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ABSTRACT 

One of the main challenges presented by a limited area model ensemble prediction system 

(LAMEPS) concerns the limited capacity for its initial condition (IC) perturbations to 

correctly represent large-scale flow uncertainties due to its limited-size domain, deficiencies 

in formulating lateral boundary conditions and inadequate availability of observations. In 

addition, a mismatch between LAMEPS IC and host EPS lateral boundary perturbations can 

form spurious waves at the boundaries which spread through the domain, induce noise to the 

meteorological fields and render inoperative frequent assimilation cycles.  

In the present work, an ensemble Jk blending method is proposed for improving 

representation of large-scale uncertainties and for addressing consistent initial conditions and 

lateral boundary perturbations. Our approach involves employing Jk blending within a 

framework of 3-dimensional variational (3D-Var) ensemble data assimilation (EDA). In such 

a system, small-scale perturbations are generated from 3D-Var EDA, while large-scale 

perturbations are generated from the host ensemble via Jk blending. We hypothesize that final 

analyses are optimal, and contain perturbed small and large scales which are, at the same 

time, consistent with each other and with perturbations coming from lateral boundaries. 

The ensemble Jk method is implemented to the C-LAEF (Convection-permitting 

Limited-Area Ensemble Forecasting) system and is compared to the standard perturbed-

observation EDA approach, i.e., perturbed-observation EDA without large-scale constraint. 

The comparison shows that the ensemble Jk method gives a more skillful and reliable EPS, 

especially for the upper-air variables. In addition, positive effects on the surface pressure and 

precipitation of large-scale perturbations are shown. The ensemble Jk method’s capacity to 

alleviate perturbation mismatches is also assessed. 

Additionally, two readily available techniques, i.e., neighborhood and lagging, to 

improve C-LAEF’s IC perturbation sampling of the initial uncertainties and to address the 

problem of relatively low model effective resolution are evaluated. Both of them show 

significantly positive impact on ensemble forecast quality and on detection of extreme 

weather events. 

 

 

Keywords: ensemble prediction system, initial condition perturbations, blending, data 

assimilation, limited-area model, neighborhood approach, lagged forecasting 
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§ 1. INTRODUCTION 

1.1. Theoretical background 

Let us first introduce some basic concepts and define the most important variables used 

through the rest of this dissertation. 

 

1.1.1. Numerical weather prediction 

Numerical weather prediction (NWP; e.g., Kalnay, 2003; Coiffier, 2011; Bauer et al., 2015) is 

a method of weather forecasting that employs a set of equations that describe flow of fluids. 

This set of equations, called the atmospheric or NWP model, is solved numerically for 

different moments in time. For this purpose, equations are discretized – the equations related 

to continuous variables are replaced by equations related to discrete variables. Discretization 

of equations means that they are solved on specific points in 3D space and time, i.e., grid. 

Physical distance between the two points in space (Δx) is usually referred to as the grid size. 

Finite grid size means that there always will be physical processes and scales of motion that 

cannot be represented by an NWP model. Those unresolved processes need to be accounted 

for because they affect the larger-scale fields and processes that are explicitly resolved. The 

procedure by which the important atmospheric processes that cannot be resolved directly by 

an NWP model are represented is called parameterization (e.g., Stensrud, 2007).  

NWP models can be integrated over the whole globe (global models) or on limited size 

domains (limited area models; LAMs). LAMs have the advantage of using the finer grid size 

than global models because the available computational resources are focused on a specific 

area instead of being spread over the globe. This allows them to resolve explicitly smaller-

scale meteorological phenomena that cannot be represented on the coarser grid of a global 

model. Because LAM domains have physical boundaries, they need to be provided with 

lateral boundary conditions (LBCs; e.g., Warner et al., 1997). This is usually done by a 

technique called nesting, where LAM is nested into a global model or another LAM. In other 

words, another NWP model is used to provide the LBC data. This model is usually referred to 

as the host model.  
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Today (i.e., 2021), typical grid sizes of global models are in the range of 10-20 km, 

while for LAMs they are around 10 times smaller. We will denote Nm-dimensional NWP 

model state vector with X. X is a column vector containing all model grid points in 3D space 

for all the physical variables (e.g., temperature, humidity, wind, etc.). Size of Nm is typically 

somewhere between 106 – 1010. Capital T, as index in variable names, will denote the truth 

(the true state of the atmosphere - XT) which is unknown. 

 

1.1.2. Data assimilation 

The time integration of an NWP model is an initial-value problem, which means that the 

ability to make a skillful forecast requires both that the computer model be a realistic 

representation of the atmosphere, and that the initial conditions (ICs) be known accurately. 

The key part of the latter are observations of the current state of the atmosphere. Observations 

are made with different instruments at different locations in different ways (i.e., 2 m 

temperature observation using a common thermometer, satellite observations of clouds, radar 

observations of precipitation, etc.; see Montmerle (2018) for more information on 

observations for high resolution NWP). Each observation represents the information that is 

the closest to the true state of the atmosphere. Y denotes vector of observations which is 

usually, at least, two orders of magnitude smaller than X. New observations are included into 

model state through a process known as data assimilation (e.g., Kalnay, 2003). The problem 

of data assimilation is to combine the model state with the observations to find the best 

possible description of the atmosphere at a given time, i.e., analysis 𝑿𝒂: 

𝑿𝑇 = 𝑿𝑎 + 𝜀𝑎                                                              (1.1) 

Where 𝜀𝑎 is the analysis error which is unknown. In other words, we need to find an optimum 

analysis of a field of model variables 𝑿𝒂, given a background field 𝑿𝒃 (past model forecast) 

available at grid points in three dimensions, and a set of observation Y available at irregularly 

spaced points. Similar to 𝑿𝒂, 𝑿𝒃 and Y also contain errors which we denote 𝜀𝑏 and 𝜀𝑜, 

respectively. Through the years, many methods have been developed for that purpose 

(Bannister, 2017; Gustafsson et al., 2018). Most of them are based on the idea of least-squares 

estimation or minimization of variance of residual. From the well-known linear theory of 

least-squares estimation (e.g., Kalnay, 2003), the optimal least-squares estimator (analysis in 

our case) is defined by the following interpolation equation (i.e., analysis equation): 

𝑿𝒂 = 𝑿𝒃 + 𝑊[𝒀 − 𝐻(𝑿𝒃)]                                             (1.2) 
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Where W is weight matrix, and H is a nonlinear observation operator which maps model 

forecast to observation locations. Analysis error covariance matrix (A; i.e., variance of 

residual) should be minimized and is calculated from: 

𝑨 = 𝐸(𝜀𝑎𝜀𝑎
𝑇) = 𝑩 − 𝑊𝐻𝑩                                               (1.3) 

Where 𝑩 = 𝐸(𝜀𝑏𝜀𝑏
𝑇) is the covariance matrix of the background errors 𝜀𝑏. E() is the expected 

value and it is assumed that 𝐸(𝜀𝑎) = 𝐸(𝜀𝑏) = 0 (𝑿𝒂 and 𝑿𝒃 are unbiased).  

Today, the most popular methods are the, so-called, variational methods (Le Dimet 

and Talagrand, 1986) that use observations and past model forecasts (background) to find the 

state of the atmosphere closest to the truth. The most used methods in this category are 3D-

Var (Gustafsson et al., 2001) and 4D-Var (Rabier et al., 2000). Variational methods are 

equivalent to the least-square estimation, but the approach is different as they find the analysis 

that minimizes a cost function measuring its distance to the background and to the 

observations: 

𝐽(𝐗) = 𝐽𝑏(𝐗) + 𝐽𝑜(𝐗)                                                   (1.4) 

 𝐽(𝐗)  =
1

2
(𝐗 − 𝐗𝐛)

T
𝐁−1(𝐗 − 𝐗𝐛) +

1

2
(𝐘 − 𝐻𝐗𝐛)

T
𝐑−1(𝐘 − 𝐻𝐗𝐛)          (1.5) 

where 𝑹 = 𝐸(𝜀𝑜𝜀𝑜
𝑇) is the covariance matrix of observation errors 𝜀𝑜 which are also assumed 

to be unbiased. In (1.4), it is assumed that background and observation errors are 

uncorrelated. The cost function J(X) is then minimized, using iterative minimization 

algorithms (e.g., Kalnay, 2003). The minimum of J(X) is attained for X = 𝑿𝒂, i.e., the analysis 

is given by the solution of: 

𝜵𝑋𝐽(𝑿𝑎) = 0                                                               (1.6) 

where 𝛁 is the gradient operator with respect to X. Solving (1.6) for 𝑿𝒂, one gets the (1.2). 

Once the initial state of the atmosphere with sufficient accuracy is known, NWP model is 

propagated forward in time to obtain atmospheric state at some latter time – a forecast. 

 

1.2. Ensemble prediction systems 

We will elaborate the purpose of, illustrate the basic principles and the assumptions behind 

the concepts of ensemble forecasting. 
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1.2.1. Why do we need ensembles? 

Propagating a set of equations forward in time to obtain a single forecast at some latter time is 

generally known as deterministic forecasting. In the perfect linear world without any errors, a 

single deterministic forecast is all we need. However, in the real world there are many sources 

of errors (Lorenz, 1969; Buizza et al., 2005; Leutbecher and Palmer, 2008) and the NWP 

research community has been aware of them since the very beginning of NWP (Charney, 

1951). These include the following:  

a) Errors in ICs. These are primarily due to inadequate data assimilation procedures, 

insufficient number of and errors in observations. As thoroughly described in Janjić et 

al. (2018), observation errors consist of measurement errors and representativeness 

errors, where the latter can be divided even further into three components: i) errors due 

to unresolved scales and processes (model deficiencies), ii) observation operator errors 

in data assimilation and iii) pre-processing and quality control errors.  

b) Model errors. These include equation simplification and truncation mostly due to a 

limited computer power which, in turn, result in our models being unable to resolve all 

the scales and phenomena that occur in the real world. Those unresolved atmospheric 

processes are represented by parametrizations which are an additional source of errors.  

c) Errors in formulation of lower, upper and, in case of LAMs, lateral boundary 

conditions.  

Existence of these errors necessarily render our deterministic forecast inaccurate (Charney, 

1951).  

These shortcomings became even more apparent after Lorenz (1963b) demonstrated 

that numerical models exhibit chaotic behavior, i.e., high sensitivity to errors in ICs. This 

means that difference of any magnitude at initial time will lead to a completely different state 

of the system at some latter time. Chaos was summarized by Lorenz as: “Chaos: When the 

present determines the future, but the approximate present doesn’t approximately determine 

the future.” (e.g., Kalnay, 2019). The chaotic nature and ever-present errors of the initial state 

necessarily lead to a complete loss of forecasting skill after a finite period of time, which 

Lorenz (1965) estimated to be about two weeks, an estimation that still holds today (e.g., 

Buizza and Leutbecher, 2015). Moreover, it is routinely known that predictability of the 

forecast is flow-dependent, as it was shown by Lorenz (1963a). In other words, predictability 

depends on the current state of the atmosphere – on some days, accurate 10-day forecast could 

be possible, while on the others, only three-day forecast could be possible. The question then 
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emerged – can we know, a priori, the uncertainty of the forecast? In addition, as people 

become aware of these facts, they realized that it would be more accurate to issue a forecast in 

terms of probabilities. For example, yes/no forecast of snowfall three days from today, could 

be more beneficial if it were formulated like this: there is 80 % probability for a snowfall 

three days from today. One deterministic forecast cannot provide any of those information - 

we need something better. 

 

1.2.2. Ensemble forecasting 

Recognizing the fact that initial state can only be known with some uncertainty leads to 

specifying the initial state, at initial time t0, not as a point in the model phase space, but as a 

probability density function (PDF), p(X) (Ehrendorfer, 1997). The time evolution of p(X) can 

then be achieved by Liouville (perfect model) or Fokker-Planck equation (model error 

accounted for; Ehrendorfer, 1994a). Furthermore, Epstein (1969) proposed to evolve only first 

and second moment of p(X). However, both approaches, where Nm is as high as 1010, are 

computationally prohibitive (Ehrendorfer, 1994b; Palmer and Hagedorn, 2006).  

The first computationally feasible method was proposed by Leith (1974) where he uses 

Monte Carlo technique to randomly sample the initial PDF and evolve each initial state with 

the forecast model. Today, this approach is known as ensemble forecasting (e.g., Leutbecher 

and Palmer, 2008) where multiple forecasts (ensemble members) are obtained, each started 

from a slightly different IC. This slight differentiation between ensemble members is 

produced by adding a small, but different type of perturbation to each member separately. If 

the initial sample (ensemble) is large enough, first and higher moments of p(X), at some latter 

time t, can be accurately reconstructed from ensemble of forecasts. Leith (1974) showed that 

ensemble size can be as small as 8 members for accurately obtaining the first moment of p(X). 

Ma et al. (2012) argue that ensemble size of 20-40 is enough for operational purposes today, 

while Leutbecher (2018) shows that ensemble size of more than 50 is relevant only when 

forecasting extreme events. Thus, this approach can provide the information needed to 

address the before mentioned problems. A more comprehensive history of ensemble 

prediction systems (EPSs) development can be found in Lewis (2005) and Kalnay (2019).  

    The three main goals of ensemble forecasting are:  

a) Increase of the forecast accuracy by using the ensemble mean (averaging over all 

members). Ensemble mean benefits from error cancelation and it is, thus, more 

accurate than a single deterministic forecast (e.g., Bengtsson et al., 2008). 
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b) Provide a priori information about predictability of which ensemble spread 

(standard deviation of ensemble members) can be a good indicator (Hopson, 2014) 

c) Provide a probabilistic information. 

 

1.2.3. Perturbations 

To achieve these goals, an optimal EPS needs to account for all sources of uncertainties. 

These include uncertainties in IC, NWP model and boundary conditions (e.g., Houtekamer et 

al., 1996; Nutter et al., 2004b; Buizza et al., 2005; Vié et al., 2011; Wang et al., 2011; 

Bouttier et al., 2012; Nuissier et al., 2012; Romine et al., 2014; Wang et al., 2019; Zhang, 

2019). In other words, perturbations added to the EPS cannot be random, but need to follow 

some rules. What is the best possible way to add perturbations to the EPS is still not clear and 

it is an active field of research. This lack of consensus on the best way of perturbing an EPS, 

led to the development of numerous perturbation methods in different meteorological centers 

around the world. 

At first, only uncertainties in ICs were considered as perturbing ICs is the most 

important part of a global EPS. Analysis contains both random errors introduced by the most 

recent observations, and growing errors associated with the instabilities of the evolving flow, 

dynamically generated (from random errors introduced in earlier analyses) by the repeated use 

of the forecast first guess. While the main goal of data assimilation is to produce Xa as close 

to the true state of the atmosphere XT as possible, the main goal of IC perturbation methods is 

to accurately estimate analysis errors, so that second moment of those perturbations is close to 

A (1.3). If those two conditions are met, EPS will, assuming model errors are ignored and that 

errors are Gaussian in nature, give the correct estimation of first and second moment of the 

p(X) at some latter time. At first, no explicit method to perturb the ICs were used. Instead, 

Hoffman and Kalnay (1983) developed lagged average forecasting (LAF) as an alternative to 

Monte Carlo forecasting, in which the forecasts initialized at the current initial time, as well as 

at previous times are combined to form an ensemble (see also Branković et al., 1990). 

The first two methods used to explicitly generate IC perturbations operationally were 

the breeding method (Toth and Kalnay, 1993, 1997), developed by the National Centers for 

Environmental Prediction (NCEP), and singular vectors (Buizza and Palmer, 1995; Molteni et 

al., 1996), developed by the European Centre for Medium-Range Weather Forecasts 

(ECMWF). They do not directly try to estimate analysis errors, but, although different, are 

based on the same idea – perturbations should be added only in these directions of phase 
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space in which errors will amplify the most. In theory, this fact should allow the ensemble to 

better sample the initial PDF because the forecast from these ICs will span the most important 

directions in the phase space (e.g., Vannitsem, 2017).  

Today, more advanced methods exist, for example: Ensemble Transform (ET; Wei et 

al., 2008), Ensemble Transform Kalman Filter (ETKF; Wang and Bishop, 2003), Ensemble 

Kalman Filter (EnKF; Evensen, 2003; Houtekamer and Mitchell, 2005), Ensemble of Data 

Assimilations (EDA; Buizza et al., 2008), etc. The main advantage of these methods is the 

fact that the perturbations they produce are more consistent with analysis errors and, thus, 

better sample the initial uncertainty and estimate A (1.3; Wei et al., 2008). 

Different approaches also exist when accounting for the model uncertainty. These 

include: multi-model (Du et al., 2003; Garcia-Moya et al., 2011; Iversen et al., 2011; 

Hagedorn et al., 2012, among others), multi-physics (Jankov et al., 2005; Berner et al., 2011; 

Wang et al., 2011, among others), multi-dynamics and stochastic physics (Berner et al., 2009; 

Palmer et al., 2009; Bouttier et al., 2012; Wang et al., 2019; Wastl et al., 2019, among 

others). The simplest version of multi-model ensemble is the so-called Poor-Man ensemble 

(Bowler et al., 2008a) where multiple single forecasts from various available models are just 

pulled together to form an ensemble if one cannot afford to run its own ensemble. The more 

complicated version is, obviously, if one runs many different models at the same institute. A 

disadvantage of multi-model approach is the cost to develop and maintain many models. 

Multi-physics ensembles are formed by alternating physics schemes or parameter value within 

a physics scheme. For example, one can vary convective or turbulence parameterization 

schemes or just one parameter within those schemes. Multi-dynamics ensembles, on the other 

hand, have different dynamical cores or different configurations of one. Stochastic physics 

approach targets uncertainties arising from parameterizations of sub-grid physical processes, 

truncation or missing processes. Several stochastics-physics methods exist, the most popular 

being stochastically perturbed physics tendencies scheme (Palmer et al., 2009) which adds 

random number to physical tendencies of model variables in X. Stochastic physics schemes 

are the most popular and are widely used due to their good performance, especially in 

increasing model spread and low maintenance costs. 

 

1.2.4. Future prospects 

Today, almost 30 years after the first EPSs became operational at NCEP and ECMWF, 

ensemble forecasting remains the preferred forecasting technique and is widely used for the 
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short (up to three days), medium (up to two weeks) and extended (sub-seasonal and seasonal) 

forecast ranges (e.g., Buizza, 2019). Among all of the before mentioned perturbation methods, 

answering the question which one is the best is far from trivial. There were many studies done 

which compared different methods (Bowler, 2006; Descamps and Talagrand, 2007; Wei et 

al., 2008; Magnusson et al., 2009; Zhou et al., 2016, among others). Regarding the IC 

perturbations, the results from those studies indicate that the second-generation methods like 

EnKF, ET and ETKF perform better than the first-generation ones like breeding or singular 

vectors, while EnKF outperforms ET and ETKF.  

A look into the future reveals a tendency toward a unified procedure of data 

assimilation and EPS in an NWP system: ensemble forecast variance will provide background 

error covariance information for data assimilation, while data assimilation will give an 

ensemble of analyses to initiate an ensemble of forecasts. In such a coupled system, not only 

EPS can be improved by having more realistic IC perturbations reflecting true error of the 

day, but also the quality of analysis is improved by using flow-dependent background error 

information (Bannister, 2017). Furthermore, Palmer (2014) and Váňa et al. (2017) discuss 

that complete determinism of NWP equations should be abandoned altogether and 

probabilistic approach should be incorporated into the equations and the computer 

architecture itself. Recently, however, techniques to statistically predict the weather, based on 

machine learning, are rising in popularity. Currently, the accuracy of such methods is on the 

level NWP was in the late 1950s, but the prospect for such methods appears excellent (see 

Weyn et al., 2019 and references therein). 

 

1.3. Motivation 

In recent years, limited area model ensemble prediction systems (LAMEPSs) have been 

developed to benefit from ensemble approach applied at the mesoscale and convective scale 

(e.g., Xue et al., 2007; Bowler et al., 2008b; Clark et al., 2009; Vié et al., 2011; Wang et al., 

2011; Peralta et al., 2012; Wang et al., 2012; Schellander-Gorgas et al., 2017; Wastl et al., 

2021, among others). Such ensembles are of particular importance due to a rapid loss of 

predictability observed at these scales (Hohenegger and Schär, 2007; Zhang et al., 2007; Judt, 

2018). It has long been known that by decreasing the model grid size, i.e., by increasing its 

resolution, forecast errors grow faster (Weyn and Durran, 2018). For a convection-permitting 

grid sizes of ~1 km, the small-scale errors saturate in a few hours (Hohenegger and Schär, 
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2007; Vannitsem, 2017; Weyn and Durran, 2017; Flora et al., 2018) after which the structures 

on those scales can be regarded as noise. Convective processes that dominate those scales are 

non-linear and strongly affected by uncertainties. Those facts are a serious obstacle to the 

successful atmospheric modeling of the smaller and smaller scales. Thus, probabilistic 

interpretation and ensemble forecasting in the form of LAMEPSs are a necessity. However, 

LAMEPSs have problems of their own which need to be addressed before an operational 

implementation. Here, we will focus on three problems, first two being LAMEPS specific, 

while the last one affects NWP models in general. 

