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Abstract

Time-like graphical models

Tvrtko Tadić

Chair of the Supervisory Committee:
Professor Krzysztof Burdzy

Mathematics

We study continuous processes indexed by a special family of graphs. Processes indexed

by vertices of graphs are known as probabilistic graphical models. In 2011, Burdzy and Pal

proposed a continuous version of graphical models indexed by graphs with an embedded

time structure – so called time-like graphs. We extend the notion of time-like graphs and

find properties of processes indexed by them. In particular, we solve the conjecture of

uniqueness of the distribution for the process indexed by graphs with infinite number of

vertices. We provide a new result showing the stochastic heat equation as a limit of the

sequence of natural Brownian motions on time-like graphs. In addition, our treatment of

time-like graphical models reveals connections to Markov random fields, martingales indexed

by directed sets and branching Markov processes.
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Tonći Antunović, Sayan Banerjee, Clayton Barnes, Nevenka and Zlatko Burina, Peter Ca-

day, Graham Clenaghan, Sylvester Erikson Bique, Rebecca Hoberg, Matt Junge, Avi Levy,

Stephen McKeown, Bharatwaj Palvannan, Hrvoje Pandžić, Elliot Paquette, Harishchandra
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INTRODUCTION

In the general theory of Markov processes (such as given in the book [6, Blumenthal-

Getoor]) we have a process X indexed by some parameter set T :

(X(t) : t ∈ T ). (0.1)

The set T can be any set with some order �. The book [34] by Khoshnevisan studies

different cases of multiparameter processes (T ⊂ Rn). T could, for instance, be vertices of a

directed graph with the order induced by the direction of edges.

Figure 0.1: Parameter set T and the realization of the process indexed by T .

Processes indexed by vertices of graphs are well studied and are often used in machine

learning ([35, Koller - Friedman], [28, Hastie et al.]) and statistics ([37, Lauritzen], [45,

Studený]), where they are called probabilistic graphical models. In each of these models

the conditional independencies can be read from the structure of the graph. (A

short introduction to undirected graphical models is given in §A.4.) In probability, Markov
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processes indexed by trees have been studied (see [4, Benjamini - Peres]), as well as Gibbs

processes.

Figure 0.2: In graphical models the structure of the graph induces conditional independen-

cies.

Similar continuous models such as the branching Brownian motion ([16]), Le Gall’s

Brownian snake ([16]), Brownian web ([19]) and Brownian net ([46]) have been studied. In

all these models the underlying graph is a random graph.

In 2011, Burdzy and Pal ([7]) introduced time-like graphs (TLG’s) and defined (Markov)

processes on graphs with no co-terminal cells (NCC-graphs). Compared to graphical mod-

els, these were continuous processes (they have a random variable defined at each point of

the representation), and unlike the continuous models studied in probability, the underlying

graph was deterministic. A number of properties (induced by the structure of the under-

lying graph) of these processes were proved. However, the model had strong restrictions

both on the degrees of vertices of the graph and the distribution of the process.

In this paper we expand the definition of processes onto a wider family of graphs, answer

open questions asked by Burdzy and Pal, and investigate new properties and connections

with some known processes.

This paper has three main parts, and it ends with a list of open problems and an appendix

that contains definitions of some terms that might not be familiar to the reader.
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0 1

t

1/3 2/3

Figure 0.3: Time-like graph and a process indexed by it.

Construction and properties

In §1 we study the geometry of time-like graphs (TLG’s). We are focused on the TLG∗

family, since the processes on this sub-family of time-like graphs can be well-defined. Many

of the properties depend on the structure of the underlying time-like graph, so we investigate

the properties and lastly give an algorithm for determining whether a graph belongs to

the TLG∗ family.

In §2 we give a very general criteria for constructing a process indexed by a TLG∗ G (see

§2.3). Further, we show that the constructed process has the hereditary spine-Markovian

property (see §2.3.3) and we get that the distribution of the process does not depend on

its construction (see Theorem 2.20). Burdzy and Pal (in [7]) conjectured that this holds

for NCC graphs with infinitely many vertices. This is proven here in a much more general

setting (Theorem 2.24).

In §3 we look into several properties of the constructed process induced by time and

graph structure. Theorem 3.8 proves that a generalized Markov property holds, while

Theorem 3.12 shows the connection between the constructed process and Markov random

fields.
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Kurtz [36] studied martingales that are indexed by directed sets. Theorem 1.34 shows

that every TLG∗ G is a directed set, and under some conditions the process indexed by G will

be a martingale. In §4 we develop stopping times and look at the properties of filtrations

to prove the Optional Stopping Theorem (Theorem 4.21) for martingales indexed by

TLG∗’s.

Natural Brownian motion and the stochastic heat equation

In Part 2 we investigate another question from the original paper [7]. What happens when

we have a process on a dense net that covers (a subset of) the plane? In §7 we look at a

rhombus grid that covers the whole plane and the two sided Brownian motion defined on this

graph. We analyze what happens when the mesh size goes to zero, and study the connection

with the stochastic heat equation (Theorem 7.8).

In chapters §5 and §6 we develop tools to prove the result about the stochastic heat equa-

tion. §5 reviews some results about maximums of Gaussian vectors and continuous Gaussian

process. §6 studies the approximation of the (stochastic) heat equation with one boundary

and an initial value condition with the Euler method under very general conditions. The

main tool for the analysis is the simple random walk.

Figure 0.4: Topographical image of the simulation of a process indexed by a dense rhombus

grid



5

Processes on general and random time-like graphs

The graphs used in Part 1 and 2 have one beginning and one end, so we can not define

a process on a time-like tree. In §8 we modify our approach to define a process with nice

properties on a more general family of graphs - TLG∗∗’s. This family includes trees, and

it turns out (see §9.4) that some properties which do not hold in general are true for time-

like trees. We proceed to define Galton-Watson time-like trees (§10.2), and investigate

(§10.5) what happens when we index the process by this type of random trees.

Open questions and appendix

This paper ends with several open questions: Under what conditions can we define a process

on any TLG? If we know the process on some parts of the graph, what can we tell about

the parts that are hidden from us? Do we (under some conditions) have the strong Markov

property? How would we model the evolution of the process on a graph over time?

Figure 0.5: Open question: We know about the black parts of the graph and the process on

it, what can we say about the part of the structure that is hidden?

The Appendix contains some definitions and known results that we will often use.
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Part I

CONSTRUCTION AND PROPERTIES
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Chapter 1

GEOMETRY OF TIME-LIKE GRAPHS

Most of the definitions presented in this chapter are modified from the original model

presented in [7]. The crucial difference is the Definition 1.1 of time-like graphs. In the original

model, Burdzy and Pal considered time-like graphs with the beginning and end vertex of

degree 1, and all other vertices of degree 3. See Figure 1.1.

Figure 1.1:

The rest is a deeper study of geometric properties of the special family TLG∗. These

properties will later be vital for the construction of the processes and many of their properties.

1.1 Basic definitions

Definition 1.1. A graph G = (V, E) will be called a time-like graph (TLG) if its sets of

vertices V and edges E satisfy the following properties.

(i) The set V contains at least two elements, V = {t0, t1, . . . , tN}, where t0 = A, tN = B

and for k = 1, 2, . . . , N − 2, A < tk ≤ tk+1 < B.

(ii) An edge between tj and tk will be denoted Ejk. We assume that there is no edge

between tj and tk if tj = tk. Ejk indicates that tj < tk.
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(iii) We assume that all vertices have a finite degree.

(iv) We assume that for every vertex tk k = 1, . . . , N−1 there exist edges Ejk and Ekn with

j < k < n.

We call TLG to be a unit TLG if A = 0 and B = 1.

Remarks. (0) In our study of TLG’s, we will assume that TLG is a unit TLG, unless

specified differently. (1) We do not exclude the case V = {t0 = A, tN = t1 = B}.
(2) The definition implies that TLG has no loops.

(3) In (i) formally we should say that the elements have the form (k, tk), so that (k, tk)

and (k + 1, tk+1) are distinct even if tk = tk+1. This notation was simplified to make writing

easier.

(4) An edge between tj and tk (j < k) will be denoted Ejk (if it exists), and if we are

using more of them we will use the notation E1
jk, E

2
jk . . . (or something similar).

t0 = 0

t1

t2

t3

t4

t5

t6 = 1
E1

36

E2
36E02

Figure 1.2: TLG G

0 t1 t2 t3, t4 t5 1

R2

t

Figure 1.3: Representation of a TLG G

The representation of a TLG in R3 is given by the following definition.

Definition 1.2. By abuse of notation let Ejk : [tj, tk] → R2 denote a continuous function

for all Ejk ∈ E . Assume:

(i) That the images of the open sets (tj , tk) under the maps t 7→ (t, Ejk(t)), where Ejk ∈ E
are disjoint.
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(ii) That Ejk(tk) = Ekn(tk) if Ejk, Ekn ∈ E ; Ejk(tk) = Emk(tk) if Ejk, Emk ∈ E ; and

E0k(t0) = E0j(t0) for E0k, E0j ∈ E .

We will call the set

R(G) = {(t, Ejk(t)) ∈ [0, 1]× R2 : Ejk ∈ E , t ∈ [tj , tk]}

a representation of G. We will say that G1 is a subgraph of G2, and write G1 ⊂ G2 if there

exist representations of the two such that R(G1) ⊂ R(G2). We will call G planar if it has a

representation R(G) ⊂ R2.

Let t̄j = (tj, Ejk(tj)) for j < N and t̄N = (tN , EN−1,N(tN)).

Remark. There are many representations for a TLG, but there is a unique TLG corresponding

to a representation.

Ek1k2

Ek2k3

Ek3k4

· · ·
Ekn−1kn

Figure 1.4: A time-path

Definition 1.3. We will call a sequence of edges

(Ek1k2, Ek2k3, . . . , Ekn−1kn) (1.1)

a time-path if Ekjkj+1
∈ E for every j. We will denote the set of all paths of the form (1.1)

by σ(k1, k2, . . . , kn). This time path is full time-path if k0 = 0 and kn = N . We will denote

the set of all full time-paths by P0→1(G).
Remark. Note that the notation σ(k1, k2, . . . , kn) does not uniquely identify the path, since

there can be more than one edge between the two vertices.

Definition 1.4. (i) Time paths σj ∈ σ(j1, j2, . . . , jn) and σk ∈ σ(k1, k2, . . . , km) are co-

terminal if j1 = k1 and jn = km.
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Figure 1.5: Example of a full time-path and an example of path that is not a time-path

(ii) Co-terminal paths σj ∈ σ(j1, j2, . . . , jn) and σk ∈ σ(k1, k2, . . . , km) will be form a cell

(σj , σk) if

{j2, j3, . . . , jn−1} ∩ {k2, . . . , km−1} = ∅.

(iii) We will call a cell (σj , σk) for σj ∈ σ(j1, j2, . . . , jn) and σk ∈ σ(k1, k2, . . . , km) simple if

if there does not exist a time path π ∈ σ(i1, i2, . . . , ir) such that i1 ∈ {j2, j3, . . . , jn−1}
and ir ∈ {k2, . . . , km−1}, or i1 ∈ {k2, . . . , km−1} and ir ∈ {j2, j3, . . . , jn−1}.

Figure 1.6: Non-simple cell and a simple cell

1.2 TLG∗ family

We will now describe the family of TLG graphs that is generated from minimal graph by

adding vertices and adding edges between vertices connected by a time-path.

Definition 1.5. The TLG∗-family is given in the following inductive way.

(i) The minimal graph G = (V, E), with V = {t0 = 1, tN = 1} and E = {E0N} is a TLG∗.

(ii) Let G1 = (V1, E1) be a TLG∗, where V1 = {t0, t2, . . . , tN}.
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t0 t1E01

Figure 1.7: The minimal graph

(1) (adding a vertex) If τk ∈ [0, 1], and for some Ek1k2 ∈ E and tk1 < τk < tk2 then

set

V2 := V1 ∪ {τk} and E2 := E1 ∪ {Ek1k, Ekk2} \ {Ek1k2}.

G2 := (V2, E2) is also a TLG∗.

tk1tk1
tk2

tk2

τkEk1k2

Ek1k Ekk2

Figure 1.8: Adding a vertex

(2) (adding an edge) Let tj , tk ∈ V1 such that tj < tk, and assume that there exists

a time-path σjk ∈ σ(j, . . . , k) between these vertices. Then set

V2 := V1 and E2 := E1 ∪ {E∗jk}.

G2 := (V2, E2) is also a TLG∗. (E∗jk is an new edge (not in E1).)

Figure 1.9: Adding the edge E∗jk

(iii) We will say that (Gj)1≤j≤k is a tower of TLG∗’s or TLG∗-tower if for j > 1, Gj is

constructed from Gj−1 as in (ii).
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Remarks. (1) Clearly, all TLG∗’s are TLG’s. (2) It is also clear that if (Gj)1≤j≤k is a

tower of TLG∗’s and Gk is planar that all the graphs in this tower of TLG∗’s are planar.

We will turn our attention to the question which TLG’s are TLG∗. The following is a

generalization and a new proof of the result known to Burdzy and Pal (see Theorem 2.9 (ii)

in [7]).

Theorem 1.6. All planar TLG’s are TLG∗’s.

Proof. Let G be a planar TLG and R(G) its representation in R2. We will prove the claim

in several steps.

(i) Denote time-paths from t0 = 0 to tN = 1 in G with P0→1(G). For each σ ∈ P0→1(G)
there exists a continuous function gσ : [0, 1] → R such that its graph Γgσ = {(x, gσ(x)) : x ∈
[0, 1]} is the representation of σ in R(G). For two paths σ′ 6= σ′′ we have gσ′ 6= gσ′′ , and there

are three possibilities

• If gσ′ ≤ gσ′′ or gσ′ ≥ gσ′′ . In the first case we say σ′ ≤ σ′′ and in the second case we

say σ′ ≥ σ′′.

• If not, min{gσ′, gσ′′}, max{gσ′ , gσ′′} are also representations of paths from 0 to 1. (These

paths use the same set of edges as paths σ′ and σ′′.)

We define σ′∧σ′′ and σ′∨σ′′ to be the path represented by min{gσ′, gσ′′} and max{gσ′ , gσ′′}
in R(G). This operation is closed, commutative and associative, and further σ′ ∧ σ′′ ≤ σ′ ≤
σ′ ∨ σ′′ and σ′ ∧ σ′′ ≤ σ′′ ≤ σ′ ∨ σ′′.

(ii) We pick σ1 to be ∧σ∈P0→1(G)σ, and we set G1 = (V1, E1) such that all vertices and all

edges of σ1 are in V1 and E1. Clearly this is a planar TLG. Note that we choose σ1 such that

there is no σ′ in P0→1(G) with σ
′ ≤ σ1.

Now we continue inductively. Let Gk−1 = (Vk−1, Ek−1) be a TLG obtained in the previous

step. If E \ Ek−1 = ∅ clearly Gk−1 = G. Otherwise, choose σk in P0→1(G) \ P0→1(Gk−1) such

that there is no σ′ in the same set with σ′ ≤ σk. (The set P0→1(G) \P0→1(Gk−1) is nonempty
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since every edge E ∈ E \ Ek−1 is part of a path from 0 to 1 in G. There is such minimal edge

with respect to the given order, since this is a finite set.) We now set Gk = (Vk, Ek), where
Vk is the set of all vertices in Vk−1 and on σk and Ek is set of all edges in Ek−1 and that σk

is made of. Again, Gk is a planar TLG.

Since there is only a finite number of edges in E , at some step K we will stop, and we

will have GK = G.
(iii) Note that for each k there is no edge Ejn ∈ E \ Ek such that there exists σ ∈

P0→1(Gk) with Ejn ≤ gσ|[tj ,tn]. Otherwise, there would exist a σl for some l ≤ k such that

Ejn ≤ gσl
|[tj ,tn], and a path σ′ ∈ P0→1(G) that contains Ejn, but then σ

′ ∧ σl ≤ σl, and this

contradicts the definition of σl.

(iv) From the definition in (i) it is clear that

σk
max = ∨σ∈P0→1(Gk)σ (1.2)

is also a path in Gk.

(v) Now we will show that all Gk are TLG∗’s. It is clear that G1 can be obtained from

the minimal graph G0 by repeating step (ii1) in Definition 1.5.

We assume that Gk−1 is a TLG∗. For an edge Ejn in σk that is not in Ek−1, we have by

(iii)

gσk−1
max

|[tj ,tk] ≤ Ejn. (1.3)

Further, σk−1
max (see (1.2)) will have common vertices with σk (at least in 0 and 1). The

set T = {t ∈ [0, 1] : σk−1
max(t) 6= σk(t)} has at exactly one connected component. Otherwise,

there would exist tl1 < tl2 ≤ tl3 < tl4 in ∂T and we would have two sub-paths σ(l1 . . . l2) and

σ(l3 . . . l4) that start and end at vertices that are on σk−1
max, but since (1.3) we have

gσk−1
max

|[tl1 ,tl2 ]∪[tl3 ,tl4 ] ≤ gσk
|[tl1 ,tl2 ]∪[tl3 ,tl4 ]

(their representations lie above R(Gk−1)). But, now σ′ is represented by

gσ′(t) :=





gσk
(t) t ∈ [tl1 , tl2 ]

gσk−1
max

(t) t ∈ [tl1 , tl2 ]
c
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is also a path in P0→1(G) \ P0→1(Gk−1), such that σ′ ≤ σk. This is a contradiction, with the

definition of σk. Therefore, T has only one connected component and σk−1
max and σk have two

common vertices - tl1 and tl2 . Since tl1 and tl2 are on the path σk−1
max by Definition 1.5 we can

add an edge between them, and after that add vertices that are on the path that connects

them. All the other edges of the path σk (that are below the path σk−1
max in the representation)

are already included in Gk−1 (by (iii)), so we get Gk.

�

0 1 0 1

0 1 0 1

0 1 0 1

Figure 1.10: Illustration of the proof of Theorem 1.6. The the path colored in gray represents

σk, while dashed lines represent Gk−1.

Remark. The proof gives us the following algorithm for constructing a planar TLG G as a

TLG∗.
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1 σ a minimal path with respect to ≤ in P0→1(G);
2 G# = (V#, E#) that consists of all vertices and all edges of σ (in G);
3 while E \ E# 6= ∅ do

4 σ a minimal path with respect to ≤ in P0→1(G) \ P0→1(G#);

5 add all edges and vertices that make σ (in G) to G#;

6 end

Algorithm 1: Constructing a planar TLG as a TLG∗.

We have shown that the step in line 5 can be done by adding edges and vertices as

described in Definition 1.5. Since G# is a TLG∗ in line 2, G# remains a TLG∗ through the

whole algorithm. The illustration of this algorithm is given in Figure 1.10.

Corollary 1.7. For a planar TLG G there exists a tower of planar TLG’s (TLG∗’s) (Gj)1≤j≤n.

such that G1 = ({t0 = 0, tN = 1}, {E0N}) and Gn = G. Further, there exists a sequence of

representations (R(Gj))1≤j≤n such that R(Gj−1) ⊂ R(Gj) for j > 1.

Theorem 1.8. (i) There exists a TLG that is not a TLG∗.

(ii) There exists a non-planar TLG∗.

Proof. We will show the claim using examples similar to those Burdzy and Pal gave in [7].

(i) Assume the TLG G = (V, E), where V = {tj = j/5 : j = 0, 1, . . . , 5} and

E = {E01, E02, E14, E13, E23, E24, E45, E35}

(on the Figure 1.11.) is a TLG∗. Then there exists a tower of TLG∗ (Gj)1≤j≤n such that

Gn = G. Let E∗ be the edge form the set E∗ = {E14, E13, E24, E23} with largest j such that

E∗ ∈ Ej \ Ej−1. (E∗ is the last edge from E∗ to be added to the graph.)

In Definition 1.5. we add edges in each step, so that their vertices lie on the same path

from 0 to 1 and these vertices will continue to be on the same path in future steps. Since,

no three vertices from the set {t1, t2, t3, t4} are on the same path in G, in each step we can

add only one edge from the set E∗.
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The graph Gj−1 contains the vertices t1, t2, t3 and t4, since it contains three out of four

edges from E∗ connecting them.

In order to obtain Gj the endpoints of E∗ have to be connected by a time path. It is

clear that each element of the tower (Gj)1≤j≤n the number of time paths between the two

vertices increases. This means that the number time paths between the endpoints of G will

be at least two, but this is not true in G. Hence, G can not be a TLG∗.

(ii) Let G = (V, E), where V = {tj = j/7 : j = 0, 1, . . . , 7} and

E = {E01, E12, E23, E34, E45, E56, E67, E14, E25, E3,6}.

It is clear that this is a TLG∗ and it is not planar. See Figure 1.12 �

t0

t1

t2

t4

t3

t5

Figure 1.11: A TLG that is not a

TLG∗

Figure 1.12: Non-planar TLG∗.

1.3 Consistent representation of a TLG∗-tower, spines and (re)construction

If G is a TLG∗, then let (Gj)
n
j=0 be a TLG∗ tower. In the corresponding sequence of rep-

resentations (R(Gj))
n
j=0 we could have some inconsistencies which we would like to avoid.

For instance, let co-terminal edges E1 = E1
m1m2

and E2 = E2
m1m2

be present in the whole

tower and the graph in the Figure 1.13 can represent part of each representation. The arcs
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a and b in representation R(Gj1) might represent E1 and E2, while in some other represen-

tation R(Gj2) it might be the other way around. To avoid this we will only use consistent

representations of the TLG∗ tower (Gj)
n
j=0.

a

b

Figure 1.13: The arc a and b might not always represent the same edges.

Definition 1.9. We will call a sequence of representations (R(Gj))
n
j=0 a consistent repre-

sentation of the TLG∗-tower (Gj)
n
j=0 if:

(a) If we add a new vertex τk to the TLG∗ Gj−1 to obtain Gj by removing an edge Ek1k2 , and

replacing it with Ek1k and Ekk2 (as in step (ii1) of Definition 1.5.), then the representation

of edges Ek1k and Ekk2 is the same as that of Ek1k2 , i.e.

Ek1k2([tk1, tk2 ]) = Ek1k([tk1 , tk]) ∪ Ekk2([tk, tk2 ]).

(b) All the edges that are in both Gj−1 and Gj , will have the same representation in R(Gj−1)

and R(Gj), i.e. for Ek1k2 ∈ Ej−1 ∩ Ej if E ′k1k2 is the representation in R(Gj−1) and E
′′
k1k2

is the representation in R(Gj) then

E ′k1k2([tk1 , tk2 ]) = E ′′k1k2([tk1 , tk2]).

The two following facts are true about consistent representations.

Proposition 1.10. (i) If (R(Gj))
n
j=0 is a consistent representation of the TLG∗-tower

(Gj)
n
j=0 then R(Gj−1) ⊂ R(Gj) for j ≥ 1.

(ii) If (Gj)
n
j=0 is a TLG∗-tower, for a fixed representation R(Gn), there exists a unique

consistent representation (R(Gj))
n
j=0 of this TLG∗ tower.
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Proof. The claim (i) is clear from Definition 1.9. (ii) follows by induction on the number of

edges. �

Definition 1.11. Let G be a TLG∗ and fix its representation R(G). By Definition 1.5. of

TLG∗’s there exists a TLG∗ tower (Gj)
n
j=0, where G0 is the minimal graph and Gn = G. By

Proposition 1.10 there exists a consistent representation (R(Gj))
n
j=0 where R(Gn) = R(G).

It is easy to see that that R(G0) is the representation of a full time-path σ in G. We will

call such a full time-path a spine.

The question is each full time-path a spine? In other words, can we take any full time

path, and by adding vertices and edges as in the Definition 1.5 of TLG∗ get the TLG∗ G.

Theorem 1.12. Each full-time path in TLG∗ is a spine.

Proof. We will prove this claim by induction on the number of edges m = |E| in G.
For m = 1 the claim holds, since the spine is the whole G.

Assume that the claim holds for m ≥ 1. Let G be a TLG∗ with m+1 edges. There exists

a TLG∗ G ′ such that by adding a vertex or edge (as in step (ii) Definition 1.5.) we get G.
(Note that in both cases G ′ has m edges.)

If we added a new vertex to G ′ there exists a representation of R(G) that is the same as

the one of R(G ′). Now it is clear, that if we pick any full time-path in G, there is a σ′ full

time-path in G ′ with the same representation in R(G ′). We first construct G ′, from σ′ and

then we add G to the tower describing that construction.

If we added a new edge E∗h1h2
. If we pick a full time-path σ′ that is in G ′, then we

first construct G ′ from it and then add G as the last member of the tower describing that

construction. If we pick a full time path σ∗ containing E∗h1h2
, let σ′ be a full time path

connecting th1 and th2, such that σ′ and σ∗ are the same except between th1 and th2 . We

can construct G ′ from σ′. To construct G from σ∗ we start with one edge representing σ∗,

and then add vertices th1 and th2 and an edge between them. Now, we have a full time-path

that has the same representation as σ′, and we keep adding edges and vertices in the same
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σ∗

σ′

E∗
h1h2

Figure 1.14: Two spines σ∗ and σ′.

order as in the construction of G ′ starting with σ′ (we skip the steps in which t1 and t2 are

added). At the end we have G. �

We have an interesting consequence of the previous Theorem.

Corollary 1.13. If Eh1h2 is an edge between the two vertices connected by a time path (not

containing that edge) in G = (V, E), then G ′ = (V, E \ {Eh1h2}) is also a TLG∗.

Proof. We pick a full time-path containing that path. Now in the construction of G from

that time path we skip the step in which need to add the edge Eh1h2 and we get G ′. �

Definition 1.14. A point on G = (V, E) is an element of the set

{(Ejk, τ) : Ejk ∈ E , τ ∈ [tj , tk]},

and the representation of the point t = (Ejk, τ) is the point on R(Ejk) whose time coordinate

is τ . t1 = (E1, τ1) and t2 = (E2, τ2) are connected by a (time-)path if E1 and E2 are a part

of some (time-)path. We will write t1 � t2 if τ1 ≤ τ2 and t1 and t2 are connected by a

time-path.

Remark. For a point t on G we will write t ∈ G. Note that vertices can be represented as

several points, if they are endpoints to several edges, identify them as one point. The order

’�’ introduced is the order induced by the structure of the graph. We will write for

the time of t, to simplify the notation, just t.
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We will give a criteria for connectedness of two points by a time-path. This says that

the two points are connected by a time-path in G, if and only if their representations are

connected from the moment that these points exist in the TLG∗-tower (that leads to the

construction of G). A very similar result will hold for any path in G with a given time frame.

Theorem 1.15. Let t∗ and t∗ be two points on G and let (Gk)
n
k=1 be a TLG∗-tower such that

Gn = G and (R(Gk))
n
k=1 its consistent representation. Assume k0 is the smallest k such that

t̄∗ and t̄∗ are on R(Gk). Then t∗ and t∗ are connected by a time-path in G if and only if they

are connected by a time-path in Gk0.

Proof. If t∗ and t
∗ are connected by a time-path in Gk0 , they will remain connected by a time

path in all Gk for k ≥ k0.

Let k∗ ≥ k0 be the smallest k such that t∗ and t∗ are connected in Gk. k∗ exists and is

less or equal n. If k∗ > k0, then t∗ and t∗ are points in Gk∗−1 but are not connected. This

means that an edge between two vertices tj and th was added and t∗ and t∗ are on some

time-path. But since the points tj and th need to be connected in the previous step, this

would not affect the connection between t∗ and t∗. So t∗ and t∗ are connected in Gk∗−1. This

contradicts the definition of k∗. Therefore, k0 = k∗. �

From the last result we know that a simple cell will remain a simple cell in the TLG∗-

tower.

Corollary 1.16. Let (Gk)
n
k=1 be a TLG∗-tower and 1 ≤ k < l ≤ n. If (σ1, σ2) is a simple

cell in Gk then (σ′1, σ
′
2) is a simple cell in Gl, where (σ1, σ2) and (σ′1, σ

′
2) have the same

representation in the consistent representation of (Gk)
n
k=1.

Definition 1.17. For any path ρ in G we say that the interval I = [a, b] is its time-frame

if R(ρ) ⊂ I × R2.

Theorem 1.18. Let t∗ and t∗ be two points on G and let (Gk)
n
k=1 be a TLG∗-tower such that

Gn = G. Assume k0 is the smallest k such that t∗ and t∗ are points on Gk. Then t∗ and t∗
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are connected by a path ρ within the time-frame [a, b] in G if and only if they are connected

by a path within the time-frame [a, b] in Gk0.

Proof. The proof is the same as in Theorem 1.15. We look a the first member of the tower

when t∗ and t∗ are connected by a path within the time frame [a, b], if this is not k0, then the

connection was established by adding an edge between some vertices tj and tk, but these had

to already be connected by a time-path. So the connection existed in the previous member

of the tower. Which proves the claim. �

1.4 Interval TLG∗’s

In this section we will show the interval property of TLG∗’s.

Definition 1.19. Let G be a TLG, and τ1 ≤ τ2 vertices on a TLG. We define G[τ1, τ2]
the interval [τ1, τ2] of G to be the graph (V[τ1, τ2], E [τ1, τ2]) such that V[τ1, τ2] are all the

vertices tk such that there exist a time-paths στ1tk and σtkτ2 , and E [τ1, τ2] are edges from E
that connect vertices from V[τ1, τ2].
Remark. Note that if τ1 and τ2 are not connected by a time-path then V[τ1, τ2] = ∅.

The following result will show that interval TLG∗’s are TLG∗.

τ1
τ2

G[τ1, τ2]

Figure 1.15: The interval graph G[τ1, τ2].

Theorem 1.20. Let G be a TLG∗ and τ1 ≤ τ2 be two vertices connected by a time path.

Then G[τ1, τ2] is a TLG∗.
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Proof. Pick a spine/full time-path σ that contains τ1 and τ2. (It will exist since τ1 and τ2

are connected by a time-path.) Now, pick a TLG∗ tower (Gj)
n
j=1 that starts with σ and ends

with G.

We will show by induction that Gj [τ1, τ2] is a TLG∗ for all j. Without loss of generality

we can assume that G1 contains all vertices on σ in G.
It is clear that the claim holds for j = 1. Assume it holds for j ≥ 1, and let’s prove it for

j + 1. There are 4 cases to consider:

(1) If we added an vertex to Gj to obtain Gj+1 the claim clearly holds.

(2) We added an edge that is not connecting vertices in Vj [τ1, τ2]. Then Gj+1[τ1, τ2] is the

same as Gj [τ1, τ2].

(3) We added an edge that is connecting vertices in Vj[τ1, τ2], then these two vertices are

connected by a time-path in Gj , and hence they are connected by a time-path in Gj [τ1, τ2].

This is the same as if we added a new edge on Gj [τ1, τ2] to obtain Gj+1[τ1, τ2].

(4) We added an edge that is connecting a vertex in Vj [τ1, τ2] and a vertex not in Vj [τ1, τ2].

In this case Gj+1[τ1, τ2] is the same as Gj [τ1, τ2], because the vertex not in Vj [τ1, τ2], by

Theorem 1.15, can’t be in Vj+1[τ1, τ2].

Since in all cases Gj+1 is either the same as Gj [τ1, τ2], or obtained from Gj[τ1, τ2] by adding

and edge or a vertex, it is a TLG∗.

This proves that G[τ1, τ2] is a TLG∗. �

From this proof we can get the following conclusion.

Corollary 1.21. When we erase the repeating elements the sequence (Gj[τ1, τ2])
n
j=1 is a

TLG∗-tower for G[τ1, τ2].
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Corollary 1.22. For a TLG∗ G and vertices τ1 and τ2 on a spine σ we have that there exists

a TLG∗-tower (Gj)
n
j=1 with consistent representation (R(Gj))

n
j=1 such that for some n0 ≤ n

R(G0) = R(σ), R(Gn0) = R(G[τ1, τ2]) ∪R(σ).

That is after the spine σ, we can construct G[τ1, τ2], and then the rest of G.

Proof. We first construct the spine σ, and then construct TLG∗ G[τ1, τ2]. Now, we apply

steps from the proof of Theorem 1.20. that are using edges and vertices that haven’t yet

been constructed. In each of these steps when we add an edge time-path connectedness is

already guaranteed since the TLG∗ that we have is a sup-graph of the TLG∗ when the step

was done in the proof of Theorem 1.20. �

1.5 Topology on TLG’s

For some things that follow we will need a notion of a limit of points on a TLG. In order to

define a limit we need to define a topology.

Definition 1.23. For a point t on a TLG G, and 0 < δ < min{|tk − t| : tk ∈ V \{t}}, we say
that the ball Bδ(t) centered at t with radius δ is the set of all points s on a TLG, such that:

• t and s are on a time-path;

• the absolute value of the time difference |t− s| is less than δ.

The following is a classical definition of open sets.

Definition 1.24. For a set U of points on a TLG G we say it is an open set, if for each

t ∈ U there exists a δ > 0 such that Bδ(t) ⊂ U .

We define TG to be the set of all open sets in TLG G.

Lemma 1.25. Let G be a TLG, and fix its representation R(G). U is an open set in if and

only if R(U) is an open set in R(G).
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t

δ

Figure 1.16: Ball in a TLG

t̄

∂B(t̄, δ1)

t̄j

t̄k

ī1

ī2

ī3
ī4

ī5

Figure 1.17: The representation inter-

sected by a sphere. In this case we have

I = {i1, . . . , i5}.

Proof. If U ∈ TG , then pick arbitrary t̄ ∈ R(U). There are only finitely many paths that

don’t pass through t, and the union of their representations is a compact set K in R3. Now,

we pick δ1 = d(t̄, K)/2 (where d is the usual metric in R3). Also, we pick δ2 > 0 such that

Bδ2(t) ⊂ U . For δ = min{δ1, δ2}, {s ∈ R(G) : d(s, t̄) < δ} ⊂ R(U). Hence R(U) is opened.

If R(U) is opened, then we pick t ∈ U . Pick δ1 > 0 such that B(t̄, δ1) = {s ∈ R(G) :

d(s, t̄) < δ1} ⊂ R(U). There exists finitely many full time-paths π1, . . . , πk that contain t. Let

I be the points on G whose representations are at the intersection of R(π1), . . . , R(πk) with

∂B(t̄, δ1). (See Figure 1.17.) I is finite, and now pick δ = min{|t− z| : z ∈ I ∪ (V \ {t})}/2.
Since t /∈ I, δ > 0. Hence, Bδ(t) ⊂ U . �

Proposition 1.26. TG is a topology on G.

Proof. Note that t 7→ t̄ is a bijection. Hence, if (Uα : α ∈ A) is in TG , then since

R(
⋃

α∈A
Uα) =

⋃

α∈A
R(Uα)

is an open set so is
⋃

α∈A Uα. We can use the same approach for the finite intersection. �
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Corollary 1.27. t 7→ t̄ is a homeomorphism (i.e. a continuous bijective function with a

continuous inverse) from G to R(G).

Corollary 1.28. The topological space (G, TG) is metrizable.

Proof. Fix the representation R(G), and set dG(s, t) := dR3(s̄, t̄). dG is a metric and the

topology induced by dG is TG . �

Corollary 1.29. (G, TG) is a Hausdorff space.

Proof. Follows from the fact that this space is metrizable. �

We define limit on TLG’s in the following natural way.

Definition 1.30. We say that the sequence of points (tn) converges to the point t in TLG

if:

• there exists n0 ∈ N such that for each n ≥ n0 the points tn and t are connected by a

time-path;

• the absolute value of the time difference |tn − t| converges to 0.

Remark. The time-path that connects tn and t can depend on n. and can be a different

time-path for different n’s. (It will always contain t.)

We will show that this is also the limit in the topology that we defined.

Theorem 1.31. Let G be a TLG, and R(G) be its representation. A sequence of points (tn)

converges to t in G if and only if their representations (t̄n) converge to t̄.

Proof. If tn → t in G. There are finitely many paths σ1, . . . , σk going through t. In the

representation each path σj is represented by a graph of some continuous function fσj
. But

now since

(tn, fσj
(tn)) → (t, fσj

(t)) = t̄,

and for each t̄n there is kn such that t̄n = (tn, fσkn
(tn)), the claim follows.
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Let t̄n → t̄ in R(G). Now, there are only finitely many paths that don’t pass through t,

and the union of their representations is a compact set K. Now we pick δ = d(t̄, K)/2. Now,

there exists n0 such that for all n ≥ n0 t̄n ∈ Bδ(t̄), but this implies that all tn are connected

by a time-path to t. It is clear that the absolute value of the time difference |t− tn| converges
to 0. �

Corollary 1.32. tn → t in G if and only if tn → t in (G, TG).

Proof. Fix a representation R(G), and define a metric dG as in Corollary 1.28. It is clear

from Theorem 1.31 that we have convergence if and only if dG(tn, t) = dR3(t̄n, t̄) → 0. �

1.6 TLG∗ as a topological lattice

In this section we will show that TLG∗’s are topological lattices.

Definition 1.33. A Hausdorff space X with some order ’≤’ is called a topological lattice

if for x1, x2 ∈ X :

• there exists a unique element x1 ∧ x2 such that

{x ∈ X : x ≤ x1} ∩ {x ∈ X : x ≤ x2} = {x ∈ X : x ≤ x1 ∧ x2};

• there exists a unique element x1 ∨ x2 such that

{x ∈ X : x ≥ x1} ∩ {x ∈ X : x ≥ x2} = {x ∈ X : x ≥ x1 ∨ x2}.

and x1 ∧x2 and x1 ∨x2 are continuous mappings of X ×X (with product topology) onto X .

Theorem 1.34. A TLG∗ G is a topological lattice with respect to the order � induced by the

structure of G.

Proof. Let (Gk)
n
k=0 be a TLG∗-tower starting with the minimal graph G0 and ending with

Gn = G.
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We will prove the claim by induction. Clearly, G0 is a topological lattice. Let’s assume

Gk is a topological lattice.

If we added a new vertex to Gk in order to get Gk+1, then clearly Gk+1 is also a topological

lattice.

If we added a new edge to Gk in order to get Gk+1, then take two points t, s ∈ Gk+1.

If t, s ∈ Gk, then by assumption there exist t ∧ s and t ∨ s, the same is clear if t, s are

points of the new edge E∗jk. The only case that remains to be checked is when t ∈ E∗jk and

s ∈ Gk. If t � s, then t ∧ s = t and t ∨ s = s. Similarly when s � t. Otherwise, we have

{τ ∈ Gk+1 : τ � s} is in Gk, so

{τ ∈ Gk+1 : τ � s} ∩ {τ ∈ Gk+1 : τ � t}

={τ ∈ Gk : τ � s} ∩ {τ ∈ Gk : τ � t}

={τ ∈ Gk : τ � s} ∩ {τ ∈ Gk : τ � tj}

={τ ∈ Gk : τ � s ∧ tj},

therefore, we have s ∧ t = s ∧ tj. In the same way we can show that s ∨ t = s ∨ tk. The

uniqueness follows from the fact that if u � v and v � u we have u = v.

Let (t1n) and (t2n) be a sequence of points converging respectively to t1 and t2 on G. If

t1 = t2 both sequences converge to the same point, and so will (t1n ∨ t2n) and (t1n ∧ t2n). If t1

and t2 are on the same time-path, assume t1 ≺ t2. Now, by the definition of convergence,

there will exist a n0 such that for n ≥ n0 we have t1n ≺ t2n, hence

t1n ∨ t2n = t1n → t1, t1n ∧ t2n = t2n → t2

If t1 and t2 are not connected by a time-path, let δ < min{|t1 − t|/2 : t ∈ V \ {t1}} ∧
min{|t2 − t|/2 : t ∈ V \ {t2}}, it is not hard to see that for t′ ∈ Bδ(t1) and t

′′ ∈ Bδ(t2), we

have t′ ∨ t′′ = t1 ∨ t2 and t′ ∧ t′′ = t1 ∧ t2. So for large n, the sequences will have the values

t1 ∨ t2 and t1 ∧ t2. �

It is not hard to see, that the TLG that is not a TLG∗ from Figure 1.11 is not a topological

lattice – there is no unique t1 ∨ t2 and t3 ∧ t4.
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Lemma 1.35. There exists a topological lattice TLG, that is not a TLG∗.

Proof. The TLG in the Figure 1.18 is an example of a topological lattice TLG, that is not

a TLG∗.

t0

t1

t2

t3
t4

t5

t6 t7

t8

t9

Figure 1.18: Topological lattice TLG that is not a TLG∗.

It is easy to see that t0∧ tj = t0 and t0∨ tj = tj , and similarly t9∧ tj = tj and t9∨ tj = t9.

The following table will show what tk∧tj and tk∨tj are. In the table above the main diagonal

(for k < j) tk ∧ tj is calculated, and below (for k > j) tk ∨ tj . The diagonal is omitted, since

tj ∨ tj = tj ∧ tj = tj.

t1 t2 t3 t4 t5 t6 t7 t8

t1 ◦ t0 t1 t0 t1 t0 t1 t0

t2 t3 ◦ t2 t0 t0 t0 t0 t2

t3 t3 t3 ◦ t0 t1 t0 t1 t2

t4 t5 t8 t9 ◦ t4 t4 t4 t4

t5 t5 t9 t9 t5 ◦ t4 t5 t4

t6 t7 t8 t9 t6 t7 ◦ t6 t6

t7 t7 t9 t9 t7 t7 t7 ◦ t6

t8 t9 t8 t9 t8 t9 t8 t9 ◦
This is not a TLG∗, since by applying the cell collapse transformation, see Definition 1.40 on

the cell (t4− t5− t7, t4− t6− t7) we will no longer have a topological lattice, since t3 ∧ t8 will
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no longer be unique. Therefore the transformed graph is no longer a TLG∗ which contradicts

Lemma 1.43. if this is a TLG∗. �

A natural question that will be useful later is if we have a sequence of points (tk) does

there exist their infinitum and supreme, that is

∧∞k=1tk and ∨∞k=1 tk.

Lemma 1.36. The order in which we take apply ∧ and ∨ doesn’t matter, that is

(t1 ∧ t2) ∧ t3 = t1 ∧ (t2 ∧ t3) and (t1 ∨ t2) ∨ t3 = t1 ∨ (t2 ∨ t3).

Proof. Let t∗ = (t1 ∧ t2) ∧ t3 and t∗ = t1 ∧ (t2 ∧ t3). It is clear that t∗ � t3, and t∗ � t1 ∧ t2
implies t∗ � t2 and t∗ � t1. By definition it is clear that t∗ � (t2 ∧ t3), again using the same

we have t∗ � t1∧ (t2 ∧ t3) = t∗. In the same way, we can get t∗ � t∗, and this implies t∗ = t∗.

