
Programming languages for autopoiesis facilitating
semantic wiki systems

Schatten, Markus

Doctoral thesis / Disertacija

2010

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of
Zagreb, Faculty of Organization and Informatics Varaždin / Sveučilište u Zagrebu, Fakultet
organizacije i informatike Varaždin

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:211:648175

Rights / Prava: In copyright / Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-09-23

Repository / Repozitorij:

Faculty of Organization and Informatics - Digital
Repository

https://urn.nsk.hr/urn:nbn:hr:211:648175
http://rightsstatements.org/vocab/InC/1.0/
http://rightsstatements.org/vocab/InC/1.0/
https://repozitorij.foi.unizg.hr
https://repozitorij.foi.unizg.hr
https://repozitorij.unizg.hr/islandora/object/foi:533
https://dabar.srce.hr/islandora/object/foi:533

PODACI O DISERTACIJI

I. AUTOR

Ime i prezime Markus Schatten

Datum i mjesto rodenja 27. rujan 1981., Beč (Wien), Austrija

Naziv fakulteta i datum diplomiranja na
VII/1 stupnju

Fakultet organizacije i informatike,
Varaždin, 22. studeni 2005.

Naziv fakulteta i datum diplomiranja na
VII/2 stupnju

Fakultet organizacije i informatike,
Varaždin, 31. siječanj 2008.

Sadašnje zaposlenje Fakultet organizacije i informatike,
Varaždin, asistent

II. DISERTACIJA

Naslov Programming Languages for Autopoiesis
Facilitating Semantic Wiki Systems

Broj stranica, slika, tablica, priloga, bibli-
ografskih podataka

300 stranica, 46 slika, 3 tablica, 5
priloga, 116 bibliografskih podataka

Znanstveno područje, smjer i disciplina iz
kojeg je postignut akademski stupanj

Društvene znanosti, Informacijske
znanosti, -

Mentor i sumentor rada
Prof. dr. sc. Mirko Čubrilo

Prof. dr. sc. Miroslav Bača

Fakultet na kojem je rad obranjen Fakultet organizacije i informatike

Oznaka i redni broj rada

III. OCJENA I OBRANA

Datum prihvaćanja teme od Znanstveno-
nastavnog vijeća

18. studeni 2008.

Datum predaje rada 4. lipanj 2009.

Datum sjednice ZNV-a na kojoj je pri-
hvaćena pozitivna ocjena rada

19. siječanj 2010.

Sastav Povjerenstva koje je rad ocijenilo

Prof. dr. sc. Mirko Maleković

Prof. dr. sc. Mirko Čubrilo

Prof. dr. sc. Miroslav Bača

Prof. dr. sc. Michael Kifer

Prof. dr. sc. Vladimir Mateljan

Datum obrane rada

Sastav Povjerenstva pred kojim je rad
obranjen

SVEUČILIŠTE U ZAGREBU

FAKULTET ORGANIZACIJE I INFORMATIKE

Markus Schatten

Programming Languages for Autopoiesis Facilitating Semantic

Wiki Systems

- DOKTORSKA DISERTACIJA -

VARAŽDIN, 2009

Marineli

Acknowledgements

The author would like to acknowledge the intensive help of his mentor prof. dr. sc.

Mirko Čubrilo especially in the field of language formalization. Without him this thesis

would probably never had been finished. Also the author would like to acknowledge his

co-mentor prof. dr. sc. Miroslav Bača for urging him to new and new scientific ideas

and concepts. A special thanks goes to prof. dr. sc. Mirko Maleković for very usefull

discussions on autopoietic theory as well as semantic modelling. He would also like to

acknowledge prof. Michael Kifer for very useful critics and suggestions, which made this

thesis a much better one. Additionally a great thank you should be given here to friend

and colleague Bernardo Golenja, mag. inf. the chief of the computer support center at

the Faculty of Organization and Informatics. Thank you for not killing me when ᵀaOPı̄s

went wild on arka.foi.hr. Another great thank you is for friend and colleague Gordan

Ponjavić who is one of the perpetrators that autopoietic theory became a part of my life.

Additionally my friend and colleague prof. dr. sc. Miroslav Žugaj who was the first to

introduce the author to scientific work should be acknowledged here. I would also like

to thank collegue Jurica Ševa, dipl. inf. for support and discussions. The author would

especially like to thank his parents Peter and Branka for their patience and understanding

as well as his brother Martin and his wife Ivana and the little ones Lara and Mauro. You

brought a lot of joy into my life! The last but greatest thank you goes to my fiancee

Marinela. This thesis is dedicated to you. Thank you for all the discussions, all the

patience and all the support any men in the world would love to get! <3

Markus Schatten

Fakultet organizacije i informatike

June 2009

iv

Contents

Acknowledgements iv

List of Figures ix

Chapter 1 Introduction 1

1.1 Objectives and Hypotheses . 4

1.2 Methodology and Framework . 5

1.3 Related Work . 7

Chapter 2 Wiki Systems 9

2.1 A Short History of Wiki’s . 9

2.2 Important Concepts . 10

Chapter 3 Languages for Wiki Systems 13

3.1 Language . 13

3.2 Regular Expressions . 15

3.3 Grammars . 17

3.4 Wiki Syntax . 19

3.4.1 Hyperlinks . 20

3.4.2 Images and other Objects . 23

3.4.3 Headings and Text Formatting . 26

3.4.4 Comments . 28

3.4.5 Tables . 29

3.4.6 Variables and Templates . 34

3.4.7 References . 34

Chapter 4 From SM over SW to SWS 40

4.1 Semantic Modeling and the Object - oriented Paradigm 41

v

4.1.1 Domains . 41

4.1.2 Concepts . 42

4.1.3 Generalization and Specialization 43

4.1.4 Objects . 44

4.1.5 Relations and Mappings . 45

4.1.6 Attributes and Attribute Values . 46

4.2 The Semantic Web . 46

4.2.1 Ontologies . 47

4.2.2 Semantic Web Languages . 47

4.3 Web Services . 49

4.4 Semantic Web Services . 49

4.5 Semantic Wiki Systems . 50

Chapter 5 Programming Languages for Semantic Wiki Systems 51

5.1 Frame Logic . 51

5.2 Semantic Wiki Language . 53

5.2.1 Semantic Wiki Syntax . 57

5.2.2 Semantic Templates . 58

5.2.3 Queries . 59

5.2.4 Meta Information . 71

5.3 Inconsistencies in Semantic Wiki Systems 72

Chapter 6 Autopoiesis and Autopoietic Systems 74

6.1 Introducing Autopoietic Systems . 74

6.2 Various Aspects of Autopoiesis . 75

6.3 Invitations to an New Paradigm . 78

6.3.1 Heterarchies and the Fishnet Organization 79

6.3.2 Process and Project Oriented Approaches and the Hypertext Orga-

nization . 80

6.3.3 Organizational Suprastructures and the Virtual Organization 81

6.3.4 Organizational Architecture . 82

6.3.5 The Fractal Company . 83

6.4 Relations between Social, Organizational and Information Systems 84

6.5 A Critical Review of Autopoiesis . 85

6.6 Defining Autopoietic Information Systems 89

vi

6.7 Modern Information and Communication Technologies 92

6.8 Current System Model . 95

6.9 Experiences and Lessons Learned . 98

6.10 Conclusion . 99

Chapter 7 Programming Languages for Autopoiesis Facilitating Semantic

Wiki Systems 100

7.1 Social Network Analysis . 100

7.1.1 Graph Theory . 101

7.2 Probability Annotation . 104

7.2.1 Query Execution . 105

7.2.2 Query Execution with User-Defined Rules 107

7.3 Annotated Semantic Wiki Language . 108

7.4 Amalgamation . 120

7.5 Amalgamated Annotated Semantic Wiki Language 121

Chapter 8 The Niklas Language 126

8.1 Wiki Component . 127

8.1.1 Hyperlinks . 127

8.1.2 Images and Other Objects . 127

8.1.3 Headings . 128

8.1.4 Text Formatting . 128

8.1.5 Lists and Tables . 129

8.1.6 Templates and Inclusion . 130

8.1.7 References . 130

8.2 Semantic Component . 131

8.2.1 Class Hierarchies . 132

8.2.2 Dictionaries . 133

8.2.3 Frequently Asked Questions . 134

8.2.4 Tables of Content . 134

8.2.5 Who Edited this Page . 135

8.2.6 Issue Tracking . 136

8.2.7 What Links Here . 137

8.3 Autopoietic Component . 137

8.3.1 Probability Annotation . 137

vii

8.3.2 Amalgamation . 138

8.4 A Short Comparison to other Semantic Wiki Engines 139

Chapter 9 Application Examples 145

9.1 Autopoietic System for Personal Computer Security 145

9.2 Autopoietic Scientific Publishing System 152

9.3 Autopoietic Knowledge Management System 162

9.4 Other Examples of Possible Applications 167

Chapter 10 Conclusion 169

Bibliography 172

Appendix A Wiki Parser for niKlas in XSB Prolog 185

Appendix B Semantic Wiki Parser for niKlas in XSB Prolog 197

Appendix C Amalgamated Annotated Semantic Wiki Parser for niKlas in

XSB Prolog 228

Appendix D Annotated Query Execution Engine Implementation Issues 262

Appendix E ᵀaOPı̄s Source Code 270

Sažetak 282

Curriculum Vitae 290

viii

List of Figures

2.1 Important concepts in wiki systems [70] . 11

4.1 Concepts as filters in our perception [58] 42

4.2 The concept triad [58] . 43

4.3 Generalization and specialization [58] . 44

4.4 Dynamic classification [58] . 45

4.5 Relations and mappings [58] . 46

4.6 Semantic Web Stack [10] . 47

5.1 List of examples generated by a query . 65

5.2 Tag cloud of programming languages generated by a query 71

5.3 Inconsistent definition of subclasses . 72

5.4 Suggestion mechanism entry form . 73

6.1 Structural Coupling [75] . 78

6.2 The basic autopoietic system . 79

6.3 The fishnet organization [37] . 80

6.4 The hypertext organization [69] . 81

6.5 The virtual organization [7] . 82

6.6 Basic concepts of organizational architecture [105] 83

6.7 a. The Mandelbrot fractal, b. A fern twig [105] 84

6.8 The fractal principle [105] . 85

6.9 The information system as a subsystem of an organization [13] 86

6.10 Relationships between the social system, organizations, information sys-

tems and ICT (Adapted partially from [44]) 87

6.11 The basic (evolving) autopoietic system . 88

7.1 Social network of “Pepperland” . 112

ix

7.2 Social network of “Yellow submarine” . 123

7.3 The integration of two social networks . 125

8.1 Predefined class hierarchy in ᵀaOPı̄s . 126

9.1 Ranks of the SecureAIS semantic wiki project members 146

9.2 UML diagram of SecureAIS . 147

9.3 Adding the first patch to SecureAIS . 147

9.4 Wiki page of the first patch on SecureAIS 148

9.5 Adding the second patch to SecureAIS . 148

9.6 Attacker adding virus to SecureAIS . 150

9.7 Malicious patch wiki page . 150

9.8 Query with malicious patches filtered out 151

9.9 Frontpage of JoPoP . 153

9.10 Submitting a new manuscript . 154

9.11 A manuscript on JoPoP . 155

9.12 Multimedia on JoPoP manuscript . 155

9.13 Tags on a sample bibliographic entry . 156

9.14 References generated by a query . 157

9.15 A tagged review . 159

9.16 List of query generated reviews . 160

9.17 List of employees working on more than four projects 165

E.1 ᵀaOPı̄s system’s architecture . 270

x

Chapter 1

Introduction

Wiki systems, a progressive technology that hasn’t been predicted a bright future by

prominent professionals, are in wide usage today. These Web based systems, that allow

any user to add different content to the system, are autopoietically evolving into more

and more impressive knowledge repositories. Maybe the best known example of such,

Wikipedia, the free Internet encyclopedia, had over 2.2 million articles in its English

version at the time of writing this text, whilst there are versions for almost all world

languages.

Still, it seems that wiki systems came to their edge [103]. It is often the

case that various rules concerning behavior, knowledge organization as well as meta data

are implemented in order to facilitate search and reasoning in these often huge (mostly

textual) data repositories [18, 71, 81, 45].

Efforts like semantic wiki systems, that try to add a semantic component to

traditional wiki systems, often ignore one of the most important success factors of wikis.

Wiki systems are easy to use, and thus used by a wide spectrum of different people

with different knowledge of information technologies - from excellent IT professional over

average Internet and computer users to laymans. Obviously the distribution of users tends

towards the less conversant in information technologies. This seems to be the main reason

why the introduction of advanced technologies like the semantic web greatly limits their

ease of use, since the average user needs to have fairly good knowledge of such technologies

[84].

As mentioned previously, wiki systems evolve due to autopoiesis of the social

system surrounding them, as opposed to traditional alopoietic (technical) application

systems. Wiki systems can be explained through the fact that users by participating

on the system, (re-)create the system, extend and amplify it with more and more new

1

content, rules, definitions etc. Thus acquired formalized content is the result of a social

systems structural coupling1. So a question to answer here is: is it possible to implement

the concept of the semantic web into wiki systems by maintaining their initial ease of use?

Another type of evolving systems that we like to point out here are social

tagging systems [94]. Such systems are in wide use today, especially for personal infor-

mation and knowledge management (PIM, PKM). These systems allow their users to tag

any content they encounter on the Web. They are interesting from a Web search engine

perspective due to their impressive results. While common search engines use advanced

algorithms to gain meta data, social tagging systems simply use the tags their users cre-

ated. Due to the well known Delphi effect which states that the average opinion of some

subset of a population is a better predictor than the opinion of a randomly chosen per-

son [77], such systems often yield better results. One could say that such systems take

advantage of a “collective intelligence”, since meta data provided through tags represents

the preprocessed original content for personal knowledge organization of individuals.

To put this research into context we shall ask yet another question. Modern

organizations today are open, virtual, adaptive, heterarchic and virtual [105]. These fact

let us seriously consider that common (rigid, alopoietic) information systems aren’t able

to support such dynamic organizations [8]. Could we use modern information technology

to support such organizational needs?

In order to make a first step towards the answer of these questions, we shall

introduce a new concept into wiki systems. Web services, are a relatively new technology,

that allows the use of remote procedures from all over the Web as if they were local.

Recently such services have been described semantically in order to allow their automated

(computer facilitated) discovery, invocation as well as inter-operation [19]. Is it possible to

integrate this technology with semantic wiki systems in order to support modern (dynamic)

organizations?

Another issue to consider is the issue of trust. One of the important layers of

the semantic web stack is the trust layer. How can one trust a semantic wiki application if

there is no formal authority behind it that guarantees the trustworthiness of data? Another

type of contemporary self-organizing systems are social networking applications. Such

applications allow individuals to connect through different mutual relations. By using

social network analysis and especially by introducing a so called fishnet structure [37] one

can “extract” the level of trustworthiness inside a social network.

1Compare to [60, 56]

2

In this research we shall take an object-oriented semantic modeling approach

[58] an put our insights into a semantic wiki context. Most important objectives are that

an autopoiesis facilitating semantic wiki system: (1) generates formalized knowledge that

can be used for (computer-based) reasoning, (2) does not depend on end-user’s knowledge

about semantic technologies, and (3) evolves not only in terms of content but also in

terms of functionality (as opposed to common wiki systems that evolve only in terms of

content).2

We assume that the world being described on the system by its users is a set

of objects that are in different mutual relations and interactions. Every object comprises

eventually a set of relations with other objects, as well as a set of methods to be able to

react on impulses (messages) from other objects. In a wiki context we shall call any wiki

page an object. Thus we need to provide mechanisms to support the organized creation

of such formalized objects.

We shall first take advantage of social tagging applications and introduce tags

to wiki systems to provide meta data for wiki pages (objects). Hyperlinks shall represent

the mutual relationships between objects. It should be possible to attach web services to

any wiki page. These shall be the methods of the objects. In the end we take advantage

of the social network of users surrounding a particular wiki. By analyzing the network we

can provide trust levels for each and every meta data provided in the system.

To formalize this approach we need to formalize three things: (1) wiki lan-

guages (sometime also called wiki text, wiki syntax or markup language), (2) semantic

wiki languages as well as (3) autopoiesis facilitating wiki languages. To do so we need to

provide suitable formal tools like regular expressions (to formalize wiki languages), frame

logic [41] (to formalize semantic wiki languages) as well as principles of annotation (to

provide the trust levels) as well as principles of amalgamation (to provide a mechanism

to combine formalized data) [50].

The semantic technologies shall be “hidden” to the end user. Users shall be able

to normally use an autopoiesis facilitating semantic wiki systems as it were a “traditional”

wiki system. By organizing their own knowledge through tags they unconsciously provide

meta data for the semantic wiki system. By attaching web services to wiki pages they

shall provide additional functionality to the system. Such functionality could provide a

2One should explicitly state here that the aim is not try to implement a system that should achieve
autopoiesis. In fact, that would be quite difficult for an application system considered to be allopoietic.
The main goal is to implement a system that will take advantage of various mechanisms in order to
facilitate the autopoiesis of a social system that couples structurally to it.

3

suitable tool for dynamic information system integration.

1.1 Objectives and Hypotheses

The main aim of this thesis is to draw attention to the theory and practice of autopoiesis in

the information and organization sciences with a special accent on different approaches to

semantic wiki systems. We want to point out that social systems surrounding wiki systems

are in their very nature autopoietic. This autopoiesis is facilitated through the ease of

use and simplicity of wiki systems. By introducing complex semantic technologies to wiki

systems this simplicity is lost. By “hiding” the semantic technologies into the background

of the system as well as by introducing other autopoiesis facilitating technologies like social

tagging and social networks we believe that this pitfall can be solved. A secondary goal

is to provide a framework for knowledge management systems in modern organizations.

In order to establish a suitable formal backdrop for such systems we shall

formalize the needed languages through well founded formalisms like regular expressions,

frame logic and social network analysis.

The hypotheses of this thesis are as follows:

HYPOTHESIS 1 Through a formalization of wiki languages and semantic wiki lan-

guages as well as through the introduction of a social system’s fishnet structure it is

possible to establish a probability annotation scheme into semantic wiki languages.

HYPOTHESIS 2 Using the probability annotation of semantic wiki languages and

by introducing social network analysis it is possible to establish an amalgamation

scheme for such languages.

HYPOTHESIS 3 Using the probability annotation scheme as well as the amalgamation

scheme a new language for autopoiesis facilitating semantic wiki systems can be

established. The syntax and semantics of this language shall be formalized building

upon the annotation and amalgamation schemes and the formalization of semantic

wiki languages.

The scientific value of this thesis resides upon the explicit formalization of

wiki languages, semantic wiki languages, the introduction of semantic web services to

semantic wiki systems, and the introduction of an overall object-oriented approach into

the formalization of semantic wiki languages. The main value is the establishment of a

new language for autopoiesis facilitating semantic wiki systems through the introduction of

4

concepts borrowed from social tagging and social network analysis: attribute - value tags,

probability (acquired through a special type of centrality) annotation, and amalgamation

(acquired through social network integration). In the end a concrete implementation of

such a language will be presented - the niKlas language.

On the other hand a critical review of autopoietic theory will be provided with

special respect to its application to information and organizational sciences. It shall be

shown that information systems are subsystems of organizations and social systems, and

are in fact autopoietic. This conclusion provides a completely new research area in the

field of information systems and IS/IT alignment.

From a social perspective a whole new field for new types of applications will be

opened: autopoiesis facilitating applications. The very system that will be implemented

in this thesis will support such new approaches and will be implemented using the open

source approach and put into the public domain. Other values include the implementation

of few example applications that shall be publicly available.

1.2 Methodology and Framework

Methodology is a scientific discipline whose main subject of study are the methods of

scientific cognition. A framework is a way of purposeful problem solving. After a problem

definition, stated objectives and hypotheses of scientific work, one needs to provide a set

of suitable scientific methods that comprise the framework. A framework is also known

to be the main idea and scope of systematic scientific work. It has to include a research

plan that gives certain steps or phases of research [104].

In the context of this thesis the following methods will be used:

Parallel analysis and description. In a few sections we shall describe and analyze

existing technologies and languages like existing wiki systems, semantic modeling

approaches, ontologies, Semantic Web technologies and languages, semantic wiki

systems, the concept of autopoiesis in information sciences, social networks as well

as the fishnet organization.

Formalization of languages through regular expressions. A formalization of wiki

languages through regular expressions will be provided. We shall introduce these

languages alphabet and a set of regular expressions that will be able to match any

word from such languages including hyperlinks, images, other objects, headings

5

and text formatting, comments, tables, variables, templates as well as references or

citations.

Formalization in frame logic. A formalization of languages for semantic wiki systems,

semantic web services, annotation and amalgamation scheme, and languages for au-

topoiesis facilitating semantic wiki systems shall be provided using the syntax of

frame logic. We shall formalize the notions of class (type, concept), objects (in-

stances), relations, attributes and methods provided through semantic web services.

A set of rules for annotation as well as amalgamation shall also be provided.

Formalization of languages through EBNF grammar. A formalization of wiki lan-

guages, semantic wiki languages, probability annotated semantic wiki languages as

well as amalgamated probability annotated semantic wiki languages through ex-

tended Backus-Naur notation will be provided. We shall introduce these languages

alphabet and a set of regular expressions that will be able to match any word from

such languages including hyperlinks, images, other objects, headings and text for-

matting, comments, tables, variables, templates, references, citations, queries and

meta information.

Social Network Analysis. In order to provide a suitable framework for extracting prob-

ability from an autopoietic social system we shall use social network analysis. Par-

ticularly we shall use a special centrality measure (eigenvector centrality) in order

to find actors (nodes) probabilities to state the right thing and to resemble a fishnet

structure.

Database implementation. The very system (an autopoiesis facilitating semantic wiki

system - ᵀaOPı̄s) will be implemented in an object -relational database using

relational algebra and structured query language (SQL) and procedural languages

(PL/pgSQL) for the PostgreSQL database management system.

Implementation in scripting languages. since the very system is a web application

one needs to include scripting languages to add functionality. Python, an object-

oriented scripting language will be used for this aim, and especially PL/PythonU

its PotgreSQL version. Particularly the regular expression module (re) will be used

for parsing, network connectivity modules for connecting hypertext transfer proto-

col (HTTP), post office protocol (POP) and simple mail transfer protocol (SMTP)

6

functionality, and operations and thread management modules to provide an inter-

face to the Flora-2 reasoning engine and other smaller tasks. On the other hand

we shall use PHP (the hypertext preprocessor) scripting language mainly as a pre-

sentation layer using hypertext markup language (HTML), cascading style sheets

(CSS) as well as JavaScript for additional functionality.

Implementation in frame logic. For the semantic web oriented part of the very system

we will use the frame logic based language Flora-2 . Flora-2 is an object -

oriented language for knowledge base, ontology an semantic web applications. We

shall use Flora-2 to implement a basic ontology that should be easily extended

by users interaction.

The research plan is given in the following outline. In the chapter 1 the prob-

lem and subject of research definitions shall be provided. Afterwards objectives, scope and

hypotheses as well as methodology and framework shall be defined. In chapter 2 we shall

analyze wiki systems especially their history and important concepts. In chapter 3 we will

formalize wiki languages using regular expressions. We will define their alphabet as well

as regular expressions needed to match any word from wiki languages. In chapter 4 we will

give a brief introduction to common semantic modeling approaches as well as technologies

taking advantage of them. The following chapter 5 is concerned with the formalization of

semantic wiki languages by introducing social tagging and frame logic. Chapter 6 gives

an in-depth discussion of autopoietic theory as well as its possible application areas in

the information sciences. Chapter 7 aims on formalizing a new language for autopoiesis

facilitating semantic wiki systems by introducing social network analysis as well as anno-

tation and amalgamation. Chapter 8 gives an outline of the niKlas language which is an

implementation of such a language. Chapter 9 shows a few examples of projects on the

ᵀaOPı̄s system implemented during this research. In the end chapter 10 gives the final

conclusions of this research as well as an evaluation of objectives accomplishment.

1.3 Related Work

There has been a fair deal of publishing presenting prototypes of semantic wiki systems

[18, 45, 71, 81, 84, 87, 103, 101, 97, 24, 110, 38, 81, 42, 67, 4, 95, 34, 48, 16, 47,

71, 46, 3, 82, 29, 73, 79, 31] most of the building upon description logic, tagging (or

structured tagging like in [92]) and link annotation. Some others introduce concepts

7

from cognitive psychology [52], intelligent agents to foster consistency [39], automated

triplets from terms using thesaurus [36], contextual elicitation components [40], or special

search facilities with keywords which are translated into structured, conjunctive queries

[33]. Other authors introduced wiki generators which generate wiki systems based on some

existing ontology [25], provided semantic wikis with formal tools to facilitate collaborative

ontology development [43] or even developed application programming environments for

the implementation of semantic wiki systems [90, 83]. Semantic wiki systems have been

proven to be useful in lots of different fields including business [35], mathematics [47],

biology [34] as well as the medical sciences [48]. Still there hasn’t been any efforts to

introduce weather semantic web services nor social network analysis. This thesis seems to

be the first to introduce frame logic and an object - oriented approach to semantic wiki

systems.

On the other hand there has been lots of publishing in the field of autopoietic

theory but only few attempted to introduce autopoiesis in to the field of information

sciences [100, 2, 96, 66]. Still this seems to be the first thesis that gives an elaborate

conceptualization of autopoiesis in information systems and establishes its connections to

other autopoietic systems like social systems and organizations.

8

Chapter 2

Wiki Systems

2.1 A Short History of Wiki’s

The WikiWikiWeb was the first web site to be called a wiki [30, 115]. Ward Cunningham

started the development of this system in 1994, and established a website at the c2.com

domain on March 25th 1995. The term wiki originates also from Cunningham who re-

membered an employee on the Honolulu International Airport who recommended him to

take the “Wiki Wiki” bus that travels between the airports terminals. Wiki means quick

in Hawaiian what was the initial reason to use the word [22, 30, 115].

A partial inspiration for Cunningham came from Apple’s HyperCard system

that allowed its users to create virtual card stacks that one could interconnect. In a way,

Cunningham further developed Vannevar Bush’s idea of allowing users to comment and

change their text mutually [23, 115].

In the early 2000s wiki systems are more frequently used by various organiza-

tion for the collaboration of their employees in the context of communication during some

project, intranet systems or documentation creation. Today it is more often the case that

organizations use wiki systems as a substitute for intranet. Schools and faculties often

use it to facilitate group learning which adds to the presumption that wiki usage is much

broader than one would assume when investigating the public Internet [115].

Until 2001 wikis were a relatively unknown type of system, except in computer

programmer’s circles that used them more intensively. At that time the world became

to know wikis, especially through the extreme success of Wikipedia, the free on line

encyclopedia, that allowed anyone to edit content and articles [115].

Wikipedia was initially designed to be a supplement to Nupedia, also a free on-

line encyclopedia that was started by Jimmy Wales. Nupidia included only articles written

9

by highly qualified experts. Articles were subject to a well founded reviewing process.

Such an approach showed to be extremely slow and only 12 articles were completed during

the first year of work, even if there were a relatively large number of interested editors on

the mailing list, as well as an editor in chief (Larry Sager) who was employed by Wales.

Wales and sager, after learning about the wiki concept, decided to enrich Nupedia with

a wiki system. This system had to be only a supplement to Nupedia in order to allow

easier publishing of (revised) articles [115].

To create a distinction the wiki system was launched at its own domain (wi-

kipedia.com) on January 15th 2001. Initially the UseModWiki engine was used that was

later replaced by a PHP based engine in January 2001, and finally with MediaWiki in

July [115].

Wikipedia, after mentioned on well known sites like Slashdot and Kuro5in,

gained a large number of associates and replaced Nupedia very quickly. In the first year

over 20 000 articles were published with a constant growth from project launch. In mid

2009 it has over 2.8 million articles in its English version, whilst there are versions for

almost any world language, with millions of editors around the world. On March 15th

2007 the word wiki entered the Oxford English Dictionary (on-line version) which shows

how the term became very common [26, 115].

2.2 Important Concepts

A wiki system is heterarchic in nature. The concept of a wiki system resides on the

following principles: every user or visitor of a wiki service is able to change existing

content, to add new content and to discuss about it. Another mechanism which is built-

into such systems is the possibility of interconnection of terms. Every term if mentioned

in some article can be connected (hyperlinked) to other articles which elaborate it further.

This mechanism gives users the possibility to find and understand unknown terms easier

[88]. It could be said that communication is directed to achieve a purpose, in particular to

create knowledge. Thus the advantages of wiki systems include goal attendance, direction

of communication, and interconnection of terms.

Ward Cunningham, and co-author Bo Leuf, in their book The Wiki Way:

Quick Collaboration on the Web [49] argued the essence of wiki systems as follows:

• A wiki invites all users to edit any page or to create new pages within the wiki Web

site, using only a plain-vanilla Web browser without any extra add-ons.

10

• Wiki promotes meaningful topic associations between different pages by making page

link creation almost intuitively easy and showing whether an intended target page

exists or not.

• A wiki is not a carefully crafted site for casual visitors. Instead, it seeks to involve the

visitor in an ongoing process of creation and collaboration that constantly changes

the Web site landscape.

A minimalistic wiki system implementation would include two things (1) a

mechanism for users to add/change/remove content and (2) a mechanism for users to

interconnect content. The creation of new articles (or pages) is often achieved through

the creation of an “non-existing page” link. In order to create a new page, a user creates

link to it. When following the new link, an editor comes up that allows the user to create

the new page. The page is off course connected through the initial link.

Figure 2.1: Important concepts in wiki systems [70]

More often, due to the evolution of the Web, wiki systems include additional

mechanisms for adding non-textual content (images, multimedia, file attachments etc.),

formatting content (text formatting, headers, tables, templates etc.), citation of relevant

literature as well as other tools which ease their usage (rich text editors, visualizations

etc.).

11

An important part of each wiki system is its syntax. Most wiki engines have

their own syntax for content formatting and creation of hyperlinks. Some wiki systems

allow their users to use rich text editors (so virtually no syntax is required). The syntax

is then parsed and translated into HTML or some other representation language.

Most wiki systems include revision systems that allow users to track changes

to a given article, see the history of it or to revert a page to some historic version for

instance if some malicious user posted SPAM on it. The simple reorganization of pages is

also often included into wiki systems. Today there are lots of wiki system implementations

in almost any programming language [17].

12

Chapter 3

Languages for Wiki Systems

In the following we will concentrate on wiki syntax (often also called wiki text or wiki

markup language). The notion of wiki language is in this context considered to be a

synonym for the language used to format wiki articles, rather then the language used to

implement a wiki system.

In order to provide a framework for describing the syntax of wiki systems,

regular expressions [27], grammars and abstract syntax trees will be used [93]. Essential

to the definition of regular expressions is the notion of language which provides a means

of communication by sound and written symbols.

3.1 Language

A language definition consists basically of three parts [93]:

Syntax defines the ways in which symbols can be combined in order to create well formed

sentences (or programs) in the language. Syntax provides a structural description

of various valid strings in the language by defining the formal relations between the

constituents of the language. Syntax is separated from meaning dealing only with

the structure of the language.

Semantics defines the meaning of legal expressions in a language. In programming lan-

guages, semantics describe the behavior of the computer while executing a program

dealing with input and output or steps that should be followed to execute the pro-

gram on an abstract or concrete machine.

Pragmatics includes psychological and sociological aspects of a language such as util-

ity, scope of application or effects on the user. For programming languages they

13

deal with issues like programming methodology, application efficiency or ease of

implementation.

In the following we shall describe the syntax of wiki languages formally whilst

the semantics and pragmatics will be described less formally in natural human language.

Definition An alphabet Σ is a finite set of letters.

Definition A word from alphabet Σ is a finite array of 0 or more letters from alphabet

Σ.

A word with 0 letters is denoted with ε and is referred to as empty word.

Let Σ be an alphabet. Then Σn, where n > 0 denotes the set of all words of

alphabet Σ that are of length n. Thus the set of all words over alphabet Σ is defined as:

Σ∗ =
⋃
n>0

Σn

Similarly the set of all non-empty words over alphabet Σ is defined as:

Σ+ =
⋃
n>1

Σn

Sometimes its convenient to observe words as discrete functions. Every word

w ∈ Σ∗ can be defined as w : {1, ..., |w|} → Σ, where w(i) is the i-th letter of word w.

We say that letter σ has an occurrence i word w if there exists a j ∈ {1, ..., |w|}

such that w(j) = σ.

Definition Let Σ be an alphabet and let v, w ∈ Σ∗ be words. The operation of concate-

nation between v and w is then defined as word z = vw provided that:

• z(i) = v(i) for i ∈ {1, ..., |v|}, and

• z(j + |v|) = w(j) for j ∈ {1, ..., |w|}

It is clear that for every word w ∈ Σ∗ wσ = w. It is also clear that concatena-

tion is an associative operation, e.g. u(vw) = (uv)w = uvw for any words u, v, w ∈ Σ∗.

Definition Let Σ be an alphabet and v, w ∈ Σ∗ be words.We say that word v is a

sub-word of word w if there are words t, u ∈ Σ∗ such that w = tvu.

If t = σ, e.g. if w = vu, then word v is called a prefix of word w

If u = σ, e.g. if w = tv, then word v is called a suffix of word w

Given the word w ∈ Σ∗ over alphabet Σ, we define further:

14

• w0 = σ

• wk = wk−1w.

Having the basic terms defined we can now define language:

Definition Language L ⊆ Σ∗ over alphabet Σ is any set of words from Σ∗.

3.2 Regular Expressions

Regular expressions are an important way to represent languages, but besides in computer

theory, they play a major role in real world applications [27]. They are often used in

text searches using special characters, so called wildcards. *NIX operating systems, for

instance, provide full support for regular expressions as well as do most programming

languages.

Definition Let Σ be an alphabet. Then the following are regular expressions over Σ:

• ∅ is a regular expressions.

• If σ ∈ Σ, then σ is a regular expression.

• If v and w are regular expressions, then vw is also a regular expression.

• If w is a regular expression, then (w)∗ is a regular expression.

• If v and w are regular expressions, then (v)|(w) is a regular expression.

Herewith we have defined the syntax of regular expressions.

It must be noted that every regular expression over some alphabet Σ defines a

language over Σ. For example if Σ = {x, y, z} then the following regular expressions over

Σ would each define a language:

• r1 = (z)∗

• r2 = (y)|(z)

• r3 = ((zx)∗)|((y)∗)

Some of the parenthesis can be omitted:

15

• r1 = z∗

• r2 = y|z

• r3 = (zx) ∗ |(y∗)

The semantics of regular expressions are of special interest. Regular expressions

represent templates for constructing words of a language. The special characters have

simple meanings. The ∗ sign denotes 0 or more occurrences of the regular expression

preceding it. This means that the place where an expression (w)∗ occurs in a regular

expression defining the words of the language, can eventually be a sub-word that is defined

by regular expression w occurring 0 or more times. The | sign defines disjunction. The

place in a regular expression where (w)|(v) occurs, the word of the language defined will

either contain a sub-word defined by w or a sub-word defined by v.

So the previously shown expressions would define languages consisting of:

• L1 = {z, zz, zzz, zzzz, ...}

• L2 = {y, z}

• L2 = {zx, zxzx, zxzxzx,, y, yy, yyy, ...}

It is sometimes convenient to define additional special characters for special

tasks. In the following we will use the following set of equations.

w+ = ww∗

Where w is any regular expression defined over Σ. + denotes one or more

occurrences.

wn =
n×︷ ︸︸ ︷

ww...w

The regular expression w is repeated n times (power).

(σ1, ..., σn)! = ς1|...|ςm

Where ς1, ..., ςm, σ1, ..., σn ∈ Σ and {ς1, ..., ςm} = Σ − {σ1, ..., σn}. ! denotes

letter set negation, e.g. the regular expression will match any letter not in the defined

set. This is especially convenient with large alphabets.

16

w! = ¬w

Where w is a regular expression defined over Σ. w! will match a word if and

only if w does not match it.

. = σ1|...|σn

Where {σ1, ..., σn} = Σ. The . defines any letter from Σ.

w? = (w0)|(w1)

Where w is a regular expression defined over Σ. ? defines optionality.

Definition Let v and w be to regular expressions over alphabet Σ. v b w denotes that

all words defined by w are also defined by v. The opposite does not necessarily hold.

3.3 Grammars

Grammars are a formal method for describing the syntax of languages [93].

Definition A grammar 〈Σ, N, P, S〉 consists of four parts:

1. A finite set Σ of terminal symbols, the alphabet of the language, that are as-

sembled to make up the sentences in the language.

2. A finite set N of non-terminal symbols or syntactic categories, each of which

represents some collection of subphrases of the sentences.

3. A finite set P of productions or rules that describe how each non-terminal is

defined in terms of terminal symbols and non-terminals. The choice of nonterminals

determines the phrases of the language to which we ascribe meaning.

4. A distinguished non-terminal S, the start symbol, that specifies the principal

category being defined - for example sentence or program.

In the following we will use a metalanguage called Backus-Naur form or BNF

to describe the grammars of wiki languages, semantic wiki languages as well as autopoiesis

facilitating semantic wiki languages. Nonterminals in BNF have the form 〈category-name〉

and production rules are written as for example:

17

〈declaration〉 ::= [int] 〈variable name〉 [=] 〈expression〉 [;]

In this example expression enclosed in square brackets int, = and ; are terminal

symbols of the language. The symbol ::= can be read as “is defined to be” or “can be

composed of” and is part of BNF.

Definition The vocabulary of a grammar includes its terminal and non-terminal sym-

bols. An arbitrary production has the form α ::= β where α and β are strings of symbols

from the vocabulary, and α has at least one non-terminal in it.

According to Chomsky grammars can be classified into four categories (type 0

to type 3) depending on their structure.

Type 0 are the most general or unrestricted grammars. They require only that at

least one non-terminal occurs on the left hand side of a rule.

α ::= β

Type 1 are context-sensitive grammars require additionally that the right hand side

contains no fewer symbols than the left.

α 〈B〉 γ ::= α β γ

where B is a non-terminal and α, β and γ are strings over the vocabulary whereby

β in a non-empty string.

Type 2 represent the context-free grammars that prescribe that the left hand side of

productions be a single non-terminal symbol.

〈A〉 ::= α

Type 3 are the most restrictive grammars or regular grammars and allow only a ter-

minal or a terminal followed by a non-terminal symbol on the right side.

〈A〉 ::= α

18

or

〈A〉 ::= α 〈A〉

The extended Backus Naur form or EBNF defines additional syntactic

conventions in BNF. In particular these include the ∗ operator (an expression may be

repeated zero or more times), the + operator (an expression may be repeated one or

more times), the ? operator (an expression is optional), the | operator (representing a

possible choice between two expressions) as well as parentheses (and) that allow the

grouping of expressions. These additions are similar to the regular expressions defined

above.

3.4 Wiki Syntax

In the following we will use regular expressions and EBNF to define the language of wiki

systems. We use regular expressions since they almost allow for a direct language parser

implementation and use EBNF to provide a higher abstraction of syntax. We will presume

that the alphabet of wiki languages ΣW consists of Unicode characters but the following

formalization should apply to any set of human language characters. Since Unicode

includes the special characters we shall use the “

” character for escaping them. Also common shorthands for Unicode characters are A-Z

(all uppercase characters), a-z (all lowercase characters) and 0-9 (numeral characters).

The grammar of wiki languages is given in the following listing:1

<wiki page> : := <statement>∗

<statement> : := <STRING>

| <f o rmat t ing expr e s s i on>

| <d i s p l a y o b j e c t>

| <comment>

| <hyper l ink>

| <tab le>

| <var i ab l e t emp la t e>

| <r e f e r e n c e e n t r y>

| <r e f e r e n c e c i t a t i o n >

1For a complete XSB Prolog implementation of a niKlas plain wiki syntax parser please refer to
appendix A.

19

Whereby <STRING> represents a non-terminal defining any string that does not

conflict with the concrete wiki language keywords and <URL> represents a non-terminal

defining any URL. As we can see the start symbol is defined as <wiki page> which can

be any number of statements (including an empty statement). The vocabulary of a wiki

language thus includes strings, formatting expressions, display objects (including images),

comments, hyperlinks (internal and external), tables, variables, templates, reference en-

tries as well as reference citations.

3.4.1 Hyperlinks

Hyperlinks are an important feature of wiki languages. There are two types of hyperlinks:

internal and external. Internal hyperlinks point to pages inside the wiki system, while

external point to external URLs. A basic production rule in EBNF for hyperlinks is given

in the following listing:

<hyper l ink> : :=

<h y p e r l i n k s t a r t>

<URL>

<hyperl ink name>

<hyper l ink end>

Definition Let lbegin be a regular expression that matches a link word beginning, lint a

regular expression that matches all possible internal wiki URLs, lext a regular expression

that matches all external URLs, ldelimiter a regular expression that matches a delimiter,

lname a regular expression matching the link’s name, and lend a regular expression that

matches a link word end, whereby all are of them defined over ΣW . Let the following

relations hold:

lint b/ llink delimiter

lext b/ llink delimiter

ldelimiter b/ lend

lname b/ lend

Hyperlinks are then defined with the regular expression:

20

rhyperlink = lbegin(lint|lext)(ldelimiterlname)?lend

For example if we take the following regular expressions (niKlas syntax):

lbegin = [link=

lint = (>)! ∗

lext = (>)! ∗

ldelimiter = >

lname = (])! ∗

lend =]

Than the following would be instances of hyperlinks:

[l i n k=wikipage>l i n k to another wik i page]

[l i n k=http ://www. f o i . hr>l i n k to FOI]

If we would have used the wiki syntax parser from appendix A to parse the

above hyperlinks we would obtain the following parse tree:

w ik i page (

statements (

[

statement (

hyper l ink (

h y p e r l i n k s t a r t (

[l i n k=

) ,

i n t e r n a l u r l (

wikipage

) ,

l ink name (

l i n k t o a n o t h e r w i k i p a g e

) ,

21

hyper l ink end (

]

)

)

) ,

statement (

hyper l ink (

h y p e r l i n k s t a r t (

[l i n k=

) ,

e x t e r n a l u r l (

http ://www. f o i . hr

) ,

l ink name (

l ink to FOI

) ,

hyper l ink end (

]

)

)

)

]

)

)

Or to simulate the MediaWiki syntax2 partially3:

2The MediaWiki syntax is used by Wikipedia for instance.
3The MediaWiki syntax has also special <nowiki> tags that allow the escape of wiki syntax

22

lbegin = [

lint = (\|)! ∗

lext = (A-Za-z0-9. \\˜%-+&#?!=\(\)@)! ∗

ldelimiter = (\|)|()

lname = (])! ∗

lend =]

Than the following would be instances of hyperlinks:

[wikipage | l i n k to another wik i page]

[http ://www. f o i . hr l i n k to FOI]

[http ://www. news . at]

3.4.2 Images and other Objects

Images and other object including video and audio material, attachments and/or plug-

in dependable objects (like shockwave flash objects etc.) are an essential part of wiki

systems. A basic production rule in EBNF for images and other display objects is given

in the following listing:

<d i s p l a y o b j e c t> : :=

<d i s p l a y o b j e c t s t a r t>

<URL>

<d i s p l a y o b j e c t o p t i o n s >?

<d i s p l ay o b j e c t e n d>

<d i s p l a y o b j e c t o p t i o n s> : :=

<d i s p l a y o b j e c t o p t i o n>+

Definition Let ibegin be a regular expression that matches an image or other object’s

word beginning, iobject a regular expression matching all possible image or object’s words,

idelimiter a regular expression that matches a delimiter, ioptions a regular expression that

23

matches all possible options for an image or object, and iend a regular expression that

matches an image or other object’s word ending, whereby all of them are defined over

ΣW . Let the following set of relations hold:

iobject b/ idelimiter

ioptions b/ iend

Then images and other objects are defined with the following regular expres-

sion:

robject = ibeginiobject(idelimiterioptions)?iend

If take, for instance, the following regular expressions (niKlas syntax for im-

ages):

ibegin = [img=

iobject = ()! ∗

idelimiter = ()

ioptions = ((width=(0-9)*%?)?()?(height=(0-9)*%?)?)

iend =]

Then the following would be instances of images:

[img=http ://www. f o i . hr/ image . jpg]

[img=http ://www. goog l e . com/ image2 . jpg width=20%]

[img=http ://www. news . at / image3 . g i f width=100 he ight =20]

If we parsed the first image using the parser defined in appendix A we would

obtain the following derivation tree.

w ik i page (

statements (

[

24

statement (

image (

image s ta r t (

[img=

) ,

e x t e r n a l u r l (

http ://www. f o i . hr/ image . jpg

) ,

image end (

]

)

)

)

]

)

)

Or to simulate the WikiMedia syntax:

ibegin = [[Image:

iobject = (\|)! ∗

idelimiter = (\|)

ioptions = (])!*

iend =]]

Than the following would be instances of images:

[[Image : wik i . png]]

[[Image : wik i . png |Wikipedia , The Free Encyclopedia .]]

[[Image : wik i . png |30 px]]

[[Image : wik i . png | r i g h t |Wikipedia Encyclopedia]]

25

3.4.3 Headings and Text Formatting

Content structuring and text formatting is another important feature. There are lots

of different formatting rules, but they can mostly be described through a simple regular

expression. A basic production rule in EBNF for headings and text formatting expressions

is given in the following listing:

<f o rmat t ing expr e s s i on> : :=

<f o r m a t t i n g e x p r e s s i o n s t a r t>

<statement>

<f o rmat t ing expre s s i on end>

Definition Let tbegin be a regular expression that matches a formattings word beginning,

ttext a regular expression matching all possible words of text to be formatted, and tend

a regular expression that matches a formattings word ending, whereby all of them are

defined over ΣW . Let the following relation hold:

ttextb/ tend

Then a formatting is defined with the following regular expression:

rtext = tbeginttexttend

As an example we will take the heading formatting of the niKlas syntax defined

with regular expressions similar to the following:

tbegin = [h1]

ttext = ([h1])!*

tend = [/h1]

The following is an instance of headings:

[h1] Big heading [/ h1]

If we parsed this expression with the niKlas parser from appendix A, the

following derivation tree would be obtained.

26

wik i page (

statements (

[

statement (

f o r m a t t i n g e x p r e s s i o n (

f o r m a t t i n g e x p r e s s i o n s t a r t (

[h1]

) ,

s tatements (

[

t ex t (

Big heading

)

]

) ,

f o rmat t i ng exp r e s s i on end (

[/ h1]

)

)

)

]

)

)

Or to simulate WikiMedia syntax for first level headings (where \n defines a

newline character):

tbegin = \n==

ttext = (==\n)!*

tend = ==\n

The following is then an instance of headings:

27

== Int roduc t i on ==

3.4.4 Comments

Some wiki languages provide commenting facilities. Their formalization is essentially

equivalent to text formattings. A basic production rule in EBNF for comments is given

in the following listing:

<comment> : :=

<comment start>

<statement>

<comment end>

Definition Let cbegin be a regular expression that matches a commentary word beginning,

ctext a regular expression matching all possible words of commentary text, and cend a

regular expression that matches a commentary word ending, whereby all of them are

defined over ΣW . Let the following relation hold:

ctextb/ cend

Then a comment is defined with the following regular expression:

rcomment = cbeginctextcend

As an example we take the WikiDot syntax :

cbegin = [\!--

ctext = (--])!*

cend = --]

The following is an instance of a comment:

[!−− i n v i s i b l e comment −−]

28

3.4.5 Tables

A basic set of production rules in EBNF for tables is given in the following listing:

<tab le> : :=

<t a b l e s t a r t>

<table row>∗

<tab le end>

<table row> : :=

<t a b l e r o w s t a r t>

<t a b l e c e l l >∗

<table row end>

<t a b l e c e l l > : :=

< t a b l e c e l l s t a r t >

<statement>∗

<t a b l e c e l l e n d>

Definition Let tbbegin be a regular expression that matches a table word beginning, tbtext

a regular expression matching all possible words inside of tables, tbcell delimiter a regular

expression that matches a table cell delimiter word, tbrow delimiter a regular expression that

matches a table row delimiter word, and cend a regular expression that matches a table

word ending, whereby all of them are defined over ΣW . Let the following set of relations

hold:

tbtext b/ tbcell delimiter

tbtext b/ tbrow delimiter

tbtext b/ tbend

tbcell delimiter b/ tbrow delimiter

tbrow delimiter b/ tbcell delimiter

tbcell delimiter b/ tbend

tbrow delimiter b/ tbend

29

Then a table of size n×m is defined with the following regular expression:

rtable = tbbegin((tbtexttbcell delimiter)
ntbrow delimiter)

mtbend

For instance, the niKlas syntax uses regular expressions similar to the following

to parse tables:

tbbegin = [table]

tbtext = ((&&)|(##)|([/table]))!*

tbcell delimiter = &&

tbrow delimiter = ##

tbend = [/table]

Thus the following would be an instance of a table:

[t ab l e]

row 1 column 1 && row 1 column 2 && row 1 column 3 ##

row 2 column 1 && row 2 column 2 && row 2 column 3 ##

row 3 column 1 && row 3 column 2 && row 3 column 3

[/ t ab l e]

If we would parse this table with the parser from appendix A, we would obtain

the following parse tree:

w ik i page (

statements (

[

statement (

wtable (

w t a b l e s t a r t (

[t ab l e]

) ,

wtable rows (

[

30

wtable row (

w t a b l e c e l l s (

[

w t a b l e c e l l (

s tatements (

[

t ex t (

row 1 column 1

)

]

)

) ,

w t a b l e c e l l (

s tatements (

[

t ex t (

row 1 column 2

)

]

)

) ,

w t a b l e c e l l (

s tatements (

[

t ex t (

row 1 column 3

)

]

)

)

]

)

) ,

wtable row (

31

w t a b l e c e l l s (

[

w t a b l e c e l l (

s tatements (

[

t ex t (

row 2 column 1

)

]

)

) ,

w t a b l e c e l l (

s tatements (

[

t ex t (

row 2 column 2

)

]

)

) ,

w t a b l e c e l l (

s tatements (

[

t ex t (

row 2 column 3

)

]

)

)

]

)

) ,

wtable row (

w t a b l e c e l l s (

32

[

w t a b l e c e l l (

s tatements (

[

t ex t (

row 3 column 1

)

]

)

) ,

w t a b l e c e l l (

s tatements (

[

t ex t (

row 3 column 2

)

]

)

) ,

w t a b l e c e l l (

s tatements (

[

t ex t (

row 3 column 3

)

]

)

)

]

)

)

]

) ,

wtable end (

33

[/ t ab l e]

)

)

)

]

)

)

3.4.6 Variables and Templates

Some wiki languages provide variables (e.g. current page title, current date, current

category etc.) and templates (e.g. stub, outline, table of content etc.). A basic production

rule in EBNF for variables and templates is given in the following listing:

<var i ab l e t emp la t e> : := <STRING>

Such words are easily defined using regular expressions:

Definition Let vtemplate be a regular expression that denotes all possible variable and

template words defined over ΣW . Then the following regular expression defines variables

and templates :

rtemplate = vtemplate

3.4.7 References

References allow users to reference sources that were used to write the current wiki page.

