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ABSTRACT

Generalised gauge field theories are interacting field theories with a gauge symmetry
generalised beyond the standard Lie algebra case. Such theories have become increasingly
important in modern physics, especially high energy physics as the search for a consistent
description of quantum gravity makes these generalised symmetries unavoidable. Two
theories we shall analyse in particular are the Courant sigma model and double field
theory. They are relevant in the understanding of dualities and symmetries with higher
form gauge fields. The aim of this thesis is to explore deeper the relation between the two
and to embed them into the appropriate framework for studying higher gauge symmetries
– LŒ-algebras. This will be broken down into three parts. The first dedicated to delving
deeper into the BRST symmetry of them and exploring how the known classical projection
procedure relating them appears on the BRST level. It is at this point that we explicitly
see the necessity of the strong constraint for double field theory to be covariant. Having
understood the BRST structure and knowing that the Courant algebroid, the geometric
structure behind the sigma model, is an LŒ-algebra we are motivated to see how the
full field theory fits into this framework. This is the second part. In it we construct the
LŒ-algebra for the Courant sigma model in such a way that all physical data can be
expressed using the objects and operations defined by the algebra itself. Then the intimate
relationship between LŒ and the Batalin-Vilkovisky formalism is utilised to obtain its
BV/BRST formulation. Finally, in the last part, we go back to double field theory and
embed its geometric structure, the DFT algebroid, into LŒ much the same way as the
Courant algebroid is. However, because of the section condition of double field theory this
cannot be done as is, given that the cohomological vector in this formulation squares to
zero only upon applying the section condition. In order to get around this we turn to the
well known but extremely rarely used extension of LŒ-algebras – curved LŒ-algebras. It is
precisely this curving that encapsulates the strong constraint violating terms and restores
the existence of the cohomological vector. We finish o� with a sigma model built upon
this new curved algebra that brings about the section condition as an on-shell requirement.

Keywords: LŒ-algebra, Batalin-Vilkovisky, Double Field Theory, Gauge symmetry,
Courant algebroid.
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PROäIRENI SAéETAK

Teorije polja s poopÊenim baûdarnim simetrijama integralni su dio moderne fizike,
posebice fizike visokih energija s obzirom da potraga za kvantnim opisom gravitacije �ini
takve poopÊene simetrije nezaobilaznima. Mi Êemo se fokusirati prvenstveno na dvije takve
teorije: Courantov sigma model i dvostruka teorija polja (DFT). Obje teorije motivirane
su teorijom zatvorenih struna i pojavnosti tzv. T-dualnosti u njoj. Cilj ovog rada jest da
istraûi dublje vezu me�u ovim dvjema teorijama te da ih smjesti u formalizam prilago�en
viöim baûdarnim simetrijama – formalizam LŒ-algebri. Ovo Êe biti napravljeno u tri dijela
detaljnije objaönjena u nastavku.

BRST simetrija Courantovog sigma modela i dvostruke teorije polja.

Roytenberg je u [18] pokazao da je BV akcija Courantovog sigma modela, ovdje nad
dvostrukom baznom mnogostrukoöÊu:

SC[X,A,F] =
⁄

T [1]�3
µ

1
FA dX

A + 1
2 ÷̂ÎĴA

Î
dA

Ĵ ≠ flA
Ĵ(X)AĴ

FA + 1
6TÎĴK̂(X)AÎ

A
Ĵ
A

K̂
2
,

gdje su:

X
A = XA + F †A + t†A + v†A,

A
Î = ‘Î + AÎ + ÷̂ÎĴA†

Ĵ
+ ÷̂ÎĴ‘†

Ĵ
,

FA = vA + tA + FA +X†
A,

BV superpolja, µ mjera na T [1]�3, ÷̂ invarijantna metrika grupe O(2d, 2d) te fl i T funkcije
od X. Indeksi ozna�eni slovima s po�etka abecede ozna�avaju tangentne vektore i 1-forme
na odrediönoj mnogostrukosti A, . . . = 1, . . . , 2d, a iz sredine abecede Î , . . . = 1, . . . , 4d
vektore vektorskog sveûnja nad odrediönom mnogostrukoöÊu sa strukturom Courantovog
algebroida. Ova akcija preko BV zagrade tako�er definira poopÊenu BRST transformaciju
komponentnih polja. U izvoru [45] je bilo pokazano da postoji projekcija s udvostru�enog
Courantovog sigma modela na DFT:

p+ : A ‘≠æ A+ © A,

ii



Proöireni saûetak

gdje su:
A

I
± = 1

2

1
A

I ± ÷IJ
ÃJ

2
,

komponente dobivene mijeöanjem vektorskih i kovektorskih komponenti opÊeg prereza stan-
dardnog Courantovog algebroida novom strukturom ÷, O(d, d) invarijantnom metrikom.
Ovakva projekcija daje za BV akciju DFT-a:

SDFT[X,A+,F] =
⁄

T [1]�3
µ

3
FA dXA + ÷IJA

I
+dAJ

+ ≠ (fl+)AI(X)AI
+FA +

+ 1
3 T̂IJK(X)AI

+A
J
+A

K
+

4
.

Me�utim, BRST transformacije su tako�er projicirane öto zna�i da iako sve ≠ komponente
iö�ezavaju to ne zna�i da njihove BRST varijacije tako�er moraju iö�eznuti. Naprotiv,
transformacija i polja i duha superpolja A≠ ne iö�ezava öto nameÊe pitanje konzistentnosti
projekcije. Naime, moramo osigurati kako BRST transformacija neÊe vratiti ono öto je
projekcija uniötila tj. moramo zahtijevati QA≠ = 0. Ovaj dodatni zahtjev implicira
fiksiranje duhova t i v:

vA = 1
2�AJK(X)‘J+‘K+ ,

tA = �AJK(X)AJ
+‘K+ + 1

2ˆB�ALMF †B‘L+‘M+ .

novom funkcijom �. No ovime ponovo imamo problem ekvivalentan prvotnom osim
öto duhovi t i v nisu fiksirani trivijalno kao komponentna polja A≠. Dakle moramo
provjeriti samosuglasnost ovakvog BRST transformacije ovako fiksiranih duhova s BRST
transformacijama naslije�enim iz Courantovog sigma modela. Rezultat jest uvjet na
funkciju � iskazanu kroz iö�ezavanje dviju struktura koje zovemo R i S dane relacijama
(2.2.39) i (2.2.38). Vratimo li se na baûdarnu razinu i izra�unamo varijaciju jednadûbi
gibanja s obzirom na projicirane varijacije DFT-a, vidjet Êemo kako su one kovarijantne
samo do na tzv. jaki uvjet:

ˆAˆA(· · · ) = 0,

gdje je u zagradi bilo kakav produkt polja, odnosno na razini teorije svjetskog volumena:

ˆA( · · · )FA = 0.

Courantov sigma model i LŒ-algebre.

Sada ûelimo konstruirati Courantov sigma model koristeÊi LŒ-algebre. Teoriju polja
LŒ-algebri moûemo razdijeliti na tri LŒ razine. Prva algebra je simetrijska i sadrûi samo
algebarske elemente koji opisuju strukturu vrsti polja kakva Êe se pojaviti, tu osnovnu
simetrijsku algebru zovemo L. Zatim algebarske elemente ûelimo pretvoriti u polja koja
poprimaju vrijednosti u simetrijskoj algebri. To napravimo na na�in da konstruiramo novu
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LŒ-algebru, LÕ, tenzorskim produktom simetrijske algebre L i de Rhamovog kompleksa
diferencijalnih formi �•(M). No moûemo iÊi i dalje jer nam LŒ opis omoguÊuje da
konzistentno napravimo i proöirenje na BV opis teorije. Za potrebe toga prelazimo na
treÊu razinu LŒ-algebri, L̂, koja je tenzorski produkt LÕ i komutativne algebre CŒ(LÕ[1])
koja uvodi stupnjeve duha. Stoga sve öto nam treba za potpun opis teorije je po�etna
simetrijska LŒ-algebra definirana gradiranim vektorskim prostorom L = L1 ü L0 ü L≠1 i
preslikavanjima µ:

L1 – µn(l(1)1, . . . , l(1)n≠1, l(0)) = la1(1)1 · · · l
an≠1
(1)n≠1ˆa1 · · · ˆan≠1fl

a
I l

I
(0),

L0 – µn(l(1)1, . . . , l(1)n≠1, l(≠1)) = ≠la1(1)1 · · · l
an≠1
(1)n≠1ˆa1 · · · ˆan≠1fl

a
J l(≠1)a÷

IJ ,

L≠1 – µm(l(1)1, . . . , l(1)m≠2, l(≠1), l(0)) = ≠la1(1)1 · · · l
am≠2
(1)m≠2ˆa1 · · · ˆam≠2ˆafl

b
I l(≠1)bl

I
(0),

L0 – µm(l(1)1, . . . , l(1)m≠2, l(0)1, l(0)2) = la1(1)1 · · · l
am≠2
(1)m≠2ˆa1 · · · ˆam≠2TJKLl

K
(0)1l

L
(0)2÷

IJ ,

L≠1 – µr(l(1)1, . . . , l(1)r≠3, l(0)1, l(0)2, l(0)3) = la1(1)1 · · · l
ar≠3
(1)r≠3ˆa1 · · · ˆar≠3ˆaTIJK l

I
(0)1l

J
(0)2l

K
(0)3.

Ovakvim izborom dobijemo upravo akciju (4.B.1) i BRST transformacije (4.B.2)–(4.B.13)
kakve slijede iz AKSZ pristupa. No kako znamo da je Courantov algebroid [52] tako�er
LŒ-algebra pitamo se kakva je veza izme�u algebre tog geometrijskog objekta ciljane
mnogostrukosti i algebre same pripadne teorije polja. Ovo je ostvareno morfizmom LŒ-
algebri, dakle kolekcijom preslikavanja „ takvih da �uvaju LŒ strukturu. Ovaj morfizam
je konstruiran i njegove komponente iznose:

„1(h) = Xúh,

„1(e) = Xúe
---
p
,

„1(f) = ≠Xúd̃f
---
p
,

„i(h1, . . . , hi≠1, e)I = Xú(ha1
1 · · ·hai≠1

i≠1
˜̂
a1 · · · ˜̂ai≠1e

I)
---
p
,

„i(h1, . . . , hi≠2, e1, e2)a = Xú(ha1
1 · · ·hai≠2

i≠2
˜̂
a1 · · · ˜̂ai≠2(÷IJeI[1 ˜̂aeJ2]))

---
p
,

„i(h1, . . . , hi≠1, f)a = ≠Xú(ha1
1 · · ·hai≠1

i≠1
˜̂
a1 · · · ˜̂ai≠1

˜̂
af)

---
p
,

za i > 2. Ovdje je p to�ka bazne mnogostrukosti Courantovog algebroida oko koje
razvijamo i koja je takva da je njena koordinatizacija dana s x = 0.

DFT algebroid i zakrivljene LŒ-algebre.

Zanimljivo je istraûiti kako geometrijska struktura, analogna Courantovom algebroidu,
dobivena prethodno opisanom projekcijom odnosno DFT algebroid, ulazi u formalizam
LŒ-algebri. Naime, fundamentalna razlika pri prijelazu iz Courantovog u DFT algebroid
jest jaki uvjet definiran gore, zbog njega se naivni pokuöaj konstrukcije LŒ-algebre lomi
u trenutku zahtjeva relacija homotopije. No bez relacija homotopije to nije konzistentna
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algebra pa stoga autori [59] to nazivaju LŒ-algebrom do na jaki uvjet. Rjeöenje prob-
lema jest uvo�enjem poznatog, ali vrlo rijetko koriötenog proöirenja zvanog zakrivljene
LŒ-algebre. Klju�na razlika jest u postojanju novog konstantnog preslikavanja µ0 koje
modificira sve relacije homotopije dodatnim �lanom:

· · ·+ (≠1)nµi+1(µ0, l1, . . . , li) = 0.

Upravo je ovaj �lan zasluûan za moguÊnost opisa struktura koje ne zadovoljavaju jaki
uvjet. Pogledamo li relacije za Courantov algebroid vidimo zaöto:

(fl ¶ D)f = 0

fl[e1, e2]C ≠ [fl(e1), fl(e2)] = 0

Jac(e1, e2, e3) ≠ DNc(e1, e2, e3) = 0

sve desne strane ovih relacija iö�ezavaju i sve slijede iz relacija homotopije pripadne LŒ-
algebre. No u slu�aju DFT algebroida te iste desne strane relacija, sada sa strukturama
koje odgovaraju DFT algebroidu, viöe nisu nula veÊ imaju netrivijalan doprinos. Upravo je
ta netrivijalna desna strana proizvod postojanja dodatnog �lana u relacijama homotopije
zakrivljenih LŒ-algebri. Stoga definiramo strukturu LŒ formulacije DFT algebroida (u
minimalnom slu�aju), opet definirajuÊi prostor kao L≠1 ü L0 ü L2 te preslikavanja:

µ1(f) = Df,

µ2(e1, e2) = [[e1, e2]],

µ2(e, f) = Èe,DfÍ,

µ3(e1, e2, e3) = N (e1, e2, e3),

µ3(µ0, e, f) = [[e,Df ]] ≠ DÈe,DfÍ,

µ3(µ0, f1, f2) = 2ÈDf1,Df2Í,

µ4(µ0, e1, e2, e3) = DN (e1, e2, e3) ≠ Jac(e1, e2, e3),

µ5(µ0, e1, e2, e3, e4) = 1
2ÈDN (e1, e2, e3), e4Í ≠ 1

2ÈJac(e1, e2, e3), e4Í +

+ antisymm.(1, 2, 3, 4),

gdje antisymm. ozna�ava sve potrebne permutacije kako bi se postigla potpuna anti-
simetrija u 1, 2, 3 i 4. Sada preostaje samo pitanje interpretacije jakog uvjeta. Naime,
znamo da primjenom jakog uvjeta DFT algebroid pada nazad na Courantov algebroid
(sada nad neudvostru�enom mnogostrukoöÊu). Znamo za oboje njima pripadnu LŒ for-
mulaciju stoga kao i u slu�aju Courantovog sigma modela traûimo vezu me�u njima
kroz LŒ-morfizam. Ovaj morfizam smo konstruirali te je dan sljedeÊim komponentnim
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preslikavanjima:

„1(f) = 1
2f

---
M
,

„1(e) = e
---
M
,

„2(µ0, f) = 1
2(D̃f)

---
M
,

„3(µ0, f, e) = 1
4Èe, D̃fÍ

---
M
,

„3(µ0, e1, e2) = [e1, e2]C
---
M

≠ [[e1, e2]]
---
M
,

„4(µ0, e1, e2, e3) =
1
1
2N (e1, e2, e3) ≠ Nc(e1, e2, e3)

2---
M
.

Odnosno dijagramatski:

DFT : L≠1 = CŒ(M) ü L0 = �(L) ü L2
„ ¿ „1 ¿ „1 ¿ „1 ¿

CA : LÕ
≠1 = CŒ(M) ü LÕ

0 = �(E) ü ? .

Na kraju smo iskoristili ovu zakrivljenu algebru kako bismo konstruirali sigma model koji
za odrediönu mnogostrukost ima upravo DFT algebroid. Pri ovoj konstrukciji konstruiran
je kohomoloöki vektor pripadan dvostrukoj teoriji polja �ije je postojanje implicirala
konzistentnost LŒ-algebre DFT algebroida:

Q = ÷AB ˆ

ˆ⌘AB
+

1
flA

I(X)AI ≠ ⌘ABFB ≠ 1
2flB[I(X)ˆDflB

J ](X)⌘ADAIAJ
2 ˆ

ˆXA
+

+
3

÷̂IMflA
I(X)FA ≠ 1

2 ÷̂IMTIJK(X)AJAK + 1
2⌘

AB ÷̂IMflC[I(X)ˆBflC
J ](X)AJFA +

+ 1
3!⌘

ABZ̄ABLIJK(X)÷̂LMAIAJAK
4

ˆ

ˆAM
+

+
3

≠ ˆEflB
J(X)AJFB + 1

2⌘
ADˆE

1
flC[K(X)ˆDflC

L](X)
2
AKALFA ≠

≠ 1
3!ˆETIJK(X)AIAJAK + 1

4!⌘
ABˆEZ̄ABIJKL(X)AIAJAKAL

4
ˆ

ˆFE
,

Kako bismo sigma model mogli zapisati preko akcije koja varijacijskim principom vraÊa
jednadûbe gibanja moramo uvesti novi prostor L≠2 takav da postoji unutarnji produkt
izme�u L≠2 i L2. Ovo proöirenje je napravljeno na minimalni na�in zahtjevom da svi viöi
produkti koji ukljucuju G œ L≠2 iö�ezavaju. Maurer-Cartanova akcija dobivena jest:

S[X,A, F,G] =
⁄

�3
GAB÷AB + FA · dXA + 1

2 ÷̂IJA
I · dAJ ≠ flA

I(X)AI · FA +

+ 1
6TIJK(X)AI · AJ · AK .
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s reducibilnom baûdarnom simetrijom reda 2 uzrokovanom postojanjem novog polja, 3-
forme G.
Klju�ne rije�i: LŒ-algebra, Batalin-Vilkovisky, dvostruka teorija polja, baûdarna
simetrija, Courantov algebroid.
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CHAPTER 1

INTRODUCTION TO GAUGE FIELD THEORY

Field theory occurs in most aspects of theoretical physics in some form or another.
Nowhere as much as it does in high energy physics, where it is the basis for the description
of almost all phenomena. The widely accepted current foundation of high energy physics
is the Standard Model, a gauge field theory based on the U(1) ◊ SU(2) ◊ SU(3) gauge
group. Although extremely successful, it has certain drawbacks, the biggest of which is the
glaring absence of gravity, in that it models three of the four fundamental forces known
today. This large hole in its description of the quantum level of physics today is the main
motivation for many alternate theories that try to integrate gravity into a wider framework
for understanding the quantum physics of nature. The most widely recognised of such
frameworks is string theory with its fundamental shift of elementary objects being not
0-dimensional objects, points, but 1-dimensional (or even higher) objects, strings. However
groundbreaking this paradigm shift is, one still cannot avoid the underlying structure of
gauge field theory. Now even richer in structure and symmetry but nonetheless still a
gauge field theory. Therefore the study of gauge symmetries and the field theories built
upon them remains one of the main interests of high energy theoretical physics, and
mathematical physics.

So, what makes this symmetry so important to field theory and its attempt to describe
nature? If one is to think about the fundamentals of physics at the most basic level
there are essentially two concepts present: the fundamental objects and the fundamental
interaction of these objects. Gauge field theory is constructed to explain the latter. Take
for example the simplest of gauge theories, electromagnetism. Classically, we have charged
particles interacting via an electromagnetic 4-potential that mediates this force. This
4-potential is not in one-to-one correspondence with the physics the particles experience
since there is another potential field that gives the same interaction. This symmetry is
called a gauge symmetry or gauge redundancy. This is why when we calculate interactions
classically, we assume an additional constraint on the potential, a gauge or gauge fixing.
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In electrodynamics the most common such constraints are the Coulomb, Weyl or Lorenz
gauges. However, not all gauges are a complete fixing of the redundancy (such as the Weyl
gauge just mentioned), and leave a remnant symmetry structure. Such gauge fixings are
called incomplete gauges. In chapter 2 we shall in the same manner do a partial gauge
fixing in order to reduce the theories symmetry to be able to relate two field theories of
di�erent gauge redundancies. The same applies to the quantum regime, with one di�erence.
If we take the most widely used quantisation procedure, the path integral method, in order
to calculate the interaction of particles all physical gauge field (potential) configurations
a�ect the end result. Hence it is not enough to simply gauge fix the potential, now one
must identify all the field configurations that are gauge equivalent in order to count them
only once. This is a nontrivial problem and one that necessitates the introduction of
special tools such as the Becchi-Rouet-Stora [1–3] and Tyutin [4] (BRST) formalism. This
formalism had groundbreaking implications in the mathematical understanding of gauge
theories and “physical states”, more specifically it introduced the study of cohomologies
into the spotlight of gauge field theory. On the basis of this the more general and advanced
Batalin-Vilkovisky (BV) formalism [5–7] was built. It is necessary in the case of more
general gauge symmetries called reducible gauge symmetries where the gauge parameters
that control the redundancy are not themselves independent. In this case by introducing
just ghosts in the quantum picture one would, in fact, dispose of too many degrees
of freedom and therefore need more ghosts that fix parts of the lower ghosts that are
redundant. This is what the BV procedure introduces, a tower of ghosts, ghosts for ghosts
and so on until all the degeneracies are properly taken care of.

As mentioned above, string theory also comes with a sea of gauge field theories with
generalised symmetries in some sense, therefore one needs BV to handle such cases. One
theory in particular is of special interest to us and will be the focus of most chapters of
this thesis, either directly or indirectly. This is Double Field Theory (DFT) [8,9]. Its goal
is to include a symmetry known as T-duality manifestly into field theory. T-duality is a
symmetry inherent to fundamental objects of an extended nature since it is based on the
possibility of the fundamental object to see the nontrivial topology of spacetime.

1.1 | BRST and BV formalism

Gauge field theories contain by construction a redundancy in their description of
physics. This is an integral part of the theory but presents challenges when one wants
to extract physical data about the system in question. In order to obtain “pure” results,
una�ected by this redundancy, we consider gauge invariant objects as those representing
physical values. Therefore, we can calculate an observable in any gauge and hence have the
freedom to choose the most convenient gauge condition. This changes when one wishes to
quantise a theory as then all possible field configurations must be taken into account and
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therein lies the problem, discerning physically di�erent configurations from those related
by a gauge redundancy of the formulation. It is precisely this problem that the BRST
or, its generalisation, BV methods aim to solve and it is this formalism we present in the
following. To be able to fully grasp the formalism a brief recap on graded geometry is also
given.

1.1.1 | Gauge redundancy

In this section we shall explore the idea of gauge symmetry or redundancy and its
role in field theory. Before moving on to a proper treatment of the subject it is useful
to illustrate this symmetry by analogy with complex analysis. Take, for example, the
integral: ⁄ +Œ

≠Œ

1
x2 + 1dx,

and its computation using the theorem of residues (this illustration is due to [10]). First,
one must extend the space from R to C ≥= R2, and in this the one-form dx/(x2 + 1) has
been generalised to a closed complex 1-form Ê = dz/(z2 + 1). Therefore our integral is
now: ⁄

R◊{0}
Ê.

As Ê is defined at Œ but not at points ±i it is really a 1-form on P 1C\{±i},1 and since
the integration domain R fi {Œ} is a cycle in P 1C\{±i}, the integral does not change
for all cycles in the same homology class. So we may change the integration domain to a
small circle around i that we call �, meaning we have ended up so far at :

⁄ +Œ

≠Œ

1
x2 + 1dx =

⁄

�
Ê.

Since � is arbitrarily small we may expand Ê in to its Laurent series around i:

dz

z2 + 1 =
Q

a≠
Œÿ

n=≠1

1
i
2

2n+2
wn

R

b dw

where we have introduced the substitution w = z ≠ i. Finally, one can integrate this
relation (around a circle centred on 0) via the residue theorem to obtain:

⁄ +Œ

≠Œ

1
x2 + 1dx = fi.

So, how does this relate to our problem of gauge symmetry? Let’s break it down into four
steps.

1. Identify the problem: calculate the integral
s
M Ê with M an di�erential manifold

1
P

1C denotes the complex procjective line, in other words the Riemann sphere.
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and Ê a top form.

2. Double the space: embed M as a cycle into a double dimensional manifold N and
generalise Ê to a closed form � on N .

3. Change the cycle: choose another cycle in N that is in the same homology class as
M , one that has a power series expansion of � in its neighbourhood in N .

4. Expand and integrate: expand the 1-form � and apply the integration to obtain a
series of the original integral.

The simplified analogy goes as follows: our initial problem is the gauge redundancy of
the path integral, therefore BV extends this space by introducing “antifields” to each
corresponding physical field just like in step 2 of the above example. The requirement
that � be closed (d� = 0) is a gauge invariance condition just as we have for gauge fields.
Then in step 3, by changing the integration cycle we are doing a change of gauge that still
produces the same result due to the gauge invariance condition essentially just as if going
to another Lagrangian submanifold. In the end one arrives at the perturbative expansion
of your desired now gauged theory.

1.1.2 | Graded geometry

Before defining the BRST or Batalin-Vilkovisky formalism we need to give a brief intro-
duction to graded geometry as this is the mathematical basis of the formalism (following
mostly [11] and [12], with the help of [13]). The idea of grading can be understood as a
generalisation of di�erential forms, the essence of which is captured in the commutativity
of the wedge product:

Ê · ‰ = (≠1)pq‰ · Ê,

where Ê and ‰ are p and q-forms respectively. The aim is to introduce coordinates on
a supermanifold that anticommute and then extend that from a Z2 to an arbitrary Z
grading.

Graded vector spaces. We begin by defining a graded vector space and its related
objects. A graded vector space is the formal sum of a collection of vector spaces {Vi}iœZ, Vi

is called the degree i homogeneous subspace of V . A degree shifted (by n) graded vector
space denoted V [n] is again a graded vector space with the homogeneous subspaces given
by (V [n])i = Vi+n. One can also define the symmetric:

l• (V ) = T •(V )\I§,
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and antisymmetric (exterior) tensor algebras:

fi• (V ) = T •(V )\I·,

with I§ the ideal generated by elements v1 ¢ v2 ≠ (≠1)|v1||v2|v2 ¢ v1 and I· by elements
v1 ¢ v2 + (≠1)|v1||v2|v2 ¢ v1.

Graded manifolds. Moving on now to manifolds, a graded manifold M is a locally
ringed space locally isomorphic to (U,CŒ(U)¢ k(W ú)) where U is an open subset of Rn,
W is a graded vector space and the Z degree is preserved. It is logical to extend now to
graded vector bundles which are, roughly speaking, a formal sum of (ungraded) vector
bundles E = m

iœZ Ei over M that is itself a graded manifold. A simple example is the
graded manifold T [1]M with functions on it being equivalent to forms in �(M). A graded
vector field X on a graded manifold M is a graded derivation on the algebra of smooth
functions on M. Therefore X is a graded linear map:

X : CŒ(M) æ CŒ(M)[k]

such that it satisfies the graded Leibniz rule:

X(fg) = X(f)g + (≠1)k|f |fX(g),

for all homogeneous f, g œ CŒ(M). A special class of graded vector fields are cohomo-
logical2 vector fields, degree +1 fields that commute with themselves. This implies the
canonical existence of a graded commutator of vector fields:

[X, Y ] = X ¶ Y ≠ (≠1)|X||Y |Y ¶ X,

that is again a graded vector field, however now of degree |[X, Y ]| = |X|+ |Y |. This means
that a cohomological vector Q:

Q : CŒ(M) æ CŒ(M)[1],

is a di�erential on the algebra of smooth functions CŒ(M) because:

0 = [Q,Q] = 2Q ¶ Q ∆ Q2 = 0.

Graded manifolds endowed with a cohomological vector field are called di�erential graded
manifolds or Q-manifolds for short.

An interesting example is a real, finite dimensional Lie algebra g. The shifted space
2Sometimes called homological, although this is usually reserved for the degree -1 case.
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g[1] has a natural cohomological vector field Q which is essentially the Chevalley-Eilenberg
di�erential on ·gú ≥= CŒ(g[1]). This can be seen from the fact that g being a Lie algebra
has a bracket defined by the set of structure constants Ck

ij:

[ei, ej] = Ck
ijek,

where {ei} is a basis on g. We define Q to be:

Q = 1
2C

k
ijx

ixj ˆ

ˆxk
,

where {xi} are (graded) coordinates on g[1] (dual to {ei}). Now if one were to calculate
[Q,Q] they would obtain the Jacobiator corresponding to the bracket defined above (ex-
pressed through the structure constants), thus the requirement that Q be cohomological
is equivalent to [ · , · ] being in fact a Lie bracket i.e. satisfying the Jacobi identity. At
this point it is interesting to explore what happens in this example if: one changes the
base manifold from a point to a nontrivial manifold therefore transforming g into a vector
bundle E, or allows the space to have (in general infinitely many) di�erent types of struc-
ture constants and be fully Z graded. The first case corresponds to Lie algebroids (vector
bundles that have a bracket and anchor map to the tangent bundle that satisfy the Jacobi
and Leibniz rules) if Q is cohomological on E[1], see [14]. The second is more relevant to
our discussion in chapter 3 and beyond, since this is in a one-to-one correspondence with
LŒ-algebras as is further explained in section 3.1.2.

Graded symplectic geometry. So far we have constructed graded manifolds and the
special cohomological vector, now we add another structure integral to our story: graded
symplectic structures. A graded symplectic form on a graded manifoldM is a homogeneous
degree k two-form Ê that is closed with respect to the de Rham di�erential and is non-
degenerate. By non-degenerate we mean that Ê taken as a map to the cotangent bundle
induces an isomorphism of vector bundles:

Ê : TM æ T ú[k]M.

Thus we define a graded manifold M with the additional structure of a symplectic form
Ê to be a symplectic graded manifold or P-manifold (M,Ê). To clarify nomenclature we
mention also symplectic and Hamiltonian vector fields that are defined as those vector
fields X along which the Lie derivative of Ê vanishes and those that contract the graded
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symplectic form into an exact 1-form:3

LXÊ = 0

ÿXÊ = ≠dH

where H is called the Hamiltonian function. If a graded symplectic manifold is also
equipped with a symplectic cohomological vector field Q this is called a di�erential graded
symplectic manifold (dg symplectic manifold) or, more recently, a QP -manifold. As a
symplectic form Ê defines a graded Poisson bracket (also know as a Gerstenhaber bracket):

{f, g} © Xfg,

where Xf is the Hamiltonian vector field corresponding to the function f . It can be
shown that Q of a QP-manifold will always be Hamiltonian except in the specific case of
|Ê| © k = ≠1. In the case when k ”= ≠1 one can write the cohomological vector using the
Poisson bracket with the corresponding Hamiltonian function as:

Q = {S, · },

and therefore the nilpotency of Q becomes:

[Q,Q]f = {{S, S}, f},

implying {S, S} must be a constant. By doing some degree counting one may notice that
function S is of degree k+1 (since the bracket is of degree ≠k), this makes |{S, S}| = k+2
implying if k ”= ≠2 one necessarily has:

{S, S} = 0.

This famous expression is known as the classical master equation if one can identify S

with the action functional. Examples of such QP-manifolds are Poisson manifolds (k = 1)
and Courant algebroids (k = 2) which will be explored in more detail in section 2.1.1.
QP-manifolds are integral in the AKSZ construction [15] of topological sigma models such
as the Poisson sigma model [16,17] or Courant sigma model [18–20].

1.1.3 | BV algebra and cohomology

A quick recap of classical field theory is given before moving on to BRST or BV in
order to see where precisely the need for these more advanced methods arises. Sources

3We would like to caution the reader that conventions vary in the sign of the rhs for Hamiltonian
vector fields between mathematics and physics oriented literature.
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include [10], [11] and [21] (for a classic reference see also [22]).

Classical Field Theory. The Lagrangian approach to classical physics states a classical
field theory is specified with three ingredients:

1. a spacetime manifold M ;

2. a space of fields F , generally the space of sections of some bundle over M with the
structure of an infinite dimensional manifold;

3. an action functional S : F æ R.

An additional requirement on this action functional is that it is local in the sense that S
can be written as:

S[„] =
⁄

M
L(x, jnx„),

where jnx„ is the n-jet of field „. The classical physics of such a system is completely
captured by the critical locus of S: Crit(S) = {„ œ F | dS[„] = 0}, or, stated in the
vernacular of physics: the principle of least action. In the variational principle this leads
to (in cases where the boundary does not contribute) the Euler-Lagrange equations the
solutions of which constitute Crit(S).

In order to transform this theory from the classical to the quantum regime one intro-
duces the concept of path integrals.4 In the most basic sense the path integral formalism
gives the expectation values of an observable in the following way. We are given the
classical data of the theory, so a manifold M , space of fields F and action functional S.
We want to calculate the expectation value of observable O that is a function O : F æ R,
the principle of path integrals says this is given by:

ÈOÍ = 1
ZS

⁄

F
O(„) exp i

~S[„]D„,

where exp i
~S[„]D„ is a measure on F and ZS is the partition function:

⁄

F
exp i

~S[„]D„.

Normalising by the partition function makes this a probability measure, however, as F is
infinite dimensional rigorous mathematical treatment of this approach is still in progress
in the community. Nonetheless if one ignores the problems of infinite-dimensionality (as
we shall) this approach is very successful.

The procedure outlined above works if the critical locus is non-degenerate, which is not
the case if the system has symmetries such as those stemming from a gauge redundancy.

4There are other possibilities to quantise a theory, however, the path integral method makes dealing
with symmetries the simplest and relies on the Lagrangian formulation of classical physics that we focus
on in this work.
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This is tackled by introducing a gauge-fixing, however, this is not trivial to do. Essentially
what one needs to do is restrict the integration to the subspace of only gauge inequivalent
field configurations i.e. reduce the integration domain to F/G where G is the group of
gauge transformations.

BRST. BRST is a method of quantising or gauge fixing gauge theories. It cannot handle
all kinds of gauge symmetries and is superseded by the BV formalism. Nevertheless we
begin with the idea of BRST as this is the basis on which BV is built upon.

The framework is as follows. We embed the manifold of classical fields F into the
0 degree body of a (Z-) graded manifold FBRST. This grading is what is usually called
the ghost number meaning physical fields have ghost number 0. Additionally FBRST is
endowed with a cohomological vector field and measure that is assumed to be Q-invariant:

⁄

FBRST
Qf µ = 0,

for any function f on FBRST (for more details on this see [23]). BRST is related to the
classical case by two conditions: first is that the classical action is a BRST cocycle i.e.
QS = 0, and the second is FBRST is a resolution of F/G or in other words the zeroth
cohomology of FBRST is isomorphic to the space of functions on F/G. The gauge fixing is
done by a choice of gauge fixing fermion � which is a degree -1 function on FBRST, then
for the path integral we have:

⁄

FBRST
exp i

~S µ =
⁄

FBRST
exp i

~(S +Q�)µ,

that holds because of the invariance of the measure. By requiring the zeroth cohomology
to match F/G we ensure each gauge orbit is counted only once in the integral.

