
Subordinate random walks

Šebek, Stjepan

Doctoral thesis / Disertacija

2019

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of 
Zagreb, Faculty of Science / Sveučilište u Zagrebu, Prirodoslovno-matematički fakultet

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:217:924439

Rights / Prava: In copyright / Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-04-20

Repository / Repozitorij:

Repository of the Faculty of Science - University of 
Zagreb

https://urn.nsk.hr/urn:nbn:hr:217:924439
http://rightsstatements.org/vocab/InC/1.0/
http://rightsstatements.org/vocab/InC/1.0/
https://repozitorij.pmf.unizg.hr
https://repozitorij.pmf.unizg.hr
https://repozitorij.unizg.hr/islandora/object/pmf:5994
https://dabar.srce.hr/islandora/object/pmf:5994


FACULTY OF SCIENCE

DEPARTMENT OF MATHEMATICS

Stjepan Šebek

Subordinate random walks

DOCTORAL DISSERTATION

Zagreb, 2019.



FACULTY OF SCIENCE

DEPARTMENT OF MATHEMATICS

Stjepan Šebek

Subordinate random walks

DOCTORAL DISSERTATION

Supervisor:

prof. dr. sc. Zoran Vondraček
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SUMMARY

In this thesis, we consider a large class of subordinate random walks on the integer lattice Zd

via subordinators with Laplace exponents which are complete Bernstein functions satisfying

some mild scaling conditions at zero. Subordination is a procedure for obtaining new process

from the original one. The new process may differ very much from the original process, but the

properties of this new process can be understood in terms of the original process.

Main results of the thesis are the elliptic Harnack inequality and n-step transition probability

estimates for subordinate random walks. In order to obtain the elliptic Harnack inequality, we

first establish estimates for one-step transition probabilities, the Green function and the Green

function of a ball.

The main tools we apply to get n-step transition probability estimates for subordinate ran-

dom walks are the parabolic Harnack inequality and appropriate bounds for the transition kernel

of the corresponding continuous time random walk.
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SAŽETAK

U ovoj disertaciji promatramo veliku klasu subordiniranih slučajnih šetnji na cjelobrojnoj mreži

Zd dobivenih pomoću subordinatora s Laplaceovim eksponentima koji su potpune Bernsteinove

funkcije koje zadovoljavaju neke blage uvjete skaliranja u nuli. Subordinacija je procedura do-

bivanja novog procesa na temelju originalnog procesa. Iako se novi proces može dosta raz-

likovati od originalnog, svojstva dobivenog procesa mogu se shvatiti u terminima originalnog

procesa.

Glavni rezultati do kojih dolazimo su eliptička Harnackova nejednakost te ocjene na pri-

jelazne vjerojatnosti za subordinirane slučajne šetnje. Kako bismo dobili eliptičku Harnack-

ovu nejednakost, prvo dokazujemo ocjene za jednokoračne prijelazne vjerojatnosti, Greenovu

funkciju te Greenovu funkciju kugle.

Glavne tehnike koje koristimo kako bismo dobili ocjene za n-koračne prijelazne vjerojat-

nosti za subordinirane slučajne šetnje su parabolička Harnackova nejednakost i odgovarajuće

ocjene za prijelaznu jezgru pripadajuće neprekidno vremenske slučajne šetnje.
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1. INTRODUCTION

1.1. MOTIVATION

In the case of continuous time Markov processes, subordination is a well-known and useful

procedure of obtaining new process from the original process. The new process may differ very

much from the original process, but the properties of this new process can be understood in

the terms of the original process. The best known application of this concept is obtaining the

symmetric stable process from the Brownian motion. A lot of work has been done concerning

subordination of continuous time Markov processes. On the other hand, discrete subordination

was introduced only in 2011 by A. Bendikov and L. Saloff-Coste in their paper Random walks

on groups and discrete subordination, Mathematische Nachrichten no. 285, 580 – 605. Since

the discrete subordination is a relatively new technique, not much is known about subordinate

random walks, even though it is a very natural technique of obtaining new random walks from

the existing ones.

1.2. SUBORDINATE RANDOM WALKS

In this section we introduce subordinate random walks starting from the simple symmetric

random walk and using a Bernstein function. For the definition and some details about simple

symmetric random walks, see Section 2.1 and for short overview of Bernstein functions, see

Section 2.2.

Let Sn = X1 +X2 + · · ·+Xn be the simple symmetric random walk in Zd which starts from

the origin and let φ be a Bernstein function such that φ(0) = 0 and φ(1) = 1. Such a function

admits the following integral representation

φ(λ ) = bλ +
∫
(0,∞)

Ä
1− e−λ tä

µ(dt), (1.1)
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for b> 0 and a measure µ on (0,∞) satisfying
∫
(0,∞) (1∧ t)µ(dt)< ∞, see [25, Sec. 3].

We consider a sequence of positive numbers aφ
m which is related to the function φ and is

defined as

aφ
m = bδ1(m)+

1
m!

∫
(0,∞)

tme−t
µ(dt), m≥ 1, (1.2)

where δx is the Dirac measure at x. One easily verifies that

∞∑
m=1

aφ
m = b+

∫
(0,∞)

(et−1)e−t
µ(dt) = b+

∫
(0,∞)

(1− e−t)µ(dt) = φ(1) = 1.

Let τn = R1+R2+ · · ·+Rn be a random walk on Z+ with increments Ri that are independent of

the random walk Sn and have the distribution given by P(R1 = m) = aφ
m. A subordinate random

walk is defined as Sφ
n := Sτn , for all n > 0. It is straightforward to see that the subordinate

random walk is indeed a random walk. Since τ0 = 0 and S0 = 0, for any n ∈ N we can write

Sφ
n = Sτn =

n∑
k=1

(Sτk−Sτk−1)
d
=

n∑
k=1

Sτk−τk−1 =
n∑

k=1
SRk =

n∑
k=1

ξk, (1.3)

where (ξk)k>1 is a sequence of independent, identically distributed random variables with the

same distribution as Sφ

1 . Notice that the one-step transition probability pφ (1,x,y) of the random

walk Sφ
n is of the form

pφ (1,x,y) = Px(Sφ

1 = y) =
∞∑

m=1
Px(SR1 = y | R1 = m)aφ

m =
∞∑

m=1
p(m,x,y)aφ

m, (1.4)

where p(n,x,y) = Px(Sn = y) stands for the n-step transition probability of the simple ran-

dom walk Sn. We use the notation pφ (n,x,y) = Px(Sφ
n = y), pφ (n,x− y) = pφ (n,x,y) and

pφ (1,x,y) = pφ (x,y) = pφ (x− y).

1.3. OVERVIEW

As we have already mentioned, subordinate random walks were introduced in [9]. As authors

state in the paper, one of the very important characteristics of a random walk is the probability

of return to the starting point at time n. The main motivation for introducing the discrete sub-

ordination was to find a new class of random walks for which one can estimate the behavior

of those probabilities. After that, subordinate random walks were studied in [6] and [7] where

authors were interested in massive (recurrent) sets for subordinate random walks. In [21], au-

thor proved that the appropriately scaled subordinate random walk converges in the Skorohod

2



space to the stable process if and only if the Bernstein function that is used to define that par-

ticular subordinate random walk is regularly varying at zero with index α ∈ (0,1]. Authors in

[8] were also dealing with the convergence of subordinate random walks in the Skorohod space

and they found estimates for the transition probabilities of the subordinate random walks, but

only in some special regions, not global estimates. In all this papers, authors assumed that the

Bernstein function φ is regularly varying.

In this thesis we are concerned with the transition probabilities of the random walk Sφ
n which

are defined as pφ (n,x,y) = Px(Sφ
n = y). In the course of study we assume that φ is a complete

Bernstein function. Our second assumption is the scaling condition. We require that for some

constants c∗,c∗ > 0 and 0 < α∗ 6 α∗ < 1 the function φ satisfies

c∗
Ç

R
r

åα∗
6

φ(R)
φ(r)

6 c∗
Ç

R
r

åα∗

, 0 < r 6 R6 1.

Under these two assumptions we establish global estimates for the function pφ (n,x,y), that is

we prove that for all x,y ∈ Zd and n ∈ N it holds

pφ (n,x,y)�min
ßÄ

φ
−1(n−1)

äd/2
,

nφ(|x− y|−2)

|x− y|d
™
,

see Theorem 4.1, Theorem 6.1 and Theorem 6.18. In the above relation, the symbol � means

that the ratio of the two expressions is bounded from below and from above by some positive

constants.

Similar questions have already been addressed in the literature. In [5] the authors found

global estimates for transition probabilities of stable-like random walks. Recently, in [22] the

similar problem was solved on uniformly discrete metric measure spaces. We mention here

related papers and monographs [2], [3], [4], [14], [18], [19], [26], [28], [30].

We notice that the scaling condition means that the function φ is an O-regularly varying

function at 0 with Matuszewska indices contained in (0,1), see [10, Sec. 2]. Complete Bernstein

functions with such behaviour at zero can be found in the closing table of [25] and include

functions: φ(λ ) = λ α +λ β , α,β ∈ (0,1); φ(λ ) = λ α(log(1+λ ))β , α ∈ (0,1), β ∈ (0,1−α);

φ(λ ) = (log(cosh(
√

λ )))α , for α ∈ (0,1) etc. It is possible, however, to construct examples of

complete Bernstein functions that satisfy scaling conditions and that are not comparable to any

regularly varying function, see e.g. [15].
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1.4. NOTATION

Throughout the paper c,c1,c2, . . . will denote generic constants. Their labeling starts anew in

each statement and their dependence on the function φ and on the dimension d will not be

mentioned explicitly. The cardinality of a set A⊂ Zd is denoted by |A|. The Euclidean distance

between x and y is denoted by |x− y|. For x ∈ Rd and r > 0, we write B(x,r) = {y ∈ Zd :

|y− x| < r} and Br = B(0,r). We use notation a∧b := min{a,b} and a∨b := max{a,b}. For

any two positive functions f and g, we write f � g if there exist constants c1,c2 > 0 such that

c1 6 g/ f 6 c2.

4



2. PREPARATORY MATERIAL

2.1. SIMPLE RANDOM WALK

Let (Xn)n>1 be independent, identically distributed random variables defined on a probability

space (Ω,F ,P) taking values in the integer lattice Zd with

P(Xk = ei) = P(Xk =−ei) =
1

2d
, i ∈ {1,2, . . . ,d},

where ei is the ith unit vector in Zd . A simple random walk starting at x ∈ Zd is a stochastic

process S = (Sn)n>0 with S0 = x and

Sn = x+X1 +X2 + · · ·+Xn.

The probability distribution of Sn is denoted by

pn(x,y) = Px(Sn = y).

Here we have written Px to indicate that the random walk starts at the point x. We will similarly

write Ex to denote expectations assuming S0 = x. If x is missing, it will be assumed that S0 = 0.

We write pn(x) for pn(0,x).

The most important result about simple symmetric random walks on Zd that we use in this

thesis are Gaussian bounds for the n-step transition probabilities of S. Using the result from

[14, Theorem 5.1.] and adjusting it to the case of the simple symmetric random walk which has

the period 2, we get

pn(x)6Cn−
d
2 e−

|x|2
Cn , x ∈ Zd, n ∈ N,

pn(x)+ pn+1(x)> cn−
d
2 e−

|x|2
cn , |x|6 n, n ∈ N.

(2.1)

5



2.2. BERNSTEIN FUNCTIONS

Definition 2.1. A function φ : (0,∞)→ (0,∞) is called a Bernstein function if φ is of class

C∞((0,∞)) and

(−1)n
φ
(n) 6 0 for all n ∈ N.

Here φ (n) denotes the n-th derivative of φ . It is known (see [25, Theorem 3.2]) that φ is a

Bernstein function if and only if it is of the form

φ(λ ) = a+bλ +
∫
(0,∞)

(1− e−λ t)µ(dt),

where a,b> 0 and µ is a measure on (0,∞) satisfying∫
(0,∞)

(1∧ t)µ(dt)< ∞,

called the Lévy measure.

Definition 2.2. A function m : (0,∞)→ (0,∞) is a completely monotone function if m is of

class C∞((0,∞)) and

(−1)nm(n) > 0 for all n ∈ N.

Remark 2.3. Equivalently, a function m is a completely monotone function if it is a Laplace

transform of a measure, see [25, Theorem 1.4].

Definition 2.4. A Bernstein function φ is said to be a complete Bernstein function if its Lévy

measure µ has a completely monotone density m(t) with respect to the Lebesgue measure,

φ(λ ) = a+bλ +
∫
(0,∞)

(1− e−λ t)m(t)dt.

One important property of complete Bernstein functions is formulated in the following

proposition.

Proposition 2.5. Function φ 6≡ 0 is a complete Bernstein function if and only if the function

φ?(λ ) := λ/φ(λ ) is a complete Bernstein function.

A proof can be found in [25, Proposition 7.1]. Generalizing the property from Proposition

2.5 leads to the larger class of special Bernstein functions.

Definition 2.6. A Bernstein function φ is said to be a special Bernstein function if the function

φ?(λ ) = λ/φ(λ ) is again a Bernstein function.

6



It is clear from Proposition 2.5 that complete Bernstein functions are a subset of special

Bernstein functions. It can be shown that the family of all special Bernstein functions is strictly

larger than the family of all complete Bernstein functions (see [25, Example 11.18]).

It is well known that, if φ is a Bernstein function, then φ(λ t)6 λφ(t) for all λ > 1, t > 0,

which implies
φ(v)
φ(u)

6
v
u
, 0 < u6 v. (2.2)

2.3. SCALING CONDITION

We need some additional assumptions on the behavior of the Bernstein function φ that we use to

define the subordinate random walk. As we already mentioned in the Overview, the assumption

in some of the pioneer papers was that φ(λ ) = λ α , α ∈ (0,1). A generalization of that approach

was the assumption that φ is a Bernstein function which is regularly varying at zero with index

α ∈ (0,1). Even more general assumption is that φ is a Bernstein function which satisfies a

scaling condition at zero. This means that for some constants c∗,c∗ > 0 and 0 < α∗ 6 α∗ < 1

the function φ satisfies

c∗
Ç

R
r

åα∗
6

φ(R)
φ(r)

6 c∗
Ç

R
r

åα∗

, 0 < r 6 R6 1. (2.3)

That this is really more general assumption than regular variation, one can see in the example

at the end of [15].

Using (2.3), we can easily obtain the bounds for the inverse function φ−1 which take the

form

(1/c∗)1/α∗
Ç

R
r

å1/α∗

6
φ−1(R)
φ−1(r)

6 (1/c∗)1/α∗

Ç
R
r

å1/α∗
, 0 < r 6 R6 1. (2.4)

We only show how to get the first inequality since the second one is obtained in a completely

analogous way. Take 0 < r 6 R6 1. Since φ is an increasing function which satisfies φ(0) = 0

and φ(1) = 1, we have that φ−1 is also increasing, φ−1(0) = 0 and φ−1(1) = 1. From the upper

bound in (2.3) we get
φ(φ−1(R))
φ(φ−1(r))

6 c∗
(

φ−1(R)
φ−1(r)

)α∗

.

From this we clearly have
φ−1(R)
φ−1(r)

> (1/c∗)1/α∗
Ç

R
r

å1/α∗

.

7



2.4. TRANSIENCE OF SUBORDINATE RANDOM

WALKS

We are only interested in transient random walks. Since we explore transition probability esti-

mates which are closely related to the Green function of our walk, transience is necessary for

us to have finiteness of the Green function. We use Chung-Fuchs theorem to show under which

condition a subordinate random walk is transient. Denote with Ψφ the characteristic function of

the one step of a subordinate random walk. We want to prove that there exists δ > 0 such that

∫
(−δ ,δ )d

Re
Ç

1
1−Ψφ (θ)

å
dθ < ∞.

The law of the variable Sφ

1 is given with (1.4). We denote the one step of the simple symmetric

random walk (Sn)n>0 with X1 and the characteristic function of that random variable with Ψ.

Assuming |θ |< 1 we have

Ψ
φ (θ) = E[eiθ ·Sφ

1 ] =
∑

x∈Zd

eiθ ·x
∞∑

m=1

∫
(0,+∞)

tm

m!
e−t

µ(dt)P(Sm = x)

=
∞∑

m=1

∫
(0,+∞)

tm

m!
e−t

µ(dt)
∑

x∈Zd

eiθ ·xP(Sm = x) =
∞∑

m=1

∫
(0,+∞)

tm

m!
e−t

µ(dt)(Ψ(θ))m

=
∫
(0,+∞)

(etΨ(θ)−1)e−t
µ(dt) = φ(1)−φ(1−Ψ(θ)) = 1−φ(1−Ψ(θ)). (2.5)

From [18, Section 1.2, page 13] we have

Ψ(θ) =
1
d

d∑
m=1

cos(θm), θ = (θ1,θ2, . . . ,θd).

That is function with real values so

∫
(−δ ,δ )d

Re
Ç

1
1−Ψφ (θ)

å
dθ =

∫
(−δ ,δ )d

1
φ(1−Ψ(θ))

dθ .

From Taylor’s theorem it follows that there exists a6 1 such that

|Ψ(θ)|= Ψ(θ)6 1− 1
4d
|θ |2, θ ∈ B(0,a). (2.6)

Now we take δ such that (−δ ,δ )d ⊂ B(0,a). From (2.6), using the fact that φ is increasing, we

get
1

φ (1−Ψ(θ))
6

1
φ (|θ |2/4d)

, θ ∈ B(0,a).

8



Hence,

∫
(−δ ,δ )d

1
φ(1−Ψ(θ))

dθ 6
∫
(−δ ,δ )d

1
φ (|θ |2/4d)

dθ 6
∫

B(0,a)

φ(|θ |2)
φ (|θ |2/4d)

1
φ(|θ |2)

dθ

6 c∗(4d)α∗
∫

B(0,a)

1
φ(|θ |2)

dθ = c1(4d)α∗
∫ a

0

rd−1

φ(r2)
dr

=
c1(4d)α∗

φ(a)

∫ a

0
rd−1 φ(a)

φ(r2)
dr 6

c1c∗(4ad)α∗

φ(a)

∫ a

0
rd−2α∗−1dr

and the last integral converges for d− 2α∗− 1 > −1. Hence, the subordinate random walk

is transient for d > 2α∗. In the rest of the thesis, we always assume that we have transient

subordinate random walk.

2.5. FUNCTIONS g AND j

Throughout the thesis, we often use the following two functions

g : (0,∞)→ (0,∞), g(r) = r−d
φ(r−2)−1, (2.7)

j : (0,∞)→ (0,∞), j(r) = r−d
φ(r−2). (2.8)

In this section, we present their properties that we need later.

It is clear that j is a decreasing function. For function g we prove the following lemma

Lemma 2.7. Let 16 r 6 q. Then g(r)> (c∗)−1g(q).

Proof. Using (2.3) and d > 2α∗ we get

g(r) = r−d
φ(r−2)−1 = q−d

φ(q−2)−1
Åq

r

ãd φ(q−2)

φ(r−2)
> (c∗)−1g(q)

Åq
r

ãd−2α∗

> (c∗)−1g(q).

�

Lemma 2.8. Let r > 0. If 0 < a6 1 then

j(ar)6 a−d−2 j(r), (2.9)

g(ar)> a−d+2g(r). (2.10)

If a> 1 then

j(ar)> a−d−2 j(r). (2.11)

9



Proof. In the proof of this lemma, we only use (2.2):

j(ar) = (ar)−d
φ((ar)−2) = (ar)−d

φ(r−2)
φ((ar)−2)

φ(r−2)
6 a−d−2 j(r).

Relations (2.10) and (2.11) are proved in a completely analogous way. �

Lemma 2.9. Let r > 1. If 0 < a6 1 such that ar > 1 then

g(ar)6
g(r)

c∗ad−2α∗
, (2.12)

g(ar)>
g(r)

c∗ad−2α∗ . (2.13)

If a> 1 then

g(ar)6
c∗

ad−2α∗ g(r). (2.14)

Proof.

g(ar) = (ar)−d
φ((ar)−2)−1 = (ar)−d 1

φ(r−2)

φ(r−2)

φ((ar)−2)
6

g(r)
c∗ad−2α∗

.

Relations (2.13) and (2.14) are proved in a completely analogous way. �

2.6. HARMONIC FUNCTIONS

In this section we do not restrict ourselves only to subordinate random walks. To stress that, we

use notation X = (Xn)n>0 for a general random walk. We also use notation p(x,y) = Px(X1 = y)

for one-step transition probabilities and

P f (x) =
∑

y∈Zd

p(x,y) f (y)

for the transition operator.

Definition 2.10. We say that a function f : Zd→ [0,∞) is harmonic in B⊆ Zd , with respect to

X , if

f (x) = P f (x) =
∑

y∈Zd

p(x,y) f (y), ∀x ∈ B. (2.15)

It is sometimes convenient to work with the operator A := P− I. Notice that relation (2.15)

is equivalent to A f (x) = 0 for every x ∈ B. There is a strong connection between martingales

and harmonic functions. Denote Fn := σ{X0,X1, . . . ,Xn}, n> 0.

Lemma 2.11. Let f : Zd → [0,∞) be a harmonic function in B and τB = inf{n > 0 : Xn /∈ B}.

Then Mn := f (Xn∧τB) is a martingale with respect to Fn.

10



A proof can be found in [18, Proposition 1.4.1]. We are now ready to prove that Definition

2.10 is equivalent to the mean-value property in terms of the exit from a finite subset of Zd .

Lemma 2.12. Let B be a finite subset of Zd . Then f : Zd → [0,∞) is harmonic in B, with

respect to X , if and only if f (x) = Ex[ f (XτB)] for every x ∈ B.

Proof. Notice that XτB is well defined since Px(τB < ∞) = 1, which is true because B is a finite

set. Let us first assume that f : Zd → [0,∞) is harmonic in B, with respect to X . We take

arbitrary x ∈ B. By the martingale property f (x) = Ex[ f (Xn∧τB)], for all n> 1. First, by Fatou’s

lemma we have Ex[ f (XτB)] 6 f (x) so f (XτB) is a Px-integrable random variable. Since B is a

finite set, we have f 6M on B, for some constant M > 0. Using these two facts, we get

f (Xn∧τB) = f (Xn)1{n<τB}+ f (XτB)1{τB6n} 6M+ f (XτB).

