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Preface

This work was made at the Faculty of Mechanical Engineering and Naval Architec-

ture in Zagreb, and at the Institute of Aeroelasticity which is part of DLR (Deutsches

Zentrum f•ur Luft- und Raumfahrt) in G•ottingen.

Flutter phenomenon of aerodynamic surfaces of aircraft, which has to be investiga-

ted for each new aircraft design or structural modi�cation of existing aircraft, is still

important topic of research in aeroelasticity, and especially for aircraft in transonic


ight.

One way to check aeroelastic behaviour of the aircraft are computational methods

which are capable to carry out big amount of calculations before in 
ight checks, andthe

other way are wind tunnel experiments. Direct simulation of 
uid-structure interaction

in time domain, using the most precise methods for loads calculations, requires extremely

high needs for computational resources.

As the main e�ort is needed for the part of unsteady loads determination, more

e�cient methods are developed for 
utter boundary prediction. Loads determination

comprises the unsteady 
ow calculation around aircraft which performs oscillatorymo-

tions with di�erent elastic modes and di�erent frequencies. Because of small compu-

tational and time requirements for loads analysis, panel method with doublets called

doublet-lattice method (DLM) is widely used. One of the DLM method shortages is

inability to resolve strong shocks in transonic region. Simulations of Reynolds averaged

Navies-Stokes (RANS) equations for 
utter analysis give more precise results, but also

require big computational and time resources, and because of that are not �rst choice

for preliminary design phase.



vii

Between these two extremes, viscous-inviscid interaction methods like Eulerwith

boundary layer are good compromise. Solving Euler equations it is possible to resolve

shocks, and coupling with boundary layer equations gives balance between 
ow model

and computational e�ciency. Viscous-inviscid interaction methods give results that are

comparable with RANS results, but computational time is several times less and this

gives them advantage for fast 
utter analysis.

Zagreb, March 2010. Frane Maji�c, dipl. ing.



Summary

In this work a simple and accurate method for two-dimensional unsteady aerodynamic

load determination on airfoil is developed. The method employs viscous-inviscid co-

upling. The inviscid 
ow is governed by the unsteady Euler equations solved by �nite

volume method on moving C-type rigid grid, while viscous 
ow is governed by steady

boundary layer integral equations. The Euler equations are solved in conservative form,

in transformed body-�tted coordinates. The viscous-inviscid coupling is performed by

transpiration velocity incorporated in the boundary condition on airfoil. Therefore, the

method requires no grid deformation for the boundary layer in
uence inclusion. The

transition is predicted by theen method. The viscous-inviscid method is focused on sub-

sonic and transonic 
ows, at high Reynolds number, with shock-wave appearance.The

steady and unsteady test cases for three characteristic airfoils are performed, namely

NACA 0012, NACA64A010, NLR 7301. The results are compared with experimental

data and with unsteady RANS calculations. The method gives results which are in

good agreement with experimental data and with calculated unsteady RANS results.

The method has convergence problems in the test cases with separation. The methodis

applicable in the design processes where unsteady loads are required within reasonable

time and with accuracy comparable with RANS methods.

Keywords: viscous-inviscid coupling, viscous 
ow, Euler equations, transpiration

velocity, computational 
uid dynamics, mach number, airfoil, shock-wave, airfoil

pressure coe�cient distribution

viii



Sa�zetak

U ovome radu razvijena je jednostavna i precizna metoda za odredivanje nestacionarnih

aerodinami�ckih optre�cenja za dvodimenzionalno strujanje oko aeropro�la. Metodako-

risti princip sprezanja viskoznog i neviskoznog dijela strujanja. Neviskozni dio strujanja

je opisano nestacionarnim Eulerovim jednad�zbama koje su rije�sene pomo�cu metode kon-

trolnih volumena na pomi�cnoj nedeformabilnoj mre�zi C-tipa. Viskozni dio strujanja je

opisan integralnim jednad�zbama grani�cnog sloja za stacionarno strujanje koje su rije�sene

Runge-Kutta metodom �cetvrtog reda. Eulerove jednad�zbe su rije�sene u konzervativnom

obliku, u transformiranim prianjaju�cim koordinatama. Sprezanje viskoznog i neviskoz-

nog dijela strujanja je izvedeno pomo�cu transpiracijske brzine koje je uklju�cena u rubni

uvjet na aeropro�lu. Iz tog razloga metoda ne zahtijeva deformaciju mre�ze da bise

uklju�cio utjecaj grani�cnog sloja. Polo�zaj tranzicije grani�cnog sloja je predviden pomo�cu

metodeen . Metoda viskozno-neviskoznog sprezanja je usmjerena na podzvu�cno i kroz-

zvu�cno strujanje pri velikim Reynoldsovim brojevima, s pojavom udarnog vala. Izvr�seni

su prora�cuni za stacionarno i nestacionarno strujanje, za tri karakteristi�cna aeropro�la

NACA 0012, NACA64A010 i NLR 7301. Rezultati su usporedeni s eksperimentalnim

podacima i s nestacionarnim RANS prora�cunima. Metoda daje rezultate koji se dobro

sla�zu s eksperimentalnim podacima i s prora�cunatim nestacionarnim RANS rezultatima.

U slu�cajevima strujanja s odvajanjem, metoda pokazuje probleme s konvergencijom.

Metoda je primjenjiva u procesima razvoja gdje se zahtijeva prora�cun nestacionarnih

optere�cenja unutar prihvatljivog vremena ra�cunanja i s precizno�s�cu koja je usporediva

s RANS metodama.

Klju�cne rije�ci: viskozno-neviskozno sprezanje, viskozno strujanje, Eulerove

jednad�zbe, transpiracijska brzina, ra�cunalna dinamika 
uida, Machov broj, aeropro�l,

udarni val, raspodjela koe�cijenta tlaka na aeropro�lu

ix
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1 Introduction

1.1. Motivation

The phenomenon of aircraft 
utter, which has to be investigated for each new aircraft

design or structural modi�cation of existing aircraft, is still one of the currentimportant

research topics in aeroelasticity, especially for transonic speed 
ights.This phenomenon

is aeroelastic problem, determined by the interaction of the elastic, damping and iner-

tial forces of the structure and the unsteady aerodynamic forces generated by oscillatory

motion of the structure itself. Such oscillatory motion can lead to a progressive increase

in amplitude of vibration, ending in a disintegration of the structure. For a given con�-

guration of an aircraft structure the unsteady aerodynamic forces increase rapidly with


ight speed, while the elastic, damping and inertia forces remain unchanged. Because of

this reason there exists a critical 
ight speed (
utter speed) above which 
utter1 occurs.

Actually, every manned 
ying machine has to undergo some kind of aeroelastic

analysis before 
ight, because 
utter and other aeroelastic phenomenon in 
ight enve-

lope of the aircraft have to be avoided without exception. There are three ways to

examine the aeroelastic behavior of the aircraft: 
ight testing, wind-tunnel testing, and

analysis by computational methods. Flight and wind-tunnel tests can be performed at

earliest in late phase of aircraft design process, because these tests arevery expensive.

Moreover, because of need for testing of more di�erent aircraft or aerodynamic surface

con�gurations, fabrication of di�erent wind-tunnel models and di�erent aircraft pro-

totypes would be huge time and �nancial burden in aircraft testing process. Therefore,

1Self-induced oscillation of coupled aeroelastic system due to the mutual interaction between struc-
tural (elastic, inertial and damping) forces and unsteady aerodynamic forces.

1
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a much cheaper solutions are computational methods where many computational test

cases can be performed before 
ight or wind-tunnel tests.

In the transonic speed range, aeroelastic analysis becomes signi�cantly more com-

plicated. Under these conditions, shock waves can form and disappear as the aircraft

undergoes unsteady, structurally 
exible motion. In addition, regions of separated 
ow

can appear and disappear as these shock waves strengthen and weaken. Theseare hig-

hly nonlinear phenomena that can have essential impact on the aeroelastic behavior of

aircraft. The appearance of shock waves on the aircraft aerodynamic surfaces can cause

a further drop in 
utter boundary in the range of transonic speed. This drop is called

transonic dip (see Fig. 1.1). The important feature of the transonic dip is the bottom

of the dip, which de�nes the minimum 
utter speed at which 
utter can occur across

the 
ight envelope of the aircraft. The 
utter speed represents some critical speed at

which the structure sustains oscillations following some initital disturbance. Below this

speed the oscillations are damped, whereas above it one of the modes becomes negati-

vely damped and unstable oscillations occur, unless some form of nonlinearity bounds

the motion [1].
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Figure 1.1: Transonic dip

The 
utter analysis by linear aerodynamic methods typically predict the 
utter bo-

undary adequately at subsonic and supersonic speeds, but in transonic speed range it
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predicts a higher 
utter speed than experiment [2]. The 
utter boundary could be obta-

ined by inviscid unsteady aerodynamics analisys, e.g. solving unsteady transonic small

disturbance potential 
ow, full potential 
ow, or Euler equations of motions. Although

these methods have capability of capturing shock waves in the 
ow and transonic dip,

they predict signi�cantly lower 
utter speed at the bottom of the transonic dip beca-

use they do not involve viscous e�ects in the calculations. Viscous e�ects which actin

the form of signi�cant boundary layer thickening and shock-induced 
ow separation are

responsible for better de�ning the bottom of the transonic dip.

