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Abstract 
In this thesis an integrated dynamic collision avoidance and hazard alerting system 

is proposed and identified as Marine Collision avoidance and Alerting System (MCAS). It 

is comprised of four integrated models that aid navigators in making appropriate decisions 

to prevent collisions at sea. Before autonomous sea surface vehicles would be allowed to 

navigate on commercial routes, a robust collision avoidance system has to be developed. 

Even though MCAS system is feasible for autonomous navigation, development of a 

decision support system that can be used within the current legal frameworks is in focus. 

Research problem is formulated within the Hidden Markov Model (HMM) 

framework and solutions that are based on various Partially Observable Markov Decision 

Processes (POMDP) and Reinforcement Learning (RL) solvers are proposed. This 

approach is based on offline development of robust look-up tables, rules, and protocols that 

aid online computation of conflict resolutions while preserving overall feasibility and 

reduce computational expense. 

To ensure feasibility of trajectories that are generated by collision avoidance 

algorithms, autopilot and auto-telegraph models are developed for the motion control of 

sea surface vehicles. Motion control algorithms thrive under dynamic environmental loads 

and are capable to control underactuated sea surface vehicles. Heading, course, and throttle 

algorithms are proposed to allow for larger action space when avoiding collision. Even 

though model-free approach is envisioned, Model-Predictive Control framework is 

exploited to propagate signals to motion control actuators. With the intention of reducing 

uncertainties and improve input data stability, a non-linear dynamic state estimator is 

proposed, named Foraging Particle Filter, that is based on swarm algorithmic approaches, 

and is utilized to filter input signals to motion control algorithms. 

With the purpose of developing a robust and feasible collision-avoidance system, 

it is important to ensure that it can be used within the legal framework of collision 

avoidance at sea. COLREGs classification algorithm that quantifies requirements of 

collision regulations by reducing vagueness and uncertainties is proposed. Quantification 

is based on empirical studies and case laws. COLREGs classification algorithm is used to 



	

	
	
ii	

produce input signals to collision avoidance algorithm and in that way decentralize 

computation. In order to generate evasive trajectories, predictor is developed that takes 

feasibility of turns into account and ensures trajectories are hazard free. Simulation results 

confirmed that the proposed system is capable to avoid complex close-quarter situations. 

Previous research has focused on egocentric resolutions where only own vehicle is 

equipped with collision avoidance systems, while in this research, a holistic collision risk 

resolution model for multiple targets in mixed equipage situations is developed. 

Communication protocols are utilized to share intent and other relevant information that is 

required to reduce uncertainties and computational complexities of trajectory generations. 

Simulation results demonstrate feasibility and have shown that intent-aware approach 

outperforms egocentric conflict resolutions, as well as leads to reduction of close-quarter 

situations as it is possible to foresee collision risk in early stages of passage exploitation. 

Proposed multi-objective optimization-based collision avoidance method allows conflict 

resolutions with higher CPAs, reduces distance travelled to avoid collision and shortens 

time required to go back to the original route. 

To further reduce computational complexity of the collision avoidance algorithm, 

benefit of having decentralized unit for hazard alerting is investigated. This research 

showed that nuisance alerts onboard commercial sea surface vehicles are a substantial 

problem that has to be confronted by exploiting design of trajectory generator and hazard 

alerting algorithm that managed to considerably reduce nuisance alerts and ensure that only 

relevant alerts are triggered in collision-avoidance situations. 

 

KEYWORDS: dynamic collision avoidance, hidden Markov model, partially observable 

Markov decision processes, reinforcement learning, ship motion control, intent-aware 

navigation, early detection of collision risks. 
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Sažetak 
U ovom radu predložen je integrirani sustav za uzbunu i dinamičko izbjegavanje 

sudara na moru, pod nazivom Pomorski Sustav za Uzbunu i Izbjegavanje Sudara (MCAS). 

MCAS sustav se sastoji od četiri integrirana modela čija je namjena pomoć pri donošenju 

odluka u situacijama izbjegavanja sudara na moru. Prije nego se autonomnim plovilima 

dopusti plovidba u komercijalnom okruženju, potrebno je razviti robustan sustav za 

izbjegavanje sudara na moru. Iako se MCAS sustav može koristiti na plovilima sa 

autonomnim upravljanjem, cilj je ovog istraživanja razvoj sustava za podršku pri 

odlučivanju koji je u skladu sa trenutno važećim pozitivnim propisima i zakonskim 

okvirima međunarodne plovidbe. 

Problem istraživanja definiran je u okvirima Skrivenih Markovljevih Modela 

(HMM), te su predložena rješenja koja se temelje na okosnicama metoda za rješavanje 

djelomično vidljivih Markovljevih procesa odlučivanja (POMDP) i podržanog učenja 

(RL). Pristup ovog istraživanja se temelji na izgradnji dvostrukog sustava koji dopušta da 

se određeni procesi vrše pomoću robusnih interpolacijskih tablica, pravila i protokola koji 

služe podršci izračunavanja optimalnih trajektorija za izbjegavanje sudara na moru koja se 

dešava u realnom vremenu, te se na takav način osigurava izvedivost sustava, ali i smanjuje 

računalno opterećenje.  

Da bi trajektorije koje generira algoritam izbjegavanja sudara na moru bile 

izvedive, u ovom radu se razvija model automatskog upravljanja plovilom i sa 

automatskom kontrolom pogonskog postrojenja. Algoritmi upravljanja uspješno se nose i 

sa dinamičkim atmosferskim i morskim opterećenjima, te su u mogućnosti kontrolirati 

plovne objekte bez dinamičkih sustava za upravljanje. Predloženi su algoritmi za 

održavanje smjera plovidbe, kursova, i brzine plovnog objekta, kako bi se omogućila bolja 

upravljivost prilikom izbjegavanja sudara na moru. S namjerom smanjenja šuma i u cilju 

povećanja točnosti ulaznih podataka, u radu se predlaže nelinearni filter čestica za 

određivanje stanja pod nazivom Foraging Particle Filter (FPF) koji se temelji na genetskim 

algoritmima, te se koristi za filtriranje ulaznih signala u algoritme upravljanja kretanjem 

plovnih objekata.  
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Kako bi se predloženi model izbjegavanja sudara na moru mogao koristiti u praksi, 

potrebno je osigurati da se sustav može koristiti u skladu sa svim pozitivnim propisima i 

zakonima koji uređuju plovidbu međunarodnim morima. Predložen je algoritam 

klasifikacije pravila o izbjegavanju sudara na moru koji kvantificira zahtjeve pravila o 

izbjegavanju sudara na moru i na taj način smanjuje nejasnoće koje u današnjim pravilima 

postoje. Analiza pravila o izbjegavanju sudara na moru obuhvaća empirička istraživanja i 

sudsku praksu. Klasifikacijski algoritam se koristi za analizu trenutne situacije u okruženju 

i generiranje ulaznih signala za algoritam izbjegavanja sudara na moru, te se na takav način 

vrši decentralizacija računalnih resursa. U svrhu generiranja izvedivih trajektorija prilikom 

izbjegavanja sudara na moru, predlaže se prediktor koji uzima u obzir manevarske 

sposobnosti plovnog objekta, te osigurava da trajektorije budu bez sudarnih opasnosti. 

Rezultati istraživanja su potvrdili da je predloženi sustav u mogućnosti riješiti složene 

situacije izbjegavanja sudara plovnih objekata. 

Prethodna istraživanja su usredotočena na slučajeve gdje je samo naše plovilo 

opremljeno sustavima za izbjegavanje sudara, dok je cilj ovog istraživanja razviti holistički 

model smanjenja rizika od sudara za više plovila od kojih su neki opremljeni sa sustavom 

za izbjegavanje sudara, dok drugi nisu. Komunikacijski protokoli se koriste za izmjenu 

informacija i namjere kako bi se olakšala generacija optimalnih trajektorija. Rezultati 

istraživanja pokazuju da su generirane trajektorije izvedive i da je pristup kod kojeg se 

rješava situacija za više plovnih objekata bolje rješenje jer dolazi do smanjenja rizičnih 

situacija, te pruža mogućnost ranog otkrivanja rizika sudara. Predložena metoda 

omogućuje veće rastojanje među plovnim objektima, predlaže trajektorije sa manjim 

devijacijama od planirane rute, te vrši povratak plovnog objekta na planiranu rutu u kraćem 

vremenskom razdoblju. 

Da bi se dodatno rasteretio računalni proces pri generiranju optimalnih trajektorija 

za izbjegavanje sudara, istražena je korisnost decentralizirane jedinice za uzbunu od 

sudara. Istraživanjem je ustanovljeno da postoji veliki broj uzbuna prilikom korištenja 

navigacijskih uređaja koji uznemiruju navigacijske časnike i ne vode ka sigurnijoj 

navigaciji, već stvaraju dodatni rizik gubitka koncentracije. Iz tog razloga predložen je 

sustav koji smanjuje nepotrebnu uzbunu tako da koristi prediktor da bi odredio kada je 

uzbuna potrebna, a kada ne. Predloženi sustav je uvelike smanjio broj nepoželjnih uzbuna 
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i osigurao da se samo relevantna upozorenja aktiviraju u situacijama izbjegavanja sudara 

na moru. 

 

KLJUČNE RIJEČI: dinamičko	 izbjegavanje	 sudara,	 skriveni	 Markovljevi	 Modeli,	
djelomično	 vidljivi	 Markovljevi	 procesi	 odlučivanja,	 podržano	 učenje,	 kontrola	
kretanja	plovnog	objekta,	pravila	o	izbjegavanju	sudara	na	moru,	izbjegavanje	sudara	
uz	propagiranu	namjeru,	rano	otkrivanje	rizika	od	sudara. 
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Chapter 1 
 

Introduction 
 

Many research hours have been devoted to make land, sea, and air vehicles safer to 

operate. Operating environments are complex and dynamic; therefore, any effort invested 

in developing systems that aid users to safely control operations is a step closer to hazard 

free environments. Various alerting and autonomous systems are in use as a result of 

dedicated and thoughtful research, be it drowsiness of the driver, line crossing warnings, 

traffic alerts within approximated airspace, and similar [Bevan and O’Reilly, 2007; Cheng 

et al., 2006; Gumaste et al., 2007; Mertz et al., 2000; Mukai et al., 2009]. Even though 

collision avoidance is topic of many authors in the previous two decades, there is still an 

area of improvement in developing practical hazard avoidance and alerting solutions for 

commercial sea surface vehicles. 

The severity of impact between two vehicles largely depends on the weight and 

speed of the involved vehicles; hence it is imperative to assist operators in determining 

collision risks as early as possible. Considering that aircrafts are both heavy and fast, 

academia has brought many solutions for the early detection of the airborne collision risks. 

Shipping industry requires same attention considering that the number of sea surface 

vehicles is rapidly increasing and that consequences of collisions are often catastrophic for 

passengers, environment, and vehicles. Unlike the air traffic, decision-making is autonomy 

of a navigator. Even though International Convention on Standards of Training, 

Certification and watchkeeping for seafarers (STCW) provides standards of training for all 

crewmembers operating vessels, differences in competence still exist. This discrepancy in 

knowledge, competence, abilities, and challenges of human factors, oblige researchers to 

find solutions that would assist navigators in determining risks of collision and provide 

hazard avoidance resolution advisories. 

In this thesis, dynamic programming and collision avoidance algorithms producing 
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alerts and resolution advisories to navigators are introduced to minimize collision risk 

during encounters with other sea surface vehicles and hazardous objects at sea. Developing 

robust Marine Hazard and Collision Avoidance System (MCAS) with logic that reliably 

prevents collision without excessive alerting is challenging due to sensor errors, sensor 

quality, and the uncertainty of predicted trajectories of encountered targets.  

Even though Moore’s law would allow for computational solutions that would 

support full autonomy, quality of sensors and computing equipment installed onboard 

commercial sea surface vehicles is poor, while communication standards remain heavily 

restrictive. With cheaper computational solutions, restrictive communication protocols, 

and outdated regulations, focus of this thesis is decision support system, rather than full 

autonomy, even though same models could be used for autonomous vehicles. Decision-

support in this context is defined as resolution advisories to human operators in dynamic 

and uncertain environments by mapping the environment, determining the pose of a 

vehicle, generating trajectories, and providing optimal action advisories. In order to reduce 

computational complexity, fused and filtered sensor information is utilized and used as an 

input to the decision-support system. Instead of finding optimal policies in state and action 

spaces that are commonly computationally intractable, latent Q-states are exploited and 

chains of optimal actions found to generate risk-free trajectories. That is why model-free 

approach with offline and online learning model is selected that can adjust to various 

disturbances and apply acquired knowledge in future state estimations. 

This thesis provides an extension of prior research on maritime collision avoidance, 

exploring cooperative programming and comprehensive hazard recognition solutions. In 

situations where a sea surface vehicle encounters other vehicle with a collision avoidance 

system, it is important that the resolution advisories provided to navigators be coordinated 

to avoid same direction maneuvers. In order to make collision avoidance system feasible 

and cost worthy, existing sensors should be used as much as operationally possible. Finally, 

because many of the navigating areas are becoming increasingly dense with traffic, it is 

important to design resolution advisories as an aid to the navigator, not a burden. Nuisance 

collision alerts can discourage users to exploit benefits of the system.  

In this chapter challenges of the research, research goals, and hypothesis outlines 
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are defined. Also, we deliver overview of the previous work, present human factor as the 

main motivation for the research, provide summary of the scientific methods used in the 

research, and conclude with the thesis outline. 

 

1.1   Problem statement 

In many industries human-machine interaction is getting increasingly more 

complex. Even though many maritime electronic aids to navigation were introduced in 

previous decades, number of incidents and significant near misses demonstrate that it is 

becoming difficult for navigators to understand and process all information available on 

navigating bridge to effectively make appropriate navigating decisions. In order to aid 

navigators in managing dynamic navigational situations and selecting the most optimal 

routes to avoid collisions, a decision-supportive collision avoidance system is warranted to 

minimize undesirable effects of the human element.  

Automatic alerting system monitors traffic situation and, when necessary, generates 

warnings (alerts) to prevent undesirable incidents. Modern ocean-going vehicles are 

equipped with large number of sensors, all monitored by the Integrated Automation 

Systems, to simplify operational control of machinery, cargo, or navigation. Alerting 

systems in aircrafts have appeared to be particularly complex, use sophisticated decision 

algorithms, and even provide guidance to pilots through various advisories. Examples of 

successful alerting systems are the mid-air collision [Harman, 1989; O'Hara, 1998; 

Nordwall, 2002] and terrain [Phillips, 2001; Feith, 2002] avoidance systems installed on 

many aircrafts.  

Newest research has produced alerting systems where decisions are based on real 

time prediction metrics, rather than on unrefined criteria [Yang & Kuchar, 2002; Kuchar 

& Yang, 2000]. A shift is made towards clearer alerting requirements, rather than adjusting 

logic by means of trial and error. A system based on random dynamics, where inputs 

consist of various data available on navigating bridge (radar, echo sounder, trim and list 

indication, speed log, etc.) and available intruder’s data is proposed. While the algorithm 
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handles cooperative intruders with lowest communication latency possible, uncooperative 

targets need more dynamic approach, as their behavior is stochastic in nature and based on 

probabilistic measures (prediction of forthcoming behavior). 

Development of collision avoidance systems is lengthy and rigorous process that 

can take several years or even decades to be certified [RTCA, 2008]. The challenge is not 

only to mandate installation of the system, but also to unify performance quality. 

Commercial sea surface vehicles are highly diverse in performance characteristics and 

sensor capabilities. From pleasure crafts to Very Large Crude Carriers (VLCC), sea surface 

crafts vary vastly in maneuvering dynamics. A common system that would accommodate 

different sensor configurations and maneuvering characteristics would significantly reduce 

the cost of development and certification. 

With a main goal of presenting alerting issues, introducing cooperative protocols, 

and improving alerting system performance, this thesis continues the path of previous 

research in designing COLREGs compliant last-minute hazard avoidance system.  

 

1.2   Research objectives, challenges, and hypothesis 

The main objective of this research is to establish theoretical foundation of 

COLREGs compliant dynamic collision avoidance method for sea surface vehicles based 

on probabilistic mathematical models while maintaining cooperativeness of equipped 

vehicles. Furthermore, there are several areas of hazard awareness and recognition where 

improvement of existing research results is sought: 

Ø When a specific event triggers an alert (such as low-pressure alarm on a gas 

compressor) it informs a user that a certain event in the designated process is out of its 

normal reach. Sometimes an alert is connected with logic that will prevent continuing 

operation of machinery in order to preserve its functionality and prevent breakdowns. 

However, there are distinct dynamic behaviors that system can exhibit. Certainly, it is less 

complex to monitor one or several parameters to trigger the alert, but when the system is 
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as complex as human awareness of collision avoidance, there are many uncertainties that 

have to be considered. As commercial vehicles sail on different drafts depending on the 

cargo, ballast water, or fuel quantities loaded, navigator needs to select safety margins to 

get the alert if a vehicle is approaching shallow water zone. If a navigator selects incorrect 

safety contours, consequences could be running aground, which can lead to total loss and 

significant environmental degradation. Uncertainty about correct selection makes it unclear 

whether an alert is needed or not. If a vehicle is safe and alerting occurs, it can cause 

irritation of a human operator and lack of trust. However, failing to alert when it is 

necessary could result in grounding. This presents a challenge for the alerting system, as 

there is a choice of weighing the cost of different errors to make a probability trade-off 

between them, or the choice of reducing the alerting uncertainty to allow for more precise 

decision-making. Furthermore, there is a challenge of timely alerting. If the system can 

predict based on a current state, this would be of great assistance to the navigator. For 

example, as the maritime sector allows for longer timeframes for decision-making than in 

the mid-air close encounters, it is possible to design alerting system to notify navigator that 

a vehicle would run aground in XX minutes if hazard is not avoided. MCAS system can be 

considered as an early alerting and last-minute collision avoidance system. The term “last-

minute” will depend on many factors, but in general, finding the point in the time domain 

where navigator has a last chance of acting in order to avoid collision or near miss situation 

is of interest of this research. In this thesis, modeling of selection uncertainties, simulation 

of upcoming events, and examination of benefits of probabilistic approaches in 

development of those models is investigated.  

Ø Depending on the architecture and design, all sensors have inherent measurement 

noises. Taking into consideration that there are many different shipbuilders and sensor 

manufacturers, there are numerous accuracy uncertainties. If the information on which the 

collision avoidance is based is faulty, the algorithm is likely to compute incorrect advice, 

and can even lead to collision, as proposed system relies on accuracy of data. Also, it is 

necessary to take into consideration uncertainties about the intention of intruder sea surface 

vehicles. There is a possibility of intentional collision by hostile target, or an equipped 

target vehicle that is following advisory of the resolution advisory, or even oblivious target 

that is just following its passage plan without regards to the traffic around. Proposed 
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algorithms within MCAS resolution advisories have to account for various intruder 

behaviors and be parametric to accommodate various sensor modalities, sensitivity levels, 

and sea surface craft maneuvering characteristics. Computational speed is less of a factor 

in commercial shipping, as usually there is enough time before incident occurs, but 

nevertheless intention is to present algorithms that can resolve traffic disputes in real time. 

Ø Sea surface vehicles collision avoidance problem is presented using decision 

planning framework where the ideal performance requires balancing the collision 

avoidance and passage plan adherence. It was noted earlier that multiple sensor inequalities 

make significant amount of sensor noise, and that intruding vehicles behave stochastically. 

This is the main reason why Hidden Markov Model (HMM) is selected to represent 

collision avoidance problem, where system is described as Markovian, while performance 

depends probabilistically on a present state. Q-state reinforcement learning is utilized to 

find optimal solutions without incurring large computational expenses. Whenever 

discretization is used, it is logical and efficient. 

 

Ø Contemplating a situation in which own sea surface vehicle encounters hazard or 

intruder and needs to perform evasive maneuver to avoid collision, it is necessary to 

consider nonholonomic constraints [Bryant, 2006]. A nonholonomic motion constraint is 

mathematical structure that explains state changes by including path selection. This 

basically fathoms that it is not sufficient just to alter the position of a certain object in 

geometrical space, but a path from one position to another has to be examined, while 

constraints of that path evaluated. Therefore, it is not enough to only satisfy the resulting 

safe position of the collision-avoiding maneuver, but also to ensure that the passage 

towards the resolution position is safe for navigation as well. This challenge introduces 

hazard avoidance in proposed collision avoidance algorithms. Therefore, MCAS system 

has to satisfy not only optimization of safe route selection that is compliant with 

COLREGs, but also verify that there are no hazards, such as shallow water, island or any 

significant NO-GO areas established in that navigating area. It is necessary to emphasize 

at this stage that collision avoidance has priority over Temporary and Preliminary notices 

and other navigational warning that are not permanently embedded within Electronic Chart 

Display Systems (ECDIS) installed onboard of sea surface vehicle. Therefore, MCAS 
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system will allow vessels to enter areas ordinarily restricted for vessels if there is enough 

depth and if this is a last-minute resolution advisory as a result of an imminent collision 

threat.  

 

Ø The MCAS system has to be risk averse. This relates to the worst-case scenarios 

while avoiding impact. The algorithm has to be able to optimize selection of the safe 

trajectory having in mind failure of rudder, unavailability of engine, shallow water or 

proximity of navigational danger. We envision a situation where own vehicle is avoiding 

a group of fishing vessels with an island and shallow waters on the port side, and open sea 

on the starboard side. Avoidance maneuver can be done from the port or the starboard side; 

however, if done from the port, own vehicle will be closer to an island and have less water 

available for the maneuvers, while starboard offers safe waters. Turning to port in this 

situation is not deemed the safer choice, as water is shallower and there is always a 

possibility that other vehicle will depart from the port or nearby anchorage. It is, therefore, 

imperative that the resolution advisory prioritizes options with lower level of risk for the 

vehicle. Quantification of a collision and hazard avoidance risk is utilized to compute 

dynamic points where vehicle has to maneuver in order to avoid hazards. As the motion 

control algorithm is taking external disturbances into account, the maneuvering point is 

dynamic and changes in relation to changes of vehicle speed and pose. 

 

Ø In order to achieve cooperative collision avoidance resolution advisories, it is 

necessary to ensure that equipped vehicles communicate effectively. At first, this is 

possible by introducing specially designed transponders. Modifying already installed 

Automatic Identification Systems (AIS) would be costly but installing new AIS equipment 

tuned for the MCAS use is the most cost-effective solution for the future. Considering that 

the transponder communication (or AIS information sharing in the future) will allow 

MCAS system to receive passage plans, intruder intentions, and plan escape maneuvers; it 

is possible to develop a model of an early collision avoidance detection algorithm that can 

be incorporated within the MCAS. In this work both coordinated and uncooperative sea 

surface vehicles are captured in differentiating algorithms. 
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Ø Interesting fact about collision regulations, or COLREGs, is that they mandate 

behavior of vessels in various situations, but also leave space for acting outside the 

framework if it will avoid collision. For example, vessels facing head-on situation should 

turn to starboard to avoid collision, but if one vessel is unresponsive, the other one has to 

do everything possible to avoid collision, even if it means turning to port when starboard 

turn is not an option available anymore. Rather than being in a form of “IF THEN” 

algorithms, COLREGs are developed to fit human judgments. In the real sector it is 

possible to face unresponsive vehicles regularly. Among navigators there is lack of trust 

that other person will follow the rules, which significantly increases level of uncertainty 

when navigating vehicles. Equipping commercial vessels with MCAS system that 

consistently follow COLREGs is an effective way to reduce navigating uncertainties and 

effectively avoid collision. COLREGs have evolved over the years to satisfy technological 

advances of the shipping industry, however one thing that remained consistent is the 

necessity to guide navigators in navigation. Future will certainly convey computational 

advances within navigating platforms, for which COLREGs will have to be adapted once 

again. With MCAS system protocol-based algorithms that include predictable collision 

avoidance advisories governed by the COLREGs are explored. 

Ø The main reason why many navigators choose to use VHF communication to aid 

the collision avoidance is the uncertainty that they feel when navigating in confined waters. 

Even though COLREGs suggest that expert navigators refrain from using radio 

communication for the purpose of collision avoidance, many experts of ocean navigation 

still communicate intent, as there is lack of trust among professionals. To reduce 

uncertainty of the navigator’s intent is one of the objectives of this study. 

 

As noted above, research challenges could be defined as: 

Many research hours have been conducted in relation to the maritime collision 

avoidance, however it is hard to obtain holistic models of hazard avoidance systems. In 

other transportation fields implementation and further development of machine learning as 

an aid to navigators is witnessed. In the maritime sector, there is a gap between current 

research that utilizes fuzzy logic, neural networks, or genetic algorithms, and development 
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of credible collision avoidance systems. This study attempts to bridge this gap by 

introducing probabilistic methods to collision avoidance in dynamic environments with 

main focus on development of cooperative hazard avoidance system that would reduce 

collision risks and minimize uncertainties of targets’ behavior. Therefore, there is a need 

to consistently investigate, diagnose, improve, and appropriately simulate collision 

avoidance issues in dynamic maritime environments. 

With research challenges being determined as said, research subject could be 

defined as: 

To investigate underlying determinants of maritime collision avoidance, theoretical 

sources and practical application; to portray foundations of hazard avoidance and why 

industry necessitate implementation of machine-learning based systems to guide 

navigators; to describe application of Hidden Markov Models and especially 

Reinforcement learning techniques in probabilistic determination of state space, such is 

collision avoidance problem, and present benefits of employing these probabilistic models 

in solving intruder uncertainties and resolve various sensor noises; to simulate and depict 

results of dynamic hazard avoidance system based on HMMs; to propose a solution for 

cooperativeness and robustness of the collision avoidance system; to design a risk-averse 

algorithm for hazard alerting that will incorporate COLREGs into resolution advisories and 

guide navigators to safety.  

Constrained by the research problems and research subjects, the fundamental 

research hypothesis is portrayed: 

Proceeding from the fundamental determinants of stochastic modeling, and by 

having in mind constraints of dynamic environment and collision regulations, it is possible 

to design risk-averse hazard avoidance system that can cooperate with equipped sea 

surface vehicles and avoid other intruding objects deemed dangerous by the model.  

Fundamental scientific hypothesis is directly related to the research subject and 

implies several supplementary hypotheses:  
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1. Having in mind uncertainty in which navigators make their decisions, it is 

possible to develop hazard alerting system based on Hidden Markov Models; 

2. It is possible to design collision resolution advisories taking into account various 

sensory noises and maneuvering characteristics to ensure safe navigation within congested 

areas; 

3. Taking into account both equipped and non-equipped sea surface vehicles, it is 

possible to develop solutions for collision avoidance in mixed equipage situations by 

introducing communication protocols between equipped participants; 

4. Considering the constraints of recent technological development, especially 

ECDIS, it is possible to design a collision avoidance model with better understanding of 

COLREGs to enhance decision making when selecting optimal trajectories; 

5. In order to reduce uncertainty of collision avoidance problem, it is possible to 

adapt an early collision detection solution that will induce observability in latent states of 

the HMM model.  

Taking in consideration complexity of the proposed model, this thesis has a main 

objective of confirming the fundamental and supplementary hypothesis. Further 

optimization and development of legal framework would allow development of robust 

Marine Hazard Alerting and Collision Avoidance System (MCAS) in the future.  

 

1.3   Related work and preliminary research 

In the years and decades to come fleet expansion is expected within the maritime 

sector. Many large commercial sea surface vehicles will occupy common ship routes and 

increase concentration of maritime traffic, which for a consequence has elevated risk of 

collisions. Considering a fact that some type of human error causes 75–96 % of marine 

accidents and casualties [Rothblum et al., 2002; Antao and Guedes, 2008], and that 

unmanned marine vehicles will eventually vacate same waters, the need for resolving 
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collision avoidance complexities compelled many researchers to investigate solutions for 

reducing uncertainties. 

Various approaches to collision avoidance were introduced over the past several 

decades. As the technology improved and, most importantly, as the noise of sensors 

reduced, more dynamic methodologies were developed. Some of the popular methods in 

the past comprised of edge-detection, certainty grids, or potential fields [Koren and 

Borenstein, 1991; Borenstein and Koren, 1991; Khatib, 1986; Kuc and Barshan, 1989; 

Moravec, 1988; Holenstein and Badreddin, 1991]. The edge-detection model uses edges of 

the obstacle as boundary line representations to avoid collision. Significant disadvantage 

of this method is that robot needs to stop, evaluate the surrounding and algorithmically 

determine the existence of edges.  With certainty grid approach, representation of the 

environment is a two-dimensional grid of cells. Each cell has a probabilistic measurement 

of existing obstacles. This technique also requires periodical stops of the robot and is 

therefore not suitable for the commercial collision avoidance. Finally, the potential field 

method uses predefined environment and measures repulsive forces exert by the static 

obstacles while creating attractive forces towards the goal state. This method has been used 

largely in robotics after the seminal paper by Khatib [Khatib, 1986]. The potential fields 

method is known as very successful collision avoidance technique in the static and 

predefined environment. However, transportation occurs in highly dynamic environments 

with both predictable and static objects, but also moving targets that behave stochastically. 

 

1.3.1 Mathematical models 

Mathematical models are commonly used to define sea surface vehicles’ 

dynamics and surrounding environment. In order to apply mathematical modeling to 

collision avoidance problem, researchers need to develop mathematical algorithms based 

on exact definitions and delineated solvers. This approach requires strict definition of all 

possibilities in advance (offline planning) and presents significant computational 
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challenge, as large amount of data has to be processed before the optimal solution is 

delivered to the operator. 

Newton’s second law of motion defines constraints of sea surface vehicle’s motion. 

Bound by the Newton’s law, sea surface vehicles have six degrees of freedom [Browning, 

1991]. Various solvers [Lisowski and Smierzchalski, 1995] are used to incorporate six 

degrees of freedom in real-time collision-avoidance maneuvering algorithms that are based 

on either static, dynamic, kinetic or matrix mathematical models [Lisowski, 1985]. 

However, it is significant to note that most of the mathematical methods are developed 

with assumptions of open sea (no static objects or draught restrictions), no change in 

velocity or trajectory, and that intruders are uncooperative. 

Collision avoidance assessment based on starboard maneuvers in close-quarter 

situation, keeping the sightline always turning counterclockwise, was one of the first 

methods developed in the academia [Calvert, 1960]. Similar approaches were taken by 

other authors mainly debating feasible maneuvers to avoid collision [Morrel, 1961; Wylie, 

1962]. Mitrofanov [1968] developed an electro-mechanical analogue computer that 

computed evasive actions and served as an anti-collision indicator. The system largely 

depended on user, as data had to be manually entered for mathematical model to deliver 

suggestive maneuvers. The user would get the advisory on the screen as non-shaded area 

and performed evasive maneuvers accordingly. Similarly, Jones [1974] developed 

maneuver diagram that helped navigators to determine areas of highest collision risk but 

did not offer evasive maneuver advisories. Another study that used raw radar data to 

determine collision risk was the trigonometric model developed by Merz and Karmakar 

[1976]. Cannell [1981] proposed an one stage cooperative game, where the main goal is 

maximizing safety through course alteration. The algorithm searched for non-conflicting 

actions in the matrix of possible outcomes in encounters of two vehicles. At the same time, 

Degre and Lefevre [1981] developed a navigation advisory model of collision avoidance 

based on the room-to-maneuver principle. This geometrical model generated danger zones 

with velocity vectors and closest passing distances. As long as the vehicle was kept outside 

of the shaded area (visual presentation on the collision avoidance device), collision was 

unlikely. The system did not consider path selection or optimization.  
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Ijima and Hagiwara [1991] developed one of the first deterministic autonomous 

collision avoidance models. It was based on the knowledge-based expert system, and it 

could determine collision risk, decision-making and maneuvering autonomously. The 

system searched the collision free path branches, after which it would select the most 

optimal one by determining collision danger (based on the circular domain), shortest track, 

least rudder angle movement and COLREGs compliance. It did not consider environmental 

conditions. 

Lisowski and Smierzchalski [1995] proposed an optimal trajectory method, which 

mandates ownship to take series of precise evasive maneuvers to avoid collisions. The 

optimal trajectory method is focused on nonlinear computing that incorporates kinetics of 

the ownship to model safe course deviations based on the nonlinear admittance restrictions. 

Another course optimization model for definite marine environments is proposed by 

Skjong and Mjelde [1982] and it is based on point-mass models for ship motion. Graczyk 

et al. [1995] studied single change of course and/or the speed of the ownship and proposed 

a Potential Collision Threat Area (PCTA) with resulting safe path that is not always the 

optimal track. The rigid-body dynamic model for vehicle motion proposed by Yavin et al. 

[1994, 1995] is another model for collision avoidance maneuvers in confined waters and it 

is based on stochastic optimum control proposed by Lewis [1986]. 

One of the pure mathematical approaches was study done by Churkin and Zhukov 

[1998] in which authors employed both continuous (linear programming) and discrete 

methods. Linear programming was used to minimize the cost function of the rate of change 

of yaw, while discrete method of branch-and-bound was used to discretize the course and 

evaluate the trajectory optimally at each vertex. Linear programming is often deemed 

computationally expensive, while discrete method requires complex mathematical models 

to describe scenarios.  

An abridged marine collision avoidance system was developed by Miele et al. 

[1999]. This team considered avoidance maneuvers as Chebyshev problems of optimal 

control and solved it with sequential gradient restoration algorithm. The system took data 

about state and control and maximized the minimum time of the distance between two 
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vehicles; however, it did not consider environmental factors and could not be used in multi-

vehicle scenarios. 

Hong et al. [1999] reported a recursive algorithm for collision avoidance and path 

selection. The algorithm considered analytical geometry and convex set theory to generate 

recursive waypoints through heading command sequence, located within the neighboring 

area of own-ship position. This approach may not be practical for the ocean-going 

navigation, as it does not mimic human decision-making process and cannot comprehend 

complexities of marine navigation. 

Some of the mathematical models had different approach. For example, Wilson et 

al. [2003] used the idea of missile proportional navigation to solve collision issue between 

ownship and intruder. The main goal of the algorithm, called Line of Sight Counteraction 

Navigation (LOSCAN), is to generate acceleration commands in order to increase the 

misalignment between the vehicle’s relative velocity and the line-of-sight. Burns et al. 

[1988] proposed broader approach by modeling the ownship and its immediate 

environment, while Yavin et al. [1997] proposed a tanker realistic model for avoiding 

intruders and other common obstacles at sea. 

 

1.3.2 Fuzzy set theory and fuzzy inference 

Ability of machines to select various degrees of truth and partial truth opened the 

door into research of computational thinking. A fuzzy concept implies gradations of 

meaning and is applied to a certain degree or with a certain magnitude of likelihood. In the 

following text, several prominent studies of fuzzy logic with application to the marine 

collision avoidance problem are delivered. 

Even though there were earlier attempts to define many-valued sets, Iranian 

computer scientist Lofti Zadeh is the first person to formally define fuzzy concept in his 

pivotal 1965 paper on fuzzy sets [Zadeh, 1965]. Logicians and philosophers sometimes 

call such an approach “degree-theoretic semantics”, but the more usual term is fuzzy logic 
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or many-valued logic [Cook, 2009]. By specifying a range of conditions, categorizing, 

identifying operational rules, examining how probable conditions are, or assigning some 

scale of measurements it is possible to decrease the amount of fuzziness. This reduction of 

fuzziness is commonly known as defuzzification and it is defined as process of logical 

portrayal of fuzzy concepts by fuzzy sets [Williamson, 1996]. In the predefined set of rules, 

fuzzy logic is effective in interpolation between those rules. Bearing in mind that human 

experts commonly set rules using common sense, it is legit to expect that predefined rules 

are not incisive. Fuzzy logic can be used to make expert decisions based on fuzzy sets and 

unclear rules or approximate and uncertain data [Jamshidi et al, 1993].  

Japanese scientists were the first to apply concepts of fuzzy logic in practice. The 

first notable application was on the high-speed train in Sendai, in which fuzzy logic was 

able to improve the efficiency, comfort, and precision of the ride [Kosko, 1994]. 

Concurrently, in 1994 group of computer scientists at University of New Mexico developed 

fuzzy logic collision avoidance for a mobile robot [Martinez et al., 1994]. Martinez et al. 

successfully managed to achieve collision free sensor-based motion control of a mobile 

robot. A fuzzy logic based intelligent control was used to computationally handle 

uncertainties inherent in the collision avoidance problem. Main advantages of fuzzy logic 

approach to collision avoidance is the ability to model obstacle recognition using the 

linguistic terminology and that the computational load is considerably lighter than those of 

edge-detection, certainty grids, or potential fields. There is no pre-defined route used in 

this study, but just simple addition of higher-level path planning heuristics that would allow 

robot to follow route and avoid obstacles throughout the navigation. In the study by 

Martinez et al., researchers determined that 16 rules were enough to effectively avoid 

collision of mobile operated robot as if the human expert performed controlling tasks 

remotely. 

James [1986] adopted fuzzy set theory to categorize collision avoidance decisions 

based on distance and passing side. Hasegawa [1987] was one of the first scholars to offer 

automatic collision avoidance system for ships based on fuzzy logic. Rommelfanger [1998] 

investigated human decision-making process and categorized it with multicriteria fuzzy 

logic.  
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Hwang’s study of fuzzy collision avoidance for sea surface vehicles developed an 

expert system of fuzzy interface, an inference engine to simulate expert’s decision and 

robust autopilot system to guide vehicles towards safe waters [Hwang, 2002]. The system 

allows for either navigator or autopilot to actually steer a vehicle, after the fuzzy logic 

resolved potential danger and proposed a safe route.   

Lee and Rhee [2001] used a fuzzy reasoning method, namely TCPA and DCPA, to 

determine and resolve collision risks. Authors decided to engage layering approach where 

first algorithm would browse the action space (an expert knowledge pool of COLREGs) 

and then second A* search algorithm would determine real-time safe actions of minimal 

cost (collision risk x the required travelling distance). Even though the model was proven 

feasible, it did not take environmental influences into account and assumed constant speed 

of ownship. 

Another COLREGs incorporated collision avoidance system was developed by Lee 

and Kim [2004]. The system uses polar histograms, developed by Moravec and Elfes 

[1985] for mobile robots’ navigation, to represent computational risk of collision around 

ownship. Histograms would present valleys (areas of no data) that are all potential safe 

sectors for a vehicle to navigate to. Fuzzy relational product was used to evaluate the most 

optimal safe zone. All potential safe zones were then checked for COLREGs compliance 

and resultant navigational path selected. The major drawback of this system was its 

incapability to deal with multiple encounters. 

A study by Kao, Lee, Chang and Ko [2007] investigated efficient fuzzy alerting 

system for vessel traffic services (VTS). Automatic Identification System’s (AIS) data was 

integrated in the Marine Geographic Information System (MGIS) to propose a platform 

upon which the collision alerting will be delivered to the VTS personnel. The study used 

calculations of sea surface vehicle domain with vehicle inertial force to generate models of 

a guarding ring and develop danger indexes. The research team used a marine GIS spatial 

analyst module to predict collision time and position aiding the VTS operator in early 

decision making. 
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L. P. Perera and his team from the Technical University of Lisbon focused on 

intelligent decision making for collision avoidance based on the fuzzy logic [Perera et al., 

2009]. Resulted system positively satisfied simulation testing where vehicles successfully 

avoided collisions bound by the COLREGs. The study took in consideration target 

vehicle’s position and velocity as main contributing factors in determining collision risk 

and potential, as well as the size and shape of the vehicle domain, together with the area 

bounded for the water dynamics, as other causal elements of collision risk assessment. The 

main advantage of this study is amalgamation of helmsman’s expertise and expert 

knowledge of ocean navigation with the collision avoidance algorithm. This allowed the 

fuzzy inference to act realistically as if the human expert was making decisions and 

navigating a sea surface vehicle. This research resulted in effective computational detection 

of the collision risk; however, it is assumed that more complex collision conditions in 

multi-vehicle situations can occur, and that uncertainties regarding the target vehicle 

remain to be resolved. 

Another analysis of fuzzy logic collision avoidance system includes vessel traffic 

service (VTS) collision alerting. Su, Chang and Cheng [2012] developed a knowledge base 

of COLREGs and incorporated it in the fuzzy monitoring system by proposing a novel 

collision danger domain that forbids entering of give-way vehicle. Special attention was 

given to the optimal rudder control to avoid large deviations from the planned course. 

Engine movements were not taken into account. Researchers developed a system that 

provides navigational warnings with collision danger levels and aids VTS officials to 

recommend the optimal rudder steering advice to navigators in the surveillance area.  

Fuzzy logic can be used to reduce fuzziness within decision-making, however, if 

not defined adequately, fuzzy logic can fail to resolve uncertainty. Considering this notion, 

fuzzy logic alone is sometimes considered inadequate to cope with the complexity of real 

time collision avoidance, therefore hybrid expert and neuro-fuzzy systems are proposed by 

the academia. 
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1.3.3 Artificial Neural Networks and Hybrid models 

Considering that fuzzy logic is generally insufficient to cope with dynamics of the 

collision avoidance problem and that mathematical models offer only deterministic 

algorithms, focus of the academia has shifted to hybrid models of collision avoidance. Sea 

surface vehicles and environments they navigate in are complex non-linear systems that 

require heuristic approach.  

Neural networks are a collection of statistical learning models used for estimation 

of functions that are based on a great number of indefinite inputs. Neural networks used in 

machine learning are based on biological neural networks where a series of interconnected 

neurons interact with each other. In machine learning, neurons have adaptive quantified 

weights with ability of learning. McCulloch and Pitts [1943] developed computational 

foundation for neural network in 1943, but after the pivoting paper by Minsky and Papert 

[1969], academia realized that processing strength of current machines was a limiting 

factor to effectively handle neural network’s computational demands. This discovery 

slowed the research of neural networks until computers were able to handle higher 

processing demands. The major advantage of neural networks is the ability to approximate 

functions they learn from observed data.  

Neural networks’ ability to learn [Anderson, 1995] persuaded authors to apply this 

methodology [Patterson, 1996] to the collision avoidance problem and navigation in 

general. Xianyi [1999] was one of the first scholars applying the neural networks 

framework to real time robot collision avoidance problem. Fuzzy Neural Network (FNN) 

based solvers were developed by Hiraga et al. [1995] in order to exploit fuzzy rules to 

quantify static and dynamic danger levels and develop decision-making charts for collision 

avoidance. Zhu et al. [2001] used artificial neural networks to calculate intruder’s domain 

based on visibility, CPA direction, and maneuvering characteristics as deterministic input 

factors. By applying artificial neural networks to train fuzzy inference system parameters 

in an intelligent decision-making support system, Zhuo and Tang [2008] developed fuzzy 

logic system with the goal of solving the anti-collision problem in multi-vehicle encounter 

situation. Harris et al. [1999] proposed another neuro-fuzzy system with the main goal of 
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developing intelligent guidance system with generic multi-step predictor for obstacle 

avoidance.  

Benjamin and Curcio [2004] exploited interval programming when solving 

collision avoidance problem. The focus of the study was to develop expert knowledge 

system with predefined COLREGs compliant rules, compare it with the external conditions 

and propose collision-free conforming path. This requires a large and detailed database, 

which can present computational challenges in the real time collision avoidance.  

By developing more complex and multifaceted hybrid anti-collision system based 

on fuzzy relational products [Bandler and Kohout, 1980], Lee and Kim [2004] addressed 

multi-intruder challenges of COLREGs. Collision regulations are easy to follow in two-

vehicle encounter situations but are much more complex to apply in multi-vehicle collision 

avoidance and that is where Lee and Kim’s system contributed the most.  

Another collision avoidance system based on fuzzy set theory and neural networks 

arose from the study conducted by Liu and Shi [2005]. The system as a whole consisted of 

three subnet neural networks. The first one determined encounter type based on DCPA, 

course and distance, and offered resolution avoidance action maneuvers (maneuver to 

starboard, to port, or act as a stand-on vehicle). The second one managed speed ratios 

between ownship and target and delivered fuzzy type output of small, equal or large. 

Finally, the third subnet was controlling alteration action through fuzzy set of magnitude 

and duration. The system was developed as one-on-one encounter, selected target with the 

highest risk of collision and ignored other traffic in the area. 

Szlapcynski [2006] investigated Chang’s et al [2003] raster grid method for path 

selection and collision avoidance. Szlapcynski added turn penalties, time-dependent 

forbidden zones and ownship speed reduction ability. The speed reduction was modeled as 

a linear function of distance to the forbidden zone with the help of binary search algorithm 

that determined the minimal necessary speed reduction in order to avoid collision. Speed 

reduction was a last resort in case that change of course is deemed as not possible by the 

system.  
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The most common problem with the artificial neural networks is that machines need 

a large pool of training scenarios prior taking the real-world challenges. There is an 

ubiquitous threat of undertraining (focusing on only few training experiences) or 

overtraining (learning the vehicle to always turn to port can lead to machine learning of 

constant turns to port). Neural networks suffer from the same learning sufferings as do the 

human brain. Unlike human brain, which stores fractions of experiences and connects it 

with present state to express memory, machines store full knowledge and require large 

storing capacities to do so. This is the reason it is necessary to investigate usage of latent 

Q-states that share fragments similarly like a human brain. 

 

1.3.4 Evolutionary and genetic heuristics 

Vonk et al. [1997] developed framework of evolutionary computation as 

collection of stochastic optimization algorithms design to mimic evolutionary theory of 

Charles Darwin as “survival of the fittest”. Evolutionary algorithms are most valuable 

when optimizing search strategies of infinitely large search spaces and solving real world 

complex problems [Back, 1996, Zeng, 2003]. In collision avoidance, evolutionary 

techniques search for the fittest solution among the pool of possible outcomes (safe path 

selection). However, it is necessary to bear in mind that evolutionary algorithms are not 

strictly defined, but rather heuristic, which indicates that there is no definite algorithmic 

solution to a problem.  

Ito et al. [1999] employed genetic algorithm to compute collision avoidance 

navigational paths. As many authors did before, Ito et al. used vehicle’s domain to define 

danger zone, after which the feasible passing points were randomly generated. The genetic 

algorithm was then utilized to optimize passing points into selected route. Distance, energy 

loss, danger level and straightness were factors contributing to the optimization algorithm. 

COLREGs compliance and environmental factors were not part of the scope of this study. 

Zeng [2003] had a similar approach engaging genetic algorithm with consideration of 
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environmental conditions in open sea conditions. However, it omitted COLREGs as a part 

of computed safe navigation path. 

Smierzchalski [1999] developed a sea surface vehicle trajectory planning system 

using evolutionary algorithm with a possibility of speed alterations through gene mutations 

in specific sections of the navigational trajectory. This study used polygon-shaped domains 

to determine danger zone, then generated feasible navigational trajectories, which were 

afterwards optimized based on cost function of spatial, time and trajectory’s smoothness 

requirements (maximum turning angle between particular trajectory sections in turning 

points). 

Smierzchalski and Michalewicz [2000] developed a vehicle encounter free 

navigation based on evolutionary planner navigator (EP/N) study developed by Jing et al. 

[1997]. Considering that genetic algorithms were successfully used in mobile robot 

navigation [Lin et al., 1994], Smierzchalski and Michalewicz adapted existing techniques 

to ensure evasive steering and path generation in predefined environments under the real-

time constraints. The system has a component of time and allows the variation of the 

ownship velocity. This study uses evolutionary theory to generate chromosomes with 

variable-length sequence of genes. Each gene contains information such as the vehicle 

coordinates. Finally, each gene stipulates turning point coordinates, safe trajectories among 

them, and speed of the vehicle required. 

Several difficulties exist with evolutionary computation. One of the main issues is 

complexity of the problem we want to resolve. Namely, finding the optimal solution for 

highly complex multimodal issues require costly fitness function evaluations that can take 

hours, or even days to simulate. That is why evolutionary algorithms find good fitness in 

approximation. There are other issues with complexity, such as gradation. Whenever 

problem consists of large number of genes that can mutate, there is often an exponential 

increase in search space size. That is why evolutionary algorithms can hardly cope with the 

holistic approach to solving. Problem has to be dissected into small issues with designated 

solvers. The challenge remains in connecting all entities into one general solution. 

Considering that the mutation considers only previous stage of evolution, the stop criterion 
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is not always clear and there is a constant risk of destructive mutation. In many cases, where 

holistic problem is complex, operator will separate the problem into small entities and 

assign individual algorithms to each of the issues, which will result in local optima issue 

where the system suffers from absence of long-term fitness. Bearing in mind that the 

collision avoidance problem consists of dynamic data set, evolutionary algorithms suffer 

from early solvers convergence and can give advisories without considering the full data 

set and can easily miss the vital information necessary for the safest route selection. 

Evolutionary algorithms are not a good fit for binary problems such is decision-making 

(assessment of collision risk existence), but rather optimization of the path selection. 

It is evident from numerous attempts to solve the collision avoidance problem that 

academia offers various solvers and that most probable real-life system will consist of 

hybrid methods connected into one holistic arrangement. However, not many authors 

considered issues with sensor modalities, stochastic behavior of intruders, oceanographic 

and meteorological challenges, and cooperative collision avoidance in dynamic 

environments. This study bridges the gap towards the holistic collision avoidance system 

that can assist navigators in decision-making. 

 

1.4 Human element as a root cause of marine incidents 

Human activity exists in all manufacturing and service sectors. Faulty design or 

programming code can cause accidents even after many successful years of exploitation. 

Initially, cause can be attributed to system or technology, but after deeper investigation, 

root causes often point towards human error and negligence. Maritime industry is not an 

exemption and even though 19th century brought staggering improvement in safety 

standards, maritime fleet expansions and new technologies brought new challenges in 

maintaining incident-free operations. 

International Maritime Organization still defines shipping as highly dangerous 

industry [IMO, 2004], as the number of accidents is still relatively high in comparison with 

other industries. Human error is still predominately one of the major causes of the marine 
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accidents (75 – 96 %) [Allianz, 2017]; nevertheless, shorter contracts and increased number 

of crew onboard can keep this number to a lower level. However, latency of many factors 

that influence cognitive ability, such is mental fatigue, is still not studied in its entirety, 

mainly because incident investigations track quantitative data to determine root causes of 

incidents and complacencies, but only deeper and further analysis of human behavior 

within organizations can reveal some of the potential root causes.  

Some of the recent accidents (MV Wakashio, USS Fitzgerald, MT Sanchi, MV 

Gulf Livestock 1, Costa Concordia) prompted general public to ask the question: Why ship 

collisions and accidents still happen with so much of technology advancements? The recent 

incident investigation about USS Fitzgerald collision with ACX Crystal, which resulted in 

7 fatalities concluded that “the course change proved to be a critical error, and investigators 

were unable to determine the reason for it” [NTSB, 2020]. It is evident that crucial links to 

find root causes and appropriate preventive actions are still missing.  

Even though it brought significant improvements in daily management of the 

shipboard operations, IMO’s [2003] focus has been restricted to risk management, safe 

operations and environment protection. While these focuses are still relevant, the human 

element contains additional layers that require careful research in order to properly manage 

risks. State of the art research delivered various definitions of the human element and there 

is no clear consensus of defining the term, even though most of the authors agree on the 

term human error being an incorrect decision, unsafe act, or failure to react. Table 1.1 

delivers usual taxonomy of the human element. 

As it is depicted in Table 1.1, Human element is comprised of both safety and 

Human resource categories. While Standards of Training, Certification and Watchkeeping 

of Seafarers Convention (STCW) and International Safety Management (ISM) focus on 

improving safety standards and risk management for individuals, teams and organizations, 

MLC is focused in utilizing known processes of organizational behavior to enhance quality 

of everyday life of seafarers.   
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Table 1.1 – Components of the Human Element 

 

 

 

 

Source: Barnett and Pekcan, 2017 

Barnett [2005] has done extensive research on the origins and classification of the 

human error with four main categories: slips, lapses, mistakes, and violations. While lapses 

and slips are usually unintentional, mistakes and violations often contain intent. However, 

the real question remains if it would be necessary to search for root causes in active failures 

of competence and complacent violation of rules, or concentration should be on latent and 

intangible failures of various organizational, individual and group undertakings. Baker and 

McCafferty [2005] have determined that the total number of accidents is actually declining, 

but the human error remains a significant factor in 80-85 % of marine incidents. They have 

also concluded that fatigue and task omissions play significant role in failures of situational 

awareness.  

Maritime ergonomics plays a significant role when teams are interacting in stressful 

situations. When the process calls for an immediate decision and inputs are easily derived 

from computer interfaces, decision-making process will be shorter and information noise 

reduced. In December of 2000, IMO [2000] developed framework for ergonomic assurance 

of bridge equipment and bridge layouts that ensure all new vehicles are built and delivered 

as per the ergonomic standards.  

United Kingdom’s Marine Accident Investigation Branch has determined that 

fatigue is one of the major contributing factors in collisions and groundings [MAIB, 2004]. 

Even though fatigue prevention is a major focus of many authorities and hours of work and 

rest are audited with scrutiny, unmeasurable quality of sleep and rest is not considered in 
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these audits, so this is one of the areas of improvement and yet another potentially fatal 

latent risk factor.  

Recruitment, selection, and retention is another human resource category that 

requires careful approach especially if the organization has established safety culture. 

Shipping organizations are known for their high level of diversity. Diversity can be great 

for building a sharing platform of experiences, views, and ideas; however, diversity can 

also create a closed down interaction environment where work force feels detached and 

voiceless. Considering that there are no human resources representatives onboard vessels, 

managing competence and organizational behavior is not a trivial task.  

These categories can have both positive and negative effects on how seafarers are 

handling stress and risk onboard ships. Depending on the corporate strategy and culture, 

human element can be managed, and the best traits of people could be utilized to create 

additional value. However, it is also evident from many maritime incidents that toxic 

environment and poor human resource management can lead to catastrophic consequences. 

Each company will have to decide how much efforts and resources should be utilized to 

manage latent risks.  

Batalden and Sydnes [2017] conducted an extensive study about causality of very 

serious maritime accidents. They discovered that root causes of very serious maritime 

incidents (total loss of a ship, loss of life or severe pollution) are predominately latent 

within the higher level of organization with faulty resource processes, organizational 

processes and oversights, while for the serious and less serious incidents root causes could 

be found among unsafe conditions and unsafe acts onboard vessels. The study concludes 

that shore-ship managerial links have to be strong, open communication promoted, and that 

a balance between organizational efficiency and thoroughness has to be found in order to 

safeguard shipboard operations against latent perils. It is important to note that human 

errors rarely occur because of wrongdoing of a single person, but rather because of multi-

level failures within organizations. Proper education and competence development play a 

significant role, but it is equally important to have appropriate working environment and 
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safety culture that will safeguard against complacency and trivial mistakes that can lead to 

significant consequences. 

Wagengaar and Groeneweg [1987] conducted a study about chain of errors that is 

still relevant today. They have determined that a human error is rarely a single operator’s 

fault and that it usually takes several layers of errors until it results with incidents. This 

study determined that out of 100 surveyed maritime incidents, each incident had from 7 

until 58 chain errors that resulted in an incident. The main focus of maritime safety analysis 

and risk management in the past 30 years was to build effective barriers that will prevent 

rollover of mistakes from one instance to another. Regardless of the efforts and 

improvements noted, maritime incidents due to chain of errors still occur, so additional 

protection is required. In the domain of vehicle navigation, an augmented automated 

system could aid in determining risk potentials and give overview to personnel when action 

or consideration is needed. 

When considering consequences of human errors onboard commercial sea surface 

vehicles, incidents caused by improper handling of equipment and tools, faulty 

maintenance or no maintenance at all, or failure to follow procedures and regulations are 

identified. MAIB [2004] conducted a survey of 1647 collisions, groundings, and reported 

near misses, and they determined that there are three major causes of maritime incidents: 

• 1/3 of incident were related to fatigue; 

• 1/3 were caused by the lack or loss of situational awareness; 

• while 1/3 of the maritime incidents were caused during nighttime with a 

single navigator occupying navigational bridge. 

Further on, the MAIB’s survey noted that 55 % of maritime incidents are collisions, 

31 % are grounding, while 14 % belongs to the rest of the categorized incidents. It is 

interesting to note that 67 % of maritime incidents happen in good weather conditions with 

good visibility.  
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Maritime incident investigation reports and statistics are usually done by a flag state 

of a vehicle, or by local investigative branches of the closest land. Insurance companies 

also track statistics of claims for the vehicles they cover. Therefore, aggregated information 

studies are scarce. European Maritime Safety Agency (EMSA) collects data about marine 

incidents for all EU and UK flagged vessels, as well as for all incidents that happen in EU 

waters. Protection and Indemnity insurance clubs (P&I clubs) insure maritime 

organizations. P&I clubs also make annual reports for their covered sea surface vehicles. 

In their latest Annual overview of marine casualties and incidents for the year 2019, 

EMSA [2019] outlined key statistics for the period from 2011 until 2018. In that period 

there were 23,073 casualties and incidents with 25,614 vehicles involved, out of which 230 

vehicles were declared a total loss. As depicted in Figure 1.1, more than a half of the 

surveyed incidents (54.2 %) were navigational errors leading to contacts with fixed objects 

(15.3 %), grounding (12.9 %) and collisions (26.2 %). 78 % of incidents occurred within 

territorial waters. It is discovered that 65.8 % of incidents were attributed to the human 

error, out of which 65 % are related to the shipboard operations, while the rest is related to 

shore management.  

In figures 1.2, 1.3, and 1.4 it is noticeable that from a total of 4104 investigated 

marine incidents from 2011 until 2018, 65.8 % were caused by a human error, out of which 

65 % were attributed to shipboard operations and 22.2 % to shore management. Under the 

category of shipboard management (SO), safety awareness was identified as the most 

contributing factor, while under the category of shore management (SM), inadequate 

procedures were considered as the most contributory factor. 
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Figure 1.1 – Casualty events involving a sea surface vehicle (Source: EMSA, 2019) 

 

 

 

 

 

 

                (a)                                                              (b) 

Figure 1.2 – (a) Accident causes 2011-2018; (b) Main contributing factors 2011-2018 

(Source: EMSA, 2019) 
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Figure 1.3 – Contributing factors related to the Human element (Source: EMSA, 2019) 

In the continuation of this chapter, loss factors from the perspective of insurance 

are presented, but when looking through the prism of human life, figures 1.4 and 1.5 show 

that fatalities and injuries predominately happen during collision, capsizing, flooding, and 

grounding. It is, therefore, desired to reduce these numbers by implementing additional 

supporting systems that would aid navigators in making decisions to protect life, 

environment, property, and cargo. 

The Swedish Club, one of the prominent Protection and Indemnity clubs, releases 

incident statistics every year. Their publication Claims at a Glance [2019] delivers 

interesting casualties’ statistics from the perspective of financial loss. It takes into account 

only insured vehicles, but it has sufficient vehicle distribution to represent an industry as a 

whole. 

 



	

	
	
30	

 

 

 

 

 

 

 

 

 

 

Figure 1.4 – Casualty of fatalities 2011 – 2018 (Source: EMSA, 2019) 

“There is often no guarantee that a different decision would have given a different 

result” [Swedish Club, 2019]. With this statement Swedish club wanted to emphasize 

notion that assigning blame is not worthy process and that learning from previous incidents 

is worthwhile. It is true that it is not possible to guarantee different outcome if the decision 

was different, especially when dealing with complex situations. However, there are 

computational methods that can aid us in quantifying decision making, which can result in 

designing decision support systems that can reduce number of incidents, but because 

humans are still part of the decision-making process, it is not possible to state that decision 

support systems would eliminate incidents completely.  

Even though cargo, illness, and injury claims have the highest frequency, collision, 

other P&I, and pollution have the highest average cost, but their frequency is low with          

1 % of insured vehicles colliding per year [Swedish Club, 2019].  
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Figure 1.5 – Casualty of injuries 2011 – 2018 (Source: EMSA, 2019) 

 

 

 

 

 

 

 

 

Figure 1.6 – Overview of costs and frequency of maritime incidents (Source: Swedish 

Club, 2019) 



	

	
	
32	

In the following figure, the most common causes of navigational claims are 

presented, as well as the costliest causes. 

 

 

 

 

 

 

 

Figure 1.7 – Causality of navigational claims (Source: Swedish Club, 2019) 

 

Other researchers studied causes of marine incidents. In his comprehensive study, 

Hwang [2002] determined that there is an issue with qualitative parts of Collision 

Regulations (COLREGs) when navigators try to apply them in real-world situations. Acar 

et al. [2008] with their study of marine incidents confirmed above statistics and reported 

that 85 % of all accidents were caused by some interpolation of human error. Macrae [2009] 

is another author that determined that situational awareness and failure to comprehend and 

apply COLREGs are main causes of collisions. As situational awareness and 

misunderstanding of collision regulations are interconnected, a group of researchers at 

Faculty of Maritime Studies [Mohovic et al., 2016] conducted a study to determine which 

collision regulation Rules are hardest to comprehend and which are most likely to be 

violated at sea. The study was conducted between January and March of 2014 with 1538 

participants from 68 different countries. The study surveyed professional seafarers, 

instructors, and students. The results showed that there is a general lack of understanding 
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and difficulty in applying COLREGs among surveyed practitioners. In Figure 1.8 

percentages of Rules which are most difficult for students to understand is presented. 

 

 

 

 

 

 

 

Figure 1.8 – Most difficult Rules for students to understand (Source: Mohovic et al., 2016.) 

Zekic et al. [2015] conducted a similar study researching the level of knowledge 

and understanding of COLREGs. One of the interesting aspects of this study is the survey 

of participant’s personal feeling about distance between vessels and when the avoiding 

should be initiated. Within narrow channels and straits sea surface vehicles are sailing in 

proximity, so it is interesting to see in Figure 1.9 (a) and (b) what would be an acceptable 

proximity with other vehicles, and when maneuvering action is required. Quantified 

approach to determining acceptable levels of proximity is delivered later in this thesis. 

Loss of situational awareness and violation of collision regulations is identified as 

the most contributory factors of the navigational claims. Loss of situational awareness is a 

broad category, and it includes navigating officer’s inability to recognize risk and 

comprehend information. From the investigative point of view, it is crucial to find the 

reason why someone made a certain decision in a particular navigational situation. If the 

answer is negligence, complacency, or lack of knowledge, then it is easier to pinpoint the 

corrective actions. However, investigation results and statistics point out that there are 

deeper chains of failures that lead to faulty decision making, so it is important to discover 
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those root causes in order to prevent reoccurrences. Psarafits et al. [2000] have shown that 

technology advances have contributed to reduce the number of marine incidents, as 

technology allows for more informed and easier decision-making. In this study goal is to 

design a decision-support system that recognizes and evaluate collision, allision and 

grounding risks, determines appropriate collision regulations, safe speed, and offer optimal 

trajectories for the given situation. As it would be adaptable in the time domain, the 

proposed system is dynamic. 

 

 

 

 

 

 

(a)            (b) 

Figure 1.9 – Participants’ survey on safe passing distances (a), and appropriate distance to 

initiate collision avoidance (b). (Source: Zekic et al., 2015.) 

 

Focus of this research remains on decision-making support, rather than on 

autonomous vehicles. The main reason for this is that for many reasons, which are 

presented and discussed in following chapters, commercial sea surface industry is not ready 

for safe autonomous operation yet. The biggest barrier for autonomous navigation is 

regulation. Numerous articles have been published calling for revision of COLREGs, but 

administrations are very slow on reacting. How to assign responsibility in autonomous and 

human-operated interactions resulting in incidents? Another barrier is abysmal quality of 

sensory equipment installed onboard sea surface vehicles. Most of the alarms that human 
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operators get on the vessels is due to sensor faults and inability of sensory equipment to 

detect if the signal is received for a real situation or there is a slight crossing of a threshold. 

Therefore, even though it is technologically possible to introduce autonomous commercial 

sea surface vehicles, their cost would be higher than keeping crew onboard, so until the 

autonomous vehicles become more economical and efficient, we will not see larger number 

of autonomous vehicles at sea. On the other hand, utilizing technology to aid human 

operators in order to reduce significant incidents is fairly inexpensive and can be done with 

present equipment onboard with the aid of signal fusing and error reduction. 

As it will be visible from the following chapters, human element should not be 

eliminated from the decision supporting system, but rather utilized by extracting positive 

aspects of the human experience. Human operators have flexibility and creativity, so 

intention is to utilize human experiences as inputs that would aid algorithms to find optimal 

solutions and deliver guidance adjusted for a human operator. The human operator’s ability 

to adapt to exceptional situations has to be incorporated in decision support systems in 

order to be viable in complex situations. 

 

1.5   Research methodology 

In order to effectively examine influence of dynamic environments on collision 

avoidance and path selection, various research methods are utilized. Classification method 

was used to split the research subjects into subcategories and then analyzed as distinct 

research components. Multimodality of the research required use of methods such are: 

methods of analysis and synthesis, methods of deduction and induction, description, 

classification and comparative methods, discussion, modeling methods, mathematical and 

statistical methods, method of compilation, generalization and specialization techniques, 

as well as methods of simulation and computation.  

All of the before mentioned research methods aided in determination of all 

influential functions that were used to resolve complexities of the dynamic collision 

avoidance research.  
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1.6   Contributions 

Foundation of the scientific research is systematic approach to data collection, 

parameter design, model development and numerical testing in order to achieve viable 

results. A novel hazard alerting model is proposed based on probabilistic HMM framework 

and offers viable resolutions for mixed-equipage environments. With such developed 

models, aim is to contribute towards safer navigation through faster conflict resolution, 

optimal path selection, informed decision-making, and reduced uncertainty for maritime 

transportation stakeholders. 

Overall contributions of the scientific research could be outlined as follows: 

Ø Optimizing model for hazard awareness and conflict resolution that will improve 

safety of navigation of sea surface vehicles. 

Ø Development of methodology that will ensure effective peer-to-peer intent 

communication in mixed-equipage environments. 

Ø Determination and analytical processing of relevant parameters that affect optimal 

and safe path selection taking COLREGs in consideration. 

Ø Partial observability reduction of latent states by introducing an early collision 

detection method. 

Ø Systematic review of all previous and current methods relevant to the dynamic 

collision avoidance of sea surface vehicles. 

Ø Formation of lean and effective algorithms that could be programmed to various 

existing solutions in order to achieve holistic solution for dynamic collision 

avoidance system. 

Results of the scientific research are compiled and presented in the concluding part 

of the dissertation, which confirms fundamental hypothesis without rejecting it. 

Considering the ubiquitous trend of applying solutions based on artificial intelligence or 
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machine learning modelling at various types of transport technology, the main application 

of research results of the proposed dissertation would be at software developing entities to 

aid improvement of decision support technology already existing or being developed on 

the market. Research solutions could also be used to advance knowledge about support 

decision making solutions, to aid further research, to be used for developing a dynamic 

collision avoidance system, or to broaden the critical thinking about utilizing technology 

to advance maritime safety. 

 

1.7   Organization of the thesis 

The First chapter is introductory and delivers problem statement, describes research 

problems and challenges, as well as defines fundamental and supplementary hypotheses 

that are confirmed in the thesis. Related work and preliminary research are presented and 

discussed. An overview of the human element and its role in modern shipboard operations 

is given. Research methodology is selected, while original contributions described. 

Chapter 2 delivers overview of Hidden Markov Model and probabilistic modeling 

in general, as well as the reasoning why Hidden Markov Model has been selected for 

modeling the hazard avoidance system proposed in the thesis. As a special type of HMMs, 

Markov Decision Processes, Partially Observable Markov Decision processes, and 

Reinforcement learning, specifically Q-state learning, have been described and defined. 

Even though collision avoidance and hazard alerting algorithms are based on a 

model-free reinforcement learning method, Chapter 3 delivers important on-model 

solutions for the Maritime Hazard Alerting and Collision Avoidance System (MCAS). 

Considering the cost of commercial sea surface vehicles, it would not be optimal to 

commence voyages with model-free approach and without previous knowledge. Therefore, 

on-model motion control method is presented that allows for initial knowledge base, that 

will be updated during exploitation with model-free solutions. The chapter begins with the 

proposed Foraging Particle Filter that is used to filter sensory information before it is used 

in the collision avoidance model. This chapter also covers the benefits of fusing sensing 
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information to increase observability of the state space. The chapter concludes with a 

detailed model-free motion control system that will allow for the pilotage of sea surface 

vehicles with appropriate responses to environmental and weather conditions, as well as 

allow for motion prediction, which is a crucial part of the collision avoidance algorithm. 

Chapter 4 is the central work of this thesis. It delivers dynamic collision avoidance 

algorithm. This chapter also covers target behavior uncertainties, as it is very hard to 

predict if the target vehicle will follow the COLREGs or not. COLREGs classification 

algorithm is also a part of this chapter, and it is used to quantify relevant Rules that would 

help in collision avoidance automation and autonomy.  

Chapter 5 depicts challenges of mixed equipage situations and what are the options 

to share intent with other vehicles. Sharing intent is one of the best and easiest methods to 

reduce target behavior uncertainty. Mixed equipage situations are difficult because some 

of the targets are cooperative, while others are uncooperative. Uncooperative targets bear 

higher risk and different approach is required when making decisions about collision 

avoidance. 

Chapter 6 covers challenges of hazard alerting. At the present moment, commercial 

vehicles have user-dependent alarm thresholds and in this chapter, algorithmic solution to 

hazard alerting that would allow for reduction of nuisance alerts and higher dependability 

is developed. Navigators are often agitated by the number of alerts received in critical 

situations. Therefore, approach is to allow for intelligent alerting practices. 

In Chapter 7 main conclusions and contributions are summarized. 
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Chapter 2 
 

Hidden Markov Models and decision 
processes 
 

Within this chapter rational decision making is explored. In the real world it is rare 

for agents to have full information about environment or other interactive agents. Often, 

agents don’t even have full self-awareness, as some of the parameters could be hidden or 

partially observable. It is assumed that all professionals have intention of acting rationally, 

but barriers against irrationality are proposed as well. Uncertainties are essential part of 

modeling the world, so the approach in this thesis is to reduce uncertainties at the input 

stage of the signal processing in order to reduce computational burden of collision 

avoidance processes.  

 

2.1   Decision making and probability 

Decision making under uncertainty, such is collision avoidance of sea surface 

vehicles, requires a complex task of accounting for all sources of uncertainty and find 

optimal solutions given these uncertainties. Dynamic processes are challenging; and 

sometimes optimal solutions are not available, so it is necessary to search for sufficiency.  

The term “agent” in this thesis is used to describe someone or something that is 

acting based on an observation taken from a relevant environment. Own agent is a 

nonphysical entity that chooses optimal or sufficient actions based on various sensory and 

regulatory inputs it observes. As it is shown in Figure 2.1, agent interacts with its 

environment in a sequence of discrete time steps !. At each time step !, the agent receives 

a representation of environment’s state "! ∈ $, where S represents a set of feasible states. 

Once a state from the environment is received, the agent selects an action %! ∈ &("!) based 
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on sensory information )! ∈ *, where &("!) represents set of actions available in a state 

"!, while * represents a set of all sensory information that an agent can observe. In the case 

of anti-collision, observations are all sensory information that an agent receives from 

various sensors installed on a sea surface vehicle, while action can be alerting or suggested 

control action to maneuver vehicle outside of a danger zone. It is important to note that 

observations are usually noisy and erroneous, so it is necessary to address these 

uncertainties when developing a decision support models, as otherwise agents could deliver 

faulty action suggestions. The focus of this thesis is to ensure agent is finding model-free 

optimal solutions. Objectives and reward shaping is utilized to achieve optimal behavior. 

 

 

 

 

 

 

Figure 2.1 – Decision making – an agent interacting with environment 

If a problem that an agent is trying to solve is simple enough, it is possible to utilize 

direct programming to instruct an agent how to resolve a problem. This is possible when 

an agent operates in deterministic world. For example, instructing an agent to cross a street 

when it detects a green light only within the zebra pattern, instructions are simple. 

However, if uncertainties of traffic light failure, or error of drivers of cars approaching the 

crossroad are incorporated, then the deterministic world is getting more complex, and then 

it is necessary to utilize different programming techniques to find optimal solutions. If we 

are experts of a certain process and have extensive overview of all possibilities an agent 

can face, we can utilize supervised learning to teach an agent how to behave optimally. 

