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Preface 

In the last couple of decades, numerical engineering computations have become 

indispensable for the analysis of complex engineering problems, due to their potential in 

solving large systems of partial differential equations. By properly using various 

numerical methods, it is possible to cut the costs and time needed for the development 

of new efficient products or to simulate the behaviour of already existing products 

realistically. The Finite Element Method (FEM) is currently the most popular and 

widely used numerical method in the simulation of deformation responses of solid 

structures. The method is robust, well developed, and has made an enormous impact 

over the last couple of decades. Nevertheless, it still suffers from some drawbacks 

associated with the use of the meshes consisting of geometrically adjacent elements. 

Currently, shell structures are perhaps the most widely used structural components 

in modern engineering due to their optimal ratio of weight and load-carrying 

capabilities. Classic examples of shell structures include ship hulls, aircrafts, space 

vehicles, cars, tanks, and pipelines in mechanical engineering, as well as reinforced 

shell roofs and membranes in civil engineering, etc. The problem of the numerical 

modelling of shell structures has been intensively researched in the frame of FEM, and a 

great variety of different efficient formulations have been developed. Nevertheless, the 

development of an optimal FEM model for shells has remained an opened question even 

today; in a great measure because of the various problems appearing due to the thinness 

of such structures. 

Recently, a new class of numerical methods known commonly as meshless 

methods have gained a considerable attention from the academic community, due to 

their flexibility and capacity to solve the systems of partial differential equations 

without the use of predefined meshes. So far, they have shown a potential in solving 

various engineering problems, in which the use of the global geometrical meshes has a 

negative effect on the performance of FEM. These new numerical approaches have also 

opened further possibilities in tackling some critical issues concerning the numerical 

modelling of shells, such as the elimination of various locking effects. However, as 

meshless methods still represent a relatively new concept in computational mechanics, 

there are few meshless formulations for shell-like structures available in the literature, 

as compared to FEM technology. Because of the afore-mentioned reasons, a 
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considerable interest exists for developing new numerical shell models based on the 

meshless and other closely related methods. 

 



 

IX 

Abstract 

Meshless computational methods for the analysis of plate and shell structures are 

proposed in this thesis. The developed algorithms are based on the local Petrov-

Galerkin approach. A shell is considered as a three dimensional (3-D) solid continuum, 

and the solid-shell concept, which allows the implementation of complete 3-D material 

models, is employed. Geometry of the shell is described by employing a mapping 

technique, whereby the shell middle surface is defined mathematically exactly. 

Discretization is carried out by the couples of nodes located on the upper and lower 

surfaces of the structure. The governing equations are the local weak forms (LWF) of 

the 3-D equilibrium equations, which are written over the local sub-domains 

surrounding the node couples. The approximation of all unknown field variables is 

carried out by using the Moving Least Squares (MLS) approximation scheme in the in-

plane directions, while simple polynomials are applied in the thickness direction. Both 

the purely displacement-based (primal) and mixed formulations are proposed and 

special attention is given to the elimination of locking effects. 

Two different primal formulations are presented where only the displacement field 

is approximated. In both cases, the Poisson’s thickness locking effect is circumvented 

by adopting the hierarchical quadratic interpolation for the transversal displacement 

component. The transversal shear locking phenomenon is alleviated by applying a 

sufficiently high order of the in-plane MLS functions. 

In the mixed approach, appropriate strain and stress components are approximated 

separately from the displacement field. The nodal strain and stress values are then 

expressed in terms of the approximated displacements, and a global system of equations 

containing only the unknown nodal displacement variables is obtained. In the 

formulation for plates, thickness locking is eliminated by modifying the nodal values of 

the normal transversal strain component, while the transversal normal stress is 

approximated instead of the transversal normal strain in the algorithm for curved shells. 

In the thin structural limit, transversal shear locking is efficiently suppressed by means 

of the separate strains approximation. It is theoretically proved that the mixed approach 

is numerically more efficient than the proposed primal meshless formulations.  

The numerical efficiency of the derived algorithms is demonstrated by numerical 

examples. 



 

 

 



 

XI 

Sažetak 

Predloženi su novi bezmrežni algoritmi za numeričku simulaciju procesa 

deformiranja ploča i ljusaka u linearno-elastičnom području. Prikazane formulacije 

temelje se na bezmrežnoj lokalnoj Petrov-Galerkinovoj (MLPG) metodi. Ljuske su 

razmatrane kao deformabilna trodimenzijska tijela primjenom tzv. solid-shell koncepta 

koji omogućava ugradnju potpunih trodimenzijskih materijalnih modela. Geometrija 

ljusaka opisana je parametrizacijom srednje plohe, pri čemu je srednja ploha opisana 

matematički egzaktno. Diskretizacija je provedena pomoću parova čvorova, koji se 

nalaze na gornjoj, odnosno donjoj plohi ljuske. Jednadžbe ravnoteže zadovoljene su u 

obliku lokalnih slabih formi uz primjenu Petrov-Galerkinovog principa. Testne funkcije 

su opisane jednostavnim polinomima u smjeru normale na srednju plohu, dok se u 

ravnini tangentnoj na srednju plohu koriste Heavisideove step funkcije. Nepoznate 

veličine polja u svim predloženim algoritmima aproksimirane su primjenom metode 

pomičnih najmanjih kvadrata (MLS funkcije) u tangentnoj ravnini, a u smjeru normale 

jednostavnim polinomima.  

Predložene su dvije formulacije temeljene na metodi pomaka. Poissonov locking 

eliminiran je primjenom hijerarhijske kvadratne interpolacije za komponentu pomaka u 

smjeru normale na srednju plohu. Poprečni posmični locking ublažen je primjenom 

dovoljno visokog stupnja baze MLS funkcija.  

U mješovitim formulacijama su uz polje pomaka direktno aproksimirane i neke od 

komponenata tenzora deformacija i naprezanja. Nepoznate čvorne vrijednosti 

deformacija i naprezanja izračunavaju se iz aproksimiranih pomaka pomoću 

odgovarajućih kolokacijskih postupaka. Na taj način dobiva se zatvoreni globalni sustav 

jednadžbi u kojem su nepoznanice samo čvorni pomaci. Poissonov locking je eliminiran 

modificiranjem čvornih vrijednosti za poprečnu normalnu komponentu deformacije u 

formulaciji za ploče, dok je u algoritmu za ljuske to postignuto direktnim 

aproksimiranjem poprečne normalne komponente naprezanja. Poprečni posmični 

locking učinkovito je otklonjen direktnim aproksimiranjem komponenata tenzora 

deformacije koje djeluju u tangentnoj ravnini na srednju plohu. Pokazano je teorijski i 

eksperimentalno da je mješoviti MLPG pristup superioran u odnosu na formulacije koje 

su temeljene na metodi pomaka. Točnost i učinkovitost predloženih algoritama 

pokazani su odgovarajućim numeričkim primjerima. 



 

 

 



 

XIII 

Prošireni sažetak 

Uvod 

Usporedno s razvojem računala došlo je do intenzivnog razvoja učinkovitih 

numeričkih metoda namijenjenih izvođenju računalnih simulacija ponašanja realnih 

konstrukcija. Njihovom pravilnom primjenom moguće je smanjiti troškove i vrijeme 

potrebno za razvoj novih ili za analizu već postojećih proizvoda. Pri tome se u nekim 

granama privrede, kao što su zrakoplovna industrija, brodograđevna industrija, 

građevinarstvo, automobilska industrija ili procesna tehnika, vrlo intenzivno 

primjenjuju tankostjene konstrukcije zbog povoljnog omjera nosivosti i težine. Zbog 

toga numeričko modeliranje procesa deformiranja ljuskastih konstrukcijskih elemenata 

pobuđuje posebni interes istraživača već dugi niz godina, pri čemu se danas najčešće 

koristi metoda konačnih elemenata (MKE). 

Iako je razvijeno mnoštvo različitih formulacija konačnih elemenata koji služe 

rješavanju čitavog niza složenih fizikalnih problema, njihova je učinkovitost ponekad 

ograničena zbog problema čija je pojava povezana s topologijom geometrijske mreže 

konačnih elemenata. Poželjno je da elementi u mreži imaju što je moguće pravilniji 

geometrijski oblik jer jako distordirani elementi mogu biti uzrok značajnih numeričkih 

grešaka. Stvaranje takve mreže u praktičnim je slučajevima nerijetko mukotrpan i 

dugotrajan zadatak. Čak i ako su mreže na početku proračuna u zadovoljavajućoj mjeri 

strukturirane, tijekom simulacije može doći od velikih distorzija konačnih elemenata što 

u konačnici može uzrokovati značajni gubitak točnosti rješenja ili čak i prijevremeni 

prekid numeričkog proračuna. Posebno su osjetljive simulacije koje uključuju 

rješavanje nelinearnih problema kod kojih se javljaju velike deformacije, kao što su 

simulacije sudara u automobilskoj industriji (chrash analysis), procesa dubokog 

vučenja ili propagacija pukotina u mehanici loma. Da bi se izbjegli navedeni problemi, 

koriste se automatske metode za izradu mreža kao i adaptivne metode ponovne izrade 

mreža na mjestima na kojima tijekom numeričkog proračuna dolazi do velike distorzije 

elemenata (remeshing). Nažalost, do sada razvijeni postupci učinkoviti su samo za 

geometrijski najjednostavnije trokutne ili tetraedarske elemente koji posjeduju relativno 

loša numerička svojstva. Stoga problem stvaranja kvalitetne mreže konačnih elemenata 

i danas predstavlja jedno od ključnih pitanja u MKE.  
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U numeričkoj analizi ljuskastih konstrukcija pomoću MKE posebni problem 

predstavlja pojava tzv. locking fenomena, koji u pravilu uzrokuju prekruti odaziv 

konstrukcije. U svrhu otklanjanja tih nepoželjnih efekata, u MKE razvijeno je mnoštvo 

postupaka koji uključuju metode reducirane integracije ili primjenu mješovitih 

varijacijskih principa kao što su Heillinger-Reissner ili Hu-Washizu princip. Iako su ti 

postupci više ili manje učinkoviti, njihova primjena može dovesti do novih poteškoća. 

Upotreba reducirane integracije može kod nekih elemenata prouzročiti pojavu tzv. 

modova nulte energije ili do hourglass efekta, koji se javljaju zbog smanjenog ranga 

matrice krutosti elementa. Te pojave također mogu izazvati pogrešan odziv 

konstrukcije. S druge strane, primjena mješovitih varijacijskih principa rezultira 

relativno složenim formulacijama konačnih elemenata koje ponekad imaju veliki broj 

stupnjeva, a postavlja se i pitanje određivanja optimalnih funkcija za aproksimaciju 

nepoznatih varijabli  polja. 

Iz gore navedenih razloga, u posljednjem desetljeću sve veću pažnju znanstvenika 

zaokuplja nova grupa numeričkih metoda koje se skupnim imenom nazivaju bezmrežne 

metode (meshless methods). Pomoću tih metoda moguće je numerički riješiti sustave 

parcijalnih diferencijalnih jednadžbi bez upotrebe geometrijskih mreža sastavljenih od 

elemenata koji su međusobno povezani čvorovima. Kod bezmrežnih metoda čvorovi 

nisu međusobno povezani u elemente prije početka numeričkog postupka. Štoviše, veze 

među čvorovima često se uspostavljaju automatskim postupcima koji se izvršavaju 

nakon pokretanja numeričkog proračuna. Na taj način moguće je postići znatnu uštedu 

vremena koje je potrebno utrošiti za izradu pogodne mreže konačnih elemenata. 

Također, upotrebom bezmrežnih metoda teoretski se mogu izbjeći problemi do kojih 

dolazi zbog velike distorzije elemenata tijekom numeričkih proračuna.  

Aproksimacijske sheme koje se koriste u bezmrežnim metodama omogućavaju 

izvođenje adaptivne diskretizacije jednostavnim dodavanjem, odnosno brisanjem 

čvorova iz modela. Obrada rezultata jednostavnija je kod bezmrežnih metoda nego u 

MKE kod problema kod kojih je naprezanje doista kontinuirano raspodijeljeno jer 

aproksimacijske funkcije koje se upotrebljavaju u bezmrežnim metodama u pravilu 

imaju visoki stupanj globalnog kontinuiteta. To u mnogim slučajevima rezultira  

globalno kontinuiranom i glatkom raspodjelom polja naprezanja. Nadalje, pokazalo se 

da je kod nekih bezmrežnih metoda moguće ublažiti neke od locking fenomena na 

principijelno jednostavniji način nego kod konačnih elemenata. Pri tome se često 

primjenjuju novi numerički postupci koje nije moguće primijeniti u MKE.   
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S obzirom da bezmrežne metode predstavljaju relativno novi koncept u numeričkoj 

mehanici u usporedbi s MKE, u dostupnoj literaturi trenutno je moguće naći relativno 

mali broj bezmrežnih formulacija namijenjenih analizi ljuskastih konstrukcija. Potrebno 

je također naglasiti da neki teorijski aspekti bezmrežnih metoda nisu ni približno tako 

dobro istraženi kao u MKE. Osjetljivost tih metoda na locking fenomene kao i 

otkrivanje procedura za njihovo uspješno otklanjanje trenutno je još uvijek jedno od 

otvorenih pitanja u istraživanju vezanom za bezmrežne metode. Ozbiljnu prepreku u 

upotrebi tih metoda u komercijalnoj primjeni predstavlja nezadovoljavajuća numerička 

neučinkovitost u pogledu potrošnje računalnog vremena i resursa. Zbog gore navedenih 

razloga kao motivacija za ovaj rad nametnula se potreba za razvijanjem nove bezmrežne 

numeričke strategije za analizu ljusaka kod koje će na efikasan način biti otklonjeni 

nepoželjni locking fenomeni. 

BEZMREŽNE METODE 

Intenzivan razvoj bezmrežnih metoda započeo je sredinom 90-tih godina prošlog 

stoljeća. Do sada  je predložen veći broj metoda koje su uspješno primijenjene za 

rješavanje različitih fizikalnih problema. Neke od najzastupljenijih su bezmrežna 

Galerkinova metoda (Element Free Galerkin (EFG) method), metoda reprodukcije 

osnovnih djelića (Reproducing Kernel Particle method, RKPM), metoda glatkih 

hidrodinamičkih djelića (Smoothed Particle Hydrodynamics (SPH) method), bezmrežna 

lokalna Petrov-Galerkin metoda (Meshless Local Petrov-Galerkin (MLPG) method), 

metoda prirodnih elemenata (Natural Element method, NEM), lokalna metoda graničnih 

integrala (Local Boundary Integral (LBIE) method), metoda konačnih točaka (Finite 

Point method, FPM) i tako dalje.  

Osnovna karakteristika svih bezmrežnih metoda je aproksimiranje nepoznatih 

veličina polja putem funkcija pomoću kojih se može provesti interpolacija razasutih 

podataka (scattered dana interpolation) bez podjele globalne domene u manje elemente, 

odnosno ćelije. Funkcije koje se trenutno najčešće koriste su metoda pomičnih 

najmanjih kvadrata (Moving Least Squares, MLS), funkcije radijalne baze (Radial Basis 

Functions, RBF), metoda reprodukcije osnovnih djelića ( Reproducing Kernel Particle 

method, RKPM), metoda interpolacije u točkama (Point Interpolation Method, PIM) itd. 

Važno je naglasiti da su bezmrežne funkcije u pravilu znatno složenije od polinoma koji 

se koriste u MKE te da njihovo računanje iziskuje veći utrošak računalnog vremena. 

Također, složeni algebarski oblik tih aproksimacijskih funkcija doprinosi netočnosti i 
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nestabilnosti u numeričkoj integraciji jednadžbi pa je stoga razvoj učinkovitih 

algoritama za numeričku integraciju kod bezmrežnih metoda trenutno jedno od gorućih 

područja istraživanja. 

Do danas nije napravljena jedinstvena sistematizacija bezmrežnih metoda, ali jedan 

od kriterija prema kojem se one mogu podijeliti je način na koji su zadovoljene 

jednadžbe problema. Tako se mogu razlikovati metode koje se temelje na jakim 

formama parcijalnih diferencijalnih jednadžbi (kolokacijske metode), metode koje 

koriste globalne slabe forme parcijalnih diferencijalnih jednadžbi (metode temeljene na 

EFG metodi, itd.) te metode kod kojih su parcijalne diferencijalne jednadžbe 

zadovoljene u tzv. lokalnim slabim formama (MLPG metoda, LBIE metoda, itd. ). Da 

bi se provela numerička integracija slabih formi kod metoda koje se temelje na 

globalnim slabim formama, potrebno je koristiti neku vrstu globalne mreže sastavljene 

od geometrijskih elemenata koji se međusobno dodiruju duž svojih granica. Za razliku 

od tih metoda, kod tzv. pravih bezmrežnih metoda (trully meshless methods) teoretski je 

moguće provesti numeričku integraciju bez upotrebe bilo kakve globalne geometrijske 

mreže. U grupu pravih bezmrežnih metoda ubrajaju se bezmrežne metode koje se 

temelje na lokalnim slabim formama ili jakim formama jednadžbi sustava. Među njima 

posebni položaj zauzima MLPG metoda koja zbog svoje teorijske općenitosti i 

fleksibilnosti pruža široke mogućnosti u razvoju novih numeričkih strategija. Štoviše, 

može se pokazati da se  gotovo sve preostale bezmrežne metode mogu izvesti kao 

posebni slučajevi MLPG metode.  

Većina dostupnih bezmrežnih formulacija namijenjenih analizi ploča i ljusaka 

temelji se na nekoj od klasičnih teorija ljusaka. Pri izvodu takvih modela najčešće se 

koriste teorije ljusaka koje koriste Reissner-Mindlinove ili Kirchhoff-Loveove 

kinematičke pretpostavke. Pogodnost bezmrežnih metoda u takvim slučajevima 

proizlazi prije svega iz činjenice da neke bezmrežne funkcije inherentno posjeduju 

globalni kontinuitet visokog reda. U bezmrežnim metodama koje koriste takve funkcije 

zadovoljavanje C1 kontinuiteta funkcija pomaka predstavlja trivijalan zadatak. Izvrstan 

ilustrativni primjer predstavljaju MLS funkcije kod kojih se C1 kontinuitet lako postiže 

odabirom odgovarajuće težinske funkcije. Kao i kod MKE, u slučaju kad je debljina 

stjenke mala u odnosu na raspon konstrukcije, dolazi do pojave nenormalnog povećanja 

posmične ili/i membranske krutosti konstrukcije. Takvi fenomeni se u literaturi nazivaju 

poprečni posmični locking (transversal shear locking), odnosno membranski locking 

(membrane locking). Te pojave se često očituju kao prekruti odziv konstrukcije do 
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kojeg dolazi uslijed pogrešno proračunatih poprečnih posmičnih, odnosno membranskih 

komponenti deformacija. Ukoliko se ispravno ne otklone, locking pojave mogu dovesti 

do iznimno loših rezultata, posebice kod numeričkih formulacija temeljenih na metodi 

pomaka. Daljnji nedostatak bezmrežnih metoda temeljenih na klasičnim teorijama 

predstavlja nepotpunost tenzora deformacije, odnosno naprezanja, do čega dolazi zbog 

usvojenih pretpostavki o stanju deformacija, odnosno naprezanja. Iz tog razloga u te 

formulacije nije moguće ugraditi potpune trodimenzijske (3-D) materijalne modele. U 

numeričkim modelima koji se temelje na klasičnim teorijama ljusaka kao stupnjevi 

slobode numeričkog proračunskog modela se uz pomake javljaju i rotacije, što otežava 

spajanje takvih algoritama s općenitim 3-D numeričkim modelima. 

Osim klasičnih teorija ljusaka u kojima je pretpostavljena linearna raspodjela 

pomaka u smjeru normale na srednju plohu, često se koriste i više teorije ljusaka (higher 

shell theories), gdje je raspodjela pomaka u smjeru normale opisana polinomom višeg 

reda. Takav pristup posebno je pogodan za razvoj bezmrežnih formulacija namijenjenih 

analizi ploča i ljusaka načinjenih od kompozitnih ili ortotropnih materijala. U te je 

algoritme moguće ugraditi potpune 3-D materijalne modele. Osjetljivost na locking 

efekte manja je nego kod modela temeljenih na klasičnim teorijama ljusaka zbog toga 

što su pomaci u smjeru normale aproksimirani polinomima visokog stupnja. Načelni 

nedostatak tih formulacija predstavlja veliki broj stupnjeva slobode neophodan za 

opisivanje kinematike ljuskastih konstrukcija, što dovodi do velikog utroška vremena i 

računalnih resursa potrebnih za provođenje numeričkih proračuna. Zbog toga upotreba 

viših teorija ljusaka nije prikladan pristup za razvoj bezmrežnih formulacija 

namijenjenih analizi ljusaka načinjenih od homogenih materijala. Slični zaključci 

vrijede i za direktnu primjenu 3-D bezmrežnih formulacija u numeričkim simulacijama 

procesa deformiranja u ljuskastim konstrukcijama.  

Ploče i ljuske mogu se razmatrati kao 3-D deformabilna tijela primjenom tzv. 

solid-shell koncepta. U toj strategiji ljuskasta konstrukcija opisuje se kao 3-D 

deformabilno tijelo uz pretpostavku o linearnoj raspodjeli pomaka u smjeru normale na 

srednju plohu ljuske. Usvojene su Reissner-Mindlinove kinematičke pretpostavke 

prema kojima materijalna vlakna koja su u početnom stanju okomita na srednju plohu 

nakon deformiranja ostaju ravna, ali ne nužno i okomita na srednju plohu. Ipak, 

dopuštena je promjena duljine tog vlakna. Drugim riječima, normalna komponenta 

tenzora naprezanja u smjeru navedenih materijalnih vlakana uključena je u numerički 

model. Na taj način omogućena je ugradnja cjelovitih 3-D konstitutivnih jednadžbi u 
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solid-shell modele, pri čemu je kinematika ljuskastog kontinuuma opisana na relativno 

jednostavan način. Slično numeričkim formulacijama temeljenima na klasičnim 

teorijama ljusaka u kojima se primjenjuju Reissner-Mindlinove pretpostavke, i kod 

solid-shell algoritama mogu se javiti značajni poprečni posmični i membranski locking 

fenomeni ako se u njima aproksimira samo polje pomaka. Uz to, dolazi i do pojave tzv. 

Poissonovog locking efekta (Poisson's thickness locking effect). Taj locking fenomen  

javlja se u algoritmima kod kojih je poprečna normalna komponenta tenzora 

deformacije (normalna komponenta tenzora deformacije u smjeru normale na srednju 

plohu) konstantna po debljini (smjer normale na srednju plohu). Do njegove pojave 

dolazi kod materijala kod kojih je Poissonov koeficijent različit od nule, a očituje se u 

prekrutom odzivu konstrukcije. Intenzitet tog fenomena ne ovisi o dimenzijama 

konstrukcije pa se javlja i kod debelih i kod tankih ploča i ljusaka. Mehanizam 

nastajanja tog lockinga objašnjen je detaljno u odjeljku 5.3.1. 

Slično kao i kod MKE, i kod bezmrežnih metoda su do sada predloženi razni 

postupci za otklanjanje raznih locking pojava. Nažalost, metode koje su se pokazale 

uspješnima u MKE u pravilu nisu direktno primjenjive u bezmrežnim metodama. Stoga 

danas postoji iznimna potreba za razvijanjem novih učinkovitih postupaka za 

otklanjanje locking efekata u bezmrežnim metodama. Pri tome trenutno veliki potencijal 

pokazuje primjena mješovitih formulacija. Detaljni pregled postojećih postupaka za 

otklanjanje locking fenomena u bezmrežnim metodama dan je u odjeljku 1.4.2 ovoga 

rada.  

Kako učinkovitost numeričkih proračuna ljuskastih konstrukcija ovisi o točnosti 

opisivanja geometrije ljusaka i rubnih uvjeta pomaka, i kod bezmrežnih metoda je 

potrebno obratiti pažnju na te detalje. Za razliku od MKE gdje je geometrija promatrane 

konstrukcije opisana lokalno pomoću geometrije elemenata, kod bezmrežnih metoda 

potrebno je na neki način eksplicitno definirati geometriju cijele promatrane 

konstrukcije. U bezmrežnim metodama to je do sada izvedeno pomoću različitih 

aproksimacijskih shema (MLS funkcije, Lagrangeovi polinomi, itd.), preuzimanjem 

informacija o geometriji iz CAD modela ili matematički egzaktno u slučaju 

jednostavnih geometrijskih oblika. Pri tome se većina bezmrežnih metoda koristi nekim 

oblikom parametrizacije srednje plohe pomoću prikladnog skupa krivocrtnih 

koordinata.  

Problem točnog zadovoljavanja rubnih uvjeta pomaka predstavlja još jedno od 

otvorenih pitanja u istraživanju bezmrežnih metoda. Za razliku od polinoma koji se 
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koriste u MKE, mnoge od bezmrežnih aproksimacijskih shema ne posjeduju 

interpolacijska svojstva u čvorovima. Zbog toga prilikom primjene takvih funkcija 

geometrijski rubni uvjeti nisu zadovoljeni a priori. Do sada je predloženo više 

postupaka za zadovoljavanje geometrijskih rubnih uvjeta. Neki poznatiji su metoda 

Lagrangeovih multiplikatora, modificirana kolokacijska metoda, kaznena metoda, 

povezivanje bezmrežnih metoda s konačnim ili rubnim elementima, transformacijska 

metoda, itd. Nijedna od tih metoda nije bez nedostataka. Njihova djelotvornost između 

ostalog značajno ovisi i o bezmrežnoj metodi koja se koristi u numeričkom proračunu. 

Kod MLPG metode od navedenih procedura za primjenu su najpogodnije modificirana 

kolokacijska metoda, kaznena metoda i transformacijska metoda. 

HIPOTEZA RADA 

Cilj ovog rada je razvijanje novih učinkovitih numeričkih formulacija namijenjenih 

analizi pločastih i ljuskastih konstrukcija u linearno-elastičnom području. Nove 

formulacije moraju biti fleksibilne. Stoga je poželjno da pripadaju grupi pravih 

bezmrežnih metoda kod kojih teorijski nije potrebno generirati nikakvu globalnu 

geometrijsku mrežu međusobno spojenih elemenata da bi se aproksimirale nepoznate 

veličine polja i provela numerička integracija. Navedene ciljeve moguće je ostvariti 

primjenom bezmrežne lokalne Petrov-Galerkinove (MLPG) metode za izvođenje 

diskretiziranog sustava jednadžbi, kao i primjenom solid-shell koncepta za opisivanje 

ljuskastog kontinuuma.  

Predložene bezmrežne formulacije moraju biti numerički podjednako učinkovite 

pri analizi tankih i debelih ljuskastih konstrukcija, odnosno ne smiju biti osjetljive na 

pojavu locking efekata. Kod MLPG formulacija temeljenih na metodi pomaka, locking 

fenomene je moguće ublažiti ili čak u potpunosti eliminirati upotrebom i modifikacijom 

postupaka poznatih iz MKE. Neki od tih postupaka su hijerarhijska kvadratna 

interpolacija ili podizanje stupnja aproksimacijskih funkcija. Aproksimacijom 

deformacija ili naprezanja neovisno o pomacima moguće je razviti nove mješovite 

bezmrežne formulacije koje su neosjetljive na pojavu nekih od locking fenomena kao 

što su Poissonov i poprečni posmični locking.  

MLPG SOLID-SHELL KONCEPT 

U skladu sa solid-shell konceptom ljuska se razmatra kao 3-D deformabilno tijelo 

smješteno u globalnom Kartezijevom koordinatnom sustavu. Tijelo zauzima volumen 
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  koji je omeđen plohom  . U radu se razmatra samo statički slučaj opterećenja pa 

polaznu jaku formu diferencijalnih jednadžbi za sve izvedene formulacije predstavljaju 

standardne 3-D jednadžbe ravnoteže. Te jednadžbe moraju biti zadovoljene u svim 

točkama unutar  , a njihovo rješenje mora zadovoljiti pripadne geometrijske i prirodne  

rubne uvjete koji su propisani na globalnoj plohi  . U okviru ovoga rada geometrija 

ljusaka je opisana definiranjem geometrije srednje plohe i normale na srednju plohu.  

Pri tome je srednja ploha parametrizirana pomoću prikladnih krivocrtnih koordinata te 

je opisana matematički egzaktno. Pomoću metričkih vektora parametrizirani kontinuum 

se preslikava u parametarski prostor gdje se vrši diskretizacija kontinuuma pomoću 

parova čvorova. Čvorovi koji čine jedan par nalaze se na gornjoj, odnosno donjoj plohi 

ljuske i leže na istom materijalnom vlaknu koje je u početnom stanju okomito na 

srednju plohu ljuske.  

Slabe forme 3-D jednadžbi ravnoteže izvedene su pomoću metode težinskog 

reziduala. Oko svakog para čvorova definira se područje koje se naziva lokalna sub-

domena. Nakon toga se za svaku lokalnu sub-domenu formira tzv. lokalna slaba forma 

(local weak form, LWF) 3-D jednadžbi ravnoteže primjenom prihvatljive testne, 

odnosno težinske funkcije (test functions). Nepoznate funkcije polja aproksimiraju se 

pomoću odabranih aproksimacijskih funkcija koje se nazivaju probne funkcije (trial 

functions). U skladu s MLPG metodom, lokalne slabe forme izvedene su primjenom 

Petrov-Galerkinovog postupka kod kojeg testne i probne funkcije ne moraju pripadati 

istom prostoru funkcija. U ovom radu testne funkcije su opisane jednostavnim 

polinomima u smjeru normale na srednju plohu, dok se u  ravnini koja je tangentna na 

srednju plohu koriste Heavisideove step funkcije. S druge strane, nepoznate veličine 

polja u svim predloženim algoritmima aproksimirane su primjenom MLS funkcija u 

tangentnoj ravnini, dok se u smjeru normale također koriste jednostavni polinomi.  

Lokalne sub-domene koje pripadaju različitim parovima čvorova mogu biti 

različitih oblika i veličina i mogu se međusobno preklapati. Obično se koriste lokalne 

sub-domene jednostavnih geometrijskih oblika. U ovom radu lokalne sub-domene imaju 

oblik kvadra ili kružnog cilindra u parametarskom prostoru pri čemu se njihove 

vertikalne osi poklapaju sa smjerom normale na srednju plohu. Također, zbog 

jednostavnosti se lokalna sub-domena poklapa s domenom pripadne testne funkcije. 

Teoretski, lokalne sub-domene trebale bi u potpunosti prekrivati čitavu globalnu 

domenu   da bi rješenje lokalnih slabih formi ujedno bilo i rješenje jake forme 3-D 

jednadžbi ravnoteže za cijelo tijelo. Međutim, pokazalo se da se zadovoljavajući 
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rezultati ponekad mogu dobiti i ako unija lokalnih sub-domena ne pokriva   u 

potpunosti. Nakon što se izvrši aproksimiranje nepoznatih veličina polja, diskretizirani 

kontinuum se  preslikava natrag u globalni Kartezijev sustav.  

Interesantno je spomenuti da, za razliku od MKE, u MLPG metodi nije potrebno 

provoditi „klasično“ asembliranje globalne matrice krutosti. Naime, ako su testne 

funkcije neke potpuno poznate funkcije, onda se iz diskretiziranih lokalnih slabih formi 

direktno dobivaju diskretizirane jednadžbe na globalnom nivou. Globalna matrica 

krutosti popunjava se po redcima sukcesivnim raspisivanjem lokalnih slabih formi 

jednadžbi ravnoteže za sve parove čvorova u modelu.  

Izvodi lokalnih slabih formi koje služe kao polazišna točka za izvođenje 

formulacija predloženih u ovom radu, prikazani su u odjeljku 5.2. Osnovne ideje i 

terminologija vezana za MLPG metodu ukratko su objašnjeni u poglavlju 4 dok je u 

poglavlju 3 detaljno izložena MLS aproksimacijska shema.  

Kao što je poznato iz MKE, solid-shell konačni elementi kod kojih se aproksimira 

samo polje pomaka osjetljivi su na razne locking efekte. U odjeljku 5.3 pokazano je na 

ilustrativnom primjeru, u kojem se razmatra ploča opterećena na čisto savijanje, da se 

kod solid-shell MLPG formulacija javlja Poissonov locking ako je komponenta pomaka 

u smjeru normale aproksimirana linearno duž normale. Na sličan način dokazana je i 

prisutnost poprečnog posmičnog lockinga u slučaju tankih ploča. Iz navedenih 

razmatranja može se zaključiti da je i kod bezmrežnih formulacija potrebno zadovoljiti 

slične uvjete kao i u MKE da bi se izbjegli navedeni locking efekti. 

SOLID-SHELL MLPG FORMULACIJE KOJE SE TEMELJE SAMO 

NA APROKSIMACIJI POMAKA 

Kao što je već spomenuto, kod MLPG formulacija temeljenih na metodi pomaka 

neovisna veličina polja je samo vektor pomaka. Poissonov locking izbjegnut je 

primjenom tzv. hijerarhijske kvadratne interpolacije (hierarchical quadratic 

interpolation) za komponentu pomaka u smjeru normale. Hijerarhijska kvadratna 

interpolacija objašnjena je u odjeljku 6.1, a rezultirajući diskretizirani oblik svih 

veličina polja izveden je u odjeljku 6.2. 

Primjena hijerarhijske kvadratne interpolacije zahtijeva izračunavanje sedam 

nepoznatih veličina povezanih sa nekim parom čvorova. Te nepoznanice uključuju 

komponente pomaka u čvorovima i skalarni parametar povezan s hijerarhijskim 

kvadratnim članom. S druge pak strane, lokalne slabe forme dobivene primjenom 
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linearnih testnih funkcija predstavljaju skup od šest jednadžbi po svakom paru čvorova. 

Stoga je potrebno formirati dodatne jednadžbe kako bi se dobio zatvoreni sustav 

jednadžbi na globalnoj razini. U okviru ovoga rada predložena su dva različita solid-

shell MLPG algoritma koja koriste hijerarhijsku kvadratnu interpolaciju za poprečnu 

komponentu pomaka. 

U prvoj formulaciji opisanoj u odjeljku 6.3 dodatne jednadžbe za svaki par čvorova 

dobivene su postavljanjem dodatnog uvjeta ravnoteže u točkama koje leže na srednjoj 

plohi točno između čvorova koji tvore jedan par. Tako dobivene tri 3-D jednadžbe 

ravnoteže su zatim zbrojene kako bi se dobila jedna potrebna dodatna jednadžba po paru 

čvorova. Potrebno je naglasiti da dodavanje spomenutih kolokacijskih izraza ne 

zahtijeva dodatnu numeričku integraciju koja je u bezmrežnim metodama numerički 

zahtjevna i može biti izvor numeričke netočnosti rješenja. S druge strane, potrebno je 

računati drugu derivaciju MLS funkcija u kolokacijskim točkama što komplicira cijeli 

postupak u slučaju zakrivljenih ljusaka. Stoga je predloženi algoritam pogodniji za 

primjenu kod pločastih konstrukcija. 

U drugoj formulaciji temeljenoj na metodi pomaka zatvoreni sustav jednadžbi na 

globalnoj razini dobiva se direktno iz lokalnih slabih formi primjenom testnih funkcija 

koje su kvadratne u smjeru normale. Kvadratni član testne funkcije rezultira trima 

novim jednadžbama u lokalnoj slaboj formi. Te su jednadžbe zatim zbrojene kako bi se 

dobila jedna dodatna jednadžba za svaku lokalnu sub-domenu, odnosno za svaki 

pojedini par čvorova. Izvod lokalne slabe forme za ovu formulaciju, kao i pripadne 

diskretizirane jednadžbe, dane su u odjeljku 6.4 ove doktorske teze. Za razliku od 

prethodne formulacije, ovdje je potrebno provesti numeričko integriranje dodatnih 

jednadžbi, ali s druge strane ne treba računati druge derivacije MLS funkcija. Zbog veće 

jednostavnosti, ovaj algoritam pogodniji je za proračun ljuskastih konstrukcija.  

Rezultati provedenih numeričkih proračuna pokazali su da oba algoritma daju 

praktički istovjetne rezultate pri analizi debelih ploča i ljusaka te da upotreba 

hijerarhijske kvadratne interpolacije učinkovito otklanja Poissonov locking. Dobivene 

brzine konvergencije usporedive su s vrijednostima dobivenima upotrebom 3-D 

heksaedarskih konačnih elemenata iz programskog paketa MSC.Nastran. Potrebno je 

naglasiti da je zbog primjene hijerarhijske interpolacije potrebno definirati dodatne 

nepoznate skalarne parametre uz nepoznate čvorne komponente pomaka. Za razliku od 

MKE, te nepoznanice u prikazanim MLPG formulacijama nije moguće eliminirati iz 

sustava jednadžbi na lokalnoj razini pa je stoga broj jednadžbi u diskretiziranom 
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globalnom sustavu jednadžbi veći nego kod analognih formulacija konačnih elemenata. 

