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SUMMARY

In this thesis we analyse an interaction problem between two elastic three-dimensional
bodies of which one is much thinner than the other. Furthermore, the thin body is assumed
to be more stiff with elastic coefficients related to the small thickness parameter. We con-
sider this problem in context of both linear and nonlinear elasticity. We analyse asymp-
totic behaviour of solutions of these problems and obtain different limit models in various
regimes as thickness tends to zero. Furthermore, we propose both linear and nonlinear
models given by three-dimensional elasticity equations and two—dimensional elastic plate
equations as a boundary condition instead of the three—dimensional body equations that
includes the thin body and investigate the asymptotic behaviour of the proposed model as
the thickness parameter goes to zero. We prove that proposed model has the same asymp-
totic behaviour as firstly observed three—dimensional model that includes the thin body in
the same regimes. By using proposed models, one can avoid numerical challenges that
implementing a scheme for a three—dimensional model including a thin domain can cause
as in similar situations.

The nonlinear model we propose is based on a nonlinear shell model we formulate
and it is an additional contribution of the thesis. It is a nonlinear shell model of Naghdi
type defined for shells which allow Lipschitz—continuous parametrizations of its middle
suface, so it also models shells with middle surfaces having corners and folded plates and
shells. Energy of the formulated model contains membrane, shear, drill and flexural terms,
and (in appropriate regimes) it has the same asymptotic behaviour as models rigorously
justified in the literature: membrane shell model, flexural shell model and constrained

membrane plate model.

Keywords: interaction model, nonlinear elasticity, linearised elasticity, thin structure,
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SAZETAK

U ovom radu analiziramo problem medudjelovanja dva elasti¢na trodimenzionalna
tijela od kojih je jedno mnogo tanje od drugoga. Nadalje, za tanko tijelo pretpostavlja-
mo da je kruce, s koeficijentima elastiCnosti ovisnima o parametru male vrijednosti koji
predstavlja debljinu tankog tijela. Promatramo taj problem koristeci i linearnu 1 nelin-
earnu elasti¢nost. Analiziramo asimptotsko ponaSanje rjeSenja tih problema i dobivamo
razli¢ite grani¢ne modele u raznim reZimima kada vrijednost tog parametra tezi k nuli.
Nadalje, predlazemo 1 linearan i nelinearan model opisan jednadZzbama trodimenzion-
alne elasti¢nosti 1 jednadZbama elasti¢ne ploce kao rubnim uvjetom umjesto jednadzbama
trodimenzionalnog tijela koje ukljucuje tanko 3d tijelo, te istraZujemo asimptotska svo-
jstva predlozenog modela kada parametar debljine tezi k nuli. Dokazujemo da predlozeni
model ima jednako asimptotsko ponaSanje kao trodimenzionalni model koji ukljucuje
tanko 3d tijelo u istim reZimima. Koriste¢i novopredloZzene modele moguce je izbjeci
poteskoée kod numeri¢ke implementacije trodimenzionalnih modela koji ukljucuju tanku
domenu.

PredloZeni nelinearni model baziran je na nelinearnom modelu elasti¢ne ljuske koji
smo zadali i koji je dodatni doprinos ovog rada. To je nelinearan model ljuske Naghdijeva
tipa definiran za ljuske kojima je srediSnja ploha parametrizirana Lipschitzovom funkci-
jom, pa takoder modelira i ljuske kojima srediSnja ploha sadrzi kutove te presavinute
ploce i ljuske. Energija u zadanom modelu sadZzi membranske 1 fleksijske efekte te efekte
smicanja i uvrtanja, te u odgovarajuem reZimu ima ista asimptotska svojstva kao modeli
koji su strogo izvedeni u literaturi: membranski model ljuske, fleksijski model ljuske i

uvjetni membranski model ploce.

Kljucne rijeci: model interakcije, nelinearna elasticnost, linearizirana elasti¢nost,
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tanka struktura, rigorozno opravdanje, ['-konvergencija, model ljuske, Naghdijev model,
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INTRODUCTION

Interaction of two continua appears in a vast number of real life situations and is of big
interest in many applications. The same holds for interaction of structures made of two
continua in which one of them is much thinner than the other. Examples are countless:
flow of a fluid through a pipe, bridges, roads and various other elements in construction,
interaction of Earth’s layers with application in geophysics, etc. In this thesis we focus on
such three—dimensional structures in which both layers are modelled as elastic bodies.

In numerical solving in purposes of research and applications of mathematical models,
the thickness of a medium plays an important role. In thin domains mesh for solving
mathematical models has to be very fine in order to obtain regular mesh. Very similar
problem arises in the interaction of two continua where one of them is much thinner than
the other. In this situation the thin layer has to be modelled on a fine mesh, which also
causes problems in numerical coupling to the other continuum.

To better describe this numerical challenge, let us observe the following example. A
two—dimensional body of length 1 and height 1 + A, h < 1 is modelled by linearised
elasticity equations. It is clamped at the bottom, and a force is applied at the top. This
body is made of two different materials, on the lower part of dimension 1 x 1 and on
the upper part of dimension 1 x h. Difference between those materials is seen through
different Lamé coefficients A, . Ratio of coefficients for the thin part and for the lower
part is assumed to be h~1~®, where « is a real parameter. Such problem is observed
in [63].

In case @ = —1, elastic properties of the thin part and the thick part coincide. Due to
continuous dependance on the geometry, it is expected that for small value of thickness
h the thin part does not contribute in any way to the structure. However, for values

a > —1 we expect some contribution of the thin layer. We numerically solve the described
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problem for various values of that parameter. We present behaviour of the structure for
values o = —1,0, 1,2, 3 and h = 274, for forcing term equal to

f (x1) = 10° ((xl - %) e+ (4 (x1 —0.2) (21 — 0.7) — 7—75) e2> : (1)

The results are in Figure 1. In the Figure 1.(a) example we see the confirmation of our
mathematical based conclusions — the thin part of the body is quite deformed, but in
essence the top of the lower part has the same shape as the thin part. In the limit there will
be no contribution of this material to the total structure.

As « gets larger, we observe different behaviour of the upper part of domain. What all
cases have in common is that the larger o implies higher level of rigidity of the thin part.
Two effects can be seen with a bare eye. Firstly, for values & = —1, 0 the thin part of the
domain is getting more resistant to stretching, until in cases o = 1,2, 3 the thin part gets
approximately of the same length as in undeformed geometry (it is easily seen by looking
at the top side length of the deformed rectangle). Secondly, in cases o = 0, 1, 2 the same
thin part is becoming reluctant to bend, until the case v = 3 is reached. In this case it is
neither bent nor stretched, it is again of the form of the (thin) undeformed rectangle. In
elasticity theory, those two effects (stretching and bending) are also called membrane and
flexural effects and are related to the plate models and energy terms of the same name.

Looking at the same figures, let us also observe the mesh density. All problems are
solved on the same mesh. At the top the mesh is dense to obtain regular triangulation and
precise enough approximation, which is common for problems defined on thin domains.
However, due to coupling, this dense mesh is spread partially to a lower part of the domain
as well. Thus that part of domain is meshed denser than it can be when the problem is
defined only on this lower part of domain (without the thin layer). This makes numerical
algorithm more challenging and time—consuming than we would like.

One solution to approach this drawback (apart from treating it with some numerical
methods designed for non—matching meshes) is, since h < 1, to rigorously derive the
limit model when ~ — 0. More precisely, one can approximate the solution of this
problem by a limit of solutions of problems when 2 — 0, which is defined as a solution
to a PDE defined on a 1 x 1 square, i.e. without the thin layer. In this way numerical

drawbacks are avoided.
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Introduction

However, for this we have to rigorously derive mentioned limit model when & — 0.
We show that for different values of « different limit models are obtained, considering
either the membrane or flexural energy model on the thin part of the domain. On the
other hand, by observing numerical solutions in Figure 1 we see that both membrane and
flexural effects can happen. Also, in real life applications, we do not deal with a regime
(related to «v), but only one fixed set of parameters for this problem, so it is sometimes not
clear a priori which regime we relate to and consequently which limit model we should
choose.

For the same reasons, in the same paper [63] a 2d—1d model is proposed, dependant
on the parameter h < 1, representing the thickness of the thin layer at the top. It takes
into account the 2d elastic energy of the larger body and 1d model including membrane
and flexural energies for the layer at the top. Its main properties are that it is easy to
numerically approximate it and that in all regimes (related to the parameter /) when
h — 0 the particular limit model is the same the limit model obtained in the rigorous
derivation of the 2d problem related to the same «. In this way, neither do we have to
numerically approximate the problem on a dense mesh, nor do we have to choose « (and
the limit model for that «) in advance — both were major drawbacks of other ways of
approaching to our problem.

This motivates the problem setting for this thesis.

In this thesis we observe a structure made of two elastic bodies. One is situated in the
closure of Q° := (0, 1) x (0, 1) x (—1,0) and another (thin) body is situated in the closure
of Q" := (0,1) x (0,1) x (0, h), for a small parameter h. The thinner body is assumed
to be more stiff than the larger body, again by an order of magnitude h~®"!, as in the
numerical example. A force is applied to the top of the structure (at (0, 1) x (0, 1) x {h}),
and the whole structure is clamped at the bottom (at (0,1) x (0, 1) x {—1}).

Firstly, for each structure we define a model to which the solution is the deformation
of the structure, for each parameter a and h. Secondly, for various parameters o we will
rigorously derive a limit model when i — 0. Finally, as in the numerical example, we will
propose a 3d—2d model and prove that it has the same asymptotic properties as original
model.

We will perform announced analysis in terms of linearised elasticity (Part I) and in
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terms of nonlinear elasticity (Part II). Key differences from the numerical example are
that in the thesis the emphasis is on the theoretical approach (thus we will not implement
numerical algorithms), and that the problem is observed on 3d domains instead of the 2d
domains as in the numerical example. On the other hand, even though Figure 1 shows nu-
merically obtained (and not mathematically justified) approximation of solutions and even
though it describes the situation in two dimensions, the analogous behaviour is expected
in our three—dimensional modelling in this thesis.

The 3d-2d model we will propose takes into account different effects that a thin elastic
body can have, for example membrane and flexural effects mentioned earlier. For this
reason, in Part I (in case of linearised elasticity) we will base our 3d—2d model on an
existing linear shell model of the Naghdi type ([87]). In the case of nonlinear modelling
(Part 1) we need a nonlinear generalization of this shell model, which does not exist
in the literature so far. Thus in this thesis in Chapter 5 we propose a nonlinear shell
model of the Naghdi type, having similar properties as the linear model from [87] and that
could be considered as a nonlinear generalisation of that model. Apart from the rigorous
asymptotic derivation and obtaining 3d-2d limit models for various values of parameter o
and apart from proposing adequate 3d—2d model having the same asymptotic properties as
the 3d-thin 3d model, both in linear and nonlinear case, proposition of the new nonlinear
shell model is another major contribution of this thesis.

Main contributions of this thesis are:

* We rigorously derive limit models of 3d—thin 3d problem when the thickness pa-
rameter h tends to zero, in as many regimes (regarding «) as possible, in both linear
and nonlinear case. In the existing literature within the scope of linearised elasticity
the asymptotics is discussed in a bit different setting, so the arguments are quite
different. In the nonlinear setting only particular values of alpha are discussed in

the literature.

* We formulate a new nonlinear shell model of the Naghdi type and investigate and
prove some of its properties. The most important are, as a difference to majority
of shell models in the literature, that the model is well defined for shells with little

regularity (WW1°°(w; R3) parametrisations of the middle surface) and that it asymp-
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totically (with respect to the thickness of the shell), in corresponding regimes, be-
haves as 3d equations (this is analysed in rigorous derivation of shell models in the

literature).

* We propose 3d-2d model and prove that its limit models when thickness parame-
ter h tends to zero coincide with limit models for 3d—thin 3d problem, in various
regimes (regarding «), in both linear and nonlinear case. To our knowledge, this

model is novel and does not exist in the literature.

More detailed list of contributions can be found in Conclusion. Parts of this thesis already
resulted in published or submitted articles. The whole linear modelling part is published
in [62], and the proposition of the nonlinear shell model with the majority of its properties

is presented in [61].

Literature overview

Modelling of thin structures in context of elasticity equations is important area within
continuum mechanics not only because of more simple structure of the plate and shell
equations but also because they are more simple to analyse and it is easier to build numer-
ical schemes for them. For a modern general theory of nonlinear elastic plate and shell
theory see [6, 20,21, 28]. The nonlinear plate and shell theories can be classified in two
categories. A first category is made of two-dimensional models that are obtained from the
three-dimensional equations of shell-like bodies by letting the thickness of the body tend
to zero. One of the first attempts of such approach was in [37] by means of asymptotic
formalism. Later on, various plate models (and afterwards shell models) were justified by
means of ['-convergence. Now there exists a hierarchy of models depending on the order
of the elastic energy, and works in which those limit models are investigated in more de-
tails, see [30,31,38-40,51-54,57-60,74]. The second category of plate and shell models
are obtained from the three-dimensional models by taking a priori assumptions on the
range of admissible deformations and stresses that a thin body can have, such as Cosserat
assumptions, Koiter assumptions etc. For foundation of the Naghdi and Koiter models of
shells see [47,67]. Precise justifications and generalizations of the Koiter model can be

found in [13,22,26,27,29,65,66,84], and some existence results for the Koiter and some
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other nonlinear shell models can be found in [3,4,25]. Some shell models coming from
nonlinear theory based on Cosserat assumptions also can be found in [11,69-72].

The problems of interaction of different continua or continua of different dimensions
are the area of great interest as well. Presently in the literature dominant are problems
that include linear modelling. The asymptotics of the linear 3d—thin 3d problem in a
very similar setting as ours in the Section 2.3 was considered in [18], where the author
obtained the convergence results in all cases for the parameter o, however the setting
used in this thesis is slightly different which results in different proofs. Essentially the
same linear 3d—thin 3d problem asymptotics, but only for o = 2, is considered in [23]
and elaborated in [20]. In the case of shells the 3d—2d asymptotics is discussed in [9].
Due to the curved geometry the considered problem is more complicated but gives the
asymptotics of the 3d-2d problem only for « = 0 and @ = 2. One can also see [1]
for the variational approach to the thin inclusion problem in linear elasticity and [8] in
both linear and nonlinear elasticity. For hyperelastic materials and o = 0 the asymptotics
of the 3d—thin 3d problem is discussed in [35] by I'-convergence techniques. A similar
analysis for micropolar elastic media is done in [82]. Interaction of the viscous fluid
and the linearised elasticity/elastic plate for the same choice of the stiffness of the elastic
coefficients (o« = 2) and thin structure is considered in [64,73]. For inclusion of 1d elastic
and rigid bodies in 2d linearised elasticity see [46]. An example from electromagnetism
can be found in [77]. Linear problems of interaction of thin 3d bodies and elastic plates
and shells is cases @ = 0 and o = 2 are observed in [10]. Contact problems between linear
3d body and rigid plates are observed in [36]. This topic is also related to the problem
of modelling of joints within both nonlinear and linearised elasticity, see [43,49] for thin
elastic interfaces, linear and nonlinear, isotropic and functionally graded, with or without
constraints, see [33,41,55,56,75]. Interaction of linear elastic plates is observed in [42]
and [83]. For piezoelectric interfaces see [79, 81] and for magneto-electro-thermo-elastic

see [80]. For application of elastic interfaces to geophysics, see [78].

Chapter overview

The thesis is divided in two parts. In Part I the problem explained earlier is observed
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from the perspective of linearised elasticity and Part II is dedicated to nonlinear elasticity.
In Chapter 1 we present a linear Naghdi type model (from [87]) on which we will base
the linear 3d—2d model. In the same chapter some definitions regarding the geometry of
the shell are also announced. In Chapter 2 we present the first contribution of the thesis.
There we rigorously derive limit models in all cases for « > —1 of interaction of 3d body
and thin 3d body (3d-thin 3d) in aspect of linear elasticity. Also, we propose a linear
3d-2d model and prove its asymptotic properties.

In Part II we observe the problem using nonlinear elasticity modelling. We start with
presenting known results in asymptotically derived nonlinear plate models in Chapter 3.
In Chapter 4 we rigorously derive limit models of the 3d—thin 3d problem in various
cases depending on the real parameter «. Chapter 5 is dedicated to the new nonlinear
shell model of Naghdi type. We propose the model and prove its properties. Finally,
in Chapter 6 we propose a nonlinear 3d—2d model based on the new shell model from
Chapter 5, and compare its asymptotics to the one in Chapter 4. At the end of the thesis,

in Appendix A, there is a technical density lemma used in Chapter 5 and Chapter 6.

1. NOTATION

At the beginning, we introduce the notation we are going to use throughout the thesis.
Sets of natural numbers (positive integers) and real numbers are denoted by N and R,
respectively. We also use notation R := [—o0, +-0c]. If not stressed differently, Latin
letters i, 7, k denote indices from the set {1,2, 3}, and for indices from the set {1,2} we
use Greek letters (3, 51, 82. The Greek letter « is not used here since it is reserved for a
parameter related to the ratio of elasticity properties between the 3d and thin 3d part of
the structure explained earlier.

Small bold letter x = (x1,x2,23), if not noted differently, is reserved for a point
(w1, 9, x3) in the space R?, while ' = (x1, 15) is reserved for a point (xy, r5) in R%, We
will often use a’ as abbreviation for first two coordinates of the point x.

Most other small bold latin and greek letters are used for vectors or vector functions.
Capital bold latin letters are reserved for matrices.

The set of m x n real matrices is denoted by M™*". The determinant and trace of the



Introduction Notation

matrix X are denoted by det(X) and tr(X), respectively. The identity matrix is denoted
by L.

Very often we will use a particular subset of M?>*3:
SO3) :={SeM**® : STS =S8S” =1, detS = 1};

such matrices are referred as rotations. It is clearly a compact subset of M?>*3,

For vector and matrix norms, the following notation is used

* ||a|| denotes the 2—norm of a vector @ € R™;

* ||A||r denotes the Frobenius norm of a matrix A € M™*", defined by

[A]lF = (ir(A7A)":
* ||A||2 denotes the induced operator 2—norm of a matrix A € M™*", defined by
[Ay|l

Al = sup ——.
YyER™ y#0 H’!/H

Scalar (dot, inner) product and vector (cross) product of vectors a and b are denoted by
a-b and a x b, respectively. The Frobenius scalar product of matrices tr(A”B) is denoted
by A - B.

For matrices X,Y € M"™ " of the same type we define dist(X,Y) = || X — Y| .

For a set of matrices S C M™*™ and a matrix X € M™*" we define
dist(X, S) := inf dist(X,Y).
YeS

Most often we will use dist function for S := SO(3). Since SO(3) is a compact set
and dist is a continuous function, in definition of dist(X, SO(3)) the ”inf” can be sub-
stituted by min”. Thus, for each X € M?3*3 there exists the “closest” rotation Rx €
SO(3) (at least one) for which dist(X,SO(3)) = dist(X,Rx). If X has a positive
determinant and X = RU is its polar decomposition, by simple calculations we have
dist(X,SO(3)) = ||[U — I||p. If a condition on determinant is dropped, we still have a
bound dist(X, SO(3)) > [(XTX)Y2 —1|| .

For a matrix A the numbers )\;(A) and o;(A) denote i™ largest eigenvalue and sin-
gular value, respectively. Sometimes, for simplicity, self-explanatory notations A, (A),

Amax(A), Omin(A) and op,.x(A) are also used.
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We will use Lebesgue function spaces LP(€2; R™) on different domains and codomain
dimensions. For a power (p in the above example) we use real constants (most often
2 and 4) or letters p and q. We denote their Holder counjugates by p/ = (1 — 1/p)~!
and ¢ = (1 — 1/q)~'. In the case that the codomain is a subset of matrices M"™*",
the Frobenius norm is used in the definition of the LP(£2; R™*™) norm. (Weak) partial
derivatives of a function 7 are denoted by 0,1, d,m, . . ., and the differential of order n is
denoted by D"n. The gradient is denoted by V7). In case when the gradient is taken with
respect of just two first variables or the function 7 is defined on a subset of R2, we will
emphasise it by notation V'n := [am 8277] . We will also use Sobolev functions spaces:

if 2 C R™ we define
WEP(Q;R™) = {n € LP(LR™) = Om € WEFEP(QR™), i =1,...,m}

(with the convention WP (Q; R™) = LP(Q; R™)). Also, H*(Q; R") := Wk2(Q; R").
In Part IT of the thesis we will often use I'-convergence. For a metric space X, a
family of functionals (F},),>1, Fy, : X — R ['—converges to a functional F' : X — R in

the topology of X if the following claims hold:

The lim inf” part: For all z € X and for any (z,,),>1 C X, x, — 2 in X holds

liminf F,,(x,) > F(z);

n—oo

The ”lim sup” part: For all x € X there exists (z,,),>1 C X, z,, — x in X such that

limsup F,(z,) < F(x).

n—oo

In that case, we will denote F' = I' ((F,),>1). If the sequence of functionals is a constant
sequence (i.e. F;,, = F{ for all n € N), then we will denote F' = I' — Fj. In case that X
is a Lesbegue function space, it is known that F' is then the weakly lower semicontinous

envelope of Fj.
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Part I

Linear models of elastic bodies

interaction
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1. A NAGHDI TYPE LINEAR SHELL

MODEL

1.1. INTRODUCTION

In the first part of the thesis we deal with interaction between a 3d elastic body and a
thin 3d body. Apart from determining limit models (with respect to i — 0, where h is the
thickness of the thin 3d part), we would like to propose an adequate 3d—2d model that has
the same asymptotic properties as the 3d—thin 3d model. For that reason in this chapter
we present a linear shell model on which our 3d—2d model is based, and in Chapter 2 we
preform all asymptotic analysis.

