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Abstract 

Abstract 

The subject of this research is the improvement of the dynamic behaviour of 

structures using passive and active approaches to vibration control by using inerters. Inerter is 

a relatively new element in the theory of mechanical networks. It is a mechanical device that 

generates force proportional to the relative acceleration between its terminals. The use of 

inerters is still relatively unexplored and offers many new possibilities of reducing unwanted 

vibration effects, which is of particular importance in the resonant working conditions of the 

structure. In the first part of the thesis, passive linear dynamic systems are considered. In the 

second part, the passive systems are enhanced by the active control. Stability analysis of the 

active systems is performed. In addition to the parameters that ensure stable operation of the 

system, the optimization of vibration behaviour of active structures is carried out. The main 

optimization criterion used is the minimization of the specific kinetic energy of system 

vibration in a broad frequency band. Throughout the work, analytical and numerical methods 

are combined, depending on the complexity of the considered system. The achieved results 

are compared through discussion on the usefulness of the active control and inerter 

implementation, depending on the system considered. The motivation for the work are 

synergistic effects regarding the utilization of inerters in parallel with active control systems. 

The result of the research is a development of new methods for passive and active vibration 

control. Furthermore, it is shown that employing the inerter in isolation systems can yield 

with substantial improvements in fatigue life of isolator coupling components, i.e. springs. 

Novel cylindrical helical spring stress and displacement correction factors are proposed. 

 

Keywords: Vibration Isolation ; Inerter ; Active Vibration Control ; Direct Velocity 

Feedback ; Stability of Active Control Systems ; Optimization of Vibration Control Systems ; 

Fatigue Life ; Helical Spring ; Finite Element Method ; H2 Optimization; Stress Correction 

Factor ; Displacement Correction Factor 



Optimization of dynamic behaviour… 

Damjan Čakmak XI 

Sažetak (Abstract in Croatian) 

Sažetak (Abstract in Croatian) 

Tema istraţivanja vezana je uz poboljšanje dinamiĉkog ponašanja konstrukcija 

koristeći pasivni i aktivni pristup redukciji vibracija uz uporabu inertera. Inerter je relativno 

novi element u teoriji mehaniĉkih mreţa. Radi se o mehaniĉkom ureĊaju koji generira silu 

proporcionalnu relativnom ubrzanju izmeĊu svojih prikljuĉnih toĉaka. Upotreba inertera je još 

relativno neistraţeno podruĉje koje pruţa mnoge nove mogućnosti smanjenja neţeljenih 

efekata vibracija, što je od osobite vaţnosti u rezonantnom podruĉju rada ureĊaja. U prvom 

dijelu istraţivanja razmatrani su pasivni linearni dinamiĉki sustavi koji su potom unaprijeĊeni 

aktivnim pristupom s povratnim vezama. Provedena je analiza stabilnosti. Uz parametre koji 

osiguravaju stabilan rad sustava, provedena je optimizacija vibracijskog ponašanja aktivnih 

konstrukcija. Glavni korišteni kriterij optimizacije je minimizacija specifiĉne kinetiĉke 

energije vibracija sustava u širokom pojasu frekvencija. U radu su korištene analitiĉke i 

numeriĉke metode te njihova kombinacija, ovisno o kompleksnosti razmatranog sustava. 

Postignuti rezultati su meĊusobno usporeĊeni uz diskusiju o nuţnosti implementacije 

automatske regulacije i inertera ovisno o razmatranom sustavu. Motivacija za rad su 

sinergijski efekti koji proizlaze iz upotrebe inertera u sprezi s automatskom regulacijom. 

Rezultat istraţivanja je razvoj novih metoda za automatsku regulaciju vibracija. Nadalje, 

pokazano je da korištenje inertera u izolacijskim sustavima moţe rezultirati znaĉajnim 

poboljšanjima vijeka trajanja dijelova izolatora, t.j. opruga. Predloţeni su novi korekcijski 

faktori za naprezanje i pomak cilindriĉne zavojne opruge. 

 

Ključne riječi: izolacija vibracija ; inerter ; aktivna kontrola vibracija ; povratna 

veza po brzini vibracija ; stabilnost aktivnih sustava ; optimizacija dinamičkih sustava ; 

zamor ; zavojna opruga ; metoda konačnih elemenata ; H2 optimizacija ; korekcijski faktor 

naprezanja ; korekcijski faktor pomaka 
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Extended Abstract 

Extended Abstract 

Inerter is an idealized element in discrete mechanical networks which resists relative 

acceleration across its two terminals [1]. The coefficient of this resistance is called inertance 

and is measured in kilograms [2]. An appealing property of inerters is that they can be 

designed and realized in practice having their inertance significantly larger than their mass 

[1]. This feature is potentially very useful, so that many recent investigations are focused on 

the realization and use of inerters for suppressing mechanical vibrations [3]. 

The concept of “relative mass” has been considered by Schönfeld [4] in connection 

with developing mechanical–electrical analogies. Schönfeld mentioned the possibility of a 

relative mechanical inertia and gave a rudimentary scheme of a physical realization of the 

concept. Smith and Wang [2] developed this idea further by investigating how to design such 

a device in practice and pointed out a number of peculiarities that the new element brings into 

a mechanical network. The authors instilled that inerter is the analogue of the capacitor 

element in electrical networks [2]. Therefore, adding the inerter to classical dampers and 

springs fills an empty niche enabling a complete synthesis of passive mechanical networks 

and complete analogy between mechanical and electrical networks [3]. 

Smith and Wang designed their inerter using a plunger sliding in a cylinder which 

drives a flywheel through a rack, pinion and gears [2]. Another way of realization of the 

inerter is through an electromagnetic transducer, i.e. coil and magnet [5]. An electrical circuit 

of certain impedance can be connected at the terminals of the electromagnetic transducer, 

which consists of a capacitor coupled in series with resistor and coil in a parallel connection. 

If the total shunt impedance is properly tuned, then the whole electromechanical network 

theoretically behaves exactly as if it incorporated an ideal inerter mounted in series with a 

parallel spring-damper pair. A problem in this realisation is that voice coils are characterised 

by an inherent electric resistance of the wire in the coil. As a result, unrealistically large scale 

electromagnetic transducers would be needed to overcome this resistance and synthesize a 

usable inerter by means of entirely passive electrical shunt circuits. This can be overcome by 

actively compensating for the coil resistance. In this context, self-powered configurations 

employing a simultaneous active control and energy harvesting have been considered to 

synthesize mechatronic inerters [5]. Another type of mechatronic inerter utilizes a rotary DC 

motor shunted with an appropriate electrical circuit [6]. An inertance-like behaviour can also 

be accomplished through a scheme in which hydraulic fluid is accelerated [7]. In [8], inerter 
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realization which uses fluid is achieved with a piston which pushes the fluid through a helical 

channel. 

Inerters can be very useful in vibration absorber systems [9]. Performance of 

vibration absorbers, especially Tuned Mass Dampers (TMDs) is known to very much depend 

on the proof mass added to a primary structure to reduce its vibration [10]. As this mass is 

added to structures exclusively to control their vibrations, it is penalized in lightweight 

automotive and aerospace applications [11]. In this context the use of inerter elements can be 

interesting given the fact that their inertance can be significantly larger than their mass [2]. 

Consequently a number of new concepts have arisen. These include tuned inerter-damper 

(TID) [12], tuned mass–damper–inerter (TMDI) [13],[14], and inerter–based dynamic 

vibration absorber (IDVA) [15]. Various applications have been considered using tuned 

inerter dampers including vibration reduction of cables in cable-stayed bridges [12],[16]. 

Dynamic vibration absorbers can be made active by using inertial actuators with a 

velocity or velocity and displacement feedback control scheme. Inertial actuators are typically 

designed with a low mounted natural frequency in order to widen the range of frequencies 

where they can efficiently actuate. However, the low natural frequency is usually associated 

with increased static sags. This limits the applicability of inertial actuators in presence of 

constant accelerations (i.e. Earth’s gravitational acceleration g, acceleration of aircraft while 

manoeuvring, or centrifugal accelerations in rotating structures [17]). 

Zilletti [18] investigated an active vibration absorber system in which the inerter is 

attached in parallel with the suspension spring, damper and the actuator. The author has 

shown that with such a design it is possible to reduce the natural frequency of the actuator 

without increasing the proof mass or reducing the suspension stiffness. He considered only an 

idealized inerter element, which neglects the inertia, stiffness and damping of the gearing 

mechanism. However, Kras and Gardonio [19] studied the effective weight and dynamic 

effects of an inerter element composed by a single flywheel which is either pinned or hinged 

to the base mass or to the proof mass of the actuator. 

Inerters can also be very useful in vibration isolation systems [2]. In this sense, 

authors [20] focused their efforts on improving passive vehicle suspension systems by using 

inerter. Investigations also include optimizing driving comfort for car driver and passengers 

by using inerter [21]. The literature also provides information on the use of inerter for semi-

active car suspension systems [22], as well as the use of semi-active inerters within the semi-
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active suspensions [23]. Further applications of inerters include vibration isolation in civil 

engineering structures, such as multi-storey buildings under earthquake base excitation [24]. 

In vibration isolation problems it is often necessary to tune the impedance of the isolator 

elements based on some optimization criteria. This can be done by either minimizing maxima 

of the response (minimax or H∞ optimization), or by minimizing the energy in the response 

signals (H2 optimization) [25]. 

I. Methods of Research 

In this work, the problem of active vibration isolation with velocity feedback loop is 

considered. With velocity feedback loop it is possible to add active damping to the system and 

thus reduce the resonant system response. Since it is an active approach, a special attention 

should be paid to the system stability [26],[27]. It is examined, by using simplified models, 

whether using an inerter enables efficient active vibration isolation in group of mechanical 

systems in which active vibration isolation is otherwise difficult to accomplish. This group of 

systems has been referred to as sub-critical group of systems [26]. Subcritical systems are 

those that have the fundamental natural frequency of a body that is to be protected from 

vibrations, greater than the fundamental natural frequency of the body that is the source of 

vibrations. In such problems, it is examined whether using an inerter can stabilize the 

otherwise unstable feedback loop and thus enable improved performance of the active 

vibration isolation system. Along with the active system, a passive isolator scheme with and 

without inerter is proposed and analyzed in order to determine the benchmark for active 

isolators that are investigated in the later stages. 

In each system, either active or passive, adjustable parameters are tuned to minimize 

the kinetic energy of the body that is to be protected from vibrations. The broadband dynamic 

excitation of the source body is assumed. Preliminary research results showed that by careful 

selection of passive elements such as inerters, dampers and elastic elements within the active 

mechanical system, substantially improved performance of the isolator can be achieved in 

terms of reducing the kinetic energy of the protected body. Regarding the active system 

stability, it is necessary to define the limits of the feedback gain beyond which the system can 

become unstable [26],[27]. Routh-Hurwitz’s stability criterion is used to determine these 

stability limits [27]. In the control systems theory, Routh-Hurwitz’s criterion is a standard 

mathematical test which enables algebraically determining the necessary and sufficient 

conditions for the stability of the dynamic system. With this method the stability of a simple 



Optimization of dynamic behaviour… 

Damjan Čakmak XV 

Extended Abstract 

system, with limited number of degrees of freedom can be determined analytically, without 

the need for numerical incremental and iterative methods. Therefore, the application of 

Routh-Hurwitz’s criterion is preferable for this research. 

This is because the described method is applied to a simple two degrees of freedom 

(2DOF) system, so conclusions are based on analytically derived expressions. Such a 

simplified system can be considered as a reduced model of potentially more complex 

structures. The analytical results regarding the stability and performance of the active control 

are therefore used to make conclusions usable in a wide range of possible applications, which 

implies a greater generality of the obtained results. The problem analysis is performed in the 

frequency domain, where the square of the absolute value of the velocity, which is 

proportional to kinetic energy of the system, is used as the quality measure of the system 

isolation and hence as the optimization criterion. Some of the methods used in this 

investigation are the direct inversion of the system dynamic stiffness matrix, and the mode 

decomposition method. It is investigated how the implementation of the inerter in the isolator 

affects the system natural frequencies and the associated mode shapes. The viscous damping 

model is used with discrete (lumped parameter) models. When using the mode decomposition 

method, modal damping ratios are used [27]. In the case of complex model geometries, the 

finite element method (FEM) is used [27]-[30]. The finite elements are verified on simple 

examples that can be solved by analytical means to test the suitability of elements for solving 

the considered linear, time-invariant (LTI) dynamic problems. The way of simulating the 

dynamics of an ideal inerter within a FEM environment is determined, analogously to ideal 

spring or viscous damper.  

The work examines whether the performance of the base passive isolator that does 

not use the inerter can be improved by adding the inerter in parallel to the isolator spring and 

the damper. As mentioned earlier, two fundamental groups of problems are discussed: 

subcritical and supercritical [26]. It is tested for each group in particular: 

 stability of the feedback loop, 

 the performance of the active vibration isolation system. 

It is investigated whether the vibration isolation system performance increases with 

the increase of the feedback gain. It is also investigated whether the vibration isolation effect 

is achieved in a broadband frequency range [26]. It is studied how coupling of the inerter in 

parallel to the damper and the spring in the isolator affects the performance and stability of 
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active and passive vibration isolation systems. In order to enable a wider and more general 

application of the results, non-dimensional parameters to describe the dynamic model are 

defined. 

An objective conclusion is reached for which systems it is recommended to use the 

inerter, active isolation, or their combination within the isolator. The results obtained are 

systematically compared. 

II. Research Objectives 

Main research objectives are: 

 performance analysis of passive systems for the isolation of broadband 

vibrations by using an inerter 

 optimization of passive vibration isolation systems by using an inerter, 

 stability and performance analysis of active systems for the isolation of 

broadband vibrations by using an inerter, 

 optimization of active vibration isolation systems by using an inerter. 

III. Hypotheses of Research 

Main research hypotheses are: 

 the performance of the base passive vibration isolator that does not use an 

inerter can be improved by adding the inerter in parallel with the isolator 

spring and damper, 

 the stability of the system for active vibration isolation can be improved by 

using the inerter of certain inertance, 

 the performance of the active vibration isolator can be improved by using 

the inerter, so that it is possible to achieve active vibration isolation in the 

wider frequency range. 

IV. Scientific Contribution 

Main scientific contribution of this dissertation is comprised of: 
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 a new method for improving the performance of passive isolators of 

broadband vibrations by using an inerter, 

 a new method for improving the stability and performance of active 

isolators of broadband vibrations by using an inerter. 
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Inerter je idealizirani element u diskretnim mehaniĉkim mreţama koji razvija silu 

proporcionalnu relativnom ubrzanju izmeĊu svojih dviju prikljuĉnih toĉaka [1]. Koeficijent 

proporcionalnosti naziva se inertancijom i mjeri se u kilogramima [2]. Inerteri se mogu 

konstruirati tako da im je inertancija znatno veća od mase [1]. Ovo svojstvo je potencijalno 

vrlo korisno, pa već postoje suvremena istraţivanja fokusirana na realizaciju i upotrebu 

inertera za suzbijanje mehaniĉkih vibracija [3]. 

Schönfeld [4] je razmatrao koncept “relativne mase” razvijajući analogije izmeĊu 

mehaniĉkih i elektriĉnih mreţa. Spomenuo je mogućnost relativne mehaniĉke inercije i 

predloţio osnovnu shemu konstrukcije takvog koncepta. Smith i Wang [2] razvijali su dalje tu 

ideju istraţujući kako konstruirati takav ureĊaj u praksi te ukazali na brojne osobitosti koje 

novi element unosi u mehaniĉku mreţu. Autori su utvrdili da je inerter u mehaniĉkim 

mreţama analogan kondenzatoru u elektriĉnim mreţama [2]. Prema tome, dodavanje inertera 

klasiĉnim masama, prigušivaĉima i oprugama ispunjava praznu nišu i omogućuje potpunu 

sintezu pasivnih mehaniĉkih mreţa, kao i potpunu analogiju izmeĊu mehaniĉkih i elektriĉnih 

mreţa [3]. 

Smith i Wang oblikovali su svoj inerter pomoću klipa koji klizi u cilindru i pogoni 

zamašnjak preko zupĉaste letve i zupĉanika [2]. Drugi naĉin realizacije inertera je putem 

elektromagnetskog pretvornika, tj. zavojnice i magneta [5]. Na prikljuĉne toĉke 

elektromagnetskog pretvornika moţe se spojiti elektriĉni krug odreĊene impedancije, koji se 

sastoji od kondenzatora povezanog u seriji s paralelnim spojem otpornika i zavojnice. Ako se 

ukupna impedancija dodanog elektriĉnog kruga pravilno ugodi, moguće je postići da se 

spregnuta elektromehaniĉka mreţa ponaša kao da je idealni inerter ugraĊen u seriju s 

paralelnim spojem opruge i prigušivaĉa. Problem u ovoj izvedbi je da zavojnicu karakterizira 

inherentan elektriĉni otpor ţice zavoja. Kao rezultat toga, nerealistiĉno veliki 

elektromagnetski pretvaraĉi bi bili potrebni za svladavanje tog otpora i sintezu primjenjivog 

inertera pomoću potpuno pasivnih elektriĉnih krugova. To se moţe prevladati aktivnim 

kompenziranjem otpora zavojnice. U tom kontekstu, u literaturi su razmatrane i samo-

napajajuće konfiguracije koje koriste istodobno i automatsku regulaciju i rekuperaciju 

energije kako bi sintetizirale mehatroniĉke inertere [5]. Još jedan naĉin realizacije 

mehatroniĉkog inertera koristi elektromotor premošćen odgovarajućim elektriĉnim krugom 

[6]. Ponašanje sliĉno inertanciji takoĊer se moţe postići preko sheme u kojoj se hidrauliĉna 
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tekućina ubrzava [7]. U [8], izvedba inertera koji koristi fluid ostvarena je klipom koji 

potiskuje fluid kroz spiralni kanal. 

Inerteri mogu biti vrlo korisni u sustavima dinamiĉkih prigušivaĉa vibracija [9]. 

Poznato je da uĉinkovitost ugoĊenih dinamiĉkih prigušivaĉa vibracija (eng. Tuned Mass 

Dampers, TMDs), bitno ovisi o masi ovješenoj na primarnu konstrukciju kako bi se smanjile 

vibracije [10]. Budući da se ta masa dodaje ukupnoj masi konstrukcije iskljuĉivo u svrhu 

smanjenja vibracija, maksimalna dopuštena dodana masa je vrlo ograniĉena u automobilskim 

i zrakoplovnim konstrukcijama [11]. U tom kontekstu upotreba inertera moţe biti zanimljiva s 

obzirom na ĉinjenicu da njihova inertancija moţe biti znatno veća od njihove mase [2]. Kao 

posljedica toga, pojavili su se brojni novi koncepti. To ukljuĉuje ugoĊeni inerter-prigušivaĉ 

[12] (eng. Tuned Inerter-Damper, TID), ugoĊeni maseni inerter-prigušivaĉ [13],[14] (eng. 

Mass-Damper-Inerter, TMDI) i dinamiĉki prigušivaĉ vibracija temeljen na inerteru [15] (eng. 

Inerter–Based Dynamic Vibration Absorber, IDVA). Razmatrane su i razne primjene 

korištenja ugoĊenih inerterskih prigušivaĉa za smanjenje vibracija ĉeliĉnih uţadi u visećim 

mostovima [12],[16]. 

Dinamiĉki prigušivaĉi vibracija mogu se aktivirati korištenjem inercijskih aktuatora s 

regulacijskom shemom uz povratne veze samo po brzini vibracija ili i po brzini i po pomaku. 

Inercijski aktuatori obiĉno su konstruirani tako da imaju nisku vlastitu frekvenciju kako bi se 

proširio raspon frekvencija unutar kojeg mogu efikasno pobuĊivati vibracije konstrukcije na 

koju su priĉvršćeni. MeĊutim, niska prirodna frekvencija obiĉno je povezana s povećanim 

statiĉkim pomacima. To ograniĉava primjenjivost inercijskih aktuatora u sluĉaju konstantnih 

ubrzanja (tj. ubrzanje Zemljine sile teţe g, ubrzanje zrakoplova pri manevriranju, ili 

centrifugalna ubrzanja u rotirajućim konstrukcijama [17]). 

Zilletti [18] je istraţio aktivni sustav prigušivaĉa vibracija u kojemu je inerter 

priĉvršćen paralelno s ovjesnom oprugom, prigušivaĉem i aktuatorom sile. Autor je pokazao 

da je takvom konstrukcijom moguće smanjiti prirodnu frekvenciju aktuatora bez povećanja 

dodatne mase, ili smanjenja krutosti ovjesa. Razmatrao je samo idealizirani inerter koji 

zanemaruje inerciju, krutost i prigušenje zupĉanog mehanizma. MeĊutim, Kras i Gardonio 

[19] su prouĉavali i efektivnu teţinu te dinamiĉke efekte inertera sastavljenog od jednog 

zamašnjaka koji je zglobno priĉvršćen na osnovnu masu ili na dodanu masu aktuatora. 

Inerteri mogu biti vrlo korisni i u sustavima izolacije vibracija [2]. U tom smislu, 

autori [20] su se usredotoĉili na poboljšanje pasivnog sustava ovjesa vozila pomoću inertera. 



Optimization of dynamic behaviour… 

Damjan Čakmak XX 

Prošireni sažetak (Extended Abstract in Croatian) 

Istraţivanja ukljuĉuju i optimizaciju ugodnosti voţnje vozaĉa i putnika automobila 

korištenjem inertera [21]. U literaturi se mogu pronaći i podaci o korištenju ineretera za semi-

aktivne sustave ovjesa automobila [22], kao i korištenje semi-aktivnih inertera u sklopu semi-

aktivnih ovjesa [23]. Daljnje primjene inertera ukljuĉuju izolaciju vibracija u graĊevinarstvu, 

primjerice izolaciju vibracija višekatne zgrade u sluĉaju potresa [24]. Kod problema izolacije 

vibracija ĉesto je potrebno podešavati impedanciju elemenata izolatora na temelju nekih 

kriterija optimizacije. To se moţe postići bilo minimiziranjem maksimuma odziva (H∞ 

optimizacija), ili minimiziranjem energije signala odziva (H2 optimizacija) [25]. 

I. Metode istraživanja 

U ovom radu je razmatran problem aktivne izolacije vibracija povratnom vezom po 

brzini vibracija. Povratnim vezama po brzini vibracija moguće je dodavati prigušenje u sustav 

i tako smanjiti odziv sustava u rezonanciji. U sluĉaju aktivnog pristupa, potrebno je posebno 

voditi raĉuna o stabilnosti sustava [26],[27]. Ispitano je mogu li se uporabom inertera 

poboljšati stabilnost i uĉinkovitost takvog aktivnog sustava u odreĊenim situacijama. Na 

pojednostavljenom modelu je ispitano omogućuje li upotreba inertera efikasnu aktivnu 

izolaciju vibracija u grupi mehaniĉkih sustava u kojima se inaĉe aktivna izolacija vibracija 

teško ostvaruje. Ova grupa sustava naziva se pod-kritiĉna grupa sustava [26]. Podkritiĉni 

sustavi su oni koji imaju fundamentalnu prirodnu frekvenciju tijela kojeg se ţeli zaštititi od 

vibracija višu od fundamentalne prirodne frekvencije tijela koje je izvorište vibracija. U 

takvim problemima, ispitano je moţe li se korištenjem inertera stabilizirati inaĉe nestabilna 

povratna veza i tako omogućiti poboljšana uĉinkovitost sustava za aktivnu izolaciju vibracija. 

Uz aktivni sustav, predloţena je i analizirana i pasivna izolatorska shema sa i bez inertera, 

kako bi se utvrdila referentna uĉinkovitost (eng. benchmark) za procjenu uĉinkovitosti 

aktivnih izolatora koji su kasnije istraţivani u radu. 

U svakom sustavu, bilo aktivnom, bilo pasivnom, prilagodljivi parametri su ugaĊani 

tako da se minimizira kinetiĉka energija tijela kojeg se štiti od vibracija. Pritom je 

pretpostavljena širokopojasna dinamiĉka uzbuda tijela koje je izvorište vibracija. Preliminarni 

rezultati istraţivanja pokazali su da se paţljivim odabirom pasivnih elemenata kao npr. 

inerteri, prigušivaĉi i elastiĉni elementi, unutar aktivnog mehaniĉkog sustava mogu postići 

bitno poboljšane dinamiĉke karakteristike sustava u smislu smanjenja štetnih vibracija. U 

sluĉaju automatske regulacije dinamiĉkih sustava, potrebno je obratiti posebnu paţnju na 

stabilnost sustava. U tu svrhu je nuţno definirati granice izvan kojih sustav moţe postati 
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nestabilan [26],[27]. Za odreĊivanje parametara stabilnosti aktivnog sustava korišten je 

Routh-Hurwitzov kriterij stabilnosti [27]. U teoriji regulacijskih sustava, Routh-Hurwitzov 

kriterij je standardni matematiĉki test kojim je moguće algebarski odrediti nuţne te dovoljne 

uvjete stabilnosti dinamiĉkog sustava. Postupak odreĊivanja parametara stabilnog sustava 

ovim kriterijem je potpuno analitiĉki i linearan, bez potrebe za korištenjem numeriĉkih 

inkrementalno-iterativnih metoda, ako se radi o relativno jednostavnim sustavima s malim 

brojem stupnjeva slobode. 

Budući da je opisana metoda primijenjena na jednostavnom sustavu s dva stupnja 

slobode, zakljuĉci se mogu temeljiti na analitiĉki izvedenim izrazima. Takav pojednostavljeni 

sustav moţe se smatrati reduciranim modelom potencijalno sloţenijih konstrukcija. Analitiĉke 

metode su korištene zato da se zakljuĉci mogu upotrijebiti u širokom spektru mogućih 

primjena, pa su dobiveni rezultati općenitiji. Analiza problema je izvršena u frekvencijskoj 

domeni, gdje je kvadrat apsolutne vrijednosti brzine, veliĉine proporcionalne kinetiĉkoj 

energiji sustava, korišten kao mjera kvalitete izolacije sustava te stoga kao i kriterij 

optimizacije. Neke od metoda koje su korištene u radu su direktna inverzija matrice krutosti 

dinamiĉkog sustava, te metoda modalne dekompozicije. Ispitano je kako implementacija 

inertera u izolatoru utjeĉe na vlastite frekvencije i pripadajuće forme vibriranja sustava. 

Korišten je model viskoznog prigušenja sustava, u diskretnom tj. koncentriranom obliku, dok 

je u sluĉaju primjene metode modalne dekompozicije korišteno modalno prigušenje [27]. U 

sluĉaju geometrije modela kompleksnijih oblika, korištena je i metoda konaĉnih elemenata 

(MKE) [27]-[30]. Korišteni konaĉni elementi su verificirani na jednostavnijim primjerima 

koje je moguće riješiti analitiĉkim putem u svrhu ispitivanja prikladnosti elemenata za 

rješavanje navedene klase linearnih, vremenski invarijantnih dinamiĉkih problema. Istraţena 

je mogućnost implementacije idealnog inertera unutar metode konaĉnih elemenata, analogno 

idealnoj opruzi ili viskoznom prigušivaĉu. 

U radu je ispitano da li se uĉinkovitost temeljnog pasivnog izolatora koji ne koristi 

inerter moţe poboljšati dodavanjem inertera paralelno izolatorskoj opruzi i prigušivaĉu. Što se 

tiĉe aktivnih sustava za izolaciju vibracija, razmatrane su dvije temeljne grupe problema: 

podkritiĉna i nadkritiĉna [26]. Ispitano je za svaku grupu posebno: 

 stabilnost povratne veze, 

 uĉinkovitost aktivnog sustava za izolaciju vibracija. 
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Ispitano je raste li s porastom pojaĉanja u povratnoj vezi uĉinkovitost sustava za 

izolaciju vibracija. TakoĊer, istraţeno je postiţe li se efekt izolacije vibracija u širokom 

spektru frekvencija [26]. Analiziran je utjecaj prikljuĉenja inertera, paralelno prigušivaĉu i 

opruzi u izolatoru, na uĉinkovitost i stabilnost aktivnih sustava za izolaciju vibracija. Radi šire 

i općenitije primjene rezultata, u radu su definirani bezdimenzijski parametri kojima je opisan 

dinamiĉki model razmatranog sustava. 

Na temelju provedenih istraţivanja, izveden je objektivni zakljuĉak za koje grupe 

sustava se u izolatoru preporuĉa upotreba inertera, aktivne izolacije, ili pak njihova 

kombinacija. Dobiveni rezultati su sistematski prikazani, sa svrhom objektivnije meĊusobne 

usporedbe. 

II. Ciljevi istraživanja 

Glavni ciljevi istraţivanja su: 

 analiza uĉinkovitosti pasivnih sustava za izolaciju širokopojasnih vibracija 

koji koriste inertere, 

 optimizacija pasivnih sustava za izolaciju vibracija upotrebom inertera, 

 analiza stabilnosti i uĉinkovitosti aktivnih sustava za izolaciju 

širokopojasnih vibracija koji koriste inertere, 

 optimizacija aktivnih sustava za izolaciju vibracija upotrebom inertera. 

III. Hipoteze istraživanja 

Glavne hipoteze istraţivanja su: 

 uĉinkovitost temeljnog pasivnog izolatora vibracija koji ne koristi inerter 

moţe se poboljšati dodavanjem inertera paralelno s izolatorskom oprugom i 

prigušivaĉem, 

 stabilnost sustava za aktivnu izolaciju vibracija moguće je poboljšati 

upotrebom inertera odreĊene inertancije, 

 uĉinkovitost aktivnog izolatora vibracija moguće je poboljšati upotrebom 

inertera, pa je tako moguće ostvariti aktivnu izolaciju vibracija u širem 

podruĉju frekvencija. 
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IV. Znanstveni doprinos 

Glavni znanstveni doprinos ove disertacije sastoji se od: 

 nove metode za poboljšanje uĉinkovitosti pasivnih izolatora širokopojasnih 

vibracija upotrebom inertera, 

 nove metode za poboljšanje stabilnosti i uĉinkovitosti aktivnih izolatora 

širokopojasnih vibracija upotrebom inertera. 
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Introduction 

1. Introduction 

Vibration is a phenomenon where oscillations occur about a point of static 

equilibrium. The vibrations may be of periodic nature, e.g. the motion of a pendulum, or 

completely random, e.g. the movement of a vehicle on a rough road. Vibrations may be of 

advantageous nature, e.g. the motion of a tuning fork, strings on a guitar, or the cone of a 

loudspeaker. However, in many cases, vibrations are harmful and undesirable. Numerous 

sources of vibration can be found in an industrial environment and real engineering 

applications, e.g.: impact processes such as pile driving, pressing and blasting; rotating or 

reciprocating machinery such as motors, engines and compressors; transportation vehicles 

such as cars, trucks, trains, and aircraft; and either laminar or turbulent flow of fluids [31]. 

The presence of vibration may lead to wear of bearings, initiation of cracks, yielding of bolts 

and fasteners, various structural and mechanical failures, or frequent and expensive 

maintenance of machines [32]. The exposure of humans to vibration may lead to pain, 

discomfort, reduced working efficiency and compromised safety. Vibration can be eliminated 

on the basis of theoretical analysis. However, the manufacturing costs involved in eliminating 

the vibration may become too high. Hence, a designer must compromise between an 

acceptable amount of vibration and a reasonable manufacturing cost. In some cases, such as 

rotating machinery, the excitation or shaking force is inherent in the machine, or working 

environment. Even a relatively small excitation force can cause an undesirably large response 

near resonance, which is especially evident in inherently lightly damped systems 

[27],[33],[34]. In these cases, the magnitude of the response can be significantly reduced by 

the use of isolators and auxiliary mass absorbers. Hence, various techniques of vibration 

control methods may be employed for elimination or reduction of vibration. 

1.1. Vibration Control 

Reduction of structural vibrations can be achieved in a number of different ways, 

depending on the class of problem considered. The most common ways are: stiffening, 

damping and isolation [27]. Stiffening consists of shifting the resonant frequency of the 

structure above the excitation frequency band. Moreover, damping employs reducing the 

resonant peaks response by dissipating the vibration energy. Finally, isolation implies 

preventing the propagation of disturbance forces to sensitive parts of the systems. 

Vibration isolation is a procedure by which the undesirable effects of vibration are 

reduced. An object, e.g. a piece of equipment, is isolated from the source of vibrations, or the 
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other way around, a vibration source is isolated from the rest of the structure. Fundamentally, 

the procedure involves insertion of a flexible structural member (i.e. isolator which may 

include rubber pads or mechanical springs) between the sensitive equipment, or payload, that 

needs to be protected from vibrations, and the source of vibration [35]. A reduction in the 

dynamic response of the system is then achieved under specified conditions of vibration 

excitation. An isolation system is defined as either active or passive, depending on whether 

external power is required for the isolator to perform its function, or not [27],[31],[34]. A 

passive isolator consists of a resilient member (which provides stiffness) and an energy 

dissipater (which provides damping). Examples of passive isolators include metal springs, 

pneumatic springs, and elastomeric (rubber) springs. An active isolator is comprised of a 

servomechanism with a sensor, signal processor, and actuator interconnected by a feedback 

loop [27],[31],[35]. Vibration isolation is commonly used in two main types of problems. In 

the first type, the foundation or supporting base of a vibrating machine is protected against 

unbalanced dynamic forces. In the second type, the system (i.e. receiving body [26]) is 

protected against the motion of its foundation or base, or from any type of general disturbance 

force [27]. Structures subjected to ground motion by earthquakes or other excitations, e.g. 

explosions or dynamic action of machinery, are examples in which support motions may have 

to be considered in the analysis of dynamic response [28]. The first type of isolation is used 

when a mass (or a machine) is subjected to a force or excitation, e.g. oscillatory forces from 

an engine in a car which can propagate into the supporting structure [27]. Furthermore, in 

forging and stamping presses, large impulsive forces act on the object to be formed or 

stamped [31]. These impacts are transmitted to the base or foundation of the forging or 

stamping machine, which can damage not only the base or foundation but also the 

surrounding or nearby structures and machines. They can also cause discomfort to human 

operators in the vicinity of these machines. Similarly, in the case of reciprocating and rotating 

machines, the inherent unbalanced forces are transmitted to the base or foundation of the 

machine. In such cases, the force transmitted to the base varies harmonically, and the resulting 

stresses in the foundation bolts also vary harmonically, which might lead to fatigue failure 

[32]. Even if the force transmitted is not harmonic in nature, its magnitude must be limited to 

safe permissible values. In these applications, an isolator can be inserted (in the form of 

stiffness and/or damping) between the mass being subjected to force or excitation and the 

base or foundation to reduce the force transmitted to the base or foundation. This is called 

force isolation [31]. In many applications, the isolator is also intended to reduce the vibratory 

motion of the mass under the applied force (as in the case of forging or stamping machines). 
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Thus, both force and displacement transmissibility become important for this type of isolators. 

The second type of isolation is used when a mass is to be protected against the motion or 

excitation of its base or foundation, e.g. passenger seated in a moving car or airplane [36]. 

When the base is subjected to vibration, the connected mass will experience not only a 

displacement but also a force. The displacement of the mass is generally expected to be 

smaller than the displacement of the base [27]. For example, a delicate instrument or 

equipment is to be protected from the motion of its container or package (as when the vehicle 

carrying the package experiences stochastic vibration while moving on a rough road). The 

force transmitted to the mass also needs to be reduced. For example, the package or container 

is to be designed properly to avoid transmission of large forces to the delicate instrument 

inside to avoid damage. In such cases, an isolator (which provides stiffness and/or damping) 

can be inserted between the base being subjected to force or excitation and the mass to reduce 

the motion and/or force transmitted to the mass. Hence, both displacement isolation and force 

isolation become pertinent in such cases. It must be noted that the effectiveness of an isolator 

depends on the nature of the force or excitation. For example, an isolator designed to reduce 

the force transmitted to the base or foundation due to impact forces of forging or stamping 

may be neither suitable nor effective if the disturbance is a harmonic unbalanced force. 

Similarly, an isolator designed to handle harmonic excitation at a particular frequency may 

not be effective for other frequencies or other types of excitation such as step-type excitation. 

The vibration absorber, also called dynamic vibration absorber (DVA) [31], or 

vibration neutralizer, is a mechanical device used to reduce or eliminate unwanted vibration 

of a harmonically excited system. It consists of another mass and stiffness attached to the 

main (or original) mass that needs to be protected from vibration. Thus, the main mass and the 

attached absorber mass constitute 2DOF system. The vibration absorber system consequently 

possesses two new fundamental natural frequencies. Thus, the stiffness of the absorber should 

be appropriately chosen in order to yield with an effective dynamic absorber system. The 

vibration absorber is commonly used in the machinery that operates at constant (rotational) 

speed, because the vibration absorber is tuned to one particular frequency and is effective only 

over a narrow band of frequencies [18]. Common applications of the vibration absorber 

include reciprocating tools, such as sanders, saws, compactors, engines, motors, and pumps 

[31]. In these systems, the vibration absorber helps balance the reciprocating forces as it 

counteracts the forces yielding from the rotating imbalance. Without a vibration absorber, the 

unbalanced reciprocating forces might make the device impossible to physically hold or 
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effectively control. Appropriate application of DVA may reduce the possibility that a 

resonance condition will occur. Properly implemented, a dynamic absorber will neutralize the 

undesirable vibration, which would otherwise reduce service life or cause mechanical 

damage. Vibration absorbers are also used on high-voltage transmission lines. In this case, the 

dynamic vibration absorbers, in the form of dumbbell-shaped devices are hung from 

transmission lines to mitigate the fatigue effects [32] of wind-induced vibration. In such cases, 

the vibration of the machine or system can be reduced by using a vibration neutralizer or 

DVA, which is simply another spring-mass system. The dynamic vibration absorber is 

designed in such way that the anti-resonant frequency of the resulting system coincides with 

the excitation frequency. Dynamic absorbers may differ from tuned mass dampers (TMD) 

[33] in the sense that dynamic absorbers do not generally require any damping in order to 

function satisfactorily. However, damping can be additionally introduced to increase the range 

of frequencies for which the dynamic absorber is effective [33]. If damping is removed from 

TMD, it deteriorates to DVA. 

Fundamental difference between isolation and absorption problems is demonstrated 

in Figure 1.1a) and b) respectively. For the both cases a) and b), the system setup and its 

loading are the same. Primary body, or source body, i.e. mass m1 is coupled to ground by 

dashpot c1 and spring k1. Secondary body, or receiving body, i.e. mass m2 is coupled to 

receiving body by dashpot c2 and spring k2. Primary force F1(t) acts on a source body, i.e. 

mass m1. In case the motion of a receiving body, i.e. mass m2, is of concern, this becomes an 

isolation problem. In case the motion of a source body, i.e. mass m1 is of concern, this turns 

into an absorption problem and mass m2 becomes an inherent part of the absorber. 

a)  b)  

Figure 1.1. Analogy of 2DOF vibration systems: a) isolation problem, b) absorption problem 

  Mass m2 needs to 

be protected from 

vibrations. 

Mass m1 needs to 

be protected from 

vibrations. 
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In case the structure is made active through the use of actuators and sensors 

connected by a feedback loop, the main advantage of active control may be exploited [33]. 

This main advantage is to reduce the sensitivity of the output to the disturbance input. 

Depending on the circumstances, active structures may be cheaper or lighter than passive 

structures of comparable performances; or they may demonstrate the performance that no 

passive structure could offer [27]. As technology rapidly develops and with the introduced 

availability of low-cost electronic components, it is likely that there will be a growing number 

of applications where active solutions and applications will become cheaper than the passive 

ones, for the same or better level of performance. However, it should not be readily concluded 

that active approach will always be better compared to passive approach and that a control 

system can substantially compensate for a poor or inadequate design of a structure [27],[34]. 

In most cases, an initially poor design will remain that way, whether inherently active or 

passive. Consequently, an active solution should normally be considered only after all other 

passive means and possibilities have been exhausted [35]. It must be accented that feedback 

control can compensate for external disturbances only in a limited frequency band that is 

called the bandwidth of the control system. Outside the bandwidth, the disturbances may even 

be amplified by the control system, i.e. control spillover [27] may occur. 

The disturbance may be either deterministic, such as the unbalance of a motor, or 

random as in a passenger car riding on a rough road [33]. There are two different approaches 

to disturbance rejection: feedback and feed-forward. For deterministic sources of excitation 

which can be measured, such as a rotating unbalance, feed-forward control can be very 

effective. Feed-forward control can also be effective for the control of random disturbances 

provided that reference signals well-correlated to the disturbance can be obtained. Feedback 

strategies for active isolation can be used to control both deterministic and random 

disturbances, and they do not need a direct measurement of the disturbance [27]. 

The basic principle of feedback control is as follows: the output of the system is 

compared to the reference input, and the error signal = (reference input − output), is passed 

into a compensator and applied to the system, along with the disturbance. The design problem 

consists of finding the appropriate compensator such that the closed loop system is stable and 

behaves in the appropriate manner [27]. Probably the most common active approach to 

stabilize a control system is to introduce a feedback loop around the control path [34]. 

A special case of the feedback principle known as direct velocity feedback (DVF) 

may be applied for enhancing vibration isolation effect. This is done by feeding back the 
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absolute velocity of the payload that needs to be isolated from vibration and acting on payload 

through actuator which exerts force opposite in direction to sensor-measured absolute 

velocity. In such case, the feedback loop produces the sky-hook active damping effect 

[26],[27]. This control law is called sky-hook because the actuator control force 

Fact = −g·vpayload is similar to that of a viscous damper of a constant gain g (i.e. active feedback 

gain, in kg s
-1

) attached to the isolated payload and a fixed reference terminal (i.e. hook) in the 

sky [37]. In other words, with DVF control law, for a collocated sensor and actuator control 

system [27], the sensor output (velocity) is multiplied by a control gain g and fed back to the 

collocated actuator. Hence, the idea behind the sky-hook damper is that the ideal DVF isolator 

would enforce the payload to maintain a stable posture as if it was suspended by a fixed 

imaginary hook in the sky [38], unaffected by the disturbance. Since an actual sky-hook is 

either impractical or impossible to realize in real engineering applications (e.g. vehicle 

suspension), these type of active isolation systems are in practice based on the described 

feedback loop. Theoretically, for a case where the coefficient of the damper reaches an 

infinite value, the payload would be in a state where it is completely fixed to the imaginary 

hook, thus the payload will not vibrate. 

When a signal correlated to the disturbance is available, feed-forward adaptive 

filtering constitutes an eligible alternative to feedback for disturbance rejection. It was 

initially developed for noise control, but it is also proven to be efficient for vibration control 

[27]. This method relies on the availability of a reference signal correlated to the primary 

disturbance. This signal is passed through an adaptive filter, and the output is then applied to 

the system. The filter coefficients are adapted in such a way that the error signal is minimized. 

The goal of this control scheme is to produce a secondary disturbance such that it cancels the 

effect of the primary disturbance at the location of the error sensor. Furthermore, there is no 

guarantee that the global response is also reduced at other locations. Unless the response is 

dominated by a single vibration mode, there are locations in the structure where the response 

may be amplified. Unlike the active damping approach which can only attenuate the 

disturbances near the resonances, feed-forward works for any frequency and attempts to 

cancel the disturbance completely by generating a secondary signal of opposite phase [27]. 

1.2. Stability of Dynamic Systems 

If dynamic systems are made active, they may become unstable for a certain 

unfavourable combination of system parameters. Stability is one of the most important 
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characteristics for any active system [31]. Although many definitions can be given for the 

term stability depending on the kind of system or the point of view, this definition is given 

with regards to linear and time-invariant (LTI) systems (i.e., systems for which the mass, 

damping, and stiffness parameters do not change or vary with time). A system is defined to be 

asymptotically stable (called stable in control literature) if its free-vibration response 

approaches zero as time approaches infinity. A system is considered to be unstable if its free-

vibration response grows without bound (approaches infinity) as time approaches infinity. 

