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SUMMARY

The main goal of this thesis is to discuss periodic homogenization of a Lévy-type pseudo-
differential operator. Our approach to this problem is based on probabilistic techniques.
More precisely, as the main result we show that the appropriately centered and scaled
Lévy-type process (LTP) generated by this operator converges weakly to a Brownian mo-
tion with covariance matrix given in terms of the operator coefficients. We specially focus
on a class of Levy-type processes admitting “small jumps” only and a class of diffusion
processes having degenerate diffusion term. These results generalize and refine the clas-
sical and well-known results related to periodic homogenization of diffusion process and
of Lévy-type process in balanced form. In order to resolve these problems, it is neces-
sary to combine both probabilistic and analytical approaches and tools, such as theory of
semimartingales, stochastic stability theory and theory of integro-differential equations.
Keywords: Brownian motion, Markov processes, Lévy-type processes, Feller pro-
cesses, semimartingales, ergodicity, central limit theorem, homogenization, stochastic
differential equations, partial differential equations, 1t6’s formula, Feynman-Kac formula,

Poisson equation
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SAZETAK

Glavni cilj ove disertacije je diskutirati periodicku homogenizaciju pseudo-diferencijalnog
operatora Lévyjevog tipa. Nas pristup ovom problemu bazira se na vjerojatnosnim meto-
dama. Preciznije, kao glavni rezultat dokazujemo da odgovarajuée centriran i skaliran
proces Lévyjevog tipa generiran takvim operatorom slabo konvergira prema Brownovom
gibanju s kovarijacijskom matricom danom u terminima koeficijenata operatora. Posebno
se koncentriramo na klasu procesa Lévyjevog tipa koji dozvoljavaju samo “male skokove”
i na klasu procesa difuzija s degeneriranim difuzijskim koeficijentom. Ti rezultati gener-
aliziraju i produbljuju klasi¢ne i dobro poznate rezultate vezane uz periodicku homoge-
nizaciju difuzije i procesa Lévyjevog tipa u balansiranom obliku. Kako bismo razrijesili
ove probleme nuzno je kombinirati vjerojatnosni i analiticki pristup i metode, kao Sto su
teorija semimartingala, teorija stohasticke stabilnosti i teorija integro-diferencijalnih jed-
nadzbi.

Kljucne rije¢i: Brownovo gibanje, Markovljevi procesi, Procesi Lévyjevog tipa, Fellerovi
procesi, semimartingali, ergodicnost, centralni granini teorem, homogenizacija, stohasticke
diferencijalne jednadzbe, parcijalne diferencijalne jednadzbe, Itova formula, Poissonova

jednadzba, Feynman-Kacova formula
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1. INTRODUCTION

1.1. MOTIVATION

Many phenomena arising in nature, engineering and social sciences involve heteroge-
neous media, such as problems related to diffusion of population, composite materials
and large financial market movements. Because of heterogeneity, mathematical models
used in describing these phenomena (typically stochastic processes or integro-differential
equations) are characterized by heterogeneous coefficients, and as such are very com-
plicated and hard to analyse. However, on the macroscopic scales, they often show an
effective scale structure. More precisely, in many cases when the coefficients (rapidly)
vary on small scales it is possible to use the fine microscopic structure of the media to
derive an effective (homogenized) model which is a valid approximation of the initial
model and, in general, it is of much simpler form (typically it is characterized by constant
coefficients).

The problem of homogenization of a local (second-order elliptic) operator is a very
well-studied topic and there is a vast amount of literature on this subject, especially from
the analytical point of view. In this thesis we approach the problem of homogenization
using probabilistic methods, which were first introduced by A. Bensoussan, J-L. Lions
and G. C. Papanicolaou, see [12]. These methods rely on the well-known connection
between convergence in distribution of Markov processes (central limit theorems) and
the convergence of the corresponding infinitesimal generators. Accordingly, the central
limit theorem arises as an appropriate tool in addressing the homogenization problem,
which results in deep connection between the theory of Markov processes and the the-

ory of differential equations. More precisely, main steps in the probabilistic approach
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to the homogenization of second-order elliptic operator with periodic coefficients are the
following: projection of the corresponding diffusion process on the cell of periodicity,
discussion of the stochastic stability property of the projection (which is possible since
the projection is also a Markov process due to periodicity of the coefficients) and finally,
by employing concluded stochastic stability property of the projection and central limit
theorem, homogenization of the operator.

Discussion of stochastic stability of the projected process includes detecting the equi-
librium (stationary distribution) of the Markov process as well as determining the rate at
which it converges (with respect to the total variation distance) to the equilibria. If this
rate is exponential, we call the process geometrically ergodic. Geometric ergodicity of
Markov processes is very well studied in the literature, see [29], [69], [70] and [106].

The classical approach in using central limit theorem is through the so-called martin-
gale problem, which is a rather technically demanding and restrictive approach (especially
in the case of Markov processes with jumps). Our approach will rely on the characteristics
of semimartingales method, see [50].

In the case of a local operator the corresponding Markov process is a diffusion process.
The general theory of diffusion processes is very well developed and understood, see [86].
The central limit theorem for such processes has been studied in [14] under the assumption
that the diffusion coefficient is uniformly elliptic. In this thesis we expand these results to
the case of a singular diffusion coefficient, see also [43].

The problem of homogenization of non-local operator (for example, generated by
a stochastic differential equation with jumps) is a largely uninvestigated problem both
from analytical and probabilistic point of view. Results in this area were obtained in
[35], [37] and [42], where authors focus on so-called stable-like operators, that is, on
the case when Lévy kernel admits “large jumps” of power-type only. In [87] periodic
homogenization of such an operator in balanced form (that is, when the drift term vanishes
and the Lévy kernel is symmetric) and with small jumps only (precisely, Lévy kernel
having finite second moment) is discussed. However, in a large number of situations (such
as homogenization problems related to porous media) the balanced form assumption is a
serious restriction. We generalize this result to the case with non-vanishing drift term and

non-symmetric Lévy kernel.
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1.2. LITERATURE OVERVIEW

Our work contributes to the classical theory of periodic homogenization. Most of the
existing literature on this subject focuses on the problem of homogenization of non-
degenerate differential operators, mostly based on PDE methods. We refer the interested
readers to the classical monographs [2], [12], [17], [24], [51], [102] and the references
therein.

In this thesis we extend and refine this classical theory of periodic homogenization.
We do this in two ways. Firstly, our work in Chapter 3 relates to the active research
on homogenization of integro-differential operators, and Markov processes with jumps.
Secondly, our work in Chapter 4 was motivated by developments of the recent years in
understanding the homogenization of degenerate PDEs.

Our work in Chapter 3 is highly motivated by the results in [12], [13] and [87] where,
by employing probabilistic techniques, the authors considered periodic homogenization
of second-order elliptic operator in non-divergence form and integro-differential operator
in the balanced form, respectively. In this thesis, we generalize both results by including
the non-local part of the operator, as well as non-symmetries caused by the drift term
and the Lévy kernel. In a closely related work [81], by using analytic techniques (the
corrector method), the authors discuss periodic homogenization of the operator with a
convolution-type Lévy kernel. The homogenized operator is again a second-order elliptic
operator with constant coefficients. This case is not covered in this thesis since finiteness
of Lévy kernel excludes regularity properties of the corresponding semigroup assumed in
Section 3.2.

Results related to the problem of periodic homogenization of non-local operators,
based on probabilistic techniques, were obtained in [35], [36], [37], [40], [44], [45], [46]
and [103]. In all this works the focus is on the so-called stable-like operators (possi-
bly with variable order), that is, on the case when Lévy kernel admits “large jumps” of
power-type only. In this case, by using subdiffusive scaling, the homogenized operator
is the infinitesimal generator of a stable Lévy process with the index of stability being
equal to the power of the scaling factor. The problem of stochastic homogenization (that

is, homogenization of operators with random coefficients) of this type of operators has



Introduction Literature overview

been considered in [85]. PDE and other analytical approaches to the problem of periodic
homogenization and stochastic homogenization of stable-like operators can be found in
[31, [4], [51, [91, [81, [33], [34], [54], [93], [95], [96].

Let us also remark that the class of processes considered in Chapter 3 od this thesis
constitute of both diffusion and pure-jump part, and the behaviour of the homogenized
process depends on both of them. This makes the approach to this problem more subtle
since we need to take care of diffusion processes, diffusion processes with jumps and pure
jump processes, simultaneously.

In the recent years homogenization of degenerate PDEs has attracted much attention
due to its significance both in theory and applications. This was a motivation for our work
in Chapter 4. We refer the readers to [26], [78], [79] and [80] for a PDE approach to this
problem, and [22], [27], [83] and [84] for a probabilistic approach.

However, in all these works the major limitation is that the diffusion term can fully
degenerate (vanish) on a “small” part of the domain only. In the first five references it
is allowed that it vanishes on a set of Lebesgue measure zero only and in the rest of
the domain it must have a full rank. While in [27], [83] and [84] it is allowed that it
degenerates everywhere, but its rank must be greater than or equal to one except maybe
on a set of Lebesgue measure zero.

In this thesis we partly fill this gap and focus on the case when the diffusion part
vanishes on a set of positive Lebesgue measure. In the closely related article [43] (see also
[99] and [77] in the context of semilinear elliptic and parabolic PDEs), by also employing
probabilistic methods, the authors are concerned with the same questions we discuss in
this article. However, unfortunately, there seems to be a doubt about their proof of the
functional CLT in [43, Theorem 3.1]. In the Chapter 3 of this thesis, under slightly weaker
assumptions (and by employing different techniques) we resolve this issue, or at least
suggest an alternative approach to the problem.

Throughout the thesis we use some of the general methods in probability theory, the-
ory of stochastic processes and real analysis which can be found in [1, 30, 68, 86]. For
obtaining the stochastic stability results we use [62, 69, 70, 105, 107]. For general facts
and specific results about the semimartigale theory we will use [16, 50, 91]. For general

theory of Feller processes and generating examples we use [15, 19, 20, 21, 42, 55, 56].
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1.3. CHAPTER OVERVIEW

This thesis is divided into five chapters. In Chapter 2 we give most of the definitions and
general results necessary for understanding the material in the rest of the thesis. Chapters
3 and 4 is where main results, central limit theorems, are stated and proven. In Chapter 3
this is done for class of processes which we refer to as Lévy-type processes with “small
jumps” and in Chapter 4 for class of processes we refer to as “degenerate” diffusions.
Chapter 5 is dedicated to applying results proven in previous chapters to homogenization
of operators corresponding to those processes. In the case of “degenerate” diffusions
in this chapter we also discuss homogenization of the associated elliptic boundary-value
problem and parabolic initial-value problem.

Chapter 2 is divided into seven sections. In Section 2.1 we introduce notation which
is used throughout the thesis. Most importantly we define projection onto torus which is
crucial in proving ergodicity results and general Holder spaces which are used in condi-
tions implying central limit theorem in the Chapter 3. In Section 2.2 we define Markov
processes, the associated semigroup, Feller processes and state results related to ergodic
property of the process. In Section 2.3 we define and state some basic properties of
the infinitesimal generator, define Lévy-type processes and formally state what it means
for such process to have “small jumps” only. In Section 2.4 we introduce the periodic
structure and state state some properties this condition implies. In Section 2.5 we de-
fine the resolvent and show its connection to Poisson equation. In Section 2.6 we define
semimartingales, state It6’s formula in this general setting, define characteristics of the
semimartingale and state results connecting the convergence of a semimartingale with
convergence of its characteristics. In Section 2.7 we take a closer look at a special class of
continuous LTPs, which will play a central role in Chapter 4. We show how they connect
to the previously stated theory but also acknowledge some of the specificities.

Chapter 3 is divided into four sections. Each of the first three sections adds additional
assumption necessary for the proof in the Section 3.4. The assumption in Section 3.1
is strong Feller property and irreducibility and in this section we also provide examples
of processes satisfying this condition and prove that this assumption implies geometric

ergodicity of the process. The assumption in Section 3.2 implies the regularity of the
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solution of Poisson equation and again in this section we provide examples. In Section
3.3 we show three results, every time assuming less regularity of the function for which we
apply It6’s formula. At the end of this section we give one last condition which combines
these regularity assumptions. Section 3.4 is entirely dedicated to stating and proving the
Central limit theorem, which is one of the two biggest contributions of this thesis.
Chapter 4 is divided into five sections. In Section 4.1 we explain what it means for
a diffusion to be “degenerate”. In Section 4.2 we give a condition which compensates
for the condition in the previous section and show that this implies Geometric ergodicity
of the process. In Section 4.3 we concentrate on the special case when these conditions
are enough to prove the Central limit theorem, which we also do in this section. This
result is important because it is the first result in the literature showing the CLT in the
case of “degenerate” diffusions and the assumptions imposed on the process are very
mild. In the Section 4.4 we proceed with the general case and add additional conditions
which guarantee regularity needed for the use of generalization of Itd6’s formula, which is
also proven in this section. Section 4.5 provides the proof of the second of two biggest
contributions of this thesis under the assumptions made in Sections 2.7, 4.1, 4.2 and 4.4.
In this section we also provide an example of the process satisfying these conditions.
Chapter 5 is divided into five sections. In Section 5.1 we show how convergence
of processes implies convergence of corresponding infinitesimal generators. In Section
5.2 we present motivation for Feynman-Kac formula which provides connection between
stochastic processes and partial differential equations. We state this result formally in
Section 5.3 for viscosity solution of PDEs, which we also define in this section. In Section
5.4 we show that the solution to elliptic boundary-value problem converges to the solution
of homogenized equation and in Section 5.5 we do the same for initial-value parabolic

problem.



2. PREPARATORY MATERIAL

2.1. FUNCTION SPACES

We use RY, d € N, to denote real-valued d-dimensional vectors, and write R ford = 1. All
vectors will be column vectors. The Euclidean norm on R¢ is denoted by |-|. By M and
M ||us := (TrMMT)'/2 we denote the transpose and the Hilbert-Schmidt norm of a n x m-
matrix M, respectively. For a square matrix M, TrM stands for its trace. We use S¢, to
denote the space of symmetric d X d matrices. For a set A C RY, the symbols A, 14, A and
dA stand for the complement, indicator function, (topological) closure and (topological)
boundary of A, respectively. B,(x) denotes the ball of radius r around x € RY. For x,y € R
by x Ay we denote the minimum.

Let T = (11,...,7q) € (0,00)4 be fixed, and let tZ¢ := 1;Z x ... x 14Z. For x € R¢
define

xp={yeRY:x—yetz}  and RY/1Z¢:= {x;:x€RI}.

In the sequel, we denote T4 = RY/77Z9. Clearly, T4 is obtained by identifying the opposite
faces of [0, 7] :=[0,7;] ... x [0, 7). Let IT; : RY — TY, IT;(x) := x7, be the covering map.

A function f : RY — R is called t-periodic if
fix+1) = f(x), xeR?.

Clearly, every 7-periodic function f(x) is completely and uniquely determined by its re-
striction f](g 7 (x) to [0, 7], and since f][ 7 (x) assumes the same value on opposite faces
of [0, 7], it can be identified by a function f; : T¢ — R given with f;(x;) = f(x). For
notational convenience, we will often omit the subscript T and simply write x instead of

xz, and f instead of f; when there is no chance of confusion.
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We let Z(RY) and B(RY,R™) denote the Borel c-algebra on RY and the space of
% (RY) /%(R")-measurable function, respectively. For A C RY, %(A) stands for {AN
B:Bc #(RY)}. For a Borel measure (dx) on Z(RY) and f € B(RY,R"), we often
use the convenient notation (f) = [ga f(x) 1(dx). For f € B(RY,R®) we let || || :=
sup,cgd | f(x)| denote its supremum norm, and B,(RY,R) stands for {f € B(R4,R) :
| flle < oo}. We say that f = (fi,...,fa)T € Bp(RY,R™) if f; € Bp(RY,R") for each
k =1,...n. With Id we denote the identity operator on the space B,(RY,R"). We use
Cy(R4R™), Cy ,(RY,R"), CE(RY,R™) and CF(RY,R™), k € NoU {0}, to denote the sub-
spaces of B,(RY,R") N C¥(RY,R™) of all k times differentiable functions such that all
derivatives up to order k are bounded, uniformly continuous and bounded, vanish at in-
finity, and have compact support, respectively. Gradient of f € C'(RY,R) is denoted by
V£(x) = (d1f(x),...,0af(x)), and for f = (f1,...,fa)T € CH(RY,R") we write Df(x) =
(V£1(x),...,Vfa(x))T for the corresponding Jacobian. Space CK(RY R) is a Banach
space endowed with the norm || f{|; := Y. || <k [|D™ f1|oo» Where m = (my, ... ,mq)T € N4,
Im| = my+---+mg, and D" f(x) = 9™ ...9"Ma f(x). By f(&) := (27) ¢ [za e~ 16 £(x) dx
we denote the Fourier transform of the function f(x).

Function f : R — R is said to be lower semi-continuous if

liminf f(y) > f(x), xeRY

y—x

and upper semi-continuous if

limsup f(y) < f(x), xeRY.

Y
Function ¢ : (0,1] — (0,00) is said to be almost increasing if there exists a constant
k € (0,1] such that k¢ (r) < ¢(R) forall 0 <r <R < 1.
Let now y : (0,1] — [0,00) be such that y(1) =1 and lim,,oy(r) = 0. For f €
Cp(RY,R) and j € N, define

o |f(x+h)— fx)]
s xseuugiheélsg)?\m} w(|h)Ial=

Also, let

Ay = {yeR: r— y(r)r 7 is almost increasing in (0, 1]} .
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If 1 <7 and p» € Ay we know that there exists k € (0, 1] such that forall 0 <r <R < 1

K y(r) < y(R) and therefore

KW(,,),,—Yl — Kl[/(r)r_yzryz_ﬂ < W(R)R—Yzﬂz—% —

r

=Y
Y(R)R™™ (E) T < YRR,
which proves that also y; € Ay,. Set
My = SUpAy .

If my > 0, we call y(r) the Holder exponent. Observe that the product of two Holder
exponents is a Holder exponent. Indeed if y(r) and ¢(r) are Holder exponents this means

that there are yy, Yy > 0 and ky, Ky € (0, 1] such that
KW () < YRR and kpp(r)r 70 < p(RIR 7.
From this we conclude
(1yo) W(r)o(r)r=770) < y(R)Q(RIR (T 70)

and therefore my,o > 0.
If y(r) is the Holder exponent let k € Ny be such that my € (k,k+ 1]. Note that
this implies that the function r +— y(r)r~* is almost increasing in (0, 1] and function

r— w(r)r~® 1 is not. Define
C/(RYR) := {f € Ch(RY) : [D"f]_yy < oo for all m € N§ such that |m| = k} .

This space is called a generalized Holder space, and it is a normed vector space with the

norm

Iy = e+ Y D"k

m: |m|=k
(see [7]). Observe that if my, € (k,k+ 1] for some k € Ny then C; T (R4, R) € (R4, R) €
CK(RY,R).

Example 2.1.1. The name generalized Holder space suggests the previous definition gen-
eralises Holder spaces. Let us prove that this is so. Recall that we say f : RY — R is

Holder continuous if there exist constants C, @ > 0 such that | f(x) — f(y)| < C|x —y|* for

9
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all x,y € RY. For k € Ny, a € (0,1) we denote by C&*(RY,R) C C*(RY, R) the set of func-
tions f such that its kth partial derivatives are Holder continuous with exponent . We
will write C*(RY,R) instead of C*%(RY,R). Notice that in the definition of Holder ex-
ponent we can take y/(r) = r**% since 1¥t% = 1 and lim,_,o *** = 0. For f € C,(RY,R)

and j € Ny, we have

|f(x+h) — fx)]
[fl-jy = sup  sup — ,
PV eRanes ooy [Pl

specially for k = j
[f]fk,u/ = sup |f(x) _f(y)| )

_ o
x#yeRd ’X y ‘
Since constant function is almost increasing and r — r~¢ is not, for any € > 0, we can

conclude that
AR® . — Ly e R: rs r TR s almost increasing in (0,1]} = (—eo,k + ],
This implies that m*% := supA%* = k+ « and since k + o € (k,k+ 1] we get
c/(RY,R) = Co*(RY,R) == CH*(RY,R) NCy(RY, R)
and

D" (x) = D" f(y)]

x — y|*

Iflly = e+ X sup

m: |m|=kx#yeRd

= Il -

O

Let # (’]I‘Crl) denote the Borel o-algebra on ’]I‘(T1 (with respect to the standard quotient
topology). Since f <+ f; gives a one-to-one correspondence between {f : RY — R :
fis t-periodic} and { f; : T¢ — R}, in an analogous way we define B(T4,R"), B, (T4, R"),
Cy(T$,R"), Cp (T, R"), C&(TE,R"), C&(T$,R"), CY(T$,R) and C5*(TE,R). On the
space of signed measures on B(T¢) we denote by ||-||;y the total variation norm, that is
[llry = supjg<1 [ ()]

We say that a function f : [0,00) — RY is cadlag (from French “continue 2 droite,
limite a gauche”) if it is right-continuous with left limits. Special case of cadlag functions
are continuous functions. Denote by D ([O,w),Rd) the space of all cadlag functions and

by C ([0,0),R?) the space of all continuous functions. On the space C ([0,),R?) we

10
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introduce tho following metric

d(0t, ) = i()zwmsupra(s)—ﬁw

s<n

for o, € C ([O,w),]Rd). Topology associated with this metric is called local uniform
topology.

Intuitively, one might say that this topology allows us to "wiggle space a bit”. We next
define topology on the set of cadlag functions which can, intuitively allow us to "wiggle
space and time a bit”.

Let A be the set of all continuous strictly increasing bijections A : [0,e0) — [0,00) (We
say that such a function A is a change of time).

On the space D ([O,oo),]Rd) there is a metrizable topology, called the Skorokhod J-
topology such that a sequence (@, ),cn converges to « if and only if there is a sequence
(An)nen C A such that

sup |A,(s) —s| — 0, and
5>0

sup |a, (Ay(s)) — a(s)| — O forall N € N.
s<N

Next results can be found in [50, VI.1b.]
Proposition 2.1.2. Let o, B, 0, € D ([0,0),RY), for n € N. Then

(i) if a sequence (Qy)neN converges to o locally uniformly then it converges to o in the

Skorokhod J,-topology.

(ii) if o is a continuous function, a sequence () cN converges to o, in the Skorokhod

Ji-topology if and only if it converges to o locally uniformly.

(iii) if a sequence (Qy)neN converges to @ and a sequence (fB),cn converges to B in
the Skorokhod J,-topology, where B is continuous, then sequence (04 + Bn)nen
converges to & + B in the Skorokhod J,-topology (this is not generally true if B is

not continuous).

11
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2.2. STABILITY OF MARKOV PROCESSES

Let (Q,.#) and (S,.%) be two measurable spaces and let {.%#,},cn be a sequence of o-
algebras such that .7, C %, | C .% foreach n € N. Let {X, },cn be a sequence such that
X, is %, /.#-measurable. For each x € S let P, be a probability measure on (Q,.%) such
that the map x — PP, (X,, € B) is Borel measurable for each n € N and all B € .¥ and that
P, (Xo = x) = 1. Recall that we say {X, },cn is a time homogeneous Markov chain if it

satisfies the Markov property, that is
P, (Xn+k €B | La/\n) = Pxﬂ (Xk S B) ,

foreachn,ke Nandallxe S, B € .7.

For the purpose of this thesis we will need to study a somewhat more complicated
objects called Markov processes which posses similar properties to Markov chains but
are defined for time ¢ € [0,0), that is, they are a continuous-time equivalent to discrete
time Markov chains. In this chapter we investigate how properties of Markov chains
translate for processes.

Let E be locally compact and separable metric space and #(E) a Borel field on E.
Throughout this thesis space (E,%(E)) will be either (RY, Z(RY)) or (T¢, %(T9Y)). Let
(Q,.F) be a measurable space and let {.# },>¢ be a family of o-algebras such that .%; C
F1 C F foreach 0 < s <t. Let {X; };>0 be a process such that X; is .%; / #(E)-measurable
for each r > 0. For each x € E let P, be a probability measure on (£,.#) such that
the map x — P, (X; € B) is Borel measurable for all # > 0 and all B € #(E) and that
Py (Xo = x) = 1. We say {X; };>0 is a time homogeneous Markov process if it satisfies the

Markov property, that is
Py (Xi4s € B| %) =Px, (X; €B),

forallz,s >0andallx€ E, B< A(E).

Notice that if we take a Markov process {X; };>¢ and a parameter 4 > 0 than by setting
Y, := X, for n € N we have constructed a Markov chain {Y,},cn. We call this chain a
skeleton chain of Markov process {X; }/>0.