This shell model we use is from [87]. It accounts for all three basic notions of the
deformation of shells, namely stretching, shear and bending, like in the classical Naghdi
shell model, see [67]. However, the model we use has simple structure, and one can build a
numerical algorithm for it simpler than in the case of the classical Naghdi model, see [87]
for details. It is a six parameter model. In the case of planar case of undeformed geometry
of the middle surface, for the flexural deflection we obtain exactly the Reissner—Mindlin
plate model, but the model also contains the in-plane deformation and the in-plane drill.
These properties suggest that it will suit us for 3d—2d model we will propose in Chapter 2.

The main features of the model are:

¢ The model is formulated for the unknown (@, &) in a subset Vi (w) of H'(w; R3) x
H'(w;R3) defined by boundary conditions (w C R? being open, bounded with
Lipschitz boundary).

12
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* The proof of existence and uniqueness of the solution has a very simple proof with-

out use of delicate Korn’s type estimate.

¢ The model is well defined for the middle surface parametrised by 8 € W1 (w; R3)
(and thus the model for shells with middle surfaces with corners (or folded plates

or shells) is inherently built into the model).

* The energy of the model contains the membrane, transverse shear and flexural terms

which are of different order with respect to the thickness h of the shell.

* For smooth geometry the solution of the model in the elliptic membrane and flexural
regime tends to the solution of the corresponding shell model, when thickness h

tends to zero.
* The model can be seen as a small perturbation of the classical Naghdi shell model.

* The solution of the model continuously depends on the change in the geometry

(with respect to parametrization 6 in W1 (w; R3)).

* The model can be seen as the special Cosserat shell model with a single director for

a particular linear constitutive law.

13
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1.2. GEOMETRY

In order to formulate shell we firstly give necessary geometry definitions for the mid-
dle surface. Let w C R? be an open bounded and simply connected set with Lipschitz-
continuous boundary +y and let an injective function 8 € C?(iw; R?) be the parametrization
of the middle surface of the shell, see Figure 1.1. Points in & we denote by ' = (z3) and
let 0 := 0/0xs. The assumption that ag(x’) = J360(x’) are linearly independent at all
points &' € W assures that 6 parametrizes two-dimensional surface S = 6(w) in R>.

T3

va

2 Ah

VA

Figure 1.1: Parametrization of the undeformed shell.

Vectors a;(x'), az(x’) form the covariant basis of the tangent plane of .S at @(x'), and

the contravariant basis of the same plane is given by a’(x’),
a™ (33/) c A, (CE’) = 551,52'

We also define a vector

/ —a,3 ') = a’l(w,) XCLQ(J?/)
@) = ) = o, (@) % au@)]

Note that sets {a;, as, a3} and {a', a? a3} form bases for R®. The first fundamental
form, or the metric tensor in covariant A, = (ag,s,) or contravariant A¢ = (a”/?)
components of the surface S is given respectively by ag, 5, = ag, - ag,,a’” = a”* - a.

Note that we have A® = A_! and
a; X a3 = —/aa?, a, X as = +\/aa'. (1.2.1)

14
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The area element along S is then y/adx’, where a := det A.. It is easy to prove that

Ac¢ A, and a are uniformly positive definite, i.e., that

essinf Apin (A°(2')), essinf Apin (Ac(2')), essinf a(z’) > 0. (1.2.2)

x'cw x'cw x'cw

However, for less regular parametrizations, i.e. 6 € leoo(w; R3), this will be an assump-

tion. For more details see [21, 85-87].

15
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1.3. THE LINEAR SHELL MODEL

In this section we formulate the shell model of Naghdi type from [87]. The model is
defined for middle surfaces parametrised by a @ € W1 (w;R3). That implies that the
vectors of the covariant and contravariant bases belong to L>(w; R?).

Let the part of the boundary 79 C Ow be of positive length. Let us define (Hilbert)

spaces
Va(w) = H;O(W;R?’) X Hio(w;]R?’) = {(v,w) € H'(w;R*?: 8], = W], = 0},

Vie(w) = {(a,w) € Vy(w) :
= L((aﬁf ~az)a; — (010 - ag)as + %(5117 “ay — Oy - al)G'S)}a

Vva

Ve(w) = {(B,®) € Vy(w) : 058 + ag x @ = 0,8 = 1,2}

&

equipped with the norm
1@, B vt = (19130 ey + 18 o)

In the couple of functions (@, @) € Vi (w), @ is the displacement vector of the middle
surface of the shell, while @ is the infinitesimal rotation of the cross—section (i.e. the
segment in undeformed shell perpendicular to the middle surface). The subspace Vi (w)
corresponds to the set of unknowns in which the infinitesimal rotation w is uniquely deter-
mined by the displacement u such that the deformed cross—section remains perpendicular
to the deformed middle surface (within the linear theory). Thus in Vi (w) the shell is
unshearable. The set V(w) contains only inextensional displacements in Vi (w) (again
within the linear theory). Thus in Vp(w) the shell is unshearable and inextensible. The
subscripts of these function spaces suggest that they correspond to the Naghdi, the Koiter
and the flexural shell type models. Note also that usually in the shell theories a model
is given for a vectorial function which are components in the local basis (a!,a? a?).
To emphasise the difference we use the notation u for the physical displacement vector.
It is physically natural to consider these vector displacements and actually widens the

applicability of the model.
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We define the bilinear forms on Viy(w) X Viy(w) by

: [ OB +ar x W 0ob+ay x W } Vadz',
Bi((@,®), (0,)) = % /w QC; (Q'VD) - Vi/ada'.
The linear shell model of Naghdi type we use is following: find (@, @) € Viy(w) such that
hBps((@, @), (0,0)) + B* B (@, @), (0, w)) = / f - oy/ade, (v,w) € Vy(w).
’ (1.3.1)

Here, h is the shell thickness, f is the surface force density and the elasticity tensors C,,,
Cyp : M3*? — M3*? are given by
2A1 c c
(I-C)(I-D)+2uA.CA°-D + uAcc-d,
A+ 2p (13.2)
C;C-D=aAJC)-ID +aAsc-d,

. C-D=

where we have used the notation Q = [al az] , Q= [al a? a3} ,J = and

. C . D
C= ., D e M**? C,D € M**? ¢,d € R%
c’ dr

We use the notation” just to compactly express the definition of elasticity tensors C,, and
Cs. The matrix A; € M?**? is assumed to be positive definite and the elasticity tensor A
is given by

2\
A+ 2u

AD (A°-D)A° + 2uA°DAC, D € M**(R), (1.3.3)

where A and y are the Lamé coefficients. Under usual assumptions 3\ + 2, ¢ > 0, tensor
A is positive definite. On the space of symmetric matrices, .A coincides with the elasticity
tensor that appears in the classical shell theories.

The billineal form A B,,s((@,®), (&,®)) is related to the extensibility and shearability
of the shell and measures the membrane and shear energy of the shell. The other billineal
form 13 By ((a, ®), (@, @)) is related to the flexural energy. If we use space Vi (w) instead
of Vy(w) in (1.3.1) we obtain the flexural shell model (see [24]), and if we use Vi (w) is

used instead of Viy(w), we obtain a Koiter type model (see [86]).
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Remark 1.3.1. Note that when @(x’) = (z/,0) (i.e. 0 is the parametrization of the
middle surface of a plate), the model can be written in a simpler form. Due to a; = e;

and A, = A° = I, we have that the elasticity tensors C,,, Cy are given by

A

CnC-D=AC D + pc-d,

- (1.3.4)
¢;C-D=A(IC)-ID +adse-d
and
AD = M 1D 4ouD, D e M2 (1.3.5)
T , , 3.
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2. LINEAR 3D—THIN 3D AND 3D-2D

MODEL

2.1. INTRODUCTION

We formulate the interaction problem between 3d body and a thin layer in context of
linear modelling and propose the 3d-2d linear model. Afterwards we give the main result
of the chapter: the convergence theorem and all obtained limit models for all @« > —1. In
Section 2.3 we do the asymptotic analysis of the 3d—thin 3d problem while in Section 2.4

we present the asymptotic analysis of the 3d—2d model.
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2.2. DESCRIPTION OF THE PROBLEM AND THE

MAIN RESULT

Let us define sets

0,h), (2.2.1)

[ =w x {s}, fors € R.

We consider Q0" = Q0 U Q" to be an elastic body made of two materials whose prop-

erties are described by elasticity tensors C° and C", corresponding to Q° and Q" (see

Figure 2.1). Further we assume that the body is clamped at 3 = —1, that contact force
3
Ph Qh
Ho)
w

QO

7 :L

Figure 2.1: 3d elastic body.

f is applied at the boundary T'" = w x {h}, and that the remaining boundary is force
free. For simplicity we assume that there are no body forces applied. Since we consider

linearized elasticity as a model this implies that the displacement u” corresponding to the

20
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described problem belongs to the function space
V(Q" = {v e HY(Q"™) : v|,—_1 = 0}
and satisfies
Ce(u")-e(v)dz+ | Cle(u")-e(v)de = | f-vdx, v e V(QM). (222)
Qo Qn rh
Here e(v) = 1/2(Vwv + VoT) is the symmetrized gradient and ' = (1, z3).
We assume that the elasticity tensors are positive definite. Then for given A the exis-

tence and uniqueness of the solution of (2.2.2) is obtained by the use of the Lax-Milgram

lemma and the Korn inequality: there is Cx(h) > 0 such that
CK(h)H’UH?{l(QOJrh;RS) S ||e(’v>||%2(90+h;R3x3), v 6 V(Qo+h). (223)

In this chapter we consider the asymptotic behaviour of the solution " when h tends
to zero for C" = #C 1 o > —1, where C! is isotropic with the associated Lamé con-
stants given by \ and i, i.e., C'E = A tr EI + 2uE, for E € R3*3 symmetric (the explicit
elasticity coefficients of C° will never be needed). It will turn out that the limit function is
independent of x5 on Q" which will lead to 2d equations on w. As a consequence we will
obtain 3d—2d models for the whole structure Q2°+%.

This kind of derivation is not new in linearized elasticity. When Q° is not present
this approach corresponds to the derivation of the plate model for o = 2. Because of the
linearity of the elasticity tensor - forcing relation this is equivalent to the scaling of the
normal force with A3 for a = 0, see [20]. For a < 2 we do not get models for all possible
forces, see [2] for such models in case of the elliptic equation. Note also that here the thin
plate has “support” in the elastic body and therefore can sustain the forces of order h°. In
our setting we obtain models for all « > —1 and differ five models.

Further in Section 2.4 we propose the model of interaction of the elastic body Q°
and the plate equation given at I'° which incorporates all models obtained by asymptotic
analysis (in Section 2.3). See Theorem 2.2.1 for the precise statement. The model for the

whole structure is the following: find

(u",a", &") € Vaa-oa = {(v,9,w) € H'(Q%R?) x H'(w;R?) x H'(w;R?)

: 'v|1-3:71 - O7v’$3=0 = /5}
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such that

1 f ~ - ’~ ~ /
/QO Cle(u") - e(v)dx + Pt (h/wcm (V a + Awh) (Vo + Aw) dx

B3 3
+— ch'a;h-V'wdm’> :/f-i}da:’, (0,%,®) € Vag_na.

12 J,
(2.24)
Here V' = (0, 0,), Ax = [61 X T ey X a:} € R**? and C,, and C; are elasticity tensors
Cns Cp - MP*2 — MP*2 given by (1.3.4).

One can easily show, by Lax-Milgram lemma, that the solution of (2.2.4) exists and
is unique. The proof is given in Theorem 2.4.1. The plate model present in (2.2.4) is
obtained from the shell model of the Naghdi type for plane geometry from Chapter 1. It
contains flexural, membrane and shear terms in the energy and allows all possible dis-
placements.

In this chapter we consider asymptotics of the solution of the 3d—thin 3d problem
(2.2.2) and the 3d-2d problem (2.2.4) when the thickness described by h of the top layer
tends to zero. We obtain that the limits for the same o« > —1 are the same. In both cases,
(2.2.2) and (2.2.4), the limit models can be expressed in terms of the limits of uh| qo and

h

its trace " = u"|,,—. Thus here we formulate the convergence property only for these

two functions u°, @° = w/,,—o. Detailed convergence results are given in Theorems 2.3.4
and 2.4.5.

We obtain five different limit models. The function spaces of the models are
V= {(v,0) € H'(Q%R?) x L*(w;R?) : v°|,,—_1 = 0,0°|4,—0 = 2"},
VI = {(v,8) € VI : 01,0y € H' (W)},
VI = {(v, %) € VT . € (®) = 0},
VIV = {(v,9) e VI . 53 € H*(w)},
VYV = {(v,®) € VIV : D*t3 = 0}.
These spaces form a monotone family

V[ D) VII D VIII D) VIV D VV.

These spaces appear in a sequence of models we obtain for different values of o €

[—1,00). Bigger exponent corresponds to a higher o which corresponds to more stiff
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thin layer. In the spaces V!/, V!V and VV we have that the tangential displacements
satisfy € (©) = 0, i.e, the plate is infinitesimally rigid in tangential directions. In V'V we
additionally have that the transversal displacement is affine and thus the plate is infinites-

imally rigid in all directions.

Theorem 2.2.1. Let ul, € V(Q°+") be the solution of (2.2.2) and let (uly, @}y, Wh,) €
Vid—2q4 be the solution of (2.2.4). Let uy, = u§d|x3:0. Then for all « > —1 the families

are convergent with the same limits

ul oo — u® strongly in H'(Q"; R?),
uli oo — u® strongly in H'(Q"; R?),
an, — a’ strongly in L?(w; R?),
ah, — a’ strongly in H'(w; R?),

0

where @’ = u°|,,_o. Further (u’, @) is characterized by

I) for -1 < a <0, (u’, @) € V' is the unique solution of
/ Cle(u®) - e(v)dx = / f - odx’, (v, %) € V. (2.2.5)
Q0 w
IT) for o = 0, (u®, ") € V! is the unique solution of

/ Cle(u’ dw+/Ae (0)dx’ —/f~17da:', (v, ) € VI,
* ’ (2.2.6)

) for0 < a < 2, (u’,a°) € VI is the unique solution of
/ Cle(u) - e(v)dx = / f - vdx’, ve Vi (2.2.7)
Q0 w
IV) for a = 2, (u°,@°) € V!V is the unique solution of

Cle(u’) e da:+—/.AD2 - D*b3dx’ :/f-'ﬁd:c', (v,0) € VIV,
’ (2.2.8)

00

V) for2 < a, e’ = 0and (u’, ") € V" is the unique solution of

Cle(u’) - e(v)dx = / f-ode’, wveVV. (2.2.9)

Qo
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Remark 2.2.2. The previous theorem is the main result of the chapter, not only because
it defines limits of solutions of problems (2.2.2) and (2.2.4) for all &« > —1, but also since
it states that those limits coincide for all « > —1. In other words, the result of the above

theorem also implies that
[wala0 — oy || 1 (@0:m9) = 0,

which means that in the 3d model of linearized elasticity a thin layer can be replaced
by shell model of Naghdi type. Among all models mentioned in the theorem, models
(2.2.5)-(2.2.9) as a drawback have that one should determine which regime (regarding
the parameter «) is the best suited for the specific situation. On the other hand, model
(2.2.4) approximates (2.2.2) in all regimes, and moreover has advantages over the original
problem (2.2.2) which are stated in the Introduction.

In the model given by I) @ € [—1,0) the thin layer is not stiff enough so it has no
influence on the limit. For « = —1 (meaning that the thin layer is of the same material as
the remaining cube) this is in accordance with the continuous dependence of the solution
on the domain. For o = 0, 1.e. in the case II) the membrane term of the plate appears
in the total energy of the system. For all & > 0 this membrane energy is equal to zero.
For a € (0,2), i.e. in the case III) there is no other influence of the thin layer except
of this membrane stiffening. In the case IV) (o« = 2) the flexural effects appear in the
total energy (the plate model), while in the case V) (o > 2) the thin layer is too stiff and

behaves as a thin rigid body (no longitudinal membrane effects and no bending).
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2.3. LIMITS OF THE 3D—THIN 3D MODEL

In this section we consider the asymptotic behavior of the solution of (2.2.2) rescaled
on a reference domain for different values of & > —1. For the limit function we will
obtain the equation that uniquely determines the limit constituting the model in the case
of particular .. The first step in the derivation is to rescale the domain of the problem on
the domain independent of h, see [19,21] for more examples. Then we consider cases
for different values of «. It turns out that there are five different models as commented in
Remark 2.2.2.

The uniform (with respect to h) a priori estimates are essential for any asymptotic
analysis. However, as stressed in (2.2.3) the constant in the Korn inequality depends on
the domain, and thus in general it depends on h. However in the present setting it can be

replaced by a constant independent of h as stated in the following lemma.

Lemma 2.3.1. There is Cx > 0 such that for all 4 € [0, 1] and for all v € V(Q°") one
has

Crcl[olsaosnzoy < €(0) Bagningons, v € VQH)
Proof. Let us define the optimal constant (the largest) for the & problem by

ciy= i 1Moo

vev1528+h) ||'v||?’—[1(Q0+h;R3)

In the following we prove that function c is decreasing. Let 0 < h; < hy < 1. For a

function v! € V(Q%") we define v* € V (20"2) by

v (x w3 — ha+ h1) a3 € (ha — hy, 1+ hy,

v =
0 T3 € [0, hy — hl]
Then i -
”e(v >||L2(Q0+h1;R3x3) . ”e(v )||L2(QO+hQ;R3X3)
HUIHip(QOJrhl;RS) ‘|UQ||§I1(QO+h2;R3)
and thus c(hy) > c(hg).
As a consequence c(h) > ¢(1) =: Ck. O
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This lemma will provide us with the first a priori estimates after we rescale the prob-
lem on a domain independent of /. This is a natural step in order to obtain the asymptotics
of the solution since then dependence on h is expressed through the coefficients in the
problem. Let

!/
<
R : Q01 — QO+, Rz, z5) = SE

(x', hxs) w3 >0,

see Figure 2.2. Now the rescaled displacement u(h) = u” o R" belongs to V(Q°+!) and

T3

ot T3

Fh Qh
m T T )
w ; w

Ty f Ty

QO i SZU

Figure 2.2: The rescaled 3d elastic body.

satisfies
/ Ce(u(h)) -e(v)dw—l—h_"‘/ Cle"(u(h))-e"(v)de = [ f-vdx!, veV(Q),
0o (o1 It
(2.3.1)
where
0 0 %(931)1
1
e’ (v) = Eeg(v) + epp(v), es(v) = 0 0 %5)3@2 ,
%831)1 %831)2 831)3
811)1 %(821)1 + 81U2> %8103
e(v) = %(62?}1 + 01v2) DoV %8203
%61’03 %82/03 0
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The following type of inequalities are essential for the asymptotic analysis. For similar

results see [68].

Corollary 2.3.2.  a) Forall h € [0,1],alla > —1 and all v € V(Q""!) one has

Crc (013 oy + P03z

+ R0 o) + RO sy + 7 1050 Eron
§/ Cle(v) - e(v)dx + i/ Cle"(v) - e"(v)dx.
o0 e Jon
b) Forall h € [0,1],alla > —1 and all v € V(Q°*!) one has
||U||%2(r1;u§3) < ||v||%2(QU;IR3) + ||83’U||%2(QO;]R3) + h”””%?(Ql;Ri‘) + E||83'U||%2(91;R3)-
Proof. a) is a direct consequence of Lemma 2.3.1 after rescaling the domain Q°*" to
QO+,

b) We estimate v|r: using the Newton-Leibniz theorem and the generalized Young’s

inequality

1
||v||%2(p1;R3) = / O3(v?)dwsdx’ = /QO 2v - zvdx + / 2v - svdex

—1 Ql

1
< ||U||2L2(QO;R3) + ”83UH%2(QO;R3) + hHUH%Q(Ql;Rf’) + EH83U||2L2(91;R3)-
OJ

The application of this corollary for the solution of (2.3.1) is given in the following

corollary.

Corollary 2.3.3. For all « > —1 there are sequences (hy), C [0,1] and (u*), C
V(Q01) and limits w® such that u’|q0 € V(Q°), u’|gr € L*(Q4R?), d3u’ = 0 in
Q! and €° € L?(2Y;R3*3) such that oy — 0 and
ut — uf weakly in H'(Q% R?),
ub — u’ weakly in L*(Q'; R?),
(2.3.2)
dzu” — 0 strongly in L*(Q'; R?),

hy e (uk) — & weakly in L?(Q'; R?*%).
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Proof. Inserting u(h) as a test function in (2.3.1) we obtain

/QO Ce(u(h)) - e(u(h))dx + h ™ /Q Cte"(u(h)) - e"(u(h))dx = /F f-u(h)dx'.
(2.3.3)

The right hand side can now be estimated using first the statement b) and then statement

a) of Corollary 2.3.2

[ £ ulhyda’ < 1 f s bl
]_"1
<1 ronsen (s sy + 1050808 g

1 1/2
+ bl gy + 5 1950 (0) g 20
1/2

< I Fllz2rrrs) (
- VCx Qo

Inserting this estimate in (2.3.3) we obtain that

Coe(u(h)) - e(u(h))dz + h~ / Cle" (u(h)) - eh(u(h))da:>

Ql

/ Ce(u(h)) - e(u(h))dx + h™ / Cle"(u(h)) - e"(u(h))dx
0o

Ql

is bounded and then are also bounded

s ||h_a/2eh(’U,(h))||L2(QI;R3><3)
L2(Q1;R3)

1
|w(h)| 7 (o:rs), Hﬁ&m(h)

by Corollary 2.3.2a). Further, by the Newton-Leibniz theorem and the Schwarz-Cauchy
inequality we obtain

3

u( (@) = [ ouia i < Vi ( [ @ dg)l/z

1 1/2 -
< \/§</_ (83u(h))2d§> .

