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SUMMARY

In this thesis we consider a lower dimensional homogenized thin plate model within the
framework of linearized elasto-plasticity. Starting from the energetic formulation of the
quasistatic evolution, we analyse the behavior of the elastic energies and dissipation po-
tentials, as well as the displacements and strain tensors, when the period of oscillation
of the heterogeneous material and the thickness of the thin body simultaneously tend to
zero. In order to derive convergence results for energy functionals and the associated en-
ergy minimizers, we base our approach on I'-convergence techniques and the two-scale

convergence method adapted to dimension reduction.

Keywords: quasistatic evolution, perfect elasto-plasticity, thin plates, dimension re-

duction, periodic homogenization, two-scale convergence



SAZETAK

U ovoj disertaciji promatramo nizedimenzionalni homogenizirani model tanke ploce u
okviru linearizirane elasto-plasti¢nosti. Polaze¢i od energetske formulacije kvazistati¢ne
evolucije, analiziramo ponasanje energetskih funkcionala i disipacijskih potencijala te
elasticnog 1 plasticnog tenzora deformacije kada period oscilacije heterogenog materijala
1 debljina tankog tijela simultano teZe prema nuli. Kako bismo dobili rezultate konvergen-
cije za energetske funkcionale i pridruZzene minimizatore energije, nas pristup temeljimo
na tehnici I'-konvergencije 1 metodi dvoskalne konvergencije prilagodenoj redukciji di-

menzije.

Kljucne rijeci: kvazistati¢na evolucija, idealna elasto-plasti¢nost, tanke ploce, reduk-

cija dimenzije, periodi¢na homogenizacija, dvoskalna konvergencija
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INTRODUCTION

The aim of the dissertation is to derive model equations for a heterogeneous elasto-plastic
plate for composite materials with a periodic microstructure. We analyze the asymptotic
behavior of the quasistatic evolutions in small-strain elasto-plasticity as the periodicity
scale and the thickness of the plate both converge to zero. Different effective models will
be obtained with simultaneous homogenization and dimension reduction depending on
the ratio of the parameters - the oscillation rate of the microstructure and the thickness of
the plate - and that the obtained models depend both on the macroscopic and microscopic
variables, since it is known that the two-scale structure of the effective model cannot
be eliminated when applying homogenization in elasto-plasticity. In particular, we will
obtain a new compactness result by means of two-scale convergence for the sequences of
symmetrically scaled gradients in the spaces of functions with bounded deformation.

In this work, convergence results for energy functionals and the associated energy
minimizers will be obtained by simultaneous homogenization and reduction of dimen-
sions within the framework of linearized elasto-plasticity. This will provide a rigorous
mathematical justification for effective models that are more suitable for mathematical
analysis and numerical solving, and contribute to a proper understanding of the interac-

tion of the microscopic and macroscopic properties of materials.

LITERATURE OVERVIEW

The rigorous derivation of lower-dimensional models for thin structures - such as plates,
membranes, rods, and strings - has proved to be important in engineering and material
science. One of the approaches is based on ansatzes that describe the lower-dimensional

models as a three-dimensional body subjected to additional constitutive restrictions. Other
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approaches derive lower-dimensional models starting from the three-dimensional thin
bodies and proving convergence when one or two dimensions of the body tend to zero.
Dimension reduction problems in the context of elasticity by applying asymptotic meth-
ods (and proving convergence in the linear case) have been performed in books [14] for
plates and [15] for shells. Models of curved rods are derived in the paper [32]. The vari-
ational approach to dimension reduction based on the I'-convergence method proved to
be suitable for nonlinear problems. The first results on dimension reduction problems
using ['-convergence, in nonlinear elasticity, were given in seminal papers [1] and [35].
Different higher-order models in nonlinear elasticity, depending on various elastic energy
scales, by I'-convergence, were derived in the seminal papers [27] and [26] for thin plates
and in the papers [38] and [44] for rod models.

Within linearized elasto-plasticity, reduced plate models were derived by methods of
evolutionary I'-convergence in the paper [36] in the case of a linearly elastic-hardening
plastic material and in the paper [18] in the case of a linearly elastic-perfectly plastic ma-
terial. The functional analysis is much simpler in the case of hardening material than in
perfect plasticity, where the formulation lies in the spaces of functions with bounded
deformation and bounded Radon measures. The main existence result for the three-
dimensional quasistatic evolution, for linearly elastic-perfectly plastic material, in such
a variational framework was proved in the seminal paper [17].

Another area of research in materials science is the derivation of effective or homoge-
nized models that simplify calculations and provide a good approximation of the descrip-
tion of the (average) behavior of heterogeneous materials when the materials are mixed
at small scales. Non-triviality stems from the fact that such materials, obtained by mixing
two or more materials at fine scales, have different properties than the averaged properties
of the materials that make them. Mathematically, the derivation of the effective properties
of such mixtures is obtained by analyzing the behavior of differential equations (of the
energy functional in the variational approach) with fast oscillating coefficients when the
oscillation parameter tends to zero. In that respect, different methods within homogeniza-
tion theory have been developed, including the two-scale convergence method (suitable
for periodic homogenization) in the seminal papers [41] and [2], as well as the mentioned

I"-convergence method. For our purposes, the most important are the existence results
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and periodic homogenization for the quasistatic evolution in perfect plasticity from the
papers [24] and [25].

Analysis of mathematical problems in which there are many very small parameters,
such as highly heterogeneous thin structures, where homogenization and dimension re-
duction are performed simultaneously, is challenging. It has been shown that, apart from
depending on elastic energy scales, different effective models are obtained depending on
the assumptions about the relationship between the oscillation of the microstructure and
the thickness of the body. Complete asymptotics for heterogeneous rods or plates is per-
formed in the book [42] under the assumption that the oscillations of the microstructure
and the thickness of the body are equal. We also mention the earlier paper [33] where
a linearized rod model with a composite microstructure along the cross-section was de-
rived, and a more recent paper [29] where a heterogeneous rod model was derived using
the so-called "unfolding operator” (for homogenization problems) and Griso’s decom-
position (for dimension reduction problems). Problems of simultaneous homogenization
and dimension reduction in the context of nonlinear elasticity were tackled in [9] and [7]
for the membrane case using the I'-convergence methods. Higher-order models, such as
von Karmén’s regime and bending regimes for plates, rods, and shells, have been studied
in a series of works (see [39], [40], [30], [31], [11]). In the paper [12] a new approach for

simultaneous dimension reduction and non-periodic homogenization is introduced.

CHAPTER OVERVIEW

This thesis is divided into five chapters. In Chapter 1 we give definitions and basic results
from the analysis of partial differential equations, geometric measure theory and convex
analysis, which are used thought the rest of the thesis. In Chapter 2 we describe the frame-
work of a periodic multi-phase elasto-plastic plate, and we state the basic assumptions in
each of the three regimes (y € (0,+c), ¥ =0 and y = 4o0) on the interfaces and admis-
sible stresses needed to obtain our results. We describe the formulation of the rescaled
three-dimensional problem and detail the properties of the reduced problem. Finally, we

discuss the quasistatic evolution of the A-problem.
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In Chapter 3 we present the first contributions of the thesis. We consider a general
framework with which we analyze the properties spaces of bounded measures whose ap-
propriate derivatives are also bounded measures. We then give some auxiliary results,
which we use to characterize the two-scale limit of scaled symmetrized gradients. This
structure theorem represents the fundamental compactness result. Further, we introduce
the notion of the unfolding measure adapted to dimension reduction and prove results re-
garding the unfolding of scaled symmetrized gradients of BD functions. We apply these
results in the following chapter to establish a lower semicontinuity result for the dissipa-
tion potentials in the regime y € (0, +o0).

In Chapter 4 we give meaning to pairings between stress fields (which belong to some
Lebesgue space) and plastic strains (which are bounded measure) defined on an appro-
priate cell. In order to apply this for configurations defined in both variables x and y, we
proceed to state disintegration results for kinematic fields and approximation results for
stresses. Applying all of these results, we prove the principle of maximum plastic work.

In Chapter 5 we are finally able to state and prove the main result of the thesis, namely

the quasistatic evolution for two-scale homogenized limits.



1. PRELIMINARIES

1.1. NOTATION

We will write any point x € R? as a pair (x',x3), with ' € R? and x3 € R. and we will use
the notation V to denote the gradient with respect to x’. We denote by y € % the points
on a flat 2-dimensional torus. In what follows we will also adopt the following notation

for scaled gradients and symmetrized scaled gradients:
V= {Vx/v ‘ %8)(3\1 ], Epv:=symV,y,
%yv = [Vyv ‘ %,3)(3\/] , Eyv = sym %yv.

The scaled divergence operators div, and El\i;y are defined as (formal) adjoints of the
respective scaled gradients.
Ifa,be RV, we write a- b for the Euclidean scalar product, and we denote by |a| :=

\/a-a the Euclidean norm. We write MY >V for the set of real N x N matrices. If A,B €

MN*N we use the Frobenius scalar productA:B:=}; jAijBij and the associated norm

|A| := /A : A. We denote by MYV the space of real symmetric N x N matrices, and by

sym
MQ’QN the set of real deviatoric matrices, respectively, i.e. the subset of Mé\;an given by

MNXN

matrices having null trace. For every matrix A € we denote its trace by trA, and its

deviatoric part by Agey Will be given by
1
Adev =A-— NtrA

The symmetrized tensor product a®b of two vector a,b € RY is the symmetric matrix with
entries (a ® b);j 1= M. Note that tr(a®b) = a- b, and that |[a ® b|> = J|a|*|b|* +
(a-b)%, so that
1
V2

lal|b] < la©b| < |al|b].
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Given a vector v € R3, we will use the notation v/ to denote the vector

Vi

V2
Analogously, given a matrix A € M>*3, we will denote by A” the minor

Al A
Ay Ap

A// —

The Lebesgue measure in RY and the (N — 1)-dimensional Hausdorff measure are
denoted by .ZV and #V~!, respectively. Given an open subset U C RY and a finite
dimensional Euclidean space E, we use standard notations for Lebesgue spaces L? (U E)
and Sobolev spaces H' (UE) or Wl’p(U;E).

We will write C¥(U; E) for the space of all k-times continuously differentiable func-
tions @ : U — E and C*(U;E) := ;o C*(U;E) for the space of infinitely differentiable
function. We will distinguish between the spaces CX(U;E) (C* functions with compact
support contained in U) and C5(U;E) (C* functions “vanishing on 0U”). We will write
C(%/;E) to denote the space of all continuous functions ¢ : R*> — E which are [0, 1])?-
periodic, and set CK(%;E) := CK(R%*;E) NC(#';E). We will identify C*(%/; E) with the
space of all C* functions on the 2-dimensional torus.

We will frequently make use of the standard mollfier p € C*(RN), defined by

C exp <+_1) if x| < 1,
p(x) = .
0 otherwise,

where the constant C > 0 is selected so that [pv p(x)dx = 1, and the associated family

{pg}g>0 - COO(RN> with

1 X
pel)= 30 (3.
Throughout the text, the letter C stands for generic constants which may vary from

line to line.
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1.2. TWO-SCALE CONVERGENCE

Two-scale convergence adapted to dimension reduction

Let Q = @ x I, where @ C R? is bounded and has Lipschitz boundary and I = (—1/2,1/2),
and let &, > 0 be a sequence such that &, — 0 as 7 — 0 so that

h
1. _—— oo,
fim g, = 7€ 0

Definition 1.2.1. We say a bounded sequence {u"}~¢ in L?(Q) two-scale converges to
u € L*(Q xY) and we write u” 2w, if

lim [ u"(x)y (x, x_’> dx = / u(x,y)y(x,y)dxdy

h—0.JQ &n Qx%
for all y € C7(Q;C(#')). When ||uh\|Lz(Q) — [|u[|;2(x2) in addition, we say that u'
strongly two-scale converges to u and write u” 2, u. For vector-valued functions, two-

scale convergence is defined componentwise.

If we identify functions on @ with their trivial extension to €2, the definition above
contains the standard notion of two-scale convergence on @ X % as a special case. Indeed,

: . 2 . :
when {u"},~ is a sequence in L?>(®), then u" = u is equivalent to

/

tim [y (¢ 2 ) de= [l )y vy
&y OXY

h—0Jw
for all y € C5(w;C(¥)).
Let us recall some well-known properties of two-scale convergence. We refer to [2,

37,48] for proofs.

Lemma 1.2.2. (i) Any sequence that is bounded in L?(€) admits a two-scale conver-

gent subsequence.

(i) Letii € L2(Qx %) and let " € L*(Q) be such that u" 2 ii. Thenu" — [, ii(-,y)dy
weakly in L?(Q).

(iii) Letu® and u € L?(Q) be such that u”" — u® weakly in L?(Q). Then (after passing to
subsequences) we have u" 20 (x) -+ for some ii € L*(Q x &) with [, i(-,y)dy =

0 almost everywhere in Q.
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(iv) Let u” and u" € H'(Q) be such that u" — u” strongly in L?(Q). Then u" 250,

where we extend u? trivially to Q x %'

The following theorem is given in [39]. We will not use it directly, but it a useful result
which captures the structure of the limit of scaled gradients, which are natural objects to

consider when dealing with dimension reduction.

Theorem 1.2.3. Let (u®");-( be a weakly convergent sequence in H'(Q;R?) with limit
u and suppose that

limsup ||V ,u®

HLZ(Q;]R3) < o0, (11)
h—0

1. (a) If y € (0,00) then there exists a function w € L?(w;H'(I x #;R?)) and a

subsequence (not relabeled) such that
Vi (x) 2 (Viu(£)|0) 4+ Vyw(x,y).
(b) If y € (0,0) and in addition to (1.1) we assume that

limsup /™" {|u®
imsuph™ ]|

Q;]R3) < oo,

then there exists a function w € L?(@; H' (I x %;R?)) and a subsequence (not

relabeled) such that
Bl (x) 2 w(x,y), Vuu®(x) 2 %yw(x,y).
2. If y = 0 then there exits w € L>(@; H' (% ;R?)) and g € L?>(Q x Y;R?) such that
Vi (x) 2 (Viu(®)]0) + (Vyw]g).

3. If y = oo then there exists w € L?(Q; H' (#;R?)), g € L>(Q;R?) such that

Vi (x) 2 (Viu(®)0) + (V] g).
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1.3. MEASURES

We first recall some basic notions from measure theory that we will use throughout the
thesis (see, e.g. [23]).

Given a Borel set U C R" and a finite dimensional Hilbert space X, we denote by
AMp(U;X) the space of bounded Borel measures on U taking values in X, and endowed
with the norm [|it|| z, w.x) := |1[(U), where || € .#,(U) is the total variation of the
measure U. For every u € .#,(U;X) we consider the Lebesgue decomposition u = u®+
u?®, where u¢ is absolutely continuous with respect to the Lebesgue measure .Y and u*
is singular with respect to .ZV. If u* = 0, we always identify y with its density with
respect to ., which is a function in L' (U; X).

If the relative topology of U is locally compact, by Riesz representation theorem the
space .#4;(U;X) can be identified with the dual of Cy(U;X), which is the space of all
continuous functions ¢ : U — X such that the set {|¢| > 6} is compact for every 6 > 0.
The weak™ topology on .#},(U;X) is defined using this duality.

The restriction of p € #4,(U;X) to a subset E € U is the measure U |E € 4,(E;X)
defined by

U|E(B):=u(ENB), forevery Borel set BC U.

Given two real-valued measures U, Uy € #,(U) we write py > pp if 11 (B) > ux(B)

for every Borel set BC U.

Convex functions of measures

Let U be an open set of RV, For every u € .#,(U;X) let % be the Radon-Nikodym
derivative of pu with respect to its variation |ut|. Let H : X — [0,+o0) be a convex and

positively one-homogeneous function such that
rlE| <H(E) <RIE| foreveryé € X, (1.2)

where r and R are two constants, with 0 < r <R.
Using the theory of convex functions of measures, developed in [28] and [21], we

introduce the nonnegative Radon measure H (1) € .#," (U) defined by

a0 @)= [ () dul
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for every Borel set A C U. We also consider the functional ¢ : .#,(U;X) — [0, +4o0)

defined by
du
)= Hw) = [ (5 ) dlul
v \dlu|
One can prove that J# is lower semicontinuous on .#,(U;X) with respect to weak*

convergence (see, e.g., [5, Theorem 2.38]).
Let a, b € [0,T] with a < b. The total variation of a function u : [0,T] — #,(U;X)
on [a,b] is defined by

¥ (Usa,b) :=sup {Z i) =) gy ra=t1 <2 <...<tn=b,ne€ N} :
i~

Analogously, we define the .77 -variation of a function u : [0,7] — #,(U;X) on [a,b] as

Dy (U;a,b) := sup {Z%(u(mﬁ —ut)):a=t1<tr<..<t,=b,ne N} :
i=1
From (1.2) it follows that

rV (usa,b) < Dyp(Wsa,b) <RV (Usa,b). (1.3)

Disintegration of a measure

Let S and T be measurable spaces and let 4 be a measure on S. Given a measurable

function f: S — T, we denote by fxu the push-forward of y under the map f, defined by
fall(B) == ( ! (B)) ,  for every measurable set BC T.

In particular, for any measurable function g : T — R we have

/Sgofdu = /ng(f#u)-

Note that in the previous formula § = f~1(T).

Let S; C R™, S, C R™ be open sets, and let ) € .#,"(S1). We say that a function
x| € S1 = WUy, € Mp(S2;RY) is n-measurable if x; € S| — Ly, (B) is -measurable for
every Borel set B C 5.

Given a -measurable function x| — Ly, , the generalized product 1 gtegr; ' Wy, € Ap(S1 X
S»;RN) is a well defined measure such that

gen.

0 o) i= [ ([ oty () dns)

10
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for every bounded Borel function ¢ : S| x S, — R such that supp(¢) C K x S,, where
K C S; is any compact set.
Moreover, the following disintegration result holds (c.f. [5, Theorem 2.28 and Corro-

lary 2.29]):

Theorem 1.3.1. Letpu € ///,;“ (S1 x S2:RY) and let proj : S x Sy — S| be the projection
on the first factor. Assume that the push-forward measure 1 := projy|u| € 4, (S) is
a Radon measure, i.e. |1|(K x ;) < oo for any compact set K C S;. Then there exists a
unique family of bounded Radon measures { iy, }x,es, C //[b(Sz;]RN ) such that x; — Ly,

is n-measurable, and
gen.

L=1 O Uy

For every ¢ € L'(S; x S»,d|u|) we have

o(x1,-) € L'(S2,d|uy,|)  for n-ae. x; €8y,

fi= [ ol m)du () €L (S1dn).
2

/Slxszfp(xl,xz)d.u(xbxz) = /81 </Sz ¢(x1,x2) d Ly, (x2)> dn(x).

Furthermore,

gen.
=1 @ |ty
Arguing as in [25, Remark 5.5], we have the following:

Proposition 1.3.2. With the same notation as in Theorem 1.3.1, for n-a.e. x; € S;

d d
dre) = g

= Wy |-a.e. on Ss.
d|.ux1| ’ Xl’

Proof. Since % € L'(S) x S3,d|p|), from Theorem 1.3.1 we have %(xl, e LY(Sy,d| iy, |)

for n-a.e. x; € S1. Thus,

gen. duxl gen. du gen. du
ne o |=1N @ y =p=—— /=1 & ——(x1,") Ly,
dlpy, | . d|u dlu .
from which we have the claim. [ |

11
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1.4. SPACES OF FUNCTIONS WITH MEASURES

AS DERIVATIVES

Functions with bounded variation

Let U be an open set of RV, The space BV (U) of functions with bounded variation is the
space of all functions u € L' (U) whose gradient Du (in the sense of distributions) satisfies

Du € #,(U;RY). The measure Du can be decomposed as
Du=VuN 4w —u)@v, NS, +DCu,

where Vu is the Radon-Nikodym derivative of Du with respect to the Lebesgue measure
N, which coincides with the approximate gradient of u. The jump set S, is a countably
2N~ 1_rectifiable Borel set (see [5, Definition 2.57]), v, is an approximate unit normal
to S,, and u™ are the one-sided Lebesgue limits of # on S,,. The measure Du is the
Cantor part of Du which has the property of vanishing on any finite set with respect to
the (N — 1)-dimensional Hausdorff measure .’V 1. The general properties of the space

BV (U) can be found in [5, 8].

Functions with bounded deformation

Let U be an open set of RN, The space BD(U) of functions with bounded deformation is
the space of all functions u € L' (U;R") whose symmetric gradient Eu := sym Du (in the
sense of distributions) satisfies Eu € .4, (U;MY*N). It is a Banach space endowed with

sym

the norm
lullpw) = lullpwigw) + [Eul(U).
It was proved in [47, Proposition 2.5] that BD(U) can be identified with the dual of a

Banach space, and therefore it can be endowed with a natural weak* topology. We say

that a sequence {uy } converges to u weakly* in BD(U) if and only if

uy —u  strongly in L' (U;RV),

Ew, = Eu  weakly* in .4,(U; MNXN).

sym

12
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Every bounded sequence in BD(U ) has a weakly* converging subsequence.

An intermediate notion of convergence between weak* and strong convergences is
the so-called strict convergence: a sequence {uy}r C BD(U) converges strictly to some
u € BD(U) if and only if u; — u weakly* in BD(U) and |Eu|(U) — |Eu|(U).

If U is bounded and has Lipschitz boundary, BD(U) can be continuously embedded
into LN/ (N=1D(7; RY). Furthemore, the injection of BD(U) into LP (U;RN) is compact for
all 1 <p <N/(N—1). If I is a nonempty open subset of JU, there exists a constant
C > 0, depending only on U and I', such that

lull sy < € (lull o ey + [Eul(U)) (1.4)

(see [45, Chapter II, Proposition 2.4 and Remark 2.5]).

Let M be a C!-hypersurface contained in U. It is well known (see [45, Chapter II])
that the one sided Lebesgue limits ™ (x) on both sides of M exist for .2#V~! almost every
X € M and satisfy

EulM=u"—u )ovseN 1 M,

where V is a unit normal to M. As shown in [4], the measure Eu can be decomposed as

Eu=&w) LN+ (u" —u)ov NI, + Eu,

(u) = V’”TV”T, Vu is the approximate gradient of u. The jump set J,, is 7N~ 1-

where &
rectifiable, v, is an approximate unit normal to J,, and u™ are the one-sided Lebesgue
limits of u on J,. The measure Eu is the Cantor part of Eu, defined as the restriction
Eu:=E*u|(U\J,).

Let Z be the class of rigid motions in RN i.e., affine maps of the form Ax+ b such that

A is a skew-symmetric N x N matrix and b € R". The following Poincaré type inequality

for BD functions follows from [45, Proposition 2.2 and Remark 1.1 of Chapter II].

Theorem 1.4.1. Let U be a bounded connected open set with Lipschitz boundary and let
IT: BD(U) — % be a continuous linear map which leaves the elements of % fixed. Then

there exists a constant C, depending only on U and II, such that
[ lu=Tw)|dx < C|Eu|(w),
U
forall u € BD(U).

13



Preliminaries Spaces of functions with measures as derivatives

Let U C RY be a bounded open set with Lipschitz boundary. From [6, Theorem 3.2]
we have that there exists a unique linear continuous trace operator from 7 : BD(U) —
L'(9U;RYN) such that the following integration by parts formula holds: for every u €
BD(U) and ¢ € C'(RV)

/ u@V(pdx+/ QdEu = / T(u)ovedaN1,
U U ou
where V is the outer unit normal to dU. In addition,

T(u) = u|yy forallu € C(U;RY)NBD(U).

Furthermore, if u € BD(U) and {u; }; C C*(U;RY) is such that u; — u strictly in BD(U),
then T (u;) — T (u) strongly in L' (9U;RN).

Functions with bounded Hessian

Let U be an open set of RV, The space BH(U) of functions with bounded Hessian is
the space of all functions u € W' (U) whose Hessian D?u (in the sense of distributions)

satisfies D?u € .4,(U; MNXN) . Tt is a Banach space endowed with the norm

sym
lull prrwy = lullwri @)+ Dl (V).

If U has the cone property, then BH(U) coincides with the space of functions in L!(U)
whose Hessian belongs to .7, (U ;MIS\;,EN ). If U is bounded and has Lipschitz boundary,
then BH (U) can be embedded into WN/W=1) (/). If U is bounded and has C2 boundary,
then for every function u € BH(U ) one can define the traces of u and of Vu (still denoted
by u and Vu) which satisfy u € W' (9U), Vu € L'(QU;RV), and 9% = Vu-tin L' (9U),
where 7 is any tangent vector to dU. If, in addition, N = 2, then BH(U) embeds into

C(U). The general properties of the space BH(U ) can be found in [20].

14
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1.5. STRESS-STRAIN DUALITY

Traces of stresses

We suppose here that U is an open bounded set of class C2. If o € L>(U;MYXN) and

sym

dive € L?>(U;RYN), then we can define a distribution [c'v] on U by

[ov](y) ::/ w-divcdx+/ o : Eydx, (1.5)
U U

for every w € H'(U;RY). It turns out that [ov] € H™/2(dU;R") (see, e.g., [46, Chapter
1, Theorem 1.2]). If, in addition, ¢ € L*(U;MX ") and dive € LN(U;RY), then (1.5)

holds for v € WH(U;R"Y). By Gagliardo’s extension theorem, in this case we have

[ov] € L*(9U;RY) and that
[oxv] = [ov]  weakly* in L*(QU;RY),

whenever 6; — ¢ weakly* in L*(U ;MIS\%N ) and divoy — divo weakly in LN (U;RN).