 

1.3.1. Problem 1: IC and LBC perturbation mismatch 

When using a LAMEPS, one must address a new source of uncertainty – the specification of 

LBCs. This is typically done by nesting each LAMEPS member to a different host EPS 

member. Saito et al. (2012) discuss the importance of LBC perturbation in LAMEPSs. 

However, applying this procedure can lead to the following issue: when the method used to 

generate perturbations in a host EPS is different and independent from the method used in an 

LAMEPS, a conflict between such perturbations at the lateral boundaries can be observed. 

This problem has been recognized by many authors (e.g., Bowler and Mylne, 2009; 

Brousseau et al., 2011; Wang et al., 2011; Caron, 2013; Kühnlein et al., 2014; Wang et al., 

2014; Davies, 2014; Skamarock et al., 2018). Kühnlein et al. (2014) demonstrated improved 

precipitation forecasts when IC perturbations were more consistent with LBC perturbations.  

Caron (2013) employed hourly cycling 3D-Var combined with ETKF to generate IC 

perturbations for a 1.5-km LAMEPS nested inside another LAMEPS. He demonstrated what 

can happen if IC perturbations are inconsistent with LBC perturbations - spurious waves are 

generated at the boundaries and quickly spread to the rest of the domain, resulting in 

excessive surface pressure spread in a 1.5-km LAMEPS; almost needless to say, this is a 

classical numerical problem for all LAMs. Figure 1 shows surface pressure perturbations for 

one single member of 1.5-km LAMEPS. Anomaly is still present after 1 h of integration. This 

poses a serious problem for 1-h data assimilation cycling as this anomaly will be transferred 

to the next cycle. Caron (2013) showed that is exactly what happens and, as a consequence, 

correlations between the host LAMEPS and 1.5-km LAMEPS decrease with time and the 

perturbation amplitudes between 1.5-km LAMEPS and host LAMEPS differ significantly 

(Fig. 11 in Caron, 2013). This shows that perturbation mismatching can pose a serious 

problem for LAMEPSs and needs to be solved before an operational implementation. 
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Fig. 1. Figure 9 from Caron (2013), the domain pertains to England and Wales and shows a 

time series of surface pressure perturbation (hPa) from ensemble member 8. The minutes 

shown above each panel refer to the forecast lead time with respect to 0430 UTC 5 Dec 2009. 

 

 

1.3.2. Problem 2: large-scale representation deficiency  

In addition to the problem 1, as discussed in Guidard and Fischer (2008; GF08 hereafter) 

another challenge of limited area modeling concerns the fact that LAMs are less effective at 

representing large-scale (e.g., synoptic) flow than global models (see also Hong and 

Kanamitsu, 2014; Hsiao et al., 2015; Kretschmer et al., 2015; Verdesco et al., 2016; Schwartz 

et al., 2020). There are several reasons for this:  

a) LAM domain is finite in size which limits its capability to capture and fully resolve 

large-scale phenomena (synoptic systems, Rossby waves, etc.).  

b) LAM assimilation systems are often in a less advanced state of development then the 

global counterparts (e.g., Gustafsson et al., 2018).  
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c) LAMs are designed for smaller-scale applications, with a greater emphasis on the 

mesoscale which can result in accumulation of a large-scale bias in time due to 

significant distortion of large-scale wave propagation (e.g., Feng et al., 2020).  

d) LBC formulation limitations cause atmospheric phenomena to be poorly propagated 

through the LAM domain (e.g., Warner et al., 1997).  

e) LAM analysis will not be able to use observational information that is located outside 

the domain (a fraction of the available observations is assimilated; see Gustafsson et 

al., 2018). 

Issues of large-scale representation also reflect LAMEPSs in the sense that their IC 

perturbations, which are produced through techniques such as EDA, cannot correctly account 

for large-scale uncertainties (e.g., Bölöni, 2011). The simultaneous presence of small- and 

large-scale perturbations is beneficial for EPS (Wang et al., 2014; Johnson and Wang, 2016; 

Raynaud and Bouttier, 2016). Furthermore, Schwartz (2019) demonstrated that having poorly 

resolved large scales can completely counteract the benefit of small grid size of a convection-

permitting LAMEPS.  

 

1.3.3. Solution: blending approach 

Problem 2 can partially be addressed by applying a blending technique (Brožkovà et al., 

2001; Yang, 2005; Wang et al., 2014; Hsiao et al., 2015; Vendrasco et al., 2016; Müller et al., 

2017) where large-scale information from the global model is merged with LAM small-scale 

information. Different authors have developed various approaches to the blending problem 

(see Feng et al., 2020 for a review of different blending approaches). Brožkovà et al. (2001) 

and Wang et al. (2014) proposed the use of a digital filter (DF) in the LAM and host model 

fields to obtain blended analysis. This approach can be further extended to involve variational 

data assimilation where blending is performed before or after variational data assimilation.  

Caron (2013) and Wang et al. (2014) showed that DF-blending techniques can also be 

used to address the problem 1. Caron (2013) replaced the ETKF with, so-called, scale-

selective ETKF (SSETKF). In the SSETKF, only small-scale perturbations are produced with 

ETKF, while large-scale perturbations are taken directly from the host EPS and blended 

together by using the DF, thus doing the DF-blending. It was demonstrated that spurious 

surface pressure perturbations are completely gone after the ETKF was replaced by the 

SSETKF (Fig. 7 in Caron, 2013) and that blending of only the largest wavelength was enough 

to achieve that result. Wang et al. (2014) used the DF-blending method under the framework 
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of their ALADIN-LAEF (Aire Limitee Adaptation Dynamique Developpement InterNational 

– Limited-Area Ensemble Forecasting) system (Wang et al., 2011) to combine IC 

perturbations generated through the breeding method with global ECMWF-EPS (Buizza et 

al., 2008) IC perturbations. DF-blending was used to blend small-scale ALADIN-LAEF and 

large-scale ECMWF-EPS IC perturbations to simultaneously introduce them into perturbed 

ICs. They achieved better upper-air scores and increased ensemble spread by applying the 

blending method rather than the breeding method without blending. 

 Johnson and Wang (2016) argue that it is important for large-scale perturbations to be 

consistent with LAMEPS analysis errors, while Vendrasco et al. (2016) show that small and 

large scales need to be consistent in the final analysis. This is not the case with the DF-

blending since large-scales come from a completely different model and are independent of 

LAMEPSs small scales or analysis errors. Furthermore, as GF08 discusses, DF-blending 

approach presents unique problems. Most notably, it has no relation to data assimilation 

theory, and there have been concerns regarding its optimality in the sense of minimum 

variance estimate. Thus, they proposed a method which includes global model information 

directly into a limited area variational analysis (sub-section 2.1.) and implemented it in 

ALADIN (Aladin IT, 1997; Termonia et al. 2018) and Action de Recherche Petite Echelle et 

Grande Echelle (ARPEGE) framework within ALADIN 3D-Var. We refer to this as the Jk 

blending method. Doing the blending inside the 3D-Var will result in the optimality of the 

blended analysis where small and large scales will be consistent. GF08 demonstrated a small 

but positive impact on objective and subjective scores. Dahlgren and Gustafsson (2012) 

explored this method further within a HIgh Resolution Limited Area Model (HIRLAM) and 

ECMWF framework of the HIRLAM 3D-Var and 4D-Var. They demonstrated a positive 

impact on forecast accuracy of surface and upper-air variables (Fig. 2). 

Large-scale information can also be included through the use of dual-resolution 

“hybrid” variational-ensemble data assimilation methods (e.g., Schwartz, 2016; Wu et al., 

2017; Hu et al., 2017). Such methods incorporate ensemble-derived, flow-dependent 

background error covariances drawn from a coarser resolution model into a high-resolution 

deterministic analysis. As opposed to the Jk blending method, which includes large-scale 

information as a new member in the 3D-Var, hybrid variational-ensemble data assimilation 

methods execute this through a background error covariance matrix. Schwartz (2016) 

demonstrated improved forecasts started from hybrid analyses. 
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Fig. 2. Figure 12. from Dahlgren and Gustafsson (2012). Verification of temperature forecasts 

compared with observations from radiosondes. To the right is the root mean square error and 

to the left the mean error (bias) averaged over all forecast ranges, valid at 00 UTC. Full line: 

reference experiment (i.e., without Jk). Dotted line: reference with Jk blending. The number 

of observations used in the statistics is also shown using the upper x-axis. 

 

 

1.3.4. Problem 3: grid size vs model's true resolution 

It is important to understand that the model grid size is not the same as the model resolution 

(e.g., Grasso, 2000). The second is sometimes referred to as the model effective resolution 

and is generally, at least, 5 times lower than the first (e.g., Pielke, 2002; Skamarock, 2004; 

Horvath et al., 2011; Mittermaier, 2014). Therefore, all point predictions within that area (i.e., 

neighborhood of 5Δx × 5Δx) should be considered equally likely and the output of the model 

should be viewed as the spatial and (or) temporal function of that neighborhood. Adding this 

to the fact that small scale errors saturate in a few hours, we realize that one cannot expect 

that a convection-permitting model forecast exactly matches the observations on the grid scale 
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(Theis et al., 2005; Mittermaier, 2014). Furthermore, double-penalty effect (Mass et al., 2002; 

Mittermaier, 2014) makes this problem worse, because it penalizes the forecast twice - 

displacement errors get penalized (increasing the false alarm rate), and closeness is not 

rewarded (decreasing the hit rate). 

 

1.3.5. Solution: neighborhood approach 

In order to alleviate difficulties regarding the rapid error growth at the small scales and the 

problem 3, neighborhood methods (Theis et al., 2005; Ebert, 2008; Ben Bouallegue et al., 

2013; Mittermaier, 2014; Schwartz and Sobash, 2017, among others) were developed for: 

a) The use in the forecast verification as spatial verification methods (see sub-section 

3.3.) where they generally share a common trait of relaxing the traditional requirement 

that forecast and observed events exactly match at the grid scale to account for 

observation and model uncertainties (Schwartz and Sobash, 2017). For example, 

looking at the neighborhood around a desired point, we can easily spot a convective 

storm that has passed a few kilometers away and we would not notice it if we only 

look at the forecast for the desired point.  

b) To extend an EPS by increasing the number of its members and (or) to provide a way 

to calculate ensemble probabilities which better reflect the model’s true resolution 

(sub-section 8.1.1.). 

The concept of the neighborhood is illustrated in Fig. 3. following Theis et al. (2005). Left-

hand side of the figure shows (x, y)-plane of the model grid. Shaded area denotes a 5 × 5 

neighborhood of the point (x0, y0) (shown in red), while Δx and Δy denote the model grid size 

in x and y direction, respectively. Total number of grid points inside a neighborhood (Nb) is 

obtained by choosing a neighborhood length scale r which can be either a number of grid 

boxes or physical distance and can be applied using square or circular neighborhood 

geometry. For example, left-hand side of Fig. 3 shows a square r × r neighborhood where Nb 

(= r2) = 25 grid points. In addition, Nb can also be extended to a time dimension (right-hand 

side of the Fig. 3), i.e., (x, t)-plane where Δt denotes the time step between successive model 

output times. How probabilities are calculated from the neighborhood, or how to combine an 

EPS with the neighborhood approach, is described in the sub-section 8.1.1. In contrast to all 

the studies cited here, we will not increase r beyond the theoretical values for the true model 

resolution (i.e., 5-7Δx), because we want to maximize the resolution of the output forecasts 

and keep them close to the convection-permitting range. 
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Fig. 3. Example of a square spatio-temporal neighborhood of a given grid point (red) at 

location (x0, y0) and forecast lead time t0. Left: the spatial neighborhood in the (x, y)-plane. 

Right: the spatio-temporal neighborhood in the (x, t)-plane. Δx and Δy denote the size of a grid 

box and Δt denotes the time step between successive model output times. Shaded grid boxes 

belong to the neighborhood. 

 

 

1.4. Objectives 

At Zentralanstalt für Meteorologie und Geodynamik (ZAMG), the LAMEPS ALADIN-LAEF 

has been developed within the framework of Regional Cooperation for Limited Area 

Modelling in Central Europe (RC-LACE; Wang et al., 2018) and has been used in operations 

since 2009. It is based on ALADIN model and is currently run at 11 km horizontal grid size 

with a planned upgrade to 5 km in early 2020. However, with ever-increasing levels of 

computer power, it is now possible to run LAMEPSs at convection-permitting resolutions 

corresponding to a grid size of 1-4 km (e.g., Vié et al., 2011; Bouttier et al., 2012; Nuissier et 

al., 2012; Romine et al., 2014; Kühnlein et al., 2014; Schwartz et al., 2015; Johnson and 

Wang, 2016; Hagelin et al., 2017; Schwartz and Sobash, 2019). For this reason, at ZAMG, a 

new convection-permitting LAMEPS named C-LAEF (Convection-permitting Limited Area 

Ensemble Forecasting) based on the Application of Research to Operations at Mesoscale 

(AROME) model (Seity et al., 2011; Termonia et al., 2018) is being developed.  
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The main objective of this dissertation is: 

• Develop and implement an IC perturbation method that will try to solve problems 

1 and 2. This method is planned to be used in a first operational configuration of 

C-LAEF. The main idea is as follows. We propose employing the Jk blending 

method within the C-LAEF, e.g., within the framework of its 3D-Var EDA system 

(Bouttier et al., 2012) to generate an ensemble of analyses. We refer to this as an 

ensemble Jk method. In such a system, small-scale perturbations are generated 

through 3D-Var EDA, while large-scale perturbations are generated from the host 

EPS via Jk blending. In turn, we hypothesize that final analyses are optimal, 

contain perturbed small and large scales which are, at the same time, consistent 

mutually and with perturbations coming from lateral boundaries. In this way, one 

can alleviate problems of large-scale forcing, inconsistencies between ICs and 

LBCs and inconsistencies between small and large scales.  

The secondary objective of this dissertation is to utilize relatively cheap and readily available 

techniques to improve C-LAEF performance: 

• Implement LAF to extend C-LAEF IC perturbations with the information from 

past forecasts in order to improve initial uncertainty estimate. 

• Implement neighborhood approach within C-LAEF system to account for the 

problem 3 and as an additional tool to counter the issue of rapid error growth at the 

small scales. 

Successful completion of these objectives will result in the improvement of 

convection-permitting LAMEPS’s forecasts, detection of extreme weather events and a 

potential benefit for issuing different types of warnings. Additionally, LAF, neighborhood 

approach and Jk blending can also be employed to deterministic models, such as ALADIN 

which is used at Croatian Meteorological and Hydrological Service (Tudor et al., 2013).  
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§ 2. A NOVEL METHOD OF PERTURBING INITIAL 

CONDITIONS IN A LAMEPS 

2.1. Jk blending method 

We now present basic formalisms of the Jk blending method. For a more detailed description, 

the reader is referred to GF08. 3D-Var is a variational method where, in order to obtain 

optimal analysis 𝑿𝒂, a so-called cost function 𝐽(𝐗) that measures the distance of the LAM 

state vector X to observations Y, and to the LAM background 𝑿𝒃, is minimized (sub-section 

1.1., equations (1.4) - (1.6)). When we assume that host model errors are uncorrelated with 

observation and background errors, an extra term 𝐽𝑘(𝐗), measuring the distance from large-

scale information in X to the host model large-scale information 𝑿𝒌, can be added to equation 

(1.4): 

𝐽(𝐗) = 𝐽𝑏(𝐗) + 𝐽𝑜(𝐗) + 𝐽𝑘(𝐗)                                             (2.1) 

𝐽𝑘(𝐗) =
1

2
(𝐻1𝐗 − 𝐻𝑘𝐗𝐤)

T
𝐕−1(𝐻1𝐗 − 𝐻𝑘𝐗𝐤)                                (2.2) 

where 𝑽 = 𝐸(𝜀𝑘𝜀𝑘
𝑇) is the host model large-scale error (𝜀𝑘) covariance matrix, H1 is the 

operator which fetched X from a nominal high-resolution to a low-resolution LAM space, and 

Hk is the operator which fetches 𝑿𝒌 from the host model low-resolution space to the same 

low-resolution LAM space as H1. This is done to include only large scales form the host 

model (e.g., large-scale constraint) as discussed in the sub-section 1.3., Hk consists of two 

steps: the interpolation of host model fields to a high-resolution LAM geometry and its 

truncation to a lower resolution (see sub-section 4.2.), such that only large scales are affected 

during analysis.  

We applied the Jk blending method to the AROME 3D-Var system (Fischer et al., 

2005), in which X is the state vector of 5 analysis variables (as is 𝑿𝒌): temperature, vorticity, 

divergence, specific humidity and the logarithm of surface pressure. A large-scale constraint 

can be applied to all of these or to only some. Our choices regarding this option are discussed 

in sub-section 4.2. 

As stated in GF08, correlations between host model and background errors are 

different from zero as a result of lateral boundary coupling. However, when one accepts 
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inaccuracies of roughly 10 %, such correlations can be disregarded, and the total cost function 

can be represented as the sum of three parts as shown by (2.1). In this study, it is assumed that 

this assumption also holds for our model configuration.  

 

2.2. Ensemble Jk method 

For the IC perturbation method of C-LAEF, we introduce a new method - the ensemble Jk 

method which combines the ensemble of 3D-Var with the Jk blending method. As discussed 

in the introduction, one must obtain consistent IC and LBC, which is crucial if LAMEPS is 

integrated over a small domain. To combine large-scale perturbations drawn from the host 

EPS (the global EPS in this study), which provides the LBC for the LAMEPS, with the small-

scale perturbations from LAMEPS, we propose an ensemble data assimilation blending 

technique. The approach is described as follows: 

a) 3D-Var EDA is used to generate perturbed analyses by:  

i) Random observation perturbations designed to simulate observation errors. For 

each observation, its error is taken from an observation database and is 

multiplied by a normally distributed random number with a zero mean and a 

unit standard deviation (white noise). This value is then added to the original 

observation value to obtain a perturbed observation. Perturbed-observation 

EDA perturbations are advantageous in that they are designed to estimate 

analysis uncertainty (e.g., Wei et al., 2008) which is a desirable property of IC 

perturbations. A theoretical justification of this approach is given in Žagar et 

al. (2005), while Burgers et al. (1998) show that perturbing observations does 

sample from the correct distribution in the case that observation errors are 

Gaussian and the system is linear. 

ii) Background perturbations from short-range forecasts of the LAMEPS. Each 

EDA analysis uses a forecast from different member of LAMEPS to provide a 

background information.  

For the time being, model errors inside the EDA itself are not considered, but they 

can have a beneficial impact on ensemble spread and reliability (e.g., Cardinali et 

al., 2014).  

b) To generate correct large-scale information in perturbed analyses that are consistent 

with perturbed LBCs, we introduce a large-scale constraint by applying Jk blending to 
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3D-Var EDA. In other words, perturbed global analyses were incorporated as a new 

term of the 3D-Var cost function and were assimilated with observations.  

In brief, each EDA member assimilates the following three components: 

a) Perturbed observations 

b) Perturbed background 

c) Perturbed global analysis 

Mathematically, the cost function of one ensemble member of the ensemble Jk method can be 

written as: 

 
𝐽i(𝐗i) =

1

2
(𝐗i − 𝑿𝑖

𝑏)
T

𝐁−1(𝐗i − 𝑿𝑖
𝑏) +

1

2
(𝐲i − 𝐻𝐗i)

T𝐑−1(𝐲i − 𝐻𝐗i)

+
1

2
(𝐻1𝐗i − 𝐻𝑘𝑿𝑖

𝑘)
T

𝐕−1(𝐻1𝐗i − 𝐻𝑘𝑿𝑖
𝑘) 

 

(2.3) 

where subscript i denotes the ensemble member. Final perturbed analyses are then found by 

minimizing these cost functions as in the standard 3D-Var. The resulting blended analyses 

include small-scale perturbations (LAMEPS) and large-scale perturbations (global EPS) 

which are consistent with one another, while also being consistent with LBC perturbations. 

We believe that the ensemble Jk method can alleviate the problem of IC and LBC 

perturbation mismatch and improve the representation of large-scale uncertainties in ensemble 

systems. In addition, it should alleviate the problem of inconsistencies between small and 

large scales usually present in DF-blending approaches. 

 More information on V, resulting perturbations, truncation and tuning of the ensemble 

Jk method is given in section 4. 
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§ 3. EXPERIMENTAL DESIGN 

3.1. C-LAEF configuration 

The C-LAEF system is based on the convection-permitting AROME model as it was 

operationally configured at ZAMG. AROME is a high-resolution limited area spectral non-

hydrostatic model. It solves non-hydrostatic fully compressible Euler equations system 

(Bubnova et al., 1995). A two-time level, semi-implicit, semi-Lagrangian discretization 

scheme on Arakawa A-grid (Arakawa and Lamb, 1977) is used. The vertical discretization is 

based on finite differences with the use of hybrid pressure terrain-following coordinate 

(Simmons and Burridge, 1981). Most of the prognostic variables have a spectral 

representation based on a double Fourier decomposition (Haugen and Machenhauer, 1993). It 

takes most of the ALADIN code on the adiabatic part while its physics package is mainly an 

adaptation of that used in Mesoscale Non-Hydrostatic research model Meso-NH (e.g., Lafore 

et al., 1998), and it is well adapted to a small grid size of roughly 1-2 km (Termonia et al., 

2018). In addition, AROME 3D-Var system is almost identical to that developed for the 

ALADIN system (Fischer et al., 2005). A more detailed description of AROME dynamics, 

physics and assimilation properties can be found in Seity et al. (2011), Vié et al. (2011) and 

Brousseau et al. (2016).  

