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ABSTRACT 

Material failure is still one of the central issues in modern engineering. Its prediction and 

prevention are being tackled early in the product design stage. Materials used in modern 

engineering often exhibit significant microstructural heterogeneity. The size, shape, 

distribution and properties of microconstituents considerably influence the heterogeneous 

material properties. Nowadays, numerical simulations play an essential role in component 

design and material development, gradually supplanting and replacing expensive and time-

consuming experiments. However, it is worth noting that many complex fracture processes 

occur at microstructural scale making the fracture analysis an especially challenging and 

interesting problem.  

One of the methods for the numerical modelling of fracture capable of efficiently recovering 

these complex fracture processes is the recently emerged phase-field method. It approximates 

the sharp crack discontinuity with a diffusive band regulated by a length-scale parameter, thus 

separating the broken and intact material states. Although extensive research has been carried 

out on the development of phase-field fracture theory over the past decade, certain challenges 

still exist in the computational implementation of the method. Within the finite element 

framework, a fine spatial discretization is often required to resolve the smooth phase-field 

distribution regulated by a small length scale parameter. Thus, coupling phase-field method 

with an inefficient solution scheme can be computationally rather expensive. 

In this work, a novel generalized phase-field framework capable of simultaneously recovering 

brittle, ductile, and fatigue fracture in three-dimensional settings is developed. The robustness 

and accuracy of the results is ensured by the development of an efficient residual control 

algorithm and its implementation in the commercial finite element software ABAQUS. Major 

advantage of such implementation is the high usability of different underlying solvers, 

convergence criteria and other additional options including automatic incrementation, element 

deletion, coupled contact analysis, thread parallelization or restart analyses, used and 

thoroughly discussed in this work. The full source code together with the presented examples 

and explanations is made publicly available, thus promoting the phase-field fracture 

methodology. 
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The proposed implementation is exhaustively tested on a large number of different benchmark 

examples, verified and validated in comparison with numerical and experimental data from 

available literature. The importance of a stopping criterion within a staggered scheme is 

emphasised in the illustrative examples. The detailed discussions regarding the proposed 

implementation’s accuracy and CPU time usage are provided. Special attention is given to the 

verification of fatigue fracture examples through the parametric study. Main features of fatigue, 

including Wöhler and Paris law curves in low- and high-cycle regimes, are easily recovered 

without any additional criteria. The cycle skipping technique is implemented to allow for the 

calculation of a very high number of cycles on moderate size examples. Finally, the potential 

of the implementation is demonstrated on the different-sized samples of nodular cast iron with 

their actual heterogeneous microstructure obtained from microtomography. Specimens are 

tested in both monotonic and cyclic loading regimes. The results clearly show the size-effect 

behaviour as well as the influence of microstructural topology on fracture patterns. 

KEYWORDS: Numerical fracture analysis, phase-field method, finite element method, 

heterogeneous microstructure, generalized fracture model, crack growth, brittle fracture, 

ductile fracture, high cycle fatigue, low cycle fatigue, ABAQUS 

 



 

PROŠIRENI SAŽETAK 

UVOD 

Neke od glavnih karakteristika modernih konstrukcija i strojnih komponenti su njihova sve 

veća složenost te učestalo korištenje novo razvijenih materijala s poboljšanim svojstvima. Time 

se zadovoljavaju potrebe za iznimnom sigurnošću, pouzdanošću i trajnošću, istovremeno 

zadovoljavajući visoke zahtjeve učinkovitosti i niskih cijena izrade, odražavanja i upravljanja. 

Povećanje životnog vijeka komponenti također je važan čimbenik u rješavanju gorućih pitanja 

kao što su klimatske promjene i očuvanje okoliša. Degradacija i lom materijala još su uvijek 

problemi koji često dovode do materijalnih i financijskih gubitaka uzrokovanih oštećenjima 

proizvoda i neisporučenim uslugama, ili u ekstremnijim slučajevima, dovode do gubitaka 

života. Prema tome, predviđanje i prevencija pojave oštećenja i loma materijala u ranoj fazi 

konstruiranja nedvojbeno su iznimno važni, i kao takvi, od velikog su interesa mnogim 

inženjerima i istraživačima. 

Numeričke simulacije nezaobilazan su dio konstruiranja proizvoda i razvoja novih materijala. 

Nakon odgovarajuće validacije, numeričke simulacije nadopunjuju te ponekad i u potpunosti 

zamjenjuju često skupe i dugotrajne eksperimente, smanjujući broj potrebnih prototipa i 

olakšavajući plansko održavanje. 

Većina materijala koji se koriste u modernim konstrukcijama i strojnim komponentama sadrži 

određenu razinu mikrostrukturne heterogenosti. Razni geomaterijali poput betona i stijena, 

čelici visoke čvrstoće, kompoziti i polimeri, ili materijali dobiveni postupcima poput 

sinteriranja ili aditivne proizvodnje (3D printanja) samo su neki od primjera takvih 

mikrostrukturno heterogenih materijala. Na njihova materijalna stvojstva u velikoj mjeri utječu 

pojedinačna svojstva mikrokonstituenata te njihova veličina, oblik i raspodjela. Upravo se na 

mikrostrukturnoj razini pojavljuje većina složenih procesa loma kao što su lokalizacija 

oštećenja, nastanak, propagacija, grananje i srastanje pukotina, što analizu loma heterogenih 

mikrostruktura čini izrazito izazovnom i zanimljivom. 

Stoga su numeričke analize oštećenja i loma heterogenih materijala koje u obzir uzimaju 

mikrostrukturnu topologiju i svojstva mikrokonstituenata važan čimbenik u procjeni 

pouzdanosti i strukturalne cjelovitosti, kao i predviđanju radnog vijeka modernih konstrukcija 

i strojnih komponenata. Također bi mogle dovesti do realnijeg opisa ponašanja materijala čime 
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bi se olakšao razvoj novih materijala s poboljšanim svojstvima koja proizlaze iz manipulacije 

mikrostrukturom. Time bi se omogućila proizvodnja učinkovitijih, sigurnijih i jeftinijih 

konstrukcija izrađenih od heterogenih materijala. 

MODELIRANJE OŠTEĆENJA I LOMA 

Numeričke metode modeliranja oštećenja i loma najčešće su razvijene u sklopu metode 

konačnih elemenata (MKE). MKE se temelji na konceptu podjele fizikalnog modela na manje 

segmente (elemente) jednostavne geometrije i konačnog broja stupnjeva slobode. Takav se 

diskretni model, koji se sastoji od mreže konačnih elemenata, može opisati sustavom 

algebarskih jednadžbi i jednostavno riješiti. 

Numeričke metode modeliranja oštećenja i loma općenito se mogu podijeliti na diskretne i 

difuzne (tj. kontinuumske) prema načinu njihovog opisa oštećenja, odnosno loma. Diskretne 

metode pukotinu opisuju kao oštar geometrijski diskontinuitet u polju pomaka. Najpoznatije i 

najčešće korištene diskretne metode su metoda modeliranja kohezivnih zona (eng. cohezive 

zone modelling, CZM), razni algoritmi lokalne promjene mreže konačnih elemenata (eng. 

remeshing) te tehnike obogaćivanja konačnih elemenata čiji je najpoznatiji predstavnik 

proširena metoda konačnih elemenata, XFEM (eng. extended finite element method). Iako su 

se diskretne metode do sada pokazale točnim i vrlo korisnim u predviđanju oštećenja i loma, 

uz neizbježno korištenje dodatnih kriterija nastajanja i rasta pukotina, njihov najveći problem 

zapravo je numeričko praćenje diskontuiteta, odnosno pukotine. Tako kod pristupa koji se 

temelje na metodi konačnih elemenata pukotina raste samo duž rubova elementa što uzrokuje 

problem ovisnosti rezultata o veličini mreže (eng. mesh dependency) i problem ovisnosti rasta 

pukotine o usmjerenosti konačnih elemenata (eng. bias dependency). Taj problem najviše 

dolazi do izražaja pri složenim topologijama loma kakve se očekuju na miktrostrukturnim 

geometrijama ili složenim trodimenzijskim problemima. Posljednjih godina razvijene su i 

brojne bezmrežne metode koje omogućuju modeliranje razvoja pukotina bez remeshinga, kao 

npr. bezmrežna Galerkinova metoda (eng. Element-free Galerkin, EFG). Iako se često koriste 

za modeliranje linearnih i nelinearnih problema rasta pukotina, u usporedbi s MKE, takve 

metode imaju nekoliko još neriješenih problema među kojima se najviše ističe numerička 

nestabilnost i dugo vrijeme računanja. 

S druge strane, kontinuumske metode modeliranja oštećenja i loma, umjesto modeliranja 

diskretne pukotine i stvaranja novih površina, uvode parametar oštećenja na razini integracijske 
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točke. Njime se kontrolira krutost materijala što omogućuje smanjenje naprezanja uzrokovano 

stvaranjem pukotine. U modelima utemeljenim na pretpostavci standardnog ili tzv. lokalnog 

kontinuuma pojavljuje se lokalizacija oštećenja koja uzrokuje lokalni gubitak eliptičnosti 

sustava diferencijalnih jednadžbi, zbog čega numerička rješenja često ne konvergiraju prema 

fizikalno smislenom rješenju. Kao što je ranije spomenuto, to se u okviru MKE-a očituje 

rezultatima ovisnim o gustoći i usmjerenosti mreže konačnih elemenata. Navedeni problemi 

riješeni su uvođenjem nelokalnih i gradijentno-poboljšanih kontinuumskih pristupa. 

Zajedničko svojstvo takvih modela je dodavanje parametra duljinske skale čime se omogućuje 

i računanje efekta veličine uzorka (eng. size-effect), što nije moguće s modelima temeljenim na 

pretpostavkama lokalne mehanike kontinuuma. Poznati nedostatci takvih, sad već standardnih, 

ne-lokalnih pristupa jesu rast zone oštećenja okomito na smjer rasta pukotine. Iako se taj 

nedostatak uspješno rješava uvođenjem parametra duljinske skale kao funkcije naprezanja, 

fizikalna utemeljenost takve pretpostavke je upitna. Drugi način rješavanja navedenog 

problema je primjena kontinuuma višeg reda (gradijentne, nelokalne i mikrokontinuumske 

teorije), međutim, to neizbježno uvodi nove komplikacije tokom numeričke ugradnje 

navedenih modela. 

MODELIRANJE HETEROGENIH MATERIJALA 

Iako je pretpostavka homogenosti materijala na materijalnoj točki makrorazine još uvijek 

valjana u mnogim primjerima iz inženjerske prakse, razvoj naprednih materijala korištenih u 

modernim konstrukcijama zahtijeva razmatranje materijalne mikroheterogenosti i njezinog 

utjecaja na konstitutivno ponašanje materijala na makrorazini. Eksperimentalne tehnike 

također su znatno napredovale u procjeni mikrostrukturne heterogenosti. Najbolji primjer je 

3D rendgenska mikrotomografija koja je sada u stanju rutinski generirati realistične 

geometrijske modele mikrostruktura mnogih materijala na raznim skalama. Jedan od načina 

numeričkog modeliranja heterogenosti upotreba je izravnih numeričkih simulacija (eng. direct 

numerical simulation, DNS) pri čemu se heterogena mikrostruktura detaljno modelira izravno 

na makrorazini. To je ujedno i najpreciznija metoda za numeričku predikciju loma u 

heterogenim materijalima. Međutim, računalno je vrlo zahtjevna, posebno kad se radi o velikim 

razlikama između skala što zahtjeva vrlo gustu diskretizaciju konačnim elementima. S druge 

strane, razvijene su i višerazinske metode koje na odgovarajući način razdvajaju i prenose 

rješenja između različitih skala. Najpopularnija takva metoda zasigurno je računalna 

homogenizacija (eng. computational homogenization) koja uprosječuje rezultate dobivene 
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analizom problema na mikrostrukturnoj razini, te ih prosljeđuje numeričkom modelu na 

makrorazini. Takva analiza provodi se na tzv. reprezentativnim volumenskim elementima 

(RVE). Računalna homogenizacija standardno se koristi u problemima elastičnog i 

elastoplastičnog ponašanja materijala te spregnutih termomehaničkih problema. Također, 

razvijene su i metode računalne homogenizacije drugog reda koje u obzir uzimaju i gradijente 

deformacije na makrorazini koristeći prethodno spomenute modele kontinuuma višeg reda. 

Međutim, kad je u pitanju modeliranje oštećenja i loma, još uvijek postoje veliki problemi i 

otvorena pitanja u računalnim metodama homogenizacije. Možda i najvažnije, odnosi se na 

upitno postojanje RVE-a prilikom pojave oštećenja i loma. Naime, po svojoj definiciji, RVE 

gubi svoju statističku reprezentativnost prilikom lokalizacije oštećenja i pojave loma. Iako 

alternativne homogenizacijske sheme ukazuju na mogućnost rješavanja ovog problema za 

kvazi-krhke materijale, čini se da je dosljedna i pouzdana primjena višerazinskih metoda 

predikcije oštećenja i loma na realnim konstrukcijama još uvijek daleko. Prema tome, razvoj 

pouzdanih modela predikcije oštećenja i loma na vrlo složenim geometrijama kakve se javljaju 

na mikrorazini heterogenih materijala područje je od velikog interesa. Razvoj takvih modela 

uz razmatranje stvarne topologije mikrostrukture nudi način za preciznije modeliranje složenih 

procesa loma u heterogenim materijalima te je detaljnije obrađen u ovom radu. 

TEORIJA FAZNOG POLJA 

Teorija faznog polja (eng. phase-field modelling) postala je iznimno popularna u posljednjem 

desetljeću. Primjena metode u području modeliranja loma samo je jedna od mogućnosti ove 

teorije. Općenito, ona se uspješno koristi za modeliranje sustava s oštrim prijelazima između 

faza, kao što je npr. interakcija između fluida i čvrstih tijela (eng. fluid-solid interaction). U 

teoriji faznog polja, uvodi se kontinuirana varijabla čijim se glatkim prijelazom razlikuju 

fizičke faze unutar određenog sustava. U slučaju loma, ova varijabla razdvaja oštećeni i 

neoštećeni dio materijala aproksimirajući, na taj način nagli diskontinuitet pukotine difuznim 

pojasom. Širina takvog pojasa regulirana je parametrom duljinske skale. Prema tome, teorija 

faznog polja može se svrstati u kontinuumske metode modeliranja oštećenja i loma. Zanimljivo 

je da je metoda neovisno razvijena od strane dvije znanstvene zajednice, fizičara i inženjera, 

čiji se pristupi i polazišne točke za dobivanje osnovnih jednadžbi razvoja loma pomoću faznog 

polja znatno razlikuju. S jedne strane, zajednica fizičara razvila je modele predviđanja 

dinamičkih lomova koristeći Ginzburg-Landau teoriju, izvorno izvedenu za elektromagnetske 

fenomene faznih prijelaza. S druge strane, modeliranje loma metodom faznog polja na kojoj se 
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temelji ovaj rad, potječe od varijacijskog pristupa krhkom lomu gdje je osnovna Griffithova 

teorija loma pretvorena u problem minimizacije energije. Takav princip nalaže da pukotina 

može nastati ili rasti u čvrstom tijelu ukoliko tako rezultirajuća konfiguracija ima nižu ukupnu 

energiju u usporedbi s ostalim konfiguracijama u kojima nema nastajanja ili rasta pukotine. 

Smjerovi rasta pukotine prirodno se definiraju kao oni koji vode u konfiguraciju s minimalnom 

ukupnom energijom. Pukotine se mogu granati ili spojiti ukoliko to dovodi do konfiguracije s 

nižom energijom od jednostavnog rasta postojećih pukotina, bez potrebe za uvođenjem 

dodatnih kriterija rasta oštećenja i loma. Regularizacijom tako izvedenog energijskog 

funkcionala dobiva se sustav parcijalnih diferencijalnih jednadžbi koje u potpunosti određuju 

nastanak i rast pukotine. Upravo su prethodno navedene činjenice razlog popularnosti ove 

metode, koja se pokazala izrazito uspješnom u rješavanju složenih procesa loma, uključujući 

nastanak, rast, grananje i srastanje pukotina. Također, aproksimacijom diskretne topologije 

pukotine na fiksnoj mreži konačnih elemenata zaobilazi se složeni problem praćenja površina 

pukotina i značajno se pojednostavljuje numerička implementacija, posebno u trodimenzijskim 

postavkama. U zadnje vrijeme razvijen je velik broj takvih modela s različitom primjenom kao 

što su modeli faznog polja za predviđanje krhkog i duktilnog loma ili multifizikalni problemi 

kao što su lom uzrokovan termomehaničkim, elektromehaničkim ili hidrauličkim djelovanjem, 

što također pokazuje veliki potencijal ove metode. 

Međutim, velika većina ovih modela uglavnom je verificirana kroz usporedbe sa standardnim 

numeričkim primjerima (benchmark) i kvalitativnom usporedbom s eksperimentalno 

dobivenom slikom putanje loma. Manji je broj modela kvantitativno validiran u usporedbi s 

eksperimentom, što je preduvjet kako bi modeli predikcije loma primjenom faznog polja 

uistinu mogli postati pouzdana alternativa numeričkih simulacija rasta pukotina u inženjerskoj 

praksi. Dio modela testiran je i na heterogenim mikrostrukturnim geometrijama. Neki od 

primjera su radovi na geometriji dobivenoj mikrotomografijom betona ili nodularnog lijeva u 

jednom od autorovih radova, proizvoljnoj (randomiziranoj) mikrostrukturi grafita H-451 ili 

uranovog dioksida (UO2) gdje su svojstva materijala kalibrirana prema simulacijama 

molekularne dinamike.  

Tek je nedavno formulacija faznog polja proširena i na probleme zamornog loma. Predstavljeni 

modeli jasno pokazuju potencijal metode faznog polja za repliciranje glavnih značajki 

zamornog loma, uključujući nastanak pukotine, stabilne i nestabilne faze rasta, rezultat čega su 

poznata Wöhlerova krivulja i Parisov zakon. Navedeni modeli razvijeni su pod pretpostavkom 
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elastičnog ponašanja materijala što odgovara takozvanom visokocikličkom zamornom režimu. 

Budući da je zamorni lom jedan od glavnih uzroka loma inženjerskih konstrukcija, a njegovo 

numeričko predviđanje i dalje predstavlja veliki izazov, za očekivati je da će se uskoro pojaviti 

i još napredniji modeli zamora s temeljitom eksperimentalnom validacijom. Međutim, u ovom 

trenutku još uvijek nedostaje generalni model koji je sposoban replicirati lom pri monotonom 

opterećenju, kao i značajke nisko- i visokcikličkog zamora. Ovaj rad se također bavi i s 

razvojem takvog modela. 

Određeni problemi u numeričkoj implementaciji modela unutar okvira metode konačnih 

elemenata i dalje postoje te su predmet intenzivnog istraživanja u znanstvenoj zajednici. Neki 

od glavnih problema su nekonveksnost temeljnog funkcionala slobodne energije s obzirom na 

stupnjeve slobode polja pomaka i faznog polja, način modeliranja ireverzibilnosti loma te dugo 

vrijeme računanja zbog često potrebnih, vrlo gustih mreža konačnih elemenata. 

Konačno, većina implementacija modela loma metodom faznog polja razvijena je u 

nekomercijalnim softverima otvorenog koda baziranim na MKE ili kao samostalni algoritmi. 

Na taj je način značajno ograničen potencijal primjene ove metode u praktičnim inženjerskim 

problemima izvan znanstvene zajednice. S druge strane, primjena modela loma temeljenih na 

metodi faznog polja unutar najčešće korištenih komercijalnih računalnih MKE paketa ključna 

je za promicanje metodologije kod ostalih inženjera, istraživača i studenata. Zbog toga su 

modeli razvijeni u ovom radu implementirani u komercijalni računalni MKE paket ABAQUS 

te objavljeni i slobodno dostupni online. 

HIPOTEZE, CILJEVI, ZNANSTVENI DOPRINOS I ZAKLJUČAK 

Cilj ovog rada je razviti i implementirati novu unificiranu i robusnu metodu za numeričko 

modeliranje krhkih, duktilnih i zamornih procesa oštećenja i loma, ovisno o materijalnim 

svojstvima i vrsti opterećenja. Metoda bi trebala biti općenita te omogućiti modeliranje 

složenih procesa loma uključujući iniciranja oštećenja, propagaciju, grananje i srastanje 

pukotina bez uvođenja dodatnih specijalnih uvjeta. Takva metoda bi trebala omogućiti 

učinkovito rješavanje složenih procesa loma prisutnih na mikrostrukturnoj razini heterogenih 

materijala. Hipoteza ovog rada je mogućnost razvoja takve numeričke metode primjenom 

teorije faznog polja za modeliranje oštećenja i loma koja pokazuje prednosti u odnosu na 

postojeće postupke, kod kojih se pukotina modelira kao geometrijski diskontinuitet. Dobiveni 

rezultati trebali bi jasno prikazati utjecaj mikrostrukturne topologije te utjecaj veličine uzoraka 
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čime bi numeričke metode mogle pridonijeti boljoj procjeni strukturne pouzdanosti i sigurnosti 

te razvoju materijala s poboljšanim mehaničkim svojstvima. 

U sklopu ovog rada razvijena je poopćena numerička metoda rješavanja krhkog, duktilnog te 

zamornog oštećenja i loma temeljena na teoriji faznog polja. Metoda je implementirana u 

komercijalni MKE softver ABAQUS. Razvijen je „staggered“ algoritam s novim kriterijem 

konvergencije, temeljenom na provjeri norme reziduala, čime se poboljšavaja stopa 

konvergencije. Implementacija navedenog algoritma prva je takva implementacija iterativnog 

algoritma teorije faznog polja za rješavanje loma u paket ABAQUS. Time je također riješen 

problem ne-konveksnosti osnovnog funkcionala slobodne energije, koji često dovodi do 

numeričkih nestabilnosti. Sam algoritam je temeljito testiran čime je potvrđeno da je robustan 

i učinkovitiji od uobičajenih algoritama loma primjenom teorije faznog polja. Glavne prednosti 

implementacije unutar komercijalnog softvera su učinkovite iskorištene, uključujući računalnu 

paralelizaciju i opciju brisanja elemenata kako bi se smanjilo vrijeme računanja; korištenje 

različitih rješavača koji omogućuju računanje primjera s opterećenjem zadanim putem pomaka, 

ali i sile; korištenje naprednih kriterija konvergencije; korištenje automatske inkrementacije, 

opcije ponovnog pokretanja, odnosno nastavka analiza; opcije računanja problema konktakta. 