In essence there are to parts of a reference: (1) an entry - probably given at the and of the

wiki page, and (2) one or more references to the listing. A basic set of production rules

in EBNF for reference entries and reference citations is given in the following listing:

<r e f e r e n c e e n t r y> : :=

<r e f e r e n c e e n t r y s t a r t>

<r e f e r e n c e c i t e k e y>

<statement r e f e r e n c e e n t r y e n d>

<r e f e r e n c e c i t a t i o n > : :=

34

<r e f e r e n c e c i t a t i o n s t a r t >

<r e f e r e n c e c i t e k e y>

<r e f e r e n c e c i t a t i o n n a m e>

<r e f e r e n c e c i t a t i o n e n d>

<r e f e r e n c e c i t e k e y> : := <STRING>

Definition Let ebegin be a regular expression that matches references entry word’s begin-

ning, ename a regular expression that matches all possible reference name words, eentry a

regular expression matching the actual entry word, and eend a regular expression match-

ing the references entry word’s end, whereby all of them are defined over ΣW . Let the

following relation hold:

ename b/ eend

Then a reference entry is defined with the following regular expression:

rentry = ebeginenameeend(eentry)?

Definition Let refbegin be a regular expression that matches a reference word’s begin-

ning, ename a regular expression that matches all possible reference name words that is

defined inside an entry on the given wiki page under consideration, ref title a regular expres-

sion matching all possible reference title words, refdelimiter a regular expression matching

reference delimiter words, and ref end a regular expression matching the references word’s

end, whereby all of them are defined over ΣW . Let the following set of relations hold:

ename b/ refdelimiter

ref title b/ ref end

Then a reference is defined with the following regular expression:

35

rreference = refbeginenamerefdelimiterref titleref end

For example the WikiDot syntax uses regular expressions similar to the fol-

lowing:

ebegin = :

ename = (,:)!*

eend = :

eentry = .*

refbegin = [((bibcite

refdelimiter = ∅

ref title = ∅

ref end =))]

So the following would be an instance of a reference entry with corresponding

reference:4

The f i r s t pu l sa r was observed by J . Be l l and

A. Hewish [((b i b c i t e b e l l))] .

: b e l l : Be l l , J . ; Hewish , A . ; P i lk ington , J . D. H . ;

Scott , P . F . ; and Co l l i n s , R. A. // Observation o f

a Rapidly Pu l sa t ing Radio Source . // Nature 217 ,

709 , 1968 .

The niKlas syntax is defined by the following regular expressions:

4The entry must occur inside a bibliography block.

36

ebegin = [ref=

ename = (])!*

eend =]

eentry = .*

refbegin = [cite=

refdelimiter = (¿)

ref title = (])!*

ref end =]

Thus the following is a valid entry with corresponding citation:

To use [c i t e=re f e r ence s2009>r e f e r e n c e s] and c i t a t i o n s

use the f o l l o w i n g syntax :

[r e f=r e f e r e n c e s 2 0 0 9] Luhmann , N. S o z i a l e systeme , 1984 .

If parsed with the niKlas parser from appendix A the following parse tree

would be obtained:

wik i page (

statements (

[

t ex t (

To use

) ,

statement (

r e f e r e n c e c i t a t i o n (

r e f e r e n c e c i t a t i o n s t a r t (

[c i t e=

) ,

c i t e k e y (

r e f e r e n c e s 2 0 0 9

37

) ,

r e f e r e n c e c i t a t i o n n a m e (

r e f e r e n c e s

) ,

r e f e r e n c e c i t a t i o n e n d (

]

)

)

) ,

t ex t (

a n d c i t a t i o n s u s e t h e f o l l o w i n g s y n t a x :

) ,

statement (

r e f e r e n c e e n t r y (

r e f e r e n c e e n t r y b e g i n (

[r e f=

) ,

c i t e k e y (

r e f e r e n c e s 2 0 0 9

) ,

r e f e r e n c e e n t r y e n d (

]

)

)

)

]

)

)

In the and we can now define the (basic) wiki language:

Definition A wiki language LW is defined through the following regular expression de-

fined over ΣW :

38

rW = (rhyperlink)|(robject)|(rtext)|(rcomment)|(rtable)|(rtemplate)|(rentry)|(rreference)

This basic language can be extended by adding additional regular expressions

for additional features of a wiki language.

39

Chapter 4

From Semantic Modeling over the

Semantic Web to Semantic Wiki

Systems

By modeling a domain (be it using an ontology, knowledge base, UML1 diagram or any

other formalism) one expresses her own knowledge about the domain. This in particular

means that the main concept in modeling is knowledge. I. Nonaka once stated that

knowledge is personal, a “justified true belief” [69]. Thus one implicitly presumes that

the data expressed in ones domain model is true. If we ask now what is the truth we come

to one of the fundamental questions in philosophy. F. Nietzsche argued that one cannot

prove the truth which is nothing more than the invention of fixed conventions for merely

practical purposes, especially those of repose, security and consistence. According to this

view, no one can prove that the author of this text or the whole world isn’t just a fantasy

of the reader reading this article.

Nonaka’s definition includes, by intention or not, two more crucial words: jus-

tified and belief. An individual will consider something to be true that he believes in, and

from that perspective, the overall truth will be a set of statements that the community

believes in. This mutual belief makes this set of statements justified. The truth was once

that the Earth was flat until philosophers and scientists started to question this theory.

The Earth was also once the center of the universe. So an interesting fact about the truth

is that it evolves depending on the different beliefs of a certain community.

In an environment where a community of individuals collaborates in modeling

a domain there is a chance that there will be certain disagreements about the domain

1Unified Modeling Language

40

which yield certain inconsistencies in the model or ask for an overall consensus. A good

example of such disagreements are the so called “editor wars” on Wikipedia the popular

free on-line encyclopedia. A belief about the War in Iraq will most probably differ between

an American and an Iraqi but they will most probably share the same beliefs about

fundamental mathematical algebra.

The main question that should be asked is if it is possible to apply this concept

of multiple views or beliefs about a domain (that we shall call aspects as follows) into sys-

tems for collaborative knowledge base development, as well as if such a conceptualization

can yield a more realistic model of a given domain? In the following a brief description

of important concepts is given in order to build a new framework.

4.1 Semantic Modeling and the Object - oriented

Paradigm

Semantics are meaning and thus semantic modeling is the design of meaning. The object-

oriented paradigm is a very popular framework in information and knowledge engineering,

programming and simulation modeling these times. This approach is in a way natural,

since the world around us is comprised of objects that are in some mutual interactions.

For instance, at this very moment You are an object that is interacting with another

object (this thesis).

Its fundamental to consider the term concept for any discussion about seman-

tic modeling. The world of concepts around us can be observed statically by introducing

terms like domains, objects, relations, attributes, generalizations etc. and dynamically

by introducing states, events, methods, triggers, control conditions, state changes, aggre-

gations, constraints, rules, meta models, power-types etc. For the sake of this thesis we

shall concentrate on a restriction of these terms as argued further 2.

4.1.1 Domains

A domain or context is a collection of objects in a chosen field of interest. A domain

specification is a collection of concepts which refer to the domain. For example if we

take as a domain a classroom, then concepts inside it would be similar to student, chair,

blackboard, teacher etc. The domain is the “sphere of activity and influence” since inside

2For an in-depth discussion on object-oriented semantic modeling please refer to [58]

41

it objects fulfill their activities and influence other objects.

4.1.2 Concepts

Concepts are constructs in the human mind that allow us to reduce the complexity of the

world around us. If we wouldn’t have concepts the world would for us be just a huge mess

of objects that we wouldn’t be able to recognize and distinct of each other. For example

imagine how an ancient cavemen would had defined an airplane that flew over his head.

He, off course didn’t have an the necessary concept that would allow him to define an

airplane. He would have probably been pretty amazed by the giant metal bird. Every

person has a lots of concepts defined in its mind that were acquired during its life.

Figure 4.1: Concepts as filters in our perception [58]

As shown on figure 4.1, concepts are filters that allow one to filter the complex

world of objects. According to J. Martin & J. Odell a concept is an idea or meaning that

we assign to things in our mind [58]. People are able to create them, assign symbols to

them and manipulate these symbols in order to determine and communicate meaning.

Every concept can be defined with a triad, whereby the symbol is nonobligatory as shown

on figure 4.2.

One could state that concepts are units of knowledge that consist of:

1. an intention - a concise definition of the concepts that includes a test that decides

if the concept is applicable to some object or not

2. an extension - the set of all objects to which the concept is applicable

3. a symbol - a concise way to denote objects.

42

Figure 4.2: The concept triad [58]

As stated before, concepts can be used without symbols that denote them,

but when talking about implementation there can be also partial definitions of concepts.3

Symbols are mostly used for communication. The implementation of soncepts are often

classes or types, especially in programming languages.

4.1.3 Generalization and Specialization

Generalization is the operation or result of identifying a concept (class, type) that fully

includes or subsumes another concept. Generalization allows us to state that all instances

of some specific type, are also instances of another, more general type. The opposite does

not necessarily have to hold. For example, one could state that all sandals are footwear,

but not all footwear are sandals since there are other types of footwear like shoes, boots,

high-heals etc.

Specialization is the inverse operation or result of generalization as shown on

figure 4.3

Generalized types are super-types (superclasses), whilst specialized types are

subtypes (subclasses). Super-types have a more general intention then their subtypes.

The intention of subtypes is particularly more specialized or more strict and rigorous.

Generalization and specialization allow us to create hierarchies of concepts.

3A concept is partially defined if one component of the triad is missing. Thus we an have concepts
without intension (we have a symbol - e.g. XY and a set of objects that the concept applies to e.g.
{2, Q,

⊙
,	,♥}, but we are unable to define the concept due to some reason), concepts without extension

(we have a symbol - e.g. perfect student, and a defintion - e.g. a student with all straight A’s and all
extraordinary activities, degrees etc. but no student does comply to this definition), and concepts without
symbol (we have a definition - e.g. a space object with properties XY and intension {o1} but no symbol
yet).

43

Figure 4.3: Generalization and specialization [58]

4.1.4 Objects

An object is anything a concept can be applied on. An object is an instance of some

concept. Most objects have their life-cycles which in particular means that one can define

the beginning and end of existence. For example, for object that are instances of concept

human being their beginning of existence is their birth and their end is their death. To

describe the changes of an object during its life-cycle we use sets.

When applying a concept to an object, we have classified the object as en

element of a set, thus incrementing the sets cardinality by one. In the opposite case,

when declassifying an object, the object is extracted from the set, and the cardinality is

decremented by one.

Some objects are classified and declassified during their life-cycles. They are

members of some set at one time, and after some process or event they aren’t anymore.

Such changes can happen as long as the object exists.

As one can see of figure 4.4 object Nick entered the set Person on its birth.

After some time, Nick got into college and became additionally a member of the set defined

by concept Student. After studying some time he graduated, and was thus declassified

from the set of all students. Later on he managed to get a job, entering thereby the set

defined by concept Employee. Since his boss was generous she allowed him a grant to take

a postgraduate study, which made Nick again a member of the set of all students, being

an employee at the same time. After graduating he again left the student set.

Any object can have multiple concepts applicable to it. This phenomenon is

44

Figure 4.4: Dynamic classification [58]

denoted as multiple classification. In the previous example, in one moment, we were able

to apply concepts Person, Student and Employee to object Nick. On the other hand,

applicable concepts of some object change during their life-cycles. This change is denoted

with dynamic classification. Whilst multiple classification is rather well supported by

object-oriented programming languages (like Java and c++), dynamic classification is

often not supported (python is an example that supports dynamic classification).

4.1.5 Relations and Mappings

Relations define the ways in which different objects can relate to each other. They also

define certain communication channels for interaction between objects. By establishing

such relations we are able to create conceptual networks.

Relations allow us to connect objects into families which we call tuples or links.

Such tuples give us the opportunity to map objects of one type to objects of another type

and vice versa. Tuples are immutable. For example if we have a tuple (Sam,Microsoft)

which states that an object name Sam of type Person is employed by an object Microsoft

of type Organization as shown on figure 4.5.

One cannot just remove the object Microsoft from the tuple and exchange it

with another object of the same type (for example IBM), since the mapping has additional

associated objects to it like a contract, a time frame or a salary. If changing to IBM these

object wouldn’t be the same. Thus the only thing one can do is to destroy the existing

mapping and create a new one, but elements of tuples cannot be changed.

45

Figure 4.5: Relations and mappings [58]

4.1.6 Attributes and Attribute Values

It is sometimes pleasant to denote some relations to less complex objects as attributes.

For example one would rather say that objects of type Student have attributes like name,

surname, student-id, then say that students are related to objects of type string denoting

their name, surname and student-id.

Thus a student would have attributes name, surname, student-id, and their

particular instances John, Doe, and 32455-I would be the particular attribute values

respectively.

4.2 The Semantic Web

The World Wide Web is made for humans. Humans can read, understand, as well as

reason and draw conclusion from content encountered on the Web. But, as soon as one

tries to automate reasoning about knowledge embodied in such content problems emerge.

For example, what if a user wants the answer to a simple question: “I need

to see a doctor who is specialized in field X, who is relatively near to my house and has

working hours in my lunch break from 12:00 - 14:00. Can you suggest one?” In order

to answer such a question using the Web a regular user would probably sit in front of a

computer, open up her favorite search engine and spend the next few hours searching and

comparing data from different web sites.

The Semantic Web is an extension of the current (traditional) World Wide

Web that shall allow one to find, share, and combine information more easily. It relies on

machine-readable information and meta data that allows computer programs or agents to

reason about distributed knowledge.

46

In a Semantic Web environment to return to our “doctor” example all doctors

would have additional meta information attached to their web sites. The user would ask

the question to an intelligent agent and go for a coffee break. The agent would do all the

work for the end user providing him with the necessary information.

4.2.1 Ontologies

The machine-readable information or meta data is most often represented in special mod-

els called ontologies. One should make a distinction between ontology in philosophy

(representing one of the fundamental branches in metaphysics concerned with existence)

and ontology in information science (representing a formal domain model by introducing

a set of concepts, instances, relations, axioms etc.).

Ontologies are an important part of the Semantic Web infrastructure as out-

lined in figure 4.6.

Figure 4.6: Semantic Web Stack [10]

Such ontologies are machine-readable structured data that allows some reason-

ing engine to draw conclusions from them without need human intervention.

4.2.2 Semantic Web Languages

In order to write semantic web ontologies and meta data one needs to provide a suit-

able language. Lots of such languages were proposed like XML, SHOE, XOL, OIL,

47

DAML+OIL, RDF, OWL, Flora-2, etc. In this thesis we will concentrate on OWL and

especially Flora-2 since it is an implementation of frame logic.

Web Ontology Language

OWL or Web Ontology Language is a family of languages (OWL Lite, OWL DL and OWL

Full) that is used for knowledge representation in a Semantic Web environment. OWL is

considered to be one of the fundamental technologies for the Semantic Web and enjoys

major attention in academia and industry. The World Wide Web Consortium (W3C)

fully supports and facilitates OWL.

OWL has two different semantics: OWL DL and OWL Lite that are based on

description logic, and OWL Full that is compatible with RDFS. From the beginning of the

1990s lots of research was conducted in order to find knowledge representation languages

from the field of artificial intelligence that could be usable in the World Wide Web. Most

were based on HTML (SHOE), XML (XOL and late OIL) as well as others. OWL was

established through a revision of DAML+OIL which was used for Web ontologies.

As indicated above, the OWL specification supported by the W3C defines three

versions of OWL: OWL Lite, OWL DL and OWL Full, whereby every version includes all

conclusions of its predecessors.

OWL Lite is predominantly oriented towards users that need a class hierarchy

and simple constraints. Nevertheless, the development of tools for OWL Lite proved to

be as demanding as for the more complex OWL DL, which is why OWL Lite is rarely in

use today.

OWL DL is designed to allow maximal expressiveness under the circumstances

that (1) the derivation of all possible solutions is granted and (2) all derivations are done

in finite time.

OWL Full uses a different semantics of the other two. For example OWL Full

allows that a class is treated as a set of instances as well as an instance for it self, which

OWL DL does not allow. OWL Full does not make any promises about derivation and

finiteness [109].

FLORA-2

Frame logic or F-Logic is a full-fledged logic that has model-theoretic semantics and a

sound and complete proof theory. In this sense, F-logic stands in the same relationship to

the object-oriented paradigm as classical predicate calculus stands to relational program-

48

ming [41]. Flora-2 is a rule-based object-oriented knowledge base system designed for

a variety of automated tasks on the Semantic Web, ranging from meta-data management

to information integration to intelligent agents. The Flora-2 system integrates F-logic,

HiLog, and Transaction Logic into a coherent knowledge representation and inference

language which results in a flexible and natural framework that combines rule-based and

object-oriented paradigms [116].

4.3 Web Services

Web services are modern networking technologies which enable remote procedures or

services usage as if they were local. They enable the development of distributed networking

applications without the need to contain all the parts of it on a single computer or server.

Web services often use XML as a data description language (SOAP & WSDL) which

are very simple and intuitive and it is often used in conjunction with web services for

interchange of data between the local application and the service [8].

XML based web services can be used in any scenario that needs network-based

exchange of information - from business transactions to simple exchange of news between

web portals. To make this possible, web services are independent of operating system and

programming language.

Web services are the logical next step in Internet development towards a loosely

coupled structure that aims on exchanging the traditional heterogeneous one. This is why

companies invest into web services development in order to prevent the incompatibility

of existing data formats an application systems as well as to minimize costs for data

exchange.

Business to business (B2B) communication is a modern communication con-

cept between organizations, distinguishing it from Business to Customer (B2C) communi-

cation model used by the organizations to communicate with their customers. B2B often

relies on concepts such as web services and XML for the interchange of data [8].

4.4 Semantic Web Services

The idea of semantic web services tries to combine web services with ideas from the

Semantic web. The aim on a client-server system for machine-to-machine interaction

through the Web. Semantic web services use meta data in form of markup which makes

49

them machine-readable in a detailed and sophisticated way.

Conventional XML based standards for the interoperability of web services

only syntactically describe the exchange of messages, whilst the semantics isn’t addressed

at all. For instance, WSDL describes operations that are available on a given web service

as well as the structure of messages. Still, it does not define the meaning of messages and

operations nor the constraints above them. This makes automated interconnection of web

services hard to implement. Semantic web services are build upon existing semantic web

standards for semantic data interchange, which makes such an automated interconnection

much easier [9].

4.5 Semantic Wiki Systems

Semantic wiki systems are an extension to wiki systems that use concepts borrowed from

the semantic web. In this way semantics or meaning is added to knowledge created on the

system through additional meta information which eases search, integration and reasoning

[88]. Prominent semantic wiki systems include SweetWiki [98], IkeWiki [80] and Semantic

Media Wiki [89] to name a few.

Semantic wiki systems have gained major attention of the academic community

in the past few years. The idea of integrating the semantic web with fast and lightweight

content management systems seems to be good direction towards web 3.0 or the social

semantic web.

50

Chapter 5

Programming Languages for

Semantic Wiki Systems

Most semantic wiki systems allow users to add semantics to content published on the

system through different meta information. We decided to use a simple tagging system

to allow users to approach content in an object-oriented manner. Whilst the idea of using

semantic web concepts in wiki systems isn’t new, the idea of using an object-oriented

approach seems to be firstly described in [87]. Most other approaches used description

logic’s and particularly OWL as their background logic [80], [89], [98] as well as annotations

and tags on particular content. The problem with such approaches lies mostly in ignoring

the primary users of wiki as well as tagging systems.

Wiki systems are used by ordinary people who most certainly have no good

understanding of semantic technologies. They use wikis to quickly create content in a

collaborative environment. Tagging systems are also used by ordinary people to organize

content they encounter for their selves in order to easier retrieve content. The semantics

that emerge by combining tags of different users are more of a side effect than the main

purpose. If users are free to tag any content in the way they want more meta information

and semantics will emerge as when tagging is restricted to special types of tags that can be

used. This meta information will self-organize due to the autopoiesis of the social system

surrounding a dynamic web application like a tagging or a wiki system [8].

5.1 Frame Logic

We decided to use frame logic to define semantic wiki language. The alphabet ΣF of an

F-logic language LF consists of the following [41]:

51

• a set of object constructors, F ;

• an infinite set of variables, V ;

• auxiliary symbols, such as, (,), [,], →, →→, •→, •→→, ⇒, ⇒⇒, etc.; and

• usual logical connectives and quantifiers, ∨, ∧, ¬, ←−, ∀, ∃.

Object constructors (the elements of F) play the role of function symbols in

F-logic whereby each function symbol has an arity. The arity is a non-negative integer

that represents the number of arguments the symbol can take. A constant is a symbol

with arity 0, and symbols with arity ≥ 1 are used to construct larger terms out of simpler

ones. An id-term is a usual first-order term composed of function symbols and variables,

as in predicate calculus. The set of all variable free or ground id-terms is denoted by U(F)

and is commonly known as Herbrand Universe. Id-terms play the role of logical object

identities in F-logic which is a logical abstraction of physical object identities.

A language in F-logic consists of a set of formulae constructed out of alphabet

symbols. The most simple formulae in F-logic are called F-molecules.

A molecule in F-logic is one of the following statements:

• An is-a assertion of the form C ::D (C is a non-strict subclass of D) or of the form

O :C (O is a member of class C), where C, D and O are id-terms;

• An object molecule of the form O [a ’;’ separated list of method expressions]

where O is a id-term that denotes and object. A method expression can be either

a non-inheritable data expression, an inheritable data expression, or a signature

expression:

– Non-inheritable data expressions can be in either of the following two forms:

∗ A non-inheritable scalar expression

ScalMethod@Q1, ..., Qk→T ,(k > 0).

∗ A non-inheritable set-valued expression

SetMethod@R1, ..., Rl→→{S1, ..., Sm} (l,m > 0).

– Inheritable scalar and set-valued expression are equivalent to their non-inheritable

counterparts except that → is replaced with •→, and →→ with •→→.

– Signature expression can also take two different forms:

52

∗ A scalar signature expression

ScalMethod@V1, ..., Vn⇒(A1, ..., Ar), (n, r > 0).

∗ A set valued signature expression

SetMethod@W1, ...,Ws⇒⇒(B1, ..., Bt) (s, t > 0).

All methods’ left hand sides (e. g. Qi, Ri, Vi and Wi) denote arguments,

whilst the right hand sides (e. g. T, Si, Ai and Bi) denote method outputs. Single-headed

arrows (→, •→ and ⇒) denote scalar methods and double-headed arrows (→→, •→→ and

⇒⇒) denote set-valued methods.

As in a lot of other logic, F-formulae are built out of simpler ones by using the

usual logical connectives and quantifiers mentioned above.

• F-molecules are F-formulae;

• ϕ ∨ ψ, ϕ ∧ ψ, and ¬ϕ, are F-formulae if so are ϕ and ψ;

• ∀Xϕ and ∃Y ψ are F-formulae, so are ϕ and ψ, and X and Y are variables.

For our purpose these definitions of F-logic are sufficient but the interested

reader is advised to consult [41] for profound logical foundations of object-oriented and

frame based languages.

5.2 Semantic Wiki Language

A semantic wiki language LSW is an addition to a wiki language LW that allows the

definition, manipulation and querying of meta data in form of a knowledge base. Thus a

semantic wiki language consists of two parts: (1) a wiki component (already defined in

chapter 3) and (2) a semantic component. In the following we shall use frame logic or

F-logic to formalize this semantic component of semantic wiki languages.1 The basic idea

is to map concepts from wiki systems to concepts from frame logic.

In order to consider a domain of interest in an object-oriented fashion one

needs to be able to model specific concepts like objects, classes (types, concepts), rela-

tions, attributes, methods, states etc. Thus we provide the following conceptualization of

semantic wiki systems.

Let the whole content stored on the semantic wiki system be a domain of inter-

est D. Objects inside this domain are specific wiki pages having their classes, relations,

1Off course there are other possibilities like the mentioned description logic approach.

53

attributes, methods etc. Any wiki page on creation is a generic object that users can

specialize in order to reflect the domain of interest. Thus the domain is an extensible set

of objects as shown in tho following equation.

D = {o1, o2, ..., on}

To allow concretization of generic objects we introduce attribute-value tags

that reflect specific characteristics of objects inside a domain. Any object can be thought

of as a relation that consists of a finite number of attribute-value tuples, as shown in the

following equation.

att(oi) = {(a1, v1), (a2, v2), ..., (am, vm)}

This set also includes standard attributes like author(s), title, body (written

in LW) etc.

We also introduce object’s relations to be defined as labeled outgoing links

on any wiki page whether to other wiki pages or to pages outside the semantic wiki

system. These relations are reflected as additional attribute-value pairs whereby the label

represents the attribute and the value the object (page or URL)2 the relation links to.

Thus the set of an objects outgoing relations is shown in the following equation.

rel(oi) = {(r1, or1), (r2, or2), ..., (rl, orl)}

In the end we introduce a set of methods represented through web services

or script extensions of the form (mi(pi1, pi2, ..., piai
), resi) where m is the methods name,

pi1, ..., piai
are the methods parameters, ai is the methods arity, and resi is the methods

return value. These methods are represented through the set:

met(oi) = { (m1(p11, p12, ..., p1a1), resi),

(m2(p21, p22, ..., p2a2), res2),

...

(ml(pk2, pk2, ..., pkak
), resk) }

Definition Let att(o) be the set of attribute-value pairs of object o, rel(o) the set of

2Unified Resource Locator

54

relation-object’s identifier pairs of object o, and met(o) the set of methods-return value

pairs. An object with id-term o in a semantic wiki language L then is represented with

the F-molecule:

o[

a1→v1;

a2→v2;

...

am→vm;

r1→or1;

r2→or2;

...

rl→orl;

m1(p11, p12, ..., p1a1)⇒res1;

m2(p21, p22, ..., p2a2)⇒res2;

...

mk(pk1, pk2, ..., pkak
)⇒resk

].

Such a definition implies that attribute-value tags (ai, vi) associated with a

given wiki page (or object) with id-term o, as well as relation-object’s identifier pairs are

considered to be non-inheritable scalar methods whereby the attribute (ai) is the methods

name that has no arguments (k = 0) and values (vi) to be outputs. If there are more than

one equivalent attributes or relation names for a given object with distinct values than

the method is considered to be a non-inheritable set-valued method. In the end signature

expressions are considered to be web services and script extensions that act as methods

of a specific object.

Now we are able to introduce special attributes labeled with common object-

oriented programming constructs like class, subclass, rule etc. Such attributes are used

to provide additional semantics to the domain ontology. Special attribute labels like class

and subclass are used to create is-a assertions. For example a wiki page tagged with the

55

attribute class and value student is considered to be an object that is a member of class

student. If the same object is additionally tagged with the attribute subclass and value

person than the class student is considered to be a non-strict subclass of class person.

All other tags provided on a wiki page are the special attributes of this object, thus the

object mentioned previously if additionally tagged with tags like name:Foo, surname:Bar,

address:Linus Lane 27 would yield the following sentence in a F-logic knowledge base:

student :: person ∧

ox : student [

name → ′Foo′;

surname → ′Bar′;

address → ′Linus Lane 27′]

Where ox denotes the logical object-id of the wiki page under consideration.

Thus, classes and class hierarchy are created dynamically by tagging specific objects.

Definition An object with id-term o is considered to be a member of class c if its corre-

sponding F-molecule contains a non-inheritable scalar method class→c.

Definition A class c1 is considered to be a non-strict subclass of class c2 if there is at

least one object that is a member of class c1 which corresponding F-molecule contains a

non-inheritable scalar method subclass→c2.

Definition A given object with id-term c, which corresponding F-molecule contains the

attribute class which value is also class, is considered to be a class descriptor. All its

attribute-value pairs are converted to inheritable scalar expressions (scalar or set-valued

depending on the number of equivalent attributes with distinct values) except for the

class:class pair.

In this way we allow for meta modeling, by stating that instances of class class

are classes of their own. For instance if a wiki page entitled car is tagged with the tags

class:class, model:string, color:string, and year:integer it would correspond to

the following sentence in frame logic:

56

car[

model •→ string;

color •→ string;

year •→ integer]

Such interpretation allows us then to create instances of such a defined class

as well as to define the schema of a domain of a given wiki system.3

Another important concept is the definition of rules. Rules are defined in terms

of objects tagged with special attribute rule).

Definition If some object is tagged with special attribute rule, and value of the form

Head :- Body then this attribute-value pair is removed from the object descriptor and

the following rule is added to the knowledge-base:

Head← Body

For instance if some wiki page was tagged with rule : ?x:boy :- ?x:person[

sex->male, age->?a], ?a<18 the following rule would be added to the knowledge-base:

?x : boy ← ?x : person[sex → male ; age → ?a] ∨ ?a < 18

Since we were able to map concepts from semantic wikis to concepts from

F-logic we can now state that the syntax of the semantic component of semantic wiki

languages is equivalent to the syntax of F-logic defined above.

5.2.1 Semantic Wiki Syntax

The following grammar defines the actual syntax of a semantic wiki language.4 A semantic

wiki page consists of a set of statements and (eventually) of additional meta information.

3The schema (defined or inferred) is used in ᵀaOPı̄s for input suggestion mechanisms. Such mechanisms
try to minimize syntactic errors due to different user input. For a better understanding of such input
mechanisms please refer to [86]

4For a complete XSB Prolog implementation of a niKlas semantic wiki syntax parser please refer to
appendix B.

57

<semant ic wik i page> : := <statement>∗ <metainfo>? ;

<statement> : := <STRING>

| <f o rmat t ing expr e s s i on>

| <d i s p l a y o b j e c t>

| <comment>

| <hyper l ink>

| <tab le>

| <var i ab l e t emp la t e>

| <r e f e r e n c e e n t r y>

| <r e f e r e n c e c i t a t i o n >

| <query>

The possible statements were already defined in chapter 2 except for the

<query> statement which we shall define in the following few sections. Prior to that

we need to define a crucial concept that is an important part of any query - namely

semantic templates.

5.2.2 Semantic Templates

A semantic template is defined with the following simple production rule in EBNF.

<semant ic template> : := (<statement> | < f r a m e l o g i c v a r i a b l e>)∗

By using regular expressions this statement can be defined as.

Definition Let rvariable be a regular expression that matches all possible variables in a

F-logic language defined over Σ, and rW a regular expression that defines a wiki language

LW . A semantic template with the regular expression:

rsemantic template = rW |rvariable

This definition needs further explanation. We consider a wiki page to be a

collection of letters (wiki text) which is interpreted using concepts from a wiki language

LW . We now introduced a new concept (through a new regular expression) that will act

as a variable. The actual value to which this value will be bound depends on the context

in which the template is used. The context will probably be associated with a given query,

58

defined later on. Thus a semantic template is a placeholder, that will yield wiki text when

all its variables are exchanged with actual values from the knowledge base.

For example the niKlas syntax for for variables is equivalent to the Flora-2

syntax for logic variables, e.g.:

rvariable = \?[a-zA-Z0-9 $]*

Thus the following is a valid semantic template in niKlas :

[l i n k=?ur l>?l ink name]

5.2.3 Queries

Queries are closely bound to frame logic syntax which makes its set of production rules

more complicated. The following listing shows the grammar dealing with queries:5

<query> : :=

<que ry s ta r t>

<f r ame log i c que ry>

<semant ic template>

<query end>

<f r ame log i c que ry> : :=

<f r a m e l o g i c r u l e b o d y>

<f r a m e l o g i c r u l e b o d y> : :=

< f r a m e l o g i c l i s t o f l i t e r a l s >

<f r a m e l o g i c r u l e h e a d> : :=

< f r a m e l o g i c l i s t o f m o l e c u l e s >

< f r a m e l o g i c l i s t o f m o l e c u l e s > : :=

<f r ame l og i c mo l e cu l e>

5The production rules for frame logic syntax were taken from [61]. The lexical structure is given in
appendix B. In the actual implementation, due to the fact that ᵀaOPı̄s uses Flora-2 syntax, the rules
were adjusted to allow for HiLog extensions and other syntactic differences.

59

(’ , ’ < f r a m e l o g i c l i s t o f m o l e c u l e s >)?

< f r a m e l o g i c l i s t o f l i t e r a l s > : :=

< f r a m e l o g i c l i t e r a l >

(’ , ’ < f r a m e l o g i c l i s t o f l i t e r a l s >)?

< f r a m e l o g i c l i t e r a l > : := ’ not ’ ? <f r ame l og i c mo l e cu l e>

<f r ame l og i c mo l e cu l e> : :=

<f r a m e l o g i c f m o l e c u l e>

| <f r ame log i c pmo l e cu l e>

<f r ame log i c pmo l e cu l e> : :=

<f r a m e l o g i c p r e d i c a t e>

(’ (’ < f r a m e l o g i c l i s t o f e x p r e s s i o n s > ’) ’)?

| < f r a m e l o g i c b u i l t i n p r e d i c a t e >

(’ (’ < f r a m e l o g i c l i s t o f e x p r e s s i o n s > ’) ’)?

| <f r a m e l o g i c a r i t h m e t i c e x p r e s s i o n>

< f r a m e l o g i c i n f i x b u i l t i n p r e d i c a t e >

<f r a m e l o g i c a r i t h m e t i c e x p r e s s i o n>

< f r a m e l o g i c l i s t o f e x p r e s s i o n s > : :=

<f r a m e l o g i c e x p r e s s i o n>

(’ , ’ < f r a m e l o g i c l i s t o f e x p r e s s i o n s >)?

<f r a m e l o g i c e x p r e s s i o n> : :=

<f r a m e l o g i c p a t h e x p r e s s i o n>

| <f r a m e l o g i c f m o l e c u l e>

| <f r a m e l o g i c a g g r e g r a t e>

<f r a m e l o g i c a r i t h m e t i c e x p r e s s i o n> : :=

<f r a m e l o g i c e x p r e s s i o n>

| <f r a m e l o g i c a r i t h m e t i c e x p r e s s i o n>

< f r a m e l o g i c b u i l t i n o p e r a t o r>

60

<f r a m e l o g i c a r i t h m e t i c e x p r e s s i o n>

| ’ (’ <f r a m e l o g i c a r i t h m e t i c e x p r e s s i o n> ’) ’

<f r a m e l o g i c a g g r e g r a t e> : :=

<f r a m e l o g i c i d t e r m>

’{ ’

< f r a m e l o g i c v a r i a b l e>

(’ [’ f r a m e l o g i c l i s t o f v a r i a b l e s ’] ’)?

’ ; ’

f r a m e l o g i c l i s t o f l i t e r a l s

’} ’

<f r a m e l o g i c f m o l e c u l e> : :=

<f r a m e l o g i c p a t h e x p r e s s i o n>

< f r a m e l o g i c s p e c i f i c a t i o n >

<f r a m e l o g i c p a t h e x p r e s s i o n> : :=

<f r a m e l o g i c i d t e r m>

| ’ (’ <f r a m e l o g i c e x p r e s s i o n> ’) ’

| <f r a m e l o g i c p a t h e x p r e s s i o n>

<f r ame l og i c do t>

<f r ame log i c method app l i c a t i on>

| <f r a m e l o g i c f m o l e c u l e>

<f r ame l og i c do t>

<f r ame log i c method app l i c a t i on>

< f r a m e l o g i c s p e c i f i c a t i o n > : :=

< f r a m e l o g i c i s a s p e c i f i c a t i o n >

’ [’ < f r a m e l o g i c l i s t o f m e t h o d s >? ’] ’

| < f r a m e l o g i c i s a s p e c i f i c a t i o n >

| ’ [’ < f r a m e l o g i c l i s t o f m e t h o d s >? ’] ’

< f r a m e l o g i c i s a s p e c i f i c a t i o n > : :=

<f r a m e l o g i c i s a s y m b o l>

61

<f r a m e l o g i c i d t e r m>

| <f r a m e l o g i c i s a s y m b o l>

’ (’ <f r a m e l o g i c e x p r e s s i o n> ’) ’

<f r ame log i c method app l i c a t i on> : :=

<f r a m e l o g i c i d t e r m>

(’@(’ < f r a m e l o g i c l i s t o f e x p r e s s i o n s > ’) ’)?

| ’ (’ <f r a m e l o g i c e x p r e s s i o n> ’) ’

(’@(’ < f r a m e l o g i c l i s t o f e x p r e s s i o n s > ’) ’)?

< f r a m e l o g i c l i s t o f m e t h o d s> : :=

<f r ame log i c method app l i c a t i on>

<f r ame l og i c method r e su l t>

(’ ; ’ < f r a m e l o g i c l i s t o f m e t h o d s>)?

<f r ame l og i c method r e su l t> : :=

<f rame log ic method arrow1>

<f r a m e l o g i c e x p r e s s i o n>

| <f rame log ic method arrow2>

<f r a m e l o g i c e x p r e s s i o n>

| <f rame log ic method arrow2>

’{ ’ < f r a m e l o g i c l i s t o f e x p r e s s i o n s > ’} ’

| <f rame log ic method arrow3>

<f r a m e l o g i c e x p r e s s i o n>

| <f rame log ic method arrow3>

’{ ’ < f r a m e l o g i c l i s t o f e x p r e s s i o n s > ’} ’

<f r a m e l o g i c i d t e r m> : :=

<f r a m e l o g i c b a s i c i d t e r m>

| <f r a m e l o g i c f u n c t o r>

’ (’ < f r a m e l o g i c l i s t o f e x p r e s s i o n s > ’) ’

<f r a m e l o g i c b a s i c i d t e r m> : :=

<f r a m e l o g i c f u n c t o r>

62

| < f r a m e l o g i c v a r i a b l e>

| < f r a m e l o g i c s t r i n g>

| < f r a m e l o g i c i n t e g e r>

< f r a m e l o g i c l i s t o f v a r i a b l e s > : :=

< f r a m e l o g i c v a r i a b l e>

(’ , ’ < f r a m e l o g i c l i s t o f v a r i a b l e s >)?

Definition Let the alphabet of wiki language LW be a superset of F-logic alphabet

ΣF . Let further qbegin be a regular expression that matches all query words beginnings,

qformula be a regular expression that matches possible F-logic formulas,6 qdelimiter a regular

expression that matches delimiter words, rsemantic template a regular expression that matches

semantic templates, and qend be a regular expression that matches all query word’s endings.

Let the following set of relations hold:

qformula b/ qdelimiter

rsemantic template b/ qend

Then a query is defined with the following regular expression:

rquery = qbeginqformulaqdelimiterrsemantic templateqend

The semantics of a query read as follows: for each result resulti obtained by

issuing the query defined by qformula against the knowledge base of the wiki system (the

domain D) interpret the semantic template defined by rsemantic template by exchanging any

occurrence of a variable with the corresponding value from resulti. In a semantic wiki

context this means that if on a wiki page a query occurs, than the formula defined by the

query will be issued as a query against the knowledge base defined by the meta data of

the wiki system. Each result will force the wiki language interpreter to write the wiki text

of the semantic wiki template by exchanging all variables in it with corresponding values

obtained from the result.

6Herein we leave the possibility open if this regular expression will possibly match words that aren’t
F-logic formulas since frame logic is more expressive than regular expressions.

63

The niKlas syntax for semantic queries is defined as follows:

qbegin = [query=

qformula = .*

qdelimiter =]\n

rsemantic template = ([/query])!*

qend = \n[/query]

For example a query that is used on a wiki dealing with our courses dealing

with databases there are a lot of different examples. To create a dynamic list of existing

examples we use a query similar to the following:7

[h2] Examples [/ h2]

[query=

? : wik i page [

example−>?t i t l e ,

ur l−>?u r l] ,

s o r t (? t i t l e , asc) .]

∗ [l i n k=?ur l>? t i t l e]

[/ query]

The query generates a list of links to examples as shown on figure 5.1

If we would have used the semantic wiki parser from appendix B the following

parse tree would be obtained:

s emant i c w ik i page (

statements (

[

statement (

f o r m a t t i n g e x p r e s s i o n (

f o r m a t t i n g e x p r e s s i o n s t a r t (

[h2]

) ,

7The query is translated to English for the purposes of this thesis.

64

Figure 5.1: List of examples generated by a query

statements (

[

t ex t (

Examples

)

]

) ,

f o rmat t i ng exp r e s s i on end (

[/ h2]

)

)

) ,

statement (

query (

q u e r y s t a r t (

[query=,

f l o g i c q u e r y (

f l o g i c r u l e b o d y (

f l o g i c l i s t o f l i t e r a l s (

[

65

f l o g i c l i t e r a l (

f l o g i c m o l e c u l e (

f l o g i c f m o l e c u l e (

f l o g i c p a t h e x p r e s s i o n (

f l o g i c i d t e r m (

f l o g i c b a s i c i d t e r m (

f l o g i c v a r i a b l e (

?

)

)

)

) ,

f l o g i c s p e c i f i c a t i o n (

f l o g i c i s a s p e c i f i c a t i o n (

f l o g i c i s a s y m b o l (

:

) ,

f l o g i c i d t e r m (

f l o g i c b a s i c i d t e r m (

f l o g i c f u n c t o r (

wik i page

)

)

)

) ,

f l o g i c l i s t o f m e t h o d s (

[

f l o g i c m e t h o d s p e c i f i c a t i o n (

f l o g i c m e t h o d a p p l i c a t i o n (

f l o g i c i d t e r m (

f l o g i c b a s i c i d t e r m (

f l o g i c f u n c t o r (

example

)

66

)

)

) ,

f l o g i c m e t h o d r e s u l t (

f l og i c method ar row1 (

−>

) ,

f l o g i c e x p r e s s i o n (

f l o g i c p a t h e x p r e s s i o n (

f l o g i c i d t e r m (

f l o g i c b a s i c i d t e r m (

f l o g i c f u n c t o r (

f l o g i c v a r i a b l e (

? t i t l e

)

)

)

)

)

)

)

) ,

f l o g i c m e t h o d s p e c i f i c a t i o n (

f l o g i c m e t h o d a p p l i c a t i o n (

f l o g i c i d t e r m (

f l o g i c b a s i c i d t e r m (

f l o g i c s t r i n g (

u r l

)

)

)

) ,

f l o g i c m e t h o d r e s u l t (

f l og i c method ar row1 (

67

−>

) ,

f l o g i c e x p r e s s i o n (

f l o g i c p a t h e x p r e s s i o n (

f l o g i c i d t e r m (

f l o g i c b a s i c i d t e r m (

f l o g i c v a r i a b l e (

? u r l

)

)

)

)

)

)

)

]

)

)

)

)

) ,

f l o g i c l i t e r a l (

f l o g i c m o l e c u l e (

f l o g i c p m o l e c u l e (

f l o g i c p r e d i c a t e (

s o r t

) ,

f l o g i c l i s t o f e x p r e s s i o n s (

[

f l o g i c e x p r e s s i o n (

f l o g i c p a t h e x p r e s s i o n (

f l o g i c i d t e r m (

f l o g i c b a s i c i d t e r m (

f l o g i c v a r i a b l e (

68

? t i t l e

)

)

)

)

) ,

f l o g i c e x p r e s s i o n (

f l o g i c p a t h e x p r e s s i o n (

f l o g i c i d t e r m (

f l o g i c b a s i c i d t e r m (

f l o g i c f u n c t o r (

asc

)

)

)

)

)

]

)

)

)

)

]

)

)

)

) ,

semant ic template (

statements (

[

t ex t (

∗

) ,

statement (

69

hyper l ink (

h y p e r l i n k s t a r t (

[l i n k=

) ,

i n t e r n a l u r l (

f l o g i c v a r i a b l e (

? u r l

)

) ,

l ink name (

f l o g i c v a r i a b l e (

? t i t l e

)

) ,

hyper l ink end (

]

)

)

)

]

)

) ,

query end (

[/ query]

)

)

)

]

)

)

Another interesting query for this particular wiki is the query that generates

a list of programming languages used on different wiki pages.

[h2] Programming languages [/ h2]

70

[t ab l e]

[query=

? : wik i page [

’ programming language ’−>?name] ,

s o r t (?name , asc) .]

[l i n k=http :// a u t o p o i e s i s . f o i . hr/ tag . php?? search=yes&a t t r i b u t e=↘

→programming language&value=?name>?name] | [/ query]

[/ t ab l e]

This query yields a tag cloud of programming languages (figure 5.2), whereby

each link points to a list of pages using the particular programming language.

Figure 5.2: Tag cloud of programming languages generated by a query

5.2.4 Meta Information

Meta information is defined with the following set of production rules:

<metainfo> : := (<a t t r i b u t e v a l u e t a g> | <hyper l ink>)∗

<a t t r i b u t e v a l u e t a g> : := <a t t r i bu t e> <value>

| ’ c l a s s ’ <f r a m e l o g i c i d t e r m>

| ’ subc la s s ’ (

<f r a m e l o g i c i d t e r m>

| ’ (’ < f r a m e l o g i c e x p r e s s i o n ’) ’)

| ’ ru l e ’ <f r a m e l o g i c r u l e h e a d> :−

<f r a m e l o g i c r u l e b o d y>

<a t t r i bu t e> : := <f r a m e l o g i c i d t e r m>

<value> : := <f r a m e l o g i c i d t e r m>

< i n t e r n a l u r l> : := <f r a m e l o g i c i d t e r m>

<e x t e r n a l u r l> : := <f r a m e l o g i c i d t e r m>

Definition Let rattribute-value tag be a regular expression that matches attribute-value tags,

and rhyperlink be a regular expression that matches hyperlinks, then the following regular

expression matches meta information.

71

rmeta information = (rattribute-value tag|rhyperlink)∗

We are now able to define the semantic wiki language LSW as follows:

Definition Let LW be a wiki language, LF a F-logic language as defined above, let rquery

be a regular expression that defines queries, and let rmeta information be a regular expression

that matches meta information. A semantic wiki language LSW is the pair (LW ,LF)

bridged through rquery and rmeta information. LW is called the wiki component of language

LSW , and LF is called the semantic component. rquery and rmeta information are the interface

between LW and LF .

5.3 Inconsistencies in Semantic Wiki Systems

The previous definitions leave some questions open as outlined in [86]. The ᵀaOPı̄s system

has been used for almost two years for various projects including open-source project

management, university course documentation, political activism, alumni, job search etc.

After analyzing the meta data provided by its users, we were able to observe basically two

types of inconsistencies:

• Syntactical inconsistencies - arisen mostly due to different or inadequate spelling

in attribute-value tags;

• Semantic inconsistencies - arisen mostly due different views of project members.

While syntactical inconsistencies can be easy detected, solved and prevented,

semantic inconsistencies can yield problems in various situations. For example in a case

there was a cyclic definition of subclass relations depicted on figure 5.3. Such a subclass

definition can pose problems for intelligent agents reasoning about this particular domain.

Figure 5.3: Inconsistent definition of subclasses

Other examples include multiple class definitions for a given object (page), as

well as set relations to one and the same object due to multiple hyperlinks to the same

page.

72

To minimize and prevent syntactic errors a suggestion mechanism for attribute-

value tags was implemented. The suggestion mechanism allows the user to see the possible

classes in a specific domain, attributes for a given class as well as attribute values for a

given attribute name. Such a suggestion mechanism allows for less syntactical inconsis-

tencies. The new entry form is shown on figure 5.4.

