
�A� �p�r�o�p�o�s�a�l� �o�f� �a�n� �o�n�t�o�l�o�g�y�-�b�a�s�e�d� �m�e�t�h�o�d�o�l�o�g�i�c�a�l
�f�r�a�m�e�w�o�r�k� �f�o�r� �m�u�l�t�i�-�p�l�a�t�f�o�r�m� �m�o�b�i�l�e� �a�p�p�l�i�c�a�t�i�o�n�s
�d�e�v�e�l�o�p�m�e�n�t

�S�t�a�p�i���,� �Z�l�a�t�k�o

�D�o�c�t�o�r�a�l� �t�h�e�s�i�s� �/� �D�i�s�e�r�t�a�c�i�j�a

�2�0�1�4

�D�e�g�r�e�e� �G�r�a�n�t�o�r� �/� �U�s�t�a�n�o�v�a� �k�o�j�a� �j�e� �d�o�d�i�j�e�l�i�l�a� �a�k�a�d�e�m�s�k�i� �/� �s�t�r�u�
�n�i� �s�t�u�p�a�n�j�:� �U�n�i�v�e�r�s�i�t�y� �o�f�

�Z�a�g�r�e�b�,� �F�a�c�u�l�t�y� �o�f� �O�r�g�a�n�i�z�a�t�i�o�n� �a�n�d� �I�n�f�o�r�m�a�t�i�c�s� �V�a�r�a�~�d�i�n� �/� �S�v�e�u�
�i�l�i�a�t�e� �u� �Z�a�g�r�e�b�u�,� �F�a�k�u�l�t�e�t�

�o�r�g�a�n�i�z�a�c�i�j�e� �i� �i�n�f�o�r�m�a�t�i�k�e� �V�a�r�a�~�d�i�n

�P�e�r�m�a�n�e�n�t� �l�i�n�k� �/� �T�r�a�j�n�a� �p�o�v�e�z�n�i�c�a�:�h�t�t�p�s�:�/�/�u�r�n�.�n�s�k�.�h�r�/�u�r�n�:�n�b�n�:�h�r�:�2�1�1�:�7�5�2�2�4�9

�R�i�g�h�t�s� �/� �P�r�a�v�a�:�I�n� �c�o�p�y�r�i�g�h�t

�D�o�w�n�l�o�a�d� �d�a�t�e� �/� �D�a�t�u�m� �p�r�e�u�z�i�m�a�n�j�a�:�2�0�2�2�-�1�2�-�0�7

�R�e�p�o�s�i�t�o�r�y� �/� �R�e�p�o�z�i�t�o�r�i�j�:

�F�a�c�u�l�t�y� �o�f� �O�r�g�a�n�i�z�a�t�i�o�n� �a�n�d� �I�n�f�o�r�m�a�t�i�c�s� �-� �D�i�g�i�t�a�l�

�R�e�p�o�s�i�t�o�r�y

�8�Q�L�Y�H�U�V�L�W�\���R�I���$�O�F�D�O�i
Computer Science Department, Postgraduate School

�'�R�F�W�R�U�D�O���S�U�R�J�U�D�P���³�,�Q�I�R�U�P�D�W�L�R�Q���D�Q�G���.�Q�R�Z�O�H�G�J�H���(�Q�J�L�Q�H�H�U�L�Q�J�´

University of Zagreb
Faculty of Organization and Informatics

Postgraduate doctoral study "Information Sciences"

�=�/�$�7�.�2���6�7�$�3�,�û

A PROPOSAL OF AN ONTOLOGY-BASED METHODOLOGICAL
FRAMEWORK FOR MULTI-PLATFORM MOBILE APPLICATIONS

DEVELOPMENT

DOCTORAL DISSERTATION

Advisors:
Prof. Vjeran Strahonja

Dr. Luis de Marcos Ortega

�$�O�F�D�O�i���G�H���+�H�Q�D�U�H�V���	���9�D�U�D�å�G�L�Q������������

�6�Y�H�X�þ�L�O�L�ã�W�H���X���$�O�F�D�O�i�L
�2�G�M�H�O���U�D�þ�X�Q�D�O�Q�L�K���]�Q�D�Q�R�V�W�L�����3�R�V�O�L�M�H�G�L�S�O�R�P�V�N�D���ã�N�R�O�D

�'�R�N�W�R�U�V�N�L���S�U�R�J�U�D�P���³�,�Q�å�H�Q�M�H�U�V�W�Y�R���L�Q�I�R�U�P�D�F�L�M�D���L���]�Q�D�Q�M�D�´

�6�Y�H�X�þ�L�O�L�ã�W�H���X���=�D�J�U�H�E�X
Fakultet organizacije i informatike

�3�R�V�O�L�M�H�G�L�S�O�R�P�V�N�L���G�R�N�W�R�U�V�N�L���V�W�X�G�L�M���³�,�Q�I�R�U�P�D�F�L�M�V�N�H���]�Q�D�Q�R�V�W�L�´

�=�/�$�7�.�2���6�7�$�3�,�û

P�5�,�-�(�'�/�2�*���2�1�7�2�/�2�ã�.�,���8�7�(�0�(�/�-�(�1�2�*���0�(�7�2�'�2�/�2�ãKOG
�2�.�9�,�5�$���=�$���5�$�=�9�2�-���9�,�ãE-PLATFORMSKIH MOBILNIH

APLIKACIJA

DOKTORSKI RAD

Mentori:
Prof.dr.sc. Vjeran Strahonja

Doc.dr.sc. Luis de Marcos Ortega

�$�O�F�D�O�i���G�H���+�H�Q�D�U�H�V��i �9�D�U�D�å�G�L�Q������������

D E P A R T A M E N T O D E
�& �, �(�1 �& �, �$ �6 �� �' �(�� �/ �$ �� �& �2 �0 �3 �8 �7 �$ �& �, �Ï �1

�&�D�P�S�X�V���8�Q�L�Y�H�U�V�L�W�D�U�L�R�����(�G�L�I�L�F�L�R���3�R�O�L�W�p�F�Q�L�F�R

�������������$�O�F�D�O�i���G�H���+�H�Q�D�U�H�V�����0�D�G�U�L�G��
�7�H�O�p�I�R�Q�R�V������������������������������
Fax: 91 885 66 46

�8
�1

�,
�9

�(
�5

�6
�,

�'
�$

�'
��

�'
�(

��
�$

�/
�&

�$
�/

�È
��

��
�3

�$
�7

�5
�,

�0
�2

�1
�,

�2
��

�'
�(

��
�/

�$
��

�+
�8

�0
�$

�1
�,

�'
�$

�'

�'�x�D�����7�H�U�H�V�D���,�����'�t�H�]���)�R�O�O�H�G�R�����3�U�R�I�H�V�R�U�D���7�L�W�X�O�D�U���G�H���8�Q�L�Y�H�U�V�L�G�D�G���G�H�O���È�U�H�D���G�H���/�H�Q�J�X�D�M�H�V���\��

�6�L�V�W�H�P�D�V�� �,�Q�I�R�U�P�i�W�L�F�R�V���� �H�Q�� �F�D�O�L�G�D�G�� �G�H�� �'�L�U�H�F�W�R�U�D�� �G�H�O�� �'�H�S�D�U�W�D�P�H�Q�W�R�� �G�H�� �&�L�H�Q�F�L�D�V�� �G�H�� �O�D��

�&�R�P�S�X�W�D�F�L�y�Q��

CERTIFICO ���� �4�X�H�� �O�D�� �7�H�V�L�V�� �'�R�F�W�R�U�D�O�� �W�L�W�X�O�D�G�D�� �³A Proposal of an Ontology-Based

Methodological Framework for Multi -platform Mobile Applications

Development� ́�U�H�D�O�L�]�D�G�D���S�R�U���'�����=�O�D�W�N�R���6�W�D�S�L�ü���\���G�L�U�L�J�L�G�D���S�R�U���H�O���'�U�����'�����9�M�H�U�D�Q���6�W�U�D�K�R�Q�M�D��

y co-�G�L�U�L�J�L�G�D�� �S�R�U�� �H�O�� �'�U���� �'���� �/�X�L�V�� �G�H�� �0�D�U�F�R�V�� �2�U�W�H�J�D���� �U�H�~�Q�H�� �O�R�V�� �U�H�T�X�L�V�L�W�R�V�� �S�D�U�D�� �V�X��

�S�U�H�V�H�Q�W�D�F�L�y�Q���\���G�H�I�H�Q�V�D���S�~�E�O�L�F�D���K�D�E�L�H�Q�G�R���U�H�F�L�E�L�G�R���O�D���F�R�Q�I�R�U�P�L�G�D�G���G�H�O���G�H�S�D�U�W�D�P�H�Q�W�R���H�Q���O�D��

�F�R�P�L�V�L�y�Q���S�H�U�P�D�Q�H�Q�W�H���F�H�O�H�E�U�D�G�D���H�O���G�t�D���������G�H���6�H�S�W�L�H�P�E�U�H���G�H������������

�<�� �S�D�U�D�� �T�X�H�� �D�V�t�� �F�R�Q�V�W�H���� �I�L�U�P�R�� �O�D�� �S�U�H�V�H�Q�W�H�� �H�Q�� �$�O�F�D�O�i�� �G�H�� �+�H�Q�D�U�H�V���� �D�� ������ �G�H�� �6�H�S�W�L�H�P�E�U�H�� �G�H��

2013

�/�D���'�L�U�H�F�W�R�U�D���G�H�O���'�H�S�D�U�W�D�P�H�Q�W�R���G�H���&�L�H�Q�F�L�D�V���G�H���O�D���&�R�P�S�X�W�D�F�L�y�Q

�'�x�D�����7�H�U�H�V�D���,�����'�t�H�]���)�R�O�O�H�G�R��

DEPARTAMENTO DE
�&�,�(�1�&�,�$�6���'�(���/�$���&�2�0�3�8�7�$�&�,�Ï�1

Dr. D. Vjeran Strahonja, Catedrático de Universidad del Área de Ciencias de la
Información y Comunicación de la Facultad de Organización e Informática de la
Universidad de Zagreb.

Dr. D. Luis de Marcos Ortega, Profesor Ayudante Doctor del Área de Ciencias
de la Computación e Inteligencia Artificial del Departamento de Ciencias de la
Computación de la Universidad de Alcalá.

HACEN CONSTAR:

Que, una vez concluido el trabajo de tesis doctoral titulado: �³A proposal of
an ontology-based methodological framework for multi -platform mobile
applications development� ́ realizado por Zlatko Stapi�ü, dicho trabajo tiene
suficientes méritos teóricos, que se han contrastado adecuadamente
mediante validaciones experimentales y que son altamente novedosos. Por
todo ello consideran que procede su defensa pública.

Y para que así conste, firman la presente en Varazdin y Alcalá de Henares, a 22

de julio de 2013.

 El Director de la Tesis El Co-director de la Tesis

 Dr. Vjeran Strahonja Dr. Luis de Marcos Ortega

Onima koji su �u�����v���µ���]�o�] sanjati,
koji su mi �}�u�}�P�µ���]�o�]��krenuti,

koji �•�µ���À�i���Œ�}�À���o�]�����������µ���•�š�]���]���]���•���o�i�µ�����À�o�i�µ bili uz mene.

Mojoj obitelji.

ACKNOWLEDGMENTS

Now, when looking back, I can hardly find words to express my gratitude to those who deserve to be
acknowledged and that have helped me a lot during the years of my work on this dissertation
project.

First of all I want to thank my advisors Prof. Vjeran Strahonja and Dr. Luis de Marcos Ortega, for their
help, patience, advices and support during all this time. Your useful recommendations, experience
and motivation were of great help. Thank you for everything!

Likewise, I want to express my gratefulness to the institutions and staff of the �h�v�]�À���Œ�•�]�š�Ç�� �}�(�� ���o�����o��
(Spain) who have kindly offered their facilities and help during my research stays in 2012 and 2013. I
specially appreciate the scientific and other help provided by mentor Dr. de Marcos and Prof. �:�}�•� ��
�D���Œ�_���� �'�µ�š�]� �Œ�Œ���Ì�� �D���Œ�š�_�v���Ì, Prof. �:�}�•� �� �:���À�]���Œ�� �D���Œ�š�_�v���Ì�� �,���Œ�Œ���]z, Ana Maria Privado Rivera and Maria
Bego�y�� Aurrekoetxea from the Computer Science Department at the �h�v�]�À���Œ�•�]�š�Ç���}�(�����o�����o���X

I would like to acknowledge everyone at the Information Systems Development Department of the
University of Zagreb, Faculty of Organization and Informatics for their help and support during my
work on this thesis. My gratitude also goes to the Croatian Science Foundations for their financial
support of my research project and my stay at the �h�v�]�À���Œ�•�]�š�Ç�� �}�(�� ���o�����o���X�� �d�Z�]�•�� �‰�Œ�}�i�����š�� �]�v���o�µ��������
important part of the research performed in this dissertation.

The dissertation language and grammar would be (at least) funny without everybody who helped me
proofread the document. Thank you all, and especially thank you Tea for spending many hours in
reading and suggesting the corrections to this book.

Last, but not the least, this research would never have become reality, without the love, support and
motivation instilled in me by my wife Jelena, my children, mother, brother and the rest of my family.
Dear Jelena, thank you for all your love and support and for always believing in me. Dear Marta and
Emanuel, your smiles wiped away all exhaustion at the end of each day. Without the three of you,
�š�Z�����•�µ�v���Á�}�µ�o���v�[�š���•�Z�]�v�����š�Z�����•���u�� for me.

ABSTRACT

Software development teams are faced with the lack of interoperability during the development of
mobile applications for two or more target platforms. The development for second and every other
platform means a new project with a need to repeat almost all the phases defined by the chosen
methodology but with a narrow possibility of reuse of the already defined artifacts. The existing
efforts of professional and scientific community to solve this problem have a similar approac�Z���~�^���}������
�}�v�����U�� �Œ�µ�v�� ���À���Œ�Ç�Á�Z���Œ���_�•��with similar advantages and drawbacks. Thus, this dissertation aims to
propose a different solution and is concerned with: (1) analyzing the methodologies suitable for
mobile applications development, (2) observing the implementation of prototype application in
order to define artifacts that are created during the development process for two target platforms,
(3) semantic description of artifacts and their meaning, and (4) defining unique ontological definition
as a base for methodological interoperability.

The results of a systematic literature review performed on 6761 primary studies, show that current
state-of-the-art literature brings only 22 development methodologies and 7 development
approaches which can be identified as eligible for multi-platform mobile applications development.
Among these, Mobile-D methodology accompanied with Test Driven Development was chosen and
used in the observed development processes for Android and Windows Phone platforms. Total of 71
artifacts were identified and the artifacts reusability level when developing for second target
platform was 66.00%. In the last research phase, the artifacts for both platforms were semantically
described into a single ontological description comprising 213 classes, 14 object properties and 2213
axioms defined in ALCRIF DL expression sub-language. Having this ontology proved as correct and
valid, flexible, reusable and extensible we created the basis for development of an information
system to guide the development teams in a more efficient and interoperable process of multi-
platform mobile applications development.

Keywords: Methodology, mobile, multi-platform, development, ontology.

RESUMEN

Los equipos de desarrollo de software se enfrentan al problema de la falta de interoperabilidad
durante el desarrollo de ���‰�o�]�������]�}�v���•�� �‰���Œ���� ���}�•�� �}�� �u���•�� �‰�o���š���(�}�Œ�u���•�X�� ���o�� �����•���Œ�Œ�}�o�o�}�� �‰���Œ���� �o���� �•���P�µ�v������ �Ç��
subsiguientes plataformas significa un nuevo proyecto con la necesidad de repetir casi todas las fases
definidas e�v�� �o���� �u���š�}���}�o�}�P�_���� ���o���P�]�����U�� �‰���Œ�}�� ���}�v�� �‰�}�����•�� �‰�}�•�]���]�o�]���������•�� ������ �Œ���µ�š�]�o�]�Ì���Œ�� �o�}�•�� ���Œ�š���(�����š�}�•��
�����(�]�v�]���}�•�X�� �>�}�•�� ���•�(�µ���Œ�Ì�}�•�� �Œ�����o�]�Ì�����}�•�� �‰�}�Œ�� �o���� ���}�u�µ�v�]�������� ���]���v�š�_�(�]������ �Ç�� �‰�Œ�}�(���•�]�}�v���o�� �‰���Œ���� �•�}�o�À���v�š���Œ�� ���•�š����
�‰�Œ�}���o���u���� �š�]���v���v�� �µ�v���� ���‰�Œ�}�Æ�]�u�����]�•�v�� �•�]�u�]�o���Œ�� �~�^���}������ �}�v�����U�� �Œ�µ�v�� ���À���Œ�Ç�Á�Z���Œ���_�•�� �š���u���]� �v�� ���}�v�� �•�]�u�]�o���Œ���•��
�À���v�š���i���•�� ���� �]�v���}�v�À���v�]���v�š���•�X�� ���•�š���� �š���•�]�•�� �‰�Œ���š���v������ �‰�Œ�}�‰�}�v���Œ�� �µ�v���� �•�}�o�µ���]�•�v�� ���]�(���Œ���v�š���W�� �~�í�•�� ���v���o�]�Ì���v���}�� �o���•��
�u���š�}���}�o�}�P�_���•�� ���������µ�������•�� �‰���Œ���� ���o�� �����•���Œ�Œ�}�o�o�}�� ������ ���‰�o�]�������]�}�v���•�� �u�•�À�]�o���•�U�� �~�î�•�� �}���•���Œ�À���v���}�� �o����
�]�u�‰�o���u���v�š�����]�•�v���������µ�v���‰�Œ�}�š�}�š�]�‰�}�����������‰�o�]�������]�•�v���‹�µ�����•�]�Œ�Àa para definir los artefactos creados durante el
�‰�Œ�}�����•�}�� ������ �����•���Œ�Œ�}�o�o�}�� �‰���Œ���� ���}�•�� �‰�o���š���(�}�Œ�u���•�U�� �~�ï�•�� ���•�š�����o�����]���v���}�� �µ�v���� �����•���Œ�]�‰���]�•�v�� �•���u���v�š�]������ ������ �o�}�•��
���Œ�š���(�����š�}�•�� �Ç�� �•�µ�� �•�]�P�v�]�(�]�������}�U�� �Ç�� �~�ð�•�� ���Œ�����v���}�� �µ�v���� �·�v�]������ �����(�]�v�]���]�•�v�� �}�v�š�}�o�•�P�]������ ���}�u�}�� �����•���� �‰���Œ���� �o����
interoperabilidad m���š�}���}�o�•�P�]�����X

�>�}�•�� �Œ���•�µ�o�š�����}�•�� ������ �µ�v���� �Œ���À�]�•�]�•�v���•�]�•�š���u���š�]������ ������ �o�����o�]�š���Œ���š�µ�Œ���U���Œ�����o�]�Ì�������� �•�}���Œ���� �ò�ó�ò�í�����•�š�µ���]�}�•�� �‰�Œ�]�u���Œ�]�}�•�U��
mostraron que el estado del arte actual cuenta solo con 2�î���u���š�}���}�o�}�P�_���•�������������•���Œ�Œ�}�o�o�}���Ç���ó�����v�(�}�‹�µ���•��
de desarrollo (development approaches) ade���µ�����}�•���‰���Œ�������o�������•���Œ�Œ�}�o�o�}�����������‰�o�]�������]�}�v���•���u�•�À�]�o���•���u�µ�o�š�]-
�‰�o���š���(�}�Œ�u���X�� ������ ���v�š�Œ���� ���o�o���•�� �•���� �•���o�������]�}�v�•�� �Ç�� ���u�‰�o���•�� �o���� �u���š�}���}�o�}�P�_���� �D�}���]�o��-D junto con un enfoque
dirigido por las pruebas (test driven development) para estudiar el proceso de desarrollo en las
plataformas Android y Windows Phone. Se identificaron un total de 71 artefactos y el nivel de
reusabilidad de los artefactos durante el desarrollo para la segunda plataforma fue del 66.00%. En la
�·�o�š�]�u���� �(���•���� ������ �o���� �]�v�À���•�š�]�P�����]�•�v�� �•���� �����•���Œ�]���]���Œ�}�v�� �•���u���v�š�]�����u���v�š���� �o�}�•�� ��rtefactos para ambas
�‰�o���š���(�}�Œ�u���•�����v���µ�v�����·�v�]������ �����•���Œ�]�‰���]�•�v���}�v�š�}�o�•�P�]�����������(�]�v�]���������v�����o���•�µ���o���v�P�µ���i���������� ���Æ�‰�Œ���•�]�•�v��ALCRIF DL
que cuenta con 213 clases, 14 propiedades de objeto y 2213 axiomas. Habiendo comprobado la
���}�Œ�Œ�������]�•�v�U�� �À���o�]�����Ì�U�� �(�o���Æ�]���]�o�]�������U�� �Œ���µ�•�����]�o�]�������� �Ç�� ���Æ�š���v�•�]���]�o�]�������� ������ �o���� �}�v�š�}�o�}�P�_���U�� �Z���u�}�•�� ���Œ�������}�� �o���� �����•����
�‰���Œ���� ���o�� �����•���Œ�Œ�}�o�o�}�� ������ �µ�v�� �•�]�•�š���u���� ������ �]�v�(�}�Œ�u�����]�•�v�� �‹�µ���� �P�µ�]���� ���� �o�}�•�� ���‹�µ�]�‰�}�•�� ������ �����•���Œ�Œ�}�o�o�}�� �Z�����]���� �µ�v��
�‰�Œ�}�����•�}�� ������ �����•���Œ�Œ�}�o�o�}�� �u���•�� ���(�]���]���v�š���� ���� �]�v�š���Œ�}�‰���Œ�����o���� �‰���Œ���� �o���� ���}�v�•�š�Œ�µ�����]�•�v�� ������ ���‰�o�]�������]�}�v���•�� �u�•�À�]�o���•��
multi-plataforma.

Palabras clave: �D���š�}���}�o�}�P�_��, m�•�À�]�o, multi-plataforma, desarrollo, �}�v�š�}�o�}�P�_��

S���~��������

�Z���Ì�À�}�i�v�]�� �š�]�u�}�À�]�� �•�µ�•�Œ�����µ�� �•���� �•�� �‰�Œ�}���o���u�}�u�� �v���]�v�š���Œ�}�‰���Œ�����]�o�v�}�•�š�]�� �‰�Œ�]�o�]�l�}�u�� �Œ���Ì�À�}�i���� ���‰�o�]�l�����]�i���� �Ì���� ���À�]�i���� �]�o�]��
�À�]�“���� �u�}���]�o�v�]�Z�� �‰�o���š�(�}�Œ�u�]�X�� �Z���Ì�À�}�i�� ���‰�o�]�l�����]�i���� �Ì���� ���Œ�µ�P�µ�� �]�� �•�À���l�µ�� �•�o�i���������µ�� �‰�o���š�(�}�Œ�u�µ�� �Ì�v�����]�� �v�}�À�]�� �‰�Œ�}�i���l�š�� �µ��
�l�}�i���u�� �i���� �‰�}�š�Œ�����v�}�� �‰�}�v�}�À�v�}�� �‰�Œ�}�À���•�š�]�� �À�����]�v�µ�� �(���Ì���� �����(�]�v�]�Œ��nih odabranom metodikom razvoja, pri
�����u�µ�� �•���� �l�Œ���]�Œ���v�]�� ���Œ�š���(���l�š�]�� �š���“�l�}�� �]�o�]�� �µ�}�‰������ �‰�}�v�}�À�v�}�� �v���� �l�}�Œ�]�•�š���X�� �E���‰�}�Œ�]�� �‰�Œ�}�(���•�]�}�v���o�v���� �]�� �Ì�v���v�•�š�À���v����
�Ì���i�����v�]�������Ì�����Œ�i���“���v�i���u���}�À�}�P���‰�Œ�}���o���u�����]�u���i�µ���•�o�]�����v���‰�Œ�]�•�š�µ�‰���~�c�l�}���]�Œ���i���i�����v�}�u�U���l�}�Œ�]�•�š�]���•�À�µ�P���i���^�•�U���•�o�]���v����
prednosti, ali i zaj�����v�]���l���� �v�����}�•�š���š�l���X�� �^�š�}�P���� �}�À���� ���]�•���Œ�š�����]�i���� �v���À�������v�}�u�� �‰�Œ�}���o���u�µ�� �‰�Œ�]�•�š�µ�‰���� �v���� �v�}�À��
�v�����]�v���]�������À�]���•���W���~�í�•�����v���o�]�Ì�]�Œ���v�i���u���u���š�}���]�l�����‰�}�P�}���v�]�Z���Ì�����Œ���Ì�À�}�i���u�}���]�o�v�]�Z�����‰�o�]�l�����]�i���U���~�î�•���‰�Œ�}�u���š�Œ���v�i���u��
razvoja prototipne aplikacije u svrhu definiranja artefakata koji nastaju pri razvoju mobilne aplikacije
�Ì�������À�]�i�������]�o�i���v�����‰�o���š�(�}�Œ�u���U���~�ï�•���•���u���v�š�]���l�]�u���}�‰�]�•�]�À���v�i���u�������(�]�v�]�Œ���v�]�Z�����Œ�š���(���l���š�����]���v�i�]�Z�}�À�]�Z���Ì�v�������v�i���U���š����
�~�ð�•�������(�]�v�]�Œ���v�i���u���i�����]�v�•�š�À���v�����}�v�š�}�o�}�“�l���������(�]�v�]���]�i�����l���}���}�•�v�}�À�����Ì�����u���š�}���}�o�}�“�l�µ���]�v�š���Œ�}�‰���Œ�����]�o�v�}�•�š�X

Rezultati sustavnog pregleda literature provedenog nad 6761 radom pokazali su da se trenutno u
�o�]�š���Œ���š�µ�Œ�]�� �•�‰�}�u�]�v�i�µ�� �î�î�� �u���š�}���]�l���� �]�� �ó�� �‰�Œ�]�•�š�µ�‰���� �l�}�i�]�� �•�µ�� �‰�}�P�}���v�]�� �Ì���� �Œ���Ì�À�}�i�� �À�]�“��-platformskih mobilnih
���‰�o�]�l�����]�i���X�� �/�Ì�u�����µ�� �]�����v�š�]�(�]���]�Œ���v�]�Z�� �u���š�}���]�l���� �}�������Œ���v�]�� �•�µ�� �D�}���]�o��-D metodika i pristup razvoju vo�����v��
�š���•�š�]�Œ���v�i���u�U�� �l�}�i�]�� �•�µ�� �l�}�Œ�]�“�š���v�]�� �‰�Œ�]�� �]�u�‰�o���u���v�š�����]�i�]�� �‰�Œ�}�š�}�š�]�‰�v�}�P�� �Œ�i���“���v�i���� �Ì���� ���v���Œ�}�]���� �]�� �t�]�v���}�Á�•�� �W�Z�}�v����
�‰�o���š�(�}�Œ�u�µ�X���h�l�µ�‰�v�}���i�����]�����v�š�]�(�]���]�Œ���v���ó�í�����Œ�š���(���l�š���‰�Œ�]�������u�µ���i�����‰�}�v�}�À�v�����]�•�l�}�Œ�]�•�š�]�À�}�•�š�����Œ�š���(���l���š�����‰�Œ�]���Œ���Ì�À�}�i�µ��
za drugu platformu bila 66.00%. U posljednjoj su f���Ì�]�� �]�•�š�Œ���Î�]�À���v�i���� ���Œ�š���(���l�š�]�� �•���u���v�š�]���l�]�� �}�‰�]�•���v�]�� �µ��
�Ì���i�����v�]���l�µ�� �}�v�š�}�o�}�“�l�µ�� �����(�]�v�]���]�i�µ�� �l�}�i���� �µ�� �l�}�v�����v�]���]�� �•�����Œ�Î�]�� �î�í�ï�� �l�o���•���U�� �í�ð�� �}���i���l�š�v�]�Z�� �•�À�}�i�•�š���À���� �]�� �î�î�í�ï��
���l�•�]�}�u���� �����(�]�v�]�Œ���v�]�Z�� �‰�}�u�}���µ�� ���>���Z�/�&-DL jezika izraza. U radu je dokazano da je ontologija valjana,
fleksibilna, p�}�v�}�À�v�}�� �]�•�l�}�Œ�]�•�š�]�À���� �]�� �v�����}�P�Œ�����]�À���U�� ���]�u���� �i���� �l�Œ���]�Œ���v���� �}�•�v�}�À���� �Ì���� �Œ���Ì�À�}�i�� �]�v�(�}�Œ�u�����]�i�•�l�}�P��
�•�µ�•�š���À���� �l�}�i�]�� ���]�� �À�}���]�}�� �Œ���Ì�À�}�i�v���� �š�]�u�}�À���� �µ�� ���(�]�l���•�v�]�i���u�� �]�� ���}�o�i���� �]�v�š���Œ�}�‰���Œ�����]�o�v�}�u�� �‰�Œ�}�����•�µ�� �Œ���Ì�À�}�i���� �À�]�“��-
platformskih mobilnih aplikacija.

�<�o�i�µ���v�����Œ�]�i�����]�W���D���š�}���]�l���U���Œ���Ì�À�}�i���À�]�“��-platformskih mobilnih aplikacija, ontologija

I

TABLE OF CONTENTS

List of figures .. V

List of tables .. VII

List of acronyms ... IX

1. Introduction ... 1

1.1. Outlining the problem .. 1

1.1.1. Development of mobile applications .. 1

1.1.2. Existing solutions ... 4

1.1.3. The final remarks on platforms and tools ... 10

1.2. Objectives and hypotheses ... 10

1.2.1. The main goal ... 11

1.2.2. Hypotheses ... 11

1.3. Research scope and methodology.. 11

1.3.1. Scope definition .. 11

1.3.2. Research approach .. 13

1.4. Dissertation disposition ... 15

2. Mobile applications development methodologies: a systematic review 17

2.1. Research method .. 18

2.1.1. Definition of systematic literature review (SLR) ... 19

2.1.2. Steps to be performed ... 20

2.1.3. Advantages and disadvantages of SLR .. 42

2.1.4. Light SLR ... 43

2.1.5. Conclusions on SLR ... 44

2.2. Planning the review ... 44

2.2.1. Defining the basic concepts .. 45

2.2.2. Overview of methodologies targeting development of mobile applications 50

2.2.3. Identification of the need for a review ... 54

2.2.4. Specifying the research questions .. 56

2.2.5. Developing a review protocol .. 57

2.2.6. Evaluating the review protocol .. 62

2.3. Conducting the review ... 62

2.3.1. Identification of research .. 62

2.3.2. Selection of primary studies ... 64

II

2.3.3. Study quality assessment .. 68

2.3.4. Data extraction and monitoring .. 70

2.3.5. Data synthesis ... 71

2.4. Choosing development methodology .. 74

2.5. Relevance of the chapter .. 75

3. Methodology implementation ... 77

3.1. Mobile-D overview.. 77

3.1.1. Introducing Mobile-D .. 77

3.1.2. Mobile-D process ... 78

3.1.3. Mobile-D artifacts .. 79

3.1.4. Test driven development .. 81

3.1.5. Mobile-D reference .. 81

3.2. Explore phase .. 82

3.2.1. Targeted users and stakeholders ... 82

3.2.2. Initial requirements .. 82

3.2.3. Architecture line description .. 82

3.2.4. Project plan ... 83

3.2.5. Documentation ... 84

3.2.6. Monitoring and measurement ... 85

3.2.7. Project plan checklist ... 85

3.3. Initialize phase ... 86

3.3.1. Environment setup .. 86

3.3.2. Project plan and architecture plan .. 86

3.3.3. Initial requirements analysis ... 88

3.3.4. Product backlog .. 88

3.3.5. Acceptance tests ... 89

3.3.6. User interface sketches ... 92

3.3.7. Trial Day .. 92

3.4. Productionize ... 103

3.4.1. First iteration .. 103

3.4.2. Other iterations ... 116

3.5. Stabilize ... 123

3.6. System test & fix ... 123

3.7. Development of Windows Phone application ... 125

3.7.1. Explore phase ... 125

3.7.2. Initialize phase .. 126

3.7.3. Productionize .. 128

III

3.7.4. Stabilize .. 129

3.7.5. System test & fix .. 129

3.8. Conclusions on implementation .. 130

3.9. Relevance of the chapter .. 132

4. Identification of the artifacts ... 133

4.1. Analysis setting.. 133

4.2. Artifacts targeting Android platform ... 137

4.3. Artifacts targeting Windows Phone platform .. 142

4.4. Cross-platform artifacts comparison ... 147

4.4.1. Common artifacts ... 148

4.4.2. Platform dependent artifacts ... 149

4.5. Relevance of the chapter .. 150

5. The ontology for methodological interoperability .. 153

5.1. Ontology .. 154

5.1.1. Definitions .. 154

5.1.2. Uses of ontologies .. 155

5.1.3. Ontologies and semantic interoperability ... 156

5.1.4. Ontology types ... 157

5.1.5. Ontology development methodologies ... 159

5.1.6. Ontology development tools and languages ... 166

5.1.7. Final remarks on ontologies ... 168

5.2. Android artifacts ontology ... 169

5.2.1. The domain and the scope of the ontology .. 170

5.2.2. Reuse of existing ontologies .. 171

5.2.3. Identified terms .. 171

5.2.4. Classes and class hierarchy .. 172

5.2.5. Properties of classes ... 176

5.2.6. Knowledge definition and inference .. 177

5.2.7. Final remarks on Android Case Ontology .. 182

5.3. Windows Phone artifacts ontology .. 182

5.3.1. Existing ontology reuse .. 183

5.3.2. Classes, properties and hierarchy ... 183

5.3.3. Updates in knowledge definition .. 185

5.3.4. Final remarks on Windows Phone Case Ontology ... 187

5.4. Common ontology for methodological interoperability .. 188

5.4.1. The domain and the scope of the ontology .. 189

IV

5.4.2. Merging the existing ontologies ... 190

5.4.3. Updating the basic terms .. 192

5.4.4. Final class and properties hierarchy ... 193

5.4.5. Evaluating and testing the ontology ... 200

5.4.6. Final remarks on proposed ontology for methodological interoperability 210

5.5. Relevance of the chapter .. 211

6. Discussion of results ... 213

6.1. Methodologies for development of mobile applications ... 213

6.1.1. Performing systematic literature review in SE ... 214

6.1.2. Mobile development methodologies and approaches: SLR 216

6.2. Mobile-D implementation ... 218

6.3. Identification of artifacts ... 219

6.4. Ontology for methodological interoperability ... 220

6.5. Summary of the results .. 223

7. Conclusion .. 225

7.1. Research objectives revisited ... 225

7.2. Limitations of the research .. 227

7.3. Possible future research ... 228

7.4. Conclusion ... 230

References .. 233

Appendix A �± Papers selected for the SLR Phase 2 analysis ... 245

Appendix B �± Papers selected for the SLR Phase 3 analysis ... 260

Appendix C �± Study quality assessment table ... 263

Appendix D �± Filled data forms for the SLR ... 265

Appendix E �± Multi -platform Case Artifacts Ontology ... 291

Extended abstract ... 369

Resumen extendido .. 389

�3�U�R�ã�L�U�H�Q�L���V�D�å�H�W�D�N ... 409

Curriculum vitae ... 429

V

LIST OF FIGURES

Figure 1 - Problem - The Big Picture ... 3

Figure 2 - Architecture of some existing solutions .. 4

Figure 3 - MobiVine overview ... 6

Figure 4 - PhoneGap build process .. 7

Figure 5 - Architecture of some possible solutions .. 9

Figure 6 - Possible scope (A) ... 12

Figure 7 - Possible scope (B) ... 12

Figure 8 - Systematic Review Protocol Template .. 27

Figure 9 - Example of study selection process (a) ... 31

Figure 10 - Example of study selection process (b) ... 31

Figure 11 - Example of applying narrative synthesis ... 39

Figure 12 - Agile Risk-based Methodology ... 53

Figure 13 - Mobile-D process .. 78

Figure 14 - Artifacts in Mobile-D .. 79

Figure 15 - Basic project plan .. 84

Figure 16 - Detailed project plan .. 87

Figure 17 - Overall system architecture ... 87

Figure 18 - Mobile application architecture ... 88

Figure 19 - User interface sketches .. 92

Figure 20 - Entity users (trial day) ... 96

Figure 21 - Class diagram (mobile app - trial day) .. 98

Figure 22 - Class diagram (web service - trial day) ... 99

Figure 23 - Test results (trial day) .. 102

Figure 24 - Application screenshots (trial day) .. 102

Figure 25 - Data model (iteration 1) ... 108

Figure 26 - Mobile app class model (iteration 1) ... 110

Figure 27 - Web app class model (iteration 1) ... 111

Figure 28 - Test results (iteration 1) ... 114

Figure 29 - Application screenshots (iteration 1) ... 115

Figure 30 - Final database model ... 118

Figure 31 - Final class model (mobile application) .. 121

Figure 32 - Application screenshots ... 122

Figure 33 - System Test and Fix phase .. 123

Figure 34 - Translating user interface from Android to WP .. 127

VI

Figure 35 - Automated WP unit testing ... 128

Figure 36 - Focusing semantic of artifacts and their origin ... 134

Figure 37 - Guarino's types of ontologies according to generality level 159

Figure 38 - �'�H���1�L�F�R�O�D�¶�V���8�3�2�1���I�U�D�P�H�Z�R�U�N ... 165

Figure 39 - Android Case ontology top level artifacts ... 172

Figure 40 - Android Case ontology asserted subclasses of Inferred class 173

Figure 41 - Part of inferred model for class Artifact .. 181

Figure 42 - ArtifactOrigin and Artifact in WP ontology .. 184

Figure 43 - Used and Produced Documents asserted class model ... 187

Figure 44 - Used and Produced Documents asserted class model ... 187

Figure 45 - Example of automatically merged ontology .. 191

Figure 46 - Example of merged ontology .. 192

Figure 47 - Top level artifacts .. 194

Figure 48 - Asserted subclasses of Inferred class... 195

Figure 49 - Comparing asserted and by reasoner inferred class hierarchy 204

Figure 50 - OWL 2 Validation report results ... 205

Figure 51 - Ontology Evaluation plug-in ... 206

Figure 52 - Example of defined and executed DL query with reasoning results 207

VII

LIST OF TABLES

Table 1 - Procedures for documenting the search process ... 29

Table 2 - Quality concept definitions ... 33

Table 3 - Types of Bias .. 33

Table 4 - Data collection form template ... 35

Table 5 - Structure and Contents of Reports of Systematic Reviews 40

Table 6 - Mobile-D phases, activities and tasks ... 51

Table 7 - MASAM methodology phases, activities and tasks ... 53

Table 8 - The review protocol .. 58

Table 9 - Search keywords and synonyms ... 62

Table 10 - The list of relevant sources ... 63

Table 11 - Applied procedures in selection process ... 65

Table 12 - The list of relevant studies .. 66

Table 13 - Propagation of relevant studies through phases .. 68

Table 14 - The criteria for unbiased study identification ... 69

Table 15 - Quality assessment checklist .. 70

Table 16 - Excerpt of filled quality assessment form ... 70

Table 17 - Data collection form ... 71

Table 18 - Developed methodologies and approaches ... 72

Table 19 - Used methodologies and approaches .. 73

Table 20 - Methodologies not eligible for multiplatform development 74

Table 21 �± Methodologies/approaches targeting specific mobile applications 74

Table 22 - Documents describing Mobile-D methodology .. 75

Table 23 - Mobile-D inputs and outputs .. 80

Table 24 - Project plan checklist - Explore .. 85

Table 25 - Product backlog .. 88

Table 26 - Selected feature for Trial Day ... 92

Table 27 - Web service (users.php) specification .. 97

Table 28 - Project plan checklist �± 0 Iteration ... 103

Table 29 - Selected features for first iteration .. 104

Table 30 - Web service (groups.php) specification .. 109

Table 31 - Web service (enrolments.php) specification ... 109

Table 32 - Project plan checklist �± 0 Iteration ... 116

Table 33 - Iterations plan with features selection .. 116

Table 34 - Performed tasks ... 117

VIII

Table 35 - Web services specification .. 119

Table 36 - Recognized system limitations ... 124

Table 37 - Duration of planned and real activities ... 130

Table 38 - Mobile-D artifacts by tasks ... 135

Table 39 - Template for describing the identified artifacts .. 137

Table 40 - Identified artifacts in development process for Android 138

Table 41 - Types of artifacts related to Android development .. 142

Table 42 - Identified artifacts in Windows Phone case .. 143

Table 43 - Common artifacts in Android in WP case .. 148

Table 44 - Android and WP specific artifacts .. 150

Table 45 - Basic terms in Android Case Ontology .. 171

Table 46 �± Android Case ontology classes and class hierarchy ... 174

Table 47 - Android case ontology object properties description ... 176

Table 48 - DL Queries for inferred classes .. 180

Table 49 - WP case artifacts defined in ontology .. 184

Table 50 - Final list of terms used in Multiplatform ontology ... 193

Table 51 - Classes and class hierarchy ... 196

Table 52 - Object properties description .. 198

IX

LIST OF ACRONYMS

ACM Association for Computing Machinery

API Application Programming Interface

ARR Absolute Risk Reduction

ASD Adaptive Software Development

AUP Agile Unified Process

CMM Capability Maturity Model

CMS Centers for Medicare and Medical Services, Office of information Services

CRD Centre for Reviews and Dissemination, University of York

CRIS Comparative Review of Information Systems Design Methodologies

CWA Close-World Assumptions

DL Description Logic

DSDM Dynamic System Development Method

DSL Domain Specific Language

ERA Entity-Relationships-Attribute model

EUP Enterprise Unified Process

IEEE Institute of Electrical and Electronics Engineers

IFIP International Federation for Information Processing

INSPEC Information Services for the Physics and Engineering Communities

IRI Internationalized Resource Identifiers

JME Java Micro Edition

JSON JavaScript Object Notation

JSR Java Specification Request

LSD Lean Software Development

MASAM Mobile Application Software Development Method

MDD Model Driven Development

ME Micro Edition

MVC Model-View-Controller

MVVM Model-View-ViewModel

NPD New Product Development

OD101 Ontology Development 101

OR Odds Ratio

OWL Web Ontology Language

PDM Platform Dependent Model

X

PHP Hypertext Preprocessor: Open source scripting language

PICOC Population, Intervention, Comparison, Outcomes, Context

PICOS Population, Interventions, Comparators, Outcomes, Study selection

RR Relative Risk

RAD Rapid Application Development

REST Representational State Transfer

RUP Rational Unified Process

SADD Software Architecture and Design Description (document)

SC Story Card �± An artifact in Mobile-D methodology.

