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1. INTRODUCTION 

 

1.1  Embryology and development of the prostate 

 

The prostate develops from the urogenital sinus. Its glandular substance derives from 

the endodermal epithelial outgrowths of the prostatic segment of the urethra, whereas its 

fibromuscular and connective tissue derive from the mesodermal mesenchyme (1).  

The epithelial outgrowth and branching start at week 10 during embryo growth and 

these are activated by androgen that is secreted by the fetal testes. By week 12, the prostate 

develops five lobes: the middle lobe, the left and right lateral lobes, the posterior lobe, and the 

anterior lobe (1, 2). No boundaries can be identified between these lobes at 2.5 months 

postnatally, nor do they do exist in the prepubertal and normal adult prostate.   

The normal formation of the prostate requires the presence of 5α-dihydrotestosterone, 

which is synthesized from fetal testosterone by the action of the 5α-reductase enzyme 

localized in the urogenital sinus and the external genitalia in humans. Deficiency of 5α 

reductase causes the development of only a rudimentary prostate, in addition to several 

abnormalities of the external genitalia (3).  

From birth until puberty, the constitution of the prostate remains more or less 

identical. The prostate begins to undergo morphologic changes into the adult phenotype upon 

initiation of puberty. The prostate enlarges continuously in size, to reach the adult weight of 

approximately 20 grams by the age 25–30 (3). 

 

1.2 Gross anatomy of the prostate 

 

The prostate is an accessory structure of the male reproductive system. The main 

function of the prostate is to contribute to the production of the seminal fluid at the time of 

ejaculation. The prostate has the shape of an inverted cone, with the base located proximally 

at the bladder neck, and the apex distally at the urogenital diaphragm (4). At the base of the 

prostate are the seminal vesicles (4). The prostatic urethra, which runs through the center of 

the prostate, has a central 35-degree bend that divides it into proximal and distal segments of 

approximately equal length.  

Ejaculatory ducts perforate the prostate and open in the middle of the prostatic urethra 

at the seminal colliculus, the veromontanum (5). The prostate is an assemblage of about 30 

tubuloalveolar glands, with ducts, that empty into the prostatic urethra. The distal urethral 

segment receives the ejaculatory duct and the ducts of about 95% of the glandular prostate 
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tissue, whereas the proximal urethral segment is related to only about 5 to 10% of the 

prostatic glandular tissue (5). 

The prostate is enclosed by a capsule composed of collagen, elastin, and large amounts 

of smooth muscle. Three distinct layers of fascia cover the anterior, lateral, and posterior 

aspects of the prostate (5). The anterior and anterolateral fasciae are in direct continuity with 

the so called “true” prostatic capsule, whereas posteriorly, a thin layer of connective tissue 

known as Denonvillier’s fascia separates the prostate and seminal vesicles from the rectum 

(5). Anteriorly, two puboprostatic ligaments fix the prostate to the pubic bone (5).    

Anatomists initially divided the prostate, via the urethra and the ejaculatory ducts, into 

five lobes: the anterior, which is anterior to the urethra; the posterior, behind the urethra and 

below the ejaculatory ducts; the median, between the urethra and the ejaculatory ducts; and 

the left and the right lobes, which lie on either side of the urethra (4). More recently, McNeal 

(5) defined a concept of anatomic zones, rather than lobes, to describe the prostate. The 

recommended four zones are the anterior fibromuscular stroma; the central zone; the 

peripheral zone; and the preprostatic region, which encompasses the periurethral ducts and the 

large transition zone (5). This scheme is often simplified into a two zone concept, 

corresponding to the inner (transition zone) and the outer (peripheral and central zones) 

sections of the prostate (5). 

The anterior fibromuscular stroma forms the convexity of the anterior external surface 

of the prostate. The apical half of this area is rich in striated muscle, which blends into the 

prostate and the muscle of the pelvic diaphragm. Toward the base, smooth muscle cells 

become predominant, blending into the fibers of the bladder neck. The distal portion of the 

anterior fibromuscular stroma is important in voluntary sphincter functions, whereas the 

proximal portion plays a central role in involuntary sphincter functions (3, 5). 

The central zone is a cone-shaped area of the prostate, with the apex of the cone at the 

confluence of the ejaculatory ducts and the prostatic urethra at the verumontanum. The 

peripheral zone comprises all the prostatic glandular tissue at the apex, as well as all the tissue 

located posteriorly near the capsule. In this zone, carcinoma, chronic prostatitis, and 

postinflammatory atrophy are relatively more common. The transition zone consists of two 

equal portions of glandular tissue lateral to the urethra in the midgland. This portion of the 

prostate is involved in the development of age-related benign prostatic hyperplasia (BPH) 

and, less commonly, adenocarcinoma (3, 5). 

The arteries supplying the prostate derive from the internal pudendal, inferior vesical, 

and middle hemorrhoidal arteries. The veins form a plexus around the sides and base of the 
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prostate and end in the hypogastric veins (4). The lymph vessels from the prostate drain into 

the sacral, external, and mainly internal iliac lymph nodes (4).  

The autonomic innervations of the prostate derive from the pelvic plexuses; the 

parasympathetic visceral efferent and preganglionic fibers arise from the sacral levels (S2–S4) 

and the sympathetic fibers from the thoracolumbar levels (L1–L2). The parasympathetic 

nerves end at the acini and lead to prostatic secretion, whereas the sympathetic nerves 

stimulate prostatic smooth muscle contraction during ejaculation (4). 

 

1.3 Normal histology of the prostate 

 

The prostate is made of glandular and nonglandular components. In histologic 

sections, the peripheral zone forms about 70% of the glandular part, the central zone forms 

about 25% of the glandular prostate, and the transition zone forms about 5%, whereas the 

anterior fibromuscular zone is devoid of glandular tissue (5).  

The glandular component of the prostate is composed of branching glands with ducts 

and acini. Microscopically, the ducts and acini cannot be reliably distinguished since they 

have a comparable caliber, spacing, and histologic appearance (5, 6). 

The peripheral and transition zone ducts and acini are between 0.15 and 0.3 mm in 

diameter, and they have simple rounded contours with prominent undulations of the epithelial 

border. The undulations reflect the presence of corrugations of the wall, which are believed to 

provide for expansion of the lumina as secretory reservoirs (5, 6). Between the glandular 

spaces there is abundant fibromuscular stroma. The epithelial to stromal ratio of the peripheral 

and transition zone is 1:1 (5, 6). 

Central zone ducts and acini are larger than those in the peripheral and transition 

zones; they are up to 0.6 mm or larger in diameter, they have polygonal contours, and they 

become progressively larger toward the capsule at the base of the prostate, often exceeding 1 

mm in diameter. Intraluminal corrugations are more pronounced, and they partially subdivide 

the acini (5, 6). The ratio of epithelium to stroma is 2:1 (6). 

The peripheral zone acini open through ducts into the distal prostatic urethra; the 

central zone ducts open mainly into the middle prostatic urethra, whereas the transition zone 

ducts open into the sphincteric part of the urethra (6). 

The prostatic ducts and acini are lined with epithelial luminal secretory cells and basal 

cells. Scattered neuroendocrine cells are also present (5, 6). 

Basal cells are markedly flattened cells that lie parallel to the underlying basement 

membrane; they are characterized by slender dark nuclei and little cytoplasm. They are 
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considered to be the pluripotent stem cells that can differentiate into luminal secretory and 

neuroendocrine cells (5, 7). Basal cells can undergo myoepithelial metaplasia, but they are not 

myoepithelial cells, as electron microscopy has shown that they do not contain muscle 

filaments (6). 

Neuroendocrine cells are scattered endocrine-paracrine cells that are distributed along 

the basal cell layer and between secretory cells of the ducts and acini in all zones of the 

prostate (8). They are rich in serotonin granules and contain neuron-specific enolase. 

Subpopulations of these cells contain a variety of peptide hormones, such as somatostatin, 

calcitonin, and bombesin (8). Microscopically, they are difficult to identify if no special 

immunostains are used. Their biological role is unknown; they are presumed to have a 

paracrine function. 

Luminal secretory epithelial cells represent the major cell type in the prostate. They 

are cubic to columnar, androgen dependent for growth, and generate a variety of products for 

the seminal plasma (6). 

Prostatic specific antigen (PSA) and prostatic acid phosphatase (PAP) are produced by 

the secretory cells of the ducts and acini of all zones, whereas Pepsinogen II, tissue 

plasminogen activator, and lactoferrin are normally produced only in the ducts and acini of 

the central zone (6). 

The cytoplasm of the normal luminal epithelial cells contains uniform, small, clear 

secretory vacuoles. In the peripheral and transition zone, the secretory vacuoles are more 

densely packed than in the central zone; therefore, in hematoxylin and eosin (H &E) staining 

for light microscopy, the cells of the peripheral and transition zones appear pale  when 

compared to the central zone cells, which are darker (6). 

The fibromuscular tissue of the prostate constitutes its proper stroma. The connective 

tissue is very scanty, with thin trabeculae between the muscular fibers in which the vessels 

and nerves ramify (6). 

The stromal morphology differs between the central and peripheral zones, as well as 

between the peripheral and transition zones. The central zone stroma is the densest, and a 

sharp contrast is evident between the central zone stroma and the peripheral, loosely woven 

stroma (9). 

The transition zone stroma is composed of compact smooth muscle bundles, in 

contrast to the adjacent loosely woven fibromuscular peripheral zone stroma (6). Stromal 

distinctions are less evident with age and may be obliterated by disease (6).  
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1.4 Benign prostatic hyperplasia 

 

1.4.1 Epidemiology and prevalence 

Benign prostatic hyperplasia (BPH) is an overgrowth of the epithelium and 

fibromuscular tissue of the prostate. BPH is a common problem in older men and can be 

responsible for considerable disability. The prevalence of histologically diagnosed BPH 

increases from 8% in men aged 31–40, to 40–50% in men aged 51–60, and to approximately 

90% in men aged 81–90 (10). Reported data show that almost all men who live long enough 

will develop BPH. However, only 50% of men will develop macroscopic BPH, and only 50% 

of those will develop clinical symptoms (11). 

The available literature on racial and regional incidence of BPH and the impact it has 

on individuals is somewhat contradictory. However, the age-related prevalence of histologic 

BPH, as determined by autopsy findings, is reportedly similar in several countries, despite 

differing racial mixes (11). The incidence of BPH is apparently lower in Chinese and 

Japanese men living in Asia than in the white population (12). 

 

1.4.2 Etiology and pathogenesis 

The pathogenesis of BPH remains largely unknown. Aging is the most significant risk 

factor of BPH; therefore, in a way, BPH can be considered a natural consequence of aging 

(13). 

Various studies suggest a genetic link for BPH (12, 14). A 4-fold increase in the age 

specific risk has been reported for relatives of men who had undergone prostatectomy for 

BPH, whereas brothers of these men have a 6-fold increased risk when compared to men with 

sporadic BPH (12). Several possible causative mechanisms are considered responsible for 

BPH development and progression, such as hormonal mechanisms, stem cell differentiation, 

embryonic reawakening, metabolic syndrome, and inflammation/growth factor responses. 

These mechanisms may act in synergy. For example, men castrated prior to puberty do 

not experience BPH, nor do men with genetically impaired androgen action or production. 
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1.4.3 Gross anatomy  

BPH is a nodular regional growth, with variegated gross appearance resulting from the 

inhomogeneous and irregular mixture of glandular and stromal prostatic tissue. It consists of 

variably sized nodules that can be soft, firm, or rubbery, with a yellow-gray color (15). 

Degenerative changes, such as calcifications and infarction, may also occur (15). The 

consistency and color of the nodules in BPH depends on is the presence or absence of 

prominent epithelial or stromal hyperplasia. If epithelial hyperplasia is predominant, then 

abundant luminal spaces create yellowish, soft, and spongy nodules that ooze a pale-white 

watery fluid. Predominant stromal hyperplasia, on the other hand, may be characterized by 

diffuse enlargement of numerous hard appearing, gray colored trabeculations, sometimes 

without prominent nodularity (15). The gross appearance of nodules in BPH is best presented 

in total prostactetomies as they bulge from the cut surface upon transection.  

BPH usually involves the transition zone of the prostate, and the nodules only 

occasionally arise from the periurethral tissue of the bladder neck. In the latter case, 

protrusion of bladder neck nodules into the bladder lumen is referred as median lobe 

hyperplasia (15). Very rarely, BPH nodules can develop in the peripheral zone (15). 

 

1.4.4 Histopathology 

Histologically, BPH is characterized by proliferation of the epithelial and stromal 

cells. Franks (16) emphasized the idea that BPH is a nodular disease, and based on the 

differing epithelial and stromal components, he described five histologic subtypes of prostatic 

hyperplasia: stromal (fibrous or fibrovascular), fibromuscular, muscular (leiomyoma), 

fibroadenomatous, and fibromyoadenomatous. The fibromyoadenomatous type is reportedly 

the most frequent histologic type, whereas the muscular type is the rarest (16). However, BPH 

is more commonly described as epithelial (glandular), mixed, and stromal (15).  

Epithelial (glandular) hyperplasia is characterized by dilated and/or cystic glands, 

which frequently contain a secretion of glycoprotein nature, the so called corpora amylacea. 

The glands are composed of two main cell types: the secretory flat to cuboidal epithelial cells 

and the basal cells, which rest above the well-developed basal membrane (15). Three main 

patterns of glandular hyperplasia are recognized: basal cell hyperplasia, the small gland 

pattern, and clear cell cribriform hyperplasia (15). 

Stromal hyperplasia of the prostate may be nodular or diffuse. Stromal nodules, 

which are considered as the first appearance of BPH, are found predominantly in the 
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suburothelial tissue, above the distal region of the veromontanum, although they have also 

been reported in the central zone (17). They present as well-circumscribed cellular masses of 

spindled cells, which can be arranged in bundles or whorls. Cytological atypia and mitoses are 

absent. Diffuse stromal hyperplasia is less common than the nodular form and is distinguished 

from stromal nodules only by being larger and with no clear borders merging with the 

surrounding normal fibrovascular stroma (17). 

The mixed type of BPH is composed of both epithelial and stromal hyperplasia 

patterns, and it is the most common type of BPH (15). The earliest nodules that develop are 

usually found in the periurethral region and are typically stromal, composed of fibrous tissue 

mixed with smooth muscle. The proliferation of stromal nodules is then followed by 

hyperplasia of the glandular component. Therefore, in well developed BPH, the nodules are 

composed of varying proportions of both stromal and glandular elements (15). 

  

1.4.5 Clinical features and management 

The clinical symptoms of BPH result from the compression of the prostatic urethra 

and the consequent obstruction of the bladder outlet. The clinical syndrome that accompanies 

BPH is described as lower urinary tract symptoms (LUTS) (18). The severity of symptoms 

does not correlate with the degree of hyperplasia (18).  

The most common LUTS are hesitancy, weak stream, nocturia, and incontinence (18). 

BPH may be complicated by recurrent urinary tract infections, bladder stones, acute 

urinary retention, and, rarely, by irreversible renal insufficiency (18). About half of men with 

symptomatic BPH experience moderate to severe LUTS (19). 

Management decisions are made according to the severity of symptoms and include 

medication, such as α1-receptor antagonists and 5α-reductase inhibitors, as well as surgical 

procedures. Transurethral resection of the prostate (TURP) is considered the benchmark of 

surgical treatment in BPH (18); nevertheless, other surgical procedures are used as 

appropriate, such as laser prostatectomy, transurethral incision of the prostate, and 

transurethral microwave (18).  
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1.5 Precursor and putative precursor lesions to prostatic carcinoma 

 

Several morphological lesions have been proposed as precursor and putative precursor 

lesions of prostatic carcinoma. These are distinct morphologic entities and include prostatic 

intraepithelial neoplasia (PIN), atypical adenomatous hyperplasia (AAH) or adenosis, and 

proliferative inflammatory atrophy (PIA). However, PIN is currently the only accepted 

biological precursor of prostatic carcinoma, whereas AAH and PIA are considered 

pseudoneoplastic lesions that can mimic prostatic carcinoma.  

 

1.5.1 Prostatic intraepithelial neoplasia 

PIN is an abnormal proliferation of foci of cellular dysplasia without stromal invasion 

that occurs within prostatic ducts, ductules, and large acini (20). Based on the cytological 

characteristics of the cells, PIN is classified as high grade PIN (HGPIN) and low grade PIN 

(LGPIN) (20). The incidence and the extent of PIN increase with patient age (20-22). 

HGPIN is the only accepted biological precursor of prostatic carcinoma (23). It 

precedes the onset of prostatic carcinoma by more than 10 years (21).  

 The available evidence indicates that some foci of PIN progressively gain the ability 

to invade or breach the basal cell layers, thereby transforming into invasive carcinoma. This is 

the so-called microinvasion (20, 22), which is observed in approximately 2% of high power 

microscopic fields of PIN samples (20). 

The differential diagnosis of PIN includes lobular atrophy, postatrophic hyperplasia, 

atypical basal cell hyperplasia, clear cell cribriform hyperplasia, metaplastic changes 

associated with radiation, infarction, and prostatitis, as well as prostatic adenocarcinoma, 

cribriform adenocarcinoma, ductal carcinoma, and urothelial carcinoma involving the 

prostatic ducts and acini (20, 24). 