BV. The Batalin-Vilkovisky procedure is a generalisation of the BRST formalism in that
to each field an additional antifield is attributed. We shall now define this construction.
A BV manifold is a P(≠1)-manifold or a graded symplectic manifold of degree ≠1 with a
measure compatible with this symplectic structure in such a way that locally it is just the
coordinate Berezinian measure. Usually we take the BV manifold to be of form T ú[≠1]M.
This measure defines a divergence as:

⁄

M
Xf µ =

⁄

M
divµX · f µ,

9
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with Xf understood as the di�erential action of vector field X on functions f on M. With
this divergence one can now define the BV Laplacian as:5

�µf © (≠1)|f|
2 divµ{f, · }

Its important to note that the Gerstenhaber bracket and Laplacian are not independent
even though they are usually included separately in the definition of a BV algebra as a
Gerstenhaber algebra with a compatible Laplacian in the sense of:

�{f, g} = {�f, g}+ (≠1)|f |+1{f,�g}.

A Lagrangian submanifold L is in the graded case defined as in the ordinary case, as
a submanifold on which the symplectic form vanishes and that has maximal dimension.
When we take the BV manifold T ú[≠1]M there is a special Lagrangian submanifold given
by a gauge fixing fermion of degree -1, in local Darboux coordinates {xi, x†

i}:6

L� =
I

(xi, x†
i )

----- x
†
i =

ˆ�
ˆxi

J

.

A Lagrangian will always have a measure induced from the measure on the BV manifold.
The main result of this formalism are the two following statements (due to [6] and [24]).
If �f = 0 and L and LÕ are homologically equivalent Lagrangians then:

⁄

L
f µL =

⁄

LÕ
f µLÕ ;

if f is �-exact then: ⁄

L
f µL = 0.

This theorem assures us that integrating over di�erently gauge fixed actions does not
change the result.

We now have all the ingredients necessary to construct a BV gauge field theory. We start
with the classical information (M,Fcl, Scl), then through the above explained procedure
obtain the BRST fields FBRST and identify this with the M manifold on which we built
up our BV manifold:

FBV = T ú[1]FBRST.

This induces the aforementioned antifields, in essence the fibre coordinates on FBV. The
remaining unknown is the BV action functional. For the scope of this thesis we shall only

5The measure µ will only be written in the subscript of � in this definition to emphasize its origin but
will later be omitted for brevity.

6A dagger in superscript will always physically mean the corresponding antifield.
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consider the zeroth order in the formal power series of S as a function on FBV:

S = S0 + S1~+ S2~2 + · · · ,

since we are not explicitly interested in quantum calculations that follow once one knows
S0. Thus from now on we shall by SBV denote S0 for which the following must hold in
order to be consistent with the classical action:

SBV|FBRST = Scl.

Remembering BV is an extension of BRST means that we inherit the cohomological BRST
operator Q that can now be expressed using the Gerstenhaber bracket as:

Q = {SBV, · },

that makes the BRST invariance of the action:

{SBV, SBV} = 0, (1.1.1)

the classical master equation again (equivalent to the requirement that Q be cohomological).
Therefore the main challenge becomes finding a BV action SBV that satisfies the classical
master equation. Notice that we have obtained the master equation just as in the previous
section for QP-manifolds, however, it is important to emphasize that in the previous
case it arose as a geometrical consequence of construction, whereas now it has appeared
as a separate requirement since this is not a QP-manifold. In fact it could not be one
since it was shown that the QP compatibility allows the cohomological vector to be both
symplectic and Hamiltonian in the cases when the degree of the graded symplectic structure
is di�erent from ≠1, the precise case we have in BV.

1.2 | Double field theory

Double field theory, an attempt to make T-duality a manifest symmetry of field theory
[9, 25–27], is a special field theory of focus in this thesis and onto which all the above
machinery will be applied. Thus, in this section we shall briefly go through the motivation
for double field theory, namely T-duality, and its relation to the split orthogonal group
that constitutes the foundation of the formulation of DFT. Then a short description of
DFT is given introducing objects such as the generalised metric before going into a change
of formalism by swapping the information contained within the generalised metric with
that of a generalised vielbein. The section ends with the basics of the flux formulation
needed in later chapters for the correspondence to the algebraic structure called a DFT
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algebroid.

1.2.1 | Foundation

T-duality. In the simplest sense T-duality is the physical equivalence of sigma models
over a background with a circle dimension of radius R and 1/R. For example, this can
most easily be seen in bosonic string theory (covered in most string theory books e.g. [28]
but here following the approach of [29] and [30]). There one can show that 26 spacetime
dimensions are needed for the theory to be consistent, implying 22 of them need to be
“hidden” somehow. This is done via the process of compactification, in essence, by making
these dimensions small compact subspaces such that they cannot be observed directly
(at least at energy scales presently available). The simplest such subspace is a circle of
radius R and this will make our example. Take the target space to be M = R1,24 ◊S1 and
worldsheet � parametrised by coordinates (·,‡). The 25th component (corresponding to
the circle direction) of the target coordinates of � understood as maps X : � æ M is
then required to satisfy:

X25(·,‡ + fi) = X25(·,‡) + 2fiRm,

where m œ Z is the winding number. By calcualting the Fourier modes of the string one
can obtain the Virasoro generators and arrive at the mass spectrum of the string:

M2 =
3
n

R

42
+

3
mR

–Õ

42
+ · · · ,

the dots indicating terms irrelevant to the compactification and following observation,
and n œ Z the momentum excitation. This expression is completely agnostic to the
substitution:

n ¡ m and R ¡ –Õ

R
,

with –Õ œ R a dimension ≠2 constant parameter inverse to the string tension (up to 2fi).
This is T-duality. One can replace the circle S1 with a di�erent one of inverse radius
and the physics (other than the switching of winding and momentum modes) would not
change. This means that if we have coordinate X25 on the first and X̃25 on the second,
the duality becomes the equivalence:

X25 ¡ X̃25.

Double field theory is a realisation of a field theory over a doubled space (spanned by
coordinates x and x̃) such that this doubled nature has T-duality manifestly between the
two sets of coordinates.
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O(d, d)-symmetry. Our aim now is to see how a T-duality as described above generalises
to O(d, d) symmetry. Continuing with string theory, and in addition to [29] also following
[9] and [31], closed strings must satisfy the level matching condition, a constraint stemming
from the reparametrisation invariance of the worldsheet in the ‡ direction. In the more
general case of the compactified space being an n-torus i.e. M = R1,26≠n ◊ T n the level
matching condition becomes:

N ≠ Ñ = piw
i,

with N and Ñ the number operators, and p and w the momentum and winding operators.
If N = Ñ = 1, for example, this condition implies the weak constraint:

ˆi
˜̂i( · ) = 0,

where the dot indicates any one field. This comes from the fact that pi = ≠iˆi and
wi = ≠i ˜̂i by analogy. One must take care not to confuse the weak constraint that is
a physical requirement with the strong constraint of DFT that is just an artefact of the
formulation, as we will see later. However, the form can be deceiving as it has the same
expression:

ˆi
˜̂i( · · · ) = 0,

the di�erence being in the argument that is now any product of fields as opposed to the
weak constraint that had only one field acted upon. Coming back to the level matching
condition, one may combine these winding and momentum operators into a 2d vector (in
bosonic strings d being 26):

v =
Q

awi

pi

R

b

making the condition:

N ≠ Ñ = 1
2v

T÷v where ÷ =
Q

a 0 1d
1d 0

R

b .

Written in this form the relevant term in the string Hamiltonian becomes:

H ∏ 1
2v

TH(G,B)v,

whereH(G,B) is the generalised metric depending on the background metric G and 2-form
Kalb-Ramond field B:

H(G,B) =
Q

aG ≠ BG≠1B BG≠1

≠G≠1B G≠1

R

b .
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Introduction to gauge field theory

Its inverse is given by:
H≠1 = ÷H÷.

Both the level matching condition and the Hamiltonian must be invariant under a T-
duality transformation which we take to be an invertible d ◊ d matrix O. Therefore we
say:

v = OTvÕ,

implying vT÷v = vÕTO÷OTv, meaning for the level matching condition to be invariant O
must satisfy:

O÷OT = ÷.

Remember that ÷ is an o�-block diagonal unit matrix so can be transformed into the block
diagonal form diag(1d,≠1d). Hence O defines an element of the split orthogonal group
O(d, d). This transformation reflects on the generalised metric as well, this can be seen
by the second claim that the Hamiltonian must be invariant:

vTH(G,B)v = vÕTOH(G,B)OTvÕ,

defining the transformed metric as:

H(GÕ, BÕ) = OH(G,B)OT .

There are two points to emphasise, first, since the momentum and winding numbers are
integers the group is over the set Z, and second, the physical symmetry itself is actually
O(n, n) as there are only n compactified dimensions that can dualise. As was shown
the symmetry is formally extended to O(d, d), however, another extension is made with
regards to the first observation, namely O(d, d) is extended from the integers to all of R.
This is the group double field theory will be based upon, occasionally denoted O(d, d,R)
for clarity.

1.2.2 | Frame formulation

In order to make the description of DFT and O(d, d) symmetry more in line it is useful
to introduce a more covariant notation. First one needs a basis of O(d, d) such that the
invariant metric ÷ takes the o�-block diagonal form above. The coordinates on which this
metric can be used to raise and lower indices are given by:

XA =
Q

ax̃a

xa

R

b ; ˆA =
Q

a
˜̂a

ˆa

R

b .
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Introduction to gauge field theory

Notice the index A = 1, . . . , 2d is doubled putting on an equal footing both the original
coordinates and their duals. These coordinates now transform with respect to an O(d, d)
transformation O in the following way:

X ÕA = OA
BX

B.

The field content i.e. the generalised dilaton (containing the dilaton and determinant of
the target metric) and metric (containing the target space metric and B-field) are O(d, d)
scalars and symmetric tensors of order 2:

dÕ(X Õ) = d(X)

HAB = OC
AO

D
BHÕ

CD.

H is symmetric from the fact that ÷ defines its inverse by raising the indices:

HAB = ÷AC÷BDHCD and HABHBC = ”AC .

DFT defined in terms of H and d has a gauge symmetry generated by the generalised Lie
derivative:

L›AA = ›BˆBAA + ABˆA›B ≠ ABˆB›A,

with A and › generic O(d, d) vectors and › understood as the gauge parameter. The
commutator of two gauge transformations induces the gauge algebra closure by the C-
bracket of DFT up to terms controlled by the strong constraint:

[L›1 , L›2 ] = L≠[[›1,›2]]
---
strong constraint

, (1.2.1)

as will be seen in chapter 2. Taking cue from general relativity one can replace the
generalised metric by introducing frame fields (Refs. [27,32–34]). Hence, the fundamental
fields become the generalised dilaton d and the generalised vielbein EIA with I = 1, . . . , 2d
being the flat indices. A convenient choice for the flattened metric is that it coincides with
the O(d, d) invariant metric ÷ making the bein precisely an element of the O(d, d) group:

÷̂IJ = EIAEJB÷AB =
Q

a 0 1d
1d 0

R

b . (1.2.2)

It is important to note here that even though ÷ and ÷̂ have formally the same form its
indices give away their di�erent nature, later this will become even more important to
distinguish as one will end up defining the curvature of the underlying LŒ-algebra with
the other just a structure constant. The choice of vielbein induces a flattened generalised
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metric:

SIJ =
Q

asij 0
0 sij

R

b ,

where i, j = 1, . . . , d are the indices split by ÷̂ and s are two flat Lorentz O(1, d≠1) metrics
that satisfy:

HAB = EI
AEJ

BSIJ .

Having defined the vielbein we are now able to construct two objects or “generalised fluxes”
with which we can construct an O(d, d) scalar action:

FIJK = 3E[IAˆAEJBEK]B,

FI = EJAˆAEJBEIB + 2EIAˆAd,

that satisfy the Bianchi identities:7

E[IAˆAFJKL] ≠ 3
4F[IJ

MFKL]M © ẐIJKL

EKAˆAFKIJ + 2E[IAˆAFJ ] ≠ FKFKIJ © ẐIJ (1.2.3)

EIAˆAFI ≠ 1
2F

IFI + 1
12F

IJKFIJK © Ẑ

The action defining DFT is now:

S =
⁄

dX exp(≠2d) R(E , d), (1.2.4)

with R:

R = (SIJ ≠ ÷̂IJ)(2EIAˆAFJ ≠ FIFJ)

+ FIJKFLMN

1
≠1

6 ÷̂IL÷̂JM ÷̂KN + 1
4S

IL÷̂JM ÷̂KN ≠ 1
12S

ILSJM ÷̂KN
2
, (1.2.5)

playing the “role” of both the spacetime Ricci scalar, dilaton kinetic term (rescaled to
incorporate the metric determinant) and B-field strength H term of supergravity as a low
energy e�ective action:

Se� =
⁄

dx
Ô

≠Ge≠2„
1
R + 4(ˆ„)2 ≠ 1

12H
2
2
,

to the worldsheet string theory action:

SWS = 1
4fi–Õ

⁄
d‡

Ô
g

31
Gµ‹g

–— + iBµ‹‘–—
2
ˆ–X

µˆ—X
‹ + –Õ„R(2)

4
.

7Underlined indices are skipped in the antisymmetrisation.
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where R and R(2) are the spacetime and worldsheet Ricci scalars, and we have performed
a Wick rotation to Euclidian signature on the worldsheet. Relations (1.2.4) and (1.2.5)
do not assume the strong constraint as will not be assumed throughout this thesis unless
specifically stated. Additionally, in the remainder we shall drop the dilaton field for
simplicity, see [35] for a geometric description of the dilaton field.
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CHAPTER 2

BRST SYMMETRY OF DOUBLED MEMBRANE SIGMA
MODELS

Double field theory (DFT) [9,26,27,36], seen as an attempt to realise the T-duality of
closed string theory in section 1.2 manifestly, is at the level of low-energy supergravity based
on a generalised geometry of a tangent bundle extended by 1-forms [37,38]. This generalised
tangent bundle is then equipped with a bracket, a symmetric bilinear form and a map
to a tangent bundle defining the structure of Courant algebroid [39–41]. The symmetric
bilinear form defines an O(d, d) structure relevant for T-duality on a d-dimensional target
space, while the symmetries of the generalised tangent bundle unify di�eomorphisms and
2-form gauge transformations of the Kalb-Ramond field.1 Moreover, the properties of the
Courant bracket are used to systematically determine background fluxes of string theory
and their Bianchi identities [42,43].

Furthermore, in Ref. [18] Roytenberg used graded geometry to show that given the data
of a Courant algebroid one can uniquely construct the Batalin-Vilkovisky (BV) master
action, SBV of section 1.1.3, for a membrane sigma model which is a first-order functional
for generalised Wess-Zumino terms in three dimensions. (See also Refs. [19, 20, 44] for
earlier work in the same direction.) Therefore, the aim of this chapter is to connect the
BV knowledge of the Courant sigma model with the known [45] classical projection that
produces a sigma model over a doubled target that is identified with the DFT sigma model,
and check these two are compatible.

The chapter is based mostly on [46] and is split in two parts: the first that recaps the
Courant algebroid and sigma model theory, and the second that introduces the projection
and applies it to the first part.

1These are not, however, all of the elements of O(d, d). In addition to di�eomorphisms and B-field
transformations one has factorised duality transformations and —-transformations, though these will be
ignored.
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Chapter 2. BRST symmetry of doubled membrane sigma models

2.1 | Gauge and BRST symmetries of the Courant sigma
model

The Courant sigma model belongs to a general class of topological sigma models of
AKSZ type [15] satisfying the classical master equation. In this particular case one can
show that the conditions for gauge (or more generally BRST) invariance of the Courant
sigma model and the on-shell closure of the algebra of gauge transformations follow from the
classical master equation and correspond to the axioms of a Courant algebroid defined in
section 2.1.1. Membrane sigma models were subsequently used for a systematic description
of closed strings in non-geometric flux backgrounds [42,45,47–49].

The gauge transformations of the DFT membrane sigma model were obtained in [45] by
projecting the standard gauge transformations of a Courant sigma model over a doubled
target base manifold. However, the latter is the antifield zero sector of the classical
BV action constructed using the AKSZ procedure. The master action is defined over a
graded manifold in terms of superfields (fields of the same total degree) whose components
include the classical fields, ghosts, ghosts for ghosts and antifields. The classical gauge
transformations lift to the BRST transformations of the superfields as shown in sections
2.1.2 and 2.1.3.

2.1.1 | Courant algebroid

To begin we outline the definition of a standard Courant algebroid (due to [39, 40])
following [50]. A standard Courant algebroid is defined over E = TM ü T úM , where M

is a d-dimensional manifold. The resulting generalised vector stems from the generalised
bundle E: A = AV + AF œ �(E) where we have separated the vector part AV œ �(TM)
and one-form part AF œ �(T úM).

Let E æ M be a vector bundle. Define an antisymmetric bracket of sections of
the bundle, [ ·, · ]C : �(E) ¢ �(E) æ �(E), a non-degenerate symmetric bilinear form,
È·, ·Í : �(E)¢ �(E) æ CŒ(M), and, finally, an anchor map, fl : E æ TM . This quadruple
(E, [·, ·]C , È·, ·Í, fl) defines a Courant algebroid [40] up to some compatibility conditions
discussed below.

A Courant algebroid allows for two types of operations, the antisymmetric Courant
bracket or the Dorfman derivative [51]. The Courant bracket can be obtained as an
antisymmetrisation of the Dorfman derivative. In the case of a standard Courant algebroid
(the focus of this section) the bracket can be explicitly stated in terms of the vector and
form parts of the sections:

[A,B]C = [AV , BV ] + LAV BF ≠ LBV AF ≠ 1
2 d(ÿAV BF ≠ ÿBV AF ),
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Chapter 2. BRST symmetry of doubled membrane sigma models

and can be further twisted by T (AV , BV ) where T is a closed three-form. The Dorfman
derivative is this case is given by:

A ¶ B = LAB = [AV , BV ] + LAV BF ≠ ÿBV dAF .

It is obvious the Courant bracket is a generalisation of the Lie bracket and the Dorfman
derivative of the Lie derivative. As for the pairing:

ÈA,BÍ = 1
2(ÿAV BF + ÿBV AF ),

one can immediately see the O(d, d) symmetry in the structure since:

ÈA,BÍ =
1
AV AF

2
Q

a 0 1d
1d 0

R

b

Q

aBV

BF

R

b ,

where the matrix is the O(d, d) metric that we denote ÷̂IJ and the indices I, J go from
1, . . . , 2d.2 The three ingredients added to the bundle (the bracket, pairing and anchor)
must satisfy five compatibility conditions. The first is the Jacobi identity for the Courant
bracket,

[[A,B]C , C]C + cyclic = 1
3 DÈ[A,B]C , CÍ + cyclic, (2.1.1)

where the di�erential operator D : CŒ(M) æ �(E) is defined by

ÈDf,AÍ = 1
2 fl(A)f, (2.1.2)

for any A,B,C œ �(E) and f œ CŒ(M). Second is the Leibniz rule for the bracket:

[A, f B]C = f [A,B]C +
1
fl(A)f

2
B ≠ ÈA,BÍDf, (2.1.3)

third the homomorphism property of the anchor with respect to the bracket:

fl[A,B]C = [fl(A), fl(B)], (2.1.4)

fourth is the fact that Df is in the kernel of the anchor:

fl ¶ D = 0 ≈∆ ÈDf,DgÍ = 0. (2.1.5)

This condition becomes key when going to the DFT case as it will contain most explicitly
the strong constraint of DFT. The fifth and final property is the compatibility between

2The hat on ÷̂ will always denote that the O(D,D) metric acts on vectors of the algebroid bundle (in
this case E). This is in opposition to ÷ that will appear later and will also be an O(D,D) metric but one
that acts on tangent vectors of the base manifold. One must be careful as D can mean both d or 2d, the
di�erence should be clear from context and the range of the corresponding indices.
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the Courant bracket and the symmetric pairing,

fl(C)ÈA,BÍ = È[C,A]C +DÈC,AÍ, BÍ + ÈA, [C,B]C +DÈC,BÍÍ. (2.1.6)

It is important to note that although given five, only three are in fact independent require-
ments and one only really needs the Jacobi identity, compatibility and any one of the rest.
Roytenberg and Weinstein [52] showed three properties of a CA that will become useful
later.

Property 2.1.7. In a Courant algebroid E with anchor fl, di�erential D and Nijenhuis
operator Nc(e1, e2, e3) = 1

3È[e1, e2], e3Í + cyclic, the following three identities hold for ei œ
�(E):

1. [e,Df ] = DÈe,DfÍ,

2. Nc(e1, e2,Df) = 1
4fl[e1, e2]f ,

3. ÈJac(e1, e2, e3), e4Í + antisymm.(1, 2, 3, 4) =
= ≠2È[e1, e2], [e3, e4]Í + antisymm.(1, 2, 3, 4),

where antisymm.(1, 2, 3, 4) indicates all terms needed for the antisymmetrisation of
e1, e2, e3 and e4.

Let’s introduce a local basis for the sections of E, eI where I = 1, . . . , 2d. The
structures defined thus far (bracket, pairing, anchor and derivation) produce the following
coe�cients in this basis:

ÈeI , eJÍ = 1
2 ÷̂IJ ,

[eI , eJ ] = ÷̂IK ÷̂JLTKLMeM ,

fl(eI)f = ÷̂IJfla
Jˆaf,

Df = DIf eI = fla
Iˆaf eI .,

with a = 1, . . . , d the tangent bundle index. In this local basis the five abstract properties
become the following constraints on the functions fla

J and TIJK

÷̂IJ fla
I flb

J = 0, (2.1.8)

fla
I ˆafl

b
J ≠ fla

J ˆafl
b
I ≠ ÷̂KL flb

K TLIJ = 0, (2.1.9)

4 fla
[L ˆaTIJK] + 3 ÷̂MN TM [IJ TKL]N = 0. (2.1.10)

It is instructive to mention the correspondence between a Courant algebroid and
QP2-manifolds [53] (for a pedagogical exposition see [54]). Recall from sec. 1.1.2 that
a QP2-manifold (also called a di�erential graded symplectic manifold of degree 2) is
defined by the triplet (N , Q,Ê) with the base manifold usually taken to be of the form
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N = T ú[2]T [1]M . The Q is a cohomological vector field on N (a vector of grading one
that squares to zero) and the P corresponds to the graded symplectic structure Ê of degree
2 that induces a graded Poisson bracket on CŒ(N ). The triple is a QP2 manifold if the
two structures are compatible in the sense that:

LQÊ = 0.

The manifold N is charted by three types of coordinates: degree 2 coordinate Fa coming
from the cotangent bundle fibre shifted by two, two degree 1 coordinates (one from the
shifted tangent and one from the shifted cotangent bundle) that can be combined into one
double coordinate AI and a degree 0 coordinate of the base manifold xa. The Q-structure
defines a degree three Hamiltonian function � via:

Q = {�, · },

where { ·, · } is the Poisson bracket induced by the symplectic structure:

Ê = dXa dFa + 1
2 ÷̂IJ dAIdAJ . (2.1.11)

The requirement Q2 = 0, therefore, yields the classical master equation:

{�,�} = 0,

which in turn yields (2.1.8) - (2.1.10) in local coordinates when

� = fla
I(x)Fa A

I + 1
3! TIJK(x)AI AJ AK . (2.1.12)

This choice of Hamiltonian function gives the following cohomological vector field [54,55]:

Q = ≠fla
I(x)AI ˆ

ˆxa
+ ÷̂IJfla

J(x)Fa
ˆ

ˆAI
+ ˆafl

b
I(x)FbA

I ˆ

ˆFa
+

+ 1
2 ÷̂IJTJKL(x)AKAL ˆ

ˆAI
+ 1

3!ˆaTIJK(x)AIAJAK ˆ

ˆFa
.

(2.1.13)

2.1.2 | Courant sigma model as a reducible gauge theory

First we discuss the gauge symmetries of the Courant sigma model for a membrane
worldvolume �3, defined over a doubled target space M. We immediately start with a
doubled target space M since later in the chapter our procedure will require this of us,
however, everything stated within this and the next section holds for any base space. The
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action functional for the classical model is:

SC[X,A, F ] =
⁄

�3

1
FA · dXA + 1

2 ÷̂ÎĴAÎ· dAĴ ≠ flA
Ĵ(X)AĴ· FA + 1

6TÎĴK̂(X)AÎ· AĴ· AK̂
2
,

(2.1.14)
where A = 1, . . . , 2d is a target space index, Î = 1, . . . , 4d is the bundle index and we
have considered scalar fields as components of maps X = (XA) : �3 æ M, 1-forms
A œ �1(�3, XúE), and an auxiliary 2-form F œ �2(�3, XúT úM), and locally we consider
the generalised tangent bundle E = TM ü TúM. The fields (XA) = (Xa, X̃a) are
identified with the pullbacks of the coordinate functions, Xa = Xú(xa) and X̃a = Xú(x̃a).
The symmetric bilinear form of the Courant algebroid over E corresponds to the O(2d, 2d)-
invariant metric

÷̂ = (÷̂ÎĴ) =
Q

a 0 12d
12d 0

R

b ,

not to be confused with the O(d, d) metric ÷ that acts on sections of TM that will appear
later. flA

Ĵ are related to the components of the anchor map fl : E æ TM and TÎĴK̂ are
related to a general twist of the Courant algebroid, generating a generalised Wess-Zumino
term. For a local basis (eÎ) of E, they are related to Xú (ÈeÎ , [eĴ , eK̂ ]Í), where È·, ·Í and [·, ·]
are the non-degenerate symmetric bilinear form and the bracket of the Courant algebroid
over E respectively.

The action (2.1.14) is invariant under the following infinitesimal gauge transformations
[19]

”(‘, t)X
A = flA

Ĵ ‘Ĵ , (2.1.15)

”(‘, t)AÎ = d‘Î + ÷̂ÎN̂TN̂ĴK̂AĴ‘K̂ ≠ ÷̂ÎĴflA
Ĵ tA, (2.1.16)

”(‘, t)FA = ≠dtA ≠ ˆAflB
Ĵ AĴ · tB ≠ ‘ĴˆAflB

Ĵ FB + 1
2‘ĴˆATÎL̂Ĵ AÎ · AL̂, (2.1.17)

where ‘Î is a scalar gauge parameter, dependent on the worldvolume coordinates, and
tA is an additional one-form gauge parameter. These transformations define a first-stage
reducible gauge symmetry, typical for gauge theories that include di�erential forms with
degree larger than one [22, 56]. For completeness, and although this is simpler to do
directly in the BV formalism, it is instructive to check the gauge invariance of the field
equations of the model and the closure of the algebra of gauge transformations. Varying
(2.1.14) with respect to FA,AÎ and XA respectively, we find the field equations:3

DXA © ”S
”FA

= dXA ≠ flA
Ĵ AĴ = 0, (2.1.18)

DAÎ © ÷̂ÎĴ ”S
”AĴ

= dAÎ ≠ ÷̂ÎK̂flA
K̂FA + 1

2 ÷̂ÎK̂TK̂ĴL̂AĴ · AL̂ = 0, (2.1.19)

3Both the Courant (and later DFT) algebroid di�erential and equations of motion are denoted with a
calligraphic D, however, due to their completely di�erent nature it should be obvious from context what
is implied.
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DFA © ”S
”XA = dFA + ˆAflB

K̂ AK̂ · FB ≠ 1
6ˆATĴK̂L̂AĴ · AK̂ · AL̂ = 0. (2.1.20)

Let us now examine how the field equation (2.1.18) transforms. We find:

”(‘,t)DXA = ‘ĴˆBflA
Ĵ DXB ≠ ÷̂ĴK̂flA

ĴflB
K̂ tB + ‘ĴAK̂(2flB

[K̂ˆBflA
Ĵ ] ≠ flA

N̂ ÷̂N̂M̂TM̂K̂Ĵ),

where underlined indices are not antisymmetrised. This directly implies that:

÷̂ĴK̂flA
ĴflB

K̂ = 0, (2.1.21)

2flB
[K̂ˆBflA

Ĵ ] ≠ flA
N̂ ÷̂N̂M̂TM̂K̂Ĵ = 0, (2.1.22)

whereupon the field equation transforms covariantly. Next we examine the transformation
of the equation (2.1.19) and obtain:

”(‘,t)DAÎ = ≠÷̂ÎN̂(ˆATN̂ĴK̂‘K̂AĴ ≠ ˆAflI
N̂ tI) · DXA + ÷̂ÎN̂TN̂ĴK̂‘K̂DAĴ +

+ 1
2 ÷̂ÎK̂

1
3flA

[N̂ˆATĴL̂]K̂ ≠ flA
K̂ˆATN̂ĴL̂ ≠ 3TK̂R̂[N̂ ÷̂R̂P̂TĴL̂]P̂

2
‘N̂AĴ · AL̂,

where we used the condition in (2.1.22). We observe that the field equation transforms
covariantly provided one more condition holds, namely:

3flA
[N̂ˆATĴL̂]K̂ ≠ flA

K̂ˆATN̂ĴL̂ ≠ 3TK̂R̂[N̂ ÷̂R̂P̂TĴL̂]P̂ = 0. (2.1.23)

It is then easily confirmed that transforming the field equation (2.1.20) does not produce
any further conditions. Moreover, the three conditions (2.1.21), (2.1.22) and (2.1.23) are
precisely the local coordinate expressions for the three independent axioms of a Courant
algebroid.

Closure of the algebra of gauge transformations gives:

[”(‘1, t1), ”(‘2, t2)]XA = flA
Ĵ ‘Ĵ12,

‘Î12 © ÷̂ÎĴTĴK̂L̂‘K̂1 ‘L̂2 ,

where we used the condition in (2.1.22) to define ‘12. Furthermore we have:

[”(‘1, t1), ”(‘2, t2)]AÎ = ”(‘12, t12)AÎ ≠ ÷̂ÎĴˆATĴK̂L̂‘K̂1 ‘L̂2DXA,

t12A © ˆATK̂L̂Ĵ ‘K̂1 ‘L̂2AĴ + 2ˆAflB
K̂ ‘K̂[1 t2]B,

where we used the conditions in (2.1.22) and (2.1.23). The closure on the field FI does not
introduce any further conditions. Therefore we conclude that the Courant sigma model is
gauge invariant on-shell, provided that Eqs. (2.1.21, 2.1.22, 2.1.23) hold. (Sometimes this
is referred to as a reducible gauge theory with an open gauge algebra.)
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2.1.3 | The BV action and BRST transformations

On-shell closure of the algebra of gauge transformations implies that the natural de-
scription of the gauge symmetries for the Courant sigma model is the BV/BRST formalism
(for physics-oriented reviews, see [22, 56]). In particular, one can construct the classical
master action [18]:

SC[X,A,F] =
⁄

T [1]�3
µ

1
FA dX

A + 1
2 ÷̂ÎĴ A

Î
dA

Ĵ ≠ flA
Ĵ(X)AĴ

FA + 1
6TÎĴK̂(X)AÎ

A
Ĵ
A

K̂
2
,

(2.1.24)
where µ © d3‡d3◊ is the Berezinian measure on the graded manifold T [1]�3 spanned
by coordinates (‡µ, ◊µ) of degrees (0, 1) respectively, d = ◊µˆµ is the superworldvolume
di�erential and superfields (in the sense of [57]) include the classical fields (X,A, F ), ghosts
(‘, t, v) of ghost numbers (1, 1, 2) and antifields:

X
A = XA + F †A + t†A + v†A, (2.1.25)

A
Î = ‘Î + AÎ + ÷̂ÎĴA†

Ĵ
+ ÷̂ÎĴ‘†

Ĵ
, (2.1.26)

FA = vA + tA + FA +X†
A. (2.1.27)

HereXA,AÎ ,FA are superfields with total degree 0, 1, 2 respectively, where the total degree
of a field „ is the sum of its ghost number gh(„) and its form degree deg(„). Antifields
are denoted by a dagger † and we have gh(„)+ gh(„†) = ≠1 and deg(„)+deg(„†) = 3.

The conditions given in Eqs. (2.1.21), (2.1.22) and (2.1.23) are obtained directly from
the classical master equation {SC,SC} = 0, where the bracket arises from the target
manifold symplectic structure of type (2.1.11). Setting all ghosts and antifields to zero
in the master action (2.1.24) reproduces the Courant sigma model (2.1.14), while the
BRST transformations of the classical fields give the gauge transformations as in (2.1.15)–
(2.1.17). For completeness and as a comparison for chapter 4 we present here the BRST
transformations of all the fields,

QBVX
A = flA

Î‘
Î , (2.1.28)

QBVAÎ = d‘Î ≠ ÷̂ÎĴflA
ĴtA + ÷̂ÎĴTĴK̂L̂AK̂‘L̂ ≠ ÷̂ÎĴˆBflA

ĴF
†BvA + 1

2 ÷̂ÎĴˆBTĴK̂L̂F
†B‘K̂‘L̂,

(2.1.29)

QBVFA = ≠dtA ≠ ˆAflB
Î ‘ÎFB ≠ ˆAflB

ÎAÎtB + 1
2ˆATÎĴK̂‘ÎAĴAK̂ +

+ 1
2ˆATÎĴK̂ ÷̂K̂L̂‘Î‘ĴA†

L̂
≠ ˆAflB

Î ÷̂
ÎĴA†

Ĵ
vB + 1

2ˆAˆBˆCflL
ÎF

†BF †C‘ÎvL ≠

≠ ˆAˆBflC
ÎF

†B‘ÎtC + ˆAˆBflC
ÎF

†BAÎvC ≠ 1
12ˆAˆBˆCTÎĴK̂F

†BF †C‘Î‘Ĵ‘K̂ +

+ 1
6ˆAˆBTÎĴK̂t

†B‘Î‘Ĵ‘K̂ ≠ 1
2ˆAˆBTÎĴK̂F

†BAÎ‘Ĵ‘K̂ ≠ ˆAˆBflC
Ît

†B‘ÎvC ,

(2.1.30)

QBV‘Î = ÷̂ÎĴflA
Ĵ vA ≠ 1

2 ÷̂ÎĴTĴK̂L̂‘K̂‘L̂, (2.1.31)
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QBVtA = dvA ≠ ˆAflB
Î‘

ÎtB + ˆAflB
Î AÎvB ≠ 1

2ˆATÎĴK̂‘Î‘Ĵ AK̂ + ˆAˆBflC
Î F

†B‘ÎvC ≠

≠ 1
6ˆAˆBTÎĴK̂ F †B‘Î‘Ĵ‘K̂ , (2.1.32)

QBVvA = ≠ˆAflB
Î‘

ÎvB + 1
6ˆATÎĴK̂‘Î‘Ĵ‘K̂ . (2.1.33)

Note that one needs to introduce a ghost for ghost v because we are dealing with a first-
stage reducible gauge theory, or said di�erently, there are “gauge invariances” for gauge
transformations as expected in gauge theories that include higher di�erential forms.