SCM Software Change Management

SDK Software Development Kit

SDLC Systems Development Life Cycle

SDM Software Development Methodology

SE Software Engineering

SLR Systematic Literature Review

SMD Standardized Mean Difference

SOA Service Oriented Architecture

SPEM Software and Systems Process Engineering Meta-model framework

SPI Software Process Improvement

SW Software

SWEBOK Software Engineering Body of Knowledge

TC Task Card

TDD Test Driven Development

UML Unified Modeling Language

UI User Interface

UP Unified Process (same as USDP)

UPON Unified Process for ONtology building

USDP Unified Software Development Process

XAML EXtensible Application Markup Language

XML EXtensible Markup Language

XP Extreme Programming

WAC Wholesale Applications Community

WMD Weighted Mean Difference

WP Windows Phone

1

1. INTRODUCTION

1.1. Outlining the problem

1.1.1. Development of mobile applications

The development of mobile applications differs from the development of traditional desktop

or web applications in several important aspects (Rahimian and Ramsin, 2008; Spataru,

2010). According to Rahimian and Ramsin (2008), among other challenges, the designer of a

software system for mobile environments has to cope with portability issues, various

standards, protocols and network technologies, limited capabilities of devices and strict time-

to-market requirements. Additionally, development of mobile systems is a challenging task

with a high level of uncertainty, and according to Hosbond (2005), it is a result of two main

sets of challenges that should be addressed in the domain of mobile systems development,

namely business related challenges (e.g. tough competition, conflicting customer interests,

establishment of revenue-share models etc.) and development specific challenges (e.g. rapidly

changing technology, lack of standardization, integration with existing systems etc.).

When discussing the development of mobile applications, the first issue that should be

addressed is the usage of methodology (Rahimian and Ramsin, 2008; Spataru, 2010; La and

Kim, 2009). Classic or agile software development methodologies should be adapted for the

development of mobile applications as the existing ones do not cover the specific mobile

targeted requirements (La and Kim, 2009). There are several attempts from different authors

to create new methodologies in order to cover the gaps in the domain of mobile applications.

Some of them are Agile Risk-based Methodology (Rahimian and Ramsin, 2008), MASAM

(Jeong et al., 2008), and Mobile-D (Abrahamsson et al., 2004).

Another issue is the use of platform specific and dependent development environments which

are not interoperable in a single way (Agarwal et al., 2009). Additionally, a number of

different (specific) devices which are based on the same platform (Agarwal et al., 2009;

Manjunatha et al., 2010; Ridene et al., 2010) is also an important issue. This includes various

hardware implementations and operating systems capabilities with support on different API

levels (Agarwal et al., 2009) and which are based on different programming languages

(Manjunatha et al., 2010). The problem is also known as fragmentation problem (Agarwal et

2

al., 2009; Manjunatha et al., 2010; Ridene et al., 2010), which states that a fragmentation of

APIs exists even within a single platform.

Subsequently, testing becomes a great problem as simulated or emulated devices usually do

not provide full functionality or are incapable of creating a real life test scenarios (Ridene et

al., 2010). Testing on physical devices is usually too expensive if used to cover up all

important devices and their capabilities. Several projects in this field, such as Device

Anywhere (DeviceAnywhere, 2011) or DSML (Ridene et al., 2010) also do not provide full

and needed functionality. Finally, the deployment and the maintenance phases should not be

forgotten as well as both of them bring a fresh set of specific requirements that are mainly

defined by mobile device producers and their stores.

On the other hand, the development of mobile applications also differs from the development

of web or desktop applications in the number of target platforms. According to Manjunatha et

al. (2010) the fragmentation problem forces the developers of mobile applications to focus on

only specific platforms and versions. As the development of mobile applications primarily

aims the wide range of users, development for only specific platforms and versions is not an

option and the development teams reach for different solutions to this problem. The ideal (i.e.

still nonexistent) solution would be to code once and to deploy (run) the same code to all

target platforms. The fragmentation problem is the result of mobile industry being

continuously highly technology-driven, which means that the focus is on innovation instead of

standardization. This problem was recognized several years ago by Hosbond (2005).

Finally, it is important to notice that the development of mobile applications has some

similarities with the traditional development. For example after performing an extensive

literature review, Hosbond and Nielsen (2005) concluded that the scope of mobile systems

development is an extension of the scope and the body of knowledge on traditional systems

development. However, they also noticed that in the existing literature knowledge about

traditional systems development is largely neglected. Generally, we can conclude that the

reported challenges in the development of mobile applications have strong relation with the

challenges that have accompanied the development in the past as some of the problems have

followed the software development from the very beginning, and some have been gone and

have now re-appeared again (e.g. limited capabilities of screens).

In order to define the problem in the domain of this thesis, several important concepts should

be taken into consideration. The overall picture of a development playground could be

presented as in Figure 1 with the following main parts:

�x Teams

�x Development environments

�x Development methodologies

3

�x Mediatory publishing services

�x Target devices

The main characteristics of mobile applications development teams could be described in just

a few words. Whether the teams are working on open source or in-house projects concerning

mobile applications, they can be classified as small, flexible, and keen on learning a specific

technology and/or platform. Although the classic interoperability among the team members

and among different teams is not of a specific interest in this thesis, the methodological

interoperability and the existing artifact reuse among team members or teams working on a

same functionality but for a different target devices should be pointed out.

Figure 1 - Problem - The Big Picture

Let us imagine a real business scenario in which a development company wants to produce a

classic business or non-business application that should be runnable on a several different

mobile platforms and devices. The standard approach would be to create several different

teams, each team targeting one specific platform, to adopt several development methodologies

or at least different methods, each of them applicable for a specific platform and to produce

characteristic outputs which will satisfy the requirements specified by the mediatory

application stores or markets (see Figure 1). More experienced teams would probably try to

perform as many as possible unique activities that should be similar or same across all

platforms, or would even try to perform whole Model Driven Development approach through

all phases except in creation of Platform Dependent Model and its implementation.

But, the big question still remains. Is it possible to make this process easier in the sense of

development, interoperability and reusability? Is it possible to code once and run on different

target platforms?

Unfortunately, it is not possible to code once and run on any mobile device. This slogan,

according to Ridene et al. (2010), is not true even for Java, and moreover, the trends in the

4

mobile industry show us that this will not be possible in the short-term future, as mobile

platforms are still closed, locked-in (Manjunatha et al., 2010), and devices are dependent on

them. On the other hand, several different approaches aiming to propose some improvements

in the multi-platform mobile applications development exist. These approaches are

summarized into two main groups and shortly described in the following chapter.

1.1.2. Existing solutions

1.1.2.1. Mediatory transform engine

In the past year or two, the problem of mobile applications development for multiple target

platforms became important in the scientific as well as the professional community. The

results are visible in the form of several existing systems and projects that fairly enough

enable the development teams to use a mediatory language or just mediatory transform engine

and to code for several target platforms. Some of the most influential projects are MobiCloud

(Manjunatha et al., 2010; Services Research Lab and Metadata and Languages Lab, 2011)

from Kno.e.sis Research Group (Kno.e.sis Research Group, 2011), Rhodes (Rhomobile, Inc.,

2011) and Amanquah & Eporwei code generator (Amanquah and Eporwei, 2009). As Figure

2 shows, reaching for this solution will bring some improvements to development teams. First

of all, project team or project teams will be able to use a single proprietary or open-source

programming language and could try to implement the desired functionality. The mediatory

transform engine will then produce a platform specific code which can be tested and deployed

through specific application store or market.

Figure 2 - Architecture of some existing solutions

5

Code 1 - �³Hello World� ́application written in proprietary DSL

(source: MobiCloud platform)

There are several examples of systems with described functionality. Some of them (e.g.

MobiCloud) use their own domain specific language (DSL) to transform into platform

specific source or, though rarely, even executable code. Other systems (Amanquah and

Eporwei, 2009) transform code written in well-known languages to specific source (or

executable) code. The code snippet (Code 1) shows an example written in proprietary DSL

which is based on implementation of Model-View-Controller (MVC). The output could be

�V�L�P�S�O�H���³�+�H�O�O�R��World�´���D�S�S�O�L�F�D�W�L�R�Q source code for four different platforms.

This approach, however, also has several significant drawbacks (Manjunatha et al., 2010).

The idea of having mediatory transform engine that transforms source code to specific

platforms depends on the efforts invested in the transform engine. The engine depends on

specific platforms and available APIs, and by definition, DSL caters only to a specific domain

(Manjunatha et al., 2010). Even if there is a possibility to enrich the engine with

transformation procedures to all existing APIs, there is an important problem of platform

incompatibilities. For example, it is not possible to use multithreading in Windows Phone 7

while, on the other hand, in other platforms it is not just possible but even desirable. Another

example is Android which does not provide thread sync mechanisms as Symbian does.

Some other drawbacks of this approach are the necessity to learn a specific DSL, the

boundaries defined by the use of any specific languages, the lack of control of generated

source code, the lack of control of user interface design (Manjunatha et al., 2010), the

problems with testing and many others.

1.1.2.2. The use of native application adapters

Another possible solution to the given problem could be the introduction of adapter

applications (adapters) as native applications for every target platform (Agarwal et al., 2009).

According to Agarwal et al. this is one of the two main techniques for handling fragmentation.

As standardization of APIs in mobile world is still not possible, the usage of programming

6

techniques whereby the interface calls are wrapped, i.e. abstracted, in distinct modules which

are then ported across the platforms, is left as the other solution. For example, the same

authors are proposing MobiVine as a solution to handle fragmentation of platform interfaces.

Specifically, the authors have identified that the fragmentation of mobile platform interfaces

results in different syntax and semantics, results in usage of platform specific data structures

and properties, results in throwing platform specific exceptions and is also characterized by

inconsistencies in implementation by different vendors. This has bearing on the portability of

mobile applications across multiple platforms. So, the proposed solution is composed on two

main components: M-Proxies and M-Plugins. M-Proxies component helps abstract

heterogeneities in interfaces across different platforms while binding to the underlying

middleware stack and is used to realize platform specific blocks. The other component, called

M-Plugins, helps integrate MobiVine with the existing tooling and deployment infrastructure

and is used to override the gap between M-Proxy and platform specific APIs.

Figure 3 - MobiVine overview

(Agarwal et al., 2009)

The authors of MobiVine evaluated the usage of MobiVine as middleware layer and they

discussed the achieved improvements in terms of enhancing platform and language

portability, reducing code complexity, making maintenance easier and performance by a

negligible fraction slower. But, they also concluded that MobiVine framework should be

extended to cover other platform interfaces (like working with contact list information), to

include other platforms, and to make the concept of proxy model broader by studying its

applicability to other forms of mobile fragmentation, e.g. screen size and resolution.

Another well-known wrapper is PhoneGap (PhoneGap, 2011). The applications written in

HTML, CSS and JavaScript are wrapped with PhoneGap and then deployed to multiple

platforms. The developers could use free, open-source framework to access some of the native

APIs.

7

�$�I�W�H�U���W�K�H���$�G�R�E�H���&�R�U�S�R�U�D�W�L�R�Q���D�F�T�X�L�U�H�G���W�K�H���R�U�L�J�L�Q�D�O���3�K�R�Q�H�*�D�S�¶�V���F�U�H�D�W�R�U���1�L�W�R�E�L���F�R�P�S�D�Q�\�����W�K�H�\��

also announced that they will offer developers the choice of using two powerful solutions for

cross-platform development of native mobile apps, one using HTML5 and JavaScript with

�3�K�R�Q�H�*�D�S���D�Q�G���W�K�H���R�W�K�H�U���X�V�L�Q�J���$�G�R�E�H���)�O�D�V�K�Š���Z�L�W�K���$�G�R�E�H���$�,�5�Š��(Adobe Corporation, 2011).

On the other hand, the original PhoneGap approach has not been changed and as the

application takes on extra complexity, more involved logic will require spending more time

on application behavior with specific devices. Even when the same code base is used when

developing for multiple platforms, the separate prepare & build and sometimes porting steps

should be performed to produce the version targeting multiple platforms. According to

(Lunny, 2011) �P�R�U�H���F�R�P�S�O�L�F�D�W�H�G���D�S�S�O�L�F�D�W�L�R�Q�V���D�U�H���N�H�H�Q���R�Q���³�V�X�U�S�U�L�V�L�Q�J�´��the developers during

the porting process and in these cases, PhoneGap documentation should be consulted. In the

end, there will not be a single code base Java Script file, but rather an application.iphone.js

file containing iPhone implementation along with equivalent application.android.js and

application.blackberry.js files (Lunny, 2011). Finally, there are many different guides and

recommendations that should be followed while developing this way (Lunny, 2011), and we

can generally conclude that taking all of them into consideration means learning a new

programming and development style which is as difficult as learning a new programming

language from scratch.

Figure 4 - PhoneGap build process

(PhoneGap, 2011)

Additionally, there are other attempts and efforts that are undertaken to over-come mobile

platform and interface diversity and fragmentation. These efforts, for example, include the

creation of extensions to Java platform, through Java Specification Requests (JSRs) such as

JSR 248: Mobile Service Architecture (Bektesevic and Rysa, 2008) or JSR 256: Mobile

Sensor API (Niemela, 2009), or the development of Wholesale Applications Community

(WAC) APIs and applications (Apps).

JSRs are designed to provide the set of APIs for specifically targeted use (e.g. for mobile

service architectures or mobile sensors). But, according to Agarwal et al. (2009), along with

8

standard Java Micro Edition (Java ME), mobile platform developers in practice choose to

include different sets of JSRs which results in the diversity even among their own devices.

On the other hand, WAC is an open, global alliance of leading companies in the mobile

telecommunication industry with the goal of providing a different operator network APIs

through single cross-operator API platform. Specifically, this platform is built on the work of

the former Open Mobile Terminal Platform Ltd.'s BONDI project1, the Joint Innovation Lab

(JIL) device APIs2 and the GSM Association's OneAPI program3, and currently WAC

platform offers WAC Apps framework (WAC Application Services Ltd, 2012a) and WAC

Payment API (WAC Application Services Ltd, 2012b). WAC Apps aims to help create the

mobile apps quicker by using existing, familiar web technologies and tools through direct

access to mobile device functionality. According to WAC Application Services Ltd (2012a),

the types of applications that could be published currently are widgets written to the WAC

specifications4, native Android applications and HTML5 applications. WAC Payment API

aims to enable developers to be able to access the operator billing capabilities through single

API by using a set of developed Software Development Kits (SDKs) for multiple platforms.

Although this API is useful in some cases, currently it covers only payment options and can

be used for Android, PhoneGap, PHP and JavaScript/HTML5 platforms (WAC Application

Services Ltd, 2012c). WAC announced that they plan to launch additional network APIs over

time to provide the developers with further opportunities to create richer applications (WAC

Application Services Ltd, 2012b).

So generally, the adapter-based approach requests that the adapters should be pre-developed

and published in the specific application store, or as in the case of PhoneGap, deployed along

with the application (PhoneGap, 2011). The general idea of creating adapter is to create a

platform specific application that will bi-directionally convert the specific interfaces of the

target platforms (left-side) into one unique interface that could be used to communicate with

different applications (single, right-side). Every single adapter converts a different target

interface to unique (same) interface, which means that one application really could be

1 BONDI project (http://bondi.omtp.org/default.aspx) aimed to create a standardized approach for letting web
applications access key local capabilities on the mobile device. [accessed: 18th of May 2012]
2 Joint Innovation Lab was an initiative of several mobile carriers on developing device APIs and related services
that build upon the W3C Widgets specification. Web page (http://www.jil.org/) is closed and redirected to
WAC's page (http://www.wacapps.net/). [accessed: 18th of May 2012]
3 �³�7�K�H�� �*�6�0�$�� �2�Q�H�$�3�,�� �L�Q�L�W�L�D�W�L�Y�H�� �G�H�I�L�Q�H�V�� �D�� �F�R�P�P�R�Q�O�\�� �V�X�S�S�R�U�W�H�G�� �V�H�W�� �R�I�� �O�L�J�K�W�Z�H�L�J�K�W�� �D�Q�G�� �:�H�E�� �I�U�L�H�Q�G�O�\�� �$�3�,�V�� �W�R��
allow mobile and other network operators to expose useful network information and capabilities to Web
application developers. It aims to reduce the effort and time needed to create applications and content that is
�S�R�U�W�D�E�O�H���D�F�U�R�V�V���P�R�E�L�O�H���R�S�H�U�D�W�R�U�V���´�����K�W�W�S�������R�Q�H�D�S�L���J�V�P�D���F�R�P�������>�D�F�F�H�V�V�H�G��������th of May 2012]
4 WAC Device API specification could be found here: http://specs.wacapps.net/index.html. [accessed: 18th of
May 2012]

9

imported into one or more different adapters and run under one or more different platforms.

The mentioned application could be stored on any web server or even on a cloud as is shown

in Figure 5.

Figure 5 - Architecture of some possible solutions

There are two possible scenarios that could be implemented by adapter developers. (1) The

adapters could be 100% aligned by means of common interface and this scenario would

reduce the number of teams �± presented in the Figure 5 �± to one. This would be a great

achievement, but on the other hand there is one big drawback too. The functionality of the

future applications would be reduced to the common features that all target platforms support

and to the common features that are implemented into the adapters for all target platforms.

This brings us to the problems presented in the existing solutions and this also makes this

scenario rather unlikely to be feasible. (2) The other scenario introduces some differences in

the adapters by means of common (right-side) interface. If the mentioned interface is not the

same for all platforms, the use of such adapters would provide a more specific functionality

on mobile applications, a scenario more feasible, but also a one that would bring the need to

develop more or less different applications for each target platform.

Almost all of the drawbacks stated for existing solutions that introduce transform engine are

also present in this possible solution. The mentioned PhoneGap (PhoneGap, 2011) platform

allows the development of native applications with web technologies (HTML5, CSS

&JavaScript) enriched with a given set of APIs. According to PhoneGap Documentation5 this

5 PhoneGap API Reference Documentation [accessed: 15th of October 2011]: http://docs.phonegap.com/en/1.1.0/
phonegap_events_events.md.html#backbutton

10

platform supports back button event only on the Android platform despite the fact that the

event exists in several other platforms as well. Although there is some space for research in

this area, especially in the field of interface transformation, the improvements that will bring

the process of development of demanding applications for multiple target platforms through

this approach are also hardly achievable and even feasible.

1.1.3. The final remarks on platforms and tools

As it can be seen, there are several rather different approaches that scientists and experts are

taking to solve the problem of developing for multiple platforms. Each one of them has its

own advantages and disadvantages. But still, one issue remains that is common to almost all

of these approaches. It is impossible to create a transform engine, or adapter application that

would keep all of the advantages of all target platforms and that would provide the range of

possibilities as native development environments do. Also, if we want to preserve the

capability of teams working on the open-source projects, it is necessary to give them the

possibility to work in a native development environment and to develop by using a

programming language they prefer most.

In order to provide such possibilities, this thesis will focus on proposing the solution to

enhance interoperability among teams working on the same application but on different (and

native) development environments. The work on the native development environments will

provide the teams with the full advantages of using the native APIs, the native test

environments and the native generators of the executable code.

1.2. Objectives and hypotheses

This doctoral research focuses on the analysis of this problem and on the proposal of a

solution in a domain of methodological interoperability. The idea is to allow developer teams

to use native development environments (that is, all their advantages for platform specific

mobile application development) by raising the re-usability and interoperability to a higher,

methodological level. Therefore, this dissertation will attempt to answer the following

questions: (1) what methodologies and development approaches can be used in multi-platform

mobile applications development; (2) what artifacts (required inputs and outputs of

methodologically and methodically defined development steps) emerge during mobile

applications development, (3) whether and to what extent there are similarities between these

artifacts, (4) whether it is possible to ontologically describe these artifacts, and create a basis

for developing a system that would support the methodological interoperability.

11

1.2.1. The main goal

The main goal is to ontologically describe artifacts that arise in the methodologically managed

process of mobile application development targeting two or more mobile platforms, and to

create the basis for more efficient and interoperable process of multi-platform mobile

applications development.

1.2.2. Hypotheses

This doctoral thesis focuses on researching and proving the following hypothesis:

H1: It is possible to create ontological description of elements of methodological

interoperability containing structural and semantic aspects of sets of artifacts created in

the development process of a mobile application for two or more target platforms.

1.3. Research scope and methodology

1.3.1. Scope definition

The development for mobile applications is as complex as are other fields in the domain of

software engineering. There are several different perspectives that could be taken to produce a

single mobile application. We can identify at least three dimensions in the space of the

possible approaches the development team can take. If we include other more or less

important elements the space will rapidly become multi-dimensional, and by multi we mean

more than three. So to keep the thesis focused, we will take into consideration the following

dimensions of space S as:

S = {M, A, P} (1.)

M - Development methodology

A - Development approach

P - Target platform

The three mentioned axes could have several different values:

M = {m1, m2, ... mn} (2.)

A = {a1, a2, ... am} (3.)

P = {p1, p2, ... po} (4.)

For example, these values could be:

M = {Extreme programming (XP), SCRUM, Rational Unified process (RUP)}

A = {Model driven development (MDD), Test driven development (TDD), Model

View Controller (MVC) Implementation}

12

P = {Android, Windows Phone 7, Nokia Symbian}

While defining the scope of proposed solution it is wise to bring some logic assumptions that

are based on the real life scenario and the possible usage of results gained throughout this

work. Whether one team will develops multiple applications or several teams develop

different applications, we can assume that the team (teams) will use the same methodology as

they work together and as they want to take advantage of semantic interoperability while

developing same application for different target platforms. Similar, we can assume that the

development approach will be the same for development of a single application for all target

platforms. Of course, the teams will develop application for one or more target platforms, so

the cardinality of sets M, A and P can be described as:

| M | = 1 (5.)

| A | = 1 (6.)

| P | > 1 (7.)

Subsequently, the cardinality of final space S that is focused in this research can be presented

as in Figure 6 or in Figure 7, and can be defined as:

| S | = {(1, 1, n) : n > 1} (8.)

The development process DP presented in those two figures can be described as a set of sub

processes SP i.e. ordered triples.

DP = {SP1, SP2�����«���6�3n : SPi S; SPi = (m, a, pi); 1 < �Q���”���_�3�_����

i = {1, 2, �«�����Q�`�����P�� M; a A; p P}. (9.)

So for example, if we want to develop an application for Android, iPhone and Nokia, and we

choose Extreme Programming supported by Model Driven Development, the development

process would be described as DP = {(3, 1, 1), (3, 1, 2), (3, 1, 3)}. Similar, if we use SCRUM

supported by Test Driven Development, the development process could be described as DP =

{(2, 2, 1), (2, 2, 2), (2, 2, 3)}.

Figure 6 - Possible scope (A) Figure 7 - Possible scope (B)

13

Taking into consideration all that was said, we can conclude that all ordered triples (sub

processes) in one development process have the same first two elements, but different third

elements. This different element makes the sub-processes (i.e. development processes for

specific target platforms) rather different.

Within the presented scope, the teams will have the opportunity to work in the preferred

development environments, i.e. platforms (P), and have the chance to take the advantages of

the native development environment and the use of the native code: However, they will also

have to obey the rule of the use of only one methodology and one development approach for

the development for all the target platforms.

Note: If the teams develop an open source product, they might be interested in using specific,

preferred methodology, but this scenario is not covered by this research. Additionally, the

term target platform could be analyzed with greater granularity by defining manufacturer,

platform, device and API but this is also out of the scope of this research.

1.3.2. Research approach

The overall goal of this research is to create the semantic definition of the elements of

methodological interoperability containing structural and semantic aspects of the sets of

artifacts created in the development process of mobile application for at least two specific

target platforms. These semantic definitions can be used to create a general ontology that will

be the base for interoperability and future work on the development of the framework and the

supporting system. The research is divided into three main phases, each of them containing

several stages. These stages, along with the used methodologies are enumerated as follows:

First phase: Choosing development methodology

�x Analyze the state-of-the-art of methodologies for mobile development and choose

methodology to use and describe

M = {m} (10.)

�x Analyze the state-of-the-art of development approaches for mobile development and

choose the development approach to use and describe

A = {a} (11.)

Second phase: Identifying artifacts sets

�x Choose two specific mobile platforms to develop for according to their artifacts and

development process

P = {p1, p2} (12.)

14

�x Perform a development process DP by conducting m and a for p1 and p2 in order to

create a prototype application

DP = {SP1, SP2} => DP = {(m, a, p1), (m, a, p2)} (13.)

�x Analyze the development process and identify all obligatory and optional tasks along

with the corresponding inputs and outputs:

IOp1 = {I p1, Op1} => IOp1 = {i 1p1, i2p1, ... inp1, o1p1, o2p1, ... omp1,} : n, m N (14.)

IOp2 = {I p2, Op2} => IOp2 = {i 1p2, i2p2, ... inp2, o1p2, o2p2, ... omp2,} : n, m N (15.)

�x Define set of artifacts R for each target platform

R = {Rp1, Rp2} => R = {(r1p1, r2p1, ... rnp1), (r1p2, r2p2, ... rmp2)

: rip1 �Ð IOp1; i �” n; rjp2 �Ð IOp2; j �” m} (16.)

�x If differences for p1 and p2 exist, find the differences in tasks, inputs or outputs on as

much higher level of abstraction as possible and define a subset of artifacts that will be

used for ontology definition.

R�¶ = {R�¶
p1, R

�¶
p2 : R

�¶
p1�?��Rp1; R

�¶
p2�?��Rp2} (17.)

Third phase: Creating an ontology

�x Analyze the state-of-the-art for ontology development and construction and choose

ontology development method and ontology development language to use.

�x Define all ontology elements for SP1 and SP2 with a special attention on the artifacts

set defined in R�¶.

OE1 = f (SP1, R
�¶) (18.)

OE2 = f (SP2, R
�¶) (19.)

�x Create specific ontologies for SP1 and SP2 and describe them with proper ontology

definition language, with a special attention on the ontology elements defined for

artifacts set defined in R�¶.

O1 = f (OE1, R
�¶) (20.)

O2 = f (OE2, R
�¶) (21.)

�x Create a common ontology from specific ontologies by defining semantic equality and

diversity; this common ontology will be the base for future interoperability on

methodological level.

O = f (O1, O2, R
�¶) (22.)

�x Look forward into a future work, framework and system development.

15

1.4. Dissertation disposition

After introducing the problem domain, giving an overview of existing solutions and stating

the objectives, hypotheses and research scope in this chapter, the rest of this document is

organized in additional six chapters as follows.

The second chapter presents the results of the Systematic Literature Review performed in

order to determine the existing body of knowledge of the methodologies for mobile

applications development. As the use of scientific method of SLR in the field of Software

Engineering is still emerging, with a relatively small number of performed reviews, we found

the existing guidelines presented in (Kitchenham and Charters, 2007) could be improved with

the recommendations and inputs from other influential authors in the field, and thus first we

give (in Chapter 2.1) an overview of the method along with discussion and recommendations

as mentioned. Following the enhanced guidelines, that give special focus to method execution

by PhD students, we continued to perform the SLR (Chapters 2.2 and 2.3) which resulted in

identification of 22 development methodologies and 6 development approaches (see Table 18

and Table 19 in Chapter 2.3.5). Finally we discuss and choose Mobile-D methodology

supported by Test Driven Development in Chapter 2.4 for the development of our prototype

application and further analysis.

The second research phase is covered by Chapter 3 and Chapter 4 of this document. The third

chapter gives an overview of Mobile-D methodology (in Chapter 3.1), and then presents the

results of the multi-platform development of prototype application by using the mentioned

methodology (Chapters 3.2 to 3.8). The application is developed for Android and Windows

Phone target platforms, and the focus in this chapter is put on executed phases, activities and

tasks along with created and used artifacts. In the fourth chapter we systemize and analyze the

obtained artifacts. Chapter 4.1 gives the discussion on analysis setting, while the identified

Android artifacts are presented in Chapter 4.2, the identified Windows Phone artifacts are

presented in Chapter 4.3, and the cross-platform analysis is performed and reported in Chapter

4.4. A total of 71 artifacts are identified, out of which more than 70% are common to both

development cases with high a reusability potential of 66% as presented in Table 43.

Chapter 5 is considered to be the most important chapter of this thesis, as it presents the taken

approach along with its results in the third and the final phase of our research process. The

chapter gives an overview of concepts related to ontologies and ontology development

(Chapter 5.1) and then presents the created ontologies. When reporting on the development of

Android Case Artifacts Ontology (chapter 5.2) we put focus on the usage of Ontology

Development 101 methodology and implementation of its seven steps. On the other hand,

when reporting on the development of the second specific ontology, namely WindowsPhone

Case Artifacts Ontology (Chapter 5.3), we put focus on the concepts of reusing and updating

16

the existing ontology. Finally, Chapter 5.4 presents the development of a common ontology

for both cases, and here we put focus on the concepts of merging, extending, evaluating and

testing the ontologies. The created ontology is verified and validated by several different

mechanisms and the results proved its semantic correctness and completeness.

The last two chapters of this document are used for extensive discussion on all research

activities by reflecting on motivation, results contributions, rigor and evaluation (Chapter 6)

and on summarization of contributions and conclusions which emphasize on achieved goals,

open issues and possible further research directions that could be taken continuing from the

results of this research (Chapter 7).

The annexes of the document bring more details on results obtained during each research

phase. Thus Appendix A brings the list of all the papers that are selected for the second phase

of the SLR analysis and similarly Appendix B gives the papers selected for SLR quality

assessment and further analysis, while Appendix C and Appendix D respectively bring the

final study quality assessment table and data extracted form for each selected study. Finally,

Appendix E brings the developed ontology presented in compact and human readable

Manchester syntax.

17

2. MOBILE APPLICATIONS D EVELOPMENT

METHODOLOG IES: A SYSTEMATIC REVIEW

To goal of this chapter is to identify and choose a proper development methodology which is

to be used in the rest of the research process. As, to our knowledge, there are no studies

performed to identify all development methodologies suitable to mobile applications

development, we performed an extensive systematic literature review of the methodologies

and development approaches that are reported in the literature as being created or used

specifically for mobile applications development.

As the method of systematic literature review is rather new in the field of software

engineering, first the best practice in performing such time consuming and comprehensive

method will be analyzed. The guidelines given by Kitchenham and Charters (2007) are

followed and discussed by adding the recommendations and findings from other influential

authors in the field. Special focus is given to the problem of performing the method by PhD

students. This part of the chapter results with structured and detail instructions that can help

researchers and PhD students to decrease the risks and biases and to increase the review

quality.

Following the findings presented in the first part of the chapter we continue to plan and

conduct a systematic literature review and answer two research questions: (1) what

development methodologies and approaches are reported in literature as defined in theory or

used in practice for mobile application development and (2) are the identified methodologies

and approaches applicable in multi-platform mobile applications development? After

analyzing more than 6700 initial sources we found 49 publications to be included in data

extraction process which in the end resulted in identification of 22 methodologies that are

used in development of mobile applications along with 7 development approaches.

Finally, we were able to establish the criteria for choosing one methodology and approach that

are to be used in the rest of the research process. The chosen methodology is Mobile-D

(Abrahamsson et al., 2005a) supported by Test Driven Development as Mobile-�'�¶�V���V�X�J�J�H�V�W�H�G��

approach.

18

2.1. Research method

In order to perform comprehensive and thorough analysis of existing methodologies for

development of mobile applications, the systematic approach should be undertaken and

existing methodologies should be reviewed in such a manner which will result in a solid basis

for the rest of the research in the domain of this thesis. Such analysis could be undertaken by

applying different methods and approaches, such as systematic literature review, systematic

mapping studies, tertiary reviews discussed by (Kitchenham and Charters, 2007), or narrative

review, conceptual review, rapid review and several other types presented by (Petticrew and

Roberts, 2005). The systematic mapping study should be used when a topic is either very little

or very broadly covered, and tertiary reviews are most suitable approach if several reviews in

the target domain already exist and should be summarized. The narrative reviews usually do

not set out the scientific methods that aim to limit systematic error. Additionally, the

conceptual review should be used when aiming to provide an overview of literature in the

given field and the rapid review is usually carried out within limited time or with restrictions

in the scope of the research. Subsequently, taking into consideration the undertaken initial

examination of the domain, we decided to use a systematic literature review (SLR) as this

method has been used widely for different analysis in the field of software engineering (SE).

�³�$���V�\�V�W�H�P�D�W�L�F���O�L�W�H�U�D�W�X�U�H���U�H�Y�L�H�Z���L�V���D���P�H�D�Q�V���R�I���H�Y�D�O�X�D�W�L�Q�J���D�Q�G���L�Q�W�H�U�S�U�H�W�L�Q�J���D�O�O���D�Y�D�L�O�D�E�O�H���U�H�V�H�D�U�F�K��

relevant to a particular research question, topic area, or phenomenon of interest. Systematic

reviews aim to present a fair evaluation of a research topic by using a trustworthy, rigorous,

�D�Q�G�� �D�X�G�L�W�D�E�O�H�� �P�H�W�K�R�G�R�O�R�J�\���´��(Kitchenham and Charters, 2007) The origins of systematic

review can be traced back to the beginning of the 20th �F�H�Q�W�X�U�\���� �E�X�W�� �G�X�U�L�Q�J�� �W�K�H�� ���������¶�V����

systematic research synthesis and meta-analysis reach an especially distinctive

methodological status in the domain of health sciences (Williams and Carver, 2010). During

this period and as a result of performing similar methods in various other fields, different

synonyms of this method have been used in the literature. Some of them are research review,

research synthesis, research integration and systematic overview (Biolchini et al., 2005).

In the field of software engineering during the last years several primary studies have been

conducted and although these studies are accompanied by an increasing improvement in

methodology, this field is still an area of investigation that remains to be explored and that

could well bring many benefits in terms of mechanisms needed to assist practitioners to adopt

appropriate technologies and methodologies (Biolchini et al., 2005). The guideline for

systematic reviews that aimed to help software engineering researchers was proposed by

(Kitchenham, 2004) and was created as adaptation of several existing guidelines from other

disciplines, mainly medicine. Although the three proposed phases of systematic review,

namely planning the review, conducting the review and reporting the review, in general were

19

not criticized, some authors like Biolchini et al. (2005), Mian et al. (2005) and Staples and

Niazi, (2007) found that Kitchenham described them to a relatively high level which is

partially inappropriate to conduct for researchers in the field of software engineering. In favor

of this goes the fact that Kitchenham in 2007 published a new version of technology report

(Kitchenham and Charters, 2007) with the aim to propose more comprehensive guidelines of

performing a systematic literature review for researchers and PhD students in the field. The

basis for this guideline remained the same: the existing guidelines used by medical

researchers, but was reinforced by several books and discussions with researches from other

fields.

The next sections will cover in detail the systematic literature review methodology as it is

proposed in (Kitchenham and Charters, 2007). The sections will present a methodology and

give summary of all phases and activities that should be performed while conducting

systematic review in the field of software engineering.

2.1.1. Definition of systematic literature review (SLR)

Systematic literature review (SLR) is defined by Kitchenham and Charters (2007) �D�V���³a form

of secondary study that uses a well-defined methodology to identify, analyze and interpret all

available evidence related to a specific question in a way that is unbiased and (to a degree)

�U�H�S�H�D�W�D�E�O�H�´���� �'�\�E�n�� �D�Q�G�� �'�L�Q�J�V�¡�\�U��(2008a) �G�H�I�L�Q�H�� �6�/�5�� �D�V�� �³a concise summary of the best

available evidence that uses explicit and rigorous methods to identify, critically appraise, and

synthesize relevant studies on a particular topic�´���� �$�F�F�R�U�G�L�Q�J���W�R���'�\�E�n���� �W�K�H�V�H���P�H�W�K�R�G�V���V�K�R�X�O�G��

be defined in advance and documented in a protocol so the others could critically appraise and

replicate the review.

There are different reasons for performing systematic literature review. In general, whenever

a literature review is performed it could be done by applying systematic (following stated

procedures and steps) or unsystematic (just reading and taking notes) approach. The usual

reason to use SLR is to summarize the existing evidence concerning a treatment or a

technology. This is to say that for example, as is the case in this thesis, systematic literature

review can be used to summarize the methodologies that could be used for development of

mobile applications. SLR could also be used to identify any gaps in current research in order

to suggest areas for further investigation or to provide a framework/background in order to

appropriately position new research activities. In addition, there are other general reasons to

use a systematic rather than unsystematic approach, such as the purpose of the research, the

scientific approach, the quality expectations or the existence of previous researches on the

selected topic.

20

According �W�R�� �'�\�E�n�� �D�Q�G�� �'�L�Q�J�V�¡�\�U��(2008a) the key feature that distinguishes SLR from

traditional narrative reviews is in its explicit attempt to minimize the chances of making

wrong conclusions which could be the results of biases either in primary studies or in the

review process itself.

2.1.2. Steps to be performed

Although the methodology of SLR is considerably upgraded if compared to the first version

from 2004, the main three phases remain the same. General steps to be performed are also

similar and are defined as follows:

Phase 1: Planning the review

�x Identification of the need for a review

�x Commissioning a review (optional)

�x Specifying the research question(s)

�x Developing a review protocol

�x Evaluating the review protocol (recommended)

Phase 2: Conducting the review

�x Identification of research

�x Selection of primary studies

�x Study quality assessment

�x Data extraction and monitoring

�x Data synthesis

Phase 3: Reporting the review

�x Specifying dissemination mechanisms

�x Formatting the main report

�x Evaluating the report (recommended)

According to the author of the review process, Kitchenham, all mentioned activities (stages)

are mandatory except commissioning a review as it depends on the planned commercialization

of review results, as well as evaluating the review protocol and evaluating the report which

are optional as they depend on the quality assurance procedures decided by the author(s) of

the review. In any case, the mentioned activities are recommended.

As one can conclude from the above list, the mentioned stages and phases are sequential.

However, it is important to mention that some of the stages can be repeated more than once

and may involve iteration or reimplementation. For example, the negative evaluation of

review protocol or negative evaluation of the report might result in the need to repeat the part

or the whole review process. Or, the inclusion and exclusion criteria of the relevant studies

21

could be refined after quality criteria are defined. It is important to notice that even

experienced scientists often have to change or adapt the review protocol. To some authors this

provides a reason for criticism of the methodology of the already existing reviews for not

being completely objective or even conducting a fake rational design process. However, there

are authors such as Staples and Niazi (2007) who discuss the need of the protocol even if it is

a subject of constant changes through the whole systematic review process. All that has been

said brings us to a strong general conclusion that the protocol is needed and that it increases

the quality of the process.

In the following sections, each stage of the SLR process will be discussed in detail.

2.1.2.1. Planning the review

The most important activities during the phase of review planning are definition of the review

question(s) and creation of the review protocol. However, the rest of the activities should not

be neglected and also deserve a serious approach. The results of this phase should be a clearly

defined review protocol containing the purpose and the procedures of the review.

The summary of each stage is presented below and is based on guidelines presented in

(Kitchenham and Charters, 2007) and on additional discussions from other authors cited in the

text.

Identification of the need for a review is the first activity in the SLR process. It arises from

the preliminary research in the topic area. When the author(s) has a firsthand knowledge in

the area of interest, then it is possible to conclude whether more thorough and unbiased

research is needed. It is especially important to identify and review the existing systematic

reviews on the same topic. The review of existing SLRs is usually undertaken against

appropriate and previously created evaluation criteria. The most common practice is to create

a checklist or set of questions that should be examined for every existing SLR. There are

several checklists proposed by different authors and organizations, and depending on the level

of complexity, they usually operate with concepts of the quality of defined inclusion and

exclusion criteria or the level of literature and relevant studies coverage along with the

assessment of quality of included studies. For example Centre for Reviews and Dissemination

(2009) in the book Systematic Reviews defines the following set of questions to use while

critically appraising review articles:

�x Was the review question clearly defined in terms of population, interventions,

comparators, outcomes and study designs (PICOS)?

�x Was the search strategy adequate and appropriate? Were there any restrictions on

language, publication status or on publication date?

22

�x Were preventative steps taken to minimize bias and errors in the study selection

process?

�x Were appropriate criteria used to assess the quality of the primary studies, and were

preventative steps taken to minimize bias and errors in the quality assessment process?

�x Were preventative steps taken to minimize bias and errors in the data extraction

process?

�x Were adequate details presented for each of the primary studies?

�x Were appropriate methods used for data synthesis? Were differences between studies

assessed? Were the studies pooled, and if so was it appropriate and meaningful to do

so?

�x Do t�K�H���D�X�W�K�R�U�V�¶���F�R�Q�F�O�X�V�L�R�Q�V���D�F�F�X�U�D�W�H�O�\���U�H�À�H�F�W���W�K�H���H�Y�L�G�H�Q�F�H���W�K�D�W���Z�D�V���U�H�Y�L�H�Z�H�G�"

Commissioning a review is an optional task whose inclusion in the process depends on the

type and the stakeholders of the review process. If the review is commissioned by an

organization that has no time or expertise to perform a review by itself, then the organization

must provide a commissioning document that will contain all important information about the

required work such as project name, review questions, timetable, budget or dissemination

strategy.

Scientists and PhD students will not create a commissioning document while performing a

systematic literature review as a part of their own work. The only issue that should be

addressed in this case is that a dissemination strategy should be incorporated in the review

protocol.

Specifying the research question or questions is probably the most important part of the

systematic review process as it is the base for all other activities. The research question

defines which primary studies to include or exclude from the review, and the data that should

be extracted from the reviewed literature. The defined research question should be answered

in the final systematic literature review report.

As Kitchenham emphasizes, there are several types of research questions (adapted from

guidelines in the domain of health care) that can be stated in the domain of software

engineering. These questions may concern, for example, effect of SE technology, cost and

risk factors, the impact of technology on different concepts et cetera. The type of a question

can sometimes determine the guidelines and procedures to be used (as for example in domain

of health care). My opinion is that it is not necessary to create a finite set of types of research

questions, but rather to use a set of guidelines on how to create a research question that has

the appropriate structure. According to Kitchenham, it is important to create a right question,

i.e. a question that is meaningful and important to practitioners and researchers, that will

lead either to changes in current SE practice or to increased confidence in the value of

23

current practice, or that will identify discrepancies between commonly held beliefs and

reality. Finally, the right questions can be the questions that are primarily of interest to

researchers in order to identify and scope the future research activities. For example, such

question could be used in a systematic review performed by a PhD student in order to identify

existing basis and to identify if and where the research fits into the current body of

knowledge.

Usually, authors define more than one research question or they define one high-level

research question and then break it down to several more specific and concrete questions. For

example, in order to characterize software architecture changes by means of a systematic

review, Williams and Carver (2010) created the following high-level question: Can a broad

set of characteristics that encompass changes to software architectures be identified using the

current software engineering body of knowledge and be used to create a comprehensive

change assessment framework? Additionally, the authors created five more specific questions

along with accompanying motivation. The specific questions were:

�x What are the attributes of the existing software change classification taxonomies?

�x How are software architecture elements and relationships used when determining the

effects of a software change?

�x How is the architecture affected by the functional and non-functional changes to the

system requirements?

�x How is the impact of architecture changes qualitatively assessed?

�x What types of architecture changes can be made to common architectural views?

Another approach is to create a single research question, and in order to clarify its boundaries,

several complementary research questions can be created. For example, in order to review the

reasons for undertaking CMM6-based SPI7 initiatives in organizations, Staples and Niazi

(2008) defined the following research question: Why do organizations embark on CMM-based

SPI initiatives? And, in order to clarify the question they stated several complementary

questions that were not used during the investigation:

�x What motivates individuals to support the adoption of CMM-based SPI in an

organization?