Hence, the first equality follows. The second equality follows by similar arguments. These

equalities imply the other statements. �

Lemma 1.37. Let (tk)
∞
k=1 be a sequence of points in a TLG∗. We define the sequences (t−k )

and (t+k ) by t−1 = t1, and t
−
k = tk ∧ t−k−1, and t

+
1 = t1, and t

+
k = tk ∧ t+k−1. Sequence (t−k )

and (t+k ) will converge to limits t∗ and t∗. Further for any bijection f : N → N the sequences

(tf−k ) and (tf+k ) obtained from (tf(k)) in the same way will converge respectively to t∗ and t
∗.

Proof. By definition, for each n the points (t−k )
n
k=1 there exists a full time-path σ, such that

these points are all on σ. Further, the sequence of times (t−k ) converges to a time t∗. On the

TLG∗ G there are only finitely many points with that time, name them t1∗, . . . , tm∗. Let

ε = min{|t∗ − tj∗ ∨ tk∗| : k 6= j} where the minimum is taken over the time distances. Now,

if we pick k0 such that |t∗ − t−k | < ε (time distance) for k ≥ k0, then there will be only one

tj∗ in the future of t−k ’s for k ≥ k0. We set it to be t∗, and it is not hard to see that all the

points are on the unique path between t∗ and t
−
k0
. Now it is clear, since the topology on that

path is the same as the one on the open segment, that t−k → t∗.
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By what we have just proven (tf−k ) converges to some point tf∗ . But then, we can show

by definition, that tf∗ � t∗ and t∗ � tf∗ , which implies tf∗ = t∗. �

Definition 1.38. For a finite sequence (tk)
n
k=1 we define

∧n
k=1tk := tp(1)∧(tp(2)∧(. . . (tp(n−1)∧tp(n)))) and ∨n

k=1tk = tp(1)∨(tp(2)∨(. . . (tp(n−1)∨tp(n)))).

where p is any permutation of the set {1, 2, . . . , n}. For a sequence (tk)
∞
k=1 we define and any

bijection f : N → N we define

∧∞k=1tk := lim
n→∞

∧n
k=1tf(k) and ∨∞k=1 tk := lim

n→∞
∨n
k=1tf(k).

Corollary 1.39. The terms ∧n
k=1tk, ∨n

k=1tk, ∧∞k=1tk and ∨∞k=1tk are well defined for any

sequence (tk).

Proof. Follows from Lemma 1.36. and Lemma 1.37. �

1.7 Cell collapse transformation and the stingy algorithm

Another property of TLG∗ will be introduced in this section. This will be a transformation

on TLG’s that will map TLG∗’s into TLG∗’s.

Definition 1.40. We will call the map G 7→ G◦ from TLG’s into TLG’s a cell collapse

transformation if:

Pick a cell (σuv, σ
1
uv) (starting at tu and ending at tv). The transformation that we will

describe, basically, glues σ1
uv with its vertices to σuv, while keeping most of the connections

between vertices in the graph.

We construct the graph G◦ = (V◦, E◦) in the following way:

• In the first step we are maping the cell into a time-path.
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Let tu = tw1 ≤ . . . ≤ twh
= tv be the set of vertices on the time-paths σuv and σ1

uv

ordered with respect to time. We will map twj
into (twj

)◦ in V◦ so that the vertices with

the same time are mapped into same vertices, that is if twj1
= twj2

then (twj1
)◦ ≡ (twj2

)◦.

We will use the notation (twj1
)◦ = t◦w◦

j1

. Note that if twj1
= twj2

, then w◦j1 = w◦j2.

We add an edge in E◦ between t◦w◦
j
and t◦w◦

j+1
if their times are different. (Note that in

this way all the vertices in {(twj
)◦ : j = 1, 2, . . . n} are on the same time-path.)

• Every other vertex tj from V not contained on the paths σuv and σ1
uv is mapped into

(tj)
◦ in V◦ so that the time is preserved, and these vertices are mapped into different

vertices and disjoint from where the vertices on σuv and σ1
uv were maped.

• For each edge E in E not a part of σuv or σ1
uv we add a E◦ in E◦ between the corre-

sponding vertices. We color E◦ in red if E is adjacent to a vertex from σuv, or in blue

if it is adjacent to the vertex from σ1
uv.

σ1
uv

σuv

Figure 1.19: Transformation from G to G◦.
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Definition 1.41. A cell (σ1, σ2) in TLG G starting at tk1 and ending at tk2 will be called

truly simple , if there is no path in G[tk1 , tk2] connecting the interior of σ1 and σ2.

Remark. The path in question does not have to be a time-path. If there exists a a time path

between σ1 and σ2 then it will be in G[tk1 , tk2 ], so a truly simple cell is a simple cell.

Before we prove the main result of this section we will prove the following lemma.

Lemma 1.42. (a) Let (σ1, σ2) starting at tk1 and ending at tk2 in in TLG∗ G be a truly

simple cell. Then

R(G[tk1 , tk2]) \ {t̄k1 , t̄k2}

has at least two connected components.

(b) Let G be a TLG∗, and let R(G) \ {t̄0, t̄N} have two connected components. Closure of

each of these components, is a representation of a TLG∗.

Proof. (a) Since (σ1, σ2) is a truly simple cell, there is no path between the interior vertices

of σ1 and σ2. So R(σ1) and R(σ2) are connected only through t̄k1 and t̄k2 . Therefore, R(σ1)\
{t̄k1, t̄k2} and R(σ2) \ {t̄k1 , t̄k2} are in two different connected components of R(G[tk1 , tk2 ]) \
{t̄k1, t̄k2}.

0 1

H

K

Figure 1.20: H and K are TLG∗’s.

(b) Pick a component, and let H be the sub-graph of G that represents this component

and the union of {t̄1, t̄N}. Pick a TLG∗-tower (Gj)
n
j=0 that starts with a minimal edge and
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ends with G. Let (Gjk)
n1

k=1 be the subsequence of all members of (Gj)
n
j=0 such that an edge or

a vertex whose representation intersects R(H) \ {t̄1, t̄N} has been added to Gjk−1 to obtain

Gjk .

By the definition of the sequence (Gjk), an edge has been added to Gj1−1 in order to obtain

G. Since the representation of that edge intersects R(H) \ {t̄1, t̄N} which is a disconnected

component of R(G) \ {t̄1, t̄N}. So therefore that edge needs to be between t1 and tN . Set

H1 := (Vj1 ∩ VH, Ej1|Vj1∩VH),

where Ẽ |Ṽ represents the subset of edges in Ẽ that are connecting vertices in Ṽ. It is clear

that H1 is a minimal graph.

Further, define Hk = (Vjk ∩ VH, Ejk|Vjk∩VH) for k = 2, . . . , n1. We will show that (Hk)
n1

k=1

is a TLG∗-tower. Hn1 by construction equals H. H1 is a TLG∗. Let’s assume Hk is a TLG∗

(for k ≥ 1) and show that Hk+1 is a TLG∗. If a new vertex has been added to Gjk+1−1

to obtain Gjk+1
, this is, by construction, the same as if we added a new vertex to Hk in

order to obtain Hk+1. If we added a new edge, the representation of that edge intersects

R(H) \ {t̄1, t̄N}, and therefore is in that component. Since the new edge is connecting two

vertices connected by a time-path in R(H) ∩ R(Gjk+1−1) these vertices are in H, and they

are connected in Hk. Hence, we added an edge to Hk between two vertices connected by a

time-path. In both cases Hk+1 is a TLG∗ obtained from Hk. Hence, H is a TLG∗. �

Theorem 1.43. If G is a TLG∗ and ◦ is collapsing a truly simple cell, then G◦ is also a

TLG∗. Further, if ◦ is collapsing a simple cell, then G◦ doesn’t have to be a TLG∗.

Proof. Pick a spine σ that contains σuv side of the chosen cell (σuv, σ
1
uv). We know from

Theorem 1.20 that G[tu, tv] is a TLG∗. By Lemma 1.42 G[tu, tv] is a union of two or more

TLG∗’s that only have vertices tu and tv in common, and are otherwise disconnected. σuv

and σ1
uv are in two different TLG∗ components and they are also spines in these components.

Therefore, we can construct G[tu, tv], from the TLG∗ whose representation is R(σuv)∪R(σ1
uv).

We start with the two edges that have the representation R(σuv) and R(σ
1
uv), and then we
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first construct the component that contains σuv, then the one that contains σ1
uv, and possible

other components. At the end we get G[tu, tv]. But then, for any full-time path σ that

contains tu and tv we can construct the TLG∗ whose representation is R(σ) ∪ R(G[tu, tv])
starting with the TLG∗

G1 = ({t0, tu, tv, tN}, {E0u, E
1
uv, E

2
uv, EvN}),

and later, by Corollary 1.22, we can construct G. Hence, there exists a TLG∗-tower (Gj)
n
j=1

such that ends with G, and its consistent representation has the representation of the cell

(σuv, σ
1
uv) at each level. Now, we define ◦-transformation to collapse the cell whose represen-

tation is R(σuv, σ
1
uv). We will show that (G◦j )nj=1 is a TLG∗-tower.

It is clear that G◦1 is a TLG∗ and that images of all points connected by a time path in

G1 are connected in G◦1 . Let’s assume G◦k is a TLG∗ and that images of all points connected

by a time path in Gk are connected in G◦k .
If we added a vertex to Gk in order to obtain Gk+1, then G◦k+1 is either the same as Gk or it

has an added vertex. It is clear in this case that images of all the points that are connected

in Gk+1 by a time-path are connected by a time-path in G◦k+1.

If we added an edge to Gk in order to obtain Gk+1, then G◦k+1 is the same as if added

an edge to G◦k . Since this edge is connecting image of two points in Gk that are connected

by a time-path, they are also connected by a time-path in G◦k . Hence, G◦k+1 is also a TLG∗.

Images of all the time-path connected points in Gk+1 that are not on the edge added, are

connected by a time path in G◦k+1. (This is inherited from Gk.) The points on the edge are

connected through the endpoints, and since the image of the edge is connected through the

image of the endpoints, the connectedness follows.

Hence (G◦k) is a TLG∗-tower ending with G◦.

The example when we collapse a simple cell in a TLG∗ an don’t obtain a TLG∗ is given

on Figure 1.21. The second figure is not a topological lattice, so it is not a TLG∗.

�
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Figure 1.21: Planar TLG(∗), when we collapse the dashed (simple) cell we no longer have a

TLG∗.

We obtain following from the previous proof.

Corollary 1.44. Let (Gj)
n
j=1 be a TLG∗-tower. If there exists a truly simple cell, in Gn such

that the representation of this cell is truly simple in each member of the tower, then for ◦
the cell collapsing transformation of this cell (G◦j )nj=1 is also a TLG∗-tower.

Proof. We first construct a pre-tower (Gj)
1
j=−m, where G−m is the minimal TLG∗ containing

the cell. Now, (Gj)
n
j=−m is a TLG∗-tower, and in the same way as in the previous proof we

can show that (G◦j )nj=−m is a tower, and the claim follows. �

In what follows we will define an algorithm which will give us the criteria for understand-

ing is something a TLG∗ or not.

Definition 1.45. For a TLG G and a full-time path σ in G, the following algorithm will be

called the stingy algorithm for the TLG G with respect to the full-time path σ:

1 σ a full time-path (i.e. in P0→1(G));
2 G# = (V#, E#) a TLG that consists of all vertices and all edges of σ (in G);
3 while E \ E# 6= ∅ do

4 σkl a time-path in G and not in G# between tk and tl in V# such that |tl − tk| is
minimal;

5 add all edges and vertices that make σkl (in G) to G#;

6 end

Algorithm 2: Stingy algorithm for constructing G with respect to σ
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Lemma 1.46. The stingy algorithm for any G and any full-time path σ in G terminates in

finitely many steps.

Proof. It is clear that as long the condition E \ E# 6= ∅ is satisfied, we can find σkl as in the

line 4 (it may not be unique, but it will exist). Since in each while loop execution we add at

least one edge, eventually we will have E = E#. Clearly, at that point we have G = G#. �

The key to answering is G a TLG∗ is in line 4. We claim that if G is a TLG∗, then for

the chosen σkl the vertices tk and tl are connected by a time path in G# (constructed before

we picked σkl).

Theorem 1.47. If G is a TLG∗ and σ a spine in G, then in the stingy algorithm for G with

respect to σ, each time line 4 is executed we pick a time-path between two points connected

by a time-path in G#.

Proof. Let n be the sum of degrees of vertices in G whose degree is at least 3, that is

n(G) =
∑

v∈V ,d(v)≥3
d(v).

We will prove the following claim by induction on n:

For a TLG∗ G where n(G) = n, when we run the algorithm on G for any spine σ in line 4

the chosen σkl is such that tk and tl are connected by a time path in G# from the previous

iteration.

For n = 0 this claim is clearly true (then we have a TLG∗ with one spine). Assume that

this claim holds for all n ≤ m where m ≥ 0.

Let’s show that this claim holds for n = m+ 1. If there is no such TLG∗ G, then we say

that the claim holds trivially. Otherwise, let G be such a TLG∗, and σ its arbitrary spine

from P0→1(G).

We pick tu and tv on σ that are connected by a time-path σ1
uv in G outside of σ such

that |tu − tv| is minimal. Let σuv be the time-path between tu and tv on σ. Note that, by
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the construction, the cell (σuv, σ
1
uv) is truly simple. (Otherwise, if the sides σuv and σ1

uv are

connected by a path in G[tu, tv] that would contradict the minimality of tv − tu.)

The graph constructed by the simple cell collapsing transformation with respect to

(σuv, σ
1
uv) - G◦ is by Lemma 1.43 a TLG∗ and we have n(G◦) < n(G) (it is clear that

d((tu)
◦) < d(tu) and d((tv)

◦) < d(tv)). So by induction assumption we can apply the al-

gorithm to G◦ and in this way show that it is a TLG∗.

We will parallely run the algorithm on G◦ and G with the given spine (σ)◦ and the

corresponding spine σ.

We will assume that in the first iteration of the while loop in line 3 (of the algorithm on

G) time-path σ1
uv was chosen.

Let p denote the number of iterations of the while loop in line 3, and G#
p the graph

constructed until that point when we run the algorithm on G.

Now, we will show that if σ◦kl was chosen in the p-th iteration of the while loop on G◦,
then we can choose σkl in p+ 1-st iteration of the while loop on G.

For p = 1 this holds, σ◦kl is connecting (tk)
◦ and (tl)

◦, and by the construction of G◦,
tk and tl are connected by a time path in G. (Otherwise, we tk and tl would be points on

different sides of the cell, connected by a the time path σkl, and the cell (σuv, σ
1
uv) wouldn’t

be minimal.)

Assume this holds for p = r ≥ 1.

For p = r+1 let σ◦kl, be chosen. By assumption we know that (tk)
◦ and (tl)

◦ are connected

by a time path in (G ′)#p−1, we know, that σkl is a path connecting tk and tl in G, there can’t

be a path whose time difference is smaller, because such would exist in G◦ also. The only

thing that we need to show is that tk and tl are connected by a time-path in G#
p .

Assume the opposite. This would mean, by construction that there exists tk′ ∈ σuv and

tl′ ∈ σ1
uv on different sides of the cell (σ1

uv, σuv), such that tk ≤ tk′ ≤ tl′ ≤ tl (time order),

and there exist paths σkk′ and σl′l. Now this would mean, since G is a TLG∗, and therefore
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tk

tk′tu tv

tl

tl′

tk′ ∧ tl

Figure 1.22:

by Theorem 1.34 a topological lattice , that

{t ∈ G : t � tk}∩{t ∈ G : t � tu} ⊂ {t ∈ G : t � tk′}∩{t ∈ G : t � tl} = {t ∈ G : t ≤ tk′ ∧ tl},

Hence, in G there exists a vertex tk′ ∧ tl connected by time paths to tk, tu, tk′ and tl′ . Now,

tk′ ∧ tl has to be on σ, or otherwise tu, tk′ ∧ tl and tk′ form a cell, that will be a smaller cell

whose on side is on the spine σ in G. But this contradicts the choice of tu and tv. Now, if

tk′ ∧ tl is on σ, this contradicts the choice of tk and tl, since tk < tk′ ∧ tl < tl, because tk′ ∧ tl
and tl are in G#

p , they are connected in G and their time difference is less than tl − tk.

Hence tk and tl have to be connected in G#
p .

This shows that the algorithm will be making a connection between two connected vertices

in each step.

Finally, this proves the claim. �

Corollary 1.48. The following algorithm determines is a TLG G a TLG∗ or not:
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1 σ a full time-path (i.e. in P0→1(G));
2 G# = (V#, E#) a TLG that consists of all vertices and all edges of σ (in G);
3 while E \ E# 6= ∅ do

4 σkl a time-path in G and not in G# between tk and tl in V# such that |tl − tk| is
minimal;

5 if tk and tl are connected by a time-path in G# then

6 add all edges and vertices that make σkl (in G) to G#;

7 else

8 return This is not a TLG∗;

9 end

10 end

11 return This is a TLG∗;

Algorithm 3: Determine is TLG G a TLG∗ or not.

1.8 TLG’s with infinitely many vertices

We will allow t0 and tN to take values in R ∪ {−∞,∞}.

Definition 1.49. (i) Suppose that the vertex set of a graph G = (V, E) is infinite. We

will call G a time-like graph (TLG) if it satisfies the following conditions.

(a) There is a sequence of TLG’s Gn = (Vn, En) with finite vertex set Vn, n ≥ 1, and

for some representations of Gn’s and G we have

∞⋃

n=1

R(Gn) = R(G).

(b) The graph G is locally finite, i.e. it has a representation R(G) such that for any

compact K ⊂ R3 a finite number of edges intersects K.

(ii) A TLG G with infinite vertex set will be called an TLG∗ if it satisfies the following

conditions.
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(a) We can choose a sequence of TLG∗’s Gn in (i). (In the sense of the Definition

1.5.(iii), i.e. (Gj)1≤j≤n is a tower of TLG∗’s for all n.)

(b) Let Vn = {t0,n, t1,n, . . . , tNn,n}. The initial vertices t0,n ∈ Vn and tNn,n ∈ Vn are the

same for all Gn, i.e. for all m,n ≥ 1

t0,n = t0,m and tNn,n = tNm,m.

(c) The initial and terminal edges form a decreasing sequence in the representations of

Gn’s, i.e. if n > m

Et0,n,t1,n((t0,n, t1,n)) ⊂ Et0,m,t1,m((t0,m, t1,m))

and

EtNn−1,n,tNn,n
((tNn−1,n, tNn,n)) ⊂ EtNm−1,m,tNm,m

((tNm−1,m, tNm,m)).

The following lemma will be useful for the construction of processes.

Lemma 1.50. Let (Gn) and (G ′n) be two TLG∗-towers that lead to the construction of G. Let
H be a sub-graph (not necessarily a TLG∗) of some Gn0 whose vertices have a finite time.

Then there exists G ′n1
such that R(H) ⊂ R(G ′n1

) and all the vertices of H are contained in

G ′n1
.

Proof. Since G is locally finite, there are finitely many vertices with representation on R(H),

also these vertices are of finite degree. For each such vertex v, by same argument, there has

to be G ′nv
such v in G ′nv

has that degree. Now if n1 is the maximum of nv over each such

vertex v the claim follows. �
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Chapter 2

PROCESSES INDEXED BY TIME-LIKE GRAPHS

Let G = (V, E) be a TLG∗. In this chapter we construct a stochastic process on G in

such a way that we have a random variable defined at every point of the representation. (See

Figure 2.1. for illustration.)

0 1

t

1/3 2/3

Figure 2.1: Time-like graph G and a process indexed by it.

Definition 2.1. We define X = (X(t) : t ∈ G) as a collection of random variables with

X = (XE(t) : E = Ejk ∈ E , t ∈ [tj , tk]).

We will assume the following things.

• If Ejk, Ekn ∈ E then XEjk
(tk) = XEkn

(tk).

• If Ejk, Enk ∈ E then XEjk
(tk) = XEnk

(tk).
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• Finally, if E0j , E0k ∈ E then X0j(t0) = X0k(t0).

For a path σ1 ∈ σ(k1, k2, . . . , kn) we use the notation

Xσ1(t) = XEkj−1kj
(t),

for all j = 2, 3, . . . , n and t ∈ [tkj−1
, tkj ].

Remark. (1) If there are two edges Eq
jk and Ep

jk with the same endpoints we will denote

processes on them by Xq
jk and Xp

jk.

(2) We will write X(t) instead of Xjk(t) or Xσ when this will not cause any confusion.

(3) In an infinite graph case we will do the same thing, but we will not define the process

at t0 and tN , if they are not in R.

If P is the distribution of a Markov process (Y (t) : t ∈ [t0, tN ]), note that for every

TLG there exists a P-process on G. Trivial example of a P-process on a TLG can be

constructed by taking a Markov process (Y (t) : t ∈ [t0, tN ]) with distribution P and then

letting Xσ(t) = Y (t) for all full time-paths σ ∈ P0→1(G).

We will require some properties to hold for the process to be non-trivial.

2.1 Spine-Markovian property

Definition 2.2. Let σ be any full-time path (from 0 to 1) in the TLG G = (V, E). Let G−
be a subgraph (not necessarily a TLG) of G whose representation is a closure of a connected

component of R(G) \R(σ). Let W be the set of vertices - roots connecting G− to σ and let

G+ denote the graph represented by R(G) \R(G−).
We say that the process X on a TLG G is spine-Markovian if for each such σ and G−

the processes (X(t) : t ∈ G−) and (X(t) : t ∈ G+) given (X(t) : t ∈ W ) are independent.

Proposition 2.3. Let σ, G−, G+ and W in a TLG G be as in the Definition 2.2. Then

for any σ-algebra F such that σ(X(t) : t ∈ W ) ⊂ F ⊂ σ(Xσ), If the process X on G
is spine-Markovian then the processes (X(t) : t ∈ G−) and (X(t) : t ∈ G+) given F are

independent.
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σ

G−

G+

Figure 2.2: Spine-Markovian property: The set of rootsW is illustrated by bullet points (•).

Proof. Let Y− and Y+ denote bounded random variables respectively measurable in σ(X(t) :

t ∈ G−) and σ(X(t) : t ∈ G+). For A ∈ F , Y+1A is a bounded σ(X(t) : t ∈ G+)-measurable

random variable, and we have

E(Y−Y+1A) = E(E(Y−Y+1A|(X(t) : t ∈ W )))

= E(E(Y−|(X(t) : t ∈ W ))E(Y+1A|(X(t) : t ∈ W )))

= E(E(Y−|(X(t) : t ∈ W ))E(E(Y+1A|F)|(X(t) : t ∈ W )))

= E(E(Y−|(X(t) : t ∈ W ))E(E(Y+|F)1A|(X(t) : t ∈ W )))

= E(E(Y−E(Y+|F)1A|(X(t) : t ∈ W ))) = E(Y−E(Y+|F)1A)

= E(E(Y−E(Y+|F)1A|F)) = E(E(Y−|F)E(Y+|F)1A).

�

Remark. Note that G+ is a TLG while G− does not have to be (it is still a connected graph).

Also, G+ contains σ, so we can find G2
− a connected component of R(G+) \ R(σ), and so

on. . . So, the TLG G can be decomposed into G1
−, . . . , Gn

− that are connected components of

R(G) \R(σ) and the spine σ.

Definition 2.4. We will call (σ;G1
−, . . . ,Gn

−) the decomposition of the TLG G with respect

to σ. The elements of this decomposition (including σ) we will call components.

Remark. Notice that the decomposition, given σ, is unique up to an order of G1
−, . . . ,Gn

−.
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σ

G1
−

G2
− G3

−

G4
−

Figure 2.3: The decomposition of G with respect to σ.

Proposition 2.5. Let G ′ be a graph that is the union of some graphs Gj1
− , . . . , Gjk

− in the

decomposition, and G ′′ the union of all the other components in the decomposition. Then the

process (X(t) : t ∈ G ′) and (X(t) : t ∈ G ′′) are independent given (X(t) : t ∈ Wj1 ∪ . . .∪Wjk),

where Wj is the set of roots of Gj.

Proof. For l = 1, . . . , k let Yl be a bounded σ(X(t) : t ∈ Gjl)-measurable random variable, Z a

bounded σ(X(t) : t ∈ G ′′)-measurable random variable and A ∈ σ(X(t) : t ∈ Wj1∪ . . .∪Wjk).

Using the spine-Markovian property for each Gjl l = 1, 2, . . . , k at a time with respect to σ

we get

E(Y1Y2 . . . YkZ1A) = E(E(Y1|XWj1
)Y2 . . . YkZ1A)

= E(E(Y1|XWj1
)E(Y2|XWj2

) . . . YkZ1A)

. . .

= E(E(Y1|XWj1
)E(Y2|XWj2

) . . .E(Yk|XWjk
)Z1A).

Now, taking the conditional expectation with respect to σ(XWj1
. . .XWjk

)

= E(E(E(Y1|XWj1
) . . .E(Yk|XWjk

)Z1A|XWj1
. . . XWjk

))

= E(E(Y1|XWj1
) . . .E(Yk|XWjk

)E(Z|XWj1
. . . XWjk

)1A)
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Now, again using the spine-Markovian property on each graph in the union we get

= E(Y1 . . .E(Yk|XWjk
)E(Z|XWj1

. . . XWjk
)1A)

. . .

= E(Y1 . . . YkE(Z|XWj1
. . .XWjk

)1A).

Which, finally, gives us

= E(E(Y1 . . . YkE(Z|XWj1
. . .XWjk

)1A|XWj1
. . .XWjk

))

= E(E(Y1 . . . Yk|XWj1
. . .XWjk

)E(Z|XWj1
. . .XWjk

)1A).

Now from the Monotone Class Theorem the claim follows. �

We will need a stronger property for some proofs.

Definition 2.6. For a TLG∗ G we define S∗(G) to be the set of all TLG∗’s H such that there

exists a TLG∗-tower (Kk)
n
k=0 that starts with K0 = H and ends with Kn = G.

Definition 2.7. The process (X(t) : t ∈ G) has a hereditary spine-Markovian prop-

erty if (X(t) : t ∈ H) is a spine-Markovian process for each H ∈ S∗(G).

2.2 Consistent distributions on paths

Definition 2.8. Let G be a TLG, for a family of distributions of stochastic processes on

[0, 1]

{µσ : σ ∈ H},

where H ⊂ P0→1(G) (a subset of the set of full time-paths), we say that it is consistent if

for σ1, σ2 ∈ H

µσ1 ◦ π−1T = µσ2 ◦ π−1T ,

where T = {t : t ∈ E,E ∈ σ1 & E ∈ σ2}.
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Proposition 2.9. If µ is the distribution of the process X on a TLG G, then

{µσ = P ◦X−1σ : σ ∈ P0→1(G)} (2.1)

is a consistent family.

Remark. It is not hard to see that the family of distributions given by (2.1) does not uniquely

determine µ - the distribution on G. For example if we take a Markov process P on [0, 1],

and we take the TLG graph G = (V, E) where V = {0, 1} and E = {E1
01, E

2
01}. Let Y 1 be a

Markov process on [0, 1] with distribution P, and Y 2 a P-Markov bridge starting at Y 1(0)

and ending at Y 1(1) conditionally independent given Y 1(0) and Y 1(1). (This can be done

as in Theorem A.15.) Now, the process X1 such that X1
E1

01
= Y 1 and X1

E2
01

= Y 1, has the

same distributions along the full-time paths as X2 given by X2
E1

01
= Y 1 and X2

E2
01
= Y 2. But,

these two processes are clearly different in distribution. (See Figure 2.4.)

Figure 2.4: Processes X1 and X2

Corollary 2.10. Let P be a distribution of some process on [0, 1]. If µσ = P for each

full-time path σ in TLG G, then

{µσ : σ ∈ P0→1(G)}

is a consistent family.
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2.3 Construction from a consistent family

The interesting question is if we have a consistent family

M := {µσ : σ ∈ P0→1(G)},

under what conditions can we construct a process X on G such that Xσ has the distribution

µσ. We will call X to be an M-process

We will show that such a process exists under the following assumptions:

T1 G = (V, E) is a TLG∗.

T2 M is a consistent family of measures that induce continuous or RCLL processes.

T3 For each simple cell (σ1, σ2) in G starting at t∗ and ending at t∗, if σ is a full-time path

containing σ1 (or σ2) then the µσ-distributed process

(Y (t) : t ∈ [0, 1]) (2.2)

has the property that (Y (t) : t ∈ [0, t∗]∪ [t∗, 1]) and (Y (t) : t ∈ [t∗, t∗]) given Y (t∗) and

Y (t∗) are independent.

Conditions (T1)-(T3) we will call (3T) conditions.

Remark. Condition (T2) is needed so that we could define a conditional distribution when

needed. So other M can be a family of other types of processes for which this would be

possible (for example all the arguments would work for discrete processes).

The condition (T3) can be rewritten in a different way.

Lemma 2.11. The process given by (2.2) has the property that the distribution (Y (t) : t ∈
[t∗, t∗]) given (Y (t) : t ∈ [0, t∗]∪ [t∗, 1]) depends only on (Y (t∗), Y (t∗)), in other words if Z is

a bounded σ(Y (t) : t ∈ [t∗, t
∗])-measurable random variable then

E(Z|Y (t) : t ∈ [0, t∗] ∪ [t∗, 1]) = E(Z|Y (t∗), Y (t
∗)).
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Proof. Let A ∈ σ(Y (t) : t ∈ [0, t∗] ∪ [t∗, 1]) and define U := E(Z|Y (t) : t ∈ [0, t∗] ∪ [t∗, 1]).

Using the definition of the conditional expectation, and the property of Y

E(U1A)

= E(Z1A) = E(E[Z1A|Y (t∗), Y (t∗)])

= E(E[Z|Y (t∗), Y (t
∗)]E[1A|Y (t∗), Y (t∗)])

= E(E[E[Z|Y (t∗), Y (t
∗)]1A|Y (t∗), Y (t∗)])

= E(E[Z|Y (t∗), Y (t
∗)]1A).

The claim follows from the a.s. uniqueness of the conditional expectation. �

2.3.1 Construction

We will define a M-process on a TLG∗ G with finite sets V and E , where t0 = 0 and tN = 1.

Definition 2.12. Let (Gl)0≤l≤n be a tower of TLG∗ where G0 is a minimal graph V0 = {t0 =
0, tN = 1}, E0 = {E0N} and Gn = G. Further let M be a family of distributions satisfying

(3T) conditions.

• On G0 we define a process X0 with µE0n distribution.

• If we have already defined X l on Gl (for some l < n), then we define X l+1 on Gl+1 in the

following way depending how we constructed Gl+1 from Gl (recall part (ii) of Definition

1.5.).

(1) In the construction a new vertex τl ∈ [0, 1] \ Vl was added to graph Gl, by subdi-

viding some Ejk such that tj < τl < tk, into Ejl and Elk to get Gl+1. In this case,

the two graphs Gl and Gl+1 have a common representation, R(Gl) = R(Gl+1), and

we can define X l+1 on Gl+1 to have the same values on this representation as X l.

(2) In the construction a new edge between two vertices tj < tk in Vl that are con-

nected by a time path in Gl , was added to get Gl+1. So, Gl+1 has a new edge

E∗ = E∗jk. Let Zj = X l(tj) and Zk = X l(tk).
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1
0

Ejk →

1
0

τl
Ejl Elk

Figure 2.5: Case (1) in the construction.

1
0

Ejk →

1
0

Ejk

E∗

jk

Figure 2.6: Case (2) in the construction.

Now we pick a full-time path σ that contains E∗. Now we define µ∗(·|x, y) to be the
conditional probability of the process with the distribution µσ ◦π−1[tj ,tk ]

conditioned

to have values x at tj and y at tk. So we construct the process X l+1 in such a

way that X l+1 on R(Gl) is equal to X
l and X l+1

E∗ is the process with distribution

µ∗(·|Zj, Zk) and otherwise independent of X l given Zj and Zk.

Since n is finite this procedure will end and we will have a process X = Xn defined on G.

Remark. Note that this construction, i.e. the definition of X on G depends on the choice of

the TLG∗ tower (Gl)0≤l≤n.

2.3.2 Constructed process is an M-process

Definition 2.13. If (Gk)
n
k=0 is a TLG∗-tower where Gn = G. If M is a family of distributions

on full time-paths of G. This naturally induces a family M(Gk) of distributions on full time-



50

paths of Gk.

Remark. This is well-defined since a representation of every full time-path in Gk, is a rep-

resentation of a full time-path in G (in the consistent representation of the TLG∗-tower

(Gk)
n
k=0).

The only question remains will the family induced by M have the same properties as M.

This is shown to be true.

Lemma 2.14. If M is a family of distributions on full time-paths of a TLG∗ G satisfying

properties (T1)-(T3), then for any H ∈ S∗(G) the family M(H) also satisfies properties

(T1)-(T3).

Proof. (T1) is clearly satisfied since H is a TLG∗. (T2) is satisfied since in the consistent

representation all the full time paths in H are full time paths in G. By Corollary 1.16, in a

consistent representation a representation of a simple cell in H is a representation of a simple

cell in G. Therefore (T3) holds. �

Lemma 2.15. The process X on G defined in 2.3.1 is an M-process.

Proof. It is clear that X0 is a M(G0)-process on the minimal graph G0.

For, l < n we assume X l is a M(Gl)-process on Gl. If we got X l+1 using step (1) in the

construction, then we inherited this property from X l, since M(Gl) = M(Gl+1). If we got

X l+1 using step (2), recall that Gl contains a time-path σjk connecting tj and tk, so there is

a full path σ′ in Gl+1 that starts with a time-path σ0j from t0 to tj , contains σjk, and ends

with a time-path σkN .

Now for every full time-path σ that contains the new edge E∗ = E∗jk that was added in

the construction, µE∗ = µσ ◦ π−1[tj ,tk]
is well defined since M is a consistent family, and µE∗

doesn’t depend on the choice of σ.

Since, (E∗, σjk) is a simple cell, by property (T3) of M we have that µ∗(·|x, y) is the

conditional distribution of a µE∗-distributed process on [tj , tk] conditioned to have value x

at tj and y at tk.
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1
0

tj

tkE∗

jk

σ′

σ∗

Figure 2.7:

The process X l+1
E∗ , by construction, is independent given (tj, Zj) and (tk, Zk). By property

(T3) of M the distribution of X l+1
σ′ where σ′ is the union of σ0j , E

∗, σk1 is given by µσ′ : Let

A0 be an event in the path σ-algebra on [0, tj ], A1 an event in the path σ-algebra on [tk, 1],

and B an event in the path σ-algebra on [tj , tk] we have:

P ◦ (X l+1
σ′ )−1(A0 ∩B ∩A1) = E(1A0(X

l+1
σ0j

)1B(X
l+1
E∗ )1A1(X

l+1
σk1

))

= E(E(1A0(X
l+1
σ0j

)1B(X
l+1
E∗ )1A1(X

l+1
σk1

)|Zj, Zk))

= E(1A0(X
l+1
σ0j

)E(1B(X
l+1
E∗ )|Zj, Zk)1A1(X

l+1
σk1

))

(T3)
=

∫

A0×A1

µ∗(B|πtj (x), πtk(x))µσ ◦ π−1[0,tj ]∪[tk,1](dx)

(T2)
=

∫

A0×A1

µ∗(B|πtj (x), πtk(x))µσ′ ◦ π−1[0,tj ]∪[tk,1](dx)

(T3)
= µσ′(A0 ∩B ∩ A1).

By Monotone Class Theorem P ◦ (X l+1
σ′ )−1 = µσ′ . �

Remark. Note that just for the existence of an M-process on the TLG∗ we could weaken

condition (T3). If we fix a construction to a TLG∗-tower, then only some full time-paths need

to have the described property, but then we would lose some properties of the constructed

process.
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2.3.3 The constructed process is a spine-Markovian process

Lemma 2.16. The process X on G defined in 2.3.1 is a spine-Markovian process.

Proof. X0 is trivially an spine-Markovian process. Let’s assume that X l is spine-Markovian.

We have two cases to study to show that X l+1 is spine-Markovian.

(•1) If we added a new vertex to the graph Gl to obtain Gl+1. Then the spine-Markovian

property is directly inherited from the process X l, since W can’t contain the new vertex.

(•2) We added a new edge E∗ to the graph Gl between two existing time-path connected

vertices to obtain Gl+1. Pick a full time path σ, and the subgraphs G− and G+ in the graph

Gl+1 (in the sense of the Definition 2.2). First, note that from the construction the process

X l+1
E∗ is independent from X l+1

G+ given the values of the process at the endpoints of E∗. We

will call this property edge-Markovian for the edge E∗ (in Gl+1). (This property does not

need to hold for other edges.) This will be used often during the this proof. We have the

following cases.

(◦1) If the new edge is the only edge in G−, i.e. E∗ is connecting two vertices on σ. The

claim follows from the edge-Markovian property for E∗.

(◦2) The new E∗ = E∗t∗1t∗2 edge is in G− = (V−, E−), but one of the vertices that E∗ is

connecting is on σ. (See Figure 2.8.) Let G∗− be the graph in Gl that has the edges E− \{E∗}.
From Proposition 2.3. and the spine-Markovian property of X l we know (X l+1(t) : t ∈ G∗−)
and (X l+1(t) : t ∈ G+) given (X(t) : t ∈ W ) are independent. (Note that one vertex in W

may not be in G∗−.) Now, let Y ∗− be a bounded σ(X l+1(t) : t ∈ G∗−)-measurable, Y∗ a bounded

σ(X l+1(t) : t ∈ E∗)-measurable, and Y+ a bounded σ(X l+1(t) : t ∈ G+) measurable random

variable. For A ∈ σ(X l+1(t) : t ∈ W ) we have using edge-Markov property for E∗:

E(Y ∗−Y∗Y+1A) = E(Y ∗−E(Y∗|Xt∗1
, Xt∗2

)Y+1A).

Now, since Y ∗−E(Y∗|Xt∗1
, Xt∗2

) ∈ σ(X l+1(t) : t ∈ G∗−)∨σ(X(t) : t ∈ W ), and this is independent
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of (X l+1(t) : t ∈ G+) given (X(t) : t ∈ W ). So,

E(Y ∗−E(Y∗|Xt∗1
, Xt∗2

)Y+1A) = E(E(Y ∗−E(Y∗|Xt∗1
, Xt∗2

)Y+1A|(X(t) : t ∈ W )))

= E(E(Y ∗−E(Y∗|Xt∗1
, Xt∗2

)Y+|(X(t) : t ∈ W ))1A)

= E(E(Y ∗−E(Y∗|Xt∗1
, Xt∗2

)|(X(t) : t ∈ W ))E(Y+|(X(t) : t ∈ W ))1A)

= E(Y ∗−E(Y∗|Xt∗1
, Xt∗2

)E(Y+|(X(t) : t ∈ W ))1A)

σ

G−

G+

E∗

Figure 2.8:

Again using edge-Markovian property for E∗ we get

E(Y ∗−E(Y∗|Xt∗1
, Xt∗2

)E(Y+|(X(t) : t ∈ W ))1A)

= E(Y ∗−Y∗E(Y+|(X(t) : t ∈ W ))1A)

= E(E(Y ∗−Y∗E(Y+|(X(t) : t ∈ W ))1A|(X(t) : t ∈ W )))

= E(E(Y ∗−Y∗|(X(t) : t ∈ W ))E(Y+|(X(t) : t ∈ W ))1A).

This proves the claim for (◦2).

(◦3) The new E∗ edge is in G− = (V−, E−), both of the vertices that E∗ is connecting are

not on σ but are on G−. In this case we fist use the edge-Markov property for E∗ and then in

the similar way as in (◦2) we use the spine-Markovian property or Theorem 2.5 if the graph

(V−, E− \ {E∗}) is made of two components.

(◦4) The new E∗ edge is in G+ = (V+, E+) and not a part of σ. Using the spine-

Markov property of X l we know that (X l+1(t) : t ∈ E+ \ {E∗}) and (X l+1(t) : t ∈ E−) are
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independent given (X l+1(t) : t ∈ W ). Using the edge-Markovian property for X l+1 we get

that (X l+1(t) : t ∈ E+) and (X l+1(t) : t ∈ E−) are independent given (X l+1(t) : t ∈ W ).

(This is proven similar as in (◦2).)

(◦5) If E∗ = Et∗1t
∗
2
is a part of the spine σ. By the construction of E∗ we know that there

exists a time-path going through vertices t∗1 and t∗2, and therefore there is a full time-path

σ′ which contains whole of σ except E∗. Let σ′12 be the part of σ′ connecting t∗1 and t∗2. We

will use the spine-Markov property for σ′ on Gl to prove the one for σ on Gl+1. Take G− and

W in Gl+1 relative to σ. Clearly, none of the vetrices in W are on E∗. If none of them are

on σ′12 (except maybe t∗1 and t∗2), we can apply the spine-Markovian property relative to σ′

in the case (◦3), and we are done.

If some of the vertices in W \ {t∗1, t∗2} are on σ′12, then the whole σ′12 is in G−. Let’s

decompose Gl with the respect to σ′. Now, the graph G− is a union of some components G1
l−,

. . . , Gk
l− and σ′12. G+ is a union of some other components Gk+1

l− , . . . , Gh
l− and σ. Now we

look a the following parts of G (for a illustration see Figure 2.11.)

• A = G1
l− ∪ . . . ∪ Gk

l−, WA =W1 ∪ . . . ∪Wk.

• B = Gk+1
l− ∪ . . . ∪ Gh

l−, WB = Wk+1 ∪ . . . ∪Wh. Note that WB \ {t∗1, t∗2} contains no

vertices on the path σ12

• C is the graph containing σ12.

• D is the graph containing σ′ without σ12. This is the same as a graph containing σ

without E∗.

• E is the graph containing E∗.

Let’s review which parts we have in the important graphs

G− G+ σ σ′ E∗

A,C B,D,E D,E C,D E
.
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Note thatW the roots of G− are (WA\(t∗1, t∗2))∪{t∗1, t∗2}. Let YH be a bounded σ(X(t) : t ∈ H)-

measurable random variable, for H = A,B,C,D,E, and let T ∈ σ(XW ). Now, we go step

by step, using the right Markovian properties. First we use the edge-Markovian property

for edge E∗ = Et∗1t
∗
2
, hence YE is independent of the rest of the Y -variables given X(t∗1) and

X(t∗2)

E(YAYBYCYDYE1T ) = E(YAYBYCYDE(YE |X(t∗1), X(t∗2))1T ).