Denote by E, expectation with respect to P, (d®), x € S in a discrete and x € E in a

continuous-time setting. Then {X, },cn satisfies Markov property if and only if for all

12
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f €Bp(S,R) and all x € S, n,k € N we have

B [f (Xntk) | Fn] = Ex, [f(Xe)] -

The same holds for a processes, that is {X; };>o satisfies Markov property if and only if

forall f € B,(E,R) and all x € E, t,5s > 0 we have

Ex [f(Xl+S) | ﬁt] = ]EX, [f(Xs)] :

Let N be a stopping time on (Q, {.%,},cn) and let T be a stopping time on (Q,{.% }/>0).
We define 7, :={A€.Z :AC{N <}, {N<n}nNAe€.%,VneN}and 7} ={Ac .F:
A CHT < oo} {T <t}NA € .%,Vt > 0}. Recall that a Markov chain {X, },cn satisfies a

strong Markov property if for each stopping time N, k € Nand allx € S, B € .,
Py (Xn+k € B| Zy) =Px, (Xk €B), ontheset {N < oo}.

We say that a Markov process {X; },> satisfies a strong Markov property if for each

stopping time 7', s >0 and all x € E, B € A(E),
Py (X745 € B| ZF7) =Px, (X, €B), onthe set {T < oo}.

Strong Markov property clearly implies the Markov property and in the case of Markov
chains the opposite is also true, but in the case of Markov processes this is not so. For
an example see [61, pp. 215]. A class of continuous-time processes which do possess
a strong Markov property (or a modification which does) are Feller processes. They are
clearly a subclass of Markov processes and in order to define Feller processes let us first
define and discuss properties of a semigroup of a Markov process {X; };>0

Analysis of a Markov chain {X,},cn on a discrete state space S is often done by
analysing transition probabilities p(n,x,y) := P,(X,, = y). When analysing a Markov pro-
cess {X;};>0 on a state space E, which is not discrete, we introduce transition kernels
p(t,x,dy) =Py (X; €dy),t >0, x € E. The associated family of linear operators {P; },;>0
defined by

RA) = Ef0) = [ f0)pltndy), 120, €BER),
forms a semigroup on the Banach space (B,(E,R),|| - ||). That is

13
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Py =1d, since Pyf(x) = E,[f(Xo0)] = f(x), and

Pso P, = Py, for all s, > 0, since due to the Markov property we have Pyo P, f(x) =
Ex [P f(X)] = Ex [Ex, [f (X,)]] = B (B [f (Xys) | Fl] = Ex[f (Xs1)] = Poga f ().

Moreover, the semigroup {P, };>¢ is

contractive, that is ||P.f]|.. < ||f]|.. for all # > 0 and f € B,(E), since ||P.f||., =
supyeg |[Ex [f(X0)]| < supyep B [[f (X)) < [|f].cs

conservative, that is B1g(x) =Py (X; € E) =1 = 1g(x) for all 7 > 0, and
positivity preserving, that is P, f > 0 for all > 0 and f € B, (E) satistying f > 0.

Definition 2.2.1. A Markov process {X;};>¢ is said to be a Feller process if its corre-

sponding semigroup { P },>¢ satisfies the following two properties
(i) {PB}i>0 is strongly continuous, that is, lim,_,q ||P.f — f||.. = 0 for all f € C(E,R),
(ii) {P,}i>0 enjoys the Feller property, that is, P,(Cw(E)) C Cu(E,R) for all > 0.

In that case we say that {P; },>¢ is a Feller semigroup.

As mentioned before every Feller process (admits a modification that) has cadlag
sample paths and possesses the strong Markov property (see [49, Theorems 3.4.19 and
3.5.14)).

A Markov process {X; };>0 is said to be a Cp-Feller process if its semigroup {F; };>0
satisfies P, (Cp(E,R)) C Cp(E,R) for all # > 0. It is said to be a strong Feller if we have
P,(By(E,R)) C Cyp(E,R) for all t > 0. Clearly, if {X;},>¢ is strong Feller then it is also
Cp-Feller. According to [90, Corollary 3.4] (since {P, };>¢ is conservative) a Feller process
{X;}1>0 is also a Cp-Feller.

Next, we introduce some properties crucial for studying stability of Markov processes.
We will mainly follow the definitions and cite theorems from [29], [69] and [105].

Recall that, for a Markov chain {X,},cn on a discrete state space S, an invariant
probability measure 7t(dx) on space (S,.7) satisfies

n(y) = Y p(1,x,y)m(x).

xes

In the case of Markov processes we have a similar definition.

14



Preparatory Material Stability of Markov Processes

Definition 2.2.2. Invariant probability measure m(dx) of a Markov process {X;};>0 is a

measure on space (E, #(E)) satisfying
/p(t,x,B) a(dx) = (B),  forallt >0, Be B(E).
E

It will be useful to prove the existence and uniqueness of an invariant probability
measure. Here we discuss one way of doing so. For the proof of existence we introduce

the following notion of boundedness.

Definition 2.2.3. A Markov process {X; };>0 is bounded in probability on average if for

each initial condition x € E and each € > 0, there exists a compact subset C C E such that

1 t
iminf — >1—=¢.
htrgglft A p(s,x,C)ds>1—¢
Next proposition is a direct consequence of [69, Theorem 3.1] and the fact that every

Markov process {X; };>0 on a compact state space is bounded in probability on average.

Proposition 2.2.4. [f Markov process {X; };>0 with a compact state space E is Cp-Feller

then an invariant probability measure mt(dx) exists for {X; };>o.

To prove the uniqueness we need to define the notion of irreducibility and state what
it means for a Markov process to be transient or recurrent.

Recall that a Markov chain {X, },cn on a discrete state space S is irreducible if for
every x,y € S there is n € N such that p(n,x,y) > 0 which is equivalent to saying that
Yo p(n,x,y) > 0 for every x,y € S. Next definition generalises this definition for both

Markov process and Markov chain on a state space (E, Z(E)).
Definition 2.2.5. If there is a o-finite measure 1 such that for every B € #(E),
* P(B) > 0 implies that [;” p(r,x,B)dr > 0 for all x € E we say that a Markov process
{X; }1>0 is W-irreducible.
* P(B) > 0 implies that };" | p(n,x,B)dr > 0 for all x € E we say that a Markov

chain {X, },c is W-irreducible.

Recall that, for a Markov chain {X, },cn on a discrete state space S, a state y € S is
recurrent if }°.° | p(n,y,y) = o and if on top of that {X },cn is also irreducible then for
every x € Swe have Y~ | p(n,x,y) = eo. In a continuous-time setting we have a following

definition.
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Definition 2.2.6. A -irreducible Markov process {X; };>¢ is recurrent if P(A) > 0 im-
plies that [;” p (¢,x,A) df = oo for every x € E.

Definition 2.2.7. A Markov process {X; },> is transient if there exist {A, },. such that

UnenA, = E and {M, } M, < e such that [y p(t,x,A,) dr <M, for every x € E and

neN»

every n € N.

Recall that a irreducible recurrent Markov chain {X,},cn on a discrete state space
S admits a unique (up to constant multiplies) invariant measure. The equivalent of this

argument in a continuous-time setting will play a crucial role in the next proposition.

Proposition 2.2.8. If {X,},>0 is a \p-irreducible Markov process such that an invariant

probability measure w(dx) exists then m(dx) is unique.

Proof. According to [105, Theorem 2.3] every -irreducible Markov process is either
transient or recurrent. Due to the fact that {X; },>0 admits at least one invariant probability
measure it clearly cannot be transient. Indeed, suppose {X; };>0 is transient i.e. there exist
{An} e such that U, enA, = E and {M, } .o, My <o and forx € E [ p(t,x,A,)dt <M,
holds. Then

neN»

Mn:/EMnn(dx)E/E/Omp(t,x,An)dm(dx) _ /Oooﬂ(An)dt

implies 7 (A,) = 0 for each n € N which is not possible since U,cnA, = E. The assertion
now follows from [105, Theorem 2.6] which states that every recurrent Markov process

admits a unique (up to constant multiplies) invariant measure. [

If an invariant measure exist we can discuss whether and how transition kernels of
{Xi }+>0 converge to it. It is well known that when 7(dx) is an invariant probability then
| p(t,x,dy) — m(dy) ||y is a decreasing function of r > 0, see [104]. We will be interested
in cases when we can deduce more then that and it will prove of a special interest to have

an exponential speed of convergence, the so called geometric ergodicity.

Definition 2.2.9. Markov process {X;};>0 such that an invariant probability measure

m(dx) exists is said to be

* ergodic if

tli_>rn |p(t,x,dy) — m(dy)||;yv = 0, forallx € E.
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e geometrically ergodic if there exists ¥ > 0 such that
lli_>me7”Hp(t,x,dy)—?t(dy)HTV =0, forallx € E.

Useful consequence of geometric ergodicity is given in the following corollary

Corollary 2.2.10. If a Markov process {X;}i>0 is geometrically ergodic then there are

constants y,I" > 0 such that
1B flle < Te ™| flle, >0,
for any f € By(E,R) with [ f(x)n(dx) = 0.

Proof. Clearly geometric ergodicity is equivalent to the existence of constants y,I" > 0

such that
sup |Pf(x)—z(f)| < Tev, forallx € E,
<1
therefore the statement trivially follows. |

Irreducibility of the Markov process will again play a crucial role in proving the geo-

metric ergodicity of a process. Another important concept are petite sets.

Definition 2.2.11. A set C C E is petite if there is a probability distribution a on % ([0, o))

and a nontrivial measure v on %(E) such that
/ p(t,x,A)a(dt) > v(A), forallxe Cand A € A(E). (2.1)
0

A special case of a petite set is if we take a = &y, a Dirac delta measure at time f.
Then condition (2.1) becomes p (fy,x,A) > v(A) for all x € C and A € Z(E). In this case
we say that a set C is small. It will be of interest for us to study a situation when petite

and small sets coincide.

Proposition 2.2.12. Suppose {X;};>¢ is \p-irreducible Cy-Feller process on a compact
state space E, where supp \p has non empty interior and its skeleton chain {X,},en is

b-irreducible then all petite sets are small.

Proof. The statement follows from [105, Theorem 7.1.], [69, Theorem 3.2. (ii)], the fact
that every Markov process {X; },>0 on a compact state space is bounded in probability on

average and [69, Proposition 6.1]. |
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Recall that a irreducible Markov chain {X;, },cn on a discrete state space S is aperiodic

if there is ng € N and x € S such that p(n,x,x) > 0 for all n > ny.

Definition 2.2.13. A \-irreducible Markov process {X; };>¢ is aperiodic if for some small

set C such that {(C) > 0 there exists #p > 0 such that p (¢#,x,C) > 0 for all x € C and ¢ > 1.

Recall that for an irreducible, aperiodic Markov chain {X,},cn on a discrete state
space S with invariant probability measure 7t(dx) we have lim,_. p(n,x,y) = 7t(y) for
every x,y € S. The following theorem follows directly from [29, Theorem 5.2.(b)] by
takingVy =1,A=0,b=1and C=E.

Theorem 2.2.14. Let {X;},>0 be a \p-irreducible, aperiodic Markov process such that E

is a petite set. Then {X;},>¢ is geometrically ergodic.

It might seem an unreasonable assumption for the space set E to be petite but the
following lemma, which follows directly from [105, Theorem 5.1. and 7.1.], proves that

this is not the case when E = T9,

Lemma 2.2.15. If {X,},>0 is a -irreducible Cp-Feller process such that supp \p has

non-empty interior, then every compact set is petite.

Next theorem also gives us sufficient conditions for a Markov process to be geometri-

cally ergodic.

Theorem 2.2.16. Suppose that {X,};>¢ is \p-irreducible strong Feller process on a com-
pact state space E such that its skeleton chain {X,},cy is -irreducible. Then {X,};>¢ is

geometrically ergodic.

Proof. Strong Feller property implies that [105, Condition T on page 177] is satisfied, to
see this take a := & a Dirac delta measure at time ¢t and A € Z(E) then due to the strong
Feller property function P,(1,4) is continuous, that is condition T is satisfied. The fact that
every Markov process with a compact state space is bounded in probability on average
and [69, Proposition 3.1 (i)] imply that we can apply [69, Theorem 8.1(iii)]. From already
mentioned we conclude that conditions of [69, Theorem 3.2] are met. This together with

the fact that the skeleton chain {X,} is ¢-irreducible implies [69, Theorem 6.1] from

neN
which we conclude that measure in Theorem 8.1(iii) does not depend on x € E which

concludes the proof. |
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For a Markov process {X; },>¢ there are several different notions of irreducibility. We
have already defined what it means for a Markov process to be -irreducible. The fol-

lowing notion of irreducibility relies on the topology structure of state space E.

Definition 2.2.17. A Markov process {X; },;>0 is open-set irreducible if for any t > 0, and

any x € E and any non-empty open set O C E, p(t,x,0) > 0.

The following proposition gives us a connection between these two definitions of

irreducibility.

Proposition 2.2.18. If a strong Feller process {X;}i>0 is open-set irreducible then the

process {X; }i>0 and its skeleton chain {X,},cy are p-irreducible.

Proof. If {X;};>0 is open-set irreducible then clearly so is its skeleton chain {X,},x-
The statement of this proposition is now a direct consequence of [105, Theorem 3.2.(ii)]
and [105, Condition T on page 177], where in Condition T we take a := & a Dirac delta
measure at time ¢ and use the fact that for any A € Z(E) function P;(1,4) is continuous

due to the strong Feller property. |

That the property of ergodicity is important can be seen in the following continuous-
time version of Birkhoff ergodic theorem (see [14, Proposition 2.5] and the note under it

or [88])

Theorem 2.2.19. Let {X;};>0 be ergodic Markov process with invariant measure Tt(dx).

If f € LP(E, ) then

1 1
lim ;/ fXs)ds=mn(f) a.s. andinL?.
0

t—roo
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2.3. LEVY-TYPE PROCESSES

In this section we will concentrate on a special class of Feller processes, the so called
Lévy-type processes which are the central objects of the Chapter 3. We shall see that
examples of Lévy-type processes include Lévy processes and diffusions, the latter of
which are the central objects of the forth chapter. Throughout this section {X; },>o denotes
a Markov process with state space (R, 2 (R?)).

In the previous section we have defined a semigroup {F;};>¢ of a Markov process
{Xi}s>0. To better understand the next definition let us first consider a function p :
[0,00) — R which satisfies properties analogue to those of the semigroup. That is, we

are interested in what can be said about a solution to a functional equation

p(0)=1
p(s)-p(t) = p(s+t1).

If we additionally require p to be continuous then the unique solution to this equation is
p(t) = e“. We see that the properties of p are determined by a € R which can be obtained

from p by following formula
a—timPO=1
t—0 t

In the case of a semigroup {P;},>0 we will try to proceed in a similar meaner, but we
need to make sure this limit is well defined. The infinitesimal generator (<7°, 9 ;) of
the semigroup {P, },>¢ (or of a Markov process {X; };>0) is a linear operator &#* : 7 _,, —
By,(RYR) defined by

hf—f

t

A f = lim exists in ||||oo} .
t—0

FED = {feBb(Rd,R) :}E%Pfft_f

We call (o b , Qﬂb) the Bj-generator for short. Further, in the case of Feller processes,
we call (%, Doy=) = (°, D 5 NC(RY,R)) the Feller generator for short. Observe
that in this case 2/~ C Coo(RY,R) and &7 (Z,s~) C Coo(RY,R). Following propositions
give some basic properties of the generator in the relation to semigroup and their proofs

can be found in [32, 1.1.5 Proposition] and [32, 4.1.7 Proposition] respectively

Proposition 2.3.1. (i) If f € Co(RY,R) and t > 0, then [\ P.fds € Doy~ and
t
Pf~f =" [ Rfds.
0
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(ii) If f € Doy and t > 0, then P, f € Dy~ and

d oo oo
d—tPtf:«Q{ Bf=RAd”f.

(iii) If f € Dy~ and t > 0, then

t t
Bf—f:/od”PSfds:/OPsﬁ“fds.

Proposition 2.3.2. If f € 9, and g = " f then the process {M,};>o such that M, :=
F(X:) — [ 8(Xs)ds is an {F; }1>o-martingale.

Notice that properties from Proposition 2.3.1 match the following properties of func-
tion p(r) =e*
@) p(t)—1=e"~1=a(ze" — ) =ayp(s)ds,

(i1) %p(t) = %e‘” =ae” = ap(t).

For the proof of the following lemma se [52, Lemma 19.26]

Lemma 2.3.3. Let {X;},>0 and {X; };>0 be two Feller processes with the corresponding
Cwo-generators (4=, Dy~) and (4, D ;.), respectively. Then
t ~
Rf=Bf+ [ Blo/™ =P f &5, fE€TNT . (22)
Again notice that the equivalent property holds for functions p(¢) = e“ and p(t) = e“,

indeed

edt + /t eds(a _d)ea(t—s) ds = edt + (Cl —d)eat /[ e(d—a)s ds = edt _ e (e(d—a)t _ 1) — el
0 0

Corollary 2.3.4. The equation (2.2) holds for any f € B,(RY,R) if o/ — a/* is bounded

operator on (By(R4,R), ||-||..) and C2 (R4, R) € Dy N D ..

Proof. Take any open set O C R? and a sequence (f,),eny € C7(RY,R) such that f, *
1o.Due to boundedness of 27 — &/ and the dominated convergence theorem we see
that equation (2.2) also holds for f(x) = 1o(x). The claim now follows from Dynkin’s

monotone class theorem. [ |

Let us give an example of infinitesimal generators for specific class of Markov pro-

CESSses.
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Example 2.3.5. Recall that the process {L; };>¢ is a Lévy process if

. . . . d
it has stationary increments, thatis forall 0 <s <t L, — Ly =L, g,

it has independent increments, that is for all 0 < s <t L; — L, is independent of

o(L,,r<s)and
it is continuous in probability, that is for every € > 0 lim;_,o. P (|L; — Lo| > €) = 0.

Lévy process is uniquely and completely characterized through its characteristic ex-
ponent g : R¢ — C
E [ei<§7L,>] — e_tQ(E)’ t> 0’§ c ]Rd‘
Lévy processes are Feller processes and the domain of its generator contains C°(RY, R)
functions. If .&7* is a generator of {L, },>0 then for any f € C°(RY,R)
Af = (b, V) +27"Tr (cVVf) + / (FC4+9) == VA ©0)) v(dy), 2.3)
R4
where b € RY, ¢ € R x RY is non-negative definite symmetric matrix and v is a o-finite

measure on %(RY) satisfying

v{0}) =0  and /Rd(l/\|y|2)v(dy)<oo

The triplet (b, c,v(dy)) is called the Lévy triplet of {L; };>¢. Equivalently, .o7* is a pseudo

differential operator, that is it can be written in the form

A leemf () = = [ alx.E)EIF(E) de

where the symbol g(x,&) does not depend on x and is given by the Lévy-Khintchine

formula

a(8) = —HED) + &)+ [ (1=6ED +iE )13, 0/() V().

R4
U
As already mentioned the important question when thinking about the infinitesimal
generator 1s whether a function is in its domain. What makes it easier for one to work
with generators is to have a large class of “nice” functions in this domain. This is what

makes the definition of Lévy-type process important.
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Definition 2.3.6. Feller process {X; },>0 such that its Feller generator (7>, Z/-) satisfies
(LTP) C7(R%,R) C Z-,

is called a Lévy-type process (LTP). Throughout this thesis, the symbol {X; },>¢ denotes a

Lévy-type process.

The name Lévy-type processes suggests a strong connection to Lévy processes. Let us
see that this is so. According to [25, Theorem 3.4], .o/ °°|Cgc(Rd7R) is a pseudo-differential

operator, that is, it can be written in the form

A

o @) = — [ alx &I FE)aE 4

Rd
The function ¢ : RY x RY — C is called the symbol of the pseudo-differential operator. It
is measurable and locally bounded in (x,&), and is continuous and negative definite as
a function of . Hence, by [48, Theorem 3.7.7], the function & — ¢(x,&) has for each

x € RY the following Lévy-Khintchine representation

q(x,&) = q(x,0) —i<&,b<x>>+§<s,c<x>é>+ /R (1= g 1) 15,0)(0)) vi(x )

(2.5)
where ¢(x,0) : RY — R is non-negative Borel measurable function, b : R¢ — RY is Borel
measurable function, ¢ := (¢ij)1<i j<d : RY — S is a symmetric non-negative definite
d x d matrix-valued Borel measurable function and v : RY x Z(R%) — [0, +co) is a Borel

kernel called the Lévy kernel, satisfying

v(x,{0}) =0 and /d (1 A \y\z) v(x,dy) < oo, xeRY.
R
In the sequel we additionally assume
(©) q(x,0)=0,

The triplet (b(x),c(x), v(x,dy)) is called the Lévy triplet of &/ ®|ce(ga g (or of g(x,§)).
Property (C) is closely related to the conservativeness property of LTP {X;},>0, that
is, P,(X, € RY) =1 for all t > 0 and x € R?. Namely, under the assumption that the x-
coefficients of ¢(x, &) are uniformly bounded (which is certainly the case in the periodic
setting), ¢(x,0) = 0 implies that {X; },>0 is conservative. Conversely, if process {X; },>0 is

conservative and g(x,0) is continuous then g(x,0) = 0 (see [90, Theorem 5.2]). Let us also
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remark that local boundedness of g(x, &) implies local boundedness of the corresponding
x-coefficients, and vice versa (see [91, Lemma 2.1 and Remark 2.2]).

Note that by combining (2.4) and (2.5) &7*| C(RIR) takes the form

Z(0) = (b(0), V() + 5 Tre (@) V()

(2.6)
[ (o9 = £ = 0 VL) 1, 0)0) Vi),

Conversely, if .2 : C°(RY,R) — C..(RY,R) is a linear operator of the form (2.6) sat-
isfying the so-called positive maximum principle

f(x0) = sup f(x) > 0= .Zf(xp) <O forany f € C*(R%,R) 2.7)

x€Rd
and such that (A — %) (CZ(RY,R)) is dense in C..(RY,R) for some (or all) A > 0, then,
according to the Hille-Yosida-Ray theorem, .Z is closable and the closure is the generator
of a Feller semigroup. In particular, the corresponding Feller process is a LTP.
Notice that the class of processes we consider in this thesis contains diffusion pro-

cesses and Lévy processes.

Example 2.3.7. A typical example of a LTP is a solution to the following SDE
dX, = ®(X,_)dL;, Xo=xeRY, (2.8)

where ® : R4 — RY*™ is locally Lipschitz continuous and bounded (which is not a restric-
tion in the periodic setting), and {L;};>¢ is an n-dimensional Lévy process with charac-
teristic exponent gz (&) and Lévy triplet (b,c,v(dy)). Equation (2.8) is a shorthand for

the system of stochastic integral equations

where integration with respect to Lévy process should be interpreted as follows. Define
by u(@,dy,dt) == Y. Az, (w)£0 O(AL (0),1) (dY, d?) the jump measure of {L;},>¢ then for any
f € B(RYR) such that 0 ¢ supp f we have [ f(x)pu(®,dy,[0,1]) = ¥, f(ALy(®)). We

call the measure v(dy)dt the compensator measure and it satisfies the following property
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v(dy)dt = E [u(-,dy,dt)]. Then the Lévy-Ito decomposition of process {L; };>¢ implies

X, _x+/ )dL, _/ bds+/ o dW,

+ / /Rd )yl o) (v) (-, dy, ds) (2.9)
b [ @06 a0 (1)~ V(A

where o is a n x n matrix such that cTo = ¢. In [92, Theorems 3.1 and 3.5 and Corollary
3.3] it has been shown that the unique solution {X; };>¢ to the SDE in (2.8) (which exists
by standard arguments) is a LTP with symbol of the form g(x, &) = g1 (@7 (x)&). Observe
that the following SDE is a special case of (2.8),

dX, = @ (X,)dr + Do (X,)dW, + D3(X;)dZ, Xo=x€eRY, (2.10)

where ®; : R4 — RY, &, : RY — RI*P and &5 : RY — R4, with p+q=n— 1, are locally
Lipschitz continuous and, bounded, {W,},zo is a p-dimensional Brownian motion, and
{Z;}:>0 is a g-dimensional pure-jump Lévy process (that is, a Lévy process determined
by a Lévy triplet of the form (0,0, vz(dy))). Namely, set ®(x) = (D (x),D(x),P3(x))
for any x € RY, and L, = (t,W;,Z)T fort > 0.