Since the right hand side is Px-integrable, we can use the dominated convergence theorem and

we get

f (x) = lim
n→∞

Ex[ f (Xn∧τB)] = Ex[ lim
n→∞

f (Xn∧τB)] = Ex[ f (XτB)].

On the other hand, if f (x) = Ex[ f (XτB)], for every x ∈ B, then for x ∈ B we have

f (x) =
∑

y∈Zd

Ex [ f (XτB) | X1 = y ]Px(X1 = y) =
∑

y∈Zd

p(x,y)Ey[ f (XτB)] =
∑

y∈Zd

p(x,y) f (y).

�

The last thing we prove in this section is the maximum principle for the operator A.

Proposition 2.13. Assume that there exists x ∈ Zd such that f (x)6 f (y) for all y ∈ Zd . Then

(A f )(x)> 0. (2.16)

Proof. Since f (x)6 f (y) for all y ∈ Zd , we have

(P f )(x) =
∑

y∈Zd

Px(X1 = y) f (y)> f (x)
∑

y∈Zd

Px(X1 = y) = f (x).

This implies (A f )(x) = (P f )(x)− f (x)> 0. �

2.7. AUXILIARY RESULTS

We repeatedly use the fact that

c′rd 6 |B(x,r)|6 c′′rd, x ∈ Zd, (2.17)

for constants c′,c′′ > 0 which depend only on the dimension d.
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Lemma 2.14. Let Γ(x,a) =
∫

∞

a tx−1e−tdt and Γ(x) = Γ(x,0). Then

lim
x→∞

Γ(x+1,x)
Γ(x+1)

=
1
2
.

Proof. Using a well-known Stirling’s formula

Γ(x+1)∼
√

2πx xxe−x, x→ ∞ (2.18)

and [1, Formula 6.5.35] that states

Γ(x+1,x)∼
√

2−1πx xxe−x, x→ ∞,

we get

lim
x→∞

Γ(x+1,x)
Γ(x+1)

= lim
x→∞

√
2−1πx xxe−x
√

2πx xxe−x
=

1
2
.

�

Lemma 2.15. Let (Ui)i∈N be a sequence of independent, identically distributed exponential

random variables with parameter 1 and let Tn =
∑n

i=1Ui. Then for all n ∈N and for all t > 0 we

have

P(Tn 6 t)6 t.

Proof. Notice that Tn is the sum of n independent exponential random variables with parameter

1. Hence Tn ∼ Γ(n,1). Denote with FTn(t) = P(Tn 6 t) the distribution function of the random

variable Tn and with fTn the density function of Tn. We want to prove FTn(t)6 t for all t > 0.

Let g(t) := t−FTn(t). We will now prove that g(t) > 0 for all t > 0. Since g(0) = 0 it is

enough to prove that g is increasing on (0,∞). Hence, we want to prove that g′(t) > 0 for all

t > 0. Since g′(t) = 1− fTn(t), it is enough to prove that fTn(t)6 1 for all t > 0.

In the case n = 1 the result is trivial since T1 ∼ Exp(1) so FT1(t) = 1− e−t 6 t. For n> 2 it

is easy to check that the function fTn obtains maximum for t = n−1 and that maximum is

(n−1)n−1e−(n−1)

(n−1)!
.

Notice that the only thing left to prove is that nne−n/n! 6 1 for all n ∈ N. Using Stirling’s

approximation, we obtain

n!√
2πnnne−n

> 1⇒ n!
nne−n >

√
2πn⇒ nne−n

n!
6

1√
2πn
6 1.

�

12



Lemma 2.16. Let L> 1. Then for all 0 < r 6 1∧R6 R6 L we have

c∗
Lα∗

Ç
R
r

åα∗
6

φ(R)
φ(r)

6 φ(L)c∗
Ç

R
r

åα∗

. (2.19)

Proof. Since L > 1, relation (2.19) follows directly from (2.3) in the case R 6 1. For 0 < r 6

1 < R6 L (using (2.3) and the fact that φ is increasing) we have

φ(R)
φ(r)

6
φ(L)
φ(r)

6 φ(L)c∗
Ç

1
r

åα∗

6 φ(L)c∗
Ç

R
r

åα∗

,

and similarly
φ(R)
φ(r)

>
φ(1)
φ(r)

> c∗
Ç

1
r

åα∗
>

c∗
Lα∗

Ç
R
r

åα∗
,

as desired. �

Lemma 2.17. There exists a constant c > 0 such that

∑
y∈B(x,r)c

j(|x− y|)6 cφ(r−2)

for every x ∈ Zd and r > 0.

Proof. Assume that r > 1. By (2.3) and (2.17), we have

∑
y∈B(x,r)c

j(|x− y|)6
∞∑

i=0

∑
2ir6|x−y|<2i+1r

j(2ir)

6 c′′2d
φ(r−2)

∞∑
i=0

φ((2ir)−2)

φ(r−2)
6 cφ(r−2).

If r ∈ (0,1) then B(x,r)c = B(x,1)c. Therefore

∑
y∈B(x,r)c

j(|x− y|) =
∑

y∈B(x,1)c

j(|x− y|)6 cφ(1−2)6 cφ(r−2),

what finishes the proof. �

2.8. CONCRETE EXAMPLES OF SUBORDINATE

RANDOM WALKS

Example 1. As we have already commented in Section 1.2, to define the subordinate random

walk we need a Bernstein function satisfying some conditions. The canonical example of a

Bernstein function satisfying all of our assumptions is φ(λ ) = λ α , α ∈ (0,1). Since this is a
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complete Bernstein function, its Levy measure has a completely monotone density m(t) and

from [25, tables on pages 304 and 305] we know the explicit formula for m. Using this formula,

we can calculate coefficients aφ
m defined in (1.2):

aφ
m =

1
m!

∫
∞

0
tme−t α

Γ(1−α)
t−1−αdt =

αΓ(m−α)

Γ(m+1)Γ(1−α)
.

Using the standard result about asymptotics of the ratio of gamma functions that can be found

in [27], we obtain

aφ
m ∼

α

Γ(1−α)
m−α−1 =

α

Γ(1−α)

φ(m−1)

m
.

We write the last equality because this is precisely the shape of estimates that we will obtain for

coefficients aφ
m with our assumptions on the Bernstein function φ .

Example 2. We show one more interesting example of a subordinate random walk. In this

case, the Bernstein function φ will not satisfy the scaling condition, but coefficients aφ
m will

have very nice distribution. Again using [25, tables on pages 304 and 305] we know that for

a > 0

φ(λ ) =
(1+a)λ

λ +a

is a complete Bernstein function satisfying φ(0) = 0 and φ(1) = 1 and that its Lévy measure

has a completely monotone density given with

m(t) = (1+a)ae−at .

We can now calculate coefficients aφ
m:

aφ
m =

1
m!

∫
∞

0
tme−t(1+a)ae−atdt =

(1+a)a
m!

∫
∞

0
tme−(1+a)tdt

=
(1+a)a
Γ(m+1)

∫
∞

0

um

(1+a)m e−u du
1+a

=
a

Γ(m+1)(1+a)m

∫
∞

0
ume−udu =

a
(1+a)m

=
1

(1+a)m−1

Ç
1− 1

1+a

å
.

Hence, in this case, variables (Rn)n>1 have geometric distribution with the parameter a/(a+1).
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3. ELLIPTIC HARNACK INEQUALITY

The main result of this chapter is the scale-invariant elliptic Harnack inequality for subordinate

random walks.

Theorem 3.1 (Elliptic Harnack inequality). Let Sφ = (Sφ
n )n>0 be a subordinate random walk

in Zd . For each a < 1, there exists a constant ca < ∞ such that if f : Zd→ [0,∞) is harmonic on

B(x,n), with respect to Sφ , for x ∈ Zd and n ∈ N, then

f (x1)6 ca f (x2), x1,x2 ∈ B(x,an).

Remark 3.2. Notice that the constant ca is uniform for all n ∈ N. That is why we call this

result the scale-invariant elliptic Harnack inequality.

The proof of Theorem 3.1 will be given in the last section of this chapter.

3.1. ONE-STEP TRANSITION PROBABILITY

ESTIMATES

In this section, we establish estimates for one-step transition probabilities of the subordinate

random walk Sφ .

Proposition 3.3. Let Sφ be a subordinate random walk in Zd . Then

pφ (x,y)� j(|x− y|), x 6= y,

where j(r) = r−dφ(r−2) was defined in (2.8).

Before the proof of Proposition 3.3, we need to examine the behavior of the sequence

(aφ
m)m>1.
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Lemma 3.4. Let aφ
m be as in (1.2). Then

aφ
m � m−1

φ(m−1), m ∈ N. (3.1)

Proof. Since φ is a complete Bernstein function, there exists a completely monotone density

µ(t) such that

aφ
m =

1
m!

∫
(0,∞)

tme−t
µ(t)dt, m> 2.

From [17, Proposition 2.5] we have

µ(t)6 (1−2e−1)−1t−1
φ(t−1) = c1t−1

φ(t−1), t > 0 (3.2)

and

µ(t)> c2t−1
φ(t−1), t > 1. (3.3)

Inequality (3.3) holds if (2.3) is satisfied and for inequality (3.2) we do not need the scaling

condition. Using monotonicity of µ , Lemma 2.14 and (3.3) we get

aφ
m >

1
m!

∫ m

0
tme−t

µ(t)dt >
µ(m)

m!

∫ m

0
tme−tdt =

µ(m)

m!
(Γ(m+1)−Γ(m+1,m))

= µ(m)

Ç
1− Γ(m+1,m)

Γ(m+1)

å
>

1
4

µ(m)>
c2

4
φ(m−1)

m
,

for m large enough. On the other hand, using inequality (3.2), monotonicity of µ and (2.2), we

get for m> 2

aφ
m =

1
m!

∫ m

0
tme−t

µ(t)dt +
1

m!

∫
∞

m
tme−t

µ(t)dt 6
c1

m!

∫ m

0
tme−t φ(t−1)

t
dt +

µ(m)

m!

∫
∞

m
tme−tdt

6
c1φ(m−1)

m!

∫ m

0
tm−1e−t φ(t−1)

φ(m−1)
dt +

µ(m)

m!

∫
∞

0
tme−tdt 6

c1φ(m−1)

(m−1)!

∫ m

0
tm−2e−tdt+µ(m)

=
c1φ(m−1)

Γ(m)

∫
∞

0
tm−2e−tdt +µ(m)6

c1φ(m−1)

m−1
+ c1

φ(m−1)

m
6

3c1φ(m−1)

m
.

Hence, we have
c2

4
φ(m−1)

m
6 aφ

m 6 3c1
φ(m−1)

m

for m large enough. By modifying constants we obtain (3.1) for all m ∈ N. �

Proof of Proposition 3.3. Using (1.4) and the fact that P(Sm = z) = 0 for |z|> m, we have

P(Sφ

1 = z) =
∑

m>|z|
aφ

mP(Sm = z).
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Combining Lemma 3.4 and (2.1) we get

P(Sφ

1 = z) =
∑

m>|z|
aφ

mP(Sm = z)6 c1
∑

m>|z|

φ(m−1)

m
m−

d
2 e−

|z|2
c2m 6 c3

∫
∞

|z|
φ(t−1)t−

d
2−1e−

|z|2
c2t dt

= c3

∫ |z|
c2

0
φ(c2s|z|−2)

(
|z|2

c2s

)− d
2−1

e−s |z|2

c2s2 ds = c4|z|−d
∫ |z|

c2

0
φ(c2s|z|−2)s

d
2−1e−sds

= c4|z|−d

Ñ∫ 1
c2

0
φ(c2s|z|−2)s

d
2−1e−sds+

∫ |z|
c2

1
c2

φ(c2s|z|−2)s
d
2−1e−sds

é
=: c4|z|−d(I1(z)+ I2(z)).

We now show that I1(z) and I2(z) have upper bounds of the shape φ(|z|−2). For I1(z) we use

lower scaling to get

I1(z) = φ(|z|−2)
∫ 1

c2

0

φ(c2s|z|−2)

φ(|z|−2)
s

d
2−1e−sds6 φ(|z|−2)

∫ 1
c2

0

(c2s)α∗

c∗
s

d
2−1e−sds = c5φ(|z|−2).

For I2(z) we use (2.2) to get

I2(z) = φ(|z|−2)
∫ |z|

c2

1
c2

φ(c2s|z|−2)

φ(|z|−2)
s

d
2−1e−sds6 φ(|z|−2)

∫
∞

1
c2

c2ss
d
2−1e−sds = c6φ(|z|−2).

Hence, P(Sφ

1 = z)6 c7|z|−dφ(|z|−2). Similarly, using Lemma 3.4, (2.1), monotonicity of φ and

(2.2), we get

P(Sφ

1 = z)>
∑

m>|z|2
aφ

mP(Sm = z) =
∑

m>|z|2/2

(aφ

2mP(S2m = z)+aφ

2m+1P(S2m+1 = z))

> c8
∑

m>|z|2/2

(
φ((2m)−1)

2m
P(S2m = z)+

φ((2m+1)−1)

2m+1
P(S2m+1 = z)

)

> c8
∑

m>|z|2/2

φ((2m+1)−1)

2m+1
(P(S2m = z)+P(S2m+1 = z))

>
c8

4

∑
m>|z|2/2

φ((2m)−1)

2m
c9(2m)−

d
2 e−

|z|2
c92m > c10

∫
∞

|z|2
φ(t−1)t−

d
2−1e−

|z|2
c9t dt

= c10

∫ 1/c9

0
φ(c9s|z|−2)

(
|z|2

c9s

)− d
2−1

e−s |z|2

c2s2 ds

= c11|z|−d
φ(|z|−2)

∫ 1/c9

0

φ(c9s|z|−2)

φ(|z|−2)
s

d
2−1e−sds> c12|z|−d

φ(|z|−2).

�

Remark 3.5. It follows immediately from Proposition 3.3 that the second moment of the step

Sφ

1 is infinite.
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Proposition 3.3 gives us estimates of probability that the random walk Sφ jumps in one step

from x to y for any x,y ∈ Zd , x 6= y. We will also need lower bound for the probability that the

subordinate random walk stays at the same place.

Lemma 3.6. There exists a constant c > 0 such that

pφ (x,x)> c, x ∈ Zd.

Proof. By [18, Thm. 1.2.1],

P(S2m = 0)� m−d/2, m ∈ N.

This and the fact that P(S2m−1 = 0) = 0 combined with (1.4), Lemma 3.4 and (2.3) yield for all

x ∈ Zd

pφ (x,x)> c1

∞∑
m=1

φ((2m)−1)

2m
m−d/2 >

c1

c∗2α∗+1

∞∑
m=1

m−α∗−d/2−1 =: c > 0,

as desired. �

3.2. GREEN FUNCTION ESTIMATES

The Green function of Sφ is defined by G(x,y) = G(y− x), where

G(y) = E[
∞∑

n=0
1{Sφ

n=y}]. (3.4)

We first state the main theorem of this section.

Theorem 3.7. Let G be as in (3.4). Then

G(x)� g(|x|), x 6= 0, (3.5)

where g(r) = r−dφ(r−2)−1 was defined in (2.7).

A proof will be given at the end of the section. We can rewrite (3.4) in the following way

G(y) =
∞∑

n=0
P(Sφ

n = y) =
∞∑

n=0
P(Sτn = y) =

∞∑
n=0

∞∑
m=0

P(Sm = y)P(τn = m)

=
∞∑

m=0

∞∑
n=0

P(τn = m)P(Sm = y) =
∞∑

m=0
c(m)P(Sm = y) (3.6)

where

c(m) =
∞∑

n=0
P(τn = m), (3.7)
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and τn is as before. We now investigate the behavior of the sequence (c(m))m>0. Here we only

need the assumption that φ is a special Bernstein function which is weaker assumption than φ

being a complete Bernstein function by Proposition 2.5 and [25, Example 11.18]. Using the

assumption that φ is a special Bernstein function, we have

1
φ(λ )

= c+
∫
(0,∞)

e−λ tu(t)dt (3.8)

for some c > 0 and some non-increasing function u : (0,∞)→ (0,∞) satisfying
∫ 1

0 u(t)dt < ∞,

see [25, Theorem 11.3.].

Lemma 3.8. Let c(m) be as in (3.7). Then

c(0) = 1, c(m) =
1

m!

∫
(0,∞)

tme−tu(t)dt, m ∈ N. (3.9)

Proof. Since τ0 = 0 and τn > 0 for all n ∈N it is clear from (3.7) that c(0) = 1. We now follow

the proof of [6, Theorem 2.3]. Define M(x) =
∑

m6x c(m), x ∈ R. The Laplace transformation

L (M) of the measure generated by M is equal to

L (M)(λ ) =
∫
[0,∞)

e−λxdM(x) =
∞∑

m=0
c(m)e−λm =

∞∑
m=0

e−λm
∞∑

n=0
P(τn = m)

=
∞∑

n=0

∞∑
m=0

e−λmP(τn = m) =
∞∑

n=0
E[e−λτn] =

∞∑
n=0

(
E[e−λR1]

)n
=

1
1−E[e−λR1]

.

(3.10)

Now we calculate E[e−λR1]:

E[e−λR1] =
∞∑

m=1
e−λmaφ

m = be−λ +
∞∑

m=1
e−λm

∫
(0,∞)

tm

m!
e−t

µ(dt)

= be−λ +
∫
(0,∞)

∞∑
m=1

(te−λ )m

m!
e−t

µ(dt)

= be−λ +
∫
(0,∞)

(ete−λ

−1)e−t
µ(dt)

= be−λ +
∫
(0,∞)

(e−t(1−e−λ )− e−t)µ(dt)

= b+
∫
(0,∞)

(1− e−t)µ(dt)− [b(1− e−λ )+
∫
(0,∞)

(1− e−t(1−e−λ ))µ(dt)]

= 1−φ(1− e−λ ),

where in the last equality we used φ(1) = 1. Hence, L (M)(λ ) = 1/φ(1− e−λ ). On the other
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hand, using (3.8), we get

1+
∞∑

m=1

1
m!

∫
(0,∞)

tme−tu(t)dt e−λm = 1+
∫
(0,∞)

e−t
∞∑

m=1

(te−λ )m

m!
u(t)dt

= 1+
∫
(0,∞)

e−t(ete−λ

−1)u(t)dt = 1+
∫
(0,∞)

(e−t(1−e−λ )− e−t)u(t)dt

= 1+
∫
(0,∞)

e−t(1−e−λ )u(t)dt−
∫
(0,∞)

e−tu(t)dt

= 1+
1

φ(1− e−λ )
− c− 1

φ(1)
+ c =

1
φ(1− e−λ )

. (3.11)

Since L (M)(λ ) = 1/φ(1− e−λ ), from calculations (3.10) and (3.11) we have
∞∑

m=0
c(m)e−λm = 1+

∞∑
m=1

1
m!

∫
(0,∞)

tme−tu(t)dt e−λm.

The statement of this lemma follows by the uniqueness of the Laplace transformation. �

Lemma 3.9. Let c(m) be as in (3.7). Then

c(m)� 1
mφ(m−1)

, m ∈ N.

Proof. Let u be the function from (3.8). From [17, Corollary 2.4.] we have

u(t)6 (1− e−1)−1t−1
φ(t−1)−1 = c1t−1

φ(t−1)−1, t > 0. (3.12)

and

u(t)> c2t−1
φ(t−1)−1, t > 1. (3.13)

Inequality (3.13) holds if (2.3) is satisfied and for inequality (3.12) we do not need any scaling

conditions. Using monotonicity of u, Lemma 2.14 and (3.13), we get

c(m)>
u(m)

m!

∫ m

0
tme−tdt = u(m)

Ç
1− Γ(m+1,m)

Γ(m+1)

å
>

1
4

u(m)>
c3

mφ(m−1)
,

for m large enough. For the upper bound of c(m) we use (3.12), monotonicity of u and mono-

tonicity of φ .

c(m)6
c1

m!

∫ m

0
tme−t 1

tφ(t−1)
dt +

u(m)

m!

∫
∞

m
tme−tdt

6
c1

m!φ(m−1)

∫ m

0
tm−1e−tdt +u(m)6

c4

mφ(m−1)

Hence,
c3

mφ(m−1)
6 c(m)6

c4

mφ(m−1)

for m large enough. We can now change constants in such a way that the statement of this

lemma is true for every m ∈ N. �
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Proof of Theorem 3.7. Using (3.6), for x 6= 0 we get G(x) =
∑∞

m=1 c(m)p(m,x), p(m,x) =

P(Sm = x). Let q(m,x) = 2(d/(2πm))
d
2 e−d|x|2/2m and E(m,x) = p(m,x)− q(m,x). By [18,

Theorem 1.2.1]

|E(m,x)|6 c1m−d/2/|x|2. (3.14)

Since p(m,x) = 0 for m < |x|, we have

G(x) =
∑

m>|x|2
c(m)p(m,x)+

∑
|x|6m6|x|2

c(m)p(m,x) =: J1(x)+ J2(x).

We first estimate

J1(x) =
∑

m>|x|2
c(m)q(m,x)+

∑
m>|x|2

c(m)E(m,x) =: J11(x)+ J12(x).

Combining Lemma 3.9, (3.14) and (2.3) we get

|J12(x)|6 c2
∑

m>|x|2

1
mφ(m−1)

m−
d
2

|x|2
=

c2

|x|2φ(|x|−2)

∑
m>|x|2

φ(|x|−2)

φ(m−1)
m−

d
2−1

6
c3|x|−2α∗

|x|2φ(|x|−2)

∫
∞

|x|2
tα∗− d

2−1dt =
c4

|x|2
1

|x|dφ(|x|−2)
.

Now we have

lim
|x|→∞

|x|dφ(|x|−2)|J12(x)|= 0.

