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Abstract

As water supply is one of the most recognizable and important public services contributing to
the quality of life, the importance of a safe water supply system is a basic requirement for ev-
ery urban water distribution network. Correct treatment of mixing phenomena in the network’s
hydraulic elements is of great importance for the accurate simulation and prediction of con-
tamination events. In this doctoral thesis, the mixing of fluids in pipe networks and segments
(double-Tee junctions) is investigated using an experimental approach, numerical models and
machine learning methods. Firstly, experimental data is obtained for fluid mixing in different
double-Tee configurations and a computational fluid dynamics transport model is calibrated and
validated through setting the turbulent Schmidt number. A machine learning approach which
uses Artificial Neural Networks is then proposed and trained with numerically generated data for
the purpose of creating computationally efficient models for fluid mixing in double-Tee junc-
tions. Additionally, a Large Eddy Simulation model coupled with a pure advection transport
model is investigated and shown to produce accurate fluid mixing results in a double-Tee junc-
tion therefore showing a way to not include the turbulent Schmidt number. Secondly, three
methodologies are presented which use machine learning algorithms for the purpose of con-
tamination source detection in water supply pipe networks. The first methodology is based on
Random Forest algorithm classification of the most probable contamination source in a water
supply network. The RF classifier is trained with data obtained by Monte Carlo water quality
simulations and it shows to be computationally efficient and can easily generate a list of most
probable contamination sources in a water supply network. Furthermore, a novel machine learn-
ing based algorithm for water supply contamination source identification is presented and built
for high performance parallel systems. The algorithm successfully utilizes the combination of
Artificial Neural Networks for a parallel tournament style classification of the contamination
source with Random Forests for regression analysis to determine significant variables of a con-
tamination event. Lastly, two novel algorithmic frameworks are investigated which are based on
coupling a machine learning algorithm for predicting the most probable contamination sources
in a water distribution network with an optimization algorithm for determining the relevant pa-
rameters such as contamination start time, end time and contaminant concentration for each
predicted node separately. Both algorithmic frameworks perform well in determining the true

source node, start and end times and contaminant concentration.



Keywords: pipe fluid mixing; machine learning; contamination source detection; pipe net-

works; transport models; artificial neural networks; random forests; simulation-optimization
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ProsSireni sazetak

Vodoopskrba je jedna od najvaznijih javnih usluga koja doprinosi kvaliteti zivota, a vaznost
sigurnog vodoopskrbnog sustava osnovni je zahtjev svake gradske vodovodne mreze. Pravilno
modeliranje mijeSanja u hidraulickim elementima mreze od velike je vaznosti za to¢nu simu-
laciju 1 predikciju Sirenja oneciS¢enja. U ovoj doktorskoj disertaciji istrazuje se mijeSanje flu-
ida u cjevovodnim mrezama i njenim segmentima (dvostruki T-spojevi) eksperimentalnim pris-
tupom, numerickim modelima i metodama strojnog ucenja u svrhu to¢nijeg i1 efikasnijeg mod-
eliranja Sirenja i detekcije oneciS¢enja u urbanim vodoopskrbnim mrezama. Dobiveni su novi
eksperimentalni podaci za mijesanje fluida u razli¢itim konfiguracijama dvostrukih T-spojeva
te je validiran numericki model kalibracijom turbulentnog Schmidtovog broja. Istrazuje se i
predlaze pristup baziran na strojnom ucenju koji koristi umjetne neuronske mreze i koji se
trenira podacima koji su generirani rezultatima dobivenim putem numerickih analiza u svrhu
stvaranja racunski u¢inkovitih i robusnih modela za mijeSanje fluida u dvostrukim T-spojevima.
S obzirom na ra¢unsku efikasnost, modeli koji su izradeni strojnim ucenjem mogu se integrirati u
postojece inzenjerske sofvere koji su bazirani na jednostavnijim modelima, kako bi se povecala
njihova to¢nost kod simulacije propagacije oneciS¢enja u cjevovodnim mrezama. Osim nave-
denog, istrazuje se i modeliranje mijeSanja fluida u dvostrukom T-spoju putem modela turbu-
lencije Large Eddy Simulation povezanim s modelom ¢istog advekcijskog transporta skalara.
PredloZeni na€in modeliranja mijeSanja fluida u dvostrukom T-spoju daje to€ne rezultate mi-
jeSanja u dvostrukom T-spoju koji ne uklju€uje potrebu za kalibracijom turbulentnog Schmid-
tov broja te time stvara mogucénost za generiranje korekcijskih faktora za jednostavnije modele
u svrhu to¢nijeg modeliranja onecis¢enja u cjevovodima. Predstavljene su i istrazene tri ra-
zli¢ite metodologije koje koriste algoritme strojnog uc¢enja u svrhu otkrivanja izvora onecis¢enja
u vodovodnim mrezama. Prva od tri metodologija se temelji na klasifikaciji najvjerojatni-
jeg izvora onecisS¢enja u vodoopskrbnoj mrezi te radi na temelju algoritma Nasumicnih suma
(Random Forest). Algoritam Nasumicnih Suma istreniran je podacima koji su dobiveni Monte
Carlo hidraulickim simulacijama koje ukljucuju i modeliranje transporta oneciS¢enja. Algori-
tam se pokazuje racunalno u¢inkovitim i lako generira popis najvjerojatnijih izvora onecis¢enja
u vodoopskrbnoj mrezi te je testiran na dvije razli¢ite vodoopskrbne mreze razlicitih veli¢ina.
Nadalje, predstavljena je druga metodologija koja koristi algoritam zasnovan na strojnom ucenju
za klasifikaciju izvora onecis¢enja u vodoopskrbnim mrezama koji je izraden posebno za par-

alelne sustave visokih performansi. Algoritam koristi kombinaciju Umjetnih neuronskih mreza
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(Artificial Neural Networks) za klasifikaciju izvora oneciS¢enja te algoritam Nasumicnih suma
za regresijsku analizu kako bi odredio znacajne varijable dogadaja onecis¢enja kao §to su vri-
jeme pocetka oneciS¢enja, vrijeme zavrsetka oneciséenja i koncentraciju onec¢is¢enja. Uspjesno
suzava potencijalne izvore oneciS¢enja Sto dovodi do identifikacije izvora oneciS¢enja, vremena
pocetka i vremena zavrSetka dogadaja oneciS¢enja i koncentraciju oneciS¢enja te je vrlo racun-
ski efikasan kada se koristi u superracunalnom okruzenju. Na kraju, tre¢com metodologijom
predstavljena su 1 istrazena dva nova algoritamska okvira koja se temelje na spajanju algoritma
strojnog ucenja za predvidanje najvjerojatnijih izvora oneciS¢enja u vodovodnoj mrezi s opti-
mizacijskim algoritmima (stohastickih i deterministickih) za odredivanje relevantnih parametara
kao $to su vrijeme pocetka, vrijeme zavrSetka oneciS¢enja i koncentracija oneciS¢enja za svaki
predvideni potencijalni izvor zasebno. Oba algoritamska okvira imaju dobru izvedbu i pokazuju

robusnost u odredivanju istinskog izvora onecis¢enja.
Kljuéne rijeci: mijeSanje fluida u cijevima; strojno u€enje; otkrivanje izvora onecis¢enja;

cjevovodne mreze; modeli transporta; umjetne neuronske mreze; nasumi¢ne Sume; simulacija-

optimizacija
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Chapter 1

Introduction

1.1 Water Supply Network Safety and Security

Water supply networks are one of the most important systems within an urban environment
as most of the human population depends on it. The monitoring of water quality inside these
systems is essential since a contamination event could inflict devastating consequences to water
supply networks users [59].