Now, we apply the spine-Markovian property for on A and B relative to σ′:

=E(E(YA|XWA
)YBYCYDE(YE |X(t∗1), X(t∗2))1T )

=E(E(YA|XWA
)E(YB|XWB

)YCYDE(YE |X(t∗1), X(t∗2))1T ). (2.3)

Note, that XWA
, XWB

, YC , YD, and X(t∗1), X(t∗2), are all σ(Xσ′)-measurable, and we can use

the (T3) property of the process Xσ′ (X on the path σ′). Let Fσ′(t∗1) = σ{Xσ′(t) : t ≤ t∗1}
and Gσ′(t∗2) = σ{Xσ′(t) : t ≥ t∗2}. Now, we take the conditional expectation in (2.3) with

respect to Fσ′(t∗1) ∨ Gσ′(t∗2). Note that YD, 1T and XWB
are Fσ′(t∗1) ∨ Gσ′(t∗2)-measurable.

Hence,

=E(E[E(YA|XWA
)E(YB|XWB

)YCYDE(YE |X(t∗1), X(t∗2))1T |Fσ′(t∗1) ∨ Gσ′(t∗2)]),

=E(E[E(YA|XWA
)YC |Fσ′(t∗1) ∨ Gσ′(t∗2)]E(YB|XWB

)YDE(YE|X(t∗1), X(t∗2))1T ). (2.4)

Using, the spine-Markovian property of B with respect to σ′ and the edge-Markovian prop-

erty of E∗, respectively we get

=E(E[E(YA|XWA
)YC |Fσ′(t∗1) ∨ Gσ′(t∗2)]YBYDE(YE|X(t∗1), X(t∗2))1T )

=E(E(E(YA|XWA
)YC |Fσ′(t∗1) ∨ Gσ′(t∗2))YBYDYE1T ) (2.5)

It remains to show that E[E(YA|XWA
)YC |Fσ′(t∗1) ∨ Gσ′(t∗2)] is σ(XW ) measurable. Let WA =

W ′
A ∪ W ∗

A, where W ′
A ⊂ [0, t∗1] ∪ [t∗2, 1], and W ∗

A = WA \ W ′
A. We can assume XWA

=
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(XW ′
A
, XW ∗

A
) If fYA

(xW ′
A
, xW ∗

A
) = E(YA|XWA

= (xW ′
A
, xW ∗

A
)), then

E[E(YA|XWA
)YC|Fσ′(t∗1) ∨ Gσ′(t∗2)]

=E[f(XWA
)YC|Fσ′(t∗1) ∨ Gσ′(t∗2)]

=

∫
f(XW ′

A
, xW ∗

A
)yCP(XW ∗

A
∈ dxW ∗

A
, YC ∈ dyC |Fσ′(t∗1) ∨ Gσ′(t∗2)) (2.6)

Now, since W ∗
A and YC are σ(Xσ(t) : t ∈ [t∗1, t

∗
2])-measurable, using the (T3) (note that C

and E form a simple cell) and Lemma 2.11, we have

P(XW ∗
A
∈ dxW ∗

A
, YC ∈ dyC |Fσ′(t∗1) ∨ Gσ′(t∗2)) = P(XW ∗

A
∈ dxW ∗

A
, YC ∈ dyC |X(t∗1), X(t∗2)).

This and (2.6) implies that E[E(YA|XWA
)YC |Fσ′(t∗1) ∨ Gσ′(t∗2)] is σ(XW )-measurable, since

W = W ′
A ∪ {t∗1, t∗2}. Now taking the conditional expectation in (2.5) with respect to XW we

get

E(E(E(E(YA|XWA
)YC |Fσ′(t∗1) ∨ Gσ′(t∗2))YBYDYE1T |XW ))

=E(E(E(YA|XWA
)YC|Fσ′(t∗1) ∨ Gσ′(t∗2))E(YBYDYE|XW )1T )

Using the fact that XW is Fσ′(t∗1) ∨ Gσ′(t∗2)-measurable, we have

E(E(E(YA|XWA
)YCE(YBYDYE |XW )1T |Fσ′(t∗1) ∨ Gσ′(t∗2)))

=E(E(YA|XWA
)YCE(YBYDYE|XW )1T )

Applying the spine-Markovian property to A with respect to σ′ we get

E(E(YA|XWA
)YCE(YBYDYE|XW )1T )

=E(YAYCE(YBYDYE|XW )1T ).

Finally, taking the conditional expectation with respect to XW we get

E(E(YAYCE(YBYDYE|XW )1T |XW ))

=E(E(YAYC |XW )E(YBYDYE|XW )1T ).

From the Monotone Class Theorem the claim follows. �
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2.3.4 The constructed process is a hereditary spine-Markovian process

Recall how we defined S∗(G) and the hereditary spine-Markovian property. (See Definition

2.6 and Definition 2.7. on page 45.)

Proposition 2.17. The process X on G defined as in 2.3.1. is hereditary spine-Markovian.

Proof. Fix an arbitrary TLG∗ G and an TLG∗ tower (Gk)
n
k=0 such that G0 is the minimal

graph and Gn = G.
Clearly, X0 is spine-Markovian, and the claim holds since S∗(G0) = {G0}. Now, we will

show that if the process Xk−1 on Gk−1 6= G is hereditary spine-Markovian, so is Xk on Gk.

• If we got Gk by adding a new vertex to Gk−1 then we are done, since the distribution of

the process didn’t change on the joint representation of these two TLG∗.

• Let’s view the case when we added a new edge E∗ (between the existing vertices) to

Gk−1 to obtain Gk. Take any H ∈ S∗(Gk). If H ∈ S∗(Gk−1), then we are done. Otherwise,

H = (VH , EH) contains the new edge E∗, i.e. E∗ ∈ EH . Let E∗ = Et∗1t
∗
2
.

(◦1) If there exists a path σ12 connecting t∗1 and t∗2 (not containing E∗), then H′ =
(VH , EH \ {E∗}) is a TLG∗ (Corollary 1.13.) and in S∗(Gk−1). This implies that (Xk(t) :

t ∈ H′) is spine-Markovian, and in the same way as in the Lemma 2.16, we can show that

(Xk(t) : t ∈ H) is spine-Markovian.

(◦2) If a path σ12 connecting t∗1 and t∗2 does not exist, then take any tower (Kl)
n
l=0 such

that K0 = H and Kn = G.
Let k be a minimum l such t∗1 and t∗2 are connected in Kl by some path not containing

E∗. Such a k exists, because for the construction of E∗ t∗1 and t∗2 need to be connected by a

time-path in Gk−1, so this is also true in Gk = Kn. But then, we just added a new edge E ′t∗1t∗2

to Km−1. Now we can first add an edge E ′t∗1t∗2 to K0, and after that add vertices and edges in

the order we added them to obtain Km−1 from K0.

In this way, we would still get Km at the end. This shows that a TLG∗ (VH , E ∪ {E ′t∗1t∗2})
(the TLG∗ that we get when we add a new edge connecting t∗1 and t∗2 to K0) is in S

∗(Gk).
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Now, we are previous case (◦1): Xk on (VH , E ∪ {E ′t∗1t∗2}) is spine-Markovian.

To prove that Xk on H is spine-Markovian we need to consider two cases: If a spine

σ in H contains E∗, then E ′t∗1t∗2 is just one of the components (disjoint from others) in

(VH , E ∪{E ′t∗1t∗2}) with respect to σ. For any other spine σ not containing E∗, since E ′t∗1t∗2 will

be an extra part of some component in (VH , E ∪ {E ′t∗1t∗2}) with respect to σ. This shows that

Xk on H is spine-Markovian. �

2.3.5 Uniqueness in law of hereditary spine-Markovian M-processes

Lemmas 2.15 and 2.16 give the following proposition.

Proposition 2.18. The process X on G defined in 2.3.1 is a hereditary spine-Markovian

M-process.

We will finish this discussion by showing uniqueness in law of hereditary spine-Markovian

M-processes.

As we noticed in the Remark after the Definition 2.12, the definition of the process X on

G depends on the choice of the TLG∗ tower, on which we inductively define the process. It

turns out, that the distribution of the process X is unique, and therefore it doesn’t depend

on the choice of the TLG∗ tower.

First, let’s prove the following lemma.

Lemma 2.19. Let X be a hereditary spine-Markovian M-process on a TLG∗ G. If G can

be obtained from a TLG∗ G ′, by adding a new edge or vertex as in Definition 1.5.(ii), then

X ′ a restriction of X to G ′ is also a hereditary spine-Markovian M-process.

Proof. Any full-time path in G ′ is also a full-time path in G. Since, S∗(G ′) ⊆ S∗(G), it is

clear that (X(t) : t ∈ G ′) is hereditary spine-Markovian. �

Theorem 2.20. A hereditary spine-Markovian M-process (satisfying (3T) properties) on a

TLG∗ G has a unique distribution.
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Proof. We will prove this using the induction on the number of edges n of the TLG∗.

For n = 1, we have a minimal graph and its distribution is clearly uniquely given.

For n > 1, suppose G can be obtained from G ′ by adding a new edge or vertex as in

Definition 1.5.(ii). If we just added a vertex to G ′ in order to obtain G, then we are done

since these two graphs have the same representation R(G) = R(G ′). Since G ′ has n− 1 edge,

the distribution on it is unique, and so is on G.

If we added a new edge between the existing E∗ two vertices t1 and t2 on G ′. We are done

since, there has to exist a full time-path σ in G ′ containing t1 and t2. But now, G− = E∗

is a component in the decomposition of G with the respect to σ and G+ = G ′ is the rest of

G. Now, the processes (X(t) : t ∈ G ′) and (X(t) : t ∈ E∗) are independent given X(t1) and

X(t2). By Lemma 2.19 (X(t) : t ∈ G ′) is a hereditary spine-Markovian M-process, so its

distribution is unique. The distribution of (X(t) : t ∈ E∗) given X(t1) and X(t1) is also

uniquely given because of the consistency (i.e. (T2) property) of M.

Hence, the distribution of X on G is unique. �

Definition 2.21. We define the process constructed in §2.3.1 to be the natural M-process

on the TLG∗ G.

2.4 Processes on TLG’s with infinite number of vertices

In Section 1.8 (see Definition 1.49) we introduced TLG’s and TLG∗ with infinitely many

vertices. As in the case where we had only a finite number of vertices, here also we will

construct a process on TLG∗ graphs.

2.4.1 Construction

Let G = (V, E) a TLG∗ such that V is infinite. According to the definition, there exists a

tower of TLG∗’s Gn = (Vn, En), n ≥ 1, such that Vn is finite, where V =
⋃

n≥1 Vn.
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Let

M = {µσ : σ ∈ P0→1(G)} (2.7)

be a family of distributions of Markov processes along full-time paths in G satisfying

conditions (T1)-(T3) given in Section 2.3. (Although 0 and 1 don’t have to be the start and

the end of time in G, we will still use the notation P0→1(G) for full-time paths in G.)

Since

M(Gn) = {µσ : σ ∈ P0→1(Gn)}

is well-defined, and we can show similarly as in Lemma 2.14 that M(Gn) satisfies (T1)-

(T3), we can define a hereditary spine-Markovian process Xn on Gn, such that for each

σ ∈ P0→1(Gn) the process X
n
σ has the distribution µσ. Further, the restriction of this process

to Gk (k ≤ n) has the same distribution as the M(Gk)-process X
k defined on Gk in the similar

manner.

Now, Kolomogorov’s consistency theorem shows, that there exists a process X on G such

that the restriction of X to any Gk has same distribution as Xk. Note, that since each

σ ∈ P0→1(G) is in some of the Gk’s we have Xσ has the distribution µσ.

2.4.2 Uniqueness of the distribution

Lemma 2.22. Let G0, H and G1 be TLG∗’s with the following properties:

(1) G0 ∈ S∗(G1);

(2) VG0 ⊂ VH ⊂ VG1;

(3) R(G0) ⊂ R(H) ⊂ R(G1).

Then G0 ∈ S∗(H).
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Proof. We will show the claim by induction on

n(G0) =
∑

v∈VG0 ,d(v)≥3
d(v).

If n = 0 the claim is G0 represents a spine in H0, and the claim follows by Theorem 1.12.

Assume the claim holds for n ≤ k. We will prove the claim for n = k + 1. Pick a truly

simple cell (πuv, π
1
uv) (recall Definition 1.41) in G0 (for example pick a spine π and then a

time path π1
uv not contained in π connecting tu and tv such that |tu − tv| is minimal), the

representation of this cell will remain a truly simple cell in G1 (by Theorem 1.18.) and

therefore also in H.

Hence, we define a cell collapsing transformation ◦ that is collapsing this cell.

For the TLG∗’s G◦0 , H◦ and G◦1 property (1) holds by Corollary 1.44, while (2) and (3)

are clear. Now, since n(G◦0) < n(G0), by induction assumption G◦0 ∈ S∗(H◦).
We follow the construction from G◦0 to H◦, to obtain a TLG∗-tower going from G0 to

H. Let (K′j)nj=0 be TLG∗-tower starting with K′0 = G◦0 and K′n = H◦. Now we construct a

TLG∗-tower (Kl) staring with K0 = G0. The idea of the construction is the following: if on

K′j to obtain K′j+1 we added

• a vertex, then add an appropriate vertex to Kj to obtain Kj+1;

• an edge, then connect two appropriate vertices in Kj by an edge to obtain Kj+1.

The main question is: When we add an edge, are we connecting two vertices that are

connected by a time-path? That means that in Kj two vertices tk and tl are not connected by

a time path, but (tk)
◦ and (tl)

◦ are connected by a time-path in K′j. So we have a situation

like on the Figure 2.13. (Other situations are similar.)

By Theorem 1.34 H is a topological lattice, there exists a unique vertex tu′ := tk′ ∧ tl. By
definition since tu and tk are in the past of tl and t

′
k, tu and tk are connected by a time-path

to tu′ .
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Using this property, again, we know that in H there exists tv′ = tu′ ∨ tl′ . And know by

the same argumentation tv′ is connected by a time path to tl and tv.

Note that tu′ and tv′ are in the time frame [tu, tv]. In order for the cell (πuv, π
1
uv) to remain

truly simple, tu′ = tu or tv′ = tv (otherwise the path tk′ − tu′ − tv′ − tl′ will go from one side

of the cell to the other within time frame [tu, tv]).

But, since tv and tl or tu and tk are not connected by a time path in Kj (since tk and

tl are not), it follows that their images under the transformation are not connected in K′j.
Hence this is a contradiction.

Therefore, in our procedure we construct a TLG∗-tower. �

Remark. The conditions (2) and (3) are not sufficient to imply the conclusion of the Lemma.

The example is given on Figure 2.14. The whole line graph with vertices, and the whole

graph are TLG∗’s (since they are planar), but we can’t construct the second from the first,

since a simple cell is not a simple cell in the second.

Lemma 2.23. Let G be a TLG∗ with infinitely many vertices and (G1
j ) and (G2

j ) two TLG∗-

towers that construct G. For any points τ1 ≺ τ2 on G1 with finite times and j1 ≥ 1, the

distribution of the natural M-processes X1 and X2 restricted on R(G1
j1
[τ1, τ2]) is unique.

Proof. First, we know that Gh
j [τ1, τ2] (h = 1, 2) is a TLG∗ (see Theorem 1.20), also note that

all of its vertices have finite time.

By Lemma 1.50, there is a G2
k1

such that R(Gj1 [τ1, τ2]) ⊂ R(G2
k1
), and V1

j1
⊂ V2

k1
. Further,

note that R(G1
j1[τ1, τ2]) ⊂ R(G2

k1
[τ1, τ2]). Using the same idea, we can find j2 such that

R(G2
k1
[τ1, τ2]) ⊂ R(G1

j2
[τ1, τ2]) and V2

k1
⊂ V1

j2
. In this way G1

j1
[τ1, τ2], G2

k1
[τ1, τ2] and G1

j2
[τ1, τ2]

satisfy the properties of Lemma 2.22. Therefore, we can construct G2
k2
[τ1, τ2] from G1

j1 [τ1, τ2].

By Corollary 1.22, we can construct a spine π going through τ1 and τ2, then Gh
j [τ1, τ2]

(h = 1, 2) on that spine, and after that the rest of Gh
j . Since, M(Gh

j [τ1, τ2]) – the restriction

of the family M on Gh
j [τ1, τ2], is a (3T) family, Xh restricted on Gh

j [τ1, τ2] is a natural

M(Gh
j [τ1, τ2])-process.



63

Hence, X2 on G2
k1
([τ1, τ2]) is distributed as a naturalM(G2

k1
[τ1, τ2])-process. Since G2

k1
[τ1, τ2])

can be constructed from G1
j1
[τ1, τ2], X

2 restricted on R(G1
j1
[τ1, τ2]) is a natural M(G1

j1
[τ1, τ2])-

process. Therefore, X2 has the same distribution as X1 on R(G1
j1
[τ1, τ2]). �

Burdzy and Pal were able to prove the uniqueness only in the case of planar NCC TLG’s

with infinite vertex set. The following proves their conjecture (see the sentence before The-

orem 3.9. in [7]) that this is true in general case (including the non-planar case).

Theorem 2.24. Let G = (V, E) be a TLG∗’s with infinitely many vertices in V, and let X1

and X2 be two M-processes constructed using the TLG∗-towers (G1
n) and (G2

n), then X
1 and

X2 have the same distribution.

Proof. Pick points τ
(n)
1 ≺ τ

(n)
2 on G1

1 with finite time such that τ
(n)
1 ↓ −∞ and τ

(n)
2 ↑ +∞ (in

time). Now, the distributions of X1 and X2 on R(Gn[τ
(n)
1 , τ

(n)
2 ]) are the same, and since

∞⋃

n=1

R(Gn[τ
(n)
1 , τ

(n)
2 ]) = R(G),

by Kolmogorov’s consistency theorem we have that X1 and X2 have the same distribution.

�

Remark. To use the Kolmogorov’s consistency theorem we need to look at finite dimen-

sional vectors (X1(t1), . . . , X
1(tm)) and (X2(t1), . . . , X

2(tm)) for a finite number of points

t1, . . . , tm ∈ G with finite time. Since each point is in some subgraph of G, there exists a n

such that

{t1, . . . , tm} ⊂ Gn[τ
(n)
1 , τ

(n)
2 ]

and hence the random vectors have the same distribution.
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σ

σ′

E∗

Figure 2.9: The two spines σ and σ′.

σ

G−

G+

E∗

Figure 2.10: G− and G+ with respect to σ.

G1
−

G2
−

G3
− G4

−

G5
−

A

B

C

D

E

Figure 2.11: A, B, C, D and E parts of G.
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G0

G1

H

Figure 2.12:

tk

tk′
tu tv

tl

tl′

tk′ ∧ tl

(tk′ ∧ tl) ∨ tl′

Figure 2.13:

Figure 2.14:
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Chapter 3

MARKOV PROPERTIES OF PROCESSES INDEXED BY
TLG’S

From §2.3.3. and §2.3.4. we know that the constructed process has a (hereditary) spine-

Markovian property. This property is induced by the graph structure and as we will see there

is one more property this process has when M is a (3T)-family. If M has some additional

properties we will have some additional properties of the process on the TLG∗ G.

3.1 Cell-Markov properties

Recall, truly simple cell has been defined in Definition 1.41.

Definition 3.1. We will say that a process X on a TLG G is cell-Markovian if for any

truly simple cell (σ1, σ2) starting at t∗ and ending at t∗ the processes Xσ1 and Xσ2 are

conditionally independent, given the values X(t∗) and X(t∗).

Definition 3.2. We will say that a process X on a TLG G is strong cell-Markovian if for

for any truly simple cell (σ1, σ2) starting at t∗ and ending at t∗ the processes is cell-Markovian

and (X(t) : t ∈ G[t∗, t∗]) and (X(t) : t ∈ G[0, t∗] ∪ G[t∗, 1]) are independent, given the values

X(t∗) and X(t∗).

Before we prove the that the strong cell-Markovian property holds, we will prove the

following lemma.

Lemma 3.3. Let T = A ∪ B ∪ C ∪D, and X = (X(t) : t ∈ T ) a stochastic process. If

(1) XA = (X(t) : t ∈ A) and XC = (X(t) : t ∈ C) are independent given XB = (X(t) : t ∈
B)
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t∗

t∗
10

Figure 3.1: Strong cell-Markovian property: XG[t∗,t∗] ⊥ XG[0,t∗]∪G[t∗,1]|(X(t∗), X(t∗))

(2) for some subset C ′ ⊂ C XA∪B∪C and XD are independent given XC′

then XA and XC∪D are independent given XB.

Proof. Let YS be a bounded σ(XS)-measurable function, for S = A,B,C,D, and U be an

element in σ(XB). Then, using (2) we have

E(YAYBYCYD1U) = E(YAYCE(YD|XC′)1U).

Using (1) we get

E(YAYCE(YD|XC′)1U) = E(E(YA|XB)YCE(YD|XC′)1U),

and again using (2) and the fact that E(YA|XB)YC1U is a bounded σ(XA∪B∪C)-measurable

random variable we get

E(E(YA|XB)YCE(YD|XC′)1U) = E(E(YA|XB)YCYD1U).

Finally, conditioning everything (under the expectation) on XB we get

E(E(YA|XB)YCYD1U) = E(E[E(YA|XB)YCYD1U |XB]) = E(E(YA|XB)E(YCYD|XB)1U).

Now, using the Monotone Class Theorem the claim follows. �

Theorem 3.4. The process X on G defined in §2.3.1 is strong cell-Markovian process.
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Proof. It is known from Corollary 1.22 that there exists a TLG∗-tower (Gk)
n
k=0 that starts

with a spine π containing t∗, t∗, there exists n0 such that Gn0 such that R(G[t∗, t∗])∪R(π) =
R(Gn0), and then we can construct the rest of G (i.e. Gn = G). Since, Gn0 is a TLG∗, we

know by Theorem that Xn0 the natural M(Gn0)-process on Gn0 is the same as the restriction

of the process X on Gn0 .

Assume that π is the spine that contains σ1. Since σ2 will in a decomposition component

G− with roots t∗ and t
∗, by the spine-Markovian property, Xn0

σ1
is independent of Xn0

π given

Xn0(t∗) and Xn0(t∗). This proves the cell-Markovian property.

We use induction to show that (X(t) : t ∈ Gk[t∗, t∗]) is independent of (X(t) : t ∈
Gk[0, t∗] ∪ Gk[t

∗, 1]). For n = 0 the claim follows from (T3) property. For k = 1, . . . , n0 the

process on every edge that we add will depend only on the value of the process (X(t) : t ∈
Gk−1[t∗, t∗]) at its endpoints, so the claim will follow by Lemma 3.3. For k > n0 we have the

following cases:

• We added an vertex - nothing changes since the representation is the same.

• We added an edge not in G[0, t∗] ∪ G[t∗, 1]) - this has no impact.

• We added an edge E that connects two vertices in Gk−1[0, t∗] ∪ Gk−1[t∗, 1]). Then the

process depends only on the values of X at the endpoints, the claim is true by Lemma

3.3.

Since the distribution of the process, by Theorem 2.20, doesn’t depend on the construction

the claim follows. �

Corollary 3.5. For the process X on G defined in §2.3.1, if (σ1, σ2) is a truly simple cell

starting at 0 and ending at t∗, then the processes (X(t) : t ∈ G[0, t∗]) and (X(t) : t ∈ G[t∗, 1])
are independent given the values of X(0) and X(t∗).
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3.2 Graph-Markovian and time-Markovian property

First, we introduce the graph-Markovian property, a version of the global Markov property

in graphical models (see Definition A.18 (c)).

Definition 3.6. Suppose that W ⊂ R(G) is a finite non-empty set such that R(G) \W is

disconnected. Some edges of G are cut by W into two or more components. Let us call this

new collection of edges E0. Suppose that E1 and E2 are disjoint sets of edges with the union

equal E0. We will call a process X on a TLG graph G a graph-Markovian process if for

all W , E1, E2, the conditional distribution of (Xt : t ∈ E,E ∈ E1) given (Xt : t ∈ E,E ∈ E2)
depends only on (Xt : t ∈ W ).

E1

E1

E2

Figure 3.2: Graph-Markovian prop-

erty: Black points (•) represent W ,

dashed lines E1, and full lines E2.

1

0
t

P (t)

F (t)

Figure 3.3: Time-Markovian property:

The past P (t) - of t, and the future -

F (t) of t.

The second property is the time-Markovian property.

Definition 3.7. (a) Let t be a point in G.

(i) (the future) F (t) = {s ∈ G : s � t} is the set of all points with times s ≥ t, such

that there is a full path passing through t and s.

(ii) (the past) P (t) = {s ∈ G : s � t} is the set of all points with times s ≤ t, such that

there is a full path passing through t and s.
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(b) We will say a process X on a TLG graph G is a time-Markovian process if for

every t, if the conditional distributions of (X(s) : s ∈ P (t)) and (X(s) : s ∈ F (t)) given X(t)

are independent.

Remark. Note that if (X(t) : t ∈ G) is time-Markovian, then for every full time-path π the

process Xπ = (X(t) : t ∈ π) is a Markov process.

3.3 Processes on TLG’s for Markov family M

Some additional properties will hold if the distributions in the family M are all distributions

of Markov processes.

Note that in this case the property (T3) is automatically satisfied, so the only thing that

we need for the construction is the fact that M is a consistent family of distributions of

Markov processes that are continuous or RCLL (or any other that we can define conditional

distributions on) on a TLG∗ G.

In the next few subsections we will show that in this case we have additional properties

- edge-Markovian and time-Markovian properties.

3.3.1 The constructed process is a time-Markovian process

Theorem 3.8. The process X defined on G defined in §2.3.1 for a Markov family M is a

time-Markovian process.

Proof. Let t be a point on G. We can assume it is a vertex in V. We will expand the vertex

set V, by adding the vertex t−ε = −ε, i.e. Vε = V ∪ {t−ε}. Further, we will expand the edge

set by adding edges connecting t−ε with 0 and t, i.e. Eε = E ∪ {E−ε,0, E−ε,t}. (See Figure

3.4.) It is not hard to see that Gε = (Vε, Eε) is a TLG∗. We define X(−ε) = 0 and XE−ε,0

and XE−ε,t to be interpolations between the values of the processes at the end points. XGε

is a continuous or RCLL process with Markov processes along full time-paths, and since XG

is a hereditary time-Markovian, so is XGε.
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1

0

t

t−ε

Gε[t−ε, t]

P (t)

F (t)

Figure 3.4: Idea of the proof of time Markovian property

For any path π between 0 and t, (E−ε,0π, E−ε,t) is a truly simple cell. Now, using the

strong cell-Markovian property, we have that (X(t) : t ∈ Gε[−ε, t])) and (X(t) : t ∈ Gε[t, 1]))

are independent given X(t) and X(−ε). Since X(−ε) is deterministic, Gε[t, 1] = G[t, 1] =
F (t) and P (t) = G[0, t] ⊂ Gε[−ε, t]), the claim follows. �

3.3.2 Moralized graph-Markovian property

In graphical models when we turn Bayes nets into Markov random fields, we moralize the

graph (see §4.5 [35, Koller, Friedman]). It turns out that the Markov processes on TLG∗’s, in

general, don’t satisfy the graph-Markovian property described in Section 3.2 (see discussion

given in Subsection 3.4.1).

But under the modification of the graph, that we will call moralization, we will have a

similar property.

Definition 3.9. Let G = (V, E) be a TLG. The graph G♥ = (V♥, E♥) given by V♥ = V and

E♥ = E ∪ {E♥ij : i and j are begining and end of a truly simple cell in G}

will be called a moralized graph.

Remark. Note that for a TLG∗ G, G♥ is also a TLG∗ - we are adding edge between points

that are connected by a time-path.
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Figure 3.5: Moralization of a TLG G into G♥.

Definition 3.10. Let G be a TLG, and G♥ its moralization. Suppose that W ⊂ R(G) ⊂
R(G♥) is a finite non-empty set such that R(G♥) \W is disconnected. Some edges of G are

cut by W into two or more components. Let us call this new collection of edges E0. Suppose
that E1 and E2 are disjoint sets of edges with the union equal E0. We will call a process

X on a TLG graph G a moralized graph-Markovian process if for all W , E1, E2, the
conditional distribution of (Xt : t ∈ E,E ∈ E1) given (Xt : t ∈ E,E ∈ E2) depends only on

(Xt : t ∈ W ).

E1

E2

W

Figure 3.6: (X(t) : t ∈ E1) is independent of (X(t) : t ∈ E2) given XW .

Before, we prove the moralized graph-Markovian property, we will prove the following

lemma.

Lemma 3.11. Let T = A ∪ B, and a stochastic process X = (X(t) : t ∈ T ) such that

(1) there exist A1 and A2 subsets of A such that XA1 = (X(t) : t ∈ A1) is independent of

XAc
1
= (X(t) : t ∈ A \ A1) given XA2 = (X(t) : t ∈ A2);

(2) there exists Ab subset of A \ A1 such that XA is independent of XB given XAb
;
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then XB∪Ac
1
is independent of XA1 given XA2.

Proof. Let YS be a bounded σ(XS)-measurable random variable, and U ∈ σ(XA2). Now,

using (2) we have

E(YBYA1YAc
1
1U) = E(E(YB|XAb

)YA1YAc
1
1U),

and using (1) we get

E(E(YB|XAb
)YA1YAc

1
1U) = E(E(YB|XAb

)E(YA1|XA2)YAc
1
1U).

Using, (2) once more we have

E(E(YB|XAb
)E(YA1|XA2)YAc

1
1U) = E(YBE(YA1 |XA2)YAc

1
1U),

and now conditioning everything under the expectation on XA2 we get

E(YBE(YA1|XA2)YAc
1
1U) = E(E(YBYAc

1
|XA2)E(YA1 |XA2)1U).

From the Monotone Class Theorem the claim follows. �

Theorem 3.12. For a Markov family M, the natural M-process on a TLG∗ G is a moralized

graph-Markovian process.

Proof. We use induction on the number of edges |E| for a TLG∗ G = (V, E). For |E| = 1,

the claim is clearly true. Assume that the claim is true for |E| = k ≥ 1. Let’s show the claim

for |E| = k + 1. Pick G and W a set of points G, such that R(G♥) \ R(W ) is disconnected.

We need to consider the following cases:

If we got G by adding a new vertex to some TLG∗ H. In that case, since the representation

of H and G is the same, the claim follows.

If we got G by adding a new edge E∗ between the vertices t∗ and t
∗ in some TLG∗ H, we

first have to note that t∗ and t∗ are the begining and the end of a (truly) simple cell whose

one side is E∗. Hence, t∗ and t∗ are both in one of the following E1 ∪W or E2 ∪W .

We have the following cases to consider:
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• R(E∗)∩R(W ) = ∅ then E∗ will entierly be in one of E1 or E2. We will assume E∗ ∈ E1,
and let E ′1 = E1 \ {E∗}. In we use the spine-Markovian property with roots t∗ and

t∗, hence XE∗ is independent of XE ′1∪E2 given X(t∗) and X(t∗). Now since XE2 is

independent of XE ′1 given XW , by Lemma 3.3. it follows that XE1 is independent of

XE2 given XW .

E1

E2

W

E∗

t∗

t∗

Figure 3.7: The new edge E∗ doesn’t contain points from W .

• R(E∗)∩R(W ) 6= ∅, then we assume t∗, t∗ ∈ E1∪W . Denote, WH the points represented

by R(W ) ∩R(H). Note that these points separate H.

E1

E2

WH

W∗

E∗

E1
∗,1

E2
∗,1 E1

∗,2

E2
∗,2t∗
t∗

Figure 3.8: The new edge E∗ contains points from W .

Let Ej
∗,k, k = 1, . . . , nj denotes the edges in Ej that cover the edge E∗. It is not hard
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to see, since the process along XE∗ is Markov that

XEj
∗,k

⊥ XR(G)\R(Ej
∗,k)

|X∂Ej
∗,k
. (3.1)

The endpoints of at least one of the sequences (E1
∗,k) or (E

2
∗,k) will be only in W . Oth-

erwise, t∗ and t∗ won’t be in W , and they won’t be both in E1. Under the assumption

that t∗ and t∗ are in E1 ∪W , it follows that (E2
∗,k) has all its endpoints in W , and call

that set W∗.

Let Y1 be a bounded σ(X(t) : t̄ ∈ R(E1) \ R(E∗)), Y2 a bounded σ(X(t) : t̄ ∈ R(E2) \
R(E∗))-measurable, and Y j

∗,k a bounded σ(X(t) : t ∈ Ej
∗,k)-measurable random variable,

for j = 1, 2, k = 1, . . . , nj,

Y ′1 =

n1∏

k=1

Y 1
∗,k, Y ′2 =

n1∏

k=1

Y 2
∗,k.

First, we will show that Y ′1 is independent of Y ′2 given XW∗ . Let A ∈ σ(XW∗). Using

(3.1) we get

E(Y ′1Y
′
21A) = E(Y ′1E(Y

1
∗,2|X∂E1

∗,k
)Y 2
∗,2 . . . Y

n2
∗,21A)

= E(Y ′1E(Y
2
∗,1|X∂E2

∗,1
)E(Y 2

∗,2|X∂E2
∗,2
) . . . Y n2

∗,21A)

...

= E(Y ′1E(Y
2
∗,1|X∂E2

∗,1
)E(Y 2

∗,2|X∂E2
∗,2
) . . .E(Y n2

∗,2 |X∂E2
∗,n2

)1A)

Now, we condition everything under the expectation with respect to XW∗:

= E(E[Y ′1E(Y
2
∗,1|X∂E2

∗,1
)E(Y 2

∗,2|X∂E2
∗,2
) . . .E(Y n2

∗,2 |X∂E2
∗,n2

)1A|XW∗])

= E(E[Y ′1 |XW∗ ]E(Y
2
∗,1|X∂E2

∗,1
)E(Y 2

∗,2|X∂E2
∗,2
) . . .E(Y n2

∗,2 |X∂E2
∗,n2

)1A).

Using (3.1) again we get

= E(E[Y ′1 |XW∗ ]Y
2
∗,1E(Y

2
∗,2|X∂E2

∗,2
) . . .E(Y n2

∗,2 |X∂E2
∗,n2

)1A)

...

= E(E[Y ′1 |XW∗ ]Y
2
∗,1Y

2
∗,2 . . . Y

n2
∗,21A) = E(E[Y ′1 |XW∗]Y

′
21A).
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Finally, conditioning everything under the expectation with respect to XW∗ we get

= E(E[Y ′1 |XW∗]E(Y
′
2 |XW∗)1A),

and the claim follows.

Further, by Lemma 3.11, we have that

X∪n2
k=1E

2
∗,k

⊥ XR(G)\(∪n2
k=1R(E2

∗,k))
|XW∗ . (3.2)

Let AH ∈ σ(XWH
) and A∗ ∈ σ(XW∗). Now, since WH separates G into E ′1 ∪ {E∗} and

E ′2 = E2 ∩ R(H) we have :

E(Y1Y2Y
′
1Y
′
21AH

1A∗) = E(Y1Y2Y
′
1E(Y

′
2 |XW∗)1AH

1A∗) (3.3)

=E(Y1E(Y2|XWH
)Y ′1E(Y

′
2 |XW∗)1AH

1A∗) (3.4)

=E(E(Y1Y
′
1 |XW )E(Y2|XWH

)E(Y ′2 |XW∗)1AH
1A∗)

=E(E(Y1Y
′
1 |XW )Y2E(Y

′
2 |XW∗)1AH

1A∗)

=E(E(Y1Y
′
1 |XW )Y2Y

′
21AH

1A∗)

=E(E(Y1Y
′
1 |XW )E(Y2Y

′
2 |XW )1AH

1A∗).

To get (3.3) we use 3.2. In (3.4) we use the fact that WH separates E ′2 from the rest of

G, and then the property proven in the previous • case.

Now, by Monotone Class Theorem the claim follows.

�

The following corollary, gives us a connection to the Markov random fields and classical

graphical models (see Appendix §A.4).

Corollary 3.13. For a Markov family M, let X be a natural M-process on a TLG∗ G =

(V, E). Let W be a finite set of points on G such that {t ∈ V : d(t) ≥ 3} ⊂ W , then (X(t) :

t ∈ W ) is a random Markov field with a global Markov property. Further, XW is a random
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Markov field indexed by the graph GW = (W,EW ) where EW contains an edge between w1

and w2 if there is a time path π in G♥ between w1 and w2 such that R(π)∩R(W ) = {w1, w2}.

Figure 3.9: Getting the MRF: The radnom variables at green and blue points form a Markov

random field, where the underlying graph is given on the last figure.

Proof. It is easy to see that C ⊂ W separates graph E if and only if it separates G♥. Now it

follows that XA ⊥ XB|XC , since A and B are in two different components in G♥ separated

by C. �

The constructed process is edge-Markovian

Definition 3.14. We say that the process X on a TLG G = (E ,V) is edge-Markovian if for

each E ′ = Ej′k′ ∈ E the process (X(t) : t ∈ E ′) is independent of (X(t) : t ∈ E,E ∈ E \{E ′})
given X(tj′) and X(tk′).

Corollary 3.15. Let X be a natural M-process on a TLG∗ G. Let π be a time-path between

t∗ and t∗ two points on G such that π (in the interior) doesn’t contain a vertex of degree 3

or more. Then Xπ and XR(G)\R(π) are independent given X(t∗) and X(t∗).

Proof. Except the endpoints, the path, can’t contain an edge in E♥\E . Therefore, endpoints
t∗ and t∗ separate the graph G♥ with representations of components being R(π) and R(G) \
R(π). The calim follows. �
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Theorem 3.16. The process X defined on G defined in 2.3.1 for a Markov family M is an

edge-Markovian process.

3.3.3 Summary

Everything we proved so far, can be summarized in the following theorem.

Theorem 3.17. For every TLG∗ G with finite vertex set V and every Markov family M
there exists a hereditary spine-Markovian M-process X on G, and the distribution of such a

process is unique. This process also has time-Markovian, cell-Markovian, moralized graph-

Markovian and edge-Markovian properties. Further, if G can be constructed from a TLG∗

H, then (X(t) : t ∈ H) also has these properties.

Corollary 3.18. Let X be a natural M-process on a TLG∗ G, where M is a Markov family.

Then for τ1 ≺ τ2 the process (X(t) : t ∈ G[τ1, τ2]) has time-Markovian, cell-Markovian, moral-

ized graph-Markovian and edge-Markovian properties (induced by the structure of G[τ1, τ2]).

Proof. We can assume that τ1 and τ2 are vertices on G. By Theorem 1.20 G[τ1, τ2] is a TLG∗.

Further,

M(G[τ1, τ2]) = {µσ ◦ π−1[τ1,τ2]
: σ ∈ P0→1(G), τ1, τ2 ∈ σ}

satisfies (3T) properties. By Theorem 1.22 we can construct first construct a full time path

σ containing τ1 and τ2, and then G[τ1, τ2], and after that the rest of G. It is not hard to see

that when we are done constructing G[τ1, τ2] in that TLG∗-tower, the process restricted to

G[τ1, τ2] will be a natural M(G[τ1, τ2])-process. �

3.4 Homogeneous Markov family MP

Let P be distribution of a continuous or RCLL Markov process on [0, 1]. Then we will call

MP = {µσ = P : σ ∈ P0→1(G)}, a homogeneous Markov family. Note that for this

family properties (T2) and (T3) are automatically satisfied.

Further, using Theorem 3.17. we have the following fact.
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Theorem 3.19. For every TLG∗ G with finite vertex set V and every Markov process P
there exists a hereditary spine-Markovian MP-process X on G, and the distribution of such

a process is unique. This process also has time-Markovian, cell-Markovian, moralized graph-

Markovian, and edge-Markovian properties.

We will refer to the process X described in the Theorem as the natural P-process on

the TLG∗ G.

3.4.1 The graph-Markovian property doesn’t hold

In paper [7] it was claimed that for the the natural P-process, on what they called NCC

graphs, the graph-Markovian property holds.

However, the following example shows that this is not true.

In our simple model we look at a family of random variables {X0, Xa, Xb, X1}. Such that

(X0, Xa, X1) is a Markov chain. (X0, Xb, X1) is also a Markov chain independent of the fist

one given (X0, X1) and has the same distribution.

a

b

1
0

We suppose that the state space S is finite or countable.

We set for x0, xa, xb, x1 ∈ S

P(X0 = x0, Xa = xa, X1 = x1) = P(X0 = x0, Xb = xa, X1 = x1) = p2x1xa
p1xax0

p0x0
,

with the usual assumptions on initial probabilities (p0s)s∈S and transition probabilities (p1ss′)s,s′∈S

and (p2ss′)s,s′∈S. Further from the assumption of independence given (X0, X1) we have

P(Xa = xa, Xb = xb|X0 = x0, X1 = x1) =
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P(Xa = xa|X0 = x0, X1 = x1)P(Xb = xb|X0 = x0, X1 = x1).

Our ultimate goal is to see does

P(X1 = x1|Xa = xa, Xb = xb, X0 = x0) (∗)

depend on x0. We will first calculate

P(X1 = x1, X0 = x0) =
∑

α∈S
P(X1 = x1, Xa = α,X0 = x0)

=
∑

α∈S
p2x1α

p1αx0
p0x0

.

Next, using the definition of conditional probability and conditional independence we

calculate

P(X1 = x1, Xa = xa, Xb = xb, X0 = x0)

= P(Xa = xa, Xb = xb|X1 = x1, X0 = x0)P(X1 = x1, X0 = x0)

= P(Xa = xa|X1 = x1, X0 = x0)P(Xb = xb|X1 = x1, X0 = x0)P(X1 = x1, X0 = x0)

=
P(X1 = x1, Xa = xa, X0 = x0)P(X1 = x1, Xb = xb, X0 = x0)

P(X1 = x1, X0 = x0)

=
p2x1xa

p1xax0
p0x0

p2x1xb
p1xbx0

p0x0∑
α∈S p

2
x1αp

1
αx0
p0x0

= p0x0

p2x1xa
p1xax0

p2x1xb
p1xbx0∑

α∈S p
2
x1α
p1αx0

.

To get (∗) we need to calculate

P(Xa = xa, Xb = xb, X0 = x0) =
∑

γ1∈S
P(X1 = γ1, Xa = xa, Xb = xb, X0 = x0)

= p0x0

∑

γ1∈S

p2γ1xa
p1xax0

p2γ1xb
p1xbx0∑

α∈S p
2
γ1α
p1αx0
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Finally, we have

P(X1 = x1|Xa = xa, Xb = xb, X0 = x0)

=
P(X1 = x1, Xa = xa, Xb = xb, X0 = x0)

P(Xa = xa, Xb = xb, X0 = x0)

= p0x0

p2x1xa
p1xax0

p2x1xb
p1xbx0∑

α∈S p
2
x1α
p1αx0

(
p0x0

∑

γ1∈S

p2γ1xa
p1xax0

p2γ1xb
p1xbx0∑

α∈S p
2
γ1α
p1αx0

)−1

=
p2x1xa

p2x1xb∑
α∈S p

2
x1αp

1
αx0

(
∑

γ1∈S

p2γ1xa
p2γ1xb∑

α∈S p
2
γ1αp

1
αx0

)−1
.