This requires laying out all possibilities that an agent can face and allow it to learn before 
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letting it operate in a world. Even though this kind of approach can be very practical, when 

there is a high-dimensional state space, writing down a pathway for all possible situations 

an agent can meet would be computationally very expensive and timely. If allow an agent 

to cross any crosswalk in the World by teaching it to cross only few crosswalks in one 

country, it would not be successful as there are many factors influencing crossing a street 

in different countries. Similar to supervised learning is strategic optimization, where 

instead of laying out all possible state space combinations, strategies that an agent can 

consider for a problem it faces, based on observations it receives, are developed. It is still 

fitting only to the lower-dimensional problems, as higher-dimensional problems would 

require a lot of computational power to find global maximum. Finding global maximum is 

not trivial, so process knowledge or problem dynamics knowledge should be utilized to 

guide search for optimal solutions. An agent is permitted to learn decision-making strategy 

while interacting with the environment and other agents.  

If situation is considered in which a navigator on a commercial sea surface vehicle 

notices a RADAR search and rescue transponder (SART) signal on his/her RADAR screen, 

there are two possible reasons for the signal. Either there is a real emergency that requires 

an immediate action, or one of the navigators of neighboring vehicles is testing their SART 

equipment and their signal on own RADAR is received. These two possibilities are not 

considered equally by navigators. An experienced navigator will develop a belief that it is 

a testing signal, rather than a real incident, as his previous experience sailing the seas has 

developed an intuitive probability distribution between these two options. If +  would 

represent an option of a test signal and , would represent a real incident situation, then 

+ ≻ ,, which means that a navigator believes that the possibility of a real incident is lower 

than the possibility of a test signal that was mistakenly released to other vehicles. If the 

belief that + and , are equally plausible exists, then it is possible to write +~,. 

Navigator’s assumptions could be correct, but because of the consequences of not 

aiding a vehicle in a real incident situation, navigators should always act as it is a real 

incident signal. There is a way of rebalancing of the belief possibilities by utilizing 

additional information. If a navigator would at the same time receive another mayday 

signal from a radio station, AIS or satellite receiver, the belief would immediately change, 
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and navigator would strongly believe that it is a real incident. By providing additional 

information it is possible to reduce uncertainties. If / would represent additional distress 

information, then it is possible to state that given the additional information navigator now 

believes that the real incident is more probable than the testing signal broadcasted to the 

environment (+	|	/) ≺ (,	|	/).  

It is necessary to make some assumptions about the relationships introduced above 

by the operators ≺  and ~  [Kochenderfer, 2015]. Universal comparability assumption 

requires one of the following to hold: (+	|	/) ≻ (,	|	/), (+	|	/)~(,	|	/), (+	|	/) ≺ (,	|	/). 

The assumption of transitivity entails that if (+	|	/) ≽ (,	|	/) and (,	|	/) ≽ (4	|	/), where 

4 can stand for a third option that can be defined as failure signal, then (+	|	/) ≽ (4	|	/).  

Transitivity and universal comparability relations [Howard, 1960] allow us to represent 

degrees of belief by a real-valued function, so it is possible to utilize a function 5 with the 

following properties: 

																5(+	|	/) < 5(,	|	/)	if	and	only	if	(+	|	/) ≺ (,	|	/) 

			5(+	|	/) = 5(,	|	/)	if	and	only	if	(+	|	/)~(,	|	/). 

Furthermore, a set of additional assumptions about the real-valued function 5 could 

be developed and used to show that 5  should satisfy basic axioms of probability 

(Kochenderfer, 2015). Therefore, 0 ≤ 	5(+	|	/) ≤ 1 . In case we are certain about the 

(+	|	/), then we can state that 5(+	|	/) = 1, but when we believe that (+	|	/) is impossible, 

then 5(+	|	/) = 0. The uncertainty in the truth of the (+	|	/) is then represented by values 

between the two extrema [Kochenderfer, 2015]. If axioms of probability are further 

utilized, then it is possible to represent own beliefs as conditional probability: 

5(+	|	,) =
5(+, ,)

5(,)
,																																																								(2.1) 

where 5(+, ,) stands for the probability that both + and , are true. Conditional probability 

is very important for this approach; however, if the law of total probability [Howard, 1960] 

is considered, which requires that Ζ is a set of mutually exclusive and exhaustive belief 

possibilities, then 
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5(+	|	/) =G5(+|	,, /)5(,	|	/).																																												(2.2)
"∈$

 

Taking into consideration (2.2), we are now able to lay out the Bayes’ rule [Howard, 

1960], which plays an integral role in modelling decision making under uncertainty: 

5(+	|	,) =
5(,	|	+)5(+)

5(,)
.																																														(2.3) 

 

2.2   Markov chains and Markov property 

If a passage of a commercial vehicle from some port in Europe to some port in the 

far East is considered, operators are obliged by various regulations to plan this passage 

thoroughly and include as much as possible information in order to avoid hazards. Even if 

operators performed a perfect passage planning, several factors, such are weather and the 

behavior of other vehicles operators meet on their passage, are random, which means that 

when operators try to solve collision avoidance problems, they are dealing with stochastic 

processes. Vehicle motion control and navigation consist of various random processes, 

such are steering inputs, engine control inputs, or collision avoidance decision making. 

Even when a vehicle is navigating same waters consistently, environmental loads are going 

to be different with every new passage; therefore, it will be necessary to apply different 

steering inputs to accomplish voyages. Similarly, even though this vehicle would do the 

same voyage consistently, targets met would regularly be different and their behavior 

would vary depending on decision making of navigating officers onboard those vehicles. 

Considering this example, it is possible to note that previous experience of sailing the same 

route would not help us in reducing the randomness of the collision avoidance process. 

Motion control of vehicles in collision avoidance situation would be independent of the 

previous experiences, as many external factors would influence both steering inputs and 

decision making. Stochastic process defined this way would have Markov property, as the 

conditional probability distribution of future decisions and states depends only on the 

present state. In this research it is not assumed that the collision avoidance does not depend 
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on the past completely (especially when thinking of experience of navigators), but rather 

that there is a conditional independence on the previous states and dependence on the 

present state. Therefore, if $!  would be considered as a state of proposed collision 

avoidance system, then Markov property would be defined as: 

5($!%& = I|$! = J)																																																								(2.4) 

Therefore, Markov Property would indicate that past states and future states are 

conditionally independent given the present state.  

 A system’s state space can be considered as a set of all possible configurations of a 

system [Puterman, 1994] (for example GPS position, heading and Speed Over Ground of 

a vehicle) which can either be discrete or continuous. It is important to emphasize that the 

state space does not have to contain only scalars, but can also consist of vectors, which will 

be further discussed later in this thesis. Considering collision avoidance problem of this 

research, Markov property is utilized to predict future states given the present state and 

find out what is an appropriate action in the present state given the predicted future states. 

This requires temporal modeling, and one of the simple temporal representations is a 

Markov chain [Howard, R., 1960]. The conditional distribution mentioned in expression 

(2.4) describes transition probability for state space. As will be seen in the following 

sections, initial distribution 5($') can be defined by a convention (for example, initial state 

space has a heading of 360º, and steering wheel is at midships), or it is defined by system 

dynamics (for example without reading a speed sensor, sequence is initiated with a speed 

of 0 kt), or some other type of distribution such is multivariate Gaussian distribution.  

Markov chains could be utilized to develop Markov models that are used to model 

systems of our interest. Depending on the observability of the system’s present and 

sequential states, as well as the adjustability of the system after observations are received, 

4 main categories of Markov models are recognized: 
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Table 2.1 – Markov state observability  

 Fully observable state Partially observable state 

Independent Markov chain Hidden Markov model 

Adjustable after 

observation 
Markov decision process 

Partially observable Markov decision 

process 

Source: Puterman, 1994 
 

2.3   Hidden Markov Model 

Markov chain on its own would not provide a clear assistance in resolving 

challenges of sequential decision making under uncertainty, so it is necessary to broaden 

the Markov chain to a Markov model by introducing observations. Observations are 

information, usually from some sensing equipment, that will aid in understanding the 

underlying stochastic process of the system. Observations are necessary when system states 

are not observable, so sensing information is utilized to learn about the system being 

modeled. In case of discrete state variables, a Hidden Markov model (HMM) is defined, 

while in a case of continuous state variables, we consider dynamical system. As seen from 

the upcoming chapters, discretization of the state space for marine collision avoidance 

systems is rather necessary to reduce approximations and computing loads. Unlike the 

aeronautical sector, marine sector enjoys relative abundance of time and can allow for 

slower sampling rates. This is the reason it is possible to utilize HMMs without loss of 

generalization and downgrade of the number of variables in the state space while 

maintaining the lean approach to computing. 

Markov models are powerful as they allow us to uncover the underlying distribution 

of hidden variables while observing visible variables. In the field of temporal models, four 

common inference tasks are available [Howard, 1960]: 

• Filtering: 5($!|L':!) 

• Prediction: 5($!!|L':!), where !) > ! 
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• Smoothing: 5($!!|L':!), where !) < ! 

• Most likely explanation: argmax*":$ 5($':!|L':!) 

One example of the Hidden Markov model inference is depicted in Figure 2.2. In 

this example a head-on situation is depicted where ownship is meeting a target vehicle. 

Target vehicle’s state space variables are not fully observable by ownship, so it is necessary 

to utilize sensing equipment to observe the behavior of the target vehicle and ownship tries 

to determine if the target vehicle will follow Collision Regulations (COLREGs) or not. 

Other Rules are disregarded, so focus is maintained on the head-on situation and the Rule 

14. Therefore, described HMM looks as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 – Hidden Markov Model of COLREGs Rule 14 

!%	
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Two sea surface vehicles in a head-on situation are considered. To avoid collision, 

common practice as per the Rule 14 is that both vehicles turn their course to starboard. In 

this overly simplified example, we are navigating one vehicle and other vehicle is 

navigated by an unknown navigating officer, so the common uncertainty in these situations 

is action of the target vehicle. Even though Rule 14 mandates action, which should be early 

and substantial, there is a probability that the target vehicle will not act as per the Rule 14. 

We do not have definite information if the target vehicle will follow or not follow 

COLREGs. This means that we are dealing with an underlying stochastic process that is 

hidden and not directly observable, so another stochastic process is required that will 

produce sequence of observations. We do have a general knowledge and intuition about 

target behavior that would define our behavior in this situation. Ownship navigator can 

either be risk averse, or accept more risk depending on navigator’s own tolerance and level 

of complacency. For the sake of simplicity, actions of own vehicle are disregarded, while 

actions of the target vehicle are solely considered. Target vehicle can either turn to 

starboard, turn to port, or maintain its own course. Based on the behavior selected by the 

target vehicle, speculation is made about target vehicle’s COLREGs compliance, but as we 

do not see the state of an approaching vehicle, this behavior selection is hidden from us. 

Therefore, ownship assumes that the selection of following the COLREGs or not is a 

representation of a discrete Markov chain.  

The initial distribution is based on a belief that in 70 % of cases navigators will act 

as per COLREGs and in 30 % they will not follow the required Rules. This distribution is 

different for each individual, but there is also a different way of selecting the initial 

distribution. It can be an equilibrium distribution but can also be an industry standard or a 

result of an extensive research. The transition distribution describes an actual selection of 

the navigator of a target vehicle with an 80 % chance that the vehicle will not follow 

COLREGs if it already is not following COLREGs and 20 % chance that the navigator will 

change their mind and follow COLREGs. On the other hand, if a navigator is following 

COLREGs, there is 90 % chance that it will continue to follow the COLREGs and only     

10 % chance that the navigator will change mind and decide not to follow COLREGs 

anymore. Finally, the outcome distribution represents how likely would a navigator of a 

target vessel select a certain motion control, so ownship navigator can see that if the 
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navigator of a target vehicle is not following COLREGs, there is a 40 % chance that the 

navigator would turn to port, 50 % chance of maintaining the same course, and only 10 % 

chance that the navigator would turn to starboard. In case that the navigator decides to 

follow the COLREGs, then there is 70 % chance that the navigator would turn to starboard, 

20 % chance of maintaining the same course and 10 % chance of turning to port. 

With R representing an unobservable state space, another stochastic process whose 

behavior is dependent on R is required. This is the reason why * represents an observation 

space and * is utilized to learn about R. Therefore, it is possible to state: 

5()!|ℎ!) – observation probability 

5(ℎ!%&|ℎ!) – transition probability, 

where ) ∈ *, and ℎ ∈ R. 

Hence, when observation and transition probabilities are combined together, it is 

possible to obtain joint probability distribution over all states and observations available 

within the model: 

5(R, *) = TUℎ!"VWT(ℎ!%&|ℎ!)

+,&

!-&

WT()!|ℎ!)

+

!-&

																																				(2.5) 

As the state space is hidden, it is necessary to infer the latent state probabilities. 

Inference is necessary, as the goal is to determine the distribution over unobserved 

variables taking into consideration values related to a set of observed variables 

[Kochenderfer, 2015].  

Even though finding 5(R, *) is of interest, inference of 5(ℎ! , *) at a current time 

! given all observations available is of greater interest; both joint probability with historic 

observations up to the present time stamp T(ℎ! , )', )&, … , )!,&, )!) , and conditional 

probability with predicted future observations given the present state T()!%&, … , )+|ℎ!). 

After combining joint and conditional probabilities together, the following stands: 
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T(ℎ! , )', )&, … , )!,&, )!)T()!%&, … , )+|ℎ!) = 	5(ℎ! , *) ∝ 5(ℎ!|*),																			(2.6) 

Where the symbol “∝” is used to denote that left-hand side is “proportional to” the right-

hand side. 

When presented with a model with latent state space values, main goal is to find the 

optimal state transition sets and outcome probabilities. The common approach is to exploit 

various learning techniques that would derive the maximum likelihood estimates of the 

HMM parameters, such are forward-backward, or Baum-Welch algorithms [Puterman, 

1994]. If model requires time series prediction, then Markov chain Monte Carlo (MCMC) 

algorithm would be fitting better, however it is necessary to keep in mind that MCMC 

algorithm is computationally expensive [Howard, 1960]; therefore, a certain degree of 

approximation could be required. HMMs are used to this day for speech recognition, 

analysis of DNA sequences, as well as in the field of bioinformatics [Puterman, 1994].  

Even though depicted example is simplistic, it highlights the benefit of using 

HMMs for solving sequential parameter problems. However, HMMs are not designed to 

allow for control after observations are made. As some of models proposed in this thesis 

require control and optimal actions, it is necessary to explore Markov Decision Processes 

(MDP) and Partially Observable Markov Decision Processes (POMDP).  
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2.4   Markov Decision Processes 

In order to consider a process Markovian, it has to be independent of the previous 

state. In other words, Markov Decision Process is stochastic process where the state of the 

system changes probabilistically based on the current state and according to the defined 

action. For example, vessel can pass certain route many times, but it doesn’t guarantee that 

the next time passing the same route will be collision free. Collision potential depends only 

on the current situation and availability of intruders at the observed moment.  

Markov Decision Processes (MDPs), also known as stochastic dynamic 

programming, are commonly used to model decision-making where outcomes are partially 

under the control of the decision maker, but also random due to the stochastic nature of the 

process. Howard [1960] was one of the first authors to research optimization problems in 

his book Dynamic Programming and Markov Processes and developed mathematical 

framework for modeling decision-making. MDPs have been applied to many fields, such 

as robotics, economics, signal processing, artificial intelligence, communications, 

automated control, stochastic scheduling, and automated planning.  

Markov Decision Process is fully observable stochastic control process that can 

move from one eminent state to any other possible state. Similarly as with Markov chains, 

MDPs allow decision maker to take an action available from the pool of pre-defined actions 

for that state. MDPs are considered continuance to Markov chains with the main 

modification being motivation and choice through rewards and allowable actions. MDPs 

are defined as sextuple: 

				($, &, 5("!%&|"! , %!), ,. , \, H),     (2.7) 

The system can be described with state space $, observing at discrete time periods 

(t = 0, 1, 2, ...). When the system is observed to be at state "! ∈ 	$, an action %!	from the 

action set &	will be chosen. Then the system will receive a real-valued reward ,., and 

eventually transfer to state "!%&	 at the next period with state transition 

function	5("!%&|"! , %!), defined as probability that the system will evolve to state "!%&. In 

other words, at a certain moment !, the process is in some state "!, and the decision maker 
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has an option of choosing available action %!  from the set of possible decisions & . 

Transition probability 5("!%&|"! , %!) is then affected by the action %! , and the process 

responds by moving to a new state "!%&  with the corresponding reward, be it gain or 

loss,	,.. Since subsequent reward is associated with the transition probability, which is 

affected by the chosen action, discount factor \ is introduced to account for immediate and 

subsequent reward as an aid in finding an optimal policy. The discount factor 	\ , 

(0 < \ ≤ 1) , is used to determine if agent should consider only immediate rewards 

(discount factor that is closer to 0), or agent should prefer distant accumulated reward 

(discount factor that is closer to 1).  H represents horizon to limit and discretize time space. 

Within the MDP framework, state space is fully observable and can be computed. 

In the real sector it is difficult to achieve full observability, but there are some remedies to 

reduce uncertainties. The goal of the MDP stochastic control process is to find a policy ^ 

that will specify an optimal action %! that a decision maker should take when in a state "!. 

A policy ^  with optimal actions allows for MDP to behave like a Markov chain, as 

transition probabilities now resemble Markov transition matrices. Therefore, it is necessary 

to find an optimal policy ^∗ of actions that maximizes expected (_) sum of rewards for 

applicable states: 

^∗ = argmax
0

_ `G,.$("! , %! , "!%&)|^

1

!-'

a																																		(2.8)	 

It is necessary to emphasize that unlike in deterministic systems where the solution 

is a planned sequence of all actions from the beginning until the end, MDP policy provides 

an overview of the optimal action in each planned state by maximizing expected sum of 

rewards. Therefore, the benefit of utilizing MDPs is modeling of noise and uncertainty. 

In the example below, both deterministic and stochastic environments for an 

abstract agent (decision-maker) are depicted. On the left side of Figure 2.3, there is a 

machine operating a steering wheel, while on the right side of Figure 2.3 a human operates 

the steering wheel. Assumption is made that there is no noise influence on robotic 

helmsman and that it acts as a perfect actuator. Human helmsman, on the other hand, has 
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inherent stochastic noise and can wrongly execute requested command according to a 

known probability distribution (distribution is assumed in the example, but otherwise has 

to be empirically determined). In the deterministic world, decision maker requests from the 

robotic helmsman to turn the wheel to starboard by 10°, and the robotic helmsman executes 

that command with 100 % probability. On the other hand, in the stochastic world when a 

decision maker requests human helmsman to turn 10° to starboard, there is 80 % chance 

that the helmsman will turn the wheel to starboard, but there is also 10 % chance that the 

wheel will remain midships and 10 % chance that the helmsman will turn the wheel to port.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 – An example of deterministic noiseless environment vs stochastic environment  

Another example is a situation where a sea surface vehicle is passing a narrow 

channel or straits. There are three possible states: collision free, near-miss and collided. 

This time horizon is infinite unless a vehicle collides, after which the modeled system 

terminates. Commercially, every second saved is important, so higher transit speed of a 
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vehicle is rewarded with double rewards, so the vehicle can either take a safer speed of 10 

kt, or faster speed of 18 kt.  

 

 

 

 

 

 

Figure 2.4 – Markov Decision Process – example 

 

It is assumed that the container vehicle in the example is autonomous and making 

its own decisions based on the model depicted in Figure 2.4. Vehicle commences narrow 

channel transit in collision-free state. In this example, an infinite horizon is presented, so 

the transit can last forever, unless the vehicle reaches a terminal state of collided. If the 

vehicle proceeds with a safe speed of 10 kt, then there is 100 % chance that it stays collision 

free. If the vehicle proceeds with more rewarding faster speed of 18 kt, there is 50 % chance 

that it will stay collision free and 50 % chance that it will transit into a near-miss state. For 

this example, near miss is acceptable risk. After transition to the near-miss state, vehicle 

can either proceed with the safe speed of 10 kt, for which there is 50 % chance that it returns 

to collision-free state, or there is 50 % chance that it remains in the near-miss state. 

However, if the vehicle decides to proceed with the higher speed of 18 kt, then there is    

100 % chance that it will collide.  

Even though this example is significantly simplified, it shows us the mechanics of 

an MDP system. However, due to the infinite horizon, it is necessary to find a way to 
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calculate sum of rewards. To showcase how this is done, a search tree of discussed MDP 

example system can be utilized. 

 

 

 

 

 

 

Figure 2.5 – Search tree for MDP example 

 

The search tree discovers two important aspects of the MDP modeling. In the case 

of infinite horizon MDP model, search tree can be infinitely deep, and this can present 

significant computational challenges, especially when dealing with large state spaces. 

Noticeably, there is a lot of repetition and every time the sea surface vehicle is in collision-

free state, the tree branches out in an identical way. Before transition from space to space 

happens, there is an interlink step that can be named a chance nod, or a q-state. Recalling 

the beginning of the chapter 2.2, transition matrix was identified as Q-matrix, so the chance 

nod or q-state is a transition state that contains information about rewards and actions 

available, before the decision about optimal action is made. A q-state can be considered as 

an abstract holding pattern where the agent ends up after choosing an action from an 

available action set before the stochastic transition to a new state is completed. As it will 

be seen in the later chapters of this thesis, q-states are powerful, as they can aid to learn 

about state space and optimal actions in an efficient way.  

Another very important part of the MDP framework is summing the rewards. How 

to ensure convergence of optimal policy calculation when facing an infinite horizon? The 
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answer is within the rewards discounting [Howard, 1960]. The discount factor \ is used to 

instruct the abstract agent to either appreciate immediate rewards or to prefer later 

accumulation of rewards. If the discount factor is closer to 0, then the agent will appreciate 

immediate rewards, but if the discount factor is closer to 1 then the agent will prefer more 

distant rewards. By setting the discount factor appropriately, convergence of optimal policy 

computation can be ensured. In the case of collision avoidance, immediate rewards are of 

interest, as the most immediate danger has preference than any other hazards along the 

planned passage. While future rewards are not omitted, immediate rewards are preferred.  

Even though there is possibility of stochastic policies, optimal policies are of 

greater interest, as by discounting the rewards function, the actual utility of a future state 

will become small enough to be disregarded. Therefore, it is possible to utilize a horizon 

and define the maximum timesteps we look in the future or utilize discounting and find a 

point where utility of a future state becomes so small, that every further state is almost 

equal in value. It is necessary to find several optimal quantities [Puterman, 1994]: utility 

of a state, utility of a q-state, and an optimal policy. Convention of denoting optimal values 

with a superscript * is followed. The utility of a state " is denoted as c∗(") and it is an 

expected value of being in a state " and then acting optimally. The utility of a q-state is 

denoted as d∗(", %) and it is an expected value of being in a q-state (", %) after an agent 

takes an action % and then acts optimally. The optimal policy ^∗ lays out an optimal action 

from the state ". In case agent is able to learn optimal utility of a q-state, then (2.8) can take 

the following form: 

^∗ = argmax
.

d∗(", %)																																																			(2.9) 

There are multiple ways that an agent can learn the optimal q-state utility, which 

will be presented in following sections; however, at this moment only the following 

formulation [Puterman, 1994] is considered: 

d∗(", %) =G	5(")|", %)
2!

[,.(", %, ")) + \c∗("))]																											(2.10) 
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In order to simplify the formulation, ") is used to describe the state in the next 

timestep. The expression (2.10) still requires that the optimal utility of a state from the next 

timestep ") is known, so further exploration is needed in calculating the optimal utility of 

a state and optimal policy. However, if the optimal utility of q-state is known, the optimal 

policy can be directly derived by simply iterating to the furthest state " of the selected or 

discounted horizon.  

If there is no practical way to learn optimal utility of q-states, we can find the 

optimal value with the simple substitution represented in the following expression, which 

is called the Bellman equation [Puterman, 1994]: 

c∗(") = max
.
G	5(")|", %)
2!

[,.(", %, ")) + \c∗("))]																												(2.11) 

As it is possible to limit the depth of a search tree by fixing a horizon or discounting 

the rewards of the future states, the bottoms-up approach is taken, where a zero value to 

the deepest state in the tree is assigned and then work back to the top. This approach is 

known as value iteration [Howard, R., 1960] and the algorithm for the finite horizon or 

discounted horizon MDP system could be: 

• c'(") = 0 – zero value is assigned to the state with no time-steps left (the 

finite state). This holds because the expected sum of rewards from this point on will be 

zero, so there is no point of going deeper in the tree. 

• Then for each state expectimax is utilized as per the following: 

c3%&(") ← max
.
G	5(")|", %)
2!

[,.(", %, ")) + \c3("))]																									(2.12) 

In this way it is possible to find convergence with a complexity of each iteration of 

*($4&), which is computationally expensive and unfavorable, so attempts should be taken 

to find algorithmic solution to reduce complexity. The theorem and proofs of convergence 

are presented in Puterman [1994]. 
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Depending on the MDP model, there is computationally more effective way to 

solve MDPs. If instead of searching for state values by iteration, policies are evaluated. 

The major difference is skipping search for the best action, while randomly choosing an 

action to go to the associated q-state, and then evaluating that policy from the randomly 

selected q-state. This process is known as policy evaluation [Howard, 1960].  

    Follow the optimal action                               Follow policy p 

 

 

 

 

 

 

 

Figure 2.6 – Optimal action vs optimal policy 

 

Policy evaluation starts by choosing a random fixed policy and then evaluating the 

tree. The fixed policy is a table that maps states and actions, and the agent simply follows 

the policy without a concern if the actions taken are optimal or not. It is difficult to 

recognize if this is the optimal policy, so it is necessary to compare it with other available 

policies. As an agent does not choose actions anymore, max operator from the state utility 

computation can be removed, and this is what makes policy evaluation computationally 

more efficient. Hence, if c0(") is defined as an expected sum of all discounted rewards 

when following a fixed policy ^ and starting in the state ", then recursive Bellman equation 

for the policy evaluation is obtained [Puterman, 1994]: 
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c0(") =G	5U")|", ^(")V
2!

[,.(", ^("), ")) + \c0("))]																						(2.13) 

The policy evaluation is approached in a similar way as value iteration by 

initializing with c'0(") = 0, selecting the deepest state of the tree, either by setting a 

horizon or discounting: 

c3%&
0 (") ←G	5U")|", ^(")V

2!
[,.(", ^("), ")) + \c30("))],																				(2.14) 

where k is the iteration number for the policy evaluation. 

Efficiency for the policy evaluation is *($4) for each iteration, as the policy is 

fixed, and there is no need to search for optimal action. Another convenient factor is that 

without searching for the optimal action, resulting system is linear and can be solved with 

any linear equation solvers by inversing matrices without the necessity of iterating (2.14).  

Finally, there is also a policy iteration approach [Puterman, 1994], in which search 

for optimal values is done by firstly evaluating policies with the expression (2.14) and then 

iterated until values converge. Then policy improvement is done by extracting values from 

each evaluated policy following the one-step look-ahead Bellman equation again: 

^5%&(") = argmax
.

G	5(")|", %)
2!

[,.(", %, ")) + \c0&("))],																		(2.15) 

where l is iteration number for policy improvement. 

With all iterative algorithms approach, starting point has to be selected. If there is 

previous knowledge available, it can aid convergence and shorten time of convergence 

significantly. Otherwise, the process starts with a random policy (for example all east), or 

all values zero, and then iterates until optimal policy is found.  

If algorithms for policy iterations are designed carefully, optimal policy 

information could be obtained faster than other methods. For this, some heuristic approach 

would be required in order to find the best performing policy without going through full 



	

	
	

59	

iteration steps. As it is visible from following chapters of this thesis, we utilize foraging 

heuristics to reduce convergence time. 

 

2.5   Partially Observable Markov Decision Processes 

 

 

 

 

 

 

 

 

Figure 2.7 – Graphical model of Partially Observable Markov Decision Process  

 

In the Partially Observable Markov Decision Process (POMDP) it is assumed that 

system dynamics are governed by an MDP, but it is not possible to observe the dynamics. 

MDPs are great generalization of Hidden Markov Models; however, it is hard to find real-

world process that is characterized by a full state observability. Usually there is always 

some part of the state space that is not directly observable. This is the case with the collision 

avoidance problem as well. Therefore, when there is an inherent state uncertainty, 

sequential decision problems are modeled as POMDPs. As there are state uncertainties 

involved, POMDPs introduce observations, which are used to gain some insights about the 

state space.  
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POMDPs model state as a stochastic observation with the main goal of finding 

policies that take into account uncertainties about the current state, and future states in 

which the system will evolve, while maximizing predefined rewards. This is usually 

achieved by finding optimal actions for each belief state, which are defined as probability 

distributions over the state space, but as state space is unobservable, distribution based on 

observations taken are created. In that sense, there is a belief that the state space “looks” 

the same as initially believed. This allows us to solve similarly as MDPs. 

 POMPDs are designed to deal with incomplete information and noisy 

environments. There are many applications of POMDPs in the field of computer science 

and robotics, such as robust mobile robot navigation [Simmons and Koenig, 1995], robot 

control [Pineau and Thrun, 2002], machine vision [Bandera et al., 1996; Darrell and 

Pentland, 1996], autonomous helicopter control [Bagnell and Schneider, 2001; Ng et al., 

2003], as well as in medical diagnosis [Hauskrecht, 1997] and machine maintenance 

[Puterman, 1994]. 

Similarly as with MDPs, Partially Observed Markov Decision Process can be 

defined as tuple: 

						($, &, 5("!%&|"! , %!), ,. , m, *, \, R)      (2.16) 

In addition to the previously described parameters of this tuple POMDPs include 

set of possible observation the system can receive * , and the observation function m 

defined as the probability that the system, after taking an action %! and evolving to a state 

"!%&, will receive observation ) that depends on the new state "!%&, where ) ∈ *. 

The major difference in handling POMDPs when comparing with MDPs is that 

beliefs have to be updated. The belief state mimics the underlying state, so it is inherently 

Markovian, therefore, only knowledge of the previous belief state is needed, the action that 

is taken and the current observation. The main issue with the POMDP is that the belief 

state is defined on a continuous state space, even when the underlying state space is finite. 

This is because probability distributions over states are infinite [Howard, 1960].  
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When the transition from the state " to state ") occurs, the agent observes ) ∈ *, 

where conditional probability is defined by m()|"), %). If n is probability distribution over 

the state space $, then n(") represents probability that the environment is in the state ", 

therefore [Howard, 1960]: 

n)(")) = om()|"), %)G5(")|", %)n(")
2∈6

																																							(2.17) 

However, expression (2.17) has to be normalized with normalizing factor o as per 

the following: 

o =
1

5()|n, %)
		,																																																															(2.18) 

where 5()|n, %) = ∑ m()|"), %)2!∈6 ∑ 5(")|", %)n(")2∈6 . 

Similarly as with MDPs, the goal is for an agent at each time stamp to choose 

actions that would maximize expected future discounted reward. Generally, expected 

return for sequence of states "! and actions %! could be formulated as follows: 

,. =G\!,("! , %!)

7

!-'

																																																											(2.19) 

where \ ∈ [0,1) is a discount factor and r represents the reward function. 

 

It is now necessary to find belief state transition function s when set of belief states 

t over the POMDP states is defined, with action space same as in the original POMDP, 

reward function defined for the belief states ,: t	x	&	 → ℝ, and discount factor \ that is 

same as the underlying POMDP [Howard, 1960]: 

s(n, %, n)) = G5(n)|n, %, ))
8∈9

5()|n, %),																																									(2.20) 

where: 
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5(n)|n, %, )) = x
1				if	the	belief	update	with	arguments	n, %, )	returns	n)

0																																																																																				otherwise
							(2.21) 

Commonly when process operates in a noisy stochastic environment, initial state is 

unknown. This uncertainty of the initial state is represented by the probability of starting 

in state ", denoted as n'("), which is used to initialize belief state update, while the update 

is done as per Bayes’ rule as depicted in (2.17). As belief state update is the only possibility, 

considering that underlying POMDP state is unobservable, the state update is actually state 

estimation. 

In line with MDP procedure, solution to a POMDP is a policy ^ that takes into 

account belief-state when determining which action maximizes the expected discounted 

reward.  

When the state is known [Wolf and Kochenderfer, 2011], the following value 

function depicts the expected discounted return from a given state ": 

c0(") = ,U", ^(")V + \G 5(^(")|", ")) G m(^(")|"), ))c0("))
8∈9(2)2!∈6

																			(2.22) 

In this case the optimal policy ^∗ maximizes the expected discounted return from 

every state and has the following value function: 

^∗(") = argmax
.∈<

Å,(", %) + \ G 5(^∗(")|", ")) G m(^∗(")|"), ))c∗("))
8∈9(2)2!∈6

Ç			(2.23) 

c∗(") = max
.∈<

Å,(", %) + \ G 5(^∗(")|", ")) G m(^∗(")|"), ))c∗("))
8∈9(2)2!∈6

Ç						(2.24) 

However, as POMDP functions in environments where systems do not know 

underlying states exactly, reward function and value function are evaluated over a belief-

state. For the particular belief-state, reward function can be defined as: 
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,(n, %) =Gn("),(", %)
2∈6

																																								(2.25) 

 

Now, value of a belief-state can be expressed as follows: 

c0(n) = ,Un, ^(n)V + \ G 5U)Én, ^(n)V c0(n))
8∈9'

,																		(2.26) 

where n) represents a future belief-state based upon the observation ). A POMDP policy, 

^(n), specifies an action to take while in a particular belief-state n. The solution to a 

POMDP is the optimal policy, ^∗ , which chooses the action that maximizes the value 

function in each belief state [Wolf and Kochenderfer, 2011]: 

^∗(n) = argmax
.∈<

Å,(n, %) + \ G 5()|n, %)c∗(n))
8∈9(2)

Ç																					(2.27) 

c∗(n) = max
.∈<

Å,(n, %) + \ G 5()|n, %)c∗(n))
8∈9(2)

Ç.																						(2.28) 

Finding an exact solution for ^∗ is often unfeasible as it requires iterating through 

all possible combination of actions, future belief-states, and observations until a certain 

finite moment, after which is necessary to determine optimal policy based on all rewards 

and probabilities. This process is computationally demanding even for moderately sized 

POMDPs; therefore, approximation methods were introduced to solve large POMDPs, as 

they generally scale much better.  

 

2.6 Solution methods for large POMDPs 

As described earlier, exact solutions for moderately sized POMDPs are 

impractical due to computational constraints. This is the reason why approximation 
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methods were developed to deal with POMDPs that contain large number of states. There 

are two main approaches to solving POMDPs: offline that approximate the optimal policy 

for every possible belief-state, and online that solve only for the subspaces reachable from 

the current belief-state [Wolf and Kochenderfer, 2011]. Online solutions minimize problem 

and require much less time to compute than offline methods. 

Offline POMDP solution techniques are discrete methods that require finite number 

of action and state spaces. Various discretization approaches, such as Point-based Value 

Iteration by Pineau et al. [2003], Heuristic Search Value Iteration by Smith and Simmons 

[2004], or Successive Approximation of the Reachable Space under Optimal Policies by 

Kurniawati et al. [2008], require accounting for each unique state and observation. Once 

an approximation of the value function is attained, the system can choose the action that 

maximizes the function defined by the optimal policy for the current belief-state.  

On the other hand, online approaches reduce computational time of approximation 

as the search for the optimal action is done only from the current belief-state, rather than 

to compute the optimal policy for all belief-states. Discrete solving methods do not scale 

well with the large POMDPs as state space increases exponentially with the state variables. 

However, online POMDP solution methods compute series of different actions to find the 

largest discounted returns, which makes the compact representation of the belief-state in 

large state spaces and real-time approximation of solutions difficult to execute. Paquet 

proposed a Real-Time Belief Space Search (RTBSS) as one of the online POMDP 

approximation methods for large POMDPs [Paquet et al., 2005; Ross et al., 2008]. RTBSS 

method reduces computation time by factoring representation of the belief-state. Because 

of the factored representation, it is possible to represent state variables as independent 

entities and assign probability to each possible value of each belief-state variable. This 

allows for subspaces identification with probabilities of zero, which the system will not 

explore when searching belief-space for optimal actions.  
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Figure 2.8 – Example of POMDP search tree 

 

It is possible to represent a belief-state as a tree, similarly like in Figure 2.8, by 

starting at the current belief-state n. The branches correspond to possible actions %3 and 

observations )3. Each combination of actions and observations will result in a new belief 

state at the next depth level of the tree. The process is repeated for each node until reaching 

some maximum depth, while the optimal policy is determined for the current belief-state. 

At each depth level, RTBSS will explore each possible belief-state given the apparent 

observations at that level. At this time, the algorithm determines belief-state variable value 

probabilities using transition and observation models with a goal of selecting the action 

with the highest value. In order to reduce computation times, RTBSS uses branch and 

bound methodology to reduce and trim sub-trees. The RTBSS algorithm solves the issue 



	

	
	
66	

of approximation, but the problem of adequate belief-state representation remains. Thrun 

[2000] developed a feasible solution for the belief-state representation problem with his 

sample-based belief-state representation model that allows for non-linear transitions. 

Thrun’s particle projection algorithm is especially useful for predicting future belief-states. 

 

2.7   Reinforcement learning 

Up to this point assumption was made that transition probabilities and reward 

functions are known; however, it is rare to find a system that offers this data to an abstract 

agent in the real sector. Considering collision avoidance problem, transition probabilities 

for going from one state to another are not intuitively known by the decision maker. Most 

of the navigators will have a belief about being in a certain state, but the risk thresholds 

would vary significantly.  

 

 

 

 

 

Figure 2.9 – Head-on evasive course selection 

 

In Figure 2.9, an example of head-on situation is depicted where own vehicle has 

an option of selecting various courses in order to avoid collision with the head-on target. 

What is not known is which of these courses is the most rewarding course and what is the 

transition probability associated with each of the courses. Let’s disregard Collision 

Regulations and personal intuition about the navigation for now. In case that the ownship 
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agent is an autonomous agent that is first time set in this environment and in this situation. 

Agent is instructed not to collide and not to run aground with clearly stated rewards and 

costs for being collision free or collided. The goal of this study is model-free learning, and 

this is where reinforcement learning will aid to achieve a goal without necessity of fully 

modeling the world. For the sake of clarity, in this section it is assumed that the underlying 

Markov process is fully observable (MDP), but it would be extended to POMDPs in the 

future sections of this thesis. 

As the model is unknown ahead of time, offline planning is not an option anymore. 

Alternatively, the abstract agent needs to learn the model online while exploring the 

environment. Optimized behavior is not designed, so the agent has to interact with the 

environment, pick actions and learn if these actions are good or bad. In addition to 

complexity of designing rewards and carefully discretizing action space, a proper balance 

of exploitation of the knowledge the agent has from previous experience with exploration 

to gain the knowledge is a challenge that needs to be confronted in the design stage of the 

collision avoidance and motion control models. It is also worth mentioning that 

reinforcement learning is often used when dealing with high dimensionality and 

complexity of known models as well [Howard, 1960]. It is immediately noticeable that 

allowing for an expensive commercial sea surface vehicle with dangerous cargo to explore 

the world on its own without knowledge of states and rewards would not be a good idea, 

so a certain level of knowledge is required before allowing vehicles to explore the world 

on their own. As the aim of this research is not full autonomy, but rather a decision-making 

support, human knowledge, experience, intuition, and uncertainty to learning models are 

integrated and endeavors made to find optimal policies and associated actions.  

Reinforcement learning is not a revolutionary idea, as the premise is taken from the 

fields of biology and psychology where human and animal behavior is studied, specifically 

behavior after receiving rewards. The system is similar to the MDP and POMDP systems 

described earlier. The only difference is that the agent does not know that the MDP is there, 

but the system still behaves as an MDP. In the case of an MDP, agent takes an action, 

transitions in another state (which is observable to the agent), gets a reward and collects 

knowledge of the transition experience. After this, an agent again selects an action and 
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transitions to another state collecting more knowledge about the environment. One 

successful example of utilizing reinforcement learning is the snake robot from the 

Stanford’s AI Lab [http://ai.stanford.edu/~ang/originalHomepage.html]. The task given to 

the snake robot was to learn to climb a step without modeling the environment and without 

modeling forces on the robot. The only thing used as an input was a reward that the robot 

will get if it climbs a step. This approach is allowing the robot to learn on its own how to 

climb a step, but another approach could be to utilize knowledge of how real snakes climb 

steps and program that knowledge into the model so that this knowledge is available to the 

agent.   

 

 

 

 

 

Figure 2.10 – States without transition probabilities 

 

As depicted in Figure 2.10, it is possible to observe states and know possible 

actions, but it is not possible to see reward function or transition probabilities. When the 

agent faces this environment for the first time, it does not know which of the states: 

collision-free, near-miss, or collided is good or bad. This is the reason commercial vehicles 

are not allowed to explore the world, collide, collect negative rewards, and then learn that 

collided is a bad state. Initial knowledge is achievable offline with models or simulation 

and then transferred to an agent that is living in the real world. This is the reason why 

approach in this research includes both model-based and model-free learning. Even though 

for different reasons, model-based learning is actually performed for many years before the 

new build vessel is allowed to sail out from a shipyard. A series of simulations with 

mathematical models is done in the box, which is then confirmed under controlled 
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conditions during sea trials. This collected data is then used to prime the navigators with 

knowledge about the new vehicle, so that proper decisions could be made about the motion 

control of the vehicle. Even though priming is important, models and simulations can’t 

capture full dynamics of the real world. Motion control is complex and high-dimensional, 

so a fair amount of approximation is needed to get the representation of the environment. 

This is the reason why exploration is of crucial importance for dynamic environments. 

There are many algorithms and approaches in the field of reinforcement learning 

[Sutton and Barto, 1998], but for this three-fold problem of motion control, collision 

avoidance, and hazard-alerting, Q-learning and SARSA algorithms fit well. 

The idea behind the Q-learning is to utilize similar process as value iteration, but 

with Q-values. So, when looking at (2.12), a way has to be found to iterate value of Q-

states d by replacing state values of Bellman equations: 

d3%&(", %) ←G	5(")|", %)
2!

Ñ,.(", %, ")) + \max.!
d("), %))Ö 														(2.29) 

As transition probabilities and/or reward function values are unknown to the 

abstract agent, sample estimation with Q-values is utilized and Q-state values 

incrementally updated: 

d3%&(", %) ← d3(", %) + Ü á,(", ")) + \max.!
d("), %)) − d3(", %)â,									(2.30) 

where ,(", ")) is the reward that agent receives when moving from the state " to state "), 

and Ü is learning rate (0 < Ü ≤ 1). 

If finite horizon is not utilized, or if discounting factor close to 1 is assigned, then 

convergence could be difficult, so in the problem of motion control, collision avoidance 

and hazard alerting, it is necessary to limit the horizon, as more immediate situations and 

rewards are of greater interest. The learning factor is crucial when designing a model. 

Learning factor closer to 0 will incentivize agent to rely on prior knowledge and disregard 

exploration, while learning factor closer to 1 will use new experience to override previous 
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knowledge and allow for more exploration than exploitation. Presented collision avoidance 

system has to be risk averse, so when in online stage, low learning rate would be assigned 

in order to discourage exploration, while higher learning rates could be assigned in offline 

learning models (simulation and mathematical modelling) which will provide enough 

knowledge for agent to exploit real-world environments. Certain amount of exploration 

should always be encouraged, as otherwise learning could lead to overfitting and that the 

agent stays within the known comfort and safety. The following example shows the 

relationship between exploration and exploitation.  
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                  (c)              (d) 

Figure 2.11 – Narrow channel navigation – RL approach 

 

In this example, a situation where sea surface vehicle is sailing in a narrow channel 

is depicted. Vehicle has to stay within the channel, or otherwise it runs aground. Vessel 

receives rewards if it reaches WP 1 or WP 2. However, none of the information is known 

to the agent. It has to fully explore waters in order to learn which states are good and which 

states are bad. Figure 2.11 a) shows the beginning of exploration. Figure 2.11 b) shows 

several first iterations and it is possible to notice that the vehicle found a rewarding state. 

Now, it is crucial to state that if this system was designed to prefer exploitation and avoid 
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exploration (learning factor Ü is closer to 0), then the vehicle would simply stay within 

these two states and collect rewards. It would never move forward. By allowing exploration 

(learning factor Ü is closer to 1), an agent is encouraged to search for other rewarding states 

and so figures 2.11 c) and 2.11 d) show how an agent is visiting states that have large 

negative rewards in order to learn which states are good and which states are bad. 

This kind of approach in the real-world would not be acceptable. This is the reason 

why some level of previous knowledge is required. Also, integration with electronic charts 

(ECDIS), RADARs and AIS would allow for vehicle to have necessary information about 

available states. In this way, the agent would exploit previous knowledge, but to allow for 

the vehicle to reach next waypoint, a certain degree of exploration is required. Finding the 

appropriate learning rate is something that is done on trial basis, so it will depend on the 

situation, model and goals. 

With some assumptions, SARSA (", %, ,, "), %)) algorithm is a good alternative to 

Q-learning, as it uses an actual action rather than to maximize over all possible actions. 

The Bellman update than looks like (Sutton and Barto, 1998): 

d3%&(", %) ← d3(", %) + ÜU,(", ")) + \d("), %)) − d3(", %)V.												(2.31) 

As long as there is an appropriate exploration approach, SARSA will converge to 

the same result as Q-learning, but with less computational expense. More on these 

approaches in later chapters of this thesis. 
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Chapter 3 
 

Noisy sensing, data fusion and motion 
control 

 

In this chapter the first stage of the dynamic collision avoidance problem is 

presented, which is motion control and sensing. Motion control is successful as long as 

sensing of the environment is within acceptable levels of noise. Various manufacturers 

deliver different levels of quality within sensing; therefore, it is valuable to investigate 

uncertainties of the sensing equipment. False targets or nuisance readings will inevitably 

result in reduced trust in the collision avoidance system by the operators.   

To model collision avoidance problem, focus is maintained on reducing uncertainty 

as much as possible. In order to determine risk of collision, it is important to collect 

information about ownship and intruders’ heading, course, speed, relative distance and 

angle, etc. All this information is gathered by utilizing various sensors. Even though a case 

of collision avoidance with perfect sensor is covered, this is done to benchmark 

performance of the model in the real-world scenarios, as sensors are always bounded by 

noise, interruption, and field of view restrictions. One of the challenges involving 

shipboard sensors is the inconsistency of noise experienced by different manufacturers of 

sensing equipment and modeling their uncertainty. Also, environmental impact on sea 

surface vehicle's motion control is of great importance when executing collision avoidance 

maneuvers. Therefore, this chapter starts by introducing Foraging Particle Filter (FPF) that 

will be used to reduce uncertainties caused by sensor noise. 
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3.1   Foraging Particle Filter (FPF) 

When estimating a correct output, various process and measurement noises should 

be considered. If a system of interest is observed holistically, system's states provide the 

current status of control, condition, and observability of the process. To ensure precise 

controls, system state updating within the sampling time frame is of crucial importance. 

However, due to noisy sensing, estimating internal states becomes a difficult task that 

usually leads to approximation of hidden states. State estimation, and more general 

filtering, plays a significant role in various domains, such as target tracking [Chen, 2012; 

Dias and Bruno, 2013], robot navigation [Hiremath et al., 2014; Atia et al., 2010], computer 

vision and robotics [Dellaert, et al., 1999; Isard and Blake, 1998], process management 

[Gao and Ho, 2007; Abdullah and Zribi, 2013; Gao and Ho, 2006], etc.  

For linear systems with Gaussian noise, industry and academia has commonly 

turned to Kalman filter solutions for state estimation [Fossen and Perez, 2009; Gustafsson 

et al., 2000; Kailath et al., 2000; Chen, 2012; Roshany-Yamchi et al., 2013] and grid-based 

methods for dynamical systems with finite states [Ristic et al., 2004; Arulampalam et al., 

2002]. Nonlinear systems required a different approach, as state estimation is not that 

straightforward and includes hidden states. Extended Kalman Filter (EKF), Cubature 

Kalman Filter (CKF), and Unscented Kalman Filter (UKF) have been developed for this 

purpose, but due to their poor state estimation recursive Monte Carlo signal processing 

solutions have gained in popularity [Sunahara, 1969; Julier and Uhlmann, 1997; 

Arasaratnam and Haykon, 2009]. Particle filters thrive well in nonlinear systems with non-

Gaussian measurement noises and outlier robustness. The main objective of particle 

filtering is approximation of the posterior distribution by drawing a number of particles 

from the approximated distribution when some of the state variables are only partially 

observed or unknown.  

In this chapter several known issues of particle filters are studied. Considering the 

approximate nature of posterior estimation and particle representation, particle degradation 

and impoverishment problem arises. Resampling process can help particle degradation, but 

the sample impoverishment is more complex to tackle. If left untreated, particle filters 
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could fail to correctly estimate the dynamic state. Particle filters estimate states of partially 

observable Markov chains with high computational burden, degree of which depends 

largely on algorithmic solutions for a posterior estimation. The intention is to address issues 

of particle degradation and impoverishment by generating particle scions and designing a 

lean algorithmic solution with higher computational efficiency. 

This approach focuses on likelihood determination and resampling procedure that 

follows foraging principles from nature. Defined in this way, the approach belongs to 

metaheuristics methods that are incorporated in the classical MDP filter in order to enhance 

its performance. Literature review offers us several intelligent and optimization approaches 

to creating intelligent particle filters: Evolutionary Algorithms (EA) [Uosaki et al., 2004; 

Uosaki and Hatanaka, 2007], Genetic Strategy (GS) [Higuchi, 1997; Kwok et al., 2005; 

Park et al., 2009, Yin et al., 2016], Ant Colony Optimization (ACO) [Xu et al., 2009; Zhu 

et al., 2010; Heris and Khaloozadeh, 2013], Particle Swarm Optimization (PSO) [Tong et 

al., 2006; Zheng and Meng, 2008], Artificial Fish Swarm (AFS) [Xiaolong et al., 2008], 

Markov Chain Monte Carlo (MCMC) PSO [Jing and Vadakkepat, 2010], etc. Proposed 

approach is based on the similar philosophy of intelligent optimization taking advantage of 

foraging behavior of wildlife. In the proposed algorithm sampling phase is enhanced by 

utilizing intelligent foraging in order to attract fittest particles of the state space to most 

probable locations. In the FPO, foraging is used as an adaptive fitness generator that aids 

estimation performance and improves solutions of the filtering problem. 

 

3.1.1 Nonlinear filtering model 

The general particle filter estimates states of dynamical systems. To estimate 

posterior, particle filters require data and probabilistic generative model of the system. Data 

will depend on the dynamic system for which the particle filter is used and can contain 

sensor measurement data and control data. In the continuation of this chapter and to follow 

a common notation from control theory, subscript t is used to refer to the occurrence in 
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time, while superscript t  is be used for all events that led up to that time !. System dynamics 

are described as: 

ä! = ã=Uä!,&, å=$V																																																											(3.1) 

ç! = ã>Uä! , å>$V																																																																(3.2) 

é! = ã?Uä! , å?$V																																																															(3.3) 

where ã=(∙) , ã>(∙) , and ã?(∙)  depict process, measurement, and control functions 

respectively. ä! ∈ ℝ3( is the state to be estimated, ç! ∈ ℝ3) is the measurement and é! ∈

ℝ3* is the control in the system dynamics. However: 

ç! = ç&, ç4, . . . , ç!														and													é! = é&, é4, . . . , é! 

Therefore, measurement at the time ! is denoted ç!, while é! denotes the control 

within the time period (! − 1, !].  The dimensions of ä!, ç!, and é! depend on the particular 

system dynamics and are denoted as k= , k> , and k?  respectively. å=$ ∈ ℝ
3( , å>$ ∈ ℝ

3) , 

and å?$ ∈ ℝ
3* are noises with known probability density. 

Statistical model of the system dynamics described above could be defined as: 

T(ä')																																																																												(3.4) 

T(ä!|ä!,&)																																																																			(3.5) 

T(ç! , é!|ä!)																																																																	(3.6) 

where T(ä')  is an initial distribution that is used to build future state estimations, 

T(ä!|ä!,&)  could be defined as transition probability distribution that corresponds to 

process equation (3.1), while T(ç! , é!|ä!) is described as likelihood distribution that is built 

upon measurement and control distributions.  

Like other members of Bayesian filters, particle filters use data T(ä!|ç! , é!) to 

estimate the posterior distribution of the dynamical system following the recursive formula: 
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T(ä!|ç!,&, é!,&) = êT(ä! , ä!,&)T(ä!,&|ç!,&, é!,&)ëä!,&

!

'

																(3.7) 

T(ä!|ç! , é!) =
T(ç! , é!|ä!)T(ä!|ç!,&, é!,&)

∫ T(ç! , é!|ä!)T(ä!|ç!,&, é!,&)ëä!
!
'

																										(3.8) 

However, T(ä!|ç!,&, é!,&) and T(ä!|ç! , é!) contain complex probability integral, 

and as a non-linear system is described, it is difficult to obtain analytic solution for the 

posterior distribution. Considering the continuing nature of states ä , controls é , and 

measurements ç, it is difficult to calculate the entire posterior in reasonable time, even 

when applications are discrete. Instead of analytical calculations, particle filter 

approximates the posterior with a mass of particles ä!
[A](I = 1,2, . . . , 5ì), where 5ì is the 

number of particles. Initial particles ä'
[A] are drawn from T(ä').  One of the particle filters 

benefit is that the horizon is finite once number of particles has been selected. The 

challenge remains to find the number of particles to be generated while maintaining 

computational efficiency in line with the sampling frequency.  

Sequential Importance Sampling (SIS) [Rubin, 1988] is introduced to deal with 

difficulties of sampling from the posterior distribution: 

î(ä!|ç! , é!) = î(ä!,&|ç!,&, é!,&)î(ä!|ä!,&, ç!é!),																							(3.9) 

where î is importance distribution and T continues to represent nominal distribution. 

To approximate the posterior in an efficient way, weights are assigned to each of 

the generated particles. The weight of each particle could be determined by a recursive 

formula combining expressions (3.8) and (3.9): 

ï!
[A] =

T(ä!|ç! , é!)

î(ä!|ç! , é!)
																																																								(3.10) 

																																							ï!
[A] ∝ ï!,&

[A] T ñç! , é!|ä!
[A]ó T ñä!

[A]|ä!,&
[A] ó

î ñä!
[A]|ä!,&

[A] , ç! , é!ó
																																					(3.11) 



	

	
	
78	

ï!
[A]	 is the importance weight, while ïò!

[A]  denotes the normalized importance 

weight. Therefore, by utilizing Monte Carlo method, the posterior distribution T(ä!|ç! , é!) 

can be approximated as follows: 

T̂(ä!|ç! , é!) ≈ Gïò!
[A]õ ñä! − ä!

[A]ó

CD

A-&

																																							(3.12) 

where õ(∙)  is the Dirac delta measure. Therefore, taking into account Sequential 

Importance Sampling: 

_(ä!) = êä!
T(ä!|ç! , é!)

î(ä!|ç! , é!)
î(ä!|ç! , é!)ëä!

!

'

		≈ 		
1
ì5

Gï!
[A]ä!

[A]
CD

A-&

															(3.13) 

It is necessary to emphasize that sequential importance sampling suffers from 

particle degeneracy and after several iterations all, but one particle, will have small weights 

which can be misleading, especially if there is a long tail in the posterior distribution and 

higher probability is located in that tail. Doucet et al. [2000] have shown that particle 

degeneracy is unavoidable in sequential importance sampling. Effective sample size ì5EFF 

is a tool developed by Arulampalam et al. [2002], which can be used to determine particle 

degeneracy degree: 

ì5EFF =
1

∑ ñïò!
[A]ó

4
CD
A-&

																																																		(3.14) 

If the number of effective particles falls below a certain pre-defined threshold, 

resampling step is engaged. Various approaches to resampling are commonly used in 

practice with a common goal of avoiding particle degradation. However, resampling carries 

a sample impoverishment side effect, which can cause erroneous state estimation due to 

lack of particle diversity in the state space. Particle degeneracy is especially evident outside 

the three-sigma range of the posterior distribution. A general solution is resampling with a 

goal of removing weaker particles (particles with smaller weights) while retaining heavier 

particles (particles with larger weights). As denoted before, the main issue after resampling 
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is the impoverishment problem where iterations increase focus on one sampling position, 

while the number of unique particles decreases steadily reducing the accuracy of posterior 

estimation. In Figure 3.1 the effects of particle degeneracy and sample impoverishment can 

be seen.  

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3.1 – Particle weight update with (a) standard sequential importance resampling 

and (b) local search importance resampling (Source: Wang and Gao, 2016) 
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3.1.2 Foraging Particle Filter optimization 

Resampling solves the issue of particle degeneracy, but before proceeding with 

resampling, it is necessary to tackle the impoverishment issue after which it is possible to 

proceed with generation of the particle scions that would approximate posterior 

distribution. Proposal in this thesis is to use nature's foraging process when designing 

algorithm that will solve the issue of impoverishment. This solution is similar to genetic, 

swarm and evolutionary approaches, where intelligent optimization is used to ensure 

computational efficiency. Modified particle filter that exploits fitness function is presented, 

which can be defined as the food source with the highest energy nutrients.  

Foraging process applies to all living beings that have to use their sensing parts to 

search for the food. Mobility of foraging animals is driven by the food source. In this case, 

the food source represents any possible solution. Therefore, initially all generated particles 

in the first step are considered a possible solution / food source. Once the particle filter has 

generated the particles, foraging algorithm is employed to find particles with the fittest 

solution. If no previous observation / measurement is available, all generated particles will 

have the same probability. Then by utilizing the measurement available and adjusted for 

the measurement noise, food source is updated via recursive fitness probability formula. 

Number of recursive cycles has to be decided in advance, depending on the process and 

dynamic system that is controlled. The solution space is updated until the satisfactory 

threshold is reached, which again depends on the system dynamics. In this way sample 

impoverishment are managed before taking a resampling step.  

Once the initial set of particles is generated by drawing ä'
[A] from T(ä'), foraging 

process commences by determining the food position with the highest nutrient and energy 

values: 

T ñä!
[A]|ãJ!=

[A]ó =
ãJ!=

[A]

∑ ãJ!=
[3]DC

3-&

																																														(3.15) 

where T ñä!
[A]|ãJ!=

[A]ó is used to update the initially generated particle positions with the 
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fitness information, and PN is the particle number generated by the particle filter. In this 

case assumption is made that foraging is done in herd and that the number of herd members 

corresponds to the particle number. This will be used in the next step when the fitness of 

particles is compared with neighboring particle, after which the particle with lower fitness 

value is eliminated. The following expression is used to determine fitness function: 

ãJ!=
[A] = úäT ù−

1
2å5

ñç! − ç̃(!|!,&)
[A] ó

4
ü 																																						(3.16) 

where å5is the measurement noise covariance (this will depend on the system dynamics 

and if more than one observation source is available), ç! is the newest observation, while 

ç̃(!|!,&)
[H]  is the predicted value of	ç! given the measurements up to time (! − 1).   

The next step could be characterized as greedy update of particle positions with a 

goal of attracting particles towards the higher likelihood of the posterior distribution: 

ä!%&
[A] = ä!

[A] +†[A] ñä!
[A] − ä!

[I]ó																																									(3.17) 

where †[H] is a random number in the interval [−1,1] and ° is to differentiate between a 

monitored and neighboring particle, so it is a random selected index that will be different 

from J.  

If the fitness function shows that ä!%&
[H]  has a better fitness result than ä!

[H], then the 

position of the food source ä!
[H] is changed to ä!%&

[H] , otherwise it remains the same. In this 

way all particles are attracted to the region of higher fitness value and impoverishment is 

avoided. Iteration is repeated until pre-defined iteration counter is done, iteration time is 

satisfied, when fitness value reaches certain threshold, or some optimization/constraint rule 

is satisfied, which depends on the system dynamics and design of the particle filter. 

After the foraging process is completed, the particle filter resumes with sequential 

importance sampling, assigning weights to particles as described in Chapter 3.1.1. ì5EFF 

is used to determine if resampling is required. Resampling is unavoidable, as after a while 

all but one particle will have small weights. If ì5EFF is equal to ì5, all particles have same 
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weights and that is the lowest degree of particle degeneration. On the other hand, if the 

ì5EFF = 1 only one particle would accumulate all the weight, which is not desirable and 

carrier the highest degree of degeneracy. For example, threshold could be set to ì5!J =
4
K
ì5. 

 In order to resolve degeneracy issue, resampling is done as per the Multinomial 

Resampling technique [Doug and Cappé, 2005]. For NP times the following steps are 

repeated: 

1) Generate a random number éA from the uniform distribution (0,1]; 

2) Search the variable J ∈ {1, . . . , ì5} which satisfies: 

G îL

H,&

L-&

< éA ≤ G îL

H

L-&

																																																							(3.18) 

3) Store the ä!
[H] as a scion particle. 

Once the multinomial resampling is completed, particles with small weights are 

eliminated and scion particles are created for the particles with larger weights. Therefore, 

the posterior T̂(ä!|ç! , é!) distribution can be approximated by the scions as: 

T̂(ä!|ç! , é!) ≈
1
ì5

Gì5!
[A]õ ñä! − ä!

[A]ó

CD

A-&

																																										(3.19) 

where ì5!
[A] is the number of scions for the parent particle ä!

[A].  

Foraging Particle Filter algorithm is as follows (in this example time limit is set for 

an iteration): 
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________________________________________________________________________ 
Algorithm 1 - FPF Algorithm 
_______________________________________________________________________ 

Input: particle number NP; initial sample set	ä'
[A]  

Output: State estimation result ä§! 

1 Initialization: ! = 0 

2 for I = 1, 2, . . . , ì5 do: 

3  Draw initial particles 	ä'
[A] from T(ä') and set the initial weights as 1 ì5•  

4  Sample from the distribution T(ä!|ä!,&) to obtain particles ä!
[A] 

5 end for 

6 Set iteration counter, ! ← 1; 

7 while ! ≤ + do 

  Foraging sample optimization:; 

8  for I = 1, 2, . . . , ì5 do: 

9   Calculate fitness value for all particles ä!
[A] with (3.16) 

10 Update the particles with (4.15) to receive particle estimation with 

fitness value ä!
[A] 

11  Update the particle positions with greedy selection (3.17) 

12  Return updated ä!
[A] 

13  Increment iteration counter, ! ← ! + 1; 

14 end for 

15 end while 

16 Calculate the normalized weights for all ä!
[A] particles using equations (3.10) and 

(3.11) and denote particles as ßä!
[A], ïò!

[A]® 

17 Use the expression (3.14) to evaluate sample effectiveness 

18 if ì5EFF < ì5!J then 

  Multinomial resampling:; 

19  for I = 1, 2, . . . , ì5 do: 

20  Generate a random number éA from the uniform distribution (0,1] 
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21  Search the variable J ∈ {1, . . . , ì5} which satisfies (3.18) 

22  Store the ä!
[H] as a scion particles 

23 end for 

24 Estimate and return the hidden state ä§! using equation (3.19) 

25 else 

26  Estimate and return the hidden state ä§! using equations (3.12) and (3.13) 

27 end if 

28 end 

 

 

3.1.3 Experimental results 

In order to benchmark performance of the Foraging Particle Filter, a scalar growth 

model experiment has been conducted. In this example a well-known econometrics model 

that is commonly used to evaluate nonlinear filters [Arulampalam et al., 2002; Park et al., 

2009; Kalami Heris and Khaloozadeh, 2014] is used. The scalar growth model is defined 

by: 

ä!%& = \&ä! +
\4ä!
1 + ä!

4 + \Kcos(1.2!) + ë!																																		(3.20) 

™! =
1
20
ä!
4 + ú!																																																					(3.21) 

where ë!  and ú!  are independent zero-mean Gaussian noises with variances Ḿ
4  and É

4 

respectively. The constants of the model are defined as: \& = 1, \4 = 12, \K = 7, Ḿ
4 = 4, 

and É
4 = 4. The initial state of the dynamic system is set as ä' = 0.1. 

Add extrinsic input é! to (3.20): 

ä!%& = \&ä! +
\4ä!
1 + ä!

4 + \Kcos(1.2!) + é! + ë!																											(3.22) 
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It is assumed that é!  is unknown and that model receives measurements as per 

(3.21). Foraging Particle Filter (FPF) is compared with basic particle filter (PF), Sequential 

Importance Resampling (SIR) filter, Auxiliary Particle Filter (APF), Regularized Particle 

Filter (RPF) and Ant Colony Estimator (ACE). All these filters are used in simulation to 

estimate the state in (3.20) and (3.21). In the simulation it is assumed that: 

é! = 70õ(! − 40) = x
70,														! = 40

0											otherwise
																																												(3.23) 

where õ(∙) denotes Dirac's delta function. The algorithms are not allowed to know the 

value of é! and will have to use expression (3.20) instead of (3.22) for state estimation. 

One thousand simulations have been conducted with each algorithm. The Particle 

Number for all algorithms has been set to 500, while PF and RPF used resampling threshold 

of 100. FPF algorithm is trialed with various number of particles and discovery was made 

that with as low as 75 particles it is possible to get comparable and even better performing 

results.  

In Table 3.1 the minimum RMSE (the best), the maximum RMSE (the worst) and 

the mean of the Root-Mean-Squared Error (RMSE) values of all algorithms are compared. 

Also, box plots showing statistical representation of the RMSE is given in the Figure 3.2. 

Algorithms were not permitted knowledge of the input signal as defined in (3.22) as this 

signal creates sample impoverishment problem. Comparative performance of FPF was 

done as well.  

As depicted in Figure 3.2, it is evident that FPF and ACE statistically outperform 

other algorithms. FPF requires more steps due to weighing requirements, but it still makes 

lower computational burden than PF, SIR, APF or RPF algorithms. Even though FPF and 

ACE outperform other algorithms in all aspects of RMSE, low standard deviation shows 

us that these methods are reliable and sustainable solutions. 
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Table 3.1 – Root-Mean-Squared Error comparison for observed algorithms 

Algorithm Mean Min. Max. STD 

PF 45.6038 14.6842 75.2844 7.6385 

SIR 45.8362 14.8038 74.8728 7.4245 

APF 45.6277 14.4604 75.5792 7.7584 

RPF 32.1084 1.0400 68.3889 19.1499 

ACE 3.4547 0.6171 19.3974 3.4932 

FPF 3.0119 0.2539 21.0613 2.6266 

 

By utilizing trial and error method it was determined that increasing particles 

number beyond a certain level will only increase computational expense without any 

significant improvements in estimate accuracy. This is numerically presented by Table 3.2. 

As visible from Figure 3.3, STD falls significantly after 50 iterations. Therefore, it is 

possible to increase the number of iterations beyond the 100 iterations until it is noticed 

that the computational expense is higher than the benefit of an extra iteration. Of course, 

more powerful machines will allow for a higher number of iterations, but as long as the 

machine can handle 100 iterations, results are acceptable from the accuracy point of view. 

Similarly, when considering figures 3.4, 3.5, and 3.6, it is possible to notice a similar trend, 

even though for a Minimum RMSE, difference is not as prominent as it is in the case of 

Standard Deviation. If computing power allows for 500 iterations, an optimal resulting 

Scalar Growth Model can be achieved, even though 100 iterations would still allow for 

good results as well, albeit suboptimal. 
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Figure 3.2 – Box plots depicting statistical RMSE information of state estimation with 1000 

iterations 

 

 

 

 

 

 

 

Figure 3.3 – Standard Deviation for Scalar Growth Model  
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Table 3.2 – Influence of Particles Number on RMSE 

Particles Mean Min. Max. STD 

1 10.5434 0.0019 27.8876 7.7554 

5 8.0041 0.0012 27.313 6.6277 

10 5.9845 0.0018 27.4369 5.2042 

25 5.014 0.0013 24.3715 4.3996 

50 3.6203 0.0041 28.0541 3.1935 

75 4.279 0.0006 25.6167 3.7616 

100 3.5148 0.0033 23.955 3.0667 

500 2.9119 0.0019 19.9184 2.5136 

1000 2.8664 0.0004 27.0695 2.4866 

   

 

 

 

 

 

 

 

Figure 3.4 – Minimum Root-Mean-Squared Error for Scalar Growth Model 
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Figure 3.5 – Mean Root-Mean-Squared Error for Scalar Growth Model 

 

 

 

 

 

 

 

Figure 3.6 – Maximum Root-Mean-Squared Error for Scalar Growth Model 

 

 Figures 3.7 and 3.8 depict success rate of FPF in estimating scalar values, where it 

is visible that proposed Foraging Particle Filter manages to estimate scalars effectively with 

minimal errors. In order to showcase scalar estimation accuracy, iterations number has 

been reduced to 100 to declutter the overview. 
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Figure 3.7 – Foraging Particle Filter scalar estimation with 1000 iterations 

 

 

Figure 3.8 – Foraging Particle Filter scalar estimation with 100 iterations 
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3.2   Nonlinear filtering for motion control of sea 

surface vehicles 

The main goal of designing Foraging Particle Filter is to reduce uncertainty and 

improve state estimation in collision avoidance system dynamics. Together with position 

fixing, sensor errors and human uncertainties, heading control is one of the parameters that 

have significant impact on accurate representation and collision avoidance decision-

making. In the proposed model, sea surface vehicles are assumed to be ocean going vessels 

of various size that deliver cargo and passengers; therefore, dynamic positioning is not 

explicitly covered in this thesis, but this work can be extended in the domain of the offshore 

industry with minor adjustments. One could argue that the present setup onboard the 

vessels is sufficient for effective decision-making, however in lieu with the development 

of decision support system, dynamics with tighter motion control that take in consideration 

uncertainties and sensor noises are required to effectively deliver accurate state estimations 

and appropriate control measures. 

 

3.2.1 Ship motion control overview 

In the last 40 years the demand for accurate ship handling and reliability of the 

motion control has been increasing. The level of demand correlates with the operational 

demands, so there is higher demand in the offshore, autonomous, and precision sailing 

industry, while the classic navigating vessels have relaxed standards due to the ocean-

operating zones where classic autopilot with lower level of precise filtering and actuator 

control is acceptable. However, modern vessels already have a sophisticated equipment 

that allow for implementation of various software solutions that could significantly 

improve motion control while the cost of implementation would remain acceptable. 

Position and heading control with trajectory tracking is of interest of this research, but other 

control objectives, such is wave-induced motion reduction, could be included in the model. 
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Kalman filters have been used extensively in the previous years, as the level of 

discretization and linearization was acceptable for the motion control. However, given the 

stochastic nature of the external forces (wind, waves, and currents), aim is to use nonlinear 

state estimation that can avoid linearization, can accept other than Gaussian noises and can 

avoid computing Jacobi matrices. When the system dynamic is strongly nonlinear and has 

a serous noise levels, particle filters offer a better fit for the filtering task.  

As mentioned earlier, the level of precision in sea surface vehicles' motion control 

depends primarily on the operational demands, while being influenced significantly by the 

environmental forces. Figure 4.9 delivers a general overview of the modern motion control 

system, which consists primarily of the navigation and signal processing module, guidance 

module and control module [Fossen, 1994; Fossen, 2002]. The trajectory generation largely 

depends on the operator's requirement. In this study, a decision support system for the last-

minute collision avoidance at sea is of interest. Therefore, vessels are assumingly following 

their passage plans and the guidance system will engage only after the collision avoidance 

sequence is engaged. Following the collision alerts and taking in consideration other 

parameters of the system dynamics, the guidance systems needs to generate trajectory that 

will safely avoid collision, grounding, allusion with minimum deviation from the planned 

route taking ship's actual motion dynamics that will allow operators to execute proposed 

maneuvers. The controlling module can deal with heading control, position control and 

even pitch and roll motion damping. In the proposed model, classic vehicles with propeller 

and rudder control are covered; therefore, main focus is heading control, while for 

positioning a classic position fixing method is used, as there are no actuators for automatic 

position fixing assumed. However, even though positioning and pitch and roll damping is 

not a part of the proposed model, these could be easily integrated for sea surface vehicles 

requiring dynamic positioning. Finally, the navigation model takes the focus of navigator’s 

attention as it provides reliable measurements of position and heading by collecting data 

from GNSS (GPS/DGPS, GLONASS, GALLILEO, etc.), speed logs, RADAR and ARPA, 

gyrocompasses, echo sounders and accelerometers. Not many ocean-going sea surface 

vehicles carry accelerometers onboard, but considering their fairly low price, integrating 

the inertial navigational system in the existing bridge layout is not a difficult or expensive 

task.  
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Figure 3.9 – Basic components of a modern ship motion-control system (Source: Fossen, 

2002) 

 

Wind, waves, and currents are considered stochastic environmental forces 

disturbing the motion control system, which are separated in wave- and low-frequency 

components [Fossen, 2002]. Once reaching the hull of the sea surface vehicle, waves create 

pressure changes on the hull surface that will result in pressure-induced forces. Waves that 

depend linearly on the wave elevation have the same frequency as the waves and are called 

wave-frequency forces [Fossen, 2002]. However, there are also nonlinear wave forces that 

exist due to quadratic dependence of the pressure on the fluid-particle velocity and have 

both higher and lower frequencies than the wave frequencies [Newman, 1977; Faltinsen, 

1990]. The high frequency wave forces (especially at the sum of all wave frequencies) are 

usually too high to be considered for the motion control, so it is necessary to filter out these 

frequencies in order to ensure stability of the motion control system, preserve actuators and 
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reduce environmental emissions.  

