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ABSTRACT 

Developing new technologies is one of the most important goals of contemporary scientific and 

industrial research. Understanding how a technology domain evolves and its current state is 

invaluable in an ecosystem seeing the speed of technology evolution increasing at rapid pace. 

An overview of existing literature showed that while there is a significant volume of research 

focusing on using patents to study technology change, most of this research, in a technology 

evolution context, focuses on studying technology trajectories and convergence, with limited 

research combining insights from research based on other resources (i.e. paper citations) and 

applied to patent networks. Moreover, the review of literature shows that the majority of patent 

analysis methods focus on exploring technology development trajectories by examining the 

direct citations of patents. While this approach provides insight into the generational flow of 

knowledge, it provides little insight into how existing patents might combine and co-contribute 

to a future patent in the form of co-citations. Finally, a review of literature showed that the vast 

majority of patent-based methods for life cycle analysis as well as prediction base themselves 

on models derivate of the basic S – Curve model, providing little understanding of the 

underlying dynamics of patent attributes and their correlation to the life cycle phases. 

Quantitative methods not based on the S-Curve model mostly do not use patent data as a 

primary data source and give limited insight into the future knowledge flows.  

 This thesis aims to present a novel way of exploring the life cycle stages of a technology 

domain by conducting a dynamic growth analysis of a patent citation network, with patents 

being used as proxies for technological invention and patent citations representing the flow of 

knowledge. Additionally, new insights into the dynamics of the flow of knowledge within a 

technology domain are made by applying several link prediction algorithms to patent co-

citation networks with the goal of identifying the link prediction algorithms most successful in 

describing the underlying intuition of co-citation network growth. Moreover, the dynamics of 

co-citation creation are explored by determining which part of a technology domains life cycle 

influences the link prediction algorithms precision the most and when the predicted links occur. 

Two technology domains are explored; the car headlights technology domain representing a 

mature technology and the neuromorphic hardware technology domain representing an 

emerging technology. The choice of two technologies different in nature is deliberate; this way, 

the evolution of two different types of technologies can be explored and compared, helping to 

identify the particularities of each technologies evolution. The presented methodology for 
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exploring the evolution of a technology domain consists of creating a dataset containing patents 

representing the studied technology domain and conducting a pair of technology life cycle 

(TLC) analyses. The first life cycle analysis is performed using an established method based on 

the cumulative number of patent applications over time, while the second is performed using a 

novel method based on analysing the dynamic growth of a patent citation network. An 

algorithm is introduced to convert the patent citation network into a patent co-citation network. 

Several link prediction algorithms are applied to the created co-citation networks to explore the 

underlying intuition governing co-citation network growth.  

The study results show that a correlation exists between the stages of a technology domains life 

cycle and changes in the dynamics of patent citation network growth. The transition of the 

mature technology domains life cycle stage from growth to maturation correlates with a 

noticeable change in patent citation growth dynamics. Additionally, examining the emerging 

technology domain, it is found that a correlation exists between the time when an exponential 

increase in the number of inventions starts and a change in the dynamic of patent citation 

network growth. The Preferential Attachment link prediction algorithm is shown to be the most 

successful in predicting missing links in a mature technology. The results indicate that the 

patent co-citation occurring at the end of the growth TLC stage and the start of the maturation 

TLC stage contribute the most to the algorithm's precision. Moreover, it is demonstrated that 

most of the predicted missing links occur in a time frame closely following the application of 

the link-prediction algorithm. The results of studying the emerging technology domain show 

that link prediction algorithms have a significantly lower success in predicting missing links. 

The Adamic/Adar, Resource Allocation Index and Jaccard Coefficient show a moderate to low 

success in predicting missing links while the Preferential Attachment shows no precision. 

This thesis provides a contribution in both a theoretical and practical context. In a theoretical 

context, the theoretical background of previous studies is expanded with new insights in patent 

citation networks growth as well as the dynamics of patent co-citation network growth. In a 

practical context, it is demonstrated that companies involved in planning for the short term 

should consider the knowledge contained in the patents relevant to their respective fields, 

reinforcing the notion that proper knowledge management is an invaluable tool to companies 

aspiring to innovate or produce innovative products. 
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PROŠIRENI SAŽETAK 

Razvoj novih tehnologija je jedan od glavnih ciljeva današnje znanosti i industrijskog razvoja. 