1

After integration we obtain

/Ql u(h)?dz < Q/W/ll(f)gu(h)fdgdw' = 2/Qo+1(a3u(h))2dw‘

Since the right hand side is uniformly bounded with respect to h we obtain that the ex-
pression ||w(h)|| 21 ;rs) is also bounded. Then by Banach—Alaoglu-Bourbaki theorem
we have the stated convergences. Further, because of uniqueness of the limits we obtain

that J3u® = 0in QL. O
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Since the behaviour of u(h) is different on 2° and Q' we denote its limits by u” and
@°, respectively. Since d5@” = 0 on Q! @” can be viewed as a function on w. We will
often use the equivalence of the spaces {v € L*(Q';R?) : d3v = 0} and L?(w; R?) and
thus consider the limit of w(h) as a function (u’, @°) € H'(Q%R?) x L?(w;R?) such
that u°|,,—o = @". Therefore the limit functions belongs to V/. We collect all results on

the asymptotics of u(h) in the following theorem.

Theorem 2.3.4. Let o > —1 and let (u(h)), C V(Q°!) be a family of solutions of
(2.3.1). Then

u(h) — u’ strongly in H'(Q°; R?),

u(h) — u® strongly in L?(Q'; R?),

(2.3.4)

Osu(h) — 0 strongly in L*(Q'; R?),

h=/%eh (u(h)) — €° strongly in L*(Q'; R**?).
The limit function u’ is independent of z5 in Q, ie. (u®,@’) € V!. Furthermore

(u®, ") and e° are uniquely determined by:

) for —1 < o < 0, € = 0 and u” is the unique solution of (2.2.5).

II) fora=0
o) 1(01uy + 9.ud) 0
e = . Dyl 0
— 3t (01T} + 0a13)

and (u®,@") € V7 is the unique solution of (2.2.6). Furthermore

(@, ab) — (a0, a9) strongly in H'(w;R?). (2.3.5)

1) for0 < o < 2,e° = 0and (u°,@") € V! is the unique solution of (2.2.7).

Furthermore (2.3.5) holds.

IV) fora =2
sD*u — x3D*af !
0 2 3 3 3
e = 0
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and (u’,@’) € V!V is the unique solution of (2.2.8). Furthermore, the second

convergence in (2.3.4) is strong in H'(Q; R3).

V) fora > 2, e’ = 0 and (u,@’) € V'V is the unique solution of (2.2.9). As in the

previous case, the second convergence in (2.3.4) is also strong in H!(Q!; R3).

2.3.1. 3d—thin 3d model: case —1 < a < 0

We first apply Corollary 2.3.3 and extract sequences that satisfy (2.3.2). As noted
above, the limit function (u°, @°) belongs to V/. Then we insert v € C'(Q°+!) such that

v|z,—_1 = 0 and v is independent of z3 on ' in (2.3.1) for this sequence and obtain

/ Coe(u*) - e(v)dx + b, " / C'(hy, """ (u")) - e1p(v)da
0o

Ql
:/ f-vdw’:/ f - vdx'.
r! ro

Since @ < 0 one has —a > —«/2. Then from the last convergence in (2.3.2) it follows

that h; “e"*(u*) — 0 strongly in L? and thus, after taking & to infinity we obtain

/ Cle(u) - e(v)dx = / f-odx'. (2.3.6)
Qo w

Since chosen test functions are dense in the function space V (2°) we obtain that (2.3.6)
is satisfied for v € V(Q2°). This is the problem of linearized elasticity for the unit cube
clamped at the bottom side (r3 = —1) and with non-zero contact force at the top side
(z3 = 0). As such it has unique solution. Therefore the first three convergences in (2.3.2)
hold for the whole family (w(h))n>0.

Let us now consider the following sequence of non-negative numbers
Ak) = /QO C’(e(u’) —e(u”)) - (e(u”) — e(u’))dz
+ /Q CH(hy" e () — &) - (ke () — €)dar,
Eliminating the quadratic terms using the equation (2.3.1) we obtain

AK)= [ f-u*— 2/90 Cle(u”) - e(u’)dx +/ Cle(u) - e(u’)dx

rt QO

— 2/ C'(hy,“ e (u")) - e dax +/ Cle’ - e'dz.
0l

Ql
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Next we let k£ to infinity using convergences (2.3.2) and in the limit obtain that A(k)

converges to

A= [ f-u'— [ Ce(u) e(u’)dx — /
It

Ql

cle’ - edx = —/ cle’ - edx.
Ql

Qo
The last equation follows since u” satisfies the equation (2.3.6). Since A > 0 as the limit
of non-negative sequence we conclude that ¢ = 0 and therefore A = 0. Now we have
also the uniqueness of the limit for the strain in the thin part of the domain and thus we
have that all convergences in (2.3.2) hold for the whole h family. Further, since A = 0 we
obtain that

e(u(h)) — e(u’) strongly in L*(Q"; R**?),

e"(u(h)) =0 strongly in L*(Q'; R?*3).

Then Corollary 2.3.2 implies that the convergences in (2.3.2) are all strong.

2.3.2. 3d—thin 3d model: case o« = 0

In this case the equation is given by find w(h) € V(Q°*!) such that

/ Cle(u(h)) - e(v)dx —I—/ Cle"(u(h))-e"(v)dx = | f-vdx v e V(Qo).
Qo ol I
(2.3.7)
From Corollary 2.3.3 we immediately know that there are sequences such that b, — 0
and
ub — uf weakly in H'(Q% R?),
ut — u’ weakly in L*(Q'; R?),
(2.3.8)
dzu — 0 strongly in L*(Q'; R?),
e (uF) — e weakly in L?(Q'; R3*3).
and that d3u’ = 0 in Q'. As argued before the limit function (u°, @°) € V! a subspace

of H'(Q° R3) x L*(w;R?). The second and the fourth convergences, by the uniqueness

of the limit, imply that
N . 1, .
6(1)1 = alu?, 682 = agug, 6(1)2 = egl = E(éhug + (32u?). (2.3.9)

Since e?j belong to L*(2!) we get some additional regularity on tangential displacements,
namely

(u’, @) e VI = {(v,9) e V! : 1,0, € H (w)}.
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Now we proceed in two steps. In the first step we multiply (2.3.7) by hy and let k to

infinity. We obtain
/ (C'e’) - e3(v) =0, v e V(Q'),
Ql

This implies (C'e); 3 = (C'e®)3; = 0 fori = 1,2, 3 and thus
O A

o _ 0 _ 0 _ 0 _ o 0 _
€13 = €93 = €31 = €35 = 0, €33 = (611+622)——>\+

A 0 0
\ I 2M 2;1, (81u1 + 82u2).

(2.3.10)
In the second step we insert in (2.3.7) test functions from V(QOH) independent of z3

on Q! and take the limit when & tends to infinity. Due to (2.3.8) we obtain

Cle(u’) -e(v)dx + [ C'e’-ep(v)dx = / f-vdx = / f - vdx'.
170

Qo Q! rt
Now (2.3.10) implies that

C'e’ - ep(v) = Ae'(u) - € (v),

where € (v) = 1/2(V'(vy,v2) + V' (v1, v2)T), where in V' only derivative with respect to
variables 1 and x5 are taken and A is given in (1.3.5). Since the function integrated over
Q! does not depend on x5 this integral can be replaced by the integral over w. Thus we

obtain that the limit function (u’, @”) € V! satisfies

/ Coe(uo)-e(v)dw+/Ae’(ﬁo)-e’(ﬁ)daz’:/f-f)da:’, (v, ) € V1. (2.3.11)
0o w w

Due to the Korn inequality on Q°, the trace theorem for (v,v) € V!! and the Korn
inequality on w we have
le(0) 1720 msxs) + 1€/ (B) | L2 (me2)

> c([vllinqms) + 10I1Z2wozs) + 1€(®) | Zomee) 23.12)

> cllvllfnoms) + Bl Tawms) + €@ 172 @mee)

> (vl sy + 101, 02) 7 wpe) + 105]172()-
This implies coercivity of the form on the left hand side on V7 with respect to the natural
norm on L?(Q% R3) x H'(w) x H'(w) x L?(w) and thus existence and uniqueness of the

solution of (2.3.11) in V£, Therefore €° is also unique and given by

o) 1(01ad + 9.ul) 0
e’ = | . Oy 0
~ 5ty (01t} + Do)
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Thus the whole h-families, corresponding to (2.3.8) converge.

To obtain the strong convergence we argue as before. We define

A(h) = /QO C%(e(u(h)) — e(u”)) - (e(u(h)) — e(u”))dz+

C'(e"(u(h)) —€°) - (e"(u(h)) — €°)dz.

0l
We eliminate the quadratic terms using the equation (2.3.1) and take the limit as h tends

to zero. We obtain

ARy = A= f-u’— / Cle(u®) - e(u’)dx — / C'e’ - e'dx
I Qo

Ql

= / Ae' (") - € (a’)dx' — | C'e’-e’dx.

0l
A simple calculation for obtained e” implies that A = 0. Thus we have the strong conver-
gence of the term e(u(h)) on Q° and " (w(h)) on Q! and thus all convergences in (2.3.8)

are strong.

2.3.3. 3d—thin 3d model: case 0 < v < 2

Since a > 0 from the last convergence in (2.3.2) we conclude that e"*(u®) — 0

strongly in L*(Q'; R3*3). Arguing as in the case o = 0 we conclude that
1
O = Opul = 5(81u8 + 0ul) =0 in Q'
ie.
¢(a’) =0 in Q. (2.3.13)

Additionally, because of (2.3.13) we get some additional information on tangential dis-
placements

(u?, @) € VI = {(v, ) € VI : €(®) = 0}.
Let v € V(Q°"!) be such that 3v = 0, € (v) = 0 in Q' and 3 smooth. Let

81?]3
v!=0 inQ° v' = —x3 | v in Q°. (2.3.14)
0
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Then in O!
0
h 1 1 1 1 D*(vs)
e (’l)—|-h’0 ) = Eeg(v)+e12(v)—|—e3(v )—f—helg(v ) = —hl’g 0 . (2315)
0 0 0
We insert v + hv' in (2.3.1) and get
D)
1 . U3
/ Coe(u(hy)) - e(v)dz + / C' g€ (w(h)) - (™) 0 | de
Qo o hy
0 0 0
= [ f-vdx'.
Fl

Since 0 < a < 2 by letting k to infinity we obtain that (u®, @") € V! satisfies

/ Cle(u’) -e(v)dx = | f-wvdx, (v,0) € VI, (2.3.16)
0o

o
since used test functions v are dense in V!, The estimate from (2.3.12) implies that on

VT one has

le(v) 122 (qopsxs) = c(llv Il sy + 1101, 02) [ ey + 1103122 (2.3.17)
This implies coercivity of the form on the left hand side with respect to the natural norm
on L*(Q% R3) x H'(w) x H'(w) x L*(w) and thus existence and uniqueness of the solution
of (2.3.16) in V!, Therefore the whole h-family (w(h));, converges as in the first three
convergences in (2.3.8).

The same arguments as in the case a € [—1,0) leads to the same conclusion, that
e’ = 0 and that all convergences in (2.3.2) hold for the whole h family and that they are

all strong.

2.3.4. 3d—thin 3d model: case oo = 2
In this case the equation is given by: find w(h) € V(Q°*1) such that

1
/ Ce(u(h)) -e('v)da:—l—ﬁ / Cle"(u(h))-e"(v)de = | f-vdx, v € V(QU).
0o ol It
(2.3.18)
Since we have 1/ h? in front of the thin part, now we have better a priori estimate than

in Corollary 2.3.2.
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Lemma 2.3.5. There is Cx > 0 such that for all 1 € [0, 1] and all v € V(Q°"1) one has

1
CK||U||2H1(QO+1;R3) S /QO Coe('u) . e(v)d:z: + ﬁ o Cleh('v) . eh(v)daz.

Proof. If we assume the opposite there exist a sequence (v*) C V(Q°*!) and a limit

function v € V/(Q°!) such that ||v|| g1 (qo+1,rs) = 1 and

L)) weakly in H'(QT1: R?),
e(vF) =0 strongly in H'(Q°; R**3), (2.3.19)
1

h—eh’“('vk) — 0 strongly in H*(Q'; R**3).
k

From the first two convergences and the classical Korn inequality we have v = 0 in Q°

and

v =0 strongly in H'(Q°; R?).

From Corollary 2.3.2a) we obtain that d;v* — 0 strongly in L?(Q'; R?). Next we apply

the classical Korn inequality on V (Q°*1), but for the sequence (v, v5, hyv¥). We obtain

Ckll (Ulfa U'S, hkv§> H%ﬁ(QOH;R?’)
< lle(vr, vy, hivs) 720 maxay + [1€(vF, 05, hivg) | 7201 gaxs)
< Hka%{l(QO;RS) + He/(U]lC’US)H%Q(Ql;R?XQ)
+ || ool + aSUIfHZB(Ql) + || hndpvf + 83715”%2(91) + ||hka3U§H%2(Ql)

< Hka?ﬂ(QO;RS) + [|e"™ (Ivk)H%?(Ql;R?’X?’)'
Thus we also have that v, v§ — 0 strongly in H(Q!). Thus v; = vy = 0 in Q! and we
only have to prove that

vh =0 strongly in H'(Q1). (2.3.20)

Since d3v* — 0 strongly in L*(Q') we know that d3v3 = 0 in Q. Since v|,,—o = O as a
trace of H'! function on Q2° we obtain that v5 = 0. Now we are missing the following two

strong convergences
OwE =0, 0wk —0 strongly in L*(Q'). (2.3.21)

We now prove the first convergence by use of the Lions lemma (f € L? is isomorphic to

f,V'f € HY). This part of the proof is the same as in the case of the plate equation.
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From the third convergence in (2.3.19) we have

811U§ = Qhkaleh’“ (’Uk)lg — agehk (’Uk>11,
o108 = hy0se™ (V%) 13 + hp0re™ (vF)o3 — DzeM (V7)1

k 2 h k
8311}3 = h,ﬁle ’“(’v )13.

Since the all terms on the right hand side converge strongly in H—(Q!) to 0 we have
the same convergence for V&wéf. Further from the first convergence in (2.3.19) we ob-
tain that 0,05 converges strongly in H~*(€2). Thus by the Lions lemma we have the
strong convergence of dyvh in L*(Q'). The same arguments proves the strong conver-
gence of O,v¥ in L2, As a consequence we obtain that the first convergence in (2.3.19) is
also strong. Since we already have that the limit v = 0 we arrive at contradiction with

||’U”H1(QO+1;R3) = 1. D

From Corollary 2.3.3 and the previous lemma we immediately know that there are

sequences such that h;, — 0 and

ut — uf weakly in H'(Q% R?),
Dzu® — 0 strongly in L*(Q'; R?),

(2.3.22)
ub — u’ weakly in H*(Q"; R?),

1
h—ehk(uk) — e’ weakly in L?(Q'; R**%).
k

and that O3u® = 0 in Q.
The following theorem relates u” and €” on Q. It is classical in the plate derivations

and is the most delicate part of the derivation of the plate model.
Theorem 2.3.6 ([21, Theorem 5.2-2]). Let the family (w(h))s~o C H*(Q') satisfies

w(h) — w” weakly in H*(Q'; R?),

%eh(’w(h)) — ¢ weakly in L*(Q'; R3*?)

as h — 0. Then the limit function w? is independent of transverse variable x3, belongs to

H'(w) x H'(w) x H*(w) and satisfies the following conditions

o€
e’(wo) = 0 and %152 = —851/3211)3, B, Ba € {1, 2}
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Applying this theorem on u(h) we conclude that € (@’) = 0 and that B 1B 2 =
—0p, 8,13, B1, B2 € {1,2}. Thus the limit belongs to

(u’,a") e VIV = {(v,0) e VI . &3 € H*(w)}.

Now we proceed in three steps. In the first step we multiply (2.3.18) for hy, by k7 and

let k to infinity. We obtain, as in the step o = 0,
/ (C'e’) - e3(v) =0, v e V(Q'),
0l
This implies (C'e); 3 = (C'e®)3; = 0 fori = 1,2, 3 and thus
€13 = ep3 = 0, €33 = _m<€(1)1 + ).

Thus we characterize €” up to a 2 by 2 matrix € function independent of x5:

B 0
é(x') — z3D*u(x’)
e(z) = 0
0 0 /\Jf\2u (tré(zx') — z3Aud(z))

In the second step we gain further information about &. We insert v € V (Q°"!) such
that 93v = 01in Q! i.e., (v,?) € V! in (2.3.18), multiply the equation by hy, and let k

tends to infinity. We obtain that

/ Cleo . 612(’[])dw = 0.
0l
From the form of €° this implies

A — 13D*%)) - € (9)dx = 0.
Ql

Thus we obtain
/Ae e( /A (D*a3) - € (B)dx'. (2.3.23)

In the third step we insert in (2.3.18) test functions of the form v+hv', where (v, D) €
VIV and v! is given in (2.3.14). Then, according to (2.3.15) the obtained equation is given
by

0 1 1 hy :L‘3D2(U3) _ /
/ro e(u(hy)) - e(v)de + /Ql C h—ke (u(hy)) - 0 |de= [ f-vdx

Tt
0 0 0
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Taking the limit as & tends to infinity from this equation we obtain

—$3D2(1~13)
Cle(u) - e(v)dx +/ Cle’. 0 |de= [ f-ode'. (2.3.24)
Q0 Q1 T0
00 0
Now the form of € implies that
—$3D2(?73)
Cle"- 0 | =22AD?S - D*v3 — 2348 - D*03.
0 0 0

We insert this in (2.3.24) and get
0 0 1 2~0 2~ 1 ~ 2~ ! ~ I
C'e(u’) - e(v)dx + gAD U - D U3—§AG'D vgdx’ = | f - vdx'.
Qo w w

Since the function D?#3 can be written in the form of symmetrized gradient using (2.3.23)

we get that the limit function (u°,@") € V!V and satisfies

Cle(u) - e(v)dx + —/.AD2 - D*Vydx’ = / f - vda’, (v,0) € VIV,
? (2.3.25)

00
Using (2.3.17) we obtain

||e('U)||2L2(QO;R3x3) + ||D2773||%2(w) 2 C||v||l2LIl(Q;R3) + C”<@17@2)||§{1(w;ﬂ§2) + CH@:&”%p(w)-
(2.3.26)
Thus the form on the left hand side of (2.3.25) is elliptic with respect to the standard norm
on V1V given by L*(Q% R?) x HY(w) x H'(w) x H*(w). Thus we can apply the Lax-
Milgram lemma to obtain existence and uniqueness of the solution of (2.3.25). Hence the
whole family u(h) converges to the same limit u°.
Next we identify & and thus the limit €° and prove the strong convergences in (2.3.22).

Let us substitute

S'DN

é=-D%u) +

1
2
Then from (2.3.23) & satisfies

/ A& - € (D)dx = 0 (2.3.27)
forall o € HY(w) x H'(w) x L?*(w)
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To obtain the strong convergence we argue as before. We define
A(k) = / C(e(u(hy)) — e(u?)) - (e(u(hy)) ~ e(u))dz
Q0

¢ (L e (u(hy)) —e° ) - ieh’f('u,(hk))—eo dex.
o I hi

As before we eliminate the quadratic terms using the equation (2.3.18) and take the limit

as k tends to infinity. After taking into account (2.3.25) we obtain
AR s A= [ Fou®— [ e - e(u)da — / Cle” . ez
It Qo ot
1
=15 / AD*@ - D*uydx’ — / C'e" - e'dz.
w Ql
Next we compute

/Q Cle’ - e'dx —/ A& — 13D*%W)) - (& — z3D*ay)dx
/.Ae édx’ —/Ae 2€Lgdazl+%/AD2&g-D2ﬁgdw’.
Then, we substitute € by & and obtain
/Q 1cleo-e%la: - / Aé - &dx’ + / Aé-DZagdm'+1 / AD*@ - D*@dx
- / Aé - D*idx’ — / AD*a - D* / AD?*i '

Using (2.3.27) we obtain
! < = 1
/ C'e’ - eldx = / Aé - edx’ + 5 / AD?*@ - D*ulde.
Q w w
Then we insert this expression in formula for A and obtain
A(k)aA::—/Aé-édm’.

Since A(k) > 0 this implies that A = 0 and therefore & = 0. Therefore € is uniquely
determined and we obtain the convergence of the whole families in (2.3.22). Further we
obtain the strong convergence of the term e(u(h)) on Q° and +e”(u(h)) on Q! and thus

all convergences in (2.3.22) are strong.
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2.3.5. 3d—thin 3d model: case o« > 2

From the last convergence in (2.3.2), since o > 2, we conclude that

1
h—eh’“ (uf) =0 strongly in L*(Q; R**?).
k

Therefore we can apply Lemma 2.3.5 and obtain that (2.3.22) hold. Thus, as in the case
a = 2, we can apply Theorem 2.3.6 with € = 0 and conclude that
e(a’) =0, D?*a) = 0.
Thus the limit belongs to
(u’,a’) € VYV = {(v,0) € VIV : D*33 = 0}.

Let (v,9) € VV and choose test functions in the form v(h) = v + hv! as defined in
(2.3.14). Thus according to (2.3.15) one has that e"(v(h)) = 0. Therefore for such test
functions in (2.3.1) the integral over ! disappears. Then we let & to infinity and easily

obtain that the limit function (u°, @°) € V'V satisfies

/ Cle(u) - e(v)dx = / f - odx’, (v,2) e VV. (2.3.28)
Qo0 w

From (2.3.26) we obtain that on V" one has

le(0) 122 o273y = cllvlln sy + cll (01, 82) 15 wipe) + llsllFre )

which implies ellipticity of the form on the left hand side of (2.3.28) with respect to the
norm on V'V given by the standard norm on L?*(Q%;R?) x H'(w) x H'(w) x H?*(w).
The existence and uniqueness of solution of (2.3.28) follows. Again, convergence of the
whole family u(h) follows by uniqueness.