Similarly like wave induced forces, current and wind induce forces on the ship's 

hull. Wind forces consist of mean forces and random components due to gusts. Only mean 

forces are considered, as gusts are not compensated for due to higher frequencies [Fossen, 

2002]. Current induced forces are considered low frequency with changes when the current 

speed and/or direction varies; however, these changes are easier to predict than waves and 

winds. Therefore, low frequency forces such are wind, currents, and nonlinear waves are 

considered in proposed motion control model, as ride control (pitch and roll control) is out 

of scope for collision avoidance algorithm.  

The task of maintaining the proper heading, or ultimately course over ground 

largely depends on the sea state. Even the most experienced human helmsmen will struggle 

with determining what is the current heading of the vessel when the sea state is above 

medium and high. The gyro output will produce high nonlinear oscillations and the 

helmsman will have difficulties in determining how much to compensate with the rudder 

to keep the correct heading. The human approach is to linearize the process and try to find 

the mean value and see if there is any lead in the force on either port or starboard side in 

order to apply more counter-movement rudder. However, this is a difficult endeavor and 

usually results with overcorrecting, as it is hard to estimate behavior without filtering. The 

aim is to aid this process with designing a particle filter that separates the high frequency 

wave motion from the low frequency motions and gives a corrected input to the controller. 

The particle filter is taking input from multiple sensors and provides an estimate of 

velocities in the applicable degrees of freedom. The advent of GNSS and gyrocompass 

allowed us to design support systems that rely on position measurement and heading 

information. These measurements are used in the motion control system to function in three 

degrees of freedom; surge, sway, and yaw. 
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3.2.2 Modeling of sea surface vehicle dynamics 

3.2.2.1 Kinematic motion model 

In order to develop full mathematical model of vessels' motion, it is necessary to 

start with the kinematic description of vessels' motion by utilizing two reference frames: 

an Earth-fixed frame and a body-fixed frame. If the earth-fixed north and east position 

(k, ú) and yaw (heading) ¨ relative to the north is expressed in the vector form  ≠ =

[k, ú, ¨]N , and if surge é  and sway Æ  velocities, together with the yaw rate r  that are 

intrinsic to the body-fixed frame, are represented in the vector form Ø = [é, Æ, r]N, it is 

possible to express the transformation between earth-fixed and body-fixed vectors as 

(Fossen, 2002): 

≠̇ = ±(¨)Ø																																																														(3.24) 

In this research, model of a conventional ocean-going vehicle that is not equipped 

with actuators correcting roll and pitch is developed; therefore, pitch and roll modes in the 

proposed controlling framework are omitted. Assumption is made that own sea surface 

vehicle is stable and has positive metacentric height, so there will be no permanent roll or 

pitch moments, but only oscillatory ones. This will allow for expressing the whole 

kinematic equation of motion as a rotation matrix of yaw: 

±(¨) = ≤

≥)"	¨ −"Jk	¨ 0

"Jk	¨ ≥)"	¨ 0

0 0 1

¥																																										(3.25) 

where ±,&(¨) = ±N(¨). 

 It is imperative to mention that surge é and sway Æ velocities are time derivatives 

of the position of the origin of the body-fixed frame relative to the origin of the earth-fixed 

frame expressed in the body-fixed frame, while the yaw rate r  is a component of the 

angular velocity of the body-fixed frame with respect to the earth-fixed frame, also 

expressed in the body-fixed frame [Fossen, 2002]. Figure 3.10 depicts all degrees of 
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freedom for a sea surface vehicle. 

 

 

 

 

 

 

 

 

Figure 3.10 – Motion variables for a marine vessel (Source: Fossen, 2002) 

 

3.2.2.2 Low-frequency sea surface vehicle model 

Considering the kinematic expressions (3.24) and (3.25), the sea surface vehicles' 

dynamics could be described as [Fossen, 1994]: 

(µOP +µ<)Ø̇ + ∂OP(Ø)Ø + ∑(cQR , \R) = ∏R83!Q8I + ∏SH3M + ∏S.TE2										(3.26) 

On the right side of the expression (3.26) vectors of forces due to control, wind and 

waves are presented, which belong to the body-fixed frame. ∏ = [π, L, ì]N , where X 

represents the surge force, the Y represents the sway force, while N is the yaw moment. 

The µOP represents rigid-body mass matrix. ∂OP(Ø) stands for skew-symmetric Coriolis-

centripetal matrix, which is a consequence of expressing the motion equations in body-

fixed frame. The µ< is the positive-definite hydrodynamic added mass matrix that appears 

as vessel moves in the water and causes the pressure on the hull to be proportional to the 

velocities and accelerations of the sea surface vehicle relative to the fluid. Therefore µ< 
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contains forces that describe change in momentum in the fluid caused by the vessel 

accelerations. These are defined by: 

µOP = ≤

∫ 0 0

0 ∫ ∫äU

0 ∫äU />

¥ 

∂OP(Ø) =

⎣
⎢
⎢
⎡ 0 0 −∫UäUr + æV

0 0 ∫é

∫UäUr + æV −∫é 0 ⎦
⎥
⎥
⎤
	 

µ< =	≤

−π?̇ 0 0

0 −LẆ −LQ̇

0 −ìẆ −ìQ̇

¥																																				(3.27) 

where äU  represents the longitudinal center of gravity relative to the body-fixed frame, 

while added-mass coefficients π?̇, LẆ, LQ̇, ìẆ and ìQ̇ depend on the hull shape.  

Remaining term on the left side of the equation (3.26) denotes the current and 

damping factors ∑(cQR , \R), which reflect the transfer of energy from the sea surface vehicle 

to the fluid. These factors depend on the speed and direction of the current relative to the 

vessel and they are calculated using the following expressions [Fossen, 2002]: 

cQR = ¬éQR4 + åQR4 = ¬(é − éR)4 + (å − åR)4																									(3.28) 

\QR = −atan2(åQR , éQR)																																														(3.29) 

where éR and åR are defined as components of the current velocity in the body-fixed frame, 

while \QR represents the angle of the current relative to the bow of the sea surface vehicle. 

It is possible to express surge, sway, and yaw current functions as nondimensional 

coefficients √*+(\QR), √X+(\QR), √C+(\QR) and get [Fossen, 1994]: 
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∑(cQR , \QR) =
1
2
ƒcQR4 ≤

&Y+√*+(\QR)

&Z+√X+(\QR)

&Z+	≈*&	√C+(\QR)

¥																																(3.30) 

where ≈*& is Length Over All, &Y+ and &Z+	 are frontal and lateral projected areas of the 

submerged part of the hull, and ƒ is density of the water. The current coefficients could be 

determined experimentally using scale models or by utilizing fluid dynamics principles 

[Fossen, 2002]. However, unless the sea surface vehicles is subjected to extensive 

hydrodynamic analysis, it will be very hard to determine current coefficients accurately; 

therefore simplification of the model using linear damping term and bias term [Fossen and 

Strand, 1999] is usually utilized to develop the approximation: 

∑(cQR , \QR) ≈ ∆« − ±N(¨)»																																																(3.31) 

where 

∆ = ∆+ = ≤

…&& 0 0

0 …44 …4K

0 …K4 …KK

¥ 										» = ≤

n&

n4

nK

¥																																(3.32) 

Taking in consideration linear damping and slowly varying bias, simplified sea 

surface vehicle model is: 

µØ̇ + ∆Ø = ∏ + ±N(¨)»																																														(3.33) 

∏ =  ?À																																																														(3.34) 

where ∏ = [π	L	Ã]N ∈ ℝ\   now denotes a vector that contains the control forces and 

moments generated by the propulsion system (in this case a propeller), while » ∈ ℝ\ 

represents a vector of non-modeled external forces and moments caused by the effects of 

wind, waves and currents related to the earth-fixed frame.  ? ∈ ℝK=Qrepresents a constant 

matrix that gives a transmission between the input and the thrust or in other words, 

describes actuator configuration, while À ∈ ℝ]	(r ≤ 3)  denotes the control inputs. 

Considering the development of (3.28), µ = µOP +µ<; however, a small Froude number 
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is assumed, the inertia matrix µ ∈ ℝK=K, which contains the mass of the sea surface vehicle 

and additional hydrodynamic inertia is given by (Fossen, 1994): 

µ = ≤

∫ − π?̇ 0 0

0 ∫ − LẆ ∫äU − LQ̇

0 ∫äU − ìẆ /> − ìQ̇

¥																																					(3.35) 

where ∫ is the mass of sea surface vehicle, while /> represents the moment of inertia about 

the z-axis of the body-fixed frame. Considering the control model where low-frequency 

motions are dominant, it is possible to assume that frequency is independent of the added 

inertia. This leads to µ̇ = 0.  

For a straight-line stable sea surface vehicle, it is possible to assume that ∆ ∈ ℝK=K 

is a strictly positive damping matrix because of a linear wave damping and laminar skin 

friction; therefore, the linear damping matrix is expressed as [Fossen, 1994]: 

∆ =	 ≤

−π? 0 0

0 −LW ∫é' − LQ

0 −ìW ∫ä^é8 − ìQ

¥																																							(3.36) 

where the assumption is made that the speed of the sea surface vehicle is é8 > 0 when 

moving forward. At this moment, DP vessels are not considered and moving astern for the 

scope of collision avoidance is not of interest; however, by introducing the auto-telegraph 

later in text, proposed model can easily be adapted to include astern movements for 

collision avoidance as well. Naturally, damping forces are nonlinear, but linear damping is 

a good assumption if we consider a constant speed at cruising and within the sampling 

interval. 

 

3.2.2.3 Bias modeling 

Similarly as with current forces, the wind forces could be modeled by 

nondimensional force coefficients [Fossen, 2002]: 
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∏SH3M =
1
2
ƒ.cQS4 ≤

&Y,√*,(\QS)

&Z,√X,(\QS)

&Z,	≈*&	√C,(\QS)

¥																																									(3.37) 

where ƒ.  represents the density of air, &Y,  and &Z,  denote frontal and lateral projected 

wind areas, LOA remains the Length Over All, while cQS (wind speed) and relative wind 

direction \QS are calculated utilizing following expressions: 

cQS = ¬éQS4 + åQS4 																																																						(3.38) 

\QS = −atan2(åQS , éQS)																																															(3.39) 

together with: 

éQS = é − cS cos ÕSŒœœ–œœ—
?,

																																																				(3.40) 

åQS = å − cS sin ÕSŒœœ–œœ—
_,

																																																					(3.41) 

where cS  and ÕS  represent speed and direction of the wind relative to the earth-fixed 

frame. Similarly as with currents, the wind coefficients could be obtained either through 

computational fluid dynamics or model tests. However, for motion control purpose, wind 

and current speed and directions measurements are used for approximate feedforward 

compensation coupled with the feedback low level control, while errors associated with 

this compensation are expressed as bias.  

Assuming that bias forces in sway and surge, as well as the yaw moment are all 

slowly varying, environmental bias can be modelled as Markov process of the first order: 

»̇ = −“,&» + ”‘																																																						(3.42) 

where » ∈ ℝK is a vector of bias forces, “ ∈ ℝK=K is a diagonal matrix of positive bias time 

constants, ” ∈ ℝK=K is a diagonal matrix scaling the amplitude of ‘, while ‘ ∈ ℝK is a 

vector of zero-mean Gaussian white noise. This model can describe all slow varying 
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environmental forces caused by 2nd order waves, currents, and winds (omitting gusts). 

 

3.2.2.4 High-frequency sea surface vehicle model 

In this thesis second order wave model is used to describe the ship motion caused 

by the first order wave force. As mentioned earlier, wave forces present a sum of linear 

and nonlinear components. The linear component is oscillatory in nature and has the same 

frequency as the wave elevation. The nonlinear part, however, has both lower and higher 

frequency than the wave elevation. Only the lower frequency nonlinear and linear waves 

are considered in the motion model. While lower frequency nonlinear waves are modelled 

by a bias term, linear wave forces are usually transformed into an equivalent output 

disturbance. In order to present the second order model in state-space framework, linear 

wave frequency is presented in the following form: 

’̇ = ÷’ + ◊‘																																																										(3.43) 

≠` = ÿ’																																																														(3.44) 

where ’ ∈ ℝK is the wave force state vector, ‘ ∈ ℝK represents zero-mean Gaussian white 

noise of the wave force model excitations, while ÷, ◊, and ÿ denote constant matrices of 

appropriate dimensions. The first order wave induced motion ≠` = [k` , ú` , ¨S]N is added 

to the low frequency motion components of the sea surface vehicle making it the sum of 

the low frequency motion components and the wave frequency motion components, which 

is evident in Figure 3.11. 

In order to advance accuracy of the model, appropriate approximation of the wave 

spectrum should be used. To sustain computational agility, 2nd order wave model is used 

for the 1st order wave induced motion, which was originally proposed by Balchen et al. 

[1976] and improved by Sælid et al. [1983]. Based on their findings, this model can be 

expressed for each degree of freedom as: 
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ℎSH (") =
ŸSH"

"4 + 2⁄Hï'H" + ï'H
4 																																																	(3.45) 

where ⁄H 	(J = 1. . .3) is the relative damping ratio, ï'H 	(J = 1. . .3) is the dominating wave 

frequency, while ŸSH 	(1. . .3) presents a parameter related to the wave intensity. Taking 

into account 3 degrees of freedom, a state-space expression of (4.45) would be: 

¤
’&̇

’̇4
‹ = ¤

›K=K fiK=K

÷4& ÷44
‹ 	¤
’&

’4
‹ + ¤

›K=K

◊K=K
‹‘S 																													(3.46) 

≠S = [›K=K fiK=K] ¤
’&

’4
‹ 

where, considering that proposed model has three degrees of freedom, resulting second-

order noise filter approximation contains state vectors with six components ’& =

[∫k&ë!, ∫ ú&ë!, ∫¨&ë!, k&, ú&, ¨&]N  and ’4 = [∫ k4ë!, ∫ ú4ë!, ∫¨4ë!, k4, ú4, ¨4]N . 

÷4& = −diag{ï'&
4 , ï'4

4 , ï'K
4 } , ÷44 = −diag{2fl&ï'&, 2fl4ï'4, 2flKï'K

4 } , ◊K=K =

ëJ%‡{ŸS&, ŸS4, ŸSK}, while ‘S = ·‚3, ‚E , ‚a„
N is the zero-mean Gaussian white noise. 

 

 

 

 

 

 

 

 

Figure 3.11 – Sum of wave frequency and low frequency motion components 
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3.2.2.5 Measurement model 

A conventional and commercial surface vehicle will only have position and heading 

measurements available. Some of the vehicles will also have rate of turn measurement 

available and other will also have Inertial Measurement Units. However, in this thesis focus 

remains on the under-actuated vehicles that usually achieve thrust by propeller and execute 

turns by rudder. Considering that the dynamic positioning is out of scope of this research, 

control of sway and surge could be disregarded, but as it can be seen in the following 

chapters, improvement of control and reducing uncertainties by using IMUs is considered, 

so proposed measurement and control model could still include everything required to 

dynamically control motion of vehicles.  Majority of the vehicles use GPS / Differential 

GPS to estimate position and gyrocompasses to measure heading. Error rate and 

uncertainty will depend on several factors; these are going to be discussed later in text. 

Measurement level can, therefore, be defined as: 

‰ = ≠ + ≠` + Ø																																																								(3.47) 

where ≠`  is the vehicle's wave frequency motion due to the first-order wave induced 

disturbance, while Ø ∈ ℝK  is a zero-mean Gaussian white measurement noise. 

Additionally, to ensure the ship observer can compute control forces in sway, surge and 

moments of yaw, actuator measurements À are required, where assumption is made that 

 ? matrix is known: 

∏ =  ?À																																																																(3.48) 

For under-actuated surface vehicles ∏ is certainly going to be simplified. State 

estimator is used to distinguish the low frequency motion components ≠ from the noisy 

measurements. It is imperative that the wave frequency caused by the first-order wave-

induced disturbance does not enter in the feedback loop, as it will increase fuel 

consumption, cause deterioration of the actuators and negatively impact the environment.  
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3.2.2.6 Resulting system model 

Taking into account all expressions so far, total system can be presented as follows: 

¤
’&̇

’̇4
‹ = ¤

›K=K fiK=K

÷4& ÷44
‹	¤
’&

’4
‹ + ¤

›K=K

◊K=K
‹‘S 

≠̇ = ±(¨)Ø 

µØ̇ + ∆Ø = ∏ + ±N(¨)» + ‘W 																																										(3.49) 

»̇ = −“,&» + ”‘b			 

‰ = ≠ + ≠S + Ø 

The resulting 15th order state-space model for an observer design that includes 

dynamic positioning and heading control is: 

ä̇ = ÂÊ +  À + Á‘																																																			(3.50) 

‰ = ËÊ + Ø 

where ä = [’N, ≠N, »N, ØN] ∈ ℝ&c  is state vector, À = [kd úd ¨d]N   ∈ ℝd	(T ≥ 3)  is 

considered a controllable vector, while ‘ = [‚&
N, ‚4

N, ‚K
N]N  denotes vector of process 

noise. ‰ ∈ ℝK  is the measurement vector that denotes DGPS and gyrocompass 

measurement mixed with measurement noise where Ê ∈ ℝK denotes the state vector of the 

system. Ø~ì(›, ±)  is the measurement noise vector with covariance matrix ± . State 

(system) matrix Â, input matrix  , process noise amplitude matrix Á, and output matrix Ë 

are defined as (Fossen, 2002): 

Â =

⎣
⎢
⎢
⎢
⎢
⎡
ÂS ›e=K ›e=K ›e=K

›K=e fiK=K ›K=K ›K=K

›K=e ›K=K ›K=K ›K=K

›K=e −µ,&∆ µ,& ›K=K⎦
⎥
⎥
⎥
⎥
⎤

																																		(3.51) 
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  =

⎣
⎢
⎢
⎢
⎢
⎡
›e=K

›K=K

›K=K

µ,& ?⎦
⎥
⎥
⎥
⎥
⎤

																																																															(3.52) 

Á =

⎣
⎢
⎢
⎢
⎡
ÁS

›K=K

fiK=K

µ,&⎦
⎥
⎥
⎥
⎤

																																																																		(3.53) 

Ë = [∂S fiK=K ›K=K ›K=K]																																													(3.54) 

&S = ¤
›K=K fiK=K

÷4& ÷44
‹							ÁS = ¤

›K=K

◊K=K
‹							∂S = [›K=K fiK=K]																							(3.55) 

Finally, in order to utilize the above-defined observer on a computer, discretization 

of the following form is required: 

Ê(l + 1) = ÍÊ(l) + ÎÀ(l) + Ï‚(l)																																			(3.56)      

‰(l) = ËÊ(l) + æ(l)																																																	(3.57) 

where 

Í = exp(Âℎ)																																																											(3.58) 

Î = Â,&(Í − Ì) 																																																							(3.59) 

Ï = Â,&(Í − Ì)Á																																																							(3.60) 

with ℎ denoting the sample time. Sampling time depends on the vessel dynamics. In the 

proposed model, where focus is maintained on yaw rate only, sampling rate will depend on 

the fastest rate of turn achieved when looking through the prism of force to velocity 

response.  
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3.2.3 Simulation of nonlinear observer design 

In this research intention was to use data for the own vehicle used in collision 

avoidance simulations, however due to unavailability of all required data from the owner, 

different scale-down model is used to determine influence of environmental forces on 

sway, surge and yaw [Fossen, 2002]. To assess the fitness of the designed filter, simulations 

were done with the following parameters: LOA=1.19 m, the mass m = 17.6 kg, and: 

µ = ≤

25.8 0 0

0 33.8 1.0115

0 1.0115 2.76

¥ 	,					∆ = 	 ≤

2 0 0

0 7 0.1

0 0.1 0.5

¥					 

The bias time constants were set at +b = ëJ%‡(100,100,100). The wave model 

parameters were set as Ó = ëJ%‡(0.1,0.1,0.1), ï' = ëJ%‡(0.8,0.8,0.8). The control inputs 

were selected as: s = [20"Jk(0.02!), 20"Jk(0.03!), 5"Jk(0.04!)]+. 

The simulation results are shown in the figures below.  Efficacious tracking of the 

position and velocity is obtained even though the measurements are highly noise corrupted. 

 

 

 

 

 

 

              (a)                                                                       (b) 

Figure 3.12 – Simulation results: (a) actual heading angle Ψ in blue color and predicted in 

black, (b) actual yaw rate r in blue and predicted in black color 
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        (a)              (b) 

Figure 3.13 – Simulation results: (a) actual position ä in blue and estimated in black, (b) 

actual velocity in blue é and estimated in black 

 

 

 

 

 

 

 

(a)                                 (b) 

Figure 3.14 – Simulation results: (a) actual position ™ in blue and estimated in black, (b) 

actual velocity in blue Æ and estimated in black 

Even though this is a nonlinear filter for dynamic positioning, only yaw moment 
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can be derived and used for steering control of the vehicle. Both velocity and low-

frequency position are successfully computed from noisy position measurements. 

Nonlinear particle filter can avoid computing Jacobi matrix during the linearization process 

of Kalman filter designs. 

In this chapter a nonlinear passive observer based on foraging particle filter has 

been designed. Simulation studies have shown that low-frequency position and velocities 

of the surface vehicle, as well as the environmental disturbances, could be computed from 

noisy position measurements. First order wave-induced disturbances are successfully 

filtered. The simulation has shown that all estimation errors converged exponentially to 

zero. 

The main advantage of the nonlinear approach is that the kinematic equations of 

motion do not require linearization about a set of predefined constant yaw angles (36 

operating points with 10 degrees each), while this is required in Kalman Filtering. Also, 

particle filters do not require tuning, unlike Kalman filters that require tuning of weighting 

matrices with dimensions 15 x 15 for estimation error and 3 x 3 for control input vectors. 

The observer is applicable to both dynamic positioning and tracking control of sea 

surface vehicles. 
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3.3   Intelligent autopilot design with Learning from 

Demonstration  

As mentioned earlier, this thesis is focused on underactuated surface vehicles; 

therefore, focus will be on controlling mainly rudder and telegraph inputs. Most ocean-

going vehicles will have rudder limits of 35° to port and starboard side, but the telegraph 

input varies sparsely. Ownship that is used in collision avoidance examples in later chapters 

is utilized, but with small adjustments this model is applicable to any surface vehicle. In 

this study approach is to utilize reinforced learning technique that will allow us that all 

training is happening offline. As a first step, simulations are done in order to have control 

actions optimized for the set of inputs. The learning set is updated with observations that 

are collected during exploitation with a goal of adaptive training and solution sets. As an 

additional step, supervised training with human helmsman and pilots is included, so that 

the system dynamic can mimic responses from the human operators, especially when speed 

is low and larger control inputs are required to stabilize the vehicle in desired heading 

and/or course.  

 

3.3.1 Primary quantitative data collection 

Primary quantitative data collection was conducted utilizing approved and 

accredited simulator. Dynamics of commercial sea surface vehicles were developed in the 

Wärtsilä Navi-Trainer Pro NTPRO 4000 (Transas) simulator. Considering that model-free 

solution is developed, substantial data is required to allow abstract agent’s learning of 

vehicles’ dynamics. For this chapter relevant data are environmental loads, such are wind, 

waves, swell and current, while for other chapters interaction data has been used to 

construct collision avoidance situations. Simulator was utilized to reconstruct some of the 

investigated maritime incidents. 

After extracting data from the Wärtsilä simulator, numerical and computational 

tasks were conducted in MATLAB 2021a programming language and numerical 
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computing environment, running on a MacBook Pro with Intel 2.8 GHz Quad-Core Inter 

Core i7 processor, NVIDIA GeForce GT 750M 2 GB graphics card, 16 GB RAM and 

macOS Catalina 10.15.4. Each of the presented learning algorithms have specifically tuned 

parameters for learning, but all of them used Adam Optimizer [Kingma and Ba, 2014] as a 

stochastic first-order gradient optimization of objective functions. 

Each reinforcement learning problem is approached by extracting required data 

from available sources, then designing simulation spaces in MATLAB, allowing agents to 

learn, and then learned agents utilized in simulated scenarios. Simulations are crucial part 

of reinforcement learning, as it would be expensive and unsafe to explore the real-world 

with commercial sea surface vehicles. That is why agents learn in simulated environments, 

after which they are utilized in models, or sea trials of the commercial sea surface vehicles, 

before they are allowed to aid decision making. As simulators have their limitations, agent 

still needs exposure to the real-world before it is deemed ready for commercial use. 

Training results are used as an agent’s previous knowledge data base in order to expedite 

convergence of stochastic optimization during simulation and real-world exploitation.  

Once exploring and exploiting in the real world, the proposed system continues to learn 

and adapts the learning buffer with new experiences in pursuit of an optimal behavior. 

To evaluate motion control solutions proposed in the following chapters of this 

thesis, 720,214 data particles were extracted describing environmental loads on sea surface 

vehicles. 202 hours of recorded data were analyzed and incorporated in learning models 

for selected sea surface vehicles.  In order to extrapolate lateral and longitudinal velocities, 

wind, currents, swell and wind waves interactions with yaw, surge, and sway motions were 

investigated. Each data extrapolation from the Wärtsilä simulator for each sea surface 

vehicle was sampled with 1 HZ frequency for a minimum period of 20 minutes. This 

process was repeated for each of the 594 data collecting points. In addition, various 

maneuvers were made to capture human steering performance with maintaining headings 

and courses, as well as to perform zig-zag maneuvers to benchmark steering performance 

of expert helmsmen that would aid learning and precise turning of proposed auto-pilot 

model. 
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A standard 16 compass rose directions were used to extract data and determine 

lateral and longitudinal velocities of sea surface vehicles in different wind, current, swell 

and wind wave conditions. The extracted data is used to predict future states of interacting 

vehicles and to make informed decisions.  

As within this research interest remains in motion control of underactuated 

vehicles, yaw data under the influence of applicable environmental loads were extracted. 

In order to get in-depth overview of longitudinal and lateral velocities, all vehicles of 

interest were simulated, and motion effects under environmental loads recorded. Velocities 

were collected and transferred in lookup tables to simulate chain of observations in 

reinforcement learning environments. In order to avoid cluttering, the following figures 

depict samples of collected data for the own vehicle. 

 

 

 

 

 

 

 

 

 

Figure 3.15 – External disturbances sampling (example 1) 
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Figure 3.16 – External disturbances sampling (example 2) 

 

 

 

 

 

 

 

 

 

Figure 3.17 – External disturbances sampling (example 3) 
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Figure 3.18 – External disturbances sampling (example 4) 

Once the data of external disturbances has been evaluated and processed, focus 

shifted on selecting the best approach to learning. 

 

3.3.2 Reinforcement Learning approach 

Automatic piloting is not a novelty; however, considering the various speeds and 

external disturbances, linearity of the usual control setup with PID controllers and filters 

can struggle in adapting to dynamic situational circumstances. When designing a controller 

that can mimic human control inputs and use the wide knowledge specter of the human 

expert, it is necessary to consider advanced learning techniques during design. The central 

issue of this approach is to design a sequential decision making when the system dynamics 

are stochastic in nature. A sea surface vehicle is susceptible to various dynamic and 

unpredictable forces, where behavior of a surface vehicle is stochastic as well. Even though 

the under-actuated sea surface vehicle is limited to port-starboard movement of the rudder, 
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it is still a continuous sequential decision-making problem as the agent (human or artificial 

operator) has to determine how much and in which direction the rudder has to be forced in 

order to compensate for various disturbances and maintain the desired heading, course or 

track. The reason why it is necessary to consider this problem as sequential decision 

making is because a bad decision at one time step can be of low importance to the safety 

of the considered vehicle but can in the future have a fatal consequence. Aim of this study 

is the design a combination of model predictive and model-free control that will use filtered 

inputs to get the best possible information and reduce partial observability of a sea surface 

vehicle's state, which includes its position and heading in dynamic environment.  

Proposed sea surface vehicle control problem is modeled as Markov decision 

process, for which a reinforcement learning [Sutton and Barto, 1998] is fitting well. 

Reinforced learning is inspired by biological learning, where agent interacts with a model 

that is updated in discrete time steps through observing the accessible space of that model 

and decides on taking the best action available by evaluating all options dependent on both 

the immediate and cumulative reward this agent receives. The solution is, therefore, not a 

single action, but a sequence of actions, which is called a policy. Finding the optimal policy 

can be a challenge in highly dimensional spaces. While designing proposed training 

algorithm, quality of data should be of great importance, model representation and training 

fitness. Initial training set based on simulator data is developed, while the agent gets 

updates in training through exploration during real-world exploitation.  

If agent was allowed to explore environment without prior knowledge and without 

any expert's supervision, convergence of optimization would be difficult. Depending on 

problem that needs to be solved, several approaches exist. In this case it is possible and 

desirable to utilize human experts to guide learning by demonstrating appropriate behavior. 

Human helmsman expert does not have intrinsic knowledge of vessel's dynamics, but 

solely based on gyro heading and rate of turn indicator manages to perform heading 

controls and turns efficiently and safely. It is, therefore, safe to assume that building an 

initial database with human demonstrations is a good way to aid optimization convergence 

when utilizing autopilot in daily endeavors through rewards shaping. Continuing to the 

briefing of the RL in the previous chapter, an overview of shaping rewards is delivered. 
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3.3.3 Rewards shaping in Reinforcement Learning 

A carefully defined reward is of crucial importance in sequential decision making. 

To learn consequence of an immediate action, it would be required to look further in the 

future. In this thesis it is argued that sequential decision making is beneficial not only for 

the virtual agents, but also for everyday life. For example, a driver that actively thinks of 

consequences regularly in his or her life would be driving down a road and approaching 

bend of that road calculate risk of taking that bend. This means that he would anticipate 

that there is a possibility of road work or accident he cannot currently see with his eyes, so 

he would either take the bend slowly, proceed with care and his foot released from 

accelerator and ready for breaking, or take any other action with care. With properly 

defined reward function and domain modeling, it is possible to find optimal policy that 

describes transition from states to states by taking optimal actions. Properly defined reward 

function is not only a mean to find optimal policy, but also to reduce computational burden 

for optimization task.  

Sometimes it is easy to think of a main reward for a certain task. For example, an 

agent can be instructed to cross the street and get a large reward for crossing the street. 

Additional rewards and penalties could be also included so that an agent always uses a 

crosswalk, to wait for the green lights, to check left and right before crossing, etc. These 

smaller rewards and penalties can be considered a reward shaping as it aids an agent to 

learn faster. However, caution should be taken when shaping rewards as inappropriate 

shaping can induce poor learning outcomes. Learning from mistakes is a powerful learning 

technique as it narrows the learning path to optimized goal. Therefore, the goal of rewards 

shaping would be to aid learning agent by utilizing previous knowledge and accelerate 

convergence to an optimal policy. 

Reward shaping is finding its roots in behavioral psychology [Skinner, 1938] and 

has been used successfully in various domains [Brys, et al., 2015; Dorigo & Colombeti, 

1994; Mataric, 1994; Ng, et al., 1999; Randløv and Alstrøm, 1998; Saksida, et al., 1997]. 

There were also negative examples of rewards shaping [Randløv and Alstrøm, 1998] where 

the optimized goal was never reached. If an agent that tries to learn maritime collision 
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avoidance is envisioned and rewards are shaped in a way that anytime an agent is in the 

collision free state gets a reward but does not get penalties for getting away from the goal 

state, agent would turn the surface vehicle 180 degrees away from any danger, going the 

opposite way from the goal state. It is important to have a good understanding of the system 

dynamics to avoid undesired behavior of an agent. This is where learning from 

demonstration can aid us to avoid specifying a reward explicitly and avoid convergence in 

local optima or suboptimal convergence. Therefore, it is important to ensure that rewards 

shaping is not affecting underlying policy, so optimal policy has to be invariant to reward 

changes.  

When shaping a reward function is too difficult and does not converge to optimal 

policy, Ng and Russell [2000] offer a solution through inverse reinforcement learning. This 

approach requires extracting features and linear constraints that define optimal policy, 

which will be used to derive a reward function. Deep reinforcement learning [Minh et al, 

2015] uses deep neural networks to deal with optimality issues of reinforcement learning 

with extensive application in gaming. The real-world applications are still scarce, and to 

the best of our knowledge this approach is one of the first attempts to avoid policy 

invariance by combining rewards shaping, deep reinforcement learning and model 

predictive control to achieve optimal control of underactuated sea surface vehicles. 

If reward function is defined in such a way that almost perfectly resembles learning 

goal, there would be no need for reward shaping. However, it is hard to expect that rewards 

design would be non-trivial in complex real-world environments. The basic idea of reward 

shaping is to learn a policy for some …5 = ($, &, Ò, γ, ,) with a possibility to reduce the 

search space and bound it with shaping reward function 4 ∶ $	 × 	&	 × 	$	 ⟼ ℝ. In order 

to simplify expressions, transition probability is denoted as Ò. However, to achieve smooth 

convergence, it is necessary to search for the optimal policy by utilizing transformed 

version of the original …5  by applying the shaping reward function and amend the 

reward function to ,) = , + 4. Therefore, this research is now interested in investigating 

transformed version of the original …5 , …5) = ($, &, Ò, γ, R)) . However, when 

defining reward shaping this way it is necessary to ensure that policy optimization in …5) 

is equal as in …5 , which requires equality of ,fgD = (, + 4)fgD!  for the same 
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transition from state " to state ").  

Even though this approach is developed to resolve sea surface vehicles' motion 

control challenges, as well as to have a viable solution for the collision avoidance, aim is 

no loss of generality. When modeling real world problems, situations arise when transition 

probabilities Ò(∙)  and reward functions ,(", %, "))  are not known. Even in this setup, 

objective is to find an optimal policy ^fgD!
∗  in transformed MDP that will be equally 

optimal in the native MDP. Ng et al. [1999] discovered that shaping rewards using 

difference of potentials is the approach that can be used for all problems that could be 

modeled as MDP. In this way difference of potentials approach is viable tool for giving 

advice to a reinforcement learner, but as it does not include action space, it can only provide 

indication if any of the visited states are good or bad. Therefore, extending on Ng et al. 

[1999] to include actions to allow for more comprehensive reinforcement learning that 

considers both states and actions: 

Theorem 1 Assuming $, &, \, and a shaping reward function 4 are given, 4 is a potential-

based shaping function if there exists a real-valued function Φ ∶ 	$	 × 	&	 ⟼ 	ℝ such that 

for all " ∈ $ − {"'}, % ∈ & − {%'}, ") ∈ $, %) ∈ &,	 

4(", %, "), %)) = \Φ("), %)) − Φ(", %),																																					(3.61) 

where $ − {"'} = $  and & − {%'} = &  if \ < 1 , with requirement that potential-based 

shaping reward function 4 contains necessity and sufficiency logic conditions to assure 

optimal policy consistency weather learning from …5) or native …5. Sufficiency is of 

particular interest as it states that if 4  is a potential-based shaping function then any 

optimal policy in …5) will be optimal in …5 and vice versa. Necessity provides insight 

where if 4 is not a potential-based shaping function then there is no optimal policy in 

…5) that will be optimal in …5. 

Sufficiency proof: Considering 4 in the form (3.61) in undiscounted form \ = 1, then it 

is possible to replace Φ(", %)  with Φ)(", %) = Φ(", %) − l  for any constant k, which 

would not change shaping rewards	4. It is, therefore, possible to assume that the Φ used to 

express 4  in the form (3.61) satisfies Φ("', %') = 0  when Φ(", %)  is replaced with 
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Φ(", %) − Φ("', %'), where "' represents zero-reward absorbing state. 

As stipulated in [Sutton and Barto, 1998], the optimal Q-function of the native MDP 

dfgD
∗  will satisfy the Bellman Equation as follows: 

dfgD
∗ (", %) = E2!~i(∙) Ñ,(", %, "

), %)) + \max
.!∈<

dfgD
∗ ("), %))Ö 																(3.62) 

Introducing the shaping function notations and taking some algebraic treatment, we 

get: 

dfgD
∗ (", %) − Φ(", %) = E2! Ñ,(", %, "

), %)) + \Φ("), %)) − Φ(") +

\max
.!∈<

UdfgD
∗ ("), %)) − Φ("))VÖ																																																																																												(3.63)  

Further, it is possible to define d̆fgD!(", %) ≜ dfgD
∗ (", %) − Φ(", %)  while 

substituting this and the 4(", %, "), %)) = \Φ("), %)) − Φ(", %) expression into the (3.62) to 

get: 

			d̆fgD!(", %) = E2! Ñ,(", %, "
), %)) + 4(", %, "), %)) + \max

.!∈<
d̆fgD!("

), %))Ö					(3.64) 

= E2! Ñ,
)(", %, "), %)) + \max

.!∈<
d̆fgD!("

), %))Ö																							(3.65) 

which is basically the Bellman equation for …5).  If considering the undiscounted case,  

d̆fgD!("', %) = dfgD
∗ ("', %) − Φ("') = 0 − 0 = 0 . Therefore, it is evident that  

d̆fgD!(", %)  satisfies the Bellman equations for …5)  being the uniquely optimal Q-

function. Considering that dfgD!
∗ (", %) = d̆fgD!(", %) = dfgD

∗ (", %) − Φ("), the optimal 

policy for …5) satisfies 

^fgD!
∗ 			 ∈ 			 	argmax

.∈<
dfgD!
∗ (", %)																																(3.66) 

																														= argmax
.∈<

	dfgD
∗ (", %) − Φ(", %)																															(3.67) 

													= argmax
.∈<

	dfgD
∗ (", %)																																				(3.68) 
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which also makes it optimal in …5. By simply reversing the roles of …5 and …5), 

the same proof can be utilized and show that every optimal policy in …5 is also optimal 

in …5), which completes the proof.                � 

The proof of necessity has been thoroughly covered in [Ng et al., 1999] and is 

therefore omitted in this thesis. Empirical benefits and challenges of reward shaping and 

engineering have been covered by many authors [Mataric, 1994; Ng et al., 1999; Randløv 

and Alstrøm, 1998]. 

Before continuing with the experiment, it is necessary to find the appropriate 

shaping function. Based on the Theorem 1 and deliveries of [Ng et al., 1999], we consider 

the following Lemma: 

Lemma 1 Considering Theorem 1 and assuming that F takes the form 4(", %, "), %)) =

\Φ("), %)) − Φ(", %), where Φ("') = 0 when \ = 1, then for all " ∈ $, % ∈ &, 

dfgD!
∗ (", %) = dfgD

∗ (", %) − Φ(", %),																																			(3.69) 

cfgD!
∗ (") = cfgD

∗ (") − Φ(").																																										(3.70) 

Proof: Theorem 1 covered the proof of the (3.69), while (3.70) is directly derived from the 

relationship c∗(") = max
.∈<

d∗(", %).               � 

Ng et al. [1999] show that reward shaping holds for arbitrary policies, not only the 

optimal policy, which makes reward shaping robust for near-optimal policies as well, while 

maintaining indifference on policy selection. The main task, therefore, remains a selection 

of Φ, which is based on a collection of expert knowledge about the domain, either through 

experience, peer reviewed knowledge, or various sensor input that can be used to derive 

the knowledge.  In depicted experiment, an undiscounted case with Φ("') = 0 and Φ(") =

cfgD
∗ (") is presented, which allows usage of (3.70). This tells us that the value function in 

…5) is cfgD!
∗ (") ≡ 0. It is necessary to keep in mind that this is not the only approach in 

choosing reward shaping function, but it is easy and functional method. 
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In regards of reinforcement learning, research hypothesis is that reward shaping 

performs better than no shaping, so at this time SARSA algorithm is used [Sutton and 

Barto, 1998], which is reward shaping adapted. Unlike the Q-learning, SARSA (Figure 

3.19) is an on-policy learning algorithm which is based on a repetitive cycle of agent being 

in a state " ∈ $, taking an action % ∈ &, for which it receives a reward ,, after which it 

ends up in a new state "& ∈ $, and takes action %& ∈ &. With presented selections we get 

the tuple (", %, ,, "&, %&) from which the name SARSA is derived. When differentiating on-

policy and off-policy approaches, focus is mainly on whether the update of the policy is 

based on actions taken, or not. In this case, the action taken drives the update of the policy. 

This is also the case in collision avoidance, where action selection becomes one of the 

central challenges to solve. 

 

 

 

 

 

 

 

 

 

Figure 3.19 – SARSA Algorithm 

SARSA has a larger emphasis on action selection that follows the current policy, 

after which the Q-values are updated, rather than Q-learning where greedy action, which 

offers the maximum Q-value, is selected. SARSA allows for corrections in optimization 

through exploration. Finding a proper e-greedy hyperparameter is often a complex tuning 
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endeavor. However, exploration will ensure that the optimization is conservative, and that 

solution avoids pitfalls of large negative rewards. Therefore, in Q-learning the algorithm is 

sourcing the highest valued action in the next state, while in SARSA it is the value of the 

action that was taken according to the current policy in force.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.20 – Q-value and SARSA comparison Source: author on NOAA chart 11332 

(https://charts.noaa.gov/PDFs/11330.pdf visited on 10-May-2021) 

 

Figure 3.20 depicts the comparison of Q-value and SARSA algorithms. 

Represented by the red color is the Q-value algorithm that took more conventional path 

and successfully avoids the wrecks present on the way. In this scenario a sea surface vehicle 

leaving the port of Sabine Pass is depicted, and the vehicle is taking a southernly route to 

follow recommended fairway. In the blue color SARSA recommended path is shown and 
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it is obvious to see that there are differences. SARSA algorithm takes into consideration 

risk factors and experience of either previous passes or human navigators that already 

passed in that area and know that passing between these wrecks can be challenging and 

often there are targets present at anchorages near the wrecks. Keeping all other factors 

aside, the Q-value algorithm has converged to an optimal policy that takes us safely to the 

next waypoint, but the SARSA algorithm takes more information into consideration and 

therefore is more risk averse. In this situation, SARSA algorithm steps outside the 

recommended fairway, but according to the navigation rules of the area, that is not 

forbidden and is considered safer for the situation agent faced. No targets were considered 

for this scenario, but experience of sailing in that area has been utilized and implemented 

it in SARSA algorithm, which gave us recommended path that was optimal when taking 

all risk factors into the reward space. 

_______________________________________________________________________ 

Algorithm 2 – SARSA Algorithm with e-greedy exploration 
_______________________________________________________________________ 

Input: States $, Actions &, Reward function , ∶ $	x	& → ℝ, Learning rate Ü = 0.02,  

           Transition Function Ò ∶ $	x	& → $, Discounting  \ = 1, e-greedy factor 0.10 

Output: d 

1 Initialization: d(", %), ∀" ∈ $, % ∈ &("), arbitrarily, and d(!úr∫Jk%°	"!%!ú,∙) = 0, 

or by initializing with d(", %) = 0 as there is no prior knowledge and state value 

2 for each episode (time horizon or distance step horizon) do: 

3  Initialize " 

4  Chose % from " using policy derived from d (e-greedy) 

5  for each step of episode do: 

6   Take action %, observe ,, ") 

 7 Choose %) from ") using policy derived from d (e-greedy) 

 8  Determine shaping functions Φ(", %) = Φ(") + Φ(%) 

 9  Calculate 4(", %, "), %)) = \Φ("), %)) − Φ(", %),  

where \ = 0.1              (3.71) 

10  Calculate ,Y(", %, "), %)) = ,(", %, ")) + 4(", %, "), %))           (3.72) 
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11  d(", %) ← d(", %) + Ü[,Y + \d("), %)) − d(", %)]                (3.73) 

12  " ← "); % ← %) 

13 end for when " is terminal 

14 end for and return d 

15 end 

 

As mentioned earlier, e-greedy methodology is taken to promote exploration and 

avoid pitfalls of strictly following the optimized route. This is because the real world is 

stochastic in nature, and it is necessary to take into account that at some random moment 

during the exploitation a catastrophic failure is possible. If agents would remain in 

simulated spaces, running aground, allision or collision with another object is easily 

repairable with a simple restart of the simulation process, but if exploitation without 

consequences is allowed in the real world, potentially devastating outcomes could arise for 

human life, property, and environment. 

At each time step, e-greedy approach allows agents to select a random action with 

a pre-defined probability in the range of 0 ≤ ε ≤ 1, in order to avoid consistent selection 

of the learned optimal action based on learned d value. In this case e-greedy probability is 

selected to be 0.1. More generally: 

^(") = 	 ˛			
random	action	from	&										if	Õ < ε														

argmax
.∈<

d(", %)																							otherwise,													 																			(3.74) 

where 0 ≤ Õ ≤ 1 is a random number selected at each time step. 

The results of the experiment depicted in the Appendix A show that shaping 

rewards outperforms learning without shaping rewards, which is conclusion we needed in 

order to use this approach in developing an autopilot based on reinforcement learning and 

to use the similar approach when developing collision avoidance algorithm. We can also 

see in the previous example that because initialization was done with random selection of 

parameters, agent struggles to find optimal solution at the beginning. In this protected 

virtual environment, we can allow for longer learning processes, but in the real world, we 
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want to limit the initial exploration and get the optimal solution faster, for which the 

learning from demonstration fits well. 

As stability of the autopilot in the dynamic environments is in focus, we foster the 

efforts of downgrading the randomness of handling processes. We achieve better 

observability by downgrading hidden and partial observable states and actions, so rewards 

shaping is an integral part of achieving safer waterways. 

 

3.3.4 Tuning hyperparameters for the optimal training 

As important it is to accurately design data flow and efficient signal processing, it 

is equally important to develop training strategy that would warrant convergence to the 

global maxima or minima.  

Within this research, three hyperparameters have a significant influence over 

convergence rate during training sessions, which are learning rate (Ü), discount factor (\), 

and epsilon greedy action selection factor (ε). It is important to state that different tuning 

of hyperparameters is required for portfolio of challenges faced within this work. To 

determine the best tuning, an experiment has been conducted in which one of the proposed 

algorithms (heading-economy) has been utilized and tested different learning behavior 

when hyperparameters are tuned differently.  

Within the heading-economy environment, three scenarios are selected to test 

various tuning of the hyperparameters. The first scenario is the best guess where rewards 

and penalties are selected for the three most prominent rewards of the algorithm: 1. heading 

desired equals heading filtered, 2. heading filtered is within the 1° from the desired heading, 

and the 3. where heading filtered is within the 2° from the desired heading. Therefore, it 

has been arranged that for each instance reinforcement learning agent manages to keep the 

heading filtered equal to the heading desired, the agent will receive 10 points of reward, 

but if it fails, the penalty will be 0, as this is economy mode where certain allowance of 

error is given in order to preserve actuators of a steering gear. In the case where heading 
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filtered is ±1° from the desired heading, 5 reward points are collected, and if the difference 

is larger than 1°, 10 penalty points are received. Finally, if the heading filtered is within 

the ±2° difference, the agent receives 1 reward point, but when the heading difference is 

larger than 2°, the agent receives 50 penalty points. Therefore, Reward1 has a 10→0 reward-

penalty setup, Reward2 has a 5→(-10) setup, while Reward3 has a 1→(-50) reward-penalty 

setup. 

For all selected scenarios high learning rate and made a combination of gamma and 

epsilon to form nine different possibilities in order to find the best combination for all 

trainings, but also to have a deeper understanding of each of the hyperparameters available 

to us. As mentioned earlier, learning rate (Ü) is a real number ranging from 0 to 1. Setting 

Ü to 0 means that reinforcement learning agent learns nothing from new actions, while 

agent with Ü equaling to 1 completly disregards previous knowledge and notices only the 

latest information. Setting discount factor \ to 0 forces agent to disregards future rewards 

and only focuses on immediate rewards, while setting \ to 1 would encourage agent to look 

for higher rewards far in the future. Finally, the epsilon greedy action selection is vital for 

the randomness of the algorithm and is required to avoid convergence to a local maxima 

or minima. If ε was set to 0, agent would not explore, but rather only exploit the knowledge 

it already has, while the agent with ε 1 would completely ignore previous knowledge and 

focus only on the random actions. Setting any of these hyperparameters to either 0 or 1 

would not deliver desired results and learning would be compromised. Finding a good 

balance is not easy, so trials are continued to find out the optimal balance for handling of 

underactuated sea surface vehicles. Fairly high learning rate parameter has been selected, 

as learning from new actions is encouraged, giving that researched problem is defined 

deterministically. Discount and epsilon greedy parameters are defined as described in 

Table 3.3. 
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Table 3.3 – Hyperparameters tuning combinations 

OPTION ALPHA - " GAMMA - # EPSILON - $ 

A 0.9 0 0 

B 0.9 0.5 0 

C 0.9 1 0 

D 0.9 0 0.5 

E 0.9 0 1 

F 0.9 0.5 0.5 

G 0.9 0.5 1 

H 0.9 1 1 

I 0.9 1 0.5 

 

For each of the first scenario options 250 training episodes were made with 500 

steps per episodes, making 125,000 steps per training in total. Each training is represented 

by a graph, where blue line and associated spots are related to each episode accumulated 

rewards, while the orange line represents movement of an average rewards throughout the 

training session. The training was conducted with economy mode of the heading autopilot, 

where one steering pump was used, action space was limited to a discrete set [-10, 10] of 

rudder movement. Wind strength was set to 21 knots with relative direction of 67.5°, 

current speed of 2 knots and relative direction of 74°, corresponding wind wave of force 6 

and relative direction of 45°, and swell height of 4 with relative direction of 67.5°. 
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Table 3.4 – First training session 
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Table 3.4 depicts training progress. In the second training progress graph is 

depicted where training statistics is shown for each episode. On the x axis we see the 

Episode Number is presented, while on the y axis is the Episode Reward, be it positive or 

negative (penalty). After conducting the reinforcement learning tests it is noticeable that 

whenever the discount factor was set to one (options C, H, and I), learning failed. When 

the gamma was set to 1, agent only focused on the long-term rewards and failed to learn 

anything from the more immediate experiences. Therefore, it is evident that the discount 

factor should be set closer to 0, rather closer to 1. On the other hand, when the exploration 

greedy parameter has been set to 1 (options E and G, while H is discarded due to gamma), 

an increased exploration activity is visible even after 250 training sessions, but agent did 

learn the accurate action for the training scenario. Viable options are A, B, D and F, but it 

is not visible from the training session data which of these options are optimal approach to 

training. This is mainly due to a high learning rate that values learning from the latest steps 

and will inadvertently support exploration, which is evident on graphs where for a steady 

period of time high rewards are visible and then exploration kicks in and causes negative 

spikes of episode rewards. Exploration is valued as it aids to avoid local maxima or minima 

convergence. To find the optimal option, it is necessary to look at the Q-table data and 

compare graphs of Q-values. 

By taking a closer look at Figure 3.21 with graphical representation of Q-values for 

each of the available discrete actions, it is noticeable that option A does not provide a 

distinctive action for the training scenario and Q-values appear to be flat. This is mainly to 

the fact that the exploration was completely discouraged. With the options B and D, better 

behavior is noticed; however, training converged to a local maximum, so only the option 

F provided the accurate convergence. Fluctuations of the Q-values are still noticeable, but 

as it will be discovered in the following pages, this is due to rewards space design that 

warrant some rewards shaping in order to get a clear distinction between global and local 

maxima. Therefore, it is evident that positive number for both gamma and epsilon is 

required, so the focus remains on the option F to make further investigations. 
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Figure 3.21 – Q-values comparison for the First Training Scenario 

With the second and third scenario (figures 3.22 and 3.23), confirmation of findings 

is sought for the above-mentioned options, but at the same time different rewards schemes 

are investigated. The second scenario has a reward space setup as follows: Reward1 has a 

100→0 reward-penalty setup, Reward2 has a 50→0 setup, while Reward3 has a 1→0 reward-

penalty setup. So, behavior of agent when only rewards are available is tested. In the case 

of the third scenario, reward space set up consists of large penalties: Reward1 has a 10→(-

10) reward-penalty setup, Reward2 has a 5→(-50) setup, while Reward3 has a 1→(-100) 

reward-penalty setup. As depicted in the tables 3.5 and 3.6, in both second and third 

sessions, similar behavior is noticed as it was in the case of the first session. Upon a further 

investigation of the Q-values, it was noticed that larger rewards offer a better distinction of 

the global maxima, while larger penalties promote steadier learning and reduce chance of 

convergence near local maxima. It is noticeable that the third session offered convergence 

of almost all options at the global maximum (action -7) and that leads to important 

conclusion that stick is better than a carrot, so we have smaller allowance to err on the 

correct selection of penalties, than to make an incorrect selection of rewards. 
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Table 3.5 – Second training session 
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Table 3.6 – Third training session 
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Figure 3.22 – Q-values comparison for the Second Training Scenario 

 

 

 

 

 

 

 

 

 

Figure 3.23 – Q-values comparison for the Third Training Scenario 
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Even though hyperparameter settings were investigated and received important 

insights about tuning, fundamental questions remain open: What is the optimal length of 

training? How do we ascertain that training session was successful and converged to a 

global maximum? In order to answer those questions, additional tests had to be conducted 

by utilizing option F by alternating the allowed training episodes between 100, 250, 500 

and 1000 episodes. In Figure 3.24 Q-values of the First Training Scenario is depicted, and 

it is visible that 100 episodes is not enough for a successful training. 250 episodes shows a 

better performance, but there are some incorrect spikes of convergence in the positive 

action space, while the correct convergence is in the negative action space. This also points 

to necessity of prolonging the training, so it is noticeable that results are more realistic 

when the training lasts for 500 or 1000 episodes. Having more steps is computationally 

more expensive and time consuming, so the benefit of prolonging the training has to be 

evident to make it viable. In presented case, 1000 episodes do not show any measurable 

improvement in training, so 500 steps is the viable training option. Figures 3.25 and 3.26 

depict the Second and Third Scenario with identical conclusions. In the Second Scenario it 

is also visible that there is much better distinction of where the global maximum is, as all 

options clearly show preference of action space between -10 and -7. On the other hand, the 

Third Scenario Figure shows utilization of larger penalties to drive positive side of the 

action space (0 to 10 degrees rudder deflection) away from the global maxima and ensure 

that no convergence can happen in that space. This is why the Forth Scenario is introduced 

where reward space is defined as follows: Reward1 has a 50→-5 reward-penalty setup, 

Reward2 has a 10→-10 setup, while Reward3 has a 5→-50 reward-penalty setup. Therefore, 

larger rewards and larger penalties are combined in order to get a better distinction of the 

global maxima, so Figure 3.27 depicts the Forth Scenario and confirms that 500 episodes 

is the optimal approach to training. 

Finally, as there are many Q-values spikes when training with 0.9 learning rate, 

training is continued with learning rate at 0.1 and 0.4 and Figure 3.28 shows that the best 

performing learning rate is 0.4, so 0.4 learning rate fits best for handling of underactuated 

vehicles training tasks.  
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 Figure 3.24 – First Training Scenario (Q-Values)         Figure 3.25 – Second Training Scenario (Q-Values) 

 

 

 

 

 

              Figure 3.26 – Third Training Scenario (Q-Values)          Figure 3.27 – Forth Training Scenario (Q-Values)
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Figure 3.28 – Comparison of learning rates (Q-values) 
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session, mainly due to exploration, the training would stop after 500 episodes.  
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3.3.5 Building the initial database - Learning from 

Demonstration 

Looking at the previous chapter’s example, experiment commenced as if there 

was no previous knowledge or experience and stated simply that all states in the state space 

domain are equal to zero !(#, %) = 0, which shows that all states have equal value, and 

that agent can select any of the actions available to start exploring and exploiting. Even 

though simple, this approach comes at a high price of convergence time. Any approach 

with guidance to the agent in good faith, even if not very precise, will aim to shorten the 

time of convergence, which is the reason why learning from demonstration is introduced. 

If human operator is navigating a sea surface vehicle, regulations mandate that 

navigators have to study navigation, pass various practical tests, undergo a year time of 

cadetship and pass a rigorous qualification exam before they are allowed to navigate a 

commercial vessel. It will take some time for them to gain confidence, but their first 

navigational decisions are not without prior knowledge and understanding of the material. 

Therefore, aim of this chapter is to provide a set of learned parameters that will guide 

learning algorithms to commence exploring, select optimal paths and learn from mistakes 

during exploitation.  

When designing a model based on MDP, the reward function plays a vital role. 

Even a small change in constants within a reward function can make a significant change 

in accuracy of the solution and sequential decision making. That is why reward function 

design usually requires a lot of trial-and-error attempts guided by experts' overview in order 

to achieve the desired output. Considering the extent of desiderata in the motion control 

problem of sea surface vehicles, writing down an explicit reward function is not a straight-

forward task, as not only movements by following trajectories have to be included, but also 

limitations of the considered vehicle and external factors taken into consideration. On one 

hand focus is on reward on keeping the desired heading while on the other hand penalties 

for undesired movements have to be designed to allow for nonlinear inputs and outputs. 

This issue can be approached by either inferring the reward function through utilization of 

inverse reinforcement learning where we learn the reward function, or by shaping the 
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reward function to achieve sustainable results. In this research a model-free approach using 

reward shaping is used in order to achieve risk averse and collision free path generation, 

starting with an auto-pilot model design. As the Foraging Particle Filter filters external 

influences, sensor errors and uncertainties of proposed control model, in continuation 

design of the autopilot by utilizing MDP framework is presented. 

Navigating a sea surface vehicle with many external forces that change 

unpredictably is highly dynamic effort, where considerable number of desiderata have to 

be monitored in order to control the heading safely. If making a simple turn repetitively is 

contemplated, but with different external influences and speeds, different inputs to the 

rudder for each of these turns are obtained. Also, when thinking of turning rates, an expert 

piloting the sea surface vehicle would determine what should the speed of turning be for 

that turn, so inputs to rudder would be nonlinear in the dataset for each change in 

environmental dynamics, as well as for each individual pilot expert. In order to depict this 

phenomenon, an experiment is consolidated where two piloting experts are doing one 

section of navigation in a channel and then we let one inexperienced agent to learn steering 

from the experienced experts.  

 

 

 

 

 

 

Figure 3.29 – Learning from experience – Expert 1 
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Figure 3.30 – Learning from experience – Expert 2 

 

 

 

 

 

Figure 3.31– Learning from experience – Student 

 

 

 

 

 

 

Figure 3.32 – Learning from experience – Comparison 
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Figure 3.33 – Heading experiment overview – scenario 1 

 

 

 

 

 

 

 

 

Figure 3.34 – Heading experiment overview – scenario 2 

 

Fresh system without any previous experience can be considered as model of 

inexperienced student depicted by the experiment. There is no special reward function for 

the student, but rather they are left to learn from demonstrations, specifying what is 
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expected from him. As visible from results, imitation learning was successful. The average-

able expert is not defined in this work but making a larger study with many experts can 

reveal what would be the best handling by averaging all approaches. If the goal was to 

simply mimic all of the expert's behavior, supervised learning could be utilized [Abbeel 

and Ng, 2004], however in presented system dynamics external factors, speed and traffic 

flows are different, so reinforcement learning is the best fitting machine learning method 

for heading control of sea surface vehicles.  

The ability to maintain heading and/or course in dynamic environments is crucial 

for safe and collision-free navigation of sea surface vehicles. When maintaining heading 

and/or course, it is not only important to do it with as little deviation from the intended 

heading and/or course, but also to do it in a manner that will respect the limitation of the 

actuators installed onboard vehicles, while keeping the environmental influences at 

minimum by allowing for actuators to act economically or precise depending on the 

selected mode of operation. The goal of this section is to present a self-learning autopilot 

that successfully copes with environmental disturbances when maintaining heading or 

courses derived from following desired trajectories (passage plans designed by navigating 

officers). 

An autopilot is modelled where navigator still plans routes and supervises the 

execution. However, this model can be easily tweaked so that it can be used in autonomous 

surface vehicles. Even though model development is commenced by learning from human 

operators, intention is not to cover all possibilities, environments, and scenarios to obtain 

good control policies, but rather to aid convergence of the reinforcement learning 

algorithm. After the initial demonstration learning and rewards shaping, reinforced 

learning is used to get the sequential control series that are infused in the model predictive 

controller (MPC). MPC actuates vehicle's rudder and, in case of autonomous vehicles, 

thrust. For fully actuated vehicles, as it is case in dynamic positioning, MPC could control 

thrust power for all propulsion units. In this thesis decision support system is considered, 

so thrust control can be integrated as suggestive alert, rather than actual direct control. In 

case of commercial surface vehicles, increasing speed and slowing down requires efforts 

from marine engineering department onboard to engage additional generators, adjusting 
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cooling parameters, changing certain modes of the main engine, and similar, therefore, it 

is not possible to design an automatic controller, but rather have a suggestive action from 

the decision support system.  

Literature shows that reinforced learning is successfully used on ground [Williams 

et al., 2017] and air [Tran et al., 2015] traffic systems, while sea surface vehicles have 

limited attention [Liu et al., 2016] mainly due to signal noise, dynamic environments, 

sensor hysteresis, but also quality of sensor equipment. In order to control cost, and because 

of perceived lower risk levels by administrations, lower quality sensor equipment is used 

onboard the commercial sea surface vehicles, which is one of the main factors why 

maritime industry is still not ready for full autonomy retrofit. Another difficulty that has to 

be considered is the cost of running experiments and exploring with full size vehicles. Most 

of the approaches in the area of marine control have been focused on proportional integral 

derivative (PID) controllers [Naeem, et al., 2012], while additionally contributions in linear 

quadratic controllers (LQR) [Lefeber, et al., 2003] and neural networks [Peng, et al., 2013] 

are presented, but limited literature in model predictive controllers (MPC) [Annamalai et 

al., 2015; Cui et al., 2019]. However, to the best of our knowledge, this is one of the first 

approaches that utilizes probabilistic sequential decision making with foraging 

optimization to design an intelligent marine auto pilot. Therefore, main contributions of 

this work is to propose an inverse RL method to develop initial database of weights and 

control sequences, after which RL solution is designed for online data collection, feature 

extraction and update of learning in the offline setting, and finally to evaluate performance 

of designed controller in simulated environment.  

In this work the following framework is developed: firstly, features are extracted 

from human experts, this is then followed by the reward shaping, while the last part of the 

framework consists of execution and exploration part. It is necessary to keep in mind that 

the scope of this thesis is decision support system and not autonomy; however, slight 

adjustment is required to fit this model on surface vehicles without human supervision. 

Before further exploring the framework of the system dynamics, it is imperative to mention 

that most marine autopilots operate in several modes. Modes would vary between 

manufacturers, but the general idea is that there is an economy mode and at least one 
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precision mode. Speed of surface vehicles is another important parameter, as speed largely 

influences control inputs to get the same outcome at the higher speed (larger rudder 

deflection is required when speeds are low). When these modes and limitations are taken 

into consideration, it is possible to see that the shape and dimension of the features relevant 

to proposed model will be slightly different, so reward functions depend on the mode and 

limitation imposed by the navigator. Speed of a sea surface vehicle could be a determining 

factor for modes and limitations selection by the autonomous agent in case of unhabituated 

vehicles. In this chapter the focus is autopilot design, so static and dynamic obstacle 

avoiding is omitted, which would be analyzed in the oncoming chapters.  

The feature extraction part is used to extract state features such as referent position, 

true heading (after filtration), desired heading (either as a direct input from navigating 

officer, or calculated as per the desired course), and deviation from the desired track or 

trajectory. Various imperfect sensors observe these features; however, uncertainty of 

sensors is included in the filtering and collision avoidance sections, so it is assumed that 

the input is filtered before entering this model. To further improve accuracy of sensing 

input, extensive study covering measurement noise of particular manufacturer's sensor can 

be done and results implemented in this model. After feature extraction, learning from 

demonstration is used to learn desired rudder control from expert demonstrations. 

Demonstrations are used only to allow for a faster and more accurate algorithm 

convergence. After this step, reward shaping is used to tune the rewards that fit the desired 

task and to compute the optimal sequence of control. Finally, control is applied to rudder 

via MPC, while at the same time exploration and knowledge transfer is used to collect new 

data and to update the results of the simulation and in this way proposed autopilot is self-

adapting and constantly learning. It is important to state that all learning is conducted 

offline, while exploration and rudder control happens online. In this way, computing power 

and seamless sampling efficiency is preserved. 
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3.3.6 Heading control 

As mentioned earlier, an autopilot usually operates in either heading control mode 

or course control mode. When autopilot is used only to maintain certain heading, the vital 

information needed is the yaw rate. After the yaw rate is filtered utilizing FPF, filtered 

information is fed to the learning model. Unlike course control where the aim is to keep 

the vessel at certain course and adjust the heading to achieve precision, in heading control 

mode, autopilot tries to maintain a desired heading and allow for drift. In order to preserve 

actuators, it is necessary to compensate only for low frequency motion, while filtering out 

the high frequency yaw rate.  

Solving a motion control of sea surface vehicles is not trivial; therefore, goal is to 

find a solution that is sustainable and effective. As author is a master mariner with 15 years 

of sea service experience, informal interviews with other navigators were made in regards 

of preferences when interacting with autopilots. Two features were commonly noted: 1) 

autopilot should resemble human-like control in order to maintain heading and course 

effectively without unnecessary overshooting when completing a turn, and 2) having a 

visual trajectory reference on RADAR and ECDIS is the clearest way of understanding 

future maneuvers. It is, therefore, prefered to model course and heading control as 

reinforced learning problem with exploration in the real-time environment, but with a prior 

knowledge of steering control developed through reward shaping based on human 

demonstration. When shaping reward is deemed too complex, inverse reinforcement 

learning techniques could be used to learn reward functions by extracting features of the 

model, but in this case, forming a scalable and efficient reward function is possible, so 

classic reinforcement learning is used. Shaping reward function takes additional efforts in 

the design stage, but once the final reward function is tuned correctly, model has lower 

dimension than what would be case with feature extraction. Higher dimensionality often 

leads to higher computational complexity and in order to preserve computing power, 

reward shaping through demonstrations approach is selected, as it requires fewer feature 

vectors.  

Heading control is defined as an ability for the autopilot to maintain a heading 
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selected by a navigator. That means that the aim of the heading control is to control the 

rudder deflection sufficiently to maintain the heading as close to the desired heading. In 

order to maintain desired heading, a progressive penalties approach is taken, where, 

depending on the economy or precision modes, an agent is allowed to stay within the 

certain parameters off the heading before initiating off-heading alarm. In presented 

example, a common setup is considered, where two steering pumps could be engaged. At 

open seas, the sea surface vehicle would use one steering pump, while in confined waters 

and during port approaches, selection would switch to both pumps running consecutively 

to ensure stability, redundancy and increase speed of response. Another selection is 

between ECONOMY and PRECISE modes of operations, where economy mode allows 

for a higher deviation from the desired heading in order to preserve actuators, while in 

precision mode, rudder deflects more frequently in order to preserve precision. Finally, rate 

of turn selection is possible in order to limit the speed of turn. In this example it is possible 

to select rate of turn of 5, 10, 15, 20, or 30 degrees per minute. The most challenging part 

of this approach remains how to implement the dynamic and kinematic abilities of the 

considered sea surface vehicle. This is the reason why artificial agents extract knowledge 

from sea trials and demonstrations data. 

Most of the commercial sea surface vehicles are designed to have two separate 

steering systems, as steering is considered a critical equipment by class societies. 

Therefore, to ensure redundancy, two systems and two steering pumps are commonly 

installed onboard. A single system is used at open sea and both system in series are used 

in confined waters. Some of the commercial operators will have a policy that describes 

when navigators should use two systems simultaneously. Having two systems working in 

a series improves the speed of the rudder deflection, so SOLAS requirement for the 

deflection speed is usually done with two systems working together. For experiments and 

simulations, a model of an LNG Tanker with steam propulsion and redundant steering 

machinery is used, which has two electric motors for each steering system. Speed of 

deflection was measured onboard a real LNG Tanker that is identical to the model. 

Implementation of the rudder deflection speed as a constraint is straightforward due 

to its linear nature. In the case of large underactuated sea surface vehicles, the period of 
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deflection is short enough that it will not cause any noticeable yaw change until it deflects 

fully to the desired deflection angle, so it can be disregarded as a factor of influence. This 

might not be the case with smaller and lighter vehicles, for which analysis needs to be made 

and reward shaping utilized to address any yaw acceleration during the deflection from one 

position to another is done. It is imperative to mention that agent is given task to maintain 

a certain heading and disregards turning of a sea surface vehicle, which requires an 

experience or exploration mined knowledge that will serve as a guide to find a global 

maximum. 

As the goal of heading control is to maintain heading as close as the desired 

heading, state space is defined as: 

) = (*! , *" , +,-, +! , .#$ , /%)																																															(3.75) 

where *! represents a desired heading that is selected by a navigator, *" is filtered heading 

that is received from the gyro compass and filtered by the FPF, +,- = {−30°, 30°} is the 

Rate of Turn or yaw rate indication and could be measured or taken from the system 

installed onboard and is scaled from -30°  to 30° with negative indicating port side (30° is 

the dynamics and kinematics limit considered vehicle has), +! = {−35°, 35°} is a rudder 

deflection indication required to ensure correct position of the rudder has been selected, 

.#$ = {9:,;,.<, /+9:=)=,;} represents autopilot modes and in this case these are 

economy and precision, but this could be extended to variety of precision levels, and /% =
{1/, 2/}, which stands for Pumps number and represents a selection of one or two steering 

pumps engaged at the moment of making a control decision. Considering that most of the 

autopilots allow only for the full degree scale selection, that the change in heading is 

sluggish, and that the representation of the gyro heading data is in 10th-s of a degree, higher 

accuracy is not required, so *! 	and	*" are considered as discrete variables, including the 

rest of the tuple +,-,.#$ , and	/% . With heading control, we are mostly interested in 

immediate results; therefore, discounting of rewards can be ignored and focus maintained 

on short term performance, which reduces computational burden. 

The action space is discrete in the case of underactuated sea surface vehicle, and 

taking in consideration deflection limits, there are two types of action spaces available: 
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C&'( = {−10°, −9°, −8°, … ,−1°, 0°, 1°	, … , 8°, 9°, 10°}																							(3.76)		 

C$)&'*+*(, = {−35°, −34°, −33°, … ,−1°, 0°, 1°	, … , 33°, 34°, 35°}																	(3.77)		 

The way how the autopilot will operate largely depends on the desired behavior 

from the designer of the system. One model is created, but all parameters could be fine-

tuned as per the requirement of the navigator and type of the sea surface vehicle. Approach 

in this research is mostly based on the yaw rate, where the agent wants to achieve the set 

ROT as soon as possible, that is why reward function is designed in a way to promote larger 

rudder deflection and then gradually reduce deflection as the ROT (yaw rate) is 

approaching the set point, while discouraging overshooting.  

For all autopilot training 16 scenarios of external disturbances are utilized as per 

Table 4.7, which is presented in the Appendix B. After training is done, behavior has to be 

simulated by introducing scenarios that are different than training scenarios in order to 

verify that training was successful. Therefore, 5 simulation scenarios are utilized as per 

Table 4.8 presented in the Appendix B. In the real world, training data would be collected 

during sea trials and then initial database built utilizing the sea trials data, training, and 

simulation. During exploitation a certain amount of exploration would be allowed and then 

buffer of knowledge developed according to the agreed algorithm.  

Economy mode. The commercial shipping operators have to take in consideration 

fuel, consumables and spare part costs, while reducing the impact on the environment when 

sailing across the seas. Naturally, safety of the crew, sea surface vehicle, and environment 

plays the most important role, so in a case of anti-collision maneuvers, the control of a sea 

surface vehicle should be as precise as possible. However, in regular exploitation goal is 

to preserve steering system and allow for an additional play when controlling the heading. 

The economy mode is usually achieved by limiting ROT and deflection of the rudder. In 

this approach the main setup is maximum 10° of deflection and maximum 5° of ROT. 