Kako bi stekle dominantan i povoljan položaj na tržištu, tvrtke koje posluju u kompetitivnom 

globalnom okruženju pokušavaju unaprijediti svoje razvojne procese, razviti nove proizvode ili 

ponuditi nove usluge na tržištu temeljeno na unaprijeđenim ili novim tehnologijama. Sukladno 

tome, suvremena istraživanja trendova nadolazećih tehnologija i njihovog razvoja temeljenog 

na tehničkim inovacijama predstavljaju sve značajniji dio istraživačkih i praktičnih napora u 

akademiji i industriji. Određivanje smjera razvoja tehnologije se može koristiti u industriji za 

potporu strateškom i dugoročnom planiranju razvoja proizvoda, procesa i usluga. Svrha 

određivanje smjera razvoja tehnologije je strukturirano razumijevanje i opisivanje odnosa 

između tehničkih inovacija, njihove implementacije u fizičke sustave i usluge, te razvoja tržišta 

kroz vrijeme. Iako je većina postojećih pristupa koji se za to koriste u praksi kvalitativna, 

istraživači pokušavaju razviti kvantitativne metode za podršku određivanju smjera razvoja 

budućih tehnologija. Trenutno ne postoji metoda koja omogućuje uspješno kombiniranje 

kvalitativnih i kvantitativnih pristupa na prikladan način. Organizacije koje posluju u visoko 

kompetitivnim okruženjima imaju potrebu za pravovremenim saznanjima o nadolazećim 

tehnologijama kako bi mogle pravovremeno planirati unapređenje proizvodnih i poslovnih 

procesa, te uvođenje novih proizvoda ili usluga na tržište. Istraživanja o uvjetima i načinim 

nastanka novih tehnologija, te proučavanje dinamike njihovog  razvoja, značajna su u 

teoretskom kao i u praktičnom smislu. Svrha predviđanja smjerova razvoja tehnologije je 

minimizirati ili ukloniti iznenađenja saznanjima o svim mogućim ishodima tehničkog razvoja. 

Spoznajom da su se tradicionalni modeli predviđanja razvoja tehnologije, primjerice Moorov 

zakon  ili Kryderov zakon, pokazali nepreciznim, javlja se potreba za novim modelima koji bi 

omogućili unapređenje uvida u smjerove razvoja tehnologije. Kod proučavanja razvoja 

tehnologije ključan je pojam „evolucija“ tehnologije koji podrazumijeva unapređenje 

performansi tehnologije kroz vrijeme. Literatura opisuje dva modela evolucije tehnologije: 

kontinuirani i diskontinuirani. Istraživači koji zagovaraju model kontinuirane i inkrementalne 

evolucije tehnologije tvrde da se taj proces odvija putem rekombinacije  i sinteze osnovnih 

elemenata postojeće tehnologije, te tvrde kako je unapređenje performansi tehnologije u tim 

aktivnostima rezultat promjene u shvaćanju, vrijednostima, kulturi, organizacijskoj strukturi, 

resursima i ključnim kompetencijama ljudi koji rade u razvoju kao i društva u cjelini. Za te 

istraživače je inovacija društveni proces koji se zasniva na akumulaciji malih unapređenja, a ne 

na značajnom doprinosu genijalnih pojedinaca. Istraživači koji zagovaraju model 
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diskontinuirane evolucije tehnologije, tvrde da se tehnologija unapređuje kroz razdoblja 

inkrementalnog unapređenja koja su isprekidana s diskontinuiranim pomacima. Oni tvrde kako 

proizvodi i usluge koji se temelje na potpuno novim tehničkim inovacijama kreiraju značajan 

napredak te postaju dominantna tehnologija što za posljedicu ima diskontinuirani pomak. 

Metodologija  

Metodologija istraživanja temelji se na općoj metodologiji istraživanja u znanosti o 

konstruiranju te se sastoji od 4 temeljna koraka: preliminarno istraživanje (razjašnjenje 

problema, definiranje ciljeva istraživanja i hipoteza), deskriptivno istraživanje I (definiranje 

teoretske podloge i pregled modela), preskriptivno istraživanje (izrada teoretskog okvira, 

kreiranje empirijske studije) i deskriptivno istraživanje II (empirijske studije te diskusija 

rezultata). Preliminarno istraživanje obuhvaća pregled postojeće stručne i znanstvene literature 

u području istraživanja. Na temelju pregleda područja, uspostavljen je inicijalni opis postojeće 

situacije, kao i opis željenih rezultata, s ciljem definiranja osnovnih pretpostavki istraživanja. 

Uvidom u postojeću literaturu napravljen je pregled teoretskih osnova korištenja patenata kao 

posrednika za tehnološke izume, teoretskih pristupa opisivanja evolucije tehnologije te 

teoretskih pristupa predviđanja razvoja tehnologije. Nadalje, uvidom u postojeću literaturu 

napravljen je pregled modela za opisivanje i predikciju razvoja tehnologije pri čemu je naglasak 

stavljen na modele koji kao svoj temelj imaju patentne prijave. Ishod ovog koraka je definiranje 

rupa u području te formuliranje istraživačkih pitanja, čime je usmjeren daljnji tijek istraživanja.  