Unlike the case for prostatic adenocarcinoma, basal cells are present in PIN. However, 

they can be discontinuous in H&E stained samples. Therefore, immunohistochemical (IHC) 

staining for basal cells with high molecular weight cytokeratins (HMWCK), detected with 

34ßE 12 antibody or nuclear p63, is applied in making the differential diagnosis between PIN 

and prostatic carcinoma (20, 25). 

Currently, PIN has no established routine treatment. Close follow up is recommended. 
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1.5.2 Atypical adenomatous hyperplasia 

Atypical adenomatous hyperplasia (AAH), or adenosis of the prostate, is a 

pseudoneoplastic lesion that can mimic prostatic carcinoma because of its cytological and 

architectural features.  

Initially, AAH was considered a precursor to prostatic carcinoma (26). However, no 

convincing progression from AAH to prostatic carcinoma has been demonstrated. Therefore,  

AAH is not currently considered a premalignant lesion, but rather a benign small glandular 

process that simulates prostatic carcinoma (27). 

AAH occurs predominantly in the transition zone of the prostate; nevertheless, it can 

be found on rare occasions in the peripheral and the central zones.  

AAH is grossly unrecognizable, whereas histologically it is typically a well 

circumscribed lesion, usually within or adjacent to hyperplastic prostatic nodules. It is 

typically composed of closely packed, small, pale acini that merge with larger, more complex 

glands. The lining epithelium of AAH glands is cuboidal to low columnar, and the basal cell 

layer is interrupted (27).  

The differential diagnosis of AAH includes the presence of all small acinar prostatic 

proliferations, such as simple atrophy, the small cell type of benign prostatic hyperplasia, 

sclerosing adenosis, verumontanum mucosal gland hyperplasia, atypical small acinar 

proliferation, mesonephric remnants hyperplasia, basal cell hyperplasia, post-atrophic 

hyperplasia, nephrogenic adenoma, and radiation therapy and androgen therapy effects (27). 

The clinical follow up of AAH suggests a benign outcome. If diagnosed on TURP or 

core needle biopsy, a clinical follow up, but not necessarily re-biopsy, is recommended (27). 

 

1.5.3 Proliferative inflammatory atrophy  

Prostatic atrophy (PA) is one of the most frequent mimics of prostatic carcinoma. It is 

most commonly found in the posterior lobe or the peripheral prostatic zone. The frequency of 

the lesion in autopsies is reported as 85% and the frequency increases with age (28). The 

etiopathogenesis of PA is unknown.   

Morphologically, PA is classified into diffuse and focal atrophy. Diffuse atrophy is 

commonly referred to as hormonal atrophy; it occurs relatively uniformly throughout the 

entire prostate in response to castration or other forms of androgen withdrawal, as well as in 

response to radiotherapy. In diffuse atrophy, all acini of the gland are atrophic (28).  

Focal atrophy is classified into simple atrophy with or without cyst formation, post-

atrophic hyperplasia, partial atrophy, and mixed prostate atrophy lesions (29). Architecturally, 
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partial atrophy consists of crowded glands, often with a disorganized growth pattern. In 

contrast to complete focal atrophy, which is usually diagnosed at scanning magnification with 

light microscopy owing to the presence of the well-formed glands with a very basophilic 

appearance, partial atrophy has a pale cytoplasm lateral to the nuclei, giving rise to pale 

staining glands that more closely mimic cancer. Proliferative inflammatory atrophy (PIA) 

consists of foci of proliferative glandular epithelium with the morphological appearance of the 

simple atrophy or post-atrophic hyperplasia associated with inflammation (30). 

De Marzo et al. (30) and Putzi and De Marzo (31) suggest that PIA may give rise to 

carcinoma indirectly, via development into PIN. Several other studies support the PIA 

relationship with prostatic carcinoma (32-34). Tomas et al. (34) analyzed the distribution 

frequencies of PIA vs. “proliferative atrophy” in prostatic carcinoma and BPH lesions in 

radical prostatectomy specimens and showed that the inflammatory subtype was significantly 

more frequent in prostates with carcinoma, whereas non inflammatory proliferative atrophy 

was more frequently found in prostates with BPH.  

Contrary to reported findings (30-34), however, Billis (35) reported no significant 

relation of atrophy to histologic (incidental) carcinoma or PIN, and he concluded that PA 

probably is not a premalignant lesion. A possible link between PIA and either PIN or prostatic 

carcinoma remains controversial in the literature.  
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1.6 Prostate cancer 

 

1.6.1 Epidemiology   

Worldwide, prostate cancer is the second most common cancer in men. According to 

the most recent GLOBOCAN (36) data, an estimated 1.1 million men worldwide were 

diagnosed with prostate cancer in 2012, accounting for 15% of cancers diagnosed in men. 

Almost 70% of these cases occurred in more developed regions. 

Prostate cancer incidence varies more than 25-fold worldwide; the reported rates are 

highest in Australia/New Zealand and Northern America (ASR 111.6 and 97.2 per 100,000, 

respectively), as well as in Western and Northern Europe (36). Incidence rates are also 

relatively high in certain less developed regions, such as the Caribbean (79.8), Southern 

Africa (61.8), and South America (60.1), but the rates remain low in Asian populations, with 

estimated rates of 10.5 and 4.5 in Eastern and South-Central Asia (36). 

The most recent data report prostate cancer as the fifth leading cause of death from 

cancer in men. It comprises 6.6% of the total deaths in men globally (36). The mortality rates 

worldwide vary to a lesser extent (10-fold, from approximately 3 to 30 per 100, 000) than is 

observed for incidence. The number of deaths from prostate cancer is higher in less developed 

than in more developed regions (36). 

The high incidence of prostate cancer in developed countries is attributed to the 

practice of PSA testing and subsequent biopsy, which has become widespread in those 

regions. In the United States (US), prostate cancer death rates have been decreasing since the 

early 1990s in men of all races/ethnicities, though they remain more than twice as high in 

African Americans than in any other group (37). Mortality rates are generally high in 

predominantly black populations (Caribbean, 29 per 100,000 and sub-Saharan Africa, ASRs 

19–24 per 100,000), very low in Asia (2.9 per 100,000 in South Central Asia, for example) 

and intermediate in the US and Oceania (36). 

Unlike the clinical incidence, the age-specific prevalence of prostate cancer found at 

autopsy is relatively uniform across countries and ethnic groups, with contemporary studies 

indicating a rate as high as 80% by age 80 (38). 
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1.6.2 Etiology and risk factors  

Despite a relatively high morbidity and mortality, the etiology of prostate cancer 

remains largely unknown. Prostate cancer risk factors can be classified as endogenous and 

exogenous, with some of the factors reflecting both endogenous and exogenous influences.  

Endogenous risk factors include family history, hormones, race, aging, and oxidative 

stress, whereas exogenous risk factors include diet, environmental agents, occupation, and 

other factors (38). Nevertheless, only age, race, and a family history of prostate cancer are 

well-established risk factors for prostate cancer. 

Age is an essential factor in prostate cancer. Men under 45 years of age are seldom 

diagnosed with prostate cancer, whereas the prostate cancer incidence increases progressively 

with age, with a peak around 65–70 years (38). 

Cellular oxidants, such as free radicals and reactive oxygen species (ROS) that are 

produced during natural metabolic processes, are viewed as potentially damaging to DNA and 

can create an environment for mutagenesis and tumor initiation. In young, healthy individuals, 

most cells are equipped with adequate antioxidant defense mechanisms to protect against free 

radicals and ROS. However, aging is associated with a decline in ROS detoxification enzyme 

activities in most tissues (38).  

Another well-established risk factor is race. The highest incidence rates for prostate 

cancer in the world are found in African-American men (39). In the US, the risk of 

developing and dying from prostate cancer is highest among blacks, intermediate among 

whites, and lowest among native Japanese (40). Race related differences in prostate cancer 

risk may be influenced by the exposure differences, particularly dietary, detection, and genetic 

differences. 

African Americans have the highest intake of dietary fat, and this is considered to 

contribute to their higher risk of prostate cancer (41). By contrast, Japanese men consume a 

relatively low fat diet; however, as the fat content of Japanese diets has increased toward 

Western levels, the incidence of prostate cancer in Japanese men has increased as well. 

Several studies have found that prostate cancer rates in different races shift toward 

those of the host country (38, 42).  

Some of the differences in risk between races and countries may also reflect access to 

health care, especially regarding the stage of the disease and survival. Nevertheless, access to 

health care does not explain the higher incidence rate among African Americans compared to 

the white population in the US.   
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Several factors are all reported to play a role in the difference in the risk between 

races, including higher circulating levels of testosterone in African-American men than in 

their white counterparts, higher levels of sex hormone binding protein in African-Americans 

than in white men, a higher activity of 5α-reductase in African-American and white men than 

in Japanese men, racial differences in IGF-I and IGF-binding protein-3, and differences in the 

allelic frequencies of the microsatellites at the AR locus (with shorter CAG microsatellite 

alleles in African men and longer CAG repeats in Japanese men), as well as larger content of 

vitamin A and D receptors in Japanese men (38, 42).  

Family history is another well-established factor associated with increased prostate 

cancer risk. Risk is increased with a closer genetic linkage of a man to an affected relative, 

and with a greater number of relatives with prostate cancer. A meta-analysis study of 33 

epidemiologic case control and cohort based studies reported an apparently greater risk for 

men with affected brothers than for men with affected fathers (43). One possible explanation 

was an X-linked recessive or autosomal recessive inheritance (43). 

Another analysis of a Swedish cohort of more than 11.8 million individuals included 

26,651 men with medically verified prostate cancer. Of the prostate cancer cases, 5,623 were 

familial cases. The age specific hazard ratios (HRs) for prostate cancer in these cases were 

2.12 (95%CI, 2.05–2.20) for subjects with an affected father only, 2.96 (95% CI, 2.80–3.13) 

with an affected brother only, and 8.51 (95% CI, 6.13–11.80) with an affected father and two 

affected brothers (44). The highest HR of 17.74 (95% CI, 12.26–25.67) was seen in men with 

three brothers diagnosed with prostate cancer. The risks were even higher when the affected 

relative was diagnosed with prostate cancer before age 55 (44).  

The risk of prostate cancer may also increase in men who have a family history of 

breast and/or ovarian cancer in a mother or sister. This association between family history of 

prostate cancer and breast/ovarian cancer in the same family may be explained, in part, by the 

increased risk of prostate cancer among men with BRCA1/BRCA2 mutations in a setting of 

hereditary breast/ovarian cancer or early-onset prostate cancer (45).  

Exogenous factors, such as diet and nutrition, may contribute to prostate cancer 

development. Despite differences with respect to the selection of controls and the method of 

dietary assessment, several studies conducted in different countries, including the US, 

Canada, Japan, and Sweden, have concluded that high fat intake increases the risk of prostate 

cancer development. The proposed mechanisms involved are dietary fat-induced alterations in 

hormonal profiles, the effect of fat metabolites as protein or DNA-reactive intermediates, and 

dietary fat-induced elevation of oxidative stress (38). 
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Intake of vitamins and trace elements has also been studied in relation to prostate 

cancer. The reports are contradictory regarding vitamin A and C correlations with prostate 

cancer (38). Vitamin D deficiency, however, may be a risk factor for prostate cancer (38). 

Moreover, vitamin E (α-tocopherol) supplementation decreases serum androgen levels, which, 

in turn, may reduce the risk for prostate cancer (38, 46).  

Lycopene, a dietary carotenoid that enters the body largely form the consumption of 

tomato foods, is found to play an important role in prostate cancer prevention. A lower risk 

for prostate cancer is reported in men who have higher plasma lycopene levels (38).  

Trace elements, such as zinc and selenium, are considered to have a protective role 

with respect to prostate cancer. The levels of zinc and selenium are lower in the prostate with 

cancer than in non cancerous prostates (47, 48).  

The mechanisms of action of zinc and selenium are not yet known, and the lower 

levels may be a result of prostate cancer itself (47, 48). 

Gene-environment interactions in hormone synthesis, action, and metabolism 

represent another important factor in prostate cancer development. Two major hypotheses are 

proposed regarding the involvement of endogenous hormones in prostate cancer development. 

The first holds that prolonged presence of androgens is linked to the risk of prostate 

cancer. The most potent androgen in the prostate is dihydrotestosterone (DHT), which is the 

active metabolite of testosterone. The effect of androgens on prostate cancer cell growth is 

thought to be mediated by modulation of growth factor expression and alteration of growth 

factor receptor levels (48). This idea is supported by the fact that men castrated prior to 

puberty and men with genetically impaired androgen action or production do not develop 

prostate cancer. Further support comes from the clinical observation that androgen withdrawal 

therapy constitutes the most effective therapy in men with prostate cancer.  

The second major hormonal hypothesis is related to IGF-1 (insulin like growth factor-

1). High levels of IGF-1 hormone, which mediates the action of growth hormone, have been 

associated with increased prostate cancer risk (49). Moreover, several concomitant medical 

conditions that alter the hormone levels in the organism have been related to a decreased risk 

for prostate cancer. For example, evidence supports a reduced risk for prostate cancer in men 

with cirrhosis, which is characterized by increased estrogen levels (49). A meta-analysis 

conducted by Bansal et al. (50) came to the conclusion that longstanding type 2 diabetes, 

characterized by low levels of insulin, is significantly inversely associated with prostate 

cancer risk in men. 
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1.6.3 Clinical presentation and diagnosis 

Prostate cancer rarely causes symptoms early in the course of the disease. The 

presence of symptoms usually suggests locally advanced or metastatic disease; therefore, the 

clinical presentation of prostate cancer depends on the effects of the local growth of the 

tumor, the spread to regional lymph nodes via the lymphatic system, and the hematogenous 

dissemination to distant metastatic sites (51). 

Local growth of the tumor may produce symptoms of urinary obstruction, such as 

decreased urinary stream, urgency, hesitancy, nocturia, and incomplete bladder emptying. 

However, as men with prostate cancer are usually asymptomatic, these symptoms are 

more indicative of BPH than prostate cancer (51).  

Prostate cancer may also present with symptoms of metastases, such as bone pain, 

pathologic fractures, or symptoms caused by bone marrow involvement (51). 

Widespread screening has increased the number of prostate cancers identified in 

asymptomatic patients. Diagnosis in these cases is based on abnormalities in a screening for 

PSA and on the digital rectal examination (DRE) (52). PSA is a kalikrein-like serine protease 

produced almost exclusively by the epithelial cells of the prostate. PSA testing has 

revolutionized prostate cancer screening. It was initially introduced as a tumor marker to 

detect cancer recurrence or disease progression following treatment, and it became widely 

accepted for cancer screening by the early 1990s (53).  

PSA levels may be elevated in men with prostate cancer because the PSA production 

is increased and because the tissue barriers between the prostate gland lumen and the capillary 

are disrupted, allowing a greater release of PSA into the serum. In the serum, PSA can be 

determined in three different molecular forms, such as total PSA, free PSA (not complexed to 

serum proteins), and complexed PSA (complexed to serum proteins α2-macroglobulin and 

α1-antichymotrypsin). Studies have estimated that elevations in total PSA can precede clinical 

disease by 5 to 10 years or even longer (54, 55).  

PSA levels may be elevated in men with BPH, as well as in several benign transient 

conditions, and some of these, such as the DRE, ejaculation, bacterial prostatitis, prostate 

biopsy, and acute urinary retention, can affect the performance of PSA measurement as a 

screening test (54).  

PSA has a half life of 2.2 days, and levels elevated by various benign conditions have 

variable recovery times. Therefore, PSA testing should be deferred accordingly (56). 

Moreover, the level of PSA is a continuous parameter: the higher the value, the more 

likely is the existence of prostate cancer (56). 
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The traditional cutoff for an abnormal PSA level is 4.0 ng/mL. In a pooled analysis, 

the estimated sensitivity of a PSA cutoff of 4.0 ng/mL was 21% for detecting any prostate 

cancer and 51% for detecting high grade cancers (Gleason > =8). Using a cutoff of 3.0 ng/mL 

increased these sensitivities to 32 and 68%, respectively. The estimated specificity was 91% 

for a PSA cutoff of 4.0 ng/mL and 85% for a 3.0 ng/mL cutoff (57). Overall, the positive 

predictive value (the proportion of men with elevated PSA who have prostate cancer) for a 

PSA level > 4.0 ng/mL is approximately 30%, meaning that slightly less than one in three 

men with an elevated PSA will have prostate cancer detected on biopsy. For PSA levels 

between 4.0 to 10.0 ng/mL, the positive predictive value is about 25%; this increases to 42 to 

64 % for PSA levels > 10.0 ng/mL (58). 