For the 
utter analysis, some arbitrary motion of the airfoil is not so often used

but the harmonic motion for a single oscillation frequency is of more interest. The

objective of such analysis is to determine the 
ight conditions that correspond to the


utter boundary (stability boundary), for which one of the modes of motion has a

simple harmonic time dependency [3]. In the linear 
utter analysis it is presumed that

the solution involves simple harmonic motion and also excitation force and moment have

harmonic behavior. With this assumption the equations of motion are then cast into

eigenvalue problem in frequency domain and solved for complex eigenvalues. From this

eigenvalues it can be concluded about stable or unstable oscillations of the airfoil. The

classical 
utter analysis cannot provide any de�nitive measure of 
utter stability other

than the location of the stability boundary. Despite this weakness of the method, its

primary strength is that it needs only the unsteady airloads for simple harmonic motion

of the airfoil.

The direct simulation of 
uid-structure coupling in the time domain, adopting the

most precise modeling techniques for computation of 
uid loads, requires extremely

high computational e�ort. As the main e�ort is needed for the part of computing

unsteady aerodynamic loads, more e�cient methods have been developed for the taskof

predicting only the 
utter boundary, which is the state of equilibrium between dynamic

structural forces and induced aerodynamic forces. The aerodynamic part of the solution

procedure then comprises the computation of unsteady aerodynamic 
ows around the

aircraft structures performing oscillatory dynamic motions in di�erent known elastic

geometrical modes and with di�erent frequencies.

For this purpose the doublet-lattice method is still present in actual design analysis

because of low computer time consumption and simple setting procedure of compu-

tational problem. One of the method lacks is inability of capturing strong shocks in
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transonic 
ows. RANS simulation for 
utter analysis gives much more accurate re-

sults, but it uses large amount of computational time and hence is not �rst choice for

preliminary design. In adition, RANS needs large grids with high resolution and the

problem setting is much more demanding. RANS is also limited with uncertainties in

turbulence modeling, di�culties in high quality grid generation and di�culties with grid

deformation algorithm in unsteady 
ows [4].

In preliminary aeroelastic design process, engineers that are not experts in compu-

tational 
uid dynamics (CFD), but other �elds like �nite element structural modeling

or 
ight controls, should also be able to use CFD methods. This requires that CFD

methods be robust and more automated than current RANS codes. Between these ex-

tremes, viscous-inviscid interaction methods such as Euler with viscous boundarylayer

correction is a good compromise. Euler methods are capable of resolving strong shocks

and with boundary layer coupling they are good balance between 
ow model and com-

putational e�ciency. The viscous-inviscid interaction methods give results comparable

to RANS solvers, but computer time is several times smaller and this gives appreciable

advantage for fast 
utter analysis in design process.

This work is dedicated for improvement of such viscous-inviscid interaction met-

hod with unsteady Euler as an inviscid solver and a solver of integral boundary-layer

equations for thin viscous region, with interaction by transpiration velocity concept.

1.2. Overview of Previous Work

The earliest works in unsteady aerodynamics connected to 
utter analysis were made

in 1930's and 1940's. Strip theory aerodynamics was long time the most used aerodyna-

mic tool for prediction of unsteady aerodynamic loads [5]. In this approximation theory

one considers each spanwise segment as it were a portion of an in�nite span wing with

uniform spanwise properties.

During 1960's remarkable unsteady aerodynamic tool was developed, namely doublet-

lattice method [6]. Further development of this method was to allow handling of non-

planar aerodynamic surfaces with bodies [7]. This method produced one important con-

tribution to 
utter analysis, aerodynamic in
uence coe�cients (AICs). AICs relate the

lift on each element of aerodynamic surfaces and displacements (related to translation

and rotation) and also the dynamic pressure. More recently, Rodden et al. continued
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to re�ne the doublet-lattice method [8]. These enhancement were the replacement of

the approximation of the numerators of the incremental kernels and improved approxi-

mation to the integrand in the integral in the kernel. The doublet-lattice method has

been in use for over 30 years and has become a standard for production 
utter analysis.

There are some features that are responsible for long life of the method. First, the

method is accurate enough for production 
utter analysis, except in transonic regime

and when there exist separation. Second, the method has small calculation time and

produces AICs. Third, the method has ability to model fairly complex geometry and

does not have the need for grid generation. The method has lifting surfaces that are

simply replaced with series of panels. All this gives �nal important feature that is, user

friendly code.

Among methods based on various forms of the potential 
ow equation with boundary

layer correction, which have shown good results for unsteady calculations withoutlarge

computational resources and less working hours in setting up the problem, the CAP-

TSD [9] code is widely used. This code has many advantages over a RANS code: ease in

grid generation, no need for moving grid and less demand for computational recourses.

Despite the use of vortex and entropy corrections, the assumptions in CAP-TSD code

limits its applicability to irrotational 
ows with weak shocks. Edwards [10] used CAP-

TSD code with a lag-entrainment integral boundary layer method for computation of

unsteady transonic 
ows involving separation and reattachment. Also, Edwards showed

the self-excited shock-induced oscillations (bu�et). Cebeci at al. [11] have shown an in-

teractive boundary layer method for multielement airfoils at low and moderate Reynolds

numbers. In this method inviscid part of 
ow is solved by the Hess Smith panel met-

hod, while viscous boundary layer 
ow is solved by the compressible boundary layer

equations (mass, momentum and energy) for laminar and turbulent 
ows and, with

the algebraic eddy viscosity and turbulent Prandtl number formulation of Cebeci and

Smith [12]. Mangler and Catherall [13] in their work showed the method which gave

the solution of the boundary layer equations near a separation point for steady incom-

pressible laminar two-dimensional 
ow. The boundary layer equations are solved in a

regular direct mode until the separation point is reached. After the separation point

the displacement thickness is prescribed, and then the pressure gradient is calculated.

They obtained solutions for reversed 
ow, namely for small separation bubbles inside

boundary layer.
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Because methods that solve Euler equations are capable of resolving strong shocks

and transporting vortices correctly, many researchers have investigated interactive bo-

undary layer methods using the Euler equations [14, 15]. However, many researchers

have focused on steady calculations. Drela [16] has used Euler equations for inviscid

�eld and integral boundary layer formulation for thin viscous region in neighborhood of

the airfoil. Transition prediction is based on the Orr-Sommerfeld equation formulation

(eN method) and incorporated into two-equation, integral, laminar/turbulent boundary

layer analysis. The viscous formulation is fully coupled with the inviscid 
ow that is

governed by a streamline-based Euler formulation. The entire non-linear coupled system

of equations is solved by Newton solution procedure.

Recently, Zhang [17] demonstrated an e�cient Euler method with boundary-layer

correction suitable for the airplane wing 
utter. The thickness of the wing as well as

its small-scale motion is simulated by approximated boundary conditions implemented

on the stationary wing chord plane. Therefore, non-moving Cartesian grid is used for

unsteady simulations of airplane wing.

In aeroelastic applications, where a high number of parameters such as di�erent

natural modes, angles of attack, Mach numbers, frequency, etc. must be investigated,

methods that solve unsteady aerodynamic problem in frequency domain are introduced.

Especially, these methods are suitable for simulations at low reduced frequencies. The

same simulations in time domain are time consuming because a periodic state can be ac-

hieved after calculating a number of cycles. Recently, a numerical method based on such

alternative approach, namely, on solution of small disturbance Euler equations (SDE) is

presented [18]. Assuming harmonic behavior of unsteadiness (unsteady variables), they

yield a set of linear variable coe�cient equations for the complex amplitude of the �eld

quantities. The unsteady problem is reduced to a steady-state problem for the pertur-

bation part. The non-linear 
ow physics is contained in steady reference solution which

is needed for linearized solution. The unsteady loads can be evaluated directly and

used within the standard modal 
utter calculations. Overall, the method shows good

results, but in 
ows with shocks, pressure distribution shows remarkable di�erences in

comparison with non-linear Euler solution. The same linearization is made for Navier-

Stokes equations by Pechlo� [19]. In this work also the linearization of Spalart-Allmaras

one-equation turbulence model was made.

Recently, some papers are published that analyze coupling of RANS equations with
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boundary layer [20, 21, 22]. These papers demonstrated the prediction of transition

region with the aim to construct laminar airfoils and to reduce the drag.

1.3. Objective and Hypothesis of Research

The e�ective surface displacement approach describes the concept of the viscous-

inviscid interaction. This approach can be employed in high Reynolds number 
ows

where viscous e�ects are contained in thin boundary layer region. As the boundary

layer thickness changes in unsteady 
ows, a new grid must be generated for the inviscid

computation after each interaction. A method which avoids this di�culty is the method

of equivalent sources proposed by Lighthill [23]. Changes of boundary-layer mass defect

is used to impose the sources or sinks on solid surface of airfoil. The blowing or suction

e�ect of the injected 
ow simulates the displacement action of the boundary-layeron the

outer inviscid 
ow. In this work attempt is made to incorporate momentum contribution

of the injected 
ow for the interaction with Euler equations. Momentum equationin

direction perpendicular to airfoil surface is solved with incorporation of boundary layer

blowing e�ect on inviscid 
ow. All calculations are made on body-�tted curvilinear grid

with orthogonality condition on airfoil surface.