However, a user can set this up as per his/her own wish through the interface page. In line 

with the above, following reward space is defined: 
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+I)- , C.J = K/+/I)- , C.J + K0+0I)- , C.J + K1+1I)- , C.J + K2+2I)- , C.J + K3+3I)- , C.J

+ K4+4I)- , C.J																																																																																																(3.78) 

where 

+/I)- , C.J = M
20,								if						* = *"
0,																otherwise

																																			(3.79) 

 

+0I)- , C.J = M
10,								if						* = −1° ≤ *" ≤ 1°

−1,																																							otherwise
																						(3.80) 

+1I). , C.J = M
1,								if						* = −2° ≤ *" ≤ 2°

−10,																																		otherwise
																								(3.81) 

+2I)- , C.J = X

10,																																																																																							if						+,- = +,-5&+
5,			if	+,- = +,-5&+ − 5°/min < +,-5&+*)&5 < +,-5&+ + 5°/min

−10,																																															otherwise																																														(3.82)

	 

+3I)- , C.J = M
−1,								if						.#$ = 9:,;,.<	and	+,- > 10°/min

0,																																																																									otherwise
															(3.83) 

+4I)- , C.J = X

−1,								if						/% = 1/	and	]) > 0.418	seconds

−1,								if						/% = 2/	and	]) > 0.2265	seconds

0,																																																														otherwise

																	(3.84) 

 

In such defined reward space, all +- ’s are normalized. The +/  rewards heading 

output that is identical to the heading requested by a navigator. The term +0 penalizes 

autopilot to exceed 1° off the desired heading, while +1  penalizes even stronger if the 

autopilot heading is off by 2° from the desired heading. As agent is using economy mode, 

this allows that autopilot has a regular off-heading without strongly intervening with rudder 

control to maintain desired heading. Using this approach, it is possible to setup reward and 
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penalty points to get the desired outcome. The +2 rewards autopilot to reach the desired 

yaw rate as soon as possible and penalizes if the yaw rate is different from the desired yaw 

rate by more than 5°. The +3 penalizes yaw rate higher than 10° in order to minimize 

impact on the speed of the sea surface vehicle and avoid unnecessary strains on propulsion 

in order to compensate for the loss of speed as a consequence of larger yaw rates or rudder 

deflections. Finally, +4 is mainly used to have a dynamic and time dependent trajectory 

generation, as the rate of deflection (])) is one of the main limiting factors in steering 

underactuated sea surface vehicles. K- ≥ 0 are weights that allow us to raise importance of 

certain component of the reward function when required. 

Precision mode. When there is a need for a precise movement and heading control, 

most of the commercial autopilots allow for at least one precise setpoint. Some of the newer 

commercial models allow users to choose various levels of precision mode, as well as 

tuning parameters as per their own preference. In the proposed model, parameters are easily 

tunable to the preference of a user by tweaking the reward function. One of the possible 

settings is showcased, having in mind that selected sea surface vehicle model is an 

underactuated commercial vessel. During ocean passages economy mode is suitable; 

however, when in coastal waters, waters with higher traffic, during collision avoidance or 

when approaching/leaving ports, precision mode fits better. Heading control algorithm has 

an option of an automatic switching from economy to precision mode when risk of a 

collision is detected. In precision mode, full range of action space is allowed. Therefore, 

reward space is similar to (3.80), but the individual rewards are different: 

+/I)- , C.J = M
100,								if						* = *"
−10,																otherwise

																																					(3.85) 

+0I)- , C.J = M
10,								if						* = −0.5° ≤ *" ≤ 0.5°

−1,																																							otherwise
																							(3.86) 

+1I). , C.J = M
1,								if						* = −1° ≤ *" ≤ 1°

−10,																																		otherwise
																							(3.87) 
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+2I)- , C.J = X

10,																																																																																							if						+,- = +,-5&+
1,										if	+,- = +,-5&+ − 2°/min < +,-5&+ < +,-5&+ + 2°/min

−10,																																															otherwise																																															(3.88)

 

+3I)- , C.J = X

−1,								if						/% = 1/	and	]) > 0.418	seconds

−1,								if						/% = 2/	and	]) > 0.2265	seconds

0,																																																														otherwise

												(3.89) 

 

Therefore, the sum of all rewards is slightly different than in (3.78), as there is one 

less category that requires consideration: 

+I)- , C.J = K/+/I)- , C.J + K0+0I)- , C.J + K1+1I)- , C.J + K2+2I)- , C.J

+ K3+3I)- , C.J																																																																																																(3.90) 

The reward space of the precision mode is similar in nature to the economy mode, 

except that it has one component less, as it is less restrictive for the yaw moment. The 

description of the reward components is similar, so +/  is still rewarding the heading 

accuracy; however, in this case the reward points are higher and there is a penalty for failing 

to accomplish this goal. The +0, +1, and +2 are slightly tuned to promote a more precise 

steering outcome. Finally, the +3 remains focused on dynamic and kinematic limitation of 

the steering system installed onboard the modelled sea surface craft.  

_______________________________________________________________________ 
Algorithm 3 – HEADING Control Algorithm ECONOMY and PRECISION modes 
_______________________________________________________________________ 

Input: States ), Actions C&'(,(67 or  C$)&'*+*(, depending on the user selection 

Reward function + ∶ )	x	C → ℝ,  Importance weights K- ≥ 0, Discounting  d = 0.1,  

 .#$ = 9:,;,.<	or	/+9:=)=,;, /% = 1/	or	2/, e-greedy factor 0.10,  

Learning rate K = 0.5. 

Output: ! 

1 Initialization: *! = *", +,- = 0, !(#, %) = 0. 
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2 for each episode (time horizon of 5 minutes) do: 

3  Initialize # 

4  Chose % = 0° as first action.  

5  for each step of episode do: 

6   Take action %, observe +, #8 

 7 Choose %8 from #8 using policy derived from ! (e-greedy) 

11  !(#, %) ← !(#, %) + Kf+I)- , C.J + d!(#8, %′) − !(#, %)h                 

12  # ← #8; % ← %8 

13 end for when # is terminal 

14 end for and return ! 

15 end 

 

The discount factor is d = 0.1  as focus is on immediate rewards, while fixed 

learning rate is set K = 0.5 as this problem is relatively deterministic and learning from 

new experiences is desired. The e-greedy policy is tuned as in (3.86). As assumption is 

made that there are no previous experiences, the algorithm initializes with desired heading 

equal to the filtered heading and yaw rate equal to zero. This basically means that agent 

keeps rudder at midships and wait for the disturbance to act before allowing for correction. 

Even though turns could be handled by the same algorithm, in order to speed up 

convergence and ensure accuracy, turns are introduced as separate algorithm that takes 

human experts’ knowledge and abilities into consideration when generating trajectories.  

The results of training and simulations are presented in tables B.1 and B.2 of the 

Appendix B, and it is evident that both training and simulations have shown feasibility of 

the system. Heading control show success under various environmental loads. 
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3.3.7 Course control 

Unlike the heading control where external influences were disregarded for 

maintaining the desired heading and drift was allowed, when designing autopilot that can 

maintain a true desired course, all external influences should be considered. This issue can 

be approached through expansion of the heading control algorithm and by introducing 

deviation from the desired “perfect” course in the state description, but it can also be 

assumed that the vessel is equipped with any type of IMU, as the availability of these 

sensors is now cost effective, so installing additional equipment onboard is not making a 

large burden to the commercial shipowners. With IMUs it is possible to track accelerations 

and by having a previous experience and/or simulation data available, it would assist 

greatly the algorithm to generate trajectories with higher accuracies. Also, exploration is 

then improved, as real-life use is supported by data that can improve learning and it is 

possible to directly compute influences of external disturbances to sway, yaw, or surge.  

When solving collision avoidance problems, the quality of predicted paths and 

trajectories is of great importance. If external forces are taken into account, quality of 

predictions has a potential to be more accurate than predictions without external influences. 

Therefore, it is imperative to complete sea trials as accurate as possible to get a reliable 

data about sea surface vehicle’s behavior in still water. Simulations could be then used to 

derive accelerations in three degrees of freedom (even more if the computational power is 

available) and then used as a set of knowledge for the algorithm. In the exploitation phase, 

it is possible to monitor accelerations and correct simulated data with the real-world 

experience. This would be approach when designing a model of a course keeping autopilot 

for an underactuated sea surface vehicle. 

State space for course control autopilot is defined: 

) = i
j, k, :! , :,l,*),	*" , +,-, )) , ),l, +/., m, n, o, +! ,

p+,p5 , :moo+, :moo5 , )+:#:& , )5 , )p; , )p5 , .#$/, .#$0, /%
q												(3.91) 

Immediately it is noticeable that the state space for the course control is larger and 

more complex. It is necessary to state that higher dimensions would increase computational 
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complexity, so it is necessary to include only the necessary vectors in state-action couples. 

The state tuple includes j and k, representing the North and East position that is received 

from the filtered and fused GNSS receiver. :!  represents a desired course, which is 

information derived from a route made in ECDIS, or requested by a user, :,l is an actual 

course over ground a sea surface vehicle is doing at a certain time-step and it is used only 

as an indication, *) represents a requested heading, which is a direct link between a course 

requested and a control of a sea surface vehicle. *) is not requested by a user, but rather 

by calculating influence of external disturbances on maintaining a desired course. This is 

also either given by a system installed onboard, or system calculates influence on its own. 

Filtered heading *"is still required in order to ensure appropriate rudder control. +,- =
{−30°, 30°} remains to represent the Rate of Turn or yaw rate indication and could be 

measured or taken from the system installed onboard and is scaled from -30°  to 30° with 

negative indicating port side (30° is the dynamics and kinematics limit own vehicle has), 

),l as speed over ground represents a surge rate and is measured by GNSS or speed log 

when ground is available, while +/. is included to link the speed of surface vehicle with 

revolutions per minute, which is standard input unit for marine propulsion. Related to +/. 

is )) and this is one of the outputs from the anti-collision algorithm in order to optimize 

trajectories when speed reduction is required.	+/. and  )) are not necessary for the course 

control algorithm; however, they are mentioned as the same algorithm will be used in the 

collision avoidance scenarios. m, n, and	o are known from the previous chapter and they 

represent surge, sway, and yaw velocities respectively. These are the velocities that would 

be received from an IMU sensor and use to calculate influence on a sea surface vehicle. If 

IMU is not available, current influence can be taken directly form the equipment installed 

onboard of a certain commercial vessel, or it would be possible to take the set calculated 

by the ARPA or ECDIS. +! = {−35°, 35°} is a rudder deflection indication required to 

ensure correct position of the rudder has been selected. The following state members 

(p+,p5 , :moo+, :moo5 , )+:#:& , )5 , )p; , )p5)	 are wind speed in knots, wind direction, 

the speed of a current in knots, direction of a current, sea state according to agreed scale, 

which also describes height and wavelength, sea waves direction, swell height, and swell 

direction. All these components influence m, n, and	o  and are therefore important 

indicators.	.#$/ = {9:,;,.<, /+9:=)=,;} represents autopilot modes and in this case 
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these are economy and precision similarly as with heading control, but in the course control 

there is also .#$0 = {-+C:r, l,	-,	pC</,=;-}, where track mode ensures that sea 

surface vehicle remains on the track planned by a navigator and laid on ECDIS, or that a 

shortest course to waypoint mode is used. The difference of these two modes is in the way 

how the control is ensured. In the track mode even a small deviation from the track will 

cause autopilot to achieve return to track by using as much rudder is possible, so the 

heading change can sometimes be substantial. Unlike the track mode, go to waypoint 

selection will allow the system to find the optimal path to reach the next waypoint and set 

course towards the next waypoint position. Finally, /% = {1/, 2/}, is still a selection of 

one or two steering pumps engaged at the moment of making a control decision. 

The action space remains the same, so it is now possible to tune rewards for specific 

tasks. At the beginning, a reward function is designed and then shaping functions 

developed in order to assist the autopilot in finding optimal trajectories. With course 

control, external disturbances are important, as to make accurate trajectory predictions, 

external disturbances have to be considered. Once a sea surface vehicle is produced and 

delivered, the first step is to ensure that sea trials are done properly and according to the 

classification societies’ guidelines. As the data and sea trial modules are restrictive, 

simulator modeling of a vessel in question is proposed to gain as much as possible prior 

knowledge. Exploration without prior knowledge is very expensive, as the risk of collisions 

and groundings with a commercially exploited sea surface vehicle is restrictive. That is 

why detailed simulation exploration is conducted and the reason why results primarily 

focused on external influences on selected sea surface vehicles. This allows the course 

keeping algorithm to have a knowledge database, which would be updated with real-world 

data in order to improve accuracy of predictions. The course-keeping autopilot has a goal 

of maintaining desired course, selected wither by a user or demanded by a route developed 

as a passage plan from one position to another. By planning a route, a set of waypoints is 

developed, after which navigators have to ensure that a sea surface vehicle maintains its 

required course taking external disturbances into account. Interestingly, COG is calculated, 

so focus is maintained on heading rather than designing a reward function that will reward 

or penalize course differences, except for the auto-pilot mode.  
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Economy mode. As the autopilot modes have been described in heading control 

section, it is possible to continue straight to define a reward space as follows: 

+I)- , C.J = K/+/I)- , C.J + K0+0I)- , C.J + K1+1I)- , C.J + K2+2I)- , C.J + K3+3I)- , C.J

+ K4+4I)- , C.J + K<+<I)- , C.J + K=+=I)- , C.J	,																																				(3.92) 

where 

+/I)- , C.J = M
20,								if						*) = *"
0,																otherwise

																																			(3.93) 

+0I)- , C.J = M
10,								if						*) = −1° ≤ *" ≤ 1°

−1,																																							otherwise
																					(3.94) 

+1I). , C.J = M
1,								if						*) = −2° ≤ *" ≤ 2°

−10,																																		otherwise
																				(3.95) 

+2I)- , C.J = X

10,																																																																																							if						+,- = +,-5&+
1,									if	+,- = +,-5&+ − 5°/min < +,-5&+ < +,-5&+ + 5°/min

−10,																																												otherwise																																																	(3.96)

	 

+3I)- , C.J = M
−1,								if						.#$/ = 9:,;,.<	and	+,- > 10°/min

0,																																																																									otherwise
											(3.97) 

+4I)- , C.J = M
−10,								if						.#$0 = -+C:r		and		j#, k# ≠ j>" , k>"
20,																																																																									otherwise

												(3.98) 

+<I)- , C.J = M
−10,										if									.#$0 = l,	-,	p/	and	:! 	≠ :,l

20,																																																																									otherwise
											(3.99) 

+=I)- , C.J = X

−1,								if						/% = 1/	and	]) > 0.418	seconds

−1,								if						/% = 2/	%jt	]) > 0.2265	seconds

0,																																																														otherwise

										(3.100) 

 



	

	
	

159	

Reward space is defined similarly like in heading control with two additional 

rewards. In (3.93), (3.94), and (3.95) the only difference is using *), which stands for 

heading requested by the course keeping autopilot. (3.96) and (3.97) remain the same as 

with heading control. However, (3.98) and (3.99) are a new addition and they are here to 

manage reward and penalty for course keeping. As mentioned before, autopilots usually 

have track keeping and go to waypoint modes. The (3.98) reward is designed to penalize 

movement from the track. That is why equality compares Actual N-E position, which is 

determined on a chart/ECDIS and the fused and/or filtered N-E position at the time step u. 

The (3.99) reward is connected to the go to waypoint mode, and it penalizes situations 

where desired course is different than the measured (via GNSS) course over ground. So 

this reward is in charge to maintain desired course towards the next waypoint regardless of 

the originally planned track. (3.100) reward remains the same as before. K- ≥ 0 are weights 

that allow us to raise importance of certain component of the reward function when 

required. In this case, it is necessary to ensure that the K4 = 0 when user selects go to 

waypoint mode, as well as that K< = 0 when user selects track mode. 

Precision mode. Precision mode was also extensively explained in the heading 

control section, so it is possible to design the reward function as follows: 

+I)- , C.J = K/+/I)- , C.J + K0+0I)- , C.J + K1+1I)- , C.J + K2+2I)- , C.J + K3+3I)- , C.J

+ K4+4I)- , C.J + K<+<I)- , C.J																																																																	(3.101) 

where 

+/I)- , C.J = M
100,								if						*) = *"
−10,																otherwise

																																	(3.102) 

+0I)- , C.J = M
10,								if						*) = −0.5° ≤ *" ≤ 0.5°

−1,																																							otherwise
																							(3.103) 

+1I). , C.J = M
1,								if						*) = −1° ≤ *" ≤ 1°

−10,																																		otherwise
																									(3.104) 
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+2I)- , C.J = X

10,																																																																																							if						+,- = +,-5&+
1,									if	+,- = +,-5&+ − 5°/min < +,-5&+ < +,-5&+ + 5°/min

−10,																																															otherwise																																												(3.105)

	 

+3I)- , C.J = M
−10,								if						.#$0 = -+C:r		and		j#, k# ≠ j>" , k>"
50,																																																																									otherwise

												(3.106) 

+4I)- , C.J = M
−10,										if									.#$0 = l,	-,	p/	and	:! 	≠ :,l

50,																																																																									otherwise
										(3.107) 

+<I)- , C.J = X

−1,								if						/% = 1/	and	]) > 0.418	seconds

−1,								if						/% = 2/	and	]) > 0.2265	seconds

0,																																																														otherwise

												(3.108) 

The precision mode is again similar to the economy mode with a difference in yaw 

rate restriction. Similarly as in the heading control model, reward points are altered in order 

to ensure precision and the reward related to the economy mode is removed. Rewards 

(4.107) and (4.108) also have higher reward points in order to focus on precision.  

Before defining an algorithm for course control, reward shaping is added. First 

shaping is to ensure stability and precision of trajectories, while the second shaping is in 

charge of infusing previous knowledge and simulated data in the algorithm in order to 

avoid local maxima.  

If we recall how shaping was done in the simple example depicted in the previous 

chapter, distance shaping and action shaping is considered. In the instance of course control 

autopilot modeling, it is unnecessary to shape actions. Unlike the simple example where 

actions were directions of movement, in the autopilot design actions are rudder deflections 

and the main reward space takes care of performance limits. Therefore, heading shaping is 

considered instead of action shaping. When thinking of heading, it is envisioned that rarely 

there would be a situation where vessel would need to steer 180° away from the present 

heading. That is why progressive heading shaping reward is introduced: 
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Φ(*)) 		= 			

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

					

−8					if	(*)8 − *)) = [−45°, −30°]	or	[30°, 45°]

−6					if		(*)8 − *)) = [−90°, −45°)	or	(45°, 90°]

−4					if	(*)8 − *)) = [−135°, −90°)	or	(90°, 135°]

0					if	(*)8 − *)) = [−180°, −135°)	or	(135°, 180°]

−10	otherwise

													(3.109) 

This shaping has a goal of promoting the continuation of the same heading. It is not 

significantly punishing alteration of the course, but when keeping in mind that this tuning 

is still done for a large underactuated sea surface vehicle, altering course always takes time 

and to find optimal solution which is in the other direction of the current course should be 

made expensive. In this sense, it is necessary to avoid that agents are looking for a favorable 

solution in the state space which require a huge impact on performance and stability. 

Certainly, if there is no better solution than to turn the vessel to the opposite direction, it 

will be proposed by the system, but it should be one of the last resorts.  

The other part of this shaping function is the distance shaping and as it was shown 

in Cui et al. [2019], the Euclidian distance is more effective than Mahalanobis distance for 

direct measurements. Next section shows how Mahalanobis distance can play a vital role 

when tuning reward shaping from demonstrations, but for the direct use on measurements, 

Euclidian distance is the approach warrantying better results. It is difficult to find viable 

data with which uncertainty could be modeled similarly to presented basic navigation 

experiment, where assumption was made that in 10 % of cases behavior of own agent or 

other agents will be out of ordinary. In the real world, marine autopilots rarely make 

mistakes that would need attention, unless when considering overshooting a desired 

heading or course. However, overshooting has been covered by designing a main reward 

function penalizing that kind of behavior. The major uncertainty is actually with the 

decision making of navigators in collision situations, but this will be modeled when 

designing an algorithm to avoid collisions. In the case of autopilot, the biggest problem an 

agent could face is unavailability of the steering gear due to some failure; for which a 

backup system could be used automatically, and the autopilot would then try to engage 

auxiliary systems available or give an audio warning to the operator that Non-Follow-Up 
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(NFU) system should be in use. In line with this, distance uncertainty is used as shaping 

function by measuring Euclidean distance between the predicted mean of a sea surface 

vehicle’s position in the time-step when own agent should be at the next waypoint (j$ , k$) 

and the actual position of the next waypoint (j#, k#), where P stands for predicted: 

Φ(#) = −i
1
2
‖(j$ , k$) − (j#, k#)‖0q																																		(3.110) 

In line with the (3.72), shaping potential looks like: 

Φ(#, %) = Φ(#) + Φ(*))																																															(3.111) 

or: 

Φ(#, %) = −i
1
2
‖(j$ , k$) − (j#, k#)‖0q + Φ(*))																															(3.112) 

With shaping potential defined this way, reward shaping function that will be used 

in the final algorithm is as follows: 

~(#, %, #8, %8) = dΦ(#8, %8) − Φ(#, %) 

Before the course keeping algorithm can be presented, it is necessary to learn how 

external disturbances affect the three degrees of freedom. Assumption is made that IMU is 

available onboard a sea surface vehicle. If not, algorithm can work without motion vectors, 

but it would require longer exploration as the predictions would have a certain degree of 

offset. Initially, a model of a sea surface vehicle and a certified simulator is required to get 

the motion behavior. However, once in exploitation, a motion data is collected, and the 

knowledge buffer updated with real-world data for future use.  

The way how motion vectors are introduced is by vector arithmetic. There is a base 

motion vector when a sea surface vehicle is going through a calm water with no influence 

of external disturbances. Then just by adding components of surge, sway, and yaw, a new 

resultant vector can be calculated considering all external disturbances. In that sense, 

proposed algorithm can at all times predict trajectories better, even when in turns or going 

into another weather condition. As collected data is mostly csv and excel based, with 
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simple trigonometric manipulation all compass-based data is transferred to cartesian 

equivalents, which allows to utilize this data for algebraic treatment. Once the external 

disturbance data has been evaluated, it is possible to design an algorithm for course control 

as follows: 

_______________________________________________________________________ 
Algorithm 4 – COURSE Control Algorithm ECONOMY and PRECISION modes 
_______________________________________________________________________ 

Input: States ), Actions C&'(,(67 or  C$)&'*+*(, depending on the user selection 

Reward function + ∶ )	x	C → ℝ,  Importance weights K- ≥ 0, Discounting  d = 0.5,  

 .#$/ = 9:,;,.<	or	/+9:=)=,;, /% = 1/	or	2/, e-greedy factor 0.10,  

Learning rate K = 0.4, .#$0 = -+C:r	or	l,	-,	pC</,=;-. 

Output: ! 

1 Initialization: *) = *", )) = ),l, !(#, %) = 0. 

2 for each episode (time horizon of 5 minutes with lookahead until next WP) do: 

3  Initialize # 

4  Read sensory information and update # with updated motion vectors 

5  According to motion vectors update COG and :! 

6  Chose % = 0° as first action. 

7  for each step of episode do: 

8   Take action %, observe +, #8 

 9 Choose %8 from #8 using policy derived from ! (e-greedy) 

 10  Determine shaping functions Φ(#, %) = Φ(#) + Φ(*)) 

 11  Calculate ~(#, %, #8, %8) = dΦ(#8, %8) − Φ(#, %),  

where d = 0.1               

12  Calculate +"(#, %, #8, %8) = +I)- , C.J + ~(#, %, #8, %8)            

13  !(#, %) ← !(#, %) + K[+" + d!(#8, %8) − !(#, %)]                               

14  # ← #8; % ← %8 

15 end for when # is terminal 

16 end for and return ! 

17 end 



	

	
	
164	

In this instance the discount factor is d = 0.5 as higher emphasis is required on 

later rewards, while maintaining fixed learning rate K = 0.4, because this problem is still 

deterministic, but more exploitation is necessary to maintain compactness of the predicted 

trajectories. The e-greedy policy is tuned as in (3.89). Updating sensory information is one 

of the most important steps of the course control autopilot. Wheel amidships is still a first 

action, as start from the system stability is assumed. This can be tuned by allowing 

algorithm to follow another e-greedy policy in the prior that will select optimal action 

without exploration.  

Course control training was done similarly as for heading control and the results 

showed that both systems managed to thrive under environmental loads, which is evident 

in tables B.5 and B.6 of the Appendix B. Together with the turn control and auto-telegraph, 

course and heading controls are crucial to ensure that collision avoidance trajectories are 

feasible and optimal for the reward space relevant in that moment. 

The course control algorithm delivers an open loop sequence of control actions. 

Foraging Particle Filter was used to reduce uncertainty of input signals; hence, the 

trajectory prediction is delivered with intrinsic uncertainty. Additional uncertainty would 

be behavior of users, but this will be covered in collision avoidance chapter. Any controller 

or actuator can be used to utilize the control action open loop sequence, which will directly 

move the sea surface’s rudder in the required position. Utilization of the model predictive 

control framework is proposed. Only the framework is used, and the word “model” is 

disregarded in the name of the MPC. The reward function with reward shaping have 

delivered the optimal open-loop trajectory for the selected horizon. The next step would be 

to convey the open loop sequence to an implicit feedback controller. MPC framework is 

used, which allows us to obtain an implicit closed loop controller by updating the control 

sequence at each following state. The MPC framework allows that in the finite horizon 

open loop control sequence only the current state is used to get the sequence and then only 

the first control in that sequence is applied to the system. MPC is great in handling various 

degrees of constraints [Mayne et al., 2000], so the framework is utilized, while constraints 

remain in the reward space. Mayne et al. [2000] have extensively proved stability of the 

MPC framework mainly by using the value function of a finite horizon control sequence 
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as Lyapunov function to enhance stability.  

Course control autopilot algorithm would be sufficient for controlling a sea surface 

vehicle for the entirety of passage plan. However, with proposed model free approach, 

introduction of prior knowledge is required to aid convergence of the algorithm when there 

are turns at various speeds. For this reason, turns are investigated as a separate algorithm 

that is interconnected to both heading and course control autopilot models.  

 

3.3.8 Yaw control 

Yaw control is a challenge on its own due to the fact that changes in directions of 

external disturbances and the inertia of a sea surface vehicle occur rapidly and it is hard to 

find optimal trajectory in this way. When considering heading control, turning is usually 

done with a preset of maximum ROT, while the track or waypoint autopilots already have 

route developed by a navigator, so that change in course is known well in advance. Course 

control and heading control algorithms would be able to handle turns, but the learning 

horizon is shortened, and this is the reason why demonstration is included as a knowledge 

base for the algorithm to seek optimality in limited state-action space to ensure optimal 

time of convergence.  

Before designing a reward space, it is imperative to know that for the planned 

voyage, all waypoint turns will be known in advance. This provides us with an opportunity 

to pre-calculate turn radiuses and ROT required to achieve those turns. Among other 

factors, the available depth is a significant factor influencing the size of a turning circle, so 

in practice deep water and shallow water behavior is usually considered. One of the key 

elements of successful passage planning is determination of the Wheel-Over Position 

(WOP). This is the position where deflection of rudder should commence in order to 

execute a turn without overshooting or turning short. Many factors influence decision on 

where the WOP should be, such are sea surface vehicle’s maneuvering characteristics, 

available depth and width, while the execution is mainly affected by appropriate 

maneuvering timing and external disturbances. In the extensive study conducted by Ugurlu 



	

	
	
166	

et al. [2015] lack of communication of the bridge team, improper passage planning, 

position fixing errors, faulty maneuvering and interpretation errors, fatigue and 

unfamiliarity with bridge equipment are main root causes identified for analyzed 

groundings.  

In the digital era there is an advantage of visualizing own passage in geometric form 

throughout all segments of a voyage. With paper charts all turns were a sequence of 

consecutive straight lines, while with ECDIS there is an option of selecting only one 

waypoint that will allow for more natural curvature representation on the display. 

 

 

 

 

 

 

 

 

 

 

Figure 3.35 – ECDIS turn excerpt  

As it is visible from above chart visualization, the actual waypoint is located in the 

shallow water, but the ECDIS will offer geometric representation as a curve that sea surface 

vehicle has to follow in order to stay within the safe waters. In the planning stage, a 

navigator has to adjust the radius and confirm visually on the electronic chart that the turn 

is safe. This radius is then taken as an input in determining what will be the actual Rate Of 
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Turn (ROT) to accomplish this turn with a certain sailing speed.  

As there are no separate regulations for autonomous vehicles yet, all sea surface 

vehicles have to comply with certain chapters of the International Convention for the Safety 

of Life at Sea (SOLAS). Depending on the size and displacement of sea surface vehicle, 

different parts of the SOLAS convention apply. In this research focus is still maintained on 

underactuated commercial sea surface vehicles and most of them have to comply with the 

same minimum requirements in regard to passage planning and safety of navigation. All 

sea surface vehicles have to comply with the Chapter V “Safety of navigation”, regardless 

of the size on all voyages. The Chapter V delivers requirements about how the passage 

plan should be made and progress monitored throughout the entire voyage. It emphasizes 

requirement for a navigator to foresee navigational hazards and adverse weather conditions 

along the way and takes risk averse approach when plotting a navigational path to ensure 

sea surface vehicles are clear of navigational and environmental hazards. Voyage plans 

have to be comprehensive and cover all movements from berth to berth. The most 

important requirements for this research are related to the importance of considering safe 

speed when planning a voyage, to ensure enough under-keel clearance at all segments of 

the voyage, to plot the intended route on appropriate scale charts and specifically to mark 

all course alteration points keeping in mind the vehicles’ turning circle at planning speeds. 

Eternal disturbances are hard to predict at the beginning of a long voyage, apart from 

currents that could be predicted with fair accuracy well in advance. It is, therefore, a 

common practice and usually a requirement from commercial operators that wheel over 

positions (position where rudder deflection has to commence in order to overcome 

vehicle’s inertia) and turn radii are calculated and included in passage plans.  

After completion of a passage plan, navigator will have a list of all turns that will 

happen along a route. This is why with electronic charts a list of all radii of turn is 

maintained, as ECDIS allows for geometric display of turns. ECDIS determines the radius 

utilizing simple geometric computation of circle size knowing the two course lines that act 

as tangent to a circle and knowing the angle between two courses. When turn radius is 

known by a navigator, calculation of ROT is done by utilizing circle formula: 
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+,- =
180n
60�o ≈

),l
o 		[°/min]																																										(3.113) 

The � = 3 approximation is good enough for the ROT determination, considering 

that commercial ROT indicators usually use a 1° scale. Aim is to maintain consistent ROT 

during a turn to ensure sea surface vehicle is turning according to predetermined radius of 

a turn, for which a constant vehicle’s speed is required. In this case, an algorithm will read 

speed sensor and adjust the required ROT throughout the turn in order to ensure that any 

drop or gain of speed caused by a turn or change in external disturbances is compensated 

for and that the turn is done according to a planned path curvature.  

Therefore, a navigator should ensure that the turning circle is hazard free, that the 

ROT is not excessive to cause damage to a cargo, sea surface vehicle, environment or 

people, and to ensure that turning circles of neighboring WPs do not overlap. Finding two 

points of tangency is not enough to safely execute a turn. Appropriate wheel-over position 

is required to overcome the inertia of a particular sea surface vehicle. This, again, proves 

that difficulty in marine control is the highly dynamic nature of sea surface vehicles’ design 

and environmental conditions at a moment of control. This is why reinforcement learning 

fits well, as it allows for solving highly dynamic and high-dimensional problems with 

model-free approach.  

Maneuvering characteristics of any sea surface vehicle will depend on the amount 

of water available below the keel. Lower UKC will influence turnings to be wider simply 

because there is no space for water to be displaced underneath a sea surface vehicle. There 

are many factors influencing maneuverability (Vujicic et al., 2018) and the scope of this 

research is not to investigate all of them in detail; developing a base for algorithmic 

approach that will be able to learn turns and perfect its execution during exploitation is of 

interest. For the proposed algorithm, it is assumed that the speed of a propeller and SOG is 

in the expected region excluding external disturbances. This means that speed stability is 

sought to ensure that agent does not face higher turning speed, which is available when the 

propeller’s rotational speed is larger than the vehicle’s speed. We can think of leaving an 

anchorage and that vehicle is stationary. In that situation sea surface vehicle will “happily” 

turn when higher revolutions are commanded from a navigator.  
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As depicted in Figure 3.36, sea surface vehicle’s turn happens in three phases. 

Phase I commences once the rudder is deflected to the side where vehicle should turn. 

Initially, a sea surface vehicle would experience a yaw moment to the opposite side of a 

turn until the moment of vehicle’s mass inertia is overcome. The impact of this moment 

will depend on the shape of a hull and draught of a sea surface vehicle. Wider vehicles with 

shallower draughts are more influenced by the opposite yaw moment in the first phase. The 

phase II commences when the bow starts to yaw to the desired direction and when the 

rudder force overcomes the moment of mass inertia. In this phase reduction in sea surface 

vehicle’s speed due to strong lateral resistance is noticed. The phase III depends on the 

characteristics of a vehicle, and it usually commences after 100° to 120° heading alteration. 

Assuming there are no external disturbances, in this stage vehicle slows down and its speed, 

radius and ROT become constant. It is evident that the speed of a sea surface vehicle will 

drop during a turn and that is why ROT has to be adjusted throughout the turn to execute 

the turn according to the planned turn radius. In its resolution MSC.137(76) [2009], 

International Maritime Organization (IMO) delivered standards for testing maneuvering 

characteristics of new built vessels. The sea trials are made with 85 % of the engine output, 

on the even keel and in the deep sea. The standard is that the advance should not exceed 

4.5 vehicle’s length and that the tactical diameter should not exceed 5 vehicle’s length 

when the turn is done with constant 35° rudder deflection. As per Vujicic et al. [2018], the 

deep sea for turns is 4xdraught and if the depth is less than this, then diameter increases 

but not more than 8 vehicle’s length.  

As mentioned earlier, a sea surface vehicle will not immediately start a turn, but 

rather even turn to opposite direction initially, so it is paramount to find the moment where 

the deflection of a rudder should happen in order to execute turn as per planned radius.  

The sea trial results usually offer turning circles with 35°, 20°, and 10° rudder 

deflections. In the following diagram C?  is the wheel-over position. What will be the 

distance from the actual yaw moment to the deflection side depends on pivot point (for 

practical point it is assumed that it is ¼ of the vehicle’s length from the bow and it changes 

to 1/3 from the bow in the phase II), external disturbances, and maneuvering 

characteristics. Therefore, a lot of factor influence turning performance and wheel-over 
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position. For the purpose of the proposed algorithm, approximation method is used by 

taking a tangent to a turning circle that corresponds to a rudder deflection. The progress on 

an arc of a turning circle will not be unison rudder deflection, but rather it is possible to 

envision approach where larger deflection is given initially to overcome inertia as soon as 

possible and then control the desired ROT depending on the achievable speed. On short 

turns, speed drop will not be relevant, but on larger turns it will be a significant factor. 

 

 

 

 

 

 

 

 

Figure 3.36 – Three phases of the ship’s turn (Source: Modified from Vujicic et al., 2018) 

 

Because of the complexity of turning a sea surface vehicle, this approach was to 

have a separate algorithm that handles only the turns. In this regard, whenever the change 

of course or heading is more than 5°, autopilot immediately turns to the turning mode and 

tries to complete a turn with least deviation possible until a sea surface vehicle is either on 

a following track, keeping desired heading after the turn, or maintains desired course 

towards the next waypoint. Integrated on the RADAR or ECDIS screen, there could be an 

option of graphically showing the turn with selected radius, so when the turning circle 

coincides with the planned circle, navigator would select execute and the turn is done 

accordingly. Therefore, autopilot can be programmed in a way that turns are done 
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following next heading, next course, or next radius.  Keeping this in mind, and ensuring 

the lean approach, yawing state space is defined as follows: 

) = i
j" , 	k" , j) , 	k) , o, Å+., :! , :,l,*),	*" , +,-5 , +,-#,
t@(A , ),l, +/., m, n, o, +! ,p+,p5 , :moo+, :moo5 , /%

q																(3.114) 

It is necessary to emphasize again that not all of the state members are members of 

the SARSA calculation, but rather describe the state at every time step. Most of the state 

members were described previously. Added are j" , 	k", which represent filtered and fused 

North-East position, j) , 	k), which represent North-East position of the planned curve on 

route, while o represents planned turn radius that is extracted from a passage plan. Å+. 

stands for Variable Range Marker and it is part of RADAR. This measurement is used to 

track performance in relation to the desired turn radius. t@(A  is a log depth and it is 

important for calculating the shallow water effect, as turning in shallow or deep water is 

different.  +,-5	&	# = {−30, 30} stand for rate of turn demanded and rate of turn actual. 

ROT is determined by the (3.126) expression and is a variable once the turn commences 

as the SOG is expected to drop if the turn is large enough. Success of a turn is rated by 

maintaining position as close as possible to the planned curve. This is accomplished by 

comparing the position of the planned curve of a route and actual position of a sea surface 

vehicle. There is no distinction between economy and precise modes, nor there is a track 

or go to waypoint mode, as these are irrelevant for successful completion of a turn. 

The action space remains the same. As the study is focused on underactuated 

vehicles, rudder control is of interest. Propulsion RPM control is possible, but this will be 

covered in the next chapter, as it is not as straight forward as it would be with propulsion 

systems covering multiple degrees of freedom.  

As the autopilot modes are irrelevant for turning mode, it is possible to define a 

reward space as follows: 

+I)- , C.J = K/+/I)- , C.J + K0+0I)- , C.J + K1+1I)- , C.J + K2+2I)- , C.J											(3.115) 

where 
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+/I)- , C.J = M
−10,																																																						if							j) , k) ≠ j" , k"
100,																																																																									otherwise

										(3.116) 

+0I)- , C.J = X

50,																																																																																										if						+,-# = +,-5
10,																									if	+,- = +,-5 − 2°/min < +,-5 < +,-5 + 2°/min

−10,																																															otherwise																																												(3.117)

	 

+1I)- , C.J = X

20,																																																																														if						Å+.		uÇ		(jD , kD) = o

10,																													if				Å+.		uÇ		(jD , kD) = o − 0.1(o) < o < o + 0.1(o)

−10,																																															otherwise																																												(3.118)

	 

+2I)- , C.J = X

−1,								if						/% = 1/	and	]) > 0.418	seconds

−1,								if						/% = 2/	and	]) > 0.2265	seconds

0,																																																														otherwise

															(3.119) 

In case of a yawing mode, it is noticeable that the reward space is somewhat 

smaller. This is because even though turns are difficult to perfect from the maneuverability 

point of view, the goal of successful turn is simple to describe. The reward (3.116) rewards 

the agent whenever the filtered position of a sea surface vehicle equals to the position of a 

course turn track. With this reward penalty is assigned whenever the vehicle is not on a 

track. Certainly, there is a GNSS position discrepancy, so filtering and fusion of GNSS 

signals is employed to get an accuracy to the highest level. Wherever available, a Real-

Time Kinematic (RTK) system can be used. Confined, shallow and busy waterways are 

usually situated near coastal areas, where RTK availability could be beneficial, so the 

accuracy of ownship positioning can be greatly enhanced. The reward (3.117) allows for a 

slight slack in precision of ROT, as it is hard to get fully accurate result considering 

dynamic nature of sea surface vehicles’ movement. However, this reward also penalizes 

ROT that is more than 2°/min higher or lower than the desired ROT. The (3.118) reward 

expression is meant to be as a backup in case that reliability of the GNSS system is not 

good at a certain moment. In this reward ARPA is used to determine distance from the 

imaginative fixed point. This point is assigned when planning a voyage, as this is the time 

own turn radius is set up. The selected turn radius will point towards the center of a turning 

circle and that position is known as radius North-East position (jD , kD). As turn should be 
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executed following the preset radius, own vehicle will be turning on the arc of a turning 

circle, so the distance from the (jD , kD) should be equal throughout the turn. This gives us 

an opportunity to track the distance with VRM and measure performance. Therefore, the 

agent is rewarded for any instance the VRM range is equal to radius and rewarded slightly 

less if the VRM stays within the 10 % of the radius. For any other position, the agent gets 

punishment. The (3.121) reward is the same reward as in other modes ensuring appropriate 

performance constraints of a rudder system. 

To kick start a reinforced learning process and narrow down the search for 

optimized trajectories, three stages of learning are used: learning from demonstrations part, 

execution part, and learning from execution part. In this sequence, ability and knowledge 

of experts is used to guide algorithm in finding the optimal space. Experts simulate 

scenarios that would be helpful in future (various degrees of turns to the port and starboard 

side). These demonstrations are imperfect and sometimes suboptimal; however, they aid to 

narrow down the search space for optimality. This is the reason why expert demonstration 

state-action pairs are stored in the Expert Demonstration buffer, as these state-action 

trajectories can later on be compared with execution state-action pairs and replaced if the 

execution trajectories were closer to the optimal space. This can also be done by designing 

Expert Demonstration buffer, Execution buffer and Best Buffer. The best trajectories are 

stored in the Best Buffer, which would then be used in the future as a guide to optimality. 

Once all expert demonstration data has been collected, it is necessary to find a 

suitable way to implement expert demonstration in the optimization algorithm. Approach 

is to use demonstration as a shaping function in order to guide trajectory optimization by 

narrowing the space search. Within the framework of reinforcement learning and hidden 

Markov models in general, aim is to find an optimized policy that artificial agent can follow 

and execute a required task. In the presented case, interest lies within a part of policy that 

is known as trajectory. Trajectory will provide a sequence of actions to control own sea 

surface vehicle. The expert demonstration data is collected as a sequence of state-action 

pairs [(#?, %?), … , (#%, %%)], which is then stored to the Expert Demonstration buffer É&5 

and used when required by the autopilot algorithm as a shaping reward or bias. The central 

question remains how to compare expert demonstration and exploration data, and selected 
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option is similarity metric that is derived from multi-variate Gaussian distribution and 

Mahalanobis distance.  

What makes proposed approach somewhat easier to describe is the discrete action 

space. Also, considering that input data will be centralized in one single table, slowdown 

of normalization can be avoided, and non-normalized multivariate Gaussian distribution 

used to find similarity between space-action pairs. Intuitively, if two states have different 

actions, similarity is zero, while otherwise Gaussian similarity is used to quantify the 

similarity and use it for comparison of pairwise data. Considering high dimensionality of 

state space, multivariate normal distribution fits well as it can generalize one-dimensional 

Gauss distributions to higher dimensions.  

  

 

 

 

 

 

 

 

 

Figure 3.37 – Generation of random numbers from a multivariate normal distribution in 

Matlab 

As it is visible from a multivariate Gaussian distribution example above, the fitting 

data is bounded by an elliptically shaped high probability region, so Mahalonobis distance 

can be utilized as the descriptive statistics representing the distance to the testing state 
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#>	from the expert demonstrated state #&5, usually representing the mean: 

													Ñ(#> , #&5 , Σ) = exp á−
1
2
(#> − #&5):ΣE/(#> − #&5)à																									(3.120) 

In line with the (3.120) expression, when #> = #&5, similarity is 1, while it will be 

closer to zero as the dissimilarity rises. As stated earlier, it will be zero once the action is 

not the same in both states. In this case, both state #> and state #&5 have to contain same 

action pair in order to be considered for similarity. The covariance Σ is responsible to 

measure the influence of demonstrated state-action pairs, and in order to speed up the 

computation, state space can be normalized to [0,1] and, similarly as in Brys et al. [2015], 

Σ defined in the form of identity matrix multiplied by a constant σ, or   Σ = σ=. Then, 

highest shaping potential is calculated by finding the expert demonstration with the highest 

similarity among the state-action pairs that have the same action associated with them: 

Φ&5(#, %) = max
F!,G

Ñ(#> , #&5 , Σ)																																			(3.121) 

This potential function is then used to model a shaping function that will be 

integrated with the main reward function in a similar way as it was done in course keeping 

autopilot: 

~&5(#, %, #8, %8) = dΦ&5(#8, %8) − Φ&5(#, %)																										(3.122) 

Finally, the shaping is then added to (3.117) and the complete reward function with 

shaping has a form as follows: 

+""# = +I)- , C.J + ~&5(#, %, #8, %8)																																(3.123) 

As it was evident in previous algorithms, assumption was made that the first action 

%? = 0°  was “wheel amidships”, as there was no previous knowledge. In this case, 

previous knowledge is available, so initialization of first action similarly like in Wiewiora 

et al. [2003] is possible by utilizing the expert demonstration in the initial Q-value: 

!?(#, %) = Φ&5(#, %)																																											(3.124) 
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Finding action in this instance is easy and special optimization technique is not 

required, but rather taking an action that can be found in an expert demonstration state 

which is the most similar to initial state. 

Similarly like with utilizing expert demonstrations for turning trajectory 

optimization, advantage can be taken of the collected data after exploitation. This data is 

stored, compared with demonstrated data, and then it is possible to select which one is 

better in order to speed up and enhance further trajectory optimization. Same approach can 

be used for other autopilot modes when collecting a real-world data. In such a way, search 

space size can be reduced and optimization time improved. Hence, in addition to É&5, we 

can also envision É&H as an exploitation buffer and ÉI&+: as a third buffer that will store 

the best of the exploitation and expert demonstration buffers. 

_______________________________________________________________________ 
Algorithm 5 – YAW Control Algorithm (Expert Demonstration Shaping only) 
_______________________________________________________________________ 

Input: States ), Action C$)&'*+*(, 

Reward function + ∶ )	x	C → ℝ,  Importance weights K- ≥ 0, Discounting  d = 0.5,  

 /% = 1/	or	2/, e-greedy factor 0.10, Learning rate K = 0.1 

Output: ! 

1 Initialization: *) = *", )) = ),l, !(#, %) = 0 or !?(#, %) = Φ&5(#, %),  

Determine required radius o for the turn and plot the position of the radius center 

(jD , kD), Initialize required ROT with (3.124) using planned SOG 

Read depth t@(A . If t@(A = ;/C, assume deep waters. If t@(A < 8(to%mÑℎu) 

consider shallow water data table. If t@(A ≥ 4(to%mÑℎu) consider deep water data 

table. 

2 for each episode (until :! = :,l) do: 

3  Initialize # 

4  Read sensory information and update # with updated motion vectors 

5  According to motion vectors update COG and :! 

7  Chose % from !?(#, %). 
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8  for each step of episode do: 

9   Take action %, observe +, #8 

10   Read SOG and update required ROT with (3.112) 

11   According to motion vectors update COG and :! 

12 Choose %8 from #8 using policy derived from ! (e-greedy) 

13 Taking selected action into account, source the most similar state in 

expert demonstration and compute gaussian  

 Ñ(#> , #&5 , Σ) = exp ã− /

0
(#> − #&5):ΣE/(#> − #&5)å 

14   Determine shaping potential Φ&5(#, %) = max
F!,G

Ñ(#> , #&5 , Σ) 

15  Calculate ~&5(#, %, #8, %8) = dΦ&5(#8, %8) − Φ&5(#, %),  

where d = 0.1               

16  Calculate +""# = +I)- , C.J + ~&5(#, %, #8, %8)            

17  !(#, %) ← !(#, %) + Kf+""# + d!(#
8, %8) − !(#, %)h                               

18  # ← #8; % ← %8 

19 end for when # is terminal 

20 end for and return ! 

21 end 

 

As the aim is to successfully complete a turn and be accurate when executing, 

discount factor is maintained at d = 0.5, so that both immediate and later rewards are taken 

into account. The learning rate is set to K = 0.1, as previous experience is available, and 

agents would like to exploit more than to explore. The e-greedy policy is tuned as in (3.74). 

The hierarchy of the turn algorithm has been described throughout the chapter; however, 

the importance of sensory reading is emphasized. As long as information from sensors is 

reliable, progress can be tracked appropriately. This algorithm ends once the turn is 

completed, and as stated before this algorithm will commence if the planned turn is with 

higher than 5° difference in courses. Smaller turns are handled by the heading and course 

keeping modes. Some factors like radius, shallow or deep-water classification, required 

course to complete turn and position of the radius are assumed fixed for the duration of the 
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turn. However, this is easily tunable for the various depths, if deemed necessary. Emphasis 

remains on dynamic ROT values due to speed drop when turning. The resulting trajectory 

can be feed to actuators similarly as with course keeping autopilot model.  

From the zig-zag maneuvers made on the simulator necessary data for the artificial 

agent to learn turning of the simulated vehicle in both deep water and shallow water 

environments have been extracted. The simulated turn is North from the Sabine Pass LNG 

Terminal where Sabine and Neches river meet. The position of the turn is 29° 28’ N, 093° 

52’W. The turn is from true course 019° to 279°, making it a 100° turn in a very narrow 

channel bounded with shallow water. The channel is dredged to allow for sea surface 

vehicles of maximum 13.1 m draught, while own vehicle is navigating with 10.88 m 

draught even keel, slow ahead engine and speed of 7 kt. A calculated baseline turn radius 

is used to compare the turns made by the expert and the artificial agent. The navigational 

chart used to depict trainings and simulations is NOAA Chart 11342 

(https://charts.noaa.gov/PDFs/11342.pdf, retrieved on 24-May-2021).  

 

 

 

 

 

 

 

Figure 3.38 – Calculated turn as a baseline for training and simulation 

In Figure 3.38 baseline turning is represented by the red line. Following the baseline 

would be considered as the perfect turn, even though distance from obstructions were not 

taken into considerations as a risk factor of the voyage planning. In the real world, agents 
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would try to stay further away from obstructions, and this is something that will be taken 

into consideration in the following chapters.  

Master with 7 years of experience commanding vessels of similar size and type has 

conducted a turning maneuver that is analyzed and presented in Figure 3.39. Standard error 

was calculated and finally a Root Mean Squared Error calculated in order to verify accuracy 

and overall success of the maneuver. It is evident that the expert completed maneuver 

without incidents, but with the higher margin from the obstructions due to the personal risk 

assessment and navigation bias.  

 

 

 

 

 

 

 

Figure 3.39 – Expert’s turn maneuver 

Due to the risk-averse approach by the expert, some deviation from the calculated 

turning line is visible, but the simulation vehicle has been handled safely throughout the 

turn. It is important to note that the expert’s performance is used as a learning input data to 

the artificial agent in order to reduce the convergence time. As depicted by Figure 3.40, 

between simulations 12 and 20, as well as 22 and 32, increase in the deviation can be seen, 

which is caused by the expert’s steering influenced by personal experiences. The numeric 

values are positive, as the distance is of interest, rather than the orientation of the expert’s 

vehicle. RMSE is 209.52 m for the expert’s performance. 
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Figure 3.40 – Expert’s turning performance with deviation from the referent line 

 

With the aid of the learning from expert, artificial agent performed well when 

predicting its simulation steps, so the deviation is smaller along the simulation steps. 

However, it is noticeable that the artificial agent has been navigating closer to the 

obstructions and in the real world this could be considered a near-miss incident, so it is 

important to introduce risk-averse behavior by appropriately tuning the rewards space. In 

Figure 3.41, artificial agent performed a tighter turn with less deviation, so the system 

performs as expected. Due to the rewards space design, the system is trying to emulate the 

calculated turn, but finds possible solution space within the expert’s inputs.  

Looking at Figure 3.42, artificial agent completed the turn with lower deviation 

values from the expert’s turn. Distance from obstructions was lower than with the expert’s 

turn; however, in the real world, expert’s turn could be considered safer. RMSE is 87.2 m 

for the artificial agent’s performance.  
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Figure 3.41 – Artificial Agent’s turn maneuver 

 

 

 

 

 

 

 

 

 

Figure 3.42 – Artificial Agent’s turning performance with deviation from the referent line 

Further on, if position deviations are considered, similar results which are presented 

in figures 3.43 and 3.44 are evident. It is noticeable that there is larger deviation in the case 

of the expert’s handling and that artificial agent managed to steer the turn with lower 
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deviation, which shows that artificial agent is able to perform steering of the simulated sea 

surface vehicle without incurring risks. By integrating a proper risk assessment in the 

rewards space design, artificial agent would be able to detect obstructions and modify 

behavior to find the optimal distance from obstructions and outer line of the narrow 

channel, which is shown in the following chapters. 

 

 

 

 

 

 

 
 
Figure 3.43 – Expert’s turning performance with position deviation 

 

 

 

 

 

 

 

 

Figure 3.44 – Artificial agent’s turning performance with position deviation 
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3.3.9 Auto-Telegraph 

Auto-telegraph is a feature allowing for automatic control of engine telegraphs. 

Considering that there are various propulsion systems available in commercial shipping, it 

is not possible to design one controller that will fit all approaches. Own sea surface vehicle 

is a steam ship where telegraph controls the opening of maneuvering valves and the 

quantity of steam to a turbine. A classic slow-turning diesel engine will have a more direct 

fuel control, while diesel electric will control electric propulsion motors that are connected 

to generators via switchboards and converters. All of these propulsion solutions have 

specific ways of developing power and often require manual starts of machinery or 

supervision by duty engineers, so automatization of propulsion control is still a challenge.  

For example, on LNG powered vehicles, various machinery on deck has to be working in 

order to initiate a sensitive sequence of burning NG in engines. Engines are usually 

sensitive to the quality of NG carried onboard, so calorific value will play a significant 

role. When a sea surface vehicle is rolling and pitching, resistance on propeller is changing 

and so is power demanded, so the process sometimes requires a manual control. All of 

these factors require that automatic control is finely tuned for that particular plant. 

Only the LNG carrier model is considered in this chapter, so the interest of this 

section is on how the process of automation could be implemented for that particular steam 

plant. External disturbances are hard to predict and have strong influence on speed. 

Reinforcement learning model is used to predict changes in speed and use that information 

to adjust Revolutions Per Minute (RPM) to get the speed navigators set for the segment of 

a voyage. Only limited data of performance is extracted from sea trials, but yet again 

simulator needs to be utilized to get more data and then update it with a real data from 

exploitation to get realistic predictions and knowledge. Similarly, fuel consumption could 

be traced with RPMs and then get realistic predictions for a voyage. For example, as 

currents are mostly known in advance, good prediction of speed influence for the entire 

voyage could be computed. Auto-throttle can be engaged to maintain a certain speed if this 

is possible on a vehicle navigator is trying to control. Auto-throttle can be used in collision 

avoidance situation, but as the information from sea trials for selected vehicle will show, 

engine response on large underactuated vehicles is very slow and suboptimal way to avoid 
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collision due to reaction times. On fully actuated vehicles, such are DP vessels, actuators 

and power delivery are fast enough to power-control vehicles, and in those cases, throttle 

control tuning approach would be different. 

In regards of the RPM control, focus is on SOG that is affected by external 

disturbances in relation to the demanded speed to maintain, also actual RPMs after the 

request for certain RPMs or speed needs to be tracked, so state space is defined as follows: 

) = (t@(A , ),l) , ),l#, +/.) , +/.#, ÉI6)																																(3.125) 

The depth is part of the state space because in shallow waters it is difficult to gain 

full RPMs as a sea surface vehicle is affected by the shallow water effect. This is 

investigated further on in simulation research and a separate table for shallow water 

performance is made, as speed and RPMs are different in the shallow waters than in deep 

waters. Speed over ground requested and actual are other members of the state space. This 

is because the idea of an auto-throttle control is to allow for navigator to select a certain 

speed and that auto-throttle manages to sustain that speed within the possible performance 

of a propulsion. Other mode is to simply select RPMs and then propulsion system tries to 

deliver the required RPMs. The RPM is also part of state space as it delivers information 

on how much RPMs agent is getting out of the propulsion system. Finally, the ÉI6, which 

stands for boiler burner mode, is specific for depicted model of an LNG vessel, which has 

a steam propulsion. Steam is produced in boilers and with higher demand of RPMs, more 

burners have to be used on the boiler to produce more steam. This is a rough generalization 

of the propulsion system, but it is sufficient for this study. Assumption is made that each 

boiler has three burners, so the ÉI6 = {1É, 2É, 3É}. Therefore, depending on the required 

RPMs, boilers could be working on a single burner, two burners or three burners when full 

power is required. ÉI6  is included as a showcase only, so burners mode will not be 

considered in the algorithm, as simulator does not have capability of testing power output 

and burners request, but rather assumes consistent availability. However, once the 

performance limits are known, burner modes could be easily added. 

The action space remains discrete, as navigator commonly chose an RPM value 

that will remain for a certain period of time. Own agent has only an integer number option 
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as selected RPMs, so fractions are irrelevant. As it is visible from the wheelhouse poster 

of the simulated model Wärtsila LNG 2 (Dis.89634t), sea trials allow for connecting RPMs 

with speed: 

Table 3.7 – Excerpt from the Simulated vessel’s Pilot Card 

 

 

 

 

 

 

 

Source: Wartsila, 2021. 

 

In line with the above Table, the following action space is presented: 

C)$6 = {−46,−38,−29,−23, 0, 23, 29, 38, 46, 47, 48, … ,87, 88, 89}									(3.126)		 

As it is visible from (3.126), all RPM orders are fixed with a certain number, 

except between 46 and 89 RPMs, where any integer can be selected. This is a design of 

this particular propulsion. Therefore, own agent can only select as described above and a 

study of constraints in building up RPMs or slowing down is delivered. The change of 

RPMs also depends on the fuel used, so for example it takes longer to increase or decrease 

RPMs when boilers burn natural gas, then when burning Low Sulphur Heavy Oil (LSHFO) 

or Marine Gas Oil (MGO). In this study, different types of fuel are not taken into account, 

but this could be easily implemented by setting a constraint in performance. Developing 

certain RPMs does not necessarily mean that the corresponding speed will be immediately 
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reached. This also takes time and has to be taken into account. 

It would be rare to have same output speed with selected RPMs. This is because 

of external influences, current maneuvering, or even output power limited by the quality 

of fuel. The auto-telegraph system design allows operator to select desired SOG and simply 

turn on the system. In this approach speed through water is omitted, but this can be easily 

added to the model. The main benefit of auto-throttle based on reinforcement learning is 

that the system predicts changes in speed because of planned turns or external disturbances 

and endeavors to adjust RPMs required to maintain required speed well in advance and 

without waiting for the effect to take place. This will also allow for RPMs to be initially 

developed to a higher number than required for selected speed, but as the speed is 

approaching the desired level, RPMs would be reduced to the equilibrium level. However, 

sometimes at maneuvering speeds, navigator wants to use the benefit of a faster turn, which 

happens when the rotational speed of propeller is higher than the speed of a sea surface 

vehicle, so in these cases navigator should use the system in manual mode and adjust for 

RPMs, rather than adjusting the speed. Simulator allows for ballast and laden condition, so 

this has to be taken into account as well, as sea surface vehicle will require different amount 

of power produced by the propulsion system for different weight of a vehicle. 

Keeping above setup in mind, the following reward space is modeled as: 

+I)- , C.J =

⎩
⎪
⎨

⎪
⎧
100,																																																																																							if						),l# = ),l)
50,																			if	),l# = ),l) − 0.2	kt < ),l) < ),l) + 0.2	kt

10,																			if	),l# = ),l) − 0.5	kt < ),l) < ),l) + 0.5	kt

−1,																																										otherwise																																												(3.127)

 

As agent’s goal is to maintain requested speed, only one reward function is required 

and it describes a reward for keeping the actual speed over ground at requested speed with 

allowed deviation of up to 0.5 kt. Otherwise, the agent gets punished. It is necessary to 

keep in mind that at sea trials vehicles are tested for top speed at favorable conditions and 

if weather conditions do not allow it, vehicle will not be able to reach the desired speed 

even at maximum RPMs. In order to preserve seaworthiness of a sea surface vehicle, at 

certain environmental conditions, especially with the impact of waves, navigators have to 
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reduce the speed to maintain seaworthiness. In these cases, navigators will have to either 

select lower speed or turn to RPM mode and control RPMs manually. Torque limitation 

can be also a parameter to limit the performance of a propulsion, so in case that agent is 

trying to reach the preset speed, a message of torque limitation will appear notifying 

navigator that only RPM control is possible and maintaining speed higher than achievable 

with that power is not possible. Following the above mindset, the following algorithm is 

proposed: 

_______________________________________________________________________ 
Algorithm 6 – AUTO-TELEGRAPH Control Algorithm 
_______________________________________________________________________ 

Input: States ), Actions C)$6 

Reward function + ∶ )	x	C → ℝ,  Discounting  d = 0.2, e-greedy factor 0.10, 

Learning rate K = 0.2. 

Output: ! 

1 Initialization: ),l) = ),l#,  !(#, %) = 0. 

2 While (SPEED mode is engaged) do: 

3  for each episode (time horizon of 30 minutes) do: 

4   Initialize # 

5   Chose % = 	+/.) as first action.  

6   for each step of episode do: 

Read SOG 

9    Update SOG according to motion vectors and external  

disturbances 

10    Read current RPM 

11    Read current t@(A  and determine shallow or deep water 

12    Update #8 according to data available in the É+*6J@#:*(, 

7    Take action %, observe +, #8 

12  Choose %8 from #8 using policy derived from ! (e-greedy) 

13   !(#, %) ← !(#, %) + Kf+I)- , C.J + d!(#8, %′) − !(#, %)h                 

14   # ← #8; % ← %8 
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15  end for when # reaches time horizon 

16  end for and return ! 

17 end While  

18 end 

 

The most distinctive part of the auto-telegraph algorithm is the infinite loop. The 

algorithm has to go on until switched off by a user. In this case the discount factor is d =

0.2 , as earlier rewards are valued more than the distant ones. Fixed learning rate is 

maintained at K = 0.2, as exploration is discouraged, considering that we have sufficient 

data available for the RPM control. However, the learning rate will allows for intermittent 

exploration and allows for verification if there is a better solution outside of the bounded 

search space. The e-greedy policy remains as in (3.74). The algorithm initiates with 

!(#, %) = 0 because when a navigator engages the SPEED mode, algorithm commences 

and remains until the mode is switched off. In the moment of initiation, current state of a 

vehicle is irrelevant, as already in the second step all parameters will be updated. Null 

initiation will not be expensive due to slow dynamics of propulsion control in this case of 

an underactuated vehicle. In the case of DP vessels, propulsion approach would be 

different, and the relevant input would be acceleration in various degrees of freedom for 

which reward space would be more complex. The central focus of the algorithm is to update 

states with a sensory data and to do predictions based on the history data available in the 

simulation buffer É+*6J@#:*(,. In this study only a simulation buffer is envisioned, but 

once a sea surface vehicle is on the open seas, similarity function can be used to compare 

simulated and real-world data to generate more accurate trajectories. 

As presented in the Appendix B, Table B.7 depicts 16 scenarios with external 

disturbances. Scenarios are same as used in the autopilot trainings and simulations. 

However, a column is added for set speed of simulated sea surface vehicle. It is in the 

interest of this research to find if the proposed algorithm is able to determine correct RPMs 

for the desired speed related to the external disturbances. Input data is derived from sea 

trials of vehicle used in training and simulation, which is then used to design lookup tables 

suitable for interpolation. Desired speed is chosen randomly within the range of speeds 
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simulated vehicle can accomplish. 

 Trainings were conducted within the same environment as autopilot trainings and 

simulations. Aim was to see if the auto-telegraph algorithm can learn and handle dynamic 

environmental loads. Training was conducted until the average rewards value for the last 

20 training episodes reaches 15,300. This number was selected by multiplying highest 

reward value that can be reached per step by the maximum number of steps per episode, 

which for this training is selected to be 300 in accordance with the tests done earlier in this 

chapter. As per the reward space (3.127) 100 points is reserved for the situation where 

desired speed exactly matches achieved speed. It is difficult to get the exact match, so 100 

points for calculations was not considered, but rather taken 50 points for the second reward 

option and 1 point for the third reward option, which totals 51 points per step, summing to 

15,300 for 300 steps. 

In Table B.8 of the Appendix B, columns for desired speed agent would like auto-

telegraph maintains is presented, as well as RPMs that are required to maintain desired 

speed according to the sea trials data for the calm weather and sea, longitudinal external 

influence on speed data that is extracted from each of the simulated scenarios (taken as an 

average value for external disturbances), achieved speed for each of the scenarios, and 

RPMs maintained for that speed. Depending on the longitudinal influence, higher or lower 

number of RPMs than derived from the sea trials data is required to achieve desired speed. 

As proposed simulated vehicle is equipped with steam propulsion and is underactuated, the 

action space (available RPMs) is discrete and selected integers are strictly defined by the 

action space. If vehicle with electric propulsion was considered, action space would have 

been continuous. Therefore, it is evident from the results that some of the desired speeds 

could not be achieved without deviations, and the closest possible RPMs are selected as 

solution. This resembles the real world where rarely exact speed can be matched, especially 

as environmental loads are highly dynamic, and consistent change of RPMs to maintain 

certain speed would be required. This is unfavorable as it would lead to unwanted 

difficulties with the complex propulsion plant. 

With the environmental loads of the first scenario, it is evident that the vehicle gains 
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1.38 knots of speed. It is, therefore, valid to expect that agent would require less power, 

and subsequently less RPMs, to achieve desired speed. This is exactly evident, as own 

agent required 65 RPMs to achieve desired speed, while it would require 69 RPMs to 

maintain desired speed without any external disturbances. Similar approach and analysis 

were made for other scenarios. However, once reaching scenario 3,it was noticed that some 

adjustment to the rewards space is required in order for the model to be viable. This is 

mainly because the desired speed is lower than the minimum speed vessel can make with 

minimum RPMs. Proposed algorithm was not converging as the rewards space was 

constricted and allowed for only 0.5 kt difference from the desired speed to gain any 

rewards. Therefore, in order for the algorithm to converge, the rewards shaping was 

designed in a way that allows for wider rewards deviation within the rewards space when 

the desired speed is below Dead Slow Ahead / Astern RPMs range. Considering the 

environmental loads of the scenario 3, algorithm correctly selected 0 RPMs. As an opposite 

case from the first scenario, a closer look is taken at the scenario 7 where environmental 

loads are slowing down own vehicle, and it was noticed that the algorithm correctly 

selected 56 RPMs, which is higher than sea trials RPMs in order to maintain desired speed. 

Identical situation is evident in the scenario 8. Particular scenario is scenario 12, where 

higher deviation of the achieved speed from the desired speed is noticed. The reason for 

this is the limitation of the propulsion plant. Algorithm correctly selected Dead Slow Ahead 

(23 RPMs) as if it selected Slow Ahead (38 RPMs), the deviation would be higher, so 23 

RPMs remain optimal. 

The benefit of auto-telegraph option for the decision support system is not only that 

it can autonomously control the power generation in cooperation with other auxiliary 

systems, but also that it can provide navigators with instant information about which RPMs 

would vehicle require to maintain desired speed taking into consideration present 

environmental loads. Another benefit is also that the system is able to provide a navigator 

with the information how long it would take to increase or decrease certain RPMs or how 

much time it would take to increase or decrease speed. This is especially beneficial in 

collision avoidance, so this information is used as an input signal to the collision avoidance 

algorithm and it is used in cases where course change does not provide optimal solution 

and speed increase, or reduction, is deemed beneficial to clear obstructions.  
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In order to aid algorithm convergence to optimal solutions, enough data is 

simulated to generate a standalone shaping function that could be called whenever a 

collision algorithm fails to converge. Comparably to auto-pilot sections, exploitation data 

could be collected, and simulated data updated using similarity function. Having external 

disturbance data, it is possible to predict influence on speed and RPMs, but there is also 

influence of turning, which is taken into account. Speed loss data caused by turning is 

extracted from zig-zag maneuvers done at sea trials. This is paired with the external 

disturbance data and uploaded to the knowledge buffer that is updated during exploitation. 

This data is beneficial for planned maneuvers and collision avoidance algorithm. If there 

is enough power reserve, auto-throttle algorithm can increase RPMs just before the turn to 

maintain consistent speed throughout the turn, if the physics of the turn allows for it. As 

evident from sea trials data, larger turns would cause significant drop in speed regardless 

of the compensation by the algorithm. 
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3.4   Discussion 

This chapter investigated approaches to improve reliability of input data, which is 

critical component of collision avoidance system. Uncertainty in sensing data significantly 

influences stability of the collision avoidance system, therefore it is necessary to reduce 

uncertainty by increasing reliability of data through data fusion and filtering. Once the 

quality of the input data is improved, it is possible to increase observability of inherent 

state space and ensure appropriate motion control of sea surface vehicles. 

An improvement of the sensing data filtering process is proposed by introducing 

nonlinear state estimator that is named Foraging Particle Filter (FPF). FPF is a variation of 

swarm algorithmic approaches, where foraging process is utilized in algorithmic design. 

Main focus of the FPF design was solving impoverishment and particle degeneracy issues. 

A scalar growth model has been used to verify effectiveness and usability of the proposed 

particle filter and comparing to other particle filter models used as bassline cases, it was 

noticeable that the FPF has performed well with lowest RMSE and STD results among 

compared particle filters. The main challenge remains to select appropriate number of 

particles and iterations, as it was visible from experiment results that increasing number of 

iterations above a certain level does not improve results, but only increase computational 

loads. Assumption is made that for the rest of the research FPF is used to increase 

observability of the state space estimations for sensing data. Together with data fusion, 

more reliable inputs of position, heading and speed would be achieved. 

In order to ensure feasibility of trajectories that are generated by collision avoidance 

algorithms, appropriate motion control solution was sourced. Even though approach in this 

thesis is model-free motion control, framework of Model-Predictive Control (MPC) is 

utilized to propagate signals to actuators. If the sea surface vehicle is just built and there is 

no data to ensure safe exploitation in commercial waters, nonlinear observer is proposed 

that will capture initial data at sea trials. Experimental results verified accuracy of the 

proposed model for underactuated sea surface vehicles. Together with the captured data at 

sea trials, it was also proposed that initial database is developed by developing simulation 

models of sea surface vehicles and that simulated data is used to reduce exploration on 
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initial voyages. This is crucial step to avoid any actions that would be deemed unsafe once 

a sea surface vehicle is in the real world interacting with other equipped and non-equipped 

vehicles.  

Intelligent autopilot has been developed to manage all motion-control requirements 

from the collision avoidance algorithm. Autopilot is envisioned as a system of various 

modes and controls. Even though it can be used in autonomous control, the focus of this 

thesis is decision-making support, so the system is designed having in mind usual steering 

and propulsion setups found on commercial sea surface vehicles. Intelligent autopilot is 

adaptive with regular updates of the knowledge buffer. Learning commences with learning 

from demonstration. This is crucial step to reduce exploration and to confine state space 

and action space search. A novel reward shaping approach has been proposed and used in 

all experiments to increase efficiency of reinforcement learning techniques. From own 

experiments it is evident that proposed rewards shaping provided more stable learning with 

decreased amounts of exploration.  

The interest of this study is in motion control that can cope well under dynamic 

environmental loads. This is the reason why different modes of controls were proposed 

with different tuning and algorithms. Heading, course, turning and propulsion controls that 

are able to manage motion control of sea surface vehicles in deep and shallow waters, with 

precision and economy modes, and under various environmental disturbances is proposed. 

Simulation and experiment results showed that proposed algorithms were successful in 

controlling the motion of simulated sea surface vehicle, and that the learning was 

efficacious. Auto-Telegraph option was added to the motion control challenge to utilize 

option of speed control during collision avoidance maneuvers. Auto-Telegraph model 

thrived in all environmental conditions and was able to maintain desired speeds and RPMs, 

as well as to advise navigators how long it would take to slow down or speed up, which is 

information valuable for taking a proper action when avoiding collision. 
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Chapter 4 
 

Dynamic collision avoidance   
 

As the central chapter of this thesis, Chapter 4 delivers dynamic collision avoidance 

modeling utilizing HMMs. As proposed model should utilize Collision Avoidance 

Regulations (COLREGs), this chapter begins by providing an overview and challenges of 

COLREGs implementation. A solution to a common problem of categorization of which 

COLREG rule should be used in a certain situation is provided. Uncertainty related to 

COLREGs is then quantified, and study of its implementation in the target trajectory 

generation discussed. Based on own vehicle and target vehicle trajectories, an algorithm 

that would successfully resolve collision situations, leaving required minimal distance 

from dynamic and static objects is delivered.  

 

4.1   COLREGs implementation and compliance 

The International Regulations for Preventing Collisions at Sea 1972 or COLREGs 

came into force in July 1977. Since 1972 there were no major revisions or rewrites to the 

COLREGs, while the shipping industry changed drastically in size and number. Today, 

technology allows for automated and even autonomous vehicles; however, the COLREGs 

have not evolved to follow the advance of technology. In parallel, if we take a criminal law 

as an example, we can see that today we have criminal acts and intents that did not exist in 

1970-s, simply because of the lack of technology. If we did not change criminal 

jurisprudence around the Globe, we would face significant issues finding justice for the 

affected parties.  

When reading the COLREGs it is evident that the language used serves mostly legal 

profession and that professional mariners struggle with interpretation of some of the Rules. 