2.2 | Gauge symmetries of the DFT membrane sigma model

In reference [45], the starting point of this whole chapter, a DFT membrane sigma
model was proposed beginning from a Courant sigma model defined over a doubled target
spacetime and adopting a suitable projection. As was seen in section 2.1.1, for Courant
algebroids the bundle over a base manifold is extended (“doubled”), while in DFT one
doubles the coordinates, i.e. the base space. In order to be able to relate the two we had to
start from a large Courant algebroid defined over a manifold spanned locally by the set of
doubled coordinates {Xa, X̃a}. This naturally introduces an O(2d, 2d) structure indicating
that a suitable projection to a subbundle with O(d, d) structure is due. This projection,
demonstrated in section 2.2.1, was identified and all Courant algebroid structures were
projected accordingly to DFT structures; for instance, the characteristic C-bracket of DFT
(1.2.1) is obtained in this way from the Courant bracket of the large Courant algebroid.
The properties of this bracket were analysed and used to define a DFT algebroid that will
be of great importance later. Moreover, the flux formulation of DFT was used to identify
the components of the anchor map in section 2.2.2 and with these data a DFT membrane
sigma model was defined in 2.2.3. This worldvolume theory is gauge invariant only under
a certain condition which corresponds to the strong constraint of the target space DFT.

It was shown in Ref. [58] the classical master action of the large Courant sigma
model can be projected to the corresponding DFT action for projected superfields. This
action does not satisfy the BV master equation (1.1.1) and cannot be constructed using
AKSZ theory. This is an expected result, since already at the classical level the DFT
membrane sigma model is gauge invariant only up to the worldvolume analogue of the
strong constraint, and therefore one cannot expect BRST invariance of the full action.
Here we complete this analysis by explicitly constructing the BRST transformations for
all projected superfield components in sec. 2.2.4 of the full DFT membrane sigma model.

2.2.1 | DFT algebroid

The question that naturally arises is if one can provide a geometric description of DFT
symmetries based on the C-bracket, before reducing the theory by imposing the strong
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constraint. Our starting point for this section is the collection of properties corresponding
to a standard Courant algebroid from sec. 2.1.1 and their modification in the case of
double field theory.

Projection procedure. To make this connection of DFT to a Courant algebroid, one
must first double the target space of the canonical Courant algebroid. Therefore, we begin
with a doubled target space manifold M with local coordinates4 X = (XA) = (Xa, X̃a)
and define a large Courant algebroid (E, [ · , · ]C , È · , · Í, fl) over a vector bundle over this
doubled target space M:

E = TM © TM ü T úM.

Now, we introduce a splitting on the large section:

AI
± = 1

2

1
AI ± ÷̂IJ ÂAJ

2
, (2.2.1)

and anchor:

(fl±)AJ = flA
J ± ÷̂JK fl̃AK . (2.2.2)

The O(d, d) metric ÷̂ on E is used, relating their standard and dual parts. The generalised
tangent bundle is thus split into two subbundles:

E = L+ ü L≠ ,

where L± is the bundle whose space of sections is spanned locally by e±I . A general section
of E can thus be written in terms of L+ and L≠ parts:

A = AI
+ e+I + AI

≠ e≠
I . (2.2.3)

In order to obtain a DFT structure one first observes the indices of the fields are 2d-
dimensional. This is resolved by a projection to the subbundle L+ of E through the
bundle map:5

p+ : E ≠æ L+ , (AV ,AF ) ‘≠æ A+ © A. (2.2.4)

Under the projection, the components AI
≠ in the generalised vector (2.2.3) vanish, and

we rename AI
+ = AI . This is a new generalised vector that is in fact a DFT vector [59].

4Throughout A,B, . . . = 1, . . . , 2d and a, b, . . . = 1, . . . , d are indices that correspond to double and
standard spacetime respectively, while Latin indices from the middle of the alphabet I, J, . . . = 1, . . . , 2d
and i, j, . . . = 1, . . . , d are reserved for bundle indices.

5We shall denote this subbundle L in sections where the projection procedure is not under consideration.
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Additionally we shall need the inclusion map:

i : L+ ≠æ E

and a composition map of the inclusion and projection maps:

a = i ¶ p+ : E ≠æ E.

The projection acting twice on the standard Courant bracket,

p+
1
[a(A), a(B)]C

2
= [[A,B]]L+ ,

produces precisely the C-bracket of DFT vectors (see e.g [60]). The same on the generalised
Lie derivative,

p+
1
La(A)a(B)

2
= LAB,

yields the generalised Lie derivative in DFT. The closure of the gauge transformations
(1.2.1) is controlled by the strong constraint,

÷AB ˆA( · · · ) ˆB( · · · ) = 0, (2.2.5)

for all fields of DFT and we shall not assume it unless explicitly stated. In the case of a
Courant algebroid, the question of the strong constraint becomes moot, as the Dorfman
derivative automatically satisfies condition (1.2.1). Finally the bilinear pairing is defined
simply from the pairing on the large Courant algebroid by inclusion:

Èp+(A), p+(B)ÍL+ © Èa(A), a(B)ÍE. (2.2.6)

The explicit relation between DFT algebroid structures and the flux formulation of double
field theory using a local basis is reviewed in the next section.

Definition and properties. Now we focus our attention to the global properties of a
DFT algebroid and, therefore, with respect to the construction above, we are ready to
formally define a DFT algebroid.

Definition 2.2.7. Let M be a 2d-dimensional manifold. A double field theory algebroid
is a quadruple (L, [[ · , · ]], È · , · Í, fl), where L is a vector bundle of rank 2d over M equipped
with a skew-symmetric bracket [[ · , · ]] : �(L) ¢ �(L) æ �(L), a non-degenerate symmetric
form È · , · Í : �(L) ¢ �(L) æ CŒ(M), and a smooth bundle map fl : L æ TM, such that:

1. ÈDf,DgÍ = 1
4 Èdf, dgÍ;
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2. [[e1, f e2]] = f [[e1, e2]] +
1
fl(e1)f

2
e2 ≠ Èe1, e2ÍDf ;

3. È[[e3, e1]] +DÈe3, e1Í, e2Í + Èe1, [[e3, e2]] +DÈe3, e2ÍÍ = fl(e3)Èe1, e2Í;

for all ei œ �(L) and f, g œ CŒ(M), where D : CŒ(M) æ �(L) is the derivative defined
through ÈDf, eÍ = 1

2 fl(e)f .

From axiom 1 it follows that a pairing on the bundle L induces a symmetric pairing
on TM that is actually a para-Hermitian metric on the doubled configuration space
(see Refs. [61–65] for the description of double field theory in terms of para-Hermitian
manifolds, and more generally in terms of Born geometry):

÷ : TM ◊ TM æ CŒ(M)

÷ = 1
2÷ABdXA ‚ dXB,

(2.2.8)

or, in other words, an O(d, d) metric with components:

÷AB =
Q

a 0 ”ab
”ba 0

R

b . (2.2.9)

Here we introduced the symmetric tensor product u ‚ v = u ¢ v + v ¢ u, in analogy with
the more standard wedge product. Since ÷AB is invertible it also defines a symmetric
2-vector:

÷≠1 : T úM ◊ T úM æ CŒ(M)

÷≠1 = 1
2÷ABˆA ‚ ˆB.

(2.2.10)

The action on functions is defined via the natural contraction with 1-forms:

÷≠1(df) = ÿ÷≠1df = ÷ABˆAfˆB.

Additionally, we define the action of the symmetric 2-vector ÷≠1 on a section v = vAˆA of
�(TM) using the Schouten-Nijenhuis bracket for symmetric vectors [66] as follows:

÷≠1(v) © [÷≠1, v]SN = ÷ABˆAv
CˆC ‚ ˆB.

We would now like to further explore the structural data of the DFT algebroid. First,
one notices that Im(D) is not in the kernel of map fl:

(fl ¶ D)f = 1
2÷≠1(df). (2.2.11)

Next, one can show that map fl is not a homomorphism:

fl([[e1, e2]])(f) ≠ [fl(e1), fl(e2)](f) = ≠ SCfl(e1, e2)f,
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SCfl(e1, e2)f © 1
2÷(fl(e1), ÷≠1(df)(fl(e2))) ≠ (e1 ¡ e2), (2.2.12)

where the second bracket on the lhs in the first line is the standard Lie bracket of vector
fields, and we introduced a shorthand notation for the rhs. Furthermore, the bracket does
not satisfy the Jacobi identity, moreso than the Courant algebroid as even if we were to
include the D exact term into a modified Jacobi identity this would still be broken. In
fact we have:

Jac(e1, e2, e3) © [[[[e1, e2]], e3]] + cyclic = DN (e1, e2, e3) + SCJac(e1, e2, e3), (2.2.13)

where N is the Nijenhuis operator defined by:

N (e1, e2, e3) © 1
3 È[[e1, e2]], e3Í + cyclic, (2.2.14)

and we introduced the shorthand notation:6

SCJac(e1, e2, e3) ©
1
2fl≠1

Ó
(≠÷≠1(fl(e2))(÷(fl(e1)) + ÷≠1(fl(e1))(÷(fl(e2)) + [fl(e1), fl(e2)])fl(e3)

Ô
+ cyclic.

Here we defined the inverse of the anchor map fl≠1 : TM æ L as shown in the following
commutative diagram:

L Lú

TM T úM

÷̂

fl≠1

÷

flú : ÷̂ ¶ fl≠1 = flú ¶ ÷,

where the map ÷̂ : L æ Lú is induced by the DFT algebroid symmetric form.7 The
existence of the inverse map fl≠1 is due to axiom 1 of definition 2.2.7 and the relation of
the anchor to the generalised bein in DFT, as reviewed in section 2.2.2.

Finally, in analogy to three further properties of a Courant algebroid (Property 2.1.7),
the following properties of a DFT algebroid will prove useful later in chapter 5.

Property 2.2.15. The following identities hold in a DFT algebroid:

1. 2Èe1,DÈe2,DfÍÍ ≠ 2Èe1, [[e2,Df ]]Í = fl(Df)Èe1, e2Í + SCfl(e1, e2)f ,

2. N (e1, e2,Df) ≠ 1
4fl[[e1, e2]]f = ≠1

4SCfl(e1, e2)f ,

3. N ([[e1, e2]], e3, e4) + ÈDN (e1, e2, e3), e4Í + antisymm.(1, 2, 3, 4) =
= 1

2ÈSCJac(e1, e2, e3), e4Í + antisymm.(1, 2, 3, 4).
6Compared with definitions in [45], here we included ZIJKL in the definition of SCJac, see sec. 2.2.2

for more details.
7In a slight abuse of notation, we denote the bilinear form and the map it induces with the same letter,

both for ÷̂ and ÷.
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Proof. To prove property 1 we apply axiom 3 of Def. 2.2.7 to obtain fl(Df)Èe1, e2Í +
fl(e1)Èe2,DfÍ ≠ fl(e2)Èe1,DfÍ = 2Èe2, Èe1,DfÍÍ + 2Èe1[[Df, e2]]Í + 2ÈDf, [[e1, e2]]Í. Then
by the definition of D the last two terms on the lhs become the commutator of vector
fields [fl(e1), fl(e2)] on f . Finally, using (2.2.12) twice we obtain the desired relation. For
property 2 first plug in the definition of the di�erential and Nijenhuis (2.2.14) to ob-
tain ≠1

6È[[e1, e2]]Í + 1
3È[[Df, e1]], e2Í ≠ 1

3È[[Df, e2]], e1Í, then use property 1 on the last two
terms and definition of D again to merge them into the commutator of vector fields as
in the proof of the previous property, and finally use the broken homomorphism identity
(2.2.12) to yield the rhs of property 2. Lastly, the proof for property 3 is to be done
in two parts, first by (2.2.14) the rhs becomes 1

3ÈJac(e1, e2, e3), e4Í + 2
3È[[e1, e2]], [[e3, e4]]Í +

ÈDN (e1, e2, e3), e4Í+antisymm.(1, 2, 3, 4). Then, by the Jacobiator identity (2.2.13) this be-
comes 4

3ÈJac(e1, e2, e3), e4Í+ 2
3È[[e1, e2]], [[e3, e4]]Í≠ÈSCJac(e1, e2, e3), e4Í+antisymm.(1, 2, 3, 4).

The second part is to express the first two terms using SCJac, to show this we start
from ÈJac(e1, e2, e3), e4Í, by (2.2.13) and the definitions of D and N this becomes
ÈSCJac(e1, e2, e3), e4Í + 1

6fl(e4)(È[[e1, e2]], e3Í + cyclic). Plugging in axiom 3 into the sec-
ond term, summing over antisymm.(1, 2, 3, 4) and applying (2.2.13) to eliminate terms
with DN again, yields:

2ÈJac(e1, e2, e3), e4Í+ È[[e1, e2]], [[e3, e4]]Í≠ 9
4ÈSCJac(e1, e2, e3), e4Í+antisymm.(1, 2, 3, 4) = 0.

Multiplying this relation by 2/3 and substituting back completes the proof.
Comparing these identities with Property 2.1.7 one will notice they coincide if fl¶D = 0,

SCfl(e1, e2) = 0 and SCJac(e1, e2, e3) = 0, all three of which hold in a Courant algebroid.
Property 3 is worded slightly di�erently but as can be seen from the proof the source of
this property is the same. Therefore, the rhs of all three properties contain the strong
constraint violating terms.

2.2.2 | Relation of the DFT algebroid with the flux formulation of
DFT

Here we review the correspondence between the structural data of a DFT algebroid
and double field theory [45, 50], using a local basis. Starting from definition 2.2.7 of
a DFT algebroid, we relate the 2d-dimensional base manifold M spanned by {XA},
A = 1, . . . , 2d with the doubled configuration space of double field theory spanned by
{xa, x̃a}, a = 1, . . . , d. Axiom 1 of definition 2.2.7 implies:

÷̂IJflA
Ifl

B
J = ÷AB. (2.2.16)
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Using the Leibniz rule, i.e., axiom 2, one can show that the bracket on a general section
EI(X)eI œ �(L) is the C-bracket of double field theory:

[[E1, E2]]J = flA
I

1
EI

1 ˆAE
J
2 ≠ 1

2 ÷̂IJ EK
1 ˆAE2K ≠ E1 ¡ E2

2
+ ÷̂JM T̂MIK EI

1 E
K
2 , (2.2.17)

while axiom 3 evaluated in a local basis imposes the antisymmetry of T̂ in all three indices.
Relation (2.2.16) enables us to identify the components of the anchor map fl with the

generalised bein EA
I of the flux formulation of DFT (1.2.2):

÷̂IJEA
IEB

J = ÷AB.

Moreover, properties of the bracket (2.2.12) and (2.2.13) written in a local basis produce:

2flB
[IˆBflA

J ] ≠ flA
M ÷̂MN T̂NIJ = ÷BCflC

[Iˆ
AflB

J ], (2.2.18)

3÷̂MN T̂M [JK T̂IL]N + 4flA
[LˆAT̂JKI] = ZJKIL, (2.2.19)

where:

ZIJKL = 3÷AD÷BE÷CFflD
[IˆFflA

J flE
KˆCflB

L]. (2.2.20)

By direct comparison with the expression for fluxes and their Bianchi identities in double
field theory, given as (see (1.2.3)):

FIJK = 3E[IAˆAEJBEK]B,

3÷̂MNFM [JKFIL]N + 4E[LMˆMFJKI] = 4ẐJKIL,

we observe that the twist of the bracket T̂ can be identified with the 3-form flux F of double
field theory and ZJKIL = 4ẐJKIL. The origin of the totally antisymmetric tensor ZIJKL

has been explained in [45], where it has been shown that at the level of the corresponding
3d DFT sigma model one can realise this term as a Wess-Zumino term on an extension
of the membrane worldvolume to four dimensions, as in [67]. However, this distinction
is not crucial in the present context, and in the remainder ZIJKL is packaged into SCJac

together with the rest of the strong-constraint breaking terms appearing in the expression
for the Jacobiator of the C-bracket (2.2.13).

2.2.3 | DFT membrane sigma model

As shown in Ref. [45] and above one can define a DFT algebroid structure and a
corresponding membrane sigma model starting from a large Courant algebroid over a
2d dimensional space M by applying a suitable projection. In particular, we considered
sections A of the large Courant algebroid E, decomposed in a suitable basis (see (2.2.1)
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and (2.2.2)), and projected (2.2.4) to the subbundle L+ spanned by the local sections (e+I ).
Projection of the symmetric bilinear form (2.2.6) of E, leads to the O(d, d) invariant DFT
metric:8

ÈA,BÍE = 1
2 ÷̂ÎĴAÎBĴ = ÷̂IJ(AI

+BJ
+ ≠ AI

≠BJ
≠) ‘æ ÷̂IJA

IBJ = ÈA,BÍL+ .

This works for general Courant algebroids over M with anchor flA
Ĵ = (flA

J , fl̃AJ), yielding
the C-bracket (2.2.17):

[[A,B]]J = (fl+)AI

1
AIˆLAB

J ≠ 1
2 ÷̂IJAKˆABK ≠ (A ¡ B)

2
+ T̂IK

JAIBK ,

in terms of the map fl+ : L+ æ TM with components (fl±)AJ = flA
J ± ÷̂JK fl̃AK , and T̂

chosen as:

T̂IJK © 1
2TIJK = 1

2

1
AIJK + 3B[IJ

L÷̂K]L + 3C[I
LM ÷̂JL÷̂K]M +DLMN ÷̂I[L÷̂J [M ÷̂K]N

2
,

(2.2.21)
where A, B, C and D are the components of TÎĴK̂ :

TÎĴK̂ ©
Q

aAIJK BIJ
K

CI
JK DIJK

R

b . (2.2.22)

Using these projected data the following DFT membrane sigma model was proposed:

SDFT[X,A, F ] =
⁄

�3

1
FA · dXA + ÷̂IJA

I· dAJ ≠ (fl+)AJA
J · FA + 1

3 T̂IJKA
I· AJ · AK

2
.

(2.2.23)
Next, in parallel to the flux formulation of DFT [27,33,34,68–70] a parametrisation of the
fl+ components is taken such that they coincide with the generalised vielbein as stated in
2.2.2. Relation (1.2.2) then implies they satisfy:

÷̂JK(fl+)AJ(fl+)BK = ÷AB, (2.2.24)

which is to be compared with the condition in (2.1.21). Moreover, the following set of
infinitesimal gauge transformations was proposed:

”‘X
A = flA

J‘J ,

”‘A
I = d‘I + ÷̂IN T̂NJKA

J‘K ,

”‘FA = ≠‘JˆAflB
JFB + ‘JAK · ALˆAT̂KLJ .

8Denoting A+ = A and B+ = B.

33



Chapter 2. BRST symmetry of doubled membrane sigma models

It was shown the action (2.2.23) is invariant under these transformations provided:

2flB
[LˆBflA

M ] ≠ flB[LˆAflB
M ] = flA

J ÷̂JK T̂KLM , (2.2.25)

3flA
[KˆAT̂MM Õ]N ≠ flA

NˆAT̂KMM Õ ≠ 3÷̂PJ T̂P [MM ÕT̂K]NJ = 0. (2.2.26)

However, these conditions are not su�cient; one needs to additionally impose the following
constraint:

flAL ˆBflA
M ‘M FB = 0. (2.2.27)

This is the way that the strong constraint of the target space DFT appears in the world-
volume theory. To see this we expand ˆA( · · · )FA = ˆa( · · · )F̃ a + ˜̂a( · · · )Fa and notice
that if nothing depends on X̃a the second term vanishes automatically and the first term
due to F̃ a being conjugate to X̃a. The opposite holds for the same reason. However
since the expression is O(d, d) invariant the statement holds for any solution to the strong
constraint.

2.2.4 | Projecting superfields

The classical action (2.2.23) is lifted to the full action in terms of superfields [58]:9

SDFT[X,A+,F] =
⁄

T [1]�3
µ

1
FA dXA + ÷̂IJA

I
+dAJ

+ ≠ (fl+)AI(X)AI
+FA +

+ 1
3 T̂IJK(X)AI

+A
J
+A

K
+

2
, (2.2.28)

where in comparison with (2.1.24) we used the structures (fl+, T̂, ÷) of a DFT algebroid
and projected the superfield A æ A+:

A
I
+ = ‘I+ + AI

+ + ÷̂IJA†
+J + ÷̂IJ‘†+J ,

by setting the A≠ and ‘≠ to zero, an operation whose consistency will be addressed below.
Next, we project the BRST transformations of the superfields of the large Courant sigma
model (2.1.24). By splitting and projecting the BRST transformation of the field AÎ , one
obtains:

QBVAI
+ = d‘I+ ≠ 1

2 ÷̂IJflA
+J tA + ÷̂ILT̂LJKAJ

+‘K+ ≠ 1
2 ÷̂IJˆAflB

+JF
†AvB +

+ 1
2 ÷̂IJˆAT̂JLMF †A‘L+‘M+ , (2.2.29)

QBVAI
≠ = 1

2 ÷̂IJflA
≠J tA + 1

2 ÷̂IL◊JKLAJ
+‘K+ + 1

2 ÷̂IJˆAflB
≠JF

†AvB + 1
4 ÷̂IJˆA◊LMJF

†A‘L+‘M+ ,

(2.2.30)

9Writing ± subscripts explicitly again.
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and for the ghost field ‘Î :

QBV‘I+ = 1
2 ÷̂IJflA

+JvA ≠ 1
2 ÷̂ILT̂LJK‘J+‘K+ , (2.2.31)

QBV‘I≠ = ≠1
2 ÷̂IJflA

≠JvA ≠ 1
4 ÷̂IL◊JKL‘J+‘K+ , (2.2.32)

up to terms containing A≠ and ‘≠ on the right-hand sides of the above equations; such
terms will eventually drop out by setting the corresponding fields to zero, but this has to
be done in a consistent way. The quantity ◊IJK is defined as:

◊IJK = ≠AIJK + 3÷̂L[KBIJ ]
L ≠ 4÷̂L[IBJ ]K

L ≠ 3÷̂L[I ÷̂MJCK]
LM ≠ 4÷̂KL÷̂M [ICJ ]

ML +

+ ÷̂KL÷̂IM ÷̂JND
MNL,

with A, B, C and D being the components of TÎĴK̂ in (2.2.22).
The requirement that the projection onto L+ be well-defined with respect to the BRST

symmetry means that the transformations of A≠ (2.2.30) and ‘≠ (2.2.32) must vanish.
Therefore, setting QBVA≠ = QBV‘≠ = 0 leads to the fixing of the ghost fields tA and vA:

vA = ≠1
2÷AB÷NMflB

≠M◊JKN‘J+‘K+ © 1
2�AJK(X)‘J+‘K+ , (2.2.33)

tA = �AJK(X)AJ
+‘K+ + 1

2ˆB�ALMF †B‘L+‘M+ . (2.2.34)

We used the fact that flA
≠J satisfy (2.2.24), since one can write:

0 = ÷ÎĴflA
Îfl

B
Ĵ = 1

2÷IJ
1
flA
+JflB

+I ≠ flA
≠JflB

≠I

2
.

Fixing of the ghosts t and v is a consequence of choosing the map fl+ in such a way
that it satisfies (2.2.24). Recall that the anchor map of an exact Courant algebroid has a
kernel (2.1.5); in the standard case of the projection to the tangent bundle it is all of the
cotangent bundle. However, a DFT algebroid is di�erent and this can be seen as follows.
Choosing the above parametrisation for fl+, this map has no kernel and therefore we have
to fix the symmetry associated to the gauge parameter t that came from the Courant
algebroid where the map had a kernel instead. As we have the fixed ghosts tA and vA,
their BRST transformations must be consistent with those coming from the master action
(2.1.32) and (2.1.33). Applying the BRST operator on (2.2.34) one obtains:

QBVtA = ˆB�AJKQBVX
BAJ

+‘K+ + �AJKQBVAJ
+‘K+ + �AJKAJ

+QBV‘K+ +

+ 1
2ˆBˆC�ALMQBVX

BF †C‘L+‘M+ + 1
2ˆB�ALMQBVF

†B‘L+‘M+ ≠

≠ ˆB�ALMF †BQBV‘L+‘M+

= �AJKd‘J+‘K+ + 1
2ˆB�ALMDXB‘L+‘M+ + 1

4

3
÷̂JLflC

+L�AJIˆB�CKM +

+ ˆB

1
2÷̂JL�AJI T̂LKM ≠ 2ˆC�AMIfl

C
+K ≠ ÷̂JLflC

+L�AJI�CKM

24
F †B‘K+ ‘M+ ‘I+ +
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+
3

ˆB�AJLflB
+K ≠ 1

2�APL÷̂PRflB
+R�BJK + �AML÷̂MN T̂NJK ≠

≠ 1
2�AMJ ÷̂MN T̂NKL + 1

4�AJM÷MNflB
+N�BKL

4
AJ

+‘K+ ‘L+, (2.2.35)

using the BRST transformation for F †A:

QBVF
†A = DXA ≠ ˆBflA

+KF
†B‘K+ .

However, the projection of (2.1.32) implies the following transformation:

QBVtA = dvA ≠ ‘B+ˆAflC
+BtC + AB

+ˆAflC
+BvC ≠ ˆAT̂JKL‘J+‘K+AL

+ ≠ ˆAˆBflC
+L‘L+F

†BvC ≠

≠ 1
3ˆAˆBT̂KLMF †B‘K+ ‘L+‘M+

= 1
2ˆB�AKLDXB‘K+ ‘L+ + �AJKd‘J+‘K+ +

+
3

1
2ˆB�AKLflB

+J ≠ ˆAflB
+K�BJL + 1

2ˆAflB
+J�BKL ≠ ˆAT̂JKL

4
AJ

+‘K+ ‘L+. (2.2.36)

Eqs. (2.2.35) and (2.2.36) should coincide. Therefore, the consistency condition is:

3SAJKLAJ
+‘K+ ‘L+ + ˆBSAIJKF

†B‘I+‘J+‘K+ ≠ 1
2R

C
AIˆB�CJKF

†B‘I+‘J+‘K+ = 0, (2.2.37)

where,

SAJKL © ˆB�A[JKflB
+L] ≠ �AM [J ÷̂MN T̂NKL] + 1

2 ÷̂MNflB
+N�AM [J�BKL] ≠ 2

3ˆAT̂JKL +

+ ˆAflB
+[J�BKL], (2.2.38)

RA
BK © ÷̂IJflA

+J�BIK + 2ˆBflA
+K . (2.2.39)

The same can be done for ghost vA and we obtain:

SAJKL‘J+‘K+ ‘L+ = 0. (2.2.40)

Fixing function �AJK(X) by setting:

RI
BK = 0, (2.2.41)

in (2.2.39) can be shown to imply SAJKL = 0 meaning conditions (2.2.37) and (2.2.40) are
automatically satisfied.
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2.2.5 | Projected gauge transformations

Once we consistently projected all components of the superfields we obtain the following
set of gauge transformations:10

”‘X
A = flA

J‘J ,

”‘A
I = d‘I + �I

JKA
J‘K ,

”‘FA = ≠d(�AJKA
J‘K) ≠ ‘JˆAflB

JFB + ‘JAK · AL(ˆAT̂KLJ ≠ ˆAflB
K�BLJ),

where we defined:
�I

JK © ÷̂IN(T̂NJK ≠ 1
2flA

N�AJK). (2.2.42)

Note that the gauge variation of FA now includes trivial gauge transformations proportional
to the equations of motion.

As we did for the Courant sigma model case, we examine the transformation of the
field equations obtained by varying the action (2.2.23) with respect to FA, AI and XA

respectively:

DXA © dXA ≠ flA
J A

J = 0, (2.2.43)

DAI © dAI ≠ 1
2 ÷̂IKflA

KFA + 1
2 ÷̂IK T̂KJLA

J · AL = 0, (2.2.44)

DFA © dFA + ˆAflB
K AK · FB ≠ 1

3ˆAT̂JKLA
J · AK · AL = 0. (2.2.45)

The gauge transformation of the first field equation gives:

”‘DXA = ‘JˆBflA
JDXB + ‘JAK(2flB

[KˆBflA
J ] ≠ flA

N�N
KJ). (2.2.46)

Therefore, the first condition from the covariance of the field equation is:

2flB
[KˆBflA

J ] ≠ flA
N�N

KJ = 0. (2.2.47)

If we compare this expression with the DFT fluxes obtained by twisting the C-bracket
(2.2.25) and (2.2.42), we obtain:

�AKJ(X) = ≠2÷BAflC[KˆBflC
J ], (2.2.48)

which is precisely the fixing (2.2.41). Next we check the transformation of the field equation
of AI and obtain:

”‘DAI= ÷̂IN(ˆAT̂NJK ≠ 1
2ˆAflB

N�BJK)‘KDXA · AJ + ÷̂IN T̂NJK‘KDAJ +

+ 1
2 ÷̂IN‘KAM · AM Õ 1

3flA
[KˆAT̂MM Õ]N ≠ flA

NˆAT̂[KMM Õ] ≠ 3÷̂PJ T̂P [MM ÕT̂K]NJ

2
+

10From now on we denote A+ = A and drop all other ± subscripts.
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+ 1
4 ÷̂INflA

J ÷̂JLflB
L‘K

1
�AKNFB + �BMN�AM ÕKA

M · AM Õ2
. (2.2.49)

Here the underlined contribution is highlighted for later reference, as it would vanish in
the case of a Courant algebroid. We see that the gauge variation of the field equation of
A is covariant provided that:

3flA
[KˆAT̂MM Õ]N ≠ flA

NˆAT̂KMM Õ ≠ 3÷̂PJ T̂P [MM ÕT̂K]NJ = 0.

This is one of the local coordinate expressions for a DFT algebroid. However, due to
(2.2.24), the last line in (2.2.49) does not vanish, thus there is an additional obstruction.
Let us look at this obstruction in more detail:

÷̂INflA
J ÷̂JLflB

L‘K
1
�AKNFB + �BMN�AM ÕKA

M · AM Õ2 =

= ÷̂IN‘K
1
÷AB�AKNFB + �BMN÷AB�AM ÕKA

M · AM Õ2
. (2.2.50)

The first term in the parentheses can be rewritten using (2.2.48) as:

÷AB�AKNFB = ≠2flA[KˆBflA
N ]FB,

which vanishes due to the already imposed condition (2.2.27). The second term in the
round brackets gives explicitly:

�AMN÷BA�BM ÕK = 4÷ABflC[MˆBflC
N ]flD[M ÕˆAflD

K],

again after using (2.2.48). This term has precisely the form of the DFT strong constraint.
What about closure of the algebra of gauge transformations? On XA we have:

[”‘1 , ”‘2 ]XA = flA
J‘J12,

‘I12 © �I
KL‘K1 ‘L2 ,

where we used the function (2.2.42) and condition (2.2.47) to define ‘12. On AI we have:

[”‘1 , ”‘2 ]AI = ”‘12A
I ≠ ˆA�I

JK‘J1 ‘K2 DXA +

+ 3
1
�I

N [M�N
JK] ≠ flA

[MˆA�I
JK]

2
‘J1 ‘K2 A

M ,

where we used (2.2.47) and (2.2.26). The last line vanishes identically using (2.2.47), thus
we have the on-shell closure of the algebra of gauge transformations. However, we obtain
consistent gauge transformations of the field equations only after applying the strong
constraint, c.f. the underlined term in Eq. (2.2.49).
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Chapter 2. BRST symmetry of doubled membrane sigma models

2.3 | Summary

We have shown how to construct the gauge symmetry of the DFT worldvolume action
by projecting the superfield components and BRST transformations of a Courant sigma
model master BV action defined over doubled space. We obtained that the algebra of
gauge transformations closes on-shell. However, the field equations transform covariantly
only upon the use of a constraint, which is the analogue of the DFT strong constraint.
This is in accord with the statement that the target space DFT action is invariant under
the generalised di�eomorphisms only after using the strong constraint. Our approach
establishes this result at the level of the worldvolume theory. To further our understanding
of the underlying symmetry and relation between Courant sigma models and DFT we need
to introduce the concept of LŒ-algebras. The remainder of our work will be dedicated to
the exploration and application of precisely this structure.
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CHAPTER 3

INTRODUCTION TO LŒ-ALGEBRAS

Once we include higher-degree gauge fields in our physical models, it is, in general,
necessary to extend the standard description of symmetries based on Lie algebras and Lie
groups to higher structures. Higher gauge fields appear naturally in string theory [28],
but one can embed this generalisation into the standard field-theoretical framework, e.g.
Refs. [71]. A systematic approach to these higher structures can be formulated using
LŒ-algebras [72, 73], and recently, it was proposed that LŒ-algebras could provide a
classification of perturbative gauge theories in general [74]. In this chapter (following
mostly [75] and [76] unless otherwise stated) we shall briefly review the basic definitions
and properties of LŒ-algebras following the conventions of [76]. The relation to other
conventions, used for example in Ref. [74], is given in Appendix 3.A.

3.1 | Formulations of LŒ-algebras

LŒ-algebras can be formulated in terms of graded algebras or coalgebras.1 Each formu-
lation has its benefits and drawbacks however in this thesis we shall mostly focus on the
algebraic counterpart. In order to provide a complete understanding, a brief introduction
to the coalgebra formulation is provided. Before moving on it is important to note that
the dualisation between algebra and coalgebra does not go both ways in the case of infinite
dimensional vector spaces. This will not be of concern to us as in all physical cases the
vector spaces of interest are topological spaces where one can restrict to continuous duals
for which the double dual is indeed the original space. (See discussion in e.g. [77].)

1The history of development of the concept together with relevant references is given in https://

ncatlab.org/nlab/show/L-infinity-algebra#History
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Introduction to LŒ-algebras

3.1.1 | Algebra formulation

LŒ-algebras. An LŒ-algebra or strong homotopy Lie algebra (L, µi) is a graded vec-
tor space L with a collection of higher products that are graded totally antisymmetric
multilinear maps

µi : L ◊ · · · ◊ L¸ ˚˙ ˝
i-times

æ L.

of degree 2 ≠ i which satisfy the homotopy Jacobi identities:

ÿ

j+k=i

ÿ

‡

‰(‡; l1, . . . , li)(≠1)kµk+1(µj(l‡(1), . . . , l‡(j)), l‡(j+1), . . . , l‡(i)) = 0; (3.1.1)

’i œ N0 ’l1, . . . , li œ L.

Here ‰(‡; l1, . . . , li) is the antisymmetric Koszul sign that includes the sign from the parity
of the permutation of {1, . . . , i}, ‡, ordered as: ‡(1) < · · · < ‡(j) and ‡(j + 1) < · · · <
‡(i).2 By graded totally antisymmetric map we mean

µi(. . . , ln, lm, . . .) = (≠1)|ln||lm|+1µi(. . . , lm, ln, . . .),

where |ln| is the degree of element ln œ L. By careful observation of expression (3.1.1) one
notices index i is an element of the naturals including 0. This inclusion of zero may seem
trivial but produces a non-trivial extension called curved LŒ-algebras. As this subtlety is
integral for the discussion of chapter 5 we will treat it separately. We restrict to the case
i ”= 0 for now. It is instructive to explicitly write the first three relations in (3.1.1):

i = 1 : µ1(µ1(l)) = 0.

