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Abstract

Disparity computation is a crucial step in the process of stereo 3D reconstruction, which has

been a heavily investigated topic and one of the important problems in the field of computer

vision. Many methods and approaches have been devised to provide a dense disparity map for

a stereo image pair, with approaches roughly divided into local methods, which determine the

correct disparity by choosing the value with an optimum matching cost in a local region, or

global methods, which attempt to optimize a global energy equation for the entire scene. The

global methods, while generally yielding better results, are more computationally intensive and

are generally not suitable for real-time or embedded applications. The aim of this research was

to propose new methods for disparity computation which would yield greater accuracy of the

computed disparity map and faster computation by combining existing stereo algorithms with

the three-dimensional recursive search algorithm (3DRS). The 3DRS algorithm was originally

devised for motion estimation, frame rate up-conversion and de-interlacing in high definition

televisions, and it can generate a coarse correspondence map (depending on the use, either

the optical flow or disparity map) within a very short amount of time. In this dissertation,

two methods based on the combination of the 3DRS algorithm with the local Winner-take-all

method or the global Dynamic Programming method are presented. The proposed methods

are evaluated using the Middlebury image set. It is shown that the proposed hybrid methods

significantly outperform the original methods in execution time while maintaining or improving

upon the accuracy of both methods. In addition, the hybrid methods are shown to exhibit greater

robustness by reducing the dependency on specific external parameters.

Keywords: Stereo matching, disparity, 3DRS, Hybrid method, Winner-take-all, Dynamic

programming



Prošireni sažetak

Izračun dispariteta u stereoslikama s pomoću trodimenzionalnoga rekurzivnoga
pretraživanja

Uvod

Računalni vid interdisciplinarno je područje znanosti sa ciljem da računalima omogući visoku

razinu razumijevanja okoline korištenjem digitalnih slika. Kao inženjerskoj disciplini, zadaća

mu je proizvesti autonomne sustave koji mogu izvršavati iste vrste zadataka za koje je sposoban

čovjekov sustav vida. Unutar računalnog vida, jedno od najistraživanijih je područje guste

trodimenzionalne stereo rekonstrukcije, cilj kojeg je izgraditi trodimenzionalni model scene na

osnovu jedne ili više slika. Metode se ugrubo mogu podijeliti na aktivne, koje koriste izvor

svjetla kako bi u scenu ubacile informaciju, i pasivne, koje grade informaciju o dubini tražeći

korespondencije izmed̄u dva ili više različitih pogleda na scenu, izravno oponašajući način na

koji čovjek percipira svoj okoliš binokularnim vidom.

Problem izračuna korespondentnih značajki u parovima slika je takod̄er predmet istraži-

vanja u području estimacije pokreta, gdje se mapa kretanja značajki izmed̄u slika (zvana još i

optički tok) računa za niz slika u vremenu. Ugrubo se metode za računanje optičkog toka mogu

podijeliti u metode minimizacije ostatka, korištene uglavnom u području kompresije video sig-

nala gdje su njihova svojstva korisna za minimizaciju rezidualnog signala dobivenog izračunom

razlike izmed̄u dvije susjedne slike u video signalu te metode procjene stvarnog pokreta svo-

jstvo kojih je visoka korelacija izmed̄u stvarne kretnje u sceni i vektora pokreta izračunatih u

optičkom toku, što je poželjno kod primjena za interpolaciju slika u digitalnom televizijskom

signalu.

Jedan od tržišno najuspješnijih algoritama za procjenu stvarnog pokreta jest algoritam trodi-

menzionalnoga rekurzivnoga pretraživanja (3DRS), koji je našao široku primjenu u digitalnim

televizijskim aparatima zahvaljujući svojoj jednostavnosti, niskoj cijeni ugradnje te mogućnos-

tima izračuna vrlo kvalitetnih procjena pokreta u sceni. Uspješno je upotrjebljen za obradu sig-

nala visoke razlučivosti u stvarnom vremenu, kao i za izračun grubih mapa dispariteta iz parova

slika. S obzirom na performanse algoritma, njegovu široku u potrebu i jednostavnost, za cilj je

ovog istraživanja odabrano ispitati može li se algoritam trodimenzionalnoga rekurzivnoga pre-

traživanja upotrijebiti za računanje guste mape dispariteta kombiniranjem sa postojećim meto-

dama za izračun guste mape dispariteta, te unaprijediti performanse rečenih metoda smanjenjem

njihove složenosti i poboljšanjem kvalitete njihovih rezultata.



Načela stereo rekonstrukcije

U poglavlju 2 opisana su osnovna načela stereo rekonstrukcije, počevši od definicije geometri-

jskih primitiva potrebnih za definiciju projektivne geometrije, te modela camere obscure

(eng.pinhole), kojim opisujemo projektivno preslikavanje iz trodimenzionalnog koordinatnog

sustava scene u dvodimenzionalni koordinatni sustav slike. Model kamere definiramo matricom

koju nazivamo intrinzična matrica kamere te definiramo ekstrinzične parametre kamere, kojim

definiramo odnos koordinatnog sustava kamere i vanjskog koordinatnog sustava scene, preko

trodimenzionalnog vektora translacije i matrice rotacije. Definiramo sustav stereo kamera po-

moću dva modela camere obscure izmed̄u kojih je uspostavljen prostorni odnos putem vektora

translacije i matrice rotacije. Razliku u koordinatama preslikanih objekata u dvije slike kamera

nazivamo disparitetom, koji je obrnuto proporcionalan udaljenosti objekata od kamere (dubini).

Geometriju preslikavanja objekata u sceni u koordinatni sustav kamera koja uspostavlja odnos

slika objekata u jednoj u odnosu na drugu kameru nazivamo epipolarnom geometrijom. Epipo-

larnom su geometrijom definirani pravci u ravninama slika (zvani epipolarnim pravcima) na ko-

jima se mogu nalaziti korespondentne točke izmed̄u dvije slike. Epipolarna geometrija opisana

je fundamentalnim i esencijalnim matricama stereo sustava. Naposljetku, definira se postupak

epipolarnog ispravljanja, kojim se epipolarni pravci u obje slike stereo sustava čine paralel-

nima i poravnatima sa recima piksela u senzoru slike, što uvelike olakšava postupak izračuna

dispariteta. Kao preduvjet za istu, opisan je postupak otklanjanja distorzije u slici koja nastaje

zbog efekata koje unose realne leće kamera, uz opis radijalno-tangencijalnog modela distorzije

slike.

Trodimenzionalno rekurzivno pretraživanje

U trećem se poglavlju opisuje algoritam trodimenzionalnoga rekurzivnoga pretraživanja (3DRS)

u svojoj primarnoj namjeni procjene pokreta u video signalu. Temeljni način rada algoritma jest

usporedba i uparivanje blokova u slici, gdje se slika dijeli u mrežu blokova kojima algoritam

pokušava dodijeliti vektor pomaka koji uparuje svaki blok sa pozicijom istog ili najsličnijeg

bloka u drugoj slici. Ovo algoritam 3DRS ostvaruje koristeći dvije osnovne pretpostavke rada

algoritma: da su objekti u sceni veći od blokova u koji je podijeljena slika te da objekti u

sceni imaju inerciju, odnosno da zadržavaju brzinu kretanja kroz vrijeme. Na osnovu nave-

denih pretpostavki, algoritam 3DRS koristi prostorno-vremensko susjedstvo u polju vektora

kao kandidate za novoizračunati vektor na odred̄enoj poziciji, uz dodatak ažuriranja, odnosno

dodavanja dodatnog pomaka iz predefiniranog skupa na pojedine kandidate, kao sredstvo da

algoritam pronad̄e ispravni vektor pomaka. Blok se evaluira izračunavanjem sume apsolut-

nih razlika izmed̄u izvorišnog bloka u prvoj slici i bloka na koji pokazuje vektor-kandidat u

drugoj slici, pri čemu blok s najmanjom vrijednosti postaje pobjednik. Ovakav se postupak
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evaluacije kandidata ponavlja za svaki blok u slici, pri čemu se svi blokovi u slici obilaze u me-

andrirajućem redoslijedu iteraciju za iteracijom, mijenjajući smjer pri svakoj iteraciji. Svojstvo

3DRS algoritma da nakon konačnog broja iteracija rezultira ispravnim poljem vektora neovisno

o početnom položaju nazivamo konvergencijom. Dodatno je, uz svojstva, dan pregled temeljnih

poboljšanja osnovnog algoritma te različite implementacije.

Prethodna i vezana istraživanja

U poglavlju 4 izložen je pregled dosadašnjih istraživanja u području pasivne trodimenzionalne

stereo rekonstrukcije i izračuna dispariteta. Metode se ugrubo mogu podijeliti na lokalne, koje

za svaki piksel u slici pokušavaju izračunati optimalnu vrijednost cijene uparivanja (eng.matching

cost) i globalne, koje na osnovu pretpostavki o glatkoći mape dispariteta formiraju globalnu

funkciju energije uparivanja za cijelu scenu, koju potom minimiziraju računajući optimalni dis-

paritet za sve piksele odjednom. Globalne metode daju veoma kvalitetne rezultate, no iznimno

su zahtjevne za računanje. Kompromis izmed̄u kvalitete i brzine izvršavanja daju metode bazi-

rane na dinamičkom programiranju, poput poluglobalnog uparivanja (eng. semi-global match-

ing). Recentnu veliku popularnost i kvalitetu rezultata pokazuju metode temeljene na tehnikama

dubokog strojnog učenja (eng. deep learning), no kod primjene istih pokazalo se da kvaliteta

rezultata iznimno ovisi o kvaliteti ulaznog skupa podataka na kojoj se model trenira.

Dvije klasične metode koje su detaljno opisane su lokalni postupak optimizacije "pobjednik

uzima sve" (eng. Winner-take-all) te klasično dinamičko programiranje. Kod lokalnih metoda

dominantni utjecaj na kvalitetu rezultata, osim same funkcije cijene uparivanja, ostvaruje način

na koji se cijena uparivanja akumulira, odnosno agregira unutar lokalne regije podrške. Opisani

su različiti načini agregacije: klasični kvadratni, promjenjivi, pomični te prilagodiv (adaptivni)

prozor. Kako je agregacija cijene često najzahtjevniji korak u izračunu dispariteta, često se za

ubrzanje agregacije upotrebljava tehnika integralnih slika koje omogućuju zbrajanje bilo koje

pravokutne pod-regije slike u O(1) složenosti jednostavnim matematičkim operacijama izmed̄u

vrijednosti piksela u uglovima regije.

Dinamičko programiranje globalni je postupak optimizacije koji formira globalnu funkciju

energije kao zbroj cijene uparivanja i funkcije glatkoće, pridružujući penalizacijsku vrijednost

lokacijama u kojima se nalazi diskontinuitet u mapi dispariteta. Osnovne su pretpostavke da

je zadovoljen uvjet poretka (eng. ordering constraint), odnosno da je unutar svake linije rela-

tivni poredak piksela koji odgovaraju istim objektima u sceni nepromijenjen izmed̄u dvije slike

(gledajući s lijeva na desno, objekti ne mijenjaju svoj relativni poredak, već samo pozicije u

slici) te jedinstvenosti (eng. uniqueness)- da značajka u jednoj od slika ima najviše jedan par

u drugoj slici. Pod tim uvjetima, moguće je izraziti za svaku liniju u slici funkciju dispariteta

kao put u ravnini (x,d) gdje je x koordinata u liniji a d disparitet. Put se sastoji od tri moguća

koraka koji odgovaraju situacijama sigurnog uparivanja (zadržavanje dispariteta), prekrivanja
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(okluzije) značajke s lijeva, koje povećava disparitet te prekrivanja (okluzije) s desna, koja

smanjuje disparitet. Ovako formuliran problem moguće je rastaviti u odluku o ispravnom ko-

raku u svakoj točki puta. Ovaj je problem ekvivalentan problemu naprtnjače, rješivom korišten-

jem dinamičkog programiranja. U završnom je dijelu poglavlja izložen kratki pregled nekoliko

funkcija cijena uparivanja istraženih u više relevantnih radova: sume apsolutnih razlika, sume

kvadriranih razlika, normaliziranih suma apsolutnih i kvadriranih razlika te cenzus transforma-

cije.

Materija i metode

U petom su poglavlju predložene nove, hibridne metode za izračun guste mape dispariteta s po-

moću algoritma trodimenzionalnoga rekurzivnoga pretraživanja. Za algoritam 3DRS su defini-

rani uvjeti rada - uz zadovoljenje pretpostavke da su ulazne slike epipolarno ispravljene, rad

3DRS-a možemo ograničiti isključivo na dimenziju paralelnu s epipolarnim pravcima. Algori-

tam 3DRS je ujedno proširen dodatnim mogućnostima: podrškom za korištenje više različitih

funkcija cijena osim osnovne sume apsolutnih razlika te mogućnosti proizvoljnog odred̄ivanja

veličine bloka za izračun cijene neovisno o veličini samog bloka unutar slike za koji se traži vek-

tor dispariteta. Na osnovu ovakvog algoritma 3DRS definirane su nove hibridne metode. U hi-

bridnim je metodama prvi korak uvijek izračun grube mape dispariteta algoritmom 3DRS, gdje

je svim pikselima unutar pojedinog bloka dodijeljen isti disparitet. U drugom se koraku gusta

mapa dispariteta izračunava putem jedne od klasičnih metoda: metodom "pobjednik uzima sve"

(lokalnom optimizacijom) ili dinamičkim programiranjem (globalnom optimizacijom). Pritom

se prostor pretraživanja dispariteta sužava ponovnom primjenom pretpostavke 3DRS-a da su

objekti u sceni veći od blokova. Svakom se bloku pridružuje jedan ili više intervala mogućih

dispariteta iz susjedstva blokova za koje je estimacija dobivena algoritmom 3DRS. Kako bi se

uzela u obzir moguća varijacija, umjesto fiksne vrijednosti se svakom bloku pridružuje interval

dispariteta, pri čemu su konačni intervali dispariteta dobiveni unijom svih intervala iz susjed-

stva. Kod lokalnog se algoritma "pobjednik uzima sve" gusti se algoritam izvršava nad blokom

te se za svaki piksel u navedenom bloku dodjeljuje konačni disparitet iz intervala dobivenih iz

susjedstva. Kod globalnog se algoritma formira prostor dispariteta (x,d) za svaku liniju koris-

teći intervale dispariteta za blokove kojima linija prolazi, osiguravajući pritom da je moguće

konstruirati put kroz prostor dispariteta od ruba do ruba, koji je moguće optimirati dinamičkim

programiranjem.

Rezultati i diskusija

Poglavlje 6 iznosi rezultate evaluacije algoritama. Kao preduvjet postavljena je metodologija.

Točnost rezultata utvrd̄ena je postotkom neispravnih piksela u mapi dispariteta, pri čemu se is-
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pravnost piksela utvrd̄uje odstupanjem od vrijednosti utvrd̄enih stvarnih dispariteta (eng. ground

truth) za iznos veći od odred̄enog praga (prag od 1 piksela je odred̄en za potrebe evaluacije,

gdje je vrijednost preuzeta iz relevantnih istraživanja). Performanse se algoritma utvrd̄uju

mjerenjem te naknadnom usporedbom vremena izvod̄enja algoritama na referentnoj računal-

noj platformi. Za ispitivanje algoritama odabran je Middlebury skup stereo slika sa poznatim

utvrd̄enim disparitetima i mapama koji odred̄uju specifične zone slika. Kako je Middlebury

skup u širokoj primjeni kao etalon u području istraživanja, njegova primjena omogućuje jed-

nostavnu usporedbu rezultata sa rezultatima drugih algoritama. Za potrebe evaluacije metoda

u ovom su radu korištene četiri standardne slike iz Middlebury skupa - "Tsukuba", "Venus",

"Teddy" i "Cones".

Inicijalno su mjerenja usmjerena na algoritam 3DRS radi utvrd̄ivanja njegovih svojstava i

podobnosti za ciljane primjene u računalnom vidu. Za više je različitih dimenzija slika izm-

jerena ovisnost vremena izvod̄enja algoritma 3DRS o veličini bloka. Utvrd̄eno je da vrijeme

izvod̄enja pada sa porastom veličine bloka, do veličine bloka od 4 piksela, nakon čega je vri-

jeme izvod̄enja konstantno i ovisno jedino o veličini ulazne slike, neovisno o veličini bloka.

Mjerenjem vremena izvod̄enja u ovisnosti o broju prolaza utvrd̄eno je da vrijeme izvod̄enja al-

goritma 3DRS raste linearno s brojem prolaza. Mjerenje točnosti provedeno je u ovisnosti o

veličini bloka, broju prolaza algoritma, te veličini skupa iz kojeg algoritam 3DRS preuzima vri-

jednosti ažuriranja vektora. U ovisnosti o broju iteracija algoritma utvrd̄eno je da algoritam daje

rezultat blizak optimalnom, bez značajnih poboljšanja daljnjim iteracijama, nakon samo dvije

iteracije algoritma, što je u skladu sa načinom na koji se u algoritmu 3DRS osigurava propa-

gacija novoestimiranih vrijednosti. U ovisnosti o veličini bloka, rezultat postiže svoj maksimum

za blokove veličine četiri piksela i veće, što empirijski pokazuje granicu unutar koje je moguće

osigurati dovoljan kontekst za optimalno raspoznavanje značajki prilikom uparivanja. U ovis-

nosti o veličini skupa ažuriranja pokazalo se da za maksimalnu vrijednost ažuriranja u iznosu

16 piksela algoritam 3DRS daje optimalan rezultat - uz manje vrijednosti maksimalnog ažuri-

ranja algoritam pokazuje oštar pad brzine konvergencije sa padom veličine skupa (do izostanka

konvergencije), dok uz vrijednosti ažuriranja veće od 16 piksela točnost rezultata lagano opada

pod utjecajem šuma koje unose veći pomaci dispariteta. Točnost algoritma 3DRS ispitana je i

u ovisnosti o odabranoj funkciji cijene, gdje se pokazalo da funkcija cijene temeljena na cenzus

transformaciji slika i Hammingovoj udaljenosti daje najkvalitetnija rješenja u odnosu na druge

ispitane funkcije cijena.

Hibridni algoritam u kojem je postupak optimizacije "pobjednik uzima sve" vod̄en algo-

ritmom 3DRS evaluiran je za četiri odabrane slike iz Middlebury skupa. U odnosu na raniju

evaluaciju algoritma, uvod̄enjem cenzus transformacije kao funkcije cijene dovelo je do un-

aprjed̄enja kvalitete rezultata, dok su dodatna podešenja algoritma 3DRS rezultirala dodatnim

ubrzanjem. Ispitana je ovisnost kvalitete izlazne mape dispariteta i brzine izvršavanja o vri-
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jednosti parametra r koji definira širinu osnovnog intervala dispariteta izdvojenog iz rezultata

algoritma 3DRS. Rezultati su pokazali da navedeni interval može biti smanjen na ±1 piksel

dispariteta bez negativnih utjecaja na kvalitetu. Analiza je pokazala da je postotak pogrešnih

piksela kod predložene metode manji nego u obje originalne metode (algoritmu 3DRS i op-

timizaciji "pobjednik uzima sve"), te da je predložena metoda ostvarila 6,45 puta poboljšano

vrijeme izvod̄enja u odnosu na originalni algoritam "pobjednik uzima sve".