Rezultati proračuna vezanih za tanke ljuske također su jasno potvrdili postojanje 

poprečnog posmičnog lockinga, koji se u predloženim formulacijama manifestira 

usporenom konvergencijom te povećanom numeričkom nestabilnosti i netočnosti. Ta je 

nepoželjna numerička pojava ublažena povećanjem reda p-baze MLS funkcija, 

analogno postupku podizanja reda aproksimacijskih polinoma koji se ponekad koristi u 

MKE. Za razliku od MKE, kod bezmrežnih funkcija taj je postupak moguće provesti 

bez povećanja ukupnog broja čvorova, odnosno ukupnog broja globalnih stupnjeva 

slobode u proračunskom modelu. S druge strane, na taj način nije moguće u potpunosti 

otkloniti poprečni posmični locking, a proračunavanje MLS funkcija višeg reda 

zahtijeva značajan utrošak računalnog vremena. Nadalje, potrebno je definirati velike 

domene čvornih MLS funkcija oblika, što povećava širinu pojasa u matrici koeficijenata 

globalnog sustava jednadžbi zbog čega rješavanje globalnog sustava jednadžbi postaje 

numerički previše zahtjevno. Primijećeno je i da je stabilnost numeričke integracije 

smanjena u slučaju kad se primjenjuju MLS funkcije višeg reda.  

MJEŠOVITE SOLID-SHELL MLPG FORMULACIJE  

U sklopu ovog rada predložene su dvije nove mješovite MLPG formulacije za 

analizu ploča i ljusaka. Obje se formulacije temelje na 2-D mješovitom MLPG pristupu. 

U okviru tog pristupa, ovisno o potrebi, u slabim formama jednadžbi ravnoteže uz polje 

pomaka aproksimiraju se i komponente ostalih fizikalnih veličina kao što su tenzori 

deformacija, naprezanja ili gradijenta pomaka. Nakon toga se nepoznate čvorne 

vrijednosti tih dodatnih veličina izračunavaju preko aproksimiranih pomaka te se 

eliminiraju iz globalnog sustava jednadžbi. Predložena koncepcija otvara široke 

mogućnosti za izvođenje novih učinkovitih bezmrežnih metoda u numeričkoj mehanici. 

Predložen je novi bezmrežni numerički postupak za rješavanje problema savijanja 

tankih ploča koji se temelji na mješovitoj MLPG metodi, gdje je uz polje pomaka 

neovisno aproksimirano i polje deformacija. Matematički opis modela dan je odjeljku 

7.1 ovog rada. Oba polja aproksimirana su pomoću istih MLS funkcija u ravnini srednje 

plohe, dok su u smjeru normale primijenjeni jednostavni interpolacijski polinomi. 

Diskretizacija je provedena pomoću parova čvorova koji se nalaze na gornjoj i donjoj 

plohi ploče. Za svaki par čvorova definirane su cilindrične lokalne sub-domene za koje 

se pomoću Petrov-Galerkinova postupka izvode lokalne slabe forme 3-D uvjeta 

ravnoteže. Pri tome su testne funkcije opisane linearnim polinomima u smjeru normale 
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na srednju plohu, dok su u srednjoj ravninu primijenjene jednostavne Heavisideove step 

funkcije. Budući da se u ovoj formulaciji za aproksimaciju nepoznatih varijabli 

korištene MLS funkcije koje ne posjeduju Kronecker delta svojstvo, geometrijski rubni 

uvjeti zadovoljeni su pomoću kaznene metode. U ovako dobivenim lokalnim slabim 

formama kao neovisne varijable pojavljuju se komponente pomaka i deformacija. Za 

svaki par čvorova vezano je ukupno 18 nepoznatih čvornih veličina koje uključuju 

komponente vektora pomaka i 3-D tenzora deformacije u svakom čvoru. S druge strane, 

lokalne slabe forme predstavljaju skup od ukupno šest jednadžbi za svaki par čvorova. 

Može se lako zaključiti da je sustav jednadžbi na globalnoj razini otvoren. Zatvoreni 

globalni sustav jednadžbi dobiva se postavljanjem dodatnih 3-D kinematičkih relacija u 

čvorovima. Te se jednadžbe mogu dobiti primjenom kolokacijskog postupka koji je 

detaljno opisan u odjeljku 7.1.1. Pomoću tih dodatnih izraza izračunavaju se čvorne  

vrijednosti komponente deformacije pomoću neovisno aproksimiranih pomaka. 

Uvrštavanjem tako dobivenih dodatnih jednadžbi u lokalne slabe forme, eliminiraju se 

nepoznate čvorne vrijednosti deformacija iz diskretiziranih lokalnih slabih formi. Iz 

tako transformiranih jednadžbi izvodi se globalni sustav jednadžbi u kojem se kao 

nepoznati parametri javljaju samo čvorne komponente pomaka.  

U odjeljku 7.1.3 prvo je teorijski dokazano pojavljivanje Poissonovog lockinga te 

je predložena nova procedura za njegovo otklanjanje. U tom postupku čvorne 

vrijednosti poprečne normalne komponente deformacije koje se dobivaju direktno iz 

aproksimiranih pomaka proširene su dodavanjem člana koji je linearan u smjeru 

normale na srednju plohu. Ti se članovi određuju postavljanjem dodatnih uvjeta 

ravnoteže u točkama koje se nalaze na srednjoj plohi ljuske točno između čvorova koji 

tvore parove. Odgovarajućim transformacijama čvornih veličina dobiva se konačna veza 

između modificiranih čvornih vrijednosti poprečnih normalnih komponenata tenzora 

deformacije i čvornih vrijednosti komponenata pomaka. 

Učinkovitost predložene formulacije pokazana je numeričkim primjerima u kojima 

se razmatraju kvadratne ploče. U primjeru čiji su rezultati dani u odjeljku 7.3.1 

pokazano je da je primijenjeni mješoviti MLPG superiorniji od MLPG formulacija 

temeljenih na metodi pomaka u pogledu točnosti i stabilnosti numeričke integracije. 

Rezultati jasno pokazuju da je kod mješovite metode potrebno primijeniti znatno manje 

točaka integracije po lokalnoj sub-domeni da bi se postigla ista točnost rješenja. 

Također je potvrđena učinkovitost predložene procedure za otklanjanje Poissonovog 

lockinga, a promatrana konvergencija je čak i bolja od rješenja dobivenih primjenom 3-
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D heksagonalnih konačnih elemenata iz programskog paketa MSC.Nastran. Izvrsne 

konvergencije postignute su i za tanke ploče čak i u slučajevima kad su primijenjene 

MLS funkcije drugog reda, što ukazuje da izvedena mješovita formulacija nije osjetljiva 

na poprečni posmični locking. Takvo se ponašanje može pripisati direktnoj 

aproksimaciji komponenata deformacija. Ipak, procedura za otklanjanje Poissonovog 

lockinga zbog svoje je složenosti neprikladna za primjenu u numeričkoj simulaciji 

ljusaka. 

Zbog toga je za analizu ljuskastih konstrukcija predložena nova mješovita 

formulacija gdje su uz polje pomaka direktno aproksimirane i određene komponente 

tenzora deformacija i naprezanja. Matematički model detaljno je prikazan u odjeljku 

7.2. U ovoj formulaciji, jednadžbe modela izvedene su postavljanjem lokalnih slabih 

formi za lokalne sub-domene koje imaju oblik kružnog cilindra i kvadra u 

parametarskom prostoru. Testne funkcije su linearne u smjeru debljine ljuske, a u 

tangentnoj ravnini korištene su Heavisideove step funkcije. Za razliku od prethodno 

opisanih algoritama, komponente deformacija i naprezanja aproksimirane su u 

krivocrtnom koordinatnom sustavu. Pojava Poissonovog locking efekta eliminirana je 

postupkom zamjene neovisnih varijabli. Umjesto poprečne normalne komponente 

deformacije neovisna varijabla je poprečna normalna komponenta naprezanja. Zamjena 

varijabli provedena je pomoću konstitutivne jednadžbe za poprečnu normalnu 

komponentu naprezanja prema postupku koji je detaljno opisan u odjeljku 7.2.2. 

Poprečni posmični locking je odstranjen direktnom aproksimacijom komponenata 

tenzora deformacije, slično kao i kod formulacije za ploče. Sve veličine polja 

aproksimirane su pomoću istih MLS funkcija u tangentnoj ravnini. U smjeru normale na 

srednju plohu pretpostavljena je linearna raspodjela za sve komponente pomaka i 

tangentne komponente deformacije, a poprečne posmične komponente deformacije i 

poprečna normalna komponenta naprezanja su konstantni po debljini. U ovako 

dobivenom modelu svaki par čvorova posjeduje ukupno 15 neovisnih stupnjeva slobode 

dok lokalne slabe forme uključuju ukupno šest neovisnih jednadžbi. U svrhu dobivanja 

zatvorenog globalnog sustava jednadžbi za svaki par čvorova, odnosno za svaku lokalnu 

sub-domenu, postavljene su odgovarajuće dodatne ograničavajuće relacije za 

aproksimirane komponente deformacije i naprezanja. Ti su izrazi u ovom radu 

nametnuti primjenom odgovarajućih kolokacijskih postupaka objašnjenih u odjeljku 

7.2.3. Iz tih je izraza nakon aproksimiranja neovisnih varijabli moguće izračunati 

nepoznate čvorne vrijednosti deformacija i naprezanja pomoću aproksimiranih pomaka. 
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Uvrštavanjem tako dobivenih izraza u diskretizirane lokalne slabe forme dobiva se 

sustav diskretiziranih jednadžbi na način opisan u odjeljku 7.2.4. U tako dobivenom 

sustavu jednadžbi pojavljuju se samo čvorni pomaci kao neovisne varijable.  

U odjeljku 7.2.5 provedeno je teoretsko razmatranje  računalnih troškova mješovite 

formulacije te je dokazano da je predložena formulacija mnogo učinkovitija od MLPG 

formulacije temeljene na metodi pomaka koja je prikazana u odjeljku 6.4. Jedan od 

razloga za takav ishod je činjenica da u mješovitom pristupu nije potrebno računati 

derivacije MLS funkcija u svakoj integracijskoj točki, nego samo u čvorovima. 

Odsutnost derivacija u sub-integralnim funkcijama povećava učinkovitost numeričke 

integracije jer je potrebno upotrijebiti manje točaka za postizanje iste točnosti, a 

smanjuje se i ovisnost rješenja o izboru veličina domena testnih (test functions) i 

probnih funkcija (trial functions). Nadalje, zahtijevani stupanj kontinuiteta 

aproksimacijskih funkcija je za jedan red niži nego kod formulacija temeljenih na 

metodi pomaka. Vrlo je važno naglasiti da mješovita formulacija nije toliko osjetljiva na 

poprečni posmični locking pa je stoga moguće primijeniti niži red p-baze MLS funkcije 

pri proračunu tankih ploča i ljusaka za postizanje iste točnosti. Gore navedeni zaključci 

potvrđeni su rezultatima provedenih numeričkih eksperimenata.  

Rezultati provedenih numeričkih eksperimenata prikazani su u odjeljku 7.3. 

Utvrđeno je da predložene mješovite formulacije daju gotovo istovjetne rezultate pri 

analizi ploča. Pri tome je važno primijetiti da je Poissonov locking kod formulacije za 

ljuske uspješno otklonjen na principijelno jednostavniji način. To potvrđuje da je 

metoda zamjene neovisnih varijabli pogodan način za otklanjanje raznih locking 

fenomena u MLPG metodi. Provedene su i detaljne analize ponašanja predloženog 

numeričkog modela u slučajevima kada se za numeričku integraciju koriste cilindrične i 

heksagonalne lokalne sub-domene, kao i usporedba rezultata dobivenih primjenom 

interpolacijskih i „klasičnih“ MLS funkcija. Interpolacijske MLS (IMLS) funkcije 

posjeduju Kronecker delta svojstvo u čvorovima pa su u tom slučaju geometrijski rubni 

uvjeti zadovoljeni na direktan način kao u MKE. Iz dobivenih rezultata jasno je da je 

ovisnost točnosti rješenja o veličini domene čvornih MLS funkcija oblika manja kad se 

upotrebljavaju IMLS funkcije. Kod ploča ta ovisnost ne ovisi značajnije o obliku 

lokalne sub-domene. Međutim, tijekom istraživanja utvrđeno je da je točnost i stabilnost 

rješenja pri analizi dvostruko zakrivljenih ljuskastih konstrukcija veća ako se 

upotrebljavaju heksagonalne lokalne sub-domene. Takvi rezultati vjerojatno su 

posljedica činjenice da Gaussove formule nisu prikladne za numeričku integraciju 
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trigonometrijskih funkcija koje je potrebno upotrijebiti da bi se opisala geometrija 

cilindričnih lokalnih sub-domena. Rezultati numeričkih testova provedenih za 

zakrivljene ljuskaste konstrukcije potvrdili su da mješoviti MLPG pristup nije osjetljiv 

na pojavu poprečnog posmičnog lockinga. Iako su korištene MLS baze drugog i trećeg 

reda, postignuta je veća točnost nego kod MLPG formulacija temeljenih na metodi 

pomaka kod kojih su korištene baze četvrtog ili višeg reda. Interesantno je spomenuti da 

su dobivene brzine konvergencije i postignuta točnost za momente savijanja usporedivi 

s brzinama konvergencije i razinama točnosti pomaka. Dobivene konvergencije pomaka 

u nekim primjerima su čak i bolje od rezultata dobivenih primjenom 3-D heksagonalnih 

konačnih elemenata. Važno je napomenuti da su kod predložene MLPG formulacije sve 

neovisne varijable aproksimirane istim aproksimacijskim funkcijama što nije slučaj kod 

solid-shell konačnih elemenata, gdje su aproksimacijske funkcije pojedinih neovisnih 

varijabli u pravilu različite. Ipak, rezultati primjera u kojem je razmatrana sferna ljuska 

opterećena koncentriranim silama ukazuju na moguću pojavu membranskog lockinga 

što je potrebno uzeti u obzir u budućem istraživanju.  

ZAKLJUČAK I DOPRINOS RADA 

Izvedene su nove bezmrežne formulacije za analizu ljuskastih konstrukcija koje se 

temelje na MLPG metodi. U svim predloženim algoritmima korišten je solid-shell 

koncept za opisivanje ljuskastog kontinuuma pri čemu su ljuske promatrane kao 3-D 

deformabilna tijela. Time je omogućena ugradnja potpunih 3-D materijalnih modela. 

U formulacijama temeljenima na metodi pomaka Poissonov locking je otklonjen 

primjenom hijerarhijske kvadratne interpolacije za poprečnu komponentu pomaka, dok 

je poprečni posmični locking ublažen upotrebom visokog reda p-baze MLS funkcija. 

Zbog osjetljivosti na poprečni posmični locking, prikazane formulacije prikladne su za 

numeričke simulacije debelih ploča i ljusaka. 

Mješoviti MLPG pristup je primijenjen za izvođenje dviju učinkovitih mješovitih 

solid-shell formulacija namijenjenih numeričkim simulacijama tankih ploča i ljusaka. 

Pri tome su razvijene dvije nove metode za eliminiranje Poissonovog locking efekta. 

Izvedeni mješoviti algoritmi nisu osjetljivi na poprečni posmični locking što je 

ostvareno direktnim aproksimiranjem komponenata deformacije.  

Teoretski je utvrđeno postojanje Poissonovog i poprečnog posmičnog lockinga u 

predloženim formulacijama te su objašnjeni uzroci njihova nastajanja. Također je 

provedena procjena računalnih troškova mješovitog MLPG solid-shell koncepta te je 
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teoretskim razmatranjima pokazano da je mješoviti MLPG solid-shell pristup numerički 

mnogo učinkovitiji od MLPG solid-shell pristupa u kojem se aproksimiraju samo 

pomaci. Rezultati numeričkih testova jasno potvrđuju teoretske pretpostavke. 

U mješovitoj formulaciji za analizu ljusaka Poissonov i poprečni posmični locking 

eliminirani su na jednostavan i učinkovit način pa je taj algoritam posebno pogodan za 

primjenu u numeričkoj analizi tankih ljusaka. Pravilnim izborom parametara kao što su 

veličina domena testnih i probnih funkcija, njenom primjenom moguće je ostvariti 

konvergenciju i točnost koje su usporedive s onima koje se dobivaju primjenom 

komercijalnih 3-D heksagonalnih konačnih elemenata.  

Kako bi razvijeni algoritmi postali prihvatljiva alternativa MKE u praktičnoj 

primjeni, nužno je u budućem istraživanju posvetiti značajnu pažnju unapređivanju 

njihove numeričke učinkovitosti. Očekuje se da će razvijeni mješoviti MLPG pristup 

poslužiti kao polazišna točka za razvijanje novih učinkovitih bezmrežnih algoritama 

koji će služiti rješavanju raznih nelinearnih problema vezanih za ljuskaste konstrukcije. 

 



 

XXIX 

Keywords 

Meshless methods, Meshless Local Petrov-Galerkin method, Moving Least Squares 

approximation, plates, shells, Poisson’s thickness locking, transversal shear locking 

 

 

Ključne riječi 
bezmrežne metode, bezmrežna lokalna Petrov-Galerkinova metoda, metoda pomičnih 

najmanjih kvadrata, ploče, ljuske, Poissonov locking, poprečni posmični locking 



 

 

 

 

 



 

XXXI 

Symbols and Abbreviations 

Symbols  

aA  metric vectors of middle surface of shell 

3A  unit normal vector to middle surface of shell 

A  moment matrix of MLS approximation 

a  vector of coefficients of MLS approximation 

B  matrix used for evaluation of MLS shape functions 

IB , IB  strain-displacement or strain/stress-displacement matrix related to 

node I 

JB  matrix that contains derivatives of strain-displacement matrix 

 3-D continuum body 

b  body force vector 

C  material tensor 

C  modified 3-D elastic material matrix 

0c , 1c , 2c  arbitrary real constants 

D  3-D elastic material matrix 

KD  3-D kinematic differential operator 

D , D  partial differential operators 

D  vector that contains rows of 3-D elasticity matrix 

d  distance 

td  half-length of square in-plane base side of parallelepipedic local 

sub-domains 

E  Young’s modulus 

ie , ie  unit vector of global Cartesian coordinate system 

f  function 

1f , 2f  in-plane test functions 

G  metric tensor of a shell continuum 

G  elastic shear modulus 

, ,ii iG G G


 covariant metric vectors 
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iG  contravariant metric vectors 

G  determinant of metric tensor  

1g , 2g  test functions that are linear in 3  

h  structure thickness, distance 

mh  characteristic nodal distance 

3I , 6I  3x3 and 6x6 identity matrices, respectively 

J  Jacobian matrix 

i
jJ , ijJ  terms of Jacobian matrix 

1
ijJ   terms of inverse Jacobian matrix 

SL  part of local boundary S  that is completely inside   

0
I
sL  intersection between local boundary I

s  and plate middle surface 

N  matrix containing components of unit normal vector to boundary  

N  total number of nodes used for discretization, total number of nodes 

in domain of influence 

n  unit normal vector to boundary  

n , n  total number of nodes influencing approximation at given point 

cn , rn  numbers of integration points in circular and radial direction of 

cylindrical local sub-domain, respectively 

gn  total number of Gaussian points per local sub-domain 

M  total number of nodes in domain of influence 

m  number of terms in MLS basis 

M  bending or twisting moments 

 upper bound of a given functions 

p  basis vector of MLS approximation 

p  order of spline-type MLS weight function 

R  convergence rate 

AR , BR  residuals of strong form of differential equations 

tR  radius of local sub-domain, i.e., of support domain of test function 

trR  radius of support domain of nodal shape trial function 

maxR  normalization parameter for local MLS coordinates 
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r  relative error of L2 norm  

sr  radius of support domain of a MLS weight function 

T  transformation matrix for displacements in primal MLPG method 

T  transformation matrix for stress tensor 

eT  computational time required for calculation of single term in global 

stiffness matrix 

hT  computational time needed for evaluation of MLS shape function at 

given point 

KT  computational time needed for assembling of global stiffness matrix 

KT   computational cost needed for integration of non-zero terms in 

discretized LWF 

mltT  computational cost of matrix multiplication needed for replacing 

nodal strain and stress values by nodal displacement components 

T  computational cost of evaluating the nodal stress and strain values  

t  surface traction vector 

t time 

wt  computational time needed for calculation of MLS weight function 

at given evaluation point 

u  displacement vector 

 1u  displacement parameter that describes rotations 

  vector or matrix or trial functions 

u  displacement vector in local curvilinear coordinates 

v , v


 vector or matrix of test functions 

v  test function for LWF 

iv  test function, components of velocity field 

 ijv  , ( )v  ,  

( 3)v  , ( 33)v   

test functions for additional kinematic constraints 

W  weight function of MLS approximation 

RW  regularized weight function of MLS approximation 

w  plate deflection 

Rw  regularized function 



XXXIV  Symbols and Abbreviations 

 

X  position vector 

 1X  shell director 

  penalty parameter 

  boundary of global domain, global boundary 

su  part of local boundary S  with prescribed essential BC 

st  part of local boundary S  with prescribed natural BC 

t  part of global boundary   with prescribed natural BC 

u  part of global boundary   with prescribed essential BC  

  function that describes quadratic hierarchical interpolation  

Td , 2
Td  matrix describing gradients of sets of test functions 

, ,i ij
j ij    Kronecker-delta symbol 

Φ , uΦ  matrix of 3-D nodal shape functions for displacements 

Φ , Φ  matrix of  strain and strain/stress 3-D shape functions for mixed 

formulations, respectively 

  shape function of a trial function 

ε  strain tensor, strain vector 

  regularization parameter 

 b
  covariant bending strain components 

k  parametric coordinates 

  Lame’s elastic constant, scalar parameter associated with 

hierarchical quadratic term 

  Lame’s elastic constant 

  Poisson’s coefficient 

k  unit parametric coordinates 

  mass density 

s  scaling factor for sr  

σ  stress tensor, stress vector 

Ψ  matrix that describes displacement interpolation in shell thickness 

direction 

1 , 2  functions that describe linear approximation of variables in 
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thickness direction of structure 

  volume representing global domain, global domain 

inf  domain of influence 

sΩ  volume representing local sub-domain, local sub-domain 

0s  intersection between s  and the 1 2,X X -plane for plate 

t  support domain of test function 

tr  support domain of trial function 

X  definition of definition MLS  at point X  

sΩ  boundary of local sub-domain, local boundary 

I
s
 , I

s
  parts of I

s  that coincide with upper and lower plate surface, 

respectively 

ω  vector of nodal strains and stress values 

  0
,  (1)

 variable associated with middle surface of shell-like structure 

  u
 variable associated with upper surface of shell-like structure 

  l  variable associated with lower surface of shell-like structure 

 i
 covariant components of first-order tensor, components of a vector 

 ij
 covariant components of second-order tensor 

 ijkl
 covariant components of fourth-order tensor 

 i
  contravariant components of first-order tensor 

 ij
 contravariant components of second-order tensor 

 ijkl
 contravariant components of fourth-order tensor 

  1
 inverted matrix 

   prescribed value 

 
^

 
nodal value 

  h
 approximated variable 

 I
,  I

 variable associated with node I 
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 L2 norm for given field variable 

Abbreviations  
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BC boundary conditions 

FEM Finite Element Method 

IMLS interpolation MLS function 
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1 

1 Introduction 

1.1 Background and motivation 

In the last couple of decades, numerical engineering computations have become 

indispensable for the analysis of complex engineering problems, due to their potential in 

solving large systems of partial differential equations. By properly using various 

numerical methods, it is possible to cut the costs and time needed for the development 

of new efficient products or to simulate the behaviour of already existing products 

realistically. Shell structures are perhaps the most widely used structural components in 

modern engineering due to their optimal ratio of weight and load-carrying capabilities. 

Classic examples of shell structures include ship hulls, aircrafts, space vehicles, cars, 

tanks, and pipelines in mechanical engineering, as well as reinforced shell roofs and 

membranes in civil engineering, etc. 

The Finite Element Method (FEM) is the most popular and widely used numerical 

method in the simulation of shell structures. Although the method is robust, well 

developed, and has made an enormous impact over the past decades, it still suffers from 

some drawbacks. One of the prerequisites in using FEM is the existence of meshes 

consisting of congruent finite elements (FE), which may cause serious obstacles in the 

successful application of FEM. The creation of well-defined meshes can consume much 

of the analyst’s available time. In general, it is preferable that the shapes of the finite 

elements are as ideal as possible, since their distorted geometry may negatively affect 

the solution accuracy. This is especially important in highly nonlinear problems 

involving large deformations, e.g., the crash analysis, metal forming, etc. In such cases, 

mesh distortion may cause the severe loss of accuracy or even the complete failure of 

computations.  

Another challenging application of FEM is the crack propagation, where the crack 

growth normally does not coincide with the element boundaries. Remeshing procedures 

are usually applied to alleviate such problems. However, these procedures may lead to 

the further loss of accuracy, due to problems associated with the mapping of state 

variables from the old mesh to the new mesh, and also tend to increase the total 

computational costs (CPU time). Furthermore, from the mathematical point of view, the 

remeshing procedures are not simple problems, and so far, reliable adaptive mesh 
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generators that are capable of handling the 3-D hexahedral meshes in a satisfactory way 

do not exist. The stresses calculated by FEM are typically discontinuous along the 

elements boundaries, and the post-processing of stresses demands additional 

computational effort.  

The appearance of the so-called locking phenomena, which may result in a 

completely erroneous deformation response of the computational model, poses an 

additional obstacle in the numerical analysis of shell-like structures. In order to alleviate 

these problems, different procedures exist in FEM, such as the reduced integration 

methods, the Assumed Natural Strains (ANS) method, the Discrete Strain Gap (DSG) 

method, the Enhanced Assumed Strain (EAS) method and various hybrid methods, 

among others. The FEM formulations may employ a combination of the aforementioned 

methods in order to successfully deal with various locking phenomena. Although such 

approaches may result in very efficient locking-free algorithms, their application may 

cause further unwanted problems, including “zero energy” modes, problems with 

passing various “patch” tests, a large number of internal degrees of freedom (DOF), etc. 

These problems must be treated properly through additional numerical techniques, 

further complicating the element formulations and possibly reducing computational 

efficiency. In order to gain better insight into the numerical modelling of shell-like 

structures by using FEM, one can refer to the review works [1],[2],[3], and the 

references therein, as well as many books dealing with the general application of FEM, 

such as [4],[5],[6],[7], to mention just a few from the vast pool of available literature. 

Recently, a new class of numerical methods known commonly as meshless 

methods have attracted considerable attention from the academic community, due to 

their flexibility and capacity to solve boundary-value problems without the use of 

predefined meshes. Using these new numerical procedures, a computational model is 

represented simply by a set of nodes scattered within the global domain and on the 

global boundary. These nodes do not have to be connected into any kind of explicitly 

defined elements.  Theoretically, information about the connectivity between the nodes 

is not required prior to the solving process. Thus, some issues associated with the 

meshes in FEM, such as the time-consuming mesh generation or element distortion 

problems, may be efficiently overcome. The connectivity between nodes may be 

established during the computation process itself, reducing the need for human labour, 

which is required for creating the element mesh. The problem of remeshing may also be 

alleviated simply by adding or removing the nodes as  needed during the computation, 
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and by redefining the nodal connectivity in these local regions. In some meshless 

formulations, the resulting stress field is globally continuous, which simplifies the post-

processing. 

One of the more attractive fields for the application of meshless methods is the 

analysis of shell-like structures due to the flexibility of meshless algorithms, and the 

ability of meshless approximation functions to produce the interpolation field of a high 

order of continuity in a simple manner. Furthermore, it is supposedly possible to 

alleviate or circumvent some of the locking phenomena in a simpler manner than with 

FEM. However, since the meshless methods still represent a relatively new concept in 

computational mechanics, there are relatively few meshless formulations for shell-like 

structures available in the literature, as compared to FEM technology. Furthermore, 

meshless methods have not been investigated as thoroughly as FEM formulations. In 

that context, it has been concluded that there exists the need for further research on 

developing the general meshless formulation capable of successfully dealing with the 

various locking effects. 

1.2 Meshless approximation functions 

An essential component of all meshless methods is the use of functions that are 

able to approximate the data defined on randomly scattered points without employing 

the predefined mesh of elements.  A number of different functions suitable for the 

application in meshless methods have been proposed, e.g., the Moving Least Squares 

(MLS) interpolation scheme [8], the Radial Basis Functions (RBF) [9],[10], the 

Reproducing Kernel Particle Methods (RKPM) [11], the Partition of Unity Methods 

(PUM) [12], the Point Interpolation Methods (PIM) [13], and the Natural Neighbour 

Interpolations [14]. 

In general, most of the functions currently employed in meshless methods are able 

to approximate data on randomly scattered nodes in a non cell-like manner. In FEM, 

only the nodes belonging to the same element influence the approximation values in 

each point inside that element. Conversely, in meshless functions usually only a finite 

number of nodes, positioned in the immediate neighbourhood of the point of interest, 

affect the approximation values at that point. An exception is the Natural Neighbour 

Interpolation scheme, where the approximants are constructed by employing the 

Voronoi tessellation and the Delaunay triangulation of a set of nodes. Although this 

approach results in well-defined and robust approximations and circumvents the need to 
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define various user-defined parameters, the tessellation procedure is similar to the 

creation of meshes in-based numerical methods. 

In order to cut the computational costs needed for the calculation of trial functions, 

it is favourable to keep the total number of nodes influencing the approximation at the 

point of interest as small as possible. This concept of locality may be established in 

different ways, depending on the approximation scheme used. Two approaches 

currently dominate [13]: 

 The concept of the nodal domain of influence. This approach is “static”, as the 

influencing domains are associated with the predefined points, i.e., nodes that carry 

the data to be approximated. These regions are defined prior to the calculation. One 

of the criteria can be that some sufficient, yet minimal number of the nodal 

influencing domains covers each point in the computation domain. 

 The concept of the support domain associated with the sample point. This is 

a “dynamic” approach in that the support domain is associated with the point of 

interest, i.e., the sample point, in which the approximation is calculated. The size of 

the support domain may vary for different points inside the computation domain. It 

may be defined by prescribing the minimal number of nodes influencing the 

approximation in the sample point. It is possible to find these nodes during the 

calculation by inspecting only the local neighbourhood of the current sample point.  

It has been reported that the nodal influence domains is more efficient than the concept 

of support domain in the case of the arbitrary non-uniform distribution of nodes [13].  

The calculation of meshless functions generally demand greater computational 

costs than the polynomial approximants used in FEM. Their analytical shape is also 

more complicated. The meshless approximants are usually non-polynomial rational 

functions. In contrast to FEM, the support domains of trial functions and the integration 

domains generally do not coincide, which may cause serious problems associated with 

numerical integration. Many meshless functions do not possess the Kronecker delta 

property at the nodes. In those cases, the imposition of the essential boundary conditions 

in meshless methods demands special attention. A detailed overview of certain 

approximation functions currently used in the meshless methods is available in [9], [10], 

[13], [15], [16]. 
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1.3 Overview of meshless methods 

Meshless methods have drawn the attention of the scientific community mainly 

because of their flexibility and the absence of the element meshes whose creation 

sometimes demands intensive human labour and whose topology may be the cause of 

various numerical problems. A number of different meshless methods have been 

proposed in literature. The most popular include the Element Free Galerkin (EFG) 

method [17], the Reproducing Kernel Particle Method (RKPM) [11], the Smoothed 

Particle Hydrodynamics (SPH) [18], the Meshless Local Petrov-Galerkin (MLPG) 

Method [19], the Local Boundary Integral Equation (LBIE) [20], the Method of finite 

Spheres [21], the Finite Point Method (FPM) [22], and the Natural Element Method 

(NEM) [14],[23]. 

The feature common to most of these approaches is that the existence of predefined 

mesh of congruent elements or cells is not necessary for the approximation of field 

variables. In some cases, it is even possible to perform the numerical integration of 

discretized equations in a non-cell manner. However, differences arise from the way in 

which the governing equations are satisfied, from the types of functions used for the 

approximation of test and trail functions, or from the techniques used for numerical 

integration. 

1.3.1 Classification of meshless methods 

So far, no unique systematic classification or even terminology has been adopted 

for meshless methods. Nevertheless, there are a couple of ways to categorize these 

methods. One is to classify the methods depending on the form of partial differential 

equations used during the solution procedure. According to this criterion, meshless 

methods may be divided into three distinct groups: 

 Methods based on the strong forms of governing equations. Obtaining an 

exact solution of a practical engineering problem from a system of equations written 

in their strong forms is in general an exceptionally difficult task. Various collocation 

methods, such as the Finite Points Method [22],[24], as well as the formulations 

based on the finite difference method [25], employ the strong forms of equations. 

Although they are fast and simple to implement because numerical integration is 

completely avoided, such methods are notorious for their numerical instability and 

inaccuracy, especially in cases of non-uniform nodal distribution and irregular 
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computation domains. A special case is the Smooth Hydrodynamics (SPH) method, 

where improved stability and accuracy are obtained by an integral representation of 

approximation functions [13],[15],[18]. Another problem is how to satisfy the 

natural boundary conditions in the purely displacement collocation methods. 

Various procedures have been proposed to avoid this difficulty, such as the 

employment of local weak forms around the nodes positioned on the boundary with 

the prescribed essential boundary conditions [13], or the implementation of various 

mixed approaches [25],[26]. Furthermore, in those methods the unknown field 

variables have to posses a high order of continuity, which has to be equal to the 

degree of differential equations involved. Unfortunately, the meshless 

approximation function sometimes generates considerable inaccuracies in 

approximating the derivatives of higher order, which may severely affect the overall 

accuracy of the method.  

 Methods based on the global weak forms. Due to the reasons mentioned 

above, many meshless methods are based on the global weak forms of governing 

equations. Such methods are in general more stable and produce more accurate 

results than the methods based on the strong forms. For the differential equations of 

the 2kth order, in the global weak forms the continuity of a kth order for the field 

variables is required, which is a lower order than those required in the strong-form 

based methods. There exist various global weak forms of the partial differential 

equations. The global variational weak forms are a popular choice, like in the EFG 

methods that employ the Galerkin principle. The more general approach, called the 

Weighted Residual Method (WRM) is used in the Least-Squares Meshfree Method 

(LSMFM) [27].    

 Although very efficient in solving many different engineering problems, the 

methods based on the global weak forms still require certain meshes of contiguous 

background cells or elements. For instance, in the EFG and similar formulations, the 

congruent background cells are necessary to integrate the global weak forms. In 

some cases, the finite elements created by the existing FEM mesh generators serve 

as the integration cells [13]. If a nodal integration is employed, as in 

[28],[29],[30],[31], a solution domain has to be discretized by means of the Voronoi 

tessellation and Delaunay triangulation in order to define the node-dependant 

congruent integration cells. Furthermore, in the Natural Neighbour Galerkin 

methods [14],[23],[32], the Voronoi tessellation is required in order to create the 
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natural neighbour-based approximants, such as Sibson or Laplace interpolations. 

Although the use of various FEM mesh generators and the Voronoi tessellation 

brings significant advantages because they have been well developed within the 

framework of FEM technology, some of the drawbacks associated with meshes may 

be inherited, such as the time-consuming cell generation or the problems associated 

with mesh topology. 

 Methods based on the local weak forms. These meshless methods are based on 

the concept of local weak forms [19],[20]. Instead of trying to satisfy the weighted 

residual form over the entire global domain, the governing equations are satisfied 

locally over the sub-domains positioned inside the global domain and defined 

around each node, i.e., the point that is used for the discretization of a global 

domain. Numerical integration is then performed over these local sub-domains. 

Since it is possible to define the local sub-domains and to approximate unknown 

variables without having to create any kind of mesh over the entire global domain, 

the numerical methods belonging to this group are sometimes called the truly 

meshless methods. The MLPG method [19], where the Petrov-Galerkin principle is 

employed to derive the local weak forms, is the origin of such numerical stratagem.  

A good overview of the meshless methods and their applications, as well as of the 

weak or strong forms used in the meshless methods, can be found in 

[13],[15],[18],[33],[34], and the references contained therein. 

1.3.2 The MLPG approach and the truly meshless methods 

Atluri and Zhu developed the Meshless Local Petrov-Galerkin (MLPG) method 

[19] by introducing a local weak formulation of a considered physical problem. In this 

approach, the global set of equations is derived by writing the weak forms of governing 

equations over the small sub-domains defined around the nodes used for the 

discretization of a continuum. These nodaly-based local sub-domains also serve as the 

quadrature cells for the numerical integration of the weak forms. The size and shape of 

the local sub-domains may vary from node to node, and they may overlap each other. 

The desirable, but not necessary, condition is that the local sub-domains form a union 

set that completely covers the global computation domain.  

For each node, it is theoretically possible to define the required size of the local 

sub-domain by taking into account only the layout of the nodes positioned in the 

immediate neighbourhood of the node. Furthermore, as in all meshless methods, various 
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meshless functions are used for trail and test functions. Consequently, the use of the 

global mesh of background cells or elements is avoided throughout the solution 

procedure; the MLPG method therefore represents a truly meshless concept.  

