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Fizički odsjek

Modeli nesingularnih kompaktnih objekata u

teoriji polja

Anja Marunović
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CHAPTER 1

PRELUDE

1.1 Motivation and scope

One of the most peculiar predictions of classical general relativity, at least if

matter obeys the strong energy condition (SEC) are black holes. (According to

the SEC the sum of the energy density and pressures, ρ +
∑

pi ≥ 0, cannot be

negative.) Black holes are stationary, vacuum solutions of the Einstein equations

that possess an event horizon and a physical singularity which is hidden by the

event horizon. This physical singularity represents an as-yet-unresolved problem,

since it implies the controversial information loss paradox according to which any

information will get completely lost on the singularity of a black hole. The princi-

ples of information loss are in conflict with the standard laws of quantum physics.

Namely, as a consequence of unitarity of quantum physics, a complete information

about a quantum system at one instance of time is sufficient to determine a com-

plete information about the same system at a later time. (In quantum physics

the state of a system is described by the wave function defined on a spacelike

hypersurface and its evolution is determined by an unitary operator; unitarity

of the evolution implies then conservation of the information.) Taking all these

considerations into account it is natural to question whether the final stage of a

massive star collapse is a black hole, or perhaps some other as-yet-not-understood

dense object, that prevents further collapse.

Sakharov was the first that introduced the concept of nonsingular collapse

1



2 Prelude

through the equation of state for the cosmological dark energy (for which the

pressure is negative, p ≃ −ρ) as a super-dense fluid [1] and then Gliner assumed

that such a fluid could be the final state of the gravitational collapse [2]. In-

spired by these ideas Mazur and Mottola investigated alternative configurations

which led to a solution dubbed the gravastar (gravitational vacuum star) [3].

This anisotropic, highly compact astrophysical object consists of a de Sitter core,

which through a vacuum transition layer matches on an exterior Schwarzschild

space-time by avoiding an event horizon formation. Due to their high compact-

ness (defined as the ratio of the mass to radius) gravastars are perceived by distant

observers as black holes, and hence they can be good black hole mimickers. On

the other hand, observers that hover near the event horizon and in particular

those that enter inside the event horizon of a black hole, can make a clear distinc-

tion between a black hole and a gravastar, primarily because black holes contain

curvature singularities while gravastars do not.

Depending on their structure, one nowadays distinguishes two types of gravas-

tars. The first type consists of thin shell layers that exhibit discontinuous func-

tions of the energy density and the pressures [4], while the second type of the

gravastar exhibits continuous functions of the energy density and the pressures [5].

However, apart from the de Sitter core, both types of gravastars possess the pecu-

liar property of pressure anisotropy. Up to now all proposed models of gravastars

have been macroscopic in the sense that they were modeled by fluids character-

ized by an equation of state and an anisotropy in the principal pressures. The

desired physical properties were then obtained by solving the Einstein equations

coupled to the fluid. Even though this approach was useful for understanding

many gravastar’s properties it remained unclear whether these gravastars per-

mitted a more fundamental, microscopic, Langrangian description based on a

covariant lagrangian of classical fields. A successful construction of a compact

nonsingular object, such as the gravastar, from field theory would have impor-

tant ramifications. Apart from a better understanding at the fundamental level,

this would provide an explanation of the anisotropy in the principal pressures,

which naturally occur in the stars made of scalar fields, the so-called boson stars.

Furthermore, microscopic models of gravastars would shed light on the above-

mentioned problems of curvature singularities and black hole information loss

paradox.
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The main objective of this thesis is to provide a feasibility study of microscopic

models of black hole mimickers, i.e. to investigate whether one can obtain stable,

compact astrophysical objects from the lagrangian, field-theoretic description that

at large distances behave as black hole mimickers but – unlike black holes – possess

neither curvature singularities nor event horizons.

The oldest, and accordingly the most studied, astrophysical example based on

the Lagrangian formalism, is the boson star, which is a compact object built from

a self-interacting, gravitationally bound scalar field [6]. It is known that boson

stars coupled to Einstein’s general relativity possess some features that charac-

terize gravastars, such as the anisotropy in principal pressures and relatively large

compactness (µmax = 0.32). However, no matter how large the self-coupling is,

the ordinary boson star cannot attain arbitrarily large compression and as such

does not represent a good black hole mimicker. Furthermore, the principal pres-

sures do not have a de Sitter-like interior - that is, their principal pressures are

always positive at the origin. In order to overcome this problem in this work

we extend the analysis of boson stars and modify the Einstein-Hilbert action by

introducing a nonminimal coupling of the scalar field to gravity via the Ricci

curvature scalar. We show that already this minimal extension of general rela-

tivity results in configurations that resemble more the dark energy stars then the

ordinary boson stars, with compactness significantly larger then that in ordinary

boson stars (if matter is not constrained with the energy conditions).

Another field-theoretic model that we investigate in this thesis involves a

global monopole and a combined system of a boson star and a global monopole [7].

Global monopoles are extensively studied configurations in the context of cosmol-

ogy. Namely, they belong to the class of topological defects, whose networks were

studied in the 1980s and 1990s as a possible origin of Universe’s large scale struc-

ture. Modern cosmological observations have ruled out topological defects as the

principal seeds for structure formation, albeit a small fraction of cosmic microwave

background thermal fluctuations might still originate from topological defects [8].

The simplest field-theoretic realization of the global monopole includes a scalar

field theory with an (global) O(3) - symmetry which is spontaneously broken to

O(2) by the vacuum. Within the framework of classical general relativity, the

most prominent feature of the global monopole is the gravitationally repulsive

core mass. When gravity is modified by introducing a nonminimal coupling how-
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ever, the locally attractive regions of effective force emerge, thus enabling the

existence of bound orbits. Due to all these peculiar features of global monopoles,

it seemed reasonable to investigate the system consisting of a boson star and a

global monopole. Indeed, we show that a repulsive monopole stabilizes an at-

tractive boson star and the resulting configuration exhibits large energy density,

large (and negative) principal pressures, large compactness, large effective po-

tential, large local forces, and yet exhibit no event horizon. As such a composite

system of a boson star and a global monopole represents a convincing microscopic

candidate for a black hole mimicker.

1.2 Thesis Overview

The thesis is organized as follows:

Chapter 2 – Gravitational vacuum stars

This chapter is divided into two sections. In the first section we per-

form linear stability analysis of the continuous pressures gravastar fol-

lowing the conventional Chandrasekhar’s method. Einstein equations

for small radial perturbations around the equilibrium are solved as an

eigenvalue problem. A set of parameters leading to a stable funda-

mental mode is found thus proving radial stability of the continuous

pressure gravastar. In the second section the continuous gravastar

model is extended by introducing an electrically charged component.

The Einstein-Maxwell system with the de Sitter interior and Reissner-

Nordström exterior is solved. The effect of the electric charge in terms

of the anisotropy and the compactness is considered. This chapter is

based on the articles [9, 10].

Chapter 3 – Nonminimal boson stars

A classical general relativity is modified by a rather minimal exten-

sion of the Einstein-Hilbert action by a nonminimal coupling of the

scalar field to the Ricci curvature scalar, yielding configurations that

resemble more the dark energy stars then the ordinary boson stars.

Restrictions on matter from energy conditions are imposed showing
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that the maximally allowed masses are shifted to the lower values due

to the violation of the weak and dominant energy conditions. The ef-

fective compactness is calculated displaying its maximum value in the

region of negative pressures which has been shown to be greater then

that in ordinary boson stars. This chapter is based on the article [11].

Chapter 4 – Nonminimal boson D-stars

This chapter is divided into two parts. In the first part a global

monopole, modeled by a classical field theory consisting of three inter-

acting real scalar fields, is extended by introducing nonminimal cou-

pling to gravity. Contrary to the minimal case, locally positive core

mass functions and bound orbits are found. All other relevant func-

tions (energy density, pressures, effective force, Newtonian force etc.)

are analyzed depending on the deficit solid angle and the nonminimal

coupling strength.

In the second section an analysis of the system consisting of the bo-

son star and the global monopole which are nonminimally coupled

to gravity is performed. According to the strength of the nonlinear

gravitational effects and the gravitational backreaction, three distinct

coupling regimes are featured: weak, mild and strong. In the strong

coupling regime a composite object with the maximum compactness

of order unity is found and compared to a Schwarzschild black hole.

Chapter 5 – Conclusions

This chapter brings conclusions and summary. Some ideas for future

work are also discussed.





CHAPTER 2

GRAVITATIONAL VACUUM STARS

2.1 Radial stability

Since the seminal work of Mazur and Mottola [3] the concept of the gravitational

vacuum star – the gravastar – as an alternative to a black hole has attracted

a plethora of interest. In this version of the gravastar a multilayered structure

has been introduced: from the repulsive de Sitter core (where a negative pres-

sure helps balance the collapsing matter) one crosses multiple layers (shells) and

without encountering an event horizon one eventually reaches the (pressureless)

exterior Schwarzschild space-time. Afterwards some simplifications [4, 12] and

modifications [13, 14] have been introduced in the original (multi)layer - onion-

like picture.

Important step was done when it was shown that due to anisotropy of mat-

ter comprising the gravastar [15] one can eliminate layer(s) and the transition

from the interior de Sitter to the exterior Schwarzschild space-time is possible

by continuous stress-energy tensor [5] (see also [16]). The gravastar has been

confronted with its rivals - black holes [17, 18] and wormholes [19, 20, 21], and

investigated with respect to energy conditions (violations) [22]. Almost every

research mentioned above to some extent addresses the problem of the gravastar

stability, since the stability problem is crucial for any object or situation to be

considered as physically viable. In Ref. [3] it was first shown that such an ob-

ject is thermodynamically stable while axial stability of thin-shells gravastars was

7



8 Gravitational vacuum stars

tested in [12, 13]. Stability within the thin shell approach based on the Darmois-

Israel formalism was recently reviewed in [23]. In [24] stability analysis of the

thin shell gravastar problem is closely related to an attempt to distinguish the

gravastar from a black hole by analysis of quasi normal modes produced by axial

perturbations. The problem of stability of the rotating thin shell gravastar was

addressed in [25]. Stability in (multi)layer version of the gravastar was also con-

sidered in [18, 26, 27, 28]. The axial stability of the continuous pressure gravastar

was shown to be valid in [5]. This analysis was based on the Ref. [29] where

stability of objects with de Sitter center was investigated.

In this section we analyze the radial stability of the continuous pressure

gravastars following the conventional Chandrasekhar’s method. Originally Chan-

drasekhar developed the method for testing the radial stability of the isotropic

spheres [30] in terms of the radial pulsations. In Ref. [31] Chandrasekhar’s

method was generalized to anisotropic spheres. Stability of anisotropic stars was

investigated before in [32, 33] and radial stability analysis for anisotropic stars

using the quasi-local equation of state was given in [34].

The section is organized as follows. In next subsection 2.1.1 the Einstein equa-

tions and their linearization is given. The pulsation equation is derived, static

solutions are described and an equation of state is calculated. In subsection 2.1.2

the eingenvalue problem is presented and results and discussion are given in last

subsection 2.1.3.

Unless stated explicitly in this chapter we shall work in geometrized units for

which GN = 1 = c.

2.1.1 Linearization of the Einstein equation

Since we are interested to analyze the response of the gravastar-like objects to

small radial perturbations, we assume that the pulsating object retains its spher-

ical symmetry, and introduce the Schwarzschild coordinates:

ds2 = −eν(r,t)dt2 + eλ(r,t)dr2 + r2dθ2 + r2 sin2 θdφ2, (2.1)

where λ and ν are, in this dynamical setting, time-dependent metric functions.

The standard anisotropic energy-momentum tensor appropriate to describe gravastar-



2.1. Radial stability 9

like objects is:

T ν
µ = (ρ+ pr)uµu

ν + gνµpr − lµl
ν(pt − pr)− kµk

ν(pt − pr), (2.2)

where uµ is the fluid 4-velocity, uµ = dxµ/ds, lµ and kµ are the unit 4-vectors in

the θ and φ directions, respectively, lµ = −r δθµ, l
ν = δνθ /r, kµ = −r sin θ δφµ , k

ν =

δνφ/(r sin θ).

The velocity of the fluid element in the radial direction ξ̇ is defined by:

ξ̇ ≡ dr

dt
=

ur

ut
, (2.3)

where ξ is the radial displacement of the fluid element, r → r + ξ(r, t). The

components of the 4-velocity are obtained by employing uµu
µ = −1 and Eq. (2.3):

uµ = (e−ν/2, ξ̇e−ν/2, 0, 0). (2.4)

The non-zero components of the energy-momentum tensor (2.2) linear in ξ̇ are:

T t
t = −ρ, T r

r = pr, T θ
θ = T φ

φ = pt,

T r
t = −ξ̇(ρ+ pr), T t

r = eλ−ν ξ̇(ρ+ pr). (2.5)

The components of the Einstein tensor for the metric (2.1) are given in Ap-

pendix A. Following the standard Chandrasekhar method, all matter and metric

functions should only slightly deviate from its equilibrium solutions,

λ(r, t) = λ0(r) + δλ(r, t), ν(r, t) = ν0(r) + δν(r, t), (2.6)

ρ(r, t) = ρ0(r) + δρ(r, t), pr(r, t) = pr0(r) + δpr(r, t), pt(r, t) = pt0(r) + δpt(r, t).

(2.7)

The subscript 0 denotes the equilibrium functions and δf(r, t) are the so-called

Eulerian perturbations, where f ∈ {λ, ν, ρ, pr, pt, }. The Eulerian perturbations

measure a local departure from equilibrium in contrast to the Lagrangian pertur-

bations, denoted as df(r, t), which measure a departure from equilibrium in the

co-moving system (fluid rest frame). The Lagrangian perturbations in the linear

approximation play a role of a total differential and are linked to the Eulerian
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perturbations via the equation (see e.g. Ref. [35]):

df(r, t) = δf(r, t) + f ′
0(r)ξ. (2.8)

A linearization of the Einstein equations Gµν = 8πTµν leads to the two sets of

equations: one for the equilibrium (static) functions and the other for the per-

turbed functions. The equilibrium functions obey the following set of equations:

8πρ0 = e−λ0

(

λ′
0

r
− 1

r2

)

+
1

r2
, (2.9)

8πpr0 = e−λ0

(

ν ′
0

r
+

1

r2

)

− 1

r2
, (2.10)

8πpt0 =
1

2
e−λ0

(

−ν ′
0λ

′
0

2
− λ′

0

r
+

ν ′
0

r
+

ν ′2
0

2
+ ν ′′

0

)

, (2.11)

In practice, one usually combines these three equations into the Tolman-Oppenheimer-

Volkoff (TOV) equation (see Appendix A):

p′r0 = −1

2
(ρ0 + pr0) ν

′
0 +

2

r
Π0, (2.12)

where Π0 denotes the anisotropic term Π0 = pt0− pr0. The other set of equations

emerging from the linearization of the above Einstein equations yields the set of

equations for the perturbed functions:

(

re−λ0δλ
)′
= 8πr2δρ, (2.13)

δν ′ =

(

ν ′
0 +

1

r

)

δλ+ 8πreλ0δpr, (2.14)

˙δλ
e−λ0

r
= −8πξ̇(ρ0 + pr0), (2.15)

eλ0−ν0(ρ0 + pr0)ξ̈ +
1

2
(ρ0 + pr0)δν

′ +
1

2
(δρ+ δpr)ν

′
0 + δp′r −

2

r
δΠ = 0. (2.16)

Equation (2.16) is known as the pulsation equation [31] and it serves to probe the

radial stability of the system of interest. It is actually the TOV equation for the

perturbed functions which is obtained – analogously as the non-perturbed TOV

– by combining Eqs. (2.13)–(2.15).

In order to solve the pulsation equation (2.16) for gravastar-like objects all
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perturbed functions should be expressed in terms of the radial displacement ξ

(and its derivatives) and the equilibrium functions. In performing this, one first

integrates Eq. (2.15) yielding:

δλ = −8πreλ0ξ(ρ0 + pr0). (2.17)

Using this expression in Eq. (2.13) one obtains:

δρ = − 1

r2
[

r2(ρ0 + pr0)ξ
]′
. (2.18)

After inserting δλ in Eq. (2.14) a dependence on δpr remains which should be

expressed in terms of the displacement function (and its derivatives) and the

equilibrium functions. To accomplish this, one ought to explore the system at

hand in more detail.

One of the possibilities, as suggested firstly by Chandrasekhar for isotropic

structures [30] and more recently by Dev and Gleiser for anisotropic objects [31],

is to make use of the baryon density conservation to express the radial pressure

perturbation in terms of the displacement function and the static solutions. In

this approach the adiabatic index appears as a free parameter. Chandrasekhar

used this method to establish limiting values of the adiabatic index leading to an

(un)stable isotropic object of a constant energy density. He showed that there

were no stable stars of this kind if the adiabatic index was less than 4/3+κM/R

(κ is a constant depending on the structure of the star, M and R are the star’s

mass and radius). In Ref. [31] the Chandrasekhar method was extended to various

anisotropic star models and showed that the limiting value of the adiabatic index

is shifted to lower values, i.e. anisotropic stars can approach stability region with

smaller adiabatic index than in Chandrasekhar’s case.

In this section our primary concern is to probe the radial stability of one

particular anisotropic object – gravastar. Due to the peculiar character of the

gravastar (especially its radial pressure – see below) one cannot expect the adi-

abatic index to be constant along the whole object. In fact the adiabatic index

is a function of the energy density and pressure(s). This is the main reason why

here we shall not test stability by fixing the appropriate values of the adiabatic

index that guarantee stability. The required information will rather be extracted

from a given static solution by constructing the equation of state.
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Static solution

The procedure discussed so far is applicable to all spherically symmetric struc-

tures. To apply it to gravastar configurations one has to recall the basic character-

istics of gravastars in the continuous pressure picture [5]. The energy density ρ0(r)

is positive and monotonically decreases from the center to the surface. Gravastar

has a de Sitter interior, pr0(0) = −ρ0(0), and a Schwarzschild exterior. Further-

more, the atmosphere of the gravastar is defined as an outer region, near to the

surface, where ”normal” physics is valid [15], i.e. where both the energy density

and the radial pressure are positive and monotonically decreasing functions of the

radial coordinate. In the gravastar’s atmosphere the sound velocity vs, defined

by

v2s =
dpr0
dρ0

, (2.19)

is real (v2s > 0) and subluminal (vs < 1).

From the peculiar shape of the gravastar’s (radial) pressure one can immediately

infer that the sound velocity ought to be real only in the gravastar’s atmosphere,

whilst in the gravastar’s interior it is imaginary, v2s < 0. This is the main reason

why, in probing the radial stability, we shall be primarily concerned with the

physical processes occurring in the gravastar’s atmosphere.

To construct a static gravastar, we adopt the energy density profile and the

anisotropic term from the previous work [5]:

ρ0(r) = ρc(1− (r/R)n), (2.20)

Π0(r) = βρ0(r)
mµ0(r). (2.21)

Here n, m are (free) parameters and ρc = ρ0(0) is the central energy density. β

is the anisotropy-strength measure and R is the radius of the gravastar for which

pr0(R) = 0. µ0(r) is the compactness function defined by µ0(r) = 2m0(r)/r, where

m0(r) is the mass function m0(r) = 4π
∫

ρ0(r)r
2dr. The radial pressure pr0 is a

solution of the TOV (2.12) and the tangential pressure is readily obtained from

the anisotropy and the radial pressure by employing the identity pt0 = pr0 +Π0.

One such solution for fixed (R, n,m) = (1, 2, 3) is shown in Fig. 2.1 for three

different values of the central energy density ρc corresponding to three differ-

ent values of the anisotropy strengths β. Since the radius R is fixed there is
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Figure 2.1. The energy density ρ0/ρc, radial pressure pr0/ρc, tangential pressure pt0/ρc
and compactness µ0 as a function of radius r/R for {R,n,m} = {1, 2, 3}. Three dif-
ferent values of the central energy density ρc = {0.19, 0.20, 0.21} and their anisotropy
strengths β = {92.90, 84.77, 76.11} correspond to the lower, middle and upper curve,
respectively. r0 denotes the radius at which the sound velocity (2.19) vanishes (for the
central curve).

an interplay between the central energy density ρc and anisotropy strength β –

higher central energy density ρc requires smaller anisotropy strength β. In sub-

section 2.1.2 where the radial stability of these three gravastar configurations will

be tested it will be elaborated on this particular choice of parameters.

In the inset of Fig. 2.1 the radial pressure close to the surface is extracted in

order to show important features of the gravastar’s atmosphere. At the radius r0

the sound velocity of the fluid vanishes (dpr0/dρ0|r=r0 = 0) and hence r0 serves

as a division point of propagating (or physically reasonable) (r > r0, v
2
s > 0) and

non-propagating regions (r < r0, v
2
s < 0) when probing radial pulsations of the

gravastar.

The dominant energy condition (see Appendix B) is obeyed by both radial

and tangential pressure throughout the gravastar. The compactness function

has been shown in Fig. 2.1 also with approximately µmax ≈ 0.7 for all three

configurations. Such huge values of the compactness function are hardly obtained

in configurations with positive pressures and as such can be attributed to the

violation of the strong energy condition, clearly present in the gravastar (de Sitter)

interior.
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Figure 2.2. The radial pressure pr0/ρc against the energy density ρ0/ρc (EoS) for
{R,n,m} = {1, 2, 3}. Three different values of the central energy density ρc =
{0.19, 0.20, 0.21} and their anisotropy strengths β = {92.90, 84.77, 76.11} correspond
to the lower, middle and upper curve, respectively.

Equation of state

Here we show that the equation of state (EoS) appropriate to describe the gravas-

tar (inferred from (2.20) and (2.21)) is actually a function of the energy density

(only) parameterized by the anisotropy strength β. Next this result is used to

compute the Eulerian perturbation of the radial pressure δpr from the EoS, by

perturbing the energy density only. Ultimately this completes the task to express

all perturbed functions in terms of the displacement (and its derivatives) and the

static solutions.

Generally, for isotropic structures, before solving the TOV, one assumes that

the pressure p and the energy density ρ are functions of the specific entropy s and

the baryon density n. If the system is described by the one-fluid model than in

static and dynamic settings it exhibits isentropic behavior (constant s), in which

case one can set s = 0. Thus it is possible to eliminate the baryon density n and

express the pressure in terms of the energy density only, leading to a barotropic

equation of state p = p(ρ). It is a rather simple task now to perturb this EoS

and express the perturbed pressure in terms of the perturbed energy density.

For anisotropic objects the EoS is highly dependent on the anisotropic term

model (see e.g. the TOV (2.12)). The anisotropic term used here (2.21) is a func-
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tion (or a quasi-local variable 1) of the energy density. This means that for a fixed

anisotropy strength β there is a two parameter family of values {ρc, R} belonging

to the same EoS (see Fig. 2.2). As a consequence, one can obtain perturbed (ra-

dial) pressure by perturbing energy density only, and keeping anisotropy strength

β fixed.

To illustrate this in more detail, an analytic form of the EoS is introduced which,

to a good approximation, describes the gravastar defined by (2.20) and (2.21): 2

pr0(ρ0) = −ρ20

(

1

ρc
− α µ0(ρ0)

)

. (2.22)

Here α is closely related to the anisotropy strength β, µ0(ρ0) is the compactness

function which is a function of the energy density. Now it is clear that for a fixed

α the (radial) pressure is fully determined by the energy density.

In the linear approximation the Eulerian perturbation for the radial pressure

expressed in terms of derivatives of the radial displacement and the static solutions

is:

δpr = −p′r0ξ +
dpr0(ρ0)

dρ0
(δρ+ ρ′0ξ). (2.23)

Here dpro(ρ0)/dρ0 denotes the derivative of the radial pressure with respect to

the energy density. This is equal to dpro/dr
dρ0/dr

as both the radial pressure and the

energy density are functions of radius r only.

Similarly, the Eulerian perturbation of the anisotropy δΠ assumes the form:

δΠ = −Π′
0ξ +

dΠ0[ρ0]

dρ0
(δρ+ ρ′0ξ). (2.24)

With the above two expressions the pulsation equation (2.16) is fully determined.

However, before we proceed to solve the pulsation equation it is useful to rewrite

Eq. (2.23) in a slightly different form in order to compare the result here with

that of Chandrasekhar’s for isotropic and Dev and Gleiser’s for anisotropic stars.