Figure 5.4: Suggestion mechanism entry form

As shown on the figure when adding a specific attribute or class the user gets

a suggestion of the system for similar terms. On the image the user already entered the

attribute city (cro. grad) and the system automatically shows possible values for this

attribute (e.g. Koprivnica and Zagreb).

Semantic inconsistencies are much harder to prevent, which is why it is sug-

gested to couple to the social system. Social network analysis allows to detect the most

trustworthy members of a social network. In ᵀaOPı̄s a special case of eigenvector cen-

trality [11] used in the PageRank algorithm [72]. Users can vote for each other on a

given project to establish the trust network. In this way numerical values of trust can

be obtained and used to annotate meta information. Before dealing with the details of

this annotation scheme, an introduction to autopoiesis and autopoietic systems shall be

given.

73

Chapter 6

Autopoiesis and Autopoietic Systems

6.1 Introducing Autopoietic Systems

This chapter summarizes the notion of autopoietic information systems as subsystems of

organizations and social systems in a broader perspective. Different notions of autopoiesis

in biology, sociology and organization theory are analyzed in order to yield a definition of

autopoietic information systems. Modern organizational approaches are described using

autopoietic theory in order to be supported by information systems. In the end the ᵀaOPı̄s

system is described as well as possible application of autopoietic information systems.

We shall try to engage autopoietic information systems starting at their very

beginning, their theoretical foundations and ending with practical issues we encountered

during our research. The main idea is to try to answer the fundamental question what

an autopoietic information system is? Is it possible to apply autopoiesis to systems

traditionally considered to be alopoietic? How to support autopoietic information systems

through information and communication technology? Where lies the main usage of such

systems?

We try to give theoretical foundations that are necessary and crucial to any dis-

cussion about autopoietic information systems. Starting at the definitions of autopoiesis

given in different scientific fields like biology, sociology and organization theory we try

to develop a full definition of autopoietic information systems taking the requirements

of modern organizations as well as modern information and communication technologies

into consideration.

Modern organizational approaches like network organizations or heterarchies,

virtual organizations, the hypertext organization, organizational architecture and other

holistic views of an organization like the fractal company as well as process oriented

74

approaches that emerged in the last two decades let us sense a new paradigm in orga-

nizational theory. Is it possible that the common denominator of these approaches is

autopoiesis?

If we presume that the answer to this question is at least positive, is there a

way to support this paradigm through modern information and communication technolo-

gies? During the evolution of the World Wide Web a lot of new technologies emerged

that showed amazing success in employing individuals creative powers, communication

skills as well as collaborative techniques for the achievement of common goals and good.

Technologies like forums, wiki systems, the semantic web, pod-casting, social networking,

content feeds, tremendous search engines, the open-source paradigm, peer to peer net-

works, and others often commonly denoted with the term Web 2.0 or Web 3.0 seem to

be a good platform for attaining this goal. Is it possible to employ these technologies in

modern organizations, and if yes how?

Having such a reasoning in mind we tried to implement a system that could

answer to the questions given above. In this chapter we are documenting our experiences

gathered during the development of the ᵀaOPı̄s project. In the end we give guidelines

and forecasts for the use of such systems in the practice of modern organizations as well

as examples of applications that are possible.

6.2 Various Aspects of Autopoiesis

Autopoiesis, a pseudo Greek word coined from αυτ ó (auto) for self and πóıησις (poiesis)

for creation, production or forming was first coined by the Chilean biologists Humberto

Maturana and Francisco Varela in 1973 [60] to label the type of phenomenon which they

had identified as the definitive characteristic of living systems [114].

Using the metaphor of autopoiesis a whole theory of social systems based on

communication was developed later by Niklas Luhmann [53]. He introduced the concept

of autopoiesis to formal organization theory basing his reasoning on a special subset of

communication: decisions that, following Luhmann, are the essence of organization [56].

This three distinct conceptualizations of autopoiesis are different and in some

cases incompatible as we shall show later in this chapter. In the following we shall give a

brief overview of the different views on autopoiesis. Prior to that we need to make a clear

distinction of two basic concepts, since they are used in the same context.

First there is the concept of organization that is used three-ways: (1) orga-

75

nization in a institutional sense – denoting a system of consciously coordinated peoples

activities with a common goal [108, p. 5], (2) organization in Maturana’s and Varela’s

sense – denoting the instrumental participation of components in the constitution of a

unity [59, p. 315] or basically a system of relations that build up a unity and (3) organi-

zation in Luhmann’s sense – denoting a system of decisions [55, p. 106].

As second there is the concept of structure that is used two-ways: (1) structure

in the sense of (traditional) organizational structure – denoting a system of relations

between organizational units as well as (2) structure in the sense of Maturana and Varela

– denoting the medium upon which the organization (in Maturana’s and Varela’s sense)

of a unity functions. To prevent possible confusion we shall use the terms organization

and structure in their traditional senses if not stated otherwise.

As mentioned before the concept of autopoiesis was first introduced by Mat-

urana and Varela to characterize living systems, as opposed to any other system. The

original idea was to develop a new perspective of perception and cognition stating that

cognition is a phenomenon of the living. Thus it was necessary to find out what charac-

terizes living systems which lead to the notion of autopoiesis that became the core of the

new perspective [114].

Varela gave the following definition of autopoietic systems:

”An autopoietic system is organized (defined as a unity) as a network of pro-

cesses of production (transformation and destruction) of components that produces the

components that:

1. through their interactions and transformations continuously regenerate and realize

the network of processes (relations) that produced them; and

2. constitute it (the machine) as a concrete unity in the space in which they [the compo-

nents] exist by specifying the topological domain of its realization as such a network.”

[102, p. 13] adapted from [113]

Maturana stated that ”... autopoietic systems operate as homeostatic systems

that have their own organization as the critical fundamental variable that they actively

maintain constant.” [59, p. 318]. Thus the concept of autopoiesis involves organizational

preservation and componential (re-)production [114].

According to Luhmann social systems are meaning processing systems and this

is what distinguishes them form other types of systems such as biological ones [65, p. 104].

”A social system comes into being whenever an autopoietic connection of communications

76

occurs and distinguishes itself against an environment by restricting the appropriate com-

munications. Accordingly, social systems are not comprised of persons and actions but of

communications.” [54, p. 145]. Social systems are networks of communication that pro-

duce further communication and only communication and are thus autopoietic systems

[65, pp. 104–105].

Luhmann argues that there are three types of social systems: interactional,

organizational and societal which differ mostly in terms of the ways they constitute them-

selves as well as they select and form their boundaries. Interactional systems are comprised

of communication between a set of people by making a distinction between people one

talks with and people one talks about. Societal systems do not rely only on communica-

tion taking place, but also on previous (stored) communication. Organizational systems

are special since they are formed of a special type of communication – decisions that shape

the possible future states of the system.

As one can see from these various aspects there are a few crucial concepts one

should have in mind before any discussion about autopoiesis. First there is a distinction

between structure and organization (in Maturana’s and Varela’s sense). While structure

is something that is visible (observable) from the outside, organization is unobservable

and inside of the system. Structure comprises of a set of components or elements that

are exchangeable (which means that components change during time) and the mutual

interactions between these components. Organization comprises of the relations between

these components and is stable over time. That means that structure does change but

organization remains stable even if the components that make up the structure change

over time due to interaction of the system with its environment.

These connection between an autopoietic system and its environment is de-

noted as structural coupling (shown on figure 6.1.).1 ”The result of structural coupling is

an autonomous and strictly bounded system, that has nevertheless been shaped extensively

by its interactions with its environment over time, just as the environment has been shaped

by its interactions with the system.” [75]

The mechanics of the process of autopoiesis as described by Maturana and

Varela are kept strictly within the bounds of an autopoietic system. Thus autopoietic

systems are closed in terms of operational and organizational closure [75].

While in living systems structure is comprised of biological processes in social

systems structure is according to Luhmann comprised of communication. Organization

1With friendly reprint permission of Tom Quick

77

Figure 6.1: Structural Coupling [75]

(in Maturana’s and Varela’s sense) is then comprised of the particular relations between

certain communicative events.

Another important concept is the reproduction of components. While one can

easily depict this process in living systems (e.g. living beings feed themselves with food

from their environment that eventually after certain processes becomes an integral part of

the living being facilitating the regeneration of the process) in social systems this repro-

duction is less obvious. If we follow Luhmann then communicative events are reproduced

by previous communicative events, or in the case of organizations (in Luhmann’s sense)

decisions reproduce new decisions.

To picture autopoiesis at a most basic level we could introduce an imaginary

autopoietic system consisting of only one process and only one component. The process

uses the resources from the component to produce new resources which in turn enable the

recreation of the process. Thus the process’ recursive relation with itself represents the

organization and the component the structure of the system. This most basic autopoietic

system is depicted on figure 6.2. whereby P1 represents the process and R1 the component.

The resources in the component can but do not have to be from the environment.

6.3 Invitations to an New Paradigm

In the last 20 years one was able to observe a lot of new concepts in organizational

theory. Terms like heterarchies, fishnet organizations, hypertext organizations, virtual

organizations or fractal companies are often hard to classify using traditional organization

theory concepts. In the following we give a brief description of important ideas.2

2You can find a more in depth discussion on modern approaches to organizations in [105].

78

Figure 6.2: The basic autopoietic system

6.3.1 Heterarchies and the Fishnet Organization

The concept of a heterarchic organization (or network organization) is based on the fol-

lowing principles: an organization consisting of organizational units3 that are mutually

connected through information links (often based on modern information technology),

are mutually independent, heterarchically organized (as opposed to hierarchy), and they

operate internally and externally (with their environment) in most cases sharing some

common goal [105, p. 106].

The idea of a heterarchical organization comes from the neuropsychological

research of the human brain conducted by Warren McCulloch in 1945. He concluded

that the human brain must have a heterarchical organization as opposed to previously

defined hierarchical models, and described this organization as a neural network which is

specifically designed for parallel information processing [78, p. 3].

If we apply such a concept to an organization, we get a structure which inter-

relationships are not strictly defined, but rather activated, or self regulated depending on

the particular situation [105, p. 106].

An interesting metaphor for this kind of organization is the fishnet organiza-

tion, depicted on figure 6.3. If we observe a fisher’s net on the coast, it seems completely

non-hierarchical. But if we take one node and lift it up, we get a hierarchical structure.

By lifting further nodes and putting down the old ones, we can see the dynamical creation

of new and the destruction of old hierarchical structures. Thus the fishnet organization

tries to combine the modern concept of heterarchy and the usual human habit of tendency

to hierarchy and order [88].

3Organizational units can in this context be either individuals, teams, departments, divisions and even
entire organizations or groups of organizations by the fractal organization principle [105, pp. 149–151] as
argued further in this chapter

79

Figure 6.3: The fishnet organization [37]

6.3.2 Process and Project Oriented Approaches and the Hyper-

text Organization

Process and project orientation put organizations into a different perspective. They ap-

proach an organization as a system of processes instead of departments and hierarchy, and

they analyze a series of ventures or projects instead of continuous business operations re-

spectively [8]. In the process approach4 grouping is performed by simultaneously applying

all the principles that evolved from classical management theory, which means that work

broken into pieces by scientific management is being reintegrated [15, p. 80]. The project

approach to organizing subsumes task or project orientation as well as interdisciplinary

team work. Projects are always time limited, so a project organization is time limited

from the beginning of the project until its end [28, p. 44].

At a first sight, it seems impossible to combine these two approaches together5,

but their mutual benefits, with elimination of their disadvantages can be useful in the hy-

pertext organization which was introduced by Ikujiro Nonaka [69, pp. 166–167]. This kind

of organization consists of three layers – a business layer, which in essence is performing

everyday bureaucratic tasks; a project team layer used for executing the multidisciplinary

activities which increase the total knowledge of an organization; and a knowledge based

layer that is imaginary and in which the knowledge accumulated in the previous two layers

is once again categorized and put into new contexts [105, pp. 165–168]. Figure 6.4. shows

a short outline of the hypertext organization.

4Which is very important due to the business process re-engineering and similar paradigms that
enable business system management through business processes and their support through information
technology.

5The process based approach is oriented to everyday operations, while the project based approach is
oriented to certain ventures which generally are not repeatable and are time limited.

80

Figure 6.4: The hypertext organization [69]

6.3.3 Organizational Suprastructures and the Virtual Organiza-

tion

Ad hoc suprastructures are concepts that are built on top of existing organizational struc-

tures and they emerge as a response to some problem or change in the immediate en-

vironment of the organization [105, p. 119]. Ad hoc organizations are characterized by

adaptability, readiness, individual initiative, desire for experimentation, creativity, and

outside growth and support [5, p. 7]. They usually disappear when the environment

problem is solved.

A Virtual organization6 is a target oriented suprastructure of geographically

separated entities (organizational units) that are specialized for a predefined area of activ-

ity, are interconnected through space, time and organizational limitations, mostly using

information, communication and network technology for efficient and flexible cooperation

and exchange of knowledge. Figure 6.5. shows the concept of a virtual organization [7].

6Virtual organization is one of the most widespread examples of ad hoc organization in expert liter-
ature. [7] says that these organizations exist in cyberspace, that they develop proportionally with the
development of information and communication technology and that they can be found in conventional
organization structures. Under the term cyberspace he understands the media in which electronic com-
munication and computer programs exist, and he argues that the understanding of the term is essential
to the understanding of the virtual organization.

81

Figure 6.5: The virtual organization [7]

6.3.4 Organizational Architecture

At more recent times some authors introduce the concept of organizational architecture

that does not only include the formal organization, but also the informal, the business

processes, business strategy as well as human resources as the most important factor

of the organization [68, p. 4]. It seems obvious that the metaphor from conventional

architecture implies a connection of organizational structure with other systems within

the organization into a unique synergistic system that will achieve more than just the sum

of its parts [63, p. 2]. Figure 6. outlines the basic concepts of organizational architecture.

The objective of organizational architecture is to develop an organization that

will be able to continuously create new values for its customers as well as to organize

and optimize it self [91]. Other authors understand under organizational architecture

building blocks that are necessary for organizational growth like organizational structure,

organizational culture and human resource development. Thus organizations have to learn

how to design, implement and manage these blocks [20, p. 1].

Organizational architecture is closely bound to organizational design and thus

Nadler and Tushman define it as a wide set of decisions that have to be made by managers

in their organizations. Since under organizational design only a part of this set of decisions

is understood they decided to name this wider set organizational architecture [68, p. 4].

As one can conclude from the previous reasoning different authors consider

82

Figure 6.6: Basic concepts of organizational architecture [105]

different components of organizational architecture [63, 32, 20, 21], but one can recognize

the five most important components of organizational architecture: the formal organi-

zation (organizational structure), the informal organization (organizational culture), the

business processes, strategy and human resources [107, p. 41] as shown on figure 6.6 [105,

p. 2].

6.3.5 The Fractal Company

The concept of a fractal company (Ger. die Fraktale Fabrik) was first introduced by Hans

– Jürgen Warnecke in 1992. who has concluded that organizations are similar to complex

systems that are characterized by fractals [111]. This concept was in a way an answer to

similar Japanese and American concepts adapted to the European market [1, p. 1].

The term fractal was introduced by Mandelbrot to denote an object that has

a certain degree of statistical self-similarity on every observed resolution and is generated

by a infinite number of recursive iterations. If one observes a fractal (figure 6.7a.) she

can recognize a certain pattern. By taking a closer look (possibly under a magnifier) she

can observe the same pattern on lower and lower levels.

As one can see on figure 6.7b. a fern twig has some characteristics of a fractal

(one twig is similar to the smaller twigs it consists of, which in turn consist of even smaller

twigs). If one applies this concept to organizational structure she can observe fractals in

the form of individuals, departments, divisions, process flows, decisions and all the other

systems that make up an organization. The main objective is to find the fundamental

pattern that will yield deeper insight to the organization as a whole [105, p. 150].

A fractal in Warnecke’s sense is an autonomous organizational unit that has

83

objectives and a function that can be clearly described. Typical characteristics of a fractal

are self-similarity, self-organization and self-optimization [1, p. 1].

Figure 6.7: a. The Mandelbrot fractal, b. A fern twig [105]

Self-similarity means that the goals of particular fractals (from the individual

in the organization, until the organization as a whole) match into a harmonic mutual

objective. Self-organization means that particular fractals have their own autonomy con-

cerning ventures and decisions according to the self-similarity rule, e.g. objectives have to

be harmonized with upper and lower fractals. Self-optimization means that fractals con-

tinuously optimize their self-initialized work and decision making [76, p. 34]. Figure 6.8.

shows the fractal principle where the spiral connecting the individual fractals represents

the business process.

6.4 Relations between Social, Organizational and In-

formation Systems

Brumec developed a genetic as opposed to descriptive definitions of information systems as

follows: ”An information system is a subsystem of the organizational system, whose task

is to link processes on the operational, management and decision-making level. Its goal

is improving performance efficiency, supporting good quality management and increasing

decision-making reliability.” [13]. An information system comprises of information and

decision flows between these organizational processes as shown on figure 6.9

84

Figure 6.8: The fractal principle [105]

The consequence of such a definition is that an information system cannot exist

by itself. It is always a subsystem of some real organizational system, i.e. each organiza-

tional system has its unique and distinctive information system. An information system

can but doesn’t have to be supported by information and communication technologies

(ICT). These relationships are depicted on figure 6.10 which is an adaptation of [44].

More recently due to the development of the Internet and especially so called

Web 2.0 and Web 3.0 applications one was able to observe systems supporting information

flows inside social systems. We could easily call this kind of systems social information

systems since they comprise the same elements as information systems defined by Brumec

except that they are subsystems of a larger class of systems than organizations. They are

subsystems of social systems comprising of their information flow and used to facilitate

social functions and decision making.

Thus we can conclude with the flowing set of relations: organizations as well

as social information systems are subsystems of social systems. Information systems (in

Brumec’s sense) are subsystems of organizations. Information systems as well as social

information systems can be but do not have to be supported by ICT.

6.5 A Critical Review of Autopoiesis

Prior to an attempt to define autopoiesis in the context of information systems we need

to clarify our view on autopoietic theory. In terms of Maturana and Varela autopoiesis

consists basically of two parts: (1) preservation of organization and (2) regeneration of

85

Figure 6.9: The information system as a subsystem of an organization [13]

structure. While the letter seems to be obvious the former raises questions outlined in

some critics of the theory. We shall try to depict these questions using some simple

examples.

Let us observe a living being that naturally changes due to metamorphosis for a

most impressive example. ”A caterpillar organization auto-organizes to a larger caterpillar

organization or pupa organization, and pupa organization in a butterfly organization.” [99]

If we follow Maturana’s and Varela’s reasoning in this case we would have three distinct

autopoietic systems: a caterpillar system, a pupa system and a butterfly system since

processes in these systems are in different relations even if we are talking about one and

the same entity. We can extend this example to any living beings since living beings are

born, evolve, eventually reproduce themselves, age and eventually die.

Now let us observe a living being that changes drastically due to environmental

influences. For example a cat looses its tail due to an accident. The system isn’t able to

maintain its organization (when following Maturana and Varela) since part of the structure

(particularly components that were part of the cat’s tail with accompanied resources) are

gone. The organization would be preserved if the components could be regenerated, but

nature tells us that cats do not regenerate their tails once loosing it. Relations between

processes that were performed in the cats tail are gone. But, part of the organization is

86

Figure 6.10: Relationships between the social system, organizations, information systems
and ICT (Adapted partially from [44])

still maintained, as well as autopoiesis since the cat is still a living being.

Another interesting observation would be the one of a vine tree. It is well known

that one can cut a twig of a wine tree put it into soil and under certain circumstances

the twig will root and become a tree of its own. In terms of Maturana and Varela the

organization of the initial wine tree was split into two distinct parts and both of them

became a system of their own. But which of them is the original one, if any? We can

extend this example to any reproducing species, and ask the famous question when does

life and consequently when does autopoiesis occur?

All these examples let us seriously consider that organization (in Maturana’s

and Varela’s sense) has to change during time. Even if they describe autopoietic systems

as processes they do not seem to include basic system dynamics like evolving, aging or

metamorphosis as a visual example. So we consider that organization can change but in

a natural (evolutive) way, only if certain preconditions are fulfilled. Organization evolves,

matures, eventually reproduces itself, ages and dies. From this point of view we can depict

the most basic (evolving) autopoietic system as shown on figure 6.11 whereby P1, P2, P3,

... , Pn are instances of the same process performed in different time frames, whilst R1

is a single component holding the resources needed for the processes to perform. The

component will change during time, as well as the organization comprised of the relations

between process’ instances by evolving in a natural way.

The example of the cat let us consider that not the whole organization has

to be maintained for a system to maintain autopoiesis. So we introduce the notion of a

core part of organization – the systems identity. A system will remain autopoiesis if its

87

identity remains. This notion of identity lets us also explain the example of the wine twig

and reproduction of living beings. In the former only a part of the organization (that

isn’t in the identity of the system) was split of and produced an identity of its own. The

original tree remained its identity and thus maintained autopoiesis. In the letter case a

living being will create a new part of its own organization that will eventually yield a new

identity of a new living being. This process is usually denoted by reproduction.

Figure 6.11: The basic (evolving) autopoietic system

In terms of Luhmann social systems are sense processing systems of commu-

nication. They are autopoietic in terms of reproducing communication. In the sense of

Maturana and Varela structure would be comprised of communicative events that are

reproduced. Organization would be the system of relations between these communica-

tive events. In the original sense of Maturana and Varela this organization had to be

preserved. But, relations between communicative events change due to the evolution of

social systems. Thus, organization, as we reasoned previously, evolves and changes in a

natural way.

If we take the global social system (society) as an example we could ask the

question if this system still existed after catastrophes like the tsunami or the civil war

in Rwanda? Even if a great deal of stored communication in all these victims minds

disappeared the system still remained since its identity survived.

Another questionable statement is that social systems are systems of commu-

nication and only of communication. Especially societal and organizational systems but

in a way interactional systems as well rely on stored communication. The question is

where is this communication stored and can we conceptualize autopoiesis of these systems

in another way that would yield a better understanding of social systems.

To answer this question let us take a most simple example of a flock. We

88

could say that relationships between the processes conducted by the animals in the flock

comprise an organization that emerges through communication and perception. These

relationships set up certain roles during time inside the flock (like the alpha male). We

could furthermore define a structure to be comprised of the animals (components) of the

flock as well as their characteristics in the perception of the others. It is important to state

here that the components of the structure are not any animals but animals accepted by

the other animals, that in turn accepted to be part of the flock. Thus structure changes

during time but the organization remains, and this simple system of a flock could be

considered an autopoietic system.

If we take this example into a social systems’ perspective we can conceptualize

social systems as systems comprising of accepted individuals that accepted to be part of the

social system. These accepted individuals are reproduced (their acceptance, their social

roles, expected attitudes and manners, their beliefs but not the individuals themselves)

and thus comprise the components of the social system that build up the structure. The

organization (in Maturana’s and Varela’s sense) is comprised of the relations between

the accepted individuals that are build up through social processes of communication.

Organization remains constant but evolves in a natural manner. This reasoning introduces

individuals as a new idea into Luhmann’s social system perspective that we missed in some

extent. These individuals are exchanged during time and reproduced (not physically but

socially).

6.6 Defining Autopoietic Information Systems

Having the previous reasoning in mind we could define the following classes of autopoietic

systems: (1) biological systems – autopoietic systems in the sense of Maturana and Varela

with the addition of organization’s identity and dynamics, (2) social groups of biological

systems (flocks, swarms etc.) - systems that are comprised of relationships between living

beings whereby during time roles evolve which are attractors that lead future development

of the system, (3) social systems – special cases of social groups where biological systems

are mostly humans, (4) information systems – subsystems of social systems that deal only

with information and communication inside them. Social systems can further be divided

into: (a) interactional, (b) societal, (c) organizational having corresponding information

systems.

Thus, autopoietic information systems would be interactional-, societal- and

89

organizational- social systems in the sense of Luhmann since they deal exclusively with

communication. Since social systems from our perspective are systems of accepted indi-

viduals we can state according to the genetic definition of information systems that their

subsystems dealing with information are their respective information systems.

An autopoietic information system is then defined as a set of relations be-

tween communicative events that reproduce new communicative events based on previous

(stored) communication. The organization of this system (in Maturana’s and Varela’s

sense) are the relations between communicative events described through their semantics

(meaning). The structure of the system (in Maturana’s and Varela’s sense) are the means

that are used to produce communication described through syntax.7

Interactional autopoietic information systems are systems that emerge and

do virtually not depend on previously stored communication but on current interactions

between communicative events. Interactional autopoietic eventually yield societal au-

topoietic information systems when attractors of meaning emerge that are reproduced

through stored communication. A special case of societal autopoietic information systems

are organizational autopoietic information systems that primarily consist of decisions that

set up the possible future states of the system.

To approach the previously defined concepts of modern organizations we need

provide a suitable framework for description of these concepts. In the following we shall

use the terms structure and organization as well as identity in the (extended) sense of

Maturana and Varela (if not stated otherwise).

A heterarchy in terms of autopoietic theory can be defined as an organization

in which relations aren’t strictly defined but rather activated due to some changes in the

structure. Since the structure is comprised of accepted individuals (the components) thus

any influence from the environment is detected in the structure. The components activate

relations by making decisions about the situation in their immediate environment. Thus

the information system of an heterarchy would be comprised of decisions made on behalf

of indirect influences from the environment that activate relations inside the heterarchy.

A fishnet organization, as a special case of heterarchy activates special relations

between the components of the system. This special relations when activated by an

adequate number of components create a role (the top of the dynamic hierarchy, e.g.

managerial role, project leader etc.). These roles disappear when the relations are dis-

7To see an alternative definition of autopoietic information systems using an descriptive rather than
a genetic approach take a look at [8].

90

activated by the components of the system. Thus the information system of a fishnet

organization is comprised of decisions that create special types of roles.

The hypertext organization in these terms may be defined as an organization

of partially relatively static and partially state dependent relations. The relatively static

part of relations comprises the bureaucratic (process oriented) part of the organization.

The state dependent part is activated when a project is started. Thus the information

system of the hypertext organization is comprised of decisions that activate projects and

increase the knowledge in the organization’s knowledge base.

Ad-hoc suprastructures can be defined as organizations comprised of emergent

relations. These relations emerge due to indirect influences from the environment or due

to direct changes in multiple structures. As soon as these influences disappear so do the

relations as well as the ad-hoc suprastructure. The information system of a suprastruc-

ture thus consists of decisions that create new relations between existent components of

different structures.

The virtual organization is a special case of ad-hoc suprastructure in which

relations are activated through decisions in multiple structures that connect distributed

components through cyberspace. The only difference between ad-hoc suprastructures and

the virtual organization is that the letter exists in cyberspace. The information systems

are equivalent except that the virtual organization’s information system is fully supported

through information and communication technology.

Organizational architecture is considered to be a framework for a holistic ap-

proach to any organization (in the institutional sense). Human resources comprise the

components of the organization. The formal and the informal organization comprise two

distinct sets of relations building up a single organization. Business processes define the

interactions between the components (the structure) and the environment. The infor-

mation system of any organization (institutional sense) is thus the system of decisions

that build up the organizational architecture. Strategy is an important subsystem of the

information system that coordinates the system’s organization.

The notion of a fractal organization can yield deeper insight to this holistic

view. Subsystems of the organization (fractals) are self-similar. This means that deci-

sions will also be self-similar which in turn means that there are certain patterns in the

information system that are self-similar and can be observed. By taking advantage of this

fact one could develop new approaches to strategic planning.

Following these arguments we can conclude that to support autopoiesis in

91

modern organization’s information systems we need to support the following types of de-

cisions: (1) decisions made by components on behalf of influences from the environment,

(2) decisions that create relations which build up managerial roles, (3) decisions that

activate projects, (4) decisions that create new knowledge, (5) decisions that create new

relations between different structures, and (6) decisions that coordinate the system (strat-

egy). Other important concepts that should be supported are: (1) interactions between

the system and the environment, (2) management and recognition of patterns inside the

system, (3) filtering of complexity and (4) boundary determination.

6.7 Modern Information and Communication Tech-

nologies

In order to support an autopoietic information system by technology we give a brief outline

of modern information and communication technologies that emerged due to the amazing

growth of the world’s major network. These technologies are often referred to with the

term Web 2.0 or more recently Web 3.0 even if it sometimes isn’t clear what this term

subsumes. In a general perspective we can say that Web 2.0 subsumes user participation

through communication and content creation, whilst Web 3.0 tries to incorporate ideas

from the semantic web into a social web perspective.

Forum A forum is a network application that allows its users multimedia based commu-

nication (mostly through text, images, and simple animations) and is organized into

subjects and sub-forums. A forum is hierarchically organized in a way that every

user can participate in the communication process by answering previous messages.

The communication process of such a system can be thought of as a general tree

structure in which nodes are messages and arcs are the essential connections be-

tween message and answer. Forums are a very widespread technology with a lot of

implementations like PHPbb and vBuletin to name the most popular as well as lots

of communities functioning almost completely through this kind of technology.

Wiki The concept of a wiki system operates in the following way: every user or visitor of a

wiki service on the Web can change articles and information that he encounters, add

new articles and/or information and argue about the existing ones. An additional

mechanism that is built into such systems is the possibility to interconnect terms

used in articles. In other words, every term that is mentioned in one article of

92

the system can be connected with other articles which elaborate it further. This

mechanism allows easier explanation of unknown terms to users. A disadvantage of

such a system is the lack of a mechanism for consistent decision making. In other

words, such systems are sometimes affected by so called editor wars, when users fight

each other by constantly changing some disputable article content. Wikis became as

well as forums a widespread technology with typical implementations like WikiMedia

to name the most prominent one. WikiMedia is the engine of Wikipedia the free

Internet encyclopedia that was established in 2001. As of the time of writing this

chapter Wikipedia had over 2.2 million articles in its English version, while there

are versions for almost any world language.

Social networking Applications for social networking allow their users to virtually cre-

ate social networks of their friends, colleagues, co-workers etc. One can browse others

friend lists and profiles, play virtual games, get in touch with long lost friends etc.

Some of the most famous social applications like Facebook or MySpace allows one

to engage a lot of different activities with her friends like games, projects, petitions,

causes, exchange images, videos, journals etc.

Social tagging Social bookmarking and social tagging technologies allow their users to

organize content they encounter on the web or on site through tags and/or book-

marks. One of the most prominent social bookmarking and web search engine

application del.icio.us allows users to tag any page on the World Wide Web with

custom defined keywords. The search results are impressive having the simplicity

of the algorithm that constitutes the application in mind as opposed to complex

algorithms used by traditional search engines.

Content feeds Content feeds or web syndication is a popular technology in which a

section of a website is made available for other sites and applications to use. This

serious of protocols and standards allow users to aggregate information form different

sources in one place.

Pod-casting Pod-casting services are another interesting web technology that allows its

users to broadcast their own video material. Services like YouTube, Google Video

and others became extremely popular and are often compatible with other technolo-

gies mentioned previously. Web services are modern networking technologies that

enable remote procedures or services usage as if they were local. They enable the

93

development of distributed networking applications without the need to contain all

the parts of it on a single computer or server. Extensible markup language (XML)

is a data description language used in such services and content feeds. It is very

simple and intuitive and is often used in conjunction with web services for inter-

change of data between the local application and the service. Business to business

(B2B) communication is a modern communication concept between different orga-

nizations, distinguishing it from Business to Customer (B2C) communication model

used by the organizations to communicate with their customers. B2B often relies

on concepts such as web services and XML for the interchange of data.

P2P Peer-to-Peer is a group of network protocols which, instead of a usual client-server

model, enable every participant to simultaneously be both client and server. The

concept is based on mutuality in a way that every user shares certain contents at

disposal to other users what gives him the right to access their shared content.

P2P protocols aren’t typically used for interpersonal communication, but for the

exchange of electronic data.

Semantic web Web pages and the structure of the World Wide Web are adjusted to

humans who are able to find, combine, internalize and reason about such stored

knowledge. But, if someone tries to do the same using a computer program prob-

lems occur due to unstructured, distributed and semantically unadjusted sources

of knowledge. Thus the semantic web is a systemic attempt of formalizing knowl-

edge on the World Wide Web to facilitate more effective computer based retrieval

and reasoning about knowledge. Semantic wiki systems are an additional idea to

combine ideas from the semantic web with the dynamic and collaborative creation

of content happening in wiki systems by adding meta information to created con-

tent. Semantic web services are another interesting idea of combining structured

knowledge with web service to enable semantic retrieval, performing, connecting

and interoperability of web services [62].

Open Source The approach of building information systems and applications based on

open source is used by many very successful systems8 like Apache, Perl, Wikipedia,

Mozilla and Linux, as the most popular example. The concept of an open source

8Many successful systems, probably much more than open source systems, were developed in a closed
source environment using traditional software engineering methodology.

94

project9 functions in the following way: a programmer (or few of them) start an

information system or application development project. All the source code they

produce, the application and the documentation is public accessible, usually via

Internet. Users play an important role in the system development process, they

test it, check it, make suggestions, report bugs, criticize functionality etc. If the

application or information system is widely used, it becomes more and more aligned

with the customers’ needs and its environment [105].

6.8 Current System Model

The development of the ᵀaOPı̄s 10 system was started in 2004 by a group of enthusiasts

with the idea of creating a completely decentralized self-organizing project management

system for use in public and political projects as well as in dynamic organizations.11

The project was managed in an Open Source manner so many ideas and con-

cepts outlined here12 are results of discussion thought various forums, mailing lists as well

as wiki systems. A modified methodology of strategic planning of information systems

[14] was adopted to create an initial model of the system as well as to plan future steps

of the project. During time and due to Open Source development more and more ideas

came into play and the initial model of the system was considerably changed.

In the following we will try to outline some basic concepts of the ᵀaOPı̄s

system’s architecture. The main structure of the system is a system similar to Open

Source project management systems like SourceForge, RubyForge and others with a little

extension in project semantics since any kind of project can be managed through the

system not only information system projects. Any person or group of people can start their

own project on the system and use it to manage the project in a completely distributed

way. Any person can join any project and contribute to it.

Every project basically consists of a forum system for discussion as well as a

wiki system for content creation. The forum system can be used for discussion between

contemporary project members. Due to the fully decentralized nature and other ideas

of self-organization there was need to eliminate the role of a forum moderator who is

9Not to be mistaken with classical (commercial) application development, where a development com-
pany in addition to the application sells the customer the source-code of the application.

10Initially ᵀaOPı̄s meant TiAktiv Open Politics Information System but more recently the acronym
was renamed to Transparent Open Public Autopoietic Information System.

11A history of the ᵀaOPı̄s system as well as the various people, organizations and on-line communities
is outlined in [85]

12Under which the idea of using autopoiesis as the main paradigm outlined by prof. A. Lauc

95

basically a privileged user that can filter, delete and/or change content on the system.

Thus a filtering system was developed that allows every project member to be a moderator

if she chooses to or to use the moderation of some other member. A list of moderators is

provided that lets members choose the most popular moderators.

Another important issue was how to determine project leaders that will make

decisions and use strategy to continuously improve project performance. People’s opinions

about other people change during time, thus as in the case of moderators project leader

had to be a dynamic role that could be changed depending on people’s opinions. An

interesting idea was to use a modified PageRank algorithm that is used by the famous

search engine Google to rank pages, in order to determine project leaders dynamically.

The PageRank algorithm has its roots n social network analysis since it uses incoming

and outgoing links of web pages to determine a page’s rank. Every incoming link (e.g.

another page that is linking to the page under consideration) is considered to be a vote

for the page under consideration, while every outgoing link (e.g. links pointing to other

pages on the web) are considered to be votes for the pages that they link to. Votes (links)

are weighted with the rank of every page and the sum of all pages’ ranks in a network is

1.

If we apply this idea to a social network in which people vote for zero or more

others we can dynamically establish a hierarchy due to people’s ranks. This algorithm was

implemented in the ᵀaOPı̄s system to determine member ranks as well as to determine

the project leader.

An interesting analogy is the previously mentioned fishnet organization that is

implemented in this way [88]. Since there are multiple projects active on the system there

are multiple dynamic hierarchies that change during time depending on people’s opinions.

To completely decentralize any generic function of the system additional projects

were defined dealing with administration, development, support and Spam filtering. Thus

administration of the system is a project where members administer the system and ad-

ministrators are defined through the dynamic PageRank algorithm. Likewise all the other

projects deal with the previously mentioned generic information system functions.

To employ people’s knowledge and creativity in an nonobligatory way a tagging

system was developed that allows every user to organize content she encounters on the

system using attribute-value tags. These tags are meta information added to content that

allow a possible intelligent agent to reason about knowledge on any project as well as on

the system as a whole. Thus options that allow the export of a project’s semantic web

96

ontology consisting of all the meta information users created by organizing content for

themselves were implemented. The syntax of the wiki system was extended with a frame

logic based language that allows users and computer programs to make dynamic queries

and reason about knowledge stored in a projects ontology.

Another issue was how to combine this system with existing information sys-

tems as well as how to extend functionality (since the system provides only generic project

and knowledge management functionality). Thus the idea of semantic web services as

well as script extensions came to attention. Using web services one could combine exist-

ing information systems with the ᵀaOPı̄s system. This functionality is planned but not

implemented fully. There are however bindings to other popular communication systems

like mailing lists, content feeds, social bookmarking as well as pod-casting services. Other

planned features include social networking facilities to allow users to get in touch with

their friends, colleagues, co-workers etc. but also to establish semantic relations between

projects as well as to implement a simple peer to peer system to connect various instances

of the ᵀaOPı̄s system.

From an autopoietic theory perspective we can say that we were able to im-

plement support for decisions that activate projects (since every user when encountering

some opportunity in the environment can start a project), decisions that set up manage-

rial roles (since every project member can vote for other members and thus decide upon

project leadership), and decisions that create new knowledge (since every project member

can create content on the semantic wiki system as well as tag any content on the system

to organize knowledge). Decisions made by components on behalf of influences from the

environment, decisions that create new relations between different structures as well as

decisions that coordinate the system are only partially supported but not strictly formal-

ized as the previous ones. Thus mechanisms to support these types of decisions have to

be developed in the future.

On the other hand we were able to support interactions between the system

and its environment (due to various connections to other systems as well as through

the planned semantic web services and script extension’s feature), filtering of complexity

(through the filtering system) as well as boundary determination (only decisions stored

on the system are part of the information system). The concept of management and

recognition of patterns inside the system is not supported yet, but we plan to develop a

system that will be able to set up relations between different projects and organizations

as well as to recognize patterns and fractals inside the system and make use of them in a

97

semantic web perspective.

6.9 Experiences and Lessons Learned

The most important lesson we learned during the implementation of the ᵀaOPı̄s system

is that autopoiesis is something that happens not something that can be implemented.

Nevertheless dynamic organizations can have benefits if taking concepts from autopoi-

etic theory into consideration when planning, modeling and developing their information

systems. Through careful consideration autopoiesis can be facilitated in such systems.

By conducting an experiment with 160 students in a knowledge management

course who were assigned to use the ᵀaOPı̄s system to acquire knowledge about a partic-

ular topic we gathered interesting insights [57]. Students were randomly divided in teams

of 4 – 7 members with every team having a special topic that represented their project.

After four weeks of cooperation results were impressive.

Since students were forced to cooperate with people they sometimes didn’t

even know the first week was quiet within a search for a leader. Students were told to use

the ranking mechanism to find a leader who will communicate with ”upper management”

(the teachers). As soon as such a role was established work was divided into parts and

teams started to conduct research on the topics.

Three weeks later impressive knowledge bases on the particular topics emerged

consisting of lots of text encountered in different books, articles, and web sites. The se-

mantic wiki systems were crowded with text, images, animations, short movie tutorials,

meta information and queries that summarized information and put it into new perspec-

tives. Still there were teams that weren’t able to find a leader and such teams failed in

the task to create a satisfactory solution.

After the projects were finished a survey was conducted to identify which

criteria students used in establishing a leader role as well as how successful they would

rate their projects. It is interesting that teams that used leadership skills as a criteria were

able to identify a leader and were thus successful. On the other hand teams that didn’t,

weren’t able to identify a leader and were less successful. Still on an average scale 82 % of

the students rated their project successful and 84 % of students thought that their project

leaders have leadership skills. If we take that students were divided into teams randomly

which yields possible incompatibilities between students personalities into consideration

these are impressive results.

98

Another lesson we learned is that to facilitate autopoiesis one needs to facil-

itate interaction. In the mentioned survey we also asked students for suggestions and

improvements of the system and most of them answered that they want additional inter-

action systems (chat rooms, instant messaging, improved forum system, status of on-line

members, collaboration). Other improvements that were suggested are improved user

interface (better graphical user interface design, more user-friendly interface), additional

functionality (better content formatting, additional query possibilities) and less system

flaws.

6.10 Conclusion

In this chapter we developed a definition of autopoietic information systems based on the

genetic definition of information systems as subsystems of organizations or social systems

in a broader perspective. Following definitions of autopoiesis in biology, sociology and

organization theory we proposed a definition of autopoietic information systems consisting

of their semantics (organization in Maturana’s and Varela’s sense) and syntax (structure in

Maturana’s and Varela’s sense). Syntax is exchangeable while the core part of semantics

(the system’s identity) remains stable. If the systems identity disappears so does the

system. We argued that there are interactional, societal and organizational autopoietic

information systems depending on the nature of communication or the reproduction of

semantics.

By defining important concepts from modern organization theory through au-

topoietic theory we were able to identify decisions and concepts that have to be supported

in order to support autopoiesis in information systems through information and commu-

nication technology. Modern Web 2.0 technologies that emphasize involvement seem to

be a good platform for attending this goal.

Using these insights we developed such a system. During the development

we learned that autopoiesis is something that happens not something that can be imple-

mented as well as that autopoiesis happens through interaction. By supporting interaction

one can support the emergence of autopoiesis in information systems.

To provide a formal backdrop for knowledge management in such systems we

decided to use semantic wiki languages as described in chapter 5 with the addition of

social network analysis metrics that can be used as a probability annotation.

99

Chapter 7

Programming Languages for

Autopoiesis Facilitating Semantic

Wiki Systems

In order to support autopoiesis in semantic wiki systems one needs to acknowledge the

complex nature of the social system surrounding them. Complex systems are probabilistic

in their very nature which is why we decided to annotate previously described semantic

wiki languages with probability. This annotated probability value has to be a measure of

truth, thus the main question is how to characterize the probability that a certain person

will say the truth? The answer to this question can only be found in the laws of the

social network the person participates in. Thus, we decided to use social network analysis

to find this probability. In order to provide a suitable mechanism that will yield results

based on peoples opinions about what is the truth, we shall implement an algorithm that

will resemble the fishnet structure described above.

7.1 Social Network Analysis

In order to provide a suitable formal framework we shall familiarize ourselves with key

concepts from social network analysis. Social network analysis is concerned with under-

standing the connections among social entities as well as with the implications of such

linkages [112, pp. 17–20.].

Actor. The social entities which are under consideration are referred to as actors, and are

discrete individual, organizational or collective social units. Examples of actors include

100

people in a group, organizational units within an organization, public service agencies

within a country, countries within a international trade union etc.

Relational Tie. Actors are linked to each other by social ties like friendship, linking,

respect, business transactions, lending or borrowing things, belonging to the same social

club, talking together, exchanging e-mails, a road, river or bridge connecting two points,

authority, kinship and many others.

Dyad. A dyad comprises of a pair of actors and the possible ties between them, whereby

dyadic analyses focus on the properties of pairwise relationships. Such properties include

reciprocity, whether specific types of relationships tend to occur together etc.

Triad Relationships can occur among more than two actors. A triad represents, for

example, a subset of three actors and the eventual ties among them.

Subgroup. A subgroup is any set of actors including all ties between them.

Group. A group is a finite collection of all actors on which ties are to be measured. A

system of ties consists of all the ties among a (more or less) bounded group.

Relation. A relation is a collection of ties of a specific kind between members of a group.

Examples include friendship among children in a village, formal diplomatic ties among

nations etc.

Having the basic terms defined, we are now able to define the notion of social

network.

Social network. A social network is comprised of a finite set or sets of and the relation

or relations defined on them.

7.1.1 Graph Theory

A more formal approach to defining social networks is graph theory [27, 112].1

Definition A graph G is the pair (N , E) whereby N represents the set of verticles or

nodes, and E ⊆ N ×N the set of edges connecting pairs from N .

A graph can be represented with the so called adjacency matrix.

1There are off course other approaches like sociometrics.

101

Definition Let G be a graph defined with the set of nodes {n1, n2, ..., nm} and edges

{e1, e2, ..., el}. For every i, j (1 6 i 6 m and 1 6 j 6 m) we define

aij =

1, if there is an edge between nodes ni and nj

0, otherwise

Matrix A = [aij] is then the adjacency matrix of graph G. The matrix i

symmetric since if there is an edge between nodes ni and nj then clearly there is also an

edge between nj and ni. Thus A = [aij] = [aji].

The notion of directed- and valued directed graphs is of special importance to

our study.

Definition A directed graph or digraph G is the pair (N ,A), whereby N represents the

set of nodes, and A ⊆ N ×N the set of ordered pairs of elements from N that represent

the set of graph arcs.

Definition A valued or weighted digraph GV is the triple (N ,A,V) whereby N represents

the set of nodes or verticles, A ⊆ N ×N the set of ordered pairs of elements from N that

represent the set of graph arcs, and V : N → R a function that attaches values or weights

to nodes.

A social network can be represented as a graph G = (N ,A) where N denotes

the set of actors, and A denotes the set of relations between them [64]. If the relations

are directed (e.g. support, influence, message sending etc.) we can conceptualize a social

network as a directed graph. If the relations additionally can be measured in a numerical

way, social networks can be represented as valued digraphs.

One of the main applications of graph theory to social network analysis is the

identification of “most important” actors inside a social network. There a lots of different

methods and algorithms that allow us to calculate the importance, prominence, degree,

closeness, betweenness, information, differential status or rank of an actor.2. Herein we

would like to outline one of such metrics introduced by Bonacich [11] called eigenvector

centrality, but for our purpose any other metric can be used that can yield an approxima-

tion of the probability that a certain person will say the truth in a meta data statement.

We believe that the knowledge is justified, true belief [69]. Thus our con-

ceptualization of meta data statements as units of formalized knowledge will follow this

2See [112] for an in depth discussion of such metrics.

102

definition, making the probability of giving a true statement a matter of justification. A

person is justified if other members of a social system believe in his statements. Bonacich

takes a similar approach, and gives a metric that calculates the centrality of a node based

on the centrality’s of its adjacent nodes. Eigenvector centrality assigns relative values to

all nodes of a social network based on the principle that connections to nodes with high

values contribute more to the value of the node in question than equal connections to

nodes with low values.

Definition Let pi denote the value or weight of node ni, let [aij] be the adjacency matrix

of the network. For node ni let the centrality value be proportional to the sum of all

values of nodes which are connected to it. Hence:

pi =
1

λ
·

∑
j∈M(j)

pj =
1

λ
·
N∑
j=1

aij · pj

where M(i) is the set of nodes that are connected to the ith node, N is the

total number of nodes and λ is a constant. In vector notation this can be rewritten as

p =
1

λ
· A · p or as the eigenvector equation A · p = λ · p

PageRank is a variant of the Eigenvector centrality measure, which we decided

to use herein. PageRank was developed by the famous company Google, or more precise

by Larry Page (from where the word play PageRank comes from) and Sergey Brin who

were the founders of this company. They used this graph analysis algorithm, for the

ranking of web pages on a web search engine. The algorithm uses not only the content

of a web page but also the incoming and outgoing links. Incoming links are hyperlinks

from other web pages pointing to the page under consideration, and outgoing links are

hyperlinks to other pages to which the page under consideration points to.

PageRank is iterative and starts with a random page following it’s outgoing

hyperlinks. It could be understood as a Markov process in which states are web pages,

and transitions (which are all of equal probability) are the hyperlinks between them. The

problem of pages which do not have any outgoing links, as well as the problem of loops

is solved through a jump to a random page. To ensure fairness (because of a huge base

of possible pages), a transition to a random page is added to every page which has the

probability q and is in most cases 0.15. The equation which is used for rank calculation

(which could be thought of like the probability that a random user will open this particular

page) is as follows:

103

PageRank(pi) =
q

N
+ (1− q)

∑
pj∈M(pi)

PageRank(pj)

L(pj)

Where p1, p2, ..., pN are nodes under consideration, M(pi) is the set of nodes

pointing to pi, L(pi) the number of arcs which come from node pj, and N the number of

all nodes [12, 72].

A very convenient feature of PageRank is that the sum of all ranks is 1. Thus,

semantically, we can define the ranking value of persons (or actors in the social network)

participating in a given wiki environment as the probability that a person will say the truth

in the perception of the others. In the following we will use the ranking, obtained through

such an algorithm in this sense.

7.2 Probability Annotation

As shown in chapter 5 there are basically two types of statements wiki users can make to

provide meta data: (1) attribute-value tags and (2) hyperlinks. Provided the wiki system

has the right ranking and voting facilities, every user has its associated rank on the system.