This relation states the map µ1 is a di�erential on L.

i = 2 : µ1(µ2(l1, l2)) = µ2(µ1(l1), l2) ≠ (≠1)|l1||l2|µ2(µ1(l2), l1).

From the second relation it is obvious the map µ1 is a derivation with respect to the
graded 2-bracket µ2 on L, while the third relation:

i = 3 : µ1(µ3(l1, l2, l3)) = µ2(µ2(l1, l2), l3) ≠ (≠1)|l2||l3|µ2(µ2(l1, l3), l2) +

+ (≠1)|l1|(|l2|+|l3|)µ2(µ2(l2, l3), l1) ≠ µ3(µ1(l1), l2, l3) +

+ (≠1)|l1||l2|µ3(µ1(l2), l1, l3) ≠ (≠1)|l3|(|l1|+|l2|)µ3(µ1(l3), l1, l2),

is the Jacobi identity for a 2-bracket µ2 up to homotopy given by µ3. Should the maps µi

for i > 3 all be zero one would recover the standard di�erential graded Lie algebra. It is
2Permutations ordered in this way are conventionally called unshu�es.
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important to notice that when i ”= 0, since the map µ1 is a di�erential,3 the elements of
the graded vector space L = m

k Lk form a cochain complex:

· · · µ1≠æ Lk µ1≠æ Lk+1
µ1≠æ · · ·

Therefore one can use the additional properties of a cochain complex with di�erential µ1

if considering flat LŒ-algebras such as for the construction of homotopy transfer (e.g. [77]
and [78]).

Maurer-Cartan elements. A special subset of elements called the Maurer-Cartan
(MC) elements of LŒ-algebra L are elements of homogeneous subspace L1 satisfying the
generalised Maurer-Cartan equation:

ÿ

i

1
i! µi(x, . . . , x) = 0, x œ L1,

and denoted MC(L) © {x œ L1 | q
i
1
i! µi(x, . . . , x) = 0}. These will become important

when we move on to field theory as MC elements are the building blocks of MC homotopy
theory. MC elements are additionally of great importance when examining curved LŒ-
algebras as there is a fundamental di�erence in that for curved algebras MC(L) can be an
empty set. One can see this if we expand the MC equation explicitly:

µ0 + µ1(x) + 1
2!µ2(x, x) + · · · = 0,

from this it is obvious that x = 0 is no longer a solution in the case µ0 ”= 0. Therefore
if L is flat we always have at least one element in MC(L) namely 0 œ MC(L). So curved
LŒ-algebras that have MC elements constitute a special subset of curved LŒ-algebras.
This subset is important as such algebras can always be “flattened” i.e. one can always
uniquely construct a new LŒ-algebra that has vanishing µ0. The construction, generalising
that of Getzler [79] for di�erential graded Lie algebras, is as follows. Identify the MC
elements x of (L, µ) then define a new LŒ-algebra (L, µ̃) with the same spaces and maps:

µ̃i =

Y
____]

____[

0 i = 0,
q

nœN
1

(n≠1)!µn(x, . . . , x, · ) i = 1,

µi else.

The key fact that µ̃1 squares to zero stems from the fact that (L, µ) is an LŒ-algebra i.e.
that products µ satisfy the homotopy relations.

3Why this is not so when i is allowed to be 0 will be shown in chapter 5.
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Tensor LŒ-algebras. An important class of LŒ-algebras that are relevant for our
construction in the following are induced by the tensor product of an LŒ-algebra with a
di�erential graded commutative (associative) algebra. Let (L, µ) be an LŒ-algebra and
(A, d) be a di�erential graded commutative algebra with product m that is associative.
Define L̃ as:

L̃ ©
n

kœZ
(A ¢ L)k where (A ¢ L)k ©

n

i+j=k

Ai ¢ Lj,

and maps µ̃ by:

µ̃i ©

Y
_]

_[

d ¢ id + id ¢ µ1 i = 1

mi ¢ µi else.

One can show (L̃, µ̃) is an LŒ-algebra since µ̃ satisfy the homotopy relations (3.1.1). With
respect to L̃ a homogeneous element l̃ œ L̃ has degree given as the sum of its L and A
degrees: |l̃|L̃ = |l̃|A + |l̃|L.

For example, we can take the de Rham complex on a manifold M , (�•(M), d) and
tensor it with an LŒ-algebra to again obtain an LŒ-algebra (LÕ, µÕ

i):4

LÕ © �•(M, L) ©
n

kœZ
�•

k(M, L), �•
k(M, L) ©

n

i+j=k

�i(M) ¢ Lj,

with higher products:

µÕ
1(–1 ¢ l1) = d–1 ¢ l1 + (≠1)|–1|–1 ¢ µ1(l1), (3.1.2)

µÕ
i(–1 ¢ l1, . . . ,–i ¢ li) = (≠1)i

qi

j=1 |–j |+
qi≠2

j=0 |–i≠j |
qi≠j≠1

k=1 |lk|(–1 · · · · · –i) ¢ µi(l1, . . . , li),

’i > 2, –1, . . . ,–i œ �•(M), l1, . . . , li œ L.
(3.1.3)

The signs above can be understood as a consequence of the fact that the tensored algebra
does not “see” the individual degrees of the underlying algebras, only the sum. Therefore
one needs to compensate for the mixed terms in the exponent of ≠1 that make the illusion
of A degrees graded commuting with L degrees.

Cyclic LŒ-algebras. There is an additional structure one can (but does not have to)
add to an LŒ-algebra: an inner product. We say an LŒ-algebra (over R) together with
an inner product i.e. a graded symmetric non-degenerate bilinear pairing

È · , · ÍL : L ◊ L æ R, Èln, lmÍL = (≠1)|ln||lm|Èlm, lnÍL,
4In the LŒ tensor product hierarchy defined in the next section and used throughout this thesis LÕ

will always mean an LŒ-algebra obtained by tensoring with the de Rham complex.
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that satisfies the cyclicity condition:

Èl1, µi(l2, . . . , li+1)ÍL = (≠1)i+i(|l1|+|li+1|)+|li+1|
qi

j=1 |lj |Èli+1, µi(l1, . . . , li)ÍL; (3.1.4)

’i œ N0,

is a cyclic LŒ-algebra. These will be of importance to all field theories that have an action
functional description.

LŒ-morphisms. A morphism between two LŒ-algebras (L̃, µ̃i) and (L, µi) due to [80]
is a collection of homogeneous maps „i : L̃ ◊ . . . ◊ L̃ æ L of degree 1 ≠ i for i œ N0 which
are multilinear and totally graded anti-symmetric and obey:

ÿ

j+k=i

ÿ

‡œSh(j;i)
(≠1)k‰(‡; l1, . . . , li)„k+1(µ̃j(l‡(1), . . . , l‡(j)), l‡(j+1), . . . , l‡(i)) =

=
ÿ

k1+···+kj=i

1
j!

ÿ

‡œSh(k1,...,kj≠1;i)
‰(‡; l1, . . . , li)’(‡; l1, . . . , li)◊ (3.1.5)

◊ µj(„k1(l‡(1), . . . , l‡(k1)), . . . ,„kj(l‡(k1+...+kj≠1+1), . . . , l‡(i))),

where ‰(‡; l1, . . . , li) is the graded Koszul sign and ’(‡; l1, . . . , li) for a (k1, . . . , kj≠1; i)-
shu�e ‡ is given by

’(‡; l1, . . . , li) = (≠1)
q

16m<n6j
kmkn+

qj≠1
m=1 km(j≠m)+

qj

m=2(1≠km)
qk1+...+km≠1

k=1 |l‡(k)|.

Expression(3.1.5) is easier understood in the context of LŒ-algebras as coalgebras shown
next. An isomorphism of LŒ-algebras is an LŒ-morphism with invertible „1 maps. How-
ever, as this is in most cases overly restrictive, one defines a weaker LŒ quasi-isomorphism
that requires only the homologies be isomorphic. These are of interest as two quasi-
isomorphic algebras correspond to phisically equivalent theories (for a pedagogical exposi-
tion see e.g. [77]).

3.1.2 | Coalgebra formulation

LŒ-algebras. A coalgebra A (over the field of real numbers) is a vector space dual to a
unital associative algebra. (see e.g. [81]) It is endowed with a coproduct � : A æ A ¢ A

and e : A æ R such that � is coassociative:

(id ¢ �)� = (� ¢ id)�

and e is a counit:
(id ¢ e)� = id and (e ¢ id)� = id.
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An LŒ-algebra is a coalgebra (k• V,�) with a codi�erential D : k• V æ k• V of degree
1 that satisfies the coLeibniz rule and squares to zero:

�D = (D ¢ id)� + (id ¢ D)� and D2 = 0.

where k• V © m
k>0

kk V indicates the symmetric tensor algebra. In order to show
the connection to the algebraic formulation of the previous section we define the shift
isomorphism s : V æ V[1]:

s• :
fi• V æ

l• V[1]. (3.1.6)

The codi�erential can be decomposed as D = q
iœN0 Di and induces the algebraic product

µi via the shift isomorphism as:

µi = (≠1) 1
2 i(i≠1)s≠1 ¶ Di ¶ s¢i, (3.1.7)

where the sign stems from:

id¢i = (≠1) 1
2 i(i≠1)s¢i ¶ (s≠1)¢i,

since swapping shift maps produces a sign.

LŒ-morphisms. A morphism � of degree zero between two coalgebras (A,�) and
(AÕ,�Õ) is a morphism of coalgebras � : A æ AÕ if it is compatible with the coproducts in
the sense:

�Õ� = (� ¢ �)�.

As an LŒ-algebra is a codi�erential coalgebra one can construct an LŒ-morphism as a
morphism of coalgebras with the additional requirement that morphism � be compatible
with the codi�erentials in the following way:

�D = DÕ�.

As for the higher products, we can construct the components of morphism � in the algebra
formulation using the shift isomorphism s by:

„i = (≠1) 1
2 i(i≠1)s≠1 ¶ �1

i ¶ s¢i,

where �1
i is the component of � that maps to the VÕ subspace of k• VÕ and takes arguments

from ki V.
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3.2 | Maurer-Cartan homotopy theory

Now that we know what LŒ-algebras are we need to explore how they interplay with
physics, more specifically, field theory. This is known as Maurer-Cartan homotopy theory.
It is based on the interpretation that the solutions of the equations of motion are LŒ

Maurer-Cartan elements of the underlying LŒ-algebra. This can then be expanded to the
BRST and BV extensions of the gauge field theory. In the following we shall explore both
the classical and BRST/BV levels of an LŒ gauge field theory.

3.2.1 | Classical theory

Within the framework of LŒ-algebras one can define a generalisation of the Maurer-
Cartan (MC) equation as follows. Take (LÕ, µÕ

i) and an element a œ LÕ
1 which we call a

gauge potential. One defines the corresponding curvature as:

f © µÕ
1(a) +

1
2µ

Õ
2(a, a) + · · · =

ÿ

i>1

1
i!µ

Õ
i(a, . . . , a). (3.2.1)

The generalised or homotopy Maurer-Cartan equation is then f = 0.
Gauge transformations of gauge potentials a and their curvatures f are given by:

”c0a =
ÿ

i>0

1
i!µ

Õ
i+1(a, . . . , a, c0), (3.2.2)

”c0f =
ÿ

i>0

1
i!µ

Õ
i+2(a, . . . , a, f, c0), (3.2.3)

where c0 œ L0 is the level 0 gauge parameter. If a theory contains higher gauge symmetries
we will have higher (level k) gauge parameters c≠k œ L≠k, k > 0, with infinitesimal gauge
transformations given by:

”c≠k≠1c≠k =
ÿ

i>0

1
i!µ

Õ
i+1(a, . . . , a, c≠k≠1). (3.2.4)

One can show that the algebra of gauge transformations closes up to terms proportional
to the curvature f . In this respect, the MC equation can be interpreted either as an
equation of motion or as a constraint on the kinematical data of the theory. If we choose
to think of the MC equation as dynamical, the next question is if there exists an action
from which this MC equation follows by variational principle. The answer is yes if it is
possible to define a bilinear pairing compatible with the LŒ-algebra structure i.e. if the
algebra can be made cyclic.

If we have a tensored structure like (LÕ, µÕ
i) then (LÕ, µÕ

i) is cyclic provided (L, µ) is cyclic
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and M is an oriented, compact cycle. The induced inner product is then

È–1 ¢ l1,–2 ¢ l2ÍLÕ = (≠1)|–2||l1|
⁄

M
–1 · –2 Èl1, l2ÍL. (3.2.5)

An inner product defined in this way allows us to write the action whose stationary point
is the MC equation:

SMC[a] ©
ÿ

i>1

1
(i+ 1)!Èa, µ

Õ
i(a, . . . , a)ÍLÕ . (3.2.6)

It follows from the homotopy Jacobi identities (3.1.1) that this action is gauge invariant
with respect to the variation of field a as given in (3.2.2).

Bianchi identities can also be defined in terms of LŒ-algebras as:

ÿ

i>0

1
i!µ

Õ
i+1(a, . . . , a, f) = 0, (3.2.7)

satisfied simply by the homotopy relations. However, in the case when one has a cyclic
algebra i.e. an action functional then it can be related to Noether’s second theorem (see
e.g. [82]) by the fact that ”c0 is a variational symmetry of SMC. This is easily seen from:

0 = ”c0SMC =
ÿ

i>0

1
i!È”c0a, µ

Õ
i+1(a, . . . , a)Í = È”c0a, fÍ,

and by comparing with the Noether theorem:

(”c0a)if i = div,

producing the divergence div. On the other hand:

È”c0a, fÍ =
ÿ

i>0

1
i!Èµ

Õ
i+1(a, . . . , a, c0), fÍ =

ÿ

i>0

1
i!Èµ

Õ
i+1(a, . . . , a, f), c0Í,

where we have used the cyclicity condition (3.1.4) and fact that the cyclic product is
graded commutative. Therefore, we obtained the Bianchi identities and see that it is
equivalent to the Noether theorem in the case where we have a cyclic product (because
then the integral of the divergence vanishes).

3.2.2 | Batalin-Vilkovisky theory

To introduce the Batalin-Vilkovisky formalism into a homotopy theory we consider a
cyclic LŒ-algebra (L, µi, È · , · ÍL) with |È · , · ÍL| = ≠3. The truncation (in that the complex
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stops at 1) of the LŒ-algebra to include fields and ghosts:

LBRST =
n

i61
Li, (3.2.8)

is the BRST complex. In terms of our classical picture of the previous section this is the
field content of complex (4.1.3) truncated after LÕ

1 as higher spaces do not correspond
to fields if one reinterprets (higher) gauge parameters as ghost fields. Generally, given a
graded vector space V, coordinate functions are maps:

›– : V æ R such that ›–(v) = ›–(v—·—) = v–,

with degrees: |›–| = ≠|v| © ≠|·–|. We use the convention that the degree-shifted graded
vector space V[k] has vectors of degree |v|≠ k, which implies the coordinate functions will
then be of degree |›–| = ≠|·–|+ k. As is customary we will write the fields as contracted
coordinate functions,

› = ›–·–, ›– œ CŒ(L[1]), ·– œ L.

They are useful as one can write LŒ-algebra objects in a basis independent form. Therefore,
the LŒ-algebra of interest is:

L̂BRST © CŒ(LBRST[1]) ¢ LBRST.

A few slight modifications must be made for this tensor product algebra; CŒ(L[1])
can be understood as a di�erential graded commutative algebra with trivial di�erential
therefore µ̂1 only has the second term in (3.1.2), and since the pairing on L itself can have
a non-zero degree k = |È · , · ÍL|, ’1, ’2 œ CŒ(L[1]) will additionally graded commute with
the pairing producing a second sign. The cyclic inner product thus decomposes as:

È’1 ¢ l1, ’2 ¢ l2ÍL̂ = (≠1)k(|’1|+|’2|)+|’2||l1|(’1’2)Èl1, l2ÍL. (3.2.9)

L̂ as a tensor product space has elements with a bi-degree, the ghost number or degree in
CŒ(LBRST[1]) and LŒ-degree or degree in L, and as an LŒ-algebra they have a single L̂
degree being the sum of its bi-degrees. The L̂ degree of all contracted coordinate functions
of fields is then 1. Therefore we can combine all gauge fields and ghosts into a single
contracted coordinate function superfield:

aBRST © a+
ÿ

i>0
c≠i.
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The action of the BRST operator QBRST is then:

QBRSTaBRST = ≠
ÿ

i>1

1
i! µ̂i(aBRST, . . . , aBRST). (3.2.10)

In this truncated LŒ-algebra however, QBRST is in general only nilpotent up to the Maurer-
Cartan equation. Since this violation of nilpotency stems precisely from the truncation, by
extending this complex to all homogeneous subspaces (essentially letting i œ Z in (3.2.8))
one regains Q as a homological operator again, this is the BV complex.

In the language of field theory this is simply a reformulation of the requirement for
BV in open algebra gauge cases, in other words this is nothing more than the addition of
antifields for every physical and ghost field. We associate these antifields a† and c†≠k (k > 0)
to each gauge or ghost field. The BV superfield is then also by extension a combination
of all the gauge and ghost fields, and antifields:

a © a+ a† +
ÿ

i>0
(c≠i + c†≠i).

The curvature of a is as in any LŒ-algebra given by:

f =
ÿ

i>1

1
i! µ̂i(a, . . . , a). (3.2.11)

Realising the operator QBV simply reduces to QBRST when a is truncated, implies QBV

is defined as in (3.2.10) with a the full BV superfield. This means we have the action of
QBV given by

QBVa = ≠f, QBVf = 0. (3.2.12)

From this it is obvious that QBVa will contain the classical gauge variations:

QBVa = ”c0a+ · · · QBVc≠k = (≠1)k+1”c≠k≠1c≠k + · · ·

where k > 0 and equations of motion:

QBVa
† = ≠f + · · · .

The function SBV on FBV defined as:

SBV[a] ©
ÿ

i>0

1
(i+ 1)!Èa, µ̂i(a, . . . , a)ÍL̂, (3.2.13)

is the BV extension of (3.2.6) called the Maurer-Cartan-Batalin-Vilkovisky action

or BV action for short. For details see [76].
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3.A | Conventions

We provide a short dictionary between conventions of [74] and [52], and [76] that we
use. The first di�erence is that degrees are inverted as shown in table 3.A.1 where by

¶
L≠i … Li

| ¶
µi| = i ≠ 2 … |µi| = 2 ≠ i

Table 3.A.1

Change of degrees between conventions.

¶ we indicate the conventions of [74] and [52]. The second, and much more important,
di�erence is in the homotopy relation that states:

ÿ

j+k=i

ÿ

‡

‰(‡; l1, . . . , li)(≠1)kj ¶
µk+1( ¶

µj(l‡(1), . . . , l‡(j)), l‡(j+1), . . . , l‡(i)) = 0,

notice the kj in the exponent of ≠1 as opposed to just k in (3.1.1). The relation to our
convention (other than degree inversion) is given by an additional sign:

µj æ (≠1)
1
2 j(j≠1) ¶

µj,

this sign compensates the di�erence between the homotopy relations (up to an overall sign
dependent on i that goes away since the right-hand side is zero). However, as the sign
of µ changes so will the expressions for the Maurer-Cartan equation (3.2.1), homotopy
action (3.2.6):

SMC[a] =
ÿ

i>1

(≠1)
1
2 i(i≠1)

(i+ 1)! Èa, ¶
µÕ
i(a, . . . , a)Í¶

LÕ ,
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f =
ÿ

i>1

(≠1)
1
2 i(i≠1)

i!
¶
µÕ
i(a, . . . , a),

and others, precisely as stated in [74].
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CHAPTER 4

COURANT SIGMA MODEL AND LŒ-ALGEBRAS

A very general mathematical framework that encompasses the generalised concepts of
symmetry discussed in this thesis is that of LŒ-algebras. As we have seen in the previous
chapter LŒ-algebras are a generalisation of standard Lie algebras in which the failure of the
Jacobi identity for 2-brackets is controlled by higher 3-brackets, the failure of higher Jacobi
identities for 3-brackets is controlled by 4-brackets and so on. The exact relations between
higher brackets defined on a graded vector space are given by the defining homotopy
relations of the LŒ-algebra.

It has been shown that using the LŒ-algebra framework one can bootstrap consistent
gauge theories [83]. Choosing initial data of the theory in the form of 1- and 2-brackets
one can bootstrap higher brackets using the homotopy relations of an LŒ-algebra and
thus find consistent, gauge invariant theories defined by their equations of motion. This
is reminiscent of the deformation of a free gauge theory into an interacting one in the
BV/BRST approach. There one starts with a free, kinetic part of the action and its gauge
symmetry and adds systematically all possible interaction terms consistent with BRST
invariance, see review Ref. [84] for more details and references. This is relevant as the
Courant sigma model was also constructed this way in [19].

As we know from chapter 2 the Courant algebroid defines a membrane sigma model
and its BV/BRST action known as the Courant sigma model. However it has been shown
by Roytenberg and Weinstein that the algebraic structure of a Courant algebroid can be
described as 2-term LŒ-algebra [52], inducing one to wonder what the LŒ structure of
the sigma model is and how it relates to its algebraic counterpart.

Therefore, in this chapter we would like to embed the intersection between background
fluxes of closed strings as seen in previous chapters and in [42, 45, 47–49], gauge (or
BRST) symmetries of the Courant sigma model and axioms of a Courant algebroid into
an LŒ-algebra structure. Similar ideas in the context of topological open membranes were
discussed in Ref. [20] and the general discussion of LŒ-algebra structures for AKSZ models
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(as QP-manifolds) was already presented in the original paper [15]. We shall explicitly
construct the LŒ-algebra structure for the classical Courant sigma model and then show
how to extend this construction to include the full BV/BRST action. In section 4.1 we
shall construct the LŒ-algebra for the classical Courant sigma model, including fields,
symmetries and the action functional. Moreover, we shall demonstrate how homotopy
identities naturally generate the axioms of a Courant algebroid in the form of coordinate
expressions. It is important to note that at the classical level we are discussing two
di�erent LŒ-algebras, the LŒ gauge algebra (L, µi) and the tensor product algebra of
LŒ-algebra-valued de Rham forms (�•(�3, L), µÕ

i) (see discussion in sections 3.1.1 and
3.2.1). Next, we shall present the full BV/BRST action for the Courant sigma model
reproducing Roytenbergs result [18] by explicitly constructing the LŒ-algebra, this one
including the complete BV/BRST complex. In section 4.3 we present the mappings or
LŒ-algebra morphism between the Courant algebroid LŒ-algebra and the gauge algebra
(L, µi) we constructed for the Courant sigma model. This chapter is based on [75].

4.1 | LŒ for the classical Courant sigma model

The Courant sigma model has been constructed in Ref. [19] starting from Chern-
Simons theory coupled to BF theory in the BRST formalism, and in Ref. [18] using the
general construction for AKSZ topological sigma models [15]. The BV/BRST structure
was described in section 2.1.3 and defined by action (2.1.24) As a quick reminder the
classical part of the membrane action is (2.1.14) on a, generally, undoubled manifold:

S[X,A, F ] =
⁄

�3
Fi·dX i+ 1

2 ÷̂IJA
I·dAJ ≠fli

I(X)AI·Fi+ 1
6TIJK(X)AI·AJ ·AK , (4.1.1)

where i = 1, . . . , d is the target space index and I = 1, . . . , 2d the pullback bundle index.1

As in the doubled case we have maps X = (X i) : �3 æ M , 1-forms A œ �1(�3, XúE), and
an auxiliary 2-form F œ �2(�3, XúT úM). The symmetric bilinear form ÷̂ is, again, the
O(d, d) invariant metric, while functions fl(X) and T (X) are related to the anchor and twist
of the Courant algebroid, as discussed in 2.1.2. The full definition of the Courant algebroid
can be found in section 2.1.1, while structures relevant for our analysis in the context of
LŒ-algebras will be defined in Sect. 4.3. As discussed in Refs. [18, 19, 46] and section
2.1.2 the gauge transformations of the CSM mediated by two gauge parameters define
a first-stage reducible gauge symmetry, and the algebra of transformations closes only
on-shell. In the following we shall describe this rich gauge structure using the LŒ-algebra
framework.

1As there is no possibility of confusing the bundle index with the target space index, in this chapter
only we shall not use the convention that target space indices start from the beginning of the alphabet.
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4.1.1 | Maurer-Cartan homotopy action

In order to construct the LŒ-algebra for the Courant sigma model we have to define
relevant physical fields and assign an appropriate LŒ grading to each one. Starting
from the action (4.1.1), we choose {X i, AI , Fi} as physical fields. In order to associate
higher products to each of the terms in the action we interpret functions fl and T as
infinite perturbative expansions in field X via their Taylor series. Therefore the action
has infinitely many interaction terms:2

S[X,A, F ] =
⁄

�3
FidX i + 1

2 ÷̂IJA
IdAJ ≠ fli

IA
IFi ≠ X i1ˆi1fl

i
IA

IFi ≠

≠ 1
2X

i1X i2ˆi1ˆi2fl
i
IA

IFi ≠ · · · ≠ 1
n!X

i1 · · ·X inˆi1 · · · ˆinfli
IA

IFi ≠ · · ·+

+ 1
6TIJKA

IAJAK + 1
6X

i1ˆi1TIJKA
IAJAK +

+ 1
12X

i1X i2ˆi1ˆi2TIJKA
IAJAK +

+ · · ·+ 1
6·n!X

i1 · · ·X inˆi1 · · · ˆinTIJKA
IAJAK + · · · , (4.1.2)

all of which must be integrated into the LŒ picture. Because of this expansion there
will not be a finite number of higher products as every interaction term (of which there
are infinitely many) will require a unique product. Recalling the general construction
presented in section 3.2.1 we know all physical fields a = X + A + F are elements of
LÕ

1, their curvatures or equations of motion f = fX + fA + fF of LÕ
2, gauge parameters

c0 = ‘ + t of LÕ
0 and level 1 parameter c≠1 = v of LÕ

≠1. For completeness, here we
anticipate appearance of “ghost for ghost” gauge parameter v that becomes relevant only
in the BRST setting. Thus the complex on which we base the construction of the LŒ-
algebra is therefore:

· · · æ LÕ
≠1

µÕ
1≠æ LÕ

0
µÕ
1≠æ LÕ

1
µÕ
1≠æ LÕ

2 æ · · · . (4.1.3)

To obtain expressions in the form of action (4.1.1) or (4.1.2) we must decompose LÕ into
the de Rham part �•(�3) and the algebraic LŒ part L. Since we have three types of fields
we shall define L with three homogeneous subspaces to form the following complex:

L≠1
µ1≠æ L0 µ1≠æ L1. (4.1.4)

2In order to make such long expressions more manageable the shorthand f(0) © f and ˆf
--
0 © ˆf for

any function f of X evaluated at 0 is used, additionally, the exterior product of forms will be implied
with · suppressed. If the full function is meant the argument will be explicitly written.
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Therefore, the classical field content is given below:

a = X + A+ F œ �0(�3, L1) ü �1(�3, L0) ü �2(�3, L≠1),

c0 = ‘ + t œ �0(�3, L0) ü �1(�3, L≠1),

c≠1 = v œ �0(�3, L≠1),

(4.1.5)

and shown in the following table:

· · · µÕ
1æ LÕ

≠1
µÕ
1æ LÕ

0
µÕ
1æ LÕ

1
µÕ
1æ LÕ

2
µÕ
1æ LÕ

3
µÕ
1æ · · ·

h. gauge gauge physical equations Noether
parameters parameters fields of motion identities

L≠1 vi ti Fi DFi

µ1 ¿
L0 ‘I AI DAI

µ1 ¿
L1 X i DX i

Once we placed fields in their appropriate homogeneous subspaces, we have to define
all the products. Note that the physical field A lives in the pullback bundle XúE and there
is no natural structure defined on its sections; in particular the bracket of sections A is
not the Courant bracket. Thus one can think of LŒ-products as defining relations for the
relevant structures on sections of the pullback bundle. Our selection for the non-vanishing
higher products of L = L1 ü L0 ü L≠1 is:

L1 – µn(l(1)1, . . . , l(1)n≠1, l(0)) = li1(1)1 · · · l
in≠1
(1)n≠1ˆi1 · · · ˆin≠1fl

i
I l

I
(0), (4.1.6)

L0 – µn(l(1)1, . . . , l(1)n≠1, l(≠1)) = ≠li1(1)1 · · · l
in≠1
(1)n≠1ˆi1 · · · ˆin≠1fl

i
J l(≠1)i÷̂

IJ ,

L≠1 – µm(l(1)1, . . . , l(1)m≠2, l(≠1), l(0)) = ≠li1(1)1 · · · l
im≠2
(1)m≠2ˆi1 · · · ˆim≠2ˆifl

j
I l(≠1)jl

I
(0),

L0 – µm(l(1)1, . . . , l(1)m≠2, l(0)1, l(0)2) = li1(1)1 · · · l
im≠2
(1)m≠2ˆi1 · · · ˆim≠2TJKLl

K
(0)1l

L
(0)2÷̂

IJ ,

L≠1 – µr(l(1)1, . . . , l(1)r≠3, l(0)1, l(0)2, l(0)3) = li1(1)1 · · · l
ir≠3
(1)r≠3ˆi1 · · · ˆir≠3ˆiTIJK l

I
(0)1l

J
(0)2l

K
(0)3,

where n > 1, m > 2 and r > 3, and l(i) œ Li. We defined the products by comparing the
general expression for the MC action (3.2.6) with (4.1.2), but they can also be obtained
from the (expanded) cohomological vector Q (2.1.13) defined for a Courant algebroid
(up to an overall sign that is irrelevant as it does not change Q2 = 0) described as a
QP2-manifold in [53] and the end of section 2.1.1. Tensoring products (4.1.6) with the de
Rham complex using (3.1.2) and (3.1.3) produces for the physical fields:

µÕ
1(X) = dX,

µÕ
1(A) = dA ≠ µ1(A), (4.1.7)
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µÕ
1(F ) = dF + µ1(F ),

and in general with n > 2 and m > 3:

µÕ
n(X1, . . . , Xn≠1, A) = ≠X i1

1 · · ·X in≠1
n≠1 ˆi1 · · · ˆin≠1fl

i
IA

I ,

µÕ
n(X1, . . . , Xn≠1, F ) = ≠X i1

1 · · ·X in≠1
n≠1 ˆi1 · · · ˆin≠1fl

i
JFi÷̂

IJ ,

µÕ
n(X1, . . . , Xn≠2, A1, A2) = X i1

1 · · ·X in≠2
n≠2 ˆi1 · · · ˆin≠2TJKLA

K
1 A

L
2 ÷̂IJ , (4.1.8)

µÕ
n(X1, . . . , Xn≠2, F, A) = X i1

1 · · ·X in≠2
n≠2 ˆi1 · · · ˆin≠2ˆifl

j
IA

IFj,

µÕ
m(X1, . . . , Xm≠3, A1, A2, A3) = ≠X i1

1 · · ·X im≠3
m≠3 ˆi1 · · · ˆim≠3ˆiTIJKA

I
1A

J
2A

K
3 .

Finally, as we are given the action (4.1.2), we need to define a consistent inner product.
We find that the following choice

Èl(0)1, l(0)2Í © ÷̂IJ l
I
(0)1l

J
(0)2, Èl(1), l(≠1)Í © li(1)l(≠1)i, Èl(≠1), l(1)Í © ≠li(≠1)l(1)i. (4.1.9)

satisfies the cyclicity condition (3.1.4). Moreover, it defines the pairing on the pullback
bundle XúE. Having defined all ingredients we proceed to calculate the Maurer-Cartan
action using (3.2.6). From the combinatorics of the decomposition of µÕ

n(a = X + A +
F, . . . , a = X+A+F ) and the fact that all higher products of physical fields are symmetric
in µÕ we obtain:

µÕ
n(a, . . . , a) = nµÕ

n(X, . . . , X,A) + nµÕ
n(X, . . . , X, F ) + 1

2n(n ≠ 1)µÕ
n(X, . . . , X,A,A) +

+ n(n ≠ 1)µÕ
n(x, . . . , X, F,A) + 1

3!n(n ≠ 1)(n ≠ 2)µÕ
n(X, . . . , X,A,A,A).

(4.1.10)

Making use of this decomposition and (3.1.3) the Maurer-Cartan homotopy action (3.2.6):

SMC[X,A, F ] = ÈdX,F Í + 1
2ÈA, dAÍ +

ÿ

n>0

1
n!ÈA, µn+1(X, . . . , X, F )Í +

+ 1
6

ÿ

n>0

1
n!ÈA, µn+2(X, . . . , X,A,A)Í,

defined by products (4.1.6) and the cyclic inner product (4.1.9), indeed corresponds to the
desired action (4.1.1) or (4.1.2). One can also calculate the equations of motion (3.2.1):

f1 = dX ≠
ÿ

n>0

1
n!µn+1(X, . . . , X,A),

f0 = dA+
ÿ

n>0

1
n!µn+1(X, . . . , X, F ) + 1

2
ÿ

n>0

1
n!µn+2(X, . . . , X,A,A),

f≠1 = dF ≠
ÿ

n>0

1
n!µn+2(X, . . . , X, F,A) ≠ 1

3!
ÿ

n>0

1
n!µn+3(X, . . . , X,A,A,A).
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With the aid of (4.1.6) it becomes obvious that these indeed correspond to the equations
of motion of action (4.1.1) or (4.1.2) (see section 2.1.2 as a comparison):

DX i = dX i ≠ fli
J(X)AJ , (4.1.11)

DAI = dAI ≠ ÷̂IJflj
J(X)Fj + 1

2 ÷̂IJTJKL(X)AKAL, (4.1.12)

DFi = dFi + ˆifl
j
J(X)AJFj ≠ 1

3!ˆiTIJK(X)AIAJAK . (4.1.13)

4.1.2 | Gauge symmetry

Moving on now to homogeneous subspaces LÕ
0 and LÕ

≠1, they contain gauge parameters
‘ and t, and v, respectively. The gauge variations (3.2.2) are:

”(‘,t)X =
ÿ

n>0

1
n!µn+1(X, . . . , X, ‘),

”(‘,t)A = d‘ ≠
ÿ

n>0

1
n!µn+1(X, . . . , X, t) +

ÿ

n>0

1
n!µn+2(X, . . . , X,A, ‘),

”(‘,t)F = dt+
ÿ

n>0

1
n!µn+2(X, . . . , X,A, t) +

ÿ

n>0

1
n!µn+2(X, . . . , X, F, ‘) +

+ 1
2

ÿ

n>0

1
n!µn+3(X, . . . , X,A,A, ‘),

which corresponds to the standard gauge variations of the Courant sigma model as shown
in section 2.1.2 or the original ref. [19]:3

”(‘,t)X
i = fli

J(X)‘J , (4.1.14)

”(‘,t)A
I = d‘I + ÷̂IJflj

J(X)tj + ÷̂IJTJKL(X)AK‘L, (4.1.15)

”(‘,t)Fi = dti + ˆifl
j
J(X)AJtj ≠ ˆifl

j
J(X)‘JFj + 1

2ˆiTIJK(X)AIAJ‘K . (4.1.16)

We are left with the higher level 1 gauge transformations of parameters ‘ and t:

”v‘ =
ÿ

n>0

1
n!µn+1(X, . . . , X, v),

”vt = dv +
ÿ

n>0

1
n!µn+2(X, . . . , X,A, v),

obtained using (3.2.4), which, using (4.1.6), give:

”v‘
I = ≠÷̂IJflj

J(X)vj,

”vti = dvi + ˆifl
j
J(X)vjAJ .