0

In what follows we see that a situation in Example 2.3.7 is not that uncommon in a
sense that every LTP can be represented in the manner similar to (2.9). We define the
jump measure of a LTP {X;},;>¢ in the same way as for a Lévy process in Example 2.3.7

w(w,dy,ds) := Z O(Ax,(),5) (dY, ds) .
5: AX;(0)7#0
The important difference now is that Lévy kernel v(x,dy) depends on x € R¢ and this
problem is addressed as follows. By [16, Theorem 3.33], there exist a suitable enlarge-
ment of the stochastic basis (Q,. 7, {Py},cgd, {-% }i>0), say (Q, {P }eerds {J,},>o)
supporting a d-dimensional Brownian motion {W,},Z() and a Poisson random measure
fi(-,dz,ds) on B(R) ® Z([0,0)) with compensator V(dz)ds, such that {X; },>¢ is a solu-

tion to the following stochastic differential equation

t
X; :x+/0 ds+/ 5) dW, +/ / Xs— D) L (x| =13 (2) (-, dz, ds)

R 2 gy 2) () = D) d) 2.11)
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where & (x) is a d x d matrix-valued Borel measurable function such that for any x € RY

&(x)T6(x) = c(x), ¥(dz) is any given o-finite non-finite and non-atomic measure on

%#(R), and k : RY x R — RY is a Borel measurable function satisfying

H(dyds) = £ (- {(zu) €R x [0,00) : (k(Xumy2)ou) € (dyds)}),  (212)

and

v(x,dy) = V({z€ R :k(x,z) € dy}) . (2.13)

Notice that a representation in (2.11) makes sense since from (2.12) and (2.13) for

f€B(RYR) and g € B (R % [0,00),R) we have

/ SO v(xdy) = / f(k(x,y))¥(dy) and
R

/Ot/Rdg(y,s) (-, dy, ds) = // Xoy).s)ii(-.dy.ds).

in a sense that if one side converges that so does the other and they are equal.
For the rest of this thesis we assume that {X; },>( admits “small jumps” only, that is,
SD sup [ [yPv(xdy) <
xeRd/R?
Notice that when defining the Lévy triplet we mentioned that for all x € RY a Lévy ker-
nel satisfies [ga (1A [y[*) v(x,dy) < oo which implies that B, (0) ly[?v(x,dy) < oo. The
condition (SJ) is, clearly stronger and one obvious way it can be satisfied is if v = 0.

Due to (SJ) we have that

LDl Loy 9 = [ l0)(0) v (X dy) <
/, VPV (X, dy) < sup/ VPV (x,dy) <o,
B{(0) xeRd

which together with (2.11) implies

t
X, :x+/ ds+/ X,)dW; +/ / (X5,2) T pix, u)|>1}( z) V(dz)ds

(2.14)
+/ / Xs—,z) (Qi(-,dz,ds) — V(dz)ds) .

For more on Lévy-type processes we refer the readers to the monograph [15].
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2.4. LTPS WITH PERIODIC COEFFCIENTS

As mentioned in the Introduction we wish to model phenomena characterized by hetero-
geneous coefficients which rapidly vary on small scale. We wish to use the fine micro-
scopic structure of the media to derive a homogenized model which is a valid approxima-
tion of the initial model. We achieve this by assuming that coefficients of a LTP {X;},>¢
with state space (R, 2 (R?)) are periodic and then by having this period converge to
zero we obtain a homogenized process.

Throughout this thesis we will assume that the symbol g(x, &) of a LTP {X; },>¢ satis-

fies the following condition
(P) x> g(x,&) is T-periodic for all £ € RY,

Directly from the Lévy-Khintchine formula (2.5) it follows that (P) is equivalent to

the T-periodicity of the corresponding Lévy triplet (b(x),c(x), v(x,dy)).

Remark 2.4.1. Condition (P) implies that (b(x/¢€),c(x/€),v(x/€,dy)) is periodic with
period €7 where € > 0 is a small parameter intended to tend to zero. Let f € C (Rd, R) ,
if Zf if given in (2.29), where . is a Feller generator of {X; },>o let’s determine .Z; f,
where .Z; is a Feller generator of process {€X, 2, };>0. Notice that €Xy = x implies X =
x/ €, therefore

ugte) i P IOy B[] Tt/

-2
—e 2L f(x/e) = e *(b(x/e),Vf(x/e)) + gTTIFC(X/e)sz(X/E)

t+e2 /Rd (Fx/e+y) = Fx/€) = (v, VF(x/€)1p,10) () v(x/e,dy)

where f(x) := f(€x). This implies that Vf(x/e) = eV f(x) and VVT f(x/e) = e2VVT f(x)
and therefore
Zef(x) =& (b(x/€),Vf(x)) +27 " Tr (c(x/e) VVT £ (x))

2.15)
+g—2/Rd (f(x+£y) — f(x) —8<y,Vf(x))]131(0)(y)) v(x/e,dy),
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Since 7-periodicity of the Lévy triplet (b(x),c(x),v(x,dy)) is equivalent to the -
periodicity of x — P (X; —x € dy) (see [87, Section 4]) we can conclude that {P;},>¢
preserves the class of all bounded Borel measurable 7-periodic functions, that is, the func-
tion x — P, f(x) is T-periodic for all # > 0 and all t-periodic f € B,(RY,R). Now, together
with this, a straightforward adaptation of [57, Proposition 3.8.3] entails that {I1;(X;) };>0
is a Markov process on (T4, %(T4)) which we will denote by {X};>¢. Its transition

kernel is given by

p*(t,x,B) = p(t,y. 11 (B)) = p(t,yr, |J B+ke) (2.16)
keezd

fore >0, >0,x€ T4, Be #(TY) and y, € IT; ' ({x}). Positivity preserving contraction

semigroup { P}, of the process {X*};>¢ (on the space (By(T9),||-||-)) is given by
PRf@) o= EXf ()] = | FO)pF (% dy),

fort >0, x € Td and f € B,(T9,R). Denote the corresponding infinitesimal generator by

(%Tb, .@MTIJ).

Lemma 2.4.2. Let f € B,(RY,R) be t-periodic then the following
[0 ptexds) = [ 1) p7 () @17)
d Tgc

holds for all t > 0 and z, € II7 1 ({y}) N[0, 7].

Proof. To see this first take A € %(’]1“%) and f:= ) Tay . Wehave
keezd

/f plt,x,dy) = ), /1A+kf(y)p(txdy Y, p(t,x,A+ke) =
ke €Z8pa ke€Zg

p<t>x7 U A+k1) = pr(taxfaA) = /f(Zy)pT(f,.XT,dy>.
ke€Z$

Now the statement of lemma follows for 7-periodic f € B,(RY,R) by standard arguments.

Remark 2.4.3. In this remark we comment on how process {X,* },>¢ inherits certain prop-

erties from the original process {X; }/>0
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() If {X;};>0 if Cp-Feller then so is {X;};>0. To see this take f; € C,(T9,R), then
its T-periodic extension is f € C,(RY,R). Now from Lemma 2.4.2 we see that

P f:(T1;(x)) = P,f(x) therefore if P, f € C,(RY,R) then PF f; € C,(TY,R).

(i) If {X;};>o if strong Feller then so is {X},;>0. To see this take f; € B,(T%,R),
then its T-periodic extension is f € B,(RY,R). Now from Lemma 2.4.2 we see that

PTf:(I1;(x)) = P,f(x) therefore if P, f € C,(RY,R) then P7f; € Cp(TY,R).

(iii) If {X;}/>0 if open-set irreducibile then so is {X,*},>¢. To see this just note that for
open set O C TY set IT;!(0) is an open set in RY and therefore for any x € T¢ and

yx € I 1 ({x}) we have p¥(t,x,0) = p(t,y,,I1;1(0)) > 0, for all £ > 0.
U

Remark 2.4.4. Since TY is compact, {X;};>¢ is a Feller process. Denote the corre-
sponding Feller generator by (&/°, Z.=) we clearly have (&>, Do) = (A s Doy N
Coo(T4,R)) = (2, 2 %Tb). For any f; € 9, and its T-periodic extension f, from Lemma

2.4.2 we have that

PP fe(xe) = fe (o) _ Jrg fe0) PP (1,00, dy) — fo (xe)
t t
Jra fO) p(t,x,dy) = f(x) _ Bif(x) = f(x)

t t

and therefore f € Z,,» and @/”f is a T-periodic extension of .7 f.
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2.5. POISSON EQUATION

In this section we investigate the existence of a solution { to the Poisson equation
¢ =7. (2.18)

Let us again consider the motivation for introducing the infinitesimal generator, function

p(t) = e®. Notice that when a < 0 we have the following

a<—/0°°p(r)dr) :a<—/oooe‘”dt> _ a(—é(O—l)) _

The problem with this equation is that it does not work for a > 0 and the similar issue
will arise in the case of a Poisson equation as well. We will approach this problem by first
considering ry := [5°e * p(t)dr which is well defined for a < A and as before we have
(A —a)ry = 1. In the case of a semigroup {P, },>0 we proceed similarly.

For A > 0 the resolvent R is defined on set By,(T4,R) as

Rife) = [ e MBS, xeTd.

Since

PT(RES)—REf 1 =
RS L[ b (o g ppe) s =

1 (o] (o]
- (e’lt / e MPTfds — /0 e MpT frds> = (2.19)
t

t
M1

oo At t
/ e_A’SPYTdeS_eT/e_ASPYTdeSﬁAR;fT_f’Ev aSt_>O7
0 0

1

we see that (l — ot ) = R} . However it is not clear that the zero-resolvent

R f:(x) := /ODOP,TfT(x) dr, x€E ']I‘CTI,

is well defined and in general it is not. The next proposition provides us with sufficient

conditions for zero-resolvent to be well defined.

Proposition 2.5.1. If {X },>¢ is geometrically ergodic with invariant probability measure

7t(dx) then the zero-resolvent is well defined for any f; € B,(T¢,R), Jpa fr(x) w(dx) =0.
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Proof. From Corollary 2.2.10 we have

oo oo B 1—‘
L IE e < [Tl de = S fele <
0 0 Y
Therefore [;° PFfdt is absolutely convergent and || R fz||.. < 1| fe|leo < oo. |

Similarly to (2.19) we see that (—.a7 )_1 = R®. From this we can see that resolvent

identity R* = R} (I+ AR") holds true. Indeed,
-1 -1
R = (—af) =Ry (A-a)(—a?) =R} (I+AR").
If 7£(dx) is an invariant measure and f; € B,(T¢,R) such that Jpa f2(x) m(dx) = 0 we have

/ Rl m(ax) = /. g | [ Fep* 0.,y dem(as) = I [ et r(aar = 0.

Lemma 2.5.2. Let {X[};>0 be geometrically ergodic Cp-Feller process with invariant
probability measure nt(dx) and let f € C,(R?) be t-periodic and such that Jpa fr(x) w(dx) =
0. Denote by {;(x) := —R* f1(x) for any x € TS. Then the t-periodic extension { of {; is
continuous and satisfies (2.18). Moreover, { is the unique solution in the class of contin-

uous and t-periodic solutions to (2.18) satisfying |14 Gz (x) m(dx) = 0.

Proof. Since {X[},>¢ is Cp-Feller we know that {; is continuous from which we conclude
that { is also continuous. That it satisfies (2.18) we conclude from Remark 2.4.4 and the

fact that that {; is a solution to

e = fr.
To prove uniqueness let 5 be another continuous and 7-periodic solution to (2.18) satisfy-
ing Jpa Cz(x) m(dx) = 0. From Proposition 2.3.2 we know that (§ — &)(X,) — [¢.7*(¢ —
&)(X,)ds is a martingale and, since «7*({ — £)(x) =0, for x € R and > 0 we have

(=)@ =E: [(-(X)] =EL [(&e— &) (X)] =P (&= &) (o)

By letting now ¢ — oo, it follows from Corollary 2.2.10 that ({ — £)(x) = 0, which proves

the uniqueness. [
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2.6. SEMIMARTINGALES

In this section we introduce the notion of semimartingales which is in a certain sense the
biggest class of processes with respect to which stochastic integration is possible. We will
se how It6’s formula works in this general setting and state some sufficient conditions for
a semimartingale to converge in the space of cadlag functions endowed with the Skorohod
J1-topology. For more on this topic see [50].

We give several definitions for processes on filtered space (Q,.%,{.%; }i>0,P).
Definition 2.6.1. We say that a process {M; };>0 is

* amartingale if it is adapted, E[|M;|] < oo and E [M, | ;| = M, forall 0 < s <.

* alocal martingale if there exists an increasing sequence (7y,),c of stopping times

such that lim 7,, = o a.s. and that each stopped process {M,T"},>0 is a martingale,
n—soo =

* alocally square integrable martingale if there exists an increasing sequence (75,),,cy
of stopping times such that lim 7;, = oo a.s. and that each stopped process {M,T" >0
n—oo =

is a square integrable martingale, that is a martingale such that sup,~E [Mﬂ < oo,
From [50, Theorem 1.4.18] we get the following decomposition of local martingales.

Proposition 2.6.2. Any local martingale {M,};>0 admits a unique decomposition M; =
My + Mf + M4, where MS = Mg =0, {M{};>0 is a continuous local martingale, and

{M?} > is a purely discontinuous local martingale.

Definition 2.6.3. We say that a process {B; },>¢ is an adapted process with finite variation
if it is a real-valued process which is cadlag, adapted, with By = 0 and has a finite variation

over each finite interval [0,¢].

Definition 2.6.4. We say that the process { P, },;>¢ is predictable if it is measurable with
respect to o-algebra generated by sets {A x (¢,0) : ¢t > 0,A € F}U{Ax {0} :A € %}.

From [50, Theorem 1.4.2 and 1.4.1] we see that the following is well defined.

Definition 2.6.5. If {M, };>¢ and {M, };>0 are d-dimensional locally square integrable mar-
tingales such that My = Ny = 0 then { <<M N >;’ ) 1<i<d }zzo is a predictable quadratic co-

variation of the pair ({M; },>0,{N: }/>0) if it is a predictable process with finite-variation
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such that the process { (M'N/ — (M,N)") },>¢ is alocal martingale. If {M, };>0 = {N; };>0

we write (M).

Example 2.6.6. Special case of the previous definition is when M; = féFdes, where
{W;};>0 is a standard Brownian motion and {F};> is such that E [ [j F?ds] < oo, for
each t > 0, and it is progressively measurable, that is for every A € %(RY) we have
{(s,0) € [0,¢] x Q,F;(w) € A} € $([0,t]) x F;, then the process {M;};>¢ is a square
integrable martingale and we get a well known formula (M), = [ F2ds.

O

Example 2.6.7. Let {W;},>o be a standard Brownian motion and {M;},>( a square in-
tegrable martingale such that [M;| < f(s), where f € B(RY) is such that [§ f(s)ds < e
for each + > 0. Then process {E; },>o defined by E; = er_%<M>’, t > 0 is a martingale.
Special case of this is if we combine this result with the previous example to conclude
that E, = eo FrdWs—3 JiF?ds s > (s a martingale.

O

Definition 2.6.8. (i) We say that a process {S; };>¢ is a d-dimensional semimatingale
if S; = So + M, + B; where S is finite-valued and .%(-measurable, where {M; },>¢ is
a local martingale such that My = 0 and where {B; };>¢ is an adapted process with

finite variation.

(ii) A special semimartingale is a semimartingale {S; },>¢ which admits a decomposi-

tion S; = Sp + M; + B; as above, with a process {B; };>¢ that is predictable.

Decomposition of a semimartingale is not generally unique but it is in the case of

special semimartingales. This is a direct consequence of [50, Corrolary 1.3.16]

Proposition 2.6.9. If {S;};>0 is a special semimartingale then its decomposition S; =

So + M; + By, where process {B; },>0 is predictable is unique.

From [50, Proposition 1.4.27] we conclude that the following is well defined for every

semimartingale {S; };>0.

Definition 2.6.10. We say that the process {Sf};>¢ is a continuous martingale part of
a semimartingale {S;},>o if S§ = 0 and {Mf },>0 = {S¢};>0 for any decomposition S; =

So+M; + B;.
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Example 2.6.11. Let {X; },>0 be a LTP given by equation (2.14). As a direct consequence
of (SJ) and [50, Proposition I1.2.29] we see that {X; },>( is a special semimartingale. From

equation (2.14) we read the unique special semimartingale decomposition of {X; },>o.

M, = /()té(Xs)dWs+/0t Rk(XS_,Z) (fi(-,dz,ds) — v(dz)ds) .

Also

t
X¢ = Mf = /0 & (X,)dW,
U

As already mentioned the stochastic integral {H - S;},>¢ is well defined for semi-
martingale {S;};>o and a locally bounded predictable process {H;};>o. This is proven
in [50, Theorem 1.4.31] and a fundamental result by Bichteler, Dellacherie and Moko-
bodzki states that semimartingales are the biggest class of integrators for which this inte-
gral is well defined. Next theorem, proven in [50, Theorem 1.4.57], is It6’s formula for

semimartingales.

Theorem 2.6.12. Let {S;};>0 be a d-dimensional semimartingale such that S = (S1 - ,Sd)

and f € C*(RY). Then {f(S);}r>0 is a semimartingale and we have

_ d af i 1 d 82]0 i,c j,C
F(S0) = F(So)+ X 5(5-) -5+ 5;] S, (5 (87870,
d of i
+ ; <f(Ss) _f(Ss7> - ; _xi(Ss)ASs>

Let us now introduce the notion of characteristics of a semimartingale. Let & : RY —
RY be a truncation function, that is, a bounded Borel measurable function which satisfies

h(x) = x in a neighborhood of the origin. Define

S(h) :== Y (AS;—h(ASy)) and  S(h), := S, —S(h);,  t>0,

s<t
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where the process {AS;};>¢ is defined by AS; := S; — S;— and ASy := Sp. Note that in
a case of continuous process {S;};>0 we have S(h); =0 and S(h); = S;. If {S;};>0 is
not continuous, let’s say it jumps at time ¢, we consider two cases. If the jump at time
t is small, that is h#(AS;) = AS; then AS(h), = AS;. If the jump at time ¢ is big, that is
h(AS;) < ¢ < AS;, where ¢ > 0 is such that ||h]|. < ¢, then AS(h); = h(AS;) < ¢ < AS;.
From this we conclude that process {S(%); },>0 has bounded jumpes and therefore from
[50, Lemma 1.4.24] it follows that it is a special semimartingale. From Proposition 2.6.9

we know it admits a unique decomposition
S(h)e = So+M(h): + B(h): , (2.20)

where {M(h);},>0 is a local martingale, and {B(h), };>¢ is a predictable process of finite

variation.

Definition 2.6.13. Let {S,},50 be a semimartingale, and let / : RY — RY be a trunca-
tion function. Furthermore, let {B(h),},;>0 be the predictable process of finite variation
appearing in (2.20), let N(w,dy,ds) be the compensator of the jump measure

p(o,dy,ds) == Y s, () (dy,ds)
s:ASs(@)7#0

of the process {S; };>0, and let {C; },>0 = {(C) 1<ij<a)}
process for {S¢},>0, that is, C/ = (5% $/°). Then (B,C,N) is called the characteris-

>0 be the quadratic co-variation

tics of the semimartingale {S;};>¢ (relative to /(x)). In addition, by defining C (h);’ =
(M(h)f,M(h)tj% i,j=1,...,d, where {M(h);},>0 is the local martingale appearing in
(2.20), (B,C,N) is called the modified characteristics of the semimartingale {S;},>o (rel-

ative to h(x)).

Note that in the case of a continuous semimartingale {S; },>o we have that {S;};>¢ is a
special semimartingale with decomposition S; = So + M; + B;. Therefore characteristics,

which coincide with modified characteristics, are (B,C,0) where C = (M, M).

Example 2.6.14. Let {X;},>0 be a LTP with a Lévy triplet (b(x),c(x),v(x,dy)). Then,
according to [50, Proposition I1.2.17], [91, Lemma 3.2 and Theorem 3.5], the (modified)
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characteristics of a {X; };>¢ (with respect to a truncation function 4(x)) are given by

/b ds+// yﬂlBl(O)(Y)> v(Xs,dy)ds,
R4
Ct” :/clJ(X)ds,
0
N(dy,ds) = v(X;,dy)ds,

—/cl] ds+// hi ( ) v(Xs,dy)ds

/ ds+/ [ 1i(5)h; () N(dyds).

(@)
—~~
)
N—
iy
|

fort >0andi,j=1,...,d.
O

This characterization of a LTP as a semimartingale will prove useful in the following

manner. Next theorem is a direct consequence of [50, Theorem VIIL.2.17]

Theorem 2.6.15. Let {S¢},>0 be a d-dimensional semimartingale with modified char-
acteristics (B8 ,CE ,NS) and let {W, };>0 be a d-dimensional zero-drift Brownian motion

determined by covariance matrix X. Then if the following conditions hold

sup B 5 0, 2.21)
0<s<r £—0
forallt >0andi=1,...,d,
cell Loy yiiy (2.22)
e—0

forallt >0andi,j=1,...,d, and
/ / y)N(dy,ds) —> 0, (2.23)
Rd —0
forallt >0 and g € Cy(RY) vanishing in a neighbourhood of the origin, then

0
{S¥}i>0 £= {W, }i>0.

P . .- .
Here —= stands for the convergence in probability and = denotes the convergence in the

space of cadlag functions endowed with the Skorohod J-topology.

Theorem 2.6.16. Let {S¥},>0 be a d-dimensional semimartingale with characteristics

(BE,CE,0) such that |BY'| < .,d and
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let {S;}/>0 be a d-dimensional semimartingale with characteristics (B,C,0). Then if the
following conditions hold

B — B;, (2.24)

forallt >0andi=1,...,d, and
— Y (2.25)
forallt >0andi,j=1,...,d, then

{87 }>o0 20 {Si}i>0. (2.26)

P, . .- .
Here — stands for the convergence in probability and = denotes the convergence in the

space of continuous functions endowed with the locally uniform topology.

Proof. From [50, Theorem VI.3.21] we see that processes { B¢ },>¢ and {CF },>¢ are tight.
Consequently, [50, Theorem VI.4.18] implies tightness of {S¢},>¢. In order to prove
(2.26) it remains to prove finite-dimensional convergence in law of process {S?},>¢ to
{S¢}+>0. According to [50, Theorem VIIL.2.4] this will hold if conditions (2.24) and
(2.25) are met. |

In an even more specific case, as expected with even fewer assumptions we get the

same result. The next theorem is a direct consequence of [50, Theorem VIII.2.17]

Theorem 2.6.17. Let {Sf};>0 be a d-dimensional semimartingale with characteristics
(0,C%,0) and i, j=1,...,d and let {W,},>0 be a d-dimensional zero-drift Brownian mo-
tion determined by covariance matrix X. Then if the following condition holds
ceil Ly xiy (2.27)
=0

forallt >0andi,j=1,...,d, then

0
(S8}50 == {W, }10. (2.28)

P . .- .
Here —= stands for the convergence in probability and = denotes the convergence in the

space of continuous functions endowed with the locally uniform topology.
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2.7. DIFFUSION PROCESSES

In this section we take a closer look at a LTP {X;};>¢ such that v(x,dy) = 0, that is a
continuous LTP. We call these processes diffusions and they will be the central object
of Chapter 4 in this thesis. Since a significant part of the conclusions made for general
LTPs are trivial in this case we will acknowledge the similarities but construct the theory
independently. That is, in this section we will define a diffusion process {X;};>¢ by not
relying on the theory of LTPs.

Let .£¢ be a second-order elliptic differential operator of the form
1
LEF(x) = (a(x/€)+e 'b(x/€), VI (x)) + 5 Tr (ctx/e)VVTF(x)) | (2.29)

with coefficients a(x) = (a;(x))i=1,...a, b(x) = (bi(x))i=1,...a and c(x) = (cij(x))i j=1,..d

satisfying

(D) (i) thereis o(x) = (0;j(x))i=1,..d, j=1,..n Such that c(x) = o(x)o(x)T for all x € RY;
(i1) a;, biand 0yj,i=1,...,d, j=1,...,n, are continuous and 7-periodic;

(iii) there is ® > 0 and a non-decreasing concave function 0 : (0,c0) — (0,0) sat-

/0+ GC;Z) -

isfying

such that for all x,y € [0, 7],

max {||o(x) = () [fis, (x =y a(x) — a(y)), (x =y, b(x) = b(»)) }
< Ox—y[0(x—yl). (2.30)

As in the case of LTPs € > 0 is a small parameter defined as a microstructure period
intended to tend to zero. If we compare (2.29) to (2.15) we see that, as already mentioned
v(x,dy) = 0 but also that there is an additional drift term a. We will see in the fourth
chapter that this term significantly complicates the situation and additional assumptions
will be needed when a # 0.

According to [108, Theorems 2.2 and 2.4], for any € > 0, x € RY and a given standard

n-dimensional Brownian motion {W; },>¢ (defined on a stochastic basis (Q,.%,{.% };>0,P)
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satisfying the usual conditions), the following stochastic differential equation (SDE):

dX®(x,t) = a(X®(x,1)/€) dt+lb(X8(x,t)/8) dt + o (X%(x,1)/€) dW;
€ (2.31)
X£(x,0) = x e RY,

admits a unique strong solution {X#(x,#)},>0 which is a conservative (non-explosive)

strong Markov process with continuous sample paths, and transition kernel p®(z,x,dy) =

P(X%(x,t) €dy),t >0, x € R4,

Definition 2.7.1. If .#¢ is a second-order elliptic differential operator given in (2.29)
with coefficients a, b, ¢ satisfying condition (D) then we say that the unique strong solu-
tion {X®(x,7)},>0 to stochastic differential equation (2.31) is a d-dimensional diffusion

process associated to operator .£¢.