Some studies have suggested lowering the PSA cutoff because some men with PSA 

levels below 4.0 ng/mL and a normal DRE are found to have prostate cancer (58). However, 

other studies have confirmed that while lowering PSA cutoff would improve test sensitivity, a 

lower PSA cutoff would also reduce specificity, leading to far more false positive tests and 

unnecessary biopsies (59). Measurement of PSA velocity (the change in PSA over time) and 

PSA density (the PSA per unit volume of prostate), free PSA, and complexed PSA; 

calculation of free PSA/total PSA ratio; and using age- and race-specific reference ranges 

have been proposed to improve the diagnostic performance of PSA when levels are less than 

10 ng/mL (52). Nevertheless, no consensus exists on using any of the PSA modifications, and 

none of them has been shown in clinical trials to reduce the number of unnecessary biopsies 

or improve clinical outcomes. The total PSA cutoff of 4.0 ng/mL has been the most accepted 

standard because it balances the tradeoff  between missing important cancers at a curable 

stage and avoiding both detection of clinically insignificant disease and subjecting men to 

unnecessary prostate biopsies (52, 60). PSA serum levels are reported to correlate with the 

possibility of extraprostatic extension. No clear correlation, however, has been established 

between PSA serum levels and the prediction of extracapsular spread into the seminal vesicles 

or regional lymph nodes (61). 

The DRE is another screening method that has long been used to diagnose prostate 

cancer. Abnormal findings with the DRE include nodules, asymmetry, or indurations. A DRE 

can detect tumors in the posterior and lateral aspects of the prostate. 

Limitations of the DRE include the fact that only about 85% of prostate cancers arise 

peripherally, where they can be detected with a finger examination, as well as the fact that T1 

cancers are nonpalpable by definition (62). The majority of cases detected by a DRE alone are 

clinically and pathologically advanced, and no controlled studies have shown a reduction in 
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the morbidity and mortality of prostate cancer when detected by a DRE at any age (62). 

Therefore, the DRE is used as a screening method for prostate cancer in combination with 

PSA serum levels.  

The prostate cancer antigen 3 (PCA3) gene expresses a non-coding RNA. It was 

identified in 1999, and it is highly overexpressed in almost all prostate cancer tissue 

specimens, but not in the normal and hyperplastic tissue (62). The expression of PCA3, 

because of its high specificity, may eventually have a role in reducing unnecessary biopsies, 

but data are presently insufficient to support its routine use (62). 

Transrectal ultrasonography (TRUS) is an outpatient procedure that has been tested as 

a possible screening method for prostate cancer. However, its low sensitivity and low positive 

predictive value have precluded its recommendation as a primary screening test. One study 

was reported that almost 40% of prostate cancers would have been missed if prostate biopsies 

had been performed only in men with suspicious findings on TRUS (58). Today, TRUS is 

typically used to guide prostate biopsies rather than as a screening test (62). 

In making a prostate cancer diagnosis, the need to perform prostate biopsy is 

determined based on the PSA serum level and/or a suspicious DRE. TRUS-guided core 

needle biopsy is the standard biopsy method. 

The average number of prostate core needle biopsies has risen from 2 to 6 to 12 over 

the past 20 years (63). A typical transrectal sextant biopsy involves samples from the 

parasagittal plane on the right and left sides of the base, midzone, and apex of the prostate 

(64). Several studies have confirmed that sampling more cores improves the cancer detection 

rate without increasing morbidity. As a result, today’s biopsy protocols typically involve 

extracting 10–12 cores per biopsy, often from the standard sextant and from other areas of the 

peripheral, transition, or anterior prostate zones (64). 

The primary purpose of needle biopsy has shifted from targeting of specific areas of 

concern on rectal examination to the systematic mapping of the prostate for cancer 

involvement and quantity (63, 65). 

The use of TURP as a diagnostic method for prostate cancer has declined in recent 

years. Repeat transrectal core needle biopsies are recommended instead (64, 66).  

Screening for prostate cancer has increased the number of detected early prostate 

cancers; however, this has created a constant concern regarding the potential harm from 

repeated biopsies in a patient with elevated PSA but negative core needle biopsies, as well as 

the risk of over-diagnosis. 
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In 2012, the American Urological Association reported a range from 0.6 to 4.1% of 

infectious complications in patients with repeated prostate needle biopsies (66). On the other 

hand, over-diagnosis presents a particular concern because most men with prostate cancers 

detected by screening have early stage disease and will be offered aggressive treatment. One 

US study examined the number of men diagnosed and treated for prostate cancer each year 

after 1986 (the year before PSA screening was introduced) and until 2005 (67) and 

documented that approximately 23 men had to be diagnosed and 18 men treated for prostate 

cancer to prevent one death (67). This led the authors to conclude that most additional cases 

found since 1986, in fact, represent over-diagnosis. 

 

1.6.4 Gross anatomy 

The identification of prostate cancer is often difficult or impossible by gross 

inspection. Any grossly visible tumors are usually firm, solid, and range in color from white-

gray to yellow-orange (68). 

Prostatectomies reveal that prostate cancer is commonly multifocal and is mainly 

found in the peripheral zone, followed by the transition zone and the central zone. Prostate 

cancer foci must be at least 5 mm in diameter for a reliable gross identification, although 

accurate identification may still be difficult or impossible even for much larger tumor areas 

(68). 

 

1.6.5 Histopathology 

Adenocarcinomas constitute about 90–95% of prostate cancer. Most adenocarcinomas 

are of the acinar type, with about 1% belonging to particular variants. The group of non-acinar 

prostatic carcinoma accounts for about 5–10% of carcinomas that originate in the prostate 

(68). 

1.6.5.1 Acinar prostatic adenocarcinoma  

 

Acinar adenocarcinomas of the prostate range from well- differentiated gland forming 

tumors, where it is often difficult to distinguish them from benign prostatic glands, to poorly 

differentiated tumors, difficult to identify as being of prostatic origin. 

The histopathological diagnosis of prostatic adenocarcinoma rests on constellation of 

architectural, nuclear, cytoplasmic and intraluminal features (68). Features identifying 

prostatic lesions as malignant are infiltrative pattern, small and/or crowded glands, prominent 
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nucleoli, absence of basal cell layer, nuclear enlargement, marginated nucleoli, multiple 

nucleoli, hyperchromasia, mitoses, apoptic bodies, ampophylic cytoplasm, blue-tinged 

mucinous secretions, pink amorphous secretions, intraluminal crystalloids, perineural 

invasion, glomerulations, mucinous fibroplasia and periacinar retraction clefts. 

The infiltrative growth pattern, presence of macronucleoli, and absence of the basal 

cell layer are considered as major diagnostic criteria for prostatic adenocarcinoma (68-72).  

However, only three characteristic features of prostatic adenocarcinoma such as 

perineural invasion, mucinous fibroplasia (collagenous micronodules) and glomerulations 

have not been described in benign prostatic glands (68, 71).  

Usual acinar adenocarcinoma lacks desmoplastic or myxoid stromal response, and the 

evaluation of the stroma is not useful in the diagnosis of the acinar adenocarcinoma. 

The Gleason grading system is the predominant histological grading system in use for 

prostatic adenocarcinoma. It was developed by Dr Donald F Gleason, and members of the 

Veterans Administration Cooperative Urological Research Group (VACURG) and further 

refined by Mellinger in 1977 (73-75). It is a 5-tier grading system that correlates with tumor 

differentiation and is solely based on the histological/architectural pattern of arrangement of 

malignant cells in H&E stained prostatic tissue sections. Gleason et al. (73-75) have 

demonstrated that prognosis of prostate cancer is intermediate between that of the most 

predominant pattern and that of the second most predominant pattern in prostatic 

adenocarcinoma.  

These patterns are graded from 1 (most differentiated) to 5 (least differentiated) and 

the two grades are added; if only one grade presents in the tissue sample, it is multiplied by 

two to give the score which can range from 2 to 10. The initial grading of prostatic 

adenocarcinoma is performed by light microscopy at low magnification using 4x or 10x lens, 

after which the 20x lens may be used to verify the grade (75).  

As the diagnosis and treatment of prostate cancer underwent an enormous evolution 

over time, in 2005 the International Society of Urological Pathology (ISUP) proposed several 

modifications to the Gleason system (76). 

Gleason pattern 1, is a nodular or circumscribed mass with rounded borders, of very 

well differentiated closely packed but separate, uniform, rounded to oval, medium –sized 

acini and with no infiltrating acini into the surrounding stroma. Originally Gleason et al. (75) 

have reported this pattern to be present in 3.5 % of their cases. The 2005 ISUP consensus (76) 

recommended that Gleason score of 1+1=2 is a grade that should not be diagnosed regardless 

of the type of the specimen, with rare exceptions. Moreover, most cases diagnosed as Gleason 
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score 1+1=2 in the era of Gleason are considered today as atypical adenomatous hyperplasia 

(77).  

Gleason pattern 2, is a well differentiated pattern that forms less well-defined masses 

that are not as circumscribed as pattern 1, with a tumor stroma boundary that is not as rounded 

as in pattern 1, and with minimal infiltration at the periphery. Compared to Gleason pattern 1, 

the malignant glands of Gleason pattern 2 display a higher degree of separation by stroma 

with an average separation distance of less than one gland diameter and there is increase in 

variability in gland size and shape (76, 77). 

The original description pattern and the standardized drawing of pattern 2 indicate that 

focal cribriform structures might be present (75). In contrast to the original Gleason’s 

description, the 2005 ISUP consensus was that cribriform patterns are not allowed within 

Gleason pattern 2 (76).  

Pattern 2 is usually reported admixed with pattern 3 to yield a Gleason score of 5. In a 

very small percentage of cases pattern 2 is pure, or is intermingled with pattern 1 (75, 76). 

Whereas a composition of pattern 2 with pattern 4 or 5, is extremely uncommon (68). 

The 2005 ISUP consensus was that a Gleason score of 2+2=4 or 1+2=3 should be 

“rarely, if ever” assigned in core needle biopsies (76). A diagnosis of Gleason score 3 and 4 is 

poorly reproducible, has a poor correlation with prostatectomy grade at resection and may 

misguide clinicians and patients into believing that the patient has an indolent tumor. 

Moreover, the major limitation of rendering a diagnosis of Gleason score 4 on needle 

biopsy is that one cannot see the entire edge of the lesion to determine if it is completely 

circumscribed (76).  

Gleason pattern 3, is a moderately differentiated grade, and presents the most common 

pattern of growth of prostatic adenocarcinoma. Originally, Gleason pattern 3 was described as 

having three distinctive appearances which were designated as patterns 3A, 3B, and 3C. An 

increased aggressiveness of pattern 3 carcinoma proceeding from pattern 3A to 3B to 3C was 

considered (75), however, no data have been published in support of this. These patterns have 

no clinical significance, therefore, it is not necessary to specify patterns 3A, 3B and 3C.  

Gleason pattern 3A consists of infiltrating, medium-sized, single glands with irregular 

shape and spacing and a haphazard, irregular extension of glands into stroma. The intervening 

stroma is usually greater than one gland diameter. However, densely packed gland 

arrangements are allowable in pattern 3, but there should be evidence of infiltrative growth. 

The shape of glands is quite variable, with angular, elongated, and twisted forms described 

(75). 
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 In Gleason pattern 3B, the glands are similar to but smaller, than in pattern 3A. These 

glands should still have the capability of forming glandular luminal spaces (75). 

In Gleason pattern 3C, expanded cylinders or ducts with masses of cribriform or 

papillary tumor were originally described (75). In contrast to Gleason pattern 4 cribriform 

glands, the edges of these masses should not be ragged and infiltrative, but rather smooth. If 

necrosis is visible, this is assigned as pattern 5, and not pattern 3 (75). 

The 2005 ISUP (76) consensus departure from the original Gleason classification 

system is that ‘‘individual cells’’ are not allowed within Gleason pattern 3. A further change 

is that the consensus panel required extremely stringent criteria for the diagnosis of Gleason 

cribriform pattern 3. The criteria set to diagnose cribriform pattern 3 are rounded, well-

circumscribed glands of the same size of normal glands. The consensus was that most of 

cribriform patterns fall into Gleason pattern 4 with only rare cribriform lesions satisfying 

diagnostic criteria for cribriform pattern 3 (76). 

Gleason pattern 3 is usually found in pure form, such that the most common Gleason 

score is 3+3=6.  It can also be seen in combination with low-grade pattern 2 for a score of 5 or 

with pattern 4 to yield a score of 7. Overall, Gleason scores of 5–7 with embedded pattern 3 

are the most common histologic grades of prostatic adenocarcinoma (76, 77). 

Gleason pattern 4, is a high-grade and poorly differentiated carcinoma growth. Two 

histological appearances 4A and 4B, were originally described (75). In Gleason pattern 4A the 

cellular arrangements can be fused microacinar, cribriform, or papillary with ragged edges or 

outlines of the invasive periphery (75). Carcinoma growing in this manner, but with cleared 

cytoplasm, was described as pattern 4B, and could simulate renal cell carcinoma of clear cell 

type (hypernephroma). Thus, Gleason termed this variant as the hypernephroid or 

hypernephromatoid  pattern (75). The nuclei in pattern 4 may be deceptively bland, with little 

nucleomegaly and no nucleolomegaly. 

In these cases, highly infiltrative small, fused glands should be a clue to the high-grade 

nature of the carcinoma (75). A controversial area where a consensus was reached in, was that 

ill-defined glands with poorly formed glandular lumina also warrant the diagnosis of Gleason 

pattern 4 (76). The ISUP consensus was that only a cluster of such glands, where a tangential 

section of Gleason pattern 3 glands cannot account for the histology, would be acceptable as 

Gleason pattern 4. It was also noted that in most cases ill-defined glands with poorly formed 

glandular lumina are accompanied by fused glands. Whereas, very small, well-formed glands 

still are within the spectrum of Gleason pattern 3. Gleason pattern 4 closely resembling renal 
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cell carcinoma (hypernephromatoid pattern) makes up only a very small percentage of 

Gleason pattern 4 cases (76).  

Pattern 4 is most often combined with pattern 3 to yield a score of 7, which is 

currently one of the most commonly assigned Gleason scores.  

Description of the amount of pattern 4 in the setting of Gleason score 7 (3+4 versus 

4+3) is prognostically important. Gleason score 7 (3+4) and Gleason 7 (4+3) are considered 

separately for prognostic reasons (77).  

Pure high-grade disease, where there is pure pattern 4 or mingling with pattern 5 to 

produce scores of 8 and 9, is less common. Pattern 4 is hardly ever found with well-

differentiated pattern 2 (76). 

Gleason pattern 5, is the most poorly differentiated pattern of prostatic carcinoma, 

which originally was described in two forms 5A and 5B (73, 75). There is no need to specify 

5A and 5B as the distinction is solely for the purpose of grade 5 diagnostic recognition, and 

has no clinical importance. Pattern 5A resembles the comedo type of intraductal carcinoma of 

the breast, with smooth, rounded masses, cords or cylinders of carcinoma. The necrosis is 

typically central, being surrounded by papillary, cribriform, or solid masses of carcinoma 

(77). The appearance can be similar to pattern 3C except for the presence of necrosis. Some 

cases of pattern 5A actually represent comedo intraductal prostatic carcinoma or in situ spread 

of ductal adenocarcinoma since basal cells can be observed, but in the Gleason scheme, these 

designations are not used, and pattern 5A is just termed a Gleason pattern 5 prostatic 

adenocarcinoma. Pattern 5B is comprised of ragged sheets of anaplastic adenocarcinoma cells 

and this form is so poorly differentiated that only a few small glandular lumina or signet-ring 

cells may be present to indicate adenocarcinoma rather than a poorly differentiated malignant 

neoplasm of unknown cell type (77). 

The 2005 ISUP consensus was that cribriform masses with comedonecrosis should be 

regarded as Gleason pattern 5 prostatic adenocarcinoma (76). However, one must be stringent 

as to the definition of comedonecrosis, requiring intraluminal necrotic cells and/or 

karyorrhexis.  

Pattern 5 is most often found with pattern 3, with a resultant score of 8. Less common 

is pure pattern 5 or comingling with pattern 4, to yield scores of 10 and 9, respectively. 

Gleason scores 9 and 10 are usually associated with high clinical stage disease and 

with clinically detectable cancer outside the prostate, either locally or in the form of 

metastatic disease (77).  
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In 2014, pathology experts gathered in a consensus conference to update the grading 

of prostate cancer, last revised in 2005. The 2014 ISUP major consenus was a new grading 

and terminology for the prostate cancer grading system (78). The new classification simplified 

the number of grading categories from Gleason scores 2 to 10, with even more permutations 

based on different pattern combinations, to grade groups 1 to 5. The lowest prostate cancer 

grade according to the 2014 ISUP consensus is 1 and not 6 as in Gleason grading system (78).  

The new grades would, for the foreseeable future, be used in conjunction with the 

Gleason system (78). 

Gleason scores can be grouped and arranged in prognostic groups, as presented in 

Table 1, with group I being the most favorable to group V the least favorable (79). 

  

Table 1. Gleason score prognostic groups   

Gleason score   6 Prognostic group grade I 

Gleason score 3+4=7  Prognostic group grade II 

Gleason score 4+3=7 Prognostic group grade III 

Gleason score 8 Prognostic group grade IV 

Gleason score 9-10 Prognostic group grade V 

 

1.6.5.2 Histological variants of prostatic carcinoma  

 

Histological variants of prostatic carcinoma have been variously defined. Two groups 

of variants are recognized in the WHO 2004 classification (68). The first group comprises 

histological variants of usual acinar adenocarcinoma and the second group consists of non-

acinar carcinoma variants. Other variants of prostatic carcinoma, not present in the 2004 

WHO classification, have been described, such as microcystic adenocarcinoma, prostatic 

intraepithelial neoplasia-like adenocarcinoma, large-cell neuroendocrine carcinoma, and 

pleomorphic giant cell carcinoma (80).  