We will consider the normal and tangential parts of [oVv|, defined by
[ov]y:=([ov] - V)v, [oV]} :=[ov]—([oV] V)v.

Since v € C!(QU;RY), we have that [oV]y, [oV]y € H-'/2(QU;RY). If, in addition,
Odey € L7 (U; MY XN), then it was proved in [34, Lemma 2.4] that [oV]}; € L*(dU;RY)

dev

and
1 1
H[Gv]v ||L°°(8U;RN) < %”GdevHLw(U;Mé\gN)'
More generally, if U has Lipschitz boundary and such that there exists a compact set
S C U with s#N~1(S) = 0 such that U \ S is C-hypersurface, then arguing as in [24,
Section 1.2] we can uniquely determine [o'V]; as an element of L”(dU;RY) through any
approximating sequence {o,} C C=(U;MYXN) such that

sym

6, — ¢ strongly in L*(U ;Mgan ),
dive, — dive  strongly in L>(U;RN),

H (Gn)devHLw(U;MggN) < H Odev ||L°°(U;Mg’ej1")'

15



Preliminaries Stress-strain duality

The duality theorems

In the following, let U C R" be an open, bounded set of with C?> boundary. Let us recall

certain results obtained in [34].

Proposition 1.5.1. For any u € BV(U) and ¢ € L”(U;R") with dive € LN(U), let
[0 - Du] denote the distribution on U defined for ¢ € C°(U) by:

(o Dul(g) =~ |

udiVO'(pdx—/ uo-Vodx
U U

Then [0 - Du] may be extended as a bounded measure on U which is absolutely continuous

with respect to |Du|, whose variation satisfies
|[o-Dul| < |0 1= rm |Dul - in AL(U).
Moreover, the following integration by parts formula holds

/ (p[Gv]ud%”N_lz/ (pd[G-Du]+/udivc(pdx+/uG-V(pdx
U U U U

for every ¢ € C!(U).

Proposition 1.5.2. The set

S U) = {0 e LXU;MYY) : dive € LN (U:RY), 04ey € L™(U:MYZN)}

sym dev

is a subset of LP(U;MY*N) for every 1 < p < o0, and

sym

ol oy < Cp (”G”Lz(U;Mé\;,ﬁ]N) + [divo || vy + ||Gdev||Lw(U;Mg;vN)) -

sym

Proposition 1.5.3. Given u € BD(U) with divu € L*>(U), and o € L*>(U;MY*N) with

sym
dive € LN(U;RYN), Ggey € L=(U;MYXN), let [Ggey : Egevtt] denote the distribution on U

dev
defined for ¢ € C°(U) by:

1
[Odev : Edevit] (@) ::—/ (pdivcr-udx—/ c:(uoVe) dx——/ o trodivudx
U U N Ju

Then [Ogey : Egevit] may be extended as a bounded measure on U which is absolutely

continuous with respect to |Egeyu|, Whose variation satisfies

|[0-dev :Edevu“ < ||Gdev||L°°(U;MQ’e§N)|Edevu| in j/b(U>'
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Moreover, the following integration by parts formula holds
/aU(p[Gv] cudsN! :/ @ d[Ogey : Egevit] + l/ ¢ trodivudx
—I—/ pdivo - udx+/ (ueoVe)d
for every ¢ € C1(U).
A similar result was given in [16, Section 3].

Proposition 1.5.4. For any u € BD(U) and o € L™ (U; MY V) with dive € LN (U;RYN),

sym

let [0 : Eu] denote the distribution on U defined for ¢ € C°(U) by:

[0: Eul(o) ::—/U(pdivc-udx—/UG:(uQV(p) dx

Then [0 : Eu| may be extended as a bounded measure on U which is absolutely continuous

with respect to |Eu|, whose variation satisfies
[0 : Eu]| < ||G||LM(U;MQ%N)|EM| in 4,(U).
Moreover, the following integration by parts formula holds

/ @lov] -udN! /(pdG Eul +/(pd1VG udx+/ (u© Vo) dx
U
for every ¢ € C!(U).

We also recall the following construction from [19]:

Proposition 1.5.5. For any u € BH(U) and ¢ € L*(U; MY V) with divdive € L*(U),

sym

let [ : D?u] denote the distribution on U defined for ¢ € C*(U) by:

(6 : D?u] (@) := /udlvdlvc(pdx 2/ (VuoVe)dx— /uG:V2¢dx
U U

Then [o : D?u] may be extended as a bounded measure on U which is absolutely contin-

uous with respect to |[D?u|, whose variation satisfies

10+ D2u]| < [0l = gy Dl in AU,

17



Preliminaries Basics of convex analysis

1.6. BASICS OF CONVEX ANALYSIS

We recall several definitions and basic facts from convex analysis (see, e.g. [22] and [43,
Sections 13 and 23]).

Let X be a normed vector space, X* its topological dual space and (-,-) the duality
pairing on X* x X.
Definition 1.6.1. Consider f : X — R. We say that

(a) f is a proper function if f(x) > —oo for every x € X, and it is not identically equal
to oo,

(b) f is a convex function if
fAx+(1—=2A)y) <Af(x)+(1—2)f(y), foreveryx,y € X and A € [0,1].
(c) f1is alower semicontinuous (or closed) function if
liminf f(y) > f(x), forevery x € X.
y—Xx
(d) fisa positively 1-homogeneous function if

f(Ax)=A f(x), foreveryx€ X and A > 0.

Definition 1.6.2. The convex subdifferential of f at x € X is the set

df(x) :={x" € X" f(y) = f(x) + (x",y—x) VyeX},
for f(x) € R. Otherwise, d f(x) := 0.

Definition 1.6.3. The conjugate function of f is the function f* : X* — R defined by

JT(x) i=sup{(x", x) — f(x)}.

xeX

We collect below some elementary properties of the subdifferential and conjugate

function.

Proposition 1.6.4. For a given f : X — R we have:
(a) The set df(x) is closed and convex.

(b) Fermat’s rule: x € Argminy f <= 0 € df(x).

18
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Proposition 1.6.5. For a given f : X — R we have:
(a) The function f* is convex and weak* lower semicontinuous.
(b) Young-Fenchel inequality: f(x)+ f*(x*) > (x*,x).

The subdifferential and conjugate of a convex function are dual notions. This can be

seen from the following property.

Theorem 1.6.6. Let f be a proper convex function. Then the following conditions are

all equivalent:
(i) x* € df(x);
(i) x € Argmax{(x*,y) — f(y)};
yeX
(i) f(x) +f*(x) = (x*,x).
If f is lower semicontinuous, then all of the above conditions are equivalent to:

(iv) x € df(x*);

(v) x* € Argmax {(y*,x) — f*(y")}.
yreX*

Definition 1.6.7. The biconjugate function of f is the function f** : X — R defined by

S () == sup {{x7,x) — f(x")
xreX*
When X* is endowed with the weak* topology, then f** = (f*)*.
Proposition 1.6.8. Let f: X — R be convex. If d f(x) # 0, then f(x) = f**(x).

Definition 1.6.9. If fi, > : X — R are proper functions, then the infimal convolution of

f1 and f, is defined as
(Of2)(x) := xl,lg( {Alx=x)+ LK)}
Note that if both f; and f, are convex, then so it is fi[]f,. It can be shown that

A0/ =(F+15)"
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Subdifferential of 1-homogeneous functions

We stress the following special structure of the subdifferential of a positively 1-homogeneous

function.

Lemma 1.6.10. Let 2 : X — R be a proper, positively 1-homogeneous function. For

x € X we have
dh(x) ={x" € X" : h(x) = (x*,x) and h(y) > (x*,y) Vy € X}.

Proof. Consider the set S = {x* € X* : h(x) = (x*,x) and h(y) > (x*,y) Vy € X}. Then,

by subtracting the defining conditions of S, for x* € § we have
h(y>_h(x)2<X*7y_-x>7 vyEX’

from which the inclusion S C dh(x) directly follows.
Conversely, for x* € dh(x) the above inequality holds for all y € X. In particular, we

can first choose y = 2x and then y = %x, and use the 1-homogeneity to conclude
1 *
Eh(x) < —(x*)x).

Hence, we have h(x) = (x*,x). The remaining inequality now follows from the definition

of the subdifferential. u
The above lemma has the following consequence.

Proposition 1.6.11. Let 4 : X — R be a proper, positively 1-homogeneous function.

Then, the following holds:
(a) dh(x) C dh(0) for all x € X.
(b) dh(x) ={x" € dh(0) : h(x) = (x*,x)}.
Proof. Since 1-homogeneity of 4 implies that 2(0) = 0, from Lemma 1.6.10 we get
dh(0)={x*" € X" :h(y) > (x",y) VyeX}. (1.6)

The results then follows by substituting the appropriate property in the structure given by

Lemma 1.6.10. [ |
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Remark 1.6.12. Let f: X — R be a proper, convex, lower semicontinuous function.
Then f has no values other than 0 and +oo if and only if its conjugate f* is positively

1-homogeneous.

Indicator and support functions

Here we will assume that X is a reflexive normed space, i.e. X** = X.

Definition 1.6.13. The indicator function of a set A C X is the function 14 : X — R given
by
0 ifxeA,

1A (x) =
+oo  otherwise.

Using characterizations based on the notion of the epigraph of a function, we can
easily conclude the following:
(a) The function 14 is proper if and only if A is non-empty.
(b) The function 14 is convex if and only if A is a convex set in X.

(c) The function 14 is lower semicontinuous if and only if A is a closed set in X.

Definition 1.6.14. The normal cone to A C X is the set N4 (x) defined by

{xeX*: (x,y—x) <0 VyeA} ifxeA,
NA()C) =

0 otherwise.

The convex subdifferential of the indicator function 14 of a set A C X is the normal

cone of A, i.e. Ny(x) = di4(x) for every x € X. Indeed, for x € A we have

X" ENp(x) <= (x",y—x) <0 VyecA
= ) >ux)+ " y—x) VyeX

— X" €du(x).

Definition 1.6.15. The support function of a set A C X is the function h4 : X* — R given
by

ha(x*) :=sup (x*,x).
x€A
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The indicator function 1¢ and the support function /¢ of a closed convex set C C X

are conjugate to each other, i.e. 1> = hc and hj. = 1c.

Proposition 1.6.16. Let C C X be a non-empty closed convex set. Then, for each x* €

X*, the set dhe(x*) consists of all x € X such that

(x*,x) = sup (x",y).
yeC

Proposition 1.6.17. Let C C X be a non-empty closed convex set. Then dh¢(0) =C. In

particular, the following relations are equivalent:
1) xeC;

(i) (x*,x) < he(x*) for all x* € X*.
Proof. Using the equivalences in Proposition 1.6.6 and Proposition 1.6.4, we have

x € dhe(0) == 0 € Ihi(x) = dic(x)

<= x € Argminic
X

<~ lc(x) =0

< x€(C,

which proves the first claim. In view of (1.6), the second claim directly follows from the

equivalence shown above. [

Remark 1.6.18. More generally, for any positively 1-homogeneous, convex function
h:X* — R, the conjugate function 4* : X — R is the indicator function ic of the set

C={xeX: (x*x) <h(x") Vx*€X*} =dh(0).
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1.7. STAR-SHAPED DOMAINS

Definition 1.7.1. We say that an open set U C RY is star-shaped with respect to one of

its points xo if the segment joining it to any other x € U is contained in U.

A set U which is star-shaped with respect to the origin can be equivalently character-
ized by the relation
aU CU, forall o € [0,1], (1.7)

or

UCaU, forallx > 1. (1.8)

Definition 1.7.2. Let U C R" be an open set, and xo € U. We say that U is strongly
star-shaped with respect to x if it is star-shaped with respect to xq, and if for every x € U
the half open line segment joining xo and x, and not containing x, is contained in U.

We say that an open set U C RY is strongly star-shaped if there exists xo € U such that

U 1s strongly star-shaped with respect to xo

Proposition 1.7.3. Let U C RY be an open set, xg € U be such that U is strongly star-

shaped with respect to xo. Then

x0 + (U — xp) is strongly star-shaped with respect to xq for every a € (0, +<o),

xo+a(U—xo9) CU, forevery a € [0,1),
U Cxo+o(U —x), forevery o > 1.
In particular, any set U which is strongly star-shaped with respect to the origin satisfies
aU C U, forevery a € [0,1), (1.9)

and

U C aU, forevery o0 > 1. (1.10)

The following covering result is proved in [13, Proposition 2.5.4]

Proposition 1.7.4. Let U C R" be a bounded, open set with Lipschitz boundary. Then
there exists a finite open covering {U;} of U such that U NU; is strongly star-shaped with

Lipschitz boundary.

23



Preliminaries Star-shaped domains

Remark 1.7.5. Examining the proof of Proposition 1.7.4 given in [13] shows that sets
U; satisfying U; C U can be replaced by open balls, whereas sets U; intersecting dU can

be chosen of the form (upon relabeling and and reorienting the coordinate axis)
Ui=Bx(—¢,¢),

where B is an open ball in RV ~! centered in the origin, and &€ > 0 is small enough.
In the case when N = 2 this implies that we can select a covering such that sets which

intersect the boundary are open rectangles.
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2. SETTING OF THE PROBLEM

Let ® C R? be a bounded, connected, and open set with a C?> boundary, and consider
the open interval I = (—%, %) Given a small positive number 4 > 0, we define a three-
dimensional thin plate

Q" := w x (hI),

with the boundary partitioned into the lateral surface d @ x (hl) and the transverse bound-
ary @ x d(hl). We assume a non-zero Dirichlet boundary condition set on the whole
lateral surface, i.e. the Dirichlet boundary of QF is given by Fﬁl) := Yp X (hl), where
Yo = 0.

Throughout this paper, we assume that the body is only submitted to a hard device
on Ffl) and that there are no applied loads, i.e. what drives the evolution is the boundary
condition that depends on time. It is also possible to consider more general boundary

conditions, together with volume and surfaces forces (see [17, 18,24]).

2.1. PHASE DECOMPOSITION

We recall here some basic notation and assumptions from [25].
Let # = R?/Z? be the 2-dimensional torus, let ¥ := [0,1)? be its associated period-
icity cell, and denote by .# : # — Y their canonical identification. We denote by % the

set

€ :=.771(Y).

For any 2 C %, we denote

% = {xeRZ:EGZZJrﬂ(QF)}, @.1)
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Setting of the problem Phase decomposition

and for any function F : % — X we associate the e-periodic function F : R — X, given
by
x |x
Fg(X) = F(yg), fOI‘ E - \‘EJ - j(yg) - Y.

With a slight abuse of notation we will also write Fg(x) = F ().
The torus ¢ is assumed to be made up of finitely many phases %; together with their
interfaces. We assume that those phases are pairwise disjoint open sets with Lipschitz

boundary. Then we have % = |J;%; and we denote the interfaces by

.= U 0% N dY.
ij
Furthermore, the interfaces are assumed to have a negligible intersection with the set &,

1.e. for every i

A% NE)=0. (2.2)

We will write
r:=Jry,
i#]

where I';; stands for the interface between %; and %;.

We assume that @ is composed of the finitely many phases (%), and that Q" U Fﬁl)
is a geometrically admissible multi-phase domain in the sense of [24, Subsection 1.2].
Additionally, we assume that Q" is a specimen of an elasto-perfectly plastic material
having periodic elasticity tensor and dissipation potential.

We are interested in the situation when the period € is a function of the thickness #,
i.e. € = &, and we assume that the limit

= lim —.
Y h—0 &

exists in [0,4o0]. Depending on the limit, we additionally have assumptions on I" as

follows:

(i) For y € (0,40, we assume that there exists a compact set S C I" with 77! (S) =0

such that "\ S is a C>-hypersurface.

(ii) For y =0, we assume that each % has C? boundary.
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We say that a multi-phase torus % is geometrically admissible if it satisfies the above

assumptions.

Remark 2.1.1. In the case y € (0,4o0] we assume greater regularity than that in [25],
where the interface "\ S was allowed to be a C _hypersurface. There the tangential part
of the trace of an admissible stress [o'V]; at a point x on I"\ S is not defined indepen-
dently of the the considered approximation sequence, while we will avoid dealing with
this situation.

We also remark that in the case y = 0, because of the assumed strict regularity on the
whole interface I', we can not have three or more phases intersecting at any point on the

interface.

The set of admissible stresses.
We assume there exist convex compact sets K; € MS:& for each phase %;. We further

assume there exist two constants rg and Rk, with O < rx < Rk, such that for every i
{EeMI3 8| <rk} CK C{EeMYT 1 |E] <Rk}

Finally, we define
K(y):=K;, forye;.

In case ¥ = 0 or ¥ = +oo, ordering between the phases is assumed on the interface.

Suppose K1 C Kp C ... C Ky, then:

(i) Fory=0,

(i1) For y = 4o,
K(y) := Kpingi jy, ify € (0%N0%))\S. (2.4)

Remark 2.1.2. 1Incase ¥ € (0,+<0), we will define the dissipation potential through inf-
convolution, as in [24,25]. This requires us to prove the lower semicontinuity result for
the dissipation functional.

On the other hand, the restrictive assumption K| C K, C ... C Ky together with (2.3)
and (2.4) will allow us to use Reshetnyak’s lower semicontinuity theorem to obtain the

lower semicontinuity result for the dissipation functional in case Yy =0 or y = +-oce.
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The elasticity tensor.
Let C be the elasticity tensor, considered as a map from % taking values in the set of

symmetric positive definite linear operators, C : % x Msyxn? — ngxrg defined as

C(y)E := Cyey(y) Egev + (k(y) trE) I3 forevery y € # and & € M,

where Cgey (y) = (Cgey); and k(y) = k; for every y € %, and exist two constants 7. and R,

with 0 < r. < R, such that

rel§? < (Caev)i& : & SRJE? forevery & € M

dev ?

re <ki <R..

Let Q: % x M3 — [0, 4o0) be the quadratic form associated with C, given by

sym

1
oWy, &) := E(C(y)ﬁ ;& foreveryye % and & € ngxn?.
It follows that Q satisfies

relE < Q(E) < R|E?  forevery & € M3 (2.5)

sym*

The dissipation potential.

For each i, let H; : % x M3*3 — [0, 4oc0) be the support function of the set K;, i.e

dev

Hi(&)=supt:&.

Tek;

It follows that H; is convex, positively 1-homogeneous, and satisfies

reE] < H{(E) < RiJE|  forevery & € M3X3. (2.6)

dev

Then we define the dissipation potential H : & x M3X3 — [0, +o0] as follows:

dev

(i) Forevery y € %;, we take

H(y, &) :=Hi(S).

(ii) For a point y € "\ S on the interface between %; and %/, such that the associated
normal v(y) points from % to %}, we set
Hij(a, v(y)) if&=a0v(y) € My

H(y, &) := dev”?

: 3x3
o0 otherwise on M3 ",
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where fora € R3and v | a € 2,

Hij(a,v) := inf{Hf(a@V) +Hj(=a;OV):

a=a;—aj, a L v, ajJ_V}.

(iii) Fory € S, we define H arbitrarily (e.g. H(y, &) := ri|[E)).

Remark 2.1.3. We point out that H is a Borel function on %" x M?jgf. Furthermore, for
each y € %, the function £ — H(y, £) is positively 1-homogeneous and convex. However,
the function (y, §) — H(y, &) is not necessarily lower semicontinous. This will only be
satisfied in case ¥ = 0 or Y = +oo where we assumed an ordering between phases, since

then the above definition amount to H(y, ) = H,

min{i,j} (§) on the interface T';;.

Admissible triples and energy.
On Fﬁ’) we prescribe a boundary datum being the trace of a map w” € H!(Q";R?) of

the following form:

1
wh(z) == (Wl(z’) - %381W3(z'), o (7)) — %332% N <z’)) for a.e. z = (7,23) € Q,

(2.7)
where Wy € H' (@), a = 1,2, and w3 € H?>(®). The set of admissible displacements and
strains for the boundary datum w” is denoted by .7 (Q", w") and is defined as the class of

all triples (v, f,q) € BD(Q") x L2(Q"M3X3) x .,(QF; M3%3) satisfying

sym dev

Ev=f+q inQ"
g=W"—v)Ovygn#? onTh.
The function v represents the displacement of the plate, while f and g are called the elastic

and plastic strain, respectively.

For every admissible triple (v, f,q) € <7 (Q", w") we define the associated energy as

atnsa= [ 0(£.@) de+ [ urHC_h%) dlgl.

The first term represents the elastic energy, while the second term accounts for plastic

dissipation.
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2.2. THE RESCALED PROBLEM

As usual in dimension reduction problems, it is convenient to perform a change of vari-
ables in such a way to rewrite the system on a fixed domain independent of 4. To this

purpose, we consider the open interval I = (—%, %) and set
Q.= wxlI, I'p:=dwxlI.

We consider the change of variables y, : Q— @, defined as

Wi (x',x3) := (X', hx3)  forevery (¥, x3) € Q, (2.8)
and the linear operator Ay, : MSYXIS’ — ngxn? given by
TR P! %513

761 36n 5én
To any triple (v, f,¢) € o/ (Q",w") we associate a triple (u, e, p) € BD(Q) x L*(Q; M3;3) %
Mp(QUTp;M23) defined as follows:

sym
u:= (vi,v2,hvs) oy, e:= A;lfo v, p = %A;llll,f(q).

Here the measure Y/ (q) € .4,(Q;M>*3) is the pull-back measure of g, satisfying

/ Q: dl;/,f(q) = / (po lllh_l) :dq  forevery ¢ € Co(QUIp; M),
QUIp Qhurl

According to this change of variable we have

(v, f,q) = h2y(Ape) +hity(App),

where
/
Dy(Ape) = / Q(x—,Ahe> dx (2.10)
Q En
and
X dApp
S (A :/ (—, )d/\ . 2.11
2 (Anp) ooy T\ &y diAup] |Anp| (2.11)

We also introduce the scaled Dirichlet boundary datum w € H'(Q;R?), given by

w(x) == (W1 (x') —x30w3(X'), W (&) —x30hw3(x'),w3(x))) forae. x € Q.

30



Setting of the problem The rescaled problem

By the definition of the class .7 (Q" w") it follows that the scaled triple (u, e, p) satisfies

the equalities

Eu=e+p inQ, (2.12)
p=w—u)©vyes* onlp, (2.13)
pi+pn+pn=0 inQUI. (2.14)

We are thus led to introduce the class .27, (w) of all triples (u, e, p) € BD(Q) x L*(Q; Msyxn?) X
My(QUTp; M3 satisfying (2.12)—(2.14), and to define the functional

sym
In(u,e,p) = 2p(Aye) + G, (Anp) (2.15)

for every (u,e,p) € <7,(w). In the following we will study the asymptotic behaviour of
the minimizers of _#;, and of the quasistatic evolution associated with _#;,, as h — 0 and

e—0.

Kirchhoff-Love admissible triples and limit energy.

We consider the set of Kirchhoff-Love displacements, defined as
KL(Q) :={ueBD(Q): (Eu)3z=0 fori=1,23}.

We note that u € KL(Q) if and only if u3 € BH(®) and there exists # € BD(®) such that

Ug = g —X30x Uz, O =1,2. (2.16)
In particular, if u € KL(Q), then

Ei— X3D2u3
Eu—= 0 . 2.17)
0 0 0

If, in addition, u € Wl’p(Q;R3) for some 1 < p < o, then i € Wl’p(a);Rz) and u3z €
W2P(w). We call i, u3 the Kirchhoff-Love components of u.

For every w € H'(Q;R?) N KL(Q) we define the class o7k (w) of Kirchhoff-Love
admissible triples for the boundary datum w as the set of all triples (u,e,p) € KL(Q) X
L2(Q;MP3) x A, (QUT p; M) satisfying

sym sym
Eu=e+p inQ, p=W—u)®vye#* onlp, (2.18)
en=0 inQ, p3=0 inQUIp, i=1,23. (2.19)
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Note that the space
{EeMy: &3 =0fori=1,2,3}

sym

is canonically isomorphic to MZ;>. Therefore, in the following, given a triple (u,e, p) €

2%x2

sym) and p with a measure

g (w) we will usually identify e with a function in L?(Q; M
in A,(QU FD;ME},XH%). Note also that the class <k (w) is always nonempty as it contains
the triple (w, Ew,0).

To provide a useful characterisation of admissible triplets in .27z (w), let us first recall

the definition of zeroth and first order moments of functions.

Definition 2.2.1. For f € L>(Q;M2%2) we denote by f, f € L*(@;MZ2%2) and f €

sym sym

L*(Q;MZ)3) the following orthogonal components (with respect to the scalar product of

L2(Q:M2X2)) of f:

sym
> >
)= [ Wadn, f@) =12 [ xf o)
2
for a.e. ¥’ € w, and
fH®) = f(x) = F) —xa ()
for a.e. x € Q. We name f the zero-th order moment of f and f the first order moment of
f.

The coefficient in the definition of f is chosen from the computation flx% dxy = ﬁ It
ensures that if f is of the form f(x) = x3g(x’), for some g € Lz(a);ngXn%), then f = g.