In the present study, C-LAEF is configured by AROME model with a horizontal grid 

size of 2.5 km and 90 vertical levels with 17 ensemble members (16 perturbed plus control). 

Table 1 summarizes the general C-LAEF settings. The integration domain used is shown in 

Fig. 4. Due to high computational costs related to C-LAEF, the domain is relatively small at 

1080 km in the north/south direction and 1500 km in the east/west direction. The LBCs are 

provided by the ECMWF-EPS, and lateral boundary coupling is conducted using Davies 

method (Davies, 1976) with an 8-grid point relaxation zone every 3 h. Our choices regarding 

the IC perturbations are described in the next sub-section, and for LBC perturbations, 17 

members of the ECMWF-EPS are used. Due to technical limitations, the same ECMWF-EPS 

members used for ALADIN-LAEF (the first 16 plus control members) are also used for C-

LAEF. As this study’s emphasis is on IC uncertainties, model errors are not considered and no 

model error representation scheme is used. The same is true for lower boundary conditions 

(i.e., surface variables; e.g., land albedo, soil moisture, soil temperature, etc.) which are not 
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perturbed. We would like to emphasize that impact of model perturbations on C-LAEF was 

explored in Wastl et al. (2019) who reported a beneficial impact on ensemble spread. 

Here, 3D-Var is used for data assimilation. Conventional observations including 

AMDAR, SYNOP, PILOT, TEMP, SHIP and EUROPROFILERS plus two satellite products 

GEOWIND atmospheric motion vectors and 25 km advanced Scatterometer ocean winds, are 

assimilated. In this testing phase, 6-h continuous assimilation cycles applied at 0000, 0600, 

1200 and 1800 UTC are performed.  

C-LAEF prognostic variables, parameterization schemes and diffusion used in this 

study are as follows: 

a) Prognostic variables: 12 3D prognostic variables. Two components of the horizontal 

wind, temperature, specific humidity, rain, snow, graupel, cloud droplets, ice crystals, 

turbulence kinetic energy (TKE), two non-hydrostatic variables – pressure departure 

and vertical divergence and one 2D variable – hydrostatic surface pressure. 

b) Microphysics: an upgraded 3-class ice parameterization (Pinty and Jabouille, 1998) 

which is coupled to a Kessler scheme for warm processes.  

c) Turbulence: prognostic TKE combined with a diagnostic mixing length. TKE scheme 

was developed by Cuxart et al. (2000) and uses the Bougeault and Lacarrere (1989) 

mixing length. 

d) Surface: an externalized version of the Meso-NH surface scheme, called Externalized 

Surface (SURFEX) model (Le Moigne et al., 2018). SURFEX simulates the exchange 

of energy and water between the atmosphere and surface. 4 types of parameterizations, 

depending on surface tiles, are used: ISBA (Noilhan and Planton, 1989) over land tiles 

with 1-layer snow scheme (Douville et al., 1995), TEB model (Masson, 2000) over 

urban areas, iterative ECUME algorithm (Belamari and Pirani, 2007) over oceans and 

for inland water, classic Charnock’s (1955) formulation is used. 

e) Radiation: the shortwave radiation scheme (Fouquart and Bonnel, 1980) uses six 

spectral bands. Cloud optical properties are derived from Morcrette and Fouquart 

(1986) for liquid clouds and Ebert and Curry (1992) for ice clouds. Longwave 

radiation is computed by the Rapid Radiative Transfer Model (Mlawer et al., 1997).  

f) Convection: deep convection is assumed to be explicitly resolved by the model’s 

dynamics. For shallow convection the Eddy-Diffusivity-Kain-Fritsch scheme 

developed by Pergaud et al. (2009) is used. 
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g) Diffusion: the spectral part of the diffusion is a fourth-order linear scheme, with the 

same strength for each spectral prognostic variable. For non-spectral variables, a so-

called semi-Lagrangian horizontal diffusion nonlinear scheme (Váňa et al., 2008) is 

applied. The water vapor and TKE variables are not diffused at all. 

 

 

 

 

Fig. 4. C-LAEF computational domain and orography with INCA domain outlined in red and 

the verification domain shown in blue.  

 

3.2. Experiments 

The aim here is to evaluate the ensemble Jk method and to assess its added value to the 

standard perturbed-observation EDA (e.g., Houtekamer et al., 1996; Bouttier et al., 2012), 

i.e., EDA without the Jk term in (2.3). For this reason, two experiments are conducted:  

a) REF – a reference experiment in which C-LAEF is using perturbed-observation EDA 

as an IC perturbation method. 

b) JK – experiment where C-LAEF uses the ensemble Jk method for the same purpose.  
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Table 1. C-LAEF settings used in this study. See text for more details. 

OPTION VALUE 

Grid size 2.5 km 

Number of vertical levels 90 

Number of members 16 + control 

Data assimilation 3D-Var, 6-h cycling 

Forecasts 24-h, 1200 UTC only 

IC perturbations Ensemble Jk or EDA 

LBC perturbations ECMWF-EPS 

Model perturbations None 

Surface perturbations None 

 

 

Both experiments use the same configuration as the one described in sub-section 3.1. and 

shown in Table 1. Assimilation is performed on the full model resolution for 17 different 

ensemble members. No re-centering of EDA or ensemble Jk perturbations is performed as this 

has a negative impact on the ensemble performance (Lang et al., 2015) and all forecasts are 

started directly from EDA/ensemble Jk members. 

An additional experiment (DOWN) is performed for the period studied in section 7. In 

DOWN, perturbed analyses were not generated by EDA or by the ensemble Jk method but by 

the downscaling of ECMWF-EPS analyses. This makes them fully consistent with LBC 

perturbations and DOWN serves as a reference experiment in section 7. Comparison of 

perturbed-observation EDA against the downscale experiment in terms of traditional scores is 

presented in Raynaud and Bouttier (2016) and will not be repeated here. They concluded that 

EDA “significantly improves the AROME EPS performance for surface weather variables at 

early ranges, namely up to 12 h depending on the variable, as measured by the spread/skill 

relationship and the CRPS over a one-month period.”   

In JK experiment, global ECMWF-EPS analyses are used as a source of large-scale 

information in the ensemble Jk method. Horizontal resolution of the ECMWF-EPS in our 

experiments is spectral cubic TCO640 with 91 vertical levels. The ECMWF-EPS uses singular 

vectors in combination with EDA for IC perturbation generation (e.g., Buizza and Leutbecher, 

2015) and resulting perturbations are completely independent from ours. 
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It might be necessary to emphasize that the same host EPS (ECMWF-EPS in this 

study) must be used to provide all the necessary information for LAMEPS, i.e., LBC 

information, global analyses for the ensemble Jk method and V matrix calculation (see sub-

section 4.1. for details on how V is calculated). 

 

3.3. Verification 

The JK and REF experiments described above are verified in 3-h intervals for surface 

variables, i.e., 2 m temperature (T2M), 2 m relative humidity (RH2M), 10 m wind speed 

(W10M) and mean sea level pressure (MSLP) against observations drawn from 832 available 

surface stations within the verification domain (blue area in Fig. 4). Model fields are 

interpolated via bilinear interpolation to observation locations. For upper-air variables, 

verification is done every 6 h against high-resolution deterministic ECMWF (0.1° × 0.1°) and 

deterministic NCEP analyses (0.5° × 0.5°). This approach is applied because the ensemble Jk 

method uses perturbed ECMWF analyses; thus, verification against deterministic ECWMF 

analyses can be biased toward JK experiment. Verifying variables include temperature, 

relative humidity and wind speed at 500 and 850 hPa pressure levels (T500, T850, RH500, 

RH850, W500 and W850, respectively). 

Verifying precipitation forecasts in convection-permitting models has its difficulties 

and traditional verification methods may not be appropriate (Ebert, 2008; Mittermaier, 2014). 

The main reasons for this are: a) grid averaged values (model forecast) cannot simply be 

compared to the point values (observations; Göber et al., 2008), as representativeness error 

can be as high as 50 % of the total error (Haiden et al., 2012), especially given the fact that 

model effective resolution is at least 5 times higher than its grid size (sub-section 1.3.4.); b) it 

has been shown in the past that point verification is unable to show benefit of increasing 

model resolution for grid sizes below about 10 km (Mass et al., 2002) and c) it is very 

sensitive to the double-penalty effect. This had led to the development of so-called spatial 

verification techniques (Gilleland et al., 2009). The spatial evaluation accounts for structure 

errors, spatial displacements and field deformations. Through different approaches (i.e., scale 

separation, neighborhood, object- or feature-based approach, etc.) spatial verification reduces 

the double-penalty effect and is able to more correctly compare different resolution models. 

Although, most of them assumes gridded observations are available, techniques to verify 

against point observations have also been developed (Ebert, 2008; Mittermaier, 2014).  
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In this study, we use Fractions Skill Score (FSS; Roberts and Lean, 2008), which is a 

form of a neighborhood approach (see sub-section 8.1.), and it is computed following the 

ensemble formulation proposed by Duc et al. (2013). INCA (Integrated Nowcasting through 

Comprehensive Analyses; Haiden et al., 2011, Wang et al., 2017) analyses are used as a 

reference for precipitation verification. The INCA system is currently being developed at 

ZAMG, and it uses data drawn from automatic weather stations, remote sensing data (radar, 

satellite), forecast fields of NWP models, and high-resolution topographic data (Haiden et al., 

2011) to generate a high-resolution precipitation analysis field for a domain covering Austria 

and surroundings (red quadrangle on Fig. 4). C-LAEF forecasts are interpolated to the high-

resolution INCA grid (1 km grid size) as this is the recommended practice for our purpose 

(see Wolff et al., 2014). 

Good EPSs should generate superior ensemble mean forecasts over the control, high 

spread-skill relations and reliable probability forecasts (Du, 2007). Furthermore, Murphy 

(1993) described aspects or attributes that contribute to forecasting quality. We will now give 

a brief description of attributes used in this study and the reader is referred to Murphy (1993) 

or Wilks (2006) for a more detailed description.  

a) Accuracy – the correspondence between individual forecasts and the events they 

predict. 

b) Bias – the correspondence between the average forecast and the average observed 

value of the predictand. 

c) Reliability – the average agreement between the forecasted probability of an event 

and the observed frequency of that event. In other words, if an event was 

forecasted with an average probability of 40%, the observed probability of this 

event should also be 40 %. 

d) Resolution – the degree to which the forecasts sort the observed events into groups 

that are different from each other. This means that the observed distribution when 

"A" was forecast is different from the observed distribution when "B" is forecast. 

It is conditioned on forecasts. For example, if observed temperature distribution 

following forecasts of, say, -10 °C and -20 °C are very different, the forecasts can 

resolve these different temperature outcomes, and are said to exhibit resolution. 

e) Discrimination – ability of the forecast to distinguish between occurrences and 

non-occurrences by forecasting different probabilities before occurrence of an 

event than before non-occurrence of this event. It is the opposite to the resolution 
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in the sense that it is conditioned on observations. For example, we compare 

forecasted distributions for all observed events of -10 °C and -20 °C. 

Discrimination is the measure of difference between those two forecasted 

distributions.  

f) Uncertainty – the variability of the observations. Does not depend on forecasts. 

g) Sharpness – the variability of the forecasts. Does not depend on observations. 

Forecasts that rarely deviate much from the climatological value of an event 

exhibit low sharpness. By contrast, forecasts that are frequently much different 

from the climatological value of an event are sharp. 

By considering the following example, it is easy to see why only one attribute is not enough 

to characterize a probabilistic forecast. If we forecast 10 events whose climatological 

frequency of occurrence is 30 %, we do not want to give 10 forecast all with 30 % probability 

of occurrence (perfect reliability, but no resolution), but we want to give 7 forecasts with 0 % 

probability and 3 forecasts with 100 % probability (perfect reliability and resolution). 

Given these sources of complexity, no single score can assess all attributes of 

probabilistic forecasts at once. For this reason, we use various scores to assess different 

aspects of forecasts and to draw conclusions about the EPSs under consideration. These 

include a) the root mean square error (RMSE) of ensemble mean for assessing ensemble mean 

accuracy, b) the continuous rank probability score (CRPS) for assessing overall EPS skill, c) 

ensemble RMSE/spread relation and outlier statistics for assessing reliability, d) 

decomposition of the Brier score for assessing accuracy of ensemble probabilities, reliability 

and resolution, and e) relative operational characteristics (ROC) for assessing discrimination. 

Before each score is presented in section 5., a brief description and mathematical formulation 

is provided. However, more detailed descriptions of these scores can be found in Talagrand et 

al. (1997) and Wilks (2006).  

To determine if the difference in scores between the experiments is statistically 

significant, the moving-block bootstrap technique, following the procedure of Wilks (1997) 

and using 5000 resamples at a confidence level of 90 %, was applied. Block length (4 in our 

case) was defined as a closest integer to a cube root of the sample length (Hall et al., 1995). 

Observation errors are not considered, as this extends beyond the scope of this study. 

Nevertheless, as observation errors can have significant effect on final scores (e.g., Bowler, 

2008; Candille and Talagrand, 2008; Hacker et al., 2011; Duc and Saito, 2018; Ben 

Bouallegue et al., 2020); we discuss this limitation in section 5.7.  
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§ 4. DIAGNOSTICS AND TUNING 

4.1. V matrix 

As illustrated by equations (2.2) and (2.3), in addition to B and R error covariance matrices, a 

V error covariance matrix must also be provided. This is an important step because V controls 

the impact of large-scale constraint on the final analyzed state. To see how this is the case, 

suppose we do not have any observations. Gradient of the cost function (equation 2.2), in that 

case, takes the following form: 

𝛁𝐽(𝑿𝑎) = 𝑩−1(𝑿𝑎 − 𝑿𝑏) + 𝑽−1(𝑿𝑎 − 𝑿𝑘) = 0                           (4.1) 

Where we assumed that H1 = Hk = 1 because there are no observations. Further, by 

rearranging: 

𝑿𝑎 − 𝑿𝑘 = 𝑽𝑩−1(𝑿𝑏 − 𝑿𝑎)                                             (4.2)  

Now, let us assume that we only take background information at one model grid point j. In 

this case 𝑩−1(𝑿𝑏 − 𝑿𝑎) is just one number, say S. Thus: 

𝑿𝑎 − 𝑿𝑘 = 𝑆 [

𝑉1𝑗

…
𝑉𝑁𝑚𝑗

]                                                         (4.3) 

Therefore, analysis increment is proportional to a column vector of V. In other words, the 

impact of the large-scale information is spread from the jth point to all other Nm model points 

by V. V assures that statistically consistent increments are also created at the neighboring grid 

points and levels of the model for this and all other model variables. The same is true for B, 

which can be seen if this exercise is repeated, so that large-scale information is taken only for 

one model grid point, while keeping vector 𝑿𝑏 complete. 

In calculating V, we used the same procedure normally applied to B, for example, the 

ensemble simulation method (Berre et al., 2006), resulting in V which is climatological and 

does not contain any flow dependent information. To obtain climatological host model large-

scale error covariances using the ensemble simulation method, analyses differences between 8 

pairs of ECMWF-EPS members need to be calculated. This calculation is done for 0000 and 

1200 UTC runs over two-week periods in January, April, July and October of 1 year to 

include seasonal variability of error covariances, as this can have a significant impact on 
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forecast quality (Storto and Randriamampianina, 2010). As in GF08, V is formulated in a 

univariate manner and the cross-covariances among errors of different model variables are left 

for B to handle.   

To check if V is calculated correctly and behaves expectedly, we present a few basic 

diagnostics. Fig. 5 shows the horizontal error variance spectrum (Berre, 2000) of V and B 

matrices for two levels (roughly 500 and 920 hPa) and variables (divergence and specific 

humidity) as a function of a total wave number k* (Berre, 2000): 

𝑘∗ = 𝑁𝑥√(
𝑘

𝑁𝑥
)

2

+ (
𝑙

𝑁𝑦
)

2

                                                  (4.4) 

where k (l) is a wavenumber in x (y) direction and Nx (Ny) domain size in x (y) direction in km. 

Note that V comes from ECMWF-EPS and B comes from C-LAEF. It can be seen that, after 

k* ~ 15, V spectra starts to decrease exponentially. Values beyond that are unphysical and are 

just an artifact of interpolation of ECMWF-EPS analyses to the C-LAEF geometry. Given the 

fact that grid size of ECMWF-EPS analyses used to calculate V was 32 km, Nx is equal to 

1080 km and Ny is 1500 km, a value k* ~ 15 is correct.  

Additionally, Fig. 6 shows horizontally averaged vertical correlations of temperature 

and vorticity for the model level 32 (around 500 hPa). Those correlations tell us how an 

analysis increment is spread to the other model levels by V. Correlations in Fig. 6 can be 

compared to the correlations for B computed over Europe for ECMWF IFS HRES (Integrated 

Forecast System High RESolution; ECMWF, 2019) model in Pereira and Berre (2006; their 

Fig. 14) or for LAM in Stanešić et al. (2019; their Fig. 5). The comparison reveals that V is 

calculated correctly. Negative temperature correlations can be explained by the vertical 

structure of the upper-level troughs in the mid-latitudes, where upper-level tropospheric cold 

air is associated with a decrease of the tropopause and a warming of the air above it (Stanešić 

et al., 2019), in accordance with conceptual models od upper-level dynamical processes (e.g., 

Hoskins, 1985). 

 

4.2. Tuning and truncation of the ensemble Jk method 

In the ensemble Jk method, we test several means of tuning the impact of large-scale 

constraint:  
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Fig. 5. Horizontal variance spectrum of C-LAEF background errors (dashed blue) and host 

model analysis errors (solid orange) for (a) divergence (s-2) at approximately 500 hPa, (b) 

specific humidity (g2kg-2) at approximately 500 hPa, (c) divergence (s-2) at approximately 920 

hPa and (d) specific humidity (g2kg-2) at approximately 920 hPa.  

 

 

a) The selection of variables included in 𝑿𝑘. Multiple tests are performed and model 

behavior studied from the use of different variables. We ultimately use all analysis 

variables with the exception of surface pressure, as this is the best performing 

option.  

b) A scaling factor (for each analysis variable separately) controls the relative weight 

of the Jk term relative to Jb and Jo terms of the cost function in (2.3), i.e., it can be 

used to fine tune the impact of all variables separately. This is a value that multiplies 

standard deviations within the V. A similar scaling factor for background error 

standard deviations is commonly used in ALADIN/AROME variational assimilation 

(i.e., REDNMC; Desroziers et al., 2005). Regarding the magnitude of this scaling 

factor, a probabilistic approach is used here. A scaling factor for each variable is 

randomly selected from between two reasonable empirically predetermined values,  
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Fig. 6. Vertical profile of the vertical correlations at level 32 (approximately 500 hPa) 

averaged over horizontal wavenumbers for (a) temperature and (b) vorticity. Correlations 

above (below) zero are colored blue (red); see the text for details. 

 

 

so that each member presents a slightly different combination. Each random number 

is determined from a seed, so that experiments can be reproduced exactly. 

c) The inflation of ECMWF-EPS analyses perturbations (calculated by subtracting 

control analysis from each ensemble member) by a factor of 2 (0) at the lowest 

(highest) model level with exponential change between is performed before their use 

in ensemble Jk method. After this procedure, newly calculated perturbations are 

again added to the ECMWF control to create inflated analyses. When this inflation 

procedure is not applied, the ensemble spread is reduced in JK relative to REF. 

Inflation restores the spread to similar values as in REF while not affecting other 

scores such as the RMSE. 

As already explained in the sub-section 2.1., the Jk term in (2.3) needs to be truncated 

such that only large scales are kept from the host EPS. To determine the exact scale of 

truncation, we adopted the same procedure as that applied in GF08. From Fig. 5, it can be 

observed that beyond k* ~ 10, two spectra begin to diverge, and little energy is contained in 
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mesoscale spectra of the host EPS. We thus do not expect to derive any useful information 

from the host EPS at these scales, and the truncation was set at k* = 8 which corresponds to a 

wavelength of roughly 135 km. In other words, any information from the host EPS on the 

scales below 135 km is discarded. This value of the truncation was kept constant on all model 

levels for all variables and all assimilation cycles. Recently, however, Feng et al. (2020) 

developed a method to dynamically select the truncation wavenumber computed according to 

the spectral characteristics of the LAM forecast quality and the spectral distribution of errors 

in the host model. The method results in less model bias and less disturbance to the LAM 

analysis balance. Implementing it in the C-LAEF is left for a future study. 

 

4.3. Perturbation spectrum 

To check if the ensemble Jk method behaves expectedly (i.e., acting on large scales), we look 

at the perturbation spectrum. By constraining only the large scales, it is expected to see an 

impact on the large-scale part of the perturbation spectrum. Spectral analysis is done as 

described in Denis et al. (2002) where discrete cosine transform is used to obtain spectra from 

2D meteorological fields. Here, we apply this technique to two sets of IC perturbations (not 

the full fields). 