By Lemma 3.9 and (2.3)

J11(x)6 c5

∫
∞

|x|2
1

tφ(t−1)
t−

d
2 e−

d|x|2
2t dt =

c5

φ(|x|−2)

∫
∞

|x|2
φ(|x|−2)

φ(t−1)
t−

d
2−1e−

d|x|2
2t dt

6
c6|x|−2α∗

φ(|x|−2)

∫
∞

|x|2
tα∗− d

2−1e−
d|x|2

2t dt =
c7

|x|dφ(|x|−2)

∫ d
2

0
s

d
2−α∗−1e−sds =

c8

|x|dφ(|x|−2)
,

where the last integral converges because of the condition d > 2α∗. In a completely analogous

way, using lower scaling instead of upper scaling and using d > 2α∗, we obtain

J11(x)>
c9

|x|dφ(|x|−2)
.

We estimate J2(x) using (2.1) and (2.3).

J2(x)6 c10

∫ |x|2
|x|

1
tφ(t−1)

t−
d
2 e−

|x|2
c11t dt =

c10

φ(|x|−2)

∫ |x|2
|x|

φ(|x|−2)

φ(t−1)
t−

d
2−1e−

|x|2
c11t dt

6
c10|x|−2α∗

c∗φ(|x|−2)

∫ |x|2
|x|

tα∗− d
2−1e−

|x|2
c11t dt =

c10|x|−2α∗

c∗φ(|x|−2)

∫ |x|/c11

1/c11

(
|x|2

c11s

)α∗− d
2−1

e−s |x|2

c11s2 ds

6
c12

|x|dφ(|x|−2)

∫
∞

0
s

d
2−α∗−1e−sds =

c13

|x|dφ(|x|−2)
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Using the above results we get for x large enough

G(x)> J11(x)+ J12(x)>
c9

|x|dφ(|x|−2)
− c9/2
|x|dφ(|x|−2)

=
c9/2

|x|dφ(|x|−2)
,

G(x) = J11(x)+ J12(x)+ J2(x)6
c8

|x|dφ(|x|−2)
+

c8

|x|dφ(|x|−2)
+

c13

|x|dφ(|x|−2)
=

c14

|x|dφ(|x|−2)
.

We can now change constants to obtain

G(x)� |x|−d
φ(|x|−2)−1, x 6= 0.

�

3.3. ESTIMATES OF THE GREEN FUNCTION OF A

BALL

For B⊆ Zd we define

GB(x,y) = Ex[
τB−1∑
n=0

1{Sφ
n=y}],

where τB := min{n > 0 : Sφ
n /∈ B}. We call GB the Green function of the set B. In this section

we find estimates of the function GBn . The main result that we prove at the end of this section

is the following theorem.

Theorem 3.10. There exist constants b1,b2 ∈ (0,1/2), 2b1 6 b2, such that for all n ∈ N

GBn(x,y)� n−dEy[τBn], x ∈ Bb1n, y ∈ A(b2n,n). (3.15)

A well-known result about the Green function of a set is formulated in the following lemma.

Lemma 3.11. Let B be a finite subset of Zd . Then

GB(x,y) = G(x,y)−Ex[G(Sφ
τB ,y)], x,y ∈ B,

GB(x,x) = Px(τB < σx)
−1, x ∈ B,

where σx := inf{n> 1 : Sφ
n = x}.

Proof. Using definitions of functions G and GB, we get

GB(x,y) = Ex[
∞∑

n=0
1{Sφ

n=y}−
∞∑

n=τB

1{Sφ
n=y}] = G(x,y)−

∞∑
n=0

Px(Sφ

n+τB = y).
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We now examine the expression Px(Sφ

n+τB = y):

Px(Sφ

n+τB = y) =
∑
z∈Bc

Px(Sφ

n+τB = y | Sφ
τB = z)Px(Sφ

τB = z) =
∑
z∈Bc

Pz(Sφ
n = y)Px(Sφ

τB = z).

Hence,

GB(x,y) = G(x,y)−
∞∑

n=0

∑
z∈Bc

Pz(Sφ
n = y)Px(Sφ

τB = z) = G(x,y)−
∑
z∈Bc

G(z,y)Px(Sφ
τB = z)

= G(x,y)−Ex[G(Sφ
τB,y)].

On the other hand,

GB(x,x) =
∞∑

n=0
Px(Sφ

n = x,n < τB)

= 1+
∞∑

n=1

n∑
m=1

Px(Sφ
n = x,σx = m,n < τB)

= 1+
∞∑

m=1

∞∑
n=m

Px(Sφ

1 , . . . ,S
φ

m−1 ∈ B\{x},Sφ
m = x,Sφ

m+1, . . . ,S
φ

n−1 ∈ B,Sφ
n = x)

= 1+
∞∑

m=1

∞∑
n=m

Px(Sφ

m+1, . . . ,S
φ

n−1 ∈ B,Sφ
n = x | Sφ

m = x,Sφ

1 , . . . ,S
φ

m−1 ∈ B\{x})

Px(Sφ

1 , . . . ,S
φ

m−1 ∈ B\{x},Sφ
m = x)

= 1+
∞∑

m=1

∞∑
n=m

Px(Sφ

1 , . . . ,S
φ

n−m−1 ∈ B,Sφ

n−m = x)Px(σx = m,σx < τB)

= 1+
∞∑

m=1

∞∑
n=0

Px(Sφ
n = x,n < τB)Px(σx = m,σx < τB)

= 1+GB(x,x)Px(σx < τB),

which gives us precisely

GB(x,x) = Px(τB < σx)
−1.

�

Throughout the rest of this section, we follow [16, Section 4].

Lemma 3.12. There exist a ∈ (0,1/3) and C1 > 0 such that for every n ∈ N

GBn(x,y)>C1G(x,y), x,y ∈ Ban. (3.16)

Proof. From Lemma 3.11 we have

GBn(x,y) = G(x,y)−Ex[G(Sφ
τBn

,y)].
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First we prove this lemma in the case x 6= y. Notice that if we show Ex[G(Sφ
τBn

,y)] 6 c1G(x,y)

for some c1 ∈ (0,1) we will have (3.16) with the constant c2 = 1− c1. Let a ∈ (0,1/3). This

implies (1− a)/(2a) > 1. Take x,y ∈ Ban. In this case, we have |x− y| 6 2an. Combining

Sφ
τBn

/∈ Bn, x 6= y and (1−a)/(2a)> 1, we have

|y−Sφ
τBn
|> (1−a)n =

1−a
2a

2an>
1−a

2a
|x− y|> 1. (3.17)

Using Theorem 3.7, (3.17), Lemma 2.7 and (2.14), we get

G(Sφ
τBn

,y)� g(|y−Sφ
τBn
|)6 c∗g

Ç
1−a

2a
|x− y|

å
6 (c∗)2

Ç
2a

1−a

åd−2α∗

g(|x− y|)� (c∗)2
Ç

2a
1−a

åd−2α∗

G(x,y).

Since 2a/(1− a) −→ 0 when a→ 0 and d > 2α∗, if we take a small enough and then fix it,

we have Ex[G(Sφ
τBn

,y)]6 c1G(x,y) for c1 ∈ (0,1) and that is exactly what we wanted to prove.

Now we deal with the case x = y. From Lemma 3.11 we have GBn(x,x) = (P(τBn < σx))
−1 and

from the definition of the function G and transience of the random walk Sφ , we get G(x,x) =

G(0) ∈ [1,∞). Now, we can conclude that

GBn(x,x)> 1 = (G(0))−1G(0) = (G(0))−1G(x,x).

Setting C1 := min{c2,(G(0))−1} gives us (3.16). �

Proposition 3.13. There exists a constant C2 > 0 such that for all n ∈ N

Ex[τBn ]>
C2

φ(n−2)
, x ∈ B an

2
, (3.18)

where a ∈ (0,1/3) is as in Lemma 3.12.

Proof. Let x ∈ B an
2

. For such x, we have B(x,an/2)⊆ Ban. We set b := a/2 for easier notation.

Notice that Ex[τBn] =
∑

y∈Bn GBn(x,y). Combining this equality, Lemma 3.12, Theorem 3.7 and

(2.2), we get

Ex[τBn]>
∑

y∈B(x,bn)
GBn(x,y)>

∑
y∈B(x,bn)\{x}

C1G(x,y)�
∑

y∈B(x,bn)\{x}
g(|x− y|)

�
∫ bn

1
g(r)rd−1dr =

∫ bn

1

1
rφ(r−2)

dr =
1

φ(n−2)

∫ bn

1

1
r

φ(n−2)

φ(r−2)
dr

>
1

c∗φ(n−2)n2α∗

∫ bn

1
r2α∗−1dr

=
1

2c∗α∗φ(n−2)

ñ
b2α∗− 1

n2α∗

ô
>

b2α∗

4c∗α∗φ(n−2)
,
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for n large enough. Hence, we proved that Ex[τBn] > C2/φ(n−2), for all x ∈ B an
2

, for n large

enough and for some C2 > 0. As usual, we can adjust the constant to get the statement of this

proposition for every n ∈ N. �

Lemma 3.14. There exists a constant C3 > 0 such that for all n ∈ N

Ex[τBn ]6
C3

φ(n−2)
, x ∈ Bn. (3.19)

Proof. We define the process M f = (M f
n )n>0 as

M f
n := f (Sφ

n )− f (Sφ

0 )−
n−1∑
k=0

(Aφ f )(Sφ

k )

where f is a function defined on Zd with values in R and Aφ is defined as in Section 2.6. By

[23, Theorem 4.1.2], the process M f is a martingale for every bounded function f . Applying

the optional stopping theorem, we get

Ex[M
f
τBn

] = Ex[ f (Sφ
τBn

)− f (Sφ

0 )−
τBn−1∑
k=0

(Aφ f )(Sφ

k )] = Ex[M f
0 ] = 0.

Therefore

Ex[ f (Sφ
τBn

)− f (Sφ

0 )] = Ex

τBn−1∑
k=0

(Aφ f )(Sφ

k )

 . (3.20)

Let f := 1B2n and x ∈ Bn. We now investigate both sides of relation (3.20). Using Proposition

3.3, for every y ∈ Bn we have

(Aφ f )(y) =
∑

u∈Zd

Py(Sφ

1 = u)( f (u)− f (y))�−
∑

u∈Bc
2n

|u− y|−d
φ(|u− y|−2)

�−
∫

∞

n
r−d

φ(r−2)rd−1dr =−φ(n−2)
∫

∞

n
r−1 φ(r−2)

φ(n−2)
dr

6−φ(n−2)n2α∗

c∗

∫
∞

n
r−2α∗−1dr =−φ(n−2)

2c∗α∗
,

where in the last line we used lower scaling condition. Repeating the calculation with upper

scaling condition, we get lower bound. Hence (Aφ f )(y)�−φ(n−2) for y ∈ Bn. Notice that for

every k < τBn , Sφ

k ∈ Bn. This gives us

Ex[
τBn−1∑
k=0

(Aφ f )(Sφ

k )]� Ex[−
τBn−1∑
k=0

φ(n−2)] =−φ(n−2)Ex[τBn]. (3.21)

Using (3.20), (3.21) and Ex[ f (Sφ
τBn

)− f (Sφ

0 )] = Px(Sφ
τBn
∈ B2n)−1 =−Px(Sφ

τBn
∈ Bc

2n), we get

Px(Sφ
τBn
∈ Bc

2n)� φ(n−2)Ex[τBn]
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and this implies

Ex[τBn]6
C3Px(XτBn

∈ Bc
2n)

φ(n−2)
6

C3

φ(n−2)
.

�

We now make one small observation that we use in the results that follow. Denote with

η(x) = Ex[τBn]. Let x ∈ Bn. Then

η(x) =
∑

y∈Zd

Ex[τBn | S
φ

1 = y]Px(Sφ

1 = y)

=
∑

y∈Zd

(1+Ey[τBn])P
x(Sφ

1 = y) = 1+(Pφ
η)(x).

Using notation Aφ = Pφ − I as before, this means that (Aφ η)(x) =−1 for every x ∈ Bn. We also

introduce notation A(r,s) = {x ∈ Zd : r 6 |x|< s}, for 0 < r < s.

Proposition 3.15. There exists a constant C4 > 0 such that for all n ∈ N

GBn(x,y)6C4n−d
η(y), x ∈ B an

4
,y ∈ A(an/2,n), (3.22)

where η(y) = Ey[τBn] and a ∈ (0,1/3) is as in Lemma 3.12.

Proof. Let x ∈ B an
4

and y ∈ A(an/2,n). We define the function h(z) := GBn(x,z). Notice that for

z ∈ Bn \{x} we have

h(z) = GBn(x,z) = GBn(z,x) =
∑

y∈Zd

Pz(S
φ

1 = y)GBn(y,x) =
∑

y∈Zd

Pz(S
φ

1 = y)h(y).

Hence, h is a harmonic function on Bn \{x}. We now take z∈ B(x,an/16)c. For n large enough,

we have |z− x|> an/16> 1. Combining Lemma 2.7 and Theorem 3.7, we get

g(an/16)> (c∗)−1g(|z− x|)� G(x,z)> GBn(x,z) = h(z).

Thus, h(z) 6 kg(an/16) for z ∈ B(x,an/16)c and for some constant k > 0. It is clear that

A(an/2,n) ⊆ B(x,an/16)c. Hence, y ∈ B(x,an/16)c. Using these facts together with Proposi-
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tion 3.3, we have

Aφ (h∧ kg(an/16))(y) = Aφ (h∧ kg(an/16)−h)(y)

=
∑

v∈Zd

Py(Sφ

1 = v)(h(v)∧ kg(an/16)−h(v)−h(y)∧ kg(an/16)+h(y))

�
∑

v∈B(x,an/16)
j(|v− y|)(h(v)∧ kg(an/16)−h(v))

>−
∑

v∈B(x,an/16)
j(|v− y|)h(v)>−

∑
v∈B(x,an/16)

j(an/16)h(v)

=− j(an/16)
∑

v∈B(x,an/16)
GBn(x,v)>− j(an/16)η(x),

where we used monotonicity of j together with |v−y|> an/16> 1 for v ∈ B(x,an/16) and for

n large enough. Using (2.9) we get j(an/16) 6 (a/16)−d−2 j(n). Hence, using Lemma 3.14,

we have

Aφ (h∧ kg(an/16))(y)>−c1n−d
φ(n−2)η(x)

>−c1n−d
φ(n−2)C3(φ(n−2))−1 =−c2n−d

for some c1,c2 > 0. On the other hand, using (2.12) and Proposition 3.13, we get

g(an/16)6 (c∗)−1(a/16)−d+2α∗g(n) = (c∗)−1(a/16)−d+2α∗(φ(n−2))−1n−d

6 (c∗C2)
−1(a/16)−d+2α∗n−d

η(z) = c3n−d
η(z), ∀z ∈ Ban/2.

Now we define C4 := (c2∨ kc3)+1 and using

h(z)∧ kg(an/16)6 kg(an/16)6 kc3n−d
η(z)

we get

C4n−d
η(z)−h(z)∧ kg(an/16)> (C4− kc3)n−d

η(z)> 0, ∀z ∈ Ban/2

Thus, for function u defined as u(·) := C4n−dη(·)− h(·)∧ kg(an/16), we showed that u is

non-negative on Ban/2. It obviously vanishes on Bc
n and for y ∈ A(an/2,n) we have

(Aφ u)(y) =C4n−d(Aφ
η)(y)−Aφ (h∧ kg(an/16))(y)6−C4n−d + c2n−d < 0.

Since u > 0 on B an
2

and u vanishes on Bc
n, if infy∈Zd u(y) < 0 then there would exist y0 ∈

A(an/2,n) such that u(y0) = infy∈Zd u(y). But then, by Proposition 2.13, (Aφ u)(y0)> 0 which

is a contradiction with (Aφ u)(y)< 0 for y ∈ A(an/2,n). Hence,

u(y) =C4n−d
η(y)−h(y)∧ kg(an/16)> 0, ∀y ∈ Zd

27



and then, because h(y)6 kg(an/16) for y ∈ A(an/2,n) we get

GBn(x,y) = h(y)6C4n−d
η(y), ∀x ∈ B an

4
, y ∈ A(an/2,n).

�

Proposition 3.16. There exist constants C5 > 0 and b6 a/4 such that for all n ∈ N

GBn(x,y)>C5n−d
η(y), x ∈ Bbn,y ∈ A(an/2,n), (3.23)

where a is as in Lemma 3.12 and η(y) = Ey[τBn].

Proof. Let a ∈ (0,1/3) be as in Lemma 3.12. Then

GBn(x,v)>C1G(x,v), x,v ∈ Ban, (3.24)

where C1 > 0 is the constant from Lemma 3.12. From Proposition 3.15 it follows that

GBn(x,v)6C4n−d
η(v), x ∈ Ban/4,v ∈ A(an/2,n), (3.25)

for some constant C4 > 0. From Lemma 3.14 we have

η(v)6
C3

φ (n−2)
, v ∈ Bn, (3.26)

for some constant C3 > 0. By Theorem 3.7 there exists a constant c1 > 0 such that G(x) >

c1g(|x|), x 6= 0. Now we take

b := min

a
4
,

Ç
C1c1

2(c∗)2C3C4

å 1
d−2α∗

 .

Let x ∈ Bbn, v ∈ B(x,bn). Since b6 a/4, we have x,v ∈ Ban. We want to prove that GBn(x,v)>

2C4n−dη(v). We first prove that assertion for x 6= v. In that case we have 1 6 |x− v|. Since

v ∈ B(x,bn), we have |x− v|6 bn so we can use (3.24), Lemma 2.7, (2.13) and (3.26) to get

GBn(x,v)>C1G(x,v)>
C1c1

c∗
g(bn)>

C1c1

(c∗)2bd−2α∗ g(n)>
2C3C4

ndφ(n−2)
> 2C4n−d

η(v). (3.27)

Hence, we obtained GBn(x,v)> 2C4n−dη(v) for x 6= v. Now we prove GBn(x,x)> 2C4n−dη(x),

for x ∈ Bbn and for n large enough. First note that

lim
n→∞

nd
φ(n−2) = lim

n→∞
nd φ(n−2)

φ(1)
> lim

n→∞
nd 1

c∗n2α∗ = lim
n→∞

1
c∗

nd−2α∗ = ∞,

since d−2α∗ > 0. Therefore

2C4n−d
η(x)6

2C4C3

ndφ(n−2)
6 16 GBn(x,x)
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for n large enough. Hence,

C4n−d
η(v)6

1
2

GBn(x,v), x ∈ Bbn,v ∈ B(x,bn). (3.28)

Now we fix x ∈ Bbn and define the function

h(v) := GBn(x,v)∧ (C4n−d
η(v)).

From (3.28) we have h(v) 6 1
2GBn(x,v) for v ∈ B(x,bn). Recall that GBn(x, ·) is harmonic in

Bn \ {x} ⊇ A(an/2,n). Using (3.25) we get h(y) = GBn(x,y) for y ∈ A(an/2,n). Hence, for

y ∈ A(an/2,n)

(Aφ h)(y) = Aφ (h(·)−GBn(x, ·))(y)

=
∑

v∈Zd

Py(Sφ

1 = v)(h(v)−GBn(x,v)−h(y)+GBn(x,y))

6 c2
∑

v∈B(x,bn)
j(|v− y|)(h(v)−GBn(x,v))

6−c2

2

∑
v∈B(x,bn)

j(|v− y|)GBn(x,v)

6−c2 j(2n)
2

∑
v∈B(x,bn)

GBn(x,v), (3.29)

where we used Proposition 3.3 and monotonicity of j together with 16 |v−y|6 2n. Combining

(3.27) and (2.17), we get

∑
v∈B(x,bn)

GBn(x,v)>
2C3C4

ndφ(n−2)
|Bbn|>

2c
′
C3C4

ndφ(n−2)
(bn)d =

c3

φ(n−2)
. (3.30)

Using (2.11) we get j(2n)> 2−d−2 j(n). When we put this together with (3.29) and (3.30), we

get

(Aφ h)(y)6−c4n−d.

Define u(·) := h(·)−κη(·), where

κ := min
®

c4

2
,
c5

2
,
C4

2

´
n−d,

where c5 > 0 will be specified later. For y ∈ A(an/2,n)

(Aφ u)(y) = (Aφ h)(y)−κ(Aφ
η)(y)6−c4n−d +κ 6−c4n−d +

c4

2
n−d =−c4

2
n−d < 0.

Now we want to prove that there exists a constant c5 > 0 such that GBn(x,v) > c5n−dη(v) for

all x ∈ Bbn, v ∈ Ban/2 and for n large enough. For x ∈ Bbn ⊆ Ban/2 and v ∈ Ban/2 we have
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|x− v|6 an 6 n. We first assume that x 6= v. Combining Theorem 3.7, Lemma 2.7, (2.13) and

(3.26), we get

GBn(x,v)>C1G(x,v)� g(|x− v|)> 1
c∗

g(an)>
1

(c∗)2ad−2α∗ g(n)>
1

(c∗)2C3ad−2α∗ n−d
η(v).

Thus, GBn(x,v)> c5n−dη(v) for some constant c5 > 0 and for x 6= v. For the case x = v we can

use the same arguments that we used when we were proving that GBn(x,x)> 2C4n−dη(x) for n

large enough. Hence, GBn(x,v) > c5n−dη(v) for all x ∈ Bbn, v ∈ Ban/2 and for n large enough.

Now we have

h(v) = GBn(x,v)∧
Ä
C4n−d

η(v)
ä
>
Ä
c5n−d

η(v)
ä
∧
Ä
C4n−d

η(v)
ä
= (C4∧ c5)n−d

η(v).

Hence,

u(v) = h(v)−κη(v)> (C4∧ c5)n−d
η(v)−

Ç
C4

2
∧ c5

2

å
n−d

η(v)> 0.