The aim and hypothesis of the thesis is to show that approach with incorporation

of momentum from boundary layer into momentum equation in direction normal to

airfoil will give results that are comparable with more precise today available methods.

The method should be accurate enough to be usable as aerodynamic tool in routine

aeroelastic checks, and also should give good results in transonic region wherethe shock

waves are appearing.



2 Viscous-Inviscid
Interaction

At high Reynolds number 
ows, where inertial forces are more signi�cant than vis-

cous forces, Prandtl [24] showed how Navier-Stokes equations could be simpli�ed to

yield approximate solution. In such 
ow cases viscous e�ects are con�ned in thin region

close to viscous wall, called boundary layer. Therefore, such 
ows can be decomposed

in two regions. First region is the �eld away from boundaries, where viscous e�ects at

high Reynolds number can be neglected. Second region is thin boundary layer region

where viscous e�ects are con�ned.

2.1. Viscous-Inviscid Interaction Method

In this work viscous-inviscid interaction of boundary layer integral equations and

Euler equations is made by the transpiration velocity concept. The transpiration velo-

city changes the slope of the net velocity at the boundary and in such way represents

displacement thickness of boundary layer and in
uence of boundary layer on inviscid


ow outside the boundary layer. The transpiration velocity concept is proposed by Lig-

hthill in [23] as equivalent sources concept. From the integration of continuity equation

for incompressible 
ow, from wall surface to the outer edge of boundary layer� (x), it

follows:

v =
Z � (x)

0

@v
@y

dy = �
Z � (x)

0

@u
@x

dy: (2.1)

x and y are coordinates along and perpendicular to the wall respectively, andu and

v are corresponding velocity components. When the velocityue at the boundary layer

8
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edge (y = � (x)) is introduced in the second integral, then the following expression for

the velocity v is obtained:

v = �
due

dx
� +

d
dx

Z � (x)

0
(ue � u) dy (2.2)

The �rst term in (2.2) is that which would be present in the irrotational 
ow around

the body, and the second is the additional velocity due to the boundary layer existence.

The second term, which represents transpiration velocity, can be rearranged to contain

displacement thickness:

vt =
d

dx

Z 1

0
ue

�
1 �

u
ue

�
dy =

d
dx

(ue� � ) : (2.3)

In this work the viscous-inviscid interaction is made in direct mode. There are ot-

her possible ways for the viscous-inviscid interaction, namely inverse, semi inverse and

simultaneous. In the direct method, used in this work, the output from inviscid solver,

which are velocity or pressure at the boundary edge, are used as the input in the viscous

solver of boundary layer equations. The output from the viscous solver is displacement

thickness, or transpiration velocity derived from the displacement thickness, which is

then used as input in inviscid solver to update the boundary condition of inviscid 
ow.

The used scheme of direct coupling method is presented in Fig. 2.1. The advantage

of such coupling method is its speed and simplicity in the application. The disadvan-

tage of the the direct method is inability to simulate separated 
ows, because of the

appearance of a singularity in the boundary layer equations which is called Goldstein's

singularity [25].

In the inverse method, the viscous and inviscid equations are solved in the reverse

mode. The boundary layer equations are solved for the unknown pressure from the

displacement thickness as the input, while inviscid equations are solved for the required

displacement thickness from the pressure distribution of boundary layer. The calculated

displacement thickness serves as input to the boundary layer solver.

The compromise between direct and inverse methods is semi inverse method. In

this method the inviscid equations are solved as in direct mode, while boundary layer

equations are solved as in the inverse mode. The both viscous and inviscid regions

are solved for the unknown velocity distribution at the boundary layer edge from the

displacement thickness. The two velocity distributions are compared and according
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Figure 2.1: The scheme of direct coupling method of viscous-inviscid interaction

to this di�erence, new displacement thickness is determined. The convergence with

relaxation is performed until velocity distributions from two 
ow region are in agreement.

In the simultaneous method, the inviscid equations are simultaneously solved with

viscous equations. The both set of equations are written together and solved as one

system.

The coupling method by the transpiration velocity showed strong solution oscillations

at the near separation test cases, and at the position of sudden thickening of boundary

layer thickness. To reduce such oscillatory behavior of solution and to reach mono-

tone converged solution, the underrelaxation method was used. The underrelaxationis

performed on the transpiration velocity, by the following expression:

vt = vo
t + � (vn

t � vo
t ) : (2.4)

The superscripts o and n represent the old and the new solution of transpiration velo-

city magnitude in the iterations of viscous-inviscid coupling respectively.� represents

underrelaxation factor and it is smaller than one. At the initial calculation step when

transpiration velocity magnitude is calculated for the �rst time, the old solution of tran-

spiration velocity magnitude is equal to zero. Left hand of equation (2.4) is resulting

transpiration velocity magnitude and in new iteration step it serves as the old solution

in the subsequent iteration.



3 Inviscid Model

In this chapter inviscid compressible 
uid dynamics equations will be derived. The

method of solving these equations will be described and also the transformation of

body-�tted (physical) grid to Cartesian (calculation) grid. The boundary conditions

will be described on outer domain boundary as well as on the airfoil contour boundary.

The incorporation of boundary layer in
uence by transpiration velocity in boundary

condition on airfoil will be described.

3.1. Coordinates Transformation

In the case of 
ows around curved bodies like airfoils, the structured grids in cur-

vilinear body-�tted coordinates can be used. Such grids are suitable because of their

structured nature and better performace of codes optimized for such grid type. In

Fig. 3.1 body-�tted coordinate system is shown on two dimensional structured grid

around airfoil with curvilinear axes � and � .

Structured grid in such coordinate system can be very easily transformed into Car-

tesian grid in Cartesian coordinate system, which numerically simpli�es the solution

calculation by application of control volume method. Mapping functions from Cartesian

system (x; y; t ) into curvilinear body-�tted coordinate system (�; �; � ) can be written in

the following form:

� = � (x; y; t )

� = � (x; y; t )

� = t:

(3.1)

11
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X
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0
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0.06

0.08

0.1

x

h

Figure 3.1: Body-�tted curvilinear coordinates about airfoil contour

In Fig. 3.2 characteristic points (from A to F) in the curvilinear structured grid

around airfoil are shown. Point A is at the trailing edge on lower surface and pointF is

at the trailing edge on upper surface. In the same �gure these points are shown in the

physical plane (down left) and in the mapped plane (down right). The airfoil surface

which is represented by line between A and F, is in mapped plane represented by straight

line between points A and F (shown bolded). Between these two grid representations of

�eld around airfoil, mapping functions exist which are writen in equations (3.1)

In the transformation of Euler equations from Cartesian coordinates to curvilinear

coordinates the metric coe�cients that come from grid transformation have tobe calcu-

lated (see section 3.3.). This transformations can be expressed from functions written

in (3.1). From these expressions the derivations with respect to Cartesiancoordinates

and physical time can be written as follows:

@
@x

= � x
@
@�

+ � x
@
@�

+ � x
@
@�

@
@y

= � y
@
@�

+ � y
@
@�

+ � y
@
@�

@
@t

= � t
@
@�

+ � t
@
@�

+ � t
@
@�

:

(3.2)
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x = x(x , h, t )
y = y(x , h, t )
t = t

E

C

A

D

A

B

B

C D

F E

F

h

x

Dx=1m

Dh=1m

F

A

CLOSE VIEW OF AIRFOIL

Figure 3.2: Curvilinear to cartesian grid mapping

Subscripts in expressions (3.2) and subsequent expressions represent partial derivation

with respect to the variable in the subscript. Metric transformation coe�cients are given

according to following expressions:

� x = J � 1y� � x = � J � 1y� � x = 0

� y = � J � 1x � � y = J � 1x � � y = 0

� t = 0 � t = 0 � t = 1

(3.3)

whereJ is the determinant of Jacobi matrix and equals:
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J =

�
�
�
�
@(x; y; t )
@(�; �; � )

�
�
�
� =

�
�
�
�
�
�
�
�

x � y� 0

x � y� 0

x � y� 1

�
�
�
�
�
�
�
�

= x � y� � y� x � : (3.4)

3.2. Euler Equations

In the 
ows around streamlined bodies like airfoils, at high Reynolds numbers, vis-

cous e�ects are only signi�cant in thin region close to airfoil called boundary layer. In

such 
ows, the region around airfoil (except the boundary layer in the close vicinityof

airfoil where viscous e�ect are not negligible) is possible to solve by Euler equations. In

this work inviscid 
ow is calculated by Euler equations in body-�tted coordinates.

Euler equations describe unsteady, inviscid, compressible, anisotropic and rotational


ow. Such form of the equations represents nonlinear hyperbolic conservative laws in

which e�ects of mass forces, viscous stresses and heat 
uxes are neglected. For such

form of equations Riemann solvers and upwind methods are directly applicable.