Thus we can define the annotation scheme of autopoietic semantic wiki systems as follows:

Definition Let S = {s1, s2, ..., sn} a set of meta data statements, A = {a1, a2, ..., an} a

set of authors’ rankings, and let ρ : S × A be a corresponding authorship relation. Then

the annotation [of the meta data statements is defined as follows:

s [aΣ, aΣ =
∑

(a,s)∈ρ

a

An extension to such a probability annotation is the situation when meta data

statements can have a negative valency. This happens when a particular user disagrees to

a meta data statement of another user. Such an annotation would be defined as follows:

Definition Let S = {s1, s2, ..., sn} a set of signed meta data statements, A = {a1, a2, ..., an}

a set of authors’ rankings, and let ρ : S×A be a corresponding authorship relation. Then

the annotation [of the meta data statements is defined as follows:

s [aΣ, aΣ =

∑
(a,s)∈ρ

a−
∑

(a,−s)∈ρ

a if
∑

(a,s)∈ρ

a >
∑

(a,−s)∈ρ

a

0 if
∑

(a,s)∈ρ

a 6
∑

(a,−s)∈ρ

a

104

Such a definition is needed in order to avoid possible negative probability (the

case when dissagreement is greater then improvement).

7.2.1 Query Execution

In a concrete system we need to provide a mechanism for query execution that will allow

users to issue queries of the following form:

Qp : F [p.

Where F is any formula in frame logic and p a probability. The semantics of

the query is:

does the formula F hold with probability p with regard to the knowledge base?

The solution of this problem is equivalent to finding the probabilities of all

possible solutions of query F

Q : F

Definition Let RQ = {r1, r2, ..., rn} be a set of solutions to query Q, then RQp is a subset

of RQ consisting of those solutions from RQ which probability is greater or equal to p and

represents the set of solutions to query Qp.

The probability of a solution p(ri) is obtained by a set of production rules:

Rule 1 If ri is a conjunction of two formulas ri1 and ri2 then p(ri) = p(ri1) · p(ri2)

Rule 2 If ri is a disjunction of two formulas ri1 and ri2 then p(ri) = p(ri1) + p(ri2)

Rule 3 If ri is an F-molecule if the form i[an→av] then p(ri) = min(p(an), p(av))

The implications of these three definitions are given in the following four the-

orems:

Theorem 7.2.1 If ri is an F-molecule of the form i[an1→av1, ..., ann→avn] then p(ri) =
n∏
i=1

min(p(ani), p(avi))

105

Proof Since ri in this case can be written as:

i[an1→av1] ∧ ... ∧ i[ann→avn]

Due to rule 3 the probabilities of the components of this conjunction are

min(p(an1), p(av1)), ...,min(p(ann), p(avn))

Due to rule 1 the probability of a conjunction is the product of the probabilities

of its elements which yields
n∏
i=1

min(p(ani), p(avi))

Theorem 7.2.2 If ri is an F-molecule of the form i : c[an1→av1, ..., ann→avn] then

p(ri) = p(i : c) ·
n∏
i=1

min(p(ani), p(avi))

Proof Since the given F-molecule can be written as

i : c ∧ i[an1− > av1] ∧ ... ∧ i[ann− > avn]

the proof is analogous to the proof of theorem 7.2.1.

Theorem 7.2.3 If ri is a statement of generalization of the form c1 :: c2, and if P is the

set of all paths between c1 and c2 and if I is the relation of immediate generalization then

p(ri) =
∑
pa∈P

∏
cjIci∈pa

p(cj I ci)

Proof Since any class hierarchy can be presented as a directed graph its obvious that

there has to be at least one path from c1 to c2. If the opposite were true the statement

wouldn’t hold and thus wouldn’t be in the initial solution set.

For the statement c1 :: c2 to hold, at least one path statement of the form

pax = c1 I cx1 ∧ cx1 I cx2 ∧ ... ∧ cxn I c2

has to hold as well. This yields according to rule 1 that the probability of one

paths would be:

p(pax) =
∏

cjIci∈pa

p(cj I ci)

Since there is a probability that there are multiple paths which are alternative

possibilities of proving the same premise, it holds that:

pa1 ∨ pa2 ∨ ... ∨ pam

106

Thus from rule 2 we get:

p(c1 :: c2) =
∑
pa∈P

∏
cjIci∈pa

p(cj I ci)

what we wanted to prove.

Theorem 7.2.4 If ri is a statement of classification of the form i : c then

p(ri) = p(i) ·
∑
pa∈P

∏
cjIci∈pa

p(cj I ci)

Proof Since the statement ri can be written as:

ri = i : c1 ∧ c1 :: c

the given probability is a consequence of rule 1 and theorem 7.2.3.

7.2.2 Query Execution with User-Defined Rules

A special case of query execution is when the knowledge-base contains user-defined rules

due to rule : Head :- Body tags. Such rules are also subject to probability annotation,

since such an attribute-value tag is a valid meta data statement. Thus we have:

rule : Head← Body [p

where p is the annotated probability of the rule. In order to provide a mecha-

nism to deal with such probability annotated rules, we will establish an extended definition

of rules for semantic wiki languages:

Definition If some object o is tagged with attribute rule and the corresponding value

is a valid frame logic rule of the form Head :- Body then this meta data statement is

removed from object o and the following rule is added to the knowledge-base:

Head← Body ∧ CounterPredicate

whereby CounterPredicate is a predicate which will count the number of times

the particular rule has been successfully executed for finding a given solution.

107

The query execution scheme has to be altered as well. Instead of finding only

the solutions from formula F an additional variable for every rule in the knowledge-base

is added to the formula. For n rules we would thus have:

Q : F ∧ count(?r1) ∧ count(?r2) ∧ · · · ∧ count(?rn)

In order to calculate the probability of a result obtained by using some prob-

ability annotated rule we establish the following definition:

Definition Let r be a result obtained with probability pF by query F from a knowledge-

base, let pr be the probability of rule R, and c the number of times rule R was executed

during the derivation of result r. The final probability of r is then defined as:

p(r) = pF · pcr

This definition is intuitive since for the obtainment of result r the rule R

has to hold c times. Thus if a knowledge-base contains n rules (R1, . . . , Rn) and their

corresponding annotated probabilities are pr1, . . . , prn and numbers of execution during

derivation of result r are c1, . . . , cn then the final probability is defined as:

p(r) = pF ·
n∏
i=1

pri
ci

7.3 Annotated Semantic Wiki Language

To define annotated semantic wiki languages we need to extend the definition of queries

to support annotation. This is done with the following simple production rule:

<query> : := <que ry s ta r t>

<f r ame log i c que ry>

<p r o b a b i l i t y c o n s t r a i n t >?

<semant ic template>

<query end>

Additionally the definition of meta data statements has to be altered to take

annotations into consideration:3

3For a complete implementation of niKlas grammar with annotation and amalgamation facilities please
refer to appendix C

108

<metainfo> : := (

(<a t t r i b u t e v a l u e t a g> | <hyper l ink>)

’ (’ <probab i l i t y> ’) ’

)∗

Definition Let the alphabet of wiki language LW be a superset of F-logic alphabet ΣF .

Let further qbegin be a regular expression that matches all query words beginnings, qformula

be a regular expression that matches possible F-logic formulas,4 qdelimiter a regular ex-

pression that matches delimiter words, qminimal probability a regular expression that matches

a minimal probability word, rsemantic template a regular expression that matches semantic

templates, and qend be a regular expression that matches all query word’s endings. Let

the following set of relations hold:

qformula b/ qdelimiter

qminimal probability b/ qdelimiter

rsemantic template b/ qend

Then an annotated query is defined with the following regular expression:

raquery = qbeginqformulaqdelimiterqminimal probabilityqdelimiterrsemantic templateqend

The semantics of an annotated query are as follows: for each result resulti

obtained by issuing the query defined by qformula against the knowledge base of the wiki

system (the domain D) which is annotated with a probability that is greater or equal to p

interpret the semantic template defined by rsemantic template by exchanging any occurrence

of a variable with the corresponding value from resulti. In a semantic wiki context this

means that if on a wiki page a query occurs, than the formula defined by the query will be

issued as a query against the knowledge base defined by the meta data of the wiki system.

Each result will force the wiki language interpreter to write the wiki text of the semantic

4Again we leave the possibility open if this regular expression will possibly match words that aren’t
annotated F-logic formulas since frame logic is more expressive than regular expressions.

109

wiki template by exchanging all variables in it with corresponding values obtained from

the result.

Definition Let rattribute-value tag be a regular expression that matches attribute-value tags,

rhyperlink be a regular expression that matches hyperlinks, and rannotation then the following

regular expression matches annotated meta information.

rannotated meta information = ((rattribute-value tag|rhyperlink)rannotation)∗

We are now able to define the annotated semantic wiki language LSW as follows:

Definition Let LW be a wiki language, LF a F-logic language, let raquery be a regular ex-

pression that defines annotated queries, and rannotated meta information be a regular expression

that matches annotated meta information. An annotated semantic wiki language LSW is

the pair (LW ,LF) bridged through raquery and rannotated meta information. LW is called the

wiki component of language LSW , and LF is called the semantic component. raquery and

rannotated meta information are the interface between LW and LF .

In order to demonstrate the approach we

will take the following (imaginary) example of a wiki

system.5 Presume we have a wiki project entitled

“Pepperland” with two wiki pages entitled “Music”

and “Purpose of life”. The two pages are the objects

of the particular domain “Pepperland”. Lets further

presume that we have six project members collaborat-

ing on this wiki, namely “John”, “Paul”, “Ringo”, “George”, “Max” and “Glove”. An

intelligent agent “Jeremy Hilary Boob Ph.D (nowhere man)” tries to reason about the

domain, but as it comes out, the domain is inconsistent. The following table shows the

different viewpoints of project members:

”Ad hoc, ad loc and quid pro quo.

So little time — so much to know!”

Due to the disagreement on different issues a normal (semantic wiki) query

would yield at least questionable results. For instance, if the disagreement statements are

5All images, names and motives are taken from the 1968 movie “Yellow Submarine” produced by
United Artists (UA) and King Features Syndicate.

110

Table 7.1: Viewpoints of “Pepperland” project members

Music Purpose of life
John class : harmonious sounds main purpose : love

Paul class : harmonious sounds main purpose : love

Ringo class : harmonious sounds main purpose : drums

George disagrees to (class : evil noise) main purpose : love

Max class : evil noise disagrees to (main purpose : love)
Glove class : evil noise main purpose : glove

ignored in frame logic syntax the domain would be represented with a set of sentences

similar to the following:6

?o : ?class ← ?o [class → ?class].

oM [class →→ { evil noise, harmonious sounds } ; title → Music].

oP [main purpose →→ { glove, love, drums} ; title → Purpose of life].

Thus a query asking for the class to which the object entitled “Music” belongs:

?− oM : ?class

would yield two valid answers, namely “evil noise” and “harmonious sounds”.

Likewise if querying for the value of the “main purpose” attribute of object oP e.g.

?− oP [main purpose → ?purpose]

the valid answers would be “glove”, “love” and “drums”. But, these answers

do not reflect the actual state of the social system, since one answer is more meaningful

to the social system, then the others.

Nowhere man thinks hard and comes up with a solution. The project members

form a social network of trust, as shown on figure 7.1.

The figure reads as follows: Ringo trusts Paul and John, Paul trusts John,

John trusts George, George trusts John, Max trusts Glove and Glove doesn’t trust anyone.

Using the previously described PageRank algorithm nowhere man was able to order the

6For sake of simplicity some technical details, e.g. predefined classes and attributes have been omitted.

111

Figure 7.1: Social network of “Pepperland”

project members by their respective rank.

Table 7.2: Trust ranking of the “Pepperland” project members

Member Ranking
John 0.303391
Glove 0.289855

George 0.267724
Paul 0.060667
Max 0.043478

Ringo 0.034884

Now, nowhere man uses these rankings to annotate the attribute-value tags

given by the project members:

112

p(class) = Rank(John)

+ Rank(Paul)

+ Rank(Ringo)

− Rank(George)

+ Rank(Max)

+ Rank(Glove)

= 0.303391

+ 0.060667

+ 0.034884

− 0.267724

+ 0.043478

+ 0.289855

= 0.464551

As we can see the probability that object oM is classified at all (e.g. not a

generic object) is equal to the sum of project members rankings who agree to this state-

ment (John, Paul, Ringo, Max and Glove) minus the sum of project members rankings

who disagree (George). Note that if a member had tagged an object twice with the same

attribute name, his ranking would be counted only once. Also note that if a member

would have agreed and disagreed to an attribute name (e.g. disagreed to one attribute

value but tagged another) his sum would be zero, since he would be at the agree and

disagree side.

p(evil noise) = Rank(Max)

+ Rank(Glove)

− Rank(George)

= 0.065609

From this probability calculation nowhere man is able to conclude that the

formula oM [class → evil noise] and likewise the formula oM : evil noise holds with

113

probability min(p(class), p(evil noise)) which equals 0.065609. Likewise he calculates the

probability of oM : harmonious sounds

p(harmonious sounds) = Rank(John)

+ Rank(Paul)

+ Rank(Ringo)

= 0.398942

Since min(p(class), p(harmonious sounds)) equals 0.398942 he can now con-

clude that oM : harmonious sounds holds more likely than oM : evil noise with regard to

the social network of project members. From these calculations nowhere man concludes

that the final solutions to query ?− oM : ?class are:

?class = evil noise [0.065609

?class = harmonious sounds [0.398942

Nowhere man continues reasoning and calculate the probabilities for the other

query:

p(main purpose) = Rank(John)

+ Rank(Paul)

+ Rank(Ringo)

+ Rank(George)

− Rank(Max)

+ Rank(Glove)

= 0.913043

114

p(love) = Rank(John)

+ Rank(Paul)

+ Rank(George)

− Rank(Max)

= 0.588304

p(glove) = Rank(Glove)

= 0.289855

p(drums) = Rank(Ringo)

= 0.034884

From these calculations nowhere man concludes that oP [main purpose→ love]

is most likely to hold with p = 0.588304. The final result of the query ?− oP [main purpose→ ?purpose]

is then:

?purpose = love [0.588304

?purpose = glove [0.289855

?purpose = drums [0.034884

Now we can complicate things a bit to see the other parts of the approach in

action. Assume now that John has created a link from the page entitled “Music” to the

page entitled “Purpose of life”, and named the link “has to do with”. We would now have

the following knowledge-base:

115

?o : ?class ← ?o [class → ?class].

oM [

class →→ { evil noise, harmonious sounds } ;

title → Music ;

has to do with → oP].

oP [

main purpose →→ { glove, love , drums} ;

title → Purpose of life].

Now suppose that nowhere man wants to issue the following query:

?− ?o1 : ?c [?a → ?o2] ∧ ?o2[main purpose → ?p].

The solutions using “normal” frame logic are:

s1 :

?o1 = oM

?c = evil noise

?a = has to do with

?o2 = oP

?p = glove

s2 :

?o1 = oM

?c = evil noise

?a = has to do with

?o2 = oP

?p = love

116

s3 :

?o1 = oM

?c = evil noise

?a = has to do with

?o2 = oP

?p = drums

s4 :

?o1 = oM

?c = harmonious sounds

?a = has to do with

?o2 = oP

?p = glove

s5 :

?o1 = oM

?c = harmonious sounds

?a = has to do with

?o2 = oP

?p = love

s6 :

?o1 = oM

?c = harmonious sounds

?a = has to do with

?o2 = oP

?p = drums

117

To calculate the probabilities nowhere man uses the following procedure. The

variables in the query are exchanged with the actual values for a given solution:

s1 : oM : evil noise [has to do with → oP] ∧ oP [main purpose → glove].

s2 : oM : evil noise [has to do with → oP] ∧ oP [main purpose → love].

s3 : oM : evil noise [has to do with → oP] ∧ oP [main purpose → drums].

s4 : oM : harmonious sounds [has to do with → oP] ∧ oP [main purpose → glove].

s5 : oM : harmonious sounds [has to do with → oP] ∧ oP [main purpose → love].

s6 : oM : harmonious sounds [has to do with → oP] ∧ oP [main purpose → drums].

Now according to rule 1 the conjunction becomes:

p(s1) = p(oM : evil noise [has to do with → oP]) · p(oP [main purpose → glove])

p(s2) = p(oM : evil noise [has to do with → oP]) · p(oP [main purpose → love])

p(s3) = p(oM : evil noise [has to do with → oP]) · p(oP [main purpose → drums])

p(s4) = p(oM : harmonious sounds [has to do with → oP]) · p(oP [main purpose → glove])

p(s5) = p(oM : harmonious sounds [has to do with → oP]) · p(oP [main purpose → love])

p(s6) = p(oM : harmonious sounds [has to do with → oP]) · p(oP [main purpose → drums])

The second parts of the equations were already calculated, and according to

theorem 7.2.2 the first part of the equations becomes:

118

p(s1) = p(oM : evil noise) ·min(p(has to do with), p(oP)) · 0.289855

p(s2) = p(oM : evil noise) ·min(p(has to do with), p(oP)) · 0.588304

p(s3) = p(oM : evil noise) ·min(p(has to do with), p(oP)) · 0.034884

p(s4) = p(oM : harmonious sounds) ·min(p(has to do with), p(oP)) · 0.289855

p(s5) = p(oM : harmonious sounds) ·min(p(has to do with), p(oP)) · 0.588304

p(s6) = p(oM : harmonious sounds) ·min(p(has to do with), p(oP)) · 0.034884

We already know the probabilities of the is-a statement, and since

p(has to do with) = p(oP) = Rank(John) = 0.303391

the equations become

p(s1) = 0.065609 · 0.303391 · 0.289855

p(s2) = 0.065609 · 0.303391 · 0.588304

p(s3) = 0.065609 · 0.303391 · 0.034884

p(s4) = 0.398942 · 0.303391 · 0.289855

p(s5) = 0.398942 · 0.303391 · 0.588304

p(s6) = 0.398942 · 0.303391 · 0.034884

and finally:

p(s1) = 0.005770

p(s2) = 0.011710

p(s3) = 0.000694

p(s4) = 0.035083

p(s5) = 0.071206

p(s6) = 0.004222

119

7.4 Amalgamation

To provide a mechanism for agents to query multiple annotated knowledge-bases we de-

cided to use the principles of amalgamation. The model of knowledge base amalgamation

is based on on-line querying of underlaying sources [51]. The intention of amalgamation

is to show if a given solution holds in any of the underlaying sources.

Since the local annotations of different knowledge bases that are subject to

amalgamation do not necessarily hold for the global knowledge base we need to introduce

a mechanism to integrate the knowledge bases in a coherent way which will yield global

annotations. Since the set of knowledge bases is a product of a set of respective social

networks surrounding them, we decided to firstly integrate the social networks in order to

provide the necessary foundation for global annotation.

Definition The integration of z social networks represented with the valued digraphs

(N1,A1,V1), ..., (Nz,Az,Vz) is given as the valued digraph (N1 ∪ ...∪Nz,A1 ∪ ...∪Az,V)

where V is a function V : N1 ∪ ... ∪Nz → R that attaches values to nodes.

In particular V will be a social network analysis metric or in our case a variant

of the eigenvector centrality. Now we can define the integration of knowledge bases as

follows:

Definition Let S1, ..., Sz be sets of meta data statements as defined above representing

particular knowledge bases in semantic wikis. The integration is given as S1 ∪ ... ∪ Sz.

What remains is to provide the annotation that is at the same time the amal-

gamation scheme:

Definition Let (N1 ∪ ... ∪ Nz,A1 ∪ ... ∪ Az,V) be the integration of z social networks,

let S1 ∪ ... ∪ Sz be the integration of their corresponding knowledge bases, and let ρ :

S1∪ ...∪Sz×V be the relation that associates authors rankings to meta data statements,

then the amalgamated annotation scheme [of the meta data statements is defined as

follows:

s [aΣ, aΣ =
∑

(a,s)∈ρ

a

120

7.5 Amalgamated Annotated Semantic Wiki Language

To introduce amalgamation into annotated semantic wiki languages the definition of an-

notated query needs to be extended again.

Definition Let the alphabet of wiki language LW be a superset of F-logic alphabet ΣF .

Let further qbegin be a regular expression that matches all query words beginnings, qformula

be a regular expression that matches possible F-logic formulas,7 qdelimiter a regular expres-

sion that matches delimiter words, qminimal probability a regular expression that matches a

minimal probability word, qamalgamation a regular expression that matches any list of knowl-

edge base names to be amalgamated, rsemantic template a regular expression that matches

semantic templates, and qend be a regular expression that matches all query word’s end-

ings. Let the following set of relations hold:

qformula b/ qdelimiter

qminimal probability b/ qdelimiter

qamalgamation b/ qdelimiter

rsemantic template b/ qend

Then an annotated query is defined with the following regular expression:

7Again we leave the possibility open if this regular expression will possibly match words that aren’t
annotated F-logic formulas since frame logic is more expressive than regular expressions.

121

raaquery = qbegin

qformula

qdelimiter

qminimal probability

qdelimiter

qamalgamation

qdelimiter

rsemantic template

qend

The semantics of an amalgamated annotated query are as follows: for each

result resulti obtained by issuing the query defined by qformula against the set of knowledge

bases defined in qamalgamation of different wiki systems (the domains D1, ..., Dz) which is

annotated with a probability that is greater or equal to p interpret the semantic template

defined by rsemantic template by exchanging any occurrence of a variable with the correspond-

ing value from resulti. In a semantic wiki context this means that if on a wiki page a

query occurs, than the formula defined by the query will be issued as a query against

the knowledge base defined by the meta data of the wiki system. Each result will force

the wiki language interpreter to write the wiki text of the semantic wiki template by

exchanging all variables in it with corresponding values obtained from the result.

In the end we are now able to define amalgamated annotated semantic wiki

languages as follows:

Definition Let LW be a wiki language, LF a F-logic language, let KB = {KB1, ..., KBz}

be a set of knowledge bases, and let raaquery be a regular expression that defines amal-

gamated annotated queries. An amalgamated annotated semantic wiki language LSW is

the pair (LW ,LF) bridged through raaquery with regard to KB. LW is called the wiki

component of language LSW , and LF is called the semantic component. raaquery is the

interface between LW and LF and applies to the set of knowledge bases KB.

122

To demonstrate the amalgamation ap-

proach proposed here lets again assume that our in-

telligent agent “Jeremy Hilary Boob Ph.D. (nowhere

man)” tries to reason about the “Pepperland” domain,

but this time he wants to draw conclusions from the

domain “Yellow submarine” as well. The “Yellow sub-

marine” domain is edited by “Ringo”, “John”, “Paul”,

“George” and “Young Fred” which form the social net-

work shown on figure 7.2. Since the contents of this domain as well as the particular ranks

of the members in it, won’t be used further in the example they have been left out.

Figure 7.2: Social network of “Yellow submarine”

Since nowhere man wants to reason about both domains he needs to find a

way to amalgamate these two domains.

”Where ground is soft, where often grows Arise, arouse, a rose a ... a rosy nose?”

Again he thinks hard, and comes up with the following solution. All he needs to

do is to integrate the two social networks together, and recalculate the ranks of all members

of this newly established social network in order to re-annotate the meta information in

both domains.

Since the networks of “Pepperland” and “Yellow submarine” can be repre-

sented as the following sets of tuples:

123

GPepperland = {

(Ringo, John),

(Ringo,Paul),

(Paul, John),

(John,George),

(George, John),

(Max,Glove)

}

GYellow submarine = {

(Ringo, John),

(Ringo,Young Fred),

(John,Paul),

(Young Fred,Ringo),

(Young Fred,George)

}

All he needs is to find GA = GPepperland ∪ GYellow submarine and recalculate the

ranks this new network. Thus

124

GA = {

(Ringo, John),

(Ringo,Paul),

(Paul, John),

(John,George),

(George, John),

(Max,Glove)

(Ringo,Young Fred),

(John,Paul),

(Young Fred,Ringo),

(Young Fred,George)

}

The newly established integrated social network is shown on figure 7.3.

Figure 7.3: The integration of two social networks

Now nowhere man calculates the ranks of this new network and uses the pre-

viously described procedure to annotate the meta information (section 7.2) and reason

about the amalgamated domain (section 7.2.1).

125

Chapter 8

The Niklas Language

Having the basic theory defined we tried to implement a semantic wiki language that will

take into account the autopoietic social system surrounding it. The result is the niKlas

language implemented into the ᵀaOPı̄s system. We need to make clear here that ᵀaOPı̄s

is not only a semantic wiki system, but a systems for self-organizing communities and

thus has other subsystems besides a semantic wiki system (like forums, blogging systems,

mailing-lists, filtering systems, Flora-2 and OWL export for possible agents etc.). This

is why there is a small predefined vocabulary in niKlas that is shown on figure 8.1 was

introduced.

Figure 8.1: Predefined class hierarchy in ᵀaOPı̄s

Basically there are three base classes defined (article, community, person)

which have the following attributes:

article title, url, community, type, author

community id, description, founder

person name, surname, email, date of birth, date of registration, address, telephone

126

The subclasses differ only in their semantic context where they are interpreted.

Nevertheless, niKlas doesn’t need this vocabulary apart from ᵀaOPı̄s , and can function

well without it.

In the following we will show the syntax of niKlas through a set of exam-

ples reaching through all three components: wiki, semantic wiki, autopoiesis facilitating

semantic wiki.

8.1 Wiki Component

8.1.1 Hyperlinks

We implemented four types of hyperlinks: normal, named, internal and inter-wiki hyper-

links. Normal hyperlinks use the following syntax:

[u r l] http ://www. somewhere . org [/ u r l]

Named hyperlinks are used to integrate a link inside some text in order to

“hide’ the URL and show a given name of the link. Such links have the following syntax:

[l i n k=http ://www. t i a k t i v . hr>TiAktiv]

Internal hyperlinks are used to point to another page on the given project’s

or organization’s wiki. They are also used to create new pages as discussed in chapter 2.

The former part represents the title of the wiki page to which the link should point to,

while the letter represents the name that will be shown. The syntax is as follows:

[l i n k=Forum syntax>Formatting forum messages]

Internal inter-wiki hyperlinks point to wiki pages of other projects.1 The first

part is the name of the project/organization, the second part is the title of the wiki page

and the third is the name to be displayed. The syntax is:

[l i n k=TiAktiv : FrontPage − TiAktiv>Link to TiAktiv]

8.1.2 Images and Other Objects

niKlas allows users to include external images and YouTube movies in wiki pages. This

functionality should be extended to allow the inclusion of other embedded objects. Images

1Note that ᵀaOPı̄s is a project or organization hosting system that facilitates any project/organization
with its own exclusive wiki.

127

can be included using the following syntax:

[img=http ://www. f o i . hr/ logo . g i f]

If one wants to edit the size of the image, additional parameters can be supplied

as shown in the following example:

[img=http ://www. f o i . hr/ logo . g i f width=50% he ight =100]

Relative (%) or absolute sizes for both width and height can be used.

YouTube movies can be included in the following way:

[tube] o9698TqtY4A [/ tube]

Where o9698TqtY4A is the code of the YouTube movie (one can get it from the

URL on which the movie resides e. g. http://www.youtube.com/watch?v=o9698TqtY4A).

8.1.3 Headings

niKlas supports three levels of headings. Their syntax is simple and intuitive as the

following three examples show:

Heading 2 syntax:

[h1] Heading 1 [/ h1]

Heading 2 syntax

[h2] Heading 2 [/ h2]

Heading 3 syntax

[h3] Heading 3 [/ h3]

8.1.4 Text Formatting

A number of different text formattings is supported by niKlas . A justified paragraph

would be for example represented by the following syntax

[j] Paragraph content [/ j]

Bold text can be used as follows:

[b] Bold text [/ b]

Italic text corresponds to HTML:

128

http://www.youtube.com/watch?v=o9698TqtY4A

[i] I t a l i c t ex t [/ i]

As well as centered text does:

[c en t e r] I t a l i c t ex t [/ c en te r]

In order to provide tome programming code (where the usual HTML behavior

is inconvenient - e.g. preformatted text neglected) one can use the code formatting syntax:

[code] Program code [/ code]

It is sometimes convenient to quote some text as is the case in the following

example:

[quote] Quoted text [/ quote]

In order to mention the original author one can use:

[quote=Foo Bar] Named quoted text [/ quote]

8.1.5 Lists and Tables

niKlas supports the creation of simple tables as well as two types of lists. The tables

syntax was inspired by LATEXas the following example shows:

[t ab l e]

row 1 column 1 && row 1 column 2 && row 1 column 3 ##

row 2 column 1 && row 2 column 2 && row 2 column 3 ##

row 3 column 1 && row 3 column 2 && row 3 column 3

[/ t ab l e]

Unordered lists which can have up to three levels have the following syntax:

∗ one

∗∗ one one

∗∗ one two

∗∗∗ one two one

∗∗∗ one two two

∗∗∗ one two three

∗ two

∗∗ two one

129

∗ th ree

Ordered lists are equivalent to unordered except that the level indicator sign

is changed:

1 one

11 one one

11 one two

111 one two one

111 one two two

111 one two three

1 two

11 two one

1 three

8.1.6 Templates and Inclusion

The automated creation of a page outline and the inclusion of content from other pages

is supported as well. An outline of forum posts or wiki pages can be created with:

[o u t l i n e]

To include the content of another wiki page one just has to know the particular

wiki page title as the following example shows:

[i n c lude WikiPageTit le]

To include a page from another project or organization the projects name has

to precede the wiki page title:

[i n c lude ProjectName : WikiPageTit le]

Note that pages included from other projects or organizations are rendered

locally, which means that links will point to the current project/organization. One should

also have in mind that queries from included pages (local or external) are not rendered at

all in the current implementation of niKlas .

8.1.7 References

References and citations are also supported. The syntax was as well inspired by LATEX:

130

To use [c i t e r e f e r e n c e s 2 0 0 9 r e f e r e n c e s] and c i t a t i o n s

use the f o l l o w i n g syntax :

[r e f r e f e r e n c e s 2 0 0 9] Luhmann , N: S o z i a l e systeme , 1984 .

8.2 Semantic Component

The niKlas syntax defines beside different text formatting commands, a query command:

[query=f l o r a 2 q u e r y .]

{ [header] header fo rmatt ing [/ header]}

answer formatt ing

[/ query]

whereby flora2 query is a normal (restricted) Flora-2 query with defined re-

turn variables, header formatting is the optional header (possibly formatted using niKlas

code),2 and answer formatting is a ᵀaOPı̄s formatting that can contain variables used in

the Flora-2 query. The answer formatting is repeated for any answer returned by the

Flora-2 reasoning engine by using the generated Flora-2 ontology of the semantic

wiki as a knowledge base.

As an illustrative example the following query would generate a list of users.

[query=? : user [name−>?n] .]

[header] [b] Users [/ b] [/ header]

name : ?n

[/ query]

The Flora-2 query ? :user[name->?n, surname->?s]. is issued against the

dynamic knowledge base of the system. The obtained results are then replicated in the

answer formatting; each answer prints out one answer formatting. On the other hand the

header section will be printed only once. Thus the result of this query would be similar

to:

[b] Users [/ b]

2In the current version sub-queries are not allowed.

131

name : Markus

name : Mirko

name : Jur i ca

In the second phase, after the query generated a formatting, the rest of the

niKlas code is translated to HTML but other target languages could be implemented. In

this case, the HTML encoded answer would be:

Users

name : Markus

name : Mirko

name : Jur ica

In the following a few interesting use cases of dynamic queries shall be analyzed.

We will show how niKlas can be used to dynamically generate new content that is usable

in a wide range of community projects like current class hierarchies, dictionaries, FAQ’s,

tables of content, lists of editors, issue and bug tracking, as well as what links here links.

8.2.1 Class Hierarchies

In order to obtain a dynamically generated list of classes with corresponding subclasses

one can issue the following query:

[query=?sub : : ? super .]

? sub i s a s u b c l a s s o f ? super

[/ query]

The first line defines the Flora-2 query which is in particular a class expres-

sion with variables. In the second line the formating for the given list (which could have

been a table or any other formatting) is defined. The third line closes the formatting.

Such a query will yield a list similar to:

apple i s a s u b c l a s s o f f r u i t .

banana i s a s u b c l a s s o f f r u i t .

f r u i t i s a s u b c l a s s o f food .

Such a query would be useful if using a semantic wiki system as an ontology

management tool, to provide a detailed overview of existing classes with corresponding

132

subclasses. There are variations to this query that would allow to obtain only strict

subclasses, subclasses of a special class etc.

8.2.2 Dictionaries

Another interesting feature that can be provided using a dynamic query is a dictionary.

Some wiki systems provide such a facility as a build-in function. Herein we show how

such a functionality can be simulated in niKlas through a serious of queries similar to the

following, provided that any wiki page is tagged with its corresponding first letter.3

[query=? : wik i page [

t i t l e −>?t i t l e ,

ur l−>?address ,

l e t t e r−>A] ,

s o r t (? t i t l e , asc) .]

[header] [h1]A[/ h1] [/ header]

[l i n k=?address>? t i t l e]

[/ query]

The query if provided on some wiki page would yield a result similar to the

following whereby the corresponding titles would be links to the particular wiki pages

dealing with them.

[h1]A[/ h1]

[l i n k=AnanasPage>Ananas]

[l i n k=ApplePage>Apple]

. . .

To provide a full dictionary at the current version of niKlas the user has to

make a query for any letter of a given alphabet. This is an unpleasant solution that

implies that some future version of niKlas has to provide a facility for sub-queries and

functionality similar to the SQL group by clause.

Such a query is usable in almost any wiki system. Especially in encyclopedia-

like wikis such a query can be of great value.

3This tag is needed due to the fact that Flora-2 syntax is a bit complex when it comes to string
processing. A better solution using wildcards or regular expressions should be provided in some future
version of niKlas .

133

8.2.3 Frequently Asked Questions

The popular FAQ section of some project or service can be simulated using a dynamic

query. Provided that any wiki page that is an actual answer to a frequently asked question

is tagged with attribute question and the corresponding question as its value, the query

would look like the following.

[query=? : wik i page [

quest ion−>?quest ion ,

ur l−>?address] ,

s o r t (? quest ion , asc) .]

[l i n k=?address>?ques t i on]

[/ query]

The query would yield a sorted list of frequently asked questions with links to

their answers similar to:

[l i n k=ApplePie>What i s apple p i e ?]

[l i n k=PineApple>What i s p ineapp le ?]

. . .

Queries similar to this can be useful in almost any project or organization that

interacts closely with their users/customers. Especially open source projects, customer

relationship sites as well as others could have considerable benefits.

8.2.4 Tables of Content

In order to provide a book-like “linearization” of a wiki site on could provide a table of

content using a series of queries similar to the following, provided that wiki pages are

tagged with the chapter they belong to.

[query=? : wik i page [

chapter−>KM,

t i t l e −>?t i t l e ,

ur l−>?address] ,

s o r t (? t i t l e , asc) .]

[header] Knowledge management [/ header]

[l i n k=?address>? t i t l e]

[/ query]

134

Such a query would provide a list of sections of a given chapter with hyperlinks

to the corresponding pages.

Knowledge management

[l i n k=Exp l i c i t>E x p l i c i t knowledge]

[l i n k=Tacit>Tacit knowledge]

. . .

In this case again niKlas current version shows a drawback for not supporting

sub queries, since the user has to issue a query for any chapter.

Such a query (or serious of queries) is interesting in any documentation project,

thesis, on-line book etc.

8.2.5 Who Edited this Page

One sometimes woulds like to know which users contributed to a given page. In niKlas

this is achieved to a bit more complex query as follows.

[query=? : wik i page [

t i t l e −>’Page t i t l e ’ ,

author−>? a] ,

? a : person [

name−>?name ,

surname−>?surname ,

email−>?emai l] .]

[header] Contr ibutors : [/ header]

?name ?surname

[u r l] mai l to : ? emai l [/ u r l]

[/ query]

By issuing this particular query we would obtain a list of users’ names and

surnames with links to their e-mail addresses.

Contr ibutors :

Mirko Cubr i lo

[u r l] mai l to : mcubr i lo@fo i . hr [/ u r l]

135

Markus Schatten

[u r l] mai l to : mschatte@foi . hr [/ u r l]

Jur i ca Seva

[u r l] mai l to : j s eva@fo i . hr [/ u r l]

Such queries are useful in any wiki site that wants to keep track of contributors

to (for instance) facilitate the creation of a social network.

8.2.6 Issue Tracking

Lots of projects (especially information system based projects) have a particular need to

keep track of issues that arise during the project (bugs, feature requests etc.). Provided

that any wiki page that holds a bug description is tagged with class:bug as well as with

status:open the following query would yield a list of open bugs.

[query=? : bug [

s tatus−>open ,

not (s tatus−>c l o s e d) ,

t i t l e −>?t i t l e ,

ur l−>?address] ,

s o r t (? t i t l e , asc) .]

[header] Open bugs [/ header]

[l i n k=?address>? t i t l e]

[/ query]

The list would look similar to the following:

Open bugs

[l i n k=BuildBug>Build c ra she s]

[l i n k=ErrorOpen>Error on open]

. . .

In order to close an issue, a project member that solved it, just needs to tag the

wiki page with status:closed, and the issue would be removed from the list. As indicated

above, such a dynamic query can be useful on any project related site that deals with any

kind of issues that one needs to keep track of.

136

8.2.7 What Links Here

A feature often included into conventional wiki systems is a list of pages that link to the

current page. Provided that ’Page title’ is the title of the current page, this functionality

can be simulated in niKlas as follows.

[query=? : wik i page [

t i t l e −>?t i t l e ,

ur l−>?address ,

? −>? t h i s p a g e] ,

? t h i s p a g e : wik i page [

t i t l e −>’Page t i t l e ’] .] .

[header] What l i n k s here ? [/ header]

[l i n k=?address>? t i t l e]

[/ query]

Thereby the result to this query would be a list of page titles with correspond-

ing hyperlinks to the current page including links to them.

What l i n k s here ?

[l i n k=BananaPage>Banana]

[l i n k=OrangePage>Orange]

. . .

This functionality is useful especially on wiki sites that have complex mutual

hyperlinks (encyclopedia-like wikis, technical documentation etc.).

8.3 Autopoietic Component

8.3.1 Probability Annotation

To issue a query with minimal probability (example class hierarchy) one can use:

[query=?s u b c l a s s : : ? s u p e r c l a s s .]

[p r o b a b i l i t y > 0 . 1]

[header]

[b]SUBCLASS − SUPERCLASS[/ b]

[/ header]

[i] ? s u b c l a s s − ? s u p e r c l a s s [/ i]

137

[/ query]

This query would retrieve all solutions which probability is higher that 0.1

with regard to the social network in which the query is executed. Thus, all other possible

solutions will be discarded. The probability constraint can use any of the infix operators

>, <, <= or >=. The querying engine takes care of all probability related matters. For

implementation related issues please refer to appendix D.

8.3.2 Amalgamation

To issue a query on multiple amalgamated projects (example class hierarchy) use:

[query=?s u b c l a s s : : ? s u p e r c l a s s .]

[amalgamate

”Knowledge management”

” Databases I ”

” Databases I I ”

]

[header]

[b]SUBCLASS − SUPERCLASS[/ b]

[/ header]

[i] ? s u b c l a s s − ? s u p e r c l a s s [/ i]

[/ query]

The query would first amalgamate the knowledge bases of the projects ”Knowl-

edge management”, ”Databases I” and ”Databases II” and then execute the query. In

this way any number of projects can be amalgamated.

Amalgamation queries can be additionally constrained with probability, e.g.

[query=?s u b c l a s s : : ? s u p e r c l a s s .]

[amalgamate

”Knowledge management”

” Databases I ”

” Databases I I ”

]

[p r o b a b i l i t y > 0 . 4]

[header]

138

[b]SUBCLASS − SUPERCLASS[/ b]

[/ header]

[i] ? s u b c l a s s − ? s u p e r c l a s s [/ i]

[/ query]

In this query all results with probability lower than 0.4 would be discarded.

As in simple probability constrained queries other operators can be used.

8.4 A Short Comparison to other Semantic Wiki En-

gines

As a first one needs to state here that ᵀaOPı̄s is not primarily and only a semantic wiki

system, as stated earlier. The system consists of different subsystems as indicated in [57].

The niKlas syntax can be used not only in the wiki subsystem, but in the forum, mailing

list and blogging subsystems as well.

In order to provide a better understanding of what is new and different in

ᵀaOPı̄s and likewise niKlas we will compare the system to the two maybe most elaborate

semantic wiki engines at the time of writing this text: Semantic MediaWiki [89, 45, 46, 103]

and IkeWiki [80, 81, 84]. The following table (8.1) summarizes the comparison.

Table 8.1: A comparison between Semantic MediaWiki, IkeWiki and ᵀaOPı̄s

Engine Semantic MediaWiki Ike Wiki ᵀaOPı̄s
Markup syntax MediaWiki MediaWiki Niklas
Access rights Yes (via plug-in) Yes No

Tagging Yes (inline) Yes Yes
Plugins Yes Yes No

Rule support Yes (via several plug-ins) No (planned) Yes (native)
Querying support Yes Yes Yes
RDF/OWL export Yes Yes Yes

Flora2 export No No Yes
Filtering support No No Yes

Dealing with uncertainty No No Yes
Amalgamation No No Yes

Maybe the most important difference between the ᵀaOPı̄s system and the two

other outlined engines is the approach. ᵀaOPı̄s , due to its commitment to autopoiesis

approaches its users as a social system, while Semantic MediaWiki and IkeWiki approach

139

individuals. This basic shift in viewpoints allows ᵀaOPı̄s to define its users as a struc-

turally coupling probabilistic system that is inconsistent in it self. This inconsistency is

most likely to leave trails on the formalized knowledge accumulated on the semantic wiki,

which is the main reason ᵀaOPı̄s uses social network analysis to provide annotations to

meta data.

As the table shows both Semantic MediaWiki and IkeWiki use MediaWiki

syntax (known due to the famous Wikipedia) while ᵀaOPı̄s developed its own niKlas

syntax. The following listing shows some of the features of MediaWiki syntax:

{{SMW user TOC}}

The most important part o f the [[Help : semantic search | Semantic ↘

→ search]] f e a t u r e s in [[Semantic MediaWiki]] i s a s imple format↘

→ f o r d e s c r i b i n g which pages should be d i sp l ayed as the search ↘

→ r e s u l t . Quer ies s e l e c t wik i pages based on the in fo rmat ion ↘

→that has been s p e c i f i e d f o r them us ing ’ ’ Categor ie s ’ , ’ ’ [[Help↘

→ : P r o pe r t i e s and types | P r op e r t i e s]] ’ ’ , and maybe some other [[↘

→MediaWiki]] f e a t u r e s such as a page ’ s name−space . The ↘

→ f o l l o w i n g paragraphs in t roduce the main query f e a t u r e s in SMW.

== Categor i e s and property va lue s ==

In the [[Help : Semantic search | i n t roduc to ry example]] , we gave ↘

→the s i n g l e cond i t i on <nowiki > [[Located in : : Germany]]</ nowiki> ↘

→to d e s c r i b e which pages we were i n t e r e s t e d in . The markup text↘

→ i s exac t l y what you would otherw i s e wr i t e to ’ ’ a s s e r t ’ ’ that ↘

→some page has t h i s property and value . Putt ing i t in a ↘

→semantic query makes SMW return a l l such pages . This i s a ↘

→gene ra l scheme : ’ ’ The syntax f o r ask ing f o r pages that s a t i s f y↘

→ some cond i t i on i s exac t l y the syntax f o r e x p l i c i t l y a s s e r t i n g↘

→ that t h i s cond i t i on ho lds . ’ ’

As one can see, MediaWiki syntax uses lots of special symbols to denote text

formattings, links, categories etc. which are intermixed with HTML-like tags (< nowiki >

for example), which makes is a bit hard to grasp for a new user. On the other hand niKlas

uses self-explanatory HTML like syntax. The following example would yield similar effects

140

like the above in niKlas :

[h1]SMW user TOC[/ h1]

The most important part o f the [l i n k=Help : semantic search>↘

→Semantic search] f e a t u r e s in [l i n k=Semantic MediaWiki>Semantic↘

→ MediaWiki] i s a s imple format f o r d e s c r i b i n g which pages ↘

→should be d i sp l ayed as the search r e s u l t . Quer ies s e l e c t wik i ↘

→pages based on the in fo rmat ion that has been s p e c i f i e d f o r ↘

→them us ing [i] Categor i e s [/ i] , [i] [l i n k=Help : P r o p e r t i e s and ↘

→types>P ro p e r t i e s] [/ i] , and maybe some other [l i n k=MediaWiki>↘

→MediaWiki] f e a t u r e s such as a page ’ s name−space . The f o l l o w i n g↘

→ paragraphs in t roduce the main query f e a t u r e s in SMW.

[h2] Categor i e s and property va lue s [/ h2]

In the [l i n k=Help : Semantic search>i n t roduc to ry example] , we ↘

→gave the s i n g l e cond i t i on [+ l i n k=Located in>Germany+] to ↘

→d e s c r i b e which pages we were i n t e r e s t e d in . The markup text i s↘

→ exac t l y what you would otherwi s e wr i t e to [i] a s s e r t [/ i] that ↘

→some page has t h i s property and value . Putt ing i t in a ↘

→semantic query makes SMW return a l l such pages . This i s a ↘

→gene ra l scheme : [i] The syntax f o r ask ing f o r pages that ↘

→ s a t i s f y some cond i t i on i s exac t l y the syntax f o r e x p l i c i t l y ↘

→ a s s e r t i n g that t h i s cond i t i on ho lds . [/ i]

Media wiki allows access rights (via an additional plug-in) while IkeWiki has

native support for access rights. ᵀaOPı̄s lacks support for access rights due to its philos-

ophy of TOP (transparent, open, public). No user has more right than another. Extra

rights are gained through participation. Every user can edit any content, filter it, moder-

ate the forum etc. The best editors will be awarded by higher rank, and their formalized

meta data will be more important in reasoning. Additionally any user can use the moder-

ation of another user, which allows the establishment of a top-list of best moderators for

a given project. So, best moderators are awarded by more users using their moderation.

All three systems allow user-defined tags, but Semantic MediaWiki allows only

141

inline tags.4 All three systems use these tags to generate meta data and formalize a given

domain. ᵀaOPı̄s on the other hand seems to be the only one imposing a completely

object-oriented framework [87], and does not describe presumed objects. Both Semantic

MediaWiki and IkeWiki use presumed or predefined objects (like locations, years, metrics

etc.) which in our opinion limits the expressiveness of the formal language since such

objects cannot be redefined.

ᵀaOPı̄s lack support for plug-ins or any user defined features. This is a major

drawback of ᵀaOPı̄s that certainly has to be addressed in the future. Such plug-ins

allowed Semantic MediaWiki and IkeWiki to extend their functionality in various ways.

An interesting idea, which was outlined in this thesis, but not implemented in ᵀaOPı̄s ,

is the use of semantic web services to implement such additional functionality.

ᵀaOPı̄s and Semantic MediaWiki have implemented rule support. While

ᵀaOPı̄s has native support for rules, Semantic MediaWiki needs various plug-ins to allow

its users to create rules [6]. For example, for a simple rule like “if X is a brother of Y

and is the father of Z then X is an uncle of Z ” in Semantic MediaWiki one has to write

something like:

{{#arraymap :

{{ getValue | [[{ {PAGENAME} }]] | brother o f } } | , |Y|

{{#arraymap :{{ getValue | [[Y]] | f a t h e r o f } } | , |Z |

[[unc le o f : : Z]] }} }}

whereby getValue is a template with an ask query similar to:

{{#ask : [[{ { { 1 } } }]] |?{{{2}}}=

| mainlabe l=− | format=l i s t | l i n k=none}}

The same could be achieved with ᵀaOPı̄s by tagging any page on a given wiki

with:

r u l e : ?x [uncle−>?z] :− ? [f a ther−>?x , brother−>?z] .

All three wiki engines have inline querying facilities. While Semantic Medi-

aWiki uses its own syntax, IkeWiki builds upon SPARQL[74] and ᵀaOPı̄s on Flora-2

syntax. For example a query that yields all city names, population and area of cities

located in Croatia would in Semantic MediaWiki look similar to:

{{#ask :

4Inline means inside wiki text. IkeWiki and ᵀaOPı̄s additionally allow tags separated from wiki content

142

[[Category : City]]

[[l o ca t ed in : : Croat ia]]

| ? populat ion

| ? area#km2 = Si z e in km2

}}

The output format is built-in: a table. To change the output one has to use

keywords or rather complex templates that have to be defined previously. In IkeWiki one

has to use something similar to:

<?spa rq l

SELECT ?C ?P ?A

WHERE {

?C hasPopulat ion ?P .

?C occupiesArea ?A .

?C i sLocated In ” Croat ia ”

} ?>

IkeWiki’s default output is a table as well, but it also allows user-defined

formatting using predefined patterns.

<?spa rq l format=pattern pattern=”YOUR PATTERN”

. . . SPARQL QUERY . . .

?>

where YOUR PATTERN is arbitrary text with variable placeholders of the

form {V} where V is the SPARQL variable to be substituted. In contrast the same query

in niKlas would look similar to:

[query ? c : City [l o ca t i on−>Croatia , populat ion−>?p , area−>?a] .]

? c has a populat ion o f ?p and occup i e s the area ?a .

[/ query]

Thus the querying facilities of all three systems are of comparable quality.

Also, all three systems allow the export of RDF/OWL ontology but only ᵀaOPı̄s allows

export in Flora-2 format.