Since u(v) > 0 for v ∈ Ban/2, u(v) = 0 for v ∈ Bc
n and (Au)(v) < 0 for v ∈ A(an/2,n) we can

use the same argument as in Proposition 3.15 to conclude by Proposition 2.13 that u(y)> 0 for

all y ∈ Zd . Since GBn(x,y)6C4n−dη(y) for x ∈ Ban/4,y ∈ A(an/2,n) we have h(y) = GBn(x,y)

for x ∈ Bbn and y ∈ A(an/2,n). Using that, we have

GBn(x,y)> κη(y) =C5n−d
η(y), x ∈ Bbn,y ∈ A(an/2,n),

for n large enough. As before, we can change the constant and get (3.23) for all n ∈ N. �

Proof of Theorem 3.10. The result follows directly from Proposition 3.15 and Proposition 3.16.

We set b2 = a/2 where a ∈ (0,1/3) is as in Lemma 3.12 and b1 = b where b 6 a/4 is as in

Proposition 3.16. �

3.4. PROOF OF THE ELLIPTIC HARNACK

INEQUALITY

At the end of this section we finally prove Theorem 3.1.

Proposition 3.17. Let f : Zd×Zd → [0,∞) be a function and B ⊂ Zd a finite set. For every

x ∈ B we have

Ex[ f (Sφ

τB−1,S
φ
τB)] =

∑
y∈B

GB(x,y)E[ f (y,y+Sφ

1 )1{y+Sφ

1 /∈B}]. (3.31)
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Proof.

Ex
[

f (Sφ

τB−1,S
φ
τB)
]
=

∑
y∈B,z∈Bc

Px(Sφ

τB−1 = y,Sφ
τB = z) f (y,z).

Using (1.3), we get

Px(Sφ

τB−1 = y,Sφ
τB = z) =

∞∑
m=1

Px(Sφ

τB−1 = y,Sφ
τB = z,τB = m)

=
∞∑

m=1
Px(Sφ

m−1 +ξm = z,Sφ

m−1 = y,Sφ

1 , . . . ,S
φ

m−2 ∈ B)

=
∞∑

m=1
P(ξm = z− y)Px(Sφ

m−1 = y,Sφ

1 , . . . ,S
φ

m−2 ∈ B)

= P(ξ1 = z− y)
∞∑

m=1
Px(Sφ

m−1 = y,Sφ

1 , . . . ,S
φ

m−2 ∈ B)

= P(Sφ

1 = z− y)
∞∑

m=1
Px(Sφ

m−1 = y,τB > m−1) = P(Sφ

1 = z− y)GB(x,y).

Hence,

Ex[ f (Sφ

τB−1,S
φ
τB)] =

∑
y∈B,z∈Bc

f (y,z)GB(x,y)P(y+Sφ

1 = z)

=
∑
y∈B

GB(x,y)E[ f (y,y+Sφ

1 )1{y+Sφ

1 /∈B}].

�

Remark 3.18. Formula (3.31) can be considered as a discrete counterpart of the continuous-

time Ikeda-Watanabe formula. We will refer to it as discrete Ikeda-Watanabe formula.

We now introduce the Poisson kernel of a finite set B⊆ Zd .

KB(x,z) := Px(Sφ
τB = z), x ∈ B,z ∈ Bc. (3.32)

Using the discrete Ikeda-Watanabe formula for function f = 1z, z ∈ Bc we get

Px(Sφ
τB = z) = Ex[1z(S

φ
τB)] =

∑
y∈B

GB(x,y)E[1z(y+Sφ

1 )1{y+Sφ

1 /∈B}]

=
∑
y∈B

GB(x,y)P(Sφ

1 = z− y). (3.33)

If the function f is non-negative and harmonic in Bn, with respect to Sφ , combining Lemma
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2.12 and (3.33), we obtain

f (x) = Ex[ f (XτBn
)] =

∑
y∈Bn

GBn(x,y)E[ f (y+Sφ

1 )1{y+Sφ

1 /∈Bn}
]

=
∑

y∈Bn

GBn(x,y)
∑

z∈Bc
n

E[ f (y+Sφ

1 )1{y+Sφ

1 /∈Bn}
| Sφ

1 = z− y]P(Sφ

1 = z− y)

=
∑

z∈Bc
n

∑
y∈Bn

GBn(x,y)E[ f (y+ z− y)1{y+z−y/∈Bn}]P(S
φ

1 = z− y)

=
∑

z∈Bc
n

f (z)(
∑

y∈Bn

GBn(x,y)P(S
φ

1 = z− y)) =
∑

z∈Bc
n

f (z)KBn(x,z). (3.34)

The idea now is to find sharp estimates for the Poisson kernel KBn(x,z) that are independent of x

and then use those estimates together with formula (3.34) to get the elliptic Harnack inequality.

Lemma 3.19. Let b1,b2 ∈ (0, 1
2) be as in Theorem 3.10. Then KBn(x,z)� l(z) for all x ∈ Bb1n,

where

l(z) =
j(|z|)

φ(n−2)
+n−d ∑

y∈A(b2n,n)
Ey[τBn] j(|z− y|).

Proof. Splitting the expression (3.33) for the Poisson kernel in two parts and using Proposition

3.3, we get

KBn(x,z)�
∑

y∈Bb2n

GBn(x,y) j(|z− y|)+
∑

y∈A(b2n,n)
GBn(x,y) j(|z− y|).

Since GBn(x,y) � n−dEy[τBn ] for x ∈ Bb1n, y ∈ A(b2n,n), for the second sum in the upper ex-

pression we have

∑
y∈A(b2n,n)

GBn(x,y) j(|z− y|)� n−d ∑
y∈A(b2n,n)

Ey[τBn] j(|z− y|). (3.35)

Now we look closely at the expression
∑

y∈Bb2n GBn(x,y) j(|z− y|). Using the fact that y ∈ Bb2n,

b2 ∈ (0, 1
2) and z ∈ Bc

n, we have

|z− y|6 |z|+ |y|6 |z|+b2n6 |z|+b2|z|6 (1+b2)|z|6 2|z|. (3.36)

On the other hand

|z|6 |z− y|+ |y|6 |z− y|+b2n6 |z− y|+b2|z|.

Hence,
1
2
|z|6 (1−b2)|z|6 |z− y|. (3.37)
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Combining (3.36), (3.37) and using monotonicity of j, we have

j(|z|/2)> j(|z− y|)> j(2|z|).

Using (2.9), we get j(|z|/2)6 2d+2 j(|z|). Similarly, from (2.11), we get j(2|z|)> 2−d−2 j(|z|).

Hence,

2−d−2 j(|z|)6 j(2|z|)6 j(|z− y|)6 j(|z|/2)6 2d+2 j(|z|). (3.38)

This gives us

∑
y∈Bb2n

GBn(x,y) j(|z− y|)�
∑

y∈Bb2n

GBn(x,y) j(|z|) = j(|z|)
∑

y∈Bb2n

GBn(x,y).

Now we want to show that
∑

y∈Bb2n GBn(x,y) � 1/φ(n−2). Using the fact that GBn is a non-

negative function and Ex[τBn]6C3/φ
Ä
n−2
ä

for x ∈ Bn we have

∑
y∈Bb2n

GBn(x,y)6
∑

y∈Bn

GBn(x,y) = Ex[τBn]6
C3

φ (n−2)
. (3.39)

To prove the other inequality we use Lemma 3.12, Theorem 3.7, Lemma 2.7, (2.17) and (2.2).

∑
y∈Bb2n

GBn(x,y)>C1
∑

y∈Bb2n\{x}
G(x,y)>C1c1

∑
y∈Bb2n\{x}

g(|x− y|)

>C1c1(c∗)−1 ∑
y∈Bb2n\{x}

g(2b2n) =C1c1(c∗)−1g(2b2n)(|Bb2n|−1)

>
C1c1c′

2c∗
1

(2b2n)dφ((2b2n)−2)
(b2n)d =

C1c1c′

2d+1c∗
1

φ(n−2)

φ(n−2)

φ((2b2n)−2)

>
C1c1c′(2b2)

2

2d+1c∗
1

φ(n−2)
=

c2

φ(n−2)
.

Together with (3.39) this gives us

∑
y∈Bb2n

GBn(x,y)�
1

φ(n−2)
. (3.40)

Finally, using (3.38) and (3.40) we have

∑
y∈Bb2n

GBn(x,y) j(|z− y|)� j(|z|)
φ(n−2)

. (3.41)

And now, from (3.41) and (3.35) we have the statement of the lemma. �

Proof of Theorem 3.1. Notice that, because of the spatial homogeneity, it is enough to prove

this result for balls centered at the origin. We first prove the theorem for a = b1, where b1 is
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as in Theorem 3.10. General case follows using the standard Harnack chain argument. Let

x1,x2 ∈ Bb1n. Using Lemma 3.19 we get

KBn(x1,z)6 c1l(z)6 c2KBn(x2,z).

Now we multiply both sides with f (z)> 0 and sum over all z ∈ Bc
n and then use (3.34) to get

f (x1) =
∑

z∈Bn

f (z)KBn(x1,z)6 c2
∑

z∈Bn

f (z)KBn(x2,z) = c2 f (x2). (3.42)

The result is obviously true for all a 6 b1. If we take any a < 1 and x1,x2 ∈ Ban, we can find

chain of k = k(a) balls of radius b1n with nonempty intersections and apply (3.42) k times to

obtain

f (x1)6 ck
2 f (x2), x1,x2 ∈ Ban.

�
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4. ON-DIAGONAL BOUNDS

In this section we establish the on-diagonal bounds for the n-step transition probabilities of the

subordinate random walk Sφ . We apply a Fourier analytic method which is extracted from [8].

Theorem 4.1. For all n ∈ N it holds

pφ (n,0)�
Ä
φ
−1(n−1)

äd/2
. (4.1)

Proof. Let Ψ be the characteristic function of the simple random walk S. We already proved in

(2.5) that the characteristic function of Sφ is Ψφ (θ) = 1−φ(1−Ψ(θ)). Thus, by the Fourier

inversion formula,

pφ (n,0) =
1

(2π)d

∫
Dd
(1−φ(1−Ψ(θ)))ndθ , (4.2)

where Dd = [−π,π)d . We fix ε > 0 and first we estimate the integral in (4.2) over the set

Dε
d := {θ ∈Dd : |θ |> ε}. Since |1−φ(1−Ψ(θ))|= 1 if and only if θ ∈ 2πZd , see [8, Claim

2], it holds that |1−φ(1−Ψ(θ))|< 1−η for all θ ∈Dε
d and for some η ∈ (0,1). Hence

1
(2π)d

∫
Dε

d

|1−φ(1−Ψ(θ))|ndθ 6 (1−η)n.

Next, we consider the remaining part of the integral in (4.2), which is the integral over the

ball Bε . We set an =
Ä
φ−1(n−1)

ä1/2 and by the change of variable we get

a−d
n

∫
|θ |<ε

(1−φ(1−Ψ(θ)))n dθ =
∫
|ξ |<ε/an

(1−φ(1−Ψ(anξ )))n dξ .

To finish the proof we need to show that for some c1,c2 > 0

c1 6
∫
|ξ |<ε/an

(1−φ(1−Ψ(anξ )))n dξ 6 c2. (4.3)

Notice that it suffices to prove (4.3) only for n large enough, as the integrand in (4.3) is strictly

positive if ε is small enough, and thus in the end of the proof we can change constants appro-

priately to estimate the expression in (4.2) for all n.
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Claim 1.

lim
n→∞

1−Ψ(anξ )

|anξ |2/d
=

1
2
.

Proof of Claim 1. From [18, Section 1.2, page 13] we have

Ψ(θ) =
1
d

d∑
m=1

cos(θm), θ = (θ1,θ2, . . . ,θd).

Using the Taylor expansion of the cosine function, we get that there exists a constant c3 > 0

such that for every x ∈ R we have

|1− cos(x)− x2/2|6 c3x4.

For any θ ∈Dd we have∣∣∣∣∣1−Ψ(θ)− 1
2d
|θ |2

∣∣∣∣∣=
∣∣∣∣∣∣1− 1

d

d∑
m=1

cos(θm)−
1

2d

d∑
m=1

θ
2
m

∣∣∣∣∣∣
=

∣∣∣∣∣∣1d
d∑

m=1

(
1− cos(θm)−

θ 2
m
2

)∣∣∣∣∣∣
6

1
d

d∑
m=1

∣∣∣∣∣1− cosθm−
θ 2

m
2

∣∣∣∣∣6 c3

d

d∑
m=1

θ
4
m

6
c3

d
|θ |2

d∑
m=1

θ
2
m =

c3

d
|θ |4 6 c4

d
|θ |3, (4.4)

where in the last inequality we used that |θ | is less than some constant for all θ ∈ Dd . Using

this we get∣∣∣∣∣(1−Ψ(anξ ))− 1
2d
|anξ |2

∣∣∣∣∣6 c4

d
|anξ |3⇒

∣∣∣∣∣1−Ψ(anξ )

|anξ |2/d
− 1

2

∣∣∣∣∣6 c4|anξ |

⇒ lim
n→∞

∣∣∣∣∣1−Ψ(anξ )

|anξ |2/d
− 1

2

∣∣∣∣∣6 lim
n→∞

c4|anξ |= 0

⇒ lim
n→∞

1−Ψ(anξ )

|anξ |2/d
=

1
2
.

We next prove that for some c5,c6 > 0 and for all n ∈ N

c5
Ä
|ξ |2α∗ ∧|ξ |2α∗

ä
6 nφ(1−Ψ(anξ ))6 c6

Ä
|ξ |2α∗ ∨|ξ |2α∗

ä
. (4.5)

For that we establish the following simple result.

Claim 2. Let (an) and (bn) be two sequences of positive numbers both tending to zero and

such that limn→∞(an/bn) = 1. Then there exists a constant c7 > 0 such that

c−1
7 6

φ(an)

φ(bn)
6 c7, n ∈ N. (4.6)
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Proof of Claim 2. Scaling condition (2.3) implies that, for some c8 > 0,

c−1
8

Ä
(x/y)α∗ ∧ (x/y)α∗

ä
6

φ(x)
φ(y)

6 c8
Ä
(x/y)α∗ ∨ (x/y)α∗

ä
, x,y ∈ (0,1).

With this inequality it is straightforward to obtain (4.6).

By Claim 1 and Claim 2,

c−1
9 6

φ (1−Ψ(anξ ))

φ (|anξ |2/2d)
6 c9

and whence

nφ(1−Ψ(anξ )) =
φ (1−Ψ(anξ ))

φ (|anξ |2/2d)
φ
Ä
|anξ |2/2d

ä
n−1 �

φ
Ä
a2

n|ξ |2/2d
ä

φ(a2
n)

. (4.7)

We have |anξ | < ε < 1 so |anξ |2/2d 6 1. This is why we are able to use (2.3) to bound the

expression on the right hand side of (4.7) from below and above. First we consider the case

|ξ |2/2d > 1. In this case we have

0 < a2
n 6

a2
n|ξ |2

2d
6 1⇒ c∗

(
|ξ |2

2d

)α∗

6
φ
Ä
a2

n|ξ |2/2d
ä

φ(a2
n)

6 c∗
(
|ξ |2

2d

)α∗

.

Now we consider the case |ξ |2/2d 6 1. Here we have

0 <
a2

n|ξ |2

2d
6 a2

n 6 1⇒ 1
c∗

(
|ξ |2

2d

)α∗

6
φ
Ä
a2

n|ξ |2/2d
ä

φ(a2
n)

6
1
c∗

(
|ξ |2

2d

)α∗

.

Hence,

c∗

(
|ξ |2

2d

)α∗

∧ 1
c∗

(
|ξ |2

2d

)α∗

6
φ
Ä
a2

n|ξ |2/2d
ä

φ(a2
n)

6 c∗
(
|ξ |2

2d

)α∗

∨ 1
c∗

(
|ξ |2

2d

)α∗

. (4.8)

Using (4.7) and (4.8) we get (4.5).

Next, we notice that

lim
n→∞

n log(1−φ(1−Ψ(anξ ))

−nφ (1−Ψ(anξ ))
= 1.

Thus, by (4.5), for n large enough,∫
|ξ |<ε/an

e−c10

Ä
|ξ |2α∗∨|ξ |2α∗

ä
dξ 6

∫
|ξ |<ε/an

(1−φ(1−Ψ(anξ )))n dξ 6
∫
|ξ |<ε/an

e−c11

Ä
|ξ |2α∗∧|ξ |2α∗

ä
dξ .

Since both of the side integrals converge to positive constants as n goes to infinity, we conclude

that (4.3) is valid for n large enough and the proof is finished. �

Corollary 4.2. There exists a constant c > 0 such that

pφ (n,x,y)6 c
Ä
φ
−1(n−1)

äd/2
, for n ∈ N and x,y ∈ Zd.
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Proof. Let n be even. Combining Cauchy-Schwarz inequality and Theorem 4.1 we get

pφ (n,x,y) =
∑

z∈Zd

pφ (n/2,x,z)pφ (n/2,z,y)6
√∑

z∈Zd

pφ (n/2,x,z)2
√∑

z∈Zd

pφ (n/2,z,y)2

=
√∑

z∈Zd

pφ (n/2,x,z)pφ (n/2,z,x)
√∑

z∈Zd

pφ (n/2,y,z)pφ (n/2,z,y)

=
»

pφ (n,x,x)
»

pφ (n,y,y)6 c1
Ä
φ
−1(n−1)

äd/2
.

For n odd we first use Lemma 3.6 to obtain

pφ (n+1,x,y) =
∑

z∈Zd

pφ (n,x,z)pφ (z,y)> pφ (n,x,y)pφ (y,y)> c2 pφ (n,x,y)

and now combining this with what we have already proved for n even, we have for n odd

pφ (n,x,y)6 c−1
2 pφ (n+1,x,y)6 c1c−1

2

Ä
φ
−1((n+1)−1)

äd/2
6 c1c−1

2

Ä
φ
−1(n−1)

äd/2

where in the last inequality we used that φ−1 is increasing. �
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5. PARABOLIC HARNACK INEQUALITY

The main result of this chapter is the parabolic Harnack inequality. In the first section, we find

the estimate for the probability of leaving a ball which is then used in the proof of the parabolic

Harnack inequality that can be found in the second section.

5.1. ESTIMATE FOR PROBABILITY OF LEAVING A

BALL

In this section we establish the following result:

Theorem 5.1. There exists a constant γ ∈ (0,1) such that for all r > 0

PxÄ max
k6bγ/φ(r−2)c

|Sφ

k − x|> r/2
ä
6 1/4. (5.1)

Our approach is based on the application of the concentration inequality from [24], see (5.3),

which provides a bound for the maximum of the random walk in terms of the function h which

in our case is of the form

h(x) = P(|Sφ

1 |> x)+ x−2
∫
|y|6x
|y|2dF(y), (5.2)

where F is the distribution of the random variable Sφ

1 . Before we prove Theorem 5.1, we show

that under the scaling condition (2.3) the function h is dominated by the function φ .

Lemma 5.2. In the above notation, there exists a constant c> 1 such that

h(x)6 cφ(x−2), x > 0.

Proof. First observe that if x ∈ (0,1) then

h(x) = P(Sφ

1 6= 0)6 16 φ(x−2).
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Assume next that x≥ 1. Using Proposition 3.3 and (2.3), we get

P(|Sφ

1 |> x)6 c1
∑
|y|>x
|y|−d

φ(|y|−2)6
c1

c∗
φ(x−2)

∑
|y|>x
|y|−d (x/|y|)2α∗

6 c2x2α∗φ(x−2)
∫

∞

x
r−d−2α∗rd−1 dr = c3φ(x−2).

Similarly, we have

x−2
∫
|y|6x
|y|2dF(y) = x−2 ∑

16|y|6x
|y|2P(Sφ

1 = y)6 c4x−2 ∑
16|y|6x

|y|2−d
φ(|y|−2)

6 c5x−2
φ(x−2)

∑
16|y|6x

|y|2−d(|y|/x)−2α∗

6 c6x2α∗−2
φ(x−2)

∫ x

1
r2−d−2α∗rd−1dr

6 c6x2α∗−2
φ(x−2)

∫ x

0
r1−2α∗dr = c7φ(x−2),

for some constant c7 > 0. Plugging these bounds into (5.2) finishes the proof. �

Proof of Theorem 5.1. We first consider the case r < 1. Since φ is increasing and φ(1) = 1, we

have γ/φ(r−2)< 1, for any γ ∈ (0,1). Therefore

max
k6bγ/φ(r−2)c

|Sφ

k − x|= |Sφ

0 − x|

and thus for any r < 1 it holds

Px
(

max
k6bγ/φ(r−2)c

|Sφ

k − x|> r/2
)
= 0.

Assume that r > 1. Applying the result from [24, Lemma on page 949] we get

Px
(

max
k6bγ/φ(r−2)c

|Sφ

k − x|> r/2
)
6 c1bγ/φ(r−2)ch(r/2), (5.3)

where c1 depends only on the dimension d. By Lemma 5.2 and (2.2),

Px
(

max
k6bγ/φ(r−2)c

|Sφ

k − x|> r/2
)
6 4c1Cbγ/φ(r−2)cφ(r−2)6 4c1Cγ.

Choosing γ = 1
2 ∧

1
16c1C we obtain (5.1) for all r > 0. �

5.2. PARABOLIC HARNACK INEQUALITY

In this section we prove the parabolic Harnack inequality which is the main tool that we will

use in Chapter 6 to obtain off-diagonal bounds for n-step transition probabilities of subordinate
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random walk Sφ . We follow closely the elegant approach of [5] but we emphasize that for the

case that we undertake, it requires numerous adjustments and alterations.

Let P =N0×Zd and consider the P-valued Markov chain (Vk,S
φ

k )k>0, where Vk =V0+k.

We write P( j,x) for the law of (Vk,S
φ

k ) when it starts from ( j,x) and we set F j = σ{(Vk,S
φ

k ) : k6

j}. A bounded function q defined on P is called parabolic on a subset D⊆P if q(Vk∧τD,S
φ

k∧τD
)

is a martingale, where τD denotes the exit time of the Markov chain (Vk,S
φ

k ) from the set D. We

now prove the following important observation.

Lemma 5.3. For each n0 ∈ N and x0 ∈ Zd the function q(k,x) = pφ (n0− k,x,x0) is parabolic

on the set {0,1,2, . . . ,n0}×Zd .