There are di�erent forms of Euler equations. Written in two dimensional Cartesian

coordinates and conservation di�erential form, Euler equations have following form:

@Q
@t

+
@F(Q)

@x
+

@G(Q)
@y

= 0 (3.5)

where vectorsQ, F and G equal

Q =

2

6
6
6
6
4

�

�u

�v

�e

3

7
7
7
7
5

F =

2

6
6
6
6
4

�u

�u 2 + p

�uv

�uh

3

7
7
7
7
5

G =

2

6
6
6
6
4

�v

�vu

�v 2 + p

�vh

3

7
7
7
7
5

: (3.6)

In vectors expressed by (3.6),e is speci�c total energy (per unit mass)

e =
1


 � 1
p
�

+
1
2

�
u2 + v2

�
(3.7)

and h is speci�c total enthalpy (per unit mass).

h =




 � 1
p
�

+
1
2

�
u2 + v2

�
: (3.8)
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3.3. The Vector Flux Splitting

The schemes based on central space discretizations, associated with the spatial 
ux

terms in subsonic 
ow, have a symmetry with respect to a change in sign of the eige-

nvalues (characteristic speed) which does not distinguish upstream from downstream

in
uences. Hence the physical propagation of perturbations along characteristics,typi-

cal of hyperbolic equations, is not considered in the de�nition of such numerical model.

Therefore, in the numerical implementation of this work, the method of the vector
ux

splitting is used. This method belongs to the family of upwind methods which take

into account the perturbation propagation direction. The background of the 
ux vector

splitting method is given in report of Steger and Warming [26].

System of equations (3.5) can be written in the form of matrices in the following

way:

@Q
@t

+ A (Q)
@Q
@x

+ B(Q)
@Q
@y

= 0 (3.9)

where

A (Q) =
@F
@Q

and B(Q) =
@G
@Q

: (3.10)

Coe�cients in matrices A and B are functions of vectorQ, therefore the system of

equations (3.9) is nonlinear. MatricesA and B are called Jacobi matrices (Jacobians)

and have following form:

A (Q) =
@F
@Q

=

2

6
6
6
6
4

@f1=@q1 @f1=@q2 @f1=@q3 @f1=@q4
@f2=@q1 @f2=@q2 @f2=@q3 @f2=@q4
@f3=@q1 @f3=@q2 @f3=@q3 @f3=@q4
@f4=@q1 @f4=@q2 @f4=@q3 @f4=@q4

3

7
7
7
7
5

(3.11)

B (Q) =
@G
@Q

=

2

6
6
6
6
4

@g1=@q1 @g1=@q2 @g1=@q3 @g1=@q4
@g2=@q1 @g2=@q2 @g2=@q3 @g2=@q4
@g3=@q1 @g3=@q2 @g3=@q3 @g3=@q4
@g4=@q1 @g4=@q2 @g4=@q3 @g4=@q4

3

7
7
7
7
5

(3.12)

wheref i , gi and qi are components of vecotrsF, G i Q respectively, fori = 1; 2; 3; 4.
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Eigenvalues� i of matrix A are solutions of characteristic polynomial

jA � � I j = det( A � � I ) = 0 (3.13)

whereI is unit matrix. In analogous way the same is valid for matrixB . Physically, the

eigenvalues represent propagation velocities of disturbances, and the systemof hyper-

bolic equations has all real eigenvalues.

In the algorithm of 
ux vector splitting, the 
ux vectors F and G are divided into

positive contributions F+ ; G+ and negative contributionsF � ; G � :

F = F+ + F �

G = G+ + G � :
(3.14)

The 
ux vectors are splitted in such way that Jacobian matrices@F+ =@Q and @G+ =@Q

have only positive, and Jacobian matrices@F � =@Q and @G � =@Q have only negative

eigenvalues. According to this splitting, the equation (3.9) has now in Cartesian coor-

dinates following form:

@Q
@t

+
@F+

@Q
@Q
@x

+
@F �

@Q
@Q
@x

+
@G+

@Q
@Q
@y

+
@G �

@Q
@Q
@y

= 0 (3.15)

Because of such 
ux splitting, the numerical calculation of spatial derivations ofF+ ; G+

and F � ; G � has to be conducted with backward and forward di�erencing respectively.

Flux splitting is made with respect to the one-dimensional Mach numberM x = u=a

i M y = v=a. For subsonic 
ow, wherejM x < 1j for F and jM y < 1j for G, the 
ux

splitting of F and G is made according to Van Leer [27] as follows:

F � =

2

6
6
6
6
6
6
6
6
6
6
4

�
�a
4

(1 � M x)2

a



[(
 � 1) M x � 2] f �
1

vf �
1


 2

2 (
 2 � 1)

�
f �

2

� 2

f �
1

+
v2

2
f �

1

3

7
7
7
7
7
7
7
7
7
7
5

(3.16)

wheref �
1 and f �

2 represent �rst and second member of vectorF � respectively.
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G � =

2

6
6
6
6
6
6
6
6
6
6
4

�
�a
4

(1 � M y)2

ug�
1

a



[(
 � 1) M y � 2]g�
1


 2

2 (
 2 � 1)

�
g�

3

� 2

g�
1

+
u2

2
g�

1

3

7
7
7
7
7
7
7
7
7
7
5

: (3.17)

Membersg�
1 and g�

3 in (3.17) represent �rst and third member of vectorG � respectively.

For supersonic 
ow, wherejM x > 1j for F and jM y > 1j for G, it follows:

F+ = F; F � = 0 for M x � +1

F+ = 0; F � = F for M x � � 1
(3.18)

G+ = G; G � = 0 for M y � +1

G+ = 0; G � = G for M y � � 1
(3.19)

As the numerical calculations in this work are performed in body-�tted coordina-

tes, it is needed to transform the Euler equations from Cartesian coordinates(x; y; t )

into body-�tted coordinates (�; �; � ). The Euler equations transformed in body-�tted

coordinates and in conservative form are written in following equation:

@~Q
@�

+
@~F
@�

+
@~G
@�

= 0 (3.20)

where ~Q and ~F, ~G are transformed vector of conservative variables and 
ux vectors

respectively:

~Q = JQ

~F = ( � y� x � + x � y� ) Q + y� F � x � G

~G = ( � x � y� + y� x � ) Q + y� F � x � G:

(3.21)

In equations (3.21) and following equations in this work, indexes�; � and � represent

derivatives of Cartesian coordinates with respect to the curvilinear body-�tted coordi-

nates. J represents the Jacobian of the grid transformation. The equation (3.20) has

not the same structure as the equation (3.5) and is not appropriate for the described 
ux

splitting. Correct splitting of transformed 
ux vectors (3.21) is performed in such way



Chapter 3. Inviscid Model 18

that the 
ux vectors ~F and ~G are written as the product of the local rotation matrix and

modi�ed 
ux vector what is described in [28]. Such modi�ed 
ux vectors have now the

same form as the 
ux vectors in Cartesian coordinates but contain transformed instead

of Cartesian velocities. The 
ux vectors written in this form equal:

~F( ~Q) =
q

x2
� + y2

� T FF(Q)

~G( ~Q) =
q

x2
� + y2

� T GG(Q)
(3.22)

where the 
uxes now have the same form as in Cartesian coordinates, but with tran-

sformed velocities.

Q = �

2

6
6
6
6
4

1

u

v

e

3

7
7
7
7
5

(3.23)

F = �

2

6
6
6
6
6
6
4

u

u2 +
a2



u v

uh

3

7
7
7
7
7
7
5

(3.24)

G = �

2

6
6
6
6
6
6
4

v

u v

v2 +
a2



vh

3

7
7
7
7
7
7
5

: (3.25)

Transformed velocities in the 
ux vectorF are equal:

u = ŷ� (u � x � ) � x̂ � (v � y� )

v = x̂ � (u � x � ) + ŷ� (v � y� )
(3.26)

while in the 
ux vector G are equal

u = x̂ � (u � x � ) + ŷ� (v � y� )

v = � ŷ� (u � x � ) + x̂ � (v � y� ):
(3.27)
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The velocity u in the 
ux vector F represent net velocity perpendicular to coordinate

line � = const. and velocity v net velocity along coordinate line� = const., i.e. covariant

and contravariant velocity components at face� = const. respectively. In the 
ux vector

G velocity u represents net velocity along the coordinate line� = const. and velocity

v is net velocity perpendicular to coordinate line� = const., i.e. contravariant and

covariant velocity components at face� = const. respectively. These velocities are

depicted in Fig. 3.3.