The last shows that X1 given Xa, Xb, X0 depends on the value of X0. If the graph-

Markovian property holds this should not be so.

Simplifying our model to S = {0, 1}, and setting p00 = p01 = 1/2,and p110 = p210 = 3/4, and

p111 = p211 = 1/4, we get that

P(X1 = 1|Xa = 0, Xb = 1) = 1/2,

while

P(X1 = 1|Xa = 0, Xb = 1, X0 = 0) = 3/8.

Hence, the graph-Markovian property doesn’t hold.

3.4.2 Construction problems on non-TLG∗ TLG’s

Why the construction described in 2.3.1 (on page 48) can’t work for all TLG’s? As an

example of Burdzy and Pal presented in [7] shows it may not be possible to construct such

a process and have all the properties Markov processes on TLG∗’s had.

Let’s take a look at the example of a TLG that is not a TLG∗ given in Theorem 1.8.(i).

G = (V, E), where V = {tj = j/5 : j = 0, 1, . . . , 5} and

E = {E01, E02, E14, E13, E23, E24, E45, E35}.

Let’s take P to be Markov process on [0, 1].
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t0

t1

t2

t4

t3

t5

Figure 3.10: Example from Theorem 1.8.(i).

We will try to construct a process on G, with a similar approach as in the construction

of Markov processes on TLG∗ (see 2.3.1.)

Construction attempt

We first define the process on σ(0, 2, 4, 5) with distribution P, we construct a P-Markov

bridge on σ(2, 3, 5) between (t2, X(t2)) and (t5, X(t5)) which is independent of the rest of

the process already defined given X(t2) and X(t5). Further, we construct a P-Markov

bridge between (t0, X(t0)) and (t5, X(t5)) on σ(0, 1, 4) independent of the rest given X(t0)

and X(t4). Finally, we construct a P-Markov bridge between (t1, X(t1)) and (t3, X(t3)) on

σ(1, 3) that is independent of everything already defined given X(t1) and X(t3).

The problem in this construction is in the last step. Since, at that time t1 and t3 are not

connected, the process on the full time-path σ(0, 1, 3, 5) doesn’t have to be P-distributed.

We will prove this when P is Brownian motion on [0, 1]. Then Xσ(2,3,5) and Xσ(0,1,4) are

Brownian bridges. Using Theorem A.16. we can have

X(t1) =
t1
t4
(X(t4)−W (t4)) +W (t1), (3.5)

X(t3) =
t5 − t3
t5 − t2

(X(t2)−B(t2)) +B(t3) +
t3 − t2
t5 − t2

(X(t5)− B(t5)), (3.6)

where W , B, Xσ(0,2,4,5) are independent Brownian motions on [0, 1]. If Xσ(0,1,3,5) is Brownian
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motion on [0, 1] then E(X(t1)X(t3)) = t1 = 1/5, but in our case we get from (3.5) and (3.6):

E(X(t1)X(t3)) =
1

3
.

Problems with cell-Markovian property

The other problem, that might occur, is that the processes we defined so far on TLG∗’s have

the cell-Markovian property (recall Definition 3.1.), while on this TLG there might not exist

such a process.

Will show this, again, on the example when P is the distribution of Brownian motion on

[0, 1].

Proposition 3.20. If Z and Y be distributed as Brownian motion on [s1, s2] such that

Z(sj) = Y (sj) for j = 1, 2 and Z and Y are independent given Y (s1) and Y (s2). Then for

τ1, τ2 ∈ [s1, s2] we have

E(Z(τ1)Y (τ2)) = s1 +
(τ1 − s1)(τ2 − s1)

(s1 − s2)
.

Proof. We will use the representation given in Theorem A.16. Let Y be Brownian motion

on [s1, s2], and (W (t) : t ≥ 0) Brownian motion independent of Y . Then we can take Z to

be

Z(t) =
s2 − t

s2 − s1
(Y (s1)−W (s1)) +W (t) +

t− s1
s2 − s1

(Y (s2)−W (s2)),

for t ∈ [s1, s2]. Now, we have

E[Z(τ1)Y (τ2)] =
s2 − τ1
s2 − s1

E[Y (τ2)(Y (s1)−W (s1))] + E(Y (τ2)W (τ1))

+
τ1 − s1
s2 − s1

E[Y (τ2)(Y (s2)−W (s2))] =
s2 − τ1
s2 − s1

s1 +
τ1 − s1
s2 − s1

τ2.

�

Theorem 3.21. There doesn’t exist a process X on G such that:
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• X is cell-Markovian.

• For each full-time σ the process Xσ is distributed as Brownian motion on [0, 1].

Proof. Assume otherwise. Note that cells (σ(2, 3, 5), σ(2, 4, 5)) and (σ(1, 4, 5), σ(1, 3, 5)) are

simple.

Then Xσ(2,3,5) and Xσ(2,4,5) are distributed as Brownian motions on [t1, t5], so using the

cell-Markovian property of X , i.e. the fact that Xσ(2,3,5) and Xσ(2,4,5) are independent given

X(t2) and X(t5) from Proposition 3.20. we have:

E(X(t3)X(t4)) = E(Xσ(2,3,5)(t3)Xσ(2,4,5)(t4)) = t2 +
(t3 − t2)(t4 − t2)

(t5 − t2)
=

8

15
.

For Xσ(1,4,5) and Xσ(1,3,5) in a similar way we get:

E(X(t3)X(t4)) = E(Xσ(1,3,5)(t3)Xσ(1,4,5)(t4)) = t1 +
(t3 − t1)(t4 − t1)

(t5 − t1)
=

13

10
.

This shows the claim. �

3.5 Three simple examples

Through this section G is a graph consisting of one cell (see Figure 3.11):

G = ({0, 1}, {E1
01, E

2
01}).

We define three functions f1, f2, f3 : [0, 1] → [0, 1]:

f1(t) = t, f2(t) = t2

f3(t) =





2x, 0 ≤ x ≤ 1/3;

1− x, 1/3 ≤ x ≤ 2/3;

2x− 1, 2/3 ≤ x ≤ 1.

Further, let (Bt : t ∈ [0, 1]) be Brownian motion on [0, 1]. For k = 1, 2, 3 we set µk to

be the law of (Bfk(t) : t ∈ [0, 1]). Notice that µk for k = 1, 2, 3 are all laws of continuous
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E1
01

E2
01

0 1

Figure 3.11: Graph G

y = f1(x)
y = f2(x)

y = f3(x)

Figure 3.12: Graphs of f1, f2 and f3

processes. Also µ1 and µ2 are laws of Markov processes, while µ3 is not a law of a Markov

process. Now we set

M1 := {µE1
01
= µ1, µE2

01
= µ1},

M2 := {µE1
01
= µ1, µE2

01
= µ2},

M3 := {µE1
01
= µ1, µE2

01
= µ3}.

Since f1(0) = f2(0) = f3(0) = 0 and f1(1) = f2(1) = f3(1) = 1, M1, M2 and M3 satisfy

(3T) properties. Therefore we can construct a naturalMk-process on G for each k ∈ {1, 2, 3}.
Now, note the following:

• M1 is a homogeneous Markov family.
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• M2 is a Markov family that is not homogeneous.

• M3 is not a Markov family.
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Chapter 4

FILTRATIONS, MARTINGALES AND STOPPING TIMES

Let’s look at a simple example of process on a time-like graph.

Y a value two persons (1&2) are trying to estimate based on the information they are

getting over time.

• The information they collect will be modeled as a filtration

{F1
t : t ∈ [0, 1]} and {F2

t : t ∈ [0, 1]}.

• At t = 0 they start with the same information F1
0 = F2

0 .

• At time t = 1 everything is known: F1
1 = F2

1 = F ⊃ σ(Y ).

Set X1
t = E(Y |F1

t ) and X
2
t = E(Y |F2

t ).

For a TLG G = ({0, 1}, {E1
01, E

2
01}), we can define X = (X(t) : t ∈ G) to be given by

XE1
01
= X1 and XE2

01
= X2. In this way the process is well defined.

0 1

t

X will be a martingale indexed by a TLG, and we will talk more about martingales in

this chapter. We will also show some results on the right-continuity of filtrations, define

stopping times and prove the Optional Sampling Theorem for this class of processes.
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4.1 Expanding the filtrations

The following will state some equivalent forms of the time-Markovian property.

Corollary 4.1. Let X be a process on a TLG∗ G. The following are equivalent: we have:

(a) X is time-Markovian on G

(b) For any point

Ft = σ(X(u) : u � t), and Gt = σ(X(t) : u � t)

are conditionally independent given X(t). (’�’ is the order induced by G.)

(c) If Y ∈ bGt, then we have

E(Y |Ft) = E(Y |X(t)). (4.1)

The main result in this section will be to show under which conditions we can expand the

σ-algebra Ft so that the relation (4.1) still holds. The main idea is to choose the filtration

that is right continuous.

Definition 4.2. Let X be a process on a TLG G

• Set F0
t = σ(X(u) : u � t) and G0

t = σ(X(u) : u � t). If not specified otherwise

Ft = F0
t and Gt = G0

t .

• For each π ∈ P0→1(G) and t ∈ [0, 1] we define

Fπ
t+ :=

⋂

t≺s,s∈π
Fs. (4.2)

Definition 4.3. For the probability space (Ω,F ,P) and G a sub-σ-algebra of F we will

denote

N P = {A ⊂ Ω : (∃B ∈ G)(A ⊂ B)(P(B) = 0)}.

GP = σ(G ∪ N P). (4.3)
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Lemma 4.4. For GP defined by (4.3) the following holds

GP = {A ⊂ Ω : (∃B ∈ G)(A△B ∈ N P)}.

Lemma 4.5. For the probability space (Ω,F ,P) and G1 and G2 sub-σ-algebras of F the

following are equivalent:

(i) GP
1 = GP

2 ;

(ii) For each Y ∈ L1(Ω,F ,P)

E(Y |G1) = E(Y |G2) a.s.

(iii) For each A ∈ F

P(A|G1) = P(A|G2) a.s.

Proof. (i)⇒(ii): Let A ∈ G1. Since G1 ⊂ GP
1 = GP

2 , there exists B ∈ G2 and N1, N2 P-null

sets such that A ∪N1 = B ∪N2. Now, for Y ∈ L1(Ω,F ,P) we have

∫

A

E(Y |G2) dP =

∫

A∪N1

E(Y |G2) dP =

∫

B∪N2

E(Y |G2) dP

=

∫

B

E(Y |G2) dP =

∫

B

Y dP =

∫

B∪N2

Y dP

=

∫

A∪N1

Y dP =

∫

A

Y dP =

∫

A

E(Y |G1) dP

Since this holds for all A ∈ G1 the claim follows.

(ii)⇒(iii): This is clear.

(iii)⇒(i): Let A ∈ G1, then

1A = P(A|G1) = P(A|G2) a.s.

Since, P(A|G2) is G2-measurable, hence 1A is GP
2 measurable. Therefore, G1 ⊂ GP

2 , and we

have GP
1 ⊂ GP

2 . By symmetry GP
2 ⊂ GP

1 , and the claim follows. �
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Theorem 4.6. Let M be the (3T)-family, and X a natural M process on a TLG∗ G such

that for each π ∈ P0→1(G) the process Xπ is Markov with respect to the (Fπ
t+ : t ∈ [0, 1])

(recall (4.2)). Then

{FP
t : t ∈ G}

is a right-continuous filtration, that is

FP
t =

⋂

t≺s
FP

s .

Proof. Let (Ω,F ,P) be the probability space on which X is defined. We pick t ∈ G. Now,

we pick a path π that contains t, and let Ek1k2 be the edge that is contained in π such that

tk1 ≤ t < tk2 . To prove that that at t the filtration is right continuous we will restrict our

probability space to (Ω,F ′,P′ = P|F ′) where

F ′ = σ(Ftk2
∪ Gtk1

∪ N P).

.

With F ∈ Ft and G ∈ Gt we have

P(F ∩G|Fπ
t+) = 1FP(G|Fπ

t+) = 1FP(G|X(t)) = 1FP(G|Fπ
t ) = P(F ∩G|Fπ

t ).

Using the monotone class theorem we have that for all A ∈ F ′

P(A|Fπ
t ) = P(A|Fπ

t+). (4.4)

Since N P′
= N P, we have by Lemma 4.5 (iii) that

Fπ,P
t = Fπ,P

t+ .

Further, note that Fπ
t+ ⊂ Fπ,P

t .

Now, let

A ∈
⋂

t<s

Fπ,P
s =

∞⋂

n=1

Fπ,P
t+1/n.
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Hence, we have A ∈ Fπ,P
t+1/n, then there exists Bn ∈ Fπ

t+1/n such that A△Bn ∈ N P. Set

B :=

∞⋂

n=1

∞⋃

m=n

Bm =

∞⋂

n=M

∞⋃

m=n

Bm ∈ Fπ
t+1/M ,

hence B ∈ Fπ
t+, hence B ∈ Fπ,P

t . Now, we can show that

B \ A ⊂
( ∞⋃

n=1

Bn

)
\ A =

∞⋃

n=1

(Bn \ A) ∈ N P.

A \B = A ∩ Bc = A ∩
( ∞⋂

n=1

∞⋃

m=n

Bm

)c

=

∞⋃

n=1

A ∩
( ∞⋂

m=n

Bc
m

)
⊂

⊂
∞⋃

n=1

A ∩ Bc
m =

∞⋃

n=1

(A \Bm) ∈ N P.

This implies that A ∈ Fπ,P
t , and the filtration (Fπ,P

s : s ∈ [0, 1]) is right-continuous at t,

and to prove the claim we should note that Fπ
t = Ft, hence this implies (FP

s : s ∈ π) is

right-continuous at t, but since π is an arbitrary path that contains t the claim follows, since

there is only finitely many such paths. Hence

FP
t =

⋂

π:π∋t
Fπ,P

t =
⋂

π:π∋t

⋂

t<s

Fπ,P
s =

⋂

t≺s
FP

s .

�

It turns out that the condition from the previous theorem is satisfied by the natural

Brownian motion. Before we prove that we need the following lemma.

Lemma 4.7. Let G be a TLG∗ and X the natural Brownian motion on G. For t ∈ G we

have that the processes

(X(s) : s � t) and (X(s)−X(t) : s � t)

are independent.

Proof. Pick a full time-path π ∈ P0→1(G) such that t ∈ π. We pick a TLG∗ tower (Gj)
n
j=0

where G0 has the same representation as π and Gn = G.
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Let Xj := (X(s) : s ∈ Gj) be the natural Brownian motion indexed by Gj . By induction

we will show that

(Xj(s) : s ∈ P j(t)) and (Xj(s)−Xj(t) : s ∈ F j(t)) (4.5)

It is clear that (4.5) holds for j = 0. Let’s assume that it holds for j = h ≥ 0. Let’s show

the claim for j = h+ 1.

If a new edge not in P h+1(t) and not in F h+1(t) has been added to Gh to construct Gh+1,

then the processes in (4.5) are the same for j = h and j = h+ 1, and the claim follows.

If a new edge Ek1k2 in F h+1(t) has been added to Gh to obtain Gh+1. Then since for

s ∈ Ek1k2 we have

Xh+1(s)−X(t) =
tk2 − s

tk2 − tk1
(Xh(tk2)−X(t)) +

s− tk1
tk2 − tk1

(Xh(tk1)−X(t)) +Bbr
k1k2

(s),

where Bbr
k1k2

is a Brownian bridge independent of Xh. Hence, both (Xh(s)−X(t) : s ∈ F h(t))

and (XEk1k2
(s) − X(t) : s ∈ Ek1k2) are independent pointwise of (Xh(s) : s ∈ P j(t)), and

(4.5) follows for j = h + 1. �

Theorem 4.8. Let G be a TLG∗ and X the natural Brownian motion on G. For t ∈ G and

π ∈ P0→1(G) such that t ∈ π we have that

Fπ
t+ and (Xπ(s)−Xπ(t) : s ≥ t))

are independent. (See Figure 4.1.)

π

t

Figure 4.1: Illustration of Theorem 4.8.
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Proof. Let n ∈ N, and A ∈ Fπ
t+ and t ≺ s1, s2, . . . , sn ∈ π. For small ε > 0 we know that

Y := 1A ∈ bFt+ε/2 and ∆ε := (Xπ(s1)−Xπ(t + ε), . . .Xπ(sn)−Xπ(t+ ε)) are independent.

Now using the characteristic functions ϕY (t) = E(exp(itY )) and ϕ∆ε(t) = E(exp(it · ∆ε))

we have

ϕY,∆ε(t, t) = ϕY (t)ϕ∆ε(t) (4.6)

Continuity of X gives us limε↓0(Y,∆ε) = (Y,∆0) a.s. Hence, from (4.6) we have

ϕY,∆0(t, t) = ϕY (t)ϕ∆0(t).

Therefore, 1A and (Xπ(s1)−Xπ(t), . . .Xπ(sn)−Xπ(t)) are independent. �

Corollary 4.9. For the natural Brownian motion X on the TLG∗ G the following claims

hold:

(a) The filtration (FP
t : t ∈ G) is right continuous.

(b) FP
t and (X(s)−X(t) : s ∈ F (t)) are independent.

(c) For t ≺ s we have E(X(s)|FP
t ) = X(t).

(d) For t ≺ s and Y ∈ bGs we have

E(Y |FP
t ) = E(Y |X(t)).

4.2 Markov martingales

Here we will show that under some conditions we can get a martingale property for the

process defined on a TLG∗.

Definition 4.10. The Markov family of measures

M = {µσ : σ ∈ P0→1(G)}

will be called a Markov martingale family if for each µσ-distributed process (Xσ(t) ∈
[0, 1]), we have
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• E|Xσ(t)| <∞;

• E(Xσ(t)|(Xσ(u) : u ∈ [0, s])) = Xσ(s).

Theorem 4.11. Let M be a Markov martingale family, and X an M-process on a TLG∗

G. Then we have

E(X(t)|(X(u) : u � s)) = X(s), (4.7)

for all points s � t in G.

Proof. First from the time-Markovian property we have that

E(ϕM(X(t))|(X(u) : u � s)) = E(ϕM(Xt)|Xs),

where ϕM(x) =





x, |x| < M,

M, |x| ≥M.
. Using the dominated convergence theorem whenM → ∞

we have

E(X(t)|(X(u) : u � s)) = E(X(t)|X(s)).

Now, we pick a full time-path σ such that t and s are on it, and we get

E(X(t)|(X(u) : u � s)) = E(Xσ(t)|Xσ(s)) = Xσ(s) = X(s).

�

The following is a consequence of Lemma 4.5 (ii).

Corollary 4.12. Let M be a Markov martingale family, and X an M-process on a TLG∗

G. Then we have

E(X(t)|FP
s ) = X(s), (4.8)

for all points s � t in G.
The equality (4.7) says that X defined in Theorem 4.11. is an example of a martingale

indexed by directed set G. These types of martingales have been investigated and there

are a lot of results including the optional sampling theorem. We will talk more about this

in section 4.3.
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4.2.1 Example of glued diffusions

In this subsection we give an example of a general non-homogeneous Markov martingale

family M.

Definition 4.13. The family of functions

fG = {fσ : [0, 1] → R : σ ∈ P0→1(G)}

is called consistent on the TLG G if for σ1, σ2 ∈ P0→1(G)

fσ1 |T = fσ2 |T

where T = {t : t ∈ E,E ∈ σ1&E ∈ σ2}.

Theorem 4.14. Let FG = {Fσ : [0, 1] → R : σ ∈ P0→1(G)} be a consistent family of

absolutely continuous functions. Then there exists a consistent family fG = {fσ : [0, 1] → R :

σ ∈ P0→1(G)} of densities of FG, that is for all σ ∈ P0→1(G) and all t ∈ [0, 1]

Fσ(t)− Fσ(0) =

∫ t

0

fσ(s) ds.

Proof. Let σ1 and σ2 be full time-paths. Then

T12 = {t : t ∈ E,E ∈ σ1&E ∈ σ2}

is a finite union of closed segments. For each a < b such that (a, b) ⊂ T12 we have

∫ b

a

fσ1(s) ds =

∫ b

a

fσ2(s) ds,

so therefore fσ1 = fσ2 λ-almost everywhere on T12.

Assume G = (V, E), for each edge Ekj ∈ E choose some fixed full time-path σ∗ containing

Ejk. For each full time-path σ containing that edge we can fix fσ on (tj , tk), to be some

density of the function t 7→ Fσ∗(t)− Fσ∗(tj) defined on (tj , tk).
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Since there are only at most countably many vertices (in this case finitely many) the

values at the vertices won’t influence the values of the integrals, hence we can set the values

at vertices to be any real numbers. Now, we have constructed a consistent family. �

Let G be a TLG∗ and V : R(G) → R+ be a positive function, such that for each full

time-path σ the restriction of V along R(σ) Vσ : [0, 1] → R+ is an increasing continuous

function.

From the theory of functions of bounded variation, we know that there exists a positive

function fσ in L1[0, 1], such that

Vσ(t) =

∫ t

0

fσ(s) ds,

for all t ∈ [0, 1]. By Theorem 4.14. we can assume that

{fσ : [0, 1] → R : σ ∈ P0→1(G)}

is a consistent family of densities.

For σ ∈ P0→1(G) let µσ be the distribution of the process (N(t) : t ∈ [0, 1]), given by the

formula

Nσ(t) :=

∫ t

0

√
fσ(s) dBs,

for t ∈ [0, 1]. (This is an Ito integral with respect to the Brownian motion (Bt).) This is well

defined since
√
fσ ∈ L2[0, 1].

Clearly, Nσ is a Markov process with zero expectation on [0, 1]. The variance is

E(N2
σ(t)) = E

(∫ t

0

√
fσ(s) dBs

)2

=

∫ t

0

fσ(s) ds = Vσ(t).

We will show that {µσ : σ ∈ P0→1(G)} is a consistent family. Again, let σ1 and σ2 be two

full time-paths, and T12 as before. Let τ1 ≤ τ2 be from T12. We have

E(Nσ1(τ1)Nσ1(τ2)) = E(Nσ1(τ1)[(Nσ1(τ2)−Nσ1(τ1)) +Nσ1(τ1)])

= Vσ1(τ1) = Vσ2(τ1)

= E(Nσ2(τ1)Nσ2(τ2)).
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Since, the covariance structure of the Gaussian processes Nσ1 and Nσ2 on T12 is the same, we

have that the finite dimensional distributions on T12 are the same. Hence, by Kolmogorov’s

Existence Theorem we have that their distributions on T12 are the same. Therefore {µσ :

σ ∈ P0→1(G)} is a consistent Markov martingale family.

t

t2

0 1

Figure 4.2: Graph G

Let

G = ({0, 1}, {E1
01, E

2
01}).

If we define V as

V (t) =






t for t ∈ E1
01,

t2 for t ∈ E2
01;

Brownian motion runs along E1
01, while N(t) =

∫ t

0
s dBs runs along E

2
01. (See Figure 4.2.)

Glued diffusions have several nice properties. Since along each path the distribution is

inducing a martingale and a Markov process the whole process is a martingale and a Markov

process indexed by the underlying TLG∗.

Further, we have the following property which is a generalization of the Lemma 4.7.

Lemma 4.15. Let X be a natural glued diffusion on a TLG∗ G. Then for each t ∈ G

(X(s) : s � t) and (X(s)−X(t) : t � s)

are independent.
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Proof. Pick a full time-path π ∈ P0→1(G) such that t ∈ π. We pick a TLG∗ tower (Gj)
n
j=0

where G0 has the same representation as π and Gn = G.

Let Xj := (X(s) : s ∈ Gj) be the natural natural glued diffusion indexed by Gj. By

induction we will show that

(Xj(s) : s ∈ P j(t)) and (Xj(s)−Xj(t) : s ∈ F j(t)) (4.9)

It is clear that (4.9) holds for j = 0. Let’s assume that it holds for j = h ≥ 0. Let’s show

the claim for j = h+ 1.

If a new edge not in P h+1(t) and not in F h+1(t) has been added to Gh to construct Gh+1,

then the processes in (4.9) are the same for j = h and j = h+ 1, and the claim follows.

If a new edge Ek1k2 in F h+1(t) has been added to Gh to obtain Gh+1. Then since for

s ∈ Ek1k2 we have

Xh+1(s)−X(t) =
V (tk2)− V (s)

V (tk2)− V (tk1)
(Xh(tk2)−X(t))+

V (s)− V (tk1)

V (tk2)− V (tk1)
(Xh(tk1)−X(t))+N

tk1 tk2
0,0 (s),

where N
tk1 tk2
0,0 (s) (see Corollary A.17.) is a diffusion bridge independent of Xh. Hence, both

(Xh(s)−X(t) : s ∈ F h(t)) and (XEk1k2
(s)−X(t) : s ∈ Ek1k2) are independent pointwise of

(Xh(s) : s ∈ P j(t)), and (4.9) follows for j = h+ 1. �

Theorem 4.16. Let G be a TLG∗ and X the natural glued diffusion on G. For t ∈ G and

π ∈ P0→1(G) such that t ∈ π we have that

Fπ
t+ and (Xπ(s)−Xπ(t) : s ≥ t)

are independent.

Proof. Let n ∈ N, and A ∈ Fπ,t+ and t ≺ s1, s2, . . . , sn ∈ π. For small ε > 0 we know that

Y := 1A ∈ bFt+ε/2 and ∆ε := (Xπ(s1)−Xπ(t+ ε), . . . , Xπ(sn)−Xπ(t+ ε)) are independent.

Now using the characteristic functions ϕY (t) = E(exp(itY )) and ϕ∆ε(t) = E(exp(it · ∆ε))

we have

ϕY,∆ε(t, t) = ϕY (t)ϕ∆ε(t) (4.10)



99

Continuity of X gives us limε↓0(Y,∆ε) = (Y,∆0) a.s. Hence, from (4.10) we have

ϕY,∆0(t, t) = ϕY (t)ϕ∆0(t).

Therefore, 1A and (Xπ(s1)−Xπ(t), . . . , Xπ(sn)−Xπ(t)) are independent. �

Corollary 4.17. For the natural glued diffusion X on the TLG∗ G the following claims hold:

(a) The filtration (FP
t : t ∈ G) is right continuous.

(b) FP
t and (X(s)−X(t) : s ∈ F (t)) are independent.

(c) For t ≺ s we have E(X(s)|FP
t ) = X(t).

(d) For t ≺ s and Y ∈ bGs we have

E(Y |FP
t ) = E(Y |X(t)).

4.3 Optional sampling theorem for martingales indexed by directed sets

In his paper [36] Kurtz defined stopping times for martingales on directed sets. The way they

are defined, TLG’s are directed sets. We will state some of the results obtained by Kurtz

and apply them to the processes on TLG’s.

Let S be a directed set with partial ordering denoted by t ≺ s. That is, S is partially

ordered and for t1, t2 ∈ S there exists t3 ∈ S such that t1 ≺ t3 and t2 ≺ t3.

Remark. Note that TLG’s satisfy this definition.

Let (Ω,F ,P) be a probability space and let (Ft)t∈S be a filtration indexed by S, that is

• (Ft)t∈S is a family of sub-σ-algebras of F ;

• t ≺ s implies Ft ⊂ Fs.
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A stochastic process X indexed by S is a martingale with respect to (Ft)t∈S if

E(X(t)|Fs) = X(s),

for all s � t.

A S-valued random variable T is a stopping time if (T � t) ∈ Ft for all t ∈ S.

As usual we define

FT = {A ∈ F : A ∩ (T � t) ∈ Ft, ∀t ∈ S}.

The following is the first form of the optional stopping theorem.

Lemma 4.18. Let X(t) be martingale and let T1 � T2 be stopping times assuming countably

many values. If there exists a sequence (tm) in S such that

lim
m→∞

P(T2 � tm) = 1, (4.11)

and

lim
m→∞

E(|X(tm)|1(T2�tm)c) = 0, (4.12)

and E(|X(T2)|) <∞, then

E(X(T2)|FT1) = X(T1).

Remark. In a TLG with a finite number of vertices, we could pick the sequence tm = 1. In

that case conditions (4.11) and (4.12) would be automatically satisfied.

In order to extend the result of Lemma 4.18 to general stopping times we need to make

some assumptions about the index set S and the process X . The assumption we make on S
is that it is a topological lattice.

Recall the Definition 1.33. of a topological lattice from Section 1.6:

A Hausdorff space X with some order ’≤’ is called a topological lattice if for x1, x2 ∈ X :
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• there exists a unique element x1 ∧ x2 such that

{x ∈ X : x ≤ x1} ∩ {x ∈ X : x ≤ x2} = {x ∈ X : x ≤ x1 ∧ x2};

• there exists a unique element x1 ∨ x2 such that

{x ∈ X : x ≥ x1} ∩ {x ∈ X : x ≥ x2} = {x ∈ X : x ≥ x1 ∨ x2}.

and x1 ∧x2 and x1 ∨x2 are continuous mappings of X ×X (with product topology) onto X .

If S is a topological lattice, note that this implies that the sets of the form [t1, t2] = {t :
t1 � t � t2} (intervals) are closed, and hence Borel measurable.

Definition 4.19. We will say that a topological lattice S is separable from above if

there exists a separating sequence {tk} ⊂ S, such that all t ∈ S we have

t = lim
n→∞

t(n)

where

t(n) := min{tk : k ≤ n, tk � t}. (4.13)

In Section 1.6 (see Theorem 1.34) we have shown that TLG∗ G is a topological lattice,

and clearly we can set {tk} to be the set of points with rational times.

The following is the main result for the martingales on directed sets.

Theorem 4.20. Let S be separable from above with separating set {tk}, Ft =
⋂∞

n=1Ft(n) for

all t, and let X(t) be a martingale satisfying

lim
n→∞

X(t(n), ω) = X(t, ω),

for all (t, ω) for which the limit exists. Let T1 � T2 be S-valued stopping times. Suppose

there exists a sequence (sm) in {tk} such that

lim
m→∞

P(T2 � sm) = 1,
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and

lim
m→∞

E(|X(sm)|1(T2�sm)c) = 0,

and that E(|X(T1)|) <∞. Then

E(X(T2)|FT1) = X(T1).

The following theorem will translate the results we have into the ones of the process

indexed by time-like graphs.

Theorem 4.21. Let G be a TLG∗.

(a) Let X(t) be a martingale with respect to the filtration (Ft)t∈G and let T1 � T2 be stopping

times assuming countably many values. If E(|X(T2)|) <∞ then

E(X(T2)|FT1) = X(T1).

(b) Let X(t) be a RCLL martingale with respect to the filtration (Ft)t∈G such that

Ft =
⋂

t≺s
Fs. (4.14)

For stopping times T1 � T2, if E(|X(T2)|) <∞ then

E(X(T2)|FT1) = X(T1).

The key problem will be choosing a good filtration (Ft)t∈G such that the (4.14) is satisfied.

4.4 TLG - valued stopping times

Let’s assume that (Ft : t ∈ G) is a right-continuous filtration and X is an RCLL process

adapted to this filtration.

First, let’s define two random times that we want to make stopping times.
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If σ is a path in G, then clearly

Hσ
U := inf{t ∈ σ : Xσ(t) ∈ U},

where U is an opened set. This is a standard one-dimensional stopping time. A more

interesting example is

T σ
U := inf{t ∈ σ : (∃τ � t)(X(τ) ∈ U)}.

It is not hard to see that Hσ
U � T σ

U .

Lemma 4.22. T σ
U is an (Ft) stopping time.

Proof. Let t ∈ σ, then by right continuity we have

(T σ
U < t) =

∞⋃

n=1

⋃

s≺t− 1
n
,s∈Q

(X(s) ∈ U) ∈ Ft.

Where t − 1
n
is the point on σ with that time, and s ≺ t − 1/n, s ∈ Q means the point on

TLG G that is before t− 1/n and has rational time. If t /∈ σ then there exists

tσ = max{s ∈ σ : s ≺ t}.

Now, from the continuity of the filtration we have

(T σ
U ≺ t) = (T σ

U � tσ) =

∞⋂

n=k

(T σ
U ≺ tσ + 1/n) ∈ Ftσ+1/k,

for all k ∈ N. Therefore, the right-continuity of the filtration implies

(T σ
U ≺ t) ∈ Ftσ ⊂ Ft.

�

Let K be a compact set. We define T σ
K and Hσ

K in the same way as we did T σ
U and Hσ

U .

We know from classical Markov processes that Hσ
K is a stopping time.

Lemma 4.23. T σ
K is an (Ft) stopping time.
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Proof. Define Un = {x : d(x,K) < 1/n}. It is clear that K =
⋂∞

n=1Un =
⋂∞

n=1 Un, and also

it is clear that T σ
Un

≤ T σ
Un+1

≤ T σ
K . Set T := supn T

σ
Un

= limn→∞ T σ
Un
. If T ≥ 1 then clearly

T σ
K = T , on the event T < 1 we have

lim
n→∞

X(T σ
Un
) = X(T ),

but then X(T ) ∈ Un, and hence

X(T ) ∈ K.

Therefore, T σ
K ≤ T , and this implies T σ

K = T . But we know that T is an (Ft) stopping time,

and hence so is T σ
K . �

Here are is a general result about stopping times.

Proposition 4.24. (a) If S and T are TLG∗ valued stopping times, so is S ∨ T .

(b) If (Tn) is a sequence of stopping times then ∨∞n=1Tn is also a stopping time.

Proof. We have

(∨∞n=1Tn � t) =
∞⋂

n=1

(Tn � t),

and the claim follows. The case (a) is proved similarly. �

On the other hand, unlike in the classical case, the minimum of two stopping times

is not a stopping time. The following example will illustrate that. Let G be a TLG∗ like

in Figure 4.3. where t0 = 0, t1 = 1/3, t2 = 1/2, t3 = 1 and σ1 is the bottom time-path, σ2

the middle time-path, and σ3 the upper time-path. Let Bbr
a,b represent the Brownian bridge

starting at a and ending at b, and set

Xσ1(t)
d
=





Bbr
1/2,2/3(t) t ∈ [1/2, 2/3]

0 otherwise
and Xσ3(t)

d
=





Bbr
2/3,3/4(t) t ∈ [2/3, 3/4]

0 otherwise
,

and let Xσ2

d
= 0 (it can be any other Markov process consistent with the distributions of Xσ1

and Xσ3).



105

t0

t1

t2

t3

Figure 4.3: The red part of the graph is the part where Brownian bridges are defined,

everywhere else we set the process to be 0.

Let U = (1,∞), and T1 = Hσ1
U and T3 = Hσ3

U . It is clear that T3 ∧ T1 equals t1 with

probability greater than 0. But the event

(T3 ∧ T1 = t1)

depends on events that happen after time 1/3, and it will not be contained in Ft1 .

4.5 A simple coupling and branching process

In this section we will describe a simple coupling and branching process.

We are reconstructing the movement of two persons/objects, and we have the following

information

• 2 persons moving around;

• (time t0 = 0) started at the same time from point A ∈ R2;

• (time t3 = 1) stooped at the same time in point B ∈ R2;

• we have an additional information that from time t1 = 1/3 to time t2 = 2/3 they

were moving together.
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Note, that we only know that the two persons were together in time interval [1/3, 2/3], but

we don’t know anything about the locations they visited together!

We will model this as a process on a TLG. Let, G = (V, E) be given by

V = {t0, t1, t2, t3}, E = {E1
01, E

2
01, E12, E

1
23, E

2
23}.

t0 t1 t2 t3

Figure 4.4: The blue path is indexing the movement of the first person, and red path the

movement of the second person.

Let σj = (Ej
01, E12, E

j
23) for j = 1, 2. (σ1 is the blue path, and σ2 is the red path on

Figure 4.4.)

Now we set P to be the the distribution of the (two-dimensional) Brownian bridge from

A to B on [0, 1] with variance σ2. We define X on G to be a natural MP-process.

Note, thatXσ1 andXσ2 are Brownian bridges fromA to B with variance σ, andXσ1 |[t1,t2] =
Xσ2 |[t1,t2]. Figure 4.5 shows a simulation of such a process.

Further, for this model we can calculate the expectations

E(Xσj
(t)) = (txa + (1− t)xb, tya + (1− t)yb) , j = 1, 2.

Also, it is not hard to calculate the covariance structure. The two processes have a known

covariance structure

Cov(X l
σj
(τ1), X

l
σj
(τ2)) = σ2τ1(1− τ2), j, l = 1, 2, τ1 ≤ τ2.

Since the all full-time paths have the same distribution we have that for τ1 ≤ t2, and t1 ≤ τ2

Cov(X l
σj
(τ1), X

l
σi
(τ2)) = Cov(X l

σj
(τ1), X

l
σj
(τ2)), i 6= j.
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Figure 4.5: Simulation of the simple coupling and branching process with σ2 = 0.005.

The last case is when τ1 ≤ τ2 are on different sides of a cell:

Cov(X l
σj
(τ1), X

l
σi
(τ2)) =





σ2 τ1τ2(1−t1)
t1

τ1, τ2 ∈ [t0, t1],

σ2 (1−τ1)(1−τ2)t2
1−t2 τ1, τ2 ∈ [t2, t3].
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Part II

NATURAL BROWNIAN MOTION AND THE STOCHASTIC
HEAT EQUATION

In this part we study what happens (in some special cases) when the the process is

indexed by a time-like graph whose representation is dense in (a subset of) the t-x plane.

t

t

x
n

−1

n
−

1

2
−α

Figure 4.6: Index set: Honeycomb graph and α-rhombus grid

We will restrict our process to be a natural two-sided Brownian motion indexed by the

graph whose representation is a rhombus grid. Burdzy and Pal studied the same process

indexed by a honeycomb graph and found that (under certain scaling) when the mesh size

goes to zero, the covariance structure is non-trivial (see Theorem 6.1. in [7]). (See Figure

4.6.)

The images in Figure 4.8 show what happens when ratio of the half-diagonals is n−1/2−α :

n−1 for α > 0. It turns out, in this case, the process in the limit only depends on the time

coordinate (t) and not on the space coordinate (x).

For the limit case α = 0, however, the simulation (see Figure 4.9) indicates that the
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Figure 4.7: We use topographical colors to represent values of the Brownian motion

Figure 4.8: Scaled simulation of the process when the ratio is 1/n : 1/n, for n =

32, 128, 512,∞.

structure of the process in the plane is more complex. It turns out that the process in the

limit is the stochastic heat equation.

In this part we prove that these are the limits.

First, we introduce some results about maximums of Gaussian processes in Chapter 5.

Then in Chapter 6, we prove some general results about the (stochastic) heat equation, its

approximation by Euler’s method and the connections to the random walk.

After developing those tools, in Chapter 7. we prove the claims stated in this introduction

in Theorem 7.8.
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Figure 4.9: Simulation of a natural Brownian motion indexed by a rhombus grid where the

ratio is n−1/2 : n−1 and n = 1024.
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Chapter 5

MAXIMUMS OF GAUSSIAN PROCESSES

In this section we will review the

• bounds for the second moment of the maximum of a finite sequence of independent

Brownian bridges

• bounds for the second moment of the maximum of a finite sequence of (not necessarily

independent) normal random variables;

• concentration of the maximum of Gaussian random element in C(K) for some compact

set K.

5.1 Sequence of Brownian bridges

For k = 1, 2, . . . we will denote (Bbr
k (t) : t ∈ [0, 1]) a Brownian bridge starting and ending at

0. (See Definition A.16.) We are interested in getting some estimation on moments of

Mn := sup{|Bbr
k (t)| : t ∈ [0, 1], k = 1, 2, . . . , n}.

In order to do this, we will estimate the moments of

M+
n := sup{Bbr

k (t) : t ∈ [0, 1], k = 1, 2, . . . , n}

M−n := inf{Bbr
k (t) : t ∈ [0, 1], k = 1, 2, . . . , n} = − sup{−Bbr

k (t) : t ∈ [0, 1], k = 1, 2, . . . , n}.

Since, −Bbr
k has the same distribution as Bbr

k , it follows thatM+
n has the same distribution

as −M−n .
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Now, since Bbr
k (0) = Bbr

k (1) = 0, M+
n > 0 and M−n < 0. Further, it is clear that

Mn = max{M+
n ,−M−n }.

So if we find, a bound on moments ofM+
n we will be able to find a bound on the moments

of Mn.

From classical results on boundary crossing probabilities for Brownian motion (see [33,

Karatzas, Shreve], page 262-265), we have the following Lemma:

Lemma 5.1. If (Wt : t ≥ 0) is a Brownian motion starting at 0, then

P( max
0≤t≤T

Wt ≥ β|WT = a) = e−2β(β−a)/T (5.1)

for T > 0 and β > max{0, a}.
From the last Lemma we get what we need to calculate E(M+2

n ).

Proposition 5.2. (a) For the Brownian bridge Bbr
k we have

P(max
t∈[0,1]

Bbr
k (t) > β) = e−2β

2

.

(b) If (Bbr
k ) are independent Brownian bridges, the following equality holds:

4E(M+2
n ) =

1

1
+

1

2
+ . . .+

1

n
. (5.2)

Proof. (a) This follows from (5.1) when we set T = 1, and a = 0. (b) For this we first note

that, the independence of the sequence (Bbr
k )nk=1 implies

P(M+
n > β) = 1− P (M+

n ≤ β) = 1− P(

n⋂

k=1

(max
t∈[0,1]

Bbr
k (t) ≤ β))

= 1−
n∏

k=1

P(max
t∈[0,1]

Bbr
k (t) ≤ β) = 1−

n∏

k=1

(1− P(max
t∈[0,1]

Bbr
k (t) > β))

(5.1)
= 1− (1− e−2β

2

)n.
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Now, we get

E(M+2
n ) =

∫ ∞

0

βP(M+
n > β) dβ =

∫ ∞

0

β(1− (1− e−2β
2

)n) dβ (5.3)

Now, we will use some simple algebra,

β(1− (1− e−2β
2

)n) = βe−2β
2 1− (1− e−2β

2
)n

1− (1− e−2β2)

= βe−2β
2

(1 + (1− e−2β
2

) + . . .+ (1− e−2β
2

)n−1).

Using Tonelli’s Theorem the equality (5.3) becomes

E(M+2
n ) =

∫ ∞

0

n−1∑

k=0

βe−2β
2

(1− e−2β
2

)k =

n−1∑

k=0

∫ ∞

0

βe−2β
2

(1− e−2β
2

)k =
1

4

n−1∑

k=0

1

k + 1
,

since the expression under the last integral is the derivative of

−(1− e−2β
2
)k+1

4(k + 1)
.

�

Recall, that for the harmonic sequence

Hn =
n∑

k=1

1

k

we have,

lnn ≤ Hn ≤ ln(n + 1). (5.4)

Corollary 5.3. The following inequalities hold forMn the maximum of n independent Brow-

nian bridges

E(Mn) ≤
√
ln(n+ 1). (5.5)

E(M2
n) ≤

1

2
ln(n + 1) (5.6)
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Proof. From (5.2), using (5.4) we get

E(M+
n ) ≤

√
E(M+2

n ) ≤ 1

2

√
ln(n+ 1).