The MLPG is a general platform for deriving other truly meshless methods. It 

employs the Petrov-Galerkin principle, so that the test and trail functions may come 

from different functional spaces. This means that their corresponding support domains 

may also differ in shape and size. It is important to note that a differential equation of a 

higher order possesses more than just one local weak form, and any one of these may be 

used for deriving various MLPG formulations [35],[36]. All of these features provide 

the MLPG method with great flexibility in solving various engineering problems. It is 

possible to devise many different variants of the MLPG method by choosing an 

appropriate combination of the test functions and trial functions, as well as the different 

shapes and sizes of their support domains. Accordingly, many other prominent truly 

meshless methods, such as the Local Boundary Integral Equation (LBIE) Method [20], 

the Method of Finite Spheres (MFS) [21], the Local Point Interpolation (LPIM) Method 

[37],[38], or the Local Radial Point Interpolation (LR-PIM) Method [38],[39], may be 

perceived as variants of the MLPG method. It is also possible to derive various 

collocation methods from the MLPG method by employing the Dirac delta function as 

the test function in the local weak forms.   

Recently, Atluri et al. [40], developed a new mixed MLPG method, called the 

Meshless Finite Volume Method (MFVM). In this approach, both the displacements and 

strains are interpolated by means of the same meshless functions. For each node, the 

equilibrium equations are written in a local weak form in terms of the strain 

components. The nodal values of strain components are then eliminated from the 

equations by enforcing the strain-displacement relations directly at the nodes. In this 

way, in the closed global system of equations only the nodal displacements appear as 

unknown variables. The proposed mixed formulation is computationally superior to the 

purely-displacement meshless approaches because it avoids the differentiation of the 

shape functions at each integration point. Additionally, the continuity requirements for 

the trial functions are lower by one order. This approach has since then shown great 

potential in efficiently solving engineering problems. In [35], various formulations for 

solving the 4th order ordinary differential equations were presented. Analogous mixed 

collocation and finite difference schemes were presented in [25],[26], where the stresses 

are approximated in order to impose the traction boundary conditions directly, while the 
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employment of the mixed concept decreases the continuity requirements for the 

approximation functions. 

Due to its generality and flexibility, the MLPG method has so far been successfully 

applied to solve a variety of engineering problems involving deformable solids. In [41], 

[42],[43], the MLPG method was applied for solving the 2-D elasto-static problems by 

employing different meshless functions, while Wang et al. [44], derived the natural 

neighbour Petrov-Galerkin method for elasto-statics. The 2-D MLPG approach was 

extended to the 3-D elasto-static problems in [45], where various MLPG formulations 

are presented. The MLPG algorithm for 3-D elastic problems involving material 

discontinuities was developed in [46]. Various 2-D elasto-dynamic problems were 

solved using the MLPG and LBIE method in [47],[48],[49], while a general 3-D MLPG 

formulation was introduced in [50].  

The MLPG and LBIE approaches for solving geometrically nonlinear boundary 

value problems were presented in [51],[52],[53], and 2-D large deformation problems 

involving material nonlinearities were considered in [54],[55],[56]. Han and co-workers 

used a 3-D mixed MLPG in [57],[58] for solving complicated nonlinear dynamic 

problems, including high-speed impact, contact and penetration. Using the sub-domain 

variational inequalities, the contact problems have been successfully resolved [59],[60]. 

Heat conduction problems and thermo-elastic deformations have also been analyzed by 

the MLPG method [61], [62]. Information about the application of the MLPG method in 

the fluid mechanics, nanotechnology and multi-scale modelling may be found in 

[13],[15]. 

The MLPG method has been applied for the bending problems of thin beams [63], 

[64],[65], where the generalized moving least squares (GMLS) interpolation scheme 

[15] is especially suitable for approximation of deflections and rotations. Moreover, the 

MLS functions are especially suitable for the use in the MLPG formulations for solving 

the bending problems of thin plates, because the MLS approximations of a high 

continuity order may be obtained in a simple manner by choosing the suitable weight 

function, as shown in [66]. The LBIE method has been extensively used to solve 

various problems involving thin plates, e.g., the elasto-statics of thin plates [67], [68], 

thin elastic plates resting on elastic foundations [69], the elasto-dynamics of thin plates 

[70], and the large deflection of thin plates [71]. In [72] and [73], J. Sladek and co-

workers presented the MLPG methods based on the Reissner-Mindlin theory to solve 

static and dynamic problems of shear-deformable thick plates. Recently, they have also 
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developed the MLPG formulations for the analysis of shallow shear-deformable shells 

[74], [75]. Thick homogeneous or composite laminated plates have been analyzed 

[76],[77],[78], where the higher-order plate theories are usually employed to describe 

the kinematics. 

1.4 Meshless methods in the numerical analysis of 

shell-like structures 

1.4.1 Numerical meshless shell models 

There exist several different ways to obtain numerical shell modes in 

computational mechanics. They may be roughly divided in the following groups: 

 Numerical formulations that implement classical plate and shell theories 

directly. Such models employ the classical shell theories directly to obtain the 

discretized systems of equations. In shell theories, a shell kinematics is associated 

with the middle surface of the structure by means of differential geometry. It is 

usually assumed that the displacements are distributed linearly across the thickness 

direction of the shell. Consequently, various kinematic constraints are introduced, 

such as the Kirchhoff-Love or Reissner-Mindlin assumptions. Furthermore, the 

models based on the shell theories that employ the linear displacement distribution 

across the shell thickness in general require a reduction of general 3-D material 

laws, because of the adopted assumptions about the state of the stresses in the shell 

continuum, such as plane stress tangent to the middle surface of the shell. The 

unknown kinematic variables in the resulting numerical models include both 

displacement and rotational degrees of freedom (DOF). For interpretation of the 

stresses over the thickness, the energetically adjoining dynamic variables associated 

with the middle surface are introduced, including the in-plane stress resultants, the 

bending and twisting moments and the transversal shear stress resultants. In some 

cases, the use of the higher-order shell theories that employ the higher-order 

polynomials to approximate the displacements in the thickness direction, is 

favourable. 

 Degenerated shell concept. Such numerical shell models are obtained by direct 

degeneration of a 3-D continuum to the shell-like kinematics by assuming that the 

displacements are approximated linearly in the thickness direction. In the 
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degenerated shell concept, the mid-surface description, similar to those used in the 

classical shell theories, is implemented. This approach adopts the Reissner-Mindlin 

kinematic assumptions, including the straightness of the material line that is normal 

to the structure mid-surface, the unchanged structure thickness, and the non-

existence of the transversal normal stress component. 

 Solid-shell concept. Another approach, considered by some authors as an 

extension of the degenerated shell concept, is the solid-shell concept [3]. As in the 

degenerated shell concept, it is assumed that the material fibres that are initially 

normal to the shell middle surface remain straight, but not necessarily normal to the 

mid-surface, and the distribution of all displacement components is linear in the 

thickness direction in standard solid-shell formulations. However, the stretching of 

the fibre in the thickness direction is allowed, which enables the more realistic 

description of shell deformation response. Consequently, the normal stress 

component in the thickness direction is included in the solid-shell formulations, 

which allows the implementation of complete 3-D material models. The solid-shell 

concept is also more straightforward to implement than the models based on the 

shell theories. The kinematics is described by using only the displacement 

parameters, and the use of rotational degrees of freedom is avoided. Consequently, 

the connection of solid-shell numerical formulations with general 3-D solid models 

may be achieved directly without having to resort to the application of additional 

numerical procedures, such as the solid-to-shell transition elements. However, the 

FEM literature [93],[94],[95] makes clear that the purely-displacement solid-shell 

numerical models are prone to the appearance of a variety of locking effects.  

 Direct three-dimensional (3-D) continuum approach. The concept of a 

general 3-D continuum is employed directly to shells without any further 

limitations. 

More details about the numerical shell models, including their comparative advantages 

and disadvantages, can be found in [2],[79] and in the references therein. 

Many available meshless formulations are based on the classical plate and shell 

theories. For example, the Kirchhoff-Love theory has often been employed for the thin 

plate formulations [66],[67],[80], as well as for the analysis of thin shells [81],[82],[83]. 

The MLS approximation scheme is used in these models to produce a C1 continuous 

function in a simple and straightforward manner. Such formulations are not suitable for 

the application in the numerical simulations of thick structures. Therefore, most of the 
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meshless algorithms for plate/shell analysis employ the Reissner-Mindlin kinematical 

assumptions [28], [72], [74], [75], [84], [85], [29], [30], [86]. Therein, the effects of the 

transversal shear strains are taken into account and the assumption that the unit director 

vector remains straight - but not always normal to the mid-surface during deformation - 

is satisfied. Although the aforementioned algorithms are capable of achieving excellent 

convergences in solving a variety of different problems, they all possess the rotational 

DOF, which may lead to difficulties in properly describing the boundary conditions 

(BC). In geometrically nonlinear problems, complicated update procedures for the 

rotations are needed. In addition, special care should be taken if such formulations have 

to be connected with numerical 3-D solid algorithms where only the displacements 

appear as unknown nodal parameters. In FEM, algebraic constraints between the 

appropriate DOF of the solid and shell finite elements to be connected must be defined 

[87],[88]. Moreover, neither of the above-mentioned stratagems allows the 

implementation of a general 3-D material model due to the introduced reduction of a 

material law. This restriction may become problematic in numerical simulations 

involving material nonlinearities. Perhaps the most challenging problem in the 

displacement-based algorithms is the appearance of the membrane and shear locking in 

the thin structural limit. 

One way to allow the implementation of complete 3-D material laws into meshless 

methods is to utilize the higher-order shell theories. The Higher-Order Shear and 

Normal Deformable Plate Theory (HOSNDPT) was used in [76] for the elasto-static 

simulation of homogenous thick plates. Similar to FEM, the higher-order theories are 

applied in meshless methods for the numerical computations involving composite shell-

like structures. For example, HOSNDPT has been successfully implemented in the 

MLPG method for the elasto-static and elasto-dynamic analysis of functionally graded 

plates [77],[78], while the third-order Reddy theory, using multiquadric RBF, has been 

employed to model the mechanical behaviour of laminate composite plates and shells 

[89]-[91]. However, a large number of DOF over the thickness is needed for the 

description of shell kinematics, which is time-consuming and demands great 

computational effort if employed for modelling homogenous plates.  

In [92], Li et al. used a direct 3-D continuum approach for the large deformations 

of thin shells. The proposed algorithm is simple to implement. Allegedly, it is free of 

shear and volumetric locking. However, it seems that at least three layers of nodes are 
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necessary in the thickness direction to capture the displacement gradients accurately, 

rendering it inefficient in the numerical simulations of homogeneous shells.  

1.4.2 Locking effects in meshless methods 

Efficient numerical formulations for the modelling of thin plates and shells should 

be free from locking phenomena. Unfortunately, these unwanted numerical effects have 

not been investigated in the context of meshless methods theoretically as thoroughly as 

they have with FEM. In early publications, it was even claimed that some of the 

meshless methods might be free from some locking effects [17],[96],[97]. However, in 

those cases the shape functions were calculated by using large support domains, which 

may have blurred the true behaviour of the proposed formulations with respect to 

locking [97]. Since then a deeper insight into the behaviour of meshless methods has 

been gained and a number of approaches have been proposed to solve these numerical 

anomalies. 

The solid-shell finite elements based only on the approximation of displacements 

are plagued by the Poisson’s thickness locking effect if the transversal displacement 

component is linear through the structure thickness. In such cases, the normal 

transversal strain component computed directly from displacements does not vary 

through the thickness, and locking arises if the Poisson’s coefficient is different from 

zero. In meshless methods, the thickness locking effect has so far been avoided by 

employing the formulations based either on the higher-order shell theories [76], or on 

the 3-D direct continuum approach [92]. As detailed above, such formulations are 

computationally costly and time-consuming. 

The appearance of the shear and membrane locking effects in the structural thin 

limit still presents a serious obstacle in the successful development and application of 

meshless methods. The shear locking phenomenon appears in the plate and shell 

formulations if they are unable to satisfy the zero transversal shear strain condition in 

the bending mode. As a result, parasitic transversal shear strains occur even in the pure 

bending state. On the other hand, membrane locking occurs only in curved structures if 

a numerical model is unable to represent the membrane forces in the bending state 

correctly. In that case, substantial parasitic membrane forces may appear during 

inextensional bending. Because of these parasitic forces, the deformation response of 

the numerical models may be completely erroneous. In both cases, the errors depend on 
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the structure length-to-thickness ratio, and become more severe as the thickness 

approaches zero.  

Krysl and Belytschko detected the membrane locking effect by numerical 

experiments in their EFG formulation for thin shells based on the Kirchhoff-Love 

theory [81], and alleviated it by employing the MLS functions of a sufficiently high 

order. Since then, the analogous technique has been used in various plate and shell 

meshless formulations. In the formulation for thick plates presented in [85] the hp-cloud 

approximation of a high order was used to deal with the shear locking phenomenon. 

Similarly, Noguchi et al. used the EFG method for the geometrically nonlinear analysis 

of shear deformable shells in [86] and treated shear locking by employing the bi-cubic 

and quartic MLS functions. In [98] and [99], the shell theory based on the Cosserat 

continuum was employed for the static and dynamic analysis of spatial shell structures. 

The membrane and shear locking were detected in numerical experiments by evaluating 

the membrane and shear deformation energies as the fractions of the total deformation 

energy, and the error of calculated energies was decreased by raising the order of trial 

functions. The increase of the degree of interpolation functions in some meshless 

approximations, like the MLS functions, can be performed without adding new nodes or 

DOF to the discretized model, and consequently, the total number of DOF on the global 

level does not increase. However, such p-refinement only alleviates locking, while the 

calculation of the higher-order meshless shape functions demands significantly higher 

computational costs. In addition, further problems may appear because of the 

deteriorated stability of the numerical integration due to more complicated sub-integral 

functions.  

Donning and Liu used cardinal splines as approximation functions in [84] and 

proposed the use of the so-called consistency paradigm to circumvent locking effects, 

wherein the rotation field shape functions were constructed by differentiating the 

displacements shape functions. Kanok-Nukulchai et al. implemented the analogous 

concept in [100] for the MLS functions in their EFG formulation for beams and plates, 

and obtained satisfying results even for the second-order MLS functions. However, it 

has been proved by Tiago and Leitão [101],[102] that such an approach may yield a 

rank deficient global system of equations within the Galerkin method, because the 

approximation functions for the rotation field are linearly dependent. 

A formulation free of shear locking may also be obtained by applying a simple 

change of independent field variables, as proposed by Cho and Atluri [63] in their 
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MLPG method for the analysis of shear deformable beams, where they substituted the 

total rotations by transversal shear strains as independent variables. The analogous 

strategy was later employed in the EFG formulation for Timoshenko beam analysis in 

[101], and in the MLPG formulation for shear-deformable plate analysis [103]. Since in 

such an approach strains or rotations are approximated directly and separately from 

displacements, it may be considered a type of mixed formulation. It is important to note 

that the switch of independent variables does not increase the total number of DOF.  It 

is furthermore possible to approximate all independent variables by using the same 

functions. On the other hand, the calculation and integration of the second-order shape 

functions derivatives are necessary, which increases computational costs.   

Another form of mixed concept is adopted in the Stabilized Nodal Conforming 

Integration (SNCI) method [104], based on the nodal integration of the Galerkin 

meshless methods. Therein, the strain smoothing stabilization procedure for the 

integration of the bending energy is applied to eliminate shear locking in the thin 

structure limit [28]-[31]. Such an approach is numerically quite efficient due to the 

nature of the nodal integration. Nevertheless, the employed approximation functions 

have to satisfy some special requirements, such as the Kirchhoff conditions under pure 

bending and the integration constraints needed for achieving the bending exactness. In 

addition, SCNI works exceptionally well with the linear MLS basis, but its convergence 

degrades if the higher-order polynomial bases are used [105]. 

In meshless formulations, the mixed approaches usually used in FEM were first 

employed for the elimination of volumetric locking, which is accomplished by 

approximating the pressure and displacement fields separately, as in [97],[106], and the 

references therein. In addition, in [97] the selective reduced integration procedure was 

employed in the nodal integration. In the mixed formulations, the so-called inf-sup tests 

are often applied to test the stability and optimality of such approaches. For instance, 

the mixed MFS plate formulations that pass the inf-sub tests are locking-free and exhibit 

optimal or near-optimal convergence properties [107]. The classical B-bar method and 

the EAS procedures have also been adapted for the 2-D continuum EFG method [108]. 

Both methods perform equally well for uniform discretizations. The definition of 

congruent integration cell is obligatory, though, and the cell sizes are restricted by the 

layout of the nodes used for discretization, limiting the flexibility of the proposed 

formulations. Furthermore, a stabilization technique has to be employed in the B-bar 

approach in order to avoid “hourglassing,” while the additional variables used in the 
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EAS formulation have to be condensed on the level of integration cells, which increases 

computational costs. 

1.4.3 Description of shell geometry 

In FEM, the geometry of a model is represented locally by the shapes of the finite 

elements. The same functions often approximate both the geometry and displacements 

in order to satisfy the zero-strain rigid body modes. In contrast, in meshless methods a 

set of nodes, positioned inside the global domain and on the global boundary, represents 

the entire geometry. In many cases the surface geometry is approximated between the 

nodes by employing the same meshless functions as for displacements 

[81],[82],[83],[98],[99].  

If a finite element discretization is readily available, it can be used to obtain the 

positions of the nodes and the integration background cells [81],[98],[99]. Those 

background elements are then used for surface parameterization, enabling the 

description of arbitrary shapes. Belytschko and Krysl considered the effects of such 

surface approximations on the quality of solutions in [81], where they established 

certain surface approximation criteria for the MLS functions, e.g., the overall shape 

similarity, the preservation of symmetry, and the curvature and boundary representation. 

It has been found that MLS approximations in general cannot represent the symmetry 

and the boundary correctly, which may have a significant effect on the solution 

accuracy. One reason for this is that the approximated surface does not pass through the 

prescribed points if the applied functions do not posses the Kronecker delta property.  

For relatively simple shapes, it is also possible to describe a 3-D geometry of the 

shell middle surface by mapping it from the global Cartesian coordinate system to the 

parametric curvilinear coordinate system. For example, Noguchi et al. employed the 

Lagrange polynomial functions for the representation of the smooth surfaces possessing 

C1 continuity in [86]. For general shapes, the CAD parametric modelling technology 

may also be employed, as proposed in [30],[31]. In order to avoid problems associated 

with surface parameterization, in [29] Chan and Wang used the global Cartesian 

coordinates for the approximation of shell kinematics in arbitrary shell geometry. They 

propose two methods for eliminating the singularities in the Cartesian RKPM 

approximations of shell surface, which appear if the trial basis functions and shell 

surface functions are linearly dependant. For the simple geometrical surface shapes 

which can be described mathematically exactly, analytical equations are often used for 



1 Introduction  17 

 

the geometry description, as in [74],[75]. Although straightforward, such an approach is 

not applicable for arbitrary shapes. 

1.4.4 Enforcement of essential boundary conditions 

One of the key issues in meshless formulations for plates and shells is the 

enforcement of the essential boundary conditions (BC). For the trial functions with the 

Kronecker delta property, such as the RBF or PIM approximation schemes, the essential 

BC are imposed directly, exactly as in FEM. However, as most of meshless 

approximation functions do not possess the Kronecker delta property, special techniques 

are necessary to impose the essential BC. A variety of procedures have been proposed, 

including the Lagrange multipliers [17], the use of the finite or boundary elements in 

regions with the prescribed essential BC [109], the collocation methods [96],[110], the 

penalty method [96], and the direct transformation method [111],[112]. 

 Using the Lagrange multipliers is a well-known technique in FEM and is usually 

efficient. However, it introduces new unknowns into the governing equations and 

demands special solvers because the use of the Lagrange multipliers destroys the 

positive definiteness and bandedness of the resulting algebraic equations system. The 

direct collocation method is easy to implement, but Atluri and Zhu have shown [96] that 

it is not appropriate, since the meshless approximants lack the Kronecker Delta property 

and have thus proposed the modified collocation method. 

Another numerically efficient method is the penalty method, which generally 

produces the same accuracy as the Lagrange multipliers, but only if the penalty 

parameter is appropriately selected [112]. Employing the finite or boundary elements at 

the global boundary with the prescribed essential BC is useful because it decreases the 

total computational costs. However, special techniques are needed to couple a finite or 

boundary element mesh with a region where a meshless method is applied, because of 

the non-compatible displacement distribution on the interface between the regions 

[109],[113],[114],[115],[116]. In the direct transformation method, a meshless function 

is reinterpreted as an interpolation, which passes through the actual nodal values. After 

performing such transformation, the essential BC are enforced in a straightforward 

manner, as in FEM. Nevertheless, the transformation procedure complicates the 

numerical implementation and demands additional computational costs for the 

calculation of the meshless approximations. Theoretically, any of the procedures 
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described above may work well in practice, but their efficiency generally depends on 

the meshless method employed, as well on the considered engineering problem.  

1.5 Hypothesis, scope, and outline of the thesis 

1.5.1 Hypothesis and aims of the thesis 

The research presented in this thesis concerns the development of new meshless 

formulations for the elasto-static numerical analysis of shell-like structures. In order to 

achieve the full potential of meshless methods, the new algorithms should belong to the 

group of so-called truly meshless methods. Furthermore, the proposed meshless 

concepts should have as broad a theoretical scope as possible, and should not contain 

too many physical or mathematical restrictions. These goals can be reached by 

employing the Meshless Local Petrov-Galerkin (MLPG) method for deriving the 

discretized governing equations, as well as the solid-shell concept for describing the 

structure kinematics. 

The new algorithms should be able to solve bending problems for both thick and 

thin shell-like structures without the loss of solution accuracy and stability due to the 

appearance of various locking phenomena. It is possible to eliminate, or at least 

alleviate, some of the locking phenomena in the displacement-based MLPG approach 

by borrowing suitable procedures from FEM, such as the hierarchical quadratic 

interpolation for the elimination of Poisson’s thickness locking, or the raising of the trial 

function order for alleviating transversal shear locking. By approximating additional 

field variables separately from the displacement field, it is possible to derive a mixed 

concept free of the transversal shear and Poisson’s thickness locking effect. 

1.5.2 Research description and expected thesis 

contribution 

This research deals with the development of novel meshless concepts suitable for 

the analysis of general shell-like structures. The new algorithms are based on the 

Meshless Local Petrov-Galerkin (MLPG) Method [15],[19], which is widely accepted 

as a general platform for all meshless methods. This approach is a truly meshless 

method, which does not require any kind of element mesh or background cells for either 

interpolation or integration. A computational model is discretized only by a set of 

nodes, which do not have to be connected into a mesh of elements. It is therefore 
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possible to avoid the human labour needed for the creation of a readily well-defined 

element mesh prior to the numerical analysis. Accordingly, it is expected that some of 

the numerical problems associated with the topology of the elements could be 

circumvented in the future applications of the proposed algorithms, such as the large 

deformation shell analysis.  

In order to predict a deformation response for different problems accurately, it is 

desirable to impose as few restrictions on the stress state as possible. Accordingly, the 

solid-shell concept is adopted for the description of a shell-like continuum, according to 

[3],[93],[94],[95] and the references therein. In that case, the couples of nodes are used 

to discretize the shell structure, where the nodes are located on the upper and lower shell 

surfaces [93]. The solid-shell approach allows the implementation of complete 3-D 

material models and enables a simple connection of the proposed algorithms with 3-D 

solid models due to the absence of the rotational DOF. 

The governing equations for the proposed formulations are the well-known 

equilibrium equations for a 3-D solid continuum, which obey the essential and natural 

BC on the global surface bounding the continuum. The discretized algebraic equations 

are derived by writing the equilibrium equations over the local sub-domains defined 

around each node couple. According to the solid-shell concept, the displacements are 

linear across the structure thickness, whereas the MLS functions are employed in the in-

plane direction due to their good numerical features, such as a high order of the global 

continuity and of approximation consistency [15]. Since the MLPG method employs the 

Petrov-Galerkin principle, the test functions may be distinctively different from the trial 

functions. Here, the test functions that are linear in the structure thickness direction are 

chosen in order to obtain the closed system of equations, while the Heaviside step 

functions are applied in the in-plane directions.  

As the MLS functions in general do not posses the Kronecker Delta property, 

special care should be devoted to the imposition of the essential BC. In this contribution 

they are enforced either in their local weak form by means of the penalty method [96], 

or by constructing the interpolating MLS procedure, similar to [117],[118]. 

This work analyzes only the shell geometry, which can be described exactly. Plate 

structures are considered as a special case of the shell geometry defined by zero value of 

the Gaussian curvature. Although such approach is not applicable for arbitrary shell 

geometries, in this way the negative effect of the inaccurate geometry description on the 

solution quality is avoided. 
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As the first step of the research, plates and shells are studied by approximating only 

the displacement field, leading to the so-called primal MLPG formulations. The aim is 

to develop efficient algorithms for the numerical analysis of thick shell-like structures. 

Since various numerical locking effects appear in the purely displacement-based 

approaches [4],[80],[81],[84],[86], some known techniques for the avoidance of those 

undesirable numerical phenomena are modified and implemented in the developed 

formulations. For example, the Poisson’s thickness locking effect is eliminated by 

applying the hierarchical quadratic interpolation in the structure thickness direction 

[93], while the raising of the order of the MLS basis is expected to alleviate shear and 

membrane locking in the structure thin limit [80],[81],[84],[86].  

In addition, some theoretical considerations are performed, with the aim of 

revealing the cause of the thickness and the transversal shear locking effect in the 

proposed meshless formulations. Furthermore, the influence of the certain parameters, 

characteristic for meshless methods, on the accuracy and stability of solutions is 

performed.  

The second part of this research is devoted to the development of novel mixed MLPG 

formulations for the numerical analysis of general shell-like structures. Due to their 

theoretical straightforwardness and efficiency, they are based on the mixed MLPG 

approach proposed by Atluri and co-workers [35],[40]. The shear locking is eliminated 

by employing the approximation of both the strains and displacements. Two novel 

procedures for avoiding the Poisson’s thickness phenomenon are proposed. The first is 

derived by modifying the nodal values for the normal strain component in the thickness 

direction, while the second one is based on an appropriate switch of independent field 

variables, analogous to [63],[103]. In all cases, the reduction of the total number of the 

unknown nodal variables is performed by means of appropriate collocation procedures. 

 Since the above-described mixed MLPG approach is numerically more efficient than 

the primal MLPG formulations [40], it is expected that the proposed novel formulations 

will show similar traits. Furthermore, the transversal shear locking effect should be 

efficiently alleviated even for the low-order MLS functions. Consequently, smaller 

support domains of the nodal shape functions may be used. In addition, the 

differentiation of the MLS functions over the local sub-domains is avoided, further 

increasing numerical efficiency and stability in comparison with the primal meshless 

methods. In addition, the continuity requirements for the trial functions are lower in the 

mixed MLPG approach.  
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 It is expected that this work will contribute to the numerical analysis of shell-like 

structures by means of meshless methods, as well as to the further development of the 

MLPG method in general. The proposed MLPG formulations will represent a broad 

theoretical platform for developing new meshless formulations. Depending on the 

engineering problem, it should be possible to devise new and more efficient 

formulations by employing relatively few modifications to the proposed algorithms. By 

appropriately choosing the size and shape of the support domains of both the trial and 

test functions, as well as the size and shape of the local sub-domains, novel MLPG 

algorithms could be specially designed for solving specific engineering problems.  

1.5.3 Outline of the thesis 

This doctoral thesis is organized into eight chapters. In Chapter 2, the relations and 

methods of the continuum mechanics that are important for the solid-shell meshless 

formulations proposed in this work are given. A special attention is given to the 

weighted residual method (WRM), which is applied for deriving the weak forms of the 

governing equations. The MLS approximation scheme is described in detail in Chapter 

3, together with some implementation details and findings gained during the research. 

Chapter 4 deals with the MLPG method, on which the developed formulations are 

based. Thereby the general idea of the MLPG is explained, the corresponding 

terminology used in the work is introduced, and some of the method’s features, which 

are relevant for this contribution, are emphasized. In Chapter 5, the solid-shell MLPG 

concept is presented, and various corresponding local weak forms of governing 

equations are derived. Furthermore, the Poisson’s and transversal shear locking effects 

that appear in the developed MLPG solid-shell approach are revealed from the 

theoretical point of view. Chapter 6 concerns with the purely displacement-based 

MLPG algorithms. Two different ways for deriving the discretized system of equations 

are explained in detail, and the numerical features of developed formulations are 

exposed by suitable numerical examples. The mixed MLPG solid-shell approach is 

presented in Chapter. 7. Two different formulations for the analysis of plates and shells 

are presented, and the claims about their numerical efficiency are corroborated by a set 

of numerical tests. The concluding remarks are given in Chapter 8. 
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2 Basic relations of Continuum Mechanics 

for MLPG solid-shell formulations 

In this chapter, some important relations and methods of the continuum mechanics, 

which are necessary for developing the solid-shell meshless formulations proposed in 

this work, are given. The description of the geometry and kinematics used in the 

presented models are described in detail first. As herein only linear static problems are 

considered, the small-strains theory is adopted and the basic relations for linear elastic 

3-D solids are presented. The 3-D constitutive relations for the linear isotropic Hookean 

materials are given next. The equilibrium equations and the corresponding boundary 

conditions for a 3-D static problem, which represent the strong form of the governing 

equations for the presented MLPG formulations, are explained. Finally, the weighted 

residual method (WRM) applied for deriving the weak forms of the governing equations 

is described in details. The reader is referred to the literature dealing with the continuum 

mechanics and shell theories, such as [120],[121],[122], for obtaining a deeper insight 

into the presented problematics. 

2.1 Kinematics of the solid-shell approach 

In the solid-shell concept, the kinematics of the shell structures is described by 

using only the displacements associated with the couples of material points. The points 

of the same couple are positioned on the upper and bottom structure surface and lie on 

the same material fibre that is initially oriented normally to the middle surface of the 

shell. During the deformation process, the fibre remains straight, but not necessarily 

normal to the middle surface. 

2.1.1 Geometry Description and Mapping Techniques 

A 3-D shell geometry is described by 

                1 3 2 3j i j
i u lX           X e X X  (2.1) 

with the functions  1 3   and  2 3   defined as  
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    
3 3

1 3 2 31 1
,

2 2h h

        . (2.2) 

Herein ie  denotes the unit vectors in the global Cartesian coordinate system, while 

   a
u X  and    a

l X  are the position vectors associated with the upper and lower 

structure surface, respectively, as shown in Figure 2.1.  

 

Figure 2.1  Geometry description of shell continuum. Position vectors. 

The shell is parameterized by the curvilinear coordinates j , where   denotes the 

middle surface coordinates, while  3 / 2, / 2h h    is the local coordinate in the 

thickness direction, i.e., in the direction normal to the middle surface. h  stands for the 

shell thickness.   

In this work, the Greek indices take the values 1 or 2, and the Latin indices 

represent the numbers 1, 2 or 3, unless not specified otherwise. Furthermore, for the 

sake of clearness, from here on the arguments of the variables are omitted unless they 

are essential for the understanding of the presented subject.  

Similarly to the approach taken in [119], instead of describing the geometries of 

both the upper and lower surfaces simultaneously, the relation (2.1)  may be directly 

rewritten in the form used in the degenerated shell concept as 

          3
0 1

j      X X X  (2.3) 

with  0X  as the middle surface position vector and  1X  as the unit shell director, which 

are expressed by the relations  
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                        0 1

1 1
,

2 u l u lh
                   X X X X X X . (2.4) 

Because in this contribution only the shell geometries that may be described 

mathematically exactly are considered, the expressions (2.3) and (2.4) are more 

convenient because the geometry of the shell continuum may now be described by 

defining only the shell middle surface and its shell director.  

By inspecting the expression for  1X  in equation (2.4), and taking into account the 

assumption about the position of the material point couples in the initial configuration, 

it can be easily concluded that  1X  is actually identical with the unit normal vector to 

the shell middle surface. According to Basar and Krätzig [120], the normal vector may 

be easily calculated as 

  
1 2

3 1
1 2


 


A A

A X
A A

, (2.5) 

with 

 1 2 11 22 12 , .A A A A A       A A A A  (2.6) 

Herein A  are the covariant metric vectors of the middle surface, shown in Figure 2.2, 

    
   

3

0

0

, 


 

  




 





 



X
A X . (2.7) 

The covariant basis vectors for each point in the shell continuum, illustrated in 

Figure 2.2, are calculated as 

 

   
           

       

3 3
30 1

(1)
3 33

, , , ,

,

j

j

j

j

  
   

    

 


      




  




    




  



X
G X X A A

X
G X A

 (2.8) 

while the reciprocal or contravariant metric vectors are defined by means of the 

Kronecker-delta symbol i
j  as 

 i i
j iG G  (2.9) 
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with i
j  defined as  

 
1, if

0, if
i ij
j ij

i j

i j
  


    

. (2.10) 

Equation (2.9) yields the following expressions for the contravariant metric vectors 

 1 2 32 3 3 1 1 2, ,
G G G

  
  

G G G G G G
G G G , (2.11) 

with 

      1 2 3 1 2 3det , ,G     G G G G G G G  (2.12) 

as the determinant of the metric tensor G , which is defined as 

   i j i j
i j ijG    G G G e e e e . (2.13) 

 

 

Figure 2.2 Metric covariant vectors 

By employing relations (2.9)-(2.13) for the Cartesian coordinate system, it may be 

easily shown that i
i e e . Consequently, the covariant and contravariant tensor 

components defined in the Cartesian coordinate system are identical, e.g., i
ia a  and 

ij
ija a . From now on, this fact is used through this work without any further 

referencing, and no distinction is made between such components. 
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The mapping of vectors and tensors from the curvilinear to the global Cartesian 

coordinate system is done by using the Jacobian matrix J , defined as 

  

1 1 1

1 2 3

2 2 2

1 2 31 2 3

3 3 3

1 2 3

k

X X X

X X X

X X X

  


  

  

   
    
            
    
    

J G G G , (2.14) 

as well as its inverse matrix 1J , which may be written as 

  

1 1 3

1 2 1
1

2 2 2
1 3 2

1 2 3
3

3 3 3

1 2 3

X X X

X X X

X X X

  

  

  



   
      
                   
    

G

J G

G

. (2.15) 

The contravariant components of a vector i i
iiv v v e G  are transformed from a 

curvilinear coordinate system  1 2 3, ,    with the metric vectors iG  to the global 

Cartesian system  1 2 3, ,X X X  with the unit metric vectors ie  as follows 

    
i

i i j i j j i j
i i jj

X
v v v v J v


    e G e G . (2.16) 

Herein iv  and iv  are the contravariant components in the global Cartesian and 

curvilinear coordinates, respectively, while i
jJ  are the terms of the Jacobian matrix J. 

Analogously, for the contravariant components of a second-order tensor 

ijij
i ji jT T   T e e G G   the transformation rule is 

      
i j

kl kl kl klij i j i j i j
k l k l k lk l

X X
T T T T J J T

 
      e G G e e G G e . (2.17) 
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Herein ijT  and ijT  are the contravariant components of the tensor T  defined in the 

global Cartesian and curvilinear coordinate system, respectively. The covariant tensor 

components may be transformed by applying analogous formulas [121].  

 

Figure 2.3 Parameterization and mapping of shell middle surface 

It is possible to parameterize the curved surface in different ways. Here the 

curvilinear coordinates max0,      are used, which map the middle surface to the 

rectangle in the 1 2,  - parametric plane, according to Figure 2.3. Alternatively, the 

curved middle surface may be mapped by using the normalized parametric coordinates 

defined as  
max









 , and thus their range is 0 1  . Such an approach is convenient 

because it maps all quadrilateral surface patches to the unit square in the 1 2,  - 

parametric plane, as shown in Figure 2.3. For the normal coordinate, it holds that 

3 3  . In that case, the covariant metric vectors may be computed by means of 

equations (2.8) as  

       j i j l l
j

k lk l k k

    
   

   
  

   

X X
G G


, (2.18) 
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          0 0j

   

    

   
   

   
  

   

X X
A A


. (2.19) 

The mathematical description of the geometrical shapes used in the numerical 

experiments in this work is presented in Table 2.1. It should be noted that for a 

rectangular plate i iX  , and consequently i iG e . 

Circular cylindrical surface in cylindrical coordinates 

 

 

Position vector 

 

 

   
1

0
1

1
2

2 3

cos

sin

R
R

R
R

 

 

 
  

 
 

 
 

X e

e e

 

Spherical surface in spherical coordinates 

 

 

Position vector 

 

 

 

   
1 2

0
1

1 2 2

2 3

cos cos

sin cos sin

R
R R

R R
R R R

  

  

   
    

   
     

     
     

X e

e e

 

Table 2.1 Shell geometry. Middle surface position vectors for some simple shell geometries 
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2.1.2 Displacements 

According to the solid-shell concept, the linear distribution over the thickness is 

assumed for the displacements in the directions of the global Cartesian axes as 

                1 3 2 3 ,j i j
i u lu           u e u u  (2.20) 

where        i
iu uu  u e  and        i

il lu  u e  are the displacement vectors 

associated with the points on the upper and lower surfaces, respectively. The functions 

1  and 2  describe their linear distribution over the structure thickness according to 

(2.2). Analogously to the position vector X , the displacement vector u  may be written 

in terms of the variables associated with the middle surface as 

      3
(0) (1)

j      u u u . (2.21) 

The variables (0)u  and (1)u  are defined by 

  
   

 
   

0 1,
2

u l u l

h

 
 

u u u u
u u , (2.22) 

where        0 0
i

iu  u e  stands for the middle surface displacement vector, while 

       1 1
i

iu  u e  describes the total rotations. 

