n as one of its p-steps. For example, the Brent and Luk strategy starts with it.
The first pivot pair in Rn and Cn is (1, 2), i.e., (2k− 1, 2k) for k = 1. If all pivot

pairs in Rn or Cn containing indices 1 or 2 are removed, the first pivot pair in the

13

2. The Jacobi-type multilevel (H)SVD algorithm for the GPU(s)

Algorithm 1: MIS-based generation of the p-strategy O
‖
n closest to On.

Description: Input: the graph G induced by On. Output: O‖n (initially ∅).
boolean gen_strat(in G);
begin

if G = ∅ then return true; // no more pivot pairs (success)
begin loop

S ← next_lex(G); // take a lexicographically next MIS...
if S = ∅ then return false; // ...but there are none; fail

append S to O
‖
n; // ...else, S is a new p-step candidate

if gen_strat(G \ S) then return true; // try recursively...

remove S from the back of O‖n; // ...and backtrack if failed
end loop;

end

remaining sequence is (3, 4), i.e., (2k − 1, 2k) for k = 2. Inductively, after selecting
the pivot pair (2`− 1, 2`), with ` < n/2, and removing all pivot pairs that contain
2k − 1 or 2k, for all 1 ≤ k ≤ `, the first remaining pivot pair is (2`′ − 1, 2`′) for
`′ = `+ 1.

A matrix of order 2n can be regarded at the same time as a block matrix of order
n with 2× 2 blocks (see Figure 2.1). As a consequence of Lemma 2.2, after the first
p-step of either R

‖
2n or C

‖
2n (i.e., S(1)

2n), the diagonal 2 × 2 blocks are diagonalized,
and the off-diagonal blocks are yet to be annihilated.

Once the diagonal blocks have been diagonalized, it is easy to construct the clos-
est block p-strategy Õ

‖
2n from O

‖
n, since each pivot pair of O‖n corresponds uniquely

to an off-diagonal 2× 2 block. A p-step of O‖n is expanded to two successive p-steps
of Õ‖2n. The expansion procedure is given by Algorithm 2, for On ∈ {Rn,Cn}, and
illustrated, for n = 6 and On = Rn, with Figure 2.1. Note that a pivot pair of O‖n
contributes two pairs, (nw, se) and either (ne, sw) or (sw,ne), of non-colliding
and locally closest pivot pairs in its corresponding block.

It is trivial to show that, with O
‖
n given, the p-strategy Õ

‖
2n generated by Al-

gorithm 2 is indeed the closest block p-strategy; any other such S
‖
2n ≺O Õ

‖
2n would

induce, by the block-to-pivot correspondence, a strategy S
‖
n ≺O O

‖
n, which is im-

possible. Moreover, it has been verified that, for n ≤ 18 and both Rn and Cn
strategies, Õ‖2n = O

‖
2n, and although lacking a rigorous proof, it can be claimed that

the same holds for all even n. Therefore, as a tentative corrolary, to construct O‖m,
for Om ∈ {Rm,Cm} and m = 2ko, with k > 1 and o odd, it would suffice to construct
O
‖
n, n = 2o, and apply, k − 1 times, Algorithm 2.
For example, a three-level blocking algorithm for four GPUs and a matrix of order

15 · 1024 requires O‖8, O
‖
240, and O

‖
32 strategies. To find O

‖
240, it suffices to construct

O
‖
30, and expand (i.e., duplicate) it 3 times, since 240 = 23 · (2 · 15). Thus, the

O
‖
m strategies should be pretabulated once, for the small, computationally feasible

orders m, and stored into a code library for future use. The expansion procedure

14

2.2. Parallel pivot strategies

Algorithm 2: Expansion of O‖n to Õ
‖
2n for On ∈ {Rn,Cn}.

Description: Input: O‖n, On ∈ {Rn,Cn}. Output: Õ‖2n.
S
(i)
n is the i-th p-step of O‖n, and S

(i)
2n is the i-th p-step of Õ‖2n.

S
(1)
2n ← ((2k − 1, 2k) | 1 ≤ k ≤ n);

for i← 2 to 2n− 1 do // construct S
(i)
2n

S
(i)
2n = ∅;

foreach (p, q) ∈ S(idiv 2)
n do

if even(i) then
nw = (2p− 1, 2q − 1); se = (2p, 2q); append (nw, se) to S(i)

2n ;
else

ne = (2p− 1, 2q); sw = (2p, 2q − 1);
if On = Rn then append (ne, sw) to S(i)

2n else append (sw,ne) to S(i)
2n ;

end if
end foreach

end for

1

2

3

4

5

6

7

8

9

10

11

12

1

2

3

4

5

6

7

8

9

10

11

12

1

2

3

4

5

6

7

8

9

10

11

12

1

2

3

4

5

6

7

8

9

10

11

12

1

2

3

4

5

6

7

8

9

10

11

12

1

2

3

4

5

6

7

8

9

10

11

12

Figure 2.1: Expansion of R‖6 to R
‖
12, according to Algorithm 2. From left to right:

the black disks represent the odd p-steps, while the black squares stand for the even
p-steps.

can be performed at run-time, when the size of input is known.
The strategies just described progress from the diagonal of a matrix outwards.

However, if the magnitudes of the off-diagonal elements in the final sweeps of the
two-sided Jacobi method are depicted, a typical picture [29, page 1349] shows that
the magnitudes rise towards the ridge on the diagonal. That was a motivation

15

2. The Jacobi-type multilevel (H)SVD algorithm for the GPU(s)

to explore whether a faster decay of the off-diagonal elements far away from the
diagonal could be reached by annihilating them first, and the near-diagonal elements
last. This change of annihilation order is easily done by reverting the order of pivot
pairs in a sweep of R̃‖n and C̃

‖
n. Formally, a reverse of the strategy On is the strategy3

On, given by
On := ((p(τ − k + 1), q(τ − k + 1)) | 1 ≤ k ≤ τ),

where On = ((p(k), q(k)) | 1 ≤ k ≤ τ). Thus, R‖n and C‖n progress inwards, ending
with S(1)

n reversed. The reverses of both R
‖
n and R̃

‖
n (resp. C‖n and C̃

‖
n) are tentatively

denoted by the same symbol.
For m = 2k, both R

‖
m and C

‖
m can be generated efficiently by Algorithm 1, since

(as an empirical, but not yet proven or well understood fact) no backtracking occurs.
In this special case it holds that R‖m = R̃

‖
m, C‖m = C̃

‖
m, and R

‖
m is step-equivalent to

C
‖
m. The former claims are verified for k ≤ 14.
The respective reverses, R‖m and C‖m, operate in the same block-recursive fashion

(preserved by Algorithm 2) of the Mantharam–Eberlein BR strategy [51], i.e., pro-
cessing first the off-diagonal block, and then simultaneously the diagonal blocks of
a matrix. It follows that all three strategies are step-equivalent. Thus, R‖n and C‖n
can be regarded as the generalizations of the BR strategy to an arbitrary even order
n, albeit lacking a simple communication pattern. Conversely, for the power-of-two
orders, R‖m and C‖m might be replaced by the BR strategy with a hypercube-based
communication.

2.2.1. Generating the Jacobi p-strategies

Finding a single new class of p-strategies is an extremely difficult task. It requires
some ingenuity and a lot of luck, since there is no recipe for even starting to tackle
the problem. Ideally, such a new class should be easy to generate, should preserve
or enhance both the speed and the accuracy of the algorithms that employ it, and
should be provably convergent.

The closest semblances of a recipe are contained in two papers [54, 66], by
Nazareth and Shroff and Schreiber, respectively. The former one gives an effective
algorithm for creating a family of the similar classes of the Jacobi strategies, but
only the sequential ones. The latter offers a way to prove convergence of a parallel
strategy, by reducing it to a wavefront ordering by a series of the equivalence rela-
tions, i.e., the convergence-preserving transformations of the Jacobi orderings. But
both papers stop short of giving an effective procedure for generating a yet unseen
p-strategy, or for proving convergence of a strategy that is not weakly equivalent to
a wavefront one.

Let it first be shown that the Nazareth’s algorithm [54, Procedure P] generates
only the sequential strategies for a nontrivial matrix order.

Proposition 2.3. For a matrix order n > 3, the procedure P from [54] generates
only the sequential Jacobi strategies.

3Here, the reverse is denoted by a mirror image of the strategy’s symbol, but it is also common
to denote the reverse of O by O← or O←.

16

2.2. Parallel pivot strategies

Proof. In the step B of the procedure P, the two nonempty sets of consecutive
indices, G1 = {k, k+ 1, . . . , `} and G2 = {`+ 1, . . . ,m− 1,m}, are obtained. Then,
in the step C, a list of pairs L is formed by picking any member of G1 and pairing
it with every member of G2 (taken in any order), or vice versa.

If either µ = |G1| > 1 or ν = |G2| > 1, the list L will contain a sublist, L’, of the
colliding consecutive pairs of the form (p, q1), (p, q2), . . . , (p, qν) (or (p, qµ)), which
cannot be present in the same p-step. Note that n > 3 implies that µ > 1 or ν > 1
in the first level of a recursive call to P. Also, it is implied that either µ > 2 or
ν > 2, since µ+ ν = n > 3. Therefore, more than 2 elements will exist in L’, which
entails that L’ cannot be split such that the first part of it belongs to one p-step,
and the rest to the following p-step.

Now, a question could be made if the following principle might lead to a devel-
opment of a “decent” parallel strategy: take a provably convergent, sequential one,
and start applying all equivalence transformations known. After each transforma-
tion having been applied, check if the new strategy is perfectly parallel; if not, keep
on trying.

But leaving the sheer combinatorial complexity of such an approach asside, for
all but the very small matrix orders, a question on generalization still remains: given
a p-strategy for order n, how to efficiently generate a p-strategy for order m 6= n,
that operates in a fashion similar enough to the given one that they both may be
considered to belong to the same class? Therefore, a complementary set of tools is
needed; not only a number of equivalence transformations for an arbitrary, albeit
fixed matrix order, but a set of prinicples that can “expand” or “contract” a given
convergent (p-)strategy, and still obtain a convergent (p-)strategy as a result. The
arsenal might include, e.g., the duplication principle from Algorithm 2, if it can be
proven to posses such a property.

Note that the duplication principle will leave a lot of matrix orders uncovered. A
way of “interpolating” between them, e.g., generating a p-strategy for even n, where
2k < n < 2k+1, from the ones for orders 2k and 2k+1, would instantly generalize the
Mantharam–Eberlein p-strategies to any even order.

For now, let those aims remain labeled as the future work, and let the generation
of the “closest-to” p-strategies from the previous section be explained in more detail.

The MIS-based generation of R‖

For illustration of the graph-based approach, via maximal independent sets, to
generate R‖ (similarly for C‖), take the first nontrivial even matrix order, n = 4 (for
n = 2, there is only one Jacobi strategy, which is both R

‖
2 and C

‖
2).

Then, form a collide graph G4 for R4, whose vertices are the pivot pairs taken
from R4, enumerated in order of their appearance in the serial strategy. Note that
there are n(n−1)/2 vertices for a cyclic strategy of order n. There exists an edge in
G4 between a vertex (p, q) = v and a vertex (p′, q′) = v′ 6= v if and only if the pivot
pairs v and v′ collide (i.e., share an index). The first subfigure of Figure 2.2 shows
G4 with zero-based indexing of both the vertices and the matrix rows/columns.

17

2. The Jacobi-type multilevel (H)SVD algorithm for the GPU(s)

0[0,1]

1[0,2]

2[0,3]

3[1,2]

4[1,3]

5[2,3]

0[0,1]

1[0,2]

2[0,3]

3[1,2]

4[1,3]

5[2,3]

0[0,1]

1[0,2]

2[0,3]

3[1,2]

4[1,3]

5[2,3]

0[0,1]

1[0,2]

2[0,3]

3[1,2]

4[1,3]

5[2,3]

Figure 2.2: Generating the parallel steps of R‖4; left to right, top to bottom.

In general, the graph density of Gn does not depend on the underlying cyclic
Jacobi strategy. To show that, consider the following Proposition 2.4.

Proposition 2.4. Given a matrix of order n, and a pivot pair (p, q), with p < q,
the number of pivot pairs colliding with (and including) (p, q), denoted by CP (n),
does not depend on either p or q, and is equal to 2(n− 1)− 1.

Proof. Take a set of all the elements of the matrix that have either p or q or both
as at least one of their indices. That set comprises of (and only of) the rows p and
q, and the columns p and q. There are n elements in each row and in each column,
which makes for 4n elements, but the ones that are in the intersections of the row p
or q with the column p or q, i.e., (p, p), (p, q), (q, p), (q, q), are thus counted twice,
so the total number of elements indexed by either p or q is 4n− 4.

As those elements on the diagonal, i.e., (p, p) and (q, q), are of no interest here,
there remain (4n− 4)− 2 elements, evenly distributed in the strictly upper and in
the strictly lower triangle of the matrix. If only those elements in the strictly upper
triangle are counted, that leaves us with (4(n− 1)− 2)/2 = 2(n− 1)− 1 pivot pairs,
as claimed.

From that it immediately follows that all vertices of Gn have the same degree,

18

2.2. Parallel pivot strategies

that depends on n only, as shown in Corollary 2.5.

Corollary 2.5. The degree of a vertex of Gn is equal to δn := CP (n)−1 = 2(n−2).

Proof. For an arbitrary vertex of Gn, take it out of the set of the pivot pairs colliding
with it and apply Proposition 2.4.

For example, δ4 = 4, as it can be seen on Figure 2.2; δ6 = 8, as on Figure 2.3;
and δ10 = 16, as on Figure 2.8. Corollary 2.6 ends these observations, and it will be
used in the optimized generation procedure shown in Listing 1.

00[0,1]

01[0,2]

02[0,3]

03[0,4]

04[0,5]

05[1,2]

06[1,3]

07[1,4]

08[1,5]

09[2,3]

10[2,4]

11[2,5]

12[3,4]

13[3,5]

14[4,5]

Figure 2.3: Generating the first parallel step of R‖6.

Corollary 2.6. Given a matrix of order n, and a pivot pair (p, q), with p < q,
the number of pivot pairs non-colliding with (p, q), denoted by NCP (n), is equal to
n(n− 1)/2− (2(n− 1)− 1).

19

2. The Jacobi-type multilevel (H)SVD algorithm for the GPU(s)

00[0,1]

01[0,2]

02[0,3]

03[0,4]

04[0,5]

05[1,2]

06[1,3]

07[1,4]

08[1,5]

09[2,3]

10[2,4]

11[2,5]

12[3,4]

13[3,5]

14[4,5]

Figure 2.4: Generating the second parallel step of R‖6.

Proof. The number of pivot pairs for a matrix of order n is a number of elements
in the strictly upper triangle of the matrix, which is n(n− 1)/2. Subtracting from
that the number of pivot pairs colliding with (p, q), as per Proposition 2.4 above,
concludes the proof.

The Figures 2.2, 2.3, 2.4, 2.5, 2.6, and 2.7 should be interpreted as follows. The
vertices with a black border and a white background are “inactive” ones, that are
out of consideration in a particular step of Algorithm 1. The vertices with a red
border and a yellow background are the “active” ones, that are to form the next
maximal independent set (i.e., a p-step). The edges incident to them are colored
blue instead of black, and are to be removed, alongside the vertices, to progress to
the next step. The vertices and edges of a very pale color are those already removed
in some of the previous steps. Finally, the vertices with a pink background are the
ones where the algorithm “backtracked”. They were considered to form a p-step,

20

2.2. Parallel pivot strategies

00[0,1]

01[0,2]

02[0,3]

03[0,4]

04[0,5]

05[1,2]

06[1,3]

07[1,4]

08[1,5]

09[2,3]

10[2,4]

11[2,5]

12[3,4]

13[3,5]

14[4,5]

Figure 2.5: Generating the third parallel step of R‖6.

but such a choice would lead to a MIS with less than n/2 pivot pairs, and therefore
had to be discarded, as it will be detailed below.

For n = 4, Figure 2.2 shows that the vertices 0 and 5 form the first MIS. Starting
from the vertex 0, i.e., from the pivot pair (0, 1), the first independent vertex is 5,
i.e., the first non-colliding pivot pair is (2, 3). After the vertices 0 and 5 have been
removed, from the reduced graph the vertex 1 is taken and paired with the first
independent vertex 4. Finally, after the vertices 1 and 4 have also been removed,
there are vertices 2 and 3 left, without any edges, so they can form the last p-step.
Here, there is no backtracking involved, i.e., a “greedy” approach to choosing the
vertices to complete a MIS works in every step. It seems that the greedy method
also works for n being any power of 2, since no backtracking has been observed in
all such instances tested.

A more difficult situation happens with n = 6, and all other non-power-of-2
instances tried. Generating the first p-step, as shown on Figure 2.3, proceeds as

21

2. The Jacobi-type multilevel (H)SVD algorithm for the GPU(s)

00[0,1]

01[0,2]

02[0,3]

03[0,4]

04[0,5]

05[1,2]

06[1,3]

07[1,4]

08[1,5]

09[2,3]

10[2,4]

11[2,5]

12[3,4]

13[3,5]

14[4,5]

Figure 2.6: Generating the fourth parallel step of R‖6.

explained, starting from the vertex 0 and greedily adding the independent vertices.
But a backtrack is needed in the second step (see Figure 2.4). After taking the
vertex 1, the next candidate should be the vertex 6. But if so, then all the indices
0, 1, 2, and 3 would be exhausted, and there would be no non-colliding pivot left to
complete a MIS with three vertices. Therefore, the vertex 7 is chosen instead, and
that suffices to proceed as usual.

Should no MIS have been completed in a particular step (not a case here), the
whole step should be aborted by backtracking. Then, the previous MIS would have
to be replaced by a lexicographically greater one, if possible. If not, the backtracking
would propagate yet another step back, and so on. The procedure cannot ultimately
fail, though, since the p-strategy sought for exists and will be found eventually.

The backtracking happens again in generation of the third p-step (see Figure 2.5).
Here, starting from the vertex 2, the next candidate is the vertex 5, but it has to
be discarded for reasons similar to above. However, the vertex 6 collides with the

22

2.2. Parallel pivot strategies

00[0,1]

01[0,2]

02[0,3]

03[0,4]

04[0,5]

05[1,2]

06[1,3]

07[1,4]

08[1,5]

09[2,3]

10[2,4]

11[2,5]

12[3,4]

13[3,5]

14[4,5]

Figure 2.7: Generating the fifth (last) parallel step of R‖6.

vertex 2, and the vertex 7 has already been removed, so the next candidate is the
vertex 8, from where the usual procedure succeeds.

A similar situation occurs for the fourth p-step (see Figure 2.6). Here, starting
from the vertex 3, the next candidate (the vertex 5) has to be discarded, but the
vertex 6 can be chosen to proceed as usual.

Finally, the last p-step of R‖6 is completed without backtracking, as shown in
Figure 2.7. Even more complex situation would occur with R

‖
10, so only the initial

G10 is shown in Figure 2.8.

The optimized generation of R‖

Implementing Algorithm 1 as an efficient computer program is far from trivial,
and has to resort to any and all optimizations possible to be able to generate all
p-strategies for n up to 42 (n = 46 is out of reach, at least without a heavy paral-

23

2. The Jacobi-type multilevel (H)SVD algorithm for the GPU(s)

lelization and vectorization). A subset of such optimizations relies on the properties
of the underlying row-cyclic strategy, so the implementation presented in Listing 1
is not as general as Algorithm 1 itself.

The code is thoroughly commented and should be self-explanatory. One may
argue that the set operations (intersection, difference) could be implemented using
bit sets (as they frequently are elsewhere), where bits of a vector register (or a couple
of registers) indicate presence or absence of a particular element from the set, and
the vector operations (bitwise ands and andnots, respectively) on those registers.

Another important operation is computing the cardinalities of sets represented in
such a way. On many modern machines there exists a “population count” instruction,
that returns a number of bits set in a word, for one or more words at once.

Such code should then be manually tuned or rewritten for each CPU architecture.
However, with 512-bit vector architectures already available, and the ones with even
wider registers on the horizon, the vectorization should be the first thing to try for
speeding up the code.

24

2.2. Parallel pivot strategies

Figure 2.8: A collide graph for the row-cyclic strategy of order 10.

25

2. The Jacobi-type multilevel (H)SVD algorithm for the GPU(s)

Listing 1: R‖ generation

1 #include <algor ithm>
2 #include <cs td l i b >
3 using namespace std ;
4 // Define N s.t. 2 ≤ N ≤ 254 and N is even!
5 // # of pivots in a parallel step
6 #define P ((N) >> 1u) // P = N/2
7 // # of parallel steps in a sweep
8 #define S ((N) − 1u) // S = N − 1
9 // # of entries in the strictly upper triangle of an N ×N matrix
10 #define E ((P) ∗ (S)) // E = P · S
11 #define N_1 ((N) − 1u)
12 #define P_1 ((P) − 1u)
13 #define E_1 ((E) − 1u)
14 // # of the pivots not colliding with a given one
15 #define NCP ((E) − (((N_1) << 1u) − 1u)) // NCP = E − (2(N − 1)− 1)
16 typedef unsigned char uchar ;
17 // Initial (here: row-cyclic) strategy is created in in_strat , as
18 // an array of (row,column), 0 ≤ row < column < N , pivot pairs.
19 stat ic struct pivot { uchar r , c ; } in_st rat [E] ;
20 typedef unsigned short ushort ;
21 // For a pivot pair from in_strat , there is a set of pivots that
22 // are independent from (i.e., non-colliding with) the chosen one.
23 // Only those pivots that come after the chosen one (let it be i)
24 // are stored in indep_set[i], while the size of such a set (at
25 // most NCP, but can be as low as 0) is recorded in indep_cnts[i].
26 stat ic ushort indep_sets [E_1] [NCP] ; // Ij := indep_sets[j]
27 // Active set of a given pivot is a set from which the candidates
28 // for the pivot’s successor in a step being generated are chosen.
29 // Active set of the first pivot in a step is the independent
30 // set of that pivot, without the pivots already put in used_set.
31 // Once a candidate j has been chosen from the active set of its
32 // predecessor i, the j’s active set is formed from those pivots
33 // following j in the active set of i that are independent from j.
34 stat ic ushort ac t i v e_se t s [E_1] [NCP] ; // Aj := active_sets[j]
35 stat ic ushort indep_cnts [E_1] ; // |Ij | := indep_cnts[j]
36 stat ic ushort act ive_cnts [E_1] ; // |Aj | := active_cnts[j]
37 // Keeps track of the pivots used so far to construct the partial
38 // parallel strategy. Initially empty, the set’s actual size is
39 // stored in used_cnt; it grows by speculatively appending , and
40 // shrinks by removing one pivot at the end of the set at a time.
41 stat ic ushort used_set [E] ; // U := used_set
42 // A buffer , when a sorted copy of used_set is needed , since the
43 // STL’s set algorithms require the elements in ascending order.
44 stat ic ushort tmp_set [E] ; // U ′ := tmp_set
45 stat ic ushort used_cnt ; // |U |, initially 0
46 stat ic unsigned long long btrack ; // # of ‘backtracks’
47 // .. EXECUTABLE CODE ..

26

2.2. Parallel pivot strategies

48 void make_pairs_and_indep_sets () // data initialization
49 {
50 // Generating pivot pairs...
51 ushort i = 0u ;
52 for (uchar r = 0u ; r < N_1; ++r) {
53 for (uchar c = r + 1u ; c < N; ++c) {
54 p ivot &pvt = in_strat [i ++];
55 pvt . r = r ; pvt . c = c ;
56 }
57 }
58
59 // Building independent sets...
60 // Note that only indices of the pivots in in_strat are stored!
61 for (i = 0u ; i < E_1; ++i)
62 for (ushort j = i + 1u ; j < E; ++j)
63 i f ((in_st rat [i] . r != in_strat [j] . r) &&
64 (in_strat [i] . r != in_strat [j] . c) &&
65 (in_strat [i] . c != in_strat [j] . r) &&
66 (in_strat [i] . c != in_strat [j] . c))
67 indep_sets [i] [indep_cnts [i]++] = j ;
68
69 // Asserting monotonically non-increasing cardinalities...
70 // Where it holds (e.g., for row-cyclic strategy), this property
71 // shall be used to speed up the early pruning of the unfeasible
72 // branches. It may not hold for an arbitrary initial strategy!
73 for (i = 1u ; i < E_1; ++i)
74 i f (indep_cnts [i] > indep_cnts [i − 1u])
75 e x i t (EXIT_FAILURE) ;
76 }
77
78 bool next_pivot () // a recursive routine that generates R

‖
N

79 {
80 // Determine if a new parallel step should begin (rem = 0), or
81 // if the current one should be expanded by another pivot...
82 const div_t qr = div (int (used_cnt) , int (P)) ;
83 i f (qr . rem) { // expanding the current partial parallel step
84 // take the index of the last pivot candidate from U
85 const ushort prev_ix = used_set [used_cnt − 1u] ;
86 // How many more pivots are needed to complete this step, not
87 // counting the one that is about to be candidated in this call?
88 const ushort needed = P_1 − ushort (qr . rem) ;
89 i f (needed) { // at least one more pivot is needed
90 // Ppix counts the number of indices NOT used so far in this step:
91 // to form rem pivots , rem distinct rows and the same number of
92 // distinct columns , different from rows, is needed , i.e., twice
93 // that in total, leaving N − 2 · rem = 2(P − rem) indices available.
94 const ushort P_pix = (P − ushort (qr . rem)) << 1u ;
95 const ushort prev_cnt = act ive_cnts [prev_ix] ; // |Aprev_ix|

27

2. The Jacobi-type multilevel (H)SVD algorithm for the GPU(s)

96 // (Over -)estimation of the length of a leading part of Aprev_ix

97 // that contains the viable candidates for the next pivot;
98 // first estimate: |Aprev_ix|, less the needed count.
99 ushort j , prev_cnt_ = prev_cnt − needed ;
100 // refine (shorten) the length of a leading part of Aprev_ix

101 for (j = 0u ; j < prev_cnt_ ; ++j) {
102 // a potential candidate from Aprev_ix

103 const ushort my_ix = ac t i v e_se t s [prev_ix] [j] ;
104 // If a candidate starts in row r, then it and its successors can
105 // only contain indices that are not less than r, since the column
106 // indices have to be greater than the corresponding row ones,
107 // and the row index of a pivot has to be greater than in any
108 // predecessor in the same step. So, there are at most N − r
109 // indices available to generate the pivots; if that is less than
110 // Ppix, the candidate is not viable , since not all indices could
111 // be covered if it were chosen. Stop iterating any further.
112 i f ((N − i n_st rat [my_ix] . r) < P_pix)
113 break ;
114 const ushort mync_cnt = indep_cnts [my_ix] ;
115 // "Fast" break, but only if |Ij | monotonically
116 // non-increasing w.r.t. j. Otherwise , continue.
117 i f (mync_cnt < needed)
118 break ;
119 }
120 i f (j < prev_cnt_) // shorten on early exit
121 prev_cnt_ = j ;
122
123 const ushort ∗const prev_end = // one-past-last of Aprev_ix

124 &(ac t i v e_se t s [prev_ix] [prev_cnt]) ;
125
126 // iterate over Aprev_ix, testing the pivot candidates in turn
127 for (ushort i = 0u ; i < prev_cnt_ ; ++i) {
128 // the candidate: my_ix := Aprev_ix[i]
129 const ushort my_ix = ac t i v e_se t s [prev_ix] [i] ;
130 // the candidate’s independent -pivot-list size, |Imy_ix|
131 const ushort mync_cnt = indep_cnts [my_ix] ;
132 const ushort ∗const prev_beg = // start of the tail
133 &(ac t i v e_se t s [prev_ix] [i + 1u]) ; // of Aprev_ix, after i
134 const ushort ∗const mync_beg = // start of Imy_ix

135 &(indep_sets [my_ix] [0 u]) ;
136 const ushort ∗const mync_end = // one-past-last of Imy_ix