�x Why should organizations embark on CMM-based SPI initiatives?

6 CMM is an acronym for Capability Maturity Model. The CMM was first introduced by Humphrey W. S., as a
model and practical guidance for improving the software development and maintenance process (Humphrey,
1989). CMM is applicable to other processes as well.
7 SPI is an acronym for Software Process Improvement and referes to an approaches that are intended to improve
the practice of software engineering. One of these approaches is also an CMM-based approach (Staples and
Niazi, 2008).

24

�x What reasons for embarking on CMM-based SPI are the most important to

organizations?

�x What benefits have organizations received from CMM-based SPI initiatives?

�x How do organizations decide to embark on CMM-based SPI initiatives?

�x What problems do organizations have at the time that they decide to adopt CMM-

based SPI?

The research questions also depend on the type of review which, according to Noblit and Hare

(1988), can be integrative or interpretative���� �$�F�F�R�U�G�L�Q�J�� �W�R�� �'�\�E�n�� �D�Q�G�� �'�L�Q�J�V�¡�\�U��(2008a) the

difference between integrative and interpretative reviews is that integrative reviews are

concerned with combining or summarizing data for the purpose of creating generalizations,

and interpretative reviews achieve synthesis through combination of concepts identified in the

primary studies into a higher-order theoretical structure. This division could be aligned with

�W�K�H���S�U�L�Q�F�L�S�O�H�V���R�I���³�U�L�J�K�W���T�X�H�V�W�L�R�Q�V�´���P�H�Q�W�L�R�Q�H�G���H�D�U�O�L�H�U���L�Q���W�K�L�V���F�K�D�S�W�H�U����

According to Petticrew and Roberts (2005) it is a good way to start the question writing

process by breaking it down into sub-questions. If the review aims to answer a question about

the effectiveness, the authors suggest using a model called PICOC, defining a population,

intervention, comparison, outcomes and context. These criteria were accepted in

�.�L�W�F�K�H�Q�K�D�P�¶�V�� �J�X�L�G�H�O�L�Q�H�V�� �D�Q�G�� �G�L�V�F�X�V�V�H�G�� �I�U�R�P�� �W�K�H�� �Y�L�H�Z�S�R�L�Q�W�� �R�I�� �V�R�I�W�Z�D�U�H�� �H�Q�J�L�Q�H�H�U�L�Q�J�� �D�V��

follows:

�x Population in the terms of SE can assume wide range of roles or groups and even

areas, from novice testers, experienced software architects to, for example, control

systems. As the number of undertaken primary studies in the field of SE is relatively

small (comparing to other fields), it is wise to avoid any restriction on the population.

�x Intervention should define a software methodology/tool/technology/procedure that the

authors are interested in reviewing and that should address specific issue that is in the

focus of the research. Basically, intervention is the concept that is going to be

observed in the context of the planned systematic review.

�x Comparison is the software engineering methodology/tool/technology/procedure with

which the intervention is being compared. If the comparison technology is the

conventional or commonly-used technology, it is often referred �W�R�� �D�V�� �W�K�H�� �³�F�R�Q�W�U�R�O�´��

treatment and the control situation must be adequately described.

�x Outcomes should relate to factors of importance to practitioners. All relevant outcomes

should be specified, without using surrogate measures that may be misleading.

�x Context refers to the context in which the comparison takes place (e.g. academia or

industry), participants taking part (e.g. practitioners, consultants, students) and the

tasks being performed (e.g. small scale, large scale). There are many examples of

25

unrepresentative experiments, i.e. the experiments that are undertaken in academia

using students and small scale tasks, and these should be excluded from serious

systematic reviews.

Developing a review protocol is considered as the most important activity of the whole

planning phase as it determines the rest of the SLR process. The output of this activity should

be a detailed review protocol that specifies the methods that will be used to perform a planned

systematic review. Creating a protocol prior to systematic review is necessary to reduce the

possibility of researcher bias. Staples and Niazi (2007) claim that review protocol, as a

concrete and formal plan of the systematic review, usually insinuates and suggests the

structure of the final report.

Protocol should also describe the background context of the research, the specific research

questions, the planned search strategy, criteria for publication selection, the treatment of

publication quality assessment, the data extraction plan, the data synthesis plan and a project

plan. Although usually it is impossible to predict all the elements and obstacles in the whole

systematic review process, above mentioned parts define it in general. That is why some

authors, for example Staples and Niazi (2007), argue that a protocol is a subject of constant

changes through the whole systematic review process. In the guidelines, Kitchenham suggests

that aspects of the protocol should be piloted during its development. In particular, the search

terms, selection criteria, and data extraction procedures should be tried out before finalizing

the protocol.

Although some elements of the review protocol are already stated, the full list of elements of

the protocol, defined by (Kitchenham and Charters, 2007), is presented here without any

changes:

�x Background. The rationale for the survey.

�x The research questions that the review is intended to answer.

�x The search strategy that will be used to search for primary studies including search

terms and resources to be searched. Resources include digital libraries, specific

journals, and conference proceedings. An initial mapping study can help determine an

appropriate strategy.

�x Study selection criteria. Study selection criteria are used to determine which studies

are included in, or excluded from, a systematic review. It is usually helpful to pilot the

selection criteria on a subset of primary studies.

�x Study selection procedures. The protocol should describe how the selection criteria

will be applied e. g. how many assessors will evaluate each prospective primary study,

and how disagreements among assessors will be resolved.

26

�x Study quality assessment checklists and procedures. The researchers should develop

quality checklists to assess the individual studies. The purpose of the quality

assessment will guide the development of checklists.

�x Data extraction strategy. This defines how the information required from each

primary study will be obtained. If the data require manipulation or assumptions and

inferences to be made, the protocol should specify an appropriate validation process.

�x Synthesis of the extracted data. This defines the synthesis strategy. This should clarify

whether or not a formal meta-analysis is intended and if so what techniques will be

used.

�x Dissemination strategy (if not already included in a commissioning document).

�x Project timetable. This should define the review schedule.

Taking into considerations the discussion from other authors, several stated elements are

�H�V�S�H�F�L�D�O�O�\�� �L�P�S�R�U�W�D�Q�W���� �)�R�U�� �H�[�D�P�S�O�H�� �'�\�E�n�� �D�Q�G�� �'�L�Q�J�V�¡�\�U��(2008a) argue that explicit inclusion

and exclusion criteria (which should specify the types of study designs, interventions,

populations and outcomes that will be included in the review) and a systematic search strategy

(which should specify the keyword strings and bibliographic sources defined in a such way to

ensure good topic coverage) are of the most importance. They also state that sometimes it is

even necessary to perform a search of key journal and conference proceedings by hand to

identify relevant studies that are not fully indexed. On the other hand, some authors put focus

on quality assurance elements and on planning, considering them to be critical in order to

mitigate risks of researcher bias (Kitchenham and Charters, 2007) or in order to support the

practical conduct of systematic review (Staples and Niazi, 2007).

In order to make the process of development of review protocol easier, Kitchenham gave an

example of protocol for a tertiary study review. On the other hand, Biolchini et al. (2005)

created a Systematic Review Protocol Template which, even based on the first version of the

�.�L�W�F�K�H�Q�K�D�P�¶�V guidelines, covers majority of concepts and could be used as a starting point in

creating a review protocol. Except the mentioned guidelines, protocol was also based on the

systematic review protocols developed in the medical area and on the example found in

Protocol for Systematic Review by Mendes E. and Kitchenham B., 2004. (as cited by

�%�L�R�O�F�K�L�Q�L�������(�Y�H�U�\���F�R�Q�F�H�S�W���L�Q���%�L�R�O�F�K�L�Q�L�¶�V���W�H�P�S�O�D�W�H���L�V���G�H�V�F�U�L�E�H�G���L�Q���G�H�W�D�L�O���D�Q�G���D���S�L�O�R�W���V�W�X�G�\���Z�D�V��

conducted in order to evaluate the developed protocol template. The results of the study

showed that usage of template has significantly shortened the time spent on planning against

the review execution time8.

8 More details on mean time spent on systematic review tasks along with simple formula to predict the needed
time are presented in (Petticrew and Roberts, 2005).

27

The Systematic Review Protocol Template created by (Biolchini et al., 2005) is composed of

five main parts. The original template is given in Figure 8 without any changes.

Figure 8 - Systematic Review Protocol Template

(Biolchini et al., 2005)

Evaluating the review protocol is not compulsory, but is a recommended step in the SLR

process in order to improve its quality as the protocol is a critical element of any systematic

review. The researchers must take into consideration several aspects in order to agree on a

procedure for evaluating the protocol. Important aspects are purpose of the research, desired

quality, time, financial construction etc. With regards to these, there are several methods of

evaluating a review protocol which can be used:

�x �D�X�W�K�R�U�¶�V���U�H�Y�L�H�Z�����Q�R�W���U�H�F�R�P�P�H�Q�G�H�G��

�x peer review

�x review by supervisor (appropriate for PhD students)

�x review by external experts (the best option)

�x test of protocol execution

Review by external experts is probably the best option, but it usually depends on the financial

construction of the review project. In this case, the group of external experts should be asked

to review the protocol, and the same group can be asked to review the final report.

Test of protocol execution is a good and widely used alternative method. In this case, the

review of protocol is executed by performing a full cycle of systematic review (following the

28

protocol) but on a reduced set of selected sources. If the gained results are not suitable, or if

any phase of the review reveals unexpected problems, the new version of the protocol must be

created.

2.1.2.2. Conducting the review

�$�F�F�R�U�G�L�Q�J�� �W�R�� �.�L�W�F�K�H�Q�K�D�P�¶�V�� �J�X�L�G�H�O�L�Qes, conducting the review phase consists of five

�R�E�O�L�J�D�W�R�U�\���V�W�D�J�H�V�����7�K�L�V���S�K�D�V�H���W�D�N�H�V���P�R�V�W���R�I���W�K�H���U�H�V�H�D�U�F�K�H�U�¶�V���W�L�P�H�����D�Q�G���D�O�W�K�R�X�J�K���D�O�O���I�L�Y�H���V�W�D�J�H�V��

are important, identification of research and selection of primary studies will determine the

rest of reviewing process. In this phase the predefined protocol should be followed and the

phase should result in data extracted, summarized and ready for dissemination.

The summary of each stage is presented below and is based on guidelines presented in

(Kitchenham and Charters, 2007) and on additional discussions from other authors which are

cited in the text.

Identification of research, as a first step in conducting a review, it results in a list of entire

population of publications relevant to the research questions and obtained by performing a

search strategy.

The search strategy should be the same as stated in the review protocol, and it should be

stated in such a manner that it allows the study to be replicable and open to external review. If

a researcher is not experienced in a creating a search strategy, then he or she should ask for

help (for example from librarian). It is also good to break down the research question and to

identify initial search strings according to population, intervention, comparison, outcomes,

context and study design. On top of that, it is important to create a list of synonyms,

abbreviations and alternative spellings. Apart from results gained from digital libraries, other

sources such as reference lists from relevant primary studies, journals, grey literature (e.g.

technical reports), research registers and the Internet should also be searched (sometimes

manually).

The process of definition of search strategy is usually iterative and should benefit from

preliminary searches, trial searches and consultations with experts in the field.

In order to address publication bias (the problem that positive results are more likely to be

published than negative) and not to allow it to become a systematic bias, Kitchenham suggests

that it is important to take appropriate steps. For example scanning grey literature, conference

proceedings and contacting domain e�[�S�H�U�W�V���F�R�X�O�G���U�H�V�X�O�W���L�Q���D�G�G�L�W�L�R�Q���R�I���V�W�X�G�L�H�V���Z�L�W�K���³�Q�H�J�D�W�L�Y�H�´��

results.

As the number of identified primary studies may be extensive (some authors, for example

Unterkalmsteiner et al. (2012) have identified more than 10.800 publications), the appropriate

29

reference manager software should be used to keep a record on all of them along with the

links to the potentially useful full papers.

Process of performing a SLR must be transparent and replicable. This means that the whole

process should be properly documented: the review and search must be documented, and

unfiltered search results should be saved and retained for possible reanalysis. Many of these

documents will not be presented in the final report but can also be published and a reference

to them can be given in the final report. Kitchenham proposed the procedures for

documenting the search process according to data source as presented in Table 1.

Table 1 - Procedures for documenting the search process

Data source Documentation

Digital Library Name of database
Search strategy for the database
Date of Search
Years covered by search

Journal hand Searches Name of journal
Years searched
Any issues not searched

Conference proceedings Title of proceedings
Name of conference (if different)
Title translation (if necessary)
Journal name (if published as part of a journal)

Efforts to identify
unpublished studies

Research groups and researches contacted (names and contact details)
Research web sites searched (date and URL)

Other sources Date of search
URL
Any specific conditions pertaining to the search.

Source: (Kitchenham and Charters, 2007)

In an attempt to perform an exhaustive search Brereton et al. (2007) identified seven

electronic sources as most relevant sources to Software Engineers, and they also discuss about

considering the use of additional sources (*) from publishers or bibliographical databases:

�x IEEExplore

�x ACM Digital library

�x Google scholar

�x Citeseer library

�x INSPEC

�x ScienceDirect

�x EI Compendex

�x *SpringerLink

�x *Web of Science

�x *Scopus

Unfortunately, the search of many relevant journals can only be performed manually, but is

also an important part of the search process. The usual way to identify relevant journals is to

read papers reference lists or by searching the Internet. Several authors also tried to identify a

list of relevant journals and conferences in the field of software engineering. For example,

30

combining the recommendations from (Hannay et al., 2007; Kitchenham and Charters, 2007),

the list of relevant journals and conferences (ordered alphabetically) could be:

�x ACM Transactions on Software Engineering Methodology (TOSEM)

�x ACM/IEEE International Symposium on Empirical Software Engineering and

Measurement (ESEM) 9

�x Empirical Software Engineering (EMSE)

�x Evaluation and Assessment in Software Engineering (EASE)

�x IEEE Computer

�x IEEE Software

�x IEEE Transaction on Software Engineering (TSE)

�x Information and Software Technology (IST)

�x International Conference on Software Engineering (ICSE)

�x Journal of Software: Evolution and Process (JSEP) 10

�x Journal of Software: Practice and Experience (SP&E)

�x Journal of Systems and Software (JSS)

Selection of primary studies is performed on all identified (potentially relevant) studies by

applying an inclusion and exclusion criteria in order to assess their actual relevance. The

selection criteria are also decided during the protocol definition but if necessary, they can be

refined during this process. The identification of research will usually end up with a great

number of articles that do not answer to the research question (because the keywords may

have different meanings or may be used in the studies that are not in the focus of SLR

research topic). The inclusion criteria will define which of these studies to include in the set

of relevant ones, and the exclusion criteria can be applied on the already selected studies in

order to identify those that do not meet additional conditions, or on the initial list of studies in

order to remove irrelevant ones. Inclusion and exclusion criteria should be based on the

research question, but could be defined based on study types. For example, only quantitative

studies will be taken into consideration.

Study selection is a multistage and iterative process. If the number of initially obtained studies

is large, the authors usually start with simple criteria and, for example, in the first iteration

include/exclude studies only by reading the title. In the second iteration the abstract is read

9 ESEM symposium was first held in 2007 as a merge of IEEE International Symposium on Empirical Software
Engineering (ISESE) and IEEE International Symposium on Software Metrics (METRICS), so if searching for
papers prior to 2007 it is wise to check issues of ISESE and METRICS.
10 JSEP journal was born from two parent journals, Journal of Software Maintenance and Evolution: Research
and Practice and Software Process: Improvement and Practice, and the second one should be searched
separatelly as it was issued until 2009. Issues of the first journal are available on the current JSEP home page.

31

and finally, full papers are read. Two study selection processes are shown in Figure 9

(Unterkalmsteiner et al., 2012) and Figure 10 ���'�\�E�n���D�Q�G���'�L�Q�J�V�¡�\�U�������������D��.

However, some authors advocate a more strict approach. For example, Brereton et al. (2007)

advise the researchers to exclude studies by means of reading the title and the abstract only if

there are no doubts that study can be excluded. Otherwise, they point out that they have learnt

from their own �H�[�S�H�U�L�H�Q�F�H�� �W�K�D�W�� �³�W�K�H�� �V�W�D�Q�G�D�U�G�� �R�I�� �,�7�� �D�Q�G�� �V�R�I�W�Z�D�U�H�� �H�Q�J�L�Q�H�H�U�L�Q�J�� �D�E�V�W�U�D�F�W�� �L�V�� �W�R�R��

poor to r�H�O�\���R�Q���Z�K�H�Q���V�H�O�H�F�W�L�Q�J���S�U�L�P�D�U�\���V�W�X�G�L�H�V�´�����D�Q�G���W�K�H�\���D�G�Y�L�V�H���U�H�Y�L�H�Z�L�Q�J���W�K�H���F�R�Q�F�O�X�V�L�R�Q�V���D�V��

well. Of course, final set of selected papers should be reviewed in detail.

Figure 9 - Example of study selection process (a)

Figure 10 - Example of study selection process (b)

Kitchenham is familiar with general instructions on keeping the list of excluded papers, but

she suggests that totally irrelevant papers should be excluded first (for example, papers that

have nothing to do with Software Engineering) and then, while analyzing other papers, the list

of exclusions should be kept updated along with the reasons of exclusion.

In order to increase the reliability of inclusion decisions it is possible to perform the same

process by two or more researches. The Cohen Kappa coefficient (Cohen, 1968) can be used

to measure the level of agreement between the researches11. If there is a disagreement then it

should be discussed and resolved, but the initial value of Kappa statistics should be preserved

in the final report and used for discussion and conclusions. Alternatively, using test-retest

approach latter researches can evaluate a random sample of the primary studies.

11 The Cohen Kappa coefficient (Cohen, 1968) is statistical measure of agreement between two observers rating
qualitative items. The simple Kappa coefficient (from 1960) is calculated for nominal scales and it treats all
disagreements between raters equally. But, the Weightet kappa, ��w, provides the means of taking into
consideration the ratio-scaled degrees of disagreement between raters. Theoretical Kappa maximum of 1.0
means perfect agreement between raters.

32

On the other hand, a PhD student can use one of the following methods to increase the

reliability of inclusion decisions:

�x consultation with advisor

�x consultation with expert panel or other researcher

�x re-evaluation of a random sample of the primary studies by the test-retest approach

�x re-evaluation of a random sample by other researcher while publishing a paper on the

subject

Advisors usually help students to choose an appropriate method and if decided so, the advisor

can review the inclusion decisions or help the student find external experts or perform other

stated methods.

Study quality assessment is the second most important stage in this phase. The idea of this

process is to analyze and assess the quality of each primarily selected study to be finally

included in data extraction and reporting process. In general, the aim of assessing the quality

is to make sure that the study findings are relevant and unbiased. However, this is not a simple

process as, according to Kitchenham, there is no agreed �G�H�I�L�Q�L�W�L�R�Q�� �R�I�� �V�W�X�G�\�� �³�T�X�D�O�L�W�\�´���� �6�R�P�H��

authors, for example Centre for Reviews and Dissemination (2009), discuss that the study

quality assessment procedures mainly depend on the type of the study. For example, in health

sciences, the quality assessment of a study that was conducted by using a randomized

controlled trials method cannot be the same as the assessment of quasi-experimental studies

or observational studies. The mentioned guidelines also state that the following elements

should be assessed regardless of the study type:

�x appropriateness of study design to the research objective

�x risk of bias

�x choice of outcome measure

�x statistical issues

�x quality of reporting and intervention

�x generalizability

Mentioned elements do not have the same importance in every case, but the authors usually

agree that the risk of bias (also known as internal validity) is pernicious as it can easily

obscure intervention effects. Generalizability (also known as applicability or external validity)

considers the extent to which a study is generalizable and how closely a study reflects a

practice (Centre for Reviews and Dissemination, University of York, 2009). Additionally,

Kitchenham states that quality assessment should be used to:

�x provide more detailed inclusion/exclusion criteria

�x provide explanation for differences in study results

�x weigh the importance of individual studies for overall synthesis

33

�x guide the interpretation and further research

In this process, Kitchenham also finds that three concepts are important and most closely

related to the study quality. She defines them as follows:

Table 2 - Quality concept definitions

Term Synonyms Definition
Bias Systematic error A tendency to produce results that depart systematically

�I�U�R�P���W�K�H���µ�W�U�X�H�¶���U�H�V�X�O�W�V�����8�Q�E�L�D�V�H�G���U�H�V�X�O�Ws are internally valid.
Internal validity Validity The extent to which the design and conduct of the study are

likely to prevent systematic error. Internal validity is a
prerequisite for external validity.

External validity Generalizability,
Applicability

The extent to which the effects observed in the study are
applicable outside of the study.

Source: (Kitchenham and Charters, 2007)

The most common tool (quality instrument) used to assess the quality of studies is checklist.

Usage of checklists ensures that all assessed studies are evaluated critically and in a

standardized way. According to Centre for Reviews and Dissemination (2009) there are many

different checklists and scales already available, and they can be used or adapted to meet the

requirements of the review or to cover the bias and validity in the focus of specific research.

In literature several types of biases are recognized that should be addressed in a checklist.

Kitchenham adopted the division and adapted the definitions and protection mechanisms in

order to address software engineering rather than medicine. The identified types of biases

along with definition and protection mechanisms are as follows:

Table 3 - Types of Bias

Type Synonyms Definition Protection mechanism

Selection bias Allocation
bias

Systematic differences between
comparison groups with respect to
treatment.

Randomization of a large number
of subjects with concealment of
the allocation method (e.g.
allocation by computer program
not experimenter choice).

Performance
bias

 Systematic difference is the
conduct of comparison groups
apart from the treatment being
evaluated.

Replication of the studies using
different experimenters.
Use of experimenters with no
personal interest in either
treatment.

Measurement
bias

Detection
bias

Systematic difference between the
groups in how outcomes are
ascertained.

Blinding outcome assessors to the
treatments is sometimes possible.

Attrition bias Exclusion
bias

Systematic differences between
comparison groups in terms of
withdrawals or exclusions of
participants from the study sample.

Reporting of the reasons for all
withdrawals. Sensitivity analysis
including all excluded
participants.

Source: (Kitchenham and Charters, 2007)

34

In addition to these, Higgins and Green (2011) emphasize reporting bias and also recognize

other biases. By reporting bias they discuss systematic differences between reported and

unreported findings, and by other biases they presume other sources of bias that are relevant

in certain circumstances (for example language etc.).

According to Kitchenham, checklist should also include consideration of biases and validity

problems that can occur at the different stages of the study (design, conduct, analysis and

conclusions). Reviewing available papers on the subject of checklists creation for quantitative

studies, and noticing that authors focus on different set of questions, Kitchenham and Charters

(2007) created an accumulated list of 59 questions and organized them with respect to study

stage and study type. These questions cover four mentioned stages and can be used for

quantitative empirical studies, correlation (observational) studies, surveys and experiments.

The same process was conducted in qualitative studies, and resulted in 18 questions that could

be used. These example checklists, which we highly recommend, should not be used literally,

but rather as a pool of questions. The appropriate questions could be taken from the pool for

each specific study.

The review protocol should define quality instruments as well as specify how the quality data

are to be used. In general, there are two rather different but not mutually exclusive ways: (1)

to assist primary study selection and (2) to assist data analysis and synthesis.

There are several limitations the authors should be aware of when attempting to perform a

quality analysis of different studies. First primary studies could be poorly reported, but the

lack of report does not necessaril y mean a leak in the procedure. According to Petticrew and

Roberts (2005) the quality checklists should address methodological quality and not reporting

quality. If reporting quality is poor, the researchers should attempt to obtain more information

from the authors of the study. Additionally, Kitchenham argues that a limitation could be a

limited evidence of the relationships between factors that are thought to affect validity and the

actual study outcomes, and that sometimes it is not possible to correct the statistical analysis

as there is usually no access to the original data.

Finally, authors usually point out all undertaken quality assessment procedures and measures,

but only to the level of detail that is suitable for the target publication. For further reading, we

recommend some simple examples of quality assessment of SE studies presented in ���'�\�E�n��

�D�Q�G�� �'�L�Q�J�V�¡�\�U���� ���������D��, (B Kitchenham et al., 2009), (Barbara Kitchenham et al., 2009) or

(Kitchenham et al., 2010) and especially (Unterkalmsteiner et al., 2012).

Data extraction and monitoring, as a next step in SLR process, aims to accurately and

without bias record the appropriate information from selected papers. Researchers usually,

during the protocol definition phase, define extraction forms which are used in this activity.

35

The design of data extraction forms is not a trivial task while forms should be designed to

collect all information needed to address the review questions and the study quality criteria.

As the quality criteria can be used to identify inclusion/exclusion criteria or/and as a part of

the data analysis, in the first case, the data extraction forms should be separated, and in the

second case, a single form can be used (Kitchenham and Charters, 2007). In any case, the

same authors recommend that the forms should be piloted during the protocol definition

phase, and all researchers who will use the forms should take part in the pilot study in order to

assess completeness of the forms along with possible technical issues.

Basically, as mentioned before, data extraction forms should contain questions needed to

answer the review questions and quality evaluation criteria. There is no firm guidance on how

to define these questions as they are different for every specific SLR process. On the other

hand, there are several elements that are considered to be common to all forms in order to

provide standard information. According to Kitchenham these elements are:

�x name of the reviewer

�x date of data extraction

�x title, authors, journal, publications details

�x space for additional notes

Combining the examples presented in (Kitchenham and Charters, 2007) and ���-�¡�U�J�H�Q�V�H�Q����

2007) we can conclude that in general, data extraction form could include parts (sections) as

presented in Table 4.

Table 4 - Data collection form template

Data item Value Additional notes
Extraction information
Data extractor
Data checker
Date of extraction

General study information
Study identifier
Title
Publication details Including authors, journal etc.

Questions to answer review questions
Question 1 These questions could aim to obtain

numerical or descriptive data. Each
review question could be covered by
more questions in data extraction form.

Question 2
Question n

Questions to assess study quality
Question 1 These questions should be related ONLY

to data analysis. Questions related to
inclusion/exclusion criteria should be

Question 2
Question m

36

stated on separate form.

Data summary
Question 1 These questions could aim to collect

summary information from the observed
study.

Question 2
Question p

It is important to notice that the column Additional notes was used to present additional info

on template elements, but it should also be used in extraction forms to present additional info

on the extracted data.

Similarly as in the process of applying inclusion and exclusion criteria, there are different

methods that could be performed to extract the data and to fill the extraction forms. In

guidelines Kitchenham recommends that data extraction should be performed by two or more

researchers, but as stated in (B Kitchenham et al., 2009), in practice she finds that it is useful

that one researcher extracts the data and the other one checks the extraction. If several

researchers are performing a data extraction, the results should be compared, aligned and if

necessary discussed. However, if researchers are performing extraction on different sets of

primary studies, it is important to ensure that it is done in a consistent manner by employing

some cross-checking activities. Additionally, Staples and Niazi (2007) recommend that the

whole process should be done in an iterative manner. PhD students will usually need some

help from advisor or other experts to randomly check their extracted data or they will perform

a re-test of a part of the primary studies.

Incidentally, it is important not to include multiple studies with the same data in a systematic

review in order to avoid results with bias. This could be a serious threat if different sets of

publications are analyzed by different researchers. Conversely, it is also important to contact

the authors if it is identified that some data are missing or were poorly reported.

Finally, the authors should consider using electronic forms as they proved themselves useful

in subsequent data analysis, especially if the extracted data is a set of numerical values and if

statistical or meta-analysis has been performed.

An interesting example of data extraction process can be found in (Unterkalmsteiner et al.,

2012), an example of filled extraction forms can be found in ���-�¡�U�J�H�Q�V�H�Q�������������� and ���'�\�E�n���D�Q�G��

�'�L�Q�J�V�¡�\�U�������������E�� and an example of data extraction forms with a short review on process can

be found in almost all papers mentioned in this chapter.

Data synthesis is the final step in the review conduction phase. During this activity extracted

data are collected and summarized. In general, there are two types of data synthesis:

descriptive (narrative) synthesis and quantitative synthesis (Centre for Reviews and

37

Dissemination, University of York, 2009). In order to draw reliable conclusions, synthesis

should consider the strength of evidence, explore consistency and discuss inconsistencies.

The synthesis approach should be defined by the protocol and is determined by the type of

research questions, but also by the type of available studies and by the quality of data. For

example, it is not wise to perform a statistical analysis on the numerical data if the

publications used are not randomized or do not cover the whole population, or if there are

studies with poor quality and with biased results. In add�L�W�L�R�Q���� �D�F�F�R�U�G�L�Q�J�� �W�R�� �&�5�'�¶�V�� �J�X�L�G�D�Q�F�H��

(2009), narrative and quantitative approaches are not mutually exclusive, and according to

(Brereton et al. (2007) �³�V�R�I�W�Z�D�U�H���H�Q�J�L�Q�H�H�U�L�Q�J���V�\�V�W�H�P�D�W�L�F���U�H�Y�L�H�Z�V���D�U�H���O�L�N�H�O�\���W�R���E�H���T�X�D�Oitative in

�Q�D�W�X�U�H�´��

Regardless of the synthesis type, the synthesis should begin with a creation of a summary of

included studies. The studies included in the review are usually presented in a table which

covers all their important details (such as type, interventions, number and characteristics of

participants, outcomes etc.). In the same (or in another) table, the elements of study quality

and risk of bias could also be presented. Additionally, this descriptive process should be

explicit, rigorous and should help to conclude if the studies are similar and reliable to

synthesize (Centre for Reviews and Dissemination, University of York, 2009). Kitchenham

and Charters (2007) also add that the extracted data should be tabulated in a manner that is

consistent with the review questions and structured to highlight similarities and differences

between study outcomes.

Synthetizing results of qualitative studies means an integration of materials written in natural

language, with significant possibility of having to understand different meanings of the same

concepts as they were used by different researchers (Kitchenham and Charters, 2007). In

(Noblit and Hare, 1988) the authors propose three approaches to synthesis of qualitative

studies:

�x Reciprocal transaction �± translation of cases of studies with similar objective into each

of other cases in order to create an additive summary.

�x Refutational synthesis �± translation of studies along with corresponding refutational

studies in order to analyze the refutations in detail.

�x Line of argument synthesis �± first, the individual studies which focus the part of some

problem are analyzed and then the set is analyzed as a whole in order to get broader

conclusion on the addressed problem.

According to Petticrew and Roberts (2005) the narrative synthesis can be performed in

several ways, but the most common one is to separate it into three distinct steps: (1)

organizing the description into logical categories, (2) analyzing the findings within each of

the categories and (3) synthesizing the findings across all included studies. The mentioned

38

authors argue that there is no firm guidance on how to organize the categories and that this

could be done according to: intervention, population, design, outcomes etc. The second step

involves a narrative description of the findings for each study. This description may vary in

length and in the level of detail. Finally, the authors discuss the cross-study synthesis and state

that it usually starts with a simple description of the uncovered information, then the summary

information on the effect of mediating variables (if any) can be presented, and at the end the

results of the individual studies are described. The main goal of cross-study synthesis is to

produce an overall summary of study findings taking into considerations the quality and other

variations.

Additionally, same authors describe several other synthesis methods which could be used:

�x Best evidence synthesis �± �³�F�R�P�E�L�Q�H�V the meta-analytic approach of extracting

quantitative information in a common standard format from each study with a

�V�\�V�W�H�P�D�W�L�F���D�S�S�U�R�D�F�K���W�R���W�K�H���D�V�V�H�V�V�P�H�Q�W���R�I���V�W�X�G�\���T�X�D�O�L�W�\���D�Q�G���V�W�X�G�\���U�H�O�H�Y�D�Q�F�H�´��

�x Vote counting �± the easiest approach which simply compares the number of positive

and negative results on specific issue. This approach is usually inappropriate to use as

it has many disadvantages.

�x Cross-design synthesis �± in theory combines the complementary strengths of

experimental and non-experimental research �± for example by adjusting the results of

random controlled trials (RCTs) by standardizing RCT results to the distributions

obtained from database analyses.

An example of applying a narrative synthesis is presented in (Centre for Reviews and

Dissemination, University of York, 2009) and can be seen in Figure 11.

Quantitative data (as well as qualitative) should be presented in tabular form. The data must

be presented in a comparable way, and according to Kitchenham, it should include:

�x sample size for each intervention,

�x estimated effect size for intervention with standard error for each effect,

�x difference between the mean values for each intervention and the confidence interval

for the difference,

�x units used for measuring the effect.

Different effect measures for different types of outcome are proposed in literature.

Kitchenham refers to medical literature and she presents binary outcomes (which can be

measured by effect measures like odds, risk, odds ratio (OR), relative risk (RR), absolute risk

reduction (ARR)) and continuous data (which can be measured by mean difference, weighted

mean difference (WMD) or standardized mean difference (SMD)).

39

Apart from narrative description of results, qualitative results are usually presented and

summarized in a table. Ev�H�Q���W�K�R�X�J�K���³�W�D�E�X�O�D�W�L�Q�J���W�K�H���G�D�W�D���L�V���D���X�V�H�I�X�O���P�H�D�Q�V���R�I���D�J�J�U�H�J�D�W�L�R�Q�����L�W���L�V��

�Q�H�F�H�V�V�D�U�\�� �W�R�� �H�[�S�O�D�L�Q�� �K�R�Z�� �W�K�H�� �D�J�J�U�H�J�D�W�H�G�� �G�D�W�D�� �D�F�W�X�D�O�O�\�� �D�Q�V�Z�H�U�V�� �W�K�H�� �U�H�V�H�D�U�F�K�� �T�X�H�V�W�L�R�Q�V�´��

(Brereton et al., 2007). On the other hand, quantitative results are usually presented by forest

plot (which presents the means and variance of the difference for each study) (Kitchenham

and Charters, 2007) and, of course, additionally narratively discussed and related to the

research questions.

Figure 11 - Example of applying narrative synthesis
(Centre for Reviews and Dissemination, University of York, 2009)

When systematic literature review includes quantitative and qualitative studies, Kitchenham

�V�X�J�J�H�V�W�V���W�K�D�W���U�H�V�H�D�U�F�K�H�U�V���V�K�R�X�O�G���³�Vynthetize the quantitative and qualitative studies separately,

and then attempt to integrate the results by investigating whether the qualitative results can

�K�H�O�S���H�[�S�O�D�L�Q���W�K�H���T�X�D�Q�W�L�W�D�W�L�Y�H���U�H�V�X�O�W�V�´�����:�K�H�Q���W�K�H�U�H���L�V���D���F�R�Q�V�L�G�H�U�D�E�O�H���G�L�I�I�H�U�H�Q�F�H���L�Q���W�K�H���T�X�D�O�L�W�\���R�I��

studies, Kitchenham suggests the sensitivity analysis to be performed in order to determine if

the low quality publications have significant impact on synthesis results. Sensitivity analysis

could also be performed on different subsets of primary studies to determine the robustness of

the results.

Examples of different methods and approaches of presentation of systematized data can be

found in Chapter 1.3.5. of (Centre for Reviews and Dissemination, University of York, 2009).

40

2.1.2.3. Reporting the review

The aim of the final phase of the systematic literature review process is to write the results of

the review in a form suitable to dissemination channel and the target audience or parties. The

results are usually written in a form of a systematic review report. The summary of possible

activities is presented below and is based on the guidelines presented in (Kitchenham and

Charters, 2007) and on additional discussions from other authors which are cited in the text.

Specifying dissemination strategy and mechanisms is usually performed during the project

commissioning activities, or if there is no commissioning phase, then dissemination strategy

and mechanisms should be defined in the review protocol. Kitchenham argues that apart from

disseminating the results in academic journals and conferences, scientists should consider

performing other dissemination activities that might include direct communication with

affected bodies, publishing the results on web pages, posters or practitioner-oriented

magazines etc.

If the results are to be published in a conference or journal, or any other publication with

restricted number of pages, then the reference to a document (technical report, PhD thesis or

similar) that contains all information should be provided.

Formatting the main report is the most important activity of this phase. Kitchenham adopted

�W�K�H�� �V�X�J�J�H�V�W�H�G�� �V�W�U�X�F�W�X�U�H�� �R�I�� �V�\�V�W�H�P�D�W�L�F�� �U�H�Y�L�H�Z�� �U�H�S�R�U�W�� �J�L�Y�H�Q�� �L�Q�� �&�5�'�¶�V�� �J�X�L�G�H�O�L�Q�H�V�� �I�U�R�P�� ������������

Although the original guidelines (from 2001) are updated in (Centre for Reviews and

Dissemination, University of York, 2009), the version presented by Kitchenham is sufficient

in the field of software engineering. She also distinguishes reports which are to be published

in technical reports and journals from the reports which are to be published in a PhD

dissertation. The report structure proposed by Kitchenham is presented in Table 5 and

elements marked with the (*) are usually used only in publications and not in PhD

dissertations.

Table 5 - Structure and Contents of Reports of Systematic Reviews

Section Subsection Scope Comments
Title* The title should be short but

informative. It should be based on the
question being asked. In journal papers,
it should indicate that the study is a
systematic review.

Authorship* When research is done collaboratively,
criteria for determining both who
should be credited as an author, and the
�R�U�G�H�U���R�I���D�X�W�K�R�U�¶�V���Q�D�P�H�V���V�K�R�X�O�G���E�H��
defined in advance. The contribution of
workers not credited as authors should
be noted in the Acknowledgements
section.

Executive Context The importance of the A structured summary or abstract

41

summary or
Structured
abstract*

research questions addressed
by the review.

allows readers to assess quickly the
relevance, quality and generality of a
systematic review. Objectives The questions addressed by

the systematic review.
Methods Data Sources, Study selection,

Quality Assessment and Data
extraction.

Results Main finding including any
meta-analysis results and
sensitivity analyses.

Conclusions Implications for practice and
future research.

Background Justification of the need for
the review.
Summary of previous reviews.

Description of the software engineering
technique being investigated and its
potential importance.

Review
questions

 Each review question should
be specified.

Identify primary and secondary review
questions. Note this section may be
included in the background section.

Review
methods

Data sources
and search
strategy

 This should be based on the research
protocol. Any changes to the original
protocol should be reported.

Study selection
Study quality
assessment

Data extraction
Data synthesis

Included and
excluded
studies

 Inclusion and exclusion
criteria.
List of excluded studies with
rationale for exclusion.

Study inclusion and exclusion criteria
can sometimes best be represented as a
flow diagram because studies will be
excluded at different stages in the
review for different reasons.

Results Findings Description of primary
studies.
Results of any quantitative
summaries.
Details of any meta-analysis.

Non-quantitative summaries should be
provided to summarize each of the
studies and presented in tabular form.
Quantitative summary results should be
presented in tables and graphs.

Sensitivity
analysis

Discussion Principal
findings

 These must correspond to the findings
discussed in the results section.

Strengths and
Weaknesses

Strengths and weaknesses of
the evidence included in the
review.
Relation to other reviews,
particularly considering any
differences in quality and
results.

A discussion of the validity of the
evidence considering bias in the
systematic review allows a reader to
assess the reliance that may be placed
on the collected evidence.

Meaning of
findings

Direction and magnitude of
effect observed in summarized
studies.
Applicability
(generalizability) of the
findings.

Make clear to what extent the results
imply causality by discussing the level
of evidence.
Discuss all benefits, adverse effects
and risks.
Discuss variations in effects and their
reasons (for example are the treatment
effects larger on larger projects).

Conclusions Recommend-
actions

Practical implications for
software development.

What are the implications of the results
for practitioners?

Unanswered questions and
implications for future

42

research.
Acknowledge-
ments*

 All persons who contributed
to the research but did not
fulfill authorship criteria.

Conflict of
interest

 Any secondary interest on the part of
the research (e.g. a financial interest in
the technology being evaluated) should
be declared.

References and
Appendices

 Appendices can be used to list studies
included and excluded from the study,
to document search strategy details,
and to list raw data from the included
studies.

Source: (Kitchenham and Charters, 2007)

Evaluating the report is the final step in the systematic literature review process. This activity

depends mainly on the type of the publication. Papers submitted to a scientific conference or

scientific journal are reviewed by independent peer reviewers. Doctoral dissertations are

reviewed by supervisors and by the committee during the examination process. Finally, if the

publication is a technical review, it is also advisable to subject the materials to an independent

evaluation. In this case, this final review could be done by the same expert panel that was

created to review the research protocol. The results of the review, if negative, can require

repetition of one or more phases in the systematic literature review process.

2.1.3. Advantages and disadvantages of SLR

As every other method and approach, SLR also has several advantages and disadvantages.

Kitchenham identified three main groups of advantages of using systematic literature review.

(1) The methodology is well-defined; (2) it enables researchers to provide the information

available in the wide range of sources; (3) and in the case of quantitative data, it is possible to

perform some meta-analysis and to extract information that single study cannot provide

(Kitchenham and Charters, 2007). Additionally, if compared to unstructured methods, like

simple literature review, the SLR has many advantages (described in the SLR process) that

make the results of such analysis more reliable and more likely to be unbiased.

On the other hand, a major disadvantage of this approach is that it requires much more effort

and time in comparison to simple literature review and this is exacerbated by a large number

of review points: search term pilot reviews, protocol reviews, initial selection reviews, final

selection reviews, data extraction reviews, and data analysis reviews (Staples and Niazi,

2007). Kitchenham also adds that the usage of meta-analysis could be a disadvantage as it can

detect small and unimportant biases. Biolchini discusses that authors are supposed to perform

complex activities and understand (sometimes unknown) specific concepts and terms. This is

why he states that a conduction of SLR in SE is much harder than in other disciplines, for

example medicine (Biolchini et al., 2005). Same authors point out that the overall process is

43

difficult to conduct (in order to help other researchers they prepared a systematic review

conduction process and protocol template), especially the activities of protocol development,

searching and evaluating studies.

Additionally, execution of this method depends on solid literature coverage of the focused

phenomenon, and subsequently it cannot be used to explore new, revolutionary, phenomena

which are not well covered in literature.

Finally, even experienced authors are likely to change the review protocol during the

implementation phase, and that brings the problem of documenting the whole process.

2.1.4. Light SLR

The text in this chapter (Chapter 2.1) is based on the guidelines presented in (Kitchenham and

Charters, 2007) and expanded with the reported feedback of the researchers, mainly from the

�I�L�H�O�G���R�I���V�R�I�W�Z�D�U�H���H�Q�J�L�Q�H�H�U�L�Q�J�����$�V���W�K�H���J�X�L�G�H�O�L�Q�H�V�¶���D�X�W�K�R�U�V���W�K�H�P�V�H�O�Y�H�V���D�O�V�R���S�R�L�Q�W���R�X�W�����E�R�W�K�����W�K�H��

guidelines and therefore this text too, are mainly created to cover the whole process of

systematic literature review which is supposed to be undertaken by a large group of

researchers. Although the notes for single researchers (like PhD students) throughout the text

have been presented, it is important to point out that not all mentioned activities are

compulsory. Kitchenham suggests that the most important steps (as light SLR) for PhD

students to undertake are:

�x Developing a protocol

�x Defining the research question(s).

�x Specifying what will be done to address the problem of a single researcher applying

inclusion/exclusion criteria and undertaking all the data extraction.