Analogously, we have the following definition of zeroth and first order moments of

measures.

Definition 2.2.2. For u € Mb(QUFD;ngxn%) we define fI, fl € Mp(wU yD;ngXH%) and
Ut € My (QUIp;M2%2) as follows:

sym
/ (p:dﬁ::/ Q:du, / q):d,ﬂ::12/ x3¢:du
oUp QuUI'p oUYp QuUI'p
for every ¢ € Cop(wU }/D;ngxnf), and
uhi=p—-aeL, - pexLl,
where ® is the usual product of measures, and %}3 is the Lebesgue measure restricted to

the third component of R?. We name i the zero-th order moment of 1 and fi the first

order moment of L.
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Remark 2.2.3. More generally, for any function f which is integrable over I, we will

use the short-hand notation

f= /If(',X3)dX3, f= 12/}X3f(',X3)dX3.

We are now ready to recall the following characterisation of @k (w), given in [18,

Proposition 4.3].

Proposition 2.2.4. Letw € H'(Q;R*)NKL(Q) and let (u,e, p) € KL(Q) x L*(Q; M3$3) x

sym

My (QUTp;M3X3). Then (u,e, p) € ok (w) if and only if the following three conditions

dev

are satisfied:
() Ei=é+pinwand p= (w—il) ® Vy,s" on p;
(i) D*u3 = —(é+ p)in @, u3 = w3 on ¥p, and p = (Vuz — Vw3) © vy, " on yp;
(iii) pt = —etinQand p- =0o0nT)p.

Proof. The statement easily follows from the preceding definitions and (2.17). [
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Setting of the problem The reduced problem

2.3. THE REDUCED PROBLEM

The reduced elasticity tensor.

For a fixed y € 7, let A, : M2$2 — M3 be the operator given by

sym sym
: A (&)
A = (&) for every & € ngxn%,

&) &) A(8)
where for every & € Mg the triple (47(€),A3(§),A3(€)) is the unique solution to the

minimum problem

M
7{?;1]11% ol v . A : (2.20)
oA A
We observe that for every & € ngxnf, the matrix A ¢ is given by the unique solution of
the linear system
0 0 A
C(y)A¢ : 0 0 Ay | =0 forevery A AL A eR.
A A

This implies, in particular, for every y € % that A, is a linear map.

Let Q, : & x M2X2 — [0, +o0) be the quadratic form defined as

sym

Or(y. &) =0y, Ay§) forevery & € M.

By properties of Q, we have that Q,(y, ) is positive definite on symmetric matrices.

We also define the tensor C, : & x M2X2 — M3*3, given by

sym sym
Cr(y)& :=C(y)Ay& forevery & € M7,
We remark that by (2.20) there holds

/A
0
Cr(»)E:E=C(y)A¢: i) for every & € ngxrf, fe I\\/JISyXIS,

0
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Setting of the problem The reduced problem

and

1 0
0:(y, &) = =C,(y)& - : for every & € ngxn%
2 00

The reduced dissipation potential.
The set K,(y) C ngxn% represents the set of admissible stresses in the reduced problem

and can be characterised as follows (see [18, Section 3.2]):

i &2 O |
SEK(y) = o &n 0 | — g(tr5)13x3 €K(y), (2.21)
0 0 O

where I3 3 is the identity matrix in M>*3.

The plastic dissipation potential H, : % x M2 — [0, +oo) is given by the support

sym

function of K,(y), i.e

H,(y,E):= sup o0:& foreveryé e Mfyﬁg

oeK,(y)

It follows that H,(y,-) is convex and positively 1-homogeneous, and there are two con-

stants 0 < rg < Ry such that
rul§] < H,(y, &) <Rul§| forevery§ € M.
Therefore H,(y,-) satisfies the triangle inequality

Hy(y, &+ &) <H(y, &)+ H,(y, &) forevery&y, & € Mgy

Finally, for a fixed y € ¢/, we can deduce the property

K (y) = 9H,(y, 0).
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2.4. QUASISTATIC EVOLUTIONS

Recalling Section 1.3, the .7,-variation of a function p” : [0, T] — .#,(QUIp;M>*3) on

dev
[a, D] is defined as

1

D x,(P;a,b) 1= sup {

n
H(P(tiy1)—Pty)ca=1 <thp<...<t,=Db, neN}.
=1

For every ¢ € [0,T] we prescribe a boundary datum w(t) € H'(Q;R?*) N KL(Q) and

we assume the map ¢ — w(t) to be absolutely continuous from [0, 7] into H' (Q;R?3).

Definition 2.4.1. Let 4 > 0. An h-quasistatic evolution for the boundary datum w(r)
is a function ¢ — (u(¢),e"(¢), p"(¢)) from [0,T] into BD(Q) x L*(Q;M2>3) x .,(QU

sym

I'p; MS’:‘E) that satisfies the following conditions:
(gsl),, forevery t € [0,T] we have (u(t),e"(t), p"(t)) € <, (w(t)) and
2n(Me (1)) < 2n(AnM) + S (AnT — A" (1)),
for every (v,n,7) € o (w(t)).

(gs2), the function ¢ — p/(¢) from [0,T] into .#,(QUTp;M3%?) has bounded variation

and for every 7 € [0, 7]
t ]
Da(An (1)) + Do (Anp:0,1) = 2y (A (0)) + /0 /Q C(£) Anel(s) : Evi(s) dxds.

The following existence result of a quasi-static evolution for a general multi-phase

material is given by [24, Theorem 2.7].

Theorem 2.4.2. Let h > 0 and let (uf, e, ph) € o7,(w(0)) satisfy the global stability con-
dition (qs1),. Then, there exists a two-scale quasistatic evolution ¢ + (u(¢),e"(t), p"(t))

for the boundary datum w(z) such that u(0) = ug, €(0) = eg, and p(0) = pg.
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3. COMPACTNESS RESULTS

In this section, we provide a characterization of two-scale limits of symmetrized scaled
gradients. We will consider sequences of deformations {v"} such that v € BD(Q") for
every h > 0, their L'-norms are uniformly bounded, and their symmetrized gradients £ Wi
form a sequence of uniformly bounded Radon measures. We associate to the sequence

{v"} above a rescaled sequence of maps {u"} C BD(Q), defined as

h._ (. h  h h
u' = (v{,vy,hv3) oy,

where , is defined in (2.8). The symmetric gradients of the maps {v"} and {u} are

related as follows

h # Ey (”h)/ ﬁ (Dx’uél + ax3 (uh)/)
Ev' =y, | , T | i (3.1)
2h (Dx/u3 + aXS (u ) ) 2 ax_g Us
1 : h h 8,1/4+8juf‘
In the following, we use the notation E;;(u") to denote the measure E;;(u") := —5——.

We first recall a compactness result for sequences of non-oscillating fields with uniformly

bounded symmetric gradients.

Proposition 3.0.1. Let {v"},- be such that v € BD(Q") for every h, and there exists a
constant C for which ||v|| sp(or) < C. Denote by ul the map u" := (Vv mv!t) o . Then,
there exist functions it = (i1, i) € BD(®) and u3 € BH () such that, up to subsequences,
there holds

x 1 .
E‘XB (uh) — 5(80512[; + 8ﬁﬁa) —X3aaBu3 weakly* in ., (Q). 3.2)

The proposition above has been proved in [18]. We briefly sketch the main arguments

below for convenience of the reader.
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Proof of Proposition 3.0.1. From the boundedness of the sequence {v"}, we conclude that
the sequence {u"*} is bounded in BD(Q), and that the right-hand side of (3.1) is bounded
in ., (Q;M2>3), and thus there exist u € BD(Q), and A;3 € #,(Q), i = 1,2,3, such that,

sym

up to the extraction of a (not relabeled) subsequence,

u =y weakly* in BD(Q),

1 * .
%Eoﬁ(uh) — Ag3z  weakly* in #,(Q), a=1,2, (3.3)
1 % )
ﬁEgg,(uh) 2233 weakly* in 7, (Q). (3.4)

In particular, in view of (3.3) and (3.4) we have
E;(u") — 0 strongly in .2, (Q). (3.5)

By (3.5) we deduce that %(8,-u3 + dsu;) = 0, for i = 1,2,3, and that u3 € L'(w). This
implies that u3 € W1 (@) and that uy = iigq — x39qu3, for a = 1,2, where i € L' (0;R?).

Finally we conclude that (i1},i,) € BD(w) and us € BH(®). [

Now we turn to identifying the two-scale limits of the sequence A,Eu". We will adapt

some results and definitions from [25].

Definition 3.0.2. Let Q C R? be an open set. Let {u},-0 be a family in .#,(Q) and
consider y € #,(Q x %). We say that

W E U two-scale weakly* in .Z),(Q x %),
if for every y € Co(Q X %)
xl h
lim (x,—)d X :/ x,y)du(x,y).
fim X\ oy Ja ) = | x(y)dulxy)
The convergence above is called two-scale weak™* convergence.

Proposition 3.0.3. (i) Any sequence that is bounded in .#},() admits a two-scale

weakly* convergent subsequence.

(i) Let 2 C % and assume that supp(p,) C QN (Ze, xI). If L U two-scale
weakly* in ./,(Q x %), then supp(i) C Q x Z.
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3.1. CORRECTOR PROPERTIES AND DUALITY

RESULTS

In order to define and analyze the space of measures which arise as two-scale limits of
scaled symmetrized gradients of BD functions, we will consider the following general
framework.

Let V and W be finite-dimensional Euclidean spaces of dimensions N and M, respec-
tively. We will consider k™ order linear homogeneous partial differential operators with
constant coefficients &7 : C;°(R"; V) — CZ(R";W). More precisely, the operator .o/ acts
on functions u : R" —V as

AU = Z Agd%u.
|a|=k

where the coefficients A, € W @ V* = Lin(V; W) are constant tensors, & = (01, ...,0,) €
N2 is a multi-index and 9% := 9" --- 9% denotes the distributional partial derivative of
order || = o) + -+ + Q.

We define the space
BV (U) = {u el U;V): oue ///b(U;W)}

of functions with bounded </ -variations on an open subset U of R". This is a Banach

space endowed with the norm

lullpye ) = llull 1) + [ ul(U).

Here, the distributional <7 -gradient is defined and extended to distributions via the duality

/ Q-ddu ::/ A Q-udx, @ecC(UWY),
U U
where &7* : C2°(R";W*) — CZ(R";V*) is the formal L2-adjoint operator of .2/

ot = (~1)F Y AL9%.
la|=k

The total <7 -variation of u € L} (U;V) is defined as

loc

|7 u|(U) := sup {/ A*Q-udx: @ C{UWY), || < 1}.
U
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Let {u,} C BV (U) and u € BV (U). We say that {u,} converges weakly* to u if
Uy — u in LY (U;V) and ou, = o/u in 4,(U;W).

In order to characterize the two-scale weak* limit of the scaled symmetrized gradients,
we will generally consider two domains Q| C R", Q, C R"2 and assume that the operator
<y, 1s defined through partial derivatives only with respect to the entries of the n;-tuple

x7. In the spirit of [25, Section 4.2], we will define the space

%%)‘2“21) = {u S //b(Q.l X .Qz;V) : Mmu € //b(Q.l X .Qz;‘/V)7

U(F x p) = 0 for every Borel set S C Q }

We will assume that BV % (Q7) satisfies the following weak™ compactness property:

Assumption 1. If {u,} C BV“2(Q;) is uniformly bounded in the BV**2-norm, then
there exists a subsequence {u,,} C {u,} and a function u € BV (Q,) such that {u,}

converges weakly* to u in BV (), i.e.
Uy — u in LI(QZ;V) and %, up N T u in Mp(Qa;W).

Furthermore, there exists a countable collection {U*} of open subsets of R™ that
increases to Q (i.e. UK C U*H! for all k, and Q; = |, U*) such that BV (U*) also

satisfies the weak* compactness property.

The following theorem is the main disintegration result for measures in 2”2 (Q,),
which will allow us to define the duality result for admissible two-scale configurations.

The proof is an adaptation of the arguments in [25, Proposition 4.7].

Proposition 3.1.1. Let u € 2°“2(Q,). Then there exist 1) € M, (Q1) and a Borel map

(x1,X2) € Q1 X Qp +— Uy, (x2) € V such that, for n-a.e. x; € Qy,

My, € Bvﬂxz (9'2)7 /Q My, (X2)d)C2 =0, ’%214361 |('QZ) 7£ 0, (3.6)
2

and
1=y (x2) N @ L2 (3.7)
Moreover, the map x| — o, [y, € #(Q2;W) is n-measurable and

gen.

Gy =1 @ )y,
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Proof. By assumption, we have u € #},(Q x Qy;V) and A 1= o/, u € A (Q1 X Qp;W).
Setting

N := projs|pt| + projs|A| € A, (Q1),

where projy is the push-forward by the projection of Q; x Q; on €, we obtain the

disintegrations
gen.

H=1 ® Wy and A =1 ® lxlv (3.8)

with y, € #,(Q2;V) and Ay, € A (Q0; W). Further, if we set S:= {x] € Q; : |Ay, |(Q2) #
gen.
0}, then A =1|S ® Ay, .
For every (1) € C(Q;) and ¢?) € C=(Qy; W*) we have

0 (0 ) /(/ o0 (1) 30 (1) dt (12) ) - ()

gen. % %

= <n ENTCRE AT )> = (u, 9 (9Mo?))

= (o1, 0V p?) = <n IS'® Axl,fp“)fp‘z)>

= [ ([ 00 ) -di,(22)) 15(0) -dn ()

o, \Jo,

= /Q oW (1) (Ts(x1) Ay, @) -dn(x1).

1

From this we infer that for n-a.e. x; € Q; and for every ¢ € C°(Qq; W*)

<.uxw (P> (Ls(x1) ey, @) - (3.9)

We can consider (i, and A,, as measures on R™ if we extend the measure p by
zero on the complement of Q. Then, using the standard mollifiers {p¢ }¢~0 on R, we
define the functions i, := Ly, * pe and A{ := Ay, * pe, which are smooth functions and
uniformly bounded in L' (Q,;V) and L' (Q,; W), respectively. For every ¢ € C¥(Qq; W*),

supp(¢) C U* for k large enough. Furthermore, the support of @ * p, is contained in Q,
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provided ¢ is sufficiently small, and thus from (3.9) we have
(s, A 0) = /an (K, * Pe) -, pdxy = /R (3¢ * pe) - d iy

- R %* ((P*Pe) diy, = <nuxl7=@{x>; ((P*Pe)>

= <1S(xl)lx1>(P*P£> = /]R”2 (@*pe)- ]15<x1)dlx1

= | Tg(x1) (Ax, * pe) - @dx
an

= (Ls(x1)Ag,, @)-

Hence, for n-a.e. x| € Q; the sequence {yy } is eventually bounded in BV“2 (U*). By
Assumption 1, this implies strong convergence in L' (U*;V) up to a subsequence. As
€ — 0, we have both @ x pe — ¢ and &) ¢ x pe — <7, @ uniformly, so by the Lebesgue’s

dominated convergence theorem we obtain, for n-a.e. x| € Q,

(g 5 0) = (e 5 0) and (Ls(x1)Ag, @) = (Ls(x1) Ay, @)

From the convergence above, we conclude for n-a.e. x| € Q that ug, — g, strongly in
L' (UK, V). Since i, has bounded total variation, we have that i, € L' (Q;V) for n-a.e.
x1 € Q. This, together with (3.9), implies

L, € BV2(Qy) and oy, iy, = Lg(x1) Ay,

Furthermore, from (3.8) we now have that u is absolutely continuous with respect to
N ® %2 Consequently, for n-a.e. x; € Q there exists a Borel measurable function
which is equal to u,, for Zczz—a.e. X2 € Q», so that (3.7) immediately follows.

Finally, since pt(F x Q;) = 0 for every Borel set F C Q|, we have

/Qlf(m)(/gzuxl(xz)dxz) dn(’“):/lezf(xl)dﬂ(xum)zo

for every f € C.(Q), from which we obtain the second claim in (3.6). This concludes

the proof. |

Lastly, we give a necessary and sufficient condition with which we can characterize

the .7, -gradient of a measure, under the following two assumptions.

Assumption 2. For every x € Cp(Q; x Q; W) with o7} X = 0 (in the sense of distri-
butions), there exists a sequence of smooth functions {y,} C C°(Q; x Qy;W) such that

5 xn = 0 for every n, and x, — x in L™(Q) x Qp; W).
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Assumption 3. The following Poincaré-Korn type inequality holds in BV (Qy):

u —/ udx,
Q

Proposition 3.1.2. Let A € .#,(Q x Qy;W). Then, the following items are equivalent:

< C|lyu|(Q), Vu e BVT2(Q,).
Ll(Qz;V)

(i) For every x € Co(Q x ;W) with &7y = 0 (in the sense of distributions) we

have

/ 2(x1,%2) -dA (x1,52) = 0.
Q] XQQ
(i) There exists y € 2“2 (Q) such that A = .o, 1.

Proof. Let x € Co(€2) x Qo; W) with &7 x = 0 (in the sense of distributions) and let { x, }
be an approximating sequence of  as in Assumption 2. Assume that (ii) holds, then we
have
/ X (x1,%2) - dA(x1,%2) =/ 2 (x1,x2) - doy, ph(x1,%2)
Ql XQZ Ql XQZ

= lim An(x1,X2) - dot, (X1, X2).
n o xQ,

Then, by integrating by parts, (i) follows.

Let us prove that the space
&% = { ot e 2% (Qu)}

is weakly* closed in .#,(Q1 x Q,;W). By the Krein-Smulian theorem it is enough to

show that the intersection of &“2 with every closed ball in Mp(Q1 X Q; W) is weakly*

closed. This implies, since the weak™ topology is metrizable on any closed ball of

AMp(21 x Qy; W), that it is enough to prove that &% is sequentially weakly* closed.
Let {A }peny C %2 and A € 4,(Q) x Qy; W) be such that

Ao = A in A(Q) x Q5 W).

By the definition of the space & “% | there exist measures Wn € M,(Q1 X Q;V) such that
A, = 9/, i, By Proposition 3.1.1, for every n € N we have that there exist 1, € ///j (Q)
and py, € BV () such that, for n,-a.e. x; € Q,

gen.

Un = .u)’cll (XZ) Nn ®$c227 %ﬁln =M & fQ{xz“)?] .
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Furthermore, py, satisfy o py (x2)dxz = 0. Then, by Assumption 3, there is a constant

C independent of n such that

l( @ x2) = [ ) ldndo = [ ([l ldn ) dn(e)
Q1 xQy Q Q)

<c [ ot l@adnte) =C [ ([ dietont|ix)) dnato)

gen.
—cf a(mE eng]) = Cltml(@i <o) <.
Q[XQQ

Hence there exists a subsequence of {u,}, not relabeled, and an element u € .#,(Q; x
Q,;V) such that
My = o in Ap(Qp x Qo3 V).

Then, for every ¢ € C°(Q1 x Qy;W*) we have
<A> (P> = li£n<kn7 (P> = h}gn(fgfxz.una (P>
= tim {44, 7 0) = (1. ).

From the convergence we deduce that A = o7, u € &%, This implies that &% s
weakly* closed in .#,(Q) x Qo; W) = (Co(Q x Qp; W)
Assume now that (i) holds. If A ¢ éa%xz, by Hahn-Banach’s theorem, there exists

X € Co(Qq X Qp;W*) such that

/ x-dA =1, (3.10)
Q]XQZ

and, for every u € BV (Q x Q,),

/ X -dl,u=0, (3.11)
Q.1><Qz

In particular, choosing u to be a smooth function, (3.11) implies that /¥ = 0 (in the

sense of distributions). As a consequence, (3.10) contradicts (i). Thus, A € & Py, |

3.1.1. Case y € (0, +)

If we consider <7, = Ey, A = Zi\i;y, Q1 = o with points x; = x, and Q, =1 x % with
points x; = (x3,y), then we denote the associated spaces from the previous section by:
BDy(Ix %) = {u €LY (I x ¥\ R%) : Eyu € My(I ¥ @;M3X3)},

sym
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sym

Zy(w) = {u € Mp(Qx VR : Byt € Mp(Q x 7 MED),
W(F xIx %) =0 for every Borel set F C a)}.

1

Remark 3.1.3. Foreach u € BDy(I x %), we can associate a function v := ( U1 %,uz, M3) .

Then
1 1
7B 3(Dyus + 5 9 )
T
%(Dyu3 + 71/(9,(3 u’) Oxs U3

from which we can see that v € BD(I x %).

Eyv=

Alternatively, we can define the change of variables y : (yI) X # — I x % given by
y(x3,y) = (%x3,y> and consider the function w := uo y. Then w € BD((yl) X %) and

we have
Using any one of these scalings, we can prove that BDy(I x %) satisfies the weak*

compactness property Assumption 1.

Remark 3.1.4. For any y € Co(Q X & ,ngxn?) with cﬁ;yx(x, y) = 0 (in the sense of
distributions), we construct an approximating sequence which satisfies Assumption 2. To

see this we take y € Co(Q x ¥/ M3X3), extend it by zero outside Q and define

sym
X5(x,y) = AryeX ((Ps(x/)x/a (1+ 8)x3,y) )

where A is the linear operator described in (2.9), and ¢f : @ — [0,1] is a contin-
uous function that is zero in a neighbourhood of d® and equal to 1 for X' € @ such
that dist(x’, dw) > €. Notice that ¥¢ € C.(Q x % ;M2*3), ¢ — x as € — 0 in L™ and

sym

&Ey;zs = 0 (in the sense of distributions). The final argument goes by convoluting ¥%.

Remark 3.1.5. In view of Remark 3.1.3, to show that BDy(I x %) satisfies Assump-
tion 3 it is enough to Poincaré-Korn type inequality holds in the case Y = 1. We detail this

below.

Theorem 3.1.6. There exists a constant C > 0 such that
/ \u|dx3dy < C|Ey u|(Ix %)
Ix%

for each function u € BD(I x %) with [}, 5 udx3dy = 0.
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Proof. Assume otherwise, then there exists a sequence {u, }, C BD(I x %) such that
/ |un| dx3dy > n|Ey un|(I x %), with / updxzdy = 0.
Ix% Ix¥%
We can normalize the sequence such that
1
/ | dxsdy = 1, and |Eyyitn| (I X ) < ~
Ix% n

In particular the sequence {u,} is bounded in BD(I x %/).
Now by the weak* compactness property, there exists a subsequence {u,, } C {u,} and

a function u € BD(I x %) such that {u,,} converges weakly* to u in BD(I x %), i.e.

Uy — u in LI x %R, and Ey ity — Eyqu in (I x M2,

sym

It’s clear that the limit satisfies

/ lu|dxsdy = 1, with wdxsdy = 0. (3.12)
IxX¥ Ix%
Also, by the weak* lower semicontinuity of the total variation of measures, we have

|Eyqt| (I x %) =0, (3.13)

which implies Ey ,,u = 0. As aresult, the limit « is a rigid deformation, i.e. is of the form

Y1
u(xz,y) =A | y, | +b, where Ac M3 beR.
x3

Further, (3.13) implies that « has no jumps along C! hypersurfaces contained in / x %'
Hence, due to the form of skew-symmetric matrices, # must be a constant vector. How-

ever, this contradicts with (3.12). |

The following two propositions are now a consequence of Proposition 3.1.1 and Propo-

sition 3.1.2, respectively.

Proposition 3.1.7. Let u € 2;(®). Then there exist N € .#," (®) and a Borel map

(X', x3,y) € QX ¥ > wu(x3,y) € R? such that, for n-ae. ¥ € o,

peeBDIx @), [ pelaydady=0.  [Eplix®)£0, (14
X
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and

U= po(x3,9) N ®Ly, @.L. (3.15)
Moreover, the map x' —> Ey;,tx/ € My(I x % M3X3) is n-measurable and

sym

gen.

Exi=1"® Eyy.

Proposition 3.1.8. Let A € .#,(Q x % ;M2>3). The following items are equivalent:

sym

(i) Forevery y € Co(Q x % ;M33) with (/ﬁ;yx (x,¥) = 0 (in the sense of distributions)

sym

we have

/ X(x,y) : dA(x,y) =0.
Qx¥
(ii) There exists 1 € 2y () such that 4 = Eyu.

Additionally, we state the following property, which will be used in the proof of

Lemma 3.4.4. The proof is analogous to [25, Proposition 4.7. item (b)].

Proposition 3.1.9. Let u € 23(®). For any C'-hypersurface 2 C %/, if v denotes a

continuous unit normal vector field to 2, then
Eyit| Q% 2 = a(x,y) 0 v(y) N & (7, [T X D),

where a: Q x 2 +— R3 is a Borel function.

3.1.2. Case y=0

If we consider <, = Ey, &, = divy, Q; = ® with points x; = X', and Q, = # with
points x, = y, then BV%2(Q,) = BD(%) and we denote the associated corrector space

by

Zo(w) := {u € My(0x W R?) 1 Egu € Mpy(0 x W MED),

sym

WU(F x %) = 0 for every Borel set F C a)}.