COLREGs’ main goal is to prevent collisions at sea, and this is the reason why the language 
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should be adjusted for mariners. Ambiguity of the COLREGs is spread consistently among 

the Rules that even today studies measuring interpretation and understanding of some 

specific wordings are present [Mohovic et al., 2016]. In addition, mariners, educational 

professionals, and even admiralty law experts still disagree when interpreting rules, so it is 

sometimes challenging to find a correct interpretation. As with other rules and regulations, 

when larger number of persons do not understand some rules, it says more about the quality 

of wording then the intellect of persons. At sea, younger seafarers are often told that they 

can learn a lot in school, but only experience will make a seafarer out of them. In order to 

fully comprehend collision situations at sea, an able-bodied mariner needs to develop 

seamanship that is intersection between experience and common sense. The COLREGs 

appear to be vague enough that mariners feel as the blame is unavoidable whatever the 

action taken [Kemp, 1973]. Even before the introduction of the latest revision of COLREGs 

authors criticized the use of unnecessary and vague language [Azad, 1959]. Stitt [2002] 

delivered a thorough overview of complications and challenges that COLREGs bring to an 

everyday mariner. 

Maritime industry would like to see evolution, especially to track technological 

changes. When thinking about decision support systems, or autonomous marine control, a 

big gap in regulation is noticeable. Even though technology allows for intent aware 

solutions, where risk of collision could be brought down to minimums, navigators would 

have difficulties combining that kind of technology with the COLREGs that are known 

today. As mentioned in Chapter 1, collisions still occur alarmingly frequent. This becomes 

even worse if near misses that happen daily are included, but these are not tracked as well 

as incidents, so the real number of near misses could only be estimated. 

It is still possible to experience vessels signaling Not Under Command when they 

get information to drift and wait further notice. It is confusing to understand what is 

“making way” and “underway”. It is evident that the Rules were written having in mind 

smaller outreach, while today they are used and misunderstood globally. Mohovic et al. 

[2016] showed that misunderstanding of COLREGs is more severe than thought. A number 

of commercial ships that sail with navigators not knowing or not understanding the 

COLREGs is still a challenge that requires global solution. 
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As efforts of Convention members to advocate for a change is not prominent, the 

only approach in resolving collision and close-quarter situations is improvement in 

technology and intent communication. In line with the criticism, this study mentions only 

the rules that affect proposed algorithm. The scope of this research is not to find solution 

to full implementation of all COLREGs, but rather to showcase that COLREGs could be 

taken into account to reduce collision risk and increase maritime safety.  

Designing collision risk averse algorithms without COLREGs compliance does not 

add value for the real-life use. COLREGs are equally binding for human and non-human 

decision makers, especially as both human and autonomous systems thrive in the same 

environment. Porathe [2019] has delivered a comprehensive overview of challenges in 

mixing manned and unmanned vehicles, while Stentz [1994] showed that maintaining 

protocols designed and developed for humans allow for safer and predictable maneuvers. 

Human involvement can’t be disregarded in the process, and there is an obligation in 

designing machine protocols that would be compliant with human operational styles. If 

autonomous vehicles would be allowed to disregard human protocols, there is a possibility 

of getting a counter effect and having even more near misses and incidents at sea due to 

increased level of confusion and misunderstandings. Development of algorithms in 

vacuum is never a good idea, as humans will still be responsible in following protocols and 

rules, while algorithms would have freedom to find the optimal solution without same level 

of constraints. With enough computing power, machines are able to look further in the 

future and make a sequential decision chain that would be hard to follow by counteracting 

human navigator. 

Some studies, like Lee and Kim [2004] claim to be COLREGs compliant but allow 

for some violations in certain scenarios. It is paramount to keep the full compliance to the 

COLREGs and embrace the ambiguity by discussing and developing solutions that would 

remove those ambiguities. This is not an easy task, but technological solution to any kind 

of protocol is comparatively easier part than agreeing on the protocol itself. This research 

has to stay within the challenges of current COLREGs, so it is necessary to keep in mind 

that some of the collision scenarios would be resolved in a different way by human 

navigators than the solution offered by any kind of COLREGs compliant algorithm. 

Turning to port when there is a risk of collision goes clearly against COLREGs, so this is 
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something that has to be transferred to optimization algorithm as constraint, regardless of 

the lucrative maxima for a reward or minima for penalty. As it will be seen in the next 

chapter, some humans are going to decide to go against COLREGs, but at that moment 

they assume all the risk behaving this way.  

Benjamin et al. [2006] were first to introduce algorithms following COLREGs 

between autonomous vehicles and there were many other approaches after that. However, 

all of those approaches mostly focused on Rules 13-18 omitting that some of the rules are 

interacting and that there are various types of vehicles covered by COLREGs. Some of the 

authors used “COLREGs-compliant” in the title of their work, but still focused only on few 

Rules [Hoekstra et al., 2002, Lee and Kim, 2004, Stentz, 1994]. Many of the mentioned 

studies neglected COLREGs Rule 8 requirement for alteration of course to be large enough 

to be readily apparent to another vessel observing either visually or by radar. Algorithms 

were successful in avoiding targets, but the fact remains that compliance with COLREGs 

requires adherence to all Rules. COLREGs are vague in defining what is a large enough 

course alteration, so it is necessary to turn to Case law, insurance recommendations and 

experience in some of the aspects of COLREGs, which in this Rule state that large enough 

course alteration is not less than 35° according to Case law, or minimum of 30° according 

to an experience [Benjamin, 2002, Benjamin et al., 2006. Porathe and Shaw, 2012]. It is 

necessary to keep in mind that visual reference is a major focus of COLREGs and just 

because advanced sensors are installed onboard, water-stabilized RADARs still have to be 

used and information collected confirmed by sight and the correct attitude of target vessel 

determined before concluding which Rules should be applied to resolve collision risks. 

When modeling collision avoidance algorithms, it is necessary to penalize for kinematic 

and dynamic constraints violations, as well as for large deviations from the intended course 

towards destination. However, care has to be taken when assigning weights to allow for 

large enough alterations and to actually code that course alteration is initially at least 30° 

and that vessel returns to the parallel course until the risk of collision diminishes, after 

which a vehicle can go back to its original course. 

As visible from Figure 4.1, proposed collision avoidance algorithm utilizes 

predictor that takes into account motion control algorithm and external disturbances in 
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order to predict alterations of headings and return to the route after the collision conflict 

has been resolved with the target sea surface vehicle. 

 

 

 

 

 

 

 

Figure 4.1 – Collision avoidance geometries for head-on situation 

 

Different approaches to trajectory optimization have led to a rich academic pool of 

ideas but focus on human control has to remain. Basically, proposed algorithms have to 

offer solutions that would be similar as if decisions were made by a human navigator. In 

the commercial shipping, passage planning is supported by a great deal of planning, risk 

assessments, and approvals from managing teams ashore. Planned tracks are evaluated by 

various software and provide navigators with assurance that a vehicle will not come in any 

risk with stationary objects or shallow waters. Any significant deviation from that plan has 

to be assessed and approved. Therefore, solutions of generating paths arbitrarily after 

collision risk has passed is not a viable solution. Vehicles should return back to the safe 

pre-planned track.  

Most of the mentioned research considered only a pair of vehicles and their 

interaction, while completely disregarding the human factor. External disturbances and 

speed variations were not taken into account, while COLREGs were only partially utilized 

for compliance. What makes COLREGs compliance even more difficult is that experienced 

mariners already expect a certain behavior from targets they meet. So, even though 

proposed algorithm would be solving collision situations successfully and according to 

COLREGs, some behavior would be considered strange and unnatural, so seamanship has 
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to be kept in mind while tuning algorithms. For example, maneuvering of sea surface 

vehicles will affect the attack angles of external disturbances and larger or faster turns will 

affect the speed of a vehicle. Research considering speed changes in collision avoidance 

maneuvers is scarce. When maneuvering, commercial vehicles rarely slow down 

significantly and is used as a last resort simply because of the inertia and sluggish response 

from the propulsion system.  

 

4.1.1 Evaluating COLREGs and safety parameters 

Considering the ambiguity found in many rules of the COLREGs, certain rules 

have to be evaluated in order to remove ambiguity as much as possible for collision 

avoidance algorithms to work. It is once again emphasized that scope of this study are 

underactuated sea surface vehicles and that this thesis provides solution for decision 

support system, rather than autonomous system. Autonomy would be possible with 

availability of sensors that would allow for COLREGs compliance. However, most of the 

commercial vessels do not have required audio-visual sensors that would ensure full 

compliance. This is the reason why some of the rules are omitted as well, as still human 

navigators have to watch and listen for light and sound signals. 

The intentional vagueness of COLREGs is there mainly to allow for experienced 

navigators to select an optimal action with liberty to interpret complex collision scenarios 

without a significant restriction, but also COLREGs are vague to make blame assignment 

easier. Due to vagueness, some of the rules of COLREGs are open to interpretation to 

Admiralty experts. COLREGs were written in early 1970’s and were appropriate for that 

time. However, in the present time we can only turn to professional experience, interviews 

and Case law to get some interpretation of the ambiguous phrases and weasel words. This 

proves a point that experience is a key factor in appropriately utilizing COLREGs in 

situations where collision risk exists. That is why it is beneficial that researchers have 

exposure to COLREGs in real-life situations at deep sea, but many researchers work only 

in academia. This promotes a disconnect between experienced mariners and algorithm 

designers. The situation is similar to situations when a professional supervisor of a complex 
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process requires assistance from an IT department, but a technician only understands IT, 

while he has no understanding of process. IT-process frustration is an everyday occurrence 

in technological organizations. 

In this chapter most of the Rules are presented, while quantifiable way for 

COLREGs algorithm to determine which Rule is applicative to a certain situation is 

delivered. In order to determine a relevant Rule, it is necessary to know if the risk of 

collision exists and for this relative geometry of interacting vehicles and stationary object 

is required. Many authors used various types of metrics to measure risk; however, in this 

research focus is on real-world situation and all available sensory information. Sensors 

commonly found onboard are regulated and information proposed algorithm has to deal 

with is the same information a human navigator finds on commercial ships. Lean approach 

is preferred. If the information is available and is already processed, there is no benefit of 

adding computing complexity to the system, but rather utilize sensor uncertainty provided 

by a manufacturer or governing body for state estimation. As mentioned in Chapter 3, 

benefits of sensor data fusion is exploited to reduce uncertainty. The most important 

information to determine collision risk is dCPA (distance at Closest Point of Approach), 

TCPA (Time to CPA) and actual attitude of a target (the relative bearing to own vehicle).  

The CPA is the point on an own vehicle’s trajectory where the distance to the target 

is at its minimum value. Benjamin et al., 2006 described thoroughly how the CPA is 

calculated, but this information is taken from ARPA installed onboard. Only small coastal 

vehicles do not have requirement for ARPA installation onboard and for them additional 

calculations could be used by utilizing data from RADAR. CPA and TCPA sensor error 

and uncertainty has already been discussed and this uncertainty is considered by expanding 

the safe radius around each acquired target. The process of uncertainty influence will be 

discussed later in text. Another important value to determine collision risk is the attitude 

of a target. It is necessary to know own vehicle’s course through water and over ground, 

but also to know target’s course over water and over ground. The attitude is affected by the 

course through water and by the relative bearing of a target. With these values it is possible 

to determine how ownship would see a target with own eyes and to determine which Rule 

of COLREGs would be used in that situation. 
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The importance of having water stabilized RADAR for collision avoidance is 

emphasized, simply because COLREGs rely on visual reference more than on ARPA 

calculations. So, allowance for external disturbances have to be made, and only then Rules 

would be applied as if the target is apparent to us with a naked eye. For actual collision 

avoidance, true over ground movement is required in order to have safe distance from a 

target until the collision danger is gone.  

Some authors [Dinh and Im, 2016; Goodwin, 1975; Liu et al., 2016; Pietrzykowski, 

2008; Rawson et al., 2014; Rudan et al., 2019; Szlapczynski, 2006; Szlapczynski and 

Szlapczynska, 2016; Szlapczynski and Szlapczynska, 2017; Wang et al., 2010] developed 

domain based collision risk determination approaches, but as their research shows, domain 

based approach is more complex and computationally expensive than a more traditional 

dCPA and TCPA approaches. Remaining with dCPA and TCPA brings a benefit of lower 

computational complexity. The main criticism of dCPA and TCPA approach from the 

perspective of the domain approach authors is that domain-based methods favor maneuvers 

recommended by COLREGs, but yet again COLREGs were not utilized in their entirety 

and still some situations lead to maneuvers that avoided collision but were not according 

to COLREGs. This research shows that dCPA and TCPA approach is easier to envision, 

professional mariners do not think about domain space, but rather distance from a danger, 

and that maneuvers are still COLREGs compliant without unnecessary computational 

complexity. In their latest state of the art review, Szlapczynski and Szlapczynska [2017] 

concluded that for collision avoidance and after almost 50 years since the idea of ship 

domain was introduced, only a partial success is visible, as dCPA and TCPA approach is 

simpler to implement and interpret. Nevertheless, domain methods are still researched and 

actually growing popular for applications other than collision avoidance, where accuracy 

of modeling is more important than computational time or sequential decision making.  

Before assessing the Rules, question is made on how do human navigators asses 

the success of collision avoidance maneuver? Intuitively, sailing is successful when there 

was no contact with another dynamic or static object. However, near misses are something 

that causes a lot of stress and sometimes even panic to navigators, so it is necessary to 

ensure that near misses do not occur. Hence, it is possible to sum the human optimization 

factors to COLREGs compliance, smallest deviation from the original course, minimum 
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time added due to maneuvering and safe distance when passing objects. These efficiencies 

are integrated in reward functions and agent weighs all factors during the optimization 

process. Similarly as masters’ of ocean going vessels write their safety preferences in line 

with their standing or night orders, it is possible to define preferred CPA, minimum CPA, 

CPA below which a near-miss is considered and a collision distance. These distances could 

be depicted as circles around the own vehicle with various radii. So, for example, a 

common preferred CPA would be 2 NM, CPA of 1 NM would be a minimum, while CPA 

below vehicle’s transfer when turning with rudder hard-over (for the LNG 2 vehicle used 

in experiments, this is 5 cables when vessel is at full speed and with a wheel hard over) 

would be near miss. Finally, a collision is anything below 2 cables (value that depends on 

the type and size of a vehicle). In line with this, a set of circles could be envisioned around 

a sea surface vehicle describing safety zones: 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 – Safety zones around sea surface vehicle 
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This is a helpful way to assign safety zones. Safety zones are envisioned as 

dynamic, so that when a vehicle is in busy waterways and have a lot of ships around, these 

boundaries could be moved to ensure convergence of the algorithm. Dynamic CPA settings 

is a common practice with experienced navigators, as it is not practical to expect the same 

level of separation in Singapore strait and at open seas. Also, these radii are dynamic, as 

vehicles have different turning circles at different speeds, so the speed has to be taken into 

account. As we are looking at collision avoidance, we will always use turning circle of 

rudder hard over to avoid contact. 

 

4.1.2 COLREGs - individual Rules’ assessment 

As some of the Rules are applied consecutively, it is necessary find a way how to 

determine which rule is applicable at certain collision situation. The key influencing factor 

is the attitude of a target in relation to own vehicle. It is important to keep in mind that 

there are performance limits with sensory equipment on commercial vessels. For the sake 

of collision avoidance, it is not possible to ensure full autonomy without having audio and 

visual sensory equipment that could hear and see for human navigator. The scope of this 

thesis are commercial vehicles with regulations as they stand today, so it is necessary to 

involve human navigators in the decision support process. In this study solutions for full 

autonomy is mentioned as well. The following text uses phrases and words from the 

International Regulations for Preventing Collisions at Sea [2020]. 

 

GENERAL RULES (1-3) 

The general rules deliver information about application, responsibility and general 

definitions. If looking at these rules through the eyes of an autonomous or decision support 

agent, it is required to find parts that would require inclusion in COLREGs Entry Criteria 

algorithm. 

In the Rule 1 Rules apply to all vessels on all waters navigable by seagoing vessels. 

The Rule 1 does not make any distinction in regards of controlling inputs; be it human, 
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automated, autonomous or combination of it. The rest of the Rule 1 is related to how 

Governments interact with COLREGs and does not have any direct influence on proposed 

collision avoidance model. 

The Rule 2 delivers regulation about responsibility. The (a) paragraph states that 

vessel, owner, master or crew have to comply with COLREGs and could not be exonerated 

by nothing written in the Rules from the consequences of neglect and any precaution that 

could be required by the ordinary practice of seamen. Vagueness of the Rules is 

immediately noticeable, as it is hard to determine what is the ordinary practice of seamen. 

In this approach, endeavor is made that that Rules are followed similarly as professional 

navigators would do. The (b) paragraph delivers an interesting notation that each collision 

situation has to be observed holistically and that navigators could face special 

circumstances in which departure from COLREGs could be necessary to avoid immediate 

danger. This brings us to the first applicative Rule that should be used consecutively with 

all other Rules in the proposed algorithm. In order to comply with the Rule 2 (b), it is 

necessary to define what an immediate danger is. In this thesis anything occupying a near 

miss radius is an imminent danger and risk averse approach is required to avoid contact on 

any way possible. In the case of selected vehicle LNG 2, decision has been made that there 

should not be any dynamic object occupying area of 5 cables when the vessel is at full 

speed and with a wheel hard over. The safety radii change according to the speed and 

turning radius of a vehicle. Vehicle’s over ground movement has to be taken into account 

in order to compensate for the drift when determining an immediate danger. Hence, if any 

dynamic object occupies a near miss zone, collision avoidance algorithm would be allowed 

to find an optimal trajectory outside of the COLREGs zone to either increase the distance 

to a target or to avoid contact by either turning to port, starboard, make a full circle or 

reduce speed. Therefore, COLREGs Entry Criteria algorithm has to show notification to a 

navigator or enter a code to autonomous agent: “IMMEDIATE DANGER MODE 

ENGAGED”, which will allow for behavior that can be outside of COLREGs.  

In the Rule 3 general definitions are delivered. These definitions are especially 

important when other Rules require that navigator has to identify type of sea surface vehicle 

acting as target vehicle in order to correctly apply those Rules. The paragraph (a) reinstates 

that any water craft, including seaplanes, that have ability to be used as a means of 
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transportation on water is considered a vessel. So, whenever term sea surface vehicle is 

used, it includes the term vessel. Paragraph (b) depicts that power-driven vessel is any 

vessel propelled by machinery. Intuitively, paragraph (c) defines sailing vessel as any 

vessel under sail provided that even if fitted with propelling machinery, this machinery is 

not used. Paragraph (d) delivers details about vessels engaged in fishing and it describes 

that vessels engaged in fishing are only vessels that use fishing apparatus that restrict their 

maneuverability. Paragraph (e) defines seaplane as any aircraft designed to maneuver on 

water. In the paragraph (f) vessel not under command is defined as a vessel which is unable 

to maneuver as required by COLREGs due to some exceptional circumstances and can’t 

keep out of the way of another vessel. Paragraph (g) delivers definition of vessel restricted 

in her ability to maneuver as vessel that is engaged in work that restricts her ability to 

maneuver as per COLREGs. Paragraph (g) delivers non exhaustive list of examples. 

Interesting vessel is vessel constrained by her draught defined by paragraph (h) as a power-

driven vessel which is severely restricted in her ability to deviate from the course she is 

following due to her draught in relation to the available depth and width of navigable water. 

This means that a vessel in question is passing a certain body of water and can’t deviate 

from its course otherwise it will run aground. For example, in some channels or straits 

vessels with deep draughts will have a limited space where they can navigate, while other 

vessels can use much wider space. Another paragraph of our interest is (k) which defines 

that vessels are in sight of one another only when they can visually observe each other. In 

line with this definition, paragraph (l) states that restricted visibility is any condition in 

which visibility is restricted by some external disturbance, such are rain, fog, mist, snow, 

and similar. Finally, paragraph (m) defines Wing-In-Ground (WIG) vessels as any 

multimodal craft that can fly in proximity to the surface when in operational mode. 

It is important to identify types of vessels in order to ensure state estimation is 

correct. AIS can be used to identify types of vessels, or it is done visually. Both methods 

of identification are prone to human mistake, so there is always an uncertainty if the vessel 

is actually displaying correct visual signs or turn AIS to appropriate sailing mode. In any 

case, if a vehicle is displaying visual or AIS notification, own vehicle has to ensure to act 

as required by COLREGs. Identification of vehicles can be done automatically, but this 

requires visual sensors capable to see as human navigators and distinguishing the 
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navigational lights. Visual reference can be fused with AIS data to confirm navigational 

signals. In case that there are no visual sensors installed onboard, a human navigator has to 

input the visual reference to the decision support system in order to have accurate trajectory 

generation. 

 

CONDUCT OF VESSEL IN ANY CONDITION OF VISIBILITY (4-10) 

This part of COLREGs is concerned about Rules that should be applied to all types 

of vessels and in all conditions of visibility. 

Rule 4 only mentions application and that Rules of this section apply in any 

condition of visibility. 

Rule 5 requires that all vessels at all times maintain a proper look-out by sight, 

hearing and all other available means in order to make a full appraisal of the situation and 

to measure risk of collision. This is where a distinction of a decision support system with 

human navigators and fully autonomous systems appears. It is evident that sensors are 

required so that own agent can hear and see other vehicles at sea. For this purpose, cameras, 

infra-red sensor and similar can be used. Due to security and firefighting control some of 

the vessels have Closed Circuit Television systems onboard with capacity to store data. 

However, these systems are not fit to see other objects as their purpose is to record low 

resolution information, so a similar system with high resolution cameras and visual 

recognition software would be required. Audio signals have distinctive frequencies, so a 

system of omnidirectional microphones could be installed in order to hear signals from 

other vessels. Some of the vessels with fully enclosed bridges already have an audio system 

installed to ensure navigators could hear signals and ensure compliance with Rule 5; 

however, these systems sometimes do not have sophisticated tuning to hear signals early 

enough and for an autonomous agent to distinguish signals properly, so better recording 

equipment is required to satisfy autonomy. In general, proposed collision avoidance 

algorithm should use as much as possible data available and fuse all information to identify 

risk and deliver optimal trajectory. In the decision support system, a simple prompt of 

confirmation from a navigator would be required to identify audio and visual signals. Only 

with that kind of cooperation sustainable results could be achieved. 
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Rule 6 delivers regulation about safe speed. The Rule 6 states that all vessels should 

at all time proceed at a safe speed so that effective and proper actions could be taken to 

avoid collision and that vessels can stop appropriately to the prevailing circumstances and 

conditions. Another vague but very important Rule of COLREGs. Safe speed rule is 

intentionally vague because it would be extremely difficult to regulate a speed knots that 

would satisfy safe navigation for all vessels. Each vehicle will have different safe speed in 

the similar situation. Safe speed largely depends on maneuvering characteristics. 

Therefore, navigators have to realize what is the safe speed for their vessel. One of the most 

common contributary reasons for collisions in the Case Law [Benjamin, 2002, Benjamin 

et al., 2006] is exceeding safe speed. The Rule 6 does not give a speed that vessels should 

follow, but it does provide a non-exhausting list of factors that should be considered when 

thinking of safe speed. Among the intuitive factors such are visibility, traffic density, 

maneuvering limitations and external disturbances, the Rule 6 also talks about limitation 

of radars. Many of electronic appliances were not available at the time of writing this Rule, 

but the same approach can be taken in using other electronic solutions, including ARPA. 

Logically, reducing the RPMs to the maneuvering speed is one of the first things to do 

when sailing in areas with increased traffic, shallow waters or other prevailing dangers. 

This is because an engine will react faster than on navigation full speed due to various 

technical reasons. The challenge is, of course, for autonomous or decision support agents 

to determine the safe speed. Metrics for safe speed determination is proposed below. 

However, lacking further studies, some metrics are only taken arbitrarily. In case that 

proposed algorithm can’t find convergence and optimal trajectory by turning, slowing 

down will be considered and advised to either autonomous or DSS agent. The only 

difference between an autonomous and decision support systems is that autonomous agent 

has a direct control, while DSS agent prints advisory to navigator which navigator chooses 

to obey or not. So, in order to determine safe speed, following is taken into consideration 

as per the Rule 6: 

§ Check the visibility and if the visibility is less than 3 NM, then consider 

slowing the speed to maneuvering range until clearing the situation; 
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§ Check the visibility and determine if the visibility is less than 3 NM and 

there are any radar targets within the 3 NM radius, reduce the speed to maneuvering range 

until clearing the situation; 

§ If the sea room is restricted by shallow water, TSS, narrow channel, safety 

fairway, or objects detected by the look-ahead (human navigators have to set up look-ahead 

parameters carefully), and there is a concentration of more than 4 following, crossing or 

reciprocal targets within the 3 NM radius, then reduce speed to maneuvering range until 

clearing the situation. Please note that number of targets is arbitrarily selected, and further 

study is necessary to find correlation of number of targets and increased risk of collision, 

as for now research is limited and not decisive [Rutkowski, 2016]. For both DSS and 

autonomous agents this can be selected by designer or navigator; 

§ If unable to maintain minimal dCPA with any of interacting targets by 

turning a vehicle due to static and dynamic restrictions, then reduce speed to maneuvering 

until clearing the situation. This measure is here to ensure stopping distance is reduced in 

case collision avoidance algorithm determines that stopping is required to avoid collision 

or reduce impact. Speed reduction is initiated by the collision avoidance algorithm rather 

than COLREGs classification algorithm; 

§ If the depth of available water is less than 3 times the draught, consider 

reducing the speed to allow for maneuvering performance assurance. If the depth of 

available water is below 1.5 times the draught, reduce speed to maneuvering. If the depth 

of available water is below 1.2 times the draught, adjust speed according to the calculated 

squat for the particular vessel. 

In the previous chapter it was determined that the depth below 4 times the draught 

was used in the algorithm for turns and this is still applicative for turns. However, many 

factors will influence how a particular vessel will behave in shallow waters. The shape of 

hull, type of seabed, the distribution of available water (is it a dredged channel, equal plain, 

etc.), external influences, including currents, density of available water, speed of a vehicle, 

and similar. This is why navigators always plan the voyage and include UKC and squat 

calculations, which will allow them to know exactly how fast the vehicle they are on can 

pass restricted waters at a planned time. PIANC [1992] made a general distinction between 
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deep éℎ èê > 3.0ë , medium deep é1.5 < ℎ
èê ≤ 3.0ë , shallow é1.2 < ℎ

èê ≤ 1.5ë  and 

very shallow water éℎ èê ≤ 1.2ë, where è is the depth of water, while ℎ is draught of a 

sea surface vehicle. 

Other factors from the Rule 6 are not considered, as the background lighting is 

related to human only operations, while external disturbances and radar limitations were 

already integrated in control algorithms. 

Rule 7 delivers notation about the risk of collision. The main premise of this rule 

is that all vessels should use all available means to determine risk of collision and if ever 

in doubt, assume that the risk of collision exists. This is a straightforward notation, so all 

sensory equipment is utilized to determine risk of collision. Considering the consequence 

of collision or running aground, risk of false positive is accepted and whenever in doubt 

maneuver to avoid target sensed by the equipment onboard. The interesting notation is 

further delivered in paragraph (d) and it states that when determining if risk of collision 

exist, assumption is made that risk exists if the compass bearing of an approaching vessel 

does not appreciably change, but to keep in mind that risk of collision can still exist even 

when the bearing changes if approaching a very large vessel or a tow or approaching vessel 

at close range. This requirement is added to already extensive list of sensory information 

that is used to determine a risk of collision. Professional mariners assess risk in a different 

way. Some will allow closer approaches to some types of targets and be comfortable, while 

other will give wide berth to all targets. In general, navigators of fishing boats are more 

comfortable to come closer to the larger vessels, than it would be the case of navigators of 

a Very Large Crude Carrier (VLCC) approaching any other targets considering it takes a 

long time to provoke a yaw change in VLCCs. As own safety radii are defined, imperative 

is to keep all targets away from the danger zone.  

Rule 8 delivers rules on action to avoid collision. From the perspective of collision 

avoidance algorithm, this Rule is very important. The Rule states that any action to avoid 

collision shall be positive and made early if circumstances allow. This gives us a general 

instruction in when to act to avoid collision, which is as early as possible. In the case of 

algorithmic maneuvers, it is necessary to act as early as possible after the sensory 

information has been confirmed valid. In this case, RADAR acquire targets in 12 NM 
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radius and then ARPA give us estimates. Taking in consideration limitations and error 

uncertainties of RADAR and ARPA, data fusion of sensory equipment is conducted for at 

least one minute before generating trajectories. Trajectory quality should improve after an 

additional two minutes. The Rule 8 also states that any alteration of course and/or speed to 

avoid collision should be large enough to be readily apparent to another vessel observing 

visually or by rudder. This requirement is a key to collision avoidance maneuvering 

approach. As stated earlier, course should always be altered by more than 35° in order to 

make it apparent to another vehicles that own turn is related to collision avoidance. This 

does not mean that after alteration of 35° navigator should continue along that path until 

fully clear of the target. This will, of course, depend on the situation, but in the case of 

head-on situation, navigator should alter own course by 35° and continue that path until 

target trajectory is in the preferred or further than preferred CPA radius. After that, course 

can be altered back to the same general direction ownship was keeping before the collision 

avoidance maneuver. Finally, after the target has passed behind own vehicle, course would 

be altered back to the track and then continue originally planned voyage. In case of  

crossing traffic, course would be also altered by at least 35° and that path maintained until 

the target is well passed so that own vehicle can return back to the planned route. We depict 

these situations below: 

 

 

 

 

 

 

 

 

 

Figure 4.3 – Actions to avoid collision 
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The Rule 8 also advises an intuitive notion for underactuated large vessels that if 

there is a sufficient sea-room, alteration of course alone might be the best and most 

effective action, but it has to be done on time and that it does not result in another close-

quarters situation. Proposed collision avoidance algorithm takes this part into account as 

well. Even though it prefers to do a 35° turn and make enough room between vehicles, it 

will firstly check if this maneuver will lead to another issue. If there is no enough sea-room 

for the vehicle, it will try to find optimization allowing for closer approach of targets and 

smaller turns, but it will not allow for targets to occupy a near-miss radius. If turning alone 

is not giving us a desired effect, algorithm will consider reducing speed and check for 

optimization again until finding a viable solution. In a case of DSS, it prompts a user to 

reduce the speed, while in case of full autonomy, it issues an order to the engine telegraph. 

After the logical paragraph (d) requiring that vessels are passing at a safe distance, 

paragraph (e) delivers regulation that when necessary for collision avoidance or more time 

to assess the situation, vessels should reduce speed, or even reverse the propulsion. There 

is a benefit of algorithms assessing collision almost continuously, so a slight change will 

immediately be brought up to the autonomous or human operator. Final three 

subparagraphs talk about vessel required by COLREGs not to impede the passage of 

another vessel and again reinstates that all actions should be done in ample time, but also 

mentions that a vessel the passage of which is not to be impeded remains obliged to comply 

with COLREGs when there is a risk of collision, which basically means that even if its 

passage is impeded it is required to avoid collision by any means. This brings us back to 

the earlier requirement of Rule 2 that vessels can deviate from the Rules in order to avoid 

collision if the danger is imminent. In this research it is defined that this is happening when 

impeding vessel is occupying a near miss radius. 

The next rule is the Rule 9, Narrow channels. In the first paragraph, Rule 9 requires 

that vessel keeps as near to the outer limit of the channel or fairway which lies on her 

starboard side. This is to ensure safe distance of meeting vessels. Passing fairways and 

narrow channels is usually planned well in advance and very often these areas require pilots 

to guide the vessels. Meeting any vessel on reciprocal course in narrow channel is in 

practice always discussed between a master of each vessel and pilot, while pilots agree 

approach by communicating with each other via VHF. A passage plan will keep the vessel 
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close to the outer limit of a channel or a fairway and collision avoidance algorithm will 

stick to the plan. When very large ships are passing these areas, they are usually 

accompanied with a pilot or tug in order to clear other potential vessels. When visualizing 

a vessel passing a narrow channel, the paragraph (b) comes as a logical requirement where 

vessels of less than 20 meters or sailing vessels should not impede the passage of a vessel 

which can safely navigate only within the narrow channel or a fairway. We can ask 

ourselves, how would vessel less than 20 meters long and sailing vessels know that a vessel 

in fairway can only navigate within the fairway? There is no definite answer to this question 

and, again, the vessel in the channel or fairway will need to use all available means to avoid 

collision and inform vessels impeding his way. The only way how can a vessel in the 

fairway be ready for the uncertainty of the behavior of the vessels that should not impede 

its way is to maintain safe speed and be ready to stop the vessel if necessary to avoid 

collision. In case of a human navigator, radio communication can be used to warn other 

traffic. Areas that have narrow channels and fairways in which vessels large enough to 

safely sail only within those channels or fairways usually have VTS surveillance, pilotage 

requirement or even escort boats to ensure no impeding will happen during the transit. This 

is crucial as many participants in maritime world do not follow COLREGs and some areas 

are notoriously difficult to transit without escorts (entrance to Bonny port in Nigeria, for 

example). Considering the inability to maneuver outside the narrow channel or fairway, 

proposed approach is to compensate for increased uncertainty by not allowing any target 

entering the minimum CPA. The collision avoidance algorithm should tract TCPA and 

time it takes for the own vehicle to stop. If the steady trajectory of a target is not changing 

before the TCPA equals the time to stop, algorithm will send a DSS agent warning to 

reduce speed and/or stop engine. In case of an autonomous agent, signal from the collision 

avoidance algorithm will be an input information to the telegraph. The signal has to be 

issued on time, allowing own vehicle to stop on time.  

The paragraph (c) of the Rule 9 is more deterministic than paragraph (b). It states 

that a vessel engaged in fishing shall not impede the passage of any other vessel navigating 

within a narrow channel or a fairway. This is clear instruction to fishing vessels and, in this 

paragraph, conditional sentence that applies this paragraph to vessels that can only navigate 

safely within a narrow channel or fairway does not exist. In this paragraph it is obvious 
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that fishing vessels should stay clear of other vessels using narrow channels and fairways. 

From the perspective of collision avoidance algorithm, it is still imperative to maintain 

conservative approach and include the uncertainty of fishing vessel behavior and maintain 

stringent collision avoidance trajectory tracking. The paragraph (d) states that any type of 

vessel crossing a narrow channel or fairways should not cross if such crossing impedes the 

passage of vessel which can safely navigate only within such channel or fairway. Vessel 

using a channel or fairway is also instructed to use a sound signal prescribed in Rule 34(d) 

if in doubt of intentions of the crossing vessel. Risk averse approach is maintained and 

crossing vessel is monitored well in advance, so that ownship can adjust speed to ensure 

no contact with a crossing vessel. The control of sound signals is easy and if the crossing 

vessel’s trajectory is entering the CPA preferred radius, signal as per Rule 34 (d) will be 

used. If in the next minute there is no change in trajectory of a crossing target, signal to 

DSS or autonomous agent will be issued to slow down or stop the vessel, depending on the 

resulting distance clearance from the crossing target. Subparagraphs (i) and (ii) of the 

paragraph (d) deliver requirements for overtaking situation in narrow channels or fairways. 

When overtaking can take place only if vessel to be overtaken has to take some action to 

permit safe passage, then vessel that intends to overtake should sound the appropriate 

sound signal as prescribed in Rule 34(c)(i), after which the vessel to be overtaken should 

sound the appropriate signal as per the Rule 34(c)(ii) and take steps to permit safe passage. 

If in doubt, vessels should sound signals prescribed in Rule 34(d). This Rule does not 

relieve overtaking vessel of her obligation as per Rule 13. Therefore, in the case of 

overtaking, it is necessary to ensure that both Rule 13 and Rule 9 are considered. Autonomy 

is possible if appropriate sensory equipment is installed onboard, otherwise a human 

navigator has to listen to signals and input info to DSS or respond manually. The future 

could bring a messaging system that allows for communication between vessels 

automatically or manually so that the uncertainty is lowered to even lower levels. 

Paragraph (f) instructs vessels to proceed with care and use appropriate signals from 

the Rule 34(e) when getting close to a bend of a narrow channel or fairway, or if there is 

any obstruction, while paragraph (g) instructs vessels not to anchor in a narrow channel 

unless there is an emergency. These paragraphs are clear and easy to implement. 
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Rule 10 delivers regulation about Traffic separation schemes (TSS). At the time of 

writing the COLREGs, TSS was a revolutionary and authors show that introducing TSS 

contributed largely to collision prevention [Benjamin, 2002, Benjamin et al., 2006]. The 

paragraph (a) is probably the most important paragraph in the Rule 10, as it states that this 

Rule applies to TSS adopted by the Organization and that it does not relieve any vessel to 

comply with other rules. One of the common misconceptions of the Rule 10 among 

navigators is that once in TSS, it is not required to follow other rules, but just follow own 

lane. However, obligation of avoiding crossing traffic from own starboard side still exists, 

which is explained further in Rules overview. The paragraph (b) states that vessels using 

TSS should proceed in the appropriate traffic lane and navigate in the general direction of 

traffic; should also stay as practically as possible away from the separation line or zone; 

and should join or leave a traffic lane near the termination of the lane and at a smallest 

angle to the traffic flow, which is a similar of the road traffic where vehicles are joining 

one direction traffic flow in the same direction. This part is ensured by a proper passage 

planning. The paragraph (c) states that vessels should as far as practicable avoid crossing 

traffic lanes, but if required to do so, should cross traffic lanes as close to right angles of a 

traffic flow. This paragraph is a good example why water stabilized RADARs are still 

required for COLREGs. As mentioned earlier, COLREGs were written mainly for visual 

reference, so proper lookout by sight is a crucial element of compliance. Many navigators 

would correct for drift when crossing lanes, while this could confuse other vessels 

navigating traffic lanes. Basically, ownship has to appear as 90° crossing to the other traffic 

if the plan is to cross traffic lanes. Again, this has to be planned in advance and if done 

unplanned, a human navigator has to ensure this paragraph is followed. Paragraph (d) 

instructs vessels not to use an inshore traffic zone when able to use the appropriate traffic 

lane with an exception of vessels with length less than 20 meters, sailing vessels and vessels 

engaged in fishing. The other exception for vessels is that inshore traffic zone can be used 

by vessels en route to or from a port, anchorage, pilot station or any other place situated 

within the inshore traffic zone, or to avoid immediate danger. This is very interesting 

regulation for the proposed collision avoidance algorithm. Basically, entering inshore 

traffic zone is discouraged, however not prohibited if navigator is avoiding immediate 

danger. Immediate danger definition still stands as when target occupies own minimum 
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CPA radius and trajectory keeps target vehicle towards the near miss or collision radius, 

so at that moment, no constraint is enforced on the collision avoidance algorithm. 

Avoidance of inshore traffic zone is usually planned well in advance; however, situation 

can arise when own vehicle has to avoid another and needs to enter in the inshore zone. 

This especially happens when avoiding crossing traffic from own starboard side. As TSS 

is marked on ECDIS, collision avoidance algorithm is permitted to scan for distance from 

both inshore zone and TSS separation zone and try to keep vessel in the middle and if 

avoiding traffic closer to one side, to prefer to turn to the opposite side. However, this can 

be burdensome and computationally expensive, so approach is to avoid targets as early as 

possible and if the optimization forces ownship to go to the inshore zone, ownship will 

wait until target enters minimum CPA zone and then turn to avoid as necessary. It is also 

possible to track the trajectory and slow down when necessary for better clearance with a 

target.  

Another challenge for all situation where vessels have to navigate in parallel to each 

other for prolonged times is introduced. This is applicable to narrow channels, fairways or 

TSS, or to any situation where ownship does not have enough sea space to maneuver away 

from targets with satisfactory clearance. For example, Singapore strait or Dover strait are 

examples where high number of vehicles have to follow the same traffic flow for prolonged 

times. The challenge becomes when there are scheduled turns and several vessels meet the 

turn at the approximately same time, so that uncertainty about intent of other vehicles 

becomes worrisome. With the intent aware and communication module, the issue of further 

prospects could be avoided. Figure 4.4 depicts the challenge. 

If we analyze the situation below, vessels 2 and particularly 5 will have uncertainty 

challenges. If the speed of vessel 5 is same or higher than 4, navigators of vessel 5 will be 

concerned about intentions of vessel 4. Of course, they will expect that vessel 4 will turn 

when reaching the turning point, but as there are ports on the starboard side inshore zone, 

there is a possibility that 4 wants to exit the TSS and they could slack their speed, they 

could prolong their straight movement or turn on time with others. If we then also add 

vessel 7 crossing and making close quarter situation with 5, then we have a situation that 

can potentially be hard to resolve. Therefore, approach is risk averse and does not take into 

account any commercial pressure that navigators sometime feel. Safety of vehicles is 
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prioritized, and if slacking of speed is optimal, it is assumed that this is something that has 

to be done regardless of any other non-collision avoidance related factors. This is why 

collision avoidance algorithm is modeled to maintain separation of minimum CPA radius 

for that part of the passage and that checks possibility to either overtake vessel 4 and turns 

before vessels 4, 6 and 7 reaches this area, or slackens speed so that all pass clear before 

vessel 5 reaches the turning point. The similar situation would be with vessel 2 or vessel 6 

overtaking. They are faster than the other vehicles, but the uncertainty of turning 

simultaneously on a turning waypoint still exists. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4 – TSS uncertainty challenge 

 

Similarly as for inshore zone, the paragraph (e) delivers restrictions on using the 

separation zone. Unless crossing a TSS or joining or leaving a traffic lane, vessel should 

not enter a separation zone unless avoiding immediate danger or to engage in fishing. 

Paragraph (f) conveys that vessels should navigate carefully near the entrance and 

terminations of TSS. The entrance can be busy with many vessels joining with different 
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speeds, while termination can be complex due to different destinations and courses vessels 

could take upon exiting the TSS. The paragraph (g) states that vessels should avoid 

anchoring. It does not explicitly forbid it, because there is a possibility that vessels would 

have to do it in emergency situations. Vessels not using TSS should avoid the separation 

zone with as wide margin as possible according to the paragraph (h), while paragraph (j) 

obliges vessels engaged in fishing in the separation zone should not impede passage of any 

other vessel using a TSS. Paragraph (j) delivers similar notation as in Rule 9 where vessels 

less than 20 meters in length, vessels engaged in fishing, or sailing vessels should not 

impede a power-driven vessel following a traffic lane. The main difference is lack of a 

phrase ”safely navigate only within”. In the case of Rule 10, distinction is clearer. The 

paragraph (k) brings an exception for complying with the Rule 10 for any vessel restricted 

in her ability to maneuver when engaged in operation for the maintenance of safety of 

navigation in TSS. However, there is still a challenge of identifying vessels that are 

engaged in safety of navigation maintenance. It is possible to see from AIS, or visually, 

that vessel is restricted in her ability to maneuver, but how can agent know if the target 

vehicle is engaged in maintenance operation? The clarification can only be provided by 

usage of communication equipment and input from human navigators. In any case, there is 

a requirement within modelled collision avoidance algorithm to stay clear of vessels 

restricted in their ability to maneuver regardless of the reason and it is imperative to stay 

clear from them allowing them enough space. Similarly, paragraph (l) conveys that a vessel 

restricted in her ability to maneuver when engaged in submarine cable laying, servicing or 

picking up is exempted from complying with Rule 10. 

 

CONDUCT OF VESSEL IN SIGHT OF ONE ANOTHER (11-18) 

This section delivers regulations about conduct of vehicles that meet each other, 

and a visual reference can be established. Hence, a large emphasis is put on actually seeing 

targets. For the purpose of COLREGs, human sight is referred to in the Rules. Even if there 

are sensors onboard that could “see” better than human eyes, COLREGs are written for 

humans, so vessels have to be in human sight of each other. This requirement is not 

particularly difficult with DSS systems, but significantly challenging for autonomous 
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systems from the perspective of compliance. Technology installed onboard sea surface 

vehicles is not ignored, but in regards of compliant actions to be taken, visual confirmation 

is required before proceeding. In this model assumption is made that visibility lower than 

3 NM is low enough to trigger restricted visibility part of the Rules, however, this can be 

easily adjusted for any value once the agreement among Administrative states is achieved. 

Algorithm will deliver collision avoidance trajectory as soon as able, even before the visual 

reference is made. Navigator will have a choice to act upon the proposal from the 

algorithm, or to wait for visual confirmation and then follow the collision conflict 

resolution. In the fully autonomous case, the agent would wait for sensory confirmation 

from cameras acting as human observer. 

Rule 11 explains application stating that rules 11-18 apply to vessels in sight of one 

another. 

Rule 12 is disregarded as it is relevant for sailing vessels acting with each other, 

and this is out of scope of this research. Interaction with sailing vessels in order to avoid 

collision is included, but we do not consider interaction of two sailing vessels. 

Rule 13 regulates overtaking. The paragraph (a) uses word “notwithstanding” 

anything contained in the Rules of part B, sections I and II, which basically means in spite 

or regardless of anything stated in the Rules of part B, sections I and II, any vessel 

overtaking any other vessel must keep out of the way of the vessel being overtaken. In 

simple terms, overtaking vessel has to complete overtaking with sufficient distance 

clearance from the vessel she is overtaking. The vessel that is overtaking will have higher 

speed and can be considered as a give-way vessel as per the Rule 16, while overtaken vessel 

would be a stand-on vessel [Benjamin, 2002, Benjamin et al., 2006]. The paragraph (b) 

describes the geometry of overtaking vessels and states that a vessel shall be deemed to be 

overtaking when approaching another vessel from a direction more than 22.5° abaft her 

beam, so that she can only see the stern light of the vessel being overtaken, but neither of 

her sidelights. This is clear reference for human navigators and because sectors of 

navigational lights are known, this is easily transferable to machine reading. The paragraph 

(c) states that if a vessel is in doubt if she is overtaking, she shall assume that this is the 

case and act as overtaking. A very significant paragraph (d) states that overtaking vessel 
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should not overtake and adjust course to become a crossing vessel and after course 

alteration claim that she was a crossing vessel, so her duty of keeping clear of the overtaken 

vessel stands until finally past and clear. This is particularly apparent in Figure 4.5. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5 – Overtaking challenges 

 

As depicted in Figure 4.5, overtaking vessel decided to cross the path of the vessel 

being overtaken raising a doubt if the overtaking has been abandoned and crossing 

initiated. The paragraph (d) is clear in stating that the overtaking maneuver has to be 

completed and overtaken vessel well clear before any other maneuver is possible. Similar 

situation is seen as described in Rule 10 when overtaking is happening in TSS or in narrow 

channel or fairway. If ownship is the overtaking vehicle, proposed algorithm would check 

if the overtaking maneuver can be completed before the turn and if the vessel should 

increase speed to complete the maneuver or slacken the speed to abolish intention of 

overtaking. Sometimes ownship will have an intention of crossing the TSS to port in order 

to reach anchorage, pilot station or similar, for which it is necessary to position own vehicle 

more towards the separation line and cross the opposite traffic lane of the TSS. This is a 
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common occurrence in Singapore straits when sailing East and crossing the west travelling 

traffic lane to reach anchorage or pilot station. In this case, proposed collision avoidance 

algorithm will have to complete all overtaking or slacken the speed before turning 

perpendicular to the traffic flow. It is also necessary to ensure that if own vehicle is being 

overtaken, ownship has to maintain heading and speed, but if there is clear indication that 

the point of turn would be reached before the overtaking vessel clears own vehicle, ownship 

is required to slacken speed and prevent close quarter situations.  

Overtaking in parallel is somewhat easier situation as both vessels will be sailing 

similar courses, but if overtaking begins under any relative angle, own vehicle has to ensure 

that overtaking does not finish with crossing of the bow of vessel being overtaken. Hence, 

ownship has to ensure to overtake passing the stern of the vessel being overtaken. To ensure 

this is followed, reward function is modeled in a way to penalize crossing of the bow until 

vessel is clear. In this study, this happens when the target vehicle is in the CPA preferred 

radius abaft the beam of the own vehicle.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6 – Overtaking geometries  
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Figure 4.6 depicts situation where a container vessel has a choice of overtaking the 

bulk carrier over her port side (a) or over her starboard side (b). In the case (a) it is assumed 

that the container vessel can’t alter any more to port. By altering her course to starboard, 

container vessel ensures that there are no close quarter situations during the overtaking 

maneuver and that stand-on vessel will not be forced to alter course or speed in order to 

prevent contact. 

As mentioned earlier, a vessel being overtaken is a stand-on vessel, which requires 

a vessel being overtaken to maintain its course and speed. In case of a straight course and 

unlimited seas without perils for the own vehicle, it is possible to maintain the speed and 

course. However, if in TSS, safety fairway or narrow channel and ownship has to take a 

turn to remain in safe waters, reducing speed to allow for overtaking vessel to pass faster 

should be considered. The collision avoidance algorithm will take a sequential decision 

look ahead and determine if the overtaking can be completed before the turn so that target 

vessel occupies preferred CPA radius. If this is not achievable, request for slacking the 

speed will be sent to DSS navigator or in the case of full autonomy to the propulsion 

actuator. 

Rule 14 Head-on situation. Rule 14 is one of the frequently disputed rules, both in 

practice and Case Law mostly because of the difficulty in figuring out is a vessel in head-

on or in crossing situation. Paragraph (a) states that when two power-driven vessels meet 

on reciprocal or nearly reciprocal courses and the collision risk exist, each vessel should 

alter their course to starboard in order to pass on the port side of other. Paragraph (b) states 

that such situation exists when a vessel sees the other ahead or nearly ahead and by night 

can see masthead lights in a line or nearly in a line and both sidelights, while by day she 

observes corresponding aspect of the other vessel. It is noticeable that this rule is vague 

and is left to interpretation. Considering many types of vessels, as well as external 

disturbances when vehicles are rolling, yawing, and pitching significantly, determination 

of visual attitude and reference is not easy. Authors Bukaty and Morzova [2010] showed 

that visual and radar confirmation of reciprocal or nearly reciprocal targets is rarely 

conclusive and can’t be done with confidence. This is the reason why COLREGs 

introduced paragraph (c), which states that in case of uncertainty, assumption is made that 

there is a head-on situation and to make a starboard turn on time, so that the course change 
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is apparent to the target vehicle, and that the intent of collision avoidance is clearly shown. 

If human navigator is optimizing collision avoidance, then the paragraph (c) can be left to 

stand as it is and rely on individual perception and decision-making skills. However, for 

machine optimization purpose, it is necessary to define reciprocal in order to use the 

COLREGs determination algorithm correctly. It is necessary to reemphasize that 

determination of the own vehicle’s and target vehicle’s attitude is based on visual 

reference; therefore, water stabilized radar has to be in use. 

It is not easy to find consensus on reciprocal and near-reciprocal course reference, 

so Case law and P&I insurance companies are considered, as they stated that near 

reciprocal course is roughly within half a point (6°) on either side of own vehicle bow 

[Benjamin, 2002, Benjamin et al., 2006]. In practice, whenever in doubt, ownship turns to 

starboard. Turning to port in head-on situation could be catastrophic, especially if the target 

vessel turns to starboard as mandated by the COLREGs. Therefore, if the own vehicle is 

within the 6° port and starboard threshold from the current course through water that target 

is doing, head-on mode is on; otherwise, it is not a head-on situation. Considering 

possibility of significant uncertainty, ownship should always act by turning to starboard if 

the target vessel occupies minimum CPA radius and the target vehicle’s trajectory is 

consistent with no apparent change. 

 

 

 

 

 

 

 

 

 

Figure 4.7 – Head-on geometries with 12° sectors 
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Figure 4.7 depicts two situations of the head-on encounters, where (a) shows how 

head-on situation is determined with designed angle and range geometries, while (b) shows 

a case where range is satisfying the heads-on situation, but the relative angle does not, so 

this would not be a case of heads-on situation, but rather a crossing situation. 

Rule 15 has only one paragraph and it delivers regulation in regard to crossing 

situation. The crossing Rule states that when two power-driven vessels are crossing and 

there is a risk of collision, the vessel which has the other vessel on her own starboard side 

shall keep out of the way and, if possible, should avoid crossing the bow of the other vessel. 

Regulators did not restrict maneuvering to starboard only, but if thinking about crossing 

from the starboard side, vessel should alter to starboard and pass astern of the crossing 

vessel, if the circumstances of the case permit.  

The Rule 15 assigns give-way and stand-on responsibilities among two crossing 

power-driven vehicles, but only when there is a risk of collision. Even though own 

threshold for collision risk might be different than the target vessel, own vehicle can act 

conservatively and risk averse, which is always a good approach to avoid close-quarter 

situations. If thinking about other COLREGs geometries, it is noticeable that crossing 

situation is anything that is not classified as head-on or overtaking situation. Therefore, 

when the relative bearing of the target vessel is in the spectrum of [6°, 112.5°] and [247.5°, 

354°], and if the trajectory is bringing the target vessel to the minimum CPA radius, then 

navigator confirms that there is a risk of collision and then decides on the crossing action. 

In several Admiralty cases, a notion that crossing give-way vessel should not cross ahead 

of the stand-on vessel has been confirmed [Benjamin et al., 2006], therefore it is necessary 

to ensure that algorithm verifies crossing the stern is optimal behavior when verifying 

generated trajectories.  

Figure 4.8 depicts container vehicle crossing the determined range of the target bulk 

carrier with relative bearings taken from the container vessel (a) and taken from the bulk 

carrier (b). Similarly, Figure 4.9 showcases geometries of a stand-on vehicle, where 

container vessel is stand-on vehicle with relative bearings taken from the container vehicle 

(a) and taken from the bulk carrier (b).   
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Figure 4.8 – Give-way geometries 

 

 

 

 

 

 

 

 

 

Figure 4.9 – Stand-on geometries 

 

Rule 16 is related to actions that give-way vessels have to take. In a single 

paragraph the Rule 16 states that every vessel which is directed to keep out of the way of 

another vessel has to take early and substantial action to keep well clear, if circumstances 
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allow so. This Rule is straightforward and is actually deeply interconnected with other 

rules. Vessel should take actions early in order to minimize the risk of collision. The 

maneuver has to be apparent to other targets and that is the reason why the Rule 16 

mentions substantial action. It is necessary to emphasize that the Rule is simple and is not 

constrained by the type of a vehicle or collision situation. Rule 16 interacts with Rules 12, 

14, 15, and 18. In order for machines to “understand” the Rule 16, metrics for when to 

initiate maneuvers are required and to determine what is the substantial action in certain 

collision situation. These metrics are already provided in relevant sections of the Rules.  

Rule 17 is somewhat more complex, as it requires a sort of “patience” and decision 

making that is not straight forward. Unlike Rule 16 where a give-way vessel is required to 

act early and substantially, Rule 17 requires that a stand-on vessel is keeping its course and 

speed until it is evident that target vessel is not acting as per the Rule 16 and then it is 

required from a stand-on vessel to act in any way that will avoid contact. Continuance of 

vagueness of the Rules is noticeable, as it would be impractical to impose thresholds for 

all vessel types. Therefore, it is necessary to rely on individual navigators’ ability and sense 

of risk. Machines do not have human intuition, so CPA metrics should be used similarly as 

in other Rules. The Rule 17 starts with paragraph (a) that states where one of two vessels 

is to keep out of the way, the other vessel has to keep her course and speed. However, as 

soon as it becomes apparent to the stand-on vessel that the give-way vessel is not taking 

appropriate action, the stand-on vessel has to take action to avoid collision. The paragraph 

(b) states that if the stand-on vessel realizes collision can’t be avoided by the give-way 

vessel alone, the stand-on vessel has to take action that will best aid to avoid collision. The 

paragraph (c) states that if two power-driven vessels are in crossing situation, the stand-on 

vessel should avoid altering her course to port if the circumstances of the case admit. The 

paragraph (d) delivers important notation that this Rule does not relieve the give-way vessel 

of her obligation to keep out of the way. As stated earlier, Admiralty courts commonly 

assign blame in percentages between involved parties. In regard to Rule 17, a usual fault 

of 25 % is assigned to any stand-on vessel not maneuvering when there is a risk of collision 

and collision occurs [Benjamin, 2002]. As with other Rules of the COLREGs, it is 

necessary to determine the attitude and assign relevant Rules before decision about 

appropriate maneuver is taken. In the busy waterways, vehicles would usually interact with 
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more than one target. Even though there is an obligation to maintain course and speed, 

sometimes own vehicle will interact with other targets and the holistic approach is 

necessary to maintain separation. Often maintaining course and speed will be impractical, 

but it is necessary to ensure risk of collision is as low as possible. That is why dCPA 

separation radii is still enforced, and ownship acts according to the collision risk 

determined at TCPA. An imminent risk criterion is enforced, as whenever a target occupies 

safe CPA radius sector and targets’ trajectory is entering minimum, near-miss, or collision 

CPA radii sector, where immediate action is required to increase separation. When there 

are no vehicles in the safe CPA radius and there are no imminent threats, Rule 17 requires 

that stand-on vessel maintains course and speed. In order to achieve this, reward function 

will be designed to penalize changes of speed and course own vehicle is keeping at that 

time. Reward function is designed in a way that there is some tolerance for the speed 

change, after which stand-on vessel is penalized, as well as with course changes, where 

gradual change of course more than 2° would incur increasing penalties. Of course, if there 

is a turn on the way, or any other imminent danger within the safe CPA zone, this 

requirement would be disregarded. The goal is, therefore, to correctly identify collision 

risk and act accordingly. When decision is made not to keep course and speed, own action 

has to be substantial and intention visible to all targets within the range.  

Rule 18 This Rule requires differentiation of various types of vessels, and as 

already stated before, to assure full autonomy, specific sensory equipment that can read 

navigational lights and daylight shapes is required. It is possible to get the information 

about the type and condition of commercial vessels through AIS, but there is an uncertainty 

of incorrect data. Therefore, fusion of data would be the best approach. For the current 

sensory equipment found on commercial sea surface vehicles, involvement of human 

navigators is necessary to input type of a ship. Related to the Rule 18, but also COLREGs 

in general, intent aware and cooperative model is proposed that would aid in a sea surface 

vehicle type classification. Once the ship type and restrictions are determined, Rule 18 is 

straight-forward to follow.  
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CONDUCT OF VESSEL IN RESTRICTED VISIBILITY (19) 

Rule 19 is the single Rule of the restricted visibility section. The Rule 19 applies 

to all vessels not in sight of one another when navigating in or near areas of restricted 

visibility. In order to apply Rule 19, a threshold for restricted visibility has to be defined. 

COLREGs do not offer any number, but common threshold of three nautical miles below 

which the visibility is considered restricted [Benjamin, 2002] is used in this study. The 

paragraph (b) delivers a significant restriction stating that every vessel shall proceed at a 

safe speed adapted to the prevailing circumstances, while a power-driven vessel must have 

her engines ready for immediate maneuver. In this case, focus is on underactuated 

commercial power-driven sea surface vehicle, so whenever the visibility is measured below 

3 NM and there is traffic present in the vicinity, own RPMs are reduced to Maneuvering 

Full Ahead in order to be ready for immediate maneuvering as per the Rule 19. Safe speed 

selection is described in more detail in the Rule 6. For example, on LNG ships that use 

LNG as fuel, slowing down from Navigational Full to Maneuvering Full takes up to 30 

minutes, so it is important to be ready for an immediate maneuvering action. The paragraph 

(c) reinstates that every vessel has to consider prevailing circumstances and conditions of 

restricted visibility when complying with section I of this Rules. The paragraph (d) delivers 

detailed instructions on how to act when detecting targets by radars alone. In such 

circumstances, vessels have to determine if there is a risk of collision and then act early; 

however, an alteration of course to port for a vessel forward of the beam other than for a 

vessel being overtaken should be avoided, as well as an alteration of course towards a 

vessel abeam or abaft the beam. This requirement is emphasized in order to allow for 

additional uncertainty of sailing in restricted visibility. Final paragraph (e) requires that 

each vessel which hears apparently forward of her beam the fog signal of another vessel, 

or vessel that has determined a collision risk with a target forward of her beam, has to 

reduce her speed to the minimum at which she can maintain her course. The paragraph (e) 

continues by instructing vessels to further reduce her ahead movement if necessary, for 

maintaining safe separation. 
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PART C – LIGHTS AND SHAPES (20-31) 

COLREGs are explicit in requirements for lights and shapes, so there is no need for 

further explanation. It is difficult to envision autonomous light and signal control at this 

stage. Vessel should recognize certain conditions, such are constrained by draft, restricted 

maneuvering, restricted visibility, underway, anchored, etc. Some of these states are easier 

to determine, but some still require human decision making. Once the state is determined, 

certain visual and sound signals have to be prominently displayed and used according to 

the COLREGs. Another difficulty is recognition of targets’ lights and shapes, for which 

accurate and certified sensory equipment is required. Therefore, human interaction can’t 

be completely avoided, but can be enhanced by automation. There is a potential benefit of 

amending the COLREGs with special signals that autonomous sea surface vehicles have 

to display; however, a consensus has to be achieved on the IMO level.  

 

PART D – SOUND AND LIGHT SIGNALS (32-37) 

Similarly as with lights and shapes, sound and light signals require setup self-

awareness and accurate determination of targets’ signals.  

 

In the Appendix C, COLREGs classification algorithm is delivered. Classification 

algorithm is utilized only to determine appropriate Rule in certain circumstance and not to 

generate evasive maneuvers. Therefore, reward functions with all constraints relevant to 

COLREGs will be presented in the next chapter, where 8 cases that would be used for 

testing collision classification algorithm are delivered, but collision avoidance algorithm 

as well. Some scenarios are similar, but have obstacles, shallow water, TSS, narrow 

channels, or safety fairways introduced to make maneuvering challenging. 
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4.1.3 COLREGs classification testing and evaluation 

In order to verify compliance with COLREGs, 8 scenarios where COLREGs 

classification algorithm has to correctly identify relevant Rules for that scenario were 

developed. These scenarios will also be used for the collision avoidance algorithm. All 

vectors in the following scenarios are of 12 minutes length. 

                                                                       
                                                              

      
     
 
 
 
 
 
 
 
Figure 4.10 – Scenario 1 
 

                                                    
 
 
 
 
 
 
 

 

 

Figure 4.11 – Scenario 2 

 

Vehicle	 COG	
(°)	

SOG	
(kt)	

Vector	
(NM)	

Type	

Own	 040	 5.2	 1.04	 LNG	
Vehicle 1	 220	 11	 2.2	 Feeder	
Vehicle 2	 315	 15.7	 3.14	 VLCC	
Vehicle 3	 170	 24	 4.8	 Pass	
Vehicle 4	 040	 10.7	 2.14	 Supplier	
Vehicle 5	 000	 6.8	 1.36	 LNG	
Vehicle 6	 220	 5.5	 1.1	 VLCC	
Vehicle 7	 075	 20.4	 4.08	 Feeder	
Vehicle 8	 100	 3.7	 0.74	 Pass	
Vehicle 9	 200	 0	 0	 LNG	
Vehicle 10	 150	 0	 0	 Supplier	
	

Vehicle	 COG	
(°)	

SOG	
(kt)	

Vector	
(NM)	

Type	

Own	 000	 6.8	 1.36	 LNG	
Vehicle 1	 195	 20.4	 4.08	 Feeder	
Vehicle 2	 180	 5.5	 1.1	 VLCC	
Vehicle 3	 350	 14.9	 2.98	 Pass	
Vehicle 4	 305	 16.2	 3.24	 Supplier	
Vehicle 5	 090	 21.3	 4.26	 LNG	
Vehicle 6	 000	 5.5	 1.1	 VLCC	
Vehicle 7	 165	 0	 0	 Feeder	
Vehicle 8	 020	 14.9	 2.98	 Pass	
Vehicle 9	 270	 6.8	 1.36	 LNG	
Vehicle 10	 000	 10.7	 2.14	 Supplier	
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 Figure 4.12 – Scenario 3 

 

                                    
                                                     
 

 

 

 

 

 

 

 

 

 
 

    

 Figure 4.13 – Scenario 4 

                     

Vehicle	 COG	
(°)	

SOG	
(kt)	

Vector	
(NM)	

Type	

Own	 200	 9	 1.8	 LNG	
Vehicle 1	 060	 11	 2.2	 Feeder	
Vehicle 2	 020	 0	 0	 VLCC	
Vehicle 3	 195	 24	 4.8	 Pass	
Vehicle 4	 130	 9.5	 1.9	 Supplier	
Vehicle 5	 310	 21.3	 4.26	 LNG	
Vehicle 6	 110	 12.8	 2.56	 VLCC	
Vehicle 7	 020	 4	 0.8	 Feeder	
Vehicle 8	 215	 9.7	 1.94	 Pass	
Vehicle 9	 210	 9	 1.8	 LNG	
Vehicle 10	 160	 7.2	 1.44	 Supplier	
	

Vehicle	 COG	
(°)	

SOG	
(kt)	

Vector	
(NM)	

Type	

Own	 270	 11	 1.8	 LNG	
Vehicle 1	 140	 8	 2.2	 Feeder	
Vehicle 2	 090	 5.5	 0	 VLCC	
Vehicle 3	 270	 9.7	 4.8	 Pass	
Vehicle 4	 195	 16.2	 1.9	 Supplier	
Vehicle 5	 000	 9	 4.26	 LNG	
Vehicle 6	 170	 9	 2.56	 VLCC	
Vehicle 7	 075	 15.5	 0.8	 Feeder	
Vehicle 8	 270	 14.9	 1.94	 Pass	
Vehicle 9	 270	 9	 1.8	 LNG	
Vehicle 10	 240	 14.1	 1.44	 Supplier	
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 Figure 4.14 – Scenario 5 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.15 – Scenario 6 

 

Vehicle	 COG	
(°)	

SOG	
(kt)	

Vector	
(NM)	

Type	

Own	 180	 21.3	 4.26	 LNG	
Vehicle 1	 090	 11	 2.2	 Feeder	
Vehicle 2	 003	 15.7	 3.14	 VLCC	
Vehicle 3	 175	 14.9	 2.98	 Pass	
Vehicle 4	 100	 16.2	 3.24	 Supplier	
Vehicle 5	 290	 6.8	 1.36	 LNG	
Vehicle 6	 055	 0	 0	 VLCC	
Vehicle 7	 000	 4	 0.8	 Feeder	
Vehicle 8	 180	 20.7	 4.14	 Pass	
Vehicle 9	 185	 11	 2.2	 LNG	
Vehicle 10	 125	 10.7	 2.88	 Supplier	
	

Vehicle	 COG	
(°)	

SOG	
(kt)	

Vector	
(NM)	

Type	

Own	 149	 21.3	 4.26	 LNG	
Vehicle	1	 149	 5.5	 1.1	 VLCC	
Vehicle 2	 060	 9.5	 1.9	 Supplier	
Vehicle 3	 325	 20.4	 4.08	 Feeder	
Vehicle 4	 325	 9.7	 1.94	 Pass	
Vehicle 5	 240	 5.5	 1.1	 VLCC	
	

OV	

1	
2	

3	

4	

5	
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Figure 4.16 – Scenario 7 

 

 

 

 

 

 
 

 

 

 

 

 

 

Vehicle	 COG	
(°)	

SOG	
(kt)	

Vector	
(NM)	

Type	

Own	 149	 21.3	 4.26	 LNG	
Vehicle 1	 149	 5.5	 1.1	 VLCC	
Vehicle 2	 060	 9.5	 1.9	 Supplier	
Vehicle 3	 325	 20.4	 4.08	 Feeder	
Vehicle 4	 325	 9.7	 1.94	 Pass	
Vehicle 5	 240	 5.5	 1.1	 VLCC	
Vehicle 6	 196	 5.5	 1.1	 VLCC	
Vehicle 7	 327	 16.2	 3.24	 Supplier	
Vehicle 8	 326	 5.2	 1.04	 LNG	
Vehicle 9	 325	 20.4	 4.08	 Feeder	
Vehicle 10	 325	 9.7	 1.94	 Pass	
	

OV	

1	

2	
3	

4	

5	

6	

7	
8	

9	 10	
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Figure 4.17 – Scenario 8 

 

 

 

 

In this study intention is not to cover all possibilities, but rather to investigate how 

would proposed algorithms behave in some of the critical scenarios. How COLREGs 

Classification Algorithm copes with first five scenarios is the focus of this section; 

therefore, it is assumed that all speeds and courses are water stabilized as required by the 

COLREGs. Resolution of conflicts is not considered at this time. Matlab_R2021a on a 

personal computer with 2.8 GHz Quad-Core Intel Core i7 processor and 16 GB RAM is 

used to simulate above cases and determine if the COLREGs determination and 

classification is done accurately by the algorithm.  

In the first run, there are no external influences and that all vectors are as mentioned 

in the case descriptions above, which means that heading, speed, course over ground and 

through water are all same without any set or drift. Afterwards, random external 

Vehicle	 COG	
(°)	

SOG	
(kt)	

Vector	
(NM)	

Type	

Own	 275	 11	 1.1	 LNG	
Vehicle 1	 110	 8	 0.8	 Feeder	
Vehicle 2	 230	 6	 0.6	 Supplier	
	

1	

2	

OV	
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disturbances are utilized to verify results with different geometries. For the COLREGs 

classification algorithm, external disturbances do not add to complexity, as only change in 

heading due to environmental loads is tracked and then pairwise geometries determined to 

establish classification. Tables below confirm that proposed classification algorithm is 

capable of determining appropriate Rules. Classification can be done offline with certain 

segments online (data transmission), but also it is possible to reduce computation time by 

taking some information directly from viable sensors. 

 

Table 4.1 – COLREGs Classification Scenario 1 
Rule	 Description	
7	 COLLISION	RISK	EXISTS	WITH	T1	
7	 COLLISION	RISK	EXISTS	WITH	T2	
7	 COLLISION	RISK	EXISTS	WITH	T3	
7	 COLLISION	RISK	EXISTS	WITH	T4	
7	 COLLISION	RISK	EXISTS	WITH	T6	
7	 COLLISION	RISK	EXISTS	WITH	T7	
7	 COLLISION	RISK	EXISTS	WITH	T9	
13	 OVERTAKEN	BY	T4	-	KEEP	COURSE	AND	SPEED	
14	 T1	HEAD-ON	
15	 T2	CROSSING	BOW	FROM	STARBOARD	–	GIVE-WAY		
15	 T3	CROSSING	BOW	FROM	PORT	–	STAND-ON	
15	 T7	PASSING	STERN	FROM	PORT	–	STAND-ON	
16	 GIVE-WAY	TO	T1	
16	 GIVE-WAY	TO	T2	
16	 GIVE-WAY	TO	T9	(T9-NUC)	
17	 (T3)	STAND-ON		
17	 (T4)	STAND-ON		
17	 (T5)	STAND-ON		
17	 (T7)	STAND-ON		
17	 (T8)	STAND-ON		
17	 (T10)	STAND-ON		
////	 Mean	Execution	Time	(100	iterations)	=	0.27308	sec	
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Table 4.2 – COLREGs Classification Scenario 2 
RULE	 DESCRIPTION	
7	 COLLISION	RISK	EXISTS	WITH	T1	
7	 COLLISION	RISK	EXISTS	WITH	T2	
7	 COLLISION	RISK	EXISTS	WITH	T3	
7	 COLLISION	RISK	EXISTS	WITH	T5	
7	 COLLISION	RISK	EXISTS	WITH	T6	
7	 COLLISION	RISK	EXISTS	WITH	T7	
7	 COLLISION	RISK	EXISTS	WITH	T8	
7	 COLLISION	RISK	EXISTS	WITH	T9	
13	 OVERTAKEN	BY	T3	-	KEEP	COURSE	AND	SPEED	
13	 OVERTAKING	T6	–	GIVE-WAY	
14	 T2	HEAD-ON	
15	 T1	PASSING	STERN	FROM	STARBOARD	–	GIVE-WAY		
15	 T5	PASSING	STERN	FROM	PORT	–	STAND-ON	
15	 T9	PASSING	STERN	FROM	STARBOARD	–	GIVE-WAY	
16	 GIVE-WAY	TO	T1	
16	 GIVE-WAY	TO	T2	
16	 GIVE-WAY	TO	T7	
16	 GIVE-WAY	TO	T9	
17	 (T3)	STAND-ON		
17	 (T4)	STAND-ON		
17	 (T5)	STAND-ON		
17	 (T6)	STAND-ON		
17	 (T8)	STAND-ON		
17	 (T10)	STAND-ON		
////	 Mean	Execution	Time	(100	iterations)	=	0.2817	sec	

 

Table 4.3 – COLREGs Classification Scenario 3 
RULE	 DESCRIPTION	
7	 COLLISION	RISK	EXISTS	WITH	T1	
14	 T2	HEAD-ON	
15	 T1	CROSSING	BOW	FROM	STARBOARD	–	GIVE-WAY		
15	 T5	PASSING	STERN	FROM	PORT	–	STAND-ON	
15	 T6	CROSSING	BOW	FROM	STARBOARD	–	GIVE-WAY	
16	 GIVE-WAY	TO	T1	
16	 GIVE-WAY	TO	T6	
17	 (T3)	STAND-ON		
17	 (T4)	STAND-ON		
17	 (T5)	STAND-ON		
17	 (T7)	STAND-ON		
17	 (T8)	STAND-ON		
17	 (T9)	STAND-ON	
17	 (T10)	STAND-ON		
////	 Mean	Execution	Time	(100	iterations)	=	0.2841	sec	
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Table 4.4 – COLREGs Classification Scenario 4 
RULE	 DESCRIPTION	
7	 COLLISION	RISK	EXISTS	WITH	T1	
7	 COLLISION	RISK	EXISTS	WITH	T2	
7	 COLLISION	RISK	EXISTS	WITH	T3	
7	 COLLISION	RISK	EXISTS	WITH	T5	
7	 COLLISION	RISK	EXISTS	WITH	T7	
14	 T2	HEAD-ON	
15	 T1	CROSSING	BOW	FROM	STARBOARD	–	GIVE-WAY		
15	 T5	CROSSING	BOW	FROM	PORT	–	STAND-ON	
15	 T7	PASSING	STERN	FROM	PORT	–	STAND-ON	
16	 GIVE-WAY	TO	T1	
16	 GIVE-WAY	TO	T3	
16	 GIVE-WAY	TO	T6	
17	 (T5)	STAND-ON		
17	 (T7)	STAND-ON		
17	 (T8)	STAND-ON		
17	 (T9)	STAND-ON	
17	 (T10)	STAND-ON		
////	 Mean	Execution	Time	(100	iterations)	=	0.2939	sec	

 

Table 4.5 – COLREGs Classification Scenario 5 
RULE	 DESCRIPTION	
6	 CONSIDER	SLOWING	DOWN	TO	MANEUVERING	FULL	
7	 COLLISION	RISK	EXISTS	WITH	T1	
7	 COLLISION	RISK	EXISTS	WITH	T2	
7	 COLLISION	RISK	EXISTS	WITH	T6	
7	 COLLISION	RISK	EXISTS	WITH	T7	
14	 T2	HEAD-ON	
15	 T1	PASSING	STERN	FROM	STARBOARD	–	GIVE-WAY		
15	 T6	PASSING	STERN	FROM	STARBOARD	–	GIVE-WAY	
16	 GIVE-WAY	TO	T1	
16	 GIVE-WAY	TO	T3	
16	 GIVE-WAY	TO	T4	
16	 GIVE-WAY	TO	T6	
16	 GIVE-WAY	TO	T7	
17	 (T5)	STAND-ON		
17	 (T8)	STAND-ON		
17	 (T9)	STAND-ON	
17	 (T10)	STAND-ON		
////	 Mean	Execution	Time	(100	iterations)	=	0.2879	sec	
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4.2 Target uncertainties 

 Even if perfect sensing and controlling of the own sea surface vehicle is possible, 

the issue of the target behavior still exists. If all navigators had an equal understanding of 

the COLREGs and if they always obliged the rules, there would be far less incidents at sea. 