Razmatrane su različite 1D, 2D i 3D formulacije elemenata. Kompletan izvorni kod zajedno s 

primjerima predstavljenim u ovom radu, uputama i objašnjenjima javno je dostupan drugim 

istraživačima, studentima i inženjerima, promovirajući metodologiju loma primjenom teorije 

faznog polja. Kod je otvoreno dostupan na: https://data.mendeley.com/datasets/p77tsyrbx2/4 

Kroz veliki broj primjera dokazano je da razvijena poopćena metoda može točno reproducirati 

krhki/duktilni ili zamorni lom, u skladu s ponašanjem materijala i uvjetima opterećenja. U 

skladu s tim, prikazana je i detaljna rasprava o točnosti rezultata i trajanju analize. Metoda je 

temeljito validirana i verificirana na primjerima krhkog i duktilnog ponašanja materijala, pod 

pretpostavkom materijalne homogenosti, usporedbom s numeričkim i eksperimentalnim 

rezultatima iz dostupne literature. Posebna pozornost posvećena je verifikaciji modeliranja 

zamornog loma putem parametarske analize. Konačno, metoda je primijenjena na stvarnoj 

heterogenoj mikrostrukturi nodularnog lijeva dobivenoj metalografijom. Uzorci su monotono 

i ciklički opterećeni pri čemu je prikazano modeliranje krhkog, duktilnog i prijelaza između 

krhkog i duktilnog loma u monotonom opterećenju, te visoko- i niskocikličkog zamornog loma 

u cikličkom opterećenju.  

 

https://data.mendeley.com/datasets/p77tsyrbx2/4
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U radu su prikazani sljedeći izvorni znanstveni doprinosi: 

1.  Razvoj novog poopćenog modela loma temeljenog na teoriji faznog polja 

• Dokazano je da model točno reproducira krhki/duktilni ili zamorni lom, u 

skladu s ponašanjem materijala i uvjetima opterećenja. Takva poopćena metoda 

također točno računa lom pri monotonom opterećenju bez utjecaja zamora. 

Dodatni parametri koji odgovaraju zamornim svojstvima materijala jasno su 

povezani s poznatim empirijskim parametrima. 

• Uključene su različite formulacije teorije faznog polja, s različitim opisom i 

utjecajem na početni linearno elastični strukturni odziv, i modeli plastičnosti za 

opisivanje duktilnog loma, uključujući kombinirani nelinearni izotropno-

kinematički model očvršćenja. Ugrađena je tehnika preskakanja ciklusa za 

probleme cikličkog opterećenja. 

• Predloženi model je temeljito testiran, verificiran i validiran u usporedbi s 

numeričkim i eksperimentalnim rezultatima iz literature. Glavne značajke 

zamora, uključujući Wöhlerove i Parisove krivulje u nisko- i visokcikličkom 

režimu opterećenja, mogu se lako izračunati bez uvođenja dodatnih kriterija. 

2. Razvoj „staggered“ iterativnog algoritma s kriterijom zaustavljanja koja se temelji na 

normi reziduala 

• Algoritam je dokazano robustan i učinkovitiji u usporedbi s uobičajeno 

korištenim algoritmom jednostruke iteracije. Točnost više ne ovisi o pažljivom 

odabiru veličine koraka računanja, dok je vrijeme računanja znatno smanjeno. 

• Naglašena je važnost kriterija konvergencije za „staggered“ algoritme modela 

loma pomoću teorije faznog polja. 

3. Sustavno je ispitan potencijal predložene metode u modeliranju složenih procesa 

krhkog, duktilnog i zamornog loma analizom realne heterogene mikrostrukture 

nodularnog lijeva pri monotonom i cikličkom opterećenju 

• Uzorci različite veličine nasumično su odabrani iz metalografske slike 

nodularnog lijeva pritom zadovoljavajući globalni prosječni sadržaj grafitnih 

nodula. Ispitane su tri mogućnosti modeliranja nodula koje se razlikuju u razini 

modeliranih detalja, među kojima je i modeliranje nodula kao mikrostrukturnih 

uključina sa svojstvima grafita. Time je prikazana i mogućnost razvijene 

implementacije u rješavanju problema kontakta. 
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• Prikazan je utjecaj mikrostrukturne topologije, odnosno veličine, oblika i 

raspodjele mikrokonstituenata. Predloženi model može simulirati složene 

procese loma, uključujući nastajanje, lokalizaciju, rast, spajanje i grananje 

pukotina, koji se pojavljuju na mikrostrukturnoj razini. 

• Provedena je parametarska analiza čime je prikazan utjecaj lomne žilavosti 

materijala na prijelaz između krkog i duktilnog ponašanja materijala i obrazaca 

loma, u okviru predložene metode. Primjeri s cikličkim opterećenjem pokazuju 

veliki potencijal predloženog modela za rješavanje zamornog loma u nisko- i 

visokocikličkom režimu opterećenja. Prikazan je jasni prijelaz između dva 

režima. 

Ključne riječi: numerička analiza oštećenja i loma, metoda faznog polja, metoda konačnih 

elemenata, heterogena mikrostruktura, poopćeni model oštećenja i loma, rast pukotine, krhki 

lom, duktilni lom, visokociklički zamor, niskociklički zamor, ABAQUS. 
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1.1. Motivation 

Some of the main characteristics of modern structures and machine components are their ever-

increasing design complexity and use of new materials with enhanced properties to meet rising 

safety, reliability and durability requirements while simultaneously satisfying high efficiency 

and low-cost demands in manufacturing, maintenance and optimal control. Moreover, 

increasing component lifetime is an important factor in dealing with pressing issues of climate 

changes and environment preservation. One of the central issues, often directly causing a loss 

of products, services or in more extreme cases, life, is material failure. Its prediction and 

prevention are thus undoubtedly still a major concern, and as such, an area of great interest to 

many engineers and researchers.  

In modern engineering, numerical simulations are an inevitable part of component design and 

material development. Following appropriate validation procedure, numerical simulations are 

complementing and gradually replacing often expensive and time-consuming experiments, 
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reducing the number of needed prototypes and improving predictive maintenance, thus directly 

tackling the aforementioned industrial and environmental demands.  

The materials used in modern structures and machine components often exhibit significant 

microstructural heterogeneity. Various geomaterials such as concrete and rocks, high-strength 

steels, composites and polymers, or materials produced by emerging procedures like sintering 

or additive manufacturing, are just some examples of such materials. Their properties are 

affected to a great extent by the individual microconstituent properties and microstructural 

topology, i.e., size, shape and distribution of the microconstituents. Furthermore, most of the 

complex fracture processes (e.g., crack initiation, localization, propagation, merging and 

branching) occur at the microstructural scale, making the fracture analysis of heterogeneous 

microstructure an especially challenging and interesting problem.  

Therefore, numerical fracture analysis of heterogeneous materials which considers their 

microstructural properties and topology could be a valuable asset for the assessment of 

structural integrity, reliability, and component lifetime in modern structures and machine 

components. It could lead to a more realistic material behaviour description, which could, in 

turn, assist the development of materials with enhanced properties coming from the desired 

microstructure, and enable the production of more efficient, safer and cheaper structures built 

from heterogeneous materials. 

 

 

Fig. 1.1. Example of microheterogeneous materials used in modern-day engineering 

(Končar KO VA 57/1 wind turbine with nodular cast iron hub) 
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1.2. State of the art 

1.2.1. Historical development of fracture mechanics  

A significant progress has been achieved in understanding the fundamental physics and 

mechanics of fracture since the early works of Griffith [1] in the 1920s. The Griffith’s theory 

provided a quantitative connection between the fracture stress and flaw size in ideally brittle 

materials, and thus introduced the branch of fracture mechanics into the field of classical 

mechanics. It stated that a fracture occurs, i.e., a material flaw becomes unstable, when the 

change of strain energy resulting from the incremental crack growth is larger than the surface 

energy of the material. Later development of the theory by Irwin [2, 3], who introduced the 

energy release rate concept, provided its application to the range of ductile materials making it 

more useful for solving engineering problems of the time. Essential difference between the 

class of brittle and ductile materials is the ability of ductile materials to undergo significant 

plastic deformation before fracture. This is schematically displayed in Fig. 1.2. together with 

some real-life examples. In 1961 Paris and his co-workers [4] applied fracture mechanics 

principles to the fatigue crack growth. Fatigue refers to the process of material weakening due 

to repeated applied loads individually too low to cause monotonic fracture. Rapid 

advancements in the computer technology and the simultaneous progress of numerical 

modelling in the past century significantly raised the practical relevance of fracture mechanics. 

Computational fracture mechanics thus became an indispensable tool in fracture analysis with 

early fracture mechanics theories providing its criteria for crack propagation.  

   
a) b) c) 

Fig. 1.2. Brittle vs Ductile fracture. a) Schematic representation of stress-strain,  

b) Brittle fracture in a mild steel [5] and c) Ductile fracture in aluminium [5] 

1.2.2. Numerical damage and fracture models 

The numerical damage and fracture modelling methods are most commonly included within 

the Finite Element Method (FEM) framework. It is based on the concept of dividing the 
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physical model into smaller segments (elements) with simple geometry and a finite number of 

degrees of freedom. Such a discrete model of an object consisting of the finite element mesh 

can then be described by a boundary value problem resulting in a system of algebraic equations 

and easily solved.  

These numerical damage and fracture modelling methods can be generally divided into discrete 

and diffusive, or continuum, formulation approaches based on their description of fracture.  

1.2.2.1. Discrete crack modelling approaches 

Discrete crack modelling approaches introduce the crack as a sharp geometrical discontinuity. 

One of the most used techniques to handle discrete crack propagation is the cohesive zone 

modelling (CZM) first introduced in Barenblatt [6] and Dugdale [7] to address the stress 

singularity and nonlinear processes in front of a pre-existent crack. It is implemented through 

interface or generalized contact elements which compose a narrow-band called cohesive zone 

ahead of the crack front [8, 9]. At this zone the material follows a nonlinear constitutive law 

relating the cohesive traction to the separation displacement of the cohesive surfaces. Traction 

first increases until the maximum value is reached, and subsequently reduces to zero resulting 

in a complete separation. Despite physical separation of the surfaces, CZM maintains 

continuity conditions and eliminates stress singularity at the crack tip limiting it to the cohesive 

strength of the material. However, since the crack propagates along the element edges, the 

standard CZM finite element implementation exhibits a strong dependence of the results on the 

mesh size and orientation during crack growth, as presented in Chandra et al. [10]. A 

comprehensive literature review of the CZMs, including their advantages and limitations has 

been done in Elices et al. [11]. On the other hand, to properly model arbitrary crack topologies, 

remeshing algorithms presented in [12, 13] and enriched FEM discretization techniques, most 

notably the extended finite element method (XFEM) [14, 15], were developed. In XFEM, the 

displacement field is enriched with the Heaviside functions to model the crack surface 

displacement discontinuity, and the asymptotic near-tip singularity functions to capture the 

stress singularity at the crack tip. This enables the prediction of crack growth independent of 

the finite element discretization. XFEM shows great success in resolving the crack tip stress 

singularities and true stress behaviour at the vicinity of the crack tip, as presented in Moës et 

al. [16]. Along with the additional criteria for crack initiation, propagation and growth direction 

required in the discrete crack modelling methods, a major problem arises with the numerical 
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tracking of the crack discontinuities, which can lead to significant implementation difficulties 

in three-dimensional (3D) settings. 

In recent years, a number of meshless methods have been developed enabling the crack 

evolution without remeshing. The element-free Galerkin (EFG) method as a representative, 

proposed by Belytschko et al. [17, 18], has been used extensively to model linear and nonlinear 

crack propagation problems. However, these methods suffer from the following key problems 

when compared with FEM: the numerical integration of a weak form, the enforcement of 

essential boundary conditions, numerical instability and computational expense as reported in 

Babuška et al. [19], and Qian and Zhou [20]. 

 

Fig. 1.3.  Discrete versus diffusive crack modelling 

1.2.2.2. Diffusive crack modelling approaches 

Diffusive crack modelling approaches, often called continuum damage or smeared crack 

modelling approaches, introduce a damage parameter at the material point level instead of 

modelling an actual crack topology. Damage parameter then controls the stiffness of the 

material, incorporating the stress release associated with the crack formation into the 

constitutive model (see de Borst [21] for a detailed overview). A number of continuum damage 

models are based on the assumption of standard continuum (also called the local continuum). 

The material behaviour is then characterized by the constitutive law at each material point, 

which does not exhibit the influence of the surrounding points. The increase of the damage 

parameter value in these models leads to a strong softening behaviour followed by an intense 

strain and damage localization, as reported in Aifantis [22]. Consequently, it causes a local loss 

of ellipticity of the governing differential equations, which in turn leads to numerical solutions 

converging to physically meaningless solutions, as discussed in de Borst et al. [23]. In the FEM 

discretization framework, the problem is manifested through the non-objective results caused 

by the strong mesh refinement and alignment dependence, reported in Bazant and Belytschko 

[24]. To alleviate this problem, the non-local [25], and gradient-enhanced continuum 
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approaches [26] have been developed. They introduce a non-local state variables which usually 

depend on their local counterpart through the use of length scale parameters. These models are 

also able to predict size effects, previously not possible with the local continuum models. 

Similar approaches based on the introduction of the length scale parameters also include the 

crack band model [27], micropolar [28] and later micromorphic theory [29]. Particular 

drawback of the non-local approaches presented in [25, 26] is the widening of the damage zone 

normal to the crack propagation direction, reported in Simone et al. [30]. This problem is 

commonly avoided by the introduction of length scale parameter as a function of strain level 

in Geers et al. [31], and Pijaudier-Cabot et al. [32]. However, the underlying assumption of this 

models might not have a microstructurally correct physical background as explained in Poh 

and Sun [33]. The damage zone expansion problem has also been alleviated by the introduction 

of a nonlocal continuum theory in Putar et al. [34]. 

1.2.3. Numerical modelling of heterogeneous materials 

Advancements in the computer technology also gave rise to the numerical methods combining 

the field of mechanics of materials with the field of material science. While the assumption of 

the material macrohomogeneity is often still valid in engineering practice, the development of 

advanced materials, used in modern day complex structures, requires the consideration of 

material microheterogeneity and its influence on the macroscale constitutive response. 

Experimental techniques have also gone a long way in assessing the microstructural 

heterogeneity and aiding the numerical simulations. The best example is the X-ray 

microtomography [35], which is now able to routinely generate realistic geometrical models of 

microstructure for many materials at various scales by using 3D imaging techniques [36-39]. 

One way of dealing with microheterogeneity is the use of direct numerical simulation (DNS), 

where detailed heterogeneities are modelled directly at the macroscale. Although 

computationally very intensive, especially when dealing with large scale transitions 

consequently requiring very fine meshes, it is obviously the most accurate method to calculate 

heterogeneous materials failure. On the other hand, in order to cut the computational costs, 

multiscale methods are developed separating the scales by transporting the solutions between 

the scales in an appropriate way. A detailed overview of multiscale methods, their development 

and application, is presented in [40-42]. The most popular method within the class of multi-

scale methods is the computational homogenization (CH) method. It is based on the averaging 

of certain mechanical properties over a representative volume element (RVE), assumed to be 



Chapter 1. Introduction 

 

  

     

 7 

a statistical representative of the macroscopic material point, as first explained by Hill [43]. 

The first-order homogenization has become a standard tool in CH [44-46], with most 

applications conducted in elastic or elasto-plastic hardening regimes. Moreover, it has been 

extended to the thermomechanically coupled computational homogenization in Ozdemir et al. 

[47, 48], and the second-order computational homogenization schemes considering the higher 

order deformation gradients at the macroscale in Kaczmarczyk et al. [49], and Lesičar et al. 

[50, 51]. However, when it comes to modelling the material failure, which is essentially a 

multiscale phenomenon as macroscopic cracks are a direct result of the cascade of events 

happening at the microstructural level [52, 53], there are still major problems with 

computational homogenization methods, as reported in Budarapu et al. [54]. Some works report 

the use of the continuous–continuous second-order scheme [55, 56], where continuum damage 

models are used on both scales. However, it only enables the resolution of moderate 

localization bands (the macroscopic strain field varies only linearly over the microscale RVE), 

but is inadequate when dealing with sharper localization regions, e.g., ductile damage 

coalescence on RVE [40]. The use of discontinuous-continuous scale-transition approaches 

[57-59], where a discrete crack modelling approach is introduced at the macroscale, seems to 

alleviate the sharp localization problem. However, it comes with the additional computational 

complexity and issues not arising in the conventional computational homogenization. An 

important issue in the CH multiscale treatment of the material failure arises with the 

questionable existence of the RVE, where, by its definition, it loses its statistical 

representativeness upon the onset of localization. Alternative homogenization schemes indicate 

the possibility of resolving this issue for quasi-brittle materials [59-61].  

As presented, the multiscale methods have been proven successful in general when no material 

softening is expected, and while they give promise to multiscale modelling of material fracture, 

there still seems to be a long way before they can be consistently and reliably applied in actual 

structural problems. On the other hand, as fracture processes at the microstructural level of 

highly heterogeneous materials often consists of complex crack processes, the development of 

a generalized numerical method capable of reliably describing these processes including the 

fracture nucleation and propagation, without ad hoc criteria, is still an area of major interest. 

Development of the damage and fracture models for the highly heterogeneous materials, while 

considering actual microstructural topologies, offers a way to more accurately predict the 

fracture processes in related materials and will be dealt with in this thesis. 
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1.2.4. Phase-field fracture models 

The phase-field modelling approach has been gaining tremendous popularity over the past 

decade. The phase-field framework is commonly related with modelling the systems consisting 

of different phases divided by sharp interfaces. It incorporates an order parameter – a 

continuous variable differentiating between the physical phases within a given system through 

a smooth transition. In case of fracture modelling, broken and unbroken material states are 

separated. The sharp crack discontinuity is thus approximated by a diffusive band whose width 

is regulated by a length-scale parameter. Therefore, phase-field fracture method can be 

classified as a diffusive crack modelling method. Interestingly, the phase-field fracture 

framework has been independently developed by physics and mechanics community with 

considerably different approaches and starting points to derive the phase-field evolution 

equations. The physics community developed dynamic fracture models [62, 63] using the 

Ginzburg-Landau theory [64] originally derived for electromagnetic second-order phase 

transition phenomena. On the other hand, the phase-field fracture models which this thesis is 

focused on, originate from the variational approach to brittle fracture proposed by Francfort 

and Marigo [65]. It was proposed as an extension of the Griffith’s energy-based fracture theory 

and recast as the energy minimization problem. The energy functional is then akin to the 

potential used in image segmentation presented by Mumford and Shah [66]. It has later been 

regularized by Bourdin et al. [67, 68], based on the Γ-convergence theory by Ambrosio and 

Tortorelli [69], reformulating it as a system of partial differential equations that completely 

determine the crack evolution, thus enabling an efficient numerical implementation. The 

regularized models closely resemble gradient-damage models with the clear differences in the 

choice of the free energy and dissipation function, as discussed by de Borst and Verhoosel [70]. 

One reason of the popularity of the phase-field approach to fracture is its success in solving 

complex fracture processes (e.g. crack nucleation in absence of stress singularity, crack 

propagation, merging, kinking or branching), without introducing any ad hoc criteria. 

Moreover, its smooth approximation of the crack topology on a fixed finite element mesh 

circumvents the complex crack-surface tracking problem. This, in turn, significantly simplifies 

the finite element implementation, especially in 3D settings. 

A considerable number of various phase-field brittle fracture formulations has been recently 

developed for the quasi-static [71-75] and dynamic [76-78] models. A great overview of the 

phase-field brittle fracture models is done by Ambati et al. [79]. Furthermore, the framework 
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has been extended to handle the ductile fracture in [80-86] by different formulations with 

various advantages and disadvantages, well summarized by Alessi et al. [87]. Moreover, it has 

been extended to multiphysics problems related to thermomechanical fracture in [88-90], 

hydraulic fracture [91, 92], electromechanical fracture [93], fracture in porous media [94-97] 

or soil-like materials [98], and many more, showing the great potential of this method. A 

summary of phase field state-of-the-art approaches to fracture has been compiled in the special 

issue [99] and more recently in a book chapter by de Lorenzis and Gerasimov [100].  

A majority of the listed phase-field formulations have been thoroughly verified by available 

numerical benchmark tests, and qualitative experimental data comparing the predicted and 

observed crack paths. In contrast, phase-field brittle fracture formulations have been 

quantitatively validated on a plaster material by Nguyen et al. [101], and the 

Polymethylmethacrylate (PMMA) material by Pham et al. [102], while Zhou et al. [103] used 

quantitative experimental data on rock fracture testing available in literature. Moreover, 

quantitative experimental validation has been done on anisotropic brittle materials by Bleyer 

and Alessi [104], where fibre-reinforced composites have been used, while the ductile fracture 

formulation has been validated by Ambati et al. [105]. A proper validation of phase-field 

algorithms remains an open issue and is needed for phase-field fracture approaches to become 

a truly reliable tool for the crack propagation simulation in real-life structural components. 

The phase-field method has been applied to the analysis of brittle fracture in heterogeneous 

microstructural geometries obtained from the X-ray microtomography of concrete by Nguyen 

et al. [106]. Similarly, a phase-field fracture model has been used on the simplified 

heterogeneous microstructural geometry obtained by microtomography of nodular cast iron in 

the author’s works [107, 108]. Phase-field brittle fracture models have also been used on the 

randomized microstructure of nuclear grade graphite H-451 in [109], and uranium dioxide 

(UO2) in [110], where material properties were calibrated from the molecular dynamics based 

fracture simulations. A microscale phase-field model for fracture in poro-elasto-plastic media 

has been proposed by Aldakheel [111] to model concrete failure on micro-CT scanned 

geometry. On the other hand, Patil et al. [112] included uniform heterogeneities in standard 

numerical benchmark examples. Therefore, phase-field fracture models proved highly 

appropriate for modelling complex fracture processes in heterogeneous microstructures. 

The phase-field fracture framework has been very recently extended to the fatigue crack 

propagation problems, too. Unlike the fatigue models using empirical data or parameters with 
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no clear physical interpretation [113-115], the extended phase-field fracture method is able to 

reproduce the main features of fatigue failure with fracture-based input parameters. Boldrini et 

al. [116] presented a phase-field model coupling the fracture behaviour with thermal and 

fatigue problem, where fatigue behaviour is introduced via additional scalar parameter. On the 

other hand, Caputo and Fabrizio [117] as well as Amendola et al. [118] adopted the phase-field 

fracture model with Ginzburg-Landau formalism, where the material degradation under cyclic 

loading is introduced by incorporating a fatigue potential. On the other hand, a more intuitive 

approach has been very recently proposed by Alessi et al. [119], Carrara et al. [120] and Seiler 

et al. [121], where not only the stiffness is being degraded due to phase-field evolution, but 

also the fracture energy on the account of strain or stress history. The presented models clearly 

show the potential of the phase-field method to reproduce the main features of fatigue failure 

including the crack nucleation, stable and unstable propagation phases, while recovering Paris 

law and the Wöhler curve naturally. The models are developed under the assumption of elastic 

material behaviour, which corresponds to the so-called high-cycle fatigue regime. Since the 

fatigue failure is one of the critical causes of engineering structures failure with its numerical 

prediction still representing a great challenge, it is expected that even more advanced phase-

field fatigue models with thorough experimental validation will emerge soon. However, at this 

time a general framework able to reproduce the monotonic fracture as well as the features of 

low- and high-cycle fatigue is still missing. This thesis deals with such a framework. 

Certain challenges in the computational treatment of the phase-field fracture method within the 

finite element framework still exist and have recently become a subject of intensive research, 

providing some great insights and innovative solutions. Namely, the non-convexity of the 

underlying free energy functional with respect to the phase-field and displacement field; the 

irreversibility of the crack phase-field parameter; and the size of the length scale regularization 

parameter often requiring extremely fine meshes in the crack propagation zone. 