Remark 3.1.10. We note that 2((®) is the 2-dimensional variant of the set introduced

in [25, Section 4.2], where they proved its main properties.
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Further, if we consider 7, = D%, ;z%);; = div,divy, Qi = @ with points x; = X', and
Q, = % with points x, = y, then BV“2(Q,) = BH(%) and we denote the associated

corrector space by

Yo(w) = {K € My(0xY):Djk € My(0x Y MLT),

K(F x %) = 0 for every Borel set F C a)}.

Remark 3.1.11. It is known that that Assumption 1 and Assumption 2 are satisfied in
BH(%/), so we only need to justify Assumption 3.

Owing to [20, Remarque 1.3], there exists a constant C > 0 such that
lu—p() || g2y < CIDFu|(Z),
where p(u) is given by

p(u):/ Vyudy'y—i—/ udy—/ Vyudy'/ ydy.
s 8 s 8

However, since integrating first derivatives of periodic functions over the period is zero,

we precisely obtain the desired Poincaré-Korn type inequality.

As a consequence of Proposition 3.1.1 and Proposition 3.1.2, we have the following

results.

Proposition 3.1.12. Let u € 2() and k € Yo(). Then there exist ) € .#," (®) and
Borel maps (x',y) € @ x % > uy(y) € R? and (¥',y) € @ x % + ku(y) € R such that,

for n-a.e. ¥ € o,

peeBD®@), [ wel)dy=0.  [Euel@)£0,
ko €BH@). [ kO)dy=0,  |Dii|(@) 0.
and

ﬂ:Hx’(}’)U@iﬂyza K:Kx/(y)n(g%z'

Moreover, the maps x' — Eylly € /(% ;Mgya) and x' — Dk € Mp,(% M) are

n-measurable and

gen. 2 gen. 2
Esu=1n ® Eyly, Dyk=n ® Djxy.
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Proposition 3.1.13. Let A € ., (w x % ;MZ2X?2). The following items are equivalent:

sym

(i) Forevery y € Co(® x % ;M%2) with div,x (x’,y) = 0 (in the sense of distributions)

sym

we have

| ady)iaady) =o.
OxXY
(i) There exists u € Zo(w) such that A = E,u.

Proposition 3.1.14. Let A € .}, (w x % ;M2*2). The following items are equivalent:

sym

(i) Forevery y € Co(w x ¥ ;ngxrf) with divydivy,x (¥, y) = 0 (in the sense of distribu-
tions) we have

"y)1dA(x,y) =0.
|y daiy)

(ii) There exists kK € Yo(®) such that A = D% K.

3.1.3. Case Y = +oo
If we consider 7, = Ey, &, = divy, Q; = Q with points x; = x, and Q; = %" with points
X =y, then BV%2(Q,) = BD(%) and we denote the associated corrector space by
Zio(Q) 1= {u € Mp(Qx VR Eyu € My(Qx W MED),
W(F x %) =0 for every Borel set F C Q},
Further, if we consider %, = D), sz = divy, Q = Q with points x; = x, and Q, = %
with points x, = y, then BV (Q,) = BV(%') and we denote the associated corrector
space by
Y. (Q) = {K € My(QX V) : Dyk € Mp(Qx Y RY),
K(F x %) = 0 for every Borel set F C Q}.
Clearly Assumption 1, Assumption 2 and Assumption 3 are satisfied in BD(%/) and

BV (%/). Thus, we can state the following propositions as consequences of Proposi-

tion 3.1.1 and Proposition 3.1.2.
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Proposition 3.1.15. Let u € 2.(Q) and k € Yo(€). Then there exist 1) € .#," (Q) and
Borel maps (x,y) € Q x % + w(y) € R? and (x,y) € Q x # — K, (y) € R? such that, for
n-ae. x € Q,

weBD®), [ mO)dy=0,  |Eum|@) 0.

seBV(@). [ mOdy=0,  IDl@)#0,
and

Nzux()’)ﬂ@?cgyza K:Kx(y)n(@%z-

Moreover, the maps x — Eyl, € //Zb(@;ngﬁ) and x — Dyky € Mp(%;R?) are 1-
measurable and

gen. gen.

Eypu=1n ® EyUy, Dyk =1n ® Dyk.
Proposition 3.1.16. Let A € .,(Q x % ;MZ2). The following items are equivalent:

sym

(i) For every x € Co(Q x #;M2x2) with divyx(y) = 0 (in the sense of distributions)

sym

we have

x,y) :dA(x,y) =0.
[, ) datey)
(ii) There exists 4 € Z.(Q) such that A = Eyp1.
Proposition 3.1.17. Let A € .#,(Q x % ;R?). The following items are equivalent:

(i) For every x € Co(Q x % ;R?) with divyx(y) = 0 (in the sense of distributions) we

have

[, 203): da ) =0,

(ii) There exists k € Yo (Q) such that A = D k.
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3.2. AUXILIARY RESULTS

3.2.1. Case y € (0, +)

We will need the following result, which is connected with the compactly supported De

Rham cohomology.

Proposition 3.2.1.  (a) Let ) be a flat torus in R> and let ¥ € C=(Z?);R3) be
such that divy =0 and [, 5 ¥ = 0. Then there exists F € C**(% );R?) such that
rotF = y.

(b) Let % be a flat torus in R? and let y € Co(¥ xI :IR?) be such that divy ., x =0 and
Jas1 % = 0. Then there exists F € CZ(% x I;R?) such that roty,, F = .

Proof. The first claim is standard and can be easily proved by, e.g, Fourier transforms.
For the second claim, extending y by periodicity to % (3), by the first part of the statement
we obtain F € C(% (). R3 ) such that rot £ = y on % (3). Since yx has compact support in
% x 1, there exists 0 < § < 4 such that rotyx, F = 0 on % x I, where I = {(§ — 8,3)U
(—1,—148)}. Let now ¢ € C=(S5), where S5 = (0,1)% x I5, be such that F' = V., ¢
on Ss. For o € {1,2}, let

Y aff (y2,x3)?™
ke,

be the exponential Fourier series of Fy = dy, @ with respect to the variable y;. Note
that the coefficients {a,‘f (y2,x3) }rez are smooth functions and periodic with respect to
the variable y, and x3. Furthermore, the Fourier series of smooth functions converges
uniformly, and the result of differentiating or integrating the series term by term will
converge to the derivative or integral of the original series. Hence, we can infer that

a;(y2,x3)

27'L'iky1 1 1
ik e +Db (y2,x3) on Sg, (3.16)

¢(y7x3) :a(l)()’ZaXS)yl—i— Z
keZ\{0}

for a suitable smooth function b! (y2,x3). Then, differentiating with respect to y; and y»,

we have that

Dy, B(,33) = Oyyap(y2,x3) + Y. Oyyap(y2,x3)e”™ on S.
keZN {0}
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However, since

Dy, Py x3) = 0y Fa(v,x3) = Y. 2mikai(y2,x3)e*™ " on Sg,
keZN{0}

by the uniqueness of the Fourier expansion we have that 8y2a(1) (y2,x3) =0, i.e.

ag(y2,x3) = c1(x3), (3.17)

for some ¢; € C¥ (ig). Further, differentiating (3.16) with respect to y,, we have that

= dy,a; Y2,X3 j
aY2(p(an3) = Z %ezm@l +8y2b1(y2,x3) on Ss.
keZ)\{0}

Since 9y, = F is periodic, we can conclude that 8y2b1 is also periodic with respect to the
variable y, and we can consider its Fourier series. Let ¢, € C*(I) be the corresponding
zero-th term. Then the antiderivative of Byzbl — ¢ with respect to y; is a periodic function.
Combining this fact with (3.16) and (3.17), we deduce that there exists a smooth function

¢ € C*(I5;C=(#)) such that § can be rewritten as
P(y,x3) = P(y,3) +c1(x3) y1 +2(x3) y2 on & x I5.
From this, differentiating with respect to x3, we have that
B5(3,x3) = 0, 0 (3,x3) + ¢} (x3) y1 + 5 (x3) y2 on ¥ x I5.

As a consequence of the periodicity of /3 and oy, @ in the variables y; and y,, we conclude
that ¢) =0 and ¢, = 0. Since % x I5 is a union of two disjoint open sets, we have that

c1,c are constant on each connected component. Using the fact that, for a € {1,2},

Iyo P(3,43) = Oy, P (v,x3) +ca(x3) on ¥ x I, (3.18)

the periodicity of Fy, = dy, @ implies that c,c; are in fact constant. This can be seen by

integrating the equation (3.18) over the plane x3 = —% and x3 = % Thus we conclude that
1

F(y,x3) =V ®(y,x3) + cH on % x Is. (3.19)
0
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Consider now the exponential Fourier series of F3 with respect to the x3 variable, such
that

Byx) =Y, ai(y)e*™™ 3 on  x Iy.
keZ

Integrating the third component in (3.19) with respect to x3, we have that there exists a
smooth function b (y,x3), which has values b3.(y) and b (y) on each of the two parts of

% x I, such that

3
. ay(y) oni .
P(yx3) = ap ()3 + Z %62” k3 1 b3 (y,x3) on & x I.
kez oy <

From this and (3.18) we have, for a € {1,2},
- 3 Fq ai () omike 3 7
Fo(y,x3) — ca = dyap(y)x3 + Z 2—'ke 340y b7 (y,x3) on & x Is.
keznjoy T

Considering the continuity and periodicity in x3 of the above terms, evaluating in x3 = —%
and x3 = 3 gives dy,a3(y) = dy,b> (y) — dy,b(y). From this we have that there exists a
constant c3 and ¢ € C*(#% x I5) such that it and all its derivatives are periodic in the x3
variable, for which

P(y,x3) = @(y,x3) +c3x3 on ¥ x Is.
From this and (3.19) we conclude

€1
F(y,x3) = Vy,x3(P(y,x3) + 2 on % x ig.

C3

Finally, we consider a smooth function k : / — R that is zero on the set [—% +8,1 - 5}

2
and one in a neighbourhood of x3 = —%, x3 = 1. By taking
1
F:=F—Vy,(ko)— cH on% xI.
3
we have the claim. |

Remark 3.2.2. By considering functions scaled by ¥ in the third component and by 71, in
the direction x3, one can apply the proof item (b) in Proposition 3.2.1 so that the statement

is valid for maps in the space C*(#% x (yI); R?).
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Consequently, for y € C(# x I;R?) such that EEM =0and [, x =0 there exists
F € C2(% x I,R?) such that rot,F = y, which can be easily seen by rescaling in the

direction x3.

Remark 3.2.3. If y € C°(Q x % ;M33) is such that &ny =0, then for a.e. ¥ € ®

sym
/ x3i(x,y)dxzdy =0, i=1,2,3.
Ix%

Indeed, by putting
2yx3c1 ()
o) = | 2ymael) |,
Yxzc3(x)

for c € C(w;R3), it is easy to see that

0 0 ¢
Evo=( 0 0 & |,
c1 C C3

and the conclusion results from testing )y with Ey¢ on I X %, and by the arbitrariness of

the maps ¢;, i =1,2,3.

3.2.2. Case y=0

In order to simplify the proof of the structure result for the two-scale limits of symmetrized

scaled gradients, we will use the following lemma.

Lemma 3.2.4. Let {u"};-( be a bounded family in ., (Q;M2%2) such that

sym

2x2
syxm)'

u' 2 1 two-scale weakly* in ., (Q x % ;M

for some (U € A (Q x %' ;M2X2) as h — 0. Assume that

sym
G a” 275 A two-scale weakly* in .Z,(® x % ;MZ2X2), for some Ay € .4, (@ x

sym
78 M2><2).

sym

(ii) Forevery y € C2°(@ x /;M2%2) such that divydiv,x (x',y) = 0 we have

sym
: PN anh I A Iy . /
}lll_r>r(1) wx(x,e—/) 1 d"(x')dx —/wxgx(x,y).dlz(x,y),
for some A, € (o x @,ngxn%),
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(iii) There exists an open set I O I which compactly contains I such (u”)+ 2750 two-
scale weakly* in ./, (@ x I x % ; MZ2).

sym

Then there exists k € Yo(®) such that
p=2482L+(h+Dix)@x.L).
Proof. Every u” determines a measure v/ on @ x [ X % with the relations
vi(B) :=u"(BN(Qx %))

for every Borel set B C @ x I x % . With a slight abuse of notation, we will still write uh

instead of V.

Let v be the measure such that

2—x%

' = v two-scale weakly* in ., (o % I X @,M%yxn%)

We first observe that, from the assumption (i) and (iii), it follows that v = A; and vi=0.

Furthermore, u” 275 v two-scale weakly* in Z,(Q x & ,ngxn%)

Lety cC(Qx ¥ ;ngxrg). If we consider the following orthogonal decomposition
2(6) = 2 y) + 12 (& y) + 1 (%),
then we have that
. _ 1 XN og k!
/M/x@c,y) 1dv(x,y) = }lllg%/gx(x, L) du"(v)

— lim Z(x',g_;);dgh<x')+inm A 2) dp" () +lim [ (e E) rd(uh)(x)

&

h—0Jo 12 h—0J h—0J0
1 /
- = (. . / . SO X\ gk
= wx@%(x,y) 'dll(x’y)+_12}ll—r>r(l) wx(x,gh) dp"(x).

Suppose now that y (x,y) = x3% (x',y) with divydiv,} (x’,y) = 0. Then the above equality
yields

SO N 30 N T S X\ - a0k — S04 ) - /
| Ay dsw ) = tim [ g+ 2)sap' @) = [ q0y)saka(d ).

—0Jw

By a density argument, we infer that

/W@fc(X’,y) 1d (

<>
~
=
<
S—
|
S
—
=
<
N~—
SN—
Il
o
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for every 7 € Co(@ x % ;M%2) with div,div, % (x',y) = 0 (in the sense of distributions).

sym

From this and Proposition 3.1.14 we conclude that there exists kK € Yo(®) such that
V—»A = Dg K.

Since t = v on Q x %', we have the claim. [ |

3.2.3. Case Y= +o0

The following result will be in the proof of the structure result for the two-scale limits
of symmetrized scaled gradients. We note, however, that this result is independent of the

limit value 7.

Proposition 3.2.5. Let {1},- be a bounded family in BD(Q) such that
Vi 2oy weakly* in BD(Q),

for some v € BD(Q). Then there exists € Zw(Q) such that

(Evh)// L v ®.$y2 +Eyu  two-scale weakly* in My (Q % @;szz).

sym
Proof. The proof follows closely that of [25, Proposition 4.10].

By compactness, the exists A € .#,(Q x % ;M2*3) such that (up to a subsequence)

sym

EvV' 251 two-scale weakly* in ., (Q x @,MSYXH?)
Since v — v strongly in L' (Q;R?), we have compontentwise

Vi E vi(x) 23 ®.$y2 two-scale weakly* in .#,(Qx %), i=1,2,3.

Consider y € C°(Q x %;M2%2) such that div,x (x,y) = 0. Then

sym

lim %(x,%) d <Evh)” (x) = lim x(x,g—]i) : dEy (V' (x)

h—0.JQ h—0JQ

——lim Q(vh)'(x) divy (x(x,£)) dx

=~ tim ([ 04 (0-diver(x.£) axt o [ 01 -div(v. ) ax)
= —%iil’(l) Q(vh)'(x) -divxx<x, g—;) dx

—— [ V0)-diver (xy) dedy
Qx %

— QX@)((x,y) . d (Ex/v'®.$y2) .
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By a density argument, we infer that

cd (A —Ex// 32 :0,
|y d (ay) ~Enl©.27)

2%x2
sym

for every y € Co(Q x #';Mg;y) with divyx (x,y) = O (in the sense of distributions). From

this and Proposition 3.1.16 we conclude that there exists 4 € Z<(Q) such that
A —Exlvl ®,,Zg,2 =Lyl

From this we have the claim. |
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3.3. TWO-SCALE LIMITS OF SCALED

SYMMETRIZED GRADIENTS

We are now ready to prove the first main result of this section.

Theorem 3.3.1. Let {V"},-¢ be such that v € BD(Q") for every h > 0, and there exists

a constant C for which
||Vh||BD(Qh) <C, foreveryh>0.
Denote by " the map u” := (v}f, vg, hvg’) o Y. Then there exist
i = (ii,i) € BD(®), uz€BH(w), E € .M,(Qx%;Mys),
and a (not relabeled) subsequence of {u"};~¢ which satisfy

h 2—x ElZ—X3D2u3 0 y = ) 13
AEU — ® Ly +E  two-scale weakly* in ./,(Q x /s M),
0 0

(a) If y € (0,40), then there exists u € Z(®) such that
E = E’}’u(xvy)'
(b) If y =0, then there exist u € Zy(®), k € Yo() and { € .4, (Q x #;R3) such that

= _ [ B ) —xDik(xy) §(xy)
(4E3N &3 (x,y)

(c) If y = oo, then there exist 4 € 2w (Q), k € Yoo(Q) and { € .,(Q;R?) such that

P Eyp(x,y) ¢'(x) + Dyk(x,y)
(&' (x) +Dyxe(x,y))" G(x)

Proof. Owing to [45, Chapter II, Remark 3.3], we can assume without loss of generality
that " are smooth functions for every h > 0. Further, the uniform boundedness of the

sequence {EV"} implies that
/ |0 + Oyul | dx < Ch,  fora=1,2, (3.20)
o ‘

/Q|ax3u§’]dx§6h2. (3.21)
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Compactness results Two-scale limits of scaled symmetrized gradients

In the following, we will consider A € .#,(Q X ¥/, ngxrg ) such that

ApEul 250 two-scale weakly* in .#,(Q x 2 M2X3).

sym
Step 1. We prove the statement in the case g — 7€ (0,4e0).

By using Proposition 3.0.1 we have that there exist (i1,i2) € BD(®), u3 € BH(®)
such that

(Eu")"(x) = Ea(x') —x3D*uz(x')  weakly* in .47, (Q;M2X2).

sym

Let y eC(Qx ¥ MSYX,S) be such that cﬁ;yx = (0. We have

|, xeydaey

= lim Q)((x, L) 1 d (AEu" (x)) =~ lim Quh(x)-div (Anx(x, %)) dx

/ 1 /
. h X : h X
=~ jm ¥ /Q g, () (O X + 9oy o) (3 ) v Jim = | 13 (x) (9 o1 + 92, )

, 17, 1 A y
—}ll_{% :Z g_h/gu“(x) (3y1%a1+ayzla2>( )dx—}ll_%h—&l u3(x) (3y1X31+9sz32)(X,g—h) dx

. 1 h 1 h X
_}lg'% lez/gua(X) 8x3%063< >dX—}lllir(1) h2/£2M3(X) ax3x33<xaa) dx

— lim

h%oazllz/ Uy - X]XOCI +ax2%052)< ’8 ) dx — hm / Uusz- x|%31 +8X2X32)( ) dx

’

. h 1
+ilzlg(l)<%/_l> (oc lzh/ua x3Xa3< 7S)dx—i—hz/ug' aX3X33( 78)dx)’

(3.22)

where in the last equality we used that - 8y1 Xil t = & ayz Xi2+ h8y3 Xiz = (— %,) 8y3 Xi3-

From the proof of Proposition 3.0.1 we know that we have the following convergences:

ul, = fig —x30y,u3, strongly in L'(Q), a=1,2,

ul' = uz, strongly in L'(Q).
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Compactness results Two-scale limits of scaled symmetrized gradients

Notice that

. h xl
fim ¥ [ 1a5) 90 2o + O ta2) (. )

= ¥ [ a—w0) (3 [ taten)dy+2, [ gy ds

a=1,2
Eia(x) —x3D*uz(x¥') 0
:_/ x(x,y):d @) ) 022 |. (3.23)
QX% 0 0
Next, in view of Remark 3.2.3, we can use item (b) in Proposition 3.2.1 to conclude that

there exists F € C2°(Q x %; R?) such that fgtyF = (X3i)i=123- Thus we have

1
X311 = &y2F3_;/8x3F2a (3.24)
1
12 = ;8X3F1—8y1F3. (3.25)

Next we compute

lim 1 uél(x) 8xly2F3(x, if—;) dx = lim ué’(x) Ox, <8x1F3(x, %)) dx

h—0 &, Jo h—0J0
. h xl
~ lim | () IrFo(x, £ ) dx. (3.26)
Notice that

lim ug‘(x) 8xleF3<x,g—;> :/ u3 QXIX2F3(x,y)dxdy:/anmbg /gF3(x,y)dydx.

h—0JQ QxY
(3.27)
Recalling (3.20), we compute
) h / ) h /
}lll_r>1’(l) R (x) Ok, (BXIF3<x, ;‘—h>) dx = — }lllil’(l)/g Ox, U3 (x) 8XIF3<x, g—h) dx
BT h X
= ;lzg%/g Oxs U5 axlF3(x, Sh) dx
_ : h X
= — }1}3}) , uy 8xlx3F3<x, o ) dx
= —/ng(ﬂz — X30y,U3) Oy, x5 F3 (X, y)dxdy
- / ity / Fy(x,y)dydx. (3.28)
Q 4
From (3.26), (3.27), (3.28) we conclude
. 1 h / . 1 h /
fim = [ )0 R(xE) dx = Jim [ 00, F(x2) dy
= 0. (3.29)
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In the similar way for u/ (recalling (3.21)), we conclude

.1 / 1
}lll_r}(l)ﬁ ng(X)3x1x3F2<X,§—h> dx = _}lll_rf(l)]_l an3”3( )aMFZ( 78,,) dx
= 0. (3.30)
From (3.24), (3.29), (3.30) we conclude
.1 h /
Jim > | () I x31(x, L) dx=0. (3.31)
In a similar way we obtain
tim ~ [ ()9 X)) dx =0 3.32
hg%z QM3(X) x2x32(x7£_h> X =U. (3.32)

Lastly, using similar arguments as above, we compute

. h 1 h X 1 h X
ilzl—r;})(%/_ 1> (a;"zz/gua(x) 8x3xa3(x,8—h) dx+ﬁ/gu3(x) 8x3)(33(x,5) a’x)
1 [ g
) (- L3 foohormalsg) s s [odraents ) )
:hm<i—1) /a i (x) xo3(x, £ ) dx+ 1/ 4(x) Oy x33(x, £ ) dx
h—0 \ &Y o 12 To 30 Ty h2 X3 g,

[ h 1, h 1
—tim (= 1) (= [0 @ + ) ) v (0 +1) 3 [ ) du(x ) )

=0. (3.33)
From (3.22), (3.23), (3.31), (3.32), (3.33) we have that

Ei(x') —x3D*uz(x') 0

®Z | =0.
0

/Q ey zd | Ay -

From this and Proposition 3.1.8 we conclude that there exists u € 2 (®) such that

EIZ—X3DZM3 0 )~
0 0

From this we have the claim.

Step 2. We consider the case y =0, i.e. g — 0.

By the Poincaré inequality in L' (1), there is a constant C independent of / such that
/I]ug i dxs < c/l\ax3u’;de3,
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for a.e. X' € . Integrating over @ we obtain that
/Q\ué’—ﬁg]dxgC/Q\ax3u§’|dx§Ch2. (3.34)

Then we can define a sequence {94} by
ult(x) — ()

oh(x) o=

which is uniformly bounded in L'(Q). We can construct a sequence of antiderivatives

{eg}h>0 by

0h(x):= [ 08 z3)dzs—C
3(x) = [ | 03(x',23)dzs — Cyn,
. :

—h . .
where we choose C, such that 65 = 0. Note that the constructed sequence is also uni-
3

formly bounded in L' (). Next, for a € {1,2}, we construct sequences {6/ },-¢ by

(1) — () + 2304, 7Y

0% (x) := & p + ho, 0% (x).
—h
Then 6, = 0 and
9,08 — Dotta O] Z %l | o, of — Jetat et Z %ot

since 0,04 = ¥4. Thus, by the Poincaré inequality in L' (/) and integrating over ®, we
obtain that
/|eg|dx§c/ 10,6 dx < C. (3.35)
Q Q

From the above constructions, we have that
ul (x) =7 () — x30,, 72 (X') + W20y, 02 (x) + hOL(x), a=1,2. (3.36)

For the 2 x 2 minors of the scaled symmetrized gradients, a simple calculation then

shows

| ey ey)
Qx¥

=1lim [ x(x.£): (E@) () —x3D*T(x') + h*D2 6} (x) + hEy (6") (x)) dx, (3.37)
h—0JQ

62



Compactness results Two-scale limits of scaled symmetrized gradients

for every x € CZ(0;C*(I x % ;ngﬁ)). Notice that the last two terms in (3.37) are

negligible in the limit. Indeed, we have

. X\ .12n2 oh
lim Q)((xg—h) - h?D% 00 (x) dx

= lim i | 0 (x)divydivy (x(x, 2)) d

. X 1 x
— %g%}ﬂa ﬁZ"l Z/Q 93"(x) axa <ax5Xaﬁ<x7 £—h> + g—hayﬁxaﬁ@, £—h>> dx

: o\ v
= }lll_r{(l)a [;1 Z/Q 93}1()6) (hzaxaxﬁ%ocB(xv €—h> + ?hayaxﬁ%aﬁ<x, a)
o h? o R v
+ g—haxayﬁxa[g(X, a) + aayayﬁxaﬁGC, 3_11) ) dx
=0. (3.38)

Similarly we compute

. A hy/
lim Qx(x,g—h) - hEy (0" (x) dx

= limh Q(Gh)/(x) divy (x(x,£)) dx

. h x/ h X,
= _;11%&7/32:"1’2/9 9&(}5) (haxﬁxaﬁ<x, 5) + g—h&yﬁlaﬁ()@ €_h)> dx

=0. (3.39)
Thus, if we consider an open set I O I which compactly contains /, we can infer that
Loy . ~
(Ea[; (uh)> 2750 two-scale weakly* in ., (@ x I x & ;MZ2). (3.40)

sym

Since {(@")'} is bounded in BD(w) with (@")' = & weakly* in BD(®), by [25, Proposi-
tion 4.10] there exists 4 € Zy(®) such that

E@" ZiEﬁ@)fz—kE u two-scale weakly* in ./, (@ x % ; MZ232). (3.41)
y y

sym
From the proof of Proposition 3.0.1 we know that we have
ul, = fig —x30,,u3, strongly in L'(Q), a=1,2,
ul' — uz, strongly in L'(Q).
thus we infer that
A ENN )23 ®.§f§2 two-scale weakly* in .}, (@ X %) (3.42)
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Further, multiplying (3.36) with x3 and integrating over @, we obtain

O, A (x) = =il (x') + K20y, B} () + hOL (X)), o =1,2.