X

Y

x

h

u(G)
v(G)

u(F)
v(F)

Figure 3.3: Covariant and contravariant velocities

The metric coe�cients x̂ � ; ŷ� ; x̂ � and ŷ� are normalized as follows:

x̂ � =
x �q

x2
� + y2

�

ŷ� =
y�q

x2
� + y2

�

x̂ � =
x �q

x2
� + y2

�

ŷ� =
y�q

x2
� + y2

�

:

(3.28)

Transformed total energye and total enthalpy h have the same form but include tran-
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sformed velocities:

e =
a2


 (
 � 1)
+

1
2

(u2 + v2) (3.29)

h =
a2


 � 1
+

1
2

(u2 + v2): (3.30)

Local rotation matrices T F and T G have following form:

T F =

2

6
6
6
6
6
4

1 0 0 0

x � ŷ� x̂ � 0

y� � x̂ � ŷ� 0
x2

� + y2
�

2
ŷ� x � � x̂ � y� x̂ � x � + ŷ� y� 1

3

7
7
7
7
7
5

(3.31)

T G =

2

6
6
6
6
6
4

1 0 0 0

x � x̂ � � ŷ� 0

y� ŷ� x̂ � 0
x2

� + y2
�

2
x̂ � x � + ŷ� y� x̂ � y� � ŷ� x � 1

3

7
7
7
7
7
5

: (3.32)

Now, the vector 
ux splitting on ~F and ~G can be performed in the same way as splitting

of 
uxes F and G in (3.16) and (3.17):

~F
�

=
q

x2
� + y2

� T FF
�

(3.33)

~G
�

=
q

x2
� + y2

� T GG
�

(3.34)

where the 
ux vectors F
�

and G
�

are calculated in same way like splitted vectors in

Cartesian coordinates written in expressions (3.16) and (3.17), but in place ofMach

numbers Max and May come Mach numbers Ma� and Ma� which are calculated by

transformed velocities:

Ma� =
u
a

Ma� =
v
a

(3.35)
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3.4. Solution Procedure for Euler Equations

Now, Euler equations in body-�tted coordinates with splitted 
ux vectors have fol-

lowing form:

@~Q
@�

+
@~F

+

@�
+

@~F
�

@�
+

@~G
+

@�
+

@~G
�

@�
= 0: (3.36)

The equation (3.36) is discretized and solved in the explicit way:

~Q
n+1

(i; j ) = ~Q
n
(i; j ) � � �

"
~F

+
(i + 1=2; j ) � ~F

+
(i � 1=2; j )

� �

+
~F

�
(i + 1=2; j ) � ~F

�
(i � 1=2; j )

� �

+
~G

+
(i; j + 1=2) � ~G

+
(i; j � 1=2)

� �

+
~G

�
(i; j + 1=2) � ~G

�
(i; j � 1=2)

� �

#n

(3.37)

where indexes (i; j ) represent concerned control volume. The indexes (i + 1=2; j ) and

(i � 1=2; j ) represent two control volume interfaces on lines� = const., and indexes

(i; j +1=2) and (i; j � 1=2) represent two control volume interfaces on lines� = const. (see

Fig. 3.4). Superscriptsn and n +1 represent old and new time step respectively. Spatial

step, di�erence between two coordinate lines in two directions (�� and � � ) are arbitrary

chosen and equal �� = � � = 1m. Spatial derivations are approximated by MUSCL

scheme (MUSCL -Monotone Upstream-centered Scheme for Conservation Laws), where

the 
uxes at the control volume interfaces are calculated directly by forward or backward

extrapolation of solution vectorQ depending it is positive or negative 
ux contributions

respectively. Generally, formula for splitted 
uxes calculation follows:

~F
�

(i � 1=2; j ) = ~F
�

�
Q �

i � 1
2 ;j

; mi � 1
2 ;j

�

~F
�

(i + 1=2; j ) = ~F
�

�
Q �

i + 1
2 ;j

; mi + 1
2 ;j

�

~G
�

(i; j � 1=2) = ~G
�

�
Q �

i;j � 1
2
; mi;j � 1

2

�

~G
�

(i; j + 1=2) = ~G
�

�
Q �

i;j + 1
2
; mi;j + 1

2

�

(3.38)
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wherem represents all geometric members included in body-�tted coordinates transfor-

mation, i.e. metric coe�cients. The subscripts i � 1=2, i + 1=2, j � 1=2 and j + 1=2

in expressions (3.38) represent control volume interfaces as noted above. Extrapolated

values of solution vectorsQ are obtained by help of second order approximations (here

only for � direction):

Q �
i + 1

2 ;j
= Q i;j + 0:5(Q i;j � Q i � 1;j )

Q+
i + 1

2 ;j
= Q i +1 ;j + 0:5(Q i +1 ;j � Q i +2 ;j )

(3.39)

where againi � 1, i , i + 1, i + 2 represent indexes of control volume centers andi + 1
2

index of right control volume face in� direction. Analogically is valid for � direction.

X

Y

x

h

(i, j)

(i+1/2, j

(i­1/2, j)

(i, j­1/2)

(i, j+1/2)

Figure 3.4: Control volume interfaces

3.5. Boundary Conditions and Contour Pressure De-
termination

Boundary condition on airfoil contour is imposed in inviscid part of 
ow solver.

Boundary condition on airfoil contour is given by zero 
ow through airfoil contour, or

by existence only the tangential velocity on contour. Mathematically, this boundary

condition can be written by the following:
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(~v � ~vb � ~vt ) � ~n = 0 (3.40)

where ~v is 
uid velocity, ~vb is prescribed velocity of boundary (airfoil contour),~vt is

transpiration velocity resulted from boundary layer existence, and~n is unit normal

vector on airfoil contour. Transpiration velocity represents e�ect ofboundary layer

thickening, and actually by transpiration velocity boundary layer model is coupled with

inviscid 
ow model. Transpiration velocity model is derived in [23] for incompressible


ow under the name equivalent sources. With the same procedure the expression for

transpiration velocity for compressible 
ow can be derived:

� evt =
d (� eue� � )

ds
(3.41)

wherevt represents transpiration velocity magnitude in direction perpendicular to airfoil

contour, � � displacement thickness (de�ned by eq. (4.9)), ands is curvilinear coordinate

going along airfoil contour from stagnation point to trailing edge.ue and � e are velocity

magnitude and density at the boundary layer edge. The equation (3.41) represents the

strength (mass 
ow rate per unit area) of additional out
ow due to the boundary layer

existence. Transpiration velocity is separately calculated for upper and lowersurface

from stagnation point of airfoil. In Fig. 3.5 the transpiration velocity vectors are shown

perpendicular to upper surface of airfoil.

Boundary condition (3.40) can be rearranged by derivating it, which gives following

equation:

D~v
Dt

� ~n �
D ( ~vb + ~vt )

Dt
� ~n + ( ~v � ~vb � ~vt ) �

D~n
Dt

= 0: (3.42)

First member in equation (3.42) represents left hand of momentum equation in direction

of unit normal ~n:

D~v
Dt

� ~n = �
1
�

gradp � ~n: (3.43)

When equations (3.42) and (3.43) are combined, new momentum equation in direction

of unit normal to airfoil contour follows:

�
�

D~n
Dt

� (~v � ~vb � ~vt ) �
D(~vb + ~vt )

Dt
� ~n

�
= gradp � ~n: (3.44)
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X

Y s

vt

Stagnation
point

Figure 3.5: Transpiration velocity on airfoil surface

In equation (3.44) boundary layer e�ect is coupled with inviscid 
ow solver by transpi-

ration velocity. Equation (3.44) can be expressed on airfoil contour tocalculate pressure

gradient in normal direction. Determining pressure gradient on airfoil contour, pressure

on contour can accuratelly be determined from pressure in adjacent control volumes.

Pressure on contourp1 can then be calculated by:

p1 = p2 �
� �
2

gradp � ~n (3.45)

where p2 is pressure in �rst control volume center adjacent to airfoil contour, and one

half came from the fact that length of volume cell in� direction is equal � � = 1m (see

�g. (3.6)). The same is valid for � direction where � � = 1m.

Equation (3.44) should be transformed to appropriate coordinate system. Complete

calculation of inviscid 
ow solver is made in body-�tted curvilinear coordinates (� ,

� ,� ). � is transformed time which is equal to physical timet. Grid around airfoil is

C-type grid generated by condition that coordinate lines� = konst. (see Fig. 3.1) are

perpendicular to airfoil contour. Line� = konst. coincide with airfoil contour. According

to these conditions, transformation of equation (3.44) into body-�tted coordinate system

gives following equation (complete derivation of boundary condition is presented in

appendix A.):



Chapter 3. Inviscid Model 25

X
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Dh/2

x

p2

p1

h

Figure 3.6: Pressure in the control volume adjacent to airfoil contour

@p
@�

�
x2

� + y2
�

�
=

@p
@�

(x � x � + y� y� ) +

�

(

J
�

u2

�
x2

� + y2
�

� (y� x �� � x � y�� ) +
2u

q
x2

� + y2
�

(y� x � � � x � y� � ) + x � � y� � y� � x �

�
+

+ ( y� vtx� � x � vty� ) (y� (u � x � ) � x � (v � y� )) + J (vtx � y� � vty � x � )

)

:

(3.46)

In equation (3.46), velocity u is covariant velocity on � = konst. side of control vo-

lume de�ned according to expression (3.27) andJ is Jacobian de�ned according to equ-

ation (3.4). Metric coe�cients x � , y� , x � , y� , x �� , y�� are grid constants where indexes

represent derivation with respect to indexed values. Grid velocities are represented by

membersx � and y� . Last member in equation (3.46) take into account unsteady behavi-

our of coupling mechanism through time derivation of transpiration velocity components

vtx and vty . From equation (3.46) one can directly calculate pressure gradient in direction

perpendicular to airfoil, namely@p=@�.

On the outer domain boundaries, characteristic boundary conditions were used.