137 &(indep_sets [my_ix] [mync_cnt]) ;
138 // about to generate Amy_ix

139 ushort ∗const my_dst = &(ac t i v e_se t s [my_ix] [0 u]) ;
140 // Amy_ix = Aprev_ix[i+ 1:] ∩ Imy_ix

141 act ive_cnts [my_ix] = ushort (s e t_ i n t e r s e c t i o n (
142 prev_beg , prev_end , mync_beg , mync_end , my_dst)
143 − my_dst) ;

28

2.2. Parallel pivot strategies

144 // If Amy_ix has enough pivots , there is a chance of completing
145 // this step; otherwise , cycle and try with the next candidate.
146 i f (act ive_cnts [my_ix] >= needed) {
147 used_set [used_cnt++] = my_ix ;
148 i f (next_pivot ())
149 return true ;
150 −−used_cnt ; // discard the candidate
151 ++btrack ; // backtrack
152 }
153 else // ‘backtrack’ (a kind of)
154 ++btrack ;
155 }
156 }
157 else { // choose a candidate for the last pivot in the step
158 // So far, P − 1 pivots have been chosen , i.e., P − 1 distinct rows
159 // and P − 1 distinct columns , different from rows. It means that
160 // 2(P − 1) = N − 2 indices have been used, so there is exactly one
161 // pivot candidate left (i.e., no need to iterate over Aprev_ix).
162 // take the first (and only) pivot from Aprev_ix

163 used_set [used_cnt++] = ac t i v e_se t s [prev_ix] [0 u] ;
164 // try to progress into the next step, backtrack on failure
165 i f (next_pivot ())
166 return true ;
167 −−used_cnt ; // discard the candidate
168 ++btrack ; // backtrack
169 }
170 }
171 else i f (used_cnt == E) // All available pivots used: SUCCESS!
172 return true ; // propagates up to stop the recursion
173 else {// a new parallel step’s head (first pivot) is sought for
174 // Which parallel step should be created?
175 const ushort i x = ushort (qr . quot) ;
176 i f (i x) { // not the first one, so used_set is not empty
177 // copy used_set to tmp_set
178 copy (used_set , used_set + used_cnt , tmp_set) ;
179 // sort tmp_set ascendingly
180 s o r t (tmp_set , tmp_set + used_cnt) ;
181 }
182
183 // The parallel steps are internally sorted , ascendingly w.r.t.
184 // the order that the pivots have in row-cyclic strategy. The
185 // first row-cyclic pivot therefore has to be at a head of some
186 // parallel step, the second pivot of another (since the first
187 // pivot collides with the second), and so on. The first paral-
188 // lel step has to begin with the first row-cyclic pivot; other-
189 // wise, by exchanging order of the steps (i.e., swapping the
190 // first step and the one which starts with the first pivot), a
191 // lexicographically closer parallel strategy would emerge. The

29

2. The Jacobi-type multilevel (H)SVD algorithm for the GPU(s)

192 // second parallel step has to start with the second row-cyclic
193 // pivot, the third step with the third pivot, and so on, follow -
194 // ing a similar argument. Therefore , step ix starts with pivot ix.
195
196 // If there are not enough non-colliding pivots available when the
197 // head is fixed, there is a global FAILURE (not just backtrack)!
198 i f (indep_cnts [i x] < P_1)
199 return fa l se ;
200 // Aix consists of all the pivots that are non-colliding with
201 // ix (i.e., of Iix), without those already used: Aix = Iix\U ′.
202 // If Aix does not contain enough pivot candidates to complete
203 // this step, there is a global FAILURE (not just backtrack)!
204 ushort ∗const dst = &(ac t i v e_se t s [i x] [0 u]) ;
205 i f ((act ive_cnts [i x] = ushort (s e t_d i f f e r e n c e (
206 &(indep_sets [i x] [0 u]) ,
207 &(indep_sets [i x] [indep_cnts [i x]]) ,
208 tmp_set , tmp_set + used_cnt , dst)
209 − dst)
210) < P_1)
211 return fa l se ;
212 // Fix the head to ix and try recursively to complete the
213 // strategy. Backtrack on failure to the previous step.
214 used_set [used_cnt++] = ix ;
215 i f (next_pivot ())
216 return true ;
217 −−used_cnt ; // discard the candidate
218 ++btrack ; // backtrack
219 // Discard is needed even though ix is the correct choice here,
220 // but some of the previous candidates in U have to get discarded
221 // as well. On all future attempts of creating this step, ix will
222 // be chosen as its head again, but with a different state of U.
223 }
224 return fa l se ;
225 }
226
227 int main () // initialize the data and start the recursive search
228 {
229 make_pairs_and_indep_sets () ;
230 i f (next_pivot ()) {
231 // Print out the parallel strategy recorded as a sequence of
232 // pivot indices in used_set: in_strat[used_set[i]], 0 ≤ i < E.
233 return EXIT_SUCCESS;
234 }
235 else // Should never happen!
236 return EXIT_FAILURE;
237 }
238 // specify N when compiling; e.g., ‘c++ -DN=42u this_code.cpp‘
239 // tested with: g++ (GNU), clang++ (Apple), cl.exe (Microsoft)

30

2.3. A single-GPU algorithm

On Figure 2.9 the performance of the code in Listing 1 is shown, alongside with
the number of backtracks needed for a particular strategy order. Please bear in
mind that the user time axis is in log10 scale! An older machine, with about 2/3
performance peak than the one used to get the timings, struggled for weeks to
generate R

‖
46 and R

‖
50, and had to be shut down before completion.

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42

0.001

0.01

0.1

1

10

100

1000

10000

100000
• Timing and backtrack count for generation of
the closest-to-row-cyclic parallel Jacobi strategy.

◦ The same as •, but probably unnecessary to
run, due to the strategy duplication principle. . .

• • • • •

•

•

•

•

•

•

0 3 24 1
,9
9
5

1
,1
7
8

1
1
3
,3
8
8

1
0
9
,4
7
1
,6
6
3

8
5
1
,0
9
7
,3
2
5
,2
8
4

2
8
,8
2
8
,5
6
7

3
,0
9
6
,4
1
5
,4
0
5

2
1
,2
4
0
,7
0
1
,8
1
8

◦ ◦ ◦ ◦

◦

◦

◦

◦

◦

◦

0 0 121 0

10
,5
49

76
6,
76
3

9,
37
7,
98
4,
29
0

0

74
6,
56
2,
94
6

366,208,768,760

matrix/strategy order

u
se
r
ti
m
e
[s
]
(l
og

1
0
sc
al
e)

Figure 2.9: The user part of the execution time, as reported by time utility, of
R‖ generation, with a number of pivot candidates discarded (i.e., the algorithm’s
“backtracks” counted as in Listing 1) per each strategy/matrix order, on an Intel
Core i5-4570 CPU @ 3.20GHz with clang-703.0.31 C++ compiler (macOS Sierra).

2.3. A single-GPU algorithm

In this section the two-level blocked Jacobi (H)SVD algorithm for a single GPU
is described. The algorithm is designed and implemented with NVIDIA CUDA [59]
technology, but is also applicable to OpenCL, and—at least conceptually—to the
other massively parallel accelerator platforms.

It is assumed that the following CUDA operations are correctly rounded, as
per IEEE standard 754-2008 [44]: +, −, ∗, /,

√
x, fma(x, y, z) = x · y + z, and

rcp(x) = 1/x. The round to nearest (tie to even) rounding is also assumed, unless
stated otherwise. Under those assumptions, the algorithm may work in any floating-
point precision available, but is tested in double precision only, on Fermi and Kepler
GPU architectures.

The algorithm performs all computation on a GPU, and consists of three kernels:

31

2. The Jacobi-type multilevel (H)SVD algorithm for the GPU(s)

1. initV – optional initialization of the matrix V to In, if the full (H)SVD is
requested (for the HSVD, V −T = JV J will be accumulated instead of V);

2. pStep – invoked once for each p-step in a block-sweep;
3. Sigma – a final singular value extraction (σi = ‖g′i‖2).

The CPU is responsible only for the main control flow, i.e., kernel invocations and
testing of the stopping criterion. Besides a simple statistics from each pStep call,
there is no other CPU ↔ GPU data transfer. It is assumed that the input factor G
is preloaded onto a GPU. The matrix J is kept partitioned as J = diag(I,−I) and
represent it with a parameter n+, where n+ denotes the number of positive signs in
J . The output data remaining on the GPU are G′ = UΣ (overwrites G), Σ, and
(optionally) V .

Data layout (i.e., array order) is column-major (as in Fortran), to be compatible
with (cu)BLAS and other numerical libraries, like MAGMA. The one-based array
indices will be written in parentheses, and zero-based ones in square brackets.

The matrices G and V are partitioned into b = n/16 block-columns, as in (2.6).
To simplify the algorithm, n must be divisible by 16 and b must be even. Otherwise,
if n is not divisible by 32, G has to be bordered as in [56, eq. (4.1)]. The reason lies
in the hardware constraints on the GPU shared memory configurations and a fixed
warp size (32 threads), as explained in what follows.

The main focus will be on pStep kernel, since the other two are straightforward.
An execution grid for pStep comprises b/2 thread blocks, i.e., one thread block per a
pivot block-pair. Each 2-dimensional thread block is assigned 32×16 = 512 threads,
and 16 kB of the GPU shared memory. That imposes a theoretical limit of 3 thread
blocks per multiprocessor, 100% occupancy on a Fermi, and 75% occupancy on a
Kepler GPU.

A chosen block p-strategy Sb is preloaded in the constant or global GPU memory
in a form of an O(1) lookup table Sb. A thread block t in a pStep invocation s during
a block-sweep r obtains from Sb the indices p and q, 1 ≤ p < q ≤ b, of the block-
columns t is about to process. In other words, a mapping (r, s, t) 7→ (p, q) ∈ Sb

establishes a correspondence between the thread blocks and the pivot block-pairs.
A thread block behavior is uniquely determined by the block indices p and q,

since the thread blocks in every pStep invocation are mutually independent. Com-
putation in a thread block proceeds in the three major phases:

1. factorize – shortens the pivot block-pair
[
Gp Gq

]
, according to (2.7) or

(2.8), into the triangular factor Rpq of order 32, and initializes V ′pq = I32;
2. orthogonalize – orthogonalizes Rpq by the inner pointwise Jacobi method,

according to the block-oriented or the full block variant of the Jacobi (H)SVD
algorithm (see section 2.1.), accumulating the applied rotations into V ′pq;

3. postmultiply – postmultiplies
[
Gp Gq

]
, and optionally

[
Vp Vq

]
, by V ′pq, ac-

cording to (2.9).

The matrices Rpq and V ′pq reside in the shared memory and together occupy 16 kB.
The entire allocated shared memory can also be regarded as a 64× 32 double preci-
sion matrix, named Gpq, of which Rpq aliases the lower half and V ′pq the upper half.

32

2.3. A single-GPU algorithm

There is no shared memory configuration that can hold two square double pre-
cision matrices of order that is a larger multiple of the warp size than 32. It is
therefore optimal to use the smallest shared memory configuration (16 kB), leaving
the highest amount (48 kB) of the L1 cache available. Also, since Rpq and V ′pq have
to be preserved between the phases, all phases need to be completed in the same
kernel invocation. That creates a heavy register pressure, which is the sole reason
why only one thread block (instead of three) can be active on a multiprocessor.

In the complex case (F = C), the shared memory configuration would be 48 kB
(suboptimal, 16 kB unutilized) or 32 kB, for a Fermi or a Kepler GPU, respectively.

The two approaches for factorize will be presented. The Cholesky factoriza-
tion of the Gram matrix Hpq, as in (2.7), is described in subsection 2.3.1. in two
subphases, and the QR factorization (2.8) is discussed in subsection 2.3.2.

2.3.1. The Cholesky factorization

The first subphase of factorize loads the successive 64×32 chunks of
[
Gp Gq

]
into Gpq. For a thread with the Cartesian indices [x, y] in a particular thread block,
x is its lane ID, and y its warp ID. Let y′ = y + 16 onwards. After a chunk is
loaded, the thread [x, y] then updates Hpq[x, y] and Hpq[x, y

′] (kept in its registers
and being initially 0),

Hpq[x, y] +=Gpq[:, x]TGpq[:, y],

Hpq[x, y
′] +=Gpq[:, x]TGpq[:, y

′].

Finally, when all the chunks are processed, Hpq is written into Rpq, and V ′pq is set
to I32. Note that data in the GPU RAM are accessed only once. No symmetrization
is needed for Hpq, since only its lower triangle is taken as an input for the Cholesky
factorization. For details of this subphase see Algorithm 3.

On a Kepler GPU, with 8-byte-wide shared memory banks, each thread in a
warp can access a different bank. Due to column-major data layout, each of 32
consecutive (modulo 64) rows of Gpq belongs to a separate bank. Therefore, the
modular row addressing of Algorithm 3 guarantees bank-conflict-free operation on
a Kepler GPU, and generates two-way bank conflicts on a Fermi GPU, with 4-byte-
wide banks.

The next subphase consists of the in-place, forward-looking Cholesky factor-
ization of Hpq without pivoting, i.e., Hpq = LpqL

T
pq. The factorization proceeds

columnwise to avoid bank conflicts. After the factorization, the upper triangle of
Rpq is set to LTpq, and the strict lower triangle to zero. This transposition is the
only part of the entire algorithm that necessarily incurs the bank conflicts. The
factorization has 32 steps. The step k, for 0 ≤ k < 32, transforms Hpq[k:, k:] (where
this notation indicates a range of all rows from—and including—the k-th, and of all
columns from—and including—the k-th, onwards) in two or three stages as follows:

(a) Compute Lpq[k:, k], overwriting Hpq[k:, k] (see Figure 2.10(a)). Only one warp
is active. The thread [x, y] performs the following operations:
• If x = y = k, then Lpq[k, k] =

√
Hpq[k, k];

33

2. The Jacobi-type multilevel (H)SVD algorithm for the GPU(s)

Algorithm 3: Device function that computes the Gram matrix Hpq.
Description: Input:

[
Gp Gq

]
. Output: Hpq. Thread ID: [x, y].

x′ = x+ 32; y′ = y + 16; hxy = hxy′ = 0; //Hpq elements kept in registers
for (i = x; i < n; i+=64) // process the next chunk of

[
Gp Gq

]
Gpq[x, y] = Gp[i, y]; Gpq[x, y

′] = Gq[i, y]; //load the first 32 chunk rows
if (i′ = i+ 32) < n then // load the remaining chunk rows

Gpq[x
′, y] = Gp[i

′, y]; Gpq[x
′, y′] = Gq[i

′, y];
else // border Gpq with zeros

Gpq[x
′, y] = 0; Gpq[x

′, y′] = 0;
end if
__syncthreads(); // the shared memory writes must take effect
unrolled for (j = 0; j < 64; ++j) // compute the partial dot-products

j′ = (x+ j) mod 64; // modular row indexing, avoid bank conflicts
gj′x = Gpq[j

′, x]; gj′y = Gpq[j
′, y]; gj′y′ = Gpq[j

′, y′];
hxy = fma(gj′x, gj′y, hxy); // update Hpq[x, y]
hxy′ = fma(gj′x, gj′y′ , hxy′); // update Hpq[x, y

′]

endfor
__syncthreads(); // ensure that Gpq is free to be overwritten

endfor
Rpq[x, y] = hxy; Rpq[x, y

′] = hxy′ ; // store (unsymmetrized) Hpq to Rpq

__syncthreads(); // ensure the shared memory writes have taken effect

• else, if x > y = k, then Lpq[x, k] = Hpq[x, k]/
√
Hpq[k, k];4

• else, the thread is dormant, i.e., does nothing.

(b) Update at most 16 subsequent columns of Hpq. Let j = (k + 1) + y. If
x ≥ j and j < 32, then Hpq[x, j] = fma(−Lpq[x, k], Lpq[j, k], Hpq[x, j]), else do
nothing (see Figure 2.10(b)).

(c) If there are more columns remaining, let j′ = (k + 1) + y′. If x ≥ j′ and
j′ < 32, then Hpq[x, j

′] = fma(−Lpq[x, k], Lpq[j
′, k], Hpq[x, j

′]), else do nothing
(see Figure 2.10(c)).

After each stage, a thread-block-wide synchronization (__syncthreads) is necessary.

L L L

︷ ︸︸ ︷
16

︷ ︸︸ ︷
16

(a) (b) (c)

Figure 2.10: The forward-looking Cholesky factorization Hpq = LpqL
T
pq.

4Could possibly be faster if implemented as Lpq[x, k] = Hpq[x, k] ∗ rsqrt(Hpq[k, k]).

34

2.3. A single-GPU algorithm

2.3.2. The QR factorization

When the input matrix G is badly scaled, the QR factorization (2.8) is required
at all blocking levels, since the input columns of too large (resp. too small) norm
could cause overflow (resp. underflow) while forming the Gram matrices. If the QR
factorization employs the Householder reflectors, the column norm computations
should be carried out carefully, as detailed in section 2.6.

The tall-and-skinny in-GPU QR factorization is described in [3]. It is applicable
when a single QR factorization per p-step is to be performed on a GPU, e.g., in the
shortening phase of a multi-GPU algorithm. On the shared memory blocking level,
each thread block has to perform its own QR factorization. Therefore, an algorithm
for the batched tall-and-skinny QRs is needed in this case.

Ideally, such an algorithm should access the GPU RAM as few times as possible
and be comparable in speed to the Cholesky factorization approach. The algorithm
can be made to access

[
Gp Gq

]
exactly once, as it will be shown, but the latter

remains difficult to accomplish.
Let A(i)

0 and A(i)
1 be the 32× 32 matrices that alias the lower half and the upper

half of Gpq, i.e., Rpq and V ′pq, respectively. The first 32 × 32 chunk of
[
Gp Gq

]
is

loaded into A(0)
0 and factorized as A(0)

0 = Q
(0)
0 R

(0)
0 . The factorization is performed

by 31 successive applications of the Householder reflectors, in a pattern similar to
Figure 2.10(b),(c). A reflector is simultaneously computed in all active warps before
the update, but is not preserved, and Q(0)

0 is not (explicitly or implicitly) formed.
More precisely, for 0 ≤ k < 31, let Hk be the reflector annihilating the subdiag-

onal of the k-th column,
Hk = I32 − τkwkwTk ,

where wk =
[
0 1 vk

]T (0 is a vector of k zeros). In a thread with the row index
x, Hk is represented by τk and wk[x]. When the reflector is found, the warp y

transforms A(0)
0 [`:, `], where ` = k+y. Let z` be the scalar product z` = wT` A

(0)
0 [:, `],

computed by warp-level shared memory reduction (on Fermi), or by warp shuffle
reduction (on Kepler, see Listing 2). Then, the update by Hk is

A
(0)
0 [x, `]′ = fma(−τ` · z`, w`[x], A

(0)
0 [x, `]).

The transformation is then repeated for `′ = k+ y′ (see Listing 3 for the implemen-
tation, up to the choice of the norm computation algorithm dNRM2_32).

After R(0)
0 is formed, the second chunk of

[
Gp Gq

]
is loaded into A(0)

1 and simi-
larly factored as A(0)

1 = Q
(0)
1 R

(0)
1 .

The factors R(0)
0 and R

(0)
1 are combined into R

(1)
0 by a “peel-off” procedure,

illustrated in Figure 2.11. The procedure peels off one by one (super)diagonal of R(0)
1

by the independent Givens rotations, until (after 32 stages) R(0)
1 is reduced to a zero

matrix. In the stage k, the row x of R(0)
0 and the row x− k of R(0)

1 are transformed
by a rotation determined from R

(0)
0 [x, x] and R(0)

1 [x− k, x] to annihilate the latter.
This is the main conceptual difference from the tall-and-skinny QR, described, e.g.,
in [18, 19], where the combining is performed by the structure-aware Householder

35

2. The Jacobi-type multilevel (H)SVD algorithm for the GPU(s)

Listing 2: Sum-reduction across a warp by the warp shuffle Kepler instructions
1 // Kepler warp shuffle +-reduction of x
2 __device__ double dSum32(const double x) {
3 // my lane’s value, broken into 2 x 4 bytes
4 int lo_my , hi_my ;
5 // the other lane’s value, broken into 2 x 4 bytes
6 int lo_his , hi_his ;
7 // my lane’s and the other lane’s values
8 double x_my = x , x_his ;
9
10 // the following loop is unrolled log2 32 = 5 times
11 for (int i = 16 ; i > 0 ; i >>= 1) {
12 // x[my_id] += x[my_id XOR i]
13 lo_my = __double2loint (x_my) ;
14 hi_my = __double2hiint (x_my) ;
15 lo_his = __shfl_xor(lo_my , i) ;
16 hi_his = __shfl_xor(hi_my , i) ;
17 x_his = __hiloint2double (hi_his , lo_his) ;
18 x_my += x_his ;
19 }
20
21 // get the value of x[0] to x_his
22 lo_my = __double2loint (x_my) ;
23 hi_my = __double2hiint (x_my) ;
24 lo_his = __shfl(lo_my , 0) ;
25 hi_his = __shfl(hi_my , 0) ;
26 x_his = __hiloint2double (hi_his , lo_his) ;
27
28 return x_his ;
29 }

reflectors. The Givens rotations are chosen to avoid the expensive column norm
computations.

Each remaining chunk of
[
Gp Gq

]
is loaded into A(i)

1 , factored as A(i)
1 = Q

(i)
1 R

(i)
1 ,

and combined with R(i)
0 to obtain R(i+1)

0 . After the final Rpq = R
(n/32−1)
0 is formed,

V ′pq is set to I32.
Unfortunately, this approach is not recommendable when efficiency matters. For

example, on matrices of order 3072, the QR factorization is 12–15 times slower than
the Cholesky factorization, depending on the column norm computation algorithm.

2.3.3. The orthogonalization

In this phase, the inner pointwise Jacobi (H)SVD method is run on Rpq. A
constant memory parameter Ms, representing the maximal number of inner sweeps,
decides whether the block-oriented (Ms = 1) or the full block variant (Ms > 1,
usually Ms = 30) should be performed.

36

2.3. A single-GPU algorithm

Listing 3: The 32× 32 QR factorization as a CUDA device function
1 __device__ void dQR32(// compute R = qr(A), with 32x32 double A
2 volat i le double ∗const A, // shared mem, to be overwritten by R
3 // in the upper triangle , and 0s in the strictly lower triangle
4 const unsigned x , // lane ID [0..31], row index
5 const unsigned y0 , // warp ID [0..15], column index
6 const unsigned y1) { // warp ID + 16 [16..31], column index
7 for (unsigned k = 0u ; k < 31u ; ++k) { // unrolled loop
8 double nrm2 = 0 . 0 , Axk , Axk_, beta , alpha_beta , tau ;
9 // compute the Householer reflector , see LAPACK’s DLARFG
10 const unsigned l 0 = k + y0 ;
11 i f (l 0 < 32u) { // A[(row,col)] := A[32 * col + row]
12 Axk = A[(x , k)] ; Axk_ = ((x >= k) ? Axk : 0 . 0) ;
13 // compute ||A[k:, k]||2 using the warp shuffles
14 nrm2 = dNRM2_32(Axk_) ; // `2-norm computation
15 i f (nrm2 > 0 . 0) { // __ddiv_rn(x,y): intrinsic for x�RN y
16 const double alpha = A[(k , k)] ;
17 beta = copys ign (nrm2 , alpha) ;
18 alpha_beta = alpha + beta ;
19 tau = __ddiv_rn(alpha_beta , beta) ;
20 } // end if nrm2...
21 } // end if l0...
22 __syncthreads () ;
23
24 i f (nrm2 > 0 . 0) { // apply the Householder reflector
25 i f (l 0 == k) // set A[k, k] = −β and annihilate A[k + 1:, k]
26 A[(x , k)] = ((x == k) ? −beta : ((x > k) ? 0 .0 : Axk)) ;
27 else { // __fma_rn(x,y,z): Fused-Multiply -Add (x ∗ y + z)RN

28 const double Axy = A[(x , l 0)] ;
29 const double Wxk = ((x == k) ? 1 .0 :
30 ((x > k) ? __ddiv_rn(Axk_, alpha_beta) : 0 . 0)) ;
31 const double z l 0 = dSum32(Wxk ∗ Axy) ;
32 const double _tz = −(tau ∗ z l 0) ;
33 A[(x , l 0)] = __fma_rn(_tz , Wxk, Axy) ;
34 } // end else
35 const unsigned l 1 = k + y1 ;
36 i f (l 1 < 32u) { // _rn: round-to-nearest(even) in � and FMA
37 const double Axy = A[(x , l 1)] ;
38 const double Wxk = ((x == k) ? 1 .0 :
39 ((x > k) ? __ddiv_rn(Axk_, alpha_beta) : 0 . 0)) ;
40 const double z l 1 = dSum32(Wxk ∗ Axy) ;
41 const double _tz = −(tau ∗ z l 1) ;
42 A[(x , l 1)] = __fma_rn(_tz , Wxk, Axy) ;
43 } // end if l1...
44 } // end if nrm2...
45 __syncthreads () ;
46 } // end for
47 } // end dQR32

37

2. The Jacobi-type multilevel (H)SVD algorithm for the GPU(s)

R
(i)
0

R
(i)
1

R
(i+1)
0

0

Figure 2.11: A parallel “peel-off” procedure on 4×4 matrices, in 4 stages. The rows
with the same symbol are transformed in a stage independently of each other by
the Givens rotations computed from the dark-colored diagonal elements. The final
elements of R(i+1)

0 are fully shaded.

The inner p-strategy S′32 is encoded into a constant memory lookup table S ′32.
In principle, S′32 need not be of the same type of p-strategies as Sb. For example,
S′32 may be of the Brent and Luk type, and Sb may be of the Matharam–Eberlein
type, but usually a choice of the p-strategies is uniform, with only a single type for
all levels.

In each p-step s of an inner sweep r, the warp y is assigned the pivot pair
(p, q) = S ′32(r, s)[y], i.e., the pair of columns

[
gp gq

]
of Rpq, and the pair of columns[

vp vq
]
of V ′pq. Then, the following subphases are executed:

1. The 2 × 2 pivot matrix Ĥpq from (2.3) is computed. As explained in subsec-
tion 2.3.4., three dot products (for hpq, hpp, and hqq) are needed when the
rotation formulas from [25] are not used. The elements gp[x], gq[x], vp[x], and
vq[x] are preloaded into registers of a thread with lane ID x, so, e.g., V ′pq may
be overwritten as a scratch space for warp-level reductions on Fermi GPUs.

2. The relative orthogonality criterion for gp and gq is fulfilled if

|hpq| < c(ε)
√
hpp
√
hqq = c(ε)‖gp‖2‖gq‖2,

where c(ε) = ε
√
n̂, and n̂ is the matrix order (here, n̂ = 32). If gp and gq

are relatively orthogonal, then set an indicator ρs that determines whether
a rotation should be applied, to ρs = 0, else set ρs = 1. Note that ρs is a
per-thread variable, but has the same value across a warp.

3. Let as be a thread-block-wide number of warps about to perform the rotations.
A warp has 32 threads, so as = (Σρs)/32, where the sum ranges over all threads
in the thread block. Compute as as __syncthreads_count(ρs)/32. Since the
pointwise Jacobi process stops if no rotations occurred in a sweep, a per-sweep
counter of rotations, Ar, has to be increased by as. The counters as and Ar
are kept per thread, but have the same value in the thread block.

4. Let the pivot indices p and q correspond to the columns k and `, respectively,
of the input factor G. If k ≤ n+ < `, then compute the transformation V̂pq
from (2.4) as a hyperbolic rotation (2.14), else as a trigonometric one (2.13),

38

2.3. A single-GPU algorithm

according to subsection 2.3.4. If csϕ 6= 1, then set ρ′s = 1 (a proper rotation),
else leave ρ′s = 0 to indicate that the rotation is nearly identity. If ρs was 0,
just determine if the rotation would be a trigonometric or a hyperbolic one,
instead of computing it.