Proof. By the Markov property,

E[q(Vk+1,S
φ

k+1) |Fk] = E(Vk,S
φ

k )[pφ (n0−V1,S
φ

1 ,x0)]

=
∑

x∈Zd

pφ (1,Sφ

k ,x)pφ (n0−Vk−1,x,x0) = q(Vk,S
φ

k ),

where the last equality follows by the semigroup relation. �

We introduce the notation

Q(k,x,r) = {k,k+1, . . . ,k+ bγ/φ(r−2)c}×B(x,r),

where γ is the constant from Theorem 5.1. We fix the following two constants

B = 3∨ (2/c∗)1/2α∗ , b = 3∨
Ä
b(3/c∗)1/α∗c+1

ä
. (5.4)

The main result of this section is the following theorem.

Theorem 5.4. There exists a constant CPH > 0 such that for every non-negative, bounded func-

tion q on P which is parabolic on the set {0,1,2, . . . ,bγ/φ((
√

bR)−2)c}×Zd , the following

inequality holds

max
(k,y)∈Q(bγ/φ(R−2)c,z,R/B)

q(k,y)6CPH min
w∈B(z,R/B)

q(0,w) (5.5)

for all z ∈ Zd and for R large enough.

Before we prove this theorem, we need to establish a series of lemmas. Let

τ(k,x,r) := min{l > 0 : (Vl,S
φ

l ) /∈ Q(k,x,r)}
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and put τ(x,r) = τ(0,x,r). We observe that τ(k,x,r) 6 bγ/φ(r−2)c+ 1. For a non-empty set

A⊆ Q(0,x,r), we define

A(k) = {y ∈ Zd : (k,y) ∈ A} ⊂ Zd.

We now fix a non-empty A⊆ Q(0,x,r) such that A(0) = /0 and we set

N(k,x) = P(k,x)(Sφ

1 ∈ A(k+1))1Ac(k,x).

For any A⊂P we also define

TA = min{n> 0 : (Vn,Sφ
n ) ∈ A}, and T/0 = ∞.

Lemma 5.5. In the above notation, let

Jn = 1A(Vn,Sφ
n )−1A(V0,S

φ

0 )−
n−1∑
k=0

N(Vk,S
φ

k ).

The process Jn∧TA is an F -martingale.

Proof. If TA 6 k−1, we have

J(k+1)∧TA
− Jk∧TA = 0.

For TA = k we get

J(k+1)∧TA
− Jk∧TA = N(VTA ,S

φ

TA
) = 0,

by the definition of N(k,x). If TA > k then

E[J(k+1)∧TA
− Jk∧TA |Fk] = E[1A(Vk+1,S

φ

k+1) |Fk]−N(Vk,S
φ

k )

= P(Vk,S
φ

k )(Sφ

1 ∈ A(Vk +1))−N(Vk,S
φ

k ) = 0,

as desired. �

Proposition 5.6. There exists a constant θ1 ∈ (0,1) such that

P(0,x)(TA < τ(x,r))> θ1|A| j(r). (5.6)

Proof. We claim that bγ/φ(r−2)c+16 2γ/φ(r−2). Indeed, we have A(0) = /0 and A 6= /0 so it

follows that A(k) 6= /0, for some k > 1. Thus γ/φ(r−2)> 1, which clearly yields the claim.
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We first assume that P(0,x)(TA 6 τ(x,r))> 1/4. Since A⊆ Q(0,x,r), using (2.17) we get

|A| j(r)6 |Q(0,x,r)| j(r)6 c′′(bγ/φ(r−2)c+1)φ(r−2)6 2c′′γ.

Hence

P(0,x)(TA 6 τ(x,r))>
1
4
=

1
8c′′γ

2c′′γ >
1

8c′′γ
|A| j(r).

Assume that P(0,x)(TA 6 τ(x,r)) < 1/4. Let M := TA ∧ τ(x,r). By Lemma 5.5 and the

Optional Stopping Theorem, E[JM] = E[J0] = 0. This and the fact that (0,X0) /∈ A imply

E(0,x)[1A(M,Sφ

M)] = E(0,x)
ïM−1∑

k=0
N(k,Sφ

k )
ò
.

By Proposition 3.3, Lemma 3.6, monotonicity of the function j and (2.11), we get for (k,w) ∈

Q(0,x,r)∩Ac

N(k,w) =
∑

y∈A(k+1)\{w}
pφ (w,y)+ pφ (w,w)1A(k+1)(w)

≥ c1 j(2r)|A(k+1)\{w}|+ c21A(k+1)(w)≥ c3 j(r)|A(k+1)|.

Observe that if k < M then (k,Sφ

k ) ∈ Q(0,x,r)∩Ac and if M > bγ/φ(r−2)c then
∑M−1

k=0 |A(k+

1)|= |A|. Hence, on the set {M > bγ/φ(r−2)c} we have

M−1∑
k=0

N(k,Sφ

k )>
M−1∑
k=0

c3|A(k+1)| j(r) = c3|A| j(r).

Since P(0,x)(TA 6 τ(x,r)) = E(0,x)[1A(M,Sφ

M)], we get

P(0,x)(TA 6 τ(x,r))> E(0,x)
ïM−1∑

k=0
N(k,Sφ

k )1{M>bγ/φ(r−2)c}

ò
≥ c3|A| j(r)P(0,x)(M > bγ/φ(r−2)c)

= c3|A| j(r)
(
1−P(0,x)(TA < τ(x,r),TA < bγ/φ(r−2)c)

− P(0,x)(τ(x,r)< TA,τ(x,r)< bγ/φ(r−2)c)
)

> c3|A| j(r)
(
1−P(0,x)(TA 6 τ(x,r))

− P(0,x) Ä
τ(x,r)6 bγ/φ(r−2)c

ä)
.

We notice that if τ(x,r)6 bγ/φ(r−2)c then maxk6bγ/φ(r−2)c |S
φ

k − x|> r/2. Thus (5.1) implies

P(0,x) Ä
τ(x,r)6 bγ/φ(r−2)c

ä
6 P(0,x)Ä max

k6bγ/φ(r−2)c
|Sφ

k − x|> r/2
ä
6 1/4.

We conclude the desired result with θ1 =
1
2 ∧

1
8c′′γ ∧

c3
2 . �
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Lemma 5.7. There exists a constant θ2 > 0 such that for (k,x) ∈ Q(0,z,R/2) and for r > 0

such that k > bγ/φ(r−2)c+1 we have

P(0,x) ÄTU(k,x,r) < τ(z,R)
ä
> θ2

j(R)
j(r)

,

where U(k,x,r) = {k}×B(x,r).

Proof. Let Q′ = {k,k− 1, . . . ,k−bγ/φ(r−2)c}×B(x,r/2). We want to apply Proposition 5.6

to sets Q′ and Q(0,z,R). To be able to do that, we have to show Q′(0) = /0 and Q′ ⊆ Q(0,z,R).

Since r > 0 satisfies k > bγ/φ(r−2)c+1 it is clear that k−bγ/φ(r−2)c> 1. Hence, Q′(0) = /0.

Now we just need to check whether B(x,r/2) ⊆ B(z,R). From (k,x) ∈ Q(0,z,R/2) it follows

that k 6 bγ/φ((R/2)−2)c. Therefore

bγ/φ(r−2)c+16 bγ/φ((R/2)−2)c.

Since x 7→ γ/φ(x−2) is an increasing function, we have r6 R/2. It is now clear that B(x,r/2)⊆

B(z,R) because x ∈ B(z,R/2). By Proposition 5.6, we get

P(0,x) ÄTQ′ < τ(z,R)
ä
> θ1|Q′| j(R)> θ1c′(bγ/φ(r−2)c+1)(r/2)d j(R)

>
θ1c′

2d
γ

φ(r−2)
rd j(R) = c1

j(R)
j(r)

.

The strong Markov property yields

P(0,x) ÄTU(k,x,r) < τ(z,R)
ä
> P(0,x) ÄTU(k,x,r) < τ(z,R),TQ′ < τ(z,R)

ä
= P

(TQ′ ,S
φ

TQ′
) Ä

TU(k,x,r) < τ(z,R)
ä
P(0,x) ÄTQ′ < τ(z,R)

ä
. (5.7)

We are left to bound from below the first term in (5.7). Observe that if the process (Vk,S
φ

k ) starts

from the point (TQ′,S
φ

TQ′
) and the Sφ -coordinate stays in B(x,r) for at least bγ/φ(r−2)c steps,

then (Vk,S
φ

k ) hits U(k,x,r) before exiting Q(0,z,R). We also notice that the Sφ -coordinate

stays in B(x,r) for at least bγ/φ(r−2)c steps if for all TQ′ 6 k 6 TQ′ + bγ/φ(r−2)c it holds

|Sφ

k −Sφ

TQ′
|< r

2 . Thus, using Theorem 5.1, we get

P
(TQ′ ,S

φ

TQ′
) Ä

TU(k,x,r) < τ(z,R)
ä
> 3/4

and we conclude that

P(0,x) ÄTU(k,x,r) < τ(z,R)
ä
> θ2

j(R)
j(r)

,

where θ2 =
3c1
4 . �
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Lemma 5.8. Let H(k,w) ≥ 0 be a function on P such that H(k,w)1B(x,2r)(w) = 0. There

exists a constant θ3 > 0 which does not depend on x, r and H and such that

E(0,x)[H(Vτ(x,r),S
φ

τ(x,r))]6 θ3E(0,y)[H(Vτ(x,r),S
φ

τ(x,r))], (5.8)

for all y ∈ B(x,r/2).

Proof. It suffices to check the validity of (5.8) for H = 1(k,w) if y ∈ B(x,r/2), w /∈ B(x,2r) and

16 k 6 bγ/φ(r−2)c+1. With such a choice we have

E(0,y)[1(k,w)(Vτ(x,r),S
φ

τ(x,r))] = E(0,y)[E(0,y)[1(k,w)(Vτ(x,r),S
φ

τ(x,r)) |Fk−1]]

= E(0,y)[1{τ(x,r)>k−1}p
φ (Sφ

k−1,w)], (5.9)

Since Sφ

k−1 ∈B(x,r), we have pφ (Sφ

k−1,w)> infz∈B(x,r) pφ (z,w). For z∈B(x,r) and w /∈B(x,2r),

z 6= w and whence Proposition 3.3 implies

E(0,y)[1(k,w)(Vτ(x,r),S
φ

τ(x,r))]> c1P(0,y) Ä
τ(x,r) = bγ/φ(r−2)c+1

ä
inf

z∈B(x,r)
j(|z−w|).

If (Vk,S
φ

k ) starts from (0,y) and the Sφ -coordinate stays in B(y,r/2) for bγ/φ(r−2)c steps then

at the same time it also stays in B(x,r). Hence

3
4
6 P(0,y)

(
max

k6bγ/φ(r−2)c
|Sφ

k − y|< r
2

)
6 P(0,y)(τ(x,r) = bγ/φ(r−2)c+1).

For every z ∈ B(x,r) we have |z−w|6 2|x−w|. By monotonicity of j and (2.11), we get

inf
z∈B(x,r)

j(|z−w|)> j(2|x−w|)> 2−d−2 j(|x−w|).

Combining upper relations, we obtain

E(0,y)[1(k,w)(Vτ(x,r),S
φ

τ(x,r))]> c2 j(|x−w|). (5.10)

Notice that (5.9) remains valid if the process starts from (0,x) instead of (0,y). Using similar

arguments as in proving (5.10) we get

E(0,x)[1(k,w)(Vτ(x,r),S
φ

τ(x,r))] = E(0,x)[1{τ(x,r)>k−1}p
φ (Sφ

k−1,w)]

6 E(0,x)[1{τ(x,r)>k−1} sup
z∈B(x,r)

pφ (z,w)]

6 c3 sup
z∈B(x,r)

j(|z−w|)6 c3 j(|x−w|/2)

6 c3(1/2)−d−2 j(|x−w|) = c4 j(|x−w|). (5.11)

From (5.10) and (5.11) follows the statement of this lemma with θ3 = c4/c2. �
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Lemma 5.9. There exists a constant R0 > B such that

bγ/φ(R−2)c> bγ/φ((R/B)−2)c+1, R> R0,

where B is defined at (5.4).

Proof. For every x ∈ R we write bxc= x−m(x), m(x) ∈ [0,1). Thus, we look for R0 such that

γ

φ(R−2)
− γ

φ(B2R−2)
> 1+m(γ/φ(R−2))−m

Ä
γ/φ((R/B)−2)

ä
, R> R0.

Observe that 1+m(γ/φ(R−2))−m
Ä
γ/φ((R/B)−2)

ä
6 2. Hence, it is enough to find R0 large

enough and such that
γ

φ(R−2)
− γ

φ(B2R−2)
> 2, R> R0.

By (2.3), we get

γ

φ(R−2)
− γ

φ(B2R−2)
>

γ

φ(B2R−2)

Ä
c∗B2α∗−1

ä
>

γ

φ(B2R−2)
R→∞−→ ∞. (5.12)

Therefore, there exists R0 > B such that

γ

φ(B2R−2)
> 2, R> R0 (5.13)

and the proof is finished. �

We can now prove the parabolic Harnack inequality.

Proof of Theorem 5.4. By multiplying the function q by a constant, we can assume that

min
w∈B(z,R/B)

q(0,w) = q(0,v) = 1. (5.14)

Notice that if q(0,x) = 0 for some x ∈ B(z,R/B) then (5.5) is trivially satisfied, as the parabol-

icity of q implies that

max
(k,y)∈Q(bγ/φ(R−2)c,z,R/B)

q(k,y) = 0.

Let B be the constant defined at (5.4). By Lemma 5.9, there exists a constant R0 > B such

that

bγ/φ(r−2)c> bγ/φ((r/B)−2)c+1, r > R0. (5.15)

Let us fix r > R0, (k,x) ∈P and a set G⊆ Q(k+1,x,r/B) for which it holds

|G|
|Q(k+1,x,r/B)|

>
1
3
.
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We claim that for such a set G there is a constant c1 ∈ (0,1) such that

P(k,x)(TG < τ(k,x,r))> c1. (5.16)

Indeed, by our choice G⊆Q(k,x,r) and G(k) = /0. Therefore, Proposition 5.6 and relation (2.2)

yield

P(k,x)(TG < τ(k,x,r))> θ1|G| j(r) = θ1
|G|

|Q(k+1,x,r/B)|
|Q(k+1,x,r/B)| j(r)

>
θ1

3
|{k+1,k+1+1, . . . ,k+1+ bγ/φ((r/B)−2)c}||B(x,r/B)| j(r)

>
θ1

3
γ

φ((r/B)−2)
c′
Å r

B

ãd
r−d

φ(r−2) =
θ1γc′

3Bd
φ(r−2)

φ(B2r−2)
>

θ1γc′

3Bd
1

B2 =
θ1γc′

3Bd+2 =: c1,

where we can achieve that c1 < 1 by decreasing c′ in (2.17) if necessary.

Let θ1,θ2 and θ3 be the constants from Proposition 5.6, Lemma 5.7 and Lemma 5.8 respec-

tively. We set

η =
c1

3
, ζ =

c1

3
∧ η

θ3
, a = 2∨

Ç
2
c∗

å1/α∗
, (5.17)

where c1 is the constant from relation (5.16) and c∗,α∗ ∈ (0,1) are the constants from the scaling

condition (2.3).

Claim 3. There exists a constant c2 > 0 such that for all r,R,K > 0 which satisfy

r
R
< 1 and

r
R

K1/(d+2) > c2, (5.18)

the following two inequalities hold

j(2
√

aR)
j(r/R0)

>
1

θ2ζ K
, (5.19)

|Q(0,x,r/B)| j(
√

bR)>
3

θ1ζ K
. (5.20)

We prove this claim in the end of the proof of the theorem and the value of the constant c2 is

specified there, see (5.35).

Let us choose (k1,x1) ∈ Q(bγ/φ(R−2)c,z,R) such that it holds

K1 = q(k1,x1) = max
(k,y)∈Q(bγ/φ(R−2)c,z,R/B)

q(k,y).

We construct a sequence of points (ki,xi) such that K1 = q(k1,x1) is bigger than some con-

stant and under this condition the sequence Ki = q(ki,xi) is increasing and tends to infinity,
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cf. (5.25). This will finally contradict the fact that q is bounded. Therefore, we will be able

to conclude that K1 is bounded by some constant and that is precisely what we need to prove

because of the assumption (5.14).

If c2K−1/(d+2)
1 > 1/B then relation (5.5) holds with the constant CPH = (Bc2)

d+2. That is

why it suffices to study the case c2K−1/(d+2)
1 < 1/B. Suppose that we have already defined

the points (k1,x1),(k2,x2), . . . ,(ki,xi) ∈ Q(bγ/φ(R−2)c,z,R). We describe the procedure how

to obtain (ki+1,xi+1) ∈ Q(bγ/φ(R−2)c,z,R). We first define ri by

ri

R
= c2K−1/(d+2)

i . (5.21)

In what follows, we want to use Lemma 5.7 so we need to show

(ki,xi) ∈ Q(0,v,
√

aR) and ki > 1+ bγ/φ((ri/R0)
−2)c (5.22)

for v defined in (5.14). To show (ki,xi) ∈ Q(0,v,
√

aR) we need to prove ki 6 bγ/φ((
√

aR)−2)c

and xi ∈ B(v,
√

aR). Since (ki,xi) ∈ Q(bγ/φ(R−2)c,z,R) we have

ki 6
ú

γ

φ(R−2)

ü
+

ú
γ

φ(R−2)

ü
6

2γ

φ(R−2)
6

γ

φ(R−2)
c∗aα∗

6
γ

φ(R−2)

φ(R−2)

φ(R−2/a)
=

γ

φ((
√

aR)−2)
.

From this, we clearly have ki 6 bγ/φ((
√

aR)−2)c. Again using (ki,xi) ∈ Q(bγ/φ(R−2)c,z,R)

we have

|xi− v|6 |xi− z|+ |z− v|6 R+
R
B
6 R+

R
3
=

4R
3
6
√

aR,

where we used v ∈ B(z,R/B), B> 3 and a> 2. The inequality ki > 1+bγ/φ((ri/R0)
−2)c holds

because (ki,xi) ∈ Q(bγ/φ(R−2)c,z,R) so

ki > bγ/φ(R−2)c> 1+ bγ/φ((R/B)−2)c> 1+ bγ/φ((ri/R0)
−2)c,

where in the second inequality we used Lemma 5.9 and in the third one we used that ri/R0 6

R/B and that x 7→ bγ/φ(x−2)c is an increasing function. Now, suppose that q > ζ Ki on the set

Ui := {ki}×B(xi,ri/R0). Since q is parabolic on D = {0,1,2, . . . ,bγ/φ((
√

bR)−2)c}×Zd , we

know that (q(Vk∧τD ,S
φ

k∧τD
))k>0 is a martingale. Thus (5.19) and Lemma 5.7 imply

1 = q(0,v) = E(0,v)[q(VTUi∧τ(v,2
√

aR),S
φ

TUi∧τ(v,2
√

aR))]

> E(0,v)[q(VTUi∧τ(v,2
√

aR),S
φ

TUi∧τ(v,2
√

aR))1{TUi<τ(v,2
√

aR)}]

= E(0,v)[q(VTUi
,Sφ

TUi
)1{TUi<τ(v,2

√
aR)}]> ζ KiP(0,v)(TUi < τ(v,2

√
aR))

> ζ Kiθ2
j(2
√

aR)
j(ri/R0)

> ζ Kiθ2
1

ζ Kiθ2
= 1,
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and we mention that we could apply Lemma 5.7 because of (5.22). Thus we get a contradiction,

so there must exist yi ∈ B(xi,ri/R0) such that q(ki,yi)< ζ Ki. Observe that

q(ki,yi)< ζ Ki 6 (c1/3)Ki < Ki/3

and whence xi 6= yi. This in turn implies

ri > R0. (5.23)

Suppose next that

E(ki,xi)[q(Vτ(ki,xi,ri),S
φ

τ(ki,xi,ri)
)1{Sφ

τ(ki,xi,ri)
/∈B(xi,2ri)}

]> ηKi.

By Lemma 5.8 we have

ζ Ki > q(ki,yi) = E(ki,yi)[q(Vτ(ki,xi,ri),S
φ

τ(ki,xi,ri)
)]

> E(ki,yi)[q(Vτ(ki,xi,ri),S
φ

τ(ki,xi,ri)
)1{Sφ

τ(ki,xi,ri)
/∈B(xi,2ri)}

]

> θ
−1
3 E(ki,xi)[q(Vτ(ki,xi,ri),S

φ

τ(ki,xi,ri)
)1{Sφ

τ(ki,xi,ri)
/∈B(xi,2ri)}

]

>
η

θ3
Ki > ζ Ki,

which again gives a contradiction. Therefore

E(ki,xi)[q(Vτ(ki,xi,ri),S
φ

τ(ki,xi,ri)
)1{Sφ

τ(ki,xi,ri)
/∈B(xi,2ri)}

]< ηKi. (5.24)

Define the set

Ai = {( j,y) ∈ Q(ki +1,xi,ri/B) : q( j,y)> ζ Ki}.

We want to apply Proposition 5.6 for Ai and Q(0,v,
√

bR). Clearly, from the definition of the

set Ai, we have Ai ⊆ Q(ki + 1,xi,ri/B) and Ai(0) = /0. We next show Q(ki + 1,xi,ri/B) ⊆

Q(0,v,
√

bR). We prove that ki + 1 + bγ/φ((ri/B)−2)c 6 bγ/φ((
√

bR)−2)c using (ki,xi) ∈

Q(bγ/φ(R−2)c,z,R), ri 6 R, Lemma 5.9, R> R0 and lower scaling:

ki +1+
ú

γ

φ((ri/B)−2)

ü
6
ú

γ

φ(R−2)

ü
+

ú
γ

φ(R−2)

ü
+1+

ú
γ

φ((R/B)−2)

ü
6

γ

φ(R−2)
+

γ

φ(R−2)
+

γ

φ(R−2)
=

3γ

φ(R−2)
6

γ

φ(R−2)
c∗bα∗

6
γ

φ(R−2)

φ(R−2)

φ((
√

bR)−2)
=

γ

φ((
√

bR)−2)
.
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The second thing we have to show is that B(xi,ri/B)⊆ B(v,
√

bR). For that, we use ri6 R, B> 3

and b> 3. Let w ∈ B(xi,ri/B).

|w− v|6 |w− xi|+ |xi− z|+ |z− v|6 R/B+R+R/B6 R/3+R+R/3 = 5R/36
√

bR.