Na temelju rezultata pregleda literature definirana je teoretska podloga istraživanja, koja 

sintetizira ranije prezentirane teoretske pristupe u jedan zajednički okvir unutar kojega će se 

vršiti istraživanje. Pojašnjen je odabir pojedinih teoretskih pristupa kao i njihov odnos s 

istraživačkim pitanjima i hipotezom. Empirijsko istraživanje sastoji se od dvije studije, pri 

čemu prva istražuje tehnologiju u zreloj fazi svog životnog ciklusa, a druga istražuje tehnologiju 

na početku svog životnog ciklusa. Obje studije su strukturirane na isti način, te se sastoje od 

empirijskog i eksperimentalnog dijela. Empirijski dio obje studije fokusiran je na analizu 

životnog ciklusa tehnologije, koristeći postojeću metodu temeljenu na kumulativnom broju 

patentnih prijava te koristeći novu metodu temeljenu na dinamičkoj analizi rasta mreže. 

Eksperimentalni dio obje studije fokusiran je na primjenu algoritma za predviđanje stvaranje 

veza na mreži kocitata patenata te istraživanje dinamike stvaranja kocitata. Verifikacija modela 

napravljena je kroz diskusiju rezultata, pri čemu se daje odgovor na ranije definirana 

istraživačka pitanja te hipoteze istraživanja. 
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Teoretska osnova 

Preliminarnim pregledom literature fokus istraživanja usmjeren je na metode za modeliranje i 

predviđanje evolucije tehnologije temeljene na patentima. Izložena je teoretska podloga za 

korištenje patenata kao posrednika za tehnološke izume, pozivajući se na postojeću praksu koja 

patente promatra kao pouzdane formalizirane zapise izuma. Naglasak je stavljen na metode za 

kreiranje skupova patenata koji precizno opisuju tehnološku domenu. Nadalje, naglasak je 

stavljen na razumijevanje svojstava patenata te identifikacije meta podatka unutar patenta koji 

će se koristiti kao temelj za ovo istraživanje.  

Predstavljen je koncept toka znanja unutar tehnološke domene te njegova povezanost s 

evolucijskim etapama tehnološke domene. Istraživanje se temelji na teoriji koja dijeli životni 

ciklus tehnologije na četiri etape pri čemu se kumulativna vrijednost određenih karakteristika 

tehnologije može opisati S-krivuljom.  

Konačno, predstavljena je mreža kocitata patenata kao temelj za predviđanje toka znanja unutar 

tehnološke domene. Pretpostavka je da predviđanjem nastanka novih veza unutar mreže 

kocitata možemo predvidjeti utjecaj starijih izuma na nove.  

Spajanjem teorija iz ova tri područja stvorena je teoretska osnova istraživanja, sintetizirana kroz 

tri pretpostavke. Ova teoretska osnova podupire analizu i interpretaciju rezultata te pomaže u 

donošenju širih generalizacija.   

Empirijske studije 

Izvršene su dvije studije s ciljem odgovaranja na istraživačka pitanja i verifikacije hipoteze. 

Obje studije slijede istu strukturu te se sastoje od sljedećih koraka. Prvi korak studije sastoji se 

od kreiranja skupa patenata koji opisuju tehnološku domenu, pri čemu je korištena prilagođena 

inačica postojeće i potvrđene metodologije. Samo empirijsko istraživanje sastoji se od dvije 

pod-studije. Prva pod-studija je empirijske naravi te se sastoji od provođena analize životnog 

ciklusa tehnološke domene. Napravljene su dvije analize životnog ciklusa tehnologije gdje je 

prva analiza napravljena koristeći utvrđenu metodu temeljenu na kumulativnom broju patentnih 

prijava dok je druga analiza napravljena metodom predstavljenom u ovom istraživanju, a koja 

se temelji na dinamičkoj analizi rasta mreže citata patenata. Druga pod-studija je 

eksperimentalne naravi, te se sastoji od primjene algoritama za predviđanje nastajanja veza 

unutar mreže na mrežu koja predstavlja kocitate patenata unutar tehnološke domene. Nadalje, 
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proučava se dinamika stvaranja kocitata unutar tehnološke domene s naglaskom na otkrivanje 

koji patenti najviše utječu na stvaranje novih kocitata te kada se predviđeni kocitati stvaraju.  