�x Defining the search strategy.

�x Defining the data to be extracted from each primary study including quality data.

�x Maintaining lists of included and excluded studies.

�x Using the data synthesis guidelines.

�x Using the reporting guidelines.

Specific recommendations are given to PhD students throughout the whole chapter while

discussing specific activities. The most important for PhD students is to understand that the

process should be performed with the restrictions that are normal while performing a PhD

research, but research validity and rigor should not be neglected and should be achieved by

employing available methods and techniques in order to get unbiased results. These include

the adjustment of dissemination strategy, proper review questions that are from interest to the

student, employment of supervisor to review the protocol, consultations with supervisors or

other researcher to increase the reliability of inclusion decisions, implementation of test-retest

44

approach or asking the advisor or other researcher to randomly check the extracted data and

structure the report according remarks given in the guidelines.

2.1.5. Conclusions on SLR

The process of systematic literature review is not easy to perform, but the general opinion of

the authors is that this method is useful and could be used to decrease the biases and to

increase the review quality. Authors also note that the usage of this method has significant

obstacles in the field of software engineering in comparison to other fields, for example, the

field of health sciences. The main differences are the mainly qualitative studies to be reviewed

in SE, the lack of centralized index of existing systematic reviews and the overall literature

searching problem raised by many different sources, with different and questionable quality.

In order to overcome the mentioned obstacles, the authors who performed SLR in the field of

SE suggest that the scope of the review should be limited by choosing clear and narrow

research questions and that the whole process should be in advance well defined by putting a

considerable effort in creation of feasible review protocol.

As SLR method still emerges in the field of software engineering, the SLR authors in the field

of SE welcome the idea of publishing the replications of existing systematic reviews, along

with the idea of creation of a centralized index of the existing literature reviews.

2.2. Planning the review

The previous chapter defining the research method (chapter 2.1) covers the whole SLR

process as defined by Kitchenham and Charters (2007), including the phases of planning the

review, conducting the review and reporting the review along with summarized and

aggregated findings, observations and recommendations from other influential authors in the

SE field.

The following chapters will report the whole process of performing the Systematic Literature

Review in the scope of this research. Firstly, following the mentioned guidelines, the phase of

planning the review will be presented in this chapter (chapter 2.2), while the chapter 2.3 will

give the information on the phase of performing the review and finding the suitable

methodology and chapter 2.4 brings the conclusion of this process and justifies the decision

on the methodology that was used in this research.

45

2.2.1. Defining the basic concepts

Systems development methodologies (SDM) are of an academic interest since the early 1980s

when the IFIP WG8.112 organized three conferences named Comparative Review of

Information Systems Design Methodologies (CRIS). The first conference (Olle et al., 1982)

aimed to present and compare spectrum of methodologies. The second conference (Olle et al.,

1983) had a goal to analyze the features of the methodologies and the third conference (Olle

et al., 1986) put the focus on the evaluation of the methodologies. These conferences also

resulted in the definition and distinction of basic concepts and terms like methodology,

�P�H�W�K�R�G�����W�R�R�O�����D�S�S�U�R�D�F�K�����D�Q�G���G�H�Y�H�O�R�S�P�H�Q�W���F�\�F�O�H�����+�R�Z�H�Y�H�U�����W�K�H���X�V�H�G���F�R�Q�F�H�S�W���R�I���³�P�H�W�K�R�G�R�O�R�J�\�´��

was limited only to the design stage of the system development life-cycle (Gasson, 1995).

Since these origins, different definitions for �W�K�H�� �W�H�U�P�� �³�Voftware development methodology� ́

which cover full development life-cycle are created. For example, software development

methodologies could be defined as (a) �³�U�H�I�H�U�H�Q�F�H�� �P�R�G�H�O�� �I�R�U�� �W�K�H�� �G�H�Y�H�O�R�S�P�H�Q�W�� �R�I�� �V�R�I�W�Z�D�U�H��

describing the various statuses of the corresponding software pro�M�H�F�W�V�´ (Dyck and

Majchrzak, 2012), as (b) �³�I�U�D�P�H�Z�R�U�N�� �I�R�U�� �D�S�S�O�\�L�Q�J�� �V�R�I�W�Z�D�U�H��engineering practices with the

specific aim of providing the necessary means for timely and orderly execution of the various

finer-grained techniques and methods for developing software-�L�Q�W�H�Q�V�L�Y�H�� �V�\�V�W�H�P�V�´ (Ramsin

and Paige, 2008), as (c) �³�U�H�F�R�P�P�H�Q�G�H�G�� �F�R�O�O�H�F�W�L�R�Q�� �R�I�� �S�K�D�V�H�V���� �S�U�R�F�H�G�X�U�H�V���� �U�X�O�H�V���� �W�H�F�K�Q�L�T�X�H�V����

�W�R�R�O�V���� �G�R�F�X�P�H�Q�W�D�W�L�R�Q���� �P�D�Q�D�J�H�P�H�Q�W���� �D�Q�G�� �W�U�D�L�Q�L�Q�J�� �X�V�H�G�� �W�R�� �G�H�Y�H�O�R�S�� �D�� �V�\�V�W�H�P�´ (Avison and

Fitzgerald, 2003) or (d) �³�V�R�I�W�Z�D�U�H�� �G�H�Y�H�O�R�S�P�H�Q�W�� �S�U�R�F�H�V�V�� �E�\�� �Z�K�L�F�K�� �X�V�H�U�� �Q�H�H�G�V�� �D�U�H�� �W�U�D�Q�V�O�D�W�H�G��

into a software product by translating user needs into software requirements, transforming

the software requirements into design, implementing the design in code, testing the code, and

�V�R�P�H�W�L�P�H�V���� �L�Q�V�W�D�O�O�L�Q�J�� �D�Q�G�� �F�K�H�F�N�L�Q�J�� �R�X�W�� �W�K�H�� �V�R�I�W�Z�D�U�H�� �I�R�U�� �R�S�H�U�D�W�L�R�Q�D�O�� �X�V�H�´ (IEEE Computer

Society, 1991) or as (e) an organized and systematic approach to developing software for a

target computer (SWEBOK V3 - Chapter 10, 2012).

�&�R�Q�V�H�T�X�H�Q�W�O�\���� �6�'�0�� �F�R�X�O�G�� �E�H�� �R�E�V�H�U�Y�H�G�� �D�V�� �D�� �Q�R�X�Q�� �D�Q�G�� �D�V�� �D�� �Y�H�U�E���� �$�V�� �D�� �Q�R�X�Q���� �³�V�R�I�W�Z�D�U�H��

development methodology is a framework that is used to structure, plan, and control the

�S�U�R�F�H�V�V�� �R�I�� �G�H�Y�H�O�R�S�L�Q�J�� �D�Q�� �L�Q�I�R�U�P�D�W�L�R�Q�� �V�\�V�W�H�P�´���± this includes the pre-definition of specific

deliverables and artifacts that are created and completed by a project team to develop or

maintain an application (Centers for Medicare and Medicaid Services (CMS), Office of

information Services, 2008). As a verb, the software development methodology could be

considered as an approach used by organizations and project teams to apply the software

12 IFIP WG8.1 �± Working group of the International Federation for Information Processing on Design and
Evaluation of Information Systems. The group is part of IFIP's Technical Committee on Information Systems
���7�&���������0�R�U�H���L�Q�I�R�U�P�D�W�L�R�Q���L�V���D�Y�D�L�O�D�E�O�H���R�Q���W�K�H���J�U�R�X�S�¶�V���Z�H�E�V�L�W�H����http://research.idi.ntnu.no/ifip-wg81/.

46

development methodology framework. Every software development methodology approach

acts as a basis for applying specific frameworks to develop and maintain software. The terms

Systems Development Life Cycle (SDLC) and Software Development Process are used to

represent the meaning of SDM as a verb. According to Elliott (2004) the SDLC can be

considered to be the oldest formalized methodology framework 13 for building information

system�V�� �Z�L�W�K�� �W�K�H�� �L�G�H�D�� �R�I�� �³�S�X�U�V�X�L�Q�J�� �W�K�H�� �G�H�Y�H�O�R�S�P�H�Q�W�� �R�I�� �L�Q�I�R�U�P�D�W�L�R�Q�� �V�\�V�W�H�P�V�� �L�Q�� �D�� �Y�H�U�\��

deliberate, structured and methodical way, requiring each stage of the life cycle from

inception of the idea to delivery of the final system, to be carried out rigidly and

sequen�W�L�D�O�O�\�´��

2.2.1.1. Development approaches

Although SDLC is defined as framework, with time and to manage the complexity, a number

of SDLC models or methodologies as approaches have been created. The CMS (2008)

enumerates several software development approaches which have been used since the origin

of information technology. Arguably, this division could be considered as division which

takes into consideration the development cycle, the phases and their order and according to

this viewpoint, all approaches could be stated in one of the three main groups:

�x Phase oriented approach �± developed at the end of 1960s and the beginning of 1970s

�± states that each development phase is performed only once during the whole

development project. In each phase, all required output results are finished and

checked. The verification (in accordance with specification) and validation (by the

user) on the results are performed.

�x Partially incremental approach - defines approach in which only several phases are

repeated incrementally, but initial set of phases is performed only once. In this model,

initial phases including requirements specification are usually not repeated, and the

design and subsequent phases are repeated. Other variants of the model exist (e.g.

Incremental implementation only etc.).

�x Incremental approach �± states that the overall software functionality should be

produced and delivered in small increments. Attention is focused only on essential

features and additional functionality is added only if and when needed. The output

models evolve and they are improved in every increment (iteration).

In comparison, by taking into consideration the basic model to be used to define the product,

the development approaches could be:

13 Initially it was a framework, but during the time the term changed meaning to specify approach!

47

�x Process oriented approach (functional approach) �± defines that the specification of

system/software functionality is most important. Using process modeling techniques,

it is possible to formally define process hierarchy, process inner logic, inter processes

relationships, occurring events, and relationships between the process and the

surroundings. The basic concepts that are used in this approach are functional

components (such as functions, processes, sub processes, activities, operations etc.),

data flows and their content, data sources and destinations, data storages and events

that initiate or terminate processes.

�x Data oriented approach �± assumes that the basic model developed through the overall

process of information / software system development is data model. The data model

is considered to be more stable than process model and that it changes more rarely. In

addition, it is considered that the data manipulation is the only important activity that

is performed by some information systems processes. The basic concepts of this

approach are: data structure definition concepts, data integrity preservation concepts,

operators that can be used to change the state of the data.

�x Process and data oriented approach �± defines that the data models are equally

important as process models and that these two models cannot be separated. This

approach, which appeared in the beginning of the 1980s, also defines that every data

model belongs to a specific process model, and that these two should be developed in

parallel.

�x Object oriented approach �± defines the latest approach which semantically unites the

data model and process model into new object models. These models represent

objects, methods serving the objects and messages exchanged between the objects.

They can be used to model the static and dynamic system / software properties. The

basic concepts of these models are: object types, classification and built-in object

structures, attributes with relationships and constraints, events and states, operations

performed on objects (methods), inheritance, encapsulation, polymorphism,

reusability, state pre-conditions and post-�F�R�Q�G�L�W�L�R�Q�V�����V�W�D�W�H���W�U�D�Q�V�L�W�L�R�Q�V�����P�H�V�V�D�J�H�V�«

2.2.1.2. Development methodologies

Emerging from 1960s, many different methodologies have been created and developed in

theory and practice and they basically reflect the mentioned approaches. The number of these

methodologies makes the categorization of SDMs not an easy task. Different authors use

different viewpoints while defining categories of SDMs. Avison and Fitzgerald (2003) divide

methodologies into seven broad groups: Structured, Data-oriented, Prototyping, Object-

oriented (OO), Participative, Strategic and Systems. These groups are not mutually excluded.

On the other side, Ramsin and Paige (2008) while focusing only on object oriented

methodologies divide them into three sub-groups: Seminal, Integrated and Agile. In their

48

opinion, seminal14 methodologies pioneered the unexplored field of OO analysis and design

and set the basis for further evolution. Many of the concepts introduced by these

methodologies are still widely used today. While the first and the second generation of OO

methodologies is referred to as seminal, the third generation is referred to as integrated15.

These methodologies are heavyweight and very complex, offering detailed process

components, patterns, and management and measurement instructions. Furthermore, some of

them propose ideas on seamless development, complexity management and modeling

approaches. Finally, in contrast to heavyweight integrated methodologies, agile16

methodologies are aiming to be lightweight, based on practices of program design, coding and

testing in order to enhance software development flexibility and productivity.

Similarly, software engineering body of knowledge (SWEBOK, 2004) defines three basic

software engineering methods topic areas, while the new version of the Report, that is now

being in process of review and is soon to be published (SWEBOK V3 - Chapter 10, 2012),

defines four topic areas as follows:

�x Heuristic methods �± those experience-based software engineering methods that have

been and are fairly widely practiced in the software industry. This topic area contains

three broad discussion categories: structured analysis and design methods, data

modeling methods, and object-oriented analysis and design methods.

�x Formal methods �± are software engineering methods used to specify, develop, and

verify the software through application of a rigorous mathematically based notation

and language. Through the use of the specification language, the software model can

be checked for consistency (in other words, lack of ambiguity), completeness, and

correctness in a systematic and automated or semi-automated fashion.

�x Prototyping methods �± Software prototyping is an activity that generally creates

incomplete or minimally functional versions of a software application, usually for

trying out specific new features, soliciting feedback on requirements or user interfaces,

further exploring requirements, design, or implementation options, and/or gaining

some other useful insight into the software. The software engineer selects a

prototyping method to understand the least understood aspects or components of the

software first; this approach is in contrast with other development methods which

usually begin development with the most understood portions first. Typically, the

prototyped product does not become the final software product without extensive

development rework or refactoring.

14 i.e. influential, had a greate influence on other methodologies.
15 i.e. combined, unified.
16 i.e. nimble, responsive.

49

�x Agile methods �± Agile methods were born in the 1990s out of the need to reduce the

apparent large overhead associated with heavyweight, plan-based development

methods used in large-scale software-development projects. Agile methods are

considered lightweight methods in that they are characterized by short, iterative

development cycles, self-organizing teams, simpler designs, code refactoring, test-

driven development, frequent customer involvement, and an emphasis on creating a

demonstrative working product with each development cycle.

The criterion used to create this classification could be argued. Heuristic methods (a kind of

approach to development based on modeling rather than on heuristics!) have models as

primary artifacts, prototyping methods result in a throw-away prototype and formal methods

result in a formal specification of the system (which should preferably be animated by using

some engine). In this point of view, the main artifact of agile methods is not obvious. In

eXtreme programming these are small releases that have passed unit, integration and

acceptance tests while in Scrum these could be features described through product and sprint

backlogs. Thus, we can conclude that common artifact denominator for agile methods could

be functionality increment which is generated at the end of iteration.

Furthermore, according to (SWEBOK, 2004) at least the first three topics (but we can add and

the forth one, too) are not disjoint but rather they represent distinct concerns. For example, an

OO method may incorporate formal techniques and rely on prototyping for verification and

validation. As methodologies continuously evolve, the SWEBOK 2004 tried as hard as

possible to avoid naming particular methodologies, but new version is likely to make an

exception when it comes to the agile methods, as the new version shortly describes Pair

programming, Rapid application development, eXtreme programming, Scrum and Feature-

driven development. Of course these are not the only agile methodologies, but according to

(SWEBOK V3 - Chapter 10, 2012) they are the most popular ones. Finally, in the body of

knowledge it is stated that the choice of the appropriate method could have a dramatic effect

on the success of the software project.

Every methodological framework is based on some approaches or paradigms (basic model,

�W�K�H���G�H�Y�H�O�R�S�P�H�Q�W���F�\�F�O�H���� �W�K�H���U�H�O�D�W�L�R�Q�V�K�L�S���R�I���H�[�L�V�W�L�Q�J���D�Q�G���I�X�W�X�U�H���V�\�V�W�H�P�V�«���� �D�Q�G���L�W���G�H�V�F�U�L�E�H�V���R�U��

prescribes a pattern of the development cycle, development activities and artifacts. Thus, the

line between methodologies and approaches is a thin one and is often crossed by many

authors, teams and organizations. That is the reason why there is no clear division between

methodologies and approaches. Even Olle et al. back in (1988) pointed out that the term

�µ�P�H�W�K�R�G�R�O�R�J�\�¶���L�V���Q�R�W���F�R�U�U�H�F�W�O�\���X�V�H�G�����2�U�L�J�L�Q�D�O �P�H�D�Q�L�Q�J���R�I���µ�D���V�W�X�G�\���R�I���P�H�W�K�R�G�¶���Z�D�V���U�H�S�O�D�F�H�G���L�Q��

�F�R�P�P�R�Q���S�U�D�F�W�L�F�H���Z�L�W�K���µ�P�H�W�K�R�G�¶���D�Q�G���V�X�F�K���S�U�D�F�W�L�F�H���U�H�P�D�L�Q�H�G���W�L�O�O���W�R�G�D�\���D�Q�G���L�V���I�R�O�O�R�Z�H�G���L�Q���W�K�L�V��

dissertation as well. In general, adopting the definition from (Avison and Fitzgerald, 1988) in

50

this thesis, meth�R�G�R�O�R�J�\�� �Z�L�O�O���E�H���F�R�Q�V�L�G�H�U�H�G���D�V�� �³a collection of procedures, techniques, tools

and documentation aids which will help the systems developers in their efforts to implement a

new information system.� ́Approach will simply be used to define the basic artifacts while

conducting the chosen methodology.

2.2.2. Overview of methodologies targeting development of mobile applications

In accordance with the current state-of-the-art stream, the development of mobile applications

and systems differs from traditional software development in many aspects, as it should

satisfy special requirements and constraints (as elaborated in chapter 1.1.1). As already stated

in previous chapters some of these requirements concern portability, standards, capabilities,

privacy and time-to-market requirements and therefore, the design of mobile software systems

is much more complicated and is forcing developers to reconsider the use of traditional

software development methodologies. Despite the mentioned problems that could be

interesting for the scientific community, a relatively few researches aimed to enhance the

methodologies for mobile application development, and most of the work performed in this

field has been focused on the implementation-oriented aspects of the mobile software

development, while methodology-oriented issues still remain to be properly addressed

(Rahimian and Ramsin, 2008). Additionally, development of mobile systems is a challenging

task with a high level of uncertainty, and according to Hosbond (2005), some of the important

problems are rapid technology development, lack of standardization and short time-to-market.

Hosbond identified that there are two important sets of challenges that should be addressed in

the domain of mobile systems development, and these are business related challenges (e.g.

tough competition, conflicting customer interests, establishment of revenue-share models etc.)

and development specific challenges (e.g. rapidly changing technology, lack of

standardization, integration with existing systems etc.).

Reviewing the existing solutions for mobile application development, we should mention the

Abrahamsson et al. (2004) and their Mobile-D methodology as an agile approach to mobile

application development which is based on combination of eXtreme programming in terms of

practices, Crystal family of methodologies in terms of scalability and Rational Unified

Process in terms of life-cycle coverage (Supan et al., 2013). Initially, as introduced in

(Abrahamsson et al., 2004), the methodology is composed of five iterations i.e. phases: set-up,

core, core2, stabilize and wrap-up. According to technical documents available on the

authors�¶ web site, for example (Salo and Koskela, 2004), the methodology included 34

principal inputs and outputs (like action point list, architecture line plan, base process

description, daily status report etc.) and 9 different roles (like customer group, exploration

team, project team, steering group, etc.).

51

The method evolved and according to presently available documents such as web application

presenting the methodology (VTT Technical Research Centre of Finland, 2006a) and set of

documents and templates describing the methodology in detail (VTT Technical Research

Centre of Finland, 2006b) the main phases, activities and tasks are presented in Table 6.

Table 6 - Mobile-D phases, activities and tasks

Mobile-D Phases Development days / Activities Tasks
Explore Stakeholder establishment Customer establishment

Stakeholder group establishment
Scope definition Initial requirements collection

Initial project planning
Project establishment Environment selection

Personnel allocation
Architecture line definition
Process establishment

Initialize Project set-up Environment setup
Training
Customer communication establishment

Planning day in 0 iteration Architecture line planning
Initial requirements analysis

Working day in 0 iteration
Release day in 0 iteration

Productionize Planning day

Post-iteration workshop
Requirements analysis
Iteration planning
Acceptance test generation
Acceptance test review

Working day Wrap-up
Test-driven development
Pair programming
Continuous integration
Refactoring
Inform customer

Release day System integration
Pre-release testing
Acceptance testing
Release ceremonies

Stabilize Planning day Post-iteration workshop
Requirements analysis
Iteration planning
Acceptance test generation
Acceptance test review

Working day Wrap-up
Test-driven development
Pair programming
Continuous integration
Refactoring
Inform Customer

Documentation wrap-up
Release day System integration

Pre-release testing
Acceptance testing
Release ceremonies

52

System test & fix System test System test
Planning day Post-iteration workshop

Requirements analysis
Iteration planning
Acceptance test generation
Acceptance test review

Working day Wrap-up
Test-driven development
Pair programming
Continuous integration
Refactoring
Inform customer

Release day

System integration
Pre-release testing
Acceptance testing
Release ceremonies

Source: (VTT Technical Research Centre of Finland, 2006a)

The practices included in execution of tasks during different phases and activities comprise

nine principal elements which are mainly well-known agile practices specialized for mobile

software development (Abrahamsson et al., 2004; VTT Technical Research Centre of Finland,

2004):

�x Phasing and pacing �± The projects are performed in iterations of which each begins

with a Planning Day

�x Architecture Line �± Architecture line approach is utilized together with architectural

patterns and Agile Modeling

�x Mobile Test Driven Development �± Test-first approach is utilized together with

automated test cases

�x Continuous Integration �± Effective Software Change Management (SCM) practices

are applied through multiple means

�x Pair Programming �± Coding, testing and refactoring are carried out in pairs

�x Metrics �± Few essential metrics are collected rigorously and utilized for feedback and

process improvement purposes

�x Agile Software Process Improvement �± Post-Iteration workshops are used to

continuously improve the development process

�x Off -Site Customer �± Customer participates in Planning and Release Days

�x User-Centered Focus �± Emphasis is placed on identifying and fulfilling end-user

needs

Additionally, a Hybrid Method Engineering Approach was used by Rahimian and Ramsin

(2008) �W�R�� �G�H�Y�H�O�R�S�� �³�W�K�H�� �L�G�H�D�O�� �V�R�I�W�Z�D�U�H�� �G�H�Y�H�O�R�S�P�H�Q�W�� �P�H�W�K�R�G�R�O�R�J�\�´�� �Q�D�P�H�G��Agile Risk-based

Methodology. The authors utilized general agile practices through New Product Development

(NPD) approach and incorporated the ideas from Adaptive Software Development (ASD).

53

Although the part of methodology development process was based on artifact-oriented

approach, this methodology is defined at the level of activity and additional research should

be performed to specify the finer-grained tasks of the process (Supan et al., 2013).

Figure 12 - Agile Risk-based Methodology

(Rahimian and Ramsin, 2008)

Another methodology developed for mobile software development is MASAM (Mobile

Application Software Development Method). MASAM methodology is created by Jeong et al.

(2008) and it represents the proprietary methodology that was built in on the top of Software

and Systems Process Engineering Meta-model (SPEM) framework.

Being based on SPEM, the MASAM is defined on three different kinds of process assets:

roles, tasks and work products. A role defines a set of related skills, competencies or

responsibilities (e.g. planner, manager, UI designer, developer etc.), a task is an assignable

unit of work (e.g. initial planning, initial analysis, UI design etc.) and work product stands for

task inputs and outputs (e.g. product summary, UI sample, task card etc.).

This agile methodology is comprised of Development preparation phase, Embodiment phase,

Product development phase and Commercialization phase. The methodology defines

activities and tasks for each of the four mentioned phases, as shown in Table 7.

Table 7 - MASAM methodology phases, activities and tasks

MASAM Phase Activity Task
Development preparation Grasping product Defining product summary

Pre-planning
Product concept sharing User definition

Initial product analysis
Project Set-up Development process coordination

Project resource coordination
Pre study

Embodiment User needs understanding Story-card workshop
UI design

Architecting Non-functional requirements analysis
Architecture definition
Pattern management

Product development Implementation preparation Environment setup
Development planning

Release Cycle Release planning

54

Iteration cycle
 Iteration planning
 Implementation cycle
 Face-to-face meeting
 Incremental design
 Test Driven Development
(TDD)
 Refactoring
 Pair programming
 Continuous integration
 Feedback
Release
 Acceptance test
 Feedback

Commercialization System Test Acceptance test
User test

Product Selling Launching test
Product launching

Source: (Jeong et al., 2008)

To conclude, except (a) applying newly developed methods there are two other options. The

company can (b) adopt and use an existing development methodology or (c) can adapt an

�H�[�L�V�W�L�Q�J���G�H�Y�H�O�R�S�P�H�Q�W���P�H�W�K�R�G�R�O�R�J�\���W�R���I�L�W���W�K�H���V�S�H�F�L�I�L�F���R�U�J�D�Q�L�]�D�W�L�R�Q�D�O���F�X�O�W�X�U�H�����F�R�P�S�D�Q�\�¶�V���J�R�D�O�V��

and specific requirements of mobile application development. In any case, it is important to

notice that implementation of the new methodological framework is a serious challenge from

organizational, technical, educational and every other point of view. In fact, it is about the

implementation of a new development system. Although the analysis that would cover all

these concerns is out of scope of this work, the adoption or adaption of a methodology for the

development of mobile applications should not be considered as an easy task and if

performed, should be backed up with serious preliminary research and carefully made

decisions.

This short review does not cover all methodologies, but based on this preliminary review we

can conclude that the authors do agree on several facts that are important for this dissertation.

(1) The development for mobile devices differs from standard development, (2) the agile

approach is widely used in methodologies for mobile devices and (3) neither one of the

presented methodologies is applicable without additional efforts to make the process more

fine-grained or more suitable to specific development environment and mobile application

requirements.

2.2.3. Identification of the need for a review

Preliminary research on the software development methodologies, presented in the previous

chapters can lead us to several important conclusions. Firstly, the field of software

development, during its 50-year-old history, has been interwoven with many different

55

software development methodologies and approaches. This also resulted in the terminology

confusion as many authors mix different concepts such as methodology, approach, framework

and process. Secondly, there are some attempts to create specific software development

methodology that would be suitable for development of mobile applications. Surprisingly,

these attempts are relatively rare, they are not aligned with the current mobile development

demands which have slightly but seriously changed, especially after the introduction of the

mobile application stores back in 2009, and finally some of these methodologies are still not

usable in practice as being defined at relatively high level of abstraction. Thirdly, many

companies have chosen to use the existing and familiar development methodologies while

developing mobile applications. The trends show that agile approach is most suitable and

widely used when developing mobile applications (Abrahamsson et al., 2003; Holler, 2006),

but still, some companies have considerable heritage in using non-agile approaches which

they still find as the most suitable.

The number and complexity of different possibilities indicate that a thorough and unbiased

research method such is systematic literature review is needed in order to get the overall

overview of possible methodologies that could be taken while developing applications for

mobile devices.

Additionally, the preliminary research is performed to identify the existing systematic

literature reviews on software development methodologies for development of mobile

applications. The IEEExplore, ACM Digital library, INSPEC, CiteSeerX and GoogleScholar

databases were searched by the following search query: ���³�O�L�W�H�U�D�W�X�U�H�� �U�H�Y�L�H�Z�´�� �2�5��

SLR) AND (mobile developmen t) 17.

Almost all obtained papers18 were excluded as not being literature reviews or not being

literature reviews in mobile applications development. Only one paper (Hosbond and Nielsen,

2005) passed the inclusion criteria, but the focus of the SLR performed in this paper was to

review the literature in the domain of four mobile systems development perspectives

(requirements, technology, application, business) but unfortunately did not include

methodologies or approaches to be used when developing mobile applications.

17 �7�K�L�V�� �T�X�H�U�\�� �L�P�S�O�L�F�L�W�O�\�� �L�Q�F�O�X�G�H�V�� �Ä�V�\�V�W�H�P�D�W�L�F�� �O�L�W�H�U�D�W�X�U�H�� �U�H�Y�L�H�Z�³�� �S�K�U�D�V�H���� �$�G�G�L�W�L�R�Q�D�O�O�\���� �P�R�U�H�� �U�L�J�R�U�R�X�V�� �V�H�D�U�F�K��
�T�X�H�U�U�L�H�V���� �O�L�N�H�� ���³�O�L�W�H�U�D�W�X�U�H�� �U�H�Y�L�H�Z�´�� �2�5�� �6�/�5���� �$�1�'�� ���P�R�E�L�O�H�� �G�H�Y�H�O�R�S�P�H�Q�W�� �P�H�W�K�R�G�R�O�R�J�L�H�V���� �R�U�� �V�L�P�L�O�D�U have been
discarded as returning only a few or no results.
18 The search returned following number of papers: IEEEExplore (61), ACM Digital library (624), INSPEC (62),
CiteSeerX (22) and GoogleScholar (128). Additionally, the original query on GoogleScholar returned more than
���������������U�H�V�X�O�W�V�����V�R���W�K�H�U�H���Z�D�V���X�V�H�G���D���Q�D�U�U�R�Z�H�U���F�R�Q�F�H�S�W���V�H�U�F�K�L�Q�J���I�R�U���Ä�P�R�E�L�O�H���G�H�Y�H�O�R�S�P�H�Q�W�³���D�V���D���S�K�U�D�V�H���L�Q�V�W�H�D�G���R�I��
searching for both words independently as in other databases.

56

To conclude, according to information available in the mentioned databases, there are no

existing systematic literature reviews covering the subject of software development

methodologies for mobile applications development, which makes the need for such review

even bigger. As an additional proof of this claim, the results of SLRs on Systematic Literature

Reviews in Software Engineering presented in (B Kitchenham et al., 2009) and in

(Kitchenham et al., 2010) show that no literature reviews were conducted in the domain of

software development methodologies or software development methodologies for mobile

devices.

2.2.4. Specifying the research questions

In the previous chapter we discussed the results of preliminary researches performed in order

to identify possible mobile application development methodologies and on existing SLRs

identified the need for the systematic literature review. In order to address the issues

determined in this analysis, this systematic review is aligned to answer the following research

questions:

RQ1 �± What development methodologies and approaches are reported in literature as

defined in theory or used in practice for mobile application development?

RQ2 �± Are the identified methodologies and approaches applicable for multi-platform

mobile applications development?

Motivation for RQ1 is to identify all existing methodologies and approaches for development

of mobile applications and motivation for RQ2 is to define a set of methodologies and

approaches that could be used for multi-platform mobile applications development.

With respect to RQ1, several important decisions were made. Firstly, as preliminary research

showed, and thus assuming that there are not so many publications in this field, it is decided

not to apply any time filters on the source publications. The fields of software development

methodologies and especially methodologies for development of mobile applications are

considered to be young disciplines and additional time constraints are not necessary.

Secondly, it is important to clearly distinguish methodologies and approaches according to

definitions presented in chapter 2.2.1. Finally, only methodologies and approaches reported to

be used for development of mobile applications and mobile systems should be taken as

relevant and potentially selected for review.

With respect to RQ2, as methodologies or approaches by definition are not platform

dependent, it is important to notice that simple decision parameters will be taken into

consideration in order to determine if identified development methodologies and approaches

are applicable for multi-platform mobile applications development. Actually, we assume that

there might be some methodologies and approaches reported to be developed for specific

57

mobile target platform/s and only these methodologies or approaches (at least unchanged) will

be considered as not applicable for multi-platform mobile applications development.

Secondly, RQ2 is important for the other research activities in this thesis, as only the

applicable methodologies could be used in the following research phases.

Although there are multiple motivations for performing this literature review, both research

questions are defined with the purpose of identifying the existing body-of-knowledge basis

for choosing one mobile application development methodology and one development

approach that will be used in the subsequent research phases performed in this dissertation

project. In order to clarify these research questions the following complementary questions

are defined:

�x Is the paper reporting on a software development methodology or a development

approach?

�x Is the reported methodology/approach properly defined with clear phases, activities,

tasks, roles, inputs and outputs?

�x Are there any specific instructions on how to apply the methodology/approach?

�x Are there any specific techniques reported to be used while applying the methodology

or approach?

�x Are there any specific instructions on any organizational aspects of teams applying the

methodology/approach?

�x Is the methodology/approach developed for any specific mobile target platform?

Only the last complementary question targets RQ2, while all other stated complementary

questions target RQ1.

2.2.5. Developing a review protocol

The review protocol defining this research is created according to instruction presented in the

previous chapters. Additionally, the template used for protocol creation is proposed by

(Biolchini et al., 2005) and further explained by (Mian et al., 2005).

The protocol is firstly defined during the phase of review planning, but due to the

characteristic of some protocol elements to present final or intermediate results, the

information on these elements is inserted in subsequent phases of the systematic literature

review.

Additionally, it is important to mention, that some protocol elements like keywords and

synonyms and search strings are piloted either by using English dictionary and reading the

literature (in case of synonyms definition) or by performing a pilot database search (in case of

search strings definition). Final version of the protocol is presented in Table 8.

58

Table 8 - The review protocol

1. Question formularization

1.1. Question focus To identify software development methodologies and approaches that could be

used for multi-platform mobile applications development.

1.2. Question

quality and

amplitude

Problem: Development of mobile applications differs from development of

traditional desktop or web applications. Not all software development

methodologies are used for development of mobile applications. Special

problem is fragmentation of mobile platforms and devices, and thus the

development process should be performed more than once. None of the

existing approaches to solve this problem is good enough. This research has

the idea to approach the problem differently and to define methodological

interoperability, i.e. interoperability on highest, methodology level. In order to

do that, it is necessary to identify applicable software development

methodologies and approaches that could be used in multi-platform mobile

applications development.

Research questions: RQ1: What development methodologies and approaches

are reported in literature as defined in theory or used in practice for mobile

application development? RQ2: Are the identified methodologies and

approaches applicable for multi-platform mobile applications development?

Keywords and synonyms:

�x mobile

�x software development: system development, application development,

program development

�x methodology: method, approach, framework, process, procedure,

model

Intervention: Software development methodologies and approaches for

mobile applications development.

Effect: Identification of methodologies and approaches for multi-platform

mobile applications development.

Control : Methodologies defined in previous chapters.

Outcome measure: Cardinality of identified set of methodologies.

Population: Publications reporting on intervention and containing defined

keywords.

Application: Subsequent research in this thesis, mobile applications

development companies, researchers.

Experimental design: Statistical method will not be applied.

59

2. Sources selection

2.1. Sources

selection

criteria

definition

Sources recommended by field experts (i.e. Brereton et al. (2007), Hannay et

al. (2007), Kitchenham and Charters (2007)) and enumerated in previous

chapters will be included in the search process. The criteria for sources

selection used by field experts are based on source quality and overall

recognition in the software engineering community.

2.2. Studies

languages

English

2.3. Sources

identification

Sources search methods: Research through web search engines and manual

search.

Search string: (mobile AND ("software development" OR "system

development" OR "application development" OR "program development")

AND (methodology OR method OR approach OR framework OR process OR

procedure OR model))

Sources list: Relevant electronic sources in the field of Software Engineering

identified by Brereton et al. (2007):

1. IEEExplore 5. INSPEC

2. ACM Digital library 6. ScienceDirect

3. Google Scholar 7. EI Compendex (not available)

4. CiteSeerX library

Special focus will be put on following combined list of relevant journals and

proceedings in the field of software engineering which is based on lists given

by Hannay et al. (2007) and by Kitchenham and Charters (2007). Hannay et.

al. explicitly state that journals and conferences chosen by them were chosen

because they were considered to be leaders in software engineering in general

and empirical software engineering in particular:

�x ACM Transactions on Software Engineering Methodology (TOSEM)

�x ACM/IEEE International Symposium on Empirical Software

Engineering and Measurement (ESEM)

�x Empirical Software Engineering (EMSE) in SpringerLink (manual

search)

�x Evaluation and Assessment in Software Engineering (EASE) in

ScienceDirect

�x IEEE Computer

�x IEEE Software

�x IEEE Transaction on Software Engineering (TSE)

60

�x Information and Software Technology (IST) in ScienceDirect

�x International Conference on Software Engineering (ICSE)

in ACM Digital Library and IEEExplore

�x Journal of Software: Evolution and Process (JSEP) in Wiley (manual

search)

�x Journal of Software: Practice and Experience (SP&E) in Wiley

(manual search)

�x Journal of Systems and Software (JSS) in ScienceDirect

If some of the mentioned journals and conference proceedings are not included

in the databases of the enumerated search engines, they will be searched

manually.

2.4. Sources

selection after

evaluation

 All sources listed in 2.3 satisfied quality criteria.

2.5. References

checking

Sources are defined on basis of recommendations of field experts. The final

list of selected sources is also approved by two supervisors.

3. Studies selection

3.1. Studies

definition

Studies inclusion and exclusion criteria: The primary studies describing

software development methodology or approach in theory or reporting their

usage in practice will be included in review process. The studies that do not

provide sufficient information on the phases, activities, tasks, roles, inputs and

outputs (i.e. document templates, expected results, task prerequisites etc.) will

be excluded from the review.

Studies type definition: No filter on type of studies will be applied. All kinds

of studies related to the research topic will be selected.

Procedures for studies selection: After performing an automated search

based on defined keywords and search string, initial set of potential studies for

inclusion will be obtained. The studies will be firstly filtered by applying

inclusion criteria on the study title. The studies that meet inclusion criteria

along with those with unclear or indistinct title will be included in second

phase. Second phase will apply inclusion criteria on the abstract. If abstract

will be unclear or fuzzy, the introduction and conclusion will also be taken in

consideration. Studies that will finally be included will be reviewed in detail

by reading the full text. At last, if necessary, exclusion criteria will be applied

based on information obtained from full text review.

3.2. Selection

execution

Initial studies selection: The complete list of selected studies can be found in

chapter 2.3.2 (Table 12 on page 66 of this document).

61

Studies quality evaluation: The list of studies that passed inclusion and

exclusion criteria can be found in chapter 2.3.3 on page 68 of this document.

Selection review: Study selection process was reviewed and approved by two

supervisors and one of them is field expert.

4. Information extraction

4.1. Information

inclusion and

exclusion

criteria

definition

The extracted information from studies must contain theoretical or practical

description of phases that should be performed during the development process

according to focused methodology.

If studies are reporting new software development approach, then the main

characteristics, values and rules which define focused approach should be

contained in extracted information.

4.2. Data extraction

forms

The template form for data extraction that is defined for this review can be

found in chapter 2.3.4 on page 70, and complete list of filled data extraction

forms on all selected primary studies can be found in Appendix D on page

265.

4.3. Extraction

execution

The results of objective (study identification, study methodology, study results

and study problems) and subjective (information through the authors and

general impressions and abstractions) data extraction are presented in chapter

2.3.4 on page 70.

4.4. Resolution of

divergences

among

reviewers

There were no divergences, as the extraction was performed only by one

author, i.e. author of this thesis.

5. Result summarization

5.1. Results

statistical

calculus

Statistical calculi were not used.

5.2. Results

presentation in

tables

The final results are presented in tables with the following information.

�x Studies reporting the creation of new methodology or approach

�x Studies reporting the methodology or approach usage

�x Methodologies/approaches not eligible for multiplatform development

�x Methodologies/approaches targeting specific mobile applications

The stated tables with final reported results could be found in chapter 2.3.5 on

page 71.

5.3. Sensitivity There was no need for sensitivity analysis.

62

analysis

5.4. Plotting There was no need for plotting.

5.5. Final comments Number of studies obtained: 6761

Number of relevant studies: 49

Results application: Mobile-D methodology supported by Test Driven

Development is selected for application in this research.

Recommendations: Identified methodologies could be separately analyzed in

order to determine their quality and applicability. This was not the focus of this

study.

2.2.6. Evaluating the review protocol

The review protocol is evaluated by two supervisors of this thesis project. Also, it is important

to mention that one of the supervisors (prof. Strahonja) is an expert with scientific and

empirical background in the field of software development methodologies. Some minor

requests stated by both supervisors, regarding sources identification and final reporting were

taken in consideration and implemented in the final version of the review protocol.

2.3. Conducting the review

2.3.1. Identification of research

The research is focused on the identification of software development methodologies and

approaches that could be used for multi-platform mobile applications development. In order to

identify primary studies relevant to the stated research questions, the following keywords with

the list of relevant synonyms are used:

Table 9 - Search keywords and synonyms

Keyword Synonyms
mobile -
software development system development

application development
program development

methodology method
approach
framework
process
procedure
model

63

The stated list of synonyms is created according to the results of preliminary literature review

and is based on the empirical knowledge of terms used in the software engineering literature.

The target population consists of the publications reporting the software development

methodologies and approaches for mobile applications development containing the defined

keywords. In order to identify the initial list of publications, the search engines and manual

search have been used. The following query is defined for automatic database search:

(mobile AND ("software development" OR "system development" OR "application

development" OR "program development") AND (methodology OR method OR approach OR

framework OR process OR procedure OR model))

The presented query has been executed on the databases and the relevant journals and

proceedings in the field of software engineering which are recommended by the filed experts

Brereton et al. (2007), Hannay et al. (2007), Kitchenham and Charters (2007) and as

elaborated in chapter 2.1.2.2. The final list of relevant sources is given in the Table 10.

Table 10 - The list of relevant sources

Relevant databases
IEEExplore INSPEC
ACM Digital Library ScienceDirect
Google Scholar EI Compendex (excluded)
CiteSeerX library

Relevant journals and proceedings
ACM Transactions on Software Engineering
Methodology (TOSEM)

ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM)

Empirical Software Engineering (EMSE)
in SpringerLink

Evaluation and Assessment in Software Engineering
(EASE) in ScienceDirect

IEEE Computer IEEE Software
IEEE Transaction on Software Engineering (TSE) Information and Software Technology (IST) in

ScienceDirect
International Conference on Software Engineering
(ICSE) in ACM Digital Library and IEEExplore

Journal of Software: Evolution and Process (JSEP) in
Wiley

Journal of Software: Practice and Experience (SP&E)
in Wiley

Journal of Systems and Software (JSS) in
ScienceDirect

The preliminary research showed that majority of mentioned journals and proceedings is

indexed in the stated electronic databases, and manual search has been performed only on the

following databases:

�x Empirical Software Engineering (EMSE) in SpringerLink

�x Journal of Software: Evolution and Process (JSEP) in Wiley

�x Journal of Software: Practice and Experience (SP&E) in Wiley

Additionally, despite the best efforts, the access to the electronic database EI Compendex is

�D�Y�D�L�O�D�E�O�H�� �Q�H�L�W�K�H�U�� �D�W�� �W�K�H�� �8�Q�L�Y�H�U�V�L�W�\�� �R�I�� �$�O�F�D�O�i�� �Q�R�U�� �D�W�� �W�K�H�� �8�Q�L�Y�H�U�Vity of Zagreb, and thus, this

64

database had to be excluded from the list. So the final list of the excluded databases includes

only:

�x EI Compendex

As it can be seen from the final set of relevant sources, the focus of this research is only on

the scientific �U�H�V�H�D�U�F�K���F�R�P�P�X�Q�L�W�\�����7�K�L�V���L�V���P�D�L�Q�O�\���G�X�H���W�R���W�K�H���W�L�P�H���D�Q�G���³�S�H�U�V�R�Q�Q�H�O�´���F�R�Q�V�W�U�D�L�Q�W�V����

The past showed that the industry, as a source of development methodologies should not be

neglected and we strongly recommend that white papers, technical reports and other

unpublished materials should also be included in the future similar literature reviews.