2.1.3 Strains 

Adopting the small strain theory, the strain tensor may be calculated from the 

displacements as follows [121] 

  1
, ,

2
j i

i j i j
ij i j 
      ε G G G u G u G G . (2.23) 

The strain tensor ε  may be written in the vector form as 

  11 22 33 12 23 132 2 2T      ε , (2.24) 

which is suitable for the use in the discretized numerical models. Relation (2.23) may 

then be rewritten in a matrix form as 
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 Kε D u  (2.25) 

with KD  as the 3-D kinematic differential operator  

 

 
 
 

   
   
   

1

2

3

2 1

3 2

3 1

1 ,

2 ,

3 ,

1 2, ,

2 3, ,

1 3, ,

K







 

 

 

  
 

 
 

      
   
 
    

G

G

G
D

G G

G G

G G

. (2.26) 

By employing (2.23), the strain components are defined in the global Cartesian 

coordinates by 

 
   1

2

i k j k

i j i j
ij j i

u u

X X

 


  
     
   

ε e e e e . (2.27) 

Herein the derivatives are evaluated by employing the chain derivative rule as 

 
   i k i k p

j p j

u u

X X

  


  


  
, (2.28) 

where /p jX   are the components of the contravariant metric vectors (2.9). 

2.2 Constitutive Relations and Stresses 

The 3-D constitutive equations, which give the relationship between the strain and 

stress tensors, may be written by employing the generalized Hook’s law as 

 ij ijkl
klC  , (2.29) 

where ijσ  represents the components of the stress tensor 

 ij
i j σ G G , (2.30) 

which, analogously to the strain tensor vector ε  (2.24), may be written as a vector as  

 11 22 33 12 23 13T         σ . (2.31) 
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ijklC  stands for the material tensor 

 ijkl
i j k lC   C G G G G . (2.32) 

For the arbitrary curvilinear coordinates, the material tensor components for a linear 

isotropic Hookean material are 

 ( )ijkl ij kl ik jl il jkC G G G G G G    , (2.33) 

where   and    are the Lame’s elastic constants 

 
    

,
1 1 2 2 1

E E 
  

 
  

. (2.34) 

Herein E and   are the Young’s modulus and Poisson’s coefficient, respectively, and  

ij i jG  G G  are the contravariant components of the metric tensor G . In the Cartesian 

coordinates, expression (2.33) assumes the form 

 ( )ijkl ij kl ik jl il jkC          . (2.35) 

By employing (2.33), and taking into account the orthogonality 3 G G  in the applied 

shell kinematics, the material tensor may be written in the matrix form as 

 

11 11 11 22 11 33 11 12

22 11 22 22 22 33 22 12

33 11 33 22 33 33 33 12

12 11 12 22 12 33 12 12

11 11 12 12 11 12

12 12 22 22 22 12

33 33

0 0

0 0

0 0

0 0

0 0 0 0 0 0

0 0 0 0 0 0

2 2 0 2 0 0

2 2 0 2 0 0

0 0 2 0 0

G G G G G G G G

G G G G G G G G

G G G G G G G G

G G G G G G G G

G G G G G G

G G G G G G

G G





 
 
 
 

  
 
 
 
  

D

11 12 12 22 11 22 12 12

22 33 12 33

12 33 11 33

0
.

2 2 0 0 0

0 0 0 0

0 0 0 0 11

G G G G G G G G

G G G G

G G G G

 
 
 
 
 

 
 
 
  

 (2.36) 

Note that similar form may be obtained from (2.35) for the elasticity matrix in the 

global Cartesian system. By employing (2.24), (2.31) and (2.36), constitutive relations 

(2.29) may be rewritten in the matrix form as 
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 σ Dε . (2.37) 

 The components of a stress vector i
itt G acting over a boundary surface   

may be calculated as 

 i ij
jt n , (2.38) 

where jn  stands for the components of the outward unit normal vector to  . 

Employing (2.31), the matrix form of (2.38) reads as 

 t Nσ  (2.39) 

with N as the matrix describing the unit outward normal on sΩ  

 
1 2 3

2 1 3

3 2 1

0 0 0

0 0 0

0 0 0

n n n

n n n

n n n

 
   
  

N . (2.40) 

2.3 Equation of equilibrium 

Consider a body , occupying a volume   bounded by a surface  , as shown in 

Figure 2.4, at time t. The body is subjected to the traction t, i.e., the force measured per 

unit surface area d , and to the body forces b defined per unit volume d . 

 

Figure 2.4 Balance of momentum 
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From the balance of linear momentum for such a body it follows for each point in 

the body the following statement, which is written here with respect to the global 

Cartesian coordinate system  1 2 3, ,X X X , holds at all times t [122] 

 
,

D

D
j

i
iij X

v
σ b

t
  . (2.41) 

Herein ib  denotes the body force vector,   is a mass density, and iv  describes a 

velocity field. Relation (2.41) is referred to as the equations of motion. If the 

acceleration is zero for all points in  , then (2.41) becomes 

 
,

0j iij X
σ b  , (2.42) 

usually called the equations of equilibrium in elastostatics. Furthermore, from the 

balance of angular momentum follows that for a non-polar continuum the stress tensor 

is symmetric in each point in , i.e. ij ji   [122]. 

2.4 Weighted residual methods and weak forms of 

differential equations 

The weighted residual methods (WRM) represent a family of the mathematical 

techniques that use the weak forms of differential equations to find the approximated 

solutions for a given problem. The method is applicable to many sets of partial 

differential equations appearing in usual engineering problems and gives a good 

approximated solution if certain requirements are met.  

Let ( )  0   be the set of N governing equations for a steady-state problem 

defined over a domain   with u as a set of unknown solution functions. The domain is 

bounded by a surface   according to Figure 2.5, on which the boundary conditions are 

prescribed by another set of M equations ( )  0  .  

If the equations ( )   and ( )   are linear differential equations, they may be 

written in their strong forms as 

  ( ) , in   D b 0   , (2.43) 

  ( ) , on Γ  D t 0   , (2.44) 
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with 

 
T

1 2 i        . (2.45) 

Herein, D and D  are differential operators, and b and t denote some prescribed 

known variables over   and  , respectively. If in D  the highest-order member is of 

order m, then in D  only the terms up to the order 1m   may appear.  

 

Figure 2.5 Global domain   with corresponding boundary   and local sub-domains s  used for 

constructing local weak forms.  

In WRM, a set of the trail or candidate functions  , which is an approximation of 

the exact solution set  (2.46), is assumed 

 
T

1 2 i          , (2.47) 

where trial function i  are assumed as the linear combination of independent basis 

functions. The coefficients in these linear combinations have to be determined in the 

solution process. The residuals of the strong forms (2.43) and (2.44) are calculated as 

  ( ) , in   R D b     , (2.48) 

  ( ) , on Γ  R D t     . (2.49) 

It is generally difficult to assume the exact solution which produces the zero 

residuals in each point inside the solution domain, i.e., R 0  and R 0 . Therefore, 

the solution is sought which satisfies equation sets (2.43) and (2.44) in a weighted 

integral form  
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 T d 0


  v R , (2.50) 

where v  is the set of arbitrary weighting or test functions 

  T1 2 i Nv v v vv   . (2.51) 

The total number of test functions is equal to the total number of equations involved in 

(2.43). Since the relation (2.50) has to be satisfied for all possible admissible choices of 

functions in v , it may be shown that it is equivalent to the strong form (2.43) and (2.44) 

[7],[123] if the essential BC are satisfied a priori. 

Since the solution of (2.50) can be obtained only if it is possible to evaluate the 

integrals appearing in the weak form, certain restrictions are posed on the possible 

choice of the test and trial functions. It is obvious from (2.48)-(2.50) that, if the highest-

order derivative which appears in D  and acts on iu  is of the order m, then iu  has to be 

such that its derivatives up to the  1m  -th order are continuous in order for iu  to be 

admissible trial function [123]. In such a case iu  is called a Cm-1 continuous function. A 

function is a Cm continuous function if all its derivatives of order j for 0 j m   exist 

and are continuous in the entire domain  . On the other hand, no continuity condition 

is posed on the derivatives of the test functions in the weak form (2.50), and they may 

be C -1 continuous functions.  

Theoretically, all types of the functions that obey the continuity conditions may be 

used to approximate the solution. Nevertheless, the choice of the trial function affects 

the quality of the solution. Similarly to the trial functions, the choice of the test 

functions is completely arbitrary, as long as the functions are admissible. However, it 

also affects the quality of the solution and therefore only some suitable subset of all 

admissible functions is considered [7],[123]. Depending on the type of the test functions 

applied and on the subsequent solution procedure, different “classical” weighted 

residual methods may be discerned [15], such as the collocation method, the sub-

domain method, the least-squares method, the Galerkin method, or the Petrov-Galerkin 

method. 

By performing the integration by parts, it can be shown that some of the boundary 

conditions (BC) in (2.44) are implicitly included in the weak form (2.50) [7],[15],[123]. 

These BC are automatically satisfied a posteriori and are therefore called natural BC. 



2 Basic relations of Continuum Mechanics for MLPG solid-shell formulations 37 

 

All the other BC, which are not included in the weak form, are called essential or forced 

BC because it is essential for the validity of solution that they are enforced either a 

priori, by the proper choice of the trial function, or a posteriori, by employing some 

additional numerical procedure. 

In the case when the trial functions do not satisfy the essential BC, the so-called 

constrained WRM [13] has to be employed. For the penalty method, which is especially 

suitable for the use in the truly meshless methods, the weak form can be written as 

  T Td , d 0
C

A

 

    v R v αC    , (2.52) 

where α  is a diagonal matrix of penalty parameters, the vector C contains the essential 

boundary conditions that have to be enforced and C  is the part of the global boundary 

  with some prescribed values  . v


 is a vector of the test functions corresponding to 

the equations in C. For simplicity, it is usually chosen to be v v


. The penalty 

parameters are some user-defined positive constant numbers, which must be large 

enough to enforce the essential BC contained in C successfully. However, too large 

values may cause the numerical problems associated with the numerical stability of the 

solution process. The penalty method is very simple to implement and does not increase 

the total number of unknown parameters in the final algebraic equation system, in 

contrast to the Lagrange multipliers method [13], which is often used in the EFG 

method [13],[17].  

The well-known principle of virtual displacements, which is often applied in FEM, 

may be derived from the generalized weighted residual method by the proper choice of 

the test functions [7],[15],[123]. However, in contrast to the variational methods, in 

WRM the strong form of equations needs to be known, but on the other hand, it is not 

important whether a functional for the problem exists. Many meshless methods are 

based on the global weak forms, such as the EFG methods [17], which employ the 

Galerkin method. 

2.4.1 Local weak forms for the 3-D solids 

Instead of trying to satisfy the relation (2.50) over the entire global domain  , the 

WRM may be applied only over small regions which cover   and its boundary  . 

Such approach is called the local WRM, which is used for developing various truly 

meshless methods [15]. Accordingly, in order to obtain the solutions, a generalized 
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weighted residual form is written over a set of sub-domains s  for the equation set 

(2.43) in the following form 

  T Td , d 0
s sC

A

 

   v R v αC u u
  , (2.53) 

wherein sC  is the part of the local boundary s  that coincides with C , i.e., sC  is 

the part of s  with the prescribed BC according to Figure 2.5, , i.e., sC s C    . 

The sub-domains are positioned completely inside the computation domain  , 

s   . Theoretically, as long as they cover the computation domain completely, 

the relation (2.53) should be equivalent to the global weak form (2.50). 
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3 MLS approximation scheme 

The Moving Least Squares (MLS) method is a variant of the well-known method 

of the least squares, introduced for the multivariate surface construction from a set of 

scattered points [8]. The MLS functions are now a popular tool used for the 

interpolation of field variables in meshless methods. In this chapter the procedure for 

calculating the MLS functions and their derivatives is given. This is followed by the 

description of the applied MLS weight functions. Thereafter the relevant features of the 

MLS approximants are disclosed, and at the end, some details about the numerical 

implementation are presented. 

3.1 MLS procedure 

Consider the function  f X  representing the distribution of a field variable f over 

a domain  . The MLS approximation strategy is based on the assumption that the 

approximation of  f X , denoted here as    hf X , should be most strongly influenced 

by the values at the nodes positioned in the nearest neighbourhood of the point of 

interest X . The nodes are the points that carry the values of  f X . Furthermore, the 

concept of locality is introduced, i.e., the nodes that are positioned far away from X  

should not have any influence on    hf X . The MLS approximant    hf X , which 

approximates the function  f X  in   for a set of randomly scattered points 

1, 2,....,I NX , may be written as 

        h Tf X p X a X , (3.1) 

where  p X is a vector of a basis functions,  

 T
1 2( ) ( ) ( ) ( ) ( )j mp p p p   p X X X X X   (3.2) 

Herein m stands for the total number of terms in the basis. Usually the complete 

monomial basis is used in order to ensure the consistency of the approximations, 

whereby different types of the polynomials may be used [124]. Depending on the 

problem, other types of functions may also be employed in order to enhance the 
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solutions, as in the analysis of crack propagation [125],[126]. For a 2-D space, used in 

this work, the complete monomial bases are defined as 

 Linear basis 

 T 1 2( ) 1 X X   p X , (3.3) 

 Quadratic basis 

    2 2T 1 2 1 1 2 2( ) 1 X X X X X X    
p X , (3.4) 

 etc. 

The terms of the complete 2-D basis may be obtained by employing the Pascal triangle. 

For the complete polynomial bases, the total number of terms is related to the order of 

the basis by the expression   1 2 / 2m t t    with t as the order of the basis [15]. 

Vector  a X  contains the unknown coefficients  

 T
1 2( ) ( ) ( ) ( ) ( )j ma a a a   a X X X X X   (3.5) 

which are the functions of  X , i.e. they have to be calculated for each point X . 

The values of the unknown coefficients ( ), 1, 2,...,ia i mX , at the point X  should 

be influenced only by a finite, relatively small number of the nodes, positioned in some 

local neighbourhood of X , to keep the computational costs acceptable. According to 

the terminology usually used in the MLPG methods [15], this local neighbourhood of 

X , denoted as X , is called the domain of definition of the MLS approximation for the 

point X . The vector ( )a X  is determined by means of the discrete weighted L2 norm, 

defined as 

          2

1

ˆ
n

J J J
J

J W f


 a X X p X a X , (3.6) 

where   ˆ
J Jf fX  are the function values at the nodes , 1, 2,....,J J nX , and  JW X  

stands for the weight function associated with the node JX . n denotes the total number 

of nodes in X , which may now be defined as a region that covers all those nodes 
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, 1, 2,....,J J nX , whose weight functions do not vanish at X , i.e.,   0JW X , see 

Figure 3.1. 

 

Figure 3.1 Domain of definition of MLS approximation at point X  

The minimization of   J a X  leads to the following system of equations 

 ˆ( ) ( ) ( )A X a X B X f . (3.7) 

Herein the matrix A is the so-called moment matrix, 

 
1

( ) ( ) ( )
n

T
J J J

J

W


 A X p X p X , (3.8) 

the matrix B is defined as 

 1 1 2 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )J J n nW W W W   B X p X X p X X p X X p X  , (3.9) 

and the vector f̂  contains the fictitious nodal values 

 1 2
ˆ ˆ ˆ ˆˆT

J nf f f f   f   . (3.10) 

The coefficients  a X  are evaluated by solving the equation system (3.7), leading to 

   1 ˆ( ) ( )a X A X B X f . (3.11) 

Substituting (3.11) into equation (3.1), the MLS approximation is obtained, written here 

in the form similar to that usually used in FEM as 
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      
1

ˆ
n

h
J J

J

f f


X X . (3.12) 

 J X  is the shape function associated with the node JX , which is calculated as 

   1

1

( ) ( ) ( )
m

J i i J
i

p 



   X X A X B X . (3.13) 

It should be noted that the MLS functions in general do not interpolate the given 

values at the nodes JX ,     ˆh
J Jf fX , as shown in Figure 3.2. Therefore, the nodal 

parameters ˆ
Jf  are called the fictitious nodal values.  

 

Figure 3.2 Non-interpolation character of MLS approximations:    h
Jf X  is calculated nodal function 

value and ˆJu  is nodal “fictitious” value. 

From (3.11) it is obvious that the crucial condition for the MLS approximation 

(3.13) to be well defined is the inversibility of the matrix A, i.e., A must be a non-

singular matrix. By more detailed inspection of equation (3.8), it follows that this 

condition is satisfied only if the number of nodes in X  is greater or equal than the 

number of terms in the basis vector ( )p X , i.e., it must be n m . Furthermore, the 

nodes inside X  must not be arranged so that the vectors ( ), 1, 2,...J J np X  are 

linearly independent vectors. Fortunately, for a certain order of the MLS basis, only a 

finite small number of such problematic nodal arrangements may be identified. In most 

cases, n m  ensures the inversibility of the matrix A, although this increases the 

computational costs needed for the calculation of the MLS approximation. 
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The derivatives of the shape functions  J X  may be obtained by direct 

differentiation of (3.13) as 

    1 1 1

, , , ,
1

k k k k

m

iJ X i X X XiJ iJ
i

p p   



   
  A B A B A B , (3.14) 

 

   
 

 

1 1 1

, , , , ,
1

1 1

, , ,

1 1 1 1

, , , , , ,
,

k l k l k l l

l k k

k l l k k l k l

m

J X X i X X i X X XiJ iJ
i

i X X X iJ

i X X X X X X X X iJ

p p

p

p

   



 

   

   


  

   


 A B A B A B

A B A B

A B A B A B A B

 (3.15) 

where the derivatives of 1A  are evaluated as 

 

1 1 1

, ,

1 1 1 1 1 1 1 1 1

, , , , , ,

,

.

k k

k l l k k l k l

X X

X X X X X X X X

  

        

 

  

A A A A

A A A A A A A A A A A A A A
 (3.16) 

3.2 MLS Weight functions 

The choice of the weight functions is very important because some important 

properties of the MLS approximants are inherent to the properties of its weight function. 

The chosen weight functions should posses the following properties [13]: 

  Positivity.   0JW X  over its support domain. This ensures the existence of the 

minimum of the discrete L2 norm (3.6).  

 Compact support.   0JW X  outside its support domain. The compact support 

domain of  JW X  ensures the locality of the MLS approximation, because the node 

influences    hu X  only in the points where   0JW X , according to (3.6). 

  JW X  should be monotonically decreasing function. This feature gives more 

weighting to the nodes inside X  which are closer to the point X , i.e.,  JW X  

determine the intensity of the influence of the corresponding node JX  on    hf X . 

In addition, it is desirable for  JW X  to satisfy the Kronecker delta property 

because in that case the MLS approximant itself possesses the Kronecker delta property 

[117], which simplifies the enforcement of the essential BC. This feature is not 
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obligatory, because there are many methods for enforcing the essential BC in meshless 

methods a posteriory. 

3.2.1 Choice of MLS weight functions 

Any function that satisfies the necessary requirements mentioned in the previous 

section may be used as the MLS weight function. From relations (3.8), (3.9) and (3.13) 

it is easy to prove that the support domain of the nodal shape function  J X  coincides 

with the support domain of the weight function ( )JW X . Usually the support domains 

have the simple shapes, such as circles or rectangles for 2-D cases. The choice of 

 JW X  is in most cases also responsible for the order of the continuity of    hf X .  

Popular choices for the weight functions include the Gaussian- or the spline-type 

functions, some of which are presented in [13],[15], and the references therein. 

Although both types of functions may produce results of sufficient and comparable 

quality, the improper choice of those parameters destroys the accuracy and stability of 

results. Finding the optimal values of those parameters, which would be suitable for a 

general-purpose application, is still an open question [13].  

3.2.2 Spline-type weight functions 

In this work only the 2-D spline-type weight functions with the circular support 

domain are applied. They are defined as 

   1

1 , 0 ,

0, ,

k
p

I
k I sI sI mI

I k sI

I sI mI

d
a d r h

W r

d r h




  
        
 

X  (3.17) 

where p denotes the order of the spline, ka  stands for the coefficients, I Id  X X  is 

the distance from the node IX  to the point X , while sIr  represents the radius of the 

circular support domain of  IW X . The size of sIr  is usually determined by scaling a 

characteristic nodal distance mIh  with some user-defined scaling factor sI . The 

accuracy and the stability of the MLS scheme may significantly depend on the value of 

sIr . The coefficients ka  in (3.17) are determined by means of the boundary conditions 

for the centre  
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

 (3.18) 

and the outer edges of the support domain 
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 
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1
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W d
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 



 (3.19) 

where 0 1 1p m m   . Figure 3.3 shows the shape of 4th -order spline function (3.20) 

and its derivatives.  

 

Figure 3.3 4th-order spline MLS weight function  (3.20) and its derivatives 

A very detailed analysis concerning the shapes of the nodal shape functions and their 

derivatives evaluated by employing such weight functions is available in [15]. Therein it 

is also suggested that the C2 continuous 4th-order spline function, defined by 

 

2 3 4

1 6 8 3     0
( )

0                                                       

J J J
J sJ

J sJ sJ sJ

J sJ

d d d
d r

W r r r

d r

      
                 
 

X , (3.20) 

is probably most suitable for the application in the MLPG methods.  
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3.2.3 Regularized weight functions and interpolating MLS 

(IMLS) functions 

The MLS functions employing the “common” Gaussian- and spline-type weight 

functions do not possess the Kronecker delta property at the nodes. Furthermore, for 

such functions, the interpolation error in general depends significantly on the size of the 

support domain or the shape parameters of the weight functions. In [8] Lancaster and 

Salkauskas imposed the interpolating properties on the MLS functions by employing the 

weight functions that are singular at the corresponding interpolation points. However, 

such approach leads to the singularity of the matrices A and B at the nodes, and the 

special measures are needed in meshless methods to remove those singularities [127].  

In order to avoid such complications, Most and Bucher have developed new types 

of regularized weight functions which satisfy the interpolation conditions at the nodes 

with a high accuracy [117], [128], or even mathematically exactly [129]. Analogously 

to their approach proposed in [117], [128], in this contribution the following normalized 

function 

 

1

( )
( )

( )

RJ
RJ n

RI
I

w
W

w





X

X
X




 (3.21) 

with 

 

 

 
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1

J
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RJ

d
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w

 

 







  
       

 
X . (3.22) 

is used to construct the MLS weight functions. Herein n is the total number of nodes in 

X . The regularization parameter   should be small enough to provide high accuracy, 

i.e., 1  , but at the same time large enough to avoid overflow error. Here it is 

assumed as 510  . As proved in [117], because of the regularization strategy, the 

weight function (3.22) possesses the Kronecker delta property at the nodes with a high 

accuracy, which leads to the same condition for the MLS shape function, i.e. 

  J I J I X . (3.23) 
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It has also been shown that ( )RJw X  may be used instead of ( )RJW X  as the MLS weight 

function to reduce the computational effort, because both functions yield exactly the 

same nodal MLS shape functions [117]. On the other hand, the first and second 

derivatives of the function (3.22) are not exactly zero on the boundaries of the weight 

function support domain, i.e.,   / 0RJ sJw d r d     and  2 2/ 0RJ sJw d r d    , and 

therefore ( )RJw X  is only C0 continuous. To obtain the MLS functions of a sufficiently 

high order of continuity, ( )RJw X  may be multiplied with any common weight function 

that possesses the necessary order of continuity [128]. In this contribution this has been 

accomplished by multiplying function ( )RJw X  with the spline-type function of the 4th 

order (3.20), 

 
( ) ( ),    0 ,

( )
0 ,             ,

SJ RJ J sJ
J

J sJ

w w d r
W

d r

 
  

X X
X


 (3.24) 

where ( )SJw X  is the fourth-order spline-type function (3.20). Figure 3.4 shows the 

shape of the regularized function (3.24) and of its derivatives 

 

Figure 3.4 Regularized weight function (3.24) and its derivatives 

It is also to note that the shapes of the MLS functions employing the regularized 

weight functions similar to (3.21),(3.22) or (3.24) are less dependant on the value of sJr  
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than it is the case when the “common” Gaussian- or spline-type weight functions are 

applied [117], [128], [129]. 

3.3 Properties of MLS approximations 

The MLS approximation functions have the following features, which are very 

important for their applicability in meshless methods: 

 A high order of continuity. The continuity and smoothness of the MLS 

functions theoretically depend on the orders of continuity of both the basis functions 

( ), 1, 2,...,ip i mX , and the weight functions ( )JW X . However, since usually the 

continuity of ( ), 1, 2,...,ip i mX  is higher than that of ( )JW X , a MLS approximant 

inherits the continuity order of its weight function [15]. 

 Reproducibility. The MLS functions are reproductive, since they are able to 

reproduce the functions that are comprised in their basis vector ( )p X  [13]. 

 A high order of the consistency of approximation function. The consistency 

of approximation function is defined as the ability of an approximation function to 

reproduce the complete polynomials up to a given order [13],[131]. Since the MLS 

function is a reproductive function, it immediately follows that it is also consistent. 

It may be concluded that the order of consistency of the MLS functions is equal to 

the order of completeness of its base ( )p X . The consistency of the first order 

enables the passing of the standard patch tests where the linear polynomial 

reproduction is required. 

 Partition of Unity. The MLS functions are the partitions of unity, because the 

support domains of the nodal shape functions are the overlapping sub-domains 

which cover the entire global domain, and  
1

1
n

J
J




 X  in each point of the global 

domain. This property is identical to the consistency of the zeroth order and it 

allows the MLS functions to reproduce the rigid body movement. 

 Complex analytical form. As may be seen from the procedure presented in 

Section 3.1, the evaluation of the MLS shape functions requires the inversion of the 

moment matrix A. Therefore, computational costs are considerably higher than the 

ones needed to evaluate the polynomial shape functions in FEM. Furthermore, the 

MLS shape functions have the form of a rational polynomial function, which makes 

the numerical integration in meshless methods computationally more costly than in 
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FEM. This problem is even more aggravated by the fact that the derivatives of the 

MLS functions are often not smooth over the integration domains [15]. 

 Robustness. The MLS scheme is able to approximate data over a set of 

randomly scattered points with a reasonable accuracy under the condition that all the 

influencing parameters, such as the size of the support domains of the MLS shape 

function and various shape parameters, are defined correctly. However, the 

efficiency of a meshless method employing the MLS functions may also 

significantly depend on other computational aspects, such as the accuracy of 

numerical integration or the imposition of the essential BC. Such details may also be 

influenced by the parameters of the MLS approximations and have to be taken into 

account during numerical analyses. In the literature, different approaches have been 

proposed for defining the optimal size of the support domains of the MLS weight 

function, such as those in [10],[34],[128],[130] and in the references therein. Often, 

some parametric analysis and benchmark tests are necessary prior to the numerical 

analysis of a problem to obtain information about the optimal values of the MLS 

parameters. 

3.4 Numerical implementation 

One of the mayor drawbacks in using the MLS scheme in meshless methods is the 

considerable computational time that is needed for the calculation of the MLS shape 

functions and their derivatives. The techniques described in this section are employed in 

order to cut these costs, and to increase the robustness of the MLS scheme. 

3.4.1 Concept of local coordinate system and base shifting 

Betytschko and co-workers [80],[131] introduced the concept of the so-called base-

shifting, where the basis ( )p X  is calculated with respect to the locally defined 

coordinates 

 g X X X , (3.25) 

obtained by shifting the origin of the global coordinate system to the current sample 

point gX , which is usually an integration point or a node, leading to 

 T
1 2( ) ( ) ( ) ( ) ( )j mp p p p   p X X X X X      . (3.26) 
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According to relations (3.8), (3.9) and (3.13), the shape functions may then be written as 
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 (3.27) 

Note that for gX X  it follows that 0g g g  X X X , and therefore the following 

relations always hold 
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p X

p X
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

  

  

  

 (3.28) 

which decreases the computational time needed to calculate the shape functions and 

their derivatives. Moreover, the use of the local coordinates improves the conditioning 

of the moment matrix A, as well as the accuracy of the MLS approximation, as shown 

in details in [132] for a 1-D case involving beam analysis. In this work, the local 

coordinates are additionally normalized to avoid the problems associated with the ill-

conditioning of A more efficiently, analogously to the approach used in [33],[133], as 

 
max

g

R




X X
X . (3.29) 

Herein maxR  is a distance between a current sample point gX  and the farthest node in 

the domain of definition of MLS function 
gX  

  max max
gJ g J J XR d   X X X , (3.30) 

as illustrated in Figure 3.5. The derivatives with respect to the global coordinates X   

are obtained by employing the chain derivative rule 

 
     

max

1X

X X X X R



   

  
 

   


  . (3.31) 
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Figure 3.5 Normalization of coordinates 

3.4.2 Fast derivative calculations 

Belytschko and Fleming [125] proposed the following procedure for the faster 

computations of the MLS shape functions and their derivatives. The shape function in 

(3.13) may be rewritten as 

   1( ) ( ) ( ) ( ) ( )J J J  X p X A X B X γ X B X , (3.32) 

where ( )JB X  is the Jth column of the matrix ( )B X , associated with the Jth node in X , 

and the vector ( )γ X  is determined by solving the following system of linear equations 

 ( ) ( ) ( )A X γ X p X . (3.33) 

The above system of equations may be solved by means of the LU-decomposition of the 

matrix A  and by back substitution. This is computationally less expensive than 

performing the full inversion of the matrix A  as in (3.13). The derivatives of J  may 

be obtained by differentiation of (3.32) as 

  
, , ,

( ) ( ) ( ) ( ),k k kJJ X X J X
  X γ X B X γ X B X  (3.34) 

 
 

, , , ,

, , ,

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

k l k l k l

l k k l

JJ X X X X X J X

X J X J X X

   



X γ X B X γ X B X

γ X B X γ X B X
. (3.35) 

After ( )γ X  is evaluated from (3.33), the derivatives of ( )γ X  are computed by 

successively solving the following system of equations, obtained by differentiating 

(3.33) 
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, ,

( ) ( ) ( ) ( ) ( )k kX X
 A X γ X p X A X γ X , (3.36) 

 
, , ,

, , , ,

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

k l k l k l

k l l k

X X X X X X

X X X X

  



A X γ X p X A X γ X

A X γ X A X γ X
. (3.37) 

The values of  J , 
, kJ X

  and 
, klJ X

  are obtained simply be inserting the solutions of 

(3.33), (3.36) and (3.37) into (3.32), (3.34) and (3.35), respectively. It is important to 

note that the LU-decomposition of the coefficient matrix A  has to be calculated only 

while solving (3.33). After that it is memorized and only the back substitution is needed 

for solving the systems (3.36) and (3.37). The above procedure yields exactly the same 

results as the one presented in Section 3.1, but with lesser computational cost. 
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4 The MLPG method 

 Many popular meshless methods are based on global weak forms, such as the EFG 

method, which uses congruent background cells that completely cover the solution 

domain to integrate governing equations. In many cases, the procedure for defining such 

cells is similar to the mesh creation. These methods are therefore not truly meshless. In 

contrast, the MLPG method is based on the local concept where the integration is 

performed over local sub-domains that can be defined without having to employ a 

global mesh of congruent cells. Because the MLPG method does not necessarily apply 

the background cells or meshes for either approximation or integration, it is a truly 

meshless method. 

4.1 The concept of the MLPG method 

A global domain, defined by a volume   bounded by a surface  , is discretized 

only by a set of nodes that do not have to be connected into  pre-defined elements. In 

order to develop the system of discretized equations, a local sub-domain I
s  is defined 

around each node I with the position IX , 1, 2,...I N , as shown in Figure 4.1. N is the 

total number of nodes used for discretization. A weak form of governing differential 

equations is then imposed over each of these local sub-domains by applying the Petrov-

Galerkin weighted residual method. These local sub-domains are allowed to overlap and 

may be of different shapes and sizes.  As long as they completely cover the entire global 

domain, i.e., , 1, 2,...I
s I N   , the differential equations (2.43) and 

boundary conditions (2.44) should theoretically be satisfied a posteriory in their weak 

forms. Nevertheless, it has been discovered that even if the local domains do not 

completely cover the computational domain, a high quality solution may be obtained in 

some cases [15]. In contrast to the meshless formulations based on the global weak 

forms or FEM, the local weak forms and the corresponding discretized equations are 

formed in a node-by-node fashion, and no standard assembly of the global stiffness 

matrix is needed.  

In the numerical implementation of the MLPG method, the following types of 

regions, illustrated in Figure 4.1, may be distinguished in the MLPG method: 



54    4 The MLPG method 
 

 

 Local sub-domain of the node IX , I
s . The local sub-domain I

s  represents 

the integration domain over which numerical integration is performed to obtain the 

discretized algebraic equations associated with the node IX . It has been suggested 

[15],[18] that the concept of local integration over I
s  actually acts as a relaxation 

of a strong form, and therefore, the size of I
s  should be large enough to guarantee 

the stability and accuracy of a solution. However, too large a size of I
s  may cause 

problems with the accuracy of the numerical integration, and generally lead to the 

increase of the total computational time. 

 The support of the test function for the node IX , I
t .  In this region, a test 

function associated with the node IX  is non-zero. I
t may be completely different 

from I
s , but it is a common procedure to have I I

s t   . This is done in this work, 

and therefore from now on I
s  will be synonymous with I

t . 

 The support of the nodal shape function of the node IX  ( the support of the 

node IX  ), I
tr . In this region a nodal trial shape function  J X , associated with 

the node IX  has non-zero values,   0J X . As meshless approximation functions 

are non-element functions, the connectivity between nodes is established by using 

the concept of I
tr , because the node IX  affects the approximation in all those 

points which are covered by its I
tr . For the MLS functions, I

tr  coincides with the 

support domain of the MLS weight function  JW X , as explained in Section 3.2. 

The size of I
tr  may have significant effects on the accuracy of the solution. Large 

sizes of I
tr  increase the computational time needed for the evaluation of the shape 

functions. Furthermore, the non-zero band in the coefficient matrix of the global 

system of equations becomes wider, which demands more time for solving the 

system. 

 The domain of definition of the point X This region includes all the nodes that 

influence the approximation at the point X. For the MLS function, it is a region that 

includes all nodes whose MLS weight functions do not vanish at X, as defined in 

Section 3.1. 
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 The domain of influence of the node IX , inf
I . This region covers all the nodes 

whose nodal shape functions have non-zero values over I
s  associated with the 

node IX . Such nodes produce the non-zero couplings in the discretized equations 

stemming from the local weak form defined over I
s . Consequently, the domain of 

influence of the node IX  is identical to the union of the domains of definition x  

for all points X  that belong to I I
s s  , i.e., inf ,I I I

x s s     x . 

 

Figure 4.1Regions used in MLPG method 

All above definitions are taken from [15] and have been designed mainly for the 

MLPG method. Consequently, they may be ambiguous to the terminology used in the 

literature dealing with other meshless approaches.  

Theoretically, the choice of shapes for I
s , I

t  and I
tr  is arbitrary. However, in 

order to alleviate the numerical implementation, the simple geometrical shapes are 

usually used, such as spheres, parallelepipeds, or ellipsoids, with the corresponding 

nodes positioned at their centres. 

4.2 Choice of trial and test functions 

According to the Petrov-Galerkin principle, the test and trial functions may come 

from different functional spaces. This provides great flexibility to the MLPG method 
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because new formulations may be developed by choosing appropriate test and trial 

functions. 

4.2.1 Trial functions 

Any admissible non-element function that is able to approximate the set of data on 

randomly scattered nodes may be applied in the MLPG methods. The most popular 

meshless functions used in the frame of the MLPG method include: 

 Moving Least Squares (MLS) approximation functions. These functions are 

often used in the MLPG formulations due to their good numerical features, such as 

the high order of continuity or consistency, as explained in Chapter 3. It should be 

noted that the identical functions for a given order of consistency may be derived by 

using the Reproducing Kernel Particle Method (RKPM) due to its equivalence with 

the MLS scheme in cases where the same weight or kernel functions are applied 

[15],[131].   

 The Shepard functions. The Shepard functions are actually a special case of the 

MLS approximations, obtained if the zeroth-order monomial basis is employed [15], 

i.e.,  1p . The shape functions are defined as 

    

 
1

J
J N

I
I

W

W







X

X
X

. (4.1) 

Herein  JW X  denotes the admissible chosen function associated with the J-th node 

[8],[15], and N stands for the total number of nodes used for discretization. 

 Compactly supported Radial Basis Functions (CS-RBF). A vast number of 

various radial basis functions have been proposed in the literature [9],[10]. They are 

a popular approximation tool in meshless methods because they posses the 

Kronecker delta property and relatively simple derivatives. Among them, the CS-

RBF functions are most suitable for the application in the MLPG method 

[15],[43],[45] due to their compact support, which ensures the locality. They lack 

consistency, but this can be overcome by adding polynomials into the approximation 

scheme. 