Notice that here we use a different notation (as opposite to the rest of this chapter),
where we indicate the starting point of the process {X (x,7) };>0 as an argument. This will
prove more convenient when discussing diffusion processes because we will consider a
single probability space for different processes (each € > 0 defines a different diffusion
process). We will use this notation throughout this section as well as in Chapter 4 and in

parts of Chapter 5.
Remark 2.7.2. A more standard assumption instead of (D) (ii) and (iii) is to assume
(D) (i) a;, b;and o; j»i=1,...,d, j=1,...,n, are Lipschitz continuous and 7-periodic.

If coefficients are not T-periodic then a standard assumption is one of linear growth, but
clearly this is trivially satisfied in the periodic setting. Notice that if (D) (ii) holds then
(2.30) is satisfied with 0 (#) = u and therefore the assumptions in (D) (ii) and (iii) are more
general.

O

Process {X%(x,t)};>0 is a special semimartingale and (using notation from Definition
2.6.8) its unique special semimartingale decomposition is

So = x

B = /Ota(Xs(x,s)/s)—l—éb(Xg(x,s)/s) ds

M, — /OtG(XS(x,s)/e) aw, .

39



Preparatory Material Diffusion Processes

Its characteristics are given by
B — /O’a(xf(x,s)/e) + %b(Xg(x,s)/s) ds,
cli — ¢l — /Otc(Xg(x,s)/S) ds,
N(dy,ds) = 0.
Denote by

PEF() = (X)) = [ FOIP(ndy), 1207 € By(RY).

the corresponding operator semigroup and by (&7¢, %, ¢) the Bj-generator of process
{X%(x,t) }s>0. Notice that equation (2.31) is a special case of equation (2.10) from Exam-
ple 2.3.7, where we take Z, = 0, ®1(x) = a(x/e) + & 'b(x/€) and &, (x) = o(x). From
[58, 1.1 Theorem)] it follows that

Proposition 2.7.3. Process {X¢(x,t)},>0 defined as above is a Feller process and C? (Rd, R)

is contained in the domain of its generator.

Let us also note that conservativeness of process {X*(x,#)};>o implies that it is also
a Cp-Feller process and that if instead of condition (D) (ii) and (iii) we assume (ﬁ)(ii)
the Feller property follows from [92, Corollary 3.3.] and [92, Theorem 3.5.] implies that
CT (RYR) C Dye.

Corollary 2.7.4. Let {X%(x,1)};>0 be a d-dimensional diffusion process associated to a
second-order elliptic differential operator £¢ given in (2.29) with coefficients a, b, c satis-

fying (D). Then {X€(x,t)};>0 is a LTP and its Lévy triplet is (a(x/€)+&~'b(x/€),c(x/€),0).

Clearly condition (D)(ii) implies (P).
By employing Itd’s formula, that is Theorem 2.6.12 for f € C,%(]Rd, R) we have

(P f(x) = f(x))/t=E

;/<a(X8(x,s)/8) + & 1b(XE(x,5)/€),Vf(XE(x,5))) ds+
0

~ | =

/ (G(X2(x,5)/€),V f(Xg(x,s))>dWs+% / Tr (c(X¢ /&) VY f(xf))ds] _
0 0

t

[ 25 r(xws))as| = ;/E[,%Sf(Xg(x,s))]ds _ %/Pf.iﬂgf(x)ds.
0 0

0

E

~ | =
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and therefore, using a fact that Proposition 2.7.3 implies that {Pf },>¢ is strongly contin-
uous, we conclude

t
lim (B — 1) /1= 2. = i | - [ Pezey— #eras| <
t—0 =011
0 (e o]

t
i
lir%;/HPffgf—Zemeds — e f— 2l =0  VfeCi(RLR),
1—
0

that is fSZ{£|C30(Rd_‘R) = %% and [15, Theorem 2.37] (again using Proposition 2.7.3) states
that aISO d£|C£(Rd,R) = ge.
Following [38] (see also [12, Lemma 3.4.1]), for € > 0 let X¢(x,?) := £~ X (ex, &%),

t > 0. From (2.31) we have
XE(x/e,t/e?) —€-x/e = XE(x,1) —x =

a(X(x/e,s/e?)) ds+= [ b(XE(x/e,s/€?)) ds+ [ o (XE(x/e,s/€?)) AW, =
fo Lol fo

0
t/€? z/e t/€?
sz/a()?s(x/s,s)) ds+8/b()~(8(x/£,s)) ds+8/G(X8(x/8,s)) dwe |
0 0 0

where W := £ 1W,,,, t > 0. Clearly, {X%(x,1)};>0 satisfies

dX®(x,1) = (ea (X*(x,1)) +b (X5 (x,0))) dt + 0 (X5 (x,1)) AW (2.32)
X&(x,0) = x e RI.

Observe that {Wf};> W {W; }+>0, although it is not a martingale with respect to {.%; };>0,
d e
where @ denotes the equality in distribution. Clearly, for every € > 0 the processes
{X%(x,t)};>0, share the same structural properties as {X¢(x,t)};>0, mentioned above.
Let also {X°(x,#)};>0 be a solution to
dX%(x,t) = b(X°(x,1)) dt 4 o (X°(x,1)) dW;
X%(x,0) = x e RY.
For € > 0 denote by p¢(t,x,dy) =P (X?(x,t) € dy),t > 0,x € RY, {Pf},>0 and (¢, 2 ze )
the corresponding transition kernel, operator semigroup and Bj-generator, respectively.

Using the same arguments as in Proposition 2.7.3 we conclude
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Proposition 2.7.5. Process {X°(x,t)}+> is a Feller process with Feller generator (<7°, 9 )
and CC2 (Rd) C Z _j.

Since equation (2.33) coincides with equation (2.32) for € = 0 it is reasonable to
assume that the solution of (2.32) converges to solution of (2.33) in some sense, when
€ — 0. Next proposition, which is a direct consequence of Theorem 2.6.16, formalizes

this idea.

Proposition 2.7.6. Let {X¢(x,t)},>0 and {X°(x,t)};>0 be as above. Then

X (1) hiz0 =2 (X000}, (234

d . . . .
where, % denotes the convergence in the space of continuous functions endowed with

the locally uniform topology.

In particular, for any t > 0 and x € R4,
lim 7 £ (x) = im B [£(X°(x.1)] = E [f(X°(x,1))] = B'f(x), forany f € Cy(R",R).

We can get better than this if we take into account the periodic structure of pro-
cesses {X€(x,t)};>0 and {X°(x,#)},>0. Due to T-periodicity of the coefficients, {X&(x+
kz,t)}r>0 and {X€(x,t) + ke }i>0, € >0,x € RY  k; € 74, are indistinguishable. In partic-
ular,

pE(t,x+ke,B) = pE(t,x,B—k¢)
foralle >0,t>0,xeRY &k, € Z‘% and B € ,%’(Rd), which implies that { P£},>( preserves
the class of T-periodic functions in B, (R, R). As in Section 2.4 this and a straightforward
adaptation of [57, Proposition 3.8.3] entails that {IT;(X®)(x¢,?)},>0 is a Markov process
on (T¢,2(T¢)) which we will denote by {X&%(x,t)},>0, x € TS. Denote by 5&(z,x,dy),
{P5 Y0, (47, D je) its transition kernel, semigroup on the space (Bj(T9), |- ||-) and
infinitesimal generator of process {X®7(x,t) };>o respectively.
Proposition 2.7.7. Under (D), for any t > 0 and t-periodic f € C,(R%,R) it holds that
lim || f = P f. = 0.

Proof. From equations Proposition 2.7.6 and Lemma 2.4.2 we see that

(X8 (0,1 b0~ (RO (x,) b
e—0

Now, since ']I“T1 is compact, the assertion follows from [53, Theorem 17.25]. [ |
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Throughout this chapter we assume that {X; },>0 is a LTP satisfying conditions (C), (SJ)
and (P). The main theorem of this chapter is the Central limit theorem in the last section.
In each section proceeding it we add additional assumptions for process {X;};>o, give

examples of processes satisfying these conditions and explain why they are important.

3.1. GEOMETRIC ERGODICITY

For the rest of this chapter we assume that
(FI) {X;}/>0 is strong Feller and open-set irreducible.

Note that from Remark 2.4.3 condition (FI) implies that {X/' };> is strong Feller and

open-set irreducible, too.

Example 3.1.1. Here we give several examples of LTPs satisfying strong Feller property.

We will not prove this but give references.
(i) Let {X;}:>0 be a d-dimensional diffusion process associated to operator
1
L (@) = (b), V() + 5 Tr (VY f(x))

with measurable drift coefficient b, such that diffusion coefficient ¢ is continuous
and positive definite, then according to [86, Theorem V.24.1], process {X; };>0 is
strong Feller (where we used the fact that in periodic setting there always is a con-

stant A > O such that

i)+ b)) * < A(L+[x?),  xeRY i j=1,...,d. @G
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(i)

(iii)

Let us also remark that when {X; },>¢ is a d-diffusion process associated to a second-

order elliptic operator in divergence form

ZLf(x) = V(c(x)-Vf(x)) (3.2)

with ¢ bounded, measurable and uniformly elliptic, strong Feller property of {X; },>0

has been discussed in [6], [71] and [100].

Suppose that b, c € G, (]Rd) and c¢(x) positive definite. Further suppose that function
x> [5(1A]y)*)v(x,dy) is continuous and bounded for any B € #(R?). Then,
according to [15, Theorems 3.23, 3.24 and 3.25] and [100, Theorem 4.3 and its

remark], {X; };>0 is strong Feller.

Recently, there are lots of developments on heat kernel (that is, the transition density
function) estimates of Feller processes. The reader is referred to [18, 19, 20, 21, 42,

55, 56] and the references therein for more details. In particular, let

270 = [ (764) ~ 10~ (V5@ 0/0)) ‘y"‘ﬁi—’jg)dy,

where a : R — (0,2) is a Holder continuous function such that

0<o <ax) <mp<2, xeRY,

a(x) —a)| < ci(x=yP A1), xyeRY,

for some constants ¢; >0 and B; € (0, 1], and k : RY x R¢ — (0, 0) is a measurable

function satisfying

k(x,y) = k(x,—y),  xyeRY,
0<Kk <xk(xy <Kk <o, xyeRY,

’K(X,y)— K(Xay)’ < CZ(’x_x’ﬁz/\l)7 X,)E,yGRd,

for some constants c; > 0 and B, € (0,1]. If (ap/0) — 1 < Bo/ 2, with By €
(0,Bo] N (0,02/2) and By = min{P;,B,}, then, by [18, Thereoms 1.1 and 1.3],
(Z,C2(RY,R)) generates a LTP. Furthermore, by upper bounds as well as Holder
regularity and gradient estimates of the heat kernel (see [18, Thereoms 1.1 and 1.3,

and Remark 1.4]), this associated process is strong Feller.
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(iv)

1 T((a+d)/2 :
When a(x) = a € (0,2) and x(x,y) = a2® 1%, operator .Z is a frac-
tional Laplacian operator —(—A)®/2, which is the infinitesimal generator of the

rotationally symmetric a-stable Lévy process in RY.

Let {X;},>0 and {X;},>0 be LTPs with semigroups {P, };>0 and {B },>0, and Feller
generators (%™, 9~) and (&, 9 ;.), respectively. Suppose that {X;};>o is

strong Feller. Lemma 2.3.3 gives us the formula

l ~ ~
Rf =Bf+ [ R(S™ =G TVBoif s, [E D0 T,
0

and, since both processes are LTPs, Corollary 2.3.4, if &/~ — o&/* is a bounded
operator on (B,(RY,R), ||-||..), implies that {X; };>¢ is also strong Feller. The asser-
tion above roughly asserts that a bounded perturbation preserves the strong Feller

property. Below is a concrete example.

We will use the fact that .’ given in (iii) is a strong Feller. Let

210 = [ | )= 0 = (7 F0)) s &
# [ Gl =) Ly

where « and k satisfy all the assumptions in (iii), 0 < 6 < @; and Kk, < Y(x,y)
bounded and such that x + ¥(x,y) is continuous for almost every y € R4, To see
that . is strong Feller from the previous discussion it remains to see that .Z is a

LTP and that

(- = |

B1(0)

B Yxy)  k(x,y) )
(F(x+) f(X))<|y|d+5 ) @
is bounded. To see the latter

12~ L)l < 200 (17 [0 s [t )
1 1

s K
< 2/l (1= + 2)

is bounded on (Bj(R%,R),||-||..). Now, according to [15, Lemma 1.28] and [97,
Proposition 2.1], £ = % + (£ — &) generates a LTP if £ — . satisfies a positive
maximum principle (2.7). To see this note that &2 > Ko)_or a1 y € R and

|y|d+5 = ‘y|d+a(x)

that if f(xo) = sup,cga f(x) then f(xo+y) — f(x0) <O0. This yields the strong Feller

property of the process associated with 2.
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O

We remark also that the strong Feller property of LTPs has been discussed in [94].
In the special case when {X;};>¢ is given through SDE (2.10), the strong Feller property
(and the open-set irreducibility) has been discussed in [60] under the assumption that
vz(R™) < oo, and in [66, 67] for an arbitrary vz(dy), that is, an arbitrary pure-jump Lévy
process {Z; };>0. Observe that in both situations non-degeneracy of @, (x)®1 (x) has been
assumed. In the case when ®3(x) = ®3; € R¥" the problem has been considered in

[4, 62, 65], and for non-constant (and non-degenerate) ®3(x) in [64].

Example 3.1.2. Now we turn to several examples of LTPs which are open-set irreducible

and again we only give references.

(i) According to [86, Theorems V.20.1 and V.24.1] and [30, Theorem 7.3.8], a diffusion
process will be open-set irreducible (and strong Feller) if b and ¢ are locally Holder
continuous, ¢(x) is positive definite, and (3.1) holds true. As mentioned before (3.1)

trivially holds true in the periodic case.

Also, when b € CL(RY,RY), ¢ € C2(RY,SY), 9;jcy is uniformly continuous for all
i,j,k,l=1,...,d, and c(x) is positive definite, the open-set irreducibility (and the
strong Feller property) of the process follows from the support theorem for dif-
fusions, see [39, Lemma 6.1.1] and [47, p. 517]. For support theorem of jump

processes one can refer to [98].

(i) If {X;},>0 is a diffusion process generated by a second-order elliptic operator in
divergence form (3.2) with uniformly elliptic, bounded and measurable diffusion
coefficient, the open-set irreducibility (and the strong Feller property) follows from

the corresponding heat kernel estimates (see [6, 71, 101]).

The diffusion processes with jumps or pure jump process considered in [18, 19, 20,
21,42, 55, 56] are also open-set irreducible, which is a direct consequence of lower

bounds of heat kernel obtained in these references.

(iii) Let.Z and £ be the operators from Example 3.1.1 (iv). According to [18, Thereom
1.3], the LTP corresponding to . is open-set irreducible. Further, observe that

K
sup (x,)

By < co.
erd /B (0) [y]dHe()
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Thus, by [11, Lemma 3.1] and [10, Lemma 3.6], the process associated with the

operator .2 is also open-set irreducible.
O

For open-set irreducibility of LTPs of the form (2.8) we refer the reader to [4], [60]
and [66, 67].

In the following proposition, which slightly generalizes [44, Lemma 2], we show that
a LTP will be open-set irreducible if the corresponding Lévy measure shows enough jump

activity.

Proposition 3.1.3. The process {X; };>0 will be open-set irreducible if there are constants

R > r > 0 such that

(i) infycg v(x,0) > 0 for every non-empty open set O C Bg(0) \ B,(0), and every non-

empty compact set K C RY;

(ii) the function x+— [ga f(y+x)V(x,dy) is lower semi-continuous for every non-negative

lower semi-continuous function f : R4 — R.

Proof. Fixe,p >0suchthat0 <e<pand0<p < 1%. We wish to prove that for any

x,y € R4 with 7+ 2p < |x—y| < R—2p, there is t, = t.(x,y,p, €) > 0 such that
p(t,2,Bp(y)) >0, forall z € By(x), t € (0,z.].

because the assertion then follows by employing the Chapman-Kolmogorov equation.

To see this take fe € C°(RY) be such that 0 < fe < 1, supp fe C By (y) and

I, y€Bpe(y)
0, yEB,().

This implies that 0 < f¢ < 1p (,) and fe(z) =0, Vfe(z) =0, V2 fe(z) = 0 for any

fe(y) =

z € B, (y). By assumption (LTP) we know that fe € 7/~ and therefore

P _
lim [| Fife e fs—;z{‘”fg —0.
t—0 -
From this we get
t,2,B E, |1 (X;) P
iminf int 220N i g L3y (%) > liminf inf 2 _
t—0 zeBp(x) t t—0 zEBp(x) t t—0 zGBp(x) t
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Pife(2)

t

w — ™ fo(2)+ A" fe(2)

= liminf inf >

t4>0 ZEBP (x)

P fe(2) — fe(2)

liminf inf
t*)O ZEBP (.X)

liminf <z£B‘},f(x>W fe(z)|—zseul§d ” — fe(Z)> =
. oo . Pl‘fg - fg o _
ZEIBI;f(x)W fe(2)] = lim || == A fe =
1
inf [(b(2),Vfe(2)) + 5 Tre(z) V2 fe(2) +
ZEBP(X) 2

L, (fela9) = £e() = 0V £e(2)) 1y 0)(9)) Viz,0)
R4

Ze%r;f(x) » fe(z+v)v(z,dv) > zeiBI;l)Ex) " Ig, (y(z+v)v(z,dv) =

inf By o(y—2)).
Zegz (X)V<Z’ p-e(y—2))

Assume now that inf_cp (o) V(z,Bp—e(y —2)) = 0. Then there is a sequence {z,},en C

B, (x) converging to zg € By (x), such that

0 = liminfv (20, Bp—e(y—zn)) = liminf/Rd Lp, o(y)(u+2n) V(zn,du).

n—roo
However, since z — 1 By ¢(y) (z) is a lower semi-continuous function, from the second

condition of this propositionwe have that

0> lirgior}f/Rd Ip, () (u~+20) V(zn,du) >

3.3)
/Rd ]prfg(y)(u—l—z())v(zo,du) =v (zo,Bp,g(y—zo)).

This will lead to a contradiction if we prove that By_¢(y —z9) € Br(0) \ B,(0), because

the first condition of this proposition will then imply that
vV (20,,Bp—e(y—20)) = V (20, (Br(0) \ B-(0)) NBp_¢(y—2z0)) > 0.
To this end take u € Bp_¢(y —20), we have

r<rte=(r+2p)—p—(p—¢) <|x—y[—l|zo—x|—|u—(y—z20)| < |u] =
u—(y—20)+—x)+ (x—20)| < Ju—(y—20)[+y—x[+]x—20] <
p—&€+R-2p+p=R—€e<R

o . 12,8 . .
Hence, liminf;oinf,cp (y) w > 0, that is there exists 7. = t.(x,y,p,€) > 0 such

that
p(t,2,Bp(y)) > 0, forall z € By(x), t € (0,1,],
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which concludes the proof. |

Now that we know some examples of processes satisfying condition (FI) lets see how

this condition can be useful.

Proposition 3.1.4. The process {X};>0 admits a unique invariant probability measure
mt(dx) such that
sup [[p(t,x,dy) —m(dy) |y <Te™™,  1>0 (34
xe?l“%

for some y,I" > 0, that is process {X };>0 is geometrically ergodic.

Proof. Since {X/'};>¢ is strong Feller and open-set irreducible from Proposition 2.2.18
we see that it is also \-irreducible. Since it is also Cj,-Feller and T¢ is compact according
to Proposition 2.2.4 and Proposition 2.2.8 process {X/};>0 admits one, and only one,
invariant probability measure 7t(dx). According to Theorem 2.2.16 it is geometrically

ergodic. [

Remark 3.1.5. Alternatively, Proposition 3.1.4 is a consequence of [62, Remark 3.2] and
[107, Theorem 1.1] or [70, Theorem 6.1] and [105, Theorem 5.1] (by setting V(x) = 1

and c =d = 1). Also, if instead of (FI) we assume

(FI) {X,},;>0 admits a density function p; (x,y) with respect to Lebesgue measure, that is

p(t,x,dy) = p(x,y)dy, such that

(i) for any ¢ > 0, the function (x,y) > p,(x,y) is continuous on RY x R%;

(ii) there is a non-empty open set O C RY such that p;(x,y) > 0forall > 0, x € RY

andy € O,

which guarantees that Doblin’s irreducibility condition holds true (see [28, page 256]),

then Proposition 3.1.4 follows from [12, Theorem 3.1].
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3.2. POISSON EQUATION

In this section we investigate the regularity properties of a solution 8, which will prove

essential to the proof of the main theorem in this chapter, to the Poisson equation
APB =b* —mn(b), (3.5)
where

b*(x) :=b(x)+ ( )yv(x, dy) and, as always, 7t(b*) = db* (x) 7t(dx) . (3.6)
B5(0 Tz

Observe that in Lemma 2.5.2 we only used the fact that b% € C(T4,RY). In order to
use Itd’s formula for B additional smoothness is required. For that purpose in the rest of

this chapter we assume

(PE) b* is of class C;)” (R4, RY) for some Holder exponent y(r), and
(i) for some #y > 0, any ¢ € (0,%] and any 7-periodic f € C(RY, R),

1B ANy < €@ fles

where [0 C(t)dt < oo
(ii) for some A >0 and any T-periodic f € C (RY,R) with [1a fz(x) 7t(dx) = 0,
the Poisson equation
Au—otbu=f (3.7)
admits a unique T-periodic solution u, ; € C;f l”(Rd,]R) for some Holder ex-

ponent ¢@(r).

Remark 3.2.1. From Example 2.1.1 we see that condition (PE) is satisfied if for some
ki,k; € Ng and oy, € (0,1) instead of C;j’(Rd,]Rd) we have Clg"al (RY,RY) and instead
of CP¥ (R4, R) we have C; (R4, RY).

O

Theorem 3.2.2. The Poisson equation (3.5) admits a T-periodic solution 3 € Cl(f W(Rd, Rd).

Moreover, BB is the unique solution in the class of continuous and periodic solutions to

(3.5) satisfying [pa Bz (x) 7t(dx) = 0.
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Proof. From Lemma 2.5.2 we know that the solution of (3.5) is a T-periodic extension
of Bc(x) = —R* (b — m(b%))(x). Analogously the solution uy s to (3.7) is exactly the -

periodic extension of R} fz(x) for T-periodic f € C Z/ (RY,R). From the resolvent identity
R¥(by —m(b7)) = R} ((br —7(bz)) + AR (br —7(b7))) (3.8)

the fact that b% — 7t(b%) is of class C; (T4, RY) and (PE)(ii) we see that in order to prove
that B € C¥(RY,RY) it remain to show that R” f; € CY(T4,R) for any t-periodic f €

Cp(RY,R) such that Jpa fr(x) 7i(dx) = 0. To see this, take 7o from (PE)(i). we have

o5} [O (5}
sl = [C1EE s+ [ 1R fely
0

For the first integral by (PE)(i), we have

LB flar < el [ty < oo
Also, since for any t > 0 we know that P¥ f; € C(T¢,R) and
[ reroman = [ [ roperan@) = [ reoma =
(PE)(i) and Corollary 2.2.10 1mp1y
/ 1B fellydt = / IBE (B, fr) ||1,,dt<Ct0/ 1PF fellwdr <
TC()lfele | e dr < oo

To show that R f; € C (T4, R) it remains to see || [5° PF fedt|ly < Jo~ || P felly dt. Sup-

pose that my, € (0, 1), then

|[ e = [ [ vl
0 L4 0 0,y
= sup sup ‘f(;oPleT(('x—i_h)T)dt_f()ooptrff(xl-)dtl
xR he B, (0)\{0} w(|h|)
%) T o o
< up | [PEEESLE I < [l 0
xeRdheB, (0)\{0} /0 y(|h |) 0 :

For my > 1 we proceed as follows

i/wprf &) = sup lim Jo B fe((x+h)c)dt — J§" P fr(xc) dt
oxiJo T opeh—0 h
%) T _ pT
S sup lim Pl‘ ff((x+h)f) P[ fT<xT) dt
cerdh—=0J0 h
|l 9
< —PF dt
_/() 5x1 tf‘L' . )
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where the last inequality follows from previously proven by the dominated convergence
theorem. For the derivations of higher order we proceed analogously. Since the unique-

ness is also guaranteed by Lemma 2.5.2 this completes the proof. |

Example 3.2.3. Here we give several examples of LTPs satisfying condition (PE). All
of the examples will satisfy this condition in the sense of Remark 3.2.1, that is with
Holder spaces and not general Holder spaces and we will only state what ky,k;, o, oo
are, without every time mentioning Remark 3.2.1. For examples of processes satisfying

condition (PE) in general Holder spaces see [89].