2.3.2. Selection of primary studies

The primary studies describing software development methodology or approach in theory or

reporting their usage in practice have been included in the review process. The studies that do

not provide sufficient information on the phases, activities, tasks, roles, inputs and outputs

(i.e. document templates, expected results, task prerequisites etc.) have been excluded from

the review. The type of studies has not been filtered and all kinds of studies related to the

research topic that have been found by the search have been considered for possible inclusion.

2.3.2.1. Applied procedures in selection process

After the automated search based on defined keywords and search string is performed, the

initial set of the potential studies for inclusion is obtained (see Table 11). The studies are

firstly filtered by applying inclusion criteria on the study title. The studies that met the

inclusion criteria along with those with unclear or indistinct title are included in the second

phase where the inclusion criteria were applied on the abstract. Some of the abstracts were

unclear and fuzzy, and in those cases the introduction and conclusion were also taken into

consideration. The final phase conducted on the included studies was performed by a detailed

analysis and full text reading. During this phase, the exclusion criteria were applied based on

the information obtained from full text review.

As it can be seen in Table 11, in total 6761 initial studies were obtained by automatically

performed database searches. The search of Google Scholar database had to be performed

with specific time constraints, as it was impossible to reach all results given by the original

search query. This was not the only problem faced during the research process, but the faced

problems will be discussed in later chapter. Apart from Google, some other database engines

also had to be parameterized, and the used parameters, date ranges, filters and search

execution date are all reported in Table 11.

65

Table 11 - Applied procedures in selection process

Database Search query Date range /
other filters

Date of
search

No. of
results

�,�(�(�(���;�S�O�R�U�H���Š

("mobile application" OR
"mobile development")
AND ("software
development" OR "system
development" OR
"application development"
OR "program development")
AND (methodology OR
method OR approach OR
framework OR process OR
procedure OR model)

- 05.06.2012. 68

ACM Digital Library
Searched journals,
proceedings and

transactions
06.06.2012. 335

CiteSeerX Citations included 07.06.2012. 55
INSPEC - 07.06.2012. 85

ScienceDirect

Searched fields:
Computer Science,
Engineering, Social

Sciences

07.06.2012. 399

Google Scholar
Full text search

19xx �± 2004
08.06.2012. 867

Google Scholar
Full text search;

2005 �± 2006
08.06.2012. 661

Google Scholar Full text search;
2007 �± 2008

08.06.2012. 925

Google Scholar
Full text search;

2009
09.06.2012. 694

Google Scholar
Full text search;

2010
09.06.2012. 868

Google Scholar
Full text search;
�)�L�O�W�H�U�����³��phone� ́

2011
11.06.2012. 923

Google Scholar
Full text search;
�)�L�O�W�H�U�����³-phone� ́

2011
11.06.2012. 352

Google Scholar
Full text search;

2012
12.06.2012. 529

Manual search of
Journals

Performed by reading

paper titles and abstracts
2007-2012 13. -

15.06.2012.
0

Total 6761

The full list of all obtained papers is kept only in the reference management software, but the

lists of the identified studies after applying inclusion criteria on the study title and after

applying inclusion criteria on the abstract are documented in the annexes of this document

(see Appendix A and Appendix B). The full text documents are obtained for almost all studies

included in the second identification phase and are also stored in the reference management

software. Additionally, the reference management software contains the exclusion reasons for

all studies excluded in the second and the third iteration. Finally, the list of all studies

considered to be relevant and included in the literature review process results is given in Table

12.

66

Table 12 - The list of relevant studies

Study identifier Study
(Abrahamsson et al.,
2005b)

�$�E�U�D�K�D�P�V�V�R�Q�����3�������+�D�Q�K�L�Q�H�Y�D�����$�������-�l�l�O�L�Q�R�M�D�����-�������������������,�P�S�U�R�Y�L�Q�J���E�X�V�L�Q�H�V�V���D�J�L�O�L�W�\���W�K�U�R�X�J�K���W�H�F�K�Q�L�F�D�O��
solutions: A case study on test-driven development in mobile software development, in: Business
Agility and Information Technology Diffusion. Presented at the IFIP TC8 WG 8.6 International
Working Conference.

(Abrahamsson et al.,
2009)

Abrahamsson, P., Ihme, �7�������.�R�O�H�K�P�D�L�Q�H�Q�����.�������.�\�O�O�|�Q�H�Q�����3�������6�D�O�R�����2�������������������0�R�E�L�O�H-D for Mobile
Software: How to Use Agile Approaches for the Efficient Development of Mobile Applications.

(Abrahamsson et al.,
2004)

Abrahamsson, �3�������+�D�Q�K�L�Q�H�Y�D�����$�������+�X�O�N�N�R�����+�������,�K�P�H�����7�������-�l�l�O�L�Q�R�M�D�����-�������.�R�U�N�D�O�D�����0�������.�R�V�N�H�O�D�����-������
�.�\�O�O�|�Q�H�Q�����3�������6�D�O�R�����2�������������������0�R�E�L�O�H-D: an agile approach for mobile application development, in:
Companion to the 19th Annual ACM SIGPLAN Conference on Object-oriented Programming
�6�\�V�W�H�P�V�����/�D�Q�J�X�D�J�H�V�����D�Q�G���$�S�S�O�L�F�D�W�L�R�Q�V�����2�2�3�6�/�$�����¶���������$�&�0�����1�H�Z���<�R�U�N�����1�<�����8�6�$�����S�S�����������±175.

(Alyani and Shirzad,
2011)

Alyani, N., Shirzad, S., 2011. Learning to innovate in distributed mobile application development:
Learning episodes from Tehran and London, in: 2011 Federated Conference on Computer Science
and Information Systems (FedCSIS). Presented at the 2011 Federated Conference on Computer
Science and Information Systems (FedCSIS). IEEE., Piscataway, NJ, USA, pp. 497�±504.

(Barnawi et al., 2012) Barnawi, A., Qureshi, M., Khan, A.I., 2012. A Framework for Next Generation Mobile and
Wireless Networks Application Development using Hybrid Component Based Development
Model. Arxiv preprint arXiv:1202.2515.

���%�H�U�J�V�W�U�|�P���D�Q�G��
Engvall, 2011)

�%�H�U�J�V�W�U�|�P�����)�������(�Q�J�Y�D�O�O�����*�������������������'�H�Y�H�O�R�S�P�H�Q�W���R�I���K�D�Q�G�K�H�O�G���P�R�E�L�O�H��applications for the public
sector in Android and iOS using agile Kanban process tool.

(Binsaleh and Hassan,
2011)

Binsaleh, M., Hassan, S., 2011. Systems Development Methodology for Mobile Commerce
Applications: Agile vs. Traditional. International Journal of Online Marketing (IJOM) 1, 33�±47.

(Biswas et al., 2006) Biswas, A., Donaldson, T., Singh, J., Diamond, S., Gauthier, D., Longford, M., 2006. Assessment
of mobile experience engine, the development toolkit for context aware mobile applications, in:
Proceedings of the 2006 ACM SIGCHI International Conference on Advances in Computer
�(�Q�W�H�U�W�D�L�Q�P�H�Q�W���7�H�F�K�Q�R�O�R�J�\�����$�&�(�����¶���������$�&�0�����1�H�Z���<�R�U�N�����1�<�����8�6�$��

(Charaf, 2011) Charaf, H., 2011. Developing Mobile Applications for Multiple Platforms, in: Engineering of
Computer Based Systems (ECBS-EERC), 2011 2nd Eastern European Regional Conference on
The. p. 2.

(Chen, 2004) Chen, M., 2004. A methodology for building mobile computing applications. International journal
of electronic business 2, 229�±243.

(Cuccurullo et al.,
2011)

Cuccurullo, S., Francese, R., Risi, M., Tortora, G., 2011. A Visual Approach supporting the
Development of MicroApps on Mobile Phones, in: Proc. of 3rd International Symposium on End-
User Development. Presented at the 3rd International Symposium on End-User Development,
Brindisi, Italy, pp. 289�±294.

(Ejlersen et al., 2008) �(�M�O�H�U�V�H�Q�����$�������.�Q�X�G�V�H�Q�����0���6�������/�¡�Y�J�D�D�U�G�����-�������6�¡�U�H�Q�V�H�Q�����0���%�������������������8�V�L�Q�J���'�H�V�L�J�Q���6�F�L�H�Q�F�H���W�R��
Develop a Mobile Application.

(Forstner et al., 2005) Forstner, B., Lengyel, L., Kelenyi, I., Levendovszky, T., Charaf, H., 2005. Supporting Rapid
Application Development on Symbian Platform, in: Computer as a Tool, 2005. EUROCON
2005.The International Conference On. pp. 72 �±75.

(Forstner et al., 2006) Forstner, B., Lengyel, L., Levendovszky, T., Mezei, G., Kelenyi, I., Charaf, H., 2006. Model-
based system development for embedded mobile platforms, in: Model-Based Development of
Computer-Based Systems and Model-Based Methodologies for Pervasive and Embedded
Software, 2006. MBD/MOMPES 2006. Fourth and Third International Workshop On. p. 10�±pp.

(Gal and Topol, 2005) Gal, V., Topol, A., 2005. Experimentation of a Game Design Methodology for Mobile Phones
Games.

(Hedberg and Iisakka,
2006)

Hedberg, H., Iisakka, J., 2006. Technical Reviews in Agile Development: Case Mobile-D, in:
Quality Software, 2006. QSIC 2006. Sixth International Conference On. pp. 347�±353.

(Ihme and
Abrahamsson, 2005)

Ihme, T., Abrahamsson, P., 2005. The Use of Architectural Patterns in the Agile Software
Development of Mobile Applications.

(Jeong et al., 2008) Jeong, Y.J., Lee, J.H., Shin, G.S., 2008. Development Process of Mobile Application SW Based
on Agile Methodology, in: Advanced Communication Technology, 2008. ICACT 2008. 10th
International Conference On. pp. 362�±366.

(Kaariainen et al.,
2004)

Kaariainen, J., Koskela, J., Abrahamsson, P., Takalo, J., 2004. Improving requirements
management in extreme programming with tool support - an improvement attempt that failed, in:
Euromicro Conference, 2004. Proceedings. 30th. pp. 342 �± 351.

(Khambati et al., 2008) Khambati, A., Grundy, J., Warren, J., Hosking, J., 2008. Model-Driven Development of Mobile
Personal Health Care Applications, in: Proceedings of the 2008 23rd IEEE/ACM International
�&�R�Q�I�H�U�H�Q�F�H���R�Q���$�X�W�R�P�D�W�H�G���6�R�I�W�Z�D�U�H���(�Q�J�L�Q�H�H�U�L�Q�J�����$�6�(�����¶���������,�(�(�(���&�R�P�S�X�W�H�U���6�R�F�L�H�W�\�����:�D�V�K�L�Q�J�W�R�Q����
DC, USA, pp. 467�±470.

(Kim, 2008) Kim, H.K., 2008. Frameworks of Process Improvement for Mobile Applications. Engineering
Letters 16.

(Kim et al., 2009) Kim, H., Choi, B., Yoon, S., 2009. Performance testing based on test-driven development for
mobile applications, in: Proceedings of the 3rd International Conference on Ubiquitous

67

�,�Q�I�R�U�P�D�W�L�R�Q���0�D�Q�D�J�H�P�H�Q�W���D�Q�G���&�R�P�P�X�Q�L�F�D�W�L�R�Q�����,�&�8�,�0�&�����¶���������$�&�0�����1�H�Z���<�R�U�N�����1�<�����8�6�$, pp.
612�±617.

(Korkala and
Abrahamsson, 2004)

Korkala, M., Abrahamsson, P., 2004. Extreme programming: Reassessing the requirements
management process for an offsite customer. Software Process Improvement 12�±22.

(Maharmeh and
Unhelkar, 2009)

Maharmeh, M., Unhelkar, B., 2009. A Composite Software Framework Approach for Mobile
Application Development. Handbook of research in mobile business: technical, methodological,
and social perspectives 194.

(Maia et al., 2010) Maia, M.E.F., Celes, C., Castro, R., Andrade, R.M.C., 2010. Considerations on developing mobile
applications based on the Capuchin project, in: Proceedings of the 2010 ACM Symposium on
�$�S�S�O�L�H�G���&�R�P�S�X�W�L�Q�J�����6�$�&�����¶���������$�&�0�����1�H�Z���<�R�U�N�����1�<�� USA, pp. 575�±579.

(Manjunatha et al.,
2010)

Manjunatha, A., Ranabahu, A., Sheth, A., Thirunarayan, K., 2010. Power of clouds in your
pocket: An efficient approach for cloud mobile hybrid application development, in: Cloud
Computing Technology and Science (CloudCom), 2010 IEEE Second International Conference
On. pp. 496�±503.

(Marinho et al., 2012) Marinho, F.G., Andrade, R.M.C., Werner, C., Viana, W., Maia, M.E.F., Rocha, L.S., Teixeira, E.,
Filho, J.B.F., Dantas, V.L.L., Lima, F., Aguiar, S., 2012. MobiLine: A Nested Software Product
Line for the domain of mobile and context-aware applications. Science of Computer Programming

���1�\�V�W�U�|�P�������������� �1�\�V�W�U�|�P�����$�������������������$�J�L�O�H���6�R�O�R��- Defining and Evaluating an Agile Software Development Process
for a Single Software Developer.

(Ortiz and Prado, 2010) Ortiz, G., Prado, A.G.D., 2010. Improving device-aware Web services and their mobile clients
through an aspect-oriented, model-driven approach. Information and Software Technology 52,
1080 �± 1093.

(Pauca and Guy, 2012) Pauca, V.P., Guy, R.T., 2012. Mobile apps for the greater good: a socially relevant approach to
software engineering, in: Proceedings of the 43rd ACM Technical Symposium on Computer
�6�F�L�H�Q�F�H���(�G�X�F�D�W�L�R�Q�����6�,�*�&�6�(�����¶���������$�&�0�����1�H�Z���<�R�U�N�����1�<�����8�6�$�����S�S�����������±540.

(Rahimian and Ramsin,
2008)

Rahimian, V., Ramsin, R., 2008. Designing an agile methodology for mobile software
development: A hybrid method engineering approach, in: Research Challenges in Information
Science, 2008. RCIS 2008. Second International Conference On. pp. 337�±342.

(Rosa and Lucena,Jr.,
2011)

Rosa, R.E.V.S., Lucena,Jr., V.F., 2011. Smart composition of reusable software components in
mobile application product lines, in: Proceedings of the 2nd International Workshop on Product
Line Approaches in Software Engineer�L�Q�J�����3�/�(�$�6�(�����¶���������$�&�0�����1�H�Z���<�R�U�N�����1�<�����8�6�$�����S�S���������±49.

(Rupnik, 2009) Rupnik, R., 2009. Mobile Applications Development Methodology, in: Unhelkar, B. (Ed.),
Handbook of Research in Mobile Business: Technical, Methodological, and Social Perspectives.
IGI Global Snippet.

(Saifudin et al., 2011) Saifudin, A.W.S.N., Salam, B.S., Abdullah, C.M.H.L., 2011. MMCD Framework and
Methodology for Developing m-Learning Applications. Presented at the International conference
on Teaching & Learning in Higher Education (ICTLHE 2011).

(Salo, 2004) Salo, O., 2004. Improving software process in agile software development projects: results from
two XP case studies, in: Euromicro Conference, 2004. Proceedings. 30th. pp. 310�±317.

(Scharff, 2010) Scharff, C., 2010. The Software Engineering of Mobile Application Development.
(Scharff, 2011) Scharff, C., 2011. Guiding global software development projects using Scrum and Agile with

quality assurance, in: Software Engineering Education and Training (CSEE&T), 2011 24th IEEE-
CS Conference On. pp. 274�±283.

(Scharff and Verma,
2010)

Scharff, C., Verma, R., 2010. Scrum to support mobile application development projects in a just-
in-time learning context, in: Proceedings of the 2010 ICSE Workshop on Cooperative and Human
�$�V�S�H�F�W�V���R�I���6�R�I�W�Z�D�U�H���(�Q�J�L�Q�H�H�U�L�Q�J�����&�+�$�6�(�����¶���������$�&�0�����1�H�Z���<�R�U�N�����1�<�����8�6�$�����S�S���������±31.

(Schwieren and
Vossen, 2009)

Schwieren, J., Vossen, G., 2009. A design and development methodology for mobile RFID
applications based on the ID-Services middleware architecture, in: Mobile Data Management:
�6�\�V�W�H�P�V�����6�H�U�Y�L�F�H�V���D�Q�G���0�L�G�G�O�H�Z�D�U�H�����������������0�'�0�¶���������7�H�Q�W�K���,�Q�W�H�U�Q�D�W�L�R�Q�D�O���&�R�Q�I�H�U�H�Q�F�H���2�Q�����S�S�����������±
266.

(Shiratuddin and Sarif,
2008)

Shiratuddin, N., Sarif, S.M., 2008. m d-Matrix: Mobile Application Development Tool.
Proceedings of the International MultiConference of Engineers and Computer Scientists 1.

(Shiratuddin and Sarif,
2009)

Shiratuddin, N., Sarif, S.M., 2009. Construction of Matrix and eMatrix for Mobile Development
Methodologies, in: Handbook of Research in Mobile Business: Technical, Methodological, and
Social Perspectives. IGI Global, pp. 113�±126.

(Su and Scharff, 2010) Su, S.H., Scharff, C., 2010. Know Yourself and Beyond: A Global Software Development Project
Experience with Agile Methodology, in: Proceedings of Student-Faculty Research Day, CSIS.
Pace University.

(Thompson et al., 2010) Thompson, C., White, J., Dougherty, B., Turner, H., Campbell, S., Zienkiewicz, K., Schmidt,
D.C., 2010. Model-Driven Architectures for Optimizing Mobile Application Performance.

(Um et al., 2005) Um, J., Hong, S., Kim, Y.T., Chung, E., Choi, K.M., Kong, J.T., Eo, S.K., 2005. ViP: A Practical
Approach to Platform-based System Modeling Methodology. Journal of Semiconductor
Technology and Science 5, 89.

(Walkerdine et al.,
2009)

Walkerdine, J., Phillips, P., Lock, S., 2009. A Tool Supported Methodology For Developing
Secure Mobile P2P Systems, in: Mobile Peer-to-peer Computing for Next Generation Distributed
Environments: Advancing Conceptual and Algorithmic Applications. pp. 283�±301.

68

(Wolkerstorfer et al.,
2008)

Wolkerstorfer, P., Tscheligi, M., Sefelin, R., Milchrahm, H., Hussain, Z., Lechner, M., Shahzad,
�6�������������������3�U�R�E�L�Q�J���D�Q���D�J�L�O�H���X�V�D�E�L�O�L�W�\���S�U�R�F�H�V�V�����L�Q�����&�+�,�����¶�������(�[�W�H�Q�G�H�G���$�E�V�W�U�D�F�W�V���R�Q���+�X�P�D�Q���)�D�F�W�R�U�V���L�Q��
�&�R�P�S�X�W�L�Q�J���6�\�V�W�H�P�V�����&�+�,���(�$�����¶08. ACM, New York, NY, USA, pp. 2151�±2158.

(Xiong and Wang,
2010)

Xiong, Y., Wang, A., 2010. A new combined method for UCD and software development and
case study, in: Information Science and Engineering (ICISE), 2010 2nd International Conference
On. pp. 1�±4.

(Zakal et al., 2011) Zakal, D., Lengyel, L., Charaf, H., 2011. Software Product Lines-based development, in: Applied
Machine Intelligence and Informatics (SAMI), 2011 IEEE 9th International Symposium On. pp.
79�±81.

(Zeidler et al., 2008) Zeidler, C., Kittl, C., Petrovic, O., 2008. An integrated product development process for mobile
software. International Journal of Mobile Communications 6, 345�±356.

The propagation of relevant studies through the research process is described in Table 13.

Table 13 - Propagation of relevant studies through phases

Database Identified
studies �± P1

Identified
studies �± P2

Identified
studies �± P3

Relevant studies
(after QA)

 n n n n ���¶�¶ %
�,�(�(�(���;�S�O�R�U�H���Š 68 25 3 3 4.41 6.12
ACM Digital Library 335 79 13 9 2.69 18.37
CiteSeerX 55 12 0 0 0.00 0.00
INSPEC 85 39 3 1 1.18 2.04
ScienceDirect 399 26 4 2 0.50 4.08
Google Scholar 19xx - 2004 867 40 5 3 - -
Google Scholar 2005 - 2006 661 37 8 6 - -
Google Scholar 2006 - 2008 925 41 7 6 - -
Google Scholar 2009 694 31 6 6 - -
Google Scholar 2010 868 45 6 5 - -
Google Scholar 2011a 923 29 5 4 - -
Google Scholar 2011b 352 21 4 3 - -
Google Scholar 2012 529 14 3 1 - -
Google Scholar Subtotal 5819 258 44 34 0.58 69.39
Subtotal 6761 439 - -
Redundant studies NA 75* - -
Total 6761 364 67 49 0.73 100

* Google Scholar database returned some results that were previously identified in other databases.
���¶�¶�� Percentage in respect to initial studies pool from the same database
% Percentage in respect to final pool of all relevant studies

As it can be seen from the presented table, 49 studies are identified as relevant which makes it

only a 0.73% of initial 6761 studies. Additionally, Science Direct and Google Scholar are the

databases with the biggest waste factor as more than 99.4% of all initial studies were

discarded as irrelevant. Nevertheless, Google Scholar proved to give 69.39% of all relevant

studies. However, one could discuss the quality of Google Scholar studies in relation to the

studies obtained from other databases, but such analysis is out of the focus of this work.

2.3.3. Study quality assessment

The activities of the study quality assessment were performed carefully through the whole

�S�U�R�F�H�V�V���R�I���W�K�H���V�W�X�G�L�H�V�¶���L�G�H�Q�W�L�I�L�F�D�W�L�R�Q�����$�V���L�W���Z�D�V���L�P�S�R�V�V�L�E�O�H���W�R���D�S�S�O�\���W�K�H���X�V�D�J�H���R�I���F�K�H�F�N�O�L�V�W�V���R�Q��

69

all initially identified studies, during the first phase, the focus was put on an unbiased study

selection process, while the later phases additionally included the quality assessment of the

identified studies.

During the first identification phase, considerable efforts were made in order to clearly divide

studies that do not have any connection with software engineering and software development

from those that do. Additionally, in order to assess the quality of each primarily selected study

and to make sure that the study findings are relevant and unbiased, firm criteria were

established in the second and third phase. The complete overview of these criteria is given in

the Table 14.

Table 14 - The criteria for un biased study identification

Identification of studies - P1
Inclusion Exclusion
Software engineering Other studies undoubtedly not from research domain
Software development
Mobile development
Other studies connected with the topic of interest

Identification of studies �± P2
Inclusion Exclusion
Reporting the methodology or approach used in
development or mobile applications development

Defining frameworks for specific purposes (i.e.
security, engine development etc.)

Defining framework or approach for development of
mobile applications

Defining building blocks with or without specific
purpose (i.e. for user interface, tracking, reporting etc.)

Defining framework or approach for specific
development phases

Defining testing frameworks, toolkits �R�U���P�L�G�G�O�H�Z�D�U�H�«

Defining framework or approach for development of
applications in specific application area

Defining frameworks for development of part of
application (e.g. adding context awareness, content
awareness etc.)

 Defining or reporting the usage of platforms for
mobile apps development with no concerns on
development process

 Other papers not connected with inclusion criteria.

Identification of studies �± P3
Inclusion Exclusion
Checklist result positive Checklist result negative

As the studies observed in this systematic review process are oriented on software

development and development methodologies and approaches, they are usually not based on

the usage of experimental design and statistical methods. This means that the specific quality

assessment checklist applicable for studies in the domain of software engineering and

particularly for this research had to be built. This checklist was created according to approach

given by ���'�\�E�n���D�Q�G���'�L�Q�J�V�¡�\�U�������������E�� who defined three main issues pertaining to quality that

need to be considered when appraising the qualitative studies identified in the review: rigour,

credibility and relevance. In addition to these, the advice to include the screening criteria is

70

accepted in order to assess study rationale, aims and context. The created checklist is

presented in Table 15.

Table 15 - Quality assessment checklist

ID Quality assessment question Possible results
Q1 Study reports existing methodology or approach used in mobile application

development?
Yes/No

Q2 Study defines new methodology or approach for mobile applications development? Yes/No
Q3 Research design is appropriate to address the study context? Yes/Partially/No
Q4 Researches have experience in software development and mobile applications

development?
Yes/Partially/No

Q5 The reported or created process is clearly defined to the applicable level? Yes/Partially/No
Q6 The study provided value for research and practice? Yes/Partially/No

The first two questions which define the screening criteria are used as the basis for including

or excluding the studies. The studies that were answered with No on both questions were

excluded, and of the 67 papers assessed for the quality, the number of included papers for the

final data extraction and synthesis was 49 (73.13%).

Subsequently, the questions labeled Q3 to Q6 aimed to assess the quality of the study and thus

included the assessment of research design, the assessment of created or reported

development process, the assessment of applicability of the results and finally assessment of

�U�H�V�H�D�U�F�K�H�U�V�¶�� �H�[�S�H�U�L�H�Q�F�H���� �7�K�H�� �S�R�V�V�L�E�O�H�� �D�Q�V�Z�H�U�V�� �I�R�U�� �W�K�H�V�H�� �T�X�H�V�W�L�R�Q�V�� �L�Q�F�O�X�G�H�G�� �P�D�U�N�� �³�3�D�U�W�L�D�O�O�\�´��

which was given in cases when the assessed criterion was not focused in the study, but jet

could not be discarded as negative. The exception is question Q4 as the experience of

researchers was assessed out of the context as only few papers included written evidence on

experience.

Table 16 contains an excerpt of quality assessment form as the table containing all data on

performed quality assessment is given in the Appendix C.

Table 16 - Excerpt of filled quality assessment form

Study / Question Q1 Q2 Q3 Q4 Q5 Q6 QA
score

(Charaf, 2011) Yes No Yes Yes Partially Partially 3.0
(Alyani and Shirzad, 2011) Yes Yes Partially Yes Partially Partially 2.5
(Maharmeh and Unhelkar, 2009) No Yes Partially Yes Partially Yes 3.0
(Schwieren and Vossen, 2009) No Yes No Partially No No 0.5
(Ranabahu et al., 2011) No No
(Barnawi et al., 2012) No Yes Yes Yes Yes Yes 4.0
�«

2.3.4. Data extraction and monitoring

The data extraction forms used in this research are created by combining the examples and

following the instruction given by Kitchenham and Charters (2007) �D�Q�G���-�¡�U�J�H�Q�V�H�Q (2007). As

71

discussed in chapter 2.1.2.2, the aim of data extraction process is to accurately and without

bias record the appropriate information from the selected papers. Based on the data collection

form template presented in Table 4, the final developed data collection form is adapted for

this particular research. Full list of all filled data extraction forms can be found in Appendix D

on page 265. The example of filled data collection form with extracted data from (Xiong and

Wang, 2010) is presented in Table 17.

Table 17 - Data collection form

Data item Value Notes
Study identifier (Xiong and Wang, 2010)

Title
A new combined method for UCD and software development and case
study

Publication details

�<�����;�L�R�Q�J���D�Q�G���$�����:�D�Q�J�����³�$���Q�H�Z���F�R�P�E�L�Q�H�G���P�H�W�K�R�G���I�R�U���8�&�'���D�Q�G��
�V�R�I�W�Z�D�U�H���G�H�Y�H�O�R�S�P�H�Q�W���D�Q�G���F�D�V�H���V�W�X�G�\���´���L�Q���,�Q�I�R�U�P�D�W�L�R�Q���6�F�L�H�Q�F�H���D�Q�G��
Engineering (ICISE), 2010 2nd International Conference on, 2010, pp.
1�±4.

Study type New methodology
Name of methodology /
approach

Inter-combined Model

Application in multi-
platform development

Yes
Platform
independent

Details on defined /
reported methodology /
approach

Inter-combined Model aims to shorten the knowledge transfer from
designers to developers. The model has four parts:
- Requirement analysis and user study
- Model establishment and function map specification
- Design and background engine implementation
- System integration and coding

Additional resources on
methodology /
approach description

Each phase was described in additional details, but not to the level of
activities, tasks, inputs and outputs.

Report on methodology
/ approach example
implementation

Mobile Karaoke project.

Organizational aspects
on implementation

Researchers stated that Inter-combined Model has positive effect on
human resource arrangement and cost reduction.

Project management
aspects on
implementation

Some implications on human resource arrangements.

The presented data extraction form consists of three parts. The first part aims to extract

general data on each study, the second part directly responds to research questions, and the

third part gives more details on the study quality but only related to data analysis and not

inclusion and exclusion criteria.

2.3.5. Data synthesis

As the research questions in this systematic literature review are straightforward and easy to

answer from of extracted data, the activities of the data synthesis are performed according to

instructions given by Petticrew and Roberts (2005).

72

The data are synthesized into the following groups

�x Studies reporting the creation of new methodology or approach

�x Studies reporting the methodology or approach usage

�x Methodologies/approaches not eligible for multiplatform development

�x Methodologies/approaches targeting specific mobile applications

Lists of potential methodologies and approaches that could be used in the subsequent phases

of this research process are given in Table 18 and Table 19. The total of 14 methodologies

and 2 approaches are identified as new while 9 methodologies and 4 approaches are identified

as being used in development of mobile applications. Methodologies are marked as type M

and approaches as type A in the following tables.

Table 18 - Developed methodologies and approaches

Name Type Study
QA

score
Agile Methodology for Mobile Software Development M (Rahimian and Ramsin, 2008) 3.0
Agile Solo M ���1�\�V�W�U�|�P�������������� 2.0
Agile usability process M (Wolkerstorfer et al., 2008) 2.0
DEAL M (Alyani and Shirzad, 2011) 2.5
Integrated Product Development Process for Mobile Software M (Zeidler et al., 2008) 2.0
Inter-combined Model M (Xiong and Wang, 2010) 3.0
MASAM methodology M (Jeong et al., 2008) 2.5
Methodology for Building Enterprise-Wide Mobile Applications M (Chen, 2004) 4.0
MicroApp visual approach M (Cuccurullo et al., 2011) 2.5
Mobile Application Development Methodology M (Rupnik, 2009) 1.5

Mobile-D M
(Abrahamsson et al., 2004) 2.5
(Abrahamsson et al., 2009) 1.0

New media application prototyping M (Biswas et al., 2006) 3.0
Systems Development Methodology M (Binsaleh and Hassan, 2011) 4.0
ViP (Virtual Platform) M (Um et al., 2005) 4.0
Composite Application Software Development Process Framework A (Maharmeh and Unhelkar, 2009) 3.0
MobiLine A (Marinho et al., 2012) 4.0

Type: M - Methodology, A - Approach

There are several facts that should be pointed out and are related to the identified new

methodologies and approaches. First of all, only one methodology was covered by more than

one study, while all other methodologies are presented in a single identified study. Secondly,

as expected, the methodologies and approaches in the mobile development field are rather

new. Only 4 studies are more than 5 years old, while all the other studies date in the last five

years. The overall study quality assessment score (calculated as explained in chapter 2.3.3),

has the mean value of 2.735 (68.38%) with the standard deviation of 0.903. This can be

interpreted as relatively low study quality with high deviation in quality. But, as the quality

assessment was performed on the studies and not on the reported methodologies, without

additional research it is not possible to order the methodologies according to their quality.

73

On the other hand, as expected, more authors reported the usage of methodology or approach.

Total of 9 methodologies and 4 approaches have been reported as used. The important fact is

that only one methodology (Mobile-D) identified as new was reported to have been used. The

usage of this methodology was reported in five different studies, while all other new

methodologies and approaches were not reported to have been used.

Table 19 - Used methodologies and approaches

Name Type Study
QA

score
Design Science M (Ejlersen et al., 2008) 3.0

Dynamic Channel Model M
(Shiratuddin and Sarif, 2008) 2.5
(Shiratuddin and Sarif, 2009) 2.0

Extreme Programming M
(Korkala and Abrahamsson, 2004) 3.0
(Kaariainen et al., 2004) 2.0
(Salo, 2004) 3.0

Kanban A ���%�H�U�J�V�W�U�|�P���D�Q�G���(�Q�J�Y�D�O�O�������������� 1.5

Mobile-D M

(Shiratuddin and Sarif, 2008) 2.5
(Shiratuddin and Sarif, 2009) 2.0
(Korkala and Abrahamsson, 2004) 3.0
(Hedberg and Iisakka, 2006) 4.0
(Ihme and Abrahamsson, 2005) 3.5

Mobile Engineering (MobE) M
(Shiratuddin and Sarif, 2008) 2.5
(Shiratuddin and Sarif, 2009) 2.0

Mobile RAD M
(Shiratuddin and Sarif, 2008) 2.5
(Shiratuddin and Sarif, 2009) 2.0

Rapid Application Development M (Forstner et al., 2005) 2.0

Scrum M

(Su and Scharff, 2010) 2.0
(Pauca and Guy, 2012) 1.0
(Scharff and Verma, 2010) 2.5
(Scharff, 2010) 2.5
(Alyani and Shirzad, 2011) 2.5
(Scharff, 2011) 2.0

Model Driven Development A

(Charaf, 2011) 3.0
(Kim, 2008) 2.5
(Ortiz and Prado, 2010) 3.0
(Forstner et al., 2006) 2.5
(Thompson et al., 2010) 1.0
(Khambati et al., 2008) 2.5

Model Driven Product Lines A (Zakal et al., 2011) 2.0
Software Product Lines A (Rosa and Lucena,Jr., 2011) 2.0

Test Driven Development A

���1�\�V�W�U�|�P�������������� 2.0
(Abrahamsson et al., 2005b) 4.0
(Kim et al., 2009) 1.5
(Hedberg and Iisakka, 2006) 4.0

Type: M - Methodology, A - Approach

It was hard to predict the number of methodologies that would target specific mobile

platforms, and it turned out that only one methodology (see Table 20) cannot be used in multi-

platform mobile application development as it targets only those platforms which support

Flash technology. Actually, the paper presents a development process for interactive mobile

applications based on S�R�Q�\�� �(�U�L�F�V�V�R�Q�V�¶�V�� �&�D�S�X�F�K�L�Q�� �S�U�R�M�H�F�W�� �Z�K�L�F�K�� �D�L�P�H�G�� �W�R�� �E�U�L�Q�J�� �W�R�J�H�W�K�H�U�� �W�K�H��

74

advantages of Java Micro Edition (JME) and Flash Lite. The methodology in particular deals

with specific issues raised by this approach and this marks the stated methodology as not

eligible to be used in this research process.

Table 20 - Methodologies not eligible for multiplatform development

Name Type Study QA
score

Development process of Caputchin applications
Targeting platforms supporting Flash only

M (Maia et al., 2010) 1.0

Type: M - Methodology, A - Approach

The stated groups are defined in accordance with the research process that has been

performed in this thesis and that is the reason why some methodologies and approaches had to

be separately reported as targeting only specific or specialized mobile applications (Table 21).

These methodologies were also not applicable to be used in this research process, but are

worth mentioning as being developed for mobile applications.

Table 21 �± Methodologies/approaches targeting specific mobile applications

Name Type Study
QA

score
Component Based Model for IP Multimedia Subsystem
Targeting IP multimedia subsystems only M (Barnawi et al., 2012) 4.0

Design and Development Methodology for mobile RFID applications
Targeting only RFID applications M (Schwieren and Vossen, 2009) 0.5

MMCD Methodology
Targeting only m-Learning applications

M (Saifudin et al., 2011) 1.5

PEPERS Development Methodology (PDM)
Targeting only P2P applications M (Walkerdine et al., 2009) 3.0

2TUP - 2 Tracks Unified Process
Targeting only mobile games development M (Gal and Topol, 2005) 3.0

MobiCloud
Targeting generation of a cloud mobile hybrid applications

A (Manjunatha et al., 2010) 2.5

Type: M - Methodology, A - Approach

2.4. Choosing development methodology

As stated before, the total of 22 development methodologies and 7 development approaches

were identified as eligible to be used in the development process.

As the starting-point assumption of this research is to provide the teams with a possibility of

using native development environments and preferred development methodology, the

research should not be dependent on any special characteristics that a chosen methodology

consists of. In the other words, any identified methodology could be used.

However, the established criterion used to choose development methodology was reported

applicability. Cross-analysis of the results presented in Table 18 and Table 19 shows that

75

Mobile-D was the only methodology specifically created for mobile applications development

that was reported to be used in practice. In addition, we performed a small research to identify

other sources published by the methodology creators and found that this methodology is

thoroughly and in detail defined. The documents that are officially available and that describe

the Mobile-D development methodology are presented in the following table (Table 22).

Table 22 - Documents describing Mobile-D methodology

Year Document

(2005a) P. Abrahamsson, A. Hanhineva, H�����+�X�O�N�N�R�����-�����-�l�l�O�L�Q�R�M�D�����.�����.�R�P�X�O�D�L�Q�H�Q�����0�����.�R�U�N�D�O�D�����-����
�.�R�V�N�H�O�D�����3�����.�\�O�O�|�Q�H�Q�����D�Q�G���2�����6�D�O�R�����³�$�J�L�O�H���'�H�Y�H�O�R�S�P�H�Q�W���R�I���(�P�E�H�G�G�H�G���6�\�V�W�H�P�V�����0�R�E�L�O�H-�'���´��
ITEA, Agile Deliverable D.2.3, 2005.

(2006) �7�����.�\�Q�N�l�l�Q�Q�L�H�P�L���D�Q�G���.�����.�R�P�X�O�D�L�Q�H�Q�����³�$�J�L�O�H���'�R�F�X�P�H�Q�W�D�W�L�R�Q���L�Q���0�R�E�L�O�H-�'���3�U�R�M�H�F�W�V���´������������
(2004) �2�����6�D�O�R���D�Q�G���-�����.�R�V�N�H�O�D�����³�0�R�E�L�O�H-D Glossary, VTT Technical Research Centre of Finland,

Available at: http://agile.vtt.fi/mobile-�G���]�L�S���´���9�7�7���7�H�F�K�Q�L�F�D�O���5�H�V�H�D�U�F�K���&�H�Q�W�U�H���R�I���)�L�Q�O�D�Q�G����
2004.

(2006a) VTT Technical Research Centre of Fi�Q�O�D�Q�G�����³�0�R�E�L�O�H-D Online Presentation (Web
�$�S�S�O�L�F�D�W�L�R�Q�����´��AGILE Software Technologies Research Programme, 2008. [Online].
Available: http://agile.vtt.fi/mobiled.html. [Accessed: 16-May-2012].

(2004) �3�����$�E�U�D�K�D�P�V�V�R�Q�����$�����+�D�Q�K�L�Q�H�Y�D�����+�����+�X�O�N�N�R�����7�����,�K�P�H�����-�����-�l�l�O�L�Q�R�M�D�����0�����.�R�U�N�D�O�D�����-�����.�R�V�N�H�O�D�����3����
�.�\�O�O�|�Q�H�Q�����D�Q�G���2�����6�D�O�R�����³�0�R�E�L�O�H-�'�����D�Q���D�J�L�O�H���D�S�S�U�R�D�F�K���I�R�U���P�R�E�L�O�H���D�S�S�O�L�F�D�W�L�R�Q���G�H�Y�H�O�R�S�P�H�Q�W���´���L�Q��
Companion to the 19th annual ACM SIGPLAN conference on Object-oriented programming
systems, languages, and applications, New York, NY, USA, 2004, pp. 174�±175.

The obtained papers and other documents that include detailed guidelines are sufficient to

make this methodology fully applicable and usable throughout this research. Additionally, as

the Mobile-D is leaning on, and is strongly connected with, Test Driven Development

approach, this approach will be used in the following phases as well.

To conclude, systematic literature review resulted in the lists of different methodologies

reported to be used, or created specifically for mobile applications development. But, the

analysis on reported applicability showed that Mobile-D with Test Driven Development is the

only newly created methodology already used in practice and that is the reason for choosing

this methodology and approach in the research phases that follow.

2.5. Relevance of the chapter

To recapitulate, first we explored the state of the art in performing a systematic literature

review in the field of software engineering. The three-phase guidelines given by Kitchenham

and Charters (2007) are followed and discussed by adding the recommendations and findings

from other influential authors in the field. The results of the discussion are a contribution to

the knowledge and could be used either by researchers or by PhD students in order to employ

suitable methods and techniques and to lower the biases and increase the quality of review.

76

Following these recommendations, second part of the chapter presented the conduction of

SLR which in the end brings the identification of 22 development methodologies and 7

development approaches that could be used for multi-platform mobile applications

development. Among identified methodologies, our analysis showed that Mobile-D is the

most suitable methodology and it will be used along with Test Driven Development in the rest

of this research process.

Having the methodology and approach chosen, we have finished the first phase of our

research process. Now we move to the second phase with the goal of identifying the artifacts

arising in the methodologically driven development processes for two target platforms.

77

3. METHODOLOGY IMPLEMENTATION

After performing systematic literature review, identifying and choosing the development

methodology to be used in this research, in this chapter we will report in detail the

development process and Mobile-D methodology implementation. As the report of such

process is not a trivial task, first we will introduce the basics of Mobile-D methodology and

accompanying approach called Test Driven Development in order to give an overview of the

�S�H�U�I�R�U�P�H�G���S�K�D�V�H�V�����$�G�G�L�W�L�R�Q�D�O�O�\�����Z�H���Z�L�O�O���G�H�I�L�Q�H���W�K�H���W�H�U�P���µ�D�U�W�L�I�D�F�W�¶���W�R���F�O�H�D�U�O�\���G�H�Q�R�W�H���W�K�H���S�R�L�Q�W��

of view to be taken while reading this chapter.

The mobile application that is developed is named KnowLedge. It is a simple social network

application designed to share knowledge among participants grouped in groups of interest.

The application is designed to cover the main functional development requirements and thus

to represent the vast majority of mobile applications. Such requirements in general cover

distinct development concerns, including UI features, local database, device API-s,

connection to web services and 3rd party features.

The report of the development process presented in this chapter focuses on the created

artifacts and their connection to each other along with their connections to the performed

activities. In the Android case we bring a detailed description of the whole process along with

the examples of the artifacts created. Even so, in the Windows Phone case, we decided not to

report the whole process in detail again, but rather to discuss the possibility of reusing the

existing artifacts. We found that many artifacts can be completely or partially reused.