Koristeći navedenu strukturu studije, analizirane su dvije tehnološke domene. Prva tehnološka 

domena sastoji se od patenata koji opisuju svjetla na automobilima. Ova tehnološka domena 

predstavlja primjer tehnologije u zadnjoj fazi svog životnog ciklusa. Druga tehnološka domena 

sastoji se od patenata koji opisuju neuromorfno sklopovlje. Ova tehnološka domena predstavlja 

tehnologiju na početku svog životnog ciklusa. 

Primjenom metodologije na tehnologije u različitim fazama njihovog životnog ciklusa ispituje 

se može li se metodologija generalizirati na sve tehnološke domene, ili samo tehnološke 

domene koje dijele određene karakteristike. 

Rezultati empirijski studija  

Rezultati prve studije, koja proučava tehnološku domenu u zadnjoj fazi svog životnog ciklusa, 

pokazuju da se dinamički rast mreže citata sastoji od dvije diskretne faze. U prvoj fazi krivulja 

koja opisuje rast prati generalno pozitivni trend nakon čega kreće faza negativnog trenda, pri 

čemu pozitivan trend krivulje označava period gdje se stvara više novih patenata od citata dok 

negativan trend označava period gdje se stvara više citata od novih patenata. Točka prelaska iz 

pozitivnog u negativni trend približno odgovara početku sazrijevanja životnog ciklusa 

tehnologije koja je određena analizom temeljenoj na kumulativnom borju patentnih prijava. 

Ovim je rezultatima pokazana korelacije između dinamike faza životnog ciklusa tehnologije i 

dinamike rasta mreže citata. 

Rezultati empirijske pod-studije pokazuju da prva polovina životnog ciklusa tehnologije, koja 

se sastoji od faza uvođenja i rasta, prati trend gdje se stvara više novih patenata nego citata. U 

kontekstu evolucije tehnologije, ovo pokazuje da ove faze životnog ciklusa tehnologije 

generiraju pretežito originalne i inovativne izume. Druga polovica životnog ciklusa tehnologije, 

koja se sastoji od faze zrelosti i opadanja, stvara manje inovativne izume koje se većinom 

temelje na prijašnjim izumima.  

Druga pod-studija prve studije pokazala je da mreža kocitata patenata raste sljedeći intuiciju 

preferencijalne vezanosti, odnosno da vjerojatnost da neki patent bude kocitiran raste s brojem 

kocitata koje ima.  Nadalje, pokazano je da novi izumi većinom citiraju mlađe patente, odnosno 

da većine toka znanja proizlazi iz mlađih patenata. Konačno, pokazano je da većina predviđenih 

kocitata nastane u bližoj budućnosti.  
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Rezultati druge studije, koja proučava tehnološku domenu na početku svoga životnog ciklusa, 

pokazuju da graf dinamičkog rasta mreže citata kreće s fazom negativnog trenda nakon čega 

kreće faza pozitivnog trenda. Točka prelaska iz negativnog u pozitivni trend približno odgovara 

trenutku kada broj prijavljenih patenata unutar tehnološke domene počinje eksponencijalno 

rasti, što je vidljivo iz analize životnog ciklusa na temelju kumulativnog broja prijavljenih 

patenata.   

Druga pod-studija druge studije nije pokazala je da mreža kocitata patenata koji opisuju 

tehnološku domenu u prvoj fazi svog životnog ciklusa ne prati nikakvu intuiciju rasta. Od četiri 

razmatrana algoritma za predviđanje veza unutar mreže, niti jedan nije uspješno opisao intuiciju 

rasta mreža. Štoviše, algoritam preferencijalne vezanosti pokazao je najmanju preciznost,  

Vrednovanje istraživanja 

Vrednovanje metode provedeno je raspravom kojom se adresiraju istraživačka pitanja i ciljevi 

istraživanja te hipoteza. Pri raspravi se također koriste saznanja iz dostupne literature. 

Rezultati obje studije vezani za prvo istraživačko pitanje ukazuju da postoji korelacija između 

dinamike stvaranja citata patenata i faze životnog ciklusa promatrane tehnološke domene. Ova 

korelacija se primarno manifestira kao promjena u omjeru broja novo stvorenih patenata i novo 

stvorenih citata. Ova promjena je jasno uočljiva na vizualizaciji rezultata analize dinamičkog 

rasta mreže citata patenata. U slučaju zrele tehnologije, vrijeme tranzicije iz faze rasta u fazu 

zrelosti podudara se s promjenom u rezultatu dinamičke analize rasta gdje pozitivne trend rasta 

prelazi u negativni trend. Kod tehnologije na početku svog životnog ciklusa, nagli porast 

kumulativnog broja prijavljenih patenata podudara se s promjenom u rezultatu dinamičke 

analize rasta gdje trend rasta prelazi iz negativnog u pozitivni. 