It was already mentioned that COLREGs deserve a rewrite in the light of the newer age, 

but even if the COLREGs remained the same, a proper education and practice of 

COLREGs would lead to lower number of collisions and allisions [Mohovic et al., 2016]. 

Uncertainties related to navigational behavior of the targets met is hard to quantify and 

implement in models. However, in this chapter utilization of behavioral uncertainties by 

expanding safety zones of the ownship is proposed. The safest approach is cooperative 

collision avoidance, so proposal of intent-aware model is delivered in the Section 5.1, but 

in the case where intent is not known, a risk of not following the COLREGs is assumed. 

Throughout the year 2014 a large-scale research was conducted to investigate 

understanding of the COLREGs [Mohovic et al., 2016]. As depicted in the Chapter 2, 

failure to comply with the COLREGs is the most influential reason for collisions. The 

Avoiding Collisions at Sea (ACTS) research [Mohovic et al., 2016] examined 

understanding and knowledge of COLREGs by both students and experienced navigators 

in order to verify which Rules are difficult to understand and what is the influence of 

navigational experience on COLREGs understanding. Even though the major goal of the 

ACTS research was to identify gaps in knowledge and design better tools to aid in 

educating students and seafarers to bridge that gap, the data can be utilized to quantify 

misunderstanding of individual Rules and apply results in proposed algorithms.  

Mohovic et al. [2016] created questionnaire that was completed by 1538 

participants from 68 different countries. 46 % of the participants were professional 

seafarers, 36 % were seafaring students, while 18 % represented STCW license holders for 

various types of smaller crafts. A very prominent result of this research was that even 

though some administrations still believe that citing COLREGs by heart will improve 

collision avoidance behavior, the ACTS research actually showed that understanding the 

Rules and ability to apply the relevant Rules to specific situations does not correlate with 
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the ability to cite Rules. In Figure 4.18 it can be noticed that some Rules are harder to 

understand, and more specifically harder to apply in real world scenarios. Rules that are 

hard to understand are Rule 6 – Safe Speed, Rule 10 – TSS, Rule 13 – Overtaking, Rule 14 

– Head-on situation, Rule 17 – Action by stand-on vessel, Rule 18 – Responsibilities 

between vessels and Rule 19 – Conduct of vessels in restricted visibility [Mohovic et al., 

2016]. 

 

 

 

 

 

 

 

 

 

Figure 4.18 – Percentage of correct answers by each Rule (Source: Mohovic et al., 2016) 

 

To understand what the consequences of poor understanding of the Rules are, 

further study of the Marine Accidents Investigation Branch (MAIB) collision statistics 

where violation of Rules was determined as contributory cause of marine accidents was 

done. Figure 4.19 offers an interesting insight in which it is possible to see that 

understanding Rules still does not safeguard safety of navigation. Even the Rules that are 

understood well can lead to accidents when navigators are complacent and do not follow 

the Rules for whatever the root cause is identified in that particular incident. It is not 

uncommon that professionals get distracted from their daily tasks; therefore, a decision 

support system is a good fit to reduce a number of incidents and safeguard waterways. 
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Figure 4.19 – Compliance and correct answers percentage comparison (Source: Mohovic 

et al., 2016) 

 

After analyzing MAIB collision investigation database, it is evident that the highest 

number of cases had violated COLREGs’ Rule 5 (Look-out), Rule 7 (Risk of Collision) 

and Rule 8 (Action to avoid collision), even though these Rules are well understood by 

navigators and students. The reasoning for such results lies deep in the investigation reports 

and it is often the case that complacency plays a major role in marine accidents. Navigators 

understand well the meaning of the proper look-out, but, as it is evident from MAIB’s 

incident reports, decide to bypass well-established internal standards to ensure proper look-

out at all times. Failure to understand maneuvering characteristics of their own vessels, or 

underestimating effects of sailing close to another vessel, complacency assured by “we did 

it so many times before”, or reluctancy to use propulsion in collision situations are some 

of the examples seen in MAIB’s incident reports that lead to violation of Rules 7 and 8.  

In 40 % of the collisions Rule 17 (Action by stand-on vessel) and Rule 18 

(Responsibilities between vessels) are violated, but also from Mohovic et al. [2016] ACTS 

study it is evident that Rule 17 has 62 % of correct answers, while Rule 18 has 48 % correct 

answers, which makes them hard to understand and apply in real world scenarios. 

Similarly, Rules 5, 10, 13 and 19 are considered difficult to understand and lead to collision 

situations. This is where proposed COLREGs classification algorithm, together with risk 



	

	
	

241	

quantification can aid the overall collision avoidance algorithm to make encounters safer 

by extending safety zones of the own vessel.  

It is necessary to keep in mind that we can’t remove humans from the process, but 

rather influence root causes of incidents where human factor played a major role. In the 

content of this section intention is to safeguard ownship from behavioral uncertainties of 

any targets met during navigation. Trajectory uncertainties are already taken into 

consideration by developing safety zones, however it is imperative to note that human 

navigator still has an obligation to choose safety zone, similarly as the parameters of the 

safety cone have to be selected at each leg of the voyage on the ECDIS. Therefore, unless 

fully automated and autonomous system is created, human factor will never be removed 

completely, but risks associated with human operators could be mitigated. As autonomy is 

not possible in the present legal environment, the focus of this study remains on reducing 

human errors, rather than eliminating human interaction completely. 

For the reasons depicted in Section 4.1, selected number of the COLREGs are 

considered; however, this model can be extended if found necessary. In this research idea 

is to expand safety zones of the own vehicle depending on the active rule that is detected 

by the COLREGs classification algorithm. The logical question is presented: by how much 

is it necessary to increase the radius of each safety zone for a particular COLREGs rule? 

Approach in this thesis is based on a traditional qualitative risk assessment where 

consequence is multiplied by a likelihood. Safety zone expansion factors are, therefore, 

calculated as follows: 

 

kH$ = íÇììKDLM × ï#':+																																																														(4.1) 

o&H$ = o+&@ + (o+&@ × kH$)																																																											(4.2) 

 

where, kH$ is the expansion factor, which is used to increase radius of all safety zones for 

the own ship. At each stage of a passage, navigator choses safety zones, which are then 

increased by the expansion factor using the formula (4.2). Findings from analyzing MAIB 

collision reports are utilized to see in how many cases was a violation of a certain 
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COLREGs rule a contributory factor and use this information as the collision frequency 

denoted as íÇììKDLM. If Rule 5 is taken as an example, in 12 cases out of 14, Rule 5 was a 

contributory factor, which means that íÇììKDLM =
/0

/2
= 0.86 . As a result of the ACTS 

survey [Mohovic, et al., 2016] an overview of which COLREGs rules are easier to 

understand and which require more comprehensive knowledge and experience is gained. 

By utilizing the number of incorrect answers in the ACTS questionnaire from experienced 

seafarers ï#':+, it is possible to compute the expansion factor. o&H$ represents expanded 

radius of the safety zone, while o+&@ stands for the selected radius prior expansion, which 

is chosen by a navigator. Finally, Table 4.6 depicts the expansion factor for each individual 

COLREGs rule depending on the ACTS survey and MAIB collision database: 

 
Table 4.6 – Expansion factors for safety zones 

COLREGs Rule íÇììKDLM ï#':+ kH$ 

Rule 5 – Look out 0.86 0.08 0.07 

Rule 6 – Safe speed 0.71 0.42 0.3 

Rule 7 – Risk of collision 1 0.06 0.06 

Rule 8 – Action to avoid collision 0.86 0.06 0.05 

Rule 9 – Narrow channels 0 0.22 0 

Rule 10 – TSS  0.21 0.28 0.06 

Rule 13 – Overtaking  0.07 0.37 0.03 

Rule 14 – Head-on situation 0 0.31 0 

Rule 15 – Crossing situation 0.29 0.08 0.02 

Rule 16 – Action by give-way vessel 0.43 0.37 0.16 

Rule 17 – Action by stand-on vessel 0.43 0.37 0.16 

Rule 18 – Responsibilities between vessels 0.43 0.52 0.22 

Rule 19 – Restricted visibility 0.64 0.31 0.2 
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Once the COLREGs classification algorithm determines applicable rules, the 

largest kH$ of the relevant rules selected by the algorithm is used. For example, in scenario 

No. 1 COLREGs classification algorithm determined that following rules are relevant: 

Rule 7, Rule 13, Rule 14, Rule 15, Rule 16, and Rule 17. Rules 16 and 17 have the highest  

kH$ value of 0.16, so in this case safety zone radii will be increased by 16 %. If minimum 

CPA is selected as 1 NM by the navigator, until the COLREGs algorithm reads that there 

is a collision danger with that target, minimum CPA radius will be increased by 16 % to 

1.16 NM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.20 – Dynamically expanding safety zones due to inherent uncertainties 
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4.3 Trajectory generation - predictor 

Considering that the proposed solution for collision avoidance relies on algorithmic 

integration of multiple systems presented in this thesis, and most of the constraints for 

effective maneuvering are defined by various reward functions, a predictor is required that 

will efficiently generate trajectories of own vehicle and targets. In majority of the real-

world cases, there are readily available target information from RADAR and ECDIS 

stations, so it is possible to reduce computational complexity. However, predictor will 

always be required for the own vehicle to find optimal trajectories for hazard avoidance. 

Having a predictor that can utilize dynamic trajectory replanning in space-time 

domain allows us to extend online model-free HMM framework to collision avoidance. 

Finding course alterations that would resolve conflicts is of interest, but the benefit of this 

methodology is that it is possible to increase dimensions of state, action, and observation 

spaces. Therefore, speed alterations could be utilized as well. However, it is necessary to 

keep space dimensions low in order to ensure feasibility of the collision avoidance system 

in the real world. Various techniques are utilized to increase observability and decrease 

number of parameters required to describe a state to ensure computational efficiency. 

Markovian solutions are applicable as many parts of the collision avoidance problem can 

be solved geometrically utilizing readily available solutions onboard commercial sea 

surface vehicles.  

Figure 4.21 depicts process of online policy modification through trajectory 

replanning. Instead of offline learning and developing policies that cover all possibilities, 

sensing data and dynamic trajectory replanning in 0.1 Hz timestamps is utilized, which is 

consistent with previous algorithmic solutions. For each 10 seconds one waypoint is 

generated and connected linearly to form an evasive sailing trajectory. 
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Figure 4.21 – Online policy modification and trajectory generation 

 

In the case of underactuated vehicles, state and observation spaces are continuous, 

while action space is usually discrete. Even though the action space is usually discrete, it 

is still within high dimensional spaces, so it is important to carefully select representatives 

of state and observation spaces. This was done by developing sets of motion control 

algorithms in the previous chapters of this thesis. Similarly, issue of sensor imperfections 

and increased observability is addressed through sensor fusion and sensing data filtering. 

Another challenge addressed was target detection and intention uncertainties in order to 

have a sufficiently large safety buffer for predictions, especially for the predictions made 

further in the future. Built on the premises of kinodynamic planning, known motion 

constraints are utilized to ensure feasibility of the nonholonomic motion control for 

trajectory generation. This approach mandates that all known constraints are applied when 

generating trajectories so that only achievable space-time waypoints are generated. For 

example, if we know that there is a constraint of turning to port for head-on situations, then 

we can impose that constraint to a trajectory generator and allow only to search for 
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solutions to the starboard side of the own vehicle. If ownship had knowledge of a target 

vehicle, performance constraints to targets’ trajectories could be implemented, which is 

exactly what will be covered in the next chapter.  

When generating future trajectories, implementation of incremental waypoint 

uncertainties is avoided by utilizing sensor fusion and filtering. This allows for improved 

observability and confidence of future predictions. If waypoint uncertainties were 

incrementally increased, it would be difficult to determine own vehicle and target attitudes 

at predicted position and time of conflict. With proposed approach it is possible to also 

estimate in which zone of the safety radius would a target be in the time of conflict. During 

exploitation, algorithm could track performance with various targets and utilizing 

information that is available through AIS it would enforce classification of targets and store 

risk data. Depending on the risk classification, targets would get different safety radii, 

smaller for the lower risk and larger for the higher risk vehicles. In that way, larger 

separation at the predicted point of conflict would be ensured. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.22 – Variable safety radii depending on risk classification 
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In order to ensure collision avoidance algorithm accurately generates trajectories, 

input information has to be extensive. Instead of raw sensor readings, filtered and fused 

information are utilized as observations. FPF filters are also used to aid in state estimation. 

Focus is maintained on limiting elements of a state space to reduce computational 

complexity; therefore, position, velocity, and attitude (important for the COLREGs 

classification) are important. State estimation can be done for own vehicle and targets, but 

as a minimum, estimation for the own vehicle is necessity. Target estimation can be taken 

as an input from already existing equipment on commercial sea surface vehicles. However, 

various manufacturers have different standards and accuracy levels, which needs to be kept 

in mind when determining risk levels of state estimation. State estimation is represented by 

a waypoint that contains information about position, speed and attitude of all targets, but 

for the own vehicle more than regular information of the sea surface vehicle state vector is 

shared. Mostly, this will be control command vector that describes action taken at that time 

(steering input and engine power for underactuated vehicles). Finally, as a sequence of 

predicted waypoints, the predictor generates a trajectory with a predefined number of 

waypoints. In this case, the horizon is limited to the next 30 minutes. In addition to the own 

planned route represented as trajectory ñD, the predictor generates optimal trajectory ñN. 

The set of all trajectories is denoted as ó, while set of all viable trajectories is written óO, 

where óO ⊆ ó. Viable trajectories represent all solutions that a navigator could use to 

ensure safe separation, regardless if they are considered suboptimal.  

Collective reward functions are used to optimize trajectories. Reward functions for 

maneuvering, COLREGs classification, collision avoidance and auto-telegraph are used 

collectively to find trajectories without conflicts. Constraints are also embedded in 

observations; such are shallow water positions or position of other hazards directly 

extracted from ECDIS. Collective reward functions contain maneuvering, deviation and 

collision constraints that shape optimal trajectory selection.  

State estimation for target vehicles is based on utilizing fused sensor information 

and filtering techniques in order to increase observability and reduce uncertainties. The 

process of reading RADAR, AIS and ECDIS information is followed by FPF filtering after 

which a risk factor is assigned to a target state estimation. In case that same target, or 

similar type of target has been used in the past, assigning risk will be easier. If there are no 
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past information about a target, then risk classification technique based on quality of sensor 

information and inherent intent uncertainties will determine if a target is considered low 

risk, medium risk or high risk. Higher risk targets will have safety zones with larger radii. 

For the target uncertainties, process as described in Table 4.6 is used. In case of a theoretic 

perfect sensor, safety radius remains the same. If the sensor information is fused as a 

combination of various sources and filtered by an FPF filter, low risk is assigned and 

increase of the safety radius is 5 %. In case that fused sensor information is received with 

inherent errors and there is no filtering, or if there is filtering but only from limited sensor 

sources, the risk is deemed to be medium and safety radius increased by 20 %. If sensor 

information is received from one source only and without any filtering, this information is 

considered unreliable and high risk is assigned to the state estimation, so that the safety 

radius is increased by 50 %. Therefore, a function 9: ∶ 	,	 × 	R	 → S estimates the state of 

a target vehicle (-) and determines risk factor. , is a set of available sensor information, 

R represents set of risk factors, while S denotes set of estimated target vehicle states.  

Trajectory generation for target vehicles employs state estimation for a target 

vehicle to generate predicted trajectory ñ for that target. The function /P ∶ 	 9: 	→ 	ó:  is 

bounded by the time horizon and number of waypoints. In most cases time horizon of 30 

minutes is used, and considering that sampling frequency is 0.033 Hz, maximum number 

of waypoints is limited to 60.  

Trajectory generation for own vehicle is the critical part of the predictor, as the 

performance and accuracy of the collision avoidance algorithm depends on valid state 

estimations and waypoint generation. Trajectories of target vehicles are generated first and 

then function p ∶ ó: 	× 	,; 	→ 	ó(Q,	 is used to generate trajectories for the own vehicle. 

This is because it is necessary to utilize target trajectories ó: and hazard information ,; 

to determine safe waters and optimal trajectory for that situation. The process initializes 

with function p selecting either a random initial own vehicle trajectory ñ) , or planned 

route ñ$  for the own vehicle and retrieving trajectories of target vehicles to compute 

optimal trajectory for the own vehicle ñ(Q, .  Optimal trajectory is computed by 

maximizing collective reward functions. Function p  is also used to determine all 

trajectories that satisfy specific reward functions and are deemed safe for navigation in 
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order to get the safe sector for a navigator to navigate if for any reason he/she decides to 

sail on a different trajectory then the optimal trajectory.  

In order for function p to optimize own vehicle trajectory, it is necessary to have 

planned route in the form of nominal trajectory and nominal waypoints that correspond to 

time stamps of waypoints generated for target vehicles. Waypoints are generated with time 

difference of 30 seconds; therefore, maximal number of waypoints is 60 (1 ≤ j < 60): 

§ If risk of collision is determined by COLREGs classification algorithm then 

continue with other steps, otherwise no action is required, and own vehicle 

can proceed along the planned route. This reduces computational burden of 

checking every target in the surveyed area. 

§ Compute target trajectory by adding waypoints in the direction a target 

vehicle is heading (COG) with 30 seconds increments. SOG determines the 

distance between waypoints. In case target vehicle is turning, predictor 

records the ROT at the time of prediction and changes direction of travel by 

the ROT amount. In this way it is possible to get a trajectory of a target 

vehicle and target’s attitude is transferred to the last waypoint. In case of 

coordinated collision avoidance where target vehicle is equipped as well, 

then more accurate trajectory can be extracted from a target vehicle by 

sharing the planned route with own vehicle.  

§ Extract from COLREGs Classification Algorithm applicable rules for the 

collision situation with a target vehicle and determine initial course 

alteration (±	35°). Once initial course alteration is selected, generate own 

vehicle trajectory ñ(Q,  in the direction of the altered course using same 

principle as for target vehicles. 

§ Iterate over ñ(Q,  for the own vehicle by performing following steps. 

Iteration is to be performed on each waypoint of the predicted trajectory 

ú% ∈ ñ(Q,. 

§ Calculate :/C:  for each target vehicle at each waypoint using process 

explained further in the text. Subtract risk radius for target vehicle and 

minimum radius of own vehicle (expressed in Nautical Miles) to the 
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calculated closest point of approach to get :/C:$ = :/C: − o)(:) − +6*,. 

In this way calculated CPA is reduced for the risk factored in safety radius 

of own vehicle and each target vehicles. 

§ Compare calculated CPA with the desired CPA (set with the safety zone for 

the own vehicle). If :/C:$ 	≤ +6*,, terminate iteration, add or subtract 1° 

to/from the course of the previous iteration, depending if the initial turn was 

to starboard or to port respectively. If :/C:$ 	> +6*, , set ú%T/  as the 

current waypoint and proceed with the iteration. 

§ After passing the waypoint with lowest CPA, alter course to go back to the 

planned route (the same amount the course was altered at the beginning of 

the trajectory) by ensuring that target remains at the R+#"& zone all the time. 

§ Numerically compute collective rewards. If no CPA violations and reward 

functions score is above selected threshold, nominate generated trajectory 

as optimal and terminate the optimization. Else, store results to compare 

results of the generated trajectory with other suboptimal trajectories. 

§ Compare all suboptimal trajectories and select the trajectory with the 

highest collective rewards score. If none of generated trajectories manages 

to find acceptable solution, allow for trajectory with CPA in the near miss 

zone. If this is not achievable, request change in speed from the operator 

(increase or decrease depending on the trajectory with the highest rewards 

score). 

Considering that presented collision avoidance is done at low ranges, field of view 

is maintained up to 24 NM, which allows us to use simpler transformations of 2D geodetic 

coordinates (û, ü) into corresponding Cartesian coordinates (†, °) by utilizing WGS 84 

constants when approximating sphere to an ellipsoid. As depicted by Borčić [1955], 

following equations are used to transfer geodetic to Cartesian coordinates: 

x =
%LU-V	cosû	cosü
(1 − k0 sin0 û)/ 0W

 

y =
%LU-V	cosû	sinü
(1 − k0 sin0 û)/ 0W
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																																																												z =
%LU-V(1 − k0)	sinû
(1 − k0 sin0 û)/ 0W

				,																																			(4.3) 

where x, y, and z are Cartesian coordinate axes abscissa, ordinate, and applicate 

respectively. %LU-V represents semi-major axis of the Earth reference ellipsoid, while k0 is 

the first eccentricity squared. For the WGS-84 Geodetic System ellipsoid constant values 

are %LU-V = 6	378	137	m, while k0 = 6.694	379	990	14	x	10E1 [Borčić, 1955]. 

It is then possible to propagate waypoints with the same timestamp for own vehicle 

and targets in the vicinity. In that way it is possible to get a straightforward time of closest 

point of approach, while the CPA is calculated with Euclidian distance formula based on 

Pythagoras’s theorem. Therefore, if we had two waypoints ú/(†/, °/) and ú0(†0, °0), 

CPA formula would be: 

:/C = §(†0 − †/)0 + (°0 − °/)0																																					(4.4) 

This simpler approach can be used because interest lies in closest distance in every 

waypoint that is generated at the trajectory and because waypoints between own vehicle 

and target vehicles are at the same timestamp. To avoid differentiation between previous 

and current position to get the speed value, SOG and COG values could be utilized with 

ROT direction to propagate future waypoints in position space. 

Trajectories are generated by separating waypoints, which entails a problem of 

geometrically connecting those waypoints. However, as the separation is only 30 seconds, 

generalization that waypoints are connected with a straight line can be accepted without 

loss of performance or accuracy. In this way trajectories are optimized for collision 

avoidance by avoiding safety zones around own and target vessels. In order to avoid local 

maxima, allowance is made for optimization algorithm to have a certain amount of 

exploration; however, as reward functions contain rewards and penalties to stay close to 

the planned route, optimization of trajectories that would take own vehicle to directions 

not feasible for the intended voyage is prevented. 

In order to avoid high computational costs, a solution where minimal number of 

members are used to describe a state space of each participating vehicle is proposed. 

Decision was made to utilize sensor readings rather than to make multiple calculations to 
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generate trajectories. It is necessary also to stay away from discretization in the position 

space within the HMM framework, but rather do all modifications in the control space of 

the own vehicle with the addition of the safety zone around target vehicles. Another 

reason why trajectories are generated in control space is that it would be difficult to 

guarantee feasibility of generated trajectories if waypoints were constructed in position 

space, as it would require additional steps to ensure nonholonomic vehicle motion control.  

As the proposed MCAS system is designed to be dynamic, proposed collision 

avoidance algorithm would be receiving observations consistently with the rate of 1 Hz, 

which entails dynamic replanning of generated trajectories. Considering complexity of 

the collision avoidance system, especially in situations with larger number of targets, 

proposed algorithms were designed to perform within the boundary of the sample rate, 

even though solution is required every 30 seconds (before replanning of generated 

trajectories occur). The collision avoidance algorithm has been optimizing within 0.35 

seconds timeframe for a single target; however, when the full MCAS system is working 

in parallel, optimization time is increased to 0.84 seconds. In the case when there are 

multiple targets, this time is further increased with an average of 14.8 seconds, but 

maximum of 23.8 seconds. These results are for a single computer doing all optimizations 

in a series and are still within the real-time computation boundaries; however, if parallel 

computing available on modern navigation bridges was utilized, and as long as one 

pairwise trajectory generation is possible in real-time, there can be any number of targets 

on the horizon. This is the reason why proposed system leads to decentralization of 

algorithms and processing power. In that sense, look-up tables allow us to maintain some 

of the logic computation offline, while keeping the collision avoidance online. There is 

no reason that one computer runs both FPF filtration of the sensor data, vehicle motion 

control algorithms, auto-telegraph, COLREGs classification algorithm, collision 

avoidance algorithm and cooperation algorithm at the same time, when it can be assigned 

to other available computers. The system could be designed in a different way as a central 

processing unit, but this would lead to high computational cost that could result in 

solution generation that is lower than 1Hz. This, again, would not be a large issue for the 

motion control and collision avoidance of underactuated ocean-going vehicles, but would 

require different processing solutions for situations where more precise position control 
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has to be conducted in narrow and busy waterways.  

 

 

 

 

 

 

 

 

Figure 4.23 – Assigning safety zone circles on trajectory waypoints of target vehicle due 

to inherent uncertainties 

 

In Figure 4.24, it is possible to see an example how trajectory generation populates 

future waypoints. The process starts with an initial waypoint that is described as a belief 

state (taking all sensor uncertainties into account). The process continues by selecting one 

of the actions available in the action space (action space is bounded by maneuvering 

limitations and reward function) after which observation is utilized to generate the next 

waypoint. This process is continued until the last waypoint of the trajectory is reached. 

Sampling time of 30 seconds and time period of 15 minutes is selected, so the final 

waypoint will be waypoint 30. 
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Figure 4.24 – Trajectory generation utilizing belief state expansion 
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4.4 Collision avoidance algorithm 

The central focus of this section is to define parameters and determine reward 

function of the overall collision avoidance process, as well as to present results of 

numerical simulations of scenarios exhibited in the Section 4.1 of this chapter.  

The proposed collision avoidance algorithm is highly interconnected with other 

algorithms developed in this thesis. Some of outputs from other algorithms are used as 

input data for this algorithm. For example, the COLREGs classification algorithm will 

verify if the collision risk exists and which rules are applicable for that situation. This 

information is used as an input guidance for the collision avoidance algorithm to select 

appropriate reward functions and, in cooperation with the predictor, finds the best action 

to take and optimal trajectory.  

Other algorithms in this thesis cover many aspects of the collision avoidance, so the 

main goal with the collision avoidance algorithm is to utilize maximized expected and 

discounted return on rewards for the potential trajectories. The algebraic vector predictor 

is verifying potential trajectories and summing rewards for each, finding the optimal 

trajectory. It is done holistically taking into consideration the whole traffic situation; 

however, multiple targets are covered in the next chapter of the thesis. This is necessary, 

as there are different approaches to multiple target situations depending on the 

computational burden and intent sharing possibilities. Therefore, collision avoidance 

algorithm is presented as egocentric resolution that solves resolution for one target only at 

a time. The algorithm can still handle multiple targets, but it will prioritize targets with 

higher risk and resolve firstly those targets and then continue with other targets on a later 

stage. This can lead to successful resolutions but not selecting optimal trajectories as if all 

targets in the observable area would be taken into account.  

Collision avoidance algorithm has to be tuned for a specific sea surface vehicle. As 

COLREGs distinguish between type of vehicles and there are differences among 

maneuvering characteristics of vehicles, specific tuning of parameters is necessary for the 

sustainable and robust application of the algorithm. Tuning is required only for the ownship 

and there are no limitations for the target vehicles it would meet. In this thesis ownship 
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LNG vehicle is utilized, but tuning parameters for a different vehicle type is a fairly simple 

process.  

Rewards design and shaping remain the key element for optimizing trajectories. 

Therefore, it is required to define rewards in a similar way as with previous algorithms. 

Rewards are defined depending on the situation and COLREGs Rule that is applicable to 

that situation. As motion control algorithm is in charge of setting up an autopilot control, 

we are only interested in COG and SOG information within this predictor. Trajectories are 

computed keeping in mind only the over-ground values and then this information is fed to 

the motion control algorithm in order to compute what heading is required for the computed 

COG. 

Collision avoidance algorithm has a preferential approach when searching for 

optimal solution. It will firstly try to search the most common space for an optimal 

trajectory. For example, in a head-on situation, it will search for an optimal trajectory by 

turning 35º to starboard and if this COG would make sufficient alteration to guarantee 

required CPA, then this would become an optimal trajectory to take. If this COG would 

not provide optimal solution, the algorithm would then search further to starboard up to 

90º from the original course. If there is no optimal solution within this space, then algorithm 

reduces safety radii and tries to find satisficing solution from 35º all the way up to 180º. 

To increase efficiency, algorithm first searches for the COG in which the largest CPA is 

possible during the previous step (searching for optimal solution up to 90º). If there is no 

available solution even in this space, the algorithm searches for solution with reduced speed 

taking into account how long it would take to reduce speed. This is done by determining 

how much reduction of speed is possible within the TCPA time and then algorithm searches 

for the reduced speed optimal or satisficing solution. If no solution exists in this space, 

turning to port is checked. If no solution is available at all and collision is inevitable, crash 

maneuver is selected by the system. 

The trajectory is generated by keeping track of a target and by keeping it within the 

desired safety radius zone. When initial course change is found (for example it is +35º from 

the original course), then ownship alters back to the parallel course as on the route when 

earliest possible after the course change (determined by predictor when a target can be 
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safely within the selected safety radius). Then after a target has passed abeam of ownship, 

trajectory towards back to the route (smoothness can be applied so that it is not done 

aggressively), or towards the next waypoint and slowly going back to the track. As route 

verification is important part of passage planning, it would be preferred that the ownship 

goes back to the track limits, as that is the part that was verified by ECDIS prior the passage. 

Figure 4.25 shows an example head-on encounter in which the optimal (green) and 

satisficing (yellow) areas are considered. The definition of optimal and satisficing is related 

to the safety zone ownship selected and if it is possible to stay out of the minimal CPA 

safety zone. It is noticeable that the green area extends only up to perpendicular to the route 

of the ownship. This is on purpose, as we do not envision requirement to sail out of the 

green zone in this situation. However, if optimal solution could not be found, the search 

for optimality continues further and can even be reciprocal to the current heading. In 

practice, navigators would like to follow the first green heading available, as this means 

that deviation from the original course would be as small as possible. 

Rule 6. The Rule 6 is governed by the COLREGs Classification Algorithm. As 

decision support system is designed, allowance for violation of safe speed requirement has 

to be agreed, so if a human navigator ignores Safe Speed warnings, proposed collision 

avoidance algorithm still has to do predictions in accordance with the current speed a 

vehicle is doing. The predictor can read information about intent, so if a human navigator 

decides to follow the advisory from the COLREGs Classification Algorithm, then intent 

can be fed to the vector predictor and taken into account for more accurate predictions. 

Therefore, collision avoidance algorithm will not be specifically tracking the safe speed 

requirements and there are no reward functions outside the ones defined in the COLREGs 

Classification Algorithm. Similarly, Rule 7 is governed by the COLREGs Classification 

Algorithm and then the information is fed as a binary value to the collision avoidance 

algorithm. The risk of collision either exist or it doesn’t, and in accordance with that 

information, collision avoidance algorithm decides if action is needed or not. 
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Figure 4.25 – MCAS individual screen with advisories 

 

Rule 8. As described in the COLREGs classification section of this thesis, Rule 8 

describes requirement of an early and significant action so that all participants of that traffic 

situation are clear of an intent. It is not easy to quantify this requirement, but the case law 

showed that from the point of Admiralty courts, minimum of 35º course change is expected 

in order to show clear intent, given that there is enough space to do such a maneuver. That 

does not mean that ownship has to keep that course until the collision risk is clear, but only 

to show intent. That is why proposed algorithm is designed to firstly check possibility of 

altering 35º from the original course and then track the CPA from a target vehicle when 

deciding on a trajectory. Except in a case of overtaking, preferred action would be turning 

to starboard, so the algorithm will determine if there is a possibility of turning to port. There 

will always exist a small possibility of turning to port as COLREGs require to avoid 

collision even if it takes to break some of the Rules. As described above, preference system 
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is engaged and search for optimal or satisficing solution would be in progress.  

 

+=#I#- , %.J = M
10,																				if				:,l$ = :,l# ± 35°		

0,																																																				otherwise
																												(4.5) 

+=II#- , %.J = M
10,																				if				:/C < R$)&"/+#"&/	6*,		

−10,																																																		otherwise
																									(4.6) 

+='I#- , %.J = M
10,																				if				:/C ≥ R+#"&/6*,/,6 		

−10,																																															otherwise
																									(4.7) 

+=5I#- , %.J = M
50,																								if				t:)#'Y$@#,,&5 = t:)#'Y#':J#@		

−1,																																																																									otherwise
																	(4.8) 

+=&I#- , %.J = X

10,																				if				:/C+;#@@(Q ≥ R+#"&/6*,/,6 		

−1000,																															if				:/C+;#@@(Q < R,6
−50,																																																														otherwise

																(4.9) 

 

Rule 8 is applicable to all situations where risk of collision exists, but it will be 

applied in a different way depending on the situation with a particular target. With the 

expression (4.5) the Admiralty courts practice to consider 35º alteration of courses as 

sufficient is rewarded. Depending on a traffic situation, this expression will allow alteration 

to port, but in the most cases it will be to starboard. There are no penalties for altering 

smaller than 35º just to make sure that the agent searches for satisficing solutions as well. 

Expression (4.6) is used to reward agent when finding trajectories that will not take an 

ownship too far away from a target, while expression (4.7) rewards agent to select 

trajectories that are not too close to a target. Both expressions (4.6) and (4.7) are tunable to 

a desired safety radius. With the expression (4.8) vehicles that stay on the track are 

rewarded, so even when trajectories are selected and path developed, agent wishes to go 

back to the track as soon as it is practically possible. Special tuning is required depending 

on the maneuvering characteristics of a vehicle. The expression (4.9) is related to shallow 

water and it rewards agent that stay away from a shallow water by the preselected distance 
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and penalize heavily for getting closer than minimum safe radius (entering in a near miss 

radius). This is of great importance to prevent incidents like Wakashio.  

Rule 9. From the perspective of collision avoidance, requirement to keep as near to 

the outer limit of a narrow channel is in focus. As proposed model is decision support 

model, it is important that a human operator makes appropriate passage plan and ensures 

that the planned passage is on the outer limit of a narrow channel. For the autonomous 

navigation, reward function would be shaped to prefer sailing on the outer limit of a narrow 

channel. Ownship is a large LNG vehicle, so it is not necessary to encode the requirement 

for vehicles less of 20 meters in length, sailing vehicles or fishing vehicles. Another 

important part is overtaking, and it is necessary to ensure that overtaking in narrow 

channels is done only if it is safe to do so (vehicles would be keeping sufficient distance) 

and that overtaking can be taken before the significant alteration of course when there are 

multiple branches of channels and there is possibility that overtaking vessel would turn to 

another direction. If the intent is shared among vehicles, then this information can be used 

as an input to the collision avoidance algorithm in order to improve state estimation.  Sound 

and light signals are deterministic and easily implementable, so they are not a part of the 

collision avoidance algorithm. 

+Z#I#- , %.J = M
10,																											if				t'(J)+& = ±	0.3	NM	

−10,																																																				otherwise
																							(4.10) 

+ZII#- , %.J = M
1,																											if				+/. ≤ ;CÅ	~ß®®	

0,																																																				otherwise
																						(4.11) 

+Z'I#- , %.J = M
20,																														if				:/C: ≥ R6*,/,6 		

−10,																																															otherwise
																			(4.12) 

+Z5I#- , %.J

= M
10,							if								-:/Q$ > -:/:#)A&: + 12	min		and	112.5° ≤ θ: ≤ 247.5°	

−10,																																																																																																												otherwise
				(4.13) 

The expression (4.10) rewards vehicles that stay within 3 cables of the planned 

course line. This is important in narrow channels and it is one of the ways to maintain 
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vehicle closer to the outer limits of a channel. Even though proposed COLREGs 

Classification Algorithm is rewarding safe speed in narrow channels, additional layer with 

expression (4.11) is introduced. The reward is small and there is no penalty, so it has a 

small but distinctive influence when searching for the optimal trajectory. The expression 

(4.11) is only applicable when overtaking targets, so the Rule 13 will be active and allow 

for (4.11) to be included in rewards summation. This expression rewards vehicles that 

would overtake other vehicles only if they can keep them within desired safety radius. In 

this case minimum and near-miss radii are stated, as the narrow channels usually don’t 

have much space for overtaking. Also, there is a penalty for overtaking a vehicle with 

smaller CPAs. If overtaking can’t be done with appropriate space, human navigator would 

get a warning that the overtaking is unsafe. Similarly, the expression (4.13) is related to 

overtaking and will be active only when COLREGs Classification Algorithm activates 

Rule 13. However, the expression (4.13) is only applicable to unequipped vehicles, so if 

the intent sharing is possible, then (4.13) can be disregarded. Otherwise, (4.13) ensures that 

overtaking can be completed before the next waypoint where change of course will be 

done. This is an additional safety layer. Only if the predictor can verify that own vehicle 

will reach the next waypoint with 12 miles TCPA from the overtaken vessel and that the 

overtaken vessel is abaft the beam of own vehicle will the overtaking be supported. 

Otherwise, human navigator will get a warning that the overtaking is unsafe and can’t be 

completed before the next turn. This requirement can also be tuned by defining how big of 

a turn it has to be to activate this requirement, or to verify if there are any branches of the 

narrow channel that other vehicle could be taking while ownship is overtaking it.  

Rule 10. Rule 10 is somewhat similar to Rule 9 with reward design. However, 

additional requirements are laid out in the Rule 10 for which some additional reward 

functions are required. It is necessary to ensure that a vehicle is following a traffic flow of 

a traffic lane, that it keeps clear form the separation zone, that it joins the traffic lane with 

small angle to the traffic flow and when crossing that it is done on a heading that is as close 

as 90º to the traffic flow. Without loss of generality, reward space is simplified by not 

introducing any limitation for the inshore zone and this is because other rewards will 

penalize leaving traffic lanes and ownship would then use inshore zone only for the 

collision avoidance.  
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+/?#I#- , %.J = M
10,																											if				t'(J)+& = ±	0.3	NM	

0,																																																										otherwise
																	(4.14) 

	+/?II#- , %.J

= 																 M
5,							if				t: < 3NM	and	:/C: ≤ R+#"& 	and	+/. ≤ ;CÅ	~ß®®	

0,																																																																																																					otherwise
				(4.15) 

+/?'I#- , %.J = M
−10,																											if			j" , k" = j+&$	[(,& , k+&$	[(,&
0,																																																																								otherwise

								(4.16) 

 

+/?5I#- , %.J = M
20,																														if				:/C: ≥ R6*,/,6 		

−10,																																															otherwise
															(4.17) 

+/?&I#- , %.J

= M
10,							if								-:/Q$ > -:/:#)A&: + 12	min		and	112.5° ≤ θ: ≤ 247.5°	

−10,																																																																																																												otherwise
				(4.18) 

 

Even though Rule 10 has very similar expressions as Rule 9, there are some very 

distinctive requirements for the navigation within TSS, therefore reward function is slightly 

different. The expression (4.14) rewards a vehicle to stay within 3 cables of the planned 

course, but because Traffic Separation Schemes can sometimes be substantially wide, no 

penalty will occur if a vehicle is further away, but it is rewarded to be closer. As the TSS 

can be wide, deep and long enough to sustain full speed navigation, insisting on safe speed 

is not always optimal. Therefore, safe speed is rewarded only when there is a target within 

3 NM of own vehicle, and when the CPA for that target is closer than safe radius. The 

expression (4.16) is penalizing if own vehicle is in separation zone. However, large penalty 

was not applied, as there are cases when vehicle would have to enter separation zone to 

avoid collision. Expressions (4.17) and (4.18) are identical to expressions used in Rule 9, 

so they are only used for overtaking within TSS zone. If Rule 13 is not active, these rewards 

would not be considered.  
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Rule 13. The main input information for designing a reward function for overtaking 

is active Rule 13 signal from the COLREGs Classification Algorithm. Therefore, it is not 

necessary to track the pose of ownship and target vehicles; this is always checked by the 

COLREGs Classification Algorithm.  

+/1#I#- , %.J = M
10,																											if				t'(J)+& = ±	0.3	;.	

−1,																																																										otherwise
																						(4.19) 

+/1II#- , %.J = M
50,																														if				:/C: ≥ R6*,/,6 		

−10,																																															otherwise
																					(4.20) 

+/1'I#- , %.J = M
10,															™f						:,l = :,l*,*:*#@		and		),l = ),l*,*:*#@		

−1,																																																																																								otherwise
				(4.21) 

Expression (4.19) is similar to reward functions used in other Rules and it rewards 

own vehicle to stay within 3 cables of planned course. This reward will promote return to 

a planned track after overtaking of a target vehicle. For an overtaking vehicle, the 

expression (4.20) is relevant and it rewards overtaking vehicle to maintain sufficient 

distance for a vehicle being overtaken. Rewards are designed to be sufficiently large to 

maintain distances appropriately. The final reward for the Rule 13 is defined by the 

expression (4.21) and it is relevant when an ownship is being overtaken. In this case 

ownship is rewarded to maintain its course and speed. However, as incidents still could 

occur during an overtaking action, lower rewards are maintained, and small penalty 

introduced to deviate from the course and speed in order to avoid any near misses. That is 

the reason not to exclude expression (4.20) even when ownship is vehicle that is being 

overtaken, as we want to move from a target that is trying to intrude desired safety radius.  

Rule 14. As COLREGs Classification Algorithm determines if the Rule 14 stands 

in certain situations, application of the Head-On Rule is quite straight forward, so reward 

space design is simple.  

+/2#I#- , %.J = M
10,																				if				:,l$ = :,l# + 35°		

0,																																																				otherwise
																						(4.22) 
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+/2II#- , %.J = M
10,																																																				if				+,- ≥ 0°	

−25,																																																										otherwise
														(4.23) 

+/2'I#- , %.J = X

50,																														if				:/C: ≥ R6*,
20,														if				R6*, > :/C: ≥ R,6 		

−50,																																															otherwise

																	(4.24) 

 

With the expression (4.22) turns to starboard are rewarded. Turns to port are not 

penalized, but rather discouraged. This is because of the COLREGs requirements that 

vehicle should do whatever necessary to avoid collision. In order to support turns to the 

starboard side, expression (4.23) is utilized where again turns to starboard are rewarded, 

while turns to port are penalized in order to emphasize the importance of the Rule 14. 

Finally, expression (4.24) is utilized to ensure that proper CPA is maintained from target 

vehicles by enforcing rewards for staying away from the minimum and near miss zones (in 

case it is not possible to maintain distance from the minimum zone, staying away from the 

near miss zone still delivers rewards), while it penalizes target vehicles entering near miss 

zone. Reward functions of other rules ensure that own vehicle returns back to the original 

route after the head-on situation has been resolved. 

Rule 15. When there is a risk of collision and two vehicles are determined to be in 

a crossing situation, reward function has to ensure that vehicles stay well clear of each 

other.  

+/3#I#- , %.J

= X

20,																																																						when	1 < ú:% < 179°, :,l$ = :,l# ± 35°	

10,							when	181° < ú:% < 359°, :,l = :,l*,*:*#@		and		),l = ),l*,*:*#@	

−5,																																																																																																			otherwise																	(4.25)

 

+/3II#- , %.J = M
10,																																																	if				+,- ≠ 0°,			É:+ > 0	;.

−5,																																																																															otherwise
										(4.26) 
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In order to ensure that own vehicle acts according to the Rule 15, expression (4.25) 

is introduced where in case that the target vehicle is positioned on the starboard side from 

the own vehicle, collision avoidance maneuver is initialized. Otherwise, own vehicle is a 

stand-on vehicle, and it maintains its original course and speed. Turning to starboard is 

always preferred, but it is not strictly enforced, so there is an option of turning to port or to 

starboard. However, it is known that vehicles should avoid crossing ahead of the target 

vehicle, so expression (4.26) is used to ensure that Bow Crossing Range (BCR) is above 0 

when own vehicle is a give-way vehicle. This will give preference to starboard turns unless 

collective risk of collision is greater when turning to starboard and remaining options are 

turning to port or change of speed. 

Rule 16. Actions of a give-way vehicle do not require separate reward function, as 

it is included in other rules and promote ample time and substantial alternation of course. 

Rule 17. The main challenge of the Rule 17 is how to ensure that own vehicle takes 

action if give-way vehicle is not following the Rule 16. Regular requirements of a stand-

on vessel have been covered by reward functions of other Rules, but for taking actions in 

case of an unresponsive target, following reward function is proposed: 

+/<#I#- , %.J

= ´
20,									when	:/C:% ≤ 3	NM, and/or	-:/C:% ≤ 12	min,			and	:/C:% < R6*,,

then	:,l# − 35° ≥ :,l$ ≥ :,l# + 35°
−50,																																																																																																										otherwise									(4.27)

 

+/<II#- , %.J = M
10,																							if		+/<#I#- , %.J	™s	active,			:/C:% ≥ R6*,
−5,																																																																															otherwise

							(4.28) 

 

As discussed earlier in the previous subchapter, some of the Rules are vague and 

approach is made where at any time CPA from a target vehicle is less than 3 NM, and/or 

TCPA is less than 12 minutes, and target vehicle is not taking required action while 

occupying collision or near miss zone, own vehicle will commence collision avoidance 

maneuver. Described requirement is included in the expression (4.27), while (4.28) 
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promotes larger change of course and increased ROT in order to achieve CPA that is safe 

and close quarter situation avoided. 

Other rules are already included in other reward functions, including the restricted 

visibility Rule 19. 

 

4.5 Are we better off? – Own vehicle equipped 

In this subchapter combined system of sensor filtration is deployed, motion control, 

auto-telegraph, COLREGs classification, trajectory generation and collision avoidance 

algorithms. Scenarios  two, five, and eight were randomly selected to verify feasibility and 

accuracy of proposed algorithms. 

All experiments are conducted on one computer with all algorithms running 

concurrently. Once one algorithm can provide input information, that information is fed to 

the next one until the optimal evading trajectory is selected and advisories displayed. As 

mentioned earlier, sampling period for the collision avoidance and trajectory generation is 

30 seconds. In all examples proposed algorithm was able to generate trajectories within the 

sampling time. However, as different sampling periods are used with other algorithms, 

such are FPF and motion control, there is a significant benefit of conducting these processes 

on separate machines.  

Figure 4.26 depicts the still frame of the simulation for the scenario 2. At the 

moment of capturing this geometries, collaborative algorithms were already in action and 

all necessary information from the COLREGs classification algorithm has been received. 

From the CPA, TCPA and dCPA information taken from sensors, four targets resulted with 

collision alerts. Those are target 1, as the TCPA is less than 15 minutes before the target 

vehicle 1 would occupy COLLISION safety zone. Target vehicle 3 is also active as motion 

vector (12 min) already occupies NM safety zone and overtaking own vehicle. Vehicle 3 

would very soon be considered as NC vehicle, as the distance to the own vehicle is 

dropping and ownship would then get the advisory to act in order to avoid collision. Vehicle 

5 is also active with non-compliance alert, so expedited maneuver is requested from own 
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vehicle. Finally, vehicle 9 is the last vehicle with active collision alert, as it would within 

15 minutes occupy NM safety zone. Other vehicles are currently considered as a non-

thread, but the relative geometries are compared in each iteration of the collision algorithm 

check. In case own vehicle would not follow advisories, some other vehicles would become 

active as well. For example, vehicle 1 would be considered risky in case it would not follow 

COLREGs and would maintain its trajectory.  

 

Scenario 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.26 – MCAS overview of the optimal trajectory for the Scenario 2 

 

The predictor has selected the significant alteration of course of 90 degrees to 

starboard, as this approach was found as an optimal one, namely because the target 5 is 

non-cooperative and did not turn to starboard according to COLREGs. Turning to 090° 
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allowed for safe interaction with targets 1, 3, 5, and 9 by maximizing the reward function. 

100 of simulations were carried out against the same scenario and the results were shown 

to be stable, without convergence to local maxima. Trajectory successfully cleared all 

targets and returned back to the planned route. Motion control algorithm was utilized to 

verify feasibility of maneuvers. 100 simulations were conducted with various external 

disturbances according to the Table 4.7. Figure 4.26 depicts situation without external 

disturbances. All simulations performed well, with some vehicles having difficulty to 

navigate in some iterations; however, the result was consistent with variability of speed 

and headings, while over-ground trajectories remained within the smallest margin. 

Feasibility was acceptable, ranging from 9.8 seconds to 24.8 seconds to converge. 

 

Table 4.7 – External disturbances Scenario 2 

Simulation 
Relative 

Wind 
Direction 

(°) 

Wind 
Speed 

(kt) 

Relative 
Wave 

Direction 
(°) 

Significant 
Wave 
Height 

(m) 

Relative 
Current 

Direction 
(°) 

Relative 
Current 
Speed 

(kt) 

Relative 
Swell 

Direction 
(°) 

Swell 
Height 

(m) 

1-25 0 0 0 0 0 0 0 0 

26-50 112.5 63 090 14 100 1 180 6 

51-75 67.5 21 45 6 74 2 67.5 4 

76-100 270 33 292.5 2.5 286 2 315 2 

 

With Figure 4.27 relative geometries of own vehicle and targets for the scenario 5 

are visible. In this scenario active targets are 1 where, due to own vehicle speed TCPA 

shows that the contact with the target 1 would be probable. In this instance the fact that 

navigators should not allow to be in this position with own vehicle is disregarded, but rather 

use the fact that navigators did not act on time and now decision support system aids the 

recovery. Target 2 is also considered as active and it is classified as non-compliant as the 

motion vectors show that without acting immediately, there is a significant risk of collision 

(especially as predictor takes into account that target 6 is not moving, so the system utilizes 

NC classification to force own vehicle to act immediately and avoid collision. Target 4 is 
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active as well, which is evident from the relative geometries and speed vectors of own 

vehicle and target vehicle 4. Not only that there is a collision risk evident from the relative 

geometry, but also due to the fact that according to COLREGs target 4 should be avoided. 

The next active target is target vehicle 6. If the speed of own vehicle was lower, there is a 

possibility that the system would not include this target, but it is necessary to act early in 

order to avoid complications that would happen soon after this iteration. Finally, target 9 

is also active target, even though ownship is overtaking, but within the simulation target 9 

has a positive rate of turn, which indicates that the vehicle is turning to starboard and there 

are safety zone violations in the future waypoints of the generated trajectory. 

 

Scenario 5 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.27 – MCAS overview of the optimal trajectory for the Scenario 5 

 



	

	
	
270	

The predictor was able to generate trajectory that is feasible and achievable. The 

optimal trajectory has been generated by maximizing reward function and trajectory was 

again successful in averting collision. By continuing simulation, trajectory was bringing us 

back to the route, but it did take some more time than in the case of scenario 2, as ownship 

was overtaking target 3 on her starboard side. 100 simulations were conducted again, and 

results challenged by external disturbances. Results were consistent in all simulations, 

while collective convergence happened in the range from 9.87 up to 23.3 seconds. Table 

4.8 describes external disturbances during simulations. 

 

Table 4.8 – External disturbances Scenario 5 

Simulation 
Relative 

Wind 
Direction 

(°) 

Wind 
Speed 

(kt) 

Relative 
Wave 

Direction 
(°) 

Significant 
Wave 
Height 

(m) 

Relative 
Current 

Direction 
(°) 

Relative 
Current 
Speed 

(kt) 

Relative 
Swell 

Direction 
(°) 

Swell 
Height 

(m) 

1-25 0 0 0 0 0 0 0 0 

26-50 225 47 247.5 6 263 3 315 6 
(period 
20 s) 

51-75 337.5 33 360 2.5 360 3 292.5 6 
(period 
20 s) 

76-100 62.5 10 67.5 1.25 97 4 22.5 2 

 

Figure 4.28 shows the interacting relationship of own vehicle and target vehicles. 

In this case, only two targets are recorded, and both targets are active. It is necessary to 

emphasize that the MCAS screen is now on a different range scale. Each range ring now 

shows 0.25 NM, instead of 1 NM as shown in other scenarios. There are also other 

navigational hazards, such are marine buoys and shallow water, that are taken into 

consideration when generating trajectories. There is very limited action space, which is 

challenging from the navigational point of view, but beneficial in finding the optimal 

trajectory as solution space is bounded by observation function. When searching for the 

optimal solution, predictor has narrow solution space and finds the optimal trajectory faster 

than in previous scenarios.  
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Scenario 8 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.28 – MCAS overview of the optimal trajectory for the Scenario 8 

 

The trajectory generated by the predictor successfully averted collision and brought 

own vehicle back on the planned route. The optimal trajectory was also feasible and 

achievable, and it managed to execute the turn as planned utilizing speed of the own vehicle 

at the beginning of the simulation. Consistent results were achieved after 100 simulations 

and various external disturbances. Convergence was achieved in the range from 0.63 up to 

1.09 seconds. Table 4.9 delivers external disturbances used for the simulated scenario 8. 

 

 

 

!!! NC 
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Table 4.9 – External disturbances Scenario 8 

Simulation 
Relative 

Wind 
Direction 

(°) 

Wind 
Speed 

(kt) 

Relative 
Wave 

Direction 
(°) 

Significant 
Wave 
Height 

(m) 

Relative 
Current 

Direction 
(°) 

Relative 
Current 
Speed 

(kt) 

Relative 
Swell 

Direction 
(°) 

Swell 
Height 

(m) 

1-25 0 0 0 0 0 0 0 0 

26-50 275 10 297.5 0.5 275 1 297.5 2 

51-75 050 21 050 1.25 36 4 320 4 

76-100 162.5 10 162.5 1.25 192 4 117.5 2 

 

 

 

4.6 Discussion 

As a central part of this thesis, Chapter 4 investigated COLREGs compliant 

collision avoidance model. Initial challenge was implementation of collision regulations 

into proposed algorithmic approach to resolve close quarter situations. Even though the 

main task of a collision avoidance system is to resolve target conflicts, if the aim of this 

study is decision support system, it has to be integrated with all participating entities and 

has to follow all rules and regulations that are enforced at sea. COLREGs were developed 

and agreed when integration with sophisticated automated systems was not in focus, so 

many of the requirements were purposely written vague. This presented a significant 

challenge for this study, so available resources were utilized to quantify requirements 

derived from COLREGs in order to shape reward functions. Safety zones around sea 

surface vehicles was proposed as an additional safety measure to incorporate various 

sensing, but also intent uncertainties. After assessing individual Rules, COLREGs 

classification algorithm that is able to provide instant advisories of applicable rules and 

offer resolution advisories to navigators of own vehicle or equipped targets in the vicinity 

was proposed. Experimental results showed that COLREGs classification algorithm was 

able to correctly identify targets and resolution advisories in complex situations where 

immediate action is required to avoid collision. 
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Intent uncertainties are consistent among navigators and cause high level of anxiety 

when navigating international waters. A numeric representation of uncertainties recognized 

in COLREGs studies conducted with professionals and students was proposed. These 

quantified representations were used to influence safety zones around target vehicles, 

which makes safety zone circles dynamic with various radii. The radius of a safety zone 

directly depends on quality of information navigator has and on intent of target vehicles.  

Trajectory generator, or predictor, takes into account situational geometries and 

utilizes reward function to find optimal solution for a particular collision avoidance case. 

The crucial part of trajectory generation is carefully designed rewards space in order to 

prevent own vehicle turning 180 degrees from the planned route in order to “run away” 

from the problem it faces. Design of rewards space had to be done in a way to equally 

penalize close-quarters situations and rewards sailing along the planned route.  

Collision avoidance algorithm was proposed to resolve collision situations own 

vehicle would face. In this chapter it was assumed that own vehicle is the only vehicle that 

is equipped and that trajectories generated for target vehicles (either by the system’s 

generation, or taking input from ARPA), are linear for cases with no ROT recorded, or 

constant curvature depending on the ROT recorded. All trajectories are updated within the 

sampling frequency of 30 seconds, which allows ample time to make decisions without 

losing spatial awareness. Experiments showed that the system coped well with varying 

number of targets, under different environmental loads, while testing for feasibility during 

higher level of complexity.  
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Chapter 5 
 

Dynamic collision avoidance in mixed 
equipage environments 

 

Chapter 4 introduced a central premise of this thesis by describing the Collision 

avoidance algorithm where it was assumed that only own vehicle has a decision support 

system installed onboard. Another concern has to be resolved in this thesis and that is an 

issue of coordinated collision avoidance in single-threat, multi-threat situations, as well as 

mixed equipage situations where some of the targets ownship has on its ARPA screen are 

equipped with decision support systems, while others are unequipped. This chapter offers 

a solution to ensure coordinated maneuver is done without jeopardizing safety of 

navigation; however, depending on the number of targets and risk of collision vehicles are 

forced to a satisficing, rather than an optimal conflict resolution. 

Assuming that the proposed Marine Collision Avoidance System (MCAS), as a 

last-minute collision avoidance aid, is mandatory for sea surface vehicles that navigate in 

commercial waters, then it is possible to extract benefits of such arrangement directly from 

the aeronautical domain where similar systems exist for more than two decades and has 

been shown to significantly improve risk averse behavior and prevents mid-air collisions 

[Wing et al., 2002].  

In situations where two sea surface vehicles meet and risk of collision exists, 

conflict resolution logic, which includes collision avoidance algorithm, COLREGs 

classification algorithm, and motion control parameters, would solve the situation for both 

vehicles utilizing forced cooperation. Many options are available in which vehicle would 

be a master vehicle in this situation, so this can be simply a higher MMSI number, faster, 

or slower vehicle, vehicle that is more restricted in maneuverability, or any other priority 

protocol. Sensor errors and behavioral uncertainties present significant challenges in 

developing a stable decision support system. In previous chapters of this thesis models that 
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reduce these uncertainties to the lowest possible levels were developed. Only after 

addressing errors and uncertainties, sensory information are allowed to enter the decision 

models, so premise stands that the quality of the model output largely depends on the 

quality of input. Any weakness of the developed model can be identified and rectified in 

the future, but even the perfect model would not guarantee correct outputs with flawed 

inputs. 

In this chapter, aim is to present challenges and find potential solutions to 

coordination in mixed equipage environments. One of the main challenges of coordination 

is to design a protocol where ownship and target will receive advisories that will take into 

account COLREGs constraints and ensure that there is no maneuver that will increase 

probability of collision or near miss. Cooperability with other systems already installed on 

most of the vehicles has to be considered as well. As there is no mandated decision support 

system installed onboard, it is difficult to offer permanent solutions, but the benefits of 

having systems similar to the proposed MCAS mandate administrations to initiate 

communication about finding unified protocols that will allow open platforms where 

integration with various manufacturers of navigational equipment would be seamless. 

Multiple targets in restricted waterways is another area of concern which is addressed in 

this chapter; however, this section begins by introducing an intent-aware collision 

avoidance model that has a potential of resolving close quarter situations early in the 

voyage, as well as utilize system’s ability to resolve last-minute conflicts. 
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5.1 Intent-aware collision avoidance1 

Reducing uncertainties has been a coalescing objective throughout the thesis. The 

only sustainable approach to reducing behavioral uncertainties would be cooperation of the 

sea surface vehicles in the vicinity. Our proposal is that passage plans with dynamic time 

updates are shared between vessels or to a VTS center as a central point. Sharing between 

vessels can be achieved by utilizing the existing equipment onboard and designing a 

specific communication protocol, or via Internet if equipped vessels have navigating 

bridges connected. One of the software solutions could be the existing software for passage 

planning and ECDIS updates - Navtor, which keeps a record of all passage plans in the 

database and all users can select vessels to see their passage plans. Currently, this is limited 

to owner’s fleet, as sharing passage plans to outer owners would be a violation of 

proprietary information policies; however, the platform exists and all we would require is 

a software solution without adding new technology onboard ships. Through Navtor 

NavStation platform, passage plans are visible on ECDIS stations, so it would be easy for 

navigators to take the advantage of the technology to reduce the uncertainty. At the time of 

writing of this thesis, legal framework is not allowing for the VTS stations to issue orders, 

but rather advisories to targets, but the same effect would be achieved in VTS covered 

areas. 

 

 

 

 

 

 

 

Figure 5.1 – Navtor tracker with routes (Source: Navtor instruction manual, 2018) 

	
1	Similar	content	to	this	Section	has	been	published	in	the	article	Rudan,	I.,	Francic,	V.,	Valcic,	M.,	and	
Sumner,	M.	Early	Detection	of	Vessel	Collision	Situations	in	a	VTS	Area,	Transport	35	(2)	2020.	
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In case of the route information sharing between ships, the interval of sharing 

information and dynamic updates of the root would depend on the technology used to 

transfer data among the vehicles in range. Exchange of information could be achieved 

through the Internet and then we could potentially have information for the whole route, 

which would allow for strategic intent awareness, or if the Internet sharing is not available, 

a special protocol through existing short-range communication systems onboard could be 

designed to allow for route information sharing. In the case of the short-range protocols, or 

tactical intent awareness, the affected vehicles would have a benefit of not only knowing 

the past tract that is shown on ARPAs or ECDIS units, but also to see the following route 

with all intended turns and planned speed changes. The other approach is to share 

information with a VTS center that can keep submitted routes in their database and receive 

regular updates from vessel intending to pass through their area. In this way, a VTS center 

can issue early advisories to vehicles with potential collision positions and times to 

proactively avoid close quarter situations. Regardless of the approach, the main challenge 

is not technological, but rather legal. Marine industry would need an international standard 

for developed protocols, quality assurance and audit developments that would guarantee 

the performance. 

When we think of intent, we consider an independent agent that has a capability of 

reasoning and ability to interact with an environment. When an independent agent interacts 

with an environment and collects experiences, an agent is using reasoning to make 

decisions and predict future states, which could be considered as an intent. Merriam-

Webster dictionary [2020] defines an intent as “determination to act in a certain way”. By 

defining the intent in this way, we can conclude that passage planning could be used as 

inference of an intent. Of course, we would not benefit if passage plan is designed with 

waypoints only and has no motion prediction in the time domain. Therefore, we have to 

allow for 3D motion prediction (2D position on a plane plus time) in order to allow for 

potential collision positions of evaluated sea surface vehicles.  

Application of intent to motion planning is not a novel concept and has been used 

extensively in the aeronautical domain [ASAS-TN2, 2008; Brahydt et al., 2005; FAA 

(NextGen), 2020; Gool and Schröter, 1999; Hoekstra et al., 2002; Ruigrok et al., 2003; 

SESAR, 2020], as well as in the pedestrian intent motion detection [Bandyopadhyay et al., 
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2013;  Bandyopadhyay et al., 2013; Karasev et al., 2016]. Even though the aeronautical 

and ground vehicles research literature is valuable resource to study intent further, we have 

to be aware that it is not possible to simply apply these concepts to our research, mainly 

because of various technical and legal differences of the two industries. We recognize that 

maritime industry takes longer time to adapt to technological changes, mainly because the 

public is less sensitive to marine incidents, especially outside of the oil and gas industry, 

while admiralty law changes are very slow. Even though many technological advances 

already happened, and solutions are available, the choice of implementation is left to 

commercial operators and most of them consider only the immediate economic benefits, 

for which the new technology is only an additional cost.  Without the proper pressure from 

administrations and the public, new technologies will wait for a scalable maritime disaster 

to be implemented. On the other hand, administrations have been proactive with 

introducing technologies that will reduce an environmental impact.  

Even though we can draw some insights from the aeronautical domain, we have to 

note that there are some significant differences that makes a transition to maritime domain 

challenging. Namely, in regards of the motion planning, aircrafts have a 3rd dimension 

available, as there is a well-used possibility of maintaining a vertical separation, while sea 

surface vehicles operate strictly in 2 dimensions on an Earth plane. Also, we have to note 

that most of the aircrafts have to file their flight plans, which are available to the ground 

Air Traffic Control (ATC), so there is a central control of collision avoidance and the 

burden of separation actually lies with the ground ATC, rather than the flight crew. In the 

maritime domain, commercial ships are also required to develop a passage plan from berth 

to berth and most of the operators require that passage plans are submitted to the shore 

operations and then vetted by their marine departments; however there is no requirement 

to share these passage plans with other vessels or VTS centers. Even though the COLREGs 

are similar to the right of way the airplanes are following [FAA General Operating and 

Flight Rules, 2017], the main distinction is in application of these rules where cockpit crew 

usually relies on ATC to resolve trajectory conflicts and only in rare occasions resolve 

conflicts themselves, sea surface vehicles’ navigating crew are under full obligation to 

resolve target conflicts autonomously. It is imperative to state how various studies were 

made to review benefits of intent sharing in the aeronautical domain [Hoekstra et al., 2002; 
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Ruigrok and Valenti Cari, 2003; Wing et al., 2002], and all of them concluded that sharing 

intent showed significant improvement of safety and efficiency and none of the reviewed 

cases showed any negative impacts on efficiency and safety of airspaces.  

The maritime research community only recently commenced to research benefits 

of intent inference to motion planning [IALA, 2020; IMO, 2020]. International Maritime 

Organization (IMO) and International Association of Marine Aids to Navigation and 

Lighthouse Authorities (IALA) developed an e-Navigation concept where various projects 

explore and demonstrate benefits of intent-aware navigation in maritime domain [Billesø, 

2015; Lind et al., 2016; Porathe, 2012; Porathe and Shaw, 2012]. Several of these projects 

explore benefits of having a shore-based services to aid the trajectory conflicts [Borup, 

2015; Rihacek et al., 2015; Rudan et al., 2020], while ship-to-ship intent share solutions 

are scarce.  

When we think of intent information that would be shared with other vehicles and 

VTS centers, we have to consider the amount of data that needs to be promulgated. We 

have already stated that the leanest model will be the sustainable approach, as it will not 

require additional computational power. We, therefore, consider two approaches when 

sharing intent information, which are either sharing only a passage plan with added 

information about planned speed, or we share a full motion intent where also any deviation 

from the plan is promulgated by stating an intent of turning and speed change. In both cases 

we can utilize the meteorological effects on passage plan and determine a sequence on 

which the dynamic updates would be shared with interested parties.  

If we consider situation where intent information is shared with VTS or another 

vehicle, there are several distinctive layers of information we can transmit: 

• Vehicle intent – information that can be obtained by various systems 

installed onboard; fixed data information, such are length, call sign, type of the vessel 

(mostly already shared via AIS), with some dynamic components such are destination, 

current speed, ETAs, steering mode engaged, etc. (also shared via AIS), but also 

information about the maneuvering characteristics of the vessel, such are minimum and 

maximum speed, maximum ROT (in order to feed the equipped vessel with enough 

information to calculate performance, if needed); 
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• Passage intent -  information about the passage and progress on the planned 

passage including list of all waypoints, expected time reaching these waypoints, data 

collected from ECDIS where shallow water and static objects present limitation to navigate 

for that vehicle, weather constraints influencing speed and heading, immediate motion 

plans (immediate alteration of speed and heading due to collision avoidance or weather 

routing), with a global objective of interpolation to represent a viable trajectory of the 

vehicle; 

• Utility intent – relevant only to our model of using HMMs to optimize 

motion planning solutions, so in this category we share rewards structure, utilities and 

constraints to describe how ownship or target is calculating resolution advisories in case 

any discrepancies exists so that the ownship can take any potential errors into account when 

optimizing paths to avoid collision. 

In line with the HMM and reinforcement models used in earlier chapters, we can 

represent intent as a part of a global state vector )(\ that contains all other relevant vectors, 

such are vehicle intent Å=(\, passage intent /=(\, utility intent ß=(\, etc.: 

 

)(\ =

⎣
⎢
⎢
⎢
⎡ #(\

(u)
Å=(\(u)
/=(\(u)
ß=(\(u)
… ⎦

⎥
⎥
⎥
⎤

																																																																				(5.1) 

 

Similarly, global state vectors of targets are utilized to communicate intent and 

reduce uncertainty among the sea surface vehicles in the vicinity. 

The alternative to intent information sharing is behavioral uncertainty, which is the 

reality of the present system. Alternative to behavioral uncertainty cannot be intent 

inference as this could lead to catastrophic consequences. It is better to assume constant 

speed and heading of a target than to utilize any type of guesswork on what the intent would 

be. We can, however, quantize the behavioral uncertainty and implement risk remedies in 

our models, which is exactly what we did in the Section 5.2. Further than that, we could 
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try to estimate environmental influences on targets when predicting their trajectories, but 

as we do not know their maneuvering characteristics and dynamic parameters of their 

voyage, we could be incorrect, and that is the reason why we take information from the 

existing equipment, such are ARPA, AIS and ECDIS that offer better accuracy than 

estimation or intent inference.  

 

 

 

 

 

 

 

Figure 5.2 – Intent-aware collision avoidance model 

 

Figure 5.2 depicts an intent sharing model where COLREGs Classification 

Algorithm delivers all necessary information (:Çìì]^_) to Collision Avoidance Module 

that contains all collision avoidance algorithms. Sensors collect information from the 

environment (#`]a) and through FPF filter deliver data (#bcdef`f^)  to Collision 

Avoidance Module. Collision avoidance module turns data into trajectories (≥g]dg) and 

safety zone information in order to deliver that information to the environment and other 

equipped vehicles, as well as to deliver it to motion control module. Motion Control 

Module takes external disturbances (th) and Passage Planning information condensed in 

a string of intent data about the own vehicle (=ia) to select actions (%) from the action 

space and with the aid of an MPC controller turns actions to actuator control inputs. MPC 

then utilizes actuator data (m)  to enforce motion of the own vehicle and then check 

calculated trajectories and confirm feasibility of the actual trajectories (≥]ge)  that are 

shared with the environment. 

Communicating intent is the biggest challenge of introducing this methodology, 
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mainly due to the financial expenditure that would ensure robust, secure and unified 

system. Developing the communication system is out of the scope of this thesis, however 

there would be generally two approaches to communicating intent. One approach is a short-

time horizon intent communication to vessels in range, distinct conflict resolution services, 

or VTS centers sharing tactical intents, while the other approach would be sharing a 

strategic intent with longer time-horizon in mind that is communicated to applicable 

vehicles, distinct conflict resolution services, or VTS centers. 