1By the quasi-local variable we mean a function which is an integral in space of some local
function – for example, the mass function m0(r) is a quasi-local variable of the energy density
(which is a local function) as it is the volume integral of the energy density (the same holds
for the compactness function). For a discussion of quasi-local variables and quasi-local EoS see
e.g. Refs. [36, 37] and Ref. [34].

2It is worth noting that the analytic form of the EoS (2.22) is not restricted to the chosen
energy density (2.20). For example, it is also appropriate to describe a gravastar with the energy

density of the form ρ0(r) = ρc e
−η r

2

.
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By means of the TOV (2.12) the perturbed energy density (2.18) can be written

as

δρ = −ρ′0ξ − (ρ0 + pr0)
eν0/2

r2
(

r2e−ν0/2ξ
)′ − 2

r
Π0ξ. (2.25)

Inserting this result in Eq. (2.23) the radial pressure perturbation becomes

δpr = −p′r0ξ − (ρ0 + pr0)
dpr0[ρ0]

dρ0

eν0/2

r2
(

r2e−ν0/2ξ
)′ − 2

r
Π0

dpr0[ρ0]

dρ0
ξ. (2.26)

If one now identifies the adiabatic ”index” as

γ =
ρ0 + pr0

pr0

dpr0[ρ0]

dρ0
, (2.27)

our result is evidently equal to that of Dev and Gleiser (Ref. [31], Eq. (86)).

Moreover, if one turns off anisotropy (Π0 = 0) Chandrasekhar’s result is obtained.

2.1.2 The pulsation equation as an eigenvalue problem

As in Chandrasekhar’s method all matter and metric functions exhibit oscillatory

behavior in time, f(r, t) = eiωtf(r). Hence the pulsation equation assumes the

form:

P0ξ
′′ + P1ξ

′ + P2ξ = −ω2Pωξ, (2.28)

where P0,P1,P2 and Pω are polynomial functions of r and of equilibrium func-

tions only (see Fig. 2.3). Eq. (2.28) represents an eigenvalue equation for the

radial displacement ξ (with ω2 being an eigenvalue). Solutions of this differential

equation are obtained by specifying boundary conditions at the center and at the

surface of the gravastar:

ξ = 0 at r = 0, (2.29)

∆pr = 0 at r = R. (2.30)

The boundary condition at the center demands that there is no displacement

of the fluid at the center of the gravastar. The boundary condition at the sur-

face follows from the requirement that the Lagrangian perturbation of the ra-

dial pressure has to vanish at the surface [35, 38, 39]. In the model presented

here, where ∆pr = (dpr0(ρ0)/dρ0)∆ρ, the sound velocity vanishes at the surface,
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dpr0/dρ0|r=R = 0. This means that, apart from being finite, there are no further

restrictions on ∆ρ(R). This also implies that it is sufficient to demand that ξ(R)

and ξ′(R) are bounded in order to satisfy the boundary condition at the surface

[38]. The choice

ξ′(R) = 0, (2.31)

enables one to compare the results in the gravastar’s atmosphere with the radial

oscillations of the polytropes. This can be relevant as the EoS of the gravastar’s

atmosphere close to the surface can be approximated by the polytropic EoS pr ∝
ρ1+1/np , where np is a polytropic index [5].

In order to study radial stability of the system described by Eq. (2.16) subject

to the boundary conditions (2.29) and (2.30), it is plausible to recast the pulsation

equation into the standard Sturm-Liouville form (see e.g. Ref. [35]):

(Pξ′)′ +Qξ = −ω2Wξ, (2.32)

where

P = e
∫
P1/P0 dr and Q =

P2

P0

P, W =
Pω

P0

P. (2.33)

The leading coefficient in the pulsation equation P0 has three zeros - two at the

ends {0, R} and one in the interior region r0 (dpr0/dρ0|r=r0 = 0), hence P1/P0 has

three singular points (see Fig. 2.3), though all three are regular singular points

or Fuchsian singularities [40] 3.

In order to obtain P the integral
∫

P1/P0 dr should be calculated. Since the

interior singularity arises at r0 which is a division point between propagating and

non-propagating domains, it is reasonable to divide the whole interval I = (0, R)

into two parts: I1 = (0, r0) and I2 = (r0, R). In performing the integration nu-

merically, infinitesimally small regions around all three singular points {0, r0, R}
are excluded, so that both integrals are render convergent and finite. As a con-

sequence, the leading coefficient in the Sturm-Liouville equation P is a positive

function on the (whole) interval I, whilst the weight function W is negative on

the interval I1 and positive on the interval I2. As elucidated in the previous

subsection, the interesting region is the gravastar’s atmosphere, i.e. the second

3A singular point r∗ is regular (or Fuchsian) if the function P1/P0 has a pole of at most first
order, and the function P2/P0 has a pole of at most second order at the singular point r = r∗.
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Figure 2.3. The polynomial functions P0,P1/20,P2/100 and Pω from the pulsation
equation (2.16) for (R,n,m) = (1, 2, 3) and (ρc, β) = (0.2, 84.77)

interval, I2. In this region the standard Sturm-Liouville eigenvalue problem for-

malism (see e.g. [38]) is applied, since P > 0 and W > 0. Therefore if ω2 is

positive, ω itself is real and the solution is oscillatory. If on the other hand ω2

is negative, ω is imaginary and the solution is exponentially growing or decaying

in time, thus signalizing instabilities. The number of nodes of the eigenvector ξ

for a given eigenvalue ω2 is closely related to the stability criteria. To be more

precise, if for ω2 = 0 eigenvector ξ has no nodes, then all higher frequency radial

modes are stable. Otherwise, if for ω2 = 0 eigenvector ξ exhibits nodes, then all

radial modes are unstable. Furthermore, if the system is stable, then the following

relations hold

ω2
0 < ω2

1 < · · · < ω2
n < . . . , (2.34)

where n equals the number of nodes.

2.1.3 Results and discussion

In testing stability of certain configurations in general, it seems natural that one

attempts to find the critical values of the parameters for which the system is

marginally stable. Marginal stability means here that the system exhibits the

fundamental mode (n = 0) for ω2
0 = 0. For example, in the case of neutron stars

(described by the polytropic EoS), there exists a critical value of the central en-

ergy density for which the stellar mass M as a function of radius R is extremal.
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Figure 2.4. The central energy density ρc against the radius R. For {R,n,m} =
{1, 2, 3} the anisotropy-parameter β = {92.90, 84.77, 76.11} is constant on each curve
and fixed by choosing the central energy density to be ρc = {0.19, 0.20, 0.21} from
the lower to the upper curve, respectively. The minimum of each curve represents
marginally stable configurations.

For such a critical value of the central energy density the star exhibits the funda-

mental mode with ω2
0 = 0. At the account of the M(R) curve one can then read

off which EoS will produce a stable star and which will not.

The gravastar-model described here displays a quite similar behavior. For

each EoS (one β) the extremum of the ρc(R) curve represents critical values of

the central energy density ρcritc and radius Rcrit for which we have a fundamental

mode, ω2
0 = 0 (see Fig. 2.4). Then for smaller radii the system exhibits stability,

whereas for larger radii (than the critical one) it reveals instability. In Fig. 2.5

the behavior of the displacement function ξ for these three possible cases is given.

If one fixes the radius R then there is an interplay between the central energy

density ρc and the anisotropy strength β which characterizes a gravastar. Thus

each curve represents one EoS. The central (solid) curve in Fig. 2.5 represents

the fundamental mode. The upper (short-dashed) curve clearly shows stability

of all radial modes as for ω2
0 = 0 there are no nodes, while the lower (long-

dashed) curve represents the EoS which generates instabilities of all radial modes

as there is a node in the fundamental mode. The lower, middle and upper curves

in Fig. 2.5 correspond to the upper, middle and lower curves in Fig. 2.1 and
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Figure 2.5. The displacement function ξ(r) for {R,n,m} = {1, 2, 3} and ω2 = 0.
Three different values of the central energy density ρc = {0.19, 0.20, 0.21} and their
respective anisotropy strengths β = {92.90, 84.77, 76.11} correspond to the lower (un-
stable), middle (marginally stable) and upper (stable) curve respectively.

Fig. 2.2, respectively. Here again one can relate this result to that of Ref. [31]:

from Fig. 2.5, according to the values of the anisotropy strengths β, one can

conclude that the anisotropy enhances stability.

Albeit from the viewpoint of radial pulsations, the gravastar’s inner region

does not seem to be physically attractive as the sound velocity is imaginary there,

it is important to add a couple of comments on the radial displacement’s behavior

in that region. It is strongly attenuated in the gravastar’s interior (see Fig. 2.5).

This holds for all ω2 > 0. Therefore the radial pulsations of the gravastar as a

whole can be seen as occurring prevalently in the gravastar’s atmosphere whereas

entering the interior region they are highly (but smoothly) attenuated. This is

actually what one would intuitively expect from the repulsive gravitation caused

by the de Sitter-like interior. 4

Even though in this section the focus was set on one specific star model – the

gravastar – the method used here can be extended to a broader class of anisotropic

stars. The method can be actually generalized and applied to all anisotropic stars

with the anisotropy being the function of the energy density. In this way the

4A good example of such a space is an inflationary universe. The electric and magnetic fields
of free photons in such an inflationary (quasi-de Sitter) space get (exponentially) damped as
∝ 1/a2, while the physical wavelength gets stretched as ∝ a. Here a denotes the scale factor of
the Universe, which during inflation grows nearly exponentially in time.
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adiabatic ”index” does not have to be set to a constant but calculated from the

static configurations. This comprises one of the main results of this section.

The main result of this section is the observation that the continuous pressure

gravastar-model presented here exhibits radial stability as illustrated in Fig. 2.4

and Fig. 2.5. This result is important as it, along with the axial stability analysis,

suggests that gravastars, albeit at a first sight being bizarre objects, can be viable

physical compact object candidates.

2.2 Electrically charged gravastar

Charged anisotropic models were considered in a number of papers [41, 42, 43,

44, 45, 46, 47, 48] with differing contexts including electromagnetic mass models,

δ-shell models, models with conformal symmetry or with varying cosmological

constant etc.

In this section the gravastar picture is extended to include the effect of the

electric charge as a natural step in gravastar investigations. Although astro-

physical objects are essentially neutral, the problem of the electric charge in the

phenomenological context could occur in the (strange) quark stars considerations,

or accreting objects. Also, the influence of the electric charge on the space-time

curvature and other features of the Einstein–Maxwell system, could be seen in the

context of the model of a classical charged massive particle. Therefore the electric

charge extension in the gravastar context could be understood as a natural step in

investigations. The solutions for the charged gravastar obtained here satisfy the

dominant energy condition (DEC) everywhere and possess no horizons. A valid

DEC is taken as the principal criterion for the viability of solutions. The interior

metric is obtained by solving the Einstein-Maxwell equations in which the matter

— anisotropic inhomogeneous charged fluid — through the Gauss law constraint

of electrostatics serves as a source for the electric field. Such charged objects

induce the Reissner-Nordström (RN) exterior metric which smoothly joins the

regular interior solution.

This section is organized into two subsections: in subsection 2.2.1 we present

the model and solve the Einstein-Maxwell system; in subsection 2.2.2 we bring

out the main results and conclusions.
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2.2.1 The Model

From the previous chapter we adopt an essential ingredients of the gravastar with

the continuous profiles of the energy density and pressures, and proceed to solving

the Einstein–Maxwell system which is governed by the equations

Rµν −
1

2
gµνR = 8πTµν , F µν

;ν = 4πjµ , (2.35)

where Rµν is the Ricci tensor, R = Rµ
µ is the Ricci scalar, Tµν =(f) Tµν +

(c) Tµν

is the total energy-momentum tensor which is a sum of the anisotropic fluid and

the electrostatic field. The electromagnetic part of the energy-momentum tensor

is given by
(c)T ν

µ =
1

4π

(

F νδFµδ −
1

4
δνµF

αβFαβ

)

, (2.36)

where Fµν is the electromagnetic field strength tensor given in terms of the elec-

tromagnetic four-potential Aµ:

Fµν = ∂µAν − ∂νAµ . (2.37)

jµ is the source four-current.

Presently we use the general form of the spherically symmetric static metric

ds2 = gtt(r) dt
2 + grr(r) dr

2 + r2dΩ2 . (2.38)

Assuming now that the system at hand produces only electric field, the only non-

vanishing component of the electromagnetic four-potential is Aµ = δtµAt(r). It

then follows that the only non-vanishing component of the field strength tensor

is Ftr = −Frt = −∂rAt, so the locally measured radial electric field is

E = ∂rAt/
√
−gtt grr. (2.39)

The four-velocity of the static fluid element is uµ = δµt /
√−gtt, and the four-

current of the electric charge with density σ(r) is jµ = σ uµ = δµt σ/
√−gtt.

The Maxwell equation reads (r2E(r))
′
= 4π r2 σ/

√
grr, where prime denotes the

derivative with respect to r. Integrating from the center to some radius r one
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obtains the electric field

E(r) =
q(r)

r2
, where q(r) =

∫ r

0

4π r′2 σ(r′)
√

grr(r′) dr
′ (2.40)

is the amount of the electric charge within the sphere of radius r. Now we can

obtain the electromagnetic part of the energy momentum tensor

(c)T µ
ν =

q2(r)

8π r4
diag(−1,−1, 1, 1) , (2.41)

and the part due to the anisotropic fluid is

(f)T µ
ν = diag (−ρ(r), pr(r), pt(r), pt(r)) . (2.42)

It is interesting to observe (see Eq. (2.41)) that the electrically charged com-

ponents within the gravastar creates an anisotropy in principal pressures of the

magnitude E2/4π – the radial pressure of the fluid is decreased while the transver-

sal pressures (and the energy density) are increased for the same amount E2/4π.

Writing the metric components gtt and grr in terms of two metric functions, ν(r)

and m(r), as

gtt(r) = −eν(r) , grr(r) = (1− 2m(r)/r)−1 , (2.43)

the Einstein equations yield

m′(r) = 4π r2 ρ(r) +
q(r)2

2r2
, (2.44)

p′r(r) = −(ρ(r) + pr(r))
ν ′

2
+

σ(r) q(r)

r2
√

1− 2m(r)/r
+

2

r
(pt(r)− pr(r)) ,(2.45)

ν ′(r) =
2m(r)/r3 + 8πpr − q2(r)/r

1− 2m(r)/r
. (2.46)

Eq. (2.44) defines the ‘mass function’ m(r) and (2.45) is the well-known Tolman-

Oppenheimer-Volkoff (TOV) equation (see Appendix A) for the anisotropic and

electrically charged fluid.

For the electrically charged gravastar model, we couple two density profiles in the

following way

σ(r) = ε ρ(r)
√

1− 2m(r)/r , (2.47)
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with ε constant [45, 47, 49, 50]. The equations (2.44–2.46) together with the

Maxwell equation that can be written as

q′(r) = 4π r2 σ(r)
1

√

1− 2m(r)/r
, (2.48)

constitute central equations of this section which are solved upon providing

boundary conditions

m(0) = 0, pr(0) = −ρ0, ν(∞) = 0, q(0) = 0. (2.49)

2.2.2 Results and conclusions

The interior solution needs to be matched to the exterior segment of the Reissner–

Nordström (RN) space-time

ds2 = −
(

1− 2M

r
+

Q2

r2

)

dt2 +

(

1− 2M

r
+

Q2

r2

)−1

dr2 + r2dΩ2 . (2.50)

This metric has two horizons: an event horizon and an internal Cauchy horizon.

The horizons are obtained for g−1
rr = 0 yielding

r± = M ±M
√
1− κ2, (2.51)

where κ = Q/M . If the two metrics are now matched at r = R, we obtain

m(R) = M − Q2

2R
and q(R) = εmf(R) = Q . (2.52)

These conditions set restrictions on the values for ε:

ε± =
2

µ̃κ

(

1±
√

1− µ̃κ2
)

, µ̃ = 4
m̃c(R)

mf(R)
+

2mf (R)

R
, (2.53)

where m̃c = mc/ε
2 and were the total interior mass is written as a sum of the two

constituents masses:

m(r) = mf (r) +mc(r) , (2.54)
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Figure 2.6. Continuous profile gravastar solution inducing the ERN (κ = Q/M = 1)
space-time: energy density (2.20) with n = 2 and pressure anisotropy (2.21) with m = 2,
ρ0R

2 = 21/32π and surface compactness µ = 0.91.

with

mf (r) =
q(r)

ε
=

∫ r

0

4π r′
2
ρ(r′) dr′ , mc =

∫ r

0

q2(r′)

2r′2
dr′ , (2.55)

where subscript f stands for the (gravastar) fluid and subscript c stands for the

(electrically) charged component of matter.

If the RN horizons become degenerate, that is for κ = 1, an extremal black hole

forms. The horizons will not form only if κ > 1, but a naked singularity would

form in this case, which is not supported by Roger Penrose’s cosmic censorship

hypothesis (see e.g. Ref. [51]). Hence we demand κ ≤ 1. From this condition it

follows that the allowed values for ε are:

ε ∈ [0, ε−] ∪ [ε+,∞ > . (2.56)

For ε1 = ε2, or equivalently κ = 1, we get the upper bound on the central fluid

energy density ρ0. A second interval, ε ∈ [ε+,∞ > leads to solutions violating

the dominant energy condition (see Appendix B).

The solution displayed in Fig. 2.6 corresponds to the maximum allowed (fluid)

density ρ0 = 21/(32πR2), i.e. to the extremal Reissner–Nordström (ERN) case.

It is evident that the radial and transversal pressures obey the dominant energy

condition while the compactness is safely protected from reaching unity.
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Figure 2.7. The fluid radial pressure (upper plot) and the fluid transversal pressure

(lower plot) in the gravastar atmosphere and crust for the energy density (2.20) with

n = 2 and the pressure anisotropy (2.21) with m = 2, and with ρ0R
2 = 21/32π for a

sequence of solutions κ = Q/M = 0, 0.5, 0.75, 0.999.

In Fig. 2.7 we plot the radial (upper plot) and tangential pressures (lower

plot) for four different values of κ: κ = 0 , 0.5, 0.75 and κ = 0.999 (close to the

ERN case). It is interesting to observe that the radial pressures are decreased

while the transversals are increased with the amount of the electric charge. This

trend is actually favorable in the context of compact objects for which we wish

large compactness and valid dominant energy condition. Since the total mass

is increased by adding a charged component, the maximum compactness is also

increased while the radial pressures are decreased and as such protected from

violation of the dominant energy condition.
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Figure 2.8. RN metric g−1
rr in the upper plot and the fluid equation of state pr(ρ) in

the lower plot for the energy density (2.20) with n = 2 and the pressure anisotropy

(2.21) with m = 2, and with ρ0R
2 = 21/32π for a sequence of solutions κ = Q/M =

0, 0.5, 0.75, 0.999.

Even though from the above analysis we have seen that for the physically

acceptable choice κ ≤ 1, the RN space-time possess two horizons, they are placed

inside the gravastar since

r+ = M +M
√
1− κ2 < R, (2.57)

which can be seen in the upper plot of Fig. 2.8 – for the given maximal central

energy density, all the RN horizons are placed inside the gravastar for κ ∈ [0, 1].

It is important to note that in the atmosphere of the gravastar the radial pressure

has a negative gradient, so in this region a conventional star-like behavior is

expected. This trend is shown in the lower plot of Fig. 2.8 where we plot the

equation of state pr(ρ) for those four different values of κ. All these solutions
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exhibit the polytropic pattern in the low density region,

p(ρ) = kργ = kρ1+1/np . (2.58)

For all solutions the polytropic index is np ≃ 1 and k decreases with the charge-

to-mass ratio κ. The speed of sound calculated from the EoS, v2s = dpr/dρ, is

always subluminal for all solutions in Figs. 2.6 and 2.7, and is less than in the

case of the uncharged gravastar.

The obtained results, apart from better understanding of the gravastar concept,

also help understanding the effect of the matter anisotropy since it is naturally

embedded in the Einstein-Maxwell systems due to the presence of the electrically

charged component. In the next chapter we shall see that in the gravitationally

bound scalar matter, the anisotropy also arises as a consequence of the scalar

charge.



CHAPTER 3

NONMINIMAL BOSON STARS

3.1 Introduction

Although gravastar configurations rest upon a very attractive idea, all these mod-

els are macroscopic in the sense that their foundation rest on studying Einstein’s

theory in presence of a matter fluid that obeys some phenomenological equation

of state, and as such do not have a proper field-theoretic foundation. Both cases –

when the energy density is distributed on thin-shells [4] and when it continuously

varies throughout the star [5, 9, 10] – rely on the so-called Ansätze–approach. In

this approach Einstein’s equations are solved in presence of a radially distributed

matter fluid, for which an equation of state or some other relation among the ther-

modynamic functions (the energy density, the radial and tangential pressures) is

provided. All these models are essentially toy models, and they are important

in the sense that they can be used to provide a better understanding of the

main characteristics of black hole mimickers. But, a complete understanding of

these objects will be attained only if we can provide theirs faithful microscopic

(field-theoretic) description.

A good example of the field-theoretic model exhibiting the anisotropy in prin-

cipal pressures and relatively large compactness is certainly a boson star. Boson

stars are nonsingular asymptotically flat solutions of the Einstein-Klein-Gordon

field equations which govern massive complex scalar fields coupled to gravity.

The extensive research started by Kaup [6], who has introduced the notion of

29
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the gravitationally bound state of scalar particles. Soon many papers considering

various versions of scalar field configurations appeared [52, 53, 54, 55, 56, 57].

The growing importance of boson stars resulted in extensive research which has

been reviewed in [58, 59, 60, 61]. On the formation of boson stars an interested

reader may find in Ref. [62]. Boson stars were also considered in the context of

dark matter (see e.g. Refs. [63, 64, 65]). When the boson star configurations

are considered, one immediately recognizes that a massive scalar field, even if

self-interacting, cannot produce anisotropy which could support an object with

(asymptotically) de Sitter interior. Albeit boson stars belong to the realm of very

compact objects, it turns out that getting closer to the main black hole features

requires modification of general relativity. Even though Einstein’s theory has

passed all observational tests in the weak field limit, the true theory of gravity

may differ significantly in the regime of strong gravitational fields. Moreover, large

scale cosmological observations and conceptual difficulties in quantizing general

relativity call as well for its modifications.

In this chapter we show that even a rather minimal extension of the Einstein–

Hilbert action by a nonminimal coupling of the scalar field to the Ricci curvature

scalar results in configurations that resemble more the dark energy stars then the

ordinary boson stars. Even though many of those configurations are endowed by

negative principal pressures, the strong energy condition, as a signal of repulsive

gravity, is not significantly violated in these configurations. Yet, the maximum

effective compactness is attained in the region of negative pressures, and is greater

then that in ordinary boson stars. This fact supports an idea that the dark energy

stars might present a promising black hole mimicker. While some attempts have

been made to study dark energy stars (see for example Refs. [16, 29, 66, 67,

68, 69]), which are loosely speaking in literature taken as objects that contain a

negative pressure somewhere in the interior, no systematic study has been so far

performed of whether and when boson stars in nonminimal setting violate energy

conditions. In this work we fill that gap.

The chapter is organized as follows. In Sec. 3.2 we present the basic Einstein

equations for spherically symmetric configurations of a nonminimally coupled

complex scalar field. In Sec. 3.3 a brief description of ordinary boson star solu-

tions is presented which leads to a situation in which a necessity of additional

mechanism is needed. The nonminimal coupling is introduced in Sec. 3.4, where
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we present solutions with required anisotropic behaviour of pressures, i.e. dark

energy-like stars comprising negative pressures. In that section we also perform

analysis of the parameter space for which the weak and dominant energy condi-

tions are violated. Moreover, we investigate the effective compactness. Finally,

in Sec. 3.5 we discuss our results.

3.2 A model for the nonminimally coupled bo-

son star

For gravity we take the standard Einstein-Hilbert action:

SEH =

∫

d4x
√−g

R

16πGN
, (3.1)

where GN is the Newton constant, R is the Ricci scalar, and g is the determinant

of the metric tensor gµν , which is given by

gµν = diag(−eν(r), eλ(r), r2, r2 sin2 θ) . (3.2)

The space-time metric is static and spherically symmetric as we are interested

only in spherically symmetric equilibrium configurations. For matter we take an

action of a complex scalar field with a mass mφ and a quartic self-interaction λφ

coupled nonminimally to gravity:

Sφ =

∫

d4x
√−g

(

−gµν∂µφ
∗∂νφ−m2

φφ
∗φ− λφ

2
(φ∗φ)2 + ξRφ∗φ

)

, (3.3)

where ξ measures the strength of the coupling between scalar field φ and gravity

via the Ricci scalar R and φ∗ is the complex conjugate of φ. It is worth noting here

that in order to produce stable configurations, the scalar field must be complex.