Variants of usual acinar adenocarcinoma, as defined in 2004 by the World Health 

Organization (WHO), include colloid (mucinous), signet ring cell, atrophic, 

pseudohyperplastic, foamy, lymphoepithelioma-like, and oncocytic carcinomas (68). 

Colloid (mucinous) variant -Focal mucinous differentiation is noticed in about one 

third of prostate cancers. However, only when 25% of the tumor consists of pools of 

extracellular acidic type mucin can the term mucinous carcinoma be implied. In biopsy 

material, which may not be reflective of the entire lesion, these tumors should be diagnosed as 
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carcinomas with mucinous features (68). ‘Colloid variant’ is considered by McNeal as a 

Gleason grade 4 carcinoma (81). However, Gleason grading is recommended only for the 

nonmucinous components.  

Signet-ring cell variant - Signet-ring cell carcinoma of the prostate is very rare. A 

small number of signet-ring cells are found in usual acinar adenocarcinoma, but the 

designation is only applied when at least 25–50% of the tumor is composed of signet-ring 

cells (68, 80). This tumor is associated with other types of poorly differentiated prostate 

cancers and some authors believe that this change is part of the spectrum of the appearance of 

prostatic carcinoma and should not be regarded as a subtype of specific significance (80). 

Signet-ring cell carcinoma cells may be arranged in sheets, as small clusters, or as 

single cells and are characterized by clear cytoplasmic vacuoles that displace the nucleus at 

one side (68, 80). Signet-ring cell areas are considered Gleason grade 5 (68, 82).  

Atrophic variant- Adenocarcinoma of the prostate with atrophic features resembles 

benign atrophy owing to its scant cytoplasm, where the nuclei occupy almost the entire cell 

height (68, 80). The most reliable criteria to establish a diagnosis of this variant are (i) an 

infiltrative pattern of growth, (ii) the presence of macronucleoli, (iii) increased nuclear size, 

(iv) the presence of the adjacent, nonatrophic cancer, and (v) lack of a desmoplastic stromal 

response (68, 80). Most atrophic carcinomas are associated with nonatrophic Gleason score 6 

adenocarcinoma (68, 80). 

Pseudohyperplastic variant - Pseudohyperplastic prostatic carcinoma is characterized 

by closely packed, complex, large gland formations with papillary infoldings, luminal 

undulations, branching, and cystic dilatation, and it resembles BPH (68, 80, 83). The 

recognition of carcinoma with this pattern is based on an architecture that includes numerous 

closely packed glands lined with malignant cells that show significant nucleomegaly and 

nucleolomegaly. Basal cells are completely lacking (68). Despite its benign appearance and 

lower Gleason score (median 5), the pseudohyperplastic variant can exhibit aggressive 

behavior (68, 80). 

Foamy gland variant - Foamy gland carcinoma is an unusual variant of prostatic 

carcinoma, characterized by a very low nuclear to cytoplasmic ratio, dense hyperchromatic 

nuclei, abundant xanthomatous cytoplasm (containing no lipid, but empty vacuoles instead), 

an architectural pattern of crowded or infiltrative glands, and frequently present dense pink 

acellular secretions (80, 84). Most cases of foamy gland carcinoma are associated with usual 

acinar adenocarcinoma of higher grade, so this variant is best classified as an intermediate 

grade carcinoma (68). 
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Lymphoepithelioma-like variant - The terms lymphoepithelioma-like carcinoma, 

lymphoepithelioma, and medullary carcinoma are implied for undifferentiated PSA positive 

carcinoma with a syncytial pattern associated with dense lymphocytic infiltration (68).This 

type of carcinoma is of uncertain clinical significance and therefore no assignment of Gleason 

score is recommended (82).  

Oncocytic variant - Only a  few cases of prostatic adenocarcinoma with oncocytic 

differentiation have been reported (68, 80). The tumor cells have round to ovoid 

hyperchromatic nuclei and abundant eosinophilic granular cytoplasm that contains a great 

number of mitochondria. The cells immunohistochemically express PSA and PAP, but no 

neuroendocrine markers (68, 80). A high Gleason grade has been reported and the clinical 

behavior does not differ from that of usual acinar adenocarcinoma (80). 

The group of non-acinar carcinoma histological variants or types of prostatic 

carcinoma accounts for about 5–10% of carcinomas that originate in the prostate. These 

include ductal adenocarcinoma, sarcomatoid carcinoma, urothelial carcinoma, squamous and 

adenosquamous carcinoma, basal cell carcinoma, and small cell (neuroendocrine) carcinoma 

(68). 

Ductal adenocarcinoma- Prostatic ductal adenocarcinoma is a histologic subtype of 

prostatic adenocarcinoma. The pure ductal adenocarcinoma accounts for about 0.2–0.8% of 

prostatic adenocarcinomas, whereas ductal differentiation occurs in approximately 5% of 

prostatic carcinomas (68, 80). It can be located centrally around the prostatic urethra or is 

more frequently located in the periphery, admixed with usual acinar adenocarcinoma.  

Histologically, it is characterized by large glands lined by a single layer of 

pseudostratified tall columnar cells with abundant cytoplasm. It can display a variety of 

architectural patterns, which often coexist: papillary, cribriform, individual gland, solid 

pattern, and PIN like pattern, with the papillary and cribriform pattern being the most 

common (68, 85). Ductal adenocarcinomas are not typically graded, they are most equivalent 

to Gleason pattern 4, and in cases with comedo necrosis, they are equivalent to Gleason 

pattern 5, except for PIN like patterns which behave like Gleason pattern 3 (68, 85). Notably, 

prostatic ductal adenocarcinoma may have a peripheral layer of basal cells (68, 85). This 

means that differentiation of PIN from this lesion should depend on complex architectural 

characteristics and cytological features, rather than on the presence of a basal cell layer (68, 

85).  

Sarcomatoid variant (carcinosarcoma, metaplastic carcinoma)- Sarcomatoid 

carcinoma and carcinosarcoma are often used as synonyms. Sarcomatoid carcinoma is 
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composed of both malignant epithelial and malignant spindle cells and/or mesenchymal 

elements (68). In most cases, these tumors develop in older men after hormonal and radiation 

therapy for usual acinar adenocarcinoma, so a sarcomatoid transformation could be favored 

(68, 80, 82). The sarcomatoid component is considered to be Gleason grade 5, whereas the 

glandular element is assigned a grade according to the usual rules and is almost always a high 

grade (82). The most frequent mesenchymal elements are osteosarcoma, leiomyosarcoma, and 

chondrosarcoma (68). The major differential diagnosis is primary prostatic sarcoma and the 

prognosis is very poor (68). 

 Urothelial carcinoma - About 0.7–2.8 % of prostatic tumors in adults are reported to 

be primary urothelial carcinoma of the prostate (68, 86). Primary urothelial carcinoma is 

usually located within the proximal prostatic ducts, and it is usually locally advanced at the 

time of diagnosis (68, 86). The immunoprofile corresponds to that of the bladder urothelial 

neoplasms in that the tumor cells are negative for prostatic markers and positive for CK7, CK 

20 and high molecular weight cytokeratin (HMWCK) or P63 in up to 50% of the cases (68, 

86). 

Squamous and adenosquamous carcinoma - Primary squamous cell carcinoma (SCC) 

of the prostate is a very rare tumor (68). It has been reported in the setting of Schistosomiasis 

infection. SCC may originate in the periurethral glands or in the prostatic glandular acini, 

probably from the lining basal cells, which show a divergent differentiation pathway (68). Its 

histology is similar to that of other organs and its differentiations may be variable; however, 

keratinization is rare (80, 82). Adenosquamous carcinoma represents a combination of SCC 

and glandular carcinoma (68) and is another very rare cancer of the prostate. About 50% of 

the reported cases occurred after radiation and hormonal therapy (68). Nevertheless, some 

cases are reported that have not been associated with therapy (68, 82). Squamous and 

adenosquamous carcinomas of the prostate are not Gleason graded (68, 82). 

Basal cell carcinoma- Basal cell lesions in the prostate span a wide range from 

obviously benign basal cell hyperplasia through varying ranges of atypia to lesions that have 

been described as basal cell carcinoma (BCC) and adenoid cystic carcinoma. The mean age of 

cases reported with basal cell carcinoma is 50 years (range 28–78 years) (87).Gleason grading 

of these tumors is not recommended (82).  

Small cell (neuroendocrine) carcinoma -Neuroendocrine differentiation in prostatic 

carcinoma can appear in three forms, as a) focal neuroendocrine differentiation in usual acinar 

adenocarcinoma, b) carcinoid tumor (a WHO well-differentiated tumor) and c) small cell 

neuroendocrine carcinoma (a new WHO classification of poorly differentiated neuroendocrine 
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carcinoma) (68). Small cell carcinoma is reported mainly in patients with a previous history of 

hormonally treated usual acinar adenocarcinoma. Histologically, it is identical to small-cell 

carcinomas of the lung, as the tumor grows in sheets or nests with geographic areas of 

necrosis and the cells are characterized by a high mitotic rate and frequent apoptotic bodies 

(82). The average survival of patients with small cell carcinoma is less than a year (68). Small 

cell carcinomas of the prostate are not assigned a Gleason grade (69, 82). 

Microcystic adenocarcinoma, prostatic intraepithelial neoplasia-like adenocarcinoma, 

large-cell neuroendocrine carcinoma, and pleomorphic giant cell carcinoma are recently 

characterized variants of prostatic carcinoma not present in the 2004 WHO classification (80).  

Microcystic adenocarcinoma is a variant of usual acinar adenocarcinoma, which can 

be deceptively benign-looking at low magnification. Histologically, it consists of cystically 

dilated and rounded expansions of malignant glands, with a flat luminal cell lining layer. The 

microcystic glands are typically adjacent to usual acinar adenocarcinoma (80, 88). Atrophic 

features are commonly seen, although most of the microcystic adenocarcinoma epithelial cells 

have a moderate amount of cytoplasm. Gleason grade 3 is the predominant grade of the 

adjacent nonmicrocystic malignant glands (80, 88).  

Prostatic intraepithelial neoplasia (PIN)-like adenocarcinoma resembles PIN in gland 

architecture, with stratified epithelium. It appears similar to the flat, tufted, and micropapillary 

patterns of PIN; however, the glands are more crowded than in PIN and the immunoprofile is 

that of adenocarcinoma, with IHC stains for basal cells being completely negative (89, 90). 

Large cell neuroendocrine carcinoma (LCNEC) is a very rare variant of prostatic 

carcinoma. It has usually been reported in patients with hormonally treated prostatic 

adenocarcinoma (91). Similar to lung LCNEC, it is composed of sheets and ribbons of cells 

with large nuclei with coarse chromatin and prominent nucleoli; the cells show high mitotic 

activity and prominent necrosis. These tumors are immunopositive for chromogranin, 

synaptophysin, CD 56, and AMACR. Focal PSA and PAP positivity may also be noted. The 

prognosis is very poor (91). 

Pleomorphic giant cell adenocarcinoma is composed of giant pleomorphic nuclei 

(92). It shows variable PSA staining, and the disease course is reported to be very aggressive 

(92). 
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1.6.6 Molecular and genetic alterations 

Numerous molecular and genetic alterations have been implicated in prostatic 

carcinoma, which is commonly a multifocal tumor. The analysis and comparison of the 

genomic landscape within prostates has revealed independent tumor origins in these tumor 

foci in several studies (93-95). Gundem et al. (96), however, in a whole-genome sequencing 

of multiple metastatic sites from 10 tumors, have revealed that 40–90% of the total mutations 

in metastatic prostatic carcinoma have a common clonal origin. 

These findings imply that metastases originate commonly from only one tumor focus. 

Linkage analysis and genome wide association studies have identified several gene 

loci related to hereditary prostatic carcinoma (HPC). Prostate cancer susceptibility genes 

associated with HPC have been mapped to RNSAEL/HPC1 at 1q24-25, MSRI at 8p22-23, 

HPC2/ ELAC2 at 17p11, and HPC at Xq27-28 (97-99). Downregulation of these genes is 

reported in HPC.  

Small mutations across tumor suppressor genes, such as SPOP (found in 10.1% of 

samples), TP53 (3.6%), ATM (2.2%), MED12 (3.6%), FOXA1 (2.9%), and COL5A1 (2.2%), 

have been identified in prostatic carcinoma (97, 98).  

A large number of studies have identified several copy number alterations (CNA) and 

chromosomal rearrangements associated with prostatic carcinoma. Comparative genomic 

hybridization has shown gains and losses of chromosomal regions, including gains at 8q and 

losses at 3p, 6q, 8p, 10q, 13q, 16q, and 17p in prostatic carcinoma. Key regulatory genes 

within these chromosomal regions have been mapped to undergo CNA, including NKX3.1 at 

8p21, MYC at 8q24, and PTEN at 10q23 (99). The frequency of CNA in prostatic carcinoma 

is significantly higher than that of point mutations, suggesting that carcinogenesis and 

progression of prostatic carcinoma is primarily a result of chromosomal rearrangements (99).  

One key modification associated with prostate carcinogenesis is trimethylation of 

lysine residue 27 of histone H3 (H3K27-me3), a key oncogenic driver of advanced disease 

and metastasis (100). Increased levels of H3K27-me3 in prostatic carcinoma are associated 

with repression of tumor suppressor genes such as DAB2IP (100).  

Chromosomal rearrangements that activate members of the ETS family of 

transcription factors (ERG, ETV1, and ETV4) have been identified in the majority of prostatic 

carcinomas (99). The most common of these rearrangements creates a TMPRSS2-ERG fusion 

gene (101). The frequency of TMPRSS2-ERG fusions is reported as 16-19% in PIN lesions, 

and 30–79% in localized prostatic carcinoma (23). This rearrangement corresponds to an early 

event that predisposes to the clinical progression of prostatic carcinoma. 
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The Akt/mTOR and Erk (p42/44) MAPK signaling pathways are frequently 

upregulated in prostatic carcinoma (99, 102). Mutations of RAS or RAF are also reported in 

advanced prostatic carcinomas (102). Aberrant tyrosine kinase signaling, particularly through 

Her2/Neu or SRC tyrosine kinases, has been implicated in aggressive disease, progression to 

metastasis, and castration resistance. Consequently, it has also been implicated as a key 

therapeutic target in patients with advanced prostatic carcinoma (103, 104).  

The polycomb group gene EZH2 encodes a histone lysine methyltransferase that is 

frequently upregulated in advanced prostatic carcinoma—in some cases through gene 

amplification—and it is associated with aggressive tumors (105). EZH2 target genes, such as 

E-cadherin and DAB2IP, are associated specifically with metastasis in prostatic carcinoma 

(106-108).  

Telomere shortening is another somatic DNA change that is seen in prostatic 

carcinoma, but not in benign prostatic tissue (109). 

Silencing of the gene encoding glutathione-S-transferase Pi 1 (GSTP1), by 

hypermethylation of the promoter region, is linked to prostate carcinogenesis. Furthermore, 

GSTP1 promoter methylation is now being used in molecular diagnosis as a biomarker for 

prostate cancer in bodily fluids such as urine and semen (110).  

Nevertheless, the high intra tumoral heterogeneity and multifocality in primary 

tumors, as well as the long course of the disease from diagnosis to metastasis or lethality, 

presents a significant challenge regarding the application of genomic medicine to prostate 

cancer. 

 

1.6.7 Immunohistochemistry 

Immunohistochemistry (IHC) is an ancillary technique useful in the diagnosis of 

prostatic carcinoma and an important tool for scientific research. IHC identifies discrete tissue 

components and allows the visualization of the distribution and localization of specific 

cellular components within cells, and in the proper tissue context, by the interaction of target 

antigens with specific antibodies tagged with a visible label. 

The loss of basal cells in prostatic carcinoma is one of the most important diagnostic 

hallmarks of malignancy, and the use of basal cell markers, such as p63, HMWCK (high 

molecular weight cytokeratin), and CK5/6, is recommended as an adjunct for confirming the 

diagnosis of prostatic carcinoma. It is particularly recommended with core biopsies, which 

may present a diagnostic challenge (23, 24). Nevertheless, several benign mimickers of 
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prostatic carcinoma, such as atrophy, atypical adenomatous hyperplasia, nephrogenic 

adenoma, and mesonephric hyperplasia, can stain negatively for these markers (23). 

Another useful marker is alpha-methyl-CoA racemase (AMACR), which is commonly 

overexpressed in prostatic carcinoma, whereas benign prostatic tissue and PIN usually show 

minimal to absent expression (23, 24, 111). In addition, AMACR expression has been 

demonstrated in atypical adenomatous hyperplasia/adenosis and nephrogenic adenoma of the 

prostate (24). A double-color triple antibody (AMACR, HMWCK and p63) cocktail is also 

helpful in making the diagnosis in suspicious cases of prostatic carcinoma. With this cocktail, 

prostatic carcinoma demonstrates red nuclear and cytoplasmic staining (24).  