Contamination events in water supply networks can have a whole variety of causes. Some
of the causes would be pipe bio-film formation [86, 18], aged water in pipes [63] and corrosion
formation on pipe surfaces [40]. There also exists a possibility of a terrorist attack through an
intentional water supply network contamination [54, 21].

To enhance the control and safety of the water supply network systems from the aforemen-
tioned hazards, various methods to simulate contamination events are developed. These methods
include water quality modeling and simulation of different scenarios using hydraulic simulation
engineering software (e.g. EPANET2 [66]). In reality, the transport of contaminants through
pipe networks is a complex process that involves fluid mixing and should be accurately mod-
eled to enhance the safety of water supply networks through realistic, accurate prediction of

contamination events.

1.2 The Double-Tee Junction Fluid Mixing Problem

Fluid mixing in water supply networks is a complex phenomenon that has been extensively
researched because it is relevant to several specific areas of application such as quality and
safety of water distribution [23, 7, 14], contamination detection systems (large [39, 2] and small
water supply networks [42]) and optimal placement of contamination detection sensors in the
water supply network [13, 27].

The elements that make up water networks are pipes and junctions. When modeling mixing

in a complex system, the correct mixing model must be applied to accurately describe the trans-
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port of contamination through the water supply network due to the fact that the wrong solution
could pose a danger to a large number of water supply network users. Typically, mixing in a pipe
network is modeled either as complete mixing or as bulk mixing. A complete mixing model can
be assumed to be accurate only if there is one outlet at the junction or if the distance between
the two junctions is large enough, while bulk mixing is an idealized mixing model in which the
fluid flow from two inlet pipes do not mix, i.e. the diffusion processes are neglected. Both bulk
and complete mixing models aren’t accurate when mixing is occurring in a double-Tee junction,
which is a common segment in a water supply network.

In this dissertation, the double-Tee junction fluid mixing problem is approached in three
different ways. An experimental and numerical analysis of the fluid mixing process in double-
Tee junctions is given. The research proposes an experimental procedure of studying the double-
Tee fluid mixing and gives new experimental results for several double-Tee junction distances
which are in turn used to validate the numerical model. Two different transport models are used
to model the transport of contaminant and a turbulent Schmidt number calibration process is
achieved.

The previously calibrated numerical model is used to generate data in order to use a machine
learning approach to model the fluid mixing behavior in the double-Tee junction. Artificial
Neural Networks and Support Vector Machine models are used to generate the fluid mixing
parameters in double-Tee junctions in order to achieve an accurate and computationally efficient
way of modeling these phenomena.

A novel method for modeling mixing in double-Tee junction is proposed. It involves using
the LES turbulence model in conjunction with the pure advection transport model which doesn’t
incorporate the turbulent Schmidt number parameter. The numerical approach is compared with

experimental results from previous studies.

1.3 Pipe Network Fluid Mixing and Contamination Localiza-
tion

In addition to accurate modeling of mixing in a double-Tee junction system, determining the
source of contamination in a water supply network is an important task which also benefits
from an accurate model of fluid mixing, but for most pipe water supply networks, it is sufficient
to use a complete mixing model within existing hydraulic simulators (i.e. EPANET) in order
to exhibit the efficiency of the method or algorithm used for the complex task of contaminant
source localization.

In this research, three novel methods for solving the contamination source detection and
propagation problem are proposed. The Random Forests machine learning algorithm is used for
contamination source detection. The classifier is trained by data obtained from Monte Carlo hy-

draulic and water quality simulations made with EPANET2. The input data for the RF classifier
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were the water supply network water quality sensor measurements and the output was a list of
most probable potential contamination sources in the network. The method was tested on two
different benchmark networks with inclusion of hydraulic demand uncertainties and imperfect
sensor measurements.

Secondly, an algorithm is constructed which searches for the source of contamination, start
and end time of the contamination, and the injected chemical concentration in parallel. The
algorithm is specifically build for high performance, massively parallel systems and utilizes an
Artificial Neural Network for classification of the most probable source node and a Random
Forest regression analysis to determine the other relevant contamination event variables. The
robustness and the efficiency of algorithm is tested on two different water quality benchmark
networks.

Finally, the Random Forests machine learning algorithm is then further explored by coupling
the Random Forest classifier with a simulation-optimization algorithm. Two different algorith-
mic frameworks were created to investigate the coupling. One framework was constructed by
coupling the classifier with a stochastic optimization algorithm, while the other incorporated an
extra Random Forest regression analysis and then was coupled with a deterministic optimization

algorithm. Both frameworks were tested on two benchmark networks.






Chapter 2

Double-Tee Junction Fluid Mixing
Modeling

2.1 Experimental Analysis

Water supply networks can be considered as greatly complex systems whose improper operation
could have a hazardous effect to the human population which uses it. To prevent events such
as water supply networks accidental or deliberate contamination, hydraulic and water quality

mixing models were developed to predict the behavior of such complex systems.

EPANET [66] is the most popular simulation software used for this purpose and it was de-
veloped by the Environmental Protection Agency of the United States. EPANET provides rapid
results of water quality mixing in water supply networks and it can be used in several different
applications such as algorithm efficiency and accuracy investigation for optimal sensor layouts
in water supply networks [55, 84], detection of water supply network contamination sources
[39, 34, 72, 42], characterization of contamination type [89], water supply network quality and
safety [14, 23, 7] etc.

Generally, mass transport in water supply network junctions is complex since there is an
emergence of secondary currents within the flow and there are enhanced flow instabilities which
in turn further enhance turbulence and fluid mixing. For this reason, correct mixing models
should be used to model and predict the contamination propagation in the water supply network
which is mostly consisted of pipes and junctions.

EPANET uses a complete mixing model at every junction which means that the contamina-
tion concentration transported by the fluid is the same at all junction outlet pipes, and the value
of the contamination concentration is determined by the junction inlet pipe flow-weighted con-
centrations. While the law of mass conservation is not violated by the complete mixing model
formulation, the model works correctly only if applied to single-Tee junctions, i.e. a junction

where two inlet pipes converge into a single outlet pipe.