According to the Derrick’s theorem [70] regular, static, nontopological, localized

scalar field solutions cannot be created by real scalar fields (see [71] and e.g. [58]).

The energy-momentum tensor of a complex scalar field is obtained by varying its
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action with respect to the metric tensor gµν:

T φ
µν = 2δα(µδ

β
ν)∂αφ

∗∂βφ− gµν

[

gαβ∂αφ
∗∂βφ+m2

φφ
∗φ+

1

2
λφ(φ

∗φ)2
]

− 2ξφ∗φGµν + 2ξ∇µ∇ν(φ
∗φ)− 2ξgµν�(φ∗φ). (3.4)

By varying now the full action

S = SEH + Sφ, (3.5)

with respect to the metric tensor gµν we obtain the Einstein equations:

Rµν −
1

2
gµνR = 8πGNTµν . (3.6)

The Klein-Gordon equation, the equation of motion for the scalar field φ (or φ∗),

is obtained from Bianchi identities or by varying (3.5) with respect to φ∗ (or φ),

resulting in:
[

�−m2
φ − λφφ

∗φ+ ξR
]

φ = 0, (3.7)

where � = gαβ∇α∇β is the scalar d’Alemebertian operator in the curved space-

time. In order to proceed we choose a harmonic time-dependence for the scalar

field

φ(r, t) = φ0(r)e
−ıωt, φ0(r) ∈ R. (3.8)

Even though the scalar field that induces the metric is time-dependent, the en-

ergy momentum tensor created by this field is time-independent and thus leads

to time-independent metric functions. Hence, the condition (3.8) does not con-

tradict the Birkhoff theorem. Furthermore, the same Ansatz for the classical field

was also used in Ref. [72] bearing the name coherent state, presumably alluding

to their resemblance to quantum coherent states. 1 Highly excited field configu-

rations were used to explain flat rotation curves inside galactic halos in Ref. [73].

Furthermore, in Ref. [74] it was shown that it is possible to construct a stable

multistate boson star, with coexisting ground and first excited states. In Ref. [75]

dynamical evolution of the boson stars in the excited states was investigated.

1One should keep in mind however that, a scalar field written as in (3.8), apart from the
ground state, can also represent excited states with higher energy, and a particular combination
of these states can indeed form coherent states. In general, these states contain ‘coherent’ radial
oscillations, but do not in the usual sense constitute quantum coherent states.
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Upon inserting the Ansätze (3.8) and (3.2) into (3.4) one gets for non-vanishing

components of the stress energy tensor:

T t
t =

(

−m2
φ − ω2e−ν − λφ

2
φ2
0

)

φ2
0 − e−λ(1 + 4ξ)φ′ 2

0 − 2ξφ2
0G

t
t

−4ξe−λ

[

φ′′
0 +

(

ν ′ − λ′

2
+

2

r

)

φ′
0

]

φ0 + 2ξe−λν ′φ0φ
′
0 , (3.9)

T r
r =

(

−m2
φ + ω2e−ν − λφ

2
φ2
0

)

φ2
0 + e−λφ′ 2

0 − 2ξφ2
0G

r
r

−2ξe−λ

(

ν ′ +
4

r

)

φ0φ
′
0, (3.10)

T θ
θ =

(

−m2
φ + ω2e−ν − λφ

2
φ2
0

)

φ2
0 − e−λφ′ 2

0 − 2ξφ2
0G

θ
θ

−4ξe−λ

[

φ′′
0 +

(

ν ′ − λ′

2
+

2

r

)

φ′
0

]

φ0 − 4ξ
e−λ

r
φ0φ

′
0, (3.11)

T φ
φ = T θ

θ . (3.12)

Similarly, the scalar field equation of motion (3.7) becomes:

φ′′
0 +

(

2

r
+

ν ′ − λ′

2

)

φ′
0 − eλ

(

m2
φ + λφφ

2
0 − ω2e−ν − ξR

)

φ0 = 0. (3.13)

By virtue of (3.13) it is possible to eliminate the second derivative of the scalar

field φ′′
0 in the components of the energy-momentum tensor (3.9-3.12), leading to

the following form for the first two Einstein equations (Gν
µ = 8πGNT

ν
µ ):

[

1 + 2ξ(8πGN)φ
2
0

]

Gt
t = 8πGN

{(

−m2
φ − ω2e−ν − λφ

2
φ2
0

)

φ2
0 − e−λ(1 + 4ξ)φ′ 2

0

−4ξ
[

m2
φ + λφφ

2
0 − ω2e−ν − ξR

]

φ2
0

+2ξe−λν ′φ0φ
′
0

}

, (3.14)

[

1 + 2ξ(8πGN)φ
2
0

]

Gr
r = 8πGN

{(

−m2
φ + ω2e−ν − λφ

2
φ2
0

)

φ2
0 + e−λφ′ 2

0

−2ξe−λ

(

ν ′ +
4

r

)

φ0φ
′
0

}

, (3.15)

where the Einstein tensors Gt
t and Gr

r are given in Appendix A. There is one

more independent equation. Instead of using the (θθ) Einstein equation (or the

equivalent (ϕϕ) equation), it is in fact more convenient to use the trace equation,
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Gµ
µ = −R = 8πGNT

µ
µ , leading to:

R =
8πGN

{

2m2
φφ

2
0 + 2(1 + 6ξ)

[

e−λφ′ 2
0 + (m2

φ − ω2e−ν + λφφ
2
0)
]

φ2
0

}

1 + 2ξ(1 + 6ξ)8πGNφ2
0

. (3.16)

It is instructive to add a couple of remarks on this equation. For the conformal

coupling ξ = −1/6, the only non-vanishing term in the Ricci curvature scalar

is the scalar field mass. Hence in limit of a vanishing scalar field mass, for

which the Ricci scalar is zero, one obtains a conformal gravity limit, as expected.

Nevertheless, for ξ 6= −1/6, as we shall see in the subsequent sections, a variety

of configurations is possible.

Equations (3.14–3.15) and (3.16) constitute the central equations in this chap-

ter.

Dimensionless variables

Before we proceed to solving Eqs. (3.14–3.15) and (3.16), for the purpose of

numerical studies, it is convenient to work with dimensionless variables/functions.

Hence we perform the following rescaling:

r√
8πGN

→ x, 8πGNφ0(r)
2 → σ(r)2,

8πGNR → R̃, 8πGNm
2
φ → m̃2

φ, 8πGNω
2 → ω̃2. (3.17)

Upon these transformations all variables/functions get expressed in terms of the

reduced Planck units:

m̄P =

√

~c

8πGN
= 0.2435× 1019

GeV

c2
= 0.4341× 10−8 kg,

l̄P =

√

~8πGN

c3
= 8.1024× 10−35 m. (3.18)

The rescaled (dimensionless) differential equations to be solved are then:

λ′ =
1− eλ

x
+ x

eλ(m̃2
φ + ω̃2e−ν +

λφ

2
σ2)σ2 + (1 + 4ξ)σ′ 2 − 2ξν ′σσ′

1 + 2ξσ2

+
4xξeλ(m̃2

φ − ω̃2e−ν + λφσ
2 − ξR̃)σ2

1 + 2ξσ2
, (3.19)



3.2. A model for the nonminimally coupled boson star 35

ν ′ =
(eλ − 1)(1 + 2ξσ2)/x+ xeλ(−m̃2

φ + ω̃2e−ν − λφ

2
σ2)σ2 + xσ′ 2 − 8ξσσ′

1 + 2ξσ2 + 2ξxσσ′
,

(3.20)

σ′′ = −
(

2

x
+

ν ′ − λ′

2

)

σ′ + eλ(m̃2
φ + λφσ

2 − ω̃2e−ν − ξR̃)σ, (3.21)

with the dimensionless Ricci scalar

R̃ =
2m̃φ

2σ2 + 2(1 + 6ξ)
[

(m̃2
φ − ω̃2e−ν + λφσ

2)σ2 + e−λσ′ 2
]

1 + 2ξ(1 + 6ξ)σ2
, (3.22)

where now the primes denote derivatives with respect to x.

Equations (3.19–3.21) (with Eq. (3.22)) yield a unique solution (that depends

of course on σ0) when subject to the boundary conditions:

(1) λ(0) = 0, (2) ν(∞) = 0, (3) σ(0) = σ0, (4) σ(∞) = 0.

(3.23)

The first boundary condition ensures that the mass function m(r) defined in

terms of the metric function as

e−λ = 1− 2GNm(r)

r
= 1− 2m̃(x)

x
(3.24)

is zero at r = 0 (or equivalently at x = 0). The second boundary condition

in (3.23) ensures asymptotic flatness at large distances,

eν(r)|r→∞ =

(

1− 2GNm(r)

r

)

∣

∣

∣

r→∞

→ 1. (3.25)

The third and fourth boundary conditions in (3.23) are typical for boson stars

with a positive scalar mass term (m2
φ > 0). Equations (3.19–3.21) together with

the boundary conditions (3.23) constitute an eigenvalue problem for ω – that

is, for each central field value σ0 there is an unique ω that satisfies the given

boundary conditions. The ground state is characterized by zero nodes in the field

σ(x) (defined as the points x where σ(x) = 0), while the n-th excited state has

n-nodes in σ(x). In this chapter, if not explicitly stated otherwise, boson stars in

their ground state will be studied.

We solve these nonlinear, mutually coupled, differential equations numerically
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by using the software package colsys [76].

Universality

In order to solve the problem numerically we need to specify the set of parameters

{λφ, m̃
2, ω̃2, ξ}. However, for a successful numerical integration these parameters

cannot be very different from unity. On the other hand, in physically interesting

situations these parameters may wildly differ from unity. For example, compact

stars have radial size that is measured in kilometers, while numerical solutions

give objects whose size is of the order of the Planck length, lP ∼ 10−38 km,

obviously not very useful. In order to overcome this impasse, we observe that

the dimensionless equations (3.19–3.22) possess a ‘conformal’ symmetry. Indeed,

Eqs. (3.19–3.22) are invariant under the following conformal transformations

x → βx, λ → λ

β2
, R̃ → R̃

β2
, m̃2 → m̃2

β2
, ω̃2 → ω̃2

β2
, σ → σ, ξ → ξ.

(3.26)

How the mass of the whole boson star changes due to these rescalings can be

estimated from the identity

M ∼ ρR3, (3.27)

where ρ is the density which can be approximated by the value of the potential

at a scalar field maximum

ρ ∼ V (σ0) ∼ m̃2
φσ

2
0 + λφσ

4
0. (3.28)

On the other hand, from the virial theorem, according to which star’s gradient

energy ∼ potential energy, the radius of the star, i.e. its core in which most of

its energy is contained, can be estimated from

(∇φ)2 ∼ V (φ),

σ2

R̃2
∼ m̃2

φσ
2 + λφσ

4. (3.29)

This then implies that the mass of a boson star scales as the radius, M̃ ∝ R̃,

leading to

M
∼→ βM. (3.30)
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For example, for a compact object whose radial size is R ∼ 10 km = β l̄P , we

obtain that β is of the order of β ∼ 1038. It then follows that the mass of the

scalar field changes from mφ ∼ m̄P to mφ ∼ 10−38m̄P and the coupling constant

from λφ ∼ 1 to λφ ∼ 10−76. In light of Eq. (3.18), the total mass from M ∼ m̄P

changes to M ∼ 0.2M⊙, where M⊙ = 2× 1030 kg is the solar mass.

On the other hand, one can start by setting the scalar field mass mφ and

estimate the resulting star radius and its total mass. This allows one to build

models that can account for astrophysical objects of vastly different sizes, namely

from dark compact objects [77, 78] to galactic dark matter halos [72, 73, 79].

3.3 Ordinary boson stars: Case of minimal cou-

pling

Since the properties of the boson stars with quartic self-interaction are quite

extensively studied in Ref. [52], here we shall only briefly discuss their main

characteristics. Perhaps the most peculiar feature of these configurations is the

anisotropy in their principal pressures. Whereby in the (usual) fluid approach

to the physics of neutron stars, anisotropy is treated as a rather dubious and

speculative concept, it appears as a fairly natural property of boson stars. One

can verify this by inspecting Eqs. (3.10-3.11), which for ξ = 0 yield:

Π = pt − pr = −2e−λφ′ 2
0 . (3.31)

Here we have identified the components of the energy-momentum tensor as

T ν
µ = diag(−ρ, pr, pt, pt), (3.32)

where ρ is the energy density, pr the radial pressure and pt is the tangential

pressure (pt = pθ = pφ).

From Eq. (3.31) we see that anisotropy is strictly a negative function of the

radial coordinate. This fact entails that, regardless of the coupling strength, for

minimal coupling, one can only create configurations with pr ≥ pt. In the next

section we elaborate more on the consequences of this fact.
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Figure 3.1. The star mass as a function of the central field value σ0 and λφ for ξ = 0

in the upper plot and the maximal effective compactness as a function of λφ in the lower

plot. Also m2
φ = m̄2

P .

In order to build a viable astrophysical object, its stability is clearly a basic

requirement. Stability of boson stars has been extensively studied in the literature

both analytically [80, 81, 82] and numerically [83, 84, 85] 2. Numerical methods

include dynamical evolution of the system at hand, whilst the analytical one

rely on the standard Chandrasekhar methods, i.e. studying the response to a

linear perturbation of static equilibrium configurations, whereby the total particle

number is conserved 3. Both avenues, however, lead to the same conclusion that

can be summarized as follows: there exists a critical value of the central field σc

2The catastrophe theory is another interesting method that can be found in Ref. [86].
3Since the action (3.3) is invariant under the U(1) symmetry, according to the Noether

theorem, there is a conserved (scalar) charge density.
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for which the ground state of boson star (nodeless in σ(x)) will be marginally

stable upon small radial perturbations. For this critical field value, the total

mass of the star exhibits turnaround in M(σ0)-curve (see e.g. [35]). Then the

configurations left from the peak are stable and those right from the peak are

unstable leading to the collapse to a black hole or a dispersion at infinity. An

interested reader may find a discussion in Ref. [87] on what is the likely fate of

the boson star for the right-from-the-peak configurations in the M(σ0)-curve.
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Figure 3.2. Upper plot: the scalar field as a function of the radial coordinate

and in the inset the metric functions gtt and grr. Lower plot: the energy densities

and the principal pressures in the inset. The solid curves are plotted for λφ = 0

({σc, Mmax} = {0.27, 0.633 m̄P }) and the dashed curves are plotted for λφ = 100

({σc, Mmax} = {0.095, 2.257 m̄P }). Also m2
φ = m̄2

P and ξ = 0.

In the absence of the self-interaction it was found that the maximally allowed

mass is Mmax = 0.633m2
Planck/mφ, and by switching on the self-interaction it

increases as Mmax = 0.22
√
ΛmPlanck/mφ, where Λ = λφ/(4πGNm

2
φ). In the upper

plot of Fig. 3.1 we show the star mass as a function of the central field value σ0



40 Nonminimal boson stars

and λφ. As the amplitude σ0 increases its mass also increases (while its radius

decreases). For increasing λφ the maximum mass also increases while the critical

central field value σc decreases. For any given value of the coupling constant there

is only one configuration that meets those of the maximally allowed mass.

In Fig. 3.2 we show two such configurations for λφ = 0 and λφ = 100. In

the upper plot, the profiles of the scalar field and the metric functions (inset) are

shown, while in the lower plot we show the behaviour of the energy densities and

the corresponding pressures (inset). Two main criteria can be read off from these

graphs. The first is the interplay among the central field value and the radius:

while one is increasing, the other one is decreasing and vice versa. An important

consequence of this trend is equivalence between the M(σ0) and the M(R)-curve.

That is, both curves exhibit turnaround behaviour for equal maximally allowed

masses, and hence either can be used for stability analysis.

Second, the anisotropy in the principal pressures becomes less prominent due

to the inclusion of self-interaction. This behaviour implies that boson stars built

from strongly self-interacting fields tend to be isotropic. This property is very

interesting as it may serve to relate the strongly self-interacting boson stars with

the isotropic fermion systems [88]. Indeed, in this regime, boson stars behave like

a polytrope with the equation of state pt ≈ pr ∝ ρ1+1/n, where n is the polytropic

index.

It is also worth noting here that the negative anisotropy (3.31) cannot rise

to more exotic structures with negative principal pressures, found in dark energy

stars (e.g. gravastars). For the latter, one needs anisotropy to be a positive

function of the radial coordinate (see e.g. Refs. [5, 15]). This is the main reason

why we extend this analysis to include nonminimal coupling.

3.4 Dark energy-like stars: Effects of nonmini-

mal coupling

Spherically symmetric static configurations of a nonminimally coupled scalar field

modeled by the action (3.3) in the absence of the quartic self-interaction were

studied by Bij and Gleiser in Ref. [89]. Adopting the M(σ0) stability criterion,

the authors calculated the critical (maximally allowed) mass and the critical par-

ticle number for a variety of values of the coupling constant ξ. The analysis is
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performed for boson stars both in the ground state (no nodes in the scalar field)

as well as in excited states (higher nodes in the scalar field). However, the au-

thors did not analyze the behaviour of the thermodynamic functions, namely of

the energy density and pressures.

In the case of nonminimal coupling, the anisotropy becomes rather convoluted

function of matter and geometry

Π = −2e−λφ′2
0 − 2ξ(Gθ

θ −Gr
r)φ

2
0 + 2ξe−λ

(

ν ′ +
4

r

)

φ0φ
′
0

− 4ξ
(

m2
φ + λφφ

2
0 − ω2e−ν − ξR

)

φ2
0. (3.33)

As mentioned in the previous section, it is likely that Π may become positive for

some radii, which is an important ingredient of building microscopic configura-

tions with negative pressures.

However, when dealing with spherically symmetric, localized, configurations

of matter it seems reasonable to invoke the energy conditions as important criteria

for physically acceptable matter.

3.4.1 Constraints from the energy conditions

Various energy conditions have been proposed as reasonable physical restrictions

on matter fields (see Appendix B). With or without self-interaction it turns out

that the weak energy condition (WEC) is obeyed for nonminimal couplings only if

greater than a certain (negative) critical value ξ > ξWEC
crit , whereby ξWEC

crit decreases

very slowly as λφ increases. As an example of the indicated transition, we plot

the energy density in Fig 3.3 where it is shown that violation of the WEC is more

prominent as the value of the nonminimal coupling decreases. One example of a

space-time that violates the WEC is that of a wormhole (see e.g. Refs. [90, 91,

92, 93]). Some other examples would include a more exotic matter. Although

this energy condition is also violated by certain quantum fields, a positive energy

density is an essential feature of the classical forms of matter. A consequence of

the requirement that the WEC is satisfied is a shift in the ”maximally” allowed

masses to lower values as depicted in Fig. 3.4 for ξ < ξWEC
crit .



42 Nonminimal boson stars

5 10 15
r � lP

-0.001

0.000

0.001

0.002

0.003

0.004

0.005

Ρ � mP
4

Figure 3.3. The energy density as a function of the radial coordinate. The solid curve

stands for ξ = ξWEC
crit = −1, the dashed curves are for ξ = −2,−4,−6 from left to right,

respectively. Also λφ = 0 and m2
φ = m̄2

P .
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Figure 3.4. The maximum mass as a function of the coupling ξ for λφ =

{0, 20, 50, 100} from bottom to top. Also m2
φ = m̄2

P . For ξ < 0 the dashed curves

describe configurations that obey the weak energy condition and for ξ > 0 configura-

tions that obey the dominant energy condition. The solid curves describe configurations

that are not constrained by energy conditions.

In addition, we also require that the energy is not transported faster than light,

and hence the dominant energy condition (DEC) should be satisfied. Another

constraint on parameter space emerges from the requirement ξ > ξDEC
crit as shown

in Fig. 3.4. The dashed curves represent the maximally allowed masses for the by-

the-WEC-and-DEC modified configurations, while the solid curves correspond to
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the old (non-modified) configurations. As such Fig. 3.4 represents an important

result of this chapter due to the fact that it establishes new configurations for

stars that satisfy the WEC and DEC.

The strong energy condition is also violated for certain nonminimal couplings,

ξ > ξSECcrit . As opposed to the problem of violating the WEC and DEC, a violation

of the SEC is actually favorable in building highly compact objects. Namely,

a region of a compact object that violates the SEC exhibits repulsive gravity,

which is desirable. Violation of the SEC plays an important role in the early

universe cosmology, where it is used to explain the origin of Universe’s large scale

structure generated through matter and gravitational perturbations amplified

during a hypothetical inflationary epoch in which the SEC is violated. It is

also an essential component of gravastars, which in their interior, where pr(0) =

pt(0) = −ρ(0), strongly violate the SEC. In the case of gravastars, violation of

the SEC is crucial for large values of compactness. Unfortunately, here the SEC

is significantly violated only if the DEC is violated. Nevertheless we shall explore

some effects of violating the SEC in the next subsection.

3.4.2 Energy density and pressures profiles

It is now of interest to explore thermodynamic functions, namely the energy

density and the principal pressures.

Depending on the strength of the self-interaction, configurations with negative

principal pressures emerge, that can be approximated by the equation of state

pr ∝ −ργ . This particular equation of state (EoS) has been used to describe

dark energy stars. Even though these configurations exhibit negative principal

pressures, the strong energy condition is not violated thus excluding regions with

repulsive gravity. One such configuration is shown in the upper plot of Fig. 3.5. As

a matter of fact, in the absence of self-interaction, for ξ < ξWEC
crit all configurations

lying on the Mmax(ξ)-curve can be described by the EoS of a dark energy star,

pr ∝ −ργ .
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Figure 3.5. The energy density and the principal pressures (insets) for m2
φ = m̄2

P , ξ =

−4 and for a) {λφ, σc} = {0, 0.050} in the upper plot and b) {λφ, σc} = {100, 0.034} in

the lower plot.

When the self-interaction increases, the pressures increase as well, as can be

seen in the lower plot of Fig. 3.5. Nevertheless, no matter how large the self-

interaction is, the dark energy star-like configurations are obtained by choosing

an appropriate (i.e. negative enough) nonminimal coupling. This effect is clearly

shown by comparing Fig. 3.6 with Fig. 3.5. It is also of interest to observe that

the transversal pressures of these configurations, as positive near surface, are like

those of gravastars. This fact brings us to the idea that the gravastars, as not yet

formulated within the field theories and as such still of interest to explore, might

be produced in modified gravity that includes higher order terms in the Ricci

scalar, Ricci tensor and/or Riemann curvature tensor. However, proper dark

energy stars, i.e. with negative pressures and violating SEC, can be obtained for

λφ < 0.
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Figure 3.6. The energy density and the principal pressures (inset) for ξ = −8, λφ =

100, σc = 0.02. Also m2
φ = m̄2
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Figure 3.7. The energy density (solid curve), radial (short-dashed curve) and transver-

sal pressure (long-dashed curve) for ξ = −0.9, λφ = −30, σ0 = 0.26. Also m2
φ = m̄2

P .

We present one such solution in Fig. 3.7. It is interesting that this solution

violates only the strong energy condition while the weak and dominant energy

conditions are obeyed. Nevertheless, the theories with negative potentials yield

Hamiltonians that are unbounded from below, and are at best quasi-stable, i.e.

field configurations will eventually ’decay’ into large fields and roll down to in-

finity, where energy is minus infinity (see e.g. [73]). When excited states of these

configurations are considered, the energy density and pressures oscillate in space.

Both pressures are now positive functions of coordinate in the region near the

surface thus resembling gravastars solutions. We show one such configuration in
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Fig. 3.8. However, even though stability might not be questionable in this set-

ting, the weak and dominant energy conditions are violated. Yet, it was argued

in Ref. [73] that a galactic halo consisting of highly excited states of ordinary

boson stars could explain the rotation of low-luminosity spiral galaxies.
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Figure 3.8. The energy density, radial (solid curve in the inset) and transversal pres-

sure (dashed curve in the inset) for ξ = −0.7, λφ = 0, σ0 = 0.1 and m2
φ = 0.9 m̄2

P .