Finally, a system is said to be stable (also called marginally stable in control literature) if its 

free-vibration response neither decays nor grows, but remains constant or oscillates as time 

approaches infinity. It is evident that an unstable system whose free vibration response grows 

without bounds can cause damage to the system, adjacent property, or even human life. 

The most common criteria for determining the stability of dynamic control systems 

are Routh-Hurwitz [27],[31],[34] criterion, and Nyquist [27],[34] criterion. The Routh–

Hurwitz stability criterion is an algebraic test that provides a necessary and sufficient 

condition for the stability of a LTI control system. The Routh test is an algorithm used to 

determine whether all the roots of the characteristic polynomial of a closed-loop linear system 

have negative real parts. Hurwitz test consists of arranging the coefficients of the polynomial 

into a square Hurwitz matrix, and investigating whether the polynomial is stable if and only if 

the sequence of determinants of its principal sub-matrices are all positive. Hurwitz criterion 

becomes computationally inefficient and cumbersome for large degree polynomials. The 

Nyquist stability criterion is a graphical technique for determining the stability of a dynamical 

system. It only considers the Nyquist plot of the open-loop systems, thus it can be applied 

without explicitly computing the poles and zeros of either the closed-loop or open-loop 

system. The Nyquist criterion is utilized in electronics and control system engineering, as well 

as other areas for designing and analyzing systems with feedback. Analogue to Hurwitz test, 

Nyquist test is also restricted to LTI systems exclusively. 

1.3. Optimization of Dynamic Systems: H2 and H∞ Criteria 

Using a passively tuned dynamic vibration absorber (DVA) is one way to suppress 

random vibration in mechanical and civil structures [39]. The traditional damped dynamic 

vibration absorber (DVA) or tuned mass damper (TMD) is an auxiliary mass–spring system 

with a damper added between the absorber mass and the primary mass. Its basic function is to 

limit the vibration amplitude of the primary mass [40]. Passive tuned vibration absorbers were 
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proposed by Frahm in 1911 [41] and have been widely used to control structural vibrations 

ever since [18]. 

In 1928, Ormondroyd and Den Hartog reported that the damping of the DVA had an 

optimum value for the minimization of the amplitude response of the SDOF system at 

resonance [39],[40]. This optimization criterion is now known as H∞ optimization. The fixed-

points theory of Den Hartog [42] is commonly used for the determination of the optimum 

tuning frequency and damping ratios of the DVA attached to a SDOF vibrating system. 

On the other hand, H2 optimization of the vibration absorber has the objective 

function of minimizing the mean vibration energy of the primary structure under white noise 

excitation. To extend the application of the DVA, in 1963, Crandall and Mark [43] proposed 

another optimization principle of the damped DVA. They utilized the objective function of 

minimizing the mean vibration energy, i.e. the mean square motion of the primary structure 

under white noise excitation of the PSD excitation [39] over the entire frequency range. 

Authors found the optimized tuning frequency and damping ratios for the SDOF system, 

which is now called H2 optimization [44]-[47] of dynamic vibration absorber. The exact 

solution of the H2 optimization for the traditional DVA attached to an undamped primary 

system was derived by Warburton [48]. 

The H2 and H∞ optimization criteria are normally considered if the vibrating system 

is subjected to random excitation such as wind loading [40]. Cheung and Wong derived the 

H∞ and H2 optimum parameters of the traditional DVA for suppressing vibrations in plates 

[39]. Studies which incorporate H2 optimization usually employ the minimization of specific 

kinetic energy (i.e. vibration velocity amplitudes) [44],[45]. However, studies dealing with 

minimization of displacement amplitudes can also be found in the literature [46],[47]. 

1.4. Inerter Concept and its Applications 

Inerter is a novel mechanical element in the theory of mechanical networks. Its 

proposal is attributed to Professor Malcolm C. Smith from Cambridge University. From 

Smith’s seminal paper [1], it is defined as “a mechanical two-terminal, one-port device with 

the property that the equal and opposite force applied at the terminals is proportional to the 

relative acceleration between the terminals”. The constitutive relation and the kinetic energy 

Ek stored by the inerter respectively are given with relations 

      
2

inerter 1 2 1 2 k,inerter 1 2,
2

b
F b v v b a a E v v       , (1.1a,b) 
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where constant b is called the inertance with the SI units in kilograms, and v1 and v2 are 

velocities. Relations from Eq. (1.1) are related to inerter scheme denoted in Figure 1.2. 

 

Figure 1.2. Inerter scheme and its working principle 

Various researchers used different symbols and schemes for inerter representations. 

Most common schematics are denoted in Table 1.1 and tied to corresponding references. It 

seems that simple rectangle, analogue to Figure 1.2, is the most common inerter 

representation, as it is conceived in Smith’s original paper [1]. “Held” rectangle is also used 

[18] in order to imply relative acceleration between the terminals. Rotating flywheel is 

another convenient inerter representation and it implies its possible physical realization [19]. 

Table 1.1.  Different schematics for ideal inerter depiction 

Type Rectangle “Held” rectangle Rotating flywheel 

Scheme 
   

Literature [1]-[3],[5],[7],[9],[12]-[15] [18] [19],[49]-[52] 

The main motivation for proposing the inerter was the incompleteness of the 

force/electrical current analogy between mechanical and electrical systems [1]. It is known 

that mechanical and electrical networks operate with similar dynamics. The force F and 

velocity v in mechanical systems can be analogized to the current I and voltage E in the 

electrical systems, respectively [53]. Hence, the spring and damper in mechanical systems can 

be analogized to the inductor and resistor in electrical systems, respectively. However, a 

mechanical device truly analogue to the capacitor in electrical systems was missing. 

Historically, the mass is seen as the mechanical element corresponding to the capacitor in 

electrical systems [2]. However, from Newton’s Second Law, the acceleration of the mass is 

relative to a fixed point in the inertial frame. This means the one terminal of the mass is the 

ground and the other terminal is the centre of the mass. Hence, the mass cannot be considered 

as a genuine two-terminal device. The electrical element that corresponds to the mass is 

actually a grounded capacitor, which is a particular analogy valid only for this specific case. 

Due to this restriction between force/current analogy, the inerter has been proposed. From the 

definition of inerter, it can be noted that inerter is a genuine two-terminal device which has 

similar dynamics to the capacitor. By proposing inerter, the force/current analogy is 

completed, and the spring-damper-inerter mechanical networks can be directly represented as 
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inductor-resistor-capacitor electrical networks [1]. The correspondence analogy that includes 

the inerter is shown in Table 1.2, which is adopted and modified from [1]-[3],[53]-[55]. It 

should be accented that although inerter is initially motivated by the force/current analogy, its 

properties are not purely dependent on this analogy. Consequently, inerter possesses some 

unique functions for mechanical systems, e.g. providing large apparent mass without actually 

increasing the mass of the structure [56], and representing the mechanical equivalent of the 

springs as an energy-storing element [53], noted in Eq. (1.1b). 

Table 1.2. Analogy between mechanical and electrical networks 

Mechanical Electrical 

inerter with inertance b, kg capacitor with capacitance C, F 

 

 1 2d

d

v v
F b

t


  

 

 1 2d

d

E E
I C

t


  

damper with damping coefficient c, N s m
-1

 resistor with resistance R, Ω 

 

 1 2F c v v   

 

 1 2

1
I E E

R
   

spring with stiffness k, N m
-1

 inductor with inductance L, H 

 

 1 2

d

d

F
k v v

t
   

 

 1 2

d 1

d

I
E E

t L
   

The introduction of inerter provides a truly novel mechanical concept. The equally 

important issue is how to construct a real mechanical structure or device possessing the same 

or at least similar properties with the definition and concept of inerter. The procedure of 

constructing a physical embodiment of inerter is referred to as realization. Up to present, 

there are mainly three types of realizations of inerter [53]. These are the rack and pinion 

inerter [1]-[3],[57], the ball-screw inerter [3],[51],[57]-[60] and the hydraulic/fluid inerter 

[7],[8],[61]. Fundamental schematics of the rack and pinion, and ball-screw embodiments of 

the inerter are denoted in Figure 1.3a) and b) respectively. 

a)  b)  

Figure 1.3. Simple schematics of the inerter [3],[57]: a) rack and pinion inerter, b) ball-screw inerter 
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Figure 1.4 shows the more detailed schematic (a) and prototype physical 

embodiment (b) of a rack/pinion type inerter from Figure 1.3a). In this inerter, a plunger 

slides into a cylinder which drives a flywheel through a system of rack/pinion and gears [1]. 

a) b)  

Figure 1.4. Rack and pinion inerter: a) detailed schematic, b) mechanical prototype [2],[57] 

By assuming the ideal inerter performance and thus neglecting the masses of the 

housing, the plunger, the rack/pinion couple and finally the gears; the inertance b of assembly 

from Figure 1.4, and its dynamic can be respectively approximated as 

  
2

2O O2
1 22 2

1 3 3

,
J Jr

b i F b a a
r r r

 
    
 

, (1.2a,b) 

where r1 and r3 are pinions radii, r2 is gear radius, JO is flywheel mass moment of inertia, and 

i = r2/r1 is the gear ratio. Moreover, considering the structure of Eq. (1.2a), denominators r1 

and r3 should be as small as possible, and numerators r2 and JO should be as large as possible, 

in order to approach the ideal inerter concept in a quadratic manner. 

A physical embodiment of a rack and pinion inerter shown in Figure 1.4b) is 

manufactured at the Cambridge University Engineering Department. The total mass of the 

mechanism is ~3.5 kg, while the realized inertance is ~725 kg [53]. 

Furthermore, Figure 1.5a) presents schematic of inerter b combined with dashpot c 

and springs k and k1, while Figure 1.5b) denotes its mechanical prototype realization [2],[3]. 

Rack and pinion type inerter from Figure 1.4b) is employed into this assembly. 
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a)  b)   

Figure 1.5. Inerter in series with damper and combined with centring springs in parallel [2],[3]: 

a) circuit diagram, b) mechanical assembly prototype with rack and pinion inerter 

The rack and pinion inerter can bear large loads [2],[3],[53]. Consequently, a 

relatively large inertance can be realized. However, the inherent stick/slip friction [19] and the 

backlash/clearances between the gears may significantly increase the nonlinearities of the 

inerter or add damping. Various effects of inerter nonlinearities are thoroughly discussed in 

[58],[60],[62]-[66]. A possible viable solution is to replace the rack and pinion driving motion 

by a ball-screw type, shown in Figure 1.3b). Thus, the second generation of the mechanical 

inerter, namely the ball-screw inerter, was proposed [3]. Compared with the rack/pinion 

inerter, the friction is greatly reduced in a ball-screw type inerter, and the detrimental 

backlash can be eliminated by pre-loading [53]. Figure 1.6a) presents more detailed scheme 

from concept in Figure 1.3b), while Figure 1.6b) and Figure 1.7 show a prototype 

manufactured at the Cambridge University Engineering Department. The actual mass of the 

prototype device is just ~1 kg, while the practically realized inertance is ~180 kg [53]. 

a) b)  

Figure 1.6. Ball-screw inerter: a) detailed schematic, b) mechanical prototype [3] 
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Similar to the rack/pinion inerter, the inertance of the ball-screw inerter can be 

represented as the product of a transmission ratio and the flywheel’s moment of inertia 

 

2

2

O O

2π
b J i J

p

 
  
 

, (1.3) 

where p is the screw/thread pitch (SI units of m/rev), term 2π/p is the transmission ratio of the 

ball-screw, and JO is flywheel mass moment of inertia. Mass of the device is disregarded. 

a)  b)  

c)  d)  

Figure 1.7. Ball-screw inerter made at Cambridge University Engineering Department; mass ≈ 1 kg, 

adjustable inertance ≈ 60–240 kg [3]: a) complete inerter with outer case, b) ball-screw, nut and flywheel, 

c) flywheel removed, d) thrust bearing 

Third type of flywheel-based inerter is the hydraulic inerter. It was proposed, 

realized and experimentally validated in [7], where the hydraulic transmission motion is 

employed. Device was assembled from a hydraulic cylinder, motor and helical pipes. The 

dynamic of an ideal hydraulic inerter was derived. On the basis of the obtained results, 

authors reported that the proposed hydraulic inerter is shown to be effective. 

In summary, the fundamental working principle and a common feature of the 

flywheel-based inerters is converting the linear motion into rotational motion and vice versa, 

and storing kinetic energy into a flywheel by using its rotary inertia. A flywheel is driven by a 

transmission structure (the rack/pinion, the ball-screw, and the hydraulic type), and the 

moment of inertia of the flywheel is magnified by the transmission mechanism to realize the 
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effect of the inertance. The relative acceleration between two terminals creates a force in the 

opposite direction of the motion, which is proportional to the inertance constant. Hence, there 

are two main requirements for the flywheel-based inerter transmission mechanism. The first 

one is the ability to transform the linear motion into rotary motion. The second one is the 

ability of magnifying the inertia of the flywheel, commonly through gear ratio or transmission 

ratio. 

Inerter has been successfully applied in Formula One racing car suspensions [3]. This 

yielded significant performance gains in handling and grip. At the 2005 Spanish Grand Prix, 

McLaren team achieved a victory on the first racing deployment of the inerter. During that 

time, to keep the technology secret from its competitors, a smart decoy or code-name “J-

damper” was invented for the inerter. At the time of introduction, there was much speculation 

about what the J-damper actually was. The Cambridge and Formula One connection was 

finally revealed in 2008 and it was then confirmed that J-damper is in fact – an inerter [3]. 

One can insinuate that cleverly chosen prefix “J” probably stands for standard mass moment 

of inertia SI nomenclature. Moreover, “damper” is just a misleading title, as inerter does not 

dissipate energy, but analog to electrical capacitor – it rather stores and releases it. Nowadays, 

the inerter has been embraced and employed by other Formula One teams [3]. From the 

mechanical control point of view, the introduction of inerter provides an extra parameter 

compared with the traditional mass-damper-spring (MDS) mechanical systems [53]. This 

potentially enables that the performance of the inerter-damper-spring (IDS) mechanical 

networks is always superior or at least equivalent to traditional damper-spring networks. In 

case this does not hold, or performance benefits due to inerter influence are negligible, the 

inerter may be removed in order to simplify the inerter-damper-spring networks into the 

damper-spring networks. It is well documented that inerter can provide significant 

performance improvements for various mechanical systems [53], including vehicle 

suspensions [1], landing gears [67],[68], wind turbines [69],[70], bridge vibration control 

systems [71], storage tanks [72], tall multi-storey buildings [24],[73], cables [74], energy 

harvesters [5],[75], and general vibration control (i.e. absorber/isolator) systems [76]-[84]. 

Vehicle suspensions are essential parts of a vehicle, determining the overall 

performance of a vehicle, which is also one of the main application fields of inerter. This is 

evident in numerous inerter-related suspension performance benefits reported by various 

researchers [2],[21]-[23],[38],[54],[58]-[60],[64],[85]-[95]. In Smith and Wang [2], the 

performances of six inerter-based networks applied as suspension struts were evaluated and 
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compared with the traditional spring-damper strut. It was reported that more than 10% 

improvements can be obtained by using inerter, in terms of the ride comfort and handling 

performance measures. With regard to previously introduced skyhook concept [27], Hu et al. 

[88] investigated the comfort-oriented vehicle suspension design problem by using a skyhook 

inerter configuration. The logical basis of the skyhook inerter is to use a grounded inerter to 

virtually increase the sprung mass of a vehicle, as it is analytically demonstrated that 

increasing the sprung (i.e. suspended car body) mass can always improve the ride comfort 

performance. Since it requires a fixed inertia reference which may be impossible to achieve in 

practice, the skyhook inerter can be implemented by active means. To approximate the 

skyhook inerter configuration, active inerters are hence employed. Analogue to Brzeski et al. 

who proposed inerter which enables change of inertance [13],[14], Authors Li et al. [91] 

studied the suspension performances with an adaptive inerter under the assumption that the 

inertance may be adjusted in real-time. A quarter-car model with an inerter installed in 

parallel with a spring and a damper was considered. Benefits were reported when compared to 

non-adjustable inerter configuration. Innovative concepts such as “on-off” switchable inerters 

[93] as components of vehicle suspensions and their performance benefits were also studied. 

Additionally, the interest in passive network synthesis has also been revitalized since 

inerter introduction [53]. Due to the completeness of the mechanical-electrical analogy, 

advanced supplements to existing vibration control concepts are reported. These are: tuned 

inerter damper (TID) [12],[96], enhanced type of traditional tuned mass–damper (TMD) [97] 

to tuned mass–damper–inerter (TMDI) [13],[14],[75],[98]-[103], tuned inerter-based damper 

(TIBD) [104], and inerter–based dynamic vibration absorber (IDVA) [15]. Concepts which 

incorporate mechatronic inerter embodiment were also proposed, e.g. electrically synthesized 

tuned inerter damper (E-TID) [5] and electromagnetic resonant shunt tuned mass-damper-

inerter (ERS-TMDI) [46]. A new hydraulically interconnected inerter-spring-damper 

suspension (HIISDS) [105] was developed to compensate for traditional passive suspension 

limitations, such as the imbalance of ride performance and handling stability. In [106], a novel 

inerter-based control system, namely a tuned heave plate inerter (THPI), is proposed for 

control of semi-submersible platforms (SSP) heave vibrations. In this system, an inerter 

device is added to the THP to further improve the performance of conventional THP. A novel 

waterwheel inerter was developed to realize the suggested device. The analytical results 

showed that THPI is more effective to mitigate the heave motion of SSP compared to the 
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conventional methods, and the novel waterwheel inerter is capable of generating a large 

apparent mass by using a relatively small corresponding waterwheel. 

Since the inerter may generate a large apparent mass, Chen et al. [56] investigated 

the influence of inerter on natural frequencies of dynamic system. Authors have shown that 

the natural frequencies of a discrete parameter mechanical system with an inerter can always 

be diminished by increasing the inertance value. This suggested that the employment of an 

inerter in an active vibration absorber could be used to improve its control stability by 

lowering the resonance frequency of the device without softening the coupling spring [18]. 

The influence of inerter on natural frequencies was further studied by Hu et al. [107]. Authors 

investigated the problem of natural frequency assignment for mass-chain systems with 

inerters. It was reported that mass-chain systems with inerters may have multiple natural 

frequencies, which is different from conventional mass-chain systems (without inerters) 

whose natural frequencies are always simple. Furthermore, Suciu and Tsuji [108] investigated 

the influence of inertance on the amplitude of vibration, phase angle, natural frequency, 

damping ratio, and logarithmic decrement of one degree of freedom (1DOF) vibration system 

equipped with inerter of variable inertance. Authors noted that the inerter decreases the 

natural frequency of the undamped system and also of the damped system if the damping ratio 

is below ~0.707. On the other hand, the inerter increases the natural frequency of the damped 

system if the damping ratio exceeds ~0.707. 

It is well known that DVA produces an anti-resonant frequency [27]. This 

phenomenon is more prominent if the damping in the system is low. By choosing the stiffness 

and the mass of a single degree of freedom (SDOF) DVA accordingly, one can place anti-

resonance (i.e. zero) at any chosen frequency [27]. However, as noted before, the DVA also 

adds another DOF and consequent resonant frequency (i.e. pole) to the system [27]. 

Moreover, there is an alternative method to generate anti-resonant frequencies in a system by 

inertial coupling [109]. Vibration isolators that utilize inertial coupling to generate anti-

resonant frequencies were first developed in the 1960s by researchers in the aerospace 

industry. The development of a novel kind of vibration isolator was pursued due to strict 

requirements on stiffness and mass of the isolators used in the aerospace industry [109]. This 

new system was invented and proposed by Flannelly [110], and called “Dynamic Anti-

resonant Vibration Isolator” (DAVI). DAVI utilizes a levered mass–spring combination to 

generate an anti-resonant frequency in the system. Anti-resonance occurs when the inertial 

force generated by the levered mass completely cancels the spring force. If damping in the 
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system is negligible, the effect becomes more prominent. This phenomenon occurs at a 

particular frequency, which depends on the added mass of the isolator, the lever ratio and the 

spring stiffness. Unlike DVA which produces an additional DOF, DAVI is implemented 

strictly on the load path. Thus, rigidly coupled motion occurs and the number of DOF in the 

system is not increased. When DAVI is introduced in a SDOF system, inertial forces 

generated by the levered mass increase the effective/apparent mass of the system. Thus, the 

resonant frequency decreases and the isolator is capable of operating in a lower-frequency 

range. Applications of DAVI in the aerospace industry can be found in the literature [110]. 

For example, Rivin [35] reported that the rectilinear motion of a primary structure can be 

transformed into rotary motion by a flywheel and a ball-screw, which can also be used to 

generate the desired inertial forces to generate a zero in the system. The rotational analogue of 

the leverage mechanism of Flannelly [110] is the low helix angle of the ball-screw. 

Consequently, both Rivin and Flannelly concepts yield inerter-like behaviour similar to one 

introduced by Smith [1] and Smith and Wang [2]. Historically, Flannelly (1967) concept 

[110] thus predate by far the first inerter embodiment conceived and realized by Smith (2002) 

[1]. Moreover, Rivin (2003) concept [35] predates the ball-screw inerter conceived and 

realized by Chen et al. (2009) [3]. The first noted concept of “relative mass” in the literature 

can be attributed to Schönfeld [4] (1954). 

1.5. Vibration Fatigue 

Mechanical vibrations can span displacement amplitudes from meters in civil 

engineering practical situations, to nano-meters in precision engineering applications. 

Vibrations detrimental effects on dynamic systems and structures may be of various natures, 

where failure is one of the most important ones [27]. Vibration-induced structural failure may 

occur due to excessive stress/strain during transient or steady-state events (e.g. building 

response to earthquake loading), by instability due to particular operating conditions (e.g. 

bridge flutter under wind excitation, reported in Tacoma Narrows bridge catastrophe during 

wind-induced vibration [31]), or simply by fatigue (e.g. flexible mechanical parts in operating 

machines). The engineering structure or machine component exposed to vibration can fail 

because of material fatigue resulting from the cyclic variation of the induced stress/strain. 

Whenever the frequency of external excitation coincides with a natural frequency of machine 

or mechanical structure, there may appear a phenomenon known as resonance which could 

lead to additional excessive deflections and may result with eventual catastrophic failure [31]. 
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Any periodic function can be decomposed into Fourier series and presented as a 

summation of finite number of sinusoidal waves with multiple frequencies and different 

amplitudes and phase angles. In stochastic processes, the phase angles are of random nature 

[32]. Since the phase angles do not contribute to energy, the power spectral density (PSD) 

function alone is ordinarily used. PSD is obtained by taking the squared modulus of the Fast 

Fourier Transform (FFT). PSD of a random signal x(t) gives a measure of the speed with 

which the signal changes in the frequency domain [31]. The FFT outputs a complex number 

given with respect to frequency, however only the amplitude of each sine wave is retained in a 

PSD. All phase information is consequently discarded. Operating with a PSD proves to be 

rather beneficial when working with complicated and computationally expensive FEM 

models. Hence, the calculation of the frequency response functions (FRFs) is convenient and 

much faster than a long-term transient dynamic analysis in the time domain [32]. When 

loading conditions are prescribed in the form of PSD which is defined in a frequency domain, 

structural response of systems can be computed by using the transfer function (TF), i.e. FRF 

of target systems and PSD of excitation loads. 

A spring is a type of mechanical link, which is in most applications ideally assumed 

to possess negligible mass and damping [31]. It is one of the most important fundamental 

mechanical components found in many practical applications [111]. The most common type 

of spring is the helical-coil spring used in retractable pens and pencils, staplers, and 

suspensions of cars, freight trucks and other vehicles. Springs in the vibration isolation 

systems are subjected to random dynamic loads during service. The crack may initiate and 

eventually propagate at a stress concentration location of the spring, leading to a potentially 

catastrophic fatigue failure, especially evident in case of resonant conditions. In order to 

evaluate the vibration induced fatigue in the spring, it is necessary to designate stiffness, 

stress and damping parameters of the dynamic system. The springs must expectedly withstand 

relatively long exploitation period. Thus, appropriate high cycle fatigue (HCF) [32] 

calculation method (above ~10
3
 life cycles) is usually used for evaluating fatigue-life. Biaxial 

shear-governed fatigue life criterion is commonly utilized for spring fatigue estimation where 

most stressed region is normally located at the inner side of the helix [111]. Multiple stress 

correction factors for helical spring are proposed in the literature which account for influence 

of this highly stressed region [111]-[113]. Moreover, an unresolved discussion is noted in the 

literature [111] whether using the aforementioned stress correction factor may yield with 

overly conservative fatigue life estimation. 
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1.6. Dissertation Structure Overview 

This thesis is structured according to Scandinavian PhD model (a.k.a. multi-paper, 

i.e. collection-of-papers PhD model). 

With regard to previously presented literature overview, the primary aim of 

dissertation is to study and determine performance benefits of inerter in general LTI passive 

and active vibration isolation systems. Moreover, the stability of special class of vibration 

isolation systems known as sub-critical systems [26] is investigated. These systems can be 

described as systems that have the uncoupled fundamental natural frequency of a body that is 

to be protected from vibrations (i.e. receiving body), larger than the uncoupled fundamental 

natural frequency of the body that is the source of vibrations (i.e. source body). It is 

determined whether using an inerter can stabilize the otherwise conditionally stable feedback 

loop and enable improved performance of the active vibration isolation system. Investigation 

is enriched by studying vibration fatigue induced effects in coupling components and isolator 

components of the receiving body, i.e. cylindrical coil spring. Inerter influence in prolonging 

fatigue life of dynamic systems’ deformable components, i.e. springs, is determined. 

Broadband H2 optimization criterion is employed where possible. Additionally, helical spring 

stress and stiffness analytical expressions are investigated. Finally, novel expressions which 

improve the accuracy of standard stress and stiffness expressions for helical springs are 

proposed. Study is verified by performing accompanying numerous parametric finite element 

based-calculations and comparing the results to ones obtained analytically. 

Chapter 2 provides detailed discussion on applied methods and obtained results. First 

subchapter serves as an introductory paragraph and sets the framework for further conducted 

research. Each adjacent subchapter is dedicated to providing point to point review, 

recapitulation and additional information on its corresponding published paper. 

In Chapter 3, unified conclusions of dissertation are given. Various general inerter 

benefits are emphasized for numerous vibration isolation applications.  

According to Scandinavian model, CC/SCI scientific papers attached at the end serve 

as an obligatory Appendix and provide for core substance and basis of this dissertation. 
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2. Discussion on Methods and Results 

This chapter is comprised of the topics which directly correspond to published papers 

which are attached at the end of this dissertation: 

 Fundamental Mathematical Model for Broadband Optimization of the 

Vibration Isolation (Introductory Paragraph), 

 Performance and Stability of Inerter-Based Passive and Active Isolator 

Systems (Paper 1), 

 Enhancing the Vibration Induced Fatigue Life of Helical Spring due to 

Inerter in the Isolator (Paper 2), 

 Comparison of Different H2 Optimization Criteria With Regard to Vibration 

Fatigue and Numerical Verification (Paper 3), 

 Inerter Benefits in Kinematically Excited Systems and Isolator Helical 

Spring Novel Stress and Correction Factors (Paper 4). 

Supplementary material with regard to conducted research and some findings 

omitted in published papers due to their length are also provided. Some of the material is 

reproduced from author’s own published papers tied to this Dissertation. 

2.1. Mathematical Model of the Vibration Isolation Problem 

Figure 2.1 shows general multi-degree of freedom (MDOF) axial vibration system 

under excitation. The number of DOFs is n.  

Mass m1 is coupled to the lower fixed reference through dashpot c1 and spring k1. 

Mass mn is coupled to the upper fixed reference through dashpot cn+1 and spring kn+1. Every 

mass is interconnected to its adjacent mass by dashpot cn and spring kn. General random 

forcing Fn(t) acts upon each mass. 
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a)  b)  

Figure 2.1. MDOF discrete vibration system: a) scheme, b) free-body diagram, xn < xn+1  

The equations of motion (EOM) [27],[31] for the MDOF vibration system in Figure 

2.1 can be written in the matrix form as 

        t t t t  Mx Cx Kx F  , (2.1) 

where M is the global mass matrix, C is the global damping matrix, K is the global stiffness 

matrix and F(t) is the excitation column force vector. Displacement of the masses m1 – mn 

from static equilibrium, velocity and acceleration vectors are denoted by x(t), x(t) and x(t) 

respectively. Global matrices and vectors from Eq. (2.1) are defined with 
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where the parameters and functions in the matrices and vectors are denoted in Figure 2.1. 

By assuming simple harmonic excitation and expressing the excitation and the 

steady-state response in the complex form F(t) = F0e
iΩt

 and x(t) = x0e
iΩt

, where i 1  , and Ω 

is the circular excitation frequency, the direct solution of Eq. (2.1) can be written as 

      
1

T 2

0 01 02 0 i inx x x  


    
 

x M C K F , (2.6) 

where terms inside the square bracket denote dynamic stiffness matrix and x0(Ω) is the 

complex displacement amplitude column vector. 

In this study, reduced or simplified vibration model that can be handled analytically 

is analyzed. The number of degrees of freedom is set to n = 2. Moreover, the force acting upon 

DOF1 is assumed to be random and broadband having a flat PSD equal to unity over all 

frequencies. The system from Figure 2.1 is now reduced to simple source/receiving body 

2DOF configuration as discussed in e.g. [26],[27]. The assembly of m1, c1 and k1 is further 

referred to as the source body and the assembly of m2, c3 and k3 is further referred to as the 

receiving body. This approximation may represent a simplified reduced-order model of a 

system of a more complex nature which includes distributed mass, stiffness and damping 

parameters [26]. Furthermore, the damping of the source and receiving bodies is assumed to 

be fairly light, thus the effects of the source mass m1 and the receiving mass m2 dampers are 

further neglected, i.e. c1 ≈ c3 ≈ 0. This allows for relatively simple and transparent analytical 

solution without numerical approximation. 

Adopting the previous simplifications and multiplying the Eq. (2.6) with the term 

(iΩ) yields with the complex velocity amplitudes expression 

      
T

0 01 02 0ix x   x x   . (2.7) 
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Considering the vibration isolation problem, the complex velocity amplitude 02x , i.e. 

the transfer mobility function Hi(Ω), i.e. the mean square response [32] of mass m2 from Eq. 

(2.7) can be written as 
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where i = 4, and coefficients A0 – A4 and B0 – B3 with respect to Eq. (2.8) are given by 
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According to [43] and [48], H2 norm i.e. specific kinetic energy (per unit mass and 

per unit excitation spectral force) of the vibration system at hand can be written as 

  
2

di iI H  




  . (2.10) 

Closed form solutions of integral from Eq. (2.10) were derived by James et al. [114] 

for the degree of polynomial from Eq. (2.8) up to i = 7, and summarized in the book by 

Newland [115]. According to [115], the system whose mean square response is calculated 

must be a stable system. Otherwise, the obtained mean square response and consequent 

integrated results hold no physical value. In a passive system, no instability may occur 

whatsoever. In an active system, the stability must be checked pre-hand. Since the system 

under consideration is at the moment passive, the explicit solution to the integral from Eq. 

(2.10) [115] unambiguously writes as 
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The effectiveness of vibration isolation is further studied by minimizing the resulting 

H2 norm scalar value I4 from Eq. (2.10), i.e. (2.11). Mathematically, this now becomes a 

problem of minimization over multiple variables, i.e. specifically isolator parameters. 
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2.2. Optimization and Stability of Inerter-Based Isolator Systems 

The analyzed vibration isolation system is shown in Figure 2.2. The system consists 

of a source/receiving body setup. It is analogue to a previously discussed simple system, 

enhanced with the addition of a passive inerter of inertance b2 and a direct velocity feedback 

i.e. skyhook damping in the isolator. The skyhook damping scheme is comprised of an 

actuator, a velocity sensor, and a feedback loop. The actuator is mounted in parallel with the 

spring, dashpot and inerter. Ideal sensor-actuator transducers are assumed. The actuator force 

Factuator, from Figure 2.2b), is thus given by 

 actuator 2F gx   , (2.12) 

where g is the feedback gain. The primary force F1 acts on the source body. The goal of the 

study is to minimize vibrations of receiving body, i.e. mass m2. This is done by optimally 

tuning the parameters of active vibration isolation system, i.e. c2, k2, b2 and g. 

a) b)  

Figure 2.2. 2DOF active vibration isolation system: a) scheme, b) analogue skyhook scheme 

The EOM for the system from Figure 2.2 are given by 
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The steady state solution of Eqs. (2.13) can be obtained analogue to Eq. (2.6), where 

corresponding matrices and vectors are 
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It can be noted that mass matrix M from Eq. (2.14a) is no longer purely diagonal due 

to the inerter influence, however it is still symmetric. Furthermore, damping matrix C from 

Eq. (2.14b) is no longer symmetric due to the skyhook damping scheme. Moreover, the 

corresponding undamped eigenvalue problem [31] from Eqs. (2.14a,c) is formulated as 

    
2

1,2 0n t  
  
K M x . (2.16) 

For a more general approach, the following dimensionless coefficients are introduced 
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where α and β are squared natural frequency ratios, ε2 is the damping ratio, λ is the feedback 

gain normalised with respect to the passive damping dashpot coefficient c2, and μ1 and μ2 are 

the mass and inertance ratios respectively. Furthermore, Ω1 is the undamped natural frequency 

of the uncoupled source body Ω1 (as if the source body was uncoupled from receiving body by 

removing spring k2 and dashpot c2), Ω3 is the undamped natural frequency of the uncoupled 

receiving body (as if the receiving body was uncoupled from source body by removing spring 

k2 and dashpot c2), and Ω2 is the natural frequency of the receiving body as if it was attached 

to a fixed reference base by the spring of stiffness k2 only. These three natural frequencies Ω1, 

Ω2 and Ω3 are defined as 

 31 2
1 2 3

1 2 2

, ,
kk k

m m m
     . (2.18a-c) 

For special case when either k2 or c2 is set very high compared to the rest of the 

system damping and stiffness parameters, there may occur an artificial resonance Ωa of the 

system with the isolator effectively locked. Consequently, masses m1 and m2 vibrate together 

in phase with equal displacements. This resonant frequency is given by the expression 

 
2 2

1 3
a,lim a

,
1 2

lim
c k

k k

m m
 




 


. (2.19) 

Preliminary simulations for the system at hand are performed in the time domain by 

numerically solving the Eqs. (2.13). The primary forcing is defined as a harmonic sine 

function where F1(t) = F0sin(Ωt). The fixed parameters for all simulations are chosen as 

follows: α = 2, β = 2 and μ1 = 1, while isolator passive damping, inertance and active damping 
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are varied. Dimensionless excitation circular frequency is defined as Ω/ωn1 = 1, where 

undamped resonance is implied. Also, the response of the system to resonant frequency 

excitation from Eq. (2.19) is studied in one case where Ω/Ωa = 1. Since β > 1, system is 

inherently subcritical and consequently only conditionally stable if employing skyhook 

damping scheme [26]. All initial conditions for simulations are set to zero, i.e. for t0 = 0, 

x1(t0) = 0, x2(t0) = 0, v1(t0) = 0, v2(t0) = 0. Dimensionless displacements of masses m1 and m2 are 

defined as X1,2(t) = x1,2(t)x1st
-1

, where x1st is the quasi-static displacement of mass m1 under 

constant force magnitude F01, i.e. when inertial and damping effects are neglected. 

Dimensionless time is defined as T = tΩ(2π)
-1

, thus abscissa serves as a vibration period 

counter. Twenty periods are considered in each simulation in order to observe the trends of 

the responses for a sufficiently long time period. 

Figure 2.3 shows the simulated transient response of analyzed 2DOF passive system, 

i.e. skyhook damper λ is switched off and inertance μ2 is set to zero. In Figure 2.3a), the 

undamped resonant response is considered, i.e. ε2 = 0 for Ω/ωn1 = 1. In Figure 2.3b), highly 

damped response is considered for locked isolator damper i.e. ε2 = 25 for Ω/Ωa = 1.  

a) b)  

Figure 2.3. Transient response of 2DOF system, μ2 = 0, λ = 0: a) ε2 = 0, Ω = ωn1, b) ε2 = 25, Ω = Ωa 

In both cases, the amplitude of the dimensionless response increases linearly with 

time. As time reaches infinity, dimensionless responses also tend to infinity. Moreover, the 

resonant frequency Ωa from Eq. (2.19) is clearly demonstrated in Figure 2.3b) as 

dimensionless responses almost completely overlap and relation X1(m1) ≈ X2(m2) holds, where  
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Thus, there must exist an optimal damping value ε2opt in between those two extreme 

values, which can prevent observed uncontrolled response. Furthermore, more moderate 

damping is introduced where ε2 = 0.25. Dimensionless excitation frequency is defined as 

Ω/ωn1 = 1 in all adjacent simulations. Figure 2.4a) shows the resonant transient response of 

the lightly damped passive system. Active damping λ is still switched off. It can be seen that 

the amplitude of the response converges to steady state as time tends to infinity. Figure 2.4b) 

introduces active skyhook damping with a dimensionless feedback gain of λ = 2 which reveals 

unstable system response with flutter [31] instability. This demonstrates the inherent 

conditional stability of the subcritical class of vibration systems. Inertance is still μ2 = 0 for 

both simulations denoted in Figure 2.4. 

a) b)  

Figure 2.4. Transient response of 2DOF system, μ2 = 0, ε2 = 0.25, Ω = ωn1: a) λ = 0, b) λ = 2 

Finally, inerter μ2 is introduced in the isolation system. Skyhook damping coefficient 

is kept at the beforehand adopted fixed value of λ = 2. The accompanying responses are shown 

in Figure 2.5. A relatively small inertance μ2 = 1 is utilized for simulation results depicted in 

Figure 2.5a). Although flutter instability is apparently still present with this setup, response is 

clearly reduced when compared directly to response in Figure 2.4b). When even larger 

inertance ratio μ2 = 4 is employed in Figure 2.5b), a drastic reduction of both responses is 

observed compared to Figure 2.3, Figure 2.4 and Figure 2.5a). Most importantly, a steady 

state stable response is finally achieved in active isolation system, by the inerter-governed 

influence. 
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a) b)  

Figure 2.5. Transient response of 2DOF system, ε2 = 0.25, λ = 2, Ω = ωn1: a) μ2 = 1, b) μ2 = 4 

For the passive system without inerter, the minimum specific kinetic energy of the 

system I4min is studied by considering steady-state velocity of mass m2 in the form implied by 

Eq. (2.7). It may be obtained from Eqs. (2.13-2.15), (2.17) and (2.18) by utilizing Eqs. (2.8-

2.9) and (2.11), and minimizing with respect to dimensionless passive damping ε2. Optimum 

damping may be written in dimensional and dimensionless forms respectively as 
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From Eqs. (2.21), accompanying specific kinetic energy expressions can thus be 

written in corresponding dimensional and dimensionless forms respectively with 
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By studying the structure of Eqs. (2.22), two main conclusions are drawn. 

Firstly, it is observed that the optimum specific kinetic energy index I4min is directly 

proportional to the isolator spring stiffness k2 and corresponding squared natural frequency 

ratio α, which is effectively a dimensionless measure of spring stiffness. This implies using 

the compliant spring for better isolation effect. Albeit, decreasing spring stiffness k2 may 

results in an overly large static or stationary deflections to which there is a practical limit in 

real engineering situations due to e.g. Earth’s gravity g. Trivial mathematical solution is to set 

k2 = 0 and completely decouple the source/receiving body systems, however this is neither 

viable, nor a physical course of action. Thus, opposing requirements dictate the choice of 

stiffness of the spring k2. Consequently, isolator spring stiffness cannot be unambiguously 
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optimized and for this case, it is considered as a fixed value. Furthermore, since Den Hartog 

fixed-points theory [39] H∞ type optimization generally considers tuning the isolator damping 

and stiffness simultaneously [42], it is not applicable to its full potential for this class of 

isolation problems due to previously discussed isolator spring stiffness-governed inherent 

static sag requirements. Nevertheless, damping can be tuned according to either H2, or H∞ 

criteria with regard to fixed given stiffness k2. 

Secondly, in Eq. (2.22b) can be noted that if the squared natural frequency ratio β 

tends to unity, I4min tends to infinity since denominator tends to zero. This is the case in which 

the uncoupled natural frequency of the source body tends to the uncoupled natural frequency 

of the receiving body, i.e. Ω1 ≈ Ω3. Hence, for a successful vibration isolation effect, the 

system should be detuned in such way that Ω1 ≠ Ω3. 

Specific kinetic energy of the system is further studied by incorporating the inerter in 

the isolator. It is found that mass m2 may achieve even lower state of kinetic energy when an 

inerter is employed in the isolator. Parameters of the corresponding optimal passive damping 

c2opt2, i.e. ε2opt2, and the optimum inertance b2opt, i.e. μ2opt are obtained analytically in a closed 

form by further minimizing the kinetic energy of the system. However, the obtained closed-

form analytical expressions are of substantial length and cannot be denoted explicitly as in 

e.g. Eq. (2.21). Furthermore, the stability problem is considered by employing the Routh-

Hurwitz method. Active control gain λ and inertance μ2 in the isolator are taken into account. 

The chart of Hurwitz coefficients with respect to Eqs. (2.13) and (2.14-2.15) is given in Table 

2.1. It is irrelevant which DOF is taken into account since Hurwitz criterion considers 

characteristic equation of the closed loop, i.e. denominator of the TF which is one and the 

same for all DOFs. The influence of inerter on active isolator stability is studied. 

Table 2.1. Hurwitz coefficients chart for i = 4 

Hi-3 A3 A1   

Hi-2 A4 A2 A0  

Hi-1  A3 A1  

Hi  A4 A2 A0 

It is found that for subcritical systems where the fundamental natural frequency of 

the receiving body is larger than that of the source body, the use of inerter characterised by 

simple inequality relation μ2 > α improves the stability by virtually turning a subcritical active 

vibration isolation problem into a supercritical one. This allows for unconditionally stable 

system and theoretically unlimited amounts of applicable feedback gain λ. 
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2.3. Enhancing the Fatigue Life of Helical Spring due to Inerter 

In this chapter, previously conducted investigation is expanded. The vibration 

induced fatigue effects of coupling spring in the receiving body due to broadband frequency 

excitation are additionally introduced and considered. The studied problem is represented by a 

discrete parameter model shown in Figure 2.6a). The model is similar to one from Figure 

2.2a), however skyhook damping scheme is not considered herein. It is assumed that the 

critical component concerning fatigue is a helical spring of stiffness k3, Figure 2.6b). 

Parameters of the considered spring are as follows: E is (Young) modulus of elasticity, ν is 

Poisson’s ratio, S'f is fatigue strength coefficient, and “B” is Basquin’s exponent, i.e. fatigue 

strength exponent [32] denoted in capital letter in order not to be mixed up with inertance 

coefficient “b”. Number of active coils is denoted as n (n = 2 in Figure 2.6b) and h is spring 

total height where h = n·l, and l is the spring pitch. Diameters D and d are mean coil and wire 

diameters respectively, and C = D/d is defined as spring index [116]. Recommended physical 

values of spring index C for practical engineering purposes lie between C = 4 – 12 [116]. 