Y

Using similar calculations as in (3.38) and (3.39), we can show that only the first term is

not negligible in the limit, from which we conclude that, for any ¢ € C*(® X %)
. —h /
lim ; O 113 (X) <p(x’, g—h) dx' = /w > Ox u3(x) @(x',y) dx'dy, a=1,2. (3.43)
Consider y € CZ’ (w0 x ¥ ngxn%) such that divydivyx (x',y) = 0. Then

lim x(x', g—;) : D¥ (x) dx’

h—0Jw
T _h / . . /x_/ /
i [0t . £)
/ 1 /
i T [ (et ot
hl_l}g)m[;m/w%(x) x"‘xﬁxa‘g(x’sh) + &, yaxﬁxaﬁ(x,gh)

/x/

+ glhamyﬁxaﬁ(x )+ éayayﬁxag(x’, =) ) dx’

] _ X 2 x
= }fi%a,ﬁzl 72/(»”/31()“') (aXaXﬁ%aﬁ(x" 5T g e tap(¥ 1) ) ax

i B[l ) 0042 [ (20 (00, 10l )

_ amﬁ? (X/) aXﬁ XOCﬁ<x/7 g_,;) - ﬁg (x/) 8xaxﬁ %aﬁ(xl’ g_;) ) ax

St T (- [0l ) 2 [ 00 gl ) 7).
a? = b)

where in the last equality we used Green’s theorem. Passing to the limit and using (3.42)

and (3.43), we have

lim x(x/, g—;) : DX (x) dx’

h—0Jw

— Z (_/ us(x’) axaxBthﬁ (x’yy) dx’dy—2 3xabl3(x/) axﬁlaﬁ (x/,y) dx'dy)
OxXY %

o,f=12 wx

— Z (—/ uz (') axaxﬁlaﬁ (x’,y) dx'dy
067[3:1,2 X

—2 XY (axa (u3 (xl> 9x,;%al3 (X/,y)> —Uus (X/) axaxﬁxaﬁ (x/,y) > dx'dy)

= / ax . /7 d /d
0‘7BZ=’1,2/0>X@M3(X) axp Xop («,y) dx'dy

=/ @%(x’,y) :d(D2u3 ®.$y2>. (3.44)
X
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From (3.41), (3.44), (3.40) and Lemma 3.2.4, we have that
M =Ei® .,%2 +Eyu— x3D*uz ® i”yz — x3D§ K.

Finally, we consider the vector {(x) given by the third column of A,Eu", for every
h > 0. The boundedness of the sequence of functions v € BD(Q") implies that {{"} -0 is
a uniformly bounded sequence in L' (Q;IR?). Consequently, we can extract a subsequence

which two-scale weakly* converges in .#,(Q x % ;R3) such that

1 —x .
EEag(uh) E Ca two-scale weakly™* in #,(Qx %), o=1,2,
1

h2E33( o LN {3 two-scale weakly* in .#,(Q x %),

for a suitable ¢ € .,(Q x #;R?), which concludes the proof.

Step 3. Finally, we consider the case ¥ = +oo, i.e. % — 0.
For the 2 x 2 minors of two-scale limit, by Proposition 3.2.5 and the proof Proposi-

tion 3.0.1, we have that there exists i € 2. () such that
A = (Eﬂ —x3D2u3> ® L2+ Eyp.

Let 1) € C2(Q) and x? € C=(#%;M2%:?) such that [, x(*) dy = 0. We consider a

sym

test function ¥ (x,y) = ¥V (x) x(z)(g—h), such that

/ xlx, )d?ny—hm/x (£) :d (AEd ().
Qx
For each i = 1,2, 3, let G; denote the unique solution in C*(#%/) to the Poisson’s equation
W) _
—AyGi = X3 > /@Gidy =0.

Then, if we consider the limit of

/ngmg(x,y) dAz3(x,y) hrr(1)h2/ Ox, 1y (x) >x§3)(2‘—;) dx,
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we have

/QX@XB(W) LdA33(x,y)

=~ lim L [ 9t 2V ()9, G )

- }lg% hiz a_zﬂz/ﬂ 15 (x) Oy 2V (x)aJ’oc)’aG3(g_l/1> dx

—tim ¥ ([ (002002, Ga(3)) dx = [ ih0) o2V (90, Go(5) )

(—/anaué’(x) 8x3x(1)(x)8yaG3<gih> dx+/g<9x3u}31(x) 8xax(1)(x)8yaG3(g—;> dx).

Recalling (3.20) and (3.21), we have

2

/ X33(xa)’) : d7L33(x,y)
Qx %

gl X .
- _llgr(l)# Z1’2 </Q Mgc(x) axoc (ax3x3%(l)(x)63<8_h>> dx— /Quél<x) axax3x3x(l)(x)ayth3<8_h> dx)
oa=I,
.’ ¥
- }111_13(1)% ZlZ/anocugc(x) axsx3x(l)(x)G3(€_h) dx
=1,

(3.45)

Thus, recalling that [, X3(§) dy = 0, and since for arbitrary test function we can subtract its

mean value over % to obtain a function with mean value zero, we infer that there exists

&3 € () such that
M3 =502
Similarly, if we consider the limit of
/ X13(x,y) : dAiz(x,y) +/ X23(x,y) 1 dAx3(x,y)
Qx& Qx&

o1 h h (1 2)( ¥
i X (Gunb0  200k) 228
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we can write

/ 213(x,y) 1 dAi3(x,y) +/ 223(x,y) : dAx3(x,y)
Qx %

— 1 x
—}lg%% </ Ot (%) 1V (%) 9y s G & dx+/ Ottty () 2V (%) Oy G &) dx)'
(3.46)

Suppose now that divyxgi) =0,1e Ygp-12 ayaygyﬁ Gg = 0. Then we have

.1 h 1
m o Y[ 0002109, G( ) d

a,B=12
:;lzl—%%a,ﬁ—l,z <_/ 5(x) et )ayﬁyﬁG“< )dx_s_h/guél( )2 (05 G ( >dx>
:%IL%E I 12(/3 1 (x) By st (x) (’“};)dxjt/ug, g X ()94, Go( )dX>
~ tim % X 12/ )02 ()4, Gl &) dx
:—}lli_r}(l)g— af= 12/ 3x3uﬁ ax“x()( )ayﬁGo‘@_f/.) dx

_}ZI_IR)E Z /Mﬁ xO,X3x ( )8yﬁGa<g_}/,> dx

=0. (3.47)
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Furthermore,

1

Z—%Lf%ﬁ BZM /ng<x>ax3x<1>< 00y Gl L) da

B (/ )02 ()94, Go( 3 dx+/QMI&(X) Oyrs V) (%)9y, G 2) dx>

ﬁ 12
/a ul(6) ) (1), Gl ) dx

& X
i T [ ahaa000,68)
af=12
&

h 1 X 1 h 1 X
“pmae L ([h00nr002,6u(£) + 5 [ 092020090, Gl )
T h (1) X

_}lllir(l)%aﬁz_’lz/guﬁ(X) ax3% (x)ayoc)’ﬁGO!<8_h> dx

&y

oima X (2w 0 ul£) et [Luho)203,6u(5) )

—-0. (3.48)

From (3.46), (3.47) and (3.48), and Proposition 3.1.17, and recalling that [, xl(? dy=0
and [, 7(2(? dy = 0, we can conclude that there exist k € Y..(Q) and {’ € .#,(Q;R?) such

that
A
13 — C/®DZS;2+D)JK-
A23

which concludes the proof. [
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3.4. UNFOLDING ADAPTED TO DIMENSION

REDUCTION

Here we follow [25, Section 4.3].

For every € > 0 and i € 72, let
. — €&l
0, = {XERZ:XS ZEY}.

Given an open set ® C R2, we will set

() :={ieZ?: 0l c o}.

Given e € .4 (w x I) and Q. C @, we define u’. € .#,(% x I) such that

/

. 1 X
[ vowanioo =5 [ w(En)du, weew <.
7891 €7 JQLxI €

Definition 3.4.1. Given € > 0, the unfolding measure associated with ¢ is the measure

de € Mpy(0 x ¥ xI) defined by

dei= ), (Z310L) ®ui.
icl; (o)

The following proposition gives the relationship between the two-scale weak* con-

vergence and unfolding measures. The proof is analogous to [25, Proposition 4.11.].

Proposition 3.4.2. Let @ C R? be an open set and let { e} C .#,(® x I) be a bounded

family such that
Ue 2 Lo two-scale weakly* in ., (o x & xI).

Let {Ae} C (0 x % x I) be the associated family of unfolding measure with {,}.
Then

Ae = 1y weakly* in (0 x ¥ xI).

To analyze the sequences of symmetrized scaled gradients of BD function in the con-

text of unfolding, we will need to consider auxiliary spaces
BDY( x1) = {ue L@ x R) : Eyue (% x M)},

BDy (0,1 1) i= {u 1! (0,17 x1iR%) : Eyu €ty (0,17 x M) |
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where E » and E; denote the distributional symmetrized scaled gradients of the form

€ €

E%I/t(y,)g) = Sym [Dyu(y,x3) ‘ %aX3u(y7x3)i| 5

Egu(x’,xg) ;= sym [Dxru(x’,xg) ‘ %8X3u(x',X3)} :

Similarly as in Remark 3.1.3, scaling in the the first two components shows that these

auxiliary spaces are equivalent to the usual BD space on the appropriate domain.

Proposition 3.4.3. Let @ C R? be an open set and let 8 C % be an open set with

Lipschitz boundary. Let 1y € (0, 1] and let &, € > 0 be such that

h 1

< —
YO_S Y

If ue € BD(w x I), the unfolding measure associated with ApEug | (ABe \ Ge) x I is given
by
Y (0 @ Euil ¢ | (B\C) X1, (3.49)
i€l (o)
where ﬁ;lg € BDg (% x 1) is such that
C

/c99€><1 |LA‘i.z,s|d=%ﬂ2‘F |E%ﬁ;l€ (#BNE)x1) < E|A/1Eug| (int(Q%) x 1), (3.50)

for some constant C independent of 7, & and €.

Proof. Since %, has Lipschitz boundary, ug 1, «; € BDjoc(® x I) with
E’/lg Le@g X I :E(ug]_%sxl> + [Mgtaﬁg X I@ V] %ztaﬁg X I,

where ug |0 B, x I denotes the trace of ug1 Bex1 ON 0%, x I, while Vv is the exterior nor-
mal to d %, x I. We note that v has the third component zero.

Remark that 6, = (U;0 Q%) N . Accordingly, fori € Is (@) and y € C1 (% x ,MZ)3),

sym

/

/
[ow(Em) dmkul @ e < nw= [ y(Lw) b2 @
Qe x1 £ int(Q% ) xI €

/
() camE (e ) )
int(QL)x1 €

/

+ 4 lI/<)iax3> : Apfue[0Be x 1O V] d A0 Be x 1(x).
int(Qk)xI = \ €
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We setvi, . (x) :=diag (1,1, 1) ue(gi+ex,x3) forx € (0,1)2x 1. Then vi, , € BD, ((0,1)* x1),
and it is easy to check that E; v} (x) = €A,Eug(€i+ €x’,x3). With change of variables

we have

/
f (5o a2\ <0
- 8/(0,1)2x1 V) dEy (vzvfﬂf(@)xl) (x)
+8/( o V) (diag(1,1,h)v}, |7 (98) x I© V] dA™ (x)
071 x1 )
= e/(071)lell/(x) :dEg (Vz,eﬂy(@)w) (x) +£/(0,1)2><1W(x) : M,e |7 (05B) xI@v} A (%).

Notice that we can assume that

. . C .

L 19(0,1)? x 1|ds#? < ClEwv, .| ((0,1)> xT) = =|AyEug| (int(QL) x I
g Ve 900,17 11 < CIE (10,1 1) = CIAwEwe] (i (€)% 1)

for some constant C independent of i, & and €. Note that subtracting a rigid deformation
to ug on Q. x I corresponds to subtracting an element of the kernel of E h and E to v;'w
and w, respectively, which does not modify the calculations done thus far. Hence, we can
use the trace theorem and Poincaré-Korn’s inequality in BD ((0, 1?2 x1 ) to get the desired
inequality.

We define ﬁz’g(y, x3) = %vﬁw (#(y),x3). Then we obtain

Byl | (@ 1) < [ i [ € x 11> + |yt | (9\%) <1

! i 1 ,
T 9(0,1)> x I|dA” + —|Exviy | ((0,1)> x 1
8/8(071)2X1|Vh,et( V1| +|Eyvh | ((0.1) x 1)

<

[Eavhel ((0,1)%x1) |AnEue| (int(QL) x 1).

€ e?

Furthermore,

. i ) ar . (A
8/(0,1)2x1 v dEg Oﬁl?gﬂj((%})ﬂ) —° /(@\if)xl v dE% (uh’el%})d)

and

i | 0B xIoV] dA? = 2/
8/(0,1)2x1w [vh’SL (98) QV} ‘ (

PN 2
iy (), e[(0B\ ) x 1O V] d™.
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So we get
1
€2 Joixr

_ (g\%)xIW(y,X3) : dE, (i e Lps ) (3.x3)

. ni 2
+ /( o VO [0\ 6) x 10 V] d (.

v <§,X3> : d(AhEug L(%g \(gg) X I) (x)

— [ W) dEsil [ (#\€) < I(332)
891

LIS

from which (3.49) follows. It remains to prove (3.50). Again, up to adding a rigid body

motion to ﬁ}i ¢ On A x I, we can assume

| il d? By | (20%) x1)

OBl e

< ClEsiy ¢| (% x 1)+ |Enity | (BNC) xI) < C|Euiiy, | (¥ < 1)

e e 7 e
C . -

< ?|AhEug| (int(Qg) x1I).

This concludes the proof of the theorem. |

The prior result can be used to prove the following lemma, which in turn will be used

in the proof of the lower semicontinuity of .7#*" in Section 4.5.

Lemma 3.4.4. Let % C % be an open set with Lipschitz boundary, such that 0.8\ 7 is
a Cl-hypersurface, for some compact set .7 with 2! (.7) = 0. Additionally we assume
that )BNE C 7. Let v' € BD(Q) be such that

Vi 2y weakly* in BD(Q)
and
ALEV! | QN (B, x 1) 2 two-scale weakly* in .}, (Q x @,Mfyxn?)
Then 7 is supported in Q x % and

QX (dB\T)=alx,y)Ov(y)C, (3.51)

where § € 4 (Qx (08\ 7)), a: Qx (08 \ T) — R? is a Borel map, and v is the

exterior normal to 0.%.
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Proof. Denote by & € .,(Q x % ;M2x3) the two-scale weak* limit (up to a subse-

sym
quence) of
ALEV QN (B, \ Ce,) X I) € Mpy(Q M.

sym

Then it is enough to prove the analogue of (3.51) for 7. Indeed, the two-scale weak* limit

(up to a subsequence) of

AREVE QN (Be, NCe,) X T) € Myp(Q; M)

sym

is supported on Q x BN €. Since by assumption 0 BNE C 7, we have that 0B\ T

and N € are disjoint sets, which implies
T|QX(0B\T)=7|Qx (0B\.T).

By Theorem 3.4.3 we have that the unfolding measure associated with A, EV!| (B, \ €, ) ¥
is given by

Y (L10L) ©ELvl, [(#\€)x1, (3.52)

i€lg, (0)

where \3211 € BD(?% x I) are such that
N = C o
/MX] Iv’sh|d<%ﬂ2 + |E%vgh| (BNE)x1I) < ¥|AhEvh| (int(Qg,) ¥ 1I). (3.53)

Further, by Theorem 3.4.2, the family of associated measures in (3.52) converge weakly*
to 7 in ./,(Q x & M;3). Then, for every x € Co(Q x &/, M3;3) with divyy (x,y) =0,

we get

| ey i)

= lim xy)d| Y (L20L)REL (B\F) <1
QxY iclg, () &

=i / </ .y) : dE ”’)d’
s ) (%\%)uﬂx Y) g 'e)

i€lg, (o) Qéh
X, - dE , ¥ —/ X, “dE 4 V! > dx’.
</%XIX( 2 % & (%ﬂ?ﬁ)xIX( 2 8171 e

“ip T

i
i€lg, (®) Qs

If we denote by div » the scaled divergence operator associated with E ., then by the
€ €n
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integration by parts formula for BD functions over % x I we have
| atey) iy
Qx¥

=ip ¥ |

%(-xay) : [ﬁéh(y,xﬁ@\/} d‘%z(yr)@)
icle, (0)” 2

4 —/ div a x (x,y) - 0%, (7,x3) dydxs +
e BxI & ' OBXI

— x,y) :dE 0. | dx
/(%ﬂ%)xIX( 2 & 8’1>

&y 1

(— (=) [ dotten) s ()

) : v, ) d%Z ) _/
* /a.%’xI%(x ) [%,0x3) © V] 033) (BAE) <1

zlilgn ) /i

i€l (@) 7 %
x(x,y) : dgh\?éh) dx'.
€

Owing to Poincaré-Korn’s inequality on BD(#%/ x I) and (3.53), we conclude that the
integrals [, ; dv, X (x,y) -ﬁfgh (y,x3) dydx3 are bounded. Further, in view of (3.53) we can

rewrite the above limit as

/Q | Ay) da(xy)

= lim (/ngx(x,y) :d/llh(x,y)%-/gxg%(x,y) : dﬁzh(xay)> ;

h

(3.54)

with A, A e ,(Qx % Msyxn?), such that (up to a subsequence)
Al S A and AN 52 weakly*® in 4, (Q x %MD

sym

for suitable A1, A € 4,(Qx % ,MS;IS) Then, we have supp(2;) € Q x .2 and supp(A,) C
QX (BNGE).
By a density argument given in Remark 3.1.4, we can conclude that (3.54) holds for

every x € Co(Q x & ;M3,3)) with divyx = 0. The definition of A; and A, then yields
| ay) 1d (@ =2 = a0) (xy) =0.
Qx¥
From this and Proposition 3.1.8 we conclude that there exists u € 2 (®) such that
ﬁ?—ll —AQ :Ey,u.

Recalling the assumption that d. 2 N% C .7 and using the same argument as above, we

can see that
RQAX(0B\ T) =L LQX(&%\?)—}—EY[,LLQX(&%\?)
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In view of Proposition 3.1.9 and recalling the assumption that 9.8\ .7 is a C!-hypersurface,
we are left to prove the analogue of (3.51) for A;.

We consider

Py =Y 1o ()%, 0x),
i€lg, (@)

so that Af!(x,y) = [0(v,x3) @ V| L3 & (A2 |1 x 998). Then {#"} is bounded in L! (Q x
0.%;R3) by (3.53). Up to a subsequence,

R Zeged (%’ﬁy [Ix0AB) =n weakly* in .,(Q x d%;R?)
for a suitable 1 € .4, (Q x d%;R>). Since V is continuous on d.% \ .7, we conclude
Ml (08\ 7) = T (x,y) ©v() nll@x (92 7),

n|

which concludes the proof. |
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4. TWO-SCALE STATICS AND DUALITY

4.1. STRESS-PLASTIC STRAIN DUALITY ON THE

CELL

4.1.1. Case y € (0,+o0)
Definition 4.1.1. Let y € (0, +oc0). The set %} of admissible stresses is defined as the set
of all elements ¥ € L>(I x %, Mfyxn?) satisfying:
(i) divyZ=0inlx %,
(ii) & =0on dl x ¥,
(iii) Zgev(x3,y) € K(y) for L @ LP-ae. (x3,y) €Ix Y.
Since condition (iii) implies that X4, € L*(I X & ;ngﬁg), for every X € %y we can

deduce from Proposition 1.5.2 that £ € LP(I x %, M3;;3) for every 1 < p < oo

Definition 4.1.2. Let y € (0,4o0). The family .7y of admissible configurations is given

by the set of triplets

u€BD(Ix%), EcL*Ix#;MJSD),  Pc.dy(IxW;MX),

sym dev
such that
Eu=ELL@L+P inlx¥.
Definition 4.1.3. Let X € 7, and let (v, E,P) € o/y. We define the distribution [Zey : P]
on R x % by

[Zgev : Pl(@) := — or: degdy—/ X (u@%y(p) dxzdy, 4.1)
Ix% Ix%
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Two-scale statics and duality Stress-plastic strain duality on the cell

forevery ¢ € C(Rx %).

Remark 4.1.4. Note that the second integral in (4.1) is well defined since BD(I X %)
is embedded into L3/2 (Ix% ;R3). Moreover, it is easy to check that the definition of

[Zgev : P] is independent of the choice of (u,E), so (4.1) defines a meaningful distribution

onRx%.

The following results can be established from the proofs of [24, Theorem 6.2] and [24,
Proposition 3.9] respectively, by treating the relative boundary of the “Dirichlet” part as
empty, the "Neumann” part as dI x %, and considering approximating sequences which

must be periodic in %,

Proposition 4.1.5. Let X € %, and (u,E,P) € /,. Then [Lg, : P] can be extended to a

bounded Radon measure on R x ¢, whose variation satisfies
[[Zgev : P]| < ||ZdeVHL°°(1xgi/;Mg’yxn§)|P| in Z,(Rx%).

Proposition 4.1.6. Let X € %y and (u,E,P) € 7). If % is a geometrically admissible

multi-phase torus, then

H <y, %) P|> B P in Ay(Ix D).

4.1.2. Case y=0

Definition 4.1.7. The set % of admissible stresses is defined as the set of all elements

Y e LI x @/,ngxnf) satisfying:
(1) Zi3(x37y) =0 fori=1,2,3,
(i) Xgev(x3,y) € K(y) for .,ZjCL ®.$y2—a.e. (x3,y) €IX ¥,
(iii) div,£=0in %,
(iv) divydiv,£=0in %,

where £, % € L2(%; ngxn%) are the zeroth and first order moments of the 2 X 2 minor of
X
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Recalling (2.21), by conditions (i) and (ii) we may identify X € % with an element
of L=(I x @,ngxnf) such that X(x3,y) € K,(y) for .2;13 ®.Zy2—a.e. (x3,y) € [ x %. Thus,

in this regime it will be natural to define the family of admissible configurations defined

. . . 2><2
with a relation in Mgy .

Definition 4.1.8. The family .o of admissible configurations is given by the set of

quadruplets

i€BD(%), u3€BH(¥%), EcL*Ix% M2, Pec.#y(Ix¥ M2,

sym sym

such that
Eyii—x3Djus =E L L} +P  inlx¥.

Recalling the definitions of zeroth and first order moments of functions and measures
(see Definition 2.2.1 and Definition 2.2.2), we introduce the following analogue of the

duality between moments of stresses and plastic strains.

Definition 4.1.9. Let X € % and let (&,u3,E,P) € <%. We define distributions [X : P]
and [X: P] on % by

[Z:P(p):= —/@(pi:Edy—/@i: (G Vy0)dy, (4.2)
£:P(g):=— [ oL:Edy+2 | %: (Vyuz ©Vy0) dy+ w3 Vidy, (4.3)
v v v Y
for every ¢ € C*(%).

Remark 4.1.10. Note that the second integral in (4.2) is well defined since BD(%/) is
embedded into L?(#;R?). Similarly, the second and third integrals in (4.3) are well de-
fined since BH (%) is embedded into H'(%). Moreover, the definitions are independent

of the choice of (u,E), so (4.2) and (4.3) define a meaningful distributions on /.

Arguing as in [18, Section 7], one can prove that [L : P] and [£ : P] are bounded
Radon measures on . We are now in a position to introduce a duality pairing between

admissible stresses and plastic strains.

Definition 4.1.11. Let X € %) and let (i1, us, E, P) € <. Then we can define a bounded

Radon measure [X : P] on I x % by setting

— — 1 A A
[X:P]:= [ZZP]®-$;¢I3+E[Z3P]®$}3—ZL;EL,
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so that

/ QdX:P|=— (pZ:dew’y—/ L: (a0 V,p)dy
Ix¥% Ix% 4 (4.4)

+6/@Z: (Vyug,@Vy(p) dy+ﬁéyu32‘,:quody,
for every ¢ € C2(%).