 Perturbations are calculated by taking the difference between an ensemble member 

and a control (unperturbed) member at initial time. First set is obtained by using EDA with 

observation perturbations only (no large-scale information from the ECMWF-EPS) and 

second by using ensemble Jk method. Figure 7. shows kinetic energy and temperature 

perturbation spectra for ensemble member 6 at the model level 50 (around 800 hPa) and 

model level 80 (around 990 hPa) averaged over the period of one week and two times per day 

(0000 and 1200 UTC). EDA only perturbations are shown in blue, while ensemble Jk 

perturbations are shown in orange. Denoted wave numbers 10 and 100 correspond to 

wavelengths of about 150 km and 15 km, respectively. The difference is obvious – ensemble 

Jk method gives perturbations with more energy at large scales, while keeping the same 

amount of energy at small scales. Spectra starts to differ somewhere between wavenumbers 7 

and 10 confirming that our truncation is functioning properly. This is true for both kinetic 

energy and temperature. Regarding the different model levels – difference for kinetic energy 

is smaller at level 80 because ensemble Jk method has a weaker influence closer to the ground 

as ECMWF-EPS’s wind perturbations are more active in the upper atmosphere. Reverse is 
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true for the temperature, since ECMWF-EPS’s temperature perturbations are more active near 

the ground (e.g., Isaksen et al., 2010) and this is clearly seen from Fig. 7.  

Therefore, we confirm that the ensemble Jk method behaves as expected and obtained 

perturbations have more energy at largest scales. 

 

 

 

Fig. 7. Kinetic energy (upper row) and temperature (lower row) spectra at model levels 50 

(left column) and model level 80 (right column) averaged over the period of 7 days, two times 

per day. EDA perturbations (blue) and ensemble Jk perturbations (orange). Denoted wave 

numbers 10 and 100 correspond to wavelengths of about 150 km and 15 km, respectively.  
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§ 5. LONG-TERM VERIFICATION 

In this section, we present the results of a two-month integration of REF and JK experiments 

to illustrate differences in average model behavior. Experiments were performed for 62 days 

from 1 July until 31 August 2016 with 1200 UTC runs with a 24 h forecast range. These 

months involved several episodes of strong convection occurring over central Europe, 

rendering them appropriate periods for the verification of a convection-permitting EPS.  

Due to the limited domain used, a forecast range of 24 h proved more than sufficient 

for our IC perturbation impact study, as LBC perturbations dominate even before this time is 

reached. For upper-air variables, only verification results done against independent NCEP 

analyses are presented, but conclusions remain the same if verification is done against 

ECMWF analyses. However, verifying against high resolution ECMWF analyses yields even 

better JK results with an increased percentage of statistically significant results relative to 

those presented in the following sub-sections (not shown). 

 

5.1. RMSE of ensemble mean and spread 

A well-known and understood measure of accuracy is RMSE while ensemble spread, defined 

as standard deviation of ensemble members, measures deviation of ensemble members from 

the ensemble mean.  

𝑅𝑀𝑆𝐸 =  √
1

𝑀
∑(𝐹̅𝑖 − 𝑂𝑖)2

𝑀

𝑖

                                              (5.1) 

𝑆𝑝𝑟𝑒𝑎𝑑 =  √
1

𝑁 − 1
∑(𝐹𝑖 − 𝐹̅)2

𝑁

𝑖

                                        (5.2) 

where 𝐹̅ is the ensemble mean forecast, O is the observation, M is the number of forecast-

observation pairs and N is the ensemble size. In a statistically consistent or reliable EPS, the 

RMSE of ensemble mean should match its spread multiplied by a correction factor for finite 

ensemble size (see Fortin et al., 2014). This follows from the fact that in a perfect ensemble 

(i.e., a perfect sampling of true state uncertainty), truth should be statistically 
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indistinguishable from any ensemble member (Buizza et al., 2005). Thus, the RMSE/spread 

relation is a good measure of reliability. Lower (higher) spread than RMSE indicates under-

(over-) dispersion. 

Fig. 8 shows RMSE and spread for T500, T850, RH500, RH850, W500 and W850. 

Positive effects of the ensemble Jk method on the accuracy of the ensemble mean can be 

clearly identified because RMSE is reduced for almost all variables and at both levels in JK. 

However, differences observed are mostly statistically significant within early forecast ranges 

(up to 12 h). Spread remains similar in JK and REF at 850 hPa but is reduced at 500 hPa in 

JK, which is a favorable result because JK would be over-dispersive otherwise. As REF is 

under-dispersive, reducing RMSE more than spread enhances the reliability of JK.  

RMSE and spread for surface variables are shown in Fig. 9, in which results are more 

neutral. There is a slight improvement in RMSE of JK for T2M, RH2M and W10M, mostly 

over the first 3-9 h and for MSLP from 9 to 18 h. However, none of the differences observed 

are significant. Spread remains almost the same for T2M and RH2M, while it is slightly 

higher in the case of MSLP and lower for W10M in JK. 

Both REF and JK are under-dispersive for both upper-air variables and especially for 

surface variables. These results are consistent with those of numerous other studies (e.g., 

Wang et al., 2011; Bouttier et al., 2015; Harnisch and Keil, 2015; Johnson and Wang, 2016, 

among others). Under-dispersion is a well-known problem of ensemble forecasting in general 

(e.g., Leutbecher and Palmer, 2008). Reasons for this are the deficiencies in methods that try 

to estimate the true uncertainties in various components of LAMEPS (i.e., IC, LBCs, model, 

etc.) and because observation errors are generally not accounted for (see sub-secion 8.2.4). In 

this study, under-dispersion is even more evident as model and surface perturbations are not 

included. In addition, due to the relatively large difference in grid size between C-LAEF and 

ECMWF-EPS, LBC “sweeping” effect (Nutter et al., 2004a) is enhanced and plays a 

significant role in the longer forecast ranges, placing an additional constraint on the ensemble 

spread growth. The under-dispersion can be alleviated by implementing techniques described 

in section 8. 
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Fig. 8. RMSE of the ensemble mean and ensemble spread of REF (dash-dotted and dotted 

blue, respectively) and JK (solid and dashed orange, respectively) for (a) T500, (b) RH500, 

(c) W500, (d) T850, (e) RH850 and (f) W850 for the verification period. Forecast ranges with 

statistically significant differences are marked with bullets.  

 



 

36 

 

 

Fig. 9. As in Fig. 8, but for (a) MSLP, (b) T2M, (c) RH2M and (d) W10M. 

 

 

5.2. Continuous ranked probability score 

The CRPS is related to the rank probability score but for an infinite number of classes; thus, it 

compares the full predicted distribution with observations. The CRPS is a good measure of 

overall EPS skill. It is dependent on a predicted distribution’s first (ensemble mean) and 

second moment (spread) and is negatively oriented, meaning that lower values are better.  

𝐶𝑅𝑃𝑆 =  ∫ [𝐹(𝑥) − 𝑂(𝑥)]2𝑑𝑥                                                (5.3)
∞

−∞

 

𝑂(𝑥) =  {
0, 𝑥 < 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑣𝑎𝑙𝑢𝑒
1,         𝑥 ≥ 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑣𝑎𝑙𝑢𝑒

                                          (5.4) 

Where F(x) and O(x) are cumulative probability density functions of forecasts and 

observations, respectively. 
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The CRPS for upper-air and surface variables is shown in Figs. 10 and 11, 

respectively. Better CRPS is obtained for all upper-air variables for all levels for JK. 

Significance test results are similar to RMSE results – significant within early forecast ranges 

for upper-air (up to 12 h) and up to 18 h for RH850. For the surface, significant improvements 

in CRPS are obtained at 9 and 12 h for MSLP in JK. Insignificant improvements observed in 

the first forecast hours for T2M in JK are also visible here. Thus, the CRPS supports 

conclusions drawn from Fig. 8 and 9 that JK is significantly more skillful for upper-air 

variables and MSLP. 

 

 

 

 

Fig. 10. CRPS of REF (dashed blue) and JK (solid orange) for (a) T500, (b) RH500, (c) 

W500, (d) T850, (e) RH850 and (f) W850 for the verification period. Forecast ranges with 

statistically significant differences are marked with bullets. 
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Fig. 11. As in Fig. 10, but for (a) MSLP, (b) T2M, (c) RH2M and (d) W10M. 

 

 

5.3. Outlier statistics 

Outliers are defined as the number of cases in which verifying observations lie outside of the 

whole ensemble and are typically expressed as percentages. The perfect outlier percentage is 

calculated as 2/(𝑁 + 1) ∗ 100% (e.g., Wilks, 2006) where N is the ensemble size (thus, a 

perfect score is 11 % in our experiments). The percentage of outliers serves as a good measure 

of reliability. This follows from the fact that if the ensemble spread is consistently too small, 

then the observation will often be an outlier in the distribution of ensemble members, 

implying that ensemble relative frequency will be a poor approximation to probability 

Fig. 12 shows the percentage of outliers for upper-air variables. The number of 

outliers is greatly reduced in JK for T500 and T850, with weaker effect found for RH500 and 

RH850 and with almost neutral effect found for W850 and W500. This means that reliability 
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is mostly improved for temperature and relative humidity. Significance test results support 

these conclusions. 

Regarding the surface variables and results given in Fig. 13, the greatest reduction in 

the number of outliers in JK is achieved for MSLP, which is also significant at 9 and 12 h 

forecast range, resulting in a more reliable ensemble. Slight and insignificant reductions are 

also observed for T2M.  

 

 

 

Fig. 12. Percentage of outliers of REF (dashed blue) and JK (solid orange) for (a) T500, (b) 

RH500, (c) W500, (d) T850, (e) RH850 and (f) W850 for the verification period. Forecast 

ranges with statistically significant differences are marked with bullets. Solid black lines 

denote an ideal value of 11 %.  
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Fig. 13. As in Fig. 12, but for (a) MSLP, (b) T2M, (c) RH2M and (d) W10M. 

 

 

5.4. Decomposition of the Brier score 

The Brier score (BS) is the mean squared error of the probability forecasts, considering that 

the observation is 1 if the event occurs, and that the observation is 0 if the event does not 

occur (e.g., Wilks, 1997). Similar to the RMSE, the score averages the squared differences 

between pairs of forecast probabilities and the subsequent binary observations and it is 

negatively oriented. The BS can be decomposed in three terms: reliability, resolution and 

uncertainty (Wilks, 2006):  

𝐵𝑆 =  √
1

𝑀
∑(𝑝𝑖 − 𝑜𝑖)2

𝑀

𝑖

                                                (5.5)  

𝐵𝑆 = 𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 − 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 + 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦                          (5.6) 



 

41 

 

where 𝑝𝑖 and 𝑜𝑖 denote ensemble and observation probability of occurrence, respectively. 

Reliability and resolution are the two main characteristics describing the quality of a 

probabilistic forecast (Murphy, 1993). Since more accurate forecasts are characterized by 

smaller values of BS, one would like the reliability term to be as small as possible, and the 

resolution term to be as large (in absolute value) as possible, while uncertainty depends only 

on the observations, and is unaffected by the forecasts. 

 Figure 14 shows the decomposition of the BS for upper-air variables averaged over 

the verification period and first 12 h of forecast range. Significant reduction of BS is visible 

for almost all variables for a range of different thresholds. More importantly, decomposition 

of BS shows that improvement comes not only from improved reliability, but also from 

improved resolution. Almost perfect reliability at 500 hPa is in the agreement with the results 

from sub-sections 5.1. and 5.3. For the surface (Fig. 15), mostly neutral results are obtained.  

 

 

 

Fig. 14. Decomposition of the BS for REF (blue) and JK (orange) for (a) T500, (b) RH500, 

(c) W500, (d) T850, (e) RH850 and (f) W850 for the verification period and averaged over 

first 12 h. Thresholds with statistically significant differences are marked with bullets. 
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Fig. 15. As in Fig. 14, but for (a) MSLP, (b) T2M, (c) RH2M and (d) W10M. 

 

 

5.5. Relative operating characteristics 

The ROC curve plots the hit rate (hits divided by the sum of hits and misses) against false 

alarm rate (false alarms divided by the sum of false alarms and correct negatives) for a set of 

predefined probability thresholds (in our case, used probability thresholds are: 0-0.1, 0.1-0.2, 

…, 0.9-1.0). It compares two conditional distributions where the hit rate corresponds to 

occurrences and where the false alarm to non-occurrences of an event measuring the attribute 

of discrimination. Perfect EPS will have hit rate equal to 1 and false alarm rate equal to 0. 

Thus, perfect curve travels from bottom left to top left of diagram, then across to top right of 

diagram. Diagonal line indicates no skill. ROC is usually used to test whether the model is 
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able to detect occurrences of extreme events. Therefore, ROC was calculated over a range of 

different thresholds and the results presented here are for the thresholds for which JK 

performed the best with an emphasis on higher threshold values, while results for other 

thresholds will be mentioned in the text. 

The ROC curve of upper-air variables averaged over the first 12 h of forecast range is 

shown in Fig. 16. Discrimination for wind speed is improved for all the tested thresholds (0 – 

38 ms-1) and both levels. Slight improvements of discrimination in relative humidity are 

visible for all thresholds up to 99 % (75) % at 500 hPa (850 hPa), while it is neutral for the 

rest. For temperature, mostly neutral results are obtained except for a slight improvement for 

more extreme values at 500 hPa. In short, the results show that JK can better distinguish 

between the occurrences and non-occurrences of an event for almost all variables, a range of 

different thresholds and it is better at detecting extreme events for W500, W850, T500 and 

RH500.  

For the surface variables and extreme thresholds (Fig. 17), the situation is more neutral 

for RH2M and W10M, although a small improvement in JK is visible for W10M and 

thresholds above 4 ms-1. For T2M, discrimination is visibly improved in JK for thresholds 

above 28 °C, while for MSLP, JK better discriminates low pressure events (below 1008 hPa 

which is an extreme value for summer over central Europe). This indicates that JK is slightly 

better at detecting extreme events than REF. 

 

5.6. Precipitation  

Figure 18 shows FSS for 3-h precipitation of JK versus REF as a function of the lead-time for 

the whole verification period. At a given lead-time, 62 skill scores (one for each day) are 

computed of the FSS of JK using the REF FSS as reference. This second normalization (of JK 

FSS in respect to REF FSS) of the score is computed to avoid the variability of the FSS score 

depending on the rainfall of both experiments. The left panel shows the median of the Skill 

Score of FSS of JK to FSS of REF illustrated as matrix of colors (red means JK better than 

REF and blue the opposite, white is for no difference) for different thresholds, scales and 

forecast ranges. The right panel in Fig. 8 is the significance level for the comparison (meaning 

the percentage of times FSS of JK is higher than the FSS of REF). At 6 h forecast range, 

precipitation forecast is improved for all thresholds (scales above 195 km) and for thresholds 

up to 5 mm (scales above 45 km). For 12 and 18 h forecast ranges, neutral results are  
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Fig. 16. ROC of REF (dashed blue) and JK (solid orange) for (a) T500 (threshold: > -10 °C), 

(b) RH500 (> 55 %), (c) W500 (> 30 ms-1), (d) T850 (> 16 °C), (e) RH850 (> 55 %) and (f) 

W850 (> 24 ms-1) for the verification period and averaged over first 12 h.  

 

 

observed, while for 24 h forecast range, precipitation forecast is improved for all scales 

(threshold of 1 mm) and for higher thresholds (scales above 195 km). Results presented here 

indicate that, at early forecast ranges, mostly larger scales are affected (this is in agreement 

with the fact that only large scales are affected in the ensemble Jk method), while at later 

forecast ranges, nonlinear model integration spreads the influence to all scales. Improvements 

at higher thresholds are especially important as detecting extreme weather events is one of the 

main purposes of convection-permitting LAMPESs. 
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5.7. Summary and discussion 

The results presented in this section show that JK is significantly better for all EPS attributes 

studied here, especially reliability, and for all upper-air variables. In addition, JK showed the 

ability to better detect extreme events. Regarding the surface variables, JK is significantly 

better at MSLP and precipitation which is especially important for a convection-permitting 

EPS, while is mostly neutral for the other surface variables. More neutral results for surface 

variables and for all scores presented in this section are in line with analysis of Dahlgren and 

Gustafsson (2012) regarding the Jk blending method and are as expected for a number of 

reasons. First, lower boundary conditions have a considerable impact on surface variables 

which we do not perturb and are the same for all members as described in sub-section 3.1., 

also see Table 1. Second, surface variables are sensitive to small scale variability and 

processes while the ensemble Jk method acts only on upper-air variables and at the largest 

scales. 

We did not conduct observation error simulations of any kind. Though observation 

error can affect the outcome of forecast verification (see sub-section 8.2.4.), we believe that 

this was not the case in our study. First, we were only interested in relative performance, i.e., 

differences observed between experiments, and including the observation error would have 

had effect of the same direction for both experiments. Second, RMSE/spread relation and 

outlier statistics are scores for which the absolute performance of each system is also 

important. As shown by other works (e.g., Bouttier et al., 2012; Romine et al., 2014), 

accounting for observation error, would have increased ensemble spread given in Figs. 8 and 

9. This could mean that an EPS using the ensemble Jk method could be declared over-

dispersive in such case. However, a slight modification of the ensemble Jk method can be 

done to account for such over dispersion. The inflation factor discussed in sub-section 4.2. can 

be reduced to decrease the spread while keeping RMSE unchanged (not shown).  
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Fig. 17. As Fig. 16, but for (a) MSLP (< 1008 hPa), (b) T2M (> 30 °C), (c) RH2M (> 90 %) 

and (d) W10M (> 6 ms-1). 
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Fig. 18. The left panel is the median Skill Score of FSS of JK to FSS of REF (red means JK is 

better than REF and blue the opposite) as a function of scale and threshold. The right panel is 

the significance level for the comparison (percentage of times FSS of JK is higher than the 

FSS of REF). The plots are shown for (a) 6 h, (b) 12 h, (c) 18 h and (d) 24 h forecast ranges. 
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§ 6. CASE STUDIES 

We expect to observe benefits of including large-scale perturbations in cases where strong 

synoptic forcing is located near the borders of the computational domain. Any information 

outside of the model domain is propagated inside through LBCs. However, due to well-known 

deficiencies related to lateral boundary formulation in LAMs (e.g., Warner et al., 1997; Nutter 

et al., 2004a; Termonia et al., 2009) and due to LAM orientation toward the mesoscale, this 

information can be deficient. We believe that introducing large-scale information in an 

additional way - through ensemble Jk method can alleviate such problems. We now illustrate 

benefits of including large-scale perturbations from the host model through two case-studies. 

One of them is characterized by a cold front entering and moving through the C-LAEF 

domain and the other one is characterized by a cyclone which is located just outside the C-

LAEF domain, but impacts the weather inside. 

 

6.1. 11 July 2016 

Figure 19 shows a synoptic situation observed on 11 July 2016 at 0000 and 1200 UTC. As is 

shown, a cold front of a cyclone over the North Sea is moving over the C-LAEF domain. At 

the same time, strong low-level strong advection of warm and moist air from the 

Mediterranean area is observed. This synoptic setup has a great potential to support pre-

frontal convection. This is exactly what happened as there were many reports of strong rain 

and winds, large hail over south and east Germany, Austria and Poland and two tornadoes 

over Belarus. 

Figure 20 (left column) illustrates ensemble mean MSLP for REF and JK experiments 

started on 11 July 2016 at 0000 UTC from 3 and 9 h forecasts. The overall forecasted spatial 

distribution in pressure is similar across the whole domain. The biggest difference, 

considering all forecast hours is visible over the upper half of the domain where lower 

pressure, related to an incoming cold front, propagates further to the south in JK (note how 

1011 and 1014 hPa contours are displaced more to the south in the left column in Fig. 20). 

The right column in Fig. 20 shows the difference between ensemble mean absolute error 

(forecast – observation) for JK and REF plotted on surface station locations. As the front 
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enters and moves through the domain, an interesting phenomenon is observed; improvements 

in MSLP forecast for JK follow the progression of the frontal system. Smaller errors of up to 

1.5 hPa are observed in the northern part of the domain from which the cold front progresses 

towards inland Europe. Pressure distribution is clearly better represented in JK. Although 

surface pressure large-scale information was not used in the ensemble Jk method directly, 

improvements in surface pressure forecast come from the other variables as surface pressure 

reflects the entire column of the atmosphere.  

 

 

 

Fig. 19. Synoptic situation observed on 11 July 2016 at (a) 0000 UTC and (b) 1200 UTC. 

Black lines denote mean sea level pressure where H (T) denotes the high (low) pressure 

centre; blue (red) line denotes cold (warm) fronts and purple lines denote occluded fronts.  

 

 

Figure 21 (Fig. A1 in Appendix) shows the probability of 3-h precipitation above 1 

mm (10 mm) calculated from 3 - 6 h and 6 - 9 h forecasts for REF and JK experiments started 

at 0000 UTC on 11 July 2016. Given that no precipitation is observed (Fig. A2 in Appendix) 

for these hours, our REF experiment generates excessively high probability values (up to 60 

%) for precipitation over southern Germany and western Austria. For the JK, area affected 

and probabilities are reduced with the latter remaining a below 20 % for 3 – 6 h and at 30 % 

for 6 – 9 h forecasts, thus lowering the possibility of a false alarm. Later during that day, 

convection developed as the front moved through the domain. Figure 22 (Fig. A3 in 

Appendix) shows the probability of 3-h precipitation above 1 mm (10 mm) calculated from 9 

– 12 h forecasts for REF and JK experiments started at 1200 UTC on 11 July 2016 and INCA 

analysis. JK experiment better captured overall precipitation distribution, especially over 
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northern Austria and southern Czech Republic and a dry area over southeastern Germany 

which are both missed in REF. Intense precipitation in northern Italy is better forecasted in JK 

with above 90 % probability for rain above 10 mm compared to around 40 % in REF (Fig. 