(i) (Diffusion processes) Let € € (0,1) and let {X;};>¢ be a d-dimensional diffusion

process associated to operator

L) = (), V() + 5 Tr(D (V) (x)

with coefficients b € Cf (R4, R?Y), ¢ € C;’e(Rd, S%) and c(x) being also positive def-
inite for every x € R%. Then, b* = b € C£(RY,RY), (PE)(i) with arbitrary 79 > 0,
ki = 0 and o = € follows from [73, the proof of Lemma 2.3]. Also, a straight-
forward adaptation of [73, Theorem 2.1], together with [48, Chapter 4.8] and [74,

Proposition 4.2], implies that (PE)(i1) is satisfied with k =2, o, = €.

(ii) (Diffusion processes with jumps) Let € € (0,1). Assume that b and c are as in (i),

and that

X,y
v(x,dy) = |};’(|d+o>‘ ]133‘ (0) (v)dy,

where o > 1 and x — ¥(x,y) is positive, e-Holder continuous and bounded. Since
b € C£(RY,RY) let us first see that x — Joe )y v(x,dy) € CE(RY,RY). Let C > 0 be
such that |y(x,y) — 7(z,y)| < C||x —z||¢, for all x,z € RY, then

Y(x,y) Y(z,y)
v(x,d —/ v(z,d / d —/ dy| <
/Bﬁ,(o)y (x,dy) Bﬁ,(o)y (z,dy) B‘l'(O)y|y|d+a y Bg(O)y|y|d+°‘ y

b [ b :
X,¥) — V&, dy < Cllx—z||°dy =
Jy o v M) ey < [ el

|x—2z||® forallx,zeRY.

C||x—z||g/ P lpdme g, =
1 o—1
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Let us see that {X;},>o satisfies (PE)(i). Denote by {P};>0 the semigroup of
{X;},>0, and let {P},> be the semigroup of the diffusion process with coeffi-
cients b and ¢. Also, denote by (&7, Z.y~) and (™, 9 ;.) the corresponding

Cw-generators, respectively. Then Lemma 2.3.3 gives us the formula
[ ~
Pf=Bf+ [ B(a™ = ")Pfds,  [E€TNT e (39)

and, since both processes are LTPs, Corollary 2.3.4, if &/ — &/> is a bounded
operator on (B, (RY,R), ||-||..), implies that it also holds for any f € B,(R%,R). To
see that operation .&7* — .o7* take f € B,(RY,R)

(7~ a7) f, = H/BC(O)U('H) ~ () &ﬁ;’fi dy (3.10)

)

2l ...

o

= e

According to (i), there is a measurable function C¢ : (0,0) — (0, 0) such that for all
t >0 we have [ Ce(s)ds < o and ||PtfH£ < Ce(t) || f]l.. and all z-periodic functions
f € Co(RY,R). For fixed t-periodic f € Cp(RY,R), since {X;},>0 is a Cp-Feller
process, for all 0 < s <t < o we have P,_f € Cb(Rd,R) and from (3.10), using
dominated convergence theorem, we see that (/® — .&/*) P, f € Cy(R%,R). This,

together with (3.9), implies that P, f € C£(RY,R) for every ¢ > 0 and we have
121 < 1B+ [ 1B = )R] a5 < G ..,
where Ce(t) = Ce(t) + || @ — || [ Ce(s) ds. Also,
/Oth(s)ds < (1+r}|¢“—@2°°||)/()tc~g(s)ds, >0,

where Hsz%"" —M""H stands for the operator norm of &/ — /. Thus, {X: >0
satisfies (PE)(1) with k; =0, a1 = €.

Condition (PE)(ii) with k&, = 2, ap = € follows again from [73, Theorem 2.1], since

the following conditions are met

(a)

1+¢ 1+¢
w [ ) = sp [ D pn)
By

R4 Rd 1+ |y|1+e CeRd 0) 1+ |y|1+s ’y|d+a

< HYHoo/l pd-ld-a g, —H};’Jw < oo,
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(b)
lim sup e v(x,dy) = 0,
rg}OXGRd Br(O
(c)
' 1 Y(x7y)
lim sup v(x,dy) = lim sup / RASRY
e SO o e S o) DI
(d)
€ |y|1+6
sup |[x—z|| L y(x,dy) — v(z,dy)| =
meﬁa” | /Rd 1+ [y[i+e v (x,dy) = v(z,dy)]
1+
¢ 1yl 1
b s / Y(x,y) —v(z,y)|dy <
meRdH | B;(0) 14 [y|!+¢ Mdm’ (x,y) = 7(z,¥)]

° C
C/ rdflr*d*ady = — < oo,
1 o

(ii1) (Pure-jump LTPs) In the pure jump case, sufficient conditions for (PE)(i) are given
in [63, Theorem 1.1]. Also, when the underlying process is given as a solution to

an SDE of the form (2.10), we refer to [62, 64, 65] and the references therein.

To construct an example satisfying (PE)(ii), we can again employ a perturbation
method. Let {X;};>0 and {X;},>0 be LTPs with semigroups {P,},>0 and {P };>0,
and By-generators (7, 2,) and (7%, 2 ), respectively. Assume that 7” satis-
fies (PE)(ii) for some k;,ky € Ng and o, o € (0, 1). Further, assume that .7” — .o7”
is a bounded operator on (Bj,(R%,R), ||-||-), and that (=7® — &7?) f € C,(RY,R) for
every f € Cp(RY,R). Then,

! ~ ~
Bf=Bf+ [ RVl [E€TpN D
0

Similarly as before, the above relation holds for all f € B,(RY,R). Thus, for any
A > 0 and any t-periodic f € C,(RY,R),

t ~ ~
PEfe = BF et | PRt = )2 frds,
0
) [} (5} t - _
/ e MPT frdt = / e NP frdt+ / / e P (et — 7P)e MITIPT fodsdt,
0 0 0 JO
_ 1 e~
R}:ff = Rifr + ER;(db - JZ{b)Rﬁfﬂ:-
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Assume now that {B,},>¢ satisfies (PE)(i) with ki, a;, and that (&7® — /%) f €
Ci™ (RY,R) for every f € ;7™ (R4, R). Then, according to the proof of The-
orem 3.2.2, for any t-periodic f € C,(RY,R) with Jpa fr(x) 7i(dx) = 0, Rif e
Cho (T4, R) and so (o/® — gfb)R;fT € Ck:% (T4 R). Hence, for any 7-periodic
feCc®(RIR), R? fr € C*®(T¢,R), that is, the corresponding 7-periodic ex-
tension is a solution to (3.7). Finally, uniqueness follows from the fact that any
solution u(x) to (3.7) must have the representation [;°e~*'P, fdt, since u = (A —
PORE

Below we give concrete examples of LTPs {X; },~0 and {X; },>¢ satisfying the above

assumptions.
Let & € (0,2) and n: R?\ {0} — [[,T], with 0 < < T < oo, be measurable. Then

n\y
vo(dy) == 1, 0)(y) MET)ady

is a Lévy measure, indeed, we have

n(y) 2 ”()’) = /! d—14+2—d— =1
LA ly[? d:/ d:F/r F2md=0g, —T— < .
/Rd< b >Md+“ "7 Jso) b pfeFe ™ 0 o

Denote by {X;},>0 the Lévy process generated by the Lévy triplet (0,0, vo(dy)).

Also, let (27” .9 ) be the corresponding Bj-generator. Then, according to [59,
Example 4.2] {X; },>0 satisfies (PE)(ii) with k =2, 00 = Q1.

Further, let {X; },>0 be a LTP generated by (0,0, v(x,dy)) with

Y(x,y)

V(X,dy) = V()(dy) + ‘y‘d+ﬁ ]lB‘l(())<y) dy,

where B > 1 and x — y(x,y) is positive, e-Holder continuous and bounded for
almost every y € B{(0) (see in Example 3.1.1 (iv) that this Lévy kernel generates a
LTP). Denote by (7%, 2, ) the corresponding B,-generator. As in (i) we see that
/® — 7" is bounded on (B, (RY,R), ||-||.), and (&r® — a7?) f € C,(RY, R) for every
f € Cy(RY,R). Furthermore, (® — /%) f € CE(RY,R) for every f € C£(R4,R).
With these at hand, we can follow the argument in (ii) to check that (PE)(ii) is

satisfied.
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3.3. GENERALIZATION OF ITO’S FORMULA

As mentioned in a previous section we wish to use 1td’s formula applied to a function
B. In this section we slightly generalize [82, Lemma 4.2] (see also [31]), and prove
Itd’s formula for a pure-jump LTP with respect to a not necessarily twice continuously
differentiable function. But first lets consider the case when function in question is twice

continuously differentiable.

Lemma 3.3.1. Let f € Cl%(Rd,]R) and b* be given in (3.6). Then the following It6’s
formula holds

F06) = FX0) + [ (V)57 06)) s+ [ (VF(X), 608 W)

+ / t / (FXy K (Xe,2) ~ (%)) (B e ds) — 9(de)ds)
’]Zl / 9ijf (Xs)cij(X;) ds 3.11)
[ GO+ R,2)  FX) = (V)02 () s,

forallt > 0.

Proof. Since f € C%(Rd,R) we can use Itd’s formula (2.6.12) for process {X; };>o with

representation given in (2.14). First we observe that X¢ = [ &(X,) dW, and

£ (st Zx ) -
[ G0 2 = ) = (7506).2) (- deds), viz0.
Using (2.12) and the definition of b* given in (3.6) we get
f(X1) = f(Xo) +/t (Vf(X,),b(X)) ds+/0t (VF(Xy),6(X)dW,)
4 [ A7) KO ) o) () () s

+ / / (VF(Xy), k(Xy—,2)) (B (-, dz, ds) — ¥(dz) ds)
d
EEy
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+/Ot/R(f(Xs+k(Xs7Z))—f( =) = (Vf (X)), k(Xs-,2))) fi(-, dz,ds)

= S0+ [ (V506).60)) ds-+ [ (V506), 5() k)
+/t <Vf(Xs)7/ k(XS7Z)]l{u:k(Xs,u)21}(Z)‘~/(dz)> ds
+ Z / aljf Cz/ )

l]l

[ R 20) = () (R ) — P(d2) )
b [ 0 k02) - £ = (9706).k(X.2)) P(d2)ds
=S+ [ (V706).b (X)) ds-+ [ (V70),6() k)

+= Z/&,Jf )cij(Xy) ds

,Jl

[ [ U0 k) 05 ) (e ds) — 7))
+/Ot/]R(f(XS+k(XS’Z))_f< 5) = (VF(Xy),k(Xs,2))) V(dz)ds.

Notice that if {X;},>0 is pure-jump, that is ¢(x) = 0 in equation (3.13) only the first

derivative of function appears. This leads one to suspect that in that case assumption of

fe Cg(Rd,R) is not necessary. It is however not enough to assume f € Cll (R4, R). One

possible sufficient assumption is given in the following proposition.

Proposition 3.3.2. Assume that {X; };> is pure-jump, that is c(x) =0, and f € C}(RY,R)

such that

sup ylv(x,dy) <
xcRd By (0)

Then

706 = £0%0) + [ (9706).6° (%)) ds
i /0[ /]R (f (X + k(X 2)) = f(Xs-)) (B(,dz, ds) — V(dz) ds)

+/0f/R(f(Xs+k(Xs,z))_f( ) — (VF(Xe), k(Xs,2))) ¥(d2) ds

holds true for all t > O where b* is given in (3.6).

(3.12)

(3.13)
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Proof. Let y € C2(RY),0< x <1, be such that [pa ¥ (x)dx = 1. For n € N define ,(x) :=
néy(nx), and f,(x) :== (¥ * f)(x), where * stands for the standard convolution operator.

We have || f»||; < [|f|l; for n € N, to see this we first observe that || f||.. < ||f]|.., and

1A = 129 = /af ~920) / 0]l ey ay = [0°f]...

Also for all x € RY we have lim,, e f,(x) = f(x) and lim, . Vf,(x) = Vf(x) because
1imy, 00 0 f (x) = limy 0 (X % 0.f) (x) = 9 f(x). Since clearly {f, }nen C Cy’(R?) we can
employ the previous Lemma to conclude (3.13) for function f,.

Now, by letting n — oo we see that the left hand-side converges to f(X;) and the first
terms on the right-hand side converges to f(Xp). For the remaining terms on the right-
hand side we will need to employ the dominated convergence theorem. In the case of the
second term this is easy since Vf, is bounded and so is b*. Therefore the second term
converges to [o(V f(X,—),b*(X,—))ds.

For the third term by employing the isometry formula, we have
Bl ([ ] U+ KX 2) = o) = O+ KK, 2) + f(K)
(fi(-,dz,ds) — V(dz) ds))z} =
B [ [ U k0,2)) — oK) = F(Xs K, 2)) + F(X)) P(d2) ]
0 JR
For g € C!'(RY) we have
1
g =) = [ (Vele+ry).p) dr (3.14)
If we apply this for g = f,, — f and use Cauchy inequality we get
1 2
falet3) = o) = F+ )+ F@P < ([ (Vfalet )|+ 97+ ) blar)
< 4N P

Condition (C3) then implies that

sup [ U(e3) = (0 = Fx-4) + P vixdy) < AT [ DPv(xdy) <

xeRd
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The dominated convergence theorem therefore implies

// (fulXsm +k(Xs—,2)) = f(Xs)) (f(-,dz, ds) — V(dz) ds) ==
/0 /R(f(Xs— +k(XS—,Z)) —f(XS_)) (.ﬂ(.’dz,ds) _ \N/(dz) dS).

From this we conclude that there is a subsequence such that the third term on the left-hand

side in (3.13) converges (in this subsequence) to

// FXo 4 k(X 12)) — F(X,)) (-, dz, ds) — V(dz) ds)

It remains to consider convergence of the last term in (3.13) and to that end we will use

(3.14) with g = f,,. Cauchy inequality then implies

1
a3 = £ = (V4,090 | = [ (V1) = V1 (0).3) dr <
1
|1V Aot ) = V)bl dr < 2071 o

Therefore using condition (3.12) we conclude

sup [ 1fule3) = ) = (VAu).0) [V (x.) < 20081 [ Vi) <

xeRd Rd

Thus, the dominated convergence theorem implies that the last term converges to

/ / (X5 +k(X5,2)) — f(X5) = (V(X5), (Xs,z)>)v(dz)ds.
which proves the desired result. -

Alternate sufficient condition is given in the next proposition.

Proposition 3.3.3. Assume that {X;};>¢ is pure-jump, that is ¢(x) =0, and f € Cg (R4, R)

with Holder exponent ¢ (r) such that mg > 1 and

sup O (ly[) v(x,dy) < oe. (3.15)

xERd B, (0

Then (3.13) holds true for all t > 0, where b* is given in (3.6).

Proof. Without loss of generality, assume that my € (1,2], in this case for f € CZ) (R4, R)

we have

d ) d )
£y = 1Al + Y 1[0l + X[ 11
i=1 i=1
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We proceed the same as in the proof of the previous proposition with few miner alterna-
tions. This time we have ||f|l, < [|f][, for n € N. To see this, atop of the observations

already made, notice that

‘Xn*aif(x"i‘h)_)&l*aif(x”

[0'fu]—16 = sup  sup -
O eRUheB, 0N\ {0} DR
0" f(x+h—y)—d'f(x—y)]
< su su / a(y)dy
D pup LR ()

xeR4 heB; (O)\{O}Rd

' f(x+h—y)—9d'f(x—
</sup sup 97k ) ,1f(x y)‘xn(y)dy
| xeRd e (0)\{0} (|2])|A|

]8"f(x+h) — 8if(x)|
/ et o OURDIAT

_ / (0] 1.02a(y)ds = [9'f] 19

Xn(y)dy

Another alternation needs to be make in the arguments made for estimates of the last term

on the right-hand side of (3.13). We again start with the following inequality
1
ulor+3) = 1) = (V)| < [V falxr) = VA0 o] dr =

1 1
|1V A4 ) = V10 8,0, )1+ [ 9154 19) = V) L) ()]

To see that the second integral is finite we can, similarly to before, use the fact that
IV fu(x+1y) =V fu(x)] < 21| fully <2117l because [yl o) ()| < y*1pe (o) () and there-
fore we will be able to use (C3). For the first integral we observe that for y € B;(0) \ {0}

and r € (0, 1] and some constant k € (0, 1] we have

|97 fulx +1y) = 9" fu(x))|
> | fulls > >
i |aifn<x+h)—afn<x)r . K|an<x+ry>—an<x>|
S olybr™  — oDy~ ’

where last inequality holds because function y — ¢ (|y|)|y|~! is almost increasing in (0, 1].

Therefore using condition (3.15) and (C3) we conclude

sup | [fu(x+Y) = fa(x) = (Vfu(x),3) | V(x,dy) <

x€Rd

sup [ 171y 225,000 s )+ sup [ 2Py (0) ) <
xeR xeR
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Thus, the dominated convergence theorem implies that the last term converges to

/Ot /Rd (f(Xs +k(Xs,2)) — f(Xs) — <Vf(Xs)7k(Xs,Z)>>\7(dz) ds.

which proves the desired result. |

This leads us to assume the following condition for the rest of this chapter

(GI) One of the following holds

(1) B €CHRYL,RY)if c(x) Z0;

(2) B €CH(RY,RY)if ¢(x) =0 and

sup ly| v(x,dy) < eo. (3.16)
xcRd /B1(0)
(3) mgy > 1if c¢(x) =0 and
sup @(yDw(lyl) v(x,dy) < eo; (3.17)
xeRd/B1(0)

Remark 3.3.4. If the conditions of Remark 3.2.1 are satisfied instead of (PE) then in
Theorem 3.2.2 we conclude that § € C}>(R9,RY). If this is so then condition (GI) (iii)

becomes k, > 0 if ¢(x) =0 and

sup |2t %2y (x,dy) < o.
xeRd~B1(0)
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3.4. CENTRAL LIMIT THEOREM

We are now in position to state the main result of this chapter. In the proof we follow the

approach from [35].

Theorem 3.4.1. Let {X;},>0 be a d-dimensional LTP with semigroup {PF,};>0 and Lévy
triplet (b(x),c(x),v(x,dy)), satisfying (SJ), (P), (FI), (PE) and (GI). Then for any initial
distribution of {X; }1>0,

{eX, 2 — e\ m(b")} S5 (W0 (3.18)

t>0

Here, b* is given in (3.6), m(dx) is a measure whose existence and uniqueness is given
by Proposition 3.1.4 and = denotes the convergence in the space of cadlag functions en-
dowed with the Skorohod J-topology, and {W,Z }i>0 is a d-dimensional zero-drift Brown-

ian motion determined by covariance matrix X given by

Y= ﬂ((ﬂd—Dﬁ)C(Hd_Dﬁ)T+
(3.19)

L 0=BC+)+B) 6=Be+0+BO) v<-,dy>> ,
where [ is a solution to (3.5) whose existence and uniqueness is given by Theorem 3.2.2.

Proof. Let B € C,;P Y(RY,RY) be a 7-periodic solution to (3.5). Because of condition (GI)
according to Lema 3.3.1 (if (GI) (1) holds) or Proposition 3.3.2 (if (GI) (2) holds) or
Proposition 3.3.3 (if (GI) (3) holds) we can apply 1td’s formula to the process {B(X;) };>0

and therefore

[ [ B0+ ) = B ) (- de,d) — P(d2) d)

where we used the fact that if (GI) (2) or (3) is satisfied then 6 = 0 and ¢;; = 0 for all
i,j=1,...,d. From (3.5) we know that b*(X;) — 7t(b*) = &/’B(X;) for any ¢ > 0 and
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therefore using (2.13) we get

b*(Xs) = m(b") = (VB(X; )5 ZCU )9jB(Xs)

711

+ [ (BOt+2) = BOX) — (VB(X,),2) L )(2)) V(Xssd2)
= (VB (X, )+ ZCU l]ﬁ 5)

711

+ [ (BOG+k(X,,2) ~ B(X) — (VB(X,).K(X,.2) V(dk)
+ (VB [ 20 (2 V(X o))

Combining this with equation (3.20) and the fact that b*(x) := b(x) + |, B<(0) zVv(x,dz) we

conclude
B(Xi) —B(Xo) = /Otb*(Xs) —Tc(b*)der/Ot (VB(X,),&(X,)dW,) (3.21)
* /(:/R(ﬁ(xs—+k(xs—,Z)) — B(X;-)) (f(-,dz,ds) — V(dz)ds) .

Observe that due to boundedness of B(x), {€X,—2, —t(b*)e ™1t — B (X,—2,) + B (X0) }r>0
converges in the Skorohod space as € — 0 if, and only if, {€X,—2, — 7(b*)e 1t },50 con-
verges, and if this is the case the limit is the same. We will use Theorem 2.6.15 to show
this convergence. To this end denote by S; := X; — 7t(b*)t — B(X;) + B(Xp) and let’s prove
that the process {S;};>0 is a semimartingale and determine its characteristics. By com-

bining (2.14) and (3.21) we have that
s, :x—i-/zb(X n(b") ds—l—/ X,)dW, +/ KL g1 (2) V() ds
+ / [ KOX2) (- dz ) — D(d2)ds)
—/Ob*<xf>—n<b s— [ (VB o) aik)
[ B0+ 2) — B ) (2, ds) — 7(d) )
—xt [ o)~ [ (VB(X), ()W)
b [ 02 = B KX 2) + BXG)) (A2, ds) — () )

where we used the fact that g k(Xs,2) 1y k(x, )| >1} (2) V(dz) = fB§ (0)2V(x,dz).
We proceed as in Example 2.6.11 and Example 2.6.14. First notice that in a semi-

martingale decomposition of {S;},>o the adapted process of finite variation {B;},>¢ is a
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nul-process which is trivially predictable. Therefore {S;},>0 is a special semimartingale
and again for the truncation function we can take /4(x) = x. The continuous martingale

part of {S;},>¢ is a d-dimensional process such that fori =1,...,d

she Z/o,l X,)dW! — Z/akﬁ, (X,) dW!

kil=1
_ Z / ’ Z (i — ABi(X)) Ga (Xy) AW
=170 (=1

Since from equation (2.12) and (2.13) we know that

02 = B RXs-20) + B )) () — F() ) =
[ [ 0= B0 +9)+ B ) () = V(X ) )
the jump measure p5(-,dy,ds) of process {S;};>0 is
S.ds) = [ 10— (BX+2) ~ BX)) A dd),
for B € %(RY). We conclude that (modified) characteristic of {S; };>¢ are as follows
Bi =0,
/ Z (8i — OkBi(Xs)) e (Xs) (81 — AB;j(Xs)) ds
k=1
N(B.A9) = [ aly=(BX+y) = (X)) V(Xssdy)ds,
cl=clt / [ NGy
= [ 8 (6 AB6) () (8~ 28,(6)) s
0 ki=1
[ = B 3) 4 BX)) (7= By +3) + B(X,)) VK, ) s,
fort >0andi,j=1,...,d and B € Z(RY). Consequently, for any x € RY,
{eX,, —m(b*)e 't —eB(Xo—2,) +EB(X0) }i>0,  €>0,

is a P,- semimartingale whose (modified) characteristics (relative to i(x) = x) are given
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by

e d

Cf’ij:ez/o (8 — HBi(Xy)) e (Xs) (01 — 9B (Xy)) ds

k=1

Neas) = 5 [ 1 (0P e 9) B ) Ve 2 )65

o = 8”+s/ / IT Ok — Be(Xs +y) + Be(X)) v(Xs,dy)ds,

k=i,j

fort >0andi,j=1,...,dand B € Z(RY).

Now we are ready to check the conditions in Theorem 2.6.15. First note that condition
(2.21) is trivially satisfied. To prove the convergence in (2.22), first observe that due to
T-periodicity of all components we can replace {X;};>0 by {X};>0, which is, due to
Proposition 3.1.4, an ergodic Markov process. The assertion now follows as a direct
consequence of Theorem 2.2.19 (Birkhoff ergodic theorem).