Fluid mixing in a cross junction, which is a type of double-Tee junction, is not complete and
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using a complete mixing model generates great inaccuracy. When the Reynolds (Re) numbers
are equal at all inlet and outlet cross junction system pipes, it was observed that the greatest
deviation from complete mixing emerges [51]. Water quality models in EPANET were created
with data obtained from experimental analysis and computational fluid dynamics (CFD) for the
purpose of improving cross junction mixing model accuracy [65]. When the fluid flow in a cross
junction is turbulent, a considerable deviation from complete mixing is also apparent [4].

Besides the complete mixing model, the bulk-advective mixing model (BAM) was devel-
oped and it is used for modeling bulk mixing. With bulk fluid mixing at cross junctions, the
instabilities and diffusion at mixing fluids interface are ignored, and bulk mixing model can be
considered as the opposite of the complete mixing model [28]. With the bulk mixing model, the
flow momentum at the cross junction inlet is used to calculate and determine how the contami-
nation concentrations will diverge into the cross junction outlet pipes. The pipe which transports
the fluid with the higher flow momentum is going to be the dominant in propagating the con-
tamination concentration towards the cross junction outlet pipe which has the same direction,
and the pipe which transports the lower momentum fluid will propagate the contamination con-
centration only to its adjacent outlet pipe.

An EPANET extension labeled as EPANET-BAM [30] was created and it uses the bulk
mixing model to accurately model cross junction mixing. In the EPANET-BAM software, a
mixing parameter value is set to model the mixing behavior. When the value is equal to zero,
the mixing model will be bulk, and if it is equal to one, the complete mixing model will be
used. Values in between can be set by the user in order to model incomplete mixing at the cross
junction.

Double-Tee junction fluid mixing dynamics is investigated by varying the distances between
the Tee junctions, flow values at the inlet and outlet pipes, and the configuration of pipes [74, 93].
Additionally, uneven inlet and outlet pipe diameters of the double-Tee junction configuration
greatly influence the mixing behavior of the fluid and larger pipe diameter discrepancies generate
amore complete mixing behavior [92]. The orientation of the inlet and outlet pipes of the double-
Tee junction also has an enhanced influence on the mixing behavior [76], i.e. when the branch
outlet pipe is located on the same or the opposite side of the branch inlet pipe.

In this dissertation, an experimental analysis of two double-Tee junction configurations is
conducted, the influence of inlet flow values and the distance between the double-Tee junctions
is investigated. The purpose of the experimental analysis is to investigate mixing dynamics and
obtain data in order to validate numerical models. Additionally, experimental data is also used
to obtain and interpolate mixing parameters for mixing models such as BAM.

Previous research has showed that that the distance between double-Tee junctions when
should be around 7.5 and 10 pipe diameters in order to reach complete mixing [74, 94]. The
complete mixing distance is also investigated within this dissertation.

The schematic of the experimental analysis and the two different double-Tee junction con-

figurations can be observed in Figures 2.1 and 2.2. The experimental setup consists of two inlet
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pipes and two outlet pipes that are connected with the double-Tee junction. To investigate the
fluid mixing dynamics in the double-Tee junction, the electrical conductivity of the mixture is
measured at the pipe outlets. Tap water is the fluid that flows through the main pipe inlet, while
the branch inlet pipe transports distilled water. Tap and distilled water greatly differ in their
electrical conductivity values and will produce a mixture with specific electrical conductivity
values. Beside distilled and tap water mixtures, it is also possible to use salt and tap water at the
inlet pipes in order to study the mixing behavior in double-Tee junctions [31].

Q PHmp %! Control valve [ Valve £ Flowmeter Pl ol Mixture

tank

s \/ariable length

Tap water
tank

E—c a

I

Distilled
water tank

Pt

Figure 2.1: Experimental setup pipe system schematic with the double-Tee junction. [25]




3 (M) 3 (M)

4 (M) 4 (M)

2 (D) 2 (D)
1(T) 1(T)

Figure 2.2: Double-Tee junction pipe configurations considered in the experimental analysis.
[25]

2.2 Numerical Models

Along with an experimental approach, a CFD approach for double-Tee junction fluid mixing
modeling is also possible and can provide accurate mixing results, however, CFD models need to
be validated with experimentally obtained data. Double-Tee junction CFD mixing modeling of a
real scale water supply network would be unpractical since it would require a massive amount of
computational resources and time. CFD can be used to generate mixing parameters for simpler
mixing models such as the bulk-advice mixing model which is implemented in EPANET-BAM.

When the species transport model is used, a calibration of the turbulent Schmidt number is
needed and its value has been shown to be quite case-specific [26, 81]. Previous studies have
reported different values of the turbulent Schmidt number when mixing in double-Tee junctions
is modeled [31, 65].

A CFD approach using the Reynolds-averaged Navier-Stokes (RANS) turbulence k-Epsilon
(k-€) model coupled with the scalar transport model was investigated for a cross junction fluid
mixing case and it was determined that adjusting the turbulent Schmidt number is a require-
ment to obtain values equal to those of an experimental analysis, ultimately a turbulent Schmidt
number value of 0.135 was recommended [65].

A range of turbulent Schmidt number vales were also investigated for a cross junction mix-

ing case [29] using the coupled RANS £-¢ turbulence model with the scalar transport model.
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The varied turbulent Schmidt number values were 0.001, 0.01, 0.1 and 1. A close relationship
between Re and the turbulent Schmidt number was found, and that an adjustment of the turbulent
Schmidt number is necessary when the double-Tee junction distance is changed.

The turbulent Schmidt number equal to 0.135 was additionally investigated for different
double-Tee junction distances using the k-e turbulence model and it was found that it produces
a good fit with the experimental data [74].

The turbulent Schmidt number value of 0.2 was recommend for a double-Tee junction mix-
ing model when the k-Omega (k-w) sst turbulence model is used [11], further showing that the
value is also dependant on the used turbulence model.

Finally, a high fidelity Large Eddy Simulation (LES) turbulence model coupled with the
scalar transport model can also produce accurate fluid mixing results in double-Tee junctions
[85].

In this dissertation, a CFD analysis is performed along with the experimental analysis. Both
RANS and LES models were investigated using the open source finite volume-based CFD soft-
ware OpenFOAM [37]. A multiphase and scalar transport model were both investigated with
the RANS model, while the LES model was investigated coupled with a pure advection scalar
transport model. The main contributions of this research is to validate the numerical models
with the experimental data, investigate the efficiency of each numerical approach, calibrate and
investigate the influence of the turbulent Schmidt number and generate mixing parameters for
mixing models like BAM with CFD.

2.2.1 Transport Models

The double-Tee junction mixing was modeled with RANS k-¢ turbulence model coupled with
the scalar transport model and multiphase model, separately. Both models have the turbulent

Schmidt number incorporated and it is defined in equation 2.1.