The non-convexity of the underlying free energy functional constitutes a major problem within 

the so-called monolithic treatment of the variational formulation. Such monolithic algorithms 

attempt to solve this coupled system by computing the unknowns, i.e., displacement and crack 

phase-field, simultaneously. However, due to the lack of convexity, local minima exist 

(schematically shown in Fig. 1.4) thus creating obvious convergence issues. As a result, pure 

monolithic algorithms are unstable in the so-called brutal crack evolution as well as in the post-

peak loading regime. Only a few works have been published utilizing the fully monolithic 
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treatment of the phase-field fracture problem. Nevertheless, some improvements to the 

robustness of the monolithic approach have been studied recently. To this end, a dissipation-

based arc-length procedure for the monolithically solved system has been presented by 

Verhoosel et al. [122], a modified line-search assisted monolithic solver has been proposed by 

Gerasimov and de Lorenzis [123], a modified Newton scheme with Jacobian modification has 

been used by Wick [124]. Furthermore, Heister et al. [125] proposed the linearization of the 

elastic part of total energy by replacing the unknown phase-field parameter with its known and 

fixed extrapolated value in order to obtain a convex energy functional. A slightly different 

approach to tackle the non-convexity issue has been presented by Kopanicakova and Krause 

[126] where a recursive multilevel trust region method is used. 

 

Fig. 1.4. Schematic representation of non-convex free energy functional 

On the other hand, a very common remedy to the non-convexity problem is the use of staggered 

(also called alternate minimization) solution strategy. It is based on the observation that, while 

the free energy functional is generally non-convex, it is convex with the respect either to the 

displacement or the phase-field variable if the other one is held constant [67]. Thus, utilizing 

the operator split principle, the weak formulation is decoupled yielding a two-equation system 

to be solved in an iterative manner. Due to its proved robustness, this solution procedure is 

very popular. The staggered solution scheme proposed in Miehe et al. [72] is based on a single 

staggered iteration procedure. Because of its implementation simplicity and proved robustness, 

it is widely used [77, 127-129]. However, it requires small loading increments in order to 

provide an accurate solution, making it computationally rather expensive for more complex 

problems. In contrast, utilizing more iterations per increment allows the use of larger loading 

increments, while the efficiency and convergence rate depends on the stopping criterion. Duda 

et al. [130] and Bourdin et al. [68] have used the criteria of running the iterative scheme until 

the successive solution variables were close enough to one another. In Ambati et al. [79], the 
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issue of convergence rate has been tackled through a stopping criterion based on a normalized 

change of the system’s energy. On the other hand, the slow iterative convergence rate typical 

of the staggered solution strategy was overcome by employing the over-relaxed alternate 

minimization with Newton-type methods in Farrell and Maurini [131]. Part of this thesis’s 

contribution is the development of the staggered solution scheme with a stopping criterion 

based on the control of the residual norm presented in author’s work [132, 133] and 

emphasizing the importance of using a stopping criterion within a staggered scheme through 

the illustrative examples [107, 132]. 

The enforcement of fracture process irreversibility, i.e. the prevention of crack healing, in 

phase-field fracture models is achieved through the introduction of the irreversibility constraint 

on the crack phase-field parameter. This makes the formulation a constrained minimization 

problem. A direct way of introducing the irreversibility is by enforcing the monotonicity of the 

phase-field parameter through the variational inequality conditions [134-136]. However, it 

comes with an additional computational cost. Another way is the enforcement of much simpler 

and computationally cheaper variational equality conditions which have been classified as 

relaxed, penalized and implicit in Gerasimov and De Lorenzis [137], where a great overview 

of the irreversibility problem in phase-field fracture models is given as well. What is termed 

relaxed variational equality is actually enforcing the irreversibility only on the fully developed 

crack, while allowing the transition zone to heal [67, 68, 123]. Penalized approaches, as the 

word itself says, incorporate the irreversibility through the use of penalty functions [91, 124, 

125, 137]. On the other hand, an implicit enforcement of the constraint was proposed by Miehe 

et al. [72] by introducing the strain-history field. This approach is particularly attractive due to 

its efficiency as its only computational cost is a floating-point comparison. It has been used in 

the majority of works on the topic of phase-field fracture as well as in this thesis. However, it 

violates the full variational nature of the approach. 

The fine meshes needed to resolve small regularization length scale sizes within the finite 

element framework are one of the aspects of the high computational cost of the phase-field 

fracture models. While it is fairly easy to model the fracture process whose final pattern is 

known in advance by using the appropriately pre-refined meshes, using fixed uniform meshes 

would generally lead to too high computational costs. To that end, mesh adaptivity through the 

error-controlled refinement strategies is presented in [112, 124, 138], while the physically-

motivated procedures for mesh adaptivity were proposed in [125, 139-141]. Moreover, a 
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computational parallelization is another remedy to the computational cost of phase-field 

fracture models, presented in Liu et al. [128] and Mesgarnejad  et al. [135]. The problem of 

computational parallelization is tackled in this thesis as well. From the point of view of 

computational cost, it can be seen that there is still a lot of room for improvement in the phase-

field fracture models.  

Finally, most of the listed phase-field fracture implementations are developed within the open-

source Finite element (FE) programs or as the standalone algorithms. Only a few authors 

openly shared the source codes, thus considerably limiting the potential applications outside of 

the phase-field fracture community and its use in practical problems. To the best of author’s 

knowledge, the shared source codes for the phase-field fracture models are made available by 

Bourdin1 related to [68], Farrel2 related to [131] and Heister3 related to [125], in FE programs 

mef90 [142], FEniCS [143] and deal.II [144], respectively. On the other hand, the 

implementation of the phase-field fracture models within the more commonly used commercial 

FE software packages seems vital in promoting the methodology with engineers, researchers 

and students. The first such implementation into the commercial finite element software 

ABAQUS [145] was done by Msekh et al. [146] by utilizing a user finite element with an 

additional nodal degree of freedom (DOF) describing the phase-field variable and solving the 

system in a monolithic manner. The monolithic strategy has also been used in Pillai et al. [147], 

however the source codes were not provided. The staggered algorithm has been implemented 

in Molnar and Gravouil [127] by separating the displacement and phase-field DOFs into two 

user element types arranged in a layered manner with the addition of third layer used for the 

visualization. Similarly, the staggered algorithm has also been implemented in [128, 148], but 

unfortunately, the source codes were not provided. Mentioned staggered algorithm 

implementations [127, 128, 148] are based on the single iteration solution scheme [72]. The 

first commercial software implementation of the iterative phase-field staggered scheme with a 

stopping criterion was proposed in author’s work [132], where a three-layered system has been 

introduced into the ABAQUS software, exhibiting computational efficiency and accuracy with 

no influence on the selection of loading increment size. Recently, a phase-field ductile fracture 

model has been implemented in the ABAQUS software in Fang et al. [149] using an iterative 

staggered solution scheme. Furthermore, an iterative staggered strategy has been used in Zhang 

 
1 https://github.com/bourdin/mef90 
2 https://bitbucket.org/pefarrell/varfrac-solvers/src/master/    
3 https://github.com/tjhei/cracks 

https://github.com/bourdin/mef90
https://bitbucket.org/pefarrell/varfrac-solvers/src/master/
https://github.com/tjhei/cracks
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et al. [150], where a phase-field model for cohesive fracture was implemented into ABAQUS. 

Lastly, Wu et al. [151] proposed the use of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) 

method within the monolithic ABAQUS implementation providing robustness and better 

efficiency in comparison with staggered implementations. A comprehensive overview and 

comparisons of ABAQUS implementations has been recently done in Wu and Huang [152]. 

The phase-field models proposed and developed in this thesis are made freely available at 

Mendeley repository [133]. 

1.3. Research hypothesis and objectives/present contribution 

The objective of this study is to develop and implement a novel unified and robust method for 

modelling of brittle, ductile, and fatigue damage and fracture processes, depending on material 

behaviour and loading type. The method should be general to allow the modelling of complex 

fracture processes including damage initiation, crack propagation, branching, and merging 

without the introduction of ad hoc criteria. The framework should be capable of efficiently 

solving complex fracture processes occurring at the microstructural level of heterogeneous 

materials. The hypothesis is the possibility of development of such method by applying the 

phase-field fracture methodology, which shows advantages over existing discrete damage and 

crack modelling procedures. The obtained results will show the effects of the microstructural 

randomness and exhibit size-effect, which will contribute to the assessment of structural 

reliability and safety and the development of advanced materials.  

To that end, a generalized phase-field method for brittle, ductile and fatigue fracture is 

developed. The method is implemented into commercial FE software ABAQUS. A staggered 

algorithm has been developed with a new stopping criterion based on the residual norm control. 

It also solves the problem of non-convexity of the phase-field free energy functional. The 

implementation of the algorithm is the first such implementation of an iterative phase-field 

fracture solution scheme in the ABAQUS software. Thorough testing is conducted to assess 

the accuracy and stability of the implementation. The main advantages of implementation 

within commercial software are effectively utilized, including the thread parallelization and the 

element deletion option to reduce the common problem of high computational cost; the use of 

different solvers pre-programmed in ABAQUS (Newton-Raphson or Riks) allows the 

calculation of both displacement- and force-controlled loading cases; the advanced 

convergence criteria; automatic incrementation, restart and continuation of analyses; contact 
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problem options. Different 1D, 2D and 3D element formulations are considered. The complete 

source code along with the examples presented in this work, guides, and explanations is 

publicly available to other researchers, students, and engineers, promoting fracture 

methodology by applying phase field theory. The code is openly available at: 

https://data.mendeley.com/datasets/p77tsyrbx2/4 

The capability of the proposed method to reproduce the brittle/ductile or fatigue fracture, 

according to the material behaviour and loading conditions is presented. Detailed discussions 

on the accuracy of the results and the computational costs are given throughout the work. The 

method is thoroughly validated and verified on the examples of brittle and ductile material 

behaviour, assuming the material homogeneity, in comparison with the numerical and 

experimental results from the available literature. Special attention is given to the verification 

of the modelling of fatigue fracture by conducting the parametric analysis. Finally, the 

proposed method is applied to the real heterogeneous microstructural geometries of nodular 

cast iron obtained by metallography procedure. The brittle and ductile failure behaviour is 

observed in monotonically loaded specimens while high- and low-cyclic fatigue fracture 

features are clearly recovered in cyclically loaded specimens. 

The work behind this thesis makes the following contributions to the field of computational 

fracture mechanics: 

1. The phase-field fracture staggered algorithm with stopping criterion based on the 

control of the residual norm is developed. The algorithm is thoroughly tested in 

comparison with commonly used single iteration staggered phase-field fracture 

algorithm. Detailed discussion on the accuracy of results and analysis duration is given. 

Furthermore, emphasis is put on the importance of using a stopping criterion within a 

staggered scheme by illustrative examples.  

2. The developed algorithm framework is extended to simultaneously tackle brittle, 

ductile and full range low- and high-cyclic fatigue fracture, depending on the 

material properties and loading scenario. A novel description of energy accumulation 

variable is introduced allowing the accurate monotonic fracture analysis without the 

influence of the fatigue extension. Different phase-field formulations affecting the 

(linear-) elastic material behaviour stage are included together with a few different 

plasticity material models to account for the ductile fracture behaviour, as well as cyclic 

https://data.mendeley.com/datasets/p77tsyrbx2/4
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plasticity in low-cyclic fatigue regime. The developed models are verified and validated 

in comparison with numerical and experimental data from available literature. Special 

attention is given to the verification of such a model through parametric study, 

obtaining well-known features of low- and high-cyclic fatigue such as the Paris law and 

the Wöhler curve. The cycle skipping technique is implemented to allow the calculation 

of very high number of cycles on moderate size examples.  

3. The potential of the proposed model in modelling of the complex brittle, ductile 

and fatigue fracture processes is thoroughly examined on real heterogeneous 

microstructural geometries of nodular cast iron obtained by metallography 

procedure. The different specimen sizes are tested clearly observing the size-effect 

behaviour corresponding to the verified results reported in the literature. The capability 

of the phase-field framework in capturing the influence of microstructural topology, 

i.e., size, shape and arrangement of microconstituents, on the crack initiation and 

complex crack propagation patterns, is clearly observed in both monotonic and cyclic 

testing. 

1.4. Thesis outline 

The thesis is organized as follows. After the introductory discussion on motivation, state-of-

the-art and thesis objectives, the general concepts of phase-field fracture model are provided 

in Chapter 2. The basic relations of phase-field brittle, ductile and fatigue fracture modelling 

are explained together with different phase-field formulations used in this thesis. Chapter 3 

deals with the numerical implementation of the phase-field fracture model into FE software 

ABAQUS, where monolithic, single iteration staggered, and the proposed stopping criterion 

staggered algorithm are explained in detail. Advantages of such implementation and additional 

options such as thread-parallelization, element deletion, or contact problems are discussed. 

Chapter 4 deals with the examples of brittle, ductile and fatigue fracture on homogeneous 

materials and its numerical verification and/or experimental validation. Different phase-field 

formulations as well as material models are tested. Heterogeneous microstructural geometries 

obtained by the microtomography of nodular cast iron is analysed in Chapter 5. Different 

specimen sizes are used showing the influence of size, shape and arrangement of 

microconstituents. Finally, concluding remarks are given in Chapter 6 with suggestions for 

future research directions. 
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This chapter presents the theoretical background for the phase-field fracture models of solid 

deformable bodies used in this thesis. The models are considered isothermal and derived under 

the assumptions of small-strain settings. The main features, detailed explanation and the 

derivation of governing equations based on the variational minimization problem is presented 

for the brittle fracture model. Two different phase-field formulations, used in this thesis and 

named AT-2 and TH, are shown with their main differences clearly displayed through the 

derivation of governing equations and their homogeneous solutions. The brittle fracture models 

are then used as a basis for extension towards ductile fracture problems. Hereby, the 

incorporation of plastic material behaviour with nonlinear isotropic hardening and combined 

nonlinear kinematic-isotropic hardening is introduced, while leaving the framework open for 

the implementation of many other plastic material models. Finally, the phase-field fracture 

model is extended to fatigue fracture problem, thus presenting a novel generalized phase-field 

fracture framework which is able to recover the quasi-static brittle/ductile fracture as well as 

the low- and high-cycle fatigue regime and transition, depending on the type of loading.  
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2.1. Brittle fracture model 

2.1.1. Governing functional 

An n-dimensional body n ,  1,3n  with its surface 1d n−  is considered with the 

evolving crack surface Γ(t) and the corresponding displacement field u. Following the 

variational approach to fracture proposed by Francfort and Marigo [65], as an extension of the 

Griffith’s fracture theory [1], the entire fracture process is governed by the minimization of the 

internal energy functional   consisting of the body’s internal, or bulk energy b  and the 

fracture-induced dissipating surface energy s , as follows 

 ( )b s

/
d d .cG

  
 =  + = +  ε   (2.1) 

Such approach to fracture states that a body that is initially without a flaw may nucleate a crack 

under the influence of external load, if the resulting configuration has a lower total energy 

compared to the configuration where no crack forms. The crack propagation directions are then 

naturally obtained as those leading to the minimum energy configuration. Moreover, the cracks 

may branch and merge if it leads to a lower energy configuration than the simple crack 

extension, without the need to introduce any additional criteria.  

For the case of (quasi-)brittle fracture the material behaviour is assumed to be linear elastic. 

Therefore, ( ) ε  here corresponds to the elastic strain energy density function ( )e ε  given by 

( ) ( ) ( )2 21
e 2

tr tr  = +ε ε ε  with the Láme constants λ and μ, and the small strain tensor ε . 

The dissipated fracture surface energy s  is associated to the creation of new free surfaces 

upon the formation of crack. According to the Griffith’s theory of fracture, the material fails 

upon reaching the critical value of fracture energy density Gc, which is a material parameter. 

In this work, the energy dissipation due to heat and sound release at the onset of fracture is 

neglected. 

2.1.2. Fracture surface regularization 

The explicit tracking of fracture surface Γ(t) can be numerically costly and complicated when 

the interactions between multiple cracks are considered, especially in 3D settings. Therefore, 

the basic idea of the phase-field models is to approximate this discrete surface Γ(t) by a crack 

density function ( ), ,    using a phase-field order parameter  0,1 .   The parameter   
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describes the scalar damage field ranging smoothly between the broken ( )1 =  and the intact 

( )0 =  material states, as proposed by Bourdin et al. [67]. That way the surface energy s  

can be calculated as a domain integral. One way of obtaining the crack density function   is 

by following the analogy of an infinite 1D bar and expanding it to 2D and 3D, as presented by 

Miehe et al. [71]. The bar is schematically represented in Fig. 2.1 with a fully formed crack at 

0x = .  

 

Fig. 2.1. An infinite 1D bar with a discrete crack Γ 

The fracture surface energy s  can be then simply calculated as  

 
s

c cd ,G G


 =  =   (2.2) 

where Γ, in this case, corresponds to the cross-sectional area of the bar. However, for the 

nontrivial solution of this problem, where the crack surface is not known, a sharp crack 

topology may be described by a scalar crack function 

 ( ) /x l
x e

−
=  (2.3) 

The length scale parameter l governs the width of the diffusive zone. The discrete fracture 

surface is then recovered for l → 0. The exponential function (2.3) is the solution of the Euler 

homogenous differential equation 

 ( ) ( )2 0  in ,x l x − =   (2.4)  

subjected to the boundary conditions ( ) ( )0 1,  0 =  = , as shown in Fig. 2.1. Furthermore, 

(2.4) is associated with the variational problem 

 ( ) ( ) inf ,
W

x Arg I


 


=  (2.5) 
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where 

 ( ) ( )2 2 21
d ,

2
I l  


= +   (2.6) 

and ( ) ( ) | 0 1,  0W   = =  = . The integration of (2.6) over the volume d dx=  returns 

( )/x l
I e l

−
= =  , thus clearly relating the fracture surface to the length scale parameter l. A 

functional ( )  can be then introduced as 

 ( ) ( ) ( ) ( )2 2 21 1
d , d ,

2
I l

l l
      

 
  = = +  =    (2.7) 

where ( ),    is the crack density function. Expanding (2.7) to the multiple dimensions yields  

 ( )
221 1

, .
2

l
l

    
 

 = +  
 

 (2.8) 

Note that the gradient of the phase-field significantly contributes to the phase-field description 

of fracture topology, showing great similarities to the gradient damage models [70]. 

Furthermore, the local part of the crack density function γ defines the decaying profile of ϕ, 

which will be discussed more thoroughly later. Schematic representation of the sharp crack 

topology approximation by the phase-field parameter ϕ and the influence of length scale 

parameter l on the width of transition zone is clearly displayed in Fig. 2.2. 

 

Fig. 2.2. Sharp crack topology Γ approximation represented with the parameter ϕ and the influence of 

length scale parameter “l” on the width of transition zone 

The diffusive crack function (2.3) has to be bounded  ( )0,1  , symmetric and monotonically 

decreasing away from the location of crack. While it is obviously not the only function 

satisfying these conditions, it is the most commonly used function in the phase-field fracture 

models and is used in this work as well.  
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Some examples of different ( )x  function choices can be seen in Borden et al. [74], where 

( ) ( )/
e 1

xx l

l
x

−
=  +  is used leading to the higher order phase-field theory, or in Pham et al. 

[153] where ( ) ( ) ( ) 
2

2
1 for 2 , 2 ,  otherwise 0

x

l
x x l l x  = −  − =

 
leads to a variational 

inequality problem. 

2.1.3. Bulk Energy degradation 

Correspondingly, the bulk energy term b  is regularized by the introduction of monotonically 

decreasing degradation function ( )  0,1g    with the following properties  

 
( ) ( )

( ) ( )

0 1, 0 0,

1 0, 1 0,

g g

g g

= 

= =
 (2.9) 

to account for the subsequent loss of stiffness caused by the fracture initiation and propagation. 

For the detailed argumentation on the degradation function properties see Pham et al. [153].  

The bulk energy term can now be written as 

 ( ) ( ) ( )/
d d .b g  

  
 =  =   ε ε  (2.10) 

A commonly used form of degradation function satisfying (2.9) is the quadratic function 

( ) ( )
2

1g  = −  which is used throughout this thesis. On the other hand, the cubic function 

( ) ( ) ( ) ( ) ( )
3 2 2 3

1 1 3 1 2 1g s     = − − − + − − −
 

 was proposed in Borden et al. [82], with the 

parameter s controlling the degradation function slope at the unbroken material state, i.e., 

( )0 .g  Moreover, Sargado et al. [154] proposed an exponential-type degradation function with 

3 additional parameters and a corrector term, and made a detailed comparison with the already 

mentioned degradation function forms.  

2.1.4. Strain energy decompositions 

The bulk energy form (2.10) corresponds to the so-called isotropic case. This formulation 

cannot distinguish between the tensile and compressive state and is generally used in the 

problems where the tensile stresses are predominant. However, an additive decomposition of 

the elastic strain energy can be introduced to prevent the unphysical crack propagation in the 
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compressive stress state. Assuming only the degradation of the tensile strain energy part, the 

strain energy density term now reads ( ) ( ) ( ) ( )e e e, g    + −= +ε ε ε . Two most common 

energy decompositions used in the phase-field fracture models are considered here and will be 

used in the later examples, when necessary. First, the split into the volumetric and deviatoric 

contributions, proposed by Amor et al. [134], is considered as 

 
( ) ( ) ( )

( ) ( )

221
e dev dev2

221
e 2

: tr : ,

: tr ,

n

n





  

 

+

+

−

−

= + +

= +

ε ε ε

ε
 (2.11) 

where ( )1
2

:x x x

=   are the Macaulay brackets, n represents the dimension number, and 

( )( )1
dev 3

: tr= −ε ε ε I stands for the deviatoric part of the strain tensor, with I being the second 

order unit tensor. Second option is the spectral split, which is based on the spectral 

decomposition of the strain tensor ε. It was proposed by Miehe et al. [71] in the following form 

 ( ) ( )
2 21

e 2
: tr tr ,  


= +ε ε  (2.12) 

where * * *
1: n

i i i i= 
= ε n n  are the positive and negative parts of the strain tensor ε with 

 *

1

n

i i


=
 and  *

1

n

i i=
n  as the principal strains and their directions, respectively. It has to be noted 

that, although successfully resolving the unrealistic crack evolution behaviour under 

compressive loading, both energy decompositions show certain problems with the so-called 

crack boundary conditions [155]. Differences in the presented decomposition results on 

complex microstructural geometries is shown in [156]. More advanced energy decompositions 

have been proposed by Freddi and Royer-Carfagni [157] to model “no-tension masonry-like 

materials”. The decomposition is referred to as “No-tension split” where only the energy 

related to the positive-definite symmetric part of the strain tensor is degraded. Very recently 

Wu et al. [158] proposed similar split based on the effective stress tensor projection in energy 

norm thus alleviating some spurious behaviour of [157]. The directional split is presented in 

[155], decomposing the stress tensor with respect to the crack orientation. 
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2.1.5. Regularized functional 

Finally, the regularized internal energy potential is obtained as follows 

 ( ) ( ) ( ) ( ) ( )e e c, d , d .g G      + −

 
  = + +    ε ε ε  (2.13) 

Different phase-field fracture formulations can be obtained by the combination of different 

degradation and crack density functions. The standard model used in a part of this thesis is 

obtained with ( ) ( )
2

1g  = −  and ( )
221 1

AT-2 2
,

l
l      = + 

 
. It is commonly referred to 

as “AT-2” model [87, 100, 137], where AT stands for Ambrosio-Tortorelli and the 

corresponding type of regularization [69].  