Arguing as in the cases @ € [—1,0) and o € (0,2) we obtain that €® = 0, that the
convergence of the whole family »~%/?e"(u(h)) holds and that all convergences in (2.3.2)

and (2.3.22) are strong.
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2.4. LIMITS OF THE 3D—2D MODEL

In this section we start from the model in which a twodimensional structure is attached
to the unit cube at x3 = 0. At the unit cube we consider the linearized elasticity with fixed
material, while for the plate we use the Naghdi type shell model from the Chapter 1 with
plane geometry. We attach the plate to the cube by setting that the plate displacement is
equal to the displacement of the cube at the top (for x3 = 0), similarly as it was done
in Section 2.3 in different models. We assume the thickness of the plate A is a small,
i.e. h < 1, and that the elasticity coefficients of the plate are related to the thickness
as before, i.e. of order 1/ hotl o > —1. Then we show that this 3d—2d model in each
regime asymptotically with respect to / behaves in the same way the 3d—thin 3d model
from Section 2.3 behaves. Thus instead of models from the previous section we can use

this model not paying attention on the orders of ratio of the elasticity coefficients.
Theorem 2.4.1. The problem (2.2.4) has unique solution.

The statement of the theorem follows from the Lax-Milgram lemma. The key part
is the V54_o4 ellipticity of the form in the left hand side of (2.2.4). It follows from the

following estimate.

Lemma 2.4.2. There is C' > 0 such that for all (v, ¥, w) € V3q_2q One has

10113 o) + 18171 ps) + 1115 sy

< C (lle(v)|[Faaogos) + V'8 + AW | Fagupey + VD | Fagumes))

~k ~k
B 0% ") € Vaq_oq sSuch

Proof. Let us suppose the opposite. Then there is a sequence (v
that
||'Uk||§{1(90;ug3) + ||{7k||%{1(w;R3) + ||’Lbk||%11(w;u§3) =1 (2.4.1)

and

v —? weakly in H'(Q% R?),

oF —~ 3° weakly in H'(w; R?),
(2.4.2)

" — @° weakly in H'(w; R?),

le(0) 22 qomses) + 975" + A [3asns + VB [2a(umcs) — 0.
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By the trace theorem #° = v°|,,—o. The last convergence in (2.4.2) and the Korn in-
equality implies that the first convergence in (2.4.2) is strong and that v° = 0. Thus also
2 = 0. From the last convergence we also get that the second and third convergence are

also strong in H'(w;R?). Furthermore we obtain that
V'’ + Aw’ = 0.
Since ©° = 0 this implies that A" = 0, which implies @w° = 0. This contradicts (2.4.1)

since the norm is preserved for strongly convergent sequences. 0

Using the definition of V3424, the trace theorem and the classical Korn inequality we
obtain
10| 22me) < Cllvles=ollr2(wirz) < Cllv|lmore) < Clle(v)l|r2(qors)-
Therefore, we obtain the following a priori estimates.

Lemma 2.4.3. Let (u”, ﬁh, &h) € V34_24 be the solution of the problem (2.2.4). Then

for all @ > —1 there is C' > 0 such that for all & the following estimates hold
“e(uh)”LQ(QO;RQ), h_a/2HV’ﬂ,h + A&hHLQ(QO;RZSXQ), h(Q_a)/Q”v/&}hHLQ(QO;RISXQ) é C

Using the Korn inequality on Q° from the a priori estimates from Lemma 2.4.3 we
obtain the following convergence result.
Corollary 2.4.4. There is a sequence (hy); such that oy — 0 and u® € V() and
e, e/ € L*(Q% R>?) such that
u — weakly in H'(Q% R?),
hy (V@™ + AQ™) — e™ weakly in L?(w; R3*?), (2.4.3)
he VoM — e/ weakly in L*(w; R¥?).
Theorem 2.4.5. Leta > —1 and let (u”, a”, cbh) € V3q_24 be the solution of the prob-
lem (2.2.4). Then
u" — u’ strongly in H'(Q°; R?);
a" — a° strongly in L?(w; R?);
(2.4.4)
o2 (VA" + AD") — €™ strongly in L*(w; R**?),

hE= 2 M ef strongly in L*(w; R**?).
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The limit function u” is such that @° = u°|,,—o and (u°, @") € V. Furthermore (u’, @°),

e” and e/ are uniquely determined by:

I) for -1 < a <0,e” =e/ =0and (u’,@’) € V' is the unique solution of (2.2.5).

II) fora=0
Oy u? (0113 + 0p1?)
em = %(81118 -+ 62’56(1)) 82&8 )
0 0

e/ = 0and (u’,@°) € V! is the unique solution of (2.2.6). Furthermore

(@, ab) — (@0, a9) strongly in H'(w;R?).

1) for0 < o < 2,e” = e/ = 0and (u’,@’) € V! is the unique solution of (2.2.7).

Furthermore

" — &° = (0, —0113, 0,19) weakly in H~'(w; R?). (2.4.5)

IV) fora=2e"™ =0,
D120 Daglid
e/ = | —0a) —011)
0 0
and (u’,@’) € V'V is the unique solution of (2.2.8). Furthermore, the second

convergence in (2.4.4) is strong in H'(w;R?) and the convergence in (2.4.5) is

strong in H'(w; R?).

V) for2 < a, e” = e/ = 0 and (u°,@") € VV is the unique solution of (2.2.9). As
in the previous case, the second convergence in (2.4.4) is also strong in H!(w;R3)

and the convergence in (2.4.5) is strong in H'(w; R?).

2.4.1. 3d-2d model: case —1 < a < 0

Let V(Q%) = H'(Q° R?). From Corollary 2.4.4 we have that convergences (2.4.3)
hold. Thus we can take the limit in the model (2.2.4), when k tends to infinity, and obtain

that the limit function u° € V(Q°) satisfies

Cle(u) - e(v)dx = / f - vdx’, (0,0,W) € Vaq_a4.
Q0 w
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Thus u° € V(Q°) satisfies

Cle(u) - e(v)dx = / f - vdx/, v € V(Q). (2.4.6)

Qo0
This is the problem (2.2.5) obtained already in (2.3.6) and possesses unique solution.

Therefore the whole family (u");~o converges to u’. Note also that according to the

h

trace theorem then @" = u” converges weakly in L?(w; R?).

Let us define the sequence

A(k) = /QO Cle(u —u”) - e(u — u)dx
+ / Cr (R ® (V'™ + AG™) —e™) - (b, (V' + A™) —e™) da’
+ 1—12 /w Cp (V@ —ef) - (R PV&" — o) da.

(2.4.7)

Eliminating the quadratic terms using the equation (2.2.4) we obtain
A(k) :/ f-utdx — 2/ Cle(u) - e(u’)dx —I—/ Cle(u) - e(u’)dx
w Qo 0o
—2 / Crn (R (V"™ + AG™)) - emda’ + / Crem - emdx’  (2.4.8)
1 —a - 1
— E/Cf(h;(f LRl -efdaz’—l—E/Cfef-efda:’.
Next we let k to infinity using convergences (2.3.2) and in the limit obtain

AGR) — A = /w Fouldy' — /Q Cle(u) - e(u’)dx

1
—/Cmem-emda:’—E/Cfef~efdm’

1
:—/Cmem-emdw’—E/Cfef-efda:’

since u’ satisfies the equation (2.4.6). Since A > 0 we conclude that €™ = e/ = 0 and
therefore A = 0. Now we also have the uniqueness of the limit for the strains in the plate
and thus we have that all convergences in (2.4.3) hold for the whole A family. Further,

since A = 0 we obtain that
e(u(h)) — e(u) strongly in L*(Q°; R3*?),
ho2 (V' + AG") — 0 strongly in L*(w; R**?),
S VA | strongly in L*(w; R3*?).

Then the classical Korn inequality implies that the convergences in (2.4.3) are all strong.
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2.4.2. 3d-2d model: case o = 0

Let o™ = C,,e™. Now we can take the limit in the model (2.2.4), when £ tends to

infinity, and obtain that the limit functions u° € V(Q) and o™ € L*(Q°; R3*?) satisfy

/ Coe(uo)-e(v)dm+/am-(V'ﬁ+A1IJ) dx' = / f-odx, (0,0,W) € Vaq_aq.
Q0 w w
(2.4.9)

Thus for all test functions w € H'(w;R?) we obtain
Oz/am'(el X W e X'Lb)dw’:/amel'el X W+ o"ey - ey X wdx'
w w
= /’d’) (o™e; X e1 + oMey X ey)dx’.
w
Since w is arbitrary we obtain

m __ _m __ _m mo__
O3] = 039 = 091 — 075 = 0.

By the definition of C,, this implies €3} = e%; = e5; — ef, = 0. Now the second conver-

gence in (2.4.3) implies by components

~hig m ~hi |~ b m
81”1 — 611, azul + C(.)3 — 612,
~hyp ~hp m ~hj m
~h ~hp ~h ~h
Ovus® + wy* — 0, Ohtig* — wy* — 0,

all weakly in L?(w). Since @"* = u"*|,,—o from the trace theorem we obtain that
a™ — @° weakly in L?(w; R?)
and thus @’ € L?(w;R3), i.e. (u, @) € V!. From the (2.4.10) we now identify the limits
e = oy, eby = Oy, ey + et = 0t + 0ot}

and obtain that @{ and @3 are also in H'(w). Therefore (u, @) € V!, Since 7} = e} we
obtain that also

1 .. .
ey =e5) = 5(82u(1) + (%u?).

Therefore
T (8,19 + 0p?)
e = %(82’&(1) + 62’&(1)) 82128
0 0
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We insert this into (2.4.9) and obtain

/ Cle(u®) - e(v)dx + / Cne™ - V'odx' = / f - vdx’, (v, 0,W) € Vaq_oq.
Qo w

w

Thus, since C,,e™ is symmetric and since the projection on the first two components of

Vaq_o4q is dense in V1, we obtain that the limit (u, @) € V! satisfies

/ Cle(u®) - e(v)dx + / Aé' (@) - €(0)dx’ = / f - odx’, (v,0) € VI
o ) i (2.4.11)
Here €' (0) = 5(V'(01,02) + V'(01,72)"). This problem is given in (2.2.6) and has been
already obtained in (2.3.11). As shown before its solution is unique. Therefore the whole
family (u");o converges to u’. Note also that according to the trace theorem a" = u”
converges weakly in L?(w; R?) to .
Next we define A(k) as in the previous subsection, i.e., as in (2.4.7). Then we use

(2.2.4) and eliminate the quadratic terms and then let £ to infinity. As before we obtain

AGR) = A = /w foulda — /Q Cle(u) - e(u)da

1
—/C’”em-emdm’— E/Cfef-efdaz’.

Now the application of the model (2.4.11) and knowledge of €™ implies
1
A= / Aé (@) - € (D)dx’ — / C™e™ - e"dx' — o / Clel - eldx’

= —%/wcfef celda’,
since C™e™ - €™ = Ae'(@) - €/ (@). Therefore e/ = 0 and
e(u(h)) — e(u) strongly in L*(Q°; R3*?),
(V'a" + AQ") — e strongly in L?(w; R**?),
AV'&" — 0 strongly in L?(w; R3*?).
From the second convergence we have that convergences in (2.4.10) are strong. Thus we

have e'(@") — €(11) strongly in L?(w; R**?). The Korn inequality on H'(w;R?) gives
(a1, @) |71 ey < CUI€(@") |72 (mexey + 18" [F2(me))- (2.4.12)

By the continuity of the trace operator from H'(Q°;R?) to L?(w; R?) we have that @" —

0

4’ strongly in L*(w;R?). Now the Korn inequality (2.4.12) implies that u”

— ud

strongly in H*(w?; R?®) and (@, a?) strongly to (@, 49) in H'(w; R?).
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2.4.3. 3d—2d model: case 0 < o < 2

From the first convergence in (2.4.3) and the trace theorem we obtain
a™ — a° weakly in L?(w; R?). (2.4.13)
From the second convergence, since —a > (), we obtain that
(81'&}”“ +e; X @™ 0t + ey x cIJh’“) —0 strongly in LQ(w;R3X2).

This implies that

¢(a") — 0 strongly in L?(w; R**?), and

QL — o — 0, Gyl + Ol — 0, (2.4.14)

ULt 4+ Ol — 0, Oyt — o — 0 strongly in L*(w).
From (2.4.13), by the uniqueness of the limit we obtain that ¢’(z) = 0 and further
Ot~ iy = —0,a0, b — —9yad, Ot — %) weakly in HY(w).
(2.4.15)

This implies that the limit longitudinal displacement of the plate is an infinitesimal rigid

displacement, i.e.,
(@, @°) € {(0,%) € H' (w; R?) x L*(w; R?)
:8117—1—61 X’lIJ:ag’f)—i-ez X’IIJIO} =: WIII.

The two conditions in this space imply that €’ (¢) = 0 and that the infinitesimal rotation

w can be expressed in terms of derivatives of displacement
Wy = Oq03, Wy = —01 03, w3 = O1Uz.

Therefore the limit of (u/*, @"*), (u°, @") belongs to the space V7.
After taking the limit in (2.2.4) for the test function (v,v,w) € W the limit

(u?, @°) € VI satisfies

/ Cle(u) - e(v)dx = / f - vdx’, (v,9) € VI, (2.4.16)
Qo w

This is problem (2.2.7), already obtained in (2.3.16). Its solution is unique. Therefore

the whole family (u"),~( converges to u’. Note also that according to the trace theorem
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@" = u” converges weakly in L?(w;R?) to 4. Additionally, €'(@") converges to zero

strongly in L?(w; R?*?). Thus, by the Korn inequality we obtain the strong convergence
of (al, ul) in H'(w;R?).

In this case we can repeat the arguments from the end of Subsection 2.4.1 and prove
that €™ = e/ = 0 and that the whole families are convergent and that all convergences in
(2.4.3) are in fact strong. This holds since the model equation is the same for both limit

models and sets the first line in definition of A in (2.4.8) to zero.

2.4.4. 3d-2d model: case o = 2

From the first convergence in (2.4.3) and the trace theorem we obtain
a" — a’ weakly in L?(w; R?). (2.4.17)
From the second convergence we obtain that
((‘31'&'““ +e; X @™ O + ey x (:Jhk) —0 strongly in LQ(w;R3X2).
This implies that
¢ (a") — 0 strongly in L*(w; R**?), and
Qb — o — 0, Gyl 4+ Ot — 0, (2.4.18)
bt + ol — 0, dyult — o — 0 strongly in L*(w).

From (2.4.17), by the uniqueness of the limit we obtain that ¢’(z) = 0 and further

~h . . ~h . ~ _ R
QgF = Oy = —0hll), @y* — —01ly, WF — Oyl weakly in H*(w).

(2.4.19)
Together with the third convergence in (2.4.3) and the Lions lemma (f € L? is equivalent
to f € H'and V'f € H~!) this implies that the convergences in (2.4.19) are in fact
in L?(w) (and the limit functions are in L?(w) as well). Again, together with the third
convergence in (2.4.3) this implies that the convergences in (2.4.19) are actually weak in
H'(w) (and the limit functions are in H'(w) as well and thus @’ € H?(w;R?)). Then

from (2.4.18) using the Korn inequality this implies that

a" — a’ strongly in H'(w; R?),
oM — @0 = (0yu3, —0y3, Ora3) " weakly in H'(w; R?), (2.4.20)
e(u’) =0.
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Further from the third convergence in (2.4.3) we obtain that

~0 ~0 ~0 ~0

al2u3 (922U3 alzug 6722U3

fF vl = ~0 ~0 [ — ~0 ~0

e =Vw = |-0nuy —Onpuy| = |—0uiy —0oily
—019uy  —01203 0 0

Since e/ € L?(w;R3*?) we obtain that D*a3 € L*(w;R**?) and thus @) € H?(w).
Therefore the limit (u, @) belongs to V¥ and & is expressed using derivatives of 3.

Let us now take the test function (v, ¥, W) that satisfies the same conditions as the
limit, i.e.,

81’6 +e1 X w = 82’1’3 + €9 X w=0 (2421)

and for such test function take the limit in (2.2.4). We obtain that the limit (u’, @, &°)

satisfies

1
/ Ce(u) - e(v)dx + D Cfef -V'wdz' = / f - vdx'.
Q0 w

Inserting e/ and expressing v in terms of ¥ from (2.4.21) we obtain that the limit belongs

to (u®,@”) € V!V and satisfies

/QO Ce(u) - e(v)dx + % /w AD?*@ - D*Usdx’ = /w f - odx, (v,9) e VIV,
(2.4.22)
This problem is the same as the one in (2.2.8) and (2.3.25). Its solution is unique. There-
fore the whole families (@, &™), in (2.4.20) converge.
Next we define A(k) as in Subsection 2.4.1, i.e., as in (2.4.7). Then we use (2.2.4)
and eliminate the quadratic terms and then let & to infinity. As before we obtain that A (k)

converges to

f u’d c° ce(u’)dx — | C™e™ - e"dx’ — 1 Clel - e/dx’.
12

Now the application of the model (2.4.22) and knowledge of e/ implies

1 1
= —Q/ADzﬂg - D*uydx’ —/Cmem~emd:c’ — E/Cfef~efda:’

1
— Cmm_ m !
12 e axr,

since (by P € R**® we denote the projector defined by P;; = 4;;)
Cle/ -/ = A(IJPe’) - JPe/ = A (D*@) - D@
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Therefore e™ = 0 and

e(u") — e(u’) strongly in L?(Q"; R**3),

1
Z (V'a" + A&") =0 strongly in L?(w; R**?),
Vo — v strongly in L*(w; R**?).

Now by the Korn inequality we obtain that u" — u® strongly in H'(2°;R?). From the

second convergence and the second in (2.4.20) we have that

a" — a° strongly in H'(w; R?).

Uniqueness of all limits implies that the whole h families are convergent. Further, from
(2.4.20) and the strong convergence of V'@" in L? we have the strong convergence of &"

in H'(w; R?).

2.4.5. 3d-2d model: case o« > 2

From the second and the third convergence in (2.4.3) we obtain that

(81'&}”" + ey x O™ da™ + ey x &hk) — 0 strongly in L*(w; R**?),

V'@ =0 strongly in L*(w; R**?).

As in the case o = 2 this implies that (2.4.20) holds. Furthermore we obtain that V' @ =
0, which implies that D?@9 = 0. Therefore the limit (u°, @”) belongs to V.

Let us now take the test function (v, v, w) that satisfies the same conditions as the
limit

(8117+e1><17)62f7+62><ﬁ)):V’w=O

and for such test function take the limit in (2.2.4). Thus the limit (u", '&0) belongs to V'V

and satisfies

Cle(u) - e(v)dx = / f-odx, (v,0) e VY. (2.4.23)
Q0 w

This problem is the same as the one in (2.2.9) and (2.3.28). Its solution is unique. There-

fore the whole families (@, &™), in (2.4.20) converge.
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In this case we can also repeat the arguments from the end of Subsection 2.4.1 and
prove that " = e/ = 0 and that the whole families are convergent and that all con-
vergences in (2.4.3) are in fact strong. This holds from the same reason as in Subsec-
tion 2.4.3, since the model equation is the same for both models and sets the first line in

definition of A to zero.
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Nonlinear models of elastic bodies

interaction
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3. ASYMPTOTICALLY OBTAINED

NONLINEAR PLATE MODELS

In the Part II of the thesis we are going to make a similar analysis as in the Part |
but in the context of nonlinear modelling. We start with this chapter in which we give an
overview of existing results in the literature regarding the asymtotic analysis of nonlinear
elasticity models for plate—like bodies, i.e. thin in one direction with plane geometry. For

similar overviews of such results, see [39], and [60] for case of the curved geometry.

3.1. PROBLEM SETUP

Let w C R? be a bounded Lipschitz domain and 2 > 0 a small parameter. Let us
define a domain Q" := w x (0, h) in which the thin body is situated. Let its stored energy
function is given by a function W! : R x M3*3 — R and let us apply a force to it at
['" := w x {h}. Then the total energy is given by

W'\(h;V@)de — | f-pdz,
an h
where the ¢ : Q" — R is a function describing the position ¢(z) of the point x € Q"
after deformation of the body. We are interested in finding ¢ (possibly satisfying some
boundary conditions) for which the total energy is minimal (if there exists such ¢).

To derive the plate model, not only that we want to find a minimizer ¢ for particular
domain Q" (i.e. a particular value h > 0), we want to explore the behaviour of those
minimizers for different values of A > 0, and observe their limit when A — 0 in some
topology. In nonlinear modelling this is usually done by performing I'-limit. In order to

do that we have to be more specific about the definitions.
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Firstly, it is convenient and usual in such problems to rescale all problems for different

parameters h > 0 to a fixed domain Q' by using the mapping
(x',25) € Q' (x/, has) € Q"

Secondly, it is easy to see that if W' is independent of the first variable (h), the term
Jor WH(H; V)dx goes to zero as h — 0. Hence, it is natural to scale Lamé coefficients
for the thin body so that the body becomes more stiff as the thickness goes to zero. Sim-
ilarly as in the linear case in Section 2.2, we suppose that the elasticity coefficients (on
which the function W1 depends in an implicit way) for the body of the thickness h depend
on the parameter h in such way that there is a function W} : M?*® — R, independent of
h, such that
1

Wh(h;X) = T W(X) (3.1.1)

for all h > 0, X € M?*3, and for a real parameter > —1. The assumptions on the
stored energy function ! will be different for different values of o which explains the
subscript « in the energy density function. Thus we obtain that the total energy for a body

Q" on the rescaled domain is described by

1
— [ Wi Vnp)dx— | f-pda’
ha Ol Tt

where

Vo= o g, Vib= Vo log).
and ¢ : Q' = R, ¢ = ¢ o r}, is a parametrization of the deformed body defined on the
rescaled fixed domain.