Dt = Dol + Sctill/t (2.1)

The Dy variable is the turbulent diffusion, Dy denotes the molecular diffusion parameter,
Set 1s the turbulent Schmidt number and 14 is the kinematic turbulent viscosity which is calculated

from the turbulent kinetic energy £ and turbulent dissipation € as seen in equation 2.2 [45].

k2
" = CN? (22)

The scalar transport model is defined in equation 2.3.

V- (uc) =V - (DVe) (2.3)

The ¢ parameter denotes a dimensionless scalar which is 0 when the transported concen-

tration is low, and 1 when it is high, and u denotes the velocity vector. The equation 2.3 is
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physically interpreted as transport of a scalar quantity c by the fluid flow.
The second transport model investigated in this dissertation is the multiphase model and it
is defined by equations 2.4, 2.5 and 2.6.

8;;1 + V- (uay) =V - (DiVay) (2.4)
a;=1—ay (2.5)
p=oqpr+ azps =aipr + (1 —oq)ps (2.6)

The fluid density p; corresponds to the phase variable oy, while p, is the second fluid’s
density which corresponds to the phase variable a,. The density p in equation 2.6 is the density
of the computed mixture of fluids or phases and it is further used as the density in the RANS
k-epsilon turbulence model. Similarly as the ¢ value of the passive scalar model, «; is equal
to 1 and it is the high transported concentration phase, while o is 0 and the low concentration
phase. If a phase has a value between 0 and 1 then it is a mixture.

Equation 2.4 is considered as an advection-diffusion equation for the o phase, and it is
transient which makes this approach more computationally inefficient than the passive scalar
transport model.

In this dissertation, for the scalar transport model, a custom code was written within the
OpenFOAM framework and coupled with the simple F'oam solver which is RANS steady state
turbulent fluid flow solver. The multiphase solver twoLiquidMixing F'oam was used for the

multiphase transport model.

2.2.2 Large Eddy Simulation

LES turbulence model coupled with the pure advection scalar transport model was investigated
for the double-Tee junction mixing problem. The pure advection scalar transport model does
not incorporate the turbulent and molecular diffusion terms and it is defined in equation 2.7. The
main benefit of this approach is that the model does not need any calibration since there is no
St

gtci + %C;jj =0 (2.7)
The variable ¢ is filtered scalar quantity transported by the LES resolved flow, and « denotes
the filtered velocity.
When the fluid flow is turbulent, there exists a process where the turbulent eddies of a larger
length scale transfer kinetic energy on those eddies with a smaller length scale, and this process

is referred to as the energy cascade. With the LES model there is a cut-off filter which directly
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numerically solves the large scale eddies, while the small length scale eddies are modeled with
a sub-grid scale (SGS) model. This cut-off filter is directly linked with the resolution of the
numerical mesh. The Wall-Adapting Local Eddy-Viscosity (WALE) model introduced in [53]
was used to model the double-Tee mixing process.

Unlike in the RANS approach, the equations solved with the LES model are the temporally
and spatially filtered Navier-Stokes equations of fluid flow. In equation 2.8 the incompress-
ible spatially and temporally filtered continuity equation is presented, while the incompressible

momentum conservation equation is defined in equation 2.9.

ot B
87% =0 (2.8)

aﬁi 6@@- . 6aij . @ . %
8ti * 8xj N aZL’j axi (91:1- (2'9)

The variable p is the filtered pressure, while the stress tensor term oj; is present due to molec-

ular viscosity, and T is the SGS stress which is modeled as defined in equation 2.11.

Tij = Uillj — UjY; (2.10)

Additionally, the further decomposition of 7 is decomposed defined in equation 2.11, where
Ty are the normal components of the SGS stress tensor, d; denotes the Kronecker delta, 14 the
modeled turbulent viscosity and gij the resolved scale rate of strain tensor which is defined in
equation 2.12.

Tij — ;Tn(sij = _QVtSij (211)
& 1 7 0%; 8ﬂj
Si= (ax,- n &Ei> (2.12)

Furthermore, specifically in the LES WALE model, the variable 14 is modeled with the terms

defined in equation 2.13, and C), is the constant present in the WALE model, A,, denotes the

characteristic length scale which is dependant on the numerical mesh resolution and the term Si?

is the deviation from S.

3/2
(S§S5)

1 = (CuAy)* ——
t ( w W) (SijSij)E’/Q‘f‘(Si?Si(jj)SM

(2.13)

Previously, the WALE model was investigated on a scalar transport within a single-Tee junc-
tion case [5, 71]. The numerical mesh for the LES WALE model was generated with the cell
size requirement estimation procedure which is dependant on the RANS generated Taylor mi-
croscale values [1]. Equation 2.14 represents the estimator and A is the maximum cut-off value

which determines the size of a numerical cell. The Ar variable is the Taylor microscale and

13



Lg is the turbulent energy length scale. This numerical mesh procedure was investigated on a
single-Tee junction case in conjunction with the Vreman SGS LES model [44] and on a fluid

oscillator case [56].

Lr
A= max()\R, 10) (2.14)

Furthermore, equations 2.15 and 2.16 are used to calculate the values of A\g and Lg, respec-

A = (| LORY 2.15)
€

]{?1'5
Lr=—~— (2.16)

€

tively.

The purpose of modeling the double-Tee junction mixing problem with the LES WALE
model and the pure advection scalar transport model is to investigate whether it is possible to
obtain accurate mixing results without S¢; calibration. In this dissertation, the numerical mesh
RANS estimation and LES WALE modeling was done in OpenFOAM.

2.3 Machine Learning Approach

A machine learning approach to fluid mixing modeling in double-Tee junctions is also possible
besides the experimental and numerical approaches.

Recently, machine learning (ML) algorithms have been applied in areas like hydrology and
hydraulics, and those include ANN [46, 79], RF [68], and Support Vector Machines (SVM) [19].
ML was also implemented in pipe flow systems, where a selection of ML algorithms such as
RF, Bagging Algorithm (BA), and Regression Trees (RT) were trained to predict characteristics
of a wastewater pipe system [22].

ML algorithms were used to investigate pressure gradients, flow pattern identification and
liquid holdup in a pipe segment. The ML algorithms were trained with data generated by CFD
and it was found that the Gradient Boosting (GB) algorithm and SVM produce the best pre-
dictions [38]. Deep learning (i.e. ANN) was also applied to predict the best valve scheduling
scenario in a water supply network during a contamination event [33]. Similarly, the Support
Vector Regression (SVR) algorithm was trained to find anomalies in a pressurized pipe network
system [83], while a modified ANN algorithm was trained for pipe network management [70].

A data analysis approach using Kriging and Delaunay triangulation in conjunction was used
for double-Tee junction mixing modeling [20], where the mixing dynamics prediction was done
for several double-Tee junction distances and for different flow regimes with data obtained by
CFD simulations.