Neither Semantic MediaWiki nor IkeWiki allow their users to organize their

content through filtering. ᵀaOPı̄s allows filtering of individual pages, users, page versions

etc.

143

Also neither Semantic MediaWiki nor IkeWiki allow dealing with uncertainties

in any way nor amalgamating ontologies from different wikis, which is the main advantage

of ᵀaOPı̄s . ᵀaOPı̄s allows conventional semantic wiki usage, but allows several advanced

features. For example, it is quite obvious that on some topics users will disagree. On the

other hand unexperienced users will likely make errors. Such disagreement and errors can

yield inconsistencies outlined previously. These inconsistencies can be circumvented in a

probabilistic environment. Users can pose queries that have probability constraints.

Further, there is quite often need to query various data sources. This per-

spective is often neglected by common semantic wiki systems which do not provide tools

to manage such situations. ᵀaOPı̄s on the other hand allows the amalgamation of any

number of wikis, and likewise annotating such amalgamated knowledge bases. In the

current implementation wikis are amalgamated only through the amalgamation of the

social networks of each wiki (which is in a way only a syntactic amalgamation). Users

can take care of semantic amalgamation by imposing user defined equalities for example.

The development of techniques for semantic amalgamation is subject to future research.

144

Chapter 9

Application Examples

In the following few sections we shall provide three possible application areas of the

niKlas language as well as autopoiesis facilitating semantic wiki systems, but application

is possible in any situation where a collaborative management of knowledge is appropriate.

9.1 Autopoietic System for Personal Computer Se-

curity

The idea of creating an open system for security seems paradoxical but possible. Popular

open source software, due to the usage of lots of users, became very secure since it was

able to leverage the knowledge of the social system. The same idea applies to personal

computer (PC) security.

If we imagine a common semantic wiki system where users can add formalized

knowledge about known security issues on a particular platform certain intelligent agents

could be developed. Such agents need to be able to analyze the semantic content on the

wiki system with regard to the particular PC configuration, and fix common issues using

the semantic content.

On the other hand, malicious users could try to compromise the semantic

wiki system, due to its openness, in order to do harm or gain access to users PC-s. To

prevent such possibilities the use of potentially malicious formalized knowledge has to be

minimized.

To do so the social network has to be formalized with trust relations between

users. Such trust relations will help in constructing a dynamic hierarchy of most trusted

contributors with their respective trust-ranks. The adequate trust level needs to be deter-

145

mined empirically, so that agents can be calibrated to issue queries that will return only

trustworthy results and not compromise the users system.

As a simple prototype example, assume that we have a semantic wiki system

entitled “SecureAIS” that deals with security issues for a piece of software entitled foo.

Further assume that 3 users participate in this wiki (each using a different graphical user

interface1 on the following figures):

• Foo Developer - a trusted advanced user that provides patches for foo.

• Foo User - a normal user that needs to take care of his installation of foo.

• Foo Attacker - a malicious user trying to take advantage of Foo User.

Foo User thrusts Foo Developer, and this is the only thrust relation in the

network. Thus the respective thrust ranks of SecureAIS members are as shown on figure

9.1 (from a Foo User perspective).

Figure 9.1: Ranks of the SecureAIS semantic wiki project members

Assume further that the semantic wiki consists of objects (pages) of the class

patch that have attributes software (the name of the software product the patch applies

to), version (the version it applies to), depends (an optional attribute that indicates

that a patch depends on some other patch) and file (the url of the file that contains

the patch). In essence wiki pages will be tagged with the first three attributes, and will

contain a link to the patch file. Figure 9.2 shows the class diagram of these objects.

Foo Developer provided the following two rules that ease querying for patches

by tagging the front page with attribute rule and the appropriate Flora-2 code:2

1ᵀaOPı̄s allows users to use different GUI-s when logged in.
2The code is checked by ᵀaOPı̄s and invalid rules are discarded from the knowledge base.

146

Figure 9.2: UML diagram of SecureAIS

?x [dependency−>?x] :−

?x : patch .

?x [dependency−>?y] :−

?x [depends−>? t i t l e] ,

?y [t i t l e −>? t i t l e] .

The first rule makes sure that every patch depends on it self assuring thereby

that the latest patch is included in a possible answer set. The second rule connects patches

through their dependency attributes.

Foo Developer now goes on and provides his first patch (figure 9.3).

Figure 9.3: Adding the first patch to SecureAIS

ᵀaOPı̄s provides him with the means to add tags at page creation. The wiki

page for this patch then would look similar to the following figure (9.4).

By adding the second patch the system turns on suggestions (figure 9.5) for

possible classes. Once a class has been chosen/entered, the user can add all attributes

for this class, by clicking the appropriate button. By typing in the values of attributes,

a suggestion mechanism shows already given values, preventing thereby possible syntax

147

Figure 9.4: Wiki page of the first patch on SecureAIS

errors. This suggestion mechanism applies to all user entered meta data forms.

Figure 9.5: Adding the second patch to SecureAIS

Assume that Foo Developer added a total of three pages tagged as follows:

• Security issue 112

– class : patch

– software : foo

– version : 1.2

• Security issue 120

– class : patch

148

– software : foo

– version : 1.2

– depends : Security issue 112

• Security issue 123

– class : patch

– software : foo

– version : 1.2

– depends : Security issue 120

Additionally every page has a link to the patch file entitled file. Thus the

following three objects are part of the SecureAIS knowledge base:

o id 1 : patch [

t i t l e −>’ S e cu r i t y i s s u e 112 ’ ,

so f tware−>foo ,

ver s ion −> ’1.2 ’ ,

f i l e −>’http ://www. f o i . hr/ foo −1 .2 .112 . ta r . gz ’

] .

o id 2 : patch [

t i t l e −>’ S e cu r i t y i s s u e 120 ’ ,

so f tware−>foo ,

ver s ion −> ’1.2 ’ ,

depends−>’ S e cu r i t y i s s u e 112 ’ ,

f i l e −>’http ://www. f o i . hr/ foo −1 .2 .120 . ta r . gz ’

] .

o id 3 : patch [

t i t l e −>’ S e cu r i t y i s s u e 123 ’ ,

so f tware−>foo ,

ver s ion −> ’1.2 ’

depends−>’ S e cu r i t y i s s u e 120 ’ ,

f i l e −>’http ://www. f o i . hr/ foo −1 .2 .123 . ta r . gz ’

] .

149

Now Foo Attacker adds also a page to the wiki, tagging it identically to other

patches on the system (figure 9.6). The only difference is that the patch file is a virus.

Figure 9.6: Attacker adding virus to SecureAIS

As shown on the following figure 9.7, the page looks almost exactly like the

normal patch pages.3

Figure 9.7: Malicious patch wiki page

Thus an additional object is added to the wiki knowledge base:

o id 4 : patch [

t i t l e −>’ S e cu r i t y i s s u e 133 ’ ,

so f tware−>foo ,

ver s ion −> ’1.2 ’ ,

depends−>’ S e cu r i t y i s s u e 123 ’ ,

f i l e −>’http ://www. hack . hr/ v i r u s . exe ’

] .

3Except that Foo Attacker is using a different GUI.

150

If Foo User now wants to update his installation of foo be issuing a query in

niKlas similar to:

[query

? : patch [

so f tware−>foo ,

dependency−>? d

] ,

? d : patch [

f i l e −>?patch

] .]

[header] Patches to download [/ header]

? patch

[/ query]

He would acquire all patches including the malicious one. But, since there

is a social network behind the semantic wiki system all objects are annotated, and thus

Foo User can use an annotated query to receive only trustful patches. The minimal

probability or thrust level needs to be determined empirically, as stated earlier, but in

this case a probability greater than 0.2 will do the trick. Thus the following query will

filter out the malicious patch, as shown on figure 9.8.

Figure 9.8: Query with malicious patches filtered out

Off course, the example is a bit simplistic, but SecureAIS can be enriched

to support different software, versioning, anti-virus protection, SPAM filtering etc., and

various tasks can be automated using intelligent agents, web services etc. but this isn’t

151

the subject of this thesis.

Similar systems are already in wide use, and known as package managers

mostly used in different open source Linux operating systems like Debian or Ubuntu.

They allow users to get security fixes and software updates whenever they please. The

interesting fact about these systems is that most software updates are written by enthusi-

asts and voluntaries. Users implicitly trust such software without any formal organization

standing behind them. Users trust a social network of developers and believe that they

wouldn’t compromise their systems.

9.2 Autopoietic Scientific Publishing System

Scientific publishing is another possible application area. The process of reviewing sub-

missions to respective conferences and journals (which mostly are double-blind review)

could be established in an autopoietic environment using semantic wiki systems. On the

other hand publishing technology has advanced from ordinary typography and it is ironic

that scientific institutions, which should be the primers in using advanced technologies,

still use traditional (often black and white) paper publishing. Also web interfaces to jour-

nals act mainly as a digital archive of non-digital papers. Technology allows us to use

multimedia systems, software applications, social and semantic web facilities that could

tremendously improve publishing quality and allow for more scientific interaction.

A semantic wiki system could be used to create a scientific publishing system.

Any article would be published immediately after submission and would then undergo

a continuous review process. Any user could review any encountered article, suggest

improvements, add keywords, point out related research etc. Additionally authors could

provide contemporary multimedia content like video, animations, interactive application

examples or even recorded presentations.

The use of a formal semantic system could allow for better search and retrieval

of scientific content. For example references could be formalized and thus citation indexes

could be easier automatically computed. User provided meta data could be used by

intelligent agents to identify breakthrough research.

On the other hand to ensure scientific seriousness, meta data and reviews would

be rated depending on a social network analysis subsystem. Social network analysis could

also be used to identify most prominent scientists.

As an example a prototype entitled “Journal of Publish or Perish” will be

152

shown. Figure 9.9 shows the front page of the scientific journal wiki.

Figure 9.9: Frontpage of JoPoP

The following listing shows the niKlas code used to generate this frontpage.

Note the query used to generate the table of content for the first volume.

[c en t e r] [h1] Journal o f Publ i sh or Per i sh [/ h1]

[img=http :// arka . f o i . hr /˜ mschatten / s l i k e t a o p i s / l ogo jopop . png]

[/ c en te r]

The JoPoP pub l i sh e s any s c i e n t i f i c a r t i c l e at f i r s t , but ↘

→ a r t i c l e s

are under cont inuous review by reade r s . Only the best a r t i c l e s

w i l l su rv iv e ! Any one can pub l i sh and any one can review !

[l i n k=Guide l ines>Submission g u i d e l i n e s]

[l i n k=Review Guide l ines>Review Guide l ine s]

[l i n k=Enter t i t l e >Submit new a r t i c l e]

[h1] Volume 1 [/ h1]

[query

? : paper [

153

author−>? aut ,

t i t l e −>?t ,

ur l−>?ur l ,

volume−>1

] ,

? aut : person [

name−>?name ,

surname−>?surname

] .

]

?name ?surname : [l i n k=?ur l>?t]

[/ query]

By clicking on the submit new article link a potential author can format his

manuscript as any wiki page, as shown on the following figure 9.10. The author can add

various keywords, but other meta information as well.

Figure 9.10: Submitting a new manuscript

This example manuscript would look similar to the following figure 9.11.

154

Figure 9.11: A manuscript on JoPoP

Due to the possibilities of niKlas (or any other wiki language) the author can

add multimedia content at will. Figure 9.12 shows an example where a YouTube movie

was included into to the manuscript as a figure by using the following niKlas code:

[c en t e r] [tube] o9698TqtY4A [/ tube]

[b] Figure 1 . [/ b] What happens to young s c i e n t i s t s when they ↘

→cannot pub l i sh [/ c ent e r]

It would be convenient to implement some automatic mechanism for figure and

section numbering. Due to the page inclusion mechanism of niKlas (subsection 8.1.6) it

would be possible to externalize multimedia content and provide it with additional meta

information.

Figure 9.12: Multimedia on JoPoP manuscript

155

Figure 9.13: Tags on a sample bibliographic entry

The semantic wiki can also be used to automatically generate references similar

to LATEXand BiBtex. For example if references are objects (wiki pages) of their own, tagged

similar to BiBtex entries as shown on figure 9.13, and likewise if references in some paper

are given with the following niKlas code:

[l i n k=ZugajSchatten2005>c i t a t i o n]

where ZugajSchatten2005 is the title of the reference, than the following query

would yield the list of references for a given paper with hyperlinks to the entry.

[query

? [

t i t l e −>’Publ i sh or Per i sh − Good or Bad f o r Young ↘

→S c i e n t i s t s ’ ,

c i t a t i o n −>? b

] ,

? b : b ibentry [

authors−>?a ,

year−>?y ,

e n t r y t i t l e −>?t ,

pub l i she r−>?p ,

address−>?d

] ,

s o r t (? a , asc) .]

[b] ? a [/ b] (? y) [i] ? t [/ i] , ?p , ?d .

[/ query]

156

On our imaginary paper the result of this query would look similar to the

following figure 9.14

Figure 9.14: References generated by a query

If the wiki is used only as a bibliographic database, then the following query

could be interesting to LATEX users:

[query

? : book [

t i t l e −>?r ,

authors−>?a ,

e n t r y t i t l e −>?t ,

year−>?y ,

pub l i she r−>?p ,

address−>?d

] ,

s o r t (? a , asc) .

]

@book{ ? r ,

t i t l e = ”? t ” ,

author = ”?a ” ,

p ub l i s h e r = ”?p” ,

address = ”?d” ,

year = ”?y”

}

[/ query]

The result of this query is shown in the following listing, and is a list of all

books on a system in BiBtex format. Similar queries could be constructed to list all other

types of bibliographic entries.

@book{ ZugajSchatten2005 ,

t i t l e = ” Arhi tektura suvremenih o r g a n i z a c i j a ” ,

157

author = ”\v{Z}ugaj , Miros lav and Schatten , Markus ” ,

p ub l i s h e r = ”Tonimir ” ,

address = ”Vara\v{z}dinske t o p l i c e ” ,

year = ”2005”

}

The amalgamation facility could be the means of using one bibliographic se-

mantic wiki through various semantic wiki journals. For example if we assume that the

bibliographic wiki is entitled “BibWiki” then the previous query for bibliography creation

would be slightly modified to yield the proper results:

[query

? [

t i t l e −>’Publ i sh or Per i sh − Good or Bad f o r Young ↘

→S c i e n t i s t s ’ ,

c i t a t i o n −>? b

] ,

? b : b ibentry [

authors−>?a ,

year−>?y ,

e n t r y t i t l e −>?t ,

pub l i she r−>?p ,

address−>?d

] ,

s o r t (? a , asc) .]

[amalgamate

” Journal o f Publ i sh or Per i sh ”

”BibWiki”

] s

[b] ? a [/ b] (? y) [i] ? t [/ i] , ?p , ?d .

[/ query]

Any person could add reviews on any paper. If we establish a procedure that

any review has to have a link to the paper it reviews entitled on, and if all reviews have

to be tagged as shown on figure 9.15.

Then a query like the following could be used on any paper to list the reviews

158

Figure 9.15: A tagged review

of the paper.

[h1] Reviews [/ h1]

[c en t e r]

[t ab l e]

[b] Reviewer [/ b]&& s i g n i f i c a n c e&&o r i g i n a l i t y&&q u a l i t y&&c l a r i t y&&↘

→ r e l evance##

[query

? : rev iew [

on−>? pap ,

s i g n i f i c a n c e −>?s ,

o r i g i n a l i t y −>?o ,

qua l i ty−>?q ,

c l a r i t y −>?c ,

r e l evance−>?r ,

author−>? aut ,

ur l−>?u r l

] ,

? pap : paper [

t i t l e −>’Publ i sh or Per i sh − Good or Bad f o r Young ↘

→S c i e n t i s t s ’

] ,

159

? aut : person [

name−>?name ,

surname−>?lname

] .

]

[l i n k=?ur l>?name ? lname]&&?s&&?o&&?q&&?c&&?r##

[/ query]

[/ t ab l e]

[/ c en te r]

The result of such a query would be similar to the one shown on figure 9.16.

Figure 9.16: List of query generated reviews

By using more complex queries with aggregate functions average grades could

be calculated. Such queries can become quite cumbersome due to the fact that all tags

are stored as strings, and need to be converted to numbers. The following is an example

of calculating the average quality grade:

[query

?avg = average {

? q |

? [qua l i ty−>? s] ,

name(? s , ? x) @ prolog ,

number codes (? q , ? x) @ prolog

} .

]

? avg

[/ query]

On the other hand the annotation mechanism could be used as well in order

to find only those reviews or articles that are relevant to a certain degree. As an example

160

the following query would yield only reviews with trust-level higher that 0.5.

[h1] Reviews [/ h1]

[c en t e r]

[t ab l e]

[b] Reviewer [/ b]&& s i g n i f i c a n c e&&o r i g i n a l i t y&&q u a l i t y&&c l a r i t y&&↘

→ r e l evance##

[query

? : rev iew [

on−>? pap ,

s i g n i f i c a n c e −>?s ,

o r i g i n a l i t y −>?o ,

qua l i ty−>?q ,

c l a r i t y −>?c ,

r e l evance−>?r ,

author−>? aut ,

ur l−>?u r l

] ,

? pap : paper [

t i t l e −>’Publ i sh or Per i sh − Good or Bad f o r Young ↘

→S c i e n t i s t s ’

] ,

? aut : person [

name−>?name ,

surname−>?lname

] .

]

[p r o b a b i l i t y > 0 . 5]

[l i n k=?ur l>?name ? lname]&&?s&&?o&&?q&&?c&&?r##

[/ query]

[/ t ab l e]

[/ c en te r]

Such a query would filter out all lowly trusted reviewers, and could be used as

a filter for published or perished articles.

161

9.3 Autopoietic Knowledge Management System

Modern organizations, as outlined in chapter 6, have new needs and need to leverage

their knowledge faster then ever before. The construction of sophisticated knowledge

bases, decision support systems as well as other intelligent systems often takes time (and

money) but doesn’t yield results as fast as needed.

Using a semantic wiki system a self-organizing corporate knowledge base could

be constructed by letting employees interact with the system and formalize their knowl-

edge about business. Common Enterprise 2.0 systems already use the lessons learned from

Web 2.0, but by introducing semantic technologies such systems could be improved.

Through the use of social networks natural leaders could be identified, and

due to the fast information flows new opportunities could be dealt with sooner. Simple

querying mechanisms could be developed to facilitate managers with decision support.

By connecting such a system to existing databases and information systems through

web services as outlined before an integral knowledge management solution could be

established that would reflect the current state of the organization and its environment.

Suppose, for example, that some organization “X” consists of five organiza-

tional units:

• Marketing

• Sales

• Accounting

• Production

• Human resource

Each department has its own knowledge base in form of a semantic wiki system.

Suppose further that all employees can tag their selves and other employees with their

skills.4 For example, a sales employee could be tagged as:

• skill : presentation

• skill : communication

• skill : management

4ᵀaOPı̄s allows also the tagging of users in addition to tagging articles.

162

A manager wants to get an overview of the employees skills. A query similar

to the following would do the job for him:

[query

? dept : o rgan i za t i on ,

? s k i l l s = c o l l e c t s e t {

? y |

? : person [

s k i l l −>? y ,

member of−>?dept]

} ,

s o r t (? dept , asc) .]

[amalgamate

” Marketing ”

” Sa l e s ”

” Accounting ”

” Production ”

”Human re sou r c e ”

]

? dept −−> ? s k i l l s

[/ query]

The query would yield a list similar to the following:

Marketing −−> [communication , pre s enta t i on , des ign]

Sa l e s −−> [communication , p re s enta t i on , n e g o t i a t i o n]

Accounting −−> [f inance , e x c e l]

Production −−> [database , Linux , pre sentat i on , programming]

Human re sou r c e −−> [communication , databases , management]

Or, for example, if a HR manager would like to know if any department hasn’t

got any communication skills, a query similar to the following could be issued:

[query

? dept : o rgan i za t i on ,

? y = c o l l e c t s e t {

? y |

? : person [

163

s k i l l −>? y ,

member of−>?dept

]

} ,

not (

member(communication , ? y) @ prolog (b a s i c s)

) ,

s o r t (? dept , asc) .

]

[amalgamate

” Marketing ”

” Sa l e s ”

” Accounting ”

” Production ”

”Human re sou r c e ”

]

? dept

[/ query]

The query would yield a list of departments who are in desperate need for a

communication skills seminar.

Suppose further, for example, that employees are tagged with their current

projects they work on. The following query could provide a manager with a list of em-

ployees that work on more than 4 projects, and need to be sent on vacation:

[query

? e : person [

name−>?name ,

surname−>?surname

] ,

? p r o j e c t s = c o l l e c t s e t {

? p |

? e [

p ro j e c t−>? p

]

164

} ,

? count = count{

? x |

member(? x , ? p r o j e c t s) @ prolog (b a s i c s)

} ,

? count > 4 ,

s o r t (? surname , asc) .

]

[amalgamate

” Marketing ”

” Sa l e s ”

” Accounting ”

” Production ”

”Human re sou r c e ”

]

?name ?surname : ? p r o j e c t s

[/ query]

The result is, as expected, shown on figure 9.17.

Figure 9.17: List of employees working on more than four projects

We could also easily build a simple agent querying projects on one ore more

ᵀaOPı̄s instances. The following listing presents a simple Python script that downloads

a given projects knowledge base.

−∗− coding : utf−8 −∗−

import u r l l i b

import re

import sys

i f l en (sys . argv) > 1 :

165

u r l = sys . argv [1]

p roo rg r e = re . compi le (r ’ proorg =(.∗) ’)

proorg = proo rg r e . f i n d a l l (u r l)

proorg = proorg [0]

kb = u r l l i b . ur lopen (u r l)

l i n e s = kb . r e a d l i n e s ()

kb f = open (proorg + ’ . f l r ’ , ’w’)

f o r i in l i n e s :

kb f . wr i t e (i)

kb f . c l o s e ()

kb . c l o s e ()

p r i n t proorg

e l s e :

r a i s e Exception , ’ No u r l supp l i ed ! ’

Using this script the following predicate could be implemented in Flora-2 ,

loading any knowledge base from an URL.

loadKB (? u r l) :−

s t r c a t (’ python get kb . py ’ , ? ur l , ?cmd) @ prolog (s t r i n g) ,

s h e l l t o l i s t (?cmd , [[?kb]] , ?) @ prolog (s h e l l) ,

add (? kb) .

Now since the knowledge bases are now local, an agent would look similar to:

?− add (loadKB) .

l o a d p r o j e c t :−

loadKB (’ http :// a u t o p o i e s i s . f o i . hr/ f l o r a 2 e x p o r t . php? proorg=↘

→Jupiter ’) ,

loadKB (’ http :// a u t o p o i e s i s . f o i . hr/ f l o r a 2 e x p o r t . php? proorg=↘

→Saturn ’) ,

166

loadKB (’ http :// a u t o p o i e s i s . f o i . hr/ f l o r a 2 e x p o r t . php? proorg=↘

→Neptun ’) .

?− l o a d p r o j e c t s .

/∗ Agent d e f i n i t i o n . . . ∗/

Some of the presented queries are, off course, to complex to be learned and

issued by normal users. This is why the next step in ᵀaOPı̄s is the development of

easy-to-use querying mechanisms similar to query-by-example approaches and visual wiki

search.

9.4 Other Examples of Possible Applications

Possible applications that came to mind by supporting autopoiesis in information systems

range from generic purposes like project management to specialized applications like per-

sonal computer security. In the following we give a brief overview of ideas and concepts

that will hopefully sparkle new ideas in the readers mind.

First of all there is the generic project management application for dynamic

organizations. Organizations could by implementing a dynamic information system sim-

ilar to the ᵀaOPı̄s system create a self-organizing project organization similar to the

previously described fishnet organization or to create a dynamic project team layer above

its normal (everyday) business structure like described in the section about the hyper-

text organization. By introducing adequate rules and procedures organization’s members

could perceive opportunities in the organization’s environment more quickly transforming

it into organizational projects.

The idea of open organizations [106] mostly concerned with public and political

organizations is another possible example. Opening up the organization to the public that

everyone who wants can join could yield better public perception of political processes.

Public projects like a system for comparing different products and services according to

price, quality etc. could yield more comprehensive results than professional web sites.

The notion of virtual organizations as well as joint ventures could also be

supported through such systems. By establishing an autopoiesis oriented stock for coop-

eration between companies organizations will be likely to identify potential partners for

167

establishing virtual organizations or joint ventures through social networks.

E-learning is an example we showed to be successfully in the experiment we

conducted since all the projects between students were conducted in a distributed envi-

ronment. Students worked on their projects from home, school or any place they had

Internet access.

Information system integration is another example. By using semantically

defined web services and script extensions a group of people could merge different in-

formation systems into a more autopoiesis oriented one by organizing functionality they

need.

All these applications, except e-learning, are only concepts that may or may

not succeed since they haven’t been implemented nor tested. Thus in order to test our

premises we need to conduct future research and let time decide.

168

Chapter 10

Conclusion

The main aim of this thesis was to acknowledge that wiki systems operate in a complex

environment - an autopoietic social system that surrounds them. The formalized knowl-

edge that emerges on a wiki or semantic wiki system is the result of structural coupling

of the social system to the very wiki interface. Due to the complexity of the social system

which is sometime inconsistent with it self, it is certain that inconsistencies in formalized

knowledge will emerge.

The idea of introducing semantic technologies into wiki system to facilitate the

emergence of formalized knowledge seems promising, but it ignores the fact that most wiki

systems are successful because of their ease of use. By introducing sophisticated semantic

technologies the potential user base of a wiki system decreases to only those users that

are or can become familiarized with such technologies.

Hence, this thesis provides two solutions to these problems: (1) acknowledging

the possibility of inconsistencies and building mechanisms to deal with such; (2) hiding

semantic technologies into the background of the system. The first solution resides on

using social network analysis to provide a trust factor in any fact that is derived from a

semantic wikis knowledge base. The second resides on using social tagging as a means to

obtain semantic meta information.

Due to the Web 2.0 and more recently Web 3.0 paradigms as well as due

to the popularity of such systems a lot of wiki systems with lots of interesting features

were developed. Most of them feature their own syntax conventions usually denoted

with wiki text or wiki syntax. After introducing wiki systems in chapter 2 we developed

a formalization of wiki languages in chapter 3 using regular expressions. The set of

introduced regular expressions can be seen as a hands on guide to implementing a wiki

syntax parser.

169

The idea of the semantic web, a web of machine readable information that

would allow for automated knowledge discovery by intelligent agents was further on de-

scribed in chapter 4. By introducing an object oriented approach building upon [58]

important ideas like domains, concepts, objects, relations, methods and attributes were

introduced. Such a view of a particular domain was later on used to develop a formal-

ization of semantic wiki systems building upon frame logic in chapter 5. We showed that

any wiki page can be considered to be a generic object that contributors can shape to

reflect their particular view. By using attribute-value tags, hyperlinks, and web services

contributors can create attributes of an object (page), relations to other objects (pages)

on the web as well as shape the behavior of the object (page) trough methods (services).

By introducing special tags objects can be classified and class hierarchies can be build.

Such user-obtained meta information was used to conceptualize the syntax of semantic

wiki systems.

Autopoietic theory, a theory of complex, non-linear and especially living sys-

tems was then described in chapter 6. As of the initial definition given by Maturana and

Varela [60] in biology, the theory found its way through the social sciences and formal

organization theory introduced by Luhmann [53]. Still these two conceptualizations of au-

topoiesis (self-creation) are similar but in some cases incompatible and inconsistent. After

developing a critique on autopoietic theory we gave guidelines for a new foundation that

could be able to override these inconsistencies and allow the introduction of autopoiesis

to the information sciences.

As it comes out, the main problem was to create a different conceptualization

of autopoiesis in social and organizational systems that would introduce individuals, as

opposed to communication and only communication proposed by Luhmann. Hence we

conceptualized social systems as systems comprising of accepted individuals that accepted

to be part of the social system. After introducing a genetic definition of information sys-

tems [13] we were able to show that information systems are in fact autopoietic since they

overlap with the definition of social and organizational systems as defined by Luhmann.

From our perspective autopoietic information systems are defined as sets of relations be-

tween communicative events that reproduce new communicative events based on previous

(stored) communication. The organization of such systems (in Maturana’s and Varela’s

sense) are the relations between communicative events described through their semantics

(meaning). The structure of these systems (in Maturana’s and Varela’s sense) are the

means that are used to produce communication described through syntax.

170

The acknowledgement that informations systems are autopoietic, as well as

the fact that we can observe three types of information systems (societal, interactional

and organizational) lets us conclude that autopoiesis in such systems can be facilitated by

using adequate information technology. Technology is the environment that can be used

to obtain formalized knowledge from an information system due to structural coupling

processes. Wiki systems, and especially semantic wiki systems are one such technology.

While “traditional’ wiki systems are easy to use and thus acknowledge their complex

environment, semantic wiki systems are complex and don’t consider these facts.

In order to contribute to technology and systems that would be able to facilitate

autopoiesis the concept of autopoiesis facilitating semantic wiki systems was considered

in chapter 7. The main idea was to introduce social network analysis to obtain a fishnet

structure [37] by creating dynamic hierarchies of contributors based on mutual trust rela-

tions. To formalize these hierarchies a variant of Bonacich’s eigenvector centrality [11], the

so called PageRank algorithm [12, 72] was used. This algorithm was especially convenient

since the sum of all ranks of actors in a given social network equals to 1, reflecting thus

a probability that a given actor will say the truth.

To connect social network analysis to semantic wiki languages an annotation

scheme was proposed. Each meta data statement (given by some contributors through

attribute - value tags, hyperlinks or web services) is annotated with a corresponding trust

level. These levels can be used to filter inadequate results in some query. Due to the

fact that we were able to formalize wiki languages, semantic wiki languages, as well as

to introduce a fishnet structure and provide a probability annotation scheme, we confirm

hypothesis 1.

In a semantic web environment intelligent agents have to gather information

from distributed sources. The dynamic querying of such distributed knowledge repositories

is known as amalgamation [51]. Due to the fact that the probability annotations of a given

semantic wiki knowledge base reflect only the local social network, we needed to introduce

an amalgamation scheme that will allow to annotate distributed sources. This was done

trough knowledge base and social network integration, that allowed us to re-annotate the

amalgamated knowledge bases. Thus hypothesis 2 is also confirmed.

In the end we formalized this new amalgamated and annotated semantic wiki

language, described the semantic of queries in such a language and confirmed hypothesis

3. In chapter 8 we provided an implementation of such a language entitled niKlas after

Niklas Luhmann who was an inspiration to this work. niKlas has been implemented

171

into the ᵀaOPı̄s system that provides a platform for self-organizing communities. Such

communities can be either organizations or projects for which ᵀaOPı̄s provides suitable

tools like semantic wiki systems, forums, blogs, ranking mechanisms, content filtering,

and tagging facilities.

In chapter 9 we analyzed few possible application of such autopoiesis facili-

tating systems. The examples showed that such systems could be used in a wide range

of applicative areas or better said in any situation where there is need for collaborative

knowledge management of a group of people.

The most ungrateful task is to produce forecasts on a domain that is under

intensive development like the one of autopoiesis in organizations and information systems

presented in this thesis. Nevertheless we will try to give a short outline of situations that

we find likely to occur.

Dynamic organizations will probably use dynamic web applications similar to

the described ones to connect to customers and organizations in their environment. Since

the world became networked the environment of today’s organizations is almost everyone

available via Internet. Through the use of such systems this fact will become more and

more obvious.

We envision that only organizations that will recognize the need to support

autopoiesis (that is decisions that allow for dynamic recreation of meaning) and develop

adequate information systems for this task will be able to survive in the future. Rigid,

bureaucratic, highly structured and non-adaptable organizational forms will probably die

due to a turbulent environment that is to complex for such forms to process.

Organizations that want not only to survive but also to be successful should

take modern organizational concepts, modern information and communication technolo-

gies as well as the autopoietic nature of information systems into consideration. An infor-

mation system is an important subsystem of the organization that allows it to process and

reduce complexity from its environment. If the processing capacity1 of the information

system isn’t sufficient the organization will probably disappear back into the environment.

In the field of autopoiesis and information systems empirical studies of the

applicability of autopoiesis to information systems have to be conducted. Additionally,

formal methods to represent, model and predict autopoietic systems have to be developed.

Such and other concerns are subject to future research of the author.

1Not to be misunderstood as the processing capacity of information and communication technologies
that implement an information system.

172

Bibliography

[1] Abele, T., and Bischoff, V. Fraktal+: Adaptability in the age of e-business

and networking,. In Innovations for an e-Society (2001), pp. 1–6.

[2] Abou-Zeid, E.-S. An autopoietic view of the concept ’information system’. In Pro-

ceedings of the IFIP TC8/WG8. 1 International Conference on Information System

Concepts: An Integrated Discipline Emerging (2000), Kluwer, pp. 165–186.

[3] Auer, S., Dietzold, S., and Riechert, T. OntoWiki – A Tool for Social,

Semantic Collaboration. In The Semantic Web – ISWC 2006. Springer-Verlag,

Berlin, Germany, 2006, pp. 736–749.

[4] Auer, S., Jungmann, B., and Schonefeld, F. Semantic wiki representations

for building an enterprise knowledge base. In Reasoning Web. Third International

Summer School 2007. Tutorial Lectures. (Lecture Notes in Computer Science vol.

4636) (Berlin, Germany, 2007), Springer-Verlag, pp. 330–333.

[5] Baker, K., and Branch, K. Concepts Underlying Organizational Effective-

ness: Trends in the Organization and Management Science Literature. Unpublished

manuscript, 2002, pp. 1–14.

[6] Bao, J., Ding, L., Smart, P. R., Braines, D., and Jones, G. Rule modeling

using semantic mediawiki. In 3rd Annual Conference of the International Technology

Alliance (ACITA’09) (Sept. 2009).

[7] Barnatt, C. Office space, cyberspace & virtual organization. Journal of General

Management 20, 4 (1995), 78–91.

[8] Bača, M., Schatten, M., and Deranja, D. Autopoietic information systems

in modern organizations. Organizacija, Journal of Management, Informatics and

Human Resources 40, 3 (2007), 157–165.

173

[9] Belhajjame, K., Embury, S., Paton, N., Stevens, R., and Goble, A.

Automatic annotations of semantic web services based on workflow definitions. ACM

Transactions on the Web, 2 (April 2008), 1–34.

[10] Berners-Lee, T. The semantic web stack from a 2000 presentation. available at

http://www.w3.org/2000/Talks/1206-xml2k-tbl/, accessed: 20th July 2008., 2000.

[11] Bonacich, P. Factoring and weighting approaches to clique identification. Journal

of Mathematical Sociology, 2 (1972), 113–120.

[12] Brin, S., and Page, L. The anatomy of a large-scale hypertextual web search

engine. In Computer Networks and ISDN Systems (1998), pp. 107–117.

[13] Brumec, J. A contribution to is general taxonomy. Zbornik radova Fakulteta

organizacije i informatike 21, 1 (1997), 1–14.

[14] Brumec, J., and Vrček, N. Strategic planning of information systems (spis) –

a survey of methodology. Journal of Computing and Information Technology 10, 3

(2002), 241—-247.

[15] Buble, M. Management malog poduzeća. Faculty of Economy Split, 2003.

[16] Buffa, M., Gandon, F., Ereteo, G., Sander, P., and Faron, C. Sweet-

Wiki: A semantic wiki. JOURNAL OF WEB SEMANTICS 6, 1 (FEB 2008), 84–97.

[17] c2.com. Wiki engines. Available at http://c2.com/cgi/wiki?WikiEngines, ac-

cessed: 2nd May 2009.

[18] Campanini, S. E., Castagna, P., and Tazzoli, R. Platypus wiki: a semantic

wiki wiki web. In Semantic Web Applications and Perspectives (SWAP) 1st Italian

Semantic Web Workshop (Ancona, Italy, 10th December 2004 2004).

[19] Cardoso, J., and Sheth, A. P. Semantic Web Services, Processes and Appli-

cations. Springer, New York, 2006.

[20] Churchill, C. Managing growth: The organizational architecture of microfinance

institutions. In USAID Microenterprise Best Practices Project Paper (1997), pp. 7–

26, 81–87.

[21] CTI. Can your organization survive a tsunami? Available at http://www.ctiarch.

com/oa/optassess1.htm, 2004.

174

http://www.w3.org/2000/Talks/1206-xml2k-tbl/
http://c2.com/cgi/wiki?WikiEngines
http://www.ctiarch.com/oa/optassess1.htm
http://www.ctiarch.com/oa/optassess1.htm

[22] Cunningham, W. Correspondence on the etymology of wiki. available at http:

//c2.com/doc/etymology.html, Accessed: 3rd September 2007, 2003.

[23] Cunningham, W. Wiki wiki hyper card. available at http://c2.com/cgi/wiki?

WikiWikiHyperCard, Accessed: 3rd September 2007, 2003.

[24] De Paoli, F., and Loregian, M. Tools to foster semantic-based collaboration. a

knowledge management approach based on a semantic wiki and personal ontologies.

In Third International Conference on Web information systems and technologies,

WEBIST (Setubal, Portugal, 2007), INSTICC, pp. 302–307.

[25] Di Iorio, A., Presutti, V., and Vitali, F. WikiFactory: An ontology-

based application for creating domain-oriented wikis. In SEMANTIC WEB: RE-

SEARCH AND APPLICATIONS, PROCEEDINGS, Sure, Y and Domingue, J,

Ed., vol. 4011 of LECTURE NOTES IN COMPUTER SCIENCE. SPRINGER-

VERLAG BERLIN, HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY,

2006, pp. 664–678.

[26] Diamond, G. March 2007 new words, oed. available at http://dictionary.oed.

com/news/newwords.html. Accessed 16th March 2007, 2007.

[27] Divjak, B., and Lovrenčić, A. Diskretna matematika s teorijom grafova. TIVA

& Faculty of Organization and Informatics, 2005.

[28] Dulčić, Ž.., Pavić, I., Rovan, M., and Veža, I. Proizvodni menedžment.

Ekonomski fakultet Split, Fakultet of Electronics and Machinery and Shipbuilding

Split, 1996.

[29] Dumitriu, S., Girdea, M., and Buraga, S. From Information Wiki to Knowl-

edge Wiki via Semantic Web technologies. In Innovations and Advanced Techniques

in Computer and Information Sciences and Engineering. Springer-Verlag, Berlin,

Germany, 2007, pp. 443–448.

[30] Ebersbach, A. Wiki: Web Collaboration. Springer Science+Business Media, 2008.

[31] Fischer, J., Gantner, Z., Rendle, S., Stritt, M., and Schmidt-Thieme,

L. Ideas and Improvements for Semantic Wikis. In The Semantic Web: Research

and Applications. Springer-Verlag, Berlin, Germany, 2006, pp. 650–663.

175

http://c2.com/doc/etymology.html
http://c2.com/doc/etymology.html
http://c2.com/cgi/wiki?WikiWikiHyperCard
http://c2.com/cgi/wiki?WikiWikiHyperCard
http://dictionary.oed.com/news/newwords.html
http://dictionary.oed.com/news/newwords.html

[32] Galbraith, J., Downey, D., and Kates, A. Designing Dynamic Organiza-

tions. AMACOM, 2001.

[33] Haase, P., Herzig, D., Musen, M., and Tran, T. Semantic Wiki Search. In

The Semantic Web: Research and Applications. Springer-Verlag, Berlin, Germany,

2009, pp. 445–460.

[34] Hoehndorf, R., Bacher, J., Backhaus, M., Gregorio, J. S. E., Loebe,

F., Pruefer, K., Uciteli, A., Visagie, J., Herre, H., and Kelso, J.

BOWiki: an ontology-based wiki for annotation of data and integration of knowledge

in biology. BMC BIOINFORMATICS 10, Suppl. 5 (MAY 6 2009).

[35] Huner, K. M., and Otto, B. The effect of using a semantic wiki for metadata

management: a controlled experiment. In 42nd Hawaii International Conference on

System Sciences. HICSS-42 (Piscataway, NJ, USA, 2009), IEEE, p. 9.

[36] Jinhyun, A., Jung, J., and Key-Sun, C. Interleaving ontology mapping for

online semantic annotation on semantic wiki. In IEEE/WIC/ACM International

Conference on Web Intelligence and Intelligent Agent Technology - Workshops (Pis-

cataway, NJ, USA, 2008), vol. 3, IEEE, pp. 25–28.

[37] Johansen, R., and Swigart, R. Upsizing The Individual In The Downsized

Corporation Managing In The Wake Of Reengineering, Globalization, And Over-

whelming Technological Change. Perseus Publishing, 2000.

[38] Kawamoto, K., Kitamura, Y., and Tijerino, Y. Kawawiki: a semantic wiki

based on rdf templates. In IEEE/WIC/ACM International Conference on Web

Intelligence International Intelligence Agent Technology Workshops (Los Alamitos,

CA, USA, 2006), IEEE Comput. Soc., p. 5.

[39] Kawamoto, K., Mase, M., Kitamura, Y., and Tijerino, Y. Semantic wiki

where human and agents collaborate. In IEEE/WIC/ACM International Conference

on Web Intelligence and Intelligent Agent Technology - Workshops (Piscataway, NJ,

USA, 2008), vol. 3, IEEE, pp. 147–151.

[40] Kiesel, M., and van Elst L Buscher G Schwarz, S. Mymory: enhancing

a semantic wiki with context annotations. In Semantic Web: Research and Appli-

cations. 5th European Semantic Web Conference, ESWC 2008 (Berlin, Germany,

2008), Springer-Verlag, pp. 817–821.

176

[41] Kifer, M., Lausen, G., and Wu, J. Logical foundations of object-oriented and

frame-based languages. Journal of the Association for Computing Machinery 42

(May 1995), 741–843.

[42] Kim, H., and Choi, J. A semantic web-enabled wiki system for ontology con-

struction and sharing. Journal of KISS: Software and Applications 33, 8 (2006),

703–717.

[43] Kotis, K. On supporting hcome-30 ontology argumentation using semantic wiki

technology. In On the Move to Meaningful Internet Systems: OTM 2008 Work-

shops.OTM Confederated International Workshops and Posters ADI, AWeSoMe,

COMBEK, EON, IWSSA, MONET, OnToContent+QSI, ORM, PerSys, RDDS,

SEMELS, and SWWS (Berlin, Germany, 2008), Springer-Verlag, pp. 193–199.

[44] Krakar, Z. Upravljanje informatizacijom. Faculty of Organization and In-

formatics, Available at http://www.foi.hr/CMS_library/studiji/dodiplomski/IS/

kolegiji/uis/skripta3.zip, 2004.

[45] Krötzsch, M., Schaffert, S., and Vrandecic, D. Reasoning in semantic

wikis. In Reasoning Web Summer School (Dresden, September 2007), Springer-

Verlag.

[46] Krötzsch, M., and Vrandecic, D. Semantic Wikipedia. In Social Semantic

Web. Springer-Verlag, Berlin, Germany, 2009, pp. 393–421.

[47] Lange, C. Swim: a semantic wiki for mathematical knowledge management. In

Semantic Web: Research and Applications. 5th European Semantic Web Conference,

ESWC 2008 (Berlin, Germany, 2008), Springer-Verlag, pp. 832–837.

[48] Lau, A. S. M. Implementation of an onto-wiki toolkit using web services to im-

prove the efficiency and effectiveness of medical ontology co-authoring and analysis.

INFORMATICS FOR HEALTH & SOCIAL CARE 34, 1 (2009), 73–80.

[49] Leuf, B., and Cunningham, W. The Wiki Way. Quick collaboration on the

Web. Addison-Wesley, 2001.

[50] Lovrenčić, A. Logički programski jezici za izgradnju sustava za integriranje het-

erogenih izvora znanja (Logical Programming Languages for the Development of Het-

erogenous Knowledge Sources Integration Systems). Ph.d. diss., Faculty of Organi-

zation and Informatics, Varaždin, 2003.

177

http://www.foi.hr/CMS_library/studiji/dodiplomski/IS/kolegiji/uis/skripta3.zip
http://www.foi.hr/CMS_library/studiji/dodiplomski/IS/kolegiji/uis/skripta3.zip

[51] Lovrenčić, A., and Čubrilo, M. Amalgamation of heterogeneous data sources

using amalgamated annotated hilog. In Proceedings of 3rd IEEE Conference on

Intelligent Engineering Systems, INES’99 (1999).

[52] Lu, Q., ying Jiao, Y., and Chen, J. Uimwiki: an enhanced semantic wiki for

user information management. In IEEE International Symposium on IT in Medicine

and Education (ITME) (Piscataway, NJ, USA, 2008), IEEE, pp. 930–934.

[53] Luhmann, N. Soziale Systeme: Grundriß einer allgemeinen Theorie. Suhrkamp,

Frankfurt, Germany, 1984.

[54] Luhmann, N. Law as a social system. Northwestern University Law Review 83

(1989), 136–150.

[55] Luhmann, N. Observations on modernity. Stanford University Press, Stanford,

1998.

[56] Luhmann, N. Organization. In Autopoietic Organization Theory Drawing on Niklas

Luhmann’s Social Systems Perspective, T. Bakken and T. Hernes, Eds. Abstract,

Liber, Copenhagen Business School Press, Oslo, 2003, pp. 31–53.

[57] Maleković, M., and Schatten, M. Leadership in team based knowledge man-

agement - an autopoietic information system’s perspective. In 19th Central European

Conference on Information and Intelligent Systems – CECIIS2008 Conference Pro-

ceedings (September 2008), B. Aurer and M. Bača, Eds., Faculty of Organization

and Informatics, pp. 47–52.

[58] Martin, J., and Odell, J. J. Object-Oriented Methods: A Foundation, uml

edition ed. Prentice Hall PTR, New Jersey, 1998.

[59] Maturana, H. R. The organization of the living: A theory of the living organi-

zation. International Journal of Man-Machine Studies 7 (1975), 313–332.

[60] Maturana, H. R., and Varela, F. J. Autopoiesis: The organization of the

living. In Autopoiesis and cognition, H. R. Maturana and F. J. Varela, Eds. Reidel,

Boston, 1973, pp. 59–138.

[61] May, W. How to Write F-Logic Programs in Florid - A Tutorial for the Database

Language F-Logic - Version 3.0 (FloXML), Oct. 2000. Available at http://dbis.

178

http://dbis.informatik.uni-freiburg.de/content/projects/Florid/florid_tutorial.pdf
http://dbis.informatik.uni-freiburg.de/content/projects/Florid/florid_tutorial.pdf

informatik.uni-freiburg.de/content/projects/Florid/florid_tutorial.pdf, ac-

cessed 27nd September 2009.

[62] McIlraith, S. A., Son, T. C., and Zeng, H. Semantic web services. IEEE

Intelligent Systems 16, 2 (2001), 46–53.

[63] Miciunas, G. Cre/fm organizational architecture: Structuring staff suc-

cess. The Environments Group, Available at http://www.envgroup.com/browse/

presentations/IFMA2002_staffsuccesspaper.pdf, 2002.

[64] Mika, P. Social Networks and the Semantic Web. Springer, New York, 2007.

[65] Mingers, J. Observing organizations: An evaluation of luhmann’s organization

theory. In Autopoietic Organization Theory Drawing on Niklas Luhmann’s Social

Systems Perspective, T. Bakken and T. Hernes, Eds. Abstract, Liber, Copenhagen

Business School Press, Oslo, 2003, pp. 103–122.

[66] Mitsuhiko, T. Autopoiesis of information systems and network society. Joho

Shori Gakkai Kenkyu Hokoku IS-89, 88 (2004), 1–8.

[67] Muljadi, H., Takeda, H., Shakya, A., Kawamoto, S., Kobayashi, S., Fu-

jiyama, A., and Ando, K. Semantic wiki as a lightweight knowledge management

system. In The Semantic Web - ASWC 2006. First Asian Semantic Web Confer-

ence. Proceedings (Lecture Notes in Computer Science Vol. 4185) (Berlin, Germany,

2006), Springer-Verlag, pp. 65–71.

[68] Nadler, D. A., Gerstein, M. S., and Shaw, R. B. Organizational Architec-

ture, Designs for Changing Organizations. Jossey-Bass, San Francisco, 1992.

[69] Nonaka, I., and Takeuchi, H. The Knowledge-Creating Company, How

Japanese Companies Create the Dynamics of Innovation. Oxford University Press,

1995.

[70] oddmuse.org. What is a wiki? Available at http://www.oddmuse.org/cgi-bin/

oddmuse/What_Is_A_Wiki, accessed 2nd May 2009.

[71] Oren, E., Völkel, M., Breslin, J. G., and Decker, S. Semantic Wikis for

Personal Knowledge Management. In Database and Expert Systems Applications.

Springer-Verlag, Berlin, Germany, 2006, pp. 509–518.

179

http://dbis.informatik.uni-freiburg.de/content/projects/Florid/florid_tutorial.pdf
http://dbis.informatik.uni-freiburg.de/content/projects/Florid/florid_tutorial.pdf
http://www.envgroup.com/browse/presentations/IFMA2002_staffsuccesspaper.pdf
http://www.envgroup.com/browse/presentations/IFMA2002_staffsuccesspaper.pdf
http://www.oddmuse.org/cgi-bin/oddmuse/What_Is_A_Wiki
http://www.oddmuse.org/cgi-bin/oddmuse/What_Is_A_Wiki

[72] Page, L., Brin, S., Motwani, R., and Winograd, T. The pagerank citation

ranking: Bringing order to the web, 1999.