Metoda dinamičkog programiranja daje sveukupno najbolje rezultate u ovom istraživanju

po pitanju točnosti, no uz vrijeme izvod̄enja od preko 1,5 sekunde u prosjeku. Kod kombinacije

algoritma 3DRS i optimizacije temeljene na dinamičkom programiranju, utvrd̄ena je manja

ovisnost kvalitete rezultata o kvaliteti grube mape dispariteta dobivene algoritmom 3DRS u

odnosu na rezultate hibridnog algoritma temeljenog na optimizaciji "pobjednik uzima sve". S

tim u sprezi, analiza je pokazala da je kod hibridnog algoritma koji kombinira algoritam 3DRS

i dinamičko programiranje postotak pogrešnih piksela povećan, no ne više od 0,3% u prosjeku -

čime možemo ustvrditi da je globalno nivo kvalitete rezultata zadržan, uz 6,22 puta poboljšano

vrijeme izvod̄enja u odnosu na originalni algoritam dinamičkog programiranja.

Zaključak

U ovom je radu istražen problem stereo vida i trodimenzionalne rekonstrukcije sa fokusom

na izračun dispariteta u stereoslikama. Kroz pregled dosadašnjih istraživanja izdvojen je ve-

liki broj različitih rješenja koja su računalno vrlo zahtjevna. Glavna ideja ovog rada bila je

iskoristiti grubi algoritam za uparivanje blokova sa dokazano brzim vremenom izvod̄enja kao

temelj hibridnih algoritama koji bi postigli bolje rezultate od izvornih. Odabran je algoritam

trodimenzionalnoga rekurzivnoga pretraživanja kao algoritam odgovarajućih svojstava koji je

našao široku primjenu u potrošačkoj elektronici, no ne i u području računalnog vida. Klasični

pristup "pobjednik uzima sve" i optimizacija dinamičkim programiranjem odabrani su kao kan-

didati za hibridne metode. Kako je algoritam 3DRS uglavnom u literaturi istražen u kontekstu

primjene u potrošačkoj elektronici, njegova su svojstva ispitana empirijski. Dobiveni rezultati

pokazali su kako za tipične radne uvjete algoritam 3DRS proizvodi grube mape dispariteta u

konstantnom vremenu koje je ovisno isključivo o dimenziji ulaznih slika i broju iteracija neo-

visno o zadanoj veličini bloka. Dodatno su rezultati pokazali kako algoritam 3DRS konvergira

ka rješenju bliskom optimalnom za odred̄ene postavke u najviše dvije iteracije uz dovoljno ve-

lik skup vektora ažuriranja. Na taj je način pokazana mogućnost algoritma 3DRS da rezultira

grubom procjenom dispariteta relativno visoke točnosti u predvidivom, kratkom vremenu neo-

visnom o rasponu dispariteta koji je potrebno pretražiti. Ispitivanjem različitih funkcija cijena

utvrd̄eno je da korištenje funkcije cijene temeljene na cenzus transformaciji rezultira drastičnim

poboljšanjem izlazne mape dispariteta u odnosu na originalnu implementaciju. Naposljetku,

korištenjem algoritma 3DRS kao inicijalnog grubog estimatora i primjenom načela istog kako
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prostorno susjedstvo čini kvalitetne kandidate/prediktore dispariteta odred̄ene regije, formirane

su dvije nove metode za izračun dispariteta u stereoslikama koje koriste algoritam 3DRS kao

grubi inicijalni korak te klasični algoritam kao finalni korak koji daje gustu mapu dispariteta:

3DRS-om vod̄en algoritam "pobjednik uzima sve" te 3DRS-om vod̄eno dinamičko programi-

ranje. Predložene metode unaprjed̄uju ili zadržavaju točnost originalnih metoda ubrzavajući

pritom vrijeme izvršenja za 6,2 do 6,5 puta u prosjeku. Buduća bi se istraživanja u ovom

području trebala fokusirati na iskorištavanje drugih korisnih svojstava algoritma 3DRS poput

estimacija dvodimenzionalnih vektora, poboljšanje točnosti hibridnih metoda, ili poboljšanje

performansi uz krajnji cilj definiranja arhitekture za ugradnju algoritma u ugradbeni računalni

sustav za rad u stvarnom vremenu.

Ključne riječi: Stereo uparivanje, disparitet, 3DRS, Hibridna metoda, Pobjednik-uzima-
sve, Dinamičko programiranje
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Chapter 1

Introduction

Computer vision is an interdisciplinary scientific field with the goal of enabling computers to

obtain high-level understanding based on digital images. As an engineering discipline, it is

tasked with devising autonomous systems which can perform task the human visual system

is capable of [1]; from processing raw images, extracting features, performing segmentation,

obtaining information about the structure of objects from either motion or stereo images, lead-

ing to higher levels of abstraction such as recognizing objects [2]. Concepts and methods of

computer vision have been applied to a wide variety of real world uses, such as optical charac-

ter recognition (OCR), machine inspection, photogrammetry, face detection, automotive driver

assistance systems (ADAS), robotics, etc. One of the extensively researched problems in com-

puter vision is that of stereo 3D reconstruction, where the goal is to obtain a three-dimensional

model of a scene based on an image. Most often it is desired to obtain a dense map of the scene

depth. The methods for dense stereo 3D reconstruction can be roughly divided into active and

passive methods. Active methods are all those which use a light source, either to combine one

or more cameras with a structured light source to encode information in the scene [3], or use

a light source to determine the distance by measuring the time of flight for photons, such as

LIDAR or a time-of flight camera. Passive methods, on the other hand, are based on extracting

depth information from correspondences between multiple views of the scene (but most com-

monly between the two images in a stereo image pair), mimicking the way humans perceive

their surroundings using binocular vision.

1.1 Motivation

Computing correspondent features in two images has also been the subject of extensive study

in the field of motion estimation, where a motion map (also called the optical flow) of objects is

generated for a sequence of images [4]. In this application, the correspondences are computed

not between the two images of the same scene (as it is for stereo matching), but for consecutive
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images within a sequence to determine the movement of features in the scene. The methods

used for motion estimation can be roughly divided in two major categories [5]: the residue-

minimizing methods, which are mostly used in video compression algorithms, and true motion

estimators, used in video up-conversion and deinterlacing. The residue-minimizing methods

usually perform a full-search block matching strategy in order to find the global minimum of

the matching cost for each block. From the standpoint of image compression, this is desirable

in order to minimize the residual signal when subtracting the two frames using the estimated

displacement vectors, but the resultant vector field may differ significantly from the actual mo-

tion field. For frame rate conversion, where a high correlation with the true object motion is

desired for the motion vector field, it is required to estimate the actual motion field in order to

achieve visually pleasing results in frame rate interpolation.

One of the most successful true motion estimation methods is the Three-Dimensional Recursive

Search (3DRS) [6], widely used due to its simplicity, low cost implementation, and the ability

to provide good true motion estimates. The method has been successfully applied for real-time

processing of 60 Hz high definition video and frame-rate conversion with frame rates up to

400 Hz, with specialized ASIC implementations [7]. As true motion vectors are desired for

disparity estimation, 3DRS has been shown to be able to extract coarse disparity maps from im-

age pairs [8] [9]. Given the comparative performance of 3DRS, its widespread use and overall

simplicity, the goal of this research was to establish whether 3DRS can be utilized to enhance

the existing dense stereo estimation methods and improve on their performance by decreasing

their computational complexity and improving the delivered quality of the resultant computed

disparities. For this purpose, a local method (Winner-take-all) and a global method (Dynamic

programming) for disparity computation is selected to be combined with 3DRS.

1.2 Overview

This dissertation is organized as follows.

Chapter 2 provides an overview of the background of stereo 3D reconstruction, lays out the

fundamental terms and provides the description of the approaches and methods this thesis is

focused on.

Chapter 3 provides a comprehensive overview of the three-dimensional recursive search algo-

rithm, its definition and its properties. The algorithm is presented in the light of its original

purpose of true motion estimation, with the related work and most common enhancements of

the basic algorithm.

In chapter 4 a brief overview of the related work and prior art on the selected local and global

method, as well as matching costs, is presented.

Chapter 5 presents the main contributions of this dissertations with descriptions of the proposed
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local and global hybrid methods combining the 3DRS algorithm with the selected local and

global passive stereo methods. The results and performance of the hybrid methods are pre-

sented and compared with the performance and results of the original methods in chapter 6,

accompanied by the discussion of the results and outlines of the key improvement points.

Finally, chapter 7 presents the conclusion of the thesis and a proposal for potential future re-

search directions.
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Chapter 2

Stereo reconstruction

2.1 Projective geometry

2.1.1 Primitives

In order to understand stereo imaging and 3D reconstruction it is necessary to form a geomet-

ric description of how the 3D world is mapped to the 2D image space, which can be modeled

through projective geometry[10]. The relation which maps a set of points in a three-dimensional

space to a set of points in a two dimensional plane (the image) is called a projective trans-

form[11]. Such transforms can be conveniently expressed using homogeneous coordinates.

The homogenous coordinates of a point in a projective space of dimension n are expressed as a

n+1-dimensional vector, with the restriction that the points whose values are proportional are

equivalent points.

2D Points

Points in two-dimensional (2D) space can be denoted using a pair of values X = (x,y) ∈ ℜ2

or by a 2-dimensional vector. Represented using homogenous coordinates[2], the 2D points

are expressed as x̃ = (x̃, ỹ, w̃) ∈ P2. The space P2 = ℜ3− (0,0,0) is called the 2D projective

space. A homogeneous vector can be converted back into an inhomogeneous vector by dividing

it through by the last element w̃, yielding:

x̃ = (x̃, ỹ, w̃) = w̃(x,y,1) = w̃x, (2.1)

where the vector x = (x,y,1) is called the augmented vector. Homogeneous points where w̃ = 0

are called ideal points or points at infinity, which do not have an equivalent inhomogeneous

representation.
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Stereo reconstruction

Figure 2.1: (a) 2D line and (b) 3D plane equation expressed with a normal vector ñ and distance d.
Adapted from [2]

2D Lines

2D lines can also be represented using homogeneous coordinates l̃ = (a,b,c). The correspond-

ing line equation is

x̃l̃ = ax+by+ c = 0 (2.2)

The vector of the line equation 2.2 can be normalized so that l = (n̂x, n̂y,d) = (n̂,d) with ‖n̂‖=
1, in which case n̂ is the normal vector perpendicular to the line and d its distance to the origin

(exception to this is the line at infinity, l̃ = (0,0,1) ), as shown in figure 2.1 (a).

Using homogeneous coordinates, the intersection of two lines can be computed:

x̃ = l̃1× l̃2 (2.3)

Similarly, a line joining two points can be written as

l̃ = x̃1× x̃2 (2.4)

2D Conics

Conic sections can be defined using a quadric equation

x̃⊤Qx̃ = 0 (2.5)

3D Points

Points in three-dimensional (3D) space can be denoted using a triplet of values X = (x,y,z)∈ℜ3

or by a 3-dimensional vector, also using homogeneous coordinates x̃ = (x̃, ỹ, z̃, w̃) ∈ P3. It is

occasionally convenient to use an augmented vector to define a 3D point x = (x,y,z,1), with
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Figure 2.2: (a) 3D line equation. Adapted from [2]

x̃ = w̃x̃.

3D Planes

A 3D plane can be represented as homogeneous coordinates m̃ = (a,b,c,d) with a correspond-

ing plane equation:

x̃m̃ = ax+by+ cz+d = 0 (2.6)

which can be normalized as:

l = (n̂x, n̂y, n̂z,d) = (n̂,d)

‖n̂‖= 1
(2.7)

In eq. 2.7, n̂ is the normal vector perpendicular to the plane and d is the distance from the

plane to origin, as shown in figure 2.1 (b).

3D Lines

A line in 3D space can be represented by two points (p,q). All other points in the line can be

expressed as a linear combination of the two points:

r = (1−λ )p+λq (2.8)

as shown in the figure 2.2.

3D Quadrics

An analog of a conic section in 3D space is a quadric surface.

x̃⊤Qx̃ = 0 (2.9)
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Figure 2.3: Basic set of coordinate transformations, with degrees of freedom increasing with x. The
transformation is shown for 2D but the concepts extend to 3D. Adapted from [2]

2.1.2 Transformations

Having defined the primitive geometric elements in a projective space, geometrical transforma-

tions of various properties, as shown in figure 2.3 can be performed on them.

Translation

The simplest of the transforms is translation, which shifts the geometric primitive in space while

retaining its shape, can be defined as x′ = x+ t, or

x′ =
[

I t

]
x (2.10)

where I is the (2x2) identity matrix. Alternatively it can be defined as

x′ =

 I t

0⊤ 1

x (2.11)

where 0 is the zero vector. Although with the (2× 3) matrix such as in the Eq. 2.10 a more

compact notation can be obtained, with a (3× 3) matrix as in Eq. 2.11 it is possible to chain

transformations with matrix multiplication. x is the augmented vector, which can be replaced at

any time with the full homogeneous vector. In the 3D case, identical equation as the Eq. 2.10

applies, with the I being a (3×3) matrix.
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Rigid(Euclidean) transform

A rigid-body or Euclidean transformation preserves the Euclidean distances. It is a combination

of translation and rotation, which can be defined as x′ = Rx+ t, or

x′ =
[

R t

]
x (2.12)

where R is an orthonormal rotation matrix

R =

cosθ −sinθ

sinθ cosθ

 (2.13)

where θ is the angle of rotation. For the rotation matrix, RR⊤ = I and |R|= 1. For the 3D case,

R is a (3×3) matrix, but its construction is more complex than the 2D case and dependent on

how the rotation in 3D space is described. Popular approaches use quaternions or the Rodrigues

transform as used in the OpenCV library[11], shown in Eq. 2.14. Let~r be a three-dimensional

vector~r = [rx,ry,rz] which implicitly defines θ as the magnitude of rotation by the length (or

magnitude) of~r. It is possible to convert from the axis-magnitude representation to a rotation

matrix R:

R = cosθ · I3 +(1− cosθ) ·~r×~r⊤+ sinθ ·


0 −rz ry

rz 0 −rx

−ry rx 0

 (2.14)

Similarity transform

A similarity transform, or scaled rotation, can be expressed as x′ = s ·Rx+ t, where s is an

arbitrary scale factor. It can also be expressed as (for 2D) as

x′ =
[

R t

]
x =

a −b tx

b a ty

x (2.15)

Unlike the equations 2.12 and 2.13, it is no longer required that a2 + b2 = 1. In 3D space, the

transformation is the same with the vectors being three-dimensional and R being the (3× 3)

rotation matrix. The similarity transform preserves the angles between lines.
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Affine transform

The affine transformation is defined as x′ = Ax. For the 2D case A is an arbitrary (2×3) matrix

A =

a00 a01 a02

a10 a11 a12

 (2.16)

Under the affine transformation parallel lines remain parallel. In the 3D case the matrix A is an

arbitrary (3×4) matrix.

A =


a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

 (2.17)

For the 3D affine transformation, parallel lines and planes remain parallel.

Projective transform

The projective transform, also known as a perspective transform or homography, is defined on

homogeneous coordinates as:

x̃′ = H̃x̃ (2.18)

where H̃ is an arbitrary (3×3) matrix in 2D, and a (4×4) matrix in 3D space. As H̃ is homo-

geneous, two matrices which differ only by scale are equivalent. The resultant homogeneous

coordinate x̃′ must be normalized in order to obtain the inhomogeneous result x′.

2.1.3 Hierarchy of transformations

The transformations listed above form a nested set of groups, signifying that they are closed

under composition and have an inverse transform which is the member of the same group. Each

simpler group is a subset of the more complex group below it, with the more complex group

offering more degrees of freedom in the transformation. The hierarchy of transformations for

2D and 3D cases can be found in figures 2.4 and 2.5, respectively.

2.2 The camera model

A camera defines a mapping between the 3D world and a 2D image. For the purpose of this

work central projection cameras [10], which form the image by projecting the points in the

3D space through a central point, are of interest. A finite camera has the central projection
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Figure 2.4: Hierarchy of 2D coordinate transformations. Each transformation also preserves the proper-
ties listed in the rows below it. the (2×3) matrices can be extended to (3×3) with a third [0⊤1] row to
enable homogeneous coordinate transformations. Adapted from [2]

Figure 2.5: Hierarchy of 3D coordinate transformations. Each transformation also preserves the proper-
ties listed in the rows below it. the (3×4) matrices can be extended to (4×4) with a fourth [0⊤1] row to
enable homogeneous coordinate transformations. Adapted from [2]
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Figure 2.6: The pinhole camera geometry, adapted from [10]

point defined at finite coordinates. A central projection camera is a specialization of the general

projective camera, for which a model can be defined through a matrix defining the projective

transformation.

2.2.1 Pinhole camera

The most basic central projection camera model is the pinhole camera model. In a pinhole

camera model, the center of projection is placed in the origin of a Euclidean coordinate system,

and a plane Z = f , which is called the image plane or the focal plane, is defined as shown

in figure 2.6. In a pinhole camera model, a point in 3D space (denoted with the coordinates

X = (X ,Y,Z)⊤) is mapped to a point at the focal plane in which a straight line passing through

the coordinate system origin and the point intersects with the plane. The projection mapping

can be described as

(X ,Y,Z)⊤→ ( f X/Z, fY/Z)⊤ (2.19)

which is a mapping from the Euclidean 3-space ℜ3 to Euclidean 2-space ℜ2. The center of

the projection is called the camera center, or the optical center. A line constructed so that it

is perpendicular to the image plane and passing through the camera center is the principal axis

of the camera (also called the optical axis), which intersects the image plane at the camera’s

principal point. A plane parallel with the image plane passing through the camera center is

called the principal plane of the camera. By using homogeneous coordinates, it is simple to

express the camera transformation as a matrix:

X

Y

Z

1


→


f X

fY

Z

=


f 0 0 0

0 f 0 0

0 0 1 0





X

Y

Z

1


(2.20)
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Figure 2.7: Offset of the principal point in the image plane and the image coordinate system, adapted
from [10]

in which case equation 2.20 can be written as

~x = P~X (2.21)

where P is the camera projection matrix. The expression assumes that the principal point is

also the origin of the coordinates in the image plane, which may not be the case in practice. In

that case it is necessary to account for the offset as shown in the figure 2.7 by adding additional

parameters (px, py) which extend the camera matrix P defined in eqs. 2.20 and 2.21 to:

P =


f 0 px 0

0 f py 0

0 0 1 0

 (2.22)

and the transformation from eq. 2.19 to

(X ,Y,Z)⊤→ ( f X/Z + px, fY/Z + py)
⊤ (2.23)

If the matrix K is defined as

K =


f 0 px

0 f py

0 0 1

 (2.24)
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it is possible to express equation 2.21 as

~x = K[I|0]~X (2.25)

The matrix K is called the camera calibration matrix or the camera intrinsics matrix. In the

general case it is also considered, in practice usually due to construction of the actual imaging

device, that the focal lengths in x and y directions are not equal. Additionally a parameter s, or

skew accounts for the possibility of the image plane of the device not being mounted perfectly

perpendicular to the principal axis. Therefore the final form of the matrix is

K =


fx s px

0 fy py

0 0 1

 (2.26)

Considering that the parameter s is usually zero, the result is a simple model in which a point
~X in the physical world with the coordinates (X ,Y,Z)⊤ is projected to the image point with the

coordinates (ximg,yimg) computed as:

ximg = fx ·
X
Z
+ px

yimg = fy ·
Y
Z
+ py

(2.27)

2.2.2 Camera orientation

The camera coordinate system is defined in respect to the center of projection, the principal /

optical axis and the image plane, however in general, the points in 3D space will have a different

coordinate system. To define the mapping between the real-world coordinates and the points in

the image, a rotation and a translation operation is required. In general the mapping of the point

in the camera coordinate system X̃img can be defined as:

X̃cam = R(X̃−C̃) (2.28)

where X̃ is an inhomogeneous 3-vector representing the world coordinates, C̃ is a similar vector

representing the coordinates of the camera center, and R is a 3x3 rotation matrix between the

camera and real world Euclidean 3D space. Combining this with 2.25, the result is:

~x = KR[I|−C̃]~X (2.29)

as a general mapping of a pinhole camera.
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Figure 2.8: transformation between the real world and camera Euclidean space, adapted from [10]

The rotation matrix R and the position vector C̃ are called extrinsic camera parameters,

which describe the pose of the camera. The camera center can also be made non-explicit for

convenience, in which case the world-to-camera transformation can be defined as Ximg =RX̃+t,

where t =−RC̃. In this case the camera matrix is:

P = K[R|t] (2.30)

where t =−RC̃. The transformation is shown in figure 2.8.