A ML approach is also possible for mixing behavior evaluation with data obtained by exper-
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imental analysis of by CFD. In this dissertation, two different algorithms (SVR and ANN) were
investigated for this purpose. Data for ML algorithm training was generated by a CFD model
which was validated with experimental data. The prediction of both ML algorithms was tested
on different double-Tee junction distances and different inlet and outlet pipe flow values. The
SVR and ANN algorithm implementations in the Python machine learning module scikit-learn
was used in this dissertation [57], and the CFD data was generated with the open source CFD
solver OpenFOAM.

The main purpose of this research is to investigate whether a computationally efficient
method like ML is accurate enough for predicting mixing behavior parameters. An efficient
method like ML has the possibility to be directly implemented into hydraulic and water quality

software like EPANET, and could be used in real time due to its rapid prediction capabilities.
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Chapter 3

Water Supply Network Source

Contamination Localization

3.1 The Challenge of Contamination Localization

Contamination events in water supply networks are a great concern as they pose a major threat
on the health of the human population which uses the network, hence, it is essential that water
supply networks are functional [9]. Contamination of water supply network can be accidental or
deliberate and should be rapidly terminated by the authorities that govern water supply networks
since contamination can quickly propagate through the water supply network. A number of

recent studies investigated emergency reactions needed in case of such events ([73, 77]).

Water supply network contamination is usually caused by a great variety of events such as
pipe biofilm formation, aging of water and pipe lining chemical contamination and corrosion
[52, 36]. Localizing the contamination source of a contamination event in a water supply net-
work 1s an important and challenging task as it requires a lot of information of the water supply

network state such as hydraulic demands.

Additionally, a contamination event is a complex problem due to complex physics which
are involved in the contamination transport through fluid flow. As it was previously mentioned,
this complexity is greatly enhanced in water supply elements such as double-Tee junctions.
Experimental analysis showed that in the case of a less turbulent regime of fluid flow, diffusion
of contamination in the water supply network is greatly amplified and recently, water supply
network mixing models try to incorporate these effects [58]. Another possibility to tackle the
water supply network contamination event diffusion problem is to use a combination of CFD
and statistical methods to incorporate the effects of incomplete mixing in problematic network

elements such as double-Tee junctions [11].

Obtaining information from water quality sensors positioned in the water supply networks is
essential for contamination source localization. An optimal placement of water quality sensors in

a pipe network is essential for finding the source and determining the contamination propagation
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dynamics in the water supply network, and a lot of previous research was focused on this issue
[8,55,62,43,27, 80, 32, 69]. More specifically, an optimal sensor placement in a water supply
network needs to maximize the detection rate and minimize the detection time of contamination
sources.

Data that was obtained with water quality sensor measurements are used with optimization
algorithms to determine the most probable source of contamination in the water supply network,
the contamination event start and end time and the contaminant chemical concentration [60, 82,
95,42, 87, 91]. It is also important to note that sensor measurements can be imperfect and that
hydraulic demand uncertainties can be present in the water supply network, thus several studies
have included this in the data used for source detection [82, 87, 91].

The methods which involve optimization algorithms are named usually denoted as simulation-
optimization methods and are the most popular set of methods for water supply network con-
tamination source localization problem. Generally, this algorithmic procedure involves cou-
pling a stochastic or deterministic optimization algorithm with a hydraulic and water quality
water supply network fluid flow simulator (such as EPANET). The objective function of the
simulation-optimization algorithmic loop is to minimize the error between the measured water
quality in the water supply network and the hydraulic simulator values in order to determine
the contamination source, start and end times of the contamination event and the contaminant
chemical concentration. Historically, Genetic Algorithms (GA) have been widely used as the
optimization algorithm in the simulation-optimization loop [61, 90, 34, 88, 50].

The simulation-optimization approach is usually computationally expensive and requires a
significant amount of time to detect the water supply network contamination source, starting
and ending times of the event and the contaminant chemical concentration. This is even more
apparent when a real sized water supply network is being considered, as it usually consists of a
greater number of potential contamination source nodes. The increased size of the water supply
network increases the complexity of the given problem and can affect the accuracy and the
detection time, thus slowing the process of contamination event halting.

Data mining is another approach for contamination source identification. Usually, detecting
a contamination source with data mining implies searching for a specific contamination event
through a pre-made database of simulated results of contamination events. Statistical and opti-
mization algorithms can be used in conjunction with data mining for the purpose of searching
thorough a pre-made database for the most accurate contamination event variables which include
the source, duration (start and end time) and contaminant chemical concentration.

Optimization and statistical algorithms can be applied with data mining in order to search
through the precompiled database for the most compatible contamination event parameters (source,
concentration, duration), while simulation-optimization methods simultaneously run contami-
nation event scenarios in conjunction with optimization algorithms and repeatedly evaluate a
fitness function in order to detect the previously mentioned parameters.

A data mining approach was developed in conjunction with a maximum likelihood method
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for a water supply network with a sensor layout which consisted of five sensors and it was
showed that it is possible to minimize the list of potential contamination sources in the network
[35].

The data mining method requires a large database of simulated contamination event sce-
nario results, and this can be considered a drawback, even though it was showed that an offline
database which can be successfully used to correctly identify the water supply network contam-
ination source [75].

Data-driven approach based on the logistic regression (LR) algorithm was investigated for
the water supply network contamination detection problem. LR was coupled with an evolu-
tionary algorithm in order to maximize computational efficiency and accuracy [48]. Similarly,
a Monte Carlo (MC) based data-driven model was created for the same purpose [16]. Prob-
abilistic methods based on Bayesian Belief Networks (BBN) have also been investigated and
explored for contamination source detection in water supply networks.

ML methods have been increasingly successfully used for a great variety of environmental
engineering related problems and phenomena. Long Short-Term Memory (LSTM) Neural Net-
work was trained to forecast floods with rainfall and discharge data [46]. ANN and RF were
used in conjunction to localize chemical leaks with data obtained from sensors [12]. Groundwa-
ter flow modeling has also been actively including machine learning methods as Convolutional
Neural Network (CNN) coupled with a Markov Chain Monte Carlo (MCMC) method has been
applied to determine contaminant sources in groundwater area flows [96]. RF was also used to
create prediction models for contamination source detection in rivers with MCsimulation gen-
erated data [47]. Groundwater nitrate contamination areas was modeled with the RF algorithm
which was trained with data obtained from field measurements [64]. Similarly, RF models were
created with measured data for heave metal contamination from multiple sources [?].

Machine learning and simulation-optimization coupling has been also employed in the area
of groundwater pollution source and pollution characteristics prediction. Coupling of non-
dominated sorting genetic algorithm II (NSGA-II) and both Probabilistic Support Vector Ma-
chines (PSVM) and Probabilistic Neural Networks (PNN) has been done for characterizing an
unknown pollution source in groundwater resources systems [6].