Prostate specific antigen (PSA) and prostate acid phosphatase (PAP) are valuable 

immunohistochemical markers of prostatic differentiation. PSA is diagnostically helpful in 

distinguishing prostatic adenocarcinomas from other neoplasms secondarily involving the 

prostate, and in establishing prostatic origin in metastatic carcinomas of unknown primary 

(68). PSA is also helpful in excluding benign mimics of prostatic carcinoma. PAP and PSA 

have similar diagnostic utility. PAP is primarily reserved for cases of suspected prostatic 

carcinoma in which the PSA stain is negative. 

Androgen receptor (AR) is an androgen binding protein complex occurring in prostatic 

glandular, basal, and stromal cells. Most invasive prostatic adenocarcinomas are 

immunoreactive for AR (68). However, AR is not in routine clinical use. 

  

1.6.8 TNM staging system 

The tumor, node, metastasis (TNM) staging system is most commonly used to 

describe the size and spread of a tumor. The TNM staging system was first introduced in 1992 

by the American Joint Committee on Cancer (AJCC) and the Union for International Cancer 

Control (UICC) (112). The TNM classification for prostate cancer is presented in Table 2.  
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Table 2. TNM Classification for prostate cancer 

Clinical T 

Tx Primary tumor cannot be assessed 

T0 No evidence of primary tumor 

T1 Clinically in apparent tumor not palpable or visible by 

imaging 

T1a Tumor incidental histologic finding in ≤5% of tissue 

resected 

T1b Tumor incidental histologic finding in >5% of tissue 

resected 

T1c Tumor identified by needle biopsy (because of elevated 

prostate specific antigen [PSA] level) 

T2 Tumor confined within prostate; tumors found in 1 or both 

lobes by needle biopsy but not palpable or reliably visible 

by imaging 

T3 Tumor involves one-half of 1 lobe or less 

T3a Tumor involves more than one-half of 1 lobe but not both 

lobes 

T3b Tumor involves both lobes 

T4 Tumor extends through the prostatic capsule; invasion 

into the prostatic apex, or the prostatic capsule is 

classified not as T3 but as T2 

Pathologic (pT)* 

pT2 Organ confined 

pT2a Unilateral, involving one-half of 1 lobe or less 

pT2b Unilateral, involving more than one-half of 1 lobe but not 

both lobes 

pT2c Bilateral disease 

pT3 Extraprostatic extension 

pT3a Extraprostatic extension or microscopic invasion of the 

bladder neck 

pT3b Seminal vesicle invasion 

pT4 Invasion of the bladder and rectum 

*Positive surgical margin should be indicated by an R1 descriptor (residual 

microscopic disease 
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Regional lymph nodes (N) 

Clinical 

NX Regional lymph nodes were not assessed 

N0 No regional lymph node metastasis 

N1 Metastasis in regional lymph node(s) 

Pathologic 

PNX Regional nodes not sampled 

pN0 No positive regional nodes 

pN1 Metastases in regional nodes(s) 

Distant metastasis 

M0 No distant metastasis 

M1 Distant metastasis 

M1a Nonregional lymph nodes(s) 

M1b Bone(s) 

M1c Other site(s) with or without bone disease 

*If more than 1 site of metastasis is present, the most advanced category is 

used (pM1c). 
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1.6.9 Risk stratification 

Prostatic carcinoma outcome is influenced by several factors, including the extent of 

the tumor, histologic grade, patient age and health, and the PSA level. Prediction of the 

outcome, either before or after operation, has been evaluated using different sophisticated 

prognostic instruments, including risk grouping, tables, and nomograms. Preoperative risk 

stratification is important for treatment decision making. Preoperative nomograms are based 

on clinical stage (TNM), PSA level, Gleason score, and the number of positive and negative 

prostate biopsy cores (112), whereas postoperative nomograms add pathologic findings as 

well, such as capsular invasion, surgical margins, seminal vesicle invasion, and lymph node 

involvement (112-114).  

D’Amico et al. (112) first proposed a three group stratification system to predict 

biochemical failure following radical prostatectomy and external-beam radiotherapy. The 

clinical TNM stage, PSA level, and Gleason score were used to group nonmetastatic patients 

into three risk groups: low risk, intermediate risk, and high risk (113). Criteria for low risk 

prostatic carcinoma are stage T1-T2a, Gleason score   6, and PSA     ng/mL; for the 

intermediate risk group, they are T2b-T2c or Gleason score  7 or PSA 10–20 ng/mL; and for 

the high risk group, they are T3a or Gleason score 8–10 or PSA     ng/mL (113). Current 

National Comprehensive Cancer Network (NCCN) guidelines have included the very low risk 

(T1c, and Gleason score ≤6, PSA ≤10 ng/mL, <3 positive biopsy cores each ≤50% involved 

and PSA density of <0.15 ng/mL/g) and very high risk (T3b-T4) groups (115, 116). 

 

1.6.10 Therapy and prognosis 

The management of a patient with prostate cancer depends on the patient’s health 

status and life expectancy, as well as the type of prostate cancer, PSA level, stage, and grade 

of cancer, metastasis, and patient’s preference. Watchful waiting, active surveillance, 

radiotherapy, and radical prostatectomy are the standard applied approaches (115, 117). High 

intensity ultrasound, cryosurgery, and chemotherapy are other optional treatments (115, 117).  

The use of watchful waiting and active surveillance for prostatic cancer has triggered 

much debate. Furthermore, not all institutions agree on the terminology of either watchful 

waiting or active surveillance.  

Watchful waiting, also known as deferred treatment, is a symptom-guided treatment. It 

is an option for older patients with less aggressive tumors, for those with limited life 
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expectancy, and for those who experience recurrence after curative therapies (118). These 

patients undergo palliative therapy to aid the patient’s quality of life. 

Active surveillance involves postponing immediate treatment, but requires close 

monitoring of the patient. It includes regular PSA tests, DREs, and periodic TRUS-guided 

prostate biopsies. This option is suitable in cases where the patient’s cancer may not progress 

quickly to cause morbidity or mortality, and it reduces the risk of overtreatment (119).  

Radiotherapy (RT) utilizes high-energy X-rays to kill cancer cells. Radiotherapy 

includes external beam radiation therapy (EBRT) or brachytherapy (BT), or a combination of 

both. High cure rates are reported when patients are treated with these two methods (120).  

Radical prostatectomy (RP) is a surgical treatment offered to patients with localized 

disease to control cancer. RP encompasses the removal of the prostate, seminal vesicles, and 

part of the urethra. Depending on the characteristics of the tumor and patient sexual function, 

RP may or may not be nerve-sparing. RP is a method of treatment and may be recommended 

when the cancer has not spread outside the prostate (i.e., patients with T1 or T2 tumors). 

Surgical removal of the prostate may be used in combination with other treatments such as 

radiotherapy (121). Perioperative morbidity must be taken into consideration when 

considering RP. Thus, RP is primarily recommended for patients who have life expectancies 

greater than 10 years (115).  

Hormone therapy, also known as androgen deprivation therapy (ADT), can be used as 

a primary treatment to control tumor growth, but it is unable to completely eliminate the 

disease. ADT may be used in various stages of prostatic disease. It may be used by itself in 

the treatment of localized advanced cancer or with metastatic disease, or with radiotherapy as 

an adjuvant treatment (122). 

Cryosurgery, also known as cryotherapy or cryoablation, is applied to treat prostate 

cancer by freezing it. It is usually not a first treatment option, but it can be applied if cancer 

recurs after other treatments (123). 

High intensity ultrasound is applied to treat low stage prostatic cancer, as well as in 

cases of tumor recurrence or as a palliative treatment (123). 

Chemotherapy is not a treatment of first choice for localized prostate cancer. It is 

applied in advanced prostate cancer and when the hormone therapy is not effective (124). 

Prostate cancer is usually diagnosed at a local or regional stage. The most recent data 

report a nearly 100% 5-year relative survival rate for localized prostate cancer. The 10 and 15 
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year relative survival rates are reported as 98% and 94 %, respectively (37). By contrast, 

metastatic prostate cancer has a reported 5-year survival rate of about 30% (125).  

  



    
 

36 
 

1.7 Periacinar retraction clefting 

 

Retraction clefts around malignant glands in prostatic carcinoma are one of the 

proposed supportive features favoring the diagnosis of prostatic carcinoma (71, 126-129). 

Clefts appear as the neoplastic cells “pull away” from the surrounding stroma, leaving halos 

around the acini (71). They are described as empty spaces that partially or completely encircle 

a nest of tumor cells, usually in conformity with the rounded or angular outline of that 

particular nest (130).  

Retraction clefting around malignant glands in the histological diagnosis of particular 

tumors has been considered as an artifact owing to tissue fixation and processing (131). 

Krušlin et al. (127-129, 132), however, have suggested that periacinar retraction 

clefting observed in more than 50% of the circumference in at least 50% of suspicious glands 

represents a reliable criterion for the diagnosis of prostatic adenocarcinoma. Fávaro et al. 

(133) have recently reported a significantly more frequent periacinar retraction clefting in 

prostatic carcinoma samples than in normal acini. In their study, more than 72% of the 

neoplastic acini showed retraction clefting of more than 50% of the circumference, and this 

was significantly more frequent in Gleason score 7 and 6 (133). 

Retraction cleftings are reported in other neoplasms as well, such as basal cell 

carcinoma or micropapillary variants of carcinomas of various primary sites, including the 

breast, ovary, colon, lung, ureter, and urinary bladder (134,135). Acs et al. (136) analyzed a 

large series of 2742 consecutive cases of breast carcinoma and reported that retraction clefts 

are more frequently seen in invasive ductal (no special type) breast carcinoma than in in situ 

carcinomas or benign breast ducts and acini. The presence of extensive retraction clefting in 

several tumor sites has been reported to correlate with more advanced tumors and aggressive 

tumor behavior and to be an indicator of poor prognosis in several tumor sites (135-138). 

Several suggestions have been put forward regarding the origin of retraction cleftings 

and the biologic mechanisms causing the clefting in tumor specimens. Young et al. (131), 

referring to the correlation between Gleason pattern 3 prostatic adenocarcinoma and 

prominent periacinar retraction clefting, suggested that this phenomenon was probably an 

artifact. More recent studies, have suggested a relationship between retraction cleftings and an 

abnormality in the basement membrane, the loss of adhesion factors, or the expression of 

extracellular matrix proteins or collagenases and other enzymes required for invasion (130, 

139, 140). Periacinar retraction cleftings have also been attributed to stromal changes and the 

lack of basal cells in prostatic adenocarcinoma (133, 140).  
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Barsky et al. (141) suggested that retraction clefts may in fact be an early stage of 

lymphocapillary invasion, where the conversion of mesenchymal cells to endothelial cells has 

not yet been completed, and thus represent true spaces or “pseudoretraction artifact” around 

the tumor cells. Acs et al. (136), in their recent study of what they call retraction artifacts in 

breast carcinoma, have also concluded that the retraction artifact may represent an early stage 

of lymphovascular invasion. Ulamec et al. (132), however, using D2-40 antibody to highlight 

the lymphatic endothelium and differentiate actual lymph vessels or lymphovascular invasion 

from periacinar retraction clefts, have shown that the number of lymph vessels was 

significantly lower in prostatic adenocarcinoma compared to adjacent nonneoplastic prostatic 

tissue. They concluded that retractions do not represent lymph vessels but should be 

considered a distinct entity. 
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1.8 E-cadherin/ Beta-catenin 

  

Alterations in adhesion properties of neoplastic cells play a crucial role in the 

development and progression of the malignant phenotype in a variety of tumor types.  

Cadherins and catenins, as the prime mediators of cell-cell adhesion, are closely 

involved in the control of morphological differentiation and cellular proliferation; loss of their 

intercellular function allows malignant cells to escape from their site of origin, degrade the 

extracellular matrix, acquire a more motile phenotype, and invade and metastasize healthy 

tissues (142).  

E-cadherin is one of the most important molecules involved in cell-cell adhesion in 

epithelial tissues. It is essential for the formation and maintenance of normal epithelia, but it 

also plays a major role in malignant cell transformation, particularly in tumor development 

and progression. The suppression of E-cadherin expression is regarded as one of the main 

molecular events responsible for dysfunction in cell-cell adhesion. The loss of function of the 

E-cadherin tumor suppressor protein correlates with increased invasiveness and metastasis of 

tumors (143).  

E-cadherin is a member of a large family of genes coding for calcium-dependent cell 

adhesion molecules (CAMs). The human epithelial E-cadherin gene CDH1 maps to 

chromosome 16q22.1 and encodes a 135 kDa precursor form of E-cadherin (144). The 

precursor form is cleaved in the cytoplasm to form a mature 120 kDa protein important for the 

homophilic adhesions. The mature E-cadherin contains three distinct domains: the highly 

conserved carboxy-terminal domain, a single pass transmembrane domain, and an 

extracellular domain. The extracellular domain consists of five tandem subdomain repeats that 

bind calcium, referred to as the C1-C5 subdomains (144).  

The cytoplasmic domain of E-cadherin is required for formation of the cadherin-

catenin complex. The cytoplasmic tail of E-cadherin consists of two regions: the 

juxtamembrane region and the catenin-binding region. These regions are principally required 

for clustering of E-cadherin at the juxtamembrane and to serve as a major link to the actin 

cytoskeleton. These regions are known to stabilize E-cadherin clusters and participate in 

signal transduction processes via the catenin-binding region (144).  

E-cadherin forms a complex with four catenin proteins: α-catenin (102 kDa), β-catenin 

(92 kDa), γ-catenin (83 kDa), and p120 catenin (75–120 kDa) (144). The interaction of E-

cadherin with cytoplasmic catenins, α, β, γ and p120 (p120ctn), is required for the normal 

function of E-cadherin. E-cadherin binds to either β-catenin or γ-catenin, but does not directly 
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bind to α-catenin; α-catenin, however, binds to either β-catenin or γ-catenin. Therefore, in a 

single cell, one complex consists of E-cadherin with α- and β-catenin, and the other complex 

consists of E-cadherin with α- and γ-catenin (144). The sequential order of cadherin-catenin 

complex formation begins with β-catenin interacting with E-cadherin. If E-cadherin fails to 

associate with β-catenin, E-cadherin is retained in the endoplasmic reticulum, where it is 

subsequently degraded. E-cadherin and β-catenin are transported together in a bipartite 

fashion to the cell surface, where they associate with α-catenin. The amino-terminal region of 

α-catenin binds to actin filaments in the cytoplasm, linking the cadherin-catenin complex to 

the cytoskeleton (144). 

Beta-catenin (β-catenin) is a 92 kDa multifunctional protein encoded by the CTNNB1 

gene located on chromosome 3p21. It belongs to the armadillo family of proteins, 

characterized by a central domain of 12 repeats of about 40 amino acids called arm repeats 

(144). The arm domain was originally described in armadillo, which is the 

Drosophilahomologue of β-catenin (145). β-catenin serves as a link between cadherins and 

the actin cytoskeleton. It also binds to numerous other proteins in cadherin-independent 

complexes, such as APC, lymphoid enhancer factor and T-cell factor (LEF/TCF) transcription 

factors, and the RGS domain proteins axin/conductin and prontin 52 (144). In addition to its 

role in cell-adhesion, β-catenin is a key effector molecule of the WNT signaling transduction 

in the nucleus (144).  

Imbalance in the structural and signaling properties of β-catenin often results in 

diseases and deregulated growth related to cancer and metastasis (145). β-catenin is involved 

in organogenesis and tissue morphogenesis. It plays a critical role in the regulation of 

cadherin-mediated cell recognition and adhesion, acting as the regulator of the cadherin-

catenin component linking the signal transduction within the intercellular adhesions (145, 

146). 

The E-cadherin-catenin complex is fundamental for the establishment and 

maintenance of multicellular organisms and regulates or significantly contributes to a variety 

of functions, such as signal transduction, cell-growth, differentiation, site-specific gene 

expression, morphogenesis, immunologic function, wound healing, and inflammation (145-

148).Various studies have observed a correlation between the loss of E-cadherin-catenin 

immunoreactivity and high grade, advanced stage, and poor prognosis in certain tissue 

carcinomas (142, 143, 148-153). Expression of the E-cadherin-β-catenin complex has also 

been studied in prostatic carcinoma (154-163). The univariate analysis by De Marzo et al. 

(157) showed that reduced levels of E-cadherin correlated with advanced Gleason score 

http://www.intechopen.com/books/advances-in-prostate-cancer/the-role-of-e-cadherin-catenin-complex-in-prostate-cancer-progression#F3
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(P=0.003) and advanced pathologic stage (P=0.008).  Jaggi et al. (158) reported a significant 

downregulation of E-cadherin in Gleason score 7–10 prostatic carcinomas when compared to 

Gleason score ≤6 (P=0.015), suggesting a significant association of E-cadherin with 

increasing grade. A significant association of reduced membranous β-catenin expression was 

also revealed in prostatic adenocarcinoma with increasing Gleason score (P=0.015). 

Moreover, these authors reported that β-catenin was localized in the nucleus of the 

poorly differentiated cancer cells of Gleason score 7–10, and a significant correlation existed 

between high Gleason score and nuclear β-catenin expression (P=0.0001). No association of 

E-cadherin and β-catenin expression was found with final pathologic stage (P>0.05) (158).  