5. If the rotation is trigonometric, find the new diagonal elements, h′pp and h′qq,

h′pp = fma(tanϕ, hpq, hpp), h′qq = fma(− tanϕ, hpq, hqq).

If ρs = 0 (i.e., V̂pq is the identity), take h′pp = hpp and h′qq = hqq. To keep the
eigenvalues sorted nonincreasingly [40], if h′pp < h′qq when ` ≤ n+, or h′pp > h′qq
when k > n+, set P2 = [0 1

1 0], else P2 = I2. Define

V̂ ′pq = V̂pqP2.

The eigenvalue order tends to stabilize eventually; thus no swapping is usually
needed in the last few sweeps [53, 56]. If the rotation is hyperbolic, to keep J
partitioned, set V̂ ′pq = V̂pq (there is no sorting, and the new diagonal elements
are not needed). An unpartitioned J could lead to a slower convergence [67].

6. Apply, per thread, V̂ ′pq to
[
gp[x] gq[x]

]
and

[
vp[x] vq[x]

]
from the right, and

store the new values into shared memory.
7. Compute bs = (Σρ′s)/32, similarly to subphase 3, and increase a per-sweep

counter of proper rotations Br by bs. This concludes the actions of one p-step.

After the sweep r finishes, update B, the total number of proper rotations in the
thread block, by Br. If no more sweeps follow, i.e., if Ar = 0 (no rotations have been
performed in the last sweep), or r = Ms (the maximal number of sweeps is reached),
the thread [0, 0] atomically adds B to the global rotation counter B, mapped from
the CPU memory.

In B the number of rotations from all thread blocks is accumulated. Note that B
is accessible from both the CPU and the GPU and is the sole quantum of information
needed to stop the global Jacobi process. More details about a GPU-wide stopping
criterion can be found in subsection 2.3.6. This ends the orthogonalize phase.

The dot-products. Relying on a trick from [35], the dot-products could possibly
be computed more accurately by using one fma and one negation per vector element
in addition to one multiplication, and two +-reductions instead of one.

Let c = a �RD b, and d = fma(a, b,−c), where RD stands for rounding towards
−∞. Then it is easy to show, by looking separately at the both possible signs of c,
that for the rounding error of the multiplication extracted by the fma holds d ≥ 0.
By +-reducing d across a warp, no cancellation can occur. That value may be added
to the +-reduction result on c, to form the final dot-product.

This approach has been very briefly tested for the generalized SVD version of
the code, without a dramatic slowdown but also without any noticeable effect on
accuracy of the result. However, much more testing is needed in the future.

39

2. The Jacobi-type multilevel (H)SVD algorithm for the GPU(s)

2.3.4. The Jacobi rotations

The numerically stable, state-of-the-art procedure of computing the trigonomet-
ric Jacobi rotations is described in [25]. The procedure relies on computing the
column norms reliably, as described in section 2.6.

The rest of the computation from [25] is straightforward to implement. Since
the entire shared memory per thread block is occupied, storing and updating the
column scales, as in [2], is not possible without changing the shared memory config-
uration and reducing the L1 cache. The memory traffic that would thus be incurred
overweights the two additional multiplications by a cosine per GPU thread. There-
fore, rotations in the following form (fma followed by a multiplication, if cosϕ 6= 1)
are chosen, [

g′p g
′
q

]
= cosϕ

[
gp gq

] [1 tanϕ
− tanϕ 1

]
. (2.13)

The hyperbolic rotations may be computed similarly to the trigonometric ones, by
adapting the ideas from [25], in the form

[
g′p g

′
q

]
= coshϕ

[
gp gq

] [1 tanhϕ
tanhϕ 1

]
. (2.14)

Let DDRJAC be a procedure that computes, as in [25], the trigonometric rotations
in form (2.13) from the column norms it obtains by calling DRDSSQ (see section 2.6.).
On a Fermi GPU (matrix order 6144), DDRJAC is only 14% slower than a simple pro-
cedure discusses in the following. However, the protection from the input columns
of too large (or too small) a norm that DDRJAC offers has to be complemented by
the QR factorization at all blocking levels, which is extremely expensive.

Assume instead that the Gram matrix formation, the ordinary scalar products,
and the induced norm computations never overflow. By using only correctly rounded
arithmetic, cosϕ and tanϕ of (2.13), or coshϕ and tanhϕ of (2.14), may be com-
puted as in (2.15)–(2.18) (an adapted version of the Rutishauser’s formulas [64]):

h = hqq − t · hpp; ct 2ϕ = t · h

2hpq
; (2.15)

| ctϕ| = | ct 2ϕ|+
√
fma(ct 2ϕ, ct 2ϕ, t); (2.16)

tnϕ = sign(ct 2ϕ) · rcp(| ctϕ|); (2.17)

cs1 ϕ = rcp(
√
fma(t · tnϕ, tnϕ, 1)); cs2 ϕ =

| ctϕ|√
fma(| ctϕ|, | ctϕ|, t)

. (2.18)

Formulas (2.15)–(2.18), for t = 1, produce the parameters of a trigonometric
rotation (ct = cot, tn = tan, cs = cos), and for t = −1, of a hyperbolic rotation
(ct = coth, tn = tanh, cs = cosh). If, numerically, | coth 2ϕ| = 1, it is substituted
by 5/4 (see [79]). In all other hyperbolic cases | tanhϕ| < 1 holds.

If | cot 2ϕ| <
√
ε, then

√
fma(cot 2ϕ, cot 2ϕ, 1) = 1, and (2.16) in the trigono-

metric case simplifies to | cotϕ| = | cot 2ϕ| + 1. If | ct 2ϕ| ≥
√

2/ε, then (barring
an overflow)

√
fma(ct 2ϕ, ct 2ϕ, t) = | ct 2ϕ|, with (2.16) and (2.18) simplifying to

40

2.3. A single-GPU algorithm

| ctϕ| = 2 · | ct 2ϕ| and csϕ = 1, respectively. These simplifications avoid taking
square roots and a possible overflow of ct2 2ϕ, at a price of at most three floating-
point comparisons. If | ct 2ϕ| ≤ ν/4, with ν being the largest positive normalized
floating-point number, then tn is normalized.

If rsqrt(x) = 1/
√
x were correctly rounded in CUDA, cs1 ϕ could be written as

cs′1 ϕ = rsqrt(fma(t · tnϕ, tnϕ, 1)). (2.19)

Although (2.19) has only one iterative operation (rsqrt) instead of two (rcp and√
x), and thus has a potential to be faster than (2.18), while also improving the

orthogonality of V , (2.19) has been omitted from the final testing due to a slowdown
of about 1%, using a correctly rounded-to-nearest rsqrt prototype implementation5,
that could be expected to vanish with the subsequent implementations of rsqrt.

In (2.18) and (2.19) there are three mathematically (but not numerically) equiv-
alent expressions, cs1 ϕ, cs′1 ϕ, and cs2 ϕ, which compute the cosine. By a similar
analysis as above, | ctϕ| ≥

√
2/ε implies cs2 ϕ = 1, tnϕ ≤

√
ε/2, and therefore

cs1 ϕ = 1 and cs′1 ϕ = 1. Testing that condition also avoids an overflow of ct2 ϕ.

A choice of the rotation formulas

In the block Jacobi algorithms, it is vital to preserve (J-)orthogonality of the
accumulated V . In the hyperbolic case, the perturbation of the hyperbolic singular
values also depends on the condition number of V [40, Proposition 4.4]. A simple
attempt would be to try to compute each rotation as (J-)orthogonal as possible,
without sacrificing performance.

Departure from a single rotation’s (J-)orthogonality should be checked in a suf-
ficiently high (e.g., 128-bit quadruple) precision, as dt = |(cos2 ϕ + sin2 ϕ) − 1|,
or as dh = |(coshϕ − sinhϕ)(coshϕ + sinhϕ) − 1|, with sinϕ = cosϕ ∗ tanϕ, or
sinhϕ = coshϕ ∗ tanhϕ. For each binary exponent −53 ≤ e ≤ 53, 224 uniformly
distributed pseudorandom 52-bit integers mi had been generated on a CPU, to form
| ct 2ϕ|i with the exponent e and the non-implied bits of the significand equal to mi.
From | ct 2ϕ|i and (2.16)–(2.18), (tnϕ)i, (cs1 ϕ)i, and (cs2 ϕ)i had been computed
in double precision. In the Fortran’s quadruple arithmetic the corresponding dt
and dh were then found and averaged, over all tested exponents. The results are
summarized in Table 2.1.

Table 2.1: The average departures from (J-)orthogonality of the rotations given
by (2.16)–(2.18).

trigonometric rotations hyperbolic rotations
dt with cos1 ϕ dt with cos2 ϕ dh with cosh1 ϕ dh with cosh2 ϕ

8.270887 · 10−17 8.335956 · 10−17 7.575893 · 10−17 6.586691 · 10−17

5Courtesy of Norbert Juffa of NVIDIA.

41

2. The Jacobi-type multilevel (H)SVD algorithm for the GPU(s)

Table 2.1 indicates that cosh2 ϕ produces, on average, more J-orthogonal hy-
perbolic rotations than cosh1 ϕ. In the trigonometric case it is the opposite, but
with a far smaller difference. Orthogonality of the final V was comparable in the
tests for both trigonometric versions, often slightly better (by a fraction of the order
of magnitude) using cos2 ϕ. Therefore, cs2 ϕ formulas were chosen for a full-scale
testing.

It is still far from conclusive which formulas from (2.18) or (2.19), and for which
ranges of ct 2ϕ, should be used. However, cs2 ϕ or cs′1 ϕ formulas might be an
alternative to the established cs1 ϕ ones. A deeper analysis is left for future work.

2.3.5. The postmultiplication

This phase postmultiplies
[
Gp Gq

]
and, optionally,

[
Vp Vq

]
by V ′pq only if the

rotation counter from orthogonalize is nonzero, i.e., if V ′pq 6= I32. Let Apq alias the
first half of Gpq (i.e., Rpq). The procedure, detailed in Algorithm 4, is based on the
Cannon parallel matrix multiplication algorithm [15].

Algorithm 4: Pseudocode for Cannon-like postmultiplication by V ′pq.

Description: Input:
[
Ap Aq

]
, A ∈ {G,V }. Output:

[
A′p A′q

]
=
[
Ap Aq

]
V ′pq.

for (i = x; i < n; i+=32) // multiply the next chunk of
[
Ap Aq

]
by V ′pq

Apq[x, y] = Ap[i, y]; Apq[x, y
′] = Aq[i, y]; // load the RAM chunk into Apq

__syncthreads(); // the shared memory writes must take effect
axy = axy′ = 0; //

[
A′p A′q

]
elements kept in registers

j = (y + x) mod 32; j′ = (y′ + x) mod 32; // initial skew modulo 32
unrolled for (k = 0; k < 32; ++k) // multiply-and-cyclic-shift

axy = fma(Apq[x, j], V
′
pq[j, y], axy); // update A′p[i, y]

axy′ = fma(Apq[x, j
′], V ′pq[j

′, y′], axy′); // update A′q[i, y]

j = (j + 1) mod 32; j′ = (j′ + 1) mod 32; // cyclic shift modulo 32

endfor
__syncthreads(); // ensure that Apq is free to be overwritten
A′p[i, y] = axy; A′q[i, y] = axy′ ; // store the product in the RAM chunk

endfor

Finally, Figure 2.12 summarizes the entire pStep kernel, from the perspective of
the shared memory state transitions per thread block. The GPU RAM is accessed
by one read (when no rotations occur), or by two reads and one write per element of
G (and, optionally, at most one read and write per element of V), with all operations
fully coalesced. The only additional global memory traffic are the atomic reductions
necessary for the convergence criterion in orthogonalize.

2.3.6. A GPU-wide convergence criterion

Contrary to the pointwise Jacobi algorithm, which is considered to converge
when no rotations have been performed in a sweep, stopping of the block algorithms
for large inputs is more complicated than observing no rotations in a block-sweep.

42

2.3. A single-GPU algorithm

16 16

32

32

RAM

RAM RAM

RAM RAM

G ∗

C

h
o

l

T

∗ ∗

J
a

c

GTG

V0 = I I

L

?

I

0

R0

Ri+1

= RiV̂

Vi+1

= ViV̂

RN

= UΣ

VN

G

VN

V

VN

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.12: An overview of pStep kernel per thread block, the full block variant.
Each subfigure depicts the state of the shared memory, the computation subphase
performed, and the data transfer in or out of the GPU RAM. Subfigures (a)–
(d) illustrate factorize with the Cholesky factorization, (e) and (f) belong to
orthogonalize, and (g) and (h) to postmultiply phase.

There has to be an additional, more relaxed stopping criterion at the block level
(motivated in what follows), while keeping the one at the inner (32 × 32) level
unchanged.

The columns addressed by a pivot block-pair should be relatively orthogonal
after completion of the pStep call in the full-block variant, but instead they may
have departed from orthogonality, because (see [40, 69])

1. the accumulated rotations are not perfectly (J-)orthogonal, and
2. the postmultiplication introduces rounding errors.

Independently from that, in all variants, even the numerically orthogonal columns,
when subjected to factorize (and its rounding errors), may result in the shortened
ones that fail the relative orthogonality criterion.

If an orthogonality failure results from the first two causes, the ensuing rotations
might be justified. However, if the failure is caused only by the rounding errors of the
factorization process, the spurious rotations needlessly spoil the overall convergence.

To overcome this problem, a simple heuristics has been devised to avoid excessive
block-sweeps with just a few rotations. These rotations are expected not to be
proper, i.e., to have very small angles. Let B be a counter in the CPU RAM,
mapped to the GPU RAM. The counter is reset at the beginning of each block-
sweep and is updated from the pStep calls as described in subsection 2.3.3. At
the end of a block-sweep, B contains the total number of proper rotations in that

43

2. The Jacobi-type multilevel (H)SVD algorithm for the GPU(s)

sweep. If B = 0, or the maximal number of block-sweeps has been reached without
convergence, the process stops.

This heuristics may skip over a relatively small number of legitimate rotations,
but nevertheless produces reasonable relative errors in the computed singular values
(see section 2.5.). A reliable way of telling (or avoiding) the exact cause of the
orthogonality failures is strongly needed in that respect.

An alternative stopping criterion

The same software infrastructure (i.e., the allocated counters and their handling)
herein described can also be used for another kind of convergence criterion. In
essence, the new criterion substitutes a counter of transformations with nontrivial
effects for a counter of “proper” (in the sense of having cosϕ 6= 1) rotations.

More formally, let V ′ be a union of V ′pq over all block pairs (p, q), let vp[x] be an
element of V ′ to be transformed by a rotation, and let v′p[x] be the transformed value
in that inner step. Note that both values can be simultaneously held in registers
on an architecture with a large register file (e.g., Pascal). Then, compare vp[x]
and v′p[x]; if they are not equal (i.e., a nontrivial change has occured), then set the
counter variable to 1, else keep the counter unchanged. Repeat the same for vq[x]
and v′q[x]. If only swapping of vp[x] and vq[x] has occured, treat that case as a
trivial change. At the start of each block-sweep, reset the counter to 0. In all other
aspects, treat the counter in the same way as it would be handled for the previously
described criterion, where the counter is set to 1 if cosϕ 6= 1, and to 0 otherwise.

The motivation behind such a criterion is an observation that V ′, once it does
not change in a particular block-sweep, i.e., does not accumulate any rotations, be
they proper or not, it is hardly conceivable that it should start changing at some
later block-sweep, at least not significantly enough to warrant a few extra block-
sweeps at the end of the process. Note that such heuristics does not imply anything
about (non)orthogonality of the columns of G′.

Complementary to looking at V ′, the “standard” stopping criterion in an inner
sweep, based on relative orthogonality of the columns of Rpq, can be augmented
by checking whether the elements gp[x] and g′p[x] (resp. gq[x] and g′q[x]) differ after
a transformation has been applied. The transformation still shall not be applied
if the relative orthogonality criterion has been satisfied. However, if and when the
elements are transformed, even by a proper rotation, there might be a chance (purely
hypothetical, perhaps) that they have not actually changed. If the columns have
not changed at all during the entire inner sweep, the standard criterion might not
be satisfied, but then it will be impossible ever to reach convergence, and the only
reasonable option would be to stop the inner process at that point. Such a situation
does not preclude a possibility that the whole process will eventually converge;
however, if there are no changes to G′ during the entire block-sweep, what can be
deduced from aggregating (i.e., +-reducing) the inner sweep change counters, the
whole process should be terminated at once.

It is important to note that no transformations are ever skipped in any inner
sweep due to this criterion in place that would not have been skipped otherwise, or
that would have had no effect. Only the number of block-sweeps required to reach

44

2.3. A single-GPU algorithm

overall convergence may change, and thus, indirectly, some transformations at the
end of the process, that would have been applied under the previously proposed
criterion’s regime, might never be performed.

Carefully implementing and testing the new criterion is left for future work.

2.3.7. An illustration of the algorithm’s execution

As an illustration of the execution of the block-oriented algorithm’s variant under
R‖ strategies, Figures 2.13, 2.14, 2.15, 2.16, and 2.17 depict, for an input matrix G

of order 1024, the initial range of values of a non-negative symmetric matrix |H|,
where H = GTG, and the subsequent values of |H|, computed at the end of each
block-sweep from the matrix G, by forming H and taking log2 |Hij| whenever the
logarithm’s argument is a positive normalized number, or −∞ otherwise (which
has never happend with the particular input). The colorbar at the right side of
Figure 2.17 shows the ranges of the actual values of |H| covered by the corresponding
ranges of colors.

It can be seen from the Figures that the largest drop in the magnitudes of the
off-diagonal elements happens in the block-sweeps 3 to 7. After that, H is almost
diagonal, but still needs two more block-sweeps to clean the remaining unconverged
regions close to the diagonal, while the majority of the pivot block-pairs (corre-
sponding to the regions far away from the diagonal) require no transformations at
all. That is the major drawback of any one-sided Jacobi-type SVD which blindly
cycles through all pivot (block-)pairs, instead of trying to reduce the bandwidth
around the diagonal from which the (block-)pivots for the last (block-)sweeps are
taken when the quadratic convergence regime has been in effect, and detected (e.g.,
by a quadratical drop in the number of rotations performed in a (block-)sweep,
compared to the previous ones).

Figure 2.13: The initial |GTG|, and |GTG| after block-sweep 1.

45

2. The Jacobi-type multilevel (H)SVD algorithm for the GPU(s)

Figure 2.14: |GTG| after block-sweeps 2 and 3.

Figure 2.15: |GTG| after block-sweeps 4 and 5.

2.4. A multi-GPU algorithm

In this section the same blocking principles are applied one level up the hierar-
chy, to the case of multiple GPUs. As a proof-of-concept, the algorithm is developed
on a 4-GPU Tesla S2050 system, and implemented as a single CPU process with
4 threads, where the thread 0, . . . , 3 controls the same-numbered GPU. Were the
GPUs connected to multiple machines, on each machine the setup could be simi-
lar, with a CPU process and an adequate number of threads. Multiple processes
on different machines could communicate via the CUDA-optimized message pass-
ing interface (MPI) subsystem. Except replacing the inter-GPU communication

46

2.4. A multi-GPU algorithm

Figure 2.16: |GTG| after block-sweeps 6 and 7.

Figure 2.17: |GTG| after block-sweep 8. The heatmap corresponding to |GTG| after
the last (9th) block-sweep is omitted because it is hardly distinguishable from the
one for the 8th block-sweep. A colorbar, with the value ranges for |GTG| in log2

scale, is shown instead.

application programming interfaces (APIs), the algorithm would stay the same.
Each of g GPUs holds two block-columns addressed by a pivot block-pair with

a total of n = n/g columns. For simplicity, it is assumed that n mod g = 0. After
an outer block step, a single block-column on a GPU i is sent to a GPU j, and
replaced by the one received from a GPU k, where j may or may not be equal to
k, according to a block-column mapping S ′′2g. For the outer p-strategy S′′2g, a block-
column mapping has to be chosen such that the communication rules implied by

47

2. The Jacobi-type multilevel (H)SVD algorithm for the GPU(s)

the mapping are (nearly) optimal for the given network topology.
For example, in a test system with g = 4, a GPU i communicates with a GPU

j, j = i xor 1, faster than with the others. The amount of fast exchanges has
been maximized within an outer block-sweep for R

‖
8 (equivalent to Mantharam–

Eberlein BR on a 2-dimensional hypercube) to 3 by choosing which pivot block-pair
is assigned to which GPU in each block step. The result is a block-column mapping
shown in Figure 2.18.

0 1

23

F

F

S SS S

0 1

23

0 1

23

4 5 3 6

2 71 8

0 1

23

4 6 3 5

2 81 7

0 1

23

4 7 3 8

2 51 6

*

*

0 1

23

4 8 3 7

2 61 5

0 1

23

5 8 2 3

6 71 4

*

*

0 1

23

6 8 2 4

5 71 3

*

*

0 1

23

5 6 3 4

7 81 2

Figure 2.18: The block-column mapping in a single block-sweep of a p-strategy
equivalent to Mantharam–Eberlein BR to GPUs 0, . . . , 3. The fast (F) communica-
tions for column exchanges between GPU peers are denoted by dashed curves, and
the slow (S) exchanges by solid lines. Two-speed communication is defined on the
top left subfigure. The (logical) column swaps needed to maintain p < q are shown
by an asterisk.

Besides the two outer block-columns of G (and, optionally, V), stored in GA

and VA regions of the GPU RAM, respectively, an additional buffer space of the
same size, GB and VB, has to be allocated to facilitate the BLAS-3-style matrix
multiplications and the full-duplex asynchronous communication between GPUs.
Also, for the shortening and the single-GPU Jacobi phases, two n × n matrices, X
and Y , are needed. With a small auxiliary space AUX for the final singular value
extraction, the total memory requirements are at most m× 5n double elements per
a GPU.

In an outer block step the following operations are performed (see Figure 2.19):

(0) form the Gram matrix GT
AGA in X by cublasDsyrk;

(1) factorize GT
AGA = RTR by the Cholesky factorization (the hybrid MAGMA’s

dpotrf_gpu has been chosen, and this is the only place where a CPU is used
for computation, which may be circumvented by a GPU-only implementation);

(2a) case (acc.): if accumulation of the product V̂ of the Jacobi rotations is de-
sired, call a full SVD single-GPU Jacobi variant (full block, block-oriented, or
hybrid) from section 2.3. on X, storing V̂ in Y ; else

48

2.4. A multi-GPU algorithm

(2b) case (solve): copy R from X to Y , call a partial SVD single-GPU Jacobi
variant on Y , and solve the triangular linear system RV̂ = ÛΣ̂ for V̂ by
cublasDtrsm, with the original R in X and V̂ overwriting ÛΣ̂ in Y ;

(3) postmultiply GA and VA by V̂ , using two cublasDgemm calls running in their
own CUDA streams, and store the updated block-columns in GB and VB;

(4) ensure that all GPUs have completed the local updates by a device-wide syn-
chronization (cudaDeviceSynchronize), followed by a process-wide thread
synchronization (wait on a common barrier), and a suitable MPI collective
operation (e.g., MPI_Barrier) in the multiprocess case;

(5) start, via CUDA streams, the asynchronous sends of one block-column from
GB and the corresponding one from VB to another GPU, and start the asyn-
chronous copies of the other column of GB and the corresponding one of VB
to either the first or the second block-column of GA and VA, according to the
block-column mapping rules for transition to the subsequent block step;

(6) wait for the outstanding asynchronous operations to finish by the same syn-
chronization procedure as in (4), after which a block step is completed.

At the end of an outer block-sweep, the threads (and processes, where applicable)
+-reduce their local counters Bi of proper rotations (cf. subsection 2.3.6.) to the
system-wide number

∑
i Bi of proper rotations performed in all block steps in that

sweep. If the result is 0, or the limit on the number block-sweeps has been reached,
the iteration stops and the final singular values are extracted.

The full block variant of phases (2a) and (2b) usually has a 30-sweep limit for
both the inner blocking and the pointwise, shared-memory Jacobi level. The block-
oriented variant has both limits set to 1. Between them many hybrid variants may
be interpolated.

Observe that phase (4) forces all GPUs to wait for the slowest one, in terms
of the execution of phase (2a) or (2b). The full block variant exhibits the largest
differences in running times between GPUs, depending on how orthogonal the block-
columns are in the current block step. Although the full block variant is the fastest
choice for a single-GPU algorithm (see section 2.5.), it may be up to 35% slower
in a multi-GPU algorithm than the block-oriented variant, which has a predictable,
balanced running time on all GPUs.

A reasonable hybrid variant might try to keep the running times balanced. A
CPU thread that first completes the full block variant of (2a) or (2b) immediately
informs other threads before proceeding to phase (4). The other threads then stop
their inner block-sweeps loops in (2a) or (2b) when the running iteration is finished.

The wall-clock execution times of such an approach may be even lower than
the block-oriented variant, but on the average are 10% higher. Moreover, both the
full block and its hybrid variant induce the larger relative errors in Σ than the
block-oriented variant. Such effect may be partially explained, as in section 2.5., by
the same reasons valid for the single-GPU case (more rotations applied), but the
larger differences in the multi-GPU case require further attention. Therefore, the
numerical tests are presented for the block-oriented multi-GPU variant only.

49

2. The Jacobi-type multilevel (H)SVD algorithm for the GPU(s)

G
A

V
A

G
B

V
B

GT

A
G

A

̂
V

AUX

or or or or

Cholesky

Jacobi

GB = GA · V̂

VB = VA · V̂

receive send

one column locally ‖ one column remotely

(1)

(2)

(3)

(3)

(5) (5)

synchronize (4, 6)

Figure 2.19: Schematics of a GPU’s memory organization and the outer block
step phases. Operations with the same number may be performed concurrently,
in streams, if the hardware allows that.

2.5. Numerical testing

In this section the testing data is defined, the hardware is described, and the
speed and accuracy results for both the single-GPU and the multi-GPU implementa-
tions are presented. By these results the p-strategies (R‖ and C‖)6 from section 2.2.
are also confirmed as a reliable choice for implementing the fast Jacobi algorithms
on the various parallel architectures.

Let norm and unif be the double precision pseudorandom number generators,
such that norm(µ, σ) returns the nonzero samples from normal distribution N(µ, σ),
and unif(S) returns the samples from the continuous uniform distribution U over
S. The following pseudorandom spectra, for k = 1, . . . , 16, have been generated:

1. Λ
(1)
k (1:16) = 0.5; Λ

(1)
k (17:1024k) = norm(0, 0.1),

2. Λ
(2)
k = 1 + Λ

(1)
k (verified to be greater than zero),

3. Λ
(3)
k (1:1024k) = ± unif(〈10−7, 10k〉), where a positive or a negative sign for

each Λ
(3)
k (i) is chosen independently for 1 ≤ i ≤ 1024k with equal probability,

4. Λ
(4)
k (1:1024k) = unif(〈10−7, 10k〉).

These arrays have been cast to the Fortran’s quadruple precision type and denoted
by Λ

(1)
k to Λ

(4)
k . By a modified LAPACK xLAGSY routine, working in quadruple

precision, a set of symmetric matrices A
(j)
k = U

(j)
k Λ

(j)
k [U

(j)
k]T has been generated,

for j = 1, . . . , 4, by pre- and postmultiplying Λ
(j)
k with a product U

(j)
k of the random

Householder reflectors. The matrices A
(j)
k have then been factored by the symmetric

6Throughout this section, the subscripts indicating the matrix order on the p-strategies’ symbols
are omitted. For each occurrence of a particular symbol, the matrix order is implied by the context.

50

2.5. Numerical testing

indefinite factorization with the complete pivoting [70] in quadruple precision:

P
(j)
k A

(j)
k [P

(j)
k]T = Ĝ

(j)
k P̃

(j)
k [P̃

(j)
k]T Ĵ

(j)
k P̃

(j)
k [P̃

(j)
k]T [Ĝ

(j)
k]T = G

(j)
k J

(j)
k [G

(j)
k]T .