With such boundary conditions, the 
ow is concerned as locally one-dimensional and de-

rivations along boundaries can be neglected (@( )=@�! 0). From generalized Riemman
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invariants [29] for hyperbolic system of equations, expressions valid alongdisturbance

propagation direction can be derived:

dS
dt

= 0 along C0 :
dx
dt

= vnorm

dvnorm

dt
�

1
�a

dp
dt

= 0 along C � :
dx
dt

= vnorm � a
(3.47)

where S is entropy, a is local speed of sound andvnorm is local velocity perpendicular

to outer domain boundary respectively.C0 and C � represent three characteristics of

disturbance propagation on outer domain boundary. With assumption of isentropic 
ow,

last equation in (3.47) can be transformed to the following:

d
dt

(R� ) = 0 along
dx
dt

= vnorm � a (3.48)

whereR� are Riemman invariants

R� = vnorm �
2a


 � 1
: (3.49)

Characteristic equation (3.49) is used to update variable values on the domain boundary

in the new time step. For two-dimensional case number of variables equals four, namely

� , u, v, p. Because of that, also four independent equations are needed. For subso-

nic in
ow on outer domain booundary, where velocity component normal to boundary

vnorm < 0, following expressions are valid:

R+ = R+ (1 )

R� = R� (F)

vtang = vtang (1 )

pT = pT (1 ):

(3.50)

In equation (3.50) symbols1 and F represent free stream value and 
ow �eld value of

interior domain respectively. vtang is 
uid velocity along outer domain boundary and

pT is total pressure. In Fig. 3.7, the 
uid velocity components on the outer domain

boundary are showed. In the same way as for in
ow, for subsonic out
ow on outer

domain boundary where velocity component in normal direction to boundaryvnorm > 0,

following expressions are valid:
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X [m]

Y
[m

]

x

h

vnorm
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vtang

Figure 3.7: Velocities at the outer domain boundary

R+ = R+ (F)

R� = R� (1 )

vtang = vtang (F)

pT = pT (F) :

(3.51)

Again, symbol F represents that variables are locally extrapolated from interior domain,

and symbol1 represents that variable values are calculated from free stream value.



4 Boundary layer

In this chapter, the integral compressible boundary layer equations used in the

viscous-inviscid coupling are presented. Along with this equations, the relationships

for closing the system of integral boundary layer equations are also presented. There

are several descriptions of boundary layer implemented in the literature, like integral bo-

undary layer equations and di�erential boundary layer equations. In this work integral

boundary layer description made by Drela and Giles [16] is used.

4.1. Boundary Layer Concept

In the 
ows at high Reynolds number or with very small viscosity 
uid, complete


ow �eld can be divided in the two regions. First is thin region close to viscous wall

called boundary layer where viscous forces are dominant, and velocity gradient normal

to wall (@u=@y) is very large. Second is region away from boundary layer where inertial

forces are dominant and viscous forces are negligible, that is where velocity gradients are

negligible. The simpli�cation of such limiting 
ow cases is �rstly shown by Prandtl [24].

In [30] it is shown the assessment of members in Navier-Stokes equations for two

dimensional case, in the limiting 
ow case when Reynolds number Re! 1 . After

the assessment of the order of magnitude of members in the momentum equations in

direction along and perpendicular to viscous wall follows:

u� @u�

@x�
+ v� @u�

@y�
= �

@p�

@x�
+

1
Re

@2u�

@x� 2 +
@2u�

@y� 2 (4.1)

28



Chapter 4. Boundary layer 29

1
Re

�
u� @v�

@x�
+ v� @v�

@y�

�
= �

@p�

@y�
+

1
Re2

@2v�

@x� 2 +
1

Re
@2v�

@y� 2 (4.2)

In equations (4.1) and (4.2) superscript� represents normalized quantities. Coordinate

x along viscous wall is normalized by characteristic length which is much bigger than

boundary layer thickness, usually the airfoil chord lengthc is taken. Coordinate y

perpendicular to viscous wall is normalized by boundary layer thickness� . Velocity u

in direction of viscous wall is normalized by maximum velocity in the boundary layerU

in the same direction, while velocityv is normalized by maximum velocity in boundary

layer V in the direction perpendicular to viscous wally. Pressure is normalized by� U 2.

When the Reynolds number goes to high values, the members with coe�cients 1=Re

and 1=Re2 in equations (4.1) and (4.2) tend to zero. From this assessment follows

that dominant momentum transport is along wall direction (4.4) and from momentum

equation in normal to wall direction (4.5) follows that there is no pressure change along

normal to wall direction. Such system of steady boundary layer equations derived by

process Re! 1 is given in equations (4.3) { (4.5) which are called Prandtl's boundary

layer equations. Here, the coordinatesx and y are along and perpendicular direction of

wall boundary respectively.

@u�

@x�
+

@v�

@y�
= 0 (4.3)

u� @u�

@x�
+ v� @u�

@y�
= �

@p�

@x�
+

@2u�

@y� 2 (4.4)

0 = �
@p�

@y�
: (4.5)

The equations (4.4) and (4.5) show apparent reduction in complexity with respect to

the Navier-Stokes equations. From the momentum equation (4.5) follows that pressure

in boundary layer is independent of direction normal to the wall, that is the pressure is

constant across the boundary layer height and equals to the pressure of outer inviscid


ow. The boundary conditions for the system (4.3) { (4.5) is given by:

y� = 0 ! u� = 0; v� = 0

y� ! 1 ! u� (x � ) = u�
e(x � )

(4.6)
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whereu�
e represents the normalized velocity of the 
ow at the outer boundary layer edge.

The system of boundary layer equations (4.3) { (4.6) is of parabolic type. This has

good property that outer inviscid velocity �eld ue(x), which dictates the boundary layer

behavior, has the in
uence only on the 
ow downstream. This means that boundary

layer equations can be solved by marching procedure.

The Prandtl's equations are derived without the in
uence of the wall curvature.

In [31] it is shown that the wall curvature has no e�ect as long as the curvature radius is

bigger than the characteristic length, that is much bigger than boundary layer thickness

� . In this work viscous-inviscid method is applied on airfoils which usually have leading

edge with large curvature. Usually such geometry is con�ned only in the small length

of airfoil chord. Because of that property, the integration of boundary layer equations

is not started at the stagnation point, but is postponed 5% of airfoil chord length.

In many practical applications interest is not in velocity distribution within boundary

layer, but in integral variables that change with coordinate along wall boundary. Such

integral variables are obtained by integrating the momentum equation over the boundary

layer thickness. Such approach is employed also in this work.

4.2. Boundary Layer in Transonic Flow

In transonic 
ow over an airfoil the pocket of supersonic 
ow appears which is ter-

minated by a shock-wave. Through shock-wave, pressure and density undergo a sudden

increase. Also, shock-wave has foot point in the boundary layer on the airfoil surface,

and the pressure rise in the boundary layer has big impact on its evolution. Depending

on its history at the station under consideration, a boundary layer shows a more or less

strong tendency to separate from the airfoil surface. The parameters that determine the

station of separation are the Reynolds number of the 
ow, surface geometry, roughness

and the distance from the boundary layer origin [32]. This tendency is greatly enhanced

on a convex surface, because of the destabilizing pressure gradient in the 
ow away from

the surface, whereas the opposite pressure gradient on a concave surface stabilizes the

boundary layer by compressing it. This is the normal situation in supersonic 
ows.

When a shock wave intersects the boundary layer, its strength decreases steadily as

it proceeds into the layer, and it becomes a Mach line at the streamline where the 
ow is

sonic. The high pressure behind the shock wave provides a steep adverse pressure gradi-
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ent that makes itself felt upstream through the subsonic portion of the layer. Transition

to turbulent boundary layer or 
ow separation may result, depending on the intensity

of the adverse gradient, that is, on the intensity of the shock.

Intuitively, it is logical that the thicker the subsonic portion of the boundary layer,

the farther upstream the e�ects of the adverse gradient will be felt. Also,@u=@ynear

y = 0 will be small for a thick subsonic portion and hence a small adverse gradient (small

shock intensity) will su�ce to cause 
ow separation. In general, a laminar boundary

layer will have a thicker subsonic portion than the turbulent layer.

The consequences of transition that are of practical importance are the following:

� Since (@u=@y)w is greater for the turbulent than the laminar layer, the shearing

stress� w = � (@u=@y)w will increase greatly through the transition region,

� There will be corresponding increase in the heat transfer rate at the wall,

� Flow separation will be delayed because (@u=@y)w is greater in the turbulent layer.

4.3. Integral Compressible Boundary Layer
Equations by Drela

The boundary layer equations and additional relationship employed in the viscous-

inviscid method of this work are taken from the work of Mark Drela [14] who obtained

excellent results for steady transonic 
ows. The boundary layer equations in integral

form which will be solved in this work are the well-known von Karman integral equation,

which represents the momentum equation,

d�
ds

=
Cf

2
�

�
H + 2 � Ma2

e

� �
ue

due

ds
; (4.7)

and kinetic energy equation, also known as shape parameter equation

dH �

ds
=

2CD

�
�

H �

�
Cf

2
�

�
2H ��

H �
+ 1 � H

�
H �

ue

due

ds
(4.8)

The variable s represents one-dimensional curvilinear coordinate along airfoil contour

and index e represents values of variables at the boundary layer edge. The variable
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s originates from stagnation point and goes separately on upper and lower airfoil side

toward trailing edge. In equations (4.7) and (4.8) the variables is introduced because

the two coordinatess and � have di�erent origin and di�erent length. The variable s is

physical coordinate while the coordinate� is not. The boundary layer equations (4.7)

and (4.8) are valid for steady 
ow and such are used in the viscous-inviscid method

developed in this work.