Several other studies, have reported decreased membranous β-catenin cell expression 

in prostatic adenocarcinoma to correlate with higher Gleason score, but no nuclear β-catenin 

immunostaining was detected (160-162). 

The expression of αv, αvβ3, α2β1, and γ-catenin were abnormal in almost every case of 

primary and metastatic prostatic carcinoma reported by Pontes-Júnior et al. (159). Marked 

loss of E-cadherin and β4 integrin was found in primary and metastatic lesions. Contrary to 

the findings of Jaggi et al. (158), β-catenin expression was normal in all primary cases and in 

94% of the metastases (159). The α6 expression was normal in all primary tumors and 

metastases. The expression of α3 and α3β1 was normal in 32% of primary cases and in 53% 

and 6% of metastases, respectively. In paired analyses, loss of E-cadherin, β4, αv, α3β1, and 

αvβ3 was found in 65, 71, 59, 53 and 47% of patients, respectively. Catenins and α2β1 

showed maintenance of expression in most of the cases (159). 
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2. HYPOTHESIS  

  

Our hypothesis is that periacinar retraction clefting is a result of decreased expression 

of E-cadherin and β-catenin proteins in epithelial cells of prostatic adenocarcinoma. 
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3. AIMS OF THESIS 

 

3.1 General aim 

 

To determine the expression of E-cadherin and β-catenin cell adhesion proteins and 

their correlation with periacinar retraction cleftings in prostatic adenocarcinoma and adjacent 

nonneoplastic prostatic tissue. 

 

3.2  Specific aims 

 

1. To determine the presence and extent of periacinar retraction clefting in prostatic 

adenocarcinoma and the adjacent nonneoplastic prostatic tissue. 

2. To determine the expression of E-cadherin and β-catenin cell adhesion proteins in 

prostatic adenocarcinoma and in the adjacent nonneoplastic prostatic issue. 

3. To correlate the expression of E-cadherin and β-catenin cell adhesion proteins in 

prostatic adenocarcinoma and in adjacent nonneoplastic prostatic tissue with 

periacinar retraction clefting. 

4. To correlate the expression of E-cadherin and β-catenin with preoperative and 

postoperative Gleason score (GSC), serum prostate-specific antigen (sPSA), positive 

surgical margins, biochemical recurrence (BCR), and the TNM staging in prostatic 

adenocarcinoma. 
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4. MATERIAL AND METHODS 

 

4.1 Study population and material 

 

The research was conducted in archival tissue specimens of prostatic adenocarcinoma 

and the adjacent nonneoplastic prostatic tissue, obtained by radical prostatectomy in the 

Department of Pathology «Ljudevit Jurak» of the Clinical Hospital Center «Sestre 

milosrdnice» in Zagreb. 

Patient identifiers were removed and replaced by study numbers in order to protect the 

identity of patients.  

A total of 53 prostate samples, morphologically diagnosed as prostatic 

adenocarcinoma, were analyzed, including the adjacent nonneoplastic prostatic tissue. 

 

4.2 Methods  

 

Sections were cut at 5µm thickness from paraffin blocks containing prostatic lesional 

tissue fixed in 10% buffered formaldehyde. Slides were subsequently deparaffinized and 

stained with hematoxylin and eosin (H&E). 

The presence and extent of periacinar retraction clefting was determined by light 

microscopy under high power field magnification (400x) and a minimum of 30 neoplastic and 

30 nonneoplastic glands were assessed. Periacinar retraction clefting was graded as a 

percentage of gland circumference separated from the stroma in three categories, as 

previously described (127):  

- group 1: glands without clefts or with clefts affecting less than 50% of the 

circumference, 

- group 2: glands with clefts that affect more than 50% of the circumference in 

less than 50% of examined glands, and  

- group 3: glands with clefts that affect more than 50% of the circumference in 

50% or more of the examined glands. 

  



    
 

44 
 

 

4.2.1 Immunohistochemistry 

Immunohistochemical analysis of the expression of E-cadherin (code M3612, clone 

NCH-38, dilution 1:50) and β-catenin (code M3539, clone β-catenin-1, dilution 1:200) cell 

adhesion proteins in neoplastic and adjacent nonneoplastic prostatic tissue was performed 

using an EnVision Flex-system on a Dako TechMate TM immunohistochemical autostainer. 

Primary antibodies were purchased from Dako, Denmark. Breast cancer tissue was 

used as a positive control and Mouse IgG1 (code X0931) as a negative control. 

 

4.2.2 Scoring 

Immunohistochemical staining results were assessed by considering the intensity of 

cell membrane staining and the approximate percentage of positive tumor cells within the foci 

of neoplastic tissue, in adjacent nonneoplastic prostatic tissue, and within the foci of retraction 

clefting, as determined by light microscopy under high power field magnification (400x). The 

intensity of staining was graded semiquantitatively as 0 (no staining), 1+ (weak), 2+ 

(moderate), and 3+ (strong) staining.  Distribution of staining percentage was graded as focal 

(<70% positive cells), diffuse (>70% positive cells), and heterogeneous (a mixed population 

of foci of positive and negative cells). Only strong and diffuse membranous staining (intensity 

score 3+, >70%,) was considered positive immunoreactivity for both markers (156, 158).  

 

4.3 Statistical methods 

 

Data are presented in tables. Quantitative values are shown through medians and 

corresponding interquartile ranges. Differences in periacinar retraction clefting in relation to 

other clinical parameters regarding categorical variables were analyzed with the chi-square 

test and differences in quantitative variables were analyzed with the Kruskal-Wallis test. 

Spearman’s and Kendall’s tau_b (for nominal variables) correlation coefficients were 

calculated to assess the correlation of E-cadherin and β-catenin expression with periacinar 

retraction clefting, preoperative and postoperative Gleason score (GSC), serum prostate-

specific antigen (sPSA), positive surgical margins, biochemical recurrence (BCR), and the 

TNM staging. All P values below 0.05 were considered significant. 

Statistical software IBM SPSS Statistics version 21 was used in all statistical 

procedures. All samples were independently reviewed by two observers. 
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5. RESULTS 

 

5.1 Descriptive statistics 

 

Our study comprised 53 cases of prostate diagnosed as prostatic adenocarcinoma. 

Morphologically, all 53 samples fulfilled criteria for prostatic adenocarcinoma. Our 

criteria for inclusion of a tissue block in the study were the presence of identifiable prostatic 

adenocarcinoma and availability of adjacent nonneoplastic prostatic tissue (Figure 1).  

 

Figure 1. Hematoxylin & eosin (H&E) stained section showing prostatic 

adenocarcinoma glands infiltrating between nonneoplastic prostatic tissues. 

Descriptive statistics of the patients are summarized in Tables 3 and 4. More than half 

of the patients (50.9%) had a preoperative Gleason score (GSC) of 6 (3+3). A total of 19 

patients (35.8%) had a positive biochemical recurrence (BCR) status and nearly two thirds of 

patients (66 %) had T2N0Mx status. 

The highest prevalence of postoperative GSC was 6 (3+3) in 30 (56.6%) patients. 

Forty tumors (75.5%) were confined to the prostate and 13 (24.5%) patients had positive 

surgical margins, with the tumor spreading through the prostatic capsule. The median 

(interquartile range –IQR) age of patients was 64.0 (61.0–67.0) years and the median 

preoperative serum prostate-specific antigen (sPSA) value was 9.0 (6.5–12.8) ng/mL. Median 

follow-up time was 62.0 (27.0–68.0) months. 
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Table 3. Descriptive statistics of patient characteristics: categorical 

variables. 

  N % 

Preoperative GSC 

6(3+3) 27 50.9% 

6(4+2) 1 1.9% 

7(3+4) 11 20.8% 

7(4+3) 11 20.8% 

9(4+5) 3 5.7% 

Preoperative GSC No 

6 28 52.8% 

7 22 41.5% 

9 3 5.7% 

BCR 
No 34 64.2% 

Yes 19 35.8% 

TNM 

T2N0Mx 35 66.0% 

T3N0Mx 15 28.3% 

T3N1Mx 3 5.7% 

T 
2 35 66.0% 

3 18 34.0% 

N 
0 50 94.3% 

1 3 5.7% 

Postoperative GSC 

6(3+3) 30 56.6% 

7(3+4) 9 16.9% 

7(4+3) 10 18.9% 

8(5+3) 1 1.9% 

9(4+5) 3 5.7% 

Postoperative GSC No 

6 30 56.6% 

7 19 35.8 % 

8 1    1.9% 

9 3 5.7% 

Surgical margins 
Negative 40 75.5% 

Positive 13 24.5% 

 
 
 

Table 4. Descriptive statistics of patient characteristics: quantitative variables. 
 

  N Mean SD Minimum Maximum 

Percentiles 

25th 
50th 

(Median) 
75th 

Age (years) 53 63.96 5.26 52.00 74.00 61.00 64.00 67.00 

PSA 53 10.62 6.43 3.20 38.40 6.49 9.00 12.80 

Follow up (months) 53 51.89 23.86 6.00 84.00 27.00 62.00 68.00 
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5.2 Correlation between the presence and extent of periacinar retraction clefting 

in prostatic adenocarcinoma and in the adjacent nonneoplastic prostatic 

tissue 

 

The presence and the extent of periacinar retraction clefting in prostatic 

adenocarcinoma and in the adjacent nonneoplastic prostatic tissue were determined on H&E 

stained slides by light microscopy under high power field magnification (400x) by assessing a 

minimum of 30 neoplastic and 30 nonneoplastic glands. 

The most frequent group with periacinar retraction clefting in prostatic 

adenocarcinoma was group 3 (glands with clefts that affected more than 50% of the 

circumference in 50% or more of the examined glands). Group 3 periacinar retraction clefting 

was present in 33 (62.3%) samples (Figure 2A; Table 5) of prostatic adenocarcinoma. \ 

Whereas, group 1 (glands without clefts or with clefts affecting less than 50% of the 

circumference) was present in 44 (83.0%) samples in the adjacent nonneoplastic prostatic 

tissue (Figure 2B; Table 5). 

  

Figure 2A-B. Group 3 periacinar retraction clefting in prostatic adenocarcinoma 

(H&E) (A), group 1 periacinar retraction clefting in the nonneoplastic prostatic tissue (lower 

corner right) adjacent to group 3 periacinar retraction cleftings in prostatic adenocarcinoma 

(upper corner left) (H&E) (B).  

Periacinar retraction clefting was significantly more extensive in prostatic 

adenocarcinoma samples than in the adjacent nonneoplastic prostatic tissue (P<0.001). 
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Table 5. The presence and extent of periacinar retraction clefting in prostatic adenocarcinoma 

and in the adjacent nonneoplastic prostatic tissue. 

 

  N % 

Periacinar retraction 
clefting in prostatic 
adenocarcinoma 

1 3 5.7% 

2 17 32.1% 

3 33 62.3% 

Periacinar retraction 
clefting in adjacent 
nonneoplastic prostatic 
tissue 

1 44 83.0% 

2 9 17.0% 

 

 

Group 1- glands without clefts or with clefts affecting less than 50% of the 

circumference, 

Group 2- glands with clefts that affect more than 50% of the circumference in less 

than 50% of the examined glands, and  

Group 3- glands with clefts that affect more than 50% of the circumference in 50% 

or more of the examined glands. 

 

5.3 IHC expression of E-cadherin and β-catenin cell adhesion proteins in 

prostatic adenocarcinoma and in the adjacent nonneoplastic prostatic issue 

 

IHC staining results for E-cadherin and β-catenin were assessed by considering the 

intensity of cell membrane staining and the approximate percentage of positive tumor cells 

within the foci of neoplastic tissue and the adjacent nonneoplastic prostatic tissue, as 

determined by light microscopy under high power field magnification (400x).  

The expression pattern for E-cadherin, as determined by IHC, was predominantly 

membranous and weakly cytoplasmic in both the prostatic adenocarcinoma and the adjacent 

nonneoplastic prostatic tissue. Figure 3A–C and Table 6 show the pattern of E-cadherin IHC 

staining in prostatic adenocarcinoma and in the adjacent nonneoplastic prostatic tissue. Strong 

and diffuse cell staining (intensity score 3+, >70%), was considered a positive pattern of 

staining. 
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Figure 3A-C. IHC showing strong membranous expression of E-cadherin (score 3+) 

in prostatic adenocarcinoma (upper corner right) and in the adjacent nonneoplastic prostatic 

tissue (lower corner left) (A), no staining (score 0) in prostatic adenocarcinoma (B), and, 

heterogeneous staining with mixed foci of positive and negative cells in prostatic 

adenocarcinoma (C).   

A strong and diffuse intensity of E-cadherin staining (score 3+, >70%) was evident in 

only 4 (7.5%) and 2 (3.8%) samples of prostatic adenocarcinoma, respectively. A weak and 

focal intensity of E-cadherin staining (score 1+, <70%) was evident in 31 (58.5%) and 18 

(34%) samples of prostatic adenocarcinoma, respectively. A strong and diffuse intensity of E-

cadherin staining (score 3+, >70%) was evident in all 53 (100%) samples of the adjacent 

nonneoplastic prostatic tissue. 

A strong and diffuse (score 3+, >70%) intensity of E-cadherin staining was observed 

significantly more frequently in the samples of the adjacent nonneoplastic tissue than in 

prostatic adenocarcinoma (P<0.001). 

Heterogeneous staining of E-cadherin, indicative of a mixed population of foci of 

positive and negative cells was evident in 33 (62.3%) samples of prostatic adenocarcinoma, 

and a moderate intensity of E-cadherin staining (score 2+) was evident in 18 (34%) samples 

of prostatic adenocarcinoma. 
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Table 6. IHC staining of E-cadherin expression in prostatic adenocarcinoma and in the 

adjacent nonneoplastic prostatic tissue. 

  

  N % 

E-cadherin: intensity of 
staining in prostatic 
adenocarcinoma 

1 31 58.5% 

2 18 34.0% 

3 4 7.5% 

E-cadherin: % of 
staining in prostatic 
adenocarcinoma 

<70% 18 34.0% 

Heterogeneous 33 62.3% 

>70% 2 3.8% 

E-cadherin: intensity of 
staining in adjacent 
nonneoplastic  tissue 

1 
2 

0 
0 

0.0% 
0.0% 

3         53 100% 

E-cadherin: % of 
staining in adjacent 
nonneoplastic tissue 

<70% 0 0.0% 

Heterogeneous 0 0.0% 

>70% 53 100% 

 

Intensity of staining: 0 (no staining), 1+ (weak), 2+ (moderate), 3+ (strong) 

Percentage of staining: focal (<70% of cells positive), diffuse (>70% of cells positive), 

heterogeneous (a mixed population of foci of positive and negative cells).  

*Only strong and diffuse (score 3+, >70%) intensity of staining was considered as positive 

staining. 

The pattern of β-catenin IHC staining, in both prostatic adenocarcinoma and the 

adjacent nonneoplastic prostatic tissue, was predominantly membranous and weakly 

cytoplasmic. We did not observe nuclear staining.  

A strong intensity of β-catenin IHC staining (score 3+) was evident in 21 (39. 6%) 

samples and diffuse staining (>70%) was identified among 30 (57%) samples of prostatic 

adenocarcinoma, whereas a strong and diffuse (score 3+, >70%) intensity of staining was seen 

in all 53 (100%) samples of the adjacent nonneoplastic prostatic tissue (Figures 4 A–C. Table 

7).  
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Figure 4A-C. IHC showing strong membranous expression of β-catenin (score 3+) in 

prostatic adenocarcinoma glands infiltrating between the adjacent nonneoplastic prostatic 

tissue (A), no staining (score 0) in prostatic adenocarcinoma (upper corner right) and strong 

intensity of staining (score 3+) in adjacent nonneoplastic gland (lower corner left) (B), and 

heterogeneous staining with mixed foci of positive and negative cells in prostatic 

adenocarcinoma (C).  
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Table 7. IHC staining of β-catenin expression in prostatic adenocarcinoma and in the adjacent 

nonneoplastic prostatic tissue. 

 

  N % 

ß-catenin: intensity of 
staining in prostatic 
adenocarcinoma 

1 8 15.1% 

2 24 45.3% 

3 21 39.6% 

ß-catenin: % of staining 
in prostatic 
adenocarcinoma 

<70% 5 9.4% 

Heterogeneous 18 33.94% 

>70% 30 57% 

ß-catenin: intensity of 
staining in adjacent 
nonneoplastic prostatic  
tissue 

1 

2 

0 

0 

0.0% 

0.0% 

3       53% 100% 

ß-catenin: % of staining 
in adjacent 
nonneoplastic prostatic 
tissue 

<70% 0 0.0% 

Heterogeneous 0 0.0% 

>70% 53 100% 

 

Intensity of staining: 0 (no staining), 1+ (weak), 2+ (moderate), 3+ (strong). 

Percentage of staining: focal (<70% of cells positive), diffuse (>70% of cells positive), 

heterogeneous (a mixed population of foci of positive and negative cells).  

*Only strong and diffuse staining (intensity score 3+, >70%) was considered positive staining. 

Table 8 summarizes correlation of E-cadherin expression with serum prostate-specific 

antigen (sPSA), preoperative and postoperative Gleason score (GSC), positive surgical 

margins, biochemical recurrence (BCR) and the TNM staging.  