A3). However, both experiments missed the intense precipitation over central Austria. Area 

over southern Switzerland is not considered in the analysis because, in INCA, observation 

data is scarce there and the quality of the radar data is suboptimal.  

 

 

 

 

Fig. 20. Left column, ensemble mean MSLP for REF (dashed blue) and JK (solid orange) 

contoured every 3 hPa. Right column, absolute error difference (error(REF) – error(JK)) on 

the surface station locations denoted by red circles (blue triangles) if difference positive 

(negative). Black dashed lines denote the approximate position of incoming cold front. 

Forecasts are started on 11 July 2016 at 0000 UTC. The upper and lower rows denote 3 and 9 

h forecast ranges, respectively.  
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Fig. 21. Probability of 3-h precipitations exceeding 1 mm for REF (left column) and JK (right 

column) forecasts started on 11 July 2016 at 0000 UTC. Upper and lower rows show 

probabilities between forecast ranges of 3 and 6 h and between 6 and 9 h, respectively.  

 

 

 

Fig. 22. Probability of 3-h precipitations exceeding 1 mm for (a) REF and (b) JK forecasts 

started on 11 July 2016 at 1200 UTC. INCA analysis (mm/3h) is shown in (c). 
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6.2. 28 August 2016  

Figure 23 shows synoptic situation observed on 27 August 2016 at 1800 and 28 August 2016 

at 0000, 0600 and 1200 UTC. A dominant feature is an eastern European high which 

encompasses almost entire C-LAEF domain. However, a cyclone located over the British 

Isles is moving eastward while, in front of it, a convergence zone is forming at the 

northwestern corner of the C-LAEF domain. Later, a secondary low forms at the northern 

boundary of the C-LAEF domain with a cold front moving through the domain. This is the 

kind of situation that interests us – synoptic forcing is located outside the domain, but it 

impacts the weather inside it. Normally, LBCs are the only source of information about the 

events outside the computational domain for LAMEPS, but this time, the ensemble Jk method 

provides additional source. 

 Similar to the right column in Fig. 20., Fig. 24. shows the difference between 

ensemble mean absolute error (forecast – observation) for JK and REF plotted on surface 

station locations. Again, as the front enters and moves through the domain, improvements in 

MSLP forecast for JK follow the propagation of the front. Smaller errors of up to 2 hPa are 

observed in the northwestern part of the domain from which the cold front progresses towards 

eastern Europe. As in the case of 11 July, pressure distribution is clearly better represented in 

JK. In addition, forecasts for T2M, RH2M and W10M are also improved in the northwestern 

part of the domain (Fig. A4 in Appendix). 

 To see how the convergence zone was represented in REF and JK, Fig. 25 shows 6-h 

ensemble median precipitation forecasts and respective observations. Precipitation related to 

the convergence zone was observed mostly in the northwest corner of the C-LAEF domain. In 

JK, precipitation pattern resembles observation consistently, while in REF, there is excessive 

precipitation along the western domain boundary. Neither experiment captured precipitation 

over Switzerland, but this event was caused by the orographic forcing of the Swiss Alps and 

not related to the convergence zone. 

Overall, the results presented in this section demonstrate the benefits of applying 

large-scale constraints on C-LAEF perturbations. Similar to the results from section 5., impact 

on surface variables is mostly obvious on MSLP and precipitation, but it is also observed for 

the other variables. Improvement to MSLP forecast can be an indicator of the overall forecast 

quality as MSLP reflects the entire model column. As a better illustration of MSLP 

improvement, Fig. 26. shows RMSE of ensemble mean of MSLP of REF and JK over the 

verification period averaged over first 15 forecast hours. Again, MSLP is, almost constantly, 
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better forecasted in JK. Improved pressure distribution can lead to a better large-scale feature 

placement, such as synoptic systems, fronts, etc. Small errors in the placement of such 

features, at analysis time, can then lead to a completely different synoptic system setup at a 

later time (Dahlgren and Gustafsson, 2012). 

 

 

 

 

Fig. 23. Synoptic situation observed on 27 August 2016 at (a) 1800 UTC and 28 August 2016 

at (b) 0000 UTC, (c) 0600 UTC and (d) 1200 UTC. Black lines denote mean sea level 

pressure where H (T) denotes the high (low) pressure centre; blue (red) line denotes cold 

(warm) fronts, purple lines denote occluded fronts and yellow lines denote convergence 

zones.  
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Fig. 24. Absolute error difference (error(REF) – error(JK)) on the surface station locations 

denoted by red circles (blue triangles) if difference positive (negative). Forecasts are started 

on 28 August 2016 at 0000 UTC and are valid on (a) 0300 UTC, (b) 0600 UTC, (c) 0900 

UTC and (d) 1200 UTC. 
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Fig. 25. Ensemble median of 6-h accumulated precipitation for (a) REF and (b) JK of a 

forecast started on 27 August at 1200 UTC. SYNOP observations are shown on (c). 

 

 

 

Fig. 26. RMSE of the ensemble mean of REF (dashed blue) and JK (solid orange) for MSLP 

over verification period averaged over first 15 forecast hours.  
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§ 7. PERTURBATION MISMATCHING 

We now turn to the second main focus of this dissertation – mismatched IC and LBC 

perturbations. An additional experiment (DOWN) was performed whereby IC perturbations 

are fully consistent with LBC perturbations. For this reason, the DOWN experiment serves as 

a new reference experiment. In addition, all experiments are performed using 1 h LBC update 

frequency.  

As stated by Warner et al. (1997), when solutions of the LAM and host model for 

areas close to lateral boundaries are different, such differences may generate spurious 

gradients and feedback between the two grids, which can influence the interior of the LAM 

domain. Given that EDA IC perturbations observed in REF experiment are completely 

independent of LBC perturbations originating from ECMWF-EPS, such differences can arise.  

 

7.1. Case 1 

One such event was observed for REF run started on 17 July 2016 at 0000 UTC. Figure 27a 

shows synoptic situation on 17 July 2016 at 0000 UTC. An upper-level low (ULL) is located 

over eastern Europe (not shown) and it is almost entirely inside of the C-LAEF domain. In 

situations like this, if the host EPS and LAMEPS differently place the ULL, a significant 

perturbation mismatch is expected to occur.  

Figure 28 shows the MSLP spread at the analysis time and for the first hour of model 

integration. After only 5 min (Fig. 28b), a large spread (with maximum value of roughly 3.5 

hPa) can be observed close to the northeastern and along the southern domain boundary. The 

place of origin of those spread anomalies approximately corresponds to the location where the 

northern and southern domain borders intersect the ULL. As integration continues (Figs. 28c-

d), the anomalies in spread advance further into the domain. After 1 h (Fig. 28d), the most 

intensive spread is located near the western and eastern lateral boundaries. Comparing the 

spread relative to DOWN result (Fig. 29a) it may be inferred that the spread is clearly 

excessive. The fact that excessive spread is still present after 1 h of integration can create 

serious issues for hourly assimilation cycles (e.g., Caron, 2013) and it needs to be solved.  
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Given that anomalies form at the boundaries and they are not present in DOWN (Fig. 

A5 in Appendix) or the host model at all (not shown), it is clear that they are unrealistic. It is 

well known, in NWP, that initial imbalances in different meteorological fields (i.e., force 

imbalances) necessarily lead to accelerations which in turn generate spurious waves (e.g., 

artificial gravity waves and sound waves; Holton, 2004). From Fig. 28., it can be seen that it 

takes about 1 h for the anomaly to cross the domain in north/south direction. Given the 

domain size of about 1100 km, the speed of the anomaly is approximately the speed of sound. 

This means that the likely cause of this phenomena are the horizontally propagating sound 

waves (Lamb waves) generated by an IC and LBC perturbation mismatch event. These waves 

are essentially the noise that dominate the forecast fields in the first hour. 

Potential solution to this problem could come from so-called space consistent 

coupling, whereby LBCs at initialization time do not come from the host model but from the 

LAM analysis (Brousseau et al., 2016). In turn, LBC perturbations are not imposed with full 

weight from the start and are instead slowly introduced over the first forecast hour to reduce 

the risk of perturbation conflict. Figure 29b shows the results of such integration after 1 h. 

Excessive spread is still observed close to the northwestern and eastern lateral boundaries and 

does not seem to be reduced at all (compared to Fig. 28d), leading to conclude that space 

consistent coupling is unable to solve this issue for such an event.  

However, by using 3-h LBC update frequency, space consistent coupling can solve 

this problem (not shown) because in this case, LBC perturbations are introduced even more 

slowly. Nevertheless, given the benefits of higher LBC update frequency (e.g., Nutter et al., 

2004a; Termonia et al., 2009), the recent availability of global EPS 1 h files (e.g., ECMWF) 

and continuing efforts made to improve LAMEPSs in general, we assume that results derived 

from a 1 h LBC update frequency are more significant.   

An alternative approach involves using the ensemble Jk method, for which LAM IC 

perturbations are more consistent with LBC perturbations by design. The results of integration 

using the ensemble Jk method for the same period are shown in Fig. 29c. Excessive spread is 

largely reduced after 1 h of integration, and overall spread distribution resembles the DOWN 

pattern most consistently (although the spread is still slightly larger than in DOWN). 

Increased spread to the east of the domain (also found in later forecast ranges) is also found in 

DOWN and can be explained by the presence of a ULL over this part of the domain (Fig. 

27a). 
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Fig. 27. As Fig. 19., but for (a) 17 July 2016 at 0000 UTC and (b) 15 July 2016 at 0000 UTC. 

 

 

 

Fig. 28. Surface pressure spread in Pa for REF started on 17 July 2016 at 0000 UTC and valid 

for (a) analysis time, (b) 0005 UTC, (c) 0015 UTC and (d) 0100 UTC. 
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Fig. 29. As in Fig. 28 but after 1 h of model integration for (a) DOWN, (b) REF with space 

consistent coupling and (c) JK.  

 

7.2. Case 2 

Another event where perturbation mismatch had a great impact was observed for REF run 

started on 15 July 2016 at 0000 UTC. Figure 27b shows synoptic situation on 15 July 2016 at 

0000 UTC. Two ULLs are positioned over Europe causing strong pressure gradients (not 

shown). One of them is located over the Baltic sea and it partially enters northern part of the 

C-LAEF domain. The other one is located over the bay of Genoa and it is partially contained 

in the southern part of the C-LAEF domain.  

As Fig. 28, Fig. 30 shows the MSLP spread for the first hour of model integration. 

After 5 min (Fig. 30b), a large spread (with maximum value of roughly 2.6 hPa) can be 

observed along both the northern and southern domain boundaries. As was in the Case 1, 

locations of the maximum spread anomalies approximately correspond to the location where 

the northern and southern domain borders intersect the ULLs. As integration continues (Figs. 

29c-d), the anomalies in spread advance further into the domain at a speed close to the speed 

of sound. After 1 h (Fig. 30d), excessive spread (relative to DOWN result shown in Fig. 31a) 
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has not left the domain and approaches the western, eastern and southern lateral boundaries. 

Figure A6 in Appendix shows that no such anomalies are present in DOWN. 

Space consistent coupling is, again, unable to resolve this issue (Fig. 31b) as excessive 

MSLP spread is still present in the larger part of the domain. The result of integration using 

the ensemble Jk method for the same period is shown in Fig. 31c. As before, ensemble Jk 

method improves results - excessive spread is largely reduced after 1 h of integration, and 

overall spread distribution resembles the DOWN pattern most consistently.  

In addition to the two case studies described above, analysis of perturbation 

mismatching is performed over a longer time period, specifically 12. 7. – 17. 7. 2016. This 

particular period includes both of our case studies and was characterized by multiple frontal 

passages and heavy cyclonic activity inside the domain. For this reason, perturbation 

mismatches were a frequent phenomenon. Figure 32 shows MSLP spread difference (REF – 

DOWN in blue and JK – DOWN in orange) for 0000 UTC model runs for different forecast 

ranges over the 6-day period. Excessive MSLP spread is heavily reduced in JK after 15 min, 

and by about 50 % after 1 h of integration making it very close to the MSLP spread of 

DOWN.  

It needs to be mentioned that one should not expect and aim for JK and DOWN MSLP 

spread to match exactly. JK experiment generates small-scale perturbations from the initial 

time, while DOWN downscales ECMWF-EPS large-scale perturbations which does not 

contain small-scale information. This results in more difference between ensemble members 

in JK, i.e., more spread. Thus, JK and REF experiments are expected to have more spread 

than DOWN, but this spread needs to be realistic and not a result of spurious waves. 

From all of the results presented in this chapter, we conclude that the ensemble Jk 

method can indeed be used to alleviate the problem of mismatching perturbations and that 

constraining only the largest scales (above 135 km as discussed in sub-section 4.2.) can 

achieve this goal. 
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Fig. 30. As Fig. 28. but for REF run started at 15 July 2016 at 000 UTC. 

 

 

 

Fig. 31. As Fig. 29. but for 15 July at 0100 UTC. 
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Fig. 32. MSLP spread difference (REF – DOWN in blue and JK – DOWN in orange) for 

different forecast ranges in minutes: 0 (dashed), 15 (dotted) and 60 (solid) over 6-day period: 

12. 7. – 17. 7. 2016. 

  



 

63 

 

 

§ 8. TECHNIQUES TO IMPROVE ENSEMBLE 

PERFORMANCE 

Many studies in the past have dealt with the idea of extending an EPS or even a deterministic 

system by cheap techniques like LAF (Mittermaier, 2007; Ben Bouallegue et al., 2013; 

Raynaud et al., 2015), neighbourhood approaches (Theis et al., 2005; Ben Bouallegue et al., 

2013; Mittermaier, 2014; Schwartz and Sobash, 2017, among others) or combination of many 

different deterministic models/EPSs (Bowler et al., 2007; Buizza, 2014). Primary goal of 

those studies was to address the problem of under-dispersion which is also true for C-LAEF 

as discussed in sub-section 5.1. All mentioned studies reported benefits when using before 

mentioned techniques.  

Here, we will focus on two techniques which can be easily implemented and do not 

require any extra information or processing. First, neighborhood approach will be explored 

for the use in C-LAEF. This approach combined with ensemble of forecasts was already used 

in Ben Bouallegue and Theis (2014) and Schwartz and Sobash (2017) who reported positive 

effect on precipitation forecast, i.e., increase in ensemble reliability and resolution. Here, we 

will focus more on the other surface variables. Second, LAF will be explored for use in C-

LAEF. This technique was studied in Ben Bouallegue et al. (2013), Raynaud et al. (2015) and 

Raynaud and Bouttier (2017) who focused on extending LAMEPS by adding lagged members 

from the same EPS, while Mittermaier (2007) explored possibility of creating an LAMEPS 

from lagged runs of a deterministic model. They reported increased reliability and resolution 

when using LAF. Here, we will take a slightly different approach and combine lagged 

deterministic AROME forecasts with the C-LAEF ensemble.   

 

8.1. Neighborhood ensemble 

 

8.1.1. Creating a neighborhood ensemble and calculating probabilities 

The most straightforward way to extend an EPS by applying the neighborhood approach is to 

assume that model forecasts at grid points inside the neighborhood constitute a sample from 

the unknown probability density function of the forecast at the location (x0, y0) and the 
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forecast lead time t0. In other words, the model forecasts within the neighborhood are 

assumed to be independent and identically distributed according to this probability density 

function (Theis et al., 2005). This is a valid assumption considering the arguments given in 

the sub-section 1.3.4. So, if we have an EPS with N = 10 ensemble members, and choose Nb 

to be 25, our total number of ensemble members will be N x Nb = 250. In other words, we 

have increased our ensemble size 25 times with almost no additional computations required. 

We now proceed to describe how probabilities can be calculated from such an EPS. Let q 

denote an event threshold (e.g., q = 1,0 mm/h) and fij forecasts at i = 1, ..., M grid points for j, 

…, N ensemble members. Then, the binary probability (BP) of event occurrence at the ith 

point for the jth member (BPij) is simply:  

𝐵𝑃(𝑞)𝑖𝑗 = { 
1    𝑖𝑓    𝑓𝑖𝑗 ≥ 𝑞

0    𝑖𝑓    𝑓𝑖𝑗 < 𝑞
                                              (8.1) 

Now, BPij can be transformed into a neighborhood probability (NP) at i for the jth ensemble 

member (NPij) by dividing the number of points within the neighborhood of the i where the 

event occurs by total number of points in the neighborhood (Nb): 

𝑁𝑃(𝑞)𝑖𝑗 =
1

𝑁𝑏
∑ 𝐵𝑃(𝑞)𝑘𝑗

𝑁𝑏

𝑘=1

                                                  (8.2) 

Averaging NPij over all ensemble members yields the NEP (neighborhood ensemble 

probability) as defined by Schwartz et al. (2010) and called fuzzy probabilities by Ben 

Bouallegue and Theis (2014): 

𝑁𝐸𝑃(𝑞)𝑖 =
1

𝑁
∑ 𝑁𝑃(𝑞)𝑖𝑗                                               (8.3)

𝑁

𝑗=1

 

NEP at the ith point can be interpreted as the ensemble mean probability of event occurrence 

at i given a length scale r. In other words, NEP is the probability calculated from combination 

of all ensemble members with their neighborhood. We see that calculation of NEP consists of 

two averaging steps: neighborhood averaging and ensemble averaging. In this case, r can be 

interpreted as a smoothing length scale. Because of this, NEPs do not possess good reliability 

or resolution for rare events because of sharpness loss. However, averaging can be very 

helpful in alleviating the problem of fast error saturation and inherited uncertainty of the small 

scales. In addition, it enables us to present model information on the scales closer to its true 

resolution.  
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 There is no particular reason why, in (8.2), we should average all binary probabilities 

to obtain NP. As an alternate procedure, we can search the neighborhood of i to determine 

whether the event has occurred at any grid point within that neighborhood of i to redefine 

event occurrence at i. In other words, event occurrence at i can be determined by searching for 

the maximum value within the neighborhood of i and comparing it to q. This is somewhat 

relaxed condition for an event occurrence, because it needs be forecasted anywhere within the 

neighborhood. Thus, when these searching approaches are applied, NP will always be 1 or 0 

and can be redefined to a binary neighborhood probability (BNP):  

𝐵𝑁𝑃(𝑞)𝑖𝑗 = max (∑ 𝐵𝑃(𝑞)𝑘𝑗

𝑁𝑏

𝑘=1

)                                             (8.4) 

Then, by averaging over all ensemble members, neighborhood maximum ensemble 

probability (NMEP) is obtained: 

𝑁𝑀𝐸𝑃(𝑞)𝑖 =
1

𝑁
∑ 𝐵𝑁𝑃(𝑞)𝑖𝑗                                            (8.5)

𝑁

𝑗=1

 

NMEP is the probability of event occurrence within the r of i and, thus, is a probability 

defined over a spatial scale larger than a grid size. Unlike the NEP, production of NMEPs 

does not contain spatial smoothing. As a consequence, it does not suffer from a lack of 

sharpness for rare events. Using this analogy, we can create a new N-member EPS by 

applying any function f (i.e., maximum, minimum, median, etc.) to an Nb-member 

neighborhood before forming an EPS. In contrast to the original N-member EPS, this new one 

will have members with the ‘best’ information extracted from their respective neighborhoods. 

 To recapitulate, we have created an N x Nb-member EPS by combining N member 

EPS with its Nb -neighborhood. Probabilities calculated from that EPS, by averaging, are 

called the NEP. Alternatively, probabilities can be calculated by searching the neighborhood 

for occurrence of an event. Those probabilities are called the NMEP. To create a NMEP-like 

EPS, we take a function f of each member’s neighborhood separately to obtain a new N-

member EPS. More detailed application of NEP and NMEP for precipitation forecasts can be 

found in Ben Bouallegue and Theis (2014) or in Schwartz and Sobash (2017). They found 

that NEP is more applicable to light and moderate precipitation due to its smoothing nature, 

while NMEP is significantly better at detecting high precipitation events. In this study, we 

will focus our attention to other surface variables (MSLP, T2M, RH2M and W10M), try to 
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assess the benefits and adopt the NEP and NMEP-like approaches to the continuous variables, 

such as T2M.   

 

8.1.2. Model setup and experiments 

Our goal is to assess the added value of the neighborhood approach on the C-LAEF ensemble. 

For this reason, we define two experiments:  

a) REF – represents C-LAEF raw ensemble (N = 17) 

b) NGH – represents REF with the neighborhood approach.  

Except for the neighborhood, both experiments are configured as the REF experiment from 

sub-section 3.2.  