Configurations obtained for positive values of the nonminimal coupling exhibit

positive pressures and hence are quite similar to the ordinary boson stars. In

Fig. 3.9 we plot the energy density, the radial and the transversal pressure for

λφ = 0 in the upper plot and λφ = 100 in the lower plot. For each λφ two

configurations are presented, one for ξDEC
crit and the other one for a nonminimal

coupling that is much larger then the critical one. For each λφ the effect of

increasing ξ is only to decrease mass and increase radius (thus decreasing the

compactness) without any drastic changes in the behaviour of energy density and

pressures. However, the profiles of the energy density and pressures qualitatively

do change considerably for different λφ. In the lower plot of Fig. 3.9 the hump

in the energy density occurs as ξ increases. This hump is actually followed by

a violation of the strong energy condition which is more significant for larger ξ.

Hence the hump in the inset of Fig. 3.9 is more prominent. In order to justify this

statement in Fig. 3.10 we plot the energy density and pressures for a configuration

that strongly violates the SEC (in the region of negative transversal pressure -

see inset of Fig. 3.10).

In this subsection, apart from qualitative behaviour of the energy density and
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Figure 3.9. The energy density (solid), the radial pressure (short-dashed) and the
transversal pressure (long-dashed) for a) upper plot: λφ = 0 and {ξ, σc} = {0.6, 0.2635}
and in the inset {6.4, 0.0364} and b) lower plot: λφ = 100 and {ξ, σc} = {7.8, 0.1194}
and in the inset {12.8, 0.0845}. Also m2

φ = m̄2
P .

.

pressures, one could also infer subtle relations among the total masses and radii.

In particular, increasing the central field value is followed by a decreasing radius

up to the maximally allowed mass. This interplay among the mass and the radius

is best explored by analyzing the effective compactness.

3.4.3 Effective compactness for the nonminimal case

Following Ref. [94], we define the effective compactness as

C(σ0, λφ) =
M99(σ0, λφ)

R99
, (3.34)

where R99 is the radius at which the mass, defined in terms of the metric function

e−λ = 1−2GNm/r, equals 99% of the total massM = m(∞). The effective radius

owes this sort of definition as the scalar field is (exponentially) infinitely extended
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Figure 3.10. The energy density and the principal pressures (insets) for m2
φ = m̄2

P , ξ =
16, {λφ, σc} = {0, 0.145}.

and thus always with zero compactness. Note that the effective compactness

C(σ0, λφ) is related to the surface compactness µ(R) as µ(R) = 2C(σ0, λφ). As

shown in Ref. [94] the effective compactness in a minimal setting increases with the

self-coupling λφ and as λφ → ∞ the maximal effective compactness approaches

Cmax ≈ 0.16 as shown in the lower plot of Fig. 3.1. For each λφ, the maximal

compactness corresponds to the parameters matching the critical field value σc.

That is the maximally allowed mass and its radius.

If Mmax is not constrained by the weak and dominant energy conditions, the

effective compactness for ξ > 0 is largest for large ξ and λφ = 0 as shown in

Fig. 3.11 and approaches Cmax ≈ 0.20. This value is only slightly larger then the

maximal effective compactness obtained in the minimal setting and can be related

to a SEC violation. Why this value is not larger, probably can be explained with

the fact that the SEC is violated only near the surface where the transversal

pressures become negative.

However, for ξ < 0 the compactness is much greater and reaches its maximum

value for large negative values of the nonminimal coupling and also in the case

when λφ = 0, which approximately equals Cmax & 0.25. Even though the strong

energy condition is not violated in this region, an increased effective compactness

can be attributed to negative pressures that weaken gravity, thus enabling more

matter to be accommodated in a fixed volume. This result is also very important

as it suggests that, in order to build a highly compact object, we ought to have

configurations with negative principal pressures and a violation of the SEC.
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Figure 3.11. The effective compactness as a function of the ξ-coupling for λφ = 0
(dotted curve), λφ = 20 (short dashed curve) and λφ = 50 (long dashed curve). Also
m2

φ = m̄2
P .

When restrictions from the weak and dominant energy conditions are in-

cluded, the effective compactness behaves as shown in Fig. 3.12. The maximal

values for each λφ are obtained for ξWEC,DEC
crit and then abruptly decrease with

incresing/decreasing nonminimal coupling. This brings us to the conclusion that

the most compact objects are produced in the domain of negative pressures and

large self-couplings, with the maximum effective compactness only slightly larger

then in the minimal case Cmax & 0.16.

Nevertheless, figures 3.11 and 3.12 are very useful, as one can easily relate

the mass to the radius. If we want to create a compact object with, for example,

a radius of R = 15 km, then from Cmax one can easily read off its mass. The

range of effective compactness Cmax = 0.05 − 0.25 correspond to the masses

M = (0.5− 2.5)M⊙.

However, in order to obtain scalar’s masses and self-couplings, one needs to

employ the universality described in Sec. 3.2. By fixing the radius to, e.g., R =

15 km one can calculate β for any configuration with differing radii (in the reduced

Planck units). Then, the scalar’s mass and self-coupling are easily obtained by

applying the rescaling conditions m2
φ → m2

φ/β
2 and λφ → λφ/β

2. By inspection

of all above diagrams depicting the energy density and pressures (in previous

subsection) it can be inferred that the radii of all given configurations roughly

fall within the range r = (10 − 40) l̄P . Hence, if we want to create a star of

R = 15 km the corresponding βs are β = (18.6−4.6)×1036 leading to the scalar’s
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Figure 3.12. The effective compactness as a function of ξ for configurations that obey
the WEC and DEC. λφ = 0 (dotted curve), λφ = 20 (short dashed curve) and λφ = 50
(long dashed curve). Also m2

φ = m̄2
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masses mφ = (0.27−1.08)×10−8 eV, which could be in the range of the neutrino

masses. To calculate the rescaled self-coupling, let us, for convenience take its

starting value λφ = 50. After the rescaling we obtain λφ = (14 − 0.24) × 10−73.

But of course, if one considers a case when the coupling has reached saturation,

one could increase the value of the un-rescaled λφ arbitrarily, which would then

yield more reasonable (i.e. larger) values of the rescaled λφ.

3.5 Conclusions

In this chapter we have examined spherically symmetric configurations made of

a scalar field nonminimally coupled to gravity.

We have showed that already a minimal extension of Einstein’s theory to the

nonminimal coupling results in radically different configurations from standard

boson stars, i.e. dark energy-like stars which are characterized by negative princi-

pal pressures. Upon investigating the energy conditions in more detail, it turned

out that the strong energy condition, which should be violated in the interior of

dark energy stars, and whose violation signals repulsive gravity, is satisfied in the

interior of these configurations. However, we presented an example of a proper

dark energy star, i.e. with negative pressures and a violating SEC, which is ob-

tained for a negative self-interaction. Even though the configuration presented
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here does not suffer from violation of the weak and dominant energy condition,

configurations with negative potentials, in general, are not that appealing due

to their stability issues. We also presented one higher mode solution that led

to gravastar-like principal pressures. That is, both principal pressures reveal

positive atmosphere (region near surface). But, the strong energy condition is

obeyed while the weak and dominant conditions are violated, thus again without

space-time regions with repulsive gravity.

When imposing restrictions on classical matter by energy conditions we found

regions of parameter space for which both the weak and dominant energy con-

ditions are violated. In particular, the weak energy condition is violated for

all negative values of the nonminimal coupling, if it is less then a critical value

ξ < ξWEC
crit . The dominant energy condition is violated for all positive values of the

nonminimal coupling if greater then a critical value ξ > ξDEC
crit . The consequences

of a violation of the WEC and DEC are encoded in the maximally allowed masses

that are now shifted to lower values. The strong energy condition is violated in

the region of a positive nonminimal coupling and is followed by humps in the

energy density. Even though violation of the energy conditions does not support

the view of classical matter, it would be of interest to explore in more details the

imprint of a test particle moving in such a background.

Furthermore, we analyzed the effective compactness for configurations that do

or do not satisfy the WEC and DEC, and found that the maximum effective com-

pactness is attained in the regimes of negative pressures for non-self-interacting

configurations and equals Cmax & 0.25 for configurations that violate the WEC

and Cmax & 0.16 for those configurations that obey the WEC and DEC. This

result sets limits on the boson star mass. For example, when R = 15 km the max-

imum mass is M = (2 − 2.5)M⊙ which belongs in the domain of neutron stars.

Even though the strong energy condition is not violated, an increased maximum

effective compactness could be related to the existence of negative pressures.

In addition, we developed a universality condition based upon which one can

calculate scalar’s masses and self-couplings for all given configurations. Even

though in this chapter we focused on parameters that yield compact objects,

with the universality condition it is possible to extend this analysis to larger

structures that match galactic sizes, such as, for example, dark matter halos.

Although theories with a nonminimally coupled scalar field represent a simple
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and quite benign extension of general relativity, they provide a plethora of dif-

ferent interesting astrophysical structures, ranging from isotropic polytropes to

highly anisotropic dark energy-like stars. Nevertheless, within this model it is, in

fact, not possible to create a highly compact, nonsingular object whose charac-

teristics are arbitrarily close to those of the Schwarzschild black hole. Yet, from

this chapter one can infer that the real black hole mimicker might be produced

in the context of modified theories of gravity.



CHAPTER 4

NONMINIMAL BOSON D-STARS

4.1 Nonminimal global monopole

Topological defects – monopoles, cosmic strings, domain walls and cosmic tex-

tures – can be created by spontaneous symmetry breaking during phase transi-

tions in the early Universe. If the broken symmetry is independent of space-time

coordinates then the defects are called global. The standard example of a global

monopole is a field theory consisting of three real scalar fields, whose action

is O(3) - symmetric which during a thermally induced phase transition breaks

down to O(2). A typical Lagrangian of the model contains a negative mass term

and a positive quartic coupling. Together with other topological defects, global

monopoles were studied in cosmology in the hope to provide the explanation for

the origin of the large scale structure of the Universe. However, modern cosmic

microwave background observatories (such as the WMAP satellite and the South

Pole Telescope) have ruled out topological defects as the chief contributor to the

origin of large scale structure, albeit there is still the possibility that a small frac-

tion of large scale structure originates from topological defects [8]. Furthermore,

it was suggested that the galactic dark matter in spiral galaxies could be ex-

plained by global monopoles as its energy density is decreasing with the distance

as 1/r2 [95] due to the Goldstone boson term in the energy-momentum tensor

(which is a fundamental property of global symmetry violation). Correspondingly,

the total monopole mass grows linearly with distance, i.e. it diverges. Neverthe-

53
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less, if the monopole self-gravity is included, the divergence problem ceases to

exist. There has been a large amount of papers discussing the gravitational field

of the global monopole (see e.g. [96, 97, 98, 99]) starting with the seminal work

of Barriola and Vilenkin [7], who showed that the gravitational field outside the

monopole has an effect analogous to that of a tiny mass at the monopole origin

and a deficit solid angle (which is proportional to the energy of spontaneous sym-

metry breaking scale). Lousto et al. [100] showed that this small core mass of

the monopoles produces a repulsive potential. This feature of global monopoles,

apart from large scale configurations, is also very important in the context of com-

pact objects. Liebling et al. found quantitative range of the deficit solid angle

for which regular solutions with or without an event horizon can exist [101, 102].

The idea of the so called topological inflation was also considered in the context

of global monopoles due to the existence of de Sitter cores [103].

Nucamendi et al. [104] extended the gravitating global monopole by introduc-

ing nonminimal coupling. The main result of their analysis is the existence of

bound orbits which are not present in the minimally coupled global monopole.

Though, an in-depth analysis of nonminimally coupled global monopoles as com-

pact objects (in terms of energy density, pressures, compactness etc.), is still

lacking. In this section we bridge that gap.

This section is organized as follows: in the subsection 4.1.1 we bring out an

analytical derivation of a model for the nonminimally coupled global monopole.

In the subsection 4.1.2 the results for the global monopole which is minimally

coupled to gravity is briefly demonstrated, while the main results for the nonmin-

imally coupled global monopole are presented in subsection 4.1.3 including metric

functions, energy densities, pressures, compactnesses, effective forces, Newtonian

forces and Newtonian forces produces by core masses.

4.1.1 A model for the nonminimally coupled global mono-

pole

The action for the nonminimally coupled global monopole is

Sφ =

∫

d4x
√−g

(

−1

2
gµν(∂µφ

a)(∂νφ
a)− V (φa) +

1

2
ξR(φaφa)

)

, (4.1)
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where φa (a = 1, 2, 3) is a scalar field triplet with global O(3) symmetry which is

spontaneously broken to O(2). Hence we choose the simplest symmetry breaking

potential

V (φa) =
µ2

2
φaφa +

λφ

4
(φaφa)2 +

µ4

4λφ
, (4.2)

where µ is the monopole mass term and λφ is the self-interacting strength. The

quantity ξ measures the strength of the coupling between the scalar field and

gravity via Ricci scalar R. The energy-momentum tensor of the global monopole

is obtained by varying its action with respect to the metric tensor gµν yielding:

T φ
µν = (∂µφ

a)(∂νφ
a)− gµν

[

1

2
gαβ(∂αφ

a)(∂βφ
a) +

µ2

2
φaφa +

λφ

4
(φaφa)2 +

µ4

4λφ

]

−ξ (Gµν + gµν�−∇µ∇ν) (φ
aφa) . (4.3)

The equation of motion for the scalar field is obtained by varying the full action

S = SEH + SGM with respect to φa resulting in:

�φa − ∂V

∂φa
+ ξRφa = 0 . (4.4)

For the global monopole we take the so-called hedgehog Ansatz

~φ(~r, t) = φ(r) (sin θ cosϕ, sin θ sinϕ, cos θ) , (4.5)

where we recognize a spherical harmonic function Ylm(θ, ϕ) of degree l = 1 and

of order m:

Y1m = (sin θ cosϕ, sin θ sinϕ, cos θ) . (4.6)

In the given metric the d’Alembertian operator is

� =
1√−g

∂µg
µν
√
−g∂ν

= −e−ν∂2
t +

e−
ν+λ
2

r2
∂r

(

e
ν−λ
2 r2

)

∂r

+
1

r2

(

1

sin θ
∂θ sin θ ∂θ +

1

sin2 θ
∂2
ϕ

)

. (4.7)
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The second part of this operator is the angular momentum operator

L̂2 = − 1

sin θ
∂θ sin θ ∂θ −

1

sin2 θ
∂2
ϕ , (4.8)

whose eigenfunctions are the spherical harmonics

L̂2 Ylm(θ, ϕ) = l(l + 1) Ylm(θ, ϕ) . (4.9)

Thus we have

L̂2 ~φ(~r, t) = 2 ~φ(~r, t). (4.10)

With the given Ansatz (4.5) the potential (4.2) can be written as

V (φ) =
λφ

4

(

φ2 − φ2
0

)2
, (4.11)

where φ2
0 = −µ2/λφ (with µ2 < 0).

Upon inserting (4.5) and (3.2) into (4.3) one gets for non-vanishing components

of the stress energy tensor:

T t
t = −1

2
e−λ(1 + 4ξ)φ′ 2 − φ2

r2
− λφ

4
(φ2

0 − φ2)2

−ξGt
tφ

2 + ξe−λν ′φφ′ − 2ξ

(

λφ(φ
2 − φ2

0) +
2

r2
− ξR

)

φ2 , (4.12)

T r
r =

1

2
e−λφ′ 2 − φ2

r2
− λφ

4
(φ2

0 − φ2)2

−ξGr
rφ

2 − ξe−λ

(

ν ′ +
4

r

)

φφ′ , (4.13)

T θ
θ = −1

2
e−λ(1 + 4ξ)φ′ 2 − λφ

4
(φ2

0 − φ2)2

−ξGθ
θφ

2 + 2ξ
e−λ

r
φφ′ − 2ξ

(

λφ(φ
2 − φ2

0) +
2

r2
− ξR

)

φ2 . (4.14)

Similarly, the scalar field equation of motion (4.4) becomes:

φ′′ +

(

ν ′ − λ′

2
+

2

r

)

φ′ − eλ
(

µ2 + λφφ
2 +

2

r2
− ξR

)

φ = 0 , (4.15)
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where prime denotes derivatives with respect to the radial coordinate r.

The first two Einstein equations (Gν
µ = 8πGNT

ν
µ ) are:

[

1 + ξ(8πGN)φ
2
]

Gt
t = 8πGN

{

− 1

2
e−λ(1 + 4ξ)φ′ 2 − φ2

r2
− λφ

4
(φ2

0 − φ2)2

+ξe−λν ′φφ′ − 2ξ

(

λφ(φ
2 − φ2

0) +
2

r2
− ξR

)

φ2
}

,

(4.16)
[

1 + ξ(8πGN)φ
2
]

Gr
r = 8πGN

{1

2
e−λφ′ 2 − φ2

r2
− λφ

4
(φ2

0 − φ2)2

−ξe−λ

(

ν ′ +
4

r

)

φφ′

}

, (4.17)

and, as in the previous chapter, instead of using the (θθ) Einstein equation (or

the equivalent (ϕϕ) equation), we use the trace equation, Gµ
µ = −R = 8πGNT

µ
µ ,

leading to:

R = 8πGN

(1 + 6ξ)
[

e−λφ′ 2 + 2φ2

r2
− λφφ

2(φ2
0 − φ2)

]

+ λφφ
2
0(φ

2
0 − φ2)

1 + ξ(1 + 6ξ)8πGNφ2
. (4.18)

For the case of conformal coupling, ξ = −1/6, the only non-vanishing term in

the Ricci curvature scalar is the term related to the potential. Analogous to the

case of boson stars, the conformal gravity is obtained in the limit of zero global

monopole mass term µ2 since φ2
0 = −µ2/λφ.

Equations(4.16–4.17) and (4.18) constitute the central equations in this sec-

tion.

A simplified version for ξ = 0

Let us first demonstrate basic monopole characteristics through an extremely

simplified model in which we choose a step function for the monopole field pro-

file [100], i.e.

φ(r) =
{ 0 if r < δ

φ0 if r > δ,
(4.19)

where δ is the so called monopole core radius. This choice of the monopole field

corresponds to the pure false vacuum inside the core and an exactly true vacuum

at the exterior.
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For r < δ the components of the metric tensor are

T t
t = T r

r = T θ
θ = T ϕ

ϕ = −1

4
λφφ

4
0. (4.20)

Upon solving Einstein’s equations, for the interior solution we obtain the de Sitter

metric

e−λ = eν = 1−H2r2, (4.21)

with H2 = 2πGNλφφ
4
0/3.

Similarly, for r > δ, the metric outside the monopole core is obtained by solving

Einstein’s equations for the components of the energy-momentum tensor

T t
t = T r

r = −φ2
0

r2
, T θ

θ = T ϕ
ϕ = 0, (4.22)

yielding

e−λ = eν = 1−∆− 2GNM

r
, (4.23)

where M is an integration constant and

∆ ≡ 8πGNφ
2
0 (4.24)

is the energy scale of the symmetry breaking in the reduced Planck units. The

quantity ∆ has a meaning of the deficit solid angle.

Both constants, δ and M , are determined by continuously matching interior and

exterior metrics yielding

δ =
2

√

λφφ0

, M = −16π

3

φ0
√

λφ

. (4.25)

This result is very interesting as it shows that the effective mass of the monopole

core is negative. However, the energy density ρ = −T t
t is positive definite and

thus the total mass is also positive

Mtot(r) = 4π

∫ r

0

ρr2dr = 4πφ2
0r −

16π

3

φ0
√

λφ

, (4.26)

where the second term is obtained as an integration constant Mtot(r = 0) =

−16πφ0/(3
√

λφ).
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Now we see that this (total) mass is linearly divergent (due to the long range

Goldstone field) as mentioned in the introduction of this section. Nevertheless,

the term that causes divergence – the deficit solid angle – does not contribute to

the Newtonian force. In other words, particles moving in the global monopole

field will experience only repulsive force due to the monopole negative core mass,

as we shall see from the results of this section.

A simplified version for ξ 6= 0

In this subsection we introduce the nonminimal coupling and perform the same

analysis as in the previous subsection. In this case the field cannot be approxi-

mated simply by the step function owing to the φ-dependent term in the equation

of motion (4.15). That is, for r > δ, the term that multiplies φ will vanish only

if we assume the following Ansatz :

φ(r) =
{ 0 if r < δ

φ0 − γ/r2 if r > δ,
(4.27)

where γ = const. For r < δ the components of the metric tensor are

T t
t = T r

r = T θ
θ = T ϕ

ϕ = −1

4
λφφ

4
0. (4.28)

The solution to the Einstein equations for the interior part again yield the de

Sitter metric

e−λ = eν = 1−H2r2, (4.29)

with H2 = 2πGNλφφ
4
0/3.

For r > δ the metric outside the monopole core is obtained by solving Einstein

equations for the components of the energy-momentum tensor

T t
t = T r

r = −φ2
0

r2
1

1 + ξ∆
, T θ

θ = T ϕ
ϕ = 0, (4.30)

yielding

e−λ = eν = 1− ∆

1 + ξ∆
− 2GNM

r
, (4.31)
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where M is again an arbitrary integration constant which is, along with the core

size δ, fixed by continuously matching interior and exterior metrics yielding

δ =
2

√

λφφ0

1√
1 + ξ∆

, M = −16π

3

φ0
√

λφ

1

(1 + ξ∆)3/2
. (4.32)

The total mass is

Mtot(r) = 4π

∫ r

0

ρr2dr =
4πφ2

0

1 + ξ∆
r − 16π

3

φ0
√

λφ

1

(1 + ξ∆)3/2
. (4.33)

Dimensionless variables - Reduced Planck units

Before we proceed to solving Eqs. (4.16–4.17) and (4.18), for the purpose of

numerical studies, we perform the following rescaling:

r√
8πGN

→ x, 8πGN

(

φ

φ0

)2

→ φ̃2, 8πGNφ
2
0 → ∆, 8πGNR → R̃.

(4.34)

It also follows that the energy density, pressures and core mass scale as

(8πGN)
2ρ → ρ̃, (8πGN)

2pr,t → p̃r,t,
√

GN/8πM → M̃ (4.35)

The rescaled (dimensionless) differential equations to be solved are then:

dλ

dx
=

1− eλ

x
+∆

x

1 + ξ∆φ̃2

{1

2
(1 + 4ξ)φ̃′ 2 + eλ

φ̃2

x2
+ eλ∆

λφ

4
(1− φ̃2)2

−ξν ′φ̃φ̃′ + 2ξeλ
(

∆λφ(φ̃
2 − 1) +

2

x2
− ξR̃

)

φ̃2
}

, (4.36)

dν

dx
=

eλ − 1

x

1 + ξ∆φ̃2

1 + ξ∆φ̃2 + ξ∆xφ̃φ̃′

−∆
x

1 + ξ∆φ̃2 + ξ∆xφ̃φ̃′

{

− 1

2
φ̃′ 2 + 4ξ

φ̃φ̃′

x
+ eλ

(

φ̃2

x2
+∆

λφ

4
(1− φ̃2)2

)

}

,

(4.37)

d2φ̃

dx2
= −1

2

(

dν

dx
− dλ

dx
+

4

x

)

φ̃′ + eλ
[

∆λφ(φ̃
2 − 1) +

2

x2
− ξR̃

]

φ̃ , (4.38)
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with the dimensionless Ricci scalar obeying

R̃ = ∆
(1 + 6ξ)

[

e−λφ̃′ 2 + 2 φ̃2

x2 −∆λφφ̃
2(1− φ̃2)

]

+∆λφ(1− φ̃2)

1 + ξ(1 + 6ξ)∆φ̃2
. (4.39)

In the limit x → ∞ (φ̃ → 1) Eqs. (4.36) and (4.37) can be formally integrated

yielding

e−λ(x) = eν(x) = 1− ∆

1 + ξ∆
− 2M

x
. (4.40)

where M is an integration constant. In analogy with the space-times without

deficit solid angle for which the metric function is written in terms of the mass

function g−1
rr = 1 − 2m(x)/x, for x < ∞ we have M = M(x), and so we shall

name M(x) the core mass function. Besides, the deficit solid angle is modified

due to the presence of nonminimal coupling:

∆̃ =
∆

1 + ξ∆
. (4.41)

The boundary conditions for Eqs. (4.36–4.38) are:

(1) eλ(0) = 1, (2) eν(∞) = 1− ∆̃ , (3) φ̃(0) = 0, (4) φ̃(∞) = 1. (4.42)

We solve these nonlinear, mutually coupled, differential equations numerically by

using the software code colsys [76]. For this purpose we map an infinite space

r ∈ [0,∞ > to the interval x ∈ [0, 1] by virtue of the transformation r = x/(1−x).