[73] Pansanato, L. T. E., and Fortes, R. P. M. System Description: An Orien-

teering Strategy to Browse Semantically-Enhanced Educational Wiki Pages. In The

Semantic Web: Research and Applications. Springer-Verlag, Berlin, Germany, 2007,

pp. 809–818.

[74] Prud’hommeaux, E., and Seaborne, A. Sparql query language for rdf, w3c

recommendation. Tech. rep., World Wide Web Consortium, Jan. 2008.

[75] Quick, T. Autopoiesis. http://www.cs.ucl.ac.uk/staff/t.quick/autopoiesis.

html, (accessed: 01-04-2008), 2003.

[76] Rado, D. Führung und organisation (leadership and organization). Univer-

sität St. Gallen – Hochschule für Wirtschafts- , Rechts- und Sozialwissenschaften,

Available at http://www.mavericks.ch/3download/_files/_unisg/unisg_sum_FuO_

ws0102_v10.pdf, 2002.

[77] Raymond, E. S. The cathedral and the bazaar. Available at http://www.tuxedo.

org/~esr/, 2005.

[78] Reihlen, M., and Rohde, A. Das heterarchische unternehmen: ein flexibiles or-

ganisationsmodell im wissensbasierten wettbewerb (the heterarchic business: a flexi-

ble organizational model in a knowledge-based competition environment). Zeitschrift

Lernende Organisation 8 (2002), 30–34.

[79] Rhee, S. K., Lee, J., and Park, M.-W. RIKI: A Wiki-Based Knowledge Shar-

ing System for Collaborative Research Projects. In Computer-Human Interaction.

Springer-Verlag, Berlin, Germany, 2008, pp. 68–76.

[80] SalzburgResearch. Ikewiki. available at http://ikewiki.salzburgresearch.

at/, Accessed: 14th May 2008.

[81] Schaffert, S. Ikewiki: A semantic wiki for collaborative knowledge management.

In 1st International Workshop on Semantic Technologies in Collaborative Applica-

tions STICA 06 Proceedings (Manchester, UK, 2006).

[82] Schaffert, S., Bry, F., Baumeister, J., and Kiesel, M. Semantic wiki.

Informatik-Spektrum 30, 6 (2007), 434–439.

180

http://www.cs.ucl.ac.uk/staff/t.quick/autopoiesis.html
http://www.cs.ucl.ac.uk/staff/t.quick/autopoiesis.html
http://www.mavericks.ch/3download/_files/_unisg/unisg_sum_FuO_ws0102_v10.pdf
http://www.mavericks.ch/3download/_files/_unisg/unisg_sum_FuO_ws0102_v10.pdf
http://www.tuxedo.org/~esr/
http://www.tuxedo.org/~esr/
http://ikewiki.salzburgresearch.at/
http://ikewiki.salzburgresearch.at/

[83] Schaffert, S., Eder, J., Grünwald, S., Kurz, T., and Radulescu, M.

KiWi – A Platform for Semantic Social Software (Demonstration). In The Semantic

Web: Research and Applications. Springer-Verlag, Berlin, Germany, 2009, pp. 888–

892.

[84] Schaffert, S., Westenthaler, R., and Gruber, A. Ikewiki: A user-friendly

semantic wiki. In Demos and Posters of the 3rd European Semantic Web Conference

(ESWC 2006) (Budva, Montenegro, 11th – 14th June 2006).

[85] Schatten, M., Brumec, J., and Vǐsić, M. Strategic planning of an autopoietic

information system. In Proceedings of the IIS 2007 18th International Conferece on

Information and Intelligent Systems (2007), B. Aurer and M. Bača, Eds., Faculty

of Organization and Informatics, pp. 435–440.

[86] Schatten, M., Maleković, M., and Rabuzin, K. Inconsistencies in semantic

social web applications. In Proceedings of the 20th Central European Conference on

Information and Intelligent Systems (2009), B. Aurer, M. Bača, and K. Rabuzin,

Eds., Faculty of Organization and Informatics.

[87] Schatten, M., Čubrilo, M., and Ševa, J. A semantic wiki system based on f-

logic. In 19th Central European Conference on Information and Intelligent Systems

– CECIIS2008 Conference Proceedings (2008), B. Aurer and M. Bača, Eds., Faculty

of Organization and Informatics, pp. 57–61.

[88] Schatten, M., and Žugaj, M. Organizing a fishnet structure. In 29th

International Conference Information Technology Interfaces Proceedings (Cavtat-

Dubrovnik, Croatia, June 25 — 28 2007), pp. 81–86.

[89] Semantic-mediawiki.org. Semantic mediawiki. available at http://

semantic-mediawiki.org/, Accessed: 14th May 2008.

[90] Siles, A., Lopez-Cima, A., Corcho, O., and Gomez-Perez, A. Odewiki:

a semantic wiki that interoperates with the odesew semantic portal. In Semantic

Web: Research and Applications. 5th European Semantic Web Conference, ESWC

2008 (Berlin, Germany, 2008), Springer-Verlag, pp. 859–863.

[91] Silverman, L. L. Organizational architecture: A framework for successful trans-

formation. 1997.

181

http://semantic-mediawiki.org/
http://semantic-mediawiki.org/

[92] Singh, A. V., Wombacher, A., and Aberer, K. Personalized Information

Access in a Wiki Using Structured Tagging. In On the Move to Meaningful Inter-

net Systems 2007: OTM 2007 Workshops. Springer-Verlag, Berlin, Germany, 2007,

pp. 427–436.

[93] Slonneger, K., and Kurtz, B. L. Formal Syntax and Semantics of Program-

ming Languages – A Laboratory Based Approach. Addison-Wesley Publishing Com-

pany, 1995.

[94] Smith, G. Tagging: People-Powered Metadata for the Social Web. New Riders,

Berkeley, 2008.

[95] Souzis, A. Building a semantic wiki. IEEE Intelligent Systems 20, 5 (2005), 87–91.

[96] Stalbaum, B. Toward autopoietic database. Research report for C5 corpo-

ration, available at http://www.c5corp.com/research/autopoieticdatabase.shtml,

accessed: 18th August 2007.

[97] Sung-Kooc, L., and In-Young, K. Collaborative ontology construction using

template-based wiki for semantic web applications. In International Conference on

Computer Engineering and Technology. ICCET 2009 (Piscataway, NJ, USA, 2009),

vol. 2, IEEE, pp. 171–175.

[98] SweetWiki. Senamtic web enabled technology wiki. available at http://

argentera.inria.fr/wiki/data/Main/MainHome.jsp, Accessed: 14th May 2008.

[99] Valenzuela, C. Y. Dentro de la selección (within selection). Revista Chilena de

Historia Natural 80, 1 (2007), 109–116.

[100] van der Blonk, H., Huysman, M., and Spoor, E. Autopoiesis and the

evolution of information systems. Tech. rep., 1998.

[101] van Elst, L., Kiesel, M., Schwarz, S., Buscher, G., Lauer, A., and

Dengel, A. Contextualized knowledge acquisition in a personal semantic wiki.

In Knowledge Engineering: Practice and Patterns. 16th International Conference,

EKAW 2008 (Berlin, Germany, 2008), Springer-Verlag, pp. 172–187.

[102] Varela, F. J. Principles of Biological Autonomy. Elsevier, New York, North

Holland, 1979.

182

http://www.c5corp.com/research/autopoieticdatabase.shtml
http://argentera.inria.fr/wiki/data/Main/MainHome.jsp
http://argentera.inria.fr/wiki/data/Main/MainHome.jsp

[103] Völkel, M., Krötzsch, M., Vrandecic, D., Haller, H., and Studer,

R. Semantic wikipedia. In International World Wide Web Conference (IW3C2),

WWW 2006 Proceedings (Edinburgh, Scotland, May 23—26 2006).

[104] Žugaj, M., Dumičić, K., and Dušak, V. Temelji znanstvenoistraživačkog rada -

Metodologija i metodika. TIVA & Faculty of Organization and Informatics, Varaždin,

2006.

[105] Žugaj, M., and Schatten, M. Arhitektura suvremenih organizacija. Tonimir

and Faculty of Organization and Informatics, Varaždinske Toplice, Croatia, 2005.

[106] Žugaj, M., and Schatten, M. Nekoliko riječi o otvorenoj organizaciji. In 5th

International Conference on Production Engineering, RIM 2005., Scientific Book

(Bihać, Bosnia and Herzegowina, 14 - 17 September 2005), pp. 917–922.

[107] Žugaj, M., and Schatten, M. Otvorena ontologija organizacijske arhitekture u

funkciji upravljanja znanjem. Ekonomski vjesnik XX, 1 – 2 (2007), 39–45.

[108] Žugaj, M., Šehanović, J., and Cingula, M. Organizacija. TIVA & Faculty

of Organization and Informatics, Varaždin, Croatia, 2004.

[109] W3C. Owl web ontology language overview - w3c recommendation, Feb. 2004.

[110] Wang, C., Lu, J., Zhang, G., and Zeng, X. Creating and managing ontology

data on the web: a semantic wiki approach. In Web Information Systems Engineer-

ing - WISE 2007. Proceedings 8th International Conference on Web Information

Systems Engineering. (Lecture Notes in Computer Science vol. 4831) (Berlin, Ger-

many, 2007), Springer-Verlag, pp. 513–522.

[111] Warnecke, H.-J. Die fraktale fabrik - produzieren im netzwerk (the fractal com-

pany - production in the network). In GI Jahrestagung (1992), pp. 20–33.

[112] Wasserman, S., and Faust, K. Social Network Analysis ; Methods and Ap-

plications. Structural analysis in the social sciences. Cambridge University Press,

1994.

[113] Whitaker, R. Tutorial 1: Introductory orientation. http://www.enolagaia.com/

Tutorial1.html, (accessed: 01-12-2005), 2001.

[114] Whitaker, R. Tutorial 2: Concepts and constructs. http://www.enolagaia.com/

Tutorial2.html, (accessed: 20-03-2008), 2001.

183

http://www.enolagaia.com/Tutorial1.html
http://www.enolagaia.com/Tutorial1.html
http://www.enolagaia.com/Tutorial2.html
http://www.enolagaia.com/Tutorial2.html

[115] Wikipedia. History of wikis — wikipedia, the free encyclopedia. available at http:

//en.wikipedia.org/w/index.php?title=History_of_wikis&oldid=293627468, ac-

cessed 1stJune 2009., 2009.

[116] Yang, G., Kifer, M., and Zhao, C. Flora-2: A rule-based knowledge represen-

tation and inference infrastructure for the semantic web. In Second International

Conference on Ontologies, Databases and Applications of Semantics (ODBASE)

Proceedings (Catania, Sicily, Italy, November 2003).

184

http://en.wikipedia.org/w/index.php?title=History_of_wikis&oldid=293627468
http://en.wikipedia.org/w/index.php?title=History_of_wikis&oldid=293627468

Appendix A

Wiki Parser for niKlas in XSB Prolog

The presented BNF grammar (chapter 3) was implemented in XSB Prolog to automati-

cally construct parse trees as shown in the following listing.

:− import s h e l l /1 from s h e l l .

:− import s t r c a t /2 ,

term to atom /2 from s t r i n g .

:− import re match /5 ,

r e s u b s t r i n g /4 from regmatch .

:− import member/2 from b a s i c s .

:− au to tab l e .

% l e x i c a l s t r u c t u r e

statement (t ext (X)) −−>

[X] , { any s t r i ng no t i n keyword s (X) } .

i n t e r n a l u r l (i n t e r n a l u r l (X)) −−>

[X] ,

{

any s t r i ng no t i n keyword s (X) ,

not (match url (X))

} .

e x t e r n a l u r l (e x t e r n a l u r l (X)) −−>

185

[X] , { match url (X) } .

l ink name (l ink name (X)) −−>

[X] , { any s t r i ng no t i n keyword s (X) } .

r e f e r e n c e c i t a t i o n n a m e (r e f e r e n c e c i t a t i o n n a m e (X)) −−>

[X] , { any s t r i ng no t i n keyword s (X) } .

f o r m a t t i n g e x p r e s s i o n s t a r t (

f o r m a t t i n g e x p r e s s i o n s t a r t (’ [h1] ’)) −−>

[’ [h1] ’] .

f o rmat t i ng exp r e s s i on end (

f o rmat t i ng exp r e s s i on end (’ [/ h1] ’)) −−>

[’ [/ h1] ’] .

f o r m a t t i n g e x p r e s s i o n s t a r t (

f o r m a t t i n g e x p r e s s i o n s t a r t (’ [h2] ’)) −−>

[’ [h2] ’] .

f o rmat t i ng exp r e s s i on end (

f o rmat t i ng exp r e s s i on end (’ [/ h2] ’)) −−>

[’ [/ h2] ’] .

f o r m a t t i n g e x p r e s s i o n s t a r t (

f o r m a t t i n g e x p r e s s i o n s t a r t (’ [h3] ’)) −−>

[’ [h3] ’] .

f o rmat t i ng exp r e s s i on end (

f o rmat t i ng exp r e s s i on end (’ [/ h3] ’)) −−>

[’ [/ h3] ’] .

f o r m a t t i n g e x p r e s s i o n s t a r t (

f o r m a t t i n g e x p r e s s i o n s t a r t (’ [j] ’)) −−>

186

[’ [j] ’] .

f o rmat t i ng exp r e s s i on end (

f o rmat t i ng exp r e s s i on end (’ [/ j] ’)) −−>

[’ [/ j] ’] .

f o r m a t t i n g e x p r e s s i o n s t a r t (

f o r m a t t i n g e x p r e s s i o n s t a r t (’ [b] ’)) −−>

[’ [b] ’] .

f o rmat t i ng exp r e s s i on end (

f o rmat t i ng exp r e s s i on end (’ [/ b] ’)) −−>

[’ [/ b] ’] .

f o r m a t t i n g e x p r e s s i o n s t a r t (

f o r m a t t i n g e x p r e s s i o n s t a r t (’ [i] ’)) −−>

[’ [i] ’] .

f o rmat t i ng exp r e s s i on end (

f o rmat t i ng exp r e s s i on end (’ [/ i] ’)) −−>

[’ [/ i] ’] .

f o r m a t t i n g e x p r e s s i o n s t a r t (

f o r m a t t i n g e x p r e s s i o n s t a r t (’ [c en t e r] ’)) −−>

[’ [c en t e r] ’] .

f o rmat t i ng exp r e s s i on end (

f o rmat t i ng exp r e s s i on end (’ [/ c en t e r] ’)) −−>

[’ [/ c en t e r] ’] .

f o r m a t t i n g e x p r e s s i o n s t a r t (

f o r m a t t i n g e x p r e s s i o n s t a r t (’ [code] ’)) −−>

[’ [code] ’] .

187

f o rmat t i ng exp r e s s i on end (

f o rmat t i ng exp r e s s i on end (’ [/ code] ’)) −−>

[’ [/ code] ’] .

f o r m a t t i n g e x p r e s s i o n s t a r t (

f o r m a t t i n g e x p r e s s i o n s t a r t (’ [quote] ’)) −−>

[’ [quote] ’] .

f o rmat t i ng exp r e s s i on end (

f o rmat t i ng exp r e s s i on end (’ [/ quote] ’)) −−>

[’ [/ quote] ’] .

d i s p l a y o b j e c t s t a r t (

d i s p l a y o b j e c t s t a r t (’ [tube] ’)) −−>

[’ [tube] ’] .

d i s p l a y o b j e c t e n d (

d i s p l a y o b j e c t e n d (’ [/ tube] ’)) −−>

[’ [/ tube] ’] .

image s ta r t (

image s ta r t (’ [img=’)) −−>

[’ [img=’] .

image end (

image end (’] ’)) −−>

[’] ’] .

comment start (

comment start (’ [comment] ’)) −−>

[’ [comment] ’] .

comment end (

188

comment end (’ [/ comment] ’)) −−>

[’ [/ comment] ’] .

h y p e r l i n k s t a r t (

h y p e r l i n k s t a r t (’ [l i n k=’)) −−>

[’ [l i n k=’] .

hyper l ink end (

hyper l ink end (’] ’)) −−>

[’] ’] .

v a r i a b l e t e m p l a t e (

v a r i a b l e t e m p l a t e (’ [o u l i n e] ’)) −−>

[’ [o u t l i n e] ’] .

r e f e r e n c e e n t r y b e g i n (

r e f e r e n c e e n t r y b e g i n (’ [r e f=’)) −−>

[’ [r e f= ’] .

r e f e r e n c e e n t r y e n d (

r e f e r e n c e e n t r y e n d (’] ’)) −−>

[’] ’] .

c i t e k e y (

c i t e k e y (X)) −−>

[X] ,

{ any s t r i ng no t i n keyword s (X) } .

r e f e r e n c e c i t a t i o n s t a r t (

r e f e r e n c e c i t a t i o n s t a r t (’ [c i t e=’)) −−>

[’ [c i t e=’] .

r e f e r e n c e c i t a t i o n e n d (

r e f e r e n c e c i t a t i o n e n d (’] ’)) −−>

189

[’] ’] .

w t a b l e s t a r t (

w t a b l e s t a r t (’ [t ab l e] ’)) −−>

[’ [t ab l e] ’] .

wtable end (

wtable end (’ [/ t ab l e] ’)) −−>

[’ [/ t ab l e] ’] .

% regex & aux

co r r e spond ing tag s (X, Y) :−

re match (

’ \ [(. ∗) \] ’ ,

X,

0 ,

,

[

match (,) ,

match (B1 , E1)

]

) ,

re match (

’ \ [[/] (. ∗) \] ’ ,

Y,

0 ,

,

[

match (,) ,

match (B2 , E2)

]

) ,

r e s u b s t r i n g (X, B1 , E1 , R1) ,

190

r e s u b s t r i n g (Y, B2 , E2 , R2) ,

R1 = R2 .

any s t r i ng no t i n keyword s (X) :−

Keywords = [’ [h1] ’ , ’ [/ h1] ’ , ’ [h2] ’ , ’ [/ h2] ’ , ’ [h3] ’ , ’ [/ h3]↘

→ ’ , ’ [j] ’ , ’ [/ j] ’ , ’ [b] ’ , ’ [/ b] ’ , ’ [i] ’ , ’ [/ i] ’ , ’ [c en t e r] ’ , ↘

→ ’ [/ c en te r] ’ , ’ [code] ’ , ’ [/ code] ’ , ’ [quote] ’ , ’ [/ quote] ’ , ’ [↘

→tube] ’ , ’ [/ tube] ’ , ’ [img=’ , ’] ’ , ’ [comment] ’ , ’ [/ comment] ’ , ↘

→ ’ [l i n k=’ , ’ [u r l] ’ , ’ [/ u r l] ’ , ’ [r e f ’ , ’ [c i t e ’ , ’ [t ab l e] ’ , ’ [/↘

→ t ab l e] ’ , ’&&’ , ’##’] ,

not (

member(X, Keywords)

) .

match url (X) :−

re match (

’ [a−zA−Z] + : / / ([.] ? [a−zA−Z0−9 /−])∗ ’ ,

X,

0 ,

,

L

) .

% w i k i grammar

wik i page (

wik i page (X)) −−>

statements (X) .

statements (

statements ([X])) −−>

statement (X) .

statements (

191

statements ([X | Y])) −−>

statement (X) ,

statements (statements (Y)) .

statement (

statement (E)) −−>

f o r m a t t i n g e x p r e s s i o n (E) .

statement (

statement (D)) −−>

d i s p l a y o b j e c t (D) .

statement (

statement (I)) −−>

image (I) .

statement (

statement (C)) −−>

comment (C) .

statement (

statement (L)) −−>

hyper l ink (L) .

statement (

statement (V)) −−>

v a r i a b l e t e m p l a t e (V) .

statement (

statement (R)) −−>

r e f e r e n c e e n t r y (R) .

statement (

statement (C)) −−>

192

r e f e r e n c e c i t a t i o n (C) .

statement (

statement (T)) −−>

wtable (T) .

f o r m a t t i n g e x p r e s s i o n (

f o r m a t t i n g e x p r e s s i o n (Start , Statement , End)) −−>

f o r m a t t i n g e x p r e s s i o n s t a r t (Sta r t) ,

s tatements (Statement) ,

f o rmat t i ng exp r e s s i on end (End) ,

{

Star t = f o r m a t t i n g e x p r e s s i o n s t a r t (S) ,

End = fo rmat t i ng exp r e s s i on end (E) ,

c o r r e spond ing tag s (S , E)

} .

d i s p l a y o b j e c t (

d i s p l a y o b j e c t (Start , URL, End)) −−>

d i s p l a y o b j e c t s t a r t (Sta r t) ,

e x t e r n a l u r l (URL) ,

d i s p l a y o b j e c t e n d (End) .

d i s p l a y o b j e c t (

d i s p l a y o b j e c t (Start , Text , End)) −−>

d i s p l a y o b j e c t s t a r t (Sta r t) ,

statement (Text) ,

d i s p l a y o b j e c t e n d (End) .

image (

image (Start , URL, End)) −−>

image s ta r t (Sta r t) ,

e x t e r n a l u r l (URL) ,

image end (End) .

193

comment (

comment (Start , S , End)) −−>

comment start (Sta r t) ,

s tatements (S) ,

comment end (End) .

hyper l ink (

hyper l ink (Start , URL, Name, End)) −−>

h y p e r l i n k s t a r t (Sta r t) ,

i n t e r n a l u r l (URL) ,

[’> ’] ,

l ink name (Name) ,

hyper l ink end (End) .

hyper l ink (

hyper l ink (Start , URL, Name, End)) −−>

h y p e r l i n k s t a r t (Sta r t) ,

e x t e r n a l u r l (URL) ,

[’> ’] ,

l ink name (Name) ,

hyper l ink end (End) .

r e f e r e n c e e n t r y (

r e f e r e n c e e n t r y (Begin , CiteKey , End)) −−>

r e f e r e n c e e n t r y b e g i n (Begin) ,

c i t e k e y (CiteKey) ,

r e f e r e n c e e n t r y e n d (End) .

r e f e r e n c e c i t a t i o n (

r e f e r e n c e c i t a t i o n (Start , CiteKey , Name, End)) −−>

r e f e r e n c e c i t a t i o n s t a r t (Sta r t) ,

c i t e k e y (CiteKey) ,

[’> ’] ,

194

r e f e r e n c e c i t a t i o n n a m e (Name) ,

r e f e r e n c e c i t a t i o n e n d (End) .

wtable (

wtable (Start , Rows , End)) −−>

w t a b l e s t a r t (Sta r t) ,

wtable rows (Rows) ,

wtable end (End) .

wtable rows (

wtable rows ([Row])) −−>

wtable row (Row) .

wtable rows (

wtable rows ([Row | Rows])) −−>

wtable row (Row) ,

[’##’] ,

wtable rows (

wtable rows (Rows)

) .

wtable row (

wtable row (C e l l s)) −−>

w t a b l e c e l l s (C e l l s) .

w t a b l e c e l l s (

w t a b l e c e l l s ([Ce l l])) −−>

w t a b l e c e l l (Ce l l) .

w t a b l e c e l l s (

w t a b l e c e l l s ([Ce l l | C e l l s])) −−>

w t a b l e c e l l (Ce l l) ,

[’&&’] ,

w t a b l e c e l l s (

195

w t a b l e c e l l s (C e l l s)

) .

w t a b l e c e l l (

w t a b l e c e l l (Statements)) −−>

statements (Statements) .

% pars ing and a u x i l i a r y

ppr int (Term) :−

term to atom (Term , Atom) ,

s t r c a t (’ python ppr int . py ’ ’ ’ , Atom, Part) ,

s t r c a t (Part , ’ ’ ’ ’ , Command) ,

s h e l l (Command) .

read code (L i s t) :−

s h e l l t o l i s t (’ python readcode . py ’ , [L i s t] ,) .

parse :−

read code (X) ,

wik i page (T, X, []) ,

ppr int (T) .

p a r s e t :−

read code (X) ,

trace ,

w ik i page (T, X, []) ,

notrace ,

ppr int (T) .

?− parse .

196

Appendix B

Semantic Wiki Parser for niKlas in

XSB Prolog

The presented BNF grammar (chapter 5) was implemented in XSB Prolog to automati-

cally construct parse trees as shown in the following listing.

:− import s h e l l /1 from s h e l l .

:− import s t r c a t /2 ,

term to atom /2 from s t r i n g .

:− import re match /5 ,

r e s u b s t r i n g /4 from regmatch .

:− import member/2 from b a s i c s .

:− au to tab l e .

% l e x i c a l s t r u c t u r e

statement (

t ext (X)) −−>

[X] ,

{

any s t r i ng no t i n keyword s (X) ,

not (f l v a r (X))

} .

statement (

197

t ex t (

f l o g i c v a r i a b l e (X))) −−>

[X] ,

{ f l v a r (X) } .

i n t e r n a l u r l (

i n t e r n a l u r l (X)) −−>

[X] ,

{

any s t r i ng no t i n keyword s (X) ,

not (u r l (X)) ,

not (f l v a r (X))

} .

i n t e r n a l u r l (

i n t e r n a l u r l (

f l o g i c v a r i a b l e (X))) −−>

[X] ,

{ f l v a r (X) } .

e x t e r n a l u r l (

e x t e r n a l u r l (X)) −−>

[X] ,

{

u r l (X) ,

not (f l v a r (X))

} .

e x t e r n a l u r l (

e x t e r n a l u r l (

f l o g i c v a r i a b l e (X))) −−>

[X] ,

{ f l v a r (X) } .

198

l ink name (

l ink name (X)) −−>

[X] ,

{

any s t r i ng no t i n keyword s (X) ,

not (f l v a r (X))

} .

l ink name (

l ink name (

f l o g i c v a r i a b l e (X))) −−>

[X] ,

{ f l v a r (X) } .

r e f e r e n c e c i t a t i o n n a m e (

r e f e r e n c e c i t a t i o n n a m e (X)) −−>

[X] ,

{

any s t r i ng no t i n keyword s (X) ,

not (f l v a r (X))

} .

r e f e r e n c e c i t a t i o n n a m e (

r e f e r e n c e c i t a t i o n n a m e (

f l o g i c v a r i a b l e (X))) −−>

[X] ,

{ f l v a r (X) } .

f o r m a t t i n g e x p r e s s i o n s t a r t (

f o r m a t t i n g e x p r e s s i o n s t a r t (’ [h1] ’)) −−>

[’ [h1] ’] .

f o rmat t i ng exp r e s s i on end (

f o rmat t i ng exp r e s s i on end (’ [/ h1] ’)) −−>

199

[’ [/ h1] ’] .

f o r m a t t i n g e x p r e s s i o n s t a r t (

f o r m a t t i n g e x p r e s s i o n s t a r t (’ [h2] ’)) −−>

[’ [h2] ’] .

f o rmat t i ng exp r e s s i on end (

f o rmat t i ng exp r e s s i on end (’ [/ h2] ’)) −−>

[’ [/ h2] ’] .

f o r m a t t i n g e x p r e s s i o n s t a r t (

f o r m a t t i n g e x p r e s s i o n s t a r t (’ [h3] ’)) −−>

[’ [h3] ’] .

f o rmat t i ng exp r e s s i on end (

f o rmat t i ng exp r e s s i on end (’ [/ h3] ’)) −−>

[’ [/ h3] ’] .

f o r m a t t i n g e x p r e s s i o n s t a r t (

f o r m a t t i n g e x p r e s s i o n s t a r t (’ [j] ’)) −−>

[’ [j] ’] .

f o rmat t i ng exp r e s s i on end (

f o rmat t i ng exp r e s s i on end (’ [/ j] ’)) −−>

[’ [/ j] ’] .

f o r m a t t i n g e x p r e s s i o n s t a r t (

f o r m a t t i n g e x p r e s s i o n s t a r t (’ [b] ’)) −−>

[’ [b] ’] .

f o rmat t i ng exp r e s s i on end (

f o rmat t i ng exp r e s s i on end (’ [/ b] ’)) −−>

[’ [/ b] ’] .

200

f o r m a t t i n g e x p r e s s i o n s t a r t (

f o r m a t t i n g e x p r e s s i o n s t a r t (’ [i] ’)) −−>

[’ [i] ’] .

f o rmat t i ng exp r e s s i on end (

f o rmat t i ng exp r e s s i on end (’ [/ i] ’)) −−>

[’ [/ i] ’] .

f o r m a t t i n g e x p r e s s i o n s t a r t (

f o r m a t t i n g e x p r e s s i o n s t a r t (’ [c en t e r] ’)) −−>

[’ [c en t e r] ’] .

f o rmat t i ng exp r e s s i on end (

f o rmat t i ng exp r e s s i on end (’ [/ c en t e r] ’)) −−>

[’ [/ c en t e r] ’] .

f o r m a t t i n g e x p r e s s i o n s t a r t (

f o r m a t t i n g e x p r e s s i o n s t a r t (’ [code] ’)) −−>

[’ [code] ’] .

f o rmat t i ng exp r e s s i on end (

f o rmat t i ng exp r e s s i on end (’ [/ code] ’)) −−>

[’ [/ code] ’] .

f o r m a t t i n g e x p r e s s i o n s t a r t (

f o r m a t t i n g e x p r e s s i o n s t a r t (’ [quote] ’)) −−>

[’ [quote] ’] .

f o rmat t i ng exp r e s s i on end (

f o rmat t i ng exp r e s s i on end (’ [/ quote] ’)) −−>

[’ [/ quote] ’] .

f o r m a t t i n g e x p r e s s i o n s t a r t (

f o r m a t t i n g e x p r e s s i o n s t a r t (’ [header] ’)) −−>

201

[’ [header] ’] .

f o rmat t i ng exp r e s s i on end (

f o rmat t i ng exp r e s s i on end (’ [/ header] ’)) −−>

[’ [/ header] ’] .

d i s p l a y o b j e c t s t a r t (

d i s p l a y o b j e c t s t a r t (’ [tube] ’)) −−>

[’ [tube] ’] .

d i s p l a y o b j e c t e n d (

d i s p l a y o b j e c t e n d (’ [/ tube] ’)) −−>

[’ [/ tube] ’] .

image s ta r t (

image s ta r t (’ [img=’)) −−>

[’ [img=’] .

image end (

image end (’] ’)) −−>

[’] ’] .

comment start (

comment start (’ [comment] ’)) −−>

[’ [comment] ’] .

comment end (

comment end (’ [/ comment] ’)) −−>

[’ [/ comment] ’] .

h y p e r l i n k s t a r t (

h y p e r l i n k s t a r t (’ [l i n k=’)) −−>

[’ [l i n k=’] .

202

hyper l ink end (

hyper l ink end (’] ’)) −−>

[’] ’] .

v a r i a b l e t e m p l a t e (

v a r i a b l e t e m p l a t e (’ [o u l i n e] ’)) −−>

[’ [o u t l i n e] ’] .

r e f e r e n c e e n t r y b e g i n (

r e f e r e n c e e n t r y b e g i n (’ [r e f=’)) −−>

[’ [r e f= ’] .

r e f e r e n c e e n t r y e n d (

r e f e r e n c e e n t r y e n d (’] ’)) −−>

[’] ’] .

c i t e k e y (

c i t e k e y (X)) −−>

[X] ,

{ any s t r i ng no t i n keyword s (X) } .

r e f e r e n c e c i t a t i o n s t a r t (

r e f e r e n c e c i t a t i o n s t a r t (’ [c i t e=’)) −−>

[’ [c i t e=’] .

r e f e r e n c e c i t a t i o n e n d (

r e f e r e n c e c i t a t i o n e n d (’] ’)) −−>

[’] ’] .

w t a b l e s t a r t (

w t a b l e s t a r t (’ [t ab l e] ’)) −−>

[’ [t ab l e] ’] .

203

wtable end (

wtable end (’ [/ t ab l e] ’)) −−>

[’ [/ t ab l e] ’] .

q u e r y s t a r t (

q u e r y s t a r t (’ [query=’ , FLQuery)) −−>

[’ [query=’] ,

f l o g i c q u e r y (FLQuery) ,

[’] ’] .

query end (

query end (’ [/ query] ’)) −−>

[’ [/ query] ’] .

f l o g i c i s a s y m b o l (

f l o g i c i s a s y m b o l (’ : ’)) −−>

[’ : ’] .

f l o g i c i s a s y m b o l (

f l o g i c i s a s y m b o l (’ : : ’)) −−>

[’ : : ’] .

f l o g i c i m p l i c a t i o n s y m b o l (

f l o g i c i m p l i c a t i o n s y m b o l (’ :− ’)) −−>

[’ :− ’] .

f l o g i c q u e r y s y m b o l (

f l o g i c q u e r y s y m b o l (’?− ’)) −−>

[’?− ’] .

f l og i c method ar row1 (

f l og i c method ar row1 (’−> ’)) −−>

[’−> ’] .

204

f l og i c method ar row1 (

f l og i c method ar row1 (’∗−> ’)) −−>

[’∗−> ’] .

f l og i c method ar row2 (

f l og i c method ar row2 (’=> ’)) −−>

[’=> ’] .

f l og i c method ar row2 (

f l og i c method ar row2 (’∗=> ’)) −−>

[’∗=> ’] .

f l o g i c d o t (

f l o g i c d o t (’ . ’)) −−>

[’ . ’] .

f l o g i c d o t (

f l o g i c d o t (’ . . ’)) −−>

[’ . . ’] .

f l o g i c d o t (

f l o g i c d o t (’ ! ’)) −−>

[’ ! ’] .

f l o g i c p r e d i c a t e (

f l o g i c p r e d i c a t e (X)) −−>

[X] ,

{ a n y s t r i n g (X) } .

f l o g i c p r e d i c a t e (

f l o g i c p r e d i c a t e (

f l o g i c v a r i a b l e (X))) −−>

[X] ,

{ f l v a r (X) } . % HiLog e x t e n s i o n

205

f l o g i c b u i l d i n p r e d i c a t e (

f l o g i c b u i l d i n p r e d i c a t e (X)) −−>

[X] ,

{ f l s t r i n g (X) } .

f l o g i c b u i l d i n i n f i x p r e d i c a t e (

f l o g i c b u i l d i n i n f i x p r e d i c a t e (’< ’)) −−>

[’< ’] .

f l o g i c b u i l d i n i n f i x p r e d i c a t e (

f l o g i c b u i l d i n i n f i x p r e d i c a t e (’> ’)) −−>

[’> ’] .

f l o g i c b u i l d i n i n f i x p r e d i c a t e (

f l o g i c b u i l d i n i n f i x p r e d i c a t e (’=’)) −−>

[’= ’] .

f l o g i c b u i l d i n i n f i x p r e d i c a t e (

f l o g i c b u i l d i n i n f i x p r e d i c a t e (’=< ’)) −−>

[’=< ’] .

f l o g i c b u i l d i n i n f i x p r e d i c a t e (

f l o g i c b u i l d i n i n f i x p r e d i c a t e (’>=’)) −−>

[’>=’] .

f l o g i c b u i l d i n o p e r a t o r (

f l o g i c b u i l d i n o p e r a t o r (’+ ’)) −−>

[’+ ’] .

f l o g i c b u i l d i n o p e r a t o r (

f l o g i c b u i l d i n o p e r a t o r (’− ’)) −−>

[’− ’] .

206

f l o g i c b u i l d i n o p e r a t o r (

f l o g i c b u i l d i n o p e r a t o r (’∗ ’)) −−>

[’∗ ’] .

f l o g i c b u i l d i n o p e r a t o r (

f l o g i c b u i l d i n o p e r a t o r (’ / ’)) −−>

[’ / ’] .

f l o g i c f u n c t o r (

f l o g i c f u n c t o r (X)) −−>

[X] ,

{ a n y s t r i n g (X) } .

f l o g i c f u n c t o r (

f l o g i c f u n c t o r (

f l o g i c v a r i a b l e (X))) −−>

[X] ,

{ f l v a r (X) } . % HiLog e x t e n s i o n

f l o g i c v a r i a b l e (

f l o g i c v a r i a b l e (X)) −−>

[X] ,

{ f l v a r (X) } .

f l o g i c s t r i n g (

f l o g i c s t r i n g (X)) −−>

[X] ,

{ a n y s t r i n g (X) } .

f l o g i c i n t e g e r (

f l o g i c i n t e g e r (X)) −−>

[X] ,

{ any in t eg e r (X) } .

207

% regex & aux

co r r e spond ing tag s (X, Y) :−

re match (

’ \ [(. ∗) \] ’ ,

X,

0 ,

,

[match (,) , match (B1 , E1)]

) ,

re match (

’ \ [[/] (. ∗) \] ’ ,

Y,

0 ,

,

[match (,) , match (B2 , E2)]

) ,

r e s u b s t r i n g (X, B1 , E1 , R1) ,

r e s u b s t r i n g (Y, B2 , E2 , R2) ,

R1 = R2 .

any s t r i ng no t i n keyword s (X) :−

Keywords = [’ [h1] ’ , ’ [/ h1] ’ , ’ [h2] ’ , ’ [/ h2] ’ , ’ [h3] ’ , ’ [/ h3]↘

→ ’ , ’ [j] ’ , ’ [/ j] ’ , ’ [b] ’ , ’ [/ b] ’ , ’ [i] ’ , ’ [/ i] ’ , ’ [c en t e r] ’ , ↘

→ ’ [/ c en te r] ’ , ’ [code] ’ , ’ [/ code] ’ , ’ [quote] ’ , ’ [/ quote] ’ , ’ [↘

→tube] ’ , ’ [/ tube] ’ , ’ [img=’ , ’] ’ , ’ [comment] ’ , ’ [/ comment] ’ , ↘

→ ’ [l i n k=’ , ’ [u r l] ’ , ’ [/ u r l] ’ , ’ [r e f ’ , ’ [c i t e ’ , ’ [t ab l e] ’ , ’ [/↘

→ t ab l e] ’ , ’&&’ , ’##’ , ’ [query=’ , ’ [/ query] ’ , ’ [header] ’ , ’ [/↘

→header] ’] ,

not (member(X, Keywords)) .

u r l (X) :−

not (number (X)) ,

re match (

208

’ ˆ [a−zA−Z] + : / / ([.] ? [a−zA−Z0−9 /−])∗$ ’ ,

X,

0 ,

,

L

) .

a n y s t r i n g (X) :−

not (number (X)) ,

re match (

” ˆ ([a−zA−Z0−9] ∗) $ | ˆ (\ ’ . ∗ \ ’) $” ,

X,

0 ,

,

L

) .

f l v a r (X) :−

not (number (X)) ,

re match (

” ˆ [?] [a−zA−Z0−9]∗ $” ,

X,

0 ,

,

L

) .

f l s t r i n g (X) :−

not (number (X)) ,

re match (

”ˆ f l [a−zA−Z]∗ $” ,

X,

0 ,

,

209

L

) .

any in t eg e r (X) :−

not (number (X)) ,

re match (’ ˆ[0−9]∗$ ’ , X, 0 , , L) .

any in t eg e r (X) :−

integer (X) .

% w i k i grammar

s emant i c w ik i page (

s emant i c w ik i page (X)) −−>

statements (X) .

s emant i c w ik i page (

s emant i c w ik i page (X, Y)) −−>

statements (X) ,

[’ |||−−o0o−−||| ’] ,

meta in fo (Y) .

statements (

statements ([X])) −−>

statement (X) .

statements (

statements ([X | Y])) −−>

statement (X) ,

statements (statements (Y)) .

statement (

210

statement (E)) −−>

f o r m a t t i n g e x p r e s s i o n (E) .

statement (

statement (D)) −−>

d i s p l a y o b j e c t (D) .

statement (

statement (I)) −−>

image (I) .

statement (

statement (C)) −−>

comment (C) .

statement (

statement (L)) −−>

hyper l ink (L) .

statement (

statement (V)) −−>

v a r i a b l e t e m p l a t e (V) .

statement (

statement (R)) −−>

r e f e r e n c e e n t r y (R) .

statement (

statement (C)) −−>

r e f e r e n c e c i t a t i o n (C) .

statement (

statement (T)) −−>

wtable (T) .

211

statement (

statement (Q)) −−>

query (Q) .

f o r m a t t i n g e x p r e s s i o n (

f o r m a t t i n g e x p r e s s i o n (Start , Statement , End)) −−>

f o r m a t t i n g e x p r e s s i o n s t a r t (Sta r t) ,

s tatements (Statement) ,

f o rmat t i ng exp r e s s i on end (End) ,

{

Star t = f o r m a t t i n g e x p r e s s i o n s t a r t (S) ,

End = fo rmat t i ng exp r e s s i on end (E) ,

c o r r e spond ing tag s (S , E)

} .

d i s p l a y o b j e c t (

d i s p l a y o b j e c t (Start , URL, End)) −−>

d i s p l a y o b j e c t s t a r t (Sta r t) ,

e x t e r n a l u r l (URL) ,

d i s p l a y o b j e c t e n d (End) .

d i s p l a y o b j e c t (

d i s p l a y o b j e c t (Start , Text , End)) −−>

d i s p l a y o b j e c t s t a r t (Sta r t) ,

statement (Text) ,

d i s p l a y o b j e c t e n d (End) .

image (

image (Start , URL, End)) −−>

image s ta r t (Sta r t) ,

e x t e r n a l u r l (URL) ,

image end (End) .

212

comment (

comment (Start , S , End)) −−>

comment start (Sta r t) ,

s tatements (S) ,

comment end (End) .

hyper l ink (

hyper l ink (Start , URL, Name, End)) −−>

h y p e r l i n k s t a r t (Sta r t) ,

i n t e r n a l u r l (URL) ,

[’> ’] ,

l ink name (Name) ,

hyper l ink end (End) .

hyper l ink (

hyper l ink (Start , URL, Name, End)) −−>

h y p e r l i n k s t a r t (Sta r t) ,

e x t e r n a l u r l (URL) ,

[’> ’] ,

l ink name (Name) ,

hyper l ink end (End) .

r e f e r e n c e e n t r y (

r e f e r e n c e e n t r y (Begin , CiteKey , End)) −−>

r e f e r e n c e e n t r y b e g i n (Begin) ,

c i t e k e y (CiteKey) ,

r e f e r e n c e e n t r y e n d (End) .

r e f e r e n c e c i t a t i o n (

r e f e r e n c e c i t a t i o n (Start , CiteKey , Name, End)) −−>

r e f e r e n c e c i t a t i o n s t a r t (Sta r t) ,

c i t e k e y (CiteKey) , [’> ’] ,

r e f e r e n c e c i t a t i o n n a m e (Name) ,

r e f e r e n c e c i t a t i o n e n d (End) .

213

wtable (

wtable (Start , Rows , End)) −−>

w t a b l e s t a r t (Sta r t) ,

wtable rows (Rows) ,

wtable end (End) .

wtable rows (

wtable rows ([Row])) −−>

wtable row (Row) .

wtable rows (

wtable rows ([Row | Rows])) −−>

wtable row (Row) ,

[’##’] ,

wtable rows (wtable rows (Rows)) .

wtable row (

wtable row (C e l l s)) −−>

w t a b l e c e l l s (C e l l s) .

w t a b l e c e l l s (

w t a b l e c e l l s ([Ce l l])) −−>

w t a b l e c e l l (Ce l l) .

w t a b l e c e l l s (

w t a b l e c e l l s ([Ce l l | C e l l s])) −−>

w t a b l e c e l l (Ce l l) ,

[’&&’] ,

w t a b l e c e l l s (w t a b l e c e l l s (C e l l s)) .

w t a b l e c e l l (

w t a b l e c e l l (Statements)) −−>

statements (Statements) .

214

% query and frame l o g i c grammar

query (

query (Start , STem, End)) −−>

q u e r y s t a r t (Sta r t) ,

semant ic template (STem) ,

query end (End) .

semant ic template (

semant ic template (VarStat)) −−>

statements (VarStat) .

f l o g i c q u e r y (

f l o g i c q u e r y (X)) −−>

f l o g i c r u l e b o d y (X) , [’ . ’] .

f l o g i c r u l e h e a d (

f l o g i c r u l e h e a d (X)) −−>

f l o g i c l i s t o f m o l e c u l e s (X) .

f l o g i c r u l e b o d y (

f l o g i c r u l e b o d y (B)) −−>

f l o g i c l i s t o f l i t e r a l s (B) .

f l o g i c l i s t o f m o l e c u l e s (

f l o g i c l i s t o f m o l e c u l e s ([X])) −−>

f l o g i c m o l e c u l e (X) .

f l o g i c l i s t o f m o l e c u l e s (

f l o g i c l i s t o f m o l e c u l e s ([X | Y])) −−>

f l o g i c m o l e c u l e (X) ,

[’ , ’] ,

f l o g i c l i s t o f m o l e c u l e s (f l o g i c l i s t o f m o l e c u l e s (Y)) .

215

f l o g i c l i s t o f l i t e r a l s (

f l o g i c l i s t o f l i t e r a l s ([X])) −−>

f l o g i c l i t e r a l (X) .

f l o g i c l i s t o f l i t e r a l s (

f l o g i c l i s t o f l i t e r a l s ([X | Y])) −−>

f l o g i c l i t e r a l (X) ,

[’ , ’] ,

f l o g i c l i s t o f l i t e r a l s (f l o g i c l i s t o f l i t e r a l s (Y)) .

f l o g i c l i t e r a l (

f l o g i c l i t e r a l (’ not ’ , X)) −−>

[’ not ’] ,

f l o g i c m o l e c u l e (X) .

f l o g i c l i t e r a l (

f l o g i c l i t e r a l (’ not ’ , X)) −−>

[’ not ’] ,

[’ (’] ,

f l o g i c m o l e c u l e (X) ,

[’) ’] .

f l o g i c l i t e r a l (

f l o g i c l i t e r a l (X)) −−>

f l o g i c m o l e c u l e (X) .

f l o g i c m o l e c u l e (

f l o g i c m o l e c u l e (X)) −−>

f l o g i c f m o l e c u l e (X) .

f l o g i c m o l e c u l e (

f l o g i c m o l e c u l e (X)) −−>

f l o g i c p m o l e c u l e (X) .

216

f l o g i c p m o l e c u l e (

f l o g i c p m o l e c u l e (P)) −−>

f l o g i c p r e d i c a t e (P) .

f l o g i c p m o l e c u l e (

f l o g i c p m o l e c u l e (P, L)) −−>

f l o g i c p r e d i c a t e (P) ,

[’ (’] ,

f l o g i c l i s t o f e x p r e s s i o n s (L) ,

[’) ’] .

f l o g i c p m o l e c u l e (

f l o g i c p m o l e c u l e (B)) −−>

f l o g i c b u i l d i n p r e d i c a t e (B) .

f l o g i c p m o l e c u l e (

f l o g i c p m o l e c u l e (B, L)) −−>

f l o g i c b u i l d i n p r e d i c a t e (B) ,

[’ (’] ,

f l o g i c l i s t o f e x p r e s s i o n s (L) ,

[’) ’] .

f l o g i c p m o l e c u l e (

f l o g i c p m o l e c u l e (A1 , O, A2)) −−>

f l o g i c a r i t h m e t i c e x p r e s s i o n (A1) ,

f l o g i c b u i l d i n i n f i x p r e d i c a t e (O) ,

f l o g i c a r i t h m e t i c e x p r e s s i o n (A2) .

f l o g i c l i s t o f e x p r e s s i o n s (

f l o g i c l i s t o f e x p r e s s i o n s ([E])) −−>

f l o g i c e x p r e s s i o n (E) .

f l o g i c l i s t o f e x p r e s s i o n s (

217

f l o g i c l i s t o f e x p r e s s i o n s ([E | R])) −−>

f l o g i c e x p r e s s i o n (E) ,

[’ , ’] ,

f l o g i c l i s t o f e x p r e s s i o n s (f l o g i c l i s t o f e x p r e s s i o n s (R)↘

→) .

f l o g i c e x p r e s s i o n (

f l o g i c e x p r e s s i o n (P)) −−>

f l o g i c p a t h e x p r e s s i o n (P) .

f l o g i c e x p r e s s i o n (

f l o g i c e x p r e s s i o n (F)) −−>

f l o g i c f m o l e c u l e (F) .

f l o g i c e x p r e s s i o n (

f l o g i c e x p r e s s i o n (A)) −−>

f l o g i c a g g r e g r a t e (A) .

f l o g i c a r i t h m e t i c e x p r e s s i o n (

f l o g i c a r i t h m e t i c e x p r e s s i o n (E)) −−>

f l o g i c e x p r e s s i o n (E) .

f l o g i c a r i t h m e t i c e x p r e s s i o n (

f l o g i c a r i t h m e t i c e x p r e s s i o n (A1 , O, A2)) −−>

f l o g i c a r i t h m e t i c e x p r e s s i o n (A1) ,

f l o g i c b u i l d i n o p e r a t o r (O) ,

f l o g i c a r i t h m e t i c e x p r e s s i o n (A2) .

f l o g i c a r i t h m e t i c e x p r e s s i o n (

f l o g i c a r i t h m e t i c e x p r e s s i o n (E)) −−>

[’ (’] ,

f l o g i c a r i t h m e t i c e x p r e s s i o n (E) ,

[’) ’] .