 First, we will configure NGH as NEP. This means that we will increase our ensemble 

size from 17 to 17 x Nb and each member will be treated as independent and equally likely. In 

such a configuration, probabilities, ensemble mean and spread will be calculated from 17 x Nb 

members. Different values for r were tested (and thus for Nb), as previous studies reported that 

no universally optimal value for neighborhood size exists, but depend on variable and 

threshold (e.g., Mittermaier, 2014). Table 2 shows chosen neighborhood sizes for all the 

variables. In addition, attention must be paid to the orography and land-sea boundary around 

ith point. For example, temperature and humidity can vary greatly between land and sea 

points. The same is true for the points with greatly different altitude. We do not want, for 

example, to include mountainous model point from Medvednica to the neighborhood of 

Zagreb when forecasting T2M. For those reasons, filtering of the model points based on 

altitude and land-sea (L-S) mask was performed. Table 2 shows values of altitude tolerance 

(AT) which were applied to all the variables. Any point whose altitude differed by more than 

AT from the altitude of i was discarded from the neighborhood. Similarly, if L-S filtering was 

True, all sea points were discarded from the neighborhood. This means that total ensemble 

size varies for each location and will be less or equal to 17 x Nb. Table 2 shows the maximum 

possible ensemble size for each variable. Thus, it is necessary to make the neighborhood a 

function of a specific location and variable for an optimal performance. 

 Unfortunately, only 3-h model output data were available for this study. This prevents 

us from studying the expansion of the neighborhood into the time dimension as 3-h gap 

between two successive model output times is too big. This is unfortunate because the 

temporal uncertainty of the model forecasts can be of a significant magnitude (see 

Mittermaier and Stephenson, 2015).  
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Table 2. Chosen values for neighborhood length scale (r), altitude tolerance (AT) and land-sea 

(L-S) filtering. 

Variable r [grid points] AT [m] L-S filtering Max. ensemble size 

MSLP 7 100 False 833 

T2M 7 100 True 833 

RH2M 7 100 True 833 

W10M 5 200 True 425 

 

 

8.1.3. Verification 

Differences between REF and NGH will be demonstrated for surface variables, namely 

MSLP, T2M, RH2M and W10M. The verification methodology and the period used are the 

same as described in sub-section 3.3. with the only difference being number of surface 

stations used. Due to the very high number of ensemble members when neighborhood is used, 

performing any calculation requires a high amount of computer memory. For this reason, we 

used a lower number of surface stations to keep the amount of data manageable - 30 surface 

stations within Croatia are used to perform the verification.  

 

8.1.4. Results - NEP 

a) RMSE of ensemble mean and spread 

Figure 33 shows RMSE of ensemble mean and spread for all variables. Accuracy of the 

ensemble mean is increased for RH2M and T2M (although without passing a significance 

test) and remained almost the same for W10M and MSLP. Ensemble spread is 

significantly increased for T2M, RH2M and W10M, while remaining the same for MSLP. 

MSLP is a type of variable that mostly reflects large-scale features and we do not expect 

noticeable pressure variations inside of the local neighborhood which is consistent with 

results obtained here. Other variables are much more local in nature, and thus, the impact 

of neighborhood is obvious. Ensemble spread is significantly increased as variations 

between neighboring model points are much larger. Combination of increased spread and 

slightly reduced RMSE leads to a more reliable EPS and reduced under-dispersion. 
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Fig. 33. RMSE of the ensemble mean (solid) and spread (dashed) of REF (blue) and NGH 

(orange) for (a) MSLP, (b) T2M, (c) RH2M and (d) W10M for the verification period. 

Forecast ranges with statistically significant difference are marked with bullets (RMSE) and 

crosses (spread). 

 

 

b) CRPS 

CRPS, for all variables, is shown in Fig. 34. In consistency with RMSE/spread relation, 

reduction of CRPS is visible for all variables in NGN, mostly for T2M and RH2M, while 

for W10M is visibly reduced but not statistically significant. 
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Fig. 34. CRPS of REF (blue) and NGH (orange) for (a) MSLP, (b) T2M, (c) RH2M and (d) 

W10M for the verification period. Forecast ranges with statistically significant difference are 

marked with bullets. 

 

 

c) Outlier statistics 

Figure 35 shows outlier statistics for all variables. As described in section 5., perfect value 

of outliers depends on the ensemble size. For REF, perfect value is 11 % (dashed blue) 

and for NGH (dashed orange) it is approximately zero. Nevertheless, percentage of 

outliers is greatly reduced in NGH for all variables. As a consequence of the larger 

ensemble size, more observations will be contained within the EPS. 
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Fig. 35. Percentage of outliers of REF (blue) and NGH (orange) for (a) MSLP, (b) T2M, (c) 

RH2M and (d) W10M for the verification period. Forecast ranges with statistically significant 

difference are marked with bullets. Dashed blue (orange) line denotes an ideal value for REF 

(11 %) and NGH (~ 0) %. 

 

 

d) Brier score decomposition 

To check the accuracy of NGH obtained probabilities, as well as its reliability and 

resolution, BS decomposition was calculated for the verification period and averaged over 

all forecast ranges as shown on Fig. 36. As expected, no significant improvement is 

obtained for MSLP, while for the other variables, BS is decreased for majority of the 

thresholds. Moreover, those improvements are due to the improved, both, reliability and 

resolution.  
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Fig. 36. Decomposition of the BS for REF (blue) and JK (orange) for (a) MSLP, (b) T2M, (c) 

RH2M and (d) W10M for the verification period and averaged over all forecast ranges. 

Thresholds with statistically significant differences (only for BS) are marked with bullets. 

 

 

e) ROC 

To check the attribute of discrimination and the ability of NGH to detect extreme values, 

ROC was calculated for different thresholds. Figure 37, shows ROC curve for T2M, 

RH2M and W10M and for relatively high thresholds (above 32 °C for T2M, above 90 % 

for humidity, above 2 and 8 ms-1 for W10M) averaged over all forecast ranges. Setting 

probability thresholds (the same as in sub-section 5.5.) to constant values has to be done in 

order to properly compare EPSs of different size. NGH has an improved discrimination 
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for all variables, except MSLP, and all but the most extreme thresholds. For the most 

extreme thresholds, improvements are visible only for T2M. 

 

 

 

Fig. 37. ROC curves averaged over all forecast ranges of REF (blue) and NGH (orange) for 

(a) T2M (threshold: > 32 °C), (b) RH2M (threshold: > 90 %), (c) W10M (threshold: > 2 ms-1) 

and (d) W10M (threshold: > 8 ms-1) for the verification period. 

 

 

8.1.5. Results - NMEP 

As already mentioned in the sub-section 8.1.1., NMEPs are better at predicting the extreme 

events (e.g., extreme precipitation). To check the usefulness of the NMEP-like approach for 

another variable for which predicting extremes is very important - wind speed, NGH was 
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configured as NMEP and relabeled to NGH_NMEP. This time, instead of doing both, 

neighborhood and ensemble averaging when calculating probabilities, we take the maximum 

value of the neighborhood and then do the ensemble averaging (equations (8.4) and (8.5)). In 

other words, we search the neighborhood of a specific point i to determine whether the event 

has occurred at any grid point within the neighborhood of i to redefine event occurrence at i. 

Figure 38 shows the ROC curves of REF, NGH and NGH_NMEP for wind speed above 10 

ms-1 averaged over all forecast ranges and the verification period. NGH_NMEP demonstrates 

significantly improved discrimination for high wind speeds. This means that NGH_NMEP is 

better at resolving events from non-events, a property which can be of a significant 

importance when issuing warnings.  

 In the former sub-sections, we saw that neighborhood contains valuable information 

that, when extracted properly, can hugely benefit a forecast. Is there any other way to extract 

even more information from the neighborhood? The answer is yes, there is. A NMEP-like 

approach can also be adopted for continuous variables like T2M and predicting extremes like 

minimum and maximum temperatures. As described in sub-section 8.1.1., NEMP-like EPS 

with 17 members is created by applying any function f to the neighborhood of each member 

separately. Here, f is the maximum function (8.4), but applied to absolute forecast values 

instead of BPs.  

Here, an application of NMEP on predicting the next day minimum temperatures is 

demonstrated. Figure 39a shows 12 UTC ensemble mean temperature forecast of REF (blue) 

and corresponding observations (grey) averaged over the verification period. A significant 

warm bias is evident for the temperatures at almost all forecast ranges, especially at the 

morning of the next day. The next day minimum temperature RMSE is equal to 1.95 °C. A 

new NGH_NMEP is configured so that f is equal the minimum value in the neighborhood. 

This new NGH_NMEP is shown as an orange curve in Fig. 39a. In NGH_NMEP, warm bias 

is eliminated and RMSE for the next day minimum temperature is 1.55 °C which is a 

reduction of about 20 %. In addition, Fig. 39b shows ROC curves of REF and NGH_NMEP 

for temperatures below 15 °C (a very low value for a summer morning in Croatia), 12-18 h 

forecast range (corresponds to 0200-0800 h local time) and averaged over verification period. 

NGH_NMEP, again, visibly improves the ability of discrimination for a low T2M threshold, 

meaning that it is more capable in detecting extreme events.  
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8.1.6. Summary and discussion 

As already noted in Ben Bouallegue and Theis (2014), apparently, forecast quality benefits 

from shifting the focus away from the specific location towards a somewhat broader region. 

This, of course, comes at the cost of omitting fine-scale information. However, a theoretical 

justification for this approach lies in the two theses established in sections 1.3. and 1.3.4.: grid 

size vs resolution and a quick predictability loss which renders small-scale information 

useless anyway. We did not increase the r beyond 7 because we wanted to stay close to the 

model true resolution and, also, maximize the output resolution. However, previous studies 

have reported positive impact on precipitation forecasts of increasing the r up to 40 times the 

grid size (e.g., Ben Bouallegue and Theis, 2014).  

Results presented here indicate that a cheap technique like the neighborhood approach 

can greatly benefit an EPS. Accuracy, reliability, resolution and discrimination are increased 

for T2M, RH2M and W10M. The problem of under-dispersion is greatly reduced. Impact is 

smallest on MSLP, because MSLP is mostly large-scale variable and does not vary much 

within the neighborhood. In addition, the ability of EPS to detect extreme events is also 

improved. However, detection of the extreme events is greatly improved only when NGH is 

configured as NMEP. Based on the results presented here, we can make the following 

recommendations. Using EPS as NEP and increasing its size by Nb is useful for general 

applications. For example, forecasting light to medium rain or weak to moderate wind speeds, 

hourly temperature or humidity forecasts, etc. For predicting the extremes, for example, high 

rain and wind speeds, minimum or maximum temperatures, EPS as NMEP is recommended. 

Ben Bouallegue and Theis (2014) noted that DWD (Deutscher Wetterdienst) forecasters 

favour NEMP when issuing warnings. Finally, making the neighborhood a function of a 

specific location and variable is highly advisable. 
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Fig. 38. ROC curves averaged over all forecast ranges of REF (blue), NGH (orange) and 

NGH NMEP (green) for W10M (threshold: > 10 ms-1) and the verification period.  

 

 

 

Fig. 39. (a) 12 UTC ensemble mean temperature forecast of REF (blue), NGH NMEP 

(orange) and corresponding observations (grey) averaged over the verification period. (b) 

ROC curve for T2M (threshold: < 15 °C), 12-18 h forecast range and averaged over the 

verification period. 
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8.2. Adding lagged deterministic forecasts  

In this sub-section, we explore a unique possibility – extending an LAMEPS with lagged 

deterministic forecasts. This setup is possible because, at ZAMG, operational deterministic 

AROME system is configured the same (except for 3-h cycling) as C-LAEF (C-LAEF control 

to be precise). AROME forecast range is 60 h that enables us to use up to 4 older AROME 

runs and combine them with C-LAEF to create a new 21-member ensemble and keep 48 h 

forecast range that will be used in operations. Because of this, we expect to have an 

interchangeable 21 member EPS where all members are equally likely.   

 LAF approach can improve EPS’s IC uncertainty estimate because the additional 

members from LAF are generated from different initializations, which represent the 

atmospheric state in a flow-dependent and time-evolving manner. Thus, IC perturbations are 

extended by the flow-dependant information from the past forecasts. Under more 

“predictable” regimes, one would expect the differences between successive forecasts 

(realizations) to be small, while under more “volatile” flow regimes, one would expect the 

spread in the forecasts to be larger (Mittermaier, 2007). Raynaud and Bouttier (2017) showed 

that LAF did significantly increase ensemble spread. As it was shown in section 5., larger 

spread is beneficial for C-LAEF. 

Special weighting strategy of LAF members will not be applied and all members will 

be weighted equally as previous studies have already shown its negligible impact on time-

lagged ensembles (Ben Bouallegue et al., 2013; Raynaud et al., 2015). In our case, this is 

even more valid as we are adding only 4 additional members.  

 

8.2.1. Model setup and experiments 

Our goal is to assess the added value of including 4 lagged AROME members to the C-LAEF 

ensemble. For this reason, we define two experiments:  

a) REF – C-LAEF raw ensemble (17 members). 

b) LAG – C-LAEF plus 4 lagged AROME runs (-3, -6, -9 and -12 h; 21 members).  

Both AROME and C-LAEF are configured as described in the sub-section 3.1. Lagged 

members and C-LAEF control are coupled to the high-resolution ECMWF IFS HRES.  
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8.2.2. Verification 

Methodology used here is similar to the one described in sub-section 3.3., C-LAEF 00 UTC 

hourly runs were archived for the period 19. 5. – 30. 6. 2019. with two missing days (26. 5. 

and 2. 6.). This gives us the total of 41 days for which to perform a verification. Forecasts for 

variables were archived – precipitation, W10M, wind gusts at 10 m (WG10M) and surface 

global short-wave radiation. Verification was performed against 320 automatic surface 

stations within Austria by matching nearest model grid point to the observation location. For 

precipitation, the same methodology as described in sub-section 3.3. is used, i.e., verification 

against high resolution INCA analyses. 

Decomposition of CRPS to a term related to spread and a term related to mean 

absolute error (Leutbecher, 2018), and decomposition of RMSE to bias, bias of standard 

deviation and dispersion (Horvath et al., 2012) will help us take a deeper insight into the 

reasons behind the obtained results. 

 

8.2.3. Results 

Verification for surface global short-wave radiation gave neutral results for all scores and will 

not be discussed further. Also, traditional verification for precipitation yielded similarly 

neutral results for most of the scores and will not be discussed further. Precipitation results 

will be discussed in more detail in terms of FSS. We will now present results obtained by 

averaging over the entire verification period of 41 days. 

 

a) RMSE of ensemble mean and spread 

Figure 40 shows RMSE and spread of REF and LAG for W10M and WG10M. As we can see, 

there is hardly an impact on accuracy of the ensemble mean for W10M and WG10M, while 

spread is significantly increased in both cases implying better reliability and reduced under-

dispersion of LAG. Decomposition of RMSE revealed that bias of W10M (WG10M) is 

slightly reduced (increased) in LAG. This increase in bias is countered by lower dispersion 

error in LAG (not shown).  

Looking more thoroughly at WG10M plots, one can observe strange behavior (peaks) of 

RMSE curve at +0 and +1 h, but also at +6, +12 … at 6-h intervals. Those were identified as 

problems in the pre-operational C-LAEF forecasts that need further investigation.  
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Fig. 40. RMSE of the ensemble mean and ensemble spread for W10M (up) and WG10M 

(down). Forecast ranges with statistically significant differences are marked with bullets. 

 

 

b) CRPS 

Figure 41 shows CRPS and its decomposition for W10M and WG10M. We see a slight 

reduction of CRPS in LAG for both variables, although not statistically significant. CRPS 

decomposition shows that this reduction of CRPS comes from significant increase in 

ensemble spread in LAG.   
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Fig. 41. Decomposition of CRPS for W10M (up) and WG10M (down). Forecast ranges with 

statistically significant differences are marked with bullets. 

 

 

c) Outlier statistics 

Percentage of outliers is given in Fig. 42. Horizontal dashed lines denote ideal value for each 

experiment. It is very clear that the number of outliers is reduced in LAG meaning reliability 

is increased. This is consistent with the findings in 8.2.3 a). 
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Fig. 42. Percentage of outliers for W10M (up) and WG10M (down). Forecast ranges with 

statistically significant differences are marked with bullets. Dashed horizontal lines denote 

ideal values of 11 % (9 %) for REF (NGH). 

 

 

d) ROC 

Figure 43 shows ROC curve and ROC area for thresholds of 3 and 5 ms-1 (10 and 15 ms-1) for 

W10M (WG10M). For all thresholds and variables, discrimination is slightly improved in 

LAG.  
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Fig. 43. ROC curve and ROC area for: (a) W10M (3 ms-1), (b) W10M (5 ms-1), (c) WG10M 

(10 ms-1) and (d) WG10M (15 ms-1).  

 

 

e) Brier score decomposition 

Decomposition of BS for different thresholds confirms previous conclusions that LAG is 

more reliable ensemble, while resolution is similar for both experiments (not shown). 

 

f) Precipitation 

The left panel in Fig. 44 (similar to Fig. 18) shows the median of the Skill Score of FSS of 

LAG to FSS of REF illustrated as a matrix of colours (red means LAG is better than REF and 

blue the opposite, white is for no difference) for different thresholds, scales and forecast 

ranges. The right panel shows the percentage of times (days) FSS of LAG is higher than the 

FSS of REF. FSS is visibly improved in LAG for the first 5 h of integration mostly for scales 

higher than 25 km and thresholds up to 2 mm. Small improvements are still visible up to 20 h 

of integration, after which results become mostly neutral. 
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Fig. 44. Similar to Fig. 18, the left panel is the median Skill Score of FSS of LAG to FSS of 

REF (red means LAG is better than REF and blue the opposite) as a function of scale and 

threshold. The right panel is the significance level for the comparison (percentage of times 

FSS of LAG is higher than the FSS of REF). 
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8.2.4. Summary and discussion 

It is interesting to ask wheatear the observed differences between the experiments are only 

due to the larger ensemble size of LAG? To answer this question, verification was performed 

again, but this time 4 C-LAEF members were removed in LAG, so that both experiments have 

17 members. All of the results and conclusions remained similar (not shown) meaning that 

pure ensemble size does not have a significant impact. However, we saw that most of the 

improvements came from increased ensemble spread, how can we reconcile this? 

Further inspection showed that AROME members tend to cluster together which 

significantly benefits the ensemble spread because it increases the difference between 

ensemble members. This means that there were some accidental differences in the AROME 

vs C-LAEF model configuration that needs investigation. Nevertheless, having more different 

members is known to benefit the ensemble performance (e.g., Johnson and Swinbank, 2009). 

Even if some members are consistently worse than others, the effect of error cancelation and 

filtering of less predictable scales when doing averages can still improve the accuracy of the 

ensemble mean as shown in Hagedorn, et al. (2005). 

The goal of this sub-section was to assess the impact of adding lagged deterministic 

model forecast (AROME) to convection-permitting LAMEPS (C-LAEF). In other words, to 

study the added value of past forecasts to extend the C-LAEF IC perturbations with a new 

flow-dependant information. Practical benefits of this configuration were clearly visible in 

improved ensemble reliability, spread, and slightly higher accuracy for W10M and WG10M 

forecasts. Detection of extreme wind gust speeds is improved and the impact on precipitation 

is also positive with the highest impact in the first 5 hours of integration.  

Lastly, we will reflect on the observation error impact on the problem of under-

dispersion. As can be seen from almost all surface verification plots presented in this 

dissertation, all experiments are heavily under-dispersive, which is a known problem in the 

field of ensemble forecasting and it is regularly the case in LAMEPS studies (Keresturi et al., 

2019). However, most of the studies, including this one, neglect observation errors. This 

should be avoided as it makes our ensembles look worse than they actually are (see Bowler et 

al., 2015). As an example, Fig. 45 shows W10M RMSE and spread relation from Fig. 40 but 

with observation error accounted for by the method recommended by Bowler et al. (2015). 

Now, under-dispersion is significantly reduced, and this is plotted for a rather small value of 

W10M observation error – 1.2 ms-1. 
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Fig. 45. Up (down) RMSE of the ensemble mean and ensemble spread for W10M without 

(with) observation error accounted for. 

  



 

85 

 

 

§ 9. CONCLUSION 

Probabilistic approaches to numerical weather prediction are widely recognized as superior to 

deterministic and ensemble prediction systems are becoming more widely favored forecast 

tools. This is especially true for meso and convective scales where rapid loss of predictability, 

i.e., very fast error growth, after which the structures on those scales can be regarded as noise, 

may be mitigated by utilizing ensemble forecasts. For these reasons, probabilistic approach 

through LAMEPSs have been used more frequently over the last 10 years and motivation to 

resolve problems related to LAMEPSs is strong.  

One of the most principal questions with LAMEPSs is how to correctly account for 

uncertainties of large-scale flow. Those uncertainties arise due to the typically small 

computational domains, deficiencies of LBC formulations, inferior assimilation procedures, 

focus on the mesoscale and unavailability of observations outside the domain. Furthermore, 

mismatches between LAMEPS’s initial condition and host EPS lateral boundary perturbations 

can result when they are obtained independently. As a result, spurious waves are generated at 

the domain boundary which then spread through the rest of the domain inducing unwanted 

noise to the meteorological fields what considerably deteriorates forecast skill.  