 ( ) ( ) ( ) ( )
22 21 1

e e c 2
, 1 d d .

l
G l     + −

 
   = − + + +      

ε ε ε  (2.14) 

However, as it will be seen from the homogeneous solution of phase-field evolution, the phase-

field parameter in this model evolves as soon as the material is loaded, thus omitting the fully 

linear elastic stage before the onset of fracture. On the other hand, linear elastic stage is 

recovered through the use of non-standard degradation function ( )g   in [82, 154], or the use 

of different crack density function in [153], corresponding to the so-called AT-1 model. Very 

similar model was proposed by Miehe et al. [88] and termed “Strain criterion with threshold 

model”. Therein, the local part of fracture energy is represented by a linear term responsible 

for recovering the linear elastic stage. The model is introduced as 

 ( ) ( ) ( ) ( )
22 2

e e c, 1 d 2 d ,l      + −

 
   = − + + +      

ε ε ε  (2.15) 

where c3
c 8 2

G

l
 =  is a constant specific fracture energy serving as an energetic threshold 

preventing the damage evolution. It is thus obvious that the model can be obtained from the 

general form (2.13) by choosing the standard degradation function ( ) ( )
2

1g  = − , and the 

crack density function ( )
23 1

TH 8 2
, 2

l
l      = + 

 
. The model shows great resemblance 

to AT-1 model [153]. Alongside the standard “AT-2” model, this model is also used in this 

thesis and will be termed “Threshold (TH)” model.  
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Note that the formulation (2.15) can also be obtained by introducing the threshold energy term 

c  into the model with the standard ( ),    function containing the quadratic local term as 

 ( ) ( ) ( ) ( )  22 2 2

e c e c c, 1 d d .l        + −

 
   = − − + + + +      

ε ε ε  (2.16) 

In the following steps, the governing equations for both models will be derived using the 

general form of the internal energy potential (2.13), until the point of departure.  

2.1.6. Governing equations  

The variation of the internal energy potential (2.13) yields 

 
( ) ( )d ,

d
δ δ d δ d ,

g

e cG
   

  
   

 + 
   

  = + = + +    ε
ε σ ε  (2.17) 

where the Cauchy stress σ is obtained as 

 ( )
+

e e .g
 


− 

= +
 

σ
ε ε

 (2.18) 

Accordingly, the variation of the external energy potential is formulated as 

 
extδ δ d δ d ,W

 
= +  

t

b u t u  (2.19) 

where b  and t  are the prescribed volume and surface force vectors, respectively. Expanding 

the (2.17) with appropriate crack density function ( ),   , implementing the small strain 

settings as 1
2

T =  + ε u u  and applying the divergence theorem yields the variation of 

internal energy potential as 
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+  +    

σ u ε
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 (2.20) 

for AT-2 model, and 
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d 23
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


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+

 
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σ u ε
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 (2.21) 

for TH model, where n is the outward-pointing normal vector on the boundary ∂Ω.  
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Corresponding Euler equations can be now written in the strong form for both models as 

follows 

 0    in  , + = σ b  (2.22) 

    on  , = 
t

σ n t  (2.23) 

    on  ,= uu u  (2.24) 

 2 1    in  ,l D D  −  + + =    (2.25) 

 0    on  ,  = n  (2.26) 

with u̅ as the prescribed displacement vector. The Helmholtz type equation (2.25) representing 

the evolution of the phase-field parameter ϕ is derived in terms of the crack driving state 

function D̃ [88], which takes the form 

 
c

e
AT-2 1

2

G

l

D
 +

=  (2.27) 

for AT-2 model, and  

 
c

+

e e
TH 3

c8 2

1 1
G

l

D
 



+

= − = −  (2.28) 

for TH model. It is then clear that the fracture evolution in the phase-field brittle fracture model 

is governed by the elastic strain energy term ( )+

e ε . Note that THD  can be negative, leading 

to the unphysical solution 0  . Such behaviour is typical of models with linear local term in 

the crack density function ( ),   . A penalty function is introduced in [137, 153]. On the 

other hand, the addition of Macaulay brackets also resolves the issue, as presented in Miehe et 

al. [88] 

 
+

e
TH

c

1 .D





+

= −  (2.29) 

The non-dimensional parameter 0   is often embedded in [80, 88, 159-161] for calibration 

purposes, controlling the post-critical behaviour after the crack initialization. In TH model used 

in this work, the parameter  is set to 1, unless stated otherwise. 
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To summarize, two different phase-field formulations, named AT-2 and TH, will be used in 

this work. Although derived from different starting points and assumptions, their difference 

boils down to the description of crack driving state function D  as presented in this subsection. 

2.1.7. Homogeneous solution 

The homogeneous solution of the differential equation (2.25) can be calculated by ignoring all 

spatial derivatives of ϕ as 

 AT-2, TH

AT-2, TH

AT-2, TH

,
1

D

D
 =

+
 (2.30) 

with the assumption of isotropic model e e + = , where no strain energy decomposition is 

included. Substitution of (2.30) into the constitutive equation ( ) ( )eg g E



   




= = , where 

E is the Young’s modulus, yields 
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
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


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
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=
+

=
 

− +  
 

 (2.31) 

The maximal stress can then be calculated as 

 

max c
AT-2

max c
TH

9
,

16 3

3
2 ,  

8 2

EG

l

EG

l





=

=

 (2.32) 

from 0




=  for AT-2 model and the assumption 

21
c c2

E =  for TH model, as the TH  relation 

is not continuous. The parameter c  describes the critical strain at which fracture starts. This 

maximal stress max  is a material property corresponding to the ultimate stress commonly 

obtained from experimental measurements. 

Note that the length scale parameter “l” influence can be clearly observed from (2.32) where 

the lower value of “l” leads to a higher critical value of maximal stress max , and vice versa. 
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As E, Gc and max are material properties, the unknown length scale parameter l can be 

calculated for each model as 

 
( )

( )

c
AT-2 2

max

c
TH 2

max

27
, 

256

3
.

4 2

G E
l

G E
l





=

=

 (2.33) 

It can thus be concluded that the length scale parameter THl  calibrated for the TH model is 

approximately 5 times greater than the one for the AT-2 model, i.e. TH AT-25.0283l l=  . This 

allows the use of much coarser FE meshes. The homogeneous solutions are presented in Fig. 

2.3.a) clearly showing differences between the two models in terms of stress-strain and phase-

field parameter versus strain curves. Furthermore, the influence of the TH model parameter   

is shown in Fig. 2.3.b). 

  
a) b) 

Fig. 2.3. a) Homogeneous solution of the phase-field evolution, b) influence of the parameter ζ on the post-

peak behaviour 

2.1.8. Fracture irreversibility 

To satisfy the principle of irreversibility, i.e., the second axiom of thermodynamics, the rate of 

dissipative fracture energy s  has to be non-negative, s 0  . Physically, it means preventing 

the crack healing after the load is removed. The basic idea is to somehow enforce the 

monotonicity of the phase-field parameter  , i.e., 0  . As previously discussed in 

Introduction, there are a few different approaches to achieve irreversibility within the phase-

field community. In this thesis, the so-called implicit enforcement of the constraint is used. It 

is based on the previous observation that ( )eD  +  drives the fracture evolution (2.25). The 
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irreversibility condition can then be imposed by introducing the history field parameter ( )t  

[72] as 

 ( )   ( )( )e0,
: max ,

t
t D


 +

=
=  (2.34) 

thus rewriting the evolution equation (2.25) as  

  2 1    in  .l  −  + + =   (2.35) 

As the crack driving force is now not allowed to decrease upon unloading, i.e., when e +
  

decreases, the constraint 0   is enforced. Furthermore, the introduction of history field 

parameter ( )t  enables an elegant decoupling of the governing equation system characteristic 

to the staggered solution scheme, presented in Chapter 3.  

The presented brittle fracture models will now serve as a foundation for further expansion to 

the ductile and fatigue fracture problems. 

2.2.  Extension to ductile fracture 

Ductile fracture is characterized by an extensive plastic deformation prior to the actual fracture. 

To extend the model to account for such fracture phenomenon, the bulk energy term b  is 

expanded to describe the plastic material behaviour as follows 

 ( ) ( ) ( ) ( ) ( ) ( )b e p e e p

e e p, , d d ,g g     + −

 
  = + +   

ε ε ε ε ε  (2.36) 

where e
ε  and p

ε  represent elastic and plastic strain tensors additively contributing to the total 

strain e p= +ε ε ε . Such additive decomposition implies that the elastic response is not affected 

by plastic flow. The extension (2.36) directly follows the popular phase-field ductile fracture 

model proposed in Miehe et al. [80, 160], where the coupling between the accumulated plastic 

energy and fracture is achieved by the degradation of both elastic and plastic bulk energy. The 

coupling is one of the main differences between various phase-field ductile fracture models. 

For example, Ambati et al. [83] presented the model where the bulk degradation function is 

imposed only on elastic strain energy and embedded with the plasticity term ( )p,g    while 

no degradation of plastic energy is introduced. Therefore, the yield surface is not being 
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degraded, leading to the plastic strain evolution halt at the onset of damage which seems more 

physically correct. However, the model uses an additional parameter which should be somehow 

calibrated. Similar notion is presented in Alessi et al. [84, 162]. As already mentioned, the 

presented coupling is widely used due to its implementation simplicity. Moreover, it is easily 

extended to the fatigue fracture models, as presented in the next subchapter, and is therefore 

used in this thesis. 

The plastic energy potential ( )p

p ε  can be represented by a large variety of plasticity models. 

The governing equations derivation is straightforward, analogous to the previously shown 

brittle models. In fact, the same governing equations are obtained with the only difference 

being the crack driving state function which is now expanded with plastic energy term as 

 

c c

pe
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2 2

+
pe
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c c
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
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 

+

+

= +

= + −

 (2.37) 

In this work, plasticity models employing the von Mises yield criterion are used with (non-) 

linear isotropic hardening and the combined nonlinear isotropic and kinematic hardening. 

These models are well suited for most metals. The derivation of the plasticity model with 

combined isotropic-kinematic hardening will be shown here, as the model with (non-)linear 

isotropic hardening can be then considered a special case.  

The plastic energy dissipation potential can be written as  

 ( ) ( )p p p

0
dev : d ,

t
t  = −  ε σ α ε  (2.38) 

where 
σ  is the effective (non-degraded) Cauchy stress tensor and α  is the backstress tensor 

accounting for the shift of the yield surface. Note that the equations are derived in the effective 

stress space, meaning that the plastic material response is not affected by the evolution of 

phase-field parameter. The effective plastic energy dissipation potential 
p  is convex and 

positive satisfying ( )p 0 0 = .  
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The isotropic hardening function controls the size of the yield surface ( )p

y eqv  . A few different 

options of yield surface function ( )p

y eqv   are used in this thesis and presented where 

appropriate. 
p

eqv  is the equivalent plastic strain rate whose evolution is defined as 

 p p p2
eqv 3

: . = ε ε  (2.39) 

The von Mises plasticity criterion postulates that the plastic flow does not affect the change of 

volume. Therefore, only the deviatoric part of the stress tensor, which is a work-conjugate to 

the deviatoric strain describing the shape change, is used to construct the pressure-independent 

yield function 

 ( )p2
y eqv3

dev 0,F   = − −  σ α  (2.40) 

where  is a second vector norm. The associated plastic flow is assumed as 

 p ,
F





=


ε

σ
 (2.41) 

where γ is the plastic multiplicator obtained by the return-mapping algorithm. The nonlinear 

kinematic hardening evolution law is defined according to Chaboche [163] multicomponent 

model as 

 

( )
( ) p p

eqv eqvp

eqv

1
dev .k k k i

y

C   
 

 = − − α σ α α  (2.42) 

Each backstress component kα  is defined by the material parameters kC  and k  determining 

the initial kinematic hardening modulus and the rate of its decrease with increasing plastic 

deformation, respectively. The addition of the nonlinear term thus limits the translation of the 

yield surface in principal stress space. Total backstress tensor is then obtained as 

 .k
k

= α α  (2.43) 

When kinematic material parameters kC  and k  are set to zero, the model reduces to an 

isotropic hardening model. Moreover, when only k  is set to zero, the linear Ziegler hardening 
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law is recovered, removing the limiting surface. The isotropic and kinematic hardening 

phenomena are schematically represented in Fig. 2.4 in the deviatoric stress space. 

  
a) b) 

Fig. 2.4. Schematic representation of a) nonlinear Isotropic and b) nonlinear Kinematic hardening 

The combined isotropic-kinematic model features allow modelling of inelastic deformation in 

metals subjected to the cyclic loads and resulting in low-cycle fatigue failure. Such models are 

able to reproduce the characteristic cyclic phenomena as Bauschinger effect causing a reduced 

yield stress upon load reversal; plastic shakedown characteristic of symmetric stress- or strain-

controlled experiments where soft or annealed metals tend to harden toward a stable limit, and 

initially hardened metals tend to soften; progressive “ratcheting” or “creep” in the direction of 

the mean stress related to the unsymmetrical stress cycles between prescribed limits; or the 

relaxation of the mean stress observed in an unsymmetrical strain-controlled experiment. 

2.3. Extension to fatigue fracture 

Material fatigue is a material weakening phenomenon caused by the cyclic loading whose 

maximum value is below the monotonic strength of the material. It can result in a progressive 

structural damage and crack growth. Although fatigue has traditionally been associated with 

metal components, most materials seem to experience some sort of fatigue-related failure. Once 

initiated, a fatigue crack will steadily grow until it reaches the critical size producing rapid 

crack propagation following a complete structural failure. Fig. 2.5.a) shows the crack growth 

rate curve, usually obtained in fatigue fracture experiments, approximated by Paris Law [4], or 

its often used extension - the NASGRO equation [164]. The material fatigue life cycle is 

generally divided into low- and high-cyclic fatigue regimes, as presented by strain-life, N −  

curve in Fig. 2.5. b), where the low-cyclic fatigue is usually accompanied by the occurrence of 

plastic deformation. Such strain-life approach is suitable for materials exhibiting plastic 



Chapter 2. Phase-field fracture formulation 

 

 

 

 32 

behaviour. The stress-life portrayed through the Wöhler curve is usually reserved for high-

cyclic fatigue regime, where the underlaying material behaviour is elastic. 

 
 

a) b) 

  

Fig. 2.5 a) Crack growth curve approximated by Paris law where a is the crack length, N presents 

number of cycles, K is stress intensity factor, while C and m are material properties,  

b) Strain-life curve where Δε is the load amplitude and Nf is the number of cycles to failure 

The previously shown phase-field ductile fracture model is actually capable of producing some 

features of the low-cyclic fatigue regime. The plastic potential (2.38) is monotonic and 

irreversible, by definition, causing the crack driving function (2.37) to increase during the 

loading cycles, eventually leading to the onset of fracture. On the other hand, it is not able to 

reproduce the crack initiation, nor the crack growth, when the applied cyclic loads are below 

the plasticity limit in ductile materials, or the fracture limit in brittle materials, corresponding 

to the high-cyclic fatigue regime.  

In this subsection, the presented phase-field models for brittle and ductile fracture are extended 

to account for the fatigue phenomena. The presented extension contains only one additional 

material parameter (  , explained later), enabling it to reproduce the main material fatigue 

features. The goal is then to produce a generalized phase-field framework which can, 

depending on the type of loading, recover brittle/ductile fracture in monotonic as well as low- 

and high-cycle fatigue regime, including the transition between the fatigue regimes. The 

general idea is to introduce the fracture energy degradation due to the repeated externally 

applied loads. Physically, it would mean the decline of material fracture properties during the 

cyclic loading, which eventually causes the crack initiation and propagation occurrence. In a 

way, material “mileage” would be introduced. To that end, a local energy density accumulation 

variable ( )t  is introduced accounting for the changes in strain energy density ( ) ε  during 
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the loading cycles, thus taking the structural loading history into account. A fatigue degradation 

function ( )F̂   is introduced affecting the fracture energy term as discussed. The generalised 

internal energy potential can be now written as 

 ( ) ( ) ( ) ( ) ( )  ( ) ( )e p e p e

e p c
ˆ, , , d , d .eg F G         + −

 
  = + + +    

ε ε ε ε ε

 (2.44) 

It is similar to the phase-field fatigue fracture formulation for the brittle materials, proposed in 

Carrara et al. [120] and Alessi et al. [119]. After the derivation of the model, it is obvious that 

such a fatigue extension only changes the crack driving state function D̃ as follows 
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 (2.45) 

In this section, only TH phase-field formulation model will be used to account for the linear 

elastic material behaviour prior to fracture or plastic yielding.  

2.3.1. Local energy density accumulation variable ( )t  

This variable is conceived as a local measure of repeated strain energy changes during the 

loading history. It is a major feature of the novel generalized phase-field fatigue formulation. 

To fully fit into this framework, it should not affect the proportional (monotonic) loading case. 

To satisfy this condition, in this work, the variable is introduced as the sum of negative 

differences of the total strain energy density during the cyclic loading. That way, the variable 

value increases only during the unloading part of the cycle, consequently degrading the fracture 

material properties. Note that the plastic energy density ( )p t  is dissipative, and therefore 

never decreasing. The degradation of fracture properties due to fatigue is then, in fact, only 

influenced by the repetitive changes in elastic strain energy density  ( )e

e . ε  

The basic idea is explained schematically on the example of 1D bar subjected to the sinusoidal 

displacement with load ratio R = 0 and three different amplitudes A1 < A2 < A3. Unlike the 

amplitudes A2 and A3, the loading amplitude A1 is below the material plastic limit, 



Chapter 2. Phase-field fracture formulation 

 

 

 

 34 

characteristic to the high-cycle fatigue regime. The evolution of total energy ( )e p +  and 

energy accumulation variable ( )t  is shown in Fig. 2.6. 

  
a) b) 

Fig. 2.6. a) Total strain energy density and b) Energy density accumulation variable of 1D bar subjected 

to sinusoidal displacement-controlled loading 

The maximum strain energy value of the curve corresponding to the amplitude A1 does not 

increase through the course of cycles. On the other hand, the increase of the maximum total 

strain energy due to the increase of plastic dissipation ( )p t  over the cycles can be clearly 

seen for curves corresponding to amplitudes A2 and A3. Furthermore, a clear peak shift to the 

left caused by the kinematic hardening plasticity is observed. 

The only difference distinguishing between the high- and low-cycle fatigue regime is the 

influence of plastic energy ( )p t  on the crack driving state function D̃ in the low-cycle fatigue 

regime. The competition is thus introduced between the total strain energy ( )e p +  (whose 

maximal value is constant for the case of high-cyclic fatigue regime, and increasing in low-

cyclic for the case of constant load amplitudes), and the fracture resistance decrease due to the 

repetitive change in elastic energy, i.e., fatigue. 

The local energy density accumulation function can be then formulated in the integral form as 

 ( ) ( ) ( )e e0
d ,

t
t t H t  = −  (2.46) 

where ( )eH −  is the Heaviside function taking the value of 1 when e 0   and the value of 

0 when e 0  . The incremental form can be written as 
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 1 1 ,N N N N   − − −
= − −  (2.47) 

where N is the cycle number. 

The energy density accumulation variable increases only during the unloading, thus not 

affecting the proportional loading cases, as clearly seen during the first cycle in Fig. 2.6. b).  

Mean load effect 

The energy density accumulation variable description implicitly includes the mean load effect 

often expressed by a load ratio min min

max max

F

F
R




= =  in experimental measurements. For the shown 

case of strain-control loaded bar, the load ratio can be expressed as min

max
,R




=  with max min

M 2

 


+
=  

being the mean strain imposed to the bar. The strain energy density amplitude can then be 

written as ( )
( )

2

2

2 2 21 1
e max min M2 1

2 ,R

R
E E    +

+
 = − =  for the case where maximum load value does 

not reach the plastic yield limit, and 0R  . This clearly proves the mean load and the load ratio 

influence is considered. It is further explained on the example of 1D bar loaded with sinusoidal 

displacements B1 and B2 of same amplitudes, but different mean values, as presented in Fig. 

2.7. 

   
a) b) c) 

Fig. 2.7. a) Prescribed load, b) resulting elastic strain energy and c) energy accumulation variable of 1D 

bar subjected to sinusoidal displacement-controlled loading with different mean values 

The loads with the equal displacement amplitudes, or strain therefore, with different mean 

values, produce much different strain energy values. Consequently, the accumulated energy 

density variable obtained by the higher mean load case (B2 in Fig. 2.7) increases much faster 

than in the lower mean load case (B1), as predicted.  
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2.3.2. Fatigue degradation function ( )F̂   

Following the proper definition of the energy density accumulation variable ( )t , the 

degradation of the fracture energy has to be defined. Herein, the fatigue degradation function 

( )  ˆ 0,1F    is introduced. It should be continuous and piecewise differentiable with the 

following properties 
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→ =

   

 (2.48) 

Similar degradation function properties have been used in [119, 120]. In this thesis, three 

functions are presented fitting the given description. Their respective semi-logarithmic graphs 

are shown in Fig. 2.8 and Fig. 2.9. 
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 (2.49) 

   is the newly introduced parameter needed to bound the functions between 0 and 1 and is 

therefore included in every function. It can be seen as a fatigue material parameter whose 

physical interpretation will be provided through the next simple examples, as well as the 

numerical examples in Chapter 4 and Chapter 5. The parameter   embedded into 3F̂  is 

introduced to allow for better fine-tuning, similar to the parameter   in (2.29).  

The following figures present the proposed fatigue degradation functions in terms of number 

of cycles N for the cyclically loaded 1D bar. Pure elastic material behaviour is assumed, leading 

to a constant change of the elastic strain energy density  during each cycle. A clear link 

between the number of cycles N and energy density accumulation variable   can be then 

constructed as .N =   Fig. 2.8 shows the influence of the parameter    in each function 
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expressed as the multiples of elastic strain energy density change   during a cycle. The 

influence of the loading amplitude, expressed as 
c






, is presented in Fig. 2.9. 

   
a) b) c) 

Fig. 2.8. Influence of parameter 


 for three different fatigue degradation functions a)
1

F̂ ,  b) 
2

F̂ ,  c) 
3

F̂  

   
a) b) c) 

Fig. 2.9. Influence of loading amplitude expressed as 
c






  for three different fatigue degradation functions 

a)
1

F̂ ,  b) 
2

F̂ ,  c) 
3

F̂  

The parameter    obviously affects the cycle number at which the fatigue degradation takes 

off, with all other parameters being equal. The physical interpretation of this parameter will be 

explored through the parametric study conducted in Section 4.3.3.2. On the other hand, the 

increase in the loading amplitude would cause earlier onset of fatigue degradation. Lastly, the 

influence of the tuning parameter   is observed in Fig. 2.10. 