218

f l o g i c a g g r e g r a t e (

f l o g i c a g g r e g r a t e (Agg , AV, Q)) −−>

f l o g i c i d t e r m (Agg) ,

[’{ ’] ,

f l o g i c v a r i a b l e (AV) ,

[’ | ’] ,

f l o g i c l i s t o f l i t e r a l s ,

[’} ’] .

f l o g i c a g g r e g r a t e (

f l o g i c a g g r e g r a t e (Agg , AV, GV, Q)) −−>

f l o g i c i d t e r m (Agg) ,

[’{ ’] ,

f l o g i c v a r i a b l e (AV) ,

[’ [’] ,

f l o g i c l i s t o f v a r i a b l e s (GV) ,

[’] ’] ,

[’ | ’] ,

f l o g i c l i s t o f l i t e r a l s , [’} ’] .

f l o g i c f m o l e c u l e (

f l o g i c f m o l e c u l e (P, S)) −−>

f l o g i c p a t h e x p r e s s i o n (P) ,

f l o g i c s p e c i f i c a t i o n (S) .

f l o g i c p a t h e x p r e s s i o n (

f l o g i c p a t h e x p r e s s i o n (Id)) −−>

f l o g i c i d t e r m (Id) .

f l o g i c p a t h e x p r e s s i o n (

f l o g i c p a t h e x p r e s s i o n (E)) −−>

[’ (’] ,

f l o g i c e x p r e s s i o n (E) , [’) ’] .

219

f l o g i c p a t h e x p r e s s i o n (

f l o g i c p a t h e x p r e s s i o n (E, D, M)) −−>

f l o g i c p a t h e x p r e s s i o n (E) ,

f l o g i c d o t (D) ,

f l o g i c m e t h o d a p p l i c a t i o n (M) .

f l o g i c p a t h e x p r e s s i o n (

f l o g i c p a t h e x p r e s s i o n (F , D, M)) −−>

f l o g i c f m o l e c u l e (F) ,

f l o g i c d o t (D) ,

f l o g i c m e t h o d a p p l i c a t i o n (M) .

f l o g i c s p e c i f i c a t i o n (

f l o g i c s p e c i f i c a t i o n (I)) −−>

f l o g i c i s a s p e c i f i c a t i o n (I) .

f l o g i c s p e c i f i c a t i o n (

f l o g i c s p e c i f i c a t i o n (I)) −−>

f l o g i c i s a s p e c i f i c a t i o n (I) ,

[’ [’] ,

[’] ’] .

f l o g i c s p e c i f i c a t i o n (

f l o g i c s p e c i f i c a t i o n (I , M)) −−>

f l o g i c i s a s p e c i f i c a t i o n (I) ,

[’ [’] ,

f l o g i c l i s t o f m e t h o d s (M) ,

[’] ’] .

f l o g i c s p e c i f i c a t i o n (

f l o g i c s p e c i f i c a t i o n ([])) −−>

[’ [’] ,

[’] ’] .

220

f l o g i c s p e c i f i c a t i o n (

f l o g i c s p e c i f i c a t i o n (M)) −−>

[’ [’] ,

f l o g i c l i s t o f m e t h o d s (M) ,

[’] ’] .

f l o g i c i s a s p e c i f i c a t i o n (

f l o g i c i s a s p e c i f i c a t i o n (S , I)) −−>

f l o g i c i s a s y m b o l (S) ,

f l o g i c i d t e r m (I) .

f l o g i c i s a s p e c i f i c a t i o n (

f l o g i c i s a s p e c i f i c a t i o n (S , E)) −−>

f l o g i c i s a s y m b o l (S) ,

[’ (’] ,

f l o g i c e x p r e s s i o n (E) ,

[’) ’] .

f l o g i c m e t h o d a p p l i c a t i o n (

f l o g i c m e t h o d a p p l i c a t i o n (I)) −−>

f l o g i c i d t e r m (I) .

f l o g i c m e t h o d a p p l i c a t i o n (

f l o g i c m e t h o d a p p l i c a t i o n (I , L)) −−>

f l o g i c i d t e r m (I) ,

[’ (’] ,

f l o g i c l i s t o f e x p r e s s i o n s (L) ,

[’) ’] . % f l o r a 2 doesn ’ t use the ’@’ s i g n to s e p a r a t e ↘

→methods from t h e i r arguments s i n c e wi th HiLog e x t e n s i o n s ↘

→ i t became redundant (f loraManual , p . 14)

f l o g i c m e t h o d a p p l i c a t i o n (

f l o g i c m e t h o d a p p l i c a t i o n (E)) −−>

[’ (’] ,

221

f l o g i c e x p r e s s i o n (E) ,

[’) ’] .

f l o g i c m e t h o d a p p l i c a t i o n (

f l o g i c m e t h o d a p p l i c a t i o n (E, L)) −−>

[’ (’] ,

f l o g i c e x p r e s s i o n (E) ,

[’) ’] ,

[’ (’] ,

f l o g i c l i s t o f e x p r e s s i o n s (L) ,

[’) ’] .

f l o g i c l i s t o f m e t h o d s (

f l o g i c l i s t o f m e t h o d s ([MS])) −−>

f l o g i c m e t h o d s p e c i f i c a t i o n (MS) .

f l o g i c l i s t o f m e t h o d s (

f l o g i c l i s t o f m e t h o d s ([MS | L])) −−>

f l o g i c m e t h o d s p e c i f i c a t i o n (MS) ,

[’ , ’] ,

f l o g i c l i s t o f m e t h o d s (f l o g i c l i s t o f m e t h o d s (L)) .

f l o g i c m e t h o d s p e c i f i c a t i o n (

f l o g i c m e t h o d s p e c i f i c a t i o n (Ma, Mr)) −−>

f l o g i c m e t h o d a p p l i c a t i o n (Ma) ,

f l o g i c m e t h o d r e s u l t (Mr) .

f l o g i c m e t h o d s p e c i f i c a t i o n (

f l o g i c m e t h o d s p e c i f i c a t i o n (’ not ’ , Ma, Mr)) −−>

[’ not ’] ,

[’ (’] ,

f l o g i c m e t h o d a p p l i c a t i o n (Ma) ,

f l o g i c m e t h o d r e s u l t (Mr) ,

[’) ’] .

222

f l o g i c m e t h o d r e s u l t (

f l o g i c m e t h o d r e s u l t (Arr , E)) −−>

f l og i c method ar row1 (Arr) ,

f l o g i c e x p r e s s i o n (E) .

f l o g i c m e t h o d r e s u l t (

f l o g i c m e t h o d r e s u l t (Arr , E)) −−>

f l og i c method ar row1 (Arr) ,

[’{ ’] ,

f l o g i c l i s t o f e x p r e s s i o n s (E) ,

[’} ’] .

f l o g i c m e t h o d r e s u l t (

f l o g i c m e t h o d r e s u l t (Arr , E)) −−>

f l og i c method ar row2 (Arr) ,

f l o g i c e x p r e s s i o n (E) .

f l o g i c m e t h o d r e s u l t (

f l o g i c m e t h o d r e s u l t (Arr , E)) −−>

f l og i c method ar row2 (Arr) ,

[’{ ’] ,

f l o g i c l i s t o f e x p r e s s i o n s (E) ,

[’} ’] .

f l o g i c i d t e r m (

f l o g i c i d t e r m (B)) −−>

f l o g i c b a s i c i d t e r m (B) .

f l o g i c i d t e r m (

f l o g i c i d t e r m (F, E)) −−>

f l o g i c f u n c t o r (F) ,

[’ (’] ,

f l o g i c l i s t o f e x p r e s s i o n s (E) ,

223

[’) ’] .

f l o g i c b a s i c i d t e r m (

f l o g i c b a s i c i d t e r m (F)) −−>

f l o g i c f u n c t o r (F) .

f l o g i c b a s i c i d t e r m (

f l o g i c b a s i c i d t e r m (V)) −−>

f l o g i c v a r i a b l e (V) .

f l o g i c b a s i c i d t e r m (

f l o g i c b a s i c i d t e r m (S)) −−>

f l o g i c s t r i n g (S) .

f l o g i c b a s i c i d t e r m (

f l o g i c b a s i c i d t e r m (I)) −−>

f l o g i c i n t e g e r (I) .

f l o g i c l i s t o f v a r i a b l e s (

f l o g i c l i s t o f v a r i a b l e s ([X])) −−>

f l o g i c v a r i a b l e (X) .

f l o g i c l i s t o f v a r i a b l e s (

f l o g i c l i s t o f v a r i a b l e s ([X | Y])) −−>

f l o g i c v a r i a b l e (X) ,

[’ , ’] ,

f l o g i c l i s t o f v a r i a b l e s (f l o g i c l i s t o f v a r i a b l e s (Y)) .

% meta i n f o grammar

meta in fo (

meta in fo ([T])) −−>

a t t r i b u t e v a l u e t a g (T) .

224

meta in fo (

meta in fo ([L])) −−>

hyper l ink (L) .

meta in fo (

meta in fo ([T | R])) −−>

a t t r i b u t e v a l u e t a g (T) ,

meta in fo (meta in fo (R)) .

meta in fo (

meta in fo ([L | R])) −−>

hyper l ink (L) ,

meta in fo (meta in fo (R)) .

a t t r i b u t e v a l u e t a g (

a t t r i b u t e v a l u e t a g (A, V)) −−>

a t t r i b u t e (A) ,

[’ : ’] ,

va lue (V) .

a t t r i b u t e v a l u e t a g (

a t t r i b u t e v a l u e t a g (c l a s s , V)) −−>

[c l a s s] ,

[’ : ’] ,

f l o g i c i d t e r m (V) .

a t t r i b u t e v a l u e t a g (

a t t r i b u t e v a l u e t a g (subc la s s , V)) −−>

[s u b c l a s s] ,

[’ : ’] ,

f l o g i c i d t e r m (V) .

a t t r i b u t e v a l u e t a g (

a t t r i b u t e v a l u e t a g (subc la s s , E)) −−>

225

[s u b c l a s s] ,

[’ : ’] ,

[’ (’] ,

f l o g i c e x p r e s s i o n (E) ,

[’) ’] .

a t t r i b u t e v a l u e t a g (

a t t r i b u t e v a l u e t a g (ru le , H, I , B)) −−>

[r u l e] ,

[’ : ’] ,

f l o g i c r u l e h e a d (H) ,

f l o g i c i m p l i c a t i o n s y m b o l (I) ,

f l o g i c r u l e b o d y (B) .

a t t r i b u t e (

a t t r i b u t e (A)) −−>

f l o g i c i d t e r m (A) .

va lue (

va lue (V)) −−>

f l o g i c i d t e r m (V) .

i n t e r n a l u r l (

i n t e r n a l u r l (U)) −−>

f l o g i c i d t e r m (U) .

e x t e r n a l u r l (

e x t e r n a l u r l (U)) −−>

f l o g i c i d t e r m (U) .

% pars ing & a u x i l l i a r y p r e d i c a t e s

ppr int (Term) :−

term to atom (Term , Atom) ,

226

s t r c a t (’ python ppr int . py ’ ’ ’ , Atom, Part) ,

s t r c a t (Part , ’ ’ ’ ’ , Command) ,

s h e l l (Command) .

read code (L i s t) :−

s h e l l t o l i s t (’ python readcode . py ’ , [L i s t] ,) .

parse :−

read code (X) ,

s emant i c w ik i page (T, X, []) ,

ppr int (T) .

p a r s e t :−

read code (X) ,

trace ,

s emant i c w ik i page (T, X, []) ,

notrace ,

ppr int (T) .

?− parse .

227

Appendix C

Amalgamated Annotated Semantic

Wiki Parser for niKlas in XSB Prolog

The presented BNF grammar (chapter 7) was implemented in XSB Prolog to automati-

cally construct parse trees as shown in the following listing.

:− import s h e l l /1 from s h e l l .

:− import s t r c a t /2 ,

term to atom /2 from s t r i n g .

:− import re match /5 ,

r e s u b s t r i n g /4 from regmatch .

:− import member/2 from b a s i c s .

:− op(100 , yfx , ’@ ’) .

:− au to tab l e .

% l e x i c a l s t r u c t u r e

statement (

t ext (X)) −−>

[X] ,

{

any s t r i ng no t i n keyword s (X) ,

not (f l v a r (X))

} .

228

statement (

t ext (f l o g i c v a r i a b l e (X))) −−>

[X] ,

{ f l v a r (X) } .

i n t e r n a l u r l (

i n t e r n a l u r l (X)) −−>

[X] ,

{

any s t r i ng no t i n keyword s (X) ,

not (u r l (X)) ,

not (f l v a r (X))

} .

i n t e r n a l u r l (

i n t e r n a l u r l (f l o g i c v a r i a b l e (X))) −−>

[X] ,

{ f l v a r (X) } .

e x t e r n a l u r l (

e x t e r n a l u r l (X)) −−>

[X] ,

{

u r l (X) ,

not (f l v a r (X))

} .

e x t e r n a l u r l (

e x t e r n a l u r l (f l o g i c v a r i a b l e (X))) −−>

[X] ,

{ f l v a r (X) } .

l ink name (

l ink name (X)) −−>

229

[X] ,

{

any s t r i ng no t i n keyword s (X) ,

not (f l v a r (X))

} .

l ink name (

l ink name (f l o g i c v a r i a b l e (X))) −−>

[X] ,

{ f l v a r (X) } .

r e f e r e n c e c i t a t i o n n a m e (

r e f e r e n c e c i t a t i o n n a m e (X)) −−>

[X] ,

{

any s t r i ng no t i n keyword s (X) ,

not (f l v a r (X))

} .

r e f e r e n c e c i t a t i o n n a m e (

r e f e r e n c e c i t a t i o n n a m e (

f l o g i c v a r i a b l e (X))) −−>

[X] ,

{ f l v a r (X) } .

f o r m a t t i n g e x p r e s s i o n s t a r t (

f o r m a t t i n g e x p r e s s i o n s t a r t (’ [h1] ’)) −−>

[’ [h1] ’] .

f o rmat t i ng exp r e s s i on end (

f o rmat t i ng exp r e s s i on end (’ [/ h1] ’)) −−>

[’ [/ h1] ’] .

f o r m a t t i n g e x p r e s s i o n s t a r t (

230

f o r m a t t i n g e x p r e s s i o n s t a r t (’ [h2] ’)) −−>

[’ [h2] ’] .

f o rmat t i ng exp r e s s i on end (

f o rmat t i ng exp r e s s i on end (’ [/ h2] ’)) −−>

[’ [/ h2] ’] .

f o r m a t t i n g e x p r e s s i o n s t a r t (

f o r m a t t i n g e x p r e s s i o n s t a r t (’ [h3] ’)) −−>

[’ [h3] ’] .

f o rmat t i ng exp r e s s i on end (

f o rmat t i ng exp r e s s i on end (’ [/ h3] ’)) −−>

[’ [/ h3] ’] .

f o r m a t t i n g e x p r e s s i o n s t a r t (

f o r m a t t i n g e x p r e s s i o n s t a r t (’ [j] ’)) −−>

[’ [j] ’] .

f o rmat t i ng exp r e s s i on end (

f o rmat t i ng exp r e s s i on end (’ [/ j] ’)) −−>

[’ [/ j] ’] .

f o r m a t t i n g e x p r e s s i o n s t a r t (

f o r m a t t i n g e x p r e s s i o n s t a r t (’ [b] ’)) −−>

[’ [b] ’] .

f o rmat t i ng exp r e s s i on end (

f o rmat t i ng exp r e s s i on end (’ [/ b] ’)) −−>

[’ [/ b] ’] .

f o r m a t t i n g e x p r e s s i o n s t a r t (

f o r m a t t i n g e x p r e s s i o n s t a r t (’ [i] ’)) −−>

[’ [i] ’] .

231

f o rmat t i ng exp r e s s i on end (

f o rmat t i ng exp r e s s i on end (’ [/ i] ’)) −−>

[’ [/ i] ’] .

f o r m a t t i n g e x p r e s s i o n s t a r t (

f o r m a t t i n g e x p r e s s i o n s t a r t (’ [c en t e r] ’)) −−>

[’ [c en t e r] ’] .

f o rmat t i ng exp r e s s i on end (

f o rmat t i ng exp r e s s i on end (’ [/ c en t e r] ’)) −−>

[’ [/ c en t e r] ’] .

f o r m a t t i n g e x p r e s s i o n s t a r t (

f o r m a t t i n g e x p r e s s i o n s t a r t (’ [code] ’)) −−>

[’ [code] ’] .

f o rmat t i ng exp r e s s i on end (

f o rmat t i ng exp r e s s i on end (’ [/ code] ’)) −−>

[’ [/ code] ’] .

f o r m a t t i n g e x p r e s s i o n s t a r t (

f o r m a t t i n g e x p r e s s i o n s t a r t (’ [quote] ’)) −−>

[’ [quote] ’] .

f o rmat t i ng exp r e s s i on end (

f o rmat t i ng exp r e s s i on end (’ [/ quote] ’)) −−>

[’ [/ quote] ’] .

f o r m a t t i n g e x p r e s s i o n s t a r t (

f o r m a t t i n g e x p r e s s i o n s t a r t (’ [header] ’)) −−>

[’ [header] ’] .

f o rmat t i ng exp r e s s i on end (

232

f o rmat t i ng exp r e s s i on end (’ [/ header] ’)) −−>

[’ [/ header] ’] .

d i s p l a y o b j e c t s t a r t (

d i s p l a y o b j e c t s t a r t (’ [tube] ’)) −−>

[’ [tube] ’] .

d i s p l a y o b j e c t e n d (

d i s p l a y o b j e c t e n d (’ [/ tube] ’)) −−>

[’ [/ tube] ’] .

image s ta r t (

image s ta r t (’ [img=’)) −−>

[’ [img=’] .

image end (

image end (’] ’)) −−>

[’] ’] .

comment start (

comment start (’ [comment] ’)) −−>

[’ [comment] ’] .

comment end (

comment end (’ [/ comment] ’)) −−>

[’ [/ comment] ’] .

h y p e r l i n k s t a r t (

h y p e r l i n k s t a r t (’ [l i n k=’)) −−>

[’ [l i n k=’] .

hyper l ink end (

hyper l ink end (’] ’)) −−>

[’] ’] .

233

v a r i a b l e t e m p l a t e (

v a r i a b l e t e m p l a t e (’ [o u l i n e] ’)) −−>

[’ [o u t l i n e] ’] .

r e f e r e n c e e n t r y b e g i n (

r e f e r e n c e e n t r y b e g i n (’ [r e f=’)) −−>

[’ [r e f= ’] .

r e f e r e n c e e n t r y e n d (

r e f e r e n c e e n t r y e n d (’] ’)) −−>

[’] ’] .

c i t e k e y (

c i t e k e y (X)) −−> [X] ,

{ any s t r i ng no t i n keyword s (X) } .

r e f e r e n c e c i t a t i o n s t a r t (

r e f e r e n c e c i t a t i o n s t a r t (’ [c i t e=’)) −−>

[’ [c i t e=’] .

r e f e r e n c e c i t a t i o n e n d (

r e f e r e n c e c i t a t i o n e n d (’] ’)) −−>

[’] ’] .

w t a b l e s t a r t (

w t a b l e s t a r t (’ [t ab l e] ’)) −−>

[’ [t ab l e] ’] .

wtable end (

wtable end (’ [/ t ab l e] ’)) −−>

[’ [/ t ab l e] ’] .

q u e r y s t a r t (

234

q u e r y s t a r t (’ [query=’ , FLQuery)) −−>

[’ [query=’] , f l o g i c q u e r y (FLQuery) , [’] ’] .

query end (

query end (’ [/ query] ’)) −−>

[’ [/ query] ’] .

f l o g i c i s a s y m b o l (

f l o g i c i s a s y m b o l (’ : ’)) −−>

[’ : ’] .

f l o g i c i s a s y m b o l (

f l o g i c i s a s y m b o l (’ : : ’)) −−>

[’ : : ’] .

f l o g i c i m p l i c a t i o n s y m b o l (

f l o g i c i m p l i c a t i o n s y m b o l (’ :− ’)) −−>

[’ :− ’] .

f l o g i c q u e r y s y m b o l (

f l o g i c q u e r y s y m b o l (’?− ’)) −−>

[’?− ’] .

f l og i c method ar row1 (

f l og i c method ar row1 (’−> ’)) −−>

[’−> ’] .

f l og i c method ar row1 (

f l og i c method ar row1 (’∗−> ’)) −−>

[’∗−> ’] .

f l og i c method ar row2 (

f l og i c method ar row2 (’=> ’)) −−>

[’=> ’] .

235

f l og i c method ar row2 (

f l og i c method ar row2 (’∗=> ’)) −−>

[’∗=> ’] .

f l o g i c d o t (

f l o g i c d o t (’ . ’)) −−>

[’ . ’] .

f l o g i c d o t (

f l o g i c d o t (’ . . ’)) −−>

[’ . . ’] .

f l o g i c d o t (

f l o g i c d o t (’ ! ’)) −−>

[’ ! ’] .

f l o g i c p r e d i c a t e (

f l o g i c p r e d i c a t e (X)) −−>

[X] ,

{ a n y s t r i n g (X) } .

f l o g i c p r e d i c a t e (

f l o g i c p r e d i c a t e (f l o g i c v a r i a b l e (X))) −−>

[X] ,

{ f l v a r (X) } . % HiLog e x t e n s i o n

f l o g i c b u i l d i n p r e d i c a t e (

f l o g i c b u i l d i n p r e d i c a t e (X)) −−>

[X] ,

{ f l s t r i n g (X) } .

f l o g i c b u i l d i n i n f i x p r e d i c a t e (

236

f l o g i c b u i l d i n i n f i x p r e d i c a t e (’< ’)) −−>

[’< ’] .

f l o g i c b u i l d i n i n f i x p r e d i c a t e (

f l o g i c b u i l d i n i n f i x p r e d i c a t e (’> ’)) −−>

[’> ’] .

f l o g i c b u i l d i n i n f i x p r e d i c a t e (

f l o g i c b u i l d i n i n f i x p r e d i c a t e (’=’)) −−>

[’= ’] .

f l o g i c b u i l d i n i n f i x p r e d i c a t e (

f l o g i c b u i l d i n i n f i x p r e d i c a t e (’=< ’)) −−>

[’=< ’] .

f l o g i c b u i l d i n i n f i x p r e d i c a t e (

f l o g i c b u i l d i n i n f i x p r e d i c a t e (’>=’)) −−>

[’>=’] .

f l o g i c b u i l d i n o p e r a t o r (

f l o g i c b u i l d i n o p e r a t o r (’+ ’)) −−>

[’+ ’] .

f l o g i c b u i l d i n o p e r a t o r (

f l o g i c b u i l d i n o p e r a t o r (’− ’)) −−>

[’− ’] .

f l o g i c b u i l d i n o p e r a t o r (

f l o g i c b u i l d i n o p e r a t o r (’∗ ’)) −−>

[’∗ ’] .

f l o g i c b u i l d i n o p e r a t o r (

f l o g i c b u i l d i n o p e r a t o r (’ / ’)) −−>

[’ / ’] .

237

f l o g i c f u n c t o r (

f l o g i c f u n c t o r (X)) −−>

[X] ,

{ a n y s t r i n g (X) } .

f l o g i c f u n c t o r (

f l o g i c f u n c t o r (f l o g i c v a r i a b l e (X))) −−>

[X] ,

{ f l v a r (X) } . % HiLog e x t e n s i o n

f l o g i c v a r i a b l e (

f l o g i c v a r i a b l e (X)) −−>

[X] ,

{ f l v a r (X) } .

f l o g i c s t r i n g (

f l o g i c s t r i n g (X)) −−>

[X] ,

{ a n y s t r i n g (X) } .

f l o g i c i n t e g e r (

f l o g i c i n t e g e r (X)) −−>

[X] ,

{ any in t eg e r (X) } .

p r o b a b i l i t y s t a t e m e n t s t a r t (

p r o b a b i l i t y s t a t e m e n t s t a r t (’ [p r o b a b i l i t y=’)) −−>

[’ [p r o b a b i l i t y=’] .

p r obab i l i t y s t a t ement end (

p robab i l i t y s t a t ement end (’] ’)) −−>

[’] ’] .

238

p r o b a b i l i t y v a l u e (

p r o b a b i l i t y v a l u e (X)) −−>

[X] ,

{ X > 0 , X < 1 } .

amalgamat ion statement start (

amalgamat ion statement start (’ [amalgamate=’)) −−>

[’ [amalgamate=’] .

amalgamation statement end (

amalgamation statement end (’] ’)) −−>

[’] ’] .

knowledge base (

knowledge base (X)) −−>

[X] ,

{ a n y s t r i n g (X) } .

% regex & aux

co r r e spond ing tag s (X, Y) :−

re match (

’ \ [(. ∗) \] ’ ,

X,

0 ,

,

[match (,) , match (B1 , E1)]

) ,

re match (

’ \ [[/] (. ∗) \] ’ ,

Y,

0 ,

,

[match (,) , match (B2 , E2)]

239

) ,

r e s u b s t r i n g (X, B1 , E1 , R1) ,

r e s u b s t r i n g (Y, B2 , E2 , R2) ,

R1 = R2 .

any s t r i ng no t i n keyword s (X) :−

Keywords = [’ [h1] ’ , ’ [/ h1] ’ , ’ [h2] ’ , ’ [/ h2] ’ , ’ [h3] ’ , ’ [/ h3]↘

→ ’ , ’ [j] ’ , ’ [/ j] ’ , ’ [b] ’ , ’ [/ b] ’ , ’ [i] ’ , ’ [/ i] ’ , ’ [c en t e r] ’ , ↘

→ ’ [/ c en te r] ’ , ’ [code] ’ , ’ [/ code] ’ , ’ [quote] ’ , ’ [/ quote] ’ , ’ [↘

→tube] ’ , ’ [/ tube] ’ , ’ [img=’ , ’] ’ , ’ [comment] ’ , ’ [/ comment] ’ , ↘

→ ’ [l i n k=’ , ’ [u r l] ’ , ’ [/ u r l] ’ , ’ [r e f ’ , ’ [c i t e ’ , ’ [t ab l e] ’ , ’ [/↘

→ t ab l e] ’ , ’&&’ , ’##’ , ’ [query=’ , ’ [/ query] ’ , ’ [header] ’ , ’ [/↘

→header] ’] ,

not (member(X, Keywords)) .

u r l (X) :−

not (number (X)) ,

re match (

’ ˆ [a−zA−Z] + : / / ([.] ? [a−zA−Z0−9 /−])∗$ ’ ,

X,

0 ,

,

L

) .

a n y s t r i n g (X) :−

not (number (X)) ,

re match (

” ˆ ([a−zA−Z0−9] ∗) $ | ˆ (\ ’ . ∗ \ ’) $” ,

X,

0 ,

,

L

) .

240

f l v a r (X) :−

not (number (X)) ,

re match (

” ˆ [?] [a−zA−Z0−9]∗ $” ,

X,

0 ,

,

L

) .

f l s t r i n g (X) :−

not (number (X)) ,

re match (

”ˆ f l [a−zA−Z]∗ $” ,

X,

0 ,

,

L

) .

any in t eg e r (X) :−

not (number (X)) ,

re match (

’ ˆ[0−9]∗$ ’ ,

X,

0 ,

,

L

) .

any in t eg e r (X) :−

integer (X) .

241

% w i k i grammar

a u t o p o i e s i s f a c i l i t a t i n g s e m a n t i c w i k i p a g e (

a u t o p o i e s i s f a c i l i t a t i n g s e m a n t i c w i k i p a g e (X)) −−>

statements (X) .

a u t o p o i e s i s f a c i l i t a t i n g s e m a n t i c w i k i p a g e (

a u t o p o i e s i s f a c i l i t a t i n g s e m a n t i c w i k i p a g e (X, Y)) −−>

statements (X) ,

[’ |||−−o0o−−||| ’] ,

meta in fo (Y) .

statements (

statements ([X])) −−>

statement (X) .

statements (

statements ([X | Y])) −−>

statement (X) ,

statements (statements (Y)) .

statement (

statement (E)) −−>

f o r m a t t i n g e x p r e s s i o n (E) .

statement (

statement (D)) −−>

d i s p l a y o b j e c t (D) .

statement (

statement (I)) −−>

image (I) .

242

statement (

statement (C)) −−>

comment (C) .

statement (

statement (L)) −−>

hyper l ink (L) .

statement (

statement (V)) −−>

v a r i a b l e t e m p l a t e (V) .

statement (

statement (R)) −−>

r e f e r e n c e e n t r y (R) .

statement (

statement (C)) −−>

r e f e r e n c e c i t a t i o n (C) .

statement (

statement (T)) −−>

wtable (T) .

statement (

statement (Q)) −−>

query (Q) .

f o r m a t t i n g e x p r e s s i o n (

f o r m a t t i n g e x p r e s s i o n (Start , Statement , End)) −−>

f o r m a t t i n g e x p r e s s i o n s t a r t (Sta r t) ,

s tatements (Statement) ,

f o rmat t i ng exp r e s s i on end (End) ,

243

{

Star t = f o r m a t t i n g e x p r e s s i o n s t a r t (S) ,

End = fo rmat t i ng exp r e s s i on end (E) ,

c o r r e spond ing tag s (S , E)

} .

d i s p l a y o b j e c t (

d i s p l a y o b j e c t (Start , URL, End)) −−>

d i s p l a y o b j e c t s t a r t (Sta r t) ,

e x t e r n a l u r l (URL) ,

d i s p l a y o b j e c t e n d (End) .

d i s p l a y o b j e c t (

d i s p l a y o b j e c t (Start , Text , End)) −−>

d i s p l a y o b j e c t s t a r t (Sta r t) ,

statement (Text) ,

d i s p l a y o b j e c t e n d (End) .

image (

image (Start , URL, End)) −−>

image s ta r t (Sta r t) ,

e x t e r n a l u r l (URL) ,

image end (End) .

comment (

comment (Start , S , End)) −−>

comment start (Sta r t) ,

s tatements (S) ,

comment end (End) .

hyper l ink (

hyper l ink (Start , URL, Name, End)) −−>

h y p e r l i n k s t a r t (Sta r t) ,

i n t e r n a l u r l (URL) ,

244

[’> ’] ,

l ink name (Name) ,

hyper l ink end (End) .

hyper l ink (

hyper l ink (Start , URL, Name, End)) −−>

h y p e r l i n k s t a r t (Sta r t) ,

e x t e r n a l u r l (URL) ,

[’> ’] ,

l ink name (Name) ,

hyper l ink end (End) .

r e f e r e n c e e n t r y (

r e f e r e n c e e n t r y (Begin , CiteKey , End)) −−>

r e f e r e n c e e n t r y b e g i n (Begin) ,

c i t e k e y (CiteKey) ,

r e f e r e n c e e n t r y e n d (End) .

r e f e r e n c e c i t a t i o n (

r e f e r e n c e c i t a t i o n (Start , CiteKey , Name, End)) −−>

r e f e r e n c e c i t a t i o n s t a r t (Sta r t) ,

c i t e k e y (CiteKey) ,

[’> ’] ,

r e f e r e n c e c i t a t i o n n a m e (Name) ,

r e f e r e n c e c i t a t i o n e n d (End) .

wtable (

wtable (Start , Rows , End)) −−>

w t a b l e s t a r t (Sta r t) ,

wtable rows (Rows) ,

wtable end (End) .

wtable rows (

wtable rows ([Row])) −−>

245

wtable row (Row) .

wtable rows (

wtable rows ([Row | Rows])) −−>

wtable row (Row) ,

[’##’] ,

wtable rows (wtable rows (Rows)) .

wtable row (

wtable row (C e l l s)) −−>

w t a b l e c e l l s (C e l l s) .

w t a b l e c e l l s (

w t a b l e c e l l s ([Ce l l])) −−>

w t a b l e c e l l (Ce l l) .

w t a b l e c e l l s (

w t a b l e c e l l s ([Ce l l | C e l l s])) −−>

w t a b l e c e l l (Ce l l) ,

[’&&’] ,

w t a b l e c e l l s (w t a b l e c e l l s (C e l l s)) .

w t a b l e c e l l (

w t a b l e c e l l (Statements)) −−>

statements (Statements) .

% query and frame l o g i c grammar

query (

query (Start , STem, End)) −−>

q u e r y s t a r t (Sta r t) ,

semant ic template (STem) ,

query end (End) .

246

query (

query (Start , PS , STem, End)) −−>

q u e r y s t a r t (Sta r t) ,

p r o b a b i l i t y s t a t e m e n t (PS) ,

semant ic template (STem) ,

query end (End) .

query (

query (Start , PS , AmS, STem, End)) −−>

q u e r y s t a r t (Sta r t) ,

p r o b a b i l i t y s t a t e m e n t (PS) ,

amalgamation statement (AmS) ,

semant ic template (STem) ,

query end (End) .

query (

query (Start , AmS, STem, End)) −−>

q u e r y s t a r t (Sta r t) ,

amalgamation statement (AmS) ,

semant ic template (STem) ,

query end (End) .

semant ic template (

semant ic template (VarStat)) −−>

statements (VarStat) .

p r o b a b i l i t y s t a t e m e n t (

p r o b a b i l i t y s t a t e m e n t (Start , Op, Val , End)) −−>

p r o b a b i l i t y s t a t e m e n t s t a r t (Sta r t) ,

f l o g i c b u i l d i n i n f i x p r e d i c a t e (Op) ,

p r o b a b i l i t y v a l u e (Val) ,

p r obab i l i t y s t a t ement end (End) .

amalgamation statement (

247

amalgamation statement (Start , KB, End)) −−>

amalgamat ion statement start (Sta r t) ,

knowledge bases (KB) ,

amalgamation statement end (End) .

knowledge bases (

knowledge bases ([KB])) −−>

knowledge base (KB) .

knowledge bases (

knowledge bases ([KB | KBs])) −−>

knowledge base (KB) ,

[’&&’] ,

knowledge bases (knowledge bases (KBs)) .

f l o g i c q u e r y (

f l o g i c q u e r y (X)) −−>

f l o g i c r u l e b o d y (X) ,

[’ . ’] .

f l o g i c r u l e h e a d (

f l o g i c r u l e h e a d (X)) −−>

f l o g i c l i s t o f m o l e c u l e s (X) .

f l o g i c r u l e b o d y (

f l o g i c r u l e b o d y (B)) −−>

f l o g i c l i s t o f l i t e r a l s (B) .

f l o g i c l i s t o f m o l e c u l e s (

f l o g i c l i s t o f m o l e c u l e s ([X])) −−>

f l o g i c m o l e c u l e (X) .

f l o g i c l i s t o f m o l e c u l e s (

f l o g i c l i s t o f m o l e c u l e s ([X | Y])) −−>

248

f l o g i c m o l e c u l e (X) ,

[’ , ’] ,

f l o g i c l i s t o f m o l e c u l e s (f l o g i c l i s t o f m o l e c u l e s (Y)) .

f l o g i c l i s t o f l i t e r a l s (

f l o g i c l i s t o f l i t e r a l s ([X])) −−>

f l o g i c l i t e r a l (X) .

f l o g i c l i s t o f l i t e r a l s (

f l o g i c l i s t o f l i t e r a l s ([X | Y])) −−>

f l o g i c l i t e r a l (X) ,

[’ , ’] ,

f l o g i c l i s t o f l i t e r a l s (f l o g i c l i s t o f l i t e r a l s (Y)) .

f l o g i c l i t e r a l (

f l o g i c l i t e r a l (’ not ’ , X)) −−>

[’ not ’] ,

f l o g i c m o l e c u l e (X) .

f l o g i c l i t e r a l (

f l o g i c l i t e r a l (’ not ’ , X)) −−>

[’ not ’] ,

[’ (’] ,

f l o g i c m o l e c u l e (X) , [’) ’] .

f l o g i c l i t e r a l (

f l o g i c l i t e r a l (X)) −−>

f l o g i c m o l e c u l e (X) .

f l o g i c m o l e c u l e (

f l o g i c m o l e c u l e (X)) −−>

f l o g i c f m o l e c u l e (X) .

249

f l o g i c m o l e c u l e (

f l o g i c m o l e c u l e (X)) −−>

f l o g i c p m o l e c u l e (X) .

f l o g i c p m o l e c u l e (

f l o g i c p m o l e c u l e (P)) −−>

f l o g i c p r e d i c a t e (P) .

f l o g i c p m o l e c u l e (

f l o g i c p m o l e c u l e (P, L)) −−>

f l o g i c p r e d i c a t e (P) ,

[’ (’] ,

f l o g i c l i s t o f e x p r e s s i o n s (L) ,

[’) ’] .

f l o g i c p m o l e c u l e (

f l o g i c p m o l e c u l e (B)) −−>

f l o g i c b u i l d i n p r e d i c a t e (B) .

f l o g i c p m o l e c u l e (

f l o g i c p m o l e c u l e (B, L)) −−>

f l o g i c b u i l d i n p r e d i c a t e (B) ,

[’ (’] ,

f l o g i c l i s t o f e x p r e s s i o n s (L) ,

[’) ’] .

f l o g i c p m o l e c u l e (

f l o g i c p m o l e c u l e (A1 , O, A2)) −−>

f l o g i c a r i t h m e t i c e x p r e s s i o n (A1) ,

f l o g i c b u i l d i n i n f i x p r e d i c a t e (O) ,

f l o g i c a r i t h m e t i c e x p r e s s i o n (A2) .

f l o g i c l i s t o f e x p r e s s i o n s (

f l o g i c l i s t o f e x p r e s s i o n s ([E])) −−>

250

f l o g i c e x p r e s s i o n (E) .

f l o g i c l i s t o f e x p r e s s i o n s (

f l o g i c l i s t o f e x p r e s s i o n s ([E | R])) −−>

f l o g i c e x p r e s s i o n (E) ,

[’ , ’] ,

f l o g i c l i s t o f e x p r e s s i o n s (

f l o g i c l i s t o f e x p r e s s i o n s (R)) .

f l o g i c e x p r e s s i o n (

f l o g i c e x p r e s s i o n (P)) −−>

f l o g i c p a t h e x p r e s s i o n (P) .

f l o g i c e x p r e s s i o n (

f l o g i c e x p r e s s i o n (F)) −−>

f l o g i c f m o l e c u l e (F) .

f l o g i c e x p r e s s i o n (

f l o g i c e x p r e s s i o n (A)) −−>

f l o g i c a g g r e g r a t e (A) .

f l o g i c a r i t h m e t i c e x p r e s s i o n (

f l o g i c a r i t h m e t i c e x p r e s s i o n (E)) −−>

f l o g i c e x p r e s s i o n (E) .

f l o g i c a r i t h m e t i c e x p r e s s i o n (

f l o g i c a r i t h m e t i c e x p r e s s i o n (A1 , O, A2)) −−>

f l o g i c a r i t h m e t i c e x p r e s s i o n (A1) ,

f l o g i c b u i l d i n o p e r a t o r (O) ,

f l o g i c a r i t h m e t i c e x p r e s s i o n (A2) .

f l o g i c a r i t h m e t i c e x p r e s s i o n (

f l o g i c a r i t h m e t i c e x p r e s s i o n (E)) −−>

[’ (’] ,

f l o g i c a r i t h m e t i c e x p r e s s i o n (E) ,

251

[’) ’] .

f l o g i c a g g r e g r a t e (

f l o g i c a g g r e g r a t e (Agg , AV, Q)) −−>

f l o g i c i d t e r m (Agg) ,

[’{ ’] ,

f l o g i c v a r i a b l e (AV) ,

[’ | ’] ,

f l o g i c l i s t o f l i t e r a l s ,

[’} ’] .

f l o g i c a g g r e g r a t e (

f l o g i c a g g r e g r a t e (Agg , AV, GV, Q)) −−>

f l o g i c i d t e r m (Agg) ,

[’{ ’] ,

f l o g i c v a r i a b l e (AV) ,

[’ [’] ,

f l o g i c l i s t o f v a r i a b l e s (GV) ,

[’] ’] ,

[’ | ’] ,

f l o g i c l i s t o f l i t e r a l s ,

[’} ’] .

f l o g i c f m o l e c u l e (

f l o g i c f m o l e c u l e (P, S)) −−>

f l o g i c p a t h e x p r e s s i o n (P) ,

f l o g i c s p e c i f i c a t i o n (S) .

f l o g i c p a t h e x p r e s s i o n (

f l o g i c p a t h e x p r e s s i o n (Id)) −−>

f l o g i c i d t e r m (Id) .

f l o g i c p a t h e x p r e s s i o n (

f l o g i c p a t h e x p r e s s i o n (E)) −−>

252

[’ (’] ,

f l o g i c e x p r e s s i o n (E) ,

[’) ’] .

f l o g i c p a t h e x p r e s s i o n (

f l o g i c p a t h e x p r e s s i o n (E, D, M)) −−>

f l o g i c p a t h e x p r e s s i o n (E) ,

f l o g i c d o t (D) ,

f l o g i c m e t h o d a p p l i c a t i o n (M) .

f l o g i c p a t h e x p r e s s i o n (

f l o g i c p a t h e x p r e s s i o n (F , D, M)) −−>

f l o g i c f m o l e c u l e (F) ,

f l o g i c d o t (D) ,

f l o g i c m e t h o d a p p l i c a t i o n (M) .

f l o g i c s p e c i f i c a t i o n (

f l o g i c s p e c i f i c a t i o n (I)) −−>

f l o g i c i s a s p e c i f i c a t i o n (I) .

f l o g i c s p e c i f i c a t i o n (

f l o g i c s p e c i f i c a t i o n (I)) −−>

f l o g i c i s a s p e c i f i c a t i o n (I) ,

[’ [’] ,

[’] ’] .

f l o g i c s p e c i f i c a t i o n (

f l o g i c s p e c i f i c a t i o n (I , M)) −−>

f l o g i c i s a s p e c i f i c a t i o n (I) ,

[’ [’] ,

f l o g i c l i s t o f m e t h o d s (M) ,

[’] ’] .

f l o g i c s p e c i f i c a t i o n (

253

f l o g i c s p e c i f i c a t i o n ([])) −−>

[’ [’] ,

[’] ’] .

f l o g i c s p e c i f i c a t i o n (

f l o g i c s p e c i f i c a t i o n (M)) −−>

[’ [’] ,

f l o g i c l i s t o f m e t h o d s (M) ,

[’] ’] .

f l o g i c i s a s p e c i f i c a t i o n (

f l o g i c i s a s p e c i f i c a t i o n (S , I)) −−>

f l o g i c i s a s y m b o l (S) ,

f l o g i c i d t e r m (I) .

f l o g i c i s a s p e c i f i c a t i o n (

f l o g i c i s a s p e c i f i c a t i o n (S , E)) −−>

f l o g i c i s a s y m b o l (S) ,

[’ (’] ,

f l o g i c e x p r e s s i o n (E) ,

[’) ’] .

f l o g i c m e t h o d a p p l i c a t i o n (

f l o g i c m e t h o d a p p l i c a t i o n (I)) −−>

f l o g i c i d t e r m (I) .

f l o g i c m e t h o d a p p l i c a t i o n (

f l o g i c m e t h o d a p p l i c a t i o n (I , L)) −−>

f l o g i c i d t e r m (I) ,

[’ (’] ,

f l o g i c l i s t o f e x p r e s s i o n s (L) ,

[’) ’] . % f l o r a 2 doesn ’ t use the ’@’ s i g n to s e p a r a t e ↘

→methods from t h e i r arguments s i n c e wi th HiLog e x t e n s i o n s ↘

→ i t became redundant (f loraManual , p . 14)

254

f l o g i c m e t h o d a p p l i c a t i o n (

f l o g i c m e t h o d a p p l i c a t i o n (E)) −−>

[’ (’] ,

f l o g i c e x p r e s s i o n (E) ,

[’) ’] .

f l o g i c m e t h o d a p p l i c a t i o n (

f l o g i c m e t h o d a p p l i c a t i o n (E, L)) −−>

[’ (’] ,

f l o g i c e x p r e s s i o n (E) ,

[’) ’] ,

[’ (’] ,

f l o g i c l i s t o f e x p r e s s i o n s (L) ,

[’) ’] .

f l o g i c l i s t o f m e t h o d s (

f l o g i c l i s t o f m e t h o d s ([MS])) −−>

f l o g i c m e t h o d s p e c i f i c a t i o n (MS) .

f l o g i c l i s t o f m e t h o d s (

f l o g i c l i s t o f m e t h o d s ([MS | L])) −−>

f l o g i c m e t h o d s p e c i f i c a t i o n (MS) ,

[’ , ’] ,

f l o g i c l i s t o f m e t h o d s (f l o g i c l i s t o f m e t h o d s (L)) .

f l o g i c m e t h o d s p e c i f i c a t i o n (

f l o g i c m e t h o d s p e c i f i c a t i o n (Ma, Mr)) −−>

f l o g i c m e t h o d a p p l i c a t i o n (Ma) ,

f l o g i c m e t h o d r e s u l t (Mr) .

f l o g i c m e t h o d s p e c i f i c a t i o n (

f l o g i c m e t h o d s p e c i f i c a t i o n (’ not ’ , Ma, Mr)) −−>

[’ not ’] ,

255

[’ (’] ,

f l o g i c m e t h o d a p p l i c a t i o n (Ma) ,

f l o g i c m e t h o d r e s u l t (Mr) ,

[’) ’] .

f l o g i c m e t h o d r e s u l t (

f l o g i c m e t h o d r e s u l t (Arr , E)) −−>

f l og i c method ar row1 (Arr) ,

f l o g i c e x p r e s s i o n (E) .

f l o g i c m e t h o d r e s u l t (

f l o g i c m e t h o d r e s u l t (Arr , E)) −−>

f l og i c method ar row1 (Arr) ,

[’{ ’] ,

f l o g i c l i s t o f e x p r e s s i o n s (E) ,

[’} ’] .

f l o g i c m e t h o d r e s u l t (

f l o g i c m e t h o d r e s u l t (Arr , E)) −−>

f l og i c method ar row2 (Arr) ,

f l o g i c e x p r e s s i o n (E) .

f l o g i c m e t h o d r e s u l t (

f l o g i c m e t h o d r e s u l t (Arr , E)) −−>

f l og i c method ar row2 (Arr) ,

[’{ ’] ,

f l o g i c l i s t o f e x p r e s s i o n s (E) ,

[’} ’] .

f l o g i c i d t e r m (

f l o g i c i d t e r m (B)) −−>

f l o g i c b a s i c i d t e r m (B) .

f l o g i c i d t e r m (

256

f l o g i c i d t e r m (F, E)) −−>

f l o g i c f u n c t o r (F) ,

[’ (’] ,

f l o g i c l i s t o f e x p r e s s i o n s (E) ,

[’) ’] .

f l o g i c b a s i c i d t e r m (

f l o g i c b a s i c i d t e r m (F)) −−>

f l o g i c f u n c t o r (F) .

f l o g i c b a s i c i d t e r m (

f l o g i c b a s i c i d t e r m (V)) −−>

f l o g i c v a r i a b l e (V) .

f l o g i c b a s i c i d t e r m (

f l o g i c b a s i c i d t e r m (S)) −−>

f l o g i c s t r i n g (S) .

f l o g i c b a s i c i d t e r m (

f l o g i c b a s i c i d t e r m (I)) −−>

f l o g i c i n t e g e r (I) .

f l o g i c l i s t o f v a r i a b l e s (

f l o g i c l i s t o f v a r i a b l e s ([X])) −−>

f l o g i c v a r i a b l e (X) .

f l o g i c l i s t o f v a r i a b l e s (

f l o g i c l i s t o f v a r i a b l e s ([X | Y])) −−>

f l o g i c v a r i a b l e (X) ,

[’ , ’] ,

f l o g i c l i s t o f v a r i a b l e s (f l o g i c l i s t o f v a r i a b l e s (Y)) .

% meta i n f o grammar

257

meta in fo (

meta in fo ([T @ P])) −−>

a t t r i b u t e v a l u e t a g (T) ,

[’ (’] ,

p r o b a b i l i t y v a l u e (P) ,

[’) ’] .

meta in fo (meta in fo ([L @ P])) −−>

hyper l ink (L) ,

[’ (’] ,

p r o b a b i l i t y v a l u e (P) ,

[’) ’] .

meta in fo (

meta in fo ([T @ P | R])) −−>

a t t r i b u t e v a l u e t a g (T) ,

[’ (’] ,

p r o b a b i l i t y v a l u e (P) ,

[’) ’] ,

meta in fo (meta in fo (R)) .

meta in fo (

meta in fo ([L @ P | R])) −−>

hyper l ink (L) ,

[’ (’] ,

p r o b a b i l i t y v a l u e (P) ,

[’) ’] ,

meta in fo (meta in fo (R)) .

a t t r i b u t e v a l u e t a g (

a t t r i b u t e v a l u e t a g (A, V)) −−>

a t t r i b u t e (A) ,

[’ : ’] ,

va lue (V) .