3As commented in appendix 4.B a careful comparison to expressions (2.1.15)–(2.1.17) shows some sign
di�erences here. This is nothing more that a di�erence of convention and can be rectified by a parameter
redefinition t æ ≠t.
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It is perhaps worth noting that while these higher transformations have no meaning in
classical field theory and are just algebraic, they suggest more structure which becomes
relevant as we move towards quantisation and the BV/BRST formulation of the model.

4.1.3 | Homotopy identities

One crucial element of our construction of L has been so far omitted, namely the
homotopy Jacobi identities (3.1.1) of products (4.1.6). To see what constraints these
conditions place on our theory we shall calculate them explicitly now. As a reminder we
state the first three identities of (3.1.1) again:

µ1(µ1(l)) = 0

µ1(µ2(l1, l2)) = µ2(µ1(l1), l2) ≠ (≠1)|l1||l2|µ2(µ1(l2), l1)

µ1(µ3(l1, l2, l3)) = µ2(µ2(l1, l2), l3) ≠ (≠1)|l2||l3|µ2(µ2(l1, l3), l2) +

+ (≠1)|l1|(|l2|+|l3|)µ2(µ2(l2, l3), l1) ≠ µ3(µ1(l1), l2, l3) +

+ (≠1)|l1||l2|µ3(µ1(l2), l1, l3) ≠ (≠1)|l3|(|l1|+|l2|)µ3(µ1(l3), l1, l2).

The products (4.1.6) give the following conditions for some of the first three identities:4

i = 1 : l = l(1) : trivial

l = l(0) : trivial

l = l(≠1) : ∆ ÷̂IJfli
Ifl

j
J = 0

i = 2 : l1,2 = l(1)1, l(1)2 : trivial

l1,2 = l(1), l(0) : trivial

l1,2 = l(1), l(≠1) : ∆ ˆi(÷̂IJflj
Ifl

k
J) = 0

l1,2 = l(0)1, l(0)2 : ∆ 2flj
[Iˆjfl

i
J ] ≠ fli

M ÷̂MLTLIJ = 0

l1,2 = l(0), l(≠1) : ∆ 2flj
[Iˆjfl

i
J ] ≠ fli

M ÷̂MLTLIJ = 0

l1,2 = l(≠1)1, l(≠1)2 : ∆ ˆi(÷̂IJflj
Ifl

k
J) = 0

i = 3 : l1,2,3 = l(0)1, l(0)2, l(0)3 : ∆ 3fli
[AˆiTBC]J ≠ fli

JˆiTABC ≠ 3TJK[A÷̂KMTBC]M = 0

In general, for arbitrary i > 1 we have at most seven nontrivial homotopy identities
of which only three are unique, as we show explicitly in Appendix 4.A. These three
sets of homotopy conditions for the higher products are actually all terms in the Taylor
expansions of the axioms of the Courant algebroid (taking l(1)i = Xi) of which each order
must hold separately (compare with (2.1.8)–(2.1.10)). Classically, these follow from the

4As before underlined indices are not antisymmetrised.
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gauge invariance of the action (4.1.1) (as seen in section 2.1.2 eq. (2.1.21)–(2.1.23)):

÷̂IJfli
I(X)flj

J(X) = 0,

2flj
[I(X)ˆjfl

i
J ](X) ≠ fli

M(X)÷̂MLTLIJ(X) = 0, (4.1.17)

3fli
[A(X)ˆiTBC]J(X) ≠ fli

J(X)ˆiTABC(X) ≠ 3TJK[A(X)÷̂KMTBC]M(X) = 0.

As expected, all these identities “live” in the LÕ
3 space, the space of Bianchi identities

(3.2.7) as they are equivalent to the homotopy relations. These are in turn equivalent to
Noether identities of classical field theory because of the existence of inner products (4.1.9)
(see discussion at the end of sec. 3.2.1). In the worldsheet approach to non-geometric
string backgrounds, these conditions were seen to originate from generalised Wess-Zumino
terms giving expressions for fluxes and their Bianchi identities. The ‘non-geometric’ here
means that the string background fields defined over overlapping open neighbourhoods
are patched using di�eomorphisms, and gauge and T-duality transformations. In the
LŒ-algebra formulation of the CSM, the expressions for the corresponding fluxes and their
Bianchi identities result from higher gauge symmetries encoded in the homotopy relations.
The benefit of this interpretation is that one knows how to extend the obtained classical
expressions to the full BV/BRST action, as we discuss in the next section.

4.2 | LŒ for BV/BRST Courant sigma model

Moving away from our classical results and going towards quantisation one encounters
the need for BRST symmetry. BRST at the most trivial level is the promotion of gauge
parameters to (propagating) ghost fields. For certain gauge theories this is not enough and
one must introduce more fields (often called antifields) to be able to quantise, this is the
Batalin-Vilkovisky procedure. The Courant sigma model is one such theory as its gauge
algebra is open (see e.g. [46]), one could also see this from the existence of a higher gauge
parameter in the classical LŒ picture of the previous sections. In the next two sections
we shall give an overview of how to discover BV/BRST within LŒ following section 3.2.2
and then use this to calculate the generalised BRST transformations and BV action for
the Courant sigma model.

4.2.1 | Maurer-Cartan BV for the CSM

In BRST quantisation gauge parameters ‘ and t become ghost fields, however, since the
gauge algebra is a reducible one the higher gauge field becomes a scalar ghost-for-ghost
field: v.5 As stated in the previous section to complete the BV formalism we extend
this BRST complex with the antifields corresponding to each BRST field. Following the

5Denoted the same as the gauge parameter they originate from.
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construction of sec. 3.2.2 we assign these fields to the three LŒ-algebra (L, µi) spaces as
shown in table 4.1.

�• L≠1 L0 L1

0 v ‘ X

1 t A F †

2 F A† t†

3 X† ‘† v†

gh
c≠1

=
2

|c≠1| L
Õ
=

≠1

gh
c0
=
1

|c0
| LÕ

=
0

gh
a
=
0

|a| L
Õ
=
1

gh
a
† =

≠1

|a
† | LÕ

=
2

gh
c
†

0
=

≠2

|c
†

0
| LÕ

=
3

gh
c≠1

=
≠3

|c
†

≠1
| LÕ

=
4

Table 4.1

Degrees of fields.
Therefore the complete BV field content is (the number in the square bracket indicates

the fields’ ghost degree):

a = X + A+ F œ �0(�3, L1)[0] ü �1(�3, L0)[0] ü �2(�3, L≠1)[0],

a† = X† + A† + F † œ �3(�3, L≠1)[≠1] ü �2(�3, L0)[≠1] ü �1(�3, L1)[≠1],

c0 = ‘ + t œ �0(�3, L0)[1] ü �1(�3, L≠1)[1],

c≠1 = v œ �0(�3, L≠1)[2],

c†0 = ‘† + t† œ �3(�3, L0)[≠2] ü �2(�3, L1)[≠2],

c†≠1 = v† œ �3(�3, L1)[≠3],

(4.2.1)

where fields with the same ghost number are collected. Additionally, these LÕ fields can
also be combined into the BV superfield a:

a = a+ a† + c0 + c†0 + c≠1 + c†≠1,

of L̂-degree 1. There is a slight abuse of notation here as a, a†, c0, c†0, c≠1 and c†≠1 have
two meanings: they are elements of LÕ as was the case in (4.2.1), however, in a they imply
being elements of CŒ(LÕ[1]) ¢ LÕ as well, this is for reasons of brevity and the desired
meaning should be clear from context. It is important to notice this is not the superfield
in the sense of sec. 2.1.3 rel. (2.1.25)–(2.1.27), it is simply the collection of all elements
of L̂ degree 1. Using the properties of cyclic inner product for LŒ-algebras (3.1.4) and
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tensored LŒ-algebras (3.2.9) and the combinatorics of decomposing a just as in (4.1.10),
the BV action (3.2.13) becomes:

SBV =
⁄

�3
ÈdX,F Í + 1

2ÈA, dAÍ +

+
Œÿ

n=0

1
n!

3
ÈF, µn+1(X, . . . , X,A)Í + 1

6ÈA, µn+2(X, . . . , X,A,A)Í
4
+

+
⁄

�3
≠ÈF †, dtÍ ≠ ÈA†, d‘Í ≠ Èt†, dvÍ +

Œÿ

n=0

1
n!

3
≠ Èv†, µn+2(X, . . . , X, v, ‘)Í ≠

≠ Èt†, µn+3(X, . . . , X, F †, v, ‘)Í ≠ 1
2ÈA, µn+3(X, . . . , X, F †, F †, v)Í +

+ 1
6ÈF †, µn+4(X, . . . , X, F †, F †, v, ‘)Í + Èt†, µn+2(X, . . . , X, v, A)Í +

+ ÈA†, µn+2(X, . . . , X, F †, v)Í + È‘†, µn+1(X, . . . , X, v)Í +

+ 1
2Èt, µn+3(X, . . . , X, F †, F †, ‘)Í ≠ Èt, µn+2(X, . . . , X, F †, A)Í +

+ ÈA†, µn+1(X, . . . , X, t)Í ≠ Èt†, µn+2(X, . . . , X, t, ‘)Í ≠

≠ ÈF, µn+2(X, . . . , X, F †, ‘)Í ≠ ÈX†, µn+1(X, . . . , X, ‘)Í ≠

≠ 1
6Èv†, µn+3(X, . . . , X, ‘, ‘, ‘)Í ≠ 1

6Èt†, µn+4(X, . . . , X, F †, ‘, ‘, ‘)Í +

+ 1
2Èt†, µn+3(X, . . . , X,A, ‘, ‘)Í + 1

2È‘†, µn+2(X, . . . , X, ‘, ‘)Í ≠

≠ 1
4ÈA, µn+4(X, . . . , X, F †, F †, ‘, ‘)Í + 1

2ÈA†, µn+3(X, . . . , X, F †, ‘, ‘)Í +

+ 1
2ÈA, µn+3(X, . . . , X, F †, A, ‘)Í ≠ ÈA†, µn+2(X, . . . , X,A, ‘)Í +

+ 1
36ÈF †, µn+5(X, . . . , X, F †, F †, ‘, ‘, ‘)Í

4
.

As explained above the explicit writing of ghost bases will be suppressed. Therefore, in all
expressions in which it is not explicitly written it will be assumed µÕ

i(lÕ1, . . . , lÕi) stands for
’1 · · · ’i µÕ

i(lÕ1, . . . , lÕi). An equivalent procedure by use of (3.2.10) produces the following
components of curvature f or BV/BRST transformations (3.2.12):

QBV v =
Œÿ

n=0

1
n!

3
µn+2(X, . . . , X, v, ‘) + 1

6µn+3(X, . . . , X, ‘, ‘, ‘)
4
,

QBV ‘ =
Œÿ

n=0

1
n!

3
≠ µn+1(X, . . . , X, v) ≠ 1

2µn+2(X, . . . , X, ‘, ‘)
4
,

QBVX =
Œÿ

n=0

1
n!µn+1(X, . . . , X, ‘),

QBV t = ≠dv +
Œÿ

n=0

1
n!

3
µn+2(X, . . . , X, v, A) ≠ µn+2(X, . . . , X, t, ‘) ≠

≠ µn+3(X, . . . , X, F †, v, ‘) + 1
2µn+3(X, . . . , X,A, ‘, ‘) ≠

≠ 1
6µn+4(X, . . . , X, F †, ‘, ‘, ‘)

4
,

QBVA = d‘ +
Œÿ

n=0

1
n!

3
≠ µn+1(X, . . . , X, t) + µn+2(X, . . . , X,A, ‘) ≠
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≠ µn+2(X, . . . , X, F †, v) ≠ 1
2µn+3(X, . . . , X, F †, ‘, ‘)

4
,

QBV F
† = ≠dX +

Œÿ

n=0

1
n!

3
µn+1(X, . . . , X,A) ≠ µn+2(X, . . . , X, F †, ‘)

4
,

QBV F = dt+
Œÿ

n=0

1
n!

3
µn+2(X, . . . , X, t, A) + µn+2(X, . . . , X, F, ‘) +

+ 1
2µn+3(X, . . . , X,A,A, ‘) +

+ µn+3(X, . . . , X, F †, v, A) ≠ µn+3(X, . . . , X, F †, t, ‘) +

+ µn+3(X, . . . , X, t†, v, ‘) + 1
2µn+3(X, . . . , X,A†, ‘, ‘) +

+ 1
2µn+4(X, . . . , X, F †, A, ‘, ‘) ≠ 1

12µn+5(X, . . . , X, F †, F †, ‘, ‘, ‘) +

+ 1
6µn+4(X, . . . , X, t†, ‘, ‘, ‘) ≠ 1

2µn+4(X, . . . , X, F †, F †, v, ‘) +

+ µn+2(X, . . . , X, v, A†)
4
,

QBVA
† = ≠dA+

Œÿ

n=0

1
n!

3
≠ 1

2µn+2(X, . . . , X,A,A) ≠ µn+1(X, . . . , X, F ) ≠

≠ µn+2(X, . . . , X, t†, v) ≠ µn+2(X, . . . , X,A†, ‘) + µn+2(X, . . . , X, F †, t) ≠

≠ µn+3(X, . . . , X, F †, A, ‘) + 1
4µn+4(X, . . . , X, F †, F †, ‘, ‘) +

+ 1
2µn+3(X, . . . , X, F †, F †, v) ≠ 1

2µn+3(X, . . . , X, t†, ‘, ‘)
4
,

QBV t
† = ≠dF † +

Œÿ

n=0

1
n!

3
µn+1(X, . . . , X,A†) + µn+2(X, . . . , X, F †, A) ≠

≠ 1
2µn+3(X, . . . , X, F †, F †, ‘) + µn+2(X, . . . , X, t†, ‘)

4
,

QBVX
† = ≠dF +

Œÿ

n=0

1
n!

3
µn+2(X, . . . , X, F,A) + 1

6µn+3(X, . . . , X,A,A,A) ≠

≠ µn+2(X, . . . , X,X†, ‘) ≠ µn+3(X, . . . , X, F †, v, A†) ≠

≠ µn+3(X, . . . , X, F †, F, ‘) ≠ 1
2µn+4(X, . . . , X, F †, F †, v, A) +

+ 1
6µn+5(X, . . . , X, F †, F †, F †, v, ‘) + µn+3(X, . . . , X, t†, v, A) ≠

≠ µn+4(X, . . . , X, F †, t†, v, ‘) ≠ µn+3(X, . . . , X, v†, v, ‘) ≠

≠ µn+3(X, . . . , X,A†, A, ‘) ≠ µn+3(X, . . . , X, F †, t, A) ≠

≠ 1
2µn+4(X, . . . , X, F †, A†, ‘, ‘) ≠ 1

4µn+5(X, . . . , X, F †, F †, A, ‘, ‘) +

+ 1
36µn+6(X, . . . , X, F †, F †, F †, ‘, ‘, ‘) + 1

2µn+4(X, . . . , X, t†, A, ‘, ‘) ≠

≠ 1
6µn+5(X, . . . , X, F †, t†, ‘, ‘, ‘) ≠ 1

6µn+4(X, . . . , X, v†, ‘, ‘, ‘) ≠

≠ µn+2(X, . . . , X, t, A†) + 1
2µn+4(X, . . . , X, F †, F †, t, ‘) ≠

≠ 1
2µn+4(X, . . . , X, F †, A,A, ‘) ≠ µn+3(X, . . . , X, t†, t, ‘) +

+ 1
2µn+3(X, . . . , X, ‘†, ‘, ‘) + µn+2(X, . . . , X, v, ‘†)

4
,

62



Chapter 4. Courant sigma model and LŒ-algebras

QBV ‘† = dA† +
Œÿ

n=0

1
n!

3
≠ µn+1(X, . . . , X,X†) ≠ µn+2(X, . . . , X, F †, F ) +

+ 1
6µn+4(X, . . . , X, F †, F †, F †, v) ≠ µn+2(X, . . . , X, t†, t) ≠

≠ µn+2(X, . . . , X, v†, v) + µn+2(X, . . . , X, ‘†, ‘) ≠

≠ 1
2µn+3(X, . . . , X, F †, A,A) ≠ µn+3(X, . . . , X, F †, A†, ‘) ≠

≠ µn+2(X, . . . , X,A†, A) + µn+3(X, . . . , X, t†, A, ‘) ≠

≠ 1
2µn+3(X, . . . , X, v†, ‘, ‘) + 1

2µn+3(X, . . . , X, F †, F †, t) ≠

≠ 1
2µn+4(X, . . . , X, F †, t†, ‘, ‘) ≠ µn+3(X, . . . , X, F †, t†, v) +

+ 1
12µn+5(X, . . . , X, F †, F †, F †, ‘, ‘) ≠ 1

2µn+4(X, . . . , X, F †, F †, A, ‘)
4
,

QBV v
† = ≠dt† +

Œÿ

n=0

1
n!

3
µn+1(X, . . . , X, ‘†) ≠ µn+2(X, . . . , X, F †, A†) +

+ 1
6µn+4(X, . . . , X, F †, F †, F †, ‘) + µn+2(X, . . . , X, t†, A) ≠

≠ µn+2(X, . . . , X, v†, ‘) ≠ 1
2µn+3(X, . . . , X, F †, F †, A) ≠

≠ µn+3(X, . . . , X, F †, t†, ‘)
4
.

Introducing our selection for the higher products (4.1.6) and inner product (4.1.9), and
then resumming the Taylor expansions produces the full BV action (relation (2.1.24)
expanded by (2.1.25)–(2.1.27) as obtained by the AKSZ procedure in [18]). The explicit
results are given in Appendix 4.B.

In the next section we would like to relate this LŒ-algebra corresponding to the Courant
sigma model with the 2-term LŒ-algebra for a Courant algebroid in Ref. [52].

4.3 | LŒ-morphisms

Roytenberg has shown [18] that given the data of a Courant algebroid one can uniquely
construct the corresponding Courant sigma model. Moreover, Roytenberg and Weinstein
showed [52] that a Courant algebroid can be described as a 2-term LŒ-algebra. This
naturally raises the question of the relation between the LŒ-algebra we constructed for
the CSM and the one defined in Ref. [52]. In order to construct the morphism between
these two algebras we need to extend the LŒ-algebra they constructed which essentially
used a graded vector space concentrated in just two degrees, whereas the physical fields
in (L, µi) live in a graded vector space of three homogeneous subspaces. The construction
of this morphism can be thought of as reproducing Roytenbergs result [18] that given the
data of a Courant algebroid one can uniquely construct the Courant sigma model (up to
the additional structure of a measure on the source space) now fully in the LŒ-algebra
formalism.
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4.3.1 | LŒ-algebra for a Courant algebroid

In [52] it was shown an LŒ-algebra can be constructed from a Courant algebroid by
starting with the exact sequence (adjusted to match our conventions of degrees):

ÂL≠2
ıæ ÂL≠1

Dæ ÂL0 æ cokerD

with ÂL≠2 = kerD, ÂL≠1 = CŒ(M) and ÂL0 = �(E), and ı : kerD Òæ CŒ(M) the inclusion
of constants as functions. and non-vanishing products:

µ̃1(c) = ıc,

µ̃1(f) = Df,

µ̃2(e1, e2) = [e1, e2]C , (4.3.1)

µ̃2(e, f) = Èe,DfÍ,

µ̃3(e1, e2, e3) = N (e1, e2, e3),

with c œ kerD, f œ CŒ(M) and e œ �(E). The space cokerD is not part of the algebra as
no maps lead to it or take arguments from it. The maps are defined in terms of structures
on a Courant algebroid defined in section 2.1.1, i.e.: map D : CŒ(M) æ �(E) of rel.
(2.1.2), a skew-symmetric bracket on sections of bundle E over manifold M , a symmetric
bilinear form È , Í and tensor N (recall the definition in Property 2.1.7) representing the
obstruction to the Jacobi identity of the bracket (2.1.1). In the definition of a Courant
algebroid (see sec. 2.1.1) these structures satisfy five compatibility conditions (2.1.1),
(2.1.3)–(2.1.6) which are in the LŒ formulation contained in the homotopy relations.
However, as the space of constants only appears due to the underlying exact sequence
and plays no nontrivial role in the calculation of the homotopy relations it can be omitted
without any modification. For this reason in the ensuing analysis we drop this space and
the corresponding µ̃1 map from consideration without loss of generality.

To make the connection with our sigma model algebra (4.1.4) and (4.1.6), we must
extend6 the chain complex of this algebra by an additional space of degree 1, ÂL1 = TpM :

ÂL≠1
Dæ ÂL0 fl̃æ ÂL1, (4.3.2)

where,
µ̃1(e) = fl̃(e)

---
p
, (4.3.3)

is the map fl̃ : E æ TM and p œ M is a point on manifold M . We will denote elements of
ÂL1 by h œ TpM . Calculation of the homotopy identities (3.1.1) (for details see Appendix

6In nomenclature of Ref. [74] we have to extend the pure gauge algebra to an algebra including
additional field which will correspond to the field X in CSM. The reason is that the CSM algebra is field
dependent.
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4.C) provides the minimal extension to the higher products (4.3.1) necessary to make
(4.3.2) an LŒ-algebra:

µ̃n(h1, . . . , hn≠1, e) = hi1
1 · · ·hin≠1

n≠1 ˜̂i1 · · · ˜̂in≠1(fl̃(e)i)
---
p
, n œ N, (4.3.4)

where the basis of TpM is the one induced by coordinates xi of a coordinate patch U µ M

that contains point p such that xi(p) = 0. It is important to note that this extended algebra
also corresponds to the Courant algebroid as did the original L2 formulation since no new
properties, other than the Courant algebroid axioms, were needed. The extended structure
is more natural, however, in case we want to define a Courant algebroid being given only the
LŒ-algebra. On the other hand, going in the opposite direction, Roytenberg and Weinstein
showed that if starting from a Courant algebroid one can omit the L1 homogeneous subspace
from the graded space and uniquely define the LŒ structure. Furthermore, the properties
of a Courant algebroid

�

⇢

⇠

⇡

(fl ¶ D)f = 0

fl[e1, e2]C ≠ [fl(e1), fl(e2)] = 0

Jac(e1, e2, e3) ≠ DNc(e1, e2, e3) = 0

(4.3.5)

come out in this form from the homotopy relations of the extended LŒ-algebra.

4.3.2 | LŒ-morphism from CA to CSM

Now, we shall construct the morphism „ to our CSM algebra in a pointwise fashion
i.e. „ : ÂL ◊ · · · ◊ ÂL æ L

---
X(‡)=p

for ‡ œ �3, since the Courant sigma model is only locally
defined. We begin analogously to the extension procedure of the previous paragraph
given explicitly in Appendix 4.C. The construction will follow orders of i in (3.1.5).

i = 1
To begin, we start by the lowest order of (3.1.5) which encompasses two non-trivial
conditions:

„1(µ̃1(e)) = µ1(„1(e)),

„1(µ̃1(f)) = µ1(„1(f)).

By use of the first equation in (4.1.6) and (4.3.3) the first relation gives:

„1(fl̃(e)i
---
p
) = fli

I„1(e)I ,
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whereas the second equation in (4.1.6) and (4.3.1) produce:

„1(Df)I = ≠÷̂IJfli
J„1(f)i.

These two relations imply „1 to be:

„1(h) = Xúh, (4.3.6)

„1(e) = Xúe
---
p
, (4.3.7)

„1(f) = ≠Xúd̃f
---
p
, (4.3.8)

where we used ÈDf, eÍ = 1
2fl(e)f and fli

J © fli
J({Xj} = 0) = fli

J({Xúxj} = 0) and
xi(p) = 0.

i = 2
In this case we have four non-trivial morphism conditions. The first is (l1, l2) = (e1, e2):

≠„2(µ̃1(e1), e2) + „2(µ̃(e2), e1) + „1(µ̃2(e1, e2)) = µ1(„2(e1, e2)) + µ2(„1(e1),„1(e2))

≠„2(fl̃(e1)
---
p
, e2)I + „2(fl̃(e2)

---
p
, e1)I +Xú([e1, e2]C)I

---
p
= ≠÷̂IJfli

J„2(e1, e2)i +

+ ÷̂IJTJKL(Xúe1
---
p
)K(Xúe2

---
p
)L.

By comparison with the Courant bracket:

([e1, e2]C)I = fl̃i
J(eJ1 ˜̂ieI2 ≠ eJ2 ˜̂ieI1) ≠ (4.3.9)

≠ 1
2 fl̃i

K(eJ1 ˜̂ie2J ≠ eJ2 ˜̂ie1J)˜̂÷IK + ˜̂÷IJ T̃JKLe
K
1 e

L
2 ,

we fix two „2 maps:

„2(h, e)I = Xú(hi ˜̂
ie

I)
---
p
, (4.3.10)

„2(e1, e2) = Xú(÷̂IJeI[1d̃eJ2])
---
p
. (4.3.11)

The second condition corresponding to (l1, l2) = (e, f) is:

„1(µ̃2(e, f)) ≠ „2(µ̃1(e), f) + „2(µ̃1(f), e) = µ2(„1(e),„1(f))

≠Xú(d̃Èe,DfÍ)i
---
p

≠ „2(fl̃(e)
---
p
, f)i + 1

2(X
ú(DIf d̃eI)

---
p
)i ≠ 1

2(X
ú(eI d̃DIf)

---
p
)i =

= ≠ˆifl
j
I(Xúd̃f)j

---
p
(Xúe)I

---
p
,

from which we read o�:
„2(h, f)i = ≠Xú(hj ˜̂

j
˜̂
if)

---
p
. (4.3.12)
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For the third combination of elements we take (l1, l2) = (e, h):

„1(µ̃2(e, h)) ≠ „2(µ̃1(e), h) = µ1(„2(e, h)) + µ2(„1(e),„1(h))

Xú(hj ˜̂
j(fl̃(e)i)

---
p
) + „2(fl̃(e)

---
p
, h)i = fli

I(Xú(hj ˜̂
je)

---
p
)I + (Xúh)jˆjfl

i
I(Xúe

---
p
)I ,

that allows us to set:
„2(h1, h2) = 0. (4.3.13)

The final relation with (l1, l2) = (f, h):

≠„2(µ̃1(f), h) = µ1(„2(f, h)) + µ2(„1(f),„1(h)),

is just a consistency check.

i = 3
Out of the five non-trivial conditions that exist for i > 3 we begin with the combination
(l1, l2, l3) = (e1, e2, e3):

1
3„1(µ̃3(e1, e2, e3)) ≠ „2(µ̃2(e1, e2), e3) + „3(µ̃1(e1), e2, e3) + cyclic =

= 1
3µ3(„1(e1),„1(e2),„1(e3)) ≠ µ2(„1(e3),„2(e1, e2)) + cyclic.

This condition implies:

„3(h, e1, e2)i = Xú(hj ˜̂
j(÷̂IJeI[1 ˜̂ieJ2]))

---
p
. (4.3.14)

The next combination of elements (l1, l2, l3) = (e1, e2, h) gives:

„3(µ̃1(e1), e2, h) + „2(µ̃2(e1, h), e2) + 1
2„2(µ̃2(e2, e1), h) ≠ e1 ¡ e2 =

= 1
2µ1(„3(e1, e2, h)) + µ2(„1(e2),„2(e1, h)) + 1

2µ2(„1(h),„2(e1, e2)) +

+ 1
2µ3(„1(e1),„1(e2),„1(h)) ≠ e1 ¡ e2.

Expanding this expression and plugging in the previously set definitions for „ one can
consistently set:

„3(e, h1, h2)I = Xú(hi1
1 h

i2
2
˜̂
i1
˜̂
i2e

I)
---
p
. (4.3.15)

The third possibility is for (l1, l2, l3) = (h, f, e):

„3(µ̃1(f), h, e) + „3(µ̃1(e), h, f) + „2(µ̃2(h, e), f) + „2(µ̃2(f, e), h) =

= µ2(„1(f),„2(h, e)) ≠ µ2(„1(e),„2(h, f)) + µ3(„1(h),„1(f),„1(e)).
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Analogously to the previous cases, here we can set:

„3(h1, h2, f)i = ≠Xú(hi1
1 h

i2
2
˜̂
i1
˜̂
i2
˜̂
if)

---
p
. (4.3.16)

There are two more combinations of elements with non-trivial conditions: (l1, l2, l3) =
(h1, h2, e) and (l1, l2, l3) = (f, h1, h2), however, these are simply consistency checks that all
other „3 can be set to vanish. We state them for completeness:

1
2„3(µ̃1(e), h1, h2) + „2(µ̃2(h1, e), h2) + 1

2„1(µ̃3(h1, h2, e)) + h1 ¡ h2 =

= 1
2µ1(„3(h1, h2, e)) + µ2(„1(h1),„2(h2, e)) + 1

2µ3(„1(h1),„1(h2),„1(e)) + h1 ¡ h2,

1
2„3(µ̃1(f), h1, h2) + h1 ¡ h2 =

= 1
2µ1(„3(f, h1, h2)) + µ2(„1(h1),„2(f, h2)) + 1

2µ3(„1(f),„1(h1),„1(h2)) + h1 ¡ h2.

i > 3
Since the i = 3 case already gives the most general morphism conditions we make the
ansatz for the four possible non-vanishing „i mappings as follows:

„i(h1, . . . , hi≠1, e)I = Xú(hj1
1 · · ·hji≠1

i≠1
˜̂
j1 · · · ˜̂ji≠1e

I)
---
p
, (4.3.17)

„i(h1, . . . , hi≠2, e1, e2)j = Xú(hj1
1 · · ·hji≠2

i≠2
˜̂
j1 · · · ˜̂ji≠2(÷̂IJeI[1 ˜̂jeJ2]))

---
p
, (4.3.18)

„i(h1, . . . , hi≠1, f)j = ≠Xú(hj1
1 · · ·hji≠1

i≠1
˜̂
j1 · · · ˜̂ji≠1

˜̂
jf)

---
p
, (4.3.19)

„i(h1, . . . , hi) = 0. (4.3.20)

First of the five non-trivial conditions corresponds to the choice (l1, . . . , li) =
(h1, . . . , hi≠1, f):

(≠1)i≠1„i(µ̃1(f), h1, . . . , hi≠1) =
iÿ

n=1
µn(„i≠n+1(h1, . . . , hi≠n, f),„1(hi≠n+1), . . . ,„1(hi≠1))+

+ perm.

which is automatically satisfied by use of the ansatz.7 Next is the combination (l1, . . . , li) =
(h1, . . . , hi≠1, e):

„1(µ̃i(h1, . . . , hi≠1, e)) =
iÿ

n=1
µn(„1(h1), . . . ,„1(hn≠1),„i≠n+1(hn, . . . , hi≠1, e)) +

+ perm.

7Here “perm.” will indicate all possible unshu�es of h1, . . . , hi≠1.
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that is also automatically satisfied. The third case is (l1, . . . , li) = (h1, . . . , hi≠2, f, e):

(≠1)i≠1„i(µ̃1(f), h1, . . . , hi≠2, e) + „i(µ̃2(f, e), h1, . . . , hi≠2) +

+
i≠1ÿ

n=1
„i≠n+1(µ̃n(h1, . . . , hn≠1, e), hn, . . . , hi≠2, f) + perm. =

=
iÿ

m=2

i≠m+1ÿ

n=1
◊

◊µm(„1(h1), . . . ,„1(hm≠2),„n(hm≠1, . . . , hm+n≠3, f),„i≠m≠n+2(hm+n≠2, . . . , hi≠2, e)) +

+ perm.

which is obviously satisfied after one resums. The fourth possibility is (l1, . . . , li) =
(h1, . . . , hi≠2, e1, e2):

(≠1)i„i≠1(µ̃2(e1, e2), h1, . . . , hi≠2) ≠
Q

a
i≠1ÿ

n=1
„i≠n+1(µ̃n(h1, . . . , hn≠1, e1), hn, . . . , hi≠2, e2) +

+ perm. ≠ e1 ¡ e2

R

b =

=
iÿ

m=2

i≠m+1ÿ

n=1
µm(„1(h1), . . . ,„1(hm≠2),„n(hm≠1, . . . , hm+n≠3, e1),

„i≠m≠n+2(hm+n≠2, . . . , hi≠2, e2)) + perm. ≠ e1 ¡ e2 +

+
i≠1ÿ

m=1
µm(„1(h1), . . . ,„1(hm≠1),„i≠m+1(hm, . . . , hi≠2, e1, e2)) + perm.

This is satisfied by definition of the Courant bracket (4.3.9). Finally, the last condition
for (l1, . . . , li) = (h1, . . . , hi≠3, e1, e2, e3) is:

„i≠2(µ̃3(e1, e2, e3), h1, . . . , hi≠3) + (≠1)i„i≠1(µ̃2(e1, e2), h1, . . . , hi≠3, e3) + cycl.+

+
i≠2ÿ

n=1
„i≠n+1(µ̃n(h1, . . . , hn≠1, e1), hn, . . . , hi≠3, e2, e3) + perm.+ cycl. =

= ≠
i≠1ÿ

l=2

i≠lÿ

n=1
◊

◊µl(„1(h1), . . . ,„1(hl≠2),„n(hl≠1, . . . ,hl+n≠3, e1),„i≠l≠n+2(hl+n≠2, . . . ,hi≠3, e2, e3)) ≠

≠ perm. ≠ cycl.+

+
iÿ

l=3

i≠l+1ÿ

n=1

i≠l≠n+2ÿ

m=1
µl(„1(h1), . . . ,„1(hl≠3),„n(hl≠2, . . . , hl+n≠4, e1),

„m(hl+n≠3, . . . , hm+n+l≠5, e2),„i≠m≠n≠l+3(hm+n+l≠4, . . . , hi≠3, e3)) + perm.+ cycl.

where “cycl.” indicates all cycles of e1, e2, e3. This is satisfied by virtue of cyclicity and
the properties of a Courant algebroid as in the i = 3 case.
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As is expected all five conditions are after resumming simply all the Taylor expansion
terms as implied by their lowest orders i.e. l = f , l = e, (l1, l2) = (e, f), (l1, l2) = (e1, e2)
and (l1, l2, l3) = (e1, e2, e3).