 

Fig. 2.10. Influence of parameter    in the fatigue degradation function 
3

F̂
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This chapter presents the numerical implementation of the generalized phase-field fracture 

model. First, a general FE equation system is derived together with the explanation of staggered 

solution scheme basics. The single iteration staggered scheme and iterative staggered scheme 

with residual control-based stopping criterion are shown. The implementation of the staggered 

algorithm with residual control within the commercial FE software ABAQUS is then explained 

in detail. Major advantages and features of such implementation are discussed together with 

additional options including, different solvers, automatic incrementation, element deletion, 

coupled contact analysis, and thread parallelization, also employed in this thesis. Finally, the 

implementation of a cycle skipping technique for the analysis of high-cycle fatigue fracture is 

presented and detailly explained. The complete implementation files (the source code and input 

files), containing numerical examples shown later, as well as detailed explanations and 

instructions for users are made openly accessible on Mendeley repository [133]. 
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3.1. Finite element model 

3.1.1. Discretization 

To implement the presented phase-field fracture models, the domain   is discretized by finite 

elements containing the displacement  T

i i i iu v w=v  and phase-field i  degrees of freedom 

(DOFs). The subscript "i" represents the node number while u, v and w represent the 

displacements in x, y and z directions of local coordinate system, respectively. The same shape 

functions Ni  interpolate both the displacement and the phase-field variable 

 

n n

n n

,          ,

N ,      ,

i ii i i i

i ii i i i

   

= = 

=  = 

v v
u N v ε B v

B
 (3.1) 

where n is the total number of nodes in the element. The general form of the shape function 

matrix N and the spatial derivative matrix B is given here for the 3D case 

 

,

,

,

,

,

, ,

,

, ,

, ,

N 0 0

0 N 0
N 0 0 N

0 0 N
0 N 0 ,         N ,         .

0 N N
0 0 N N

N 0 N

N N 0

i x

i y

i i x

i z

i i i i y i

i z i y

i i z

i z i x

i y i x



 
 
   
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        
 
  

v v
N B B  (3.2) 

Thus, a general framework for FE implementation is provided. The choice of the underlaying 

element type is introduced via the corresponding N and B matrices and the displacement vector 

iv . This form can be easily employed to a number of different element types using the Voigt 

notation by choosing the appropriate shape N functions or reducing/reshaping i

v
N  and i


B  

matrices. 

3.1.2. Virtual work principle 

The finite element model is based on the weak form equations of the internal energy potential 

which can now be written as 

 
( )

( ) ( )
( )+ int

e p c

d ,ˆd d ,
d

g
F G W

   
      

 
 

  
 = + + +  =   

 
σ ε  (3.3) 
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for the generalized phase-field fracture model. Therein, σ  represents the degraded Cauchy 

stress. After the inclusion of appropriate functions ( )g   and ( ),    for each model, the 

virtual work principle ext int 0W W − =  can be then discretized as 

 ( ) ( )ext int ext int 0,  − + − =v vF F v F F  (3.4) 

where 

 
ext

ext

d d ,

0,

 
= +  

=

t

v v vF N b N t

F
 (3.5) 

are the external force vectors. int

v
F  and int


F  correspond to the internal force vectors associated 

with the discretized displacements and phase-field, respectively, as follows 

 
 ( ) 

T

T

int

2

int

d ,

1 d ,l    





= 

= + + − 

v vF B σ

F B B N N 
 (3.6) 

where  is the vector containing phase-field DOFs i . The difference between the AT-2 and 

TH formulations is embedded in the history field (2.34), and includes all the important 

features for resolving brittle/ductile fracture in monotonic loading and fatigue fracture in cyclic 

loading. 

3.1.3. Residual vectors and stiffness matrices 

Residual vectors can be now obtained as ext int= −R F F  leading to 

 
 ( ) 

T

T2

d d d

1 d .l    

  



= + −   

= − + + − 

t

v v v v
R N b N t B σ

R B B N N 
 (3.7) 

Correspondingly, the stiffness matrices are obtained as 

 
  

T

T2

d ,

1 d ,l
    



 


 

= − = 

= − = + + 

vRvv v v

v

R

K B CB

K B B N N


 (3.8) 

where C is the degraded tangent material matrix.  
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3.1.4. Staggered solution scheme 

The finite element model can be then written as follows 

 

1

1

0
.

0
n n

 

−

−

      
= +       

       

vv vv v K R

K R 
 (3.9) 

Note that the decoupled equation system (3.9) corresponds to the staggered algorithmic 

approach, also known as alternative minimization approach. The monolithic approach [71] 

could be introduced by including non-zero matrices  


= −

vRv
K


and 

 


= −v R
v

K  to the off 

diagonal elements in (3.9), which would require simultaneous calculation of both v  and   

fields. However, as previously mentioned in the Introduction, such numerical treatment of this 

problem leads to the numerical instabilities and is therefore not used in this thesis. 

The general idea is to iteratively solve the decoupled system at time nt  and the iteration kk by 

first calculating one field using the other field solution computed at the iteration 1.kk −  Then, 

the obtained estimated solution is used to solve the other field at the iteration kk. The solution 

sequence is arbitrary. Box 3.1 schematically presents the staggered approach where the field 

  is set to be calculated first. 

Box 3.1. General staggered solution scheme 

while 
1kk kk

n n

−   and 
1kk kk

n n

−v v : 

solve 
kk

n  with 
1kk

n

−
v  

solve 
kk

nv   with 
kk

n  

The efficiency and convergence rate of such staggered system depends on the stopping 

criterion, which usually differs between the implementations as discussed in Introduction. 

Herein, the residual norm-based stopping criterion is presented. It governs the iterative process 

by controlling the residuals corresponding to the fields v  and  , as presented in Box 3.2. where 

“tol” is a required user-defined tolerance. 
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Box 3.2. Residual control (RCTRL) staggered solution scheme 

enter iteration kk at time nt   

(with 
1kk

n

−  and 
1kk

n

−
v  from iteration kk−1): 

solve 
kk

n  with 
1kk

n

−
v  

solve 
kk

nv   with 
kk

n  

if 
( )

( )

,
tol

,

kk kk

n n

kk kk

n n




v
R v

R v




continue to 1nt +  

On the other hand, the single iteration (SI) staggered algorithm, proposed in Miehe et al. [72] 

solves one field at time nt  with the quantities corresponding to other field calculated at time 

1nt −  . The other field is then updated with the obtained solution. Therefore, it does not contain 

a stopping criterion and is widely used due to its implementation simplicity and stability 

advantage over monolithic algorithms.  

This SI algorithm is shown in Box 3.3. 

Box 3.3. Single iteration (SI) staggered solution scheme 

enter at time nt  

(with 1n−  and 1n−v  known): 

solve n  with 1n−v  

solve nv   with n  

continue to 1nt +  

It is obvious that small time increments t  are needed for accurate solution in SI algorithm. In 

this work, SI and RCTRL algorithms are implemented in ABAQUS software. 

3.2. ABAQUS implementation 

Until the implementation of the RCTRL algorithm presented in author’s work [132], no 

ABAQUS implementation of phase-field fracture model had a stopping criterion which would 

allow the solver to iterate within the current time increment. Then-existing implementations 

were based either on the SI staggered [127, 128] or even plain monolithic solution scheme 

[146]. Thus, the implementation of such algorithm bore an implementation novelty also 

emphasizing the importance of stopping criterion use. 
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To implement RCTRL scheme (Box 3.2) into the ABAQUS software, a three-layered system 

was used combining user elements and appropriate ABAQUS/standard finite elements through 

UEL and UMAT user subroutines. Moreover, a system of even-odd iterations was employed 

to correctly impose the equation system decoupling. In this thesis, 1D truss, 2D linear 

quadrilateral and 3D linear brick elements with full integration are used, corresponding to the 

ABAQUS element names T3D2, CPE4 and C3D8, respectively. As mentioned above, the 

incorporation of different elements, e.g., triangular or tetrahedral, is simple and straightforward 

by substituting the corresponding N and B matrices.  

All information required for the analysis is contained within two files; a .for file containing the 

FORTRAN code of the algorithm in terms of UEL and UMAT subroutines, and the .inp file 

which contains the model geometry, nodal connectivity, boundary conditions, material 

parameters and other analysis options. 

3.2.1. Even-odd iteration split 

The theoretical RCTRL algorithm shown in Box 3.2 with the iteration kk is split into two 

iterations, 1k −  and k, where k is an odd numbered iteration. Such even-odd iteration split 

allows the calculation of one field per each iteration, with the other one held constant, i.e. 

0k

n =v  and 
1 0k

n

− = , by setting the phase-field residual ( )
2

0
k


−

=R  in the odd iteration. 

The estimated solution of the previous iteration is obtained at the start of the next iteration, or 

at the start of the next increment if the solution has converged. The iteration count starts with 

zero so the first iteration in every increment is always even numbered ( )1k − . The residual 

check is always done on the odd iteration number ( )k . The sequence of field solutions follows 

Box 3.2, i.e., first the phase-field 
1k k

n n

−   is obtained after an even ( )1k −  iteration as 

 ( ) ( )
1

1 1 2 1 2 1 ,k k k k k k k k

n n n n n n n n

 
−

− − − − − −= +  = + K v R v         (3.10) 

where  
1 2 1 2k k k k

n n n n

− − − −= +  =     because phase-field residual in previous odd iteration was set 

to zero, i.e., ( )
2

0
k


−

=R .*  

 

* ( )2 1k k

n n

 − −R v    is not the same as ( )
2k


−

R  because the solution 
2k

n

−
v  is not available to the 

first layer elements at iteration  ( )2k − . 
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It is then followed by the displacement field 
1k

n

+
v  obtained after the calculation in odd iteration 

(k) as 

 ( ) ( )
1

1 1 , , ,k k k k k k k k

n n n n n n n n

−
+ += +  = + vv v

v v v v K v R v   (3.11) 

where 
1 1k k k k

n n n n

− −= +  =v v v v . At the odd iteration (k) the convergence criterion 

( )total , < tolk k

n nR v   is checked, where ( )total ,k k

n nR v   is the total residual norm obtained as 

 ( ) ( ) ( )total , , ,k k k k k k

n n n n n n

= +v
R v R v R v    (3.12) 

If the convergence of each field with the last solution estimates ( ),k k

n nv   is satisfied, a new 

increment 1n+  can start with 
0

1

k

n n+ =   and 
0 1

1

k

n n

+

+ =v v . Note that in order for (3.12) to satisfy 

convergence criterion, residual vectors corresponding to each field have to satisfy the 

convergence criterion. Therefore, when ( ), tolk k

n n v
R v  , equation (3.11) states that 

1 ,k k

n n

+
v v  

and instead of the new odd iteration ( )1k + , the new increment is started if ( ), tol.k k

n n

 R v 

The algorithm is schematically shown in the flowchart in Fig. 3.1. 

 

Fig. 3.1. Flowchart of RCTRL algorithm with the even-odd iteration split 
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3.2.2. Three-layered system 

The main equation system calculations, (3.10) and (3.11), are done in a two-layered manner. 

The layered system means that the FE mesh discretizing the numerical model is made out of 

multiple FE mesh layers. The finite elements are stacked on top of each other, thus retaining 

the same nodal connectivity. The FE calculations are then completely decoupled. The phase-

field evolution calculation is set at the first layer level and is facilitated by a user element 

created via the UEL subroutine. There is no calculation of residual vector 
R  nor stiffness 

matrix 
K  at the odd iteration (k). The residual vector 

R  at the odd iteration (k) is set to zero 

while stiffness matrix 
K  is a diagonal identity matrix, thus speeding up the calculations. The 

displacement field calculation is placed at the second layer level and imposed via the UMAT 

subroutine. The ABAQUS/Standard finite elements are used at this level. They are generally 

well optimized and allow very simple utilization of many additional options typically found in 

commercial FE software. Moreover, it efficiently utilizes ABAQUS postprocessing module 

allowing quick visualisation of the obtained results, making it very user friendly. 

Note that the residual ( ),k k

n n

v
R v   is being calculated at the second layer level, while 

( )2 ,k k

n n

 −R v   is calculated at the first layer level, since the first layer elements cannot get the 

updated displacement solution estimate for the current iteration. Therefore, the residual 

calculation ( ),k k

n n


R v   is added to the third layer at the odd iteration ( )k . The addition of the 

third layer is thus is necessary to implement the residual check. The algorithm convergence 

after the even iteration ( )1k −  is restricted by setting const tol =R  at the third layer level, 

while the history field ( )k

nv  is calculated at odd iteration (k). The stiffness matrix at the third 

layer is not calculated, greatly saving the CPU time. The three-layered system is schematically 

presented in Fig. 3.2. 
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Fig. 3.2. ABAQUS implementation of the three-layered system 

3.2.3. Residual vector normalization and DOF convention  

The residual vectors corresponding to the phase-field and displacement field are completely 

separated using proper ABAQUS’s DOF convention. The first- and third-layer calculations, 

corresponding to the phase-field evolution, are performed on rotational DOFs not used by the 

second-layer elements. That way, the residual vectors can be normed separately. This is highly 

important as the displacements can have very different magnitudes while the phase-field is 

bounded,  0,1  . Moreover, the DOFs of first and third layer are further separated so the 

calculation of 
R  in the third layer cannot affect the real solution estimate at the first layer. 

The employed DOFs following the ABAQUS DOF convention are shown in Table 3.1. 
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Table 3.1. Degrees of freedom used in the three-layered system  

Physical degrees of freedom ABAQUS DOF convention 

u, v, w  

(displacements in x,y,z direction) 

1, 2, 3 

(displacements in x,y,z direction) 

   

(phase-field parameter) 

4 

(x-axis rotation) 

dummy DOF 
5 

(y-axis rotation) 

Furthermore, such DOF separation together with the even-odd iteration split allows the 

efficient utilization of ABAQUS advanced convergence control. The convergence tolerance 

“tol” is used as default ABAQUS tolerance which controls the ratio of the largest local residual 

to the corresponding field-averaged residual value. By default, this ratio is set to 35 10−  which 

is, as mentioned in the ABAQUS documentation [145], “rather strict by engineering standards 

but in all but exceptional cases will guarantee an accurate solution to complex nonlinear 

problems”. This criterion could also be relaxed to increase the computational speed. Moreover, 

the convergence criterion can be set to some fixed value to which the largest residual is then 

compared (e.g. 51 10−= tol was used in author’s work [132]). 

3.2.4. Visualization and layer intercommunication 

As presented in Fig. 3.2, elements exchange variable values between the layers. For example, 

the variable   has to be sent from an integration point of an element in the first layer to the 

corresponding integration points of the elements belonging to the second and third layer. 

Similarly, energetic variables e +
, p  and   have to be sent to the corresponding integration 

point in the third layer, etc. This is done via ABAQUS COMMON BLOCK array, allowing the 

variable transfer between the user subroutines. 

The visualization is conveniently done using the ABAQUS/Standard elements contained in the 

second layer. The stresses, strains, reaction forces, displacements and energy densities can be 

visualized in the same way as in the standard ABAQUS analyses, which makes this 

implementation exceptionally user-friendly. Energy densities e +
 and p  are efficiently 

contained in the ABAQUS preset arrays, SENER and PENER. Other variables, such as  , 

p

eqv ,  p
ε , kα , or STATUS variable required in element deletion option, are visualized through 
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the SDV (solution dependent variable) array. As can be seen from Fig. 3.1 and Fig. 3.2, the 

second-layer elements have the access to the current iteration solution estimates 
k

nv  and 
k

n  at 

the odd iteration (k), thus allowing the visualization of correct values upon increment 

convergence. The number of SDVs is regulated within .inp file by *DEPVAR keyword. 

3.3. Additional options 

Some useful additional options available within this implementation are explored here, 

showing the great advantages of commercial FE software implementation.  

3.3.1. Automatic incrementation 

ABAQUS automatic loading incrementation can be easily introduced via *CONTROLS, 

PARAMETERS=TIME INCREMENTATION keyword. If the iteration number needed for the 

solution convergence in the current increment exceeds some user set iteration count value LI , 

the size of the following increment is reduced by the user set cut-back factor  B 0,1  . 

Analogously, if the number of iterations in two consecutive increments is lower than the user 

set value GI , the next increment size will be increased by the factor  D 1, .    The detailed 

explanation with exemplary parameters is given in [133]. 

3.3.2. Element deletion 

Element deletion is an option which removes integration points from calculation upon the 

satisfaction of some condition. Consequently, whole elements can be deleted upon removal of 

all integration points corresponding to the element. This provides an attractive visualization of 

fracture, but also speeds up the simulation after the initial fracture. The reason is obvious – the 

total number of integration point calculations is reduced, combined with the fact that fractured 

elements tend to have a slower convergence rate than the rest of the domain due to their non-

linear behaviour. 

The option is easily activated via the keyword *DEPVAR, DELETE = number, where the 

number corresponds to the SDV array element at which the STATUS variable is saved. The 

variable is calculated within the UMAT subroutine, and takes value 0 or 1, where 0 activates 

the element deletion.  
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3.3.3. Thread parallelization 

The presented implementation can be partially parallelized allowing the simulation to be run 

on multiple processors. It is only partial because the sequence of element level calculations has 

to remain unchanged. At this moment, this is achievable by using a single thread to run through 

all the elements and create respective R and K arrays. The array assembly and the consequent 

equation system calculation can then be run on multiple processors, thus significantly 

accelerating the simulation.  

The option is enabled upon the analysis execution by including the keywords 

standard_parallel=solver and CPUS=n, where n is the number of processor threads 

to be used.  

3.3.4. Contact 

Since the second layer containing the displacement DOFs uses ABAQUS/standard elements, 

the complete ABAQUS capability to model contact between the two bodies can be easily 

utilized. The examples containing contact between multiple bodies in phase-field fracture 

analysis are presented in Chapter 5. 

3.3.5. Different solvers 

As explained, the presented implementation is accomplished only via the displacement and 

rotation DOFs. This allows the use of *STATIC, GENERAL ABAQUS step option employing 

the Newton-Raphson solver, as well as *STATIC, RIKS allowing the use of arc-length method, 

thus enabling the use of both displacement- and force-controlled loads as boundary conditions.  

3.3.6. Restart analyses 

The restart option can be very useful for long duration analyses. The files required to restart 

the analysis are written after the user-defined number of increments or at user-defined time 

frequency. The analysis interrupted due to various reasons, such as a computer malfunction, 

could be restarted, or the completed analysis could be continued appending the load history 

with new steps. Moreover, the analysis could be restarted from an intermediate point with a 

somewhat modified remaining load history data.  
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3.3.7. Finite elements with incompatible modes or hybrid elements for incompressible 

material behaviour 

If required, special finite elements can be used without interference at the second layer level. 

3.3.8. Additional extensions – finite strain settings 

The presented implementation framework is also suitable for an extension to finite strains 

settings. The displacement layer (second layer) is already coded in the manner appropriate to 

these settings, taking the full advantage of ABAQUS arrays and auxiliary routines. It can be 

included by setting the keyword *NLGEOM=YES in the *STEP definition. Coding changes 

have to be done only on Layer 1 and 3 to correctly calculate the updated Jacobian matrix. 

However, this extension is out of the scope of this thesis and has been left for the future 

research.  

3.4. Cycle skipping option for high-cyclic fatigue analysis 

The phase-field fracture model with the extension to fatigue, as presented in Section 2.3, is 

based on the time evolving properties. To properly calculate the fracture nucleation, stabilised 

propagation and final rapid growth, one should precisely compute every cycle in the analysis. 

However, such approach is exceedingly time-consuming for the analysis of high-cycle fatigue 

regime even for medium size problems.  

However, this type of analysis can be firstly accelerated by noting that the presented 

generalized phase-field framework is derived on the basis of TH phase-field model, which 

recovers linear material behaviour stage at the start of high-cyclic fatigue analysis. In that case, 

the elastic energy density amplitude e +  is constant. The energy density accumulation 

variable   then grows linearly until fatigue degradation function ( )F̂   reaches the point 

where ( ) +

c eF̂     , thus triggering the onset of damage 0 . This linear part can thus be 

accurately skipped by calculating the cycle at which that will happen.  

The subsequent non-linear part of the analysis can be further accelerated the utilization of the 

cycle skipping technique, based on the idea proposed by Cojocaru and Karlsson [165] for the 

FE simulations of structures subjected to cyclic loading. It will be explained here in short. The 

cycle skipping technique [165] is based on performing a complete FE analysis for a set of 
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cycles establishing a trend line, extrapolating the solution variables over a controlled number 

of cycles, and using the extrapolated state as an initial state for FE analysis of next set of cycles 

as presented in Fig. 3.3. The extrapolation is done on the set of selected variables ( ), ,t ip=y y

where ip represents the integration point. At least three consecutive cycle data values have to 

be defined by points ( )1 1 1P ,t y , ( )2 2 2P ,t y  and ( )3 3 3P ,t y . The cycle skipping technique is 

schematically presented in Fig. 3.3., where 12s  and 23s  represent the discrete slopes of function 

( )y t . 

 

Fig. 3.3. Schematic representation cycle skipping technique [165] 

The number of cycles to skip jumpt  is determined through a control function based on the user-

input allowed relative error yq  as 

 
( ) ( )

( )

p 1 , jump 12 1

y

12 1

,

ip

ys t t s t
q

s t

+ −
  (3.13) 

where ( )p 1 , jump

ip

ys t t+   is the predicted, linearly extrapolated slope moment after the jump 

obtained as 

 ( ) ( )
( ) ( )12 1 23 2

p 1 , jump 12 1 , jump

cycle

.ip ip
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s t s t
s t t s t t
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−
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
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The allowed jump value for each variable is then computed as 
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while the final cycle jump is computed as the minimum allowed jump for all variables 

  jump cycle , jump cyclemin .ip

yt t t t  =   
 

 (3.16) 

Finally, the value of the extrapolated function ( )1 jumpy t t+   after the jump is calculated as 

 ( ) ( ) ( ) ( ) ( )
( )

2

jump

1 jump 1 12 1 jump 12 1 23 2

cycle

s s s .
2

t
y t t y t t t t t

t


+ = +  + −   

 (3.17) 

The extrapolation method is usually most suited for quasi-linearly evolving systems. However, 

the employment of control function enables it to accurately solve the highly non-linear time 

evolving behaviour by automatically calculating lower number of cycles to skip or no cycle 

skip at all. 

3.4.1. Cycle skip implementation 

The initial cycle skip and the presented cycle skipping technique are implemented through 

UEXTERNALDB user subroutine which is called after each successful increment. For the 

initial cycle skip, the integration point with highest e +  value after the first cycle is found 

and used to calculate the first cycle number at which 0  occurs. The energy density 

accumulation variable   is then linearly extrapolated at the start of the next cycle thus 

effectively skipping the calculation of the linear stage.  

For the subsequent stage, the energy density accumulation variable   is selected for the 

considered set y. Its value in each integration point of the model is accessed by the 

UEXTERNALDB user subroutine via the already existing COMMON BLOCK array, at the 

end of each cycle for three consecutive cycles. The cycle jump jumpt  is then automatically 

calculated by expression (3.16). Note that for the highly non-linear part of the simulation, there 

might be no cycle skipping and the analysis advances as usual. At the beginning of next 

computed cycle, the extrapolated energy density accumulation variable is then easily calculated 

following (3.17). The cycle time length cyclet  is held constant, thus simplifying the equations 

above. 
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In this chapter, the proposed generalized phase-field fracture model implementation within FE 

ABAQUS software, based on the RCTRL algorithm, is tested on different numerical examples 

under the assumption of homogeneous material behaviour. The chapter is divided into three 

subsections according to the underlaying material behaviour and loading conditions, as 

schematically presented in Fig. 4.1.  