The inner permutation P̃ (j)
k brings Ĵ (j)

k into J (j)
k = diag(I,−I) form. For j ∈ {2, 4}

the symmetric indefinite factorization is equivalent to the Cholesky factorization
with diagonal pivoting (J (j)

k = I). Finally, G
(j)
k have been rounded back to double

precision, and stored as the input factors G(j)
k , along with Λ

(j)
k and J (j)

k .7
Since one of the important applications of the (H)SVD is the eigensystem com-

putation of the symmetric (in)definite matrices, the procedure just described has
been designed to minimize, as much as is computationally feasible, the effect of
the rounding errors in the factorization part. Therefore, the relative errors of the
computed Σ2J (from G = UΣV T , and let ji = Jii) have been measured versus the
given Λ

(j)
k (with the elements denoted λi, for 1 ≤ i ≤ n), i.e.,

max
i=1,...,n

| f`(σi)2ji − λi|
|λi|

. (2.20)

It may be more natural and reliable to compute the (H)SVD of G(j)
k in quadruple

precision and compare the obtained singular values with the ones produced by the
double precision algorithms. For an extremely badly conditioned A,

√
|Λ| may not

approximate the singular values of G well; e.g., if, by the same procedure as above, A
(definite or indefinite) is generated, with n = 4096 and κ2(A) ≥ 1024, the resulting
G may have the singular values (found by the quadruple Jacobi algorithm) differing
in at least 4–5 least significant double precision digits from the prescribed singular
values

√
|Λ|. However, for a larger n, the quadruple precision SVD computation

is infeasible. Therefore, accuracy of the algorithms has been verified as in (2.20),
but with the modestly conditioned test matrices generated, to avoid the problems
described.

The NVIDIA graphics testing hardware, with accompanying CPUs, consists of
the following:

A. Tesla C2070 (Fermi) GPU and Intel Core i7–950 CPU (4 cores),
B. Tesla K20c (Kepler) GPU and Intel Core i7–4820K CPU (4 cores),
C. Tesla S2050 (Fermi) 4 GPUs and two Intel Xeon E5620 CPUs (2× 4 cores).

The software used is CUDA 5.5 (nvcc and cuBLAS) under 64-bit Windows and
Linux, and MAGMA 1.3.0 (with sequential and parallel Intel MKL 11.1) under
64-bit Linux.

As shown in Table 2.2, the sequential Jacobi algorithm DGESVJ, with the parallel
MKL BLAS-1 operations, on machine C runs approximately 16 times slower than a
single-GPU (Fermi) algorithm for the large enough inputs.

In Table 2.3 the differences in the execution times of the R‖ p-strategy on Fermi
and Kepler are given. There are the three main reasons, outlined in section 2.3.,
why the Kepler implementation is much faster than the Fermi one. In order of
importance:

7The test matrices are available at http://euridika.math.hr:1846/Jacobi/ for download.

51

2. The Jacobi-type multilevel (H)SVD algorithm for the GPU(s)

Table 2.2: The ratio of the wall-clock running times of DGESVJ on machine C versus
a single GPU (Fermi) for the Cholesky factors of the matrices of order n = 1024k

with spectra Λ
(2)
k .

k DGESVJ/ R‖

1 5.57
2 8.61
3 11.75
4 11.83

k DGESVJ/ R‖

5 12.34
6 13.47
7 13.62
8 13.58

k DGESVJ/ R‖

9 14.89
10 15.45
11 15.62
12 16.14

k DGESVJ/ R‖

13 16.49
14 16.46
15 16.19
16 16.00

(i) 8-byte-wide shared memory banks on Kepler versus 4-byte-wide on Fermi—
the profiler reports 99.8% shared memory efficiency on Kepler versus 49.8%
on Fermi;

(ii) warp shuffle reductions on Kepler (the warp-level reductions do not need the
shared memory workspace); and

(iii) no register spillage on Kepler, due to the larger register file.

The other profiler metrics are also encouraging: the global memory loads and stores
are more than 99% efficient, and the warp execution efficiency on Fermi is about
96.5%, which confirms that the presented algorithms are almost perfectly parallel.

Table 2.3: The wall-clock running times (in seconds) of a Fermi (F) versus a Kepler
(K) GPU for the full SVD of the Cholesky factors of the matrices of order n = 1024k

with spectra Λ
(2)
k , the full block variant.

k Kepler [s] Fermi [s] K/F [%]

1 1.413099 2.376498 59.5
2 7.206334 12.438532 57.9
3 22.980686 35.783290 64.2
4 46.357804 84.466500 54.9
5 95.828870 160.382859 59.8
6 154.643361 261.917934 59.0
7 246.114488 403.150779 61.0
8 346.689433 621.341377 55.8

k Kepler [s] Fermi [s] K/F [%]

9 506.365598 850.279539 59.6
10 682.577101 1153.337956 59.2
11 904.212224 1545.451594 58.5
12 1148.881987 1970.591570 58.3
13 1439.391787 2500.931105 57.6
14 1809.888207 3158.116986 57.3
15 2196.755474 3820.551746 57.5
16 2625.642659 4662.748709 56.3

Even though the instruction and thread block execution partial orders may vary
across the hardware architectures, the presented algorithms are observably deter-
ministic. Combined with a strong IEEE floating-point standard adherence of both
the Fermi and the Kepler GPUs, that ensures the numerical results on one architec-
ture are bitwise identical to the results on the other. This numerical reproducibility
property should likewise be preserved on any future, standards-compliant hardware.

52

2.5. Numerical testing

In the following, it is shown that R‖ and C‖ p-strategies are superior in terms of
speed to R‖, C‖, the Brent and Luk (B), and modified modulus (M) strategies, in
both the definite and the indefinite case. By abuse of notation, let R

‖
b stand for the

block-oriented variant (otherwise, the full block variant is measured), and let R
‖
4b

be used for its 4-GPU implementation. Figures 2.20 and 2.21 depict the wall-clock
time ratios of the other strategies versus R‖. Except B and C‖, the other strategies
are consistently about 14–21% slower than R‖, while C‖ is almost equally fast as R‖.
Therefore, in what follows only R‖ has been timed.

2 4 6 8 10 12 14 16

0.5

1.0

1.5

2.0

2.5

3.0

3.5

matrix dimension / 1024

ti
m
e
ra
ti
o

‖/ ‖
C R

(R‖
≈ C

‖)/ ‖R

M/ ‖
R

B/ ‖
R

‖
b
/ ‖R R

Figure 2.20: The wall-clock time ratio of the various parallel strategies on a single
GPU (Fermi). The test spectra are Λ

(2)
k .

2 4 6 8 10 12 14 16

0.5

1.0

1.5

2.0

2.5

3.0

3.5

matrix dimension / 1024

ti
m
e
ra
ti
o

‖/ ‖
C R

(R‖
≈ C

‖)/ ‖R

M/ ‖
R

B/ ‖
R

‖
b
/ ‖R R

Figure 2.21: The wall-clock time ratio of the various parallel strategies on a single
GPU (Fermi). The test spectra are Λ

(1)
k .

The standard counter-example that shows nonconvergence of the Jacobi method
under the Brent and Luk strategy for matrices of even orders (first constructed
by Hansen in [36], and later used in [50]), is actually not a counter-example in the

53

2. The Jacobi-type multilevel (H)SVD algorithm for the GPU(s)

usual diagonalization procedure which skips the rotations with the very small angles,
because there is no need for diagonalization of an already diagonal matrix of order
2. On the contrary, the standard algorithm will diagonalize this matrix in only one
(second) step of the first sweep.

However, this still does not mean that no serious issues exist regarding conver-
gence of the Jacobi method under B. Figures 2.20 and 2.21 indicate that a further
investigation into the causes of the extremely slow convergence (approaching 30
block-sweeps) under B may be justified.

The block-oriented variant has more block-sweeps and, while slightly faster for
the smaller matrices, is about 7% slower for the larger matrices than the full block
variant. It may be more accurate in certain cases (see Figures 2.22 and 2.23), due
to the considerably smaller total number of the rotations performed, as shown in
Table 2.4. The strategies M and B are far less accurate than the new p-strategies.

2 4 6 8 10 12 14 16

matrix dimension / 1024

1

3

5

7

9

11

13

15

m
ax

im
al

re
la
ti
v
e
er
ro
r
·
10

1
3

‖R

‖R

M

B

‖
b
R

Figure 2.22: The relative accuracy of the various parallel strategies on a single GPU.
The test spectra are Λ

(2)
k .

Table 2.4: The number of block-sweeps and the average ratios (with small variance)
of the total number of rotations of the full block versus the block-oriented variant,
per four spectrum types on a single GPU.

Spectrum type 1 2 3 4

average ratio of the number of rotations R‖/ R
‖
b 2.29 2.10 2.30 2.08

range of the number of block-sweeps R‖ 8–12 8–9 8–11 7–9
range of the number of block-sweeps R

‖
b 10–14 9–12 9–14 9–12

MAGMA’s dgesvd routine has been tested with the sequential (seq.) and the
parallel (par.) (four threads) MKL library on machine A. The relative accuracy is
identical in both cases. Compared with the single-GPU Fermi algorithm, MAGMA

54

2.5. Numerical testing

2 4 6 8 10 12 14 16

matrix dimension / 1024

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

m
ax

im
al

re
la
ti
v
e
er
ro
r
·
10

1
3

‖R

‖R

M

B

‖
b
R

Figure 2.23: The relative accuracy of the various parallel strategies on a single GPU.
The test spectra are Λ

(1)
k .

(seq.) is 1.5–3 times slower, and MAGMA (par.) is up to 2 times faster. On the other
hand, MAGMA (par.) is, on average, 30% slower, and for the larger matrix sizes,
more than 45% slower than the block-oriented 4-GPU Fermi (solve) implementa-
tion. The (acc.) implementation is about 35% slower than (solve) (see Figures 2.24
and 2.25), and only marginally more accurate (see Figures 2.26 and 2.27). For the
matrix orders of at least 4096, the fastest Jacobi implementation on 4 GPUs is about
2.7 times faster than the fastest one on 1 GPU.

MAGMA’s accuracy is comparable to a single-GPU algorithm for the well-
conditioned test matrices, and better than a multi-GPU algorithm, but in the (sep-
arately tested) case of matrices with badly scaled columns (κ2 ≈ 1012), the relative
errors of MAGMA could be more than 20 times worse than the Jacobi ones.

2 4 6 8 10 12 14 16

0.5

1.0

1.5

2.0

2.5

3.0

matrix dimension / 1024

ti
m
e
ra
ti
o

‖
4b
(solve)/ ‖

R R

‖
4b
(acc.)/ ‖

R R

MAGMA (seq.)/ ‖
R

MAGMA (par.)/ ‖
R

Figure 2.24: The wall-clock time ratio of the block-oriented 4-GPU Fermi imple-
mentations and MAGMA versus a single GPU. The test spectra are Λ

(2)
k .

55

2. The Jacobi-type multilevel (H)SVD algorithm for the GPU(s)

2 4 6 8 10 12 14 16

0.5

1.0

1.5

2.0

2.5

3.0

matrix dimension / 1024

ti
m
e
ra
ti
o

‖
4b
(solve)/ ‖

R R

‖
4b
(acc.)/ ‖

R R

MAGMA (seq.)/ ‖
R

MAGMA (par.)/ ‖
R

Figure 2.25: The wall-clock time ratio of the block-oriented 4-GPU Fermi imple-
mentations and MAGMA versus a single GPU. The test spectra are Λ

(4)
k .

2 4 6 8 10 12 14 16

matrix dimension / 1024

1

2

3

4

5

6

7

m
ax

im
al

re
la
ti
v
e
er
ro
r
·
10

1
3

‖
b
R

‖
4b
(solve)R

‖
4b
(acc.)R

MAGMA (seq., par.)

Figure 2.26: The relative accuracy of the block-oriented 1- and 4-GPU Fermi im-
plementations and MAGMA. The test spectra are Λ

(2)
k .

Unlike MAGMA, the Jacobi GPU algorithms are perfectly scalable to an arbi-
trary number of GPUs, when the matrix order is a growing function of the number
of assigned GPUs. That makes the Jacobi-type algorithms readily applicable on the
contemporary large-scale parallel computing machinery, which needs to leverage the
potential of a substantial amount of numerical accelerators.

2.5.1. Modern CUDA on modern hardware

While the GPU hardware and the CUDA software constantly evolve, the previ-
ously shown results do not reflect the latest performance gains, made possible by
having the GPUs with more registers available per thread, and with faster clocks.

The source code required virtually no change to be compiled with CUDA 8.0,

56

2.5. Numerical testing

2 4 6 8 10 12 14 16

matrix dimension / 1024

2 4 6 8 10 12 14 16

matrix dimension / 1024

1

2

3

4

5

6

7
m
ax

im
al

re
la
ti
v
e
er
ro
r
·
10

1
3

‖
b
R

‖
4b
(solve)R

‖
4b
(acc.)R

MAGMA (seq., par.)

Figure 2.27: The relative accuracy of the block-oriented 1- and 4-GPU Fermi im-
plementations and MAGMA. The test spectra are Λ

(4)
k .

and only some syntactical changes for the warp shuffles with (as of now not officially
released) CUDA 9.0.

Though the latest NVIDA GPUs released are based on the Volta architecture,
only the ones based on the penultimate architecture, Pascal, have been available for
testing, in an IBM POWER8NVL (“Minsky”) system with two CPUs, two pairs of
NVLink-connected P100 GPUs, and CUDA 8.0 software stack.

Some numerical results on the Pascal GPU architecture with CUDA 8

Table 2.5 contains the wall-clock time results on a P100 GPU. The ratio B/F ,
also shown, is given normalized per block-sweep, i.e.,

B

F
=

(wall-clock time of B.O.)/(number of block-sweeps)
(wall-clock time of F.B.)/(number of block-sweeps)

· 100%,

in order to demonstrate the time needed to prepare and execute one inner sweep
(the B.O., i.e., block-oriented variant), versus preparing and executing a number of
inner sweeps until convergence (the F.B., i.e., full block variant). The results have
been obtained by using the correctly rounded rsqrt prototype code.

Such a huge performance gain compared to the Kepler results might be explained
by having no register spillage at all (the compiler managed to fit all per-thread data
in at most 127 registers), and by having all the hardware elements running faster
than in the Kepler era, as well.

The Kogbetliantz-type (two-sided) SVD in CUDA 9

CUDA 9.0 has not yet been publicly released at the time of completing this thesis,
but it should be noted that the cuSOLVER library might offer a GPU SVD algorithm
that seems to be an implementation of the two-sided Kogbetliantz procedure [46],
even though it bears Jacobi’s name in the documentation. In its “early access”

57

2. The Jacobi-type multilevel (H)SVD algorithm for the GPU(s)

Table 2.5: The wall-clock running times (in seconds) of the full block (F) versus the
block-oriented (B) variant on a single P100 Pascal GPU with CUDA 8 for the full
SVD of the Cholesky factors of order n = 1024k, with spectra Λ

(2)
k .

k F.B. [s] B.O. [s] B/F [%]

1 0.339778 0.301851 78.97
2 1.850578 1.930034 83.43
3 4.152033 4.460573 85.94
4 10.162217 10.928215 86.03
5 17.116205 18.860442 90.16
6 30.998928 33.845042 89.33
7 43.047102 45.027426 94.14
8 67.491073 73.790574 89.45

k F.B. [s] B.O. [s] B/F [%]

9 100.458574 110.667394 90.13
10 127.070338 140.527818 90.48
11 174.411275 192.535960 90.32
12 209.581525 240.855742 86.19
13 277.494765 307.191926 90.57
14 326.804596 360.364868 90.22
15 414.276624 458.707541 90.59
16 514.069278 561.758535 89.41

version, the routine has shown promising performance on small matrices (from 1024
to 3072) on a consumer Kepler GPU, albeit lower than the algorithm proposed here.

2.6. Parallel norm computation

An essential prerequisite for computing the Householder reflectors and the Ja-
cobi rotations [25] is obtaining the column norms (effectively, the sums of squares)
reliably, avoiding the possible underflows and overflows of an ordinary scalar prod-
uct. However, a strictly sequential nature of LAPACK’s DLASSQ is unsuitable for
parallel processing. Therefore, an alternative procedure, DRDSSQ, is proposed here,
based on the parallel reduction concept.

The proposed procedure is one of the many approaches to compute a sum of
squares of the floating-point numbers, but those approaches differ in their assump-
tions and in their ultimate goals. An assumption might be that the elements of a
vector should be accessed only once (which will not hold for DRDSSQ), or that the
floating-point arithmetic does not necessarily adhere to the standard [44] (here, such
adherence is required).

The goal may be only to avoid the overflows and the underflows by scaling
(as in [10]), or to compute the result as accurately as possible (as in [35]), with
the overflow and underflow protection and/or vectorization as a bonus, or to seek
reproducibility under various assumptions [20], etc.

Here, the goal is not the best possible accuracy or reproducibility as such (even
though it is achieved on all current CUDA architectures as a consequence of the
algorithm’s design), but a high degree of paralellism under the SIMT computing
model, the certainity of the overflows and the underflows being avoided, and an
efficient way of utilizing the reductions, on the warp level and beyond.

Let µ be the smallest and ν the largest positive normalized floating-point number,
ε the maximal relative roundoff error (ε = 2−53 for double with rounding to nearest),

58

2.6. Parallel norm computation

γ = 1−ε, δ = 1+ε, and x a vector of length n, with no special values (±∞, NaNs) for
its components. A floating-point approximation of an exact quantity ξ is denoted
by rn(ξ), ru(ξ), or rz(ξ), for rounding to nearest, to +∞, or to 0, respectively.

Find M := maxi |xi|. If M = 0, x is a zero vector. Else, there exists the smallest
nonzero |xi|, which can be computed as m := mini |x′i|, where x′i = xi for |xi| > 0,
and x′i = ν otherwise. Provided enough workspace for holding, or another technique
for exchanging the partial results (such as the warp shuffle primitives of the Kepler
GPU architecture), M and m could be found by a parallel min/max-reduction of x.

If the floating-point subnormals and infinity are supported, inexpensive, and safe
to compute with (i.e., no exceptions are raised, or the non-stop exception handling
is in effect), a sum of x2i might also be computed. If the sum does not overflow, and
a satisfactory accuracy is found to be maintained (e.g., the underflows could not
have happened if rn(m2) ≥ µ), DRDSSQ stops here.

Otherwise, note that the depth of a reduction tree for the summation of x2i is
dlg ne, and at each tree level (the first one being level 0) at most δ relative error is
accumulated. Inductively, it follows that if, for some s = 2`,

2dlgne(sM)2δ(1+dlgne) ≤ ν,

then the sum of (sxi)
2 cannot overflow. Also, if (sm)2γ ≥ µ, for some s = 2k, then

no (sxi)
2 can underflow. If some j could be substituted for both k and `, it would

define a scaling factor that simultaneously protects from the potential overflows and
underflows. When the range of values of x does not permit a single scaling, the
independent scalings of too large and too small values of x should be performed.

Such a scaling of xi by s in the binary floating-point arithmetic introduces no
rounding errors and amounts to a fast integer addition of the exponents of xi and
s. Instead of the scale factors themselves, only their exponents need to be stored
and manipulated as machine integers. For clarity, the scales remain written herein
as the integer powers of 2. A pair (s, y) thus represents a number with the same
precision as y, but with the exponent equal to a sum of the exponents of s and y.

As motivated above, define the safe, inclusive bounds µ̃ (lower) and ν̂ (upper)
for the values of x for which no overflow nor underflow can happen, as

µ̃ =
√
µ/γ, δn = 2dlgneδ(1+dlgne), ν̂ =

√
ν/δn.

Consider the following computations over a partition of the set of values of x:

• if [m,M] ∩ [µ̃, ν̂] 6= ∅, set s1 = 1 = 20 (no scaling needed), and compute

σ2
1 =

n∑
i=1

x̄2i , x̄i =

{
xi, µ̃ ≤ |xi| ≤ ν̂,

0, otherwise,

• if M > ν̂, take the largest s such that sM ≤ ν̂, denote it by s2, and compute

σ2
2 =

n∑
i=1

(s2x̂i)
2, x̂i =

{
xi, |xi| > ν̂,

0, otherwise,

59

2. The Jacobi-type multilevel (H)SVD algorithm for the GPU(s)

• if m < µ̃, take the smallest s such that sm ≥ µ̃, denote it by s0, and compute

σ2
0 =

n∑
i=1

(s0x̃i)
2, x̃i =

{
xi, |xi| < µ̃,

0, otherwise.

From m, M , µ̃, ν̂ it is known in advance which partial sums are necessarily 0, and
the procedure should be simplified accordingly. If, e.g., m ≥ µ̃, then σ2

0 = 0.
A C/C++ implementation of finding s0 = 2k or s2 = 2` is remarkably simple.

An expression y = frexp(x, &e) breaks x into 0.5 ≤ y < 1 and e such that 2ey = x.
Let f = m, t = ru(µ̃), j = k for s0, or f = M , t = rz(ν̂), j = ` for s2. Also, let
fy = frexp(f, &fe) and ty = frexp(t, &te). Then j is returned by a code fragment:

j = (f <= t) ? (te - fe) + (fy < ty) : (te - fe) - (fy > ty).

If there is more than one nonzero partial sum of squares, such (s−2i , σ2
i) are

expressed in a “common form”, (s̆−2i , σ̆2
i), where 0.5 ≤ σ̆2

i < 2, and the scales’
exponents remain even. Let (s−2i , σ2

i) = (2j, 2my), where y is a significand of σ2
i .

Since σ2
i is normalized by construction, 1 ≤ y < 2. Define m′ = −(m mod 2) and

j′ = j +m−m′. Then m′ ∈ {−1, 0}, j′ remains even, and (s̆−2i , σ̆2
i) = (2j

′
, 2m

′
y).

The common form makes ordering the pairs by their magnitudes equivalent to
ordering them lexicographically. First, find the two (out of at most three) partial
sums which are the smallest by magnitude. Then add these partial sums together,
such that the addend smaller by magnitude is rescaled to match the scale of the
larger one. Let (s−2+ , σ2

+) = (s̆−2≤ , σ̆
2
≤) + (s̆−2> , σ̆2

>), with (s̆−2≤ , σ̆
2
≤) ≤ (s̆−2> , σ̆2

>). Then
s−2+ = s̆−2> , s−2− = s̆−2≤ /s̆

−2
> , and σ2

+ = s−2− σ̆
2
≤ + σ̆2

>.
If one more addition is needed, (s−2+ , σ2

+) has to be brought into the common
form (s̆−2+ , σ̆2

+), and summed with the remaining addend by the above procedure.
However, both (s−22 , σ2

2) and (s−20 , σ2
0) have to be computed only when nµ̃2 ≈ εν̂2.

Such large n seldom occurs. In either case, accuracy of the final result is maintained
by accumulating the partial sums in the nondecreasing order of their magnitudes.

The result of DRDSSQ is (s−2, σ2), and the norm of x is ‖x‖2 =
√
σ2/s. If ‖x‖2

overflows or underflows for x a column of G, the input factor should be initially
rescaled (if possible). A procedure similar to DRDSSQ is implementable wherever the
parallel reduction is a choice (e.g., with MPI_Allreduce operation).

By itself, DRDSSQ does not guarantee numerical reproducibility, if the underlying
parallel reductions do not possess such guarantees. The ideas from [20] might be
useful in that respect.

60

3. The implicit Hari–Zimmermann
algorithm for the GSVD

This chapter is organized as follows. Section 3.1. contains a description of two
pointwise Jacobi-type algorithms for the GEP: the Falk–Langemeyer and the Hari–
Zimmermann algorithm. The one-sided analogue of the Hari–Zimmermann algo-
rithm for the GSVD is presented at the beginning of section 3.2. Then the algo-
rithms are described that orthogonalize a matrix pair block-by-block, to maximize
the efficiency on hierarchical memory architectures. The parallel algorithms on the
shared and distributed memory architectures are detailed in section 3.3. The re-
sults of numerical testing are presented and discussed in section 3.4., and a GPU
implementation of the implicit Hari–Zimermann is sketched in section 3.5.

3.1. The Jacobi–type sequential algorithms for GEP

3.1.1. The Falk–Langemeyer algorithm

The Falk–Langemeyer method solves the GEP (1.2) for a symmetric and definite
matrix pair (A,B). The method constructs a sequence of matrix pairs (A(`), B(`)),

A(`+1) = CT
` A

(`)C`, B(`+1) = CT
` B

(`)C`, ` ∈ N, (3.1)

where A(1) := A, and B(1) := B, according to some pivot strategy that selects the
order in which the off-diagonal elements are annihilated. If the transformation ma-
trix C` is nonsingular, the two consecutive pairs are congruent, so their eigenvalues
are equal [63]. A matrix that diagonalizes the pair is computed by accumulating
the transformations

C(1) = I, C(`+1) = C(`)C`, ` = 1, 2, (3.2)

The matrix C` resembles a scaled plane rotation: it is the identity matrix, except
for its (i, j)-restriction Ĉ`, where it has two parameters, α` and β`

Ĉ` =

[
1 α`
−β` 1

]
. (3.3)

The parameters α` and β` in (3.3) are determined so that the transformations in (3.1)
diagonalize the pivot submatrices

Â(`) =

[
a
(`)
ii a

(`)
ij

a
(`)
ij a

(`)
jj

]
, B̂(`) =

[
b
(`)
ii b

(`)
ij

b
(`)
ij b

(`)
jj

]
. (3.4)

3. The implicit Hari–Zimmermann algorithm for the GSVD

The annihilation equations are[
1 −β`
α` 1

][
a
(`)
ii a

(`)
ij

a
(`)
ij a

(`)
jj

][
1 α`

−β` 1

]
=

[
a
(`+1)
ii 0

0 a
(`+1)
jj

]
,

[
1 −β`
α` 1

][
b
(`)
ii b

(`)
ij

b
(`)
ij b

(`)
jj

][
1 α`

−β` 1

]
=

[
b
(`+1)
ii 0

0 b
(`+1)
jj

]
.

(3.5)

In terms of α` and β`, the equations (3.5) reduce to

α`a
(`)
ii + (1− α`β`)a

(`)
ij − β`a

(`)
jj = 0,

α`b
(`)
ii + (1− α`β`)b

(`)
ij − β`b

(`)
jj = 0,

and the solution can be written as

α` =
I
(`)
j

ν`
, β` =

I
(`)
i

ν`
,

where

I
(`)
i = a

(`)
ii b

(`)
ij − a

(`)
ij b

(`)
ii ,

I
(`)
j = a

(`)
jj b

(`)
ij − a

(`)
ij b

(`)
jj ,

I
(`)
ij = a

(`)
ii b

(`)
jj − a

(`)
jj b

(`)
ii ,

I(`) = (I
(`)
ij)2 + 4I

(`)
i I

(`)
j ,

ν` =
1

2
sign(I

(`)
ij)
(
|I(`)ij |+

√
I(`)
)
.

If I(`) = 0, then a special set of formulas is used (for details, see [71, Algorithm 4]).
Now suppose that the matrices in (3.1) are computed according to the IEEE 754–

2008 standard [44] for floating–point arithmetic. Unfortunately, for large matrices,
after a certain number of transformations, the elements of both A(`) and B(`) can
become huge in magnitude (represented as floating-point infinites). A solution to
this problem is an occasional rescaling, but how often that needs to be done, depends
on the dimension of the pair, the size of its elements, and the chosen pivot strategy.

3.1.2. The Hari–Zimmermann algorithm

If B is positive definite, the initial pair (A,B) can be scaled so that the diagonal
elements of B are all equal to one. By taking

D = diag

(
1√
b11
,

1√
b22
, . . . ,

1√
bkk

)
,

and making the congruence transformations

A(1) := DAD, B(1) := DBD,

a new pair (A(1), B(1)) is obtained, which is congruent to the original pair.