2.3 Stereo camera system

From the earliest inquiries into visual perception it has been known that humans perceive depth

based on the differences in appearance between the left and right eye. The word "Stereo" comes

from the Greek word for "solid" - stereo vision is how humans perceive solid shapes [2]. Un-

der simple imaging configurations, with the both cameras or eyes looking straight ahead, the

disparity, which is the amount of horizontal motion of objects in a scene between two views

is inversely proportional to the distance from the point of observation. It is possible to show

this principle on a simplified ideal Stereo setup example given in figure 2.9. In an ideal stereo

setup, let us assume the perfect conditions for imaging: that the two cameras have image planes

which are exactly co-planar with each other, with exactly parallel optical axes that are located at

a well defined distance, and that they have lenses with exactly equal focal lengths f1 = f2 = f .

Additionally let us assume that the principal points of the cameras (cle f t
x ,cright

x ) have been cali-

brated so that they have the identical pixel coordinates in the image of the left and right camera,

respectively. Additional assumptions should apply: the imagers of the cameras are perfectly

row-aligned. Furthermore, the assumption is that it is possible to find a point ~P in the physical
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Figure 2.9: A model of an ideal stereo imaging setup, adapted from [11]

world with the left and right image views ~pl and ~pr with the respective horizontal coordinates

xl and xr. For this extensively simplified case, it is apparent that the depth is inversely propor-

tional to the disparity between the two images d = xl− xr, as it can be easily derived from the

geometry through similar triangles:

T − (xl− xr)

Z− f
=

T
Z

=⇒ Z =
f ·T

xl− xr
(2.31)

As depth is inversely proportional to disparity, the consequence is that stereo vision systems

have high depth resolution only for objects relatively near the camera, as shown in figure 2.10.

In a practical situation, many of the assumptions of the ideal case are not applicable. For

the understanding of how the cameras map the scene to their images and find the required

correspondence, it is important to understand the geometry of a dual view camera system.

2.3.1 Epipolar geometry

The intrinsic projective geometry between the two camera views is called epipolar geometry. It

is the geometry describing the intersection of the image planes with the pencil of planes having

the line joining the centers of projection for the two cameras as the axis[10]. The line joining

the two cameras’ centers of projection is called the baseline of the stereo system. For the two
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(a) Various objects at various
distances from the stereo pair.

(b) Disparity in relation to distance from the camera

Figure 2.10: Relationship between depth and disparity; adapted from [11]

cameras, the centers of projection Ol and Or with their corresponding projective planes Πl and

Πr are defined. The point P in the physical world projects its image onto Πl and Πr as pl and pr,

respectively. Epipolar geometry describes the relation between the points pl and pr. Observing

the two camera centers Ol and Or and the point P, it is evident that the three points in 3D space

define a 3D plane. This plane contains the rays which are back-projected from the two points,

and which are coplanar, is significant in establishing correspondence. This plane, Πe, is called

the epipolar plane. The epipolar plane interesects with the two imaging planes Πl and Πr. The

lines obtained by intersecting the epipolar plane with the image planes are called epipolar lines.

It is also visible, as shown in the figure 2.11, that the baseline intersects with the two camera

planes and defines points in the image planes Πl and Πr which are called the epipoles named

el and er, respectively. For each of the two cameras, the epipoles are essentialy the images

of the other camera’s center of projection. For a stereo system, given all possible points P

visible by both cameras, there is a one-parameter family (a pencil) of epipolar planes defined

by the baseline, for which there is a corresponding family of epipolar lines in the two image

planes, all of which interesect at the epipole. For a given point P and its location pl in Πl , it

is possible to determine that the location of pr lies in the plane Πe, which in turn places pr on

the corresponding epipolar line in Πr. The image of all possible locations of a point visible in

one image is the line which passes through the corresponding point and the epipole of the other

image. Given a feature in one image, its matching view in the other image must lie along the

corresponding epipolar line. This is known as the epipolar constraint[11].

The properties of epipolar geometry are extremely important for computing stereo corre-

spondence, given that:

∙ the epipolar constraint ensures that the corresponding point in the other imager resides on
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Figure 2.11: Epipolar geometry, intersection of epipolar plane with the image planes, adapted from [11]

the corresponding epipolar line. Therefore the correspondence becomes a one-dimensional

instead of a two-dimensional search, vastly reducing the computational effort required to

compute the correspondence and improving the accuracy.

∙ in the majority of conditions[12], the order is preserved on the epipolar line, if points A

and B are visible in both images and occur horizontally in an order, the same order shall

be preserved in the other imager. This effectively defines the search direction along the

epipolar line, further simplifying the search for the corresponding feature. Even if a point

is not visible in the other image due to occlusion, the order will still be preserved.

Essential and Fundamental Matrix

The geometry of the stereo system is defined by two matrices, which are called the essential

matrix E and the fundamental matrix F .

Essential matrix

The essential matrix is a matrix which captures the essential geometric relation of the two

camera models in physical space without taking into account their imaging properties. It is an

Euclidean transform defined by rotation R and translation t which transforms the left camera

model into the right camera model, as shown in figure 2.12.

Given a point P, the goal is to derive a relation that connects the projected points pl and pr of P

on the two image planes in the respective camera coordinate system. Let Pl and Pr be the point

P expressed in each camera’s coordinate system, and let us choose the coordinate system for

the left camera as the frame of reference. The location of the projected point is pl in the image

plane and the center of projection for the right camera is located at Or = t. The coordinates of
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Figure 2.12: Epipolar geometry, transformations making up the essential matrix E, adapted from [11]

the 3D point P seen in the right camera is Pr in the right camera’s coordinate system, where Pr

can be expressed as

Pr = R · (Pl−Or) (2.32)

Introducing the epipolar plane into the equation, all points x on a plane with the normal vector

~n passing through the point a are constrained so that the following applies:

(x−a) ·~n = 0 (2.33)

As the epipolar plane contains the points Pl and Or , one can easily obtain the normal vector

for the epipolar plane ~n through the cross product: ~n = Pl× t. A plane equation containing all

possible points Pl while passing through Or and containing both vectors would be:

(Pl−Or)
⊤(Or×Pl) = 0. (2.34)

Based on equation 2.32, it can be written that (Pl −Or) = R−1Pr. If it is also known that

R⊤ = R−1, the following result is obtained:

(R⊤Pr)
⊤(Or×Pl) = 0. (2.35)

The cross product above can then be rewritten as matrix multiplication, if matrix S is defined so

that:

(Or×Pl) = SPl =⇒ S =


0 −Orz Ory

Orz 0 −Orx

−Ory Orx 0

 (2.36)
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Combining equations 2.35 and 2.36 yields:

(Pr)
⊤RSPl = 0 (2.37)

Based on equation 2.37 it can be expressed that:

E = RS =⇒ (Pr)
⊤EPl = 0 (2.38)

where E is the essential matrix. It can be observed that this describes a relation of 3D points,

not their image coordinates. However if the equations 2.27 describing the camera projection are

applied, it is possible to divide eq. 2.38 with ZlZr
fl fr

to obtain:

p⊤r E pl = 0 (2.39)

This equation does not completely specify the relationship between the two points as E is a

rank-deficient matrix (the (3×3) essential matrix has a rank of 2). There are five parameters in

the essential matrix: three for the rotation component, and two for the direction of translation (as

the scale is not set). Therefore the essential matrix has only five degrees of freedom. Additional

constraints on the essential matrix are:

∙ the determinant of the essential matrix is zero as it is rank-deficient.

∙ a 3x3 matrix is an essential matrix if and only if two of its singular values are equal, and

the third is zero[10], as the matrix S is skew-symmetric and R is a rotation matrix.

Fundamental matrix

The essential matrix contains all the information about the geometry of two cameras relative to

one another but it does so in physical coordinates. From the standpoint of stereo reconstruction,

the relation of image coordinates which require the introduction of camera intrinsics is of inter-

est. The relation from equation 2.21 is used, specifying that q is the point in image coordinates,

p in physical coordinates, and K is the camera intrinsics matrix.

q = K p =⇒ p = K−1q (2.40)

Inserting this into the essential matrix equation 2.39

q⊤r (K
−1
r )⊤EK−1

l ql = 0 (2.41)

which yields the relation that the fundamental matrix F is

F = (K−1
r )⊤EK−1

l (2.42)
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so that:

q⊤r Fql = 0 (2.43)

The fundamental matrix expands upon the essential matrix, but while the essential matrix is

relating the physical coordinates, the fundamental matrix relates the image coordinates of two

cameras. Given a pair of images, to each point x in one image exists a corresponding epipolar

line in the other image. The epipolar line is the projection of the ray from the point x through

the camera center of the first camera, as seen by the other camera. This is a projective mapping

from points to lines described by the fundamental matrix.

The fundamental matrix is a unique (3× 3) rank 2 homogenous matrix which, for two im-

ages acquired by cameras with non-coincident centers, satisfies the equation x′⊤Fx = 0 for all

corresponding points x↔ x′.

The fundamental matrix has the following properties:

∙ Transpose: if F is the fundamental matrix of the pair of cameras (P,P′), then F⊤ is the

fundamental matrix of the pair in the opposite order (P′,P).

∙ Epipolar lines: For any point x in the first image, the epipolar line in the second image

is l′ = Fx. Likewise, l = F⊤x′ is the epipolar line in the first image corresponding to x’

in the second.

∙ The epipole: for any point x other than the epipole e the epipolar line l′ = Fx contains

the epipole e′. As e′ satisfies e′⊤(Fx) = (e′⊤F)x = 0 for all x. It follows that e′⊤F = 0, or

e′ is the left null-vector of F . Likewise, Fe = 0, that is, e is the right null-vector of F.

∙ F has seven degrees of freedom. A (3× 3) homogeneous matrix has eight independent

ratios (there are nine elements and the common scaling is not significant); however, it is

also valid that detF = 0, which removes one degree of freedom.

∙ F is a correlation - a projective map mapping a point to a line. However, as a point in

the first image defines a line in the second. If l and l′ are corresponding epipolar lines,

then any point x on l is mapped to the same line l′. This means that there is no inverse

mapping, and F is not of full rank. For this reason, F is not a proper correlation (which

would be invertible).

The importance of the fundamental matrix is that it can be computed for a stereo camera

pair from a small number of known correspondences (7 correspondences are necessary at a min-

imum). Given a set of correspondences xi↔ x′i, the fundamental matrix satisfies the condition

x′⊤i Fxi = 0∀i. With the x′i and xi defined, the equation is linear in the entries of F . With at least 8

correspondences it is possible to solve linearly for entries of F up to scale (and a non-linear so-

lution is available for 7 point correspondences). Given more than 8 correspondences a solution

can be determined using the least-squares method. This is the general principle of computing

the fundamental matrix.

Once a fundamental matrix is computed, it is simple to compute the individual camera
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(a) Objects of different size can appear the same depending on
their distance from the camera, if object size is not known.

(b) Different projections can appear identical with different fo-
cal lengths and principal points, if camera intrinsics are not
known.

Figure 2.13: Illustration of stereo reconstruction ambiguity, adapted from [11]

matrices (in their canonical form) from the fundamental matrix, up to a projective ambiguity as

shown in the figure 2.13. With a fundamental matrix and the computed camera matrices, it is

possible to reconstruct the 3D space via triangulation up to a projective ambiguity even without

calibrated cameras. By computing the fundamental matrix and extrating the rotation matrix R

and the camera matrices Kl and Kr, the stereo system is essentially calibrated.
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Figure 2.14: Adapting the two camera views into one viewing plane; adapted from [11]

2.3.2 Rectification

In an ideal stereo setup shown in the figure 2.9, the cameras are exactly aligned and all imper-

fections are abstracted away, so that the point correspondences can be computed optimally and

the depth component triangulated. In the practical reality, many of the assumptions required

for this model to be of use do not apply. Therefore additional steps must be applied which can

bring a real-world camera into a geometry resembling the ideal arrangement as shown in figure

2.14.

Lens distortions

One part to consider in rectification is that the cameras are usually not ideal pinhole cameras,

but use real lenses, which exhibit distortions that affect the projection of the images. Therefore,

the rectification step must also include an undistort step in order to remove the lens distortions

and bring the camera close to the pinhole model. The two common lens distortions which

are addressed in the rectification procedure are radial (as shown in figure 2.15) and tangential

distortion. The radial distortion arises from the fact that the lenses are usually, due to cost,

constructed from elements with spherical surfaces (which are less costly to manufacture), which

22



Stereo reconstruction

Figure 2.15: Radial distortion on a lens; adapted from [11]

introduces distortion the further the object is from the optical axis, as the optical characteristics

change towards the edge of the lens. The distortion is usually 0 at the optical center, and

increases towards the periphery. In practice it can be usually characterized by a Taylor series

expansion around r = 0, where r is the radius around the optical center of the lens. As f (r) = 0

for r = 0 it can be assumed that for the general form f (r) = a0 + a1r+ a2r2,+a3r3 + ..., a0 is

zero, considering only the even powers as the distortion model is symmetric around the optical

axis. With these constraints, the corrected image coordinates are defined as:

xcorrected = x(1+ f1r2,+ f2r4 + f3r6)

ycorrected = y(1+ f1r2,+ f2r4 + f3r6)

r =
√
(x− xc)2 +(y− yc)2

(2.44)

The tangential distortion is, on the other hand, a result of the assembly of the entire camera

system, as it is a result of a lens not being exactly parallel to the imaging plane. The tangential

distortion can be corrected through following equations[11]:

xcorrected = x+(2p1y+ p2(r2 +2x2)

ycorrected = y+(p1(r2 +2y2)+2p2x)

r =
√

(x− xc)2 +(y− yc)2

(2.45)

The distortion effects for an actual lens/camera are shown in figure 2.16

Stereo rectification

After correcting for the individual image distortions, the goal of stereo rectification is to mathe-

matically align the two camera views into one viewing plane so that the pixel rows between the

cameras are aligned with the epipolar lines and perfectly aligned with each other. This allows

for the stereo correspondence algorithm to be able to search for correspondences constrained
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(a) Radial distortion for an actual lens. (b) Tangential distortion for an actual lens.

Figure 2.16: Example of actual lens distortion maps, adapted from [11]

only to one image row[11], which increases robustness and reduces the computational load.

As the epipoles are the intersection point of all epipolar lines of their respective cameras this

essentially means that the epipoles are mapped to infinity by the transformation which rectifies

the images. This is the foundation of Hartley’s algorithm[13],[10][11] which can yield uncali-

brated stereo using only the fundamental matrix.

Hartley’s algorithm attempts to find homographies that map the epipoles to infinity while min-

imizing the computed disparities between two images. This bypasses the need to compute

the camera intrinsics for the cameras, as this information is implicitly contained in the point

matches. Therefore, with a computed fundamental matrix, which can be computed using 8 or

more points, the stereo system can be calibrated and rectified. While the advantage is the ability

to work simply upon matching points in the scene, the disadvantage is the inability to determine

scale. With a computed fundamental matrix F , the algorithm proceeds as follows:

1. using the fundamental matrix F , compute the epipoles via relations e⊤r F = 0 and Fel = 0

2. seek a homography Hr which will map the first epipole to the 2D homogenous point at

infinity (1,0,0)⊤.

3. Find the matching projective transformation Hl that minimizes the least-squares distance

∑
i

d(Hl · xi,Hr · x′i) (2.46)

4. Resample the left image according to the projective transformation Hl and the right image

according to the projective transformation Hr.

Hartley’s algorithm is an example of uncalibrated rectification which works up to a projec-

tive ambiguity as shown in figure 2.13. In order to obtain the actual distances, it is required

to work with calibrated cameras. Bouguet’s algorithm[11] is an example how to obtain cali-
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brated rectification. Given the rotation and translation (R, t) relating the two stereo images (and

combined in the essential matrix E), Bouguet’s algorithm attempts to minimize the amount of

change which the reprojection introduces into the images during rectification. The algorithm

achieves this by splitting the rotation matrix R into two matrices, one for each image (rl and rr,

respectively). As each camera rotates only half of the total rotation amount, their principal rays

are rotated parallel to the vector sum of their original direction. Such rotation makes a co-planar

alignment, but does not align the pixel rows. In order to compute the matrix Rrect that will map

the left camera’s epipole to infinity and align the epipolar lines horizontally, the process starts

with the unit-normalized direction of the epipole, which is directly along the translation vector

t, taking the principal point (cx,cy) as the origin:

~e1 =
t
‖t‖

(2.47)

The second vector must be orthogonal to the first, but is otherwise unconstrained. A direc-

tion orthogonal to the principal ray (along the image plane) is a good choice. To obtain the

orthogonal vector the normalized cross product between ~e1 and the principal ray is used.

~e2 =
1√

t2
x + t2

y

(−ty, tx,0)⊤ (2.48)

A third vector orthogonal to ~e1 and ~e2 is obtained using a cross product

~e3 = ~e1×~e2 (2.49)

Combining the three vectors in equations 2.47, 2.48 and 2.49 the matrix which maps the epipole

to infinity is obtained:

Rrect =


~e1
⊤

~e2
⊤

~e3
⊤

 (2.50)

The matrix Rrect rotates the left camera around the center of projection so that the epipolar lines

become horizontal and the epipoles are at infinity. The row alignment of the two cameras is

then achieved by setting the rotation matrices for left and right images to:

Rl = Rrect · rl

Rr = Rrect · rr

(2.51)
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Additionally, the rectified camera matrices are computed:

Pl = Krect,l ·P′l =


frect,l αl cx,l

0 fy,l cy,l

0 0 1




1 0 0 0

0 1 0 0

0 0 1 0



Pr = Krect,r ·P′r =


frect,r αr cx,r

0 fy,r cy,r

0 0 1




1 0 0 tx

0 1 0 0

0 0 1 0



(2.52)

The projection matrices project a 3D point in homogeneous coordinates to a 2D point in

homogeneous coordinates as follows:

P ·



X

Y

Z

1


=


x

y

w

 (2.53)

where the screen coordinates can be calculated as (xs,ys) = (x/w,y/w).