Significant negative correlations were found between the intensity and the percentage 

of E-cadherin staining in prostatic adenocarcinoma and preoperative GSC and positive 

surgical margins. Postoperative GSC, BCR, and T stage were negatively correlated with the 

intensity of E-cadherin staining.  

No correlations were found between E-cadherin intensity and percentage of staining 

and the sPSA and N status. 

IHC staining of E-cadherin expression was significantly decreased in high grade 

prostatic adenocarcinomas (Figure 5). 

 

 

 

 



    
 

53 
 

 

 

Figure 5. IHC showing weak (score 1+) to negative (score 0) membranous expression 

of E-cadherin in high grade prostatic adenocarcinoma Gleason score 9 (4+5).   
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Table 8. Correlation of E-cadherin expression with preoperative and postoperative 

Gleason score (GSC), serum prostate-specific antigen (sPSA), positive surgical margins, 

biochemical recurrence (BCR), and the TNM staging in prostatic adenocarcinoma: 

Spearman’s and Kendall tau_b coefficients.  

  

E-cadherin: 
intensity of 
staining in 
prostatic 

adenocarcinoma 

E-cadherin: % of 
staining in 
prostatic 

adenocarcinoma 

sPSA 

Correlation 
Coefficient 

-0.039 -0.076 

P 0.781 0.587 

N 53 53 

Preoperative 
GSC No 

Correlation 
Coefficient 

-0.445 -0.204 

P 0.001 0.143 

N 53 53 

Postoperative 
GSC No 

Correlation 
Coefficient 

-0.634 -0.424 

P 0.001 0.002 

N 53 53 

Surgical 
margins 

Correlation 
Coefficient* 

-0.309 -0.338 

P 0.024 0.013 

N 53 53 

BCR  

Correlation 
Coefficient* 

-0.327 -0.235 

P 0.017 0.090 

N 53 53 

T 

Correlation 
Coefficient* 

-0.445 -0.263 

P 0.001 0.058 

N 53 53 

N 

Correlation 
Coefficient* 

-0.202 -0.170 

P 0.147 0.224 

N 53 53 

                    *Kendall tau_b coefficient 

 

Table 9 summarizes correlations of β-catenin expression with serum prostate-specific 

antigen (sPSA), preoperative and postoperative Gleason score (GSC), positive surgical 

margins, biochemical recurrence (BCR), and the TNM staging.  

Intensity of β-catenin staining in prostatic adenocarcinoma was significantly 

negatively correlated with preoperative and postoperative GSC and BCR. 
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Similar findings were observed for the percentage of β-catenin staining in prostatic 

adenocarcinoma, where additional negative correlations were found with positive surgical 

margins and T status. 

No correlations were found between intensity and percentage of β-catenin staining and 

sPSA and N status. 

Decreased β-catenin expression in high grade prostatic adenocarcinoma is shown in 

Figure 6. 

  

 

 

Figure 6. IHC showing weak (score 1+) membranous expression of β-catenin in 

prostatic adenocarcinoma GSC 9 (4+5).  
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Table 9. Correlation of β-catenin expression with preoperative and postoperative Gleason 

score (GSC), serum prostate-specific antigen (sPSA), positive surgical margins, biochemical 

recurrence (BCR), and the TNM staging in prostatic adenocarcinoma: Spearman’s and 

Kendall’s tau_b coefficients. 

  

ß-catenin: 
intensity of 
staining in 
prostatic 

adenocarcinoma 

ß-catenin: % of 
staining in 
prostatic 

adenocarcinoma 

PSA 

Correlation 
Coefficient 

-0.023 0.075 

P 0.871 0.593 

N 53 53 

Preoperative 
GSC No 

Correlation 
Coefficient 

-0.467 -0.526 

P 0.001 0.001 

N 53 53 

Postoperative 
GSC No 

Correlation 
Coefficient 

-0.531 -0.379 

P 0.001 0.005 

N 53 53 

Surgical 
margins 

Correlation 
Coefficient* 

-0.153 -0.273 

P 0.274 0.048 

N 53 53 

BCR 

Correlation 
Coefficient* 

-0.273 -0.388 

P 0.048 0.004 

N 53 53 

T 

Correlation 
Coefficient* 

-0.149 -0.295 

P 0.287 0.032 

N 53 53 

N 

Correlation 
Coefficient* 

-0.113 -0.261 

P 0.419 0.060 

N 53 53 

         *Kendall tau_b coefficient 
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5.4 Correlation of expression of E- cadherin and β-catenin with periacinar 

retraction clefting in prostatic adenocarcinoma and in the adjacent 

nonneoplastic prostatic tissue 

 

Table 10 and Figure 7A–C show correlations of expression of E-cadherin in prostatic 

adenocarcinoma and in the adjacent nonneoplastic prostatic tissue with periacinar retraction 

clefting. 

Periacinar retraction clefting was positively correlated with the intensity of E-cadherin 

staining in prostatic adenocarcinoma (rho=0.398; P=0.003) and the percentage of E-cadherin 

staining in prostatic adenocarcinoma (rho=0.367; P=0.007). 

  

 

Figure 7A-C. IHC showing strong (score 3+) membranous expression of E-cadherin 

in glands with extensive retraction clefting in prostatic adenocarcinoma GSC 6 (3+3) (lower 

corner left) (A), and no staining (score 0) within the cells of glands with retraction clefts in 

GSC 7 (4+3) (B,C). 

 

In 4 (7.54%) samples with Gleason score (GSC) 7 (4+3) and with a mixed population 

of positive and negative cells, E-cadherin staining was weak to negative in the cells of tumor 

glands with periacinar clefts and positive in tumor glands with no periacinar clefts (Figure 7 

B-C).No significant correlations were found between periacinar retraction clefting and the 

intensity and percentage of E-cadherin staining in the adjacent nonneoplastic prostatic tissue.
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Table 10. Correlation of expression of E-cadherin cell adhesion protein in prostatic 

adenocarcinoma and the adjacent nonneoplastic prostatic tissue, with periacinar retraction 

clefting: Spearman’s correlation coefficients. 

  
Periacinar 

clefting  

E-cadherin: intensity of 
staining in prostatic 
adenocarcinoma 

Correlation Coefficient 0.398 

P 0.003 

N 53 

E-cadherin: % of staining in 
prostatic adenocarcinoma 

Correlation Coefficient 0.367 

P 0.007 

N 53 

E-cadherin: intensity of 
staining in adjacent 
nonneoplastic prostatic 
tissue 

Correlation Coefficient 0.037 

P 0.793 

N 53 

E-cadherin: % of staining in 
adjacent nonneoplastic 
prostatic tissue 

Correlation Coefficient 0.179 

P 0.199 

N 53 

 

The correlations of the expression of β-catenin in prostatic adenocarcinoma with 

periacinar retraction clefting are presented in Table 11 and Figure 8A–B. Similar to our 

findings with E-cadherin, we found positive significant correlations between periacinar 

retraction cleftings and the intensity (rho= 0.374; P=0.006) and percentage (rho=0.347; 

P=0.011) of β-catenin staining in prostatic adenocarcinoma. 

No significant correlations were found between periacinar retraction clefting and the 

intensity and percentage of β-catenin staining in the adjacent nonneoplastic prostatic tissue. 
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Figure 8A-B. IHC showing strong (score 3+) membranous expression of β-catenin in 

glands with extensive retraction clefting in prostatic adenocarcinoma Gleason score 6 (3+3) 

(A, B).  

Table 11. Correlation of expression of β-catenin in prostatic adenocarcinoma and the 

adjacent nonneoplastic prostatic tissue with periacinar retraction clefting: Spearman’s 

correlation coefficients. 

  
Periacinar 

clefting  

ß-catenin: intensity of 
staining in carcinoma 

Correlation Coefficient 0.374 

P 0.006 

N 53 

ß-catenin: % of staining in 
carcinoma 

Correlation Coefficient 0.347 

P 0.011 

N 53 

ß-catenin: intensity of 
staining in adjacent 
nonneoplastic prostatic 
tissue 

Correlation Coefficient 0.190 

P 0.173 

N 53 

ß-catenin: % of staining in 
adjacent nonneoplastic 
prostatic tissue 

Correlation Coefficient 0.083 

P 0.555 

N 53 
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6. DISCUSSION 

 

Prostate cancer is the leading cause of new cancer in men. Its frequency increases with 

age, 3/4 of men diagnosed with prostate cancer are age 65 or older (37, 38). Despite a 

relatively high morbidity and mortality the etiology of prostate cancer remains largely 

unknown.  

Contemporary methods of prostate cancer detection are resulting in the identification 

of increasingly smaller tumors, which adds to the difficulty in making the diagnosis of 

prostate cancer commonly based on very few atypical glands.  

Adenocarcinomas constitute about 90–95% of prostate cancer. The histopathological 

diagnosis of prostatic adenocarcinoma is a constellation of architectural, nuclear, cytoplasmic 

and intraluminal features (68). Three major diagnostic criteria are established for prostatic 

adenocarcinoma: the infiltrative growth pattern, the absence of a basal cell layer, and the 

presence of macronucleoli (68-72). Other supportive diagnostic criteria for prostatic 

adenocarcinoma include marginated nucleoli, multiple nucleoli, hyperchromasia, mitoses, 

apoptotic bodies, amphophilic cytoplasm, blue-tinged mucinous secretions, pink amorphous 

secretions, intraluminal crystalloids, perineural invasion, glomerulations, mucinous 

fibroplasia, and periacinar retraction clefting. Nevertheless, many of these criteria can also be 

present in benign prostate glands or other nonneoplastic acinar proliferative conditions of the 

prostate. 

The so-called periacinar retraction cleftings, retraction artifacts, periacinar halos, or 

clefts like spaces are also criteria favoring the diagnosis of prostatic adenocarcinoma (72, 

126-129). The clefts appear as the neoplastic cells “pull away” from the surrounding stroma, 

leaving halos around the acini (72). Retraction clefting around malignant nests in the 

histological diagnosis of particular tumors has been considered an artifact of tissue fixation 

and processing. Young et al. (131), referring to the correlation between Gleason pattern 3 

prostatic adenocarcinoma and prominent periacinar retraction clefts, also suggested that this 

phenomenon was probably an artifact. Krušlin et al. (127-129, 132), however, have observed 

that periacinar retraction clefting of more than 50% of the circumference in at least 50% of 

suspicious glands represents a reliable criterion for the diagnosis of prostatic adenocarcinoma.  

Fávaro et al. (133) have recently reported that periacinar retraction clefting was 

significantly more frequent and extensive in prostatic carcinoma samples than in normal acini. 
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In their study, more than 72% of neoplastic acini showed retraction clefting of more 

than 50% of the circumference and was significantly more frequent in Gleason score 7 and 6 

(133) tumors.  

Retraction cleftings are also reported in other neoplasms, such as basal cell carcinoma 

or micropapillary variants of carcinomas of various primary sites, including breast, ovary, 

colon, lung, ureter, and urinary bladder (134, 135). Acs et al. (136), who examined a large 

series of 2742 consecutive cases of breast carcinoma, have reported that retraction clefts are 

seen more frequently in invasive ductal (no special type) breast carcinoma when compared to 

in situ carcinomas or benign breast ducts and acini.  

The presence of extensive retraction clefting has been reported to correlate with more 

advanced tumors and aggressive behavior, and to be an indicator of poor prognosis in several 

tumor sites (135-138). In our study, periacinar retraction cleftings were significantly more 

extensive in prostatic adenocarcinoma samples than in the adjacent nonneoplastic tissue 

(P<0.001). In total, 33 (62.3%) samples of prostatic adenocarcinoma were classified as group 

3 (glands with clefts that affected more than 50% of the circumference in 50% or more of the 

examined glands) and 17 (32.1%) as group 2 (glands with clefts that affect more than 50% of 

the circumference in less than 50% of examined glands), whereas only 3 (5.7%) samples of 

prostatic adenocarcinoma were classified as group 1 (glands without clefts or with clefts 

affecting less than 50% of the circumference). 

In the adjacent nonneoplastic prostatic tissue, however, 44 (83.0%) samples were 

classified as group 1 (glands without clefts or with clefts affecting less than 50% of the 

circumference) and 9 (17%) as group 2 (glands with clefts that affect more than 50% of the 

circumference in less than 50% of examined glands). None of the adjacent nonneoplastic 

prostatic tissue was classified as group 3 (glands with clefts that affected more than 50% of 

the circumference in 50% or more of the examined glands). Comparable to previous findings 

(127-129, 132, 133), our study demonstrated that periacinar retraction clefting is a feature of 

neoplastic glands in prostatic adenocarcinoma, particularly when the clefts affect more than 

50% of the circumference in 50% or more of the examined glands (Figures 1 and 2A–B, 

Table 5).  

Several suggestions have been made regarding the origin of periacinar retraction 

clefting and the biologic mechanisms causing the clefting in tumor specimens. Abnormalities 

in the basement membrane, loss of the adhesion factors, or the expression of extracellular 

matrix proteins or collagenases and other enzymes required for invasion are suggested to be 

related to the origin of periacinar retraction clefting (130, 139, 140).  
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Periacinar retraction cleftings have also been attributed to stromal changes and the 

lack of basal cells in prostatic adenocarcinoma (133, 140). Fávaro et al. (133) reported 

increased MMP-2, vimentin, IGF-1, and FGF-2 and a loss of laminin and dystroglycan 

positive immunolocalizations in periacinar retraction clefts in prostatic adenocarcinoma. They 

also reported a negative immunoreactivity for p63 in all carcinomas with periacinar retraction 

clefting and positive immunoreactivity in nonneoplastic samples, suggesting that the 

phenomenon of periacinar retraction clefting in prostatic adenocarcinoma could be related to 

the lack of basal cells (133). 

Barsky et al. (141) suggested that retraction clefting may in fact be an early stage of 

lymphocapillary invasion, where the conversion of mesenchymal cells to endothelial cells has 

not yet been completed, and thus represent true spaces or “pseudoretraction artifact” around 

the tumor cells. The hypothesis that extensive retraction clefts may represent an early stage of 

lymphovascular invasion is also supported by the study of Acs et al. (136) in breast 

carcinoma. Ulamec et al. (132), however, used D2-40 antibody to highlight lymphatic 

endothelium and differentiate actual lymph vessels or lymphovascular invasion from 

periacinar retraction clefting and were able to show that the number of lymph vessels was 

significantly lower in prostatic adenocarcinoma than in adjacent nonneoplastic prostatic 

tissue. 

They concluded that retractions do not represent lymph vessels but should be 

considered a distinct entity. 

Alterations in adhesion properties of neoplastic cells play a crucial role in the 

development and progression of the malignant phenotype in a variety of tumors. Cadherins 

and catenins, as the prime mediators of cell-cell adhesion, are closely involved in the control 

of morphological differentiation and cellular proliferation. Loss of their intercellular function 

allows malignant cells to escape from their site of origin, degrade the extracellular matrix, 

acquire a more motile phenotype, and invade and metastasize (142, 144).  

The E-cadherin-catenin complex is fundamental for the establishment and 

maintenance of multicellular organisms and regulates or significantly contributes to a variety 

of functions, such as signal transduction, cell growth, differentiation, site-specific gene 

expression, morphogenesis, immunologic function, wound healing, and inflammation (142-

148). E-cadherin, as a Ca
2+

 dependent prime mediator of the epithelial cell-cell adhesion, 

functions through the cytoplasmic linkage to the actin cytoskeleton by the cytoplasmic catenin 

proteins (142-144). 
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ß-catenin is involved in organogenesis and tissue morphogenesis. It plays a critical 

role in the regulation of cadherin-mediated cell recognition and adhesion, acting as the 

regulator of the cadherin-catenin component linking the signal transduction within the 

intercellular adhesions (144, 148).  

The loss of E-cadherin-catenin immunoreactivity is reported to correlate with high 

grade, advanced stage, and poor prognosis in certain tissue carcinomas (144, 148-160). 

Expression of the E-cadherin-β-catenin complex has also been studied in prostatic 

adenocarcinoma (144, 154-160). De Marzo et al. (157) used univariate analysis to show that 

reduced levels of E-cadherin were correlated with advanced GSC (P=0.003) and advanced 

pathologic stage (P=0.008). Jaggi et al. (158) reported a significant downregulation of E-

cadherin in GSC 7–10 prostatic adenocarcinoma compared with GSC ≤6 (P=0.015), 

suggesting a significant association of decreased E-cadherin with increasing grade. They also 

found a significant association of reduction in membranous β-catenin expression in prostatic 

adenocarcinoma with increasing GSC (P=0.015) (158). Furthermore, they reported that β-

catenin was localized in the nucleus of poorly differentiated cancer cells of GSC 7–10, and 

that a significant correlation existed between higher GSC and nuclear β-catenin expression 

(P=0.0001) (158). They did not report any association of E-cadherin and β-catenin expression 

with the final pathologic stage (P>0.05) (158).  

The expression of αv, αvβ3, α2β1, and γ-catenin were abnormal in almost every case 

of primary and metastatic prostatic carcinoma reported by Pontes-Júnior et al. (159). Marked 

loss of E-cadherin and β4 integrin was found in primary and metastatic lesions (159). 