If we consider a navigating bridge of a modern sea surface vehicle, we notice that 

most of the data is already in digital form, which makes it easy to relay. Unification of 

information is of paramount importance to ensure all vehicles are able to understand and 

exploit information received onboard. This is one of the main reasons why dCPA and tCPA 

are preferred to the concept of ship domain. CPA related measures are easily quantifiable 

and transferred to other vehicles, so that uniformly understood metrics is used. We have to 

ensure that exactly the same logic is used when sharing intent information. In the 

aeronautical domain, several intent descriptive languages have been developed and agreed 

upon, but most remarkably Aircraft Intent Description Language (AIDL) [Lopez-Leones 

et al., 2007; Lopez-Leones, 2008; Vilaplana et al., 2005], where simple phrasing and 

unambiguous language is used to describe aircraft intent. In the marine domain [Rydlinger, 

2015] is the first attempt in standardizing intent communication, where ECDIS is 

commonly used to phrase intent through waypoint exchange information. Intent 

communication in marine domain is still in early stages and requires thorough survey of 

proposed standardization with administrations.  

After determining the standardized language, we have to find solution on how to 

share this information to other vehicles and shore stations. We could utilize the existing 

equipment or develop new one. In the aeronautical domain, Automatic Dependent 

Surveillance-Broadcast (ADS-B) is readily available [Barhydt et al., 2005; Barhydt et al., 

2004; Hwang and Seah, 2008; Lewis et al., 2012; Mondoloni, 2006; Pasaoglu et al., 2016; 

Ruigrok et al., 2001; Tarhan et al., 2014; Warren, 2000] and is used to broadcast intent. In 

the marine domain, the AIS is used to transmit some of the vehicles’ information, but there 

is no intent communication at the present architecture outside of the destination and ETA 

[IALA, 2016]. However, destination and ETA is not sufficient information to be used for 
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collision avoidance, as it does not provide information about the passage plan and the next 

waypoint a vehicle is navigating to.  

IMO’s project of e-navigation was developed to address challenges of digitalization 

and to bridge the gap in knowledge of human-machine interactions in the marine domain 

with the main goal of harmonizing “collection, integration, exchange, presentation and 

analysis of marine information on board and ashore by electronic means to enhance berth 

to berth navigation and related services for safety and security at sea and protection of the 

marine environment” [IMO, 2014]. As a response to the e-navigation initiative, a group of 

researches created the Sea Traffic Management (STM) project that is supported by the 

European Union [STM, 2019]. The objective of the STM project, also known as 

MONALISA 2.0, is to establish digital information exchange service between vehicles and 

shore and to establish a platform that will ensure quality assurance of STM produced 

modules among manufacturers. With initiatives like that we could witness less reliance on 

knowledge and ability and more reliance on information sharing. This can aid to achieve 

more evenly spread-out ability and quality assurance without uncertainty of language 

barriers.  

The STM concept was designed as a service that would resemble the Air Traffic 

Control (ATC) model where each equipped vehicle would submit their passage plans to 

the STM controller, who would in turn validate the plan or propose the amendment to the 

plan so that two vehicles never meet in close-quarter situations. SMT would also issue 

advisories to the users that along their planned passage, they would be in potentially critical 

situations with other vehicles. However, there is a significant distinction between ATC and 

STM operations and it is directly related to the medium used for transportation. While ATC 

ensures no aircraft meets at the same altitude, in the marine domain we only can assign 

different paths vehicles can take. Where waterways are wide and deep, this is not a 

problem, but in busy waterways and narrow channels, we can’t assign different paths to 

vehicles. We could only ensure that different timeslots are available to vehicles and 

mandate different ETAs to certain waypoints, but from the practical point of view, this 

would present a significant challenge. Unlike aircrafts, where reducing a thrust or raising 

an angle of attack would create appropriate drag to reduce speed rapidly, commercial sea 

surface vehicles require significant time to reduce or increase speed. Even more difficult 
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for marine vehicles is to maintain their speed at constant. As airplane can quickly adjust to 

meteorological influences with auto/thrust function, sea surface vehicles usually 

experience many speed fluctuations during a day due to currents, winds, and sea states. 

Together with the meteorological influences, we have to keep in mind that operating a 

commercial marine vehicle includes various speed reductions due to restrictions of the 

power plants onboard; for example, depending on the fuel used, many vessels will have to 

slow down for several hours every second or third day to clean economizers, so it is hard 

to expect that at the beginning of the voyage vessels will comply with fixed ETAs on 

certain waypoints. From the commercial point of view, ETA to destination is usually 

changed several times per voyage as demanded by Charterers or receiving terminals. In the 

marine domain, this kind of flexibility is understood and expected. Therefore, more 

dynamic approach to intent sharing is required for the marine domain. 

Having an ATC type service is an idea to resolve many close quarter situations, but 

we also need a dynamic passage intent sharing system, where navigators would have 

information about a potential collision situation in a short-term and mid-term time frame 

with dynamic updates of their progress along the passage plan, so that the time to the 

potential close-quarter situation can be updated consistently. It is therefore important to 

have a service where not only passage plan, but also intent is shared with shore services 

such are STM or VTS, but also directly with vehicles in the vicinity. Ship-to-ship route 

exchange (S2SREX) ECDIS layers [STM, 2016] have been introduced in the e-navigation 

research recently, and as a specific ECDIS layer, this service offers a good potential for 

utilizing our results in a real-world application. S2SREX layer has an embedded 

rendezvous (RDV) information layer that can calculate predicted meeting points and show 

them on the ECDIS screen. The major benefit of the STM system is the ability to share 

passage plan with various stakeholders (shore control centers, charterers, owners, ports and 

services, pilots, meteorological services, etc). The system provides an option of shore route 

optimization and adjustments due to weather or port delays. It can also detect deviation 

from the plan and request is then sent to the sea surface vehicle to verify the deviation. The 

plan is that STM allows for various layers of services and users are allowed to choose 

which layers they want to use. For example, LNG tankers often have to circle in holding 

patterns to manage cargo tank pressure. If deviation from the passage plan would involve 
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warnings received from the shore center for each deviation, this would create additional 

burden on ship’s crew, so LNG tanker can choose not to receive warnings, but only to send 

updates of the route to the concerned parties. 

Finally, as we stated earlier, we are concerned with tactical or “last-minute” 

navigational situations, while the use of STM is for strategic navigational decision making 

[Aylward et al., 2020]. If the own ship or the target is not following their broadcasted 

passage plans, unless there is a manual rebroadcast of the plan, both vehicles will base their 

decisions on skewed data, which can lead to potential incidents. That is why STM and 

S2SREX can’t be considered as decision support system for collision avoidance. As 

expressed in [De Vries, L., 2017; Hollnagel, E., 2017], development of decision support 

system has to be done from the human perspective and according to human needs. It is easy 

to fall in a trap of technological solutions for technological minds. In their concluding 

remarks Aylward et al. [2020] confirmed concerns from the International Chamber of 

Shipping (ICS) that STM approach could lead to overreliance and misinterpretation of the 

platform and that different kind of approach is required; notably a more “humancentric” 

development is necessary. When comparing the system’s numerical results with human 

reactions, it was noted that human navigators acted earlier with slightly larger CPA 

margins.  

In this section we consider only scenarios where own vehicle and targets are 

equipped with motion predictor based on the Chapter 4, so passage plan information and 

updates received from targets and broadcasted from own vehicle include dynamic progress 

along the shared passage plans. This means that for the selected targets and while we are 

monitoring them, we receive updates on the progress along the route including any speed 

change due to environmental loads, or intentional speed changes. In the next chapter we 

will consider mixed equipage environments, where equipped targets will have dynamic 

passage progress updating own vehicle regularly, while unequipped vehicles will not share 

any intent information with the surrounding vehicles or shore services. 
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Figure 5.3 – Intent sharing and trajectory generation 

 

As the focus of this thesis is tactical collision avoidance, we assume that the j set 

of sea surface vehicles Å/, Å0, … , Å%E/, Å% are located within the 24 miles area observed by 

the onboard electronic equipment with a special focus on the ARPA range. Each of the 

observed vessels has a unique passage plan, while the passage plan (//) of a ¥-th vessel 

Å. , ¥ ∈ {1,2, … , j}, consists of the planned waypoints ú-
. = Iû-

. , ü-
.J, ™ = 0,1,2, … ,µ. , 

from the set 

//. = ãú?
. , ú/

. , … , új&E/
. , új&

. å,																																													(5.2) 

where µ. represents the number of waypoints in the passage plan of the ¥>k vehicle Å.. The 

passage plan waypoint is considered as a planned position where vehicle changes her 

course in order to reach her destination. A simplified visualization of passage plans of two 

random sea surface vehicles Å. and Ål, ∂ ∈ {1,2, … , j}, ¥ ≠ ∂ is presented in Figure 5.4. 
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Passage plans for vehicles Å. and Ål contain waypoints p-
., ™ = 0,1,2, … ,µ., and 

pMl, ∑ = 0,1,2, … ,µl. Considering that the tactical collision avoidance is the focus of this 

thesis, we concentrate on shorter distances and utilize Legendre’s theorem, which states 

that every spherical triangle can be substituted by a planar triangle as the arcs of spherical 

triangles are comparatively very small when comparing to the radius of the sphere 

(Nádenik, 2004). As described in the Chapter 4.3, distances between vessels in our model 

are within the 24 miles radius, we can utilize planar geometry to compute distances, 

positions and CPAs utilizing WGS-84 constants. Therefore, we can transform Earth 

coordinates (û, ü) to planar coordinates (†, °), where: 

ú-
. = Iû-

. , ü-
.J → p-

. = I†-
. , °-

.J.																																												(5.3) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4 – Intent-aware passage planning (Source: Rudan, et al., 2020) 
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In order to get an accurate estimation of future positions along the passage plan, it 

is crucial to have precise information about the vehicles’ speed. Our approach to estimating 

precise speed of a sea surface vehicle is to utilize vector algebra in order to utilize various 

sensory inputs and get the resultant speed and direction of equipped vehicle. The influence 

of meteorological and oceanological loads on the speed of sea surface vehicles, as well as 

the speed loss caused by planned or unplanned turns have been described in the Chapter 3 

of this thesis. In this way it is possible to have COG, SOG and heading information updated 

on regular basis and then ownship can use a predictor to compute the meeting point or 

utilize target’s equipment for computation and add graphical and numerical information to 

the ownship ECDIS and/or ARPA as an additional layer.  

For a random vehicle Å.  we can utilize position vector form and express a total 

motion between waypoints p?
. and p-

. I1 ≤ ™ ≤ µ.J as 

o⃗-
. − o⃗-E/

. = pmE/pmππππππππππππππ⃗ , i.e. 

o⃗-
. = o⃗-E/

. + n-E/
. ∙ (u- − u-E/),                                                                            (5.4) 

for which the Cartesian vector components are 

†-
. = †-E/

. + n(-E/,-)n
. ∙ (u- − u-E/)                                                                     (5.5) 

°-
. = °-E/

. + n(-E/,-)n
. ∙ (u- − u-E/)                                                                     (5.6) 

In line with the dynamic collision avoidance, once again we need to find a tradeoff 

between the computational cost of high sampling rate and how often we actually need the 

speed and intent information to be shared. The speed change in most commercial sea 

surface vehicles is a slow process, so we propose an intent sharing frequency of 30 seconds 

for most vehicles, but this can be also dynamic by enforcing a rule that whenever a speed 

changes by more than an agreed percentage, sharing frequency has to be higher, but 

whenever the speed remain the same, we assume the constant speed for the predictor and 

doe a handshake check among vehicles in the vicinity every one minute or longer. This is 

one of the factors that administrations would have to agree upon. In our simulations, we 

will use sharing frequency of 30 seconds to update vehicles in the vicinity with intent 

information and dynamic progress along the planned route. Keeping the information 
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sharing frequency in mind, a position vector for a vehicle Å. would take the following form 

o⃗.(u) =

⎩
⎪
⎪
⎨

⎪
⎪
⎧o⃗?

. + n⃗?,/
. Iu − u?

.J,																																																																				u?
. ≤ u ≤ u/

.
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. Iu/
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     (5.7)  

The stability of collision avoidance method is of upmost importance when testing 

feasibility, so it is necessary to apply this methodology not only to one pair of vehicles, but 

also to test it with multiple targets. Multi-threat analysis is a focal point of interest in the 

following chapter, so in this section we only verify if the above-described procedure is 

feasible for a pair of two equipped vehicles in the applicable range. We have selected 

Wärtsilä (Transas) NTPRO 5000 simulator to extract static and dynamic data, recreate 

voyages and verify effectiveness of our approach. The ownship remains to be LNG Tanker 

(Transas LNG 2; Dis. 89634t; 2.31.13.0), while the target is selected to be Feeder (Transas 

Feeder container ship 1; 1610 TEU; 3.0.33.0). Passage plans for the two vehicles has been 

reconstructed by using the MarineTraffic information system [Marine Traffic, 2020], 

where Å@,A  represents passage plan of the LNG tanker, and Å" represents passage plan for 

the feeder. We are using p-
@,A  and pM"  to depict waypoints used by LNG and feeder 

vehicles respectively. We also utilize the Wärtsilä (Transas) NTPRO 5000 ECDIS module 

to graph the recreated routes and to monitor the progress along the planned route. In our 

example, an LNG tanker is heading from the new LNG terminal in Rijeka towards the 

Mediterranean, while Feeder is heading from Trieste to Rijeka.  

As both vehicles are initially too far away to transmit the passage plan and intent 

information directly to each other, vehicles submit their passage plans to shore stations 

(either VTS center or an MTS). As we assume there is an ECDIS layer available to both 

vehicles, by clicking on the vehicles name on the ECDIS screen, each of the navigating 

officers on both vehicles would be able to see the intended passage on their ECDIS screen, 

as well as the predicted time of reaching the meeting point. Each vehicle can initiate a 

download of an update to check the progress of the other vehicle along their routes. Until 

both vehicles are in the VHF range, they have to download updates to verify the progress; 
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otherwise, prediction of the progress along the route is made by utilizing the last known 

SOG information received. The predictor will check the last known position and if the 

vehicle is away from the intended route track, it will use latest SOG information and assign 

COG that leads the vehicle directly to the next waypoint to calculate meeting point time. 

If the layer contains information about maneuvering characteristics of the target and 

desired ROT with wheel over positions, then it can take into account loss of speed due to 

course change. As vehicles are closing each other in the VHF range, progress and intent 

information is shared every 30 seconds.  

Environmental conditions are defined in Table 5.1, where Åo-%!   denotes wind 

speed (knots), Ωo-%!  is wind encounter angle (º), *F  is significant wave height (m), -V  is 

wave peak period (s), ΩoGOL  is wave encounter angle (º), ÅpqDDL%>  is sea current speed 

(knots),while  ΩpqDDL%>  is current encounter angle (º). Swell did not play a significant role 

in this simulation, so it is omitted from this part, but is easily added when required. 

Directions of environmental loads are adopted from Transas [2011], as shown in Figure 

6.5, where m is ship speed in surge direction, n is ship speed in sway direction, and ß is 

total ship speed over ground (knots).   

For the purpose of simulation, we have divided the simulated area in 4 

meteorological areas ./, .0, .1, and .2. We have selected arbitrary date of July 01st, 

2020 and gathered meteorological data for that date from the Croatian Meteorological and 

Hydrological Service [DHMZ, 2020], as well as from the Windy meteorological service 

[Windy, 2020]. As the vehicles progress along the planned passage, they navigate through 

these meteorological areas, so we experience different environmental impacts on our 

simulated vehicles. Environmental loads for each of simulated vehicles have been gathered 

from the Wärtsilä (Transas) NTPRO 5000 [Transas, 2011] simulator by extracting values 

from a 20 minutes long simulation where average value based on the last 10 minutes of 

simulation was taken as simulated value in order to allow for simulation stability. 
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Table 5.1 – Environmental conditions for analyzed meteorological areas M1, M2, M3 and 
M4    

Met. 
area 

       

 22.0 310.0 2.0 6.7 310.0 0.4 120.0 
 24.0 345.0 3.0 7.6 345.0 0.6 140.0 
 18.0 20.0 2.5 5.9 20.0 0.3 200.0 
 14.0 45.0 1.5 4.9 45.0 0.2 195.0 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5 – Directions of environmental loads (wind, waves, sea current) with respect to 

the North axis (N) and directions of the ship with respect to the ship bow (Source: Rudan, 

et al., 2020) 

 

Wärtsilä (Transas) NTPRO 5000 simulator has been used to simulate the progress 

of the two selected vehicles with environmental loads. The two following tables, Table 5.2 

and 5.3 deliver speeds, courses, headings, distances and times between two adjacent 

waypoints of the planned route. The graphical presentation of the passage plans is 

presented in Figure 5.6. 
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Table 5.2 – Passage plan in time domain for feeder ær with attainable ship speeds 
regarding the various meteorological areas and associated environmental loads    

WP Position Area Distance 
(NM) 

Speed 
(knots) 

Course  
(°) 

Time 
(hh:mm:ss) 

Duration  
(hh:mm:ss) 

 45.6296° N 
13.5379° E 

 - 15.12 245.9 00:00:00 - 

 45.5518° N 
13.2903° E 

 11.39 15.82 229.4 00:45:12 00:45:12 

 45.3853° N 
13.0144° E 

 15.21 18.70 167.7 01:42:53 00:57:41 

 45.1080° N 
13.1003° E 

 17.12 17.95 145.0 02:37:49 00:54:56 

 44.8073° N 
13.3965° E 

 21.94 18.03 145.0 03:51:09 01:13:20 

 44.5331° N 
13.6666° E 

 20.00 15.94 67.1 04:57:42 01:06:33 

 44.6236° N 
13.9663° E 

 14.06 14.13 43.3 05:50:38 00:52:56 

 44.6538° N 
14.0062° E 

 2.49 12.57 43.3 06:01:12 00:10:34 

 44.7541° N 
14.1386° E 

 8.26 12.65 16.4 06:40:38 00:39:26 

 

Table 5.3 – Passage plan in time domain for own vehicle æstu with attainable ship 
speeds regarding the various meteorological areas and associated environmental loads     

WP Position Area Distance 
(NM) 

Speed 
(knots) 

Course  
(°) 

Time 
(hh:mm:ss) 

Duration  
(hh:mm:ss) 

 45.2497° N 
14.4453° E 

 - 6.11 241.0 02:37:57 - 

 45.1797° N 
14.2670° E 

 8.61 14.33 199.6 04:02:30 01:24:33 

 45.1330° N 
14.2435° E 

 3.00 14.41 189.1 04:15:04 00:12:34 

 45.1001° N 
14.2370° E 

 2.01 14.11 189.1 04:23:26 00:08:22 

 45.0672° N 
14.2286° E 

 2.00 13.62 189.8 04:31:56 00:08:30 

 44.9517° N 
14.2004° E 

 7.02 12.91 201.4 05:02:52 00:30:56 

 44.7528° N 
14.0907° E 

 12.82 13.43 191.2 06:02:27 00:59:35 

 44.6446° N 
14.0608° E 

 6.61 15.86 166.1 06:31:59 00:29:32 
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The initial passage plan evaluation of both vehicles is done with the planned speed 

and it gives us an overview what is the position where a potential for collision exists and 

at what time would these two vehicles meet at that position. Considering the environmental 

loads and possible collision avoidance along the planned passage, actual speed will almost 

certainly differ from the planned one, so as the vehicles get closer, the meeting position 

and time will change. This is the reason why dynamic updates of the passage progress and 

intent is important for the intent-aware collision avoidance to work. Once the vehicles are 

within the acceptable range, our collision avoidance algorithm can find the optimal 

trajectory to avoid collision between affected vehicles.  

The purpose of the initial evaluation of the passage plan is to identify potential 

collision and near miss situations, so the detailed analysis is not required initially. Only 

when the vehicles are within the 24 NM range, we engage the full analysis of the potential 

collision position and time. Once we have the output of the collision avoidance algorithm 

and the COLREGs classification algorithm we broadcast the intent to equipped vehicles in 

the vicinity and shore stations (if any in the range). 

Each of the vehicles submit their initial passage plan with their planned speed for 

each segment of the passage. At this moment transition between waypoints is calculated 

only with the planned speed without taking any speed change due to environmental loads 

or turns into account. In our case, feeder is doing a short passage from Trieste to Rijeka, 

while LNG tanker is leaving Rijeka and heading towards the Mediterranean Sea. The 

feeder is the first one to commence her voyage, so we assign her a time stamp u?" =

00	ℎ	00800", while the LNG tanker leaves Rijeka later that day at the time stamp u?@,A =

02	ℎ	37857". For simplicity and visual representation, we use time stamps rather than the 

actual time of the day. The initial prediction states that two vehicles are going to meet at 

the position defined as p<"p="¿¿¿¿¿¿¿¿¿ ∩p4@,Ap<@,A¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿ at the time stamp upNUU-F-N%	
",@,A = 06	ℎ	19846" 

where collision risk exists, and predicted CPA is 0.04 NM. 
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Figure 5.6 – Visualization of passage plans and appropriate waypoints for selected feeder 

vehicle (Sk) and LNG carrier (Sj) with associated meteo-oceanological areas (Source: 

Rudan, et al., 2020) 

 

Once the targets are within the range and in proximity, a manual communication 

setup can be made requesting a vehicle to alter the course in order to avoid collision, which 

would be beneficial in the case of non-compliant targets, or we could utilize a special 

communication protocol to automate alerts between targets. In this way we can 

communicate passage plans, but also, we are able to share intent and direct resolution 

advisories.  

 

 

 



	

	
	
296	

5.2 Coordinated collision avoidance 

Once sea surface vehicles are within range, coordinated collision avoidance can 

take place. Research is still within the intent-aware collision avoidance domain; however, 

opportunity to engage equipped vehicles is utilized. In this Section focus is on how 

coordinated collision avoidance can increase safety of navigation. Even though it is 

important to showcase stability of the model in environments where a single unequipped 

target is encountered, the reality of modern navigation is that multiple targets will be met 

at the same time, especially in coastal and restricted areas.  

If multiple targets are equipped, the only way to safeguard safety of navigation is 

to coordinate maneuver recommendations, which requires intent communication and 

coordination of the collision avoidance systems. How much of the information about state 

space ownship would be able to share with other targets depends largely on the ability of 

the communication protocol and compression rate. In order for one vehicle to accurately 

estimate states in time domain, basic maneuvering characteristics should be shared when 

initially selecting a target. If a platform is unable to do this, only information on how fast 

a certain ROT can be achieved would be shared. Building a compatible and cooperative 

communication system is not a topic covered in this thesis; however, several attempts have 

been made and are available for further testing on commercial vehicles [Rydlinger, 2015].  

One of the first challenges of coordination is the priority ranking. As stated in the 

previous Section, administrations in the maritime domain have to decide on various rules, 

including the priority ranking. Logic of urgency is utilized when ranking vehicles in the 

range. Firstly, any vehicle that has a combination of low CPA and short TCPA is 

prioritized, as navigating officers on these vehicles have to act immediately to reduce the 

risk of collision. Secondly, the vehicle that is slower to respond has a priority in decision 

making. Finally, if vehicles are similar in maneuvering characteristics and there is no 

priority call from the COLREGs, the vehicle with higher MMSI gets the priority to be the 

master sea surface vehicle among all equipped vehicles within the range.  

Another challenge is to ensure compatibility of coordinated advisories. If ownship 

faced a head-on situation and affected (in this example two are assumed) vehicles turn to 
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the opposite side (one turns to port, while other turns to starboard), the possibility of 

collision would increase significantly, and close quarter situations would be hard to avoid. 

This is often a case when VHF radio units are used and there are poor communication 

standards enforced which leads to miscommunication and action that is not following the 

assumed resolution plan. Standard Maritime English should aid in these situations, but 

often there is a large gap in knowledge and proficiency of mariners meeting each on various 

waterways. Therefore, the proposed model has to ensure that compatible advisories are 

given and that COLREGs are utilized to resolve close quarter situations on time and 

efficiently. This is achieved by assigning a master vehicle that will enforce cooperation to 

the slave vehicle. In Table 5.4 a set of advisories that could be used to inform navigators 

visually and aurally about the action and intent of the other vehicles in range are proposed.  

 

Table 5.4 – Advisory set 

Name Description 

NOC NO Conflict 

KTCS Keep The Course and Speed 

NTP Nothing To Port 

NTS Nothing To Starboard 

EHC Expedite Heading Change 

TTS ________° Turn To Starboard – Heading ________° 

TTP ________° Turn To Port – Heading ________° 

FTTS________° Fast Turn To Starboard – Heading _______° 

FTTP________° Fast Turn To Port – Heading _______° 

ID-HTS Imminent Danger – Hard To Starboard 

ID-HTP Imminent Danger – Hard To Port 

CL-BTR CLear – Back To Route 

!!!NC Non-Compliant Target 
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In case of TTS and TTP advisories, vehicle is required to turn to the heading 

computed as optimal or satisficing by the Collision Avoidance algorithm. Heading rather 

than course has been selected, as it is clear for the helmsman to steer heading rather than 

course. It should be done with the ROT currently active for that vehicle (usually 10 degrees 

per minute). However, in the case of FTTS or FTPS, vehicle is required to turn to the 

computed heading as fast as possible and without delay. ID-HTP or ID-HTS requires 

navigators to turn immediately with an order of hard to port or hard to starboard, as the 

danger is imminent. It is important to note that in this case a lot of attention is required 

from the navigators. As vessel turns with a wheel hard over, speed change will be 

noticeable and, depending on a type, vehicles will transfer significantly, so if vehicles were 

very close when maneuvering started, navigators will have to correct the turn in order to 

avoid touching their sterns. When ID advisory is activated, the system tracks COG and 

SOG every second to determine when to stop the turn, after which a new advisory KTCS 

will appear to the navigator. Finally, !!!NC advisory informs both master and target 

vehicles that one of the vehicles is non-compliant. At that moment system tracks the NC 

target and if no response to the alarm is received, it becomes a vehicle to avoid by others 

regardless of the COLREGs. Even though not included in this Table, manually initiated 

advisories in case of emergency could be utilized to alert other vehicles to provide more 

space, or to answer to some of the requested advisories with UNABLE signal. 

 

 

5.2.1 Forced cooperation 

The proposed model requires a protocol to ensure compatibility and coordination 

of maneuvers. In order to avoid advisories that lead to significant near-misses or close 

quarter situations, it is necessary to ensure that after the master vehicle issues intent, slave 

vehicles have to follow up with compatible maneuvers. Whenever possible, master vehicle 

will act in the best interest of all participants and advise other vehicles to maneuver in 

accordance with COLREGs and to increase horizontal separation. In this sense centralistic 

approach is evident for which information as perfect as possible is needed. 
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However, in many situations, some aspects of the state space are going to be omitted 

from the targets in the range and the master vehicle will be required to implicitly predict 

progress of other targets. So, whenever centralistic approach is not viable, master vehicle 

will act in its own interest and share the intent with other vehicles together with the 

maneuvering mode the master vehicle is in. The maneuvering mode will determine what is 

conditionally allowed for other targets to do in order to avoid close quarter situations. This 

intent interaction is called forced cooperation structure. Considering the variety of vehicles 

navigator can potentially meet, uncertainty about ship handling capabilities is evident, 

namely the ROT and how much time is required before a vehicle actually commences its 

turn. Achieving uniformity with turning rate is difficult as it depends on the speed the 

vehicle is doing, draft maintained and environmental loads. It is also known that different 

speed of turn is achieved with the number of steering gears engaged. Therefore, standard 

could be enforced where 10 degrees ROT is considered appropriate for all vehicles within 

the range, so all predictions are done with 10 degrees ROT, mandating navigators to know 

their maneuvering characteristics and to assume all navigators will initiate turns on time to 

achieve 10 degrees ROT as soon as possible. As our goal is to minimize the impact of the 

human factor, this approach should be thoroughly tested before adopting it as standard. 

As resolution advisory computation varies due to computational setup (if all 

algorithms are running concurrently, or there is a parallel computing setup), this approach 

is to allow for master vehicle to centrally resolve up to certain number of targets (that 

allows resolutions to be computed within the sample time), while any other targets in the 

range would get forced cooperation intent information, which will allow for 

decentralization of decision making with constraints from the master vehicle. The number 

of targets handled by the own ship is determined within the algorithm itself and can be up 

to 60 targets at a time. Decentralized vehicle would utilize own resources to find optimal 

solution. Which of the remaining vehicles would act as a master for the equipped vehicles 

not involved in the initial group would be determined by the highest MMSI address. The 

initial master vehicle is selected following the proposed priority ranking, while other 

vehicles are selected by shortest TCPA and closest CPA to the master vehicle. In case that 

for any reason slave target issues a resolution advisory first, master vehicle will follow the 

initial advisory from the slave vehicle and then take over to complete separation. It is 
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necessary to keep in mind that in some situations optimal resolution would not be possible, 

so time and search could be traded off for the optimal solution, but in the real world it is 

preferrable that action happens as soon as possible, and that is why satisficing solution is 

accepted, which is collision prevention, even though it means not conforming to some of 

the COLREGs, deviating significantly from the original route, or reducing the speed of a 

vehicle.  

Along with the required reward function tuning, forced cooperation requires careful 

selection of the state variables, while action space is always within the motion control 

parameters that were defined in Chapter 4. To communicate intent with other vehicles, 

maneuvering mode has to be defined so that each vehicle is aware on resolution advisory 

promulgated in the vicinity. Therefore, following modes are possible: 

• Mode 1: target does not have any advisory, 

• Mode 2: target has an advisory to turn to port, 

• Mode 3: target has an advisory to turn to starboard, and 

• Mode 4: target has an advisory to reduce her speed. 

When the mode is one, there is no advisory, so master vehicle can find an optimal or 

satisficing solution without constraints. If there is any other mode active with a target, it 

can be that the target vehicle is master already and own vehicle simply needs to await 

resolution advisory, or own vehicle has to find an optimal or satisficing solution with 

constraints received from target vehicles. For example, if mode two is active, target vehicle 

is turning to port, so ownship is constrained to turn to the side that will further decrease 

CPA. In case of a head-on situation, if the target vehicle is turning to starboard, ownship 

should not turn to port, so this will be a constraint. In order to have a full understanding of 

the situation, COLREGs Classification algorithm has to determine applicable Rules in that 

particular situation, so then the system will be able to advise appropriately. 

Measure to prevent algorithms to frequently “change their mind” needs to be 

introduced, and there is a requirement to have a contingency in case the other vehicle is not 

following their advisory. Due to regulatory issues, steering autonomy is not yet feasible, 

but audible and visual warnings could be introduced. In case a vehicle is unable to follow 

the advisory due to issues with engine or steering, a warning is sent to all vehicles in the 
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vicinity and all vehicles are then obliged to stay away. Finally, to prevent algorithm to 

frequently change advisories, reward function will penalize change of advisory for 30 

seconds if the TCPA is less than 10 minutes, or 60 seconds if it is more than 10 minutes in 

order to allow for a target to act upon her advisory.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7 – Head-on MCAS advisories – both vehicles equipped 

 

Figure 5.7 shows an example head-on situation where forced cooperation is used. 

Both vehicles are equipped, and container vehicle is a master vehicle, as it has higher 

MMSI address. At time stamp 0’ 0’’ vehicles are acquired at a range of 6 NM and both of 

them are broadcasting NOC advisory, operating in the Mode 1. If manually acquired by a 

navigating officer, MCAS reads the data from a target vehicle. On the other hand, if a target 

vehicle was not acquired, vehicle gets acquired automatically and information is 

broadcasted. Navigator needs to allow for ARPA to complete calculation of safety 

parameters, but in the meantime the system gets static information (MMSI address, call 

sign, maneuvering data, etc.) and master vehicle can be selected instantaneously. So, in 
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this example own vehicle is acting as a master vehicle. Ownship is following COG = 090º 

with SOG = 12 kt, while the target vehicle is following COG = 268.4º with SOG = 11.9 kt. 

Within the 30 seconds from acquiring the system gets an estimation of CPA = 0.08 NM 

and TCPA = 14’ 28’’ and as per the COLREGs Classification algorithm, risk of collision 

exists with head-on situation.  

As mentioned in the Chapter 4, Case Law determined that 35 degrees of course 

alteration is considered a significant course alteration that signals the intent to other 

vehicles. There are exceptions, such are narrow channels where 35 degrees would result in 

exiting channels, but most of the channels are piloted, so special approach is needed. 

Therefore, proposed algorithm initially searches for 35 degrees course alteration to 

starboard and verifies if this alteration would be optimal to keep the oncoming vehicle out 

of the minimum CPA zone. In this example, turning only ownship 35 degrees to starboard 

and keeping that course until TCPA is 0’0’’ would result in CPA = 1.72 NM. Target vehicle 

receives advisory NTP and TTS 303.4º. By following resolution received form the master 

vehicle, both vehicles turn 35 degrees to starboard and if they would keep their courses 

CPA would increase to CPA = 3.29 NM with TCPA = 12’ 0”.  

During the information exchange, designed system receives information about the 

minimum CPA requested from the target vehicle and if it is higher than the master 

vehicle’s, then the slave’s minimum CPA is accepted as an optimization goal. However, 

there would be times where minimum CPA can’t be satisfied, at which the master vehicle’s 

system will find the satisficing CPA to ensure safe distance is achieved. In this example, 

both vehicles requested a minimum CPA to be 1 NM, so the master vehicle’s system is 

searching for the optimal solution where CPA is 1.1 NM.  Master’s predictor calculates 

that CPA = 1.1 NM can be achieved by continuing with evasive headings (35 degrees from 

the original courses) for 4’ 28”, after which both vehicles would receive advisories to 

continue with original courses. Master vehicle will receive TTP 090º, while the target 

vehicle would receive TTP 268.4º. After TCPA is 0’ 00” and vehicles safely pass each 

other, both vehicles receive advisory CL-BTR, prompting them to go back to their original 

routes. 
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5.2.2 Inherent cooperation and robustness 

Considering one of the most important traits of MCAS is that it has to follow 

COLREGs, it is expected that even when there is no actual cooperation, equipped vehicles 

will have inherent cooperation as individual advisories will follow COLREGs for 

themselves. The issue remains unpredicted behavior of fishing boats, as their actions are 

often stochastic in nature and can’t be easily modelled. The best way to resolve issue with 

fishing boats is to enforce different kind of regulations for the zones where fishing is 

allowed, so that major waterways are reserved for commercial shipping without 

interference.  

For simple scenarios where equipped and non-equipped vehicles meet on open seas, 

forced coordination would not be required as it would be easy for the system to adhere to 

the COLREGs without additional constraints of restricted waters. Therefore, even if no 

forced coordination happens, inherent coordination would be possible due to simpler 

scenarios and environments. In situations where forced cooperation is required, certain 

level of inherent cooperation can be maintained if maneuvering characteristics of a target 

vehicle is known. In that case master vehicle could be allowed to make predictions of target 

vehicles with higher accuracy, so that we can take advantage of symmetry of the state and 

action spaces.  

Coordinated maneuvers offer safety improvements, especially when safeguarding 

COLREGs compliance. However, what happens when equipped vehicle does not respond 

to advisories? In order to maintain robustness of the coordinated maneuvers approach, 

!!!NC (Non-Compliance advisory) is introduced with a goal of informing other vehicles 

that one vehicle is not following the advisory. Administrations can discuss appropriate 

penalty for the non-compliance; however, COLREGs mandate to avoid collision even if 

deviation from collision rules is necessary. Once the advisory has been issued, the system 

will allow for 60 seconds for the operator to commence its maneuver, after which an !!!NC 

advisory will be issued. If in 60 seconds there is no reaction, an NC vehicle will be 

monitored for its heading, speed and ROT. If the vehicle makes maneuver contrary to the 

advised, vehicle becomes a high-risk target and advisory is issued to all vehicles that that 

target vehicle is !!!NC, which will then be a target all other equipped vehicles should avoid. 
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If target vehicle is !!!NC, master vehicle will endeavor to calculate optimal avoiding 

trajectory where CPA with !!!NC vehicle will be well within the safe zone radius. If 

COLREGs compliant optimal or satisficing solution is unavailable, master vehicle will 

search for evasive action to avoid collision regardless of the particular rules applicable to 

that situation. Before avoiding collision contrary to applicable collision regulation rules, 

MCAS will try to check if optimal or satisficing solution exists by reducing the speed of 

own and other vehicles (if own vehicle is a master vehicle).  

 

 

5.3 Mixed equipage collision avoidance 

In a single equipped environment, collision avoidance situation is solved as an 

egocentric matter where the best solution for ownship is found, while in the multithreat 

equipped situations collision avoidance situations are approached by attempting to solve 

conflict optimally for all equipped vehicles, but if this is not possible, satisficing solution 

is found. However, in situations where both equipped and non-equipped vehicles are 

present in a neighboring area, there are additional challenges when master vehicle is 

making decisions for others. In open water scenarios, all members would have sufficient 

sea space to maneuver, but multithreat situations rarely occur outside of the confined 

waterways. 

In a situation with highly occupied 6 NM areas, there comes a point when finding 

an optimal or satisficing solution by a master vehicle becomes computationally intractable. 

Therefore, if the solution is not available due to computational complexity within the first 

30 seconds, forced decentralization is introduced by resolving only 3 NM radius from 

ownship, while vehicle which has the highest MMSI address and it is outside the 3 NM 

radius becomes master vehicle while getting updates on vehicles within the first 3 NM 

radius. In that sense, the vehicle outside the 3 NM radius from the initial master vehicle 

gets regular updates of the constraints for the vehicles within the 3 NM of the initial master 

vehicle via intent advisories.  
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Authors Rosenblatt [2000] and Russel and Zimdars [2003] have shown that the 

faster and computationally effective way of solving complex state-action systems is fusing 

the cost or reward functions, rather than fusing state or action spaces. Reward fusion is 

used to compute the benefit of taking an action based on a state +" = (#, %) for each target 

vehicle n in the range +"(#O , %). Two possible ways to fuse reward functions are defined, 

using either a sum function or a max function. The main difference for the two is the goal 

we wish to achieve. If the goal is to find the optimal global reward for all vehicles in the 

vicinity, then sum function fits well. On the other hand, if goal is that each vehicle finds 

optimal reward following the egocentric strategy, then max function offers a better 

computational performance. Therefore, by defining a function ï  as a function that 

combines rewards of all targets in the vicinity, then 

+"(), C) = ïI+"()/, C), … , +"(), , C)J																																							(5.8) 

where ; is the number of target vehicles in the range. After finding the optimal fusion 

reward, an optimal action for the ownship is then computed as the following policy: 

�"()) = 	argmax
G

+"(), C).																																														(5.9) 

When ownship is resolving multithreat situation centrally, the optimal solution will 

be the global reward that takes into consideration all vehicles and their individual rewards 

after all intent information has been shared. At the moment of evaluation, the MCAS model 

assumes that all equipped vehicles are following computed advisories. If there are any 

unequipped vehicles in the vicinity, the proposed model assumes they are keeping their 

current course and speed. ROT is readily available either via ARPA or AIS, but if the 

predictor is allowed to utilize information about ROT without knowing the intent, false 

predictions could be received, so rather path updates at each time-step are utilized. Hence, 

for the scenarios where ownship is resolving the close quarter situations for the equipped 

vehicles in the vicinity, ï is defined with summation strategy: 

+"(), C) =√+"()O , C).																																																				(5.10)
O
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The other approach is to find optimal solution to close quarter situation where each 

equipped vehicle makes egoistic decisions on their own. Even though in this case there is 

no master vehicle to solve the situation for other equipped vehicles, intent is still shared 

among the vehicles so the predictors of each vehicle can be aware of the intended passage. 

Therefore, it is necessary to find a solution where the optimal path is computed taking the 

best approach to each individual target vehicle in the range and selecting the combination 

of actions with the maximum reward. With this approach accumulating rewards for each 

vehicle is avoided, but rather only benefit of ownship considered in relation to the other 

vehicles in the range (still by following COLREGs): 

+"(), C) = max
O
+"()O , C). 																																												(5.11) 

Extending on the works of Rosenblatt [2000] and Asmar [2013], the following 

theorem is developed: 

Theorem 2. If assumed that the optimal action for each target �∗(#/), … , �∗(#:)	within 

the predefined horizon is NOC, then the sum and max strategies will also have an optimal 

action NOC. 

 

Proof. Considering �∗(#%) = ;,:, then for all targets j on the horizon, 

+∗(#%, ;,:) ≤ +∗(#%, %),			∀	%.																																											(5.12) 

Þ Sum strategy 

Considering equation (5.12),  

+∗(#, ;,:) =√+∗(#%, ;,:) ≤
%

√+∗(#%, %) =
%

+∗(#, %),			∀	%.																	(5.13) 

Hence, the optimal policy  �∗(#) = argmax
G

+∗(#, %) = ;,:. 
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Þ Max Strategy 

If, without loss of generality it is assumed that: 

�∗(#) = % ≠ ;,:,																																															(5.14) 

then +∗(#, %) < argmax
%

+∗(#%, ;,:).	As defined by the ï of the max strategy, a 

target µ exists that has the property +∗(#, %) = +∗(#j, %), and by utilizing (5.12) 

+∗(#j, ;,:) < +∗(#j, %).																																				(5.15) 

Hence, for all targets j ≠ µ  it stands that +∗(#, %) < argmax
%

+∗(#%, ;,:).  As 

from (5.15) it is evident that ì ≠ µ , it is assumed without loss of generality that 

+∗(#U , ;,:) = argmax
%

+∗(#%, ;,:). 

From the expression (5.14), the definition of ï for max strategy, and expression 

(5.12), 

+∗(#j, %) > +∗(#U , %) > +∗(#U , ;,:),																																		(5.16) 

but it was also stated that 

+∗(#j, %) = +∗(#, %) < argmax
%

+∗(#%, ;,:) = +∗(#%, ;,:),																						(5.17) 

hence, there is a contradiction that ends the proof. 

� 

If the proposed system manages to issue intent advisories within 30 seconds 

timeframe, centralistic approach and summation function are used. On the other hand, if 

the decision process takes more than 30 seconds, the number of equipped and non-equipped 

vehicles is large and probably there are a lot of constraints in a form of shallow water, land, 

etc., so egocentric approach and max function are utilized. In the next subchapter, 

verification of the critical number of targets after which it is necessary to utilize egocentric 

approach with max function will be conducted. 
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5.4 Are we better off? – Mixed equipage 

Mixed equipage simulations are approached the same way as the egocentric 

simulations investigated in the previous chapter. Therefore, scenarios 2 and 5 are used to 

verify if the mixed equipage approach would produce desired effect and if there are any 

benefits of sharing intent, submitting passage plans and broadcasting advisories. Scenario 

8 is omitted from the analysis as it produced relatively same results as in Chapter 4. Own 

vehicle is selected to be a master vehicle (with the highest MMSI number), so it was the 

task of the proposed planner to resolve conflicts within the parameter and issue alerts for 

other vehicles in the vicinity. 

 

Scenario 2 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8 – MCAS overview of the equipped optimal trajectory for the Scenario 2 
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With increasing number of target vehicles, it gets difficult to visualize geometries. 

Nevertheless, Figure 5.8 depicts simulation of the scenario 2 with no external disturbances 

(to simplify visualization). Instead of assuming other vehicles are noncooperative and will 

follow current trajectories, MCAS determines optimal maneuvers to allow for the largest 

distance between targets. There is a priority to follow COLREGs, but in cases where this 

is not possible, maneuvering is done to avoid contacts. Simulated cases are complex, and 

navigators should endeavor not to be in these kind of situations in the real life by acting 

early and showing intent. Early detection of collision and passage planning aims to resolve 

conflicts well before the MCAS has to issue advisories.  

For the own vehicle, MCAS is urging us to do a fast turn to starboard (utilizing two 

steering pumps and no restrictions on the ROT). At the same time, it is noticed that MCAS 

advises targets 1, 2 and 7 to maintain their course and speed and this is due to the fact that 

sea space around vessels 1 and 2 is limited and turning to starboard would be considered 

dangerous, while turning to port would create more complexity and it is against the 

COLREGs relevant Rules. Considering the situation, target vehicle 3 has to do a significant 

deviation from the intended course and turn to starboard. Similarly, in order to avoid 

conflicts, target 4 is advised to turn to starboard, as there is ample sea space on her starboard 

side. Target 5 has created additional complexity as a noncompliant target, but in this case 

when equipped, target 5 is advised to turn to starboard and allow for conflict resolution. 

Targets 6 and 8 are advised to turn to port, but not immediately (all targets would get the 

relevant timestamp of their advised turns). MCAS selects to resolve the lowest CPAs first 

and then adjusts advisories to other vehicles. In the case of non-equipped vehicles, MCAS 

fixes current trajectories of non-equipped vehicles and does not allow for any alterations 

in that iteration. Simulations were done without environmental loads (environmental 

disturbances are covered in the previous chapter). 
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Scenario 5 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.9 – MCAS overview of the optimal trajectory for the Scenario 5 

 

With identical approach to conflict resolution, Figure 5.9 depicts advisories of the 

complex scenario 5. Own vehicle is again instructed to turn to starboard with full steering 

power. Target 1 is instructed to keep the course and speed until reaching the turning point 

at which it is to steer to starboard and avoid targets on its starboard side. Immediate turn to 

starboard is not safe due to the presence of the target 6. Target 2 has to make more 

significant turn and overtake vehicles on their starboard side, while targets 5 and 7 are also 

advised to turn to starboard in order to avoid upcoming traffic and there is enough sea space 

on the starboard side. Target 3 keeps the course and speed, while targets 8 and 10 are 

advised to turn to starboard and give greater distance for the critical target 9 that has to do 

a more complex turn to starboard at a defined time and then turn back to port in order to 

avoid target 6.  
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Now it is possible to compare results of scenarios 2 and 5 with intent sharing and 

without intent sharing where all targets were considered noncooperative. Passage plan 

sharing is not compared as its main goal is to ensure that navigators do not find themselves 

in scenarios 2 and 5. Passage plan sharing is the least computationally expensive approach 

and guarantees that collision risk would be detected early so that the complex situations 

are avoided. This would particularly work well in confined places, such are Singapore 

straits or Dover, where adjustment in speed can be advised to vehicles so that they arrive 

at critical points with lower number of target vehicles.  

 

Table 5.5 – CPA comparison of simulations with no intent sharing and simulations with 

intent sharing for scenarios 2 and 5 

 

 

 

 

 

 

 

 

 

 

 

As evident from simulation results and as depicted by Table 5.5 and figures 5.10 

and 5.11, it is evident that intent sharing and multi-target coordination outperforms an 

egocentric approach where own vehicle assumes fixed trajectories of other vehicles and 

generates optimal trajectory. In both scenarios it is noticeable that for almost all targets 

CPA is higher when intent information was shared. For the targets 10 (of the no intent 

Target 
vehicle 

CPA – no 
intent 
NM 

CPA – 
intent 
NM 

1 0.38	 0.52	
2 1.94	 2.33	
3 1.3	 1.48	
4 2.01	 4.21	
5 0.96	 2.85	
6 0.82	 0.82	
7 2.24	 2.24	
8 2.32	 3.41	
9 0.46	 0.48	

10 3.37	 1.83	
dRoute 4.24	 2.78	
tRoute 1:31:46	 0:54:42	

	

Target 
vehicle 

CPA – no 
intent 
NM 

CPA – 
intent 
NM 

1 0.38	 0.5	
2 4.4	 4.8	
3 1.47	 1.84	
4 0.33	 0.64	
5 3.6	 4.92	
6 1.49	 1.44	
7 2,8	 3.03	
8 3.2	 2.08	
9 0.63	 0.8		

10 5	 2.78	
dRoute 4.8	 1.38	
tRoute 0:50:42	 0:19:43	
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sharing experiment), 8 and 10 (of the shared intent information experiment) a lower CPA 

number is noticed, but even that lower number is well above the SAFE risk zone of the 

own vehicle, so the general collision situation is improved with the intent awareness. 

Also, it is necessary to mention that the intent sharing experiments resulted with 

lower deviations from the planned route (2.78 NM vs 4.24 NM for the Scenario 2, and 1.38 

NM vs 4.8 NM for the Scenario 5). Closely related to the distance from the planned route 

is also information on how long it took for the own vehicle to return to the original track, 

and it again showed us that intent sharing experiments outperformed non-intent sharing 

experiments (0:54:42 vs 1:31:46 for the Scenario 2, and 0:19:43 vs 0:50:42 for the Scenario 

5). 

 

 

 

 

 

 

 

 

 

 

Figure 5.10 – CPA comparison of simulations with no intent sharing and simulations with 

intent sharing for Scenario 2 

 

 

 

 

1 2 3 4 5 6 7 8 9 10
CPA – no intent NM 0,38 1,94 1,30 2,01 0,96 0,82 2,24 2,32 0,46 3,37
CPA – intent NM 0,52 2,33 1,48 4,21 2,85 0,82 2,24 3,41 0,48 1,83
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Figure 5.11 – CPA comparison of simulations with no intent sharing and simulations with 

intent sharing for Scenario 5 

 

Finally, it is possible to compare feasibility performance of all algorithms utilized 

up to now. Hazard alerting algorithm is also included, even though it is described in the 

next section. However, hazard algorithm does not contribute to computational complexity 

as heavy as COLREGs classification algorithm that has been proven to be the most 

computationally expensive.  

Figure 5.12 delivers an overview of computational performance of collision 

avoidance algorithm for multiple targets, while Figure 5.13 describes the computational 

performance of all algorithms in the MCAS system working concurrently in order to 

provide advisories. Complexity increases almost linearly with added number of targets. 

This points towards the fact that there could be up to approximately 60 targets before the 

system would not be able to generate trajectories and issue advisories within the sample 

time of 30 seconds. However, even before target number reach this point, trajectory 

generation and collision resolution could be allocated to another equipped vehicle for the 

traffic situation closer to that vehicle and only take inputs from the selected equipped 

vehicle. 

1 2 3 4 5 6 7 8 9 10
CPA – no intent NM 0,38 4,40 1,47 0,33 3,60 1,49 2,80 3,20 0,63 5,00
CPA – intent NM 0,50 4,80 1,84 0,64 4,92 1,44 3,03 2,08 0,80 2,78
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Figure 5.12 – Mean Execution Time for collision avoidance algorithm – isolated 

performance of only the collision avoidance algorithm 

 

 

 

 

 

 

 

 

 

 

5.13 – Mean Execution Time for all algorithms of the MCAS system working concurrently 

on one machine (Motion control, Sensor data filter, COLREGs classification, collision 

avoidance and MHAS) 
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Environmental loads do not add to complexity as they are computed offline and 

updated with new experiences. This is the benefit of lookup tables and interpolation of 

data. That is the reason why decentralization of computation is necessary. This can be 

achieved by allocating as much as possible to offline computing, fusing data streams, 

especially reward functions, and utilizing parallel computing.  

 

 

5.5 Discussion 

Dynamic collision avoidance was further investigated in this chapter. Even though 

egocentric collision avoidance was successful in resolving close-quarter situations, 

utilization and uncertainty challenges remained unsolved. Possibility of reducing 

uncertainty with intent information sharing and designing a system that would resolve 

collision avoidance for multiple equipped and unequipped targets in the vicinity were 

investigated.  

Considering advances in communication systems available on commercial sea 

surface vehicles, intent-aware collision avoidance is feasible solution to reduce 

uncertainties. A system of sharing planned passage information is proposed in order to 

enhance trajectory generations and to have an option of an early collision detection. In that 

way it is possible to minimize the risk of language barriers and make early avoidance 

maneuvers, which is highly beneficial in confined and busy areas. Experiment results of 

intent-aware navigation showed that the system is able to detect collision situations early 

and that it is possible to have precise information about the position, CPA and TCPA for 

each target, which is updated within the sampling frequency. Early collision risk detection 

significantly reduces intent uncertainties and aids to organize traffic flows free of conflicts 

within confined and busy waterways.  

Coordinated collision avoidance is protocol proposed to aid trajectory optimization 

and risk reduction. Instead of pairwise resolution, a holistic approach is proposed, where 

traffic situation is monitored within ownship field of view and resolutions made for each 

equipped target. By sharing resolution advisories, it was possible to establish concise 
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communication with other vehicles in the vicinity and clearly state own intent. Due to the 

regulatory framework of collision avoidance, resolution advisories are advisories only with 

an aim of assisting human navigators to make informed decisions on time. Navigators 

would get both graphical and audio-visual information about the situation and proposed 

actions to take. An idea of forced cooperation is introduced for the situations where it is 

clear that there are uncooperative targets and that ownship action is required regardless of 

the collision avoidance rules.  

Experiments results have showed that resolution advisories and intent sharing offer 

significant reduction in levels of uncertainty, but also improve collision resolutions by 

enforcing earlier actions to avoid collision, by generating trajectories that benefit all targets 

in the vicinity, that vehicles are passing with larger CPA values and that own vehicle is 

deviating less from the planned course. Finally, it is evident from experiment results that 

even though proposed approach is computationally expensive, it is still possible to resolve 

close quarter situations. However, improvements in performance could be achieved by 

exploiting parallel computing power available on commercial sea surface vehicles. 
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Chapter 6 

 

Maritime hazard alerting with Hidden 
Markov Models   

 

In this chapter an approach to navigational hazard avoidance alerting system based 

on Hidden Markov Models is described. Alerting navigators should be initialed when there 

is a deviation from the action plan, or when the imminent action is required to avoid 

hazards. Also, it is important that alert should not trigger when the action is in execution. 

Therefore, if the vehicle is in the process of avoiding collision, alerting about the danger 

of collision is nuisance and can remove focus from the main task. Hazard alerting is an 

additional layer to the existing and mandatory equipment onboard commercial sea surface 

vehicles, so the focus of this study is only on alerting to hazards and taking the dynamic 

model of vehicle’s motion into account. Unlike the MCAS collision avoidance range of 12 

NM, Hazard alerting is used to track ranges up to 24 NM in order to allow for navigators 

to act early without the aid of the decision support system.  

 

6.1 Development of alerting processes 

Automatic alerting systems are not novelty in the maritime industry. In order to 

effectively control operations with minimum human interaction, automation systems were 

developed that can optimally control processes and protect equipment. This is especially 

evident through cargo or machinery automation systems, where complexity reached 

saturation level of human cognitive capacities and requires machines to mine sensing data 

sets and control processes effectively. An alerting system is capable to trigger an alarm 

when a certain sensor is out of range, but also perform complex situation monitoring based 
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on wide-ranging data to alert, or even guide, operators by incorporating sophisticated 

algorithms or machine learning models.  

Looking through the prism of stochastic decision processes, the design of an 

alerting system should take a collection of state measurement as input for the logic or 

mathematical principle that will decide to alert or not. If the scope of the system is beyond 

alerting, the design margins will maintain a certain level of automation or guidance for the 

operator. Commonly, logic is developed by a designer, after which its performance is 

evaluated and modified accordingly to fit the process better. By taking this approach, 

designer attempts to predict all possible scenarios in advance. However, more complex 

approaches use various probabilistic techniques to predict future state trajectories and alert 

the operator if deemed necessary. Some of the approaches take future uncertainties into 

account when making alerting decisions. In order to avoid unnecessary alerting, it is 

imperative to build a strong knowledge base so that alerting requirements are clear. The 

goal is to model a navigational hazard avoidance alerting system that will take prediction 

uncertainties into account. 

 

 

6.1.1 Modeling the navigational hazard alerting process 

Figure 6.1 delivers overview of navigational hazard alerting process based on 

probabilistic methods. Proposed model is based on Kuchar’s Unified Methodology for the 

Evaluation of Hazard Alerting Systems [1995] and is modified to fit the navigational 

hazard alerting process.  

Maritime Hazard Alerting System (MHAS) can be defined as a dynamic system 

with a state #>. The MHAS system receives observations Ç> from the sensing equipment 

and delivers actions (in this case the action is the warning sound or message) as an input to 

the operator %> . These inputs could be any discrete alert values, or even continuous 

resolution advisories that the MHAS might provide. The navigator and navigation control 

are both dynamic systems with corresponding states #% and #%FL. 
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Figure 6.1 – Navigational Hazard Alerting Process 

 

A process state, entailing both operator and navigating process/control, is also a dynamic 

system with an overall state vector ) . The operator makes an observation Ç>  of the 

navigating process and performs actions %> to influence and control the navigating process. 

Sensors have capability to provide information about the operator as well, depending on 

the interactivity of the navigating process. Considering that the scope of this study is not 

autonomous navigation, operators are ultimately controlling the navigating process and are 

essential part of the process. This is the reason why both navigating process and operator 

could be considered as the controlled element by the MHAS. It is therefore necessary to 

bear in mind high level of interactivity when designing the alerting system. 

Due to limitations of the presented model, there are possibilities of state dynamics 

different from what is expected from the model. It is reasonable to expect errors due to 

sensor noises, distractions and noisy decision making (such are lack of focus, 

communication disturbances, errors in messaging, lack of knowledge or experience, 

personal factors, etc.) or external disturbances (such are weather influences, false readings 

or failure of the equipment). Such errors are presented by corresponding vectors tw, tx, 

th, having the same size as the state they represent. Also, it is necessary to take into account 

that actions of the alerting system could be real-valued vectors, but often are limited to a 

small set of possibilities and as operators prefer to be alerted in case of rare interventions 
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only, it is necessary to define nominal and deferred action. Nominal action offers an alert 

immediately, while deferred action %? feeds the logic with the information that some state 

is out of designed range but holds of the actual alerting until the system confirms it with 

some other value or satisfies time deferral. 

Considering that alerting process is defined as probabilistic, knowledge of previous 

states does not warrant exact prediction of future states. However, if state # is considered 

at the current time up, it is possible to predict future state #- , #. , . . . , #% with some probability 

distribution over the states in ), bearing in mind the action trajectory ≥G of an action %>) at 

the current time. The future states depend only upon the current state, while previous state 

before the current one bears no weight of dependence. In other words, the state # exhibits 

the Markov property [Russel and Norvig, 2003]. It is, therefore, possible to express state 

dynamics as distribution with transition function ï:  conditioned by the initial state and 

control trajectory: 

s(u- + ∆u) = ï:(#(u- , ≥G)).																																																		(6.1) 

Transition from the current state to some other future state is governed by internal 

dynamics and stipulated rules. The purpose of alerting system is to prevent incidents and 

ensure that transition is done flawlessly by influencing the path state # takes in the state 

space ). However, even though there are guards to prevent incidents, incident probabilities 

exist along the transition trajectories. In a case of two-dimensional state space, as depicted 

by Figure 6.2, transition trajectory can lead to two different future states #/, or #0. Which 

path the state will take depends on transition function ï: (transition probability). At the 

same time, it is necessary to keep in mind that probabilities of incidents exist for each path 

taken. In the example depicted by Figure 6.2 both ≥/  and ≥0  could be considered safe 

trajectories to take; however, it is just to assume that trajectory ≥0 bears higher risk as it is 

closer to the island and there is a higher possibility that something unplanned can happen 

with severer consequences. 
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Figure 6.2 – Transition trajectory dynamics 

 

The proposed system has to include a model that specifies these probabilities. The most 

common approach is to define hazardous area within the state space ) that assumes the 

probability of 1 if the trajectory enters the hazardous region, or 0 if it doesn’t. Figure 6.3 

illustrates this kind of incident model. 

 

 

 

 

 

 

 

 

 

Figure 6.3 – Hazardous area and trajectory dynamics 
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In the case depicted by Figure 6.3 it is visible that the island also has a shallow 

water area and that this vessel would run aground if it was taking trajectory 2; therefore the 

probability of incident with the trajectory 2 becomes 1 and has to be avoided by an early 

action, but also hazard alerting. 

Outside of the simulated space it is hard to expect that the system will have perfect 

knowledge or complete observability of the current state. Understandably, less uncertainty 

the alerting system has, more accurate predictions about future state it can produce and 

deliver more effective decisions. The most efficient way of reducing uncertainties is taking 

additional observations to enforce learning.  

 As it is usual with system dynamics, a particular event can affect further 

development and improvement. A simple example is the infamous case of Exxon Valdez 

where one of the key components identified in the incident investigation was that the 

navigator never noticed that the autopilot was steering the vessel when orders were given 

to the helmsman. Most of the modern vessels have an audio and visual alarm informing 

operators that the steering is in autopilot mode if the wheel is moved off center. This is a 

very effective example of reducing uncertainties. Previous chapters depicted how it was 

possible to decrease uncertainties and increase computational effectiveness. However, 

often this approach requires a consensus of professionals in determining thresholds for 

decision making. Alerting is not an exemption, so in order to have an intuitive alerting, 

professional organizations would need to agree on alerting thresholds for various 

situations. In this thesis some of the possibilities are offered, but the method is emphasized 

rather than metrics.  

 In order to avoid unnecessary alerting, an alerting system has to weigh the cost and 

utility of each option it might face. For example, if a large vessel is approaching seaport, 

most likely there will be mandatory pilotage and towage service in force. If the alerting 

system is unaware of the mode it is operating, navigators might experience unnecessary 

alerting and collision avoidance resolutions for tugs and pilot boats. However, at the same 

time there could be a viable hazard in the surrounding that goes unnoticed due to the alarm 

clutter. One of the possible solutions is to engage maneuvering or underway mode for the 

alerting system. Even though uncertainty can be reduced by installing an underway and 
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maneuvering switch, there is still a possibility that the human operator fails to engage 

appropriate mode. A documentary control and appropriate training could further reduce 

this uncertainty. 

 In Figure 6.4 a situation in which the vessel is approaching an island is depicted. 

The vessel has planned and verified the route and it is clear that the passage is safe if turns 

are done as per the voyage plan. However, if the vessel steers off course and the turn is 

done late, there is an imminent danger of running aground. If the operator is aware of the 

island and doing the turn on time, alerting would be unnecessary. Alerting too early can 

cause complacency in the long run. However, further observations would reduce 

uncertainty of the operator's awareness. Therefore, the alert has to be raised once reaching 

the point (a) to ensure the operator executes the turn on time. Considering that the turning 

radius depends not only on the static characteristics of the vessel, but also on the dynamic 

influencing factors, such are speed, under-keel clearance (UKC), currents, winds, etc., it is 

imperative that the point (a) is determined appropriately. There is a clear challenge in 

finding balance between acting early on uncertain information and delaying the alerting 

until knowledge about operators' intention, as well as system's operating mode is reinforced 

in learning. Finding the point (a) is a dynamic challenge, so investigating probabilistic 

system dynamics is another objective of this chapter. 

 

 

 

 

 

 

 

 

Figure 6.4 – Finding the balance between safe operations and nuisance alerts 
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 The main goal of an effective alerting system is avoiding genuine hazards and 

associated incidents. As depicted in Figure 6.2, an alerting system has a task of affecting 

the path # in the space ). Each of the path possibilities (path becoming trajectory in the 

time domain) has a different incident probability. These incident probabilities should be 

specified for each possible path at any possible #. As mentioned in Kuchar [1995], the most 

common approach to preventing scattered hazards and expensive computing is by defining 

a region or hazard space at which probability for incident will be equal to 1 if the state 

trajectory enters the hazardous area. This is similar to shallow water contour on ECDIS. If 

look-ahead vector is set properly, it will alarm the operator that the vessel has a trajectory 

of crossing the shallow water contour and entering the hazardous area. As objective of this 

study is to design a last-minute hazard avoidance system, it is necessary to find alerting 

point at which the operator has to act to avoid incidents. 

 As stated in the expression (6.1), hazard avoidance has uncertain dynamics and 

observance of previous states does not guarantee prediction of the future states. The size 

of the action space largely depends on the definition of utilities and constraints, and 

modeling of uncertainties. As alerting would be required only when it is necessary, in most 

of the cases, intuition would be to delay the alert, which can be represented by the action 

%?. Therefore, if for example a vessel is approaching a hazard, there is a large set of actions 

available; however, the realistic option would be to steer around the hazard with minimum 

impact on the planned path. If the system would propose crash astern maneuver, or turning 

180 degrees, it would definitely help to avoid the hazard, but it would not be feasible for 

the technical and commercial operation of the vessel. It is, therefore, important to define 

constraints (maneuvering characteristics of the vessel) so that the system engages on time 

and offers an appropriate resolution.  

 In Figure 6.5 it is noticeable how probabilistic uncertainties (such are erroneous 

sensor data) affect dynamic system predictions. Even though #(u-) is fully observable, 

#(u- + ∆u) is defined by a distribution of possible states due to the prevailing uncertainties. 

In the depicted process, there is a probability of trajectory reaching the hazard zone and 

avoiding hazard. Controlling the outcome of probabilistic distribution is of interest with 

the ultimate objective of hazard free navigation. 
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Figure 6.5 – Uncertainty of probabilistic predictions 

 

  Having a full observability of the state space is a rare occurrence and usually 

reserved for only the simplest systems. Once the uncertainty exists the best action is a new 

and/or additional observation. For example, at the beginning of a new voyage, voyage 

planning has to be done. If a master or a deck officer never visited a planned port, they 

might be uncertain of the local requirements. If there is a question on how to book a pilot, 

navigator can simply take additional observations by going through admiralty publications, 

visit web pages of the piloting service or consult experienced colleagues. This will 

significantly reduce the uncertainty navigators experienced at the beginning of the voyage. 

 If the situation from Figure 6.6 is analyzed, coordinates of an intruding vehicle 

provides information about the location of the vehicle, but without additional observations, 

such are azimuth, range, speed through the water, or heading, it would not be possible to 

determine if the collision potential exists or not. It is possible to further reduce uncertainty 

of the intruding vehicle by verifying AIS data, calculating relative coordinates, use 

appropriate sensor filters, etc. In reality it is possible also to experience a total sensor 

failure, which will add to the uncertainty unless we are able to compensate with a spare set 
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of sensors or additional observations. If any of the sensors is malfunctioning or there is a 

sensor error significantly obscuring the view, own state space will be defined as partially 

observable [Russel and Norvig, 2003]. Considering that sensors are used to conduct 

observations (even the sight of operator could be considered a sensor with a particular 

sensor error distribution), relationship between the current state and observation of the state 

can be defined as sensor function, where the function O represents probability distribution 

over the space of possible measurements O [Russel and Norvig, 2003]: 

 

Ç(u-) = ,I#(u-)J																																																							(6.2) 

 

 

  

 

 

 

 

 

Figure 6.6 – Environment verification: a) target’s state space described by position in local 

reference frame; b) azimuth and range as an observation of a target  
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6.1.2 Erroneous performance analysis 

Even though operators of various system processes would appreciate only relevant 

and successful alerts, both machine and human controlled systems do experience unwanted 

alert errors. This may be caused by poor communication, external factors, ambiguous 

parameters setup, faulty sensors, or similar.  

The NHAS should be designed to avoid Nuisance Alerts (NA) and Unsuccessful 

alerts (UA), and raise only True Alerts (TA), while also recognizing instances of True 

Negatives (TN) when alert is not required.  If there were no incident after the alert is raised, 

system would be interrupted for no apparent reason and this alert would be classified as 

Nuisance Alert [Yang and Kuchar, 1997], which can also be classified as false positive 

(FP). This can lead to diminished productivity of the human operator, increased computing 

load, or even an indirect incident (trying to avoid collision with safe target and colliding 

with another target as a consequence). Nuisance Alerts negatively influence alert system 

dynamics as they can lead to reduced trust and unconformity of an operator. When alert is 

late or absent and there is no time to avoid an incident, navigator would experience an 

Unsuccessful Alert [Yang and Kuchar, 1997], which could be classified as false negative 

(FN). This error can lead to significant consequences; therefore, probability of unsuccessful 

alert has to be reduced to minimum. Considering subjectivity of the human operators, 

nuisance alerts are difficult to define. In the ideal world only perfect alerting would exist 

without unsuccessful and nuisance alerts, but the goal of this section of research is to 

achieve system with the best balance of all alerting inaccuracies. The performance of the 

overall NHAS can be described using conditional probabilities taking in consideration both 

successful and erroneous alerts.  

One of the questions raised when dealing with alerting system dynamics is when 

the alert should occur. This is something that can be resolved in the design stage and one 

of the options is that any time the state ∆ reaches a pre-defined hazard threshold an alert 

occurs.  

As with other binary classifiers, conditional probability relationship could be 

visualized by utilizing confusion matrix and System Precision-Recall Characteristic 
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(SPRC). The SPRC is constructed by connecting all precision-recall points of a monitored 

system. Recall is plotted on the x-axis, while precision is plotted on the y-axis. The curve 

is finalized by connecting adjacent precision-recall points with a straight line. Figure 6.7 is 

an example of SPRC for a pair of successful and unnecessary alerts. Their precision and 

recall points are calculated and the plotted as the SPRC curve. As much as the SPRC curve 

is bellied towards the upper right corner (1.0, 1.0) it is more precise and has higher skill in 

distinguishing between two distinctive groups (successful / unnecessary alert). In the 

example depicted below, a point on the SPRC curve is a plot of successful alert probability 

against the unnecessary alert probability at a given time. The ideal place for an alert to 

occur is in the top right corner.  

Recall is calculated by dividing number of True alerts with a sum of numbers of 

True Alerts and Unnecessary Alerts (-C -C + ßC⁄ ), while Precision is calculated by 

dividing number of True Alerts with a sum of numbers of True Alerts and Nuisance Alerts 

(-C -C + ;C⁄ ). 
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Figure 6.7 – Alert confusion matrix and SPRC example 
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6.1.3 Observability and approximations 

As a potential target vehicle is approaching own vehicle, the alerting system could 

be reading that the target is maintaining safe distance from the own vehicle. However, at 

any moment, target could change its course and sail closer to own vessel presenting a 

hazard. This is an example of the random nature of maritime navigation. It is evident that 

knowing previous positions (states) of vessels becomes irrelevant once an intruding vessel 

changes its course and sails closer. Naturally, this example shows either unequipped 

vehicle, or uncooperative equipped vehicle due to unexpected situation, malfunction or 

human error. Due to various factors, but mostly because of sensor errors and inaccuracies, 

observability is restricted and ambiguous. With additional observations, goal is to reduce 

state uncertainty. Russell and Norvig [2003] define belief state updating with new 

observations as filtering. As filtering is computationally intensive, it is imperative to reduce 

ambiguity at design level as much as possible.  

Once alerting thresholds have been defined in the design stage, alerting system is 

operating by constantly scanning for any event that would warrant the alert. If there are no 

alerts to display, the system is suggesting a deferral action. Determining thresholds is not 

a straightforward task. It is easy to decide that a certain fixed number will be a threshold 

value, but it will not satisfy the objective of reducing nuisance alerts. Probability threshold 

value will have to be adaptive to satisfy the system dynamics and partial observability of 

the proposed model. In Figure 6.4 a simplistic overview of the alerting system based on 

probabilistic measurements is depicted. In this example the threshold is set in advance and 

once the alerting system recognizes need for alerting, the alerting system issued the turn 

alert, as ownship did not turn on time, but rather late and reached the point a determined 

by the predictor. 

As mentioned earlier in the chapter, there are various noises that affect observability 

of state s. These noises are not only related to the sensors used to assess the collision 

situation, but also behavior of operators, which are harder to model than sensor errors. In 

order to incorporate willingness to follow Collision Regulations (COLREGs), attentiveness 

of the navigator (setting up the bridge properly, weather conditions, fatigue level of the 

navigator, etc.) it is necessary to introduce another variable that can be named Behavior 
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Parametric Form (BPF). BPF is used to index a set of variables that have a discrete domain 

and persist over a period of time. All BPFs could be incorporated as set of transition 

functions (6.3) which are integrated in trajectories of predictor. As an example, in Figure 

6.8 a scenario with uncertain future states is illustrated, where in one mode a vehicle 

nominally tends to follow the planned route and ROT is actively monitored to slow down 

the turn on time, while in other mode a navigator loses his/her situational awareness and 

does not correct the turn on time resulting with running aground after exiting a buoyed 

channel. 

 

#(u- + ∆u) =

⎩
⎪
⎨

⎪
⎧-/

(#(u-), ≥G),																					É/~- = É/~/																									(6.3)
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Figure 6.8 – Behavior Parametric Form (BPF) – example of two probabilistic outcomes 
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BPF variables are included in the state s description for each participating member. 

As mentioned in previous chapters, equipped members that share their intent will allow for 

the ownship to have significantly improved observability of targets’ states, while with 

unequipped targets we face partial observability. Some of the BPF variables are directly 

measurable with intent sharing vehicles (auto-pilot mode, weather conditions, safety cone 

settings, etc.), while others are difficult to measure directly (attentiveness and fatigue, or 

proper bridge preparation). It is still possible to infer unmeasurable BPF variables through 

estimation and influence on the transition function, similarly as when plotting a target on 

the RADAR plotting sheet and determining target’s heading, speed, course, CPA, TCPA, 

etc.  