Points in two dimensions can also be reprojected into 3D given their screen coordinates and

the camera intrinsics matrix. The reprojection matrix is:

Q =



1 0 0 −cx

0 1 0 −cy

0 0 0 f

0 0 − 1
tx

cx−c′x
tx


(2.54)

The parameters are here all from the left image, except c′x which is the principal point x-

coordinate in the right image. If the cameras are coplanar and the principal rays intersect at

infinity, the term in the fourth column and fourth row is zero.

Finally, with the rectified images, the 3D space can be reconstructed with known disparities.

With a two-dimensional homogeneous point and its associated disparity d, it is possible to
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project the point into three dimensions using:

Q ·



x

y

d

1


=



X

Y

Z

W


(2.55)

Many other techniques have been proposed for camera calibration and rectification, such as

[14] and [15]. An example of a stereo pair before and after rectification can be seen in Figure

2.17.

(a) Original stereo image pair

(b) Rectified stereo image pair

Figure 2.17: Illustration of stereo epipolar rectification, adapted from [14]
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2.4 Closure

In this chapter an overview of the overall geometric problem of 3D reconstruction is presented.

Only the essential terms and topics have been covered. More information can be found in

relevant articles and textbooks [13], [10], [2], [11]. Finally, it was shown that stereo image

pairs which have undergone epipolar rectification represent the best foundation for disparity

computation given that they constrain the search problem to individual image rows. In this

thesis, the assumption for all algorithms will be that the input images are properly rectified

using the principles outlined in this chapter.
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Chapter 3

Three-dimensional recursive search

3.1 Motion estimation

The problem of finding visual correspondences occurs frequently in digital image and video

processing, applied in areas ranging from consumer electronics to machine vision. For two

images of the same resolution, the goal is to establish a map of areas within a source image

which are similar to areas within a reference image, and assign a vector map which points from

the position of each defined area within the source image to the position of the corresponding

area within the reference image. When this mapping technique is applied to a sequence of

images, the resulting pattern of vectors is called the optical flow[4], and is used extensively in

image processing, from visual effects to robotic vision. The optical flow provides information

about the motion of pixels (and objects) within a visual scene as seen in Figure 3.1.

Estimating (and compensating for) the motion in a sequence of images is a technique com-

monly applied within video codecs such as MPEG-2 or MPEG-4.[5] Apart from estimating

motion, the optical flow techniques can be applied to stereo images to provide a disparity map

or a depth map, where the vectors estimate the distances (disparities) of the corresponding

blocks in two stereo images, which are directly proportional to the depth of objects within a

Figure 3.1: The optical flow within a sequence of images. From left to right: first image in a sequence,
second image in a sequence, computed motion vectors. Adapted from [4]
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T = n+1

T = n

T = n+1.5 - interpolated

Figure 3.2: Various applications of optical flow; Left: disparity estimation; Stereo images, detail and
disparity map. Right: motion estimation and motion interpolation.

three-dimensional scene.

While many algorithms and techniques for the computation of the optical flow exist, a con-

siderable amount of them are neither suitable nor easily implementable within an embedded

computer or a real-time system. One of the more demanding embedded applications is the

frame rate conversion in consumer televisions, where the high definition video received at 25

or 50 frames per second (fps) is up-converted to 100, 200, or 400 fps in modern televisions.

To achieve this, the image processor in the television must compute the optical flow of a high-

definition image at up to 60 frames per second, providing a motion flow map for each pair of

frames, which then allows the interpolation of missing frames, yielding the required frame rate,

as illustrated in 3.2. The constraints of consumer electronics demand that the algorithm is as

simple as possible in order for it to operate within the cost and power constraints.

the 3-Dimensional Recursive Search algorithm (3DRS)[6] is one of the first affordable and

widely deployed motion estimators in consumer electronics devices. The 3DRS algorithm was

first developed by Gerard De Haan and Henk Huijgen at the Philips Research Laboratories in

1989 and has subsequently gained wide adoption in motion estimation for frame rate conversion

due to its simplicity, speed, and the ability to estimate true motion within the image sequence.
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Figure 3.3: An illustration of block matching. Left: Source image divided in blocks. Right: reference
image with multiple matching candidates.

3.2 Description

3.2.1 Overview

The 3DRS algorithm is a block-matching algorithm; the input source image is divided in blocks,

for each of which the location of a best-matching block is searched in the reference image. In

case of motion (or disparity), the best-matching block will be located at a different spatial posi-

tion in the reference image than in the source image. To each of the blocks, a two-dimensional

vector defining the distance between the original block position and the matching block position

is assigned, as shown in Figure 3.3. This vector is called the motion vector. The map of vectors

for all of the image blocks is the optical (or motion) flow of the image.

The blocks are matched through a matching cost function, which provides the measure of

similarity for the matched blocks. The most common matching functions used are the sum of

absolute differences (SAD) or the sum of squared differences (SSD), as they are simple and eas-

ily implementable. Other matching functions, such as the normalized cross-correlation(NCC)

are also used for some applications, although it is significantly more complex than the afore-

mentioned two. Finding the proper matching block involves finding the minimum value of

the matching cost function. To find the minimum, an optimization method is usually applied,

however the optimization can be a computationally intensive process, with many steps and so-

lution candidates to be evaluated, which makes the implementation prohibitive for the limited

resources of an embedded system. The 3DRS algorithm reduces the number of required candi-

date blocks (or candidate vectors) by making the following two assumptions:

1. Objects are larger than blocks.

2. Objects have inertia.

As shown in Figure 3.4, the objects in question are the features in the actual image, the

movement (or disparity) of which is being estimated. By stating that the objects are "larger

than blocks", it is being assumed that the vectors of the neighboring blocks provide a good
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Frame n to n+1 Frame n Frame n+1 to n+2

Figure 3.4: An illustration of 3DRS assumptions. On the left, an object is mapped to multiple blocks in
the image. On the right, the progress of motion over multiple frames is shown, illustrating the concept
of inertia in the image.

predictor, or assumption, about the block being estimated. By stating that objects "have inertia",

an assumption is made that, in a running sequence of images, a temporal predecessor, meaning a

previously estimated motion vector, is also a good candidate for the new vector.[16] By applying

these assumptions to the estimation process, it is possible to significantly reduce the number of

candidates evaluated to find the best-matching block vector, greatly speeding up the algorithm

execution. However, by using only the available vectors, the algorithm would not yield good

results, as it is required to evaluate alternate solutions, and account for changes which appear

in the image sequence, such as appearing objects or acceleration. To account for this, update

vectors are added to a subset of selected predictors. The update vector modifies the existing

predictor value in order to try out a different solution. The update vectors can be generated

based on a random distribution, but usually they are selected from a predefined set of update

vectors. An example of the update vector set is:

Uv =


 ±2k

0

 ,

 0

±2k


 k = 0,1,2,3, ...,kmax (3.1)

The variation introduced by the update vectors ensures that the algorithm will progress towards

a solution regardless of the initial conditions, especially in the typical initial case where the

vector field contains only zero vectors.

For each block, 3DRS selects the output motion vector from from a candidate vector set

that is based on prediction vectors from a spatio-temporal neighborhood, with the addition of

updates in order to evaluate alternate solutions, as seen in Figure 3.5. For a block at a given

location, the matching cost function is evaluated for each predictor, and the predictor with the

best matching cost is selected (in a winner-take-all manner) and assigned as the new block

vector at the given location. The important takeaway here is that this procedure is performed
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(-1,0) (0,0) (1,0)

(-1,-1) (0,-1) (1,-1)

(-1,1) (0,1) (1,1)

+ +

+ +

Figure 3.5: The spatio-temporal neighborhood used in the 3DRS estimation. The vector for the block at
(0,0) is currently being estimated. Vectors for the blocks at (-1,-1), (0,-1), (1,-1) and (-1,0) have already
been estimated for this image. The remainder of the blocks used are from a previous estimation, making
them temporal predictors. The predictors coming from the blocks marked with a ’+’ are additionally
modified with update vectors.

sequentially for every block and location in the image. The newly estimated value, which is

assigned to the current block location, also becomes a part of the candidate set for the next

location, directly influencing the estimate for the next location.

The order in which the block locations are evaluated is defined by the scanning direction.

The most common order is from top-left to bottom-right, with each line beginning on the left.

This order defines which of the predictors are spatial, and which have also a temporal compo-

nent, as seen in Figure 3.5. It also defines the direction in which the newly estimated, "good"

values propagate within the image. If a good estimate is found at the bottom of the image, it

will require multiple iterations before it propagates to the top. To improve the propagation of

estimates evenly throughout the image, it is beneficial to vary the scanning direction, as shown

in Figure 3.6 One example is to change the scanning order from bottom-right to top-left on

each new image, another one is to alternate the scanning direction (from left-to-right to right-to

left and vice versa) for each line, which is called boustrophedonic scanning, or, more simply,

meandering. Combining both of the approaches yields propagation of estimates in all four di-

rections, helping to achieve the quick spread of good estimates throughout the image. For the

correct estimates to propagate even faster, multiple scans can be done for one image, alternating

the direction and the meander of the scan on each pass.

3.2.2 Elaboration

The 3DRS algorithm works by analyzing the blocks in two images:

∙ The source image IS

∙ The reference image IR

as shown in Fig.3.7.
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(a) (b) (c)

Figure 3.6: Various scanning orders for 3DRS, shown in time progression from the upper to the
lower image; (a): Top to bottom, left to right; (b): Bottom to top, Right to left; (c): Boustrophedo-
nic/meandering. The darker areas illustrate the progression of current estimates throughout the image.

dij

x

y {

}
n

n

M

N

i

j

pij

x

y

pij

IS IR

Figure 3.7: 3DRS image space and coordinate system

34



Three-dimensional recursive search

A cartesian coordinate system is defined on each image with the origin in the upper left

corner and the coordinates (0,0) pointing to the upper left pixel in the image, as shown in

Figure 3.7 The x is the horizontal axis and the y is the vertical axis, with values increasing

towards the right and bottom, respectively.

The source image IS is divided into a rectangular grid of M×N blocks of n× n pixels as

shown in the figure. For each block Bi j, i denotes the row index and j denotes the column index

of the block. A motion vector ~di j is assigned to each block.

The pixel position vector ~pi j for each block in IS is defined as

~pi j = n ·

 i

j

 (3.2)

This vector points from the origin to the the upper-left pixel of each block.

The 3DRS algorithm consists of the following steps:

1. For each block Bi j in IS, form a set of predictors:

P =



~di j

~di+k j

~di j+l

~di+k j+l +~uv

k =−1,1; l =−1,1 (3.3)

In eq. 3.3, ~uv is the update vector, and a new one is selected either randomly of from a

predefined set, for each of the predictors it is applied to.

2. Evaluate the matching cost for each of the predictors, and assign to ~di j the predictor with

the minimum matching cost.

~di j = arg min
~dP∈P

(MC(~pi j,~pi j + ~dP)) (3.4)

where MC(~s,~r) is the aggregated matching cost for the compared blocks.

MC(~s,~r) =
n−1

∑
y=0

n−1

∑
x=0

C(IS(~s+

 x

y

), IR(~r+

 x

y

)) (3.5)

3. Repeat the previous two steps for every block in the image based on the selected scanning

direction.
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3.2.3 Enhancements

The basic algorithm provides solid performance in the real-time generation of motion maps.

However, numerous improvements have been made to the original algorithm to enhance its per-

formance. An important characteristic is the quality of the output, where the goal is to obtain

the highest possible quality of the motion vectors in the least amount of algorithm passes (ide-

ally, only a single pass). The quality of the output is defined by how well the obtained motion

vectors match the true motion within the scene. As the motion vectors are obtained from a finite

predictor set, it can be argued that not every predictor within the set has the same quality. The

spatial predictors obtained in the same round are generally considered reliable, as they are the

result of the most recent evaluation. However, the temporal predecessors have been calculated

in the previous frame and have a lesser chance of corresponding to the actual situation, while

they still may be good predictors. The updated predictors could be considered even less reliable,

as they are a result of a predictor combined with a nonpredictable update, which might lead to a

better solution, or, instead, push the algorithm in a suboptimal solution. It has been shown that

these differences, although subtle, do affect the final output of the algorithm.

To account for these differences, a concept of penalties is introduced into the 3DRS algo-

rithm. A penalty is a value which is added to the calculated cost MC for a given predictor
~di j. The value is shared for all predictors of a certain reliability - for example, all spatial non-

updated predictors calculated in the current round are not penalized; all temporal predecessors

are penalized with a shared value which can be called temporal penalty - and all updated pre-

dictors (temporal or not) are additionally penalized with an additional, higher value called the

update penalty. The matching process now proceeds to find a minimum value of the matching

cost, additionaly weighed with the penalty value wi j assigned to the predictor.

~di j = arg min
~dP∈P

(MC(~pi j,~pi j + ~dP)+w~dP
) (3.6)

Where the penalty values wi j are defined as follows:

w~dP
= w~di+k, j+l

=



0, (k, l) = (−1,0),(0,−1)

wt , (k, l) = (0,1),(1,0),(0,0)

wu, (k, l) = (−1,−1),(−1,1)

wt +wu, (k, l) = (1,−1),(1,1)

(3.7)

It is to be noted that this description is valid only in case of top-to-bottom, left to right

scanning direction. Other scanning directions require different assignment of temporal penalties

depending on which values are newly calculated and which are the temporal predecessors.

The penalty values are usually selected empirically depending on the implementation details

36



Three-dimensional recursive search

and assessed quality of the motion vectors obtained. In one reference implementation, for 16-bit

grayscale image values, it has been determined that a penalty of wt=128 per pixel in a block and

wu=512 per pixel in a block (the values added to the matching cost are further multiplied by the

number of pixels in the matched block) produces good results.

Another enhancement to 3DRS addresses the problem of convergence, which is the process

in which the 3DRS vectors change from the current state to obtain the next good state. Depend-

ing on the size and members of the update set, it may take several blocks, iterations, or even

frames before a vector converges from the current value to the one corresponding to the actual

value, if it reaches the proper value at all. A greater motion vector may take several iterations to

converge to zero, and vice versa. To enhance convergence speed, two enhancements, which in-

volve the addition of new predictors, have been proposed[5]. To accelerate convergence towards

a greater value, a predictor is added which results from a parametric model of the global motion.

Good results are, however, obtained only when the global motion is an affine transform, such

as zoom or rotation. Another, and more useful, enhancement for convergence is the inclusion

of the zero vector~0 in the predictor set for all blocks. The zero vector provides two advantages:

first, stationary areas appear in video sequences and the zero vector guarantees that the vector

estimated for stationary areas will be exactly zero; second, having a zero vector ensures that the

3DRS algorithm does not need multiple iterations to converge from a much larger vector to zero

if necessary. The convergence speed is generally affected by the set of update vectors. Larger

vectors may bring faster updates, but generally introduce substantial noise in the vector field,

which is not desirable in the common applications of 3DRS.

3.2.4 Properties

The properties discussed so far have introduced the 3DRS algorithm as an efficient way to

calculate motion vectors in image sequences. 3DRS is not the only algorithm available with

these capabilities, although its simplicity and efficiency have resulted in a wide employment of

3DRS in practical systems. However, an additional quality which provides a distinction from the

majority of motion estimators is that 3DRS provides true motion estimation. A wide selection

of motion estimation algorithms initially developed for motion-compensated coding, such as

the Full search block matching algorithm, aims to obtain minimal residue, that is, minimize

the residual signal obtained by subtracting the two frames using the computed displacement

vectors. This is, however, unsuitable for purposes such as motion interpolation and disparity

estimation, where the accurate displacement of objects is desired. 3DRS, with its underlying

assumptions, provides the true motion estimation within a scene, which makes it highly usable

for the aforementioned applications such as motion interpolation or disparity estimation.
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(a) (b)

Figure 3.8: True motion estimation. The image (a) shows the frame 25 of the foreman sequence with
motion estimated using the full block search. Image (b) shows the result of the 3DRS estimation for the
same frame. Adapted from [5]

3.3 Implementation

Due to significantly reduced computational complexity in comparison to other motion estima-

tion algorithms, such as Phase Plane Correlation [17], the 3DRS algorithm has been widely

deployed in the areas of motion estimation and motion compensated video processing (de-

interlacing and frame rate conversion).

3.3.1 Hardware

For the most typical applications, such as the motion estimation required to guide the frame

interpolation in high definition televisions, the 3DRS algorithm is usually implemented in hard-

ware, usually as a component of a larger TV system implemented in a VLSI integrated circuit,

or ASIC[7]. 3DRS is particularly suited for embedded hardware implementations due to the

simple logic and a reasonably small number of candidates to evaluate per block, which can be

evaluated in constant time per block, yielding good predictability of the execution time. The

most computationally challenging part of the algorithm is the computation of the Sum of Ab-

solute Differences (SAD), which can be efficiently parallelized on the block level, making it

especially suitable for hardware implementations. However, the usual problem in the VLSI im-

plementations is the size and cost of the embedded memory required to store the source and the

reference images. For this reason an external memory device such as an SDRAM chip (or mul-

tiple chips) is used to buffer the images. Alternatively, an on-chip compressed memory may be

used. Both approaches, however, add substantial overhead and delays to random accesses to the

image memory. SDRAM chips have a large overhead per access, which is usually compensated

by transferring data in long bursts to reduce the percentage of overhead time vs. the active data
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Figure 3.9: (a)Typical 3DRS Hardware architecture. A persistent vector memory is read out for predic-
tors which are selectively updated, analyzed in the SAD, and the cost returned is penalized and matched
to the vector, selected if best, and in the end written back to the vector memory. (b) Extension of archi-
tecture required for sub-pixel precise estimation.

time. Compressed memories can add an unpredictable delay in accessing the memory, depend-

ing on the compression algorithm. As the locations of the pixels used in the SAD calculation

are defined by the vector being tested, random delays in accessing the individual pixel blocks

would severely affect the algorithm’s performance. The solution to this problem is to store a

smaller memory buffer on-chip, which allows a constant-time, parallel access for multiple pix-

els in a block, providing good performance of the evaluation step. This, however, comes at an

expense of reducing the search range within the confines obtainable by the available on-chip

buffer size.

A typical hardware implementation architecture is shown in Figure 3.9. An additional ad-

vantage of the hardware implementation is that it can be easily adapted, at little hardware and

almost no time cost, to work with sub-pixel precision and generate smooth motion maps, which

would significantly degrade the performance of a software solution.

3.3.2 Software

The software implementation of 3DRS is straightforward, as the vector selection and update

steps have constant complexity. The most challenging part in the implementation is the com-

putation of the SAD cost function, as for a given block size N it involves N2 subtractions and

absolute calculations, repeated for every predictor at every block of the image. The complexity

thus obtained is O((m×n)2), for the image of m×n pixels.