The introduction of the function W} in (3.1.1) in various papers in the literature is
often explained as the scalling of the energy functional. Even though it is a fair argument,
since in the Chapter 4 we are going to couple two elastic bodies and their energy func-
tionals, for our case it is more convient to introduce W} as we did through scalling the
elasticity coefficients in the thin body.

To make this applicable to the theory of I'-convergence, let us fix ¢ € (1, 400) and
define a functional J2** : L9(Q'; R?) — R,

€L / W (Vi) de — | f-dde ¢ B,
h Ql Fl

T () = (3.12)

+00 otherwise,
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where B3 = Whe(Q';R?) is the set of admissible functions and f € L (T'";R?),
¢ = (1 —1/q)~'. Note that no Dirichlet boundary conditions are assumed here. For a
fixed @ > —1 we are interested in the I'-limit of the family of functionals (.J sd’a) h>0-

As announced, the assumptions on W will be different for different values of o >
—1. The common assumptions and the assumptions we are going to need for the further

analysis are:
W1.1) Wl: M3 — [0, +o0] is continuous,
W1.2) W!is frame indifferent: W!(RX) = W1(X) for X € M**3, R € SO(3),

W1.3) W/} satisfies the coercivity condition: W2 (X) > ¢;[|X]|% — co, for X € M**3, for

real constants ¢; > 0, cs.
The other assumptions we are going to assume for particular o > —1 are:
W2.1) there exists C' > 0 such that W}(X) < C(1 + | X]|%),
W2.2) WHX) = +ooif det(X) <0,

W2.3) V6 > 03C; > 0s.t. VX € M3 with det(X) > & it holds W1(X) < Cs(1 +
IX11%),

W2.4) W1(X) > cdist*(X,SO(3)), for all X € M?>*3, for some ¢ > 0, W!(R) = 0 for
R € SO(3),

W2.5) W}(X) < Cdist*(X,SO(3)) in a neigbourhood of SO(3), for some C' > 0,
W2.6) W1l e C? in the neighbourhood of SO(3).

Clearly, the assumption W2.3) is an adjusted type of growth condition W2.1), and
it is going to be used together with W2.2). The assumption W2.4) implies the already

assumed coercivity condition W1.3) for ¢ = 2:

WAX) > edist?(X, 80(3)) = X ~ R} > |3 — cl[Rx % = SIX ~ 9¢.

(3.1.3)
where Rx is the SO(3) matrix which is the closest to X. Similarly the assumption W2.5)
implies W2.1) for ¢ = 2.
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Remark 3.1.1. Note that for W! we didn’t assume quasiconvexity, the most usual as-
sumption to assure that the functional Js’d’a (for particular values of o and h) is weakly

lower semicontinuous. Thus, we did not make assumptions to assure that the problem
find ¢° € B34, J2%(¢%) = min J2(¢) (3.1.4)

has a solution. This is often in the asymptotic analysis of ['-limits of functionals describ-
ing thin 3d elastic bodies. One can show that (if some Dirichlet boundary conditions are
prescribed) each of the functionals J,::’d’o‘ is uniformly bounded from below, so it attains
the infimum. Thus there exists an infimizing sequence (¢,,),,>1 attaining the infimum in
B3%<_ As usual this is not a problem since we will analyze the behaviour of the system as
h — 0 through the I—limit of the functionals (J7**),. Firstly, analogous minimization
problem defined for the I'-limit will have a solution (as a property of ['-convergence).
Secondly, again by properties of ['-convergence, it will hold that “almost infimizers” of
the problem (functions ¢" for which the energy J Sd’a is o(h) apart from the infimum) con-

verge (up to a subsequence) to the minimizer of the I'-limit of the family of functionals

(Jsdva) h>0"

Remark 3.1.2. The I'limit of the family of functionals (.J>“*(¢))s0 will be observed
in the strong L4(Q'; R?) topology. However, due to uniform coercivity properties of
the family of functionals (in particular Lemma 3.3.1), the I'-convergence in the strong
L(Q'; R?) topology is equivalent to the I'—convergence in the weak W 19(Q!: R?) topol-

ogy.

56



Asymptotically obtained nonlinear plate models The main result

3.2. THE MAIN RESULT

In this section we are going to determine the T—limit of families (.J>**), for differ-
ent values of o > —1.

In asymptotic analysis using I'-convergence of functionals describing thin 3d elastic
bodies it is natural that in the limit model all admissible functions ¢ do not depend on
the third variable. For that reason, limit equations and functions can be defined on two—
dimensional domain instead of three—dimensional domain. In other words, we will often

use isomorphisms
{¢p € LYQYR?) : 03¢ = 0} = LY(w; R?), (3.2.1)

and

{p € WH(QLR?) : 03¢ = 0} = WH(w; RY). (3.2.2)

For that reason we introduce notation using tilde: for function ¢ € L7(Q';R3) with
d3¢p = 0, the function ¢ € L?(w; R3) denotes its corresponding function. Also, in the
same manner (in the case when ¢ is independent of x3) we will identify the forcing
function f € L7 (T'*; R3) with a function from L7 (w; R?). In other words, we will write

the forcing term as
- f-¢dm/z—/f-¢dm’.
rt w

We can now state the main theorem:

Theorem 3.2.1. Let the family of functionals (.J;**),~o be as defined in (3.1.2), with

W} satisfying assumptions W1.1), W1.2), W1.3).

a) Let @« € (—1,0). Let additionally W<1—1,o> satisfies the condition W2.1). Then

the I'-limit of the family of functionals (J,?:d’<_1’0>)

L4(2Y; R3) topology is

n>0 when h — 0 in the strong

) —/f-qux’ & € L9(w:;R?),

Tt 0 () (3.2.3)

400 otherwise.
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b)

9)

d)

Let o = 0. Let additionally TV satisfies either the condition W2.1), or conditions
W2.2) and W2.3). Then the T—limit of the family of functionals (J7*°), when
h — 0 in the strong L(Q'; R3) topology is

/QW(}(V’&)da;—/f.&dw' ¢ € Whi(w;R3),

T3(@) = (3.2.4)

400 otherwise,

where

WL(X) = inf W] ([X z]) (3.2.5)

z€R3

for all X € M3*2,

Let o € (0,5/3), and let ¢ = 2. Let additionally W<1075 /3 satisfies conditions W2.4)
and W2.5). Then the I'-limit of the family of functionals (J,?d’<0’5/ 3>)h>0 when
h — 0 in the strong L(Q'; R3) topology is

e
[ feda Genpe

T O () (3.2.6)

+00 otherwise,

where

BN 1 g e W R?) © V'$ V' < Lae.l. (3.2.7)

Let « = 2, and let ¢ = 2. Let additionally W21 satisfies conditions W2.4) and
W2.6). Then the ['-limit of the family of functionals (.J, ,‘jd’Q) n>0 When A — 0 in the

strong L9(Q'; R?) topology is

1 ~ ’ 7 / 7 3d,2
il b dx’ — - od e B,

JH2() = 24/WQ2( (¢))dz /wf pdw @€ By (3.2.8)
400

otherwise,

where

B2 = [ e W2(w;R) : V¢ Ve =1} (3.2.9)

and b(¢) = (bg, 5,(®))s, .6, is the curvature tensor:

3103 X 3203

bﬁlvﬂ2($) = aﬂlaé : aﬂgﬁg, ad; = .
’ 57 1006 x 29|
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The quadratic form Q, on M?*? is defined by

2
Q>(X) = min Qs (Zl Xiei®e+2z® e3> (3.2.10)
1,]=

where Q3(X) := -2, WH(I)(X, X).

T X2

e) Let a € (2, 400), and let ¢ = 2. Let additionally W5 , _ satisfies conditions W2.4)
and W2.6). Then the ['-limit of the family of functionals (J,?d’<2’+°°>)h>0 when

h — 0 in the strong L?(Q'; R3) topology is
—/f¢M’$e%W“ﬁ

Jat B () B2.11)

+o00 otherwise,

where

Bg’d’@’*@ = {¢p € C(w;R%) :

JR € SO(3),d e R®s.t. (') = R [m’ or +d}. (3.2.12)

The claim b) is proved in [52], Theorem 2 (under the additional assumption W2.1))
and in [7], Theorem 1 (under the additional assumption W2.2) and W2.3)). The claim c)
is proved in [30], Theorem 1.1. and (1.6). The claim d) is proved in [38], Theorem 6.1.

In Section 3.3 we will give proofs for claims a) and e).

Remark 3.2.2. By observing limits of thin 3d bodies obtained in Theorem 3.2.1 in var-
ious regimes, we can compare their properties to the limits of thin parts of 3d—thin 3d
structures we obtained in the linear case in Theorem 2.2.1 and explained in Remark 2.2.2.
For o = 2 we obtain the nonlinear flexural plate model. Similarly as in the linear case,
it penalizes the apropriate bending energy in the set of inextensible deformations. For
o > 2 we obtain that the model allows only rigid transformation (i.e. the layer is so stiff
that allows only rotations and translations). Key differences to linear case for thin layer
are that mentioned results from Theorem 3.2.1 correspond to linear models from Theo-
rem 2.2.1, but are not the same due to linearizations in Part I. For o < 0 we again get no
contribution of the thin layer, neither in the energy nor in the set of admissible functions.

The largest differences between linear and nonlinear modelling are seen in cases o €

[0, 2). Firstly, there are no results in literature that prove rigourous asymptotic derivation
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of the model in the case o € [5/3,2). Up to the today’s knowledge, it is an open problem.
For that reason Theorem 3.2.1 lacks such result. Also, all similar convergence results in
Part IT of the thesis will again lack a result in the case a € [5/3, 2). In the case o = 0 in the
limit we obtain the nonlinear membrane plate model. In the case a € (0,5/3) we obtain
the so called constrained membrane plate model. It has no contribution in the energy, only
a constraint in the set of admissible functions that allows only short maps. It is different to
the linear case « € (0,2) where only (linearly) inextensible deformations were allowed.
Here one can see the main difference between linear and nonlinear modelling of thin
elastic structures.

Under certain assumptions, in the membrane plate energy short maps do not contribute
in energy as well, i.e. nonlinear membrane plates offer no resistance to crumpling. To
quote Le Dret and Raoult ([52]), "This is an empirical fact, witnessed by anyone who
ever played with a deflated baloon”. Indeed, for a thin membrane as a deflated ballon one
can compress the body with investing (almost) zero energy. On the other hand, a balloon
does resist when stretched. This makes the nonlinear theory more precise for modelling
real life examples, since in the linear theory both stretching and compressing are equally

penalized in the membrane energy.
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3.3. TECHNICAL RESULTS AND PROOFS

Before proving the two remaining parts from Theorem 3.2.1, we need a coercivity

lemma we are going to use in this proofs and later on in the thesis.

Lemma 3.3.1. Let f ¢ L9(I'';R?) and o € (—1, +o0). Let W! satisfies assumptions

W1.1), W1.2) and W1.3). Then there are constants ¢ > 0, C' € R such that the inequality

1
18l + e [ WATid)iz— [ f- g
0l Tt

1
> (10 i, + X103 [ Dy + Bl ) — O B31)

holds for all ¢ € WH(Q'; R3) and all h € (0, 1].

Proof. Let us define h, = h™®{0} and h_, := h™*{%=2} Note that h, < 1 and
h_o < 1. Also: e = pmax{=e0t = p_ .
Since Wi is nonnegative and coercive (from W1.1)and W1.3)), for each A € [0, 1] it
holds
Wa(X) = MarlI X[ — c2).

We apply this inequality for A = h,, and obtain:

1 c1h_q
h_“/gl Wi(thb)dm > Clh_a||v/¢||%q(91;R3><2)+1h—q||a3¢||qu(Ql;R3)_02h_O" (3.3.2)
Since h_, < 1, the last term can estimated from below by —cs.
Let us now take any nonnegative n € Wh1(QY R). For a.e. x = (2, 23) € Q! we

have

1
n(x', 1) < n(z', xzs) + < n(x', x3) +/ |0sn(x', y3)|dys. (3.3.3)
0

1
/ 8377(‘13,7 ys)dy:a
T3

After integrating over ' € w and then x5 € [0, 1] we obtain

/ndm'g/ ndm+/ |O3n|dee. (3.3.4)
I"l Ql Ql

We will use this inequality for n(x) = |¢(x)|?. For its derivative we use Young’s inequal-
ity
[Osm(z)] < qlop|*10s0] < (q—1)||" + 03] (3.3.5)
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to obtain
H¢HL‘1(I‘1 R3) — qHQ,)HLq Q1;R3) + Ha3¢H%q(Ql;R3)' (336)
From (3.3.2), (3.3.6) and Holder inequality we obtain
1
19l + 5 [ WE Tl = [ £ gda

2 Hd)HLq Q1;R3) +c —aHv d)“Lq Q1;R3%2)

Clh_
105D 70 (21, — €2 — M|l Lacrrme)
Clh_ y
= Hd’” @r3) T €1 hoallV' ¢||Lq Qlrsx2) T h—Ha3¢||Lq QuRr3) — €2 M1,
(3.3.7)
where
1/q
I = (161200 + 105D L0orgoy) - (3.3.8)
Note that from o > —1, we have max{0, —a} < 1, so hq > 5. Also, o > 1.

Combining these inequalities with conclusion in (3.3.7), we obtain

1
||¢H;§qm3 3z | Wiioyia— [ 1 gt
qul!mle +cih a||v¢|| Qlw)+ hq1\|ag¢||mm3) e
||¢||Lq(§21 R3) th 1||83¢HLQ(Q1 R3) - M'T

1D + erh IV Bl an sy + s 15y — 2

+ (mI?— M'I), (3.3.9)

1 ¢

with m = min {5, 7}. Since the function x — az? + bx (for a > 0, b € R) is bounded

from below on x € [0, +00), a direct consequence is that

1 /
19lsns + 5 [ WAVidhda = [ 1 oua

—_

§||¢“Lq Q1;R3) +cahe aHv d)“Lq Q1;R3%2)

1
201(

To conclude inequality (3.3.1) we need two final observations. Firstly, in the same manner

hq 1 ||83¢||Lq QLR3) C

)—0’2.

(3.3.10)

we obtained the inequality (3.3.6), we can bound the term |||| Lo(ro,rs) by [|03¢]|7, (Q1E9)
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and ||¢||7, (1) and adjusting constants (note that > 1). Secondly, when o >

hql

0, on the right hand side we have all derivatives of ¢, so we have bounded the term

”Vd)“m Q1;R3%3) ]
We know prove the two remaining parts of Theorem 3.2.1.

Proof of Theorem 3.2.1.a). Let us prove the claim by the definition. For the lim inf”
part, let us take any ¢ € LY(Q';R?) and any (¢}, )n>0 C L9(Q2'; R3) converging strongly
to ¢ in LI(Q';R3). We have to prove that ds¢p = 0 and liminf,_q J."""" () >
Jg h{=10) (¢). We can firstly take subsequence of (¢, )0 (without changing its notation)
such that lim inf,_o Jo™ " () = limp_o 20 () =: L. If L = +00, we have
nothing to prove. Thus in the sequel we assume L. < +oo and consequently there is a
constant C' € R such that J, 3d,(~1.0) (¢,,) < C forall h > 0. Due to strong convergence of
(b1,)n>0. we know that ||y, || Ls(o1;rs) is uniformly bounded. By applying Lemma 3.3.1,
we obtain that 3¢, — 0. Due to uniqueness of limits in distributions, we obtain that
03¢ = 0, and thus for the limit ¢» we have Jg’ {=1.0) () < +o0. Now, since the first part
of functionals J}?d’<_1’0>

desired inequality lim inf},_, Jsd’<71’0>(d)h) > J3EL0 (g,

is nonnegative and the second one is linear, we clearly have the

Let as now prove the ’lim sup” part of the definition. Since the part J) > fw f- ggdzc’
is linear, it is continuous with respect to the convergence in L?(w; R?), so it does not affect
the convergence so without loss of generality f = 0. Let us take arbitrary el (w; R3).
Let us take any (¢, ),>1 C C™(w; R?) that strongly converges to ¢ in L?(w; R?).

Let us define
n(h) 1= arg max{||Ve,|| a(wms=s < h*/?0}, (3.3.11)
n>1

in case that |V, | La(w3x3) is not uniformly bounded (note that h*/(9) — +o00 as h —
0, so the mapping is well defined for all sufficiently small values of h), and n(h) = [1/h]
if |V, || La(w3x3) is uniformly bounded.

If |Va,|| La(wr3x3y is uniformly bounded, then clearly n(h) — +oc and due to
h*/(20) — o0 the bound ||Vq3n(h) | Lawrexsy < h®/9 is satisfied for sufficiently small
values of h. If |V, | Le(wr3x3) is not uniformly bounded, as A — 0, due to h®/9 —

+00 we have n(h) — +oo. In both cases we have that (¢,,),~0, defined as ¢, := @,
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converges to ¢ in L1(Q'; R3). From the growth condition W2.1) for sufficiently small

values of h we obtain

- 1 1
0< 2 (G) < O (L4 VGl uoen)) < 52C (14 200°7%) =5 0.

ha
(3.3.12)
This proves that lim sup Jsd’<7l’0>(q§h) =0= Jgd’<71’0>($). U

Proof of Theorem 3.2.1.e). Let us firstly prove the lower bound. Let (Ji’d’z)bo, Jg’d’Q
and Bg’d’Q be the energy functionals for A > 0, its I'-limit and the set of admissible
functions from Theorem 3.2.1.d). Since assumptions in Theorem 3.2.1.d) coincide with
assumptions in Theorem 3.2.1.e), we are able to use mentioned objects. Since now o > 2,
we have J, 34,(2, +°°>(¢>) > J3d’2(¢) so the same holds for their I'-limits and the set of
admissible functions of I'-limit of .J; 3,(2, +°°>(d)) is necessarily a subset of Bo*?. Now,
without loss of generality let f = 0 (since the linear part will not affect the I'-limit).
Note that now all functionals are nonnegative.

Let us take any ¢ € Bo™? and any (¢, )0 C W12(Q'; R3) that strongly converges to
¢ in L?(Q'; R3) and such that values Jf’bd’<2’+°°> (¢;,) are uniformly bounded by C' > 0. If
there does not exists such sequence, there is nothing to prove, the ”lim inf” inequality is
trivially satisfied. For those functions we have lim inf,_,o J2**(¢p,) > Jo%*(¢b), so there

exists a subsequence of (¢, )n~0 (still denoted the same) such that
(V0 > 0) (3hg > 0) (Vh € (0, he)) J242(p,) > Jo¥*(h) — 0. (3.3.13)
Let us take § = %JS“((;S) and multiply the last inequality by h>~“. Then we have

O > TN > - Ja (), (3.3.14)

—2ha2

so when i — 0 we obtain that necessarily Jg’ d’2($) = 0. From Lemma 3.3.2 we obtain

that q?) is rigid transformation. Now the lower bound is clear.

d,(2,+00)

For the ”lim sup” part, let us take any s Bg . Let us define

on(x) = 95(50/) + h<81(,5 X 32(5)353- (3.3.15)

Since V¢, is a constant rotation from SO(3) (for which W} is equal to zero by the

(2,+00)

assumptions), and since clearly ¢, — ¢ in L?(Q2};R3), the claim is proven. U
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Lemma 3.3.2. Let ¢ € W??(w;R?) such that [,,, Q2(b(¢))dx’ = 0. Then ¢ is rigid
transformation.

Proof. Since (), is coercive quadratic form, we have that b(¢) = 0 a.e., bg, 3,(¢) =
Os, af - 03,0, ag’ = %. We see that 85a§’ is perpendicular to 9, ¢ and d,. By
b b _

differentiating the equality ||a$ > = 1, we obtain ﬁﬁaf -a3 = 0, so specially Ggaf is

perpendicular to all vectors in the basis {9, @, 00, ag;}, SO (‘9/3a§; =0, 8 = 1, 2. Specially,
ag’ is a constant.
By differentiating ||, ¢||> = 1 we obtain ;56 - 9y = 0. Similarly ;26 - H2¢p = 0.

Lastly, from definition of a:‘? we have 8@5 . ag’ = 0, so by differentiating this and using

a? = const we obtain 8/31”32& . ag’ =0, 81,8 = 1,2. Thus, ;20 is also perpendicular

to all vectors in the basis, and thus 812<5 =0.
We again differentiate ||| = 1 and 8,¢ - 92¢> = 0 and use obtained conclusions

to get 611q~5 . aqu) = 611417> . 82q§ = 0. From before we know that 0, 52([) are perpendicular

to ag’

, SO again by the same argument 811q3 = (. After applying analogous arguments
for Dyyp, we obtain D2¢p = 0, thus ¢ is affine function. Due to conditions |0 ¢| =

|026|| = 1 and 81¢p - Dap = 0, we obtain that it is necessarily a rigid transformation. [

Remark 3.3.3. All the parts in Theorem 3.2.1 are proved by the definition of the I'-
convergence, which included the ”lim sup” part of the definition: the step in which for
arbitrary admissible ¢ € L(Q';R?) the family (¢, )n>0 C LI(Q'; R?) is obtained such
that ¢, — ¢ in LY(Q'; R3) and
lim sup J.**(¢,) < J3** (o).
h—0
The properties of these families (¢;,)x~o is going to play important role in the rest of this

thesis, so we are now going to get into more details about those families.

a) For a € (—1,0), from the proof of Theorem 3.2.1.a) we see that the family is
obtained by smooth approximations of the function (ﬁ € L(w;RR3). However, for
¢ < Wh4(w; R3) the proof would hold for the constant family q?)h = ¢

dy(-1, 1 - -
TN ) < O (L V' Bl ans)) - / fé
- —/f p= 1" 0(g). (3.3.16)
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b) For a = 0, from [52] (Proposition 7., (24)) and [7] (Theorem 1) we see that the
’lim sup” part of the proof is obtained by the family of the form ¢, = qEO + h(xg —
1/2)@31 for some ¢ , ¢ € Whi(w; R3), h > 0.