Proposition 4.1.12. Let X € %) and (it,us, E,P) € <. If % is a geometrically admis-

sible multi-phase torus and K(y) satisfies the ordering assumption (2.3), then

/W ¢(y) H, <y, %) d|P| > . o(y)d[L: P,

for every ¢ € C(%/) such that ¢ > 0.

Proof. The proof is divided into two steps.
Step 1. We first consider the case of a two-phase material and require that the yield
surface of one phase be included in that of the other phase, i.e. % is made of two phases
2% and %% such that

K C K, 4.5)

K(y) =K, ify€ 0% Nd%. (4.6)

Further, we assume that %] is star-shaped with respect to one of its points.

Let us consider a covering {2, 25} of % made of open C2-subdomains, such that
1 C 2 and 21N 2 =0. Let {y1,y,} be an associated partition of unity of Z'. We
can establish the stated inequality by considering the behavior of the measures on 2] and
25 respectively.

First, consider the inequality on 2. Let p be the standard mollifier on R? which
is [0, 1]>-periodic, and let us define the planar dilation d,(x3,y) = <X3, #y), for every

n € N. We then set

£ (63,9) = ((Zoda) (x3,5) +p_1 ) ). 4.7
We obtain a sequence Ve C=(24; L2 (1 ;ngfg)) such that

Z,(,ll) — Y strongly in L*(I x %,ngxrg ),

div, £\ =01in 24,

divydivyiﬁ,l) =0in 4.
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Furthermore, (ZE,])(xLy))dev € K(y) for a.e. x3 € I and every y € Z]. Consider the the

orthogonal decomposition
> 1. p 1 i
P=PQL.+Pox3.L, +P,

where P, P € .#,(%;MZ3) and P+ € L*(I x %/ ;Mg;). We can infer that |P| is abso-
lutely continuous with respect to the measure
= P|® L +|P|®. L.+ .2

X3,

As a consequence, for |I1]-a.e. (x3,y) € I x 2] we have

dP > (1) dP
— | >, —.
@ﬂm "

Thus for every 1) € C.(27), such that ¢(!) > 0, we obtain

dP
(1) H( ) —/ o1 m(-—ﬂdn
/,X%"’ ) o gy ) 1P =, 000 #e (3, e ) @
dP

> Ozt : 4|
> [, o0mm!: fran

_ W)y, 4P

= (1) dZn : PJ.
M%¢(W[ ]

— > d|P|

S(1) @)

Since ¥, ’, X’ and (Zﬁll))L are smooth with respect to the variable y, we can conclude
that

[z D P52 P] weakly* in .,(2),

[z D P S EW P weakly* in . ,(2),

/ @ P diady / oo PV OIED) P dsdy,

Passing to the limit we have

f 008 (s g ar= [ pV)as:p

Next, consider the inequality on Z5. If we regularize ¥ just by convolution with

respect to y, we obtain a sequence Z,(qz) € C*(25; L2 (I, ngxn%)) such that

2512) -y strongly m L (I X ‘%’Mg;n?)

d1vy2( ) —0in 2,

dlvydlvyZ( ) —0in 2,
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such that (Z( )(x3,y))dev € K; for a.e. x3 € I and every y € %. Using the same argument

as above, we can conclude that for every 92 € C.(25) with ¢(2) >0

dP
A0 a, (n ) dipl > [ o)z p
[, 020t (v g ) dlPL = [ 9P )ate:

Finally, let ¢ € C(%/) such that ¢ > 0. We have

— viy)o(y) H, <y,%) d|P| +/ v2(»)@(y) Hy (y,d—P> d|P|

IxZ d‘P‘

> [ w00 dE: Pt [ wb)e0)dE: P

= [ngp(y)d[EIP]-

Step 2. We will now consider the case of a multiphase torus.

Since, for each i, %; is a bounded open set with piecewise C> boundary (in particular,
with Lipschitz boundary) by Proposition 1.7.4 there exists a finite open covering {%k(i)}
of % ; such that %; N % is (strongly) star-shaped with Lipschitz boundary.

For each i, let {l//k } be a smooth partition of unity subordinate to the covering {%, (i)}
ie. W,Ei) € C=(%;), with 0 < l//,&i) < 1, such that supp(l//,Ei)) C ?/ and Y, l//k =1on
%;. We can then modify sets %k() so that %N 02/ is (strongly) star-shaped with C?
boundary, while Supp(l//,Ei)) C %k(i) still holds.

The result now follows from Step 1, by taking a finite covering {%4} of % made of
open C2-subdomains, such that for each y € d%;N 0% there exists a covering element %

such that %,;,(; n N is star-shaped with respect to one of its points and considering an

associated partition of unity of %, [ |

4.1.3. Case Yy = oo

Definition 4.1.13. The set %, of admissible stresses is defined as the set of all elements
Y € LX(%;M33) satisfying:

sym

(i) divyX =0in &/,

(i) Xgev(y) € K(y) for nyz—a.e. yeX.
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Definition 4.1.14. The family <%, of admissible configurations is given by the set of

quintuplets

A€BD(%), w3€BV(¥), veR  EcL* (%MD,  Pe.My(¥;M*3),

sym dev

such that
E.il Vv 4+ Dyus
Y ") =EL P inw.
(V' + Dyus)T V3
Definition 4.1.15. Let X € 7, and let (iZ,u3,v,E,P) € <. We define the distribution

[Lgev : Pl on & by

[Zdev : P(@) ;:_é/pz : Edy—/@Z" (@O Vyp)dy

2 / s [ 22 V.0
_ X .
v \xy) (4.8)

Y13

—|-2v'-/ [0) dy+V3/ 0X33dy,
7' \y o

23
for every ¢ € C*(%).
Remark 4.1.16. Note that integral are well defined since BD(%/) and BV (%) are both

embedded into Lz(@ ;Rz). Moreover, the definition is independent of the choice of

(it,u3,v,E), so (4.8) defines a meaningful distributions on %/

Proposition 4.1.17. Let X € %, and (i,u3,v,E,P) € . Then [Xge, : P] can be ex-
tended to a bounded Radon measure on %, whose variation satisfies
|[Zdev : PH < ||ZdeVHLm(g;M§an§)|P| in %b(@)

Proof. Using a convolution argument we can find a sequence {¥,} C C*(¥ ;ngxn?) such

that

Y, — X strongly in L*(%; M2X3),

sym

divyY, =0in &%/,

|| (Zn)dev HLm(g?Mgexf) < ||ZdevHLm(@;Mger3) .
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According to the integration by parts formulas for BD(%/) and BV (%), we have for every
peCi(?)

/ @divy (X -udy+/q/(p(2n)" : dEyﬁ+/g(Zn)" (@O Vyp)dy =0,

Xn pI X,
A Qusdivy (a1 dy—i—ﬁ (0] (Ea)is -dDyu3—|—/ u3 (Ea)is -Vypdy =0.
4 2n)23 4 (Zn)23 v (Zn)23

From these two equalities, together with the above convergence and the expression in

Equation (4.8), we compute

[Zdev3 ]
_hm /(pZ :Edy— / ": u@Vy(p)dy

(Zn)l?a

dy—+v3 ﬂ () (Zn)33 dy}
X0)23 4

Zn 13 /
—2/ 0 -Vy(pdy+2v-/ "
v (Zn)23 v
= lim [—/ (pZn:Edy+/ (pdivy( / udy+/ :dEyi
n 8 8

Y, (Zn)
+2/ Quzdivy a3 dy+2/ [0) 13 -dDyu3
@ 4 ¥

Y
+2v'~/ () dy+V3/ (p(zn)33dy}
4 (Zn)23 v

=lim Myq;divy(zn)- dy—i—/@q)Zn : dP}

= hm / n)dev :

In view of the L”-bound on {(X,)gey }, taking the limit yields

us3

Eae P < [aeslmnmy [, 191,
from which the claims follow. [ |

Proposition 4.1.18. Let X € #.. Then, for #'-ae. y €T,
Vv () € Kpingit V) - (4.9)

Furthermore, if (&Z,us,v,E,P) € %4, then for every i # j,

[Baev : P)[Tij = | [E"V]E- (@ — i) +2 v | —ud) | ATy, (4.10)
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where @', u} and @, u} are the traces on I;; of the restrictions of i, u3 to % and %;

respectively, assuming that v points from %/ to %;.

Proof. To prove (4.10), let ¢ € C' (%) be such that its support is contained % U %; UT;;.
Let % CC % be a compact set containing supp(¢), and consider any smooth approxi-

mating sequence {Z,} C C*(% ;M3%3) such that

sym

Y, — X strongly in Lz(%QngXn? ),
div,X, =0in %,
H(Zn)deVHL""(%;Mng) < HZdeVHLW(%§MS:v3)'

Note that ((£,)"v)y = ()., V), and

\% dev" /v

((Zn)é{eVV)L A [devv]ﬁ weakly* in Lw(Fij;Rz).

\%

Since @i € BD(#%') and o u3 € BD(¥/), with

E,(oi)=@Ei+ia®V,p,
Dy (Qu3) = ¢ Dyuz +u3 V0,

we compute

[Zdev : PJ(@)
~ lim [—/%@;pz,,:b:dy—/ ()" (20 Vyp) dy

n @lu@]
(Zn)13 (Zn)13
-2 u3 'Vy(de+2V"/ [0} dy+v3 /oy g‘P(Zn)de]

Y (Zn)23 Y%\ (Zn)n iV

n

:nm[—/ (pZn:Edy—/ ()" dE, (@) + | ¢(Sa)": Eyi
%, %2, o

Xy X,
2 (a1 .dDy (Qu3)+2 o F -dDyu3

G5\ (Zn)23 VY (Zn)23

Z)13
—|—2vl~/ (0] (Z2) dy—l—V3/ QD(Zn)33dy]
Y (Zn)23 %Y,

e | ", - , .
= tim | /%U%(z,,) . dE, (@) —2 dDy((pu3)+/%U@j(pZn.dP].

@/’Ugf (Zn)23
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Owing to the assumption on supp(¢), we have that the only relevant part of the boundary

of #U%isI';j, i.e. by integration by parts we have

Zdev : P(@)

o 5, o
= lim [/ (p((zn),/\/)(l/_tl—b_lj)d%l_z/ (p ( )]3 v (ug_ué)d%]
no L, Lij (Zn)23
+l/§ ey : dP).
oy, @ 1) }
Now
P|Ljj = B Dy [Lij = (ﬁj._ﬁi.)Qv 5 =u8)v A
(Dyuz)T 0 (u} —ub) v 0

and tr P = 0 imply that ' (y) — @&/ (y) L v(y) for 5#!-a.e. y € T';;. The above computation
then yields

213
203

E@wfww)zzl¢Dfﬂéwf—ﬁ0dﬁf“—%é ¢ v | (i —ul)d !
| y

ij

+lim @ (Zn)dev : dP.
n @lug}/j

(4.11)

If we define A,, € //[b(@,-u @] Ul"ij) as
M(@)i= [ @S :dP
s

then the L*-bound on {(X,)qey } ensures that it satisfies

2| < CIPI(ZEUZ)),
and we infer from (4.11) that

Ap — A weakly* in M (VY 0T )

for a suitable A € .#,(%;U%;UT;;) with

Al < CIP|[(ZUZ)), (4.12)

85



Two-scale statics and duality Stress-plastic strain duality on the cell

and
noaL (=i =i 1 213 i 1
Eagev: Pl(@)=| @[X'V],-(@—a)d" -2 | ¢ v | (uy —uzy)dAH
Lij Lij Yo3
+A(o).
Since (4.12) implies A [I';; = 0, the result directly follows. |

Proposition 4.1.19. Let X € % and (it,u3,v,E,P) € . If & is a geometrically ad-

missible multi-phase torus and K (y) satisfies the ordering assumption (2.4), then
dP .
H (y,m> |P| > [Zgey : P]  in A,(%).

Proof. We can establish the stated inequality by considering the behavior of the measures
on each phase %; and inteface I';; respectively.
First, consider an opet set %/ such that %/ C %; for some i. Regularizing by convolu-

tion, we obtain a sequence X, € C*(% ;MSYXH?) such that

Y, — X strongly in L*(%;M233),

sym

div,X, =0in % .
Furthermore, (Z,(y))q4ev € K; for every y € % . As a consequence, for |P|-a.e. y € % we

H< dP>_H‘(dP)>Z 4P
Yapl) ~ T \ap]) = ael

Thus for every ¢ € C(% ), such that ¢ > 0, we obtain

have

dp dp
H(,—)dP >/ Zn:—dP:/ d[s, : P|.
[, o (g ) AP1= [, 0% gralpl= [ oa,:p

Since X, is smooth, we can conclude that
[Z,:P] > [2:P] weakly* in .4,(%).
Passing to the limit we have

/%pr <)@%> d|P| > /%qod[z . Pl.

The inequality on the phase %; now follows by considering a collection of open subsets

that increases to %;.
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Next, for every i # j,

J

dP i —a)ov (W —ul)v
H\y, == ) |PIXij = Hyingi j (u Bov. =) AT
(uf —ul)v 0

where @', u} and i/, ué are the traces on I';; of the restrictions of i, u3 to % and %;
respectively, assuming that v points from %} to %;. The claim then directly follows in

view of Proposition 4.1.18. [
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4.2. DISINTEGRATION OF ADMISSIBLE

CONFIGURATIONS

From now onward, we consider the open and bounded ® C R? such that @ C ® and
®wNJd®w = yp. We also denote by Q = @ x I the associated reference domain.

In order to make sense of the duality between the two-scale limits of stresses and plas-
tic strains, we will need to disintegrate the two-scale limits of the kinematically admissible

fields in such a way to obtain elements of .7y, for y € [0, +oo].

4.2.1. Case y € (0,+oo)

Definition 4.2.1. Letw € H'(Q;R3)NKL(Q). We define the class d}f’”m(w) of admissi-
ble two-scale configurations relative to the boundary datum w as the set of triplets (u, E, P)
with

ueKL(Q), Ecl*(Qx¥ M),  Pey(Qx ML),

dev

such that
u=mw, E =Ew, P=0 on (Q\Q)x 7,

and also such that there exists 1L € 2(®) with
Eu@ LI+ Epu=EL} QL +P inQx%. (4.13)

Lemma 4.2.2. Let (u,E,P) € ,nyhom(w) with the associated u € 2y(®), and let i €

BD(®) and u3 € BH(®) be the Kirchhoff-Love components of u. Set
0= L3+ (projalPl)’ € 4 (@),

Then the following disintegrations hold true:

A1 (X)) +x34, (¥
Euggt— | MR 0o g (4.14)
0 0 :
3 2 1 2
EZL 0L =CX)E(x,y)n®%L, 0% (4.15)
P=n'% P.. (4.16)
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Above, A, Ay : @ — ngxnf and C : @ — [0, +o0| are respective Radon-Nikodym deriva-
tives of Eit, —D*u3 and .£7 with respect to 1, E(x,y) is a Borel representative of E, and
Pu € Mp(I x ;M) for n-ae. ¥ € 0.
Furthermore, we can choose a Borel map (x,x3,y) € Q X # — py(x3,y) € R3 such
that, for n-a.e. ¥’ € @,
h= (BN L0 L2 Epn=n1'0 Epu, (4.17)
where y € BDy(I X Y'), [1 o Uy (x3,y)dx3dy = 0.

Proof. The proof is analogous to [25, Lemma 5.4]. The only difference is the statement
and argument for the disintregration of Eu ® aiﬂyz, that we detail below.

First we note that pro ju (Eyu)aﬁ = proju (Ey/")aﬁ =0 for a,f = 1,2. Then, from
(4.13) we get

(Eit) qp = Projs (Eu®°2”y2)aﬁ = < Eqp(x, y)dxgdy) L%+ proju(P) B
Ix%
< el ) () L2+ (projalPl)yg,

where we set e() (x') := [}, o E(x,y) dxady+ (projus|P|)* € [*(® Mfyxn?) Similarly, after
multipliying equation (4.13) by x3, we have that
1

1 1
2 _ . 2 o ) .
(—D u3)aﬁ = 15 Projs (J@EM@% >O€B =1 (/ xgEaﬁ(x,y)dx3dy> Li+ Epm]#(x3p)
(

1
< ey () L3+ = (projulxsPl)yp.

where we set el (x') 1= 5 [1.0 GE(x,y) dxsdy + 5 (proju|xsP|)* € L2(@; M23). Con-

sym

sequently, measures Eii and —D?u3 are absolutely continuous with respect to 1, so we

can write.
_ 2 2
Ei® L} =A(X)neL 02,
Dy 0.4} =M )ne Ll 0L}
for suitable Aj,As : @ — MZX2 such that (4.14) hold true. [ |

sym
Remark 4.2.3. From the above disintegration, we have that, for n-a.e. x' € @,

- A1(X) +x34, (X)) 0
Eyty = | C(Y)E(x,y) - () 03 2(x) . LR LEAPs inIxY.
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Thus, the triple

Wy, C(x/)E(xay) - 7Px’

is an element of .<7).

42.2. Case y=0

Definition 4.2.4. Letw € H'(Q;R3)NKL(Q). We define the class " (w) of admissi-
ble two-scale configurations relative to the boundary datum w as the set of triplets (u, E, P)
with

uecKL(Q), EcLl*(Qx%;MX2),  Pec#y(Qx W M),

sym sym

such that
u=mw, E =Ew, P=0 on (Q\ Q) x ¥,

and also such that there exist 4 € Z((®), k € Yo(®) with
Eu® L2+ Epu—x3sDik=EL3@ L +P inQx%. (4.18)

Lemma4.2.5. Let (u,E,P) € /)" (w) with the associated it € 25(®), k € Yo(®), and

let i € BD(®) and u3 € BH(®) be the Kirchhoff-Love components of u. Set
0= L2+ (projalPl)* € A, (@)

Then the following disintegrations hold true:

Eu® L} = (A4 (X) +x3A4(X))n® L 0 22, (4.19)
ELR L =C()E(xy)n® L. 0Lt (4.20)
P=n'® P, 4.21)

Above, Aj,Ar: @ — ngxn% and C : @ — [0, +o0| are respective Radon-Nikodym deriva-
tives of Eit, —D?u3 and ‘sz/ with respect to 17, E(x,y) is a Borel representative of E, and
Py € Mp(I x ¥ Mg3) for n-ae. X' € 0.

Furthermore, we can choose Borel maps (x',y) € @ x % + uy(y) € R? and (¥',y) €

O X % — xy(y) € R such that, for n-a.e. X' € @,
) gen.
L= ONeL;, Ep=n @ Ely, (4.22)
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K:Kx/(y)n®cfy2, Dil(:ngg'Dikx/, (4.23)
where Uy € BD(¥%'), [4 ty(y)dy =0and kv € BH(Y'), [4 Kv(y)dy = 0.
Remark 4.2.6. From the above disintegration, we have that, for n-a.e. x' € @,
Eypiy —x3D3ky = [C(X)E(x,y) — (A|(¥) + 334, (X)) | L, @ L2+ Py inIx Y.
Thus, the quadruplet

(,th/, Ky [C(XI)E(xvy) - (Al(x/) +X3A2()C/))} ’Px’)

is an element of .27.

4.2.3. Case Yy = +oo

Definition 4.2.7. Letw € H'(Q;R3)NKL(Q). We define the class 7" (w) of admissi-
ble two-scale configurations relative to the boundary datum w as the set of triplets (u, E, P)
with

ucKL(Q), EcLl*Qx%:;M>3),  Pec#y(Qx ¥ M3,

sym dev
such that
u=mw, E =Ew, P=0 on (Q\Q)x 7,

and also such that there exist 4t € 2e.(Q), k € 2.(Q), £ € M,(Q;R?) with

Eyu '+ Dyk
&"+Dy)" G
Lemma 4.2.8. Let (u,E,P) € </ (w) with the associated it € 25(Q), kK € 2(Q),
¢ € M,(;R?) and let i € BD(®) and u3 € BH(®) be the Kirchhoff-Love components

Eu® 2} + =EL}QLI+P  inQx¥. (4.24)

of u. Set
N =23+ (projslP|)* € 4, (Q).

Then the following disintegrations hold true:

Eu® 2} = (A(X) +x34:,(x)) n® 27, (4.25)

(@ L =z(x) L, (4.26)
EZL} @ L} =C(x)E(x,y)n®L;} (4.27)
P=n'® P. (4.28)
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Above, Aj,Ay 1 @ — Mit, z: @ — R® and C: Q — [0,+o0] are respective Radon-

Nikodym derivatives of Ei, —D?u3, { and £2 with respect to 17, E(x,y) is a Borel
representative of E, and Py € .#,(% ;M) for n-a.e. x € Q.

Furthermore, we can choose Borel maps (x,y) € Q x Z — 1.(y) € R? and (x,y) €

QXX s K¢ (y) € R such that, for n-a.e. x € Q,

gen.
w=umNeL, Ep=n o Epu, (4.29)
gen.
k=k()N®©L, Dik=n® Dk, (4.30)

where u, € BD(%), [ Ux(y)dy =0and k. € BV(¥'), [5 K(y)dy =0.
Remark 4.2.9. From the above disintegration, we have that, for n-a.e. x € ﬁ

Ey.ux ZI + Dy Kx Al (X/) +X3A2 (.x/)

0
= |C(x)E(x,y) — 9%?+Px in¥.

(7 +D, KX)T 23 0 0

Thus, the quintuplet
Uy, Ky, 2, C(X)E(X,y>— 7Px

is an element of ...
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4.3. ADMISSIBLE STRESS CONFIGURATIONS
AND APPROXIMATIONS

For every ¢ € L2(Q;M>*3) we denote 6" (x) := C (g—;) Aye'(x). Then, in view of [24,

sym

Theorem 3.6], we introduce

sym

K = {ch e L2(Q;M2X3) 1 div,6" =0in Q, 6" v =0in 9Q\ T,

/

X
Gé’ev(x',m) ek (—

> fora.e. X' € @, x3 EI}.
€n

If we consider the weak limit ¢ € L?(Q; Mfyxn? ) of the sequence 6" € %, as h — 0,

then o;3 = 0 for i = 1,2,3. To see this, let v € C°(Q;R?) and V € C(Q;R?) be defined
by
/ 3 /
V()= [ v 0)de.

2
From the condition div,6” = 0 in Q, for every ¢ € H'(Q;R?) with ¢ = 0 on I'p we have

/ " (x) : Enp(x)dx = 0. 4.31)
Q
By putting
2hV1 x
o(x) = 2h Vi (x)
hV3(x)

and passing to the limit, it is easy to see that

0 0 wvi(x) 0 Iy, V1 (x)
/Q o(x): 0 0 ) 0 Oy Va(x) | dx=0,
vi(x) wa(x) vi(x) I Vi(x) I Va(x) 9y V3(x)

and consequently 0;3 = 0O since v was arbitrary.
Furthermore, since the uniform boundedness of sets K(y) implies that the deviatoric

part of the weak limit, i.e. Ggey = O — %tr 0133, is bounded in L*(Q; ngxn? ), we have

that
o1 o2 0 O11 + 02 0 0
6l On 0 | — % 0 o11 + 0o 0 is bounded in L™ (Q; MS;S ).
0 0 0 0 0 011+ 022
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Hence, we can concluded that the components 6, are all bounded in L=(€2).

Lastly, let ¢ € C(w;R?). If we choose the function

@1 (x') — x3 0, @3 (x')
ex)=| ¢(¥)—x305,@:3(x) |,
FP3(x)

we deduce from (4.31) that

/Qch(x): EQ(Y) —x3D*@3(x') 0 Je— 0.

0 0

Passing to the limit, we immediately get that

divy6 =0in @, and divydivy6 =0 in .

4.3.1. Case y € (0,4o0)

Definition 4.3.1.  The set %" is the set of all elements ¥ € L*(Q x &/; M3;3) satisfy-

sym

ing:
(i) div,Z(x,-) =0inIx % forae. ¥ € o,
(i) £(x',-)é3=00ndl x % forae. X € o,
(iii) Zaev(x,y) € K(y) for £ @ ZLF-ae. (x,y) €QX Y,
(iv) o;3(x) =0 fori=1,2,3,
v) divyG =0 in o,
(vi) divydivy6 =0in o,

where 0 := [, 2(-,y)dy, and &, 6 € [*(w; ngxn%) are the zero-th and first order moments

of the 2 x 2 minor of ©.