3.1. Mobile-D overview

3.1.1. Introducing Mobile -D

The methodology was first presented by Abrahamsson at al. (2004) and after that it slightly

evolved to the final version which is in detail presented in technical specification which

includes the complete glossary, the description of all phases, stages, tasks and practices along

with templates (Abrahamsson et al., 2005a). Additionally, the VTT Technical Research

Centre of Finland created and published a web application which can be used to easily

78

navigate through methodology phases and to obtain the relevant specification documents

(VTT Technical Research Centre of Finland, 2006a).

3.1.2. Mobile-D process

The short overview of this methodology is already given in the chapter 2.2.2 while describing

methodologies for development of mobile application. A more detailed overview of the

process will be given here in order to create a basis for the implementation that follows.

Mobile-D process (see Figure 13) includes five phases that are executed in partially

incremental order. The aim of the first phase, called Explore, is to prepare the foundation for

future development. The Initialize phase should describe and prepare all components of the

application as well as to predict possible critical issues of the project. Initialize phase is

usually called a zero iteration (0-iteration) phase as it in addition to project set-up includes the

stages of planning day, working day and release day which are also used in Productionize

phase. The idea of the 0-iteration phase is to assure the functionality of the technical

development environment through the implementation of some representative features.

Additionally, in this phase some prototyping can be done in order to decide which

technological solution would be the most appropriate for the rest of the development process.

Figure 13 - Mobile-D process

The Productionize and Stabilize phases are executed iteratively in order to develop all other

features of the mobile product. Iterations start with planning day in Productionize phase. The

first activity is post-iteration workshop which aims to enhance the development process to

better fit the needs of the current software development team. The requirements analysis,

iteration planning and acceptance test generation tasks follow and are executed during the

planning day. The working day is based on implementation through test driven development,

pair programming, continuous integration and refactoring. This day ends with the task of

informing the customer on new functionality. Finally, the release day includes the activities of

integration and testing. The Stabilize phase has the goal to finalize the implementation,

including integrating subsystems if needed. As this phase can contain additional programming

and development, the activities are very similar to the activities in the Productionize phase.

N iterations

Explore Initialize Productionize Stabilize
System Test

and Fix

79

Only additional activity concerns documentation wrap-up. Iterations should result in a

working piece of functionality at the user level.

Finally, System Test and Fix phase aims to detect if the produced system correctly implements

the customer defined functionality. It also provides the project team feedback on the systems

functionality and the defect information for last fixing iteration of the Mobile-D process. This

last iteration is not obligatory, but when fixing is needed it consists of the same activities as

other implementation iterations already explained.

While observing the whole Mobile-D process we can conclude that it is an agile approach to

mobile application development which is based on combination of eXtreme programming in

terms of practices, Crystal family of methodologies in terms of scalability and Rational

Unified Process in the terms of life-cycle coverage. In paper (Supan et al., 2013) we have

discussed the challenges and issues that accompany the use of this methodology that

companies or small teams should be aware of before introducing it in everyday practice.

3.1.3. Mobile-D artifacts

�$�Q���D�U�W�L�I�D�F�W���P�D�\���E�H���G�H�I�L�Q�H�G���D�V���³an object that has been intentionally made or produced for a

certain purpose�´��(Hilpinen, 2011) or it may refer to �³one of many kinds of tangible byproduct

produced during the development of software�´��(Parker, 2011). The artifacts that arise in the

process of mobile application development are from special interest in this research and thus

�Z�H�� �K�D�Y�H�� �D�G�R�S�W�H�G�� �W�K�H�� �G�H�I�L�Q�L�W�L�R�Q�� �R�I�� �D�Q�� �D�U�W�L�I�D�F�W�� �D�V�� �³any piece of software (i.e.

models/descriptions) developed and used during software development and maintenance.�´��

(Conradi, 2004)

Conceptual model (Figure 14) comprises the Mobile-D process, its activities and tasks that are

performed by utilizing some methods and practices and using some tools resulting in artifacts

as final outputs. Thus, artifacts are results of performed activities, but they are also used as

inputs to perform other activities and tasks.

Figure 14 - Artifacts in Mobile -D

To give an overall picture, Table 23 shows all inputs and outputs that are defined by the

methodology and are connected with the five mentioned phases.

Inputs

Outputs

Producing Using some

Performed by
utilizing

Consists of Mobile-D
Process

Activities
and Tasks

Methods and
Practices

Tools Artifacts

80

Table 23 - Mobile-D inputs and outputs

Source: (Supan et al., 2013)

81

The artifacts that we are interested in this research do not concern only the direct results of

performing the activities, but also the specific outputs that are connected with the

development for a specific target platform.

3.1.4. Test driven development

Mobile-D strongly suggests the usage of Test Driven Development which is connected to all

Mobile-D phases. The basics and the state of the art on TDD can be found in (Hammond and

Umphress, 2012). To make the understanding of the following chapters easier, we bring a

quick overview of this development approach.

The practice of test driven development requests the developer to write a failing automated

test case and then to write the production code that will pass the test. In general TDD process

can be summed up into five main steps (Beck, 2002):

1. Write a new test case.

2. Run all the test cases and see the new one fail.

3. Write just enough code to make the test pass.

4. Re-run the test cases and see them all pass.

5. Refactor code to remove duplication.

In Mobile-D, the purpose of TDD is to give the developers confidence that the code they

produce works as well as to guide the design of the code to an easily testable structure.

Additionally, the refactoring practice is also based on TDD to ensure that changes made to the

code did not break any functionality (Abrahamsson et al., 2005a). Finally, being the main

practice of any working day, test driven development is used in all phases except the first

(Explore) phase.

3.1.5. Mobile-D reference

The most important source of information on how to perform Mobile-D methodology for this

research is the already mentioned technical report presented in (Abrahamsson et al., 2005a).

As the document contains detailed information on Mobile-D phases, stages, activities, tasks,

practices, patterns and other relevant concepts, we recommend having a glance at it before

reading the following sections and having it at disposal while reading. All other documents

mentioned in Table 22 are also a relevant source of information and can be used to gain more

comprehensive knowledge on Mobile-D.

The following sections report on the conduction of Mobile-D methodology in creation of a

prototype application for two target platforms.

82

3.2. Explore phase

3.2.1. Targeted users and stakeholders

The application KnowLedge does not have any specific target groups. It is aimed to be

distributed freely through online stores to all interested parties. Additionally, as the nature of

the application was to serve as an experiment in a research process, there are no classical

stakeholders recognized. The only participating individuals in the process were two thesis

supervisors included as process specialists, and the researcher himself who conducted all of

the activities.

3.2.2. Initial requirements

The application is intended to enable users to learn and/or share knowledge in an interactive

and social manner. The basic usage should include the following functional requirements:

�x Browsing through the categories to find existing knowledge on a topic

�x Placing the request for new explanation/instructions/tutorial

�x Creation of new knowledge (either answering unsolved requests or creating a new

topic)

�x Sharing the knowledge in groups

�x Sharing location data among group members

�x Android and Windows Phone native look and feel

�x Different user privacy levels

The presented list does not include nonfunctional requirements as nonfunctional requirements

analysis was not performed for this prototype application.

3.2.3. Architecture line description

The goal for internal product quality: an evolutionary prototype.

System context: the application is intended to be a standalone mobile application dependent

on internet connection and on supporting web services. The optional dependency (not being a

part of the core features) is fine or coarse GPS location. Only one interface to the external

entities should be developed in order to join the mobile application with web services. There

is no need for any other interfaces as the system does not include other enterprise,

infrastructure or legacy subsystems.

Technological domain includes the nonfunctional requirements of application being runnable

on any Android 2.2 or newer device. According to currently available data (Android

83

Developers, 2013), more than 95% of all Android devices are covered by this inclusion

criterion.

Architectural risks: variety of android devices and supporting API-s. Different device

capabilities and significant differences in device screen size could become problem in testing

and implementation of user interface.

Using a somewhat old version of API-a (version 8) could result in constraints in application of

suitable user interface and other features.

Architectural skills: sufficient, as the main researcher has been involved in mobile

applications development for Android during the last several years.

Architectural training needs: not necessary.

Software architecture: multilayered software architecture with separated business logic, user

interface and database connectivity layers. The idea was to capture the core architectural

abstractions for the whole system as soon as possible, on the basis of the experience of the

project team, and to do a constant architectural refactoring by using pattern-based core

abstractions.

Software architecture documentation: described software architecture documentation process

supported by developer-level models, sketches and short documents used in the development

process.

Templates for SW architecture and Design Description document: Several specific templates

aligned with UML modeling language were created. The architecture and design were

described at least with UML Class diagrams and ERA models. As the chosen methodology

specifies, some other typical agile tools were also used in order to describe the features and

planned tasks. These tools include UI sketches, product backlog, story and task cards et

cetera. Typical software architecture that was used is multi-layered software architecture.

3.2.4. Project plan

Due to the project�¶�V specific requirements and its background, it did not include any financial

or resources constraints. The basic project plan was defined as a set of phases and stages and

the overall project duration was set to 20 weeks. The team responsible for the conduction of

the project was composed of a �U�H�V�H�D�U�F�K�H�U�� �D�Q�G�� �V�X�S�H�U�Y�L�V�R�U�V���� �D�O�W�K�R�X�J�K�� �W�K�H�� �V�X�S�H�U�Y�L�V�R�U�V�¶�� �U�R�O�H�V��

were very limited and included few activities during the project establishment, mainly quality

checking and final validation.

The initial project plan is given in the following picture including the identified iterations and

graphical representation on Gantt chart.

84

Figure 15 - Basic project plan

In this phase it was impossible to determine the iterations that will be necessary in the Fix

phase as those are dependent on the overall quality of the development process, and on some

unpredictable technological issues.

3.2.5. Documentation

The documentation includes two distinct sets of documents. First set considers the documents

related to the project implementation and project management. Aligned with the agile

practices, this set contains the documents that are considered to be the necessary minimum in

every project development process. This group contains:

�x Initial requirements document

�x Project plan document

�x Software architecture and design description document

�x System test plan

�x Product backlog

�x System test report

The second group of documents includes documents related to the research that is conducted.

This set includes the following documents:

�x Identified artifacts and description

�x Historical data on every document

�x Notes on the development process

The iterative updating approach of producing the documents with preservation of versions

was used. This approach is aligned with the agile practices and is suitable for a project of this

type.

85

3.2.6. Monitoring and measurement

As our project did not deal with resource (human, time, money) management, the monitoring

activities were not in our focus. Thus, the monitoring of the development process was

conducted only by identifying the level of agreement between planed and conducted

activities. Additionally, the duration of the activities was measured and noted for future

comparison with subsequent development processes. The overall goal for this process was not

to exceed the planned duration of the project, but this was not a crucial requirement and it did

not affect the research goals.

Additionally, the quality assurance was conducted by acceptance tests, validation, usage of

coding standards, process validation by supervisors and finally product verification on the

market.

3.2.7. Project plan checklist

Taken from the Mobile-D process library (VTT Technical Research Centre of Finland,

2006b), the following table represents the project plan checklist for the Explore phase.

Table 24 - Project plan checklist - Explore

Project Plan Checklist

Explore

Initial requirements Yes No NA

All the initial functional requirements have been included in the project plan x

All the initial non-functional requirements have been included in the project plan x

Schedule & Rhythm

The overall schedule has been included in the project plan x

The planned rhythm (phases and its iterations) have been defined in the project plan x

Resources

Project plan has been updated with the identified interest groups and their members x

Project plan has been updated of the information concerning the selected software

development tools, terminals, etc.
x

Project plan has been updated with the identified project team members x

Training

Training needs of project team have been included in the project plan x

Schedule of training has been included in the project plan x

Documentation

The documents to be produced in the project have been included in the project plan x

The life span of each document has been included in the project plan x

Quality Assurance

86

The quality assurance procedures have been defined in the project plan for each work
product (documentation, code and product) including the actors and schedule

x

The checklists showed that during the Explore phase, three aspects of Mobile-D methodology

were not applicable (NA) in the context of this mobile project (as explained in previous

chapters). All other elements are marked positively which makes this phase successfully

completed.

3.3. Initialize phase

3.3.1. Environment setup

The software development environment was prepared for development of Android

applications. Although the installation of base tools on the machine (including browser, PDF

viewer, picture viewer etc.) and the installation of specific tools for project management

(GantProject) and reporting tools (Microsoft Office) was performed during the project

preparation and explore phase, the implementation tools (Case Studio, Sprintometer, Visual

Paradigm for UM�/�����6�4�/�L�W�H���3�U�R�I�H�V�V�L�R�Q�D�O�«�����D�Q�G���G�H�Y�H�O�R�S�P�H�Q�W�����-�D�Y�D���'�H�Y�H�O�R�S�P�H�Q�W���.�L�W�����(�F�O�L�S�V�H��

�,�'�(���� �$�Q�G�U�R�L�G�� �'�H�Y�H�O�R�S�P�H�Q�W�� �7�R�R�O�V���� �$�Q�G�U�R�L�G�� �6�'�.�«���� �K�D�G�� �W�R�� �E�H�� �L�Q�V�W�D�O�O�H�G�� �L�Q�� �W�K�L�V�� �S�K�D�V�H����

Additionally, the drivers for testing devices were also downloaded and installed and the

devices were connected to the development environments. The development environment was

tested and simple Android application was produced and deployed on a mobile device.

Finally, the subscription to servers for hosting database and services was obtained and tested.

Al l mentioned tools were free or obtained through relevant institutional subscription of the

University of Zagreb and/or the University of Alcala.

There was no need for environment setup for the purpose of training or customer

communication.

3.3.2. Project plan and architecture plan

The basics for overall project execution plan remained the same at the end of this phase, but

taking into consideration a more detailed requirements analysis it was possible to define a

more fine grained iterations including the planning, working and release days. The updated

project plan can be seen in Figure 16. As there was no need for personal resources or financial

planning, these tasks were skipped. Additionally, extensive risk planning which usually takes

place in organizational environment was not necessary.

87

Figure 16 - Detailed project plan

The planned system architecture is defined on two abstraction levels. First (upper) abstraction

level, as shown in Figure 17, presents the overall system architecture which includes the main

system participants and components. The identified components are mobile application, and

web and database servers, while the infrastructure is based on connectivity (Internet) and GPS

data. Although, the main system functionality is not visible from this diagram, the important

requirement of enabling the users to form the groups is presented here.

Figure 17 - Overall system architecture

The second architectural diagram shows the mobile application detailed architecture as it is

presented in Figure 18. The idea was that the mobile application should, accordingly,

communicate with web service and lean on native (i.e. Android) and 3rd party API-s in order

to deliver the required functionality. It should be based on multi-layered architecture with

88

three distinct and connected layers. The internal cohesion (see (Miller, 2008)) of the presented

modules should be high, and at the same time the external coupling should be kept low.

Figure 18 - Mobile application architecture

3.3.3. Initial requirements analysis

The initial requirements analysis task was performed, and the results include product backlog,

the user interface sketches and the generated acceptance tests for each requirement presented

in next chapter.

3.3.4. Product backlog

Product backlog describes application features presented through user stories. Every feature

has an assigned importance level. They are scaled from 1 being not important to 5 being very

important.

Table 25 - Product backlog

Features / stories Importance

F1.1
When the application is started the news should be displayed. News should include any
�X�Q�U�H�D�G���D�Q�V�Z�H�U�V���W�R���W�K�H���X�V�H�U�¶�V���T�X�H�V�W�L�R�Q�V�����Q�H�Z�V���R�Q���D�F�W�L�Y�L�W�L�H�V���L�Q���X�V�H�U�¶�V���J�U�R�X�S�V���D�Q�G���R�W�K�H�U��
information important for current user.

3

F1.2 �7�K�H���Q�H�Z�V���S�U�H�V�H�Q�W�H�G���R�Q���W�K�H���I�L�U�V�W���D�S�S�O�L�F�D�W�L�R�Q���V�F�U�H�H�Q���V�K�R�X�O�G���E�H���³�O�L�Q�N�V�´���W�R���F�R�U�U�H�V�S�R�Q�G�L�Q�J��
application functionality.

3

F2.1
Current user should be able to check all his questions, including those that have been
answered already. Questions should be presented by title and short description. Other
details about every question should be presented in new window after user clicks on it.

5

F2.2
User should be capable to add a new question. New questions should be defined in
separate windows which should include all important information about the question (title,
text and images). The images should be taken by the phone camera.

5

F2.3
User should be capable to delete his/her own question. The deletion should not be
�S�H�U�I�R�U�P�H�G���Z�L�W�K�R�X�W���X�V�H�U�¶�V���H�[�S�O�L�F�L�W���F�R�Q�I�L�U�P�D�W�L�R�Q���R�Q���G�H�O�H�W�L�R�Q���D�F�W�L�R�Q�� 3

Android APIs

3rd party APIs

Local Database

Program Logic

User Interface

Web
service

interface

Web
service

Mobile Application

89

F2.4 User should be capable to change his/her own question. The process of question changing
should be similar to process of question adding.

1

F2.5 User should be capable to add answers to his/her own and other�V�¶ questions. 5

F2.6 The owner of the question should be able to mark a question as answered. 5

F2.7
User should be able to apply the filter by root-searching the list of questions available to
him.

2

F3.1
User should be able to set/change own profile. The profile should include the basic
information about the user (visible) to other group members.

5

F3.2
User should be able to set/change application settings. The settings should include the
possibility to deny further invitations to groups, to set privacy level (of showing or no
emails to other users and of showing or no current location to other users).

2

F4.1 User should be able to see the list of all groups currently enrolled to. 5

F4.2
User should be able to apply the filter by root-searching the available groups according to
their title and description. All groups should be observed by search. 2

F4.3
User should be able to see the details on any group he is enrolled to, including the list of
other members. User should NOT be able to see the list of other members (except their
number) for the groups he is not enrolled to.

4

F4.4 User should be able to join any existing group by sending the application to group owner. 5

F4.5
User should be able to leave any group he is enrolled to. Other group members should
only be notified on that. Owner cannot leave the group and the group should be deleted
manually (see F5.4).

1

F5.1 User should be able to create a new group. 5

F5.2
User should be able to invite new members to his group by inviting them via in
application email.

2

F5.3 User should be able to invite new members to his group by sending them email. 1

F5.4 User should be able to delete any group he owns. 2

F6.1 User should be able to see all members of the groups he is enrolled to on the map. If group
member has disabled this privacy setting, it will be excluded from the view.

3

F7.1 User should be able to read a general help about the application usage. 1

3.3.5. Acceptance tests

The template sheets for acceptance tests proposed by Mobile-D (Abrahamsson et al., 2005a)

were used and the tests are defined for each application requirement defined in the product

backlog. Each acceptance test was to be approved at the end of development process, and it

includes the definition and remarks on the test of final functionality in different contexts. The

following test descriptions are examples of acceptance tests created in this step.

Acceptance test F1.1

Displaying news for current user
When the application is started the news should be displayed. News should include any
�X�Q�U�H�D�G�� �D�Q�V�Z�H�U�V�� �W�R�� �W�K�H�� �X�V�H�U�¶�V�� �T�X�H�V�W�L�R�Q�V���� �Q�H�Z�V�� �R�Q�� �D�F�W�L�Y�L�W�L�H�V�� �L�Q�� �X�V�H�U�¶�V�� �J�U�R�X�S�V�� �D�Q�G�� �R�W�K�H�U��
information important for current user.

90

Context 1
Application executed for the first time or user did not created his profile yet.

Expected output

Ti tle Description
Welcome Welcome to KnowLedge application. To begin click to set up your user profile.

Context 2
User is not member of any group and there are no activities to display.

Expected output

Title Description
No news There are no news to display. Use application menu to join groups and become part

of KnowLedge community.

Context 3
User actively uses the application and has news in several categories.

Expected output

Title Description
New answer Your question %questionTitle has been answered by %firstName.
%questionTitle %description. [up to 50 chars]
New invitation You have invitation by %firstName to join the group %groupName.
Application accepted Your application to join the group %groupName is accepted.
New member %firstName joint the group %groupName.

Acceptance test F1.2

Linking news
�7�K�H�� �Q�H�Z�V�� �S�U�H�V�H�Q�W�H�G�� �R�Q�� �W�K�H�� �I�L�U�V�W�� �D�S�S�O�L�F�D�W�L�R�Q�� �V�F�U�H�H�Q�� �V�K�R�X�O�G�� �E�H�� �³�O�L�Q�N�V�´�� �W�R�� �F�R�U�U�H�V�S�R�Q�G�L�Q�J��
application functionality.

Context
News presented on the first screen.

Expected output

News Link
Welcome Users profile page.
No news -
New answer Question %questionTitle page.
%questionTitle Question %questionTitle page.
New invitation Invitation dialog followed by group page.
Application accepted Group %groupName page.
New member New member profile page.

91

Acceptance test F2.1

My questions
Current user should be able to check all his questions, including those that have been
answered already. Questions should be presented by title and short description. Other details
about every question should be presented in new window after user clicks on it.

Context 1
�8�V�H�U���F�O�L�F�N�V���R�Q���³�0�\���T�X�H�V�W�L�R�Q�V�´���R�S�W�L�R�Q��

Expected output

Question title Question description [up to 50 chars]
Title 1 Description 1.
Title 2 This description cannot fit into �������F�K�D�U�V���D�Q�G���Z�L�«
Example question What is the name of this bird?

Context 2
User clicks on any question presented in the list.

Expected output

Question
title

Question description [full] Asked by; Group Answers

Title 1 Description contained from text and images.
In single description, text and image could be
presented multiple times.

%firstName
%lastName

 %
groupName

List of
answers.

Title 2 This description cannot fit into 50 chars and
will be shortened in list view but in question
view should be written fully.

%firstName
%lastName

 %
groupName

List of
answers.

Example
question

What is the name of this bird?

I sow it yesterday in our park. It looks like
some kind of a parrot.

John
Johnson

Nature -

Acceptance test F7.1

Help
User should be able to read a general help about the application usage.

Context
�8�V�H�U���F�O�L�F�N�V���R�Q���³�+�H�O�S�´���R�S�W�L�R�Q��

Expected output:
The new view with textual help appears. The help contains information on all application
features.

92

3.3.6. User interface sketches

In order to align the user requirements with the technological implementation and possibilities

provided by a target platform, user interface sketches were created. These sketches also

enabled the team to get a full picture of the desired functionality. After several iterations, the

sketches were finished. Figure 19 shows an example of the created document.

Figure 19 - User interface sketches

3.3.7. Trial Day

The selected feature that was to be implemented in this trial day is F3.1. The idea of

performing trial day was to create functionality that will cover (at least in basic aspects) most

of the architectural design elements and also to create the base for other features. As the

application is user oriented, having information on the current user was a prerequisite for

almost all other features which made this feature a core functionality of the system.

Table 26 - Selected feature for Trial Day

Features / stories Importance

F3.1
User should be able to set/change own profile. The profile should include the basic
information about the user (visible) to other group members.

5

93

Finally, the goal of this day was also to assure the functionality of the technical development

environment through the implementation of the feature. The following tables present defined

story cards (SC) and task cards (TC). These documents were defined during the planning day,

but were refined during the implementation and documentation wrap-up.

3.3.7.1. Story and task cards

Story card F3.1

F3.1
Type

Difficulty Effort
Priority Notes

Before After Estim. Spent
New H H 4 5 5

Description
User should be able to set/change own profile. The profile should include the basic information about the user
(visible) to other group members.
The basic information about the user should include first name, last name and mail address. The information
should be stored in local database and synchronized with information on web service.
Date Status Comment

11.7.2012 Defined
This story is taken to be implemented during the trial day. This will introduce the
execution of tasks concerning preparation and validation activities and thus will
be slightly different than in implementation of other stories.

12.7.2012 Implementing

The implementation is taking longer than expected. There are many decisions that
are to be made but after some initial research is performed. This research include
prototyping and writing the code that is to be discarded, searching and reading the
available sources, looking through finished projects etc.

16.7.2012 Done
The basic architecture of this project is created. The database, business logic, user
interface, web service and helping layers are established. The automatic tests
including unit and integration testing are created.

16.7.2012 Verified
All test, including unit, integration and acceptance testing are performed and
successful.

* This story card, as all other SCs, was defined during the planning day but was refined during the
implementation.

Task card TC-0-1 - Create initial test cases

TC-0-1
Type

Difficulty Confi-
dence

Notes
Before After

New 5 5 3
Description
Initial test cases for this functionality should be created.

Date Status Comment
11.7.2012 Defined

12.7.2012 Implementing

After choosing from several existing testing frameworks, the core functionality
will be tested by native android.test framework, and the robotic testing of
application usage will be performed by robotium free framework
(code.google.com/p/robotium/).

12.7.2012 Done
Some core tests are created. Other tests and robotic integration testing will be
defined at the end of the stage. The problems experienced include the lack of
knowledge on the platform capabilities.

16.7.2012 Verified All tests succeeded.

* This task card, as all other TCs, was defined during the planning day but was refined during the
implementation.

94

Task card TC-0-2 - Create database model

TC-0-2
Type

Difficulty Confi-
dence

Notes
Before After

New 1 1 5
Description
The database model for mobile and web service part of the system should be created. The model should be easy as
it is only a trial of whole database model that is to be implemented in later phases.

Date Status Comment
11.7.2012 Defined

12.7.2012 Implementing
The part of database model important for this story is created for mobile
application and for web service.

13.7.2012 Done
The database containing defined entities is up and running on hosting provider.
The model on mobile application will be deployed through database layer.

16.7.2012 Verified All tests on mobile application succeeded.

Task card TC-0-3 - Create database layer in mobile app

TC-0-3
Type

Difficulty Confi-
dence

Notes
Before After

New 3 3 5
Description
The database layer is a set of classes that are responsible to create and maintain local SQLite database, as well as
to provide the access to the data (i.e. create, read, update or delete) data.

Date Status Comment
11.7.2012 Defined

12.7.2012 Implementing
The database layer is relatively easy to create but hard to test as it should be
tested in context of other application functionality. This will be done while
implementing task of defining synchronization layer.

13.7.2012 Done
Currently layer contains base class for accessing database, plus entity class user
for accessing the information on user in database.

16.7.2012 Verified All test succeeded.

Task card TC-0-4 - Create database layer in web app

TC-0-4
Type

Difficulty Confi-
dence

Notes
Before After

New 5 5 3
Description
The database layer is a set of classes that are responsible to create and maintain local MySQL database, as well as
to provide the access to the data (i.e. create, read, update or delete) data. The classes should be accessible through
exposed web services with corresponding exposed methods.

Date Status Comment
11.7.2012 Defined

12.7.2012 Implementing
Using phpMyAdmin, the database is successfully created on MySQL server.
Additionally, web service and supporting classes are being developed.

13.7.2012 Done
The exposed web service along with supporting classes are created and tested
locally. The security mechanisms are not included as these are not required by
user requirements.

16.7.2012 Verified Integration and acceptance tests succeeded.

95

Task card TC-0-5 �± Implement and connect user interface

TC-0-5
Type

Difficulty Confi-
dence

Notes
Before After

New 2 2 5
Description
Corresponding user interface for entering the data in mobile application should be created. The elements of user
interface, as well as other messages communicated to the user should be language independent, but implemented
in English. The functionality of user interface should through corresponding activity classes be connected to
database layer.

Date Status Comment
11.7.2012 Defined

12.7.2012 Implementing

As the user interface for profile is not the first screen in the application, auxiliary
operations were implemented in order to be able to navigate to target page.
activity_profile.xml is being created and should be connected to business logic
layer class ProfileActivity.java.

13.7.2012 Done The user interface is created and is language independent, screen size
independent and orientation independent.

16.7.2012 Verified All tests including acceptance test succeeded.

Task card TC-0-6 �± Add synchronization layer

TC-0-6
Type

Difficulty Confi-
dence

Notes
Before After

New 3 5 4
Description
The data stored in local database should be automatically synchronized to web service.

Date Status Comment
11.7.2012 Defined

13.7.2012 Implementing
The classes and behavior necessary for data synchronization between application
and web service are created. KnowledgeService.java and JsonAdapter.java are
created and ProfileActivity.java is seriously improved.

13.7.2012 Done
The data cannot be stored in local database unless the user is created by web
service which returns the user id.
After the user is created, it can be only updated.

16.7.2012 Verified All tests succeeded.

Task card TC-0-7 �± Finalize tests

TC-0-7
Type

Difficulty Confi-
dence

Notes
Before After

Enhance 5 5 3
Description
All created functionality should be tested thoroughly; the test for core and robotized testing should be updated and
saved. If necessary, code should be updated and fixed.

Date Status Comment
11.7.2012 Defined

13.7.2012 Implementing

Some tests concerning core functionality were defined in previous task. Now
other tests dependent on technological specifications should be defined, and
finally the test defining robotized integration testing of application is to be
created.

16.7.2012 Done 17 fully automatic tests are created. Code is refactored and fixed. More than 100

96

assertions in included in 16 unit (more than 85) and 1 integration (more than 15)
tests.

16.7.2012 Verified All tests succeeded.

Task card TC-0-8 �± Optimize and refactor

TC-0-8
Type

Difficulty Confi-
dence

Notes
Before After

Enhance 1 1 5
Description
Created code should be optimized, commented and refactored. All tests should execute successfully at the end.

Date Status Comment
11.7.2012 Defined

16.7.2012 Implementing
Considerable efforts were made during the implementation, so there was no much
work to do during the refactoring task. Instead, the classes and methods are fully
commented.

16.7.2012 Done
16.7.2012 Verified All tests succeeded.

3.3.7.2. Data model

The requirements analysis showed that this trial day concerns only the functionality regarding

one entity in data model. User entity was defined as follows.

Figure 20 - Entity users (trial day)

The same data model was deployed on mobile database and on web service database hosted

online.

3.3.7.3. Created web service

Exposed web service covering the functionality of managing the system users is exposed and

can be accessed by the URL: http://knowledge.uphero.com/users.php. The frontend part of the

web application is accessible to the mobile application through several methods that are

described in Table 27. Other functionality is defined in the backend and cannot be accessed

97

directly, but still plays a crucial role in the functionality of the web service. The model of the

whole web application (with web service) is presented in the next chapter.

Table 27 - Web service (users.php) specification

http://knowledge.uphero.com/users.php

method json* response** description

create firstName
lastName
email
[description]

responseId
responseText
[newUserId]

Creates a new user in database. Compulsory data
in post include method name and the data about
new user packed into JSON format.
Web service will return JSON formatted string. If
everything was OK the string will contain
additional data on newUserId.

update id
firstName
lastName
email
[description]

responseId
responseText

Updates an existing user in the database.
Compulsory data in post include method name
and the updated data about user packed into
JSON format.
Web service returns JSON formatted string
containing the operation result id and text.

delete id responseId
responseText

Deletes and existing user from the database.
Compulsory data in post include method name
and user id.
Web service returns JSON formatted string
containing the operation result id and text.

* json �± parameter name. Should contain all stated elements in JSON format.
** response �± String response from web service. Contains all stated attributes in JSON format.

3.3.7.4. Created class models

As the feature selected for the trial day spans vertically through the whole system architecture,

the class model designed and created during this phase is not so simple. The model contains

classes for database connectivity layer, business logic layer, user interface layer plus some

helper classes to connect to web service. The model of the mobile application is presented in

Figure 21.

98

Figure 21 - Class diagram (mobile app - trial day)

Class NewsActivity was used only to provide the functionality of opening the target

ProfileActivity class and thus is not defined at this phase. Additionally, some classes extend

native Android classes, but these are not presented unless it was necessary in order to

understand the navigability through the model (e.g. AsyncTask provides method execute

which was called by ProfileActivity, as the method in SaveUserAsyncTask are protected and

thus inaccessible from mentioned ProfileActivity class). The private attributes are hidden in

the diagram as they are irrelevant in this report. Finally, many classes use native Android

classes which are not shown in this diagram in order to make it clean and simple and direct

the focus only on the architectural design.

On the other hand, as presented in Figure 22, web application comprises of one exposed web

service (users.php) which is backed up by several classes providing the means of accessing

and storing the data and loading the necessary configuration.

99

Figure 22 - Class diagram (web service - trial day)

3.3.7.5. Implementation

During the implementation tasks, the classes presented in the above figures were implemented

in Java and PHP. According to the Mobile-D methodology, very strict coding standards were

applied, and at the end of the implementation process, the code was commented. An example

of a part of a commented class is shown in Code 2. As it can be seen, the comments include

the description and the tags defining the author, date, connecting task and other elements

usual for code comments (such as see also, code etc.).

package foi.uah.knowledge.entities;
import foi.uah.knowledge.database.UsersAdapter;

/**
 * Class represents an User entity. When ever in application the information about
 * the user should be used it should be provided by this class. As the application
 * can only have one user, the behavior of this class is some - what specific.
 *
 * @author Zlatko
 * @date 13.7.2012.
 * @task TC- 0- 2
 */
public class User {
 private static User currentUser ;
 private int id ;
 private String firstName = "" ;
 private String lastName = "" ;
 private String email = "" ;
 private String description = "" ;

 /**
 * Constructor which creates new user according to given parameters.
 *
 * @param id User id. The value should be obtained from web service.
 * @param firstName First name. Compulsory.
 * @param lastName Last name. Compulsory.
 * @param email Email address. Compulsory.
 * @param description An optional description of user to be created.
 *

100

 * @author Zlatko
 * @date 13.7.2012.
 * @task TC- 0- 2
 * @changes
 */
 public User(int id, String firstName, String lastName, String email, String

description)
 {
 setId(id);
 setFirstName(firstName);
 setLastName(lastName);
 setEmail(email);
 setDescription(description);
 }

 /**
 * Static method returns object with information on current user written in

 * database. If data in database is changed, the information on current user
 * will not change automatically, and thus the

 * refreshCurrentUser method should be used.
 *
 * @see #refreshCurrentUser()
 * @return An object with information on current user, if such exist in

 * database.
 *
 * @author Zlatko
 * @date 13.7.2012.
 * @task TC- 2- 2
 * @changes
 */
 public static User getCurrentUser()
 {
 if (currentUser == null)
 {
 UsersAdapter ua = UsersAdapter. getInstance ();
 currentUser = ua.getCurrentUser();
 }
 return currentUser ;
 }

 /**
 * Static method which refreshes the current object with the latest data on

 * user in database. This method should be called whenever the database
 * information is changed.

 *
 * @author Zlatko
 * @date 13.7.2012.
 * @task TC- 0- 2
 * @changes
 */
 public static void refreshCurrentUser()
 {
 currentUser = null ;
 UsersAdapter ua = UsersAdapter. getInstance ();
 currentUser = ua.getCurrentUser();
 }
...
...

}

Code 2 - Commented class

101

Additionally, the best practices of object oriented programming (abstraction, inheritance,

encapsulation, polymorphism, error handling etc.) were used (Mitchell, 2003), which resulted

in a high internal cohesion (Miller, 2008) and at the same time the external coupling was kept

low. Although the trial day resulted in a relatively small number of classes, the same

principles were applied during the whole development process.

3.3.7.6. Testing

As the Mobile-D methodology suggests (Abrahamsson et al., 2005a), the whole development

process was based on Test Driven Development (TDD) (Hammond and Umphress, 2012). As

it is visible from the defined tasks, the working day began with the activities of writing the

unit tests for core functionality. As some of the technological aspects were not familiar to the

implementer of this task (i.e. me, a PhD student), the task resulted with only a few basic unit

tests regarding already familiar and known classes.

Other unit tests were written during the development and the TC-0-7 (Finalize tests) task. The

whole process resulted in 16 unit tests which completely automatically asserted more than 85

different conditions.

The integration testing was also automatized by defining the Robotium test (Reda, 2012)

which robotically runs the application on mobile phone or on simulator and performs all

possible actions including creation of the user, inaccurate attempts of updating the user,

accurate updating tests and similar. The integration testing thus included the tests of some

features that were impossible to test by unit testing (like asynchronous behavior of some

classes).

In the end, and after the refactoring, all 17 tests (16 unit tests + one integration test) were

successfully run, and more than 100 assertions gave expected results as shown in Figure 23.

As it can be seen from the test results, only two tests were time consuming. The web service

test took more than 10 seconds as it called the web service more than 15 times. Additionally,

the automated integration robotic test took more than 40 seconds, as it tested the application

as a user would. These results were expected and also confirmed that there were no other

time-heavy objects.

102

Figure 23 - Test results (trial day)

Finally, all tests were designed by accepting the Mobile-D recommendations (Abrahamsson et

al., 2005a) on performing the test driven development. Additionally the tests were designed in

such a manner that the order of execution of tests was not important, the tests were not

dependent on any existing system configuration and revert original data in local database and

thus did not interfere with manual testing performed during the development.

3.3.7.7. Application screenshots

Figure 24 - Application screenshots (trial day)

103

Above figure shows several screenshots taken at the end of the trial day. These screenshots

show only one use case which was implemented during this phase and do not cover the whole

implemented functionality. The whole functionality was successfully tested during the

execution of the corresponding acceptance test.

3.3.7.8. Project plan checklist

At the end of this stage there was no need for performing the usual activities of the release

day. All tests including the acceptance test were performed successfully and the

documentation including the artifacts of everything that was done was wrapped up. Finally in

order to check if everything was done correctly, the requirements defined by the Mobile-D

and stated in the check list (see Table 28) were checked.

Table 28 - Project plan checklist �± 0 Iteration

0 Iteration Yes No NA

Requirements

The project plan has been updated concerning the selected trial requirements for 0

iteration
X

The project plan has been updated concerning the realization of the selected trial

requirements for the 0 iteration
X

Architecture line definition has been included in the project plan X

3.4. Productionize

3.4.1. First iteration

The selected features to be implemented in this iteration are presented in Table 29 and mainly

concern the manipulation of groups owned by user. The reason for having these features

selected is that the functionality regarding group management set up the basis for other

functionalities. As stated in the project backlog, the importance of F5.1 and F4.1 is very high,

which also justifies the decision. Although the F5.3 is currently not important, the email

invitations are easy to implement and tightly connected with F5.2 and thus this easy task is

included in this iteration as well. As it can be seen in the following table, the order of the

execution was slightly changed.

104

Table 29 - Selected features for first iteration

Features / stories Importance

F5.1 User should be able to create a new group. 5

F4.1 User should be able to see the list of all groups currently enrolled to. 5

F5.4 User should be able to delete any group he owns. 2

F5.2
User should be able to invite new members to his group by inviting them via in
application email.

2

F5.3 User should be able to invite new members to his group by sending them email. 1

3.4.1.1. Story cards and task cards

Story card F5.1

F5.1
Type

Difficulty Effort
Priority Notes

Before After Estim. Spent
New L M 4 5 5

Description
User should be able to create a new group.
The basic information about the group should include name, description and creator. The information should be
stored in web database and downloaded locally when necessary through web service.
Date Status Comment

17.7.2012 Defined
This functionality is prerequisite for most of other functionality of this iteration
as well as of following iterations. It should be implemented by calling appropriate
web service and displaying the results.

19.7.2012 Implementing
The approach established during the trial day is taken in implementation of this
feature. The only difference is that groups should not be stored in local database
after created and confirmed from the web service.

23.7.2012 Done The functionality is created.

26.7.2012 Enhanced
The refactoring was made and the code is significantly improved and made
simple but sill functional.

27.7.2012 Verified All tests succeeded.

Story card F4.1

F4.1
Type

Difficulty Effort
Priority Notes

Before After Estim. Spent
New L M 4 5 5 Partial implementation!

Description
User should be able to see the list of all groups currently enrolled to.
The basic information about the group should include name, description and number of members. The information
should be stored in web database and downloaded locally when necessary through web service. This functionality
will be partially implemented in this phase as currently there is no possibility to see invitations and to accept them
and thus user will not be enrolled in any group except own groups.
Date Status Comment

17.7.2012 Defined
This functionality is prerequisite for most of other functionality of this iteration
as well as of following iterations. It should be implemented by calling appropriate
web service and displaying the results.

19.7.2012 Implementing
The implementation of web role is focused in this task as it performs the most
important logic. The mobile application will receive and display the data.

24.7.2012 Done
It took us little bit longer than expected to finish this task. The web service role
was hard to debug. This problem should not be neglected while preparing the
implementation of other requirements.

26.7.2012 Enhanced
The refactoring was made and the code is significantly improved and made
simple but sill functional.

105

27.7.2012 Verified All tests succeeded.

Story card F5.4

F5.4
Type

Difficulty Effort
Priority Notes

Before After Estim. Spent
New L L 3 4 2

Description
User should be able to delete any group he owns.
The group will not be deleted from the web service, but it will be rather marked as deleted and will stay in
database for analytical purposes.
Date Status Comment

17.7.2012 Defined
Appropriate web service should be called and the data in database should be
marked as deleted but kept for analytical purposes.

19.7.2012 Implementing
The mobile side of the system should do the majority of work including the
communication with the user and preparation of data to be sent to web service.

25.7.2012 Done
The user is asked to confirm the action and after the parameters are sent to web
service which logically marks the group as deleted.

26.7.2012 Enhanced
The refactoring was made and the code is significantly improved and made
simple but sill functional.

27.7.2012 Verified All tests succeeded.

Story card F5.2

F5.2
Type

Difficulty Effort
Priority Notes

Before After Estim. Spent
New L M 3 4 2

Description
User should be able to invite new members to his group by inviting them via in application email.
In-�D�S�S�O�L�F�D�W�L�R�Q���H�P�D�L�O�V���V�K�R�X�O�G���E�H���L�P�S�O�H�P�H�Q�W�H�G���W�K�U�R�X�J�K���Z�H�E���G�D�W�D�E�D�V�H�����7�K�L�V���P�H�D�Q�V���W�K�D�W���W�K�H���H�P�D�L�O���V�K�R�X�O�G���E�H���³�V�H�Q�W�´��
�E�\���P�D�U�N�L�Q�J���W�K�H���L�Q�I�R�U�P�D�W�L�R�Q���L�Q���G�D�W�D�E�D�V�H�����D�Q�G���³�U�H�D�G�´���D�I�W�H�U���W�K�H���F�O�L�H�Q�W���D�S�S�Oication will ask for news feed. This news
�V�K�R�X�O�G���L�Q�F�O�X�G�H���³�H�P�D�L�O�V�´��
Date Status Comment

17.7.2012 Defined
Appropriate web service should be called and the email should marked in
appropriate database entity.

19.7.2012 Implementing
The mobile side of the system should do the majority of work including the
communication with the user and preparation of data to be sent to web service.

26.7.2012 Done The data collected from UI and local objects is sent to web service.

26.7.2012 Enhanced
The refactoring was made and the code is significantly improved and made
simple but sill functional.

27.7.2012 Verified All tests succeeded.

Story card F5.3

F5.3
Type

Difficulty Effort
Priority Notes

Before After Estim. Spent
New L l 2 2 1

Description
User should be able to invite new members to his group by sending them email.
The simple email should be sent from the web server and it should contain the information that there is new
invitation to group. In the application, the user should see the invitation after contacting the web service for news
again as described in F5.2.

106

Date Status Comment

17.7.2012 Defined The email should be sent automatically after calling the web service in F5.2 if
appropriate parameter is present.

19.7.2012 Implementing
The implementation of this requirement will be realized through the
implementation of F5.2 requirement.

26.7.2012 Done
The necessary changes in existing functionality of mobile and web service are
created. Web service is enhanced with the functionality of preparing and sending
the e-mail messages.