4.4 | Summary

In this chapter we have constructed the cyclic LŒ-algebra underlying the CSM, and
obtained, by tensoring it with the de Rham complex, the dynamics of the model – the
action, equations of motion and gauge transformations. Finally, since the CSM has an
open gauge algebra we proceeded to finalise the theory with its BV description obtained
in the framework of LŒ-algebras by introducing a third algebra which includes the ghost
degrees. Using this framework enabled us to obtain the exact BV/BRST transformations
of both fields and antifields in our theory (physical and ghost). Then, we constructed the
Courant sigma model starting from the structures of a Courant algebroid encoded in a
2-term LŒ-algebra. One has to extend the pure gauge structure of the 2-term LŒ-algebra
of a CA defined in Ref. [52] to include field dependence. The morphism we constructed
produces all brackets defining the CSM LŒ-algebra and thus the Maurer-Cartan equations.
However, the MC action requires an additional input and can be constructed only if one
can define a consistent bilinear pairing rendering the CSM LŒ-algebra cyclic.
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APPENDIX

4.A | Homotopy identities of CSM algebra

In section 4.1.3 we calculated some of the homotopy identities for n = 1, 2, 3. Here we
provide the calculation of all homotopy relations for arbitrary n. As was stated, there
are seven possible combinations of elements that produce nontrivial identities. Each
possibility is calculated below.

• (l1, . . . , ln) = (l(1)1, . . . , l(1)n≠1, l(≠1))

µ1(µn(l(1)1, . . . , l(1)n≠1, l(≠1))) = µ2(µn≠1(l(1)1, . . . , l(1)n≠2, l(≠1)), l(1)n≠1) + · · ·+

+ (≠1)k+1µk+1(µn≠k(l(1)1, . . . , l(1)n≠k≠1, l(≠1)), l(1)n≠k, . . . , l(1)n≠1) +

+ perm.+ · · ·

≠ li1(1)1 · · · l
in≠1
(1)n≠1ˆi1 · · · ˆin≠1fl

j
J÷IJfli

I l(≠1)j =

= lin≠1
(1)n≠1ˆin≠1fl

i
I÷

IJ li1(1)1 · · · l
in≠2
(1)n≠2ˆi1 · · · ˆin≠2fl

j
J l(≠1)j + · · ·+

+ li1(1)1 · · · l
in≠k≠1
(1)n≠k≠1ˆi1 · · · ˆin≠k≠1fl

j
J l

in≠k

(1)n≠k · · · l
in≠1
(1)n≠1ˆin≠k

· · · ˆin≠1fl
i
I÷

IJ l(≠1)j +

+ perm.+ · · ·

»

ˆi1 · · · ˆin≠1(fli
I÷

IJflj
J) = 0 (4.A.1)

Here “perm.” denotes all possible permutations of l(1)1, . . . , l(1)n≠1 that are ordered
as required by (3.1.1). All such permutations will have positive sign because the
Koszul sign will exactly compensate the permutation sign since all objects are either
of degree 1 or ≠1.
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• (l1, . . . , ln) = (l(1)1, . . . , l(1)n≠2, l(≠1)1, l(≠1)2)

0 = µ2(µn≠1(l(1)1, . . . , l(1)n≠2, l(≠1)1), l(≠1)2) + · · ·+

+ (≠1)k+1µk+1(µn≠k(l(1)1, . . . , l(1)n≠k≠1, l(≠1)1), l(1)n≠k, . . . , l(1)n≠2, l(≠1)2) +

+ perm.+ · · ·

0 = ≠ˆkfl
j
J÷IJ li1(1)1 · · · l

in≠2
(1)n≠2ˆi1 · · · ˆin≠2fl

i
I l(≠1)1il(≠1)2j ≠ · · · ≠

≠ l
in≠k

(1)n≠k · · · l
in≠2
(1)n≠2ˆin≠k

· · · ˆin≠2fl
j
J÷IJ li1(1)1 · · · l

in≠k≠1
(1)n≠k≠1ˆi1 · · · ˆin≠k≠1fl

i
I l(≠1)1jl(≠1)2j ≠

≠ perm. ≠ · · ·

»

ˆi1 · · · ˆin≠2ˆk(fli
I÷

IJflj
J) = 0 (4.A.2)

In this case “perm.” indicates all possible unshu�es of l(1)1, . . . , l(1)n≠2 and also
terms with l(≠1)1 and l(≠1)2 swapped. The sign of all terms will be the same for the
same reason as above.

• (l1, . . . , ln) = (l(1)1, . . . , l(1)n≠2, l(0)1, l(0)2)

µ1(µn(l(1)1, . . . , l(1)n≠2, l(0)1, l(0)2)) = µ2(µn≠1(l(1)1, . . . , l(1)n≠2, l(0)1), l(0)2) ≠

≠ l(0)1 ¡ l(0)2 +

+ µ2(µn≠1(l(1)1, . . . , l(1)n≠3, l(0)1, l(0)2), l(1)n≠2) + · · ·+

+ (≠1)k+1µk+1(µn≠k(l(1)1, . . . , l(1)n≠k≠2, l(0)1, l(0)2), l(1)n≠k≠1, . . . , l(1)n≠2) +

+ µk+1(µn≠k(l(1)1, . . . , l(1)n≠k≠1, l(0)1), l(1)n≠k, . . . , l(1)n≠2, l(0)2) ≠ l(0)1 ¡ l(0)2 +

+ perm.+ · · ·

li1(1)1 · · · l
in≠2
(1)n≠2ˆi1 · · · ˆin≠2TJKL÷IJ lK(0)1l

L
(0)2fl

i
I =

= li1(1)1 · · · l
in≠2
(1)n≠2ˆi1 · · · ˆin≠2fl

j
Kˆjfl

i
Ll

K
(0)1l

L
(0)2 ≠ l(0)1 ¡ l(0)2 ≠

≠ li11 · · · lin≠3
(1)n≠3ˆi1 · · · ˆin≠3TJKL÷IJ lin≠2

(1)n≠2ˆin≠2fl
i
I l

K
(0)1l

L
(0)2 +

+ · · ·+

+ li1(1)1 · · · l
in≠k≠1
(1)n≠k≠1ˆi1 · · · ˆin≠k≠1fl

j
K l

in≠k

(1)n≠k · · · l
in≠2
(1)n≠2ˆin≠k

· · · ˆin≠2ˆjfl
i
Ll

K
(0)1l

L
(0)2 ≠

≠ l(0)1 ¡ l(0)2 ≠

≠ li11 · · · lin≠k≠2
(1)n≠k≠2ˆi1 · · · ˆin≠k≠2TJKL÷IJ l

in≠k≠1
(1)n≠k≠1 · · · l

in≠2
(1)n≠2ˆin≠k≠1 · · · ˆin≠2fl

i
I l

K
(0)1l

L
(0)2 +

+ perm.+ · · ·
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»

ˆi1 · · · ˆin≠2(fli
I÷

IJTJKL) = ˆi1 · · · ˆin≠2(2flj
[Kˆjfl

i
L]) (4.A.3)

As above “perm.” indicates all possible unshu�es of l(1)1, . . . , l(1)n≠2. Swapping l(0)1

and l(0)2 produces a sign since the Koszul sign is + but the parity of the permutation
will be flipped, this introduces the antisymmetrisation in the final relation.

• (l1, . . . , ln) = (l(1)1, . . . , l(1)n≠2, l(0), l(≠1))

µ1(µn(l(1)1, . . . , l(1)n≠2, l(0), l(≠1))) = µ2(µn≠1(l(1)1, . . . , l(1)n≠2, l(0)), l(≠1)) ≠

≠ µ2(µn≠1(l(1)1, . . . , l(1)n≠2, l(≠1)), l(0)) ≠

≠ µ2(µn≠1(l(1)1, . . . , l(1)n≠3, l(0), l(≠1)), l(1)n≠2) + · · ·+

+ µk+1(µn≠k(l(1)1, . . . , l(1)n≠k≠1, l(0)), l(1)n≠k, . . . , l(1)n≠2, l(≠1)) +

+ (≠1)kµk+1(µn≠k(l(1)1, . . . , l(1)n≠k≠1, l(≠1)), l(1)n≠k, . . . , l(1)n≠2, l(0)) ≠

≠ µk+1(µn≠k(l(1)1, . . . , l(1)n≠k≠2, l(0), l(≠1)), l(1)n≠k≠1, . . . , l(1)n≠2) +

+ perm.+ · · ·

≠ li1(1)1 · · · l
in≠2
(1)n≠2ˆi1 · · · ˆin≠2ˆifl

j
Kfli

J÷IJ l(≠1)jl
K
(0) =

= · · ·+

+ l(≠1)jl
K
(0)(≠li1(1)1 · · · l

in≠k≠1
(1)n≠k≠1ˆi1 · · · ˆin≠k≠1fl

i
K l

in≠k

(1)n≠k · · · l
in≠2
(1)n≠2ˆiˆin≠k

· · · ˆin≠2fl
j
J +

+ li1(1)1 · · · l
in≠k≠1
(1)n≠k≠1ˆi1 · · · ˆin≠k≠1fl

j
L÷LM l

in≠k

(1)n≠k · · · l
in≠2
(1)n≠2ˆin≠k

· · · ˆin≠2TJMK÷IJ +

+ li1(1)1 · · · l
in≠k≠2
(1)n≠k≠2ˆi1 · · · ˆin≠k≠2ˆifl

j
K l

in≠k≠1
(1)n≠k≠1 · · · l

in≠2
(1)n≠2ˆiˆin≠k≠1 · · · ˆin≠2fl

i
J÷IJ) +

+ perm.+ · · ·

»

ˆi1 · · · ˆin≠2(flj
L÷LMTMJK) = ˆi1 · · · ˆin≠2(2fli

[Jˆifl
j
K]) (4.A.4)

As above.

• (l1, . . . , ln) = (l(1)1, . . . , l(1)n≠3, l(0)1, l(0)2, l(0)3)

µ1(µn(l(1)1, . . . , l(1)n≠3, l(0)1, l(0)2, l(0)3)) =

= (≠1)k+1µk+1(µn≠k(l(1)1, . . . , l(1)n≠k≠2, l(0)1, l(0)2), l(1)n≠k≠1, . . . , l(1)n≠3, l(0)3) ≠

≠ µk+1(µn≠k(l(1)1, . . . , l(1)n≠k≠1, l(0)1), l(1)n≠k, . . . , l(1)n≠3, l(0)2, l(0)3) ≠

≠ µk+1(µn≠k(l(1)1, . . . , l(1)n≠k≠3, l(0)1, l(0)2, l(0)3), l(1)n≠k≠2, . . . , l(1)n≠3) +

+ perm.+ · · ·

73



Chapter 4. Courant sigma model and LŒ-algebras

≠ li1(1)1 · · · l
in≠3
(1)n≠3ˆi1 · · · ˆin≠3ˆiTABCfli

J÷IJ lA(0)1l
B
(0)2l

C
(0)3 =

= · · ·+ lA(0)1l
B
(0)2l

C
(0)3 ·

· (≠li1(1)1 · · · l
in≠k≠1
(1)n≠k≠1ˆi1 · · · ˆin≠k≠1fl

i
Al

in≠k

(1)n≠k · · · l
in≠3
(1)n≠3ˆiˆin≠k

· · · ˆin≠3TJBC +

+ li1(1)1 · · · l
in≠k≠2
(1)n≠k≠2ˆi1 · · · ˆin≠k≠2TKAB÷KLl

in≠k≠1
(1)n≠k≠1 · · · l

in≠3
(1)n≠3ˆin≠k≠1 · · · ˆin≠3TJLC÷IJ+

+ li1(1)1 · · · l
in≠k≠3
(1)n≠k≠3ˆi1 · · · ˆin≠k≠3ˆiTABC l

in≠k≠2
(1)n≠k≠2 · · · l

in≠3
(1)n≠3ˆin≠k≠2 · · · ˆin≠3fl

i
J÷IJ) +

+ perm.+ · · ·

»

ˆi1 · · · ˆin≠3(fli
JˆiTABC ≠ 3fli

[AˆiTBC]J + 3TJK[A÷KLTBC]L) = 0 (4.A.5)

For reasons above, the graded Koszul sign induces the antisymmetrisation of
l(0)1, l(0)2, l(0)3.

• (l1, . . . , ln) = (l(1)1, . . . , l(1)n≠3, l(0)1, l(0)2, l(≠1))

0 = ≠µk+1(µn≠k(l(1)1, . . . , l(1)n≠k≠1, l(0)1), l(1)n≠k, . . . , l(1)n≠3, l(0)2, l(≠1)) +

+ (≠1)k+1µk+1(µn≠k(l(1)1, . . . , l(1)n≠k≠1, l(≠1)), l(1)n≠k, . . . , l(1)n≠3, l(0)1, l(0)2) +

+ (≠1)k+1µk+1(µn≠k(l(1)1, . . . , l(1)n≠k≠2, l(0)1, l(0)2), l(1)n≠k≠1, . . . , l(1)n≠3, l(≠1)) ≠

≠ µk+1(µn≠k(l(1)1, . . . , l(1)n≠k≠2, l(0)1, l(≠1)), l(1)n≠k≠1, . . . , l(1)n≠3, l(0)2) +

+ perm.+ · · ·

0 = · · ·+ lK(0)1l
L
(0)2l(≠1)j ·

· (≠li1(1)1 · · · l
in≠k≠1
(1)n≠k≠1ˆi1 · · · ˆin≠k≠1fl

k
K l

in≠k

(1)n≠k · · · l
in≠3
(1)n≠3ˆkˆin≠k

· · · ˆin≠3ˆifl
j
L +

+ li1(1)1 · · · l
in≠k≠1
(1)n≠k≠1ˆi1 · · · ˆin≠k≠1fl

j
I÷

IJ l
in≠k

(1)n≠k · · · l
in≠3
(1)n≠3ˆin≠k

· · · ˆin≠3ˆiTJKL +

+ li1(1)1 · · · l
in≠k≠2
(1)n≠k≠2ˆi1 · · · ˆin≠k≠2TJKL÷IJ l

in≠k≠1
(1)n≠k≠1 · · · l

in≠3
(1)n≠3ˆin≠k≠1 · · · ˆin≠3fl

j
I +

+ li1(1)1 · · · l
in≠k≠2
(1)n≠k≠2ˆi1 · · · ˆin≠k≠2ˆkfl

j
K l

in≠k≠1
(1)n≠k≠1 · · · l

in≠3
(1)n≠3ˆin≠k≠1 · · · ˆin≠3ˆifl

k
L) +

+ perm.+ · · ·

»

ˆi1 · · · ˆin≠3ˆi(flj
I÷

IJTJKL ≠ 2flk
[Kˆkfl

j
L]) = 0 (4.A.6)

As above.
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• (l1, . . . , ln) = (l(1)1, . . . , l(1)n≠4, l(0)1, l(0)2, l(0)3, l(0)4)

0 = · · ·+ µk+1(µn≠k(l(1)1, . . . , l(1)n≠k≠1, l(0)1), l(1)n≠k, . . . , l(1)n≠4, l(0)2, l(0)3, l(0)4) +

+ (≠1)k+1µk+1(µn≠k(l(1)1, . . . , l(1)n≠k≠2, l(0)1, l(0)2), l(1)n≠k≠1, . . . , l(1)n≠4, l(0)3, l(0)4) +

+ µk+1(µn≠k(l(1)1, . . . , l(1)n≠k≠3, l(0)1, l(0)2, l(0)3), l(1)n≠k≠2, . . . , l(1)n≠4, l(0)4) +

+ perm.+ · · ·

0 = · · ·+ lA(0)1l
B
(0)2l

C
(0)3l

D
(0)4 ·

· (li1(1)1 · · · l
in≠k≠1
(1)n≠k≠1ˆi1 · · · ˆin≠k≠1fl

i
Al

in≠k

(1)n≠k · · · l
in≠4
(1)n≠4ˆjˆin≠k

· · · ˆin≠4ˆiTBCD ≠

≠ li1(1)1 · · · l
in≠k≠2
(1)n≠k≠2ˆi1 · · · ˆin≠k≠2TJAB÷IJ l

in≠k≠1
(1)n≠k≠1 · · · l

in≠4
(1)n≠4ˆin≠k≠1 · · · ˆin≠4ˆiTICD ≠

≠ li1(1)1 · · · l
in≠k≠3
(1)n≠k≠3ˆi1 · · · ˆin≠k≠3ˆjTABC l

in≠k≠2
(1)n≠k≠2 · · · l

in≠4
(1)n≠4ˆin≠k≠2 · · · ˆin≠4ˆifl

j
D) +

+ perm.+ · · ·

»

ˆi1 · · · ˆin≠4ˆi(4flj
[AˆjTBCD] ≠ 3TJ [AB÷IJTCD]I) = 0 (4.A.7)

Equivalently as above the L-degree of l(0)i and the antisymmetry of T ensures the
total antisymmetry in indices A,B,C and D.

It is immediately obvious that relations (4.A.1) and (4.A.2) are equivalent, as are (4.A.3),
(4.A.4) and (4.A.6), and that (4.A.5) implies (4.A.7). Therefore, we have three unique
sets of conditions giving all terms in the Taylor expansions of the axioms of the Courant
algebroid by taking l(1)i = Xi:

÷IJfli
I(X)flj

J(X) = 0,

2flj
[I(X)ˆjfl

i
J ](X) ≠ fli

M(X)÷MLTLIJ(X) = 0,

3fli
[A(X)ˆiTBC]J(X) ≠ fli

J(X)ˆiTABC(X) ≠ 3TJK[A(X)÷KMTBC]M(X) = 0.
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4.B | BV/BRST action for Courant sigma model

For completeness we write explicitly the action and BRST transformations for all fields
in BV/BRST action for Courant sigma model.

SBV =
⁄

�3
FidX i + 1

2÷IJA
IdAJ ≠ fli

I(X)AIFi + 1
6TIJK(X)AIAJAK ≠

≠ ‘Ifli
I(X)X†

i +

+
1
d‘I + ÷IJfli

Jti + ÷IJTKLJ(X)AK‘L
2
A†

I +

+
1
dti ≠ tjˆifl

j
I(X)AI ≠ Fjˆifl

j
I(X)‘I + 1

2ˆiTIJK(X)AIAJ‘K
2
F †i +

+
1
≠dvi ≠ ˆifl

j
I(X)vjAI + ˆifl

j
I(X)tj‘I + 1

2ˆiTIJK(X)AI‘J‘K
2
t†i +

+
1
≠÷IJfli

J(X)vi + 1
2÷IJTJKL(X)‘K‘L

2
‘†I +

+
1
≠ˆifl

j
I(X)vj‘I + 1

6ˆiTIJK(X)‘I‘J‘K
2
v†i +

+
1
÷IJˆifl

j
J(X)vj ≠ 1

2÷IJˆiTJKL(X)‘K‘L
2
F †iA†

I +

+ 1
2

1
AIˆiˆjfl

k
I(X)vk ≠ tkˆiˆjfl

k
I(X)‘I ≠ 1

2A
IˆiˆjTIJK(X)‘J‘K

2
F †iF †j +

+
1
≠ˆiˆjfl

k
I(X)vk‘I + 1

6ˆiˆjTIJK(X)‘I‘J‘K
2
F †it†j +

+ 1
6

1
ˆiˆjˆkfl

l
I(X)vl‘I ≠ 1

6ˆiˆjˆkTIJK(X)‘I‘J‘K
2
F †iF †jF †k,

(4.B.1)

and generalised BRST transformations for each field and antifield:

QBVX
i = fli

I(X)‘I , (4.B.2)

QBVA
I = d‘I + ÷IJfli

J(X)ti + ÷IJTJKL(X)AK‘L +

+ F †i÷IJˆifl
j
J(X)vj ≠ 1

2F
†i÷IJˆiTJKL(X)‘K‘L,

(4.B.3)

QBVFi = dti ≠ ˆifl
j
J(X)tjAJ ≠ ˆifl

j
J(X)Fj‘

J + 1
2ˆiTIJK(X)AIAJ‘K ≠

≠ ÷IJˆifl
j
J(X)vjA†

I + 1
2÷IJˆiTJKL(X)A†

I‘
K‘L ≠ t†jˆiˆjfl

k
I(X)vk‘I +

+ 1
6t

†jˆiˆjTIJK(X)‘I‘J‘K ≠ F †jˆiˆjfl
k
I(X)vkAI + F †jˆiˆjfl

k
I(X)tk‘I +

+ 1
2F

†jˆiˆjTIJK(X)AI‘J‘K + 1
2F

†jF †kˆiˆjˆkfl
l
I(X)vl‘I ≠

≠ 1
12F

†jF †kˆiˆjˆkTIJK(X)‘I‘J‘K ,

(4.B.4)

QBV‘I = ÷IJfli
J(X)vi ≠ 1

2÷IJTJKL(X)‘K‘L, (4.B.5)

QBVti = ≠dvi ≠ ˆifl
j
J(X)vjAJ + ˆifl

j
J(X)tj‘J + 1

2ˆiTIJK(X)AI‘J‘K+

+ F †jˆiˆjfl
k
J(X)vk‘J ≠ 1

6F
†jˆiˆjTIJK(X)‘I‘J‘K ,

(4.B.6)

QBVvi = ≠ˆifl
j
J(X)vj‘J + 1

6ˆiTIJK(X)‘I‘J‘K , (4.B.7)
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QBVX
†
i = ≠dFi ≠ ˆifl

j
J(X)FjA

J + 1
6ˆiTIJK(X)AIAJAK +

+ ˆifl
j
J(X)X†

j ‘J ≠ ˆifl
j
J(X)vj‘†K÷JK + ˆifl

j
J(X)tj÷JKA†

K ≠

≠ ˆiTIJK(X)÷ILA†
LA

J‘K + 1
2ˆiTIJK(X)‘†L÷IL‘J‘K +

+ F †jˆiˆjfl
k
I(X)vk÷IJA†

J + F †jˆiˆjfl
k
I(X)tkAI + F †jˆiˆjfl

k
I(X)Fk‘

I ≠

≠ 1
2F

†jˆiˆjTIJK(X)AIAJ‘K ≠ 1
2F

†jˆiˆjTIJK(X)÷ILA†
L‘J‘K ≠

≠ t†jˆiˆjfl
k
I(X)vkAI + t†jˆiˆjfl

k
I(X)tk‘I + 1

2t
†jˆiˆjTIJK(X)AI‘J‘K +

+ v†jˆiˆjfl
k
I(X)vk‘I ≠ 1

6v
†jˆiˆjTIJK(X)‘I‘J‘K +

+ 1
2F

†jF †kˆiˆjˆkfl
l
I(X)vlAI ≠ 1

2F
†jF †kˆiˆjˆkfl

l
I(X)tl‘I ≠

≠ 1
4F

†jF †kˆiˆjˆkTIJK(X)AI‘J‘K + F †jt†kˆiˆjˆkfl
l
I(X)vl‘I ≠

≠ 1
6F

†jt†kˆiˆjˆkTIJK(X)‘I‘J‘K ≠ 1
6F

†jF †kF †lˆiˆjˆkˆlfl
m

I(X)vm‘I +

+ 1
36F

†jF †kF †lˆiˆjˆkˆlTIJK(X)‘I‘J‘K ,

(4.B.8)

QBVA
†
I = ÷IJ

1
≠dAJ + ÷JKfli

K(X)Fi ≠ 1
2÷JKTKLM(X)ALAM

2
≠

≠ F †iˆifl
j
I(X)tj ≠ F †iˆiTIJK(X)AJ‘K ≠ 1

2F
†iF †jˆiˆjfl

k
I(X)vk +

+ 1
4F

†iF †jˆiˆjTIJK(X)‘J‘K + t†iˆifl
j
I(X)vj ≠ 1

2t
†iˆiTIJK(X)‘J‘K ≠

≠ TIJK(X)÷JLA†
L‘K ,

(4.B.9)

QBVF
†i = ≠dX i + fli

I(X)AI ≠

≠ F †jˆjfl
i
I(X)‘I ,

(4.B.10)

QBV‘†I = dA†
I + fli

I(X)X†
i ≠ TIJK(X)÷JLA†

LA
K + TIJK(X)÷JL‘†L‘K +

+ F †iˆifl
j
I(X)Fj ≠ 1

2F
†iˆiTIJK(X)AJAK ≠ F †iˆiTIJK(X)÷JLA†

L‘K +

+ t†iˆifl
j
I(X)tj + t†iˆiTIJK(X)AJ‘K + 1

2F
†iF †jˆiˆjfl

k
I(X)tk ≠

≠ 1
2F

†iF †jˆiˆjTIJK(X)AJ‘K + F †it†jˆiˆjfl
k
I(X)vk ≠

≠ 1
2F

†it†jˆiˆjTIJK(X)‘J‘K ≠ 1
6F

†iF †jF †kˆiˆjˆkfl
l
I(X)vl+

+ 1
12F

†iF †jF †kˆiˆjˆkTIJK(X)‘J‘K + v†iˆifl
j
I(X)vj ≠

≠ 1
2v

†iˆiTIJK(X)‘J‘K ,

(4.B.11)

QBVt
†i = ≠dF †i + ÷IJfli

I(X)A†
J + t†jˆjfl

i
I(X)‘I + F †jˆjfl

i
I(X)AI ≠

≠ 1
2F

†jF †kˆjˆkfl
i
I(X)‘I ,

(4.B.12)

QBVv
†i = ≠dt†i + ÷IJfli

I(X)‘†J ≠ F †jˆjfl
i
I(X)÷IJA†

J + t†jˆjfl
i
I(X)AI ≠ v†iˆjfl

i
I(X)‘I ≠

≠ 1
2F

†jF †kˆjˆkfl
i
I(X)AI ≠ F †jt†kˆjˆkfl

i
I(X)‘I + 1

6F
†jF †kF †lˆjˆkˆlfl

i
I(X)‘I .
(4.B.13)

As was to be expected one may notice the classical part (first line in each expression)
of the BRST transformations of physical and ghost fields (4.B.2)–(4.B.7) corresponds to
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their gauge variations (4.1.14)–(4.1.16) and antifields (4.B.8)–(4.B.10) to their equations
of motion (4.1.11)–(4.1.13).

A careful reader might notice some signs di�ering here from the relations given in
section 2.1.3 (2.1.28)–(2.1.33). This is an artefact of the field definition and the two can
be brought to match by the field redefinitions t æ ≠t and F † æ ≠F †.

4.C | Homotopy identities of extended CA algebra

Homotopy relations (3.1.1) imply the possible choices for the higher products i.e.
restrict us in which can be set to vanish. In this section we will make the calculation for
ÂL1 = TM of which the restriction to TpM , as in section 4.3.1, is a special case. Therefore
we have the following for i = 1, 2, 3, 4 and i > 4.

• i = 1
There is only one non-trivial homotopy relation:

µ̃1µ̃1(f) = fl̃ ¶ D(f) = 0,

which is satisfied by the axioms of the Courant algebroid.

• i = 2
Of the four non-trivial relations, three will be modified by the existence of L1. Choices
(l1, l2) = (e, f), (h, f), (e1, e2) produce the following conditions respectively:

µ̃2(fl̃(e), f) = 0,

µ̃2(Df, h) = 0,

µ̃2(fl̃(e1), e2) ≠ µ̃2(fl̃(e2), e1) = [fl̃(e1), fl̃(e2)].

The first enables us to set µ̃2(h, f) = 0, whereas from the second and third relation
it is obvious µ̃2(h, e) cannot vanish and one can choose µ̃2(h, e)i = hj ˜̂

j fl̃(e)i.

• i = 3
In this case there are six combinations of elements that produce non-
trivial homotopy relations, of which five are modified by the extension:
(h, f1, f2), (h, e, f), (e1, e2, e3), (h1, h2, f) and (h, e1, e2). These combinations respec-
tively produce the constraints:

µ̃3(Df1, h, f2) + µ̃3(Df2, h, f1) = 0,

µ̃3(fl̃(e), h, f) + µ̃3(Df, h, f) = 0,
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µ̃3(fl̃(e1), e2, e3) + cyclic = 0,

fl̃(µ̃3(h1, h2, f)) + µ̃3(Df, h1, h2) = 0,

µ̃3(fl̃(e1), e2, h)i + hj fl̃(e1)k ˜̂j ˜̂kfl̃(e2)i ≠ e1 ¡ e2 = ≠fl̃(µ̃3(h, e1, e2))i.

The minimal extension implied by these constraints is to set all µ̃3 products involving
h to zero except µ̃3(h1, h2, e)i = hj

1h
k
2
˜̂
j
˜̂
kfl̃(e)i.

• i = 4
Degree counting tells us that for i > 4 there are always exactly 7
non-trivial homotopy conditions, additionally, all of them are modi-
fied by the extension and must be calculated. The combinations are:
(h1, h2, f1, f2), (h, e1, e1, f), (e1, e2, e3, e4), (h1, h2, e, f), (h, e1, e2, e3), (h1, h2, h3, f)
and (h1, h2, e1, e2). In order, each combination produces the following conditions:

µ̃4(Df1, h1, h2, f2) + µ̃4(Df2, h1, h2, f1) = 0,

µ̃4(fl̃(e1), h, e2, f) ≠ µ̃4(fl̃(e2), h, e1, f) ≠ µ̃4(Df, h, e1, e2) = 0,

µ̃4(fl̃(e[1), e2], e3, e4) + µ̃4(fl̃(e[3), e4], e1, e2) = 0,

Dµ̃4(h1, h2, e, f) ≠ µ̃4(fl̃(e), h1, h2, f) + µ̃4(Df, h1, h2, e) = 0,

µ̃4(fl̃(e1), e2, e3, h) + cyclic = Dµ̃4(e1, e2, e3, h),

fl̃(µ̃4(h1, h2, h3, f)) ≠ µ̃4(Df, h1, h2, h3) = 0,

µ̃4(fl̃(e1), e2, h1, h2)i + hj
1h

k
2fl̃(e2)l ˜̂j ˜̂k ˜̂lfl̃(e1)i ≠ e1 ¡ e2 = fl̃(µ̃4(e1, e2, h1, h2))i.

These constraints allow the minimal extension of non-vanishing products to be just
one: µ̃4(h1, h2, h3, e)i = hj

1h
k
2h

l
3
˜̂
j
˜̂
k
˜̂
lfl̃(e)i.

• i > 4
Since for i greater than four there are no new types of homotopy relations, since the
combinations of elements from i = 4 that produce non-trivial homotopy identities
all simply gain the appropriate number of h elements. Therefore, the structures of
the corresponding conditions placed upon µ̃i will be no di�erent from the case of
i = 4. For that reason we make the assumption that all higher products vanish
except µ̃i(h1, . . . , hi≠1, e) since it could not be made to vanish in lower cases. To be
consistent with our choice for µ̃4 we make the ansatz:

µ̃i(h1, . . . , hi≠1, e)j = hj1
1 · · ·hji

i≠1
˜̂
j1 · · · ˜̂ji fl̃(e)j.

The consequence of this assumption is that only two homotopy identities
will be non-trivial, those corresponding to combinations: (h1, . . . , hi≠1, f) and
(h1, . . . , hi≠2, e1, e2). The first is directly satisfied by the axioms of a Courant al-
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gebroid:
µ̃i(h1, . . . , hi≠1,Df) = 0.

The second is just the higher derivative analogue to the final condition in the i = 4
case:

0 = ≠µ̃2(µ̃i≠1(h1, . . . , hi≠2, e1), e2) + µ̃2(µ̃i≠1(h1, . . . , hi≠2, e2), e1) ≠

≠ · · · ≠

≠ µ̃n(µ̃i≠n+1(h1, . . . , hi≠n, e1), hi≠n+1, . . . , hi≠2, e2) ≠ perm.+

+ µ̃n(µ̃i≠n+1(h1, . . . , hi≠n, e2), hi≠n+1, . . . , hi≠2, e1) + perm. ≠

≠ · · · ≠

≠ µ̃i≠1(µ̃2(h1, e1), h2, . . . , hi≠2, e2) ≠ perm.+

+ µ̃i≠1(µ̃2(h1, e2), h2, . . . , hi≠2, e1) + perm.+

+ (≠1)iµ̃i≠1(µ̃2(e1, e2), h1, . . . , hi≠2) ≠

≠ µ̃i(µ̃1(e1), h1, . . . , hi≠2, e2) + µ̃i(µ̃1(e2), h1, . . . , hi≠2, e1),

which is directly satisfied by use of the ansatz and Leibniz rule of the di�erential
operator ˜̂

i1 · · · ˜̂in .
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CHAPTER 5

DFT ALGEBROID AND CURVED LŒ-ALGEBRAS

Chapter 2 introduced the appropriate geometric structure of double field theory: a
DFT algebroid. It was shown that there exists a more general structure (dubbed a pre-
DFT algebroid in [45]) that corresponds to the metric or Vaisman algebroid [85], of which
the DFT algebroid is a special case. On the other hand however, in Ref. [59] the authors
suggested that the relevant geometric structure is a pre-NQ manifold. This structure is
defined on non-negatively (N) graded manifolds with a degree 1 vector field (Q) which does
not square to zero, with the obstruction controlled by the strong constraint. The relevant
pre-NQ manifold was obtained as a half-dimensional submanifold from the Vinogradov
algebroid defined over a doubled space.

In this chapter based on [86] we shall analyse the structure of a DFT algebroid from a
di�erent perspective, giving its definition in terms of a curved LŒ-algebra [72, 73]. This
naturally extends the results of [59] and connects them to the results of [45] and chapter
2, and moreover, it implies that one should be able to formulate a DFT algebroid in terms
of a Q structure. This becomes especially important when constructing the corresponding
sigma-model. In section 5.1 we introduce curved LŒ-algebras in our convention and as a
motivating example we recall the Courant algebroid LŒ-algebra [52, 75]. Thereafter, in
sections 5.1.2 and 5.1.3 we construct the curved LŒ-algebra for a DFT algebroid on two
di�erent graded spaces underlying the LŒ-algebra. Section 5.2 is dedicated to the under-
standing of the strong constraint on the DFT algebroid as an LŒ-morphism. We begin
by recalling the definition of LŒ-morphisms and then explicitly construct the map from a
DFT algebroid to an (undoubled) Courant algebroid. The geometric structure studied is
extended to a sigma model field theory in section 5.3 where we give the explicit definition
of the corresponding Q-vector and gauge symmetries. Finally, appendices 5.A and5.B
provide completeness for longer calculations of sections 5.1.3 and 5.2.2, and appendix 5.C
proves the sigma model LŒ-algebra satisfies the homotopy relations.
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5.1 | LŒ-algebra for the DFT algebroid

Our aim in this section is to show that a DFT algebroid can be understood as a curved
LŒ-algebra. We shall start, however, with an introduction to curved LŒ-algebras.