Angle α represents the pitch angle which can be calculated according to expression 

α = arctan[l(πD)
-1

]. Moreover, total length of the spring wire is designated with L. 

a) b)  

Figure 2.6. a) 2DOF linear discrete vibration isolation system, b) helical spring k3 properties 

Cylindrical helical spring is usually for simplicity viewed as a thin/slender, curved 

rod/beam subjected to torsion load [111]-[113],[116]. In that case, only nominal values are 

considered, e.g.: nominal spring stiffness knom, nominal spring deflection δnom, and nominal 

spring shear stress τnom. Consequently, only torsion shear is taken into account. Hence, direct 

shear, curvature, and pitch angle effects are neglected. If spring geometry deviates from 

simple curved rod assumption, additional correction factors Kδ (displacement correction 

factor, DCF) and Kτ (stress correction factor, SCF) need to be applied for more accurate 
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displacement and shear stress calculation, where relations δmax = Kδδnom and τmax = Kττnom now 

hold. Figure 2.7 schematically shows circular cross-section of the spring with its related stress 

components and its corresponding cumulative shear stress τ correction. Shift of the helical 

spring neutral line consequently results with maximum shear stress τmax appearing at the point 

closest to spring axis x, Figure 2.7c). 

 

Figure 2.7. Spring shear stresses: a) torsion shear τM, b) transverse/direct shear τA, c) combined 

torsion and direct shear with additional curvature “c” and pitch angle α effects τmax = τM + τA + τc + τα 

Multiple expressions for correcting deflection and stress are reported in the referent 

literature [111]-[113]. Some of these expressions are summed up in Table 2.2. 

Table 2.2. Expressions for stress correction factors Kτ and deflection correction factors Kδ 
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Certain expressions in Table 2.2 (i.e. Wahl, Röver, Wood, Honegger, Göhner, 

Ancker and Goodier, Bergsträsser, and Sopwith) are adopted from [113]. Further added are 

strain energy based relations by Shigley [116] and Dym [117]. Göhner stress correction factor 

was previously included in older, now defunct DIN 2089 (Germ. Deutsches Institut für 

Normung) [118],[119]. Currently valid DIN 13906 standard includes Wahl [111] and 

Bergsträsser stress correction factors [120],[121]. Sopwith stress correction factor was 

previously used as a part of BS 1726 (British Standard) [122]. 

Two additional expressions are also presented in Table 2.2, denoted with darker 

(gray) background. The first one is Castigliano/Timoshenko (C/T) deflection correction which 

was originally derived by Timoshenko [123] based on Castigliano’s method, theory of 

elasticity and Göhner’s displacement correction. C/T correction is presented here in a more 

convenient and compatible dimensionless form with regard to other authors’ expressions. The 

second one is novel Timoshenko/Cowper (T/C) displacement correction factor based on thick 

Timoshenko shear beam. It is derived and proposed in the scope of this dissertation. 

Correction factor is comprised of Timoshenko beam theory [124] enriched with Cowper shear 

correction for circular cross-section [125]. All of the expressions from Table 2.2 are denoted 

in Figure 2.8a) and b) for mutual visual comparison. Acronym A/G implies Ancker and 

Goodier [112] stress and deflection correction factors. 

a) b)  

Figure 2.8. Different correction factors for ν = 0.3: a) deflection correction Kδ, b) stress correction Kτ 

By assuming Basquin’s HCF equation [32], adopting appropriate SCF and DCF, and 

finally considering von Mises distortion energy criterion for biaxial shear-governed 

proportional fatigue loading, following simple relation is obtained for spring fatigue life 
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where Sa denotes fully reversed fatigue stress amplitude herein equal to modulus of equivalent 

complex stress amplitude |σ0eqv|, and G = E[2(1+ν)]
-1

 is the shear modulus. Eq. (2.23b) is 

obtained by relating the spring life Nf(Ω) in the frequency domain to absolute displacement 

amplitudes |x02| of mass m2. The relation is valid for the cases when one terminal of the spring 

is immovable. In case both terminals are movable, e.g. in case of base excitation, the term x02 

should be swapped with the relative displacement amplitude, i.e. x02,rel. From minimization of 

specific kinetic energy in the inerter-based system, following expression for optimal damping 

is obtained in dimensional form 

  
 

   

22 2

1 3 2 1 2 1 32 21 2
2 2 2 2

1 3 1 3 1 2 2 2

2 2

2

0 2
m k m k b k km m

k b k b
k k k k m

b
m b m

c
b

  
 

     

  , (2.24) 

where by setting b2 = 0, one obtains previously obtained Eq. (2.21a), i.e. optimum damping 

copt for the system without inerter. In order to parametrically evaluate the proposed procedure, 

example parameters for the system from Figure 2.6a) are given in Table 2.3. 

Table 2.3. Example 2DOF vibration isolation system parameters 

 

Mass is adopted as m0 = 100 kg and spring stiffness k0 is determined with respect to 

scheme from Figure 2.6b) and corresponding Table 2.4. Optimized inertance and damping 

parameters are determined from Eq. (2.24). Adopted correction factors from Table 2.2 are 

A/G for DCF, and Wahl for SCF. 

Table 2.4. Example helical spring of stiffness k0 geometric and material properties 

 

In order to demonstrate the principle of similitude between displacement amplitudes 

of mass m2 and corresponding spring k3 inverse number of cycles to fatigue failure Nf
-1

, 

broadband frequency response for both quantities is shown side-by-side in Figure 2.9a) and b) 

respectively. For additional reference, case with optimum inertance b2 = bopt is also plotted for 

zero damping i.e. c2 = c0 = 0. The improvement in the number of cycles to failure Nf is evident 

at most frequencies when using the optimum damping copt in comparison to low damping 

csub = copt/100, or high damping csup = 100·copt. Additionally, a significant further improvement 

in the fatigue life Nf is observed at most frequencies, in case where the optimum inerter bopt is 

implemented in combination with the optimum damper copt2. Anti-resonance phenomenon at 
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frequency ΩA is observed for the case with the optimum inerter bopt and without damping 

(c2 = 0), which specifically demonstrates inerter b2 influence. Contrary to that, if using very 

large damping in the isolator, i.e. csup = 100·copt, new resonance Ωa from Eq. (2.19) is 

observed, as two masses m1 and m2 vibrate together in phase with equal displacements, 

velocities, and accelerations, acting as a quasi-rigid body. 

a) b)  

Figure 2.9. 2DOF FRFs: a) displacement amplitude |x02|, b) spring k3 inverse No. of cycles Nf
-1

 

Anti-resonant frequency ΩA for undamped response from Figure 2.9 is obtained as 

 2
A

2

k

b
  . (2.25) 

In the next chapter, which corresponds to directly succeeding Paper 3, different 

optimization criterion is utilized and compared to current optimized results. 

2.4. Comparison of Different H2 Optimization Criteria and 

Numerical Verification 

Passive isolation control model from previous chapter is adopted. The same inerter-

based vibration model as in Figure 2.6a) is considered. Procedure is verified through 

comparison with numerical solutions. Direct dynamic method is employed in Abaqus [28], 

and complex stress field is imported into Fe-Safe [30] in order to numerically evaluate spring 

fatigue life in the frequency domain. Furthermore, ideal flywheel-based inerter is 

implemented into Abaqus by using native *Equation functionality where FE relative nodal 

displacements are tied to rotation of the fictitious discrete flywheel. Smith’s rack and pinion 

inerter analogy is employed. Analytical and numerical results are compared where very good 

agreement is observed between the two approaches to problem. 
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Previously derived Timoshenko/Cowper beam based deflection correction solution 

(Table 2.2) agrees excellently with FEM beam-based solution [28],[29]. However, these two 

concurrent solutions are completely divergent when compared to theory of elasticity based 

A/G [112] correction and complementary FEM 3D continuum-based solutions [28],[29]. 

Thus, Timoshenko beam-based solution shouldn’t be used when thick springs with small 

index C are considered. Moreover, Wahl stress correction seems to agree the best with FEM 

3D continuum-based solutions [28],[29] compared to other expressions from Table 2.2 and 

Figure 2.8, especially when Poisson’s ratio ν ≈ 0.3 is considered. However, the accuracy of 

Wahl’s approximation for larger spring pitch angles is yet to be determined. 

For alternative approach with regard to previous chapter, more general H2 

optimization criterion which considers complex displacement amplitudes x02 is now taken into 

account. By minimizing the closed form integral solution from Eq. (2.11), the following 

expressions are obtained for optimum damping copt2 and optimum inertance bopt respectively, 

regarding inerter-based vibration isolation system 

  
    

 
 2 1 22 1 2 1 3

2 0 2 0

1 32 3 1 2

opt2

3 1 2 3

t

1

op,
k m mk k m m k

x x
k kk k k k k m m k

c b
k

          



 
  . (2.26a,b) 

If inerter is not considered, optimum damping copt is given by 
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x k

k k k k k
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m m

   

  

  

  
 . (2.27) 

Optimization results are summarized in Figure 2.10. Curves copt(v0) and copt2(v0) 

directly correspond to curves copt and copt2 from Figure 2.9 since exactly the same parameters 

from Table 2.3 and Table 2.4 are utilized. It may be concluded that displacement-based 

optimization criterion H2(x0) yields general further improvement compared to velocity-based, 

i.e. specific kinetic energy minimization criterion H2(v0) demonstrated in previous chapter. 

This is true for the test cases with and without inerter. Moreover, improvements are much 

more pronounced for the displacement-based optimization compared to velocity-based 

optimization when utilizing combined optimum damping copt2 and inertance bopt. For the 

velocity based-optimization, over 1 million cycles are achieved. However, for herein 

proposed displacement- (i.e. fatigue-) based optimization, over 3.5 times more cycles are 

achieved. Thus, for shown family of vibration isolation systems it is justifiable to include 

inerter in the isolator and perform displacement-based optimization analysis if stress of 

coupling elastic components is of crucial importance. 
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a) b)  

Figure 2.10. Spring k3 number of cycles to fatigue failure Nf(k3): a) 1/Nf(Ω) FRFs, b) Nf(ωn1)  

The question of determining the more accurate spring deflection and stress correction 

factors is addressed in the next chapter. 

2.5. Isolator Helical Spring Novel Stress and Correction Factors 

In this final chapter, which directly corresponds to published paper 4, the vibration 

fatigue induced effects in the isolator helical spring are considered. Previously expressed 

concerns regarding general accuracy of adopted A/G [112] and Wahl [111] correction factors 

respectively are addressed. Both absolute and relative displacements are analyzed. Generally, 

the stresses in engineering structures are always proportional to relative displacements. Thus, 

relative displacement is adopted as relevant criterion regarding corresponding fatigue 

analyses. Simple 1DOF vibration isolation problem is revisited by additionally adopting the 

relative mass concept. Leverage based isolation system originally conceived by Flannelly 

[110] and discussed in [109] is considered herein in order to obtain inertance-like effect 

analogous to one described by Smith [1] in his rack/pinion concept. 

Proposed simple 1DOF inerter-based isolator is depicted in Figure 2.11a), and its 

corresponding free-body scheme counterpart is given in Figure 2.11b). 

a)  b)  

Figure 2.11. 1DOF inerter-based vibration isolator: a) scheme, b) free-body diagram, x > u 

The EOM for the dynamic system at hand may be written as 
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    O A0 0M mxr J c x u r k x u r           , (2.28) 

where JA is flywheel mass moment of inertia. Small vibration rotation amplitudes are 

assumed where sin(υ) ≈ υ, and cos(υ) ≈ 1. By adopting expression JA = r
2
b and kinematic 

relation (x – u) ≡ xrel = rυ, and dividing by rotation radius r, Eq. (2.28) morphs into 

translational dynamic force equilibrium 

       0mx b x u c x u k x u           . (2.29) 

Hence, this simple rotational/translational system exhibits inerter-like behaviour 

whose inertance is given by b = JA/r
2
. Kinematic complex broadband excitation is assumed in 

the form u(t) = u0e
iΩt

, where u0 is the ground displacement complex amplitude, “e” is the base 

of the natural logarithm, imaginary number i 1  , Ω is the excitation circular frequency and 

t is the time. Furthermore, the solution of Eq. (2.29) is assumed as x(t) = x0e
iΩt

 where x0 is the 

complex displacement amplitude of mass m. Separating the response and excitation variables 

yields with the dynamic forces equilibrium, and consequent absolute (i.e. x0/u0) and relative 

(i.e. x0,rel/u0) steady-state complex solutions of Eq. (2.28), which respectively write as 

  
 

   

2

0,rel0 0 0

2

0 0 0

i i
,

i i

xb c kx x u
m b x cx kx bu cu ku

u u um b c k

 

 

  
        

  
    . (2.30a-c) 

Steady-state complex dynamic forces amplitude F0 equilibrium which yields from 

Eq. (2.30a,b) is visually represented in Figure 2.12a). Complex plane real and imaginary axes 

are denoted by symbols  and  respectively. 

It is implied from Eq. (2.30c) and corresponding complex displacement amplitudes 

vector representation in Figure 2.12b) that relative displacement xrel(t) = x(t) – u(t) (i.e. relative 

displacement complex amplitude x0,rel = x0 – u0) directly corresponds to spring k stress. In 

return, spring stress is inversely and non-linearly proportional to number of cycles to fatigue 

failure Nf, analogue to results reported in previous chapters. 

Angles γ, α and β from Figure 2.12 represent phase angles/differences [31] between 

vectors of complex force amplitudes and complex displacement amplitudes respectively. 
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a)  b)  

Figure 2.12. Vectors of forces and displacements in the complex plane: a) complex force amplitudes, 

b) complex displacement amplitudes 

For a more general approach, the following parameters are introduced 

 eqv

eqv cr eqv

, , ,
2

n

n

k c c b
m m b

m c mm k


   


        , (2.31a-e) 

where ε = Ω/ωn is dimensionless excitation frequency, Ω is circular excitation frequency and 

ωn = (k/meqv)
1/2

 is a fundamental natural frequency of the system, conveniently scaled with 

respect to system equivalent mass meqv = m + b. Since inertance b algebraically contributes to 

equivalent, i.e. apparent mass meqv, this effect yields with diminishing of fundamental natural 

frequency ωn. Furthermore, δ = c/[2(meqvk)
1/2

] is dimensionless damping ratio, i.e. proportional 

[31] or modal [27]-[29] damping as a fraction of critical damping, and ccr = 2(meqvk)
1/2

 is 

critical damping. Finally, dimensionless inertance ratio is designated as μ = b/m. Relative 

displacement amplitude |x0,rel| = |x0 – u0| is further denoted through convenient relative 

magnification factor M0,rel with respect to Eqs. (2.30-2.31). Absolute magnification factor 

M0 = |x0/u0| from Eq. (2.30b) and corresponding relative magnification factor M0,rel = |x0/u0 – 1| 

from Eq. (2.30c) can now be written as dimensionless frequency ε-dependent scalars as 

  
  

 
  

2 2
0,rel0 0 0

0 0,rel2 2
0 0 0

1 ,
1 2i 1 1 2i 1

xx x u
M M

u u u

 
 

     


     

     
. (2.32a,b) 

By employing complex expansion of the simplified expression from Eq. (2.32a), 

absolute magnification factor M0 can also be conveniently written in a more compact form as 

  
2 2

N N
0 2 2

D D

M 
 


 

, (2.33) 

where squared coefficients under the square root of Eq. (2.33) are real 
N  and imaginary 

N  

components of numerator and real D  and imaginary D  components of denominator 

respectively. These coefficients with respect to expanded Eq. (2.32a) and corresponding 

compact Eq. (2.33) are written as 
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         2 2

N N D D N1 1 , 2 1 1 1 , 2 1                        . (2.34a-d) 

It can be observed from Eqs. (2.34b,d) that imaginary components of numerator and 

denominator are equal. Coefficients from Eq. (2.34a-d) are used to define the phase angles γ 

and α, with regard to Figure 2.12, which can be written as 

    
 

 
ND

2 2
D N

2 12
arc tan arc tan , arc tan arc tan

1 1 1
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  

      
        

           

. (2.35a,b) 

Finally, from Eqs. (2.35) total phase angle β can be written as 

       . (2.36) 

where β is essentially an argument of Eq. (2.32a), i.e. Eq. (2.30b), by considering complex 

plane scheme denoted in Figure 2.12. Moreover, the phase angles γ, α and β are herein defined 

as positive values. 

Parametric plots for magnification factor M0 are shown in Figure 2.13 for various 

combinations of δ and μ. In Figure 2.13a), inertance ratio μ = 1 is fixed, while damping ratio δ 

is varied. Anti-resonance effect [109],[110] is observed when combined with a very small 

damping ratio, and it is represented by a vertical dashed line. Such effect is an evident 

consequence of inerter impact. The obtained effect is somewhat lost when damping increases. 

By viewing the influence of varying damping δ, it can be observed that there exists a fixed 

point in Figure 2.13a) represented by a circle marker where all FRFs cross and magnification 

factor value is M0 = 1, regardless of damping. Furthermore, by inspecting Figure 2.13b) it can 

be noted that changing the inertance ratio μ while fixing damping ratio δ influences 

dimensionless anti-resonance position which in return diminishes and tends closer to resonant 

dimensionless frequency, i.e. ε = 1. Moreover, larger inertance ratio μ seemingly also 

beneficially influences the response near resonance, i.e. reduces it. Additionally, for system 

without inerter, i.e. when μ = 0, the response at higher frequencies shows standard roll-off 

behaviour where magnification factor M0 tends to zero when dimensionless frequency ε tends 

to infinity [31]. However, by employing the inerter, beneficiary effect of lower displacement 

amplitudes on higher frequencies (i.e. for ε  1) is apparently permanently lost when μ ≠ 0. 

When ε tends to infinity, response M0∞ (i.e. magnification factor when ε → ∞) asymptotically 

tends to constant value denoted by horizontal dashed line in Figure 2.13a). It can additionally 

be observed in Figure 2.13b) that M0∞ value tends to higher values for rising dimensionless 

inertance μ, which is considered to be a non-desired and impairing effect. Thus, low-
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frequency applications may be suitable for inerter implementations in this context, as 

discussed by Yilmaz and Kikuchi [109]. 

a) b)  

Figure 2.13. Absolute magnification factor M0 by varying: a) damping ratio δ (μ = 1), 

b) inertance ratio μ (δ = 0.01) 

The value of dimensionless frequency where all FRFs cross can be obtained by 

setting M0 = 1 in either Eq. (2.32a), or (2.33) and solving for ε = ε1. The undamped anti-

resonance dimensionless frequency εA can be obtained by setting M0 = 0 and δ = 0 in either 

Eqs. (2.32a), or (2.33), and solving for ε. These two expressions can be respectively written as 

    1 0 A 0

1 1
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1 2
M M    

 
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. (2.37a,b) 

By setting μ = 0 in Eq. (2.37a), ε1 converges to common value where 1 2   [31]. 

Moreover, by setting μ = 0 in Eq. (2.37b), εA tends to ∞, which is in accordance with M0 → 0 

when ε → ∞ [31] (solid M0 line in Figure 2.13b). Two extreme conditions are considered next. 

In order to obtain the value of M0∞, symbolic limit analysis is performed on Eq. (2.33). 

Furthermore, magnification factor for resonant conditions M0,res is determined by setting ε = 1 

in Eq. (2.33). These two relations can be respectively written as 
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By further performing limit analysis on Eq. (2.38a) for μ → ∞, magnification factor 

becomes M0∞ = 1 for the entire frequency range  0,  , including resonance and anti-

resonance conditions. This is due to the fact that anti-resonance effect eventually completely 

cancels out resonance effect since limit value for εA from Eq. (2.37b) asymptotically tends to 

εA∞ = 1 for μ → ∞. Hence, isolator effectively locks and the whole system moves as a rigid 

body where motion is exclusively governed by base excitation. This effect benefits the 

0.01

0.1

1

10

100

0.1 1 10

M
a
g
n

if
ic

a
ti

o
n

 f
a

ct
o
r 

M
0

 =
|x

0
/u

0
|, 

-

Dimensionless excitation frequency ε = Ω/ωn, -

δ=0.001,μ=1

δ=0.1,μ=1

δ=0.2,μ=1

δ=0.3,μ=1

ε1(M0=1)

 

A

1
1


 1

1
1

1 2



 



ε1(M0 =1)

0.01

0.1

1

10

100

0.1 1 10

M
a
g
n

if
ic

a
ti

o
n

 f
a
ct

o
r 

M
0

 =
|x

0
/u

0
|, 

-

Dimensionless excitation frequency ε = Ω/ωn, -

δ=0.01,μ=0

δ=0.01,μ=0.5

δ=0.01,μ=1

δ=0.01,μ=5

 

0 0

0,res 0

lim
1

,M M




 










 


  



Optimization of dynamic behaviour… 

Damjan Čakmak 41 

Discussion on Methods and Results 

resonant conditions. However, it yields with severe degradation of magnification factor M0 at 

frequencies higher than anti-resonance, i.e. when ε > εA. Thus, there is an inherent trade-off 

between improved performance near resonant conditions and degraded performance at higher 

frequencies that needs to be considered when setting μ. Consequently, inertance ratio μ cannot 

be optimized and its appropriate value depends solely on loading conditions. This is also 

evident since employing the inerter in the isolator yields with straight line FRFs after anti-

resonant dimensionless frequency εA, Figure 2.13. Nevertheless, inertance can be set in order 

to desirably tune the value of undamped fundamental natural frequency ωn from Eq. (2.31b), 

or to influence the position of the dimensionless anti-resonant frequency εA from Eq. (2.37b). 

Figure 2.14. denotes phase angles γ, α and β from Eqs. (2.35,2.36). Figure 2.14a) 

presents phase angles of standard isolation system without inerter [31], while Figure 2.14b) 

denotes phase angles with inerter present. As phase angle γ from Eq. (2.35a) does not include 

inertance coefficient μ, plots for γ (solid lines in Figure 2.14) are identical in both Figure 

2.14a) and b). However, as phase angle α from Eq. (2.35b) includes dimensionless inertance 

μ; plots for α (dash-dotted lines in Figure 2.14) are noticeably different. This is already hinted 

in Figure 2.12a). Since phase angle β = γ – α in Eq. (2.36) depends on both angles 

simultaneously, it is also inherently influenced by this relation. 

a) b)  

Figure 2.14. Phase angle γ,α,β, δ = 0.01 : a) inertance ratio μ = 0, b) inertance ratio μ = 1 

Phase lag [27],[31] occurs for ε > 1 (+180° lag for δ = 0), while novel anti-resonance 

inerter-based isolator effect additionally introduces phase lead for ε > εA and seemingly shifts 

phase back to 0°. Hence, additional limit analysis for Eq. (2.36) is performed which yields 

with summarized expressions 
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Thus, it can be recapitulated that standard 1DOF isolator phase angle β∞ consistently 

tends to 90° without inerter [31]. However, β∞ tends to 0° with inerter of any positive 

arbitrary inertance ratio μ value present in the system. Furthermore, parametric plots for phase 

angle β from Eq. (2.36) are shown in Figure 2.15 for various combinations of δ and μ. Equal δ 

and μ parameters are used as in Figure 2.13a) and b). It is observed that rate of asymptotical 

convergence to β∞ = 0° depends on both damping and inertance effects simultaneously. The 

larger the dimensionless damping δ is, the rate of convergence is slower, see Figure 2.15a). 

Contrary to that, the larger the inertance ratio μ is, the rate of convergence to zero after 

resonance is faster, since phase lead occurs immediately after post-resonant phase lag for 

rising dimensionless inertance, i.e. μ↑, as shown in Figure 2.15b) with dotted line. 

a) b)  

Figure 2.15. Phase angle β (x0/u0) by varying: a) damping ratio δ (μ = 1), b) inertance ratio μ (δ = 0.01) 

Relative displacement amplitude |x0,rel| and corresponding relative magnification 

factor M0,rel respectively are considered with regard to scheme from Figure 2.12b). Besides 

Eq. (2.30c) and Eq. (2.32b), these quantities can also be expressed by using vector 

addition/subtraction cosine rule (i.e. by Pythagorean Theorem) with relations 

    
2

2 2 0,rel 0 0
0,rel 0 0 0 0 0,rel

0 0 0

2 cos , 1 2 cos
x x x

x x u x u M
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        . (2.40a,b) 

In conclusion, reported anti-resonant frequency εA value is always higher than 

resonant dimensionless frequency value (i.e. unity). Additionally, the improvements for 

absolute magnification factor M0 are evident up to near-resonant and anti-resonant frequencies 

0 < ε ≤ εA due to installation of an inerter. However, an inherent trade-off and consequent 

degradation is observed for frequencies beyond anti-resonance where ε  εA. Furthermore, the 

improvements are evident for relative magnification factor M0,rel at all frequencies 0 < ε ≤ ∞ 

due to addition of an inerter. This is evident from structure of Eq. (2.32b) and corresponding 

limit analysis for increasing dimensionless inertance μ value where 
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

 . (2.41) 

These generalized findings are summarized through following relations 

      A 0 A 0,rel0, 1, 0,~ , 0,M M                   . (2.42a-c) 

Furthermore, novel spring stress and displacement correction factors are proposed. 

These approximate expressions explicitly write as 
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Proposed correction factors from Eq. (2.43) are compatible with original 

approximate A/G [112] and Wahl/Timoshenko [111] corrections when pitch angle is rather 

small and Poisson’s ratio ν ≈ 0.3. However, it is shown through performed detailed parametric 

FEM analyses that proposed corrections may capture thick spring (i.e. small spring index C), 

large pitch angle α, and arbitrary Poisson’s ratio (ν = 0 – 0.5) effects simultaneously. 

By considering relative magnification factor M0,rel from Eq. (2.32b) and modifying 

the Eq. (2.23b) to take into account relative displacement amplitudes x0,rel, following relation 

is obtained for assessing the spring fatigue life in resonant conditions 
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Novel spring correction factors from Eqs. (2.43) are readily incorporated into Eq. 

(2.44). In order to verify analytical findings, FEM is utilized next. Both direct stiffness 

method and analogue mode superposition method are employed. Due to limitations of 

numerical implementation of mode superposition when considering kinematic excitation, 

approximate big mass method (BMM) [28] or large mass method (LMM) [126] is used. 

It is shown that all derived expressions match FEM results very well. When stress 

and deflection correction is omitted, i.e. for simpler isolator model considered, the differences 

in results between analytical and numerical method are negligible. 
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3. Conclusions and Future Work 

3.1. Conclusions 

In this research, novel inerter-based passive and active vibration isolation systems 

are presented. Benchmark isolators not employing and employing the inerter are investigated. 

The methodology is studied on a simple one degree and two degrees of freedom systems so 

that general conclusions can be drawn based on analytically derived expressions. The systems 

are classified as the source/receiving body types. Source body implies the part of the structure 

that is excited by vibrations, i.e. the source of vibrations. Receiving body includes the part of 

the structure that needs to be protected from vibrations. In one degree of freedom systems, 

broadband frequency kinematic excitation is considered. In two degrees of freedom systems, 

broadband force excitation is considered. These simplified systems can be considered as 

reduced order models of potentially more advanced and complex structures. The frequency 

averaged kinetic energy of the receiving body, i.e. broadband velocity amplitudes are used as 

the measure for vibration isolation quality. Moreover, general H2 optimization which utilizes 

broadband displacement amplitudes is used as an alternative optimization metric for fair 

benchmark comparison. Vibration fatigue related optimization is tied to corresponding 

displacement based optimization. It is determined that H∞ optimization criterion is not 

suitable for solving this class of vibration isolation problems, thus it is not utilized. This is due 

to the real physical constraints which govern the stiffness of the isolator spring in the system 

and hence limit the applicability of the method. In active systems, which utilize direct velocity 

feedback, also called the skyhook damping, Hurwitz analytical criterion is used for stability 

assessment. Analytically obtained expressions are verified via numerical simulations, most 

notably finite element method. Direct and mode superposition methods are used. Ideal inerter 

concept is successfully implemented into finite element-based linear dynamic models. 

It is shown throughout the investigation that the vibration isolation performance of 

the fundamental passive isolator not employing the inerter can be improved by adding the 

inerter in parallel with the isolator spring and damper. This improvement is especially evident 

if the source and receiving bodies have similar uncoupled natural frequencies. If these 

frequencies are theoretically exactly the same, the isolator locks and its function is 

immanently deteriorated. This is called the critical system. For such cases, isolator parameters 

become irrelevant as system is inherently poorly designed. Thus, such setup should be 

avoided beforehand, in the initial stages of dynamic system design. By investigating the 
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stability of the active control when no inerter is used, two fundamental families of vibration 

isolation problems are defined. The first family (i.e. supercritical systems) is characterised by 

the natural frequency of the uncoupled source body larger than the natural frequency of the 

uncoupled receiving body. For this type of systems, any physically available feedback gain 

can be utilized without compromising the stability of the feedback control system. This results 

in a prominent broadband vibration isolation effect where theoretically unlimited amounts of 

feedback gain may be set. The second family of systems (i.e. subcritical systems) is 

characterised with the natural frequency of the uncoupled source body being smaller than the 

natural frequency of the uncoupled receiving body. The range of stable feedback gains is here 

limited which results in poor vibration isolation performance due to conditionally limited 

feedback gain. However with the inclusion of the inerter, broadband active vibration isolation 

can also be achieved in the subcritical family of systems. Adding the inerter into the isolator 

effectively generates effect that stabilises the control loop unconditionally, hence arbitrarily 

large feedback gains may be utilized for active vibration control. Consequently, improved 

stability margin is achieved for subcritical type of vibration isolation systems. 

Furthermore, it is shown that employing the inerter in isolation systems can yield 

with substantial improvements in fatigue life of isolator coupling components, i.e. springs. 

With regard to vibration fatigue and corresponding dynamically loaded structural elements, 

novel improved analytical expressions for cylindrical helical spring stress and deflection 

correction are proposed. Novel helical spring stress and correction factors are proposed in 

order to be able to analytically assess the dynamic properties of the structures and its 

deformable elements’ corresponding fatigue life. Consistency of novel correction factors with 

original correction factors from literature is reported. The influence of pitch angle and 

Poisson’s ratio on deflection and stress field is determined. It is noted that arising spring pitch 

angle significantly influences spring stress and stiffness and thus shouldn’t be neglected. 

Novel correction factors, based on the performed finite element method analysis in the scope 

of this investigation, outperform correction factors available in the current literature for 

arbitrary physical value of spring index, pitch angle and Poisson’s ratio. This accuracy 

improvement is especially evident when large spring pitch angle effects are addressed. 

Moreover, proposed spring correction factors could potentially be used for design of the 

helical springs which consider homogenous materials other than steel. 

The result of the research is a development of new method for passive and active 

vibration control. Main research findings can be summarized through following conclusions: 
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 The performance of the basic passive vibration isolator that does not use an 

inerter is improved by adding the inerter of specific optimized inertance in 

parallel with the isolator spring and damper. Optimized inertance is obtained 

in closed-form. 

 The stability and corresponding performance of the system for active 

vibration isolation is improved by using the inerter of large enough 

inertance. This yields with potential opportunity to theoretically achieve 

unconditionally stable active vibration isolation in the wider frequency 

range. Necessary inertance is obtained in closed-form. 

 Employing the inerter in the isolator can substantially prolong and enhance 

the fatigue life of dynamically loaded structures. Inerter-related 

improvements are especially evident in resonant working conditions, 

particularly when only small inherent damping is present in the system. 

Thus, a new method for improving and enhancing the performance of both passive 

and active isolators in broadband frequency range by using inerters is developed in the scope 

of this work. Cumulative contribution of this work is accomplished by linking the inerter 

benefits to control theory and vibration-induced fatigue. The method proposed in this 

investigation could potentially find usage in assessing harmful vibrations, appropriately 

optimizing dynamic systems, and consequently preventing excessive oscillations and 

corresponding damage in general isolators and suspensions. Simplified analytical assessments 

may be performed in conjunction with computationally more expensive finite element method 

calculations. Obtained results could be used as indicators for conducting full-field 

experimental measurements. 

Moreover, numerous potential real engineering applications for inerter may be 

observed, e.g.: automotive, aerospace, building construction etc. Inerter revitalized 

possibilities for additional applications in various passive and active isolator systems, most 

notably vehicle suspensions. Due to relative ease of implementation and low expense of 

manufacturing, the inerter-based devices will expectedly become standard suspension 

elements in Formula 1 racing in the near future. Presumably, it is only a question of imminent 

time before inerters appear in commercial vehicles’ suspensions readily available to the 

common population.  
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3.2. Future Work 

This theoretical investigation opened many new possibilities for further inerter 

implementation in vide variety of real engineering applications and left some open questions 

for future research. 

Firstly, simple experimental validation of obtained results may be performed as a 

direct extension of performed work. Full-field experimental measurements should confirm the 

influence of inerter in the isolator of subcritical system on stability of active control when 

using skyhook active damping scheme. Moreover, experimental measurements of cylindrical 

springs in both static and dynamic test environment could be performed to determine the 

correctness and accuracy of proposed correction factors, most notably when larger spring 

pitch angles are addressed. Materials other than steel may be considered. Additional effects, 

e.g. strain rate and mean static pre-stress could be studied. 

Purely spectral fatigue probabilistic type of optimization, which takes into account 

random power spectral density broadband frequency excitation, may be performed in the 

future. This would yield with more realistic evaluation of deformable parts’ durability in 

suspensions, or general isolator components. 

In order to try to overcome the deficiencies of mechanical inerters (i.e. stick/slip and 

backlash/clearances-induced nonlinearities), inerter may by synthesized by mechatronic 

means, e.g. by using an active system which comprises of set of sensors and actuators and 

mimics the relative mass concept. Direct acceleration feedback, in contrast to direct velocity 

feedback may be utilized. Future theoretical and experimental study could adopt and 

investigate this approach. 

Furthermore, in order to complete the investigations of sub/super-critical systems 

employing inerters, skyhook scheme with inerter in supercritical systems will be investigated. 

Different parallel/series setup of isolator components will be studied, with the aim of retaining 

the achieved benefits of current setup. Also, the influence of real, non-idealized inerter added 

mass on stability and performance of subcritical systems is yet to be determined. 
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This chapter provides the summary and scientific contribution of published papers 

which are directly related to this dissertation. All of the presented papers are self-contained 

and tied through common topic: either active or passive vibration isolation control by 

employing inerter. Preformed investigations are primarily of theoretical nature and include 

finite element method-based analysis for verification purposes. Ideal inerter concept is 

implemented in finite element based-solution. Paper 1 lays the foundation of the dissertation 

and determines the main framework of the conducted investigation. Inerter and active 

skyhook damping control is introduced. All of the hypotheses of the research are proven and 

main scientific contributions are given within this manuscript. Minimization of specific 

kinetic energy is adopted as optimization criterion and Hurwitz criterion is used as stability 

metric. The contribution of this paper is recognized through citation in the first 

comprehensive introduction to the inerter textbook [53] authored by one of the leading inerter 

pioneers Chen and Hu. Furthermore, papers 2 and 3 serve as directly tied investigations and 

continuation of paper 1. Vibration fatigue of the receiving body helical spring is introduced 

and discussed. Finite element method is employed. Dynamic system comprised of inerter-

based isolator similar to that from paper 1 is analyzed, however exclusively passive control is 

considered. More general H2 (displacement) optimization criterion is used in conjunction with 

minimization of specific kinetic energy in order to evaluate fatigue-related benefits due to 

inerter in the isolator. Final paper 4 considers exclusively the fatigue in the inerter-based 

isolator helical spring and studies the inerter influence through detailed parametric analyses. 

Omitted parts of the paper which consider absolute displacement amplitudes are additionally 

included in this thesis in full. Simple physical realization of leverage type inerter is proposed. 

Additionally, improved helical spring stress and displacement corrections are proposed and 

verified. Papers are listed in chronological order of publishing. 

Authorship contributions: The specific contributions made by each author is 

indicated in the appropriate category with each authors’ name initials followed by their 

surnames. 
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Paper 1 

Alujević, N., Ĉakmak, D., Wolf, H., Jokić, M., Passive and active vibration isolation systems 

using inerter, Journal of Sound and Vibration 418 (2018) 163–183., DOI: 

https://doi.org/10.1016/j.jsv.2017.12.031 

In this paper, an inerter-based source body/receiving body two degrees of freedom 

vibration isolation system is investigated. Ideal passive inerter is utilized. Passive and active 

isolation schemes are considered. Active system employs direct velocity feedback. 

Performance and stability of the system are studied for the active and passive schemes. 

Broadband frequency excitation is presumed. Direct dynamic stiffness method is employed. 

Scientific contribution of the paper is given as follows. It is reported that passive 

isolation systems employing inerters always outperform isolation systems not employing 

inerters according to broadband H2 norm optimization criterion. Specific kinetic energy of the 

system, which is proportional to receiving body broadband velocity amplitudes, is taken into 

account. Furthermore, the influence of inerter on the stability of the active system is analyzed, 

and the performance benefits of using an inerter in subcritical systems were noted. It is shown 

that inerter of certain inertance can stabilize feedback loop and ensure stable skyhook 

damping. Inertance necessary for obtaining stable system with theoretically unlimited 

feedback gain is defined through simple analytical expression. All solutions are obtained in 

the closed form. Finally, analytical solutions are verified through parametric numerical 

simulations, where it was shown that derived expressions are approximately valid for more 

complex isolation systems with inherent damping present. 

Study conception and design: N. Alujević, D. Ĉakmak, H. Wolf and M. Jokić 

Acquisition of data: D. Ĉakmak and N. Alujević 

Analysis and/or interpretation of data: N. Alujević and D. Ĉakmak 

Drafting of the manuscript: N. Alujević and D. Ĉakmak 

Critical revision: N. Alujević, D. Ĉakmak, H. Wolf and M. Jokić 

Approval of the version of the manuscript to be published: N. Alujević, D. Ĉakmak, H. Wolf 

and M. Jokić 
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Paper 2 

Ĉakmak, D., Wolf, H., Boţić, Ţ., Jokić, M., Optimization of an inerter-based vibration 

isolation system and helical spring fatigue life assessment, Archive of Applied Mechanics 

89(5) (2019) 859–872., DOI: https://doi.org/10.1007/s00419-018-1447-x 

In this paper, the fatigue of coupling helical spring of receiving body in an inerter-

based two degrees of freedom vibration isolation system is investigated. Passive isolation 

scheme is considered. The minimization of the specific kinetic energy of the system is used as 

an optimization criterion, with regard to previous work. Broadband frequency excitation is 

assumed. High cycle fatigue criterion for coupling spring is utilized through Basquin’s 

equation. Approximate spring displacement and stress correction factors from referent 

literature are considered for vibration fatigue. The stresses in the spring are obtained through 

relating them with absolute displacements of the corresponding receiving body. 

Scientific contribution of the paper is given as follows. Novel, Timoshenko thick 

beam-based spring displacement correction factor utilizing Cowper shear correction is derived 

analytically. Timoshenko-based displacement correction matches satisfyingly well with 

established correction factors from referent literature. It is demonstrated that velocity-based 

optimization yields with significant improvements in receiving body coupling helical spring 

fatigue life. Simple expression for assessment of receiving body coupling spring fatigue life 

for arbitrary excitation frequency is given in closed form. Expression embodies discussed 

displacement and stress correction factors, and applied inertance. Chosen correction factors 

are Ancker and Goodier for displacement, and Wahl for stress. Analogue to previous results, 

isolator systems which incorporate inerter outperform systems without inerter. Improvements 

are reported in specific kinetic energy index and fatigue life simultaneously. 

Study conception and design: D. Ĉakmak, H. Wolf and Ţ. Boţić 

Acquisition of data: D. Ĉakmak 

Analysis and/or interpretation of data: D. Ĉakmak, H. Wolf and Ţ. Boţić 

Drafting of the manuscript: D. Ĉakmak 

Critical revision: D. Ĉakmak, H. Wolf, Ţ. Boţić and M. Jokić  

Approval of the version of the manuscript to be published: D. Ĉakmak, H. Wolf, Ţ. Boţić and 

M. Jokić 
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Paper 3 

Ĉakmak, D., Tomiĉević, Z., Wolf, H., Boţić, Ţ., H2 optimization and numerical study of 

inerter-based vibration isolation system helical spring fatigue life, Archive of Applied 

Mechanics 89(7) (2019) 1221–1242., DOI: https://doi.org/10.1007/s00419-018-1495-2 

In this paper, the fatigue of coupling helical spring of receiving body in an inerter-

based two degrees of freedom vibration isolation system is further studied as a direct 

chronological continuation of previously published work form Paper 2. Exclusively passive 

isolation control scheme is again considered. General H2 norm optimization is utilized where 

both displacement and velocity amplitudes are used as separate criterion. Results are mutually 

contrasted with special accent on fatigue life enhancement. Finite element method in software 

suite Abaqus combined with Fe-Safe for vibration induced fatigue assessment is employed 

with purpose of results verification. 

Scientific contribution of the paper is given as follows. Previously derived 

Timoshenko-based displacement correction factor is verified against finite element method 

results. Although results match almost perfectly with finite element beam-based solution, they 

are completely divergent compared to finite element continuum-based solution and theory of 

elasticity-based Ancker and Goodier solution. Thus, although apparently correctly derived, 

Timoshenko-based displacement correction is disregarded according to results reported in this 

study. Furthermore, it is reported that displacement-based optimization criterion outperforms 

velocity-based optimization criterion when considering fatigue life exclusively as a metric. 

Inerter-based displacement optimization criterion yields with optimum performance compared 

to other schemes. Previously derived simple expression for fatigue life assessment is verified 

against finite element method. Although utilized correction factors from referent literature are 

approximate, very good agreement between analytical and numerical results is observed. 

Optimization process and entire dynamic procedure, including fatigue life assessment, is 

further verified against numerical solution through simplified model which is not 

incorporating correction factors. In this case, almost perfect match up of the results is 

achieved. Ideal inerter concept is successfully incorporated into finite element-based solution 

by using Abaqus native *Equation functionality. Novel anti-resonance effects of the receiving 

body are observed in numerical solution due to inerter implementation. 

Study conception and design: D. Ĉakmak, Z. Tomiĉević, H. Wolf and Ţ. Boţić 

Acquisition of data: D. Ĉakmak 

https://doi.org/10.1007/s00419-018-1495-2
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Analysis and/or interpretation of data: D. Ĉakmak, Z. Tomiĉević, H. Wolf and Ţ. Boţić 

Drafting of the manuscript: D. Ĉakmak and Z. Tomiĉević 

Critical revision: D. Ĉakmak, Z. Tomiĉević, H. Wolf and Ţ. Boţić 

Approval of the version of the manuscript to be published: D. Ĉakmak, Z. Tomiĉević, H. Wolf 

and Ţ. Boţić 

Paper 4 

Ĉakmak, D., Tomiĉević, Z., Wolf, H., Boţić, Ţ., Semenski, D., Trapić, I., Vibration fatigue 

study of the helical spring in the base-excited inerter-based isolation system, Engineering 

Failure Analysis 103 (2019) 44–56., DOI: https://doi.org/10.1016/j.engfailanal.2019.04.064  

In this paper, the fatigue of coupling helical spring of receiving body in an inerter-

based one degree of freedom vibration isolation system is studied as a continuation of 

previously published work. Contrasting previous studies which incorporate force excitation, 

broadband base kinematic excitation is assumed herein. Relative displacements, which are 

directly proportional to stresses in the isolator spring, are considered. Influence of inerter on 

relative displacements is studied in the broad frequency range. Parametric analysis is 

performed. Due to nature of dynamic system, it cannot be optimized. However, it can be 

tuned according to desired criterion. Modal and direct dynamic methods are considered. 

Approximate, but accurate big/large mass method is utilized for numerical modal analysis. 