Just like in the previous chapter for the case of nonminimal boson stars, all

physical quantities involved to describe nonminimal global monopole are given in

the reduced Planck units. Hence, following the same rationale, we observe that

Eqs. (4.36–4.39) are invariant under the following conformal transformations

x → βx, λφ → λφ

β2
, R̃ → R̃

β2
, φ̃ → φ̃, ξ → ξ. (4.43)

The core mass scales as

M → βM. (4.44)
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Core mass Newtonian force, compactness, metric transformation and

deficit solid angle

From the asymptotic form of the metric

ds2 = −
(

1− ∆̃− 2GNM

r

)

dt2 +
dr2

1− ∆̃− 2GNM
r

+ r2dΩ2 , (4.45)

which is valid only for large r, we can assume that the grr component for smaller

r can be written in terms of the core mass function M(r)

g−1
rr = 1− ∆̃− 2GNM(r)

r
, (4.46)

from which the Newtonian potential generated by the core mass function is

φM(r) = −GNM(r)

r
. (4.47)

If a test particle has an angular momentum (per unit mass) L, then the Newtonian

force generated by the core mass function, felt by the test particle, is

FM(r) = −∇φM(r) +
L2

r3
. (4.48)

If we now rewrite g−1
rr in slightly different form

g−1
rr = (1− ∆̃)

(

1− 1

1− ∆̃

2GNM(r)

r

)

, (4.49)

we can read off the compactness function

µ(r) =
1

1− ∆̃

2GNM(r)

r
, (4.50)

from which it follows that, in order to avoid an event horizon formation, the

compactness function must be less then unity.

If we now transform the asymptotic metric (4.40) by virtue of new coordinates

r̃2 =
r2

1− ∆̃
, t̃2 = (1− ∆̃)t2 , (4.51)
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to the following form

ds2 = −
(

1− 2G̃NM̃

r̃

)

dt̃2 +
dr̃2

1− 2G̃NM̃
r̃

+ (1− ∆̃)r̃2dΩ2 , (4.52)

the meaning of the deficit solid angle is now transparent: the surface area of the

sphere with a radius r is now 4π(1− ∆̃)r2.

4.1.2 Results for ξ = 0
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Figure 4.1. Monopole field φ̄ (upper plot) and metric functions gtt and g−1
rr (lower

plot) as a function of x = r/l̄P for λφ = 0.1, ξ = 0, ∆ = 0.999 for solid, ∆ = 0.7 for

dashed and ∆ = 0.3 for dotted curves.

In the case of minimal coupling it has been shown [101, 102] that for monotonically

increasing scalar field, the regular solutions without horizon exist only for ∆ <

1. For 1 < ∆ < 3 there are regular solutions with the horizon. However, for
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∆ > 3 there are no regular solutions which has been shown to be in accord with

topological inflation (see e.g. [101]). The existence of the horizon can be seen from

the asymptotic behaviour of the metric functions: in the limit r → ∞ the metric

functions gtt and g−1
rr approach zero for ∆ → 1. In this work we are interested in

the regular monopole solutions without horizon.

First, it is instructive to explore the effect of different symmetry-breaking

scales ∆ on the monopole configuration in the minimal coupling case. Hence

in figures 4.1-4.4 we plot all relevant functions of the monopole configurations

for three different values of ∆: ∆ = 0.3 for dotted, ∆ = 0.7 for dashed and

∆ = 0.999 for solid curves. In the upper plot of Fig. 4.1 we see that the change

of ∆ only slightly influences the shape of the monopole field - the fields remain

monotonic. However, the metric functions shown in the lower plot of Fig. 4.1 do

change significantly as ∆ increases – as expected, for ∆ → 1 we have gtt, g
−1
rr → 0.
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Figure 4.2. Core mass functions M̄ as a function of x = r/l̄P for λφ = 0.1, ξ = 0,

∆ = 0.999 for solid, ∆ = 0.7 for dashed and ∆ = 0.3 for dotted curves.

The core mass function is more negative for larger ∆ as seen in Fig. 4.2 which

is also in agreement with Eq. (4.32). Correspondingly, the Newtonian forces

produced by the core masses (4.48) (dashed curves), the Newtonian force (C.12)

(dotted curves) and also the effective forces (D.12) (solid curves) are more repul-

sive for larger ∆ as shown in Fig. 4.3. For small ∆ the Newtonian force is in

agreement with the effective force as seen in the upper plot of Fig. 4.3. Since the

effective force does not cross zero, there exist no bound orbits for the minimally

coupled monopole. This result is very interesting and in a way represents a sig-

nature of the global monopole configuration in the minimal setting – even though
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the energy density is positive and decreasing as 1/r2 the particle moving in the

monopole field feels a repulsive force.
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Figure 4.3. F̄M (4.48) (dashed), Newtonian F̄N (C.12) (dotted) and the effective F̄eff

forces (D.12) (solid) for ∆ = 0.3 (upper plot), ∆ = 0.7 (middle plot) and ∆ = 0.999

(lower plot). Also the angular momentum and the energy per unit mass are L̄ = 0.1

and Ē = 1.

This is due to the fact that the total mass, which is obtained as the volume
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integral of the energy density, can be written as a sum of two parts: one part

comes from the core mass function and the other part comes from the deficit

solid angle. Only the core mass function contributes to the Newtonian force as

the second part is linear in r, thus yielding a constant Newtonian potential which

produces no Newtonian force. In all three cases both Newtonian forces are in

qualitative agreement with the effective forces for small r while for large r all

forces agree very well both qualitatively and quantitatively, as expected. The

differences between the Newtonian and the effective forces can be traced back to

the nonlinear effects and the gravitational slip which is defined as the difference

between the two Newtonian potentials (the one corresponds to gtt and the other

to grr) and which is known to be different from zero in the presence of matter.

Independently on the value of ∆, the energy density is always positive-definite

while the pressures are negative-definite functions of the radial coordinate in the

minimal coupling case. Also the magnitude of all three thermodynamic functions

are larger for larger ∆ as shown in Fig. 4.4. In all these cases the strong energy

condition is violated and this trend is more prominent for larger ∆.
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Figure 4.4. Energy density ρ̄ and principal pressures p̄r, p̄t as a function of x = r/l̄P

for λφ = 0.1, ξ = 0, ∆ = 0.999 for solid, ∆ = 0.7 for dashed and ∆ = 0.3 for dotted

curves. The energy density is positive-definite and pressures are negative; transversal

pressure is larger then the radial in all three cases.

The monopole radius which can be roughly estimated as a radius where the

central energy density drops to its 1% value, does not significantly depend on

the symmetry breaking scale. Nevertheless, according to Eq.(4.32) the size of

the core for ξ = 0 decreases as 1/
√
∆, meaning that larger ∆ produces a smaller
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monopole core.

4.1.3 Results for ξ 6= 0

In this subsection we show how nonminimal coupling of the monopole field to

gravity affects the behaviour of minimally coupled global monopole studied in

the previous section. This analysis was firstly obtained by Nucamendi et al. [104]

and our results are in agreement with theirs. Just like in the case of boson stars,

nonminimal coupling drastically changes the monopole configuration.

Firstly, from the asymptotic behaviour of the metric function (4.40) we observe

that an event horizon forms if 1−∆̃−2GNM(r)/r = 0 for a finite r. In this thesis

we shall not consider configurations with an event horizon and hence we shall

demand that 2GNM(r)/r < 1− ∆̃ for all finite r. When r → ∞, GNM(r)/r → 0

and the above condition reduces to ∆̃ < 1. In Fig. 4.5 we show how ξ depends

on ∆ if we demand that ∆̃ < 1.
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Figure 4.5. Nonminimal coupling ξ as a function of the symmetry-breaking scale ∆

for ∆̃ = 1. Shaded region shows allowed values of ξ for a given ∆.

Shaded region shows allowed values of ξ for a given ∆. Here, for example, we

have the situation that the horizon will not form for ∆ = 1 if ξ is only slightly

greater then zero. Besides, there are no restrictions on ∆ if ξ ≥ 1. Hence, in the

nonminimal case there are much more allowed values for ∆ that lead to regular

solutions without horizons.

The most important feature of nonminimal global monopoles is the existence
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of bound orbits which can be traced back to the minima of the effective potential.

In this section we present all relevant functions for three different values of ξ:

ξ = −1 for solid, ξ = 1 for dashed and ξ = 2 for dotted curves. Here the energy

of the symmetry-breaking scale is fixed and equals ∆ = 0.1. The self-coupling

is also fixed λφ = 0.1. Even though the effect of nonminimal coupling is large,

the monopole field still retains its monotonic behaviour as seen in the upper plot

of Fig. 4.6. The same can be said for the metric functions shown in the lower

plot of Fig. 4.6. This graph is useful as one may, in particular, read off the radial

coordinate x = r/l̄P for which the asymptotic form of the metric (4.40) is valid.

Nevertheless, the core mass function is not so immune to the ξ-parameter as

shown in Fig. 4.7. For positive ξ, in particular for ξ > 1, the core mass function

as a function of the radial coordinate exhibits locally positive values.
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Figure 4.6. The monopole field φ̄ in the upper plot and metric functions gtt and g−1
rr

in the lower plot for λφ = 0.1, ∆ = 0.1, ξ = −1 for solid, ξ = 1 for dashed and ξ = 2

for dotted curves.
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Figure 4.7. Core mass functions for λφ = 0.1, ∆ = 0.1, ξ = −1 for solid, ξ = 1 for

dashed and ξ = 2 for dotted curves.

This trend is accompanied by the attractive force implied by the core mass

function (4.48) as shown in the middle and lower plots of Fig. 4.8 (dashed curves).

One could naively conclude that the locally positive values of the core mass func-

tions are responsible for the existence of bound orbits. However, this is not the

case as the effective forces (D.12) (solid curves) are repulsive and they are respon-

sible for the existence of bound orbits. While for large r all three forces agree,

they show significant disagreements for small r inside the monopole core.

This is an interesting result as it allows to investigate the effects of the back-

reaction of geometry on matter as well as how matter affects geometry through

gravitational slip. While FN includes the backreaction of geometry on matter, it

does not contain nonlinear effects of matter on geometry, Feff includes both the

backreaction of geometry on matter as well as nonlinear gravitational effects. Fi-

nally, FM includes nonlinear effects of geometry, but it is insensitive to the effects

of gravitational slip. From Fig. 4.8 we see that FN and Feff agree in all three

cases considered, which means that the nonlinear geometrical effects are weak.

In all cases FM shows qualitative disagreement with Feff which implies that in all

cases the effects of gravitational slip are significant. From the above analysis it

follows that while the effective and the Newtonian force contain information of

bound orbits, the force produced by the core mass function does not. This then

implies that the core mass function cannot be used to study bound orbits, while

the active gravitational mass (obtained by integrating ρ +
∑

pi over volume up

to some radius r) can be used to study bound orbits.
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Figure 4.8. The effective F̄eff forces (D.12) (solid curves), the Newtonian forces

F̄N (C.12) (dotted curves) and the Newtonian forces produces by the core mass func-

tions (4.48) (dashed curves) for ξ = −1 on the upper, ξ = 1 on the middle and ξ = 2

in the lower plot. The other parameters are λφ = 0.1, ∆ = 0.1. Also the angular

momentum and energy (of the particle) per unit mass are L̄ = 0.1 and Ē = 1.

It is also interesting to show how the thermodynamic functions behave for

these three values of ξ. In the upper plot of Fig. 4.9 we see that for positive

ξ the energy density is positive-definite while the pressures are negative-definite

functions of the radial coordinate. However, for negative ξ the energy density
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evolves from the negative center, crosses zero and asymptotically converge to

zero from positive values while the pressures exhibit the opposite trend. Locally

negative regions of the energy density obviously violate the null energy condition.
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Figure 4.9. The energy density ρ̄ and principal pressures p̄r, p̄t as a function of x =

r/l̄P for λφ = 0.1, ∆ = 0.1 and ξ = 2 (solid curves) and ξ = 1 (dashed curves) in the

upper plot and ξ = −1 in the lower plot (solid curve for the energy density, dashed for

the radial and dotted for the transversal pressure).

4.2 A nonminimal boson star and a global mono-

pole

D-stars or topological defect stars are ”compact objects with a solid angular deficit,

which generalize Q-stars by including a complex scalar field (or a fermion field),

the Goldstone field and classical Einstein gravity.” [105]. In Ref. [106] a fermion

D-star is investigated while in Ref. [107] an analysis of a boson D-star is per-

formed. While fermion D-stars showed yet unresolved issues on the stability,

boson D-stars have revealed an attractive features in the context of compact ob-
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jects. Even though the authors presented an approximate solutions to the gravi-

tational field outside D-stars, their analysis motivates the existence of black holes

with deficit solid angle. Furthermore, in Ref. [108] the motion around D-stars is

investigated while in Ref. [105] D-stars as gravitational lenses were considered.

In this section we perform detailed analysis of the system consisting of a boson

star and a global monopole. Both fields are nonminimally coupled to gravity and

interact only through the gravitational field.

This section is organized as follows: in subsection 4.2.1 we present a derivation

of the Einstein equations for a composite system of a boson star and a global

monopole – both fields are nonminimally coupled to gravity. In subsection 4.2.2

we show the results for weakly coupled boson star and a global monopole, for

which both fields are only slightly affected in the combined system. In 4.2.3 the

results for mild coupling are presented while in 4.2.4 we show the solutions for

the composite system produced as a result of the strong (to extremal) coupling

between a boson star and a global monopole field. In this regime we find a set

of parameters for which a good black hole mimicker with the deficit solid angle

may form.

4.2.1 The model

For matter we take a sum of the actions for the nonminimal boson star (Eq. 3.3)

and the nonminimal global monopole (Eq. 4.1)

S = SBS + SGM . (4.53)

The energy momentum tensor of this system is:

Tµν = TBS
µν + TGM

µν (4.54)

where TBS
µν is given with the Eq. (3.4) and TGM

µν with Eq. (4.3). As in the previous

chapter we make the following rescaling:

r =
√

8πGNx, 8πGNφ
2
1 = σ2, 8πGNφ

2
2 = φ2

0φ̃
2, 8πGNR = R̃,

(4.55)

where subscripts 1 and 2 denote the boson star field (and parameters) and the

global monopole field (and parameters), respectively.
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The deficit solid angle is the same as in the previous chapter ∆ = 8πGNφ
2
0 and

∆̃ = ∆/(1 + ξ2∆).

The equation of motion for the boson star field is obtained by varying the total

action with respect to φ∗
1 leading to

σ′′ = −
(

2

x
+

ν ′ − λ′

2

)

σ′ + eλ(m̃2
1 + λ1σ

2 − ω̃2e−ν − ξ1R̃)σ. (4.56)

The equation of motion for the global monopole field is obtained by varying the

total action with respect to φ2 leading to

φ̃′′ = −
(

2

x
+

ν ′ − λ′

2

)

φ̃′ + eλ
(

λ2∆(φ̃2 − 1) +
2

x2
− ξ2R̃

)

φ̃. (4.57)

From the first two Einstein equations Gµν = 8πGNTµν we obtain the differential

equations for the metric functions

λ′ =
1− eλ

x
+

x

1 + 2ξ1 + ξ2φ̃2

{

eλ

(

(m̃2
1 + ω̃2e−ν + λ1/2)σ

2 +
φ̃2

x2
+

λ̃2

4
∆2(1− φ̃2)2

)

+(1 + 4ξ1)σ
′2 +

1

2
(1 + 4ξ2)φ̃

′2 − 2ξ1ν
′σσ′ − ξ2ν

′φ̃φ̃′

+4ξ1e
λ
[

m̃2
1 − ω̃2e−ν + λ1σ

2 − ξ1R̃
]

σ2

+2ξ2e
λ

[

λ2∆(φ̃2 − 1) +
2

x2
− ξ2R̃

]

φ̃2

}

, (4.58)

ν ′ =
x

1 + 2ξ1σ2 + 2ξ1xσσ′ + ξ2φ̃2 + ξ2xφ̃φ̃′

{

−1 + eλ

x2
(1 + 2ξ1σ

2 + ξ2φ̃
2)

+σ′2 − eλ(m̃2
1 − ω̃2e−ν +

λ1

2
σ2)σ2 − 8ξ1σσ

′

x
+

φ̃′2

2
− 4ξ2φ̃φ̃

′

x

−eλ

[

φ̃2

x2
+

λ2

4
∆2(1− φ̃2)2

]}

. (4.59)

The rescaled Ricci scalar is

R̃ =
2m̃2

1σ
2 + 2(1 + 6ξ1)

[

(m̃2
1 − ω̃2e−ν + λ1σ

2)σ2 + e−λσ′2
]

1 + 2ξ1(1 + 6ξ1)σ2 + ξ2(1 + 6ξ2)φ̃2

+
λ2∆

2(1− φ̃2) + (1 + 6ξ2)
[

e−λφ̃′2 + 2φ̃2

x2 − λ2∆(1− φ̃2)φ̃2
]

1 + 2ξ1(1 + 6ξ1)σ2 + ξ2(1 + 6ξ2)φ̃2
. (4.60)
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The set of nonlinear differential equations (4.58-4.60) is solved upon providing

the boundary conditions

λ(0) = 0, ν(∞) = 1− ∆̃,

σ(0) = σ0, σ(∞) = 0,

φ̃(0) = 0, φ̃(∞) = 1. (4.61)

To easily distinguish among the boson star and the global monopole parameters,

we shall also use the following abbrevations

ξBS = ξ1, ξGM = ξ2. (4.62)

Now we proceed to solving the system that consists of a boson star and a

global monopole which interact only gravitationally. So far we have witnessed

monotonic behaviour of both fields, the boson star and the global monopole field,

for all choices of parameters. In the combined system this is not the case anymore:

both fields reconfigure themselves depending on the parameters. Therefore, we

distinguish three regimes according to the qualitative behaviour of the fields con-

figurations:

• Weak coupling regime: in this regime both, the boson star and the global

monopole fields configurations retain theirs monotonicity.

• Mild coupling regime: in this regime the boson star field is slightly non-

monotonic while the monopole field is still monotonic.

• Strong coupling regime: in this regime both, the boson star field and the

monopole field are significantly reconfigured into non-monotonic fields. This

regime is particularly interesting since the boson star gets very compressed

by the monopole and a whole system can reach large compactness suggesting

that this object can provide a good black hole mimicker.

In the previous chapter we have seen that boson stars exhibit largest compact-

ness for negative values of nonminimal coupling ξBS. Here we want to analyze how

the presence of a global monopole affects the boson star configuration. There-

fore, we take the boson star parameters from the previous chapter with m̃ = 1,
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σ0 = 0.05, λBS = 0 and ξBS = −4 that produces an attractive effective force and

combine it with the global monopole with varying parameters.
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Figure 4.10. Upper plot: the boson star field in the presence of the global monopole

(solid) and the boson star field alone (dashed). Lower plot: the global monopole field

in the presence of the boson star (solid) and the global monopole field alone (dashed).

The parameters are: σ0 = 0.05, λBS = 0, ξBS = −4, λGM = 0.1, ∆ = 0.08, ξGM = −1.

4.2.2 Weak coupling regime

In this regime we take a global monopole configuration that produces an attrac-

tive effective potential, for example ∆ = 0.08, λGM = 0.1 and ξGM = −1. As seen

in Fig. 4.10 both fields, the boson star (dashed curve in the upper plot) and the

monopole field (dashed curve in the lower plot) are only slightly affected in the

combined system (solid curves). Nevertheless, it is important to point out that

both fields in the combined system are reconfigured to slightly lower magnitudes,

which is not the case with the combined system with the monopole that produces

a repulsive effective potential.
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Figure 4.11. Upper plot: the mass function for the boson star alone (dotted curve),

the core mass function for the global monopole alone (dashed curve) and the core mass

function for the combined system of the boson star and the global monopole (solid curve).

Lower plot: the metric functions gtt and g−1
rr for the boson star alone (dotted curves),

the global monopole alone (dashed curves) and the combined system of the boson star

and the global monopole (solid curves). The parameters are: σ0 = 0.05, λBS = 0,

ξBS = −4, λGM = 0.1, ∆ = 0.08, ξGM = −1.

The core mass function of the combined system is roughly equal to the sum

of the constituent masses as seen in the upper plot of Fig. 4.11. Furthermore,

the energy density, the pressures, the compactness (as seen in Fig. 4.12) in the

combined system also sum up approximately linearly. Due to this fact, one can

actually obtain gravastar-like pressures in the combined object: both pressures

evolve from a negative center and exhibit a locally positive maximum, just like

the gravastar pressures in their atmosphere.
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Figure 4.12. Upper plot: the compactness function for the boson star alone (dotted

curve), the global monopole alone (dashed curve) and the combined system (solid curve).

Lower plot: the energy density and the pressures for the boson star alone (dotted curves),

the global monopole alone (dashed curves) and the combined system (solid curves). The

parameters are: σ0 = 0.05, λBS = 0, ξBS = −4, λGM = 0.1, ∆ = 0.08, ξGM = −1.
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Figure 4.13. The effective force (D.12) for the boson star alone (dotted curve), the

global monopole (dashed curve) and the combined system (solid curve). The parameters

are: σ0 = 0.05, λBS = 0, ξBS = −4, λGM = 0.1, ∆ = 0.08, ξGM = −1. Also the angular

momentum and the energy per unit mass are L̄ = 0.1 and Ē = 1.
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However, the dominant energy condition is clearly violated in the combined

system for the chosen set of parameters. In Fig. 4.13 we see that the effective

force of the combined system (solid curve) is also approximately equal to the sum

of the effective forces produced by the boson star (dotted curve) and the global

monopole (dashed curve).
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Figure 4.14. Upper plot: the boson star field in the presence of the global monopole

(solid) and the boson star field in the absence of the monopole (dashed). Lower plot: the

global monopole field in the presence of the boson star (solid) and the global monopole

field in the absence of the boson star (dashed). The parameters are: σ0 = 0.05, λBS = 0,

ξBS = −4, λGM = 0.1, ∆ = 0.08, ξGM = 2.

4.2.3 Mild coupling regime

In this subsection we take the global monopole with ∆ = 0.08, λGM = 0.1,

ξGM = 2 that produces repulsive effective force. In Fig. 4.14 we show i) in the

upper plot how the boson star field (dashed curve) is affected by the presence

of the global monopole (solid curve) and ii) in the lower plot how the global
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monopole field (dashed curve) is affected by the presence of the boson star field

(solid curve). For the given set of parameters the boson star field is more sensitive

to the presence of the global monopole field then vice versa: the boson star field

reconfigures significantly by loosing its monotonicity while the monopole field

remains monotonous.

20 40 60 80 100
r� lP0.5

0.6

0.7

0.8

0.9

1.0

1.1

gtt , grr
-1

50 100 150 200
r� lP0.0

0.5

1.0

1.5

M

Figure 4.15. Upper plot: the metric functions gtt and g−1
rr for the boson star alone

(dotted curves), the global monopole alone (dashed curves) and the combined system of

the boson star and the global monopole (solid curves). Lower plot: the mass function for

the boson star alone (dotted curve), core mass function for the global monopole alone

(dashed curve) and the mass function for the combined system of the boson star and

the global monopole (solid curve). The parameters are: σ0 = 0.05, λBS = 0, ξBS = −4,

λGM = 0.1, ∆ = 0.08, ξGM = 2.

In the upper plot of Fig. 4.15 we illustrate how the metric functions gtt and g−1
rr

are affected by combining the boson star and the global monopole into one system.

The approximate value of the radial coordinate for which gtt ≈ g−1
rr gives us a

rough estimate of r where the asymptotic behaviour of the metric (4.40) becomes
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valid. In the lower plot of Fig. 4.15 we show a rather unexpected behaviour of the

core mass function of the combined system (solid curve), which is clearly greater

then the sum of the constituents (core) masses of the boson star (dotted curve)

and the global monopole (dashed curve).
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Figure 4.16. Upper plot: compactness for the boson star alone (dotted curve), the

global monopole alone (dashed curve) and the combined system of the boson star and the

global monopole (solid curve). Lower plot: energy density and pressures for the boson

star alone (dotted curves), the global monopole alone (dashed curves) and the combined

system of the boson star and the global monopole (solid curves). The parameters are:

σ0 = 0.05, λBS = 0, ξBS = −4, λGM = 0.1, ∆ = 0.08, ξGM = 2.