In this dissertation, we introduce an ensemble Jk method as a new idea for improving 

LAMEPS forecasts, whereby host model large-scale perturbations are introduced into 

LAMEPS IC perturbations using the Jk blending method. Jk blending is applied to the 3D-Var 

EDA system so that perturbed analyses are optimal and small scales are consistent with large 

scales, as opposed to using the blending method developed by Wang et al. (2014). As a result, 

analyses contain perturbed small scales (LAMEPS EDA) and large scales (host EPS). 

Furthermore, when including host model perturbations in LAMEPS initial perturbations, final 

perturbations are more consistent with perturbations coming from lateral boundaries, thus 

minimizing the risk of potential mismatch.  

The ensemble Jk method is implemented into convection-permitting ensemble system 

C-LAEF with ECMWF-EPS providing LBCs and large-scale perturbations. To assess the 

effect of the large-scale constraint on IC perturbations, two experiments are conducted, one 

using an ensemble Jk and the other using standard perturbed-observation EDA, i.e., EDA 

without Jk blending. Impacts on average model performance are measured over 62 
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convectively active days of the summer of 2016. The results show that using the ensemble Jk 

method provides a more accurate and reliable EPS. This is mostly the case due to a reduction 

of RMSE, thus due to increased accuracy. RMSE of ensemble mean is strongly reduced for 

upper-air variables, while spread is maintained on similar or slightly lower values. The lower 

percentage of outliers supports these conclusions as does the CRPS, which is reduced for all 

variables. Furthermore, ROC score shows that discrimination is improved, while 

decomposition of the Brier score demonstrates the improvement in resolution. In other words, 

benefits of using the ensemble Jk method are visible in all the attributes of a probabilistic 

forecast tested here. 

Performance in terms of surface variables is more neutral, as was expected due to its 

high sensitivity to small scales and the forcing effects of lower boundary conditions, both of 

which are unaffected by the ensemble Jk method. Nevertheless, slight but insignificant 

improvements resulting from using the ensemble Jk method are observed for early forecast 

ranges (up to 9 h) for temperature and humidity, and for surface pressure, improvements are 

visible up to 18 h. The strongest effect is observed for mean sea level pressure forecasts, 

which are now more reliable and accurate. Discrimination is slightly improved for extreme 

thresholds for MSLP and T2M indicating that detection of extreme events is also improved. 

Precipitation forecasts are verified by a different methodology and by using the FSS. 

Improvements for precipitation thresholds up to 20 mm and for scales ranging from the 

highest (325 km) down to the smallest (5 km) appear when using the ensemble Jk method.  

To further illustrate benefits of considering large-scale perturbations from the host 

model, two case-studies of strong synoptic forcing observed near the borders of the 

computational domain are presented. It is demonstrated that using the ensemble Jk method 

improves the surface pressure distribution in areas adjacent to incoming front, in turn 

minimizing the possibility of the false detection of precipitation and improving precipitation 

forecast during a period of convective activity over Austria and western Germany.  

To alleviate the problem of mismatched perturbations, the impact of ensemble Jk 

method is analyzed in the form of two case studies of strong perturbation mismatch. Both 

events are characterized by upper-level lows intersecting the C-LAEF domain. Strong spatial 

anomalies in surface pressure spread are observed close to the northeastern and southern 

domain boundaries after only 5 min of model integration. Those are most likely the result of 

spurious Lamb waves. After 1 h, excessive spread is still present close to the edges of the 

domain. Introducing LBC perturbations gradually over the first hour of integration, i.e., space 
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consistent coupling, did not remedy this problem. However, when ensemble Jk method is 

used and when large-scale IC perturbations were made more consistent with LBC 

perturbations, even only for the largest scales, excessive spread is mitigated after 1 h. From 

these findings, it is clear that future implementations of C-LAEF with hourly assimilation 

cycles, must address the problem of perturbation mismatch, which is the leading cause of 

excessive surface pressure spread observed here. The ensemble Jk method can be used to 

alleviate such problems.  

Overall, using the ensemble Jk method benefits the ensemble performance of the 

upper-air variables, precipitation and mean sea level pressure, while effects on the other 

surface variables are less significant and mostly reserved for special cases, such as those 

discussed in section 6. Observed impacts are strongest within the early forecast ranges (0 - 12 

h), which is to be expected from an IC perturbation study (e.g., Vié et al., 2011). Both of our 

experiments are under-dispersive, particularly for lower model levels. This is mostly the case 

due to an absence of model and surface perturbations and to a lack of consideration of 

observation errors which was demonstrated in sub-section 8.2.4. 

To address under-dispersion and additionally improve C-LAEF’s IC perturbation 

sampling of the initial uncertainties, LAF approach is tested. Coherent operational setup of C-

LAEF and operational deterministic convection-permitting model AROME at ZAMG, 

enabled us a unique possibility to test expansion of C-LAEF members with lagged AROME 

forecasts. All members are equally weighted. Practical benefits of this configuration are 

clearly visible in improved ensemble reliability, spread, and slightly higher accuracy for 

W10M and WG10M forecasts with neutral impact on solar radiation forecasts. Detection of 

extreme wind gust speeds is also improved. Impact on precipitation is positive with the 

highest impact in the first 5 hours of integration. 

Finally, a well-known fact in NWP is that model grid size is not synonymous with the 

concept of model resolution. The latter is at least 5 times lower. To account for this fact, the 

problem of rapid error growth at the small scales and to alleviate under-dispersion, a 

neighborhood approach can be used. Here, we combine the LAMEPS with the neighborhood 

approach. C-LAEF forecasts for a specific point were extended with the forecasts for its 

neighbouring points by assuming they are equally likely to occur at that specific point. The 

result of such an approach is shifting the focus away from the specific location towards a 

somewhat broader region which can alleviate the beforementioned problems. Different 

configurations of neighborhood were tested. The best approach is to make the neighborhood a 
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function of a location and a variable. This is advisable because the orography and land-sea 

boundary can have significant impacts on the forecast. The results indicate that accuracy, 

reliability and resolution are increased for T2M, RH2M and W10M. Impact is the smallest on 

MSLP, because MSLP is mostly large-scale variable and does not vary much within the 

neighborhood. In addition, C-LAEFs ability to detect extreme events is also improved. 

The main scientific contributions of this dissertation are as follows. First, an 

innovative method, named ensemble Jk method, for generation of IC perturbations for 

LAMEPSs was developed. Second, as a part of the development process of ensemble Jk 

method, the Jk blending method was implemented into AROME model for the first time. 

Third, variations of LAF and neighborhood approaches were applied and tested as a relatively 

cheap techniques to improve the LAMEPSs performance. Lastly, this work was a part of the 

development process of a new convection-permitting LAMEPS named C-LAEF and 

ensemble Jk method is currently used in its operational configuration (Wastl et al., 2021). 
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§ 11. APPENDIX 

 

 

 

Fig. A1. As Fig. 21, but for 10 mm threshold. 

 

 

 

Fig. A2. Observed 3-h precipitation (mm/3h) on (a) 11 July 2016 at 0600 UTC and (b) 11 July 

2016 at 0900 UTC. 
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Fig. A3. As for (a) and (b) on Fig. 22, but for 10 mm threshold.  

 

 

 

Fig. A4. As on Fig. 24 but for (a) T2M, (b) RH2M and (c) W10M. Averaged over all forecast 

ranges from Fig. 24. 
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Fig. A5. As Fig. 28 but for DOWN. 

 

 

Fig. A6. As Fig. 30. But for DOWN. 
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§ 12. PROŠIRENI SAŽETAK 

12.1.    Uvod 

Numerička prognoza vremena (npr., Kalnay, 2003; Coiffier, 2011; Bauer i sur., 2015) metoda 

je kojom se vrijeme prognozira pomoću fizikalnih jednadžbi rješavanih numerički. Skup 

takvih jednadžbi i svih pripadajućih alata potrebnih za uspješno izvođenje zovemo 

numeričkim modelom. Da bi se jednadžbe uspješno riješile na računalu, potrebno ih je 

diskretizirati, tj. prevesti u oblik pogodan računalu. Najpopularniji način je da ih se napiše na 

pravilnoj 3D mreži točaka. Razmak između tih točaka naziva se korak mreže. Tipičan korak 

mreže današnjih modela iznosi 1-10 km. 

Model se može izvršavati na ograničenom području (regionalni model; LAM) ili na 

području cijele Zemlje (globalni model). Početni uvjeti od kojih počinje izvođenje modela 

dobivaju se metodama asimilacije podataka (npr. Kalnay, 2003). Asimilacija podataka 

posebna je disciplina kojoj je cilj, pomoću mjerenja i prošle prognoze modela, pronaći stanje 

atmosfere najbliže stvarnosti (tzv. analiza). S tom su svrhom razvijene brojne metode (npr., 

Bannister, 2017; Gustafsson i sur., 2018) i većina ih je bazirana na dobro poznatom principu 

minimizacije varijance ostatka. Danas su najpopularnije varijacijske metode (3D-Var ili 4D-

Var; npr., Rabier i sur., 2000; Gustafsson i sur., 2004) koje traže analizu tako da minimiziraju 

funkciju troška (jednadžbe (1.4) i (1.5)). Osim početnih uvjeta, regionalni modeli trebaju i 

bočne rubne uvjete (npr., Warner i sur., 1997). Oni se uzimaju od nekog drugog modela veće 

domene (uglavnom je to globalni model).  

Jednu integraciju modela u vremenu nazivamo determinističkom prognozom. Još od 

samih početaka numeričke prognoze vremena, ljudi su bili svjesni njenih brojnih nedostataka 

(Charney, 1951) kao npr. pogreške u procjeni početnih i rubnih uvjeta, pogreške u samim 

modelima, itd. Tomu nikako nije pogodovalo ni Lorenzovo otkriće kaosa (Lorenz, 1963). 

Postojanje brojnih izvora pogrešaka i kaotična priroda numeričkih metoda nužno vode do 

potpunog gubitka točnosti prognoze nakon nekog vremena koje je Lorenz procijenio na 

otprilike dva tjedna (Lorenz, 1965). Procjena je to koja stoji i danas (Buizza and Leutbecher, 

2015). 

 Nemogućnost točne procjene početnog i budućeg stanja atmosfere vodi prema 

vjerojatnosnom pristupu prognozi vremena (npr., Ehrendorfer, 1997). Ansambl prognostički 
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sustavi (EPS; npr., Leutbecher i Palmer, 2008) posebna su tehnika prognoze vremena koja 

kombinira više različitih determinističkih izračuna (tzv. različiti članovi) stanja atmosfere u 

jedan zajednički skup, tzv. ansambl. Svaki član ansambla počinje iz neznatno izmijenjenih 

početnih i/ili rubnih uvjeta. Te neznatne izmjene nazivaju se perturbacije. Statističkim 

metodama iz takvog se ansambla može procijeniti točno stanje i dati mjera nesigurnosti 

procjene točnog stanja atmosfere (Leith, 1974) kao i izdati vjerojatnosna prognoza vremena. 

 Kako bi EPS postigao te ciljeve, potrebno je perturbirati sve izvore nesigurnosti – 

početne uvjete, rubne uvjete i sam numerički model. Danas postoje brojne metode razvijene 

posebno za svaki izvor nesigurnosti (Houtekamer i sur., 1996; Nutter i sur., 2004b; Buizza i 

sur., 2005; Vié i sur., 2011; Wang i sur., 2011; Bouttier i sur., 2012; Nuissier i sur., 2012; 

Romine i sur., 2014; Wang i sur., 2019). 

 Posljednjih se godina ansambl pristup sve češće koristi i u regionalnim modelima 

(LAMEPS; Xue i sur., 2007; Bowler i sur., 2008b; Clark i sur., 2009; Vié i sur., 2011; Wang i 

sur., 2011; Peralta i sur., 2012; Wang i sur., 2012; Schellander-Gorgas i sur., 2017). Razlog 

tomu je činjenica da pogreške u modelima rastu brže što je korak mreže manji (Hohenegger i 

Schär, 2007; Zhang i sur., 2007; Judt, 2018). Kada te pogreške dosegnu svoju maksimalnu 

vrijednost, sve informacije s tih skala mogu se promatrati kao šum i determinističke prognoze 

više nemaju smisla. Kod modela konvektivne skale to se događa već nakon nekoliko sati 

prognoze (Weyn i Durran, 2017). Zbog toga je vjerojatnosni pristup izrazito važan kod takvih 

modela. 

 Međutim, LAMEPS-ovi imaju i svojih problema koje je potrebno riješiti. U ovoj ćemo 

se disertaciji usredotočiti na tri problema: 

1. Neusklađenost perturbacija početnih i bočnih rubnih uvjeta. Ako se perturbacije 

početnih uvjeta i bočnih rubnih uvjeta proizvode neovisno (što uvijek i je slučaj), na 

granicama domene mogu se pojaviti veliki gradijenti u meteorološkim poljima koji 

posljedično uzrokuju nerealistične težinske i zvučne valove (npr., Caron, 2013). 

Problem je to koji u potpunosti onemogućuje satne asimilacijske cikluse. 

2. Procjena gibanja i nesigurnosti velike skale. Budući da su LAM-ovi ograničeni 

veličinom svoje domene, brojem mjerenja, nesavršenom formulacijom rubnih uvjeta 

itd., njihova informacija o gibanjima na velikim skalama nužno će biti nedostatna. 

LAMEPS-ovi imaju i dodatan problem loše procjene nesigurnosti na tim skalama. 

3. Stvarna rezolucija modela. Važno je razumjeti da korak mreže i rezolucija modela nisu 

sinonimi (npr. Grasso, 2000). Stvarna rezolucija modela minimalno je 5 puta veća od 
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koraka njegove mreže (npr., Skamarock, 2004; Mittermaier, 2014). To znači da bismo 

sve točke mreže unutar te površine trebali promatrati jednako vjerojatnima i izlaze 

modela prilagoditi toj činjenici. 

Rješenja spomenutih problema djelomično dolaze kroz sljedeće metode: 

a) Metode miješanja. Ako znamo da procjena velikih skala regionalnog modela ne valja, 

informaciju o velikim skalama možemo uzeti iz onog modela za kojeg znamo da je 

bolji u toj procjeni (većinom je to globalni model). To se uglavnom radi metodama 

miješanja (miješaju se velike i male skale). Razni autori razvili su razne pristupe tom 

problemu (Brožkovà i sur., 2001; Yang, 2005; Wang i sur., 2014; Hsiao i sur., 2015; 

Verdasco i sur., 2016; Müller i sur., 2017). Vrlo je popularna metoda miješanja preko 

digitalnog filtera (Brožkovà i sur., 2001). Wang i sur. (2014) i Hsiao i sur. (2015) 

pokazali su kako su takve metode uspješne u smanjenu problema procjene gibanja 

velikih skala, dok je Caron (2013) pokazao da ona rješava i problem neusklađenosti 

perturbacija početnih i bočnih rubnih uvjeta. Međutim, Guidard i Fischer (2008; 

GF08) obrazlažu zašto ona nije u potpunosti ispravna i predlažu tzv. Jk metodu 

miješanja koja ima teorijski poželjnija svojstva. Dahlgren i Gustafsson (2012) 

pokazuju uspješnost Jk metode kod problema procjene gibanja velikih skala. 

b) Metode susjedstva. Problem stvarne rezolucije modela može se ublažiti primjenama 

metoda susjedstva (Theis i sur., 2005; Ebert, 2008; Bouallegue i sur., 2013; 

Mittermaier, 2014; Schwartz i Sobash, 2017). Slika 3 prikazuje ideju susjedstva. 

Sivom bojom označeno je 5 × 5 susjedstvo oko točke (x0, y0). Ukupan broj točaka tog 

susjedstva je Nb = 25 što znači da više nemamo jednu prognozu za točku (x0, y0), nego 

njih 25. Mittermaier (2014) pokazuje kako primjena takve metode pomaže kod 

problema 3. Poglavlje 12.8 dodatno opisuje kako se metoda susjedstva može 

kombinirati s EPS-om.   

Na ZAMG-u se trenutno razvija novi ansambl sustav konvektivne skale – C-LAEF. Glavni 

cilj ove disertacije je: 

• Razviti novu metodu perturbacije početnih uvjeta koja će se koristiti u C-LAEF-u i 

koja će pokušati riješiti probleme neusklađenosti perturbacija i procjene gibanja i 

nesigurnosti velikih skala. Ova metoda kombinira perturbacije velike skale iz 

globalnog ansambla (koji ujedno daje i bočne rubne uvjete) preko Jk metode s 

perturbacijama male skale koje dolaze iz EDA-a regionalnog ansambla. Naša je 

hipoteza kako ćemo ovom metodom postići konzistentnije perturbacije početnih i 
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bočnih rubnih uvjeta kao i bolji opis gibanja i nesigurnosti velikih skala. Također, Jk 

metoda omogućuje da se spajanje malih i velikih skala odvije na dosljedan i optimalan 

način u smislu minimizacije varijance pogreške. 

Sekundarni ciljevi ove disertacije su: 

• Poboljšati procjenu nesigurnosti početnih uvjeta u C-LAEF-u dodavanjem prošlih 

determinističkih prognoza. 

• Implementirati metodu susjedstva kako bismo riješili problem stvarne rezolucije 

modela. 

 

12.2.    Nova metoda perturbacije početnih uvjeta 

Ukratko ćemo predstaviti glavne značajke Jk metode miješanja (za mnogo detaljniji opis, 

čitatelj može pogledati GF08). 3D-Var varijacijska je metoda što znači da se, za pronalaženje 

optimalne analize, minimizira funkcija troška J (jednadžbe (1.4) – (1.6)). Kod Jk metode, 

funkciji troška dodaje se jedan dodatan član - 𝐽𝑘(𝑿) koji predstavlja informaciju velike skale 

globalnog modela (jednadžbe (2.1) i (2.2)) gdje V predstavlja kovarijacijsku matricu 

pogrešaka velike skale globalnog modela. U ovoj disertaciji, Jk metoda implementirana je 

unutar 3D-Var-a AROME modela (Fischer i sur., 2005) koji asimilira sljedećih 5 varijabli: 

temperaturu, specifičnu vlagu, vrtložnost, divergenciju i prizemni tlak. 

 U ovoj disertaciji uvodimo novu metodu perturbacija početnih uvjeta – ansambl Jk 

metodu koju ćemo implementirati u model C-LAEF. Ova metoda kombinira perturbacije 

velike skale iz globalnog ansambla (koji ujedno daje i bočne rubne uvjete) preko Jk metode s 

perturbacijama male skale koje dolaze iz ansambla asimilacije podataka (EDA-e) regionalnog 

ansambla. Glavne značajke te metode su sljedeće: 

a) 3D-Var EDA koristi se za pronalaženje perturbiranih analiza tako što se perturbiraju: 

i) Mjerenja 

ii) Prošle prognoze 

b) Kako bismo uključili i perturbacije velike skale globalnog modela, koristimo Jk 

metodu unutar 3D-Var EDA sustava.  

Ukratko, svaki član ansambla asimilira sljedeće: 

a) Perturbirana mjerenja 

b) Perturbiranu prošlu prognozu 

c) Perturbiranu globalnu analizu 
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Matematički, takva je funkcija troška dana jednadžbom (2.3). Vjerujemo da ansambl Jk 

metoda može riješiti problem nekonzistentnosti perturbacija bočnih rubnih i početnih uvjeta, 

poboljšati opis velikih skala u modelu te poboljšati njihovu dosljednost u odnosu na metode 

miješanja digitalnim filterom.  

 

12.3.    Model i eksperimenti 

C-LAEF ansambl sustav baziran je na determinističkom AROME modelu konvektivne skale. 

AROME je spektralni nehidrostatički model prilagođen za korake mreže od oko 1 km. 3D-

Var AROME modela gotovo je identičan onom razvijenom za ALADIN (Ficher i sur., 2005). 

Više detalja o AROME modelu mogu se pronaći u Seity i sur. (2011), Vié i sur. (2011) ili 

Brousseau i sur. (2016).  

 U ovoj disertaciji, C-LAEF koristi korak mreže od 2,5 km, 90 vertikalnih nivoa i 17 

članova ansambla (16 perturbiranih i jedan neperturbirani, tj. kontrolni član). Najvažnije 

postavke C-LAEF modela nalaze se u Tablici 1 dok je domena integracije prikazana na Slici 

4. Bočni rubni uvjeti uzimaju se od ECMWF-EPS-a. Budući da je tema ovog rada 

perturbacije početnih uvjeta, perturbacije modela i donjeg rubnog uvjeta nisu korištene zbog 

toga što želimo staviti naglasak samo na perturbacije početnih uvjeta. 

 Glavni je cilj ove disertacije evaluacija ansambl Jk metode i zato ćemo definirati tri 

eksperimenta: 

a) REF – referentni eksperiment u kojemu C-LAEF, za perturbiranje početnih uvjeta, 

koristi uobičajenu EDA metodu bez Jk člana. 

b) JK – eksperiment u kojemu C-LAEF koristi ansambl Jk metodu za generiranje 

perturbacija početnih uvjeta. 

c) DOWN – eksperiment u kojemu C-LAEF koristi dinamički adaptirane analize 

ECMWF EPS-a kao početne uvjete. Koristi se kao referentni eksperiment u 

potpoglavlju 12.7 jer ovakva konfiguracija nema problema s neusklađenošću 

perturbacija. 