Therefore

1 = q(0,v) = E(0,v)[q(VTAi∧τ(v,
√

bR),XTAi∧τ(v,
√

bR))]

> E(0,v)[q(VTAi∧τ(v,
√

bR),XTAi∧τ(v,
√

bR))1{TAi<τ(v,
√

bR)}]

= E(0,v)[q(VTAi
,XTAi

)1{TAi<τ(v,
√

bR)}]> ζ KiP(0,v)(TAi < τ(v,
√

bR))

> ζ Kiθ1|Ai| j(
√

bR)> ζ Kiθ1
|Ai|

|Q(ki +1,xi,ri/B)|
3

ζ Kiθ1
,

where we used (5.20) in the last line. We conclude that

|Ai|
|Q(ki +1,xi,ri/B)|

6
1
3
.

Define next

Di = Q(ki +1,xi,ri/B)\Ai and Mi = max
Q(ki+1,xi,2ri)

q.

By (5.24) combined with (5.16), we obtain

Ki = E(ki,xi)[q(VTDi
,XTDi

)1{TDi<τ(ki,xi,ri)}]

+E(ki,xi)[q(Vτ(ki,xi,ri),Xτ(ki,xi,ri))1{τ(ki,xi,ri)<TDi}
1{Xτ(ki,xi,ri)

/∈B(xi,2ri)}]

+E(ki,xi)[q(Vτ(ki,xi,ri),Xτ(ki,xi,ri))1{τ(ki,xi,ri)<TDi}
1{Xτ(ki,xi,ri)

∈B(xi,2ri)}]

6 ζ Ki +ηKi +Mi(1−P(ki,xi)(TDi < τ(ki,xi,ri)))

6
c1

3
Ki +

c1

3
Ki +Mi(1− c1) =

2c1

3
Ki +Mi(1− c1).

Hence Mi/Ki > 1+ρ , where ρ = c1/(3(1− c1)) > 0. Finally, the point (ki+1,xi+1) ∈ Q(ki +

1,xi,2ri) is chosen such that

Ki+1 = q(ki+1,xi+1) = Mi.

This implies

Ki+1 > (1+ρ)Ki. (5.25)

which together with (5.21) gives

ri+1 6 ri(1+ρ)−1/(d+2). (5.26)
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We finally want to show that if K1 is chosen to be sufficiently large then the new point

(ki+1,xi+1) will lie in Q(bγ/φ(R−2)c,z,R). Indeed, (ki+1,xi+1) ∈ Q(ki + 1,xi,2ri) and ri >

R0 > B> 3. Therefore

ki+1 6 ki +1+
ú

γ

φ((2ri)−2)

ü
6 ki +1+

γ

φ(r−2
i )

φ(r−2
i )

φ((2ri)−2)

6 ki +
1

φ(r−2
i )

+
4γ

φ(r−2
i )
6 ki +

5
φ(r−2

i )
(5.27)

where we used (2.2) and γ < 1. We also have |xi+1− xi| 6 2ri since (ki+1,xi+1) ∈ Q(ki +

1,xi,2ri). Iterating (5.26) we get

ri+1 6 ri(1+ρ)−1/(d+2) 6 ri−1(1+ρ)−2/(d+2) 6 . . .6 r1(1+ρ)−i/(d+2). (5.28)

Hence, for every j ∈ {1,2, . . . , i+1} we have

r j 6 r1(1+ρ)−( j−1)/(d+2)⇒ r j(1+ρ)( j−1)/(d+2) 6 r1

⇒ r−2
j (1+ρ)−2( j−1)/(d+2) > r−2

1

⇒ φ(r−2
1 )6 φ

(
r−2

j (1+ρ)−2( j−1)/(d+2)
)
. (5.29)

Notice also that from r j 6 r j−1(1+ρ)−1/(d+2) we have that r j 6 r j−1. Therefore, by (5.23), for

all j ∈ {1,2, . . . , i} we have

r j > ri > R0 > 3⇒ r j(1+ρ)( j−1)/(d+2) > r j > ri > 1

⇒ r−2
j (1+ρ)−2( j−1)/(d+2) 6 r−2

j 6 1

⇒
φ(r−2

j )

φ
Ä
r−2

j (1+ρ)−2( j−1)/(d+2)
ä > c∗

Å
(1+ρ)

2α∗
d+2

ã j−1

⇒
φ
Ä
r−2

j (1+ρ)−2( j−1)/(d+2)
ä

φ(r−2
j )

6 c−1
∗

Å
(1+ρ)

−2α∗
d+2

ã j−1
(5.30)

Using (5.27), (5.29), (5.30) and (k1,x1) ∈ Q(bγ/φ(R−2)c,z,R/B) we get

ki+1 6 ki +
5

φ(r−2
i )
6 ki−1 +

5
φ(r−2

i−1)
+

5
φ(r−2

i )
6 . . .6 k1 +5

i∑
j=1

1
φ(r−2

j )

= k1 +
5

φ(r−2
1 )

i∑
j=1

φ(r−2
1 )

φ(r−2
j )
6 k1 +

5
φ(r−2

1 )

i∑
j=1

φ
Ä
r−2

j (1+ρ)−2( j−1)/(d+2)
ä

φ(r−2
j )

6 k1 +
5

φ(r−2
1 )

i∑
j=1

c−1
∗

Å
(1+ρ)

−2α∗
d+2

ã j−1
6 k1 +

5c−1
∗

φ(r−2
1 )

∞∑
j=0

Å
(1+ρ)

−2α∗
d+2

ã j

6
ú

γ

φ(R−2)

ü
+

ú
γ

φ((R/B)−2)

ü
+

5c−1
∗

1−κ2α∗

1
φ(r−2

1 )
, (5.31)
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with κ = (1+ρ)−1/(d+2). We have similar calculation for |xi+1− z|,

|xi+1− z|6 |xi+1− xi|+ |xi− xi−1|+ · · ·+ |x2− x1|+ |x1− z|

6 2ri +2ri−1 + · · ·+2r1 +
R
B
=

R
B
+2

i∑
j=1

r j

6
R
B
+2

i∑
j=1

r1(1+ρ)−( j−1)/(d+2)

6
R
B
+2r1

∞∑
j=0

((1+ρ)−1/(d+2)) j =
R
B
+

2r1

1−κ
. (5.32)

We next need the following technical result which we prove later.

Claim 4. There is a constant c3 > 0 such that the following two relation hold for all R suffi-

ciently large

bγ/φ((R/B)−2)c+ 5c−1
∗

1−κ2α∗

1
φ((c3R)−2)

6 bγ/φ(R−2)c (5.33)

and
R
B
+

2c3R
1−κ

< R. (5.34)

At last, let c3 be the constant as in Claim 4 and suppose that K1 > (c2/c3)
d+2. This would

mean that r1 6 c3R. By (5.31), (5.32) and Claim 4, (ki+1,xi+1) ∈ Q(bγ/φ(R−2)c,z,R). How-

ever, by (5.23) ri > 3 for all i. On the other hand, if we let i tend to infinity in (5.28), we would

obtain that ri approaches zero. This is a contradiction and whence K1 6 (c2/c3)
d+2, which

means that (5.5) holds with CPH = (c2/c3)
d+2 and for all R large enough. To finish the prove

we are left to establish Claims 3 and 4.

Proof of Claim 3. We set

c2 = 2R0
√

a
Ç

1
θ2ζ

å1/(d+2)
∨B
√

b
Ç

3
θ1ζ γc′

å1/(d+2)
, (5.35)

where γ is the constant from Theorem 5.1, c′ is the constant from (2.17) and b is defined in (5.4).

We show that the claim is true with such a constant. We start by showing (5.19). Combining

(2.2) and (5.18) we get

j(2
√

aR)
j(r/R0)

= (2R0
√

a)−d
Ç

R
r

å−d
φ((2
√

aR)−2)

φ((r/R0)−2)
>

1
(2R0
√

a)d+2

Å r
R

ãd+2

>
1

(2R0
√

a)d+2
(2R0
√

a)d+2

θ2ζ
K−1 =

1
θ2ζ K

.
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Similarly, to prove (5.20) we apply (2.17) and (2.2) and obtain

|Q(0,x,r/B)| j(
√

bR)≥ γc′b−d/2

Bd

Å r
R

ãd φ((
√

bR)−2)

φ((r/B)−2)

>
γc′

(B
√

b)d+2
cd+2

2 K−1 >
γc′

(B
√

b)d+2

3(B
√

b)d+2

θ1ζ γc′
K−1 =

3
θ1ζ K

.

Proof of Claim 4. Notice that (5.33) is equivalent to

5c−1
∗

1−κ2α∗

1
φ((c3R)−2)

6 bγ/φ(R−2)c−bγ/φ((R/B)−2)c.

Using (5.12) and (5.13) we get

bγ/φ(R−2)c−bγ/φ((R/B)−2)c> γ

2φ(B2R−2)
.

Hence, it is enough to define c3 for which

φ(B2R−2)

φ(c−2
3 R−2)

6
γc∗(1−κ2α∗)

10
. (5.36)

This can be achieved by setting

c3 := B−1
Å

1∧
Ä
γc2
∗(1−κ

2α∗)/10
ä1/2α∗ ∧ (B−1)(1−κ)/3

ã
.

Indeed, with such a choice, for R sufficiently large we apply the scaling condition and get

φ(B2R−2)

φ(c−2
3 R−2)

6
1
c∗
(c3B)2α∗.

Clearly (5.36) follows. With such c3 the validity of (5.34) is obvious. �
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6. OFF-DIAGONAL BOUNDS

In this chapter we establish global estimates for the function pφ (n,x,y), that is, we prove that

for all x,y ∈ Zd and n ∈ N it holds

pφ (n,x,y)�min
ßÄ

φ
−1(n−1)

äd/2
,

nφ(|x− y|−2)

|x− y|d
™
.

We split the proof in two sections. In Section 6.1 we find the lower bound for the heat kernel of

the subordinate random walk Sφ and in Section 6.2 we find the upper bound for pφ (n,x,y).

6.1. LOWER BOUND

The aim of this section is to prove the global lower estimate. We use a probabilistic method

based on the parabolic Harnack inequality.

Theorem 6.1. Under our assumptions, for some constant C > 0

pφ (n,x,y)>C
ÅÄ

φ
−1(n−1)

äd/2∧ n
|x− y|d

φ(|x− y|−2)
ã
, (6.1)

for all x,y ∈ Zd and for all n ∈ N.

Proof. Let us set

rn =
1»

φ−1(n−1)
, n≥ 1.

Near-diagonal bound: We start by proving that there exists a constant C > 0 such that

pφ (n,x,y)>C
Ä
φ
−1(n−1)

äd/2
, (6.2)

for n∈N and |x−y|6 d1rn, where d1 > 0 is a constant to be specified. We take n∈N and choose

R to satisfy n = γ/φ(R−2), where γ is the constant from Theorem 5.1. Let q(k,w) = pφ (bn−
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k,x,w), where b is the constant from (5.4). By Lemma 5.3, q is parabolic on {0,1,2, . . . ,bn}×

Zd . Since b> 1, using (2.2) we have

γ

φ((
√

bR)−2)
=

γ

φ(R−2)

φ(R−2)

φ(b−1R−2)
6

γ

φ(R−2)

1
b−1 =

bγ

φ(R−2)
⇒ bn>

⌊
γ

φ((
√

bR)−2)

⌋
. (6.3)

Hence, specially, q is parabolic on {0,1,2, . . . ,bγ/φ((
√

bR)−2)c}×Zd . Now we want to find a

constant d1 > 0 such that

B(y,d1rn)⊆ B(y,R/B).

Using n = γ/φ(R−2) we get

φ(R−2) = γn−1⇒ R−2 = φ
−1(γn−1)6 φ

−1(n−1)⇒ R> rn,

where we used monotonicity of the function φ and γ < 1. We now choose d1 = 1/B which

implies that B(y,d1rn)⊆ B(y,R/B) and whence (n,x) ∈Q(bγ/φ(R−2)c,y,R/B). By choosing n

big enough we can make R large enough and this allows us to apply Theorem 5.4. Thus, there

is n0 ≥ 1 such that for all n≥ n0,

min
z∈B(y,d1rn)

pφ (bn,x,z)> min
z∈B(y,R/B)

pφ (bn,x,z) = min
z∈B(y,R/B)

q(0,z)

>C−1
PH max

(k,z)∈Q(bγ/φ(R−2)c,y,R/B)
q(k,z)

>C−1
PHq(n,x).

Hence, by Theorem 4.1,

min
z∈B(y,d1rn)

pφ (bn,x,z)>C−1
PHq(n,x) =C−1

PH pφ ((b−1)n,x,x)

>C−1
PHc1

Ä
φ
−1(((b−1)n)−1)

äd/2

>C−1
PHc1

Ä
φ
−1((bn)−1)

äd/2
,

for all x ∈ Zd and n ≥ n0. Hence, we have proved (6.2) for all integers of the form bn with

n≥ n0. For the remaining values of n between bn0 and b(n0 +1) (and so forth) we use Lemma

3.6 to get

pφ (bn+1,x,y) =
∑

z∈Zd

pφ (bn,x,z)pφ (z,y)> pφ (bn,x,y)pφ (y,y)

> c2
Ä
φ
−1((bn)−1)

äd/2
> c2

Ä
φ
−1((bn+1)−1)

äd/2
.

For n < bn0 we apply the above procedure together with Proposition 3.3. For |x− y|6 d1rn we

have

pφ (x,y)> c3 j(|x− y|)> c3 j(d1rn)> c3 j(d1rbn0) = c4 = c4(φ
−1(1−1))d/2.
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Now using Lemma 3.6 together with the Chapman-Kolmogorov equality and monotonicity of

the function n 7→ (φ−1(n−1))d/2 we get

pφ (2,x,y) =
∑

z∈Zd

pφ (x,z)pφ (z,y)> pφ (x,y)pφ (y,y)> c5(φ
−1(1−1))d/2 > c5(φ

−1(2−1))d/2.

Since we only have to make finite number of steps, this finishes the proof.

Estimate away from the diagonal: Let j(r) be the function defined at (2.8). We now show that

there is C > 0 such that

pφ (n,x,y)>Cn j(|x− y|), (6.4)

for all n ∈ N and |x− y| > d2rn, where a constant d2 > 0 will be specified later. We first claim

that there is a constant c3 > 0 such that for all x ∈ Zd and for all k,n ∈ N

PxÄmax
j6k
|Sφ

j − x|> c3rn
ä
6

1
2

k
n
. (6.5)

By Lemma 5.2 we get

Px(max
j6k
|Sφ

j − x|> c3rn)6 c4kφ(c−2
3 r−2

n ).

This is true for all constants c3 > 0. We define a specific constant c3 as

c3 = 1∨ (2c4/c∗)1/2α∗.

Since c3 > 1 we can use lower scaling to obtain

c4kφ(c−2
3 r−2

n ) = c4kφ(r−2
n )

φ(c−2
3 r−2

n )

φ(r−2
n )

6
c4

c∗c
2α∗
3

k
n
6

1
2

k
n
.

Last two relations give us (6.5). We now set d2 = 3c3 and we notice that d1 < d2, as d1 = 1/B6

1/3. Let

τ(x,r) = inf{k : Sφ

k /∈ B(x,r)}

and consider a family of sets

Ak = {τ(x,c3rn) = k,Sφ

k ,S
φ

k+1, . . . ,S
φ

n−1 ∈ B(y,c3rn),Sφ
n = y}, (6.6)

for k = 1,2, . . . ,n. Observe that

pφ (n,x,y) = Px(Sφ
n = y)>

n∑
k=1

Px(Ak)
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and our task is to estimate the last sum from below. By the time reversal of the random walk we

get

Px(Ak) =
∑

xk−1∈B(x,c3rn)
xk∈B(y,c3rn)

(
Px(τ(x,c3rn)> k−1,Sφ

k−1 = xk−1)pφ (xk−1,xk)

×Py(τ(y,c3rn)> n− k,Sφ

n−k = xk)
)
. (6.7)

For xk−1 ∈ B(x,c3rn), xk ∈ B(y,c3rn) and |x− y|> d2rn = 3c3rn, we have

|xk−1− xk|6 2c3rn + |x− y|6 2|x− y|,

and whence, for |x− y|> d2rn, by using Proposition 3.3, monotonicity of j and (2.11) we get

pφ (xk−1,xk)> c5 j(|x− y|). (6.8)

Thus

Px(Ak)> c5 j(|x− y|)Px(τ(x,c3rn)> k−1)Py(τ(y,c3rn)> n− k)

= c5 j(|x− y|)Px( max
j6k−1

|Sφ

j − x|< c3rn)Px( max
j6n−k

|Sφ

j − x|< c3rn). (6.9)

Using (6.5) we get

Px(Ak)> c5

Ç
1− 1

2
k−1

n

åÇ
1− 1

2
n− k

n

å
j(|x− y|)> c5

4
j(|x− y|)

and (6.4) follows for all n ∈ N and |x− y|> d2rn.

Intermediate estimate: We finally show that

pφ (n,x,y)>C
Ä
φ
−1(n−1)

äd/2
, (6.10)

for all n ∈ N and for d1rn < |x− y|< d2rn. For any 16 K 6 n we can write

pφ (n,x,y)>
∑

z∈B(y,d1rn/2)
pφ (bn/Kc,x,z)pφ (n−bn/Kc,z,y).

We now state the claim which we prove later.

Claim 5. Let us set

K = 2∨ c∗
Ç

2d2

d1

å2α∗

∨
Ç

1− 4−α∗

c∗

å−1

. (6.11)

Then for all n≥ K the following inequalities hold

d1rn

2
> d2rbn/Kc, rn−bn/Kc >

rn

2
.
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Thus, if |x− y|> d1rn and z ∈ B(y,d1rn/2) then

|x− z|> d2rbn/Kc and |y− z|6 d1rn−bn/Kc.

Combining this with (6.2) and (6.4) we get

pφ (n,x,y)> c6
∑

z∈B(y,d1rn/2)
bn/Kc j(|x− z|)

Ä
φ
−1((n−bn/Kc)−1)

äd/2
.

Since |x−y|< d2rn, for every z ∈ B(y,d1rn/2) we get |x− z|6 c7rn, where c7 = d1/2+d2 > 1.

By (2.11) and (2.2) we get

j(|x− z|)≥ c−d−2
7

Ä
φ
−1(n−1)

äd/2
n−1

and whence

pφ (n,x,y)> c8 bn/Kcn−1 Ä
φ
−1(n−1)

äd/2 Ä
φ
−1 Ä(n−bn/Kc)−1ääd/2 |B(y,d1rn/2)|

≥ c9 bn/Kcn−1

Ñ
φ−1

Ä
(n−bn/Kc)−1

ä
φ−1(n−1)

éd/2 Ä
φ
−1(n−1)

äd/2
. (6.12)

Since n/K > 1 we have bn/Kc> n/(2K). Hence bn/Kcn−1 > 1
2K and, by (2.4),

φ−1
Ä
(n−bn/Kc)−1

ä
φ−1(n−1)

>
Ç

1
c∗

å1/α∗Çn−bn/Kc
n

å−1/α∗

>
Ç

1
c∗− c∗/(2K)

å1/α∗

.

Combining these two bounds with (6.12) we obtain (6.10) for all n> K and for d1rn < |x−y|<

d2rn. For n < K we proceed as in the end of the proof of the near-diagonal bound.

Proof of Claim 5. Since rn/K > rbn/Kc, it is enough to find K such that

d1

2
rn > d2rn/K ⇐⇒

φ−1((n/K)−1)

φ−1(n−1)
>
Ç

2d2

d1

å2
.

By (2.4), for n> K,

φ−1((n/K)−1)

φ−1(n−1)
>
Ç

1
c∗

å1/α∗((n/K)−1

n−1

)1/α∗

=

Ç
K
c∗

å1/α∗

,

and whence K has to satisfy K > c∗
(

2d2
d1

)2α∗
. Similarly, as rn−bn/Kc > rn−n/K , it is enough to

have K such that

rn−n/K >
1
2

rn⇐⇒
φ−1((n−n/K)−1)

φ−1(n−1)
6 4.

58



We assume that K > 2 and thus (2.4) implies

φ−1((n−n/K)−1)

φ−1(n−1)
6
Ç

1
c∗

å1/α∗
(
(n−n/K)−1

n−1

)1/α∗

= c−1/α∗
∗ (1−1/K)−1/α∗.

We conclude that K has to be such that K >
(
1− 4−α∗

c∗

)−1
.

Finally, combining inequalities (6.2), (6.4) and (6.10) we obtain (6.1) and the proof is finished.

�

6.2. UPPER BOUND

In this final section we aim at proving the global upper estimates for the transition probabilities

of the random walk Sφ
n . Our strategy is to study the continuous time random walk and to

estimate its transition kernel and hitting time of a ball, and then to use these results to get

similar identities in the discrete time.

6.2.1. Estimates for the continuous time random walk

We study the continuous time version of the random walk Sφ
n which is constructed in the stan-

dard way. We take (Ui)i∈N to be a sequence of independent, identically distributed exponential

random variables with parameter 1 which are independent of Sφ . Let T0 = 0 and Tk =
∑k

i=1Ui.

Then we define Yt = Sφ
n if Tn 6 t < Tn+1. Equivalently, we can take (Nt)t>0 to be a homoge-

neous Poisson process with intensity 1 independent of the random walk Sφ and then Yt = Sφ

Nt
.