26.7.2012 Enhanced
The refactoring was made and the code is significantly improved and made
simple but sill functional.

27.7.2012 Verified All tests succeeded.

By analyzing the aforementioned user stories, we concluded that the best approach is to

combine all five of them into a single sequence of tasks. This decision was made as the

functionality described in these user stories is strongly interconnected and interdependent.

The tasks identified are described by the following task cards.

Task card TC-1-1 - Create initial test cases

TC-1-1
Type

Difficulty Confi-
dence

Notes
Before After

New 5 5 3
Description
Initial test cases for these functionalities should be created.

Date Status Comment
17.7.2012 Defined The agreed and tried android.test and robotium framework should be used.

19.7.2012 Implementing
The analysis showed that there are not many new classes in mobile application
suitable for unit testing, but on the other hand the test for web services should be
prepared.

19.7.2012 Done
The unit tests concerning the functionality of mobile application classes and
synchronous communication with web services are created.

27.7.2012 Verified The tests are finalized and successful in run.

Task card TC-1-2 �± Update database model

TC-1-2
Type

Difficulty Confi-
dence

Notes
Before After

Enhance 1 1 5
Description
Web application database model should be updated. It should be an easy task as there will probably be no changes
on existing model. On the other hand, several more entities should be created in order to cover all functionality for
this iteration.
Date Status Comment
17.7.2012 Defined
19.7.2012 Implementing It is not necessary to alter existing model.

20.7.2012 Done
New model includes entities users, groups and enrolments and is capable of
storing data on users and on active and inactive (canceled) groups and
enrolments.

27.7.2012 Verified All tests succeeded and the model is suitable for current requirements.

107

Task card TC-1-3 �± Implement server side functionality

TC-1-3
Type

Difficulty Confi-
dence

Notes
Before After

New 4 4 4
Description
Web service leaning on the upgraded data model should be written. It should include exposed methods as well as
backend supporting functionality. The approach created during the trial day should be used.

Date Status Comment
17.7.2012 Defined

20.7.2012 Implementing
All features in this iteration are counting on web service support. Thus the
planned services should be carefully implemented and error free.

23.7.2012 Done

This task took longer than expected to be finished. The majority of functionality
is supported by web services and the development of those is time consuming and
hard to debug. In any case the planned services are developed and ready for
usage.

27.7.2012 Verified All tests succeeded.

Task card TC-1-4 �± Implement mobile app functionality

TC-1-4
Type

Difficulty Confi-
dence

Notes
Before After

New 4 5 4
Description
Using the basics of infrastructure created during the trial day, new classes should be developed and connected to
display the data in appropriate user interface (see UI sketches). The information should be downloaded from the
web services in real time.
Date Status Comment
17.7.2012 Defined

23.7.2012 Implementing
There are several new concepts which are not tried (prototyped) but are to be
developed. These concepts include the usage of custom dialogs, the handling of
user actions and hardware keys etc.

26.7.2012 Done
This task also took longer than expected. The main reason is the development of
not trialed concepts and little bit complicated infrastructure that resulted in
asynchronous communication. This source should be refactored.

26.7.2012 Enhanced
The source is heavily refactored. The service layer is made free of business logic
and is now only used for communication with web services. This reduced the
number of classes in service layer.

27.7.2012 Verified All tests succeeded.

Task card TC-1-5 �± Finalize tests

TC-1-5
Type

Difficulty Confi-
dence

Notes
Before After

Enhance 5 5 3
Description
All created functionality should be tested thoroughly; the test for core and robotized testing should be updated and
saved. If necessary, code should be updated and fixed.

Date Status Comment
17.7.2012 Defined The agreed and tried android.test and robotium framework should be used.

26.7.2012 Implementing
This task should include the preparation of integration tests. During the test
design is concluded that isolation of test cases could be the problem.

26.7.2012 Done All integration tests are created in one sequence. Although this is not good

108

approach, the execution of isolated test cases proved to be very time consuming
as every test case has to prepare the context from scratch.

27.7.2012 Verified All tests succeeded.

Task card TC-1-6 �± Optimize and refactor

TC-1-6
Type

Difficulty Confi-
dence

Notes
Before After

Enhance 1 2 5
Description
Created code should be optimized, commented and refactored. All tests should execute successfully at the end.

Date Status Comment
17.7.2012 Defined

26.7.2012 Implementing

The asynchronous nature of the communication with web service and wrong
infrastructure design made the service layer very heavy. Current class-per-
service-call environment is dealing with preparation of data and business logic.
This is not good.

27.7.2012 Done
The preparation of data and business logic was moved to the real business logic
layer which made the service layer very simple. This resulted in several new
classes which ensure proper communication between these two layers.

27.7.2012 Verified All tests succeeded.

3.4.1.2. Database model

Updated database model was initially created during the planning day, and slightly updated

during the working days. The final version satisfying all requirements of this phase can be

seen in the following picture. Only the database model representing server side functionality

was updated.

Figure 25 - Data model (iteration 1)

The important information was stored in groups and enrolments entities. These entities are

designed to store information on currently active, but also on inactive groups and enrolments.

109

After the group is created, the owner is automatically enrolled into a group (enrolled = 1 and

enrolmentStart = currentDate). After the owner invites another member, a new record is

added to the enrolments table, but the information keeping attribute this time is invitationDate

which is set to currentDate, and other attributes await for user to accept (or reject) the

invitation. After the group is deleted, its deletionDate is set up and for all members of that

group, enrollment is canceled by setting the enrolled to 0 and enrolmentFinish to currentDate.

Thus, the database model ensures proper navigability and information preservation and can be

considered as valid.

3.4.1.3. Created web services

The following tables describe created web services, their methods and corresponding

parameters sent and received in JSON format. Some of the listed web services are still not

used and thus not included in any test.

Table 30 - Web service (groups.php) specification

http://knowledge.uphero.com/groups.php

method json response description
create name

description
ownerId

responseId
responseText
[newGroupId]

Creates a new group in database. The owner of the
group is automatically enrolled in the new group.
If everything was OK the return string will contain
additional data on newGroupId.

update id
name
description

responseId
responseText

Updates an existing group in the database. Only name
and description are allowed to be changed.
Web service returns usual response.

delete id responseId
responseText

Logically deletes existing group from the database by
setting the deletionDate value. All memberships are
automatically canceled by setting the enrolled = 0 and
enrolmentFinished valued.
Web service returns usual response.

my ownerId responseId
responseText
[groups]

Returns JSON string containing an array of groups
owned by given user. The information contains a
number of members in every group.

Table 31 - Web service (enrolments.php) specification

http://knowledge.uphero.com/enrolments.php

method json* response** description
inviteUser groupId

inviterId
email
[sendEmail]

responseId
responseText

Adds new enrolment invitation in database. Optional
data includes parameter sendEmail that defines if
normal email invitation should be sent or not. Only
invitationDate and optionally emailDate attributes are
defined.
Web service returns usual response.

enroll groupId responseId Enrolls user in a group. In this iteration the method is

110

userId responseText not used, thus it is not jet tested by service or
integration tests.
Web service returns usual response.

cancel groupId
userId

responseId
responseText

�&�D�Q�F�H�O�V���W�K�H���X�V�H�U�¶�V���H�Q�U�R�O�P�H�Q�W���E�\���V�H�W�W�L�Q�J���W�K�H��enrolled to
false and noting down the withdraw date. This service
is not jet used and thus is not tested.
Web service returns usual response.

3.4.1.4. Created class models

During the planning day, the technology independent class model was created, but during the

working days it was slightly improved to fit the target platform. The second version of the

class model included some technology dependent classes like AsyncTask which are specific

for Android platform. In any case, the specific focus was given so the class model can be re-

used during the development of application for other target platforms.

Figure 26 - Mobile app class model (iteration 1)

Although a little complicated, the architecture of the mobile application was still flexible and

modular. As it can be seen, activity classes are the most important part of the functionality.

Those classes execute tasks by ServiceAsyncTask class which asynchronously communicates

with web service, and sends the result through AsyncTaskCallback interface that is

implemented by the caller.

111

The new entity added in this iteration was Group entity. This class is simple as it is just used

to encapsulate the data download from the web service.

JsonAdapter is a static class providing helpful functionality when working with JSON objects

and strings, and finally, the only class that deals with local database is class User which

provides information on the current user.

Figure 27 - Web app class model (iteration 1)

In the web application, the infrastructure was not changed. The web services were backed up

with adapters which communicate with the web database.

3.4.1.5. Implementation

The most important infrastructural functionality developed in this phase concerns the

communication with the web services. The implementation protocols and practices

established and described during the trial day phase were closely followed in this phase as

well. The model developed during the trial day was insufficiently flexible and had to be

improved as there were many calls to the web services. The following example shows the new

approach in solving this problem.

112

/**
 * The method coordinates the web service call/response. The data is obtained,
 * prepared and sent to service proxy. The results will be asynchronously received
 * by AsyncCallbackTask pointed when calling the proxy.
 *
 * @author Zlatko
 * @date 13.7 .2012.
 * @task TC- 0- 6
 * @changes 26.7.2012
 */
private void saveUserData()
{
 try {
 //getting the data
 strFirstName = txtFirstName .getText().toString();
 strLastName = txtLastName .getText().toString();
 strEmail = txtEmail .getText().toString();
 strDescription = txtDescription .getText().toString();

 String method = "" ;
 String responseAttribute = "" ;

 //preparing json object
 JSONObject jsonObject = new JSONObject();
 jsonObject.put("firstName" , strFirstName);
 jsonObject.put("lastName" , strLastName);
 jsonObject.put("email" , strEmail);
 jsonObject.put("description" , strDescription);

 if (User. getCurrentUser () == null) {
 method = "create" ;
 responseAttribute = "newUserId" ;
 }
 else {
 method = "update" ;
 jsonObject.put("id" , User. getCurrentUser ().getId());
 }
 String jsonString = JsonAdapter. getJsonArrayString (jsonObject);

 //calling the service and showing progress dialog
 ServiceAsyncTask asyncTask = new ServiceAsyncTask();
 ProgressDialog dialog = ProgressDialog. show(this , "" ,
 getResources().getString(R.string. dialogSaving), true , true);
 Object params[] = new Object[]{ this , jsonString, "users" , method,
 responseAttribute, dialog, saveUserDataNotification };
 asyncTask.execute(params);
 }
 catch (JSONException e) { }
}

/**
 * This callback task is called after web service returns the results. According
 * to the results, it is necessary to perform synchronization with local databas
 * and to inform the user on actions performed. The data will be stored in
 * local database only if web service request responds with message 100 (OK). The
 * method inserts data in local database
 * only first time and after that it only updates the d ata.
 *
 * @author Zlatko
 * @date 26.7.2012.
 * @task TC- 1- 6
 * @changes
 */
AsyncTaskCallback saveUserDataNotification = new AsyncTaskCallback() {

 @Override

113

 public void acceptNotification(String result, boolean ok) {
 if (ok) {
 if (User. getCurrentUser () == null){
 //create new user in local database
 int id = Integer. parseInt (result);
 User user = new User(id, strFirstName , strLastName ,
 strEmail , strDescription);
 UsersAdapter. getInstance ().insertUser(user);
 Toast. makeText(context , getResources().getString (R.
 string. msgUserCreated), Toast. LENGTH_LONG).show();
 }
 else {
 //update data in local database
 int id = User. getCurrentUser ().getId();
 User user = new User(id, strFirstName , strLastName ,
 strEmail , strDescription);
 UsersAdapter. getInstance ().updateUser(user);
 Toast. makeText(context , getResources().getString(R.
 string. msgUserUpdated), Toast. LENGTH_LONG).show();
 }
 setEditable(false);
 } else {
 Toast. makeText(context , result, Toast. LENGTH_LONG).show();
 }
 }

 };

Code 3 - Handling web service call and response

The code example shows the basic approach taken in handling web service call and response.

Before calling the asyncTask, the data is obtained and prepared into JSON object.

Additionally, other parameters are also prepared, along with JSON data packed into a single

object with a predefined structure, and sent to the proxy to communicate with web service.

After gaining the async callback, the results are analyzed and the data is synchronized with

the local database. This approach allows similar communication with web service from any

object in mobile application.

3.4.1.6. Testing

During the implementation of the respective tasks concerning testing, we faced several

important challenges. The implementation resulted in few classes suitable for unit testing.

Despite that, the unit tests were created in advance for all classes which were used in the

application except the classes which deal with asynchronous communication with web

services. Additionally, the complete suite of unit tests was created to test the web services

directly.

On the other hand, asynchronous behavior was also tested, but through the sequential fully

automatized integration test which additionally tests the behavior of activities. At the end of

the iteration, a total of 26 tests with approximately 200 assertions were run and were

completely successful.

114

Figure 28 - Test results (iteration 1)

115

3.4.1.7. Application screenshots

Figure 29 - Application screenshots (iteration 1)

Above figure shows several screenshots taken at the end of the first iteration.

3.4.1.8. Project plan checklist

At the end of this stage there was no need for performing the usual activities of the release

day. All tests including the acceptance tests are performed successfully, the documentation

including artifacts of everything that is done is wrapped up, and finally in order to check if

everything is done correctly, the requirements defined by the Mobile-D and stated in the

check list (see Table 32) are checked.

116

Table 32 - Project plan checklist �± 0 Iteration

Productionize Iteration(s)

Requirements

The project plan has been updated concerning the selected requirements for the current
iteration

X

The project plan has been updated concerning the realization of the selected requirements
for the current iteration

X

The project plan has been updated concerning any changes in, e.g., the schedule, rhythm,
requirements, and resources

X

The project plan has been updated concerning the realization of quality assurance activities
in current iteration

X

3.4.2. Other iterations

As had been planned, all other iterations were performed in a similar manner. As the objective

was to identify the artifacts, there is no need to report all the iterations in detail here. Rather,

this chapter will present the summary information on the performed tasks and outputs, as well

as give the final versions of some important documents.

3.4.2.1. Iterations overview

According to iterations plan which was a part of the overall project plan, the four remaining

iterations included the implementation of user stories (features) as presented in Table 33.

Table 33 - Iterations plan with features selection

Features / stories Importance

I2 - Second iteration - Enrollment

F4.2
User should be able to apply the filter by root-searching the available groups according to
their title and description. All groups should be observed by search.

2

F4.3
User should be able to see the details on any group he is enrolled to, including the list of
other members. User should NOT be able to see the list of other members (except their
number) for the groups he is not enrolled to.

4

F4.4 User should be able to join any existing group by sending the application to group owner. 5

F4.5
User should be able to leave any group he is enrolled to. Other group members should
only be notified on that. Owner cannot leave the group and the group should be deleted
manually (see F5.4).

1

F6.1
User should be able to see all members of the groups he is enrolled to on the map. If group
member has disabled this privacy setting, it will be excluded from the view.

3

I3 - Third iteration �± Questions management

F2.2
User should be capable to add new question. New questions should be defined in separate
windows which should include all important information about the question (title, text and
images). The images should be taken by the phone camera.

5

F2.1 Current user should be able to check all his questions, including those that have been
answered already. Questions should be presented by title and short description. Other

5

117

details about every question should be presented in new window after user clicks on it.

F2.7 User should be able to apply the filter by root-searching the list of questions available to
him.

2

F2.3
User should be capable to delete own question. The deletion should not be performed
�Z�L�W�K�R�X�W���X�V�H�U�¶�V���H�[�S�O�L�F�L�W���F�R�Q�I�L�U�P�D�W�L�R�Q���R�Q���G�H�O�H�W�L�R�Q���D�F�W�L�R�Q��

3

F2.4
User should be capable to change own question. The process of changing question should
be similar to process of adding new question.

1

F2.5 User should be capable to add answers to own and other�V�¶ questions. 5

F2.6 The owner of the question should be able to mark a question as answered. 5

I4 - Fourth iteration �± News feed

F1.1
When the application is started the news should be displayed. News should include any
�X�Q�U�H�D�G���D�Q�V�Z�H�U�V���W�R���W�K�H���X�V�H�U�¶�V���T�X�H�V�W�L�R�Q�V�����Q�H�Z�V���R�Q���D�F�W�L�Y�L�W�L�H�V���L�Q���X�V�H�U�¶�V���J�U�R�X�S�V���D�Q�G���R�W�K�H�U��
information important for current user.

3

F1.2
�7�K�H���Q�H�Z�V���S�U�H�V�H�Q�W�H�G���R�Q���W�K�H���I�L�U�V�W���D�S�S�O�L�F�D�W�L�R�Q���V�F�U�H�H�Q���V�K�R�X�O�G���E�H���³�O�L�Q�N�V�´���W�R���F�R�U�U�H�V�S�R�Q�G�L�Q�J��
application functionality.

3

I5 - Fifth iteration �± Settings and help

F3.2
User should be able to set/change application settings. The settings should include the
possibility to deny further invitations to groups, to set privacy level (of showing or no
emails to other users and of showing or no current location to other users).

2

F7.1 User should be able to read a general help about the application usage. 1

All iterations included planning, working and release days. Thus, the working days were

navigated through the series of predefined tasks, which described along with other documents

can be found in the documents library. The summary of the performed tasks during the

implementation is presented in the following table.

Table 34 - Performed tasks

Id Task card Type
Difficulty Confi-

dence
Date

finished Before After

I2 - Second iteration - Enrollment

TC-2-1 Create initial test cases New 5 5 3 1.8.2012
TC-2-2 Implement supporting web services Enhance 4 3 5 2.8.2012
TC-2-3 Implement group searching and viewing New 5 5 4 3.8.2012
TC-2-4 Implement group enrolment and leaving Enhance 3 3 4 6.8.2012
TC-2-5 Implement map view New 3 4 4 7.8.2012
TC-2-6 Finalize tests Enhance 5 5 3 8.8.2012
TC-2-7 Optimize and refactor Enhance 2 2 5 8.8.2012

I3 - Third iteration �± Questions management

TC-3-1 Create initial test cases New 5 5 4 17.8.2012
TC-3-2 Update database model Enhance 1 1 5 20.8.2012
TC-3-3 Implement supporting web services New 3 3 5 22.8.2012
TC-3-4 Develop questions management New 5 5 5 27.8.2012
TC-3-5 Develop answers management New 4 5 5 29.8.2012
TC-3-6 Finalize tests Enhance 5 5 3 31.8.2012
TC-3-7 Optimize and refactor Enhance 2 2 5 3.9.2012

I4 - Fourth iteration �± News feed

TC-4-1 Create initial test cases New 5 5 4 11.9.2012

118

TC-4-2 Update database model Enhance 1 1 5 11.9.2012
TC-4-3 Implement supporting web services New 3 3 5 13.9.2012
TC-4-4 Implement mobile app functionality New 5 5 5 17.9.2012
TC-4-5 Finalize tests Enhance 5 5 3 19.9.2012
TC-4-6 Optimize and refactor Enhance 2 2 5 20.9.2012

I5 - Fifth iteration �± Settings and help

TC-5-1 Create initial test cases New 5 5 4 28.9.2012
TC-5-2 Update database model Enhance 1 2 5 1.10.2012
TC-5-3 Update web services Enhance 3 4 5 3.10.2012
TC-5-4 Implement settings management New 3 3 5 5.10.2012
TC-5-5 Update groups management Enhance 2 3 5 9.10.2012
TC-5-6 Update profile management Enhance 2 3 5 11.10.2012
TC-5-7 Define help content New 1 2 5 12.10.2012
TC-5-8 Develop help functionality New 3 3 5 15.10.2012
TC-5-9 Finalize tests Enhance 5 5 3 17.10.2012
TC-5-10 Optimize and refactor Enhance 2 2 5 18.10.2012

3.4.2.2. Final database model

The final version of the database model, which has gone through tree additional iterations, is

presented in the Figure 30. The presented model completely satisfies user requirements for the

�Z�K�R�O�H�� �V�\�V�W�H�P���� �L�W�� �L�V�� �³�R�S�H�Q�´�� �D�Q�G�� �Q�R�W�� �W�L�H�G�� �W�R�� �D�Q�\�� �W�H�F�K�Q�R�O�R�J�\���� �D�Q�G�� �L�V�� �I�O�H�[�L�E�O�H�� �W�R�� �E�H�� �X�S�G�D�W�H�G�� �R�U��

changed if necessary during the project lifecycle.

Figure 30 - Final database model

119

The model is created in the well-known �&�U�R�Z�¶�V���I�R�R�W���Q�R�W�D�W�L�R�Q ���D�O�V�R���N�Q�R�Z�Q���D�V���-�D�P�H�V���0�D�U�W�L�Q�¶�V��

notation (Martin, 1986)). As it can be seen, three entities are considered to be weak entity

types: enrolments, readNews and answers. These entity types are dependent on other strong

entity types. Additionally, some relationships were made non-identifying by purpose of easier

navigability and indexing, but also because of the idea of putting the read news into a specific

entity in order to be excluded from the news feeds. Finally, special focus was put to

relationships, role naming and cardinality in order to define those according to the best

practices in data modeling.

3.4.2.3. Created web services

The final list of web services developed during the whole development process is shown in

Table 35. The services developed in early development cycles were already described in

detail. All other mentioned web services use the same Representational State Transfer (REST)

communication protocol (Fielding, 2000), accept JSON formatted data and respond with

JSON formatted response (Crockford, 2006). This approach was initially chosen as platform

independent and is most likely to prove useful for other platforms as well.

Table 35 - Web services specification

Method JSON formatted request JSON formatted response

USERS (http://knowledge.uphero.com/users.php)

create firstName, lastName, email, [description] responseId, responseText, [newUserId]
update id, firstName, lastName, email, [description] responseId, responseText
delete id responseId, responseText
position id, longitude, latitude responseId, responseText
settings id, inviteMe, showEmail, showLocation responseId, responseText

GROUPS (http://knowledge.uphero.com/groups.php)

create name, description, ownerId responseId, responseText, [newGroupId]
update id, name, description responseId, responseText
delete id responseId, responseText
my ownerId responseId, responseText, [groups]
search keyword responseId, responseText, [groups]

ENROLMENTS (http://knowledge.uphero.com/enrolments.php)

inviteUser groupId, inviterId, email, [sendEmail] responseId, responseText
enroll groupId, userId, [action] responseId, responseText
cancel groupId, userId, [action] responseId, responseText
members groupId, userId responseId, responseText, [users]
apply groupId, userId responseId, responseText
userLocations userId responseId, responseText, [users]

QUESTIONS (http://knowledge.uphero.com/questions.php)

create name, question, userId, groupId responseId, responseText, [newQuestionId]
update id, name, question, groupId responseId, responseText
delete id responseId, responseText
searchByUser userId responseId, responseText, [questions]

120

searchByGroup groupId responseId, responseText, [questions]
searchByString userId, keyword responseId, responseText, [questions]
searchById id responseId, responseText, [questions (full)]

ANSWERS (http://knowledge.uphero.com/answers.php)

create answer, userId, questionId responseId, responseText, [newAnswerId]
update id, answer responseId, responseText
searchByQuestion questionId responseId, responseText, [answers]
markAnswer id responseId, responseText

NEWS (http://knowledge.uphero.com/news.php)

markRead userId, typeId, value, [value2] responseId, responseText
getByUser userId responseId, responseText, [news]

The usage of Service Oriented Architecture (SOA) in mobile application development got the

acceleration during the last several years. This is a result of a wider Internet availability on

mobile devices and of improved capabilities of mobile devices in terms of hardware. There

are many projects that propose different SOA frameworks that could be used in development

of mobile applications (Papageorgiou et al., 2009; Yee et al., 2009). Although our prototype

application has Service Oriented Architecture, it is important to notice that the whole web part

of this prototyping system is developed only for supporting purposes, and many concepts that

should be implemented in commercial projects were not implemented here. Thus, the stated

web services are stripped off of any session keeping, security checking, logging etc.

3.4.2.4. Class models

The alignment between planned and implemented system architecture can be observed

through the final version of the class diagram. As it can be seen in Figure 31, it contains more

than 25 classes, and it is unreasonable to present it in detail thus it is presented on the level of

class names and relationships. The important conclusions that arise in this point are that

during the development, the business logic layer which contains the activity and service

classes become heavy but easy to maintain. The previously explained infrastructure was

followed through all five iterations, and it is easy to notice that asynchronous calls to web

services made the almost all activity classes to lean on ServiceAsyncTask and to receive the

results through AsyncTaskCallback interface. The obtained results were later transformed into

readable entity object through JsonAdapter object.

121

Figure 31 - Final class model (mobile application)

122

3.4.2.5. Application screenshots

The glimpse view of several use cases of final application functionality can be seen in the

following figure containing the application screenshots. The presented functionality is fully

tested, and all unit test as well as acceptance tests resulted in success.

Figure 32 - Application screenshots

123

3.5. Stabilize

By definition, the purpose of this phase is to integrate smaller subsystems developed by

different teams into a single product. Activities that were performed during this phase are

exactly the same to the activities performed during the working days and thus artifacts the

teams usually create are semantically same as artifacts we created in the earlier phases. As our

mobile application was not divided into subsystems, there was no need to perform integration

activities.

The additional task that characterizes this phase of mobile application development is called

�³�'�R�F�X�P�H�Q�W�D�W�L�R�Q�� �Z�U�D�S-�X�S�´�� �W�D�V�N���� �$�O�W�K�R�X�J�K�� �W�K�H�� �G�R�F�X�P�H�Q�W�D�W�L�R�Q�� �Z�D�V�� �F�U�H�D�W�H�G�� �G�X�U�L�Q�J�� �W�K�H�� �Z�K�R�O�H��

development process, especially during the planning days of each phase and iteration, this

task is specific as it produces the documentation for the project stakeholders and not for the

agile team. Thus, the outputs of this task are finalized architectural, design and UI documents.

Following the rules given in (Abrahamsson et al., 2005a) we produced the mentioned

documents that are salient, short and useful.

3.6. System test & fix

The important phase in the development of our project was System Test and Fix phase. As it

can be seen in figure (Figure 33���� �W�D�N�H�Q�� �I�U�R�P�� �9�7�7�¶�V�� �Zeb application (2006a), the most

important task is System Test task which comprises the activities of updating the test plan,

executing the tests, logging the results and reporting the defects.

Figure 33 - System Test and Fix phase

124

As defined in Mobile-D methodology, this activity is performed only once (i.e. after the

implementation phase of the project). The activities largely depend on the test results and

sometimes no fixes are necessary. Some artifacts used in this phase were only updated as they

had been already presented (UI tests, Acceptance tests, Integration Test, Unit tests) while

others were newly created (final release, documentation of found defects).

As identified during the testing, and described in the minutes of the post iterations workshops,

the following elements (see Table 36) of the mobile system functionality could be improved.

Table 36 - Recognized system limitations

Identified limitation of KnowLedge system
1 The system does not treat email as unique. This might reflect on problems with sending the email

invitation.
2 User cannot be invited or apply to join to a group repeatedly.
3 It is not possible to send email invitations to the users which are not already registered in KnowLedge

system. This might slowdown the progression in getting new users.
4 Not all news should be canceled manually, as there are some news that should be automatically canceled

(like notification of user leaving a group or similar).
5 Some data storage and data transfer optimization should be made. The existing content should not be

downloaded repeatedly.
6 In some cases, the possibility of changing an existing answer could be useful. This should be carefully

designed and planed with implementation of proper control.

The removal of these limitations would not have any influence on the identified set of artifacts

but would significantly extend the development process. As these functionalities were not

included in the user requirements, it was decided to leave them for some future versions of

this system. Thus, the activities of fixing the application were not necessary.

Finally, we moved forward to publish the final version of the application on Google Play

store. The process of publishing is straightforward and easy if all development activities are

performed carefully and application manifest entries are correct. Google does not perform any

manual application testing, and the only criteria that are to be satisfied concern the automated

testing of application package. Having this in mind, we had to create an application icon in

several formats, sign and publish the application by a wizard, and prepare the application

screenshots and description. After uploading these documents to Google Play, our

development process was officially finished. The application is available for download at

http://barok.foi.hr/~zstapic/knowledge/android.

125

3.7. Development of Windows Phone application

The development of KnowLedge application for Windows Phone (WP) target platform was

conducted after the development targeting Android platform. We used same Mobile-D

methodology and same Test Driven Development approach.

Expectedly, from the methodological perspective, the development process was much easier

as many artifacts developed earlier were completely or partially reused in this process. This

possibility of reusing the artifacts was of our specific interest, as the overall goal of this

research was to discover the similarities and to semantically describe them. While some

artifacts remained the same, the other could be reused only as templates and the last group

was formed from the artifacts that had to be built from scratch.

On the other hand, the development process was unexpectedly time-consuming. Although we

were completely familiar with the desired application functionality, and although we reused

some code templates, still the development for a new platform was a very challenging task

which brought many obstacles. WP technology is very different from Android technology,

and as can be seen from the description that follows, some aspects of the implementation

approach (for example, in user interface, in communication with web service, in internal

application structure) had to be reconsidered from scratch.

Additionally, although some artifacts were built from scratch their structure is very similar to

the structure of the artifacts we have already presented. Thus we find no reason to report the

whole process in detail again. Having this in mind, the following chapters discuss the

performed development phases, but from the point of view focusing on the similarities and

differences. Only completely new artifacts will be presented here.

3.7.1. Explore phase

The activities of stakeholder establishment, the scope definition and project establishment

were almost completely omitted in the development process for the second target platform. In

�W�K�L�V���S�K�D�V�H�����Z�H���G�L�G�Q�¶�W���K�D�Y�H���W�R���U�H�G�H�I�L�Q�H���W�K�H���W�D�U�J�H�W���X�V�H�U�V�����V�W�D�N�H�K�R�O�G�H�U�V���R�U���L�Q�L�W�L�D�O���U�H�T�X�L�U�H�P�H�Q�W�V���D�Q�G��

architecture line description as these remained the same as for the Android target platform.

The only activities that we had to perform included the definition of technological domain,

redefinition of technology related risks and needed skills.

Regarding the technology, we decided to define a requirement of the application being

runnable on any device running Windows Phone 7.5 (API level 7.1) or newer. The reasons for

choosing this API level are guided by the principle of targeting as many devices as possible.

As we do not need any capabilities of newer APIs, targeting 7.1 was a reasonable choice.

126

In a similar manner, the software architecture, project plan, documentation, and monitoring

measures remained the same as for Android. The planned duration was not changed by

purpose of making comparisons at the end of both development processes.

3.7.2. Initialize phase

The initialize phase took the same activities that we performed in the first development

process. The existing virtual machine along with the set of tools not related to the

development was reused, but the development environment for WP had to be established from

scratch. We installed Microsoft Visual Studio, WP7.1 SDK, WP Toolkit, Microsoft Zune and

connectivity software for our test devices. Finally, the testing of the development environment

was performed by creating test project and deploying it to the testing device.

On the other hand, the activities that were supposed to produce updated project plan,

architecture line plan and product backlog were unnecessary. All these artifacts including the

system architectural diagrams, definition of features and the first version of acceptance tests

remained the same and were reused. Thus again, we ended up with a product backlog

containing the description of 22 features to be implemented in this development process.

The only document that we had to build again was the document containing the user interface

sketches. The comparison of UI elements that are used in Android with those that could be

used in WP showed that the relationships are not always direct. The in-detail analysis of the

problem of automatic UI transformation was not in the focus of this research, but we found

this software engineering challenge very interesting and thus tried to identify the elements that

should be used in WP in order to give the user WP native look and feel along with the same

functionality. In Figure 34 we can see that, for example, list (in the background of the

Android sketch) can be translated to the same concept of list in the WP. But, the custom

dialog does not have a WP implementation and we can either use another screen, or make

changes in design of the existing form in a way that filter option will be a part of the main

screen.

127

.

Figure 34 - Translating user interface from Android to WP

In the same sense we had to find different solutions to translate some other concepts like

�$�Q�G�U�R�L�G�¶�V���W�R�D�V�W���P�H�V�V�D�J�H���D�Q�G���S�U�Rgress dialogs.

The purpose of a trial day in this 0-iteration remained the same. The plans of features that

ought to be implemented in order to trial and establish the internal application infrastructure

remained the same. We also reused the data model completely and the story card and task

cards as partially reused artifacts. Even without the need to design and develop the supporting

backend system, the implementation of WP functionality took more time than planned and

much more time than for Android. There are many reasons for this, mostly concerning

platform restrictions and a narrowed set of usable features when compared to Android.

Additionally, the recommended practice in development of WP applications is to use

MVVM 19 pattern which requests a significant increase in development efforts. The use of this

pattern helps in making a strong distinguishing line between the application layers in a multi-

layered architecture.

Finally, another problem in WP development is the application of TDD approach. Although

there are several 3rd party unit testing frameworks available for use, we found them to be out

of date or without any maintenance and support �± abandoned. The official Microsoft testing

framework for Windows Phone was released very recently (as a part of Visual Studio 2012

Update 2) and targets the testing of Windows Phone 8 mobile applications. Thus, we had to

use a limited functionality of Microsoft test framework that targets testing of .Net

19 MVVM stands for Model View ViewModel architectural pattern from Microsoft. This pattern is largely based
on MVC pattern, but with the focus on event-driven programming of UI development platforms.

128

applications. This limited the testing functionality only on Core classes and not on the user

interface classes.

Figure 35 - Automated WP unit testing

The automated integration testing of WP was and still is impossible. There is no framework

that might provide the features of automatic or robotized testing of Windows Phone

applications, especially not for testing on devices. The only possible solution was to use a

software that is capable of recording mouse and keyboard events. As this solution did not

provide any possibility of making assertions we had to reject it and perform manual

integration testing at the end of iteration.

3.7.3. Productionize

The approach and issues that we faced during the four Productionize iterations were very

similar to the approach and issues we faced during the 0-iteration. We reused many artifacts

which were related to project plan, iteration plans, product backlog, acceptance tests and other

documentation. We also partially reused artifacts which were connected to activities of noting

the current tasks such as story and task cards.

There was not need to make any changes to existing web service and remote database, which

can bring us to conclude that the development process of these parts of the systems was

thorough and with good quality.

129

While developing the WP application, we found the Android classes that were used to define

entities very useful and we simply converted them to model classes in the new architecture.

Additionally, some classes that were classified as libraries and were used to manipulate with

JSON strings or to do housekeeping were also reused and easily translated to .Net. The

process of localizing the mobile application reused all keys and values, but the original XML

document had to be manually translated into a .Net resource file. We kept almost all the keys,

and used exactly the same translations in both applications. Finally, the logic used to prepare

the web service requests and to analyze the results was also reused and simply translated to

the new programming language.

On the other hand, the existing code related to user interface manipulation, as well as the code

related to web service asynchronous call and response had to be completely rejected. The .Net

architecture made it easier to implement this functionality by using the events and delegates.

3.7.4. Stabilize

As the exhausting testing was performed during the development which initially included the

integration with existing web services, at the end of the iterations the stabilize activities turned

out to relate only to finishing of the documentation by performing wrap-ups. The final (but

manual) integration testing was performed in this phase and as the results were positive we

were capable of finishing the architectural, design and UI documents and move forward in the

next iteration.

3.7.5. System test & fix

After having all iterations performed, the system test & fix activities were on schedule.

Similar to the Android case, unit, integration and acceptance tests were positive. As the initial

requirements were the same, the list of functionality that could be improved was also the

same. As the removal of these limitations would not have any influence on the identified set

of artifacts, we again decided to leave it for some future version of this system.

The process of publishing the finalized application on the Windows Market resulted in some

new artifacts. We were obliged to use Marketplace Test Kit tool, to package application into a

.XAP document and to provide the Market with icons and screenshots in different format than

those for Android. After the testing process, the application will be available for download at

http://barok.foi.hr/~zstapic/knowledge/wp.

130

3.8. Conclusions on implementation

By observing the whole development process again we can conclude that the implemented

activities are well aligned with the planned activities. The following table (Table 37) displays

the planned and realized activities and only differences from the Android case are in the

duration of some activities while the overall project duration was shortened for 14 working

days, but all activities had to be performed.

Table 37 - Duration of planned and real activities

Stage/Phase/Activity
Duration in days

Planned Android WP
KnowLedge 101 87 71
Explore 5 4 1
 Stake holder establishment 2 1 0
 Scope definition 2 2 0,5
 Project establishment 1 1 0,5
Initialize 9 7 5
 Project set-up 3 2 1
 Planning day 0 3 2 0
 Working day 0 3 3 4
Productionize 73 69 62
 Iteration 1 �± Group management 8 9 9
 Planning day 2 2 1
 Working day 5 6 7
 Release day 1 1 1
 Iteration 2 �± Enrolment 8 9 10
 Planning day 2 2 1
 Working day 5 6 8
 Release day 1 1 1
 Iteration 3 �± Question management 22 19 22
 Planning day 5 4 2
 Working day 15 13 17
 Release day 2 2 3
 Iteration 4 �± News feed 22 12 11
 Planning day 5 3 2
 Working day 15 8 8
 Release day 2 1 1
 Iteration 5 �± Settings and help 13 20 10
 Planning day 2 3 1
 Working day 10 16 8
 Release day 1 1 1
Stabilize 12 4 2
 Planning day 1 0 0
 Working day 5 0 0
 Documentation wrap-up 5 4 2
 Release day 1 0 0
System Test & Fix 2+ 1 1
 System test 2 1 1

The duration of the development process in WP case is shorter for 30 working days if

compared to the planned duration and is shorter for 16 working days (18.4%) if compared to

131

the Android development case. Such improvements in performance could be the result of the

fact that we had already been familiar with the system requirements, that the backend system

had already been developed and that different artifacts were partially or fully reused. On the

other hand, we stated that the development time was not significantly reduced as we

experienced many development issues and that the improvements could be result of our

approach. As this is not important for the rest of the research we did not performed detailed

analysis.

As serious testing had been done through all the iterations, the final tests were successfully

executed in both development cases and there was no need for any changes in the system

during the System Test and Fix phase. In any case, the overall development process was

conducted in such manner that all activities and artifacts defined by Mobile-D methodology

were performed and created.

Mobile application KnowLedge was designed to, by its purpose, cover the main and most

common functional development requirements, and as such, it is a representative of the vast

majority of mobile applications. Such requirements in general cover distinct development

concerns, including UI features, local database, device API-s, connection to web services and

3rd party features.

As Mobile-D methodology is well defined, it was not hard to follow the development process

through all Mobile-D phases. Still, as the developed project was rather small and developed

solely by the researcher with some minor help from his supervisors, small and acceptable

divergence and misalignment with the Mobile-D was necessary. Still, we think that the

performed process faithfully demonstrates the development process that would be performed

by any small company developing a mobile application.

While developing Windows Phone application, the whole process was performed again. As

the structure of the created artifacts along with the development process was the same as the

one presented for the Android case, we found no reasons to report it again in detail. Thus, we

reported the development process from the point of view in which we discussed the

possibilities of reusing the existing artifacts. We found that many artifacts concerning the

planning activities were reusable. Some of them concerning the product backlog, source code,

resources and inner application logic were partially reusable, and of course, some had to be

created from scratch. We also found that the backend part of our system requested no changes

and although this lowered the overall workload the total development time was not shortened

as we experienced some WP platform specific issues and some testing issues.

All empirical evidence created during the implementation was used in the next phases of this

research process in order to identify their semantics, relationships and similarity between the

two target platforms.

132

3.9. Relevance of the chapter

This section reported the development of mobile application KnowLedge by implementing

Mobile-D methodology and Test Driven Development. First we gave a short overview of the

methodology and approach and we defined the point of view in which the created artifacts

took the most important role. Then, in the Android case, the performed phases were reported

in detail along with the created outputs and their connections. The Mobile-D process with its

clear technical specification was well documented and easy to follow and the overall

development process took less time than initially planned.

In the case of Windows Phone application development, the whole process was performed

again, but as the structure of the created artifacts was the same as the one presented in the

Android case, we found no reason to report it again in detail. Thus, we reported the

development process from the point of view in which we discussed the possibilities of reusing

the existing artifacts. We found that many of the artifacts were completely or partially

reusable.

We think that the performed process faithfully demonstrates the development process that

would be performed by any small company developing mobile applications. The empirical

evidence collected during this development was used in the subsequent research process of

identifying the methodological interoperability and semantically similar artifacts.

133

4. IDENTIFI CATION OF THE ARTIFACTS

In this chapter we will look back on the implementation results but from the artifact

identification point of view. All artifacts that arose in the development sub-processes are

enumerated and systematized in order to prepare the inputs for the next phase of the semantic

description.

In order to perform a straightforward and unbiased analysis, first we defined the setting which

includes the definition of artifacts, the relations with other methodological concepts that will

be observed and the template that is to be used for the artifact description. As the artifacts

�Z�H�U�H�� �R�E�V�H�U�Y�H�G�� �D�V�� �³any piece of software developed and used during software development

and maintenance� ́we found the list of Mobile-D artifacts related to the process tasks not

sufficient and thus we performed our own analysis.

Thus, we observed the development process for each target platform separately and identified

more than 70 artifacts that we initially grouped in 12 categories. After performing the cross-

platform analysis we found that more than 70% of all identified artifacts were in common to

both platforms and 66% percent of them are partially or completely reusable.

4.1. Analysis setting

In Chapter 3.1.3 we defined the conceptual model and gave a definition of artifacts that arise

in the development process which utilizes some development methodology. In our case,

Mobile-�'�� �P�H�W�K�R�G�R�O�R�J�\�� �Z�D�V�� �F�K�R�V�H�Q���� �)�R�U�� �W�K�L�V�� �U�H�V�H�D�U�F�K�� �Z�H�� �D�G�R�S�W�H�G�� �W�K�H�� �&�R�Q�U�D�G�L�¶�V��(2004)

�G�H�I�L�Q�L�W�L�R�Q�� �R�I�� �W�K�H�� �D�U�W�L�I�D�F�W�V�� �D�V�� �³any piece of software (i.e. models/descriptions) developed and

used during software development and maintenance. Examples are requirements

specifications, architecture and design models, source and executable code (programs),

configuration directives, test data, test scripts, process models, project plans, documentation

etc.� ́

The conceptual model given in the mentioned chapter introduces the position of the artifacts

in the overall development process. As the goal of this research was to analyze only the

structural and semantic aspects of these sets of artifacts, we performed an analysis only from

the semantic concept view, while other possible views, such as procedural concept view or

134

pragmatic concept view are not covered by it. Thus, we only observed the artifacts and their

connection to the activities and tasks. The semantic of this connection was reduced to the

concept of affiliation (e.g. which artifact is produced and used in which activity or task).

Figure 36 - Focusing semantic of artifacts and their origin

In this setting, the semantic concept view which describes the facts and the knowledge about

the observed world was used. Additionally, by applying a procedural concept view, the

analysis could be enhanced with procedural knowledge such as states, intentions, plans and

rules and by applying a pragmatic concept view it could be additionally described by

intentions, obligations or pragmatics of action. As we aimed to describe the concepts on

artifacts in order to enhance the reusability while developing for second and other target

platforms, the last two concept views are out of the scope of this research.