62

3.1. The Jacobi–type sequential algorithms for GEP

The idea behind this modification of the Falk–Langemeyer algorithm is: when B
is the identity matrix, the transformations are the ordinary Jacobi rotations. The
method constructs a sequence of matrix pairs

A(`+1) = ZT
` A

(`)Z`, B(`+1) = ZT
` B

(`)Z`, ` ∈ N, (3.6)

such that the diagonal elements of B(`) remain ones after each transformation. The
matrices Z` in (3.6) are chosen to annihilate the elements at positions (i, j) (and
(j, i)), and to keep ones as the diagonal elements of B(`). If the matrix that diag-
onalizes the pair is needed, the accumulation procedure is given by (3.2), with C
replaced by Z.

The matrix Z` is the identity matrix, except in the plane (i, j), where its restric-
tion Ẑ` is equal to

Ẑ` =
1√

1−
(
b
(`)
ij

)2
[

cosϕ` sinϕ`
− sinψ` cosψ`

]
, (3.7)

with
cosϕ` = cosϑ` + ξ`(sinϑ` − η` cosϑ`),

sinϕ` = sinϑ` − ξ`(cosϑ` + η` sinϑ`),

cosψ` = cosϑ` − ξ`(sinϑ` + η` cosϑ`),

sinψ` = sinϑ` + ξ`(cosϑ` − η` sinϑ`),

ξ` =
b
(`)
ij√

1 + b
(`)
ij +

√
1− b(`)ij

,

η` =
b
(`)
ij(

1 +
√

1 + b
(`)
ij

)(
1 +

√
1− b(`)ij

) ,

tan(2ϑ`) =
2a

(`)
ij −

(
a
(`)
ii + a

(`)
jj

)
b
(`)
ij(

a
(`)
jj − a

(`)
ii

)√
1−

(
b
(`)
ij

)2 , −π
4
< ϑ` ≤

π

4
.

(3.8)

If a(`)ij = b
(`)
ij = 0, set ϑ` = 0. Else, if a(`)ii = a

(`)
jj , and 2a

(`)
ij =

(
a
(`)
ii + a

(`)
jj

)
b
(`)
ij , then the

matrices Â(`) and B̂(`) are proportional. Hence, set ϑ` = π
4
.

To justify the notation, in the following it is proven that the quantities defined
in (3.8) are indeed trigonometric functions of certain angles. Note that ϑ` in the
specified range is always uniquely defined by tan(2ϑ`).

Proposition 3.1. The quantities cosϕ`, sinϕ`, cosψ`, and sinψ` represent the
stated trigonometric functions of certain angles ϕ`, and ψ`, respectively.

Proof. It is sufficient to prove that cos2 ϕ` + sin2 ϕ` = 1, and cos2 ψ` + sin2 ψ` = 1.
From the first two lines of (3.8) it follows that

cos2 ϕ` + sin2 ϕ` = cos2 ψ` + sin2 ψ` = (1− ξ`η`)2 + ξ2` = 1 + ξ`(−2η` + ξ`η
2
` + ξ`).

63

3. The implicit Hari–Zimmermann algorithm for the GSVD

To prove the claim, it is sufficient to show that

ξ`(−2η` + ξ`η
2
` + ξ`) = 0.

If ξ` = 0, the conclusion is obvious. Otherwise, the result is obtained by substitution
of ξ` and η` from (3.8) as the functions of b(`)ij , followed by simplification of this
expression.

Hari in his Ph.D. thesis proved [37, Proposition 2.4] that

min{cosϕ`, cosψ`} > 0,

and
−1 < tanϕ` tanψ` ≤ 1,

with tanϕ` tanψ` = 1, if and only if ϑ` = π
4
. Hence, Ẑ` is nonsingular. More

precisely,

det(Ẑ`) =
1

1−
(
b
(`)
ij

)2 (cosϕ` cosψ` + sinϕ` sinψ`) =
1

1−
(
b
(`)
ij

)2 (1− 2ξ2`)

=
1

1−
(
b
(`)
ij

)2
1−

(
b
(`)
ij

)2
1 +

√
1−

(
b
(`)
ij

)2
 =

1√
1−

(
b
(`)
ij

)2 .
The transformations applied on B are congruences, and consequently, they pre-

serve the inertia of B. Therefore, all matrices B(`) are positive definite. Since their
diagonal elements are ones, the absolute value of all the other elements is smaller
than one, i.e., the elements of B(`) cannot overflow. For the elements of A(`), the
situation is slightly more complicated.

Proposition 3.2. The elements of the matrix A(`+1) = ZT
` A

(`)Z` are bounded in
terms of the elements of A(`), and the pivot element b(`)ij of B(`). They are equal
to the elements of A(`), except in the columns (and, due to symmetry, rows) with
indices i and j, where a(`+1)

ij = 0, and

max
{
|a(`+1)
ii |, |a(`+1)

jj |
}
≤

4 max
{
|a(`)ii |, |a

(`)
ij |, |a

(`)
jj |
}

1−
(
b
(`)
ij

)2 ,

max
{
|a(`+1)
pi |, |a(`+1)

pj |
}
≤

2 max
{
|a(`)pi |, |a

(`)
pj |
}

√
1−

(
b
(`)
ij

)2 , p = 1, . . . , k.

Moreover, if A is positive definite, the bound for the diagonal elements of A(`+1) can
be written as

max
{
a
(`+1)
ii , a

(`+1)
jj

}
≤

4 max
{
a
(`)
ii , a

(`)
jj

}
1−

(
b
(`)
ij

)2 .

64

3.1. The Jacobi–type sequential algorithms for GEP

Proof. From the structure of Z` it follows that the elements of A(`+1) are equal to the
elements of A(`), except in the pivot rows and columns, i.e., the rows and columns
with indices i and j. Therefore,

a
(`+1)
ii =

cos2 ϕ`a
(`)
ii − 2 cosϕ` sinψ`a

(`)
ij + sin2 ψ`a

(`)
jj

1−
(
b
(`)
ij

)2 ,

a
(`+1)
pi = a

(`+1)
ip =

a
(`)
pi cosϕ` − a(`)pj sinψ`√

1−
(
b
(`)
ij

)2 , p 6= i, j,

a
(`+1)
pj = a

(`+1)
jp =

a
(`)
pi sinϕ` + a

(`)
pj cosψ`√

1−
(
b
(`)
ij

)2 , p 6= i, j,

a
(`+1)
jj =

sin2 ϕ`a
(`)
ii + 2 sinϕ` cosψ`a

(`)
ij + cos2 ψ`a

(`)
jj

1−
(
b
(`)
ij

)2 ,

(3.9)

and a(`+1)
ij = a

(`+1)
ji = 0. From (3.9), for s = i, j and p 6= s, it follows

|a(`+1)
ps | = |a(`+1)

sp | ≤
|a(`)pi |+ |a

(`)
pj |√

1−
(
b
(`)
ij

)2 ≤ 2 max
{
|a(`)pi |, |a

(`)
pj |
}

√
1−

(
b
(`)
ij

)2 ,

and

|a(`+1)
ss | ≤

|a(`)ii |+ 2|a(`)ij |+ |a
(`)
jj |

1−
(
b
(`)
ij

)2 ≤
4 max

{
|a(`)ii |, |a

(`)
ij |, |a

(`)
jj |
}

1−
(
b
(`)
ij

)2 .

The bound for positive definite matrices A follows from the fact that all matrices
A(`) are positive definite, and all principal minors of order 2 in A(`) are positive, i.e.,
|a(`)ij | ≤

√
a
(`)
ii a

(`)
jj ≤ max

{
a
(`)
ii , a

(`)
jj

}
.

Note that if B = I, then ξ` = η` = 0 for all ` in (3.8), and ϑ` is the angle
from the ordinary Jacobi method for a single symmetric matrix A. In this case, Ẑ`
in (3.7) is the ordinary plane rotation for the angle ϑ`. A similar situation occurs
near the end of the diagonalization process, when B is close to I, and the matrices
Ẑ` defined by (3.7) tend to the ordinary rotations. This reasoning is justified by the
following convergence theorem, proved in [37].

Theorem 3.3 (Hari). If B is positive definite, the row- and the column-cyclic Hari–
Zimmermann method is globally convergent. There exists a permutation π of the
generalized eigenvalues λ1 ≤ · · · ≤ λk of the pair (A,B), such that

lim
`→∞

A(`) = diag(λπ(k), . . . , λπ(1)), lim
`→∞

B(`) = I.

Since the elements of A(`+1) are bounded, and the algorithm is convergent, it can
be expected that the elements of A(`), for all `, will not overflow, provided that the
initial matrix B is not severely ill-conditioned.

65

3. The implicit Hari–Zimmermann algorithm for the GSVD

3.2. The Jacobi–type algorithms for GSVD

3.2.1. The implicit Hari–Zimmermann algorithm

In the GSVD problem, two matrices F0 ∈ Rm×n and G0 ∈ Rp×n are given. If G0

is not of full column rank, then after the preprocessing step from [6], a matrix pair
of two square matrices (F,G) is obtained, with G of full rank k.

For such F and G, since GTG is a positive definite matrix, the pair (F TF,GTG)
in the corresponding GEP is symmetric and definite. There exist many nonsingular
matrices Z that simultaneously diagonalize the pair (F TF,GTG) by congruences [63,
Theorem 15.3.2, p. 344],

ZTF TFZ = ΛF , ZTGTGZ = ΛG, (3.10)

where ΛF and ΛG are diagonal matrices such that (ΛF)ii ≥ 0 and (ΛG)ii > 0, for
i = 1, . . . , k. Since ZTGTGZΛ−1G = I, the problem (3.10) can be rewritten as

(F TF)Z = Z−T · I · ΛF = Z−T (ZTGTGZΛ−1G)ΛF = (GTG)Z(Λ−1G ΛF),

and the eigenvalues of the pair (F TF,GTG) are the diagonal elements of the matrix
Λ−1G ΛF , while the generalized eigenvectors are the columns of the matrix Z.

First note that the congruence transformations by Z in (3.10) can be written as
one-sided transformations from the right-hand side on F and G, with transformation
parameters computed from F TF and GTG. Moreover, the final matrices ΛF and
ΛG are diagonal, so the columns of FZ and GZ are orthogonal (not orthonormal),
with the column norms equal to the square roots of the diagonal elements of ΛF

and ΛG, respectively. Hence, (3.10) can be written as

FZ = UΛ
1/2
F , GZ = V Λ

1/2
G , (3.11)

where U and V are orthogonal matrices, and ()1/2 denotes the principal square root
of a matrix (see [42, Section 1.7]). Finally, if ΛF + ΛG 6= I, then define the diagonal
scaling

S = (ΛF + ΛG)1/2. (3.12)

By setting
X := SZ−1, ΣF := Λ

1/2
F S−1, ΣG := Λ

1/2
G S−1, (3.13)

the relation (3.11) becomes (1.1), i.e., the GSVD of the pair (F,G). If only the
generalized singular values are sought for, this rescaling is not necessary, and the
generalized singular values are simply σi = (Λ

−1/2
G Λ

1/2
F)ii, for i = 1, . . . , k.

Now it is easy to establish a connection between the two-sided GEP algorithm
and the one-sided GSVD algorithm. Suppose that the algorithm works in sweeps.
Each sweep annihilates all pivot pairs (i, j), for 1 ≤ i < j ≤ k, only once, in
some prescribed cyclic order (for example, row- or column-cyclic). To determine the
annihilation parameters from (3.7)–(3.8), the elements of the matrices Â(`) and B̂(`)

from (3.4) should be computed. If the pivot columns of F (`) and G(`) are denoted

66

3.2. The Jacobi–type algorithms for GSVD

by f (`)
i , f (`)

j , g(`)i , and g(`)j , then the elements of Â(`) and B̂(`) are the inner products
of pivot columns of F (`) and G(`), respectively,

a
(`)
ii = (f

(`)
i)Tf

(`)
i ,

b
(`)
ii = (g

(`)
i)Tg

(`)
i ,

a
(`)
ij = (f

(`)
i)Tf

(`)
j ,

b
(`)
ij = (g

(`)
i)Tg

(`)
j ,

a
(`)
jj = (f

(`)
j)Tf

(`)
j ,

b
(`)
jj = (g

(`)
j)Tg

(`)
j .

(3.14)

The rest of the one-sided or the implicit algorithm consists of computing the elements
of the transformation matrix from (3.8), and updating of the corresponding columns
in F (`) and G(`), as described in Algorithm 5.

Note that Algorithm HZ_Orthog works in sweeps, where max_sw is the maximal
number of allowed sweeps. The step index ` is omitted, and the pivot submatrices
are denoted by hat. After completion of the algorithm, Finalize computes all the
matrices in the GSVD of the pair (F,G). The matrices U and V are stored in F
and G, respectively. If acc is set to true in HZ_GSVD, the transformation matrix
Z = X−1S is accumulated, and X is obtained by solving the linear system

ZTXT = diag(S11, . . . , Skk).

The maximal value of 50 sweeps in HZ_GSVD is set provisionally, because numerical
testing shows that HZ_Orthog terminates much sooner than that. No transforma-
tions in this sweep means that all the transformations have been computed as the
identity matrices.

In principle, the GSVD of a given pair (F,G) can be computed by solving the
GEP for the pair (F TF,GTG). The first step is to compute the products A = F TF
and B = GTG. Unfortunately, the conditions of A and B are squares of the original
conditions of F and G. For example, since A is symmetric and positive definite,

κ(A) =
λmax(A)

λmin(A)
=
σ2
max(F)

σ2
min(F)

= κ2(F),

and, similarly, for B and G. As a consequence, the computed generalized eigenvalues
may suffer a significant loss of accuracy with respect to the computed solution
of the original GSVD problem. In addition, the GEP algorithm uses two-sided
transformations, which are not cache-aware and are hard to parallelize. The one-
sided transformations do not suffer from any of these drawbacks, so the GSVD
algorithm turns out to be much faster and more stable.

From the practical point of view, it is better to solve the GEP by reducing it to
the GSVD, than the other way around. The original two-sided Hari–Zimmermann
algorithm for the GEP can be replaced by a two-step algorithm. When A is posi-
tive definite, the first step is the Cholesky factorization (preferably, with diagonal
pivoting [69]) of A,

A = P TF TFP, i.e., PAP T = F TF,

followed by the Cholesky factorization of PBP T (with P as above), i.e.,

PBP T = GTG.

67

3. The implicit Hari–Zimmermann algorithm for the GSVD

Algorithm 5: Implicit cyclic Hari–Zimmermann algorithm for the GSVD.
HZ_Orthog(inout ::F , G, Z, in :: k, acc, max_sw);
begin

if acc then Z = I;
it = 0;
repeat // sweep loop

it = it+ 1;
for all pairs (i, j), 1 ≤ i < j ≤ k do

compute Â and B̂ from (3.14);
compute the elements of Ẑ by using (3.8);
// transform F and G

[fi, fj] = [fi, fj] · Ẑ;
[gi, gj] = [gi, gj] · Ẑ;
// if needed, accumulate Z

if acc then [zi, zj] = [zi, zj] · Ẑ;
end for

until (no transf. in this sweep) or (it ≥ max_sw);
end

Finalize(inout ::F , G, in ::Z, k, acc, out ::ΣF , ΣG, X);
begin

for i = 1 to k do
Sii =

√
‖fi‖22 + ‖gi‖22;

(ΣF)ii = ‖fi‖2/Sii;
(ΣG)ii = ‖gi‖2/Sii;
fi = fi/‖fi‖2;
gi = gi/‖gi‖2;

end for
if acc then

solve the linear system ZTXT = S to obtain X;
end if

end

HZ_GSVD(inout ::F , G, in :: k, out ::Z, ΣF , ΣG, X);
begin

set acc; max_sw = 50;
call HZ_Orthog(F , G, Z, k, acc, max_sw);
call Finalize(F , G, Z, k, acc, ΣF , ΣG, X);

end

If no pivoting is employed (i.e., if P = I), then the Cholesky factorizations of both
matrices can be performed concurrently.

In either case, in the second step the implicit Hari–Zimmermann method is ap-
plied to the two triangular matrices, F and G, resulting from the previous step.

68

3.2. The Jacobi–type algorithms for GSVD

Since the iterative part of the algorithm is one-sided, only the transformations of
columns are performed, which are considerably faster (when the data is stored and
accessed in the column-major array order, as in Fortran) than the two-sided trans-
formations in the original algorithm.

When A is symmetric and indefinite, and B is symmetric positive definite, an
algorithm similar to Algorithm 5 can also be used as the second step in solving the
GEP for the pair (A,B).

In such an algorithm, the first step should be a slightly modified symmetric indef-
inite factorization [70] of A (preferably, with complete pivoting [14]), that produces
the signs of the eigenvalues,

A = P TF TJFP, i.e., PAP T = F TJF,

where P is a permutation, F is block upper triangular with diagonal blocks of order
1 or 2, and J is a diagonal matrix with ±1 on its diagonal.

For easier computation, J should be partitioned in a way that all positive signs
precede all negative ones along its diagonal. If it is not already so, an additional
symmetric permutation Q is needed to establish that partitioning,

A = P TF TQTJQFP, i.e., P TAP = F T
QJFQ,

where FQ := QF . In what follows, substitute FQ for F in such a case, and assume
that J is partitioned as above.

Then, G is computed from the Cholesky factorization of the matrix

PBP T = GTG.

However, the second step should employ a modification of Algorithm 5, as follows.
First, note that now it is the pair (F TJF,GTG) that is being simultaneously

diagonalized,
ZTF TJFZ = ΛF , ZTGTGZ = ΛG,

where ΛF has some negative diagonal elements. Therefore, (3.14) has to be modified
to take into account the signature matrix J ,

a
(`)
ii = (f

(`)
i)TJf

(`)
i , a

(`)
ij = (f

(`)
i)TJf

(`)
j , a

(`)
jj = (f

(`)
j)TJf

(`)
j .

Also, no postprocessing with Finalize in Algorithm 5 is needed for the GEP,
regardless of whether A is positive definite or indefinite. In both cases it holds that

PAP TZ = PBP TZ(Λ−1G ΛF). (3.15)

Multiplying (3.15) by P T from the left, and denoting the generalized eigenvalues
Λ−1G ΛF by Λ, it follows that

AP TZ = BP TZΛ.

The generalized eigenvectors of the pair (A,B) are the columns of the matrix P TZ.
After establishing the connection between one-sided and two-sided Hari–Zimmer-

mann algorithms, the global convergence of the one-sided algorithm follows directly
from Theorem 3.3.

69

3. The implicit Hari–Zimmermann algorithm for the GSVD

Theorem 3.4. If G is of full column rank, the row- and the column-cyclic implicit
Hari–Zimmermann method for the GSVD of the pair (F,G) is globally convergent.

Proof. Let A = F TF and B = GTG. Since G is of full column rank, the matrix
B is positive definite. According to Theorem 3.3, the two-sided Hari–Zimmermann
algorithm for the GEP of the pair (A,B) is globally convergent. There exists a
permutation π of the generalized eigenvalues λ1 ≤ · · · ≤ λk of the pair (A,B), i.e.,
a permutation of the generalized singular values σi =

√
λi, i = 1, . . . , k, of the pair

(F,G), such that

lim
`→∞

A(`) = diag(λπ(k), . . . , λπ(1)) = diag(σ2
π(k), . . . , σ

2
π(1)),

lim
`→∞

B(`) = diag(1, . . . , 1) = I.

The relationship (3.14) between the elements of A and B, and the columns of F
and G, shows that in the limit, when ` → ∞, the matrices F (`) tend to a matrix
with orthogonal (but not orthonormal) columns, while the matrices G(`) tend to
an orthogonal matrix. Finally, the postprocessing by the one-sided scaling S−1 in
(3.12)–(3.13) has no influence on the convergence.

3.2.2. Blocking in the one-sided algorithm

The main motivation for blocking of the algorithm is an efficient utilization of
the cache memory. To this end, the columns of F and G are grouped into nb
block-columns, denoted by Fi and Gi, respectively, with an almost equal number of
columns ki ≈ k/nb in each block

F = [F1, F2, . . . , Fnb], G = [G1, G2, . . . , Gnb]. (3.16)

A blocked algorithm works with the block-columns in a similar way as the non-
blocked algorithm works with the individual columns. The notation remains the
same, but now it is used at the level of blocks, instead of columns.

A chosen block-pivot strategy in block-step ` selects a pair of block-columns
(i, j), where 1 ≤ i < j ≤ nb, as the pivot pair. That generates the following pair of
pivot submatrices

(Â
(`)
ij , B̂

(`)
ij) :=

(
(F

(`)
ij)TF

(`)
ij , (G

(`)
ij)TG

(`)
ij

)
,

where
F

(`)
ij = [F

(`)
i , F

(`)
j], G

(`)
ij = [G

(`)
i , G

(`)
j], (3.17)

and

Â
(`)
ij := (F

(`)
ij)TF

(`)
ij =

[
(F

(`)
i)TF

(`)
i (F

(`)
i)TF

(`)
j

(F
(`)
j)TF

(`)
i (F

(`)
j)TF

(`)
j

]
,

B̂
(`)
ij := (G

(`)
ij)TG

(`)
ij =

[
(G

(`)
i)TG

(`)
i (G

(`)
i)TG

(`)
j

(G
(`)
j)TG

(`)
i (G

(`)
j)TG

(`)
j

]
.

(3.18)

70

3.2. The Jacobi–type algorithms for GSVD

The order of pivot matrices in (3.18), i.e., the number of columns in the so-called
pivot blocks F (`)

ij and G(`)
ij in (3.17), is ki +kj. The blocked algorithm then performs

a one-sided transformation of both pivot blocks to obtain a new pair of blocks

F
(`+1)
ij = F

(`)
ij Ẑ

(`)
ij , G

(`+1)
ij = G

(`)
ij Ẑ

(`)
ij , (3.19)

where Ẑ(`)
ij is a nonsingular matrix of order ki + kj. This transformation matrix is a

blocked analogue of the pointwise Hari–Zimmermann transformation Ẑ` from (3.7).
If these transformations have to be accumulated as in (3.2), the global transforma-
tion matrix Z(`) of order k is partitioned in the same way as the columns of F and
G, and only the block-columns Z(`)

i and Z(`)
j need to be updated. By putting

Z
(`)
ij = [Z

(`)
i , Z

(`)
j],

the block-column update can be written as

Z
(`+1)
ij = Z

(`)
ij · Ẑ

(`)
ij . (3.20)

The matrix Ẑ
(`)
ij in (3.19) is taken as a product, or a sequence of a certain

number of pointwise transformations, all of which have the same form as in (3.7).
Each pointwise transformation orthogonalizes a pair of pivot columns, and the whole
sequence of such transformations in a blocked algorithm is chosen to accomplish a
similar task on the block-level, i.e., to make all the columns in both pivot blocks more
orthogonal than before. Since ki + kj is, generally, greater than 2, the non-blocked
(pointwise) algorithm can now be mimicked in two different ways—both pivot blocks
can be “fully” orthogonalized, or just a single sweep of pointwise transformations
can be applied.

1. If the block-sizes are chosen to be sufficiently small, most of the required data
resides in cache, and the pivot pair (Â

(`)
ij , B̂

(`)
ij) can be diagonalized efficiently

by the non-blocked two-sided Hari–Zimmermann algorithm. In the one-sided
terminology, the columns of pivot blocks F (`)

ij and G(`)
ij are orthogonalized. This

approach is called the full block algorithm.
2. The offdiagonal elements of the pair (Â

(`)
ij , B̂

(`)
ij) can be annihilated exactly once,

i.e., only one sweep of the transformations is applied to the right-hand side of
F

(`)
ij and G(`)

ij . If the block-sizes are chosen to be moderate, this, the so-called
block-oriented algorithm, is a powerful alternative to the full block algorithm.

The one-sided transformations of block-columns can be applied from the right-hand
side on (F

(`)
ij , G

(`)
ij) in (3.17), or from the left-hand side on

(
(F

(`)
ij)T , (G

(`)
ij)T

)
. The

choice of the side depends on the programming language. For example, Fortran
stores matrices by columns, and the right-handed transformations are suitable, while
C keeps matrices by rows, and the left-handed transformations are more appropriate.

Both blocked versions of the Hari–Zimmermann algorithm are recursive in na-
ture, as they use the pointwise algorithm at the bottom (or the inner) level, to
compute the transformations at the block-level. It is a well-known fact that the
inner one-sided Jacobi-type algorithms are most efficient when applied to square

71

3. The implicit Hari–Zimmermann algorithm for the GSVD

matrices, because the columns that appear in inner products (3.14) and column
updates (Algorithm 5) are as short as possible. Because the block-columns F (`)

ij and
G

(`)
ij are “tall-and-skinny” matrices, suitable square matrices R(`)

F and R
(`)
G (pivot

indices ij are omitted to keep the notation readable) can be computed either

1. from (3.17), by the QR factorization of F (`)
ij and G(`)

ij , or

2. from (3.18), by the Cholesky factorization of Â(`)
ij and B̂(`)

ij .

Since the original F (`)
ij and G

(`)
ij are needed in the algorithm for the block-column

updates (3.19), they should be copied and saved before the QR factorization, because
the QR factorization of a given matrix is performed in-place, i.e., it destroys the
original matrix. In the second alternative, this extra copying of tall blocks is not
needed. An additional storage is required only for the small square pivot submatrices
to store the matrix multiply results, and the Cholesky factorization is performed in-
place on these results. Besides, the “multiply + in-place Cholesky” approach turns
out to be much faster in practice, so it is used in all blocked algorithms to compute
R

(`)
F and R(`)

G .
Regardless of the choice, the use of pivoting is desirable in both approaches, to

improve the numerical stability and the speed of convergence of the blocked algo-
rithm. Since the pivoting must be the same for both matrices, a direct application of
the LAPACK routines for the pivoted QR or the pivoted Cholesky factorization of
each matrix, as in [69], is not possible. Instead of using pivoting in the factorization
algorithms, which becomes quite complicated when multiple levels of blocking are
present, the pivoting is incorporated directly into the (pointwise) orthogonalization
at the bottom level of the algorithm, i.e., into the inner loop of HZ_Orthog from
Algorithm 5.

One way to do this is similarly as de Rijk [16] incorporated pivoting in the
ordinary Jacobi SVD computation. In that algorithm, each sweep orthogonalizes k
columns of a given matrix R in a row-cyclic manner. To ensure that all pairs of the
original columns are indeed transformed, a sweep is implemented like the selection
sort algorithm over the columns of the current working matrix (initially R), in the
decreasing order of their norms (see Algorithm 6, where the sweep with pivoting is
implemented in-place—on the working matrix denoted by R). The sweep is divided
into k − 1 subsweeps. In each subsweep, the first pivot column is the one with the
largest norm among the remaining columns, and then all the remaining pairs are
transformed, which changes the norms of the transformed columns. The number of
necessary column interchanges in each sweep is at most k − 1.

Explicit interchanges of columns can cause a significant slowdown of the inner
orthogonalization algorithm, so they should be avoided, if possible. Such a trick
is used by Novaković [55] for the Jacobi SVD on graphics processing units (see
Algorithm 7, again written in-place, on the working matrix R). Since this strategy
is strictly local, i.e., it compares only a pair of columns to be transformed, it is
suitable for parallel algorithms—any prescribed ordering of pairs (i, j) in a sweep
can be used, not just a cyclic one.