Osim navedene razlike, u oba eksperimenta C-LAEF konfiguriran je potpuno jednako. Možda 

je važno naglasiti kako se isti globalni model (ECMWF-EPS u ovom radu) mora koristiti za 

bočne rubne uvjete, perturbacije velike skale u ansambl Jk metodi kao i za računanje V 

matrice. 
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 Verifikaciju dvaju navedenih eksperimenata provodit ćemo na sljedeći način. 

Površinske varijable verificirat ćemo svaka tri sata tako da ih usporedimo s mjerenjima na 832 

lokacije unutar domene (plavi četverokut na Slici 4). One uključuju: temperaturu na 2 m 

(T2M), relativnu vlagu na 2 m (RH2M), brzinu vjetra na 10 m (W10M) i tlak zraka sveden na 

razinu mora (MSLP). Visinska polja verificirat ćemo u odnosu na analizu ECMWF-a (0,1° × 

0,1°) i NCEP-a (0,5° × 0,5°), a ona uključuju: temperaturu, relativnu vlagu i brzinu vjetra na 

500- i 850-hPa plohi (T500, T850, RH500, RH850, W500 i W850).  

 Verifikacija oborine mnogo je zahtjevniji zadatak i standardne metode nisu prikladne 

(Ebert, 2008; Mittermaier, 2014). Zbog toga su razvijene naprednije metode za verifikaciju 

oborine (Gilleland i sur., 2009), a jedna od njih je i FSS (Roberts i Lean, 2008) koja će biti 

korištena u ovom radu. Prostorno polje izmjerene oborine proizvedeno je pomoću INCA-e 

(Haiden i sur., 2011, Wang i sur., 2017) koja koristi radarske podatke, mjerenja i kratkoročne 

prognoze kako bi proizvela visokorezolucijsku analizu oborine.  

Verifikacija ansambl sustava daleko je od jednostavnog zadatka budući da se uspješna 

vjerojatnosna prognoza mjeri preko raznih mjera: točnost, pristranost, pouzdanost, rezolucija, 

diskriminacija, nesigurnost i oštrina (Murphy, 1993; Wilks, 2006). Zbog takve razine 

kompleksnosti, ne postoji jedna verifikacijska mjera koja nam može dati informaciju o svim 

ovim svojstvima prognoze. Stoga ćemo koristiti više verifikacijskih mjera koje uključuju: a) 

korijen srednje kvadratne pogreške (RMSE) srednjaka ansambla kao mjera njegove točnosti, 

b) Continuous rank probability score (CRPS) za procjenu ukupne uspješnosti ansambla, c) 

odnos RMSE-a srednjaka ansambla i njegovog rasapa te statistike stršećih vrijednosti kao 

dvije mjere pouzdanosti, d) dekompoziciju Brierove mjere za procjenu točnosti prognoziranih 

vjerojatnosti, rezolucije i pouzdanosti i e) relative operational characteristics (ROC) kao 

mjeru diskriminacije. Svaka od ovih mjera bit će ukratko opisana u potpoglavljima 5. 

poglavlja. Za detaljniji matematički opis navedenih mjera, čitatelj može pogledati u Talagrand 

i sur. (1997) i u Wilks (2006).   

 Kako bismo odredili jesu li eksperimenti statistički značajno različiti jedan od drugog, 

koristili smo bootstrap metodu kako je opisano u Wilks (1997) pri čemu nivo značajnosti 

iznosi 90 %.  
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12.4.    Dijagnostika i ugađanje 

Kovarijacijska matrica V važna je jer određuje na koji se način utjecaj velike skale pojedine 

varijable širi na ostatak domene i ostale varijable. Ovo je jasno vidljivo iz jednadžbi (4.1) – 

(4.3). V je izračunata ansambl metodom kojom se standardno računa i B (Berre i sur., 2006, 

Stanešić i sur., 2019). Osnovna dijagnostika na slikama 5 i 6 pokazuje kako je V izračunata 

ispravno i ponaša se očekivano. 

 U ansambl Jk metodi postoji nekoliko načina na koji se utjecaj velike skale može 

prilagoditi: 

a) Odabir varijabli na koje će Jk metoda utjecati. U ovom radu Jk metoda ima utjecaj na 

sve varijable koje se asimiliraju, osim prizemnog tlaka jer se to pokazalo kao 

najuspješnije rješenje. 

b) Jačina utjecaja Jk metode na pojedinu varijablu. U ovom radu koristimo vjerojatnosni 

pristup prilikom odabira jačine tog utjecaja. Faktor skaliranja za svaku varijablu 

nasumično je odabran između dvije empirijski određene vrijednosti, tako da svaki član 

ansambla ima jedinstvenu konfiguraciju Jk metode. 

c) Inflacija perturbacija globalnog ansambla. Ukoliko se pokaže da ansambl Jk metoda 

ima negativan utjecaj na rasap regionalnog ansambla, perturbacije globalnog modela 

mogu se uvećati prije upotrebe u ansambl Jk metodi. Takve perturbacije povećavaju 

rasap regionalnog ansambla. 

Na kraju, potrebno je odrediti koje će se točno skale uzimati iz globalnog ansambla. U ovom 

je radu ta granica 135 km (totalni valni broj k* = 8 (4.4)) što znači da valne duljine globalnog 

ansambla ispod te vrijednosti nemaju nikakav utjecaj na regionalni ansambl. 

 Kao osnovna dijagnostika uspješnosti ansambl Jk metode, provedena je spektralna 

analiza na novonastalim perturbacijama početnih uvjeta. Sa slike 7 vidimo da novonastale 

perturbacije sadrže više energije na velikim skalama i da razlika počinje upravo oko totalnog 

valnog broja 8. Ovime potvrđujemo da se ansambl Jk metoda ponaša očekivano. 

 

12.5.    Dugoročna verifikacija 

Kako bismo ocijenili uspješnost ansambl Jk metode, proveli smo dvomjesečnu 24-h 

integraciju JK i REF eksperimenata od 1. 7. do 31. 8. 2016. u 1200 UTC. Slijedi kratki opis 

dobivenih rezultata za svaku mjeru posebno. 

a) RMSE srednjaka ansambla i rasap (slike 8 i 9) 
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RMSE statistički značajno je smanjen kod JK-ja unutar prvih 12 h prognoze za skoro 

sve varijable i oba nivoa. Rasap ansambla ostao je sličan što, uz manji RMSE, znači 

veću pouzdanost JK-ja. Rezultati za površinske varijable manje su različiti i JK je 

uglavnom nešto bolji za sve varijable unutar prvih 9 h prognoze. 

b) CRPS (slike 10 i 11) 

CRPS je manji za sve varijable i nivoe visinskih polja kod JK-ja. Za površinske 

varijable, JK je bolji kod MSLP-a i T2M-a i neutralan za ostale varijable. 

c) Statistika stršećih vrijednosti (slike 12 i 13) 

Statistički značajno smanjenje stršećih vrijednosti vidljivo je za T500, T850, MSLP, 

RH500 i RH850 što znači da je JK pouzdaniji ansambl. 

d) Dekompozicija Brierove mjere (slike 14 i 15) 

Vjerojatnosti dobivene iz JK-eksperimenta statistički su značajno bolje za razne 

pragove i sve varijable i oba nivoa visinskih polja, dok su neutralne za površinske 

varijable. Također, dekompozicija pokazuje da poboljšanje ne dolazi samo zbog 

povećane pouzdanosti, nego i zbog povećane rezolucije.  

e) ROC (slike 16 i 17) 

Rezultati testiranja za više različitih pragova pokazuju da JK ima bolju diskriminaciju 

za ekstremne događaje za W500, W850, T500, T2M, RH500 i MSLP, dok je za ostale 

varijable bolji za manje ekstremne pragove ili neutralan. 

f) Oborina (slika 18) 

FSS pokazuje da je JK bolji u prognozi oborine za sve testirane pragove i skale iznad 

195 km i za pragove do 5 mm za skale iznad 45 km unutar prvih 6 h prognoze. Za 

ostale prognostičke sate, JK i REF ne razlikuju se značajno osim za 24-h prognostički 

sat kada je JK bolji za sve skale i prag iznad 1 mm.  

 

12.6.    Pojedinačni slučajevi 

Najveći utjecaj ansambl Jk metode očekujemo u situacijama u kojima postoji snažno 

sinoptičko forsiranje u blizini granica domene. Naime, kao što smo obrazložili u potpoglavlju 

12.1, regionalni modeli imaju problem s točnim opisivanjem velike skale. Nadalje, svaka 

informacija izvan domene modela ulazi unutra preko bočnih rubnih uvjeta čija je formulacija 

problematična (Warner i sur., 1997; Nutter i sur., 2004a; Termonia i sur., 2009). Stoga, 

dobivanje informacije velike skale na dodatan način preko ansambl Jk metode može pomoći. 
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12.6.1.    11. Srpanj 2016. 

Slika 19 pokazuje sinoptičku situaciju 11. srpnja 2016. u 0000 i 1200 UTC. Hladna fronta 

povezana s ciklonom iznad Sjevernog mora premješta se preko domene C-LAEF-a. Tu JK 

eksperiment točnije prognozira položaj nadolazeće fronte što se vidi iz polja prizemnog tlaka 

(slika 20). Bolja prognoza sinoptičkog sustava velike skale vodi do, u ovom slučaju, bolje 

prognoze oborine (slike 21 i 22). 

12.6.2.    28. Kolovoz 2016. 

Slika 23 pokazuje sinoptičku situaciju 27. kolovoza 2016. u 1800 UTC te 28. kolovoza 2016. 

u 0000, 0600 i 1200 UTC. Zona konvergencije formira se ispred ciklone iznad Britanskog 

otočja koja se premješta prema istoku. Nekoliko sati kasnije, druga se ciklona formira iznad 

Sjevernog mora, a hladna se fronta povezana s tom ciklonom premješta se preko domene C-

LAEF-a. JK eksperiment opet točnije prognozira položaj hladne fronte i daje točniju 

raspodjelu prizemnog tlaka kao i ostalih varijabli (slike 24 i A4). Oborina povezana sa zonom 

konvergencije također je uspješnije prognozirana (slika 25). 

 

12.7.    Neusklađenost perturbacija 

Drugi važan zadatak ove disertacije provjeriti je u kojoj mjeri ansambl Jk metoda pomaže kod 

problema neusklađenosti perturbacija početnih i bočnih rubnih uvjeta. U tu smo svrhu 

izdvojili dva slučaja u kojima je zabilježena nekonzistentnost perturbacija. 

12.7.1.    Slučaj 1 

Slika 27a pokazuje sinoptičku situaciju 17. srpnja 2016. u 0000 UTC na kojoj se vidi visinska 

ciklona na istoku domene C-LAEF-a. U situacijama poput ove, gdje je ciklona djelomično 

obuhvaćena domenom modela, čak i male razlike u položaju ciklone između globalnog i 

regionalnog modela mogu uzrokovati značajne neusklađenosti na rubovima domene. Upravo 

je to i bio slučaj ovdje. Slika 28 pokazuje vremenski razvoj rasapa ansambla (eksperiment 

REF) za MSLP. Anomalija u tlaku brzo se širi domenom, te je rasap MSLP-a dosta veći u 

odnosu na DOWN. Uzimajući u obzir brzinu gibanja anomalije, lako se zaključuje da je riječ 

o horizontalno propagirajućim zvučnim valovima (Lambovi valovi). Pogledamo li rezultate 
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eksperimenta JK, vidimo da je rasap vrlo sličan DOWN-u i da je nerealističan rasap gotovo 

iščeznuo nakon prvog sata (slika 28c). 

12.7.2.    Slučaj 2 

Slika 27b pokazuje sinoptičku situaciju 15. srpnja 2016. u 0000 UTC na kojoj se vide dvije 

visinske ciklone na sjeveru i jugu domene C-LAEF-a. Slično kao i u prošloj situaciji, 

anomalije u MSLP-u razvijaju se na rubovima domene te nastavljaju putovati prema 

suprotnim krajevima domene (slika 30). I ovdje JK opet uvelike smanjuje nerealističan rasap 

MSLP-a i čini ukupan rasap ansambla vrlo sličnim onim u DOWN-u (slika 31). 

 Iz rezultata ovog poglavlja možemo zaključiti kako ansambl Jk metoda predstavlja 

učinkovit način ublažavanja problema neusklađenosti perturbacija. 

 

12.8.    Tehnike za dodatno unaprjeđenje ansambla 

12.8.1.    Ansambl susjedstva 

S obzirom na argumente dane u poglavlju 12.1, pojedini EPS možemo lako proširiti tako da 

postojećim članovima ansambla u svakoj točki modela dodamo i članove iz njenog susjedstva. 

Na primjer, ako imamo EPS od 17 članova i odaberemo Nb = 25 (broj točaka susjedstva), 

ukupan broj članova EPS-a porast će na 17 x 25 = 250. Računanje vjerojatnosti iz takvog 

EPS-a, može se provesti na više načina. Schwartz i Sobash (2017) definiraju dva najkorisnija 

načina: NEP i NMEP. NEP pretpostavlja da je svih 25 članova susjedstva jednako vjerojatno i 

tretira takav EPS kao EPS od 250 ravnopravnih članova. NMEP, s druge strane, uzima neku 

funkciju susjedstva f (npr. maksimum ili minimum) i onda ponovno formira EPS od 17 

članova. Schwartz i Sobash (2017) primjenjuju NEP i NMEP pristup pri prognozi oborine. 

NMEP je bolji kod prognoze ekstrema, dok je NEP bolji kod prognoze klimatološki 

učestalijih događaja.  

U ovoj disertaciji nećemo se detaljno baviti oborinom, nego ćemo ocijenit NEP i 

NMEP pristup pri prognozi ostalih površinskih varijabli (MSLP, T2M, RH2M i W10M) u 

usporedbi s eksperimentom REF. Važno je napomenuti da kod odabira susjednih točaka, 

pažnju treba obratiti na geografski položaj svake točke modela. Npr., ne želimo da susjedstvo 

neke nizinske kopnene točke sadrži planinske točke ili točke iznad mora. Preporuka je da se 

takve nereprezentativne točke izbace iz susjedstva. Također, vremenska nesigurnost prognoza 
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može biti značajna (Mittermaier i Stephenson, 2015), ali proširenje susjedstva u vremensku 

dimenziju nije bilo moguće u ovoj disertaciji zbog nedostupnosti satnih podataka. 

 Verifikacija (slike 33 – 37) je pokazala da NEP značajno povećava rasap i pouzdanost 

ansambla za sve varijable osim MSLP-a. Točnost i rezolucija malo su poboljšani za T2M i 

RH2M. Diskriminacija je poboljšana za T2M, RH2M i W10M, osim za ekstremne vrijednosti 

pragova gdje je poboljšanje vidljivo samo kod T2M. 

 NMEP pristup testirali smo na W10M (f=maksimum) i minimalnoj temperaturi na 2 m 

(f=minimum). Rezultati su pokazali da je NMEP pristup značajno bolji pri detekciji velikih 

brzina vjetra (slika 38) kao i točniji pri prognozi minimalnih temperatura (slika 39).  

12.8.2.    Dodavanje prošlih determinističkih prognoza 

Budući da je, na ZAMG-u, deterministički prognostički model AROME konfiguriran jednako 

kao kontrolni član C-LAEF-a (osim 12 h dužeg prognostičkog razdoblja), C-LAEF ansambl 

možemo proširiti dodavanjem 4 prošle prognoze AROME-a i to bez gubitka na duljini 

prognostičkog razdoblja. Očekujemo da će dodavanje prošlih prognoza poboljšati procjenu 

nesigurnosti početnih uvjeta jer one sadrže dodatnu informaciju trenutnog stanja atmosfere. 

 Usporedit ćemo eksperiment REF s novim eksperimentom zvanim LAG u kojemu 

dodajemo 4 prošle prognoze AROME-a (-3, -6, -9 i -12 h) za W10M, WG10M i oborinu. 

Rezultati su pokazali da je LAG pouzdaniji i malo točniji EPS za W10M i WG10M. Prognoza 

oborine točnija s pozitivnim utjecajem vidljivim do čak 20. sata prognoze. Detekcija 

ekstremnih brzina vjetra i svojstvo diskriminacije također su poboljšani u odnosu na REF. 

 

12.9.    Zaključak 

Danas je vjerojatnosni pristup prognozi vremena prepoznat kao superiorniji u odnosu na 

deterministički te postaje glavni alat za prognozu vremena većine svjetskih meteoroloških 

centara. To se posebno odnosi na mezo- i konvektivne skale gdje brzi gubitak predvidljivosti, 

tj. vrlo brz rast pogrešaka, posebno dolazi do izražaja. Nakon što se to dogodi, strukture na 

tim skalama mogu se smatrati šumom. Iz tih se razloga vjerojatnosni pristup putem LAMEPS-

a sve češće koristi. Stoga su i motivi za rješavanje problema povezanih s LAMEPS-ovima 

snažni. Male računske domena, nedostatci u formulaciji rubnih uvjeta, inferiorne metode 

asimilacije podataka, usredotočenosti na mezoskalu i nedostupnosti mjerenja izvan domene, 

LAMEPS-ovi nisu u mogućnosti točno opisati nesigurnosti gibanja na velikim skalama. 
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Nadalje, neusklađenosti između perturbacija početnih i bočnih rubnih uvjeta LAMEPS-a 

mogu nastati ako su te perturbacije dobivene neovisno. Kao rezultat toga, na granici domene 

stvaraju se umjetni težinski i zvučni valovi koji se šire ostatkom domene i izazivaju neželjeni 

šum u meteorološkim poljima. 

 U ovoj smo disertaciji uveli novu metodu perturbacije početnih uvjeta u LAMEPS-u, 

tzv., ansambl Jk metodu. Ova metoda spaja perturbacije velike skale iz globalnog ansambla 

(koji ujedno daje i bočne rubne uvjete) preko Jk metode s perturbacijama male skale koje 

dolaze iz EDA-a regionalnog ansambla. Naša je hipoteza kako ćemo ovom metodom postići 

dosljednije perturbacije početnih i bočnih rubnih uvjeta kao i bolji opis gibanja i nesigurnosti 

velikih skala. Također, Jk metoda omogućuje da se spajanje malih i velikih skala odvije na 

dosljedan i optimalan način u smislu minimizacije varijance pogreške. 

 Ovu smo metodu implementirali u LAMEPS konvektivne skale – C-LAEF. 

Uspješnost metode provjerili smo kroz verifikaciju dobivenu na temelju dva mjeseca 

integracije modela (srpanj i kolovoz 2016.). Rezultati pokazuju kako ansambl Jk metoda daje 

točniji i pouzdaniji EPS kao i povećanje atributa rezolucije i diskriminacije, posebice za 

visinska polja. Utjecaj je slabiji na površinske varijable, ali poboljšanje je jasno vidljivo na 

prognozi oborine, tlaka i temperature. Neutralniji rezultati za površinske varijable očekivani 

su jer je kod njih jak utjecaj donjeg rubnog uvjeta kao i gibanja male skale na koje ansambl Jk 

metoda nema utjecaja. Dubljom analizom dva specifična meteorološka slučaja u kojima se 

ciklona nalazi na rubu domene, utvrđeno je da ansambl Jk metoda doprinosi boljoj prognozi 

položaja frontalnog sustava kao i drugim varijablama povezanim s njom. 

 Kako bismo ocijenili uspješnost nove metode pri smanjenju problema neusklađenosti 

perturbacija početnih i bočnih rubnih uvjeta, analizirali smo dva slučaja u kojima je došlo do 

izražene neusklađenosti i posljedičnog stvaranja umjetnih horizontalnih zvučnih valova u 

domeni. U oba je slučaja ansambl Jk metoda uspjela uvelike smanjiti nastali šum. 

 Kako bismo dodatno unaprijedili C-LAEF-ov opis nesigurnosti početnih uvjeta, dodali 

smo mu 4 prošle prognoze determinističkog AROME modela kao 4 nova člana u ukupnom 

ansamblu. Pozitivni efekti ovakvog pristupa vidljivi su na povećanoj pouzdanosti, većem 

rasapu i većoj točnosti EPS-a. 

 Konačno, kao dodatan alat u borbi protiv brzo rastućih pogrešaka male skale kao i 

problema efektivne rezolucije modela, isprobali smo, tzv., metodu susjedstva. Rezultati 

pokazuju kako primjenom ove metode dobivamo osjetno veći rasap i pouzdanost ansambla. 
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Točnost i rezolucija također su povećani za neke varijable. No, možda i najbitnije, prognoza 

ekstremnih događaja poboljšana je. 

 Glavni znanstveni doprinosi ove disertacije su sljedeći. Prvo, razvijena je nova metoda 

perturbacija početnih uvjeta za LAMEPS – ansambl Jk metoda. Drugo, Jk metoda miješanja 

prvi je puta primijenjena u AROME modelu. Treće, dodavanjem prošlih determinističkih 

prognoza LAMEPS-u kao i njegove kombinacije s metodom susjedstva, prognoze LAMEPS-a 

dodatno su unaprjeđenje. Četvrto, ovaj je rad dio razvojnog procesa novog LAMEPS-a 

konvektivne skale pod nazivom C-LAEF, a ansambl Jk metoda trenutno se koristi u njegovoj 

operativnoj konfiguraciji (Wastl i sur., 2021.). 
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