Now, using the fact that max{a, b} ≤ a + b for a, b ≥ 0 we have, since M+
n and −M−n have

the same distribution we get E(Mn) ≤ E(M+
n ) + E(−M−n ) = 2E(M+

n ). The inequality (5.5)

follows. The inequality (5.6) follows in the similar way. �

5.2 Sequence of normal variables

When we have several normal random variables, what can we say about the expectation of

the maximum of these random variables?

Let Xk ∼ N(0, σ2
k) for k = 1, . . . , n, we are interested in the upper bounds for

E(max{|X1|, . . . , |Xn|}),

and

E(max{|X1|2, . . . , |Xn|2}).

Using the result we got for the Brownian bridge we can get the upper bound.

Proposition 5.4. For (Xk)
n
k=1 independent we have

E(max{|X1|, . . . , |Xn|}) ≤ 2 max
1≤k≤n

σk
√

ln(n+ 1) (5.7)

E(max{|X1|2, . . . , |Xn|2}) ≤ 2

(
max
1≤k≤n

σ2
k

)
ln(n+ 1) (5.8)

Proof. Let σmax = max1≤k≤n σj > 0 and X ′k := 1
2σmax

Xk. Now X ′k are normal random

variables with expectation 0 and variance at most 1/4. Hence, for each k = 1, . . . , n there

exists a time tk such that the variance of Bbr
k (tk) is the same as that of X ′k, where (Bbr

k )nk=1

is a sequence of independent Brownian bridges starting and ending at 0. Hence, X ′k has
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the same distribution as Bbr
k (tk), so the distribution of max{|X ′1|, . . . , |X ′n|} is the same as

of max{|Bbr
1 (t1)|, . . . , |Bbr

n (tn)|} and this is less than Mn = sup{|Bbr
k (t)| : t ∈ [0, 1], k =

1, . . . , n}. So by (5.5), we have

E(max{|X ′1|, . . . , |X ′n|}) ≤ E(Mn) ≤
√
ln(n+ 1).

Multiplying this with 2σmax we get (5.7). Similar argument using inequality (5.6) will give

(5.8) �

Now, we will deal with the case when (Xk)
n
k=1 are not necessarily independent. We will

do this with the help of a lemma that is due to Šidák (see [44]).

Lemma 5.5. (a) (Šidák 1967.) For positive numbers c1, c2, . . . , cn

P(|X1| ≤ c1, |X2| ≤ c2, . . . |Xn| ≤ cn) ≥ P(|X1| ≤ c1)P(|X2| ≤ c2) . . .P(|Xn| ≤ cn).

(b) Let Y1, . . . , Yn be independent random variables, such that for each k = 1, 2, . . . , n Yk and

Xk have the same distribution, then

E(max{|X1|, . . . , |Xn|}p) ≤ E(max{|Y1|, . . . , |Yn|}p)

for all p ≥ 1.

The proof of part (a) of this Lemma can be found in [44] or [40]. Part (b) is a direct

consequence of part (a).

As a consequence of Lemma 5.5 (part (b) for p = 1) and Proposition 5.4 we get the

following theorem.

Theorem 5.6. For (Xk ∼ N(0, σk))
n
k=1 (possibly correlated) we have

E(max{|X1|, . . . , |Xn|}) ≤ 2 max
1≤k≤n

σk
√

ln(n+ 1) (5.9)

E(max{|X1|2, . . . , |Xn|2}) ≤ 2

(
max
1≤k≤n

σ2
k

)
ln(n+ 1) (5.10)

A much general result (of the same order) can be found in the paper by Chatterjee in [9].



116

5.3 Some concentration and convergence results

We will shortly state some concentration results taken from Chapter 3.1. of Talagrand’s

book [48], and apply it to the convergence of Gaussian processes.

Let B be a Banach space, and D some countable subset of the unit ball of the dual space

B′ such that

‖x‖ = sup
f∈D

|f(x)|,

for all x ∈ B.

We say that X is a Gaussian random variable in B if f(X) is measurable for every

f ∈ D and if every finite linear combination

∑

i

αifi(X),

where αi ∈ R and fi ∈ D, is Gaussian.

Let X be a Gaussian, M = M(X) be the median of ‖X‖, that is M has the property

that

P(‖X‖ ≥M) ≥ 1/2 and P(‖X‖ ≤ M) ≥ 1/2.

Further, set the supremum of weak deviations to be

σ = σ(X) = sup
f∈D

E[f(X)2]1/2.

The following result is a Lemma 3.1. from [48].

Lemma 5.7. Let X be a Gaussian with median M = M(X) and the supremum of weak

deviations σ = σ(X), then

P(|‖X‖ −M | > t) ≤ exp(−t2/2σ2).

Corollary 5.8. Let X be a Gaussian with E[‖X‖2] <∞, then

P(‖X‖ > t) ≤ 4 exp

( −t2
2E[‖X‖2]

)
. (5.11)
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Proof. Follows from Lemma 5.7 and the fact that σ2 ≤ E[‖X‖2] and M2 ≤ E[‖X‖2]. �

Let Y = (Y1, Y2, . . . , Yd) be a Gaussian vector with expectation vector 0, then since

B = Rd is the Banach space with usual norm, and the set of projections D = {πk : k ∈
{1, 2, . . . , d}} is a subset of B′ we have that

P( max
1≤k≤n

|Yk| > t) ≤ 4 exp

( −t2
2E[max1≤k≤n |Yk|2]

)
. (5.12)

It will not always be easy to get an estimate for E[max1≤k≤n |Yk|2], but when we do the

inequality (5.12) will tell us a lot.

Theorem 5.9. Let Y k be a sequence of Gaussian vectors (not necessarily of the same di-

mension) with expectation vector 0 on the same probability space, such that

E[‖Y k‖2∞] ≤
C

kα
, (5.13)

for some C > 0 and α > 0. Then

‖Y k‖∞ → 0 a.s.

Proof. It is easy to show that for sufficiently large k we have

exp

(
−t

2kα

2C

)
≤ 1

k2
.

Now, using (5.12) and (5.12) the previous inequality for sufficiently large k gives

P(‖Y k‖∞ > t) ≤ 1

k2
,

and hence
∞∑

k=1

P(‖Y k‖∞ > t) <∞.

Since this holds for all t > 0, ‖Y k‖∞ → 0 a.s. �
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Corollary 5.10. Let Y k be a sequence of Gaussian vectors (not necessarily of the same

dimension) with expectation vector 0 on the same probability space, such that

E[‖Y k‖2∞] ≤
C

kα
, (5.14)

for some C > 0 and α > 0. Then for 0 < β < α/2

kβ‖Y k‖∞ → 0 a.s.

Proof. We see that for Zk := kβY k we have

E[‖Zk‖2∞] ≤
C

kα−2β
.

Hence, since α− 2β > 0 by Theorem 5.9 we have ‖Zk‖∞ → 0 a.s. �

We can get similar results for continuous Gaussian fields.

Theorem 5.11. Let (Ω,F ,P) be a probability space, K ⊂ Rn be a compact set, and Xn :

K × Ω → R have the following properties:

(1) For each x ∈ K Xn(x) is a Gaussian random variable.

(2) For each ω ∈ Ω x 7→ Xn(x, ω) is a continuous function.

Then if

E[‖Xn‖2∞] ≤
C

nα
,

we have

‖Xn‖∞ → 0 a.s. (5.15)

Further, for 0 < β < α/2 we have

nβ‖Xn‖∞ → 0 a.s. (5.16)
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Proof. Let B = C(K) with the usual ‖·‖∞ supremum norm, and set D = {πq : q ∈ Qn∩K}.
Now it is clear that Xn is a Gaussian random variable in B, and since Xn is continuous we

have ‖Xn‖∞ = supq∈Qn∩K |πq(Xn)|, we have from (5.11) that

P(‖Xn‖∞ > t) ≤ exp

(
−t

2kα

2C

)
.

Using the same technique as in proof of Theorem 5.9 we have the desired results. �
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Chapter 6

RANDOM WALK AND STOCHASTIC HEAT EQUATION
REVIEWED

6.1 Modification of the Local Limit Theorem

In the rest of this chapter (Sn) will denote the simple random walk, where Sn = X1 +

X2 + . . .+Xn, (Xk) are i.i.d. and P(X1 = ±1) = 1/2.

First we introduce some notation. For a simple random walk (Sn) we set

pkn(x) = P(
Sk√
n
= x), for x ∈ Lk

n := {(k + 2z)/
√
n : z ∈ Z},

and

ρkn(x) =
1

σk
n

√
2π

exp

(
− x2

2(σk
n)

2

)
,

where (σk
n)

2 = n
k
. The main result of this section is Theorem 6.3 which gives the bound on

the difference of pkn and ρkn.

We will need the following two lemmas. The first lemma is a consequence of the inversion

formula for characteristic functions. (See [15].)

Lemma 6.1. If Y is a random variable with P(Y ∈ a + θZ) = 1, and ψ(t) = E(eitY ) is its

characteristic function, then

P(Y = x) =
1

2π/θ

∫ π/θ

−π/θ
e−itxψ(t) dt.

The second lemma is a consequence of the Stirling formula.

Lemma 6.2. For k ∈ N set

Ik :=

∫ π/2

0

cosk(x) dx,
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there exists a C > 0 such that ∣∣∣∣
√
kIk −

√
π

2

∣∣∣∣ ≤
C

k
. (6.1)

Proof. From integration by parts we have

Ik =
k − 1

k
Ik−2,

and further we can calculate I1 = 1 and I2 =
π
4
. Now, this recursion gives us

I2k+1 =
2k

2k + 1
· 2k − 2

2k − 1
· · · 2

3
· I1 =

22k(k!)2

(2k + 1)!
,

I2k =
2k − 1

2k
· 2k − 3

2k − 2
· · · 3

4
· I2 =

(2k)!

22k(k!)
· π
2
.

Using Stirling’s Formula (see for example Gamelin [22] page 368), i.e. the fact that

n! =
(n
e

)n √
2nπ exp

(
1

12n
+O(

1

n3
)

)
,

we have

2k
√
2k + 1(k!)2 =

(2k)2k+1

e2k
π
√
2k + 1 exp

(
1

6k
+O(

1

8k3
)

)
,

(2k + 1)! =

(
2k + 1

e

)2k+1√
2π

√
2k + 1 exp

(
1

12(2k + 1)
+O(

1

8k3
)

)
,

and therefore

√
2k + 1I2k+1 =

(
1− 1

2k + 1

)2k+1

e

√
π

2
exp(

1

6k
− 1

12(2k + 1)
+O(

1

k3
)).

Now,

(2k + 1)|
√
2k + 1I2k+1 −

√
π/2|

=(2k + 1)

√
π

2

∣∣∣∣∣

(
1− 1

2k + 1

)2k+1

e(1 +
1

6k
− 1

12(2k + 1)
+O(

1

k2
))− 1

∣∣∣∣∣

≤(2k + 1)

√
π

2
e

∣∣∣∣∣

(
1− 1

2k + 1

)2k+1

− e−1

∣∣∣∣∣ +
√
π

2
e

∣∣∣∣
2k + 1

6k
− 1

12
+O(

1

k
)

∣∣∣∣ (6.2)
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The second absolute value is clearly bounded. For the first absolute value we use the well-

known fact that if |u|, |z| ≤ 1 then for m ∈ N we have |um − zm| ≤ m|u− z|. So, by setting

m = 2k + 1, u = 1− (2k + 1)−1 and z = e−(2k+1)−1
we have

∣∣∣∣∣

(
1− 1

2k + 1

)2k+1

− e−1

∣∣∣∣∣ ≤ (2k + 1)

∣∣∣∣1−
1

2k + 1
− e−1/(2k+1)

∣∣∣∣

≤ (2k + 1)
1

2(2k + 1)2
=

1

2(2k + 1)
,

where the last inequality follows from the Taylor’s Theorem. Hence, the first absolute value

in (6.2) is also bounded.

Using the same methods we get the same result for (I2k). �

Theorem 6.3. There exists a C > 0 such that for any β(n) we have

sup
β(n)≤k

sup
x∈Lk

n

∣∣∣∣
n1/2

2
pkn(x)− ρkn(x)

∣∣∣∣ ≤
C

π

√
n

β(n)3
,

for all n.

Proof. Using Lemma 6.1. for θ = 2/
√
n and function

ψk(t) = E[exp(
itSk√
n
)] = ϕk(

t√
n
),

we have that
n1/2

2
pkn(x) =

1

2π

∫ π
√
n/2

−π√n/2
e−itxϕk(t/

√
n) dt. (6.3)

The inversion formula gives that

ρkn(x) =
1

2π

∫

R

e−itx exp(−(σk
n)

2t2/2) dt. (6.4)

From (6.3) and (6.3) we have

∣∣∣∣
n1/2

2
pkn(x)− ρkn(x)

∣∣∣∣ ≤
1

2π

∫ π
√
n/2

−π√n/2
|ϕk(t/

√
n)− exp(−(σk

n)
2t2/2)| dt

+
1

π

∫ ∞

π
√
n/2

exp(−(σk
n)

2t2/2) dt.
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First, note that the right side the inequality doesn’t depend on x. Now by substituting

u = t
√
k/n in both integrals, we get that the right side of the inequality is

√
n/k

π

[
1

2

∫ π
√
k/2

−π
√
k/2

|ϕk(u/
√
k)− exp(−u2/2)| du+

∫ ∞

π
√
k/2

exp(−u2/2) du
]
. (6.5)

For the first integral in (6.5), first note that ϕ(t) = E(eitX1) = cos t, so since the function

under the integral is even we have

1

2

∫ π
√
k/2

−π
√
k/2

|ϕk(u/
√
k)− exp(−u2/2)| du =

∫ π
√
k/2

0

|ϕk(u/
√
k)− exp(−u2/2)| du.

Further, it is not hard to show that e−
x2

2 ≥ cos x for x ∈ [−π/2, π/2]. So, e−x2

2k ≥ cos(x/
√
k)

for x in the bounds of the integral, and therefore

∫ π
√
k/2

0

|ϕk(u/
√
k)− exp(−u2/2)| du =

∫ π
√
k/2

0

exp(−u2/2)− ϕk(u/
√
k) du,

and now right-side of (6.5) becomes

√
n/k

π

[∫ ∞

0

exp(−u2/2) du−
∫ π

√
k/2

0

ϕk(u/
√
k) du

]

=

√
n/k

π

[√
π

2
−
∫ π

√
k/2

0

cosk(u/
√
k) du

]

=

√
n/k

π

[√
π

2
−

√
k

∫ π/2

0

cosk(u) du

]

︸ ︷︷ ︸
(6.1)

≤ C
k

.

From Lemma 6.2 we have that (6.5) is less than

C

π

√
n

k3

�

Corollary 6.4. If limn→∞
n

β(n)3
= 0, then

lim
n→∞

sup
β(n)≤k

sup
x∈Lk

n

∣∣∣∣
n1/2

2
pkn(x)− ρkn(x)

∣∣∣∣ = 0.
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Specially, in the case when β(n) = n, we have

sup
x∈Ln

n

∣∣∣∣
n1/2

2
pnn(x)− ρnn(x)

∣∣∣∣ ≤
C

πn
→ 0,

as n→ ∞.

6.2 Approximations of the classical heat equation solution

In this section we will review the one-dimensional heat equation (mostly classical results that

can be found in books that deal with connections to PDEs like Karatzas and Shreve [33],

and some books on classical PDEs like Folland [18]) and develop more general results that

will later help us.

In this section we use the usual space-time (x-t) coordinate system. We are considering

the classical initial value problem





∂tw = 1
2
∂xxw on R× (0,∞),

w(0, x) = f(x) for x ∈ R.
(6.6)

If we assume that f : R → R is a Borel measurable function satisfying

∫ ∞

−∞
e−ax

2 |f(x)| dx <∞ (6.7)

for some a > 0. Then the solution exists.

Theorem 6.5. If the condition (6.7) is satisfied, then

w(t, x) := E(f(x+Wt)) =

∫ ∞

−∞

1√
2πt

f(y) exp

(−(y − x)2

2t

)
dy, (6.8)

for 0 < t < 1
2a

and x ∈ R is the solution to the initial value (6.6). This solution has

derivatives of all orders. Furthermore, if f is continuous at x, then

lim
(t,y)→(0,x)

w(t, y) = f(x). (6.9)
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Proof. This follows from the fact that the so called Gaussian kernel

Kt(x) :=
1√
2πt

exp

(−x2
2t

)
,

satisfies the heat equation. (This can be checked by a direct calculation.) The rest follows

from the dominated convergence theorem. �

The main question that will be of interest to us is: if f satisfies (6.7) and it is continuous,

for a simple random walk (Sn) starting from zero is

E(f

(
S⌊nt⌋√
n

+ x

)
) → w(t, x), (6.10)

where u is given by (6.8) and how strong is this convergence.

It is clear from the definition of convergence in distribution and the Donsker’s theorem

that this convergence holds if f is bounded. We will show that this holds for a much wider

set of functions.

Lemma 6.6. (a) (Hoeffding’s Inequality) For y ≥ 0 we have

P

(∣∣∣∣
Sn√
n

∣∣∣∣ ≥ y

)
≤ 2e−y

2/2,

where (Sn) is a simple random walk.

(b) If τ > 0 then for all t ≤ τ

P

(∣∣∣∣
S⌊nt⌋√
n

∣∣∣∣ ≥ y

)
≤ 2e−y

2/(2τ)

for all y ≥ 0.

Proof. (a) This is a well known inequality. For the proof see, for example, [29] or [8]. (b)

For ⌊nt⌋ = 0 the claim is clear. Otherwise, we have

P

(∣∣∣∣
S⌊nt⌋√
n

∣∣∣∣ ≥ y

)
= P

(∣∣∣∣∣
S⌊nt⌋√
⌊nt⌋

∣∣∣∣∣ ≥
y
√
n√

⌊nt⌋

)
.
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Now, since
y
√
n√

⌊nt⌋
≥ y

√
n√
nt

=
y√
t
≥ y√

τ
,

we have

P

(∣∣∣∣∣
S⌊nt⌋√
⌊nt⌋

∣∣∣∣∣ ≥
y
√
n√

⌊nt⌋

)
≤ P

(∣∣∣∣∣
S⌊nt⌋√
⌊nt⌋

∣∣∣∣∣ ≥
y√
τ

)
,

and the claim follows from part (a). �

Define Bn to be the linear interpolation of t 7→ S⌊nt⌋√
⌊nt⌋

, that is

Bn(t) :=
S⌊nt⌋√
n

+ (nt− ⌊nt⌋)
(
S⌊nt⌋+1√

n
− S⌊nt⌋√

n

)
.

Lemma 6.7. For any f continuous, a < b real numbers, and ε > 0 we have

E(f(
S⌊nt⌋√
n

+ x)gεa,b(
S⌊nt⌋√
n
)) → E(f(Wt + x)gεa,b(Wt))

uniformly on compact sets in (t, x), where

gεa,b(x) =





1 x ∈ [a, b],

x−a+ε
ε

x ∈ [a− ε, a],

x−b−ε
−ε x ∈ [b, b+ ε],

0 x /∈ [a− ε, b+ ε].

Proof. Let K ⊂ R+ × R be a compact set and define Kt := πt(K) and Kx := πx(K). They

are also compact. Hence, the function h : R×Kx → R given by h(u, x) := f(u+ x)gεa,b(u) is

a continuous function supported on a compact set (which is a subset of [a− ε, b+ ε]×Kx).

Now, since Kt is compact, there exists T > 0 such that Kt ⊂ [0, T ]. By Donsker’s Theorem

we know that Bn d→W on [0, T ], hence by Skorohod’s Representation Theorem there exists

a probability space (Ω̃, F̃ , P̃) with random elements B̃n d
= Bn and W̃

d
=W such that

‖B̃n(ω)− W̃ (ω)‖ = sup
t∈[0,T ]

|B̃n(t)(ω)− W̃ (t)(ω)| → 0,
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for all ω ∈ Ω̃. Note that if we define

S̃n
t := B̃n

⌊nt⌋/n,

S̃n has the same distribution as S⌊nt⌋/
√
n. Further, it is clear that

‖S̃n − Bn‖ ≤ 1√
n
.

Therefore ‖S̃n − W̃ n‖ → 0. Now since h ∈ Cc(R
2) it is uniformly continuous function, and

therefore

sup
(t,x)∈K

|h(S̃n
t , x)− h(W̃ (t), x)| → 0,

Now

|E(f(S⌊nt⌋√
n

+ x)gεa,b(
S⌊nt⌋√
n
))− E(f(Wt + x)gεa,b(Wt))|

= |Ẽ[f(S̃n
t + x)gεa,b(S̃

n
t ))− f(W̃t + x)gεa,b(W̃t))]|

≤ Ẽ

[
sup

(t,x)∈K
|h(S̃n

t , x)− h(W̃ (t), x)|
]
.

The convergence follows from the dominated convergence theorem. �

In order to get (6.10) we have to make some mild assumptions on f .

Lemma 6.8. Let f : R → R be a continuous function such that there exist C > 0 and a

locally integrable g : R+ → R+ with the property

|f(x)|2 ≤ C +

∫ |x|

0

g(y) dy, (6.11)

for all x ∈ R, and ∫ ∞

0

g(y)e−y
2/(2τ) dy <∞, (6.12)

for some τ > 0. Then there exists M > 0 (that depends on C, g and τ) such that for all

t ≤ τ and all n

E[|f(S⌊nt⌋/
√
n)|2] < M. (6.13)
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Further, ∫ ∞

−∞
|f(x)|e−x2/(2τ) dx <∞. (6.14)

Proof. We set G(x) :=
∫ |x|
0
g(y) dy. Now,

E[|f(S⌊nt⌋/
√
n)|2] ≤ C + E(G(|S⌊nt⌋/

√
n|))

≤ C + E(

∫ ∞

0

g(y)1(y≤|S⌊nt⌋/
√
n|) dy)

= C +

∫ ∞

0

g(y)E(1(y≤|S⌊nt⌋/
√
n|) dy

= C +

∫ ∞

0

g(y)P(|S⌊nt⌋/
√
n| ≥ y) dy

= C +

∫ ∞

0

g(y)P(|S⌊nt⌋/
√
n| ≥ y) dy

= C + 2

∫ ∞

0

g(y)e−y
2/(2τ) dy =:M.

For (6.14) we first show a similar results using the same arguments. Let X ∼ N(0, τ). Then

P(|X| > x) ≤ 2e−x
2/(2τ). Now,

∫ ∞

−∞
|f(x)|2e−x2/(2τ) dx =

√
2π · τE(|f(X)|2)

≤
√
2πτ (C + E(G(X)))

= C
√
2πτ +

√
2πτE(G(X))

= C
√
2πτ +

√
2πτ

∫ ∞

0

g(y)P(|X| ≥ y) dy

= C
√
2πτ + 2

√
2πτ

∫ ∞

0

g(y)e−y
2/(2τ) dy

=M
√
2πτ.

Now, it is clear from Cauchy-Schwarz inequality we have that

∫ ∞

−∞
|f(x)|e−x2/(2τ) dx ≤

(∫ ∞

−∞
e−x

2/(2τ) dx

)1/2(∫ ∞

−∞
|f(x)|2e−x2/(2τ) dx

)1/2

=
√
2πτM.
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�

Remark. The conditions (6.11) and (6.12) given by the previous lemma are satisfied by a

wide family of functions. For instance, if for α ≥ 1 we have

lim sup
|y|→∞

|f(y)|
|y|α =: L <∞.

Then there exists a C > 0 such that

|f(y)| ≤ C + L|y|α,

for all y ∈ R. Now, the function g(y) := αyα−1 satisfies (6.11). Further, since the normal

distribution has all the α-moments for α ≥ 1, g satisfies (6.12).

Theorem 6.9. Let f : R → R be a continuous function and a < b finite real numbers, such

that there exist C > 0 and a locally integrable g : R+ → R+ with the property

sup
r∈[a,b]

(f(x+ r))2 ≤ C +

∫ |x|

0

g(y) dy,

for all x ∈ R, and ∫ ∞

0

g(y)e−y
2/(2τ) dy <∞,

for some τ > 0. Then for all r ∈ [a, b]

E(f(
S⌊nt⌋√
n

+ r)) → w(t, r), (6.15)

as n→ ∞ where t < τ and w is the solution to the initial value problem (6.6) given by

w(t, x) = E(f(x+Wt)).

Further, the convergence in (6.15) is uniform on [0, τ)× [a, b]

Proof. From Lemma 6.8. and Theorem 6.5. we know that w(·, ·) is the solution to (6.6).
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From Lemma 6.8. applied on the function f(·+ r) we know that for each K > 0

|E[f(S⌊nt⌋√
n

+ r)(1− gε−K,K(
S⌊nt⌋√
n
))]| ≤

√
E(f(

S⌊nt⌋√
n

+ r)2)E((1− gε−K,K(
S⌊nt⌋√
n
))2

≤
√
E(f(

S⌊nt⌋√
n

+ r)2)E(1(|S⌊nt⌋/
√
n|>K))

≤
√
MP(|S⌊nt⌋/

√
n| > K)

≤
√
2M exp(−K

2

2τ
).

Pick ε > 0, then there exists K > 0 such that

|E[f(S⌊nt⌋√
n

+ r)(1− gε−K,K(
S⌊nt⌋√
n
))]| < ε/3

for all n and in the same way

|E[f(x+Wt)(1− gε−K,K(Wt)]| < ε/3

. Finally, using Lemma 6.7, a = −K, b = −K we have that for sufficiently large n

|E(f(S⌊nt⌋√
n

+ r))− w(t, r)| < ε.

�

6.2.1 The case when α > 0

In this subsection we will show that for α > 0

E(f

(
S⌊nt⌋
n1/2+α

+ x

)
) → f(x), (6.16)

and uniformly for (t, x) over a compact set.

Lemma 6.10. If τ > 0 then for all t ≤ τ

P

(∣∣∣∣
S⌊nt⌋
n1/2+α

∣∣∣∣ ≥ y

)
≤ 2e−y

2/(2τ)

for all y ≥ 0.
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Proof. It is not hard to show that

{∣∣∣∣
S⌊nt⌋
n1/2+α

∣∣∣∣ ≥ y

}
⊂
{∣∣∣∣
S⌊nt⌋
n1/2

∣∣∣∣ ≥ y

}
,

and the claim now follows from the result of Lemma 6.6. part (b). �

Using exactly the same argumentation we get a version of Lemma 6.8:

Lemma 6.11. Let f : R → R be a continuous function such that there exist C > 0 and a

locally integrable g : R+ → R+ with the property

|f(x)|2 ≤ C +

∫ |x|

0

g(y) dy, (6.17)

for all x ∈ R, and ∫ ∞

0

g(y)e−y
2/(2τ) dy <∞, (6.18)

for some τ > 0. Then there exists M > 0 (that depends on C, g and τ) such that for all

t ≤ τ and all n

E[|f(S⌊nt⌋/n1/2+α)|2] < M. (6.19)

Now, under similar conditions as in Theorem 6.9, we have:

Theorem 6.12. Let f : R → R be a continuous function and a < b finite real numbers, such

that there exist C > 0 and a locally integrable g : R+ → R+ with the property

sup
r∈[a,b]

(f(x+ r))2 ≤ C +

∫ |x|

0

g(y) dy,

for all x ∈ R, and ∫ ∞

0

g(y)e−y
2/(2τ) dy <∞,

for some τ > 0. Then for all r ∈ [a, b]

E(f(
S⌊nt⌋
n1/2+α

+ r)) → f(r), (6.20)

as n→ ∞ where t < τ Further, the convergence in (6.20) is uniform on [0, τ)× [a, b].
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Proof. Let ε > 0. The function f on [a− 1, b+ 1] is uniformly continuous, and hence there

exists δ ∈ (0, 1) such that for all y, y′ ∈ [a− 1, b+ 1] if |y − y′| < δ then |f(y)− f(y′)| < ε.

Now,

|E(f( S⌊nt⌋
n1/2+α

+ r))− f(r)| ≤ E

∣∣∣∣f(
S⌊nt⌋
n1/2+α

+ r)− f(r)

∣∣∣∣

≤ E




∣∣∣∣f(
S⌊nt⌋
n1/2+α

+ r)− f(r)

∣∣∣∣
︸ ︷︷ ︸

≤ε

1(|S⌊nt⌋/n1/2+α| < δ)




+E

[∣∣∣∣f(
S⌊nt⌋
n1/2+α

+ r)− f(r)

∣∣∣∣1(|S⌊nt⌋/n1/2+α| ≥ δ)

]
,

by uniform continuity of f , and triangle inequality we get

≤ ε+ E

[∣∣∣∣f(
S⌊nt⌋
n1/2+α

+ r)

∣∣∣∣ 1(|
S⌊nt⌋
n1/2+α

| ≥ δ)

]
+ |f(r)|P(| S⌊nt⌋

n1/2+α
| ≥ δ).

By Cauchy-Schwarz we get

≤ ε+ E

[∣∣∣∣f(
S⌊nt⌋
n1/2+α

+ r)

∣∣∣∣
2
]1/2

P(|S⌊nt⌋
n1/2

| ≥ nαδ)1/2 +

(
max
y∈[a,b]

|f(y)|
)
P(|S⌊nt⌋

n1/2
| ≥ nαδ).

Using Lemma 6.11 for the function f(·+ r) on the expectation, and Lemma 6.6. part (b) on

the probabilities, we get

≤ ε+M1/2
√
2 exp(

−n2αδ2

4
) +

(
max
y∈[a,b]

|f(y)|
)
· 2 exp(−n

2αδ2

2
).

Note that the bound doesn’t depend on t or r, and we have

lim sup
n→∞

sup
t,r

|E(f( S⌊nt⌋
n1/2+α

+ r))− f(r)| ≤ ε.

Since, ε > 0 is arbitrary the claim follows. �

6.2.2 Summary

Theorem 6.13. Let f : R → R be a continuous function and a < b finite real numbers, such

that there exist C > 0 and a locally integrable g : R+ → R+ with the property

sup
r∈[a,b]

(f(x+ r))2 ≤ C +

∫ |x|

0

g(y) dy,
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for all x ∈ R, and ∫ ∞

0

g(y)e−y
2/(2τ) dy <∞,

for some τ > 0. Then for all r ∈ [a, b]

E

[
f

(
S⌊nt⌋
n1/2+α

+ r

)]
→ wα(t, r), (6.21)

as n→ ∞ where t < τ and wα is the solution to the initial value problem given by




∂twα =





0, α > 0

1
2
∂xxwα α = 0

wα(0, x) = f(x)

.

Further, the convergence in (6.21) is uniform on [0, τ)× [a, b].

6.3 Euler method for the stochastic heat equation

Let u be the solution to the heat equation

∂tu = β∂xxu+ f. (6.22)

Now, we discretize this equation at the point (t, x)

ut(t, x) ≈
u(t+∆t, x)− u(t, x)

∆t
,

uxx(t, x) ≈
u(t, x+∆x)− 2u(t, x) + u(t, x−∆x)

(∆x)2
,

where ∆t and ∆x are small and positive. So equation (6.22) becomes

u(t+∆t, x) ≈ β∆t

(∆x)2
(u(t, x+∆x) + u(t, x−∆x)) + (1− 2

β∆t

(∆x)2
)u(t, x) + ∆tf(t, x).

Now, if we set tk = k∆t, xk = k∆x, for k = 0, 1, 2, . . ., and if we replace u(tj, xk) by U
j
k

and f(tj , xk) by f
j
k , we get

U j+1
k = s(U j

k+1 + U j
k−1) + (1− 2s)U j

k + (∆t)f j
k ,

where s = β∆t
(∆x)2

.

Further, if the equation (6.22) has
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t0

t1

t2

t3

t4

...

. . .

x0 x1 x2 x3 x4

Figure 6.1: Euler method

(a) initial condition u(x, 0) = g(x);

(b) 0-boundary condition u(0, t) = 0;

then we set

(a) initial condition U0
k = g(xk);

(b) 0-boundary condition U j
0 = 0.

The given scheme is called the explicit Euler method for the one dimensional heat

equation. It is stable if s ≤ 1/2. (See [26].)

We are interested for the Euler method in the case of the stochastic heat equation

∂tv =
1

2
∂xxv +W,

with initial and boundary value conditions v(0, x) = 0 and v(t, 0) = 0. We will look at the

method when ∆x = n−1/2 and ∆t = 1/n. In this case s = 1
2
and Euler method looks like

this

V j+1
k =

1

2
(V j

k+1 + V j
k−1) +

√
n

2
W(Rjk), k ≥ 1, j ≥ 0 (6.23)
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where Rjk = [xk−1, xk+1] × [tj , tj+1]. We will work with the case when V j
0 = 0 and V 0

k = 0.

(Initial and boundary value conditions are 0.)

xk−1 xk xk+1

tj+1

tj

Figure 6.2: Rectangle Rjk

It is not hard to get the following result.

Lemma 6.14. The solution to the difference equation (6.23) with initial and boundary con-

dition 0 is given by

V j
k

=

√
n

2

j∑

j′=1

k+j∑

k′=1

(
P(

1√
n
Sn(tj−tj′ ) + xk = xk′)− P(

1√
n
Sn(tj−tj′ ) + xk = −xk′)

)
W(Rj′−1,k′)

(6.24)

=

√
n

2

j∑

j′=1

k+j∑

k′=1

(P(Sj−j′ = k′ − k)− P(Sj−j′ = −k − k′))W(Rj′−1,k′). (6.25)

Remark. Note that j − j′ and k − k′ have to be of both either even or odd. Otherwise,

P(Sj−j′ = k′ − k) = P(Sj−j′ = −k − k′) = 0. So in the upper formula the only use the

rectangles Rj′−1,k′ where j − j′ ≡ k − k′ (mod 2).

Having in mind this remark we will focus on lattice points that are in the same class as

(0, 0):

Ln
0 = {(tj , xk) : k, j ≥ 0, j ≡ k (mod 2)}

(Points in Ln
0 are marked with • on Figure 6.1.) Note that if (tj , xk) ∈ Ln

0 then if (tj′, xk′) /∈ Ln
0
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then

P(
1√
n
Sn(tj−tj′ ) + xk = xk′)− P(

1√
n
Sn(tj−tj′ ) + xk = −xk′) = 0.

Also, note that if |k′ − k| > j − j′ then the previous equality also holds.

Our aim is to show that for a compact set K when n → ∞to discover the rate of

convergence to 0 of

sup{|V j
k − v(tj , xk)| : (tj , xk) ∈ K ∩ Ln

0},

where v is the solution to the stochastic heat equation with 0-boundary and 0-initial condi-

tion. Recall (see §A.6), that the solution to the homogeneous stochastic heat equation with

0 initial and boundary conditions is

v(t, x) =

∫ t

0

1√
2π(t− s)

∫

R+

(
e
− |x−y|2

2(t−s) − e
− |x+y|2

2(t−s)

)
W(ds, dy).

Note that for (tj , xk) ∈ Ln
0 , j, k > 0 we have

V j
k =

j∑

j′=1

∑

(tj′ ,xk′)∈Ln
0

√
n

2

(
P(

1√
n
Sn(tj−tj′ ) + xk = xk′)− P(

1√
n
Sn(tj−tj′ ) + xk = −xk′)

)
W(Rj′−1,k′)

where Rj,0 = [tj , tj+1]× [x0, x1]. (Notice, that in the case when k′ = 0, the expression in the

sum is equal to 0.)

Note that (see Figure 6.1)

j⋃

j′=1

⋃

(tj′ ,xk′)∈Ln
0

Rj′−1,k′ = [0, tj ]× [0,∞],

therefore

V k
j − v(tj , xk)

=

j∑

j′=1

∑

(tj′ ,xk′)∈Ln
0√

n

2

(
P(

1√
n
Sn(tj−tj′ ) + xk = xk′)− P(

1√
n
Sn(tj−tj′ ) + xk = −xk′)

)
W(Rj′−1,k′)−

∫

Rj′−1,k′

1√
2π(tj − s)

(
e
− |xk−y|2

2(tj−s) − e
− |xk+y|2

2(tj−s)

)
W(ds, dy).
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Since E(V k
j − v(tj , xk)) = 0, for the variance we have

E[(V k
j − v(tj , xk))

2]

=

j∑

j′=1

∑

(tj′ ,xk′)∈Ln
0

∫

Rj′−1,k′

[
P( 1√

n
Sn(tj−tj′ ) + xk = xk′)− P( 1√

n
Sn(tj−tj′ ) + xk = −xk′)

2/
√
n

− 1√
2π(tj − s)

(
e
− |xk−y|2

2(tj−s) − e
− |xk+y|2

2(tj−s)

)]2
dy ds (6.26)

6.3.1 Convergence of the Euler Method

The main result of this subsection is the following,

Theorem 6.15. There exists γ > 0 and Γ > 0 such that

E[(v(tj , xk)− V j
k )

2] ≤ Γ

nγ
.

This rate will help us to prove the convergence of the Euler method.

Recall from (6.26) that

E[(V k
j − v(tj , xk))

2]

=

j∑

j′=1

∑

(tj′ ,xk′)∈Ln
0∫

Rj′−1,k′

[√
n

2

(
P

(
Sj−j′√
n

= xk′ − xk

)
− P

(
Sj−j′√
n

= −xk′ − xk

))

− 1√
2π(tj − s)

(
e
− |xk−y|2

2(tj−s) − e
− |xk+y|2

2(tj−s)

)]2
dy ds

We will decompose our sum over j’s into two sums:

j∑

j′=1

=
∑

j−j′<n1/3+α

+
∑

j−j′≥n1/3+α

(6.27)
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where α > 0 is some small positive number to be determined later.

∑

j−j′<n1/3+α

∑

(tj′ ,xk′)∈Ln
0∫

Rj′−1,k′

[√
n

2

(
P

(
Sj−j′√
n

= xk′ − xk

)
− P

(
Sj−j′√
n

= −xk′ − xk

))

− 1√
2π(tj − s)

(
e
− |xk−y|2

2(tj−s) − e
− |xk+y|2

2(tj−s)

)]2
dy ds. (6.28)

From the inequality (a+ b+ c+ d)2 ≤ 4a2 + 4b2 + 4c2 + 4d2, so we have that the sum (6.28)

is less than:

∑

j−j′<n1/3+α

∑

(tj′ ,xk′)∈Ln
0[

2√
n

(
P

(
Sj−j′√
n

= xk′ − xk

)2

+ P

(
Sj−j′√
n

= −xk′ − xk

)2
)

+

∫

Rj′−1,k′

2

π(tj − s)

(
e
− |xk−y|2

(tj−s) + e
− |xk+y|2

(tj−s)

)]
dy ds. (6.29)

It is not hard to see that using sub-additivity we have

∑

(tj′ ,xk′)∈Ln
0

P

(
Sj−j′√
n

= ±xk′ − xk

)2

≤
∑

(tj′ ,xk′)∈Ln
0

P

(
Sj−j′√
n

= ±xk′ − xk

)
≤ 1.

Therefore

∑

0≤j−j′<n1/3+α

∑

(tj′ ,xk′)∈Ln
0

[
2√
n

(
P

(
Sj−j′√
n

= xk′ − xk

)2

+ P

(
Sj−j′√
n

= −xk′ − xk

)2
)]

≤ 4√
n
n1/3+α = 4nα−1/6. (6.30)
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Further

∑

j−j′<n1/3+α

∑

(tj′ ,xk′)∈Ln
0

∫

Rj′−1,k′

2

π(tj − s)
e
− |xk±y|2

(tj−s) dy ds

=

∫ tj

tj∗

∫ ∞

0

2

π(tj − s)
e
− |xk±y|2

(tj−s) dy ds ≤
∫ tj

tj∗

∫ ∞

−∞

2

π(tj − s)
e
− |xk±y|2

(tj−s) dy ds

=

∫ tj

tj∗

2√
π(tj − s)

ds =
4√
π

√
tj − tj∗ =

8√
π

√
j − j∗

n
, (6.31)

where j∗ + 1 = min{j′ : j′ ≥ 1, 0 ≤ j − j′ ≤ n1/3+α}, so the sum (6.31) is less than

8√
π

√
n1/3+α + 1

n
=

8√
π

√
nα−2/3 + n−1. (6.32)

Hence, from (6.30) and (6.32) the sum (6.28) is bounded by

4nα−1/6 +
8√
π

√
nα−2/3 + n−1. (6.33)

In order to estimate
∑

j−j′≥nα+1/3 - part of the sum (6.27) we first need to do some

estimates on the gradient of the function

F (t, x) =
1√

2π(tj − t)
exp

(
−(xj − x)2

2(tj − t)

)

for (t, x) ∈ [0, tj)× R.

Lemma 6.16. (a) For fixed t < tj we have

sup
x∈R

‖∇t,xF (t, x)‖2 ≤ max

{
1

8π(tj − t)3
,

1

2e(tj − t)2
,
(1− (tj − t))e−3+4(tj−t)

2π(tj − t)3

}
. (6.34)

(b) For A > 0 there exists a constant CA (depending only on A) such that for 0 ≤ t < tj ≤ A

we have

sup
x∈R

‖∇t,xF (t, x)‖ ≤ CA

(tj − t)3/2
.

Proof. (a) By doing taking derivatives we have

D2(t, x) = ‖∇t,xF (t, x)‖2 = (∂tF (t, x))
2 + (∂xF (t, x))

2 =
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= exp(−(x− xk)
2

tj − t
)

[
1

8π

(
1

(tj − t)3/2
− (x− xk)

2

(tj − t)5/2

)2

+
1

2π
· (x− xk)

2

(tj − t)3

]

It is clear that limx→±∞D2(t, x) = 0, so there exists a maximum, and it is obtained at the

zeros of ∂x(D
2(t, x)) =

= −(x− xk)((x− xk)
2 − (tj − t))((x− xk)

2 − (3(tj − t)− 4(tj − t)2)

4π(tj − t)6
exp

(
−(x− xk)

2

tj − t

)
.

If we set x − xk = 0 we get D2(t, x) = (8π(tj − t)3)−1; for (x − xk)
2 = (tj − t) we have

D2(t, x) = (2e(tj − t)2)−1; for (x − xk)
2 = 3(tj − t) − 4(tj − t)2 (note that this may not be

solvable) we have D2(t, x) =
(1−(tj−t))e−3+4(tj−t)

2π(tj−t)3 . If we can solve the equation in the last case

then we have an equality in (6.34), otherwise we have an inequality.

(b) Since (t, tj) 7→ (1 − (tj − t))e−3+4(tj−t) obtains a maximum MA on the compact set

[0, A]2, we have

(tj − t)3 sup
x∈R

‖∇t,xF (t, x)‖2 ≤ max{ 1

8π
,

≤2A︷ ︸︸ ︷
tj − t

2e
,MA}.