5.1.1 | On curved LŒ-algebras

LŒ-algebras are generalizations of Lie algebras with infinitely-many higher brackets,
related to each other by higher homotopy versions of the Jacobi identity [72, 73] (3.1.1).
Thus far, however, we have ignored the extension stated in section 3.1.1, namely when i

is allowed to be zero. The question is what changes? Three aspects are modified by the
possibility of i = 0:

1. there is an additional map µ0;

2. there is an additional homotopy relation, the one corresponding to the choice i = 0:

µ1µ0 = 0;

3. every order of the homotopy relations obtains an extra term in the sum since j too
is now allowed to be 0 as is k:

· · ·+ (≠1)iµi+1(µ0, l1, . . . , li) = 0.

It is instructive to repeat the steps of section 3.1.1 and see how one must now interpret
the first three (i = 0, 1, 2) orders of the homotopy relations. The first is i = 0 as stated in
point 2, this relation can be understood as meaning µ0 is a constant with respect to map
µ1. Second we have i = 2 and:

µ1µ1(l) = µ2(µ0, l),

implying, in general (if the map on the lhs does not coincidentally vanish), µ1 is no longer a
di�erential. This also explains the nomenclature, as an analogy with di�erential geometry
can be made where covariant exterior derivatives square to the curvature of the bundle.
Finally, i = 2 is now modified to:

µ1(µ2(l1, l2)) ≠ µ2(µ1(l1), l2) + (≠1)|l1||l2|µ2(µ1(l2), l1) = ≠µ3(µ0, l1, l2),

breaking the Leibniz rule and therefore the interpretation of µ1 as a derivation.
As an LŒ-algebra is a generalisation of Lie algebras by controlling the closure of lower

brackets by higher ones and therefore modifying the bracket, in the same way the curving
of an LŒ-algebra can be seen as now modifying not the bracket but the di�erential.
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It is instructive to present an example: curved di�erential graded Lie algebras [87].
A curved di�erential graded Lie algebra (curved dgLa) is a triple (g, d, R) where g is a
graded Lie algebra, d is a derivation of degree 1, and R is a curvature element of degree
2 such that dR = 0 and d2x = [R, x] for all x œ g. In the LŒ framework we identify the
map µ0 with the constant curvature R, µ1 with the derivation d and µ2 with the graded
Lie bracket, satisfying the homotopy relations

µ1µ0 = 0,

µ1(µ1(l)) = µ2(µ0, l).

Notice that although µ1 or d is no longer a di�erential it still is a graded derivation as it
still satisfies the Leibniz identity. This is a special property of curved dgLas that happens
only because the 3-bracket µ3 vanishes making the i = 2 curved homotopy identity a
regular graded Leibniz rule for µ1.

5.1.2 | Curved LŒ-algebra for the DFT algebroid

The first proposal for an LŒ structure relevant for DFT was given in Ref. [59] based
on the graded geometry of a pre-NQ manifold. In that case, the homotopy relations of
the proposed LŒ-algebra were satisfied only up to the strong constraint. Here we wish
to extend this result by constructing proper, albeit curved, LŒ-algebra. We begin by
defining the relevant graded vector space:

L≠1 ü L0 ü L2
f œ CŒ(M) e œ �(L) µ0

where L2 is a 1-dimensional vector space spanned by the constant element µ0. In general,
there is no chain complex underlying the graded vector space of curved LŒ-algebras, thus
we use the ü symbol to define the space. The maps that do not involve space L2 are taken
in analogy with the Courant algebroid maps:

µ1(f) = Df,

µ2(e1, e2) = [[e1, e2]] , µ2(e, f) = Èe,DfÍ, (5.1.1)

µ3(e1, e2, e3) = N (e1, e2, e3).

The maps involving L2 are going to be constructed from the homotopy relations. Before we
begin with our construction, it is useful to see which homotopy relations will be non-trivial.
To this end we prove the following statement.

For every l1, l2 œ L such that µi(l1, l2, . . .) = 0, the homotopy Jacobi identities of (3.1.1)
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can be written in the following way:

ÿ

j+k=i

ÿ

‡Õ
‰(‡Õ; l1, . . . , li)(≠1)k

A

µk+1(µj(l1, l‡Õ(2), . . . , l‡Õ(j))l2, l‡Õ(j+2), . . . , l‡Õ(i)) +

+(≠1)1+l1l2+(l1≠l2)
qj

m=2 l‡Õ(m)µk+1(µj(l2, l‡Õ(2), . . . , l‡Õ(j))l1, l‡Õ(j+2), . . . , l‡Õ(i))
B

= 0.

(5.1.2)

The proof follows from the fact that since unshu�es are ordered and l1 and l2 must be
in di�erent products, all unshu�es will necessarily have l1 and l2 for the first and j + 1-st
element or vice versa. This implies we can split the homotopy relation into two sums,
those that have unshu�es that begin with l1 and those that begin with l2. Then it is
simply a matter of connecting the antisymmetric Koszul signs of these two unshu�es.

Additionally one can observe that in our case:

µi+1(µ0, µ0, . . .) = 0, ’i œ N, (5.1.3)

holds due to the graded antisymmetry of the maps and the fact that |µ0| = 2. Therefore,
all homotopy relations of two µ0 arguments must be trivial, which reduces the number of
identities to be calculated significantly.

We proceed by constructing the maps involving the space L2 from the homotopy
relations. The homotopy identity for i = 0 is trivial in our case, so we move on to i = 1:

µ1µ1(l) = µ2(µ0, l).

This contains one non-trivial identity:

µ2(µ0, e) = 0. (5.1.4)

For i = 2 the homotopy identity:

µ1(µ2(l1, l2)) ≠ µ2(µ1(l1), l2) ≠ (≠1)1+|l1||l2|µ2(µ1(l2), l1) = ≠µ3(µ0, l1, l2),

contains three non-trivial cases: (l1, l2) = {(µ0, f), (e, f), (f1, f2)}. The first produces the
condition:

µ2(Df, µ0) = 0,

which is automatically satisfied by (5.1.4). The second and third are simply the definitions
of higher brackets:

µ3(µ0, e, f) = [[e,Df ]] ≠ DÈe,DfÍ (5.1.5)

= ≠1
2fl≠1÷≠1(df)(fl(e)),
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µ3(µ0, f1, f2) = 2ÈDf1,Df2Í (5.1.6)

= 1
2÷≠1(df1, df2).

In the case of i = 3,

µ1(µ3(l1, l2, l3)) ≠ µ2(µ2(l1, l2), l3) + (≠1)|l2||l3|µ2(µ2(l1, l3), l2)≠

≠(≠1)|l1|(|l2|+|l3|)µ2(µ2(l2, l3), l1) + µ3(µ1(l1), l2, l3)≠

≠(≠1)|l1||l2|µ3(µ1(l2), l1, l3) + (≠1)|l3|(|l1|+|l2|)µ3(µ1(l3), l1, l2) = µ4(µ0, l1, l2, l3),

there are four di�erent identities to be satisfied: (l1, l2, l3) = {(µ0, e1, e2), (µ0, f1, f2),
(e1, e2, e3), (e1, e2, f)}. The first case is a consistency condition satisfied due to (5.1.4) once
one takes into account (5.1.3). For the next case, the identity is:

2DÈDf1,Df2Í = ≠µ3(µ0,Df1, f2) ≠ µ3(µ0,Df2, f1),

which is directly satisfied by use of (5.1.5). For choice (e1, e2, e3), the corresponding
homotopy identity is a definition:

DN (e1, e2, e3) ≠ Jac(e1, e2, e3) = µ4(µ0, e1, e2, e3),

or by use of (2.2.13):

µ4(µ0, e1, e2, e3) = ≠SCJac(e1, e2, e3). (5.1.7)

The last of the i = 3 expressions defines µ4(µ0, e1, e2, f):

µ4(µ0, e1, e2, f) = ≠È[[e1, e2]],DfÍ ≠ Èe2,DÈe1,DfÍÍ + Èe1,DÈe2,DfÍÍ +N (Df, e1, e2)

= 0, (5.1.8)

where the second equality holds by (2.2.12) and the first identity of Property 2.2.15.
Next is i = 4 with three non-trivial conditions: (l1, l2, l3, l4) =

{(µ0, e1, e2, f), (e1, e2, e3, e4), (µ0, e, f1, f2)}. The first case (µ0, e1, e2, f) with condi-
tion:

µ4(µ1(f), µ0, e1, e2) + µ4(µ2(e1, e2), µ0, f) ≠ µ3(µ2(e1, f), µ0, e2) +

+µ3(µ2(e2, f), µ0, e1) + µ2(µ3(µ0, e1, f), e2) ≠ µ2(µ3(µ0, e2, f), e1) = 0,

produces, after plugging in (5.1.1) and (5.1.5):

SCJac(e1, e2,Df) +DÈ[[e1, e2]],DfÍ + [[Df, [[e1, e2]]]] +
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+DÈe2,DÈe1,DfÍÍ ≠ DÈe1,DÈe2,DfÍÍ ≠ [[[[Df, e1]], e2]] + [[[[Df, e2]], e1]] = 0,

which vanishes by use of (2.2.13) and (5.1.8). The second identity in i = 4 is the definition:

N ([[e1, e2]], e3, e4) + ÈDN (e1, e2, e3), e4Í + antisymm.(1, 2, 3, 4) = ≠µ5(µ0, e1, e2, e3, e4).

Using the third identity of Property 2.2.15, this can be rewritten as:

µ5(µ0, e1, e2, e3, e4) = ≠1
2ÈSCJac(e1, e2, e3), e4Í + antisymm.(1, 2, 3, 4). (5.1.9)

The last identity of i = 4 is the compatibility:

µ3(µ2(e, f1), µ0, f2) + µ3(µ2(e, f2), µ0, f1) ≠ µ2(µ3(µ0, e, f1), f2) ≠

≠µ2(µ3(µ0, e, f2), f1) ≠ µ2(µ3(µ0, f1, f2), e) = 0.

This can easily be shown to hold using Property 2.2.15.
Moving on to i = 5 with two non-trivial identities for: (l1, l2, l3, l4, l5) =

{(µ0, e1, e2, e3, f), (µ0, e1, e2, e3, e4)}. The first is:

0 = 1
2ÈSCJac(e1, e2, e3),DfÍ + 2ÈDN (e1, e2, e3),DfÍ +

+
3

1
2ÈSCJac(e1, e2,Df), e3Í +N ([[e1,Df ]], e2, e3) ≠ N (DÈe1,DfÍ, e2, e3) + cyclic(1, 2, 3)

4
,

where by utilising properties (2.2.12), (2.2.13) and Property 2.2.15, one obtains:

1
6

3
ÈSCJac(e1, e2,Df), e3Í + SCfl(e2, e3)(fl(e1)f) + cyclic(1, 2, 3)

4
+

+1
2ÈSCJac(e1, e2, e3),DfÍ = 0.

This relation can be shown to be identically satisfied by direct calculation. The second
and last identity of i = 5, after plugging in all the appropriate definitions, states:

≠SCJac([[e1, e2]], e3, e4) ≠ [[e4,DN (e1, e2, e3)]] +DÈe4,DN (e1, e2, e3)Í +

+[[SCJac(e1, e2, e3), e4]] ≠ 1
2DÈSCJac(e1, e2, e3), e4Í + antisymm.(1, 2, 3, 4) = 0.

Properties (2.2.13) and the third identity of Property 2.2.15 produce:

[[Jac(e1, e2, e3), e4]] ≠ Jac([[e1, e2]], e3, e4) + antisymm.(1, 2, 3, 4) = 0,

that is satisfied by direct calculation.
Finally, i = 6 has only one non-trivial relation (l1, l2, l3, l4, l5, l6) = (µ0, e1, e2, e3, e4, e5)
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where, by the definitions given above, one obtains:

1
2ÈSCJac([[e1, e2]], e3, e4), e5Í ≠ N (SCJac(e1, e2, e3), e4, e5) ≠

≠1
2ÈDÈSCJac(e1, e2, e3), e4Í, e5Í + antisymm.(1, 2, 3, 4, 5) = 0.

A straightforward but lengthy and rather tedious direct calculation shows this holds.
All higher homotopy identities vanish and we summarise our findings in the following

table.

'

&

$

%

µ1(f) = Df

µ2(e1, e2) = [[e1, e2]]

µ2(e, f) = Èe,DfÍ

µ3(e1, e2, e3) = N (e1, e2, e3)

µ3(µ0, e, f) = [[e,Df ]] ≠ DÈe,DfÍ

µ3(µ0, f1, f2) = 2ÈDf1,Df2Í

µ4(µ0, e1, e2, e3) = DN (e1, e2, e3) ≠ Jac(e1, e2, e3)

µ5(µ0, e1, e2, e3, e4) = 1
2ÈDN (e1, e2, e3), e4Í ≠ 1

2ÈJac(e1, e2, e3), e4Í +

+ antisymm.(1, 2, 3, 4)

(5.1.10)

All non-zero maps that include the constant element µ0 of the space L2 are controlled
by the pairing on TM (2.2.8) and its inverse (2.2.10), as can be seen from (2.2.11) and
Property 2.2.15. Here we choose to represent the space L2 as the space spanned by the
constant symmetric bivector ÷≠1.

5.1.3 | Extending the curved LŒ-algebra for the DFT algebroid

A better understanding of the DFT algebroid that arises from the LŒ structure can
be obtained if we extend the underlying vector space by adding L1, containing sections of
TM. In that way, the anchor map is included in the LŒ maps, the choice of representation
of L2 as the space spanned by the constant symmetric bivector ÷≠1 is natural, and the
homotopy relations reproduce the defining properties of a DFT algebroid. Therefore, we
shall start with the following graded vector space:

L≠1 ü L0 ü L1 ü L2
f œ CŒ(M) e œ �(L) h œ X(M) µ0

the boxed maps (5.1.10) and

µi+1(h1, . . . , hi, e) = hA1
1 · · ·hAi

i ˆA1 · · · ˆAifl(e)BˆB, i > 0, (5.1.11)
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a choice based on the analogous relation for Courant algebroids. Additional maps are
constructed from the homotopy identities as follows.

As in the previous subsection we begin our construction with the i = 1 homotopy
identity since the i = 0 case is trivial. This case has two non-trivial possibilities l = f and
l = e. The first produces:1

µ2(µ0, f) = µ1(µ1(f)) = fl ¶ Df = 1
2÷ABˆBfˆA, (5.1.12)

whereas the second:
µ1fl(e) = µ2(µ0, e) œ L2,

must be trivial since L2 is by construction spanned by the constant element µ0 and cannot,
therefore, non-trivially depend on an arbitrary section e of L. Thus the following must
hold:

µ1(h) = 0 and µ2(µ0, e) = 0. (5.1.13)

The same reasoning implies that all homotopy identities in the space L2 must be trivially
satisfied:

µi(h1, . . . , hi) = 0,

µi+2(h1, . . . , hi, µ0, e) = 0.
(5.1.14)

Using (5.1.2) one can show that in general we can have at most 15 non-trivial identities
for each i.

Moving on to i = 2, we find 4 non-trivial identities, however, only three of these
are di�erent from the L1 = ? case above: (l1, l2) = {(e, f), (e1, e2), (h, f)}. These give,
respectively:

µ2(fl(e), f) = 0,

fl[[e1, e2]] ≠ [fl(e1), fl(e2)] = ≠µ3(µ0, e1, e2),

flµ2(h, f) + 1
2÷BChAˆAˆCfˆB = ≠µ3(µ0, h, f),

that result in:

µ2(h, f) = 0,

µ3(µ0, e1, e2) = SCfl(e1, e2),

µ3(µ0, h, f) = ≠1
2÷BChAˆAˆCfˆB.

(5.1.15)

Continuing to the i = 3 case, one has 8 non-trivial identities, of these only 5 are new
in comparison to the previous subsection. They are: (l1, l2, l3) = {(h, f1, f2), (h, e, f),

1It is interesting to note that, since there is an L1 space in this extension, one can explicitly see the
curving of our “di�erential” µ1 on functions.
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(h1, h2, f), (e1, e2, h), (µ0, e, f)} with the corresponding homotopy expressions:

µ4(µ0, h, f1, f2) = 0,

µ4(µ0, h, e, f) = 0,

µ3(Df, h1, h2) = µ4(µ0, h1, h2, f),

µ2(h, [[e1, e2]]) + µ2(µ2(e1, h), e2) + µ3(fl(e1), e2, h) ≠ e1 ¡ e2 = µ4(µ0, e1, e2, h),

fl[[e,Df ]] ≠ i÷≠1dÈe,DfÍ + 1
2µ2(idf÷≠1, e) ≠

≠µ2(Èe,DfÍ, µ0) ≠ µ3(fl(e), µ0, f) + µ3(Df, µ0, e) = 0.

The first four are definitions of higher maps:

µ4(µ0, h1, h2, f) = 1
2÷BChA1

1 hA2
2 ˆA1ˆA2ˆCfˆB,

µ4(µ0, e1, e2, h) = ≠hAˆASCfl(e1, e2)BˆB,
(5.1.16)

whereas the last is a condition satisfied by use of (2.2.12), and the maps defined thus far.
Definitions (5.1.15) and (5.1.16) suggest, in the spirit of (5.1.11), the following Ansatz for
the non-vanishing maps:

µi+2(h1, . . . , hi, µ0, f) = 1
2÷BChA1

1 · · ·hAi
i ˆA1 · · · ˆAiˆCfˆB,

µi+3(h1, . . . , hi, µ0, e1, e2) = hA1
1 · · ·hAi

i ˆA1 · · · ˆAiSCfl(e1, e2)BˆB.
(5.1.17)

Using this Ansatz one can show that all higher identities, which are infinite in number, are
satisfied, see appendix 5.A. We collect the maps for the extended LŒ-algebra corresponding
to a DFT algebroid in the following list (where i > 0).

µ1(f) = Df

µ2(e1, e2) = [[e1, e2]]

µ2(e, f) = Èe,DfÍ

µ3(e1, e2, e3) = N (e1, e2, e3)

µ3(µ0, e, f) = [[e,Df ]] ≠ DÈe,DfÍ

µ3(µ0, f1, f2) = 2ÈDf1,Df2Í

µ4(µ0, e1, e2, e3) = DN (e1, e2, e3) ≠ Jac(e1, e2, e3)

µ5(µ0, e1, e2, e3, e4) = 1
2ÈDN (e1, e2, e3), e4Í ≠ 1

2ÈJac(e1, e2, e3), e4Í +

+ antisymm.(1, 2, 3, 4)

µi+1(h1, . . . , hi, e) = hA1
1 · · ·hAi

i ˆA1 · · · ˆAifl(e)BˆB

µi+2(h1, . . . , hi, µ0, f) = 1
2÷BChA1

1 · · ·hAi
i ˆA1 · · · ˆAiˆCfˆB

µi+3(h1, . . . , hi, µ0, e1, e2) = hA1
1 · · ·hAi

i ˆA1 · · · ˆAiSCfl(e1, e2)BˆB

(5.1.18)
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The homotopy relations reproduce the defining properties of a DFT algebroid as discussed
in Sect. 2.2.1: �

⇢

⇠

⇡

(fl ¶ D)f = 1
2÷≠1(df)

fl[[e1, e2]]C ≠ [fl(e1), fl(e2)] = ≠SCfl(e1, e2)

Jac(e1, e2, e3) ≠ DN (e1, e2, e3) = SCJac(e1, e2, e3)

(5.1.19)

and their higher derivatives.

5.2 | LŒ-morphism as the strong constraint

In order to complete the description of a DFT algebroid in terms of an LŒ-algebra,
we would also like to include the strong constraint in this framework. Since we know that
on the solution of the strong constraint the C-bracket of double field theory reduces to
the Courant bracket, we are looking for a relation between the LŒ-algebra for a DFT
algebroid and the one for a Courant algebroid. The natural relation between LŒ-algebras
is an LŒ-algebra morphism or LŒ-morphism for short. In the following, we explicitly
construct an LŒ-morphism from DFT to a Courant algebroid implementing the strong
constraint.

5.2.1 | On curved LŒ-morphisms

Before we start with the construction of mappings, we first recall the definition of
an LŒ-morphism (3.1.5) as this can be curved too. Similarly to the expression for the
homotopy relations, the condition of an LŒ-morphism from (L, µi) to (LÕ, µÕ

i) is actually a
possibly infinite series of relations, one for each i œ N0.2 Here we explicitly state the first
three:

• i = 0

„1(µ0) = µÕ
0 + µÕ

1(„0) + 1
2!µ

Õ
2(„0,„0) + · · ·

• i = 1

„1(µ1(l)) ≠ „2(µ0, l) = µÕ
1(„1(l)) + µÕ

2(„0,„1(l)) + 1
2!µ

Õ
3(„0,„0,„1(l)) + · · ·

2In this instance LÕ does not denote the space of LŒ valued de Rham forms but simply the target
algebra. This is done to avoid using the tilde notation of the previous chapter in the hopes of not confusing
the reader with regards to the splitting of coordinates with the duals being denoted by tilde.
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• i = 2

„3(µ0, l1, l2) ≠ „2(µ1(l1), l2) + (≠1)l1l2„2(µ1(l2), l1) + „1(µ2(l1, l2)) =

= µÕ
1(„2(l1, l2)) + µÕ

2(„0,„2(l1, l2)) + 1
2!µ

Õ
3(„0,„0,„2(l1, l2)) + · · ·+

+ µÕ
2(„1(l1),„1(l2)) + µÕ

3(„0,„1(l1),„1(l2)) + 1
2!µ

Õ
4(„0,„0,„1(l1),„1(l2)) + · · ·

In the case of non-vanishing „0 this is called a curved LŒ-morphism and the zeroth relation
implies „0 is a Maurer-Cartan element if µ0 = 0. Therefore if one is mapping a flat algebra
to a curved one this can always be undone by a di�erential redefinition in the sense of
section 3.1.1. However as we are going the other way this will not be of significance to the
following calculation.

5.2.2 | From a DFT algebroid to a Courant algebroid

To set the stage, we begin with L, a DFT algebroid over a doubled space M, and
LÕ, a Courant algebroid over M , where M is a subspace of M and dimM = dimM/2.
Then introduce a mapping „ : L æ LÕ that projects the DFT algebroid to the Courant
algebroid:3

DFT : L≠1 = CŒ(M) ü L0 = �(L) ü L2
„ ¿ „1 ¿ „1 ¿ „1 ¿

CA : LÕ
≠1 = CŒ(M) ü LÕ

0 = �(E) ü ?.

This basically means that if we pick a coordinate chart on M, xA = (xa, x̃a), such that
the coordinates xa correspond to coordinates of the manifold M and M is then implicitly
defined by x̃a = const., all functions f(xA) on M upon restriction only depend on half the
coordinates, namely f(xa, x̃a = const.). However, the fibre structure remains unchanged.
To verify that such a mapping is indeed an LŒ-morphism one must check that it satisfies
the conditions (3.1.5). We begin with i = 0 that implies only „1(µ0) = 0 as a Courant
algebroid does not include spaces LÕ

1 nor LÕ
2. Therefore „0 = 0 and we are dealing with

flat LŒ-morphism. For the case of i = 1 we make the following choice:

„1(f) = 1
2f

---
M
, (5.2.1)

„1(e) = e
---
M
, (5.2.2)

3In this section the Courant algebroid anchor and di�erential will be denoted a and D respectively to
di�erentiate them from their DFT counterparts.
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where e
---
M

means the component function is restricted and the section exists only over M .
This case has only one non-trivial identity, the one corresponding to l = f :

„1(µ1(f)) ≠ „2(µ0, f) = µÕ
1(„1(f)).

By plugging in the products from 5.1.2 and Example 3.3, this becomes:

„1(Df) ≠ „2(µ0, f) = D„1(f).

In (x, x̃) coordinates the DFT anchor splits into two: flA
I = (fla

I , fl̃aI), the first is the one
we relate to the anchor aaI of a Courant algebroid. This choice is consistent since for a
DFT algebroid we have:

fla
I ÷̂

IJflb
J = 0,

according to axiom 1 of definition 2.2.7 (see also (2.2.16)), meaning fla
I satisfies the first

identity in (4.3.5). Therefore, the DFT derivative splits into two: D = 1
2D+ 1

2D̃,4 the first
of which we associate with the Courant algebroid di�erential as its image is in the kernel
of a. By using (5.2.1) and the fact that (ˆaf)

---
M

= ˆa(f
---
M
) and ( ˜̂af)

---
M

”= ˜̂a(f
---
M
), one

obtains:
„2(µ0, f) = 1

2(D̃f)
---
M
. (5.2.3)

The case of i = 2 has two non-trivial possibilities: (l1, l2) = {(f, e), (e1, e2)}. To keep
calculations as simple as possible we shall make the Ansatz that all components „i for
i > 1 not including µ0 vanish. The first produces:

„3(µ0, f, e) ≠ „1(Èe,DfÍ) = ≠È„1(e), D„1(f)ÍC ,

that reduces to the definition:

„3(µ0, f, e) = 1
4Èe, D̃fÍ

---
M
. (5.2.4)

The second identity is (again, after the choice of „2(e1, e2) = 0):

„3(µ0, e1, e2) + „1([[e1, e2]]) = [„1(e1),„1(e2)]C .

Here we shall make the identification of T̂ of DFT with the twist of the Courant algebroid,
therefore trivially one has:

„3(µ0, e1, e2) = [e1, e2]C
---
M

≠ [[e1, e2]]
---
M
. (5.2.5)

4The factor of 1/2 stems from the di�erent definitions of the derivative and pairing in DFT and in a
Courant algebroid. Whereas in DFT the derivative carries the factor, in a Courant algebroid the pairing
does instead.
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In the case of i = 3 we have three possibilities: (l1, l2, l3) = {(e1, e2, e3), (µ0, f, e),
(µ0, f1, f2)}, the first being a definition as before and the other two being consistency
checks. The first produces the definition of „4(µ0, e1, e2, e3):

„4(µ0, e1, e2, e3) =
1
1
2N (e1, e2, e3) ≠ Nc(e1, e2, e3)

2---
M
, (5.2.6)

The next case is the following consistency condition:

≠„3(Df, µ0, e) + „2(Èe,DfÍ, µ0) ≠ „1([[e,Df ]] ≠ DÈe,DfÍ) =

= D„3(µ0, f, e) ≠ [„1(e),„2(µ0, f)]C ,

which, by use of (5.2.4) and (5.2.5), transforms into:

DÈe,DfÍC ≠ [e,Df ]C = 0.

This is valid by the first relation of Property 2.1.7 as all present structures correspond to
a Courant algebroid. The third non-vanishing condition gives:

„3(µ0,Df1, f2) + „3(µ0,Df2, f1) + „1(2ÈDf1,Df2Í) =

= È„2(µ0, f2), D„1(f1)ÍC + È„2(µ0, f1), D„1(f2)ÍC ,

that vanishes by virtue of ÈDf1, Df2ÍC = 0.
For i = 4 there are two non-trivial possibilities for the selection of elements:

(l1, l2, l3, l4) = {(µ0, e1, e2, e3), (µ0, e1, e2, f)}, both producing compatibility conditions. The
former combination yields condition:

„3([[e1, e2]], µ0, e3) + cyclic(1,2,3)+ „2(N (e1, e2, e3), µ0) ≠ „1(SCJac(e1, e2, e3)) =

= D„4(µ0, e1, e2, e3) ≠ ([„1(e1),„3(µ0, e2, e3)]C + cyclic(1,2,3)),

that is satisfied by use of (2.2.13) and the third relation in (4.3.5). The condition corre-
sponding to the latter selection of elements is:

„3(Èe2,DfÍ, µ0, e1) ≠ e1 ¡ e2 + „3([[e1, e2]], µ0, f) + „4(Df, µ0, e1, e2) =

= È„1(e2), D„3(µ0, e1, f)ÍC ≠ e1 ¡ e2 +

+ È„3(µ0, e1, e2), D„1(f)ÍC +Nc(„1(e1),„1(e2),„2(µ0, f)),

reducing to:
2Nc(Df, e1, e2)

---
M

= È[e1, e2]C , DfÍC
---
M
,

satisfied by the second identity of Property 2.1.7.
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Finally, i = 5 has only one condition to consider, (l1, l2, l3, l4, l5) = (µ0, e1, e2, e3, e4):

„4(µ0, [[e1, e2]], e3, e4) + „3(µ0,N (e1, e2, e3), e4) + „1(ÈSCJac(e1, e2, e3), e4Í+) +

+ antisymm.(1,2,3,4) =

= È„1(e1), D„4(µ0, e2, e3, e4)ÍC +Nc(„1(e1),„1(e2),„3(µ0, e3, e4)) + antisymm.(1,2,3,4),

satisfied by the last identity of Property 2.2.15 and last identity of Property 2.1.7. To
summarise we present all non-vanishing morphism components in the following table.

'

&

$

%

„1(f) = 1
2f

---
M

„1(e) = e
---
M

„2(µ0, f) = 1
2(D̃f)

---
M

„3(µ0, f, e) = 1
4Èe, D̃fÍ

---
M

„3(µ0, e1, e2) = [e1, e2]C
---
M

≠ [[e1, e2]]
---
M

„4(µ0, e1, e2, e3) =
1
1
2N (e1, e2, e3) ≠ Nc(e1, e2, e3)

2---
M

We finish this section by presenting a minimal extension of the morphism above in
order to encompass the algebras of subsection 5.1.3 and the extended Courant algebroid
LŒ-algebra of sec. 4.3.1. To accomplish this we must make certain assumptions about
this morphism. Our choice is the following:

• „1 morphism components are:

„1 :

Y
____]

____[

CŒ(M) æ CŒ(M), f ‘æ 1
2f

---
M

�(L) æ �(E), e ‘æ e
---
M

X(M) æ X(M), hAˆA ‘æ ha
---
M

ˆa

,

• all morphism components constructed above remain unchanged,

• the only non-vanishing „i without µ0 as an argument are „1,

• the morphism is “flat” i.e. „0 = 0.

Details of the calculation of the morphism conditions can be found in appendix 5.B. Here
we simply state the maps that constitute an LŒ-morphism from a DFT algebroid to a
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Courant algebroid (both viewed as LŒ-algebras) in the following boxed set of expressions.
'

&

$

%

„1(f) = 1
2f

---
M

„1(e) = e
---
M

„2(µ0, f) = 1
2(D̃f)

---
M

„3(µ0, f, e) = 1
4Èe, D̃fÍ

---
M

„3(µ0, e1, e2) = [e1, e2]C
---
M

≠ [[e1, e2]]
---
M

„4(µ0, e1, e2, e3) =
1
1
2N (e1, e2, e3) ≠ Nc(e1, e2, e3)

2---
M

„1(h) = ha
---
M

ˆa

„i+2(h1, . . . , hi, µ0, e) =
1
hA1
1 · · ·hAi

i ˆA1 · · · ˆAifl(e)b ≠ ha1
1 · · ·hai

i ˆa1 · · · ˆaia(e)b
2---

M
ˆb

5.3 | DFT sigma model as a Maurer-Cartan homotopy theory

As we have extensively studied the LŒ properties of the DFT algebroid in the previous
sections, the time has come to apply this structure to construct the corresponding sigma
model in a similar way to chapter 4. This way we shall be able to better understand
the structure obtained in chapter 2. Additionally through this process we will be able to
obtain the exact expression for the cohomological Q-vector of DFT, the existence of which
is implied by the consistency of the DFT LŒ-algebras (5.1.10) and (5.1.18). This section
follows [88].

5.3.1 | Field theory symmetry algebra

Chapter 4 has taught us when regarding sigma model algebras from their corresponding
algebroids one needs to start from the extended version (the one including the degree 1
homogeneous subspace) in order to be able to capture the full field content. Thus, we start
from algebra (5.1.18). The second modification that must be done is to promote space L≠1

from functions to target space 1-forms by incorporating the target de Rham di�erential
appearing in the maps into the definition of the elements of L≠1. Due to this change some
maps become trivial, however this also implies maps that coincidentally vanished when L≠1

was a space of functions may not vanish now. Most maps will be nothing more than the
maps (5.1.18) applied to the basis elements and pulled back by the sigma model-defining
map X as in the case of the Courant sigma model. And finally, all maps must be expanded
as we want to obtain the perturbative expansion of the interaction. In order to define this
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new algebra we must first define space L as:

L≠1 ü L0 ü L1 ü L2

where L≠1 = �(XúT úM), L0 = �(XúE), L1 = {XA © XúxA} and L2, again, is the space
of the curvature element µ0. The non-vanishing maps are given by:5

µi+1(l(1)1, . . . , l(1)i, l(0)) = lA1
(1)1 · · · l

Ai
(1)iˆA1 · · · ˆAifl

A
I l

I
(0)

µi+1(l(1)1, . . . , l(1)i, l(≠1)) = ÷̂IJ lA1
(1)1 · · · l

Ai
(1)iˆA1 · · · ˆAifl

A
I l(≠1)A

µi+2(l(1)1, . . . , l(1)i, l(0)1, l(0)2) = ÷̂IJ lA1
(1)1 · · · l

Ai
(1)iˆA1 · · · ˆAiTJKLl

K
(0)1l

L
(0)2

µi+2(l(1)1, . . . , l(1)i, l(0), l(≠1)) = lA1
(1)1 · · · l

Ai
(1)iˆA1 · · · ˆAiˆAflB

J l
J
(0)l(≠1)B

µi+3(l(1)1, . . . , l(1)i, l(0)1, l(0)2, l(0)3) = ≠lA1
(1)1 · · · l

Ai
(1)iˆA1 · · · ˆAiˆATIJK l

I
(0)1l

J
(0)2l

K
(0)3

µ0 = ÷≠1

µ2(µ0, l(≠1)) = ÷ABl(≠1)B

µi+3(l(1)1, . . . , l(1)i, µ0, l(0), l(≠1)) = ≠÷AB ÷̂IJ lA1
(1)1 · · · l

Ai
(1)iˆA1 · · · ˆAi�̄BJK l

K
(0)l(≠1)A

µi+4(l(1)1, . . . , l(1)i, µ0, l(0)1, l(0)2, l(≠1)) = ÷BC lA1
(1)1 · · · l

Ai
(1)iˆA1 · · · ˆAiˆA�̄CIJ l

I
(0)1l

J
(0)2l(≠1)B

µi+3(l(1)1, . . . , l(1)i, µ0, l(0)1, l(0)2) = ÷ABlA1
(1)1 · · · l

Ai
(1)iˆA1 · · · ˆAi�̄BIJ l

I
(0)1l

J
(0)2

µi+4(l(1)1, . . . , l(1)i, µ0, l(0)1, l(0)2, l(0)3) = ÷̂IJ lA1
(1)1 · · · l

Ai
(1)iˆA1 · · · ˆAiZJKLM lK(0)1l

L
(0)2l

M
(0)3

µi+5(l(1)1, . . . , l(1)i, µ0, l(0)1, l(0)2, l(0)3, l(0)4) = lA1
(1)1 · · · l

Ai
(1)iˆA1 · · · ˆAiˆAZIJKLl

I
(0)1l

J
(0)2l

K
(0)3l

L
(0)4

(5.3.1)

with �̄AIJ © ÷BCflC
[IˆAflB

J ] (a rescaling of (2.2.48)) and ZIJKL ©
3÷AD÷BC÷EFflA

[IˆFflD
JflB

KˆEflC
L] (expression (2.2.20) satisfying (2.2.19)). This is

a new algebra only implied from the algebraic symmetry algebra, therefore, one must
check it indeed satisfies the homotopy relations (3.1.1). We delegate this to appendix 5.C
and turn our attention to the corresponding cohomological vector structure Q. In general,
one constructs a Q-vector from the algebra formulation of an LŒ-algebra by applying the
following three steps.