The transition probability of the process Y is denoted by q(t,x,y) = Px(Yt = y). We want to find

the upper bound for q(t,x,y). The main result of this subsection is formulated in the following

proposition:

Proposition 6.2. There is a constant C1 > 0 such that

q(t,x,y)6C1

ÅÄ
φ
−1(t−1)

äd/2∧ t
|x− y|d

φ(|x− y|−2)
ã
, (6.13)

for all x,y ∈ Zd and for all t > 1.

The proof will be given at the end of this subsection. We first handle the on-diagonal part.

Lemma 6.3. There exists a constant C2 > 0 such that for all t > 0 and all x,y ∈ Zd

q(t,x,y)6C2
Ä
φ
−1(t−1)

äd/2
. (6.14)
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Proof. By the independence and Theorem 4.1 we get

q(t,x,x) = Px(Sφ

Nt
= x) =

∞∑
k=0

Px(Sφ

k = x)Px(Nt = k) =
∞∑

k=0

tke−t

k!
Px(Sφ

k = x)

6 e−t + c1e−t
∞∑

k=1

tk

k!

Ä
φ
−1(k−1)

äd/2

= e−t + c1e−t Ä
φ
−1(t−1)

äd/2
Å∑

k>t
+

∑
16k6t

ã tk

k!

Ä
φ−1(k−1)

äd/2

(φ−1(t−1))
d/2

= e−t + c1e−t Ä
φ
−1(t−1)

äd/2
(Σ1 +Σ2). (6.15)

Since φ−1 is increasing, we obtain

Σ1 =
∑
k>t

tk

k!

Ä
φ−1(k−1)

äd/2

(φ−1(t−1))
d/2 6

∑
k>t

tk

k!
6

∞∑
k=0

tk

k!
= et .

We next find a bound for Σ2 and after that, we will show that e−t 6 c4
Ä
φ−1(t−1)

äd/2 for all

t > 0 and for some constant c4 > 0. Observe that Σ2 = 0 for t < 1. By (2.4) we get

Σ2 6 c2td/2α∗
∑

16k6t

tk

k!
1

kd/2α∗
6 c3et ,

where in the last inequality we applied [29, Cor. 3]. The only thing left to prove is that e−t 6

c4
Ä
φ−1(t−1)

äd/2 for all t > 0. For t > 1, using (2.4) we get

φ−1(1)
φ−1(t−1)

6
Ç

1
c∗

å1/α∗Ç 1
t−1

å1/α∗
⇒ φ

−1(t−1)> c1/α∗
∗ t−1/α∗

⇒
Ä
φ
−1(t−1)

äd/2
> cd/2α∗
∗ t−d/2α∗

⇒ e−t

(φ−1(t−1))
d/2 6

e−t

cd/2α∗
∗ t−d/2α∗

⇒ lim
t→∞

e−t

(φ−1(t−1))
d/2 = 0.

Hence, there is a constant c4 > 1 such that e−t 6 c4
Ä
φ−1(t−1)

äd/2, for all t > 1. If t ∈ (0,1) we

have
Ä
φ−1(t−1)

ä−d/2
6 1 and e−t 6 1. Therefore,Ä

φ
−1(t−1)

ä−d/2
e−t 6 1⇒ e−t 6

Ä
φ
−1(t−1)

äd/2
.

Plugging the bounds for Σ1, Σ2 and e−t into (6.15), we get

q(t,x,x)6C2(φ
−1(t−1))d/2.
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Finally, by the Cauchy-Schwarz inequality we obtain

q(t,x,y) =
∑

z∈Zd

q(t/2,x,z)q(t/2,y,z)

6
Å∑

z∈Zd

q(t/2,x,z)2
ã1/2Å∑

z∈Zd

q(t/2,y,z)2
ã1/2
6C2

Ä
φ
−1(t−1)

äd/2

and the proof of (6.14) is finished. �

Before we prove the off-diagonal estimate in (6.13), we establish a series of auxiliary results.

We follow here the elaborate approach of [11]. We use the notation

τ
Y (x,r) = inf{t > 0 : Yt /∈ B(x,r)}.

Lemma 6.4. For all r > 1 it holds

Ex[τY (x,r)]� 1
φ(r−2)

.

Proof. Let

τ
Sφ

(x,r) = inf{k > 0 : Sφ

k /∈ B(x,r)}.

By Proposition 3.13 and Lemma 3.14,

Ex[τSφ

(x,n)]� 1
φ(n−2)

, n ∈ N.

Then, by Wald’s identity,

Ex[τY (x,n)] = Ex
Å

U1 + . . .+U
τSφ

(x,n)

ã
= Ex[τSφ

(x,n)].

Hence, for every n ∈ N we have

c1

φ(n−2)
6 Ex[τY (x,n)]6

c2

φ(n−2)
.

Take r > 1. There exists n ∈ N such that r ∈ [n,n+1). Since φ is increasing, we have

n6 r < n+1⇒ 1
φ(n−2)

6
1

φ(r−2)
6

1
φ((n+1)−2)

.

Using (2.2) and n/(n+1)> 1/2, which is true for all n ∈ N, we get

φ(n−2)

φ((n+1)−2)
6
Å n

n+1

ã−2
6 4.
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Now we have

Ex[τY (x,r)]> Ex[τY (x,n)]>
c1

φ(n−2)
=

c1

φ((n+1)−2)

φ((n+1)−2)

φ(n−2)
>

c1

4
1

φ(r−2)
.

Similarly, for the upper bound we have

Ex[τY (x,r)]6 Ex[τY (x,n+1)]6
c2

φ((n+1)−2)
=

c2

φ(n−2)

φ(n−2)

φ((n+1)−2)
6 4c2

1
φ(r−2)

.

�

Lemma 6.5. There exist constants C3,C4 > 0 such that

Px(τY (x,r)6 t)6 1−C3φ((2r)−2)

φ(r−2)
+C4tφ((2r)−2), (6.16)

for all x ∈ Zd and for all r, t > 0

Proof. We first consider the case r ∈ (0,1). Then the process Y exits from the ball B(x,r) as

soon as it jumps to some point other than x. Observe that

{τY (x,r)6 t}=
∞⋃

n=1
{Tn 6 t,Sφ

1 = Sφ

2 = · · ·= Sφ

n−1 = x,Sφ
n 6= x}.

Hence

Px(τY (x,r)6 t) =
∞∑

n=1
P(Tn 6 t)

(
P(Sφ

1 = 0)
)n−1

P(Sφ

1 6= 0)6 t,

where we used Lemma 2.15. Choosing C′3 = 1/2 we have

1−C′3φ((2r)−2)

φ(r−2)
>

1
2
.

If we set C′4 = 1/φ(1/4) we have t 6C′4tφ((2r)−2). Hence, for r < 1 we have

Px(τY (x,r)6 t)6 1−C′3φ((2r)−2)

φ(r−2)
+C′4tφ((2r)−2),

and this is precisely (6.16) with C′3 and C′4.

Next, assume that r > 1. Since for any t > 0

τ
Y (x,r)6 t +(τY (x,r)− t)1{τY (x,r)>t},

by Markov property and Lemma 6.4 we get

Ex[τY (x,r)]6 t +Ex î
1{τY (x,r)>t}EYt [τY (x,r)− t]

ó
6 t + sup

z∈B(x,r)
Ez[τY (x,r)]Px(τY (x,r)> t)

6 t + sup
z∈B(x,r)

Ez[τY (z,2r)]Px(τY (x,r)> t)

6 t +
c2

φ((2r)−2)
Px(τY (x,r)> t).
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Using again Lemma 6.4 we have

c1

φ(r−2)
6 Ex[τY (x,r)]6 t +

c2

φ((2r)−2)
Px(τY (x,r)> t)

and whence

1−Px(τY (x,r)6 t)>
c1φ((2r)−2)

c2φ(r−2)
− tφ((2r)−2)

c2
.

If we set C3 = min{C′3,c1/c2} 6 1/2 and C4 = max{C′4,1/c2} we obtain (6.16) and the proof

is finished. �

We now study the truncated process which is built upon the process Y . For any ρ > 0 we

denote by Y (ρ) the process obtained by removing from Y the jumps of the size larger than ρ .

More precisely, the process Y (ρ) is associated with the following Dirichlet form

E (ρ)(u,v) =
∑

|x−y|6ρ

(u(x)−u(y))(v(x)− v(y))pφ (x,y),

which is defined for functions u,v from the domain of the Dirichlet form of the random walk

Sφ , cf. [3, Sec. 5]. We write q(ρ)(t,x,y) for the transition probability of Y (ρ) and Q(ρ)
t for its

semigroup. We will also work with killed processes. For any non-empty D ⊆ Zd , we denote

by (QD
t )t>0 the semigroup of the killed process Y D. Similarly we write (Q(ρ),D

t )t>0 for the

semigroups of Y (ρ),D. Let

τ
(ρ)(x,r) = inf{t > 0 : Y (ρ)

t /∈ B(x,r)}.

Lemma 6.6. There exist constants C5 ∈ (0,1) and C6 > 0 such that for any r, t,ρ > 0

Px(τ(ρ)(x,r)6 t)6 1−C5 +C6t
Ä
φ((2r)−2)∨φ(ρ−2)

ä
.

Proof. By Lemma 6.5 and (2.2) we get that for all x ∈ Zd and r, t > 0

Px(τY (x,r)6 t)6 1−C3/4+C4tφ((2r)−2).

According to [11, Lemma 7.8], for all t > 0

QB(x,r)
t 1B(x,r)(x)6 Q(ρ),B(x,r)

t 1B(x,r)(x)+ c1tφ(ρ−2). (6.17)

Remark. In [11, Lemma 7.8] the authors assume more restrictive assumption on the function φ

then our condition (2.3), namely they require the global scaling. The key tool to prove (6.17) is,
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however, [11, Lemma 2.1] which in our case is covered by Lemma 2.17.

We notice that

QB(x,r)
t 1B(x,r)(x) = Ex î

1B(x,r)(Yt)1{τY (x,r)>t}
ó
= Px(τY (x,r)> t),

Q(ρ),B(x,r)
t 1B(x,r)(x) = Ex

ï
1B(x,r)(Y

(ρ)
t )1{τ(ρ)(x,r)>t}

ò
= Px(τ(ρ)(x,r)> t)

and whence

Px(τY (x,r)> t)6 Px(τ(ρ)(x,r)> t)+ c1tφ(ρ−2).

This and Lemma 6.5 imply

Px(τ(ρ)(x,r)6 t)6 1−C3

4
+C4tφ((2r)−2)+ c1tφ(ρ−2)

and the result follows if we choose C5 =C3/4 < 1 and C6 =C4 + c1. �

Lemma 6.7. There exist constants ε ∈ (0,1) and C7 > 0 such that for x ∈Zd and all r,λ ,ρ > 0

with λ >C7φ((r∧ρ)−2) it holds

Ex
ï
e−λτ(ρ)(x,r)

ò
6 1− ε. (6.18)

Proof. By Lemma 6.6, for any t > 0 and x ∈ Zd ,

Ex
ï
e−λτ(ρ)(x,r)

ò
= Ex

ï
e−λτ(ρ)(x,r)

1{τ(ρ)(x.r)6t}

ò
+Ex

ï
e−λτ(ρ)(x,r)

1{τ(ρ)(x,r)>t}

ò
6 Px(τ(ρ)(x,r)6 t)+ e−λ t

6 1−C5 +C6t
Ä
φ((2r)−2)∨φ(ρ−2)

ä
+ e−λ t .

We now choose ε =C5/4 ∈ (0,1). We next take t = c1/φ((r∧ρ)−2), for some c1 > 0, in such

a way that C6tφ((2r)−2)+C6tφ(ρ−2)6 2ε . Hence, we need to choose c1 > 0 such that

C6c1φ((2r)−2)

φ((r∧ρ)−2)
+

C6c1φ(ρ−2)

φ((r∧ρ)−2)
6 2ε.

Since φ is increasing,

φ((2r)−2)

φ((r∧ρ)−2)
6 1 and

φ(ρ−2)

φ((r∧ρ)−2)
6 1

and thus it suffices to choose c1 6 ε/C6. At last, we claim that there is C7 > 0 such that for

λ >C7φ((r∧ρ)−2) we will have e−λ t 6 ε . Indeed, with such a choice we get that λ t ≥C7c1

and thus we can choose C7 so big that e−λ t 6C5/4 = ε . We finally obtain

Ex
ï
e−λτ(ρ)(x,r)

ò
6 1−C5 +C6t(φ((2r)−2)+φ(ρ−2))+ e−λ t 6 1− ε,

as desired. �
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Lemma 6.8. There exist constants C8,C9 > 0 such that for x ∈ Zd and R,ρ > 0

Ex
ï
e−C7φ(ρ−2)τ(ρ)(x,R)

ò
6C8e−C9R/ρ ,

where C7 > 0 is the constant from Lemma 6.7.

Proof. We first observe that if ρ > R/2 then we can choose constants C8 and C9 such that

C8 exp(−2C9) > 1 and the result follows. Thus we study the case ρ ∈ (0,R/2). Let z ∈ Zd ,

R > 0 be fixed. We write for simplicity τ = τ(ρ)(z,R). For any fixed 0 < r < R/2 we set

n = bR/2rc. Let

u(x) = Ex[e−λτ ] and mk = ‖u‖L∞(B(z,kr)) , k ∈ {1,2, . . . ,n}.

We fix ε from Lemma 6.7 and for any 0 < ε ′ < ε we choose xk ∈ B(z,kr) such that

(1− ε
′)mk < u(xk) = mk.

Since xk ∈ B(z,kr) and n = bR/2rc it is easy to see that for any k 6 n−1

B(xk,r)⊆ B(z,(k+1)r)⊆ B(z,R).

Next we consider the following function

vk(x) = Ex[e−λτk ], x ∈ B(xk,r),

where we write τk = τ(ρ)(xk,r). By the strong Markov property, for any x ∈ B(xk,r),

u(x) = Ex[e−λτke−λ (τ−τk)] = Ex
ñ
e−λτkEY (ρ)

τk (e−λτ)

ô
= Ex

ï
e−λτku(Y (ρ)

τk )
ò
.

Since Y (ρ)
τk ∈ B(xk,r+ρ), we get that for every x ∈ B(xk,r)

u(x)6 vk(x)‖u‖L∞(B(xk,r+ρ)) .

It follows that for any 0 < ρ 6 r

u(xk)6 vk(xk)‖u‖L∞(B(xk,r+ρ)) 6 vk(xk)mk+2.

Since u(xk)> (1− ε ′)mk, we have

(1− ε
′)mk 6 vk(xk)mk+2.
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In view of Lemma 6.7, if λ >C7φ(ρ−2) and 0 < ρ 6 r then vk(xk)6 1− ε . Hence

mk 6
Ç

1− ε

1− ε ′

å
mk+2

and iterating yields

u(z)6 m1 6
Ç

1− ε

1− ε ′

å
m3 6

Ç
1− ε

1− ε ′

å2
m5 6 . . .6

Ç
1− ε

1− ε ′

ån−1
m2n−1.

Since u(x)6 1, we have m2n−1 6 1. Together with n = bR/2rc this gives us

u(z)6
Ç

1− ε

1− ε ′

ån−1
6
Ç

1− ε

1− ε ′

åR/2r−2
.

Setting 2C9 = log((1− ε ′)/(1− ε)) we get

u(z)6C8 exp
Ç
−C9

R
r

å
,

with C8 = e4C9 . If we set λ =C7φ(ρ−2) and ρ = r we conclude the result. �

Corollary 6.9. For any R,ρ, t > 0 and all x ∈ Zd

Px(τ(ρ)(x,R)6 t)6C8e−C9
R
ρ
+C7tφ(ρ−2)

,

where C7 > 0 is the constant from Lemma 6.7 and C8,C9 > 0 from Lemma 6.8.

Proof. By Lemma 6.8,

Px(τ(ρ)(x,R)6 t) = Px
Å

e−C7φ(ρ−2)τ(ρ)(x,R) > e−C7φ(ρ−2)t
ã

6 eC7φ(ρ−2)tEx
ï
e−C7φ(ρ−2)τ(ρ)(x,R)

ò
6C8e−C9

R
ρ
+C7tφ(ρ−2)

,

as desired. �

For any ρ > 0 and x,y ∈ Zd , we define

Jρ(x,y) = pφ (x,y)1{|x−y|>ρ}.

By Meyer’s decomposition and [11, Lemma 7.2(1)], the following estimate holds

q(t,x,y)6 q(ρ)(t,x,y)+Ex
ï∫ t

0

∑
z∈Zd

Jρ(Y (ρ)
s ,z)q(t− s,z,y)ds

ò
, x,y ∈ Zd. (6.19)

Proposition 6.10. There exists C10 > 0 such that for all t,ρ > 0 and x ∈ Zd

Ex
ï∫ t

0

∑
z∈Zd

Jρ(Y (ρ)
s ,z)q(t− s,z,y)ds

ò
6C10tρ−d

φ(ρ−2).
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Proof. By monotonicity and Proposition 3.3 we get Jρ(x,y)6C10ρ−dφ(ρ−2), for some C10 >

0. This and symmetry imply the result. �

In the next Lemma we prove the upper bound for the transition kernel of the truncated

process.

Lemma 6.11. For all t > 1 and x,y ∈ Zd

q(ρ)(t,x,y)6C11
Ä
φ
−1(t−1)

äd/2
exp
Ç

C12tφ(ρ−2)−C13
|x− y|

ρ

å
, (6.20)

where C11,C12,C13 > 0 are constants independent of ρ .

Proof. A direct application of [11, Lemma 7.2(2)] combined with Lemma 2.17 and Lemma 6.3,

imply that for all t > 0 and x,y ∈ Zd we have

q(ρ)(t,x,y)6 q(t,x,y)etc1φ(ρ−2) 6C2
Ä
φ
−1(t−1)

äd/2
exp(c1tφ(ρ−2)). (6.21)

We first observe that for |x− y|< 2ρ relation (6.20) is trivial. Indeed, since

exp
Ç−C13|x− y|

ρ

å
> exp(−2C13),

for any C13 > 0, we get

q(ρ)(t,x,y)6C2
Ä
φ
−1(t−1)

äd/2
exp(c1tφ(ρ−2))

exp(−2C13)

exp(−2C13)

6C11
Ä
φ
−1(t−1)

äd/2
exp
Å

C12tφ(ρ−2)−C13
|x− y|

ρ

ã
, (6.22)

for any C11 >C2/exp(−2C13), C12 > c1.

Assume that |x− y|> 2ρ . By Corollary 6.9,

Q(ρ)
t 1B(x,r)c(x)6 Px(τ(ρ)(x,r)6 t)6C8 exp

Å
−C9

r
ρ
+C7tφ(ρ−2)

ã
. (6.23)

We set r = |x− y|/2 and write

q(ρ)(2t,x,y) =
∑

z∈Zd

q(ρ)(t,x,z)q(ρ)(t,z,y)

6
∑

z∈B(x,r)c

q(ρ)(t,x,z)q(ρ)(t,z,y)+
∑

z∈B(y,r)c

q(ρ)(t,x,z)q(ρ)(t,z,y).

By (6.21) and (6.23) we get

∑
z∈B(x,r)c

q(ρ)(t,x,z)q(ρ)(t,z,y)6C2
Ä
φ
−1(t−1)

äd/2
ec1tφ(ρ−2)

∑
z∈B(x,r)c

q(ρ)(t,x,z)

6C2C8
Ä
φ
−1(t−1)

äd/2
ec1tφ(ρ−2)e−C9

r
ρ
+C7tφ(ρ−2)

=C2C8
Ä
φ
−1(t−1)

äd/2
e(c1+C7)tφ(ρ−2)−C9

2
|x−y|

ρ .
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We can show the same bound for z ∈ B(y,r)c and thus, for every t > 0 and |x−y|> 2ρ we have

q(ρ)(2t,x,y)6 2C2C8
Ä
φ
−1(t−1)

äd/2
e(c1+C7)tφ(ρ−2)−C9

2
|x−y|

ρ .

Replacing t with t/2 yields (6.20). It only remains to show that

φ−1((t/2)−1)

φ−1(t−1)
6 c2, (6.24)

for some constant c2 > 0. To prove (6.24) we have to apply scaling condition (2.4) and this is

the reason why estimate (6.20) works only for t ≥ 1. Indeed, for t > 2, by (2.4) we get

φ−1((t/2)−1)

φ−1(t−1)
6
Ç

2
c∗

å1/α∗
.

For 16 t 6 2 we simply use monotonicity and (6.24) follows. �

In the rest of this section we use the notation

rt =
1»

φ−1(t−1)
, t ≥ 1.

Lemma 6.12. There are N ∈ N with N > (2α∗+d)/(2α∗) and c1 > 1 such that for all r > 0,

t > 1 and x ∈ Zd ∑
y∈B(x,r)c

q(t,x,y)6 c1r−θ
Ä
φ
−1(t−1)

ä−θ/2
, (6.25)

where 0 < θ = 2α∗− (2α∗+d)/N and α∗ is the constant from (2.3).

Proof. We first observe that for r6 rt relation (6.25) is trivially satisfied, as in this case rt/r> 1.

We assume that r > rt . We set

N = b2+d/(2α∗)c (6.26)

and with this N we define a sequence

ρn = 2nαr1−1/Nr1/N
t , n ∈ N,

where Ç
d

d +2α∗
∨ 1

2

å
< α < 1. (6.27)

We now show that under this choice we have

2nr
ρn
6

ρn

rt
(6.28)
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and

tφ(ρ−2
n )6 1. (6.29)

Indeed, (6.28) follows from (6.26) and from the fact that α ≥ 1/2, and

2nr
ρn

= 2n(1−α)
Ç

r
rt

å1/N
, and

ρn

rt
= 2nα

Ç
r
rt

å1−1/N
.

Similarly, (6.29) follows, since under our choice we see that ρn ≥ rt .