This trend is important for the compactness, a function that measures how

much mass can be accommodated in a certain radius. It turns out that the

compactness is significantly greater in the combined system (solid curve in the

upper plot of Fig. 4.16) then in the boson star alone (dotted curve in the the

upper plot of Fig. 4.16) or the global monopole alone (dashed curve in the upper

plot of Fig. 4.16), or even larger than the sum of the two. From the lower plot

of Fig. 4.16 we can trace the change in the behaviour of the energy density and
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pressures. In all three cases the energy density is positive while the pressures are

negative functions of the radial coordinate. Observe that size of the combined

system is approximately the same as the size of the global monopole (the boson

star is a bit smaller).
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Figure 4.17. The effective force (D.12) (solid curve), the Newtonian force (C.12) (dot-

ted curve) and the Newtonian force produced by the core mass function (4.48) (dashed

curve) for the combined system of the boson star and the global monopole; and the ef-

fective force of the boson star alone (sparse dashed red curve). The parameters are:

σ0 = 0.05, λBS = 0, ξBS = −4, λGM = 0.1, ∆ = 0.08, ξGM = 2. Also the angular

momentum and the energy per unit mass are L̄ = 0.1 and Ē = 1.

Thus, even though the central energy density of the boson star dominates

the energy density of the global monopole, while the size of the boson star is

smaller, the combined system is approximately of the same size as the global

monopole (see inset of the lower plot of Fig. 4.16). In Fig. 4.17 we depict the

effective force (D.12) (solid curve), the Newtonian (C.12) (dotted curve) and

the Newtonian force produced by the core mass function (4.48) (dashed curve)

for the combined system. We also show the effective force of the boson star

alone (sparse dashed red curve). Even though, the global monopole produces

a repulsive effective force (while the boson star produces an attractive effective

force) the effective force produced by the combined system is more attractive

than in the case of the boson star alone. Note that the radius of the stable bound

orbit (where Feff = 0) is almost the same for the boson star and the combined

object, while the global monopole alone has no such orbits. Although there is

a qualitative agreement between F̄eff and F̄N in that they both exhibit stable

bound orbits, quantitatively they differ. Since F̄N and F̄M significantly differ
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from the F̄eff of the combined system, the nonlinear effects and the effects of the

gravitational slip are present.
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Figure 4.18. Upper plot: the boson star field alone (dashed curve) and the boson star

field in presence of the global monopole (solid curve). Lower plot: the global monopole

field alone (dashed curve) and the global monopole field in presence of the boson star

(solid). The parameters are: σ0 = 0.05, λBS = 0, ξBS = −4, λGM = 0.1, ∆ = 0.08,

ξGM = 5.

4.2.4 Strong coupling regime

In this subsection we examine the combined system of the boson star and the

global monopole when the repulsive monopole effects are strong. As we have seen

in the previous section, this is the case for large positive ξGM. Here we show

the examples with ξGM = 5 and ξGM = 8, while the other parameters are the

same as in the previous subsection. As we shall see in what follows, the effects

of strong gravitational fields increase dramatically with increasing ξGM, reaching

compactness close to unity in the latter case. Increasing ξGM even further leads to
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numerically unstable solutions which we interpret as a signature of event horizon

formation and therefore black hole - like objects form.
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Figure 4.19. Upper plot: mass function for the boson star alone (dotted curve), core

mass function for the global monopole alone (dashed curve) and core mass function for

the combined system of the boson star and the global monopole (solid curve). Lower

plot: compactness for the boson star alone (dotted curve), the global monopole alone

(dashed curve) and the combined system (solid curve). The parameters are: σ0 = 0.05,

λBS = 0, ξBS = −4, λGM = 0.1, ∆ = 0.08, ξGM = 5.

In Fig. 4.18 we already see that now both, the boson star field (upper plot)

and the monopole field (lower plot) are strongly influenced by each other: the

repulsive monopole and the attractive boson star in the combined system strongly

influence individual configurations.

However, the core mass function as shown in the upper plot of Fig. 4.19 be-

haves similarly as in the ξGM = 2 case while the compactness function is enlarged

significantly when compared with the sum of the two, as can be seen in the lower

plot of Fig. 4.19. Moreover, the maximum compactness in this case is slightly

above 0.4, thus a bit larger then the maximum compactness that can be reached
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in the case of (non)minimally coupled boson stars (which is about 0.32). The

whole system has shrunk as it is obvious from Fig. 4.20 - the combined object is

much smaller then its constituents.
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Figure 4.20. Energy density and pressures for the boson star alone (dotted curves), the

global monopole alone (dashed curves) and the combined system of the boson star and

the global monopole (solid curves). The parameters are: σ0 = 0.05, λBS = 0, ξBS = −4,

λGM = 0.1, ∆ = 0.08, ξGM = 5.
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Figure 4.21. The effective force (D.12) (solid curve), the Newtonian force (C.12)

(dotted curve) and the Newtonian force produced by the core mass function (4.48) for

the combined system of the boson star and the global monopole. The parameters are:

σ0 = 0.05, λBS = 0, ξBS = −4, λGM = 0.1, ∆ = 0.08, ξGM = 5. Also the angular

momentum and the energy per unit mass are L̄ = 0.1 and Ē = 1.

The forces produced by the combined system are also quite strong as shown

in Fig. 4.21. Solid curve shows F̄eff , dotted F̄N and dashed F̄M . When compared

with the mild coupling regime in Fig. 4.17, the nonlinear gravitational effects and
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the gravitational slip are similar, but amplified.

As ξGM further increases the object shrinks further and the maximum compact-

ness increases, approaching values comparable to unity which signifies formation

of a black hole. To show this, in Fig. 4.22 we plot the compactness for ξGM = 8,

for which the maximum value is slightly above 0.75 (solid curve).

This high value for the combined object is reached although individual max-

imum compactnesses are quite small: for the monopole alone µmax ≃ 0.05 while

for the boson star alone µmax ≃ 0.1. In order to find out whether this highly com-

pact object can be a good black hole mimicker, we also show the compactness

of a Schwarzschild black hole with a mass that corresponds to the asymptotic

mass of the combined system (sparse dashed red curve). A comparison of the two

curves shows that up to a radius about a few times the Schwarzschild radius the

compactness of the black hole can be well approximated by that of the combined

system. This suggests that any physical process that occurs at distances up to a

few times the event horizon can be well approximated by this black hole mimicker.
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Figure 4.22. Compactness for the combined system of the boson star and the global

monopole (solid curve), the boson star alone (dotted curve) and the global monopole

alone (dashed curve). Compactness for a Schwarzschild black hole with the mass equal

to the core mass of the combined system (sparse dashed red curve). The parameters

are: σ0 = 0.05, λBS = 0, ξBS = −4, λGM = 0.1, ∆ = 0.11, ξGM = 8.

Of course there is a prize to pay, and there are extremely large effective forces

that are developed in the vicinity of the radius where the compactness maximizes,

as can be seen in Fig. 4.23. Indeed, the effective force reaches an extremely large
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value above 10000, whereby there are no large numbers present in any of the

couplings. This can be explained by the large compression exerted on the boson

star by the monopole gravitational field. In this process a crucial role is played

by the gravitational backreaction as well as by nonlinear effects. This can be

seen from the inset in Fig. 4.23, where we show the forces F̄N (dotted curve)

and F̄M (dashed curve) which are of the order of unity in the relevant region,

thence tremendously different from F̄eff . Increasing ξGM further above 8 leads to

a further dramatic increase in the compression of the boson star and the effective

force, signaling gravitational instability and formation of a black hole. While we

have here managed to form a fine black hole mimicker, the prize was a tuning in

the parameters. Namely, for each choice of the coupling there is a critical value of

the nonminimal coupling ξGM, above which a black hole forms, and below which

a highly compact object forms with properties close to a black hole.
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Figure 4.23. Effective force (D.12) of the combined system of the boson star and

the global monopole. Inset: Newtonian force (dotted curve) and the Newtonian force

produced by the core mass function (dashed curve). The parameters are: σ0 = 0.05,

λBS = 0, ξBS = −4, λGM = 0.1, ∆ = 0.11, ξGM = 8. Also the angular momentum and

the xenergy (of the particle) per unit mass are L̄ = 0.1 and Ē = 1.

4.3 Conclusions and discussion

In this chapter we have considered compact objects composed of nonminimally

coupled boson stars and nonminimally coupled monopoles. Three distinct regimes

have been identified: weak, mild and strong coupling regimes. The main parame-

ter that determines the regime is the nonminimal coupling of the global monopole.
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In the weak coupling regime (when, e.g., ξGM = −1) nonlinear gravitational

effects and the gravitational backreaction are weak, and the resulting compact

object can be obtained by summing the energy densities and pressures of the

components.

In the mild coupling regime (when, e.g., ξGM = 2) we have seen that the

nonlinear effects and the effects of gravitational slip are present and the resulting

object behaves as a boson star with a larger compression and thus with a larger

compactness.

In the strong coupling regime, however, (when, e.g., ξGM & 5), a large com-

pression of the composite object takes place such that when ξGM ∼ 8 one can

get a highly compact object with the maximum compactness of the order unity.

This object represents a good black hole mimicker in that, up to distances close

to the black hole event horizon, the compactness profile of the mimicker follows

closely that of the black hole. For even larger values of ξGM we do not get stable

configurations. We interpret it as a signal for black hole formation.

It would be of interest to investigate the stability of these highly compact and

dense objects, and M(R) stability analysis seems a natural method. We wish to

point out that the stability analysis needs to be done with care, since boson stars

get largely compressed in the presence of a global monopole, and increasing the

boson star mass may lead to a more compact but still stable object. A naive

application of M(R) method would suggest instability, while in reality the object

may be stable. These thoughts suggest not only the need for a proper stabil-

ity analysis, but also that it may require a nontrivial modification of standard

methods. The result of the last subsection in this chapter indicates that it is

the global monopole that stabilizes the monopole-boson star composite system

against collapse. Recall that global monopoles are classical field configurations

stabilized by topology (of the mapping), while boson stars are stabilized by scalar

current density, or equivalently by scalar field charge. With this in mind we make

the following conjecture:

Compact star objects stabilized by a global charge tend to be more stable

than those stabilized by a (local) charge density, and hence are better black

hole mimickers.

In addition to performing a detailed stability analysis, it would be useful

to perform a detailed analysis to what extent are the objects composed of a
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global monopole and a boson star good black hole mimickers. Here we have

only compared in some detail the compactness profiles of the mimickers with

those of a true black hole. But of course, there are further comparisons one

should investigate, and these include: a detailed comparison of bound (stable and

unstable) orbits; the creation and emission of gravitational waves in binary star

systems (in which one or two companions is a black hole mimicker); vibrational

modes (i.e. modes that govern deviations from spherical symmetry) and their

decay rates, etc. Once such studies are complete we will have a much better idea

on to what extent the dense compact objects considered in thesis are good black

hole mimickers.



CHAPTER 5

CONCLUSIONS

We have started our journey with a non-perfect-fluid picture of a continuous

picture gravastar. This particular dark energy star, due to its large compact-

ness (which is of the order unity) served as a major guideline in building highly

compact astrophysical structures. Such a large compactness in gravastars was at-

tributed to the locally negative anisotropic pressures (exhibiting the de Sitter-like

core), responsible for the balance of a large amount of matter thus avoiding grav-

itational collapse. Even though all models describing gravastars are essentially

toy models in the sense that their foundation does not stem from fundamental

field-theoretic principles, we have shown that all equations of state characterizing

gravastar-like objects lead to a radially stable structures (of course with restric-

tions set on the parameter space). This analysis has been performed rigorously

using conventional Chandrasekhar’s methods and an eigenvalue problem for the

perturbed system (obtained by the linearization of the Einstein equations) has

been solved in order to prove radial stability of gravastar configurations. Along

with the large compactness, this result motivated search for the akin structures,

stemming from the more fundamental Lagrange principle.

One of the most prominent examples of compact object that arose from the

fundamental Lagrangian formalism, as a gravitationally bound self-interacting

scalar field, is certainly the boson star. It has been known for a while that

the concept of anisotropy, which in standard astrophysics has been treated with

a great care, is a rather genuine ingredient of the boson star. Besides, it has
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been shown that the compression can be quite large (with the compactness up to

µmax = 0.32). However, the de Sitter-like interior does not exist in this setting

thus limiting the compactness. For all these reasons in this work we have ex-

tended the analysis of boson stars by modifying the Einstein-Hilbert action with

a nonminimal coupling of the scalar field to gravity via the Ricci curvature scalar.

We have shown that even such a benign extension of classical general relativity

already resulted in configurations that resembled more the dark energy stars then

the known boson stars. We have also shown that the compactness become sig-

nificantly larger (up to µmax = 0.50), and this occurs in the region of negative

pressures. Again we could conclude that the scalar field is more compressed in

the presence of negative pressures, which obviously helps balance scalar matter

against the gravitational collapse. However, within this setting the modified bo-

son star could not approximate xthe black hole configurations arbitrarily close

as, we presume, the de Sitter core could not be attained. Besides, the energy

conditions are significantly violated in the modified boson star unlike the ordi-

nary boson stars. When we have employed restrictions on matter from the energy

conditions we have found that the largest compactness in such a setting was only

slightly greater then that in the ordinary boson stars. However, this happens

in the region of negative pressures thus again supporting the idea to search for

field-theoretic configurations with the de Sitter (like) interior. Instead of ”mod-

ifying gravity even more”, we chose to investigate (modified) boson stars in the

presence of gravitationally repulsive global monopole.

Global monopoles are also extensively studied configurations in the context of

topological defects and their existence has been tested by modern cosmological

observations. Within the framework of general relativity it has been shown that

the monopole produces repulsive gravitational effects. This behavior was only

locally opposite if the monopole is coupled to gravity nonminimally via the Ricci

curvature scalar. Even though the global monopoles which are nonminimally

coupled to gravity were considered by other authors in order to prove the existence

of bound orbits, a detailed analysis according to which it is possible to trace

nonlinear gravitational effects, backreaction of the metric on the matter and the

gravitational slip (difference between Newtonian potentials) is lacking. Therefore,

in this thesis we have performed an analysis of the effective force which includes

all three effects, the linearized Newtonian force which includes the backreaction
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of the metric on matter and the Newtonian force produced by the core mass

which includes nonlinear effects. An important result of this analysis, in terms

of compact objects, was that, independently of the strength of the nonminimal

coupling, the global monopole always generates repulsive gravity asymptotically.

In this sense it seemed hard to ”perceive” a nonminimal global monopole as a

viable astrophysical structure on its own.

For these reasons we have coupled a boson star and a global monopole (grav-

itationally) into one system. We have found three distinct regimes: weak, mild

and strong coupling regimes. In the weak coupling regime all three forces are in a

qualitative agreement and the resulting compact object arise as a linear combina-

tion of its constituents. In the mild coupling regime all three effects are present

yielding configurations that behave like a boson star with a larger compression

and hence with a larger compactness. In the strong coupling regime, all features

from the mild coupling regime are also present but amplified. In this regime a

large compression takes place, with maximum compactness slightly above 0.75,

and the resulting object represents a good black hole mimicker - that is, up to

distances close to the event horizon of a black hole the compactness profile of

the mimicker follows closely that of a black hole. When we try to increase the

compactness even more we did not get stable configurations which we interpret

as a signal for the black hole formation.

The main results of the thesis are as follows:

• a method for testing linear stability of the anisotropic structures with the de

Sitter interior is proposed and applied to the gravastar-like objects proving

their stability,

• a field-theoretic model for a compact object exhibiting dark energy-like

star behaviour is found in modified gravity by means of self-interacting

scalar field which is nonminimally coupled to gravity by virtue of the Ricci

curvature scalar,

• a field-theoretic model for a highly compact object that mimicks a black hole

is found for the combined system of a boson star and a global monopole

which are nonminimally coupled to gravity.
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Even though some of the issues concerning compact objects have been resolved

in this thesis, there are many open, interesting questions that I would like to

investigate. Here are some of them:

• Study nonminimally coupled global monopoles with a shell of Dirac fermions.

While in the case of bosons the scalar charge is a stabilizing factor, in the

case of fermions it will be the Pauli principle, which is automatically em-

bedded into the Dirac equation.

• Study other modifications of gravity that are not at odds with the Ostro-

gradsky theorem, i.e. the corresponding equations of motion contain just

two time derivatives. Examples of such theories include the scalar field cou-

pled to the Gauss-Bonnet term, and a coupling to the Einstein curvature

tensor.

• Construct a cosmological model that contains many randomly dispersed

global monopoles per Hubble volume. I expect that the deficit angle will

on large scales generate an average positive spatial curvature. This model

can be then put to test against modern cosmological observations.

• Study the observables that could tell compact objects from black holes.

Examples of such observables are (a) radial excited states and their decay

times; (b) nonspherical vibrational modes and their decay rates; (c) gravi-

tational waves emitted by slightly nonspherical compact stellar objects or

by binary systems in which one or both components comprise compact ob-

jects. Compare these results with those of standard compact stars such as

neutron stars and black holes.

• Study if quantum fluctuations can antiscreen the black hole singularities

(see e.g. Refs. [109, 110]).



APPENDIX A

CONVENTIONS AND THE TOV EQUATION

In this thesis we work in the spherical symmetry with the coordinates

xµ = (t, r, θ, ϕ). (A.1)

For the spherically symmetric space-time we use

ds2 = −eνdt2 + eλdr2 + r2dθ2 + r2 sin2 θdϕ2, (A.2)

where in general ν = ν(r, t) and λ = λ(r, t). For this metric, the nonvanishing

Christoffel symbols defined as

Γα
µν =

1

2
gαβ(∂νgβµ + ∂µgβν − ∂βgµν) (A.3)

are

Γr
rr =

λ′

2
, Γt

tr =
ν ′

2
, Γθ

ϕϕ = − sin θ cos θ, Γt
rr =

λ̇

2
eλ−ν ,

Γr
θθ = −re−λ, Γr

tt =
ν ′

2
eν−λ, Γθ

rθ = Γϕ
rϕ =

1

r
, Γϕ

θϕ = cot θ,

Γt
tt =

ν̇

2
, Γr

tr =
λ̇

2
, Γr

θθ = −r sin2 θe−λ. (A.4)
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The non-zero components of the Einstein tensor are

Gt
t = −e−λ

(

λ′

r
− 1

r2

)

− 1

r2
, (A.5)

Gr
r = e−λ

(

ν ′

r
+

1

r2

)

− 1

r2
, (A.6)

Gr
t = e−λ λ̇

r
, (A.7)

Gθ
θ = Gφ

φ =
1

2
e−λ

(

−ν ′λ′

2
− λ′

r
+

ν ′

r
+

ν ′2

2
+ ν ′′

)

−1

2
e−λ

(

λ̈+
λ̇2

2
− λ̇ν̇

2

)

. (A.8)

Tolman-Oppenheimer-Volkoff (TOV) equation for an anisotropic fluid can be ob-

tained i) directly from Einstein equations or ii) from the conservation of the

energy-momentum tensor. Conservation of the energy-momentum tensor yield

0 = T ν
µ ;ν =

1√−g

∂T ν
µ

√−g

∂xν
− 1

2

∂gνδ
∂xµ

T νδ , (A.9)

or in other ”words”:

∂tT
t
µ + ∂rT

r
µ + ∂θT

θ
µ + ∂ϕT

ϕ
µ +

ν̇ + λ̇

2
T t
µ +

(

ν ′ + λ′

2
+

2

r

)

T r
µ + cot θT θ

µ

− ν̇ + ν ′

2
T t
t −

λ̇+ λ′

2
T r
r − 1

r
T θ
θ − 1

r
T ϕ
ϕ − cot θT ϕ

ϕ = 0. (A.10)

If we assume now that the energy-momentum tensor depends on t and r only

and that the only non-vanishing non-diagonal elements are in t− r direction, we

obtain

Ṫ t
t + Ṫ t

r + T r′
t + T r′

r +
ν̇ + λ̇

2
T t
r +

λ̇

2
(T t

t − T r
r ) +

(

ν ′ + λ′

2
+

2

r

)

T r
t

+
ν ′

2
(T r

r − T t
t ) +

2

r

(

T r
r − 1

2
T θ
θ − 1

2
T ϕ
ϕ

)

= 0. (A.11)
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Tolmann-Oppenheimer-Volkoff equation is obtained from the above equation if

we insert the energy-momentum tensor for the anisotropic fluid

T ν
µ = diag(−ρ(r), pr(r), pt(r), pt(r)) (A.12)

and for the static metric (i.e. ν̇ = 0 = λ̇), yielding:

p′r = −1

2
(ρ+ pr)ν

′ +
2

r
(pt − pr). (A.13)





APPENDIX B

ENERGY CONDITIONS

Various energy conditions have been proposed as reasonable physical restrictions

on matter fields. They originate from the Raychaudhuri equation together with

the requirement that gravity should be attractive (see e.g. Refs. [22, 51, 68]).

When translated to the energy momentum tensor for an anisotropic matter they

read

The Weak Energy Condition (WEC) ρ ≥ 0, ρ+ pr ≥ 0, ρ+ pt ≥ 0,

The Dominant Energy Condition (DEC): ρ− pr ≥ 0, ρ− pt ≥ 0,

The Strong Energy Condition (SEC): ρ+ pr + 2pt ≥ 0. (B.1)

The weak energy condition imposes the requirement of a positive energy density

measured by any observer. Also the energy density plus pressures in any direction

needs to be positive. The dominant energy condition requires that the pressures

of the fluid do not exceed the energy density, so that the local sound speed in

any observable fluid is always less then the speed of light in vacuum. The strong

energy condition has very interesting implications. Its violation lead to regions

of repulsive gravity such as in cosmological inflation and gravastars. Hence it is

reasonable to require that the WEC and DEC are satisfied by a fluid, but that

the SEC may be violated.
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APPENDIX C

NEWTONIAN LIMIT OF THE EINSTEIN EQUATIONS

In the Newtonian limit, i.e. for c → ∞, the metric line element is given with (see

e.g. Ref. [111])

ds2 = −(1 + 2φN)dt
2 + d~r 2, (C.1)

where φN is the Newtonian potential. From the Einstein equation

Gν
µ = Rν

µ −
1

2
gνµR = 8πGNT

ν
µ (C.2)

we can express Ricci scalar R in terms of the energy-momentum scalar T via the

trace equation

R = −8πGNT (C.3)

leading to another form of the Einstein equations

Rν
µ = 8πGN

(

T ν
µ − 1

2
gνµT

)

. (C.4)

For the given metric (C.1) the only non-vanishing component of the Riemann

tensor is R0
0, thus we have only one Einstein equation in the Newtonian limit

R0
0 = 4πGN(T

0
0 − T i

i ). (C.5)
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Inserting (C.1) in the formula for the Riemann tensor we arrive at

R00 = −∂Γα
00

∂xα
= ∆φN . (C.6)

If we now recall that the energy-momentum tensor for the anisotropic fluid is

T ν
µ = diag(−ρ, pr, pt, pt) (C.7)

we arrive at the Poisson equation for the Newtonian potential

∆φN = 4πGN(ρ+
∑

pi). (C.8)

If we now use the following identity (φN = φN(r)):

∆φN =
1

r2
(

r2φ′
N

)′
, (C.9)

where primes denote derivatives with respect to r, it follows that the Newtonian

force is

FN = −φ′
N = − 1

r2

∫ r

0

4πGN(ρ+
∑

pi)r̃
2dr̃. (C.10)

Comparing this expression with the standard Newton law, we can read off the

active gravitational mass

M(r) = 4π

∫ r

0

(ρ+
∑

pi)r̃
2dr̃. (C.11)

The Newtonian force felt by a test particle with an angular momentum (per unit

mass) L is:

FN = −M(r)

r2
+

L2

r3
, (C.12)

where M(r) is the active gravitational mass given with the Eq. (C.11).