A brute force solution to this problem which is available in the modern processors is to

use the SIMD-style operations provided by the multimedia instruction sets which have been

introduced to CPU architectures to shorten the computation time of multimedia algorithms [18]

such as motion estimation. As the SAD is a common operation in video coding and motion
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estimation, it is even directly implemented on some architectures. For example, on all of the

current x86 or x64 processors, the MMX instruction set contains the PSADBW instruction,

or packed sum of absolute differences, which computes the sum of absolute differences for

8 bytes in a single cycle. Multimedia instruction sets have also gained implementations in

the embedded space with the newer ARM architectures and the Neon multimedia instruction

set, which enables SIMD-style computation on embedded CPU devices. With modern multi-

core architectures, another approach to accelerating the 3DRS execution is to parallelize the

algorithm to execute it on multiple CPU cores in order to decrease the execution time. One

of the primary challenges in such approaches is maintaining the estimation and convergence

quality through the implementation of the meandering scan [19]
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Related work

4.1 Stereo correspondence

4.1.1 Classic methods

A popular taxonomy of methods for computing stereo correspondences was given in [12]. The

depth information is obtained by computing disparity, which is the distance between the corre-

sponding features in the stereo image pairs being evaluated. The taxonomy defines the 4 major

components of stereo matching methods:

1. the computation of the matching cost

2. matching cost aggregation

3. disparity computation

4. disparity refinement

In terms of the disparity computation, the methods can be broadly categorized as local, which

compute an optimum matching cost value for each pixel within a local region (also known as a

"Winner-take-all" approach), and global, which make smoothness assumptions about the scene

and then attempt to minimize a global energy function based on it. While it has been shown

that the global methods based on Markov Random Fields, such as Graph cuts [20] or Belief

Propagation [21] yield the best quality of the results[22], they are also typically very slow and

computationally intensive [23]. The local methods, while faster and much more suitable for a

compact or an embedded implementation, are still inferior to global methods in terms of result

accuracy. Furthermore, even if they are less computationally intensive than the global meth-

ods, local methods are still sufficiently challenging for implementation in embedded systems in

cases where real-time performance is required. A separate class of global optimization meth-

ods based on Dynamic programming [24], especially the hybrid methods based on Semi-global

matching [25], which have been found to provide a compromise between the output quality and

computation complexity, have been much researched and widely deployed.
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4.1.2 Deep Learning

Recently, approaches employing convolutional neural networks (CNNs) and deep learning have

been the focus of stereo matching research. These approaches have been shown to significantly

improve the results of stereo estimation algorithms [26]. The approaches in this area can be

roughly divided into several categories. In matching cost learning, where the CNN is employed

to learn the matching cost instead of using hand-crafted methods.[27]. In these approaches, the

disparity computation step is still based on classical methods, such as Semi-global matching.

Regularity learning applies the piece-wise smoothness assumption as a constraint to the learn-

ing process[28] or employing semantic segmentation as a guide for stereo correspondence [29].

End to end disparity learning approaches directly infer the disparity map from stereo pairs [30],

or compute the dense optical flow [31] [32]. Even with the advent and the superior results of

these methods, several classes of new problems have emerged. The difficulty of finding the

correct correspondence at inherently ill-posed regions such as occlusions, repeated patterns or

texture-less regions remains a challenge [33]. For end-to-end networks, it is difficult to general-

ize a pre-trained deep stereo model in a new, different domain [34], as significant performance

degradation is observed even in state-of-the-art methods such as [35]. In most cases, training is

performed with synthetic datasets [30], and a re-training using samples from the target domain

with ground truths is used to fine-tune the network. The impracticality of obtaining and main-

taining such samples, as well as maintaining a substantially large training data set, remains a

challenge in real-world applications of deep learning based stereo reconstruction.

4.2 Winner-Take-All optimization

4.2.1 Description

In local approaches, correlation between intensity values inside a matching window N(p) as-

signed to a reference pixel p is analyzed, based on the assumption that the pixels within the

matching window have similar disparities. The matching cost is aggregated by summing or

averaging over a support region in the DSI C(x,y,d) as shown in Figure 4.1, where a support

region can either be two-dimensional in x−y space at a fixed disparity, favouring fronto-parallel

surfaces, or three-dimensional in x−y−d space, supporting also slanted surfaces[2]. The gener-

alized procedure of the WTA optimization[36] of a left disparity map in the case where absolute

difference is used is as follows. For each of the disparity hypotheses, a per pixel cost e(p,d)

is calculated by using the image pair where the right image is shifted by the disparity d. An

aggregated cost E(p,d) is then computed via a summation of the per-pixel cost multiplied by

a weighting function w(p,q). The WTA optimization is finally performed for seeking the best
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Figure 4.1: Example of a disparity space image. (a) Left image of the stereo pair "Tsukuba". (b)
The disparity ground truth. (c)-(e) x− y slices of the DSI for the stereo pair "Tsukuba" at disparities
d = 10,16,21, respectively. (f) An x−d slice for y = 151 (the dashed line in (b)). Matching regions are
shown with a darker tone (intensity corresponding to matching cost). Adapted from [2]
.

disparity among all of the hypotheses:

e(p,d) = min(|Il(x,y)− Ir(x−d,y)|,σ)

E(p,d) =

∑
q∈N(p)

w(p,q)e(q,d)

∑
q∈N(p)

w(p,q)

d(p) = arg min
d∈[0,...,D−1]

E(p,d)

(4.1)

where Il and Ir are the left and the right images of the stereo pair. The per-pixel cost is

additionally truncated with a threshold σ to limit the influence of outliers on the dissimilarity

measure.

4.2.2 Related work

Many research efforts have been directed at improving the WTA algorithm in terms of speed

and accuracy. Diverse matching cost functions which bring accuracy improvements at varying

computational loads have been explored. However, the cost aggregation step remains the most

important and the most time-consuming part of the calculation in the local approaches. There-

fore, most of the efforts focus on defining the weighting function w(p,q) which defines how

the costs are aggregated within the window. The basic weighting function is a square window

[37] or box filter where all of the neighbouring pixels are equally weighted. However, other

approaches to aggregation have been devised to improve the matching accuracy, with the goal

to match actual image features rather than raw pixels. Shiftable windows[38] [12] as shown in

43



Related work

(a) (b) (c)

Figure 4.2: Shiftable window. (a) Multiple possible configurations for a 5x5 aggregation window, with
the actual evaluated pixel highlighted. (b) The area in which the windows are evaluated, centered at the
pixel being evaluated. (c) The effect of shiftable windows: in the top image, a centered window for a
pixel located at the border includes multiple pixels across the object border (a discontinuity in disparity)
which may lead to a bad match. In the bottom image, a window shifted inwards from the object’s edge
matches only the pixels belonging to the same object as the evaluated pixel, which yields a better match.

Figure 4.3: Cost aggregation examples, with weight for included pixels depicted as a gray scale between
0 (black) and 1 (white). (a) Selected matching points. (b)Variable windows. (c) Adaptive weights. (d)
Segmentation based weights. Adapted from [2] with samples from [37].

Figure 4.2 aim to reduce the disparity noise at occlusion or border regions by evaluating multi-

ple windows anchored at different points and selecting the one with the minimum cost for the

evaluation, attempting to avoid discontinuity regions.

Similarly, windows with adaptive sizes [39] aim to address the fact that large windows

are more efficient in low texture areas but tend to blur disparity images, whereas small win-

dows yield more accurate disparity boundaries but generate noise in low texture areas. For

each match, a separate window size is applied for optimum effect. Other research approaches

have tried to implement an even more specific window configuration, such as a photometric

similarity-based weighting function similar to a bilateral filter [40] or an image color segmen-

tation based weighting function [41], which are used to obtain the best possible alignment of

the support region and the object in the image while retaining sufficient information to resolve

a match. Such support regions are shown in Figure 4.3.
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Figure 4.4: Integral images. (a) In an integral image, each element contains the sum of all of the
elements of the original image which is contained in the rectangle S. (b) Any area sum can be calculated
in constant time using only the four corner points of the rectangle.

For the classic square window and adaptive windows, a noteworthy enhancement is the use

of integral images[39], which greatly accelerates the algorithm’s execution in comparison with

the direct aggregation. An integral image, or summed area table, is an image in which each

element contains a sum of all elements in the original image bound by the rectangle which

that element closes with the image’s origin, as shown in figure 4.4 a) and computed with the

formula:

fi, j =
i

∑
k=0

j

∑
l=0

gk,l (4.2)

where gk,l are pixels of the original image. Another desirable property of the integral image is

that it can be computed incrementally with a constant computation cost per each pixel, yielding

the complexity of O(M×N).

fi, j = fi−1, j + fi, j−1− fi−1, j−1 +gi, j (4.3)

The greatest advantage brought by an integral image is that for any sub-block within the image,

it is possible to compute the sum of all pixels in the block in constant time. If we define

a rectangle R with two corner points, (a,b) and (c,d), the sum S′ of pixels gi, j within that

rectangle as shown in figure 4.4 (b) can be computed as:

S =
c

∑
i=a

d

∑
j=b

gi, j = fc,d− fa,d− fc,b + fa,b (4.4)

A great part of the computational complexity, however, remains in the requirement to test

all of the disparity hypotheses d ∈ [0, ...,D−1] for each pixel p.
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4.3 Dynamic Programming

Dynamic programming (DP), introduced for edge-based stereo estimation with one of the first

methods by Ohta and Kanade [42], has been identified as a sufficiently fast global approach to

solving the stereo matching problem, used in real-time solutions [24].

4.3.1 Dynamic Programming algorithm

Global stereo matching approaches aim to minimize a global energy function,

E(d) = Edata(d)+λEsmooth(d) (4.5)

by establishing the disparity function d which minimizes E. In the equation 4.5, the data term

Edata accounts for the matching cost of the image pair, whereas the smoothness term Esmooth

accounts for the desired smoothness assumptions about the disparity image. Edata can be defined

as

Edata(d) = ∑
(x,y)

C(x,y,d(x,y)), (4.6)

using the disparity space formulation, where C is the matching cost disparity space image (DSI).

The smoothness term is usually restricted to measurement of the disparities between neighbor-

ing pixels

Esmooth(d) = ∑
(x,y)

ρ(d(x,y)−d(x+1,y))+ρ(d(x,y)−d(x,y+1)), (4.7)

and assigns a penalty to the discontinuities in the disparity map. The 2D optimization of eq.

(4.5) has been shown to be NP-hard [12] for common classes of smoothness functions. How-

ever, the 1-dimensional case can be computed in polynomial time with DP, providing a global

minimum for individual scanlines.

The algorithm operates under assumptions of uniqueness - that a single feature in the left

image maps to a single feature in the right image, and monotonicity (also referred to as the

Ordering constraint [43]), that the relative ordering of pixels on a scanline remains the same

between the two views. Based on those assumptions, the algorithm computes the disparity by

calculating the minimum matching cost path through the DSI (x,disparity) image for a pair

of scanlines. The calculation of the shortest path is performed within the DSI, as shown in

figure 4.5. Occlusions are explicitly handled by assigning a group of pixels from one image to

a single pixel in another image, which corresponds to a discontinuity or a gap in the optimum

path. The path which satisfies the ordering constraint traverses the DSI using three principal

moves: a match, which moves in the x direction keeping a constant disparity, a vertical oc-
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Figure 4.5: Computed disparity map and the corresponding DSI matching cost matrix structure. The
computed path for the disparity scan-line highlighted in the left image is traced in white. The position x
is assigned to the horizontal axis, while the disparity d is assigned to the vertical axis. The values in the
structure represent the pairwise matching costs and are shown using a Jet color map.

x

d

Matched disparity

Left occlusion

Right occlusion

Figure 4.6: A path through a disparity space image DSI(x,d) which satisfies the ordering constraint is
composed of three principal moves: diagonal occlusion, vertical occlusion, and horizontal match. Which
move is effected at a given pixel is determined by the computing the minimum matching cost, which
depends on the previously computed cost and the match or occlusion cost. This relationship can be
optimized through dynamic programming.

clusion corresponding to a right image occlusion and decreasing the disparity, and a diagonal

occlusion which moves both in the x direction and increases the disparity, corresponding to a

left occlusion, as shown in figure 4.6.

The DSI is generated by the Algorithm 1, in a common first forward pass of DP approaches

which calculates the cost optimum. To obtain the actual disparities, the Algorithm 2 backtracks

through the computed DSI along the optimum path, outputting a resultant pixel of the dense

disparity map at each step.
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Algorithm 1 DP DSI computation
Require: DSI image with the size Xmax,dmax +1
Require: Match image with the size Xmax,dmax +1

procedure COMPUTEDSI(Il, Ir,y,DSI,Match)
for i = 0 to Xmax−1 do

dhigh← i < dmax ? i : dmax;
DSI(i,0)← i*OccCost;
DSI(i,dhigh)← i*OccCost;

end for
for i = 0 to Xmax−1 do

dhigh← i < dmax ? i : dmax;
for j = dhigh to 1 do

DiagCost← DSI(i−1, j−1)+OccCost;
VertCost← DSI(i, j+1)+OccCost;
MatchCost← DSI(i−1, j)+C(Il(i,y), Ir(i− j,y));
MinCost← min(DiagCost,VertCost,MatchCost);
DSI(i, j)←MinCost
if MinCost = DiagCost then

Match(i, j)← DiagMove
else if MinCost =VertCost then

Match(i, j)←VertMove
else if MinCost = MatchCost then

Match(i, j)←MatchMove
end if

end for
end for

end procedure
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Algorithm 2 DP DSI backtracking
Require: Computed Match image with the size Xmax,dmax +1

procedure BACKTRACK(D,y,Match)
Dx← Dmax;
x← Xmax−1;
while x > 0 and Dx > 0 do

Move←Match(x,Dx);
if Move = DiagMove then

Handle Left Occlusion
x← x−1;
Dx← Dx−1;

else if Move =VertMove then
Handle Right Occlusion
Dx← Dx +1;

else if Move = MatchMove then
D(x,y)← Dx;
x← x−1;

end if
end while

end procedure

An important factor in the execution of Algorithm 1 is the OccCost parameter, or the occlu-

sion cost, which is the cost assigned to occluded pixels. It greatly impacts the output results of

the algorithm as it directly affects the decision whether the pixel is a match or occluded. The

described DP method is repeated for each scanline to obtain the complete disparity map.

4.3.2 Related work

This work focuses on a pixel-based stereo DP algorithm as described by Cox et al. [43] and

further expanded by Bobick and Intille [38] with the introduction of the Disparity Space Im-

age (DSI) concept and Ground Control Points (GCPs) [44]. Veksler [45] proposed the use of

tree-based structures for matching as opposed to scan-lines. Other tree-based methods were

proposed afterwards [46]. Real-time implementations have been explored with CPU [24] and

GPU [47] hardware. Coarse-to-fine DP approaches were also explored [48], as well as guided

approaches [49] Methods have also been defined to address the scanline inconsistencies. Some

of them include: using a tree-like structure which spans multiple scanlines [45], aggregating

the matching cost across scanlines [50], reusing calculated paths [24] or performing a second

DP pass in the vertical direction. While many research endeavors have tried to improve upon

the accuracy of DP-based methods, these approaches have generally yielded an increase in

computational complexity, which has been in turn addressed by high-performance hardware

architectures [47]. Semi-global matching [25] (SGM), widely used in many real-time and real-

world applications, makes extensive use of DP to compute the disparity for each pixel in the
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image by estimating the disparity for multiple paths intersecting for every pixel of the image.

4.4 Matching cost

The proper selection of a matching cost function is vital for all passive stereo correspondence

methods. In practice, the selected matching cost should provide the best possible matching

accuracy under radiometric variations of input images, such as exposure differences, vignetting,

varying lighting or noise [51]. In the hybrid approach, the matching cost quality is especially

important for the coarse 3DRS step, as its output constrains the minimum cost path search

area for the dense DP step. Evaluations [52] have shown that the Census [53] non-parametric

matching cost provides the overall best performance.

4.4.1 Sum of absolute differences (SAD)

The sum of absolute differences is the most commonly used cost function [51]. For two points

in images which are being matched, let Wi be a support area for cost computation. The cost

function calculates the difference of corresponding pixels and extracts the modulus, summing

all such collected values to produce a matching cost. For two images L and R, the matching cost

is computed with the equation

CSAD = ∑
(x,y)∈Wi

|R(x,y)−L(x+d,y)| (4.8)

A similar measurement is the sum of squared differences, where the squaring function is used

in place of the modulus.

CSSD = ∑
(x,y)

[R(x,y)−L(x+d,y)]2 (4.9)

4.4.2 Zero-mean sum of absolute differences (SSD)

For the zero-mean sum of absolute differences, let Li) be a mean value of all the pixels in the

accumulation window Wi in the left image, and Ri in the right image. The zero-mean sum of

absolute differences is defined as:

CZSAD = ∑
(x,y)∈Wi

|[R(x,y)−Ri]− [L(x+d,y)−Li+d]| (4.10)

4.4.3 Census transform

The Census transform [53] [52] encodes structure in each pixel by forming a neighbourhood

around each pixel p and defines a bit string C(p) where each bit corresponds to a pixel in
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the window around p. By comparing the pixel with the individual neighbors, a value of each

bit is defined whether the selected central pixel is greater than or less than the neighbor, as

denoted by equation 4.11. The bit string is then set to be the census-transformed value. The

cost dint is obtained by measuring the Hamming distance between the two pixels, which counts

the number of different bits between the two values as shown in eq. 4.12. As with the sum of

absolute differences, the matching cost can be aggregated in a support window.

C(p) = ⊗
q∈W

ξ (Ip, Iq)

ξ (Ip, Iq) =

1, i f Ip < Iq,

0,otherwise

(4.11)

dint = argmin
d

∑Hamming[Cl(p),Cr(p+d)] (4.12)

The SAD, ZSAD and Census matching cost have been evaluated with the 3DRS algorithm

to determine which one has the best characteristic in the implemented methods.
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Material and methods

5.1 3DRS Estimator

The 3DRS motion estimator is extremely applicable in coarse-to-fine hierarchical approaches

due to its short execution time and the ability to produce coarse disparity maps. The initial

assumption of many stereo matching methods is that the stereo image pairs have been previously

rectified to satisfy the epipolar constraint [12]. Under these conditions the matching can be

performed between image scanlines. Applied to the 3DRS estimator, this constraint removes

the need for the estimation of the y component of the vector. Furthermore, as the disparity

values, unlike motion vectors, are highly unlikely to be negative, the output of the disparity

estimation can be clipped to address only the positive values. A 3DRS estimator with the

described modifications is used as the initial step of two hybrid methods, one based on the

Winner-take-all (WTA), and one based on the Dynamic Programming (DP) method. Figure

5.1 shows the output of the 3DRS estimator. The estimates are largely correct, with spurious

outliers where the algorithm was not able to converge due to occlusions.

As the 3DRS algorithm will converge to a solution in constant time per image size, it can

(a) Left image of the stereo pair. (b) The 3DRS disparity map. (c) Ground truth disparities.