More importantly, in the local pivoting strategy there are no column interchanges

72

3.2. The Jacobi–type algorithms for GSVD

Algorithm 6: Pivoting strategies for the SVD: sequential de Rijk [16]
for i = 1 to k − 1 do

find a column rmax such that ‖rmax‖2 = max
j=i,...,k

‖rj‖2;

interchange the columns ri and rmax;
for j = i+ 1 to k do

orthogonalize the columns ri and rj;
end for

end for

Algorithm 7: Pivoting strategies for the SVD: local Novaković [55]
for each pair (i, j) in a sweep do

compute a 2× 2 rotation that orthogonalizes ri, rj;
compute ‖r′i‖2 and ‖r′j‖2 as they would be after the transformation \
(but without applying it);

if ‖r′i‖2 < ‖r′j‖2 then
swap the columns of the computed 2× 2 rotation;

end if
apply the rotation to ri and rj to obtain r′i and r′j;

end for

before the transformation, and the actual ordering is achieved by permuting the
pointwise transformation itself, when required. In contrast to de Rijk’s sequential
strategy, which begins with a “sorted” pair of columns (with respect to their norms),
the local reordering strategy ends with a “sorted” pair of columns after each pointwise
transformation.

In the GSVD algorithm, the same pivoting has to be applied on two matrices R(`)
F

and R(`)
G , instead of only to one matrix R in the ordinary SVD algorithm. To describe

the modified reordering strategy, that is suitable for the GSVD computation, it is
sufficient to consider the state before and after one pointwise transformation. For
simplicity, the pointwise transformation index is omitted in the discussion below,
and the following convention is adopted: all quantities without a prime refer to the
state before the transformation, while all primed quantities refer to the state after
the transformation.

The GSVD pivoting is designed in such a fashion that the ratio between the
norms of the pivot columns from RF and RG is decreasing after the transformation,
i.e.,

‖(R′F)i‖2
‖(R′G)i‖2

≥ ‖(R
′
F)j‖2

‖(R′G)j‖2
, i < j.

Additionally, in the one-sided Hari–Zimmermann algorithm, the norms of all com-
puted columns in R′G are equal to 1, so it is sufficient to compare the norms of the
computed pivot columns in R′F .

To accomplish the desired ordering, the sweep phase of Algorithm 5 should be

73

3. The implicit Hari–Zimmermann algorithm for the GSVD

modified so that the pivot submatrices [fi, fj], [gi, gj], and [zi, zj] are multiplied
either by Ẑ or by ẐP , where

P =

[
0 1
1 0

]
,

depending on the sizes of ‖f ′s‖2 = ‖(R′F)s‖2, for s = i, j. These two norms can be
computed very quickly (with a reasonable accuracy) before the actual transforma-
tion. The elements of pivot submatrices from (3.4) are already at our disposal, as
they are needed in the computation of tan(2ϑ) in (3.8). Then it is easy to compare
the scaled squares of norms

a′′ss :=
(
1− b2ij

)
a′ss =

(
1− b2ij

)
‖(R′F)s‖22, s = i, j,

where a′′ii and a′′jj are computed as

a′′ii = cos2 ϕaii − 2 cosϕ sinψ aij + sin2 ψ ajj,

a′′jj = sin2 ϕaii + 2 sinϕ cosψ aij + cos2 ψ ajj.

In the later stages of the orthogonalization, it can be expected that the columns are
already sorted in such a way, so that the permutations do not occur any more, and
the algorithm will produce the generalized singular values in the decreasing order.

Subsequently, it is assumed that HZ_Orthog in Algorithm 5 incorporates the local
reordering of pivot columns as in Algorithm 7, combined with any chosen pointwise
pivoting strategy. Such a modification brings an additional speedup of up to 20%.

In any blocked version of the algorithm, the matrix Ẑ
(`)
ij that transforms the

columns of R(`)
F and R

(`)
G can be computed in several different ways (see [39, 40]).

Numerical tests show that the explicit accumulation of all used transformations is
the best option regarding the accuracy, while the solution of one of the linear systems

R
(`)
F Ẑ

(`)
ij = R

(`+1)
F , R

(`)
G Ẑ

(`)
ij = R

(`+1)
G , (3.21)

after all transformations, is the best option regarding the speed (about 20% faster
for sequential execution of blocked algorithms), with a negligible loss of accuracy
(see [27] for details). The first system in (3.21) can be singular, while the second
one is certainly not, since G is of full column rank.

When the multiple levels of blocking are present, the decision which option is
better may vary from level to level. For instance, if the blocks are spread over a
distributed memory, then local matrix multiplication in each process (executed in
parallel), is much faster than the parallel solution of a distributed linear system.

Both blocked versions of the one-sided Hari–Zimmermann algorithm are given
in Algorithm 8.

Algorithm HZ_BOrthog_Lvn transforms F and G by one of the blocked algo-
rithms. The step index ` is omitted. To accommodate multiple levels of blocking,
the algorithm is recursive in nature—each pivot block is transformed by the calling
essentially the same algorithm HZ_BOrthog_Lvn−1 at the next level of blocking. At
the bottom level, HZ_BOrthog_Lv0 is the pointwise algorithm HZ_Orthog.

74

3.2. The Jacobi–type algorithms for GSVD

Algorithm 8: Implicit blockedHari–Zimmermann algorithm for theGSVD.
HZ_BOrthog_Lvn(inout ::F , G, Z, in :: k, accn, max_swn);

begin
partition matrices F , G, and (if needed) Z, as in (3.16);
set accn−1 to true, if Ẑij will be accumulated,

or to false, if Ẑij will be obtained by solving the linear system;
it = 0;
if algorithm is full block then

max_swn−1 = 50;
else if algorithm is block-oriented then

max_swn−1 = 1;
end if
repeat // sweep loop

it = it+ 1;
choose a block pivot strategy block_piv;
for ∀ (i, j) in a block-sweep, according to block_piv (parallel) do

// block-transformation: in parallel implementation,
// a thread or a process job
compute the factors RF and RG of

the submatrices Âij and B̂ij, respectively;
if accn−1 then

Ẑij = I;
else

save RF to TF , or RG to TG;
end if
call HZ_BOrthog_Lvn−1(RF , RG, Ẑij, ki + kj, accn−1,
max_swn−1);
if not accn−1 then

solve the linear system TF Ẑij = RF , or TGẐij = RG

end if
// transform the pivot blocks of F and G

Fij = Fij · Ẑij; Gij = Gij · Ẑij;
// if needed, accumulate Z

if accn then Zij = Zij · Ẑij;
end for

until (no transf. in this sweep) or (it ≥ max_swn);
end

The driver routine HZ_GSVD is the same as in Algorithm 5, except that it now calls
the topmost blocked algorithm HZ_BOrthog_Lvn, instead of the pointwise algorithm
HZ_Orthog.

The general blocked algorithm HZ_BOrthog_Lvn, at a certain level n, can be
implemented either sequentially or in parallel, depending on the choice of the block-

75

3. The implicit Hari–Zimmermann algorithm for the GSVD

pivot strategy.
The hierarchy of blocking levels in Algorithm 8 corresponds to the memory hier-

archy in modern computer architectures. In that respect, level 1 (the bottom level of
true blocking) is, usually, the sequential blocked algorithm, aimed at exploiting the
local cache hierarchy of a single processing unit. The next two levels of blocking cor-
respond to the shared and distributed memory parallelism, respectively. The choice
of the topmost level depends on the size of the pair and the available hardware.

In a multi-level blocked algorithm, only the topmost level “sees” the block-
columns of the original square matrices F and G, while the lower levels “see” only
the shortened square matrices R(`)

F and R(`)
G , resulting from some pivot blocks at the

level above.
Note that the bottom pointwise level HZ_BOrthog_Lv0 = HZ_Orthog can be

implemented in a similar fashion as all the blocked levels. However, for pivot blocks
with only two columns, it is much faster to implement the transformations directly
(as in Algorithm 5), without a reduction to square matrices of order 2.

The most time-consuming part of the blocked algorithm is the update of both
pivot blocks (3.19), and the update of the transformation matrix (3.20), if it is
accumulated. All updates are done by the BLAS-3 routine xGEMM. Since the original
matrices cannot be overwritten by xGEMM, a temporary k × 2k0 matrix is needed,
where

k0 = max
i=1,...,nb

ki. (3.22)

This is sufficient for the sequential blocked algorithms (level 1). If these two or
three updates are to be performed in parallel (at higher levels), then the required
temporary storage is k × 2k0 per update, times the maximal number of concurrent
updates to be performed.

For example, on an Intel Xeon Phi 7210 (Knights Landing) machine, for the
matrices of order 8000 in MCDRAM, with 32 OpenMP threads and the sequential
MKL routine calls in P-HZ-BO-50 (see section 3.4.), the DGEMMs take about 36.4%,
while the scalar products take about 28.9%, and the DSYRKs (in the Gram matrix
formation part of shortening phase) take about 13% of the total CPU time.

At parallel blocked levels of the algorithm, the number of blocks nb is determined
by the number of cores or processes available (seesection 3.3.), which determines the
value of k0 in (3.22).

For the sequential blocked algorithms, the optimal value of k0 very much depends
on the cache hierarchy, but also on the fine implementation details of the algorithm
itself. Therefore, the optimal k0 in (3.22) can be determined only by extensive
numerical testing. Generally, the performance of each algorithm is almost constant
for a reasonably wide range of nearly optimal block-sizes. In the full block algorithm,
this range is narrower and covers smaller values of k0, than in the block-oriented
algorithm. Moreover, the range width decreases as the matrix order k grows. For
example, for moderately sized matrices of order 5000, the nearly optimal range is
16–40 for the full block, and 32–128 for the block-oriented algorithm. On the other
hand, for smaller matrices of order 2000, the difference between the ranges of nearly
optimal block-sizes is minimal (see Figure 3.1).

76

3.3. The parallel algorithms

8 16 24 32 40 48 56 64 72 80 88 96

100

200

300

400

500

600

700

800

ti
m
e
(s
)

block-size

full block algorithm
block-oriented algorithm

Figure 3.1: Effect of the chosen block-size k0 for the sequential block-oriented and
full block algorithms on a matrix of order 2000, with threaded MKL routines on 12
cores.

3.3. The parallel algorithms

It is well known that the one-sided Jacobi type algorithms are easy to parallelize,
because independent (disjoint) pivot blocks can be transformed simultaneously. This
is implemented by choosing one of the so-called parallel pivoting strategies at the
appropriate level of blocking, or even at the pointwise level of the algorithm.

3.3.1. A shared memory algorithm

To maximize the efficiency on multicore computers, the blocked algorithms
should be parallelized adequately. The aim here is to exploit the shared mem-
ory parallelism—available on almost any modern computing architecture. To this
end, the OpenMP interface in the Fortran routines is used.

The basic principle of a parallel blocked algorithm is to divide the columns of F
and G into blocks, as in (3.16), such that nb = 2p, where p is the number of available
cores. For simplicity, it is assumed that each core runs (at most) one computational
OpenMP thread. In each step, every thread transforms two block-columns of F ,
and two block-columns of G, with the same indices for both pairs of block-columns.
These block-columns are regarded as “pivots” in each thread (as in (3.17)), and the
sequential algorithm can be used to transform them.

However, if, for example, 6 threads are available, with two matrices of order
12000, then each thread would work on two 12000×2000 pivot blocks F (`)

ij and G(`)
ij ,

and they would be shortened to square matrices R(`)
F and R

(`)
G of order 2000. De-

pending on the cache memory available for each thread, these blocks can be too large
for an efficient execution of the pointwise Hari–Zimmermann algorithm HZ_Orthog.
Therefore, the matrices R(`)

F and R
(`)
G should be subdivided into a second level of

blocking and transformed by the sequential blocked algorithm HZ_BOrthog_Lv1. Fi-
nally, the transformation matrix is applied from the right-hand side on both pivot

77

3. The implicit Hari–Zimmermann algorithm for the GSVD

blocks. So, the topmost parallel shared memory algorithm is actually given by
HZ_BOrthog_Lv2.

The main difference between the sequential blocked algorithms and the parallel
shared memory algorithms is the choice of pivot blocks. In the parallel case, each
thread (among p of them) transforms a block assigned to it. By choosing an appro-
priate parallel pivot strategy, that maps disjoint pivot blocks to the computational
threads in each parallel step, the block-transformation in Algorithm 8 is the task
performed by each thread. If max_sw 1 = 1, then HZ_BOrthog_Lv2 is the block-
oriented algorithm, otherwise, for sufficiently large max_sw 1, it is the full block
algorithm.

For HZ_BOrthog_Lv1 in each thread, again it is sufficient to use a nearly optimal
block-size k0 in (3.22), because the differences in performance are not essential for
any block-size in the nearly optimal range. Figure 3.1 shows that for matrices of
order 12000, and 6 available threads, the computation time of the block-oriented and
the full block parallel algorithm are almost constant if k0 is chosen in the common
range 24–40 for both algorithms. On machines with different cache configurations,
the conclusion about the flexible range of (nearly) optimal k0 values remains the
same, even though there may be a significantly different time ratio between these
two variants of the algorithm.

Up until now the discussion of pivot strategies has been omitted, i.e., the order
in which cores choose the pivot pairs. The ideal parallel algorithm would simulta-
neously transform nb = 2p pivot blocks by using some parallel block-strategy, while
performing the transformation of columns inside the block by using some sequential
strategy, usually, row- or column-wise.

Parallel strategies can be classified as either pointwise or blockwise. As of now,
the convergence results mostly exist for the pointwise strategies, and they are based
on proving their weak equivalence (see [38] for the definition) to the ordinary row-
or column-cyclic strategies. Formal proofs of convergence for blockwise strategies
have started to appear very recently [40], but only for the standard Jacobi algorithm
that diagonalizes a single symmetric matrix.

The pointwise modulus strategy, described in [50], simultaneously annihilates
the elements of A and B on each antidiagonal. This parallel strategy is known to
be globally convergent.

Theorem 3.5. If G is of full column rank, the implicit Hari–Zimmermann method
for the pair (F,G), under the modulus strategy, is globally convergent.

Proof. It suffices to prove that the modulus strategy is weakly equivalent to the row-
cyclic strategy, and thus convergent. This proof can be found in [56, Appendix].

If the order k of matrices A and B is even, the pointwise modulus strategy is not
optimal, in the sense that it annihilates the maximal possible number of elements
(k/2) only on one half of the antidiagonals, and one element less (k/2 − 1) on
the other half of the antidiagonals. This nonoptimality is illustrated in Figure 3.2,
left, where an additional element that can be annihilated is presented in a lighter
hue. The strategy that annihilates these additional elements, as well, is called the
modified modulus strategy.

78

3.3. The parallel algorithms

The same principle is used for the corresponding block-strategy that operates
on blocks, with a slight modification to include the diagonal blocks (see Figure 3.2,
right), thus providing a pivot pair for all cores at every parallel step. A complete
description of the block-layout per core in each parallel step, and all the necessary
data transfer (when needed) is given in [69, Algorithm 3.1]. The Send_Receive part
of Algorithm 3.1 from [69] is not needed for the shared memory algorithms, but will
be used in the MPI version of the algorithm.

3 4 k 1

2

3

k−2

k−1

k−2

3 4 k 1

2

3

k−1

Figure 3.2: Left: modified pointwise modulus strategy on A (and B), right: modified
block-modulus strategy on A (and B).

This block-strategy, combined with the row-cyclic inner strategy, is weakly equiv-
alent to the row-cyclic block-strategy (with the same inner strategy). Therefore, it
can be expected that the proof of convergence of these blocked algorithms is similar
to the proofs for the ordinary block-Jacobi method [39, 40]. A mathematical tech-
nique suitable for the proofs of convergence of block-processes is developed in [38].

A halting criterion for the sequential algorithms is that the algorithm stops if
no transformations have been performed in any block during the sweep, i.e., the
off-diagonal elements in every pivot submatrix (3.4) are negligible, relative to the
diagonal ones. This strong criterion can lead to unnecessary block-sweeps in the fi-
nal phase of the parallel blocked algorithm, where only a few blocks are acted upon
in the concluding block-sweeps, with only a few transformations per block. These
transformations are caused by small rounding errors in factorizations and postmul-
tiplications of the pivot blocks, but they do not alter the computed generalized
singular values.

To prevent unnecessary transformations to incur extraneous sweeps, the shared
memory and distributed memory parallel algorithms are terminated when a sweep
(at the highest level of blocking) has had all its transformations with their cosines
computed as 1. A similar heuristics is applied in subsection 2.3.6. for the multi-
level blocked SVD. Note that the corresponding sines might still be different from
0 in such a case; in fact, their magnitudes may be of order

√
ε at most. Then, as

79

3. The implicit Hari–Zimmermann algorithm for the GSVD

suggested by Vjeran Hari1, one extra sweep might be beneficial for the accuracy of
the singular vectors. It would cost about 5–10% of the execution time shown in
the timing results here. In Table 3.1 the total number of pointwise transformations
in block-sweeps of the full block parallel algorithm is compared to the number of
transformations with their cosines different from 1.

The number of block-sweeps depends on the size of the pivot blocks Â(`)
ij and B̂(`)

ij

in (3.18), as well as the cuts between the generalized singular values induced by the
block-partition (3.16). This causes a slight variation in the number of block-sweeps,
when the block-size is changed.

Table 3.1: Number of transformations per sweep for the full block parallel algorithm
on a matrix of order 5000 with 4 cores.

sweep number of all number of transformations
number transformations with cosines different from 1

1 480628807 294997040
2 358157606 207835477
3 263922745 143114173
4 154679964 71401218
5 61192932 20656585
6 15891242 2317820
7 1139311 0

3.3.2. A distributed memory algorithm

The parallel shared memory algorithms presented here can also be used as the
building blocks in a hybrid MPI/OpenMP algorithm for the GSVD, that would
target machines with the distributed, multi-level memory hierarchy and many CPU
cores per machine.

The main principle is similar to the shared memory algorithm, i.e., the columns
of F , G, and Z (if needed) are divided into blocks, as in (3.16), such that nb = 2pm,
where pm is the number of available MPI processes. Therefore, each MPI process, as
in all blocked variants of the algorithm so far (sequential and thread-parallel ones),
requires memory storage for four block-columns per matrix (F , G, and Z), and the
auxiliary storage for the block-factors R(`)

F , R(`)
G , and the transformation matrix Ẑ(`)

ij .
Two block-columns hold the input data, and also serve as a receive buffer in the
communication phase of the algorithm, and the other two block-columns store the
postmultiplied (updated) data, and also serve as a send buffer in the communication
phase.

The only conceptual difference between HZ_BOrthog_Lv3 (the distributed mem-
ory algorithm) and HZ_BOrthog_Lv2 (the shared memory algorithm) is that the

1private communication while reviewing this thesis

80

3.3. The parallel algorithms

updated block-columns have to be exchanged among the MPI processes after com-
pleting one step of the algorithm, according to the chosen parallel pivot strategy,
while with the threaded algorithm the new pairs of block-columns are readily avail-
able in the shared memory. The exchange is achieved by a single MPI_SENDRECV
operation per block-column on the Cartesian topology of the one-dimensional torus
of processes, according to the modified modulus pivot strategy. The communication
pattern is the same as in the three-level MPI-parallel Jacobi-type SVD computation,
described in [68, 69], so it is omitted here for brevity.

To eliminate the need for communication among the processes residing on the
same computational node, there should be only one process allocated per node—
either a physical one, or a NUMA domain. Here, the latter has been chosen. Typi-
cally, in either case, an MPI process has several CPU cores available for execution,
and it is assumed there is an even number p of them. In the setup, there is a single
CPU with p = 12 cores per process available.

Note that the block-factors R(`)
F and R

(`)
G may be computed concurrently, each

in its own thread, under each MPI process. Such a thread may further employ
the threaded BLAS interface with p/2 threads, if nested parallelism is available, to
utilize fully all the cores available.

When the block-factors have been computed, the thread-parallel blocked algo-
rithm HZ_BOrthog_Lv2 with p threads is called—either the block-oriented or the
full block one. In order to have a balanced execution time among the processes, the
block-oriented variant is preferable. After that, the block-columns F (`)

ij , G(`)
ij , and

Z
(`)
ij are postmultiplied by Ẑ(`)

ij , using the threaded BLAS with p threads. Finally, a
single block-column of each matrix is exchanged with the neighboring processes in
the communication ring, creating an implicit synchronization point of the (other-
wise concurrent) MPI processes, which concludes the actions of a single step of the
distributed memory algorithm.

Table 3.2 shows the actual levels of blocking used in the implementations of
the one-sided Hari–Zimmermann algorithm, as described in Algorithm 8. The table
also specifies the pivoting strategy used at each level, and the corresponding value of
accn that selects the method of computing the transformation matrix (accumulation
or solution of a linear system). The choice accn = true at all levels is motivated
by the fact that the Jacobi-type methods are known for their high accuracy of the
computed results, so accuracy, rather than speed, has been targeted.

Table 3.2: Levels of blocking for the one-sided Hari–Zimmermann algorithm.

blocking pivoting transformations
level n type of the algorithm strategy comm. accn

3 distributed (MPI) modified modulus yes true
2 shared memory parallel modified modulus no true
1 sequential blocked row-cyclic – true
0 pointwise row-cyclic – true

81

3. The implicit Hari–Zimmermann algorithm for the GSVD

3.4. Numerical testing

Numerical testing has been performed on a cluster with InfiniBand interconnect,
and with the nodes consisting of two Intel Xeon E5-2697 v2 CPUs, running at
2.7 GHz. Each CPU is equipped with 12 cores. The cores share 30 MB of level-3
cache. Each core has 256 kB of private instruction/data level-2 cache, and 32+32 kB
of private level-1 data and instruction caches. Each CPU belongs to a separate
NUMA domain with 64 GB of RAM.

The software stack consists of Intel Composer XE 2015.1.133 with the Fortran
compiler under 64-bit Linux, and the BLAS and LAPACK routines from Intel MKL
library, in the sequential and thread-parallel modes.

The test matrices2 were generated in the following manner: the diagonal matri-
ces ΣF and ΣG were generated with uniformly distributed values from [10−5, 103],
giving the generalized singular values from 10−5 to 104. Afterwards, these diagonal
matrices were multiplied by random orthogonal matrices U and V , and a non-
singular, reasonably well-conditioned matrix X, as in (1.1), resulting in relatively
ill-conditioned matrices F0 and G0.

To alleviate possible round-off errors, all multiplications of matrices were carried
out in Intel’s extended floating-point type with 80 bits, and only the final matrices
F0 and G0 were rounded to double precision.

Since LAPACK’s DTGSJA Kogbetliantz-based routine requires triangular starting
matrices, F0 and G0 are preprocessed by LAPACK’s DGGSVP to obtain the starting
matrices F and G for all algorithms. The time needed for this step is not measured.

First, the non-blocked and blocked sequential versions of the Hari–Zimmermann
algorithm have been compared to DTGSJA (see Table 3.3, left). In all cases, the
threaded BLAS interface with 12 computational threads was used. Since the differ-
ences between the execution times of the proposed routines and DTGSJA are already
evident for matrices of order 5000, further comparisons with DTGSJA were not per-
formed, because DTGSJA is too slow for larger matrices.

The threaded BLAS routines, however, do not guarantee the maximum perfor-
mance on the multi-core hardware. Therefore, the parallel versions of the algorithms
have been developed and tested, to see if a further speedup is possible. The right-
hand side of Table 3.3 shows the execution times for the parallel (shared memory)
versions of blocked routines.

To demonstrate the value of explicit parallelization, the fastest sequential routine
HZ-BO-32 with threaded MKL on 12 cores is compared to the shared memory parallel
routines on p = 2, . . . , 12 cores (with p even). Figures 3.3 and 3.4 show that the
block-oriented parallel algorithm outperforms the fastest sequential routine when
p ≥ 6, and the full block algorithm does the same when p ≥ 10.

It is interesting to observe that the fastest sequential routine is more than 15
times faster than the pointwise routine, both running in the same environment (with
threaded BLAS on 12 cores). Likewise, the 2p-core parallel algorithm is more than
2 times faster than the p-core algorithm. These superlinear speedups are caused by
more efficient exploitation of the available memory hierarchy. The exact relationship

2Available for download at http://euridika.math.hr:1846/Jacobi/FLdata/

82

3.4. Numerical testing

Table 3.3: The running times of LAPACK’s DTGSJA algorithm and various sequen-
tial and parallel implementations of the Hari–Zimmermann algorithm: pointwise
(pointwise HZ), full block with block-size 32 (HZ-FB-32), and block-oriented with
block-size 32 (HZ-BO-32). The shared memory parallel versions of the algorithms
running on 12 cores are denoted by prefix P-.

with threaded MKL (12 cores) with sequential MKL
k DTGSJA pointw. HZ HZ-FB-32 HZ-BO-32 P-HZ-FB-32 P-HZ-BO-32

500 16.16 3.17 4.36 2.03 1.41 0.88
1000 128.56 26.89 18.50 7.65 4.78 2.02
1500 466.11 105.31 42.38 19.31 14.57 5.99
2000 1092.39 273.48 86.01 41.60 30.02 12.13
2500 2186.39 547.84 139.53 73.07 53.13 22.34
3000 3726.76 1652.14 203.00 109.46 86.78 36.08
3500 6062.03 2480.14 294.58 186.40 129.37 55.20
4000 8976.99 3568.00 411.71 239.89 180.32 86.36
4500 12805.27 4910.09 553.67 343.58 249.92 119.74
5000 20110.39 6599.68 711.86 426.76 320.39 159.59

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1

2

3

4

sp
ee
d
u
p

matrix size /1000
block-oriented algorithms

2

4

6

8

10

12

Figure 3.3: Speedup of the shared memory block-oriented algorithm on 2–12 cores
vs. the sequential block-oriented Hari–Zimmermann algorithm (with MKL threaded
on 12 cores).

between various versions of the algorithm is extremely machine-dependent, due to
many intricacies of modern computer architectures, and thus it is very hard to
predict without the actual testing.

The final speed test compares the distributed memory MPI algorithm to the

83

3. The implicit Hari–Zimmermann algorithm for the GSVD

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0.5

1.0

1.5

sp
ee
d
u
p

matrix size /1000
full block algorithms

seq.

2

4

6

8

10

12

Figure 3.4: Speedup of the shared memory full block algorithm on 2–12 cores vs. the
sequential block-oriented Hari–Zimmermann algorithm (with MKL threaded on 12
cores). An additional curve (denoted by seq.) shows the “speedup” of the sequential
full block algorithm vs. the block-oriented algorithm. A few missing values for 2
cores are caused by the limit of execution time on the cluster (12 hours).

Table 3.4: Left table: the running times of the hybrid MPI/OpenMP version of the
Hari–Zimmermann algorithm for a matrix pair of order 16000. Each MPI process
executes the OpenMP algorithm with 12 threads. Each thread performs the block-
oriented algorithm with the inner block-size of 32. Right table: the running times
for the full block and block-oriented shared memory algorithms for the same matrix.

number of time
MPI processes cores MPI-HZ-BO-32

2 24 15323.72
4 48 8229.32
6 72 6049.77
8 96 4276.65
10 120 3448.90
12 144 3003.39
14 168 2565.29
16 192 2231.71

number of time
cores P-HZ-FB-32 P-HZ-BO-32

2 – 42906.93
4 35168.73 18096.72
6 21473.00 10936.10
8 13745.17 7651.86
10 9901.96 5599.25
12 8177.90 4925.56

shared memory algorithms. Based on the results of earlier tests, the topmost (dis-
tributed memory) level of the algorithm executes the block-oriented algorithm, with
the modified modulus strategy, on a collection of MPI processes. On the second

84

3.4. Numerical testing

(shared memory) level, each MPI process executes the block-oriented thread-parallel
algorithm, with the same strategy, on the given block-columns of F and G.

This comparison was carried out only for the largest matrix size of 16000, and
the results are given in Table 3.4. Because the communication between the MPI
processes is relatively slow (compared to everything else), the MPI algorithm be-
comes faster than the shared memory block-oriented algorithm when the number of
processes pm is at least 8. At this point the number of cores used is 96, which is
huge in comparison to only 12 cores used by the shared memory algorithm. There-
fore, the MPI algorithm is designed for really huge matrices, that cannot fit into
the shared memory, or the parts of matrices given to a single thread are too big for
efficient orthogonalization.