Mobile-D methodology, as described in chapter 3.1, comprises development process of five

phases which are executed in combined sequential and incremental manner. Table 23 given in

Chapter 3.1.3 presents inputs and outputs that were used in these phases. The list was created

according to the Mobile-D process library and it includes documents and other deliverables,

but also presents them at a very high level of abstraction and as completely platform-

independent. After summarizing the information given in the Mobile-D process library

(Abrahamsson et al., 2005a) and after correcting logical errors found in the existing overview,

the mentioned artifacts were read (R), updated (U) or created (C) in tasks as presented in

Table 38.

On the other hand, our analysis included only those documents that were used in the

development of our prototype projects and introduced specific platform dependent

deliverables. In this sense, our analysis, for example, provides a more specific description

�W�K�D�Q���W�K�H���R�X�W�S�X�W���³�L�P�S�O�H�P�H�Q�W�H�G���I�X�Q�F�W�L�R�Q�D�O�L�W�\�´���V�W�D�W�H�V���R�U���V�S�H�F�L�I�L�H�V���H�[�D�F�W���V�W�D�Q�G�D�U�G�V���W�K�D�W���Z�H�U�H���X�V�H�G��

�U�D�W�K�H�U���W�K�D�Q���M�X�V�W���V�S�H�F�L�I�\�L�Q�J���³�U�H�O�H�Y�D�Q�W���V�W�D�Q�G�D�U�G�V�´���D�V���D�U�W�L�I�D�F�W�V��

Producing Using some

Performed by
utilizing

Consists of Mobile-D
Process

Methods and
Practices

Tools

Inputs

Outputs Activities
and Tasks

Artifacts

135

Table 38 - Mobile-D artifacts by tasks

136

(Table 38 continued)

Source: Based on information from (Abrahamsson et al., 2005a)

137

Additionally, this agile methodology uses main concepts of planning, working and release day

through several phases. The activities and tasks, and thus the artifacts as well, are very similar

regardless of the phase they are created or used in. This means that the approach of

identifying and grouping the artifacts only according to the phases of the origin would not be

a good way. Thus, while identifying the artifacts, we initially collected the data that included

name, type/category, description and usage of the artifacts as presented in the following

template (Table 39).

Table 39 - Template for describing the identified artifacts

Artifact name Type Description I II III IV V

In
pu

t
O

ut
pu

t
In

pu
t

O
ut

pu
t

In
pu

t
O

ut
pu

t
In

pu
t

O
ut

pu
t

In
pu

t
O

ut
pu

t

4.2. Artifacts targeting Android platform

After establishing the point of view we had decided to take in this research phase, we will

move forward to identify and summarize the artifacts that emerged in the Android

development process of our prototype mobile application. Although this has already been

stated, it should be highlighted again that the development process itself was pretty much

straightforward in following the Mobile-D methodology (see chapter 3.8) with only a slight

misalignment in the organizational point of view �± the project was not developed in an

organization but by the researcher himself. Although this might have some negative and

arguable influences, we assumed that the possibility of taking notes and observing the

�G�H�Y�H�O�R�S�P�H�Q�W�� �S�U�R�F�H�V�V�� �I�U�R�P�� �W�K�H�� �³�L�Q�V�L�G�H�´�� �R�I�I�H�U�V�� �P�R�U�H�� �D�G�Y�D�Q�W�D�J�H�V���� �:�H�� �V�W�U�L�Y�H�G�� �W�R�� �I�R�O�O�R�Z�� �D�O�O��

practices as they have been defined by the professional community and/or Mobile-D

methodology, and we also developed a final and publishable product �± the same as a company

would do.

Thus, from the conceptual point of view, we created a solid basis for identifying not only the

documents that had been created, but also other artifacts that might be hard to identify if the

project was performed outside the laboratory.

The table presented below shows the list of identified artifacts, along with their initial

classification, description and connection with the Mobile-D phases. We used standard CRU

notation for denoting the artifacts that were created (C), used/read (R) and updated (U).

138

Table 40 - Identified artifacts in development process for Android

Artifact name Type Description

Phases inputs and outputs
I II III IV V

In
pu

t

O
ut

pu
t

In
pu

t

O
ut

pu
t

In
pu

t

O
ut

pu
t

In
pu

t

O
ut

pu
t

In
pu

t

O
ut

pu
t

Mobile-D process
library

Document

Process library describing the Mobile-D
methodology in detail. Used as
methodology guidelines in every phase.
(Abrahamsson et al., 2005a)

R R R R R

Product proposal Document
Generated before the development process.
Describes the initial and general idea on
the product.

R

Initial requirements
document Document

Created according to product proposal, but
later updated with information on
stakeholders and functional system
requirements. It is also updated during the
planning phase in 0-iteration and
subsequent iterations.

 C R U R U R R

Project plan Document

Contains all information on project
including definition of customer group,
scope, planned activities and their duration,
plans on documentation etc. Aligned with
agile practices, this document is also
updated during the iterations.

 C R U R U

Project plan
checklist

Document
artifact

Mobile-D project plan checklist. This
document is part of project plan.

 C U U U U

Project plan
checklist template

Template Mobile-D project plan checklist
(Abrahamsson et al., 2005a)

R

Project plan Gantt
chart

Model

Model containing the graphical
information on project plan iterations,
activities and their duration. It is used in
Project plan document.

 C U U

Measurement plan
Document
artifact

Includes the metrics and plan for
monitoring of the project. In our case we
recorded only the duration of activities and
compared them with plan. This document
is part of project plan.

 C R U R U R U R U

Architecture line
description

Document
artifact

Created during the architecture line
definition task and updated in architecture
line planning activity. Contains the
information on system context,
technological scope, architectural risks etc.
This document is part of project plan.

 C R U R

Software
architecture and
design description
document (SADD)

Document
Contains the technical documentation on
the developed product.

 C R U R U

Architecture line
plan

Document
artifact

Contains the information on planned
system architecture. Created after the
prototyping is finished. This document is
part of SADD document.

 C

UI-illustrations
Document
artifact

Describes the illustrations of mobile
application user interface. It is part of
SADD document.

 C R U R R

139

Artifact name Type Description

Phases inputs and outputs
I II III IV V

In
pu

t

O
ut

pu
t

In
pu

t

O
ut

pu
t

In
pu

t

O
ut

pu
t

In
pu

t

O
ut

pu
t

In
pu

t

O
ut

pu
t

Data model (mobile) Model
Entity-Relationship-Attribute model of the
mobile database. It is presented in SADD
document.

 C R

Data model (web) Model
Entity-Relationship-Attribute model of the
web application. It is presented in SADD
document.

 C R U R

Web service
specification

Document
artifact

Contains information on exposed web
services along with available methods,
their parameters and other communication
elements. Part of SADD document.

 C R U R

Class model
(mobile)

Model

UML class diagram describing the mobile
application internal structure and created
classes. This model is used in SADD
document.

 C R U R

Class model (web) Model

UML class diagram describing the web
application internal structure and created
classes. This model is used in SADD
document.

 C R U R

Class
Model
element

UML model element used to describe a
new class that is to be implemented.

 C R U R

Android class
Model
element

UML model element used to describe an
existing Android class that is to be used.

 R R R

System Test plan Document
Contains the information on purpose, plan
and definitions of system test.

 C R U R U R R

Acceptance test
Document
artifact

Created during initial requirements
analysis. Contains the information on
acceptance test of one product feature. Can
include different contexts, and test
scenarios with sample data. The document
is part of System Test Plan document.

 C R U R R U

Acceptance test
template sheet

Template
Mobile-D acceptance test template sheet
(Abrahamsson et al., 2005a)

 R

Prototype
functionality

Code

Developed functionality during the trial
day. It prototypes some of the main
application functionalities and is used to
define the basic approach for implementing
the similar functionalities in other
iterations.

 C R

Product backlog Document

Contains the information on features that
are (to be) implemented in the
development process, through several
iterations. Users can contribute in defining
the features/stories.

 C R U R U

Story card
Document
artifact

Basic documentation card containing
information on one feature that is
implemented. It is defined during the
planning day but is refined during the
implementation and wrap-up. It is part of
the Product backlog document.

 C R U R U

Story card template Template
Mobile-D story card template
(Abrahamsson et al., 2005a)

 R

140

Artifact name Type Description

Phases inputs and outputs
I II III IV V

In
pu

t

O
ut

pu
t

In
pu

t

O
ut

pu
t

In
pu

t

O
ut

pu
t

In
pu

t

O
ut

pu
t

In
pu

t

O
ut

pu
t

Task card
Document
artifact

Basic documentation card containing the
information on one task that is to be
performed during the iteration. it is defined
during the planning day and refined during
implementation and wrap-up. It is part of
the Product backlog document.

 C R U R U

Task card template Template
Mobile-D task card template
(Abrahamsson et al., 2005a) R

Iterations plan
Document
artifact

Contains the information about planned
iterations along with selected features for
specific iteration. This document is part of
Product backlog document.

 R C R

Iteration backlog
Document
artifact

Contains the information on specific
iteration including story and task cards.
Each iteration document is created from
scratch. It is part of Product backlog
document.

 C C U

System test report Document
Final document on testing. Contains
information on performed tests and issues
detected.

 C

Test results
Document
artifact

Results are obtained during the whole
development process testing tasks. At the
end this document becomes part of System
test report.

 C R U R U R U

Defect list
Document
artifact

Document created after testing is
performed. It contains found issues and
planned activities. At the end this
document becomes part of System test
report document.

 C R U R U

Unit test Code

Unit test tests a single unit of code. It is
created in separate project and references
main project while performing different
assertions.

 C R U R R

Integration test Code
Robotized test which tests application
integrated functionality.

 C R U R R

API documentation Example
Android API documentation from
developers.android.com

 R R R

Example code Example
Android example code on different topics
found on the internet from various sources.

 R R R

Development
unrelated software
tools

Software

These software tools support the main
operations performed by project team. For
example these include office suit, PDF
reader, image editor etc.

 C

Project management
software tool

Software The tool used for project management. C

Drivers Software
Set of drivers used to install the device
connectivity for testing purposes.

 C

Development
environment

Software
Set of applications used for Android
development. We used Eclipse base SDK.

 C

Throw-away
prototype

Code
Project created to test development
environment and connected devices. This
project is discarded.

 C

141

Artifact name Type Description

Phases inputs and outputs
I II III IV V

In
pu

t

O
ut

pu
t

In
pu

t

O
ut

pu
t

In
pu

t

O
ut

pu
t

In
pu

t

O
ut

pu
t

In
pu

t

O
ut

pu
t

Web application
development
environment

Software
The web application development and
hosting environment had to be set up.

 C

Mobile application Product
The mobile application created in the
development process.

 C U U

Web service Product
The web part of the system created in the
development process.

 C U

Java code Code
Java code developed during the
implementation activities.

 C R U R R

PHP code Code
PHP code developed during the
implementation activities.

 C R U

XML resource Code
XML code describing application layout,
menus, localized strings etc.

 C R U

Application
manifest

Code
XML document containing the information
on application. This document is most
important code artifact.

 C U R

Google Play
Services

Code
Google library containing the classes
necessary if using Google Maps.

 R

Activity Code
Represents java class that inherits Android
Activity class with the purpose of
controlling the application view.

 C R U R

Layout Code
Represents XML code that is used to
describe user interface form or screen. C R U

Layout element Code
Represents XML code that is used to
describe any user interface element such as
text box, list box, button etc.

 C R U

Localization strings Code
Represent XML code that is used to
provide localized translation of values
according to value unique key.

 C R U R

Google API Key License

Google license identifying the developer as
unique person. This key is application
specific and is used when using Google
Maps API.

 R C

IEEE Standard No.
RFC4627 (JSON)

Standard
Standard defining the JSON format.
(Crockford, 2006)

 R R

Application
screenshot

Resource
Application screenshots are created as
needed for publishing process.

 C U U

Application icon Resource
Application icon is designed as needed for
publishing process.

 C

Application
description

Resource

Short but important description used for
publishing process. It includes the
information on application, category,
authors etc.

 C

Deployment
package

Resource APK file created for publishing purposes. C

C �± Created, R �± Read/used, U - Updated

142

The identification process resulted in total of 60 different artifacts that are grouped in 12

groups according to their type. From our point of view, which is based on conceptual analysis

of semantic interoperability among different target platforms, we identified the following

types related to Android development:

Table 41 - Types of artifacts related to Android development

Artifact type Description

Document
Represents used documents or created artifacts that are published as documents during
or at the end of development process.

Document artifact
Represents document that could be observed as stand-alone artifact, but is usually
included in some other document.

Template Represents templates that are used to create some artifacts.

Model
Represents models that are created during the development process. Models could be
observed as stand-alone artifacts, but are usually presented as a part of some document.

Model element Represents the atomic level (i.e. integral) artifact that could be observed as stand-alone
and is used to create models.

Code
Represents any artifact created during the implementation and is written in any
programming or description language.

Example
Represents code artifacts created by third party and used as examples of implemented
functionality or to solve some programming issue.

Software Represents software tools used during the entire project.

License
Represents individual-specific unique key that is obtained or used during the
development process.

Standard
Represents document containing formal and internationally recognized description of
some concept or element.

Publishing resource
Represents resources that are created during the development process and are used in
publishing purposes.

Product Represents final product as most important project deliverable.

Although some semantic links between the identified artifact types are obvious, the detailed

semantic analysis, the definition of the relationships and the hierarchy among the artifacts and

the identified types was performed in the next research phase and hence they were not focused

on in this phase. In order to facilitate understanding, at this point it should be pointed out that

some documents contain parts (document artifact) that should be observed separately which is

why we identified them as a specific (new) type. Similarly, the model element could be

observed as a stand-alone artifact used to build more complex models.

4.3. Artifacts targeting Windows Phone platform

As has been reported in Chapter 3.7, the development of mobile application targeting

Windows Phone (WP) platform aimed to analyze if the existing artifacts from the Android

case can be reused. This resulted in the fact that several activities in the Explore phase were

completely omitted and some other activities were simplified due to the artifacts partial reuse.

But, although all used artifacts were not created in the windows phone development process,

143

we nevertheless consider them as artifacts that belong to this process and subsequently they

were included in the following table.

The cross-platform comparison and analysis of the artifacts similarity was performed later and

is not in focus of this chapter. We bring here the list of the identified artifacts that were used

in the Windows Phone development case. Again, we used the standard CRU notation for

denoting the artifacts that were created (C), used/read (R) and updated (U).

Table 42 - Identified artifacts in Windows Phone case

Artifact name Type Description

Phases inputs and outputs
I II III IV V

In
pu

t

O
ut

pu
t

In
pu

t

O
ut

pu
t

In
pu

t

O
ut

pu
t

In
pu

t

O
ut

pu
t

In
pu

t

O
ut

pu
t

Mobile-D process
library

Document

Process library describing the Mobile-D
methodology in detail. Used as
methodology guidelines in every phase.
(Abrahamsson et al., 2005a)

R R R R R

Product proposal Document
Generated before the development process.
Describes the initial and general idea on
the product.

R

Initial requirements
document

Document

Created according to product proposal, but
later updated with information on
stakeholders and functional system
requirements. It is also updated during the
planning phase in 0-iteration and
subsequent iterations.

 C R U R U R R

Project plan Document

Contains all information on project
including definition of customer group,
scope, planned activities and their duration,
plans on documentation etc. Aligned with
agile practices, this document is also
updated during the iterations.

 C R U R U

Project plan
checklist

Document
artifact

Mobile-D project plan checklist. This
document is part of project plan.

 C U U U U

Project plan
checklist template

Template
Mobile-D project plan checklist
(Abrahamsson et al., 2005a)

R

Project plan Gantt
chart

Model

Model containing the graphical
information on project plan iterations,
activities and their duration. It is used in
Project plan document.

 C U U

Measurement plan
Document
artifact

Includes the metrics and plan for
monitoring of the project. In our case we
recorded only the duration of activities and
compared them with plan. This document
is part of project plan.

 C R U R U R U R U

Architecture line
description

Document
artifact

Created during the architecture line
definition task and updated in architecture
line planning activity. Contains the
information on system context,
technological scope, architectural risks etc.
This document is part of project plan.

 C R U R

144

Artifact name Type Description

Phases inputs and outputs
I II III IV V

In
pu

t

O
ut

pu
t

In
pu

t

O
ut

pu
t

In
pu

t

O
ut

pu
t

In
pu

t

O
ut

pu
t

In
pu

t

O
ut

pu
t

Software
architecture and
design description
document (SADD)

Document
Contains the technical documentation on
the developed product.

 C R U R U

Architecture line
plan

Document
artifact

Contains the information on planned
system architecture. Created after the
prototyping is finished. This document is
part of SADD document.

 C

UI-illustrations Document
artifact

Describes the illustrations of mobile
application user interface. It is part of
SADD document.

 C R U R R

Data model (mobile) Model
Entity-Relationship-Attribute model of the
mobile database. It is presented in SADD
document.

 C R

Data model (web) Model
Entity-Relationship-Attribute model of the
web application. It is presented in SADD
document.

 C R U R

Web service
specification

Document
artifact

Contains information on exposed web
services along with available methods,
their parameters and other communication
elements. Part of SADD document.

 C R U R

Class model
(mobile)

Model

UML class diagram describing the mobile
application internal structure and created
classes. This model is used in SADD
document.

 C R U R

Class model (web) Model

UML class diagram describing the web
application internal structure and created
classes. This model is used in SADD
document.

 C R U R

Class
Model
element

UML model element used to describe a
new class that is to be implemented.

 C R U R

.Net class
Model
element

UML model element used to describe an
existing .Net class that is to be used.

 R R R

System test plan Document
Contains the information on purpose, plan
and definitions of tests.

 C R U R U R R

Acceptance test Document
artifact

Created during initial requirements
analysis. Contains the information on
acceptance test of one product feature. Can
include different contexts, and test
scenarios with sample data. The document
is part of System Test Plan document.

 C R U R R U

Acceptance test
template sheet

Template
Mobile-D acceptance test template sheet
(Abrahamsson et al., 2005a)

 R

Prototype
functionality

Code

Developed functionality during the trial
day. It prototypes some of the main
application functionalities and is used to
define the basic approach for implementing
the similar functionalities in other
iterations.

 C R

145

Artifact name Type Description

Phases inputs and outputs
I II III IV V

In
pu

t

O
ut

pu
t

In
pu

t

O
ut

pu
t

In
pu

t

O
ut

pu
t

In
pu

t

O
ut

pu
t

In
pu

t

O
ut

pu
t

Product backlog Document

Contains the information on features that
are (to be) implemented in the
development process, through several
iterations. Users can contribute in defining
the features/stories.

 C R U R U

Story card
Document
artifact

Basic documentation card containing
information on one feature that is
implemented. It is defined during the
planning day but is refined during the
implementation and wrap-up. It is part of
the Product backlog document.

 C R U R U

Story card template Template
Mobile-D story card template
(Abrahamsson et al., 2005a)

 R

Task card
Document
artifact

Basic documentation card containing the
information on one task that is to be
performed during the iteration. it is defined
during the planning day and refined during
implementation and wrap-up. It is part of
the Product backlog document.

 C R U R U

Task card template Template
Mobile-D task card template
(Abrahamsson et al., 2005a)

 R

Iterations plan
Document
artifact

Contains the information about planned
iterations along with selected features for
specific iteration. This document is part of
Product backlog document.

 R C R

Iteration backlog
Document
artifact

Contains the information on specific
iteration including story and task cards.
Each iteration document is created from
scratch. It is part of Product backlog
document.

 C C U

System test report Document
Final document on testing. Contains
information on performed tests and issues
detected.

 C

Test results
Document
artifact

Results are obtained during the whole
development process testing tasks. At the
end this document becomes part of System
test report.

 C R U R U R U

Defect list
Document
artifact

Document created after testing is
performed. It contains found issues and
planned activities. At the end this
document becomes part of System test
report document.

 C R U R U

Unit test Code

Unit test tests a single unit of code. It is
created in separate project and references
main project while performing different
assertions.

 C R U R R

Integration test
Document
artifact

Represents the description and results of
integration test that is performed manually.
This document is part of System Test Plan
document.

 C R U R R

API documentation Example
WP API documentation from
http://msdn.microsoft.com R R R

146

Artifact name Type Description

Phases inputs and outputs
I II III IV V

In
pu

t

O
ut

pu
t

In
pu

t

O
ut

pu
t

In
pu

t

O
ut

pu
t

In
pu

t

O
ut

pu
t

In
pu

t

O
ut

pu
t

Example code Example
WP example code on different topics
found on the internet from various sources.

 R R R

Development
unrelated software
tools

Software

These software tools support the main
operations performed by project team. For
example these include office suit, PDF
reader, image editor etc.

 C

Project management
software tool

Software The tool used for project management. C

Drivers Software
Set of drivers used to install the device
connectivity for testing purposes.

 C

Development
environment

Software
Set of applications used for Windows
Phone development and integrated in
Visual Studio.

 C

Throw-away
prototype Code

Project created to test development
environment and connected devices. This
project is discarded.

 C

Web application
development
environment

Software
The web application development and
hosting environment had to be set up.

 C

Mobile application Product
The mobile application created in the
development process.

 C U U

Web service Product
The web part of the system created in the
development process.

 C U

C# code Code
C# code developed during the
implementation activities.

 C R U R R

PHP code Code
PHP code developed during the
implementation activities.

 C R U

XAML description Code
XML based XAML code describing
application layout and layout elements.

 C R U

WMAppManifest Code

XML document containing the information
on application. It includes the information
on some application resources. It is created
automatically.

 C R

Microsoft Phone
Controls Toolkit

Code
Library containing the classes necessary
for adding some basic and advanced
controls.

 R R

Silverlight Map
Control

Code
Library containing the classes necessary
for using Bing maps in WP application.

 R

Page (C#) Code
Represents C# class that has the purpose of
controlling the application view.

 C R U R

Page (XAML) Code
Represents XAML code that is used to
describe user interface form or screen.

 C R U

Page element Code
Represents XAML code that is used to
describe any user interface element such as
text box, list box, button etc.

 C R U

Resource file Code

Represents code that is used to provide the
application with resources (strings, images,
icons, audio, files and other). We used it to
provide the application with localized
translation for two languages.

 C R U R

147

Artifact name Type Description

Phases inputs and outputs
I II III IV V

In
pu

t

O
ut

pu
t

In
pu

t

O
ut

pu
t

In
pu

t

O
ut

pu
t

In
pu

t

O
ut

pu
t

In
pu

t

O
ut

pu
t

Bing maps key License

Microsoft license identifying the developer
as unique person. This key is application
specific and is used when using Silverlight
Map Control.

 R C

IEEE Standard No.
RFC4627 (JSON)

Standard
Standard defining the JSON format.
(Crockford, 2006)

 R R

Application
screenshot

Resource
Application screenshots are created as
needed for publishing process.

 C U U

Application icons Resource
Application icons are designed as needed
for publishing process.

 C

Application
description

Resource

Short but important description used for
publishing process. It includes the
information on application, category,
authors etc.

 C

Deployment
package

Resource XAP file created for publishing purposes. C

C �± Created, R �± Read/used, U - Updated

The total of 61 artifacts were identified and described. All artifacts are classified according to

the same classification of 12 different artifact types recognized in the first development case.

In the following chapter, a cross-platform analysis will be performed in order to identify

common, specific, and partially reusable artifacts in both development processes.

4.4. Cross-platform artifacts comparison

The undertaken activities of identifying and describing the artifacts that were used in the two

development cases resulted in a list of 60 artifacts in the Android case and 61 artifacts in the

Windows Phone case. The initial classification of these artifacts resulted in 12 different types.

The purpose of this chapter is not to perform a detailed semantic analysis of the artifacts

relations, but rather to do a cross-platform comparison in order to separate those that are

common to both platforms from those that are specific to one or the other and those that are

partially reusable.

We strongly believe that the order of execution of the development cases did not have any

influence on the identified set of artifacts. We also believe that the artifacts that were reusable

in our presented scenario would also be reusable if we developed for Windows Phone first.

However, having only this development case, we cannot make strong conclusions, but the

evidence collected in this scenario indicates on this characteristic. This could be another

positive aspect of the approach taken in this dissertation.

148

4.4.1. Common artifacts

In the cross-platform analysis we found that 50 artifacts (70.42% of all identified artifacts) are

common to both development cases. Thus, we named them common artifacts. These artifacts

are enumerated in Table 43.

Table 43 - Common artifacts in Android in WP case

Artifact name Identical Partiall y
reused

Different

Mobile-D process library X
Product proposal X
Initial requirements document X
Project plan X
Project plan checklist X
Project plan checklist template X
Project plan Gantt chart X
Measurement plan X
Architecture line description X
Software architecture and design description document X
Architecture line plan X
UI illustrations X
Data model (mobile) X
Data model (web) X
Web service specification X
Class model (mobile) X
Class model (web) X
Class X
System test plan X
Acceptance tests X
Acceptance test template sheet X
Prototype functionality X
Product backlog X
Story card X
Story card template X
Task card X
Task card template X
Iterations plan X
Iterations backlog X
System test report X
Test results X
Defect list X
Unit test X
Integration test X
API documentation X
Example code X
Development unrelated software tools X
Project management software tool X
Drivers X
Development environment X
Throw-away prototype X
Web application development environment X
Mobile application X
Web service X
PHP code X
IEEE standard No.RFC4627 (JSON) X
Application screenshot X

149

Application icon X
Application description X
Deployment package X
TOTAL (50) 20 13 17

Additionally, many of these common artifacts are platform independent as being products of

methodological approach. In total, 20 out of 50 identified artifacts (40.00%) have been

created or obtained only once, as these were identical in both development processes. In this

group, it is important to distinguish between those artifacts that were only used as inputs

while performing the methodology (like Mobile-D process library, various templates,

standards, tools) and those that had to be created by a development team, but only once (like

artifacts concerning some aspects of project planning activities, testing or backend system

development activities). A proper reuse of these artifacts will give the development team the

first fruits of taking the approach we are proposing in this dissertation.

On the other hand, there are 13 artifacts (26.00%) that could be partially reused while

performing the development process for the second or any other target platform. There are

various reuse levels that we recognized in this group (from reusing artifact creation approach,

reusing content inner logic, to reusing some parts of content itself). We believe that a different

additional analysis should be performed in this direction and that the results could give a more

specific knowledge on reusable artifact elements, which, in the end, could result in more

specific and easier to follow instructions and thus better results for development teams.

Finally, we recognized 17 artifacts (34.00% of all common artifacts) with a very low level of

possible reuse. They were classified as ones that should be developed from scratch for every

target platform.

The results presented in this chapter are very encouraging and we can conclude that they

create a strong basis and motivation for additional research and analyses. In this dissertation,

we have covered only one possible approach, but as has been stated before, other approaches

are also welcome.

4.4.2. Platform dependent artifacts

The artifacts that are characteristic for one target platform and are significantly different from

artifacts of other target platform are classified as platform dependent artifacts. As presented in

Table 44 there are 10 Android specific artifacts and 11 Windows phone specific artifacts that

were created in this particular development case.

150

Table 44 - Android and WP specific artifacts

Android specific artifacts
Android class
Java code
XML resource
Application manifest
Google Play Services
Activity
Layout
Layout element
Localization strings
Google API Key

TOTAL (10)
Windows Phone specific artifacts
.Net class
C# code
XAML description
WMAppManifest
Microsoft Pone Controls Toolkit
Silverlight Map Control
Page (C#)
Page (XAML)
Page element
Resource file
Bing maps key

TOTAL (1 1)

If we carefully observe and compare these platform specific artifacts, we can conclude that

even in this case there are some semantic similarities. For example, Java code and C# code

are separate artifacts but they might have reusable parts like sequencing, iterations, algorithms

etc. Thus we did not reject them as irrelevant for the rest of the research, and have used them

as well in the next phase of the semantic analysis.

4.5. Relevance of the chapter

To summarize, in this chapter we have identified all artifacts that arose in our development

process for two target platforms: Android and Windows Phone. The artifacts are observed as

�³any piece of software developed and used during softw�D�U�H�� �G�H�Y�H�O�R�S�P�H�Q�W�� �D�Q�G�� �P�D�L�Q�W�H�Q�D�Q�F�H�´��

(Conradi, 2004), and thus we first created a list of artifacts that were specific for Mobile-D

methodology and then enhanced it with the artifacts identified in our development cases. The

total of 71 artifacts were recognized and initially classified in 12 different categories.

Our cross-platform analysis showed that 50 artifacts (70.42%) are common to both

development cases. We found that 20 artifacts are exactly the same in both cases and another

13 artifacts are partially reusable. Thus, in total the 33 artifacts (66.00% of the common

151

artifacts) are completely or partially reusable. This brought us to the conclusion that these

results provide a solid basis and motivation for the semantic analysis that follows.

With the identification and cross-platform analysis of the artifacts we have concluded the

second phase of our research process. We now move to the third phase where we will

semantically and ontologically describe these artifacts.

153

5. THE ONTOLOGY FOR METH ODOLOGICAL

INTEROPERABILITY

The main goal of this research is to ontologically describe artifacts that arise in the

methodologically managed process of mobile application development targeting two or more

mobile platforms, and to create the basis for more efficient and interoperable process of multi-

platform mobile applications development.

In the previous chapters we analyzed the state of the art in the usage of methodologies for

mobile applications development, and also performed a development process for two different

target platforms by utilizing Mobile-D methodology, and based on the gathered empirical

evidence we identified more than 70 different artifacts that arose in these two development

cases.

In this chapter we will move on to our last research phase in order to semantically describe

the identified artifacts, their meaning and relations and finally to create a formal ontology

containing the knowledge on possibilities of artifacts reuse in multi-platform mobile

application development.

The chapter is organized in four parts. First, we will introduce and define the concept of

ontology, discuss possible usages, types, development methodologies and tools, in order to

determine the type of our ontology along with the environment that will be used to develop

and describe the ontology. Secondly, we will develop an ontology describing the development

for Android platform and in this part we will focus on ontology development by utilizing an

ontology development methodology. In the third part we will define the second ontology

describing the development for Windows Phone target platform and in this part we will put

focus on the concepts of ontology reuse and update.

Finally, in the fourth part we will present the development of the common ontological

description for both platforms, and in this chapter we will focus on the concepts of ontology

merging, extension, evaluation and testing.

154

5.1. Ontology

5.1.1. Definitions

The term ontology �L�V�� �D�� �S�K�L�O�R�V�R�S�K�L�F�D�O�� �W�H�U�P�� �W�K�D�W�� �K�D�V�� �L�W�V�� �U�R�R�W�V�� �L�Q�� �*�U�H�H�N�� �Z�R�U�G�V�� �³on�´�� ���J�H�Q�L�W�L�Y�H��

�³�R�Q�W�R�V�´����- �³being�´���� �D�Q�G�� �³logia�´��- �³writing about, study of�´���� �,�W�� �L�V�� �R�I�W�H�Q�� �V�W�D�W�H�G�� �W�K�D�W�� �*�U�H�H�N��

philosophers Parmenides, who argued about nothingness, and Aristotle, who argued about

theory of being in his work Metaphysics, begot the concept of ontology in the 4th century BC.

Since then, many other philosophers have used the concept and the term. In philosophy

�R�Q�W�R�O�R�J�\�� �L�V�� �G�H�I�L�Q�H�G�� �D�V�� �³a branch of metaphysics concerned with identifying, in the most

general terms, the kinds of things that actually exist. Thus, the ontological commitments of a

philosophical position include both its explicit assertions and its implicit presuppositions

about the existence of entities, substances or beings of particular kinds�´��(Kabilan, 2007). In

other words, ontology is the theory of existence.

From our perspective, we are more interested in the concept of ontology that is currently used

in some other disciplines including Artificial Intelligence, Knowledge Management,

Information Systems and Software Engineering. Gruber (1993a) defined ontology as �³an

explicit specification of conceptualization� .́ To put it another way and according to Gruber,

ontology is a specification of a representational vocabulary for a shared domain of discourse

and it includes definitions of classes, relations, functions and other objects. According to

Gong et al. (2006), ontology is a general conceptualization of a specific domain in a format

readable to humans and to machines. Same authors define Process Description Ontology as a

formal semantics to traditional process modeling elements, such as entities, objects and

activities, their relationships et cetera.

�)�R�O�O�R�Z�L�Q�J�� �*�U�X�E�H�U�¶�V�� �G�H�I�L�Q�L�W�L�R�Q����Studer et al. (1998) �G�H�I�L�Q�H�G�� �R�Q�W�R�O�R�J�\�� �D�V�� �³a formal, explicit

specification of a shared conceptualization.�´�� �7�K�L�V�� �G�H�I�L�Q�L�W�L�R�Q�� �L�Q�F�O�X�G�H�V���� �W�K�H�� �W�H�U�P��

conceptualization as an abstract modeling of some phenomenon and identification of its

relevant concepts; the term shared representing that the knowledge included in the ontology

should be consensual and shared; the term formal to exclude the use of natural languages and

to make the ontology machine readable: and the term explicit denoting that the concepts and

the constraints on their use should be explicitly defined.

On the other hand, based on their experience Noy and McGuinness (2001) took the pragmatic

�D�S�S�U�R�D�F�K���D�Q�G���G�H�I�L�Q�H�G���W�K�H���R�Q�W�R�O�R�J�\�� �D�V���³�D���I�R�U�P�D�O���H�[�S�O�L�F�L�W���G�H�V�F�U�L�S�W�L�R�Q���R�I���F�R�Q�F�H�S�W�V���L�Q���D���G�R�P�D�L�Q��

of discourse (classes (sometimes called concepts)), properties of each concept describing

various features and attributes of the concept (slots (sometimes called roles or properties)),

�D�Q�G���U�H�V�W�U�L�F�W�L�R�Q�V���R�Q���V�O�R�W�V�����I�D�F�H�W�V�����V�R�P�H�W�L�P�H�V���F�D�O�O�H�G���U�R�O�H���U�H�V�W�U�L�F�W�L�R�Q�V�����´��

155

According to Hilera et al. (2010) ontology is a knowledge representation tool, and the

knowledge representation tools can be classified at four different levels. Dictionaries,

taxonomies, thesauri and ontologies are respective representatives of these levels. The last

one, the ontology level, includes definitions of concepts (dictionaries), implicit or explicit

vocabulary, as well as descriptions of specialized relationships between concepts

(taxonomies), lexical and equivalence relationships (thesaurus), and combination of

relationships with other more complex relationships between concepts to completely represent

a certain knowledge domain.

�$�V�� �Z�H�� �F�D�Q�� �V�H�H���� �W�K�H�� �W�H�U�P�� �³�R�Q�W�R�O�R�J�\�´�� �Z�D�V�� �W�D�N�H�Q�� �I�U�R�P philosophy, but its use and meaning in

Computer Science got a new and adapted perspective. As there is no consensus on the

definition of ontology, in the context of this research we consider ontology as an explicit

formal conceptualization of a shared understanding of the domain of interest which includes

vocabulary of terms for describing the domain elements, semantics in order to define the

relationships of the domain elements and pragmatics in order to define possible usages of

these elements.

5.1.2. Uses of ontologies

The use of ontologies in the domain of Computer Science grew rapidly in the last two

decades. Firstly, ontologies were used mainly as tools in the area of Artificial Intelligence, but

now, their usage become popular in many other fields as they provided the domain experts the

possibility of categorizing the domain knowledge.

Noy and McGuinness (2001) gave a comprehensive overview of possible reasons for the use

of ontologies. They found following reasons which are here shortly explained and

demonstrated on our example:

�x To share common understanding of the structure of information among people or

software agents. In our case, after having the ontology of artifacts that arose in the

development process defined, we created a basis for development of an automated

system or software agent that could provide teams with information on requested

queries or event in order to guide them in the development process.

�x To enable reuse of domain knowledge. This is one of the strongest reasons for

ontology usage. For example, if we need a detailed description of the Android

operating system in our ontology, we can simply reuse the existing ontology if one

exists. Additionally, we might consider using an existing general ontology and

extending it to the knowledge describing our domain.

�x To make domain assumptions explicit. Explicit assumptions bring several advantages

in terms of understanding, improving or correcting knowledge. Thus, the assumptions

156

created in our ontology of artifacts can be changed without the need to change the

system that uses them, and will still be readable to people without any knowledge

about the design of the system that is based on the ontology.

�x To separate domain knowledge from the operational knowledge. This is another

common use of ontologies. In our example, we could describe the artifacts and their

relationships separately from describing the operational knowledge on using those

artifacts. Thus, the system built on this operational knowledge could be easily fed with

some other ontology of artifacts without the need to be changed.

�x To analyze domain knowledge. The process of creating ontologies is possible only

when the domain terms are declaratively specified. The ontological description thus

enhances declarative description and makes the knowledge formal and reusable.

In the end, it is important to notice that ontology should not have a purpose in itself. The

ontologies should be built with an existing idea of their application. The desired application

always has an influence on the ontology structure and its final form. Thus, the ontological

description of artifacts that arise in the methodologically driven development process would

not be the same if we build it with the idea of using the application in teaching on

methodological process and if we build it with the idea of using the application to advise and

help on artifact reuse when developing for different platforms.

5.1.3. Ontologies and semantic interoperability

Interoperability is in nature multilateral and can be best understood as a shared value of the

community. According to European Interoperability Framework for European Public Services

(EIF) (European Commission, 2010) the interoperability within the context of European

Public Services delivery �F�D�Q���E�H���G�H�I�L�Q�H�G���D�V���³ability of disparate and diverse organizations to

interact towards mutually beneficial and agreed common goals, involving the sharing of

information and knowledge between the organizations, through the business processes they

support, by means of the exchange of data between their respective ICT systems.�´�� �$�O�V�R���� �W�K�H��

�(�,�)�� �G�H�I�L�Q�H�V�� �,�Q�W�H�U�R�S�H�U�D�E�L�O�L�W�\�� �I�U�D�P�H�Z�R�U�N�� �D�V�� �³an agreed approach to interoperability for

organizations that wish to work together towards the joint delivery of public services. Within

its scope of applicability, it specifies a set of common elements such as vocabulary, concepts,

principles, policies, guidelines, recommendations, standards, specifications and practices.� ́

In the context of this research, the IEEE definition of interoperability will be adopted and

extended. The original definition (IEEE Computer Society., 1990) says that interoperability is

�³�W�K�H�� �D�E�L�O�L�W�\�� �R�I�� �W�Z�R�� �R�U�� �P�R�U�H�� �V�\�V�W�H�P�V�� �R�U�� �F�R�P�S�R�Q�H�Q�W�V�� �W�R�� �X�V�H�� �W�K�H�� �L�Q�I�R�U�P�D�W�L�R�Q�� �W�K�D�W�� �K�D�V�� �E�H�H�Q��

�H�[�F�K�D�Q�J�H�G�´. The definition of interoperability will be extended with the methodological and

�V�R�F�L�D�O���F�R�P�S�R�Q�H�Q�W���W�R���³the ability of two or more systems, components, teams or team members

157

to use and exchange the information and methodological artifacts that have been created

during the mobile application development proc�H�V�V�´��

Observing from different points of view, we can talk about several types of interoperability.

The most suitable division for this research is the one that defines two types of

interoperability. Several authors are talking about semantic and syntactic interoperability

(Park and Ram, 2004). So, according to Park and Ram semantic interoperability is the

knowledge-level interoperability which provides the interoperable systems with a possibility

to bridge the semantic conflicts, and syntactic interoperability is the application-level

interoperability that allows interoperable systems to cooperate regardless of their

implementation techniques (Park and Ram, 2004). This thesis will deal only with semantic

interoperability.

Additionally, Park and Ram define three different areas of semantic interoperability.

Mapping-based approach creates mappings between semantically related information

sources, intermediary-based approach depends on the use of intermediary mechanisms to

achieve interoperability, and query-oriented approach is based on interoperable languages

(Park and Ram, 2004) (Gong et al., 2006). The mapping-based approach is not designed to be

independent of particular schemas and applications; the query-oriented approach requires the

users to understand all underlying local databases; so the most promising approach is the

intermediary-based approach as it uses intermediary mechanisms such as mediators or

ontologies, which may have domain-specific knowledge, mapping knowledge, or rules

specifically developed for coordinating various and autonomous information sources (Park

and Ram, 2004).

According to Paulheim and Probst (2010), interoperability can be performed on different

levels, and subsequently they define integration on data source level, integration on the

business logic level and integration on the user interface level.

Surprisingly, interoperability on the methodological level is rarely mentioned in literature.

Thus, the goal of this research is to create an ontological definition that can be used as a

knowledge source for information system guiding the development teams to increase the

methodological interoperability by reusing the artifacts that are created in the development

process of mobile application for the second and every other target platform.

5.1.4. Ontology types

There is no single point of view which could be taken when defining ontology types.

�$�F�F�R�U�G�L�Q�J���W�R���/�R�Y�U�H�Q�þ�L�ü��(2007) ontologies can be grouped in accordance with their forms, the

volume and the type of conceptualization structure, the conceptualization subject and the

richness of described content. The same author emphasizes that the most common

158

classification is according to the conceptualization subject. Upon adapting the classification

from ���*�y�P�H�]-�3�p�U�H�]���� ���������� she describes the following eight categories of ontology types

���/�R�Y�U�H�Q�þ�L�ü��������������:

�x Knowledge representation ontologies aim to represent the domain knowledge by

utilizing a knowledge representation paradigm. These ontologies are built from

common modeling artifacts �± classes, relationships and attributes. The most commonly

used knowledge representation paradigms are Frame Ontology, Resource Description

Framework (RDF), RDF Schema (RDFS), Ontology Interface Layer (OIL), DARPA

Agent Markup Language + OIL (DAML+OIL) and Web Ontology Language (OWL).

�x General/Common Ontologies describe the common knowledge that can be used in

different domains. These ontologies define different general concepts like time, space,

events and similar.

�x Top-level Ontologies describe abstract concepts which are related to the specific

concepts used in ontologies at lower abstraction level. These ontologies should be

universal and expressive. Some of well-known upper-level ontologies are Cyc (aims to

describe the whole human consensual knowledge) and SUMO (Suggested Upper

Merged Ontology supported by IEEE).

�x Domain Ontologies describe concepts belonging to one specific domain. The domain

should be described at the highest possible abstraction level so the ontology could be

reused while developing other ontologies in the same domain. Some of the domains

could be Education, Law, Knowledge Management, Medicine, Engineering et cetera.

As the number of domains grew, the need for structured ontology libraries resulted in

several well-�N�Q�R�Z�Q���O�L�E�U�D�U�L�H�V���O�L�N�H���3�U�R�W�p�J�p���2ntology Library, DAML Ontology Library

and others.

�x Task Ontologies describe the concepts that are related to a specific task or activity and

needed to solve the problems related to that task.

�x Domain Task Ontologies are similar to Task Ontologies, but are reusable in the same

domain. We consider these ontologies as more general.

�x Method Ontologies give the description of the concepts that are used in the

specification of the process of decision making in order to solve a task.

�x Application Ontologies define the concepts related to the knowledge in a specific

application. These ontologies are dependent on their appliance and usually extend

other domain and task ontologies related to the observed application.

As it can be seen from the listed ontology types, the main difference between the ontologies is

in the level of abstraction of the described concepts. They form a continuum that covers

concepts ranging from being very specific to being very general and abstract. The level of

abstraction is directly connected to the possibility of ontology reusability as general

	1. Introduction