ML models are another possible approach which can provide an extremely fast and efficient
way of prediction potential contamination sources in water supply networks. An ANN was
trained and tested on data obtained from experimental analysis of a small-sized pipe network
system with 5 sampling locations to detect the source E. Coli bacterial [41]. Even though the
experimental system is small-sized, the complexity of the problem is apparent, and a detection
accuracy of 87% was realized. Learning vector quantization Neural Network (LVQNN) have
been used to detect zones in large water supply networks where contamination source nodes
could be located [67].

More recently, a CNN was trained with water supply network user complaint data in order

to detect contamination sources [78]. It was compared to a Multilayer Perceptron ANN (MLP-

19



ANN) and it was found that CNN performs better. Decision Trees (DT) were trained with water
supply network contamination event data in order to isolate a problematic area [17]. Similarly,
RF was used to determine the number of water supply network contamination sources [49].
Generally, the water supply network contamination source detection is a complex and multi-
modal problem which requires a lot more research as a lot of proposed solutions still have draw-
backs either due to inaccuracy or low computational efficiency. It is why in this research, the
usage of ML methods for the water supply network contamination source detection is further ex-
plored and investigated on benchmark water supply networks. The RF and ANN algorithms are
used to create ML prediction models. Additionally, a coupling between simulation-optimization
(stochastic and deterministic) and ML algorithms is achieved and investigated. To examine the
accuracy and robustness of proposed methods and frameworks, the EPANET2 water quality and

hydraulic simulator is used.

3.2 Monte Carlo Simulations and Machine Learning

MC simulations using the hydraulic and water quality analysis software were made in order to
obtain data which can be used to train and investigating ML algorithms for the purpose of water
supply network contamination source detection. EPANET2, the water quality and hydraulic
software which uses the complete mixing model at junctions was used to generate training and
testing data. The accuracy of the ML approach does not depend on the mixing model used by
the hydraulic simulator, however, in order for the approach to be employed in a real case, the
contaminant propagation and mixing should be as accurate as possible.

Each MC simulation used a randomized set of water supply network contamination event
parameters which include contamination source location, start and end times and the contami-
nant chemical concentration. Generally, the input values for the ML model are the simulated
sensor water quality measurements, while the output values is the location of the contamination
source and other relevant parameters that are needed in order to reconstruct the contamination
event.

In this thesis the RF algorithm (implemented in the Python ML module sickit-learn [57]) was
trained with MC simulated data and investigated for the purpose of predicting the contamination
source in two water quality benchmark networks (seen in Figures 3.1 and 3.2) with different
sensor layouts. Hydraulic demand uncertainty and imperfect sensor measurements were also
investigated to test the accuracy and robustness of the approach.

Furthermore, besides the RF model used for prediction of contamination sources, in this
dissertation, a hybrid algorithm is proposed which uses ANN for source location classification
within the water supply network and RF for prediction of contamination start and end time,
and contaminant chemical concentration. The algorithm is specifically made for high perfor-
mance computing systems and uses a tournament-based selection of most probable contami-

nation source nodes based on MC water quality simulations in parallel. The proposed hybrid
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Net3 Sensors

Figure 3.1: Water supply network benchmark Net3 (92 nodes) with a 4 sensor layout. [24]
algorithm is created using the Python ML module scikit-learn [57] and the Simple Linux Utility

for Resource Management (SLURM) utility. The algorithm is also tested on the benchmark

networks presented in Figures 3.1 and 3.2.
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Richmond Sensors

Figure 3.2: Water supply network benchmark Richmond (865 nodes) with a 5 sensor layout.
[24]

3.3 Simulation-Optimization and Machine Learning

Finally, the coupling of the simulation-optimization approach and ML approach has been inves-
tigated in this dissertation. The goal is to investigate whether a coupled approach could eliminate
the drawbacks of both methods when used separately. Two different novel coupling algorithmic
frameworks are proposed and both use the MC simulation trained RF algorithm (scikit-learn [57]
implementation) to reduce the space of potential contamination source nodes within the water

supply network.

The first proposed algorithmic framework uses the simulation-optimization procedure loop
with the RF classification in order to determine the contamination event parameters. Three
different stochastic optimization algorithms (Particle Swarm Optimization (PSO), Fireworks
Algorithm (FWA) and GA) are assessed within the first algorithmic framework in terms of ef-
ficiency and accuracy. PSO and FWA implenetations in the Python numerical optimization
module indago [15], while the GA Python module for multiobjective optimization pymoo [10]

implementation is used.

The second proposed algorithmic framework includes an additional RF model regression
procedure for each RF classified potential contamination source location for the purpose of pre-

dicting each location’s start time, end time and contaminant chemical concentration. After the
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RF regression procedure, each contamination source node’s predicted contamination start and

end times, and concentration data is then used as starting values for the deterministic optimiza-

tion algorithm Mesh Adaptive Direct Search (MADS) which is implemented in NOMAD 4.0 [3].
The EPANET2 hydraulic and water quality simulator is also used in the simulation-optimization

loop of the algorithmic framework, as well as for generating the data for the RF classifier which

is a part of both frameworks. The algorithmic frameworks are investigated on water supply

benchmark networks seen in Figures 3.1 and 3.2.

23



24



Chapter 4

Conclusion

4.1 Main Contributions

This dissertation focuses on the mixing of fluids in pipe water supply networks. The main
connection between all investigated topics is the modeling of fluid mixing. Mixing models are
used to investigate the fluid mixing dynamics in water supply network elements such as double-
Tee junctions and mixing models are used in conjunction with ML and optimization methods to
create surrogate mixing models in large-scale water supply networks for the purpose of detecting
contamination sources and other relevant contamination event parameters.

The main contributions of this research can be summarized into the following points:

* Through experimental analysis of fluid flow in a double-Tee junction system, new ex-
perimental data was obtained for different double-Tee distances, configurations, and inlet
flow ratios. The obtained experimental results were compared with results obtained by
previous research and it was shown that complete mixing is not occurring for the investi-
gated cases. Additionally, experimental analysis was done for previously untested larger
double-Tee distances. Also, new EPANET-BAM correction factors were recommended
in this research for the investigated cases. Numerical models were also proposed as two
different transport models were investigated (multiphase and passive scalar) and validated
based on experimental data. It was found that both models are very accurate and the im-
portance of calibrating the turbulent Schmidt number was emphasized. The value of the
turbulent Schmidt number used in the study was 0.5 and it showed to be accurate for all

of the numerically reproduced cases.