Recall that by (6.19) and Proposition 6.10 we have

q(t,x,y)6 q(ρ)(t,x,y)+C10t j(ρ), (6.30)

for all ρ, t > 0 and x,y ∈ Zd . Next, by Lemma 6.11, for all t > 1, x,y ∈ Zd and n ∈ N, we have

q(ρn)(t,x,y)6C11
Ä
φ
−1(t−1)

äd/2
exp
Ç

C12tφ(ρ−2
n )−C13

|x− y|
ρn

å
,

where C11,C12,C13 > 0 are constants independent of ρn. Hence, for all 2nr 6 |x− y| < 2n+1r

and all t > 1 we have

q(ρn)(t,x,y)6C11
Ä
φ
−1(t−1)

äd/2
exp
Ç

C12tφ(ρ−2
n )−C13

2nr
ρn

å
.

By (6.29) we get

q(ρn)(t,x,y)6 c2
Ä
φ
−1(t−1)

äd/2
exp
Ç
−C13

2nr
ρn

å
. (6.31)

Thus, by (6.30) and (6.31) we get, for t > 1 and x ∈ Zd

∑
y∈B(x,r)c

q(t,x,y)6
∞∑

n=0

∑
2nr6|x−y|<2n+1r

Ä
q(ρn)(t,x,y)+C10t j(ρn)

ä
6 c3

∞∑
n=0

(2nr)d Ä
φ
−1(t−1)

äd/2
e−C13

2nr
ρn

+ c4

∞∑
n=0

(2nr)dt j(ρn) = I1 + I2.

We first estimate I2. Since ρ−2
n 6 φ−1(t−1)6 1, we can use (2.3) to get

tφ(ρ−2
n )6

1
c∗

Ç
rt

ρn

å2α∗
.
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This implies

I2 =
∞∑

n=0
c4(2nr)dtφ(ρ−2

n )ρ−d
n 6

∞∑
n=0

c4

Ç
2nr
ρn

åd 1
c∗

Ç
rt

ρn

å2α∗

=
c4

c∗

Årt

r

ã2α∗−(2α∗+d)/N ∞∑
n=0

Ç
rt

ρn

å2α∗ Årt

r

ã(2α∗+d)/N−2α∗
2n(d−α(d+2α∗))2nα(d+2α∗)

Ç
r

ρn

åd

=
c4

c∗

Årt

r

ã2α∗−(2α∗+d)/N ∞∑
n=0

(
2nαr1−1/Nr1/N

t

)d+2α∗ 1

ρ
d+2α∗
n

2n(d−α(d+2α∗))

=
c4

c∗

Årt

r

ã2α∗−(2α∗+d)/N ∞∑
n=0

2n(d−α(d+2α∗)).

By (6.27), d−α(d +2α∗)< 0 and whence

I2 6 c5

Årt

r

ã2α∗−(2α∗+d)/N
. (6.32)

We proceed to estimate I1. There exists a constant cK > 0 such that for x > C13 we have

e−x 6 cKx−K . Applying this, we get

exp
Ç
−C13

2nr
ρn

å
6 cK

Ç
C132nr

ρn

å−K
, K > 0.

We set

K = 1+N(d +2α∗)∨
d

1−α
.

For such K we have K/N > d +2α∗ and (1−α)K > d and this yields

I1 =
∞∑

n=0
c6(2nr)d Ä

φ
−1(t−1)

äd/2
exp
Ç
−C13

2nr
ρn

å
6

∞∑
n=0

c6(2nr)dr−d
t cK

Ç
C132nr

ρn

å−K

=
∞∑

n=0
c6cKC−K

13

Ç
2nr
rt

åd
Ñ

2nαr1−1/Nr1/N
t

2nr

éK

= c7

Ç
r
rt

åd Årt

r

ãK/N ∞∑
n=0

2n(d−(1−α)K)

= c7

Årt

r

ãK/N−d ∞∑
n=0

(
2d−(1−α)K

)n
= c8

Årt

r

ãK/N−d

6 c8

Årt

r

ã2α∗
6 c8

Årt

r

ã2α∗ Årt

r

ã−(2α∗+d)/N

= c8

Årt

r

ã2α∗−(2α∗+d)/N
. (6.33)

Using the definition of θ , (6.32), (6.33) and setting c1 = c5 + c8, we conclude (6.25). �
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Lemma 6.13. Assume that condition (6.25) holds with some θ > 0. Then there exists a con-

stant c2 > 0 such that for any ball B(x0,r) and for any t > 1

Px(τY (x0,r)6 t)6 c2r−θ
Ä
φ
−1(t−1)

ä−θ/2
, x ∈ B(x0,r/4).

Proof. For x ∈ B(x0,r/4), we have B(x,3r/4)⊆ B(x0,r). Using (6.25) we get

Px(τY (x0,r)6 t)6 Px(τY (x,3r/4)6 t)

= Px(τY (x,3r/4)6 t,Y2t ∈ B(x,r/2)c)+Px(τY (x,3r/4)6 t,Y2t ∈ B(x,r/2))

6 Px (Y2t ∈ B(x,r/2)c)+ sup
z∈B(x,3r/4)c

s6t

Pz (Y2t−s ∈ B(x,r/2))

6
∑

y∈B(x,r/2)c

q(2t,x,y)+ sup
z∈B(x,3r/4)c

s6t

∑
y∈B(z,r/4)c

q(2t− s,z,y)

6 c1

Ç
r2t

r/2

åθ

+ c1 sup
s6t

Ç
r2t−s

r/4

åθ

. (6.34)

Since t > 1, we can use (2.4) to obtain

r2t 6
Ç

2
c∗

å1/2α∗
rt .

Since s6 t, we have

sup
s6t

r2t−s 6
Ç

2
c∗

å1/2α∗
rt .

With these estimates used in (6.34) we get

Px(τY (x0,r)6 t)6 c12θ

Å 2
c∗

ãθ/2α∗Årt

r

ãθ

+ c14θ

Å 2
c∗

ãθ/2α∗Årt

r

ãθ

= c2

Årt

r

ãθ

,

for all x ∈ B(x0,r/4). �

Lemma 6.14. Assume that condition (6.25) holds with 0 < θ = 2α∗− (2α∗+d)/N. Then for

all t > 1, k > 1 and |x0− y0|> 4kρ it holds

q(ρ)(t,x0,y0)6 c(k)
Ä
φ
−1(t−1)

äd/2
exp
Ä
c0tφ(ρ−2)

äÅ
1+

ρ

rt

ã−(k−1)θ
. (6.35)

Proof. As observed in the proof of Lemma 6.6, for all t > 0,

QB
t 1B(x)6 Q(ρ),B

t 1B(x)+ c1tφ(ρ−2)

and

Px(τY (x0,r)6 t) = 1−QB
t 1B(x).
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This and Lemma 6.13 imply

1−Q(ρ),B
t 1B(x)− c1tφ(ρ−2)6 1−QB

t 1B(x)6 c2

Ç
r
rt

å−θ

.

Hence

1−Q(ρ),B
t 1B(x)6 c3

ïÇ r
rt

å−θ

+ tφ(ρ−2)
ò
, x ∈ B(x0,r/4). (6.36)

We now proceed to prove (6.35). If ρ < rt then clearlyÅ
1+

ρ

rt

ã(k−1)θ
< 2(k−1)θ .

and, by (6.21),

q(ρ)(t,x0,y0)6C22(k−1)θ Ä
φ
−1(t−1)

äd/2
exp(c0tφ(ρ−2))

Å
1+

ρ

rt

ã−(k−1)θ
,

as claimed.

Let us now consider the case ρ > rt . Fix k> 1, t > 1 and x0,y0 ∈Zd such that |x0−y0|> 4kρ .

Set r = |x0− y0|/2 > 2kρ and

ψ(r, t) = c3

ïÇ r
rt

å−θ

+ tφ(ρ−2)
ò
. (6.37)

Notice that ψ(r, t) is non-decreasing in t. We take R = r/k > 2ρ and apply [11, Lemma 7.11]

to get

Q(ρ)
t 1B(x0,r)c(x)6

ß
c4

ïÇr/k−ρ

rt

å−θ

+ tφ(ρ−2)
ò™k−1

, x ∈ B(x0,R).

Remark. In our case the assumption of [11, Lemma 7.11] is valid only for t > 1. Since the

lemma is proven by induction, we could repeat the argument and get the same result.

Notice that Å r
k
−ρ

ã−θ

< ρ
−θ .

Using this and the fact that R > ρ , we obtain

Q(ρ)
t 1B(x0,r)c(x)6 c1(k)

ßÄρ

rt

ä−θ
+ tφ(ρ−2)

™k−1
, x ∈ B(x0,ρ). (6.38)

We notice that

tφ(ρ−2)6
1
c∗

Ç
ρ

rt

å−θ

, ρ > rt .

This follows easily by (2.3). Combining this with (6.38), we get

Q(ρ)
t 1B(x0,r)c(x)6 c2(k)

Å
ρ

rt

ã−(k−1)θ
, x ∈ B(x0,ρ). (6.39)
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Moreover, since ρ > rt , we haveÅ
ρ

rt

ã−(k−1)θ
6 2(k−1)θ

Å
1+

ρ

rt

ã−(k−1)θ
.

Hence, by (6.39),

Q(ρ)
t 1B(x0,r)c(x0)6 c3(k)

Å
1+

ρ

rt

ã−(k−1)θ
. (6.40)

Further, observe that

Q(ρ)
t 1B(x0,r)c(x0) = Px0(Y (ρ)

t ∈ B(x0,r)c) =
∑

z∈B(x0,r)c

q(ρ)(t,x0,z)

and, by the semigroup property,

q(ρ)(2t,x0,y0) =
∑

z∈Zd

q(ρ)(t,x0,z)q(ρ)(t,z,y0)

6
∑

z∈B(x0,r)c

q(ρ)(t,x0,z)q(ρ)(t,z,y0)+
∑

z∈B(y0,r)c

q(ρ)(t,x0,z)q(ρ)(t,z,y0).

Using (6.21) and (6.40) we obtain

∑
z∈B(x0,r)c

q(ρ)(t,x0,z)q(ρ)(t,z,y0)6C2
Ä
φ
−1(t−1)

äd/2
exp(c0tφ(ρ−2))Q(ρ)

t 1B(x0,r)c(x0)

6 c4(k)
Ä
φ
−1(t−1)

äd/2
exp(c0tφ(ρ−2))

Å
1+

ρ

rt

ã−(k−1)θ
.

Similarly, we show that

∑
z∈B(y0,r)c

q(ρ)(t,x0,z)q(ρ)(t,z,y0)6 c4(k)
Ä
φ
−1(t−1)

äd/2
exp(c0tφ(ρ−2))

Å
1+

ρ

rt

ã−(k−1)θ
.

This yields

q(ρ)(2t,x0,y0)6 c5(k)
Ä
φ
−1(t−1)

äd/2
exp(c0tφ(ρ−2))

Å
1+

ρ

rt

ã−(k−1)θ
.

As in the proof of Lemma 6.11, we can replace 2t with t and the proof is finished. �

We now finally prove the upper bound for the heat kernel of the process Yt .

Proof of Proposition 6.2. Our aim is to prove that for all t > 1

q(t,x,y)6 c1t|x− y|−d
φ(|x− y|−2), x 6= y. (6.41)

We take arbitrary x0,y0 ∈ Zd such that x0 6= y0 and we set r := |x0− y0|/2. Assume that r < rt .

We show that in this case the on-diagonal bound from Lemma 6.3 is smaller than the bound in

(6.41), that is Ä
φ
−1(t−1)

äd/2
6 c2tr−d

φ(r−2). (6.42)
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Indeed, since 1/26 r < rt , we can use Lemma 2.16 (with L = 4) to obtainÄ
φ−1(t−1)

äd/2

tr−dφ(r−2)
6

4α∗

c∗

Årt

r

ã−2α∗ Årt

r

ã−d
6

4α∗

c∗
.

Combining (6.42) with Lemma 6.3 and using (2.2) we get

q(t,x0,y0)6C2c22dt|x0− y0|−d
φ(4|x0− y0|−2)6 c3t|x0− y0|−d

φ(|x0− y0|−2). (6.43)

We next consider the case r > rt . We set k = 1+(d +2α∗)/θ and ρ = r/(8k). By (6.19),

Proposition 6.10 and (6.35),

q(t,x0,y0)6 c(k)
Ä
φ
−1(t−1)

äd/2
exp
Ä
c0tφ(ρ−2)

äÅ
1+

ρ

rt

ã−(k−1)θ
+C10tρ−d

φ(ρ−2).

We observe that tφ(ρ−2) is bounded. This follows as r > rt implies tφ(r−2) 6 1, and we use

ρ = r/(8k) with (2.2) to get

tφ(ρ−2) = tφ(64k2r−2)6 64k2tφ(r−2)6 64k2.

Hence

q(t,x0,y0)6 c(k)
Ä
φ
−1(t−1)

äd/2
exp(c064k2)

Å
1+

ρ

rt

ã−(k−1)θ
+C10tρ−d

φ(ρ−2)

6 c6(k)
Ä
φ
−1(t−1)

äd/2
Å

1+
ρ

rt

ã−(k−1)θ
+C10tρ−d

φ(ρ−2). (6.44)

Since ρ = r/(8k) and rt/r > 0, we getÅ
1+

ρ

rt

ã−(k−1)θ
6 c7(k)

Å r
rt

ã−(k−1)θ
,

and, by (2.2),

ρ
−d

φ(ρ−2) = (r/(8k))−d
φ
Ä
(r/(8k))−2ä6 (8k)d+2r−d

φ(r−2).

These inequalities together with (6.44) yield

q(t,x0,y0)6 c8(k)
Ä
φ
−1(t−1)

äd/2
Å r

rt

ã−(k−1)θ
+ c8(k)tr−d

φ(r−2)

= c8(k)tr−d
φ(r−2)

ï t−1

φ(r−2)

Å r
rt

ã−2α∗

+1
ò
. (6.45)

By r−2 6 r−2
t 6 1 and (2.3), we get

t−1

φ(r−2)

Å r
rt

ã−2α∗

6 c∗.

Thus, (6.45) implies

q(t,x0,y0)6 c9(k)2d+2t|x0− y0|−d
φ(|x0− y0|−2). (6.46)

Finally, (6.43) and (6.46) yield relation (6.41) for all t > 1 and x 6= y. Keeping in mind Lemma

6.3 we conclude the result. �
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6.2.2. Full upper estimate

In this paragraph we establish the upper bound for the transition probability of the random walk

Sφ
n . We follow approach of [5], cf. also [22], which is based on the application of the hitting time

estimates. We start with results for the process Y and then we exploit them to obtain bounds for

Sφ
n . Recall that τY (x,r) = inf{t > 0 : Yt /∈ B(x,r)}.

Proposition 6.15. There exists a constant C14 > 0 such that

Px(τY (x,r)6 t)6C14tφ(r−2),

for all x ∈ Zd , r > 0 and t > 1.

Proof. By Proposition 6.2 and Lemma 2.17, we get

Px(|Yt− x|> r)6 c1t
∑

y∈B(x,r)c

|x− y|−d
φ(|x− y|−2)6 c2tφ(r−2),

for all x ∈ Zd , r > 0 and t > 1. For simplicity we write τ = τY (x,r). Thus, by (2.2),

Px(τ 6 t) = Px(τ 6 t, |Y2t− x|6 r/2)+Px(τ 6 t, |Y2t− x|> r/2)

6 Px(τ 6 t, |Y2t−Yτ |> r/2)+Px(|Y2t− x|> r/2)

6 Ex î
1{τ6t}PYτ (|Y2t−τ −Y0|> r/2)

ó
+ c22tφ((r/2)−2)

6 Ex
ï
1{τ6t} sup

y∈B(x,r)c
sup
s6t

Py(|Y2t−s− y|> r/2)
ò
+2c2tφ(4r−2)

6 2c2tφ(4r−2)Ex î
1{τ6t}

ó
+2c2tφ(4r−2)6C14tφ(r−2),

as desired. �

We use the notation

T Y (x,r) = inf{t > 0 : Yt ∈ B(x,r)} and T Sφ

(x,r) = inf{k ∈ N0 : Sφ

k ∈ B(x,r)}

and we recall that rt =
Ä
φ−1(t−1)

ä−1/2, for t ≥ 1.

Lemma 6.16. There exists a constant C15 > 0 such that

Px(T Y (y,rt)6 t)6C15trd
t j(|x− y|), (6.47)

for all x,y ∈ Zd and t > 1.
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Proof. We first show that there is c1 > 0 such that

Pz(τY (z,c1rt)> t)> 1/2. (6.48)

Indeed, we set

c1 = 1∨
Ç

2C14

c∗

å1/2α∗
,

where C14 comes from Proposition 6.15. Using Proposition 6.15 and (2.3) we get

Pz(τY (z,c1rt)6 t)6C14tφ((c1rt)
−2)6

C14

c∗c
2α∗
1
6

1
2
.

We now consider the case |x−y|6 2(1+c1)rt . By monotonicity of j(r) and relation (2.11),

we get

trd
t j(|x− y|)> trd

t j(2(1+ c1)rt)> (2(1+ c1))
−(d+2)

≥ (2(1+ c1))
−(d+2)Px(T Y (y,rt)6 t).

Therefore

Px(T Y (y,rt)6 t)6C′15trd
t j(|x− y|), (6.49)

with C′15 = (2(1+ c1))
d+2.

Next, we consider the case |x−y|> 2(1+c1)rt . We write T = T Y (y,rt). Using the strong

Markov property and (6.48) we get

Px
Å
T 6 t, sup

T 6s6T +t
|Ys−YT |6 c1rt

ã
= PYT

Å
sup
s6t
|Ys−Y0|6 c1rt

ã
Px(T 6 t)

>
1
2
Px(T 6 t). (6.50)

If T 6 t and supT 6s6T +t |Ys−YT | 6 c1rt then |Yt −YT | 6 c1rt . As T is the first moment

when the process Yt hits the ball B(y,rt), it follows that

|Yt− y|6 |Yt−YT |+ |YT − y|6 c1rt + rt = (1+ c1)rt .

Combining these two inequalities with (6.50), we get

Px(T 6 t)6 2Px(|Yt− y|6 (1+ c1)rt)6 2
∑

z∈B(y,(1+c1)rt)

q(t,x,z). (6.51)

Since x /∈ B(y,2(1+ c1)rt) and z ∈ B(y,(1+ c1)rt), we have x 6= z and thus we can use (6.41).

Notice also that |x− z|> |x− y|/2. This, monotonicity of j, (2.9) and (6.51) imply

Px(T 6 t)6 c2 t
∑

z∈B(y,(1+c1)rt)

j(|x− z|)6C′′15trd
t j(|x− y|). (6.52)

Relations (6.49) and (6.52) yield the result. �
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Proposition 6.17. There exists a constant C16 > 0 such that

Px(T Sφ

(y,rn)6 n)6C16nrd
n j(|x− y|),

for all x,y ∈ Zd and n ∈ N.

Proof. As before (Tk)k∈N0 stand for the arrival times of the Poisson process (Nt)t>0 that was

used to define the process Y . More precisely, Nt = k for all Tk 6 t < Tk+1. Using the Markov

inequality, we easily get that P(Tn 6 2n) > 1
2 . By independence, Lemma 6.16 and (2.4), we

obtain

1
2
PxÄT Sφ

(y,rn)6 n
ä
6 PxÄT Sφ

(y,rn)6 n,Tn 6 2n
ä
6 PxÄT Y (y,rn)6 2n

ä
6 PxÄT Y (y,r2n)6 2n

ä
6 2C15nrd

2n j(|x− y|) =C16nrd
n j(|x− y|),

as claimed. �

In the following theorem we finally prove the upper bound for the transition probability of

the random walk Sφ . In the proof we again apply the parabolic Harnack inequality.

Theorem 6.18. There exists a constant C > 0 such that

pφ (n,x,y)6C
ÅÄ

φ
−1(n−1)

äd/2∧ n
|x− y|d

φ(|x− y|−2)
ã
,

for all x,y ∈ Zd and n ∈ N.

Proof. By Proposition 6.17 we have for all k ∈ N

∑
z∈B(y,rk)

pφ (k,x,z)6 Px(T Sφ

(y,rk)6 k)6C16krd
k j(|x− y|).

On the other hand ∑
z∈B(y,rk)

pφ (k,x,z)> c′rd
k min

z∈B(y,rk)
pφ (k,x,z).

Hence

min
z∈B(y,rk)

pφ (k,x,z)6 c1k j(|x− y|). (6.53)

Next we apply the parabolic Harnack inequality. We choose R > 0 to satisfy γ/φ(R−2) =

n, where γ is the constant from Theorem 5.1. Remember that we can choose γ to be even

smaller than specified in the theorem. Thus we take γ 6 B−2 where B is the constant defined

in (5.4). By (2.2) we easily get that rn 6 R/B. By Lemma 5.3, the function q(k,w) = pφ (bn−
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k,x,w) is parabolic on {0,1,2, . . . ,bn}×Zd , where b is defined at (5.4). With our choice bn>

bγ/φ((
√

bR)−2)c and thus the function q is parabolic on {0,1,2, . . . ,bγ/φ((
√

bR)−2)c}×Zd .

By (6.53), we get

min
z∈B(y,R/B)

q(0,z) = min
z∈B(y,R/B)

pφ (bn,x,z)6 min
z∈B(y,rn)

pφ (bn,x,z)6 c1bn j(|x− y|). (6.54)

Choosing n big enough we can enlarge R so that we can apply Theorem 5.4. Hence

max
(k,z)∈Q(bγ/φ(R−2)c,y,R/B)

q(k,z)6CPH min
z∈B(y,R/B)

q(0,z).

Since n= γ/φ(R−2), it is clear that (n,y)∈Q(bγ/φ(R−2)c,y,R/B). Combining this with (6.54),

we obtain

pφ ((b−1)n,x,y) = q(n,y)6 max
(k,z)∈Q(bγ/φ(R−2)c,y,R/B)

q(k,z)6CPH min
z∈B(y,R/B)

q(0,z)

6CPHc1bn j(|x− y|) = c2(b−1)n j(|x− y|). (6.55)

Similarly as in the proof of Theorem 6.1, we can show that this is enough to get the desired

upper bound for all n ∈ N. Finally, we have

pφ (n,x,y)6 c3n j(|x− y|),

for all x,y ∈ Zd , x 6= y and n ∈ N. This combined with Corollary 4.2 yields the result. �
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