Figure 5.1: The result of the 3DRS disparity estimation. The estimator yields a coarse disparity map
with spurious outliers located mostly in occlusion areas. The disparities are colored using the Jet color
map.
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be used to narrow down the disparity space locally within an image, ensuring that the actual

disparity will be reached. It is to be expected that false positives or incorrect local optima

where the algorithm might become trapped, would also be avoided. To reduce the disparity

range, the idea is to re-apply the 3DRS assumption that objects are larger than blocks, and that

the local neighborhood can be used as a predictor of the actual disparity range. To each of

the predictors, a disparity range is assigned. These ranges are then combined to get the actual

disparity ranges to be evaluated with the dense disparity estimator per each block. In general,

this represents a local culling of the disparity space image.

For the purpose of obtaining the best possible disparity guidance out of the 3DRS motion

estimator, two major enhancements have been implemented. Originally defined on the sum

of absolute differences, the 3DRS algorithm was expanded with more capable matching costs

such as the Census cost. Additionally the capability was added to the 3DRS estimator to use

an arbitrary matching block size per each block in the image. This allows for smaller blocks

to be matched with larger support regions, yielding higher output quality (albeit at the cost of

decreased performance).

5.2 The hybrid 3DRS-WTA method

In the proposed hybrid 3DRS-WTA method [57], or 3DRS-guided-WTA (3GWTA), a coarse

analysis is performed first using the 3DRS algorithm, with the image divided into blocks. This

yields a coarse map of estimated disparities di j assigned to each of the blocks. For each block,

a disparity range to be tested using the WTA method is obtained by re-applying the 3DRS

assumption that the correspondence vectors of a block’s spatio-temporal neighborhood can be

good estimates of the final result. Based on the user-defined parameter r, an initial disparity

range is assigned to the estimated block and the blocks in its 8-neighborhood. Finally, a union

of individual disparity ranges of blocks within the 8-neighborhood is performed to obtain a list

of disparity hypotheses to be tested within the WTA optimization step.

The parameter r limits the range of disparity hypotheses evaluated per each block within the

8-neighborhood to [d− r, ...,d + r], where d is the result of the 3DRS disparity estimation for

each given block. In the optimum case where all of the 3DRS results in the 8-neighborhood are

equal and the ranges perfectly match, the total number of hypotheses to test is 2 * r+ 1, equal

to a single range. In the extremely unlikely worst case where the disparity ranges of within

the 8-neighborhood do not intersect, the total number of disparity hypotheses to be evaluated is

9* (2* r+1).

The hybrid 3DRS-WTA method is outlined in Algorithm 3.
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Algorithm 3 Coarse-to-fine WTA optimization
Require: r: integer > 0; . disparity range per block
Require: b: integer > 0; . 3DRS block size
Require: Il: image; . Left image
Require: Ir: image; . Right image
Require: Idc: array; . 3DRS coarse output
Require: Id: image; . Disparity image

3DRS(Il, Ir, Idc,b); . Compute rough 3DRS map
for all block disparities dci j ∈ Idc do

rct := Rectangle(i*b, j *b,(i+1)*b,( j+1)*b);
L = NewList;
for v =−1 to 1 do

for h =−1 to 1 do
if ValidBlock(i+h, j+ v) then

AddToList(L,dci+h, j+v)
end if

end for
end for
SortAscending(L)
dmin := dmax := 0;
for all dc in L do

dminn := dc− r;
dmaxn := dc+ r;
if dminn > dmax then

WTA(Il[rct], Ir,dmin,dmax, Id);
dmin := dminn;

end if
dmax := dmaxn;

end for
WTA(Il[rct], Ir,dmin,dmax, Id);

end for
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5.3 3DRS-guided Dynamic Programming (3GDP)

In the same manner as the 3GWTA algorithm, the 3GDP algorithm, proposed in [54], uses the

assumptions of the 3DRS algorithm to exploit the spatial neighbourhood of a coarse estimation

to cull the DSI space and reduce the computational effort required for optimization.

To compute the dense disparities from the coarse map the DP algorithm is applied. The

computational cost of the DP method is directly proportional to the range of disparities being

estimated. To reduce the computational cost, the coarse disparity map is used as a reference

for piece-wise limitation of the disparity range within the DSI, which is divided into segments

with width matching the width of the 3DRS blocks. Each segment has an assigned disparity

range (dmin
s ,dmax

s ), which can be determined from the coarse disparity value plus or minus a

range constant, an algorithm parameter. However, this does not account for the discontinuities

in the optimum matching path. The use of varying estimated values obtained from the coarse

disparity map, especially with the presence of unmatched outliers, may result in disconnected

ranges, which would effectively prevent proper DSI traversal and backtracking in the DP step

of the method. In order for the estimation to work, a fully end-to-end connected DSI structure

must be ensured.

To achieve this, the 3DRS assumption that the spatial neighborhood of the estimated block

provides a good predictor for that block is re-applied. By building the disparity range for a

particular segment based on the values of neighboring segments with an additional clearance

constant RO f f , it is ensured that each of the segments is connected to its neighboring segments

while retaining space for potential deviations from the coarse block disparity.

To generate a connected DSI, the dmin
s and dmax

s are computed for each segment as shown in

eq. 5.1.

dmin
s (x,y) = min(d3drs(x+ i,y+ j))−RO f f

dmax
s (x,y) = max(d3drs(x+ i,y+ j))+RO f f

i =−1,0,1

j =−1,0,1

(5.1)

The resultant segmented DSI is shown in Figure 5.2 (b). Using the segmented DSI, the

DP algorithm produces a dense disparity map. The comparison of the DP and 3GDP DSI

structures demonstrates the reduction of required computational effort provided by the coarse

3DRS disparities.
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(a) DP with the full disparity range. (b) 3DRS-guided DP.

Figure 5.2: DSI structures and computed paths for DP and 3DRS-guided-DP algorithms. Color-shaded
areas represent computed matching costs. The value of the cost is shown using the jet color map.
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Chapter 6

Results and discussion

6.1 Methodology

6.1.1 Evaluation

In the evaluation of the algorithm, two aspects of quality for the implemented methods were

measured. The first is the accuracy of the output results indicated by the percentage of incorrect

pixels as calculated by equation 6.1

B =
1
N ∑

(x,y)
(|dC(x,y)−dT (x,y)|> δD) (6.1)

where dC is the estimated disparity map, and dT is the ground truth disparity map[12]. The

threshold δD defines the accepted difference between a ground truth disparity and the computed

disparity. Within the evaluation presented in this thesis a value of δD = 1, as suggested in [12].

The second aspect is the algorithm run-time performance, indicated by the computation time,

which is measured by querying the system performance counters.

The methods were tested on reference images from the Middlebury set [22] [55]: “Tsukuba”,

“Venus”, “Teddy” and “Cones”, shown in the figure 6.1.

For the evaluation of computed disparities in comparison to the ground truth, three distinct

areas of interest are considered in the ground truths of the Middlebury evaluation:

∙ All pixels (All) - every pixel of the disparity image is evaluated, whether it is occluded or

not

∙ Non-occluded pixels (nonocc) - only the non-occluded pixels (with a certain match) are

evaluated.

∙ Discontinuity regions (disc) - only the pixels in the discontinuity (occlusion) areas are

evaluated.

The equation 6.1 for computing the percentage of incorrect pixels is expanded with a ground
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(a) Tsukuba - Left image (b) Tsukuba - Right image (c) Tsukuba - Ground truth

(d) Venus - Left image (e) Venus - Right image (f) Venus - Ground Truth

(g) Teddy - Left image (h) Teddy - Right image (i) Teddy - Ground Truth

(j) Cones - Left image (k) Cones - Right image (l) Cones - Ground Truth

Figure 6.1: Source images from the Middlebury set - Left image, right image, ground truth disparities.
The disparities are scaled to full range (0,255) and colored using the Jet color map. The stereo pair is
shown in color.

truth validity function Mgt(x,y).

B =

∑
(x,y)

(|dC(x,y)−dT (x,y)| ·Mgt(x,y)> δD)

∑
(x,y)

Mgt(x,y)
(6.2)
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(a) Tsukuba - Ground Truth (b) Tsukuba - Non-occluded pixels (c) Tsukuba - Discontinuities

(d) Venus - Ground Truth (e) Venus - Non-occluded pixels (f) Venus - Discontinuities

(g) Teddy - Ground Truth (h) Teddy - Non-occluded pixels (i) Teddy - Discontinuities

(j) Cones - Ground Truth (k) Cones - Non-occluded pixels (l) Cones - Discontinuities

Figure 6.2: Evaluation masks from the Middlebury set - Ground truth, non-occluded areas, discontinuity
areas. The masks are encoded as: white pixels - included, black and gray pixels - not included.

Where Mgt(x,y) is a mask image through which a pixel is included in the evaluation if the value

of Mgt is 1. For the 4 evaluation samples, the occlusion and discontinuity masks are shown in

figure 6.2. In the course of the evaluation, for each of the samples the tested method is used
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to obtain the disparity map, which is then evaluated using equation 6.2 for each of the defined

cases. The value of 6.1 is recorded for the three particular cases (all pixels, nonoccluded,

discontinuity areas).

6.1.2 Environment

The 3DRS, WTA, DP and the proposed hybrid methods (3GWTA, 3GDP) have been imple-

mented within StereoTest, a visual evaluation environment developed for the purpose of eval-

uating stereo algorithms. The motivation for designing a new simulation environment was to

reduce the dependency of the tested methods on external libraries as much as possible, with the

ultimate goal of developing a real-time hardware implementation for the tested methods. All

computation and image encoding is performed using integer and fixed-point arithmetic, with

integer parameters. The environment does not implement a sub-pixel disparity refinement step

after the optimization, as the goal of the evaluation was to compare the raw results of the dis-

parity computation methods. The environment is coded in C# and operates under Microsoft’s

.Net Framework. All methods operate on 8-bit grayscale images.

The measurements have been performed on a 64-bit desktop computer equipped with an

Intel Core i5-6600K processor and 32 gigabytes of available memory.

6.2 Results

6.2.1 3DRS results

With the behavior of Winner-take-all (WTA) and Dynamic Programming mostly well researched

in previous work, the measurement was focused on the properties of the 3DRS algorithm in or-

der to extract the parameters which would yield the highest quality guidance for the dense

estimation steps.

The relationship between the 3DRS block size and the computation time per image is shown

in Table 6.1 and Figure 6.3 . The Prep+Calc time involves the non-recurring steps in a 3DRS

computation, such as preparation of resources and input images (memory allocation, transfor-

mation of inputs where necessary), while the Calc time measures only the time required to

perform a single 3DRS pass, which is added for each iteration of 3DRS. The measurement was

performed for a single 3DRS pass, using the Census cost.

Another important property of the 3DRS algorithm which affects the guidance of the later

dense estimation step (WTA, DP) is convergence. Assuming that a low-confidence guidance

map, which exhibits a greater estimation error, will adversely affect the final results of the hybrid

method, establishes the goal to extract the greatest quality disparity map in the initial estimation

step. Therefore, the accuracy of the 3DRS-produced coarse disparity map depending on the
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Table 6.1: 3DRS execution time for various Middlebury set image sizes, measured in milliseconds, for
varying 3DRS block size.

Blocksize

Set Image size Action 1 2 3 4 5 6

Tsukuba
384x288 Prep+Calc 69,80 48,67 45,65 45,78 44,48 41,07

Calc 36,62 17,76 16,17 12,29 12,01 11,51

Teddy
450x375 Prep+Calc 107,43 74,54 69,46 68,43 66,80 63,42

Calc 58,21 27,08 25,46 19,71 18,21 17,77

Baby2
620x555 Prep+Calc 217,73 148,94 139,22 135,17 135,04 128,29

Calc 114,29 55,44 50,41 38,71 37,08 35,98

Blocksize

Set Image size Action 7 8 9 10 11 12

Tsukuba
384x288 Prep+Calc 44,21 42,55 44,25 44,19 44,59 42,70

Calc 11,39 10,94 11,70 11,64 11,57 10,96

Teddy
450x375 Prep+Calc 66,82 66,56 67,28 66,57 67,47 67,70

Calc 17,46 17,16 17,96 17,73 17,77 17,65

Baby2
620x555 Prep+Calc 131,99 129,74 133,78 132,25 134,26 132,37

Calc 35,29 35,13 36,96 36,24 36,36 35,52

Table 6.2: Accuracy, expressed as the percentage of incorrect pixels for the produced disparity maps
(lower is better) vs. the number of 3DRS passes (and the corresponding elapsed time). The time is
measured in milliseconds.

Number of Passes

Set Measure 1 2 3 4 5 6 7 8

Tsukuba
Time 42,75 54,88 65,86 78,78 90,39 103,13 116,83 127,64

Bad Pixels 22,46% 17,94% 17,64% 17,56% 18,07% 18,41% 19,09% 19,30%

Venus
Time 67,59 83,81 100,06 120,49 137,30 153,76 171,65 189,84

Bad Pixels 12,05% 4,43% 4,57% 4,72% 4,94% 5,00% 5,23% 5,23%

Teddy
Time 68,67 84,66 99,27 117,24 136,42 154,66 169,82 186,99

Bad Pixels 33,95% 21,88% 21,33% 21,18% 21,33% 21,26% 21,47% 21,34%

Cones
Time 67,25 82,05 103,33 118,99 136,83 154,61 170,24 188,96

Bad Pixels 31,84% 17,90% 17,15% 16,33% 16,29% 16,27% 16,28% 16,09%
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Figure 6.3: Execution times (in milliseconds) of 3DRS for the Middlebury set with varying 3DRS block
sizes calculated - data from Table 6.1.

0,00%

5,00%

10,00%

15,00%

20,00%

25,00%

30,00%

35,00%

40,00%

1 2 3 4 5 6 7 8

slexip dab fo 
%

Number of 3DRS passes

Tsukuba
Venus
Teddy
Cones

Figure 6.4: Disparity map accuracy, expressed as the percentage of bad pixels, in the 3DRS coarse
disparity map shown in dependency to the number of 3DRS passes - data from Table 6.2.

number of 3DRS passe, the 3DRS block size and the size of the 3DRS update set was measured.

The results are provided in table 6.2 and Figure 6.4. The percentage of incorrect pixels was

calculated using equation 6.1, with δD = 1, using the full image area with defined disparities

(including the occluded areas). Additionally, table 6.2 and figure 6.5 show the relationship of

the execution time for the 3drs algorithm depending on the number of passes.

Table 6.3 and figure 6.6 show the accuracy of the 3DRS algorithm simultaneously against

the varying block size and number of passes. The data is computed for the "Cones" image of
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for the "Cones" image of the Middlebury set with the SAD matching cost; data from table 6.3. Accuracy
is expressed as the percentage of errors. Lower is better.
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Table 6.3: 3DRS accuracy, expressed as percentage of bad pixels (lower is better) shown in dependency
to both the number of 3DRS passes and the block size.

Blocksize

No. of passes 1 2 3 4 5 6 7 8 9 10 11 12

1 58,19 % 35,13 % 33,26 % 29,42 % 30,93 % 29,09 % 30,60 % 36,53 % 40,70 % 32,82 % 26,91 % 31,38 %

2 54,11 % 28,02 % 20,82 % 18,16 % 16,73 % 17,19 % 17,14 % 18,57 % 17,43 % 17,40 % 16,62 % 18,24 %

3 51,56 % 27,11 % 20,28 % 17,41 % 16,03 % 16,69 % 16,36 % 16,88 % 16,37 % 16,79 % 16,28 % 17,25 %

4 51,53 % 27,71 % 20,37 % 17,34 % 15,96 % 16,52 % 16,41 % 16,33 % 16,05 % 16,29 % 15,92 % 16,86 %

5 50,95 % 28,20 % 20,44 % 17,34 % 16,02 % 16,33 % 16,47 % 16,33 % 15,94 % 16,22 % 15,76 % 16,76 %

6 51,10 % 28,50 % 20,59 % 17,31 % 16,09 % 16,31 % 16,47 % 16,24 % 16,01 % 16,19 % 15,63 % 16,89 %

7 50,75 % 28,86 % 20,78 % 17,31 % 16,12 % 16,24 % 16,47 % 16,30 % 16,19 % 16,12 % 15,79 % 16,49 %

8 51,04 % 29,21 % 20,90 % 17,23 % 16,15 % 16,13 % 16,54 % 16,26 % 16,15 % 16,02 % 15,99 % 16,51 %

the Middlebury set.

The effect of the 3DRS update set on the convergence property was explored by evaluating

the algorithm concurrently with varying maximum update value and the number of passes,

measuring the resulting accuracy. The results of the evaluation are given in table 6.4 and figure

6.7.

Table 6.4: 3DRS accuracy, expressed as percentage of bad pixels (lower is better) shown in dependency
to the number of 3DRS passes and the update vector set.

Number of passes

Maximum update 1 2 3 4 5 6 7 8

1 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 %

2 100 % 100 % 100 % 100 % 100 % 98,52 % 85,16 % 80,67 %

4 100 % 99,98 % 83,23 % 37,60 % 23,57 % 20,32 % 16,72 % 16,41 %

8 60 % 19,62 % 16,21 % 15,74 % 15,29 % 15,58 % 15,46 % 15,61 %

16 32,82 % 17,40 % 16,79 % 16,29 % 16,22 % 16,19 % 16,12 % 16,02 %

32 45 % 19,85 % 16,53 % 15,92 % 15,86 % 15,77 % 15,61 % 15,60 %

64 40,13 % 19,13 % 17,03 % 16,84 % 16,38 % 16,42 % 16,34 % 16,42 %

The 3DRS algorithm was also tested to evaluate its performance with the SAD, SSD, Zero-

mean SAD, and Census cost functions. The comparison of the 3DRS results with different

matching costs is shown in Figure 6.8, with a quantitative analysis provided in table 6.5, show-

ing that the census cost achieves the lowest matching error rate. Based on the results, the Census

cost was selected as the cost function to be used as the block matching cost in the 3DRS and

WTA steps, as well as the pixel-wise matching cost in the Dynamic Programming step.

The 3DRS implementation does not include advanced optimizations such as hierarchical

processing or penalties [56], but supports multiple iterations to improve algorithm convergence

on static images.

6.2.2 Additional measurements

To assess the performance of the WTA and DP algorithms without the 3DRS guidance, the

algorithms were evaluated and tuned to their optimal settings. Additionally the dependency of
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Figure 6.7: Accuracy of 3DRS against varying block passes and the maximum value of the update set,
simultaneously - computed for the "Cones" image of the Middlebury set; data from table 6.4. Accuracy
is expressed as the percentage of errors. Lower is better.

Table 6.5: Comparison of overall error rates for various matching costs using the 3DRS algorithm,
considering all pixels. Lower is better.

Set SAD SSD ZSAD Census

Tsukuba 12,61% 12,44% 14,40% 21,44%

Venus 8,23% 7,81% 7,37% 6,85%

Teddy 30,26% 30,49% 24,58% 20,65%

Cones 26,70% 24,28% 22,50% 16,22%

Average 19,45% 18,76% 17,21% 16,29%

the algorithms on the input disparity range was measured and is shown in table 6.6 and figure

6.9

6.2.3 3DRS+WTA Experimental Results

The proposed local winner-take-all method guided by 3DRS was implemented in the StereoTest

environment.