Contrary to the findings of Jaggi et al. (158), β-catenin was normal in all primary 

cases and in 94% of metastases, α6 was normal in all primary tumors and metastases, α3 and 

α3β1 were normal in 32% of primary cases and in 53% and 6% of metastases, respectively 

(159). In paired analyses, loss of E-cadherin, β4, αv, α3β1, and αvβ3 was found in 65, 71, 59, 

53 and 47% of patients, respectively (159). Catenins and α2β1 showed maintained expression 

in most cases (159).  

In our study, we analyzed the expression of E-cadherin and β-catenin cell adhesion 

proteins in prostatic adenocarcinoma and in the adjacent nonneoplastic prostatic tissue. We 

correlated the expression of E-cadherin and β-catenin proteins in prostatic adenocarcinoma 

with preoperative and postoperative GSC, sPSA, positive surgical margins, BCR, and the 

TNM staging. The hypothesis of our research was that periacinar retraction cleftings in 

prostatic adenocarcinoma are a result of decreased expression of E-cadherin and β-catenin cell 

adhesion proteins in the epithelial cells. Our results showed that strong intensity (score 3+) 
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and diffuse (>70%) membranous E-cadherin staining  occurred in only 4 (7.5%) and 2 (3.8%) 

samples of prostatic adenocarcinoma, respectively.  By contrast, in the adjacent nonneoplastic 

tissue, strong and diffuse (score 3+, >70%) intensity of E-cadherin staining was evident in all 

53 (100%) samples.  

Statistical analyses of the results confirmed a significantly higher positive pattern 

(intensity score 3 +, diffuse >70%) of E-cadherin staining in the adjacent prostatic 

nonneoplastic tissue than in prostatic adenocarcinoma (P<0.001) (Figures 3A–C& 5, Table 6). 

Our results confirm previously reported studies on the loss of E-cadherin membranous 

expression in prostatic adenocarcinoma compared to benign tissue (144, 154-160). 

We found that the E-cadherin staining pattern in both prostatic adenocarcinoma and 

the adjacent nonneoplastic prostatic tissue was predominantly membranous and weakly 

cytoplasmic. Nevertheless, we did not notice any difference in the immunolocalization of the 

staining (membranous vs. cytoplasmic) between prostatic adenocarcinoma and the adjacent 

nonneoplastic prostatic tissue; therefore, we did not consider this pattern of staining as 

aberrant. 

β-catenin showed strong intensity (score 3+) and diffuse (>70%) membranous staining 

in 21 (39.6%) and 25 (47.2%) samples of prostatic adenocarcinoma, respectively, and in all 

53 (100%) samples of the adjacent nonneoplastic prostatic tissue. The intensity of staining 

was variable in our study, but β-catenin membranous staining was well preserved in 57% of 

prostatic adenocarcinomas. The statistical analyses of our results showed no statistically 

significant difference in the β-catenin intensity and percentage of membranous staining 

between prostatic adenocarcinoma and the adjacent prostatic nonneoplastic tissue (Table 7). 

Nonetheless, in our study, heterogeneous and negative β-catenin immunostaining was 

seen in 18 (33.9%) and 5 (9.4%) samples of prostatic adenocarcinoma, respectively.  

The pattern of staining for β-catenin in both prostatic adenocarcinoma and the adjacent 

nonneoplastic prostatic tissue was predominantly membranous and weakly cytoplasmic 

(Figures 4A–C&6). The β-catenin cytoplasmic staining was more intense than the observed 

E-cadherin cytoplasmic staining in both prostatic adenocarcinoma and the adjacent 

nonneoplastic prostatic tissue. However, we did not notice any difference in the 

immunolocalization of β-catenin staining (membranous vs. cytoplasmic) between prostatic 

adenocarcinoma and the adjacent nonneoplastic prostatic tissue; therefore, we did not 

consider this pattern of staining as aberrant. 

Our data are in accordance with previously reported studies on decreased expression 

of membranous β-catenin in a certain percentage of prostatic adenocarcinomas (144,158,160-
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162). Different studies, however, have set different evaluation criteria for β-catenin 

immunostaining, and no set recommendation exists in the literature on what should be 

accepted as positive immunostaining. Considering the role of β-catenin and its localization 

within the cell, we adopted the criteria defined by Umbas et al.(155) in our study, and we 

considered a positive pattern of β-catenin immunostaining to occur only when a strong and 

diffuse (score 3+, >70%) intensity of staining of the tumor cells cytoplasmic membranes was 

evident. Bismar et al. (160), however, considered a case as positive if β-catenin stained more 

than 10% of the tumor cells, and they reported only 16% of prostatic adenocarcinomas with 

decreased or negative β-catenin expression when compared to nonneoplastic prostatic 

glandular epithelium. 

Pontes-Júnior et al. (159), who applied the same criteria for the evaluation of β-

catenin as we did, compared the expression of integrins and other CAMs in primary and 

metastatic prostatic adenocarcinomas by tissue microarray immunostaining. They reported β-

catenin expression to be positive in all primary cases and in 94% of metastases in prostatic 

adenocarcinoma (159). In our study, we encountered lower percentages of 39.6% (score 3+) 

and 57% (diffuse >70%) than was reported by Pontes-Júnior et al. (159) for positive β-

catenin expression in prostatic adenocarcinoma.  

Jaggi et al. (158) and Chessire et al. (163) have reported β-catenin nuclear staining in 

high grade prostatic adenocarcinomas (Gleason score   8). Furthermore, a similar β-catenin 

signaling pathway to that occurring in colorectal pathogenesis is proposed in prostatic 

adenocarcinoma (144, 163). In our study, however, we did not detect any nuclear β-catenin 

staining in prostatic adenocarcinoma. Despite the inconsistent and conflicting data in the 

literature regarding nuclear β-catenin detection in prostatic adenocarcinoma, our results agree 

with several other studies that have reported no nuclear β-catenin immunostaining in prostatic 

adenocarcinomas (160-162).    

A very low frequency of β-catenin and APC mutations has been reported in prostatic 

adenocarcinoma to date, and the reported β-catenin and APC mutations are focal within 

prostatic adenocarcinoma. Therefore, these are not considered as tumor initiating events, as is 

the case with colorectal carcinoma (160). 

Similar to the previously reported findings (154-157, 159, 160) on E-cadherin 

immunostaining expression in prostatic adenocarcinoma, we found a highly significant 

negative correlation between the percentage of E-cadherin staining in prostatic 

adenocarcinoma and preoperative GSC and positive surgical margins. Preoperative GSC, 

postoperative GSC, positive surgical margins, BCR, and T stage were negatively correlated 



    
 

66 
 

with the intensity of E-cadherin staining (Table 8). Jaggi et al. (158), however, did not find 

any correlation between the T stage and E-cadherin expression. 

We did not find any correlations between E-cadherin intensity and percentage of 

staining and serum prostate-specific antigen( sPSA) and lymph node (N) status in prostatic 

adenocarcinoma. 

In our study, the intensity of β-catenin staining in prostatic adenocarcinoma was 

significantly negatively correlated with preoperative and postoperative GSC and BCR. 

Similar findings were noted with respect to the percentage of β-catenin staining in 

prostatic adenocarcinoma, where additional negative correlations were noted with positive 

surgical margins and T status (Table 9). No correlations were found between β-catenin 

intensity and percentage of staining and sPSA and N status. A decrease in β-catenin 

expression in higher grade prostatic adenocarcinoma has been reported by several other 

studies (160-162). 

These observations suggest that E-cadherin and β-catenin cell adhesion proteins can 

play a potential role as markers for tumor progression and invasiveness. Nonetheless, the role 

of E-cadherin in maintaining cell integrity, in great part, is related to the catenin function 

through which it is anchored to the cytoskeleton.  

In this regard, several hypotheses have been raised to explain the causes of E-cadherin 

loss or downregulation in prostatic adenocarcinoma, including the hypermethylation of the 

CpG islands in the E-cadherin gene promoter, mutational inactivation of the E-cadherin gene 

itself, homozygous deletion of the α-catenin gene, and increased tyrosine phosphorylation of 

the β-catenin gene (144, 155). This suggests that in low grade prostatic tumors, E-cadherin 

might be dysfunctional but its IHC expression is preserved.  

Our results also support a role for β-catenin signaling in prostatic adenocarcinoma 

pathogenesis. β-catenin is a multifunctional protein that controls a number of cell activities, 

sometimes at the membrane, and sometimes in the nucleus as a transcription co-factor. 

Nevertheless, contrary to the findings reported by Jaggi et al. (158) and Chessire et al. 

(163), we consider that the signaling pathway in prostatic adenocarcinoma differs from that 

occurring in colorectal tumorigenesis. The β-catenin role in prostate is more likely to be that 

of a cell adhesion molecule rather than a signal transduction component.  

We also found a correlation between the expression of E-cadherin and β-catenin cell 

adhesion proteins and prostatic adenocarcinoma with periacinar retraction clefting. Our 

hypothesis was that periacinar retraction clefting in prostatic adenocarcinoma is a result of 

decreased expression of E-cadherin and β-catenin cell adhesion proteins in epithelial cells of 
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prostatic adenocarcinoma. Our results show that periacinar retraction clefting in prostatic 

adenocarcinoma is significantly positively correlated with the intensity of E-cadherin staining 

in prostatic adenocarcinoma (rho= 0.398; P=0.003) and the percentage of E-cadherin staining 

in prostatic adenocarcinoma (rho= 0.367; P=0.007) (Figure 7A–B, Table 10). We also 

encountered a statistically significant positive correlation between the intensity of β-catenin 

staining (rho= 0.374; P=0.006) and percentage of β-catenin staining (rho=0.347; P=0.011,  

and the extent of periacinar retraction clefting in prostatic adenocarcinoma (Figure 8A–B, 

Table 11). The correlation between E-cadherin and β-catenin IHC staining and periacinar 

retraction clefting in prostatic adenocarcinoma has not been previously studied. 

Our results did not confirm our hypothesis that periacinar retraction clefting in 

prostatic adenocarcinoma is a result of decreased expression of E-cadherin and β-catenin cell 

adhesion proteins in epithelial cells of prostatic adenocarcinoma. Instead, we encountered a 

positive correlation between the E-cadherin and β-catenin expression and periacinar retraction 

clefting in prostatic adenocarcinoma. We consider this finding to be in concordance with the 

idea that periacinar retraction clefting in prostatic adenocarcinoma is more of a characteristic 

feature for Gleason pattern 3 adenocarcinomas (131,133). E-cadherin and β-catenin IHC 

expression decrease with increasing histopathological tumor grade (144,160). Therefore, E-

cadherin expression was mainly preserved in the glands of low grade tumors of GSC 6, which 

had the most extensive periacinar halos in our study.   

However, in 4 (7.54%) samples of prostatic adenocarcinoma GSC 7 (4+3), with a 

heterogeneous, mixed population of positive and negative cells, E-cadherin staining was weak 

to negative in the cells of the tumor glands that had pulled away from the stroma and had 

periacinar halo of more than 50% of the circumference, whereas positive immunostaining was 

seen in the tumor glands with no periacinar retraction clefts (Figure 7B–C).This suggests that 

the decreased membranous expression of E-cadherin might have a role in the origin of 

periacinar retraction clefting in higher grade tumors. 
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7. CONCLUSIONS AND IMPLICATIONS FOR FURTHER RESEARCH 

 Periacinar retraction clefting is significantly more extensive in prostatic 

adenocarcinoma than in nonneoplastic prostatic tissue (P<0.001). Therefore, 

periacinar retraction clefting can be used as a reliable criterion in making the 

diagnosis of prostatic adenocarcinoma, particularly when clefts affect more 

than 50% of the circumference in 50% or more of the examined glands. 

 The pattern of E-cadherin immunostaining in both prostatic adenocarcinoma 

and in nonneoplastic prostatic tissue is predominantly membranous and weakly 

cytoplasmic. However, a significantly higher positive (intensity score 3+, 

diffuse >70%,) expression of E-cadherin staining occurs in nonneoplastic 

prostatic tissue compared to prostatic adenocarcinoma (P<0.001). 

 The intensity of E-cadherin staining in prostatic adenocarcinoma was 

negatively correlated with preoperative GSC (P<0.001), postoperative GSC 

(P<0.001), positive surgical margins (P=0.024), BCR (P=0.017), and T stage 

(P<0.001), whereas the percentage of E-cadherin staining was negatively 

correlated with postoperative GSC (P=0.002) and positive surgical margins 

(P=0.013). These observations suggest that E-cadherin may potentially serve 

as a marker for tumor progression and invasiveness. 

 The pattern of β-catenin immunostaining in both prostatic adenocarcinoma and 

in nonneoplastic tissue was predominantly membranous and weakly 

cytoplasmic. The intensity of β-catenin staining in prostatic adenocarcinoma 

was significantly negatively correlated with preoperative and postoperative 

GSC (P<0.001) and BCR (P=0.048), whereas β-catenin percentage of staining 

negatively correlated with preoperative GSC (P<0.001) and postoperative GSC 

(P=0.005), positive surgical margins (P=0.048), BCR (P=0.004), and T stage 

(P=0.032).  

 E-cadherin and β-catenin expression were positively correlated with the extent 

of periacinar retraction clefting in prostatic adenocarcinoma glands: intensity 

of E-cadherin staining (rho=0.398; P=0.003), percentage of E-cadherin 

(rho=0.367; P=0.007), intensity of β-catenin staining (rho= 0.374; P=0.006) 

and percentage of β-catenin (rho=0.347; P=0.011). 

  A decreased expression of E-cadherin was noticed in the cells of glands with 

extensive periacinar retraction clefting in higher grade prostatic 

adenocarcinomas when compared to the tumor glands with no clefting. This 

suggests that decreased expression of E-cadherin might have a role in the 

origin of periacinar retraction clefting in higher grade tumors.  
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8. ABSTRACT 

Periacinar retraction clefting represents a criteria favoring prostatic adenocarcinoma 

diagnosis. In the present study, tissues from 53 cases of prostate morphologically diagnosed 

as prostatic adenocarcinoma and the adjacent nonneoplastic prostatic tissue were evaluated for 

the presence and the extent of periacinar retraction clefting. Immunohistochemistry (IHC) was 

used to evaluate the expression of E-cadherin and β-catenin, and this expression was 

compared with GSC, sPSA, positive surgical margins, BCR, TNM stage, and periacinar 

retraction clefting. 

Our study confirmed that periacinar retraction clefting is significantly more extensive 

in prostatic adenocarcinoma than in nonneoplastic prostatic tissue (P<0.001).We found a 

decreased expression of E-cadherin and β-catenin in prostatic adenocarcinoma and a negative 

correlation with GSC, positive surgical margins, BCR, and T stage.  

Periacinar clefting was positively correlated with the intensity of E-cadherin staining 

(rho=0.398; P=0.003), the percentage of E-cadherin staining (rho=0.367; P=0.007), the 

intensity of β-catenin staining (rho= 0.374; P=0.006) and the percentage of β-catenin staining 

(rho=0.347; P=0.011) in prostatic adenocarcinoma. However, in 4 (7.54%) samples with 

Gleason score (GSC) 7 (4+3) and with a mixed population of positive and negative cells, E-

cadherin staining was weak to negative in the cells of tumor glands with periacinar clefts and 

positive in tumor glands with no periacinar clefts. This suggests that E-cadherin might play a 

role in the origin of periacinar clefting in higher grade tumors. 
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9. SAŽETAK 

Periacinarne pukotine  predstavljaju jedan od  kriterija za dijagnozu  adenokarcinoma 

prostate. U 53 slučajeva prostate s morfološkom dijagnozom adenokarcinoma i u okolnom 

neneoplastičnom tkivu prostate, određena je prisustnost i izraženost periacinarnih pukotina, i 

imunohistokemijska izraženost E-kadherina i ß-katenina u usporedbi s Gleason zbrojem, 

sPSA, pozitivnim kirurškim rubovima, biokemijskim povratkom bolesti, TNM stadijem i 

periacinarnim pukotinama. 

Naša studija potvrđuje da su periacinarne pukotine znatno jače izražene u 

adenokarcinomu nego u benignom tkivu prostate (p <0,001). 

Rezultati istraživanja pokazuju smanjenu izraženost E-kadherina i ß-katenina u 

adenokarcinomu prostate i negativnu korelaciju s Gleason zbrojem, pozitivnim kirurškim 

rubovima, biokemijskim provratkom bolesti i T stadijem. 

Izraženost periacinarnih pukotina je pozitivno povezana s intenzitetom ekspresije E-

kadherina (p = 0.398; P = 0,003), postotkom ekspresije E-kadherina (p = 0.367; p = 0.007), 

intenzitetom ß-katenina (p = 0.374; p = 0,006) i postotkom ekspresije ß-katenina (rho = 0.347; 

P = 0.011) bojenja u adenokarcinomu prostate. 

U 4 (7.54%) uzoraka, Gleason zbroj 7 (4 + 3), s mješovitom populacijom pozitivnih i 

negativnih stanica, bojenje na E-kadherin je slabo do negativno u stanicama žlijezda s 

periacinarnim pukotinama i pozitivno u žlijezdama tumora bez periacinarnih pukotina. To 

sugerira da E-kadherin može imati ulogu u nastanku periacinarnih pukotina u tumorima 

prostate s većim gradusom.  
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