Once all the parameters have been defined, an alerting system will update itself at 

each consequent belief state. The most accurate prediction will be at the current state, as 

any errors brought forward from the current state to predicted states would be larger. An 

example of this mechanism is depicted in Figure 6.9, which confirms necessity of 

addressing uncertainties early at the design stage. However, it is necessary to keeš in mind 

that variance plays a significant role. As the variance is small enough, errors and 

uncertainties will be easier to control and predict. Larger variances could lead to sparse 

belief states with misleading alerting and/or guidance results. Therefore, when using a 

source for updating a belief state, it is important to select sources with tighter data sets, 

then to select datasets with broad distributions. In this sense, the alerting system would 

update a belief state by omitting uncertain variables while focusing on information with 

known properties. Therefore, as far as possible input data has to pass the filtration process 

and uncertainty reduced with intent sharing. 

There are several approaches to handling alerts. After defining and updating belief 

states, it would be possible to follow the path policy and once the safest path is computed 

(the path with the maximum allowable probability of an incident where minimum safety 

level triggers the alarm), ownship would simply follow that path without updating or 

further planning [Winder and Kuchar, 1999; Samanant et al., 2000]. Incident probabilities 

are calculated at the time of alert and the path is maintained with that probability as given. 

Another possibility is to calculate safe path similarly as now, but after some fixed time to 

allow for the alerting system to update its belief state and compute fresh probabilities. After 
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these probabilities have been updated, a new set of safe paths is proposed until the hazard 

is clear, incident avoided, and alert suspended. Another upgrade to the alerting logic would 

be that future belief states are considered when making a decision. This will allow for more 

informative decision-making; however, it is necessary to find a right balance between 

computational price and horizon of opportunity. By maintaining a finite horizon, the logic 

would gather more information with higher precision and less computational expense. 

Developed path planning and trajectory development is utilized for collision avoidance to 

determine alerting requirements and alert timings.  

 

 

 

 

 

 

 

Figure 6.9 – The effect of reduced uncertainties at the present state 

 

 

6.2   Probabilistic alerting with Q-learning 

Unlike the aeronautical sector, maritime transportation never had a separate system 

for traffic alerting and resolution. Marine RADAR and later ARPA became crucial source 

of information for collision avoidance. Today, with many other electronic devices available 

on the bridge, navigators have an overwhelming resource of data to assist them in decision-

making. However, incidents still happen and one of the tools that could reduce frequency 

of incidents could be a "last minute" alerting and collision avoidance system that assists 

navigators in finding the safest waters during times of increased pressure and congestion. 

On the other hand, air transportation had an intensive development of various software 
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solutions in the last four decades. From Precision Runway Monitor (PRM) systems where 

the main task was to separate aircrafts on the final approach, where unnecessary alerts were 

not considered [Shank, 1994], over the simple-trajectory based alerting with incident 

proximity criteria [Yang and Kuchar, 2002] all the way until the complex trajectory-based 

systems where dynamic programming was explored in resolving advisories [Yang and 

Kuchar, 2002]. 

Vehicle handling, maneuvering and collision avoidance have been presented in 

earlier chapters, while the alerting process is the remaining intrinsic part of the hazard and 

collision avoiding process. Hazard avoidance includes also avoiding stationary objects, 

buoys and shallow waters and the main goal is to keep the vehicle within the planned route 

while ensuring that any deviation from the route is safe enough and will not result in near 

misses or incidents. Many of the commercial vehicles are equipped with ECDIS stations 

and are able to utilize safety cones, which would, if set up properly, alert navigators of the 

upcoming hazards. However, this setup will alert anything that is considered hazard and 

the main issue is the number of alerting navigators get while using this feature. That is the 

reason the author of this thesis noticed that many navigators tend to switch it off or reduce 

the distance of the safety cone reach in order to avoid visual and audio alerts. It does not 

help that each ECDIS station has to be reset individually, so the level of frustration often 

is very high in the moments of increased stress and pressure due to heavy traffic situations. 

Therefore, focus is on the last-minute alerting which will prompts users to take actions 

immediately in order to avoid hazards. It works with already developed dynamic collision 

avoidance predictors that take into account external disturbances with a modification to 

take stationary hazards into account, as well as to introduce the third dimension of the 

vehicle model (vehicle’s draught and available water depth) to avoid shallow waters. Safety 

zones remain the same as for the collision avoidance algorithm. 

In this thesis approach to hazard alerting is separation of dynamic and static 

hazards. Even though a single algorithm that takes both dynamic and static hazards is 

designed, approach to conflict resolution is different, so it is necessary to depict reasons 

for different rewards and alerts. When considering dynamic object, the alerting system 

should alert when the risk of collision is recognized and when the action has to be taken in 

order to avoid collision. The former requirement is fulfilled by utilization of ARPA. In 
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proposed algorithm, information from the COLREGs classification algorithm is utilized to 

determine the risk of collision. However, for the former requirement the system should 

recognize the time when immediate maneuvering is required to avoid hazards and issue 

alerts. In the case of static objects and shallow waters, alerting can have two modes: a) 

alerting when vehicle is not maneuvering as planned (reaching wheel-over position, but no 

reaction from a navigator), and b) alerting when immediate maneuvering is required to 

avoid hazards.  

Most of the commercial vehicles are obliged to be equipped with various equipment 

that can aid in alerting to avoid both dynamic and stationary hazards. For collision 

avoidance both ARPA and AIS can issue alerts about dangerous targets. When approaching 

shallow water, it is possible to utilize ECHO sounders or ECDIS safety cone to inform 

agent on time that ownship is approaching hazardous areas. ECDIS safety cone is also 

effectively used to inform navigators of stationary hazards. However, these alerts often 

over-alert when navigating close to the hazards. In order to avoid nuisance alerts,  approach 

is to design alerting system that alerts when the system determines action is really required. 

So, MHAS is working in combination with existing systems and can serve as the last 

instance of alerting when imminent danger exists, and imminent maneuvering is required 

to avoid hazards. 

Lean approach is utilized again, so required state space includes only the essential 

state space members that would be sufficient to make alerting decisions. Own state space 

will consider the situation where alerting is happening for the last-moment situations only. 

However, any adjustments to the state space could easily be done in the design stage of the 

finalized product for the industry. Also, it is important to adjust alerting for a specific type 

of a sea surface vehicle. When determining the time stamp when immediate maneuvering 

is necessary to avoid collision, shallow water or stationary object, maneuvering 

characteristics of a vehicle will play an essential role. Smaller and more agile vehicles will 

be able to react later than fully loaded VLCC. Therefore, integration with the vehicle 

motion models and algorithms is essential to have precise alerting. Broader type-specific 

approach could be established, but it would not be as precise as a vehicle-specific solution. 

In line with the above own state space is as follows: 
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) = ij" , 	k" , :,l, ),l, :/C, -:/C, o,6 		*" , +,-#, :/C& , -:/C& , j6$ , 	k6$ .
q 																																				(6.4) 

Most of the members were described earlier, with an exemption of :/C& , -:/C&, 

which stand for Closest Point of Approach and Time to Closest Point of Approach for an 

equipped target, while j6$	and	k6$  stand for North-East position of the time stamp in 

which maneuvering has to be initiated in order to avoid incidents. Conservative approach 

is maintained and this design is focused on avoiding near misses as well as collisions and 

allisions.  

The action space is discrete and low-dimensional: 

C#@&): = {%?, %/, %0}																																																								(6.5)		 

When there is no need for alerting the system selects alarm deferral, or %?. In case 

of dynamic obstacles, the fact that there is a higher risk of unequipped vehicles acting 

irrationally is taken into consideration, so an option of alerting earlier is utilized with a pre-

alert %/  warning where navigators get visual warning that the target is potentially 

dangerous showing that the predictor is showing a possibility of either near miss or 

incident. In the case of equipped vehicle, pre-alert will still exist, but the system will trigger 

it only if the equipped vehicle is uncooperative and deviates from the shared intent. Finally, 

when the predictor determines time stamp requiring immediate maneuvering and own 

vehicle reaches that time, then imminent maneuvering alert %0 is issued. The predictor 

utilizes vehicle motion model, which allows the alerting model to have dynamic input of 

the alerting timestamp depending of the vehicle’s speed and external influences. The 

imminent maneuvering alert assumes that the vehicle will maneuver according to the 

selected mode in the vehicle motion model (precise, economy or emergency). The 

following figures depict various situations with a dynamic obstacle: 
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Figure 6.10 (a) – deferred alert equipped   Figure 6.10 (b) – pre-alert equipped  
and/or unequipped target    and/or unequipped target 
 

 

 

 

 

 

 

 

 

 

 

Figure 6.10 (c) – alert for unequipped vehicles;  Figure 6.10 (d) – alert is active  
no alert for equipped vehicles    as vector is already in the Ryz  

area and predictor calculated that 

imminent action is required 
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In Figure 6.10 (a), it is noticeable that two vehicles are passing with minimal 

distance large enough that no alerting is necessary. In this case there is no difference 

between equipped or unequipped vehicles. In Figure 6.10 (b), pre-alert will signal on the 

ownship as vectors point out towards the NM safety zone and the intent is to keep the 

course and speed. There is still no need for the imminent alert as both vehicles can change 

their intent and alter course to increase distance on their own. In the example 6.10 (c) 

situation is depicted which makes alerting different for equipped and unequipped vehicles. 

For the unequipped vehicle uncertainty of an intent has to be assumed, so the system raises 

pre-alert, while in the case of equipped vehicle where intent is shared, alerting is deferred 

as the intent of both vehicles is known. However, if one of the vehicles deviates from the 

shared intent, pre-alert will be activated by the system prompting other vehicle about the 

deviation. Finally, the example 6.10 (d) shows the situation where own vehicle has reached 

an imminent alerting timestamp and has to maneuver immediately in order to avoid target 

vehicle entering the NM safety zone. 

Processing fixed objects (for this purpose all objects that are not dynamic are 

defined as fixed, such are shallow water, land, buoys, etc.) is similar as alerting for dynamic 

objects; however, there are few differences in utilizing predictor. For fixed objects 

information available on ECDIS is used to determine position of shallow water, buoys and 

landmarks. This information is transferred to the occupancy grid developed for the 

predictor and the main task is then to find a position where maneuvering has to be done in 

order to avoid the shallow patches and other fixed objects. The logical question is raised: 

How would the system know what is a shallow water for the vessel? It is visible that human 

interaction is not completely removed with the DSS systems, so in this case it is necessary 

to ensure that navigator selects correct shallow water contours and to use accurate draughts. 

Assumption is made that voyages are prepared professionally with an ultimate goal of safe 

passage. Therefore, it is imperative to control the process of voyage planning and approval.  

Figure 6.11 demonstrates how the system recognizes the need to alert the navigator. 

The predictor has to have the information from the vehicle motion algorithms in order to 

find the maneuvering point where immediate action is required. As mentioned earlier, 

agent chooses to be risk averse, so the system has to find the point that will not allow the 

shallow water to enter the near miss safety radius of the own vehicle. Therefore, pre-alert 
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will occur once the system recognizes that the shallow water will enter the preferred radius 

and raise an imminent action alert when reaching a point after which immediate action is 

required to prevent shallow water contour entering the near miss radius. In this case that 

means that the predicted waypoint %/  is refused by the system, but also %0  because 

predictor’s verification process determined that own vehicle’s near miss safety radius is 

touching the shallow water, so the predicted alteration point %1 is selected as the last turn 

and all hazard alerting is set up taking this information into consideration. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.11 – Establishing alteration waypoint positions in order to find the appropriate 

alerting point 

 

With safety zones and constraints depicted in this way, it is possible to define 

reward space for hazard alerting: 

+I)- , C.J = K/+/I)- , C.J + K0+0I)- , C.J																									(6.6) 

where 
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+/I)- , C.J = M
10,																				if				:/C ≤ R,6 	and	-:/C < 30	min		

0,																																																																					otherwise
												(6.7) 

+0I)- , C.J = M
10,									if				:/C ≤ R,6 , -:/C < 18	min, and		tDNq>L ≥ 1	;.

0,																																																																																									otherwise
									(6.8) 

+1I)- , C.J = M
100,																																if				:/C ≤ R,6 			and		j" , k" = j6$ , k6$
0,																																																																																			otherwise

										(6.9) 

+2I)- , C.J = M
100,																	if				:/C ≤ R,6 , -:/C < 30	min			and		tknLMq-V
0,																																																																																			otherwise

							(6.10) 

 

The reward 6.7 assigns reward points for an agent to issue a pre-alert when CPA to 

a dynamic object is lower than near-miss safety radius and when TCPA is less than 30 

minutes away. As discussed earlier, approach is risk averse in assigning numbers to 

threshold values; however, the appropriate method is to conduct detailed research and 

organize administrative conferences to agree on threshold values for the whole maritime 

industry. The reward 6.8 is very similar to the first reward, with an addition of tDNq>L, 

which is used for fixed objects and shallow waters. In this reward the agent is rewarded 

when pre-alerting for each occurrence when CPA is lower than near-miss safety radius, 

when TCPA is less than 18 minutes and when a vehicle is more than 1 NM away from the 

originally planned route. The reward 6.9 is used to reward instances where imminent 

alerting is required, while reward 6.10 is also used to reward imminent alerting when 

equipped vehicles are deviating from their shared intent. The maneuvering point ./ is 

calculated by inherent predictor depending on the COG and SOG the vessel is making and 

adjusted for all external disturbances (heading of a vehicle is disregarded and only COG 

used). Once a vehicle reaches the ./ position (j6$ , k6$) and has CPA lower than near-

miss radius, imminent maneuvering alert would be raised in order for the navigator to 

immediately maneuver a vehicle away from a hazard.  
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 It is now possible to outline pseudocode for the Hazard Alerting Algorithm: 

_______________________________________________________________________ 
Algorithm 7 – Hazard Alerting Algorithm 
_______________________________________________________________________ 

Input: States ), Action C#@&):*,A  

Reward function + ∶ )	x	C → ℝ, Discounting  d = 0.1, e-greedy factor 0.10,  

Learning rate K = 0.9. 

Output: Display relevant Alerting signal 

1  Initialization: #, !?(#, %) = 0, % = %?. 

for every 10 seconds do: 

2  Read :,l , ),l , :/C  and -:/C   directly from ARPA, read fused position 

information (j" , 	k") for the ownship and each target or fixed object and update #  

3 If :/C ≤ o,6 , or -:/C < 30	µ™j, or tDNq>L ≥ 1	;. proceed with the step 4, 

otherwise return to step 2 

4  for each equipped target do: 

5   extract motion data for the next 30 minutes and store in the buffer   

 »:#)(L)% 

6  end for 

7  for each unequipped target do (motion predictor): 

8   compute by dead reckoning future positions utilizing present :,l  

and ),l adding 10 seconds for the period of 30 minutes (total of 

180 predicted positions) – vector algebra and store predicted 

positions in the buffer »:#)(q)% 

9  end for 

10  for each step of the episode do (motion predictor):  

11   compute by dead reckoning future positions utilizing present :,l  

and ),l adding 10 seconds for the period of 30 minutes (total of 

180 predicted positions) – vector algebra and store predicted 

positions in the buffer 

12   for each of the predicted »(Q,{u, u + 10, u + 20,… , u + 1800} do:  
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13    take bearing of the next waypoint (position known from  

EDIS); if any of the predicted positions accomplishes 

present leg of the voyage, take bearing of the following 

available waypoint 

14    compute by dead reckoning future positions utilizing  

present :,l and ),l adding 10 seconds for the period of 

30 minutes (total of 180 predicted positions) – vector algebra 

and store predicted positions in the buffer 

 15    for each of the predicted positions 

»∗(Q,
{u, u + 10, u + 20,… , u + 1800} do: 

16     verify :/C > o,6 

17     if for any n∗$(+*(%) = 	:/C ≤ o,6  

18     then return jO-./∗ , kO-./∗  and terminate verify 

19    end for 

20   end for 

21   utilize TURN Control Algorithm to determine j6$ , k6$  

22  end for 

23  Chose % from !>E/(#, %). 

24  for each »(Q,, »:#)(L)% and each »:#)(q)%: 

25   Take action %, observe +, #8 

26 Choose %8 from #8 using policy derived from ! (e-greedy) 

27  !(#, %) ← !(#, %) + K[d!(#8, %8) − !(#, %)]                               

28  # ← #8; % ← %8 

action is deterministic – if +/ or +0 is active then % = %/; if +1 or 

+2 is active, then % = %0; otherwise % = %? 

29 end for when # is terminal 

30  return ! and go back to step 2 

31 end for when manually switched off or when “moored” is selected on AIS 

32 end 
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Considering that own interest is to determine appropriate alerting for the present 

situation, the discount factor is d = 0.1 as there is higher emphasis on immediate rewards, 

while maintaining higher fixed learning rate K = 0.9 , as this problem is relatively 

deterministic, but it is also necessary to allow for some exploration and to learn from new 

experiences. The algorithm initializes with no alerting action until the first iteration is 

completed and action is adjusted to the situation vehicle is in. The algorithm starts from 

the beginning only after casting off its lines, so for the whole voyage, algorithm would be 

iterating unless switched off. The e-greedy policy remains tuned as in (3.74). After the 

algorithm has initialized, every 10 seconds updates determine if there is need for alerting 

or not. As per the line 3, if the threshold for alerting is not met, the algorithm terminates 

and returns to the line 2 for the next 10 seconds iteration in order to preserve computation. 

From lines 4 to 9 motion predictor is utilized to determine future position of both equipped 

(»:#)(L)%) and unequipped (»:#)(q)%) targets in the vicinity of the own vehicle. Once the 

future positions and attitudes of targets is known, algorithm predicts ownship progression 

taking into account not turning on a next waypoint if there is a waypoint in the next 30 

minutes that is observed. For each timestamp, algorithm is taking a bearing to the next 

waypoint and then predicts progression on that bearing as well. In that way it is possible to 

determine the point where maneuvering is required to keep the hazard outside of the near-

miss radius (jO-./∗ , kO-./∗ ). As the vehicle is not able to turn instantaneously, Yawing 

Control Algorithm is consulted to determine the imminent maneuvering position 

(j6$ , k6$). This is crucial for proposed algorithm, so that it can determine when to issue 

imminent maneuvering alert %0 . The algorithm iterates with delivery of Q-value and 

optimal action. 
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6.3   Encounter scenarios 

In this section effectiveness of hazard alerting model is investigated by utilizing 

several examples of encounters. Examples are comprised of equipped and unequipped 

dynamic objects, as well as fixed objects and shallow waters.  

As described in previous sections, when there is no need for pre-alerting or 

imminent alerting, the system is in a deferral state. The deferral state assumes that 

navigators are in control of the process and that only passive monitoring is required. Hazard 

alerting system is designed as an integrated part of the MCAS, so the motion predictor is 

of essential importance for the system’s stability and accuracy.  

It is necessary to reemphasize that the main reason for the hazard alerting system is 

to reduce the amount of alerting that is currently happening on the navigating bridge and 

to issue alerts for the situations when the alerting is absolutely necessary. ARPA is already 

informing navigators about the dangerous targets and proposed COLREGs Classification 

Algorithm is also determining risk of collision. However, with the MHAS alerting, the 

biggest benefit is getting an alert when imminent action is required to avoid collision. 

MHAS is only alerting navigators, while collision avoidance algorithm determines an 

appropriate helm order. The imminent maneuvering point is a dynamic position, as the 

hazard alerting algorithm exploits motion control algorithms and takes into account 

steering modes, depth of the water, etc., so that the proposed turn is achievable. 

Considering that speeds are relatively slower than in the aeronautical sector, discretization 

of the time-domain can be maintained. Running hazard alerting algorithm with continuous 

time space would have marginal benefits for a large computational expense.  

Before testing scenarios that were proposed earlier in text, simple examples of own 

vehicle navigating a narrow channel are considered. Sabine channel is continued as 

simulation grounds, where own vehicle is surrounded by shallow water and there are many 

navigational hazards present in the area. In Figure 6.12 situation where own vehicle is 

approaching the Waypoint 1 is depicted and it is only equipped with ECDIS’s Look-ahead 

feature. What is visible is that alerts are already active as the look-ahead rectangle is wide 

enough to activate shallow water on each side and every buoy that enters the rectangle. 
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This presents a challenge for navigators, as many alarms are going off during navigation, 

so nuisance leads to ignorance. Certainly, it is master’s discretion to turn off the look-ahead 

feature and stop the alarms, but there are no other features available on the navigating 

bridge to compensate for the missing look-ahead feature. Further, in Figure 6.13 it is 

noticeable that before own vehicle reaches the turning point, shallow water on the opposite 

side of the bank is already within the reach of the look-ahead rectangle and then ownship 

faces an additional issue of getting multiple alarms, including the waypoint alarm and 

wheel-over position alarm, but with so many active alarms there is a higher chance that 

navigating officer simply mutes all alarms and disregards what alarms are active. 

Information overload comes at most critical times of navigation operations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.12 – Look ahead hazard alerting 1 
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Figure 6.13 – Look ahead hazard alerting 2 

 

By introducing the hazard alerting algorithm with the predictor described in 

Chapter 4, the benefit of nuisance alarms elimination is immediately noticeable. The 

system can work in concurrently with look-ahead option, but even on its own provides a 

significant level of security. Figure 6.14 depicts the progress of how the predictor verifies 

the moment where own vehicle has to act in order to avoid hazard, so it issues pre-alerting 

and then advisory. Utilizing the motion control algorithm, the MHAS system can provide 

advisories of the helm order and course to steer once the pre-alarm has been activated with 

the same codes used in the previous chapter.  

The blue color is used as regular planned passage line. The green line with 

waypoints is the predictor that is aligned with the planned passage. It is necessary to note 

that predictor assigned waypoints with 30 seconds difference and therefore waypoints are 

sometimes aligned and sometimes not aligned with the actual wheel-over position; 

regardless, there is a notification to a navigator that the wheel-over position has been 
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reached. Orange line is predictor’s trajectory estimation if navigator does not turn at the 

planned wheel-over position. Predictions are based on own vehicle’s maneuvering 

characteristics utilizing knowledge of current SOG and maximum possible ROT that can 

be achieved at that speed. Further estimations are blue and red trajectories. Trajectory 

generation is discrete with 30 seconds interval to ensure computational feasibility. The 

orange trajectory is still safe for own vehicle. The blue trajectory shows that ownship would 

still be within the channel, but we do enter the wreck symbol, so it is already considered 

unacceptable, while the red trajectory clearly shows ownship enters the shallow waters and 

runs aground. If assumption was made that the planned turn was to be done with 10° ROT, 

then the planned wheel-over position would overlap with the second green waypoint. 

Wheel-over positions for the other predicted trajectories are not visible on Figure 6.14 and 

it is important to state that they utilize maximum ROT for the speed own vehicle achieved 

at the time of prediction. When own vehicle reaches next waypoint, all predictions are 

dynamically replanned and would be somewhat different than trajectories in the previous 

time-step.  

 

 

 

 

 

 

 

 

 

 

 

Figure 6.14 – Hazard alerting with predictor 
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Having the insight of predicted trajectories allows the MHAS system to generate 

appropriate alerts. At the green wheel-over position navigator received TTP: 200° alert. In 

presented scenario, simulation was performed with no external disturbances and own 

vehicle was able to steer the required COG with engine running at Half Ahead and SOG 

of 9 knots. As TTP alert is issued at the planned wheel-over position, it takes into 

consideration planned ROT. In order to trigger other alerts, own vehicle was not turned as 

per initial advisory, but rather kept the initial COG of 260°. 15 seconds after the wheel-

over position, EHC alert is received in order to expedite the planned turn. At the position 

of the WP-A (third green waypoint), next alert is received, FTTP: 200°, which is now to 

be executed without delay. At the WP-B vessel received alert ID-HTP and NTS, indicating 

that ownship has reached the point where hard to port helm order is necessary to avoid 

hazards and that there should be no orders to starboard. Finally, at the WP-C, CAS alert is 

received indicating that ownship should initiate crash astern maneuver to minimize impact. 

ID-HTP and NTS alerts remained active. At the WP-D only CAS alert remained active. 

Alerting progress is presented in Figure 6.15. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.15 – Hazard alerting progress – course alteration 
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To verify feasibility and benefits of having MHAS system installed onboard, eight 

scenarios are used as proposed in earlier chapters. For each scenario performance of hazard 

alerting system is assessed by comparing the results of simulations with MHAS algorithm 

against the results of simulations with standard ARPA and ECDIS alerting. In each 

scenario, targets are assessed individually. The situation is monitored as static, so own 

interest lies in finding out what alerts ownship gets for the situation visible on RADAR and 

ECDIS screens. Relative geometries are allowed to follow through, without intervening 

and altering course. Collisions do happen in simulations, but this is required to confirm 

necessity of alerts. For simplicity it is assumed that there are no external disturbances, but 

this does not limit the algorithm as it is capable of handling disturbances with an aid of 

motion control algorithms. Each scenario is simulated for 100 times, and for each pairwise 

situation, score is entered into the confusion matrix from which precision and recall values 

are calculated and SPRC curves constructed. Sensor uncertainties are also allowed, so 

filtering and/or fusion of sensor data is inhibited. Proposed reward function is setup so that 

alert is required if target trajectories are entering Near Miss radius of 1 NM and the target 

is less than 3 NM away, or the TCPA is less than 15 minutes. For the turning scenarios and 

shallow water hazards, alerting is to happen if the vehicle is not following the intended 

route and reaching the appropriate alerting point determined by the predictor. 

The scatter distribution of resulting data is within very dense range, so it is hard to 

visualize with SPRC curves; therefore, Precision-Recall scatterplots without are 

constructed without connecting them. However, it is possible to clearly envision the 

difference between ARPA/ ECDIS alerting and MHAS alerting. It is necessary to keep in 

mind that scatters that are closer to the upper right corner (1,1) are considered to be better 

performing with precision and recall score close to 100 %.  
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Scenario 1 – Experiment Results  

 

 

 

 

 

 

 

Table 6.1 – Scenario 1 ARPA & ECDIS CM   Table 6.2 – Scenario 1 MHAS CM  

 

 

 

 

 

 

 

 

 

Figure 6.16 – SPRC of the Scenario 1 

 

In the first scenario, 4 targets for which alert was warranted and 6 targets where 

alert was unnecessary are depicted. It is possible to see from the resulting confusion 

matrices that MHAS performed comparatively better with lower number of nuisance and 

unsuccessful alarms. SPRC shows that MHAS alerting is concentrated around the top right, 

while ARPA & ECDIS alerting had a much wider spread. 
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Scenario 2 – Experiment Results  

 

 

 

 

 

 

 

Table 6.3 – Scenario 2 ARPA & ECDIS CM   Table 6.4 – Scenario 2 MHAS CM  

 

 

 

 

 

 

 

 

 

Figure 6.17 – SPRC of the Scenario 2 

 

Similarly, in the second scenario 4 targets for which alert was warranted and 6 

targets where alert was unnecessary are illustrated. Even though ARPA & ECDIS alerting 

performed comparatively better for the True Alert category, it is still noticeable that MHAS 

outperformed especially in the Nuisance Alerts category. SPRC shows tighter spreads for 

both categories, but MHAS is still performing better and closer to the upper right corner.  
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Scenario 3 – Experiment Results  

 

 

 

 

 

 

 

Table 6.5 – Scenario 3 ARPA & ECDIS CM   Table 6.6 – Scenario 3 MHAS CM  

 

 

 

 

 

 

 

 

 

Figure 6.18 – SPRC of the Scenario 3 

 

The third scenario maintains ratio of 4 targets warranting alerts and 6 targets where 

alerting is not required. Performance of MHAS remains favorable as evident from the 

confusion matrices. The SPRC visualization confirms MHAS outperforming sole ARPA 

and ECDIS alerting and the reduction of nuisance alerts is evident in this scenario as well.  
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Scenario 4 – Experiment Results  

 

 

 

 

 

 

 

Table 6.7 – Scenario 4 ARPA & ECDIS CM   Table 6.8 – Scenario 4 MHAS CM  

 

 

 

 

 

 

 

 

 

Figure 6.19 – SPRC of the Scenario 4 

 

The fourth scenario has 3 targets that require alerting and 7 targets where alerting 

would be unnecessary. MHAS continues to outperform, especially in the True Negatives 

and Nuisance Alerts categories. It is evident that ARPA & ECDIS alerting was designed 

to err on the negatives side and that the system allows for false positives to maintain safety 

of navigation. SPRC confirms better performance of MHAS.  
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Scenario 5 – Experiment Results  

 

 

 

 

 

 

 

Table 6.9 – Scenario 5 ARPA & ECDIS CM   Table 6.10 – Scenario 5 MHAS CM  

 

 

 

 

 

 

 

 

 

Figure 6.20 – SPRC of the Scenario 5 

 

The fifth scenario has an equal distribution of targets warranting alerts and targets 

that are considered hazard free. Once again, the results of the experiment show that MHAS 

performs better in all aspects, but it is particularly successful at reducing Nuisance Alerts. 

The SPRC of the scenario 5 has shown that MHAS increases safety of navigation with 

multiple targets within the surveyed area. 
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Scenario 6 – Experiment Results  

 

 

 

 

 

 

 

Table 6.11 – Scenario 6 ARPA & ECDIS CM   Table 6.12 – Scenario 6 MHAS CM  

 

 

 

 

 

 

 

 

 

Figure 6.21 – SPRC of the Scenario 6 

 

In this scenario only five targets were tracked, where one target required alerting 

and others not. Both approaches showed good performance, even though MHAS did 

provide more stable results. The SPRC depicts MHAS’s stability, as the scatter 

concentration remains in the top right corner of the precision-recall curve.  
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Scenario 7 – Experiment Results  

 

 

 

 

 

 

 

Table 6.13 – Scenario 7 ARPA & ECDIS CM   Table 6.14 – Scenario 7 MHAS CM  

 

 

 

 

 

 

 

 

 

Figure 6.22 – SPRC of the Scenario 7 

 

In this scenario ten targets were tracked, where three targets required alerting while 

other were alert free. Both approaches showed acceptable performance, even though 

MHAS did outperform. The SPRC again shows MHAS’s stability, as the scatter 

concentration dominantly remain in the top right corner of the precision-recall curve. 

 

  Actual 

   Alert required Alert Not required 

Simulation 

Alert 

Raised 

 (TA) 

293 

 (NA) 

36 

Alert 

Not 

raised 

 (UA) 

7 

 (TN) 

664 

	

  Actual 

   Alert required Alert Not required 

Simulation 

Alert 

Raised 

 (TA) 

295 

 (NA) 

1 

Alert 

Not 

raised 

 (UA) 

5 

 (TN) 

699 

	

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0,955 0,96 0,965 0,97 0,975 0,98 0,985 0,99 0,995 1

Pr
ec

isi
on

Recall

Scenario 7 - SPRC Visualization

ARPA & ECDIS ALERTING MHAS ALERTING



	

	
	
356	

Scenario 8 – Experiment Results  

 

 

 

 

 

 

 

Table 6.15 – Scenario 8 ARPA & ECDIS CM   Table 6.16 – Scenario 8 MHAS CM  

 

 

 

 

 

 

 

 

 

Figure 6.23 – SPRC of the Scenario 8 

 

The eight scenario is a special one as it has only two moving targets and three 

hazards selected by the author to showcase performance against charted hazards as well. 

Two of the charted hazards are shallow water, while one is a set of navigational buoys. 

Both approaches resulted with perfect score for the targets that required alerting. However, 

ARPA and ECDIS alerting scored poorly on Nuisance Alerts as they were alerting for 

target vehicle, shallow water and buoys when this was not necessary. MHAS managed to 
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recognize necessity and alerted only when it was required. Failure to recognize true 

negatives resulted to ARPA and ECDIS scatters distribution to the right lower corner, while 

MHAS remained concentrated in the top right corner. 

Finally, Figure 6.24 depicts combined SRPC for all scenarios and it is easy to notice 

that MHAS performed better on average than the ARPA and ECDIS alerts, especially when 

detecting Nuisance Alerts that potentially lead to diminished attentiveness of navigators 

when performing critical navigational tasks. Current tools we have on navigational bridges 

are helpful and effective, but the amount of unnecessary alarms could be reduced if systems 

like MHAS would be utilized onboard commercial sea surface vehicles. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.24 – Combined SPRC 
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6.4   Discussion 

Together with filtering algorithms, motion control algorithms, predictors and 

collision avoidance algorithm, hazard alerting algorithm forms a Marine Collision 

avoidance and Alerting System (MCAS), which is proposed in the final empirical chapter 

of this thesis. The remaining problem of dynamic collision avoidance is having a proper 

alerting system that will inform human navigator of certain occurrence, but only when it is 

necessary. The level of nuisance alarms onboard commercial sea surface vehicles increased 

with the introduction of new electronic equipment. Due to the fact that sea surface vehicles 

use lower quality sensors, alerting protocols are setup to err on the positive side, as it is 

better to alert than not to alert when alerting is required. 

Reasons why navigators face a larger number of nuisance alarms onboard 

commercial sea surface vehicles is investigated and it is discovered that improvement is 

needed in information integration and algorithmic design. In the case of autonomous 

vehicles, nuisance alarms would be potentially a significant problem when used as input 

signals to stop or correct processes. Therefore, solution is proposed to detect appropriate 

alerting for collision avoidance that integrates algorithms proposed in earlier chapters. The 

key component of the proposed Marine Hazard Alerting System (MHAS) is reducing the 

level of uncertainty for which Behavior Parametric Form (BPF) approach was proposed. 

Experiments showed that reinforcement learning was a successful approach and 

that it is possible to significantly reduce number of nuisance and unsuccessful alerts with 

stable precision-recall values. It is evident that ARPA and ECDIS alerting lack the finesse 

to recognize situations where alerts are warranted and when they are not. Proposed MHAS 

system was able to improve on alerting performance and add another layer of protection 

for navigators controlling passages of sea surface vehicles. 
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Chapter 7 
 

Summary, contributions, and further 
work 

 

7.1   Summary 

 

Technological advances improved safety of navigation throughout the years, but 

also brought new challenges when navigating sea surface vehicles on commercial routes. 

Usually described as input data and information overload, being in charge of navigation is 

a challenging task, especially in busy waterways. In this thesis comprehensive system of 

algorithmic decision support solutions for navigators is proposed, so that in critical 

situations navigators can bring informative decisions about their course of actions. 

Human element remains the main contributory factor to majority of collision 

incidents and close quarter situations at sea. Even though better equipment and 

sophisticated navigational aids are installed today, we can still notice ample number of 

incidents happening at sea. As a main motivation to conduct this study, robust Marine 

Collision avoidance and Alerting System (MCAS) is proposed. MCAS is comprised of 

four modules. 

The first module aims to improve input data to the main module, collision 

avoidance algorithm. Resolution advisories are going to be as good as the input information 

is, therefore in this thesis an improved nonlinear dynamic state estimator, Foraging Particle 

Filter (FPF), is proposed. FPF is used to reduce uncertainty and noise of sensing equipment 

typically carried onboard commercial sea surface vehicles. Fusing of sensing data is also 

considered. Results of experiments showed that proposed Foraging Particle Filter 

outperformed existing filters. Having better input signals, it was possible to focus on 

motion control of sea surface vehicles. One of the objectives of this research was to develop 
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model-free solution that can utilize Hidden Markov Model (HMM) framework to allow for 

efficient reinforced and imitation learning. Initially, as data is not available when a sea 

surface vehicle is built, existing methodology of modeling vehicles is exploited, so sea 

trials are performed in combination with simulations. In this way it was possible to stream 

initial experience for the system. Several algorithms with specific reward functions have 

been developed and used to ensure safe, feasible, compliant, and efficient motion control 

operations. Experimental results have shown that proposed autopilot and auto-telegraph 

models performed well and were stable under any simulated environmental load. This step 

was crucial to guarantee feasibility of generated trajectories by collision avoidance system. 

Dynamic collision avoidance requires stable trajectory generation that are feasible 

and compliant. This is the main focus of the second module where collision avoidance 

regulations are investigated in order to quantify collision avoidance rules. Quantification 

of COLREGs allowed for rewards and actions space design that would assist predictor to 

generate optimal trajectories. COLREGs classification algorithm is developed and used to 

determine traffic situation on the horizon and offer instant uncluttered information about 

targets and their status. Experimental results showed that classification algorithm made a 

substantial improvement of the system in general and maintained accuracy levels under 

navigational and environmental loads. Once the input data was more reliable and traffic 

overview transparent, focus shifted on collision avoidance algorithm and predictor design. 

Simulation results showed that the proposed system thrived well and managed to resolve 

complex situations within the required time to ensure feasibility.  

However, if only pairwise situations were resolved, it would not be possible to 

dynamically adapt to new situations, so the proposed egocentric approach was broadened 

to include multiple targets. In this study, mixed equipage situations were of particular 

interest. We continued to utilize HMM framework and reinforcement learning to generate 

optimal trajectories and avoid close quarter situations.  Holistic approach has outperformed 

egocentric approach, which was evident from the experiment results where it was noticed 

that the system managed to resolve challenging collision situations with lower deviation 

from the original course and by returning to the planned route within shorter time period. 

Uncertainty was further lowered by introducing early collision detection approach where 
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participants shared not only intent, but passage plans as well. This approach significantly 

reduced risk of collision in navigable areas.  

Finally, hazard alerting was investigated as an intrinsic part of collision avoidance. 

Hazard alerting is not only designed to alert human navigators, but also to generate alerting 

signals to automated systems and reduce computational complexity of collision avoidance 

process. Hazard alerting system utilized predictor to determine when alerting is required, 

which significantly reduced levels of nuisance alerts. 

 

7.2   Contributions 

This research is one of the first studies to utilize Reinforcement learning based 

algorithms to collision avoidance problems in maritime sector. Careful selection of state 

space members was utilized, discrete action space (as research took only underactuated 

vehicles into account) maintained, and specific design of reward space provided in order 

to warrant generation of feasible trajectories.  

Nonlinear state estimating variant was proposed that was successful in reducing 

data uncertainty and filter out sensing noise. This was done by exploiting foraging process 

in nature, which aided design of solution to particles impoverishment and degeneracy. 

Foraging Particle Filter was verified during baseline experiments and outperformed some 

of the common linear and nonlinear filters. FPF was used to design nonlinear passive 

observer with efficacy and feasibility success.   

Trajectory generation and modification solution that utilizes both offline and online 

computation is introduced to decentralize computational burden. Feasibility of the system 

was confirmed through simulated studies. Own rewards shaping techniques were used to 

successfully complete complex collision-avoidance tasks. Considering that increasing 

number of target vehicles does not increase computational burden exponentially, but rather 

linearly, it is possible to envision installation of similar systems on commercial vehicles. 

Motion control algorithms were designed in order to sustain feasibility of generated 

trajectories. Motion control system is comprised of heading and course controls, turning 
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control and engine telegraph control. This enabled decrease of the state space size, shaping 

of reward functions and conjoining action space, so that exploration is discouraged when 

unnecessary.  

Thorough and deep exploration of collision regulations has been made and it 

showed that only by mutual agreement we can improve navigational tasks and challenge 

existing collision avoidance rules. It is evident that COLREGs are not aligned with modern 

shipping industry, and that collision regulations require rewrite. COLREGs classification 

algorithm has been proposed and it showed that it is highly adjustable and of crucial 

importance for the stability of the collision avoidance system. COLREGs classification 

algorithm performed well and enhanced feasibility of the generated trajectories. 

Dynamic collision avoidance algorithms were developed and explored within the 

simulation space. A number of cases were trialed, and our model showed to be a viable 

option for the commercial use. Various types of uncertainties were considered when 

making decision about the collision avoidance maneuver. The most prominent inclusion 

was human operator uncertainties, which were also taken into account and modeled. The 

proposed MCAS system has shown ability to cope with larger number of obstacles in 

complex situations and was successful in generating trajectories that avoided conflicts and 

safeguarded commercial interests of shipowners by rewarding vehicles to return to their 

planned paths as soon as deemed safe by the algorithm. 

An early collision risk detection approach has been investigated together with 

sharing intent and proposed as a complimentary system that substantially reduces risk of 

collision. Within this research, intent sharing (short term) and passage plan sharing (long 

term) have improved performance of predictor and reduced time spent on maneuvering, as 

well as reduced distance travelled before returning to the planned route.  

Together with intent-aware collision avoidance, coordinated collision avoidance 

was considered and protocols developed to share information with equipped vehicles. 

Contemplating the fact that equipped vehicles have to operate in areas where unequipped 

vehicles sail as well, mixed equipage is considered, and collision avoidance algorithm 

successfully verified for feasibility in mixed equipage environment as well. 

A novel methodology for marine hazard alerting based on HMM theory has been 
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proposed and showed considerable improvements over the existing alerting systems mainly 

by reducing nuisance alerts. Defining the point of “last minute” action was a challenge that 

can be debated among Organizations, but the approach in this study was to utilize 

maneuvering restrictions and combine it with passage planning to determine points when 

pre-alerting and alerting should commence. The proposed model can accept various inputs 

in order to safeguard alerting necessity and decrease number of unnecessary alerts. 

Finally, an improved approach to rewards shaping was proposed and showed good 

performance within depicted environment. Throughout the exploration and tuning, it was 

discovered that stable learning and exploration prefers higher penalties than higher 

rewards. Proposed learning models performed better if they faced a significant penalty than 

when they faced smaller penalties and larger rewards. 

 

7.3   Further work 

It is necessary to do substantial amount of system testing and field validation. 

However, it is also difficult to endeavor that experimental systems would be allowed for 

testing on commercial vehicles, but vehicles that sail in controlled environments and near 

coasts would be perfect candidates for exploration and exploitation. MCAS can be installed 

onboard test vehicles to work in parallel with existing systems and just collect data and 

compare computed and optimal decisions for the full length of one voyage. 

As it did fit well, shaping and designing rewards were done manually, however, 

with the implementation of deeper learning techniques, there are solutions to derive 

rewards from a system when rewards are unknown or there is a necessity of finding more 

accurate distribution of rewards within observable or latent state space.  

It would be beneficial to develop robust protocols that would be used to propagate 

intent information and to seamlessly share passage plan information with integration to the 

existing navigational equipment. There is a potential benefit of incorporating vehicle 

kinematics in collision avoidance optimization function and in this way even further reduce 

computational loads.  
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Substantial work is required in the field of collision regulations. It is unclear how 

would autonomous vehicles cooperate with other commercial vehicles and how should this 

interaction be regulated.  

Presented work is a viable option to control and support decision making without 

accurate representation of a vehicle’s dynamics. However, it requires well designed reward 

functions, by utilizing experienced professionals to tune reward space. There is another 

computational way where reward space can be reverse engineered by collecting large 

amount of data where professionals would show “good behavior” so that parameters could 

be extracted from the data and used for reward space representation.  

In order to make this approach commercially viable, following steps would be 

required: 1. Building a realistic model for simulation by experienced naval architect, 2. 

Extracting control parameters from simulator by allowing abstract agent to learn in the 

simulated environments, 3. Testing learned policies in simulated environments, 4. 

Confirming learned results on models and 5. Integrating software on commercial sea 

surface vehicles with trial period, 6. Certification and approvals for full-time use.	
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Appendix A 
 

Reward Shaping Experiment 
 

In order to maintain simplicity in envisioning benefits of reward shaping, a 

gridworld domain was developed where a floating object has a shortest path objective from 

the origin to the goal waypoint. In this case it is a simple shortest path challenge, without 

any collision avoidance, but with stationary object along the way. Uniform depth without 

shallow water patches has been assumed. The domain is depicted as a 7x10 grid-world. 

Each cell has a dimension determined by the size of the surface vehicle taken as an example 

(200 x 200 meters). To maintain simplicity, assumption is made that the action space 

comprises of only 4 compass directions (N, E, S, W) with possible movement of 1 step. As 

the agent receives -1 reward for each step it takes, additional penalties are added in order 

to avoid areas of an obstruction. Therefore, for cells closest to the shallow water the agent 

receives -2 reward, while -100 for hitting an island. It is also assumed that the agent has an 

information about distance from the goal and present position that is received by various 

sensors (sensing accuracy is not considered in this case). As it will be visible in the 

following sections, a certain percentage of navigating officers do not always follow 

collision regulations, so this is taken into account by assuming for the purpose of this test 

that in 90 % of cases navigators will sail in the intendent direction, while in 10 % navigation 

will be random. If the agent tries to sail out of the grid, he will remain in the same location.  

To effectively test this approach, simplified navigation on a grid is utilized. In order 

to effectively estimate Å65$∗ (#), sensory information about distance to the goal waypoint 

are utilized, as well as the knowledge about the position of the sea surface vehicle and the 

goal waypoint. This information is enough to aid the learning process of minimizing cost 

to reach the goal type of problems. Excluding all environmental influences, goal is to steer 

the vehicle from the present position towards the desired goal waypoint. As stated earlier, 

in this example input control and restrictions are irrelevant, so it is assumed that the vehicle 
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can select any of the 4 compass directions instantly at any time-step point, which 

correspond to the size of the grid cell. Therefore, in each time step, own agent selects a 

direction in which it will steer the sea surface vehicle until it reaches the waypoint. The 

agent is mimicking decision delivery of a navigating officer and goal is to show the 

difference of making decision with and without expert’s input (shaping) of reward function. 

Desired performance is to take as less as possible time-steps to reach the waypoint 

(assuming constant speed and excluding earth curvature). Reward function is initially set 

up as -1 for each time-step, as aim was to collect least number of penalty points until 

reaching the waypoint. 

As the premise is 90 % chance of selecting appropriate step towards the waypoint, 

there is still 10 % chance of acting randomly (a thorough research has been made in thesis 

to actually determine real-world percentages). When acting randomly, the agent selects any 

of the actions from the action space, so there is an equal chance of selecting any of the 

eight available compass directions, including the one towards the waypoint. Therefore, if 

guessing the performance of the optimal policy, it would be that at each time step agent 

takes approximately 0.9 distance per time step, which brings us to the relation that it would 

take t 0.9ê  of steps to reach the waypoint, where t is the radar distance from the origin 

until the waypoint. So, the estimate of the value function and reward shaping function Φ(#) 

is set to be Φ?(#) = Å…65$(#) = −t 0.9ê . However, as the aim is to incorporate knowledge 

that traces quality of actions taken, it is also necessary to trace behavior of the decision 

maker (human or the artificial agent). Real-world challenges of sailing seas, such are 

traffic, external influences, voyage planning, etc. are disregarded in this experiment. In the 

real-world instance it would be necessary to introduce an action tracking that would 

probably be tied to the tracking of the planned route and penalize any deviation from the 

planned route. However, in this case, agent is free to explore the whole domain. That is 

why it is necessary to track the action selection performance by assigning progressively 

increasing penalties for selecting an action that is further away from the current direction. 

For the initial action %? , no penalties are assigned %? = 0. Certainly, it is possible to 

valorize actions in a better way but for the depicted experiment progressive penalties would 

suffice.  In order to implement progressive penalties, Φ(%) is defined as: 
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Φ(%) 		= 			

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

					

−0.8					if	(%8 − %) = ±45°

−0.6					if	(%8 − %) = ±90°

−0.4					if	(%8 − %) = ±135°

0					if	(%8 − %) = ±180°

−1	otherwise

																																							(C. 1) 

Finally, it is possible to incorporate both shaping functions by adding them up: 

Φ(#, %) = Φ(#) + Φ(%)																																												(C. 2) 

Uncertainty is not implemented in the shaping function of an action space solely 

because it is already covered in the value of the state space, where distance from the goal 

divided with the 0.9 factor is taking that uncertainty into account. Therefore, in this case 

Φ(#, %) = t
0.9ê + Φ(%), where Φ(%) depends on the conditional relationships described 

in (A.1). In conclusion, the estimate of the value function and reward shaping function 

Φ(#, %) is Φ?(#, %) = Å…65$(#, %) = −ét 0.9ê + Φ(%)ë. Tuning of hyperparameters for 

this training is: 0.10-greedy exploration, no discounting d = 0.9, and learning rate K =

0.4. Higher learning rate will allow the algorithm to rely strongly on recently observed 

events, while higher discount factor implies that the algorithm takes into consideration 

compounded experience of the agent. For this experiment e-greedy exploration fits well, 

but the appropriate approach to exploration and exploitation needs to be tuned to each 

problem an analyst is trying to solve. 

As mentioned earlier, this experiment is designed as a simple gridworld where own 

sea surface vehicle is allowed to move in 4 directions (in order to simplify Q-values 

representation): N, E, S, and W. The goal is to reach the goal state from the initial state by 

avoiding the fixed obstacle and to stay away from the obstacle with at least one gridworld’s 

square distance.  Figure A.1 represents the gridworld used in the experiment, while Figure 

A.2 represents the Q-values after 500 training episodes. As seen from Figure A.2, each 

field of the gridworld is divided into 4 triangular areas representing 4 possible actions own 

vehicle can take. The number in each of the triangle represents a potential value of taking 
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that action, so in the red triangle it is possible to see negative values, while the dark green 

is the optimal action for that field. Other colors represent various values of taking other 

action than the optimal one, and this is due to randomness and inherent stochasticity of the 

process.  

 

 

 

 

 

 

 

 

 

Figure A.1 – Gridworld experiment layout 

 

The goal of this training was to find the optimal policy that would take own vehicle 

from the field [1, 6] (red dot on Figure A.1) to the goal field [9, 7] (blue square on Figure 

A.1). Therefore, if we would look at colored map of Figure A.3, it is noticeable that the 

optimal policy contains following actions to take: E, N, N, E, N, N, E, E, E, E, E, E, E, S, 

S, S, S, S, W. The optimal policy is depicted on Figure A.3.  
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Figure A.2 – Q-values representation after 500 training episodes 

As the exploration is allowed and considering inherent stochasticity, Q-values are 

visible in all fields of the gridworld. In case that agent finds itself in any of the fields, it 

will find the highest value and follow that direction when it is exploiting the previous 

knowledge or explore to some another field in order to discover if higher rewards await 

somewhere else. Finally, allowing for adequate training episodes,  learned policy will allow 

for the artificial agent to know exactly which path to take from the origin to the destination 

as long as there are no changes along the way.  

We are mostly interested to see if the rewards shaping offers any benefits over the 

standard approach; therefore, artificial agent was trained with and without the rewards 

shaping. Figure A.4 shows the progress of training and comparison of both approaches.  
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Figure A.3 – Optimal policy after the sea surface vehicle training session 

In the case of training session without rewards shaping (a), we can notice that there 

is a higher intensity and frequency of exploration with negative spikes well below -2000 

points. On the other hand, when training with rewards shaping (b), we can notice that 

training is more stable with lower intensity exploration spikes and higher cumulative 

rewards. Rewards shaping also improves the exploration, as it penalizes exploration that 

offers no benefits. For example, if we have to steer own sea surface vehicle in a certain 

direction, there is a little benefit to check the state space that considers steering in an 

opposite direction from the direction we wish to steer. Therefore, rewards shaping clearly 

improves convergence of the training and maintains the focus of the main task. 
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(a)  
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 (b) 

Figure A.4 – Training experiments with (a) representing training without rewards shaping 

and (b) with rewards shaping with the 7x10 gridworld 
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Appendix B 
 

Motion Control and Autopilot 
Experiment Results 
 

Table B.1 – Training scenarios with external disturbances 

Scenario Relative 
Wind 

Direction 
(°) 

Relative 
Wind 

Speed (kt) 

Relative 
Wave 

Direction 
(°) 

Significant 
Wave 
Height 

(m) 

Relative 
Current 

Direction 
(°) 

Current 
Speed (kt) 

Relative 
Swell 

Direction 
(°) 

Swell 
Height 

(m) 

1 67.5 21 45 2.5 74 2 67.5 4 

2 0 10 22.5 1.25 0 1 22.5 2 

3 22.5 33 0 4 57.5 4 0 6 

4 45 47 67.5 6 83 3 135 6 
(period 
20 s) 

5 90 10 112.5 1.25 94 2 90 2 

6 112.5 63 90 14 100 1 180 6 

7 135 21 135 2.5 121 4 45 4 

8 157.5 33 180 4 180 3 112.5 6 
(period 
20 s) 

9 180 21 157.5 2.5 239 1 157.5 6 

10 202.5 47 225 6 260 2 270 4 

11 225 21 202.5 2.5 266 3 292.5 2 
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12 247.5 10 247.5 1.25 277 4 202.5 6 
(period 
20 s) 

13 270 33 292.5 4 286 2 315 2 

14 292.5 47 270 6 302.5 3 247.5 4 

15 315 21 315 2.5 83 1 337.5 6 

16 337.5 33 337.5 4 100 4 225 20 

 

Table B.2 – Simulation scenarios with external disturbances 

Simulation Relative 
Wind 

Direction 
(°) 

Relative 
Wind 

Speed (kt) 

Relative 
Wave 

Direction 
(°) 

Significant 
Wave 
Height 

(m) 

Relative 
Current 

Direction 
(°) 

Current 
Speed (kt) 

Relative 
Swell 

Direction 
(°) 

Swell 
Height 

(m) 

1 060 32 045 4 152 3 257 1 

2 282 24 277 3 269 2 323 2 

3 185 48 163 5 345 3 090 4 

4 358 9 013 2 047 1 272 6 

5 307 54 329 6 197 2 82 4 
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Table B.3 – Training progress and results for Heading control  

1 

  

2 
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4 
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10 

  

11 
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12 

  

13 

  

14 
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15 
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Table B.4 – Feasibility test for 16 scenarios (left) and 5 simulations (right) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scenario Set 
Heading 
(°) 

Achieved 
Heading 
(°) 

Deviation 
(°) 

Learning 
Time (s) 

Execution 
Time (s) 

1 220 220.1 0.1 439.6 0.002 
2 220 220.1 0.1 1083,4 0.001 
3 220 220.0 0 268,57 0.001 
4 220 220.0 0 723,26 0.002 
5 220 219.9 0.1 640,72 0.003 
6 220 220.0 0 1086,3 0.001 
7 220 220.0 0 880,37 0.002 
8 220 220.0 0 902,68 0.001 
9 220 220.1 0.1 2225 0.002 
10 220 220.1 0.1 2279,7 0.001 
11 220 219.9 0.1 2163,1 0.001 
12 220 220.4 0.4 2220,2 0.002 
13 220 219.9 0.1 470,36 0.001 
14 220 220.0 0 181,74 0.002 
15 220 220.0 0 187,96 0.004 
16 220 219.9 0.1 932,52 0.006 

	

Simulation Set 
Heading 
(°) 

Achieved 
Heading 
(°) 

Deviation 
(°) 

Learning 
Time (s) 

Execution 
Time (s) 

1 220 220.0 0 n/a 0.002 
2 220 220.0 0 n/a 0.001 
3 220 220.1 0.1 n/a 0.001 
4 220 220.1 0.1 n/a 0.002 
5 220 219.8 0.2 n/a 0.003 
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Table B.5 – Training progress and results for Course control  

1 

  

2 

  

3 
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10 

  

11 

  

12 
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13 

  

14 

  

15 
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16 

  

 

Table B.6 -– Feasibility test for 16 scenarios (left) and 5 simulations (right) 

 

 

 

 

 

 

 

 

 

Scenario Set 
Course 
(°) 

Achieved 
Course 
(°) 

Deviation 
(°) 

Learning 
Time (s) 

Execution 
Time (s) 

1 220 218.9 0.1 2252,1 0.003 
2 220 220.0 0 437,36 0.001 
3 220 222.3 1.3 1573,6 0.003 
4 220 220.5 0.5 237,06 0.001 
5 220 220.9 0.9 180,26 0.002 
6 220 220.0 0 2103,9 0.003 
7 220 220.3 0.3 194,45 0.004 
8 220 218.9 1.1 942,16 0.006 
9 220 220.7 0.7 1011,2 0.003 
10 220 220.2 0.2 565,72 0.002 
11 220 220.4 0.4 700,44 0.001 
12 220 220.0 0 2197,8 0.001 
13 220 219.7 0.3 1574,4 0.008 
14 220 220.1 0.1 795,16 0.005 
15 220 220.8 0.8 452,72 0.003 
16 220 220.3 0.3 1416,9 0.005 

	

Simulation Set 
Course 
(°) 

Achieved 
Course 
(°) 

Deviation 
(°) 

Learning 
Time (s) 

Execution 
Time (s) 

1 220 220.1 0.1 n/a 0.003 
2 220 219.9 0.1 n/a 0.002 
3 220 220.4 0.4 n/a 0.006 
4 220 219.6 0.4 n/a 0.001 
5 220 220.2 0.2 n/a 0.002 
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Table B.7 – Scenarios for auto throttle algorithm training 

Scenario Set 
Speed 

(kt) 

Relative 
Wind 

Direction 
(°) 

Relative 
Wind 
Speed 

(kt) 

Relative 
Wave 

Direction 
(°) 

Significant 
Wave 
Height 

(m) 

Relative 
Current 

Direction 
(°) 

Current 
Speed 

(kt) 

Relative 
Swell 

Direction 
(°) 

Swell 
Height 

(m) 

1 18 67.5 21 45 2.5 74 2 67.5 4 

2 13.3 0 10 22.5 1.25 0 1 22.5 2 

3 4 22.5 33 0 4 57.5 4 0 6 

4 11.8 45 47 67.5 6 83 3 135 
6 

(period 
20 s) 

5 20.4 90 10 112.5 1.25 94 2 90 2 

6 7.2 112.5 63 90 14 100 1 180 6 

7 12.4 135 21 135 2.5 121 4 45 4 

8 8.6 157.5 33 180 4 180 3 112.5 
6 

(period 
20 s) 

9 19.5 180 21 157.5 2.5 239 1 157.5 6 

10 -4.5 202.5 47 225 6 260 2 270 4 

11 16.8 225 21 202.5 2.5 266 3 292.5 2 

12 5.5 247.5 10 247.5 1.25 277 4 202.5 
6 

(period 
20 s) 

13 14.4 270 33 292.5 4 286 2 315 2 

14 -5.8 292.5 47 270 6 302.5 3 247.5 4 

15 10 315 21 315 2.5 83 1 337.5 6 

16 21. 3 337.5 33 337.5 4 100 4 225 
6 

(period 
20 s) 
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Table B.8 – Auto-telegraph training and simulation results 

Scenario 
Set Speed 

(kt) 

Sea trial RPMs for 

desired speed (no 

external 

disturbance) 

Longitudinal 

external influence 

on speed (kt) 

Achieved 

Speed (kt) 

Achieved 

RPMs 

Training Duration 

(seconds) 
Training Visualization 

1 18 69 +1.38 17.98 65 1248.5 

 

2 13.3 52 +0.76 13.46 52 1251.8 

 

3 4 23 +3.19 3.19 0 1251 
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4 11.8 49 +0.21 11.41 47 1257.5 

 

 

 

 

5 20.4 86 -0.04 20.26 86 452.64 

 

 

 

 

6 7.2 29 -0.45 6.35 29 1308 

 

 

 

 

7 12.4 51 -1.73 12.57 56 539.76 
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8 8.6 38 -2.90 8.50 48 1122.6 

 

 

 

9 19.5 83 -0.01 19.49 83 1114.6 

 

 

 

10 -4.5 -29 -0.39 -4.29 -29 1412.3 

 

 

 

11 16.8 66 -0.03 16.97 67 280.85 

 

 

 

12 5.5 23 +1.16 6.36 23 1230.5 
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13 14.4 56 +1.06 14.26 53 145.97 

 

 

 

 

14 -5.8 -46 +2.50 -3.75 -46 1246.7 

 

 

 

 

15 10 38 +0.52 9.52 38 1392.4 

 

 

 

 

16 21. 3 89 -1.24 20.06 89 1118.6 
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Appendix C 
 
COLREGs Classification Algorithm 

 

In this Appendix an algorithm for COLREGs classification problem is delivered. 

COLREGs classification algorithm focuses on own vehicle’s and targets’ attitude, so 

course and speed through water are significant to determine which Rule will be appropriate 

for each collision situation. It is necessary to keep in mind that the algorithm is developed 

with decision support model in mind where interaction with human navigators is still 

required, while it has to be modified if it would be used for autonomous navigation. 

  

_______________________________________________________________________ 
Algorithm C – COLREGs Classification Algorithm 
_______________________________________________________________________ 
Input: !! ,	COG, CTW, SOG, RPM, STW, $"#, %"#, ℎ, D, ECDIS info,  

'$,&,…,((!) , )*+) , )',) , -*+) , -',) , $) , %) , ./-) , 0)1.) , ')1.) , 2) , θ) , 4)2). 

Output: Display relevant COLREGs Rules 

Every 10 seconds do: 

 Rule 6 

 for RPM = NAV FULL: 

  if visibility < 3 NM: 

  display: RULE 6 – CONSIDER SLOWING TO MANEUVERING FULL 

  end if 

  if visibility < 3 NM, and 2) ≤ 3	NM: 

  display: RULE 6 – SLOW TO MANEUVERING FULL 

  end if 
if ECDIS look-ahead (safety cone) encounters safety contour alarm, and/or 
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obstacle alarm (user selects look ahead parameters):  

  display: RULE 6 – SLOW TO MANEUVERING FULL 

  end if 

if any of the following conditions are true: 1.5 < ℎ
>? ≤ 3.0;  

($"# , %"#) => '--, narrow channel, or safety fairway: 

  display: RULE 6 – CONSIDER SLOWING TO MANEUVERING FULL 

  end if 

if any of the following conditions are true: 1.5 < ℎ
>? ≤ 3.0;  

($"# , %"#) => '--, narrow channel, or safety fairway and $) > 4,  

where 2) ≤ 3	NM: 

  display: RULE 6 – SLOW TO MANEUVERING FULL 

  end if 

if 	ℎ >? ≤ 1.5: 

  display: RULE 6 – SLOW TO MANEUVERING FULL 

  end if 
 end for 

 Rule 7 

 Read '$,&,…,((0)1.) , ')1.) , 2) , θ)) 

 for each '( and until '( is cancelled: 

  store θ)* every 60 seconds 

 end for 

 for each '( do: 

  if 0)1.) < )1.+,- and ')1.) < 30	DE$FG%H: 

   display: RULE 7 – COLLISION RISK EXISTS 

  end if 
 end for 

 for each '(: 

if 2) < 6	JK and θ)*.$ ± 2° < θ)* < θ)*.$ ± 2°: 

 display: RULE 7 – COLLISION RISK EXISTS 

end if 
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 end for 
 Rule 9 

if  J"# , O"# = O)>/-	JPQQRS	)ℎP$$%T: 

 display: RULE 9 – VESSEL IN A NARROW CHANNEL 

end if 
 Rule 10 

 Read AIS for vessel type and read vessel type entry by navigators: 

if  J"# , O"# = O)>/-		'--: 

display: RULE 10 – VESSEL IN A TSS 

end if 

if  $"# , %"# = O)>/-		'-- and vessel type = vessel restricted in her ability 

to maneuver engaged in an operation for the maintenance of safety of navigation: 

display: RULE 10 – TSS EXEMPTION – PROCEED WITH CARE 

end if 

if  $"# , %"# = O)>/-		'-- and vessel type = vessel restricted in her ability 

to maneuver engaged in an operation for the laying, servicing or picking up of a 

submarine cable: 

display: RULE 10 – TSS EXEMPTION – PROCEED WITH CARE 

end if 
 Rule 13 

 verify information extracted from water stabilized RADAR 

 for each '(: 

  for '( with bearing from own ship 112.5° ≤ θ) ≤ 247.5°: 

   if 2) < 3	JK, -', < -',),  and )1. ≤ )1./01!: 

   display: RULE 13 – OVERTAKEN BY '( – KEEP COURSE  

             AND SPEED 

end if 
  end for 
 end for 

 for each '(: 

 read '((!) , )',) , -',) , $) , %) , 0)1.) , ')1.) , 2) , θ)) 
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  for $"# , %"# in the sector behind the '( (247.5° ≤ θ"# ≤ 112.5°): 

   if 2) < 3	JK, -', > -',) and )1. ≤ )1./01!: 

   display: RULE 13 – OVERTAKING  '( – GIVE-WAY VESSEL 

end if 
  end for 
 end for 

 Rule 14 

 verify information extracted from water stabilized RADAR 

 for each '(: 

 read '((!) , )',) , -',) , $) , %) , 0)1.) , ')1.) , 2) , θ)) 

  for $"# , %"# in the sector ahead of the '( (354° ≤ θ"# ≤ 006°) and 

'( with bearing from own ship 354° ≤ θ) ≤ 006°: 

   if 2) < 6	JK,  and )1. ≤ )1./01!: 

   display: RULE 14 – HEAD-ON 

end if 
  end for 
 end for 

Rule 15 

 verify information extracted from water stabilized RADAR 

 for each '(: 

 read '((!) , )',) , -',) , $) , %) , 0)1.) , ')1.) , 2) , θ) , 4)2) 

  if  247.5° < θ)! < 354°, 2) < 6	JK, 4)2 > 0, and )1. ≤ )1./01!: 

  display: RULE 15 – '( CROSSING BOW FROM PORT – STAND-ON 

  end if 

if  247.5° < θ)! < 354°, 2) < 6	JK, 4)2 ≤ 0, and )1. ≤ )1./01!: 

  display: RULE 15 – '( CROSSING STERN FROM PORT – STAND-ON 

  end if 

  if  006° < θ)! < 112.5°, 2) < 6	JK, 4)2 > 0, and )1. ≤ )1./01!: 

  display: RULE 15 – '( CROSSING BOW FROM STARBOARD – GIVE  

  WAY 

  end if 
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  if  006° < θ)! < 112.5°, 2) < 6	JK, 4)2 ≤ 0, and )1. ≤ )1./01!: 

  display: RULE 15 – '( CROSSING STERN FROM STARBOARD –  

  GIVE-WAY 

  end if 
 end for 
 Rule 16 

 if Rule 13 = GIVE-WAY, Rule 15 = GIVE-WAY, or Rule 18 = GIVE-WAY: 

  display: RULE 16 – GIVE-WAY VESSEL 

 end if 
 Rule 17 

 if Rule 13 = STAND-ON, Rule 15 = STAND-ON, or Rule 18 = STAND-ON: 

  display: RULE 17 – STAND-ON VESSEL 

 end if 
 Rule 18 

 for all '(: 

Read manual inputs from navigators or AIS 

 if own vehicle = WIG-IN-GROUND (WIG) operating on the water surface: 

   refer to own vehicle = POWER DRIVEN UNDERWAY 

  end if 

 if own vehicle = POWER DRIVEN UNDERWAY and '( = NOT UNDER 

COMMAND, or '( = RESTRICTED IN HER ABILITY TO MANEUVER, or '( 

= ENGAGED IN FISHING, or '( = SAILING VESSEL: 

   display: RULE 18 – KEEP OUT OF THE WAY OF '( 

  end if 

 if own vehicle = SAILING VESSEL and '( = NOT UNDER COMMAND, 

or '( = RESTRICTED IN HER ABILITY TO MANEUVER, or '( = ENGAGED 

IN FISHING: 

   display: RULE 18 – KEEP OUT OF THE WAY OF '( 

  end if 

 if own vehicle = ENGAGED IN FISHING and '(  = NOT UNDER 

COMMAND, or '( = RESTRICTED IN HER ABILITY TO MANEUVER: 
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   display: RULE 18 – KEEP OUT OF THE WAY OF '( 

  end if 

 if own vehicle ¹ NOT UNDER COMMAND, or own vehicle ¹ 

RESTRICTED IN HER ABILITY TO MANEUVER and '( = CONSTRAINED 

BY HER DRAUGHT: 

   display: RULE 18 – KEEP OUT OF THE WAY OF '( 

  end if 

 if own vehicle = CONSTRAINED BY HER DRAFT and '(  ¹ NOT 

UNDER COMMAND, or '(  ¹ RESTRICTED IN HER ABILITY TO 

MANEUVER: 

   display: RULE 18 – NAVIGATE WITH CAUTION 

  end if 

if own vehicle = CONSTRAINED BY HER DRAFT and '(  = NOT 

UNDER COMMAND, or '(  = RESTRICTED IN HER ABILITY TO 

MANEUVER: 

   display: RULE 18 – KEEP OUT OF THE WAY OF '( 

  end if 
 if own vehicle = SEAPLANE: 

   display: RULE 18 – KEEP OUT OF THE WAY OF '( 

  end if 
 if own vehicle = WIG-IN-GROUND (WIG) taking off, landing or flight 

near surface: 

   display: RULE 18 – KEEP OUT OF THE WAY OF '( 

  end if 
 end for 

 Rule 19 

 for WEHEXETEGY ≤ 3	JK: 

 display: RULE 19 – CONSIDER INCREASING CPA RADII TRESHOLD 

  if own vehicle = POWER DRIVEN UNDERWAY and 2) ≤ 3	NM: 

   display: RULE 19 – SLOW TO MANEUVERING FULL 

  end if 
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  if hearing fog signals in the clockwise sector [270°, 180°] and )1. ≤

)1./01!: 

   display: RULE 19 – REDUCE SPEED TO MINIMUM 

  end if 
 end for 

 Rule 8 

 for Rule 7 = TRUE and Rule 16 = TRUE, then for each '(: 

  if 2) < 6	JK: 

   display: RULE 8 – MANEUVER EARLY AND APPARENTLY 

end if 
 end for 
end 

 

Classification algorithm is separate from the collision avoidance algorithm and the 

main function is to utilize vehicles’ water geometries and to determine appropriate attitude 

for accurate COLREGs Rule determination. Once the appropriate Rules have been 

classified, the collision avoidance algorithm exploits Rules classification as constraints, 

which are then used for reward design and shaping. 

Even though most of the variables have been already described earlier in text; in 

order to aid clearer understanding, clarification is offered: !! – filtered heading of the own 

vehicle taken from the gyro compass and filtered by the FPF, COG – Course Over Ground 

for the own vehicle taken from the GPS or radar, CTW – Course Through Water taken from 

the radar, SOG – Speed Over Ground taken from the GPS or radar, RPM – Revolutions Per 

Minute taken from the engine speed indicator directly, performance measurement 

monitoring, or conning display, STW – Speed Through Water taken from the speed log or 

radar,  $"# – GNSS north position of the own vehicle (can be also fused information), %"# 

– GNSS east position of the own vehicle (can be also fused information), ℎ – draught of 

the own vehicle taken from the loadicator computer or manual input in order to verify safe 

waters, D – depth of water, ECDIS info – various ECDIS available information, especially 

position of safe waters, fixed obstructions, temporary notices, TSS, narrow channel, and 

other relevant information needed for safe navigation. When tracking a new target '( , 
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following information is of interest: !) – heading of a target (not filtered) taken from the 

radar, )*+)  – Course Over Ground for a target taken from the radar, )',)  – Course 

Through Water of a target taken from radar, -*+) – Speed Over Ground of a target taken 

from radar, -',) – Speed Through Water taken from radar, $) – GNSS north position of 

a target, %)  – GNSS east position of a target, ./-)  – various Automatic Identification 

System information of a target taken from the AIS receiver, 0)1.) – distance to Closest 

Point of Approach (usually called simply a CPA) of a target in relation to own vehicle 

taken from the Automatic Radar Plotting Aid (ARPA), ')1.) – Time to the CPA of a 

target in relation to own vehicle taken from ARPA, 2) – Range of a target taken from 

radar, θ) – bearing of a target taken from radar, θ"# – bearing of the own vehicle from the 

perspective of a target (calculated after acquiring new target), and 4)2 – Bow Crossing 

Range taken from ARPA, which can be positive (bow crossing), or negative (stern 

passing).  
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Nomenclature 
 

Symbol Description Page no. 

G Time step 39 

H State H ∈ - 39 

- State space 39 

P Action P ∈ . 39 

. Set of actions 40 

R Observation R ∈ * 40 

* Set of observations (sensory information) 40 

' Test signal 41 

2 Real incident situation signal 41 

/ Additional distress information signal 42 

[ Some random occurrence 45 

! Hidden (unobservable) state space 48 

ℎ Unobservable state ℎ ∈ ! 48 

22 Real-valued reward 50 

\ Discount factor (0 < \ ≤ 1) 50 

H Horizon 50 

^ Policy 51 

^∗ Optimal policy 51 

_∗(H) Utility of a state H 55 

`∗(H, P) Utility of a ` state 55 

a Observation function 60 

X 
Probability distribution over the state space - (belief 

state) 
61 

b Normalizing factor 61 
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2 Reward function 61 

c Belief state transition function c ∈ 4 61 

4 Set of belief states  61 

d Learning rate (0 < d ≤ 1) 69 

e* State to be estimated 76 

f* Measurement 76 

F* Control in the system dynamics 76 

g4(∙) Process function 76 

g5(∙) Measurement function 76 

g6(∙) Control function 76 

i4" State noise 76 

i5" Measurement noise 76 

i6" Control noise 76 

1J Number of particles 77 

j Importance distribution 77 
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