The integral variables in equations (4.7) and (4.8) are de�ned as follows:

� displacement thickness

� � =

1Z

0

�
1 �

�u
�u e

�
d� (4.9)

� momentum thickness

� =

1Z

0

�
1 �

u
ue

�
�u
�u e

d� (4.10)

� friction coe�cient

Cf =
2� w

� eu2
e

(4.11)

� kinetic energy thickness

� � =

1Z

0

 

1 �
�

u
ue

� 2
!

�u
�u e

d� (4.12)

� density thickness

� �� =

1Z

0

�
1 �

�
� e

�
u
ue

d� (4.13)

� dissipation coe�cient

CD =
1

� eu3
e

1Z

0

�
@u
@�

d�: (4.14)

Also, the shape parameters are de�ned as follows:

H =
� �

�
; H � =

� �

�
; H �� =

� ��

�
: (4.15)
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The momentum and shape parameter equations (4.7) and (4.8) are valid for both

laminar and turbulent boundary layers, as well as for free wakes. These equationscontain

more than two independent variables and hence some assumptions about the additional

unknowns will have to be made. There are four additional unknown variables:Cf, CD ,

H � , H �� . All closure equations are expressed, among others, in terms of kinematic

shape parameter which is de�ned with constant density across the boundary layer.

Compressible and incompressible velocity pro�les have nearly the same shapes which

suggests that in compressible 
ow the additional closure equations should be based on

the kinematic shape parameter, which depends only on velocity pro�le. Whit�eld [33]

proposed an empirical expression forHk in terms of conventional shape parameter and

boundary layer edge Mach number:

Hk =
H � 0:29 Ma2

e

1 + 0:113 Ma2
e

: (4.16)

This parameter is used for both laminar and turbulent 
ows.

For laminar 
ow, closure equations are de�ned as in [14]:

� Kinetic energy shape parameter

H � =
H �

k + 0:028 Ma2
e

1 + 0:014 Ma2
e

(4.17)

where

H �
k =

8
>><

>>:

1:515 + 0:076
(Hk � 4)2

Hk
; Hk < 4

1:515 + 0:04
(Hk � 4)2

Hk
; Hk > 4

(4.18)

� Friction coe�cient (wall shear coe�cient)

Re�
Cf

2
=

8
>><

>>:

� 0:067 + 0:01977
(7:4 � Hk)2

Hk � 1
; Hk < 7:4

� 0:067 + 0:022
�

1 �
1:4

Hk � 6

� 2

; Hk > 7:4
(4.19)

� Dissipation coe�cient

Re�
2CD

H �
=

8
<

:

0:207 + 0:00205 (4� Hk)5:5 ; Hk < 4

0:207� 0:003 (Hk � 4)2 ; Hk > 4
(4.20)
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� Density thickness shape parameter

H �� =
�

0:064
Hk � 0:8

+ 0:251
�

Ma2
e: (4.21)

Expression (4.21) for density thickness shape parameter will be used for bothlaminar

and turbulent 
ows.

For turbulent 
ow, closure equations are derived on the fact of two layer structure.

For turbulent 
ow, closure equations are de�ned as in [14]:

� Friction coe�cient (wall shear coe�cient)

FcCf =
0:3e� 1:33H k

�
log10

�
Re�

Fc

�� 1:74+0 :31H k
+ 0:00011

�
tanh

�
4 �

Hk

0:875

�
� 1

�
(4.22)

where

Fc =
�
1 + 0:2Ma2

e

� 1=2
(4.23)

� Kinetic energy shape parameter

H � =
H �

k + 0:028 Ma2
e

1 + 0:014 Ma2
e

(4.24)

where

H �
k =

8
>>>>>>><

>>>>>>>:

1:505 +
4

Re�
+

�
0:165�

1:6
p

Re�

�
(H0 � Hk)

Hk

1:6

; Hk < H 0

1:505 +
4

Re�
+ ( Hk � H0)2

2

6
6
6
4

0:04
Hk

+ 0:007
ln (Re� )

�
Hk � H0 +

4
ln (Re� )

� 2

3

7
7
7
5

; Hk > H 0

(4.25)

and

H0 = 3 +
400
Re�

: (4.26)
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� Dissipation coe�cient (non-equilibrium)

2CD

H �
=

Cf

2

�
4

Hk
� 1

�
1
3

+
2

H �
C� (1 � Us) (4.27)

where shear coe�cient is calculated from the lag equation:

�
C�

dC�

ds
= 4:2

�
C0:5

� eq
� C0:5

�

�
(4.28)

and expression for� is equal

� = �
�

3:15 +
1:72

Hk � 1

�
+ � � : (4.29)

Shear stress coe�cientC� is non-dimensional quantity de�ned by

C� =

�
� u0v0

�
max

u2
e

(4.30)

where � u0v0 is Reynolds stress. Non-dimensional slip velocityUs and the equilibrium

shear stress coe�cientC� eq in equation (4.24) are de�ned by

Us =
H �

6

�
4

Hk
� 1

�
(4.31)

and

C� eq =
H �

2
0:03

1 � Us

�
Hk � 1

Hk

� 3

: (4.32)

4.4. Solution Procedure for Boundary Layer
Equations

The boundary layer equations (4.7) and (4.8) employed in this work were solved by

fourth order Runge-Kutta method. The two equations contain two dependent variables

� and H � , and four additional unknown variablesCf, H , CD and H �� . These unknown

variables are calculated by the additional relationships. The additional relationships,

which are used to close the system of equations, are written in the section 4.3..

The input values to the boundary layer equations are 
uid velocityue(s) and Mach

number Mae(s) distribution at the edge of boundary layer, which is a function of distance
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from stagnation point along airfoil surface. This distributions are output of inviscid part

of 
ow, taken at the position of airfoil surface.

Integration of the boundary layer equations starts from the initial solution for the


at plate in laminar 
ow. The boundary layer variables for the initial solution were

obtained from Blasius [34] solution:

� Boundary layer thickness

� = 5
r

�s
U1

(4.33)

� Displacement thickness

� � = 1:7208
r

�s
U1

(4.34)

� Momentum thickness

� = 0:664
r

�s
U1

(4.35)

� Friction coe�cient

Cf =
0:664
Res

(4.36)

where Res represents Reynolds number with reference lengths measured from the le-

ading edge to the certain point along plate.

The main spatial nodes for the integration of boundary layer equations alongs-

coordinate coincide with the position of control volume side centers at airfoil surface

(see Fig. 4.1). At these nodes (nodesi and i + 1 in the �g. 4.1) the values of variables

ue and M e are overtaken from the inviscid 
ow at the airfoil surface. For more accurate

integration the distance between two main nodes is divided into twenty subintervals (not

shown all in the �g. 4.1). The integration procedure is the same for subintervals asfor

the main nodes, but the values from the inviscid 
ow are interpolated from main nodes

to the subinterval nodes.

The boundary layer integration is started at the 5% airfoil chord to avoid thestag-

nation point and big curvature (small radius) in the vicinity of the leading edge. The

solution at this distance is assumed to be equal solution of Blasius for 
at plate. After

this point starts the boundary layer model of Drela.

In Fig. 4.2 the algorithm for the boundary layer equations integration is presented.

This algorithm shows the integration by fourth order Runge-Kutta method between two
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X

Y

s

i+1
i

SUBINTERVALS

Figure 4.1: Boundary layer main stations and subintervals

spatial stations in the boundary layer. The algorithm starts with the known valuesfor � ,

H , C� at the starting station. Also, the values from the inviscid solver for both stations

are known, namely values at the boundary layer edge Mae, ue, � e and due=ds. In the

second and the subsequent steps of Runge-Kutta method the variableH � is known value

instead ofH . This is because the derivative dH � =ds is known, by which the increment

of H � at the interval midpoint (the second and the third RK step) and the interval end

(the fourth RK step) is obtained. As for the other closure relationships the value ofHk

is required, that variable have to be calculated from the relationships (4.18) and (4.25)

for laminar and turbulent 
ow respectively. As the variable Hk can not be explicitly

expressed, the iterative procedure for the determination ofHk from (4.18) and (4.25) is

employed, namely the bisection method. After one cycle of Runge-Kutta method, the

values of boundary layer variables at the subsequent station is obtained.

In the whole integration procedure the transition methoden is implemented. The

method determines the position of transition, and according to this corresponding relati-

onships for laminar or turbulent 
ow are employed. The transition method is described

in the section 4.5.
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Figure 4.2: The algorithm for the integration of boundary layer equations

4.5. Transition

The method for determination of the onset of transition is derived from a spatial

ampli�cation theory based on Orr-Sommerfeld equation [35]. This method is also known

as en method. The Orr-Sommerfeld equation describes the growth and breakdown of

the disturbances in the shear layers. The growth of these disturbances is responsible

for the onset of the transition in the boundary layers. The method determines the

amplitude of the disturbances by the integration of disturbance growth rate, from the

point of instability. The transition occurs when the amplitude grows by more than a

factor en = e9. The exponentn can be di�erent from 9, actually it can vary between 7

and 11 depending mainly on free stream turbulence and surface roughness [14].