It remains to prove the relation in (2.23). To this end, fix g € C,(R?) that vanishes on

Bg(0) for some & > 0. We wish to prove that

/Ot /Rd g(y)NE(dy,ds) =

o ) ey e (B s ) B2 ) VX, 2 )ds 500,

We will do this by proving the convergnece in L?, to this end define

1

Fo) =2 |8 (ev—e(Blrty) =B ) vix.dy)

1
o [, [e e e(B+3)~ Ble) Ve miaa)
Clearly, for any € > 0 F€ satisfies F¢ (X;) = F¢ (X) fort > 0, and

FE(x)m(dx) = 0.
T

It is also 7-periodic and bounded, we have

2[lglle
T2

|F* sup

)CTGT%

||DO —_

[, oo ey =€ (Blr+) —ﬁ(x)))V(x,dy)H |
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Now, by the Markov property and geometric ergodicity of {X/*},>0, we have
t 2 t 2
Ex [( /0 Fg(Xg_zs)ds> ] = K7, [( / FE(XD,)) ds> ] =
t
E; U FE (X} ds/ F&(X du} _2/ / Ef [F® (X7 .,) F€ (X7 ,,)] duds =
0
t S
o [ [ B [P () B, [P (XEs) 1 XE ] s —
0 Jo

t N
2//1[4:; [Ff(Xg,zu)Pg,Q(H)FS(XT duds<2// HFSHOO Plof_yF|| duds <
-2 ye 2t
ar e, [ [ e 0 quds = a2 T 1§2F8IIIFSIIOO_
r°E Y
8T g% 2
SIS wup ([ g (e (Bs--) B vis))
ey xETd
Since B is bounded we can take € > 0 be such that 2¢ || B]|.. < 6/2. Then,
0
6 < lley—e(Blx+y) =B = lleyll+2e[|Bll. < llevl+5
implies that 1p (ey — € (B(x+y) — B(x))) < L - (gy) and therefore
2 2 2
8Llgllt < )
£ —
Cllel2 7 /2e\* 2 2
ey 6 xTGT‘% B%/ZS 2e
2
8V2I'? gl er'/? 2
= v(x,d .
( 7252 08, Jos o Y[ v (x,dy)
Similarly we conclude
2
[(/ [ [ g —eBlety) - BE)) vied) ) ds) ] -
T¢ Re®
; 2
S, [Leter—e By - @) vy mie) <
€ T¢ JRd
2 2
1 () (f (8] v = (2 m
i dy)m(dz) | < s vix,dy) | .
gl (Td () veanma ) < (S5 [ vy
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Consequently,

(Ex [(/O[/Rdg()’)Ne(dxds))z )5 - (]Ex [(/()tFS(ngs)dS)2]>2+

2
(2] (& [, Lyster-ewn - pan vicanne)

8VAL'2 gt/ 4llglr
y1/282 52

1
2
) <

sup /B Y2 v(x,dy),

xTGTg %/28
and since from (SJ) we know that lirr(l) sup |, B3 se 2 v(x,dy) = sup [ra|y]>Vv(x,dy) <o
E— T‘%

Xr€ Xt GT%
this concludes the proof.
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4. CLT FOR DEGENERATE DIFFUSIONS

In this chapter we prove a Central limit theorem for diffusion processes associated to the
second-order differential operator given in (2.29) satisfying condition (D) (see Definition
2.7.1). As mentioned in the Section 2.7 we will use notation {X (x,) },>¢ to denote such

diffusion process with starting point x € RY, that is P (X (x,0) = x) = 1.

4.1. DIFFUSIONS WITH “DEGENERATE”

DIFFUSION TERM

In this chapter we assume that

(DD) (i) there is an open connected set & C [0, 7| such that the matrix c(x) is positive

definite on @, that is,
(€(x)&,8) >0 V(x,&) e xRN\{0};

(ii) a, b and c are y-Holder continuous for some 0 < y < 1, that is, there is I" > 0

such that for all x,y € RY
la(x) —a(y)| +[b(x) = b(y)| +[le(x) —c()[lus < Tlx—y|". (4.1)

Remark 4.1.1. (i) For a given symmetric, non-negative definite and Borel measurable
d x d-matrix-valued function ¢ there is a unique non-negative definite and Borel
measurable d x d-matrix-valued function & such that c(x) = &(x)&(x)T for all x €
RY. In general, it is not clear that smoothness (Holder continuity or differentiability)

of ¢ implies smoothness of &. However, if ¢(x) is additionally positive definite or
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(iii)

(iii)

twice continuously differentiable, this will be the case (see [39, Lemma 6.1.1 and

Theorem 6.1.2]). In particular, under (DD), & will be y-Holder continuous on &'.

Condition (D) holds true if for all x,y € RY,

x =yl (|la(x) —a(y)| + |b(x) b)) + [lo(x) — o) llizs < Olx—y6(lx—y]).
4.2)
This together with periodicity of o, automatically implies 1/2-Holder continuity of

0. Moreover, since

le(x) = e()llns = llo(x)ox)"

< (o(x) = o(») o(x) s + o) (0(x)" = o)) llms

< 2sup||o(z)|[ns [[o(x) — o (y)[lus
z€Rd

—0(»)o() |lns

it also implies 1/2-Holder continuity of ¢. In addition, if limsup,,_,,0(u)/u? < oo
for some y € (0, 1], it is easy to see that (4.2) implies y-Holder continuity of a and
b, and (1 + y)/2-Holder continuity of o and c.

Assumptions (D) and (DD) imply that c(x) is uniformly elliptic on &, that is, there

is & > 0 such that
(c(x)E,&) > alé]*  V(x,&) € xR

Indeed, since for every x € & the matrix c(x) is symmetric and positive definite,
the corresponding eigenvalues Aj(x),...,Aq(x) are real and positive. Also, since
A1(x),...,Aq(x) are roots of the polynomial A +— det(c(x) — Al4) we see that each
A: O — (0,00) is continuous. Hence, due to compactness of 0, we conclude that
there is a > 0 such that ¢(x) — aly is positive definite on &, which proves the
assertion.

O

Under the assumption that ¢(x) is uniformly elliptic and twice continuously differen-

tiable, and that a,b € Cz(]Rd, ]Rd) (in particular conditions (D) and (DD) are automatically
satisfied with O(v) =v, y=1and ¢ = (0,7) x --- x (0,74)), in [12, Theorem 3.4.4] the

CLT for process {X?(x,7)};>0 has been shown. A crucial step in this proof is an applica-

tion of It6’s formula to the process {B(X®(x,7))};>0, where 3 is a solution of the Poisson
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equation which, in the uniformly elliptic case, is in Cz(Rd, RY). On the other hand, in the
case when the coefficient c¢(x) can be degenerate it is not clear how to conclude necessary
smoothness of B(x). From Lemma 2.5.2 we know that a first step in that direction is

showing geometrical ergodicity of Cj-Feller process {X%(x,1)},>0.
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4.2. GEOMETRIC ERGODICITY

In Section 4.1 we have allowed a diffusion coefficient of process {X¢(x,?)};>0 to be de-
generate outside some open connected set & C [0, 7]. In order to control the behaviour
of process outside & we will therefore need some additional assumption. What we need
to make sure is that with positive probability our process doesn’t get stuck in this area
outside of ¢'. More formally we proceed as follows.

For € > 0 and B € #(RY), let T;" := inf{t > 0: X¥(x,t) € B} be the first entry time

of B by {X®(x,)},>0. For the rest of this chapter we assume

(RT) forall € > 0and x € RY,

P (55, <o) >0,

where 0 +1:= {x+k;: x€ O, k; € 73},

Example 4.2.1. Let {X(x,?) },>0 be a I-dimensional diffusion process associated to second-

order elliptic differential operator .’ of the form

where coefficients b(x) > 0 and ¢(x) > 0 are 7-periodic and such that supp ¢ = & and

12

10

Figure 4.1: Simulation of process {X (x,7) },>0
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infyc e b(x) > 0 for some open &' € R. Then conditions (D), (DD) and (RT) are satisfied.
In Figure 4.1 simulation of such process with T =4 and & = B;(0), b(x) = 0.5 and

0, xe[l,3]
=
Bel2 xe[-1,1],

is shown.

O

Under (D) comment after Proposition 2.7.5 tougether with Remark 2.4.3 (i) states that
{X&%(x,t)}1>0 is a Cp-Feller process and this together with Proposition 2.2.4 show that
{X&7%(x,t)},>0 admits at least one invariant probability measure. Assuming additionally
(DD) and (RT), in what follows we show that {X®%(x,t)},>0 admits one, and only one,
invariant measure, and the corresponding marginals converge as t — oo to the invariant
measure in the total variation norm. We do this by showing that {X®(x,t)};>0 is ¥-

irreducible, which follows from next proposition.

Proposition 4.2.2. Under (D), (DD) and (RT), there exists a measure \(dx) on T‘Ti such

that
(i) supp(\p) has nonempty interior;
(ii) for every x € TS and € € [0, &) there is tve > 0 such that
PY(B) > 0= p*>*(t,x,B) > 0 Vi>te. 4.3)
Proof. Let’s first take x € & + T and prove that there exists a measure 1 (dx) such that
(4.3) holds for t, ¢ = 0. According to [30, Theorems 7.3.6 and 7.3.7] there is a strictly
positive function ¢¢(¢,x,y) on (0,00) X € + T x O + 7, jointly continuous in ¢, x and y,
satisfying
v E ~E,X _ £
B[ 100 (35.0)] = [ r0)eCana
forallt >0,x € &+t and f € Cy(RY). Clearly, by employing dominated convergence

theorem, the above relation holds also for f = 14, ; for any open set  C ¢. Denote by
9 the class of all B € () such that

]P’(Xe(x,t) €B+T,f?g+r)c >t> = /B+Tq£(t,x,y)dy.
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Clearly, 2 contains the m-system of open rectangles in # (&), and forms a A-system.
Hence, by employing Dynkin’s 7-A theorem we conclude that = %( ). Consequently,
forallt >0,x € & + 1 and B € ([0, 7]) we have

PoxB+T) > P (R(n) € (BNO)+7, 755, >1) =/ ¢ (t,x,y)dy.
(0+1) (BNO)+t

Set now Y(B+ 1) :=A((BNCO)+ 1), B A([0,7]), where A(dx) stands for the Lebesgue
measure on RY. Clearly, by construction, {(dx) is a measure on c-algebra %([0,7]) +
7:={B+1: B #A([0,7])}, supp() has non-empty interior, and for B € ([0, 1]) it
holds that

PYB+1) >0 = p°(t,x,B+17) >0  V(t,x) €(0,0) x O +7. 4.4)

It remains to show that for each x € ([0, 7]\ ©) + 7 there is #, ¢ > 0 such that the implication
in (4.4) holds for all # > #,¢. Since {X®(x,7)};>0 has continuous sample paths and & is

an open set, we have that

Y p°(t,x,0+7) > P(3r € Q such that X°(x,1) € O+ 1)
1€Qy

(3t > 0 such that X*(x,7) € 0+ 1)

P
P (5, < ).

From (RT) we see that there is 7, ¢ € Q. such that p*(t,¢,x, 0 +17) > 0. Let B € #([0, 7))

be such that (B + 7) > 0. For any ¢ > #, ¢ we then have

PE(t,x,B+71) > P(X*(x,1) € B+7,X%(x,1x¢) € O+ 1)

= ﬁg(t_tx,é'uy?B—’_T)ﬁs(tx,Suxady)7
O+t

which is strictly positive due to (4.4). The result now follows from (2.16). [ |

Proposition 4.2.3. For every € > 0 process {X®%(x,t)},>0 admits a unique invariant

probability measure 7¢ (dx) such that

sup ||p~87f(tvx7dy) _ﬂg(dy)HTV S Fe_yt Vs,t Z 07
xeT%

for some y> 0 and I" > 0, that is process {X&7(x,t)},>0 is geometrically ergodic.
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Proof. In remarks proceeding Proposition 4.2.2 we have already seen that there exists as
invariant probability measure for process {X&7(x,t)},>0. From Proposition 4.2.2 it im-
mediately follows that {X&7(x,t)},>¢ is W-irreducible. According to Proposition 2.2.8
this entails that {X®%(x,7)},>0 admits a unique invariant probability measure 7t¥(dx).
Next, the C,-Feller property of {X€7(x,t)},>0 and Proposition 4.2.2 together with Lemma
2.2.15 imply that TY is a petite set for process {X&7(x,#)};>0. From Proposition 4.2.2
(which implies that Y% | 5% (i,x,B) > 0 for all x € TS whenever \(B) > 0), and Proposi-
tion 2.2.12 we see that it is also a small set, which implies that {X&7(x,) },>0 is aperiodic.

The desired result now follows from Theorem 2.2.14. [ ]

Proposition 4.2.4.

7 (dx) Ly 70(dx).

e—0

Proof. Since T¢ is compact the family of probability measures {7€(dx)}e> is tight.
Hence, for any sequence {&;};cn C [0, &)] converging to O there is a further subsequence
{&i;} jen such that {ni (dx)} jen converges weakly to some probability measure 7°(dx).
Take f € C(T¢,R), and fix r > 0 and £ > 0. From Proposition 2.7.7 we have that there is

0 < € < g such that
1B =B fll. <& Veel0&].
We now have that

7(f) = (B> f)| = lim |2 (f) - 7" (B*7f) | =

Jj—reo
11m|7'[1( ) ‘0 Porf>|<
Jj—reo
timsup 7™ (£ 1) =% (BT f) |+ tim % (B f) = 7" (B f) | < e,

which implies that 7°(dx) is an invariant probability measure for process {X%%(x,t)};>0.

Thus, 7°(dx) = n¥(dx), which proves the assertion. |
Now we are in a position to consider the solution 3 to the Poisson equation
OB =b—m(b). (4.5)

Corollary 4.2.5. Poisson equation (4.5) admits a T-periodic solution B € C(RY). More-

over, B is the unique solution in the class of continuous and t-periodic solutions to (4.5)

satisfying |14 Be(x) 7 (dx) = 0.
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Proof. From Proposition 2.7.5 it follows that {X°(x,t)};>0 is Cp-Feller which implies
that {X%%(x,1)};>0 is Cp-Feller (see Remark 2.4.3). From Proposition 4.2.3, Proposition
2.5.1 and Lemma 2.5.2 we know that the solution to equation 4.5 is a well defined zero-

resolvent
B =~ [ B (b-m0) ar,  xeR.
0
Since the uniqueness in the class of continuous and 7-periodic solutions to (3.7) satisfying

ng B:(x) ¥(dx) = 0 is also guaranteed by Lemma 2.5.2 this completes the proof. [
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4.3. SPECIAL CASEa=0

In this section we will consider a special case when process {X®(x,)},- is a solution to

the following SDE
1
dX®(x,1) = gb(Xe(x,t)/e) dt + o (X8 (x,1)/€) dW,
X%(x,0) = x € RY.

That is a d-dimensional diffusion process associated to a second-order elliptic differential

operator .Z¢ of the form
1
LEf () = (e b(x/€), V() + 5 Tr (c(x/e)VV () (4.6)
Recall that X¢(x,t) = eX¢(x/¢e,t/€?),t > 0. Clearly, {X£};>0 satisfies

dX®(x,1) = b (X (x,1)) + 0 (X5(x,1)) AW
. 4.7)
X(x,0) = xeRY
€ @ 0 @ . . . . . .
and {X%(x,t) };>0 = {X"(x,1) };>0, where = denotes the equality in distribution. In this
case it will be easier to prove Central limit theorem and no regularity additional assump-

tions on process {X (x,7) };>0 will be necessary.

Theorem 4.3.1. Let {X®(x,1)},>0 be a d-dimensional diffusion process associated to a
second-order elliptic differential operator £¢ given in (4.6) with coefficients b and ¢

satisfying (D), (DD) and (RT). Then

XE(rt) e 7B}t hizo =2 (W (x,1) o 4.8)

Here, = denotes the convergence in the space of continuous functions endowed with the
locally uniform topology, T (dx) is a measure whose existence and uniqueness is given
by Proposition 4.2.3 and {W*(x,t)};>0 is a d-dimensional zero-drift Brownian motion

determined by covariance matrix ¥ given by
. T -
I <c—5—5T—ﬁ (7°7B) — (7°7B) ﬁT>, 4.9)

where ¢ € B(RY, R is t-periodic and such that 7°(||¢||us) < oo and B is a solution to

(4.5) whose existence and uniqueness is given by Corollary 4.2.5.
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Proof. From the comments at the beginning of this chapter the statement of this theorem

is equivalent to

£—0

{eX%x/e,e7%1) — e '0(b)1} 150 == {W(x,1) }1>0 (4.10)

and this is what we will prove. Due to boundedness of B(x), process {eX?(x/¢e,t/€%) —

x— &~ 17(b)t};>0 converges in law if, and only if process {eX®(x/¢e,t/€?) —x— e~ 10 (b)t —

eB(X%(x/e,t/€?)) +€B(x/€)};>0 converges, and if this is the case the limit is the same.

We have

eX'(x/e.1/e%) —x—e 'm0 (b)r — &P (XO(x/e,1/€%)) +£B(x/e) =
—ep (X(w/e.t/e?) +eBlx/e) +e | (@) w0 a5 @
+£/0€_2t6<)~(0(x/8,s)> aw,  Vi>0.
Denote
M) = B (R°00) ~ B = [ (b(R0ws) ~n°0)) s, 120,
Ma(x,1) = /Otcr()?o(x,s)) awo, >0

Process {M;(x,t) };>¢ is clearly an {.%, },>o-martingale and according to Proposition 2.3.2
so is the {M(x,?)};>0. Hence, {eX®(x/¢e,t/€?) —x — e 'm0 (b)t — eB (X (x/€,t/€?)) +
eB(x/€)}i>0 is also an {.%; },>o-martingale. According to Theorem 2.6.17, in order to

conclude (4.8) it suffices to show that
2 (—Mi(x/e,) + Ma(x/€,)), o2 % S,  t>0. (4.12)
Fori,j=1,...,dand k,l = 1,2, we have that
(M6, ), M (x, ) = 47 (M )+ (o)) — (M) M () ) . 120,

Let {6, },>0 be the family of shift operators on (Q,.7, {.%, };>0) satisfying 8;0X°(x,1) =
Xo(x,s +1¢) for all s,¢ > 0 (see [72, p. 119]). Therefore for s, > 0 we have that

6,0 M (x,s) = B (Xo(x,H—s)) - B (Xo(x,t)) —/OS <b (Xo(x,H-u)) —ﬂo(b)) du =
B (X0 r+5)) —B)+B(x)— B (X0x,1)) —/tw (b (X00r,u)) — (b)) du =

Ml(x,t—i—s) —Ml(x,t).
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Observe that

My(x,t) :XO(x,t)—x—/olb(Xo(x,s)) ds, t>0.

Therefore similarly to before for s,# > 0 we have that
N
6, o My (x,5) = X°(x,1+5) —X(x,1) —/ b (Xo(x,H—u)) du = My(x,t +5) —M>(x,1).
0

In other words, the processes {M;(x,t)},>0, i = 1,2, are continuous additive martingales
with respect to {X"(x,7)};>0, in the sense of [16]. Then according to [23, Theorem 3.18
W1 {{ML(x,") iMlj(x, )¢ }r>0 is also additive with respect to {X%(x,#)},>0. Next, form
the martingale representation theorem we see that for each i, j =1,...d and k,[ = 1,2 it
holds that d(M; (x, -) iMlj (x,-))s < dt. Using these two properties [23, Proposition 3.56]
implies that for each i, j = 1,...,d and k,/ = 1,2 there is a non-negative c *e B(RY,R)
such that
(Ml (x,) =M (x,)), = /O & (XO0x,s)) ds, 120

From 7-periodicity of the coefficients and the fact that {X°(x + k¢,#) };>0 and {X°(x,) +

~k, l:t

kz}¢>0 are indistinguishable for all x € Rdand i, € Zd we conclude that Cij is T-periodic.

Due to boundedness of b, B and o we have

() _/1 ) ds—/ /Td [0 (X0%(x,5)) | m¥(dx) ds =
[ xOfxs>) 5] 70as) = [ B [0](e0) ]G] ) =
SB[ 0 1]z )] (@0 <

/ E [M](z.,1 } 0(@)+2AdE[M{(zx,1)2} n0(dv) < oo,

where z, € IT; 1 ({x}) is arbitrary. Set now ijl( x) = (c"ffjl.Jr(x) ~kl (x))/4, and & (x) ==

(@1(x))ij=1....a- Clearly, for all k,/ =1,2 ¢ € B(R,R¥?) is symmetrlc, non-negative

definite and t-periodic, and satisfies 7°(||c"||us) < oo and

(M (x,-), My (x,")) = /Otakl (X°(x,5)) ds,  1>0.

Directly from Proposition 4.2.3 and Theorem 2.2.19 (Birkhoff ergodic theorem) it follows

that forall ¢ > 0

t/€? .
X (M(x/e, ), My(x/€,)), /e = 82/0 M (ROF((x/)e,9)) ds =2 ().
(4.13)
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It remains to determine 7°(¢X') for k,I = 1,2. For k = [ = 1 we know that i’(¢!!) =
limg_,0 €2 Jpa B, [(Ml (24, ) M1 (2x, ~)>1/82} 7°(dx). Dominated convergence theorem im-

plies that
time? [ [0 )My ) ] ) =
i [ ([ ) o) ([ () o) -
</0 B (X (2x9)) ds) (B (£0(ze1/67) —B(z) —

(B (X, 1/€%) (/ B (X%(2x,5) ) ds )T] 0(dx) =
(/ OB (X07 (x.5)) ) ( OB (X0 (x,5)) ds)T_
([ e a) b
(B(X*(x1/2%)) (/08_2 OB (X0 (x,5)) ds>T] 70 (dx) +

lim € /
£—0 Td

/ <lim g2 / gfzﬁf’f@fovfﬁ(x) ds) (B ()T (dx) +
Td \ e—0 0

/ B (;g%ez JA R ds>Tn°<dx> -
e [ B2 7 [ P (R0 ) (7 (207(0) v~
[ (70 (R0 )) (8 (R0 1)) s
JA (B (0% 1/6)) (7B (207 (x,0)) ds | (o) +
(77 p) O(BT> n ((°7B)") n'(B) =
me [, [(/&”%x“@mm’Mﬂﬂmw%)@ﬂw@wwmf+
OB (R0 (x,5)) < / OB (XOT(x,v)) dv— B (R07(x, 1 /82)>)T} ds ¥ (dx) .

Set

M (x,t) =B (XO’T(x,t)) —B(x)— /Z /"B <XO’T(X7S>> ds, t>0.

0
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We have

-2

/S ) OB (ROF(x,v)) dv—B (XOF(x,1/€%)) = M} (x,5)M] (x,1/€?)— B (X" (x.5)) .

Clearly, {M{ (x,t)},>0 is a {-%; };>0-martingale and therefore

B (M7 (x.9) M5, 1/69) (778 (£°7(x.9)) ] =

E [E [(Mf(x,s) —M{(x1/€2)) (7B (R07(x.5))) | ﬁ” — 0.

We now have

@) = —lim EZ/E(% /08 E[ﬁ (YO’T(x,s)> (:Qfo’rﬁ (XO’T(x,S)»T

£e—0

+.27°°B (X0 (x,5)) (B (X0 (x, s))ﬂ ds 7 (dx)

—time [© LR (7)o ()) (o as

e—0
_ o(ﬁ (Q;o,rﬁ)TJr(ﬂ;oﬁﬁ) ﬁT) _

For k = [ = 2 it follows from Example 2.6.6 that ¢?> = ¢. For mixed terms we have
(M (x,-),Ma(x,-)); = (Ma(x,-),My(x,"))T, t > 0. Therefore ¢ := ¢'> = (EZl)T, which

completes the proof. [
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4.4. GENERALIZATION OF ITO’S FORMULA

In the more general case when a # 0 we will require additional smoothness of a solu-
tion B to the Poisson equation (4.5). For that we will follow the approach from [43].
Let 0(x) == (0y;(x),...,04;(x))", j=1,...,n, and let % C [0, 7] where the parabolic
Hormander condition holds, that is, the set of x € [0, 7] for which the Lie algebra gen-
erated by (b(x),1)U{(01(x),0),...,(oa(x),0)} spans R4+, Observe that & C % . Let
20" = inf{r > 0: X°(x,1) € B} be the first entry time of B by {X°(x,7)};>0. In the rest of

this chapter assume the following
(J) o€ C?(RYR), a,b € C*(RY, RY), and

. ~O’
inf sup B {17 s T (F,0)] < 1,
x€Rd

where {J*},>¢ is the Jacobian of the stochastic flow associated to {X°(x,#)};>0, that is, a
solution to

dJf = Db (X0(x,1)) JFdr + Z Doy (X0(x,1)) Jrd (W)),
j=1

Under this condition we are able to conclude the following

Proposition 4.4.1. Let f € C{(RY), k=0,1,2 then P*f € CX(RY) for any t > 0. More
specifically if f € CY(RY) is t-periodic with T°(f) = 0 then there are ¥ > 0 and I” > 0,
such that

VB2 flloo < (|| fllo+ IV flleo) e (4.14)

forallt > 0.