For the Middlebury set, an evaluation was conducted to measure the influence of the local

range parameter r on the overall reduction of the disparity range to be checked by the WTA step.

An overview of how the accuracy and the total number of disparity hypotheses (and execution

time) correlate is shown in Table 6.7, as well as depicted in Figure 6.10.

While most local methods expect the user to specify a certain disparity search range to

optimize the performance, the proposed hybrid method will address any range of disparities

which occurs in the input stereo pair with constant performance.
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Table 6.6: Execution time of WTA and DP algorithms depending on the disparity range, in milliseconds.
Slope of the curve at each point provided as illustration of (non)linearity.

Execution time (ms) Slope time
range

Disparity range (pixels) WTA DP WTA DP

16 342,60 165,90 21,413 10,369

32 647,55 282,97 20,236 8,843

48 954,55 395,17 19,886 8,233

64 1260,52 488,20 19,696 7,628

80 1571,04 598,28 19,638 7,479

96 1877,33 688,09 19,556 7,168

112 2201,79 775,38 19,659 6,923

128 2492,01 867,21 19,469 6,775

144 2791,21 948,23 19,383 6,585

160 3087,44 1019,59 19,297 6,372

176 3393,45 1103,33 19,281 6,269

192 3703,28 1165,23 19,288 6,069

208 3990,41 1228,42 19,185 5,906

224 4291,67 1289,92 19,159 5,759

240 4582,14 1344,70 19,092 5,603

255 4866,31 1395,00 19,084 5,471

Table 6.7: Accuracy of generated disparities and the overall DSI space actually searched for the 3GWTA
method, expressed as a percentage of incorrect pixels (lower is better) and percentage of searched space
(lower is better), in dependency to the parameter R.

Parameter R
Error rate Space searched

Tsukuba Venus Teddy Cones Tsukuba Venus Teddy Cones

0 12,27% 3,45% 18,66% 14,17% 1,21% 0,97% 1,24% 1,23%

1 12,09% 3,51% 18,92% 14,05% 2,41% 1,87% 2,47% 2,42%

2 12,92% 3,62% 19,01% 14,37% 3,35% 2,74% 3,52% 3,48%

3 13,05% 3,81% 19,15% 14,40% 4,16% 3,55% 4,50% 4,45%

4 13,24% 3,83% 19,30% 14,43% 4,80% 4,27% 5,43% 5,38%

5 13,41% 3,87% 19,41% 14,42% 5,34% 4,96% 6,33% 6,27%

6 13,56% 3,91% 19,24% 14,44% 5,84% 5,59% 7,20% 7,13%

7 13,61% 3,92% 19,17% 14,49% 6,34% 6,20% 8,10% 7,98%

8 13,87% 3,95% 19,20% 14,46% 6,79% 6,71% 8,88% 8,81%
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(a) Sum of Absolute Differences (SAD). (b) Sum of Squared Differences (SSD).

(c) Zero-mean SAD (ZSAD).

(d) Census Transform. (e) True Disparities.

Figure 6.8: 3DRS coarse disparity maps for the "Teddy" test image based on different matching costs,
shown using the Jet color map.

The 3DRS-guided WTA method implementation follows Alg.3 directly, implementing the

basic algorithm as denoted in Eq.4.1 with w(p,q) = 1. Traditional square windows, without

shifting or specific filtering, are used to aggregate the cost values, for which SAD, SSD and

Census cost functions can be used. Cost aggregation is accelerated with the use of integral im-

ages similar to the technique in[39]. A sub-pixel disparity refinement step was not performed

after the optimization, as the goal of the evaluation was to compare the raw results of the opti-

mization methods.
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The resultant disparity maps are shown in Figure 6.11.

The measured accuracy results in Table 6.8 and shown in Figure 6.12 show that the 3DRS
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(a) Tsukuba - Left image (b) Tsukuba - 3DRS Re-
sult

(c) Tsukuba - WTA Re-
sult

(d) Tsukuba - 3GWTA
Result

(e) Venus - Left image (f) Venus - 3DRS Result (g) Venus - WTA Result (h) Venus - 3GWTA Re-
sult

(i) Teddy - Left image (j) Teddy - 3DRS Result (k) Teddy - WTA Result (l) Teddy - 3GWTA Re-
sult

(m) Cones - Left image (n) Cones - 3DRS Result (o) Cones - WTA Result (p) Cones - 3GWTA Re-
sult

Figure 6.11: Algorithm results for WTA - Left reference image and resultant disparities for 3DRS, WTA,
and 3DRS-Guided WTA methods. The disparities are scaled to full range [0,255] and colored using the
Jet color map.

algorithm can provide coarse results with a level of accuracy comparable to the dense stereo

optimizations such as the WTA, at a fraction of the computational complexity. In the initial

evaluation of the algorithm [57], it was shown that the accuracy of the WTA method was typical

for a fixed window implementation with the chosen window size, and it was shown that the

proposed hybrid method either retained the accuracy of the WTA method or slightly improved

it. In the implementation described in this work, the effects of the Census cost being applied in

both the 3DRS and the WTA step of the algorithm yield significant improvements in quality.
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Table 6.8: Accuracy of generated disparities for the 3GWTA method, expressed as a percentage of in-
correct pixels (lower is better); Non-occ - non-occluded regions only; All - all pixels; Disc - discontinuity
regions only.

Set
3DRS WTA 3GWTA

Non-occ All Disc Non-occ All Disc Non-occ All Disc

Tsukuba 12,58% 13,90% 26,31% 14,42% 15,83% 26,50% 10,73% 12,09% 24,67%

Venus 2,74% 3,97% 23,63% 5,21% 6,48% 23,64% 2,20% 3,44% 23,00%

Teddy 12,09% 19,65% 28,70% 13,34% 21,25% 28,97% 10,95% 18,67% 26,74%

Cones 6,54% 14,98% 18,34% 8,99% 17,76% 16,82% 5,62% 14,05% 14,04%

Average 15,29% 16,60% 13,85%

Table 6.9: Comparison of execution times for the 3DRS, WTA and 3GWTA method. Times are given in
milliseconds. The speed-up ratio is given as a dimensionless quantity.

Set t3DRS tWTA t3GWTA
tWTA

t3GWTA

Tsukuba 141,22 3092,75 508,80 6,08

Venus 211,9 4616,71 627,35 7,36

Teddy 171,12 4762,93 774,82 6,15

Cones 172,36 4863,40 783,35 6,21

Average 174,15 4333,95 673,58 6,45

The computational time shown in Table 6.9 greatly favors the hybrid method in comparison

to the classic WTA algorithm. The 3DRS execution time, although an order of magnitude faster,

is provided for reference as it provides only coarse results.

6.2.4 3DRS-guided DP Experimental Results

Table 6.10: Accuracy of generated disparities for the 3GDP method, expressed as a percentage of incor-
rect pixels (lower is better); Non-occ - non-occluded regions only; All - all pixels; Disc - discontinuity
regions only.

Set
3DRS DP 3GDP

Non-occ All Disc Non-occ All Disc Non-occ All Disc

Tsukuba 16,57% 17,94% 32,79% 5,91% 7,27% 23,29% 6,02% 7,38% 23,29%

Venus 3,12% 4,43% 23,99% 2,89% 4,18% 15,09% 3,45% 4,70% 15,05%

Teddy 14,56% 21,88% 33,51% 8,77% 16,61% 20,09% 8,98% 17,32% 21,11%

Cones 9,16% 17,90% 25,57% 5,22% 13,84% 13,58% 4,84% 13,98% 13,79%

Average 18,45% 11,40% 11,66%

The DP implementation follows the algorithm described in Section 4.3.1. As the computa-

tion of each scanline is individual, this introduces scanline inconsistencies visible as streaking

artifacts. One of the noted approaches [24] is to reuse the costs and computed path from a

70



Results and discussion

0,00%

5,00%

10,00%

15,00%

20,00%

25,00%

Tsukuba Venus Teddy Cones

A
cc

ur
ac

y 
(P

er
ce

nt
ag

e 
of

 
in

co
rr

ec
t p

ix
el

s)

3DRS

WTA

3GWTA

(a) Accuracy for the computed disparities - data from Table 6.8.
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(b) Method execution times - data from Table 6.9.

Figure 6.12: Comparison of accuracy for the computed disparities and method execution times for the
images of the Middlebury set on 3DRS, pure WTA, and 3DRS-Guided WTA methods. Lower is better.

Table 6.11: Comparison of execution times for the 3DRS, DP and 3GDP method. Times are given in
milliseconds. The speed-up ratio is given as a dimensionless quantity.

Set t3DRS tDP t3GDP
tDP

t3GDP

Tsukuba 55,29 851,74 135,50 6,29

Venus 84,45 1364,03 191,65 7,12

Teddy 81,01 1379,87 240,79 5,73

Cones 82,26 1370,45 235,15 5,83

Average 75,75 1241,52 200,77 6,24

previous pass with an applied weighting factor, thus constraining the new path to roughly fol-

low the previously computed path, contributing to vertical smoothness. The proposed approach

therefore employs a similar vertical smoothing scheme, which adds a weighted cost from the

previous calculated path to the cost of the current calculated path. It was found that satisfac-

tory results are achieved with the weight parameter set to 180 (ranging from 0 to 255). The

OccCost parameter was selected empirically based on the results. For the Census cost, it was

observed that the value of OccCost = 8 performs well for all images. The reduced influence

of the OccCost parameter on the final result is a result of employing the Census cost, which

reduces the impact of radiometric differences.

For the Ro f f parameter used to constrain the DSI path, using a Ro f f = 5 has shown good

results. There were no observable differences in quality for Ro f f ≥ 4.

Based on these results, the final outputs of 3DRS, DP, and 3GDP are compared in terms of

execution time and disparity map accuracy for both full image and non-occluded areas. Both
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Figure 6.13: Comparison of accuracy for the computed disparities and method execution times for the
images of the Middlebury set on 3DRS, pure DP, and 3DRS-Guided DP. Lower is better.

3DRS and DP passes employ the Census matching cost. The 3DRS method performs two

passes in all cases (standalone and 3GDP). The measured accuracy of individual methods and

the combined 3GDP method are provided in Table 6.10 and Figure 6.13 (a).

The execution time of methods is shown and compared in Table 6.11 and Figure 6.13 (b).

The resultant disparity maps are shown in Figure 6.14.

6.3 Discussion

6.3.1 3DRS algorithm properties

As shown in the results (mostly in figure 6.6), the 3DRS algorithm can operate with constant

time for practical block sizes (those yielding constant accuracy). As the 3DRS block size rises,

the number of matching costs to calculate per vector increases. The actual number of pixels

to be calculated for matching cost is the dominant component in those cases, but the overall

number of the vectors in the image also decreases as less blocks cover the image, so the two

motions balance out, yielding a constant execution time. For small block sizes (seen best in

figure 6.3) an exponential increase of the execution time is observed for decreasing block sizes

less than 4 pixels. This can be attributed to the exponential increase of the number of blocks

and vectors to process, so that the overhead of processing the 3DRS algorithm steps becomes

the dominant component in execution time. Nevertheless, for practical block sizes of 4 pixels

and more (which also correlate with lowest measured error rates), the results suggest that the

computation complexity of 3DRS does not change significantly with varying block sizes and is

near-constant. It was also shown (figure 6.3 and 6.5) that the execution time of 3DRS, for all
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(a) Tsukuba - Left image (b) Tsukuba - 3DRS Re-
sult

(c) Tsukuba - DP Result (d) Tsukuba - 3GDP Re-
sult

(e) Venus - Left image (f) Venus - 3DRS Result (g) Venus - DP Result (h) Venus - 3GDP Result

(i) Teddy - Left image (j) Teddy - 3DRS Result (k) Teddy - DP Result (l) Teddy - 3GDP Result

(m) Cones - Left image (n) Cones - 3DRS Result (o) Cones - DP Result (p) Cones - 3GDP Result

Figure 6.14: Algorithm results - Left reference image and resultant disparities for 3DRS, Basic DP and
3DRS-Guided DP methods.

practical block sizes, depends solely on the input image resolution and the number of passes the

3DRS algorithm is applied on the image. Additionally, it is observed that the 3DRS execution

time is far lesser than for the classical methods under the same conditions, and it grows linearly

with the number of passes and image area (total number of pixels).

The convergence results in figure 6.4 show that a single 3DRS pass produces a disparity

guidance with visibly lesser accuracy than after multiple passes, however after only two passes

the accuracy improves to the point where subsequent passes do not further significantly improve

it. These results match the expectations based on 3DRS theory, as the estimation starts from a

zero-initialized state and requires several update cycles to reach a good estimate, which means
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that a certain good estimate will be reached mid-image. As the vertical direction alternates

between passes, the second pass will start from known good estimates and propagate them to

the less good estimates from the first pass. After two meandering passes, it can be assumed

that all vectors have a solid degree of confidence. Subsequent passes can improve the result

further (although this is apparently image-dependent), but add constant time penalties. Varying

the update vector set (as in figure 6.7) can marginally increase accuracy at the expense of the

required number of passes, but can also introduce more noise, especially with increasing the

update set. From the results, it appears that the maximum update value of 16 represents a sweet

spot for the tested sample sets.

It is evident from the 3DRS estimation results that the disparity estimation obtained from

3DRS stabilizes and does not change significantly with further iterations after only two passes.

Moreover, the disparity estimation enables the final accurate disparity computation via a dense

method, independently from the input disparity range which is different for the tested pairs

of images. In other words, unlike other conventional methods, the proposed methods do not

require an explicit definition of the overall range of disparities within which the algorithm has

to search for the optimum solution. Instead, the range is locally constrained with the 3DRS

coarse result.

For these reasons, a two-pass 3DRS pre-estimation was selected as the coarse pre-computation

step in the proposed hybrid methods.

6.3.2 Original methods and matching cost

The original methods (WTA and DP) have been evaluated for execution time dependent on

the disparity range. It was shown in the results that there is a linear dependency between the

disparity range and the execution time for WTA, and an almost linear, but slightly logarithmic

dependency for dynamic programming. Nevertheless, the execution time grows almost propor-

tionally to the estimated disparity range for both methods.

Several matching costs have also been evaluated with results shown in Table 6.5 and Figure

6.8. The results show that the Census cost provides the greatest matching accuracy, save for

one case - the "Tsukuba" stereo pair where it actually degrades performance. An analysis was

performed to determine the root cause and it has shown that the "Tsukuba" stereo pair exhibits

slight, but noticeable vertical fixed pattern noise. This noise is effectively suppressed by other

cost functions due to the slight difference in intensity which is also effectively averaged away

by cost aggregation. However, for the Census cost, the encoding of the local intensity variation

in respect to the individual pixel performs an effective amplification of the noise, as it can be

seen in Figure 6.15. It can be concluded that the Census cost, although superior and suppressing

radiometric differences, is sensitive to the presence fixed pattern noise in the image, which can

present a problem with some cameras.
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(a) Tsukuba - Left image (b) Tsukuba - Left Census tranform (c) Teddy - Left Census tranform

Figure 6.15: Census transform introducing noise into the "Tsukuba" image by amplifying a fixed pattern
noise present in the original image but not immediately visible. The census transform for the "Teddy"
image is shown for comparison.

6.3.3 3DRS-guided-Winner-take-all

Due to the application of the Census cost, the Winner-take-all results are significantly improved

from the initial evaluation in [57], to the point where the accuracy of the results approaches the

result of the Dynamic Programming method in some cases. Additionally the correlation of the

range parameter r to the accuracy and the number of tested hypotheses (and consequently the

execution time) was explored, where the results have shown (as it is shown in Figure 6.10 that

significant reductions of search space (up to 99% of the Disparity space image volume ) can be

achieved without detrimental effects to the output quality, which is even improved by up to 1%

by reducing the search space. This can be attributed to the effect that the constraining of the

search space also constrains the range of outliers present in the occlusion areas, which decreases

their overall effect on the output quality. The reduced search space also yields significant im-

provement in execution speed, with the hybrid 3DRS-WTA (3GWTA) algorithm improving the

execution performance of the algorithm by 6,45 times on average, from times ranging up to five

seconds to way below one second of execution, while consistently improving the error rates in

all cases.

6.3.4 3DRS-guided-Dynamic programming results

As shown in Table 6.10, the pure DP method provides the overall best quality upon evaluation,

by a small margin. However, the execution time is still significant and in ranges between 0,8 and

1,4 seconds in the reference implementation. It was shown that the 3GDP method produces very

close results (off by on average 0,3% of the absolute score), but the execution time of 3GDP

is 6,24 times faster on average. Therefore, with the hybrid 3GDP approach a more-than-six-

fold speedup was obtained while maintaining the overall level of accuracy. The overall average

disparity error of the proposed method is 11,66%, comparable with the results obtained by other

scan-line DP-based approaches. As compared in Table 6.12, the 3DGP method obtains higher
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accuracy than the basic DP method as benchmarked in [12], however, in DSI-based methods,

it is still, in terms of quality, outperformed by SGM [25]. The execution speed, on average,

exceeds the speed obtained by [58].

Table 6.12: Accuracy of generated disparities for the 3GDP method compared with other DP-based
methods on the Middlebury stereo vision web site [22] (lower is better); Non-occ - non-occluded regions
only; All - all pixels; Disc - discontinuity regions only.

Set
DP[12] SGM[25] 3GDP

Non-occ All Disc Non-occ All Disc Non-occ All Disc

Tsukuba 4,12% 5,04% 12,0% 3,26% 3,96% 12,8% 6,02% 7,38% 23,29%

Venus 10,10% 11,00% 21,00% 1,00% 1,57% 11,30% 3,45% 4,70% 15,05%

Teddy 14,0% 21,60% 20,60% 6,02% 12,20% 16,30% 8,98% 17,32% 21,11%

Cones 10,50% 19,10% 21,10% 3,06% 9,75% 8,90% 4,84% 13,98% 13,79%

Average 13,93% 7,51% 11,66%

6.3.5 Closing remarks

Although the proposed solutions do not always improve on the accuracy of other DSI-based

algorithms, this can be attributed to several factors, such as the omission of the Disparity refine-

ment step (as defined by the taxonomy of Scharstein and Szeliski [12]).

Comparing the results of the two method implementations in tables 6.8 and 6.10 , one can

observe that the accuracy of the raw 3DRS estimation differs between the WTA and the DP

hybrid methods, with the WTA estimation being more accurate. The cause for this is that the

3DRS algorithm was tuned differently for WTA and DP cases. For the WTA case, the 3DRS

estimation was configured to extract a denser map with better quality, which significantly im-

proved the WTA end-result, but the resultant 3DRS estimation time was considerably longer.

For the 3GDP method, the additional precision of coarse disparity prediction was shown not

to yield significant improvements of the disparity map quality, but did incur a substantial per-

formance penalty. Therefore, for the DP case the 3DRS algorithm has been tuned to extract a

coarser map in an approximately 2,5 times shorter period. This is a good example of how a

3DRS-based hybrid algorithm can be tuned for optimal performance.