¢) For o € (0,5/3), from [30] (Lemma 5.1.) we see that the "lim sup” part of the
proof is obtained by the family of the form ¢, = 617)2 + hx3¢~3,11, where QZ)SL, ng,ll €
Wh2(w;R?), h > 0.

d) For a = 2, from [38] (Theorem 6.1. and (6.24.)) we see that the "lim sup” part
of the proof is obtained by the family of the form ¢, = cﬁz + h(xs — 1/ 2)q3,ll +
h2w$i, where &2, 95,11, {z&i € Wh2(w;R3), h > 0.

e) For a € (2,4+00), from (3.3.15) in the proof of Theorem 3.2.1.e) we see that the
family is of the form ¢, = (,‘130 + hxghgzl for some g?)o, {51 € Wh2(w;R?), h > 0.
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4. NONLINEAR 3D-THIN 3D MODEL

4.1. PROBLEM SETUP

In this chapter we are going to observe the same problem as in Chapter 2, but in terms
of the nonlinear modelling.

Let us define sets

0,h), (4.1.1)

¥ =w x {s}, fors € R.

We consider Q0+ = Q0 U O to be an elastic body made of two materials with possibly
different properties at different parts of the domain (Q2° and "), see Figure 4.1. The
stored energy function for 2° is given by W9 : M3*3 — R and the stored energy function
for Q! is given by W' : R x M®*® — R (it also depends on the thickness parameter 5).
Let ¢ : Q" — R be a function describing the position ¢(x) of the point z € Q" after
deformation of the body; similarly we define function 9 : Q° — R. Further we assume
that the body is clamped at 3 = —1, that a contact force f is applied at the boundary
I = w x {h}, and that the remaining boundary is force free. For simplicity we assume
that there are no body forces applied.

Analogously as in Chapter 3, we perform the rescaling of the thin part by the function

(', 23) € Q' — (2, has) € Q",
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Figure 4.1: 3d elastic body.

so that problems for all 4 > 0 are defined on the same domain Q°*!. With the same rea-
soning in the Section 3.1, in the thin part of the domain we also incorporate the behaviour
of elasticity coefficients in W' in such way that there is a function W! : M?*3 — R,
independent of A, such that

Wh(h;X) = halﬂ W(X) (4.1.2)

for all h > 0, X € M®*3, and for a real parameter o > —1.

Now the total energy functional for the thin part of the structure from the Figure 4.1
on the rescaled domain Q' is given by the functional J;** : L4(Q';R?) — R defined in
(3.1.2).

For p € (1, 4+00) let us define the total energy functional for the elastic body situated
in Q% as WO(4p) : LP(Q°;R?) — R given by

WO(Vep)dz € WHP(Q%R?),
WOW’) — ol (4.1.3)

400 otherwise.

The functional W is independent of £, and so its elasticity coefficients are.
Then the total energy functional for the whole structure is defined as the sum of those

two functionals up to a definition of the set of admissible functions. For abitrary o > —1
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and h > 0 we define K. : LP(Q0;R?) x L4(Q'; R?) — R by

(

WO (Vap)dz
3d,a o 1 (’l)ba ¢) € ASd,a’
K, " (¢, ) = ton | Wa(Vig)dz— | f- ¢dz
Ql Fl
400 otherwise,
) (4.1.4)
where
A= {(h, p) € WHP(QYR?) x WH(QNR?)
{(, ) ( ) ( ) 4.15)

¢|z3:0 - ¢|$3:07 ,l/)|1173:—1 - ld}

We are interested in obtaining T'—limits of the families of (%)}, for various v > —1.
For the W! and f € LY(I';R?), ¢ = (1 — 1/¢)~" we assume the same conditions
W1.1), W1.2) andW1.3) as in Chapter 3. Additionally, for /" we assume

WO0.1) 1 <p<qg<+oo,
W0.2) W9 : M3*% — [0, +00) is continuous,

W0.3) W0 satisfies the coercivity condition: W°(X) > ¢;||X]|% — ¢, for X € MP**3, for

real constants ¢; > 0, ¢o,
W0.4) there exists C' > 0 such that W°(X) < C(1 + || X||}), for all X € M3*3.

Again, for W° we didn’t assume that it is quasiconvex. It will not cause us problems
in our work due to reasons explained in the Remark 3.1.1. If QW7 is its quasiconvex

envelope, then

L- (W) = [ Qn(vy)
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4.2. THE MAIN RESULT

In this section we are going to determine the I'-limit of families (K f;d’a) n>o for dif-
ferent values of o > —1.

We again use the tilde notation and isomorphisms
{p € LYOQYR?) : 93¢ = 0} = {p € LY(w; R}, (4.2.1)

and

{p € WH(QLR?) : 93¢ = 0} = {@p € W (w; R?)}. (4.2.2)

Theorem 4.2.1. Let the family of functionals (K:%*),, be as defined in (4.1.4). Let us
assume that conditions W1.1)-W1.3) and W0.1)-W0.4) are satisfied.

a) Let « € (—1,0). Let additionally W<171,0> satisfes the condition W2.1). Then the
['-limit of the family of functionals (sz,gw)) n>0 when b — 0 in the strong

LP(Q%R3) x LI(QL; R?) topology is

0 _ ! 1 3d,(—1,0)
K310 (4 gy = { oo QW (Vy)dx /wf pdx’ (¢, ¢) € A ,

400 otherwise,
4.2.3)

where

AT = {(#, ) € WH(QR®) X LI(WiR®) : logeo = &, Plug=mr = id}.
(4.2.4)

b) Let a = 0. Let additionally I/VO1 satisfies either the condition W2.1), or conditions
W2.2) and W2.3). Then the T—limit of the family of functionals (K*°);o when
h — 0 in the strong L?(Q°; R3) x L(Q; R?) topology is

(

| awivy)da
~ QO
K, ) = +/QW(}(V’$)dw—/f-g}5dw’

400 otherwise,

(1, ) € A,

\

(4.2.5)
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where

Ay = {(9, ) € WH(Q%R?) x WH(w;R?) : luymo = b, Ploymr = id)
(4.2.6)
and W (X) is from (3.2.5).

¢) Leta € (0,5/3), and let ¢ = 2. Let additionally VV<1075 /3 satisfies conditions W2.4)
and W2.5). Then the ['-limit of the family of functionals (Kf:d’m’s/ 3>) h>0 When
h — 0 in the strong LP(Q% R3) x L9(Q'; R3) topology is

T3 7 3d,(0,5/3)
Kgd,(o,5/3>(¢’q3) _ /QO QW (Vi)dx —/wf ~pdx’ (P, ) € A, ,

+00 otherwise,
4.2.7)

where

A" = {3, @) € WHP(Q%RY) x WH(w; RY) -

Wloso = G, Yoye1 = id, V' V'd <Tael}. (42.8)

d) Let « = 2, and let ¢ = 2. Let additionally W satisfies conditions W2.4) and
W2.6). Then the I—limit of the family of functionals (K %), when h — 0 in the
strong LP(Q°; R3) x L1(Q'; R?) topology is

(

/ QWO(Vep)da:

i (¥, ) € A3™,
Ko (4, ) = /Q2 ))da! —/f bdx’ '

otherwise,

(4.2.9)

A" = {(h, ) € WHP(Q%R?) x W22 (w; R?)
Bloso = @, Yloyo1 = id, VG Vo =1} (4.2.10)

where b(¢) = (bs, 5,(#)) 5,3, is the curvature tensor and Q, quadratic form defined
in (3.2.10).
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e) Let @ € (2,400), and let ¢ = 2. Let additionally W<127 ooy Satisfies conditions
W2.4) and W2.6). Then the [—limit of the family of functionals (K;™®">),_,
when /1 — 0 in the strong LP(Q°; R?) x L1(Q'; R?) topology is

T 3.l 7 3d,(2,400)
Kgd’<2’+oo><'¢)7 d;) _ Q0 QWO(Vl/))dQJ — /w f . q’)dw (’(b, ¢) - 'AO ,

400 otherwise,
4.2.11)

where
A" = {(ah, @) € WIP(QR?) x C(wiRY)
Play—o = @, Play—1 = id, (4.2.12)
IR € SO(3),d € R®s.t. p(a') = R(a’,0) + d}.
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4.3. TECHNICAL RESULTS

In this section we prove technical results needed for the proof of Theorem 4.2.1. The
main part of the proof will be done by Proposition 4.3.1. Its key part of the proof is based
on Lemma 4.3.4, which is already proved in [8] as a part of Lemma 2.

For purposes of the next proposition, let us define spaces

LPSOG) = L9(QY R?) x L (w; SO(3))
4.3.1)
Lp><q><SO(3) — Lp(QO;R?;) % LqXSO(3)'
Proposition 4.3.1. Let 1 < p < g < oo. Let there be a family of functionals (J;,)n~0,
Jy, © L9S06G) 5 R with the set of admissible functions B. Let its I'-limit (in the strong

L7<50G) topology) be the functional .J; with the set of admissible functions By.

Let Jj, satisfy following inequality:

1Dl o 0m5) + Tn(®,S) = csll Dl rops) — Co (43.2)

with ¢; > 0, C; € R independent of (¢,S) € B and h > 0.
Let there be a function g : M3*3 — TR satisfying the growth condition 0 < g(X) <
C(1+ |IX]||%), X € M3*3, Let g defines a functional G : L?(Q°;R?) — R by

/ g(Vp)dx 1 € WIP(QUR3), |—1 = id,
G(p) = Qo 4.3.3)

+00 otherwise.
Additionally, let GG satisfies the following inequality:
1117 gy + G®) = ca (1 1mqoms) + 1911z + 19150 o) — Co
(4.3.4)
with cg > 0, C; € R independent of 1p € WHP(Q0; R3). Let Go(vp) :=T — G(vp).

Let us define a family of functionals (K},)ss0, K, @ LPX9<50G) 5 R,

_ Gp) + Ju(¢,S) (¢, .S) € A,
K, ) — | TS (:0.8) (43.5)

+00 otherwise,

where

A= {(¢,$,8) € L=
WY € WP(QLRS), 9yt = id, Pleyeo = Plugeo, (¢,5) € B}. (4.3.6)
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Let us define K, : LP*7*S9G) — R by

Ko(¢,9,8) = (4.3.7)

400 otherwise,

where

Ao i={(1.9.8) € LS00

P € WH(Q%RY), loye 1 = id, Yloymo = Bluy—o, (#,5) € Bo}. (4.3.8)
Then we have the following:

a) The functional K satisfies the ”lim inf” part of the definition of the I'-limit for
(K )nso: forall (1, ¢, S) € LP*9¥S0G) and for all (1, ¢y, Sp)nso C LP¥4¥SOG)

converging strongly to (1, ¢, S) in LP*7*59(3) we have

lim inf Ky (4, dy, Sn) = Ko(1h, $.S). (4.3.9)

b) Additionally, let the following condition hold: for all (¢, §) € B, there exists
(é1,,Sh)ns0 C B converging strongly to (¢, S) in L9*5°G) such that .J,(¢,, S) —
Jo(¢,S) and

[@nllwrarogsy < C. (4.3.10)

Then K, satisfies the ’lim sup” part of the definition of the I'-limit for (K},);~0: for
all (1, ¢,S) e LP*9*S0B) there exists (10, ¢, Sp)nso C LP**S9G) converging
strongly to (4, ¢, S) in LP*4*S0() guch that

hmsupKh(,’vbh7¢h7gh) < KO(¢7¢a g) (4311)

h—0

Specially this implies that Ko(1p, ¢, S) is the T—limit of K}, (1), ¢, S), as h — 0.

Remark 4.3.2. One can note that in the second part of the proposition (the ”lim sup”
part) we always know that for all (¢, S) € By there exists (¢, Sp)n>0 C B that converges
strongly to (¢, S) in LP*7*S0() and satisfies J, (¢, S1,) — Jo(¢, S) (from the definition
of the I'-limit of the family (.J;),~0). However, the condition (4.3.10) is additional. We

will need to check it separately each time we use the second part of the proposition.
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Remark 4.3.3. Note that Proposition 4.3.1 can be applied even in following cases:
1° Jy is independent of g, and/or

2° Jj, is defined for q?) € L(w;R3) — by including d3¢p = 0 in B and using the isomor-
phism
{¢p € LUYQYRY) : 03¢p = 0} = {p € LI(w; R?)}.

Thus we will be able to use this proposition to determine the I'-limit of family of func-
tionals (K id’o‘) n>o from (4.1.4) (by taking into account 1°). The part 2° will be used in

following chapters.

Proof. Let us prove the first claim. Let us take any (1), ¢, S) € LP*9<S006) and any
(P, 1y Sh)nso C LP*9X59G) converging strongly to (1, ¢, S) in LP*9*503) Without
loss of generality, we can take subsequence of (v, @y, Sh)h>0 (without changing its

notation) such that

lim inf K7, (v, ¢, Sp) = lim K (1), ¢y, Sp) =: L.
h—0 h—0

If L = 400, we have nothing to prove. Thus in the sequel we assume L < +oo and
consequently there is a constant C' € R such that K (1, ¢, gh) < Cforallh > 0
small enough. Therefore (v, ¢, Sh) € A. There are now three things we are going to

prove:

(i) the triple (¢, ¢, S) satisfies

b€ Wl’p<QO;R3), 'l/)‘m:—l = id, '(/J|13:0 = ¢‘x3:0§ (4.3.12)

(ii) the admissible (¢, S) are necessarily from By;
(ii1) the desired inequality (4.3.9) holds.

Due to strong convergence of the sequence (1, @,,, S )n>0 We know that ||e, | LP(QOR3)
and ||@, || Ls(o1;rs) are uniformly bounded. According to (4.3.2) and (4.3.4) we have that
| llwie@omrs)s |95 Lo -1r3) (|94 Lo (rors) and || @y, || La(ro,rs) are uniformly bounded.
The first consequence is that there is a subsequence of (1;,),~¢ that converges weakly in

WP (0% R3), so by the uniqueness of limits we have that 1 € W1P(Q% R3). Secondly,
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there are weakly convergent subsequences (in LP(I'"!; R?), LP(T%; R3) and L?(T°; R?))
of sequences (¥},|z5=—1)h>0, (¥1]z5=0)n>0 and (@ |z5=0)n>0. Since for all h > 0 we
have (¢, @, gh) € A, we can apply weak convergences in equations ¥ |,,——1 = id
and ¥, |zs—0 = @},|zs—0 to finally obtain (4.3.12), i.e. the part (i).

Since ¢ is nonnegative, we have that K, (1, ¢, Sh) > Jn(oy,, éh), so specially

+ 00 > L = lim K, (0, ¢, Sp) = lim inf K,(v,,, ¢, Sn)
h—0 h—0

> liminf Jy, (¢, Sn) > Jo(, S).
h—0

Thus Jy(¢, S) < 400, and consequently (¢, é) € By, i.e. we have the part (ii). Finally,
the part (iii) is a consequence of superadditivity of lim inf.

Let us now prove the second part of the proposition. Let us take any (1, ¢, S) €
Ao. Let (¢,,S1)n>0 C B be a family converging strongly to (¢, S) in L9*5°®) such
that J,(¢,,S) — Jo(¢,S) and with condition (4.3.10) satisfied. Due to definition of
quasiconvex envelope of G, there exists (1), )n>0 C W1P(Q% R?) such that ¥, — 1
in LP(Q°; R?) and additionally G(v,) — Go(2). Due to (4.3.4),

¢h||W1’P(QO;R3) is
uniformly bounded. Due to (4.3.10) ||y, ||w1.e(ro,rs) is uniformly bounded as well.

Let us apply Lemma 4.3.4 for (1,)4>0 and (@y,|zs—0)ns0. We obtain (1, )rs0 C
WP (00 R?) such that functions 1), are small perturbations of 1/, (in a sense that we
still have properties 1, — 4 in LP(Q°; R?) and lim sup,, ,, G(v;,) < Go(1))), but with
the property Py .o = i luso-

Since ¥, |2,—0 = ¢, for all b > 0 and J,(¢,,, Sp) — Jo(, S), we finally obtain that
for sequence (1, ¢, Sn)ns0 we have desired property: it strongly converges to (1, ¢, S)

and satisfies

limsup (G(,) + Ju(#1,.9)) < Go(¥) + Jo(, S). (4.3.13)

h—0

O

Lemma 4.3.4 ([8]). Let1 < p < ¢ < oo. Let there be a functional G : LP(Q°; R3) — R
defined as

/ g(Vp)de 1 € WHP(QOR?), 4|,— 1 = id,
— ! Jao

G(1) (4.3.14)

400 otherwise,
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with g : M**3 — R satisfying the growth condition 0 < ¢(X) < C(1 + || X||%) for all
X € MB*3, Let Go(t) i= T — G(a)). Let (3, $) € WIP(Q%R?) x Wh(w; R?) with
P|es—o = @. Let there be (1, )p=1 C W2(Q%R3) and (¢, )nz1 € Whe(w; R3) such
that

¥, = ¢ in L(Q%R), ¢, = @in LI(w;R%), lim G(3,) = Go(vp)  (43.15)

and such that (||V,,|| ro,r3x3))n>1 and (HvlqgnHLq(w;R:sxz))nzl are uniformly bounded.
Then there exists (1,,),>1 C W(Q% R?) (up to a subsequence) such that

P, — ¥ in LP(Q% R®), 4, |uy—0 = @,,, and limsup G(,) < Go(vp). (4.3.16)

n—-+o0o

Proof. This claim is originally a part of Lemma 2 in [8]. For the completness of the thesis,
we hereby present its proof.

Note that since p < ¢ we have that L9(w; R?) C LP(w; R?), so all assumptions regard-
ing L? spaces for functions (J)n>n21 hold for L? spaces as well.

The idea of the proof is to change the behaviour of the functions v, near I'” such that
the trace becomes equal to the functions qgn, keeping the value of G(1),,) controlled.

From the assumptions, we see that ¢, ¢, € W17 (w; R?). This is why we can identify
those functions with functions defined on Q° (¢, (&', 23) == ¢, (), p(x', 13) = P(z')).
Those functions are from W1?(Q° R3), moreover, they are again uniformly bounded by
the same constant since 03¢ = 03¢,, = 0.

Since (|| V'@, || Lo(wmsx2))n>1 is uniformly bounded and since d31p € LP(Q0;R?), for

every m € N there exists 77 > 0 such that for ¥, := w x (—n, 0]

1
[ as1ve.m < -
b m
! 1 4.3.17)
O|IP < —.
[ ol <
We use slicing method of De Giorgi. Fori = 1,...,m we define ¥; := w x (—i-L, 0] and

decreasing sequence U; := Q° \ &; of subsets of Q°.
Let (¢i)i=1.....m—1 be a sequence of functions in C'!(R?; R) satisfying ¢;(R?) € [0, 1],
@i = lon Uy, i = 00on %, Vol rr@ors) < C’l%. We now define Em = (¢, —

¢,) + ¢, on Q°. Since 9, ; near w behaves as ¢,,, we have ¥, ;[4,—0 = (ﬁn Let us see
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the error made: foreach¢ = 0,...,m — 1 we have
G) = [ oV, )de
= / 9(Vap,,;)dz + / 9(Vab,, ;) dz + / 9(Vib,)dz  (43.18)
)3 Zir1\Zs Uit1

< [ otvogdes [ ot [ o9,

n

We now bound terms on the right hand side. In the first term, we use growth condition on
g and (4.3.17) to obtain
» C
g(Ve,)dxe <C | (1+||Vo,|r)de < —. (4.3.19)
E77 E"] m
For the second term on the right hand side of (4.3.18) we will again use the growth con-

dition. Note that since ,, ; = (1 — ;) (¢, — ¥,,) + 9, we have

— m
IVY,illF < Clng)n =l + IV, = VY, lr+ VY,|lr
m

Applying obtained to (4.3.18) we get

6@ <0 (e [ (5) I, -l s 10w I

(4.3.21)
=V, ldz) + [ oV, )de

for7 =0, ..., m. By averaging these m inequalities, we obtain

m—1

6@ (5o [ (Z) 18— bl + TR + [V )

m

+ / g(V, )de. (4.3.22)
QO

Since ||V, || rorsx3) and [V, || Lr(qo;rsxsy = ||V’q5n||Lp(w;R3x2) are uniformly boun-

ded from above, we can write

m—1 P
LN o, < (i o L) e %deaz) + [ avwin

(s mom
(4.3.23)
Let i(n, m) be the index such that

78



Nonlinear 3d-thin 3d model Technical results

We know that this term is less or equal to the average over all 7, so

Q
Taking the lim sup with respect to n € N on the both sides, we obtain
lim sup G(zpm (nmy) < C” < / H¢ — 1,b\|pd:1:> + Go(vp).  (4.3.26)
n—00 m m
Using Lemma 4.3.5 for u = ¢ — v, 03¢p = 0 and (4.3.17), we obtain
n p
[ le-wlrae<cr [Jowpiz<cn (L) @
Sy =n m
Thus we obtain
. Cf///
limsup G(,, ;(.m)) < g + Go(). (4.3.28)
n—oo

By taking lim sup with respect to m € N and by the diagonalization argument, we con-

clude that there exists mapping n — m(n) such that

Hm sup G(¥,, inmmy) < Go(¥). (4.3.29)

n—oo

We define 1, := 1,y ;(, n(n))- Let us prove that tp,, — ) strongly in LP(Q%; R®):

/ 1%, — wlPde - / 1L = Grmmen) (b — ) + (b — )| dax
00 0o

_ P —blIPd
gc(Lmﬂ@L¢M|w+Aﬂmb¢uw>

<C (/ ¢, — @lIPde + / | — <b||Pda + 2/ I — %H”dw)
Zn(n) En(n) Qo
(4.3.30)
For the second term on the right hand side we use (4.3.27), in other two terms the strong
convergence of (¢, ),>1 and (v, ),>1, and thus the strong convergence of (1), ),>1 is

proved. 0

Lemma 4.3.5. Let there be a bounded Lipschitz set w. Let for any n define the set

¥, = w X [—n, 0]. There exists a constant Cp» > 0 such that the Poincaré—type estimate

”’U,HLP ,iR3) < CPanaSuHLp ,;R3) (4.3.31)

holds for any n > 0 and any w € WH?(X,; R?) with w,,—o = 0.
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Proof. Let us now take any nonnegative £ € W (X,;R). Forae. = (a/,23) € &,

we have

é(w,7 1173) S

0
/ 335(33/’ y3)dy3

After integrating over &’ € w and then x3 € [—7), 0] we obtain

0
< / 05 (2 ) dys. 4332)
-n

Edx' <n | |0:€|dx. (4.3.33)
271 E77
We will use this inequality for £(x) = |u(x)|?:
03¢ ()] < plulP~"|05ul. (4.3.34)
We use Holder inequality to obtain

H'U'“Lp (2,R3) = Pn/ [P 1|83u’dm < anu“Lp Sy RS)HaBUHLP(En;Rg’)' (4.3.35)

We obtain the inequality (4.3.31) after dividing both sides of the last inequality with

|wl||7, Io( 2 gs) and lifting them to the power of p. O
We finish with two more technical results.