In [14] the equation for the ampli�cation ratio n is derived:

dn
ds

(H; � ) =
dn

dRe�
(H )

m(H ) + 1
2

l(H )
1
�

(4.37)
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where

dn
dRe�

= 0:01
q

f 2:4H � 3:7 + 2:5tanh [1:5 (H � 3:1)]g2 + 0:25 (4.38)

m(H ) =
s
ue

due

ds
=

"

0:058
(H � 4)2

H � 1
� 0:068

#
1

l(H )
(4.39)

l(H ) =
� eue� 2

� es
=

6:45H � 14:07
H 2

: (4.40)

The ampli�cation ratio n is a function ofs, and the equation (4.37) can be integrated

downstream from the point of instability scr:

n(s) =
Z s

scr

dn
ds

ds: (4.41)

At the position of instability scr the Reynolds number referenced by momentum thickness

Re� is equal to its critical value Re� = Re � 0 . This critical value can be calculated from

the following expression:

log10Re� 0 =
�

1:415
H � 1

� 0:489
�

tanh
�

20
H � 1

� 12:9
�

+
3:295
H � 1

+ 0:440: (4.42)

The integration of the equation (4.37) is �nished when the ampli�cation ration re-

aches the valuen = 9, and then turbulent formulation of boundary layer equations is

active. The changeover to the turbulent 
ow is made suddenly without gradual tran-

sition. The changeover from laminar to turbulent correlations has a little e�ect on the

overall development of the boundary layer [14].



5 Results

In this chapter numerical method results will be presented. The main goal of presen-

ted test cases is to demonstrate that contour pressure determination by incorporation

of transpiration velocity into momentum equation works and gives comparable results.

Also, here will be shown that unsteady viscous-inviscid coupling gives results that are

comparabale with RANS solution and experimental data. All test cases calculations were

performed on computer with two processors each at 2.4 GHz and 4 GB RAM. Complete

source code is made in Fortran 95. First, computational grid will be presented andalso

grid convergence for NACA0012 airfoil will be performed. It is assumed that similar

convergence results will be obtained for NLR7301 and NACA64A010 airfoils, whichare

also used for evaluation in this work.

The steady results were made for three types of airfoils, namely NACA0012, NACA-

64A010 and NLR7301. These airfoils have di�erent character of pressure distribution

and shock wave intensity and this is a challenge to presented viscous-inviscid computa-

tional method. The steady test cases were selected from experimental datasets to cover

transonic and subsonic compressible 
ow. The test cases without strong shock wave

were used to show good performance of transition prediction algorithm. The unsteady

results were made for two types of airfoils, NACA 0012 and NACA64A010. Theseuns-

teady test cases were selected from experimental datasets to cover appearance of strong

shock wave.

40
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5.1. Computational Grid

For all numerical calculations of inviscid 
ow model the structured grids of C-type

are used. All grids are generated by the computational code developed in the Institute

for aeroelasticity in G•ottingen, which is part of DLR organization (Deutsches Zentrum

f•ur Luft- und Raumfahrt). The grid generation is performed by the solution of Poisson's

equation according to Steger and Sorenson [36]. Details of this elliptic grid generator

can be found in [37] and [38]. The grid is generated with the perpendicularity condition

of coordinate lines on the airfoil contour and also on the outer domain boundary. This

condition simpli�es the application of boundary condition equation on airfoil, and facili-

tates the numerical calculations. Between many parameters used in the grid generation

it has to be mentioned that the parameter for �rst and last control volume hight in�

direction is 0.5 and 70 percent respectively. Such setting is used for each generated grid.

An example of 2D C-type grid of NACA0012 airfoil, which is generated by elliptic

grid generator, is presented in Fig. 5.1. The close view of the airfoil contouris shown in

Fig. 5.2.

x

y

­40 ­20 0 20 40 60 80
­60

­40

­20

0

20

40

Figure 5.1: Computational grid around
airfoil NACA0012 obtained by elliptic grid
generator
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Figure 5.2: Close view of grid around air-
foil NACA0012 contour
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5.2. Grid Convergence

In this section a series of solution convergence tests for several di�erent computati-

onal grids were made, for steady and also for unsteady cases. Convergence tests were

made with inviscid solver for di�erent grid densities and for di�erent distances from

airfoil to outer domain boundary. On the basis of these tests, appropriate grid density

and distance of outer domain boundary from airfoil were chosen, in order to give grid

independent solution taking into account required level of accuracy of the method.With

such selected grid the subsequent numerical results were obtained. The test is conduc-

ted on �ve di�erent grid densities and three distances between airfoil and outerdomain

boundary, according to table 5.1.

Table 5.1: Tested computational grids

NUMBER OF CONTROL VOLUMES
DISTANCE OF AIRFOIL TO
OUTER DOMAIN BOUNDARY

GRID 100X30 ;
100 control volumes in� direction
30 control volumes in� direction

10 chord lengths
40 chord lengths
80 chord lengths

GRID 160X30 ;
160 control volumes in� direction
30 control volumes in� direction

10 chord lengths
40 chord lengths
80 chord lengths

GRID 160X60 ;
160 control volumes in� direction
60 control volumes in� direction

10 chord lengths
40 chord lengths
80 chord lengths

GRID 240X60 ;
240 control volumes in� direction
60 control volumes in� direction

10 chord lengths
40 chord lengths
80 chord lengths

GRID 320X60 ;
320 control volumes in� direction
60 control volumes in� direction

10 chord lengths
40 chord lengths
80 chord lengths

In Figs. 5.3, 5.5, 5.7, 5.9 and 5.11 the convergence tests of normal force coe�cient

are presented for steady 
ow solutions around airfoil NACA0012. Calculations were

performed for Mach number Ma = 0:77 at angle of attack� = 1 � , and for grid densities

and distances between airfoil and outer domain boundary according to table 5.1. The

steady solution is obtained by unsteady calculation of non-moving airfoil within time of

nine unsteady periods. Normal force coe�cient is obtained by integration of countour
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pressure around airfoil, and represents pressure force perpendicular to airfoil chord.

Normal force coe�cient is calculated according to the following expression:

cn =
Z 1

0
(CpL � CpU ) d

� x
c

�
(5.1)

whereCpL is pressure coe�cient on lower side,CpU is pressure coe�cient on upper side

of airfoil, c airfoil chord and x is local coordinate going from leading edge along airfoil

chord.

In Figs. 5.4, 5.6, 5.8, 5.10 and 5.12 the solution relative error for grids with distances

10 and 40 chord lengths from airfoil to outer domain boundary is presented. The relative

error is di�erence between solutions for the grids with 10 and 40 chord lengths andthe

grid with 80 chord lengths to outer boundary. Each �gure represents di�erent grid

density according to table 5.1. In these �gures the di�erence is represented as percent

of the grid with 80 chord lengths to outer boundary.

In Figs. 5.3 - 5.12 the solutions and solution errors for the grid with 10 chord lengths

show similar nature independent of the grid densities qualitatively and also quantita-

tively. The steady solution for normal force coe�cient, for grids with outer boundary

at distance of 10 airfoil chords and all presented grid densities, has deviation about

10 percent relative to solutions for grids with outer boundary at distance 40 and80

airfoil chords. The solution for distance 40 chord lengths show small deviation, smaller

than 3 percent, for grid densities 100X30 and 160X30. For the grids 160X60, 240X60

and 320X60 and the same distance of 40 chord lengths, the solution show negligible

di�erence, smaller than 1 percent. Variation of computational grid density givesap-

proximately equal value of normal force coe�cient in steady 
ow, for one distanceof

outer domain boundary. The bigger in
uence on the converged steady solution has the

number of control volumes in direction of� coordinate.

From Figs. 5.3 - 5.12 it can be concluded that steady numerical calculations are grid

independent for grids with distance of outer boundary from the airfoil greater than 40

airfoil chords. From the same �gures it can be concluded that steady solution achieves

its constant value with grids that have 60 and more control volumes in direction of

� coordinate. Taking into account that the method developed in this work should

give results that are comparable with high accuracy methods but should give it in the

reasonable time, the selected grid for steady calculations is the grid with 160 control

volumes in� direction, 60 control volumes in� direction and distance of 40 chord lengths
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from airfoil to outer domain boundary.
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Figure 5.3: Grid 100X30; grid convergence test for steady solution for NACA0012 airfoil at
� = 1 � , Ma = 0 :77; 10, 40, 80 are chord lengths from airfoil to outer boundary
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Figure 5.4: Grid 100X30; di�erence between solutions for distances 10 and 40 chord lengths
and solution for distance 80 chord lengths, in percent of constant �nest solution (80 chord
lengths); NACA0012 airfoil at � = 1 � , Ma = 0 :77
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Figure 5.5: Grid 160X30; grid convergence test for steady solution for NACA0012 airfoil at
� = 1 � , Ma = 0 :77; 10, 40, 80 are chord lengths from airfoil to outer boundary




























































































































































































































































































































































































