Scientific contribution of the paper is given as follows. Beneficial influence of inerter 

on relative displacements and directly related isolator spring stresses is observed in broad 

frequency range. Reduction of vibration amplitudes is especially evident in resonant 

conditions due to beneficial inerter influence. This is especially important when considering 

lightly damped systems which may act as a band-pass filter under random excitation. Hence, 

fundamental natural frequency expectedly always tends to get excited. Furthermore, novel 

helical spring displacement and stress correction factors are derived in closed form by using 

combined theory of elasticity, strength of materials and numerical solutions. It is shown that 

proposed correction factors are more accurate than the most accurate correction factor from 

referent literature, i.e. Ancker and Goodier, and Wahl. Accuracy improvement is most evident 

when large spring pitch angles are considered. Moreover, novel correction factors incorporate 

the influence of spring pitch, spring index and material Poisson’s ratio simultaneously. Thus 

https://doi.org/10.1016/j.engfailanal.2019.04.064


Optimization of dynamic behaviour… 

Damjan Čakmak 66 

Summary of Scientific Papers  

they can be used for analytically assessing the spring stress and displacement in materials 

other than regular steel. Entire proposed closed form dynamic procedure is verified via finite 

elements-based fatigue calculations in Abaqus and Fe-Safe. Given procedure can be utilized 

for simple analytical vibration fatigue assessment of springs in suspensions or any general 

isolator system incorporating inerters. 

Study conception and design: D. Ĉakmak, Z. Tomiĉević, H. Wolf, Ţ. Boţić, D. Semenski and 

I. Trapić 

Acquisition of data: D. Ĉakmak 

Analysis and/or interpretation of data: D. Ĉakmak, Z. Tomiĉević, H. Wolf, Ţ. Boţić, D. 

Semenski and I. Trapić 

Drafting of the manuscript: D. Ĉakmak and Z. Tomiĉević 

Critical revision: D. Ĉakmak, Z. Tomiĉević, H. Wolf, Ţ. Boţić, D. Semenski and I. Trapić 

Approval of the version of the manuscript to be published: D. Ĉakmak, Z. Tomiĉević, H. 

Wolf, Ţ. Boţić, D. Semenski and I. Trapić 

 



Optimization of dynamic behaviour… 

Damjan Čakmak 67 

Paper 1  

Paper 1, https://doi.org/10.1016/j.jsv.2017.12.031 

Alujević, N., Čakmak, D., Wolf, H., Jokić, M., Passive and active vibration isolation systems 

using inerter, Journal of Sound and Vibration 418 (2018) 163–183., DOI: 

https://doi.org/10.1016/j.jsv.2017.12.031  

 

https://doi.org/10.1016/j.jsv.2017.12.031


Passive and active vibration isolation systems using inerter

N. Alujevi�c, D. �Cakmak*, H. Wolf, M. Joki�c
Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Ivana Lu�ci�ca 5, 10 000 Zagreb, Croatia

a r t i c l e i n f o

Article history:
Received 2 June 2017
Received in revised form 30 October 2017
Accepted 15 December 2017

Keywords:
Vibration isolation
Inerter
Active vibration control
Direct velocity feedback
Stability of active control systems
Optimisation of vibration control systems

a b s t r a c t

This paper presents a theoretical study on passive and active vibration isolation schemes
using inerter elements in a two degree of freedom (DOF) mechanical system. The aim of
the work is to discuss basic capabilities and limitations of the vibration control systems at
hand using simple and physically transparent models. Broad frequency band dynamic
excitation of the source DOF is assumed. The purpose of the isolator system is to prevent
vibration transmission to the receiving DOF. The frequency averaged kinetic energy of the
receiving mass is used as the metric for vibration isolation quality. It is shown that the use
of inerter element in the passive vibration isolation scheme can enhance the isolation
effect. In the active case, a feedback disturbance rejection scheme is considered. Here, the
error signal is the receiving body absolute velocity which is directly fed to a reactive force
actuator between the source and the receiving bodies. In such a scheme, the so-called
subcritical vibration isolation problems exist. These problems are characterised by the
uncoupled natural frequency of the receiving body larger than the uncoupled natural
frequency of the source body. In subcritical vibration isolation problems, the performance
of the active control is limited by poor stability margins. This is because the stable feedback
gain is restricted in a narrow range between a minimum and a maximum. However, with
the inclusion of an inerter in the isolator, one of the two stability margins can be opened.
This enables large, theoretically unlimited negative feedback gains and large active
damping of the receiving body vibration. A simple expression for the required inertance is
derived.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Inerter is a one port element in mechanical networks which resists relative acceleration across its two terminals [1,2]. The
coefficient of this resistance is called inertance and is measured in kilograms. An appealing property of inerters is that they
can be designed and realised in practice having their inertance significantly larger than their mass [1,2]. This opens many
interesting possibilities so that many authors reported on how to design and use inerters to suppress mechanical vibrations
[1e23].

The concept of “relative mass” has been considered in the past in connection with mechanicaleelectrical analogies by
Sch€onfeld [24]. He mentioned the possibility of a two-terminal mechanical inertance and gave a rudimentary scheme of a
physical realisation of the concept. Smith [1], and Smith andWang [2] developed this idea by investigating how to design such
a device in practice and pointed out a number of peculiarities that the new element brings into a mechanical network. The
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authors described the characteristic phase lead property which cannot be achieved with conventional passive struts con-
sisting of springs and dampers only, and instilled that inerter is the analogue of the capacitor element in electrical networks
[2]. Therefore, adding the inerter to classical dampers and springs fills an empty niche enabling a complete synthesis of
passive mechanical networks [2e4,24].

Smith andWang designed their inerter using a plunger sliding in a cylinder which drives a flywheel through a rack, pinion
and gears [2]. In this design the inertance can be set by the choosing the gear ratio. Such a realisation should be viewed as
approximating its mathematical ideal in a similar way that real springs, dampers, capacitors, etc. approximate their math-
ematical ideals [2]. In other words, effects such as friction, stick-slip of the gear pairs, or the elasticity of the gears and
connecting rods are inevitably present in gear-train based inerter constructions. Other physical realisations of inerters have
been proposed as well. For example, an electromagnetic transducer (voice coil, linearmotor) can be shuntedwith an electrical
impedance consisting of a capacitance connected in series to a parallel resistance-inductance pair. If the total shunt
impedance is properly tuned, then thewhole electromechanical network theoretically behaves exactly as if it incorporated an
ideal inerter mounted in series with a parallel spring damper-pair [6]. A problem in this realisation is that voice coils are
characterised by an inherent electric resistance of the wire in the coil. This resistance causes the dimensionless electrome-
chanical coupling coefficient of the transducer to downscale rather unfavourably [25e27]. As a result, unrealistically large
scale electromagnetic transducers would be needed to synthesize a usable inerter by means of entirely passive electrical
shunt circuits. This can be overcome by actively compensating for the coil resistance [6]. A number of “negative impedance”
electrical circuit designs comprising operational amplifiers, which could be used for this purpose can be found in Ref. [28].
However, such an approach is active which on one hand requires energy and on the other a careful regard of the stability and
robustness of the system. For these reasons, self-powered configurations employing a simultaneous active control and energy
harvesting have been considered to synthesize mechatronic inerters [6]. Another type of mechatronic inerter utilises a rotary
DC motor shunted with an appropriate electrical circuit [7]. This is in order to supplement the mechanical inertance asso-
ciatedwith the rotor moment of inertia with additional electrically synthesised inertance [7]. An inertance-like behaviour can
also be accomplished through a scheme inwhich hydraulic fluid is accelerated [8,9]. This can be achieved with a pistonwhich
pushes the fluid through a helical channel [9]. This design involves relatively large parasitic damping so that the device is best
modelled by considering a nonlinear damper in parallel to the idealised inerter [9].

Inerters can be very useful in vibration isolation systems. In this sense, many authors focused their efforts on improving
vehicle suspension systems using inerters [2,10e13]. Further applications of inerters include vibration isolation in civil en-
gineering structures, such asmulti-storey buildings under earthquake base excitation [14]. In vibration isolation problems it is
often necessary to tune the impedance of the isolator elements based on some optimisation criteria. This can be done by
eitherminimisingmaxima of the response (minimaxor H∞ optimisation), or byminimising the energy in the response signals
(H2 optimisation) [15].

Inerters can also be very useful in vibration absorber systems. Performance of vibration absorbers, especially Tuned Mass
Dampers (TMDs) is known to very much depend on the proof mass added to a primary structure to reduce its vibration. This
mass is added to structures exclusively to control their vibrations, so it is penalised in lightweight automotive and aerospace
applications [16,17]. In this context the use of inerter elements can be interesting given the fact that their inertance can be
significantly larger than their mass. Consequently a number of new concepts have arisen. These include tuned inerter damper
(TID), tuned massedampereinerter (TMDI), and inerterebased dynamic vibration absorber (IDVA) [18e22]. In these systems
the working frequency of the absorber can be tuned by changing the inertance. In particular, it can be reduced without
increasing the physical mass of the vibration absorber while preserving the static stiffness of the absorber suspension spring.
Various applications have been considered using tuned inerter dampers including vibration reduction of cables in cable-
stayed bridges [18,19].

Dynamic vibration absorbers can be made active. Active vibration absorbers can be realised using inertial actuators with a
velocity or velocity þ displacement feedback control scheme [29e36]. Normally, inertial actuators must be designed with a
low mounted natural frequency [29e36]. This requires either large inertial mass or soft suspension stiffness. Both is hard to
realise in practice since the mass must not be too large as this would add too much weight to the structure, and the stiffness
cannot be too small due to large sags in case of constant accelerations (gravity, vehicle manoeuvring). The low natural fre-
quency also limits the applicability of inertial actuators in cases of structures rotating at a high speed which exposes co-
rotating actuators to large centrifugal forces [37e39].

Considering now the use of inerters in active vibration absorber systems, Zilletti investigated a system inwhich the inerter
is attached in parallel with the suspension spring, damper, and the actuator [23]. The author has shown that in this way it is
possible to reduce the blocked natural frequency of the actuator without adding to the actual proof mass, apart from the
relatively small mass added by the inerter construction. This approach has been shown not only to increase the range of
frequencies where the active control can be achieved, but also to improve the stability and the robustness of the active control
schemewhich uses the inertial actuator to develop the control force [23]. Zilletti considered only an idealised inerter element,
which neglects the inertial, stiffness and damping effects of the gearing mechanism that converts axial relative motion at the
terminals of the inerter into angular motion of the inerter wheels. However, Kras and Gardonio considered the effective
weight and dynamics effects of an inerter element composed by a single flywheel which is either pinned or hinged to the base
mass or to the proof mass of the actuator [40].

In this paper an active vibration isolation problem is considered. It is shown that the use of inerter can significantly
improve the stability and performance of the active vibration isolation system in certain situations. In particular, it is shown
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analytically on a simplified model problem that the use of inerter enables successful active vibration isolation in a family of
mechanical systems that are otherwise difficult to control. This family of system has been referred to as subcritical 2 DOF
systems. Subcritical systems are those characterised by the natural frequency of the receiving body larger than the natural
frequency of the source body. In such vibration isolation problems the use of inerter is shown to stabilise the feedback loop
and therefore to enable a remarkable active vibration isolation effect. In addition to the active vibration isolation system,
several inerter-based and inerter-free passive isolator schemes are proposed and analysed, with the aim of establishing fair
benchmarks for the evaluation of the performance of the active isolators studied later in the paper.

The paper is structured into six sections. In the second section, the physical and mathematical models are presented and
the model problem is postulated. In section 3 a benchmark passive vibration isolation scheme not employing the inerter is
discussed. In section 4 a benchmark passive vibration isolation scheme employing the inerter is analysed. Finally, in section 5
a comprehensive stability and performance analysis of the active vibration isolation scheme is given. This analysis indicates
the subcritical family of vibration isolation systems that requires the use of inerters in the isolator to have stable and per-
formant active vibration isolator. In order to ensure a fair comparison among all active and passive configurations, the
performance of the vibration isolation is measured through a unified criterion which is the mean kinetic energy of the
receiving body. In each system, either active of passive, tuneable parameters are adjusted in order to minimise the kinetic
energy of the receiving body per unit, spectrally white, dynamic excitation of the source body.

2. Mathematical model

In this section the mathematical model of an inerter-based active vibration isolation system is formulated. As shown in
Fig. 1. the problem studied is represented by a lumped parameter two degree of freedom (DOF) mechanical system. The
system consists of two masses m1 and m2 coupled by a spring k2, a viscous damper c2 and an inerter of inertance b2. The
inerter produces a force proportional to the relative acceleration between massesm1 andm2. The two masses are attached to
fixed reference bases via the two mounting springs k1 and k3. The lower mass m1 is excited by the disturbance force F1. It is
assumed that the force F1 has characteristics of an ideal white noise and that the power spectral density (PSD) of the force
equals one over all frequencies.

In this study the purpose of the vibration isolation system is to reduce vibrations of massm2 which are due to the forcing F1
acting on themassm1. Therefore, a structure approximated by themassm1 and spring k1 is referred to as the source body, and
a structure characterised by the mass m2 and stiffness k3 is referred to as the receiving body (Fig. 1.).

Such lumped parameter approximation may be representative of a system of more complicated nature, incorporating
structures with distributed mass and stiffness parameters. For example, the modal mass and stiffness of the fundamental
mode of a flexible rectangular source panel can be represented through the mass m1 and stiffness k1. Similarly, the mass m2
and stiffness k3 can represent the modal mass and stiffness corresponding to the fundamental mode of a flexible radiating
panel. Finally, the stiffness k2 between the two masses could represent a coupling impedance associated with the breathing
mode of an air cavity between the two panels. In such a way the simplified 2 DOF model could be used to describe the low-
frequency dynamic behaviour of acoustically coupled double panels as discussed in, for example [41]. Other systemsmay also
be representable by the general configuration shown in Fig. 1 [29,42e44]. In case a more detailed and accurate analysis is
required, attention should be paid to the influence of higher order residual modes, see for example [45].

Fig. 1. The two degree of freedom active vibration isolation system.
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The active part of the vibration isolation system is realised through a skyhook damping unit [44], [46]. The skyhook
damper consists of a reactive actuator, a velocity sensor, and a feedback loop between the output of the sensor and the input
to the actuator. The actuator is mounted in parallel with the passive part of the isolation system (spring, dashpot and inerter)
with its terminals also attached to the two masses (Fig. 1.). The velocity sensor is mounted onto mass m2 in order to realise a
disturbance rejection control scheme. In this scheme the actuator is drivenwith a signal proportional to the negative absolute
velocity of the receiving body amplified by a constant control gain g. Idealised sensor-actuator transducers are assumed. Thus
the feedback gain g has physical dimension of Ns/m and could be referred to as the active damping coefficient. Practical
velocity sensors are normally realised using standard accelerometers with time-integrated outputs. The cut-off frequency of
the integration circuit is usually chosen low, so that in the frequency range between the cut-off frequency of the integrator
and the blocked natural frequency of the accelerometer, the time-integrated output of the accelerometer is proportional to
velocity [25,29,31,32]. An advanced MEMS velocity sensor with internal velocity feedback has been proposed in Ref. [47].

The actuator force FA is given by

FA ¼ �g _x2: (1)

The equations of motion are

ðm1 þ b2Þ€x1 � b2 €x2 þ ðc1 þ c2Þ _x1 � ðc2 þ gÞ _x2 þ ðk1 þ k2Þx1 � k2x2 ¼ F1
�b2€x1 þ ðm2 þ b2Þ€x2 � c2 _x1 þ ðc2 þ c3 þ gÞ _x2 � k2x1 þ ðk2 þ k3Þx2 ¼ 0:

(2a,b)

The equations of motion Eq. (2a,b) can be written in the matrix form as

M€x þ C _x þ Kx ¼ F; (3)

whereM is themass matrix,K is the stiffness matrix, C is the dampingmatrix, x(t), _xðtÞ and €xðtÞ are the displacement, velocity
and acceleration column vectors respectively, and F(t) is excitation column vector. These matrices/vectors are given by the
following expressions

M ¼
�
m1 þ b2 �b2
�b2 m2 þ b2

�
; C ¼

�
c1 þ c2 �c2 � g
�c2 c2 þ c3 þ g

�
; K ¼

�
k1 þ k2 �k2
�k2 k2 þ k3

�
; (4a ec)

x ¼
�
x1ðtÞ
x2ðtÞ

�
; F ¼

�
F1ðtÞ
0

�
; (5a eb)

where the parameters/functions in the matrices/vectors are as indicated in Fig. 1. Note that the gain g generates diagonally
asymmetric active damping terms in the system damping matrix C. Throughout this study, the damping of the source and
receiving structures is assumed to be light. Thus the effects of dampers between the source mass m1 and the ground and
between the receiving mass m2 and the ground are neglected i.e. c1 z c3z 0. This enables significantly less complex
mathematical derivations in the forthcoming parts of the study. Furthermore it leads to a more transparent model regarding
the physics governing the system dynamical behaviour. Nevertheless, the main results are cross-checked with results using a
full damping model where the influence of dampers c1 and c3 is not neglected. These results with the full damping model can
be found in Appendix of the paper.

Assuming a simple harmonic excitation and expressing the excitation and the steady-state response in the exponential

form FðtÞ ¼ bFejut and x ¼ bxejut , where j ¼
ffiffiffiffiffiffiffi
�1

p
, Eq. (3) can be written as

SðjuÞxðjuÞ ¼ FðjuÞ; (6)

where S(ju) is the dynamic stiffness matrix with the following form

SðjuÞ ¼ �u2Mþ juCþ K: (7)

Solution of Eq. (6) can be obtained by inversion of the dynamic stiffness matrix S(ju) as

xðjuÞ ¼ S�1ðjuÞFðjuÞ: (8)

Differentiating Eq. (8) in order to obtain velocities results in expression

_xðjuÞ ¼ YðjuÞFðjuÞ; (9)
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where _xðjuÞ ¼ juxðjuÞ is the velocity vector and YðjuÞ ¼ juS�1ðjuÞ is the mobility matrix representing four frequency
response functions (FRFs) between velocities and forces. By taking M, K and C matrices from Eq. (4aec), the steady-state
complex response can be expressed in terms of the two driving points and two transfer mobilities as

Y11ðjuÞ ¼
ðjuÞ3ðm2 þ b2Þ þ ðjuÞ2ðc2 þ gÞ þ ðjuÞðk2 þ k3Þ

ðjuÞ4½ðb2 þm2Þm1 þ b2m2� þ ðjuÞ3½ðc2 þ gÞm1 þ c2m2�þ
þðjuÞ2½ðm2 þ b2Þk1 þ ðm1 þm2Þk2 þ ðm1 þ b2Þk3� þ ðjuÞ½ðc2 þ gÞk1 þ c2k3� þ ðk2 þ k3Þk1 þ k2k3

; (10a)

Y12ðjuÞ ¼
ðjuÞ3b2 þ ðjuÞ2ðc2 þ gÞ þ ðjuÞk2

ðjuÞ4½ðb2 þm2Þm1 þ b2m2� þ ðjuÞ3½ðc2 þ gÞm1 þ c2m2�þ
þðjuÞ2½ðm2 þ b2Þk1 þ ðm1 þm2Þk2 þ ðm1 þ b2Þk3� þ ðjuÞ½ðc2 þ gÞk1 þ c2k3� þ ðk2 þ k3Þk1 þ k2k3

: (10b)

Y21ðjuÞ ¼
ðjuÞ3b2 þ ðjuÞ2c2 þ ðjuÞk2

ðjuÞ4½ðb2 þm2Þm1 þ b2m2� þ ðjuÞ3½ðc2 þ gÞm1 þ c2m2�þ
þðjuÞ2½ðm2 þ b2Þk1 þ ðm1 þm2Þk2 þ ðm1 þ b2Þk3� þ ðjuÞ½ðc2 þ gÞk1 þ c2k3� þ ðk2 þ k3Þk1 þ k2k3

; (10c)

Y22ðjuÞ ¼
ðjuÞ3ðm1 þ b2Þ þ ðjuÞ2c2 þ ðjuÞðk1 þ k2Þ

ðjuÞ4½ðb2 þm2Þm1 þ b2m2� þ ðjuÞ3½ðc2 þ gÞm1 þ c2m2�þ
þðjuÞ2½ðm2 þ b2Þk1 þ ðm1 þm2Þk2 þ ðm1 þ b2Þk3� þ ðjuÞ½ðc2 þ gÞk1 þ c2k3� þ ðk2 þ k3Þk1 þ k2k3

; (10d)

where Yij ¼ _xi=Fj is a mobility function of the system, representing a velocity of the mass i due to a unit force at the mass j. If
i¼ j then the corresponding FRF is referred to as a driving point mobility, otherwise it is a referred to as a transfer mobility.

The transfer mobility Y21, representing the velocity response of the receiving body per unit forcing of the source body, is
used to assess the quality of the vibration isolation throughout this paper. With the aim of more general approach, mobility
Y21 in Eq. (10c) can be expressed in the following dimensionless form

Y21ðjUÞ ¼
B0 þ ðjUÞB1 þ ðjUÞ2B2 þ ðjUÞ3B3

A0 þ ðjUÞA1 þ ðjUÞ2A2 þ ðjUÞ3A3 þ ðjUÞ4A4
; (11)

where coefficients A0 … A4 and B0/B3 are given by

A0 ¼ m1ðabm1 þ aþ bÞ B0 ¼ 0
A1 ¼ 2h2ðbm1 þ lþ 1Þ B1 ¼ am1
A2 ¼ m1ðam1 þ bm1m2 þ aþ bþ m2 þ 1Þ B2 ¼ 2h2
A3 ¼ 2h2ðm1 þ lþ 1Þ B3 ¼ m1m2
A4 ¼ m1ðm1m2 þ m2 þ 1Þ

; (12a ei)

where

a ¼
�
U2

U1

�2

; b ¼
�
U3

U1

�2

; h2 ¼ c2
2

ffiffiffiffiffiffiffiffiffiffiffiffi
m1k1

p ; l ¼ g
c2
; m1 ¼ m2

m1
; m2 ¼ b2

m2
; U ¼ u

U1
; (13a eg)

and Y21 ¼ m1U1Y21 is now the dimensionless transfermobility. Throughout the rest of the paper, it is assumed thatm1 andU1
are constant values, used for scaling the transfer mobility function Y21 to convenient dimensionless form.

In Eq. (13aeg), a and b are squared natural frequency ratios, h2 is the damping ratio, l is the feedback gain normalised with
respect to the passive damping coefficient, and m1 and m2 are the mass and inertance ratios respectively. Furthermore, U is
dimensionless circular frequency normalised with respect to the natural frequency of the uncoupled source body U1 (as if the
source body was uncoupled by removing spring k2), U3 is the natural frequency of the uncoupled receiving body (as if the
receiving body was uncoupled by removing spring k2), and U2 is the natural frequency of the receiving body as if it was
attached to a fixed reference base through the spring of stiffness k2 only. The three natural frequencies U1 … U3 are thus

U1 ¼
ffiffiffiffiffiffiffi
k1
m1

s
; U2 ¼

ffiffiffiffiffiffiffi
k2
m2

s
; U3 ¼

ffiffiffiffiffiffiffi
k3
m2

s
: (14a ec)

Given that the excitation force F1 with unit PSD has been assumed, the specific kinetic energy of the receiving body (per
unit mass, per unit excitation force) can be calculated as

N. Alujevi�c et al. / Journal of Sound and Vibration 418 (2018) 163e183 167



Ik ¼
Z∞
�∞

jY21ðjUÞj2dU; (15)

according to the Parseval's identity. The specific kinetic energy index Ik is used throughout this study as a measure of the
performance of broad frequency band vibration isolation. The objective is to minimise this quantity of all vibration isolation
systems analysed in the paper.

The specific kinetic energy index in Eq. (15) can according to [48] be calculated as

Ik ¼ p
A0B23ðA0A3 � A1A2Þ þ A0A1A4

�
2B1B3 � B22

�
� A0A3A4

�
B21 � 2B0B2

�
þ A4B20ðA1A4 � A2A3Þ

A0A4

�
A0A2

3 þ A2
1A4 � A1A2A3

� : (16)

Substituting coefficients A0 … A4 and B0/B3 from Eq. (12) into Eq. (16) yields

Ik ¼ 2p

0BBB@
1=4m2ðm2b� aÞ2m41 þ 1=4ðm2b� aÞ

h
ðlþ 2Þm22 þ ðb� al� 2aÞm2 � a

i
m31þ

þ
(
1=4ð1þ lÞm32 � 1=2ð�1=2þ aÞðlþ 1Þm22þ
þ
h�

1=4a2 � 1=2a
�
lþ bh22 þ 1=4a2 � 1=2a

i
m2 þ 1=4a2ðlþ 1Þ

)
m21þ

þ½ð1þ bþ lÞm2 þ b�h22m1 þ h22ð1þ m2Þðlþ 1Þ

1CCCA
h2ð1þ m2 þ m2m1Þðb� 1Þ½lðm2b� aÞm1 þ ðlþ 1Þðlm2 � alþ b� 1Þ�m21

(17)

In the remaining parts of the paper, four types of vibration transmission control are studied and compared with respect to
their performance in minimising the kinetic energy index Ik. These are: passive control without inerter, passive control with
inerter, active control without inerter and active control with inerter.

3. Passive control without inerter

In this section the effectiveness of a passive vibration isolation system without inerter is analysed as a fundamental
benchmark. In this case, the dimensionless feedback gain l (corresponding to the dimensional feedback gain g) and the
dimensionless inerter ratio m2 (corresponding to the inertance b2) equal zero. The transfer mobility (Eq. (11)), and the kinetic
energy index (Eq. (17)) now reduce to

Y21ðjUÞ ¼
2ðjUÞ2h2 þ ðjUÞam1

ðjUÞ4m1 þ 2h2ðm1 þ 1ÞðjUÞ3 þ m1½aðm1 þ 1Þ þ bþ 1�ðjUÞ2 þ 2h2ð1þ bm1ÞðjUÞ þ m1½aðbm1 þ 1Þ þ b�
; (18)

Ik ¼ p
a2m21ðm1 þ 1Þ þ 4h22ðbm1 þ 1Þ

2m21h
2
2ðb� 1Þ2

: (19)

The effectiveness of such simple passive isolator is first studied by varying the damping ratio h2 of an example system.
Parameters that characterise the example system are a¼ 2, b¼ 5 and m1¼1/2. The modulus of the transfer mobility jY21j is
shown in Fig. 2(a) for three values of the passive damping ratio h2: a relatively small one (solid line), medium (dashed line)
and large damping ratio (dash-dotted line).

In case with a small damping ratio, velocity amplitudes are very large when the system is excited near either of the two
natural frequencies (at dimensionless frequencies of about 1.25 and 2.75). As the damping increases, the amplitudes at these
frequencies decrease. If a very large damping ratio is used, it generates a new resonance condition, at a dimensionless fre-
quency of about 1.55. This is because for such a large damping coefficient, the dashpot between the two masses effectively
locks, and two masses m1 and m2 vibrate together in phase, appearing to be tied rigidly. In fact, when the damping ratio h2
tends to infinity, vibration amplitude at this new resonance frequency also tends to infinity since no additional damping exists
in the system, (i.e. undamped source and receiving structures are assumed, c1¼ c3¼ 0). A situation with light, non-zero
damping c1 and c3 is illustrated and discussed in the Appendix. The new, artificial natural frequency approaches

Una ¼ una

U1
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ bm1
1þ m1

s
; (20)

indicating that the system now behaves like a 1 DOF system having a natural frequency un ¼
ffiffiffiffiffiffiffiffiffi
k=m

p
where k¼ k1 þ k3 and

m¼m1 þ m2. It can be seen in Fig. 2(a) that there are four frequencies at which the mobility amplitude jY21ðjUÞj is
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independent of the damping ratio h2. By requiring that derivative with respect to h2 of the modulus of the mobility Y21ðjUÞ in
Eq. (16) vanishes, the following four frequencies are obtained

Ua ¼ 1; Uc ¼
ffiffiffi
b

p
U2
b;d ¼ 1

2
H

�
ð2þ 2m1Þaþ 1þ bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðm1 þ 1Þ2a2 � 4ðm1 � 1Þðb� 1Þaþ ðb� 1Þ2

q �
:

(21a ed)

where jY21ðjUÞj is invariant with respect to the isolator damping. The four circles in Fig. 2(a) denote these frequencies and the
corresponding moduli of the dimensionless transfer mobility. According to Eq. (21aed) and Fig. 2(a), the entire frequency
band can be divided into five ranges with respect to how vibration transmission measured through jY21ðjUÞj depends on the
damping ratio. As shown in Table 1. in Ranges 2 and 4 (near resonances), an increase in the damping ratio causes a decrease in
the vibration transmission, but in Ranges 1, 3 and 5, the effect of increased damping is opposite. Indices a, b, c and d from Table
1 are chosen in such way that relation Ua < Ub < Uc < Ud holds for b> 1, whereas for b< 1, Ua and Uc now switch places.

Therefore the impact of the passive damping ratio h2 at various frequency ranges is inconsistent. It is thus interesting to see
how the receiving body specific kinetic energy index Ik, being a frequency averaged quantity, varies with the damping ratio.
This variation is plotted in Fig. 2(b). It can be seen that it has a minimum as denoted by the circle. It can be shown that this
minimum is achieved for

h2opt1 ¼ am1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m1
1þ bm1

s
; (22)

where h2opt1 is the optimal passive damping ratio. The corresponding minimum specific kinetic energy is

Ikmin ¼ 2p
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbm1 þ 1Þðm1 þ 1Þ

p
m1ðb� 1Þ2

: (23)

In fact, the frequency response curve indicated by the dashed line in Fig. 2(a) corresponds to the optimal damping ratio
h2opt1 calculated according to Eq. (22). The remaining two lines are with a light damping h2opt1/100 (solid) and a very large
damping 100h2opt1 (dash-dotted). Thus the optimum damping ratio is a result of a trade-off between damping down the

Table 1
Dimensionless circular frequency U key ranges.

Range 1 Range 2 Range 3 Range 4 Range 5

U2〈0;Ua〉 U2〈Ua;Ub〉 U2〈Ub;Uc〉 U2〈Uc;Ud〉 U>Ud
h[0jY21ðjUÞj[ h[0jY21ðjUÞjY h[0jY21ðjUÞj[ h[0jY21ðjUÞjY h[0jY21ðjUÞj[

Fig. 2. Isolation system performance without inerter b2 (m2¼ 0): (a) Transfer mobility function jY21ðjUÞj, h2¼ h2opt1/100 (solid line), h2¼ h2opt1 (dashed line),
h2¼100h2opt1 (dash-dotted line), (b) Specific kinetic energy index Ik.
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vibration transmission around the two resonances (Ranges 2 and 4) without excessively increasing vibration transmission in
the remaining three frequency ranges (Ranges 1, 3 and 5).

By examining Eq. (23) it can be seen that the optimum specific kinetic energy Ikmin is proportional to the squared natural
frequency ratio a, which is effectively a dimensionless measure of the isolator spring stiffness k2. Therefore the softer the
isolator spring stiffness, the better is the vibration isolation effect. However, decreasing spring stiffness k2 normally results in
large static deflections to which there is a limit in real engineering situations. In other words, opposing requirements dictate
the choice of stiffness of the spring k2. On the other hand, in Eq. (23) can be seen that if the squared natural frequency ratio b

tends to unity, Ik tends to infinity. This is the situation in which the uncoupled natural frequency of the source body tends to
the uncoupled natural frequency of the receiving body (U1¼U3). Therefore, for a good vibration isolation effect, the system
should be detuned in such way that U3 [ U1.

In conclusion, the study of the benchmark passive isolation scheme in this section indicates that it is possible to optimise
vibration isolation effects by optimising the isolator damping. However, the vibration isolation capability of such a scheme
becomes very limited ifU1zU3. In the following section it is discussed how these limitations can be relaxed by incorporating
the inerter in the isolator construction.

4. Passive control with inerter

With the inclusion of an inerter, the frequency response functions (FRF) between the receiving body motions and the
source body excitation becomes characterised by an anti-resonance. This is illustrated in Fig. 3(a) which shows the amplitude
of the dimensionless transfer mobility jY21ðjUÞj of an example system characterised by a¼ 2, b¼ 5, m1¼1/2.

Therefore, the system is the same as in the previous section, except that an inerter of dimensionless inertance m2z 0.692 is
now attached to the system according to the scheme in Fig. 1. The value of m2z 0.692 is chosen because it is, as shown later in
the paper, the optimum inertance. Active control is still switched off (l¼ 0). It should be noted that normally FRFs between
two different locations (i.e. between two different degrees of freedom) of a linear mechanical system are characterised by at
least two consecutive resonances without an anti-resonance between them, as the case is in Fig. 2(a). Anti-resonance be-
tween all consecutive resonances can only be expected with driving point FRFs. The use of inerter changes this situation. In
fact, a transfer FRF can become qualitatively similar to a typical driving point FRF, as shown in Fig. 3(a). By inspecting the
numerator in Eq. (10c), it can be seen that incorporating the inerter into the isolator places the anti-resonance at the fre-
quency uA ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2=b2

p
, or in the dimensionless form (Eqs. (11e13))

UA ¼
ffiffiffiffiffiffi
a

m2

r
; (24)

where index “A” denotes “anti-resonance”. Thus the location of this anti-resonance is not restricted to the frequency range
between the two resonances. Instead the new zero can be freely placed in the entire frequency range assuming that the
inerter with an appropriate inertance can be realised in practice. This is illustrated in Fig. 3(b). The properties of the system in
Fig. 3(b) are still the same (a¼ 2, b¼ 5, m1¼1/2), except that the inertance ratio m2 is varied in the range from a/(2b) to 2a. In

Fig. 3. Transfer mobility function jY21ðjUÞj: (a) h2¼ 0 (solid line), h2¼ h2opt2 (dashed line), h2¼100h2opt2 (dash-dotted line), (b) h2¼ 0: m2> a (solid line), a/
b < m2< a (dash-dotted line), m2< a/b (dashed line).
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fact, it can be shown that for b> 1, if the inertance ratio m2 is larger than the frequency ratio a, then the anti-resonance is
positioned below the first resonance. If the inertance ratio is between a and a/b, then the anti-resonance is between the two
resonances. Finally, if the inertance ratio m2 is smaller than a/b, then the anti-resonance is above the second resonance. This
can be shown to be exactly valid for an entirely undamped system with h2¼ 0, and approximately valid for lightly damped
systems (see Appendix to the paper). However, for b< 1 and if the inertance ratio m2 is smaller than the frequency ratio a, then
it can be shown that anti-resonance is positioned above the second resonance and if the inertance ratio m2 is larger than a/b,
then the anti-resonance is below the first resonance. This free choice of the anti-resonance opens possibilities to control
“tonal” vibration transmission due to simple harmonic excitation. In this case, a lightly damped isolator would be necessary
for a maximised performance which is perhaps similar to how vibration neutralisers (lightly damped, single frequency tuned
vibration absorbers) are designed [49,50].

However, in this study the focus is put onto a broadband, white noise dynamic excitation of the source body. It is shown
next that the kinetic energy index of the receiving body Ik has aminimumwith respect to both damping ratio h2 and inertance
ratio m2. Differentiating Eq. (17) with respect to h2 yields

vIk
vh

¼ 4p

8><>:
�1=4m2ðm2b� aÞ2m41 � 1=4ðm2b� aÞ

h
2m22 þ ðb� 2aÞm2 � a

i
m31þ

þ
h
� 1=4m32 þ ð1=2a� 1=4Þm22 þ

�
h22b� 1=4a2 þ 1=2a

�
m2 � 1=4a2

i
m21þ

þ½ð1þ bÞm2 þ b�h22m1 þ h22ð1þ m2Þ

9>=>;: (25)

By equalling Eq. (25) to zero and solving for h2, one obtains

h2 ¼ m1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ bm1Þ2m32 þ

h
� 2ðm1 þ 1Þð1þ bm1Þaþ 1þ m1b

2
i
m22�

�2a
h
� 1=2ðm1 þ 1Þ2aþ bm1 þ 1

i
m2 þ a2ðm1 þ 1Þ

vuuut
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ m2 þ m1m2Þð1þ bm1Þ

p ; (26)

where h2 is now the optimal damping ratio for a given inertance ratio m2. By substituting Eq. (26) into Eq. (17), differentiating
with respect to m2, equalling with zero and solving for m2, optimal inertance ratio parameter m2opt may be obtained which
subsequently yields an expression for a minimum specific kinetic energy Ik. However, explicit expressions for m2opt, h2opt2 and
Ikopt2 are omitted in this paper because they are rather involved and cannot be clearly interpreted. Nevertheless, Fig. 4(a)
shows that the frequency averaged kinetic energy index of the receiving body has aminimum at h2¼ h2opt2 and m2¼ m2opt. The
example system considered is still characterised by a¼ 2, b¼ 5 and m1¼1/2. The optimum values for this system are
h2opt2z 0.162 and m2optz 0.692. The minimum position for Ik is denoted by the circle whereas the optimum damping ratio h2
as a function of the inertance ratio m2 (Eq. (26)) is illustrated using the dashed line. Considering now again Fig. 3(a), the effects
of varying the damping ratio h2 are similar to the case without inerter. With light damping, the receiving body response is
large around the two resonances, and with a damping coefficient too large, a new lightly damped resonance occurs as with

Fig. 4. Isolation system performance with inerter b2 (m2¼ m2opt): (a) specific kinetic energy index Ik as a function of h2 and m2, (b) specific kinetic energy index Ik:
comparison of the cases with and without inerter; m2¼ 0 (solid line), m2¼ m2opt (dashed line).
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the case in previous section with no inerter. However, under the optimal setting, the vibration velocity amplitude is further
reduced in comparison to the case without inerter (m2¼ 0). This is due to the anti-resonance phenomenon which is a special
case of inerter influence and otherwise cannot be obtained by combining only elements of classical mass-damper-spring
(MDS) system if the scheme shown in Fig. 1 is followed. Similar to the case without inerter, it can be seen in Fig. 3(b) that
there are four frequencies where the dimensionless transfer mobility amplitudes jY12ðjUÞj are independent of damping ratio
h2. The four circles in Fig. 3(a) denote these frequencies and the corresponding dimensionless mobility amplitudes jY21ðjUÞj.
They can be calculated as

Ua ¼ 1; Ud ¼
ffiffiffi
b

p

Ub;c ¼


2ð1þ 2m2 þ 2m2m1Þ

0BB@
1þ 2m1m2bþ 2aþ bþ 2m2 þ 2am1þ

H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ð�aþ m2bÞ2m21 þ 4ð�aþ m2bÞðbþ 2m2 � 2a� 1Þm1þ

þð2aþ b� 1� 2m2Þ2

vuut
1CCA

vuuuuuut
2þ 4ðm1 þ 1Þm2

;

(27a ed)

It can be noted that expressions (27a,b) are identical to (21a,b) for the case without inerter. However, with inerter, the
values of Ua,b,c,d can now all switch places depending on how the parameters of the system are chosen, except that Ub,c from
Eq. (27ced) are always such that inequality Ub<Uc holds.

It is interesting to compare the maximum vibration isolation effect obtained using an optimally tuned damper c2 without
inerter (h2opt1) to that with an optimally tuned damper and inerter pair (m2opt, h2opt2). This comparison is shown in Fig. 4(b).
The plot shows the receiving body specific kinetic energy index Ik as a function of the passive damping ratio h2 for the two
cases. It can be seen that the use of inerter improves the optimised vibration isolation performance by ~3 dB for the case
considered. Clearly, this improvement depends on the parameters that characterise the system. Fig. 5 shows the improvement
designated in Fig. 4(b) as a function of the system parameters a, b and m1.

The parametric study is presented so that the ratio between the optimum kinetic energy index with inerter and the
optimum kinetic energy without inerter is shown as a function of the frequency parameter b. In Fig. 5(a) this variation is
shown for three different frequency ratios a, and in Fig. 5(b) the variation is shown for three different parameters m1. The fixed
parameter of the example systems shown in Fig. 5(a) is m1¼1/2, while the fixed parameter of the example systems shown in
Fig. 5(b) is a¼ 1/2. It is apparent from the two plots that the best improvements due to the use of the inerter are obtained if
the source and receiving bodies have similar uncoupled resonance frequencies, that is if b approaches unity, or U1zU3.
However, these results must be interpreted with care. This is because if the two resonance frequencies are exactly the same,
then both configurations with and without inerter are equally ineffective, as shown by the vertical lines in the two plots
which tend to 0 dB if b is exactly one. This is due to the fact that c1¼ c3¼ 0 is assumed. In Appendix to the paper, a plot
analogue to the two plots in Fig. 5 is shown, inwhich results obtained by considering various levels of passive damping c1 and

Fig. 5. Minimum specific kinetic energy ratio index IkminR, l¼ 0: (a) a¼ 1/2 (solid line), a¼ 10 (dashed line), a¼ 103 (dash-dotted line), (b) m1¼1/2 (solid line),
m1¼10 (dashed line), m1¼103 (dash-dotted line).
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c3 were considered. The plot in the Appendix indicates that for systems with non-negligible, but still light damping c1 and/or
c3, the use of inerter gives the best vibration isolation improvement at the frequency ratio b slightly below and slightly above
unity. With large damping coefficients c1 and c3, the best effects of including the inerter are again observed with b¼ 1.

In conclusion, the passive isolator scheme enhanced by incorporating an inerter, exhibits an improved broadband vi-
bration isolation performance in terms of the specific kinetic energy of the receiving body. In the following section it is
investigated howmuch can the vibration isolation performance be further increased by engaging the velocity feedback unit in
the isolator scheme shown in Fig. 1.

5. Active control

5.1. Stability in general

With the frequency domain analysis, the stability of active control systems cannot be seen directly from the frequency
response of the system. In other words, the model presented in section 2 mathematically allows for calculating frequency
response functions using Eq. (10) for both stable and unstable systems. However, such FRFs for unstable systems would be
physically meaningless. It is thus necessary to carefully investigate the active control system stability properties before
calculating the prospective performance metrics, such as the kinetic energy index given by Eq. (16). It has previously been
shown that active vibration isolation systems can exhibit stability problems as discussed in for example [29,43,51,52]. In this
subsection, the stability of the feedback control loop is studiedwith reference to the dimensionless active damping coefficient
l by applying the Routh-Hurwitz [53,54] stability criterion to the characteristic equation of the system. The characteristic
equation is the denominator of Eq. (11).

According to the Routh-Hurwitz necessary stability condition and Eq. (12) in order for A1,3> 0, it must be

cb<10l> � ðbm1 þ 1Þ in order for A1>0; (28)

cb>10l> � ðm1 þ 1Þ in order for A3>0: (29)

In other words, if b< 1 the condition A1> 0 is a stricter one and if b> 1, then A3> 0 is the stricter condition. Considering
now the Routh-Hurwitz sufficient condition for stability, it states that all diagonal sub-determinants H1, H2 and H3, as well as
the main determinant H4 of Hurwitz matrix must be positive. The principal determinant H4 is proportional to the sub-
determinant H3 with an always positive term m1ðaðbm1 þ 1Þ þ bÞ and is thus automatically positive if H3 is positive. Thus
the relevant criteria that must be satisfied simultaneously are Eqs. (28) and (29) plus the following additional ones

H1 >00lþ m1 þ 1>0; (30)

H2 >0 0 2m1h2f½m1ðm2ðb� 1Þ þ aÞlþ aþ b� þ m1½1þ að2þ m1Þ� þ aþ bg>0; (31)

H3 >004m21h
2
2ðb� 1Þ

n
ðm2 � aÞl2 þ ½bm2ðm1 þ 1Þ þ b� 1� aðm1 þ 1Þ�lþ b� 1

o
>0: (32)

Note that A1, A3,H1 andH2 are linear functions of the dimensionless feedback gain l, whereasH3 is a quadratic function of l.
The quadratic determinant H3 changes sign at the following values of the feedback gain

l1;2 ¼
m2ðbm1 þ 1Þ � aðm1 þ 1Þ þ b� 1H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða� m2bÞ2m21 þ 2m1ða� m2bÞðaþ 1� m2 � bÞ þ ða� m2 þ b� 1Þ2

q
2ða� m2Þ

:

(33a,b)

In the forthcoming discussion, it is shown that by ensuring the validity of inequality (32), all other stability conditions are
satisfied automatically. In other words, the condition (32) is a sufficient stability condition for the problem studied.