Proof. According to [41, Lemma I1.9.2 and Theorem I1.9.5], smoothness of o(x) and
b(x) implies that PO f € CK(RY) for any t > 0 and f € C{(RY), k =0,1,2. Also, under
(D), (DD), (RT) and (J), in [43, Lemma 2.6] it has been shown that there are ¥ > 0
and I” > 0, such that equation (4.14) holds for all # > 0 and t-periodic f € C'(RY) with
m(f) =0. u
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CLT for Degenerate Diffusions Generalization of Ito’s Formula

In particular, 8 € C'(RY). This is still not enough to use a classical Itd’s formula

but it proves to be enough for us to derive the following Itd-type formula for the process

{B(X)}i>0.
Let f € C(RY) be t-periodic. Define

(W=~ [ B (r-n()war,  xer.

This function is again well defined, 7-periodic, continuous, and satisfies { € Z_z and

AOL(x) = £(x) — ().

Lemma 4.4.2. Assume f € C*(RY,R) is T-periodic. Then it holds that

C(X5(x,1)) +/ (f —n° ) (X€(x,5)) ds—l—e/t

0

(VCTa) (X%(x,s)) ds
+/0 (V¢To) (RE(x,s)) dWE Vi >0.

Proof. Since, as we have already commented, x — P0(f — 7i°(f))(x) is twice continu-
ously differentiable, for any s > 0, we can use 1t6’s formula Theorem 2.6.12 for process
{X#(x,) }+>0 with representation given in (2.32). Observe that X (x,1) = [ 5(X¢(x,s)) dWE.
We have
t
BY(f —m°(f) (X(x,0)) =B (f = () (%) + /0 (VP (f —7°(f)),ea+b) (X(x,u)) du
t
+ / (VB =) (RE(w.)) 0 (R (o)) W)

2T [ A ) (7 0) (K7 )

711

P =N+ [ P ) (R )
+e/0’<vﬁg<f_n0<f)>,a> (X (x,)) du @.15)
+ /Ot (VEO(f =) (RE(x,)) 0 (R () AWE) .

By integrating the previous relation with respect to the time variable s € [0,o0) (and re-

calling the definition of the function {), for all # > 0 we arrive at
C(RE ) =S = [ [ P =) (R (rot)) duds
(4.16)
/ (VE,a) (X€(x,u) du+/ (VETo) ) (XE(x,u)) AW .
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The last two integrals on the right-hand side in (4.16) are well defined, and follow from the
last two terms in (4.15), because of (4.14). By observing that o79P?f(x) = PO.o/0 f(x) =
PP 707 £(x;) (the last equality follows from Remark 2.4.4), and 71°(7%7 f) = 0, Corol-
lary 2.2.10 together with Proposition 4.2.3 implies that the second integral on the right-

hand side in (4.16) is well defined. It remains to prove that

[ PBG-Was = (R vxeR”
We have

o e e B () () = B~ () ()
— [ R =) dr = — [ tim =

0o s—0 Ky

dr.

By employing Proposition 2.3.1 and Corollary 2.2.10 we have
1P (f = () = B (f = ()l _ 1 PR (f = O(f)) du]en _

S ) B
NP f = () wdu _ T[(f =70 (f)ll [ e -

) - S

L | =Dl (P —1) < T Z°(f —nO(f)) ]l "

N

for all s, € (0,c0). The result now follows from the dominated convergence theorem

since

~lim -+ R (F () () — P () ) dr = 0L (x) = fx) — ().

s—0 S8 Jo

83
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4.5. CENTRAL LIMIT THEOREM

We are now ready to prove the main result of this chapter.

Theorem 4.5.1. Let {X%(x,)},>0 be a d-dimensional diffusion process associated to a
second-order elliptic differential operator £¢ given in (2.29) with coefficients a,b,c sat-
isfying (D), (DD), (RT) and (J). Then

XE(t) = 0 (B0 2o (WP (x,1) 20, @.17)
Here, g denotes the convergence in the space of continuous functions endowed with the
locally uniform topology, 7 (dx) is a measure whose existence and uniqueness is given
by Proposition 4.2.3 and {W*<(x,t)},>0 is a d-dimensional Brownian motion determined

by covariance matrix and drift vector

c=7"((la—DB)c(la—DB)")  and  b=n"((la—DB)a), (4.18)

respectively. Here B is a solution to (4.5) whose existence and uniqueness is given by

Corollary 4.2.5.

Proof. Recall that X€(x,t) = €X¢(x/¢e,t/€?), t > 0. Hence, due to boundedness of f3,

{X¢(x,t) — e~ '7°(b)t},>0 converges in law if, and only if

{eX(x/e,t/)e?) —e 'O (b)r —eB(XE(x/e,1/€%)) +€B(x/€)}i=0 (4.19)

converges in law, and if this is the case the limit is the same. By combining Lemma 4.4.2

(applied to b) with (2.32) for every t > 0 we have

eXf(x/e.1/e?) —e ' n'(b) —x— &P (X°(x/e,1/€)) +€B(x/e) =

-2 -2

t €

ez/a()ze(x/e,s)) ds+s/b(f(8(x/e,s)) ds+e / o (RE(x/e,s)) dWE —

0 0

t € “t

S

7t0 ds—s/ ) (X8 (x/e,s5)) ds—
0

(DBa) (Xt(x/¢,s)) ds—e/oe_ t (DBo) (X&(x/€,s)) dW{ =

((Ia—DPB)a) (X*(x/e,s)) ds+£/0£ t((ﬂd—Dﬁ)o') (X%(x/e,s)) dW{.
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Clearly, process in (4.19) is a semimartingale with bounded variation and predictable

quadratic covariation parts

=
(L~ DB)c(ly—DB)T) (5 (x/e.)) ds} ,

2 £
¢
0 >0

respectively. From Theorem 2.6.16 we see that in order for the statement of the theorem

((Ig—DB)a) (Xs(x/s,s)) ds} ,
t>0

and
t

to hold it remains to see

82/08 t((]Id—Dﬁ)a) (X®(x/e,s)) ds % bz,
and B
82/0 (.= DB)e (la—DB)T) (XE(x/e,5)) ds —— c1

for all # > 0. We will do this by proving the convergence in L? for the bounded variation
and an analogous relation holds for the predictable quadratic covariation part. First note
that ((Ig — DB) a—b) = ((Ia—DP)a—n"((Is—DP)a)) and that instead of n°(dx) we

can take 7t€ This can be done because

i

1/2
( [ ((14=DB)a— (14~ DB)a)) (% (x/e.5) ds> D

+ |7 ((la—Dp)a) —blt

T
((Ig—DB)a—b) (X*(x/e,s)) ds)

0

1/2
) <

T
(Ilg—DP)a—mn*((Ia—DB)a)) (X*(x/e,s)) ds)

8

0

dx).
(f
( 8 (lg—DP)a—b) (X*(x/e,s)) ds)

and Proposition 4.2.4. In order to make calculations easer to follow we define

F®(x) := ((Ia—DB)a—n*((Ila—DB)a)) (x).

Due to T-periodicity, for any & > 0 F* satisfies F& (X¢(x/g,s)) = F& (X®7((x/€)r,s))
fort > 0, and

/T%JFS(x)ﬁg(dx) —0.
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It is also bounded, we have ||F¢||_ < 2||(I4—Dp)a||«. Now, by the Markov property and

||OO

the fact that the geometric ergodicity of {X&7%(x;,t)},>0 allows us to employ Corollary

2.2.10, we have

[ £ T £
&'E < /O FE (X% (x/e,5)) ds) ( /0 FE (%5(x/e.5)) ds)] _
&R (/E tF £ (X5 ((x/€)s,9)) dS) </0£

2¢e /8 / X” ((x/€),, ))TFS (X&T((x/S)wu))}duds =
284/0 / ]E F€ (X5 ((x/€),, ))T |X€,T((X/€)w”)} F¢ (Xe,r((x/g)f,u))]duds =

_ZZ

-2 -2

t

FE(X5((x/€);,s)) ds)] =

254/0 / [(PE5Fe (R5%((x/e), ) FE (X'S’T((x/e) )] duds <

284/ / Hﬁf’ZFSHW||F8|deudsgzs“HFSHZOF/ / Y5y ds <
0 0 0

4 _ 2 B
8T (I ~DB)all (o2, , ety
Y

Thus the result follows by letting € — 0. As already mentioned analogous relation holds

for the predictable quadratic covariation part where we take

F¥(x) := ((ly~DB)e(la—DP)" —n* ((Ig ~DB)e(la—DP)") ) (x).
[ |
Example 4.5.2. We end this chapter by showing how one can construct an example of a
diffusion process satisfying conditions (D), (DD), (RT) and (J). Our example will addi-
tionally satisfy ﬂo(b) = 0 for this is an important assumption for homogenization results
in Chapter 5.
Let {X(x,1) };>0 be a diffusion process associated to second-order elliptic differential

operator . of the form

L) = (b0, V7 (@) + 5 Tr (V1))

Coefficients b(x) = (b;(x))i=1,..a and c(x) = (c;j(x)); j=1....a satisfying conditions (D),
(DD), (RT), (J) and can be constructed from the tempered Langevin diffusion process.

Fori=1,...,d put

d
x) =271 Z djcij(x) +bi(x), xeRY, (4.20)
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where b;(x) is T-periodic, of class C**, does not depend on x;, and satisfies || 0,7] bi(x)dx =
0. It is then easy to see that t°(dx) is the Lebegues measure on T¢ and 7°(b) = 0, and it
is not hard to construct examples satisfying (D), (DD), (RT) and (J).

Letd =2 and 7 = (10,10)T. We take diffusion coefficient o(x,y) € C*(R?) such that
c(x,y) = o(x,y)o(x,y)T is T-periodic, positive definite on B(s5)(3) and c(x,y) =0 for
x € [0,10] x [0,10]\ B(5 5)(3). For example we can take

s S
o(x,y) = (]13(5,5)(3)(xf,yf)e9<xfs>2<yrs>2) I,.

It remains to choose by (x,y),bs(x,y) € C*(R?). Observe that this is enough to satisfy
condition (D), condition (DD) with & = Bs 5)(3) and that in condition (J) we have % =
ﬁ - B(575) (3)

Figure 4.2: Visualization of different areas of domain for drift term b

Notice also that for conditions (RT) and (J) to be satisfied it is enough to take such
b(x),c(x) that there exists ¢ > 0 such that P(t* < t) = 1 for all (x,y) € [0,10]%\ Bs(3),
where T := inf{r > 0: X (x,1) € Uycz2B(55)(3) +k}.

Take by (x,y) = b(y) and by (x,y) = b(x) such that b(x) is T-periodic and positive for
x € [0,4]U[6,10] and on [4, 6] define it so that foml;(x) dx = 0. For example we can take

1, xz €10,4]U16,10]

—1
1 —Bel-6=5*  x; € [4,6],
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where 8 > 0 is such that folol;(x) dx =0.

Notice that with such definition of b(x,y) we have that there exists ¢ > 0 such that for
all (x,y) € [0,10]?\ Bs(3)we have P(t* < t) = 1. Indeed suppose that we take (x,y) from
the central white area in Figure 4.2, while we remain in white area we move at the constant
speed diagonally up and to the right. We ether hit the upper right circle, right pink line or
upper blue line. Since if we hit the circle we are done without loss of generality suppose
that we hit the right pink line. While we are in pink area we continue moving to the right
but start to go down. Therefore we ether hit the lower right circle of exit the pink line to
the right between two circles. But the later is not possible because folols(x)dx =0 and
t-periodicity of b(x) imply that if the process moves horizontally for 10 it must vertically

return to the same height (see Figure 4.3).
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Figure 4.3: Representation of vector field b out side of supp o
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5. HOMOGENIZATION

In this final chapter we discuss periodic homogenisation of LTPs. As mentioned in the
introduction we wish to use the results from the previous chapters to solve problems
related to homogenization of operators. In the first section we will see how Central limit
theorems proven in Charpter 3 and Chapter 4 imply convergence of the corresponding
infinitesimal generators. In the remaining chapters we prove that Central limit theorem
for diffusion process (Chapter 4) implies that the solutions to the elliptic and parabolic
equations corresponding to the infinitesimal generator of this diffusion process converge
to the corresponding solution of homogenized equations. We do this by using the famous
Feynman-Kac formula, which is formally introduced in Section 5.3 and motivation for

which is given in the Section 5.2.

5.1. CONVERGENCE OF OPERATORS

The following theorem is a direct consequence of [15, Theorem 7.1] and Theorem 3.4.1.

Theorem 5.1.1. Let {X; },>0 be a d-dimensional LTP with Lévy triplet (b(x),c(x), v(x,dy)),
satisfying (P), (FI), (SJ), (PE) and (GI). If for f € C=(R9)

Zef(x) = (b(x/e),VF(x)) +27Tr (C(x/e)VVTf(x)>
+£_2/Rd (f(X—i—S)’) — f(x) — €y, Vf(x))]lBl(O)(y)) v(x/e,dy),

n(b*) = fT%‘ b(x)+ |, B4 (0) yVv(x,dy) 7t(dx), where 1t(dx) is a measure whose existence and

uniqueness is given by Proposition 3.1.4,

2 =7 ( (s~ DB)e(ly=DB) + [ (= B3+ BOI0—BL+0)+BON V)

&9



Homogenization Convergence of operators

where B is a solution to (3.5) whose existence and uniqueness is given by Theorem 3.2.2,

then

lim Hi”gf—e’l@r(b*),Vf) 2Ty (ZVVTf)Hm =0, feC?(RY).

e—0

As a consequence of [58, Theorem 1.1], [53, Theorem 17.25] and Theorem 4.3.1 or

Theorem 4.5.1 we have the following.
Theorem 5.1.2. For f € C2(RY,R)U{f € C2(RY,R): f(x) is T-periodic} let
Zof (x) = (alx/e) +& ' b(x/e), Vf(x)) + 27" Tr (c(x/e) VV £ () ,

with coefficients a(x) = (a;(x))i=1,..a b(x) = (bi(x))i=1,..a and c(x) = (cij(x))i j=1,..d
satisfying conditions (D), (DD), (RT) and (J) (or (D), (DD), (RT) if a(x) =0 or b(x) =
b e RY). Let 1°(dx) be a measure whose existence and uniqueness is given by Proposition

4.2.3, let
c=n"((la—DB)c(la—DB)")  and  b=n"((la—DB)a), (5.1)

where B is a solution to (4.5) whose existence and uniqueness is given by Corollary 4.2.5,
then

lim H.zgf— e (n0(b), V) ~27"Tr (VYT f) — (b, V) Hw —0,

for f € C2(RE,RYU{f € C2(RY,R): f(x) is T-periodic}.
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5.2. MOTIVATION

For the motivational purpose let us, in an informal way, show a probabilistic approach
to solving a Dirichlet problem for the Laplace equation. That is let G C RY be an open,
bounded and convex set with C! boundary dG and f : dG — RY continuous function. We

are interested in a solution u : G — RY of an equation

Au(x) =0, forallxe G
(5.2)

ulx)=f, forall x € dG

Using the Taylor expansion we have that the Laplacian is given by the following expres-

sion

To see the connection to stochastic processes consider the following random walk. Let
r > 0 be an arbitrary small parameter and start the walk at a point Xy = x € G. At each
step move from the point X,, € G to any point X, € B,(X,) chosen uniformly from the
ball B,(X,). Whenever the segment from X, to X, crosses the boundary dG we stop at
that point of crossing. Denote by u,(x) the expected value of function f at the point on
the boundary where we have stopped the walk. If we started with a point x € dG then the
process does not move and we have u,(x) = f(x). Otherwise, under the assumption that r
is smaller then the distance between the starting point x and the boundary dG, we have

1
|B- ()] JB,(x)

uy(x) = ur(y) dy.

From this we conclude that

(@mmw—m@®=0-

We observe that the function u, “onverges” to the solution to the equation (5.2).
If instead of having X, chosen uniformly from the ball B,(X,) we choose X,
uniformly from E,(X,), an ellipsoid centered at X,,. The value of r is a scale parameter

that shrinks E,(X,) to a point as r — 0. In this case function u, satisfies

/ ur(y) —u,(x)dy = 0,
E(x)
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and as r — 0 it "converges” to the solution to the equation

d
Z a;j0"’u(x) =0, forallxe G
i,j=1

u(x) = f, forall x € G,

where the coefficients a;; depend on the shape of E,(x). If we choose a different ellipsoid

E,(x) at different point x, that would lead to x-dependent coefficients a;;(x).
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5.3. FEYNMAN-KAC FORMULA

Feynman-Kac formula establishes a link between partial differential equations and stochas-
tic processes. It states that the solution of linear elliptic and parabolic PDEs is an expec-
tation of certain stochastic process. Let .Z be a second-order elliptic differential operator,

on the space C? (Rd) , of the form
Z27() = (b0, V7 () + 5 Tr (06T (VYT £()) (53)

where b € C (R4, RY), such that (b(x) — b(y),x —y) < ci|x — y|* for some ¢; > 0 and
o € C(RY,RY) such that |6(x) — 6 (y)| < c2]x — | for some ¢ > 0.

We first consider an elliptic boundary-value problem

Zu(x)+e(x)u(x)+ f(x) =0, forallx e
(54)
u(x) = g(x), forallx € dZ,
where 2 is a bounded connected domain with a boundary 02 of class C! and e : 2 —
(—e0,0), f: 2 — Rand g: dZ — R are continuous.
Next we consider an initial-value parabolic problem

@u(x,t) + ZLu(x,t) +e(x)u(x,t)+ f(x) =0, for all (x,7) € RY x [0, c0)
ot (5.5)

u(x,0) = g(x), for all x € RY,
where e € Cp (Rd,R) and f,geC (Rd,R).
In order to state Feynman-Kac formula in the most general setting we need to first
define the viscosity solutions of elliptic and parabolic equations. This is a generalization
that does not require a solution to be of class C2 but only a continuous function.

Consider first the case of an elliptic equation

F(D*u(x), Vu(x),u(x),x) =0, forallx e 7 (5.6)
u(x) = g(x), forallx€ 02, (5.7)

where 2 C RY is an open set that satisfies the uniform exterior ball condition and whose
boundary 92 is of class C! and F : S x R4 x R x 2 — R satisfies the following two

conditions
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(i) F is elliptic, that is for any two symmetric matrices A,B € S® so that A > B, we
have

F(A,p,u,x) < F(B,p,u,x), forallpe Ry uecR,xe 2.
(1) F 1s proper, that is for any two u,v € R so that u > v, we have

F(A,p,u,x) > F(A,p,v,x), forallAc R pe Rl xe 2.

We can rewrite equation (5.4) in the form of equation (5.6) where F : S x R x R x

2 — R is defined as

F(A,p,u,x) = —%Tr(GO'T(x)A> —(b(x),p) —e(x)u— f(x).

Note that F is proper due to the fact that e(x) < 0 for all x € & and is elliptic due to the

fact that 667 (x) > 0 for all x € 2.
Definition 5.3.1. We say thatu: Z — R is

(i) a viscosity sub-solution of the equation (5.6) if u is upper semicontinuous in & and
for every function ¢ € C?(2,R) such that u — @ has a local maximum at a point

x € 9, then F(D*¢(x),Vo(x),u(x),x) <O0.

(ii) a viscosity super-solution of the equation (5.6) if u is lower semicontinuous in &
and for every function ¢ € C?(2,R) such that u — ¢ has a local minimum at a point

x € 9, then F(D*¢(x),Vo(x),u(x),x) > 0.

(1i1) a viscosity solution of the equation (5.6) if it is a viscosity sub-solution and a super-

solution.

Note that u € C?(2,R) is a classical solution of equation (5.6) if and only if it is a
solution in the viscosity sense. To see this first suppose it is a classical solution and take
@ € C?(2,R) such that u — @ has a local maximum at a point x € 2. Then Vu(x) = Vo(x)

and D?u(x) < D?@(x). From this and the fact that F is elliptic we get
F(D*(x),Vo(x),u(x),x) = F(D*@(x), Vu(x),u(x),x) < F(D*u(x),Vu(x),u(x),x) = 0.

This implies that u is a sub-solution and we analogously prove that it is also a super-
solution. Let u € C2(2,R) be a solution of the equation (5.6) in the viscosity sense then

by taking @ = u we see that it is also a classical solution.
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Next step is to include the boundary condition (5.7) into the definition of the viscosity

solution of an elliptic equation.

Definition 5.3.2. Letu: 2 — Randlety € 2.

®

(i)

(111)

We say that (X, p) € S x RYis in J*u(y) if there exists a sequence (X, P, Vn)neN
in §¢x RY x 7 such that (Xo, pa, u(y)s ) =3 (X, pu(y).) and

u(z) —u(yn) = {Pn,2—yn) — %(Xn(z_yn)7z_yn>
|2

limsup <0 forallneN.

D7y |Z —Yn

We say that u is a viscosity sub-solution of (5.6) and (5.7) if u is upper semicontin-

uous in & and

- F(X,p,u(x),x) <0forx € 2 and (X, p) € J u(x)

- F(X,p,u(x),x) <0oru(x) < g(x) forx € dZ and (X,p) € J u(x)

We say that (X, p) € SU x RY is in J-u(y) if there exists a sequence (X, pu, Vn)neN
in S¢ x RY x Z such that (Xs Py u(Yn), yn) (YH—O;) (X, p,u(y),y) and

(2) — u(yn) — (P2 —Yn) — 5(Xa(2—Yn),2— ¥n)

liminf “ |2 >0 forallneN.

D375y |Z_yn

We say that u is a viscosity super-solution of (5.6) and (5.7) if u is lower semicon-

tinuous in 2 and
- F(X,p,u(x),x) >0forx € Z and (X, p) € J u(x)
- F(X,p,u(x),x) > 0oru(x) > g(x) forx € dZ and (X, p) € J u(x)

We say that u € C(2,R) is a viscosity solution of (5.6) and (5.7) if it is both vis-

cosity sub-solution and super-solution.

Now we are ready to state the Feynman-Kac Formula in this general setting. Accord-

ing to [76, Theorem 3.49]

Theorem 5.3.3. Let {D(x,t)},>0 be a diffusion process associated to a second-order el-

liptic differential operator £ given in equation (5.3). Define the stopping time

™ = inf{t >0,D(x,t) ¢ 7}
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and assume that

A={x€dZ :P(t">0)=0}
is a (topologically) closed set. Then
u(x) = E |g(D(x, %)) el ePls)ds 4 /0 " (D(x,5)) eltePlw)du g
is continuous on 9 and is a unique continuous viscosity solution to (5.4).

We proceed with similar reasoning in the case of parabolic equation

%(x,t) = F(D*u(x,t),Vu(x,t),u(x,t),x,t), for all (x,7) € RYx [0,00)  (5.8)
u(x,0) =g(x),  forallxeRY. (5.9)

where F : S4 x R4 x R x RY x [0,00) — R satisfies the following two conditions

(1) F 1s elliptic, that is for any two symmetric matrices A,B € S9 o that A > B, we

have

F(A,p,u,x,t) < F(B,p,u,x,t), forallpe R, ucR,xeR e [0,00).

(i1) F i1s proper, that is for any two u,v € R so that u > v, we have

F(A,p,u,x,t) > F(A, p,v,x,t), forall A € R4 pe R x e R 1 € [0,00).

We can rewrite equation (5.5) in the form of equation (5.8) where F : S x RY x R x

RY x [0,00) — R is defined as
1
F(A,puxt) = =5 Tr (667 (0)A) = (b(x). p) —e()u—f(x).
Definition 5.3.4. Let u: RY x [0,00) — R and let (y,s) € RY x [0, ).

(i) We say that (X, p,q) € S x R4 x Ris in PTu(y,s) if there exists (X, Pu, Gns Yi> S ) neNs

a sequence in SY x R4 x R x R4 x [0,00) such that (X;,, pu, @n, U(VnsSn)s YnsSn) (ri;)

(X,p,q,u(y),y,s) and for all n € N

1 u(z, 1) = u(YnsSn) = qn(r —sn) — (Pns2 = Yn) — %<Xn(z_yn)az_yn>
im sup

(Z:r)%()ﬁusn) ‘r_an—’Z_yn‘z
RYx[0,00)

<0.

We say that u is a viscosity sub-solution of (5.8) and (5.9) if u is upper semicontin-

uous in RY x [0,0) and
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= F(X,p,u(x1),x,1) +¢ < 0 for (x,1) € R x [0,00) and (X, p,q) € P*u(x.t)

— u(x,0) < g(x) for all x € RY,

(i) We say that (X, p,q) € S* x R4 x Risin P~ u(y,s) if there exists (X, P, Gn> Yn, Sn)neNs

a sequence in SY x RY x R x RY x [0, 00) such that (X, pn,Gn, u(Yn,Sn ), YnsSn) (=)

(X,p,q,u(y),y,s) and for all n € N

() —u(yn, Sn) — Gu(r—sn) = (Pu,2—yn) — 5 (Xa(z—Yn),2— yn)
liminf

(2,7) = (Yns$n) \r—an—]z—yn\z
R4 [0,00)

>0.

We say that u is a viscosity super-solution of (5.8) and (5.9) if u is lower semicon-
tinuous in RY x [0,0) and

= F(X,p,u(x,),x,0) ¢ > 0 for (x,1) € RS x [0,00) and (X, p,q) € P=u(x,t)

— u(x,0) > g(x) for all x € RY.