Proposition 4.3.2. Let {6”} be a bounded family in L?(Q;M>$3) such that 6" € %,

sym

and

o" 2% two-scale weakly in L?(Q x &/ ; M2X3).

sym

Then X € %ho’".
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Proof. We consider the test function &, ¢ (x, g—;), for ¢ € C(w;C=(I x %;R3)). We can

see that

B(ao(n5)) = [aver (n3)+mo () | o0 (n3)]

converges strongly in L2(Q x % ;M?>*3). Hence, taking such a test function in (4.31) and

passing to the limit, we get

Y(x,y) : Ey0 (x,y) dxdy = 0.
[ By By (x.y) dxdy

Suppose now that ¢ (x,y) = y(V () y@ (x3,y) for yV) € C=*(w) and y@ e C=(T x
@;H@). Then

/ l//(l)(x/) </ 2(x,y) :Eyl//(z) (x3,y) dX3dy> dx' =0,
o Ix%

from which we can deduce that, for a.e. X' € o,

0= JZ(X’Y) L Eyw® (x3,y) dxsdy

Ix%

:_/ ai;yZ(x,y)-l//(z)(xg,y)dx3dy+/ Z(xay)v'W(Z)(X37y)d%2<x3vy)

IxY I(IxY)

= [ aEen) VO dudyt [ 2 & v ) d A w.),
Ix% o<y

from which we can conclude Ei;yZ(x’, )=0inIx% andX(x,-)é3=0o0ndl x ¥
Finally, we define
Py = Y 1y &)o' (&itend (v)x3), (4.32)
icle, (@)

and consider the set

S={Ec*>(Qx % M3): Z4(x,y) € K(y) for L3 ®.,2”y2—a.e. (x,y) €EQ XX}

sym

The construction of £" from 6" € %, ensures that 2 € S and that £" — ¥ weakly in L?(Q x

8 ,I\\/[[’;’yxn? ). Since compactness of K(y) implies that S is is convex and weakly closed in

L>(Q x % ;M2*3), we have that £ € S, which concludes the proof. [

sym

Lemma 4.3.3. Let @ C R? be an open bounded set that is star-shaped with respect to one
of its points and let ¥ € Ji/},h"’”. Then, there exists a sequence X, € L*(R? x I x &' ; M2¢3)

sym

such that the following holds:
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(@) I, € C™(R:LX(I x &3 MJ)3)) and X, — X strongly in L*(@ x I X & ;M33),
(b) a\i;yZn(x’, )=0o0nIx % forevery ¥ € R?,

(c) Z,(x',-)& = 0on I x % for every x' € R?,

(d) (Zn(x,))aev € K(y) for every x' € R? and £, ®D§@2—a.e. (x3,y) EIX .

Further, if we set 0, (x) := [ Za(x,y)dy, and &, 6, € L*(@;Mg;7) are the zero-th and

first order moments of the 2 x 2 minor of o, then:
(e) 0, € C*(R* x I,M3y;7) and 0, — o strongly in L*(@ x I;M3):3),
(f) divy6, =01in @,

(g) diVx’divx’ 6]1 = 0 il’l .

Proof. After a translation we may assume that @ is star-shaped with respect to the origin.
We can extend X to R? x I x % by setting £ = 0 outside Q x %. Let p be the standard
mollifier on R? and let us define the planar dilation d,(x’) = (#x’ ), for every n € N.
Owing to (1.8), we can find a vanishing sequence &, > 0 such that for every map ¢ €
CZ(@;R?)
supp(pe, * @) CC o =d, (o) = supp ((pe, *@)od, ') CCw.  (433)

We then set
Zn (¥ ,x3,) i= ((Zody) (-,x3,) % Pe, ) (). (4.34)

With a slight abuse of notation, it is immediate to see that

Gn(X/,X3> = ((GOdn) (-,X3) *psn) (x/)7

From the above construction items (a) and (e) immediately follow, while item (d)

follows from Jensen’s inequality since K(y) is convex. Next, we can see that for x’ € R?

div,E,(x,-) = divy (Zod,) *pe, =0in I x ¥,
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which proves item (b).

Item (f) follows from the computation that, for every map ¢ € C:°(w; RZ),

(diVx/(_Fn, (p> = —/ Oy : Vx/(pdx/
R2
/ (Gody): (pe, xVe@)dx
R
:_/ (Gody): Vu(pe, *@)dx
R2
— (51 [ 5:(Ve(pe,+9)0d, ¥
R
”7>/ & Vi[(pe, * @) od \d¥
R2

= () (dive 6, (pe, * @) o dy ) =0,

—~
—_

where in last equation we used that divy & = 0 in @ and (4.33).

Similarly for item (g), for every map ¢ € C;°(®) we have

(divdive Gy, @) = /R 6y Vapdy
[ (60d): (pe,#V2p)af
—/ (60dy): Vi(pe, * @) dx
= (517 /R 6 [V3(pa, * p) ody ']
= 6 : V2[(pe, * @) od, '] dx’

= (divydivy 6, (pe, * @) od, ) =0,

where in last equation we used that divdivy6 = 0 in @ and (4.33). [ |

4.3.2. Case y=0

Definition 4.3.4. The set #;™™ is the set of all elements £ € L™(Q x Z;M3) satisfy-

sym

ing:
(i) i3(x,y) =0 fori=1,2,3,
(ii) Zgev(x,y) € K(y) for L2 ®.,2”y2-a.e. (x,y) EQX ¥,
(iii) divyZ(x’,-) =0in % forae. X € o,
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(iv) div,div,E(x,-) =0in & forae. ¥ € ,
(v) divy6 =01in o,
(vi) divydivy6 =0in o,

where £, ¥ € L (0 x ¥ ngxn%) are the zero-th and first order moments of the 2 X 2 minor
of X, 6:= [, X(-,y)dy, and &, & € L(w;M2:2) are the zero-th and first order moments

sym

of the 2 x 2 minor of ©.

Proposition 4.3.5. Let {c"} be a bounded family in LZ(Q;MSYXIS) such that ¢ € %,
and

o' 2% two-scale weakly in L? (Q x Q/;M3X3).

sym

Then X € %hom.

Proof. First, let ¢ € C°(w;C™(%;R?)) and consider the test function

/ /

o1, ) —x30y 93(x', 5) — 2 $3(¥, 7))
o) =& | L) |+tea’ | —x30n0s(r L) —2d,0(x, L)
0 Fos (Y, ﬁ—;)
By direct computation we can see that
! 2 / 0
Epp(x) — E¢x.y) = xaDy6s(x.) 0 strongly in L*(Q x @;ngxn?).
00 0

Hence, taking such a test function in (4.31) and passing to the limit, we get

Ey¢' —x3D2¢3 0
/ X(x,y): v0 — 1Dy 03 dxdy = 0.
Qx¥ 0 0

Suppose now that ¢ (x',y) = y!)(x') y?) (y) for yV) € C=(w) and y? € C=(#;R3).
Then

Ey(w®) (y) ~ D2y (y) 0
/ ‘l/(l)(x/) / Z(x,y) . )’(w ) (y) X3 )W} (y) dx3dy dxl _ 0,
(0] Ix% 0 0
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from which we can deduce that, for a.e. X' € o,

E (2)\/ o DZ (2)
o= [ S(ey: y (W) () = Dyys ™ (v)
Ix¥% 0

dxzdy

_ 1 ~
- /@Z(X’vy) LE, (w0 dy— — | £(.y): D2y (3)dy

12 Jar
- 1 A 2
- _ /@ d1vy2(x’,y) . (l//(z))’(y) dy— 7 /g/ d1Vyd1VyZ(x’,y) . 1,/3( )(y) dy,

from which we can conclude div,Z(¥,-) = 0 in % and div,div,£(x',-) = 0in Z'.
Next, let v € C2(@;C™(I x #Z';R?)) and consider the test function &y (x, 2‘—;) We

can see that

) =L () g ()| asw ()
Vh<h‘lf<x7£—h>>— |:hvx/ll/<x78_h +8_hvylll x,g_h ‘ aX3ll/ xug_h

converges strongly in L?(Q x % ;M?>*3). Hence, taking such a test function in (4.31) and

passing to the limit, we get

0 0 ax3 llll (x7y)
| =) 0 0 duyalry) | drdy=0,
ax3 4] (X,y) ax3 WZ(x7y> aX3 W}(L)’)

which is sufficient to conclude that £;3(x,y) =0 fori = 1,2,3.

Finally, if we choose the approximating sequence (4.32), the same argument as in
the proof of Proposition 4.3.2 implies the stress constraint g, (x,y) € K(y) for £ ®
oiﬂyz—a.e. (x,y) € Q x %, which concludes the proof. [

Lemma 4.3.6. Let ® C R? be an open bounded set that is star-shaped with respect to one

of its points and let £ € ;"™ Then, there exists a sequence X, € L™(R? x I x &/ ; M%)

sym

such that the following holds:

(@) I, € C°(R%L=(I x % ;M3%3)) and X, — X strongly in LP (@ x I x % ;M2X3), for

sym sym

1 < p < Hoo.
(b) (ZH)B(X,y) =0fori=1,2,3,
(©) (Zn(x,9))dev € K(y) for every ¥’ € R? and .,2”)(13 ®.,2”y2-a.e. (x3,y) €IX ¥,
(d) divyE,(«,-) =0in & forevery x' € @,
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(e) divydivyE,(x',-) =0in & for every ¥ € w,

where £, 5, € L>(o x % ;M2%2) are the zero-th and first order moments of the 2 x 2

sym

2%x2

minor of X,. Further, if we set 0,(x) := [5 Zu(x,y)dy, and 6y, 6, € L™ (@; M) are the

zero-th and first order moments of the 2 x 2 minor of G, then:

(f) 0, € C*(R*x I;M3;3) and 6, — o strongly in LP(@ x I;M3)3), for 1 < p < oo,
(g) divy6, =01in o,

(h) divydiv,6, =0 in o.

Proof. The proof is analogous to that of Lemma 4.3.3. |

4.3.3. Case Yy = +oo

Definition 4.3.7. The set J#,/™ is the set of all elements T € L?(Q x %/'; M2>3) satisfy-

sym

ing:
(i) divyX(x,-) =0in ¥ fora.e. x € Q,
(ii) Zgev(x,y) € K(y) for £3 ®.>§fy2—a.e. (x,y) €QxX ¥,
(iii) o3(x) =0 fori=1,2,3,
(iv) divy6 =01in o,
(v) divydivy6 =0in o,

where 6 := [, £(-,y)dy, and 6, 6 € L*(w; ngxnf) are the zero-th and first order moments

of the 2 x 2 minor of ©.

Proposition 4.3.8. Let {c”} be a bounded family in L?(Q;M>$3) such that 6" € %,

sym
and

o 2% two-scale weakly in L?(Q x &/ ; M2X3).

sym

Then ¥ € J#hom.
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Proof. We consider the test function &, ¢ (x, g—;), for ¢ € C(w;C=(I x %;R3)). We can
see that

W(ao(n5)) = [aver (n3) +me (v )| Fou0 (n3)]

converges strongly in L2(Q x % ;M?>*3). Hence, taking such a test function in (4.31) and

passing to the limit, we get

/ngl/z(x’y) : Ey¢ (x7y) dXdy =0.

Suppose now that ¢ (x,y) = w1 (x) w2 (y) for y1) € C=(@;C*(I)) and y?) € C=(Z;R?).
Then
[ v ([ 2w EvP0)ay) de=o,

from which we can deduce that divyX(x,-) =0in & fora.e. x € Q.
To conclude the proof, it remains to show the stress constraint Zgey (x,y) € K(y) for £2 ®
,,iﬂyz—a.e. (x,y) € Q x #. To do this we can define the approximating sequence (4.32) and

argue as in the proof of Proposition 4.3.2. |

Lemma 4.3.9. Let ® C R? be an open bounded set that is star-shaped with respect to one
of its points and let £ € 7", Then, there exists a sequence X, € L>(R? x I x &/;M3X3)

sym

such that the following holds:

(@) T, € C°(R*L*(#;M3:3)) and £, — ¥ strongly in L? (@ x I x % ;M2X3),

sym sym
(b) divyZ,(x,-) =0on % forevery x € R?,

(©) (Zn(x,Y))dev € K(y) for every x € R? and oiﬂyz—a.e. ye¥.

2%x2
sym

Further, if we set 6, (x) := [, Z,(x,y)dy, and 6,, 6, € L*(®;M22) are the zero-th and

first order moments of the 2 x 2 minor of o, then:
(d) 0, € C*(R* x I;M;3) and 6, — o strongly in L*(@ x I; M),
(e) divy6, =01in o,

() divydivey6, =0in @.

Proof. The proof is analogous to that of Lemma 4.3.3. The only difference is that the

convolution and dilation used to define X, in Step 1 are taken in R instead of R?. [
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4.4. THE PRINCIPLE OF MAXIMUM PLASTIC

WORK

The aim of this section is to prove the following inequality between two-scale dissipation
and plastic work, which will be used to prove the global stability condition of the two-

scale quasistatic evolution.

Proposition 4.4.1. Let ¥ € [0,+c|. Then

AMOM(P) > — /

1
> Z:dedy+/ G:Ewdx'——/ézDZW3dx’,
QXQ/ [0) 12 n)

for every X € " and (u, E, P) € o, (w).

The proof of the above inequality is an immediate consequence of the results given

below (see Remark 4.4.4, Remark 4.4.7 and Remark 4.4.10).

4.4.1. Case y € (0,+o0)

Proposition 4.4.2. Let X € Q%fyho’" and (u,E,P) € fo}fwm(W) with the associated p €

Zy(®). There exists an element A € ., (Q x %) such that for every ¢ € C2(®)

1
<l,(p>:—/ go(x’)Z:dedy+/ (pc‘Y:EvT/dx’——/ 06 : D*wsdy
QX@ [0) 12 w

—/w(r:((ﬁ—w)QV(p)dx'—é/éz (V(u3 —w3) © V) d’

0]
1

T C0(143 —w3)6 : V2edx.
Furthermore, the mass of A is given by

~ 1
AQx%) = —/ 6:Ede/—E/w<A7:DZW3dx/. (4.35)

Y dedy+/
Qx&

()

Proof. The proof is divided into two steps.
Step 1. Suppose that @ is star-shaped with respect to one of its points.
Let {Z,} € C*(R%;L*(I x %' ;M2>3)) be sequence given by Lemma 4.3.3. We define

sym

the sequence
gen.

An =N [(Zn)dev(xlv ) : Px’] S f//b('(2 X @)v
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Two-scale statics and duality The principle of maximum plastic work

where the duality [(X,)gev(¥’,) : Py] is a well defined bounded measure on I x % for

N-a.e. X' € ®. Further, in view of Remark 4.2.3, the expression from (4.1) gives

/]Rx?z/ wd[(zn)dev(xl7 ) : Px’]

Al (X’) —|—)C3A2(X/) 0
=— / W (x3,5) Za(x,y) 0 |C(X)E(x,y) — dxsdy
IX?Z/ O O

— [ Ea): (e (x5.9) © Vypaa,) dxady,

for every y € C'(R x %), and
1En)aev @) : Pell < IEn ey Ml gy Pl < C 1Pl
where the last inequality stems from item (d) in Lemma 4.3.3. This in turn implies that
gen. , gen.
[l =1 @ [[(Zn)aev(x',) s Pu]l <Cm @ [Pu] = CIP],

from which we conclude that is {4, } is a bounded sequence.
Let now I O I be an open set which compactly contains /. Let & be a smooth cut-off

function with & = 1 on 1, with support contained in 1. Finally, we consider a test function

0 (x,y) := @(x)&(x3), for ¢ € C(w). Then, since qu)(x y) = 0, we have

Ga0)= [ ([ 0 diEants',): Bl ) dn(2)

A1 (X) +x3A2(X)

= - /wa’)zn(x,y): Cl)E(x.y) - .

[ anezios)

A (x’) + x3A, (x')

gl
0 0 d(ne2;)

= _/ﬁxgy(p(x’)zn(x,y) :E(x,y)dxdy#—/ﬁ(p(x’) On(x):
__ /ﬁ O Ty) ey dxdy+ /EZ o) G (x) : dEu(x)
Since u € KL(Q), we have

/Ez O() Gn(x) : dEu(x) = /~ o) an(x’);dEa(x')—l—lz [ 0()6,(): dD?us (),

()]

where i1 € BD(®) and u3 € BH(®) are the Kirchhoff-Love components of u. From the
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Two-scale statics and duality The principle of maximum plastic work

characterization given in Proposition 2.2.4, we can thus conclude that

/E2 o) Gn(x) : dEu(x / oY) G,(x') : (') dx’ + / o) Gn(x) : dp(x)

12/ ) é(x)dx' + 12/ )6 (X)) 1 dp(x)
~ [ o)a ) ew)ar + [ ot)dio, i)
12/<P ) -l >dx+12/<p 6 100),

where in the last equality we used that 6, and 6, are smooth functions. Notice that, since

p =0 and p =0 outside of ® U yp, we have

[odoi:n=[ edi:, [ ede:s=[ edé,: s
) wUYp 0] oUYp

Furthermore, since ¢e = £ = Ew —X3D2W3 on Q \ ©Q, we can conclude that

<?L,,,(Z)):—/~ (p(x')Zn:dedy+/ (p&n:e_dx'—i—i/ @6, :édx
QX @ 12 J&

_ 1 o
+ ¢d[Gy: P]+ — ¢d[6, : p]
oUYp 12 oUYp
1
:—/ (p(x/)Zn:dedy—F/(pc_fn:édx/+—/(p6n:édx'
QX?Z/ (0] 12 n)
1 A A
+ q)d[Gn p]+ (Pd[cn CP]-
wUYp 12 oUyp

Considering div,/6, = 0 in @, from [18, Proposition 7.2] we have for every ¢ € C! (@)

/ <pd[5n:p]+/<pan;(é—Ew)dx'+/5n:((a—w)@w)dx’:o.
oUYp ® ®

Likewise considering divdiv, 6, =0 in ® and u3 = w3 on }p, from [18, Proposition 7.6]

we have for every ¢ € C?(®@)
/ 0d[6, : pl +/ 06, (6+Dws)dx
wUYp ®
+2/ G (V(uz—w3) 0 Vo) dx'—i—/ (u3 —w3) 6, : VZodx' =0
() (0]
Let now A € .#,(Q x %) be such that (up to a subsequence)

dn = A weakly* in ,(Qx ).
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Two-scale statics and duality The principle of maximum plastic work

By items (a) and (e) in Lemma 4.3.3, we have in the limit
(A,9) =1im (A, 9)

1
= lim [—/ go(x’)Zn:dedy—l—/ q)c'r,,:EvT/dx’——/ ¢ 6, : D*w3dx’
QX@ (0] 12 w

n

—/w(_)',,:((ﬁ—vT/)(DV(p)dx/—é/ 6n: (V(uz —w3) ©V@)dx

@
1 A
T w(u3 —w3) 6y Vz(pdx’}

1
:—/ (p(x')Z:dedy-l—/ (pc'F:Ede’——/ @6 D*wydx
Qx& (0] 12 Jo
1
—/ c‘r:((ﬂ—v?z)@Vq))dx’—g/ & ¢ (V(uz —w3) © V) do’
(0] w
1
12 Jo
Taking ¢ " 15, we deduce (4.35).

(u3 —ws3)6: Vipdx'.

Step 2. If o is not star-shaped, then since ® is a bounded C> domain (in particular, with
Lipschitz boundary) by Proposition 1.7.4 there exists a finite open covering {U;} of @
such that w N U; is (strongly) star-shaped with Lipschitz boundary.

Let {y;} be a smooth partition of unity subordinate to the covering {U;}, i.e. y; €
C*(®), with 0 < y; < 1, such that supp(y;) C U; and }; y; = 1 on @.

For each i, let

. Y(x,y) if¥ € oNU;,
Fi(x,y) = ’
0 otherwise.

Since X' € ", the construction in Step 1 yields that there exist sequences {X},} C
C*(R%L*(I x %, M¥$3)) and

sym

A= 0 (5 ger (V) 2 Pu] € oty (@NU) XTI X W),

such that
AL AT weakly* in 4, ((0NU) x I x %),
with
, 1
(A, ) :—/ o(X)X: Edxdy+ 06 :Ewdx — — @6 : D*widx
(0NU;) xIx Y oNU; 12 Jonu;
—/ 6:((a—w)oVe) dx——/ 6: (V(uz—w3)©Ve)dy
oNU; oNU;
1
(uz —w3) 6 : V2odx .
12 oNU;
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for every @ € C2(@NU;). This allows us to define measures on Q x % by letting, for
every ¢ € Co(Qx %),

(A, 0) =Y (As, wi(x') 0),

1

and

(A,9) =Y (A" wi(x) ).

1

Then we can see that A, — A weakly* in .//b(ﬁ X %), and A satisfies all the required

properties. [

Theorem4.4.3. LetX e Ji/yhom and (u,E,P) € Mf"’m(w) with the associated 1t € Z().
Then

dP)
H\y,—— | |[P|> A

where A € ///b(ﬁ X %) is given by Proposition 4.4.2.

Proof. Let {X.}, {Ai} and A’ be defined as in Step 2 of the proof of Proposition 4.4.2.

Item (d) in Lemma 4.3.3 implies that
(Z) dey (x,y) € K(y) for every x' € @ and .,?;13 ®D§,@2—a.e. (x3,y) €EIX Y.

By Proposition 4.1.6, we have for n-a.e. X' € @

dPy
H <y’d\Tf\> |Py| > [(Z})dev(X',-) : Py] as measureson I x %'
x/

Since %(x,y) = da"g‘ (x3,y) for |Py|-a.e. (x3,y) € I x % by Proposition 1.3.2, we can

conclude that

H( d—P> |P|=ng<e§>1'H<

P gen. dPy
) P = H(,—X>P/
» i ) 1Pel =0 (3 95) ppy|

d
Vs 551
d|P| d|Py|
¥ win gg"H< oo ) P
=)V Y=o ) [Py
i d|le| *
gen. .
> Y uim © [(5)aer () < By
=Y i = A,
i
By passing to the limit, we have the desired inequality. |

Remark 4.4.4. As a consequence of the above theorem and (4.35), we have the proof of

Proposition 4.4.1 for y € (0, +o0).
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4.42. Case y=0

Proposition 4.4.5. Let £ € 7™ and (u,E,P) € /" (w) with the associated 1 €
2o(®), k € Yo(®). There exists an element A € .#,(Q x %) such that for every ¢ €
G (o)

M,(p):—/ (p(x')Z:dedy+/ (p&:EvT/dx'—i/ 06 D*wsdy
Qx% ) 12 Jo

—/ 6:((12—W)@V(p)dx’—é/ 6: (V(uz—w3) ©Ve)dy
(O] ()
1
- —w3)6: V2pdyx.
3 w(ug w3)6 : Vopdx

Furthermore, the mass of A is given by

_ i
A(Qx@):-/ Z:dedy+/wé':Ede’—E/wé:Dzmdx’. (4.36)

QX%

Proof. Suppose that @ is star-shaped with respect to one of its points.

Let {Z,} C C*(R?;L*(I x %' ; M2>3)) be sequence given by Lemma 4.3.6. We define

sym

the sequence
gen.

I =1 @ [Ea(¥,): P € M QxT),

where the duality [£,(x,-) : Py] is a well defined bounded measure on / x % for n-a.e.

x' € . Further, in view of Remark 4.2.6, the expressions from (4.4) gives

— [ B ) s () @ VW) dy
te [ 860 (Vo) 9,y 0) vt 15 [ k) Baon) s Vi) dy
for every y € C*(%), and
[Zn(x) 1 o]l S 20, )l oz [P ] < C P,
where the last inequality stems from item (c) in Lemma 4.3.6. This in turn implies that

gen. f gen.
Al =1 @ [[Za(x',-) s Pl <Cn @ |Pu| =CIP],

from which we conclude that is {4, } is a bounded sequence.
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Let now I O I be an open set which compactly contains /. Let & be a smooth cut-off
function with & = 1 on I, with support contained in 1. Finally, we consider a test function
O (x,y) = @(x')E(x3), for ¢ € C (). Then, since V¢ (x,y) = 0 and V%(p(x,y) =0, we

have

(s 0) = /w

A

[ iz, R ) dn ()

Q) Za(x,y) 1 [C(VE(x,y) — (A1 (Y) +x34: ()] d (n © L, © £7)

;oe\

XY
/fzxg/ a(x,y) 1 E(x, y)dxdy+/ 0n(x) 1 (A1(¥) +x342(x")) d(n ®,>?}13>

= /ngq)(x’)z (x,) : E(X,y)dXdy-l-/ﬁ(P(X)Gn(x) . dEu(x)

From this point on, the proof is exactly the same as the proof of Proposition 4.4.2. [

Theorem 4.4.6. Let ¥ € #)"" and (u, E, P) € 27" (w) with the associated u € 25(®),
k € Yo(®). Then

dP
—_— > >
/ﬁxg(p(y)Hr (y’d\P\> |P| _/ﬁxay(p(y)dl, for every ¢ € C(%), 0 > 0,

where A € .#,(Q x %) is given by Proposition 4.4.5.

Proof. Let {Xi}, {Ai} and A’ be defined as in Step 2 of the proof of Proposition 4.4.5.

Item (c) in Lemma 4.3.6 implies that
(Zi)dev (x,y) € K(y) for every x' € @ and .ng ®.,2”y2-a.e. (x3,y) €IX .

By Proposition 4.1.12, we have for n-a.e. X' € @

dPy ;
H( >dP / d[Zl : Py, f cC(#),0>0.
|, 008 (. gy ) dlPel = [ o)l Pl forevery g€ (), 0

Since %(x,y) = ddll}’ (x3,y) for |Py|-a.e. (x3,y) € I x % by Proposition 1.3.2, we can

Pyl

conclude that

H( dP>|P|— g(egr)LH( dP>|P]— ggg- ( dPy >|P|
r y7d’P| =1 r yvd’P| Y =N d|P|

_Z ‘ ggg-H( dPy )]P]
RS "d[Py|
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Consequently,

fov 0008 (o g ) =X L) (o (s 3 ) 1) an)
SWRTS ( / PO)dIZ, Pl ) dn()

=X [, wemanen = [ ot)di,

By passing to the limit, we have the desired inequality. [

Remark 4.4.7. As a consequence of the above theorem and (4.36), we have the proof of

Proposition 4.4.1 for y = 0.