�

Corollary 6.17. For 0 ≤ t < tj ≤ A and 0 < L ≤ U we have

sup
L≤tj−t≤U

sup
x∈R

‖∇t,xF (t, x)‖ ≤ CA

L3/2
.

We now have everything we need to estimate
∑

j−j′≥n1/3+α - part of the sum:

∑

j−j′≥n1/3+α

∑

(tj′ ,xk′)∈Ln
0∫

Rj′−1,k′

[√
n

2

(
P

(
Sj−j′√
n

= xk′ − xk

)
− P

(
Sj−j′√
n

= −xk′ − xk

))

− 1√
2π(tj − s)

(
e
− |xk−y|2

2(tj−s) − e
− |xk+y|2

2(tj−s)

)]2
dy ds (6.35)
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We first give an upper bound for

∣∣∣∣
√
n

2

(
P

(
Sj−j′√
n

= xk′ − xk

)
− P

(
Sj−j′√
n

= −xk′ − xk

))

− 1√
2π(tj − s)

(
e
− |xk−y|2

2(tj−s) − e
− |xk+y|2

2(tj−s)

)∣∣∣∣∣ (6.36)

where (s, y) ∈ Rj′−1,k′. By triangle inequality, expression (6.36) is less or equal to

∣∣∣∣∣

√
n

2
P

(
Sj−j′√
n

= xk′ − xk

)
− 1√

2π(tj − tj′)
e
− |xk−x

k′
|2

2(tj−t
j′

)

∣∣∣∣∣

+

∣∣∣∣∣−
√
n

2
P

(
Sj−j′√
n

= −xk′ − xk

)
+

1√
2π(tj − tj′)

e
− |xk+x

k′
|2

2(tj−t
j′

)

∣∣∣∣∣

+

∣∣∣∣∣
1√

2π(tj − tj′)
e
− |xk−x

k′
|2

2(tj−t
j′

) − 1√
2π(tj − s)

e
− |xk−y|2

2(tj−s)

∣∣∣∣∣

+

∣∣∣∣∣−
1√

2π(tj − tj′)
e
− |xk+xk′ |

2

2(tj−tj′ ) +
1√

2π(tj − s)
e
− |xk+y|2

2(tj−s)

∣∣∣∣∣ . (6.37)

The first two terms in (6.37), by Theorem 6.3, are less than C
n3α . By mean-value theorem,

the last two terms in (6.37) are less than

sup
(s,y)∈Rj′−1,k′

‖∇t,xF (s, y)‖
√
(tj − s)2 + (xk − y)2,

and by the definition of Rj′−1,k′ = [tj′−1, tj′]× [x(k′−1)∧0, xk′+1], this is less than

(
sup

tj−tj′≤tj−s≤tj−tj′−1

‖∇t,xF (s, y)‖
)√

(tj − s)2 + (xk − y)2 ≤ CA

(tj − tj′)3/2

√
1

n2
+

1

n

=
CA

(j − j′)3/2
√
n+ n2.
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Now, for j − j′ ≥ n1/3+α we have

∑

(tj′ ,xk′)∈Ln
0

∫

Rj′−1,k′

[√
n

2

(
P

(
Sj−j′√
n

= xk′ − xk

)
− P

(
Sj−j′√
n

= −xk′ − xk

))

− 1√
2π(tj − s)

(
e
− |xk−y|2

2(tj−s) − e
− |xk+y|2

2(tj−s)

)]2
dy ds

≤
(

CA

(j − j′)3/2
√
n+ n2 +

C

n3α

) ∑

(tj′ ,xk′)∈Ln
0∫

Rj′−1,k′

∣∣∣∣
√
n

2

(
P

(
Sj−j′√
n

= xk′ − xk

)
− P

(
Sj−j′√
n

= −xk′ − xk

))

− 1√
2π(tj − s)

(
e
− |xk−y|2

2(tj−s) − e
− |xk+y|2

2(tj−s)

)∣∣∣∣∣ dy ds (6.38)

First note, that we have

∑

(tj′ ,xk′)∈Ln
0

∫

Rj′−1,k′

∣∣∣∣
√
n

2
P

(
Sj−j′√
n

= ±xk′ − xk

)∣∣∣∣

≤1

n

∑

(tj′ ,xk′)∈Ln
0

P

(
Sj−j′√
n

= ±xk′ − xk

)
≤ 1

n
. (6.39)

Further,

∑

(tj′ ,xk′)∈Ln
0

∫

Rj′−1,k′

∣∣∣∣∣
1√

2π(tj − s)

(
e
− |xk−y|2

2(tj−s) − e
− |xk+y|2

2(tj−s)

)∣∣∣∣∣ dy ds

≤
∫ tj′

tj′−1

∫ ∞

0

∣∣∣∣∣
1√

2π(tj − s)

(
e
− |xk−y|2

2(tj−s) − e
− |xk+y|2

2(tj−s)

)∣∣∣∣∣ dy ds

≤
∫ tj′

tj′−1

∫ ∞

−∞

1√
2π(tj − s)

e
− |xk−y|2

2(tj−s) dy ds

=tj′ − tj′−1 =
1

n
. (6.40)

Using triangle inequality the expression (6.38) is bounded by

(
CA

(j − j′)3/2
√
n + n2 +

C

n3α

)
3

n
.
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Finally, the
∑

j−j′≥nα+1/3-part of the sum is less than

∑

j−j′≥nα+1/3

(
3CA

(j − j′)3/2

√
1

n
+ 1 +

3C

n3α+1

)
.

Since the sum goes over j′ with the property nα+1/3 ≤ j − j′ ≤ ⌊nA⌋ ≤ nA we have

≤
∫ ∞

nα+1/3−1

1

h3/2
dh+

3A

n3α
=

(nα+1/3 − 1)−1/2 +
3A

n3α
. (6.41)

Now, from (6.33) and the last bound we have that

E[(V k
j − v(tj, xk))

2] ≤ 4nα−1/6 +
8√
π

√
nα−2/3 + n−1 + (nα+1/3 − 1)−1/2 +

3

n3α

Set γ := min{1/6 − α, 3α}, where α > 0 such that γ > 0. Then there exists Γ > 0 (that

depends on γ) such that

E[(V k
j − v(tj, xk))

2] ≤ Γ

nγ
.

This discussion proves Theorem 6.15.

Now from Theorem 5.6 (inequality (5.10)) we know that

E[ sup
(tj ,xk)∈Ln

0∩K
|V k

j − v(tj, xk)|2] ≤ 2
Γ

nγ
ln(n3/2AB + 1). (6.42)

since |Ln
0 ∩K| ≤ ⌊nA⌋ ⌊√nB⌋ ≤ n3/2AB.

The following shows th convergence of the Euler method.

Corollary 6.18. Using the same notation as before we have,

sup
(tj ,xk)∈Ln

0∩K
|V k

j − v(tj , xk)| → 0 as n→ ∞ a.s. (6.43)

Further for β < γ/2,

nβ sup
(tj ,xk)∈Ln

0∩K
|V k

j − v(tj , xk)| → 0 as n→ ∞ a.s.
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Proof. Since {V k
j − v(tj, xk) : (tj , xk) ∈ Ln

0 ∩K} is a family of Gaussian random variables,

by Theorem 5.9 the inequality (6.42) implies (6.43).

The second inequality follows from the fact that for every ε ∈ (0, γ) there exists C > 0

such that
Γ

nγ
ln(n3/2AB) ≤ C

nγ−ε .

By using Corollary 5.10. we get the desired result. �

6.4 Convergence of interpolation of the Euler method

We know the values V k
j at (tj , xk) ∈ Ln

0 and we want to approximate the solutions to the

heat equation on the rest of the plane.

We are doing the interpolation in the following way:

• We do a linear interpolation between points (tj , xk) and (tj+1, xk+1) for all (tj , xk) ∈ Ln
0 .

• We do a linear interpolation between points (tj , xk) and (tj−1, xk+1) whenever (tj, xk),

(tj−1, xk+1) ∈ Ln
0 .

• We set all values on x and y axis to be 0.

• Finally, each point (t, x) is linearly approximated by the values (t, x−) and (t, x+) the

closest points previously defined with respect to the x-coordinate.

In this way we obtain the approximation Vn(t, x) of the stochastic heat equation on R2
+,

and we want to show convergence to u on compact sets, where

v(t, x) =

∫ t

0

1√
2π(t− s)

∫

R+

(
e
− |x−y|2

2(t−s) − e
− |x+y|2

2(t−s)

)
W(ds, dy). (6.44)

We will show that for a compact set K ⊂ R2
+ we have

sup
(t,x)∈K

|Vn(t, x)− v(t, x)| → 0.
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(t, x)
(t, x−) (t, x+)

Figure 6.3: Interpolation

Theorem 6.19. For a compact set K ⊂ R2
+ we have

lim
n→∞

sup
(t,x)∈K

|Vn(t, x)− v(t, x)| = 0 a.s.

Proof. Pick K, and then pick Kab = [0, a]× [0, b], such that

sup{x : (t, x) ∈ K} < a,

and

sup{t : (t, x) ∈ K} < b.

For large n, the points Ln
0 ∩Kab will be enough to calculate the value of Vn for all points on

K.

Vn at point (t, x) can be written as a convex combination of the values of the four points

in Ln
0 that make the rhombus in which the point is. Therefore

Vn(t, x) = α1V
k
j + α2V

k+2
j + α3V

k+1
j+1 + α4V

k+1
j−1 ,

where α1 + α2 + α3 + α4 = 1 (one or more of αi’s will be 0).
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Now,

Vn(t, x)− v(t, x) = α1(V
k
j − v(tj , xk)) + α2(V

k+2
j − v(tj, xk+2)) + α3(V

k+1
j+1 − v(tj, xk+2))

+ α4(V
k+1
j−1 − v(tj−1, xk+1))

+ α1(v(tj , xk)− v(t, x)) + α2(v(tj, xk+2)− v(t, x))

+ α3(v(tj , xk+2)− v(t, x)) + α4(v(tj−1, xk+1)− v(t, x)).

Not that v is a continuous function, and Kab a compact set. Therefore, u is uniformly

continuous on Kab. The distance between (t, x) and points (tj, xk), (tj−1, xk+1), (tj+1, xk+1)

and (tj , xk+2) goes to 0 uniformly. So, by uniform continuity for any ε > 0 we have |v(t∗, x∗)−
v(t, x)| < ε, when the distance between (t∗, x∗) and (t, x) is less than some δ.

Hence, for a large n

sup
(t,x)∈K

|Vn(t, x)− v(t, x)| ≤ sup
Ln
0∩Kab

|V k
j − v(tj, xk)|+ ε.

When n→ ∞ we have, by (6.43)

lim sup
n→∞

sup
(t,x)∈K

|Vn(t, x)− v(t, x)| ≤ ε.

Finally, since ε is an arbitrary positive number, the claim follows. �

We have shown that the Euler method converges uniformly on compact subsets R2
+ to

the stochastic heat equation.

Proposition 6.20. For each n let (En
jk) be an i.i.d. sequence of N(0, 1√

2n
), and

Y j+1
k =

1

2
(Y j

k+1 + Y j
k−1) + Ejk, j ≥ 0, k ≥ 1,

with Y 0
k = 0 and Y j

0 = 0. Then the described interpolation Ỹn(t, x) converges in distribution

to the solution of the stochastic heat equation




vt =
1
2
vxx +W

v(0, ·) = 0, v(·, 0) = 0
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6.4.1 Euler method with weaker noise

We finish the study of Euler method by looking at the case when the noise is weak, so that

in the limit it has no effect. What happens if En
jk would be distributed as N(0, 1√

2n1/2+α )

in Proposition 6.20? If we have noise with slightly lower variance, would we still have

convergence. It turns out we would and that convergence would be to 0.

Lemma 6.21. Let α > 0. For each n let (En
jk : k ≡ j + 1 (mod 2)) be an i.i.d. sequence of

N(0, 1√
2n1/2+α ), and

Y j+1
k =

1

2
(Y j

k+1 + Y j
k−1) + Ejk, j ≥ 0, k ≥ 1, (6.45)

with Y 0
k = 0 and Y j

0 = 0. Then for all 0 < a < 1 + 2α,b > 0 and A,B > 0 there exist Γ > 0

and γ > 0

such that

E

[
sup

j≤Ana,k≤Bnb

|Y j
k |2
]
≤ Γ

nγ
. (6.46)

Proof. It can be shown that

Y j
k =

j∑

j′=1

k+j∑

k′=1

(P(Sj−j′ = k′ − k)− P(Sj−j′ = −k − k′))En
j′−1,k′

is a solution to (6.45), where (Sj) is a simple random walk. From the fact that En
jk are i.i.d.

we have

E(Y j
k )

2 =

j∑

j′=1

k+j∑

k′=1

(P(Sj−j′ = k′ − k)− P(Sj−j′ = −k − k′))2
1√

2n1/2+α
.

Since |k′−k| < |k′+k|, we have 0 ≤ P(Sj−j′ = k′−k)−P(Sj−j′ = −k−k′) ≤ P(Sj−j′ = k′−k),
and so

E(Y j
k )

2 ≤
j∑

j′=1

k+j∑

k′=1

P(Sj−j′ = k′ − k)2
1√

2n1/2+α
.



148

Now, it follows from the properties of the random walk that

P(Sj−j′ = k′ − k)2 = P(S2(j−j′) − S(j−j′) = −(k′ − k))P(Sj−j′ = k′ − k) =

= P(S2(j−j′) − S(j−j′) = −(k′ − k), Sj−j′ = k′ − k) = P(S2(j−j′) = 0, Sj−j′ = k′ − k).

Furthermore,

k+j∑

k′=1

P(Sj−j′ = k′ − k)2 =

k+j∑

k′=1

P(S2(j−j′) = 0, Sj−j′ = k′ − k)

≤
∑

k′

P(S2(j−j′) = 0, Sj−j′ = k′ − k) = P(S2(j−j′) = 0).

If j ≤ Ana by Stirling’s formula we have

E(Y j
k )

2 ≤ 1√
2n1/2+α

Ana∑

j′=1

P(S2(j−j′) = 0) ∼ 1√
2n1/2+α

Ana∑

j′=1

1√
πj
.

The last sum can be bounded by 1 +
∫ Ana

1
1√
t
dt = 2

√
Ana. Hence, there exists C > 0 such

that

E(Y j
k )

2 ≤ C
2
√
Ana

√
2n1/2+α

=
C
√
2A

n1/2+α−a/2 .

Now, by (5.10) we have

E

[
sup

j≤Ana,k≤Bnb

|Yjk|2
]
≤ C

√
2A

n1/2+α−a/2 ln(ABn
ab + 1).

Now, for any γ ∈ (0, 1/2 + α− a/2) there exists Γ such that (6.46) holds. �

Proposition 6.22. Let Y j
k be as in the previous Lemma. tj = jn−1 and xk = k

n1/2+α , and

set Ln
0 = {(tj , xk) : k ≡ j (mod 2)}, if we define Vn(tj , xk) for (tj , xk) ∈ Ln

0 to have a value

Y j
k , and do the interpolation described in §6.4, Vn converges in distribution to 0.

Proof. Let K be a compact set, there exists A > 0, B > 0 such that K ⊂ [0, A]× [0, B], the

value max(t,x)∈K Vn(t, x) is obtained at some point Ln
0 ∩ [0, A] × [0, B]. Now, from Lemma

6.21. and Theorem 5.11. the claim follows. �
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6.5 Euler method with initial value condition and no external noise

We saw what happens with Euler scheme when the external source is replaced by noise.

In this section we shortly comment what happens with the Euler scheme for the heat

equation with no external force and a non-zero initial value function:

W j+1
k =

1

2
(W j

k+1 +W j
k−1), k ≥ 1, j ≥ 0 (6.47)

We will work with the case when W j
0 = 0 and W 0

k = g(xk).

In order to simplify our work we will set W 0
−k := −W 0

k . In this way we don’t have to

think about the boundary condition W j
0 = 0, because it is easy to show that the scheme





W j+1
k = 1

2
(W j

k+1 +W j
k−1), k ∈ Z, j ≥ 0

W 0
k = g̃(xk) k ∈ Z.

(6.48)

Where g̃(x) = g(x) for x ≥ 0 and g̃(x) = −g(−x) for x ≤ 0.

With this setup the following lemma holds.

Lemma 6.23. For the scheme given by (6.48) we have

W j
k = E

[
g̃

(
Sj√
n
+

k√
n

)]
.

Under some mild properties on g̃ we have that the Euler method converges to the heat

equation





∂tw = ∂xxw on R× (0,∞),

w(x, 0) = g̃(x) x ∈ R.

(6.49)

It is well-known that u restricted to R+ × (0,∞) is the solution to




∂tw = ∂xxw on R× (0,∞),

w(x, 0) = g(x) x ∈ R,

w(0, t) = 0 t ≥ 0.

(6.50)
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Lemma 6.24. If g : R+ → R is continuous and we have

lim sup
x→∞

|g(x)|
|x| <∞, (6.51)

then for a compact set K ⊂ R+ × [0,∞) we have

lim
n→∞

sup
(xk,tj)∈Ln

0∩K
|w(xk, tj)−W j

k | = 0,

where W j
k is the solution to (6.47) and w to (6.50).

Proof. First, note that there exists L,C > 0 such that

|g(x)|2 ≤ L|x|2 + C.

Further we have |g̃(x)|2 ≤ L|x|2 + C, and now for any a < b we have

sup
r∈[a,b]

|g̃(x+ r)|2 ≤ 2Lmax{|a|2, |b|2}+ 2L|x|2 + C = 2Lmax{|a|2, |b|2}+ C +

∫ |x|

0

4Ly dy,

for all x. Also, we have ∫ ∞

0

Lye−
y2

2τ dy <∞

for all τ > 0. For a compact set K ⊂ R × [0,∞),there exists τ > 0 and a < b such that

K ⊂ [a, b]× [0, τ), hence Theorem 6.13 implies that

lim
n→∞

sup
(xk,tj)∈Ln

0∩K
|W j

k − w(xj, tj)| = 0.

Where W j
k is the solution to (6.48) and w to (6.50).

It is now clear that the result follows. �

We can interpolate {W j
k : (xk, tj) ∈ Ln

0} as in sections 6.4 and 7.2 to obtain a function

Wn(x, t). The following can be shown using the same techniques.

Theorem 6.25. Let Wn be the interpolation described in 6.4 of the Euler method, and w

the solution to the equation (6.50) where g satisfies (6.51). Then we have

lim
n→∞

Wn = w,

uniformly on compact sets.
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Corollary 6.26. If we set g(x) = B(x) where (B(x) : x ≥ 0) is Brownian motion, then for

Wn be the described interpolation of the Euler method, and w the solution to the equation

(6.50) we get

lim
n→∞

Wn = w,

uniformly on compact sets almost surely.

Proof. Follows from the strong law of large numbers for the Brownian motion since

lim
x→∞

|B(x)|
|x| = 0 a.s.

Now we can apply Lemma 6.24, and all the results after. �
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Chapter 7

LIMIT OF THE NATURAL BROWNIAN MOTION ON A

RHOMBUS GRID

7.1 Natural Brownian motion on a rhombus grid

We will investigate the process on a rhombus grid where the ratio of diagonals depends on

n. A natural question is what happens when n→ ∞.

x
n−1

n−1/2−α

t

Figure 7.1: α-rhombus grid

Definition 7.1. We will call the TLG∗ G the (α, n)-rhombus grid if the plane is divided into

congruent rhombuses, diagonals of which are parallel to the x and t axis, the length of the

half-diagonal parallel to x is 1
n
and the length of the half-diagonal parallel to t is 1

n1/2+α , and

there is a rhombus that has vertex (0, 0). (See Figure 7.1.)
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Remark. In our representation the vertices are represented by the set, where tj = jn−1/2−α

and xk = k/n:

Lα,n
0 = {(tj, xk) : k, j ≥ 0, j ≡ k (mod 2)}

Using Theorem 2.24. we construct a natural two-sided Brownian motion Xα,n on this

grid. Recall, that if (W1(t) : t ≥ 0) and (W2(t) : t ≥ 0) are two independent Brownian

motions, then

B(t) :=





W1(t), t ≥ 0

W2(−t), t < 0

is a two-sided Brownian motion. It is not hard to check that this is a Markov process on

T = R. Further, covariance of this process is

CB(t, s) =
1

2
(|t|+ |s| − |t− s|).

The following result will be useful.

Lemma 7.2. The processes (Xα,n(t̄) : t ≥ 0) and (Xα,n(t̄) : t ≤ 0) are independent.

Proof. Let Y +
α,n be a natural P+-Markovian process on a (α, n)-grid, where P+ is the distri-

bution of

B0
+(t) :=





W1(t), t ≥ 0

0, t < 0

.

In the same way we can construct Y −α,n as a natural P−-Markovian process on a (α, n)-grid,

where P− is the distribution of

B0
−(t) :=





0, t ≥ 0

W2(−t), t < 0

.

We can construct Y +
α,n and Y −α,n such that they are independent and on the same space and

using the same TLG∗-towers. Then, it is not hard to see that Y +
α,n+Y

−
α,n in each member of a

TLG∗-tower has the same distribution as Xα,n on this TLG∗. Therefore, the distribution of
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Xα,n and Y
+
α,n+Y

−
α,n are the same by Theorem 2.24. Furthermore, ((Xα,n(t̄) : t ≥ 0), (Xα,n(t̄) :

t ≤ 0)) are distributed as (Y +
α,n, Y

−
α,n). �

Due to the last lemma, we can focus on what happens with the process Xα,n(x, t) for

t ≥ 0.

The final distribution of the process, by Theorem 2.24. doesn’t depend on the way we

construct the process. We fix a construction that we will refer to.

For our construction we need:

• two-sided Brownian motion (B(t) : t ∈ R);

• for j 6= −1, k ∈ Z: (Bbr
jk(t) : t ∈ [tj , tj+2]) be a collection of Brownian bridges (n ∈ N);

• for j = −1, k ∈ Z: (Bbr
jk−(t) : t ∈ [tj , tj+1]), (B

br
jk+(t) : t ∈ [tj+1, tj+2]) be a collection of

Brownian bridges (n ∈ N);

all of these things are independent.

Step 0 We run the two-sided Brownian motion on the time-path σ that is going through

(−∞,∞)× [0, 1
n
] (this will be our spine), that is we define Xσ(t) = B(t). (See Figure

7.2.)

Step 1 Now if we defined the process at points (tj , xk) and (tj+2, xk) then we define the

process on the time-path π+ (if xk > 0) (tj , xk)− (tj+1, xk+1)− (tj+2, xk) or time-path

π− (tj, xk)− (tj−1, xk−1)− (tj+2, xk) (if xk ≤ 0) by setting Xπ± to be:

• if j = −1 two Brownian bridges (on the intervals [tj , tj+1] and [tj+1, tj+2], where

the value of the process at tj is Xα,n(tj, xk), tj+1 is 0 and tj+2 is Xα,n(tj+2, xk);

• a Brownian bridge at times tj and tj+2 between valuesXα,n(tj, xk) andXα,n(tj+2, xk).
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x

t
0

1/n
σ

Figure 7.2:

(tj, xk) (tj+2, xk)

(tj+1, xk+1)

Specially, if the path if tj ≥ 0 then Xπ± will be of the form

Xπ±(t) :=
tj+2 − t

tj+2 − tj
Xα,n(tj, xk) +

t− tj
tj+2 − tj

Xα,n(tj+2, xk) +Bbr
jk(t) (7.1)

where Bbr
jk is a Brownian bridge that has value 0 at times tj and tj+2, and independent

of the other Brownian bridges.

If j = −1 (tj+1 = 0), then Xπ± on [tj+1, tj+2] is equal

Xπ±(t) :=
t

tj+2
Xα,n(tj+2, xk) +Bbr

jk+(t) (7.2)

where Bbr±
jk (t) is a Brownian bridge with value 0 at times tj+1 and tj+2.
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Step 2 We repeat Step 1 in such a way that at every point in Lα,n
0 the process will be

eventually defined.

Remark.Along every path from −∞ to +∞ we have a two-sided Brownian motion.

Having in mind Lemma 7.2, we will focus our attention to the process Xα,n defined in the

first quadrant. The convergence of the process in other quadrants can be shown in a similar

way.

The most important thing to note from the construction of the process, that if from the

equation (7.1) is that when we set t = tj+1 we get:

Xα,n(tj+1, xk+1) =
1

2
Xα,n(tj , xk) +

1

2
Xα,n(tj+2, xk) + Ej+1,k+1, (7.3)

where

Ej+1,k+1 = Bbr
jk(tj+1)

d
= N(0, 2−1/2n−1/2−α),

for j ≥ 0, k ≥ 1 such that (tj , xk) ∈ Lα,n. This is a form of the discrete stochastic heat

equation (see [38]) with random external source.

We discussed the convergence of these equations in Chapter 6 (see §6.3), that is what

happens when n→ ∞.

7.1.1 Interpolation

Now our process is defined on the representation of the whole (α, n)-rhombus grid, and we

will extend the definition of the process on the whole plane (see Figure 7.3):

• Xα,n(0, x) = 0 (the process on the x-axis is 0);

• by interpolation we will extend the definition of our process on the whole plane:

Xα,n(t, x) :=
t+ − t

t+ − t−
Xα,n(t−, x) +

t− t−
t+ − t−

Xα,n(t+, x),

where (t+, x) and (t−, x) are points on the representation of the graph or on the x-axis

that are the closest to (t, x).
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0

(t, x)
(t−, x) (t+, x)

(t, x)
(t−, x) (t+, x)

Figure 7.3: Interpolation of the process

In further text we will denote the interpolated process as (Yα,n(t, x) : t ∈ R, x ∈ R). Note

that this is a continuous Gaussian process on R2.

We will study two cases α = 0 and α > 0, and how does Yα,n behaves as n→ ∞.

7.2 Network of Brownian bridges

The final result that we need to show that the Brownian motion on a rhombus grid converges

is the fact that a network of Brownian bridges will converge to 0 on compact sets.

Theorem 7.3. Let K be a compact subset of R2
+, then

Zn(K) = sup{max |Bbr
jk(+)| : (tj , xk) ∈ K} L2

→ 0.

Proof. Pick K, and then pick Kab = [0, a]× [0, b], such that

sup{x : (t, x) ∈ K} < a,

and

sup{t : (t, x) ∈ K} < b.
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For each point in Ln
0 there are at most 2 bridges going out of this point (in the direction of

time). Hence on Kab there are at most an1/2+α · bn = abn3/2+α such bridges. The bridges on

Kab define the Zn on K. We have at most abn3/2+α on intervals of length [0, n−
1
2
−α]. Hence,

by Corollary 5.3 (inequality (5.6)) and the fact that for (Bbr(t) : t ∈ [0, 1]) Brownian bridge

on [0, 1] (n−
1
4
−α/2Bbr(n1/2+αt) : t ∈ [0, n−1/2−α]) is the Brownian bridge on [0, n−1/2−α], the

second moment of their maximum is bounded by

1

2n
1
2
+α

ln(abn3/2+α + 1). (7.4)

Since the maximum is obtained in the points where the Brownian bridges have been defined,

the claim follows. �

From the rate of convergence in (7.4), and Theorem 5.11 we get the following result.

Corollary 7.4. Let K be a compact subset of R2
+, then

lim
n→∞

Zn(K) = 0 a.s. (7.5)

Further, for β < 1
4
+ α/2 we have

lim
n→∞

nβZn(K) = 0

.

7.3 The main result

The process that we will be more interested is the interpolation (similar to the one described

in §7.1.1) between values of Xα,n at points in Lα,n ∩ R2
+:

• Xα,n(0, x) = 0 (the process on the x-axis is 0);

• (tj, xk) and (tj+1, xk±1) we interpolate between the values at these points;
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• by interpolation we will extend the definition of our process on the whole plane:

Xα,n(t, x) :=
t+ − t

t+ − t−
Xα,n(t−, x) +

t− t−
t+ − t−

Xα,n(t+, x), (7.6)

where (t+, x) and (t−, x) are points on the representation of the graph or on the x-axis

that are the closest to (t, x).

We will call this process Ỹα,n.

From the construction of Yα,n and Ỹα,n it is not hard to see that for each rhombus ♦ the

value

max
(t,x)∈♦

|Ỹα,n(t, x)− Yα,n(t, x)|,

due to linear interpolation, is obtained on ∂♦. That means we can focus on the process

|Ỹα,n(t, x)− Yα,n(t, x)| on the representation of the (α, n)-rhombus grid.

Lemma 7.5. The process on the path (tj , xk)− (tj+1, xk±1)− (tj+1, xk+1) is bounded by

|Ỹα,n(t, x)− Yα,n(t, x)| ≤ 2 max
t∈[tj ,tj+2]

|Bbr
jk(t)|

Proof. From (7.6) and (7.3) we have:

Yα,n(t, x) =
tj+2 − t

tj+2 − tj
Xα,n(tj , xk) +

t− tj
tj+2 − tj

Xα,n(tj+2, xk) +Bbr
jk(t)

Ỹα,n(t, x) =
tj+2 − t

tj+2 − tj
Xα,n(tj , xk) +

t− tj
tj+2 − tj

Xα,n(tj+2, xk) + α(t)Ej+1,k+1,

where |α(t)| < 1 obtained by interpolation between values at points (tj , xk) and (tj+1, xk+1)

(if t ∈ [tj , tj+1]) or (tj+1, xk+1) or (tj+2, xk) (for t ∈ [tj+1, tj+2]). Since Ej+1,k+1 = Bjk(tj+1),

the claim follows. �

Lemma 7.6. For a compact set K ⊂ R2
+ we have

sup
(t,x)∈K

|Ỹα,n(t, x)− Yα,n(t, x)| → 0, a.s.
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Proof. There exists a compact set K̂ such that all the rhombi whose interior intersects K,

are contained in K̂. Now,

sup
(t,x)∈K

|Ỹα,n(t, x)− Yα,n(t, x)| ≤ Zn(K̂),

and by Corollary 7.4. the claim follows. �

Proposition 7.7. The process (Ỹα,n(t, x) : (t, x) ∈ R2
+) converges to u, where u is the

solution to the stochastic heat equation

∂xu =






1
2
∂ttu+W α = 0,

0 α > 0,
on R2

+,

u(0, t) = B(t) for t ∈ R.

u(x, 0) = 0 for x ∈ R.

Proof. We will write the process Ỹα,n = Ỹ 1
α,n + Ỹ 2

α,n, where

Ỹ 1
α,n(tj+1, xk+1) =

1
2
Ỹ 1
α,n(tj , xk) +

1
2
Ỹ 1
α,n(tj+2, xk) + Ej+1,k+1

Ỹ 1
α,n(0, xk) = 0, Ỹ 1

α,n(tj, 0) = 0

Ỹ 2
α,n(tj+1, xk+1) =

1
2
Ỹ 2
α,n(tj, xk) +

1
2
Ỹ 2
α,n(tj+2, xk)

Ỹ 2
α,n(0, xk) = 0, Ỹ 2

α,n(tj, 0) = B(tj)

Now, by Propositions 6.20. and 6.22. Ỹ 1 d→ u1 where




u1x =





1
2
u1tt +W α = 0

0 α > 0

u1(0, ·) = 0, u1(·, 0) = 0

.

By Corollary 6.26. Ỹ 2 d→ u2 where





u2x =





1
2
u2tt α = 0

0 α > 0

u2(0, ·) = 0, u2(·, 0) = B(·)
.

Since u = u1 + u2, the claim follows. �



161

Therefore by previous results we have the following theorem.

Theorem 7.8. Yα,n the interpolated natural two-sided Brownian motion on the (α, n)-rhombus

lattice converges in distribution to u as n→ ∞, where u is the solution to following stochastic

heat equation

∂xu =






1
2
∂ttu+W α = 0,

0 α > 0,
on (R \ {0})2,

u(0, t) = B(t) for t ∈ R.

u(x, 0) = 0 for x ∈ R.

(7.7)

and t 7→ B(t) is a two-sided Brownian motion independent of (W(A) : A ∈ B(R2)).

Proof. We will show the claim on R2
+, the other quadrants are shown in the same way. From

Yα,n = Ỹα,n+(Yα,n− Ỹα,n), Proposition 7.7. and Lemma 7.6. we have Yα,n
d→ u+0 = u. �
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Part III

PROCESSES ON GENERAL AND RANDOM TIME-LIKE

GRAPHS

The TLG’s defined so far (see Chapter 1) have only one beginning and one end (usually

denoted by 0 and 1).

In applications and theory of classical graphical models an important role belongs to

processes indexed by trees. This includes one of the most widely used models - hidden

Markov model.

h e l l o

Hidden Markov model in image (letter) analysis.

Hidden Markov model is also a collection of Markov processes combined together. (See

for example §6.2.3.1 in [35].)

Another model that is of wide interest is the branching Brownian motion. This is a

similar model, but underlying graph is a random tree.

Having this in mind, it is natural to ask can we have more than one beginning and more

than one end. Could we define a process indexed by a TLG with a structure of a tree?

We will show that this can be so in Chapter 9, and that there is a natural embedding into

the existing family of TLG’s. This embedding will help us define processes on a generalized

family of TLG∗’s in Chapter 9.
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Later, in Chapter 10. we will be able to randomize the underlying graph, and see how it

is connected to the branching Markov processes.
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Chapter 8

NON-SIMPLE TLG’S

8.1 New definitions

The TLG’s defined in Chapter 1, from now on, we will call simple TLG’s.

Definition 8.1. A graph G = (V, E) will be called a time-like graph (TLG) if its sets of

vertices V and edges E satisfy the following properties.

(i) Let A,B > 0. The set V contains at least two elements, V = {t0, t1, . . . , tN}, where for

k = 1, 2, . . . , N − 1,

A ≤ tk ≤ tk+1 ≤ B.

(ii) An edge between tj and tk will be denoted Ejk. We assume that there is no edge

between tj and tk if tj = tk. Ejk indicates that tj < tk. (We use E1
jk, E

2
jk,. . . if there is

more than one edge connecting tk and tj .)

(iii) We assume that all vertices have a finite non-zero degree.

We will call G the unit TLG if A = 0 and B = 1.

Remarks.

(a) Notice that in the new definition there are no longer unique vertices with times A and

B.

(b) We dropped part (iv) of the original definition and added an assumption in (iii) that all

vertices are of non-zero degree.
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(c) Notice, that this definition no longer guaranties that the graph is connected. (See Figure

8.1.)

Again, as in Chapter 1, we will restrict our attention to unit TLG’s and prove all the

claims for them.

tk
tj

Figure 8.1: TLG G with entrance vertex tk and exit vertex tj

Definition 8.2. (a) A vertex tk that is not connected to any other vertex with time less

than tk will be called an entrance (vertex). We will denote the set of entrance vertices

by En(G).

(b) A vertex tj that is not connected to any other vertex with time greater than tk will be

called an exit (vertex). We will denote the set of exit vertices by Ex(G).

The definitions of the representation, time-paths, (simple) cells remain the same as

before (see Definitions 1.2, 1.3, 1.4).

We no longer have the full-time path as in the case of simple TLG’s but instead we define

the full path.

Definition 8.3. A time-path σ is called a full path if it starts with an entrance vertex

and ends with an exit vertex. We denote the set of full paths by P (G), while the full paths

starting at tk ∈ En(G) and ending at tj ∈ Ex(G) we will denote by Ptk→tj (G).
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Remark. Note that it can be Ptk→tj (G) = ∅ (see Figure 8.1.) and further

P (G) =
⋃

tk∈En(G)

⋃

tj∈Ex(G)
Ptk→tj (G).

8.2 Embedding TLG’s into simple TLG’s

Although it seems that TLG’s are much more general objects than simple TLG’s, there is

a natural embedding that will enable us to use most of the results that we had for simple

TLG’s. As a result we will be able to construct processes under similar conditions as we did

on simple TLG’s.

Minimal embedding

The first embedding will use the minimal number of edges to embed the (unit) TLG into a

simple TLG.

Procedure is the following:

Let G = (V, E) be a TLG.

• Set t−∞ = −1, t∞ = 2.

• For all tk ∈ En(G) we denote E−∞k and edge between t−∞ and tk, and for all tj ∈ Ex(G)
we denote Ej∞ and edge between tj and t∞.

• Set

V# = V ∪ {t−∞, t∞},

and

E# = E ∪ {E−∞k : tk ∈ En(G)} ∪ {Ej∞ : tj ∈ Ex(G)}.

The transformation that defines the embedding has some nice properties.
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−1 20 1

Figure 8.2: Minimal embedding of the TLG G (from Figure 8.1) into a simple TLG.

Proposition 8.4. The following claims hold:

(i) G ′ is a simple TLG.

(ii) G 7→ G ′ is an injective map.

(iii) G 7→ G ′ preserves the connectedness by time-paths.

(iv) G 7→ G ′ preserves the order induced by G and G ′, i.e.

t
G≺ s ⇔ t′

G′≺ s′

.

Proof. (i) Follows form Definition 1.1. (ii) If we have G ′, we can delete the edges connected

to t−∞ and t+∞ and get G. (iii) From the definition of the mapping it is clear that if t and s

are connected by time-path then t′ and s′ will also be connected. If t and s are not connected

by a time-path neither will t′ and s′ be connected by a time path, since all the new edges

added include vertices 0 and 1 in G ′. (iv) This follows from (iii) and the the fact that time

remains the same. �

Maximal embedding

The embedding will add a number of edges to embed the TLG into a simple TLG.
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Procedure is the following:

Let G = (V, E) be a TLG.

• Set t−∞ = −1, t∞ = 2.

• For all tk ∈ V we denote E−∞k and edge between t−∞ and tk, and Ek∞ an edge between

tk and t∞.

• Set

V# = V ∪ {t−∞, t∞},

and

E# = E ∪ {E−∞k, Ek∞ : tk ∈ V}

−1 20 1

Figure 8.3: Maximal embedding of the TLG G (from Figure 8.1) into a simple TLG.

The transformation that defines the embedding has some nice properties.

Proposition 8.5. The following claims hold:

(i) G ′′ is a simple TLG.

(ii) G 7→ G ′′ is an injective map.

(iii) G 7→ G ′′ preserves the connectedness by time-paths.
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(iv) G 7→ G ′′ preserves the order induced by G and G ′, i.e.

t
G≺ s ⇔ t′′

G′′≺ s′′

.

Remark on the embeddings

We will use both embeddings of a TLG G for several reasons. It is easier to draw and see

properties of G ′ than of G ′′. On the other hand, for the many of the proofs that we have to

do G ′′ will be much better to use.

Proof. The proof is similar to the proof of Proposition 8.4. �

8.3 TLG∗∗ family

As we have already seen in §3.4.2 we might have problems to define a process with natural

properties on some TLG’s. In this section we introduce the family TLG∗∗, similar to the

family TLG∗ that we had defined for simple TLG’s.

We will describe the family of TLG graphs that is generated from a minimal graph by

adding vertices, adding edges between vertices connected by a time-path and adding edges

between a new vertex and a vertex already on the graph.

Definition 8.6. The TLG∗∗-family is given in the following inductive way.

(i) The minimal graph G = (V, E), with V = {t0, tN} (t0 < tN ) and E = {E0N} is a TLG∗∗.

t0 t1E01

Figure 8.4: A minimal graph

(ii) Let G1 = (V1, E1) be a TLG∗, where V1 = {t0, t2, . . . , tN}.
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(1) If τk ∈ [0, 1] (not a vertex), and for some Ek1k2 ∈ E and tk1 < τk < tk2 then set

V2 := V1 ∪ {τk} and E2 := E1 ∪ {Ek1k, Ekk2} \ {Ek1k2}.

G2 := (V2, E2) is also a TLG∗∗.

tk1tk1
tk2

tk2

τkEk1k2

Ek1k Ekk2

Figure 8.5: Adding a vertex

(2) If τk ∈ [0, 1] (not a vertex), and for some τk < tk2 then set

V2 := V1 ∪ {τk} and E2 := E1 ∪ {Ekk2}.

G2 := (V2, E2) is also a TLG∗∗.

tk2

τk

Ekk2

tk1

τk

Ek1k

Figure 8.6: Adding the edge and the vertex

(3) If τk ∈ [0, 1] (not a vertex), and for some tk1 < τk then set

V2 := V1 ∪ {τk} and E2 := E1 ∪ {Ek1k}.

G2 := (V2, E2) is also a TLG∗∗.

(4) Let tj, tk ∈ V1 such that tj < tk, and assume that there exists a time-path

σ(j, . . . , k) between these vertices. Then set

V2 := V1 and E2 := E1 ∪ {E∗jk}.

G2 := (V2, E2) is also a TLG∗∗. (E∗jk is an new edge (not in E1).)
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Figure 8.7: Adding the edge E∗jk

(iii) If G1 = (V1, E1) and G2 = (V2, E2) are two disjoint TLG∗∗ their union is also a a TLG∗∗.

(iv) We will say that (Gj)1≤j≤k is a tower of TLG∗∗’s if for j > 1, Gj is constructed from

Gj−1 as in (ii).

Remarks. (1) Applying only the procedure in (ii) will clearly give us a a connected TLG∗∗.

(2) Any connected component of a TLG∗∗ can be obtained only by using step (ii). (3) It can

be easily seen that a TLG∗∗ is a TLG. (4) It is clear that a TLG∗ is a TLG∗∗.

Lemma 8.7. Let G be a TLG. If G ′′ is a TLG∗ then G is a TLG∗∗.

Proof. If G ′′ is a TLG∗, then there exists a TLG∗-tower (Hj)
n
j=0 such that Hn = G ′′ and H0

contains an edge in G. Now, we construct a TLG∗∗-tower (Gj)
mn
j=0 from the tower (H)nj=0. Let

G0 be the minimal graph that is contained in R(H0). If Hj is obtained by Hj−1 by

• adding a new vertex, then let Gj be obtained from Gj−1 by adding a new vertex (step

(1));

• adding a new edge contained in R(G), then let Gj be obtained from Gj−1 by adding a

new edge (step (4));

• adding a new edge partially contained in R(G), then let Gj be obtained from Gj−1 by

adding a new edge with a new vertex (steps (2) or (3));

• adding a new edge not contained in R(G), then let Gj = Gj−1.
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Let’s assume that (Gj) doesn’t have repeating TLG’s. In order to show that it is a TLG∗∗-

tower, we need to check that each time we add an edge (step (4)) the two endpoints are

connected. This is clear from the fact that one endpoint of all other edges in Hj not in Gj

is in the set {t−∞, t+∞}. So the two points on Gj are connected by a time path in Hj only

if they are connected by a time path in Gj . �

Theorem 8.8. Let G be a TLG, then G is a TLG∗∗ if and only if its embedding G ′′ is a

TLG∗.