APPENDIX D

BOUND ORBITS

The geodesic equation
d2xµ

dτ 2
+ Γµ

αβ

dxα

dτ

dxβ

dτ
= 0 (D.1)

in the metric

ds2 = −eνdt2 + eλdr2 + r2(dθ2 + sin2 θdϕ2) (D.2)

can be written in terms of its (xµ = t and xµ = ϕ) components

d2t

dτ 2
+ ν ′

dt

dτ

dr

dτ
= 0, (D.3)

d2ϕ

dτ 2
+

2

r

dϕ

dτ

dr

dτ
+ 2

cos θ

sin θ

dθ

dτ

dϕ

dτ
= 0, (D.4)

from which we extract the two Killing vectors:

Kµ = (−eν , 0, 0, 0), (D.5)

Fµ = (0, 0, 0, r2 sin2 θ), (D.6)

which lead to the conserved quantities (see e.g. [51]):

E = −Kµ
dxµ

dτ
= eν

dt

dτ
, i.e.

d

dτ
E = 0, (D.7)

L = Fµ
dxµ

dτ
= r2 sin2 θ

dϕ

dτ
, i.e.

d

dτ
L = 0. (D.8)
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Here E is the conserved energy (per unit mass) and L is the conserved angular

momentum (per unit mass). Since the direction of the angular momentum is

conserved, without loss of generality we can set θ = π/2. From the velocity

normalization condition uµu
µ = −1 and making use of the conserved quantities

E and L we obtain an expression for the radial velocity squared:

(

dr

dτ

)2

= e−ν−λE2 − e−λ

(

L2

r2
+ 1

)

. (D.9)

If we rewrite this equation in a slightly different form

1

2

(

dr

dλ

)2

+ Veff(r) = ε, (D.10)

where ε = E2/2, the effective potential Veff(r) can be read off:

Veff(r) =
e−λ

2

(

L2

r2
+ 1

)

+
E2

2

(

1− e−ν−λ
)

. (D.11)

The effective force is then

Feff = −∇Veff . (D.12)

If the effective potential exhibits a local minimum (node in the effective force) in

the radial coordinate then stable bound orbits are possible. If on the other hand,

the effective potential has a local maximum (also node in the effective force) then

the bound orbits are unstable.
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”Gravastar solutions with continuous pressures and equation of state”, Class.

Quantum Grav. 23 (2006) 2303, [arxiv:gr-qc/0511097].

[6] D.J. Kaup, ”Klein-Gordon Geon”, Phys. Rev. 172 (1968) 1331–1342.

[7] M. Barriola and A. Vilenkin, ”Gravitational field of a global monopole”,

Phys. Rev. Lett. 63 (1989) 341.

[8] P.A.R. Ade et al. [Planck Collaboration], arxiv:1303.5085 [astro-ph.CO].
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Uvod

Jedno od najintrigantnijih rješenja Opće Teorije Relativnosti (OTR) u slučaju

kada materija poštuje jaki energijski uvjet (v. Dodatak B) su crne rupe. Crne

rupe predstavljaju vakuumska stacionarna rješenja Einsteinovih jednadžbi koja

posjeduju horizont dogadaja i singularitet u sredǐstu koji je sakriven horizontom

dogadaja. Ovaj fizikalni singularitet je još uvijek neriješen problem obzirom da

implicira kontroverzni problem gubitka informacije prema kojem je informacija

na horizontu dogadaja potpuno izgubljena. Principi gubitka informacije su u

konflitku sa standardnim zakonima kvantne fizike – kao posljedica unitarnosti

kvantne fizike, informacija o sustavu u jednom trenutku je dovoljna da se odredi

informacija o sustavu u bilo kojem drugom trenutku. Uzimajući u obzir sve na-

vedeno, prirodno se nameće pitanje da li je konačno stanje gravitacijskog kolapsa

crna rupa ili neki drugi (još uvijek neotkriveni) gusti objekt koji spriječava daljnji

kolaps.

Koncept nesingularnog kolapsa datira još od Saharovljevog razmatranja jed-

nadžbe stanja p = −ρ za jako guste fluide [1] te Glinerove pretpostavke da bi

ovakvi fluidi mogli predstavljati konačno stanje gravitacijskog kolapsa [2]. Inspi-

rirani ovim idejama, Mazur i Mottola su kreirali gravastar (gravitational vacuum

star = gravitacijska vakuumska zvijezda) [3]. Gravastar je anizotropni, kompak-

tni, astrofizički objekt koji se sastoji od de Sitterove jezgre (pr(0) = pt(0) =

−ρ(0)), te se nastavlja na vanjsku Schwarzschildovu metriku izbjegavajući formi-

ranje horizonta dogadaja. Zbog svoje visoke komapktnosti (omjer mase i radi-

i
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jusa), gravastar vanjskom promatraču nalikuje na crnu rupu te kao takav pred-

stavlja dobru alternativu crnim rupama. S druge pak strane, opažač koji se na-

lazi u blizini horizonta dogadaja jasno raspoznaje gravastar od crne rupe budući

gravastar, za razliku od crne rupe, ne posjeduje horizont dogadaja. Ovisno o

strukturi, danas razlikujemo dvije vrste gravastara – prva (originalna) realizacija

ima ljuskastu strukturu u kojoj su gustoća energije i tlakovi diskretne funkcije ra-

dijalne koordinate, dok su u drugoj realizaciji sve navedene funkcije kontinuirane

u prostoru.

Glavna tema ove disertacije je studija mikroskopskih modela koji predstavljaju

alternativne konfiguracije crnim rupama, tj. istraživanje stabilnih, kompaktnih,

astrofizičkih objekata koristeći Lagrangeove principe klasične teorije polja.

Najstariji, i ujedno najvǐse izučavan astrofiziči model baziran na Lagrangeovom

formalizmu je bozonska zvijezda, koja predstavlja kompaktni objekt izgraden od

samointeragirajućeg, gravitacijski vezanog, skalarnog polja [6]. Poznato je da bo-

zonske zvijezde u OTR-u posjeduju odredena svojstva karakteristična za gravas-

tar, kao što su anizotropija tlakova te relativno velika kompaktnost (µmax = 0.32).

Medutim, neovisno o jakosti samointerakcije, bozonska zvijezda ne može postići

proizvoljno veliku kompaktnost i kao takva ne predstavlja dobru alternativu crnoj

rupi. Takoder, principalni tlakovi ne posjeduju de Sitterovu jezgru, tj. tlakovi u

sredǐstu zvijezde su pozitivni. Iz navedenih razloga, u ovoj disertaciji proširujemo

analizu bozonskih zvijezda tako što modificiramo gravitaciju uvodenjem nemini-

malnog vezanja skalarnog polja na gravitaciju preko Riccijevog skalara. Pokazuje

se da već ova, minimalna, ekstenzija OTR-a rezultira konfiguracijama koje vǐse

nalikuju zvijezdama tamne energije (tzv. dark energy stars) nego ”običnim” bo-

zonskim zvijezdama. Takoder, kompaktnost ovakvih konfiguracija je znatno veća

ako materija nije ograničena energijskim uvjetima.

Drugi model u klasičnoj teoriji polja koji se istražuje u ovoj disertaciji uključuje

globalne monopole [7] te kombinirani sustav bozonske zvijezde i globalnog mo-

nopola. Globalni monopoli spadaju u klasu topoloških defekata koji su se 80-ih i

90-ih u kozmologiji proučavali u kontekstu nastajanja velikih struktura u Svemiru.

Iako su moderna opažanja u kozmologiji isključila monopole kao glavni uzrok nas-

tajanja struktura, još uvijek ostaje mogućnost da mali dio termalnih fluktuacija

u kozmičkom mikrovalnom zračenju dolazi od topoloških defekata. Najjednos-

tavnija realizacija globalnog monopola u teoriji polja uključuje skalarno polje s
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(globalnom) O(3) simetrijom koja se spontano lomi u O(2) zbog vakuuma. Unu-

tar OTR-a najistaknutije svojstvo globalnog monopola je gravitacijski odbojna

massa jezgre. Medutim, kada se gravitacija modificira uvodenjem neminimalnog

vezanja, efektivna sila postaje lokalno privlačna, te u tom slučaju imamo kružne

orbite čestice u polju monopola. Zbog svih navedenih zanimljivih svojstava glo-

balnog monopola, razumno je istražiti bozonsku zvijezdu u polju monopola. Za-

ista, pokazuje se da odbojni gravitacijski efekti monopola stabiliziraju bozonsku

zvijezdu tako da rezultirajuća konfiguracija ne posjeduje horizont dogadaja iako

ima veliku gustoću energije, velike (i negativne) principalne tlakove, veliku kom-

paktnost, velik efektivni potencijal te velike lokalne sile. Kao takva, bozonska

zvijezda u polju monopola predstavlja ozbiljnu alternativu crnoj rupi.

Gravitacijske vakuumske zvijezde

Radijalna stabilnost gravastara

Nakon originalnog rada Mazura i Mottole, gravastari kao alternativne konfigu-

racije crnim rupama su privukle dosta pažnje u području teorijske astrofizike,

te je nastao niz radova kao rezultat istraživanja različitih svojstava gravastara.

Možda najbitnije fizikalno ponašanje koji svaki ozbiljni astrofizički model mora

slijediti jest stabilnost na radijalne perturbacije. Uobičajena metoda ispitivanja

stabilnosti nekog sustava uključuje praćenje promjene ponašanja nakon uvodenja

male smetnje u sustav. U našem slučaju, radimo linearizaciju Einsteinovih jed-

nadžbi oko ravnotežnog položaja. Za prostor-vrijeme uzimamo Schwarzschildovu

metriku

ds2 = −eν(r,t)dt2 + eλ(r,t)dr2 + r2dθ2 + r2 sin2 θdφ2, (D.13)

jer želimo da nakon uvodenja smetnje sustav zadrži sfernu simetriju. Tenzor

energije-impulsa prikladan za opis gravastara je

T ν
µ = (ρ+ pr)uµu

ν + gνµpr − lµl
ν(pt − pr)− kµk

ν(pt − pr). (D.14)

Brzina fluida u radijalnom smjeru ξ̇ je definirana kao

ξ̇ ≡ dr

dt
=

ur

ut
, (D.15)
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pri čemu ξ označava radijalni pomak elementa fluida, r → r + ξ(r, t). Slijedimo

Chandrasekharovu metodu [30, 31], tj. pretpostavljamo da sve metričke funkcije

i funkcije koje opisuju materiju samo malo odstupaju od položaja ravnoteže

λ(r, t) = λ0(r) + δλ(r, t), ν(r, t) = ν0(r) + δν(r, t), (D.16)

ρ(r, t) = ρ0(r) + δρ(r, t), pr(r, t) = pr0(r) + δpr(r, t), pt(r, t) = pt0(r) + δpt(r, t),

(D.17)

gdje su s ”0” su označene ravnotežne funkcije, a δf(r, t) su takozvane Eulerove

perturbacije, f ∈ {λ, ν, ρ, pr, pt, }. Eulerove perturbacije mjere lokalni pomak

iz ravnoteže dok Lagrangeove perturbacije mjere pomak iz ravnoteže u sustavu

fluida – u linearnoj aproksimaciji Lagrangeove perturbacije imaju uloga potpunog

diferencijala i s Eulerovima su povezane preko relacije

df(r, t) = δf(r, t) + f ′
0(r)ξ. (D.18)

Linearizacija Einsteinovih jednadžbi Gµν = 8πGNTµν (GN = 1) vodi na dva

skupa jednadžbi: jedan za ravnotežne (statičke) funkcije, te drugi za perturbirane

funkcije. Sustav u ravnoteži se opisuje tzv. Tolman-Oppenheimer-Volkoff (TOV)

jednadžbom (v. Dodatak A):

p′r0 = −1

2
(ρ0 + pr0) ν

′
0 +

2

r
Π0, (D.19)

gdje je Π0 = pt0 − pr0 anizotropija u tlakovima. Perturbirane funkcije su opisane

skupom jednadžbi:
(

re−λ0δλ
)′
= 8πr2δρ, (D.20)

δν ′ =

(

ν ′
0 +

1

r

)

δλ+ 8πreλ0δpr, (D.21)

˙δλ
e−λ0

r
= −8πξ̇(ρ0 + pr0), (D.22)

eλ0−ν0(ρ0 + pr0)ξ̈ +
1

2
(ρ0 + pr0)δν

′ +
1

2
(δρ+ δpr)ν

′
0 + δp′r −

2

r
δΠ = 0. (D.23)

Jednadžba (D.23) je tzv. pulzacijska jednadžba koja služi za ispitivanje radijalne

stabilnosti sustava. Da bismo riješili ovu jednadžbu, sve perturbirane funkcije se

trebaju izraziti preko radijalnog pomaka ξ i ravnotežnih funkcija. Iz Einsteinovih

jednadžbi (D.20)-(D.22) slijedi željeni oblik za δρ i δλ, dok se informacija o δpr i
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Slika D.1. Gustoća energije ρ0/ρc, radijalni tlak pr0/ρc, transverzalni tlak pt0/ρc
i kompaktnost µ0 kao funkcija r/R za {R,n,m} = {1, 2, 3}. Tri različite vrijed-
nosti centralne gustoće energije ρc = {0.19, 0.20, 0.21} i njihovih jakosti anizotropije
β = {92.90, 84.77, 76.11} odgovaraju donjoj, srednjoj i gornjoj krivulji, respektivno. r0
označava radijus na kojem brzina zvuka ǐsčezava (za srednju krivulju).

δΠ dobiva iz statičkih rješenja.

Statička rješenja za gravastar su opisana diferencijalnom jednadžbom prvog reda (D.19)

koja ima tri nepoznanice ρ0, pr0, pt0. Da bismo riješili danu jednadžbu, slijedimo

Ref. [5] te zadajemo gustoću energije i anizotropiju:

ρ0(r) = ρc(1− (r/R)n), (D.24)

Π0(r) = βρ0(r)
mµ0(r), (D.25)

gdje su n, m (slobodni) parametri, i ρc = ρ0(0) je centralna gustoća energije. β

mjeri jakost anizotropije i R je radijus gravastara za koji je pr0(R) = 0. µ0(r)

je kompaktnost definirana kao µ0(r) = 2m0(r)/r, gdje je m0(r) funkcija mase

m0(r) = 4π
∫

ρ0(r)r
2dr. Na Sl. D.1 je prikazano rješenje kontinuiranog modela

gravastara. Gustoća energije je pozitivna i monotona. Tlakovi imaju de Sitte-

rovu jezgru, pr0(0) = pt0(0) = −ρ(0). Gravastar takoder ima atmosferu koja je

definirana kao područje u kojem je brzina zvuka, v2s = dpr0/dρ0, pozitivna. U

predstavljenom modelu µmax = 0.7. Takoder je vidno da je dominantni energijski

uvjet (v. Dodatak B) očuvan.

Koristeći činjenicu da anizotropija ovisi samo o izboru gustoće energije, te
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vezu izmedu Eulerovih i Lagrangeovih perturbacija, slijedi

δpr = −p′r0ξ +
dpr0(ρ0)

dρ0
(δρ+ ρ′0ξ), (D.26)

δΠ = −Π′
0ξ +

dΠ0[ρ0]

dρ0
(δρ+ ρ′0ξ), (D.27)

gdje je dpro(ρ0)/dρ0 = dpro/dr
dρ0/dr

jer i gustoća energije i radijalni tlak ovise samo o

radijalnoj koordinati. Iz (D.19) slijedi

δρ = −ρ′0ξ − (ρ0 + pr0)
eν0/2

r2
(

r2e−ν0/2ξ
)′ − 2

r
Π0ξ. (D.28)

Kada uvrstimo (D.28) u (D.26) dobivamo perturbaciju za radijalni tlak

δpr = −p′r0ξ − (ρ0 + pr0)
dpr0[ρ0]

dρ0

eν0/2

r2
(

r2e−ν0/2ξ
)′ − 2

r
Π0

dpr0[ρ0]

dρ0
ξ. (D.29)

Da bismo riješili pulzacijsku jednadžbu, koristimo Chandrasekharovu metodu te

pretpostavimo da sve metričke funkcije i funkcije materije ovise oscilatorno o

vremenu f(r, t) = eiωtf(r). Pulzacijska jednadžba sada poprima oblik

P0ξ
′′ + P1ξ

′ + P2ξ = −ω2Pωξ, (D.30)

gdje su P0,P1,P2 i Pω polinomi koji ovise o r i statičkim funkcijama. Jed-

nadžba (2.28) predstavlja jednadžbu vlastitih vrijednosti za radijalni pomak ξ

(ω2 je vlastita vrijednost). Rubni uvjeti za ovu jednadžbu su

ξ = 0 u r = 0, (D.31)

∆pr = 0 u r = R. (D.32)

Uz pomoć transformacija

P = e
∫
P1/P0 dr i Q =

P2

P0

P, W =
Pω

P0

P, (D.33)

pulzacijska jednadžba (D.30) se svodi na Sturm-Liouvilleov oblik

(Pξ′)′ +Qξ = −ω2Wξ. (D.34)
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Slika D.2. Radijalni pomak ξ(r) za {R,n,m} = {1, 2, 3} i ω2 = 0. Tri različite
vrijednosti centralne gustoće energije ρc = {0.19, 0.20, 0.21} i odgovarajuće vrijednosti
anizotropije β = {92.90, 84.77, 76.11} odgovaraju donjoj (nestabilno), srednjoj (granično
stabilno) i gornjoj (stabilno) krivulji, respektivno.

Prema Sturm-Liouvilleovom formalizmu, broj nultočaka od ξ za odredeni ω2 je

usko povezan sa stabilnošću sustava: ako za ω2 = 0, ξ nema nultočke onda je

sustav stabilan za sve radijalne modove vǐsih frekvencija; ako pak ξ ima nultočke

onda je sustav nestabilan za sve radijalne modove. Za stabilan sustav vrijedi

ω2
0 < ω2

1 < · · · < ω2
n < . . . , (D.35)

gdje n označava broj nultočaka.

Rješenja i diskusija

S obzirom da je brzina zvuka u gravastaru pozitivna jedino u području gravastar-

ske atmosfere, tj. za r > r0, prilikom ispitivanja radijalne stabilnosti danog sus-

tava, fizikalno je podijeliti cijeli interval na dva dijela: I1 = (0, r0) i I2 = (r0, R).

Standardan Sturm-Liouvilleov formalizam se primjenjuje na I2 dok u I1 pretpos-

tavljamo da signal eksponencijalno trne budući je brzina zvuka imaginarna.

Ispitivanje stabilnosti bilo kojeg sustava općenito se svodi na traženje graničnih

vrijednosti parametara za koji je sustav stabilan. U Sturm-Liouvilleovom forma-

lizmu, granična stabilnost se postiže u slučaju kada je frekvencija fundamental-

nog moda (n = 0) nula (ω2
0 = 0). Na Sl. D.2 je prikazan radijalni pomak ξ(r)

za ω2 = 0 za tri različite vrijednosti centralne gustoće energije. Srednja krivu-
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Slika D.3. Centralna gustoća energije ρc u ovisnosti o radijusu R. Za {R,n,m} =
{1, 2, 3} parametar anizotropije β = {92.90, 84.77, 76.11} je konstantan na svakoj krivu-
lji i fiksiran izborom centralne gustoće energije ρc = {0.19, 0.20, 0.21} za donju, srednju
i gornju krivulju, respektivno. Minimum svake krivulje predstavlja granično stabilne
konfiguracije.

lja odgovara graničnoj stabilnosti, gornja predstavlja stabilnu konfiguraciju jer

ξ(r) nema nultočke, dok donja krivulja predstavlja nestabilnu konfiguraciju jer

ξ(r) ima nultočke. Izbor parametara odgovara srednjoj, donjoj te gornjoj krivulji

na Sl. D.1, respektivno. Na Sl. D.3 je predstavljena krivulja stabilnosti ρc(R).

Minimumi krivulja odgovaraju graničnoj stabilnosti za odredeni parametar ani-

zotropije β. Prilikom povećanja centralne gustoće energije, radijus stabilnih kon-

figuracija se smanjuje, dok se radijus nestabilnih konfiguracija povećava.

Neminimalne bozonske zvijezde

Iako su gravastarske konfiguracije bazirane na vrlo zanimljivim idejama, svi gra-

vastarski modeli su makroskopski u smislu da njihovi temelji leže u proučavanju

Einsteinove teorije za neki fluid koji slijedi fenomenološku jednadžbu stanja, te

kao takvi ne počivaju na temeljima teorije polja. Oba modela gravastara, di-

skontinuirani i kontinuirani, su esencijalno tzv. toy-modeli (toy=igračka) koji su

takoder bitni u proučavanju odredenih svojstava gravastara. Medutim, fundamen-

talno razumijevanje danih objekata je moguće jedino ako ih uspijemo modelirati

koristeći mikroskopske principe teorije polja.
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Dobar primjer mikroskopskog modela koji sadrži anizotropiju u principalnim

tlakovima i relativno veliku kompaktnost je bozonska zvijezda. Bozonske zvi-

jezde su nesingularna rješenja Einstein-Klein-Gordonovog sustava jednadžbi za

masivno, kompleksno skalarno polje. Opsežno istraživanje bozonskih zvijezda

počelo je s Kaupom [6] koji je razmatrao gravitacijski vezane skalarne čestice.

Ruffini i Bonazzola [53] su razmatrali bozonske zvijezde bez samointerakcije dok

su efekt samointerakcije uveli u razmatranje Colpi i suradnici [52]. Pokazalo se da

iako samointerakcija znatno povećava kompaktnost bozonske zvijezde, anizotro-

pija u principalnim tlakovima je pozitivna, što je u suprotnosti s gravastarima. Iz

tog razloga analiza bozonskih zvijezda, u ovoj disertaciji, je proširena uvodenjem

neminimalnog vezanja polja na gravitaciju preko Riccijevog skalara. Pokazuje se

da čak i ovakva minimalna ekstenzija Einsteinove gravitacije rezultira konfigura-

cijama koje zbog negativnih tlakova vǐse nalikuju na zvijezde tamne energije nego

na ”obične” bozonske zvijezde.

Model

Akcija za gravitaciju je standardna Einstein-Hilbertova akcija

SEH =

∫

d4x
√
−g

R

16πGN
, (D.36)

gdje je GN Newtonova konstanta, R je Riccijev skalar, i g je determinantna

metričkog tenzora gµν

gµν = diag(−eν(r), eλ(r), r2, r2 sin2 θ) . (D.37)

Za materiju uzimamo akciju samointeragirajućeg skalarnog polja neminimalno

vezanog na gravitaciju

Sφ =

∫

d4x
√
−g

(

−gµν∂µφ
∗∂νφ−m2

φφ
∗φ− λφ

2
(φ∗φ)2 + ξRφ∗φ

)

, (D.38)

gdje je ξ mjera jakosti vezanja skalarnog polja φ na gravitaciju, φ∗ je kompleksno

konjugirani φ. Tenzor energije-impulsa za kompleksno skalarno polje se dobije
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varijacijom akcije po metričkom tenzoru

T φ
µν = 2δα(µδ

β
ν)∂αφ

∗∂βφ− gµν

[

gαβ∂αφ
∗∂βφ+m2

φφ
∗φ+

1

2
λφ(φ

∗φ)2
]

− 2ξφ∗φGµν + 2ξ∇µ∇ν(φ
∗φ)− 2ξgµν�(φ∗φ). (D.39)

Jednadžba gibanja za skalarno polje se dobije varijacijom akcije po φ∗

[

�−m2
φ − λφφ

∗φ+ ξR
]

φ = 0. (D.40)

Varijacijom ukupne akcije S = SE−H + Sφ po metričkom tenzoru gµν dobijemo

Einsteinovu jednadžbu

Rµν −
1

2
gµνR = 8πGNTµν . (D.41)

Nadalje, biramo oscilatorno polje u vremenu

φ(r, t) = φ0(r)e
−ıωt, φ0(r) ∈ R. (D.42)

Da bismo problem riješili numerički zgodno je sve varijable/funkcije izraziti preko

bezdimenzionalnih veličina:

r√
8πGN

→ x, 8πGNφ0(r)
2 → σ(r)2,

8πGNR → R̃, 8πGNm
2
φ → m̃2

φ, 8πGNω
2 → ω̃2. (D.43)

Sada su sve varijable/funkcije izražene u reduciranim Planckovim jedinicama

m̄P =

√

~c

8πGN
= 0.2435× 1019

GeV

c2
= 0.4341× 10−8 kg,

l̄P =

√

~8πGN

c3
= 8.1024× 10−35 m. (D.44)
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Reskalirane diferencijalne jednadžbe koje rješavamo su

λ′ =
1− eλ

x
+ x

eλ(m̃2
φ + ω̃2e−ν +

λφ

2
σ2)σ2 + (1 + 4ξ)σ′ 2 − 2ξν ′σσ′

1 + 2ξσ2

+
4xξeλ(m̃2

φ − ω̃2e−ν + λφσ
2 − ξR̃)σ2

1 + 2ξσ2
, (D.45)

ν ′ =
(eλ − 1)(1 + 2ξσ2)/x+ xeλ(−m̃2

φ + ω̃2e−ν − λφ

2
σ2)σ2 + xσ′ 2 − 8ξσσ′

1 + 2ξσ2 + 2ξxσσ′
,

(D.46)

σ′′ = −
(

2

x
+

ν ′ − λ′

2

)

σ′ + eλ(m̃2
φ + λφσ

2 − ω̃2e−ν − ξR̃)σ, (D.47)

s bezdimenzionalnim Riccijevim skalarom

R̃ =
2m̃φ

2σ2 + 2(1 + 6ξ)
[

(m̃2
φ − ω̃2e−ν + λφσ

2)σ2 + e−λσ′ 2
]

1 + 2ξ(1 + 6ξ)σ2
, (D.48)

gdje ′ označavaju derivacije po x.