The first subsection closely follows the examples published in author’s previous work [132]. 

The algorithm performance is tested on standard numerical benchmark tests and compared to 

the widely used SI algorithm in terms of accuracy and computational speed. The SI algorithm 

has also been implemented in ABAQUS for the direct comparison. Brittle material behaviour 

with monotonic loading is assumed in this section. Energy decompositions presented in Section 

2.1.4. are thoroughly tested as well. The standard AT-2 framework (2.14) is used throughout 
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this subsection, unless stated otherwise. The algorithm version has been updated since the 

publishing of [132] and some results are thus revised and expanded. The proposed 

implementation in combination with the arc-length solver is tested on the force-controlled 

problems, while the Newton-Raphson solver is standardly used in displacement-controlled 

problems. The thread parallelization option is thoroughly tested. The testing of the phase field 

fracture algorithm on brittle material behaviour examples is concluded with qualitative 

validation tests comparing the crack paths with the numerical and experimental data available 

in literature. The importance of stopping criterion within the staggered phase-field algorithm 

is emphasised on the example of arbitrary porous steel microstructure. 

Following the extensions presented in Chapter 2, the implementation’s ability to model ductile 

material behaviour is tested on different numerical examples in comparison with numerical 

results and experimental measurements from literature. The element deletion option is 

presented here. The algorithm performance is also tested on 3D examples and the round-robin 

Sandia Lab Challenge series. To completely recover linear elastic behaviour stage, the 

proposed generalized phase-field fracture framework with the TH model is used throughout 

this subsection. The parameter   is set to 1, unless stated otherwise.  

Finally, the proposed generalized phase-field fracture model is tested on the cyclically loaded 

examples. The ability of the novel generalized phase-field fracture framework to retrieve well-

known features of material fatigue is presented. The N −  curve, i.e., the amplitude magnitude 

versus cycles-to-failure, and its transition from the low- to high-cyclic regime is clearly 

presented on simple homogeneous example. The ability to compute the crack nucleation, stable 

evolution and rapid propagation stages are tested on the Compact Tension (CT) specimens in 

comparison with experimental measurements. Moreover, effect of different material properties 

on the Paris law and the N −  curves has been studied parametrically on an academic elastic 

material in the high-cyclic fatigue regime. The TH model is used throughout this subsection as 

well. 
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a) 

 

  

b) 

 

  
Fig. 4.1. Schematic representation of material response obtainable by generalized phase-field fracture 

model for a) monotonic (proportional) loading, b) cyclic loading 

The detailed discussion on the accuracy and efficiency of the implemented algorithm is given 

throughout this chapter. The length scale parameter l is always chosen to be at least twice the 

characteristic size of the finite elements used in the vicinity of expected crack, in accordance 

with Miehe et al. [71]. The standard Newton-Raphson solver is used throughout this chapter in 

both monotonic and cyclic loading cases, unless stated otherwise. All numerical simulations 

are performed on an Intel® Xeon® CPU E5-1620 v3 @ 3.50 GHz with 24 GB RAM memory. 

The CPU time comparisons are performed with single-thread computations. The default 

ABAQUS convergence criterion is used.  

4.1. Monotonic loading - Brittle material behaviour examples 

4.1.1. Homogeneous Example 

To first assess the accuracy of RCTRL algorithm, a 2D homogeneous plate with dimensions 

1×1 mm is considered. The plate is discretized by one 2D element, loaded and constrained as 

shown in Fig. 4.2. The analytical solution for the setup is known, as presented in (2.31). SI 

algorithm is used for comparison. The following material properties are chosen: the Young’s 
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modulus 210 GPaE = , the Poisson’s ratio 0.3 =  and the critical fracture energy density 

3

c 2.7 10 kN mmG −=  . The length scale parameter is set to 2 mm.l =  

 

Fig. 4.2. Geometry and boundary conditions of the homogeneous plate subjected to tension 

The example is solved with 5 different loading increment sizes u  to reach 0.02 mm,u =  

namely 31 10  mm,u − =   45 10  mm,u − =   41 10  mm,u − =   55 10  mmu − =   and 

51 10  mm.u − =   Fig. 4.3. shows the axial stress-strain response comparison of SI and RCTRL 

algorithms against the analytical solution.  

a) 

 

b) 

 

Fig. 4.3. Stress-strain curves obtained by a) SI staggered algorithm and b) RCTRL staggered algorithm in 

comparison with the analytical solution 
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Furthermore, the relative stress difference compared to the analytical solution is presented in 

Fig. 4.4., in the logarithmic scale. 

 

Fig. 4.4. Relative stress difference between SI and RCTRL staggered algorithms in comparison with the 

analytical solution 

The accuracy of SI algorithm is extremely dependent on the size of loading increment as the 

error increases with the increase in the loading increment. On the other hand, the RCTRL 

algorithm matches well with the analytical solution even for large loading increments with no 

increase in relative error. An improvement in the relative error results can be also seen in 

comparison with the results presented in [132], as the ABAQUS default convergence criterion 

is obviously more rigorous. 

4.1.2. Single edge notched specimen 

This is the most common benchmark test used in the verification of the phase-field fracture 

models. The specimen geometry, shown in Fig. 4.5., and the material properties, 210 GPa,E =  

0.3 =  and 
3

c 2.7 10 kN mmG −=   are adopted from Miehe et al. [72]. Length scale parameter 

0.0075 mml =  is chosen for the direct comparison. Note that the higher value of the parameter 

l would result in a wider crack band and lower critical force value before the onset of fracture, 

and vice versa, as studied in [71, 72, 166]. First, the specimen is subjected to tensile loading, 

where no energy split is required. Afterwards, it is subjected to shear loading, where the 

proposed algorithm is tested with two strain energy splits presented in Section 2.1.4.  
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Fig. 4.5. Single edge notched specimen geometry and boundary conditions.  

α = 90° for tensile test and α = 0° for shear test 

4.1.2.1. Tensile test 

The prescribed boundary conditions used in this example are shown in Fig. 4.5. with 90 . = 

The specimen domain is discretized by 18,868 finite elements. The mesh is refined in the region 

of the expected crack path evolution. The solution is computed by the RCTRL algorithm 

implementation using 51 10  mmu − =   loading increment size. In contrast, the SI algorithm 

solutions are obtained with the loading increment size 51 10  mmu − =   up to 
35 10  mm,u −=   

and then 4 different increment sizes up to failure, namely 
51 10  mm,u − =   

61 10  mm,u − =   

71 10  mmu − =   and 81 10  mm.u − =   Fig. 4.6. shows the crack propagation in a single 

increment, exhibiting pure brittle behaviour. Such behaviour can be obtained with the proposed 

RCTRL algorithm since no artificial viscosity is added to the model for numerical stabilization, 

and the crack propagation is not slowed down in any other way, as it is the obvious case in the 

SI staggered scheme. 

  

 

a) b)  
Fig. 4.6. Single-edge notched tension test. Crack pattern obtained with the proposed algorithm at 

displacement a) u = 5.53 × 10−3 mm and b) u = 5.54 × 10−3 mm 
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The force-displacement curves in Fig. 4.7. support this claim. Here, the monolithic solution 

from Miehe et al. [71] is used for the solution verification. The curve of the monolithic solution 

is not as steep as the proposed algorithm solution because a penalty term, which can be 

interpreted as an artificial viscous hardening, has been introduced in [71]. The SI algorithm 

matches the curve of the staggered solution taken from [72] for the same loading increment. 

Therefore, this proves that SI algorithm used here is, in fact, the algorithm presented in Miehe 

et al. [72].  

 

Fig. 4.7. Single-edge notched tension test. Force-displacement curves 

Similarly to the homogeneous case, the SI curves converge to the RCTRL algorithm solution 

with the decrease in loading increment size. However, such precision comes at a cost even that 

is more pronounced on finer meshes. Table 4.1. presents the CPU time used. The SI staggered 

algorithm takes much more computational time to solve the problem with similar accuracy, as 

presented in Fig. 4.7. Note again that all simulations have been run with the same loading step 

size up to 35 10u −=  . Otherwise, the CPU time difference would be even more pronounced. 

The CPU time comparison is taken from author’s work [132], where slightly more lenient 

convergence criteria has been used compared to the ABAQUS default convergence criteria 

used here.  

Table 4.1. Single-edge notched tension test. CPU time consumption 

Algorithm SI staggered algorithm  RCTRL staggered algorithm 

Loading increment ∆u 1×10-5 mm 1×10-6 mm 1×10-7 mm 1×10-8 mm  1×10-5 mm 

CPU time (s) 3,531 14,907 30,915 291,997  14,062 
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Fig. 4.8. shows the required number of iterations to solve the problem. Note that the shown 

iteration number count is doubled since even-odd iteration split is employed in this 

implementation.  

 

Fig. 4.8. Single-edge notched tension test. Number of iterations used in RCTRL algorithm 

Computationally the most demanding increment is the one in which the crack rapidly 

propagates through the domain. The excessively high iteration count is obtained due to the use 

of the exaggeratedly large fixed loading increment, for which the SI algorithm obtained 

inaccurate solution in terms of force-displacement curve. Furthermore, it is also shown that 

even with such disproportionate settings, the computation is still much faster than SI algorithm 

using very fine loading increment sizes. In general, the fixed loading incrementation should be 

avoided for efficiency reasons and replaced with the automatic loading incrementation 

explained in Section 3.3.1. The reason behind efficiency of the RCTRL algorithm is that the 

computation of a new iteration is much faster than the computation of a new increment, as done 

in SI algorithm. The addition of the viscosity term [71] would slow down the crack propagation 

and ultimately lower the iteration count in the critical increment and the CPU time 

consumption. 

TH (Threshold) Model 

Finally, the TH model (2.15) is tested and compared to the previous solutions obtained with 

standard AT-2 model. Following the homogeneous solution and equation (2.33), the length 

parameter is increased to 0.0377 mm.l =  Although the mesh could be much coarser now, for 

simplicity, it is kept the same. Fig. 4.9. presents the force-displacement curves for the AT-2 

and TH models. 
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Fig. 4.9. Single-edge notched tension test. Force-displacement curves for TH and AT-2 models 

The corresponding curves and maximal load values are very close. It can be seen that the TH 

model recovers the linear response before the onset of fracture. Moreover, the result obtained 

with 5 times larger length scale parameter allows the usage of coarse meshes potentially making 

the simulations much faster. 

4.1.2.2. Shear test 

Unlike the previous examples, the tensile stress state is not predominant here. Thus, the proper 

strain energy decomposition is needed to prevent unphysical crack propagation in the 

compressive stress state. In this example, two energy decompositions described in Chapter 2 

are used in combination with the proposed RCTRL algorithm and the SI staggered algorithm 

with 3 different loading incrementation sizes. The boundary conditions are presented in Fig. 

4.5. with 0 =  . The mesh consists of 26,914 finite elements and is refined in the expected 

crack propagation area. Fig. 4.10. shows the crack pattern solution obtained by the proposed 

algorithm using the spherical-deviatoric and the spectral decomposition.  

  

 

a) b)  
Fig. 4.10. Single-edge notched shear test. a) Spherical-deviatoric decomposition, b) spectral decomposition 



Chapter 4. Homogeneous material numerical examples  

 

 

 

 64 

The force-displacement curves displayed in Fig. 4.11. show the behaviour similar to the 

previously shown examples, for different loading increment sizes. However, due to the 

different fracture process, the crack propagation is not so rapid. The difference between the 

results of the two decompositions is clearly shown. 

a) 

 

b) 

 

Fig. 4.11. Single-edge notched shear test. Force-displacement curves for a) spherical-deviatoric 

decomposition, b) spectral decomposition 

Unlike the spherical-deviatoric decomposition, the complete force drop is not observed in the 

results obtained with spectral energy decomposition (Fig. 4.11.b). The reason behind it is the 

crack propagation to the bottom side of model where displacement boundary condition is set, 

which does not allow the total separation of model in two parts. 

The required CPU time is presented in Table 4.2. The CPU time comparison is again taken 

from the author’s work [132], where more lenient convergence criteria has been used. Note 

that the spectral decomposition consumes more CPU time than the spherical-deviatoric 

decomposition, as expected. 
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Table 4.2. Single notch shear test. CPU time consumption 

Algorithm SI staggered algorithm 
RCTRL staggered 

algorithm 

Loading increment 

∆u 
1×10-5 mm  1×10-6 mm  1×10-7 mm 1×10-5 mm 

Decomposition S-D Spectr.  S-D Spectr.  S-D Spectr. S-D Spectr. 

CPU time (s) 10,965 14,225  77,446 98,768  751,162 1,239,121 106,258 207,456 

The problem with the energy decompositions is the inevitable non-symmetry of the stiffness 

matrix following the anisotropic system, which significantly slows down the computation. A 

hybrid formulation proposed in Ambati et al. [79] alleviates that problem by decomposing only 

the energetic variables, while leaving the stress and stiffness matrix isotropic and thus 

symmetric.  

4.1.3. L-shaped specimen 

The crack path evolution is simulated on the concrete L-shaped specimen, experimentally 

tested in Winkler et al. [167]. The geometry and boundary conditions are displayed in Fig. 4.12. 

The material properties are taken as 25.85 GPa,E =  0.18 =  and 
5

c 8.9 10  kN mm.G −=   

The length scale parameter is set to 1.1875 mml =  according to Ambati et al. [79]. 

Considerably higher values of the length scale parameter l have been studied in Mesgarnejad 

et al. [135], leading to a much broader crack path representation, while simultaneously 

obtaining the force-displacement behaviour comparable to the experimental data. The FE mesh 

consisting of 62,659 elements is used, with a local refinement in the region of the expected 

crack propagation.  

 

Fig. 4.12. L-shaped specimen. Geometry and boundary conditions 
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Herein, only the RCTRL staggered algorithm is employed to demonstrate its capabilities on a 

more complex geometry. Fig. 4.13. and Fig. 4.14. show the crack propagations obtained by the 

spectral and the spherical-deviatoric decomposition, respectively. The results are compared to 

the experimental measurements provided in Winkler et al. [167], shown with the white overlay. 

    
a) b) c)  

Fig. 4.13. L-shaped specimen. Crack pattern obtained by the spherical-deviatoric energy decomposition 

at a) u = 0.265 mm, b) u = 0.3 mm, c) u = 0.5 mm with experimental envelope from [167] 

    
a) b) c)  

Fig. 4.14. L-shaped specimen. Crack pattern obtained by the spectral energy decomposition  

at a) u = 0.265 mm, b) u = 0.3 mm, c) u = 0.5 mm with experimental envelope from [167] 

The results computed by the spectral decomposition (Fig. 4.14.) match well with the results 

presented in Ambati et al. [79]. On the other hand, the results obtained by the spherical-

deviatoric decomposition (Fig. 4.13.) show much better agreement with the experimental 

results as shown in Fig. 4.13.c). It has to be noted that the crack propagation obtained by the 

spherical-deviatoric decomposition of the strain energy could only be achieved by setting the 

Dirichlet boundary condition 0 =  in the vicinity of the loading point (hatched area shown in 

Fig. 4.12.). With the boundary conditions preventing the cracking in the loading area, the model 

without any energy decomposition also yields the results very similar to those shown in Fig. 

4.13., at a much lower computational cost. Such model has a practical advantage due to the fact 

that within a staggered approach, the momentum equation is linear as there is no decomposition 

of the strain tensor, thus leading to a much faster numerical calculation. 
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4.1.4. Asymmetrically notched perforated three-point bending test specimen 

To further validate the proposed algorithm, a well-studied benchmark test concerning an 

asymmetrically notched beam with three holes, inducing complex curvilinear crack paths, is 

studied. The experimental testing has been carried out by Ingraffea and Grigoriu [168] on a 

commercial plexiglas (the cyro acrylic FF plexiglas MC). The geometry and boundary 

conditions are presented in Fig. 4.15. The material properties 20.8 GPa,E = 0.3 =  and 

3

c 1 10  kN mmG −=   are adopted from Miehe  et al. [72], together with the length scale 

parameter 0.025 mm.l =  

 

Fig. 4.15. Geometry and boundary conditions of the asymmetric three-point bending test specimen 

The specimen is discretized by 321,154 finite elements, 320,601 of which are the proposed 3-

layered finite elements employing the full RCTRL staggered algorithm. The remainder of 

elements contains only the second element layer, which makes them the standard linear elastic 

finite elements without the phase-field fracture computation. These zones are labelled “elastic” 

in Fig. 4.15. Similar practice of setting 0 =  in these zones has been used in [127, 135]. This 

way, the spurious crack propagation around the loading point is avoided. For this setup, the 

model with no strain energy decomposition can be used to obtain accurate result, thus 

significantly speeding up the computation. Note that the force-controlled load is applied. As a 

result, the arc-length (Riks) solver is used, instead of the standardly used Newton-Raphson 

solver. The resulting crack path, presented in Fig. 4.16, matches well with the experimental 

measurements spanning from the notch up to the middle hole. In addition, the calculated crack 

zone remains thin and does not exhibit spurious widening as in the single iteration algorithm 

implementations [127].  
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a) b) 
 

Fig. 4.16.  Asymmetric three-point bending test crack path. a) experimental results from [169], b) residual 

control staggered algorithm result 

The ability of the phase-field implementation to solve such force-controlled problem with the 

arc-length (Riks) solver is thus shown. 

Thread Parallelization 

Following Section 3.3.3., the example is also solved in a parallelized manner with up to 6 

CPUs. Total computational time for the stated cases is given in Table 4.3. 

Table 4.3. Thread parallelization computational time comparison  

Number of threads 1 2 3 4 5 6 

Wallclock time (s) 87562 69090 64752 63754 55901 56429 

The thread-parallelization option, introduced in this work, is shown to significantly speed up 

the simulations. Thus, one of the crucial setbacks of phase-field fracture models is alleviated. 

As explained in Section 3.3.3., due to the complexity of layered system, the element operations 

are executed with a single thread. The thread-parallelization is only introduced at the global 

system assembly and calculation level. Therefore, the influence of this option on the 

computational time saving is more pronounced in examples with large FE mesh sizes, like the 

one at hand.  
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4.1.5. Complex porous microstructure geometry 

After showing the capabilities of the proposed implementation by solving some benchmark 

examples where a crack path is known a priori, an example of steel microstructure with random 

porosities is examined. The RCTRL algorithm is tested further, emphasizing the importance of 

a stopping criterion within the phase-field staggered solution scheme. 

The microstructure is presented by a 0.2 × 0.2 mm microstructural specimen consisting of 13% 

randomly distributed voids with the average radius of 0.043 mm. The assumed material 

properties are: 210 GPa,E =  0.3, =  3

c 2.7 10  kN mm.G −=   The geometry and boundary 

conditions are presented in Fig. 4.17. The numerical model is discretized by 31,008 uniformly 

distributed finite elements with the average characteristic element length 0.001 mm.h =  The 

length scale parameter is chosen to be 0.0025 mm.l =  

 

Fig. 4.17. Porous steel microstructural specimen. Geometry and boundary conditions 

The solution is obtained by the proposed algorithm utilizing the automatic loading 

incrementation. To compare the solution accuracy and the CPU time required, the obtained 

results are compared to the solutions computed by SI staggered algorithm using 5 different 

loading increment sizes, namely 31 10  mm,u − =   41 10  mm,u − =   51 10  mm,u − =   

61 10  mmu − =   and 71 10  mm.u − =  The force-displacement curves displayed in Fig. 4.18. 

show the structural behaviour similar to the previously presented homogeneous case. Again, 

the results of the SI algorithm match well with the RCTRL algorithm results only for very fine 

loading increment sizes. 
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Fig. 4.18. Porous steel microstructural specimen. Force-displacement curves 

Interestingly, even the crack paths seem to be dependent on the loading increment size of SI 

staggered algorithm in this example, as can be seen in Fig. 4.19. This further emphasizes the 

importance of stopping criterion application within the staggered algorithm.  

   

 

a) 

 

b) 

 

c) 

 

   
d) e) f)  

Fig. 4.19. Porous steel microstructural specimen. Crack patterns obtained by SI staggered algorithm 

with: a) ∆u = 1×10-3 mm, b) ∆u = 1×10-4 mm, c) ∆u = 1×10-5 mm, d) ∆u = 1×10-6 mm, e) ∆u = 1×10-7 mm, 

and f) RCTRL algorithm with automatic loading incrementation 

The results obtained by both energy decompositions are nearly identical to the presented results 

obtained without the energy decompositions, as the tensile stress state is predominant in this 

setup.  
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Finally, the CPU time comparison is given in Table 4.4. It is again demonstrated that the 

proposed RCTRL algorithm is much faster than SI algorithm for the similar accuracy, i.e., for 

the curves obtained by 61 10  mmu − =   and 71 10  mm.u − =   The CPU time comparison 

results are done in [132]. 

Table 4.4. Porous steel microstructural specimen. CPU time consumption 

Algorithm SI staggered algorithm 
RCTRL staggered 

algorithm 

Loading 

increment ∆u 
1×10-3 mm 1×10-4 mm 1×10-5 mm 1×10-6 mm 1×10-7 mm 

Automatic 

incrementation 

CPU time (s) 210 2,231 27,368 297,051 1,556,650 62,107 

4.2. Monotonic loading - Ductile material behaviour examples 

4.2.1. V-Notch bar 

The presented generalized phase-field fracture implementation’s ability to solve the ductile 

material behaviour is first tested on a 2D example presented in Miehe et al. [80]. It follows the 

experimental validation on Aluminium alloy done by Li et al. [170]. The geometry and 

boundary conditions of V-notch bar are shown in Fig. 4.20. The FE mesh consists of 46,975 

elements and is refined in the region of expected crack propagation. 

 

Fig. 4.20. V-notch bar. Geometry and boundary conditions 

The material properties of Al-6061 [170] are taken as 68.9 GPa,E =  0.33, =  iso 561 MPah =  

and 
0 475 MPay =  as the initial yield stress. The simple linear isotropic hardening 

( )p 0 p

y eqv y iso eqvh   = +   is used. Furthermore, fracture material properties used with the TH 

model are chosen as c 40 N mmG =  and 0.15 mm.l =  Fig. 4.21. presents the obtained crack 

path solution which matches well with the numerical solutions obtained in [80, 81, 171]. 
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Fig. 4.21. V-Notch bar. Crack path 

The force-displacement curves are shown in Fig. 4.22. in comparison with the experimental 

measurements from Li et al. [170], and the numerical results from Miehe et al. [171] obtained 

by using the finite strains setting and a gradient-extended plasticity model. 

 

Fig. 4.22. V-Notch bar. Force-displacement curves 

The obtained solution matches very well with the experimental measurements. The 

implementation’s stability should be emphasized here allowing the algorithm to easily 

converge and pose no additional problems moving to generalized elastoplastic formulation. 

The role of the consistent elastoplastic tangent modulus is crucial in achieving the 

computational stability of such coupled framework.  