Proof. Let n be the number of vertices and edges of G. For n = 3 we have a minimal graph

and the claim is clear. Let’s assume that the claim holds for n ≥ 3, and show that the claim

is true for n+ 1.

(⇒): Let G# be a TLG∗∗ such that we can construct G using steps (1)−(4) from Definition

8.6. Then G ′′ can be constructed from (G#)′′ in several steps from Definition 1.5.

(⇐): See Lemma 8.7. �

From the previous proof we get the following fact.

Corollary 8.9. If (Hj) is a TLG∗∗-tower, then (H′′j ) is a subsequence of a TLG∗-tower.

Theorem 8.10. The following statements are equivalent:

(a) G is a TLG∗∗.

(b) G ′ is a TLG∗.

(c) G ′′ is a TLG∗.

Proof. (a) ⇔ (c): Follows from Theorem 8.8.

(b) ⇒ (c): Every t′k in G ′ is connected to t−∞ and t∞ by a time-path. Therefore, we

can add an edge to G ′ between t−∞ and t′k, and an edge between t′k and t∞. Hence, we can

construct G ′′ from G ′ by adding edges. Hence, G ′′ is a TLG∗.
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(c) ⇒ (b): Let tk be a vertex that is not an entrance, then the if we remove the edge

E−∞,k from G ′′ we get a TLG∗ by Corollary 1.13. The same holds if tk is not an exit for the

edge Ek,∞. Doing this until all such edges are removed gives us G ′, that will, by repeated

use of Corollary 1.13, be a TLG∗. �

Corollary 8.11. If G ′′ is a TLG∗, then there is a TLG∗-tower (Hj)
n
j=1 such that H1 = G ′

and Hn = G ′′.
The order ’�’ between the points is defined in the same way as in Chapter 1. See

Definition 1.14.

Lemma 8.12. For points t1 and t2 on a TLG∗∗ G

• there exists a point t1 ∧ t2 on G ∪ {−1} such that

{t ∈ G : t � t1} ∩ {t ∈ G : t � t2} = {t ∈ G : t � t1 ∧ t2};

• there exists a point t1 ∨ t2 on G ∪ {2} such that

{t ∈ G : t � t1} ∩ {t ∈ G : t � t2} = {t ∈ G : t � t1 ∨ t2};

in the sense that if we have an empty set on one side we define t1∧ t2 = −1 in the first case,

and t1 ∨ t2 = 2 in the second case.

Proof. By Proposition 8.4, we will have t′1 ∧ t′2 = (t1 ∧ t2)′ and (t1 ∨ t2)′ = t′1 ∨ t′2. Since G is

a TLG∗, t′1 ∧ t′2 and t′1 ∨ t′2 exists and can obtain one of the values in V ′ ∪ {0, 1}. Since, the
transformation is injective so are t1 ∧ t2 and t1 ∨ t2. �

We know from Theorem 1.6, that all planar simple TLG’s are TLG∗. Unfortunately, the

same is not true for TLG∗∗’s.

Proposition 8.13. The following statements hold:

(a) If G is a planar TLG its embedding G ′ doesn’t have to be a planar TLG.
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(b) If G is a planar TLG∗∗ its embedding G ′ doesn’t have to be a planar TLG∗.

(c) There exists a planar TLG that is not a TLG∗∗.

Proof. (a) See Figure 8.8.

Figure 8.8: TLG G is planar (full lines), but its embedding G ′ is not.

(b) The black part of the graph G (in Figure 8.8) is a (planar) simple TLG, so it is a

TLG∗. Hence, we can first construct the black part, and then add the gray vertex and the

gray edge connecting it to the rest of the graph. So, G is a TLG∗.

(c) See the graph in Figure 8.9. This is not a TLG∗∗, because t3 ∧ t4 is not defined, and

by Lemma 8.12 this should be defined in the case of a TLG∗∗.

t1

t2

t3

t4

t5

Figure 8.9: A planar TLG that is not a TLG∗∗.

�

There are two important cases of planar TLG’s that are planar TLG∗∗’s, and we will

encounter with them in the future.
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Proposition 8.14. (a) A planar TLG G such that all vertices in En(G) and all vertices in

Ex(G) have the same time component is a TLG∗∗.

(b) TLG that has the structure of a tree is also a TLG∗∗

Proof. (a) The proof follows from the fact that G ′ the embedding of G is a planar TLG,

therefore a TLG∗, and by Theorem 8.8 G is a TLG∗∗. (b) Follows by induction on the

number of edges. �
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Chapter 9

PROCESSES ON NON-SIMPLE TLG’S

9.1 Processes on TLG∗∗

Idea of the construction is the similar to the one that we had in the case of simple TLG’s

(as described in Section 2.2):

• We take a family M of measures µσ on full paths P (G) with certain properties.

• Using these properties we create a (3T)-family M′ of measures µσ′ on full-time paths

of the embedding G ′.

• We create a natural M′-process on G ′, and from that process we create the process on

X on G.

We could do the same approach for G ′′, and we will briefly discuss it.

We need the version of the consistent family of measures along full paths.

Definition 9.1. Let G be a TLG, for a family of distributions

M = {µσ : σ ∈ H ⊂ P (G)}

where if σ is a full path from tk to tj then µ is a distribution of a stochastic process on [tk, tj],

we say that it is consistent if for σ1, σ2 ∈ H

µσ1 ◦ π−1T = µσ2 ◦ π−1T ,

where T = {t : t ∈ E,E ∈ σ1 & E ∈ σ2}.

We also need a notion of the half-cell that didn’t exist for simple TLG’s.
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Definition 9.2. Let G = (E ,V) be a TLG.

(a) We say that time paths σ1 and σ2 in G starting at tk1 ∈ En(G) and respectively at

tk2 ∈ En(G) and both ending at tm which is their only common vertex, form a right

half-cell (σ1, σ2).

tk1

tk2

tm

tk

tm1

tm2

Figure 9.1: Right and left half-cells.

(b) We say that time paths σ1 and σ2 in G both starting at tk which is their only common

vertex, and ending at tm1 ∈ Ex(G) and respectively tm2 ∈ Ex(G), form a left half-cell

(σ1, σ2).

(c) A half-cell (σ1, σ2) is called simple if there is no time-path connecting vertex on σ1 and

a vertex on σ2 (both must be different from the connecting vertex tm).

Remarks. Note that a half-cell in G will be embedded into a cell in the embedding G ′.

9.1.1 Conditions

We will show that an M-process exists if the following conditions are satisfied:

T1’ G = (V, E) is a TLG∗∗.
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T2’ M is a consistent family of measures that induce continuous or RCLL processes.

T3’ Let π be a full-path in P (G) and tk ∈ V a vertex on that path. Then (Xπ(t) : t ≤ tk)

and (Xπ(t) : t ≥ tk) are independent given X(tk).

Definition 9.3. The family M = M(G) = {µσ : σ ∈ P (G)} satisfying properties (T1’),

(T2’) and (T3’) is called the (3T’) family.

Proposition 9.4. If G is a TLG∗ and M a (3T’) family, then M is a (3T) family on G.

Proof. In this case we only need to check the (T3) property of M. Let π be a path that

contains t∗ and t
∗ endpoints of a simple cell. Let A∗ ∈ σ(Xπ(t) : t ≤ t∗) A

∗
∗ ∈ σ(Xπ(t) : t∗ ≤

t ≤ t∗) and A∗ ∈ σ(Xπ(t) : t
∗ ≤ t), while B∗ ∈ σ(X(t∗)) and B∗ ∈ σ(X(t∗)). Now we have

E(P(A∗ ∩ A∗∗ ∩A∗|X(t1), X(t2))1B∗1B∗)

= E(E(1A∗1A∗
∗
1A∗|X(t1), X(t2))1B∗1B∗) = E(1A∗1A∗

∗
1A∗1B∗1B∗)

= E(E(1A∗|X(t∗))1A∗
∗
1A∗1B∗1B∗) = E(E(1A∗|X(t∗))1A∗

∗
E(1A∗ |X(t∗))1B∗1B∗)

= E(E(1A∗|X(t∗))E(1A∗
∗
|X(t∗), X(t∗))E(1A∗|X(t∗))1B∗1B∗)

= E(1A∗P(A
∗
∗|X(t∗), X(t∗))1A∗1B∗1B∗)

= E(P(A∗∗|X(t∗), X(t∗))E(1A∗1A∗|X(t∗), X(t∗))1B∗1B∗)

= E(P(A∗∗|X(t∗), X(t∗))P(A∗ ∩A∗|X(t∗), X(t∗))1B∗1B∗).

The claim now follows from the Monotone Class Theorem. �

Remark. The converse of of the statement of the previous proposition is not true. Take for

example a non-Markovian process on the graph G = ({t0 = 1, t1 = 1/2, t2 = 1}, {E01, E12}),
such that X(0) and X(1) are not independent given X(1/2).

9.1.2 Construction

Let M be a (3T’) family on a TLG∗∗ G.



179

Let G ′′ be the embedding of G into simple TLG’s. Now for each time-path σ in G there

exists a full-time path σ′ in G ′′ that corresponds to σ.

If σ starts at tk and ends at tj , then we can define a process (Yσ(t) : t ∈ [tk, tj]) whose

distribution is µσ. We will define Yσ′ by interpolating Yσ on the whole interval [0, 1] (see

Figure 9.2 for illustration):

Yσ′(t) =






1 + t

1 + tk
Yσ(tk) if t ≤ tk

Yσ(t) if t ∈ [tk, tj ]
2− t

2− tj
Yσ(tj) if t ≥ tj

(9.1)

Note that if Yσ is continuous or RCLL so is Yσ′.

−1 2tk tj

Yσ(t)

Figure 9.2: Construction of Yσ′ .

Now, we define µσ′ to be the distribution of (Yσ′(t) : t ∈ [0, 1]), and set

M′ = M′(G ′) = {µσ′ : σ′ ∈ P0→1(G ′)},

or

M′′ = M′(G ′′) = {µσ′ : σ′ ∈ P0→1(G ′)},

Theorem 9.5. M′ is a (3T’)-family on G ′ and M′′ is a (3T’)-family on G ′′.

Proof. The proof is similar M′ and M′′. Properties (T1’) and (T2’) are clearly satisfied.

While the property (T3’) follows from the construction and the (T3’) property of M. �
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Corollary 9.6. M′ is a (3T) family on G ′ and M′′ is a (3T) family on G ′′.

Proof. By Theorem 8.10 both G ′ and G ′′ are TLG∗’s. The claim follows from Proposition

9.4. �

We can construct the process on a TLG∗∗ similar to the construction of processes on

TLG∗’s (see Definition 2.12).

Definition 9.7. Let (Gl)0≤l≤n be a TLG∗∗-tower where G0 is a minimal graph V0 = {t0, tN},
E0 = {E0N} and Gn = G. Further let M be a family of distributions satisfying (3T’)

conditions.

• On G0 we define a process X0 with µE0n distribution.

• If we have already defined X l on Gl (for some l < n), then we define X l+1 on Gl+1 in the

following way depending how we constructed Gl+1 from Gl (recall part (ii) of Definition

8.6.).

(1) In the construction a new vertex τl ∈ [0, 1] \ Vl was added to graph Gl, by subdi-

viding some Ejk such that tj < τl < tk, into Ejl and Elk to get Gl+1. In this case,

the two graphs Gl and Gl+1 have a common representation, R(Gl) = R(Gl+1), and

we can define X l+1 on Gl+1 to have the same values on this representation as X l.

(2) In the construction a new vertex τk and a new edge between the vertex tj < τk in

Vl and τk, was added to get Gl+1. So, Gl+1 has a new edge E∗ = E∗jk and a new

vertex τk. Let Zj = X l(tj).

Now we pick a full-time path σ that contains E∗. Now we define µ∗(·|x) to be the

conditional probability of the process with the distribution µσ ◦π−1[tj ,τk]
conditioned

to have the value x at tj . So we construct the process X l+1 in such a way that

X l+1 on R(Gl) is equal to X l and X l+1
E∗ is the process with distribution µ∗(·|Zj)

and otherwise independent of X l given Zj.



181

(3) In the construction a new vertex τk and a new edge between the vertex tm > τk

in Vl and τk, was added to get Gl+1. So, Gl+1 has a new edge E∗ = E∗jk and a new

vertex τm. Let Zm = X l(tm).

Now we pick a full-time path σ that contains E∗. Now we define µ∗(·|y) to be the

conditional probability of the process with the distribution µσ◦π−1[τk,tm] conditioned

to have the value y at tm. So we construct the process X l+1 in such a way that

X l+1 on R(Gl) is equal to X
l and X l+1

E∗ is the process with distribution µ∗(·|Zm)

and otherwise independent of X l given Zm.

(4) In the construction a new edge between two vertices tj < tk in Vl that are con-

nected by a time path in Gl , was added to get Gl+1. So, Gl+1 has a new edge

E∗ = E∗jk. Let Zj = X l(tj) and Zk = X l(tk).

Now we pick a full-time path σ that contains E∗. Now we define µ∗(·|x, y) to be the
conditional probability of the process with the distribution µσ ◦π−1[tj ,tk ]

conditioned

to have values x at tj and y at tk. So we construct the process X l+1 in such a

way that X l+1 on R(Gl) is equal to X
l and X l+1

E∗ is the process with distribution

µ∗(·|Zj, Zk) and otherwise independent of X l given Zj and Zk.

Since n is finite this procedure will end and we will have a process X = Xn defined on G.
We define:

• X on G to be defined as in Definition 9.7;

• X ′ to be a natural M′-process on G ′ (in the sense of Definition 2.21);

• X ′′ to be a natural M′′-process on G ′′ (in the sense of Definition 2.21).

Theorem 9.8. The following processes have the same distribution on G:

(a) (X(t) : t ∈ G);

(b) (X ′(t) : t ∈ G);
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(c) (X ′′(t) : t ∈ G).

Proof. To show that X ′′ and X ′ have the same distribution on G we will show that they have

the same distribution on G ′.It is known by Corollary 8.11. that there exists a TLG∗-tower

that starts with G ′ and ends with G ′′. Now, by Lemma 2.14, M′′(G ′) is a (3T)-family, and

by definition it coincides with M′. Since, the construction of a process on TLG∗ doesn’t

depend on the order (Theorem 2.20), we can first construct X ′′ on G ′ and later on the rest

of G ′′. Hence, X ′′ on G ′ will be a natural M′-process, so (X ′(t) : t ∈ G ′) and (X ′′(t) : t ∈ G ′)
have the same distribution. Therefore, the restriction of these two processes to G is also the

same.

It remains to show that X and X ′′G have the same distribution. Let (H)nj=0 be a TLG∗∗-

tower, we will show that the construction of X on G can embedded int the construction of

X ′′ on G ′′. For j = 0 it is clear that XH0 and X ′′H′′
0
have the same distribution on H0. Let’s

assume for j ≥ 0 XHj
and X ′′H′′

j
have the same distribution on Hj, and prove it for j+1. We

have the following cases to consider:

• A new vertex has been added to Hj to obtain Hj+1. In this case the claim follows

clearly.

• A new vertex τ and an edge E∗ between that vertex and existing one has been added.

In this case the claim follows from the fact that in H′′j we are adding:

– a new edge E ′′∗ between −1 or 2 and an vertex tl on Hj ;

– a vertex τ on that edge;

– we are adding an edge between τ and between the vertex −1 or 2 to which it is

not connected.

Since, the X ′′(−1) = X ′′(2) = 0 the distribution of the process on E ′′∗ whose represen-

tation is in R(Hj+1) is given and depends only on the value X(tl). Hence, the claim

follows.
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• A new edge has been added to Hj to obtain Hj+1. In this case the claim follows from

the fact that the distribution of the process on the new edge is given and depends only

on the values of the process on Hj (for both X and X ′′).

�

Theorem 9.9. For a (3T’)-family M the constructed process X on a TLG∗∗ G will always

have the same distribution.

Proof. By Theorem 9.8. we can embed the constructed process into a natural M′ process

on G ′ and this process has a unique distribution. �

9.2 Properties of constructed processes

We know, from Chapters 2 and 3, that for the process X ′ many interesting properties hold.

Many of these properties have their natural analogous for the process X .

We will show that for X the following properties hold:

• X is an M-process;

• X is a spine-Markovian process;

• X is a hereditary spine-Markovian process;

• X is a cell-Markovian process.

Additionally if M is a Markov family of measures we have

• X is moralized graph-Markovian;

• X is time-Markovian;

• X is edge-Markovian.

All these properties are (slightly generalized) versions of the properties we had defined for

simple TLG’s.
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9.2.1 X is an M-process

It is easy to see Xσ ∼ µσ, that is, X is a M-process. (This is the same as defined in

Subsection 2.3, on page 47.)

9.2.2 X is a spine-Markovian process

We will first define the spine-Markovian property.

Definition 9.10. Let σ be any full path in the TLG G = (V, E). Let G− be a subgraph (not

necessarily a TLG) of G whose representation is a connected component of R(G) \R(σ). Let
W be the set of vertices - roots connecting G− to σ and let G+ denote the graph represented

by R(G) \R(G−).
We say that the process X on a TLG G is spine-Markovian if for each such σ and G−

the processes (X(t) : t ∈ G−) and (X(t) : t ∈ G+) given (X(t) : t ∈ W ) are independent.

Proposition 9.11. The constructed process X is a spine-Markovian process on G.

Proof. Let σ be the full path, and σ′ the corresponding full-time path in the embedding

G ′. If G− is as in the definition, this is a connected graph and is a connected component of

R(G ′) \ R(σ′). We set G+ and G ′+ to be graphs that have the representation, respectively

R(G) \ R(G−) and R(G ′) \ R(G−). The roots W ′ of G ′ include all the roots W of G and

maybe −1 and 2. Since, X ′(−1) = X ′(2) = 0, we have σ(XW ) = σ(X ′W ′) = σ(X ′W ′\{−1,2}).

Therefore, since X ′ is spine Markovian, and σ(X(t) : t ∈ G−) ⊂ σ(X ′(t) : t ∈ G−), σ(X(t) :

t ∈ G+) ⊂ σ(X ′(t) : t ∈ G ′+) the spine-Markovian property for X follows. �

9.2.3 Hereditary spine-Markovian property

Recall, Definition 2.6. of S∗(G).

Definition 9.12. For a TLG∗∗ G we define S∗∗(G) to be the set of all TLG∗∗’s H such that

there exists a TLG∗∗-tower (Kk)
n
k=0 that starts with K0 = H and ends with Kn = G.
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Definition 9.13. The process (X(t) : t ∈ G) has a hereditary spine-Markovian prop-

erty if (X(t) : t ∈ H) is a spine-Markovian process for each H ∈ S∗∗(G).

Corollary 9.14. Let G be a TLG∗∗ and G ′′ its embedding, if TLG∗∗ H is in S∗∗(G) then H′′

is in S∗(G ′′).

Proof. Let (Kl)
m
l=1 TLG

∗∗-tower such that K1 = H, and Km = G. By Corollary 8.9. K′′1 , K′′2 ,
. . .K′′m are one after another in a TLG∗-tower, and the claim follows. �

Proposition 9.15. The constructed process X is hereditary spine-Markovian.

Proof. Let H ∈ S∗∗(G). Then H′′ is in S∗(G ′′).
By Theorem 2.17., X ′ on G ′′ is hereditary spine-Markovian, X ′ is spine Markovian on

H′′, and therefore, X is spine Markovian on H. �

9.2.4 Cell-Markovian property

A cell will remain truly simple, as in Definition 1.41. We need to extend our definition to

half-cells.

Definition 9.16. (a) A right half-cell (σ1, σ2) ending at tm is called truly simple if there

is no path {t ∈ G : t ≺ tm} that starts on on one side of the cell and ends on the other.

(b) A left half-cell (σ1, σ2) starting at tk is called truly simple if there is no path {t ∈ G :

tk ≺ t} that starts on on one side of the cell and ends on the other.

Lemma 9.17. A truly simple half-cell in G is a part of a truly simple cell in G ′.

Proof. We will prove the claim for the right half-cell, the proof for the left half-cell is similar.

Let σ′j be the path consisting including t−∞ and σj , for j = 1, 2. Now, sigma (σ1, σ2) is a

cell. If there exists a path in G[t−∞, tm] \ {t−∞, tm} connecting vertices on σ1 and σ2, then

these vertices are in G. Further, since the path can’t go through t−∞, the path it self is in

G. Hence, (σ1, σ2) is not a truly simple half-cell. �



186

Definition 9.18. We will say that a process X on a TLG G is cell-Markovian if for

(a) any truly simple cell (σ1, σ2) starting at t∗ and ending at t∗ the processes Xσ1 and Xσ2

are conditionally independent, given the values X(t∗) and X(t∗);

(b) any truly simple right half-cell (σ1, σ2) ending at t∗ the processes Xσ1 and Xσ2 are

conditionally independent, given the value of X(t∗);

(c) any truly simple left half-cell (σ1, σ2) starting at t∗ the processes Xσ1 and Xσ2 are con-

ditionally independent, given the value X(t∗).

Definition 9.19. We will say that a process X on a TLG G is strong cell-Markovian if

it is cell-Markovian and for

(a) any truly simple cell (σ1, σ2) starting at t∗ and ending at t∗ the processes (X(t) : t∗ �
t � t∗) and (X(t) : t∗ � t or t � t∗) are independent, given the values X(t∗) and X(t∗);

(b) any truly simple right half-cell (σ1, σ2) ending at t∗ the processes (X(t) : t ≺ t∗) and

(X(t) : t∗ � t) are independent, given the value X(t∗);

(c) any truly simple left-cell (σ1, σ2) starting at t∗ the processes (X(t) : t∗ ≺ t) and (X(t) :

t � t∗) are independent, given the value X(t∗).

Proposition 9.20. The constructed process X on G is strong cell-Markovian.

Proof. A simple cell in G is clearly a simple cell in G ′, and by Lemma 9.17. a truly simple half-

cell is a part of a truly simple cell in G ′. By Theorem 3.4. X ′ (on G ′) is strong cell-Markovian

(in the sense of the Definition 3.2.), and all the claims now follow.

�
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9.2.5 Distribution uniqueness

Proposition 9.21. A hereditary spine-Markovian M-process (satisfying (3T’) properties)

on a TLG∗∗ G has a unique distribution.

Proof. This is a consequence of the unique distribution of M′-process on a TLG∗ G ′. (See

Theorem 2.20.) �

9.3 Properties for Markov family M

Again, M is called a Markov family, if all the measures in M are distributions of Markov

processes.

Lemma 9.22. If M is a Markov family, so is M′ and M′′.

Proof. For σ ∈ P (G) if µσ is the distribution of a Markov process Yσ, then the process Yσ′ is

also a Markov process, and hence µσ′ is a distribution of a Markov process. �

9.3.1 Moralized graph-Markovian property

The definition of moralized graph-Markovian property is the same as in Definition 3.10.

Lemma 9.23. The constructed process X on G for a Markov family M is a moralized

graph-Markovian process.

Proof. Let E1 and E2 be two components of G connected through points W , and let W

separate E1 and E2 in (G)♥. G ′ we will get new edges connecting t−∞ and t+∞, so all the new

cells (that are not in G) will have one endpoint in {t−∞, t+∞}. If E1 and E2 were separated

by W in G♥, they will be separated in (G ′)♥ by W ∪{t−∞, t+∞}. Since X(t−∞) = X(t+∞) =

0, σ(XW∪{t−∞,t+∞}) = σ(XW ). Now, by Theorem 3.12, X ′E1 = XE1 and X ′E2 = XE2 are

independent given σ(XW∪{t−∞,t+∞}). �



188

9.3.2 Time-Markovian property

The definition of time-Markovian property is the same as in Section 3.2. (see Definition 3.7.).

Lemma 9.24. The constructed process X on G for a Markov family M is a time-Markovian

process.

Proof. Let t be a point in G. By construction of X we have that

Ft = σ{X(u) : u ∈ G, u � t} ⊂ F ′t = σ{X ′(u) : u ∈ G ′, u � t},

Ht = σ{X(u) : u ∈ G, u � t} ⊂ H′t = σ{X ′(u) : u ∈ G ′, u � t}.

(Actually equalities hold in both expressions.) Since M′ is a Markov family, X ′ is a time-

Markovian process. Therefore, F ′t and H′t are independent given X ′(t) = X(t), but then also

Ft and Ht are independent given X(t). �

9.3.3 Edge-Markovian property

The definition of edge-Markovian processes remains the same (see Definition 3.14.).

Proposition 9.25. The constructed process X on G for a Markov family M is an edge-

Markovian process.

Proof. E be an arbitrary edge in G. Since M′ is a Markov family, X ′ is edge Markovian, so

since σ(X ′E) = σ(XE) and σ(X(t) : t ∈ G, t /∈ E) ⊂ σ(X ′(t) : t ∈ G ′, t /∈ E ′) are independent

given the values at the endpoints of E, XE is independent of (X(t) : t ∈ G, t /∈ E) given the

values at the endpoints of E. �

9.4 Processes on time-like trees

Among all graphs trees have a special place. Processes on trees have been widely studied

and used. For examples see Markov chains indexed trees ([4, Benjamini, Peres]), branching

Markov processes (where the underlying tree is random), hidden Markov models, . . .
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t∗ t∗

Figure 9.3: Forward and backward trees.

In this section we will look at the properties processes on trees have. We start by defining

time-like trees.

Definition 9.26. (a) A time-like tree (TLT) is a TLG with no cells.

(b) A forward time-like tree T is a TLT with exactly one entrance. The entrance vertex

we will call the root of the forward time-like tree.

(c) A backward time-like tree T is a TLT with exactly one exit . The exit vertex we

will call the root of the backward time-like tree.

Remark. Since all vertices are connected to the root, it is clear that T is connected as a

graph.

We know from Theorem 8.14 (b) that a time-like tree is a TLG∗∗, and further the following

holds:

Lemma 9.27. Let T be a TLT, and T ′ be a TLG that is a connected sub-graph of T . Then

T ′ is a TLT, and T ′ and T are elements of the TLG∗∗-tower.

Proof. Let n be the difference between the number of edges T and T ′ have. For n = 0 the

claim is clear. Let’s assume the claim holds for n ≥ 0 and prove it for n + 1. Pick a leaf tm

on T not in T ′, and an edge E that that is connected to it. Now, let T ′′ be T without tm

and E. T ′′ is a TLT, and further we can construct since the difference between the edges of
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T ′′ and T ′ is n, we can construct T ′′ from T ′. Hence, they are in some TLG∗∗-tower. It is

clear that T ′′ and T are in some TLG∗∗-tower. The claim now follows. �

For a (3T’) family M on T we can construct a natural M-process on T . By changing

time to each vertex from tk into t̃ = 1− t we can transform a backward graph into a forward

graph, and in the same way transform the process on a backward time-like tree into a process

on a forward time-like tree. Everything we prove for processes on forward TLT’s will in a

similar way hold for backward TLT’s.

Theorem 9.28. If M is a (3T’) family on a TLT T and tk ∈ V is a vertex and X a natural

M-process on T then

(a) the closures of connected components of R(T )\R(tk) are representations of several time-

like trees T1, T2,. . . , Tm;

(b) the processes XT1, . . . , XTm are independent given the value of X(tk) .

Proof. (a) Each of the components is a TLG without any cells. Hence, every component is

a TLT.

T1

T2

T3

T4tk

Figure 9.4:

(b) For each Tl there is a full path such with no edges in Tl. Using the spine-Markovian

property we know that XTl is independent of the process on the rest of the graph given
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the value of X(tk) (since tk is the only root). Now, applying this fact several times for

Al ∈ σ(XTl) for l = 1, . . . , m, we have

E(P(A1 ∩ . . . ∩ Am|X(tk))1B) = E(1A1 . . .1Am1B)

= E(E(1A1 |X(tk)) . . .1Am1B) = . . . = E(E(1A1 |X(tk)) . . .E(1Am |X(tk))1B)

= E(P(A1|X(tk)) . . .P(Am|X(tk))1B).

for arbitrary B ∈ σ(X(tk)). Hence the claim follows. �

Corollary 9.29. If M is a (3T’) family on a forward TLT T and tk is a vertex of degree

at least 3, then the natural M-process X on T will have the property that given process X

on T +
tk

= {s ∈ T : tk � s} is independent of the process on the rest of T given X(tk).

The graph-Markovian property was introduced in Definition 3.6, and it was shown in

Subsection 3.4.1. that this property doesn’t have to hold on TLG∗’s. This property was

replaced by the moralized graph-Markovian property on TLG∗’s (see Definition 3.10), and

in Theorem 9.23 it was shown to also hold for natural M-processes on TLG∗∗’s when M is

a Markov family.

Theorem 9.30. If M is a (3T’) Markov family on a TLT T the process will have the

graph-Markovian property.

Proof. By Theorem 9.23, we know that every natural M process on T is a moralized graph-

Markovian process. Since T has no cells, the claim follows. �

Corollary 9.31. If M is a (3T’) Markov family on a TLT T and τ t1, . . . , τ
t
n are all the

points on T with time t, then the natural M-process X on T will have the property that

F t
← = σ(X(s) : s ≤ t) and F t

→ = σ(X(s) : s ≥ t)

are independent given X(τ t1), . . . , X(τ tn).

Proof. The points τ t1, . . . , τ tm separate the graph into two parts {s ∈ G : s ≤ t} and

{s ∈ G : s ≥ t}, and the claim follows by graph-Markovian property. �
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τ t
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τ t
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τ t
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τ t
5

τ t
6

t

Figure 9.5: The process before and after time t.

Remark. The previous corollary states that the process (X̃(t) = (X(s) : s ∈ R(G) ∩ ({t} ×
R2)) : t ≥ 0) is a Markov process.

The following lemma states that the spine-Markovian property and hereditary spine-

Markovian properties are equivalent on time-like trees. (Note that we didn’t have this result

for TLG∗’s.)

Lemma 9.32. If T is a time-like tree, and X a process indexed by T then the following

claims are equivalent:

(a) X is a spine-Markovian process;

(b) X is a hereditary spine-Markovian process.

Proof. Clearly (b) implies (a). Now, let’s prove that (a) implies (b). Let (Gk)
n
k=1 be a TLG∗∗

tower leading towards the construction of T . Note that since each Gk is a connected subgraph

of T , it is also a tree.

If we pick a π′ full-path in Gk, then there is a full-path π in T such that R(π′) ⊂ R(π).

(See Figure 9.6.) But the representation of roots of T with respect to π will contain the
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π′
π

Figure 9.6: Gk, the spine π′ and the root •.

representations of roots of Gk with respect to π′. Since the roots decompose the graph into

disjoint components the claim follows. �
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Chapter 10

GALTON-WATSON TIME-LIKE TREES AND THE

BRANCHING MARKOV PROCESSES

10.1 TLG’s with an infinite number of vertices

We will allow t0 and tN to take values in R.

Definition 10.1. (i) Suppose that the vertex set of a graph G = (V, E) is infinite. We

will call G a time-like graph (TLG) if it satisfies the following conditions.

(a) There is a sequence of TLG’s Gn = (Vn, En) with finite vertex set Vn, n ≥ 1, and

for some representations of Gn’s and G we have

∞⋃

n=1

R(Gn) = R(G).

(b) The graph G is locally finite, i.e. it has a representation R(G) such that for any

compact K ⊂ R3 a finite number of edges intersects K.

(ii) A TLG G with infinite vertex set will be called an TLG∗∗ if it satisfies the following

conditions.

(a) We can choose a sequence of TLG∗∗’s Gn in (i). (In the sense of the Definition

8.6.(iv), i.e. (Gj)1≤j≤n is a tower of TLG∗∗’s for all n.)

(b) Let Vn = {t0,n, t1,n, . . . , tNn,n}. The initial vertices t0,n ∈ Vn and tNn,n ∈ Vn are the

same for all Gn, i.e. for all 1 ≤ m ≤ n

t0,n ≤ t0,m and tNn,n ≥ tNm,m.
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The following lemma will be useful for the construction of processes. (It is a version of

the Lemma 1.50. for TLG∗∗’s.)

Lemma 10.2. Let (Gn) and (G ′n) be two TLG∗∗-towers that lead to the construction of G.
Let H be a sub-graph (not necessarily a TLG∗) of some Gn0. Then there exists G ′n1

such that

R(H) ⊂ R(G ′n1
) and all the vertices of H are contained in G ′n1

.

Proof. Since G is locally finite, there are finitely many vertices with representation on R(H),

also these vertices are of finite degree. For each such vertex v, by same argument, there has

to be G ′nv
such v in G ′nv

has that degree. Now if n1 is the maximum of nv over each such

vertex v the claim follows. �

The definition of (forward/backward) time-like trees is the same as in Definition 9.26.

Proposition 10.3. Time-like tree T with infinite number of vertices is a TLG∗∗.

Proof. Pick a vertex tk, and let Kn be a set of compact sets such that

∞⋃

n=1

Kn = R3.

It is clear that the connected component of R(T ) ∩ Kn that contains tk is a tree, and we

set Tn to be the time-like tree such that R(Tn−1) ⊂ R(Tn) ⊂ R(T ) ∩Kn and the number of

Tn is as large as possible. By Lemma 9.27, Tn can be constructed from Tn−1. So (Tn) is a

subsequence of some TLG∗∗-tower (Hn). �

10.2 Galton – Watson time-like tree

We will encode a continuous version of Galton-Watson process into a (forward) time-like

tree. The idea is to use the setup in the Crump - Mode - Jagers model (see Section A.7.).

Let I = {∅} ∪⋃∞n=1N
n, and we interpret that (x, j) ∈ I, j ∈ N is a child of x ∈ I.

First, lets make some assumptions:
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• Let (λx : x ∈ I) be a collection of exponential random variables with parameter V .

(Lifetime of an individual.)

• Let (Rx : x ∈ I) be a collection of random variables with distribution given by the

generating function

Φ(s) =
∞∑

k=0

aks
k, Φ(1) = 1.

• (λx, Rx)x∈I is an i.i.d. sequence.

In our model at the end of its lifetime, the individual gets divided into nonnegative number

of new individuals (0, 1, 2, . . . ), so we define the reproduction function to be

ξx(t) = Rx1(t≥λx).

Recall, that we defined with τx the birth time of x, with τ∅ = 0, τ(x′,i) = τx′ + inf{u :

ξx′(u) ≥ i}.
We define the Galton - Watson tree in the following way:

• Let V0 = {t−1 = 0, t0 = λ∅}, and E1 = {E−1,0}. Set G0 = (V0, E0).

• Define l+Ex(Gk) all the x labels of exit vertices in Gk such that ξx > 0.

• Now set

Vk := Vk−1 ∪
⋃

x′∈l+Ex(Gk−1)

{t(x′,j) := τ(x′,j) : j = 1 . . . ξx′},

Ek := Ek−1 ∪
⋃

x′∈l+Ex(Gk−1)

{Ex′,(x′,j) : j = 1 . . . ξx′},

Gk := (Vk, Ek). (10.1)
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• Now, set

V :=

∞⋃

k=1

Vk, E =

∞⋃

k=1

Ek.

We define G = (V, E) as the Galton – Watson time-like tree.

Lemma 10.4. For all t ≥ 0 we have E(ξx(t)) ≤ E(Rx).

Therefore, if E(Rx) <∞, almost surely for all t ≥ 0 the number of vertices from V with

time at most t is finite.

Proof. Since ξx ≤ Rx the first claim follows. For the second claim, first note E(ξ(t)) < ∞.

Further (0 ≥ λx) = (0 = λx), and this is a set of probability 0, hence E(ξ(0)) = 0 < 1.

Therefore, by Theorem A.35. the set of vertices with time label at most t is finite. �

Theorem 10.5. If E(Rx) < ∞, the Galton - Watson time-like tree is a TLG∗∗. Specially,

it is a forward time-like tree.

Proof. It is clear that (Gk) from (10.1) is the TLG∗∗-tower that leads towards the construction

of G. Further, any representation is locally finite, since any compact set K will have a finite

time component, i.e. it will be contained in [0, T ]× R2, and by Lemma 10.4. it can contain

finitely many points finitely many edges. We know by Lemma 10.4 that the number of

vertices whose representation is in [0, T ]×R2 is finite a.s., and also since Rx is finite a.s. we

have that number of edges intersecting K is finite. �

10.3 Processes on TLG∗∗’s with infinite number of vertices

10.3.1 Construction

Let G = (V, E) a TLG∗∗ such that V is infinite. According to the definition, there exists a

tower of TLG∗∗’s Gn = (Vn, En), n ≥ 1, such that Vn is finite, where V =
⋃

n≥1 Vn.

Let

M = {µσ : σ ∈ P (G)} (10.2)
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be a family of distributions of processes along full-time paths in G satisfying conditions

(T’1)-(T’3) given in Subsection 9.1.1.

Since

M(Gn) = {µσ : σ ∈ P (Gn)}

is well-defined, and we can show similarly as in Lemma 2.14 that M(Gn) satisfies (T’1)-(T’3),

we can define a hereditary spine-Markovian process Xn on Gn, such that for each σ ∈ P (Gn)

the process Xn
σ has the distribution µσ. Further, the restriction of this process to Gk (k ≤ n)

has the same distribution as the M(Gk)-process X
k defined on Gk in the similar manner.

Now, Kolomogorov’s consistency theorem shows, that there exists a process X on G such

that the restriction of X to any Gk has same distribution as Xk. Note, that since each

σ ∈ P (G) is in some of the Gk’s we have Xσ has the distribution µσ.

10.3.2 Uniqueness of distribution

Using a similar approach as in §2.4.2 we will get that the distribution of the process X

doesn’t depend on the choice of the TLG∗∗-tower (Gn).

Lemma 10.6. Let G be a TLG∗∗ with infinitely many vertices, (G1
j ) and (G2

j ) two TLG∗∗-

towers that construct G and X1 and X2 the natural M-processes constructed using these two

towers. The distribution of the processes X1 and X2 restricted on G1
k is the same for all k.

Proof. We first prove the claim when the vertices of G have only real values. By Lemma

10.2. we can choose k1, and l1 in such that

R(G1
k) ⊂ R(G2

l1
) ⊂ R(G1

k1
),

where VG1k ⊂ VG2l1 ⊂ VG1k1 . Now, we look at the embeddings (G1
k)
′′, (G2

l1
)′′ and (G1

k1
)′′. We will

have the same relationships, and by Lemma 2.22, we know that (G1
k)
′′ and (G1

l1
)′′ are in some

TLG∗-tower. Now, by Theorem 2.20. and Theorem 9.8. the result follows. �
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Theorem 10.7. Let G = (V, E) be a TLG∗∗’s with infinitely many vertices in V, and let X1

and X2 be two M-processes constructed using the TLG∗∗-towers (G1
n) and (G2

n), then X
1 and

X2 have the same distribution.

Proof. Let t1, . . . , tm be the points on G with finite time. Then, by Lemma 10.2., there exists

G1
k that contains all of these points. By Lemma 10.6 it follows, that X1 and X2 have the

same distribution on G1
k . Specially, (X

1(t1), . . . , X
1(tm)) and (X2(t1), . . . , X

2(tm)) have the

same distribution. Now, by Kolomogorov’s Consistency Theorem the claim follows. �

Corollary 10.8. The distribution of the process X on G doesn’t depend on the choice of the

TLG∗∗-tower (Gj) that constructs G.

Definition 10.9. We call the constructed process X the natural M-process on the TLG∗∗

G.

10.4 Natural P-Markov process

First, let’s define the natural P-Markov process.

Definition 10.10. Let G be a TLG∗∗ and P a distribution of a Markov process on [0,∞),

then natural P-Markov process on G is a stochastic process X indexed by G such that

the distribution of X along each path π from any point tj to any other point tk is distributed

as a P-Markov process along [tj , tk], and satisfies (3T’) conditions. This induces a (3T’)

family MP , and the natural P-Markov process on G is the natural MP-process on G (see

Definition 10.9.)

The following was shown in Section 10.3.

Theorem 10.11. For any distribution P of a Markov process on [0,∞) and any TLG∗∗ G
whose time components are all greater or equal to 0, there exists a natural P-Markov process.
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10.5 Branching P-Markov process

Idea of this section is to construct a natural P-Markov process on a random Galton - Watson

tree, where P is a distribution of an RCLL or continuous process. We will also show its

connection to the branching P-Markov process. Specially, to show that in the case when P
is the distribution of the Brownian motion, that we have the branching Brownian motion.

Basically, we first construct a Galton – Watson tree, and then on that tree we construct

the P-Markov process indexed by it.

• Based on the construction in Section 10.2 construct a Galton-Watson time-like tree T .

• Construct a natural P-Markov process on T whose values are independent of T .

Note, that the probability space on which we live can be written as
[
∏

x∈I
(R× N0,B(R)×P(N0))

]
×
[
∏

x∈I
(D[0,∞),B(D[0,∞)))

]

This is a product of countably many Borel spaces, and therefore it is a Borel space. The first

part of the product encodes the tree, while the second part is used to construct the process

on the tree.

Construction of the tree

As discussed in Section 10.2. the sequence (λx, ξx)x∈I encodes the whole tree, and from there

we can get the time τx of birth of each individual x ∈ I. (Recall, that λx is the lifetime of x

and ξx is the number of children.)

If τx = ∞ then x was never born. Since the sequence was i.i.d. we can construct a

probability measure on

(ΩT ,FT ) =
∏

x∈I
(R× N0,B(R)× P(N)).

We know that T is a time-like tree a.s.
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Construction of the process

We will construct a probability on the space

(Ω,F) = (ΩT ,FT )×
∏

x∈I
(D[0,∞),B(D[0,∞))).

For each element ((λx, ξx)x∈I , (fx)x∈I):

• (λx, ξx)x∈I is distributed as Galton-Watson time-like tree

• fx|[τx,τx+λx) represents the space position of x during its lifetime

• fx|R\[τx,τx+λx) = ∆ for all h ≥ 0 (represents cemetary).

• If τ(x,j) < ∞ then f(x,j)(τ(x,j)) = fx((τx + λx)
−) almost surely for all x ∈ I and j ∈ N

(last position of the parent, is the first position of the child).

Specially, if τx = ∞ then

• fx(h) = ∆ for all h ≥ 0 (never born, remains on cemetary).

Let’s make some assumptions on the distribution P and introduce some notation. Let

(X(t) : t ≥ 0) be a P-distributed process:

• by Px
τ we are denoting the distribution of the process (X(τ + t) : t ≥ 0) conditioned

on the event Xτ = x.

We will assume the following on (Px
τ : τ ≥ 0, x ∈ R) for all A ∈ B(D[0,∞)) the map

(τ, x) 7→ Px
τ (A)

is a measurable function. This clearly holds in the case of many time-homogeneuos Markov

process (e.g. Brownian motion or Levy processes).