* A new approach to modeling fluid mixing in a double-Tee junction system based on ma-
chine learning was explored. The purpose of this research was to investigate a more
computationally efficient approach (when compared to CFD or experimental analysis)
to quickly obtain the parameters which determine the mixing dynamics in a double-Tee

junction. The proposed machine learning model was trained with data obtained from
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CFD analysis (the calibrated numerical model from the previous point was used). The in-
put data for the machine learning model training were the inlet pipe flow ratio, the outlet
pipe flow ratio and the distance between the double-Tee junction, while the output data
was the relevant mixing ratio which could be used to determine a correction factor for
simpler models. Two machine learning algorithms were investigated and compared (Ar-
tificial Neural Networks and Support Vector Machines) and it was found that Artificial
Neural Networks perform better in terms of accuracy and problem generalization. It was

found that the approach is computationally efficient and robust.

The possibility of using the Large Eddy Simulation turbulence model with a pure advec-
tion scalar transport model on the double-Tee junction fluid mixing case was explored
and compared with experimental results from previous research. The LES-WALE turbu-
lent model was used with a grid size estimation method based on the RANS k-Epsilon
model results through calculating turbulence scale values. When a pure advection trans-
port model is used it is not necessary to calibrate the turbulent Schmidt number (since the
equation does not incorporate the turbulent diffusion term) and it was shown that accurate
mixing results were obtained with this model when used with LES-WALE. The numerical
approach was explored and shown to be accurate for three different double-Tee junction

configurations.

A new approach to identify contamination sources in water supply networks based on the
Random Forest algorithm was proposed and explored. The method was tested on two
benchmark water distribution networks with different sizes and different sensor layouts.
For each network, a large number of Monte Carlo contamination scenarios were simu-
lated in the EPANET2 hydraulic simulator using a complete mixing model with random
parameters such as contamination source location, start and end times of contamination
and the concentration of the injected contamination. For each scenario, water quality sen-
sor readings were saved and used as an input to the machine learning model, while the
model output was the contamination source. The efficiency of the water network sensor
layouts was investigated along with added hydraulic uncertainties and sensor imperfec-
tions. It was found that the RF classifier method is robust and efficient in creating a list

of the most probable contamination sources for a given value of sensor measurements.

A new algorithmic framework based on machine learning for the detection of contami-
nation sources in water supply networks made especially for high-performance parallel
systems was developed and investigated and presented. The algorithm uses a combination
of Artificial Neural Networks to classify contamination sources and the Random Forest
algorithm for regression analysis to determine significant contamination event variables
such as start and end times and injected contamination concentration. The algorithm is
based on parallel execution of Monte Carlo hydraulic simulations in EPANET?2 of the wa-

ter supply network and classifying the most probable source of contamination in a parallel
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tournament selection with Artificial Neural Networks (potential sources are distributed to
tournaments on CPU cores). After the tournament selection of the most probable sources,
the Random Forest algorithm is used to predict other relevant variables, and all nodes
are ranked according to the prediction error based on the sensor measurements data. The
algorithm was tested on a smaller network of 92 potential sources and on a medium-
sized network with 865 potential contamination sources. It was shown that the proposed
algorithm is robust and computationally efficient when employed on high performance

systems.

* Finally, a novel methodology is explored and presented for solving the problem of a wa-
ter supply network contamination event, which includes determining the exact source of
contamination, the contamination start and end times and the injected contaminant con-
centration. Two slightly different algorithmic frameworks were constructed based on the
novel methodology. Both algorithmic frameworks utilize the Random Forest algorithm
for classification of top source contamination node candidates, with one of the frameworks
directly using the stochastic fireworks optimization algorithm to determine the contami-
nation start time, end time and injected contaminant concentration for each predicted node
separately. The second framework uses the Random Forest algorithm for an additional re-
gression prediction of each top node’s start time, end time and contaminant concentration
and is then coupled with the deterministic global search optimization algorithm MADS.
Both algorithmic frameworks perform well and show robustness for the true source node
detection, start and end times and contaminant concentration, with the second framework

being extremely efficient on the fuzzy sensor measurement benchmark network.

4.2 Future Work

Possible future work and expansions of the research presented in this dissertation includes:

* The turbulent Schmidt number calibrated RANS and passive scalar transport model is a
useful tool which can be used to simulate other double-Tee junction distances, configura-
tions and inflow values. It can used to generate more incomplete mixing parameters for
hydraulic and water quality software such as EPANET-BAM without the need of addi-
tional experimental analysis if the flow regime is in the same range. Similarly, the LES
WALE pure advection model in conjunction with the numerical mesh size estimation pro-
cedure, could be used for the same purpose but with more certainty as it shows that it

doesn’t require any turbulent Schmidt number calibration.

* The double-Tee junction ML model could be further trained and investigated with other
ML algorithms and additional double-Tee junction configurations. The mixing surro-

gate model could be directly implemented into a water supply network mixing modeling
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software as it could provide accurate mixing assessment for a wide array of double-Tee

junction mixing combinations due to its efficiency and robustness.

* The water supply network contamination source detection algorithmic frameworks could
be further explored with novel and cutting ML algorithms. Additionally, the methods
should be investigated on real water supply networks which include hydraulic uncertain-
ties of all pipe network elements in order to realistically assess their efficiency and accu-

racy.
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Chapter 5

Summary of Papers

A Experimental and Numerical Investigation of Mixing Phe-

nomena In Double-Tee Junctions

This work investigates mixing phenomena in a pressurized pipe system with two sequential Tee
junctions and experiments are conducted for a range of different inlet flow ratios, varying dis-
tances between Tee junctions and two pipe branching configurations. Additionally, obtained
experimental results are compared with results from previous studies by different authors and
are used to validate the numerical model using the open source computational fluid dynamics
toolbox OpenFOAM. Two different numerical approaches are used—Passive scalar model and
Multiphase model. It is found that both numerical models produce similar results and that they
are both greatly dependent on the turbulent Schmidt number. After the calibration procedure,
both models provided good results for all investigated flow ratios, double-Tee junction distances,
and pipe branching configurations, therefore both numerical models can be applied for a wide
range of pipe networks configurations, but passive scalar model is the viable choice due to its
much higher computational efficiency. Obtained results also describe the relationship between

the double-Tee distances and complete mixing occurrence.
Grbcié, L., Kranjcevié, L., Lucin, I. and Carija, Z., 2019. Experimental and numerical in-

vestigation of mixing phenomena in double-Tee junctions. Water, 11(6), p.1198.;
https://doi.org/10.3390/wi11061198

29



B Efficient Double-Tee Junction Mixing Assessment by Ma-

chine Learning

A new approach in modeling of mixing phenomena in double-Tee pipe junctions based on ma-
chine learning is presented in this paper. Machine learning represents a paradigm shift that can
be efficiently used to calculate needed mixing parameters. Usually, these parameters are ob-
tained either by experiment or by computational fluid dynamics (CFD) numerical modeling. A
machine learning approach is used together with a CFD model. The CFD model was calibrated
with experimental data from a previous study and it served as a generator of input data for the
machine learning metamodels—Artificial Neural Network (ANN) and Support Vector Regres-
sion (SVR). Metamodel input variables are defined as inlet pipe flow ratio, outlet pipe flow
ratio, and the distance between the pipe junctions, with the output parameter being the branch
pipe outlet to main inlet pipe mixing ratio. A comparison of ANN and SVR models showed that
ANN outperforms SVR in accuracy for a given problem. Consequently, ANN proved to be a
viable way to model mixing phenomena in double-Tee junctions also because its mixing pre-
diction time is extremely efficient (compared to CFD time). Because of its high computational
efficiency, the machine learning metamodel can be directly incorporated into pipe network nu-

merical models in future studies.