 Partition of Unity (PU). This approximation scheme is used in the Method of 

Finite Sphere [21], which may be regarded as a special variant of the MLPG 
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approach. This scheme is actually an explicit generalization of the Shepard’s 

method, in contrast to the MLS scheme, which generalizes Shepard’s method 

implicitly. The PU approximations are not very suitable for use in the MPLG 

formulations because a relatively large number of unknown nodal parameters appear 

in the global system of equations [15]. 

 Point Interpolation Method (PIM) and Radial Point Interpolation Method 

(RPIM). The MLPG methods that employ the PIM or RPIM functions are often 

called the Local Point Interpolation Method (LPIM) or the Local Radial Point 

Interpolation Method (LRPIM), respectively. These techniques, developed by G.R. 

Liu and co-workers [13], is the local least-square approximation scheme, where, in 

contrast to the MLS method [15], no weighting is used. In PIM, the basis is 

composed of polynomials, while RPIM employs radial basis functions as the basis 

functions. PIM lacks a high order of continuity due to the restrictions posed on the 

choice of the nodes that are used for the construction of the approximations at the 

sample points. On the other hand, the RPIM functions lack consistency, unless the 

complete polynomials of the required order are added to the basis consisting of the 

radial basis functions. However, both schemes are able to produce convergent 

results [13], and therefore, are attractive choices due to their relative simplicity and 

computational efficiency. 

4.2.2 Test functions 

Depending on the type of test functions, six distinct MLPG methods have been 

identified in the literature [134],[135], labelled as MLPG1 to MLPG6. Although these 

types of test functions are predominantly used in the available MLPG formulations, any 

other admissible function can also be chosen as the test function. This fact has been 

used in the presented research. As revealed in Chapters 6 and 7, the proposed solid-shell 

formulations exploit some good sides of the following two “classical” six MLPG 

methods: 

 MLPG 2. The Dirac delta functions at the nodes are applied as the test functions. 

The resulting formulations are actually collocation methods, and numerical 

integration is completely avoided. 

 MLPG 5. The Heaviside step function is used as the test function in each I
s .  

In that case the domain integral over I
s  is avoided and only the boundary integrals 



58    4 The MLPG method 
 

 

over I
s  have to be calculated. Such an approach is very attractive because the 

resulting formulations are computationally very efficient [15], especially for 2-D 

and 3-D cases. 

4.3 Imposition of the essential boundary conditions 

Many of the meshless functions do not posses the Kronecker delta properties. 

Therefore, different numerical procedures have been developed to impose the essential 

BC a posteriori. In the MLPG method the following procedures are predominantly 

used: 

 The penalty method [96]. The penalty method, detailed in Section 2.4, is simple 

to employ and does not increase the total number of unknown parameters in the 

global system of equations. However, the quality of solution may be affected by the 

value of the penalty parameter. Currently the “optimal” values of the penalty 

parameter are often defined by applying various know-how formulas [15] or by 

performing parametric analyses. 

 The modified collocation method [96]. The modified collocation method 

enforces the essential boundary conditions only at the nodes and is simple to 

implement. For example, if the essential BC are prescribed at the node IX  for the 

displacements u, the given displacement value Iu  is then enforced by setting the 

expression    h
I Iu uX  instead of the corresponding equation in the local weak 

form associated with the node IX . Herein,  hu  is the value of the displacement 

approximation at the node IX . 

 The transformation method [33],[36]. In this approach, by imposing the 

interpolation conditions at the nodes, a standard non-interpolation meshless 

approximation is rewritten so that the true function values at the nodes become new 

nodal values. By employing such transformed approximations, after discretization 

the true nodal values appear as unknown parameters in the discretized equations and 

the essential BC may be satisfied directly, as in FEM. In order to reduce the 

computational costs, the transformation may be performed only at the nodes with 

the prescribed field values. This approach is efficient in imposing the essential BC, 

but it requires more computational effort than the previously mentioned procedures.  
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In cases where a meshless approximation possesses the Kronecker delta property, 

the above-described procedures may be avoided, and the essential BC may be imposed 

directly as in FEM. A more detailed description of the above-mentioned procedures, as 

well as their applications in the frame of the MLPG method, are available in [13],[15].  

4.4 Numerical integration issues 

In the MLPG method, numerical integration is performed over the local sub-

domains s  that are associated with the nodes used for discretization, and therefore 

may be regarded as a kind of nodal integration. However, in the MLPG method, 

integration domains are allowed to overlap. Finding an efficient general algorithm for 

the numerical integration in the MLPG method is still a critical issue. Meshless 

approximations, including relatively simple Shepard’s functions, are complex non-

polynomial functions that cannot be integrated exactly by employing simple Gaussian 

formulas, and therefore, a considerable numerical error may be generated.   

Additional problems arising in the numerical integration of the local weak forms 

become more obvious by considering the local sub-domain I
s  associated with the node 

IX , as shown in Figure 4.2.  

      

Figure 4.2 Local sub-domain I
s  and its intersections with some tr  associated with nodes belonging to 

domain of influence of node IX , labelled as inf
I . 

As previously explained, only the nodes KX  that belong to the domain of influence of 

the node IX , labelled as inf
I , affect the approximation of the unknown field variables 

over I
s . In contrast to FEM, the support domains of their shape functions K

tr  do not 
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coincide with each other or with I
s , and consequently, the MLS shape functions have 

different analytical expressions at different points X  inside I
s ,  because the domains 

of definitions X  of the points X  also differ. Because of this, the derivatives of the 

MLS shape functions have very complex forms over I
s , which may cause significant 

numerical errors during integration. In the above explanations, the definitions given in 

Section 4.1 are used. More detailed discussion about the problems encountered in the 

numerical integration in the MLPG method may be found in [15], and the references 

therein. 

Generally, it is desirable to use smaller sizes of I
s   to reduce the number of 

intersections of I
s  with J

tr . In some formulations, integration is performed separately 

for each I J
s tr  , but this is a tedious procedure, especially because the integration has 

to be performed over relatively complicated geometrical shapes such as lenses 

[15],[136]. On the other hand, the integrand can be made simpler by properly choosing 

the test functions. If the Heaviside test function is employed, as in the MLPG 5 method, 

the domain integral over I
s  can by completely avoided. The shape of I

s  may also 

affect the performance of the numerical integration. The Gaussian formulas are not 

suitable for integrating the trigonometric functions, which have to be employed to 

describe the geometries of the circular or spherical I
s . This problem may be 

circumvented by defining the quadratic or hexagonal shapes for I
s  [13], albeit with the 

increase of computational costs. The spherical local sub-domains may be triangulated as 

in [45], and the obtained polyhedrons may then be used for numerical integration. 

In this work, two approaches are used for the numerical integration over I
s : 

 A direct integration over the entire I
s  by using Gaussian formulas. This 

stratagem is popular due to its simplicity, especially where the integrands are 

relatively simple, as in the case of MLPG 1 and MLPG 5 methods.  In the Method 

of Finite Spheres [21], the integration over a circular I
s  is performed by means of 

the special cubature rule for annular sectors, where the Gauss-Legendre and Gauss-

Chebyshev rules are applied in the circular and radial directions, respectively. 

Mazzia et al. [137] compared the performances of various Gaussian rules in the 

MLPG method and concluded that in all cases a relatively large number of 
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quadrature points is needed to obtain high accuracy. In this work, the integration 

over a circular I
s  was performed by employing the 2-D Gauss-Legendre rule. 

 A partition of I
s . I

s  is partitioned into a sufficient number of smaller parts 

and the numerical integration is then performed over these parts by using a small 

number of quadrature points. It is shown in [15],[36] that such an approach yields 

more accurate results than by performing the integration over the entire I
s  using a 

large number of Gaussian points. The partition of I
s  is especially useful when 

integrands are complicated. Some special “engineering” solutions, developed for the 

circular I
s  in the MFS method [21],[136], may also be regarded as a variant of 

such strategy. They employ the mid-point quadrature rules for the local sub-domains 

that intersect the global boundary.  The rectangular sub-domains may also be 

partitioned for better accuracy, as in [13]. In this work, four parts were used for the 

integration over the rectangular I
s . 
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5 MLPG solid-shell concept 

5.1 Strong formulation of problem and representation 

of shell-like continuum 

The stationary state of a linear elastic shell is examined, considered here as a 3-D 

solid continuum represented by the global domain  , as illustrated in Figure 5.1. The 

well-known 3-D equilibrium equations for the static case, written here in the global 

Cartesian coordinate system as 

 
,

0, inj iij X
σ b   , (2.42) 

represent the strong form of the governing equations. In the above equation, ijσ  stands 

for the stress tensor and jb  denotes the body force vector, both defined in the global 

Cartesian coordinates.   is bounded by the global boundary  , u t    , on which 

the following boundary conditions (BC) are prescribed  

 , oni i uu u  , (5.1) 

 , oni ij j i tt n t   . (5.2) 

Herein u  and t  are the parts of   with the prescribed displacements iu  and surface 

tractions it , respectively, while jn  denotes the direction cosines of the unit outward 

normal vector to  .  

The geometry of the shell is defined by describing the geometry of its middle 

surface according to relations (2.3) and (2.4), given in Section 2.1.1. The middle surface 

is parameterized by employing the curvilinear coordinates  , or by using the 

normalized curvilinear coordinates  . The covariant metric vectors iG  or iG


 may 

then be calculated according to (2.8) or (2.18), respectively. In the following, the 

procedure for deriving the weak forms of the governing equations is described for the 

coordinate set  1 2 3, ,   , but it is also directly applicable for the normalized 

coordinates  1 2 3, ,   .  
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Figure 5.1 Parameterization and discretization of numerical model 

By employing the above described parameterization technique, the continuum is 

mapped into the parametric space  1 2 3, ,   . According to the solid-shell concept, the 

shell is then represented by a set of the node couples 1,2,...,I N  in the parametric 

space. The nodes  I u  and  I l  which form one node couple are positioned on the 

upper and lower shell surface, respectively. These nodes lay on the same fibre in the 

direction of the normal vector to the shell middle surface, i.e., in the direction 

orthogonal to the 1 2,  -plane, and their respective position vectors in the global 

Cartesian system are  I uX  and  I lX . N  stands for the total number of the node couples 

used for discretization. All approximations are performed in the parametric space and 
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consequently, all approximated variables appearing in the governing equations are the 

functions of the parametric coordinates k , i.e.  k
ij ijσ σ  . For simplicity, from this 

point on the arguments are omitted unless necessary for clear understanding. 

In order to obtain the solutions of the equations (2.42), (5.1) and (5.2), the local 

weighted residual method (WRM) described in Section 2.4.1 is implemented. For that 

purpose, the local sub-domains represented by the volumes , 1,2,..., ,I
s I N   are 

defined around each node couple , 1,2,..., ,I I N  in the parametric space. The local 

sub-domains are positioned inside the global domain, .I
s   As explained in Chapter 

4, they could be of any shape and size and they are allowed to overlap each other. For 

simplicity, the local sub-domains used in this work have the shapes of circular cylinders 

or parallelepipeds in the parametric space, and their vertical axes are parallel to the 3 -

direction, as shown in Figure 5.1. The node couples and their corresponding local sub-

domains are mapped back to the global Cartesian coordinate system by means of the 

metric vectors  iG , as explained in Section 2.1.1. 

5.2 Local weak form of governing equations 

According to the local WRM, a local weak form (LWF) of the equilibrium 

equations (2.42), defined over a local sub-domain , 1,2,...,I
s I N  , has the following 

form 

  ,
d ( ) d 0j

I I
s su

i i i i iij X
v b v u u 

 

      . (5.3) 

Herein, iv  denotes a set of some admissible test functions, while the stresses ij  are the 

functions of the unknown field variables, which are approximated by employing 

meshless trial functions. Note that all variables in (5.3) are defined in the global 

Cartesian coordinate system. As many of the meshless approximation functions do not 

posses the Kronecker delta property, for generality a constrained local WRM employing 

the penalty method according to (2.52) is used in (5.3) to enforce the essential BC, with 

1   as the penalty parameter. The essential BC for the static problems considered 

here are the prescribed displacements (5.1). su  is the part of the local boundary I
s , 

bounding I
s , which coincides with u , I I

su s u    . However, it is important to 
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note that if a trial function owns the Kronecker delta property, the penalty term may be 

omitted and the essential BC can be imposed directly like in FEM. 

Employing the following identity for taking the derivative of a product 

  , ,,
j jji i ij ijij X i XX

v v v    , (5.4) 

the first integral term over I
s  in LWF (5.3) is rewritten as follows 

    , ,,
d d d dj jj

I I I I
s s s s

i i i ij ij iij X i XX
v b v v b  

   

         . (5.5) 

Using the divergence theorem, the first term on the right-hand side in (5.5) may be 

transformed into the surface integral over I
s  as 

  
,

d d
j

I I
s s

i ij j i ijX
v n v 

 

    . (5.6) 

Inserting (5.5) and (5.6) into (5.3), LWF for the node couple I now reads as 

 
,

d d d ( )d 0j

I I I I
s s s su

ij j i ij i i i i ii X
v n v v b v u u  

   

          . (5.7) 

Note that in the last expression the continuity requirement for the test function is higher 

than in relation (5.3) so that now iv  have to be C0 continuous. On the other hand, the 

condition for the continuity of the trial functions needed for the evaluation of ij  is 

lower by one degree. The local boundary I
s  can be split into three parts 

 , ,I I I I I I I I
s s st su st t s su u sL            , (5.8) 

where I
sL  is the part of I

s  which is entirely inside  , while I
st  is the part of I

s  

which coincides with t , i.e., the part of   with the prescribed traction surface 

boundary conditions. Taking into account (2.38), it follows that i j ijt n   everywhere 

on I
s , and specifically i it t  on st ,  according to (5.2) and (5.8). Consequently, 

LSW (5.7) may be transformed into  
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,
d d d d

d d d 0.

j

I I I I
s s su su

I I I
s st su

ij i j ij i j ij i ii X
L

i i i i i i

v v n v n v u

v b v t v u

   



  

  

       

    

   

  
 (5.9) 

As the traction surface BC (5.2) are included in LWF (5.9), they are the natural BC.  

According to the Petrov-Galerkin approach, the test and trial functions may come 

from different functional spaces. It means that theoretically any of the functions 

satisfying the C0 continuity may be employed as the test function. In the MLPG method, 

usually the known functions, such as the MLS weight functions given in the Section 3.2, 

or the MLS shape functions (3.13), are used. However, it is to note that if the test 

functions iv  are some known functions, then relation (5.9) yields only one equation per 

node couple.  

As explained in [41],[42], in the systems of equations of the purely displacement 3-

D solid formulations the unknown variables are three displacement components. 

Therefore, three linearly independent sets of the test functions have to be used to obtain 

the needed three discretized equations per each node. The analogous stratagem is 

employed here, leading to  

 

,
d d d d

d d d 0.

j

I I I I
s s su su

I I I
s st su

ij ki j ij ki j ij ki iki X
L

ki i ki i ki i

v v n v n v u

v b v t v u

   



  

  

      

    

   

  
 (5.10) 

Herein kiv  denotes the kth set of equations. For simplicity, they are formed by choosing 

the test functions sets such that 

  j
ki kiv v  , (5.11) 

where ki  is the Kronecker delta symbol from (2.10) and ( )jv   denotes an arbitrary 

admissible test function. Inserting the test function set (5.11) into (5.10), LWF yields 

the following expression 

 

,
d d d d

d d d 0.

j

I I I I
s s su su

I I I
s st su

kj j kj j kj kX
L

k k k

v v n v n vu

vb v t vu

   



  

  

      

     

   

  
 (5.12) 
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It is important to note that in (5.12) the stresses ij  may actually be the functions 

of a set of unknown independent field variables, such as various displacement, strain or 

even stress components, which are then approximated by employing various meshless 

trial functions. Different approaches lead to different displacement-based or mixed 

meshless formulations. Accordingly, equation (5.12) serves as the starting point for 

developing all the MLPG formulations presented in this work, regardless on whether a 

mixed or purely displacement-based approach is adopted for their development. 

5.2.1 Test functions that are linear in thickness direction 

and corresponding LWF 

In the solid-shell formulations employing the linear displacement distribution 

across the thickness according to (2.20) or (2.21), each node possesses three unknown 

displacement variables. As in the proposed approach two nodes belonging to the same 

node couple share the same local sub-domain, six independent equations per each local 

sub-domain are needed to close the global system of equations. This may be easily 

achieved by assuming that the function  kv   is a linear combination of two 

independent functions  1
kv   and  2

kv   

      1 1 2 2 1 2, ,k k kv c v c v c c      , (5.13) 

where 1c  and 2c  are arbitrary chosen non-zero real constants. The functions  1
kv   and 

 2
kv   are defined as the products of two functions, analogously to the displacement 

trial functions, as 

            3 3
1 1 1 2 2 2,k kv f g v f g        . (5.14) 

Herein,  f 
   are some admissible arbitrary functions of in-plane coordinates  . In 

order to cut the computational costs, in this work it is chosen as the Heaviside function 

    1 2

1,

0,

I I
s s
I I
s s

f f


 



 


  

  
 

, (5.15) 
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 while  3g   are linear polynomials in the thickness directions. Again, analogously to 

the displacement field, they may be chosen as 

     3 3 3
1 21,g g     (5.16) 

or as the linear functions from (2.2) 

        
3 3

3 1 3 3 2 3
1 2

1 1
,

2 2
g g

h h

            . (5.17) 

It should be noted that in most cases identical results are obtained for both (5.16) and 

(5.17). However, the functions defined by (5.17) are appropriate if the essential BC are 

to be enforced on the upper or lower structure surface by means of the penalty method, 

in which case the use of (5.16) may lead to the ill-conditioned global stiffness matrix 

and erroneous results. On the other hand, LWF are somewhat simpler and 

computationally less demanding if functions (5.16) are used. Therefore, LWF for the 

formulations presented in this contribution are derived by employing (5.16). 

Inserting the test function set (5.13) and (5.14) into (5.12), the following form of 

LWF may be obtained 

 

1 1 1 11,

1 1 1

2 2 2 22,

2 2 2

d d d d

d d d

d d d d

d d d

j

I I I I
s s su su

I I I
s st su

j

I I I I
s s su su

I I
s st s

kj j kj j kj kX
L

k k k

kj j kj j kj kX
L

k k k

c v v n v n v u

v b v t v u

c v v n v n v u

v b v t v u

   



   



  

  

  

  


       




     



       



    

   

  

   

  0.
I
u







 (5.18) 

This expression has to hold for all choices of 1c  and 2c , which yields the following 

system of six governing equations for each  I
s  

 

1 1 11,

1 1 1

d d d d

d d d ,

j

I I I I
s s su su

I I I
s st su

kj j kj j kj kX
L

k k k

v v n v n v u

v b v t v u

   



  

  

       

   

   

  
 (5.19) 
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2 2 22,

2 2 2

d d d d

d d d .

j

I I I I
s s su su

I I I
s st su

kj j kj j kj kX
L

k k k

v v n v n v u

v b v t v u

   



  

  

      

   

   

  
 (5.20) 

5.2.1.1 LWF for purely displacement-based solid-shell approach 

In the purely displacement-based numerical formulations, the displacement field 

appears as the only unknown independent field. Such numerical methods are sometimes 

called the primal methods [40]. In the case of the small strain theory and for linear 

elastic materials, it is possible to calculate the stresses in the global Cartesian coordinate 

system by inserting the 3-D kinematic relations (2.27) into the constitutive relations 

(2.29) as 

  , ,

1

2
l kij ijkl kl ijkl k X l X

C C u u    . (5.21) 

After inserting (5.21) into relations (5.19) and (5.20), the following LWF  for each I
s  

is obtained in terms of displacements as  

 

   

 

1 1, , , , ,

1 1, ,

1 1 1

1 1
d d

2 2

1
d d

2

d d d ,

j l k l k

I I
s s

l k

I I
su su

I I I
s st su

ijkl j ijklX k X l X k X l X
L

j ijkl kk X l X

k k k

v C u u v n C u u

v n C u u v u

v b v t v u







 

  

    

     

   

 

 

  

 (5.22) 
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 

2 2, , , , ,

2 2, ,

2 2 2

1 1
d d

2 2

1
d d

2

d d d .

j l k l k

I I
s s

l k

I I
su su

I I I
s st su

ijkl j ijklX k X l X k X l X
L

j ijkl kk X l X

k k k

v C u u v n C u u

v n C u u v u

v b v t v u







 

  

    

     

   

 

 

  

 (5.23) 

Since the highest-order derivatives appearing under the integrals are of the first order 

for both the test and trial functions, both of them have to be C0 continuous functions, 

and therefore the last expression is sometimes called the local symmetric weak form 

(LSWF) [15].  
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5.3 Primal solid-shell MLPG approach and locking 

effects 

Various pathological numerical phenomena commonly known as the locking 

effects usually plague the primal algorithms for the numerical analysis of shell-like 

structures. In FEM, these unwanted phenomena usually manifest as the overly stiff 

deformation response of the numerical model, or may cause the numerical instabilities 

during the solution procedure [3],[6],[63],[81],[86],[93],[102],[107]. Herein, the origins 

of Poisson’s thickness locking and transversal shear locking are exposed by considering 

the behaviour of the solid-shell MLPG formulations in the bending state. 

5.3.1 The Poisson’s thickness locking effect 

For the shell-like structures subjected to the pure bending state, the normal stress 

component 33  in the thickness direction, i.e. in the direction 3 , vanishes [3], 

[93],[138],[139]. However, in the primal numerical solid-shell approaches with the 

linear distribution of displacements in the thickness direction, the constant normal strain 

33  is predicted, which leads to the non-zero approximation of 33  across the thickness. 

Consequently, the deformation response of the structure is too stiff. Such behaviour is 

called Poisson’s thickness locking. 

In order to better illustrate this unwanted numerical effect, the reasoning analogous 

to the one presented in [138] for the solid-shell finite elements is applied here. Consider 

a thin rectangular plate subjected to pure bending, according to Figure 5.2. The true 

stress state for such case is 

 3
12 23 13 22 33 11 3

12
0, .

M
X

h
             (5.24) 

It is obvious from the above equation that the normal in-plane stress 11  should be 

distributed linearly over the thickness. For the linear elastic isotropic material the 

corresponding true state of strains may be obtained by employing the constitutive 

relations (2.29), (2.34) and (2.35) 

 
12 23 13

11
11 22 11 11 33 11 11

0,

, , .
v v

E E E

  
      

  

        
 (5.25) 
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It is to note that, according to (5.25), the normal strains 33  should be linear across the 

thickness, as shown in Figure 5.2 b). According to such distribution of 33 , the total 

length of normal fibre remains the same, but on the one side of the plate middle surface, 

it becomes shorter, while on the opposite side it streches for the same amount of length.  

 

Figure 5.2 Rectangular plate subjected to pure bending: a) boundary condition b) true strain and stress 

states, c) predicted strain and stress states. 

In the standard primal solid-shell approach the displacements are approximated linearly 

in the thickness direction, as in (2.20) or (2.21). Taking into account that for the 

rectangular plates k kX  , the displacement field may be written as 

      3
(0) (1)

jX X X X  u u u  (5.26) 

and corresponding strains are evaluated according to (2.27) as 
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      1
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i k j k

k
ij j i

u X u X
X

X X

  
   
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 (5.27) 

This leads to the following prediction for the normal strains 
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 (5.28) 

Employing the constitutive relations (2.29), (2.34) and (2.35), the normal stresses 

computed from the strains are 
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 (5.29) 

It is clear from the first two expressions in (5.28) that the adequate linear 

distribution of 11  and 22  across the thickness may be predicted. However, 33  may 

assume only constant values over the thickness. Therefore, it must hold that 33 0   if 

the total length of the normal fibre is to remain unchanged. Consequently, due to the 

coupling of 33  with the linear in-plane components   for 0  , the third expression 

in (5.29) yields 33  that is linear in the thickness direction instead of being 33 0  . 

This distribution of 33  leads to the erroneous structure response, which is commonly 

called the Poisson’s thickness locking effect. The analogous effect occurs in the curved 

shell structures, but then the more complicated metrics of such structures must be taken 

into account [93]. It is to note that Poisson’s thickness locking arises only if 0  . It 

does not depend on the structure dimensions, and therefore it is present in both thin and 

thick shell-like structure. 

Various ways to eliminate this unwanted numerical phenomenon are known in 

FEM [3], [93], [95]. However, not all of them are directly applicable in the MLPG 
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method. In this work, the hierarchical quadratic interpolation [93],[139] for the 

transversal displacement component 3u  in the thickness direction is implemented in the 

purely-displacement formulations, while the various novel approaches are developed for 

the mixed MLPG approach, as explained in details in Chapters 6 and 7. 

5.4 Transversal shear locking effect 

The transversal shear locking effect appears in the numerical formulations that are 

unable to satisfy the zero transversal shear strain condition in pure bending mode. As a 

result parasitic transversal shear strains appear, causing erroneous deformation response 

of the discretized numerical models. The intensity of this effect depends on the structure 

length-to-thickness ratio and increases as the structure becomes thinner.  

The existence of the transversal shear locking effect has been detected in a number 

of meshless methods. In [103], Li and co-workers tried to reveal the origin of the shear 

locking effect in the primal MLPG solid-shell formulations from the theoretical point of 

view. By considering the MLS trial functions as polynomial functions in the 

neighbourhood of each point, they show that the shear locking appears because the 

displacement approximations are unable to fulfil the Kirchoff-Love assumptions in the 

thin plate limit. In this contribution, the problem of transversal shear locking is 

reviewed by partially reiterating the proof presented in [103], but without introducing 

any simplifications considering the MLS trial functions. 

 

Figure 5.3 Rectangular plate subjected to pure bending. Local sub-domain for internal node I. 

A rectangular plate subjected to the pure bending state as shown in Figure 5.3 is 

considered, where k kX  . The global Cartesian coordinate system with the unit 
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vectors ie  is attached to the plate so that the plate middle surface coincides with the 

1 2,X X -plane, while the coordinate axis 3X  is in the thickness direction. 

For simplicity the following restrictions are introduced, which however do not 

cause any loss of generality: 

 The value of the Poisson’s coefficient is set to zero, i.e., 0  , to avoid the 

Poisson’s thickness effect. 

 The displacement field is assumed in the form as in (2.21), 

      3
(0) (1)

jX X X X  u u u , (5.26) 

where (0)u  and (1)u  are approximated by employing the same C1 continuous MLS 

functions. 

 In order to avoid the influence of the applied boundary conditions, the LWF for 

the internal node I, whose local sub-domain I
s  does not intersect the plate side 

edges, is analyzed. According to (5.8), in such case it may be written that 

 I I
su s u    , (5.30) 

Because the essential and non-zero natural BC are prescribed only on the side edges 

of the plate, on the upper and lower plate surface the prescribed surface tractions 

have zero values. Consequently, the following statement holds, 

 0 on I I I I
i i ij i st s t s st n t            , (5.31) 

where I
s
  and I

s
  are the parts of I

s  that coincide with the upper and lower 

plate surface, respectively, as shown in Figure 5.3.  

 Body forces are neglected, 0ib  . 

 The side surfaces of I
s , denoted here as I

sL , are perpendicular to the 1 2,X X -

plane, and it holds that 3 0n   for the outward unit normal vector on I
sL . 

 The test functions are defined by employing (5.15) and (5.16), leading to 

    
3

1 2

1, ,
, .

0, 0,

I I I I
k ks s s s

I I I I
s s s s

X X X
v X v X

X X

 

 

    
  

    
 (5.32) 
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By employing the test functions (5.32) in LSWF (5.22) and (5.23), and taking into 

account the above mentioned assumptions, it may be easily proved that LWF for I
s  

associated with the internal node I assumes the following form 

  , ,

1
d 0,

2
l k

I
s

k l
i kl X X

L

n C u u      (5.33) 

    3 3

, , , , ,

1 1
d d 0.

2 2
j l k l k

I I
s s

k l k l
ijkl j ijklX X X X X

L

X C u u X n C u u


       (5.34) 

By recalling the constitutive relations (5.21), and by noting that the integration over the 

thickness may be performed separately, expressions (5.33) and (5.34) may be written as 

  
0

2
3

0, ,

2

1
d d d 0,

2
l k

I I
s s

h

k l
i i kl X X

hL L

n n C u u X   


        (5.35) 
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 (5.36) 

where  
0

0d
I
s

  denotes the integral over the intersection between I
s  and the 

1 2,X X -plane, i.e., 1 2
0 , -planeI I

s s X X    , while  
0

0d
I
sL

  is the integral over the 

intersection between I
s  and the 1 2,X X -plane, i.e., 1 2

0 , -planeI I
s sL X X   . The 

intersections 0
I
sL  and 0

I
s  are illustrated in Figure 5.3. Inserting the displacement 

approximation (5.26) into (5.35) and (5.36), and after integrating over the thickness, the 

following expressions may be easily obtained 

            
0

3 3
3 33 01 10 , 0 , 0 ,

1
d 0,

2I
s

i i iX X X
L

h n C u u C u u C u  
  

   
          (5.37) 
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  

  

 
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  
 



      

        




 (5.38) 

According to (2.34) and (2.35), in the material tensor for the linear isotropic Hookean 

material only the terms 1111C , 2222C , 3333C , 1212 2112 1221C C C  , 1313 3113 1331C C C   and 

2323 2332 3223C C C   will be the non-zero terms if 0  . After expansion with respect to 

free index i, the relations (5.37) and (5.38) then yield the following set of equations 
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 (5.39) 
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 (5.40) 

By inspecting (5.35) it is obvious that (5.39) represents the weak form of the three 

equilibrium equations over the 0
I
sL  in the direction of the global Cartesian axes, which 

are written in terms of the plate stress resultant over I
s . On the other hand, from 

(5.36) it is clear that the first two equations in (5.40) may be interpreted as the moment 

equations in the directions of the global Cartesian axes. The first terms in these 

expressions represent the moments of the in-plane stresses over I
s  with respect to the 
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axes 1X  and 2X . From (5.40) it may be seen that these moments are caused by the 

bending strains  b
 , which are defined as 

  
    1 , 1 ,

1

2
b

X X
u u 
 

   . (5.41) 

The second integral terms in the first two equations in (5.40) are the contributions 

from the transversal shear stress components over I
s . The third relation in (5.40) may 

be perceived as just another independent equilibrium equation in the thickness direction, 

which takes into account the effect of the transversal normal component 33  over I
s . 

For the case considered, this equation may be decoupled from the equation set (5.39) 

and (5.40), and be solved separately for  
3
1u .  

Obviously, the first integrands in relations (5.40) produce the terms of the type 3h , 

while the second terms are dependant on h . It means that the contribution of the in-

plane stresses in the moment equations will weaken very quickly if 0h  , while at the 

same time the influence of the transversal shear stresses will be more pronounced. In 

other words, the inner mechanism inside I
s  for resisting the bending surface traction 

moments acting over I
s  is driven by transversal shear strains 3 . It becomes too 

strong in the thin structures and causes the overly stiff bending response. 

As already mentioned, in the case of pure bending the transversal shear strains 

should be zero. From (5.40) it is clear that the zero transversal shear stress condition 

will surely be exactly satisfied only if 

    
3

1 0 ,X
u u 
    (5.42) 

everywhere in I
s . As  1u  describes the rotations, according to (2.22), relation (5.42) 

represents the Kirchhoff-Love plate theory hypothesis.  

The first two equations in (5.40) may be rewritten as 

 
         

         

1

0 0

2

0 0

3 1
1 0 1313 121 , 1 , 0 ,

3 2
2 0 2323 121 , 1 , 0 ,

1 12
d 0,

2

1 12
d 0.

2

I I
s s

I I
s s

X X X
L

X X X
L

n C u u C u u
h

n C u u C u u
h

 

 

 
 

 
 





            

            

 

 
 (5.43) 
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In the thin limit, i.e., 0h   and consequently 21/ 0h  .  In that case, the terms in the 

global stiffness coefficient matrix that arise from the second integrals in (5.43) may 

become much bigger than those stemming from the first integrals if the transversal shear 

strains are not zero.  This causes the ill-conditioning of the global stiffness matrix, as 

confirmed by numerical experiments. If the transversal shear strains, and consequently 

the second integrands in (5.43), are not zero, then one way to avoid such problems is to 

set the bending strains to zero, 

  
    1 , 1 ,

1
0

2
b

X X
u u 
 

    , (5.44) 

which is of course contrary to what happens in the bending dominated cases. As noticed 

in [103], the condition from (5.44) could be achieved by letting  1 ,
0

X
u 
   when 

0h  . However, this means the constant rotations over I
s , which is not the case in 

the bending state. 

From the above discussion, it is to conclude that the purely-displacement solid-

shell MLPG formulation will suffer from transversal shear locking unless the condition 

(5.42) is met in the thin plate limit. However, since meshless approximations are 

complicated non-polynomial functions, it seems that it is not possible to satisfy this 

condition exactly if both  1u  and  
3
0u  are approximated directly. 

Nevertheless, it is known from the available literature that one simple way to 

alleviate transversal shear locking in the primal meshless algorithms is the raising of the 

order of the trial functions, and therefore such approach is applied in this work. Another 

strategy for eliminating this unwanted numerical phenomenon is by devising 

appropriate mixed formulations, as presented in Chapter 7. 
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6 Primal MLPG formulations for thick plates 

and shells 

In the purely displacement-based or primal numerical approximations, only the 

displacements appear as the independent variables. In this chapter, two different primal 

MLPG solid-shell formulations are presented. As shown in Section 5.3, the primal 

MLPG formulations are plagued by different locking phenomena. The Poisson’s 

thickness locking effect, which appears regardless of the structure dimensions, is 

circumvented in the proposed algorithms by means of the hierarchical quadratic 

interpolation scheme described in Section 6.1. The first formulation outlined in Section 

6.3 employs collocation procedures beside the local weak forms, as proposed in 

[140],[141]. In the second formulation, exposed in Section 6.4, the closed system of 

governing equation in the weak form is obtained by applying the test functions that are 

quadratic in the thickness direction, as in [142]. Due to their sensitivity to transversal 

shear locking, the proposed formulations are suitable mainly for the analysis of thick 

plates and shells.  

6.1 Elimination of Poisson’s thickness locking effect 

in primal MLPG formulations 

By assuming the quadratic hierarchical distribution over the thickness for the 

transversal displacement component 3u , as proposed in [93], the displacement vector is 

written in the local curvilinear coordinates associated with the middle surface as 

          
 

 3
0 1

3

0

0j k
ku        

 

 
 

        
 
  

u A u u . (6.1) 

Herein    0 0
k

ku u A  and    1 1
k

ku u A  are the displacement parameters associated with 

the shell middle surface and defined analogously to (2.22). Metric vectors 

 3 0k k  A G  are illustrated in Figure 6.1 and may be calculated from (2.5) and 
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(2.7). The function  3   describes the quadratic hierarchical interpolation of the 

transversal displacement component 3u as illustrated in Figure 6.1 and is defined by 

  
23

3 1
1

2 0.5h

 
  

   
   

, (6.2) 

while     is the scalar parameter associated with the quadratic term  3  .  

 

Figure 6.1 Hierarchical quadratic interpolation for transversal displacement component. 

From (2.23) it is clear that the quadratic interpolation of  3u  yields the linear 

distribution of the normal transversal strain component 33  across the thickness, which 

is necessary for the elimination of the Poisson’s thickness locking effect. By applying 

the vector transformation rules (2.16) and after some additional manipulation, the 

displacement field in the global Cartesian coordinate system assumes the following 

matrix from 
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, (6.3) 
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where         0 0 / 2k
k u lu  u e u u  and         1 1 /k

k u lu h  u e u u  according to (2.22). 

Herein    
k

ku uuu e  and    
k

kl luu e  are the displacement vectors on the upper and lower 

surfaces, respectively. The matrix  3Ψ  describes the displacement interpolation in 

the shell thickness direction as 

  
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3

3 3

3 3

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0


 

  
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 
  

Ψ . (6.4) 

The matrix    3, 0    T J , where J  is the Jacobian matrix defined as to (2.14), 

stands for the transformation matrix from the curvilinear coordinates associated with the 

middle surface to the global Cartesian coordinate system. According to relation (6.3), 

the interpolation over the thickness is performed separately from the approximations in 

the in-plane directions  . 

6.2 Discretization and approximation of field variables 

The continuum is discretized in the parametric coordinate space by the node 

couples, as explained in Section 5.1. In order to construct the local weak forms, the 

local sub-domain that has the cylindrical shape in the parametric space is defined 

around each node couple, as shown in Figure 6.2.  

 

Figure 6.2 Discretization of shell continuum for primal MLPG formulations 

The variables  0u ,  1u  and   are approximated in the in-plane directions   by 

employing the same MLS functions, where the 4th-order spline from (3.20) is used as 

the weight function. The discretized forms for  0u ,  1u  and   are  
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                   0 0 1 1
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J J J JJ J
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  

    u u u u ,      (6.5) 

where   , 1, 2,...,J J n    stands for the MLS shape functions associated with the 

nodes positioned inside the domain of definition of the sample point  , denoted as 


 , and  0

ˆ
Ju ,  1

ˆ
Ju  and ˆ

J  are the corresponding fictitious nodal values. n is the total 

number of nodes in 
 . The shape function  J

   is calculated according to 

procedures in Chapter 3 by employing the parametric coordinates   instead of X  . 