(iii) We say that u € C(RY x [0,00),R) is a viscosity solution of (5.8) and (5.9) if it is

both viscosity sub-solution and super-solution.
Notice that if u € C* (R%,R) is a classical solution to (5.5) then for A > 0 function
v(x,1) = u(x,1)e* is a solution tu

v

Ev(x,t) + ZLv(x,1)+ (e(x) = A)v(x,t) + f(x) =0, for all (x,7) € RY x [0, 00)

v(x,0) = g(x), for all x € RY.

Indeed, we have

%(x,t) + ZLv(x,1) + (e(x) —A)v(x, 1)+ f(x) =
et 1 Ol (1) 4+ AeMu(x, 1) + e Lu(x, 1) + (e(x) — A)eMux, 1) + f(x) =

or
<8 (x,1) + Lu(x,t) +e(x)u (x,t)—i—f(x)) =0, for all (x,7) € RY x [0, c0)

v(x,0) = u(x,0) = g(x),  forallxeRY.

The same holds for viscosity solutions and therefore, since again F is proper if e < 0, in
the case of parabolic equation we can assume that e is only bounded.
Now we are ready to state the Feynman-Kac Formula for parabolic equation in this

general setting. According to [76, Theorem 3.43], (see also [75, Remark 2.5])
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Theorem 5.3.5. Let {D(x,t)};>0 be a diffusion process associated to a second-order el-
liptic differential operator £ given in equation (5.3) where coefficients b and & are also

bounded. Assume additionally that f,g € C(RY,R) are such that
F )]+ [g(x)| < K(1+[x[%)
for some k,K > 0 and all x € RY.Then
u(x,t) == E |g(D(x,1)) eloe(Plos)ds . /0 £ (D(x,s)) elielDm)dun g

is a continuous function of (x,t) € RY x [0,c0) which grows at most polynomially at infin-

ity, and it is the unique viscosity solution of (5.5).
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5.4. ELLIPTIC BOUNDARY-VALUE PROBLEM

In this section we assume that {X®(x,7) };>0 is a diffusion process associated to a second-

order elliptic differential operator of the form

L7 () = {al/e) + €7 b(x/e), V() + 5 T (clx/e) V()

with coefficients a(x) = (a;(x))i=1,..4, b(x) = (bi(x))i=1,...a and c(x) = (c;;(x))i j=1,....d
satisfying (D)-(J) (or (D)-(RT) if ¢(x) = 0 or b(x) = 0) and we additionally assume that
70 (b) = 0, where 7°(dx) is a measure whose existence and uniqueness is given by Propo-
sition 4.2.3.

Let 2 is an open bounded subset of RY, regular in the sense that there exists a function

¢ € C2(RY4,R) such that
e 2={x:¢(x) <0} and
* [Vo(x)| >8>0, forall x € 02.

Further, let e: Z — (—oo,—t], @ >0, f: 2 — R and g: dZ — R be continuous.
Define a stopping time T := inf{r > 0: X(x,7) &€ 2} and let

A® = {x€0dP:P(t >0) =0},

Assume that A? is a (topologically) closed set for all € € (0,&)]. Then, according to
Theorem 5.3.3,

ut(x) = E |g (X% (x,7%)) eJJ’%e(XS(m)/e)ds + /TX F(XE(x,5)) el e (vu)/e)du g
0
is a unique continuous viscosity solution to

LEut(x)+e(x/e)uf(x)+ f(x) =0, xXe€ g,
uf(x) = g(x), x€d7,

Theorem 5.4.1. In addition to the above assumptions assume that e(x) is T-periodic. Let
{WP<(x,1)};>0 be a d-dimensional Brownian motion determined by drift vector b and

covariance matrix c given in (5.1). Let 0 := inf{t > 0: WP<(x,t) € 9} and assume
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that A == {x € d2: P(10 > 0) = 0} is a (topologically) closed set and assume that
(Vo (x))TcVo(x) > 0forallx € 09. If

WWx) =E (Wbc(x T,) E +/ WbC (x,5) ) e (€)3d
is a unique continuous viscosity solution to
(b, Vi) (x) + 27" Tr (cVVTu°) (1) + n(e) u’ (x) + f(x) =0,  x€ 2,
W (x) = g(x), X€ID,
given by Theorem 5.3.3, then

lim uf (x) = u®(x) Vxeg.
e—0

Proof. We follow the approach from [12, Theorem 3.4.5]. Define

t e
E2(0,1) = / e (XE(x,5) /) ds — 82/ e (RE(x/e.5)) ds
0 0
where we used X¢(x,t) = £ 'X¢(ex,e’t). Since e is T-periodic analogously as in the
proof of Theorem 4.5.1 we see that

t 2
/ e (XE(x,s)/€) ds =L 0 ()1
0 e—0

Set £(0,1) :=7° () . This together with the fact that the process {£€(0,1) },¢ is tight, due
0 [50, Theorem V1.3.211, implies that {£€(0,7)}10 % {£(0,1)}1=0. Since {&(0,1)}r=0
£—

is a constant in the space C([0,0),R) using Theorem 4.5.1 we conclude

{6°,E5) (0,1 biz0 = {(W*2,€) (x0,1) 0. (5.10)

where xy denotes a (d + 1)-dimensional vector with first d coordinates being equal to x
and the last coordinate being 0. Let y := C([0,0),RY) x C([0,0),R) and provide it with
Borel o-algebra generated by the sets { (WP &)(x,-) € y | (WP &)(x,s) € B} where
s €[0,00),B € B(RI1). The processes {(X€,E€)(x,1) };>0 and { (WP, &) (x,)} ;>0 intro-
duce on y probability measures uf(B) =P ((X%,5%)(x,-) € B), B € A(y) and U (B) =
P, (W2*,€)(x.) € B). B € B(y)

We now define functional F : y — RU {eo}

(

g((T(y))e ™D 4 5 £(y(1))e dr, if T(y) < oo and 2(r) < — o, ¥t >0
F(y.2) =9 & f(()e® dr, if T(y) = o0 and z(r) < —aut,¥r > 0

oo, otherwise

\
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where T(y) = inf{t : ¢ > 0,y(t) ¢ Z}. Clearly we have

uf(x) = E[F ({(X5,€%)(x0,0)}i=0)]  and  u(x) = E[F ({(W**,&)(x0,0)}i>0)] ,

which explains why we define F(y,z) in this manner. Next, we can assert the following

properties
(i) F is measurable and bounded a.s. with respect to uf and p,
(i1) F is continuous a.s. with respect to L.

To see that property (i) holds note that if z() < —au, for all £ > 0 then

T(y)
F(:2)] = gO(e())e™) + [ " FO(0))e O dr

Due to the definition of processes {&€(0,7)},>0, {£(0,7)},>0 and the fact that for all
x € RY we have e(x) < —a property (i) follows.
To see property (ii), we need to check that if {y, },en converges to y uniformly on

compact intervals, then
lim F(y,, ) = F(y,¢) (5.11)
n—oo

Recall that £(0,7) < —at for all > 0. The relation in (5.11) will follow from the proof
of [12, Lemma 3.4.3] where they prove statement (4.95) that is, if y, — y uniformly
on compact intervals and (V¢ (x))Tc Ve (x) > 0 for all x € dZ (see the definition of the
function B(¢) in [12, pp. 412]), then T(y,) — T(y). The small difference to our case is
that they define t(y) = inf{r : ¢t > 0,y(r) ¢ 2}, but this makes no difference since in the
proof of the same lemma they also show that these two stopping times coincide a.s.

To see that T being continuous implies (5.11) first note that from this statement we
trivially get that fOT(y") Fy(1))ec00dr — foT(y) F(y(1))e4)dr and the rest we conclude as
follows.

If T(y) = oo, then lim,,_,e T(y,) = oo then, since g is bounded and £ (0,7) < —a for all
1 >0, we have lim,_,e g(y,(T(yn)))es(@T0m) = 0,
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If T(y) < oo, then there exists T > 0 such that t(y,) € [0,7] for all n > n, and therefore

‘g (yn (T(yn))) €5OTOM) _ g (3 (1(y))) 507D
< gl [e50T0R) — EOTOD| 4 EOTON g 3, (x(3))) — g (v (¥(30)))

+eb 00D g (y (T(yn))) — g (v (T(¥)))]
< gl o508 —ZOTN 180T up g (3(1)) 8 ((0)

0<t<T

+eS 0T e (y (T(rn))) — g (T()))] -

Clearly, the first and last terms in the above inequality tend to zero as n tends to infin-
ity. Suppose that limsup,, ... supy<,<7 [g(¥n(t)) —g(¥(t))| > 0. Then there exist € > 0
and sequences {n;}rey € N and {# }ren C [0,7], such that limg ..ty = € [0,T] and
|g(Vn, (1)) — 8 (¥(tx))| > € for all k € N. However, since limy_,.. g(y(#x)) = g(»(¢)), and
im [y, (1) — y(¢)| < lim [y, () — y (&) + lim [y(#) = y(7)]
< lim sup |y, (s) = y(s)|+ lim |y(z) — y(r)]
k_>°°0§s§T k—o0

=0,
this is not possible. From this we conclude that

lim |g (vu (T(yn))) e50,t(v)) g(v(t(y))) SO0 | — 0,

n—>oo

which proves the assertion. [
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5.5. INITIAL-VALUE PARABOLIC PROBLEM

In this section we again assume that {X/ };> is a diffusion process associated to a second-

order elliptic differential operator of the form

57 () = {al/e) + €7b(x/e), V() + 5 T (elx/e) V()

with coefficients a(x) = (a;i(x))i=1,.. 4, b(x) = (bi(x))i=1,...a and c(x) = (c;j(x))i j=1,....d
satisfying (D)-(J) (or (D)-(RT) if ¢(x) =0 or b(x) = 0) and, again, we additionally assume
that 71°(b) = 0, where 7¥(dx) is a measure whose existence and uniqueness is given by
Proposition 4.2.3.

Letd,e € C,(RY,R), and let f,g € C(RY,R) be such that

F )]+ [g(x)| < K(1+[x[%) (5.12)
for some &, K > 0 and all x € RY. Then, according to Theorem 5.3.5 for any € > 0,
uE(x,1) = ]E[g (XE(x,1)) ef(g(:»fld(xe(x,s)/z-:)Jre(xE(x,s)/e))dsjL
/tf(Xf(x, ) e (671X ) o) el (ean ) du g
0

is a viscosity solution to

%M(X,t) = ,,%&‘MS(x,t) + (S*Id(x/é‘) —|—e(x/g)> us(x,t) —I—f(x), V(X,t) c RY « [0,00)

uf(x,0) = g(x), Vx € RY.
Assume further that d € C'(RY,R), is 7-periodic and such that t°(d) = 0 (otherwise we
can just replace d(x) by d(x) —7°(d)). Then according to Proposition 4.4.1, conditions
(D)-(J) imply that
5(x) = —/ Pd(x)dr,  xeRS,
0

is well defined, 7-periodic, continuously differentiable and & € Z_j and /8 (x) = d(x).

Theorem 5.5.1. In addition to the above assumptions, assume d € C>(RY,R) and e is -
periodic. Let {Vl/,b7c},20 be a d-dimensional Brownian motion determined by drift vector
b:=b—n((Ig —DB)cV8S) and covariance matrix c given in (5.1). Let e : R — R be

givenbye=2"1(V8)TcV8+e— (V8 a If

Q t _
ﬁmn:EgW“@mﬁww/fwwmm&%ws
0
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is a unique continuous viscosity solution to

o (x,1) = (b, V) (x,1) + 27" Tr (¢ VVTu) (x,1) + 7 (&) u®(x,1) + £(x), V(x,1) € RY x [0,00),

u®(x,0) = g(x), Vx € RY,
given by Theorem 5.3.5, then

lim u®(t,x) = u®(t,x) V(t,x) € [0,00) x RY.
e—0

Proof. We first assume that f = 0 and show that

limE |:g (XS(X,Z‘)) efé(8*1d(Xe(x,s)/s)—‘—e(Xe(x.,s)/S))dsi| - [g(Wb’C(x,t))] eﬂo(e)t‘

£—0

Clearly, e~ [5d (X%(x,s)/€) ds is the most problematic term in the above representation
of uf(x,t). By using X¢(x,t) = €71 X¢(ex, £%t), t > 0 we can write it as
t et
g / d(XE(x,5) /) ds — s/ d (% (x/e.s)) ds.
0 0
From Lemma 4.4.2 applied to function d and the fact that 1°(d) = 0, for every ¢ > 0 we
get
t t
5 (RE(x1)) = 8(x) +/ d (X% (x,5)) ds+e/ (V6,a) (XE(x,5)) ds
0 0
t
+ / (V8T) (X°(x,5)) dWE,
0

and therefore we can express the term € ! [ d (X¢(x,s)/€) ds using function &
t . et .
e_l/ d(X*(x,5)/€) ds = €5 (X¥(x/e,1/€%)) — 3(x/¢) —82/ (V5.a) (X (x/e,5)) ds
0 0

€
e / (V8T0) (XE(x/e.5)) dWE.
0
Which implies
ut(x,1) = E[g (SXS(X/&I/SZ))
£ (X (x/e1/e?))—ed(x/e) €. (VS a)—e) (RE(x/e,s) ) ds—e [ (VT o) (RE(x/e.5)) de} ‘

..48 p
Since & is bounded we know that e€3(X°(v/€1/¢%))—ed(x/e) % 1, for p > 1. For this
E—

reason it is reasonable to suspect that u®(x,7) converges as € — 0 if, and only if,

E g (eX°(x/e,1/€7)) @ (V2K /o) dime i (3T0) (XeCe) an|
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converges, and if this is the case that the limit is the same. To see this formally we will

use Cauchy inequality,

(1)~ |g (eX°(x/e,1/€2)) e 5 T80 R e/e) e VBTN (Re e

1/4

<E Ug (eXS(x/g,t/gz)) ﬂ 1/2E { CE8(XE(x/ea/e?)) ~ed(x/e) _ lﬂ

E [6—882 jg‘zf(vachs)(Xf(x/s,s))ds—4e f(f_z’(VSTcr) (Xg(x/s,s))dwf} /4 otl2V8TeVE—(Vé.a)+el»

88 (Xe(x/e.t/e%))—e8(x/e) _ ﬂ 14 ol [2V87eVo—(V6.a) te

=E Hg (eXf(x/e.1/€%)) ﬂ ]/ZE [

where in the last equality we have used Example 2.6.7 (the exponential martingale). It re-
mains to see that E “g (eXE(x/e,t/€?)) ﬂ is uniformly bounded for € on finite intervals.

By assumption (5.12),

E

(g(s)?e(X/S,t/ez))lz] < 2K? (1+E “s}?f(x/s,t/ez)‘sz . (5.13)

By combining (2.32) and Lemma 4.4.2 applied to function b we have
et
eX(x/e,1/€%) = x+eB (X°(x/e,1/e?)) — e (%) + € / (Is—DP)a (%% (x/e.s5)) ds
0
-2

+ e/og (Ia— D)o (R (x/e,s)) dWE.
(5.14)

2K
),

K
H(]Id—Dﬁ)GHids) < Cle

Without loss of generality we may assume that k¥ € N. Thus,

£ 2

|eX€(x/e,t/e?) > <K <|x|2K+82K—|—t2K—|—€2K / (Is—DB)o (X4(x/e,s)) AW
0

for some K > 0 which does not depend on €. From [109, Theorem 1] we conclude

SC(/OS

_2 2K

/08 Iy~ D)o (RE(x/e,s)) AW

72[

E

and therefore
E [[eXf(x/e,t/e?)|*] < B (|x|** + €™ +17+1%) , (5.15)

for some K > 0 which does not depend on €. By combining (5.13) and (5.15) we get the
desired boundedness. Thus, we need to study the convergence, as € — 0, of
E g (eX°(x/e,1/6%)) e (900K w/em) e (VIO (K e ave |

(5.16)
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Now we will see why the function e =21 (V8)T ¢ V8 + e — (V8)" a appears in the limit.

& € (VOTeVS) (RE(x/e) ) ds—e ' (VOTa) (RE(x/e.5)) AWE

Notice thate™ is (again by Example

2.6.7) a strictly positive martingale for which we will be able to use Girsanov theorem and

therefore prefer it as opposed to the exponential term in (5.16). Since
e €2 LS (V) o) (R (x/es) ) ds—e [ (V8T o) (RE(x/e.s)) dWE _
I Te(Ro (/) ) s (=G S (VTeVE) (R (x/e.s)) ds—e [ (VST o) (RE (x/e.s)) AWE 7
using Cauchy inequality, we get
’E [g <€Xe(x/£7t/82)) e—82f(f_zt((Vém—e)()?g(x/s,s))ds—ej§_2’(V5TG)(X£(x/8,s))de} B
e {g (X (x/e,1/€2)) - fo‘g2’(V5TCV6)(X5(x/8,s))dsefo‘c‘2’(V5T0)(X€(x/£,s))dwf}

4] 1/4

E [6—282.[}5zt(VBTcVS)(}?E(x/E,s»ds—48f082’(V8TG)(X£(x/€,s))de} 14 ‘

2,
eez i te(Xe(x/s,s))ds_eTEO(e)t

<E Ug (eX®(x/e,1/€?)) ﬂ " [

(5.17)
From (5.13) and (5.15) the first term on the right-hand side in (5.17) is uniformly bounded
for € on finite intervals.
For the second term, since e is 7T-periodic, analogously as in the proof of Theorem
4.5.1, we see that
872t - L2 (P)
& [ e(®ix/es) ds = n(e)r.
0

e—0

Consequently, Skorohod representation theorem and dominated convergence theorem im-
ply that the second term on the right-hand side in (5.17) converges to zero as € — 0.

For the third term on the right-hand side in (5.17) (again by Example 2.6.7) we have

E [6—232 foe*z’(vscha)()?S(x/e,s))ds—4s f(fiz’(VBTo)(X’s(x/e,s))de < OVETe VS
Thus, u®(x,t) converges as € — 0 if, and only if,
RUOn [ ¢ ( eXE(x/e,1/ 82>> o DI (VT eVE) (R (x/e.s)) ds—e [ (VST o) (RE (x/e.s)) AWE

converges, and if this is the case the limit is the same. Now the Girsanov theorem im-

plies the existence of a measure P?(dw) such that the Radon—Nikodym derivative %(x)

106



Homogenization Initial-value Parabolic Problem

satisfies
E {%II): (xﬂyg%] _ e—% i)sizt(VSTaV5)(Yg(x/s,s))ds—ef(fiz’(VSTG)()Z’g(x/s,s))de 7 t>0.

Clearly,

E° (g (eX¥(x/e,1/e))| = E {E g(eXS(x/s,t/ez))%(x)\z2, }

E | (X7(x/e.1/€2)) o T (F0T0V) (R (x/e) e 98T (R (/e v |
Thus, it remains to prove that

limE° [g (eX¢(x/e,1/€?))]| = E[g(WP<(x,r))]  vi>o0.

£—0
We will do this by first proving that process {€X¢(x/¢€,t/€?)};>0 converges in low with
respect to P¢ to {W57°(x,t)}t20. Due to boundedness of B, {eX¢(x/e,t/€?)}i>o con-

verges in law with respect to P? if, and only if
{eX®(x/e,1/€®) —eB(XE(x/e,t/€%)) +€B(x/€) }i0 (5.18)

converges in law with respect to P%, and if this is the case the limit is the same. The
corollary to Girsanov theorem implies that W := W + ¢ [j 01 V8 (X®(x/e,s)) ds, t >0,

is a P£-Brownian motion. This together with representation in (5.14) we have

eXf(x/e,1/e?) =x+eB (X*(x/e,1/€%)) — B (x/e)
—1—82/08 l((]Id—Dﬁ)a— (Is—DB)cV8) (X¥(x/e,s)) ds

+£/06 (I~ DB)o (XE(x/e,5)) dWE

Clearly, process in (5.18) is a semimartingale with bounded variation and predictable

quadratic covariation parts
2 €

“)

0

{82 /08 t(]Id —DB) ¢ (Is—DP)" (X%(x/e,s)) ds}

(0~ DB)a (1~ DP)cV8) (¥(/e.0) &)
t>0

and

t>0
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respectively. From Theorem 2.6.16 we know that in order to show converges in law
with respect to P€ of process {eX¢(x/e,t/€?) — eB(XE(x/e,t/€?)) +eB(x/€)} 0 to

{Wl_”C(x,t)}tzo it suffices to see that

82/08 t((]Id—Dﬁ)a— (Is—DB)cV8) (X (x/e,s)) ds F, bt,

e—0
and
et T pe
82/ (Is—DB) ¢ (Ig— D) (X% (x/e,5)) ds —— e
0 e—0
for all + > 0. We will do this by proving the convergence in L' (IP¢) for the bounded

variation and an analogous relation holds for the predictable quadratic covariation part.

Using Cauchy inequality we conclude

— = 2
5 (e [ (T~ DB)a— (I~ DB)eV8 —b) (X°(x/e.5) ds] -

-2

E|e2 /08 ((Ig—DB)a— (Is—DP)c VS — b) (R (x/e.s)) ds

2
oG I T(VETeVS) (RE (x/e.s)) ds e f(f2’(V6T0)()?8(x/8,s))dVVf] <

T
((Ig—DB)a— (Iq—DPB)c VS —b) (X*(x/e,s)) ds)

((la—DB)a— (I4—DP)cVE —b) (X*(x/e,s)) ds) ]
E [e—zs? gfzf(vschs)(XE(x/e,s)) ds—2¢ f(f*z’(vaTcr) (X2(x/e.9)) dwf] et||V5Ta V&|e

Since (again by Example 2.6.7) the expectation in the last line is one, we precede as in

the proof of Theorem 4.5.1 to conclude that

-2

82/08 t ((Is—DB)a—(ly—DP)c VS —b) (X*(x/e,s)) ds % >
which implies
82/08 ' ((la—DB)a— (Is—DB)e VS —b) (¥°(x/e,)) ds o

Analogous result holds for the predictable quadratic covariation part. Thus, process
{eXe(x/e,1/€2)},>0 converges in low with respect to P€ to {WP<€(x,1)};=0. Continu-

ous mapping theorem implies that g (X¢(x/¢,1/ 82)) converges in low with respect to [P¢

108



Homogenization Initial-value Parabolic Problem

to g (WBvC) for every t > 0. From Skorohod representation theorem and Fatou’s lemma

(without loss of generality we may assume that g is non-negative) we conclude

liminf B [ (eX®(x/e,t/%))| > E[g(WP<(x.1))]  vr>o0.

e—0 o

To prove the reverse inequality we proceed as follows. For any # > 0 we have

limsup E¢ [g (EXS(x/E,t/sz)ﬂ <

£—0

limsup lim sup E¢ [(g/\m) (EXS(X/Evt/Sz))} +

m—»oo £—0

limsup lim sup ¢ [g (eXs(x/e,t/ez)) ]l{g(s)zg(x/e,t/ez))Zm}] :

m—e  £—0
Skorohod representation theorem and dominated convergence theorem imply
limsup lim sup E® [(g Am) (8X£(x/8,t/82)>] <

m—yoo g0

limsupE[(g Am) (WP<(x,1))] = E[g(WP<(x,1))].

m—oo
Cauchy inequality and Markov inequality imply
g [g (eX(x/e.1/€%)) 1 e(exe /e /82))%}}
(ex°(e/e.1/e))| (0 (o (e%° /1)) 2 m) )

g(eXS(x/s,r/sz))ﬂ .

|

Lo
m

As in (5.15) we get
E° (g (eX¥(x/e,1/€))] < R(1+ x>+ €™ +17 +1%)
for some K > 0 which does not depend on €. This proves that

liminf B [ (eX®(x/e,t/€%))| > E[g(WP<(x.1))]  vr>o0.

e—0
which completes the first part of the proof.

We next assume that g = 0 and show that
lim E [ / F(XE(x,s)) efo (67 dXE () /) e(X* (van) f¢) d”ds] _ { / W

From the first case we see that

lim B [ (X (x,5)) el (€407 /ep s ean/e)an] — g [ (B (x,))e™"€)7]

e—0
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and

E [f (Xe(x,s)) ef(f(S*Id(XE(x,u)/£)+e(X£(x,u)/£))du <
[ 1/2

E |f(X8()C,S>)|2} 1/2E |:62f(‘;(€*](d(Xe(x,u)/e)fﬂo(d))+e(X8(x,u)/8))du
K (14 |x|* + €%+ 5%).
1/2

(
< {6288()?5@/8@/82))—288(x/£)—2£2 JE((V8,a)—e) (X (x/e,u)) du—2e [ (VET0) (X° (x/e.u)) AW

< K(l + ‘le—l—SK—f—SK) 628||5Hm+|\(V5,a)fer5TcV5Hms.

The result now follows from the dominated convergence theorem.
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