Finally, the accuracy of algorithms has been measured, by comparing the com-
puted generalized singular values with the original ones, set at the beginning of the
matrix generation. The test was carried out on a matrix pair of order 5000, which is
the largest size that could be tested on all algorithms, including DTGSJA. This par-
ticular pair is moderately ill-conditioned, with a condition measure maxσi/minσi ≈
6.32 · 105. The relative errors (see Figures 3.5–3.8) are U-shaped over the ordering
of values (displayed in the logarithmic scale)—the largest errors occur at both ends
of the range, which is understandable, since either (ΣF)ii or (ΣG)ii is small there.

10−3 10−2 10−1 100 101 102 103

2

4

6

8

10

12

14

16

18

re
la
ti
v
e
er
ro
rs

·
1
0
1
4

generalized singular values

DTGSJA

Figure 3.5: Relative errors in the computed generalized singular values for a matrix
pair of order 5000 by DTGSJA.

Quite unexpectedly for the Jacobi-type methods, the pointwise algorithm, which
is usually more accurate than any of the blocked algorithms, turns out to be slightly
less accurate here. The sequential blocked algorithms are a bit more accurate than
the parallel ones, as expected, while the differences in accuracy between the block-
oriented and the full block versions are negligible. Maximal relative errors, and
average relative errors for different routines are given in Table 3.5. Note that the
average relative error for DTGSJA is about 5 times larger than for the blocked Hari–
Zimmermann algorithms.

85

3. The implicit Hari–Zimmermann algorithm for the GSVD

10−3 10−2 10−1 100 101 102 103

2

4

6

8

10

12

14

16

18

re
la
ti
v
e
er
ro
rs

·
1
0
1
4

generalized singular values

pointwise HZ

Figure 3.6: Relative errors in the computed generalized singular values for a matrix
pair of order 5000 by pointwise HZ.

The maximal relative errors grow with the condition of the problem, and very
slightly with the matrix size. For a matrix pair of order 16000 with maxσi/minσi ≈
4.51 · 108, the maximal and average relative errors are given in Table 3.6. Only the
first few and the last few generalized singular values are responsible for the maximal
relative error in all algorithms (the average values are much smaller). If the 5
smallest and the 5 largest generalized singular values are ignored, the ratio between
the largest and the smallest σi drops to 2.41 ·106, and the obtained errors are similar
to those in Table 3.5.

10−3 10−2 10−1 100 101 102 103

2

4

6

8

10

12

14

16

18

re
la
ti
v
e
er
ro
rs

·
1
0
1
4

generalized singular values

HZ-BO-32

Figure 3.7: Relative errors in the computed generalized singular values for a matrix
pair of order 5000 by HZ-BO-32.

86

3.4. Numerical testing

10−3 10−2 10−1 100 101 102 103

2

4

6

8

10

12

14

16

18

re
la
ti
v
e
er
ro
rs

·
1
0
1
4

generalized singular values

P-HZ-BO-32

Figure 3.8: Relative errors in the computed generalized singular values for a matrix
pair of order 5000 by P-HZ-BO-32.

Table 3.5: Maximal relative errors, and average relative errors for a matrix pair of
order 5000.

DTGSJA pointwise HZ HZ-BO-32 P-HZ-BO-32

max_rel 1.79666 · 10−13 1.77529 · 10−13 1.44462 · 10−13 1.46348 · 10−13

avg_rel 1.92500 · 10−14 1.25585 · 10−14 3.50042 · 10−15 4.07475 · 10−15

Note that DTGSJA is unable to handle such large matrices in any reasonable
time. On the largest matrices that can be used for comparison, the fastest sequen-
tial threaded routine HZ-BO-32 is more than 47 times faster than LAPACK’s (on

Table 3.6: Maximal relative errors, and average relative errors for a matrix pair
of order 16000. If the 5 smallest and the 5 largest generalized singular values are
ignored, the respective values are denoted by (6 : 15995).

HZ-BO-32 P-HZ-BO-32 MPI-HZ-BO-32

max_rel 1.45480 · 10−11 1.45499 · 10−11 1.45576 · 10−11

avg_rel 7.91808 · 10−15 7.30987 · 10−15 7.62689 · 10−15

max_rel (6 : 15995) 2.70628 · 10−13 2.64252 · 10−13 2.65734 · 10−13

avg_rel (6 : 15995) 6.35910 · 10−15 5.75219 · 10−15 6.06843 · 10−15

87

3. The implicit Hari–Zimmermann algorithm for the GSVD

this particular architecture), and more accurate, as well. For the fastest explicitly
parallel shared memory algorithm P-HZ-BO-32, the speedup factor is 126!

Bear in mind that, these speedup factors do not include the time required for
triangularization of both matrices, which is mandatory for DTGSJA, but not necessary
for the Hari–Zimmermann method, when G is of full column rank.

The tests conducted on several different architectures give similar results, only
the speedup factors are somewhat different, due to differences in architecture.

3.5. An implicit Hari–Zimmermann algorithm for
the GPU(s)

The blocked, parallel, implicit Hari–Zimmermann algorithm can be implemented
on the GPU(s) much along the same lines as the blocked one-sided Jacobi SVD has
already been detailed in chapter 2.

For brevity, only the full GSVD algorithm for a single GPU will be sketched
here, and only the differences from the Jacobi SVD will be highlighted. The GSVD
algorithm performs all computation on a GPU, and consists of three kernels:

1. initZ – acts as if it sets Z to Ik, computes ||gi||2 for each 1 ≤ i ≤ k, and
scales the columns fi of F , gi of G, and zi of Z, by 1/||gi||2;

2. pStep – invoked once for each p-step in a block-sweep;
3. Sigma – rescales Z after each block-sweep, and optionally rescales F and G

and extracts the generalized singular values at the end of computation, as per
(3.10), (3.11), and (3.12).

The pStep kernel is similar to the one for the Jacobi SVD. The thread blocks have
to operate on three 32× 32 matrices in the shared memory, roughly corresponding
to F̂ , Ĝ, and Ẑ, which makes for 24 kB in the case of F = R, or for 48 kB the case
of F = C (both in double precision). The strategy tables and the mapped CPU
memory for the convergence statistics stay the same. Computation in a thread block
proceeds in the three major phases:

1. factorize – shortens the pivot block-pairs
[
Fp Fq

]
and

[
Gp Gq

]
, according

to (3.17) and (3.18), either by forming the Gram matrices and by factorizing
them using the Cholesky factorizations, or by the QR factorizations of the
block-columns, into the triangular factors F̂pq and Ĝpq of order 32, initializes
Ẑpq = I32 ·diag (1/||ĝ1||2, . . . , 1/||ĝ32||2), and scales the columns of F̂pq and Ĝpq

by the same inverses of the column norms of Ĝpq used for Ẑpq, i.e., by 1/||ĝi||2,
with 1 ≤ i ≤ 32;

2. orthogonalize – orthogonalizes F̂pq and Ĝpq by the pointwise implicit Hari-
Zimmermann method, according to the block-oriented or the full block variant
of the algorithm, accumulating the applied transformations into Ẑpq. After one
inner sweep (the block-oriented variant), or as many inner sweeps as needed
until the local convergence (the full block variant), Ẑpq is rescaled according
to (3.11) and (3.12), into Ẑ ′pq. The singular value extraction and rescaling of

88

3.5. An implicit Hari–Zimmermann algorithm for the GPU(s)

F̂pq and Ĝpq is not needed, since those matrices are discarded anyway;
3. postmultiply – postmultiplies

[
Fp Fq

]
,
[
Gp Gq

]
, and

[
Zp Zq

]
, by Ẑ ′pq, ac-

cording to (3.19) and (3.20).

Figure 3.9 summarizes the pStep kernel from a perspective of data placement and
movement. Subfigures (a) to (f) show the factorize phase, subfigures (g) and (h)
show the orthogonalize phase, and subfigures (i) to (k) show the postmultiply
phase. RAM refers to the GPU’s main memory, and * to the matrix multiplication.

Note that on subfigure (a) the last 32×32 shared memory block is unused. That
is a deficiency of the prototype code, that reuses the Gram matrix formation from
Algorithm 3, i.e., for performing ATA operation on the 64 × 32 chunks. Another
procedure should be written for 96×32 chunks, to fully utilize all the shared memory
available. A similar remark relates to subfigures (i) to (k), where the postmultiply
phase currently reuses the 32×32 Cannon-like multiplication of Algorithm 4, instead
of performing (64×32)×(32×32) multiplication, to fully exploit the shared memory.

A transformation of a pivot pair will be computed and applied if

|ĝTp ĝq| ≥ ε
√

32 or |f̂Tp f̂q| ≥ ||fp||2||fq||2ε
√

32,

with ε being the machine unit roundoff for the datatype. The convergence criterion
looks for the absolute values of the scaled cosines, i.e., the absolute values on the
diagonal of a 2×2 transformation matrix Ẑ, to differ from one (at least one of those
elements), in order to mark a transformation as the “proper” one. Apart from that,
handling the convergence information is exactly the same as in the SVD algorithm.

A recent GPU card (Pascal or newer) was not available at the time of writing
the code to perform a comparative numerical test against the CPU algorithm. With
a consumer Kepler GPU (GeForce GT 750M)3, CUDA 9.0 RC4, R‖ p-strategy, and
a 1024×1024 matrix pair, the block-oriented variant takes 26.176350 seconds for 14
block-sweeps, and the full block variant takes 30.792716 seconds for 12 block-sweeps.
The block-oriented variant seems to be the faster one on the GPUs, as well as on
the CPUs (cf. Table 3.3), but further testing on newer GPUs is certainly warranted.

A multi-GPU implicit Hari-Zimmermann GSVD algorithm should be a straight-
forward generalization of the one-sided multi-GPU Jacobi SVD and the single-GPU
implicit Hari-Zimmermann GSVD algorithms. It has not been implemented yet,
but it makes a reasonable and attainable target for the short-term future work.

A note on the floating-point issues. Computing the dot-products and the
vector (i.e., column) norms here suffers from the same issues as in the one-sided
Jacobi SVD algorithm, and the same remedies apply. Also, to compute the scaling
S from (3.11), a quantity

√
||fi||22 + ||gi||22, and its reciprocal one, are needed. If

the squares of the column norms, or their sum, may overflow, it is advisable to
use the hypot operation, which has to protect from the overflow, albeit possibly
introducing the rounding error of a couple of ulps. But if no overflow is expected,

3With such GPUs, in double precision, at most 1/24 of single precision performace is achievable.
4Release Candidate, not publicly available, so any results may change with the future versions.

89

3. The implicit Hari–Zimmermann algorithm for the GSVD

16 16

32

32

32

RAM

RAM RAM RAM

RAM RAM RAM

F

?

∗

∗

FTF

G

FTF

GTG

?

}
C

h

o

l

e

s

k

y
C

h

o

l

e

s

k

y

GTG

}

?

F̂0

0

F̂0

0

Ĝ0

0

?

F̂0

0

Ĝ0

0

Ẑ0 =
I

‖ĝp‖2

F̂i+1

= F̂iẐ

Ĝi+1

= ĜiẐ

Ẑi+1

= ẐiẐ

}

}

}

H

Z

t

r

a

n

s

f

o

r

m

F̂N

= UΣF

ĜN

= V ΣG

Ẑ ′
N = ẐN

(rescaled)

f

i

n

a

l

s

t

a

t

e

F

Ẑ ′
N

G

Ẑ ′
N

Z

Ẑ ′
N

∗ ∗ ∗

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k)

Figure 3.9: A single-GPU implicit Hari–Zimmermann algorithm, pStep kernel.

and the squares of the norms are already available, it may be faster to sum them
and compute the square root or the reciprocal square root (rsqrt) directly.

Generally speaking, for both the SVD and the GSVD algorithms, a balance
between the guaranteed correctness in all cases (i.e., even with a badly scaled input)

90

3.5. An implicit Hari–Zimmermann algorithm for the GPU(s)

and the decent performace can be struck as follows: run the faster version of the
algorithm (the one that uses the Cholesky factorizations, does not protect from
the possible overflows induced by the dot-product based computation of the vector
norms, etc.) and check from time to time if any overflow or an invalid operation is
signalled. If so, restart the whole computation with the original input (preserved in
a backup workspace), but with a more careful variant of the algorithm (the one that
uses the QR factorization, protects from the avoidable overflows and underflows,
etc.). For this approach to be facilitated, the floating-point operations have to set
the corresponding exception flags in the status register. Unlike the CPUs, that is not
possible on the GPUs for now, but a check for a non-finite floating-point quantity
during the computation should not be too expensive.

91

4. Conclusions and future work

4.1. Conclusions

In this thesis a set of new parallel Jacobi strategies has been developed, both
faster and more accurate than the widely used ones. The new strategies may be
seen as the generalizations of the Mantharam–Eberlein block-recursive strategy [51]
to all even matrix orders. These new strategies are combined with the multi-level
blocking and parallelization techniques explored in [39, 40, 69, 68, 56], to deliver the
Jacobi-type (H)SVD algorithms for the graphics processing unit(s), competitive with
the leading hybrid (CPU+GPU) alternatives, like MAGMA. The new algorithms
are carefully designed to use a CPU primarily as a controlling unit. To this end,
a collection of the auxiliary shared-memory routines for the concurrent formation
of the Gram matrices, the Cholesky and QR factorizations, and the numerically
robust vector 2-norm computations are proposed. The numerical results confirm
that in the massively parallel GPU case the Jacobi-type methods retain all the
known advantages [28, 29], while exhibiting noteworthy performance.

In the following part of the thesis the implicit Hari–Zimmermann method has
been developed, for computation of the generalized singular values of matrix pairs,
where one of the matrices is of full column rank. The method is backward stable,
and, if the matrices permit, computes the generalized singular values with small
relative errors. Moreover, it is easy to parallelize. A part of the work is motivated
by the fact that the current alternatives for the GSVD computation—the best known
is DGGSVD from LAPACK, are extremely slow for larger matrices.

Unlike the triangular routine DTGSJA from LAPACK, which is Kogbetliantz-
based, the Hari–Zimmermann method needs no preprocessing to make both matrices
triangular. Even when the matrices are preprocessed to a triangular form, the
sequential pointwise Hari–Zimmermann method is, for matrices of a moderate size,
significantly faster than DTGSJA. On a particular hardware, where threaded MKL
(on 12 cores) is used, the pointwise Hari–Zimmermann method is about 3 times
faster than DTGSJA, and the computed generalized singular values have, on average,
smaller relative errors.

A significant speedup is obtained by blocking of the algorithm, to exploit the
efficiency of BLAS-3 operations. For example, the sequential block-oriented version
of the algorithm, in the same hardware/software environment, is 15 times faster and
even more accurate than the pointwise version, for matrices of order 5000.

Further gains in speed are obtained by explicit shared memory parallelization
of blocked algorithms, now with the sequential MKL. The shared memory block-
oriented algorithm gives an additional speedup factor of about 2.5, even for much
larger matrices. A distributed memory MPI version of the algorithm has also been
developed, which has been designed for really huge matrices that do not fit into the
available shared memory, as well as a GPU version, as an extension of the GPU
SVD Jacobi-type algorithm from the first part of the thesis.

4.2. A work in progress

The thesis contains several theoretical results about the implicit Hari–Zimmer-
mann method. The convergence of the pointwise algorithm with the row-cyclic,
column-cyclic, and modulus strategies follows from the results in [37] for the two-
sided generalized eigenproblem algorithm. An extension of these results for blocked
algorithms is an open problem. The proofs of convergence for various blocked ver-
sions of the algorithm are under development, by using the techniques from [38].

4.2. A work in progress

In this section the ongoing and possible future work is briefly described, with
an emphasis on the benefits of, and programming for, the vector extensions to the
CPU architectures, in the context of the Jacobi-type SVD processes.

4.2.1. A new hierarchy for the Jacobi-type processes

As the hardware architectures become ever more complex, it seems necessary to
revisit, from time to time, the assumptions about the appropriate number of the
blocking levels for the Jacobi-type algorithms.

Driven by the many levels of caches present in a typical modern CPU, alongside
SIMD (vectorization) capabilities, and the (still shared but) non-uniform memory
architectures (NUMA), where also a distinction between a cache level and the RAM
is blurred by the advent of the large memory buffers (like MCDRAM for the Intel
KNLs), it may be required for an optimal design of a Jacobi-type algorithm to
consider three to four memory hierarchy levels, as follows.

Level 0

Let V be the largest vector length for a given datatype (e.g., for double, it is 8
for Intel KNL, and 2 for IBM POWER8), and 1 ≤ v ≤ V a chosen vector length.
Let Cd1 be the level-1 data (L1d) cache line size, counted in number of elements of
the datatype that fit into a cache line. For double, Cd1 = 8 on KNL, and Cd1 = 16
on POWER8. Then, Cd1/v is a number of vectors that fit into a cache line. Let
Vc = Cd1/V, and assume v = V. The Level 0 algorithm should process exactly kVc,
k ≥ 1, pairs of columns, to keep full vectorization for computing the rotations’
parameters. Being the innermost level, it should avoid as much argument checking
and branching as possible. Therefore, the input matrix should have 2kVc columns,
or be bordered (i.e., expanded by an identity matrix in the lower right corner, and
by zeroes elsewhere) up to that size.

A parameter k should be chosen to maximize L1d cache utilization, bearing in
mind that two “small” matrices, G and V (or three matrices: F , G, and Z, in the
GSVD case), and a couple of vectors holding the temporary results, as well as the
sines (or tangents) and the cosines, have to fit into L1d cache. One should be aware
of the cache associativity, false sharing, and similar hidden dangers, also!

It is worth exploring if hyperthreading [52] (or a similar non-Intel technology
for running more than one thread per core) with h > 1 threads per core, where h

93

4. Conclusions and future work

divides k, improves instruction throughput versus no hyperthreading (i.e., h = 1).
Hyperthreading should split k tasks among h threads, but the overhead of threading
might be to high for such an approach to be viable.

To demonstrate that manual vectorization pays off, the following example com-
pares the performance of a simple, hand-written (using Intel’s AVX2 compiler in-
trinsics1, that closely resemble the actual machine instructions generated) vectorized
version of the pointwise one-sided Jacobi SVD in double (v = V = 4) to the perfor-
mance of the MKL’s optimized single-threaded DGESVJ routine from LAPACK.

In the hand-written code, contrary to DGESVJ, there is no final computation
of the column norms (to extract the singular values) nor there is rescaling (i.e.,
normalizing) of the columns, since only the matrix of the accumulated rotations is
sought for, in an expectation that it will be used further up the blocking hierarchy.

That final postprocessing requires only a quadratic number of operations in terms
of the matrix order, and should not affect much the time ratios shown in Figure 4.1.

8 24 40 56 72 88 104 120 136 152 16816 32 48 64 80 96 112 128 144 160 176

0

0.004

0.007

0.011

0.014

0.018

0.021

0.025

0.028

0.032

0.036
• Manually vectorized code with AVX2 and FMA intrinsics (with # of sweeps)

◦ DGESVJ(´G´,´N´,´V´,. . .), Intel MKL, sequential (with # of sweeps)

Time (ratios) for the small orders n:

n • time [µs] ◦ time [µs] ◦/• ratio
8 5.860 77.855 13.286
16 29.956 119.462 3.988
24 90.559 267.920 2.959
32 192.610 496.162 2.576
40 364.998 795.039 2.178

• • • • •
•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

6 7 8 8 8 8 9 9
9

9
9

9

10

9

9

9

10

10

10

10

11

10

◦ ◦ ◦ ◦ ◦
◦

◦
◦

◦
◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

6 8 8 9 9 10 9 9 9
9

9
9

9
9

10
9

9

9

9

9

9

10

input matrix order

ti
m
e
u
n
ti
l
co
n
ve
rg
en
ce

[s
]

Figure 4.1: Execution times and sweep counts of the manually vectorized Jacobi code
with AVX2 and FMA intrinsics, vs. DGESVJ from Intel MKL 2017.2.163 (sequential),
on Intel Core i7-4850HQ CPU @ 2.30GHz, with macOS 10.12.4 and clang-802.0.38.
Measured with CLOCK_THREAD_CPUTIME_ID POSIX clock, per run, and averaged
over 100 runs; see https://github.com/venovako/JACSD/tree/master/test for more.

As can be seen on Figure 4.1, the effort of avoiding any argument checking, the
function calls inside the algorithm, and non-vectorized code as much as possible,
gives a speedup of several times for the very small matrix orders (where all data is

1See the Intel Intrinsics Guide: https://software.intel.com/sites/landingpage/IntrinsicsGuide/

94

4.2. A work in progress

expected to fit into L1d cache), although any speedup is lost for the “larger” matrix
orders (104 and beyond, in this case). It is therefore advisable to pay the most
attention to the innermost blocking level of the Jacobi-type processes.

So, how to perform the vectorization of the pointwise one-sided Jacobi SVD?
In effect, the SIMD vector architecture can be seen as a very restricted parallel
machine, where any and all parallelism comes from the scalar operations performed
simultaneously on all elements (also called “lanes”) of one, two, or three vector
registers, or on a subset (defined by a bitmask) of the elements thereof.

In the present architectures, the operations within the same lane across the
registers involved (i.e., “vertical” instructions) are readily available, but the intra-
register, inter-lane (i.e., “horizontal”) operations are either not supported, or (where
they are) may be more expensive and less versatile than the vertical ones. That can
be compared to the thread warps on a GPU, where the operations across threads in
a warp require manual shuffling of data between threads, as opposed to the scalar
operations within each warp lane.

Therefore, a similar parallelization approach as with the inner level of blocking
on a GPU is required. Ignoring the technical details, there are three important
phases in the pointwise Jacobi SVD: the dot-product computation, the calculation
of the Jacobi rotations, and their application to the matrices G (and V).

First, the pivot pairs are chosen from the current p-step of the chosen p-strategy.
There should be as many independent pivot pairs as there are vector lanes available
(e.g., 4 for the doubles on the AVX2 architecture). If the matrix order n is equal to
8, then all pivot pairs from a p-step can be processed as it is described below. If n is
smaller, the uppermost vector lanes will be unutilized during the computation of the
rotations, and in the processing of the final chunk of rows during the dot-product
and transformation phases. Else, if n > 8, then a p-step should be sliced into
dn/(2Vc)e batches of pivot pairs, where each batch is processed as to be described.
The batches can be iterated over sequentially, or they can be partitioned among the
hyperthreads (where available and enabled) for parallel execution.

Obviously, it pays off to process matrices of orders which are the exact multiples
of 8 (for AVX2, or 16 for AVX-512). Otherwise, a special code path is required for
loading and storing a part of a vector from memory at the end of the loops over the
matrix rows, and for masking the unused lanes elsewhere in the computation.

The pointwise algorithm vectorized. For each pivot pair (in sequential, i.e.,
one pivot pair after another), three dot-products are computed. Here, the vector-
ization is not used to handle the pivot pairs simultaneously, but to compute, e.g.,
4 scalar fmas (updates of the 4 partial sums) in one go, one chunk of 4 consecutive
row indices in the columns of G at a time. Once a chunk of gp and gq is loaded in the
vector registers, three vector fmas are enough to update the partial sums of gTp gp,
gTp gq, and gTq gq, each in its own vector register. So, e.g., one register will hold the
partial sums for gTp gq, where the lane i will accumulate the products of the elements
of gp with the elements of gq, with the row indices equal to i mod 4, for 0 ≤ i ≤ 3.

The tricky part, as with the GPUs, is how to reduce the partial sums, held in each
of the three aforementioned registers. Here, the “horizontal” reductions are needed,

95

4. Conclusions and future work

either readily available as an instruction or an intrinsic, or manually implemented.
For the AVX2 architecture, Listing 4 shows the entire computation, with one

possible realization of the +-reduction. For each pivot pair, one vector containing
the three dot products, and additionally |gTp gq|, is obtained.

Those vectors have to be rearranged for the second phase. There, each lane will
be in charge of computing the Jacobi rotation’s parameters for a particular pivot
pair. The idea is to get the parameters analogously to the scalar case, but for all
the pivot pairs simultaneously. That effectively means to compute 4 tangents and
4 cosines for (about) the price of one each. For that, all 4 values of gTp gp have to
be in the same vector, occupying a lane associated with their pivot pair. The same
goes for gTp gq, gTq gq, and |gTp gq|.

Such a rearrangement comes with a price. In the prototype implementation, it
has been realized by storing the dot-product vectors back to memory, and vector-
gathering their pieces into the new variables described above. Once that is done, it is
decided whether all the columns are relatively orthogonal. If so, no transformation
is needed. If not, it does not hurt at all to proceed with computing the rotations even
for the lanes (i.e., the pivot pairs) where the columns are relatively orthogonal, since
the vector operations will take the same (or similar) amount of time, regardless of
the number of the “active” lanes. Those results can (and will) be discarded anyway.

It is however assumed that any possible floating-point exceptions occurring in the
operations over those lanes will not affect the execution flow of the code. If that was
not the case, a careful masking of the “offending” lanes should be considered before
proceeding to the computation of the rotations’ parameters, shown in Listing 5.

The rotations’ parameters of the pivot pairs whose columns are nor relatively
orthogonal have to be reshuffled again. For each such tangent, it has to be spread
out (“broadcast”) over the whole new register (i.e., in 4 copies, one in each lane), in
order to be ready for vector multiplication with 4 consecutive rows of G (and V).
The same holds for each such cosine.

Finally, applying the rotations is done in a conceptually similar way to computing
the dot-products, one pivot pair (i.e., one rotation) a time (if the transformation is
needed), but with 4 elements of G (and V) transformed at once.

Level 1

An input matrix is split into block columns, with approximately kVc columns
per a block column. The input should be sized in accordance to the level-2 cache
size (L2), i.e., two same-size matrices, G and V , and a workspace, should fit into L2
cache. The workspace has to contain “small” blocks and vectors for the Level 0.

Hyperthreading might prove more beneficial at this level than at the level below,
but then for each thread there should be its private input, output, and workspace
memory for Level 0 set aside, as described. So, each thread t would need a “small”
Gt, Vt, and Wt (workspace) arrays, while all such arrays, for all threads on a core,
should simultaneously be present in L1d cache. Therefore, hyperthreading might
push k down, close to 1, which means that k itself is a varying parameter to the
Level 0 algorithm, not a constant deducible at compile-time.