4.2.2. Asymmetrically Notched Specimen 

The model’s performance is next tested on a 3D example of an asymmetrically notched 

specimen. The specimen geometry and loading conditions are illustrated in Fig. 4.23., together 

with the experimental results given in Ambati et al. [105]. The specimen is 3 mm thick and is 

made from the aluminium alloy Al-5005. The corresponding material properties are taken from 

[105]: 70.9 GPa,E =  0.34, =  
0 113 MPa,y =  22 MPa,Q =  24.5b =  and 
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c 254.66 N mm.G =  The saturation type isotropic hardening 

( ) ( )p 0 p

eqv eqv1 expy y Q b   
 = + − −   is used in this example, where 

0

y  is the initial elasticity 

limit, Q  and b  are the material parameters defining the maximum increase in yield stress due 

to hardening at saturation (when 
p

eqv →  ), and the rate of saturation, respectively. The length 

scale parameter 1.5 mml =  is used for the TH model, being 5 times larger than the one used 

in [105] for the AT-2 model, according to equation (2.33). The FE model consists of 16,395 

hexahedral finite elements with the refinement in the expected crack propagation region. The 

model employs symmetry in the thickness direction. 

 

 

a) b) 
Fig. 4.23. Asymmetrically notched specimen. a) Geometry and boundary conditions, b) Experimental 

results [105]  

The parameter   (2.29) has been increased to 2.5 =  to speed up the post-critical fracture 

behaviour. The force-displacement curves are given in Fig. 4.24. It should be stressed again 

that the results are obtained with the small strain setting which might be the reason for the 

discrepancy between the numerical and experimental results. However, taking that into 

account, the curve matches experimental measurements well. 
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Fig. 4.24. Asymmetrically notched specimen. Force-Displacement curve 

The crack phase-field contour plots at different loading stages (marked by yellow symbols in 

Fig. 4.24.) are shown in Fig. 4.25. The results closely resemble the experimentally observed 

results. The elements with phase-field value greater than 0.75 are removed from the plot in 

post-processing for better visualization. 

    

 

a) b) c) d)  
Fig. 4.25. Asymmetrically notched specimen. Phase-field crack contour plot at a) u = 2 mm, b) u = 3 mm, 

c) u = 4 mm, d) u = 5 mm 
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4.2.3. Sandia fracture challenge 2012 

To complete the testing of the proposed implementation in solving ductile fracture problems, 

a famous specimen geometry, which started out as a blind round-robin challenge proposed by 

Sandia National Lab in 2012, is analysed. The specimen geometry and loading conditions are 

shown in Fig. 4.26., taken directly from Boyce et al. [172]. The holes (B-C-D) are located 

approximately one plate thickness away from the tip of the blunt notch to induce a complex 

fracture process with three separate potential localization paths. The measured plate thickness 

was 3.124 mm.  

 
Fig. 4.26. Sandia Challenge Specimen. Geometry and loading conditions, dimensions in mm [172] 

The material used was a precipitation hardened martensitic stainless-steel alloy 15-5 PH. In the 

original Sandia fracture challenge [172], the complete material chemical composition is given, 

together with the detailed records of heat treatment, machining diagrams and the 

metallographic analysis of the martensitic stainless-steel microstructure. Moreover, detailed 

tensile test results for different rolling directions were provided together with the fracture 

toughness test measurements on CT specimens. The amount of data provided was intended to 

be comparable with the amount of data typically available in real industrial engineering 

scenarios. The data were then used by challenge participants to calibrate the model parameters.  

The experimental measurements on ten specimens were provided after the challenge 

completion. Fig. 4.27. shows the broken specimens where crack paths can be easily observed. 
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Fig. 4.27. Sandia Challenge Specimen. Post-test images of the ten specimens tested in the Sandia’s 

Structural Mechanics laboratory [172] 

The elastoplastic material parameters are taken over from Gross and Ravi-Chandar [173] as 

199 GPa,E =  0.3, =  1 755.4 MPa,C =  2 818.1 MPa,C =  3 0.005674,C =  4 0.2889,C =  

constituting general power law for isotropic hardening ( ) 4eqv

y 1 2 3 p .
C

C C C = + +  Fracture 

material parameters are set to c 500 N mmG =  and 0.5 mm.l =  A 3D numerical model is 

used, with 31,220 hexahedral finite elements with symmetry employed in the thickness 

direction. The loading pins boundary conditions are simulated by kinematically constraining 

nodes at the hole edge constituting 60° angle with the reference point at the pin centreline, as 

shown in Fig. 4.28. Following the experimental setup description [172], the reference point 

corresponding to the top pin is fixed, while the load is imposed to the bottom pin reference 

point. Two cases of load implementation are considered here. First, the loading is realized by 

imposing the displacement-controlled load to the reference point using the standard Newton-

Raphson solver, analogously to the previous examples. Secondly, the reference point is 

subjected to the force-controlled loading, and the problem is solved by the arc-length (Riks) 

solver. 
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Fig. 4.28. Sandia Challenge Specimen. Loading pin boundary conditions and FE mesh 

The final specimen configuration obtained by the proposed model is presented in Fig. 4.29., to 

visualize the final crack path. The resulting crack pattern follows the path A-C-E (marked in 

Fig. 4.26.), corresponding to the numerical results obtained in [172, 173]. 

 

 

Fig. 4.29. Sandia Challenge Specimen. Final crack path numerical results 

Furthermore, the equivalent plastic strain contours are presented in Fig. 4.30. in comparison 

with the experimental results obtained by DIC (digital image correlation) presented in Gross 

and Ravi-Chandar [173]. 
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a) b) c) 
Fig. 4.30. Sandia Challenge Specimen. Equivalent plastic strain development (top row) in comparison 

with experimental results obtained by 3D DIC and taken from [173] at a) COD ~ 1mm, b) COD ~ 2mm, c) 

COD ~ 3mm 

The equivalent plastic strain development results match well with the experimental results. 

Slight discrepancies can be attributed to the employment of small-strain settings. Moreover, 

Fig. 4.31. presents the obtained load versus crack opening displacement (COD) in comparison 

with the experimental results from [172]. 

 

Fig. 4.31. Sandia Challenge Specimen. Force-COD comparison with experimental envelope [172] 



Chapter 4. Homogeneous material numerical examples  

 

  

     

 79 

The obtained computational results show a good agreement with the experimental results in 

terms of the crack pattern and the force-COD curves. However, the abrupt drop in load-

displacement observed in experiments could not be captured but might be improved by further 

calibration of the plasticity and phase-field parameters. Both displacement- and force-

controlled load boundary condition give the same result, as expected. 

4.3. Cyclic loading - fatigue material behaviour examples 

4.3.1. Homogeneous example 

Following Section 2.3., the fatigue degradation function ( )F̂   is added, with the material 

parameter    included, to recover high-cycle and transition to low-cycle regime. The cycle-

skipping technique presented in Section 3.4. is used throughout this section, where applicable. 

The first example is used to assess the ability of the model to recover the full scope of fatigue 

domain, ranging from low- to high-cyclic regime. It follows the example of a cyclically loaded 

round bar specimen, experimentally tested by Čanžar [174]. The specimen is discretized by a 

single truss element. The geometry and boundary conditions are illustrated in Fig. 4.32. The 

strain-controlled sinusoidal loading is used with load ratio 0.R =   

 

Fig. 4.32. Cyclically loaded round bar specimen. Geometry and boundary conditions 

The material properties of nodular cast iron with nonlinear isotropic and kinematic hardening 

are taken from [174] for the so-called Flotret casting technique. The elastoplastic material 

properties are set as follows: 140 GPa,E =  0.3, =  
0 123 MPa,y =  95 MPa,Q =  18,b =  

1 22,734 MPa,C =  1 261.8, =  2 136,029 MPa,C =  2 2,113.5. =  The fracture toughness is set 

to c 74 N mmG =  following the J-integral measurements taken in [174, 175]. The length scale 

parameter is chosen to be 0.25 mm,l =  while the fatigue material parameter is set to 

5000 MPa.  =  First, the elastoplastic material model is tested in comparison with the 

experimental results for loading the amplitude a 0.8% 0.8%. =   The stress-strain diagram in 

Fig. 4.33.a) shows the comparison with the experimental measurements from [175], until the 
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onset of fracture. The time evolution of stress, energetic values and phase-field parameter is 

shown in Fig. 4.33.b).  

a) 

 

 
 

 

b) 

 

 
 

 
Fig. 4.33. Cyclically loaded round bar specimen. a) Stress-strain hysteresis loop experimental comparison 

[175], b) time evolution of stress, energy density variables and phase-field parameter 

The results obtained with the proposed model match the experimental measurements well. A 

slight discrepancy can be observed in the first cycle, as expected, because the material 

properties were calibrated for the stabilized hysteresis loop. It can be clearly seen how the 

dissipated plastic energy p  and accumulated energy density   grow with each cycle. Their 

respective slopes are influenced by the magnitude of load amplitude, i.e., the influence of p  

diminishes and eventually vanishes with lower amplitudes, which makes for the transition 

between low- and high-cyclic fatigue regime. 

The specimen has been subjected to 35 different strain amplitudes to assess the model 

behaviour in different fatigue regimes. The simulations are stopped at cycle fN , when  the 

phase-field parameter reaches the value 0.99, =  thus assuming the total failure. Fig. 4.34. 

presents the N −  curve for the fatigue functions (2.49) presented in Chapter 2, with 

5000 MPa, =  as well as the case without the fatigue degradation named “noF”. Note that 

each marker in Fig. 4.34. represents a full simulation obtained with a different load amplitude. 
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Fig. 4.34. Cyclically loaded round bar specimen. N −  curve 

The obtained results show great resemblance to the theoretical N −  curve (Fig. 2.5.b). Clear 

difference can be seen in the results obtained by 1F̂ , when compared to the results obtained 

with 2F̂  and 3F̂ , due to the difference in function descriptions. Moreover, it is obvious that the 

fracture can be obtained with large loading amplitude values even with the model without 

fatigue degradation, up until the point where plastic energy in system becomes negligible, 

shown as “noF limit”. On the other hand, the so-called dynamic endurance threshold is not 

clearly shown. However, the total fracture cycle number grows beyond 810  for the strain 

amplitude values bellow 
510 mm mm,−

 indicating the existence of this threshold. It can be thus 

concluded that the proposed generalized phase-field fracture model is capable of reproducing 

the low- and high-cycle regime and the transition in-between. Moreover, the strain amplitude 

and cycle number values fN  correspond to the values normally observed in literature, thus 

giving even more credibility to these results. 

4.3.2. Compact Tension (CT) specimen test – low cyclic regime 

To further assess the proposed model’s capability in reproducing the fatigue crack evolution, 

the compact tension (CT) specimen subjected to a cyclic loading is simulated. The geometry is 

presented in Fig. 4.35., corresponding to the experimental setup made by Čanžar et al. [175]. 
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Fig. 4.35. Cyclically loaded CT specimen. Geometry with thickness B = 0.5W 

The loading boundary conditions are modelled similarly to the previously shown Sandia 

challenge example. However, the reference point corresponding to the bottom pin is now fixed, 

while the force-controlled sinusoidal load is assigned to the top pin reference point. Even 

though the force-control is imposed, the standard Newton-Raphson solver can be efficiently 

used in this example until the complete failure point at which the Newton-Raphson solver is 

unable to converge.  

The elastoplastic material properties are taken for the nodular cast iron, as presented in the 

previous example. The lengths scale parameter is chosen to be 0.05 mm,l =  while the fracture 

toughness is set to c 0.74 kN mmG =  accordingly. The fatigue parameter is set to 

5000 MPa.  =  Following [174], the load amplitude is set to 6 kNF =  with the load ratio 

0.1.R =  The obtained crack path after various number of cycles is presented in Fig. 4.36., 

while the energy density accumulation variable   (2.46) and the fatigue function 2F̂  (2.49) 

are shown in Fig. 4.37. and Fig. 4.38., respectively. 
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a) b) 

 

 

 

 
c) d) 

Fig. 4.36. Cyclically loaded CT specimen. Crack path after a) 2000 cycles, b) 7000 cycles, c) 10000 cycles, 

d) 13000 cycles 

 

 
 

 
 

a)  b)  

 

 

 

 

 

 

c)  d)  

Fig. 4.37. Cyclically loaded CT specimen. Energy density accumulation variable   in MPa after a) 2000 

cycles, b) 7000 cycles, c) 10000 cycles, d) 13000 cycles 
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a) b) 

 

 

 

 
c) d) 

Fig. 4.38. Cyclically loaded CT specimen. Fatigue function 
2

F̂  after a) 2000 cycles, b) 7000 cycles, c) 

10000 cycles, d) 13000 cycles 

The comparison with the experimentally observed crack propagation is now presented in Fig. 

4.39. 

 

Fig. 4.39. Cyclically loaded CT specimen. Crack length vs cycle number 

It can be seen there are some discrepancies between the experimentally observed and the 

numerically obtained results. Although better results could be obtained by carefully calibrating 

the fracture and fatigue material parameters, the corresponding a - N trend shows great potential 

in predicting fatigue fracture. 
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The change in the stress intensity factor can be now calculated as 

 i
i

aF
K f

WB W

  
 =  

 
 (4.1) 

according to ASTM standard [176], where F  is the difference between the minimal and 

maximal load magnitude, ia  is the current crack length, while B and W are geometric quantities 

of the specimen, shown in Fig. 4.35. The geometric function ia
f

W

 
 
 

[176] is calculated as 

 

( ) ( ) ( ) ( ) ( )

( )

2 3 4

3

2 0.886 4.64 13.32 14.72 5.6
.

1

i i i i i
i

i

a W a W a W a W a Wa
f

W a W

 +  +  −  +  −    = 
  −

 (4.2) 

The crack growth rate d da N  versus the change in stress intensity factor K  can now be 

constructed and is shown in Fig. 4.40. in comparison with the experimental data and the 

NASGRO curve calculated in [174].  

 

Fig. 4.40. Cyclically loaded CT specimen. Crack growth rate versus stress intensity factor change 

It can be observed that there is a great overlap between the experimentally obtained curve, 

NASGRO equation and numerically obtained curves for the lower values of the stress intensity 

factor .K  However, there seems to be a discrepancy for the higher values of .K   The results 

obtained by the fatigue function 2F̂  with the chosen material parameters show the best match 

in comparison with the experimental results. As already mentioned, a more careful calibration 

of the fracture and fatigue material parameters could lead to even better match. Nevertheless, 
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the results show the great potential of the phase-field fracture method in dealing with fatigue 

problems and in capturing the fundamental features of material fatigue. Again, it has to be 

noted that no ad-hoc criteria are added in this expansion of phase-field fracture model to 

fatigue, while only one additional parameter, ,   is introduced in the expansion.   

4.3.3. Compact Tension (CT) specimen test – high cyclic regime 

The same specimen geometry is used to assess the influence of different input material 

parameters. The material is chosen to be linear elastic with the following constant material 

properties: 210 GPa,E =  0.3 =  and 0.5 mm.l =  The influence of the load ratio min

max
,

F

F
R = the 

fatigue parameter    and the fracture toughness c ,G  is observed in terms of the Paris law and 

the Wöhler curves. First, the influence of loading amplitude on crack growth rate d da N  

versus the stress intensity factor change K  is shown in Fig. 4.41. for constant 0,R =  

c 5 kN mmG =  and 50 MPa. =   

   

a) b) c) 

Fig. 4.41. Crack rate growth versus stress intensity factor change loading amplitude influence for fatigue 

degradation function a)
1

ˆ ,F  b)
2

ˆ ,F  and c)
3

F̂  

The curves in Fig. 4.41. follow a well-known empirical trend, recovering a major fatigue 

fracture feature. The steady linear propagation stage usually described by a Paris law follows 

the same slope for every amplitude. Moreover, the fracture initiation and final unstable growth 

can be clearly observed as described in Fig. 2.5.a). With the increase of loading amplitude, the 

threshold value thK , at which the crack initiates, is also increased, which is in accordance 

with known empirical data. The influence of the loading amplitude on the fatigue life, i.e., the 

number of cycles to the total failure is presented in Fig. 4.42. in terms of Wöhler curves, where 

instead of stress, the loading amplitude is set on the y-axis. 
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a) b) c) 

Fig. 4.42. Fatigue life for a)
1

ˆ ,F  b)
2

ˆ ,F  and c)
3

F̂  fatigue degradation function 

 

4.3.3.1. The influence of the load ratio R 

The load ratio influence is tested by using the values 0,R =  1
3
,R =  1

2
,R =  and 2

3
,R =  while 

the fracture toughness and the fatigue parameter are held constant at c 5 kN mmG =  and 

50 MPa  = , respectively. The load ratio influence results are presented in Fig. 4.43. and Fig. 

4.44. in terms of the Wöhler curves and the da dN -versus- K  curves, respectively. In Fig. 

4.44., three amplitude values according to Fig. 4.41. are used and shown in corresponding line 

style. 

   
a) b) c) 

Fig. 4.43. Load ratio influence on fatigue life for fatigue degradation function a)
1

ˆ ,F  b)
2

ˆ ,F  and c)
3

F̂  
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a) b) c) 

Fig. 4.44. Load ratio influence on crack rate growth versus stress intensity factor change for fatigue 

degradation function a)
1

ˆ ,F  b)
2

ˆ ,F  and c)
3

F̂  

Obvious load ratio influence is observed in accordance with known empirical trends. Note that 

no additional terms in the energy density accumulation variable expression (2.46) have been 

set to recover the load ratio influence. The results prove the validity of the energy density 

accumulation variable   choice where the mean load influence is implicitly included, as 

explained in Section 2.3.1. 

4.3.3.2. The influence of fatigue parameter    

The influence of the fatigue parameter    is tested by applying the loading with 0R = , while 

the fracture toughness is again held constant at c 5 kN mm.G =  Three different values of 

fatigue parameter    are tested; 20 MPa, =  50 MPa  =  and 100 MPa. =  The results 

are shown in Fig. 4.45. and Fig. 4.46. in terms of Wöhler curves and the d da N -versus- K  

curves, respectively. 

   
a) b) c) 

Fig. 4.45. Fatigue parameter 


 influence on fatigue life for fatigue degradation function a)
1

ˆ ,F  b)
2

ˆ ,F  

and c)
3

F̂  
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a) b) c) 

Fig. 4.46. Fatigue parameter 


 influence on crack rate growth versus stress intensity factor change for 

fatigue degradation function a)
1

ˆ ,F  b)
2

ˆ ,F  and c)
3

F̂  

An increase in fatigue parameter    clearly shifts the Wöhler curves to the right by postponing 

the fatigue crack initiation and propagation. Furthermore, it shifts the crack growth rate d
d

a
N

down. Such observation leads to the conclusion that the fatigue parameter    could be 

undoubtedly associated to the fatigue material parameter C used in Paris law ( )d
d

ma
N

C K=  , as 

presented in Fig. 2.5.a). This adds to the validity of the proposed model as the parameter    

is the only material parameter extending the phase-field fracture model to fatigue regime. 

4.3.3.3. The influence of fracture toughness Gc 

Following the Paris law empirical equation ( )d
d

ma
N

C K=  , where the parameter C  is now 

linked to the parameter ,   the slope in logarithmic scale, controlled by parameter m remains 

unexplored. It seems the slope in the proposed model is implicitly obtained by already existing 

fracture material properties, cG  and l. Therefore, to examine the fracture material properties 

influence on the slope, fracture toughness is changed to  c 1 kN mmG =  and c 25 kN mm,G =  

while keeping the 50 MPa  =  constant at 0.R =  
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a) b) c) 

Fig. 4.47. Fracture toughness Gc influence on crack rate growth versus stress intensity factor change for 

fatigue degradation function a)
1

ˆ ,F  b)
2

ˆ ,F  and c)
3

F̂  

The results show clear fracture properties influence on the slope of the Paris law curve, more 

pronounced in the fatigue degradation functions 2F̂  and 3
ˆ .F  Therefore, it can be concluded that 

the parameter m in the empirical Paris law equation can be directly linked to the fracture 

material parameters already contained in the phase-field model for monotonic fracture. 

Moreover, the fracture material parameters influence on fatigue life in terms of Wöhler curves 

is presented in Fig. 4.48.  

   
a) b) c) 

Fig. 4.48. Fracture toughness Gc influence on fatigue life for fatigue degradation function a)
1

ˆ ,F  b)
2

ˆ ,F  and 

c)
3

F̂  

The Paris law slope can also be finetuned using the parameter   in 3F̂   (2.49). For this example, 

only the function 3F̂  is used with 50 MPa, =  c 5 kN mmG =  and 0.R =  The change in the 

Paris law slope is presented in Fig. 4.49. A similar parameter can be introduced into other 

functions as well, thus having the complete control on fatigue material behaviour described by 

the Paris law curve. 
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Fig. 4.49. ξ parameter influence on crack rate growth versus stress intensity factor change for fatigue 

degradation function 
3

F̂  
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In this chapter, the presented generalized phase-field fracture model is employed on the 

heterogeneous microstructural geometries obtained from the metallographic images of nodular 

cast iron from Čanžar [174]. This ductile nodular cast iron has a highly complex microstructure 

consisting of graphite nodules positioned in the ferritic matrix. The graphite nodules are 

modelled as perfectly circular holes, irregularly shaped holes or irregularly shaped inclusions 

with different material properties. The latter option is available through the coupled contact-

fracture analysis, which is easily performed by the presented implementation. Different 

specimen sizes are drawn out of the metallographically obtained images. The specimens are 

thoroughly tested using the generalized phase-field fracture model in monotonic and cyclic 

tensile loading regimes, recovering corresponding brittle/ductile or fatigue material behaviour. 

The influence of the size, shape and arrangement of microconstituents is observed. 
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5.1. Nodular cast iron properties, specimen selection 

The selected heterogeneous material is the nodular cast iron grade EN-GJS-400-18-LT 

investigated in Čanžar [174]. Fig. 5.1. shows its microstructure, in which the volume fraction 

of graphite nodules is approximately 7% with circularity of about 0.7 (a value of 1.0 indicates 

a perfect circle). 

 

Fig. 5.1.  Metallographic image of EN-GJS-400-18-LT microstructure [174] 

Three different sample sizes (S, M, L) are randomly selected from the metallographic image to 

satisfy the average graphite nodules content of approximately 7%, as shown in Fig. 5.2. The 

length of Specimen M and L is increased 2 and 3 times, respectively, with regard to the length 

of Specimen S. The specimen sizes are shown in the legend. 

 

 

Fig. 5.2.  Selection of different samples sizes satisfying the global average graphite nodules content 
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The specimens are then modelled in three different options ascending in the level of detail.  

First, the nodules are substituted with perfect spherical voids of the corresponding sizes. In the 

2D settings, they are represented by circular holes. Secondly, the nodules are substituted with 

voids closely following the nodule geometry. Lastly, the nodules are modelled as inclusions 

with material properties corresponding to the graphite. These inclusions are connected to the 

matrix via the hard contact option, where the contact between the matrix void and the nodule 

surfaces is modelled using the penalty method with the friction coefficient value 0.2. The 

automatic stabilization of the nodule rigid body motion is introduced, activating the viscous 

damping at the interface nodes. However, as the damping energy is just a small fraction of the 

overall model energy, the influence of viscous damping on the system can be neglected. These 

options are hereafter called N1, N2 and N3, and are schematically presented in Fig. 5.3. 