258

a t t r i b u t e v a l u e t a g (

a t t r i b u t e v a l u e t a g (c l a s s , V)) −−>

[c l a s s] ,

[’ : ’] ,

f l o g i c i d t e r m (V) .

a t t r i b u t e v a l u e t a g (

a t t r i b u t e v a l u e t a g (subc la s s , V)) −−>

[s u b c l a s s] ,

[’ : ’] ,

f l o g i c i d t e r m (V) .

a t t r i b u t e v a l u e t a g (

a t t r i b u t e v a l u e t a g (subc la s s , E)) −−>

[s u b c l a s s] ,

[’ : ’] ,

[’ (’] ,

f l o g i c e x p r e s s i o n (E) ,

[’) ’] .

a t t r i b u t e v a l u e t a g (

a t t r i b u t e v a l u e t a g (ru le , H, I , B)) −−>

[r u l e] ,

[’ : ’] ,

f l o g i c r u l e h e a d (H) ,

f l o g i c i m p l i c a t i o n s y m b o l (I) ,

f l o g i c r u l e b o d y (B) .

a t t r i b u t e (

a t t r i b u t e (A)) −−>

f l o g i c i d t e r m (A) .

va lue (

259

value (V)) −−>

f l o g i c i d t e r m (V) .

i n t e r n a l u r l (

i n t e r n a l u r l (U)) −−>

f l o g i c i d t e r m (U) .

e x t e r n a l u r l (

e x t e r n a l u r l (U)) −−>

f l o g i c i d t e r m (U) .

% pars ing & a u x i l l i a r y p r e d i c a t e s

ppr int (Term) :−

term to atom (Term , Atom) ,

s t r c a t (’ python ppr int . py ’ ’ ’ , Atom, Part) ,

s t r c a t (Part , ’ ’ ’ ’ , Command) ,

s h e l l (Command) .

read code (L i s t) :−

s h e l l t o l i s t (’ python readcode . py ’ , [L i s t] ,) .

parse :−

read code (X) ,

a u t o p o i e s i s f a c i l i t a t i n g s e m a n t i c w i k i p a g e (T, X, []) ,

ppr int (T) .

p a r s e t :−

read code (X) ,

trace ,

a u t o p o i e s i s f a c i l i t a t i n g s e m a n t i c w i k i p a g e (T, X, []) ,

notrace ,

ppr int (T) .

260

?− parse .

261

Appendix D

Annotated Query Execution Engine

Implementation Issues

In order to implement annotated query execution three things had to be considered:

• ISA-expressions

• Rule executions

• Query parsing

ISA expressions are a special case since all paths from some class a to some

class b have to be considered when evaluating a::b probability. In order to find all paths

the following Flora-2 program was implemented

?− opt imize (c l a s s e x p r e s s i o n s) .

s t r i c t s u b (?x , ?y) :−

?x : : ?y ,

not (n o t s t r i c t (?x , ?y)) .

n o t s t r i c t (?x , ?y) :−

?x : : ?z ,

? z : : ?y ,

not (? z = ?y) ,

not (? z = ?x) .

path ([p (?c1 , ? c2)] , ? c1 , ? c2) :−

262

s t r i c t s u b (?c1 , ? c2) .

path ([p (?c1 , ?x) | ? r] , ? c1 , ? c2) :−

s t r i c t s u b (?c1 , ?x) ,

path (? r , ?x , ? c2) .

As defined in chapter 7 rule probabilities are calculated depending on the

number of times the rule was executed to yield a given result. Since Flora-2 is completely

declarative and tabled such a rule counting mechanism is no easy task to implement.

Such a mechanism could be implememented inside the Flora-2 compiler or inside the

XSB prolog engine. For our case we used a little trick to count the number of times a

rule was executed for a given result. First a query is normally executed, and then the

results are inserted into the appropriate variables that bound to them. All rules have

an increment(rule id) statement appended on their body end. Then every result is

executed as a query woth the following predicate added to the knowledgebase.

increment (? r) :−

rc (? r , ? c) ,

d e l e t e { rc (? r , ? c) } ,

? c1 i s ? c + 1 ,

i n s e r t { rc (? r , ? c1) } .

Any query has to be parsed according to the rules defined in chapter 7 so

probabilities can be annotated and calculated for given results. This is done using the

BNF grammar for F-Logic and the following predicates:

parse (F , R) :−

f l o g i c q u e r y (T, F , []) ,

prs (T, R) .

p a r s e f u l l (F , R) :−

parse (F , R1) ,

o b j p r s (R1 , R) .

o b j p r s (F , R) :−

F = obj (O, F1) ∗ (F2) ,

o b j p r s (obj (O, F1) , R1) ,

263

o b j p r s (F2 , R2) ,

R = R1 ∗ R2 .

o b j p r s (F , R) :−

F = obj (O, F1) + (F2) ,

o b j p r s (obj (O, F1) , R1) ,

o b j p r s (F2 , R2) ,

R = R1 + R2 .

o b j p r s (obj (O, F) , R) :−

F = min(p(att , V1) , p (val , V2)) ∗ (F1) ,

o b j p r s (obj (O, F1) , R1) ,

R = min (p(O, att , V1) , p (O, val , V2)) ∗ R1 .

o b j p r s (obj (O, F) , R) :−

F = min(p(att , V1) , p (val , V2)) ,

R = min (p(O, att , V1) , p (O, val , V2)) .

o b j p r s (obj (O, F) , R) :−

F = p(O, I , C) ∗ (F1) ,

o b j p r s (obj (O, F1) , R1) ,

R = p(O, I , C) ∗ R1 .

o b j p r s (obj (O, F) , R) :−

F = p(O, I , C) ,

R = p(O, I , C) .

o b j p r s (obj (O, F) , R) :−

F = min(p(att , V1) , p (val , V2)) + (F1) ,

o b j p r s (obj (O, F1) , R1) ,

R = min (p(O, att , V1) , p (O, val , V2)) + R1 .

o b j p r s (obj (O, F) , R) :−

F = p(O, I , C) + (F1) ,

264

o b j p r s (obj (O, F1) , R1) ,

R = p(O, I , C) + R1 .

prs (f l o g i c q u e r y (Q) , P) :−

prs (Q, P) .

prs (f l o g i c r u l e b o d y (B) , P) :−

prs (B, P) .

prs (f l o g i c l i s t o f l i t e r a l s (L) , P) :−

prs (L , P) .

prs ([H, ’ , ’ | R] , P) :−

prs (H, P1) ,

prs (R, P2) ,

P = P1 ∗ P2 .

prs ([H, ’ ; ’ | R] , P) :−

prs (H, P1) ,

prs (R, P2) ,

P = P1 + P2 .

prs ([L] , P) :−

prs (L , P) .

prs (

f l o g i c l i t e r a l (

f l o g i c m o l e c u l e (

f l o g i c f m o l e c u l e (

f l o g i c p a t h e x p r e s s i o n (

f l o g i c i d t e r m (

f l o g i c b a s i c i d t e r m (

O

265

)

)

) ,

f l o g i c s p e c i f i c a t i o n (

f l o g i c i s a s p e c i f i c a t i o n (

f l o g i c i s a s y m b o l (S) ,

f l o g i c i d t e r m (

f l o g i c b a s i c i d t e r m (

C

)

)

)

)

)

)

) ,

P) :−

prs (O, OP) ,

prs (C, OC) ,

P = obj (OP, p (OP, S , OC)) .

prs (

f l o g i c l i t e r a l (

f l o g i c m o l e c u l e (

f l o g i c f m o l e c u l e (

f l o g i c p a t h e x p r e s s i o n (

f l o g i c i d t e r m (

f l o g i c b a s i c i d t e r m (

O

)

)

) ,

f l o g i c s p e c i f i c a t i o n (

f l o g i c i s a s p e c i f i c a t i o n (

266

f l o g i c i s a s y m b o l (S) ,

f l o g i c i d t e r m (

f l o g i c b a s i c i d t e r m (

C

)

)

) ,

ML

)

)

)

) ,

P) :−

prs (ML, P1) ,

prs (O, OP) ,

prs (C, OC) ,

P = obj (OP, p (OP, S , OC) ∗ P1) .

prs (

f l o g i c l i t e r a l (

f l o g i c m o l e c u l e (

f l o g i c f m o l e c u l e (

f l o g i c p a t h e x p r e s s i o n (

f l o g i c i d t e r m (

f l o g i c b a s i c i d t e r m (

O

)

)

) ,

f l o g i c s p e c i f i c a t i o n (

ML

)

)

)

267

) , P) :−

prs (ML, PM) ,

prs (O, PO) ,

P = obj (PO, PM) .

prs (f l o g i c s t r i n g (f l o g i c v a r i a b l e (V)) , V) .

prs (f l o g i c s t r i n g (S) , S) :−

not (f l o g i c v a r i a b l e () = S) .

prs (f l o g i c v a r i a b l e (V) , V) .

prs (f l o g i c f u n c t o r (f l o g i c v a r i a b l e (V)) , V) .

prs (f l o g i c f u n c t o r (F) , F) :−

not (f l o g i c v a r i a b l e () = F) .

prs (

f l o g i c m e t h o d s p e c i f i c a t i o n (

f l o g i c m e t h o d a p p l i c a t i o n (

f l o g i c i d t e r m (

f l o g i c b a s i c i d t e r m (

A

)

)

) ,

f l o g i c m e t h o d r e s u l t (

Arr ,

f l o g i c e x p r e s s i o n (

f l o g i c p a t h e x p r e s s i o n (

f l o g i c i d t e r m (

f l o g i c b a s i c i d t e r m (

V

)

)

)

268

)

)

) , P) :−

prs (A, PA) ,

prs (V, PV) ,

P = min (p(att , PA) , p(val , PV)) .

prs (f l o g i c l i s t o f m e t h o d s ([H]) , P) :−

prs (H, P) .

prs (f l o g i c l i s t o f m e t h o d s ([H | T]) , P) :−

prs (H, P1) ,

prs (f l o g i c l i s t o f m e t h o d s (T) , P2) ,

P = P1 ∗ P2 .

269

Appendix E

ᵀaOPı̄s Source Code

The architecture of ᵀaOPı̄s is shown on figure E.1. The system basically consists of a

graphical user interface (written in PHP and partially AJAX), a database interface (writ-

ten mostly in PL/PGSQL - the procedural language of PostgreSQL and PL/PythonU -

the Python procedural language for PostgreSQL), a database (written in PostgreSQL),

an integration layer (written in Python), a knowledge base (written and generated into

Flora-2) as well as other technologies like web services, mailing lists, podcasting ser-

vices, content feeds etc. which were interfaced with Python.

Figure E.1: ᵀaOPı̄s system’s architecture

270

The graphical user interface mainly acts as a presentation layer for the system

running in the background. Most functionality is implemented in the database itself using

stored procedures. The most significant parts of the implementation include the niKlas

language parser that translates niKlas syntax into HTML. The parser also takes care of

possible queries that have to be executed before the rest of the syntax is interpreted. On

the other hand the integration layer in also of importance. It was written in Python and

allows a direct interface between PostgreSQL and the Flora-2 reasoning engine. Queries

written in niKlas syntax are executed towards a dynamically generated knowledge base

for a given semantic wiki system. This generator is the third most significant part of the

implementation (but it has to be mentioned that an OWL generator was implemented as

well, but can only be used to export the not annotated nor amalgamated OWL ontology).

Part of the generator and query executor had to be written in Flora-2 due to special

situations.

The ᵀaOPı̄s source code is organized as shown in the following directory tree.

Basically there are two important parts of the source code: (1) the database (files in

folder sql) and (2) the PHP application (root directory). The database files contains the

most important parts of ᵀaOPı̄s , whilst the PHP application represents the presentation

layer. Due to the separation of functionality and presentation layers new graphical user

interfaces can be easily build using the functionality layer as an API. To demonstrate

this a Facebook application was build that allows users to connect to ᵀaOPı̄s from their

Facebook account. ᵀaOPı̄s is open source and available at http://autopoiesis.foi.hr.

|−− CVS

| |−− Entr i e s

| |−− Repos i tory

| ‘−− Root

|−− CVSROOT

| |−− CVS

| | |−− Entr i e s

| | |−− Repos i tory

| | ‘−− Root

| |−− c h e c k o u t l i s t

| |−− c h e c k o u t l i s t , v

| |−− commitinfo

| |−− commitinfo , v

271

http://autopoiesis.foi.hr

| |−− c o n f i g

| |−− con f i g , v

| |−− cvswrappers

| |−− cvswrappers , v

| |−− h i s t o r y

| |−− l o g i n f o

| |−− l o g i n f o , v

| |−− modules

| |−− modules , v

| |−− n o t i f y

| |−− not i f y , v

| |−− postadmin

| |−− postadmin , v

| |−− postproxy

| |−− postproxy , v

| |−− posttag

| |−− posttag , v

| |−− postwatch

| |−− postwatch , v

| |−− preproxy

| |−− preproxy , v

| |−− r c s i n f o

| |−− r c s i n f o , v

| |−− t a g i n f o

| |−− tag in fo , v

| |−− val−tags

| |−− ver i fymsg

| ‘−− ver i fymsg , v

|−− blog . php

|−− c l ean . sh

|−− c o n f i g . php

|−− ed i t−wiki . php

|−− emoticons . php

|−− f av i con2 . i c o

272

|−− f i l t e r . php

|−− f l o r a 2 e x p o r t . php

|−− f o o t e r . php

|−− forum . php

|−− header . php

|−− h i s t o r y . php

|−− i18n . php

|−− image wrapper . php

|−− images

| |−− CVS

| | |−− Entr i e s

| | |−− Repos i tory

| | ‘−− Root

| |−− arrowdown . g i f

| |−− a r r o w l e f t . g i f

| |−− avatar s

| | |−− CVS

| | | |−− Entr i e s

| | | |−− Repos i tory

| | | ‘−− Root

| | ‘−− anonimno1 . jpg

| |−− bubles2 . png

| |−− ccL i c ense . png

| |−− c o l o u r f u l . jpg

| |−− i c on s

| | |−− CVS

| | | |−− Entr i e s

| | | |−− Repos i tory

| | | ‘−− Root

| | |−− f l o r a 2 . png

| | |−− forum . png

| | |−− j o i n . png

| | |−− l e ave . png

| | |−− long time no see . g i f

273

| | |−− minus . g i f

| | |−− new . png

| | |−− o f f l i n e . g i f

| | |−− o n l i n e . g i f

| | |−− owl . png

| | |−− plus . g i f

| | |−− stop . g i f

| | ‘−− wiki . png

| |−− i contexto−webdev−emoticon−sad−032x032 . png

| |−− i contexto−webdev−emoticon−smi le −032x032 . png

| |−− i contexto−webdev−i n fo −032x032 . png

| |−− i contexto−webdev−ok−032x032 . png

| |−− l i g h t−balance−smal l . jpg

| |−− l ogo . g i f

| |−− l ogo . png

| |−− o r a n g e f i l t e r . g i f

| |−− r e d f i l t e r . g i f

| |−− s m i l e s

| | |−− 156 . g i f

| | |−− 1 4 126 . g i f

| | |−− 2thumbs . g i f

| | |−− 3 zzz . g i f

| | |−− 45 . g i f

| | |−− CVS

| | | |−− Entr i e s

| | | |−− Repos i tory

| | | ‘−− Root

| | |−− Hai l . g i f

| | |−− P a r t y f e s t 2 5 . g i f

| | |−− Peglaona . g i f

| | |−− Pop . g i f

| | |−− Prd . g i f

| | |−− Sex . g i f

| | |−− S l i n . g i f

274

| | |−− Thumbs . db

| | |−− a f r o . g i f

| | |−− amen . g i f

| | |−− ange l . g i f

| | |−− ange l10 . g i f

| | |−− ange leye . g i f

| | |−− angry . g i f

| | |−− azdaja . g i f

| | |−− bananallama . g i f

| | |−− bara . g i f

| | |−− bau . g i f

| | |−− beerchug . g i f

| | |−− bicedobro . g i f

| | |−− b i g g r i n . g i f

| | |−− b lab la . g i f

| | |−− blush . g i f

| | |−− bonk . g i f

| | |−− bootyshake . g i f

| | |−− braca . g i f

| | |−− buum . g i f

| | |−− ceka . g i f

| | |−− cheer . g i f

| | |−− c i c e . g i f

| | |−− c l i n t . g i f

| | |−− confused . g i f

| | |−− c y c l e . g i f

| | |−− d020 . g i f

| | |−− d062 . g i f

| | |−− daz . g i f

| | |−− dinamo . g i f

| | |−− dog . g i f

| | |−− downtown . g i f

| | |−− d r i v e r . g i f

| | |−− duckie . g i f

275

| | |−− dvoboj . g i f

| | |−− e015 . g i f

| | |−− eek . g i f

| | |−− e v i l 1 . g i f

| | |−− e v i l 3 . g i f

| | |−− g i t a r a . g i f

| | |−− headbang . g i f

| | |−− hebemu . g i f

| | |−− hekla . g i f

| | |−− horor . g i f

| | |−− i c o n a n a l . g i f

| | |−− i c o n p a l l . g i f

| | |−− i c o n t o i l e t . g i f

| | |−− i con weed . g i f

| | |−− j e r k . g i f

| | |−− jumping . g i f

| | |−− kada . g i f

| | |−− kava . g i f

| | |−− k i s s . g i f

| | |−− klap . g i f

| | |−− klopa . g i f

| | |−− kukuc . g i f

| | |−− kusch . g i f

| | |−− l i s t a . txt

| | |−− l o l . g i f

| | |−− l ove2 . g i f

| | |−− l u rk . g i f

| | |−− mad . g i f

| | |−− mama. g i f

| | |−− mar . g i f

| | |−− mi n i t i e r e 067 . g i f

| | |−− mirko . g i f

| | |−− m i s l i . g i f

| | |−− moli . g i f

276

| | |−− ne zna . g i f

| | |−− n in j a . g i f

| | |−− nono . g i f

| | |−− o f f . g i f

| | |−− old . g i f

| | |−− osama . g i f

| | |−− p020 . g i f

| | |−− p i l a . g i f

| | |−− p l j e s k o . g i f

| | |−− popc1 . g i f

| | |−− puke . g i f

| | |−− r ed f a c e . g i f

| | |−− r i go014 . g i f

| | |−− rock . g i f

| | |−− rodendan . g i f

| | |−− r o f l . g i f

| | |−− romeo . g i f

| | |−− shakecan . g i f

| | |−− shhh . g i f

| | |−− sm bigeek . g i f

| | |−− sm biggr in . g i f

| | |−− sm confused . g i f

| | |−− sm cool . g i f

| | |−− sm cry . g i f

| | |−− sm dead . g i f

| | |−− sm mad . g i f

| | |−− sm razz . g i f

| | |−− s m r o l l e y e s . g i f

| | |−− sm sigh . g i f

| | |−− sm s leep . g i f

| | |−− sm smile . g i f

| | |−− sm upset . g i f

| | |−− sm wink . g i f

| | |−− smash . g i f

277

| | |−− s m i l i e f l a g g e 1 9 . g i f

| | |−− sok . g i f

| | |−− s t i r k a . g i f

| | |−− supak . g i f

| | |−− thumbs . g i f

| | |−− thumbsdown . g i f

| | |−− t raca . g i f

| | |−− t r i o . g i f

| | |−− t r o l l . g i f

| | |−− tuctuc . g i f

| | |−− tulum . g i f

| | |−− v id i ga . g i f

| | |−− whacky091 . g i f

| | |−− whatever . g i f

| | |−− world domination . g i f

| | |−− z i v i l i . g i f

| | |−− z j ev . g i f

| | |−− zubeki . g i f

| | |−− zubo . g i f

| | |−− zvrko . g i f

| | ‘−− zzz . g i f

| |−− sp ider− l e f t . jpg

| |−− sp ider−r i g h t . jpg

| ‘−− y e l l o w f i l t e r . g i f

|−− index . php

|−− i n s t a l l . php

|−− i n s t a l l f l o r a . php

|−− i n s t a l l x s b . php

|−− j o i n . php

|−− l o g i n . php

|−− l o s t p a s s . php

|−− menu . php

|−− mysett ings . php

|−− owlexport . php

278

|−− post−message . php

|−− post . php

|−− p r o j e c t . php

|−− r e g i s t e r−proorg . php

|−− r e g i s t e r−user . php

|−− r e g i s t e r . php

|−− search . php

|−− s e cu r i t y image . php

|−− s q l

| |−− CVS

| | |−− Entr i e s

| | |−− Repos i tory

| | ‘−− Root

| |−− connect ion . php

| |−− t a o p i s \ c r e a t e . s q l

| ‘−− t aop i s d rop . s q l

|−− s t y l e . php

|−− s t y l e s e t t i n g s . php

|−− s t y l e s

| |−− CVS

| | |−− Entr i e s

| | |−− Repos i tory

| | ‘−− Root

| |−− ben

| | |−− CVS

| | | |−− Entr i e s

| | | |−− Repos i tory

| | | ‘−− Root

| | |−− images

| | | |−− CVS

| | | | |−− Entr i e s

| | | | |−− Repos i tory

| | | | ‘−− Root

| | | |−− g r e y f i l t e r . g i f

279

| | | ‘−− s ta tue . jpg

| | ‘−− top . c s s

| |−− taop i s aqua

| | |−− CVS

| | | |−− Entr i e s

| | | |−− Repos i tory

| | | ‘−− Root

| | |−− images

| | | |−− CVS

| | | | |−− Entr i e s

| | | | |−− Repos i tory

| | | | ‘−− Root

| | | |−− b l u e f i l t e r . g i f

| | | ‘−− bubles . png

| | ‘−− top . c s s

| ‘−− t a o p i s r e d s e a

| |−− CVS

| | |−− Entr i e s

| | |−− Repos i tory

| | ‘−− Root

| |−− images

| | |−− CVS

| | | |−− Entr i e s

| | | |−− Repos i tory

| | | ‘−− Root

| | |−− back redsea . png

| | ‘−− r e d f i l t e r . g i f

| ‘−− top . c s s

|−− sugges t . php

|−− tag . php

|−− t o p e d i t o r . j s

|−− upload avatar . php

|−− user . php

|−− u s e r l i s t . php

280

‘−− wiki . php

The rest of the source code has been ommitted here, but available on the

CD-ROM which is an integral part of this appendix.

281

Sažetak

Wiki sustavi, progresivna tehnologija kojoj u njezinim počecima neki poznati stručnjaci

nisu predvidjeli svijetlu budućnost, danas su u širokoj upotrebi. Sustavi koji svakom

pridošlici omogućavaju da na njima ostavi traga, razvijaju se autopoietično u sve im-

presivnije i impresivnije repozitorije znanja. Možda najpoznatiji primjer takvog sustava,

Wikipedia, otvorena enciklopedija Interneta u vrijeme pisanja ovog teksta u svojoj en-

gleskoj inačici broji preko 2.2 milijuna članaka koje su ljudi širom svijeta postavili na

sustav, a postoje inačice za gotovo sve svjetske jezike.

Ipak, čini se da su wiki sustavi došli do svoje granice rasta. Sve je češće i

češće slučaj da se na različitim sustavima pokušavaju definirati pravila ponašanja, pravila

organiziranja znanja, pravila dodavanja metapodataka primarno u svrhu jednostavnijega

pretraživanja i izvodenja zaključaka iz ovih ogromnih repozitorija (uglavnom) tekstualnih

podataka.

Napori poput semantičkih wiki sustava, koji u tradicionalne (obične) wiki sus-

tave pokušavaju dodati semantičku komponentu čini se u potpunosti zanemaruju jedan

od osnovnih razloga nevjerojatnog uspjeha ove vrste sustava. Wiki sustavi su jednostavni

za korǐstenje i stoga ih koristi širok spektar ljudi. Korisnici imaju vrlo različita shvaćanja

tehnologije koja variraju od vrhunskih stručnjaka za informacijsku tehnologiju do laika.

Dakako, da distribucija korisnika naginje onima manje vičnim informacijskim tehnologi-

jama. Upravo zbog toga uvodenje naprednih koncepata poput semantičkih tehnologija

uvelike ograničava primjenjivost takvih sustava jer od običnih korisnika traži relativno

dobro poznavanje takvih tehnologija.

Kao što je prethodno napomenuto, wiki sustavi razvijaju se autopoietično, za

razliku od tradicionalnih alopoietičnih (tehničkih) informacijskih tehnologija. Autopoiesis

očitava se upravo u činjenici da korisnici svojim sudjelovanjem na sustavu stvaraju taj

sustav, šire ga, unaprijeduju ga novim i novima sadržajima, pravilima i definicijama.

Postavlja se pitanje je li moguće koncept semantičkog weba ”ugraditi” u wiki sustave, a

da se pri tome zadrži njihova početna jednostavnost?

282

Jedna druga vrsta suvremenih Web 2.0 sustava na koje želimo ovdje ukazati

su sustavi za društveno označavanje (engl. social tagging). Oni su danas sve češće u

upotrebi, a koriste upravo organizaciji znanja pojedinog korisnika (engl. personal infor-

mation management – PIM; personal knowledge management – PKM). Takvi sustavi

svojim korisnicima omogućavaju da postavljaju oznake (engl. tag) na bilo koji sadržaj na

koji nailaze na webu. Impresivni su takvi sustavi iz perspektive pretraživanja. Naime dok

poznate tražilice pretražuju web naprednim algoritmima, sustavi za društveno označavanje

koriste jednostavno oznake koje su postavili korisnici. Sustavi za društveno označavanje

često pronalaze relevantnije podatke od naprednih tražilica jer dolazi to tzv. Delfi efekta

prema kojem je prosječno mǐsljenje nekog podskupa ljudi bolji prediktor od mǐsljenja

jedne nasumice odabrane osobe.

Još jedno pitanje koje ovdje valja postaviti jest pitanje suvremenih organizacija

i posebice njihovih informacijskih sustava. Suvremene organizacije danas su otvorene,

adaptibilne, heterarhijske i virtualne. Je li moguće iskoristiti suvremene informacijske

tehnologije kako bi se podržale potrebe suvremenih organizacija za adaptibilnošću, otvore-

nošću, heterarhiji i virtualnošću? U ovom ćemo radu pokušalo se, pa makar djelomično,

odgovoriti i na to pitanje, na koje suvremeni (rigidni, alopoietski postavljeni) informacijski

sustavi ne daju odgovor.

Web usluge (engl. web services) danas su način na koji je putem mreže

moguće koristiti usluge raznih organizacija. Semantičkim opisom takvih usluga pokušava

se omogućiti automatizirano računalno korǐstenje takvih usluga. Je li integracijom ove

tehnologije i gore navedenih moguće podržati potrebe suvremenih organizacija?

U ovom radu krenulo se pristupom objektno-orijentiranog semantičkog mod-

eliranja te su tako dobivena saznanja stavljena u autopoietični kontekst. Osnovni ciljevi

bili su: (1) da sustav autopoietično generira formalizirano znanje nad kojim se može

računalno rezonirati, (2) od prosječnog korisnika očekuje se nikakvo ili minimalno pozna-

vanje semantičkih tehnologija, (3) sustav se treba autopoietično razvijati kako na području

vlastitog sadržaja tako i na području vlastite funkcionalnosti (za razliku od tradicionalnih

wiki sustava koji se razvijaju u pravilu isključivo na području sadržaja).

Pretpostavljeno je da je svijet kojeg korisnici na sustavu opisuju jedan skup

objekata koji su u medusobnim relacijama i raznim interakcijama. Može se reći da je

”osnovna jedinica” sustava objekt. Svaki objekt potencijalno ima svoje relacije s drugim

objektima i niz metoda kojima reagira na podražaje (poruke) od drugih objekata. Relacije

se ponekad u kontekstu objektno-orijentiranog pristupa nazivaju i atributima radi jednos-

283

tavnosti implementacije iako je riječ o relaciji sadržavanja. U radu je takoder primjenjen

takav pristup radi jednostavnosti te se atributima smatraju objekti koji su jednostavni

znakovni nizovi dok će svi ostali objekti biti vezani relacijama. Podskupove skupa svih

objekata nazivamo ekstenzijom nekog koncepta ukoliko postoji jasna intenzija (defini-

cija, pravilo) koncepta po kojem jednoznačno možemo svaki objekt klasificirati bilo kao

člana ekstenzije koncepta, bilo kao člana komplementarnog skupa ekstenziji. Koncepti

se još nazivaju tipovima ili klasama te ćemo ta tri naziva u daljnjem razmatranju sma-

trati sinonimima. Možemo reći da se svaki koncept sastoji od svoje intenzije (definicije),

ekstenzije (skupa svih objekata na koje je koncept primjenjiv) i svog simbola (oznakom

kojom označavamo taj specifični koncept).

Ako se promotri wiki sustav iz perspektive semantičkog modeliranja može se

reći da postoje tri osnovna koncepta na kojima je moguće temeljiti razmatranje, a to su:

(1) stranica, (2) osoba i (3) wiki sustav (koji uključuje sam sustav, sve njegove članke

odnosno stranice i korisnike). Uvedena je sljedeća pretpostavku: neka je svaki objekt tipa

stranica generički objekt (u kontekstu modeliranja znanja često označen simbolom Thing).

Neka sada svaki korisnik sustava može označavati stranice na sustavu postavljajući oz-

nake u obliku uredenih parova atribut:vrijednost. Na taj način korisnici specijaliziraju

svaki generički objekt u neku (novu) klasu objekata. Takoder, neka atribut i vrijednost

mogu biti i neka od ključnih riječi poput class, inherits, relation, rule i sl. poznatih iz

objektno-orijentiranih programskih jezika. Na taj način korisnik potencijalno može još

uže specijalizirati svoje mǐsljenje (znanje) o stranici (objektu). Na taj je način podržano

dodavanje atributa pojedinom objektu kao i njegovo odredivanje koje se tiče klase u koju

pripada.

Primjerice ako neki korisnik na neku stranicu postavi oznaku class:avion to

znači da taj korisnik tu stranicu vǐse ne smatra člankom već opisnikom objekta tipa

”avion”. Takoder, svaki korisnik može i potvrditi postojeću oznaku čime se vjerodosto-

jnost oznake povećava.

Wiki sustavi po svojoj standardnoj sintaksi omogućavaju povezivanje svake

stranice s drugim stranicama kako na samom sustavu tako i izvan njega putem hiperveza.

Možemo reći da je ovdje riječ o relacijama s drugim objektima. Pretpostavlja se dakle

da svaki korisnik može na svaku stranicu dodavati hiperveze na druge stranice u obliku

relacija : naziv objekta pri čemu može biti riječ o stranicama na samom sustavu (koje

su onda tipa stranica ili nekog specijaliziranijeg tipa) ili eksternim stranicama (pri čemu

uvodimo tip external resource). Neka, takoder svaki korisnik može potvrditi vezu kao i

284

kod atributa odnosno označavanja čime se vjerodostojnost relacije povećava.

Pretpostavlja se nadalje da svaki korisnik može svakoj stranici nadodati web

uslugu ili neku drugu vrstu skriptne ekstenzije koja proširuje funkcionalnost stranice te

takve dodatke nazivamo metodama. Neka je svaka takva metoda semantički opisana

pomoću standardnog obrasca i svog opisnika (primjerice engl. WSDL - Web Service

Definition Language). Svaka se metoda, kao i u prethodna dva slučaja može potvrditi od

drugih korisnika čime se povećava njezina vjerodostojnost.

Zaključno možemo reći da smo ovako koncipiranim sustavom u stanju podržati

dinamično kreiranje klasa, objekata, njihovih atributa, metoda i relacija. Konkretno,

moglo bi se reći da je riječ o dinamički kreiranoj ontologiji, dakle formalizaciji odredene

aplikacijske domene.

Pozabavimo se sada vjerodostojnošću (istinitošću) informacija koje korisnici

pospremaju u sustav. Kako bi to učinili potrebno je prethodno opisati koncept orga-

nizacije ribarske mreže kao i mogućnosti podržavanja takvog koncepta informacijskom

tehnologijom. Riječ je o konceptu koji pokušava iskoristiti najbolje od dvaju poznatih kon-

cepata iz organizacijske teorije, hijerarhije i heterarhije odnosno mrežne strukture. Ako

promatramo ribarsku mrežu na obali ona se čini potpuno heterarhijskom, svi su čvorovi

istovjetni i na jednakoj razini. No primimo li jedan čvor i uzdignemo ga dinamički oko

njega nastaje hijerarhija pri čemu je odabrani čvor na vrhu. Primimo li drugi nastaje

druga itd. Na taj način dinamički možemo stvarati nove i unǐstavati stare hijerarhije.

Postavlja se pitanje kako podržati takav koncept informacijskom tehnologijom.

Pretpostavimo da imamo sustav na kojem se vodi niz projekata neke organizacije (ili

općenito nekog socijalnog sustava) pri čemu svaki projekt ima svoj vlastiti autopoietični

semantički wiki sustav. Moglo bi se reći da svaki projekt definira svojevrsnu aplikacijsku

domenu. Sama funkcionalnost tog sustava u ovom trenutku nam nije bitna, nego nam je

bitan mehanizam kojim ćemo pronaći najadakvatniju osobu za pojedini projekt koja se

svojim znanjima i sposobnostima ističe te time postaje voda.

Kako bi objasnili taj mehanizam potrebno je objasniti PageRank algoritam

kojeg koristi poznata tražilica Google pri rangiranju stranica koje se pretražuju. Algori-

tam analizira web stranice brojeći ulazne i izlazne veze svake stranice. Svaka veza koju

neka stranica ima prema nekoj drugoj stranici smatra se ”glasom potpore” te stranice za

stranicu na koju pokazuje. Sve se stranice inicijalno postavljaju na odredeni rank koji

je jednak 1/N pri čemu je N broj stranica koje se analiziraju. Ako neka stranica kojim

slučajem pokazuje na vǐse stranica tada se njezin glas dijeli tako da svaka stranica dobiva

285

n-ti dio njezinoga glasa (ako je n broj stranica na koje stranica pokazuje). Sada se do

odredene preciznosti analizira tako postavljena mreža stranica zbrajanjem ulaznih veza

svake stranice i prosljedivanjem novih vrijednosti na druge stranice. Na taj način dobije

se rank za svaku stranicu, tǎ što je on veći to ta stranica ima veću ”potporu” drugih

stranica. Taj se rank može nazvati i vjerojatnošću kojom će neki korisnik nasumice obi-

lazeći stranice u zadanoj mreži odabrati upravo zadanu stranicu. Page rank mreža ustvari

predstavlja Markovljev lanac u kojem su stranice stanja, a tranzicije (koje su sve jednako

vjerojatne) veze izmedu tih stranica.

Postavimo sad taj algoritam u kontekst jedne socijalne mreže, dakle mreže

ljudi, odnosno konkretno mreže članova nekog projekta ili aplikacijske domene. Dajemo

svim članovima projekta mogućnost da glasuju za druge korisnike za koje smatraju da

su najadekvatniji za vodu projekta. Ako sada glasove promatramo kao veze na druge

stranice tada primjenom PageRank algoritma dinamički dobivamo hijerarhiju članova na

odredenom projektu.

Uvǐsestručavanjem ovog algoritma (stoga i vǐse različitih projekata) u stvari

podržavamo koncept ribarske mreže. PageRank algoritam ima još jednu zanimljivu odliku

koju ćemo primijeniti u daljnjem izlaganju. Naime, zbroj svih rankova svih čvorova u

mreži je jednak 1 što je dakako korisno u kontekstu teorije vjerojatnosti.

Vratimo se sada na istinitost pojedinih informacija u autopoietičnom seman-

tičkom wikiju. Pretpostavimo da je svaka oznaka koju neki korisnik postavi ponderirana

njegovim rankom. Ovakav je ponder opravdan jer rank na neki način iskazuje uvjerenje

drugih članova da će dotični član učiniti pravu stvar, što lako možemo povezati s defini-

cijom znanja: ”Znanje je istinito vjerovanje”. Oznake se akumuliraju, dakle svaka se

oznaka može postaviti i vǐse puta od različitih članova. Zbrajanjem pondera dobivamo

vjerojatnost koja iskazuje uvjerenje članova projekta da je informacija točna.

Sada kad imamo brojčani iznos vjerojatnosti možemo i logički formalizirati

znanje u tako dinamički kreiranoj ontologiji. Jasno je da ontologiju možemo opisati nekim

od jezika za ontologije (npr. F-Logika – engl. frame logic, f-logic, Deskripcijska Logika

– engl. description logic) pri čemu se na ovom mjestu odlučujemo za logiku temeljenu

na okvirima odnosno F-Logiku. Potrebno je za odabrani jezik izvesti shemu anotacije

vjerojatnosti što će biti učinjeno u radu.

No, što je u slučaju ako zaključke želimo izvoditi iz vǐse različitih ontologija,

što je opravdano pitanje. Naime, ako kao što smo pretpostavili imamo niz projekata na

kojima se dinamički stvaraju ontologije tada je visoka vjerojatnost da će nam ponekad

286

biti potrebno znanje iz vǐse različitih područja. Primjerice, recimo da se jedan projekt

bavi vinima, drugi receptima i treći gastronomskom ponudom nekog područja. Vrlo jed-

nostavno može se dogoditi da netko postavi upit ”U kojem restoranu mogu popiti vino

koje najbolje ide uz odredenu vrstu ribe, a da pri tome ne platim vǐse od 200 kn?” Agent

koji pokušava odgovoriti na to pitanje mora prvo pronaći nazive recepata koji sadrže tu

odredenu vrstu ribe, zatim mora pronaći vina koja idu uz navedene recepte i na kraju

pretražiti restorane koji neku od kombinacija imaju u svojoj gastronomskoj ponudi uz

odgovarajuću cijenu.

Za spajanje različitih izvora znanja postoji princip amalgamacije izvora znanja.

U radu bi se taj koncept pokušao primijeniti na ovako načinjen sustav ponderiranjem

vjerojatnosti pojedinih izraza s izvedenicom broja članova na pojedinom projektu.

U ovom radu izvedena je formalizacija koja povezuje wiki sustave, semantički

web, mrežne usluge, društveno označavavanje i socijalne mreže. Uz to opisan je i jedan

jezik iz koji je nazvan Niklas (prema poznatom Niklasu Luhmanu koji je prvi uveo pojam

autopoiesisa u društvene znanosti). Konkretno, istražene su mogućnosti primjene dobro

formaliziranih koncepata iz semantičkog weba i semantičkih mrežnih usluga u autopoi-

etičnom kontekstu wiki sustava uz pripomoć društvenog označavanja i socijalnih mreža

kao što je prethodno opisano.

Prvo su objašnjeni i formalizirani jezici za (obične) wiki sustave. U tom kon-

tekstu bilo je potrebno opisati niz formalizacija sintakse koje se u takvim jezicima koriste

poput hiperveza, slika i raznih drugih dodataka, poglavlja, formatiranja teksta, tablica,

varijabli i predložaka.

Nakon formalizacije jezika za wiki sustave opisani su jezici za semantičke wiki

sustave koji su odredeno proširenje prethodno opisanih jezika. U tu svrhu bilo je potrebno

opisati i formalizirati sintaksu i konkretno koncepte poput atributa i relacija, konverzija,

semantičkih predložaka i mrežnih usluga. Pri tome se koristila logika temeljena na okvir-

ima (F-logika) kao jezik za formalizaciju.

Na kraju su semantički wiki sustavi stavljeni u autopoietični kontekst. Bilo je

potrebno izvesti anotaciju vjerojatnosti na prethodno definirane jezike obzirom na soci-

jalnu mrežu kao i amalgamacijsku shemu kako bi se omogućila integracija izvora znanja.

Na kraju je prikazan niz primjera mogućih autopoietičnih aplikacija kako bi

se poduprla teza o korisnosti prethodno izvedene formalizacije. Najvažniji primjer jest

konstrukcija autopoietičnog sustava za sigurnost osobnih računala. Osnovna ideja je iz-

graditi autopoietični semantički wiki sustav o osnovnim prijetnjama osobnim računalima

287

(poznatih pogrešaka) te ih povezati s potrebnim zakrpama. Na taj način bi se omogućila

svojevrsna baza znanja o prijetnjama i rješenjima te time i razvoj aplikacija za korǐstenje

takve baze. Uz navedeni prikazani su i sustav za autopoietičnu znanstvenu konferenciju

ili časopis te autopoietični sustav za upravljanje znanjem u organizaciji.

Glavni cilj ovog istraživanja bio je na jednom mjestu ukazati na teoriju i

primjenu autopoiesisa u informacijskim znanostima s posebnim naglaskom na korisnost

drukčijeg pristupa semantičkim wiki sustavima. Htjelo se pokazati da su wiki sustavi u

načelu autopoietični zbog svoje jednostavnosti korǐstenja od strane društvenog sustava koji

ih okružuje, a ta se jednostavnost gubi uvodenjem kompleksnih semantičkih tehnologija.

Svojevrsnim skrivanjem semantičkih tehnologija u pozadinu sustava te uvodenjem drugih

društvenih tehnologija poput društvenog označavanja i društvenih mreža pokušao se dok-

inuti taj jaz izmedu semantičkih tehnologija i wiki sustava.

Hipoteze ovog istraživanja, koje su u radu i potvrdene, bile su sljedeće:

HIPOTEZA 1. Na temelju formalizacije jezika za wiki sustave i jezika za semantičke

wiki sustave te uvodenja koncepta organizacije ribarske mreže moguće je izvesti an-

otacijsku shemu vjerojatnosti u takve jezike po uzoru na druge logičke programske

jezike. Anotacijska shema izvedena je uz pomoć sintaske logike temeljene na okvir-

ima.

HIPOTEZA 2. Na temelju sheme za anotaciju vjerojatnosti u jezike za semantičke wiki

sustave te na temelju uvodenja analize društvenih mreža u wiki sustave i semantičke

wiki sustave moguće je izvesti amalgamacijsku shemu za takve jezike po uzoru na

druge logičke programske jezike. Amalgamacijska shema izvedena je uz pomoć in-

tegracije društvenih mreža.

HIPOTEZA 3. Na temelju sheme za anotaciju vjerojatnosti i sheme za amalgamaciju

moguće je izvesti novu vrstu jezika za autopoietične semantičke wiki sustave. Pri

tome je formalizirana sintaksa i semantika novog jezika koji je svojevrsna kombi-

nacija anotirane i amalgamirane logike temeljene na okvirima i prikaznih jezika za

wiki sustave.

Iz navedenog jasno je da se znanstveni doprinos ovog rada sastoji od eksplic-

itne formalizacije (običnih) wiki sustava, formalizacije jezika za semantičke wiki sus-

tave, uvodenja semantičkih mrežnih usluga u semantičke wiki sustave te uvodenja ob-

jektno orijentiranog pristupa u formalizaciju jezika za semantičke wiki sustave. Osnovni

288

doprinos ogledava se u razvoju novog jezika za autopoietične semantičke wiki sustave

uvodenjem koncepata dobivenih iz društvenog označavanja i analizom socijalnih mreža

odnosno konkretno uvodenjem anotacije tako dobivenih vjerojatnosti i odgovarajuće amal-

gamacijske sheme te na kraju primjene koncepta autopoiesisa u kontekstu informacijskih

sustava. Uz navedeno opisana je jedna implementacija takvog jezika utjelovljena u jeziku

niKlas .

Iz društvene perspektive otvara se čitav niz mogućnosti za razvoj novih vrsta

aplikacija temeljenih na podržavanju autopoiesisa društvenog sustava. Naime, krajnji

proizvod tj. aplikacija ᵀaOPı̄s koja podržava autopoietične semantičke wiki sustave

razvija se prema načelima paradigme otvorenog koda i dana je zajednici na besplatno

korǐstenje.

289

Curriculum Vitae

Markus Schatten was born on September 27th in Vienna, Austria. Due to his parents

business commitments he lived in Vienna, Budapest, Laxemburg, Zagreb and Povile. He

finished the elementary school ”Ivana Mažuranića” in Novi Vinodolski, an graduated from

Prva riječka hrvatska gimnazija gymnasium highschool. Afterwards he graduated at the

Faculty of Organization and Informatics in information systems with the BSc thesis ”Klasi-

fikacija dvodimenzionalnih slika ljudskih lica pomoću neuronskih mreža” (Classification of

2D Face Images using Neural Networks) and mentor doc. dr. sc. Miroslav Bača in 2005.

In the same year the thesis was awarded with the deans degree. In 2008 he finished his

MSc thesis “Zasnivanje otvorene ontologije odabranih segmenata biometrijske znanosti”

(Developing an Open Ontology of Selected Segments of Biometrics) with mentor prof. dr.

Miroslav Bača, and co-mentor Mirko Čubrilo. He authored and co-authored more than 20

professional and scientific papers on various conferences and journals. At the current time

he is a research and teaching assistant at the chair for formal and applied foundations

of information sciences at the Faculty of Organization and Informatics where he teaches

‘knowledge management, programming, database theory and logic programming courses.

Home address: Zagrebačka 27

42000 Varaždin

Typesetting for this thesis was done with LATEX 2ε
1.

1LATEX 2ε which is an extension of LATEX. LATEX a collection of macros for TEX. TEX is a trademark
of the American Mathematical Society. The macros used in formatting this thesis were written by Dinesh
Das, Department of Computer Sciences, The University of Texas at Austin, and extended by Bert Kay,
James A. Bednar, and Ayman El-Khashab. Additionally changed by Markus Schatten to fit the format
of the Faculty of Organization and Informatics.

290

	Acknowledgements
	List of Figures
	Chapter 1 Introduction
	1.1 Objectives and Hypotheses
	1.2 Methodology and Framework
	1.3 Related Work

	Chapter 2 Wiki Systems
	2.1 A Short History of Wiki's
	2.2 Important Concepts

	Chapter 3 Languages for Wiki Systems
	3.1 Language
	3.2 Regular Expressions
	3.3 Grammars
	3.4 Wiki Syntax
	3.4.1 Hyperlinks
	3.4.2 Images and other Objects
	3.4.3 Headings and Text Formatting
	3.4.4 Comments
	3.4.5 Tables
	3.4.6 Variables and Templates
	3.4.7 References

	Chapter 4 From SM over SW to SWS
	4.1 Semantic Modeling and the Object - oriented Paradigm
	4.1.1 Domains
	4.1.2 Concepts
	4.1.3 Generalization and Specialization
	4.1.4 Objects
	4.1.5 Relations and Mappings
	4.1.6 Attributes and Attribute Values

	4.2 The Semantic Web
	4.2.1 Ontologies
	4.2.2 Semantic Web Languages

	4.3 Web Services
	4.4 Semantic Web Services
	4.5 Semantic Wiki Systems

	Chapter 5 Programming Languages for Semantic Wiki Systems
	5.1 Frame Logic
	5.2 Semantic Wiki Language
	5.2.1 Semantic Wiki Syntax
	5.2.2 Semantic Templates
	5.2.3 Queries
	5.2.4 Meta Information

	5.3 Inconsistencies in Semantic Wiki Systems

	Chapter 6 Autopoiesis and Autopoietic Systems
	6.1 Introducing Autopoietic Systems
	6.2 Various Aspects of Autopoiesis
	6.3 Invitations to an New Paradigm
	6.3.1 Heterarchies and the Fishnet Organization
	6.3.2 Process and Project Oriented Approaches and the Hypertext Organization
	6.3.3 Organizational Suprastructures and the Virtual Organization
	6.3.4 Organizational Architecture
	6.3.5 The Fractal Company

	6.4 Relations between Social, Organizational and Information Systems
	6.5 A Critical Review of Autopoiesis
	6.6 Defining Autopoietic Information Systems
	6.7 Modern Information and Communication Technologies
	6.8 Current System Model
	6.9 Experiences and Lessons Learned
	6.10 Conclusion

	Chapter 7 Programming Languages for Autopoiesis Facilitating Semantic Wiki Systems
	7.1 Social Network Analysis
	7.1.1 Graph Theory

	7.2 Probability Annotation
	7.2.1 Query Execution
	7.2.2 Query Execution with User-Defined Rules

	7.3 Annotated Semantic Wiki Language
	7.4 Amalgamation
	7.5 Amalgamated Annotated Semantic Wiki Language

	Chapter 8 The Niklas Language
	8.1 Wiki Component
	8.1.1 Hyperlinks
	8.1.2 Images and Other Objects
	8.1.3 Headings
	8.1.4 Text Formatting
	8.1.5 Lists and Tables
	8.1.6 Templates and Inclusion
	8.1.7 References

	8.2 Semantic Component
	8.2.1 Class Hierarchies
	8.2.2 Dictionaries
	8.2.3 Frequently Asked Questions
	8.2.4 Tables of Content
	8.2.5 Who Edited this Page
	8.2.6 Issue Tracking
	8.2.7 What Links Here

	8.3 Autopoietic Component
	8.3.1 Probability Annotation
	8.3.2 Amalgamation

	8.4 A Short Comparison to other Semantic Wiki Engines

	Chapter 9 Application Examples
	9.1 Autopoietic System for Personal Computer Security
	9.2 Autopoietic Scientific Publishing System
	9.3 Autopoietic Knowledge Management System
	9.4 Other Examples of Possible Applications

	Chapter 10 Conclusion
	Bibliography
	Appendix A Wiki Parser for niKlas in XSB Prolog
	Appendix B Semantic Wiki Parser for niKlas in XSB Prolog
	Appendix C Amalgamated Annotated Semantic Wiki Parser for niKlas in XSB Prolog
	Appendix D Annotated Query Execution Engine Implementation Issues
	Appendix E aOPis Source Code
	Sazetak
	Curriculum Vitae