5.1.1. Stability without inerter e subcritical and supercritical systems
If the inerter is not used, i.e. m2¼ 0, Eq. (33a,b) can be simplified to

l1;2 ¼ b� 1� aðm1 þ 1ÞH
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ m1Þ2a2 � 2ðm1 � 1Þðb� 1Þaþ ðb� 1Þ2

q
2a

; (34a,b)

where l1 is the lower value out of two zeros. At this point it is convenient to graphically represent all expressions relevant for
the system stability as a function of the dimensionless feedback gain l. This is done in Fig. 6. Two different cases are presented.
Fig. 6(a) shows the case when the squared natural frequency ratio b< 1 and Fig. 6(b) shows the case with b> 1. The pa-
rameters for an example system shown in Fig. 6(a) are a¼ 2, m1¼1/2, h2¼1 and b(a)¼ 1/2, and the parameters for an example
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system shown in Fig. 6(b) are the same, except b(b)¼ 5. The zeros of the 3rd principal diagonal minor H3 from Eq. (34a,b) are
denoted by the two circles. In both plots can be seen that if the principal diagonal minor with the quadratic dependence on
the feedback gain is positive, i.e. H3 >0, then all other stability conditions are automatically satisfied. In fact, by closely
inspecting Eqs. (28)e(32) it could be deduced that it is generally true that ifH3> 0 then all other conditions, i.e. Eqs. (28)e(31),
are automatically satisfied and the stability is guaranteed. Thus Eq. (32) represents the strictest stability condition and it
becomes sufficient to make sure that H3> 0 in order to have a stable feedback loop.

Physically this indicates that if the uncoupled natural frequency of the source body is larger than the uncoupled natural
frequency of the receiving body, then a negative velocity feedback loop with an arbitrary large feedback gain can be used. As
discussed in the forthcoming section 5.2, this is a situation in which very convincing active vibration isolation effects can be
achieved that can significantly outperform the two passive vibration isolation schemes discussed in the previous two sub-
sections. On the other hand, in situation in which the uncoupled natural frequency of the source body is smaller than the
uncoupled natural frequency of the receiving body, as shown in Fig. 6(b), the range of dimensionless feedback gains is limited
between l1 and l2, according to Eq. (34), and shown in Fig. 6(b). Therefore, the maximum feedback gain is limited by l2 above
which the second order principal diagonal minor becomes negative with further increasing the feedback gain. This is because
the parabola in Fig. 6(b) is oriented downwards whereas the parabola in Fig. 6(a) is oriented upwards. This situation results in
limited active vibration control performance as discussed in the forthcoming section 5.2.

In conclusion, it can be stated that all systems representable by the scheme in Fig. 1 can be divided into two families. The
first family can be referred to as supercritical and it is characterised by b< 1. The systems belonging to this group allow for the
implementation of unconditionally stable active vibration isolation scheme based on the direct feedback of the absolute
velocity of the receiving body. The second family is characterised by b> 1 and it can be referred to as subcritical. The systems
belonging to this group do not allow for the implementation of unconditionally stable absolute velocity feedback scheme. On
the contrary, the feedback loop is conditionally stable with a limited maximum feedback gain.

Practical vibration isolation problems belonging to the supercritical family are the problems of isolating vibrations coming
from a flexible base towards sensitive equipmentmounted on the base. A practical problem belonging to the subcritical group
could be a problem in which running machinery is elastically mounted on the flexible base, for example a punching press. In
such case, the broadband vibrations originating from the impact, transmit from the machine to the base. It appears from the
above analysis that it would be significantly more difficult to guarantee the stability of the absolute velocity feedback control
applied on the latter, subcritical family of vibration isolation problems. Given these difficulties, it is interesting to investigate
the effects of the use of an inerter with subcritical systems characterised by b> 1. This investigation is carried out in the
following subsection.

5.1.2. Stability with inerter e stabilising the feedback loop in a subcritical system
If an inerter is used in an isolator of a subcritical system characterised by b> 1, then interesting effects can be observed

with regard to the stability of the feedback loop. By inspecting Eq. (32), it can be seen that the third principal diagonal minor
H3, which is essential for the stability of the active control, has the quadratic coefficient in l equal to m2 e a. This coefficient
determines whether the corresponding parabola is pointing upwards or downwards. Given that the term (b e 1) multiplying

Fig. 6. Dependency of Hurwitz coefficients H1 (solid line), H2 (dashed line), H3 (dash-dotted line) and A1 (dotted line) magnitude on active damping ratio l

without inerter b2 (m2¼ 0): (a) 0< bI< 1, (b) bII> 1.
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the squared bracket expression is positive with subcritical systems, it turns out that an inerter with dimensionless inertance
m2> a can make the quadratic coefficient of the parabola positive. This in turn results in an upward pointing parabola.
Therefore unconditional stability can be achieved also with subcritical systems simply by adding an inerter with m2> a. This is
illustrated in Fig. 7(a) which shows all principal diagonal minors calculated according to Eqs. (30)e(32). The system is again
characterised by a¼ 2, m1¼1/2, h2¼1 and b¼ 5, just like in Fig. 6(b). As shown in Fig. 7(a), with the inclusion of inerter when
bII> 1 and m2(a)¼ a/2, the limited stable range of l between lH1< l< lH2, is expanded in comparison with Fig. 6(b). If the
inertance is further increased, so that m2¼ 2a, the system becomes stable for any l> lH2, as shown in Fig. 7(b). Therefore, for
subcritical systems where the fundamental natural frequency of the receiving body is larger than that of the source body, the
use of inerter characterised by m2> a drastically improves the stability by turning a subcritical active vibration isolation
problem into a supercritical one. This is quite essential for the performance of the active vibration isolation, as discussed in the
following subsections.

5.2. Performance

5.2.1. Without inerter
The performance of the active control is first studied without the use of inerter, therefore dimensionless parameter m2

equals zero. Fig. 8(a) shows the specific kinetic energy index of the receiving body plotted as a function of the passive and
active damping ratio. Firstly, a supercritical system is assumed so the frequency ratio b is smaller than one. Fig. 8(a) indicates
that as the active damping ratio (the feedback gain) is increased, the kinetic energy index monotonically decreases
demonstrating that the desired active vibration isolation effect is achieved. Fig. 8(b) shows the dimensionless transfer
mobility function (the velocity of the receiving body per unit forcing of the source body, as a function of frequency) for
increasing active damping ratios.

It can be seen that the amplitude of the dimensionless mobility function jY21ðjUÞj diminishes in the vicinity of Un1 and Un2
which is tied to significant reduction of specific kinetic energy Ik. In addition, no increase of the amplitude of themobility with
an increase in the feedback gain can be seen at any frequency. Thus a true broadband active vibration isolation effect can be
achieved. The characteristic parameters of the example system illustrated in Fig. 8(a) are a¼ 1/2, b¼ 1/2 and m1¼1/2. Pa-
rameters of the example system shown in Fig. 8(b) are the same, except that the damping ratio had to be fixed to h2¼ 0.5%.
Therefore in such supercritical system, the use of inerter appears to be unnecessary, since the system is stable for any given
positive value of l.

Considering now the subcritical case, where bII> 1, the system is stable for a limited narrow l range as already discussed in
section 5.1 and as shown in Fig. 6(b). Therefore it is interesting to investigate into performance of the active control for
subcritical systems when the stable feedback gain is restricted between the lower and upper margins shown in Fig. 6(b).

The kinetic energy index of the receiving body in this case (bII> 1) is shown in Fig. 9(a). The parameters of the example
system shown in Fig. 9(a) are a¼ 1/2, b¼ 2 and m1¼1/2.

Fig. 7. Dependency of Hurwitz coefficients H1 (solid line), H2 (dashed line), H3 (dash-dotted line) and A1 (dotted line) magnitude on active damping ratio l with
inerter b2 (m2 s 0) and bII> 1: (a) m2< a, (b) m2> a.
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It can be seen in Fig. 9(a) that there is an optimum combination of the passive and active damping ratios that minimises
the kinetic energy index which is marked by the red circle. The optimum passive damping ratio as a function of the active
damping ratio is shown by the red dashed line in Fig. 9(a). Similar to Eq. (22), this function is obtained by differentiating Eq.
(17) with respect to l and equalling with zero which yields following relation

h2opt;l ¼
am1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m1 þ l

1þ bm1 þ l

s
: (35)

By comparing it with Eq. (22), it can be observed that l is now added under the root of both numerator and denominator. If
l¼ 0, Eq. (35) reduces to Eq. (22). Eq. (35) is denoted by dashed line in Fig. 9(a). By inserting Eq. (35) into Eq. (17), an
expression for minimum specific kinetic energy along the dashed line can be obtained

Fig. 9. Isolation system performance without inerter b2 (m2¼ 0) and bII> 1: (a) Specific kinetic energy index Ik, (b) Transfer mobility function jY21ðjUÞj, l¼ 0 (solid
line), l¼ 0.5 (dashed line), l¼ 1 (dash-dotted line), l¼ 1.5 (dotted line).

Fig. 8. Isolation system performance without inerter b2 (m2¼ 0) and 0< bI< 1: (a) Specific kinetic energy index Ik, (b) Transfer mobility function jY21ðjUÞj, l¼ 0
(solid line), l¼ 2 (dashed line), l¼ 10 (dash-dotted line), l¼ 20 (dotted line).

N. Alujevi�c et al. / Journal of Sound and Vibration 418 (2018) 163e183176



Ikmin ¼ 2p
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbm1 þ lþ 1Þðm1 þ lþ 1Þ

p
m1ðb� 1Þ

h
ð � 1þ b� m1a� aÞl� 1þ b� al2

i : (36)

By differentiating Eq. (36) with respect to l, equalling with zero and solving for l, optimal active damping coefficient lopt is
obtained. Inserting both h2opt,l from Eq. (35) and lopt into Eq. (17) yields an expression for minimum specific kinetic energy Ik.
However, the relations for lopt, h2opt,l2 and Ik are too cumbersome and not easily interpretable, so they are omitted. Never-
theless the global minimum position for Ikwith respect to two variables lopt and h2opt,l2 exists and it is denoted by the circle in
contour plot. The asterisk in Fig. 9(a) denotes the minimum kinetic energy index if value of l is set to zero, which implies the
use of optimised passive control. By comparing the surface levels in Fig. 9(a) at the optimum active control (circle) and the
optimum passive control (asterisk) it can be seen that the level difference is about one dB. Therefore, the active control can
outperform the passive control, but the corresponding improvement in performance is not particularly convincing. It can be
concluded that with subcritical system the performance of the active vibration scheme is questionable, since a significantly
simpler passive system can achieve nearly the same vibration isolation effect. The reasons for this are further investigated by
plotting the dimensionless transfer mobility jY21ðjUÞj as a function of frequency for cases with no control (l¼ 0) and with the
active control using increasing active damping ratios (increasing feedback gains) in Fig. 9(b). The parameters for the example
system shown in Fig. 9(b) are the same as in Fig. 9(a), except that a fixed passive damping ratio h2¼ 0.02 is used. It can be seen
in Fig. 9(b), that although the amplitude of the dimensionless mobility jY21ðjUÞj reduces in the vicinity of second dimen-
sionless circular frequency Un2 with rising l, a significant overshoot can be observed in the vicinity of first dimensionless
circular frequency Un1 for rising l. Fig. 10(a) shows that for rising l, the specific kinetic energy Ik also rises significantly until
instability occurs. Therefore, using active control without inerter in cases when bII> 1 results in generally doubtful perfor-
mance. Fig. 10(b) shows the comparison between the optimum active vibration isolation and the optimum passive vibration
isolation for a subcritical system characterised by a¼ 1/2, b¼ 2 and m1¼1/2 in terms of the amplitude of the transfer mobility
jY21ðjUÞj plotted as a function of frequency. The same parameters are used in Fig. 10(a) where the passive damping ratio is set
to h2¼ 0.02. The optimised active control results in a slightly lesser kinetic energy index compared to the optimised passive
control (Fig. 10(a)), which is obtained by damping down the velocity response around the first natural frequency at the
expense of slightly increasing the response around the second natural frequency (Fig. 10(b)). In conclusion, the improvement
in the performance due to the use of active control probably does not justify the complexity of the vibration isolation system
in subcritical systems.

5.2.2. Comment on the reciprocity principle
So far, it has been shown that all active vibration isolation problems shown in Fig. 1 can be categorised as subcritical or

supercritical, depending on the frequency ratio b. The above stability and performance analyses indicate that with super-
critical systems, the active vibration isolation based on absolute velocity feedback can be expected to yield very good vi-
bration isolation effects. With subcritical systems this is not the case due to poor stability margins and the consequent
unconvincing vibration isolation performance.

Fig. 10. Isolation system performance without inerter b2 (m2¼ 0) and bII> 1: (a) Specific kinetic energy index Ik, (b) Transfer mobility function jY21ðjUÞj, l¼ 0,
h2¼ h2opt1 (solid line), l¼ lopt, h2¼ h2opt,l2 (dashed line).
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At this point, it should be noted that this division into supercritical/subcritical systems is based on the assumption that the
velocity sensor is mounted on the receiving body. With respect to that, one possible way of turning a subcritical vibration
isolation problem into a supercritical one would be to place the sensor on the source body (see Fig. 1. - dashed alternative
feedback loop). Then, the body where the sensor is located is characterised by the larger natural frequency than the other
body, and the new feedback loop will be stable for an arbitrary large gain implementing a negative velocity feedback since
everything else in the system is symmetric. In fact, the transfermobility Y12ðjUÞ, in the case the sensor is located on the source
body will be affected by the control loop in the same way the transfer mobility Y21ðjUÞ is affected by the control loop if the
sensor is mounted on the receiving body. Similarly, the transfer mobility Y21ðjUÞ, in the case the sensor is located on the
source body, will be affected by the control loop in the same way Y12ðjUÞ is affected by the control loop if the sensor is
mounted on the receiving body. In other words, if the sensor is located on the source body of a system characterised by
U3>U1 (subcritical), the velocity of the mass m1 due to the force exciting the mass m2 should decrease with increasing the
feedback gain similarly to what is shown in Fig. 8(b). The question however is what happens with the velocity of the massm2
due to forcing at the mass m1 in such case. According to the reciprocity principle which states that Y21 ¼ Y12, the velocity of
the massm2 should monotonically decrease with the increase of the feedback gain and this should provide a simple solution
to the vibration isolation problem in subcritical systems.

However, the reciprocity principle does not hold if the system is made active. In other words, Y21sY12 if ls0which can be
seen by comparing Eqs. (10b) and (10c). Although the two frequency response functions are characterised by the same de-
nominators, they have different numerators. In fact, the two numerators become the same only if the feedback gain is zero.
This is a consequence of the diagonally asymmetric damping matrix from Eq. (4b). The disruption of the reciprocity principle
is illustrated on an example system in Fig. 11.

The example system parameters are a¼ 1, b¼ 1/2, m1¼1 and h2¼ 0.02. The dimensionless feedback gain l assumes either
a very large (l¼ 25), or zero value (l¼ 0). Fig.11 shows a clear difference between Y21 (dashed line) and Y12 (solid line) in case
the active damping ratio of l¼ 25 is used. Only if the active damping ratio is set to zero, then the two mobilities become the
same as indicated by the red dotted line in Fig. 11.

This prevents a straightforward solution of the subcritical vibration isolation problem by placing the sensor on the source
body. Although this would solve the stability problem, it would not improve the isolation performance. This is because, as
shown by the solid line, the mobility function Y12 becomes characterised by a significant overshot at higher frequencies.

However, as discussed in the forthcoming part of the paper, the use on an inerter in the isolator may be a viable solution to
the subcritical vibration isolation problems. It has already been shown in section 5.1.2 that the use of inerter with inertance
m2> a opens one of the two stabilitymargins and enables the use of large, theoretically unlimited feedback gains in subcritical
systems. In the following subsection the performance of such an inerter-based active vibration isolation system is discussed,
i.e. it is shown how such control affects the kinetic energy of the receiving body.

Fig. 11. Disruption of the reciprocity principle, m2¼ 0, transfer mobility function
		YijðjUÞ

		: Y12 ¼ Y21, l¼ 0 (dotted line), Y12, l¼ 25 (solid line), Y21, l¼ 25 (dashed
line).
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5.2.3. With inerter
Fig. 12(a) shows the specific kinetic energy Ik plotted as a function of the active damping ratio l of a subcritical system

characterised by a¼ 1/2, b¼ 2, m1¼1/2 and h2¼ 0.01, equipped with an inerter of inertance m2¼ 2. Therefore an inertance
large enough to stabilise the feedback loop is used (m2> a). It can be seen that with an increase in the dimensionless feedback
gain l, the specific kinetic energy index monotonically decreases indicating that the desired vibration isolation effect is
accomplished. Fig. 12(b) shows the amplitude of the dimensionless transfer mobility jY21ðjUÞj plotted against frequency for
increasing feedback gains. Note the anti-resonance effect at frequencies below the first resonance, introduced by inerter. It
can be seen that with the increase in the feedback gain, the receiving body response is decreased at both resonance fre-
quencies. The higher the gain, the lower is the velocity response. There can be seen no frequencies at which the increase of the
feedback gain causes an increase in the response. Therefore, it can be concluded that the inclusion of the inerter in the active
vibration isolation scheme with subcritical problems is essential in establishing stable and efficient active vibration isolation.
It should be noted that the inerter can be seen from the control point of view as a relative acceleration feedback. In other
words, subtracted outputs of two accelerometers mounted on the receiving and source bodies could theoretically be fed to
the reactive actuator in addition to the existing velocity feedback in order to synthesize the inerter element actively. However,
such “derivative” active vibration control has never been achieved in practice to the best of authors' knowledge. It appears
that the corresponding sensor-actuator frequency response function does not roll-off with frequency which causes very
pronounced stability problems associated with high frequency poles, as discussed for example in Ref. [55]. It is therefore very
useful in the scheme to include the inerter as a passive element whichmimics the effects of a relative acceleration feedback to
reactive force actuator.

6. Conclusions

In this paper, a novel, inerter-based active vibration isolation system is presented. Two fundamental passive benchmark
isolators are also investigated, one not employing the inerter and the other employing the inerter. Themethodology is studied
on a simple two degree of freedom system so that many conclusions can be drawn based on analytically derived expressions.
Such a simplified system can be seen as a reduced order model of a potentially more complex structure. It is shown in the
paper that the vibration isolation performance of the fundamental passive isolator not employing the inerter can be improved
by adding the inerter in parallel with the isolator spring and damper. This improvement is particularly significant if the source
and receiving bodies have similar uncoupled natural frequencies. By investigating the stability of the active control when no
inerter is used, it is found that there are two fundamental families of vibration isolation problems. With the first family
(supercritical systems), which is characterised by the natural frequency of the uncoupled source body larger than the natural
frequency of the uncoupled receiving body, large feedback gains can be used without compromising the stability of the
feedback control system. This results in a convincing broadband vibration isolation effect. With the second family of systems
(subcritical systems), the natural frequency of the uncoupled source body is below the natural frequency of the uncoupled
receiving body. The range of stable feedback gains is limited which results in poor vibration isolation performance. However

Fig. 12. Isolation system performance with inerter b2 (m2 s 0), bII > 1 and m2> a: (a) Specific kinetic energy index Ik, (b) Transfer mobility function jY21ðjUÞj, l¼ 0
(solid line), l¼ 5 (dashed line), l¼ 10 (dash-dotted line), l¼ 20 (dotted line).
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with the inclusion of the inerter, broadband active vibration isolation can also be achieved in the subcritical family of systems.
Adding the inerter into the isolator effectively generates a sort of relative acceleration feedback that stabilises the control
loop. In fact, it is analytically calculated in the paper that the minimum inertance to stabilise the loop is proportional to the
stiffness of the isolator spring and inversely proportional to the squared natural frequency of the source body. It is important
to mention that direct acceleration feedback would not be possible in practice due to very pronounced stability problems,
therefore the passive element which mimics such feedback is very useful.
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Appendix A

So far it has been assumed that the passive damping of the source and the receiving body is light to the limit that it
becomes negligible and the corresponding damper coefficients c1 and c3 were assumed to be zero. In this Appendix, the
validity of these assumptions is tested. This is done by plotting some characteristic results in case when the damping co-
efficients c1 and c3 are set so that the two corresponding damping ratios h1,3 both equal 1%. The corresponding damping ratios
are defined as

h1 ¼ c1
2

ffiffiffiffiffiffiffiffiffiffiffiffi
m1k1

p ; h3 ¼ c3
2

ffiffiffiffiffiffiffiffiffiffiffiffi
m2k3

p : (37a eb)

The first situation that is discussed is with reference to Fig. 2 where the damping coefficients c1 and c3 were neglected. In
Fig. A1, the plots analogue to those of Fig. 2 are shown with h1¼ h3¼ 0.01.

Fig. A1. Isolation system performance without inerter b2 (m2¼ 0) for h1¼ h3¼ 0.01: (a) Transfer mobility function jY21ðjUÞj, h2¼ h2opt1/100 (solid line), h2¼ h2opt1
(dashed line), h2¼100h2opt1 (dash-dotted line), (b) Specific kinetic energy index Ik.

All other parameters that characterise the system are the same as in Fig. 2. It can be seen that the qualitative response of
the system is the same as that illustrated in Fig. 2. However, quantitatively theminimum kinetic energy in Fig A1(b) is about 1/
2 dB lower than in Fig. 2. Also, the corresponding optimum damping ratio h2 is slightly higher than in the situation illustrated
in Fig. 2. Therefore it can be stated that the basic conclusions drawn for undamped source and receiving bodies, are also valid
for lightly damped source and receiving bodies. The analytical simplified expressions for the optimum damping of the isolator
h2 and the minimum kinetic energy index are also approximately valid under the assumption of lightly damped source and
receiver bodies. Considering now the passive vibration isolation with the use of inerter, Fig. A2 depicts results corresponding
to Fig. 3 when the damping h1¼ h3¼ 0.01. Again, all other parameters that characterise the system are the same as in Fig. 2. In
Fig. A2. it can be seen that the same qualitative characteristics of the receiving body response are observed with lightly
damped source and receiving bodies in case inerters are incorporated in the passive isolator.
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Fig. A2. Transfer mobility function jY21ðjUÞj for h1¼ h3¼ 0.01: (a) h2¼ 0 (solid line), h2¼ h2opt2 (dashed line), h2¼100h2opt2 (dash-dotted line), (b) h2¼ 0: m2> a

(solid line), a/b < m2< a (dash-dotted line), m2< a/b (dashed line).

The following figure, Fig. A3 aims to illustrate the influence of the light damping ratios h1¼ h3¼ 0.01 on the optimum
combination of inertance and damping ratio h2 in Fig. A3(a), and on the improvement of the vibration isolation performance
due to the added inerter. It can also be seen in Fig. A3(a) that the optimum combination the inertance ratio m2 and damping
ratio h2 is virtually not affected. Fig. A3(b) on the other hand shows that with lightly damped source and the receiving bodies,
the kinetic energy of vibration of the receiving body reduces both with and without inerter. The relative improvement due to
the inerter however remains to be ~3 dB.

Fig. A3. Isolation system performance for h1¼ h3¼ 0.01: (a) specific kinetic energy index Ik as a function of h2 and m2, (b) specific kinetic energy index Ik:
comparison of the cases with and without inerter; m2¼ 0 (solid line), m2¼ m2opt (dashed line).

A plot analogue to the two plots in Fig. 5 is shown next in Fig. A4, where results obtained by considering various levels of
passive damping c1 and c3 are considered. It can be seen that as the damping coefficients c1 and c3 (and the corresponding
damping ratios h1 and h3) are reduced, the plot becomes similar to the plots in Fig. 5. (i.e. the red solid line in Fig. A4.).
However, as the two damping coefficients approach about 0.1%, the plots cease to resemble those in Fig. 5 which are valid for
undamped source and receiving bodies.
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Fig. A4. Minimum specific kinetic energy ratio index IkminR, l¼ 0, a¼ 1/2, m1¼1/2: h1,3¼10�8 (solid line), h1,3¼ 0.0001 (dashed line), h1,3¼ 0.001 (dash-dotted
line), h1,3¼ 0.01 (dotted line), h1,3¼ 0.1 (thick solid line).

This is shown by the magenta dotted line and the green thick solid line in Fig. A4. In such cases with low to moderate
damping ratios of the two bodies, it appears that the greatest improvement of the vibration isolation performance by adding
the inerter in the isolator scheme can be expected with source and receiving bodies having similar uncoupled natural fre-
quencies (bz 1).
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Abstract This paper presents an analytical analysis and optimization of vibration-induced fatigue in a gener-
alized, linear two-degree-of-freedom inerter-based vibration isolation system. The system consists of a source
body and a receiving body, coupled through an isolator. The isolator consists of a spring, a damper, and an
inerter. A broadband frequency force excitation of the source body is assumed throughout the investigation.
Optimized system, in which the kinetic energy of the receiving body is minimized, is compared with sub-
optimal systems by contrasting the fatigue life of a receiving body helical spring with several alternative
isolator setup cases. The optimization is based on minimizing specific kinetic energy, but it also increases the
number of cycles to fatigue failure of the considered helical spring. A significant portion of this improvement
is due to the inclusion of an optimally tuned inerter in the isolator. Various helical spring deflection and stress
correction factors from referent literature are discussed.Most convenient spring stress and deflection correction
factors are adopted and employed in conjunction with pure shear governed proportional stress in the context
of high-cycle fatigue.

Keywords Vibration isolation · Fatigue life · Inerter · Helical spring · Optimization · Stress correction factor

1 Introduction

Mechanical systems, e.g. car suspension systems [1,2] are often subjected to high dynamic loading during their
lifetime. Such service loadings can cause unwanted vibration and premature failure, resulting from destructive
fatiguemechanisms [3]. These are especially evident in case of resonant harmonic excitations [1,3].Heavy-duty
springs used in car suspension systems [1,2] are an example where a crackmay initiate at a stress concentration
location and further propagate, potentially leading to a catastrophic failure [3–5]. Considering vibration fatigue
modelling and analysis of helical springs, both stiffness and strength parameters of general vibration system
should be determined for adequate mathematical modelling, which can be found in [6–18]. Classical works on
strength of materials [19,20], elasticity theory [21] and recent mechanical engineering literature [22,23] touch
on the subject of spring durability and spring fatigue. Considering springs as machine elements that need to
withstand exceptionally long life, appropriate high-cycle fatigue (HCF) calculation method [23–28] is usually
utilized for fatigue lifetime assessment. Extensive studies on the spring fatigue life, particularly for helical
springs, have been conducted [28–34].

From related literature [6–11], it can be observed that various stress and deflection correction factors are
used for spring strength analysis by different authors. Most often applied stress correction factors are those
introduced by Wahl [6,7,10,11,14–17,19–23], Bergsträsser [10,11,14,17,22] and Göhner [7–9,14,17]. For
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example, German DIN standard on calculation and design of cylindrical helical springs was previously based
on Göhner [8,9]; however, it is now based on the Bergsträsser and Wahl [10,11] correction factors. The stress
correction factors may significantly influence predicted fatigue lifetime of helical springs. Wahl himself in his
work [7] suggests that application of his own stress correction factor may result in over-conservative fatigue
life prediction. However, e.g. SAE [15] and Ugural [23] recommend using Wahl’s stress correction factor,
especially for fatigue analysis. Shigley [22], for instance, recommends the Bergsträsser’s correction factor
for fatigue lifetime assessment, for engineering simplicity reasons; however, he does not advise against using
Wahl.

Regarding helical spring fatigue, Berger and Kaiser [28,29] analysed results of very high-cycle fatigue
(VHCF) tests on helical compression springs up to 109 cycles, where they observed that cracks tend to occur
below the surface beyond 107 cycles, which is a practical upper limit for HCF. The authors also mentioned that
Göhner and Bergsträsser correction factors could yield too conservative results in a fatigue life assessment,
which is in agreement with Wahl [7]. Commonly, fatigue life assessment of mechanical springs is based on
fatigue endurance to torsion shear [19–23]. Contrary to that, Del Llano-Vizcaya et al. [30] point out that during
fatigue testing of compression springs with large index (coil radius to wire radius ratio), the dominant fatigue
cracks are initiated and propagated by variation of the principal tensile stress, rather than by the maximum
shear stress. Pyttel et al. [31] used Wahl stress correction factor and finite element method (FEM) for helical
spring stress analysis. Rivera et al. [32] also usedWahl stress correction for spring for elevator doors analytical
fatigue analysis. On the other hand, Ružička et al. [33] used Göhner [8,9,14] and Ancker & Goodier [12,14]
stress correction factor for analytical spring fatigue study and compared it with FEM results. Kamal et al. [34]
used FEM for both stress (S − N ) and strain-life fatigue (ε − N ) analysis of helical spring.

Contemporary literature dealing with vibration and dynamic problems tied to fatigue, e.g. [1,3–5] do not
yet incorporate the beneficiary usage of inerter [2,35] in a classical mass-damper-spring (MDS) environment.
In mechanical networks, inerter is a relatively novel element developed by Smith [2] which produces force
proportional to relative acceleration (a2 − a1) between its terminals, i.e. relation Finrt = b(a2 − a1) holds. The
coefficient of inerter resistance force Finrt is called inertance. It is denoted by label “b” and is measured in
kilograms. Ideal inerter can be approximated in the same sense in which mathematical ideals approximate, e.g.
springs and viscous dampers. Ideally, it is assumed that its mass is small compared to produced inertance [2].
According to authors’ knowledge, no attempt to include the ideal inerter concept in commercial FEM codes
is recorded in the literature.

In the presented study, analytical investigation is conducted to model the fatigue load of a helical spring
acting as an elastic element in a simple and physically transparent two-degree-of-freedom (2-DOF) inerter-
based vibration isolation system. In Sect. 2, analytical mathematical 2-DOF inerter-based vibration isolation
system model is established where optimized parameters for both viscous damper and inerter are determined.
Minimization of kinetic energy is used as a criterion. In Sect. 3, different dimensionless spring deflection and
stress correction factors available from referent literature are discussed, which are later used in the context of
analytically determining displacement and stress amplitudes under harmonic force loading. Finally, Sect. 4
presents a benchmark example by utilizing previously adopted optimization model and employing adopted
spring correction factors. Benchmark is performed by comparing vibration fatigue study of systems with
optimized parameters to sub-par systems. Method for deriving the optimal damping and optimal inertance
combined with optimal damping is developed and employed. Göhner-, Castigliano- and Timoshenko-based
deflection correction factor is derived in dimensionless form. There is no record in the literature of employing
Timoshenko thick beam formulation [19–21] and Cowper shear correction factor [36] for spring deflection
correction, which is also investigated in the scope of this paper, where novel deflection correction factor is
derived. Analytical expression based on the von Mises criterion [22,27,37] for shear governed biaxial and
proportional stress, which explicitly ties vibration displacement amplitudes through Basquin’s equation with
HCF of helical spring, is derived and given in explicit form.

2 2-DOF inerter-based vibration isolator mathematical model

In this chapter, the generalized analytical mathematical model for discrete 2-DOF inerter-based vibration
isolation system is established analytically. The studied problem is represented by a discrete parameter model
as shown in Fig. 1a. It is assumed that the critical component concerning fatigue is a helical spring k3, also
shown in Fig. 1b where E is (Young) modulus of elasticity, ν is Poisson’s factor/ratio, S′

f is fatigue strength
coefficient, and “B” is Basquin’s exponent, i.e. fatigue strength exponent [24,25] here denoted in capital letter
in order not to be confused with inertance “b”. Number of active coils is denoted as n (n = 2 in Fig. 1b),
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(b)(a)

Fig. 1 a The 2-DOF linear discrete vibration isolation system, b helical spring k3 properties (colour figure online)

and h is spring length where h = n · l. Diameters D and d are large and small spring diameters, respectively,
and C = D/d is defined as spring index [7,22,23]. D can also be designated as the mean coil diameter
and d as the wire diameter [22]. Recommended values of spring index C for practical purposes lie between
C = 4−12 [22]. Angle α represents the pitch angle which can be calculated according to geometric expression
α = arctan[l/(πD)], where l is the spring pitch. For the time being, the spring stress is not considered and
spring stiffness is denoted simply as “k3”.

The goal of the vibration-based optimization is to minimize vibrations of the receiving body, i.e. vibrations
of mass m2 which are proportional to the maximum deflection amplitudes of spring k3. In this optimization,
the excitation of the source body F1(t) is assumed to have white noise spectral properties [38], i.e. unit loading
amplitude F01(Ω) = 1 over all frequencies. The whole vibration system consists of discrete masses m1 and
m2, ideally massless springs k1, k2 and k3, viscous dampers c1, c2 and c3 and an ideal inerter of inertance b2.
Isolator consists of spring k2, damper c2 and inerter b2. The ideal inerter produces a force Finrt proportional
to the relative acceleration [2] between masses m1 and m2. Presented discrete parameter approximation may
represent a system of a much more complex nature, including structures with distributed mass, stiffness and
damping, as discussed in, for example, [39–41].

The equations of motion [1] for system in Fig. 1a can be written in the general matrix form as

Mẍ (t) + Cẋ (t) + Kx (t) = F (t) , (1)

where M is the global mass matrix, C is the global damping matrix, K is the global stiffness matrix and F(t)
is the excitation column force vector. Displacement of the masses m1 and m2 from their static equilibrium
positions, velocity and acceleration vectors are denoted by x(t), ẋ(t) and ẍ(t), respectively.

Global matrices and vectors from Eq. (1) can be written as

M =
[

m1 + b2 −b2
−b2 m2 + b2

]
, C =

[
c1 + c2 −c2
−c2 c2 + c3

]
, K =

[
k1 + k2 −k2

−k2 k2 + k3

]
, (2a, b, c)

x =
[

x1 (t)
x2 (t)

]
, F =

[
F1 (t)
0

]
, (3a, b)

where the parameters and functions in the matrices and vectors are denoted in Fig. 1a.
As the damping of the source and receiving bodies is assumed to be fairly light, the effects of the source

mass m1 and the receiving mass m2 dampers are further neglected, i.e. c1 ≈ c3 ≈ 0.
By assuming harmonic excitation and expressing the excitation and the steady-state response in the complex

form F(t) = F0eiΩt and x(t) = x0eiΩt , where i = √−1, the solution of Eq. (1) can be written as

x0 (Ω) = [−Ω2M + iΩC + K
]−1

F, (4)
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where terms inside the square bracket denote dynamic stiffness matrix and x0(Ω) is the complex displacement
amplitude. Differentiating Eq. (4) with respect to time t yields with complex velocity amplitude expression

ẋ0 (Ω) = iΩx0 (Ω) . (5)

By considering M, C and K matrices from Eq. (2a, b, c), the steady state, i.e. time-invariant complex
response of mass m2 can be expressed in simplified form as the following frequency response function (FRF)

ẋ02 (Ω) = B0 + (iΩ) B1 + (iΩ)2 B2 + (iΩ)3 B3

A0 + (iΩ) A1 + (iΩ)2 A2 + (iΩ)3 A3 + (iΩ)4 A4
. (6)

where coefficients A0−A4 and B0−B3 with respect to Eq. (6) are given by

A0 = (k2 + k3) k1 + k2k3 B0 = 0
A1 = c2 (k1 + k3) B1 = k2
A2 = (m2 + b2) k1 + (m1 + m2) k2 + (m1 + b2) k3 B2 = c2
A3 = c2 (m1 + m2) B3 = b2
A4 = (m2 + b2) m1 + b2m2

. (7a–i)

The transfer mobility, i.e. FRF ẋ02 ≡ v02, from Eq. (6) represents the complex velocity amplitude of the
receiving body per unit forcing F01 = 1, of the source body. FRF from Eq. (6) is further used to assess the
effectiveness of the vibration isolation.

Considering that the excitation force F1 with unit power spectral density (PSD) is assumed, the specific
kinetic energy of the receiving body Ik (per unit mass and per unit excitation force) can be calculated as

Ik =
∞∫

−∞

∣∣∣∣v02 (Ω)

F01

∣∣∣∣
2

dΩ, (8)

according to [42]. The specific kinetic energy index Ik fromEq. (8) is used throughout this study as a quantitative
measure of the broadband frequency vibration isolation performance. The objective is tominimize this quantity
for all vibration isolation systems analysed in the scope of this paper. Vibration-based isolation optimization
with the goal of vibration reduction by using the minimization of kinetic energy can be found in [38]. The
specific kinetic energy index in Eq. (8) for Ik can according to [42] analytically be calculated with expression

Ik = π
A0B2

3 (A0A3 − A1A2) + A0A1A4

(
2B1B3 − B2

2

)
− A0A3A4

(
B2
1 − 2B0B2

)
+ A4B2

0 (A1A4 − A2A3)

A0A4

(
A0A2

3 + A2
1A4 − A1A2A3

) , (9)

where substituting coefficients A0 − A4 and B0 − B3 from Eq. (7a–i) into Eq. (9) yields with final kinetic
energy index Ik analytical expression, which is here omitted because of length.

In the next two subchapters of this study, two types of vibration transmission control are analysed with
respect to potential opportunity of minimizing the specific kinetic energy index Ik : isolation control without
inerter, i.e. b2 = 0, and isolation control with optimized inertance bopt. Optimized damping and inertance
isolator parameters, for inerter excluded where c2 = copt, and inerter included where c2 = copt2 and b2 = bopt,
are obtained by minimizing the frequency averaged kinetic energy of the receiving body denoted symbolically
in Eq. (9).

2.1 Isolation optimization without inerter

By setting the inertance b2 = 0, and considering Eq. (7a–i), Eq. (9) now morphs into simpler form

Ik (b2 = 0) = π
k22 (m1 + m2) + c22 (k1 + k3)

c2 (m2k1 − m1k3)2
. (10)

Differentiating Eq. (10) with respect to viscous damping coefficient c2, equalling with zero and again
solving for damping c2 yields the single physically valid solution

copt = k2

√
m1 + m2

k1 + k3
, (11)
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which unambiguously represents the optimum damping coefficient c2 = copt. Inserting Eq. (11) into Eq. (10)
yields the value of optimum, i.e. minimum kinetic energy

Ikopt = 2πk2

√
(m1 + m2) (k1 + k3)

(m2k1 − m1k3)2
. (12)

By inspecting Eq. (12) mathematical structure, two main conclusions can be drawn.
Firstly, optimum kinetic energy Ikopt is directly proportional to value of isolator spring stiffness k2, which

strongly implies using soft/compliant spring for better isolation effect. Trivial solution is to incorporate zero
stiffness spring k2 which completely decouples the source and receiving bodies. In practical situations, static
or stationary deflections impose true physical limits to spring compliance, therefore spring stiffness k2 cannot
be optimized arbitrarily and is further considered as fixed value.

Secondly, when values m2k1 ≈ m1k3, denominator of Eq. (12) tends to zero and Ikopt value tends to
infinity; therefore, such vibration system should be accordingly detuned during design, i.e. m2k1 �= m1k3.

2.2 Isolation optimization with inerter

When b2 �= 0, differentiating Eq. (9) with respect to damping c2, equalling with zero and again solving for
damping c2 yields the single physically valid solution

c2 (b2 �= 0) =
√

m1 + m2

k1 + k3
k22 − 2b2k2 + m1k23 + m2k21 + b2 (k1 + k3)2

(k1 + k3) [m1 (b2 + m2) + b2m2]
b22, (13)

where c2 now represents optimum damping copt(b2) for any given inertance b2. For inertance b2 = 0, Eq. (13)
morphs into simple Eq. (11). By substituting Eq. (13) into Eq. (9), differentiating with respect to b2, equalling
with zero and solving for b2, optimum inertance parameter bopt is obtained. Inserting b2 = bopt into Eq. (13)
results with optimum damping copt2, which subsequently yields an expression for a minimum specific kinetic
energy Ikopt2 from Eq. (9). Analytical expressions for bopt, copt2 and Ikopt2 are not explicitly shown in the
scope of this paper because they are rather cumbersome and very lengthy. However, it is important to note
that no numerical approximation is used in the process of optimization, thus all derived expressions are purely
algebraic and exact, without any loss in accuracy.

3 Helical spring displacement and stress correction factors

In this chapter, spring stiffness and stress are discussed. A simple expression for determining the spring
fatigue life is also derived, where HCF life [22–26] above 103 cycles is addressed and employed. Obtained
displacement amplitudes in the frequency domain from previous chapter, i.e. Eq. (4), can now be tied to stress
amplitudes below the yielding strength σY, necessary for performing vibration fatigue analysis.

Cylindrical spring can for simplicity be viewed as a thin/slender, curved rod/beam subjected to torsion load
exclusively. In such case [22], analytical expressions for spring stiffness, static displacement and shear stress
can be denoted with

knom = F0

δnom
= Gd4

8D3n
= Gd

8C3n
⇒ δnom = 8F0D3n

Gd4 = 8F0C3n

Gd
, τnom = 8F0D

πd3 = 8F0C

πd2 ,

(14a, b, c)

where knom is nominal spring stiffness, δnom is nominal spring deflection, τnom is nominal spring shear stress
and G = E/[2(1 + ν)] is the shear modulus. As linear elastic/small deformation and deflection conditions
are assumed, Eq. (14a, b, c) is valid for both tensile and compressive applied force amplitude ±F0. For
simple harmonic loading conditions adopted, F(t) = F0eiΩt . Helical spring geometry, parameters, loading
and boundary conditions (BCs) are the same as schematically shown in Fig. 1b. For a more general approach
in the scope of this paper, boundaries of spring index C are varied both inside and outside of recommended
values C = 4 − 12, in order to parametrically test all physically obtainable solutions. As already noted,
Eq. (14a, b, c) is obtained by simply considering spring as a thin beam/rod loaded with exclusively torsion
shear, where direct shear, curvature and pitch angle effects are ignored and neglected for simplicity. Therefore,
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(a) (b) (c)

Fig. 2 Spring shear stresses: a torsion shear τM , b transverse/direct shear τA, c combined torsion and direct shear with additional
curvature “c” and pitch angle α effects τmax = τM + τA + τc + τα (colour figure online)

Table 1 Expressions for stress correction factors Kτ and deflection correction factors Kδ

Author/standard Stress correction factor Kτ Deflection correction factor Kδ

Strength of materials
Wahl, DIN 13906 4C−1

4C−4 + kW
C = 4C−1

4C−4 + 1+2ν
2(1+ν)C –

Röver cos (α)
[

C
C−cos2(α)

+ 1+sin2(α)
4C

]
–

Wood C
C−1 + 1

2C
2C2+C−1

2C2

Honegger cos (α)
[

C
C−cos2(α)

+ 0.615
C

]
2C2−cos4(α)

2C2 cos5(α)

Elasticity theory

Göhner, DIN 2089 1 + 5
4C + 7

8C2 + 1
C3 cos (α) + 3 cos5(α)

16(C2−1)
+ sin(α) tan(α)

1+ν

Ancker & Goodier 1 + 5
4C + 7

8C2 + 1
2 tan

2 (α) 1 − 3
16C2 + 3+ν

2(1+ν)
tan2 (α)

Approximate/empirical relation

Bergsträsser, DIN 13906 C+0.5+sin2(α)

C−0.75+1.51 sin2(α)
–

Sopwith, BS 1726 C+0.2
C−1 –

Strain energy (Castigliano’s) method

Shigley – 1 + 1
2C2

Dym –
(
1 + 1

2C2

)
cos (α) +

(
1 + 1

4C2

)
tan(α) sin(α)

(1+ν)

additional correction factors Kδ and Kτ need to be applied for displacement and shear stress, where relations
δmax = Kδδnom and τmax = Kτ τnom now hold [22,23]. Figure 2 schematically shows spring cumulative shear
stress τ correction.