Jednadžbe (D.45–D.47) imaju jedinstveno rješenje (koje ovisi o σ0) za dane rubne

uvjete:

(1) λ(0) = 0, (2) ν(∞) = 0, (3) σ(0) = σ0, (4) σ(∞) = 0.

(D.49)

Da bismo problem riješili numerički, potrebno je zadati niz parametara {λφ, m̃
2, ω̃2, ξ}

reda veličine jedan u reduciranim Planckovim jedinicama. Mi pak znamo da u

svim fizikalno zanimljivim situacijama, dani parametri se znatno razlikuju od je-

dinice. Ovaj problem se rješava tako što prepoznamo da su bezdimenzionalne

jednadžbe (D.45–D.48) invarijantne na ’konformnu’ transformaciju

x → βx, λ → λ

β2
, R̃ → R̃

β2
, m̃2 → m̃2

β2
, ω̃2 → ω̃2

β2
, σ → σ, ξ → ξ.

(D.50)

Takoder slijedi

M
∼→ βM. (D.51)

Na ovaj način možemo generirati astrofizičke objekte različitih veličina: od jako

malih kompaktnih objekata do jako velikih (galaktičkih) haloa tamne materije.
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Slika D.4. Maksimalna masa kao funkcija ξ za λφ = {0, 20, 50, 100} od dole prema
gore. Isprekidane krivulje za ξ < 0 opisuju konfiguracije koje poštuju slabi energijski
uvjet i za ξ > 0 konfiguracije koje poštuju dominantni energijski uvjet. Pune krivulje
opisuju konfiguracije koje nisu ograničene energijskim uvjetima. Takoder m2

φ = m̄2
P .

Zvijezde tamne energije - efekt neminimalnog vezanja

U slučaju minimalnog vezanja polja na gravitaciju, anizotropija je

Π = pt − pr = −2e−λφ′ 2
0 . (D.52)

Komponente tenzora energije-impulsa, općenito, za anizotropni fluid su

T ν
µ = diag(−ρ, pr, pt, pt), (D.53)

gdje je ρ gustoća energije, pr je radijalni i pt je transverzalni tlak (pt = pθ = pφ).

Iz (D.52) sada eksplicitno vidimo da je anizotropija isključivo negativna funkcija

radijalne koordinate, iz čega direktno slijedi da se u minimalnom vezanju ne mogu

konstruirati strukture s pr > pt kao što je to slučaj kod gravastara. Za ξ 6= 0,

anizotropija poprima oblik:

Π = −2e−λφ′2
0 − 2ξ(Gθ

θ −Gr
r)φ

2
0 + 2ξe−λ

(

ν ′ +
4

r

)

φ0φ
′
0

− 4ξ
(

m2
φ + λφφ

2
0 − ω2e−ν − ξR

)

φ2
0. (D.54)

Kao što je spomenuto ranije u tekstu, uvodenjem neminimalnog vezanja Π može

postati pozitivna za odredene radijalne koordinate, što je jako važno svojstvo pri
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Slika D.5. Efektivna kompaktnost kao funkcija parametra ξ za λφ = 0 (točkasta kri-
vulja), λφ = 20 (kratko-isprekidana krivulja) i λφ = 50 (dugo-isprekidana krivulja).
Takoder m2

φ = m̄2
P .

kreiranju mikroskopskih objekata s negativnim tlakovima.

Rješenja i diskusija

Kada modeliramo sferno-simetrične, lokalizirane konfiguracije materije, energijski

uvjeti (v. Dodatak B) predstavljaju bitan kriterij za fizikalno prihvatljivu mate-

riju. Za ξ 6= 0 proizlazi da su slabi i dominantni energijski uvjeti narušeni. Efekt

nepoštivanja danih energijskih uvjeta zapisan je u krivulji M̃max(ξ) prikazanoj

na Sl. D.4 isprekidanim linijama, gdje se M̃max za dani ξ dobije kao maksimum

u krivulji M̃(σ0) (lijevo od maksimuma u M̃(σ0) su stabilne, a desno nestabilne

konfiguracije).

Da bismo odredili područje najveće kompaktnosti, definiramo tzv. efektivnu

kompaktnost [94]

C(σ0, λφ) =
M99(σ0, λφ)

R99
, (D.55)

gdje je R99 radijus na kojem je masa zvijezde jednaka 99% ukupne mase M (M =

m(∞)). Kompaktnost je µ = 2C. Na Sl. D.5 je prikazana efektivna kompaktnost

u ovisnosti o ξ za tri različite vrijednosti parametra samointerakcije λφ = 0, 20, 50.

Vidimo da se maksimalna kompaktnost postiže u području negativnih ξ tako

da µmax ≈ 0.5. Medutim, kada uzmemo u obzir valjanost energijskih uvjeta,

efektivna kompaktnost se smanjuje što je prikazano na Sl. D.6, te dostiže svoju

maksimalnu vrijednost u području negativnih ξ i nešto je veća od maksimalne
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Slika D.6. Efektivna kompaktnost u ovisnosti o ξ za konfiguracije koje poštuju slabi
i dominantni energijski uvjet. λφ = 0 (točkasta krivulja),λφ = 20 (kratko-isprekidana
krivulja) i λφ = 50 (dugo-isprekidana krivulja). Takoder m2

φ = m̄2
P .

kompaktnosti kod običnih bozonskih zvijezda za koje je µmax ≈ 0.32.

Kada promotrimo kako se ponašaju gustoće energije i tlakovi, proizlazi da su

principalni tlakovi upravo u području najveće kompaktnosti negativni. Primjer

jedne ovakve konfiguracije je dan na Sl. D.7. Jaki energijski uvjet, kao signal

odbojne gravitacije, je, nažalost, očuvan za sve ξ.
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Slika D.7. Gustoća energije i principalni tlakovi (umetak) za m2
φ = m̄2

P , ξ = −4,

{λφ, σc} = {0, 0.050}.

Medutim, iako se za negativnu vrijednost parametra samointerakcije mogu

pronaći konfiguracije koje blago narušavaju jaki energijski uvjet, ovakva rješenja

su generički nestabilna. Takoder je moguće pronaći konfiguracije s pozitivnim
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tlakovima, no one se postižu za pobudena stanja skalarnog polja koja generiraju

oscilatorne funkcije gustoće energije i tlakova, prilikom čega dolazi do narušenja

slabog energijskog uvjeta.

Neminimalne bozonske D-zvijezde

Neminimalni globalni monopol

Globalni monopoli, uz kozmičke strune, domenske zidove i kozmičke teksture,

spadaju u klasu topoloških defekata koji nastaju spontanim lomljenjem simetrije

pri faznom prijelazu u ranom Svemiru. Standardan primjer globalnog monopola

je teorija polja koja se sastoji od tri realna skalarna polja čija je akcija O(3)

simetrična, te se termalno induciranim faznim prijelazom lomi u O(2). Barriola i

Vilenkin [7] su prvi razmatrali globalni monopol u gravitaciji. Nadalje su Lousto

i suradnici [100] pokazali da globalni monopol ima odbojne gravitacijske efekte.

Nucamendi i suradnici [104] su uveli neminimalno vezanje polja na gravitaciju

kako bi pokazali postojanje stabilnih kružnih orbita u polju monopola.

Model neminimalnog globalnog monopola

Akcija za globalni monopol koji je neminimalno vezan na gravitaciju je

Sφ =

∫

d4x
√−g

(

−1

2
gµν(∂µφ

a)(∂νφ
a)− V (φa) +

1

2
ξR(φaφa)

)

, (D.56)

gdje je φa, a = 1, 2, 3, triplet skalarnog polja s globalnom O(3) simetrijom koja

je spontano slomljena u O(2). Potencijal koji lomi simetriju je

V (φa) =
µ2

2
φaφa +

λφ

4
(φaφa)2 +

µ4

4λφ
, (D.57)

pri čemu je µmaseni član monopola i λφ je jakost samointerakcije. Veličina ξ mjeri

jakost vezanja skalarnog polja i gravitacije (preko Riccijevog skalara R). Tenzor

energije-impulsa za globalni monopol se dobije varijacijom akcije po metričkom
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tenzoru gµν :

T φ
µν = (∂µφ

a)(∂νφ
a)− gµν

[

1

2
gαβ(∂αφ

a)(∂βφ
a) +

µ2

2
φaφa +

λφ

4
(φaφa)2 +

µ4

4λφ

]

−ξ (Gµν + gµν�−∇µ∇ν) (φ
aφa) . (D.58)

Jednadžba gibanja za skalarno polje dobiva se varijacijom ukupne akcije S =

SEH + SGM po φa:

�φa − ∂V

∂φa
+ ξRφa = 0 . (D.59)

Za polje monopola biramo tzv. jež Ansatz

~φ(~r, t) = φ(r) (sin θ cosϕ, sin θ sinϕ, cos θ) . (D.60)

Einsteinove jednadžbe Gµν = 8πGNTµν i jednadžba gibanja za skalarno polje u

reduciranim Planckovim jedinicama su

dλ

dx
=

1− eλ

x
+∆

x

1 + ξ∆φ̃2

{1

2
(1 + 4ξ)φ̃′2 + eλ

φ̃2

x2
+ eλ∆

λφ

4
(1− φ̃2)2

−ξν ′φ̃φ̃′ + 2ξeλ
(

∆λφ(φ̃
2 − 1) +

2

x2
− ξR̃

)

φ̃2
}

, (D.61)

dν

dx
=

eλ − 1

x

1 + ξ∆φ̃2

1 + ξ∆φ̃2 + ξ∆xφ̃φ̃′

−∆
x

1 + ξ∆φ̃2 + ξ∆xφ̃φ̃′

{

− 1

2
φ̃′ 2 + 4ξ

φ̃φ̃′

x
+ eλ

(

φ̃2

x2
+∆

λφ

4
(1− φ̃2)2

)

}

,

(D.62)

d2φ̃

dx2
= −1

2

(

dν

dx
− dλ

dx
+

4

x

)

φ̃′ + eλ
[

∆λφ(φ̃
2 − 1) +

2

x2
− ξR̃

]

φ̃ , (D.63)

s Riccijevim skalarom

R̃ = ∆
(1 + 6ξ)

[

e−λφ̃′ 2 + 2 φ̃2

x2 −∆λφφ̃
2(1− φ̃2)

]

+∆λφ(1− φ̃2)

1 + ξ(1 + 6ξ)∆φ̃2
. (D.64)
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U limesu x → ∞ (φ̃ → 1) jednadžbe (D.61) i (D.62) se mogu formalno integrirati,

iz čega slijedi

e−λ(x) = eν(x) = 1− ∆

1 + ξ∆
− 2M

x
. (D.65)

gdje je M masa jezgre monopola. Deficitni kut u slučaju neminimalnog vezanja

je:

∆̃ =
∆

1 + ξ∆
, (D.66)

pri čemu je ∆ = 8πGNφ
0
0 deficitni kut, tj. skala lomljenja simetrije i φ̃ = φ/φ0.

Rubni uvjeti za jednadžbe (D.61–D.63) su:

(1) eλ(0) = 1, (2) eν(∞) = 1− ∆̃ , (3) φ̃(0) = 0, (4) φ̃(∞) = 1. (D.67)

Rezultati i diskusija

U slučaju minimalnog vezanja (ξ = 0) polje monopola je pozitivno i monotono,

masa jezgre je uvijek negativna, i efektivna (v. Dodatak D) i Newtonova sila (v.

Dodatak C) su odbojne na cijelom r-u, gustoća energije je pozitivna i monotona,

tlakovi su negativni (uz pr > pt), te je jaki energijski uvjet narušen. U slučaju

neminimalnog vezanja (ξ 6= 0), polje monopola je takoder pozitivno i monotono

(v. Sl. D.8), no masa jezgre sada postaje lokalno pozitivna fukcija radijusa (v.

Sl. D.9). Efektivna i Newtonova sila takoder mogu biti lokalno privlačne (v.

Sl. D.10), iako su asimptotski ipak odbojne. Iako je masa jezgre lokalno pozitivna

za odredene vrijednosti ξ, to svojstvo nije uzrokom postojanja lokalno privlačnih

sila (te stabilnih kružnih orbita), već (lokalno) poštivanje jakog energijskog uvjeta

zbog pozitivnih tlakova i (lokalno) negativne gustoće energije (v. Sl. D.11), koja

očito narušava slabi energijski uvjet.

Neminimalna bozonska zvijezda i globalni monopol

D-zvijezde ili zvijezde s topološkim defektima su ”kompaktni objekti s deficitnim

kutem, koji generaliziraju Q-zvijezde uvodenjem kompleksnog skalarnog polja (ili

fermionskog polja), Goldstoneovog polja i klasične Einsteinove gravitacije” [105].

U [106] su se istraživale fermionske D-zvijezde, dok se u [107] provela aproksima-

tivna analiza bozonskih D-zvijezda. Dok su fermionske D-zvijezde pokazale još

uvijek neriješene probleme stabilnosti, izučavanje bozonskih D-zvijezda je motivi-
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50 100 150 200
r�lP0.0

0.2

0.4

0.6

0.8

1.0

Φ

Slika D.8. Polje monopola φ̄ za λφ = 0.1, ∆ = 0.1, ξ = −1 (puna krivulja), ξ = 1
(isprekidana krivulja) i ξ = 2 (točkasta krivulja).
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Slika D.9. Masa jezgre za λφ = 0.1, ∆ = 0.1, ξ = −1 (puna krivulja), ξ = 1
(isprekidana krivulja) i ξ = 2 (točkasta krivulja).
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Slika D.10. Efektivna sile F̄eff (D.12) (puna krivulja), Newtonova sila F̄N (C.12)
(točkasta krivulja) i Newtonova sila od mase jezgre monopola (4.48) (isprekidana kri-
vulja) za ξ = −1, λφ = 0.1, ∆ = 0.1. Kutni moment i energija čestice po jedinici su
L̄ = 0.1 i Ē = 1.
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Slika D.11. Gustoća energije ρ̄ (puna krivulja) i principalni tlakovi (isprekidane kri-
vulje, p̄r > p̄t) kao fukcija x = r/l̄P za λφ = 0.1, ∆ = 0.1 i ξ = −1.

ralo postojanje crnih rupa s deficitnim kutem. Nadalje, gibanje u polju D-zvijezda

se proučavalo u [108], dok su se u [105] razmatrale D-zvijezde kao gravitacijske

leće.

U ovoj disertaciji se detaljno analizira sustav koji se sastoji od bozonske zvi-

jezde i globalnog monopola, prilikom čega su oba polja neminimalno vezana na

gravitaciju te medudjeluju jedino gravitacijski.

Model

Za materiju uzimamo zbroj akcija za neminimalnu bozonsku zvijezdu (D.38) i

neminimalni globalni monopol (D.56)

S = SBS + SGM . (D.68)

Tenzor energije-impulsa kombiniranog sustava je

Tµν = TBS
µν + TGM

µν , (D.69)

gdje je TBS
µν dan jednadžbom (D.39) i TGM

µν jednadžbom (D.58). S indeksom

1 označavamo polje i parametre za bozonsku zvijezdu, a s indeksom 2 polje i

parametre za globalni monopol. Jednadžba gibanja za polje bozonske zvijezde je

σ′′ = −
(

2

x
+

ν ′ − λ′

2

)

σ′ + eλ(m̃2
1 + λ1σ

2 − ω̃2e−ν − ξ1R̃)σ , (D.70)
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dok je jednadžba gibanja za monopolsko polje jednaka

φ̃′′ = −
(

2

x
+

ν ′ − λ′

2

)

φ̃′ + eλ
(

λ2∆(φ̃2 − 1) +
2

x2
− ξ2R̃

)

φ̃. (D.71)

Iz prve dvije Einsteinove jednadžbe Gµν = 8πGNTµν slijede diferencijalne jed-

nadžbe za metričke funkcije

λ′ =
1− eλ

x
+

x

1 + 2ξ1 + ξ2φ̃2

{

eλ

(

(m̃2
1 + ω̃2e−ν + λ1/2)σ
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φ̃2
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4
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)

+(1 + 4ξ1)σ
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1

2
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]

σ2

+2ξ2e
λ

[
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x2
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(D.72)

ν ′ =
x

1 + 2ξ1σ2 + 2ξ1xσσ′ + ξ2φ̃2 + ξ2xφ̃φ̃′
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. (D.73)

Reskalirani Riccijev skalar je

R̃ =
2m̃2

1σ
2 + 2(1 + 6ξ1)

[

(m̃2
1 − ω̃2e−ν + λ1σ

2)σ2 + e−λσ′2
]

1 + 2ξ1(1 + 6ξ1)σ2 + ξ2(1 + 6ξ2)φ̃2

+
λ2∆

2(1− φ̃2) + (1 + 6ξ2)
[

e−λφ̃′2 + 2φ̃2

x2 − λ2∆(1− φ̃2)φ̃2
]

1 + 2ξ1(1 + 6ξ1)σ2 + ξ2(1 + 6ξ2)φ̃2
. (D.74)

Skup diferencijalnih jednadžbi (D.71-D.73) se rješava uz rubne uvjete

λ(0) = 0, ν(∞) = 1− ∆̃,

σ(0) = σ0, σ(∞) = 0,

φ̃(0) = 0, φ̃(∞) = 1. (D.75)
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Takoder ćemo koristiti sljedeće skraćenice

ξBS = ξ1, ξGM = ξ2. (D.76)
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Slika D.12. Efektivna sila (D.12) (puna krivulja), Newtonova sila (C.12) (točkasta

krivulja) i Newtonova sila od mase jezgre monopola (4.48) (isprekidana krivulja) za

kombinirani sustav bozonske zvijezde i globalnog monopola. Vrijednosti parametara su:

σ0 = 0.05, λBS = 0, ξBS = −4, λGM = 0.1, ∆ = 0.08, ξGM = 5. Takoder kutni moment

i energija po jedinici mase su L̄ = 0.1 i Ē = 1.
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Slika D.13. Lijevo: polje same bozonske zvijezde (isprekidana krivulja) i polje bozonske

zvijezde u prisustvu monopola (puna krivulja). Desno: polje samog globalnog monopola

(isprekidana krivulja) i polje globalnog monopola u prisustvu bozonske zvijezde (puna

krivulja). Vrijednosti parametara su: σ0 = 0.05, λBS = 0, ξBS = −4, λGM = 0.1,

∆ = 0.08, ξGM = 5.
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Slika D.14. Gustoća energije i tlakovi za bozonsku zvijezdu samu (točkasta krivulja),
za globalni monopol sam (isprekidana krivulja) i kombinirani sustav bozonske zvijezde
i globalnog monopola (puna krivulja). Vrijednosti parametara su: σ0 = 0.05, λBS = 0,
ξBS = −4, λGM = 0.1, ∆ = 0.08, ξGM = 5.

Rješenja i diskusija

U slučaju i bozonske zvijezde i globalnog monopola smo vidjeli da su polja mono-

tona bez obzira na izbor parametara. U kombiniranom sustavu to vǐse nije slučaj:

oba polja se rekonfiguriraju ovisno o parametrima. Sukladno tome, razlikujemo

tri režima interakcije:

• Režim slabog vezanja: u ovom režimu oba polja zadržavaju svoju monoto-

nost.

• Režim blagog vezanja: u ovom režimu polje bozonske zvijezde blago postaje

nemonotono, dok polje monopola ostaje monotono.

• Režim jakog vezanja: u ovom režimu se oba polja znatno rekonfiguriraju te

postaju nemonotona. Ovaj režim je posebno zanimljiv jer dolazi do velike

kompresije bozonske zvijezde i cijeli sustav dostiže jako veliku kompaktnost,

te na taj način rezultirajuća konfiguracije predstavlja dobru alternativu

crnoj rupi.

Za bozonsku zvijezdu uzimamo parametre koji odgovaraju maksimalnoj kom-

paktnosti (σ0 = 0.05, λBS = 0, ξBS = −4), dok kod monopola mijenjamo ξGM.

U režimu slabog vezanja (ξGM = −1), sve funkcije – gustoća energije, tlakovi,

masa jezgre, kompaktnost, efektivne sile – zbrajaju se gotovo linearno.
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Slika D.15. Kompaktnost za bozonsku zvijezdu samu (isprekidana krivulja), globalni
monopol sam (isprekidana krivulja) i kombinirani sustav (puna krivulja). Vrijednosti
parametara su: σ0 = 0.05, λBS = 0, ξBS = −4, λGM = 0.1, ∆ = 0.08, ξGM = 5.

U režimu blagog vezanja nelinearni efekti su prisutni, te dolazi do umjerene

kompresije bozonske zvijezde, tako da su u ovom slučaju sve veličine kombiniranog

sustava po iznosu veće od zbroja veličina pojedinih sustava.

U režimu jakog vezanja prisutni su jaki nelinearni efekti koji se mogu pratiti

usporedbom efektivne i Newtonove sile (v. Sl. D.12). Oba polja se jako rekonfi-

guriraju (v. Sl. D.13), dolazi do velike kompresije bozonske zvijezde (v. Sl. D.14)

s dosta velikom maksimalnom kompaktnošću (v. Sl. D.15).

Daljnjim povećanjem ξGM, dobiveni objekt se dodatno smanjuje te se kom-

paktnost povećava dostižući vrijednosti usporedive s jedinicom, što signalizira

formiranje crne rupe. Na Sl. D.16 je prikazana kompaktnost za ξGM = 8 čija je

maksimalna vrijednost nešto iznad 0.75 (puna krivulja). S isprekidanom krivu-

ljom je prikazana kompaktnost za Schwarzschildovu crnu rupu s masom jednakom

masi kombiniranog objekta. Zbog jako visoke kompaktnosti ovaj objekt predstav-

lja dobru altrnativu crnoj rupi.

Zaključak

Glavni rezultati disertacije su:

• metoda za testiranje linearne stabilnosti anizotropnih struktura s de Sittero-

vom jezgrom je predložena i primijenjena na gravastarske objekte dokazujući

njihovu radijalnu stabilnost,
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Slika D.16. Kompaktnost za kombinirani sustav bozonske zvijezde i globalnog mono-
pola (puna krivulja), samu bozonsku zvijezdu (točkasta krivulja) i globalni monopol sam
(isprekidana krivulja). Kompaktnost za Schwarzschildovu crnu rupu s masom jedna-
kom masi kombiniranog sustava (proširena točkasta krivulja). Vrijednosti parametara
su: σ0 = 0.05, λBS = 0, ξBS = −4, λGM = 0.1, ∆ = 0.11, ξGM = 8.

• unutar klasične teorije polja i modificirane gravitacije, iz samointeragi-

rajućeg skalarnog polja koje je neminimalno vezano na gravitaciju, pronaden

je model za kompaktni objekt sličan zvijezdama tamne energije,

• unutar klasične teorije polja i modificirane gravitacije, iz kombiniranog sus-

tava bozonske zvijezde i globalnog monopola čija su polja neminimalno

vezana na gravitaciju, pronaden je model za visoko kompaktni objekt koji

predstavlja dobru alternativu crnoj rupi.
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cijama. Od 2009. godine ima medunarodnu znanstvenu suradnju sa Sveučilǐstem
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