The more detailed description of this scheme is available in [142]. 

By using the approximation (6.5), the displacement field (6.3) may be expressed as 

  
1

ˆ( )
n

i i
J J

J

 


u Φ u . (6.6) 

Herein ( )i
J Φ  describes the 3-D nodal shape functions associated with the Jth node in 


 , and has the following form 
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The vector ˆ Ju  is the vector of the nodal unknown parameters, defined as 

      T T
T 1 2 3 1 2 3

(0) (0) (0) (1) (1) (1)0 1
ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ .J J J J J J J J JJ J u u u u u u         

u u u  (6.8) 

It should be noted that the applied MLS shape functions do not possess the Kronecker 

Delta property, meaning that ˆ Ju  in (6.8) are the fictitious and not the true nodal values 

of the trial function  iu . 

By employing the discretized displacements (6.6) to calculate the strain 

components according to (2.27), the complete discretized 3-D strain tensor may be 

written in the matrix form as 
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 k k
1 1

ˆ ˆ
n n

J J J J
J J 

   ε D u D Φ u B u , (6.9) 

where ε  and kD  stand for the 3-D strain vector and the 3-D kinematic differential 

operator in the global Cartesian system, respectively, and are defined analogously to the 

general matrix forms given in (2.24) to (2.26). The matrix JB represents the strain-

displacement matrix, written in detail as 
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 (6.10) 

Herein 1
piJ   denotes the terms of the inverse Jacobian matrix from (2.15),  while  1

kX  

stands for the components of the shell director   31 X G . 

Using the generalized Hooke’s law for the isotropic linear elastic material, defined 

by relations (2.29), (2.34) and (2.35), the stress tensor components may be expressed as 

 
1 1

ˆ ˆ
n n

J J J J
J J 

   σ Dε D B u DB u  (6.11) 

with D  as the 3-D stress-strain matrix in the global Cartesian coordinate system defined 

as explained in Section 2.2. Relation (2.39) yields the surface traction vector 

k
ktt e over the local boundary I

s  as 
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1 1

ˆ ˆ
n n

J J J J
J J 

   t Nσ N DB u N DB u , (6.12) 

where N represents the matrix from (2.40) that contains the components of the outward 

unit normal vector i inn e  to I
s . 

It is important to note that the deformation responses over the shell thickness are 

described by seven independent variables, including  0
ku ,  1

ku  and  , according to 

relations (6.1)-(6.3). Consequently, after performing the discretization of the field 

variables, seven unknown nodal parameters associated with each node couple appear, as 

shown by (6.8). However, LSWF (5.22)-(5.23) contains only six equations per local 

sub-domain, which result in an undetermined system of equations on the global level. In 

the next two sections, two different ways for obtaining the closed systems of equations 

are presented. The first one employs the collocation approach at the nodes to obtain the 

additional necessary equations, while in the second one, the test functions that are 

quadratic in the thickness direction are applied in LWF (5.10). 

6.3 Collocation approach 

In order to obtain the discretized set of equations, LSWF (5.22)-(5.23) are derived 

over the cylindrical local sub-domains , 1, 2, ,I
s I N    that surround the node couples 

, 1, 2, ,I I N   by performing the procedure presented in Section 5.2.1.1. Herein N is 

the total number of the nodes used for the discretization of the shell continuum. For 

each I
s , the test functions 1v  and 2v  with the circular support domains in the 1 2  -

plane of the parametric space are constructed by using (5.15) and (5.16) as 

    
3

1 2

1, 0 , 0
,

0, 0,
I tIk k I tI

I tI I tI

d R d R
v v

d R d R


 

    
    

. (6.13) 

where tIR  is the radius of the test function support domain, and I Id      is the 

distance between the node I and the sample point   calculated in the parametric space. 

Employing the test functions (6.13) in (5.22) and (5.23) leads to the following 

LSWF for each I
s  
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 (6.15) 

To obtain the additional equation for each node couple, the equilibrium is enforced 

at the points    1 2
0 , ,0 , 1, 2, ,I

I I I N  X X  . These points are located on the middle 

surface between the nodes that form a node couple, as shown in Figure 6.3.  

 

Figure 6.3 Collocation points for primal MLPG formulation 

For that purpose, the collocation procedure is employed by using the Dirac’s delta 

function   0
I X X  as the test function in LWF (5.3), which leads to 

      0 0,
0j

I I
iij X

σ b X X . (6.16) 

The three equilibrium equations (6.16) are then summed up in order to form one 

additional equation per local sub-domain as 

      
3

0 0,
1

0, 1, 2, ,j

I I
iij X

i

σ b I N


     X X  . (6.17) 
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Note that the essential BC are not enforced explicitly in the above expression, because 

the collocation point may always be moved away from the boundary with the prescribed 

displacements for some very small distance. 

Relations (6.14), (6.15) and (6.17) together represent a system of seven governing 

equations for each nodal couple, which yields a closed system of equations on the 

global level. 

By means of (6.6), (6.9), (6.11) and (6.12), the governing equations (6.14), (6.15) 

and (6.17) may be transformed into the following discretized set of linear equations 

 1

ˆd d d

d d d ,
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s su su

I I I
s st su
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
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 (6.18) 

T 3 3 3

1

3 3 3

ˆd d d d

d d d ,

I

I I I I
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I I I
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J L
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 (6.19) 

   
3

0
1 1

ˆ , 1, 2, ,
In

T I
J J i

J i

b I N
 

   u X


D B . (6.20) 

Herein IN  and In  denote the total numbers of the node couples in the domain of 

influence inf
I  and the domain of definition 

IX , respectively, both associated with the 

node I . The vector ˆ Ju  contains the unknown DOF associated to the Jth node couple 

inside inf
I  or 

IX . Thereby both inf
I  and 

IX  are defined as described in Section 4.1. 

The matrix Td  contains the derivatives of 3   
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  

d , (6.21) 

while the vector D  is defined by 

      1 4 6 4 2 5 6 5 3
T T T T T T T T T T       D D D D D D D D DD = , (6.22) 
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where , 1, 2, ,6i i D  , are the rows of the standard 3-D elasticity matrix from (2.36) in 

the global Cartesian coordinate system. The matrix JB  contains the derivatives of the 

strain-displacement matrix (6.10) calculated at  0
IX  

 

  
  
  

1

2

3

0
,

0
,

0
,

I
J

X

I
J J

X

I
J

X

 
 
 

  
 
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 

B X

B X

B X

B . (6.23) 

Very often, the body forces may be neglected in engineering computations, and 

therefore, the terms containing the body force vector b can be omitted. The global 

system of equations may now be derived by forming the discretized equations (6.18)-

(6.20) for each node couple in the so-called “node-by-node” fashion, without having to 

resort to the classical assembly process of the global stiffness matrix as in FEM.  

As evident, no integration is needed in relation (6.20), which is convenient with 

respect to the total required computational time. On the other hand, it is necessary to 

calculate the second derivatives of the MLS functions, which complicates the algorithm 

and demands significant additional computational effort in the case of curved shell 

structures. Therefore, this approach is especially convenient for the analysis of plate 

structures. It is interesting that in some problems involving plate structures, it is 

sufficient to employ only the equilibrium equation in the thickness direction to form the 

additional equations [103],[143]. 

6.4 Quadratic test function 

A shell continuum is first discretized by a set of N node couples, and the cylindrical 

local sub-domains , 1, 2, ,I
s I N    are defined around each node couple in the 

parametric space, as in the formulation presented in the previous section. In order to 

derive the local weak forms of the 3-D equilibrium equations (2.42), the test function 

that is quadratic across the shell thickness is now assumed as 

    23 3
0 1 2 0 1 2, , ,jv c c c c c c        (6.24) 
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with 0c , 1c  and 2c  as arbitrary real constants. After inserting the test function (6.24) 

into LWF (5.12), LSWF for each , 1, 2, ,I
s I N    may be written as 
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 (6.25) 

Since relation (6.25) has to hold for all choices of 0c , 1c  and 2c , it yields the following 

system of governing equations for I
s  

 d d d d d d 0
I I I I I I
s su su s st su

j kj j kj k k k k

L

n n u b t u   
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                  (6.26) 
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 (6.28) 

Obviously, equations (6.26)-(6.28) represent a set of nine equations for I
s . 

However, according to (6.1)-(6.3), the deformation responses of the shell continuum are 

described with seven variables through the thickness, including  0u ,  1u  and  . 

Consequently, only seven equations per local sub-domain are required for the solution 
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of the boundary value problem. Therefore, three equations represented by (6.28) are 

summed up as 
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 (6.29) 

which together with LSWF (6.26) and (6.27) forms a system of seven governing 

equations for each , 1, 2, ,I
s I N   . 

By using (6.6) to approximate the displacements, and after computing strains, 

stresses, and surface traction vectors according to relations (6.9), (6.11) and (6.12), the 

governing equations (6.26), (6.27) and (6.29) for the node couple I may be transformed 

into the following discretized set of linear equations  
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with 

        2 2 23 3 3
2
T i       

v , (6.33) 
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Herein IN  stands for the total number of node couples in the domain of influence 

associated with the node I , inf
I , and ˆ Ju  contains the unknown DOF associated with 

the Jth node couple inside inf
I . If the body forces are neglected, then all domain 

integrals involving the body force vector b  vanish from the discredited equations. 

The expressions (6.30) and (6.31) are identical to LWF (6.18) and (6.19), used in 

the previous formulation in Section 6.3. However, the calculation of (6.32) involves 

numerical integration, which is influenced by all nodes in inf
I . Consequently, the 

global stiffness matrix has more non-zero terms than it is the case in the formulation 

employing the collocation approach, wherein only the nodes positioned inside the 

domain of definition 
IX  of the node I produce the non-zero couplings with the node I  

in the global stiffness matrix. Consequently, somewhat greater computational effort and 

time are needed for solving the final system obtained by using the quadratic test 

function. In addition, further additional computational costs arise due to the matrix 

manipulation needed for establishing the sub-integral functions in (6.32) at each 

integration point. On the other hand, here it is not necessary to compute the second 

derivatives of the MLS equations, which is computationally costly and may contribute 

to the numerical inaccuracies. The integral approach is also simpler and more 

straightforward than the collocation procedure in the case of curved shells. Furthermore, 

the continuity requirement for the trial functions is lower, and therefore, any C0 

continuous function is admissible as the trial function. 

6.5 Numerical examples 

The results of several numerical experiments involving plates and shells are 

presented hereafter to illustrate the performance of the proposed displacement-based 

MLPG approach. First, thick rectangular plates as well as thick cylindrical and spherical 

shells with various boundary conditions were considered by comparing the results with 

the FEM available analytical solutions. Next, some classical benchmark problems 
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involving thin shells revealed the behaviour of the developed formulations in the thin 

structure limit and the sensitivity to the shear locking effect. 

In the following, the formulation that employs the collocation, presented in Section 

6.3, is denoted as MLPG-COLL, while the algorithm that uses the quadratic test 

function, as explained in Section 6.4, is labelled as MLPG-QTS. For the purpose of 

comparison, hexahedral solid finite elements from the MSC.Nastran program package 

[87],[144] were used. These elements employ the reduced integration for the alleviation 

of shear locking. In addition, in the 8-noded element the Poisson’s thickness locking is 

circumvented by means of bubble functions. 

For facilitation, structures were discretized by uniform grids of node couples, and 

the local sub-domains with circular cylindrical shapes in the parametric space were 

applied, as explained in Section 6.2. The integration was performed by employing the 

simple Legendre-Gaussian numerical integration scheme over the entire local sub-

domain, as described in Section 4.4.  

The MLS functions with complete polynomial bases of different order were used to 

approximate the displacements in the in-plane directions. They are labelled as MLSX, 

where 1,2,3,...,6X   denotes the order of the applied complete polynomial basis. For 

all calculations, the MLS weight functions were the 4th-order spline functions with 

circular support domains, given by relation (3.20). The radii tR  define the sizes of the 

support domains of the nodal test functions t , while trR  stands for the radii of the 

support domains of the nodal trial MLS shape functions tr . Due to the uniform 

discretization, the radii trR  of all support domains tr  in the model were equal. The 

same applies to the radii tR  of the local sub-domains t . 

   Since the utilized MLS functions do not posses the Kronecker delta property, the 

essential boundary conditions (BC) are enforced by means of the penalty method in the 

proposed meshless formulations, as explained in Chapter 6. The parametric analyses 

showed that the value of the penalty parameter hardly affects the solution accuracy in 

the considered problems if it is in the range 5 12=10 10  . Consequently, in all 

examples the value of the penalty parameter was 9=10 . 
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6.5.1 Thick rectangular plates 

6.5.1.1 Clamped square plate 

A clamped square plate subjected to the uniformly distributed load over the upper 

surface was considered. The plate configuration is presented in Figure 6.4. The plate 

thickness to span ratio is / 0.1h a  . The material data are Young’s modulus 

5 210.92 10 N/mmE    and Poisson’s ratio 0.3  .  

 

 Figure 6.4 Clamped  thick square plate. Discretization and applied essential BCs. 

All calculations were performed by using the complete MLS basis of the 2nd order 

(MLS2) and results were normalized by using the exact analytic solution from Srinivas 

and Rao [145], denoted here as caw . Due to symmetry, only one quarter of the plate was 

discretized by uniformly distributed grids of nodes positioned on the upper and lower 

plate surfaces. 

The quality of the solution generally depends on the size of the local sub-domains 

t , defined here by the value of tR .  Figure 6.5 depicts the influence of tR  on the 

accuracy of the solution for the plate central deflection cw . The calculations were 

performed by using the MLPG-QTS formulation. Therein, the results for three different 

values of tR , defined by the ratios / 0.75,0.8,0.85t mR h  , are displayed for the 

discretization pattern consisting of 289 node couples. Herein, mh  denotes the distance 

between nodes in the direction of coordinate axes X  . Although it is obvious from 

Figure 6.5 that there are some discrepancies in the solutions for different values of 

/t mR h , it should be noted that the differences are always in the range 1% . Similar 

conclusions are valid for the MLPG-COLL formulation. Therefore, all results presented 
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in the following sections were obtained using the value / 0.8t mR h  , unless specified 

otherwise. 

 

Figure 6.5  Clamped thick square plate. Influence of trR  on solution accuracy for MLPG-QTS 

formulation. 

The influence of the radius trR  on the solution for cw  was investigated for different 

discretization patterns. The dependency of the plate central deflection on the ratio 

/tr mR h  is plotted in Figure 6.6 and Figure 6.7 for the MLPG-COLL and MLPG-QTS 

formulations, respectively.  

 

Figure 6.6 Clamped thick square plate. Influence of trR  on solution accuracy for MLPG-COLL 

formulation. 

Although the value of trR  significantly affects the numerical error, this effect 

diminishes with increasing the number of nodes. However, it is to note that for both 



96                                               6 Primal MLPG formulations for thick plates and shells 
 

 

formulations the solutions always oscillate around the analytical value caw  in the 

interval / 2.3 2.5tr mR h   .  

Next, the convergence of central deflection was tested for various values of /tr mR h  

by using the MLPG-QTS formulation. The results are given in Figure 6.8. The curves 

converge to the similar value for all tested values of /tr mR h , although the exact 

deflection caw  is slightly underestimated in all cases. Nevertheless, it may be concluded 

that the proposed formulations were able to converge regardless of the value of trR . 

 

Figure 6.7 Clamped  thick square plate. Influence of trR  on solution accuracy for MLPG-QTS 

formulation. 

 

Figure 6.8  Clamped thick square plate. Convergence of caw  for various values of /trR h  obtained by 

using the MLPG-QTS formulation. 

The convergence of the central deflection cw , obtained by using the / 2.5tr mR h  , 

is compared with the values obtained by the algorithm from Sorić et al. [146] in Figure 
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6.9. The linear distribution of the transversal displacement 3u  in the plate thickness 

direction is assumed in the applied primal MLPG formulation. The convergence is 

plotted in dependence on the number of node couples along the side edges of the plate. 

The results show that the algorithm employing the linear interpolation for 3u  suffers 

from thickness locking, which is not the case with the MLPG-QTS and MLPG-COLL 

formulations, where the hierarchical quadratic interpolation for 3u  is used.  

 

Figure 6.9  Clamped chick square plate. Convergence of central deflection for various displacement-based 

MLPG formulations. 

 

Figure 6.10 Clamped thick square plate. Convergence of MLPG COLL and MLPG QTS formulations in 

comparison with finite element solutions. 

Figure 6.10 shows the comparison of the convergences of the proposed formulations 

with the FE solutions obtained by using the 3-D brick-type elements from the program 

package MSC.Nastran. This time, the ratio /c caw w   is plotted versus the total number of 

DOF plotted on logarithmic scale. The presented meshless formulations yield very 
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similar convergences, which are comparable to the FE solutions. It is also to note that 

all the tested methods slightly underestimate the applied analytical value.  

6.5.1.2 Simply supported square plate 

The second example is the simply supported square plate with the same geometry 

and material data as in the previous example, subjected to a uniformly distributed load 

over the upper surface. Here, only the transversal displacements are suppressed along 

the simply supported boundary, according to Figure 6.11. 

 

Figure 6.11 Simply supported thick square plate. Discretization and applied essential BCs. 

As in the first example, the influence of the radius trR  on the plate central 

deflection cw  was investigated, and the results of the performed parametric analyses are 

plotted in Figure 6.12 and Figure 6.13. Conclusions similar to those in the previous 

example may be drawn. The convergence for the central deflection is presented in 

Figure 6.14, which shows the comparison with the FE solutions obtained by using 

hexahedral finite elements form the MSC.Nastran program package. The analytical 

value used for the normalization is again available in Srinivas and Rao [145]. As in the 

case considering the clamped plate, both formulations exhibit practically the same 

convergences. They are again very similar to those obtained by using the 8-noded brick 

finite elements, while for this case the 20-noded brick elements converge faster than 

other tested algorithms. As before, all results converge to the value slightly lower than 

the analytical solution. 
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Figure 6.12 Simply supported thick square plate.  Influence of  trR  on solution accuracy for MLPG-

COLL formulation. 

 

Figure 6.13 Simply supported thick square plate. Influence of  trR on solution accuracy for MLPG-QTS 

formulation. 

 

Figure 6.14 Simply supported thick square plate. Convergence of MLPG-COLL and MLPG-QTS 

formulations in comparison with finite element solutions. 



100                                              6 Primal MLPG formulations for thick plates and shells 
 

 

6.5.2 Thick shells 

6.5.2.1 Thick cylindrical shell subjected to line load 

 

Figure 6.15 Thick cylindrical shell. Geometry and discretization. 

The results for a thick horizontal cylindrical shell shown in Figure 6.15 are given in 

this section. The shell is subjected to the uniform line load of 1N/mmq   along the 

upper and lower generatrix, while the far ends of the cylinder are free. The shell 

thickness is 9mmh   with a radius to thickness ratio of / 10R h   and the length of the 

cylinder is 300mmL  . The material data are Young’s modulus 2210000 N/mmE   

and Poisson’s ratio 0.3  . Due to symmetry, only one octant of the shell was 

modelled.  

The convergence of the vertical displacement at the central point A, positioned 

under the line load, was analyzed. In Figure 6.16, the results are compared to the FE 

solutions obtained by using the hexahedral finite elements from the MSC.Nastran 

package. The calculations were performed by employing the MLS2 functions and by 

setting m0.8tR h  to define the sizes of the local sub-domains, where mh  is the minimal 

distance between node couples in the directions of the parametric coordinates.  
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Figure 6.16 Thick cylindrical shell. Convergence at point A for MLPG-QTS formulation in comparison 

with FE solutions. 

In Figure 6.16, the curves representing the convergence of the MLPG-QTS 

formulation were obtained by employing two different values of trR . First, the value 

m2.5trR h  was used, as in the previous example. However, for this problem the 

convergence is significantly worse than those obtained by the applied finite elements. 

Furthermore, it was found that the essential BC were not satisfied as accurately as in the 

previous examples. The possible causes for such deterioration may be the inaccurate 

numerical integration, arising due to the reasons explained in Section 4.4. The 

numerical experiments proved that these negative phenomena could be reduced 

significantly by performing the global MLS interpolation. Therefore, the value of trR  

was adjusted so that the support domain of the MLS shape function of each node couple 

covered the entire global domain. It is evident from Figure 6.16 that the convergence 

considerably improved by using the described strategy. However, it is important to note 

that such an approach is not practical because it demands prohibitively large 

computational costs for computing the MLS shape functions. Furthermore, the 

coefficient matrix in the resulting final algebraic system of equations becomes a fully 

populated matrix, which additionally increases the total computational costs. 

The convergence of the vertical displacement at point A, depending on the order of 

the in-plane MLS basis, is displayed in Figure 6.17 for the global MLS approximation 

strategy. It is obvious that the convergence improves considerably if the sixth-order 

MLS basis is used. 
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Figure 6.17 Thick cylindrical shell. Convergence at point A for MLPG-QTS formulation obtained by 

employing different orders of MLS bases. 

6.5.2.2 Clamped thick hemispherical shell under line load 

A thick hemispherical shell with a central opening, representing a doubly curved 

thin-walled structure, is considered in this section. The shell is clamped along the 

bottom edge and subjected to the uniform line load of 10 N/mmq   on the upper edge, 

according to Figure 6.18. The shell thickness is 9mmh  , the radius of the shell is 

90mmR   and the central opening is defined by 060  . The material data are 

Young’s modulus 2210000 N/mmE   and Poisson’s ratio 0.3  . Due to symmetry, 

only one quadrant was modelled by uniform grids of node couples. 

The convergence of point A, positioned at the corner of the upper edge, as shown 

in Figure 6.18, was analyzed - the results are presented in Figure 6.19. The calculations 

were performed by employing the MLS2 functions, and by using m0.8tR h  and 

m2.5trR h , where mh  is the distance between node couples in the direction of the 

parametric coordinate axes  . Because no analytical solution to this problem exists in 

the literature, the results were compared to the FE solutions from MSC.Nastran program 

package. Thereby, the 8-noded shell elements [144] were used besides the hexahedral 

elements to double-check the validity of the converged values. The shear locking effects 

are suppressed by using the reduced integration in these elements. It can be seen that, 

similarly to the examples involving the rectangular plates, the meshless formulation 

converge in to the value that is close to those obtained by the finite elements. 
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Figure 6.18 Clamped thick hemispherical shell. Geometry and boundary conditions. 

 

Figure 6.19 Clamped thick hemispherical shell. Convergence of MLPG-QTS formulation in comparison 

with finite element solutions. 

6.5.3 Thin shells 

This section contains the results for some typical benchmark tests dealing with the 

numerical formulations for the analysis of thin shell-like structures. By performing such 

numerical experiments, it is possible to test the performance of new algorithms in the 

thin structure limit where various locking phenomena, such as transversal or membrane 

locking, may significantly affect the quality of solutions. In order to gain better insight 

into the behaviour of the proposed meshless algorithms with respect to locking, all 

calculations were performed by utilizing the global MLS approximations in the shell in-

plane directions, as explained in Section 6.5.2.1.   
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6.5.3.1 Scordelis-Lo shell roof 

The problem considered in this section is the Scordelis-Lo shell roof, a well-known 

standard benchmark for testing FE formulations regarding the resistance to shear 

locking. In this problem, the membrane response of the shell is as important as the 

bending response, so this test is used in FEM to check whether a formulation is free of 

membrane, as well as transversal shear locking [6]. Material data for this benchmark 

test are Young’s modulus 4 22.0684 10 N/mmE    and Poisson’s ratio 0.0  . The 

radius and length of the roof are 7.62mR   and 15.24mL  , respectively, and the 

radius to thickness ratio is / 100R h  . The shell is subjected to the uniform vertical 

load of 3 24.302 10 N/mmq   . It is assumed that the two longitudinal edges are free 

and the two circular edges are supported by diaphragms. Owing to symmetry, only one 

quarter of the shell was modelled by applying uniform grids and appropriate symmetry 

conditions, as shown in Figure 6.20. 

 

Figure 6.20 Scordelis-Lo shell roof. Geometry and discretization of the shell. 

Figure 6.21 displays the convergence of the vertical displacement at point A, 

positioned on the shell middle surface, for different MLS basis functions. The results 

are normalized by the analytical value available in [152]. As expected, the convergence 

improves by increasing the order of the MLS basis function. It also demonstrates that 

the shear locking effect is sufficiently suppressed by using the sixth-order basis 

function. The deformed shape of the structure is presented in Figure 6.23. 
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Figure 6.21 Scordelis-Lo shell roof. Convergence at the point A for MLPG-QTS formulation obtained by 

employing different orders of MLS bases. 

 

Figure 6.22 Scordelis-Lo shell roof. Deformed shape of one quarter of shell. 

6.5.3.2 Pinched cylinder 

The next typical benchmark test analyzed here is a thin cylinder pinched by two 

radial forces 4.482P   N in the middle of the structure and bounded by two rigid 

diaphragms. In this problem, transversal shear locking is more significant than 

membrane locking due to the acting of the concentrated forces. The geometry, boundary 

conditions, and the discretization of the shell are presented in Figure 6.23. Young’s 

modulus of the material is 52.0684 10E    N/mm2 and Poisson’s ratio is 0.3  . The 

radius to thickness ratio is / 100R h   with the shell thickness 76.2h   mm. The length 
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of the shell is 15.24L  mm. Due to the symmetry, only one octant of the shell was 

modelled. 

 

Figure 6.23 Pinched cylinder. Geometry, boundary conditions, and discretization. 

The convergence of the normalized vertical displacement under the point load was 

studied and results are plotted in Figure 6.24. The exact solution used for the 

normalization is available in [6]. The convergence rate again improves with increasing 

the order of the MLS basis. However, because of severe shear locking, the sixth-order 

MLS basis is necessary for the solution to converge to the analytical value at all in this 

problem. 

 

Figure 6.24 Pinched cylinder. Convergence of vertical displacement under point load obtained by MLPG-

QTS formulation 
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7 Mixed MLPG solid-shell formulations 

 The solid-shell formulations presented in this chapter are based on the mixed 

approach originally presented by Atluri et al. in [40]. In contrast to the primal MLPG 

formulations, in the mixed MLPG strategy some additional field variables, such as 

strain or stress components, are approximated separately from displacements. In Section 

7.1, the formulation for the analysis of plate structures, first proposed in [147], and later 

described and analyzed in details in [148], is presented. Section 7.2 contains the 

description of the formulation for curved shell structures, originally proposed in [149]. 

Therein the theoretical estimates of the computational costs for both the mixed and 

primal MLPG solid-shell approaches are given. Finally, Section 7.3 comprises of some 

numerical tests that demonstrate the performance of the developed mixed formulations. 

7.1 Mixed MLPG formulation for the analysis of plates 

7.1.1 Governing equations 

In order to derive the governing equations for the proposed formulation, a 

homogeneous rectangular plate of uniform thickness is considered. The 3-D Cartesian 

co-ordinate system is used to define the equilibrium equations, as shown in Figure 7.1.  

 

Figure 7.1 Discretization of plate continuum  

The plate continuum is represented by a set consisting of N node couples, where the 

nodes are positioned on the upper and lower plate surfaces. A local sub-domain 
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, 1, 2,..., ,I
s I N   is defined around each node couple , 1, 2,...,I I NX , as explained in 

Section 5.1. 

By following the procedure described in details in Section 5.2, the equilibrium 

equations (2.42) are written in LWF (5.19)-(5.20) over each I
s  as 
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Herein, all variables are defined in the global Cartesian system shown in Figure 7.1, 

e.g., ij i j σ e e , etc. Using (5.16) and the Heaviside function (5.15) with the circular 

support domain in the in-plane directions X  , the test functions 1v  and 2v  may be 

written like in (5.32) 
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Inserting (5.32) into (7.1) and (7.2), and after employing the constitutive relations from 

(2.29), (2.34) and (2.35), LWF is transformed to  
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where both the strains  h
kl kl   and the displacements  h

i iu u  are considered as 

independent variables. 
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Linear distribution over the plate thickness is assumed for all displacement and 

strain components as 

              ( ) 1 3 ( ) 2 3 ( ) ,h k h h
i i u i lu X X u X X u X     (7.6) 
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ij ij u ij lX X X X X       , (7.7) 

where functions 1  and 2 , defined analogously to (2.2), describe the linear 

distribution of variables over the thickness, while  
( )h
ij u ,  

( )h
ij l  and  

( )h
i uu ,  

( )h
i lu  denote the 

strains and displacements on the upper and lower plate surface, respectively. h stands 

for the plate thickness. 

It is to note that equations (7.4) and (7.5) represent a system of six equations for 

each local sub-domain I
s , while in the approximated fields (7.6) and (7.7) there are 

altogether 18 unknown variables, including  
( )h
ij u ,  

( )h
ij l ,  

( )h
i uu  and  

( )h
i lu . Therefore, in order 

to derive a closed system of equations on the structural level, the following 3-D 

kinematics constraints are imposed for each , 1, 2,...,I
s I N  , written here in a general 

local weak form as 
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Herein  c
ij  stands for the strains that are compatible with the approximated 

displacements. From the 3-D strain-displacement relations (2.27) it follows that 

            , ,

1

2
j i

c h hk k k
ij i X j X

X u X u X     , (7.9) 

while  ijv   are some admissible test functions. By suitably choosing  ijv  , it is possible 

to obtain the additional twelve equations for each , which are necessary for closing the 

global system of equations. 

7.1.2 Numerical implementation 

The displacements and strains associated with the upper and lower plate surfaces 

are approximated by employing the same MLS shape functions in the in-plane 

directions X   for all strain and displacement components, which leads to 
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Herein  J X   is the in-plane MLS shape function associated with the Jth node couple 

positioned inside the domain of definition 
X  of the sample point X  , and n stands for 

the total number of node couples inside 
X  . The shape function  J X   is calculated 

by employing local normalized coordinates, according to the procedure given in Section 

3.4.1. More details about the applied approximation scheme may be found in [148].  

Employing (7.10) and (7.11), the displacement and strain fields (7.6) and (7.7) may 

be written in the discretized forms as 

  

1

ˆ
n

h J J
u

J 

u Φ u , (7.12) 

  

1

ˆ
n

h J J

J




 ε Φ ε . (7.13) 

The matrices J
uΦ  and J

Φ  describe the 3-D displacement and strain nodal shape 

functions, respectively, and they are defined by 

 1 2
3 3 ,J J

u      Φ I I  (7.14) 

 1 2
6 6 .J J

      Φ I I  (7.15) 

In the above relations, 3I  and 6I  stand for the 3x3 and 6x6 identity matrices, 

respectively. The vector ˆ Ju  contains the unknown fictitious nodal displacement values 

        ˆ ˆ ˆ
T TTJ J J

u l
    

u u u , (7.16) 

while  ˆ Jε  are the vectors of the corresponding unknown fictitious nodal strain values, 

        ˆ ˆ ˆ .
T TTJ J J

u l
    

ε ε ε  (7.17) 
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Herein  ˆ J
uu ,  ˆ J

lu ,  ˆ J
uε  and  ˆ J

lε  are the vectors of the nodal displacements and strains 

associated with the upper and lower nodes, respectively, and they are defined as 

 

               

             

             

1 2 3 1 2 3

11 22 33 12 23 13

11 22 33 12 23 13

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, ,

ˆ ˆ ˆ ˆ ˆ ˆˆ 2 2 2 ,

ˆ ˆ ˆ ˆ ˆ ˆˆ 2 2 2 .

T T
J J J J J J J J
u u u u l l l l

T
J J J J J J J
u u u u u u u

T
J J J J J J J
l l l l l l l

u u u u u u

     

     

       

   

   

u u

ε

ε

 (7.18) 

Employing the strain field approximation (7.13), and the constitutive relations 

(2.36) and (2.37), the stress vector from (2.31) may be calculated in terms of the nodal 

strains as 

 
1

ˆ
n

J J

J




 σ D Φ ε . (7.19) 

The traction surface vector i itt e  is obtained by inserting the discretized stresses 

(7.19) into (2.39)  

 
1

ˆ
n

J J

J




 t N D Φ ε , (7.20) 

where the matrix N contains the components of the unit normal vector to the local 

boundary I
s , i inn e , according to (2.40). 

By means of relations (7.12), (7.13), (7.19) and (7.20), LWF (7.4) and (7.5) of each 

node couple are transformed into the following discretized form 

 1 1

ˆ ˆd d d

d d d ,

I I

I I I
S Su su

I I I
St s su

N N
J J J J J

u
J JL

  



  

  

  
        
     

    

   

  

N DΦ N DΦ ε Φ u

t b u

 (7.21) 
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3 3

1

3 3 3 3

1

ˆd d d

ˆd d d d .

I

I I I
s S Su

I

I I I I
su St s su

N
T J J J J

J L

N
J J
u

J

X X

X X X X

  

 

  

    

 
      
  

 
       
  

   

    

d DΦ N DΦ N DΦ ε

Φ u t b u

 (7.22) 

The above relations represent a system of six linear equations on the level of the domain 

of influence inf
I , which is related to the Ith  node couple. Herein NI denotes the total 

number of nodes inside inf
I  and Td  describes the gradient of the linear part of the 

test function 

 

1 2 3

2 1 3

3 2 1

3 3 3

, , ,

3 3 3

, , ,

3 3 3

, , ,

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1 0

0 0 1 0 0 00 0 0

X X X

T

X X X

X X X

X X X

X X X

X X X

                 

d .(7.23) 

The additional kinematics constraints (7.8) are derived by means of the collocation 

approach at the nodes located on the upper and lower plate surfaces. Using the Dirac 

delta functions   I u X X  and   I l X X  as the test functions  ijv   in (7.8), the 3-

D kinematics relations (7.9) are imposed directly at the upper and lower nodes of the 

node couple I  as 

 

 
          

 
          

, ,

, ,

1
ˆ ,

2

1
ˆ

2

j i

j i

h I I
ij u ij u I u I ui X j X

h I I
ij l ij l I l I li X j X

u u

u u

 

 

    

    

X X X

X X X

 (7.24) 

with  
1 2 3 0,5

T

I II u X X X h   X  and  
1 2 3 0,5

T

I II l X X X h    X  as the 

global Cartesian coordinates of the upper and lower nodes that form the Ith node couple, 

respectively, as shown in Figure 7.2. In (7.24) it is assumed that the nodal strain values 

 ˆ I
ij u  and  ˆ I

ij l  are exactly interpolated by the strain approximation (7.13). 
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Figure 7.2 Collocation points for mixed MLPG plate formulation 

Applying the displacement interpolation (7.12) in (7.24), it is possible to express the 

nodal strain components in terms of the displacement components in the following 

matrix form  

        
1 1

ˆ ˆ ˆ ˆ, .
I In n

I JI J I JI J
u u l l

J J 

  ε B u ε B u  (7.25) 

Herein,     JI J
u I uB B X  and     JI J

l I lB B X  stand for the 3-D strain-displacement 

matrix, calculated at the upper and lower node of the Jth node couple that is positioned 

inside IX
 , i.e., the MLS domain of definition of the Ith node couple. In  is the total 

number of the nodes in IX
 , and the matrix JB  is defined by 

 

1 1

2 2

3 3

2 1 2 1

3 2 3 2

3 1 3 1

1 2

, ,

1 2

, ,

1 2

, ,

1 1 2 2

, , , ,

1 1 2 2

, , , ,

1 1 2 2

, , , ,

0 0 0 0

0 0 0 0

0 0 0 0

0 0

0 0

0 0

J J

X X

J J

X X

J J

X XJ

J J J J

X X X X

J J J J

X X X X

J J J J

X X X X

   

   

   

       

       

       

 
 
 
 
 

  
 
 
 
 
 

B . (7.26) 

As evident, the employment of the above-described collocation approach avoids 

the numerical integration in equations (7.8), resulting in the significant reduction of 

computational time. 
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7.1.3 Elimination of Poisson’s thickness locking effect by 

modifying transversal strain nodal values 

In the proposed formulation, the normal transversal strain component 33  is 

initially assumed linear through the thickness according to (7.7). Nevertheless, by using 

relations (7.25) and (7.26), it follows that 

          3
33 33 3 3

1 1

1 1
ˆ ˆ ˆ ˆ , 1, 2,..., ,

I In n
I I JI K JI J

u l u l
J J

u u f X I N
h h

   
 

        (7.27) 

where  JI J
IX   denotes the in-plane MLS nodal shape functions evaluated at the 

location of the Ith node couple. It is clear that employing  33
ˆ I

u  and  33
ˆ I

l  from (7.27) in 

the discretized strain field (7.13) results in the constant distribution of  
33

h  over the 

thickness and thickness locking appears if the Poisson’s ratio is different from zero, as 

explained in Section 5.3.1. Therefore, it follows that the condition    33 33
ˆ ˆI I

u l   has to be 

fulfilled in order to avoid the Poisson’s thickness locking phenomenon. 