Shift of the helical spring neutral line towards outside of wire diameter d centre results with maximum
shear stress τmax appearing at the point closest to spring axis x , as shown in Fig. 2c. As already pointed out
in introduction, multiple expressions for correcting deflection and stress exist in the referent literature where
authors sometimes present notably different correction factors depending on the theory they used for derivation
[15]. Therefore, no unified solution can be found in the literature [14] or standards [8–11].

Table 1 sums up all the expressions from the referent literature used in the scope of this paper.
It is appropriate to recognize that important and thorough investigation regarding spring stress and deflection

correction determination was conducted by the Research Committee on the Analysis of Helical Spring [14]
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where authors parametrically compared influence of spring parameters on stress results based on the theory
used. They used FEM for numerical part of the investigation. They obtained the best correlation for Bergsträsser
and Göhner stress correction factors and found Wahl to be overly conservative; however, they neglected the
influence of pitch angle α on stress correction where α = 0 in their main FEM test model for stresses (see
Table 5 and Fig. 20 in [14]).

Somedata inTable 1 (most notablyWahl, Röver,Wood,Honegger,Göhner,Ancker&Goodier, Bergsträsser
and Sopwith) are adopted from already mentioned Research Committee [14]. Wahl stress correction factor can
also be found in current DIN 13906 (germ. Deutsches Institut für Normung) standard [10,11], and [6,7] among
others. DIN 13906 [10,11], and [22] also include Bergsträsser stress correction factor, however without pitch
angle α inclusion. Göhner stress correction factor, previously included in older, now defunct DIN 2089 [8,9]
was later adopted by Ancker & Goodier [12] and rearranged in order to contain initial pitch angle α. By
comparing it to original Göhner stress correction expression, it can be observed that the first three terms are
identical; however, Göhner uses 1/C3, and Ancker & Goodier use 1/2 · tan2(α) as a last term instead, which
takes into account the initial pitch angle α. Ancker & Goodier deflection correction factor from Table 1 can
also be found in their original paper [12] and is considered to be one of the most accurate ones found in the
literature [16]. Sopwith stress correction factor was used as a part of BS 1726 (British Standard) [16]. Both
Shigley [22] and Dym [13] give similar solutions for deflection correction, based on strain energy (Castigliano)
method, where Shigley solution is simpler; however, it neglects the influence of pitch angle α compared to
Dym.

An additional comment is presented for Wahl stress correction factor, as shown in the first row of Table 1.
Nominal expression for Wahl stress factor found in most literature, e.g. [6,7,16] is

Kτ,Wahl = 4C − 1

4C − 4
+ 0.615

C
. (15)

Wahl in his textbook [7] cited Timoshenko [21] as an influence and main source for determining his often
cited stress correction factor. It is interesting to observe the numerator of second term from Eq. (15), which
is for the sake of this discussion temporarily denoted as kW = 0.615. Wahl used Timoshenko solution which
comes from setting a Poisson’s ratio ν = 0.3 in the equation derived for the shear stress at the horizontal edge
of a cantilevered circular bar [21]. Using the dimensionless, Poisson’s ratio ν dependent term found in Eq. (h),
p. 321 from [21], one can write expression

Kτ,Wahl = 4C − 1

4C − 4
+ kW

C
⇒ kW = 1 + 2ν

2 (1 + ν)
, (16a,b)

and by setting the different values for Poisson’s factor ν in Eq. (16b), values of kW are obtained as

kW (ν = 0) = 0.5, kW (ν = 0.3) = 8

13
∼= 0.615384615 ≈ 0.615, kW (ν = 0.5) = 0.6̇, (17a,b,c)

where it can be observed that if ν rises, kW also rises, resulting in larger stress correction factor Kτ,Wahl.
By using fixed kW = 0.615, one hard-codes universal, Poisson’s ratio-independent stress correction solution.
As stresses in helical spring are mostly shear governed [22,23], by adopting the von Mises energy criterion
[19–22] with relation σeqv(HMH),max = √

3τmax, stress correction factor Kτ can also be written as Kσ .
Two additional deflection correction factors are derived and presented as detailed below.
The first novel Timoshenko & Cowper deflection correction factor can be obtained as follows. Taking into

the consideration nominal spring deflection from Eq. (14b) and introducing the additional deflection due to
shear correction [19–21,36], maximum spring deflection can now be written as

δTimoshenko = δnom + δk = 8F0D3n

Gd4 + F0L

k AG
, (18)

where k is the shear correction factor [19–21,36], L is the total length of the spring and A is spring cross-
sectional area. By neglecting the pitch angle α, length L and cross-sectional area A are given by the following
equations:

L (α ≈ 0) = nDπ, A = d2π

4
. (19a,b)
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Improved shear correction factor k is adopted from Cowper [36] and can be expressed as

k = kCowper = 6 (1 + ν)

7 + 6ν
, (20)

where it can be seen that shear correction k is solely Poisson’s factor ν dependent, i.e. k = k(ν). Finally,
after inserting Eqs. (20) and (19a,b) into Eq. (18) and dividing it with nominal deflection δnom from Eq. (14b),
Timoshenko & Cowper (T/C) deflection correction, after considering C = D/d and simplifying, is

Kδ,T/C = δTimoshenko

δnom
= 1 + 7 + 6ν

12C2 (1 + ν)
, (21)

where, as already noted, pitch angle α is for simplicity neglected in derivation.
The second explicit dimensionless deflection correction factor can also be derived by using Castigliano’s

energy theorem, as noted by Timoshenko [20]. Timoshenko’s (Castigliano’s) deflection expression is

δCastigliano/Timoshenko = F0R2L

[
sin2 (α)

E I
+ cos2 (α)

G Ip
β

]
, (22)

where R = D/2 is themean spring radius, and I and Ip are spring axial and polar inertiamoments, respectively,

I = d4π

64
, Ip = 2I = d4π

32
. (23a,b)

Interestingly,β fromEq. (22) is an additional deflection correction factor/parameter, for which Timoshenko
cites Göhner. In case C is sufficiently small, factor β should be included and can be written as

β = 1 + 3

(
1

C

)2
{
16

[
1 −

(
1

C

)2
]}−1

, (24)

where Timoshenko states that “torsional rigidity G Ip must be multiplied by the correction factor” [20] from
Eq. (24). As initial pitch angle α is now fully taken into account in Eq. (22), total spring length L , with regard
to Eq. (19a), can be calculated according to a more punctual and consistent general helix length expression

L (α �= 0) = nDπ

cos (α)
. (25)

By using Eqs. (25), (24) and (23a,b), inserting them in Eq. (22), and dividing Eq. (22) with nominal
deflection δnom from Eq. (14b), some mathematical simplifying results with Castigliano/Timoshenko (C/T)
are as follows:

Kδ,C/T = δCastigliano/Timoshenko

δnom
=

(
16C2 − 13

)
(1 + ν) cos (α) + 16

(
C2 − 1

)
sin (α) tan (α)

16
(
C2 − 1

)
(1 + ν)

. (26)

By inserting β = 1 in Eq. (22), Eq. (26) morphs into purely Castigliano governed expression

Kδ,Cstg = (1 + ν) cos (α) + sin (α) tan (α)

1 + ν
, (27)

where spring index C influence is not taken into account; however, pitch angle α is considered. It can be
shown that derived deflection correction from Eq. (26) and Göhner expression for deflection correction factor
from Table 1 give almost identical results, as further shown in Fig. 3a, i.e. Kδ,C/T ≈ Kδ,Göhn. It should be
noted that as the pitch l is geometrically independent value of diameter d , pitch is for plotting purposes tied
to wire diameter d through relation l = 2 · d , as shown in Fig. 3 rectangular frame. Introduced expression
α = arctan[l/(πD)] is employed for calculating pitch angle α for arbitrary spring index C value. Values of
C = 2 − 25 are considered for plotting. Conventional steel Poisson’s ratio ν = 0.3 is adopted for plotting
correction factors. Wahl stress correction factor is for the purpose of plotting appropriately hard-coded with
kW = 0.615 value, according to Eq. (17b). All expressions from Table 1 are shown in Fig. 3, including newly
derived Eqs. (21) and (26) in Fig. 3a.
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Fig. 3 Different correction factors for ν = 0.3: a deflection correction Kδ , b stress correction Kτ (colour figure online)

It can be seen that all plot lines for both deflection and stress factors in Fig. 3 show goodmutual correlation,
except simple Wood deflection correction expression, which is thus disregarded and excluded from further
analyses. It can also be noted that deflection correction factors Kδ contribution are almost one order of
magnitude lower compared to stress correction factors Kτ . Neglecting Wood correction expression, Dym [13]
presents the largest deflection correction factor. Derived Timoshenko & Cowper deflection correction factor
Kδ,T/C gives higher results compared to other deflection correction curves, however, still lower than Dym.
Regarding stress correction, Wood and Honegger give the most conservative results for all values of spring
index C .

Assumption that helical spring stress field is purely shear governed and therefore biaxial is employed in
fatigue calculation. Adopted von Mises (HMH)

√
3Kτ τnom criterion with denoted stress correction factor Kτ

is further used. Proportional fatigue stress state is assumed. Proportional stress/strain implies that ratio and/or
line direction of principal stresses σ1,2,3 does not change during fatigue load cycle [4,24], i.e. the orientation
of the principal axes with respect to the loading axes remains fixed. For pure shear stress state, relations
σ1,3 = ±τmax and σ3/σ1 = −1 = const. are valid. By equalling the force amplitudes F0 from Eq. (14a, b),
and by using the defined deflection and stress correction factors, max von Mises equivalent stress amplitude
is expressed as ∣∣σeqv(HMH), max (δmax)

∣∣ ≡ Sa = √
3

Kτ

Kδ

G

C2nπd
δmax, (28)

where Sa denotes max fatigue stress amplitude as a function of max deflection amplitude δmax. In order to tie
fatigue nomenclature to vibrations, δmax can be obtained from Eq. (4), i.e. relation δmax ≡ |x02| holds. Classic
HCF Basquin relation [24] for explicit number of cycles Nf can be written as

Nf =
(

Sa
S′
f

) 1
B

, (29)

By inserting Eq. (28) in Eq. (29) and using appropriate vibration terminology, i.e. obtained displacement
amplitudes from Eq. (4), number of cycles to failure Nf can finally be explicitly written as

Nf =
[√

3
Kτ

Kδ

G

C2nπd

|x02 (Ω)|
S′
f

] 1
B

, (30)

Advantage of employing simple Eq. (30) is that it is not necessary to explicitly know force amplitude F0
acting on spring k3, i.e. mass m2; however, vibration displacement/deflection amplitudes should be determined
before fatigue calculation.Also, it is necessary to know true deflection correction factor Kδ and stress correction
factor Kτ , together with relevant fatigue parameters, i.e. fatigue strength coefficient S′

f and Basquin’s exponent
B. In addition, Shigley [22] recommends using factor kc (load modification factor) and multiplying it with S′

f
in Eq. (29), where kc = 0.59 for torsion. Fatemi et al. [24] mention kL (empirical load factor) where kL = 0.58
for torsion, while Bannantine et al. [26] introduce loading effect kT which is the most conservative, and for
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Table 2 Example 2-DOF vibration isolation system parameters

m1, kg m2, kg k1, N/mm k2, N/mm k3, N/mm F0, kN

m0 2 · m0 k0 k0/10 k0 1

Table 3 Example helical spring of stiffness k0 geometric and material properties

D, mm d , mm n, – l, mm E , MPa ν, – S′
f , MPa B, –

50 17 1 2 · d 200,000 0.3 925 – 0.1

(b)(a)

Fig. 4 Mass m2 specific kinetic energy index Ik : a c2 = copt and b2 = 0, b c2 = copt2 and b2 = bopt (colour figure online)

torsion kT = 0.577. Bannantine explains all given values with energy effect theory, i.e. herein previously
adopted von Mises failure criterion where 1/

√
3 ≈ 0.5774.

In the next chapter, benchmark example is demonstrated for chosendeflection correction factor Kδ and stress
correction factor Kτ . Based on information from the literature and this chapter, and by visually inspecting
Fig. 3a, b for approximate median values, further adopted are approximate Ancker & Goodier deflection
correction factor where Kδ = Kδ,A/G, and approximate Wahl stress correction factor where Kτ = Kτ,Wahl.

4 Example: inerter-based isolator helical spring vibration fatigue study

In this chapter, vibration fatigue analysis and optimization is performed on a general 2-DOF system, as shown
in Fig. 1a. Table 2 shows example parameters used in this isolator optimization process. System is detuned,
i.e. m2k1 �= m1k3, and spring k2 is notably compliant, compared to springs k1,3.

General mass value is chosen as m0 = 100 kg and spring stiffness k0 is yet to be determined from helical
spring parameters given in Table 3. Spring material parameters (E , ν, S′

f and B) are chosen in such way to
represent physical elastic and fatigue properties of regular spring steel [24,25].

Diameters D and d are chosen soC = D/d = 50/17 ≈ 2.941which is a very small spring index. However,
such small spring index C results with a relatively large stress correction factor which is a convenient fatigue
benchmark. Ideal massless springs are considered for simplicity and straightforwardness. Spring stiffness is
calculated according to relation Kδ F0 = k0δnom. Figure 4 shows plotted numerical results of optimization
process for given parameters from Tables 2 and 3. Minimum, i.e. optimum kinetic energy Ikopt is determined
for the cases without inerter (Fig. 4a—copt) which corresponds to Ikopt, and with inerter (Fig. 4b—copt2 and
bopt) which corresponds to Ikopt2, by using the method described in Sects. 2.1 and 2.2. Diamond shape in the
bottom of Fig. 4b corresponds to the case when b2 = 0, i.e. Fig. 4a. Dash-dotted line in Fig. 4b which connects
Ikopt and Ikopt2 represents the implicit plot of function c2(opt)(b2 �= 0), i.e. Eq. (13).

Obtained 2-DOF key values/factors and optimized parameters are further listed in Table 4.
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Table 4 Example 2-DOF vibration isolation system referent values and optimized parameters

C = D/d , – Kδ,A/G, – Kτ,Wahl, – k0, N/mm copt, Ns/m bopt, kg copt2, Ns/m

2.941176471 1.037789623 1.595594406 6 190.746 3 047.31349 13.700475 934.329293
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Fig. 5 The 2-DOF frequency response functions: a mass m2 displacement amplitude |x02|, b spring k3 number of cycles to fatigue
failure Nf (colour figure online)

Analytically obtained optimized parameters are used in the fatigue analysis of the spring k3 which is
considered next. Type of spring processing and manufacture, e.g. shot-peening described by SAE [15], Shigley
[22], Ugural [23] and Fatemi [24], is not considered. Spring is for simplicity considered to be perfectly smooth
and without any residual stresses. Also, spring fatigue notch sensitivity is presumed to be near unity, i.e.
Kt(τ ) ≈ Kf which is a valid assumption according to Ugural [23]. Spring fatigue life Nf can now be calculated
according to beforehand derived Eq. (30) where both displacement (A/G) and stress (Wahl) correction factors
are taken into account. Analytical FRFs and vibration fatigue results for various cases are shown in Fig. 5.

By comparing FRFs, i.e. displacement amplitudes from Fig. 5a and number of cycles to fatigue from
Fig. 5b, similitude of responses can be observed which arises from the fact that spring displacement is linearly
proportional to stress, which is nonlinearly, i.e. exponentially proportional to number of cycles to failure, as
shown in Eq. (30). Thus, observations for Fig. 5a are also valid for Fig. 5b. Sub-optimal and super-optimal
damping are also considered for comparison where csub = copt/100 and csup = 100 · copt. For additional
reference, case with optimum inertance b2 = bopt is also plotted for zero damping, i.e. c2 = c0 = 0. The
improvement in the number of cycles to failure Nf is evident at most frequencies when using the optimum
damping copt in comparisonwith lowdamping csub = copt/100, or high damping csup = 100·copt. Additionally,
a significant further improvement in the fatigue life Nf is observed at most frequencies, in case where the
optimum inerter bopt is implemented in combinationwith the optimum damper copt2. Interesting anti-resonance
phenomenon at frequency ΩA is observed for the case with the optimum inerter bopt and without damping
(c2 = c0 = 0), which specifically demonstrates inerter b2 influence that otherwise cannot be achieved on
the receiving body by using only classic elements of MDS system [38]. Contrary to that, if using very large
damping in the isolator, i.e. csup = 100 · copt, new resonance Ωa can be observed, as two masses m1 and m2
vibrate together in phase with equal displacements, velocities, and accelerations, acting as a quasi-rigid body.
Same effect can be observed if a very large spring stiffness k2 is used in the isolator, as isolator effectively
locks and its proper functionality is consequently permanently compromised. Similar conclusion is already
drawn based on Ikopt structure of Eq. (12).

In summary, six characteristic circular frequencies denoted further in Fig. 6 are observed. These are:
two circular natural frequencies for the case without inerter (b2 = 0), i.e. ωn1b0 and ωn2b0 in Fig. 6a, two
circular natural frequencies for the case with inerter (b2 = bopt), i.e. ωn1bopt and ωn2bopt in Fig. 6b, anti-
resonant circular frequency ΩA(b2 = bopt) in Fig. 6b and isolator-locking resonant circular frequency Ωa(c2,
k2 → ∞) in Fig. 6a. Circular natural frequencies can be obtained by solving the eigenvalue problem for the
given 2-DOF as [

K − (
ωn1,2

)2 M
]

x (t) = 0 (31)
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Fig. 6 Characteristic circular frequencies and accompanying FRFs: a c2 = csub and c2 = csup, b2 = 0, b c2 = 0, b2 = bopt
(colour figure online)

Table 5 Characteristic circular frequencies: a without inerter (b2 = 0), b with optimum inertance (b2 = bopt)

ωn1b0, rad/s ωn2b0, rad/s Ωa, rad/s ωn1bopt, rad/s ωn2bopt, rad/s ΩA, rad/s

(a) 183.017 262.015 203.154 (b) 178.373 244.852 212.571

Table 6 The 2-DOF isolator vibration fatigue optimization results

Isolator type Ω , rad/s |x02(Ω)|, mm Nf (Ω), –

Sub-optimal damping (c2 = copt/100, b2 = 0) ωn1b0 47.583 << 1
Super-optimal damping (c2 = 100 · copt, b2 = 0) Ωa 14.539 < 1
Optimal damping (c2 = copt, b2 =0) ωn1b0 0.640 134,539
Optimal damping and inertance (c2 = copt2, b2 = bopt) ωn1bopt 0.524 1,002,948

where M and K matrices are denoted in Eq. (2a,c). Inserting data from Table 2 into Eq. (31) yields with

(
ωn1,2

)2 =
33
10m0k0 + 2b2k0 ∓

√
129
100m2

0k20 − 6
5b2m0k20 + 4k20b22

2
(
2m2

0 + 3m0b2
) , (32)

where inertance b2 can be arbitrarily defined, or set to zero nevertheless. Following expressions

ΩA =
√

k2
b2

, lim
c2,k2→∞ Ωa =

√
k1 + k3

m1 + m2
, (33a,b)

denote anti-resonance ΩA and locking resonant circular frequency Ωa, respectively. Table 5 shows Eqs. (32)
and (33a,b) algebraic solutions by inserting data from Table 4 for the cases without, and with inerter where
b2 = bopt.

Figure 6 presents characteristic frequencies data from Table 5 combined with belonging FRFs.
For small damping values, i.e. c2 ≈ 0, system response in wide frequency range is governed purely

by natural frequencies vicinity where very large vibration amplitudes occur. For very large values of either
damping c2 and/or spring stiffness k2, isolator effectively locks even with the inerter present, i.e. for c2,
k2 → ∞,Ωa(b2 = 0) = Ωa(b2 = bopt). This is unfavourable setup and should be avoided, because if excited,
locking frequency Ωa vibration amplitudes tend to infinity, as demonstrated in Figs. 5a, b and 6a (csup curves,
dotted line). In order to evaluate the quality of performed vibration isolation optimization, Table 6 is presented.
Four characteristic system results are denoted where the most destructive excitation frequency Ω is solely
considered.

For systems with sub- and super-optimal damping, violent spring rupture occurs for given loading imme-
diately, without even considering fatigue failure. Optimized damping copt shifts the life of observed spring in
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HCF range with over 105 expected life cycles. Finally, simultaneous optimization of damping and inertance
shifts the expected life cycles over the 106 range, which can be considered as a significant improvement.

The present optimization is based on a vibration-related specific kinetic energy criterion. A future work
could consider a type of optimization which would aim at directly maximizing fatigue life of the spring and
compare it to the present results. Considering that pitch angle in the present study is defined through relation
l = 2 · d and α = arctan[l/(π D)], it would be beneficiary to further investigate the influence of arbitrary large
pitch angle α on deflection and stress correction, as some of the expressions from Table 1 consider the pitch
angle influence, and some do not. That most notably applies to further evaluation of Wahl’s approximate stress
correction factor in detail. Continuation of this work could also be the investigation of mean stress σm influence
on the spring fatigue life optimization, as present calculations were performed for a simple harmonic fully
reversed loading R = −l where dead weight static load, or general pre-stress were not considered. In addition
to a demonstrated analytical study, numerical method for verification purposes will be further employed as a
continuation of this paper. Software packages which use FEM generated static/dynamic multi-axial complex
stress fields for predicting fatigue life will be used.

5 Conclusion

A cylindrical spring fatigue optimization method for inerter-based vibration isolation system is presented in
this paper. The method is demonstrated on a simple discrete two-degree-of-freedom system. A simplified
model for calculating cylindrical spring high-cycle fatigue life is established by adopting von Mises energy
criterion for shear governed biaxial proportional stress and relating it to spring displacement amplitudes in
Basquin’s equation. Most convenient deflection and stress correction factors are adopted for vibration fatigue
study, namely Ancker & Goodier deflection correction and Wahl stress correction factor. Two additional
displacement correction factors are derived and compared to other referent solutions.

Twomain benchmark isolators are investigated; one with inerter of optimal inertance and optimal damping,
and one with optimal damping but without the inerter. These two plain isolator systems are viewed as a
simplified model of a possibly more complicated dynamic structure. Parameters of the inerter-based isolator
are optimized to maximize the effect of vibration isolation, which also corresponds to significant reductions
of the stresses in the considered receiving body spring and an increase of its fatigue life as a consequence. It
is demonstrated that the vibration isolation effect of the isolator not containing the inerter can be substantially
improved by employing the ideal inerter in parallel with the isolator spring and viscous damper. Hence, it can
be concluded that minimizing the kinetic energy of the receiving body, by employing inerter of adequate, i.e.
optimized inertance, can convincingly prolong the coupling helical spring fatigue life. Specifically inerter anti-
resonance effects can also be potentially used to fine tune the system for one dominant excitation frequency,
and significantly reduce vibration amplitudes on that particular frequency.

As a direct continuation of this work, finite element method will be employed for results verification
purposes. Main challenges are to implement ideal inerter concept in the finite element model and to well
correlate spring displacements and stresses obtained by the developed analytical model to the results obtained
by the finite element analysis.
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Abstract This paper presents an optimization and numerical analysis of vibration-induced fatigue in a two
degree-of-freedom inerter-based vibration isolation system. The system is comprised of a primary, e.g. source
body, and a secondary, e.g. receiving body, mutually connected through an isolator. The isolator includes
a spring, a dashpot and an inerter. Inerter is a mechanical device which produces a force proportional to
relative acceleration between its terminals. A broadband frequency force excitation of the primary body is
imposed throughout the study. The goal of the proposed optimization is to prolong the fatigue life of the
ground connecting helical spring of the secondary body. The optimization is based on minimizing separately
the displacement and velocity amplitudes. Both optimization criteria are compared with regard to spring
fatigue life improvement for fair benchmark comparison. The inerter-based optimized systems, in which the
H2 index of the receiving body is minimized, are also compared with the optimized systems without inerter.
Notable improvements are observed in inerter-based systems due to the inclusion of an optimally tuned inerter
in the isolator. The proposed analytical vibration fatigue method optimization results are compared with the
finite element method results, and a very good agreement is observed. Most accurate helical spring deflection
and stress correction factors are discussed and determined. Furthermore, the inerter concept is successfully
implemented into finite element-based dynamic solution.

Keywords Vibration isolation · Fatigue life · Inerter · Helical spring · Finite element method · H2
optimization

1 Introduction

The cylindrical helical coil spring is one of the fundamental and most important key mechanical components
found inmany industrial applications (e.g. vehicle suspension components, automotive valve springs, stamping
presses, brakes). Springs are typically used to perform required mechanical functions (i.e. apply, transfer,
indicate or maintain a force/torque, store energy and provide the system with the flexibility [1]).

Vibration isolation systems [2] (e.g. car suspension) are often subjected to high dynamic loading during
service. These loadings can cause harmful vibrations and may result with premature failure from aggressive
fatigue mechanisms which are especially prominent in case of resonant harmonic excitations [2,3]. Massive
spring used in the suspension systems [3,4] is a common example where the crack may initiate at a high stress
location and eventually propagate. This can lead to fatigue failure, especially due to vibration-induced fatigue
effects [2,3,5]. In order to estimate the vibration fatigue, it is necessary to predetermine stiffness, strength and
damping parameters of the system. In particular, all of the above-mentioned parameters should be taken into
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account while evaluating the helical spring fatigue life [2]. The springs as machine elements should withstand
long exploitation period. Hence, they are commonly evaluated with appropriate high-cycle fatigue (HCF)
calculation method (above 103 life cycles) [2]. Shear-governed life criterion is normally considered for spring
fatigue calculation where highly stressed region is usually located at the inner side of the helix [1,2]. Contrary
to that traditional concept, Todinov [6] in accordance with Del Llano-Vizcaya et al. [7] states that the highest
stress region is reported at the outer surface of the helical compression springs with a large coil to wire radius
ratio, rather than usual inside of the helix. Consequently, the fatigue crack originwill presumably also be located
on the outer surface where the maximum amplitude of the principal tensile stress occurs. Furthermore, it is in
accordance with the stress field obtained from numerical fatigue analysis via finite element method (FEM) [7].
As discussed in [2], the problem with unambiguous definition of the stress field and the corresponding fatigue
life is noted in the literature since multiple stress correction factors for helical spring are proposed. One of the
most often used and cited expressions originate from Wahl [8], Bergsträsser [2], Göhner [9–11] and Ancker
and Goodier (A/G) [2,12–19]. The investigation conducted by Calder et al. [14] reported that A/G and Wahl
stress correction factors differ only slightly for small spring pitch angles. Moreover, the Wahl correction factor
matched with their experimental stress measurements of a helical coil automobile spring within less than± 1%
difference. It is often discussed whether using aforementioned stress correction factors may result with highly
conservative fatigue life prediction [1,2].

Numerically determining the vibration fatigue life is an increasingly evolving field. Various researchers
use mostly FEM-based software for calculation depending on the availability, application and functional-
ity [5,20–22]. Rahman et al. [23] used FEM for obtaining stress amplitudes of engine components and
performing corresponding fatigue calculation. Authors employed a power spectral density (PSD) load and
obtained fatigue results in the frequency domain. According to Halfpenny [24] and also reported by Mršnik
et al. [25,26], operating with a PSD proves to be rather beneficial when working with complicated and com-
putationally expensive FEM models. Hence, the calculation of the frequency response functions (FRFs) is
convenient and much faster than a long-term transient dynamic analysis in the time domain [5]. When
loading conditions are prescribed in the form of PSD which is defined in a frequency domain, structural
response of systems can be computed by using the transfer function (TF), i.e. FRF of target systems and
PSD of excitation loads [24]. Mršnik et al. also gave important scientific contribution to further understand-
ing of the vibration-induced fatigue phenomena by studying multi-axial stress effects [25] and various fre-
quency domain methods [26]. In [25], authors used both FEM and experimental approaches where similar
numerical model was analysed as in [27]. Česnik and Slavič [27] investigated harmonic and random kine-
matic/base excitation load on the aluminium alloy “Y”-shaped specimen and used custom vibration fatigue
plug-in developed for the commercial FEM package analysis environment. Furthermore, the numerically
predicted fatigue life was compared to the experimental results. The results obtained via numerical anal-
ysis estimated substantially more conservative fatigue life compared to the actual fatigue life. Opposed to
common unimodal (i.e. narrow-band PSD), Braccesi et al. [28] considered bimodal PSD for random stress
process and created custom FE-based fatigue life calculation code valid for the frequency domain. Addi-
tionally, Bonte et al. [29] used combination of various FEM packages for the calculation of the vibra-
tion fatigue life. They developed a commercially used simulation method for the fatigue analysis of auto-
motive and other products that are subjected to multiple random excitations by adopting PSD. Further-
more, Zhou et al. [30] used modal stress approach in random vibration fatigue assessment by employ-
ing FEM. The conducted investigations consisted of a two-step procedure. In the first step, modal stress
analysis is conducted to locate the fatigue hotspots in a dynamic structure, while in the second step the
frequency domain-based approach for random fatigue evaluation is performed at fatigue hotspots through
PSD.

Vibration systems are commonly tuned (i.e. optimized) according to some optimization criterion. One of
the metrics for vibrations of the dynamic structures is square vibration amplitude over the entire frequency
range. Proposing the optimization of this quantity is first attributed to Warburton [31] and is generally referred
to as H2 optimization [32–34]. H2 optimization has the objective function of minimizing the total vibration
energy, i.e. mean square motion of the dynamic structure under the white noise of the PSD excitation [31].
Studieswhich incorporate thismethod usually employ theminimization of specific kinetic energy (i.e. vibration
velocity amplitudes) [2,32,35]. However, alternate studies such as minimization of displacement amplitudes
can also be applied [34]. Inerter is a novel mechanical element conceived and developed by Smith [4]. Inerter
produces a force which is proportional to relative acceleration (a2 − a1) between its terminals where equation
Finerter = b(a2 − a1) holds. The coefficient of inerter resistance force Finerter is called inertance. It is denoted
by label “b” and is measured in kilograms, in SI units. Inerters are mathematically approximated in the same
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sense as, for example, springs and dashpots. Consequently, it is assumed that inerter mass is rather small
compared to inertance it provides [2,4,35].

In the preceding work [2], all the above presented concepts were implemented into an analytical solution.
Although this problem is discussed in other studies [34–38], reference [2] is further suitably referred to, as
this previously proposed approach addresses vibration isolation and fatigue life assessment simultaneously.
The unit PSD load was applied on the dynamic system. The minimization of the specific kinetic energy of
inerter-based system in the frequency domain yielded substantial reduction in vibration velocity amplitudes.
Consequently, extension of the corresponding cylindrical spring fatigue life was reported. However, concerns
were raised whether the exclusively fatigue-based optimization would prove more efficient with regard to the
spring fatigue life when compared to solely kinetic energy-based optimization. The aim of this study is to
revisit and address this question by employing alternate displacement-based criterion and utilizing linear FEM
to assess the accuracy of the adopted expressions [2], especially with regard to before discussed approximate
spring stress and displacement correction factors. Using FEM as control verification tool with a purpose of
benchmark comparison is a common practice used in conjunction with complex analytical calculations [39].

In this study, which is a direct continuation leading the approach of the same problem from previous
work [2], the goal is to model the fatigue load of a helical spring acting as a linear elastic element in a simplified
twodegree-of-freedom(2-DOF) inerter-basedvibration isolation system.Analytical andnumericalmethods are
employed by means of specialized software packages: FEM-based Abaqus [40] and Fe-Safe [41]. Fe-Safe can
import and analyse FEM generated static/dynamic multi-axial complex stress fields with the aim of assessing
the fatigue life. The paper is structured as follows. In Sect. 2, analytical mathematical 2-DOF inerter-based
vibration isolation systemmodel is establishedwhere optimized parameters for both viscous damper and inerter
are determined. H2 optimization of the newly proposed displacement and referent velocity amplitudes [2] is
used as a criterion. Novel displacement-based optimization parameters for inertance and damping are derived
and explicitly given. In Sect. 3, various dimensionless spring deflection and stress correction factors from the
referent literature are revisited from [2] and discussed. The accuracy of previously derivedTimoshenko/Cowper
(T/C)-based deflection factor [2,8] is determined. The most accurate spring correction factors are later used in
the context of analytically calculating displacement and stress amplitudes under PSD force loading. In Sect. 4,
previously established deflection and stress correction factors are further discussed by comparing analytically
obtained results with FEM. Final Sect. 5 presents a benchmark example adopted from [2] by utilizing all before
proposed methods and finally comparing analytical and numerical results of the vibration fatigue optimization
study. Previously derived analytical expression [2] based on the vonMises energy criterion for shear-governed
biaxial and proportional stress is verified. The proposed expression explicitly ties vibration displacement
amplitudes with HCF life of the helical spring. Moreover, the ideal inerter concept is implemented in the
commercial FEM code Abaqus.

2 2-DOF inerter-based vibration isolator mathematical model

In this chapter, the generalized analytical model for the discrete 2-DOF inerter-based vibration isolation system
optimization process is established as a straightforward closed-form solution. The studied problem is fully
adopted from [2] and represented by a simple model shown in Fig. 1a. It is assumed that the critical fatigue
component is a helical spring k3, shown in Fig. 1b. The material parameters of the spring are as follows:
E is Young modulus, ν is Poisson’s ratio, S′

f is fatigue strength coefficient and B is Basquin’s exponent [2]
denoted in capital letter in order not to be mistaken for inertance b. Number of active coils is designated
as n (n = 2 in Fig. 1b), h is spring total length where h = n · l for n = arbitrary integer ≥ 1, and l is
the spring pitch. D and d are large and small spring diameters, respectively, while C = D/d is defined as
spring index [1,2]. Recommended values of spring index C for practical engineering purposes lie in between
C = 4−12 [2]. Angle α represents the pitch angle which can be calculated according to usual geometric
expression α = arctan[l/(πD)] (Fig. 1b).

The goal of the vibration-based optimization is to minimize vibrations of the secondary or receiving body,
i.e. vibrations of mass m2 which are proportional to the maximum deflection amplitudes of the spring k3. In
this optimization, the excitation of the primary/source body F1(t) is assumed to contain white noise spectral
properties [2,35], i.e. unit PSD loading amplitude F01(Ω) = 1 over the entire frequency range. The whole
vibration system consists of discrete masses m1 and m2, ideally massless springs k1, k2 and k3, viscous
dampers c1, c2 and c3 and an inerter of inertance b2. Isolator consists of spring k2, damper c2 and inerter b2.
The ideal inerter produces a force Finerter proportional to the relative acceleration [4] between masses m1 and
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(a) (b)

Fig. 1 a 2-DOF linear discrete vibration isolation system, b helical spring k3 properties [2]

m2. The described discrete parameter approximation may represent a reduced-order model [36] of a system of
a more complex nature [37] which includes distributed mass, stiffness and damping parameters, as discussed
in [35,38]. The damping of the source and receiving bodies is assumed to be negligible (i.e. c1 ≈ c3 ≈0) which
provides for substantially more simple solution derivation. However, the relations are also approximately valid
for the systems with small inherent damping [35].

The equations of motion [2,3,35] for system in Fig. 1a can be written in the general matrix form as

Mẍ (t) + Cẋ (t) + Kx (t) = F (t) , (1)

where M is the global mass matrix, C is the global damping matrix, K is the global stiffness matrix and F(t)
is the excitation column force vector. Displacement of the masses m1 and m2 from static equilibrium position,
velocity and acceleration vectors are denoted by x(t), ẋ(t) and ẍ(t), respectively.

Global matrices and vectors from Eq. (1), accounting for negligible damping c1 and c3, can be written as

M =
[
m1 + b2 −b2

−b2 m2 + b2

]
, C =

[
c2 −c2

−c2 c2

]
, K =

[
k1 + k2 −k2

−k2 k2 + k3

]
, (2a, b, c)

x =
[
x1 (t)
x2 (t)

]
, F =

[
F1 (t)
0

]
, (3a, b)

where the parameters and functions in the matrices and vectors are denoted in Fig. 1a. Due to influence of
inerter b2, mass matrix M from Eq. (2a) is no longer diagonal [3]; however, it is still symmetric [2,35].

By assuming harmonic excitation and expressing the excitation and the steady-state response in the complex
form F(t) = F0eiΩt and x(t) = x0eiΩt , where i = √−1, the solution of Eq. (1) can be directly written as

x0 (Ω) = [
x01 x02

]T = [
(iΩ)2 M + iΩC + K

]−1
F, (4)

where terms inside the square bracket denote dynamic stiffness matrix and x0(Ω) is the complex displacement
amplitude. Multiplying Eq. (4) with the term i Ω yields complex velocity amplitude v0 expression which can
be written as

ẋ0 (Ω) ≡ v0 (Ω) = [
ẋ01 ẋ02

]T = iΩx0 (Ω) . (5)

By considering M, C and K matrices from Eq. (2a–c), the steady-state (i.e. time-invariant) complex response
of the mass m2 can now be expressed in simplified form as the following FRFs

x02 (Ω)

F01
= B0 + (iΩ) B1 + (iΩ)2 B2 + (iΩ)3 B3

A0 + (iΩ) A1 + (iΩ)2 A2 + (iΩ)3 A3 + (iΩ)4 A4
,

ẋ02 (Ω)

F01
≡ v02 (Ω)

F01
= iΩ

x02 (Ω)

F01
,

(6a, b)
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where coefficients A0 − A4 and B0 − B3 with respect to Eq. (6a, b) are defined as

A0 = (k2 + k3) k1 + k2k3
A1 = c2 (k1 + k3)
A2 = (m2 + b2) k1 + (m1 + m2) k2 + (m1 + b2) k3
A3 = c2 (m1 + m2)
A4 = (m2 + b2)m1 + b2m2

,

B0 (x0) = k2
B1 (x0) = c2
B2 (x0) = b2
B3 (x0) = 0

,

B0 (v0) = 0
B1 (v0) = k2
B2 (v0) = c2
B3 (v0) = b2

. (7a–m)

The transfer admittance (i.e. FRF x02/F01) from Eq. (6a) represents the complex displacement amplitude
of the receiving body per unit forcing F01 =1 of the source body. The transfer mobility (i.e. FRF v02/F01)
from Eq. (6b) represents the complex velocity amplitude of the receiving body per unit forcing F01 = 1 of the
source body. Coefficients B0 − B3 from Eq. (7) are different with regard to variables of displacement x02 and
velocity v02 amplitudes, respectively [i.e. Eqs. (4) and (5)]. FRFs from Eq. (6a, b) are further used to assess the
effectiveness of the vibration isolation. Considering that the excitation force F1 with the unit PSD is assumed,
the H2 index of the receiving body IH2 per unit excitation force can be calculated with relations that write as

IH2 (x0) =
∞∫

−∞

∣∣∣∣ x02 (Ω)

F01

∣∣∣∣
2

dΩ, IH2 (v0) =
∞∫

−∞

∣∣∣∣v02 (Ω)

F01

∣∣∣∣
2

dΩ, (8a, b)

according to [31] and demonstrated in [2,32–35]. TheH2 indices of the receiving body (i.e. IH2) from Eq. (8a,
b) are used throughout this study as a quantitative measure of the broadband frequency vibration isolation
performance quality. The objective is to minimize this quantity for all vibration isolation systems analysed in
the scope of the conducted investigation. Vibration-based optimization with the goal of vibration reduction by
using this particular method can be found in [2,32–35]. The H2 index in Eq. (8) for IH2 = I4 can according
to [2,35] analytically be calculated with closed-form polynomial expression which can be written as

IH2(4) = π
A0B2

3 (A0A3 − A1A2) + A0A1A4
(
2B1B3 − B2

2

) − A0A3A4
(
B2
1 − 2B0B2

) + A4B2
0 (A1A4 − A2A3)

A0A4
(
A0A2

3 + A2
1A4 − A1A2A3

) ,

(9)

where substituting coefficients A0 − A4 and B0 − B3 from Eq. (7) into Eq. (9) yields with the finalH2 index
IH2 analytical expression, which is herein omitted for substantial length [2]. In Eq. (9), index “4” denotes
fourth-order polynomial of the denominator with regard to the term iΩ in Eq. (6).

Two fundamental circular natural frequenciesωn1,2 of the given 2-DOFvibration system can be analytically
obtained by solving the classic eigenvalue problem [2,3] which readily writes as

[
K − (

ωn1,2
)2 M

]
x (t) = 0, (10)

where influence of inertance b2 on eigenvalues is demonstrated later on. The following expressions

ΩA =
√
k2
b2

, lim
c2,k2→∞ Ωa =

√
k1 + k3
m1 + m2

, (11a, b)

denote anti-resonance ΩA and isolator-locking circular frequency Ωa, respectively, as reported in [2,35].
In the next subchapters of this study, two main types of the vibration transmission control are analysed

with respect to minimizing the index IH2. The isolation control without inerter (i.e. b2 = 0) and the isolation
control with optimized inertance bopt are considered. The optimized isolator damping and inertance parameters
are obtained by minimizing the frequency averaged index IH2 of the receiving body denoted symbolically in
Eq. (9). The displacement and velocity amplitudes criteria are used, respectively. As discussed in [2], due to
this particular problem definition, spring k2 cannot be optimized and is further considered as constrained/fixed
value bound by physical limits [35].
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2.1 Isolation optimization considering displacement amplitudes

The parameters from Eq. (7a–i) are considered. The procedure explained in [2] is applied. Differentiating
Eq. (9) with respect to damping c2, equalling with zero and again solving for damping c2 yield with

c2(b2 	=0) [H2 (x0)] =

√√√√√ (m1 + m2)
2 k32 + [

k3m2
1 + m2

2k1 − 2 (m1 + m2) (k3 + k1) b2
]
k22+ [

(k3 + k1)2 b2 − 2k1k3 (m1 + m2)
]
b2k2 + (k3 + k1) b22k1k3

[(k2 + k3) k1 + k2k3] (m1 + m2)
, (12)

where c2 now represents optimum damping copt(b2) for any given inertance b2. By substituting Eq. (12) into
Eq. (9), differentiating with respect to b2, equalling with zero and solving for b2, optimum inertance parameter
bopt is obtained. Inserting b2 = bopt into Eq. (12) results with optimum damping copt2. These expressions
write as

copt2 [H2 (x0)] = k2 |k1m2 − m1k3|√
[(k2 + k3) k1 + k2k3] (m1 + m2) (k1 + k3)

, bopt [H2 (x0)] = k2 (m1 + m2)

k1 + k3
. (13a, b)

By setting the inertance b2 = 0 in Eq. (12), the optimum damping copt for the case without inerter is

copt(b2=0) [H2 (x0)] = k2

√
(m1 + m2)

2 k2 + k1m2
2 + k3m2

1√
[(k2 + k3) k1 + k2k3] (m1 + m2)

. (14)

Derived Eqs. (13, 14) unambiguously represent closed-form algebraic solutions for optimized damping
and inertance parameters regarding displacement-based, i.e. consequently fatigue-based optimization.

2.2 Isolation optimization considering velocity amplitudes

The proposed procedure described in [2] is further utilized for optimization process. The parameters from
Eq. (7a–e, j–m) are considered further. Differentiating Eq. (9) with respect to damping c2, equalling with zero
and again solving for damping c2 yield with already known solution

c2(b2 	=0) [H2 (v0)] =
√
m1 + m2

k1 + k3
k22 − 2b2k2 + m1k23 + m2k21 + b2 (k1 + k3)2

(k1 + k3) [m1 (b2 + m2) + b2m2]
b22, (15)

where c2 represents optimum damping copt(b2) for any given inertance b2, but now in the context of velocity
amplitudes, i.e. kinetic energy optimization. For inertance b2 =0, Eq. (15) morphs into simpler relation

copt(b2=0) [H2 (v0)] = k2

√
m1 + m2

k1 + k3
, (16)

which represents the optimum damping coefficient c2 = copt. As reported in [2], explicit expressions for bopt
and copt2 in the context of velocity-based optimization are not shown due to the fact that they are rather lengthy
and cannot be expressed in the convenient algebraic form although they are purely analytical. Interestingly,
displacement-based optimization yields with much simpler final expressions for optimized parameters. Albeit,
initial Eq. (15) seems more straightforward for further manipulation when compared to Eq. (12).