We do the following construction, based on first child - next sibling idea from computer

science.
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1 A0 = {∅};
2 k = 0;

3 loop

4 k = k + 1;

5 for x ∈ Ak−1 do

6 add to Ak first child and next sibling of x;

7 end

8 endif

Algorithm 4: First child - next sibling search of the plane tree

We now order the I in a sequence (xn), such that we first all the elements of A0 appear,

then of all the elements of A1 appear, then of A2 . . .

Now (ΩT ,FT ), (Ωx1 ,Fx1), (Ωx2 ,Fx2), . . . is a sequence of measurable spaces, and we have

the following probability measures on them:

• On (ΩT ,FT ) we define PT as explained in the previous subsection;

• On (Ωx1 ,Fx1) we define P
λx1
x1 as the distribution of the process (Y (t) : t ≥ 0) where

Y (t) =





X(t), t < λx1;

∆, t ≥ λx1 ;

where the distribution of (X(t) : t ≥ 0) is P.

• On (Ωxj
,Fxj

) we define P
τxj ,λxj ,fxj′
xj to be the distribution of the process (Y (t) : t ≥ 0)

given by

Y (t) =





∆ t < τxj

X(t), τxj
≤ t < τxj

+ λxj
;

∆, t ≥ τxj
+ λxj

;

where (X(t) : t ≥ 0) is distributed as Pfx
j′
(τxj )

τxj
where fxj′

∈ Ωxj′
, xj′ is the parent of

xj , and we can show that τxj
is a measurable function on (ΩT ,FT ). Therefore, since
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j′ < j, for A ∈ Fxj

P
τxj ,λxj ,fxj′
xj (A)

is
∏j−1

k=1(Ωxj
,Fxj

)-measurable.

Now we can define a product probability on (Ω,F) using Theorem A.9.

Now, for ω = (ωT , (fxj
)) ∈ Ω. T (ω) is represented by ωT , and for Exj′xj

an edge in T (ω)

we define

XEx
j′

xj
(ω)(t) = fxj

(t)

for τxj′
≤ t < τxj

.

Properties of the construction

Theorem 10.12. The probability measure is well-defined, that is P doesn’t depend on the

choice of (xn) as along as:

(1) x0 = ∅;

(2) {xn : n ∈ N0} = {x : x ∈ I};

(3) For each j ≥ 1 there exists j′ < j such that xj′ is a parent of xj.

Proof. Conditioned on (T = T ) the constructed process can be mapped into a construction

of a natural P-process on a TLT T . The distribution of the process by Corollary 10.8 doesn’t

depend on the constrcution, hence the probability measure is well-defined. �

Corollary 10.13. The distribution of constructed process conditioned that the underlying

tree T = T is a natural P-process on T .

Theorem 10.14. If P is a distribution of a Markov process, for constructed process (T , X)

the process

Y (t) = {X(τ) : τ̄ ∈ R(T ) ∩ ({t} × R2)} (10.3)

is a Branching P-Markov process.
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Proof. Follows from stated in § �

Corollary 10.15. If P is a distribution of Brownian motion, then the process given by (10.3)

is the branching Brownian motion.
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OPEN QUESTIONS AND APPENDIX
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Chapter 11

OPEN QUESTIONS

In this chapter we will state some open problems that could be of interest for further

research.

11.1 Construction of process on all TLG’s

As it was pointed out by Burdzy and Pal in [7] (and in §3.4.2 of this paper), it is not possible

to construct a natural Markov process on every TLG.

Theorem 3.21. shows that a Brownian motion with the cell-Markovian property indexed

by the TLG G given on the first image of the Figure 11.1 does not exist.

Figure 11.1: Example from Theorem 3.21. and different embeddings into a TLG∗.

We know, by discussion in Section 2.3, that it is possible to construct a Markov process

on a TLG∗. We could try to embed G into some TLG∗ H, define a natural Brownian motion

X on H and then restrict X to G (i.e. set XG = (X(t) : t ∈ G)).
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It is possible to embed any TLG into a TLG∗.

Theorem 11.1. Let G = (G,V) be a (unit) TLG, then there exists a TLG∗ H that is a

sup-graph of G.

Proof. Let τ1, . . . , τm be times of vertices of V. Now, we construct VH that contains V
and vertices t∗1/2,t

∗
3/2,. . . , t

∗
m+1/2 with times τ1/2 = −1, τ3/2 = τ1+τ2

2
, . . . , τm−1/2 = τm−1+τm

2
,

τm+1/2 = 2. Now, we set E0
H is constructed in such a way that tk ∈ V with time τj the edge

• Ej−1/2,k between t∗j−1/2 and tk is in E0
H;

• Ek,j+1/2 between tk and t∗j+1/2 is in E0
H.

It is not hard to see that H0 = (VH, E0
H) is a planar simple TLG, therefore by Theorem 1.6.

a TLG∗.

Figure 11.2: H0 (induced by dashed edges) is planar.

Further, every two vertices tj and tk are connected by a time-path in H0. Hence, we can

add one by one edge from E to H0, and H = (VH, E0
H ∪ E) is a TLG∗. �

It is clear that the distribution of a Brownian motion on G will depend on the embedding

H.

• For a given (simple) TLG G, under what conditions on the distributions along time-

paths can we construct a process on G?

• Are there examples of distributions of (Markov) processes along time-paths for which

this is not possible?
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• Is there a way of getting the uniqueness of distribution of X on G?

• What properties will the constructed process have?

11.2 Reconstruction of TLG’s based on the process

As we saw in the previous section, the fact that the underlying graph is not a TLG∗ or

TLG∗∗ does not have to prevent us from defining a process on it.

It could be that a part of the graph and a part of the process on that graph is hidden

from us.

Suppose X is a natural M-process on a TLG∗ H where M is a family of distributions of

Gaussian Markov processes. Let G be a TLG such that R(G) ⊂ R(H).

• If we know how the graph G looks like and we know the distribution of XG = (X(t) :

t ∈ G), how much can we say about H?

• What if we don’t know the distribution of the process X on the whole G, but only on

the part of it?

• Could we use any of this on the branching Markov process (specially on branching

Brownian motion)?

In classical graphical models problems of hidden (latent) variables have been studied (see

Chapter 20. in [35] or §17.4 in [28]). One of the strong tools in solving the problems could

be the moralized graph-Markovian property, which enables us to project a process on a TLG

into Markov random field (MRF) . We could use some of the properties of MRF’s to detect

hidden parts of the graph.

There is an interesting criteria for finding edges in a Gaussian MRF. Before we state that

we will need the following lemma.
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Lemma 11.2. If X = (X1, . . . , Xn) is a Gaussian random vector with positive definite

covariance matrix Σ, then Xi ⊥ Xj|(Xk : k ∈ {1, 2, . . . , n} \ {i, j}) if and only if Σ−1ij = 0.

Proposition 11.3. Let G = (V,E) be a undirected graph and X = (Xv : v ∈ V ) a Gaussian

Markov random field. Let K be the positive definite covariance matrix of X. If {u, v} /∈ E

then K−1u,v = 0.

For proof of these claims see Chapter 7. in [35] or Chapter 5. in [37]. With these results

we can show the following.

Proposition 11.4. Let X be a natural M-process on a unit TLG∗ H, where M is a

family of Gaussian Markov processes. Assume we know the distribution of XR(G) where

G = ({0, 1}, {E1
01, E

2
01}). If R(G) is a representation of a truly simple cell in H then for the

covariance matrix K(t1, t2) of the vector

X = (X(0), X(t1), X(t2), X(1))

we have K(t1, t2)
−1
2,3 = 0 for every point t1 ∈ E1

01 and t2 ∈ E2
01 with times in the interval

(0, 1).

0
1

t1

t2
0

1

t1

t2

Figure 11.3: G and the induced graphical model

Proof. If G is a representation of truly simple cell, then by the Corollary 3.18, the strong

cell-Markovian property (Theorem 3.4) and moralized graph-Markovian property (Theorem

3.12.) we know that X can be represented as a graphical model. In this representation there

will be no edge between t1 and t2, and by Proposition 11.3. the claim follows. �
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Making some natural conditions on the distributions on the family M and using the

variable elimination algorithm (see Chapter 9. in [35]) in for MRF’s we could try to get the

converse of the statement.

• If G is not the representation of a truly simple which paths can we detect?

11.3 Strong Markov property, parametrization, evolution over time,. . .

In Chapter 4 we defined stopping times and proved the Optional Sampling Theorem. We

also proved the time-Markovian property, and the the following question naturally follows.

• Do we have a version of the strong Markov property for a natural M-process, where

M is a Markov family?

Parametrizng the process in suitable way and calculating probabilities is always a chal-

lenge.

• Is there a convenient way to parametrize the family along time-paths of a TLG G?

• Is there a procedure how to calculate finite dimensional distributions of the process on

the TLG G?

• Is there a procedure how to calculate finite dimensional distributions conditioned that

we know some values of the process on the TLG G?

We could evolve the process on a graph G over time, and maybe even make the graph

evolve over time.

• Could we define a process (Xτ : τ ≥ 0) such that Xτ = (Xτ (t) : t ∈ G) is a process

indexed by a TLG G?

• Could we define a process (Xτ : τ ≥ 0) such that Xτ = (Xτ (t) : t ∈ G(τ)) is a process

indexed by a TLG G(τ)?
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We saw one way to randomize the underlying graph in Chapter 10, we could try to

randomize the underlying graph in a different way.

• Let G be infinite TLG, suppose we run site or bond percolation on G, and then on the

connected component we define a Markov process. What properties will the process

have?
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Appendix A

INDEPENDENCE AND PROCESSES

A.1 Conditional independence and expectations

The results in this section are taken from Section 21.5. in [20].

We will often use conditional independence, so we need to define it.

Definition A.1. Let (Ω,F ,P) be a probability space and F1, F2, and G sub-σ-fields of F . The

σ-fields F1 and F2 are conditionally independent given G if

P(A1 ∩A2|G) = P(A1|G)P(A2|G) a.s.

for all A1 ∈ F1 and A2 ∈ F2.

Proposition A.2. Let (Ω,F ,P) be a probability space and F1, F2, and G sub-σ-fields of F , and

suppose that F2 ⊂ G. Then F1 and F2 are conditionally independent.

Proposition A.3. Let G, H, and K be σ-fields of events in a probability space. If G and H are

conditionally independent given K, then G and σ(H,K) are conditionally independent given K.

Proposition A.4. Let G and H be two σ-fields of events in a probability space, and let G1 and H1

be sub-σ fields of G and H, receptively. Suppose that G and H are independent. Then G and H are

conditionally independent given σ(G1,H1).

Conditional expectations

Proposition A.5. Let X be (Ψ,H)-valued random variable on a probability space (Ω,F ,P) and

suppose that a conditional distribution Z of X given G exists where G is a sub-σ-field of F . Let f

denote a R-valued function on (Ψ,H). Then

E(f(X)|G) =
∫

Ψ
f(x)Z(dx) a.s.
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Proposition A.6. For i = 1, 2, let Xi be a (Ψi,Hi)-valued random variable on a probability

space (Ω,F ,P) and let G be a sub-σ-field of F , such that X2 is measurable with respect to G.
Suppose that each (Ψi,Hi) is a Borel space. Let f be a measurable R-valued function defined on

(Ψ1,H1)× (Ψ2,H2). If Q1 is the distribution of X1, then

E(f(X1,X2)|G)(ω) =
∫

Ψ1

f(x,X2(ω))Q1(dx|G)(ω) a.s.

in the sense that the set of ω such that one side exist but the other does not is a null event.

A.2 Construction of a conditional sequence

Lemma A.7. Let (Ψ0,G0) and (Ψ1,G1) be two measurable spaces, let R0 denote the probability

measure on (Ψ0,G0), and let x0 7→ R1(x0, ·) be a random distribution on (Ψ1,G1) whose domain is

the probability space (Ψ0,G0, R0). Then there is a unique distribution Q on (Ψ0×Ψ1,G0×G1) such

that if X = (X0,X1) is any valued Ψ0 ×Ψ1-valued random variable having distribution Q, then R0

is the distribution of X0 and R1 is a conditional distribution of X1 given σ(X0). Moreover Q is

given by

Q(A) =

∫

Ψ0

∫

Ψ1

1A(x0, x1)R1(x0, dx1)R0(dx0)

for A ∈ G0 × G1.

Theorem A.8. (Conditional Fubini) Let (Ψ0,G0) and (Ψ1,G1) be two measurable spaces and

let

(Ω,F) = (Ψ0,G0)× (Ψ1,G1).

Let R0, R1, and Q be as in Lemma A.7. If f is and R̄-valued measurable function defined on

(Ω,F , Q) whose integral with respect to Q exists, then the function

x0 7→
∫

Ψ1

f(x0, x1)R1(x0, dx1)

is an R0-almost surely defined G0-measurable function, and

∫

Ω
f dQ =

∫

Ψ0

∫

Ψ1

f(x0, x1)R1(x0, dx1)R0(dx0).
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Theorem A.9. Let (Ψn,Gn)n≥0 be a sequence of measurable spaces. Let R0 be a probability measure

on G0, and for each n ≥ 0, let Rn+1 be a measurable function from (Ψ0,G0) × . . . × (Ψn,Gn) to

the measurable space of probability measures on (Ψn+1,Gn+1). Then there exists a probability space

(Ω,F ,P) and a random sequence (Xk : k = 0, . . .) defined on the space such that the distribution of

X0 is R0, and for n ≥ 0, conditional distribution of Xn+1 given σ(X0, . . . ,Xn) is given by

ω 7→ Rn+1(X0(ω),X1(ω), . . . ,Xn(ω), ·).

The distribution of X is uniquely determined by the relations

P((X0, . . . ,Xn) ∈ An) =

∫

Ψ0

. . .

∫

Ψn

1A(x0, . . . , xn)Rn((x0, . . . , xn−1), dxn) . . . R0(dx0),

n ∈ N0 and An ∈ G0 × . . .× Gn.

A.3 Markov and Brownian bridges

The best way to describe a Markov bridge (Yt) is as a Markov process on the time interval [s, u]

conditioned that we know the value of the process at times s and u.

In oder to construct such a process we need to see what is happening with a Markov process

when we condition it on the outside of that interval. Here we will prove a slight generalization of

the result stated in [1]. In this section we are working on a probability space (Ω,F ,P) until we

extend it later. The proof of the following theorem can be found in [1].

Theorem A.10. (Two-sided Markovian property)Let (Xt)t∈T be a Markov process with re-

spect to the filtration (Ft)t∈T , and let Gt = σ{Xu : u ≥ t}. For s < u in T and T ′ ⊂ T ∩ [s, u], if Y

is a bounded σ{Xt : t ∈ T ′}-measurable random variable then

E(Y |Xs,Xu) = E(Y |Fs ∨ Gu) a.s.

Corollary A.11. Let (Xt)t∈T be a Markov process with respect to the filtration (Ft)t∈T , and let

Gt = σ{Xu : u ≥ t}. For s < u and t ∈ [s, u] in T , if f is a bounded R-valued measurable function

on the state space, then

E(f(Xt)|Xs,Xu) = E(f(Xt)|Fs ∨ Gu) a.s.
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If T ⊂ R be a closed finite interval, and (Xt)t∈T is RCLL (or continuous) process with real

values. Then X can be viewed as a random map into a Borel space (Σ,S) consisting of all x ∈ RT ,

such that t 7→ xt is RCLL (or continuous) with the usual Skorohod (or uniform) topology. (See [5]

for more on this.) Under those conditions, since the space of RCLL functions on a compact set is

a Borel space, we can define a conditional probability µ(ω, ·) for ω ∈ Ω such that

µ(ω,H) = P(X−1(H)|Xu,Xs)(ω), (A.1)

where H is an element in the σ-algebra of that Borel space, for P-almost all ω ∈ Ω.

Specially, since coordinate projection πt : RT → R are measurable, µ we get the conditional

distribution for each Xu:

µ(ω, π−1u (A)) = P(Xt ∈ A|Xu,Xs).

A property of this random measure.

Proposition A.12. For u ∈ {s, t}, we have

µ(·, π−1u (A)) = δXu(A).

Proof. Since 1A(Xu) is Fs ∨ Gt-measurable, from Corollary A.11 we have

µ(·, π−1u (A)) = P(Xu ∈ A|Xs,Xt) = E(1A(Xu)|Xs,Xt) =

= E(1A(Xu)|Fs ∨ Gt) = 1A(Xu) = δXu(A).

�

P-almost all ω ∈ Ω the measure µ(ω, ·) on (Σ,S) defines a random map Y such that Yu = Xu(ω)

µ(ω, ·)-a.s. for u ∈ [0, s] ∪ [t,∞).
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The construction

We will focus on RCLL (or continuous) Markov process (X(t) : t ∈ [0, 1]) with distribution D.

Definition A.13. For times t1 < t2 in [0, 1] we say that a process (Y (t) : t ∈ [t1, t2]) is a Markov

bridge between (t1, yt1) and (t2, yt2) on some probability space if :

• Yt1 = yt1 and Yt2 = yt2 ;

• The distribution of (Yt : t ∈ [t1, t2]) is the same as (X(t) : t ∈ [t1, t2]) given (X(t1) =

yt2 ,X(t2) = yt2).

Theorem A.14. A Markov bridge between (t1,Xt1) and (t2,Xt2) exists, for D-almost all values of

(Xt1 ,Xt2).

Proof. The process (Xt : t ∈ [t1, t2]) is still Markov and RCLL (or continuous). Now, from the

previous discussion (see (A.1)) and since the space of RCLL functions on a compact set is a Borel

space, there exists R such that

R(X(t1),X(t2))(·) = P(X ∈ ·|X(t1),X(t2)).

Now the measure B 7→ R(X(t1),X(t2))(B) defines a process Y on D[t1, t2] (or C[0, 1]). From the

Proposition A.12. we get that Y (t1) = X(t1) and Y (t2) = X(t2) R(X(t1),X(t2)) - a.s. �

Often we will have a probability space a Markov process X and maybe some other process Y on

that space, and we will need to extend that process to get construct an additional Markov bridge

of the process X.

Theorem A.15. Let (Ω0,F0,P0) be a probability space, (X : t ∈ [0, 1]) a RCLL (or continuous)

Markov process with distribution D, and Z some other random element on that space. Assume Q

is the law of the Markov process on [t1, t2], where D ◦ π−1t1,t2 = Q ◦ π−1t1,t2. Then for all t1 < t2 in

[0, 1] there exist a probability space (Ω,F ,P) with a process (X̂(t) : t ∈ [0, 1]), random element Ẑ,

and a Q - Markov bridge (Y (t) : t ∈ [t1, t2]) between (t1, X̂(t1)) and (t2, X̂(t2)) such that:

• The joint distribution of (X,Z) is the same as of (X̂, Ẑ);
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• (X̂, Ẑ) and Y are conditionally independent given (X̂(t1), X̂(t2)).

The process X̃ given by X̃(t) = X̂(t) for t ∈ [0, t1] ∪ [t2, 1] and X̃(t) = Y (t) for t ∈ (t1, t2) is a

Markov process. Further, if D on [t1, t2] is distributed as Q then X̃ has the same distribution (D)

as X.

Proof. We construct a Markov bridge and the space (Ω,F ,P) using Lemma A.7. Let’s prove that

the process X̃ is Markov. Pick u ∈ [0, 1] and with Alk we denote a set in σ(Xt : t ∈ [l, k]).

If u ∈ (t1, t2), and let Bu ∈ σ(X̃u) then when we condition on X̃(t1) and X̃(t2) from the

construction we have

E(1A0t1
1At1u

1Aut2
1At21

1Bu)

= E(E(1A0t1
1At1u

1Aut2
1At21

1Bu |X̃(t1), X̃(t2)))

= E(1A0t1
1At21

E(1At1u
1Bu1Aut2

|X̃(t1), X̃(t2)))

Now using the Markov property of the process X̂ we have

= E(E(1A0t1
1At21

E(1At1u
1Bu1Aut2

|X̃(t1), X̃(t2))|X(t1)))

= E(E(1A0t1
|X(t1))1At21

E(1At1u
1Bu1Aut2

|X̃(t1), X̃(t2)))

= E(E(E(1A0t1
|X(t1))1At21

E(1At1u
1Bu1Aut2

|X̃(t1), X̃(t2))|X(t2)))

= E(E(1A0t1
|X(t1))E(1At21

|X(t2))E(1At1u
1Bu1Aut2

|X̃(t1), X̃(t2)))

Now, again using the properties of the conditional expectation we have

= E(E(E(1A0t1
|X(t1))E(1At21

|X(t2))1At1u
1Bu1Aut2

|X̃(t1), X̃(t2)))

= E(E(1A0t1
|X(t1))E(1At21

|X(t2))1At1u
1Bu1Aut2

).

Since (X̃(t) : t ∈ [t1, t2]) is a Q-Markov process, conditioning on X̃(u) we get

= E(E(E(1A0t1
|X(t1))E(1At21

|X(t2))1At1u
1Bu1Aut2

|X̃(u)))

= E(E(E(1A0t1
|X(t1))E(1At21

|X(t2))1At1u
1Aut2

|X̃(u))1Bu)

= E(E(E(1A0t1
|X(t1))1At1u

|X̃(u))E(E(1At21
|X(t2))1Aut2

|X̃(u))1Bu)

= E(E(1A0t1
|X(t1))1At1u

E(E(1At21
|X(t2))1Aut2

|X̃(u))1Bu)
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We again condition on X(t1) and X(t2) and we get

= E(E(E(1A0t1
|X(t1))1At1u

E(E(1At21
|X(t2))1Aut2

|X̃(u))1Bu |X(t1),X(t2)))

= E(E(1A0t1
|X(t1))E(1At1u

E(E(1At21
|X(t2))1Aut2

|X̃(u))1Bu |X(t1),X(t2)))

Now, using Markov property of the process X̂, and later the construction we get

= E(1A0t1
E(1At1u

E(E(1At21
|X(t2))1Aut2

|X̃(u))1Bu |X(t1),X(t2)))

= E(1A0t1
1At1u

E(E(1At21
|X(t2))1Aut2

|X̃(u))1Bu)

Now we again condition everything on X̃(u) and using properties of the conditional expectation we

get:

= E(E(1A0t1
1At1u

|X̃(u))E(E(1At21
|X(t2))1Aut2

|X̃(u))1Bu)

= E(E(E(1A0t1
1At1u

|X̃(u))E(1At21
|X(t2))1Aut2

1Bu |X̃(u)))

= E(E(1A0t1
1At1u

|X̃(u))E(1At21
|X(t2))1Aut2

1Bu)

Again conditioning on X(t1) and X(t2), and using Markov property of X̂ , and the construction we

get

= E(E(E(1A0t1
1At1u

|X̃(u))1Aut2
1Bu |X(t1),X(t2))E(1At21

|X(t2)))

= E(E(E(1A0t1
1At1u

|X̃(u))1Aut2
1Bu |X(t1),X(t2))1At21

)

= E(E(1A0t1
1At1u

|X̃(u))1Aut2
1Bu1At21

)

Finally, conditioning on X̃(u) we get

= E(E[E(1A0t1
1At1u

|X̃(u))1Aut2
1Bu1At21

|X̃(u)])

= E(E(1A0t1
1At1u

|X̃(u))E[1Aut2
1At21

|X̃(u)]1Bu).

This proves, using monotone class theorem that (X̃(t) : t ≤ u) and (X̃(t) : t ≥ u) are conditionally

independent given X̃(u).

When u ∈ [0, t1] ∪ [t2, 1] this can be shown in a similar way. �
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Brownian bridge

Brownian bridges are Markov bridges when the given Markov process is Brownian motion.

The following representation holds.

Theorem A.16. For 0 < t1 < t2 the process (Bbr(t) : t ≥ 0) given by

Bbr(t) =
t2 − t

t2 − t1
(x1 −Wt1) +Wt +

t− t1
t2 − t1

(x2 −Wt2),

where (Wt : t ≥ 0) is Brownian motion has the same distribution as a Brownian bridge conditioned

at times t1 and t2 to have values x1 and x2.

Corollary A.17. Let (N(t) : t ∈ [0, T ]) be given for each t by the Ito integral

N(t) =

∫ t

0
f(s) dBs.

For 0 ≤ t1 < t2 ≤ T the distribution of the process N conditioned at times t1 and t2 to have values

x1 and x2 is the same as that of

N t1,t2
x1,x2

(t) =
V (t2)− V (t)

V (t2)− V (t1)
(x1 −WV (t1)) +WV (t) +

V (t)− V (t1)

V (t2)− V (t1)
(x2 −WV (t2)),

where (Wt : t ≥ 0) is Brownian motion and V (t) =
∫ t
0 (f(s))

2 ds.

A.4 Markov random fields

Let G = (V,E) be a simple undirected graph, where V is a finite set of vertices and E is a set of

edges. We are looking a process (Xv : v ∈ V ).

Definition A.18. The process (Xv : v ∈ V ) has a

(a) pairwise Markov property if for all v, u ∈ V such that {u, v} /∈ E we have

Xv ⊥ Xu|XV \{v,u};

(b) local Markov property if for all v ∈ V

Xv ⊥ XV \{v}|X{u:{u,v}∈E});
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(c) global Markov property if for every A, B and C subsets of V such that C separates A and

B, we have

XA ⊥ XB |XC .

Definition A.19. We say that the process (Xv : v ∈ V ) is a Markov random field (MRF) if it

satisfies one of the three properties (a), (b) or (c) in Definition A.18.

Lemma A.20. The global Markov property implies local Markov property, and the local Markov

property implies the pairwise Markov property.

If the random vector (Xv : v ∈ V ) has a positive density then we have several interesting results.

(For more details see [35].)

Theorem A.21. Let X = (Xv : v ∈ V ) have a positive density function f . Then global, local, and

pairwise Markov properties are equivalent.

The following theorem was proven in an unpublished paper by Hammeresley and Clifford. There

have been several proofs published obtained in different ways, see for example [25, Grimmett (1973)]

or [11, Clifford (1990)].

Theorem A.22. (Hammeresley-Clifford, 1971) Let X = (Xv : v ∈ V ) be a continuous or discrete

random vector with a positive density function f . X is a Markov random field if and only if f is

of the form

f(x) =
1

Z

∏

C∈C(G)

φC(xC),

where C(G) is the set of all maximal cliques in G.

A.5 White noise

In this section we define the one dimensional white noise on Rn. This is a mean-zero Gaussian

process indexed by Borel σ-algebra on Rn (B(Rn)), i.e.

(W(A) : A ∈ B(Rn)),

with the covariance function

Σ(A,B) = λ(A ∩B), (A.2)

where λ is the Lebesgue measure, and A,B ∈ B(Rn).
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Lemma A.23. The function Σ : B(Rn) × B(Rn) → R given by (A.2) is symmetric and positive

definite.

By Kolmogorov’s Consistency Theorem, the process W exists, and has the following properties:

Theorem A.24. Let W = (W(A) : A ∈ B(Rn)) be the white noise on Rn.

(a) For all disjoint A,B ∈ B(Rn), W(A) and W(B) are independent.

(b) For all A,B ∈ B(Rn), W(A ∪B) = W(A) +W(B)−W(A ∩B) a.s.

(c) If A1, A2, . . . ∈ B(Rn) are disjoint and
∑∞

i=1 λ(Ai) < ∞, then a.s.

W

( ∞⋃

i=1

Ai

)
=
∞∑

i=1

W(Ai).

Although W is not a measure, it has enough properties (see details in Khoshnevisan) that for

h ∈ L2(λ) we can define the Wiener integral

W (h) =

∫
h(s)W(ds).

The stochastic process (W (h) : h ∈ L2(λ)) is called the isonormal process.

Theorem A.25. The isonormal process (W (h) : h ∈ L2(λ)) is a mean zero Gaussian process

indexed by L2(λ) such that for all h1, h2 ∈ L2(λ),

E(W (h1)W (h2)) =

∫
h1h2 dλ.

Moreover, for every α, β ∈ R and f, g ∈ L2(λ)

W (αf + βg) = αW (f) + βW (g), a.s.

A.6 The stochastic heat equation

The usual heat equation is the initial value problem

∂tu = c∂xxu+ f on (0,∞)× R,

u(0, x) = g(x) for x ∈ R.
(A.3)
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Under mild assumptions (see [18, Folland]) it is well known that the following is a solution to

(A.3):

u(t, x) =
1

2
√
πct

∫

R

e−
|x−y|2

4ct g(y) dy +

∫ t

0

1

2
√

πc(t− s)

∫

R

e
− |x−y|2

4c(t−s) f(s, y) dy ds (A.4)

The idea of the stochastic heat equation is to replace the external force f , with random noise,

in our case the white noise W. So the stochastic heat equation will be given by

∂tu = c∂xxu+ σW on (0,∞) × R,

u(0, x) = g(x) for x ∈ R.
(A.5)

where σ : R+ × R → R is a nice function. The so called mild solution to (A.5) is

u(t, x) =
1

2
√
πct

∫

R

e−
|x−y|2

4ct g(y) dy +

∫ t

0

1

2
√

πc(t− s)

∫

R

e
− |x−y|2

4c(t−s)σ(s, y)W(ds, dy). (A.6)

We will state the results adapted from [47] (see the appendix of the paper). The case that will

interest us is the case when we have a boundary condition, and c = 1
2 and σ = 1 are constants:

∂tu = 1
2∂xxu+W on (0,∞) × R+,

u(0, x) = g(x) for x ∈ R+.

u(t, 0) = 0 for t ≥ 0.

(A.7)

We need to define precisely what the solution of this equation is, and when it is unique (and in

what sense). The following definition and results have been taken from [21, Section 3 & 4], where

more general result were obtained and by modification of results from [47].

First we will define a space of Ctem(R+), and we will require that for all t ≥ 0 the function

u(t, ·) ∈ Ctem(R+).

Definition A.26. We denote by Ctem(R+) the family of all continuous functions f : R+ → R

satisfying

‖f‖(−λ) = sup
x∈R+

|e−λ|x|f(x)| < ∞,

for all λ > 0.

Definition A.27. (a) We call a random function {u = u(t, x), t ≥ 0, x ∈ R+} a weak solution of

the SPDE (A.7) with an initial value u0 ∈ Ctem(R+) if it is (Ft) adapted and has the following

two conditions:
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• u ∈ C([0,∞), Ctem(R+)), a.s.

• For every ϕ ∈ C∞c (R+) such that ϕ(0) = 0, the following is satisfied:

∫

R+

u(t, x)ϕ(x) dx =

∫

R+

u0(x)ϕ(x) dx+

+
1

2

∫ t

0

∫

R+

u(s, x)ϕ′′(x) dx ds +
∫ t

0

∫

R+

ϕ(x)W(ds, dx)

(b) We call u under the same assumptions a mild solution if the following holds

u(t, x) =
1√
2πt

∫

R+

(
e−

|x−y|2

2t − e−
|x+y|2

2t

)
g(y) dy+

+

∫ t

0

1√
2π(t− s)

∫

R+

(
e
− |x−y|2

2(t−s) − e
− |x+y|2

2(t−s)

)
W(ds, dy). (A.8)

(u is a Ctem-version of the integral on the right.)

(c) We say that the pathwise uniqueness of the weak solution of the SPDE (A.7) holds if for

arbitrary two weak solutions u(1) and u(2) of the SPDE (A.7) with the respect to the same

filtration (Ω,F , (Ft),P) and the same noise W we have

⋂

t≥0
{u(1)(t, ·) 6= u(2)(t, ·)} ⊂ N,

where N ∈ F such that P(N) = 0.

In order to show that a Ctem-version of (A.8) exists we will need the following results.

Lemma A.28. If φ : R+ × R+ → R is in L2, for each p > 0 there exists a constant Cp > 0 such

that

E

[(∫ t

0

∫

R+

φ(s, x)W(ds, dx)

)2p
]
≤ Cp

(∫ t

0

∫

R+

φ(s, x)2ds dx

)p

(A.9)

Lemma A.29. (i) There exists a constant C > 0 such that

∫ t∨t′

0

∫

R

(G(t− s, x, y)−G(t′ − s, x′, y))2 ds dy ≤ C(|t− t′|1/2 + |x− x′|)

for t, t′ ≥ 0 and x, x′ ∈ R, where G(t, x, y) = (2πt)−1/2 exp(−(x−y)2/(2t)) for t > 0 and G(t, x, y) =

0 if t ≤ 0.

(ii) For every λ ∈ R and T > 0

sup
0≤t≤T

sup
x∈R

e−λ|x|
∫

R

G(t, x, y)eλ|y|dy < ∞.
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Theorem A.30. If g ∈ Ctem a.s., the following claims are true:

(a) The SPDE (A.7) has a at most one pathwise unique weak solution.

(b) If u is a mild solution to the SPDE (A.7) then it is also a weak solution.

Lemma A.31. Brownian motion is in Ctem a.s.

Proof. The claim follows from the strong law of large numbers for the Brownian motion, that is if

λ > 0 then

lim
x→∞

e−λxWx = lim
x→∞

(xe−λx)
Wx

x
= 0 · 0 = 0.

�

The following result is Lemma 4.4. from [21].

Theorem A.32. The Wiener measure is an invariant measure for the SPDE (A.7), i.e. if g is

Brownian motion, then for each x ∈ R the process t 7→ u(x, t) is also Brownian motion.

A.7 Crump - Mode - Jagers trees

Here we present an introduction to Crump -Mode - Jagers model which we will later mention in

the context of time-like trees. We will use the notation given by Dawson in [13].

First some notation. We define I = {∅}∪⋃∞n=1N
n. Given u = (u1, . . . , um), v = (v1, . . . , vn) ∈ I

we denote the composition by uv := (u1, . . . , um, v1, . . . , vn).

Definition A.33. A plane rooted tree T with root ∅ is a subset of I such that:

1. ∅ ∈ T ,

2. If v = uw ∈ T for some u ∈ I and w ∈ I, then u ∈ T .

3. For every u ∈ T , there exists a number ku(T ) ≥ 0, such that uj ∈ T if and only if 1 ≤ j ≤
ku(T ).
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Set T to be the set of all plane rooted trees. For u ∈ T define the level of the vertex to be

|u| = |(u1, . . . , um)| = m.

A plane tree T can be given a structure of a graph in which uw ∈ T is descendant of u.

Specially, (u)(j) ∈ T is the child of u.

Consider the following process: For each individual x ∈ I

• We denote his birth time τx.

• Lifetime λx.

• Point process ξx denoting reproduction function. (ξx(t) is the number of offsprings produced

by individual x born at 0 during [0, t]. )

• Assume that the pairs (λx, ξx) are i.i.d.

• Assume P(ξx(λx,∞) = 0) = 1. (Offsprings can’t be produced after x is no longer alive.)

τx′ τ(x′,1) τ(x′,2)

τx′ + λx′

τ(x′,1,2)

τ(x′,1) + λ(x′,1)

Figure A.1: Crump-Mode-Jagrers tree

The probability space that we are working in is

(Ω,F ,P) =
∏

x∈I
(Ωx,Fx,Px),
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where each (Ωx,Fx,Px) supports (λx, ξx).

We can determine the birth times {τx : x ∈ I} as follows,

τ∅ = 0,

τ(x′,i) = τx′ + inf{u : ξx′(u) ≥ i}.

The natural question that one may many individuals were born in the the time period [0, t]. Is

that number even finite? We will introduce some results on this.

Set µ(t) := E(ξ(t)), and we define

Tt =
∑

x∈I
1(τx≤t),

to be the number of individuals born up to time t. The following two results are form [32] (Theorem

6.2.1. and Theorem 6.2.2. pages 126-127).

Theorem A.34. If µ(0) > 1, then for all t ≥ 0, P(Tt = ∞) > 0.

Theorem A.35. If µ(0) < 1 and µ(t) is finite for some t > 0, then

P(∀t : Tt < ∞) = 1.

A.8 Branching Markov processes and branching Brownian motion

The following is a definition given in [16] of the branching Brownian motion.

Definition A.36. Branching Brownian motion has three ingredients:

• The spatial motion: During its lifetime, each individual in the population moves around

in Rd (independently of all other individuals) according to a Brownian motion.

• The branching rate V : Each individual has an exponentially distributed lifetime with

parameter V .
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• The branching mechanism Φ: When it dies, and individual leaves behind (at the location

where it died) a random number of offsprings with probability generating function Φ(s) =
∑∞

k=0 pks
k. Conditional on their time and place of birth, offsprings evolve independently of

each other (in the same way as their parent).

We could have defined any Markov process on any Polish space E to evolve in the same way,

and in that case this would be the branching Markov process.

For more details on the definition of the branching Markov process see [30] and [31].



228

BIBLIOGRAPHY

[1] Al-Hussaini A.N., Elliot R.J., Markov bridges and enlarged filtartions, The Canadian
Journal of Statistics, Vol. 17, No. 3, 1989, pp 329-332.

[2] Bass R.F., The measurability of hitting times, Electron. Comm. Probab. 15 (2010) 99-
105

[3] Bass R.F., Correction to: “The measurability of hitting times”, Electron. Comm.
Probab. 16 (2011) 189-191

[4] Benjamini I., Peres Y., Markov chains indexed by trees, Ann. Probab. 22 (1994), 219-243

[5] Billingsley P., Convergence of Probability Measures, John Wiley & Sons, New York,
1968.

[6] Blumenthal R.M., Getoor R.K., Markov Processes and Potential Theory, Dover, 1996.

[7] Burdzy, K., Pal S., Markov processes on time-like graphs, Ann. Probab. 39 (2011)

[8] Boucheron S., Lugosi G., Massart P., Concentration Inequalities : A Nonasymptotic
Theory of Independence, Oxford University Press, 2013

[9] Chatterjee S., Chaos, concentration, and multiple valleys, arXiv:0810.4221v2

[10] Chaumont L., Uribe Bravo G., Markovian bridges: weak continuity and pathwise con-
struction, Ann. Probab. 39 (2011)

[11] Clifford P., Markov Random Fields in Statistics, Disorder in physical systems (1990):
19-32.

[12] Davie A. M., Gaines J. G., Convergence of Numerical Schemes for The Solution of
Parabolic Stochastic Partial Differential Equations, Mathematics of Computation, Vol.
70, No. 223, pp. 121-134, AMS, 2000.

[13] Dawson D., Stochastic Population Systems, Lecture notes from Summer School in Prob-
ability at PIMS - UBC 2009
http://www.math.ubc.ca/~db5d/SummerSchool09/LectureNotes.html



229

[14] Dawson D., Measure-valued Markov processes, Ecole d’Eté de Probabilités de Saint-
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INDEX

M-process, see Process indexed by a TLG

Banach space, 116

dual space, 116

Branching Brownian motion, 204, 226

Branching Markov process, 200–204, 227

Branching Markov processes, 188

Brownian bridge, 154–160, 219

maximum, 111–114, 157

Cell collapse transformation, see Time-like graph

(TLG)

Cell-Markovian property, 66–68, 84

strong, 66

Conditional expectation, 212–213

Conditional Fubini’s Theorem, 213

Conditional independence, 212, 212

Consistent family of distributions along time-

paths, see Process indexed by a TLG

Covariance matrix, 209

Crump - Mode - Jagers trees, 195, 224–226

Galton-Watson, see Galton-Watson time-

like tree

Directed set, 99

Donsker’s Theorem, 125

Edge-Markovian property, 77–78, 188

Euler method, see Heat equation

Filtration, 88

right-continuous, 90

Firs child - next sibling, 201

Full time-path, see Time-like graph (TLG)

Galton-Watson time-like tree, 195–197

Gaussian random variable (in Banach space),

116

concentration inequality, 116

Global Markov property, 69, 220

Graph-Markovian property, 69

doesn’t hold, 79–81

for time-like trees, 191

moralized, 72, 71–77, 187, 208

Harmonic sequence, 113

Heat equation, 124–161

discrete, 156

Euler method, 134–151

solution, 124

stochastic, 134–146, 156, 221–224

mild solution, 223

weak solution, 222

Hidden Markov model, 162

Hidden Markov models, 188
232
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Hoeffding’s Inequality, 125

Interpolation, 144

Interval TLG, see Time-like graph (TLG)

Local Limit Theorem, 120–124

Local Markov property, 219

Markov bridge, 216, 214–219

Markov chains indexed by trees, 188

Markov random field (MRF), 71, 76, 208, 220

Gaussian, 208

Hammeresley-Clifford Theorem, 220

Martingale indexed by directed set, 99–102

Martingales

indexed by a TLG, 87

Maximal inequality for normal random vari-

ables, 114

Moralization, 71

Moralized graph-Markovian property, see Graph-

Markovian property

Pairwise Markov property, 219

Percolation, 211

Plane rooted tree, 224

Process index by a TLG

M-process

natural, 59

Process indexed by a TLG, 41

M-process, 47, 49–51, 177, 184

cell-Markovian property, 185

consistent family of distributions along time-

paths, 45, 176

construction, 47–49, 177–183

(3T’) conditions, 178

(3T) conditions, 47

construction problems, 81–84

spine-Markovian property, 52–58, 184

for time-like trees, 192

hereditary, 57–58, 184

uniqueness of distribution, 58–59, 187

with infinite number of vertices, 59–63,

197–199

construction, 59, 197

uniqueness of distribution, 60, 198

Šidák’s inequality, 115

Simple random walk, see also Local Limit

Theorem, 120, 123, 125–133, 135

Skorohod’s Representation Theorem, 126

Spine of a TLG∗, see TLG∗ family

Spine-Markovian property, 42–45, see also Pro-

cess indexed by a TLG, 66

hereditary, 45

Stingy algorithm, see TLG∗ family

Stirling formula, 120

Stochastic heat equation, see Heat equation

Stopping times, 100, 102–105
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TLG - valued, 102

Strong Markov property, 210

Time-like graph (TLG), 8, 7–40, 164, 164–

175

cell, 10

cell collapse transformation, 30

embedding, 166–169

maximal, 167

minimal, 166

entrance (vertex), 165

exit (vertex), 165

full path, 165

full-time path, 18

half-cell, 176

truly simple, 185

Interval TLG, 21

order, 173

order induced by a TLG �, 19

planar, 9, 173

point, 19, 173

representation, 8

simple, 164

time-path, 9

full-time path, 9

topology, 23–26

Convergence of points, 25

metrizability, 25

tree, 175

truly simple cell, 32

with infinitely many vertices, 39, 194–195

Time-like tree (TLT), 189, 188–193

backward, 189

forward, 189

Galton-Watson, see Galton-Watson time-

like tree

Time-Markovian property, 69, 70–71, 188

Time-path, see Time-like graph (TLG)

TLG∗ family, 10–16

consistent representation, 17

spine, 18

stingy algorithm, 35

TLG∗-tower, 11

topological lattice, 26

TLG∗-tower, see TLG∗ family

TLG∗∗ family, 169, 169–175

Topological lattice, see also TLG∗ family, 26,

28

separable from above, 101

Truly simple cell, see Time-like graph (TLG)

White noise, 220, 220–221

Wiener integral, 221
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