A new procedure based on the modification of the nodal strain component values 

 33
ˆ I

u  and  33
ˆ I

l  has been developed to avoid the Poisson’s thickness locking effect. 

These new nodal values may be obtained by rewriting the assumed distribution for 33  

from (7.7) as 

      
     

   3
33 33 0 33 1

h h hX X X X      , (7.28) 

where  
 
33 0

h  and  
 
33 1

h  are the variables associated with the plate middle surface. They 

are defined by 

 
 

     
     

   

 
     

     
       3

33 33

33 0

33 33

33 1 33,

,
2

.

h h

u lh

h h

u lh h

X

X X
X

X X
X X

h

 


 
 

 


 
 





 

 (7.29) 

By taking into account that  
33

h  is linear over the thickness, it is clear from the second 

expression in (7.29) that  
 
33 1

h  is identical to the derivative of  
33

h  with respect to 3X , 
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i.e.,  
   

333 1 33,

h h

X
  . Moreover, it follows from (7.28) and (7.29) that both  

 
33 0

h  and  
333,

h

X
  

should be constant through the thickness and should have non-zero values if  
33

h  is to 

be linear across the plate thickness. 

By using (7.28) and (7.29), and by assuming that the strain approximation 

functions exactly interpolate the nodal values, similarly as in (7.24), it is possible to 

express the nodal values of 33  at the nodes  I uX  and  I lX  that belong to the node 

couple I as 

  
 

        
 

      33 3333 33 0 33 1 33 33 0 33 1
ˆ ˆ, ,

2 2
h hI I I I I I

u I u l I l

h h            X X   (7.30) 

where  33
ˆ I

u  and  33
ˆ I

l  are the new modified nodal values that are not kinematically 

compatible with the displacement field (7.6). The parameters    
 

  33 0 33 0 0

hI
I  X  and 

   
 

    
  333 1 33 1 0 033,

h hI
I IX

   X X  are computed at the point  
1 2

0 0
T

I II X X   X  

located on the plate middle surface between the nodes of the Ith node couple, as shown 

in Figure 7.2. The constant term  33 0
I  is calculated directly from the approximated 

displacements as in (7.27), leading to the following identity 

  
 

      333 0 0 33 333,
ˆ ˆhI I I

I u lX
u    X . (7.31) 

In order to obtain the derivative  
 

  333 1 033,

hI
IX

  X , the additional equilibrium 

equation in the middle surface normal direction is enforced at the mid-point  0IX  as 

      30 03
0j I Ij,X

σ b X X . (7.32) 

Inserting the constitutive equations (2.29), (2.34) and (2.35) into (7.32), it follows that 

 
 

 
  

       

 

3

3 3 1 2

0

33 1 033,

3 3311 3322 1313 232311, 22, 13, 23,
3333

1
2 2

I

hI
IX

h h h h

X X X X
b C C C C

C

 

   


 

       X X

X

 (7.33) 

By means of the strain approximation (7.13), the derivatives of the strain components 

on the right-hand side of relation (7.33) may be written in their discretized forms as 
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 
      

 
      

 
      

 
      

3

3

1 1 1

2 2 2

0 11 1111,
1

0 22 2222,
1

0 13 1313, , ,
1

0 23 2323, , ,
1

1 1
ˆ ˆ ,

1 1
ˆ ˆ ,

1
ˆ ˆ ,

2

1
ˆ ˆ

2

I

I

I

I

n
h JI J JI J

I u lX
J

n
h JI J JI J

I u lX
J

n
h JI J JI J

I u lX X X
J

n
h JI J JI J

I u lX X X
J

h h

h h









         

         

        

        









X

X

X

X

 (7.34) 

with  JI J
IX    and  , ,

JI J
IX X

X 
  . After inserting (7.34) into (7.33), by 

neglecting the body forces, and by means of (7.31), the nodal values  33
ˆ I

u  and  33
ˆ I

l  are 

expressed in terms of the nodal strains as 

            33 33 0 33 33 0
1 1

ˆ ˆˆ ˆˆ ˆ,
2 2

I In n
I I JI J I I JI J

u u l l
J J

h h   
 

    Ψ ε Ψ ε  . (7.35) 

Herein the vector  0
JIΨ  is defined by 

 
  2 1

2 1

3311 3322 2323 13130 , ,
3333

3311 3322 2323 1313, ,

1 1 1 1 1
0 0

2 2

1 1 1 1
0 0 ,

2 2

JI JI JI JI JI

X X

JI JI JI JI

X X

C C C C
C h h

C C C C
h h

   

   

  

  

Ψ 


 (7.36) 

and the vector ˆ Jε , defined as in (7.17), contains the nodal strains associated with the Jth 

node couple in the domain of definition IX
  of the Ith node couple.  

After employing (7.25) in relation (7.35) to evaluate  33
ˆ I

u  and  33
ˆ I

l , the modified 

nodal values  33
ˆ I

u  and  33
ˆ I

l  are expressed in dependence of the nodal displacements as 

 

     

     

33 3 0 0
1 1 1

33 3 0 0
1 1 1

ˆ ˆ ˆ ,
2

ˆ ˆ ˆ ,
2

JI I

JI I

nn n
I JI J JI KJ K

u
J J K

nn n
I JI J JI KJ K

l
J J K

h

h





  

  

 
   

 

 
   

 

  

  

B u Ψ B u

B u Ψ B u





 (7.37) 
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where  3 0
JIB  and KJB  are calculated by using the 3-D strain-displacement matrix JB  

from (7.26).  3 0
JIB  is the third row of the 3-D strain-displacement matrix calculated at 

the point  0IX , and the matrix KJB  is defined as        T TTKJ KJ KJ
u l

    
B B B  with 

    KJ K
u J uB B X  and     KJ K

l J lB B X . The nodal strain vector may now be rewritten 

into the following “classical” matrix strain-displacement form as 

 
1

ˆ ˆ , 1, 2,...,
In

I MI M

M

I N


 ε B u

 . (7.38) 

Herein ˆ Iε  is defined according to relations (7.17) and (7.18),  with  33
ˆ I

u  and  33
ˆ I

l  

replacing compatible nodal values  33
ˆ I

u  and  33
ˆ I

l . In  stands for the total number of the 

node couples that influence the nodal strain values  33
ˆ I

u  and  33
ˆ I

l , and MIB  are the 3-D 

strain-displacement matrices calculated at  0IX  using (7.26), except for the terms 

associated with 33 , which are derived from the right-hand side of (7.37).  

After inserting (7.38) into the discretized LWF of equilibrium equations (7.21) and 

(7.22), the following system of algebraic equations, which contains only the nodal 

displacements as unknown variables, is obtained for , 1, 2,..., ,I
s I N   

 1 1 1

ˆ ˆd d d

d d d ,

JI I

I I I
S Su su

I I I
St s su

nN n
J J MJ M J J

u
J M JL

L

  



   

 

  
        
     

    

    

  

N DΦ N DΦ B u Φ u

t b u




 (7.39) 

 

3 3

1 1

3 3 3 3

1

ˆd d d

ˆd d d d .

JI

I I I
s S Su

I

I I I I
su St s su

nN
T J J J MJ M

J ML

n
J J
u

J L

X X

X X X X

  

 

  

   

 
      
  

 
       
 
 

   

    

d DΦ N DΦ N DΦ B u

Φ u t b u




 (7.40) 

As already mentioned, the global system of equations is derived by using a node-by-

node numerical procedure, without having to perform the global stiffness matrix 

assemblage as in FEM. 
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The applied mixed concept possesses some remarkable advantages in comparison 

to the primal MLPG method. The numerical integration of the derivatives of the MLS 

functions in (7.39) and (7.40) is avoided, which contributes significantly to the 

numerical efficiency and accuracy of the proposed mixed formulation. Moreover, the 

requirements for the continuity of trial functions are lower by one degree. It is also to 

note that thickness locking is eliminated without increasing the total number of 

equations in the global system of equations, in contrast to the hierarchical quadratic 

concept. Finally, as demonstrated by the numerical experiments shown in Sections 7.3.1 

and 7.3.2, the mixed approach successfully alleviates the transversal shear locking effect 

even if the low-order MLS functions are used. However, the procedure for the 

elimination of the Poisson’s thickness locking effect is complicated, especially in case 

of curved shells, and becomes impracticable if extended t geometrically non-linear 

problems. 

7.2 Mixed MLPG formulation for the analysis of shell 

structures 

7.2.1 Local weak form of the equilibrium equations 

Similarly to the other formulations presented in this thesis, the local weak forms of 

the governing equations are derived according to the general instructions for the solid-

shell concept given in Section 5.1.  

The strong form of the governing equations are the 3-D equilibrium equations 

(2.42), whose solutions have to comply with the boundary conditions (5.1) and (5.2). 

The shell is mapped into the parametric space  1 2 3, ,   , where its middle surface is 

transformed to the 2-D unit square in the 1 2,  -plane, as explained in details in Section 

2.1.1 and illustrated in Figure 7.3. Node couples are then generated uniformly over the 

upper and lower shell surfaces in the parametric space. The interpolations of all 

variables are performed in the parametric coordinates i  by means of the MLS or IMLS 

functions, as described in Section 3.2.3. According to the local Petrov-Galerkin 

approach, the prismatic or cylindrical local sub-domain I
s  is defined around the Ith 

node couple, as shown in Figure 7.3. 
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Figure 7.3 Parametric representation and discretization of shell geometry for mixed MLPG formulation 

The local weak form (LWF) (5.12) of the equilibrium equations (2.42) is derived 

over , 1, 2,..., ,I
s I N   by following the procedure given in Section 5.2 as 

 

,
d d d d

d d d 0.

j

I I I I
s s su su

I I I
s st su

kj j kj j kj kX
L

k k k

v v n v n vu

vb v t vu

   



  

  

      

     

   

  
, (7.41) 

where N is the total number of the node couples used for the discretization of the shell-

like continuum. Here all tensor and vector components are defined in the Cartesian 

coordinates, i.e., ij i j σ e e , i itt e , i inn e , i ibb e  and i iuu e . It is important 

to note that if the regularized function (3.24) is applied as the MLS weight function, the 

essential BC are imposed directly. For clarity reasons, the penalty terms are omitted in 

the following expressions in this section. 

By employing the Heaviside function (5.15) in the 1 2,  -plane and the linear 

functions according to (5.16) in the 3  direction, the test function is defined according 

to expressions (5.13) and (5.14) as 

  
3

0 1 ,

0,

k I I
j s s

k I I
s s

c c
v

 



   


 

 (7.42) 

with 0c  and 1c  as arbitrary chosen real constants.  

Applying (7.42) in (7.41), and using the derivation procedure described in Section 

5.2.1, LWF may be transformed to the following form 

 d d d d
I I I I
s su st s

j ij j ij i i

L

n n t b 
  

           , (7.43) 



120   7 Mixed MLPG solid-shell formulations 
 

 

  3 3 3 3 3

,
d d d d d

j

I I I I I
s s su s s

ij j ij j ij i iX
L L

n n t b       
  

            . (7.44) 

As explained in Section 5.1, integration is performed in the parametric coordinates, and 

the shell continuum kinematics is then mapped back to the global Cartesian coordinate 

system by means of the metric covariant vectors iG


 defined by (2.18). 

7.2.2 Elimination of locking effects 

As mentioned before, in order to suppress the transversal shear locking 

phenomenon, strains should be approximated separately from displacements. As shown 

in Section 7.1.3, the Poisson’s thickness locking effect nevertheless remains present. To 

avoid that locking effect, the transversal stress component 33  is taken here as the 

independent variable instead of the transversal normal strain component 33 . This 

switch of independent variables is performed by employing the well-known 3-D 

constitutive equations (2.29), written here in the parametric coordinate system as 

 ij ijkl
klC   (7.45) 

with ijσ  and kl  as the components of the stress tensor ij
i j σ G G
 

 and strain tensor 

i j
ij ε G G
 

, respectively. ijklC  are the components of the elasticity tensor for linear 

isotropic materials ijkl
i j k lC   C G G G G
   

, defined as in (2.33) and (2.34). The 

component 33  is expressed from the equation for 33  from the set (2.29) as 

  33 33 3 333 33
33 3 33333

1
C C C

C
  

      
    . (7.46) 

After back-substituting (7.46) into (2.29), the stress tensor relation may be rewritten as  

 

33 33 3
33 3 33

3333 3333

333 33
3 33 33

3333 3333
.

ij ij ij ij ij

ij
ij ij

C C
C C C C

C C

C C
C C

C C

 
 

 






  

 





   
       
   
 

   
 

 (7.47) 

Now the new set of independent field variables includes iu ,  ,    and 33 . By 

approximating 33  directly, it is possible to describe the zero distribution for 33  in the 
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pure bending state, which is necessary for avoiding the Poisson’s thickness locking 

effect, as discussed in Section 5.3.1. The linear distribution over the thickness for 33  

can be obtained subsequently from relation (7.46). 

The matrix form of relation (7.47) is 

 σ Cω
  , (7.48) 

where σ


 is the vector of the contravariant components of the stress tensor  

 11 22 33 12 23 13T         σ


, (7.49) 

the vector ω contains the independent strain and stress variables as 

 33
11 22 12 23 132 2 2T         ω , (7.50) 

and C  denotes the modified material matrix that has the following form 

 

1133 3311 1133 3322 1133
1111 1122

3333 3333 3333

2233 3311 2233 3322 2233
2211 2222

3333 3333 3333

1212

2323

1313

0 0 0

0 0 0

0 0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

C C C C C
C C

C C C

C C C C C
C C

C C C

C

C

C

 
  

 
 

  
 
 
 
 
 
 
 

C . (7.51) 

Similarly to the mixed MLPG plate formulation, the linear distribution over the 

thickness is assumed for all displacement and in-plane strain components as 

              ( ) 1 3 ( ) 2 3 ( ) ,h k h h
i i u i lu u u          (7.52) 

        
       

   1 3 2 3h h hk
u l

 
             . (7.53) 

Herein  1 3   and  2 3   are the linear functions defined according to (2.2),   
( )h
i uu  

and  
( )h
i lu  are the displacement components on the upper and lower shell surface, 

respectively, while    u


   and    l


   denote the corresponding strain 
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components. It is further assumed that the transversal shear strain and transversal 

normal stress components are constant over the thickness 

        3 3
h hk 

     , (7.54) 

        33 33h hk     . (7.55) 

In relations (7.52)-(7.55), the displacement components are written in the directions of 

the global Cartesian coordinates, i iuu e , while the strain and stress tensor components 

are expressed in the parametric space, i.e., i j
ij ε G G
 

 and ij
i j σ G G
 

. It is 

obvious that 15 variables, including  
( )h
i uu ,  

( )h
i lu ,  u ,  l ,  

3
h

  and  33 h , have be 

approximated separately to describe the deformation response of the shell. On the other 

hand, LWF (7.43) and (7.44) yield only six equations per each I
s , and therefore, 

additional equations are needed to obtain the closed global system of equations. 

7.2.3 Additional kinematic constraints 

In order to close the system of equations on the global level, the additional 3-D 

kinematical constraints for 3  and 33 , written here in generalized weak forms, are 

imposed for each , 1, 2,...,I
s I N  , as 

 

    
    
    

( )

( 3) 3 3

33 33
( 33)

d 0,

d 0,

d 0.

I
s

I
s

I
s

h c

h c

h c

v

v

v

  

  



 

 

 







  

  

  







 (7.56) 

Herein  c
 ,  

3
c

  and  33 c  stand for the values to be calculated from approximated 

displacements (7.52), while ( )v  , ( 3)v   and ( 33)v   are some kinematically admissible 

test functions. The test functions have to be chosen in a way which should result in 

additional nine equations for each I
s  needed for closing the system of equations. 

In order to avoid numerical integration, the additional kinematics constraints (7.56) 

are imposed by means of the collocations at the points presented in Figure 7.4.  
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Figure 7.4 Collocation points for mixed MLPG formulation for curved shell structures 

For the in-plane strain components   the collocation is performed at the upper nodes 

J(u) and the lower nodes J(l) with the coordinates     k
J u J uX X  and 

    k
J u J lX X , respectively. Herein    1 2, ,0,5k

J JJ u h    and    1 2, , 0,5k
J JJ l h     

are the parametric coordinates of the nodes. Using the Dirac delta functions 

  J u X X  and   J l X X  successively as the test functions ( )v   in the first 

relation in (7.56), the following conditions for the in-plane strain components are 

enforced at the nodal points 

  
    

    
    

  ,h c h ck k k k
J u J u J l J l            . (7.57) 

In the second and third relations in (7.56), the collocation is performed at the points 

   1 2
0 , ,0k

J JJ  X X , positioned on the middle surface right between the nodes of the Jth 

node couple, as presented in Figure 7.3. Applying the Dirac test function 

  0
k k

J X X , the following expressions hold for the transversal shear strain and the 

transversal normal stress components 

  
    

    
    

  33 33
30 0 0 0,h c h ck k k k

J J J J           . (7.58) 

Equations (7.57) and (7.58), together with LWF (7.43)-(7.44), yield the closed global 

system of equations. 
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7.2.4 Discretization of the equations 

The approximation of all unknown variables in (7.52)-(7.55) is performed by using 

the same MLS or IMLS functions  

 

 
         

       

 
         

       

       
     

1 1

1 1

33 33
3 (0)3 0

1 1

ˆ ˆ, ,

ˆ ˆ, ,

ˆ ˆ, .

n n
h hJ J J J

i u i u i l i l
J J

n n
h hJ J J J

u u l l
J J

n n
h hJ J J J

J J

u u u u   

   
   

   
 

     

         

         

 

 

 

 

 

 

 

 

 

 (7.59) 

Herein  J    is the in-plane shape function associated with the Jth node couple inside 

the domain of definition 
  of the current point  . n stands for the total number of 

node couples inside 
 .  ˆ J

i uu  and  ˆ J
u  are the nodal values on the upper surface,  ˆ J

i lu  

and  ˆ J
l  are associated with the lower surface, while  3 0

ˆ J
  and 33

(0)ˆ J  refer to the 

middle surface.  

The nodal shape function  J    is calculated in the parametric 1 2  -plane by 

employing either the 4th-order spline from (3.20) or the regularized weight function 

(3.24), according to the procedures given in Section 3. An articulate description of the 

approximation scheme that employs the IMLS functions is also available in [149]. 

After employing the approximations (7.59) in (7.52), the approximated 

displacement vector may be written in the following matrix form as 

  
1

ˆ
n

J i J
u

J




u Φ u . (7.60) 

Herein the shape function matrix  u i
J Φ  is given by  

        1 3 2 3
3 3

J i
u J

         Φ I I  (7.61) 

with 3Ι  as the identity matrix of third order. The vector of the unknown displacements 

ˆ Ju  is  

            1 2 3 1 2 3
ˆ ˆ ˆ ˆ ˆ ˆ ˆT J J J J J J

J u u u l l lu u u u u u   u , (7.62) 
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where   ˆ J
i uu  and  ˆ J

i lu  are the nodal displacement components in the directions of the 

global Cartesian coordinates at the upper and lower surface, respectively. The vector ω  

from (7.50) may be written in the similar discretized form as 

    
1

ˆ
n

i J i J

J
 



ω Φ ω  (7.63) 

with  J i
 Φ  as the matrix of the 3-D shape functions 

        1 3 2 3
3 3

3

J i J 


   
  

 
  

  

Ι Ι 0
Φ

0 0 Ι
, (7.64) 

The vector ˆ Jω  contains the nodal unknown strain and stress variables  

                  
33

11 22 12 11 22 12 23 0 13 0 0
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ2 2 2 2

T
J J J J J J J J J J

u u u l l l           ω . (7.65) 

Inserting the expression for ω  from (7.63) into equation (7.48) gives the approximation 

of the stress vector σ


 from (7.49), which contains the components ij  defined in 

curvilinear coordinate system as 

 
1

ˆ
n

J J

J




 σ C Φ ω
  . (7.66) 

However, since LWF of the equilibrium equations (7.43) and (7.44) is written in the 

global Cartesian system, the stress vector (7.66) should be transformed from the 

convective to the global Cartesian coordinate system according to the transformation 

rule (2.17), written here in the matrix form as 

 
1

ˆ
n

J J

J

 




  σ T σ T C Φ ω
  . (7.67) 

Herein T is the transformation matrix  
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, (7.68) 

with ij i jJ  e G


 as the elements of the Jacobian matrix defined as in (2.14). The vector 

σ  is defined analogously to (2.31) and contains the components of the stress tensor 

defined in the global Cartesian system, i.e., ij
i j σ e e . 

Substituting σ  from (7.67) into LWF (7.43) and (7.44), the discretized equilibrium 

equations for the local sub-domain I
s  surrounding the Ith node couple are obtained, and 

are written in the matrix form as 

 
1

ˆd d d d
I

I I I I
s su st s

N

J J JJ
J L L

   

  

 
        
  

    N T CΦ N T CΦ ω t b   (7.69) 

 

  3 3

1

3 3

ˆd d d

d d ,

I

I I I
s s su

I I
st s

N
T

J J J JJ
J L

L

      

 

  



 
      
  

   

   

 

d T CΦ NT CΦ N T CΦ ω

t b

  

 (7.70) 

where N as the matrix of the components of the outward unit normal vector  i inn e  to 

I
s , as defined in (2.40), and  Td  expressed as 

  
1 2 3

2 1 3

3 2 1

3 3 3

, , ,

3 3 3

, , ,

3 3 3

, , ,

0 0 0

0 0 0

0 0 0

X X X
T

X X X

X X X

  

  

  

 
 

   
 
  

d . (7.71) 

IN  denotes the total number of the node couples inside the domain of influence 
IX  

associated with the Ith node couple, as explained in Chapter 4.1 

The additional relations (7.57) and (7.58) are discretized under the assumption that 

the applied approximation functions for the strain and stress components interpolate the 

nodal values exactly, i.e., 
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 (7.72) 

For facilitation, the variables associated with the shell middle surface on the right-hand 

sides in (7.72) are expressed by the values computed on the upper and lower surfaces 

using the relations 
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 (7.73) 

The strain values  c
  and  c

    in (7.72) and (7.73) are computed from the displacement 

components by means of the 3-D kinematics relation (2.23) as 

       , ,

1

2
j i

c h h
ij i j 
    G u G u

 
 (7.74) 

where  hu  denotes the approximated displacement vector from (7.60).  33 c  is 

evaluated in terms of ˆ Ju  by using the standard constitutive relation from (2.29) 

    33 33c ckl
klC  . (7.75) 

Herein 33klC  are the components of the material tensor obtained from (2.33) and (2.34), 

and  c
kl  are the compatible strain components computed by (7.74) . 

Finally, the vector ˆ
Jω  from (7.63) may be expressed in terms of the nodal 

displacement components by applying (7.72)-(7.75) as 

 
1

ˆ ˆ
Jn

J KJ K

K 

ω B u

 , (7.76) 

where the matrix KJB  contains the derivatives of the displacement 3-D shape functions 

from  u i
J Φ , which is given by (7.61). The matrix KJB  is analogous to the standard 3-

D strain-displacement matrix. Jn  denotes the number of the nodes influencing the 
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IMLS approximation at the position of the node couple J, i.e., it is the total number of 

the nodes positioned inside the domain of definition associated with the node couple J. 

After inserting equation (7.76) into discretized LWF (7.69) and (7.70), the 

following discretized equations are obtained for each local sub-domain I
s   

   
1 1

ˆd d d d ,
JI

I I I I
S Su St s

nN
KJ K

J J
J KL L

   

  

 
        

  
    N T C Φ N T C Φ B u t b


    (7.77) 
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
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   

 

d T C Φ N T C Φ N T C Φ B u

t b


   

 (7.78) 

Obviously, only the nodal displacements appear as the unknown variables in the above 

equations. If the non-interpolating MLS functions are used for the approximation of 

displacements, then the penalty terms have to be added to enforce the essential BC, as in 

the mixed formulation for plate structures presented in Section 7.1. All terms containing 

the body force vector b may again be omitted. The closed global system of equations on 

the structural level is derived by using the well-known point-by-point numerical 

procedure.  

7.2.5 Estimate of the computational costs 

From the presented formulation, it is clear that, in contrast to the primal MLPG 

formulations considered in Chapter 6, the differentiation of the MLS interpolation 

functions at each integration point in a local sub-domain is avoided. Therefore, less 

quadrature points are required to perform the integration accurately in comparison to the 

purely displacement approach, and consequently, the computational costs associated 

with the numerical integration are reduced. At the same time, the costs needed for the 

evaluation of the nodal strains and stresses are minimal due to the collocation 

procedures applied only at the nodes. In addition, the size of the support domains of trial 

functions does not influence the solution accuracy so significantly, as demonstrated in 

[148]. However, some additional computational effort is necessary for the elimination 

of the nodal stress/strain values from the discretized system of equations (7.77) and 

(7.78) by employing (7.76). A rough estimate of the computational costs for the mixed 
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formulation in comparison with the primal MLPG approach from Section 6.4 is given 

here.  

The concept for the computational costs assessment together with the notations of 

variables has been taken from [150]. Accordingly, the -notation to imply the upper 

bound of the given functions is adopted. In addition, the variables associated with the 

primal and mixed formulation are denoted by superscripts d and m, respectively. Here, 

only the costs of forming the global stiffness matrix and of solving the global system of 

equations are taken into account. All other additional costs, such as the costs associated 

with the computational implementation, are neglected.  

7.2.5.1 Primal MLPG formulation 

The computation time needed for the assembling of the global stiffness matrix in 

the primal MLPG method with d N  non-zero rows and d M  non-zero columns per row 

is estimated according to the procedures given in [150] as 

 ( )d d d d
K eT d N d M T , (7.79) 

where dN   is the total number of node couples used for discretization, and dM  stands 

for the average number of nodes influencing the interpolation in each local sub-domain. 

The number of degrees of freedom (DOF) per node is denoted by d, i.e. 7d  . The 

variable d
eT   represents the computational time required for the calculation of a single 

term in the stiffness matrix, which may be assessed as 

  d d
e g hT n K T  . (7.80) 

Herein, d
gn  is the number of Gaussian points per local sub-domain and Th  represents the 

computational time needed for the evaluation of the MLS shape function in an 

integration point. For the purpose of comparison with the mixed approach, factor 1K   

is introduced to take into account additional costs required for the calculation of 

derivatives of the MLS shape functions at a given point. The variable Th may be 

expressed as 

   2d d
h wT m M t  (7.81) 
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with dm  being the number of monomial terms in the MLS basis vector p, while tw is the 

computational time needed for the calculation of the MLS weight function at a given 

evaluation point. Accordingly, the computational time for the global stiffness matrix in 

the primal MLPG method may be estimated as  

     2 2
49d d d d d

K g wT N M n m Kt  . (7.82) 

7.2.5.2 Mixed MLPG formulation 

The overall computational cost of assembling the global stiffness matrix of the 

proposed mixed MLPG formulation can be broken into three major parts as 

 m
K K mltT T T T    . (7.83) 

Herein KT   is the computational cost of the non-zero terms for which integration has to 

be performed in the discretized LWF of the equilibrium equations (7.43)-(7.44) and T  

is the cost of evaluating the nodal stress and strain values in ˆ Jω  from (7.76). The 

variable mltT  stands for the cost of the matrix multiplication needed for replacing the 

nodal strain and stress values by the nodal displacement components, as shown in (7.77) 

and (7.78). 

Analogously to d
KT  in (7.79), KT   may be estimated as  

 ( )m m m
K eT k N l M T  , (7.84) 

where 6k   stands for the number of equations per node couple and 9l   is the 

number of independent stress and strain variables per node couple. Since there is no 

need to calculate the derivatives of the shape functions in each Gaussian point, the 

computation cost of a single non-zero term in LWF (7.43)-(7.44) can be estimated as  

   2
( )m m m m m

e g h g wT n T n m M t   . (7.85) 

By means of (7.85), KT   may be modelled as 

     2 2
54 m m m m

K g wT N M n m t  . (7.86) 
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The cost of forming relation (7.76) may be assessed by taking into account that it is 

sufficient to compute the nodal stress or strain values from the displacements for each 

node in the discretization scheme just once during calculations. Therefore, T  may be 

expressed as 

     2 2
( ) 54m m m m m

h wT N l k M K T N M m K t    . (7.87) 

Here, it is assumed that KJB  in (7.76) contains only non-zero terms, and that Jn M . 

Furthermore, the computational costs for the derivatives of the MLS shape functions at 

a node are included by employing the factor K, similarly as in (7.80). 

By inspection of dimensions of matrices in (7.77) and (7.78), it may be concluded 

that the overall cost of the matrix multiplication required for the elimination of ˆ Jω  from 

the equation system may be assessed as 

   2
324 m m

mltT N M . (7.88) 

By means of (7.86)-(7.88) and after some modification of (7.83), the computational 

cost of assembling the stiffness matrix for the mixed MLPG formulation may be 

estimated as 
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 

 
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  . (7.89) 

By analyzing this equation, it can be concluded that m
KT  is strongly governed by 

KT   because the influence of T  and mltT  on the overall computational cost is at least 

one order of the magnitude lower than that of KT  . Therefore, it is safe to write that 

 , 1 2m
K KT C T C   . (7.90) 

 

To compare the computational time estimations expressed by (7.82) and (7.90), it 

can be written that 
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m m m m m
K K g w

K N M n m tT T

T C T C N M n m t

 
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As evident from (7.91), the values of d
KT   and m

KT  might be comparable in magnitude in 

the case when ,d mN N  d mM M , d m
g gn n  and d mm m , as it was confirmed by 

the numerical experiments. However, it has been noticed in [148] that d m
g gn n  in order 

to achieve the same order of accuracy in numerical integration. Furthermore, as evident 

from the presented numerical examples, in the cases involving the appearance of shear 

and membrane locking effects, the MLS functions of  lower order may be used in the 

mixed MLPG formulation, and consequently d mm m  and d mM M . Moreover, 

d mN N  is usually needed in order to obtain the same order of accuracy. Therefore, it 

may be concluded that d m
K KT T . The numerical experiments have shown that m

KT  is 

about one order of magnitude lower than d
KT . Accordingly, it may be estimated that the 

mixed MLPG formulation is computationally more efficient than the fully displacement 

approach. 

7.2.5.3 Costs of solving the global algebraic system of equations 

Generally, the MLPG method produces the global systems of equations with the 

unsymmetrical coefficient matrices, solving of which is computationally expensive.  In 

the most general case, the cost of solving such systems could be estimated as 

 3
ST N  .  Herein, ST  is the solution time and N stands for the number of the node 

couples used for discretization. However, since the equation system matrices are sparse 

and banded the solution costs may be reduced to  N  by applying appropriate solvers 

supporting a sparse matrix storage format [151]. As mentioned above, d mm m and 

d mN N  is needed for obtaining the same level of accuracy in both the primal and 

mixed formulations. It results in d m
S ST T , which further contributes to increasing the 

numerical superiority of the mixed MLPG approach. 

 



7 Mixed MLPG solid-shell formulations   133 

 

7.3 Numerical examples 

This section contains various numerical examples that demonstrate the efficiency 

of the presented mixed formulations. First, an example dealing with a thick rectangular 

plate points to the numerical advantages, such as those associated with the numerical 

integration of the LWF, of the presented mixed approach over the primal MLPG 

algorithms presented in Chapter 6. Next, examples involving thin plates and shells 

demonstrate the successful elimination of shear locking by means of the adopted mixed 

concept, where strains are approximated separately from displacements.  

Since the solutions obtained by means of two or more different meshless 

formulations are given, the following nomenclature is used for naming different 

algorithms in order to avoid confusion in interpreting the results. A label consisting of 

four sets of data, whose meaning is given in Table 7.1, defines each meshless 

formulation. 

For facilitation, uniform grids of node couples were used for the discretization of 

analyzed structures. LWF were calculated over either the cylindrical or the 

parallelepipedic local sub-domains, as explained in Sections 7.1.1 and 7.2.1. Due to the 

uniform discretization, the sizes of all local sub-domains were identical. The shapes of 

the local sub-domains were either the circular cylinders or parallelepipeds with the 

square in-plane bases in the parametric space, as shown in Figure 6.2 and Figure 7.1, 

respectively. In the following presentation of results, the local sub-domains are denoted 

as t , Tr  denotes the value of the radii of the cylindrical local sub-domains, while 2 Td  

is the length of the sides of the square in-plane bases of the parallelepipedic local sub-

domains. 

The MLS functions with complete polynomial bases of different order were used to 

approximate unknown field variables in the in-plane directions. They are labelled either 

as MLSX, if the MLS weight functions are the 4th-order spline functions given by 

relation (3.20), or as IMLSX, in the case of the regularized MLS weight functions 

defined by (3.24). In both cases, 1, 2,3,...,6X   denotes the order of the applied 

complete polynomial basis. In the following sections, the support domains of the nodal 

MLS shape functions is denoted as tr , while trR  stands for their radii. Similarly to 

t , identical values of trR  was assigned to all tr  during computations. In the cases 

when the non-interpolation MLS functions were used for the approximation of 
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displacements, the essential BC were enforced by means of the penalty method with the 

value of the penalty parameter of 9=10 .  

LABEL: “FORMULATION” – “APPROX” “ORDER” – “LOCSUB” 

FORMULATION - defines the formulation by indicating some details, such as the set of 

independent variables or the order of approximation in the thickness direction.  

   PRM-MLPG-U1 
the primal formulation for shells that employs the linear distribution over 

the thickness for all displacement components [153] 

  PRM-MLPG-QTS 

the primal formulation for shells that implements the hierarchical quadratic 

interpolation for the transversal normal displacement 3u  by means of the 

quadratic test function ( Section 6.4 ) 

  MXD-MLPG-E0 

the mixed MLPG formulation for plates, where all strain components are 

approximated directly, and their nodal values îj  are calculated from 

displacements by using relation (7.25), according to the procedures given 

in Section 7.1.2. 

  MXD-MLPG-E1 

the mixed MLPG formulation for plates presented in Section 7.1, where 

the nodal values for the transversal normal strain component 33̂  is 

modified according to the procedure given in Section 7.1.3 in order to 

eliminate the thickness locking effect 

  MXD-MLPG-S 

the mixed MLPG formulation for shells presented in Section 7.2, where 

the thickness locking effect is circumvented by using the switch of 

independent variables according to the procedure given in Section 7.2.2 

APPROX – defines the type of MLS functions applied, i.e. the MLS weight function 

  MLS the MLS weight function is the 4th order spline from (3.20) 

  IMLS the MLS weight function is the regularized function from (3.24) 

ORDER – defines the order of the MLS function, i.e. the order of the MLS basis 

LOCSUB – defines the shape of the local sub-domains  

  CYL 
the cylindrical local sub-domain with the circular support in the in-plane 

directions of the parametric space 

  REC 
the parallelepipedic local sub-domain with the square support in the in-

plane directions of the parametric space 

Example: MXD-MLPG-S – MLS2 – REC designates the mixed MLPG formulation for the analysis 

of shell structures which employs the non-interpolation MLS functions of the 2nd order with the 

spline-type weight functions for the approximation of unknown field variables and the 

parallelepipedic local sub-domains to integrate weak forms 

Table 7.1 Labels used for different meshless formulations 
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As in Section 6.5, the meshless results were again compared with the solutions 

obtained by the hexahedral solid elements from the MSC.Nastran program package, 

where the reduced integration is applied for the elimination of shear locking, while the 

Poisson’s thickness locking in the 8-noded elements is circumvented by means of 

bubble functions [87],[144]. 

7.3.1 Clamped thick square plate under uniform continuous 

load 

In order to expose numerical features of the proposed mixed approach, such as the 

efficiency of the numerical integration of the LWF or the absence of the Poisson’s 

thickness locking effect, deformation responses of a clamped thick square plate were 

investigated. In addition, the following numerical experiments should demonstrate the 

numerical superiority of the presented mixed formulations over the primal MLPG 

method. Since the primal MLPG formulations are sensitive to transversal shear locking 

in the thin plate limit, a thick plate was analyzed to circumvent the difficulties 

associated with the shear locking phenomena.  

The plate considered in this example has the same geometry and BC as the one 

presented in the Section 6.5.1.1. The Young’s modulus of the material is 

5 210.92 10 N/mmE   . Due to symmetry, again only one quarter of the plate was 

discretized by uniform grids, as shown in Figure 6.4. 

7.3.1.1 Numerical integration of LWF 

Numerical integration is one of the most problematic issues in meshless methods. 

Therefore, the numerical cubature of LWF in the proposed mixed approach was 

inspected first. In order to avoid the appearance of the Poisson’s thickness locking 

effect, the Poisson’s ratio of the material is set to zero, 0  . Therefore, the exact 

solution may be obtained by the developed meshless formulations without employing 

any procedures for the elimination of the Poisson’s thickness locking effect. 

Consequently, for comparison we used the mixed formulation labelled as 

MXD-MLPG-E0 and the primal formulation denoted as PRM-MLPG-U1. More details 

on the applied algorithms are available in Table 7.1, and the references contained 

within. 
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The accuracy of the solution for the plate central deflection cw  was checked for 

different numbers of integration points. In both the mixed and primal formulations, the 

cylindrical local sub-domains were applied. Two models, consisting of 81 (9x9 grid) 

and 289 (17x17 grid) nodes, were used. The integration was performed by employing 

the simple Legendre-Gaussian numerical integration scheme over the entire local sub-

domain, as described in Section 4.4. The numbers of integration points in the circular 

and radial direction of the local sub-domain are labelled as nc and nr, respectively.  Two 

integration points were applied to compute the integrals over the thickness. 