3 Helical spring displacement and stress correction factors

In this chapter, spring stiffness and stress corrections from the literature are reviewed. A simple expression
for determining the spring fatigue life is recapitulated from [2] where HCF life is addressed and employed.
Obtained displacement amplitudes in the frequency domain from previous chapter [see Eq. (4)] can now be
tied to stress amplitudes necessary for performing the vibration fatigue analysis. The cylindrical spring can for
simplicity be viewed as a thin/slender and curved rod/beam subjected to torsion load [1]. In the case curvature,
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Table 1 Expressions for stress correction factors Kτ and deflection correction factors Kδ

Author/standard Stress correction factor Kτ Deflection correction factor Kδ

Strength of materials
Wahl, DIN 13906 4C−1

4C−4 + kW
C = 4C−1

4C−4 + 1+2ν
2(1+ν)C –

Röver cos (α)
[

C
C−cos2(α)

+ 1+sin2(α)
4C

]
–

Wood C
C−1 + 1

2C
2C2+C−1

2C2

Honegger cos (α)
[

C
C−cos2(α)

+ 0.615
C

]
2C2−cos4(α)

2C2 cos5(α)

Timoshenko/Cowper – 1 + 7+6ν
12C2(1+ν)

Elasticity theory

Göhner, DIN 2089 1 + 5
4C + 7

8C2 + 1
C3 cos (α) + 3 cos5(α)

16(C2−1)
+ sin(α) tan(α)

1+ν

Ancker and Goodier 1 + 5
4C + 7

8C2 + 1
2 tan

2 (α) 1 − 3
16C2 + 3+ν

2(1+ν)
tan2 (α)

Castigliano/Timoshenko –
(
16C2−13

)
cos(α)

16(C2−1)
+ sin(α) tan(α)

1+ν

Approximate/empirical relation

Bergsträsser, DIN 13906 C+0.5+sin2(α)

C−0.75+1.51 sin2(α)
–

Sopwith, BS 1726 C+0.2
C−1 –

Strain energy (Castigliano’s) method

Shigley – 1 + 1
2C2

Dym –
(
1 + 1

2C2

)
cos (α) +

(
1 + 1

4C2

)
tan(α) sin(α)

(1+ν)

pitch and thickness effects are considered [2], and the analytical expressions for true spring stiffness ktrue and
maximum shear stress τmax are

ktrue = 1

Kδ

F0
δnom

= 1

Kδ

Gd

8C3n
, τmax = Kτ

8F0C

πd2
, (17a, b)

where δnom = 8C3n/(Gd) is nominal spring deflection, Kδ is displacement correction factor, Kτ is (shear)
stress correction factor and G = E/[2(1 + ν)] is the shear modulus. As linear elastic/small deformation and
deflection conditions are assumed, Eq. (17) is valid for both tensile and compressive applied force amplitudes
±F0. For previously defined simple harmonic conditions, equation F(t) = F0eiΩt holds. The helical spring
geometry, parameters, loading and boundary conditions (BCs) are the same as schematically shown in Fig. 1b.
For a more general approach in the scope of this study, boundaries of spring indexC are varied both inside and
outside of the recommended values C = 4−12, in order to parametrically test all physically valid solutions.
As already noted, additional correction factors Kδ and Kτ need to be applied for displacement and shear stress,
where relations δmax = Kδδnom and τmax = Kτ τnom now hold [2], while τnom = 8F0C/(πd2) is designated
as nominal shear stress.

Table 1 is adopted from [2,13], expanded and fitly modified. It sums up all the expressions from the
referent literature used in the scope of this paper. T/C deflection correction factor is proposed in [2] by
adopting Timoshenko thick cantilevered shear-deformable beam analogy and Cowper’s shear correction factor
for circular cross-sectional area. Göhner-based Castigliano/Timoshenko (C/T) deflection correction factor is
previously derived [2] in dimensionless form and denoted in Table 1 in a more convenient and simplified form.

Furthermore, additional stress correction factors can be found in the literature. The investigation conducted
by Göhner [9] directly influenced Henrici [10] who derived similar approximate stress correction factor by
using Legendre power series function which yielded with more complex expression

Kτ,Henrici = 1 + 5

4C
+ 7

8C2 + 155

256C3 + 11911

24576C4 + · · · . (18)

Berry [11], for instance, gives alternate Göhner stress correction equation compared to one denoted in Table 1.

Kτ,Göhner(alt) =
(

C

C − 1
+ 1

4C
+ 1

16C2

)(
C2 − 1

C2 − 0.8125

)
. (19)
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Fig. 2 Deflection correction factors, Kδ : a fully compressible material, ν = 0.0, b incompressible material, ν = 0.5

Interestingly, Eqs. (18), (19) and four-term Göhner equation from Table 1 give almost the same results
for any physically acceptable value of spring index C . Moreover, Calder [14] gives alternate version of A/G
correction

Kτ,A/G(Calder) = 1 + 5

4C
+ 7

8C2 + 1

C
tan2 (α) , (20)

which differs from the expression in Table 1, by comparing the last term denominator. However, for small
pitch angle the difference is negligible compared to original A/G relation, which is in return very similar to
fundamental Göhner expression [2]. A/G deflection correction factor from Table 1 can also be found in their
original paper [12], and it is considered to be one of the most accurate ones found in the literature [15,17,19].
A/G derived detailed equations for the stresses and deflections in a helical spring using the theory of elasticity
approach and employing thin slice method. They used truncated, doubly infinite power series in the terms of
spring index, coil curvature and spring’s initial pitch angle or helix angle combined effects [12,15–17].

All deflection correction expressions from Table 1 are shown in Fig. 2. Fully compressible material (i.e.
ν = 0) and incompressible material (i.e. ν = 0.5) are considered in Fig. 2a, b, respectively. Similar study was
conducted by Burns [18] where dependency of Poisson’s ratio on helical spring stiffness was evaluated.

Simple Wood deflection correction largely deviates from rest of the curves as reported in [2], although it
is included here for the sake of completeness. It is interesting to note that for ν = 0.0 curves are somewhat
scattered for small spring indices C . However, for ν = 0.5 the curves based on the theory of elasticity (A/G,
C/T and Göhner) uniformly converge to lower values while the rest of the curves converge to higher values.

By using appropriate vibration terminology [i.e. obtained displacement amplitudes from Eq. (4)] and
considering appropriate spring stress and displacement factors with embedded von Mises distortion energy
criterion, Basquin’s equation and number of cycles Nf can according to [2] finally be explicitly written as

Nf =
(
Sa
S′
f

) 1
B ⇒ Nf (Ω) =

[√
3
Kτ

Kδ

G

C2nπd

|x02 (Ω)|
S′
f

] 1
B

. (21a, b)

The benefit of simple Eq. (21b) is that it is not obligatory to explicitly define force amplitude F0 acting on
spring k3 (i.e. mass m2). In the next chapter, FEM is employed for alternative Kδ and Kτ identification.

4 Finite element method helical spring displacement and stress analysis

In this chapter, spring stiffness and stress corrections are determined numerically by employing FEM-based
software suite Abaqus [40]. Analytical/empirical solutions and referent relations for various deflection and
stress correction factors from Table 1 are benchmarked and verified.

Table 2 shows example spring parameters used in this parametric evaluation. Mean coil diameter D is fixed
at referent value D = 50mm, and spring wire diameter d is varied in steps of 	d = 3mm in order to obtain
discrete numerical values for different spring indices C . For simplicity and computational efficiency, only one
active coil is used (i.e. n = 1). Spring pitch l is parameterized with relation l = 2 ·d , analogue to the analytical
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Table 2 Helical spring geometric and material parametric properties

D (mm) d (mm) n (–) l (mm) E (GPa) ν (–)

50 2–17 1 2·d 200 0–0.5

(a) (b)
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-1.943 -0.252
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Fig. 3 Abaqus computational model, n = 1, C = 50/17, ν = 0.0: a RPs (A, B) definition, b convergence study

model. Young’s modulus denotes standard steel material properties. However, Poisson’s ratio value is varied
from 0 − 0.5 in order to test the robustness and wide applicability of benchmarked displacement and stress
correction factors.

Abaqus computational model consists of structured 3D second-order 20 node hexahedron continuum
elements C3D20R FE mesh. The chosen mesh employs reduced integration and shows superior performance
compared to first-order elements, due to additional nodes on mid-sides of finite element [40]. Structured mesh
is enabled by partitioning 3D spring geometry accordingly. Preliminary analysis is defined as linear and quasi-
static (i.e. time is dimensionless). Convergence study/mesh sensitivity check is performed beforehand, and it is
found that eight second-order hexahedron elements per spring thickness (i.e. wire diameter d) give sufficiently
accurate results for analysed linear deflection/stress class of problems.

Figure 3a shows the FEM model with the fully defined RPs A and B and kinematic couplings with
highlighted surfaces. BCs are defined through two reference points (RPs) A and B, analogue to Fig. 1b. The
moving-pinned and fixed-pinned conditions are assumed as they comply with open-coil analytical assumption
where the pitch angle α 	=0 [1,2]. Full definition of BCs is: B(u, v, w, ϕy = 0) and A(u, w = 0). RPs A
and B are coupled to belonging spring sides (i.e. outer highlighted surfaces) through kinematic attachment
of type distributing. The imposed kinematic attachment allows for deformation of the connecting surfaces
by using uniform weighting factors [40], i.e. surfaces coupled with RPs are still freely deformable. Special
care is needed with employing such kinematic relations in the vicinity of high stress gradient locations since
forcing additional rotational DOFs on otherwise 3-DOF per node continuumFEmesh can result with numerical
anomalies and stress singularities in some cases.

Furthermore, referent FE model mesh convergence is reported in Fig. 3b. The convergence of model
with zero Poisson’s ratio (i.e. fully compressible material) is denoted herein. However, similar convergence
behaviour is observed for arbitrary value of ν = 0−0.5 which is hence not separately displayed.

As shown in Fig. 3a, relatively thick spring of small index C = D/d = 50/17 with sufficiently large pitch
angle α is chosen as the representative model for convergence check. Arbitrary large force F0 is acting on RP
A. Displacement of RP A and maximum von Mises equivalent stress of the entire spring model are measured.
Monotonous and quick convergence is observed in Fig. 3b. As expected, the deflections convergemuch quicker
compared to calculated stresses. The relative error Erel is defined as a difference between two successivemeshes
where every next mesh is considered as a referent solution and the previous mesh is a measured numerical
solution, i.e. Equation Erel = (x(i+1)/xi − 1) · 100% holds. Since for this case analytical solution is unknown,
more convenient term is still relative difference rather than relative error. Spring deflections and stresses are
divided with nominal analytical deflection and stress solutions from Eq. (17) in order to obtain adequate
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Fig. 5 Analytical and FEM correction factors, fully compressible, ν = 0.0: a deflection correction Kδ , b stress correction Kτ

correction factors. Figure 4 shows Abaqus normalized deflection and stress results, respectively, for referent
converged FE mesh.

Linear displacement field and relatively uniform, singularity-free stress field are observed through entire
spring in Fig. 4. Homogeneity of the numerical stress field also implies that appropriate BCs are enforced
in the model, and therefore, no stress singularities due to kinematic constraints or BCs occurred. It is also
interesting to note the shift of the spring neutral line further away from the Y axis in Fig. 4b, also reported
in [2]. As already observed by Timoshenko [8] and Wahl [1], maximum shear stress τmax and corresponding
equivalent von Mises stress σeqv(HMH),max can be consequently observed at the inner side of the spring coil.
That also agrees with Abaqus results in Fig. 4b. Thus, potential crack initiation location is uniformly identified
nearest to the spring Y axis. As stress field is homogenous through entire isolated one coil numerical spring,
the terminology of stress correction is favourable compared to stress concentration. The beneficiary effects of
using relatively coarse and efficient but converged FE mesh needs to be highlighted.

Next, six parametric Abaqusmodels similar to one discussed beforehand are defined with regard to Table 2.
The spring pitch l = 2 · d and incremental steps of 	d = 3mm are applied. Eight FEs are used per spring
thickness for obtaining accurate results according to Fig. 3b convergence guideline. Figures 5, 6 and 7 show
comparison of selected best matching continuous analytical results and Abaqus results for six discrete C
values (C = 50/2; 50/5; 50/8; 50/11; 50/14; 50/17) and three different values of Poisson’s ratio (ν =
0; 0.3; 0.5). Considered analytical expressions for deflection correction are: A/G, Shigley, Göhner, C/T and
T/C. Furthermore, Wahl, Bergsträsser, Göhner and A/G stress correction analytical expressions are taken
into account. Wahl stress correction is for this analysis considered to be Poisson’s ratio ν dependent, i.e.
Wahl = Wahl(ν) [2], as presented in Figs. 5, 6 and 7 legends. Vertical lines (Clower and Cupper) denote
practical spring index C limits. Circle markers represent Abaqus discrete results.
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Fig. 6 Analytical and FEM correction factors, compressible, ν = 0.3: a deflection correction Kδ , b stress correction Kτ
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Fig. 7 Analytical and FEM correction factors, incompressible, ν = 0.5: a deflection correction Kδ , b stress correction Kτ

For Poisson’s ratio ν = 0 (i.e. fully compressible material), the best correlation with FEM displacement is
observed for A/G. Shigley and T/C overestimate while Göhner and C/T slightly underestimate FEM results.
From the series of conducted analyses, it can be concluded that all authors show very similar results regarding
obtained stress corrections and slightly underestimate FEM.

At the second test case, Poisson’s ratio ν = 0.3 (i.e. compressible material). The best agreement with
displacements obtained via FEM is still observed for A/G. Shigley and T/C overestimate FEM even more
compared to ν = 0.0 test case. Considering the stress correction, Wahl now agrees rather closely with FEM.
However, all the other authors still somewhat underestimate FEM.

Finally, for Poisson’s ratio ν = 0.5 (i.e. perfectly incompressible material) the best agreement with the
FEM displacements is again reported for A/G. Shigley and T/C now overestimate FEM results much more
compared to previous two cases. However, Göhner and C/T for all ν values constantly provide rather similar
results compared to both A/G and FEM. Regarding stress correction factors, it is notable that for this test case
Wahl somewhat overestimates FEM. Furthermore, all other authors continue to underestimate FEM, but Wahl
is still closest to the FEM solution.

Considering this parametric analysis, A/G (Kδ,A/G) deflection correction expression shows the best overall
agreement with Abaqus model. Even though Göhner and C/T slightly underestimate the deflection, they can
still be considered as a “reserve” or “backup” referent solution. Wahl (Kτ,Wahl) stress correction expression
agrees excellently with Abaqus model for ν = 0.3 while Bergsträsser, Göhner and A/G constantly somewhat
underestimate the stress field. However, they give almost identical mutual results. Based on the conducted
numerical investigation, the currently adopted deflection and stress correction factors are

Kδ,Ancker Goodier(A/G) = 1 − 3

16C2 + 3 + ν

2 (1 + ν)
tan2 (α) , Kτ,Wahl = 4C − 1

4C − 4
+ 0.615

C
. (22a, b)
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Fig. 9 Analytical and numerical correction factors relative difference Erel comparison, ν = 0−0.5: a deflection correction
difference Erel(Kδ,A/G), b stress correction difference Erel(Kτ,Wahl)

By inspecting Wahl expression from Eq. (22b), it should be noted that pitch angle α is not considered
and kw = 0.615 is hard-coded. Although, Wahl results still apparently show the all-around best agreement
with FEM compared to solutions from other authors. Wahl correction is further examined. For comparison
purpose, Poisson’s ratio influence on deflection correction is summarized in Fig. 8a where differences are
clearly visible, especially for lower spring indices C . Analytical A/G and numerical deflection correction
solutions agree very well for all tested parametric cases. However, almost insignificant sensitivity of Poisson’s
ratio influence on Abaqus numerical stress correction can be detected by inspecting Fig. 8b. Thus, Eq. (22b)
with fixed kw = 0.615 (i.e. Wahl original solution) is adopted as approximate stress correction for further
analyses.

In conclusion, both numerical and analytical (i.e. A/G) Kδ diminish with rising Poisson’s ratio, even though
numerical Kτ insignificantly rises with rising of Poisson’s ratio for small α. That fact justifies excluding
Poisson’s ratio influence in further stress correction. Figure 9 correlates with Fig. 8 by denoting relative
differences between analytical (A/G,Wahl) andnumerical solutions for all given cases.Relative error/difference
Erel is well below |1|% for all shown parametric values. Largest differences in stress correction are observed
for fully incompressible material (i.e. ν = 0.5), especially for very high and low spring indices C presented
in Fig. 9b.

Figure 10a shows relative difference between Wahl stress correction factors by varying Poisson’s ratio ν.
In order to check the relative differences for the other stress correction candidates (i.e. Bergsträsser, Göhner
and A/G), they are contrasted to Wahl. The corresponding results are denoted in Fig. 10b. While comparing
the obtained results (see Fig. 10b), the relative difference smaller than 2% is observed in most regions for
practical C limits. Since much smaller relative difference < |1|% is achieved for FEM and Wahl comparison
(see Fig. 9b), the selection of the Wahl stress correction factor is verified. The Wahl stress correction factor
outperforms all the other authors based on the FEM results obtained herein.
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Fig. 11 Analytical and numerical 1D and 3D correction factors comparison, ν = 0.3, α = 0: a deflection correction Kδ ,
b stress correction Kτ

Finally, one specific case is used as a definitive benchmark for correction factors by setting the pitch
angle α = 0, analogue to the study conducted in [13]. Steel Poisson’s ratio ν = 0.3 is considered. A/G (i.e.
Eq. (22a)) is again employed against Abaqus C3D20R solution. Derived T/C Eq. [2] is also evoked in order to
contrast it with AbaqusB32 Timoshenko-based second-order beam elements. B32 FEs are formulated as shear
flexible with quadratic interpolation [40]. It is interesting to compare these analytical and numerical solutions
since Abaqus also uses Cowper [2] correction, according to [40]. From the analytical and numerical 1D and
3D correction factors, comparison (Fig. 11a) can be seen that A/G solution again follows Abaqus C3D20R
(Abq,3D in legend) solution closely and that T/C derived solution matches Abaqus B32 (Abq,1D in legend)
solution almost perfectly. For higher spring index C values, all analytical and numerical correction factors
tend to unity. However, two concurrent solutions completely diverge for small spring indices C . Analytical
and numerical 3D model even show concordant below unity trend. Analytical T/C solution is apparently
correctly derived according to the thick beam theory [2] as it agrees with the corresponding Timoshenko beam
FE element solution. However, T/C solution should not be used in the context of approximating real, thick
cylindrical springs with small indices C because it overestimates the spring compliance. The trends reported
in Fig. 2 already suggested aforementioned. Additionally, Fig. 11b demonstrates that beam elements (Abq,1D
in legend) expectedly cannot capture stress correction because the value constantly remains at unity for any
C value. Interestingly, numerical values for zero pitch angle (Abq,3D in legend, triangle symbol) now lie in
between Wahl and A/G stress correction factors which implies that Wahl stress correction solution may be
overly conservative when pitch angle α ≈ 0.

In summary, setting ν = 0 underestimates the numerical stresses while setting ν = 0.5 somewhat overes-
timates the numerical stresses considering generalized Wahl equation from Table 1. By setting ν = 0, Wahl
yields almost identical results to A/G, Göhner and Bergsträsser stress correction factors as demonstrated in
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Fig. 5b. Keeping in mind that smaller spring index C results with larger stresses and deflections, the question
of larger pitch angle α influence still remains unanswered.

A/G model is now firmly adopted for deflection correction. Furthermore, Wahl approximate model with
fixed kw = 0.615 is finally adopted for stress correction although it is a bit deficient according to performed
parametric investigation. However, the advantage of the Wahl equation is that it best coincides with the cur-
rent FEM solutions which embody relatively small, but nonzero pitch angle α. The main concern is whether
the linear numerical solution should be considered as a referent one, compared to other available analyti-
cal/empirical/approximate models. In order to obtain objective/nonbiased numerical results, alternate linear
FEM solver Catia, Elfini [42] is also employed for double checking of Abaqus computational accuracy, ana-
logue to method used in [39]. Catia Elfini solver matches Abaqus numerical results rather closely for both 3D
continuum solution and 1D Timoshenko beam-based solution. Thus, it is not separately shown, nor further dis-
cussed in detail. Moreover, it reassures about the accuracy of both adopted approximate correction factors and
Abaqus detailed computational model. The implied correct choice of employing A/G for deflection correction
and Wahl for stress correction used in previously published results [2] is confirmed.

5 Example: inerter-based isolator helical spring vibration fatigue optimization study

In this chapter, vibration optimization and fatigue analysis are performed on a general 2-DOF system shown
in Fig. 1a. Table 3 shows parameters used in the isolator optimization process example. While following
recommendations given in [2], the system is detuned (i.e. m2k1 	= m1k3) and the spring k2 is compliant
compared to springs k1,3.

The mass parameter value is chosen as m0 = 100kg and spring stiffness k0 is yet to be determined from
helical spring parameters proposed in Table 4. Material parameters (E , ν, S′

f and B) of the spring in this
example are chosen in such way to represent physical elastic and fatigue properties of regular, common steel,
adopted from [2].

Diameters D and d are chosen so C = D/d = 50/17 ≈ 2.941 in order to provide a very small spring
index. However, such small spring indexC results with a relatively large stress correction factor whichmakes it
a convenient fatigue benchmark. The idealmassless springs are considered for simplicity and straightforward-
ness. Spring stiffness is calculated according to introduced Eq. (17a) where KδF0 = k0δnom. Obtained 2-DOF
key values/factors and optimized parameters are listed in Table 5. Equations (12–16) are used in the process of
optimization. Velocity amplitude optimization results are taken from [2]. Some differences in obtained param-
eters with regard to optimization criterion are observed. Hence, it will be interesting to observe the impact of
those differences to fatigue life assessment.

Figure 12 shows contour-plotted normalized results of the optimization process with regard to Table 5 for
the prescribed parameters defined in Tables 3 and 4. The minimum (i.e. optimum H2) indices IH2norm are
represented as diamond markers. The contours of displacement-based optimization (Fig. 12a) and velocity-
based optimization (Fig. 12b) are rather similar as expected from the results denoted in Table 5. Darker contours
in both plots imply regions of higherH2 index (i.e. undesired effect). Dash-dotted curved lines denote implicit
plots of function c2 when b2 	=0, i.e. Eqs. (12) and (15), respectively. Circles at the bottom of the both
figures correspond to the optimized damping case copt when b2 = 0, defined in Eqs. (14) and (16). Finally,
diamond markers denote the position of both optimized damping copt2 and inertance b2 simultaneously from
Eq. (13a, b) and previously omitted equations for the velocity-based optimization due to extensive length [2,35].

Table 3 Example 2-DOF vibration isolation system parameters [2]

m1 (kg) m2 (kg) k1 (N/mm) k2 (N/mm) k3 (N/mm) F0 (kN)

m0 2·m0 k0 k0/10 k0 1

Table 4 Example helical spring of stiffness k0 geometric and material properties [2]

D (mm) d (mm) n (–) l (mm) E (GPa) ν (–) S′
f (MPa) B (–)

50 17 1 2·d 200 0.3 925 −0.1
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(a) (b)

Fig. 12 Mass m2 normalizedH2 index IH2norm: a displacement index IH2norm(x0), b velocity index IH2norm(v0)

Table 5 Example 2-DOF vibration isolation system referent values and optimized parameters

C = D/d (–) α (◦) k0 (N/mm) Displacement amplitude opt.H2(x0) Velocity amplitude opt.H2(v0)

copt (Ns/m) bopt (kg) copt2 (Ns/m) copt (Ns/m) bopt (kg) copt2 (Ns/m)

2.941 12.213 6 190.746 3 185.270 15.000 927.268 3 047.314 13.701 934.329

Table 6 Example 2-DOF vibration isolation system numerical values and relative difference comparison

Method Kδ (–) Erel (%) Kτ (–) Erel (%)

Analytical 1.037789623 −0.365 1.595594406 −0.097
Abaqus 1.04159154 1.597138873

Consequently, diamond markers are located at the lightest region centre as they represent the global minimum
of the displacement and velocity-based functions from Eq. (9).

The upper limit of the plots is defined as b2max = 2bopt. Furthermore, bow and arrow-like shapes outline the
contours. Implicit functions from Eqs. (12) and (15) denote dashed-dotted bow while horizontal dashed lines
b2 = bopt denote arrow and vertical dashed lines connecting circle with down-pointing triangle shown at the
top with the corresponding coordinates �(copt, 2bopt) denote string. Similarly shaped contour optimization
diagrams are reported in [2,35]. In conclusion, dash-dotted bow curve connects all three markers: circle,
diamond and triangle.

Next, the analytical and numerical quasi-static results are compared for the displacement and stress cor-
rection. Results are shown in Table 6 with the corresponding maximum relative difference Erel,max < 0.4%.

Although only minor discrepancies are observed for this static benchmark case, it should be noted that
the vibration fatigue study conducted in the further investigation depends exponentially (Basquin) on both
displacement and stress simultaneously as witnessed from structure of Eq. (21). Thus, special considerations
are taken into account in the following.

With that in mind, two separate Abaqus vibration fatigue models are defined. First model is simplified
and denotes closely Fig. 1a. Instead of real continuum helical spring k3 analogue to Fig. 1b, a single 3D
C3D8R first-order hexahedron continuum element with reduced integration is employed. It is acting as a
simple truss/rod connector element which serves as both equivalent stiffness and fatigue stress concentrator. In
order to approximate the real 3D spring presented in Fig. 1b, an equivalent ideal spring is defined by matching
both stiffness k0 and equivalent stress σeqv(HMH),max of the original spring which are prescribed as equal. This
is performed in order to verify proposed dynamic procedure regardless of the chosen deflection and the stress
correction accuracy. For pure normal axial load, stiffness and stress equations for truss can be, respectively,
written as
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(a) (b) (c) (d)

Fig. 13 2-DOF Abaqus isolator FE models: a ideal scheme, b real scheme, c ideal screenshot, d real screenshot

ktruss ≡ k0 = AtrussEtruss

l
,

∣∣∣σeqv(HMH),max

∣∣∣ ≡ |σ0n| = k0
Atruss

|x02| , (23a, b)

where Atruss = a2truss is truss axial quadratic surface area and Etruss is an equivalent Young’s modulus of the
truss. Since stress is uniaxial, equivalent stress amplitude σeqv(HMH) according to von Mises is equal to normal
stress amplitude σ0n. Thus, the truss equivalent parameters follow from equalling Eqs. (23a, b) with previously
established stiffness and stress relations for helical spring which consider both deflection and stress correction
factors i.e.

ktrue ≡ k0 = 1

Kδ

Gd

8C3n
,

∣∣∣σeqv(HMH),max

∣∣∣ = √
3Kτ |τnom| = √

3
Kτ

Kδ

G

C2nπd
|x02| . (24a, b)

Solving for the two unknowns from Eqs. (23–24) yields Etruss ≈ 15075.385MPa and atruss ≈ 3.737mm.
Ideal and real Abaqus isolator FE models are shown in Fig. 13. The model schematics are denoted in Fig. 13a,
b, while Fig. 13c, d illustrates actual Abaqus FE model screenshots.

In Abaqus, springs k1,2 and dashpot c2 are utilized through SpringA andDashpotA FEs, respectively. They
add axial spring/dashpot between the two nodes whose line of action is the line joining the two nodes [40].
Abaqus does not yet possess ideal inerter functionalitywhich is similar to ideal spring/dashpot. Hence, analogue
to Smith original rack and pinion inerter concept [4] the required optimum inertance bopt is utilized alternatively
by defining discrete dynamic inertia moment JO and using embedded Abaqus *Equation functionality. The
imposed feature ties relative nodal displacement between masses m1 and m2 to rotation of inertia JO through
custom created relation

runit = 1 m ⇒ r · ϕz (JO)︸ ︷︷ ︸
DOF6

− y1 (m1)︸ ︷︷ ︸
DOF2

+ y2 (m2)︸ ︷︷ ︸
DOF2

= 0, (25)

where nodal displacement y is measured in metres and nodal rotation ϕz is measured in radians. Equation (25)
implies that if using SI units, one metre relative displacement between masses m1 and m2 yields one radian
rotation of JO. If the relative displacement between the two terminals (i.e. masses m1 and m2) is zero, no
rotation occurs and inerter does not contribute to functionality of the isolator. Consequently, dynamic moment
of inertia JO in current configuration serves as an ideal inerter whose inertia characteristics can be calculated
according to a simple expression

JO = bopt · r2unit. (26)

By adopting convenient unit radius runit = 1m, dynamic moment of inertia for the displacement-based opti-
mization is JO = 15 kgm2 and JO ≈ 13.701 kgm2 for the velocity-based optimization (Table 5). Moreover,
it can be concluded that JO ∝ bopt and stated that Eqs. (25, 26) are exact for both small and large rotation
effects.

In Abaqus, Lánczos method is used as eigensolver. Steady-state dynamics, Direct Step is employed for
obtaining linear response in frequency domain analogue to direct method Eq. (4). In order to obtain sufficient
visual resolution of results, 500 equally spaced discrete frequency steps per analysis are requested. First,
velocity-based optimization results from [2] and Sect. 2.1 are taken into account. Figure 14 denotes comparison
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Fig. 15 Spring k3 stress amplitudes |Sa(k3)| comparison: a optimal damping, b optimal damping and inertance

of the analytical and Abaqus ideal models from Eq. (23a, b) for mass m2 displacement amplitudes. Two
extreme cases are taken under consideration. The first case includes super-optimal extremely high damping
csup = 100 · copt. It effectively locks the isolator and produces new resonance Ωa (Fig. 14a) from Eq. (11b).
The second test case sets zero damping c2 = 0 and considers optimal inertance b2 = bopt which unveils
anti-resonance ΩA (Fig. 14b) from Eq. (11a). Since damping c2 in Fig. 14b is prescribed to zero, responses
at natural frequencies tend to infinity at eigenvalues obtained from Eq. (10). All desired effects, previously
derived analytically [2,35], are successfully captured by FEM solutions. Abaqus ideal and real models yield
almost the same displacement amplitudes results. Hence, they are purposely not distinguished here.

Figure 15 shows comparison of analytical, Abaqus ideal and Abaqus real models for spring k3 stress
amplitudes in fatigue nomenclature |Sa(k3)|. Optimum damping copt and inertance bopt parameters for the
velocity-based optimization from Table 5 are considered. A very good agreement is observed between all
models. Thus, the correct numerical inerter implementations and approximately correct displacement and stress
correction factors adoption for analytical calculations is strongly implied. There is virtually no discrepancy
noted between analytical and Abaqus ideal models.

Fe-Safe [41] software suite is further employed with von Mises criterion evoked for fatigue analysis. The
converged FEM complex nodal stress amplitudes from Abaqus are taken into account for the most destructive
frequency (i.e. first natural frequency where Ω = ωn1(bopt)). Custom created Fe-Safe material S − N (i.e.
Stress amplitude–No. of cycles to fatigue) curve [2,41] is definedwith respect to parameters S′

f and B (Basquin)
from Table 4. The entire ideal and real FE spring models are analysed. Figure 16 shows the final results of
performed HCF real spring analysis for the velocity-based optimization, analogue to [2]. Explicit Basquin’s
curve Sa = S′

f · (Nf)
B is superimposed and shown as inclined dashed line in Fig. 16. The presented curve is

ranged from 103–107 fatigue life cycles.
Figure 16b shows particular vibration fatigue life results of real spring, post-processed inAbaqus. Analogue

to analytical solution [1,2,8], the shortest fatigue life is expected on the inner-coil side of spring numerical
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Fig. 16 Real spring k3 fatigue life: a number of cycles to failure Nf (k3), b Abaqus/Fe-Safe Nf (k3)(log)

Table 7 Vibration fatigue optimization study analytical and numerical results comparison for c2 = copt2 and b2 = bopt

Method ωn1 (s−1) Erel (%) ωn2 (s−1) Erel (%) |x02(ωn1)| (mm) Erel (%) Sa(ωn1) (MPa) Erel (%) Nf (ωn1)| (–) Erel (%)

Analytical 178.373 – 244.852 – 0.524 – 232.281 – 1,002,949 –
Abaqus/ideal 178.373 0.000 244.852 0.000 0.524 0.000 232.281 0.000 1,002,945 0.000
Abaqus/real 178.076 0.167 244.852 0.000 0.522 0.368 230.998 0.556 1,060,086 −5.390

model. Abaqus/Fe-Safe LOGLife legend shows homogenous life field scaled according to expression [41]

(Nf)LOGLife−Repeats = log10 (Nf) ⇔ Nf = 10(Nf )LOGLife−Repeats, (27a, b)

where actual minimum number of cycles Nf compared to analytical results is shown in Table 7. These results
correspond to the velocity-based optimization study conducted in [2]. Rigid benchmark method is adopted
herein. All the results are compared for analytically calculated natural frequencies ωn1(Anlt).

By comparing analytical and Abaqus ideal model, the difference Erel ≈ 0.000% can be observed for all
quantities. With regard to number of cycles Nf , only negligible numerical rounding error occurred. However,
some minor discrepancies can be observed while comparing analytical and Abaqus realmodel. It is necessary
to emphasize that smaller differences are noted in Table 6 for the displacement and stress correction factors
if compared to differences observed in Table 7 for displacement |x02(ωn1)| and stress |Sa(ωn1)| amplitudes,
respectively. In conclusion, it is important to point out that these are a cumulative consequence of mismatch
between the fundamental natural frequency ωn1 obtained analytically and numerically.

The results for the stress amplitude Sa(ωn1) reported in Table 7 differ by only∼0.556%; however, difference
is magnified in fatigue analysis to considerably larger∼ |5.390|%. This is due to the fact that Eq. (21) presents
exponential relation where small differences in stress yield with much larger dissipation for general fatigue
analysis results. By taking into account stress amplitude Sa(ωn1) ≈ 230.998MPa computed by Abaqus,
difference between hand calculated fatigue from Eq. (21a) and the one from FE complex nodal stress and
Fe-Safe results now completely vanishes, i.e. falls to Erel ≈ 0.000%. Hence, only analytical computational
error lies in the helical spring adopted displacement and stress approximate correction factors (i.e. Kδ,A/G and
Kτ,Wahl). As a final consequence, analytical results are now on the safety side and provide more conservative
approximate fatigue life assessment compared to FEM.

In the following, four specific optimized cases are considered regarding Table 5. The displacement-based
optimization parameters with (bopt) and without inerter (b0), and the velocity-based optimization parameters
with (bopt) and without inerter (b0) are taken into account. Comparison of analytical and FEM results is shown
in Table 8. Influence of inerter on circular natural frequencies is presented, and it can be observed that due
to the added apparent mass—frequencies diminish. Results are reported for the most destructive, e.g. first
resonant excitation frequency where Ω = ωn1(Anlt).

Very good agreement is generally observed in Table 8. Analogue to results denoted in Table 7, Abaqus
ideal spring results show almost no relative error compared to analytical solution with the exception of small
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Table 8 Vibration fatigue displacement and velocity optimization study analytical and numerical result comparison

Method Displacement amplitude optimizationH2(x0) Velocity amplitude optimizationH2(v0)

Ω (s−1) Erel (%) Nf (Ω) (–) Erel (%) Ω (s−1) Erel (%) Nf (Ω) (–) Erel (%)

Analytical ωn1b0 183.017 – 170,956 – ωn1b0 183.017 – 134,540 –
Abaqus/ideal 183.017 0.000 170,963 −0.004 183.017 0.000 134,544 −0.003
Abaqus/real 182.714 0.166 160,733 6.361 182.714 0.166 126,690 6.196
Analytical ωn1bopt 177.885 – 3,669,242 – ωn1bopt 178.373 – 1,002,949 –
Abaqus/ideal 177.885 0.000 3,669,457 −0.006 178.373 0.000 1,002,945 0.000
Abaqus/real 177.588 0.167 3,870,106 −5.190 178.076 0.167 1,060,086 −5.390

(a) (b)

Fig. 17 Spring k3 number of cycles to fatigue failure Nf (k3): a 1/Nf (Ω) FRFs, b Nf (ωn1(Anlt))

fatigue life assessment errors attributed to numerical rounding. Taking into account Abaqus real spring results,
natural frequencies always seem to be a bit lower compared to analytical solution. Larger discrepancies are
observed for fatigue calculation as a result of mismatch. If the inerter is present in the isolator, analytical results
yield with more conservative fatigue life assessment compared to FEM. However, excluding the inerter from
the isolator leads to less conservative analytical fatigue results compared to FEM.

Results are recapitulated and visually presented in Fig. 17. Inverse number of cycles to fatigue as a function
of circular excitation frequency is shown in Fig. 17a for all four cases. The small rectangular detail represents
range of response for near-resonant conditions. This detail also implies that the highest 1/Nf FRF peaks
correspond to the lowest fatigue life. Labels copt2 in legend imply both optimum damping and optimum
inertance bopt. Cases without inerter and with optimum damping (i.e. copt(x0) and copt(v0)) almost cannot
be visually distinguished, except near resonance conditions as shown in rectangular detail. Improvements are
observed for optimum damping copt2 and inertance bopt, compared to only optimum damping copt on almost all
frequencies, except in the vicinity of the second natural frequencyωn2bopt. Bar chart shown in Fig. 17b denotes
the most conservative criterion (i.e. number of cycles in resonant conditions) which corresponds to Table 8.
It is organized as follows: bars are aligned so that the highest number of achieved life cycles is positioned far
left and the lowest number of cycles is positioned right. The line dashing and colour definition of the FRFs
(Fig. 17a) corresponds to line dashing and colour of bars (Fig. 17b).

As expected, displacement-based optimization criterionH2(x0) yields general further improvement com-
pared to velocity-based criterion H2(v0) previously proposed in [2]. This is true for the test cases with and
without inerter. Moreover, by inspecting results from Table 8 and Fig. 17b, improvements are much more
pronounced for the displacement-based optimization compared to velocity-based optimization when utilizing
combined optimumdamping copt2 and inertance bopt. For the velocity-based optimization, over 1million cycles
are achieved [2]. However, for herein proposed displacement (i.e. fatigue)-based optimization, over 3.5 times
more cycles are achieved. It can be considered as further substantial improvement. Thus, for shown family of
vibration isolation systems it is justifiable to include inerter in the isolator and perform displacement-based
optimization analysis if stress of coupling elastic components is of crucial importance.

It can finally be concluded that spring correction factors used in the context of this study and embedded
in the analytical method provide sufficiently correct approximate solution compared to FEM. However, it
should be noted that this direct dynamic stiffness analytical method provides for more transparent solution
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and computationally inexpensive model. That is especially evident when compared to direct FEM solution. If
the real spring model is considered for the range denoted in Fig. 15, computational process takes considerable
amount of time on high-end PC desktop computer. At first glance, relatively simple FEM model is utilized.
However, due to complex real spring geometry and many additional kinematic relations, the incremental
numerical process in frequency domain tends to get saturated and rather slow. This only includes Abaqus
complex stress direct computation, where Fe-Safe takes additional/considerable CPU time for PSD-based
fatigue life calculation. Moreover, analytical expressions derived and used throughout this investigation are
approximately true even for continuous systems with distributed mass across the spring with the assumption
that ratios between spring mass to primary and secondary mass are small. This makes proposed analytical
method more appealing and time effective for this class of systems.

Considering that pitch angle in this study is defined through relation l = 2 · d and α = arctan[l/(πD)],
it would be logical to further investigate the influence of arbitrary large pitch angle α on deflection and stress
correction. The future study notably applies to further testing of Wahl approximate stress correction factor in
detail as it does not contain the pitch angle in its formulation, compared to, for example, A/G. On the other
hand, it is reassuring that Wahl currently demonstrates the highest accuracy compared to FEM for a wide
variety of tested parameters. Additionally, the method proposed in this work could find its applicability on
other types of springs used in suspension systems (e.g. leaf springs) [1,43]. Automobile leaf spring can act
as both road shock absorber and carrier of lateral loads [1]. Thus, it could prove beneficiary to examine the
effects of including both helical and leaf spring in conjunction with inerter in the isolator. Moreover, simplified
analytical leaf spring vibration fatigue model analogue to one proposed in the scope of this investigation may
be established.

6 Conclusion

A novel cylindrical helical spring solely displacement-based (i.e. vibration fatigue-based) H2 optimization
method for inerter-based vibration isolation system is presented in this paper. The analysed spring couples
receiving body (i.e. mass that needs to be isolated from vibrations) to the fixed ground. The optimization
method is based on the previous findings which imply that the stresses in the spring are directly proportional
to spring maximum displacement amplitudes. Power spectral density principle in the broadband frequency
domain is employed for spring life assessment and complementedwith the direct inversion of dynamic stiffness
matrix method. The efficiency of the proposed method is studied on a two degree-of-freedom system which
represents reduced-order model of a potentially much more complex general dynamic system. Results are
compared to previous study which was based on broadband minimization of the specific kinetic energy as a
vibration optimization criterion. Substantial improvement regarding prolonging spring high-cycle fatigue life
is observed by utilizing currently proposed method.

Two types of referent isolators are studied throughout the paper. First referent isolator incorporates optimal
inerter and optimal viscous damping, while the second one contains only the optimal damping (i.e. inerter is
excluded). Based on the previous research, it is confirmed that simultaneous optimization of isolator damper
and inerter connected in parallel convincingly outperforms any isolator configuration that contains only damper
(i.e. systemwithout inerter). Furthermore, in the scope of this work it is additionally reported that displacement-
based optimization always outperforms kinetic energy (i.e. velocity-based) optimization if the ground-coupling
spring fatigue life of the receiving body is a primary optimization criterion objective.

Spring deflection and stress correction factors from the referent literature are benchmarked versus finite
elementmethod. Previously derived approximate Timoshenko/Cowper displacement correction factor based on
the strength of materials principles assumption, thick shear-deformable Timoshenko beam theory and enriched
with Cowper shear correction is set to test against finite element method. It is found that proposed deflection
correction factor matches excellently with the beam-based finite element solution. However, the obtained
results are completely divergent compared to theory of elasticity based on approximate Ancker and Goodier
solution and complementary continuum finite element method solution alike. Thus, it can be concluded that
beam-based theory is not appropriate and should not be used for helical spring calculation, especially for small
spring indices. The most convenient correction factors are adopted for further vibration fatigue study based on
benchmark comparison results. Ancker and Goodier factor is confidently adopted for the spring displacement
correction, while for the spring stress correction, Wahl factor is conditionally adopted. Despite the fact that
some discrepancies and inconsistencies were found in the formulation of the Wahl stress correction factor,
the parametric analyses and comparisons with numerical solutions have apparently shown the best agreement
with adopted Wahl stress correction solution.
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Previously introduced simplified analytical method for calculating cylindrical spring high-cycle fatigue
life is verified herein by comparing the analytical and finite element method results. The proposed method
employs von Mises energy criterion for shear-governed biaxial proportional stress and Basquin’s relation. The
only reported discrepancies between the analytical and numerical methods are related to adopted approximate
displacement and stress correction factors. Otherwise excellent agreement is noted between the two employed
methods.

Furthermore, the optimum inertance concept is integrated into finite element-based numerical solution
by following the original rack and pinion analogy taken from Smith. Moreover, an excellent agreement with
analytical solution is reported. The novel inerter-induced effects (e.g. anti-resonance of the receiving body and
reduction in natural frequencies) are successfully reproduced within finite element-based solution.