Lemma 4.3.6. There are constants ¢ > 0, C' € R such that the inequality

[ — / WOVY)da
> ¢ (91000 + 19150020y + 110 rozs)) = C (43.36)
holds for all 1p € W'?(Q° R3).
Proof. From coercivity of W? (condition W0.3)), for ¢, = min{1, ¢;} we obtain
ey + | W) > gy — <2 (43.37)

Two other terms on the right hand side of (4.3.36) we obtain by applying the trace theorem

on the term ||} ||y 1.»(qo,r3), With editing constants ¢/, c,. O
Lemma 4.3.7. Letn > 1and s € [0, 1]. Let (¢;,)n>0 be uniformly bounded family in

W12(Q1; R?), with

b= W5 — ) g, (s C Wi RY), ke {0....n}). (4338
k=0

Then (), |z5—0)n>0 is uniformly bounded in W'?(w; R3).
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Nonlinear 3d-thin 3d model Technical results

Proof. Without loss of generality, let s = 0. If this is not the case, we will perform the

proof for functions (zﬁi)bo C W% (w; R?) for which
n r n _
> Wi(xs—s)'dy, =) halep,
k=0 k=0

Note that now @, |,—0 = (ﬁi, for all b > 0.

For 5 € {1,2}, we calculate

2
1/ n .
C > sl = | [ (thx';amh) i
/ / szkﬁ’@h’fﬁ’waqs Oy da
0

k1=0 ko=0

1
B / Z Z k1 + ko + 1hkl+k2aﬁ¢ aﬁ(ph dx’

Amin (Hnt1 /ZHh agtbh’ dx’

Z >\min (Hn+1 )

(4.3.39)

~0
= Amin(Hin 411|053 72 ms)

where A (Hy) > 0 is the smallest eigenvalue of the N x N Hilbert matrix (the in-
equality is the consequence of the fact that the Hilbert matrix is positive definite). For

b, [ (w:r2) We perform analogous calculation. O

81
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4.4. PROOF OF THEOREM 4.2.1

Proof of Theorem 4.2.1. We prove the theorem by using Proposition 4.3.1 for each part
of the theorem separately.

Let us take any « € (—1,5/3) U [2, +00). Let us define family of functionals (.J;)n~0
by Ju(¢p) = J2**(¢) (defined in (3.1.2)), for all ¢ € LI(Q';R?) (in the view of Re-
mark 4.3.3, each functional .J,, is independent of matrices S € L?(w; SO(3))), and its set
of admissible functions is W*(Q'; R?). According to Theorem 3.2.1, the ['-limit of the
family (J,)p>0 is Jo = Jgd’a, depending on the value of o. Due to Lemma 3.3.1, family
(Jn)n>o satisfies the condition (4.3.2).

Let us define g(X) = W9(X), for all X € M?3*3. Then we have G() = W° (1),
where W is defined in (4.1.3), and

QWO(VY)dz 3 € WH(Q%RY), 4hls,—1 =id,
Go(ph) =T = W(¢p) = ¢ /o

+00 otherwise.
4.4.1)

Due to assumptions W0.2) and W0.4) g satisfies the nonnegativity conditions and the
growth condition. Due to Lemma 4.3.6 G satisfies the condition (4.3.4).

Since for all o and A > 0 the functional K 2d’a from (4.1.4) can be written as

WO () + T () Plag—o = Blos—o, Yloge—1 = id,

+00 otherwise,

K™ (4, @) =

which is of the form (4.3.5), we conclude that we have K, = K,?:d’o‘ for all » > 0 and

A = A3 Also, functionals Kg’d’o‘ from all parts of Theorem 4.2.1 are given by

T —WO(%) + J5"* (@) Plug—o = Plugeo, ¥]uy=—1 = 0,0 € B3,

+00 otherwise,

Ko™ (4, @) =

(with Jg’d’a and Bgd’a are from particular parts of Theorem 3.2.1). This is of the form as
in (4.3.7), so we conclude that K, = Kgd’o‘.
Since all assumptions of Proposition 4.3.1.a) on (K}),¢ are fulfilled, we can ap-

ply it and conclude that for each for all (¢, ) € LP(Q°R3) x L4(Q';R?) and for all
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(), )0 C LP(Q%R3) x LIY(QY; R3) converging strongly to (1), ¢) in LP(Q2%; R3) x
L' R?) we have

lim inf Kn(p, dn) = Ko(9, ). (4.4.2)
By taking into account that K), = K} 50 and Ky = K, 342 we conclude that each of five
parts of Theorem 4.2.1 the particular functional Kg “ satisfies the ”lim inf” part of the
definition of the I'—convergence for the family (K>%*);-q.

For the ”’lim sup” part we now have to check if for arbitrary ¢ € Bgd’o‘ there exists
(¢, >0 C B3> converging strongly to ¢ in L(Q'; R?) such that J.>*(¢,,) — Jo**(¢p)
and that the additional condition (4.3.10) is satisfied. For that we are going to use Re-
mark 3.3.3, and then apply the part b) of Proposition 4.3.1.

Since from for & € (—1,0) admissible functions ¢ are in L¢(w;R?), there is no
guarantee that a strongly convergent sequence (¢,,),>1 C WH4(Q'; R?) (converging to ¢
in L9(Q'; R3)) satisfies the condition (4.3.10). Thus the part a) of Theorem 4.2.1 we will
have to prove in a different way, which will be done at the end of this proof.

For a = 0, from Remark 3.3.3.b) we see that the family (¢),)n~0 C WH(Q!;R3)
in the ”lim sup” part of the proof is of the form ¢, = ¢~>0 + h(xs — 1/2)¢~)1 with some
@ . ¢ € W(w;R%), h > 0. For that it holds

0ulnaqeozsy < @ (18 1oy + 9518 Mo
for all h € (0, 1], thus the condition (4.3.10) holds, so the b) part of Proposition 4.3.1
holds, and consequently Theorem 4.2.1.b) is proved.

For o € (2, 4+00) from Remark 3.3.3.e) we see that the family of functions (¢, )n~0 C
W1e(Q; R3) in the “lim sup” part of the proof is of the form ¢, = QSO + hxghqBI with
some (;BO, (51 € Wh(w;R3), h > 0. Then, similarly as for proof for Theorem 4.2.1.b),
proof of Theorem 4.2.1.¢) follows.

For cases o € (0,5/3) and o = 2 from Remark 3.3.3.c) and Remark 3.3.3.d), we see
that the “lim sup” part of the proof for arbitrary admissible ¢ € L2(w; R3) is obtained by
families (¢, )n~0 C WH2(Q!; R?) of the form

b, = zn: W (s — s)°dy, ke {0,....n} (4.4.3)

k=0
for particular n > 1 and s € [0,1]. Since this family (¢}, )n~0 converges to ¢ in

L*(Q';R3), it is uniformly bounded in the same topology. By Lemma 3.3.1 (¢},)n>0
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is uniformly bounded in W12(Q% R3), so by Lemma 4.3.7 (¢},|z5=0)n>0 is uniformly
bounded in W12 (w; R?). Thus, condition (4.3.10) is satisfied as well, and this finishes the
proof of Theorem 4.2.1.c) and Theorem 4.2.1.d).

The only thing left to prove is Theorem 4.2.1.a), more precisely, the ”lim sup” part of
the definition of the Ilimit for the family (K *""%), _o. Let us take arbitrary (1, ¢) €
Agd’<_1’0>. We will prove that for all € > 0 there exists h* > 0 and (", 95*) € A3d{=1.0)

such that

19" — Y|l roms) <&, 1@ — Bllroqursy < e

and K0 (g ) — K3 (g, ) <. (4.4.4)

Note that without loss of generality assume that f = 0, since the source term is linear
and does not affect the convergence. Now we have that Jg’ H=10) ((ﬁ) — 0 forall ¢ €
L(w; R3).

Let us take arbitrary € > 0. Firstly, let (¢,,)m>1 C C*®(w;R?) with ¢, |,,— 1 = id
be smooth W1?(Q°; R3) approximations of 1. Since W satisfies the growth condition
WO0.4) (and so does QW?), due to the Lebesgue dominated convergence theorem (domi-

nated by  — C(1 + ||V (x)|%)) we get
L -Wo,,) = . QW (Vap,,)dz — y QWO (Vap)dx =T — W (). (4.4.5)
So there is m € N and 1, := 1), such that
[ = $llwro@ozs) < 5 and (D= W(3) = (D=W'®)| <5 (@446

Due to the trace theorem, we additionally demand that

Poo — d)’ La(wRS) 1% = Pl pagromsy <€ (4.4.7)

where ¢__ := __|z,—0.

Let us define a constant sequence qﬁn = ngo- Due to Remark 3.3.3.a), for this se-
quence we have Jf%*l’())((ﬁn) — Jgd’<71’0>(q§oo) = 0. Due to the definition of weakly
lower semicontinuous envelope, there exists a sequence (?0,,),,>1 such that ¢, — 1) __ in

Whr(Q% R3) and WO(ep,,)de — T — W(¢p.). Let us apply Lemma 4.3.4 for sequence
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Y, — Y., and the constant sequence én — —o. We conclude that there exists

(,,)n>1 C WHP(Q0: R?) such that

oo|l‘3

Y, = Yoo in LP(Q%R?), 4, |oy—0 = Dy luy—0 and limsup WO(sp,,) < T = WO(9p).

n—-4o00
(4.4.8)
We can conclude that there is n € N large enough such that:
— €
1% = ocllzoioozs) < 5 (dueto (4.4.8)),
||<13n - q3m||Lq(W;R3) = 0 (due to the definition of the sequence (qsn)@l),
(4.4.9)

Jf;j;f_l’m(qbn) < % (due to Remark 3.3.3.a) and Jgd’<_1’0> =0),

WO(®,) — (T = W°(3h)) < % (due to (4.4.8)).

Together with (4.4.6) and (4.4.7), from triangle inequalities we conclude that h* = 1/n
and (*, @) := (¥, @,) satisfy (4.4.4) and conclude the proof for Theorem 4.2.1.a),
and the proof for the whole Theorem 4.2.1. U
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5. A NAGHDI TYPE NONLINEAR SHELL

MODEL

5.1. INTRODUCTION

After the asymptotic analysis of the 3d—thin 3d model in various regimes and its inter-
action with an other (not thin) 3d body, now we proceed to proposition of adequate 3d—2d
model that has the same convergence properties as the model observed in the Chapter 4.
In order to do this, in this chapter we formulate a new nonlinear shell model that will be
applicable in all situations, irrespective of the geometry, boundary conditions or scaling
order of energy. This original model is already presented in [61], together with majority
of properties given in this chapter.

The model is formulated in terms of two unknown functions 10, S, where 1) parame-
trizes the middle surface of the deformed shell and S is a function with values in rotations
that describe the rotation of the cross-section of the shell. The cross-sections are allowed
to shear with respect to the deformed middle surface, which is typical to the Naghdi type
models. This is continuation of the research in the linear case and the formulation of a
two-dimensional linear shell model of Naghdi type from [16,87] (presented in Chapter 1),
and the previous work for Koiter type models from [5, 14, 15,86] and flexural shell model
from [85].

The main features of the model we formulate are the following:

* The model is well defined for shells with undeformed geometry parametrized by

W1 function. Approach of adding (infinitesimal) rotations in the model as ad-
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A Naghdi type nonlinear shell model Introduction

ditional unknowns in order to extend the model for less regular geometries is well
known, see e.g. [5, 16]. Similar considerations in the case of nonlinear rods can be

found in [48].
¢ The model is frame indifferent.

* There are two terms in the elastic energy of the shell, one scaled by h and the other
by h3, where h is the thickness of the shell. This is also typical for the Koiter’s and
Naghdi’s type models, see [5,25,26,50]

* In the energy of the model all types of shell deformations can be recognized: mem-
brane, shear, drill, flexural. Membrane, shear and flexural deformations are well
known in shell theories, but inclusion of drilling rotations is also not new in the
literature, see [12, 44, 45] for example. Thus the model can be considered as a

6-parameter shell model.

* Additional restriction of the unknowns that implies unshearability (cross—sections
remain perpendicular to the deformed middle surface) and no twist of the cross-
section (no drill) leads to a model that is a perturbation of the nonlinear Koiter

model from [21,47].

* Further restriction that rotation S maps covariant vectors of undeformed shell to
covariant vectors of deformed shell leads to the classical nonlinear flexural shell

model from [40].

 Linearization of the strains in the proposed model leads to exactly the same strains
as in the linear Naghdi’s type model from [87], moreover if in addition we consider
the model for the St. Venant—Kirchhoff material linearization leads exactly to the

model from [87].

* Differential formulation of the model implies that it can be interpreted as a Cosserat

model with one director, see [6].

* When the total energy functional is scaled by / it ['—converges in the appropriate

topology to the model with no flexural, no shear and no drill energy which cor-
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responds to the nonlinear membrane shell model derived from three-dimensional

nonlinear elasticity in [51].

e When the total energy functional is scaled by h? it '—converges in the appropri-
ate topology to the nonlinear flexural shell model derived from three—dimensional

nonlinear elasticity in [40].

* In the case when the middle surface of undeformed geometry is planar and when
the total energy functional is scaled by h*™, o € (0,5/3) it '—converges in the ap-
propriate topology to the model with no energy contribution, with only conditions
on the set of admissible functions being short maps, which corresponds to the non-
linear constrained membrane plate model derived from three-dimensional nonlinear

elasticity in [30].

e When the total energy functional is scaled by h*™!, o € (—1,0), in ['-limit we
obtain a model with no energy contribution and with no conditions in the set of
admissible functions, meaning that in that regime the shell is so flexible so that

appears as the shell is not there.

¢ When the total energy functional is scaled by h®*!, o € (2, 4+00), in ['-limit we
obtain a model with no energy contribution and with conditions on the set of admis-
sible functions being only rigid transformations, meaning that in the limit the shell

is so stiff that only rotations and translations of the shell are possible.

The last five items present the main mathematical contribution of this chapter through the
['—convergence arguments.

In Section 5.2 we formulate the nonlinear shell model of Naghdi’s type and sets of
admissible deformations also for the Koiter’s type model and the flexural model. In Sec-
tion 5.3 we give relations between these sets of admissible deformations and analyse the
models when considered on these subsets of deformations. We also linearise the model
and obtain exactly the model from [87]. At the end of Section 5.3 we also derive the weak
and differential formulation of the original formulation and conclude that the model can

be recognized as the Cosserat model with one director for a particular constitutive law. In
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Section 5.4 we do the asymptotic analysis with respect to the thickness A of the shell, us-
ing ['—convergence, of the proposed model in five regimes, obtaining in the limit models
similar to the ones presented in Chapter 3 (in the case of the planar undeformed geometry
of the middle surface) and appearing in the literature. This is presented in Theorem 5.4.1
and Theorem 5.4.2. An the end of this section several technical lemmas for matrices and

matrix functions are proved.
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A Naghdi type nonlinear shell model Definition of the model

5.2. DEFINITION OF THE MODEL

Letw C R? be an open bounded and simply connected set with a Lipschitz-continuous
boundary and let 6 : w — R3 be an injective mapping that belongs to W1 (w; R?). We
use notations from Chapter 1.2 for (a.e. linearly independent) vectors agz(x') = 050(x’),
2-surface S = 6(w), vectors a3 and a’ (1 = 1,2, 3), matrices A, and A and the area
element along S equal to \/adx’ (see Figure 5.1). In addition we assume that

essinf Apin(A°(2')), essinf A\ (Ac(x')) > 0. (5.2.1)

yew YEwW
In models of Naghdi’s type (or in the case of the plane geometry Reissner-Mindlin’s

T3

V4

AN Ah

74

Figure 5.1: Parametrization of the undeformed shell.

type) in addition to the parametrization of the deformed shell ¥ : w — R3 there are
independent functions that are used to describe shear of the cross—section of the shell
with respect to the middle surface. In our case we will describe behavior of the cross—
section using function S : @ — SO(3). The relation of ) and S will not a priori be given
as a restriction, but will be in a physical way penalized in the energy of the model.

For the surface parametrized by 1) we associate the notation

¥ _ O X Oatp
T o x 0|

for the normal vector at the surface. Furthermore let 79 C Ow be with positive capacity,

a
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the set where the shell will be clamped. Then we define three sets of admissible functions

AN = {(,S) € W' (w; R?) x W (w; SO(3)) : 4|,y = 0], S| =1,

det [sa3 o aw] > 0ae.},
(5.2.2)

AK = {(’lp, S) < AN . SCL3 = CL;)P, Sa1 . 82’(/) = SCLQ . 81¢},
A" = {(¢,8) € AN : Sag = dpgp, 5 = 1,2}.

The subscripts in these functions sets suggest that they correspond to the Naghdi, the
Koiter and the flexural shell type models (see Section 5.3). On A" we will consider the

functional of the following form

J(,S) = h/ wy, (25 S, V') Vadx' + g / qr(x';S,V'S)Vadx' — / f-adx'.
i i T 523
Here h stands for the thickness of the shell, the force surface density is for simplicity
assumed to be independent of the deformation and given by f € L*/3(w;R?) (since 4/3
is Holder conjugate of 4), while w,, and ¢y are membrane (and shear and drill) and flexural
energy density functions incorporating all essential energies present in shell deformations.
Notation V'S should usually be interpreted as block matrix function [als 828] .
The nonlinear shell model of the Naghdi type we propose in this chapter is formulated
as the following minimization problem:

find (p,R) € AV, J(p,R)= inf J(v,S). (5.2.4)
(¥.8)eAN

The same problem can be also considered for subsets AX and A" which will lead us to a
different type problems.
In order that the functional J captures membrane, shear, drill and flexural behavior of
shell we have to specify particular energy density functions w,, and q;. We assume
(S, V') = 1T, STV + V') (STV'y — V'0) |
(Sa3)TV'y

qr(S,V'S) = Q; (STV'S) (5.2.5)

for some continuous functions Q; : R**? — R and W,, : R**? — R. Note here that for

each 3 € {1,2} the matrix ST 938 is skew symmetric and thus can be represented only
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by three functions. Thus the matrix S(z')?V'S(x’) we always consider as an element
of R3*2, Since in the energy there are two terms scaled differently with respect to the
thickness & of the shell this kind of a shell model is not obtained as a limit model of the
three—dimensional elasticity when the thickness tends to zero. However the choice of the
energy densities is motivated by the obtained two—dimensional models in [51], for the
membrane part, i.e. wy,, and [40] for the flexural part ¢;. This will be clear in Section 5.4
when we consider asymptotic behavior of the functional (5.2.3) when A tends to zero.
Also note that the strains do not change under the rigid deformations since S”V’4) and
STV'S are independent of R € SO(3) and @ € R? when we replace S by RS and 1) by

R + a, i.e. the model is frame indifferent.
Remark 5.2.1. The strain in W,,, can be also written by
(STvl’lp + V/€>T(STV/¢ . vle) — XTX + QVIOTX,

for X = STV'yp — V'0, so in general setting this matrix contains all infromation about

membrane, shear and drill deformation.
Assumptions on functions Q) s, W,:
N1) 3B; € L(R**2 R3*?) such that Q;(X) = B;X - X, VX € R3*2,
N2) 3C >0 Qp(X) < C(+|IX[%), Wn(Y)<COA+[Y]2), X, Y € R,

N3) 3e >0 Q¢(X) > ¢[|X]

i Win(Y) = c]Y|

2, X,Y € R¥2,

Assumptions on g are, for instance, clear consequences of B¢ being uniformly boun-

ded and uniformly positive definite linear operator.

Remark 5.2.2. To be more specific we propose particular energy density functions that
will lead us to the model for St. Venant—Kirchhoff material (STVK):
1Ac(QT T(QT
wSTVE(S, V'ep) = lcgl AYS V'Y +V'0) (S"V'y —V'0) |
2 (Sas)TV'e
STﬁlSaQ - as ST028a2 - as (526)
1
% STalsag *aq STé?gSag - Ay )
ST818a1 * Ao STagsal * Ao

1
Q?TVK(S, v/S> _ §CJ2C
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where C;, (X) = C,,X - X, C}(X) = C;X - X are quadratic in strains and the elasticity
tensors Cyy,, Cy : MP**2 — M**2 are given by (1.3.2) In this case we obtain a model with

linear constitutive equations with nonlinear strains.
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5.3. PROPERTIES OF THE MODEL

5.3.1. On sets of admissible functions

Besides of the smoothness assumptions and clamping boundary conditions at 7, the
only constraint in AV is det [Sa3 o 321/;] > (0 which is related to the orientation
preservation. Additional constraints in A% and A’ are material constraints. Also note
that the condition det [Sa3 P 821/;} > 0 is relevant only in AV since it is directly
fulfilled in A" and A¥ since from condition a,g’ = Sa; and the definition of a}f we see

that

det [Say, Oy Op| = det [a¥ D Brgp| >0,
Lemma 5.3.1. It holds A" ¢ AKX c AV.