Grbcié¢, L., Kranjcevic, L., Druzeta, S. and Lucin, 1., 2020. Efficient double-Tee junction mixing
assessment by machine learning. Water, 12(1), p.238.; https://doi.org/10.3390/w12010238
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C Large Eddy Simulation of Turbulent Fluid Mixing in Double-

Tee Junctions

Double-Tee junctions serve as building blocks of pipe network systems and fluid mixing occur-
ring in them is complex due to excessive eddying of flow. In this paper a LES model with pure
advection was used on a double-Tee junction turbulent mixing phenomena problem. This kind of
approach does not require the turbulent Schmidt number which is problem specific and needs to
be calibrated with experimental data. When applying the LES-WALE turbulence model in con-
junction with the pure advection transport of a scalar quantity on the double-Tee mixing problem
it is achieved that the resolved turbulent flow field accurately transports the scalar when com-
pared to experimental data from literature. This approach enables accurate mixing predictions in
double-Tee junctions for the purpose of correcting simpler 1D numerical mixing models without
the need of obtaining new experimental data since no turbulent Schmidt number calibration is
needed. The approach can be applied to biological or chemical agent transport in a fluid and
the model was tested and shown to be valid for a Reynolds number range of 20,000—400,000 on
three different types of double-Tee junction configurations and five double-Tee distances with

a constant inlet and outlet pipe diameter.
Grbci¢, L., Kranjcevié, L., Lucin, 1. and Sikirica, A., 2021. Large Eddy Simulation of turbu-

lent fluid mixing in double-tee junctions. Ain Shams Engineering Journal, 12(1), pp.789-797.;
https://doi.org/10.1016/j.asej.2020.06.004
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D Water Supply Network Pollution Source Identification by
Random Forest Algorithm

A novel approach for identifying the source of contamination in a water supply network based
on the random forest classifying algorithm is presented in this paper. The proposed method is
tested on two different water distribution benchmark networks with different sensor placements.
For each considered network, a considerable amount of contamination scenarios with randomly
selected contamination parameters were simulated and water quality time series of network sen-
sors were obtained. Pollution scenarios were defined by randomly generated pollution source
location, pollution starting time, duration of injection and the chemical intensity of the pollu-
tant. Sensor layout’s influence, demand uncertainty and imperfect sensor measurements were
also investigated to verify the robustness of the method. The proposed approach shows high
accuracy in localizing the potential sources of pollution, thus greatly reducing the complexity

of the water supply network contamination detection problem.
Grbci¢, L., Lucin, I, Kranjcevi¢, L. and Druzeta, S., 2020. Water supply network pollution

source identification by random forest algorithm. Journal of Hydroinformatics, 22(6), pp.1521-
1535.; https://doi.org/10.2166/hydro.2020.042
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E A Machine Learning-based Algorithm for Water Network

Contamination Source Localization

In this paper, a novel machine learning based algorithm for water supply pollution source iden-
tification is presented built specifically for high performance parallel systems. The algorithm
utilizes the combination of Artificial Neural Networks for classification of the pollution source
with Random Forests for regression analysis to determine significant variables of a contamina-
tion event such as start time, end time and contaminant chemical concentration. The algorithm is
based on performing Monte Carlo water quality and hydraulic simulations in parallel, recording
data with sensors placed within a water supply network and selecting a most probable pollution
source based on a tournament style selection between suspect nodes in a network with men-
tioned machine learning methods. The novel algorithmic framework is tested on a small (92
nodes) and medium sized (865 nodes) water supply sensor network benchmarks with a set con-
tamination event start time, end time and chemical concentration. Out of the 30 runs, the true
source node was the finalist of the algorithm’s tournament style selection for 30/30 runs for the
small network, and 29/30 runs for the medium sized network. For all the 30 runs on the small
sensor network, the true contamination event scenario start time, end time and chemical con-
centration was set as 14:20, 20:20 and 813.7 mg/L, respectively. The root mean square errors
for all 30 algorithm runs for the three variables were 48 min, 4.38 min and 18.06 mg/L. For the
29 successful medium sized network runs the start time was 06:50, end time 07:40 and chem-
ical concentration of 837 mg/L and the root mean square errors were 6.06 min, 12.36 min and
299.84 mg/L. The algorithmic framework successfully narrows down the potential sources of
contamination leading to a pollution source identification, start and ending time of the event and

the contaminant chemical concentration.
Grbci¢, L., Lucin, 1., Kranjcevi¢, L. and Druzeta, S., 2020. A machine learning-based algo-

rithm for water network contamination source localization. Sensors, 20(9), p.2613.;
https://doi.org/10.3390/s20092613
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F Machine Learning and Simulation-Optimization Coupling
for Water Distribution Network Contamination Source De-

tection

This paper presents and explores a novel methodology for solving the problem of a water dis-
tribution network contamination event, which includes determining the exact source of con-
tamination, the contamination start and end times and the injected contaminant concentration.
The methodology is based on coupling a machine learning algorithm for predicting the most
probable contamination sources in a water distribution network with an optimization algorithm
for determining the values of contamination start time, end time and injected contaminant con-
centration for each predicted node separately. Two slightly different algorithmic frameworks
were constructed which are based on the mentioned methodology. Both algorithmic frame-
works utilize the Random Forest algorithm for classification of top source contamination node
candidates, with one of the frameworks directly using the stochastic fireworks optimization
algorithm to determine the contamination start time, end time and injected contaminant con-
centration for each predicted node separately. The second framework uses the Random Forest
algorithm for an additional regression prediction of each top node’s start time, end time and
contaminant concentration and is then coupled with the deterministic global search optimiza-
tion algorithm MADS. Both a small sized (92 potential sources) network with perfect sensor
measurements and a medium sized (865 potential sources) benchmark network with fuzzy sen-
sor measurements were used to explore the proposed frameworks. Both algorithmic frameworks
perform well and show robustness in determining the true source node, start and end times and
contaminant concentration, with the second framework being extremely efficient on the fuzzy

sensor measurement benchmark network.

Grbcic, L., Kranjcevié, L. and Druzeta, S., 2021. Machine learning and simulation-optimization
coupling for water distribution network contamination source detection. Sensors, 21(4), p.1157.;
https://doi.org/10.3390/s21041157
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