1. Using the shift isomorphism (3.1.6) one calculates the codi�erential components
from (3.1.7):

Di(sl1, . . . , sli) = (≠1)
1
2 i(i≠1)+

qi

j=1 |lj |(i≠j)sµi(l1, . . . , li).

2. These codi�erential components acting on the basis {·–} of L define the structure
5The notation here is, again, as in chapter 4 such that we do not write the evaluation of expanded

functions at X = 0 explicitly and denote a generic element l(i) œ Li.
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constants C–
—1···—i

of LŒ-algebra (L, µ):

C–
—1···—i

·– © Di(s·—1 , . . . , s·—i).

3. The Q-vector is the Chevalley-Eilenberg (CE) di�erential on CŒ(L[1]) that can
always be locally identified with a cohomological vector field Q on a graded manifold
N given by:

Q =
Œÿ

i=0

1
i!C

–
—1···—i

›—1 · · · ›—i
ˆ

ˆ›–
(5.3.2)

where › are the coordinate functions of L[1] if viewed as a CE algebra or, locally, the
graded coordinates on N .

Applying the three steps above to (5.3.1) and resumming the expansion produces for the
cohomological vector field:

Q = ÷AB ˆ

ˆ⌘AB
+

1
flA

I(X)AI ≠ ⌘ABFB ≠ 1
2flB[I(X)ˆDflB

J ](X)⌘ADAIAJ
2 ˆ

ˆXA
+

+
3

÷̂IMflA
I(X)FA ≠ 1

2 ÷̂IMTIJK(X)AJAK + 1
2⌘

AB ÷̂IMflC[I(X)ˆBflC
J ](X)AJFA +

+ 1
3!⌘

ABZ̄ABLIJK(X)÷̂LMAIAJAK
4

ˆ

ˆAM
+

+
3

≠ ˆEflB
J(X)AJFB + 1

2⌘
ADˆE

1
flC[K(X)ˆDflC

L](X)
2
AKALFA ≠

≠ 1
3!ˆETIJK(X)AIAJAK + 1

4!⌘
ABˆEZ̄ABIJKL(X)AIAJAKAL

4
ˆ

ˆFE
,

where we have contracted the ÷ with lower indices and factored out ÷AB from Z by defining
Z̄ABIJKL © 3flD[IˆAflD

JflC
KˆBflCL] in order to clarify the degrees of objects. Observe that

all terms have the required degree 1 since the coordinates (or coordinate functions) are,
after the shift isomorphism, of degrees (⌘, X,A, F ) = (≠1, 0, 1, 2) (coordinate functions
are oppositely graded to vectors).6 Additionally it is important to notice that in the first
term ÷ is a (degree zero) structure constant since this term stems from the zero product
that does not take any arguments, whereas ⌘ is the dual to the (shifted) L2 basis of degree
≠1. One should not be worried here that the algebra used is defined on the pullback
spaces since for the purposes of this discussion it could have been defined directly on
the target manifold with no modifications other than the understanding of the slightly
di�erent nature of coordinates (⌘, X,A, F ). The existence of such a vector field implies
the claim that a DFT algebroid is (at least locally) a Q-manifold. The caveat of locality
arises due to the correspondence of Q-manifolds globally with LŒ-algebroids that are
locally LŒ-algebras. Therefore, since we have only regarded LŒ-algebras we cannot claim

6In a slight abuse of notation we denote the coordinates (or coordinate functions) X, A, F the same
as the appropriate components of field a and the degree 2 equation of motion after tensoring with the de
Rham complex.
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a Q-manifold structure globally.

5.3.2 | Classical DFT sigma model

Having understood the symmetry algebra structure of the sigma model corresponding
to the DFT algebroid we move now to the classical field theory level by tensoring with
the de Rham complex.

A trivial extension. Before constructing the MC field theory we make a trivial ex-
tension to the algebra (5.3.1) by adding an additional homogeneous subspace to L:
L≠2 © �(k2 T úM), such that all maps µ act trivially on it i.e.:

µi(G, . . .) = 0, ’G œ L≠2.,

meaning no new homotopy relations arise from this extension. Therefore, L can be
decomposed into the following homogeneous subspaces:

L≠2 ü L≠1 ü L0 ü L1 ü L2. (5.3.3)

This is done so as to be able to write the sigma model with an action functional, in other
words to be able to make the algebra cyclic. In addition to the pairings defined in (4.1.9)
(up to the transformation of i, . . . indices into A, . . .) we define the pairing between the
L≠2 and L2 spaces as:

Èl(≠2), l(2)Í = l(≠2)ABl
AB
(2) .

Tensor product with the de Rham complex. The full information of a field theory
built upon an LŒ-algebra is obtained by combining the kinematical part with the algebraic.
In this theory it comes from the de Rham chain on the worldvolume:

�0(�3) æ �1(�3) æ �2(�3) æ �3(�3).

When taking the tensor product of algebra (L, µ) defined by spaces (5.3.3) and maps (5.3.1)
with this complex one obtains the following fields (LÕ degree 1 elements), gauge parameters
(degree 0 elements) and higher gauge parameters (degree < 0 elements):

a = X + A+ F +G œ �0(�3, L1) ü �1(�3, L0) ü �2(�3, L≠1) ü �3(�3, L≠2),

c0 = ‘ + t+ r œ �0(�3, L0) ü �1(�3, L≠1) ü �2(�3, L≠2),

c≠1 = v + u œ �0(�3, L≠1) ü �1(�3, L≠2)

c≠2 = s œ �0(�3, L≠2.)
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Graphically this is shown in Table 5.1 and means that in addition to ghosts ‘ and t,
and ghost-for-ghost v appearing also in the Courant sigma model we now have a new
tower of ghosts corresponding to subspace L≠2 consisting of: a 2-form ghost r, 1-form
ghost-for-ghost u and scalar ghost-for-ghost-for-ghost s. An important aspect to consider
is that ÷ from the space L2 does not end up as a field since its tensor product can not have
degree lower than 2. Thus, ÷ becomes an equation of motion as we shall see immediately
by solving the Maurer-Cartan equation.

�• L≠2 L≠1 L0 L1

0 s v ‘ X

1 u t A

2 r F

3 G

gh
c≠2

=
3

|c≠2
| LÕ

=
≠2

gh
c≠1

=
2

|c≠1| L
Õ
=

≠1

gh
c0
=
1

|c0
| LÕ

=
0

gh
a
=
0

|a| L
Õ
=
1

Table 5.1

Degrees of fields in the LŒ DFT sigma model.

Equations of motion. As seen in section 3.2.1 the equations of motion (eoms) corre-
spond to the MC equation (3.2.1), however, as we are now working with a curved algebra
it too must be extended by allowing i to start from zero:

f © µÕ
0 + µÕ

1(a) +
1
2µ

Õ
2(a, a) + · · · =

ÿ

i>0

1
i!µ

Õ
i(a, . . . , a). (5.3.4)

By plugging in field a, separating by L degree and resumming the expansion one obtains
four equations of motion:

f≠1 = dFA + ˆAflB
J(X)AJFB + 1

3!ˆATIJK(X)AIAJAK ,

f0 = dAI + ÷̂IJflA
J(X)FA + 1

2 ÷̂IJTJKL(X)AKAL,

f1 = dXA ≠ flA
J(X)AJ ,

f2 = ÷≠1,

making the strong constraint an on-shell requirement. There is a subtlety that must
be explained here. Thus far, the strong constraint has been understood to mean the
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restriction of the doubled base space spanned by {XA} through the relation (2.2.5) or by
the introduction of the bivector ÷≠1:

÷≠1(df, dg) = 0, f, g œ CŒ(M).

However, this requirement can be restated by transferring the restriction from the functions
f and g i.e. the space M to the operator ÷≠1 itself (as discussed in [61]). This is precisely
what has happened here, the equation of motion has restricted the operator in such a way
that the strong constraint is satisfied.

Gauge transformations. It was shown in sec. 3.2.1 that a homotopy Maurer-Cartan
theory comes with a built-in gauge symmetry given by the relations (3.2.2)–(3.2.4). We
begin with the gauge transformations for the fields in a. Using the decomposition of a
and reducing the maps µÕ to µ by (3.1.2) and (3.1.3) we obtain:

”XA = flA
I(X)‘I ,

”AI = d‘I ≠ ÷̂IJflA
J(X)tA + ÷̂IJTJKLA

K‘L,

”FA = dtA ≠ ˆAflB
J(X)FB‘J ≠ 1

2ˆATIJK(X)AIAJ‘K + ˆAflB
J(X)AJtB,

”GAB = drAB,

where we have summed the expansions of functions and separated according to L degree as
in the case of the equations of motion. It is obvious these are equivalent to (4.1.14)–(4.1.16)
up to signs due to di�ering sign choices in (5.3.1) and the addition of field G. This is
expected because on the all products of fields coincide with their Courant counterparts
since the maps containing µ0 do not appear due to µÕ

0 not being a field but a constraint
(or eom). Seeing that this sigma model possesses an extended gauge symmetry to that of
the Courant sigma model we expect higher gauge transformations of gauge parameters or,
in other words, a gauge redundancy among the parameters as well as the fields. To this
end one can calculate these higher transformations using (3.2.4) by the same procedure
as above to arrive at:

”‘I = ÷̂IJflA
J(X)vA,

”tA = dvA + ˆAflB
J(X)AJvB,

”rAB = duAB,

”uAB = dsAB.

Here we see what was expected by filling out Table 5.1, namely, due to the addition
of a 3-form G we have a higher stage reducible theory requiring a new tower of ghosts
ultimately with the appearance of a “ghost-for-ghost-for-ghost” s. The last symmetry
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transformation to consider is the gauge covariance of the eoms given by expression (3.2.3):

”c0f2 = 0,

”c0f
A
1 = fAB

2 tB + fB
1 ˆBflA

J(X)‘J ,

”c0f
I
0 = ÷̂IJTJKL(X)fK

0 ‘L ≠ ÷̂IJfA
1 ˆATJKL(X)AK‘L + ÷̂IJfA

1 ˆAflB
J(X)tB ≠

≠ ÷̂IJ÷CDf
AB
2 flC

[J(X)ˆBflD
K](X)‘KFA + 1

2 ÷̂IJZJKLM(X)AKAL‘M +

+ ÷̂IJ÷CDf
AB
2 flC

[J(X)ˆBflD
K](X)AKtA,

the transformation of f≠1 was omitted for brevity. These expressions can be compared to
relations (2.2.46) and (2.2.49) by taking into account the gauge fixing (2.2.34) and f2 = ÷

(remember Z contains ÷).

Action functional. Lastly, to be able to interpret the equations of motion through a
variational principle, we define a Maurer-Cartan action by relation (3.2.6) using the cyclic
pairings defined above. The calculation produces:

SMC[X,A, F,G] = ÈG, ÷≠1Í + ÈdX,F Í + 1
2ÈA, dAÍ +

ÿ

n>0

1
n!ÈA, µn+1(X, . . . , X, F )Í +

+ 1
6

ÿ

n>0

1
n!ÈA, µn+2(X, . . . , X,A,A)Í,

or, by inserting the definitions of the maps and pairings, in components:

S[X,A, F,G] =
⁄

�3
GAB÷AB + FA · dXA + 1

2 ÷̂IJA
I · dAJ ≠ flA

I(X)AI · FA +

+ 1
6TIJK(X)AI · AJ · AK .

We now see the meaning of the three-form field G, it is a Lagrange multiplier enforcing
the strong constraint ÷ = 0 as an equation of motion. Notice this is a constraint on
a constant due to the nature of our construction assuming ÷ was a constant from the
beginning. However, one could have introduced interaction terms to the field G and made
÷ a function of X making this a constraint on the fields X.

5.4 | Summary

A DFT algebroid is a geometric structure describing properties of the C-bracket rele-
vant for the gauge symmetry of double field theory. Here we discussed its global properties
and gave a formulation in terms of an LŒ-algebra as a preparation to introduce the corre-
sponding Maurer-Cartan homotopy theory (as indicated in [89]). Our ultimate motivation
is finding a gauge invariant sigma-model without constraints. This is based on recent
proposals suggesting that there exist physically relevant closed strings backgrounds which
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cannot be obtained as a solution of the strong constraint [45,90]. Using the LŒ-algebra
framework one could bootstrap consistent gauge theories by choosing the initial data of
the theory in the form of 1- and 2-brackets and construct the appropriate higher brackets
using the homotopy relations [83]. This is akin to the deformation of a free gauge theory
into an interacting one in the BV/BRST approach, see e.g. [84].

In this chapter we gave the definition of a DFT algebroid in terms of a curved LŒ-
algebra, and showed that one can formulate a DFT algebroid in terms of a Q-structure
(in the same manner as a Courant algebroid can be, see (2.1.13)), going beyond the
results of [59]. Additionally a sigma model was constructed on the basis of this curved
algebra that showed it is a second-stage reducible gauge theory with the strong constraint
implemented as a Lagrange multiplier. A promising route to tackle the issue of not
having a P-structure consists of allowing for a degenerate symplectic structure following
the construction in [91]. In that case one obtains a presymplectic generalisation of the
BV formalism, which reduces to the standard one after factorising out the zero modes of
the presymplectic form. However, for most applications one can employ the presymplectic
structure without ever performing factorization explicitly. Thus, one expects to obtain
an unconstrained gauge invariant theory relevant for understanding the implications of
T-duality in a field theory setting.
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APPENDIX

5.A | Homotopy conditions for a DFT algebroid LŒ-algebra
when i > 4

Taking into account all of the argumentation in section 5.1.3, for arbitrary i one can
have only 4 non-trivial distinctly new types of homotopy relations, those that are in
space L1. They will be higher orders of expressions found in the i = 4 case: (l1, . . . , li) =
{(h1, . . . , hi≠1, f), (h1, . . . , hi≠2, e1, e2), (µ0, h1, . . . , hi≠3, e, f), (µ0, h1, . . . , hi≠4, e1, e2, e3)},
the first two being the definitions of (5.1.17) and the last two consistency conditions. In
order we have:

µn(h1, . . . , hi≠1,Df) = (≠1)i+1µi+1(µ0, h1, . . . , hi≠1, f) ,

from which one immediately sees the first line of (5.1.17), and:

(≠1)iµi≠1(µ2(e1, e2), h1, . . . , hi≠2) +

+ · · · ≠

≠(µi≠m(µi+1(h1, . . . , hm, e1), hm+1, . . . , hi≠2, e2) ≠ e1 ¡ e2) +

+ · · · =

= (≠1)i+1µi+1(µ0, h1, . . . , hi2 , e1, e2) ,

where the dots indicate summation over m and terms of all unshu�es ‡: h‡(1), . . . , h‡(m)

and h‡(m+1), . . . , h‡(i≠2). This summation is nothing more than the product rule expansion
of di�erential operator hA1

1 · · ·hAi≠2
i≠2 ˆA1 · · · ˆAi≠2 acting on [fl(e1), fl(e2)] implying the second

line of (5.1.17). Continuing on now to the conditions, the third combination of elements
produces:

(≠1)i≠1µi(Df, µ0, h1, . . . , hi≠3, e) ≠ µi≠1(Èe,DfÍ, µ0, h1, . . . , hi≠3) +
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+µi≠2(µ3(µ0, e, f), h1, . . . , hi≠3) +

+ · · ·+

+(≠1)m+1µi≠m(µi+1(h1, . . . , hm, e), µ0, hm+1, . . . , hi≠3, f) + · · ·+

+(≠1)i≠mµi≠m(µi+1(µ0, h1, . . . , hm≠1, f), hm, . . . , hm≠3, e) + · · ·+

+ · · · = 0 ,

where, just as previously, dots indicate summation over m and term of all unshu�es of h.
Again, realising this summation can be resummed produces:

(≠1)ihA1
1 · · ·hAi≠3

i≠3 ˆA1 · · · ˆAi≠3(≠SCfl(e,Df)D≠1
4÷DCˆC(fl(e)f)+1

2÷CDfl(e)BˆBˆCf)ˆD = 0 ,

that vanishes in the exact same way it does in the i = 3, 4 cases. The final condition valid
for i > 4 is:

(≠1)iµi≠1(µ2(e1, e2), µ0, h1, . . . , hi≠4, e3) + cyclic+

+µi≠2(µ3(e1, e2, e3), µ0, h1, . . . , hi≠4) +

+µi≠3(µ4(µ0, e1, e2, e3), h1, . . . , hi≠4) +

+ · · ·+

+(≠1)i≠m≠1µi≠m(µm+1(µ0, h1, . . . , hm≠2, e1, e2), hm≠1, . . . , hi≠4, e3) + cyclic+ · · ·+

+(≠1)mµi≠m(µm+1(h1, . . . , hm, e1), µ0, hm+1, . . . , hi≠4, e2, e3) + cyclic+ · · ·+

+ · · · = 0 ,

utilising the same logic as before it is easy to see this is nothing more than a higher
derivative of the condition obtained for i = 4:

(≠1)ihA1
1 · · ·hAi≠4

i≠4 ˆA1 · · · ˆAi≠4

1
≠ SCfl([[e1, e2]], e3) ≠ [SCfl(e1, e2), fl(e3)] + cycl. ≠

≠fl Jac(e1, e2, e3)
2
= 0 ,

again satisfied by the fact that Jac(fl(e1), fl(e2), fl(e3)) = 0.

5.B | Calculation of morphism conditions with degree 1 spaces

In this appendix we show the calculation of morphism conditions in the case of DFT and
Courant algebroids with spaces L1 (respectively LÕ

1). In order to calculate the remaining
morphism components we turn to the condition (3.1.5) order by order, beginning with
i = 0 that does not change with respect to section 5.2.2 by the introduction of space L1.
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Next, i = 1, has only one new and non-trivial condition:

„1(fl(e)) ≠ „2(µ0, e) = a(„1(e)) ,

implying:
„2(µ0, e) = 0 . (5.B.1)

In the case of i = 2, by taking into account the assumptions above we have three new and
non-trivial morphism conditions. The first is a compatibility condition corresponding to
(l1, l2) = (µ0, f):

„1
1
1
2÷≠1(df)

2
= a

1
1
2D̃f

---
M

2
,

that is satisfied by (5.2.2) and (2.2.9). Next, for (l1, l2) = (h, e), the morphism condition
produces:

„3(µ0, h, e) + „1(hAˆAfl(e)BˆB) = „1(h)aˆaa(„1(e))bˆb ,

by splitting capital indices one obtains:

„3(µ0, h, e) = ≠(h̃a
˜̂afl(e)b)

---
M

ˆb .

Lastly for i = 2 we have (l1, l2) = (h, f) that results in:

„3(µ0, h, f) = 0 ,

directly from our assumptions and (3.1.5). Before moving on to higher cases of i, guided
by what we have obtained thus far for i = 1, 2 we shall make the following Ansatz for the
new components to „:

„n+2(h1, . . . , hn, µ0, e) =
1
hA1
1 · · ·hAn

n ˆA1 · · · ˆAnfl(e)b ≠ ha1
1 · · ·han

n ˆa1 · · · ˆana(e)b
2---

M
ˆb ,

(5.B.2)
or explicitly:

„n+2(h1, . . . , hn, µ0, e) =
1
h̃1a1· · · h̃nan

˜̂a1· · · ˜̂anfl(e)b + ha1
1 h̃2a2· · · h̃nanˆa1

˜̂a2· · · ˜̂anfl(e)b+

+ · · ·
2---

M
ˆb ,

where the dots indicate all possible combinations of h and h̃ except the one with no h̃. All
other possible new „ components vanish. Continuing on to i = 3 where after taking into
account our assumptions and previous Ansatz one finds there are, in fact, three new and
non-trivial identities to be satisfied. The first, (l1, l2, l3) = (h1, h2, e), is just the definition
(5.B.2), however the second (l1, l2, l3) = (µ0, h, f) and third (l1, l2, l3) = (µ0, e1, e2) are
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consistency conditions of our Ansatz and yield, respectively:

≠„3(Df, µ0, h) ≠ „1(12÷BChAˆAˆBfˆC) = ≠„1(h)aˆa(„2(µ0, f))bˆb ,

≠„3(fl(e1), µ0, e2) + „3(fl(e2), µ0, e1) + „1(SCfl(e1, e2)) = a(„3(µ0, e1, e2)) .
(5.B.3)

The latter is satisfied automatically once one takes into account fl ¶ D̃ = ˜̂, whereas for
the former one needs the homomorphism property of the Courant bracket and relations
(2.2.12). It may be useful to note that since (5.B.2) for n = 0 vanishes as is in accord with
(5.B.1) the second relation above does not have an extra term coming from (5.B.2) that
will appear in higher identities.

The analysis so far enables us to move on to the case of a general i. As „ only has
infinite components for one combination of elements, „n+2(h1, . . . , hn, µ0, e), we need only
look at identities involving this component since all others are taken care of in explicit i
cases either above or in section 5.2.2 for identities that are equivalent. That withstanding
we have three possibilities, starting with (l1, . . . , li) = (h1, . . . , hi≠1, e) which is simply the
definition (5.B.2). Next, (l1, . . . , li) = (µ0, h1, . . . , hi≠2, f), is simply the higher derivative
case of the first line in (5.B.3) vanishing for the same reason. Finally, the generalisation
of the second line or (l1, . . . , li) = (µ0, h1, . . . , hi≠3, e1, e2) and the only slightly non-trivial
identity for a general i. Expression (3.1.5) implies:

· · ·+

+ (≠1)j„i≠j+1(µj(h1, . . . , hj≠1, e1), µ0, hj, . . . , hi≠3, e2) ≠

≠ (≠1)j„i≠j+1(µj(h1, . . . , hj≠1, e2), µ0, hj, . . . , hi≠3, e1) +

+ · · ·+

+ (≠1)i„i≠1(µ2(e1, e2), µ0, h1, . . . , hi≠3) + „1(µi(µ0, h1, . . . , hi≠3, e1, e2)) =

= · · ·+

+ (≠1)i≠j≠1µÕ
i≠j+1(„j(µ0, h1, . . . , hj≠2, e1),„1(h1), . . . ,„1(hi≠3),„1(e2)) ≠

≠ (≠1)i≠j≠1µÕ
i≠j+1(„j(µ0, h1, . . . , hj≠2, e2),„1(h1), . . . ,„1(hi≠3),„1(e1)) +

+ · · ·+

+ µÕ
i≠2(„3(µ0, e1, e2),„1(h1), . . . ,„1(hi≠3)) ,

where by resumming the partial derivatives and utilising the definitions of maps „i, µi,
and µÕ

i one obtains

hA1
1 · · ·hAi≠3

i≠3 ˆA1 · · · ˆAi≠3([fl(e1), fl(e2)]b ≠ SCfl(e1, e2)b ≠ fl[[e1, e2]]b)ˆb =

= ha1
1 · · ·hai≠3

i≠3 ˆa1 · · · ˆai≠3([a(e1), a(e2)]b ≠ a[e1, e2]bC)ˆb ,

with SCfl(e1, e2)b defined by the splitting ˆB = ˆb + ˜̂b. Each side of this equality vanishes
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on its own, the lhs because of (2.2.12) and the rhs because of the homomorphism property
of a Courant algebroid anchor map a.

5.C | Homotopy identities for DFT sigma model algebra

To show the maps (5.3.1) satisfy the homotopy Jacobi identities (3.1.1) we first analyse
all the possible combinations of elements producing non-trivial identities. Simply by degree
counting, property (5.1.2) and observing the only homogeneous subspaces these identities
can live in are L≠1, L0 and L1 as discussed in section 5.1.3, we identify at most 15 types
of homotopy identities. Notice these are types since there are in fact an infinite number
of relations that can, however, be grouped by counting all identities di�ering only in
the number of degree 1 elements as one type. They are, in essence, the same relation,
simply a higher order expansion term as seen already in appendices 4.A, 4.C and 5.A. To
make the calculation more tractable we shall again abuse notation and denote l(≠1) = F ,
l(0) = A and l(1) = X and only calculate the lowest order relation with the rest in the same
type obtained by taking higher derivatives and then evaluating at 0. Combinations not
involving µ0 can be understood as defining products of that combination of elements with
µ0, and those involving µ0 as consistency relations (as explained in sec. 5.1.2). They must
all be satisfied using the local axioms of a DFT algebroid (2.2.16), (2.2.18) and (2.2.19)
written again for convenience:

÷̂IJflA
I(X)flB

J(X) = ÷AB

2flB
[I(X)ˆBflA

J ](X) ≠ flA
M(X)÷̂MN T̂NIJ(X) = ÷BCflC

[I(X)ˆAflB
J ](X),

3÷̂MN T̂M [JK(X)T̂IL]N(X) + 4flA
[L(X)ˆAT̂JKI](X) = ZJKIL(X).

We start with the relations in subspace L1.

• l = (X1, . . . , Xi≠1, F ) In the lowest order this is the curved di�erential requirement,
equivalent to expression (5.1.12).

• l = (X1, . . . , Xi≠2, A1, A2) Again for i = 2 this is the Leibniz rule for µ1 and is
precisely axiom 2 above.

• l = (X1, . . . , Xi≠3, µ0, A, F ) This is a consistency condition stating:

µ1µ3(µ0, A, F ) + µ2(µ2(µ0, F ), A) ≠ µ2(µ2(A,F ), µ0) + µ3(µ1(F ), µ0, A) = 0,

in which all terms cancel by use of only axiom 1 and the fact that ÷ is constant.

• l = (X1, . . . , Xi≠4, µ0, A1, A2, A3) The homotopy relations for the lowest i = 4 case
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state:

µ4(µ1(A1), µ0, A2, A3) + µ3(µ2(A1, A2), µ0, A3) ≠ µ2(µ3(µ0, A1, A2), A3) + cycl.+

+µ2(µi≠1(A1, A2, A3), µ0) + µ1µ4(µ0, A1, A2, A3) = 0,

plugging in the definitions of maps µ produces condition:

≠÷ADˆDTIJK + flA
L÷̂LMZMIJK ≠ 3÷BD÷EFflE

[IˆDflF
JˆBflA

K] ≠

≠3TL[IJ ÷̂LM÷EF÷ADflE
MˆDflF

K] + 3flB
[IˆB(÷EFflE

JˆDflF
K])÷AD = 0,

satisfied by axioms 2 and 3. This can be seen by utilising axiom 2 on the two terms
in the second line, after cancelling what remains is axiom 3 contracted with fl.

This ends the L1 relations. We move on to L0 relations.

• l = (X1, . . . , Xi≠2, A, F ) As in the case l = (X1, . . . , Xi≠2, A1, A2) this too is trivial
in that it is plainly axiom 2 contracted with ÷̂.

• l = (X1, . . . , Xi≠3, A1, A2, A3) This is precisely axiom 3 with the second term anti-
symmetrisation split in two.

• l = (X1, . . . , Xi≠3, µ0, F1, F2) The consistency of this relation is obvious from axiom
1 and the symmetrisation that is appears due to the -1 grading of F .

• l = (X1, . . . , Xi≠4, µ0, A1, A2, F ) By explicit calculation one can see this identity
holds directly by that of l = (X1, . . . , Xi≠4, µ0, A1, A2, A3).

• l = (X1, . . . , Xi≠5, µ0, A1, A2, A3, A4) As in the case of three A elements this too will
be a sum of µ maps with four A elements distributed in µ5µ1, µ4µ2, µ3µ3, µ2µ4 and
µ1µ5. This sum yields the following condition:

flA
[IˆAZJKLM + 2TP [IJZKLM ]N ÷̂NP + 2÷BC÷ADflC

[MˆDflB
IˆATJKL = 0.

It can be seen to hold when one uses axiom 2 on on the last term and axiom 3
(the definition od Z) on the first two. This is because terms that do not cancel
vanish identically on their own due to the antisymmetrisation of five indices and
symmetricity of ÷̂.

Finally, we now come to the last subspace L≠1.

• l = (X1, . . . , Xi≠2, F1, F2) The lowest order relation corresponding to this choice of
elements is:

µ2(µ1(F1), F2) + µ2(µ1(F2), F1) = 0,
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producing: ˆCfl(B
J ÷̂IJflA)

I = 0. This is identically satisfied by axiom 1 since it
implies antisymmetry of A and B.

• l = (X1, . . . , Xi≠3, F, A1, A2) This choice produces precisely axiom 2 (up to an added
derivative that is of no consequence).

• l = (X1, . . . , Xi≠4, A1, A2, A3, A4) Just as the previous case this too gives precisely
axiom 3 (again up to an overall derivative).

• l = (X1, . . . , Xi≠4, µ0, A, F1, F2) The consistency condition produced holds trivially
by use of axiom 1.

• l = (X1, . . . , Xi≠5, µ0, A1, A2, A3, F ) A straightforward but lengthy calculation pro-
duces a derivative of the identity from l = (X1, . . . , Xi≠4, µ0, A1, A2, A3) that has
been shown to hold.

• l = (X1, . . . , Xi≠5, µ0, A1, A2, A3, A4, A5) The final condition, unsurprisingly, coin-
cides with that of l = (X1, . . . , Xi≠5, µ0, A1, A2, A3, A4), again up to an overall
derivative that does not impact its validity.
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CHAPTER 6

CONCLUSION

Here we shall summarise what has been shown in the previous chapters and provide a
selection of possible avenues for continuing this research based on the conclusions obtained
through this thesis.

6.1 | Overview

The search for a quantum description of gravity has led us to higher dimensional fun-
damental objects and, as particles couple to 1-form gauge fields, 1-dimensional objects,
strings, will couple to 2-form gauge fields and consequently higher d-dimensional mem-
branes will couple to (d+ 1)-form gauge fields. This necessitates the study of generalised
gauge symmetries and their corresponding field theories. We focused on the worldsheet
description of two such theories: the Courant sigma model and double field theory. Let us
recap the problems addressed and results obtained in the context of this dissertation. We
began with the knowledge of the classical relation between Courant sigma models and a
membrane sigma model realisation of double field theory. The problem was this was only
known on the classical level of the sigma model, whereas, the full BV theory of Courant
sigma models has been known for some time. Therefore the natural question was how does
this correspondence survive on the BRST level where gauge parameters become ghosts
that transform. In [46] this is the problem that was addressed. The solution was to fix
the 1-form ghost and ghost-for-ghost fields in a consistent way such that the projection
does not break the BRST symmetry. An expected issue occurred however, when going
back to the gauge symmetry level it was observed that the equations of motion do not
transform covariantly, requiring the use of the strong constraint.

Next, attention was shifted to the formalism of LŒ-algebras. As they hold great
potential for the generalisation of gauge theories we explored them in the case of the two
theories of interest in our previous discussion, beginning with the Courant sigma model.
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The idea was to fully understand the symmetries involved and their interplay with the
dynamics of fields. This was done by di�erentiating three di�erent LŒ-algebras involved:
the gauge symmetry algebra, the classical field algebra and the BV algebra. Through the
construction of these three levels via tensor product LŒ-algebras it became apparent that
in the sense of gauge structure one needed to only know the basic symmetry algebra to
be able to construct the classical and BV levels without any other input. The full BV
Courant sigma model was reconstructed in this way simply from the gauge symmetry
related to the target Courant algebroid by an LŒ-morphism.

Finally enthralled by the power of the LŒ-formalism we sought to apply it to the DFT
algebroid. This, however, presented us again with the problem of the strong constraint
that we did not wish to implement. This is because once the strong constraint is solved
all structure drops to the Courant case that is well known but does not live on a doubled
manifold thus losing the desired manifest duality symmetry. Hence, to avoid this a
rarely mentioned but very natural extension of LŒ-algebras was used called curved LŒ-
algebras. It was shown that such an extension proved precisely what was needed in order
to encapsulate the strong constraint violating terms. Then, to fully understand the strong
constraint from an LŒ aspect, we constructed an LŒ-morphism to the Courant algebroid
showing the application of the strong constraint to be just a morphism of LŒ-algebras.
And lastly, a sigma model was built on the basis of this curved algebra producing an even
higher stage reducible theory with the strong constraint an equation of motion.

6.2 | Outlook

Continuing the exploration of LŒ structures it would be interesting and a logical
continuation to study the possible generalisations of DFT sigma models that no longer
need the strong constraint to be consistent. The implication of our work here is that
the appropriate framework for this are curved LŒ-algebras or their flat equivalents in the
cases when that is possible. This would involve defining new products that could make
Maurer-Cartan elements possible and therefore escape the caveat that the MC equation
can produce constraints as well as equations of motion. To go beyond just equations of
motion into an action functional one needs a cyclic pairing corresponding to a P-structure
in the language of graded geometry. This is problematic for our curved algebras as this
pairing becomes degenerate, however, there is a way out. If one is to consider presymplectic
structures generalising BV this need not be an issue as one can, if necessary, factor out
the zero modes to obtain the regular BV theory.

A second intriguing notion is the study of gauge anomalies through the use of LŒ.
Realising one can analyse anomalies by careful consideration of the BV extension of a
theory would imply this could be done via LŒ. More precisely, BV/BRST deformation
can be used to construct interactive BV actions, on the other hand this can be done using
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LŒ bootstrapping and taking the tensor product with the dynamics of the fields of interest.
Since this deformation procedure can be used to construct anomalies one is to expect
the same can be done using LŒ-algebras. This would substantially simplify the analysis
of gauge anomalies as calculations involving LŒ-algebras are, however long, completely
straightforward.

As was recently proposed braided LŒ-algebras, where the maps no longer posses graded
commutativity, show the way LŒ-algebras can be generalised to non-commutative physics.
Another interesting avenue, thus, involves the coalgebra picture of LŒ-algebras and its
relation to braided LŒ-algebras. Once one realises curved LŒ-algebras are in fact Hopf
algebras on which a Drinfeld twist is axiomatically defined, the obvious question becomes
do twisted Hopf algebras lead to braided LŒ-algebras?
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