96

4.2. A work in progress

Listing 4: Computing the dot products with Intel AVX2 & FMA intrinsics
1 stat ic inl ine __m256d avx2_fma_ddots (const unsigned m,
2 const double ∗const r e s t r i c t Gp, const double ∗const r e s t r i c t Gq)
3 { // to be called for each pivot pair (p, q) in sequence
4
5 // The data has to be aligned in memory to addresses that are
6 // a multiple of the vector size (32 B), for faster load/store.
7 register const double ∗const Gp_i = // start of Gp
8 (const double∗) __builtin_assume_aligned (Gp, 3 2) ;
9 register const double ∗const Gq_i = // start of Gq
10 (const double∗) __builtin_assume_aligned (Gq, 3 2) ;
11
12 register __m256d Gpp = _mm256_setzero_pd () ;
13 register __m256d Gqq = _mm256_setzero_pd () ;
14 register __m256d Gpq = _mm256_setzero_pd () ;
15
16 for (register unsigned i = 0u ; i < m; i += 4u) {
17 // load the next chunk of Gp and the next chunk of Gq
18 register const __m256d Gpi = _mm256_load_pd(Gp_i + i) ;
19 register const __m256d Gqi = _mm256_load_pd(Gq_i + i) ;
20 // update the partial sums
21 Gpp = _mm256_fmadd_pd(Gpi , Gpi , Gpp) ;
22 Gqq = _mm256_fmadd_pd(Gqi , Gqi , Gqq) ;
23 Gpq = _mm256_fmadd_pd(Gpi , Gqi , Gpq) ;
24 }
25
26 // horizontal +-reductions , with a twist to get |Gpq| as well
27
28 // (Gpq[2]+Gpq[3], Gpp[2]+Gpp[3], Gpq[0]+Gpq[1], Gpp[0]+Gpp[1])
29 register const __m256d GppGpq = _mm256_hadd_pd(Gpp, Gpq) ;
30 // (Gpq[2]+Gpq[3], Gqq[2]+Gqq[3], Gpq[0]+Gpq[1], Gqq[0]+Gqq[1])
31 register const __m256d GqqGpq = _mm256_hadd_pd(Gqq , Gpq) ;
32 // (Gpq[2]+Gpq[3], Gpq[0]+Gpq[1], Gpp[2]+Gpp[3], Gpp[0]+Gpp[1])
33 register const __m256d GppGpq_ = // swap the middle lanes
34 _mm256_permute4x64_pd(GppGpq, 0xD8) ;
35 // (Gpq[2]+Gpq[3], Gpq[0]+Gpq[1], Gqq[2]+Gqq[3], Gqq[0]+Gqq[1])
36 register const __m256d GqqGpq_ = // swap the middle lanes
37 _mm256_permute4x64_pd(GqqGpq , 0xD8) ;
38 // (Gpq, Gpq, Gqq, Gpp)
39 register const __m256d intm = _mm256_hadd_pd(GppGpq_, GqqGpq_) ;
40 // a bit of sign-masking (taking abs) needed for |Gpq|
41 // x &~ -0.0 clears the sign bit, ~(-0.0): all-1s, leading 0
42 register const __m256d mask = // 0.0 negated: all-1s
43 _mm256_set_pd(−0.0 , 0 . 0 , −0.0 , −0.0) ;
44
45 // out[0] = Gpp; out[1] = Gqq; out[2] = Gpq; out[3] = |Gpq|;
46 return _mm256_andnot_pd(mask , intm) ;
47 }

97

4. Conclusions and future work

Listing 5: Computing the Jacobi rotations with Intel AVX2 & FMA intrinsics
1 __m256d ones = _mm256_set_pd(1 . 0 , 1 . 0 , 1 . 0 , 1 . 0) ;
2 __m256d twos = _mm256_set_pd(2 . 0 , 2 . 0 , 2 . 0 , 2 . 0) ;
3 __m256d neg0 = _mm256_set_pd(−0.0 ,−0.0 ,−0.0 ,−0.0);
4 // ||G~q||22 − ||G~p||22, if the squares of the norms are available
5 __m256d Gq_p = _mm256_sub_pd(Gqq , Gpp) ;
6 // else, with the norms, (||G~q||2 − ||G~p||2)(||G~q||2 + ||G~p||2)
7 [[_mm256_mul_pd(_mm256_sub_pd(Gq_,Gp_) ,_mm256_add_pd(Gq_,Gp_)) ;]]
8 // cot 2~ϕ = (||G~q||22 − ||G~p||22)/(2 ·GT~pG~q); where available and if faster ,
9 // replace multiplication by 2 with a scalbn()-like instruction
10 __m256d Ctg2 = _mm256_div_pd(Gq_p, _mm256_mul_pd(Gpq , twos)) ;
11 //

√
cot2 2~ϕ+ 1; only two roundings due to FMA

12 __m256d tmp0 = _mm256_sqrt_pd(_mm256_fmadd_pd(Ctg2 , Ctg2 , ones)) ;
13 // extract the sign bit from each of the cotangents of 2~ϕ
14 __m256d sgnb = _mm256_and_pd(Ctg2 , neg0) ;
15 // transfer the sign bits onto the square roots; their sign bits
16 // being 0, it is enough to bitwise -OR them with the desired ones
17 __m256d tmp1 = _mm256_or_pd(tmp0 , sgnb) ;
18 // cot ~ϕ = cot 2~ϕ+ sign(

√
cot2 2~ϕ+ 1, cot 2~ϕ)

19 __m256d Ctg = _mm256_add_pd(Ctg2 , tmp1) ;
20 // tan ~ϕ = 1/ cot ~ϕ; here, a ‘reciprocal’ instruction would be useful
21 __m256d Tan = _mm256_div_pd(ones , Ctg) ;
22 //

√
tan2 ~ϕ+ 1; only two roundings due to FMA

23 __m256d tmp2 = _mm256_sqrt_pd(_mm256_fmadd_pd(Tan , Tan , ones)) ;
24 // cos ~ϕ = 1/

√
tan2 ~ϕ+ 1; here, there is 1 division (or reciprocal),

25 // and 1 square root; it would be beneficial to have CORRECTLY
26 // ROUNDED ‘rsqrt’, x−1/2, instruction , to halve the number of ex-
27 // pensive operations to 1, and have only 2 roundings altogether.
28 __m256d Cos = _mm256_div_pd(ones , tmp2) ;
29 // new ~p-th diagonal entries of GTG: ||G′~p||

2
2 = ||G~p||22 + tan ~ϕ · (GT~pG~q)

30 Gpp = _mm256_fmadd_pd(Tan , Gpq , Gpp) ;
31 // new ~q-th diagonal entries of GTG: ||G′~q||

2
2 = ||G~q||22 − tan ~ϕ · (GT~pG~q)

32 Gqq = _mm256_fnmadd_pd(Tan , Gpq , Gqq) ;

Level 2

At this level the algorithm becomes thread-parallel (e.g., using OpenMP), if not
already so due to the hyperthreading. The threads are bound to cores, one-to-one, in
a single NUMA domain. Usually, that would be one CPU socket in an SMP machine
and its associated memory, but it may get more complicated with the KNLs.

This is also the most appropriate level for introducing any kind of hybrid process-
ing (e.g., CPU&GPU, CPU&MIC, CPU&FPGA, . . .), since the attached devices
share a NUMA domain with their neighboring CPU, but what part(s), if any, of
the entire computation to offload to a coprocessing device still remains a separate
research topic.

98

4.3. A note on the figures and the software

Level 3

At this level the algorithm operates in the “classical” MPI data exchange regime,
and can span multiple NUMA domains (still with shared memory), or multiple
SMP nodes in a cluster (with distributed memory). Each MPI process is threaded,
in accordance to Level 2.

Alternatively, a single OpenMP-threaded process can be in charge for all NUMA
domains (and, optionally, coprocessing devices) within a single node, by carefully
setting thread affinities and allocating/using the memory local to a domain through-
out execution, save for the column exchanges at the end of each block-sweep. Such a
process should still employ MPI to communicate to other nodes in a cluster, though.
That approach might be considered to be Level 2.5.

NUMA and the network (i.e., cluster) topologies may also be the drivers for
the new classes of the parallel strategies, as it has been in the past (e.g., with the
Mantharam-Eberlein strategy for the hypercube topologies, or with the modified
modulus strategy for the one-dimensional torus), to minimize the wall-clock time of
the data exchange phases.

4.3. A note on the figures and the software

Figures 2.2, 2.3, 2.4, 2.5, 2.6, and 2.7 have been generated by circo tool of
Graphviz2 2.40.1, Figures 2.9 and 4.1 by METAPOST

3 1.9991, as well as Figures
2.1, 2.10, 2.11, 2.12, 2.18, 2.19, and 3.9, which have been drawn by Sanja Singer
from the author’s sketches. The graphs and schematics in Figures 2.20, 2.21, 2.22,
2.23, 2.24, 2.25, 2.26, 2.27, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, and 3.8 have also been
plotted by her. Figure 2.8 has been generated by Wolfram Mathematica4 10.4.1.
The matrix heatmaps of Figures 2.13, 2.14, 2.15, 2.16, and 2.17 have been created
manually5, as bitmaps, as well as the colorbar6. The rest of the thesis has been
prepared with LATEX. The final version will be available at http://venovako.eu site.

The prototype software implementations of the algorithms described in this the-
sis (and some related ones) can be found on https://github.com/venovako GitHub,
under repositories GPUJACHx (a single-GPU CUDA-based one-sided Jacobi SVD,
HSVD, and the Hari-Zimmermann GSVD code), hz-gsvd (an OpenMP shared-
memory code for the Hari-Zimmermann GSVD), JACSD (a collection of multi-level
OpenMP codes for the one-sided Jacobi SVD and a lot of support routines), and
JKogb (a Kogbetliantz-like, i.e., two-sided experimental code for the HSVD).

2http://www.graphviz.org
3https://www.tug.org/metapost.html
4http://www.wolfram.com/mathematica/
5See, in https://github.com/venovako/JACSD repository, vn library’s tools for bitmap (bmp)

generation and matrix visualization.
6The colormap is based on Matlab’s jet, with the first and the last color not shown and reserved

for −∞ and +∞ (or NaNs), respectively (of which neither are present in the plotted data).

99

5. Bibliography

[1] O. Alter, P. O. Brown, and D. Botstein, Generalized singular value
decomposition for comparative analysis of genome-scale expression data sets of
two different organisms, P. Natl. Acad. Sci. USA, 100 (2003), pp. 3351–3356.

[2] A. A. Anda and H. Park, Fast plane rotations with dynamic scaling, SIAM
J. Matrix Anal. Appl., 15 (1994), pp. 162–174.

[3] M. Anderson, G. Ballard, J. W. Demmel, and K. Keutzer,
Communication-avoiding QR decomposition for GPUs, in Proceedings of the
25th IEEE International Parallel & Distributed Processing Symposium (IPDPS
2011), Anchorage, AK, USA, May 2011, pp. 48–58.

[4] M. Ashworth, J. Meng, V. Novaković, and S. Siso, Early applica-
tion performance at the Hartree Centre with the OpenPOWER architecture,
in High Performance Computing, M. Taufer, B. Mohr, and J. M. Kunkel, eds.,
vol. 9945 of Lecture Notes in Computer Science, Frankfurt, Germany, June
2016, Springer, pp. 173–187.

[5] Z. Bai and J. W. Demmel, Computing the generalized singular value decom-
position, SIAM J. Sci. Comput., 14 (1993), pp. 1464–1486.

[6] Z. Bai and H. Zha, A new preprocessing algorithm for the computation of
the generalized singular value decomposition, SIAM J. Sci. Comput., 14 (1993),
pp. 1007–1012.

[7] M. Bečka, G. Okša, and M. Vajteršic, Dynamic ordering for a parallel
block–Jacobi SVD algorithm, Parallel Comput., 28 (2002), pp. 243–262.

[8] P. Benner, V. Novaković, A. Plaza, E. S. Quintana-Ortí, and
A. Remón, Fast and reliable noise estimation for hyperspectral subspace iden-
tification, IEEE Geosci. Remote Sens. Lett., 12 (2015), pp. 1199–1203.

[9] K. Bhuyan, S. B. Singh, and P. K. Bhuyan, Application of generalized
singular value decomposition to ionospheric tomography, Ann. Geophys., 22
(2004), pp. 3437–3444.

[10] J. L. Blue, A portable fortran program to find the Euclidean norm of a vector,
ACM Trans. Math. Software, 4 (1978), pp. 15–23.

[11] M. Botinčan and V. Novaković, Model-based testing of the Conference
Protocol with Spec Explorer, in 9th International Conference on Telecommuni-
cations, Zagreb, Croatia, June 2007, IEEE, pp. 131–138.

[12] R. P. Brent and F. T. Luk, The solution of singular-value and symmetric
eigenvalue problems on multiprocessor arrays, SIAM J. Sci. Statist. Comput.,
6 (1985), pp. 69–84.

Bibliography

[13] R. P. Brent, F. T. Luk, and C. F. Van Loan, Computation of the singular
value decomposition using mesh–connected processors, J. VLSI Comput. Syst.,
1 (1985), pp. 242–270.

[14] J. R. Bunch and B. N. Parlett, Direct methods for solving symmetric
indefinite systems of linear equations, SIAM J. Numer. Anal., 8 (1971), pp. 639–
655.

[15] L. E. Cannon, A Cellular Computer to Implement the Kalman Filter Algo-
rithm, PhD thesis, Montana State University, Bozeman, MT, USA, 1969.

[16] P. P. M. de Rijk, A one–sided Jacobi algorithm for computing the singular
value decomposition on a vector computer, SIAM J. Sci. Statist. Comput., 10
(1989), pp. 359–371.

[17] A. Deichmöller, Über die Berechnung verallgemeinerter singularer
Werte mittels Jacobi-ähnlicher Verfahren, PhD thesis, FernUniversität–
Gesamthochschule, Hagen, 1990.

[18] J. W. Demmel, L. Grigori, M. F. Hoemmen, and J. Langou,
Communication–optimal parallel and sequential QR and LU factorizations,
Technical Report UCB/EECS–2008–89, Electrical Engineering and Computer
Sciences University of California at Berkeley, Aug. 2008.

[19] , Communication–optimal parallel and sequential QR and LU factoriza-
tions, SIAM J. Sci. Comput., 34 (2012), pp. A206–A239.

[20] J. W. Demmel and H. D. Nguyen, Fast reproducible floating-point sum-
mation, in Proceedings of the 21st IEEE Symposium on Computer Arithmetic
(ARITH), Austin, TX, USA, April 2013, pp. 163–172.

[21] J. W. Demmel and K. Veselić, Jacobi’s method is more accurate than QR,
SIAM J. Matrix Anal. Appl., 13 (1992), pp. 1204–1245.

[22] M. Doko and V. Novaković, Izračunljivost i apstraktni strojevi, Hrvatski
matematički elektronski časopis math.e, 9 (2006).

[23] F. M. Dopico, P. Koev, and J. M. Molera, Implicit standard Jacobi gives
high relative accuracy, Numer. Math., 113 (2009), pp. 519–553.

[24] Z. Drmač, Computing the Singular and the Generalized Singular Values, PhD
thesis, FernUniversität–Gesamthochschule, Hagen, 1994.

[25] , Implementation of Jacobi rotations for accurate singular value computa-
tion in floating point arithmetic, SIAM J. Sci. Comput., 18 (1997), pp. 1200–
1222.

[26] , A tangent algorithm for computing the generalized singular value decom-
position, SIAM J. Numer. Anal., 35 (1998), pp. 1804–1832.

101

Bibliography

[27] , A posteriori computation of the singular vectors in a preconditioned Jacobi
SVD algorithm, IMA J. Numer. Anal., 19 (1999), pp. 191–213.

[28] Z. Drmač and K. Veselić, New fast and accurate Jacobi SVD algorithm. I,
SIAM J. Matrix Anal. Appl., 29 (2008), pp. 1322–1342.

[29] , New fast and accurate Jacobi SVD algorithm. II, SIAM J. Matrix Anal.
Appl., 29 (2008), pp. 1343–1362.

[30] P. J. Eberlein, A one–sided Jacobi methods for parallel computation, SIAM
J. Alg. Disc. Meth., 8 (1987), pp. 790–796.

[31] S. Falk and P. Langemeyer, Das Jacobische Rotationsverfahren fur reel-
symmetrische Matrizenpaare I, in Elektronische Datenverarbeitung Folge 7,
H. K. Schuff, ed., Friedr. Vieweg & Sohn, Braunschweig, 1960, pp. 30–34.

[32] , Das Jacobische Rotationsverfahren fur reelsymmetrische Matrizenpaare
II, in Elektronische Datenverarbeitung Folge 8, H. K. Schuff, ed., Friedr. Vieweg
& Sohn, Braunschweig, 1960, pp. 35–43.

[33] G. R. Gao and S. J. Thomas, An optimal parallel Jacobi–like solution method
for the singular value decomposition, in Proceedings of the 1988 International
Conference on Parallel Processing, St. Charles, IL, USA, vol. 3, August 1988,
pp. 47–53.

[34] G. Gose, Das Jacobi–Verfahren für Ax = λBx, Z. Angew. Math. Mech., 59
(1979), pp. 93–101.

[35] S. Graillat, C. Lauter, P. T. P. Tang, N. Yamanaka, and S. Oishi,
Efficient calculations of faithfully rounded l2-norms of n-vectors, ACM Trans.
Math. Software, 41 (2015), p. Article 24.

[36] E. R. Hansen, On cyclic Jacobi methods, J. Soc. Indust. Appl. Math., 11
(1963), pp. 448–459.

[37] V. Hari, On Cyclic Jacobi Methods for the Positive Definite Generalized Eigen-
value Problem, PhD thesis, FernUniversität–Gesamthochschule, Hagen, 1984.

[38] , Convergence to diagonal form of block Jacobi-type methods, Numer.
Math., 129 (2015), pp. 449–481.

[39] V. Hari, S. Singer, and S. Singer, Block-oriented J-Jacobi methods for
Hermitian matrices, Linear Algebra Appl., 433 (2010), pp. 1491–1512.

[40] , Full block J-Jacobi methods for Hermitian matrices, Linear Algebra
Appl., 444 (2014), pp. 1–27.

[41] M. R. Hestenes, Inversion of matrices by biorthonalization and related re-
sults, J. Soc. Indust. Appl. Math., 6 (1958), pp. 51–90.

102

Bibliography

[42] N. J. Higham, Functions of Matrices: Theory and Computation, SIAM,
Philadelphia, 2008.

[43] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University
Press, Cambridge, 1985.

[44] IEEE 754-2008, Standard for Floating-Point Arithmetic, New York, NY, USA,
Aug. 2008.

[45] D. S. Johnson, M. Yannakakis, and C. H. Papadimitriou, On generat-
ing all maximal independent sets, Inform. Process. Lett., 27 (1988), pp. 119–123.

[46] E. G. Kogbetliantz, Solution of linear equations by diagonalization of coef-
ficients matrix, Quart. Appl. Math., 13 (1955), pp. 123–132.

[47] S. R. Kuo, W. Yeih, and Y. C. Wu, Applications of the generalized singular-
value decomposition method on the eigenproblem using the incomplete boundary
element formulation, J. Sound. Vib., 235 (2000), pp. 813–845.

[48] S. Lahabar and P. J. Narayanan, Singular value decomposition on GPU
using CUDA, in Proceedings of the 23rd IEEE International Symposium on
Parallel & Distributed Processing (IPDPS 2009), Rome, Italy, May 2009.

[49] F. T. Luk and H. Park, On parallel Jacobi orderings, SIAM J. Sci. Statist.
Comput., 10 (1989), pp. 18–26.

[50] , A proof of convergence for two parallel Jacobi SVD algorithms, IEEE
Trans. Comput., C–38 (1989), pp. 806–811.

[51] M. Mantharam and P. J. Eberlein, Block recursive algorithm to generate
Jacobi–sets, Parallel Comput., 19 (1993), pp. 481–496.

[52] D. T. Marr, F. Binns, D. L. Hill, G. Hinton, D. A. Koufaty, J. A.
Miller, and M. Upton, Hyper-threading technology architecture and mi-
croarchitecture, Intel Technology Journal, 6 (2002), pp. 4–15.

[53] W. F. Mascarenhas, On the convergence of the Jacobi method for arbitrary
orderings, SIAM J. Matrix Anal. Appl., 16 (1995), pp. 1197–1209.

[54] L. Nazareth, On the convergence of the cyclic Jacobi method, Linear Algebra
Appl., 12 (1975), pp. 151–164.

[55] V. Novaković, A hierarchically blocked Jacobi SVD algorithm for single and
multiple graphics processing units, SIAM J. Sci. Comput., 37 (2015), pp. C1–
C30.

[56] V. Novaković and S. Singer, A GPU-based hyperbolic SVD algorithm, BIT,
51 (2011), pp. 1009–1030.

103

Bibliography

[57] V. Novaković, S. Singer, and S. Singer, Estimates for the spectral con-
dition number of cardinal B-spline collocation matrices, Math. Commun., 15
(2010), pp. 503–519.

[58] , Blocking and parallelization of the Hari–Zimmermann variant of the Falk–
Langemeyer algorithm for the generalized SVD, Parallel Comput., 49 (2015),
pp. 136–152.

[59] NVIDIA, CUDA C Programming Guide 5.5, July 2013.

[60] R. Onn, A. O. Steinhardt, and A. Bojanczyk, The hyperbolic singular
value decomposition and applications, IEEE Trans. Signal Process., 39 (1991),
pp. 1575–1588.

[61] C. C. Paige, Computing the generalized singular value decomposition, SIAM
J. Sci. Statist. Comput., 7 (1986), pp. 1126–1146.

[62] C. C. Paige and M. A. Saunders, Towards a generalized singular value
decomposition, SIAM J. Numer. Anal., 18 (1981), pp. 398–405.

[63] B. N. Parlett, The Symmetric Eigenvalue Problem, no. 20 in Classics in
Applied Mathematics, SIAM, Philadelphia, 1998.

[64] H. Rutishauser, The Jacobi method for real symmetric matrices, Numer.
Math., 9 (1966), pp. 1–10.

[65] A. H. Sameh, On Jacobi and Jacobi–like algorithms for a parallel computer,
Math. Comp., 25 (1971), pp. 579–590.

[66] G. Shroff and R. S. Schreiber, On the convergence of the cyclic Jacobi
method for parallel block orderings, SIAM J. Matrix Anal. Appl., 10 (1989),
pp. 326–346.

[67] S. Singer, S. Singer, V. Hari, K. Bokulić, D. Davidović, M. Jurešić,
and A. Ušćumlić, Advances in speedup of the indefinite one-sided block Jacobi
method, in AIP Conf. Proc. – Volume 936 Numerical Analysis and Applied
Mathematics, T. E. Simos, G. Psihoyios, and C. Tsitouras, eds., Melville, New
York, 2007, AIP, pp. 519–522.

[68] S. Singer, S. Singer, V. Novaković, D. Davidović, K. Bokulić, and
A. Ušćumlić, Three-level parallel J-Jacobi algorithms for Hermitian matrices,
Appl. Math. Comput., 218 (2012), pp. 5704–5725.

[69] S. Singer, S. Singer, V. Novaković, A. Ušćumlić, and V. Dunjko,
Novel modifications of parallel Jacobi algorithms, Numer. Alg., 59 (2012), pp. 1–
27.

[70] I. Slapničar, Componentwise analysis of direct factorization of real symmetric
and Hermitian matrices, Linear Algebra Appl., 272 (1998), pp. 227–275.

104

Bibliography

[71] I. Slapničar and V. Hari, On the quadratic convergence of the Falk–
Langemeyer method, SIAM J. Math. Anal., 12 (1991), pp. 84–114.

[72] G. W. Stewart, Computing the CS decomposition of a partitioned orthogonal
matrix, Numer. Math., 40 (1982), pp. 297–306.

[73] , Computing the CS and the generalized singular value decompositions,
Numer. Math., 46 (1985), pp. 479–491.

[74] , On the early history of the singular value decomposition, SIAM Rev., 35
(1993), pp. 551–566.

[75] B. D. Sutton, Stable computation of the CS decomposition: Simultaneous
bidiagonalization, SIAM J. Matrix Anal. Appl., 33 (2012), pp. 1–21.

[76] S. Tomov, R. Nath, and J. Dongarra, Accelerating the reduction to up-
per Hessenberg, tridiagonal, and bidiagonal forms through hybrid GPU-based
computing, Parallel Comput., 36 (2010), pp. 645–654.

[77] C. F. Van Loan, Generalizing the singular value decomposition, SIAM J.
Numer. Anal., 13 (1976), pp. 76–83.

[78] , The block Jacobi method for computing the singular value decomposition,
in Computational and combinatorial methods in systems theory, Sel. Pap. 7th
Int. Symp. Math. Theory Networks Syst., Stockholm 1985, 1986, pp. 245–255.

[79] K. Veselić, A Jacobi eigenreduction algorithm for definite matrix pairs, Nu-
mer. Math., 64 (1993), pp. 241–269.

[80] H. Zha, A note on the existence of the hyperbolic singular value decomposition,
Linear Algebra Appl., 240 (1996), pp. 199–205.

[81] K. Zimmermann, Zur Konvergenz eines Jacobiverfahren für gewönliche und
verallgemeinerte Eigenwertprobleme, dissertation no. 4305, ETH, Zürich, 1969.

105

IZJAVA O IZVORNOSTI RADA

 Ja, ____________________________________, student/ica Prirodoslovno-matematičkog

fakulteta Sveučilišta u Zagrebu, s prebivalištem na adresi

__,OIB _________________________,

JMBAG ________________________________, ovim putem izjavljujem pod materijalnom i kaznenom

odgovornošću da je moj završni/diplomski/doktorski rad pod naslovom:

__, isključivo moje autorsko djelo, koje je u

potpunosti samostalno napisano uz naznaku izvora drugih autora i dokumenata korištenih u radu.

U Zagrebu, __________________________

 Potpis

VEDRAN NOVAKOVIĆ

II. Maksimirsko naselje 15, HR-10000 Zagreb

1191004541

Parallel Jacobi-type algorithms for the singular and the generalized singular value decomposition

(Paralelni algoritmi Jacobijeva tipa za singularnu i generaliziranu singularnu dekompoziciju)

1. prosinca 2017.

6. Biography

Vedran Novaković was born on October 10th, 1982 in Zagreb, Croatia, where he
attended XV Gymnasium and afterwards obtained a diploma from Department of
Mathematics, Faculty of Science, University of Zagreb (the equivalent of Master of
informatics and mathematics in present-day terms) in May 2006.

From July to December 2006 he was employed as a technical associate at De-
partment of Mathematics, working on the “CRO-GRID Applications” project. From
January 2007 to November 2007 he was a technical associate at Chair of Mathe-
matics, Faculty of Mechanical Engineering and Naval Architecture, working on a
collaborative project with industry, implementing a Java-based Open Mobile Al-
liance Digital Rights Management solution. From December 2007 to November
2014 he was a teaching assistant at the Faculty for the mathematical courses, while
also working as a honorary teaching assistant at Department of Mathematics for the
C programming labs and the parallel computing courses, as well as a researcher on
the “Numerical methods in geophysical models” project of the science ministry.

From February 2015 to October 2017 he was employed as a computational sci-
entist at Daresbury Laboratory of the Science and Technology Facilities Council,
United Kingdom, for the “Square Kilometre Array” and “Numerical Linear Algebra
for Exascale” (Horizon 2020) projects. He also participates in the “Matrix Fac-
torizations and Block Diagonalization Algorithms” project of the Croatian Science
Foundation.

He has coauthored 7 research papers in SCIE-indexed journals [57, 56, 69, 68,
55, 8, 58], 2 in conference proceedings [4, 11], and 1 professional paper [22].

Životopis

Vedran Novaković rođen je 10. 10. 1982. u Zagrebu, Hrvatska, gdje je pohađao
XV. gimnaziju, a potom je stekao diplomu na Matematičkom odsjeku Prirodoslov-
no-matematičkog fakulteta Sveučilišta u Zagrebu (ekvivalent današnjeg magistra
računarstva i matematike) u svibnju 2006.

Od srpnja do prosinca 2006. bio je zaposlen kao stručni suradnik na Matema-
tičkom odsjeku, gdje jer radio na tehnološkom projektu “CRO-GRID Aplikacije”.
Od siječnja do studenog 2007. bio je stručni suradnik na Katedri za matematiku
Fakulteta strojarstva i brodogradnje, radeći na suradnom projektu s industrijom za
implementaciju Open Mobile Alliance Digital Rights Management rješenja u jeziku
Java. Od prosinca 2007. do studenog 2014. imao je poziciju asistenta za matema-
tičku grupu predmeta na Fakultetu, radeći ujedno kao honorarni asistent na Mate-
matičkom odsjeku za Programiranje (C) i kolegije o paralelnom računanju, te kao
istraživač na znanstvenom projektu “Numeričke metode u geofizičkim modelima”.

Od veljače 2015. do listopada 2017. bio je zaposlen kao računalni znanstvenik u
Daresbury Laboratory, Science and Technology Facilities Council, Ujedinjeno Kra-
ljevstvo, na projektima “Square Kilometre Array” i “Numerical Linear Algebra for
Exascale” (Obzor 2020). Također je vanjski suradnik na projektu “Matrične fakto-
rizacije i blok dijagonalizacijski algoritmi” Hrvatske zaklade za znanost.

Koautor je 7 znanstvenih radova u časopisima indeksiranima u SCIE [57, 56, 69,
68, 55, 8, 58], 2 rada u zbornicima konferencija [4, 11], i jednog stručnog rada [22].