 

a)    b)     c) 

Fig. 5.3.  Schematical representation of nodule modelling options a) circular holes (N1), b) holes of 

corresponding to the nodule shape (N2), c) nodules as inclusions of corresponding shape (N3) 

The samples, ascending in size, are uniformly discretized to retain the ratio h/l < 0.5, according 

to Miehe et al. [71], where h is the characteristic size of the finite elements. The FE mesh sizes 

for the specimens S, M and L with different nodule modelling options are shown in Table 5.1.  

Table 5.1. Number of finite elements in the model 

  Nodule modelling option 

  N1 N2 N3 

S
p

ec
im

en
 

si
ze

 

S 26 691 27 144 31 924 

M 91 712 93 572 92 369 

L 199 121 556 291 329 409 

Due to the absence of a more accurate material characterization of constituents at microlevel, 

which could be obtained by, e.g., the nanoindentation procedure, the nodular cast iron 

elastoplastic material properties at macrolevel, used in Section 4.3., are assigned to the matrix. 



Chapter 5. Heterogeneous material numerical examples  

 

 

 

 96 

The nodule material properties are taken from [177] as the graphite material properties with 

the assumed purely elastic behaviour. Elastoplastic material properties for the modelled 

microstructural constituents are shown in Table 5.2. 

Table 5.2.  Elastoplastic material properties for each constituent 

 
E 

[GPa] 

ν 

[-] 

0

y  

[MPa] 

Q

[MPa] 

b 

[-] 
1C  

[MPa] 

1  

[-] 

2C  

[MPa] 

2  

[-] 

Matrix 140 0.3 123 95 18 22,734 261.8 136,029 2,113.5 

Nodule 5 0.3 1,000,000  same 

The length scale parameter is set to 0.0025 mml =  in order to match the small sample size. 

Accordingly, the matrix fracture toughness is set to 
M

c 0.74 N mm,G =  while the graphite 

nodule fracture toughness is assumed to be four times lower, i.e., 
N

c 0.185 N mm.G =   

To show the capability of the proposed generalized phase-field fracture model in modelling 

different fracture behaviour, fracture toughness is scaled down by two orders of magnitude, 

i.e., 
M

c 0.002 N mmG = and 
N

c 0.0005 N mm.G =  

Lastly, it should be mentioned that the selected samples do not statistically represent the 

microstructural topology, as the amount of sampled material is too low to represent a statistical 

average arrangement of the constituents.  

5.2. Monotonic loading - Brittle and ductile fracture material behaviour 

The specimens are first subjected to monotonic tensile loading, as presented in Fig. 5.4. The 

periodic boundary conditions, frequently used in the microstructural analyses, are not 

considered here since the fracture process is generally non-periodic.  

 
Fig. 5.4. Displacement boundary conditions 
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In the case of the tensile loading, tensile stresses play a dominant role in the model domain. 

For that reason, similar results can be obtained with the so-called isotropic material model, i.e. 

model without energy decomposition where 
+

e e = and 
-

e 0. =  The corresponding stress-

strain curves for both cases are obtained through the division of the resulting reaction force by 

the cross-sectional area L×1 and the division of the corresponding displacement by the 

specimen’s length L. Similar procedure was conducted in [107].  

Note again that, the generalized model used in this subsection is capable of recovering fatigue 

fracture. However, due to the careful description of energy density accumulation variable in 

Section 2.3.1., there is no influence of fatigue during the monotonic loading. 

5.2.1. Ductile material behaviour 

The comparison between the results obtained with different nodule modelling options on 

different specimen sizes is shown in Fig. 5.5 - Fig. 5.7. 

    

a) b) c)  
Fig. 5.5. Monotonic loading. Ductile fracture pattern obtained on N1 nodule modelling option on 

specimen sizes a) S, b) M, and c) L 
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a) b) c)  

Fig. 5.6. Monotonic loading. Ductile fracture pattern obtained on N2 nodule modelling option on 

specimen sizes a) S, b) M, and c) L 

    

a) b) c)  
Fig. 5.7. Monotonic loading. Ductile fracture pattern obtained on N3 nodule modelling option on 

specimen sizes a) S, b) M, and c) L 

Obvious ductile fracture pattern can be observed, with 45° incline with respect to the loading 

direction. Moreover, the crack paths obtained by the N2 and N3 nodule modelling options are 

exceptionally close, while there are some discrepancies in comparison with N1. The respective 

stress-strain curves are shown in Fig. 5.8. 
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Fig. 5.8. Monotonic loading. Stress-strain response for different nodule modelling options and specimen 

sizes 

As evident, the peak stress and strain values, at which the failure occurs, drop with the increase 

in the specimen size, thus clearly displaying the well-known size-effect. On the other hand, the 

difference in structural response due to the nodule modelling is somewhat inconclusive. 

Modelling nodules as real inclusions (N3) yields close results to the irregularly shaped void 

modelling option (N2). The option N3 is slightly, but consistently, stiffer and more resilient 

than N2 on every specimen size. However, the option with the perfect circular holes (N1) 

instead of the nodules yields different results. While it gives much stiffer and more resilient 

response than N2 and N3 on the smallest specimen size S, as is expected, this is not the case 

for specimen sizes M and L. The reason of such behaviour could be the nodule orientation. 

Coincidentally, the prevailing irregular nodule shape orientation (N2 and N3) seems to be 

generally parallel to the loading direction in specimen M and L, thus increasing the load-

bearing capacity in comparison to the perfectly circular hole substitution (N1). Therefore, most 

of the sharp notches are also not stress-concentrators in this loading setup, which explains why, 

in some cases, the N1 option yields stiffer response, contrary to the initial expectation. 

To prove that the proposed model can handle monotonic loading without the interference of 

the fatigue extension, the energy density accumulation variable  , together with total energy 

( )e p , +  is shown in Fig. 5.9, for the specimen S with nodule modelling option N1. Three 

timeframes are shown: frame where no damage has started yet, mid-frame where the 

localization bands have formed, and the final fracture frame. 
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a)   

b) 

 

 

 

 

c) 

 

 

 
 

 

 
 

Fig. 5.9. Monotonic loading. Total energy density and energy density accumulation variable plot at 

timeframes when a) no damage have yet started, b) the localization bands have formed c) final fracture 

frame occurs 

The energy density accumulation variable   obviously increases at the locations where total 

energy, i.e., elastic energy density decreases. The increase is negligible compared to the value 

of total energy density at the corresponding points. Moreover, the locations with high total 

energy density, corresponding to the localization of damage, do not exhibit the energy density 

accumulation variable increase. Therefore, this proves that the proposed model can handle 

monotonic loading case without the interference of the extension, which was not the case with 

previous phase-field fatigue extensions [120]. This can be further proven by comparing the 

stress-strain curves of the model with no fatigue degradation function with the models 

containing the fatigue function ˆ.F  The comparison is presented in Fig. 5.10. where three 

different    values are used.  
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Fig. 5.10. Monotonic loading. Influence of the fatigue extension 

No difference between the models with and without the fatigue degradation function F̂  can be 

observed. Thus, it can be concluded the proposed fatigue extension does not interfere with the 

monotonic fracture analysis. 

5.2.2. Brittle material behaviour 

The same tests are now repeated with the lower fracture toughness, as explained in Section 

5.2.1. The elastoplastic material model remains unchanged. Fig. 5.11. - Fig. 5.13. present the 

comparison between the results obtained with different nodule modelling options on different 

specimen sizes for such material properties.  

    
a) b) c)  

Fig. 5.11. Monotonic loading. Brittle crack pattern obtained with N1 nodule modelling option on different 

specimen sizes (scale factor 20 is applied for better visualization) 
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a) b) c)  

Fig. 5.12. Monotonic loading. Brittle crack pattern obtained with N2 nodule modelling option on different 

specimen sizes (scale factor 20 is applied for better visualization) 

    
a) b) c)  

Fig. 5.13. Monotonic loading. Brittle crack pattern obtained with N3 nodule modelling option on different 

specimen sizes (scale factor 20 is applied for better visualization) 

In this case, brittle fracture patterns are observed as expected. Analogously to the previous 

examples, the crack patterns obtained with the N2 and N3 nodule modelling option are very 

similar, while there are some differences with respect to the N1 modelling option. Interestingly, 

in the N3 modelling option, occasionally the crack propagates across the nodules showing both 

intra- and trans-granulate fracture. The respective stress-strain curves are shown in Fig. 5.14. 
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Fig. 5.14. Monotonic loading. Stress-strain response for different nodule modelling options and specimen 

sizes 

The obtained structural response is analogous to the previously considered ductile fracture 

behaviour. In this case, a clear, sharp stress drop is observed, characteristic for the brittle 

fracture cases analysed in this work. Moreover, a certain size-effect is again observed. The 

influence of the nodule modelling options shows similar behaviour as in the previous example 

dealing with the ductile fracture. However, the explanation provided there can be more clearly 

observed on the curve slopes. It is evident that, while the modelling option N1 yields a bit 

steeper slope (thus also the stiffer response) for specimen S, the slope is less steep for 

specimens M and L.  

5.2.3. Brittle-ductile transition 

The proposed phase-field fracture model can clearly reproduce both brittle and ductile fracture 

behaviour, depending on the values of fracture material properties and the plastic yield limit. 

To further test this, the parametric study is conducted by changing the fracture toughness c.G  

The smallest specimen size S is used together with the nodule modelling option N2. 

   
a) b) c) 
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d) 

 

e) 

 

f) 

 

  
                                      g) 

 

                h) 

 
Fig. 5.15. Monotonic loading. Crack paths obtained on specimen S with N2 with a) 

c
0.001 N mmG = , b) 

c
0.002 N mmG = , c) 

c
0.005 N mmG =  d) 

c
0.01 N mmG = , e) 

c
0.1 N mmG = , f) 

c
0.25 N mmG = , 

g) 
c

0.45 N mmG = , and h) 
c

0.74 N mmG =  

The obtained results show the clear transition between the brittle and ductile fracture patterns 

depending on the change in the material fracture properties. The corresponding stress-strain 

curves are shown in Fig. 5.16. 

 

Fig. 5.16.  Monotonic loading. Stress-strain response comparison for different values of fracture 

toughness  

The ability of the proposed model to recover both brittle and ductile material behaviour, as well 

as the transition between, is clearly shown.  
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5.3. Cyclic loading - Fatigue fracture material behaviour 

The specimen S with the nodule modelling option N2 is subjected to the cyclic displacement-

controlled loading with 6 different amplitudes, namely, u1 = 0.001 mm, u2 = 0.00075 mm,  

u3 = 0.0005 mm, u4 = 0.00035 mm, u5 = 0.0002 mm, u6 = 0.0001 mm with R = 0. The fatigue 

function 3F̂  is used with the fatigue parameter 500 MPa. =  The corresponding force-

displacement curves are shown in Fig. 5.17. 

   

Fig. 5.17. Cyclic loading. Force-displacement curves 

It is obvious that the case with the load amplitude u1 yields plastic response with clear hysteresis 

loops. The cases with load amplitudes u2 and u3 produce similar behaviour. However, the 

hysteresis area is significantly lower, allowing for the higher number of loading cycles. 

Furthermore, as the load amplitudes decreases, the models exhibit less and less plasticity 

making the transition towards the high-cyclic regime. The case with load amplitude u6 thus 

shows clear elastic behaviour with negligible influence of plastic deformations. 

The corresponding fracture patterns are plotted in Fig. 5.18. at three different timeframes. 

a) 

N = 16 

 

N = 22 

 

N = 55 
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b) 

N = 34 

 

N = 55 

 

N = 86 

 

c) 

 

N = 88 

 

 

N = 140 

 

 

N = 252 

 

d) 

 

N = 221 

 

 

N = 382 

 

 

N = 610 

 

e) 

 

N = 936 

 

 

N = 1536 

 

 

N = 5565 
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f) 

 

N = 4102 

 

 

N = 7806 

 

 

N = 50820 

 

Fig. 5.18. Cyclic loading. Evolution of fatigue fracture for displacement amplitudes a) u1 = 0.001, b) u2 = 

0.00075, c) u3 = 0.0005, d) u4 = 0.00035, e) u5 = 0.0002, and f) u6 = 0.0001 

The case with the highest amplitude follows previously shown ductile fracture pattern, with 

45° incline towards the loading direction. On the other hand, the lowest amplitude case has a 

fracture pattern following 90° incline, with the cases in-between showing a clear transition 

between regimes. The transition between the low- and high-cycle fatigue can thus be clearly 

seen. Moreover, as expected, the cases corresponding to higher load amplitudes, and thus more 

plasticity within the model, exhibit the total failure sooner. It is presented by a Wöhler curve 

in Fig. 5.19. with the displacement amplitudes on the x-axis. 

 

Fig. 5.19. Cyclic loading. Wöhler curve 





 

 

Chapter 6  

Conclusion 

The prediction and prevention of material failure at a component design stage is an important 

aspect of modern-day engineering, with numerical simulations gradually becoming a primary 

method of choice. While the assumption of the material macrohomogeneity is often still valid 

in engineering practice, the prediction of fracture in advanced heterogeneous materials requires 

the consideration of material microheterogeneity and its influence on the macrobehaviour. 

Material failure is essentially a multiscale phenomenon. Macroscopic cracks are a direct result 

of the cascade of complex fracture processes happening at the microstructural level. While the 

multiscale methods open the way to the future multiscale fracture modelling, there still seems 

to be a long way before they can be consistently and reliably applied in realistic structural 

problems. Therefore, the development of a reliable numerical damage and fracture analysis 

method, considering material microstructural properties and topology, is crucial for the 

assessment of structural integrity, reliability, and component lifetime in modern structures and 

machine components. In turn, such method can assist in the development of advanced materials 

with enhanced properties coming from the desired microstructure, and enable the production 

of more efficient, safer and cheaper structures. 

The most commonly used numerical fracture modelling methods introduce the crack as a sharp 

geometrical discontinuity. Along with the additional criteria for crack initiation, propagation 

or growth direction required in these discrete crack modelling methods, a major problem arises 

with the numerical tracking of the crack discontinuities. It can present significant 

implementation difficulties in the three-dimensional settings. The diffusive crack modelling 

approaches, introducing a damage parameter which controls the material stiffness and stress 
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release associated with the crack formation, pose as an alternative. The phase-field fracture 

method, which recently became a very popular diffusive fracture modelling method, is capable 

of successfully recovering the complex fracture processes occurring at the microstructural 

level, without introducing any ad hoc criteria. A length-scale parameter is introduced, similarly 

to other diffusive crack modelling approaches. Although extensive research has been carried 

out on the development of phase-field fracture theory, certain challenges still exist in the 

computational implementation of the method and have been dealt with in this thesis. 

The generalized phase-field framework for brittle, ductile and fatigue fracture modelling has 

been developed and implemented into the commercial FE software ABAQUS. Two different 

phase-field formulations were included, affecting the (linear-)elastic structural response stage 

before the onset of crack. Moreover, different plasticity models, including the combined 

nonlinear isotropic-kinematic hardening model were also included. The staggered solution 

scheme with the stopping criterion based on the control of residual norm was developed and 

implemented within the framework, improving the convergence rate. The implementation of 

the algorithm was the first such implementation of an iterative phase-field fracture solution 

scheme in the ABAQUS software. The non-convexity of the underlying free energy functional, 

usually posing implementation problems concerning numerical instabilities, was thus tackled. 

The solution scheme was thoroughly tested and confirmed to be robust and more efficient in 

comparison with the commonly used single iteration staggered phase-field fracture algorithm. 

In contrast to the single iteration algorithm, the accuracy is no longer dependent on the careful 

selection of the size of loading increments, while the CPU time demand is substantially 

decreased. The importance of the stopping criterion within a staggered scheme was shown by 

illustrative examples. 

The thread-parallelization and the element deletion option were introduced to reduce the 

common phase-field problem of high computational cost. The use of different ABAQUS 

solvers allows the calculation of both displacement- and force-controlled problems. The 

implementation is capable of calculating coupled contact-fracture problems. The cycle 

skipping technique was implemented to allow for the calculation of a very high number of 

loading cycles in the fatigue analysis on moderate size examples. Additional options available 

within this implementation, showing the great advantages of commercial FE software 

implementation, included the automatic incrementation and restart analysis options. Different 

element formulations in 1D, 2D and 3D were considered. The full source code together with 
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the examples presented in this thesis, tutorials and steps to reproduce was made publicly 

available to other researchers, students and engineers, thus promoting the phase-field fracture 

methodology. It is available on: https://data.mendeley.com/datasets/p77tsyrbx2/4 

The developed framework was proven capable of accurately reproducing brittle/ductile or 

fatigue fracture, according to the underlying material behaviour and loading conditions. This 

capability was tested on examples ascending in complexity. Accordingly, a detailed discussion 

on the accuracy of results and analysis duration was provided. First, the framework was 

successfully verified and validated on the monotonically loaded examples of various materials 

exhibiting brittle fracture with the assumption of elastic homogeneous material behaviour. 

Benchmark examples with numerical and experimental results reported in literature were 

considered, including homogeneous plate, single edge notched plate subjected to tensile and 

shear loading, L-shaped beam and asymmetrically notched perforated three-point bending test 

specimen. The energy decompositions, preventing the unphysical crack propagation in 

compressive state, were tested. Moreover, the force-controlled loading and thread-

parallelization options were tested within these examples, showing great advantages of the 

proposed framework. The monotonically loaded examples of steel and aluminium alloys 

exhibiting ductile fracture behaviour were considered next. The comparison was made with the 

experimental data in terms of force-displacement curves, crack and plastic deformation 

evolution patterns. The examples included V-notch bar, asymmetrically notched tensile 

specimen and Sandia challenge CT specimen. The capabilities of the implementation in 3D 

settings were shown here. Finally, the fracture analysis in homogeneous material behaviour 

was concluded by cyclically loaded round bar and CT specimen examples. The cyclic 

elastoplastic model and the obtained crack growth rate were successfully validated in 

comparison with experimental results from literature. Special attention was given to the 

verification of the fatigue part of the generalized framework through the parametric study. 

Therein, the influence of load ratio R, fatigue and fracture material properties is thoroughly 

tested. The parameters corresponding to the material fatigue properties were clearly linked to 

the well-known empirical parameters. Main features of fatigue, including Wöhler and Paris law 

curves in low- and high-cycle regimes, were easily recovered without any additional criteria. 

Finally, realistic heterogeneous microstructure of nodular cast iron obtained from 

microtomography was tested. This highly complex microstructure consists of graphite nodules 

positioned in the ferritic matrix. Different-sized 2D samples were randomly selected from the 

https://data.mendeley.com/datasets/p77tsyrbx2/4
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metallographic image to satisfy the average graphite nodules content of 7%. Three nodule 

modelling options differing in the level of detail were tested. The nodules were substituted with 

perfect circular voids of the corresponding sizes, voids closely following the actual nodule 

geometry, and inclusions with material properties corresponding to the graphite. Last option 

showed the ability of the implementation in handling coupled contact-fracture problems. 

Specimens were tested in both monotonic and cyclic loading regimes. The capability of the 

proposed framework in handling monotonic loading case without the interference of the fatigue 

extension was proven. The results showed clear size-effect behaviour as well as the influence 

of microstructural topology, i.e., the size, shape and distribution of the microconstituents on 

fracture patterns. The transition between the brittle and ductile fracture patterns was shown by 

a parametric study where fracture toughness property was intermittently changed. Lastly, the 

heterogeneous specimens were subjected to the cyclic loading and exhibited low- and high-

cyclic fatigue fracture patterns, and the transition in-between.  

Original scientific contributions to the field of computation fracture mechanics include: 

1. Development of the novel generalized phase-field fracture model capable of 

recovering brittle/ductile or fatigue fracture patterns, following the underlying material 

behaviour and loading scenario 

• A novel description of energy density accumulation variable is introduced 

allowing the accurate monotonic fracture analysis without the influence of the 

fatigue extension. Only one additional parameter is included into the fatigue 

extension of the model, and is clearly linked to the well-known empirical 

parameters through the parametric analysis. The cycle skipping technique is 

implemented allowing high cycle number calculation on moderate size 

examples. 

• Different phase-field formulations affecting the (linear-) elastic material 

behaviour stage, before the onset of crack, are included together with a few 

different plasticity material models to account for the ductile fracture 

behaviour, as well as cyclic plasticity in low-cyclic fatigue regime.  

• The proposed model was thoroughly tested, verified and validated in 

comparison with numerical and experimental results from literature. Main 

features of fatigue, including Wöhler and Paris law curves in low- and high-

cycle regimes, were easily recovered without any additional criteria. 
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2. Development of the staggered iterative solution scheme with residual norm control-

based stopping criterion to tackle numerical efficiency and stability 

• The algorithm is thoroughly tested in comparison with commonly used single 

iteration staggered phase-field fracture algorithm. Detailed discussion on the 

accuracy of results and analysis duration is given. 

• In contrast to the single iteration algorithm, the accuracy is no longer dependent 

on the careful selection of the loading increment size, while the CPU time 

demand is substantially decreased.  

• The importance of the stopping criterion within a staggered scheme was 

emphasized. 

3. The potential of the proposed model in modelling of the complex brittle, ductile and 

fatigue fracture processes, is thoroughly examined by the fracture analysis of real 

heterogeneous microstructural geometries of nodular cast iron obtained by 

metallography procedure. 

• The different specimen sizes are tested clearly observing the size-effect 

behaviour corresponding to the verified results reported in the literature. Three 

possibilities of nodule modelling differing in the level of detail were 

investigated, including the modelling of nodules as inclusions with graphite 

properties within the ferritic matrix. This option showed the capability of the 

proposed implementation in solving contact problems. 

• The influence of the microstructural topology, i.e., the size, shape and 

distribution of the microconstituents is clearly shown in the numerical 

examples. The proposed model can easily handle complex fracture processes, 

including crack initiation, localization, propagation, merging and branching, 

occurring at the microstructural scale.  

• Parametric study was conducted showing the effects of fracture toughness on 

the transition between brittle and ductile fracture patterns, within the proposed 

model. The cyclic loading examples show great potential of the proposed 

model to resolve fatigue fracture in both high- and low-cyclic regime. Clear 

transition between low- and high-cyclic fatigue fracture patterns was observed.  

The future work on the proposed model includes the extension and upgrade of the 

implementation framework. The extension to the large-strain settings and a complete thread-

parallelization should be the first step. Different finite element formulations, like tetrahedral or 

axisymmetric, could be considered. Other material models, e.g. Neo-Hooke, can also be 

straightforwardly introduced. Upon proper validation, the fatigue extension within the 
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proposed model should be upgraded and improved. The included cyclic jump technique should 

be thoroughly tested.  

From the point of view of the general phase-field fracture theory, the phase-field fracture 

methodology should be extensively experimentally validated to become a true alternative for 

the fracture analysis of real-life structural components. The solution non-uniqueness coming 

from the numerical handling of the non-convexity of the underlying free energy functional, and 

irreversibility of the crack phase-field parameter, should be investigated further. A better-

performing energy decomposition preventing the unphysical crack propagation in compressive 

state should be researched. 

Finally, coupling the implementation with the ABAQUS local remeshing algorithm would 

solve the important problem of phase-field fracture models - high computational cost. 

Moreover, the proposed framework could be included into a multiscale framework, thus 

allowing the fracture analysis larger scale model while simultaneously considering actual 

microstructural topologies.  
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