4.43. Case Y= +oo

Proposition 4.4.8. Let & € /" and (u,E,P) € &/°"(w) with the associated p €
2:0(Q), kK € 2:(Q), & € M,(Q;R?). There exists an element A € .#,(Q x %) such
that for every ¢ € C2(@)

1
<k,q)>:—/ gD(x’)Z:dedy+/ ch_T:EvT/dx/——/ (pé:D2W3dx'
QX@ [0) 12 w

—/w(r:((ﬁ—w)QV(p)dx'—é/éz (V(u3 — w3) © V) d’

(0]
1
—— [ (uz—w3)6: V2odx.
12 Jow
Furthermore, the mass of A is given by

l(ﬁx@):—/ Z:dedy—i—/ G :Ewdx ——/G D*wsdx' . (4.37)
QX%

Proof. Suppose that @ is star-shaped with respect to one of its points.

Let {Z,} C C*(R3;L2(#%;M33)) be sequence given by Lemma 4.3.9. We define the

sym

sequence
gen.

A =1 @ [(Zp)aev(x,-) : P € Mp(Qx D),

where the duality [(X,)gev(x,-) : Py is a well defined bounded measure on ¢ for n-a.e.
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x € Q. Further, in view of Remark 4.2.9, the expressions from (4.8) gives

/Wd dev ) x]
1 (X X
== [ v [cWEy) - dy

- ﬁJ(Zn)”(x,y)  (1(y) © Vyw(y)) dy

_azlz/ K(3) (Bn)a3 (x,7) Oy Y (v) dy + 123Zilyllf(y)(zn)ﬁ(x,y)dy,

=1,z

for every w € C1(#%), and
(En)aen (e.7) = P NS () =gy [Pl < C 1B
where the last inequality stems from item (c) in Lemma 4.3.9. This in turn implies that
gen. gen.
Al =1 @ [[(Zn)aev(x, ) B[ <Cn @ || =C|P|,

from which we conclude that is {4, } is a bounded sequence.

Let now I D I be an open set which compactly contains I. Let & be a smooth cut-off
function with & = 1 on I, with support contained in 1. Finally, we consider a test function
o (x,y) := @(x)E(x3), for ¢ € C(®). Then, since Vy¢(x,y) =0, dy,¢(x,y) =0 and
Ja (Z0)i3(x,y)dy = 0, we have

a0 = [ ([ 0 diZ)an():R]) dno)
. A1 (X)+x342(X) 0O
== [, o@)Tay): |CwEEy)— | 03 )| de )
— . W) Bt o)) (A1) + 5o

—— [ eW)Ty) ) dudy + [ o) o) : dEul
Qx¥ Q
From this point on, the proof is exactly the same as the proof of Proposition 4.4.2. [

Theorem 4.4.9. LetY € 7" and (u, E, P) € 7" (w) with the associated it € 25.(Q),
K€ 2:0(Q), & € M,(QR?). Then

dP)
H(v. 22 ) P> 2
<y’d|P| 1Pl =

where A € ///b(fl x %) is given by Proposition 4.4.8.
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Proof. Let {X}}, {A}} and A’ be defined as in Step 2 of the proof of Proposition 4.4.8.

Item (c) in Lemma 4.3.9 implies that
(Z1)dev(x,y) € K(y) for every x € Q and iﬂyz—a.e. ye¥.
By Proposition 4.1.19, we have for n-a.e. x € Q

P, .
H< dle |> |Py| > [(Z})dev(x,*) : P] as measures on &%

f@ (x,y) = d‘P |( y) for |P|-a.e. y € # by Proposition 1.3.2, we can conclude that

H( dP)\Py— gg'H( d—P> P = g(%H( dP: )|Py
o e ( dP, )
= w0 S H () 12
gen. .
ZZWL(XI)TI & [(ZZ)deV(xf) :Px]

=Y w4, =

By passing to the limit, we have the desired inequality. |

Since

Remark 4.4.10. As a consequence of the above theorem and (4.37), we have the proof

of Proposition 4.4.1 for y = +oe.
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Two-scale statics and duality Lower semicontinuity of energy functionals

4.5. LOWER SEMICONTINUITY OF ENERGY

FUNCTIONALS

For (u,e, p) € o/,(w), we recall the definition of energy functionals .2, and £ given
in (2.10) and (2.11). For (u,E,P) € ;" (w) we now define

9Mom(E) .= / 0 (y,E) dxdy (4.38)
Qx¥
and
dP

s (p ::/ H(,—)dP. 4.39
#y= [ () 39

Theorem 4.5.1. Let y € [0, +oo]. Let (u", ", p") € o7,(w) be such that
u" 2y weakly* in BD(Q), (4.40)
Ape" 2 E  two-scale weakly in L2(Q x &' Mg’yﬁ) (4.41)
Ay, ph 5P two-scale weakly* in ///b(fz X %, Mi:f), (4.42)

with (u,E,P) € ﬂyho’"(w). Then we get
2hm(E) < lim inf 2, (Ape™) (4.43)

and

A (P) < Timinf 4, (Ap"). (4.44)

Proof. Let ¢ € C2(Q x % ;M33). From the coercivity condition of the quadratic form

sym

2), we obtain the inequality

0< 2/ < )<Ahe (x) — (p(x z—;>> : <Aheh(x)—(p(x,z—;>> dx.

Since C ( )Ahe (x) = 2 C(y)E(x,y) two-scale weakly L*(Q x %; ngﬁg) we can apply

liminf to the above inequality to obtain

/ C(y)E(x,y) : @ (x,y) dxdy — —/ x,y) 1 @ (x,y) dx < liminf 2, (Aze).
Qx¥ Qx¥ h

Choosing ¢ such that ¢ — E strongly in L?(Q x %/ ; M3$3) proves (4.43).

sym
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To prove (4.44), let us first note that in the case Y= 0 and y = 4o, as previously noted
in Remark 2.1.3, the dissipation potential H is a lower semicontinuous function, positively
I-homogeneous and convex in the second variable. Thus, the desired lower semicontinu-
ity property follows directly the version of Reshetnyak’s lower semicontinuity theorem
adapted for two-scale convergence (see [25, Lemma 4.6]).

Let now ¥ € (0,4-o0). We can assume without loss of generality that

1in}1mf%,(/\,,ph) < oo, (4.45)
We can write
p'=Y i+ Yl (4.46)
i i£]

where pl:= p"| QN ((%)g, x I) and pf.’j = p"| QN ((T;;\ S)e, x ). Up to a subsequence,

Ahp,h 2 P, two-scale weakly* in //b(ﬁ X @;Mz»w)7

dev

Ahl?,hj B P;; two-scale weakly* in ///b(ﬁ % g;M3x3)_

dev

Clearly,

P=) F+) Py

i i#]
with supp(P;) C Q x 2% ; and supp(P; i) C QxT; j. Furthermore, considering (4.41), we

can concluded that

MEW | QN (W), x 1) = Edg,  Z00 L7 +F two-scale weakly* in . ,(Q x 9/ M)

ﬁx%

Recalling (2.2), we can additionally assume that I';; ¢ C S. Then, with a normal v on

I';; that points from %] to %; for every j # i, Lemma 3.4.4 implies that
PQx (T3j\ S) = —aij(x,y) © v(y) i) (4.47)

for suitable 1;; € ///,f(fl x (I';j\ S)) and a Borel map a;; : Q x (T;;\ S) — R3 such that
a;j L v for n;j-ae. (x,y) € Q x (i \ S).

Using a version of Reshetnyak’s lower semicontinuity theorem adapted for two-scale
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convergence (see [25, Lemma 4.6]), we get
" dALpT
liminf [ H (=, 2P A, pl|
h QUI'p & d‘Ahpl‘
dA,ph dP;
:liminf/~H,- s d|Ahpffyz/ H( )d|P|
noJat \ d|Aph] Ox d|P|
dP,; dP;
_ [ H( >d|P| / H( >d|P|
Qx%; d|P| QxI d|P|
s d|P|+ / ( >dP
/w (o i) 4P L Joieys ™ \ajeg) 7

QX@ <y >d|P|+§l/ U\S (—aij(x,y) ©v(y)) dnij. (4.48)

Next, we have
/ ~
Mty = (=) o v ()| A21B0 (07 S)e %D

~[aiag (1.0.1) @ -y ov (£)] @0 (0196, 4,

&n

where u! and u}? are the traces on QN (I i\ S)g, x I) of the restrictions of u” to (%), x
I and (%))g, x I respectively, such that u” u’; is perpendicular to v. Then, since the

infimum in the inf-convolution definition of H on I'\ § is actually a minimum, we get
.X/ dAhPflJ h
/ H| —, o= | d|Anpij|
QuUIp &, d|Ahpl.j|
/ dAh ph~
= |~ H x_7 ;lj d|Ahpflj|
ON(Ti)\S)e, <) \ & d|Anpf;

X

/ 1 xl
-, (5 Jaae (1) ey ov (D)) e
a0 g iag ; (] —u}) © e (x)

1 X
= H;; | di (1,1,—) h_ ’?,v(-))d%ﬂz
ON(T\S)e, 1) e h (' =) & ()
/ - /
_ [ [H <bh U)o v (x )) +Hj <—b?”(x)®v (x—m d A (x)
QN((Tij\S)e, x1) €n €n

(4.49)

for suitable Borel functions b?’ij , b?’ij QN (T i\ S)g, x I) — R which are perpendicular

to v for #%-a.e. x € ([;;\ S)g, x I and such that

ij ) 1
b?” b? / = diag <1, I’E) (ufl—uﬁl) for #%-ae. x € (Lij\S)g, x 1
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The fact that b?’ij , b?’ij are Borel functions can be argued by approximating ulh — ui’ along
(I'ij \ S)e, x I by simple functions, and recalling v is continuous. From the coercivity

condition of the dissipation potential H and (4.45), we obtain

N /
/~ { b (x)ov <x—> ’ +
QO((Li;\S)g;, 1)

&n
for some constant C > 0. This bound implies that the measures

/

hij x

)H dA*(x) <C,

0T = B A2 QO (T S)e, x 1) and 0T = b 522 QA (T35 S)e, x 1)

are bounded in 4. Thus, by two-scale compactness, we can assume that up to a subse-

quence

nlh N n two-scale weakly* in .2,(Q x % ;R3),

njh N n two-scale weakly* in .2, (Q x Z/;R?).

d"f

y - ij
We denote by b; and b/ the Radon-Nikodym derivatives % and ain / i

Then, since the normal vector field v is continuous on (I';; \ S)g, x 1

respectively.

bh Tov (8 ) A QN (T3 \S)e, x 1) 2 bﬁjQ v(y) \nl”] two-scale weakly* in .2,(Q x &;R?),
2—x_ i jj . ~
bh A @V( ) A7 QN (Tij\S)g, xI) — bljj Ov(y) |n}J| two-scale weakly* in .#,(Q x % ;R?).

In view of the Reshetnyak’s lower semicontinuity theorem adapted for two-scale conver-

gence, (4.49) yields
Ny
timinf [ B (S, S0 g
hJourp & d|Anpi;]
/ . /
— liminf [ [H, (bh”( )@v(x )>+H ( bh’f(x)@v(x—)ﬂ A (x)
B Jan((m\S)e, <) &, / &
/
> liminf [_ H; (bh”( )@v( )) dA*(x)
e JN((Tij\8)e, x1) €n

.. Jij X/
+ liminf |_ B, )Hj< bi’ I (x )®v<8 >) d A2 (x)

h

. ij ij lj
Z/fzx(rij\S)Hl <b (x)© d’nz |+/ ., ] bi(x)©v(y )) d\r,j | (4.50)

Recaling (4.47), we have

PO x (Ty\ 8) = —a;j(x,y) © V() Mij +aji(x,y) ©vy) nji+ b @ v(y) 0| — 67 & v() [n?]
= ('(x,y) =/ (x,3)) © V() &,
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Two-scale statics and duality Lower semicontinuity of energy functionals

for §;;=ni;+mji+ 0|+ |n;’| € M, (Qx (T;;\S)), and suitable Borel functions ¢/, ¢/ :
Qx ( I;;\ S) — R? which are is perpendicular to v for §;j-a.e. (x,y) € Q x ( I\ S) and
such that

¢ (x,y) O V(y) &j = —aij(x,y) ©v(y) mij + b7 © v(y) 0],

I (x,y) V() Gij = —a;i(x.y) O v) i+ b © v(y) In?].
Now, in view of (4.46), from (4.48) and (4.50) we get

lin}linfjﬁ,(Ah )

> L f/ SSRCLTT/ DN i if NN il
1m1n —, 1m1n s
aurp  \ & d|App!] hPi aur,  \ & d]A Pl hPiy

i#]

+) ( / s (biif<x>@v< >) dini’|+ /
- ﬁx(ui%)H<y’%) d\P

+§J</ X(Ti)\S) Hi (aie ) OVO)) dF fo (u\S)HJ'(aji(X,)’)@V()’)) dn;i

" ”\S)HJ-(—b’ﬂx)@v( y)) d|n’? r)

Qx(Li;\S)
dP
[ (2 Y ap
Qx (Ui %) d|P|

+§j Qx(I;\S) [Hi (Cl(x’y) Oviy )) dgij+

+ [ H; (b (x) o v dln/|+/ \SJ ()®v<))d|n,!)

Qx(T. U\S>H’(_Cj(x’y)®\’(y))] dg;;

B sz(u,-@) ( d|P!>d|P‘+Z/ ,,\S () =y ovi)) d;
Lo H( d‘P’>d|P\+Z/QX - <y, dd,;) d|P|

i#]
— t%pham (P) 7

which concludes the proof. [
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5. TWO-SCALE QUASI-STATIC

EVOLUTIONS

We recall the definition of energy functionals hom and #hom given in (4.38) and (4.39).

The associated 7" -variation of a function P : [0,T] — .#,(Q x % ;M>X3) on [a, b] is

dev

then defined as

n
D yphom (P a,b) := sup {Z%ho’" (P(tis1)—Pt)):a=t1 <tr<...<ty,=b,ne¢ N} :
i=1

We now give the notion of the limiting quasistatic elasto-plastic evolution.

Definition 5.0.1. A two-scale quasistatic evolution for the boundary datum w(z) is a

function 7 — (u(t),E(t),P(t)) from [0,T] into KL(Q) x L2(Q x & M3X3) x ,(Q x

sym

a ;Mgexf) which satisfies the following conditions:
(qs1)}™ for every t € [0,T] we have (u(r),E(z),P(t)) € )" (w(t)) and
2" (E(1)) < 2" (H) + A" (T1— P(1)),

for every (v,H,II) € d}fwm(w(z‘)).

(qs2)§’,"’" the function ¢ — P(¢) from [0, T] into ///b(ﬁ X % ;Mg:f) has bounded variation

and for every 7 € [0, 7]
t
DM (E (1)) + D ypiom (P10,1) = 2" (E(0)) + / / , CONE(S): Erv(s)drdyds.
0 JQx

Recalling the definition of a h-quasistatic evolution for the boundary datum w(t) given

in Definition 2.4.1, we are in a position to formulate the main result of the thesis.
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Two-scale quasi-static evolutions

Theorem 5.0.2. Let 7 — w(t) be absolutely continuous from [0,7] into H'(Q;R3) N

KL(Q). Assume that there exists a sequence of triples (uf, el ph) € <7,(w(0)) such that

ufp = ug  weakly* in BD(Q), (5.1)
Apel 2y Ey  two-scale strongly in L>(Q x & ;M‘;’yﬁ ), (5.2)
Apph Eml Py two-scale weakly* in ///b(ﬁ X @;Mgexf), (5.3)

for (ug,Eo, Py) € szf}f’”’”(w(O)) if ¥ € (0,4-c0] and (uo,Ey, Fy) € %h"m(w(O)) ify=0.
For every h > 0, let
tes (1), (t), p" (1))

be a h-quasistatic evolution for the boundary datum w(t) such that u"(0) = uf}, ¢"(0) = e,

and p"(0) = pg. Then, there exists a two-scale quasistatic evolution
£ (u(t),E(1), P(2))

for the boundary datum w(¢) such that u(0) = ug, E(0) = Ep, and P(0) = Py, and such

that (up to subsequences) for every ¢ € [0, T

(1) 2 u(r)  weakly* in BD(Q), (5.4)
Ane (1) 2 E(r) two-scale weakly in L>(Q x Q’/;Msyxn?), (5.5)
Ahph(t) L P(t) two-scale weakly* in //b(ﬁ X @;Mgexf), (5.6)

in case y € (0,+o0], and

(1) 2 u(r)  weakly* in BD(Q), (5.7)

1) 2 AJE(t) two-scale weakly in LX(Qx¥ ;ngxnf), (5.8)
—« [ P(t) O ~

0 2 (1) two-scale weakly™* in .2,(Q x @;Msyxn?)a 5.9

in case Y = 0.

Proof. The proof is divided into steps, in the spirit of evolutionary I'-convergence. We
present the proof in the case ¥ € (0, +o0), while the arguments for cases y =0 and y = +o0
are identical upon replacing the appropriate structures in the statement of Theorem 3.3.1

and definition of %f"m(w).
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Two-scale quasi-static evolutions

Step 1: Compactness.
Firstly, we can prove that that there exists a constant C, depending only on the initial

and boundary data, such that

< C and Zy, (Awp";0,T) <C, (5.10)

A _
A ]
for every h > 0. Indeed, the energy balance of the s-quasistatic evolution (gs2), and (2.5)

imply

re || Ape" (1)

+ D (Anp™;0,1)

L2(Qx M)

T
"(0) |[Evi(s)

L2(QX Y M) /o |

~ + 2R, su HAe
p@<rad) ol

2@

where the last integral is well defined as ¢ — Ev(r) belongs to L1 ([0, T]; L*(<; szxrg))
In view of the boundedness of Aheg that is implied by (5.2), property (5.10) now follows
by the Cauchy-Schwarz inequality.

Secondly, from the latter inequality in (5.10) and (2.6), we infer that

< (Ahph(f) —Ahpg) < Do, (Mp";0,1) < C,

(6) — Ml

My QXY ML)

for every ¢ € [0, T], which together with (5.3) implies

sup ||A H _ <C. (5.11)
el OpT H wp"( My @x ML)

Next, we note that [|-|| ) is a continuous seminorm on BD(Q) which is also

(Q\Q:Mi
a norm on the set of rigid motions. Then, using a variant of Poincaré-Korn’s inequality
(see [45, Chapter II, Proposition 2.4]) and the fact (u"(¢),e"(¢), p"(t)) € ,(w(t)), we can

conclude that, for every 2 > 0 and ¢ € [0,T],

o, << (e
0y = O, e
¢ (Iw0) gz + )

<€ (Iw0) 2 oy + ][0

[

My, (é;MS;Q))

IN

_ t ~
L2(QM3) - Hp H///,,(Q;Mfl:f))

+ H/\hph(f)

L2(QM) ///b@;Mg:ﬁ)) '

In view of the assumption w € H'(Q;R?), from (5.11) and the former inequality in (5.10)

it follows that the sequences {u"(¢)} are bounded in BD(Q) uniformly with respect to .

ds,
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Two-scale quasi-static evolutions

Owing to (1.3), we can conclude that &, and ¥ are equivalent norms, which imme-
diately implies
¥ (Ap"30,T) <C, (5.12)

for every h > 0. Hence, by a generalized version of Helly’s selection theorem (see
[17, Lemma 7.2]), there exists a (not relabeled) subsequence, independent of 7, and
P € BV(0,T;.4,(Q x % ;M3*3)) such that

dev

App'(1) Ea P(t) two-scale weakly* in .#,(Q x & M3*3),

dev

for every t € [0,T], and ¥ (P;0,T) < C. We extract a further subsequence (possibly

depending on 1),

u" (1) 2 u(r)  weakly* in BD(Q),

Ap e (1) EX E(r) two-scale weakly in Lz(ﬁ x M3,

t sym

for every t € [0,T]. From the proof of Proposition 3.0.1, we can conclude for every

t €10,T] that u(t) € KL(Q). Furthermore, according to Theorem 3.3.1, one can choose

the above subsequence in a way such that there exists p(t) € 2y(®) for which
AREW" (1) 225 Bu(t) @ L2+ Eyu(1).

Since, Ay Eu't(t) = Ap e (t) + Ap, p (1) in Q for every h > 0 and ¢ € [0,T], we deduce
that (u(1),E(1),P(t)) € 7™ (w(1)).

Lastly, we consider for every ¢ € [0, 7]
o™ (1) :=C (&) Ane™ ().
Then we can choose a (not relabeled) subsequence, such that

o’ (1) 2 ¥(t) two-scale weakly in L2(Q x &/ M323), (5.13)

sym

where 2(¢) := C(y)E(t). Since o’ (t) € J#, for every t € [0,T], by Proposition 4.3.2 we
can conclude X(t) € %/7,’“””.
Step 2: Global stability.

Since from Step 1 we have (u(t),E(t),P(t)) € ,Qfaf’o’"(w(t)) with the associated u(t) €

Zy (@), then for every (v,H,II) € M}f”’m(w(t)) with the associated v € 27 (@) we have

(v —u(t),H — E(t),T1—P(1)) € /"™ (0).
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Two-scale quasi-static evolutions

Furthermore, since from the first step of the proof C(y)E(t) € ji/yh”’", by Proposition 4.4.1

we have

A" (1= P(1)) > —/(L)X]X%C(y)E(t) : (H — E(t)) dxdy

:Qhom(E(l‘))—l—Qhom(H—E(l‘))—Qhom(H),

where the last equality is a straightforward computation. From the above, we immediately

deduce
AL~ P(1) + 2" (H) > 2" (E(1) + 2" (H ~ E(1) > 2" (E(1)),

hence the global stability of the two-scale quasistatic evolution (qsl)é’,”m.

Now we can prove that limit functions u(¢) and E(¢) do not depend on the subse-
quence. Assume (v(t),H(t),P(t)) € ;z{)f’”m(w(t)) with the associated v(t) € %},(ﬁ) also
satisfy the global stability of the two-scale quasistatic evolution. By the strict convexity

of 2" we immediately obtain that

Then, using (4.13), we have that

Ev(1) @ L+ Ev(t) =H(t) L@ L2+ P(t)
=E(t) L) ® L} +P(t)

= Eu(t) ® L2+ Eyu(t).

Identifing Eu(r), Ev(¢) with elements of .#,(Q; M2X2) and integrating over %, we obtain

sym
Ev(t) = Eu(t).
Using the variant of Poincaré-Korn’s inequality as in Step 1, we can infer that v(¢) = u(r)
on Q.
This implies that the whole sequences converge without depening on ¢, i.e.
(1) 2 u(r)  weakly* in BD(Q),

Ape' (1) 2 E(1) two-scale weakly in L2(Q x & ; M223).

sym
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Two-scale quasi-static evolutions

Step 3: Energy balance.
In order to prove energy balance of the two-scale quasistatic evolution (qs2)§0’", it is
enough (by arguing as in, e.g. [17, Theorem 4.7] and [24, Theorem 2.7]) to prove the

energy inequality
2MM(E (1)) + D yphom (P;0,1)

(5.14)
< Qhom(E —|—/ / C(y)E(s) : Evi(s) dxdyds.
QxH

For a fixed ¢ € [0, T], let us consider a subdivision 0 =#; <t, < ... <t, =t of [0,7]. In
view of the lower semicontinuity of 2Mom and s°hom (see (4.43) and (4.44)), from (gs2),,

we have

o@hom + Z %hom (T,+1> _P(ti»

< liminf (% (M (1)) + Y. (Anp"(ti1) = Anp” <ri>)>
i=1
< lin}linf(o@h(/\heh(t)) + Do, (Ahph;O,t)>
= hmlnf(c@h (Ape" (0 +/ / 8/1 A ¢ (s) : Evi(s )dxa’s) .

In view of strong convergence assumed in (5.2) and (5.13), by the Lebesgue’s dominated

convergence theorem we get
hm <Qh (Ape"( +/ / o Ahe W(s)dxds>
= ghom(E +/ / V)ALE(s) : Evo(s) dxdyds.
Qx¥
Hence, we have
DMM(E(r)) + Z%”h”m (P(tiv1) — P(1:))

< ghom(E +// ” V)ALE(s) : Evo(s) dxdyds
Qx

Taking the supremum over all partitions of [0,¢] yields (5.14), which concludes the proof.
|
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CONCLUSION

In this thesis we rigorously derived the convergence of quasistatic evolutions models for
perfectly plastic plates, in terms of periodic homogenization. Our analysis covered dif-
ferent regimes, which depended on different orders of magnitudes between the oscillation
of the microstructure and the thickness of the body. We obtained a compactness results
for a sequence of scaled symmetrized gradients of BD function in terms of two-scale
convergence of measures and described the general framework in which one can analyze
measures which result from the kinematics of elasto-plasticity.

We also established new notions of stress-plastic strain duality, which we then used
to prove different inequalities between dissipation and plastic work, under various condi-
tions on the regularity of the interfaces. The problem of attaining these results in a general
situation for the regimes ¥ = 0 and ¥ = +oo seems to be a nontrivial issue, as additional
compactness results on the interfaces are needed. As a simple problem, one can ana-
lyze the homogenization of the 2D plate equation, which also requires new compactness

results. We leave these problems for a future work.
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