 

Figure 7.5 Clamped thick square plate with 0.0  . Influence of number of integration points on solution 

accuracy: a) influence of cn  for 2rn   (81 nodes), b) influence of  cn  for 2rn    (289 nodes), c) 

influence of rn  for 9cn   (81 nodes), d) influence of rn  for rn   (289 nodes). 

Figure 7.5 shows the results of the tests. The relative error is defined as 

  /c cr crw w w , where cw  is a meshless solution obtained for some particular choice of 

cn  and rn , and crw  is a referent value calculated by using sufficiently large values for 

cn  and rn , 20c rn n  . It is obvious from Figure 7.5a) and b) that in the primal 

method the value of cn  affects the stability of the solution more severely than in the 

proposed mixed algorithm. The oscillation of the solution values is clearly visible, and 

the solution accuracy does not significantly improve when more nodes are used. On the 

other hand, in the mixed approach 7cn   provides acceptable solution accuracy and the 
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results are stable for 7cn  . It is clear from Figure 7.5 c) and d) that in both approaches 

the solution does not depend significantly on rn  and that two quadrature points in the 

radial direction are sufficient for obtaining stable results. The mixed algorithm clearly 

achieves higher accuracy. 

7.3.1.2 Effects of sizes of t  and tr  on solution accuracy 

The sizes of the support domains of the nodal test and trial shape functions, 

labelled as t  and tr , may significantly affect the solution accuracy in the MLPG 

method. Hence, the influences of these parameters on the solution for the plate central 

deflection cw  were investigated.  The results are plotted in Figure 7.6 and Figure 7.7. 

Again, discretization was performed by using 81 (9x9) and 289 (17x17) node 

couples. All results were obtained by applying nine quadrature points in the circular 

direction, 9cn  , and two points in the radial direction, 2rn  , in each cylindrical local 

sub-domain. Furthermore, the Poisson’s ratio was set to zero, 0  , and the  MXD-

MLPG-E0 and PRM-MLPG-U1 formulations were employed. In Figure 7.6 and Figure 

7.7, the radii tR  and trR  are normalized with the nodal distance in the direction of the 

coordinate axes, denoted as mh . 

 

Figure 7.6 Clamped thick square plate with 0.0  . Influence of sizes of t  and tr  on solution 

accuracy for 81 node couples. 
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Figure 7.7 Clamped thick square plate with 0.0  . Influence of sizes of t  and tr  on solution 

accuracy for 289 node couples. 

Evidently, in the mixed approach the influence of trR  on the accuracy of the 

solution is not as pronounced as in the primal MLPG formulation and it becomes almost 

negligible if more nodes are used. Therefore, the values that are close to the minimum 

admissible value of trR  may be chosen in order to increase numerical efficiency. The 

value of tR  affects the solution accuracy more significantly, although less so than in the 

primal MLPG method. Nevertheless, this effect again diminishes if more nodes are 

applied for discretization.  

7.3.1.3 Poisson’s thickness locking effect 

In order to demonstrate the efficiency of the procedures for the elimination of the 

Poisson’s thickness locking effect, the Poisson’s ratio was set to 0.3  , and the same 

problem was computed by means of the mixed MXD-MLPG-E1 and MXD-MLPG-S 

formulations. For this example, all calculations involving the mixed algorithms were 

performed by using two quadrature points in the radial direction, 2rn  , while in the 

circular direction seven integration points were used, 7cn  . The test domain radius 

was 0.65t mR h , while the support domain radius was set to 1.25tr mR h  and 

2.15tr mR h  for the MLS1 and MLS2 functions, respectively. Herein mh  stands for the 

distance between nodes in the direction of the coordinate axes X  . 
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Figure 7.8 shows the convergence of the solutions for the central deflection cw  

obtained by means of various mixed meshless formulations. The values are normalized 

by the analytical solution caw , which is obtained from [145]. The algorithms MXD-

MLPG-E1 and MXD-MLPG-S achieve the convergence to a value close to caw , 

indicating the absence of the Poisson’s thickness locking phenomenon. On the other 

hand, the formulation MXD-MLPG-E0 obviously suffers from the thickness locking 

effect, because therein the distribution of the transversal normal strain component 33  is 

constant through the thickness, as proved by relation (7.27). It is also noteworthy that 

the formulations MXD-MLPG-E1 and MXD-MLPG-S yield almost identical results. 

Therefore, from now on, only the results for the algorithm MXD-MLPG-E1 will be 

considered for this example unless specified otherwise. 

 

Figure 7.8 Clamped thick square plate with 0.3  . Comparison of convergences of plate central 

deflection for various mixed MLPG formulations. 

In addition, the convergence of the mixed formulation MXD-MLPG-E1 is 

compared with the results obtained by means of the primal formulation 

PRM-MLPG-QTS, as well as the hexahedral solid finite elements from the 

MSC.Nastran package in Figure 7.9. For the primal algorithm, the number of Gaussian 

points per local sub-domain were 2rn   and 11cn  , and the values of 0.8t mR h  and 

2.4tr mR h  were applied. It should be emphasized that only the MLS2 functions were 

used for the primal MLPG method because no convergence could be achieved for the 

MLS1 functions. On the other hand, the mixed formulation achieves satisfactory 

convergence even if the MLS1 functions are used. Moreover, the achieved 
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convergences are also better than that obtained by using the MSC.Nastran hexahedral 

20-noded finite elements. 

 

Figure 7.9 Clamped thick square plate with 0.3  . Convergences of plate central deflection in 

comparison to primal MLG approach and solid finite elements. 

7.3.2 Thin square plate subjected to constant continuous 

load 

A clamped thin square plate with the thickness 1 mmh   and the side length 

100mma   is subjected to the uniformly distributed load of 20.1N/mmq   over the 

upper surface. The material data are the Poisson’s ratio 0.3   and the Young’s 

modulus 5 210.92 10 N/mmE   . Again, only one quadrant of the plate was modelled 

due to the symmetry conditions. The applied essential BC are shown in Figure 6.4 in 

Section 6.5.1.1. 

For this example, both the cylindrical (CYL) and the parallelepipedic local sub-

domains (REC), were used. First, only the application of the cylindrical local sub-

domains is considered. After that, the non-interpolation (MLS) and interpolation 

Moving Least Square (IMLS) schemes are compared by employing the MXD-MLPG-S 

formulation. Finally, the parallelepipedic local sub-domains are applied in the MXD-

MLPG-S formulation and a detailed analysis of the obtained results is presented. 

Cylindrical local sub-domains 

In this sub-section, the mixed formulations MXD-MLPG-E1 and MXD-MLPG-S 

employing the cylindrical local sub-domains and the non-interpolation MLS scheme are 



7 Mixed MLPG solid-shell formulations   141 

 

considered. In both cases, the fourth-order spline function from (3.20) was used as the 

MLS weight function. First, we checked the influence of the radii of the local sub-

domains tR  and the radii trR  of the support domains of the nodal MLS shape functions 

on the solution accuracy. Figure 7.10 contains the results of the parametric analyses for 

the MLS1 and MLS2 functions. 

 

Figure 7.10 Clamped thin square plate subjected to constant continuous load. Influence of  tR  and trR  on 

solution accuracy for mixed formulations employing cylindrical local sub-domains for: a) MLS1 

functions, b) MLS2 functions. 

In the above figure, the numerical results for the deflection of the central plate 

point are normalized by using the analytic solution from [154]. The parameters trR  and 
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tR  are again normalized by the nodal distance in the direction of coordinate axes, which 

is denoted as mh . For discretization, 289 (17x17) node couples were employed. For all 

calculations, two Gaussian points were used in the radial direction of the local sub-

domains, while nine integration points were applied in the circular direction, i.e., 2rn   

and 9cn  .  

Considerable oscillations around the analytical value are clearly visible, 

particularly for the higher values of trR . However, for 0.65t mR h  the results are more 

accurate and do not depend significantly on the value of trR . Hence, the results of all 

subsequent numerical tests for this problem were obtained by using the support domain 

radii 1.25tr mR h  and 2.15tr mR h  for the MLS1 and MLS2 functions, respectively, 

and 0.65t mR h  for the local sub-domains. It is important to note that the chosen values 

for trR  are close to the minimal admissible values, and that such a choice therefore 

increases numerical efficiency. As is evident from Figure 7.10, both formulations yield 

very similar results, especially for the low values of trR . 

 

Figure 7.11 Clamped thin square plate subjected to constant continuous load. Convergences of plate 

central deflection for MXD-MLPG-E1 formulation compared to the finite elements solutions. 

Figure 7.11 displays the convergence of the plate central deflection computed by 

the MXD-MLPG-E1 approach. The results are compared with the solutions obtained by 

the solid hexagonal finite elements and the displacement-based PRM-MLPG-QTS 

formulation. In the mixed algorithm, both the MLS1 and MLS2 functions were used, 

while only the MLS4 function was applied in the primal MLPG formulation. The mixed 

formulation achieves better accuracy and convergence than the 20-noded FE solutions 

even for the MLS1 functions, indicating that shear locking is efficiently overcome. 

Moreover, the convergence of the mixed approach is better than that of the primal 
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MLPG formulation even though the low-order MLS functions were used. It is important 

to note that the low order of the MLS functions allows the use of smaller values of trR , 

as well as fewer quadrature points, which further increases the numerical efficiency of 

the proposed mixed approach. 

MLS vs. IMLS  functions 

To compare the performances of the MLS and IMLS approximation functions, the 

mixed MXD-MLPG-S formulation, exposed in Section 7.2, was used. In order to 

impose the essential BC when applying the MLS functions, the penalty method was 

implemented into the MXD-MLPG-S formulation. Figure 7.12 shows the influence of 

values tR  and trR  on the solution accuracy. The complete second-order basis was 

applied for both the MLS and IMLS functions, and the model consisting of 289 (17x17) 

node couples was employed. As explained previously in detail, numerical integration 

was performed over the cylindrical local sub-domains. 

 

Figure 7.12 Clamped thin square plate subjected to constant continuous load. Influence of tR  and trR  on 

the solution accuracy for MLS2 and IMLS2 functions. 

Similarly to observations made in [117] and [128], the accuracy of the solution 

obtained by using IMLS functions is less influenced by the values of trR  than the MLS 

functions. Therefore, for IMLS functions it is possible to employ small values that are 

close to the minimal admissible values of trR  without having to perform the tedious 

parametric analyses prior to calculations. This is very convenient because using smaller 

local sub-domains also decreases the total computational costs. 
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Parallelepipedic local sub-domains 

The MXD-MLPG-S formulation employing the parallelepipedic local sub-

domains, which are shown in Figure 7.1, is considered next. The parallelepipedic local 

sub-domains are especially suitable for the analysis of curved shell structures, due to 

their metrics not involving trigonometric functions, which are necessary to describe the 

geometry of the cylindrical local sub-domains. This convenience has already been used 

for the analysis of thin shells and plates [13]. 

The results in the following section were obtained by using the IMLS functions. 

The MLS bases of the first and second order were applied. Numerical integration was 

performed by partitioning the local sub-domain into four equal quadrants in the 

parametric space, and by applying the simple 2-D Legendre-Gaussian formula with four 

(2x2) quadrature points in each quadrant. 

 

Figure 7.13 Clamped thin square plate subjected to constant continuous load. The influence of the sizes of 

t  and tr  on the solution accuracy for the MXD-MLPG-S formulation employing parallelepipedic 

local sub-domains for: a) IMLS1 functions, b) IMLS2 functions. 
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Figure 7.13 displays the influence of the values of trR  on the solution accuracy for 

different sizes of the local sub-domains s . The figure shows the relative error for the 

central plate deflection, defined as   /a aw w w  with w as a meshless solution and aw  

as the referent analytical value from [154]. Therein td  defines the size of the 

parallelepipedic local sub-domains as explained before, while trR  denotes the radius of 

tr . Both parameters are normalized by the parameter mh , which is the distance 

between the nodes in the direction of the in-plane axes  . The calculations were 

performed on the model consisting of 289 (17x17) nodes. It may be concluded that for 

this problem the sizes of s  and tr  have negligible influence on the solution accuracy. 

However, it should be noted that the values for trR  have to be large enough to ensure 

the adequate quality of approximations, i.e., 1.25tr mR h   and 2.15tr mR h  for the first-

order and second-order MLS functions, respectively. 

 

Figure 7.14 Clamped thin square plate subjected to constant continuous load. Convergence of central 

deflection for the MXD-MLPG-S – IMLS – REC algorithm 

The convergence of the solution for the plate central deflection is compared with 

the values obtained by the PRM-MLPG-QTS formulation and with the solutions 

obtained by the 20-noded hexagonal 3-D elements from the MSC.Nastran program 

package [144] in Figure 7.14. The deflections were computed at the point positioned on 

the middle surface and normalized by using the exact analytical solution [154]. The 

second- and third-order complete polynomial bases were used in the mixed formulation. 

On the other hand, the MLS fourth-order basis is necessary in the PRM-MLPG-QTS 

formulation for achieving the convergence. Such a high basis requires relatively large 
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interpolation support domain and, consequently, large computation time, which 

decreases numerical efficiency. The mixed approach employing the third-order IMLS 

function produces accurate results even in the case of a coarse grid point distribution 

(5x5 nodes). Furthermore, it should be stressed that the accuracy of the applied finite 

elements is lower than that of the proposed mixed meshless computation strategy. 

A more detailed convergence study has been performed by considering the L2 norm 

of the relative error of deflection. The results were again compared with those computed 

by the purely displacement PRM-MLPG-QTS approach, as shown in Figure 7.15.   

 

Figure 7.15 Clamped thin square plate subjected to constant continuous load. Relative errors and 

convergence rates for deflection 

The L2 norm is computed by the well-known relation  
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and the relative error is defined as 

 n e
w

e

w w
r

w


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Herein nw  is the numerical solution obtained by the MLPG algorithms and ew  stands 

for the exact analytical solution [154]. The convergence rates are calculated 

approximately as the slopes of lines that are the least square fits to the numerical results 
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presented in Figure 7.15. The parameter wh  represents the nodal distance in the 

directions of the parametric in-plane axes  . In the case of the mixed MLPG 

formulation, the measured convergence rates are 1.68R   and 3.28R   for the second-

and third-order bases, respectively. The convergence rate of the primal 

PRM-MLPG-QTS formulation employing the fourth-order MLS functions is 4.56R  . 

Although the primal formulation yields considerably higher convergence rate, it is 

obvious from Figure 7.15 that the overall accuracy is approximately one order lower 

than that of the mixed formulation employing the third-order MLS functions. 

Figure 7.16 contains the results for the convergence rate of the bending moments. 

The rates are defined analogously to the displacements as 

 n e
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, (7.94) 

where the L2-norm for the moments is computed according to the following relation  
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Herein,  11 22 12
T M M MM  is the vector containing the bending moments 11M  

and 22M , as well as the twisting moment 12M , both calculated according to the general 

shell theory [120]. The analytical solutions eM  were again obtained from [154]. 

The measured convergence rates are 2.28R   and 4.5R   for the IMLS2 and IMLS3 

functions, respectively. From Figure 7.15 and Figure 7.16, it is obvious that for the 

IMLS2 functions the convergence rate for the moments is higher than the convergence 

rate for displacements, while overall accuracy is close. Conversely, the IMLS3 

functions yield lower convergence rates and accuracy than for the displacements.  
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Figure 7.16 Clamped thin square plate subjected to constant continuous load. Relative errors and 

convergence rates for moments. 

 

Figure 7.17 Clamped thin square plate subjected to constant continuous load. Distribution of bending and 

twisting moments along  line 1 0X   (see Figure 6.4). 

Figure 7.17 shows the distribution of the bending and twisting moments along the 

line 1 0X  . The nodal values obtained using the meshless method are compared with 

the analytical solutions [154]. The calculations were performed by employing 81 nodes 

in the model with nine nodes along the inspected line. It is clear that the IMLS2 

functions are sufficient to obtain excellent agreement with the analytical solutions. 

The sensitivity of the proposed mixed approach on the shear locking effect was 

tested by increasing the plate span to the thickness ratio, as shown in Figure 7.18. The 
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second-order MLS polynomial basis was used. As evident, the accuracy does not 

deteriorate, even for very thin plates, which shows that the shear locking effect is 

successfully suppressed. 

 

Figure 7.18 Clamped thin square plate subjected to constant continuous load. Central deflection vs. 

span-to-thickness ratio for clamped plate 

7.3.3 Thin shell structures 

The following sections deal with the application of the mixed MXD-MLPG-S 

algorithm on the analysis of thin shells. In order to test the performance of the proposed 

formulation, couple of typical benchmark problems for thin shells are considered. 

Unless specified otherwise, the following setup was used in all calculations. The 

computations were performed by using the second- or third-order complete polynomial 

bases in the IMLS functions. The parallelepipedic local sub-domains were used, as 

explained in Section 7.2.1, and the sizes of the local sub-domains were defined by 

setting 0.5t md h . The radii of the support functions of trial shape functions were 

2.25tr mR h  and 3.25tr mR h  for the IMLS2 and IMLS3 functions, respectively. 

Numerical integration was again performed by partitioning the local sub-domains into 

four equal quadrants in the parametric space, and by using 3x3 2-D Legendre-Gaussian 

rule in each quadrant. The uniform grids of nodes were used for the discretization of all 

models. As before, the results obtained by the meshless approach were compared with 

the hexahedral solid finite elements from the MSC.Nastran program package [144]. 

7.3.3.1 Cylindrical shell subjected to uniform line load 

A horizontal thin cylindrical shell subjected to the uniform line load along the 

upper and the lower generatrix was analyzed. The configuration of the shell, including 
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the material, geometrical and load data, is given in Figure 7.19. Due to symmetry, we 

modelled only one octant of the shell. 

 

Figure 7.19 Thin cylindrical shell. Geometry, boundary conditions, and discretization. 

 

Figure 7.20 Thin cylindrical shell subjected to uniform line load. Convergence of vertical displacement 

under line load for MXD-MLPG-S formulation. 

The convergence of the vertical displacement at the shell middle surface under the 

line load, normalized by the analytical solution from [155], is presented in Figure 7.20, 

where the results are again compared with the values obtained by the primal algorithm 

PRM-MLPG-QTS as well as with the 20-noded 3-D finite elements. As is clear from 

Figure 7.20, the mixed formulation is superior to the other tested formulations. The 

fifth-order basis function in the MLS approximation has to be used in the purely 

displacement approach in order to achieve the convergence, which significantly 
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decreases numerical efficiency. Furthermore, the computation by means of the third-

order IMLS basis function in the mixed approach yields the exact displacement values, 

even for the relatively coarse discretization. 

The relative errors of the displacements in the L2 norm were again calculated. The 

results are compared with the values obtained by the purely displacement PRM-MLPG-

QTS in Figure 7.21. The norm and relative error are defined analogously as in (7.92) 

and (7.93), while the parameter s represents the nodal distance in the circular direction. 

The analytical solution used for the normalization is available in [155].  

 

Figure 7.21 Thin cylindrical shell subjected to uniform line load. Relative errors and convergence rates 

for displacements. 

The convergence rates of the mixed formulation are 2.08R   and 3.95R   for the 

IMLS2 and IMLS3 functions, while the convergence rate of the primal approach is 

4.16R  . Although the primal method displays better convergence rates than the mixed 

formulation, the overall accuracy is almost two orders lower. It should also be noted 

that the convergence rates of the mixed formulation are higher than in the example 

involving the thin clamped plate subjected to the continuous load. 

Figure 7.22 contains the results for the convergence rate studies for the bending 

moments, defined as in Figure 7.23. The moment rates are defined as 
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where the L2-norm for the moments is given by 
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Figure 7.22 Thin cylindrical shell subjected to uniform line load. Relative errors and convergence rates of 

circular bending moments. 

The measured convergence rates are 2.17R   and 4.24R   for the second- and third-

order basis, respectively, which are higher than the rates obtained for displacements. It 

is noteworthy that the IMLS3 functions yield lower accuracy than the IMLS2 functions 

for coarser discretization, which may be attributed to the inaccuracies in the numerical 

integration of both the LWF and the L2 norms. 

 

Figure 7.23 Thin cylindrical shell subjected to uniform line load. Distribution of bending moments along 

the shell circumference. 
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Figure 7.23 displays the distribution of the moments along the circumference of the 

cylinder for the discretization pattern containing nine nodes along the edges of the shell. 

It is to note that again excellent agreement with the analytical solution [155] is obtained. 

The sensitivity of the mixed approach on transversal shear locking was tested by 

increasing the shell radius to thickness ratio and the results are shown in Figure 7.24. As 

evident, by using the IMLS2 functions, it is possible to eliminate shear locking even for 

very thin shells. 

 

Figure 7.24 Thin cylindrical shell subjected to uniform line load. Vertical displacement under line load 

vs. radius-to-thickness ratio. 

7.3.3.2 Scordelis-Lo shell roof 

The benchmark test involving the Scordelis-Lo shell roof is revisited here by using 

the mixed MXD-MLPG-S algorithm. The data used in the calculations are given in 

Section 6.5.3.1 and the shell is depicted in Figure 6.20. Owing to symmetry, again only 

one quarter of the shell was modelled by using the uniform nodal grids.  

Figure 7.25 and Figure 7.26 show the comparison of the convergence of the 

vertical displacement at the middle surface point A with the solutions obtained by the 

primal PRM-MLPG-QTS formulation and the 3-D solid hexahedral finite elements 

from the MSC.Nastran program package, respectively. Therein the numerical solutions 

are normalized by the analytical value [152]. The IMLS2 and IMLS3 functions were 

used in the mixed formulation. In the primal MLPG algorithm, the non-interpolation 

MLS functions of third and fourth order were applied, and numerical integration was 

done over cylindrical local sub-domains, as in earlier examples. 
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Figure 7.25 Scordelis-Lo shell roof. Convergence rates of vertical displacement at point A for 

MXD-MLPG-S and PRM-MLPG-QTS formulations. 

 

Figure 7.26 Scordelis-Lo shell roof. Convergence rate of vertical displacement at point A for 

MXD-MLPG-S algorithm in comparison to finite element solutions. 

The results display the superiority of the mixed formulation over the primal MLPG 

approach. The mixed algorithm achieves satisfactory convergence even with the 

second-order IMLS function, while the fourth-order MLS function is necessary to 

obtain the convergence of the primal formulation. Moreover, it is clear from Figure 7.26 

that the convergence of the MXD-MLPG-S algorithm is comparable to those obtained 

by using the applied 3-D solid elements. However, the convergence is non-uniform for 

the second-order IMLS functions, which may again be attributed to the inaccurate 

numerical integration. 
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7.3.3.3 Pinched cylinder 

Similar to the previous example, the problem of the pinched cylinder is reviewed in 

this section by applying the MXD-MLPG-S formulation. The model data are given in 

Section 6.5.3.2 and the shell is shown in Figure 6.23.  

The convergence was studied by applying the complete IMLS functions of the 

second, third and fourth order. The results are presented in Figure 7.27. Therein, the 

solutions for the vertical displacement under the point load are normalized by using the 

exact solution available in [6]. The rate of convergence for the considered point is 

similar for all applied functions, indicating that shear locking is suppressed even for the 

second-order MLS basis. From Figure 7.28 it is visible that the convergence of the 

mixed approach is better than those obtained by the applied 3-D solid elements. Once 

again, the performance of the proposed mixed approach is superior to the primal 

PRM-MLPG-QTS algorithm, where it was necessary to apply the MLS function of the 

sixth order to obtain plausible convergence. 

 

Figure 7.27 Pinched cylinder. Convergence of vertical displacement under line load obtained by 
MXD-MLPG-S formulation for different order of the MLS basis  

 

Figure 7.28 Pinched cylinder. Convergence rate of vertical displacement under line load obtained by 

MXD-MLPG-S algorithm in comparison to finite element solutions. 
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7.3.3.4 Clamped hemispherical shell  

A thin hemispherical shell with a central opening, shown in Figure 7.29, is 

considered in this section. The shell is moderately thin, with the radius-to-thickness 

ratio / 100R h  . The material and geometrical data, together with the applied boundary 

conditions, are given in Figure 7.29. Again, only one quadrant of the shell was modelled 

by employing uniform grids, due to symmetry of the problem. The computations were 

performed using the mixed MXD-MLPG-S approach, and utilizing the IMLS functions 

of the second and third order. 

 

Figure 7.29 Clamped hemispherical shell. Geometry and boundary conditions. 

 

Figure 7.30 Clamped hemispherical shell. Convergence of vertical displacement under line load for 

MXD-MLPG-S formulation. 

The convergence study, in comparison with the finite element solution, is displayed 

in Figure 7.30. It presents the curves of the normalized displacement at the middle 

surface under the line load versus the number of degrees of freedom. Normalization was 
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performed using the analytical solution from [156]. The meshless results, employing the 

second-order MLS basis, agree well with the finite element solutions, while the third-

order IMLS function produces better accuracy and convergence at the observed point. 

Sensitivity to shear locking was tested using both the second- and third-order IMLS 

functions. As Figure 7.31 clearly demonstrates, shear locking is again successfully 

suppressed. The plotted curves show that slightly better results are achieved if the 

third-order IMLS function is used. 

 

Figure 7.31 Clamped hemispherical shell. Vertical displacement under line load vs. radius-to-thickness 

ratio for MXD-MLPG-S formulation. 

7.3.3.5 Pinched hemispherical shell 

The analysis of the pinched hemispherical shell pinched by two concentrated 

forces, according to Figure 7.32, is one of the standard ways to test whether numerical 

formulations exhibit locking in the thin limit.  

 

Figure 7.32 Pinched hemispherical shell. Geometry and boundary conditions of the model. 
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Here, membrane locking is more critical than transversal shear locking because of the 

inextensional bending state appearing within the shell. The shell used in this test is very 

thin, with a radius-to-thickness ratio / 250R h  . The upper and lower edges of the shell 

are free, and the central opening of the shell is defined by the angle of 18 . The material 

data and the value of forces are given in Figure 7.32.   

Because of the symmetry of the problem, again only one quarter of the shell was 

modelled by applying the essential and natural BC as shown in Figure 7.32. 

Discretization was performed by using the uniform grids of node couples. The 

convergence of the solution for the radial displacements at the points under the load was 

tested for the MXD-MLPG-S formulation by employing the IMLS functions of the 

second, third, and fourth order. Figure 7.33 shows the results in comparison with the 

solutions obtained by the hexagonal 3-D finite elements. The analytical value used for 

the normalization of results is 2.3876 mm [6].  

 

Figure 7.33 Pinched hemispherical shell. Convergence of solution for radial displacements at points under 

concentrated load (MXD-MLPG-S formulation). 

Although the meshless solutions converge for all applied functions, it is clear that 

the convergence is non-uniform. Furthermore, the meshless results are poor and 

unreliable for the coarse grids if the IMLS functions of the lower order are used. This 

may be partly attributed to the sensitivity to the membrane locking effect. However, it 

bears mentioning that the sub-integral functions are more complicated here than in the 

problems involving cylindrical shells, because the functions that describe the geometry 

of a spherical surface are more complicated, as may be seen in Table 2.1. Depending on 
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the applied model, this may lead to a significant error in numerical integration, e.g., 

when using the model employing 13x13 nodes and the IMLS3 functions. It is possible 

that these errors additionally decrease the performance of the applied meshless 

formulation. 
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8 Conclusion 

In this thesis, the novel meshless formulations for the analysis of shell and plate 

structures have been developed. This chapter contains an overview of the main results 

and contributions. The limitations of the presented formulations and procedures, as well 

as some directions about the future research, are also given. 

 The presented algorithms are based on the Meshless Local Petrov-Galerkin 

(MLPG) method, which is a truly meshless method because it does not employ the 

background cells either for the approximation of field variables or for the integration of 

governing equations. For the first time in meshless methods, a shell continuum was 

described by applying the solid-shell concept, which enabled the use of complete 3-D 

material models. The shell continuum was mapped to a parametric space, where the 

approximations of unknown field variables and the numerical integration of the local 

weak forms were performed. According to this approach, the couples of nodes 

positioned on the upper and lower shell surface were used to discretize the shell 

continuum. The governing equations were derived by defining a local sub-domain 

around each node couple, and by writing a local weak form (LWF) of the 3-D 

equilibrium equations over the local sub-domain. Thereby the Petrov-Galerkin method 

was applied, and accordingly, test and trial functions coming from distinctly different 

functional spaces were used. The test functions were chosen to be linear in the thickness 

direction. On the other hand, the trial functions for unknown field variables were 

constructed by using the meshless Moving Least Squares (MLS) functions in the in-

plane directions, while simple polynomials were employed in the thickness direction.  

The geometry of the shell continuum was defined by a mapping technique, where 

the middle surface of the shell was parameterized by using suitable curvilinear 

coordinates. Thereby, the geometry of the middle surface was described mathematically 

exactly in order to avoid the errors arising due to the approximate description of 

surfaces. Although straightforward and simple, the applied approach is not applicable 

for general shell geometries. Such shapes in general cannot be described mathematically 

exactly, and sometimes the middle surfaces cannot be parameterized in an unambiguous 

manner. Therefore, more advanced methods for describing shell geometries should be 

developed, which could be based on the existing CAD technology, or on splitting of the 

original surface into smaller manageable pieces. 
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Because, the solid-shell numerical models suffer from various locking phenomena,   

in this work a special attention has been devoted to the Poisson’s thickness locking and 

the transversal shear locking effects. First, the theoretical origins of both locking effects 

were revealed by considering the problem of the rectangular plate subjected to the pure 

bending state, and thereafter the remedies for their elimination were proposed. 

In the purely displacement algorithms, the hierarchical quadratic interpolation in 

the thickness direction was employed for the transversal displacement component to 

eliminate the Poisson’s thickness locking effect, and two different MLPG formulations 

were developed. One algorithm employs the collocation of the equilibrium equations, 

and in the other, LWF were derived by applying the test functions quadratic in the 

thickness direction. The results obtained from the numerical examples considering thick 

shells and plates showed that both algorithms yield practically the same results and that 

the thickness locking phenomenon is successfully suppressed by applying the 

hierarchical interpolation approach. Furthermore, the obtained convergences are 

comparable to the applied 3-D solid finite elements. However, it should be stressed that 

the additional unknown variables associated with the quadratic terms in the hierarchical 

interpolation appear in the discretized equations. In contrast to the analogous FEM 

formulations, these variables cannot be eliminated on the local level by means of the 

static condensation, which leads to a larger global system of equations. The shear 

locking was alleviated by raising the order of the MLS basis and by using the global 

MLS approximation strategy, but as expected, the numerical experiments clearly 

demonstrated that such an approach is not capable of completely removing shear 

locking. Moreover, it is numerically inefficient due to the significant costs needed for 

the evaluation of approximation functions and for solving the global system of 

equations.  

Because of the aforementioned reasons, new efficient mixed formulations thin shell 

structures have been researched. The mixed MLPG algorithm for plates was developed, 

where the shear tensor components were approximated separately from the 

displacements. LWF of the equilibrium equations was first written in terms of the 

approximated strains, and then the unknown nodal strain values were eliminated from 

the system of equations by employing the collocation of the 3-D kinematic relations at 

the nodes.  It is to note that the applied procedure does not increase the total number of 

unknown parameters on the global level, in contrast to the hierarchical interpolation 

method used in the primal MLPG formulations. The Poisson’s thickness locking was 
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eliminated by developing a novel procedure, which employs the modification of the 

nodal values of the transversal normal strain component. Therein, the independent term 

that is linear in the thickness direction was added to the constant nodal value calculated 

directly from displacements. The results showed that this procedure efficiently 

eliminates the thickness locking effect. It was also shown that the applied mixed 

concept is free of transversal shear locking in the plate thin limit. The proposed model 

is, however, not suitable for the application in the analysis of curved shells because of 

its complexity. Therefore, a mixed MLPG for the analysis of shell structures was 

proposed, which employs a simple switch of independent variables to eliminate 

thickness locking. Therein the transversal normal stress component was approximated 

instead of the transversal normal strain component. From the presented results, it is 

clear that both mixed formulations produce very close results if plate structures were 

considered. In addition, it is possible to suppress shear locking in very thin structures 

efficiently even by using the second-order MLS or IMLS functions. Moreover, in some 

cases the developed mixed MLPG algorithms yielded better results even than the 

applied finite elements, especially in the examples involving thin plate and cylindrical 

shell structures. It should be stressed that the considered locking effects were 

successfully removed even though all unknown variables were approximated by using 

the same approximation functions, which is not the case in the available FEM 

formulations. Nevertheless, the results obtained in the problems involving spherical 

shells suggest that future research should inevitably consider the existence of membrane 

locking in the proposed algorithms. 

The mixed MLPG approach is superior in comparison to the primal MLPG 

formulations, as proved by the theoretical estimate of computational costs presented in 

Section 7.2.5.3, and confirmed by the performed numerical tests. The results indicated 

that fever Gaussian points are needed for accurate and stable numerical integration than 

in the primal MLPG formulations. Furthermore, the sizes of the support domains of the 

MLS shape functions affect the solution accuracy less intensely, and in many cases, it is 

possible to obtain excellent results by using the sizes that are close to the minimal 

admissible ones. In addition, it is to note that the direct approximation of the strain or 

stress variables in LWF separately from displacements decreases the continuity 

requirements for the trial functions. In addition, it is possible to suppress the shear 

locking effects in the shell thin limit efficiently by using the lower order of the MLS 

functions than in the primal MLPG method, which greatly reduces the costs of 
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calculating the MLS approximations. The numerical efficiency of the proposed mixed 

algorithms could be further improved by implementing simpler and numerically more 

efficient approximation schemes. 

The local weak forms were integrated over the cylindrical or the parallelepipedic 

local sub-domains. For the cylindrical shapes, the LSW were integrated directly over the 

entire local sub-domain by means of the simple 2-D Gauss-Lagrange formula. On the 

other hand, the parallelepipedic local sub-domains were first partitioned into four equal 

quadrants in the parametric space, and LWF were integrated by applying 2-D Gauss-

Lagrange formulas over each of these quadrants. Although both approaches yielded 

very similar results for plate structures, it was found out that the parallelepipedic local 

sub-domains produce more accurate in the analysis of curved shells, especially in the 

case of thin spherical shells. This can be attributed to the relatively complicated 

trigonometric functions used for the description of cylindrical geometrical shapes, 

which additionally increase the complexity of the sub-integral functions. This 

inconvenience could be alleviated by implementing different stratagems for numerical 

integration, such as the partitioning of the cylindrical local sub-domains. Moreover, 

new, more efficient methods for the numerical integration of LWF should also be 

explored. 

Another difficulty in meshless methods is associated with the imposition of the 

essential BC. From the obtained results, it can be concluded that the penalty method 

performs well for flat plate structures, but that it might not be suitable for the 

application in curved structures. The causes for such behaviour should be explored in 

detail in future research. The interpolating MLS (IMLS) approximation scheme, where 

the interpolation condition at the nodes was imposed with a high accuracy by employing 

the regularized weight functions, was used in the mixed meshless formulations. It 

enables the enforcement of the essential BC in a simple and very efficient manner, 

similar to FEM. Furthermore, in comparison to the “classical” non-interpolation MLS 

functions, the influence of the sizes of the supporting domains of the nodal shape 

functions is further reduced. Because of the afore-mentioned reasons, it is concluded 

that the proposed solid-shell MLPG formulations are new useful tools for the analysis of 

shell-like structures by using meshless methods. Among them, the mixed MLPG 

approach for shell structures is the most attractive; it is theoretically straightforward, 

simple to implement, numerically efficient and most importantly, it is free of thickness 

and transversal shear locking. Consequently, it can serve as a basis for developing new 
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and efficient meshless algorithms for the non-linear numerical analysis of shell 

structures. 

Finally, it is useful to condense the most important contributions of this thesis: 

 Novel MLPG formulations for the analysis of plate and shell structures were 

developed, whereby the solid-shell concept was applied for the first time in 

meshless methods. 

 In the purely displacement-based MLPG formulations, the Poisson’s thickness 

locking effect was successfully eliminated by employing the hierarchical quadratic 

interpolation procedure. These algorithm are especially suitable for solving the 

problems dealing with thick plates structures, and with certain modifications and 

improvements, they could become applicable for solving practical engineering 

problems. 

 The mixed MLPG approach was modified and extended to the analysis of shell 

and plate structures, which resulted in two novel mixed MLPG formulations. Two 

new and efficient procedures for the elimination of the Poisson’s thickness locking 

effects were proposed for the developed mixed algorithms, and shear locking in the 

thin structural limit was removed in a simple and efficient manner by approximating 

the strain components separately from the displacements. 

 It was proved theoretically and experimentally that the proposed mixed MLPG 

strategy is numerically far more efficient than the primal MLPG approach. In 

addition, by properly choosing the relevant parameters, the mixed formulations 

showed a potential to compete with the solid finite elements regarding accuracy and 

convergence. 
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