Proof. The last inclusion is obvious. To check the other inclusion, we can directly see
that the condition Sa; - 031 = Sas - D11 is satisfied for [811/; 8214 =V =SV'0 =

S [01 a,l] . For the other condition:

P 611# X 61’1/) Sa1 X Sa2 a| X Qs S
s = — = Das.

101 x O]~ [[Sar x Sas| ~ " flar X as

a

In the view of Lemma 5.5.3, it is possible to express conditions in A in various ways:

Sas; -0 =0, f=1,2 < Sag-ag’zo,ﬁzl,Q — Sagzag’.
(5.3.1)
Therefore the condition Saz = ag’ from AX (and A") can be rephrased by that the cross—
sections (described by as3) after deformation Saz remain normal to the deformed middle
surface (whose tangent space is spanned by 0;1 and 0,7 (i.e. the shell is unshearable).
Furthermore there is no extension in the normal direction since S is unitary. This is typical
for the Koiter—type models.

In A" we additionally have

aﬁl,lp : 852¢ - Saﬁle ) 88520 - 8510 ' 8520
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since S € SO(3). This means that there is no change of metric tensor in A%, so 1) from
AT are isometric deformations.
To analyse the energy functional (5.2.3) on the sets A and AX we state the following

obvious lemma.
Lemma 5.3.2. It holds
%(STV% +V'0)T(STV'y — V'0)
(Sag)TV/v,/)
LV V' —V'0TV'9) LV'p"SV'e — V'OTSTV')
= + . (532
0 (Sa3)TV'y
The matrices on the right hand side are orthogonal in the Frobenius scalar product.

Proof. Orthogonality follows since the first 2 x 2 block is symmetric and the second one

is skew-symmetric. U

This lemma implies that in the strain on the left hand side of (5.3.2) (with six compo-

nents) the following is hidden:
* change of metric tensor (in the first term on the right hand side)

e the drill (in the upper 2 x 2 skew-symmetric block of the second term on the right

hand side)

* the shear (in the lower 1 x 2 block in the second term on the right hand side).

5.3.2. The flexural shell model

We now observe the problem (5.2.4) set on the set of admissible functions .Af". The
model is actually well formulated for & € W1 parametrizations, but for this comparison
we assume more smoothness, namely 8 € W (w; R3).

In A" the strain in W,, is zero, which is directly obvious from the definition since
SV'0 = V'1p implies STV’ep — V'8 = 0 and Lemma 5.3.1 and (5.3.1). Thus only the

term ¢y from (5.2.3) is relevant for the problem.
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In the matrix STV’S some terms vanish as well. Firstly, we rewrite it in the following
form

ST05S = Z (ST958a; - a;)a’ ® a’,

ij=12.3
which holds since Is = 3, ._; ,;a; - a;a’ © a’.
Since S is rotation, ST9;S is skew symmetric, so ST95Sa; - a; = 0 fori € {1,2,3}.

Moreover, since we have
82(&1) = 8120 = 81(a2) and aQ(SCh) = 812’¢ = 81(Sa2), (533)

we obtain

STagSal c Ay = 8280,1 . SCLQ = (82(Sa1) — S@gal) . SCLQ
= ((91(80,2) - S@lag) : SCLQ = alsag : SCLQ = 0,

where the last equality is from skew symetricity of the matrix ST9;'S. We obtain similarly

ST9,Sas - a; = 0, so the only terms left in the strains are STﬁglsa;), - ag,. Moreover,

STé?gSag = STé?gSag + STsagag - 85(13 = STag(Sag) - 8ﬁa3 = ST65<CL§J}> — 850,3
= Su(¥)ags,

where Sy is the shape mapping (Weingarten map). Furthermore, since Sag, = a;f;

S"05,8as - ag, = Su(¥)as, - as, = S 0s,af - ag, — 0s,a3 - as,
= aﬁla’g) ) Sa’ﬁz - 8,316"3 "ag, = 8510’? ) a’gg - aﬁla’3 * A,
= bﬁlﬁz (d)) - b5152(6)7

where b(v) = (bg,5,(%)) 5, 3, denote the curvature tensor of the surface parametrized by
1. Thus on A" the strain is the change of the curvature tensor. It typically appears in the
flexural shell models.

All obtained expressions for ST95Sa; - a; can be written in a matrix form. Let us for

this purpose define

0 0 —(bs1(¥) — bs1(0))
B” = 0 0 —(bg2(vp) — bs2(0)) | (5.3.4)
bs1(P) — bs1(0) bsa(1P) — bsa(0) 0
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for § = 1,2. Then we have S79;Sa; - a; = B

;0 fori, 7 =1,2,3. Also, using notations

Q= [al a’ a3] and B .= [Bl B2} , we can also write
80,8 = ) (8"0sSa;-aj)a'®a’ = Y B(Qe;)(Qe)" =QB’Q", (5.3.5)
i,j=1,2,3 ,j=1,2,3

and consequently
T

STV'S = QB Q0 . (5.3.6)
0 Q

Let us define an operator P : M?*? — M?*¢ by

) 00 —a 00 —c
P ; =10 0 =b 0 0 —df- (5.3.7)
a b 0 ¢ d 0

By its definition, we have P(b(¢)) — b(0)) = B. Finally, we can define a function
qr : M**? — R (obtained from Q; by change of coordinates and incorporating terms

from undeformed geometry) by

T
s Q 0
4r(X) =Qy | QP(X) : (5.3.8)
0 Q
From above it is clear that satisfies
Gr(b(1) — b(8)) = Q;(STV'S) = ¢4(S, V'S). (5.3.9)

Therefore, the problem (5.2.4) on A* can be stated as minimization of the functional

h3

[ artotw) - vio)ade' - [ 5 pata (53.10)

which is a functional of the same form as obtained in [40]. Thus since the set A’ is a set of
inextensional deformations minimization of the functional .J from (5.2.3) on A% is exactly
the same as the flexural shell model from [40]. Note however that for the formulation
(5.3.10) at least W2 geometry is necessary and only W for the formulation (5.2.3)

on AF.

Remark 5.3.3. One can see that if we had V/1p = —SV’0 as the condition in .A”" instead

of V'ip = SV’0, all the calculations stay the same.
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Remark 5.3.4. Moreover, in the case of St. Venant—Kirchhoff material, the appropriate
function ¢; from [40] is exactly the tensor .4 from (1.3.3). By direct calculations as above,
this is equal to ¢7"V*(S,V'S), where ¢?"V* is from (5.2.6). So, in the St. Venant—
Kirchhoff material functionals our functional (5.2.3) on A" and the functional from [40]

are not only of the same form, but they coincide.

Remark 5.3.5. In the case of the planar geometry for the middle surface of undeformed

shell (8 = (2’,0)), since b(@) = 0, we can also write

qr(b(¥) — b(0)) = 4s(b(¥)).

5.3.3. The Koiter shell model

According to (5.3.2), the membrane strain reduces to

%(v/wTv/w _ V/GTV/O)
0

(5.3.11)

This is usual membrane strain, see e.g. [21]. Note that

V' V' = (af, - al)s, 5 = ap,6,(1) = a(tp)

is the metric tensor of the surface parametrized by 0. Thus the above measure of mem-
brane deformation is given as the change of the metric tensor, i.e. the difference of metric
tensors on deformed and undeformed deformations a() — a(8).

Moreover, since (1, S) € AX we are in the assumptions of Lemma 5.5.4 for P; =
Oy, = 1,2 and Mg = 0sB. Thus according to Remark 5.5.5, there are only two
pointwise choices for the matrix S. However assumed regularity of S implies that there
are only two choices for S but as a function. Now the boundary condition on S implies
that S is uniquely defined by terms of V't and V'6. We can check that we still have

(since for this we only use Sa; = a¥)

ST0sSas = Sy (1) ag. (5.3.12)

98



A Naghdi type nonlinear shell model Properties of the model

However this now leads to

ST0s,Sas - ap, = Suu(V)as, - ap, = STlea;f -ap, — 0g a3 - ag,
= 851a§f’ -Sag, — 0g,as - ag,
= 8ﬁ1a}f . a}% — O, a3 - ag, + 8gla§b - (Sag, — a‘é)
= bg,, () — by, + Ip 0y - (Sag, — afy).

Now since a;f’ -Sag, = 0and a?f : ag; = 0 we obtain that

Opaf - (Sas, —a}) = —af - 05, (Sas, — a},) = —Sas - 95, (Sas, — 9s,1). (5.3.13)

Furthermore

ST628a1 sy = 828&1 : Sag = (82(Sa1) — S@gal) . SG,Q = (62(8(11) — S@lag) . Sag
= (82(80,1) — 81(Sa2) + 8180,2) . SCLQ = (82(80,1) — 81(80,2)) . SCLQ

= (%2(Say — 01vp) — 01(Say — %avp)) - Sas.
(5.3.14)

Now we see from the from (5.3.13) and (5.3.14) that the flexural part of the strain is given
as a perturbation of the change of the curvature tensor of the order h? of the derivatives of
the membrane strains which in the energy contribute by the factor h. Now the energy of

the nonlinear model of the Koiter type following from .J on A¥ is given by

J@.8) = 3h [ W (a() - a(6)) Vada'

+ ?—; qr(b(vp) — b(0) + perturbation)/adx’ — / f - Yadz'

(5.3.15)

For a particular choice of the membrane energy density function I¥,,, as in the case of the
St. Venant—Kirchhoff material in (5.2.6) the membrane energy is equal to the classical
Koiter model (see [21,47]). As already noted the flexural strain is a perturbation of the
classical strain given as the change of curvature tensor. Similar situation occurred in
the linear models in [86] and [87]. In [47] Koiter argues that the theory obtained using
lower order perturbations are equivalent: “We have stressed repeatedly that the addition
of terms of this type to the strain energy per unit area is often convenient in order to obtain

the equations in the simplest possible form for the problem at hand.”
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5.3.4. Linearization of the model

In this subsection we linearize the model given in (5.2.4). We first linearize the non-
linear strains from (5.2.5) and compare in Proposition 5.3.6 the obtained energy for the
St. Venant—Kirchhoff material as in (5.2.6). In the second step in Proposition 5.3.7 we
linearize the conditions in the sets of admissible functions. The obtained linearized strain,
the total energy functional and the constraints in the function spaces turn out to be exactly

the same as in the linear Naghdi type model from [87] (and presented in Chapter 1).

Proposition 5.3.6. Linearization of nonlinear strains given in (5.2.5) gives strains as in
the linear model of Naghdi type from [87]. Furthermore linearization of the nonlinear
STVK energy as given in Remark 5.2.2 gives energy as in the linear model of Naghdi
type from [87].

Proof. For both, it is sufficient to prove that
%AC(STVIT,[J + V/Q)T(STV/’I,b _ V/O)
(Sa3)TV'yp
T
~ [al a’ a3] [&u +a; Xw Ou+as xw| (5.3.16)

and
STalsag - a3 ST(?gSa,g - ag

1 T
7 |S"0Sas a1 STOSa;-a)| ~ [al a2 ai%} V'w. (5.3.17)
ST818a1 %) STagsal %)

Since S(x’) € SO(3) a.e., there is a skew symmetric matrix A,, (w denotes its axial

vector) such that
=1
S = exp(Ay) = Y EAZ ~T+A,.
k=0

In linearized elasticity we usually use displacement w as the difference of the deformed

and undeformed geometry: u = @ — 8. Now we have
STV — V'O~ (1—-AL)(VO+Vu)—VO~Vu—-A,V0. (5.3.18)
Similarly, STV'4) + V'8 ~ V'u — A,V'0 + 2V'0. Linearization of their product is
(STV'yp + V') (STV'p — V'0) = 2V'0" (V'u — A,V'0)

=2V'0" [(%u +a; Xxw O+ ay X w] . (5.3.19)
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Moreover (since al V'8 = 0):
(Sas)"V'y ~ (I+ Ay)as)" (V'0 + V'u)
=alV'0+alVu+ (wxa3)'VO+ (wxaz) Vu

~aiV'u+ (wxaz)'V'0=al [&u +a; Xw Ot + ay X w} :
(5.3.20)

we have the first claim. For the second

STQBSai -a; = 0gSa,; - STaj ~ Agwai- (I+Ay)a; ~ Aguai-a; = (a; X aj) - Osw.

(5.3.22)
Since from (1.2.1) we have a' = \/ia(ag X as), a* = \/La(ag X ay), a® = \/La(al X @),
by checking each coordinate, we see that the second claim is also fulfilled. U

Proposition 5.3.7. Linearization of the conditions in sets AN AK AT gives conditions
in spaces Vi, Vi, Vg, respectively, the spaces corresponding to the spaces in the linear

Naghdi type models from [87].

Proof. For A" we see that
(,8) e A" «— STV'yp - V'6 =0, (1,8) € AN, (5.3.23)
and we proved
STV — [al aQ} ~ [81u+a1 X w O+ as X wl-
For AX we use (5.3.2) to see that (1, S) € AX if and only if
LSTV'y + V'0)T(STV'p — V') LV V' —V'0TV'9)

_ . (5.3.24)
(Sas)"V'y 0

The linearization of the matrix on the right hand side is given by

1
5 (v/,l’bTv/w . v/eTv/e) — ((vle + Vlu)T(vle + v/u) . v/eTv/e)

N | —

= % (V'O'V'u+ Vu'V'0) =~(u)
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and is known as linearization of the change of metric tensor and usually appears in the lin-
ear membrane, flexural and Koiter shell models. Then from the proof of Proposition 5.3.6

we obtain linearization of the matrix on the left hand side and obtain

[al as ag]T [8111,—1—0) X a; Ou+w X ag} = 7(:) ; (5.3.25)

which is equivalent to (u,w) € Vi due to Lemma 4.1. in [87]. O

Note that condition det [Sa3 XY, 8214 > ( from A" after linearization implies
the condition 1 + \/E(a,1 -Ou + a? - Oru) > 0, which is inherently fulfilled for small

deformations in linear theories and leaves no condition in the function space.

5.3.5. Differential formulation

In this subsection we assume that the solution of (5.2.4) that is regular enough exists
and derive the differential equations.

In order to obtain the weak and differential formulation of the model we need to find
the Géteaux derivative of the functional J over A" Let (1, S) € A" minimizes the total
energy functional (5.2.4) and satisfies det |Sa; 0,1 01| > 0. The last condition on
the determinant is additional assumption in order to derive the differential equations of
the model. Let & > 0 and let the perturbation (1, S.) € A" of (1, S) is in the following
form

Y=t +ev,  S.=ehvS,

for some smooth enough functions v,w : w — R? that satisfy boundary conditions
v|,, = w,, = 0. Here A,, is the skew-symmetric matric of order 3 with axial vector w.

Then we obtain
(SIV'yp, + V') (SIV'yp. — V'0) = (STV'yp + V') (STV'y — V'0)
+ 5((STV’¢ FVO)TST (Vo — Ay V'a))
+ <V’v = va’q/;) TS(STV’¢ — v’e)) + 0(£?),
(Scas)'V'ih, = (Sas)' V' + £(Sasz)" (V'v — A, V'9p) + O(e?),
SI0sS. = S"05S + ST Ap,wS + O(?) = ST9sS + cAgry, + O(e%), B=1,2.
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Next we plug this perturbation into functional J from (5.2.3) with the energy density func-
tions given by (5.2.5). Then the stationary point of the functional satisfies the following

equation
T/ 'ONT (QT'XT7/,/y _ X7/
h/WT/n (S*V'yp+V'0) (S"V'y —V'0)
w (Sa3)TV'yp
(V'1h + SV'0)T (V'v — Ay V'ah)+ (Vv — A, V') (V'yp — SV'6)
(Sa3)” (V'v — A, V')

h3
+ E / fo (STV/S) ' |:AST81’UJ AST82W:| \/Edwl = / -f : U\/adwl7

Vadx'

(5.3.26)

for all smooth functions v and w. Since Agry,,, 3 = 1,2 are skew-symmetric matrices
only skew-symmetric parts of sub-matrices of 3 X 6 matrix Q' (STV’ S) are relevant in
the flexural energy. Thus there are matrix functions 1, m of type 3 x 2 such that (5.3.26)

can be written by

/ﬁ- (V’v—l— [alq,bxw 821,0xw})\/Edw’+/ﬁ1~V’w\/5dw’:/f"v\/ﬁda:’.

(5.3.27)
From this equation we can derive the differential equations of the model.
- div(Van) + f = 0
—= div (vanl =
\/a Y
(5.3.28)

1

\/adlv (\/aﬁl) +81’¢ X ’le + 821# X ’flg = 0,

where 7, and 71, are columns of the stress tensor 1 = [ﬁl ﬁ2] These equations are
exactly the equations of the special Cosserat shell model with a single director, see [6].
The first equation represents the equation of equilibrium of forces and the second equi-
librium of moments (i and m are the force and couple stress tensors). The dependance
of i and m on the variables S, V'1 and V'S represents particular constitutive law. The
linear Naghdi type model from [87] has a similar structure and the equilibrium equations

are the same as in (5.3.28) with 0gt replaced by 056, for § € {1,2}.
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5.4. CONVERGENCE IN REGIMES

In this section we analyse behavior of the total energy functional (5.2.3) using the
['-convergence with respect to the small parameter A (thickness). We do it in various
regimes with the same scaling the Lamé coefficients (implicitly given in functions w,, and
qr) as it was done when the corresponding regimes were analysed starting from the three-
dimensional nonlinear elasticity in Chapter 3. More precisely, we observe the I'-limit of

the family of functionals (J;* (1, S))ss0, where J.%* : L*(w; R?) x L?(w; SO(3)) — R

are defined by
(
h_o‘/wm(S,V’@b)\/Edw’
2d, a0 hué_a (1/)7 S) € AN7
Sy, S) =49 + - qf(S,V’S)\/Eda:’—/f-v,b\/Edaz’
+00 otherwise.
\ (5.4.1)

Thus, in functional J from (5.2.3) we incorporated the effect of elasticity coefficients in
functions w,, and gy (without the change of their notation) by explicitly pulling the factor
h=~1 out of those functions, analogously to (3.1.1). The force term is kept unscaled.
Our goal is to prove a convergence result in various regimes for a > —1, simi-
lar to Theorem 3.2.1 where we formulated known results of the asymptotic analysis of
thin three—dimensional bodies in the case of planar middle surface (geometry). We will
seek for the I-limits of the family of functionals (.J-**),<¢ in the strong L*(w; R?) x
L*(w; SO(3)) topology, but due to reasons similar to the ones stated in Remark 3.1.2,
in view of Lemma 5.4.3, it is equivalent to seeking I'-limits in the weak W14 (w; R3) x

W12(w; SO(3)) topology.
Due to technical reasons, we will also observe family of functionals (Jéf”a) n>o for

which we have J;fl,;a(v,b) = infger2soe) Jr 0 (1, S) forall b > 0 and @ > —1. More
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precisely: we define Jéif‘ : L*(w;R3) — R by

p

f
S€L21£SO (3)) [h /wwm(S V') Vada! b e AY
Jéti/za(d’) = 3 qf (S,V'S)Vadz' — / f- 1,[&/56[:1:’}
400 otherwise,
\
(5.4.2)
where

AY = {4 e WH(w;R?) : 3S € WH(w; SO(3)) s.t. (,S) € AN}, (5.4.3)

Note that even though the infimum for S in definition of the functional Jéfi;f“ is taken in
the set L?(w; SO(3)), effectively due to the definition of the set of admissible functions
for the functional .J-** this infimum is taken over the set 1W?(w; SO(3)). We will seek
the I'-limit of this family of functionals (JS '“)h>o in the strong L*(w; R?) topology.

As said, our goal is to find I'-limits of family of functionals (Jhd’ )n>o in the strong
LYw;R3) x L?(w; SO(3)) topology and of family of functionals (Jsdh )n>o in the strong
L*(w;R3) topology. These results have a theoretical value on its own, but they will be
used in the Chapter 6 as well. To make results broad enough for both purposes, in this
section we will observe functional in both settings regarding Dirichlet boundary condi-
tions: with the Dirichlet boundary conditions on a set 7y C Jw of positive capacity and
without the Dirichlet boundary conditions (i.e. for 79 = ). So in next two results if
Dirichlet boundary conditions are not explicitly mentioned in a assumption or claim of
the theorem, then it is implied that the claim holds for both mentioned settings (|| > 0
and vy = ().

Additionally, even though our model is defined for geometries parametrized by 8 &
Whee(w; R3), for this section we will assume 8 € C?(w; R?) for technical reasons. Note
also that existing results of I'-convergence for shell related problems starting from 3d
elasticity are done for the same increased smoothness of the middle surface geometry.

In the continuation we present two convergence theorems for families (., sd’a) h>0 and
(Jg‘i;“) n>0- Note that in the case of Theorem 5.4.1, apart from the case o € [5/3,2), we
also for now lack a result for the case o € (0,5/3). In Theorem 5.4.2 we do have a claim

for mentioned case.
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Theorem 5.4.1. Let the family of functionals (Jid’a) n>o be as defined in (5.4.1). Let us

assume that conditions N1), N2) and N3) are satisfied.

a)

b)

Let « € (—1,0). Let additionally , = 0, i.e. there is no Dirichlet boundary
condition. Then the I'-limit of the family of functionals (.J sd’<_1’0>)h