The future work regarding investigation presented herein will be to further study the influence of much
larger spring pitch angles on the displacement and stress fields. Consequently, a more general correction
models could be developed with the aim to capture both small spring index and large pitch angle effects
simultaneously. Finally, the alternate ways of implementing the both ideal inerter (e.g. massless) and real
inerter into a more general and robust finite element-based solution will be investigated. In the future, possible
benefits of additionally including the leaf spring in the inerter-based isolator with regard to absorbing shocks
and carrying lateral load could be studied.
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20. Mlikota, M., Schmauder, S., Božić, Ž.: Calculation of the Wöhler (S–N) curve using a two-scale model. Int. J. Fatigue 14,

289–297 (2018)
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A B S T R A C T

The aim of this study is to analytically and numerically model the vibration-induced helical
spring fatigue in a generalized vibration isolation system. The system consists of a receiving body
and a dynamically active base coupled through a passive isolator. The isolator consists of a
coupling helical spring and an inerter. System inherent damping is considered through modal
damping. Vibration isolation system is analysed parametrically by varying its corresponding
dimensionless coefficients. The coupling helical spring fatigue life extension is used as the iso-
lation quality criterion. Since isolator spring stress and related fatigue life directly correspond to
relative displacement between spring terminals, the effect of inerter on relative displacement
amplitudes is determined. Novel helical spring stress and deflection correction factors are pro-
posed based on the theory of elasticity and finite element analysis results. The proposed helical
spring correction factors are more accurate compared to correction factors available in the
current literature, especially when considering very large pitch angles. Fatigue life improvement
of considered helical spring is achieved due to introduction of inerter in the isolator system,
which is especially evident in the resonant working conditions.

1. Introduction

Mechanical vibrations can span displacement amplitudes from nano-meters in precision engineering applications to meters in civil
engineering practical situations. Vibrations detrimental effects on dynamic systems and structures may be of various natures, where
failure is one of the most important ones [1]. Vibration-induced structural failure may occur due to excessive stress/strain during
transient or steady-state events (e.g. building response to earthquake loading), by instability due to particular operating conditions
(e.g. bridge flutter under wind excitation, reported in Tacoma Narrows bridge catastrophe during wind-induced vibration [2]), or
simply by fatigue (e.g. flexible mechanical parts in operating machines) [1–3]. The engineering structure or machine component
exposed to vibration can fail because of material fatigue resulting from the cyclic variation of the induced stress/strain [2,3]. Isolation
implies preventing the propagation of disturbance forces to sensitive parts of the systems, where the system (i.e. receiving body [4,5])
is protected against the motion of its foundation or base [1,2], or from any type of disturbance force [6]. Inerter is a relatively new
element in the theory of mechanical networks. It is a device which produces a force which is proportional to relative acceleration
between its terminals [7] and it has been extensively used in research of the structural vibration suppression. Various types of the
inerter-based isolator systems were considered [4–6] with special emphasis on the suspension systems [8]. Moreover, beneficial
influence of inerter in the vibration fatigue optimization studies is reported in the literature [4,5]. In these studies, particular accent is
given on coupling helical spring fatigue life extension due to the optimally tuned inerter in the isolator [4]. Proposed optimization
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method and analytical results reported in [4] were further verified via extensive parametric finite element method (FEM) analysis [5]
where very good agreement with the analytical method was observed. Exploiting FEM as an established control verification pro-
cedure is usual practice employed in parallel with complicated analytical computations [9]. In addition, FEM is also commonly used
for advanced inverse identification of material parameters [10–12].

A spring is a type of mechanical link, which is in most applications ideally assumed to possess negligible mass and damping [2]. It
is one of the most important fundamental mechanical components found in many practical applications [5]. Springs in the vibration
isolation systems are subjected to random dynamic loads during service. The crack may initiate and eventually propagate at a stress
concentration location of the spring, leading to a potentially catastrophic fatigue failure [4], especially evident in case of resonant
conditions [5]. In order to evaluate the vibration induced fatigue in the spring, it is necessary to designate stiffness, stress and
damping parameters of the dynamic system [4]. The springs must expectedly withstand relatively long exploitation period. Thus,
appropriate high-cycle fatigue (HCF) [13] calculation method (above ~103 life-cycles) is usually used for evaluating fatigue life [5].
Biaxial shear-governed fatigue life criterion is commonly utilized for spring fatigue estimation where most stressed region is normally
located at the inner side of the helix [4,14–19]. Multiple stress correction factors for helical spring are proposed in the literature
which account for influence of this highly stressed region [5,15]. In parametric numerical study conducted in [5], it was reported that
Wahl stress correction [14–16] best coincides with the results obtained via FEM. Moreover, an unresolved discussion is noted in the
literature [4,5,15] whether using the aforementioned stress correction factor may yield with overly conservative fatigue life esti-
mation.

Due to complex geometries used in the modern machine components, analytical fatigue life estimation is commonly omitted and
is almost exclusively conducted via FEM-based software [5,16,19–24]. If considering dynamic (i.e. vibration) effects, operating with a
power spectral density (PSD) load and obtaining vibration fatigue results in the frequency domain can prove much less time con-
suming when employing complicated, computationally expensive FEM models [25]. Consequently, the calculation of the broadband
frequency response functions (FRFs) [26] is much faster than a detailed transient dynamic analysis in the time domain [27]. When
excitation is given in the form of PSD in a frequency domain, the response of the systems is commonly obtained by using the transfer
function (TF), i.e. FRF of target systems and PSD of excitation loads [5,26,27].

In literature [5,16], doubts were raised whether approximate Wahl's helical spring stress correction factor can capture large pitch
angle effects accurately enough due to simplifications made in derivation of governing equations. In [4], an attempt was made to
model the analytical spring deflection correction by using thick Timoshenko beam theory [28] enriched with Cowper shear correction
[29]. The obtained results [5] match almost perfectly with FEM based [29,30] beam solution. Nevertheless, it is additionally reported
that these beam-based results are completely divergent when compared to theory of elasticity based Ancker and Goodier deflection
correction [17] and the corresponding 3D FEM results [29,30]. Consequently, it was implied that the beam-based solution should not
be used in the context of (relatively thick) helical springs. Furthermore, the question of large pitch angle influence on helical spring
deflection correction still remains unanswered.

In this study the vibration fatigue induced effects in a cylindrical helical spring acting as an elastic element in an inerter-based
isolation system are considered. The contribution of this study is divided into two main parts. The first part focuses on contrasting the
performance of isolator with and without inerter and emphasizes the novel beneficial inerter-induced effects. The second part focuses
on determining the spring stress and deflection factors and embedding these proposed correction factors into analytical expression for
HC vibration fatigue assessment by incorporating previously established TF. The paper is structured as follows. In section 2, the
theoretical background for inerter-based vibration isolation system model is established. In section 3, novel spring deflection and
stress correction factors are derived and discussed. Final section 4 establishes a benchmark example incorporating all previous
concepts by comparing analytical and FEM results of the vibration fatigue study. Moreover, the ideal inerter concept is further
implemented in the FEM code Abaqus by additionally employing modal superposition method [26,29].

2. Inerter-based isolator model

In this chapter, general analytical expressions for vibration amplitudes of the inerter-based vibration isolation system are derived.
Stress amplitudes of the isolator spring are linearly proportional to relative displacement of its terminals [27], thus influence of
inerter on relative displacement is studied. The goal of the conducted vibration isolation-based parametric analysis is to lower the
stresses of the isolator coupling spring.

The proposed simplified discrete inerter-based isolator vibration fatigue model is shown in Fig. 1a). The whole vibration system
consists of discrete mass m (i.e. “receiving body”) coupled to a dynamically active base/ground by a spring of stiffness k, a viscous

Fig. 1. 1-DOF vibration isolation system: a) load and displacement scheme, b) free-body scheme, assumption: x > u.
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damper with damping coefficient c and an inerter of inertance b. Isolator consists of all three connecting elements coupled in parallel;
i.e. spring k, damper c and inerter b. Connecting elements are commonly assumed to be ideally massless for calculation simplicity
reasons, as their mass is usually rather small compared to primary mass m in engineering applications [2,6]. The inerter produces a
force proportional to the relative acceleration between mass m and ground/base. For the analysed case, the excitation is provided by
the imposed motion of the supporting base. The displacement of the base about a neutral position is denoted by u(t) and the response
of the mass from its static equilibrium position is represented by x(t). At any given time, the relative displacement of the helical spring
is x – u, the relative velocity between the two ends/terminals of the damper is x ̇ – u ̇ and the relative acceleration between the two
terminals of the inerter is ẍ – ü.

The equation of motion [1–6] for the free-body scheme in Fig. 1b) can be written as

+ − + − + − =mx b x u c x u k x u¨ (¨ ¨) ( ̇ ̇) ( ) 0 (1)

Base/ground complex broadband excitation is assumed in the form u(t)= u0eiΩt, where u0 is the ground displacement complex
amplitude, “e” is the base of the natural logarithm, imaginary number = −i 1 , Ω is the excitation circular frequency and t is the
time. Furthermore, the solution of Eq. (1) is assumed as x(t)= x0eiΩt where x0 is the complex displacement amplitude of mass m.
Separating the response and excitation variables yields with the dynamic forces equilibrium, and consequent absolute (i.e. x0/u0) and
relative (i.e. x0,rel/u0) steady-state complex solutions of Eq. (1), which can respectively be written as

+ + + = + + ⇒ = + +
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It is implied from Eq. (2c) that relative displacement complex amplitude x0,rel = x0 – u0 directly corresponds to spring k stress
[27]. In return, spring stress is inversely and non-linearly proportional to number of cycles to fatigue failure Nf, analogue to results
reported in [4,5] and further discussed in chapter 3.

For a more general approach in the scope of this study, the following parameters are introduced

= + = ⇒ = = = =m m b ω k
m
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ζ c
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m k
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m
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2

, ,n
n

eqv
eqv cr eqv (3a-e)

where η=Ω/ωn is dimensionless excitation frequency, Ω is circular excitation frequency and ωn=(k/meqv)1/2 is a fundamental
natural frequency of the system, conveniently scaled with respect to system equivalent mass meqv=m+ b. Since inertance b al-
gebraically contributes to equivalent, i.e. apparent mass meqv, this effect yields with diminishing of fundamental natural frequency
ωn. Furthermore, ζ= c/[2(meqvk)1/2] is dimensionless damping ratio, i.e. proportional [2] or modal [1,3,29,30] damping as a fraction
of critical damping, and ccr= 2(meqvk)1/2 is critical damping. Finally, dimensionless inertance ratio is designated as μ= b/m. Relative
displacement amplitude |x0,rel|= |x0 – u0| is further shown through convenient relative magnification factor M0,rel with respect to
Eqs. (2–3). Absolute magnification factor M0= |x0/u0| from Eq. (2b) and its corresponding relative magnification factor M0,rel = |x0/
u0 – 1| from Eq. (2c) can now be written as dimensionless frequency η-dependent scalars
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Parametric plots for relative magnification factor M0,rel from Eq. (4b) are shown in Fig. 2 for various combinations of ζ and μ. In
Fig. 2a), inertance μ is kept as constant value while damping ζ is varied. Two main phenomena can be observed from Fig. 2. Firstly,
damping beneficially influences relative response only near the resonant frequency (i.e. η≈ 1), see Fig. 2a). Otherwise, response is
not significantly influenced by damping ζ. Secondly, when η→∞ and μ≠ 0, then M0,rel∞ tends to value lower than unity, i.e.
M0,rel∞ < 1, see Fig. 2a) and b). Unity is otherwise common limit value for relative magnification factor M0,rel∞ in standard base-

Fig. 2. Relative magnification factor M0,rel by varying: a) damping ratio ζ (μ=1), b) inertance ratio μ (ζ=0.01).
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excited 1-DOF isolators [2] without inerter, i.e. when dimensionless inertance μ=0. Since equivalent spring stress directly corre-
sponds to relative magnification factor M0,rel, this is considered to be a broadband improvement.

By performing limit analysis on Eq. (4b), the limit value M0,rel∞ is obtained. Furthermore, relative magnification factor in re-
sonant excitation conditions M0,rel,res is determined by setting η=1 in Eq. (4b). These relations can be respectively written as

= =
+

= =
+∞

→∞
Μ M

μ
M η

ζ μ
lim 1

1
, ( 1) 1

2 (1 )
,

η
0,rel 0,rel 0,rel,res

(5a,b)

which implies that any positive isolator inertance value, i.e. μ > 0, always corresponds to lowering relative magnification factor
M0,rel in broadband frequency range, including resonant conditions η≈ 1. Moreover, isolator spring stress amplitudes σ0 are directly
proportional to M0,rel [4]. Thus, it can be concluded that higher the inertance ratio μ is set – lower the stress amplitudes in the spring
become for the entire broadband excitation range. Further adopting equivalent complex biaxial stress in the spring according to von
Mises distortion energy criterion [5] yields with general relation M0,rel ∝|σ0, eqv

HMH|. The improvements are evident for relative
magnification factor M0,rel at all frequencies 0 < η≤∞ due to addition of an inerter. This generalized finding of this section is
summarized through following relation

↑ ⇒ ∈ ∞ ↓μ M η( 0, ]) .0,rel (6)

In conclusion, for this class of isolation systems the goal of minimizing coupling spring stress amplitudes can be achieved by
simply setting large enough dimensionless inertance μ.

3. Helical spring correction factors and fatigue assessment

In this chapter, helical spring stiffness and stress are discussed. Novel displacement and stress correction factors are proposed. A
simple expression for determining the spring fatigue life is also recapitulated from [4,5], where HCF life above 103 cycles is utilized
and novel stress and displacement correction factors are included. Obtained relative displacement amplitudes in the frequency
domain from previous chapter, i.e. Eq. (2c) and Eq. (4b), are tied to fatigue life stress amplitudes Sa.

The studied helical spring analytical model is represented in Fig. 3a). Spring parameters are as follows; E is (Young) modulus of
elasticity, ν is Poisson's factor/ratio, S'f is fatigue strength coefficient, and “B” is dimensionless Basquin's exponent, i.e. fatigue
strength exponent [4,5,31] presented herein in capital letter in order not to be mixed up with inertance “b”. Diameters D and d are
mean coil and spring wire diameters respectively, and C= D/d is defined as spring index. Angle α is the helix pitch angle α=arc tan
[l/(πD)], and l is the pitch of the spring. Number of active coils is designated as integer n (n=2 in Fig. 3a) and h is spring total height
where h= n·l. Material of the spring is considered to be homogenous and isotropic. Small displacements/rotations and small/en-
gineering strains are assumed. Corresponding engineering stresses are considered to be linearly proportional to strain and below yield
stress σY. The geometry of one isolated helical spring coil (i.e. n=1) modelled in Abaqus [5,29] is shown in Fig. 3b).

Cylindrical spring is usually considered as thin/slender, curved rod/beam subjected to torsion load exclusively [4]. In that case,
classical strength of materials expressions are employed [4,18]. Analytical expressions for nominal spring stiffness knom, nominal
static displacement δnom and nominal shear stress τnom thus respectively write as

= = = =k F
δ
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0
3
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0
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where G= E/[2(1+ ν)] is the shear modulus. Eq. (7) holds for tensile and compressive applied force± F0, in case linear assumptions

Fig. 3. Helical spring k properties: a) analytical model [4], b) Abaqus geometric model, n=1, C=50/17, l=2d [5].
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are valid. If direct shear, curvature and pitch angle effects are included in the spring model, additional correction factors Kδ and Kσ
need to be applied for displacement and shear stress, where relations δmax= Kδδnom and τmax=Kστnom now hold [4]. Multiple
proposed correction factors are observed in literature [5,14–18]. By considering these correction factors and employing von Mises
energy stress criterion [4,5], corrected spring stiffness and max (i.e. corrected) spring equivalent stress can be respectively written as

= = = = =k F
δ
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K δ
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K C n

σ K τ K F C
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, 3 3 8
π

.
δ δ
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0

max

0
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0
2 (8a,b)

Based on findings of parametric investigation conducted in [5], A/G correction best describes FEM displacement field, while Wahl
correction best coincides with FEM stress field. Moreover, Wahl correction is currently part of DIN 13906 standard [4], and A/G
correction is considered to be one of the most accurate displacement correction factors in literature [5]. Table 1 sums up these
expressions, and additionally includes original A/G stress correction which is derived according to theory of elasticity assumptions
[17,18].

Supplementary observations are presented for Wahl stress correction factor. Nominal expression for Wahl stress correction factor
[14,15] can be written as

= −
−

+K C
C C

4 1
4 4

0.615 .σ,Wahl (9)

Wahl was partially influenced by Timoshenko [28] in derivation of this correction factor. The numerator of second term from Eq.
(9) is for now denoted as kW/T=0.615, where index "W/T" denotes Wahl/Timoshenko. Wahl readily used Timoshenko solution
which comes from setting a Poisson's ratio ν=0.3 in the equation derived for the shear stress at the horizontal edge of a cantilevered
circular bar with circular cross-section [28]. Such circular bar can be considered as a simplified isolated coil of cylindrical helical
spring [15]. By setting the different values for Poisson's factor ν, values of kW/T from second row of Table 1 are obtained as
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+
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k ν k ν k ν1 2
2(1 )
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where it can be observed that ν and kW/T are proportional. By using fixed kW/T=0.615 as denoted in Eq. (9), Poisson's ratio-
independent stress correction solution is hard-coded. Findings from [5] and comparison with FEM results justified excluding Poisson's
ratio influence and using Eq. (9) as-is. Interestingly, by considering ν=0 in W/T shear correction from Eq. (10b) and taking into
account small pitch angles (α≈ 0) for A/G stress correction factor from Table 1, almost the same results are obtained for any C value.
This effect is also reported in [5]. However, for larger pitch angles, these two approximate correction factors completely diverge.
Thus, detailed parametric FEM analysis is employed herein for further evaluation. Larger pitch angles and Poisson's ratio influence on
both stress and deflection fields are considered simultaneously.

In order to assess the sensitivity of the analysed spring model, C, α and ν parameters are independently varied. Six discrete values
used in the FEM analyses for spring index C are: D/d=50/2, 50/5, 50/8, 50/11, 50/14 and 50/17. Furthermore, six independent
pitch angles α, i.e. spring lengths/pitches l=tan(α)πD, see Fig. 3a), are: l=2d, 3d, 4d, 5d, 6d and 7d. Three values of Poisson's ratio ν
are also considered: ν=0.0, 0.3 and 0.49. Fully incompressible material (i.e. ν=0.5) is omitted in the scope of this work in order to
avoid possible shear/general locking effects due to consequent singularities in FE numerical formulation [29]. By considering all
three varied parameters (i.e. C, α and ν), 6× 6×3=108 FEM analyses in total are performed in Abaqus and Catia control models
separately, in order to obtain objective and impartial numerical results.

Abaqus parametric computational model is defined according to Fig. 3a) and analogue to Fig. 3b). Guidelines from [5] are
employed for FE modelling. Structured hexahedron continuum C3D20R FE mesh is used. Analysis is defined as linear and quasi-static.
Eight 2nd order hexahedron elements per spring thickness provide sufficiently accurate results according to herein performed mesh
sensitivity check, also available in [5]. Boundary conditions (BCs) are prescribed through two reference points (RPs) A and B. The
moving-pinned and fixed-pinned conditions are employed in RPs A and B respectively. Full BCs are: A(u,w=0) and B(u,v,w,φy=0).
RPs A and B are coupled to corresponding spring sides (i.e. outer highlighted surfaces in Fig. 3b) through flexible kinematic coupling
of type “Distributing”. In analogue Catia FE model, “Smooth” kinematic coupling is used which corresponds to MSC Nastran RBE3 [32]
flexible connection. In Catia, general unstructured tetrahedral mesh is employed which consists of 2nd order TE10 elements.

General observations of performed FE analyses are as follows. Due to familiar nature of tetra elements limited shape functions
[29,30], more scatter in Catia tetra results is observed compared to superior Abaqus hex elements. Nevertheless, same trends are
reported regardless of the used FEs (hex/tetra) or solver (Abaqus/Catia). The increase of the pitch angle corresponds to higher values
of stress and displacement factors respectively. Furthermore, rising pitch angle α introduces more prominent influence of Poisson's
ratio ν on stress and displacement factors respectively. Hence, optimization and fitting process is performed on existing correction

Table 1
Expressions for stress correction factors Kσ and deflection correction factors Kδ.

Author/standard Stress correction factor Kσ Deflection correction factor Kδ
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factors from Table 1 based on beforehand conducted numerical parametric analyses. The proposed improved (index “i”) expressions
based on original A/G theory of elasticity relations [17] and additional W/T shear correction [28] can be written as

   ⏞⏞ ⏞
= + + + +

+
= − + +

+
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2
, / , 2
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(11a,b)

Rounded, most rational optimized results are proposed and presented in Eq. (11). Fig. 4a) shows the improved stress correction
factor Kσ,A/G,i from Eq. (11a), Wahl, and original A/G Eqs. from Table 1 compared to FE (Abq/Cat) results. Fig. 4b) denotes improved
displacement correction factor Kδ,A/G,i from Eq. (11b) contrasted to original A/G Eq. from Table 1 and FE results. The results reported
in Fig. 4 are obtained for fixed values of small spring index C=50/17 (which implies thick spring) and Poisson's ratio ν=0.3, while
α is varied.

In Fig. 4a), it can be seen that Wahl predicts stress correction well for small pitch angle α which corresponds to spring pitch value
l≈ 2d, i.e. when pitch is approximately equal to two spring wire diameters. However, it fails to capture larger pitch angle effect.
Elementary A/G stress correction [17] follows the numerical results trend closely, but constantly underestimates the FE correction.
Finally, improved A/G,i stress correction consistently predicts numerical stress correction results very well. The first term in Eq. (11a)
represents empirical correction and shifts the entire curve up by 0.5%. The third term, i.e. 8/7, introduces the mathematical cor-
rection and influences the stress correction curvature. It is in fact the inverse of original 7/8 found in the authentic A/G correction.
The last term in Eq. (11a) denotes analytical W/T shear stress correction influenced by Poisson's factor ν, which is now tied to pitch
angle α. This makes improved Eq. (11a) compliant with previously published results [5] where it was reported that Poisson's effect
was negligible for small pitch angles. Also, relative numerical difference between Abaqus and Catia FEM results is far< 1% for all
given cases.

Furthermore, it is evident in Fig. 4b) that initial A/G deflection correction factor underestimates FE solutions for very large pitch α
values. Thus, additional empirical correction factor “3.185” shown in the last term numerator of Eq. (b) is used, instead of authentic
“3” from [4,5,17,18] and Table 1. Otherwise, original A/G displacement correction factor is left intact as it coincides with the FE
solution rather well.

Moreover, Fig. 5 presents superimposed results from Eqs. (11a,b) and Abaqus results where Poisson's ratio influence is clearly

Fig. 4. Spring correction factors comparison, ν=0.3, C=50/17, α=10 – 40°: a) Kσ(α), b) Kδ(α).

Fig. 5. Spring correction factors comparison by varying Poisson's ratio ν, C=50/17, α=10 – 40°: a) Kσ(α), b) Kδ(α).
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demonstrated. Very good agreement between analytical and FEM solutions is observed for stress and displacement curves respec-
tively. In Fig. 5a), it is reported that increase of the Poisson's ratio yields with higher stress correction, which is especially prominent
for larger pitch angles. That fact further justifies including W/T shear correction tied to pitch angle α. Opposed to stress correction, in
Fig. 5b) it is noted that higher values of Poisson's ratio correspond to lower displacement correction. Although displacement cor-
rection is negligible for small pitch angles, for larger pitch angles it becomes almost as prominent as stress correction. Thus, by
neglecting displacement correction Kδ, erroneous results could be produced when pitch of the spring helix becomes large enough. The
results and trends for larger spring indices C are qualitatively very similar to ones denoted in Fig. 5. Hence, they are neither sepa-
rately presented, nor further discussed.

Fig. 6a) and b) denote 3D plot trends of improved stress and deflection correction factors from Eqs. (11a,b) respectively, as
functions of spring index C and pitch angle α simultaneously. Poisson's ratio is set to ν=0.3. Plots are cut below unity and above two,
with regard to correction value K. In both plots is observed that singularity occurs when C→ 1, since this is neither physically, nor
geometrically achievable combination.

Improved semi-analytical optimized correction models from Eq. (11) capture FEM results and trends very well. Maximum relative
error Erel = (KA/G,i/KAbq – 1)·100% is below 1% for all compared values, i.e. 6× 6×3 FE analyses for stress and displacement
correction respectively. Moreover, inconsistent influence of C, α and ν is reported throughout parametric analyses (see Fig. 5 and
Fig. 6). Thus, the trends of these findings are recapitulated and summarized in Table 2. It needs to be emphasized that although
displacement correction seems to be dependent upon C (i.e. for lower C, displacement correction gets smaller, see Fig. 6b trends), that
effect is not so prominent when compared to e.g. rising pitch angle α consequences.

It seems that large pitch angles α correspond to higher Kδ and Kσ correction factors. Hence, pitch angle effects should not be
neglected if all structural effects need to be captured in the model while cylindrical spring deforms under loading. By adopting
convenient fatigue nomenclature, stress amplitudes |σ0| now write as Sa [4]. Basquin's equation Sa= S'f(Nf)B [5] is considered next.
Previously obtained expressions for assessment of spring fatigue life in the frequency domain Nf(Ω) from [4] are recapitulated.
Instead of absolute displacement, relative displacement amplitudes from Eq. (2c) are considered. Novel correction factors from Eq.
(11) are employed. Expressions for spring stress amplitudes Sa, Basquin's mathematical approximation, and corresponding fatigue life
in the frequency domain Nf(Ω) can respectively be written as

⎜ ⎟≡ = = ⎛
⎝ ′

⎞
⎠

⇒ = ⎡
⎣⎢ ′

⎤
⎦⎥

S σ Ω K
K

G
C n d

x Ω N S
S

N Ω K
K

G
C n d

x Ω
S

| ( )| 3
π

| ( )|, ( ) 3
π

| ( )|
.σ

δ

σ

δ
a 0,eqv

HMH
2 0,rel f

a

f
f 2

0,rel

f

B B
1 1

(12a-c)

Simplified Eq. (12c) is valid for HCF beyond 103 life-cycles; and for biaxial and proportional stress/strain cycle [4] where von
Mises distortion energy criterion is assumed. As already implied when defining spring correction factors, material must be linear and
homogenous, and equivalent stresses shouldn't surpass yield strength. Type of spring processing and manufacture (e.g. shot-peening
[4,21]) is for simplicity not considered herein. Spring is also assumed to be perfectly smooth and without any residual stresses.
Moreover, spring fatigue notch sensitivity is presumed to be near unity, i.e. Kt≈Kf, which is rather common for spring steel [4].
Nevertheless, these effects can readily be incorporated into Eq. (12c) when more complex model is considered. The same applies for
mean stress Sm effects which are not considered in the scope of this work.

Fig. 6. Improved spring correction factors, ν=0.3, C=1 – 14, α=10 – 40°: a) Kσ,A/G,i(C,α), b) Kδ,A/G,i(C,α).

Table 2
Trends of stress correction factors Kσ(C,α,ν) and deflection correction factors Kδ(C,α,ν).

Kσ ⇒ C↓ α↑ ν↑ Kδ ⇒ C↓ α↑ ν↑
Kσ↑ Kσ↑ Kσ↑ Kδ↓ Kδ↑ Kδ↓
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4. Inerter-based isolator helical spring vibration fatigue analysis

In this chapter, an illustrative example is solved in detail. Benchmark example embodies all previously shown principles. FEM is
extensively utilized for proposed method verification. Vibration system example parameters are given in Table 3.

Quantities m, μ, ζ and |u0| describe vibration system parameters, while D, d, n and l denote helical spring geometric parameters,
and E and ν denote linear material parameters. Fatigue parameters are depicted by S'f and B. Material and fatigue parameters are
adopted from [4,5] and represent spring steel. Small modal damping ζ=1% is assumed for lightly damped steel mechanical system
[3] in order to demonstrate relatively large inertance effect (μ=5). Ideal one coil spring segment (n=1) is defined to depict the
fatigue calculation procedure on computationally fairly light model. For real engineering applications, n≈ 5 active coils or more are
commonly used [15]. Also, very large pitch l=7d is employed in conjunction with very small spring index C=50/17 in order to test
the robustness of Eq. (11) embedded in Eq. (12c). The analysed vibration fatigue problem is represented by a discrete/lumped
parameter model as shown in Fig. 7, where u(t)= u0eiΩt.

The whole system consists of a mass m, a spring k and an implicitly given inerter of inertance b through dynamic inertia moment JA.
This simple system represents the scheme for possible physical realization of real inerter by using Smith initial rack and pinion inerter
analogy [7]. Levers CO and OA are assumed to be ideally rigid and massless. It is assumed that the critical component regarding
fatigue failure is a helical spring of stiffness k (Fig. 7a). Moreover, the equivalent truss (Fig. 7b) stiffness is defined as kideal =AE/l,
while the helical spring stiffness can be obtained from Eqs. (8a) and (11b) with the data from Table 3. Furthermore, A is designated as
truss spring quadratic cross-section area with dimensions a× a. Analogue, the truss equivalent stress is denoted by relation
σeqv,ideal = F0/A, while the spring equivalent stress can be obtained from Eqs. (8b) and (11a) with respect to Table 3. In order to make
the two proposed systems in Fig. 7a) and b) equivalent, truss and helical spring stiffness and stress are prescribed as equal. This is
done in order to verify the entire dynamic procedure, regardless of accuracy of the proposed correction factors from Eq. (11).

Small vibration rotation amplitudes are assumed where sin(φ)≈φ, and cos(φ)≈ 1. Free-body scheme from Fig. 7c) is considered.
System implicit equivalent viscous damping c is related to modal damping ratio ζ through Eq. (3d). The sum of moments ΣMO with
respect to vertically moving hinge “O” yields with differential equation of motion which can readily be expressed as

∑ = ⇒ + + − + − =M mxr J φ c x u r k x u r0 ¨ ¨ ( ̇ ̇) ( ) 0.O A (13)

By further considering relations JA= r2b and (x – u)≡ xrel = rφ, and dividing by rotation radius r, Eq. (13) morphs into dynamic
force equilibrium from Eq. (1). Hence, this simple rotational/translational system exhibits inerter-like behaviour through explicit
relation b= JA/r2. Before performing detailed dynamic analysis, stress and displacement correction factors for given parameters from
Table 3 are obtained analytically and numerically. Correction factors with regard to different assumptions and theories are shown in
Table 4 with the corresponding relative errors. At this stage of investigation, Abaqus solution is considered as a referent one.

Abaqus/Catia FEM solutions mutually vary only slightly. If no correction is used, correction factors for both stress and dis-
placement are grossly underestimated. Furthermore, by considering previously adopted A/G correction [4,5], relatively small ~3%
error is introduced for displacement. This is already implied in Fig. 4b). However, large stress error of ~20% is observed when
considering Wahl correction. Finally, the proposed improved A/G,i stress correction factor from Eq. (11a) gives very good correlation
with Abaqus, with less than ~0.3% Erel. Additionally, improved A/G,i deflection correction from Eq. (11b) shows ~0.53% error for
given very large pitch angle α. Hence, proposed correction factors outperform the most accurate ones from referent literature
[4,5,14,15,17]. Nevertheless, even newly proposed improved A/G,i correction factors could yield erroneous results for resonant
conditions Ω=ωn (i.e. η=1) with small damping ζ=1% assumed; due to steep characteristics of magnification factor near

Table 3
1-DOF inerter-based isolator model example parameters.

m, kg μ, − ζ, − |u0|, mm D, mm d, mm n, − l, mm E, GPa ν, − S'f, MPa B, −
100 5 0.01 0.1 50 17 1 7d 200 0.3 925 – 0.1

Fig. 7. 1-DOF inerter-based vibration isolator model: a) helical spring, b) truss spring, c) free-body scheme, x > u.
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resonance, see Fig. 2. Linear dynamic analysis which employs modal damping is considered next.
Modal analysis [1,26] embedded into commercial FEM codes [29,30,32] is utilized in Abaqus. Fundamental natural frequency ωn

(i.e. eigenvalue) and corresponding mode shape (i.e. eigenvector) for system in Fig. 7 is obtained via FEM. Kinematic excitation cannot
be imposed directly through BCs due to known limits of the standard FEM analysis when employing modal superposition method.
Alternative “Big mass method” (BMM) model [29] analogue to Fig. 8 is hence introduced and exploited.

If a very large [32,33] (i.e. big [29]) mass M, which is several orders of magnitude larger than the mass of the entire structure
(meqv) is connected to a DOF and a dynamic load F(t) is applied to the same DOF, then the corresponding acceleration can be
approximated using 2nd Newton's law by ü(t)≈ F(t)/M [32]. The accuracy of this approximation increases as M is made larger in
comparison to the equivalent mass meqv of the structure. The only limit for the size of mass M is the possible numeric overflow in the
computer. General recommendations are that the value of equivalent big mass should be approximately 106 times the mass of the
entire structure for an enforced translational DOF and 106 times the dynamic moment of inertia of the entire structure for a rotational
DOF [29,32]. The factor ~106 is a safe limit that should produce approximately six digits of numerical accuracy [32]. With regard to
Fig. 8a) and b), following expressions are used to recapitulate the BMM:
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Furthermore, both truss (i.e. ideal) spring and helical (i.e. real) spring systems (Fig. 7a,b) are employed in Abaqus. The ideal
system spring is denoted by one C3D8R hexahedral FE for which dimensions are a× a× l. Inertance b is employed through native
*Equation functionality which is defined in order to tie dynamic inertia moment JA rotation with relative displacement between mass
and ground, analogue to the procedure described in [5]. Equivalent Young's modulus Eeqv≈ 37.611 GPa and equivalent truss di-
mension a≈ 3.411mm for ideal spring are obtained by equalling kreal≡ kideal and σreal≡ σideal. By setting unit rotation radius
r=1m with regard to Fig. 7, inertia is obtained as JA=m μ r2= 500 kg·m2, where inertance b=m μ=500 kg, from Eq. (3e). For
even more detailed clarification of the given procedure, reference [5] is recommended. Following the guidelines and obtained results
from chapter 3 and [5], real spring is meshed in Abaqus with C3D20R 2nd order hexahedral elements where 8 FEs are used per spring
thickness, i.e. spring wire diameter d.

First benchmark test case excludes inerter from the model, i.e. μ=0. In Abaqus, previously described BMM in Steady state-
dynamics, Modal step is employed. Eq. (14c) is used for obtaining equivalent excitation force F(t) in order to mimic PSD kinematic
excitation. Ideal and real springs are analysed in the Ωmin= 0 and Ωmax≈ 2ωn frequency range. FRFs for analytical correction models
from Table 4, including Abaqus as a referent solution, are shown in Fig. 9 for 500 discrete frequency steps. Ideal spring FEM model is
not denoted at this stage. At first glance it can be observed that large offset error is introduced if no correction (No corr., dashed line)
is introduced in the computational model with regard to both displacement and stress amplitudes. “No corr.”model is thus completely
disregarded as no objective correlation can be found. Framed rectangle in Fig. 9a) represents the detail of mass m displacement
amplitudes for near-resonant conditions. When Wahl-A/G correction is considered, offset of resonant response can be observed,
which is already implied by ~3% error in Table 4. Regarding A/G,i correction, very good agreement is observed, although small
offset is still present when compared to Abaqus results. Considering stress amplitudes in Fig. 9b), Wahl-A/G correction now reveals
both offset error and response error which is a cumulative consequence of ~3% displacement error and ~20% stress error from
Table 4. Finally, the results acquired by A/G,i stress correction agree very well with FEM, even though inherent small offset is still
present.

Table 4
Analytical and numerical results for helical spring correction factors Kσ and Kδ.

Method C=D/d, − α, ° knom, N/mm Kσ, − Erel, % Kδ, − Erel, %

Abaqus 2.941 37.147 6 424.692 1.910 – 1.757 –
Catia 1.906 0.196 1.761 – 0.236
No corr. 1.000 90.973 1.000 75.686
Wahl-A/G 1.596 19.688 1.707 2.935
A/G,i 1.915 – 0.291 1.748 0.530

Fig. 8. Big mass method model: a) 2-DOF vibration isolation system, b) free-body scheme, meqv ≪ M.
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In order to quantify the differences between the FE simulation and analytical results in the broadband frequency range, dis-
crepancies of the FRFs reported in Fig. 9 are plotted with respect to relative error (see Fig. 10). Abaqus is considered as a referent
solution, while approximate analytical solutions are benchmarked and measured for error Erel. It is evident that A/G,i outperforms
Wahl-A/G combined correction by far when extremely large pitch angle α effect is considered. Moreover, it is necessary to emphasize
that the relative error for both newly proposed A/G,i displacement and stress correction is almost constantly one order of magnitude
lower compared to established Wahl-A/G correction [4,5].

Next, inerter is fully considered and employed in analytical and numerical solutions. Vibration study results are shown in Fig. 11.
By observing the response curves, an excellent visual agreement is reported between all models. Impeccable correlation is noted for
ideal spring and very good correlation is noted for real spring with regard to both displacement and stress amplitudes in Fig. 11a) and
b) respectively. Resonance ωn and anti-resonance ΩA= (k/b)1/2 [4–6] respectively are outlined by two vertical dashed lines in
Fig. 11a).

Furthermore, both ideal and real springs Abaqus output databases are imported and analysed in Fe-Safe software suite. Converged
complex nodal spring stresses from modal dynamic Abaqus step are considered. The von Mises energy criterion in the context of
Basquin's curve Sa= S'f(Nf)B is used within Fe-Safe algorithm, where inverse number of cycles 1/Nf is non-linearly proportional to
Fig. 11b) [5]. Same fatigue material parameters are used as in Table 3. Since this 1-DOF lightly damped system expectedly acts as a
band-pass filter, only the most destructive, i.e. system fundamental resonant frequency ωn, is taken into account.

Fig. 12 shows real spring vibration study results with μ=5 and for most conservative case when η=1, i.e. resonant conditions.
Spring resonant displacement amplitudes are reported in Fig. 12a), in mm. Node-averaged, converged equivalent stress amplitudes
are presented in Fig. 12b), in MPa.

By considering relative magnification factor M0,rel from Eq. (5b) (i.e. resonant conditions) and modifying the Eq. (12c) accord-
ingly, the following relation is obtained for assessing the spring fatigue life in resonance
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Fig. 9. FRFs comparison, μ=0: a) displacement amplitude |x0|, b) stress amplitude Sa≡ |σ0,eqv|.

Erel = (Abq/Anlt - 1)·100%

Fig. 10. FRFs relative error comparison, μ=0: a) displacement error |Erelx|, b) stress error |Erelσ|.
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From two extreme cases in Table 5, i.e. when μ=0 and μ=5, the following observations can be made. In case large enough
dimensionless inertance μ ≫ 0 is implemented in the isolator, a significant improvement in the fatigue life can be observed. However,
if no inerter is used in the isolator, violent spring rupture occurs for given parameters without even considering fatigue failure, since
reported Nf(μ=0) < 1.

By comparing results from Table 5, an excellent agreement between analytical A/G,i and Abaqus/ideal model is reported in all
cases. Negligible relative differences Erel are a consequence of rounding error due to combined influence of approximate BMM and
discrete numerical fatigue calculation errors.

For Abaqus/real model, situation is a bit different. First, Kδ error noted in Table 4 is reduced to ~0.264% as a result of squaring,
i.e. ωn=(k/meqv)1/2. Second, as a result of small mismatch between ωn and Kδ, stress amplitude results Sa now show more prominent
error compared to Kσ(A/G,i) from Table 4. This yields with ~0.82% relative error as a function of both ωn and modal damping ζ.
Finally, since HCF Eq. (15) describes an exponential curve, the accumulated difference is further accentuated to significant
~|7.877|%. When considering Abaqus stress amplitude Sa,Abq ≈ 261.231MPa and recalculating fatigue life by hand using Eq. (12b),
one obtains exactly the same number of life-cycles from Table 5 where Nf,Fe-Safe ≈ 309 860 and error completely vanishes.

From the proposed benchmark example, it can be concluded that only computational error is made through adopting novel stress
and deflection correction factors Kσ and Kδ, based on improved, although still approximate Ancker and Goodier elasticity theory
based correction. The benchmarked spring geometry parameters from Table 3 are chosen in such way to provide a very low spring

Fig. 11. FRFs comparison, inertance ratio μ=5: a) displacement amplitude |x0|, b) stress amplitude Sa≡ |σ0,eqv|.

Fig. 12. Abaqus/Fe-Safe results, η=1, μ=5: a) displacement amplitude |δ0,y|, mm, b) equivalent stress amplitude |σ0,eqv|, MPa, c) fatigue life Nflog.

Table 5
Analytical and numerical results for helical spring resonant vibration fatigue comparison (ζ=0.01).

Method ωn, rad/s Erel, % |x0(ωn)|, mm Erel, % Sa(ωn), MPa Erel, % Nf(ωn), − Erel, %

A/G,i, μ=0 191.736 – 5.000 – 1 580.301 – < 1 –
Abq/ideal, μ=0 191.737 0.000 5.001 – 0.020 1 580.301 0.000 < 1 –
Abq/real, μ=0 191.231 0.264 5.001 – 0.020 1 567.413 0.822 < 1 –
A/G,i, μ=5 78.276 – 0.839312 – 263 383 – 285 451 –
Abq/ideal, μ=5 78.276 0.000 0.839336 – 0.003 263 383 0.000 285 453 – 0.001
Abq/real, μ=5 78.070 0.264 0.839439 – 0.015 261 231 0.824 309 860 – 7.877
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index C and a very high pitch angle α in order to firmly test the robustness of the improved correction factors. In practice, such
combination of spring parameters is rarely used for the reason of resulting high stresses and low spring stiffness. Furthermore, the
influence of higher frequencies and mode shapes is omitted in this investigation, as only fundamental system frequency ωn is con-
sidered.

As a final note, this simplified vibration fatigue analysis aims to contribute in providing better understanding of yet unexplored
inerter capabilities. Transparent analytical method is presented herein where proposed expressions match very well with more
accurate FEM calculations. It can be used as a starting point for much more complicated analyses which include isolation systems
with multiple DOFs. Moreover, expressions derived in the scope of this work are approximately true even for continuous systems with
distributed masses if the ratio between the primary mass and other components mass is large enough. Proposed method could be
potentially used for assessing the influence of vibrations and corresponding durability of suspension systems. It may also be expanded
from helical springs to leaf springs which are commonly used in suspension systems [5,15,22].

5. Conclusion

The vibration fatigue parametric analysis of an inerter-based isolator helical spring is presented. The broadband frequency base
excitation is considered. The analysis method is demonstrated on a simple discrete one degree-of-freedom isolator system.
Dimensionless parameters for the inerter-based isolator system are derived and parametrically evaluated. Relative displacements,
which are proportional to coupling helical spring stress and its corresponding fatigue life, are analysed. In order to more accurately
model the system, the improved stress and deflection correction factors for isolator spring are proposed herein. Based on the con-
ducted study, the following major conclusions are drawn:

• Extended high-cycle fatigue life of isolator helical spring is achieved due to beneficiary inerter related effects. Corresponding
improvements in fatigue life are noted in broadband frequency excitation range, and are especially evident in most destructive,
i.e. resonant working conditions.

• Based on finite element analysis, more accurate helical spring correction factors are determined, compared to the correction
factors available in the current literature. This accuracy improvement is especially evident when large spring pitch angle effects
are addressed in conjunction with small spring index.

• The proposed procedure demonstrated on a simplified dynamic model could be used for computationally efficient analytical
vibration fatigue assessment of a more complex isolation system, e.g. helical springs in the suspension systems.
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