Overall, a more-than-sixfold acceleration and memory footprint reduction for the WTA and

DP methods can be singled out as the primary contributions of the proposed method to the state

of the art, as it shows that the existing DSI based methods can be significantly accelerated by

employing fast coarse true motion estimators, improving or retaining the quality of the disparity

map.
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Chapter 7

Conclusion

In this dissertation the stereo vision and 3D reconstruction problem was studied, with focus on

the computation of stereo correspondences. Within the analyzed solution, several contributions

can be isolated. An overview of the theoretical background was presented, laying the ground-

work for the goal of reducing the computational complexity of stereo matching. Through the

review of literature a considerable number of various solutions was identified, all of which have

been shown to be computationally intensive. The main idea of this work was to employ a fast

coarse block matcher, the three-dimensional recursive search algorithm which is commonly

used in consumer electronics but not in computer vision, as a foundation for a hybrid solution

which would outperform the standalone solutions. A classic winner-take-all local approach and

a dynamic programming global approach was selected as a candidate for enhancement.

As the literature mostly covers the 3DRS algorithm from the perspective of motion estimation

for motion picture enhancement in digital television, an analysis and evaluation of the 3DRS

algorithm was conducted to examine its properties for computing disparities, with focus on its

computational intensity and the robustness of the coarse disparity map. The measurements have

shown that the 3DRS output is obtained in a constant time per frame which is directly propor-

tional to the image dimensions, and is, for practical block sizes, invariant to the block size (and

consequently the coarseness of the block grid), which is a useful property for a real-time ap-

plication. Additionally, the convergence property of 3DRS was explored, where measurements

have shown that two iterations produce a disparity map of near-maximum achievable quality,

with further iterations offering little to no improvement or even worsening the disparity map

quality in some cases. The two-iteration limit stems from the nature of convergence and the

alternate-scan meandering, where the initial pass will converge mid-image, and the second scan

will back-propagate the good estimates to the blocks where the algorithm had not yet converged

in the initial pass. Finally, an enhancement to address the robustness of 3DRS for computer vi-

sion tasks was evaluated by implementing and evaluating different matching costs to address

demanding imaging conditions. The cost function based on the Census transformation has
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shown to yield the best quality of the disparity map.

In designing the hybrid method, the local approach was evaluated first, with the idea to reduce

the disparity space which needs to be searched for the optimum disparity match. To obtain a

high depth resolution it is desired to evaluate a large disparity range, which is computationally

demanding. As the 3DRS convergence property was shown to be able to determine the cor-

rect disparity without an assumption of range, this property allows us to maximize the overall

search range for the image while constraining it to a narrow range locally within the block grid

of 3DRS estimation. An additional takeaway from the results is the requirement that the dispar-

ity space image should be connected with overlapping disparity ranges for neighboring blocks

in the grid, in order to account for discontinuities in disparity naturally occuring in the occlu-

sion areas. It was shown that re-applying the 3DRS assumptions and using the neighboring

disparities as range predictors ensures that the disparity map retains the quality while reducing

the overall number of hypotheses up to 99%.

Finally, a novel approach to stereo matching was proposed by combining a standard Dynamic

Programming estimation with the 3DRS block-based motion estimator. The resultant method

exhibits a nearly seven-fold increase in performance from the original DP method in the pro-

posed implementation, while retaining the same level of quality. Overall, the use of 3DRS

as a method of reducing and defining the DSI space has potential applications to other stereo

matching methods, especially if large input disparity ranges are used. However, while the speed

improvements have been substantial with multifold decreases in execution time, it is important

to note that the improvements in accuracy have been mostly marginal or non-existent. There-

fore additional effort should be invested in finding ways to additionally improve the quality of

computed disparities. However, at minimum, it can be assumed that the new methods will retain

the accuracy of the original methods, at increased speed.

Potential future work areas also lie in the exploration of other useful 3DRS properties, such as

the natural ability of 3DRS to estimate 2D vectors, which might provide a guidance with inputs

which do not exhibit perfect epipolar rectification. The future research should strive to further

explore the hybrid methods aiming to improve the accuracy of the final result as well as further

improve the execution speed, with the ultimate goal of defining an architecture for a real-time

embedded hardware implementation.

78



Bibliography

[1] Huang, T., “Computer vision; evolution and promise”, in 19th CERN School of Comput-

ing, Vandoni, C., (ed.). CERN, 1996, pp. 21-25.

[2] Szeliski, R., Computer Vision: Algorithms and Applications, 1st ed. Berlin, Heidelberg:

Springer-Verlag, 2010.

[3] Salvi, J., Fernandez, S., Pribanic, T., Llado, X., “A state of the art in structured

light patterns for surface profilometry”, Pattern Recognition, Vol. 43, No. 8,

2010, pp. 2666 - 2680, dostupno na: http://www.sciencedirect.com/science/article/pii/

S003132031000124X

[4] Barron, J., Fleet, D., Beauchemin, S., “Performance of optical flow techniques”,

International Journal of Computer Vision, Vol. 12, No. 1, 1994, pp. 43-77, dostupno na:

http://dx.doi.org/10.1007/BF01420984

[5] Braspenning, R. A., de Haan, G., “True-motion estimation using feature correspon-

dences”, Vol. 5308, 2004, pp. 396-407, dostupno na: http://dx.doi.org/10.1117/12.525625

[6] de Haan, G., Biezen, P., Huijgen, H., Ojo, O., “True-motion estimation with 3-d recursive

search block matching”, Circuits and Systems for Video Technology, IEEE Transactions

on, Vol. 3, No. 5, Oct 1993, pp. 368-379, 388.

[7] de Haan, G., “Ic for motion-compensated de-interlacing, noise reduction, and picture-rate

conversion”, Consumer Electronics, IEEE Transactions on, Vol. 45, No. 3, Aug 1999, pp.

617-624.

[8] Hendriks, E., Marosi, G., “Recursive disparity estimation algorithm for real time stereo-

scopic video applications”, in Image Processing, 1996. Proceedings., International Con-

ference on, Vol. 1, Sep 1996, pp. 891-894 vol.2.

[9] Atzpadin, N., Kauff, P., Schreer, O., “Stereo analysis by hybrid recursive matching for

real-time immersive video conferencing”, Circuits and Systems for Video Technology,

IEEE Transactions on, Vol. 14, No. 3, March 2004, pp. 321-334.

79

http://www.sciencedirect.com/science/article/pii/S003132031000124X
http://www.sciencedirect.com/science/article/pii/S003132031000124X
http://dx.doi.org/10.1007/BF01420984
http://dx.doi.org/10.1117/12.525625


Bibliography

[10] Hartley, R., Zisserman, A., Multiple View Geometry in Computer Vision, 2nd ed. New

York, NY, USA: Cambridge University Press, 2003.

[11] Kaehler, A., Bradski, G., Learning OpenCV 3: Computer Vision in C++ with the OpenCV

Library, 1st ed. O’Reilly Media, Inc., 2016.

[12] Scharstein, D., Szeliski, R., “A taxonomy and evaluation of dense two-frame stereo

correspondence algorithms”, Int. J. Comput. Vision, Vol. 47, No. 1-3, Apr. 2002, pp.

7–42, dostupno na: http://dx.doi.org/10.1023/A:1014573219977

[13] Hartley, R. I., “Theory and practice of projective rectification”, International Journal

of Computer Vision, Vol. 35, No. 2, Nov 1999, pp. 115–127, dostupno na:

https://doi.org/10.1023/A:1008115206617

[14] Loop, C. T., Zhang, Z., “Computing rectifying homographies for stereo vision”, Proceed-

ings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recogni-

tion (Cat. No PR00149), Vol. 1, 1999, pp. 125-131 Vol. 1.

[15] Fusiello, A., Trucco, E., Verri, A., “A compact algorithm for rectification of stereo pairs”,

Machine Vision and Applications, Vol. 12, No. 1, Jul 2000, pp. 16–22, dostupno na:

https://doi.org/10.1007/s001380050120

[16] Beric, A., de Haan, G., Sethuraman, R., van Meerbergen, J., “A technique for reducing

complexity of recursive motion estimation algorithms”, in 2003 IEEE Workshop on Signal

Processing Systems (IEEE Cat. No.03TH8682), Aug 2003, pp. 195-200.

[17] Biswas, M., Nguyen, T., “A novel motion estimation algorithm using phase plane corre-

lation for frame rate conversion”, in Signals, Systems and Computers, 2002. Conference

Record of the Thirty-Sixth Asilomar Conference on, Vol. 1, Nov 2002, pp. 492-496 vol.1.

[18] Slingerland, N. T., Smith, A. J., “Measuring the performance of multimedia instruction

sets”, IEEE Trans. Computers, Vol. 51, No. 11, 2002, pp. 1317–1332.

[19] Al-kadi, G., Hoogerbrugge, J., Guntur, S., Terechko, A., Duranton, M., Eerenberg, O.,

“Meandering based parallel 3drs algorithm for the multicore era”, in Consumer Electron-

ics (ICCE), 2010 Digest of Technical Papers International Conference on, Jan 2010, pp.

21-22.

[20] Kolmogorov, V., Zabih, R., “Computing visual correspondence with occlusions via graph

cuts”, in In International Conference on Computer Vision, 2001, pp. 508–515.

80

http://dx.doi.org/10.1023/A:1014573219977
https://doi.org/10.1023/A:1008115206617
https://doi.org/10.1007/s001380050120


Bibliography

[21] Sun, J., Zheng, N.-N., Shum, H.-Y., “Stereo matching using belief propagation”, IEEE

Trans. Pattern Anal. Mach. Intell., Vol. 25, No. 7, Jul. 2003, pp. 787–800, dostupno na:

http://dx.doi.org/10.1109/TPAMI.2003.1206509

[22] Scharstein, D., Szeliski, R., “Middlebury Stereo Vision Page”, http://vision.middlebury.

edu/stereo, [Online; accessed 31-Jan-2014]. 2014.

[23] Geiger, A., Roser, M., Urtasun, R., “Efficient large-scale stereo matching”, in

Proceedings of the 10th Asian Conference on Computer Vision - Volume Part I,

ser. ACCV’10. Berlin, Heidelberg: Springer-Verlag, 2011, pp. 25–38, dostupno na:

http://dl.acm.org/citation.cfm?id=1964320.1964325

[24] Forstmann, S., Kanou, Y., Ohya, J., Thuering, S., Schmitt, A., “Real-time stereo by using

dynamic programming”, in Computer Vision and Pattern Recognition Workshop, 2004.

CVPRW ’04. Conference on, June 2004, pp. 29-29.

[25] Hirschmuller, H., “Accurate and efficient stereo processing by semi-global matching and

mutual information”, in Proceedings of the 2005 IEEE Computer Society Conference

on Computer Vision and Pattern Recognition (CVPR’05) - Volume 2 - Volume 02,

ser. CVPR ’05. Washington, DC, USA: IEEE Computer Society, 2005, pp. 807–814,

dostupno na: http://dx.doi.org/10.1109/CVPR.2005.56

[26] Ye, X., Li, J., Wang, H., Huang, H., Zhang, X., “Efficient stereo matching leveraging deep

local and context information”, IEEE Access, Vol. 5, 2017, pp. 18 745-18 755.

[27] Žbontar, J., LeCun, Y., “Computing the stereo matching cost with a convolutional neu-

ral network”, in 2015 IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), June 2015, pp. 1592-1599.

[28] Menze, M., Geiger, A., “Object scene flow for autonomous vehicles”, in IEEE Conf. on

Computer Vision and Pattern Recognition (CVPR) 2015. IEEE, Jun. 2015, pp. 3061–3070.

[29] Ladicky, L., Sturgess, P., Russell, C., Sengupta, S., Bastanlar, Y., Clocksin, W. F., Torr, P.

H. S., “Joint optimization for object class segmentation and dense stereo reconstruction”,

International Journal of Computer Vision, Vol. 100, No. 2, 2012, pp. 122–133, dostupno

na: https://doi.org/10.1007/s11263-011-0489-0

[30] Mayer, N., Ilg, E., Häusser, P., Fischer, P., Cremers, D., Dosovitskiy, A., Brox, T., “A

large dataset to train convolutional networks for disparity, optical flow, and scene flow

estimation”, CoRR, Vol. abs/1512.02134, 2015.

81

http://dx.doi.org/10.1109/TPAMI.2003.1206509
http://vision.middlebury.edu/stereo
http://vision.middlebury.edu/stereo
http://dl.acm.org/citation.cfm?id=1964320.1964325
http://dx.doi.org/10.1109/CVPR.2005.56
https://doi.org/10.1007/s11263-011-0489-0


Bibliography

[31] Fischer, P., Dosovitskiy, A., Ilg, E., Häusser, P., Hazirbas, C., Golkov, V., van der Smagt,

P., Cremers, D., Brox, T., “Flownet: Learning optical flow with convolutional networks”,

CoRR, Vol. abs/1504.06852, 2015.

[32] Ilg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy, A., Brox, T., “Flownet 2.0: Evolu-

tion of optical flow estimation with deep networks”, CoRR, Vol. abs/1612.01925, 2016.

[33] Pang, J., Sun, W., Ren, J. S. J., Yang, C., Yan, Q., “Cascade residual learning: A two-stage

convolutional neural network for stereo matching”, CoRR, Vol. abs/1708.09204, 2017.

[34] Pang, J., Sun, W., Yang, C., Ren, J. S. J., Xiao, R., Zeng, J., Lin, L., “Zoom and learn:

Generalizing deep stereo matching to novel domains”, CoRR, Vol. abs/1803.06641, 2018.

[35] Kendall, A., Martirosyan, H., Dasgupta, S., Henry, P., Kennedy, R., Bachrach, A., Bry,

A., “End-to-end learning of geometry and context for deep stereo regression”, CoRR, Vol.

abs/1703.04309, 2017.

[36] Min, D., Lu, J., Do, M., “A revisit to cost aggregation in stereo matching: How far can we

reduce its computational redundancy?”, in Computer Vision (ICCV), 2011 IEEE Interna-

tional Conference on, Nov 2011, pp. 1567-1574.

[37] Tombari, F., Mattoccia, S., di Stefano, L., Addimanda, E., “Classification and evaluation

of cost aggregation methods for stereo correspondence”, 2008 IEEE Conference on Com-

puter Vision and Pattern Recognition, 2008, pp. 1-8.

[38] Bobick, A. F., Intille, S. S., “Large occlusion stereo”, International Journal of Computer

Vision, Vol. 33, No. 3, 1999, pp. 181-200.

[39] Veksler, O., “Fast variable window for stereo correspondence using integral images”, in

Computer Vision and Pattern Recognition, 2003. Proceedings. 2003 IEEE Computer So-

ciety Conference on, Vol. 1, June 2003, pp. I-556-I-561 vol.1.

[40] Kuk-Jin Yoon, In So Kweon, “Adaptive support-weight approach for correspondence

search”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 28, No. 4,

April 2006, pp. 650-656.

[41] Tombari, F., Mattoccia, S., di Stefano, L., “Segmentation-based adaptive support for ac-

curate stereo correspondence”, in PSIVT, 2007.

[42] Ohta, Y., Kanade, T., “Stereo by Intra- and Inter-scanline Search Using Dynamic

Programming”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 7,

No. 2, Mar. 1985, pp. 139–154, dostupno na: http://dx.doi.org/10.1109/tpami.1985.

4767639

82

http://dx.doi.org/10.1109/tpami.1985.4767639
http://dx.doi.org/10.1109/tpami.1985.4767639


Bibliography

[43] Cox, I. J., Hingorani, S. L., Rao, S. B., Maggs, B. M., “A maximum likelihood stereo

algorithm”, Computer Vision and Image Understanding, Vol. 63, 1996, pp. 542–567.

[44] Kim, J. C., Lee, K.-M., Choi, B.-T., Lee, S.-U., “A dense stereo matching using two-pass

dynamic programming with generalized ground control points”, in Computer Vision and

Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, Vol. 2,

June 2005, pp. 1075-1082 vol. 2.

[45] Veksler, O., “Stereo correspondence by dynamic programming on a tree”, in Computer

Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference

on, Vol. 2, June 2005, pp. 384-390 vol. 2.

[46] Bleyer, M., Gelautz, M., “Simple but effective tree structures for dynamic programming-

based stereo matching”, in International Conference on Computer Vision Theory and

Applications (VISAPP), 2008, pp. 415–422, vortrag: International Conference on

Computer Vision Theory and Applications (VISAPP 2008), Funchal, Madeira - Portugal;

2008-01-22 – 2008-01-25, dostupno na: http://publik.tuwien.ac.at/files/PubDat_169059.

pdf

[47] Congote, J., Barandiaran, J., Barandiaran, I., Ruiz, O., “Realtime Dense Stereo

Matching with Dynamic Programming in CUDA”, Andujar, C., Lluch, J., (ed.).

San Sebastian, Spain: Eurographics Association, 2009, pp. 231-234, dostupno na:

http://diglib.eg.org/EG/DL/LocalChapterEvents/CEIG/CEIG09/231-234.pdf

[48] Cai, J., “Fast stereo matching: Coarser to finer with selective updating”, in Image

and Vision Computing New Zealand 2007. Hamilton, New Zealand: Image and Vision

Computing New Zealand, 2007, pp. 266–270, for more information, please refer

to the conference website (see hypertext link) or contact the author., dostupno na:

http://eprints.qut.edu.au/11228/

[49] Chang, X., Zhou, Z., Wang, L., Shi, Y., Zhao, Q., “Real-time accurate stereo matching

using modified two-pass aggregation and winner-take-all guided dynamic programming”,

in 3D Imaging, Modeling, Processing, Visualization and Transmission (3DIMPVT), 2011

International Conference on, May 2011, pp. 73-79.

[50] Wang, L., Liao, M., Gong, M., Yang, R., Nistér, D., “High-quality real-time stereo

using adaptive cost aggregation and dynamic programming”, in 3rd International

Symposium on 3D Data Processing, Visualization and Transmission (3DPVT 2006),

14-16 June 2006, Chapel Hill, North Carolina, USA, 2006, pp. 798–805, dostupno na:

http://dx.doi.org/10.1109/3DPVT.2006.75

83

http://publik.tuwien.ac.at/files/PubDat_169059.pdf
http://publik.tuwien.ac.at/files/PubDat_169059.pdf
http://diglib.eg.org/EG/DL/LocalChapterEvents/CEIG/CEIG09/231-234.pdf
http://eprints.qut.edu.au/11228/
http://dx.doi.org/10.1109/3DPVT.2006.75


Bibliography

[51] Hirschmuller, H., Scharstein, D., “Evaluation of cost functions for stereo matching”, in

Computer Vision and Pattern Recognition, 2007. CVPR ’07. IEEE Conference on, June

2007, pp. 1-8.

[52] Hirschmuller, H., Scharstein, D., “Evaluation of stereo matching costs on images with

radiometric differences”, Pattern Analysis and Machine Intelligence, IEEE Transactions

on, Vol. 31, No. 9, Sept 2009, pp. 1582-1599.

[53] Zabih, R., Woodfill, J., “Non-parametric local transforms for computing visual

correspondence”, in Proceedings of the Third European Conference on Computer Vision

(Vol. II), ser. ECCV ’94. Secaucus, NJ, USA: Springer-Verlag New York, Inc., 1994, pp.

151–158, dostupno na: http://dl.acm.org/citation.cfm?id=200241.200258
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