Rezultati vezani za drugo, treće i četvrto istraživačko pitanje doprinose razumijevanju dinamike 

stvaranje kocitata patenata unutar tehnološke domene. Rezultati prve empirijske studije 

pokazuju da dinamika rasta mreže kocitata patenata, kreirane od patenata koji predstavljaju 

zrelu tehnologiju, prati sličnu dinamiku kao i kocitati istraživačkih radova, točnije dinamiku 

preferencijalne vezanosti. Ovi rezultati ukazuju da tok znanja slijedi sličnu dinamiku širenja u 

oba nositelja znanja. 

Na temelju vrednovanja istraživanja naglašeni su sljedeći doprinosi, kako u teoretskom tako i 

u praktičnom kontekstu. Prvi teoretski doprinos sastoji se od uvođenja novog načina za 

istraživanje faze životnog ciklusa tehnološke domene. Točnije, predstavljen je novi način 
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određivanja faze životnog ciklusa tehnologije na temelju analize dinamičkog rasta mreže citata 

patenata. Drugi teoretski doprinos sastoji se od pružanja uvida u to kako se elementi znanja šire 

unutar tehnološke domene. Razumijevanjem obrazaca difuzije znanja, dobiva se uvid u 

ishodišnu intuiciju toka elemenata znanja. Posljedično, ova se spoznaja može iskoristiti za 

predviđanje difuzije znanja u budućnosti.  Nadalje, dodatno istraživanje dinamike toka 

elemenata znanja mogu pružiti uvod u to koje tehnologije iz životnog ciklusa tehnološke 

domene najviše utječu na buduće izume, kao i vrijeme pojave tih budući izuma.  

U praktičnom kontekstu, ovi su rezultati primjenjivi na mikro i marko razini. Na mikro razini, 

metode iz ovog istraživanja mogu biti korištene u ideacijskoj fazi razvoj proizvoda. Primjene 

algoritma za predviđanja veza na mrežu kocitata patenata može korisniku pružiti uvid u dotad 

neistražene kombinacije patenata. Ovaj pristup se nadovezuje na postojeća istraživanja koja 

promatraju proces invencije kao kombinatorički proces. Na makro razini, metode iz istraživanja 

se mogu koristit na razvoju strategije razvoja tehnološkog portfolija.  

Ključne riječi: 

upravljanje tehnologijom; analiza životnog ciklusa tehnologije; predviđanje veza; analiza 

patenata; analiza citata patenata; analiza kocitata patenata 
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1. INTRODUCTION 

This chapter aims to outline the importance of the topic explored in this thesis and provide the 

context of the presented research. The reader is introduced to the gap in research the presented 

work will fill as well as the research questions and problems the research addresses. Finally, 

the contribution of the research to the broader field is presented, as is an overview of the 

methods employed, the study’s limitations and the structure of the thesis. 

There is a consensus, in both an industrial and academic context, that knowledge is one of the 

key drivers of economic growth [1][2][3], with innovation being an integral part of the 

significant knowledge transformation in modern business [4]. This makes studying and 

explaining the spread of knowledge an attractive topic to scholars [5]. One of the facilitators of 

knowledge as a driver of growth is the development of new technologies. In order to attain a 

more dominant market position, companies operating in a competitive global environment seek 

to improve their development processes, develop new products, or offer new services based on 

improved or completely novel technologies. Consequently, research trends focused on studying 

emerging technologies and their development based on technical innovations represent an 

increasingly significant percentage of research and practical effort both in an academic and 

industrial context [6][7]. Furthermore, the management of knowledge is rising in popularity in 

an industrial context as organisations realize the importance of knowledge in creating new 

technologies. The survival of large organisations often depends on their ability to navigate the 

technological currents in their environments [8][9]. A result of this is the existence of a 

significant volume of research focused on the study of knowledge flow in different contexts, 

such as studying knowledge flow in the global economy [10][5][11], within organizations 

[12][13] and technology domains [14][15]. The latter emphasises studying knowledge in its 

manifestation as the evolution of technology, stating that the evolution of technology is 

typically guided by problem-solving activities integrating the knowledge from areas of 

technology and leveraging the cumulative nature of knowledge [15]. In an industrial context, 

an understanding of the evolution of technology has been shown to be invaluable to 

stakeholders at different levels, tasked with making decisions related to the implementation or 

development of technology. These stakeholders can be both on a project [16] or a strategic [17] 

level. In an academic context, insight into the nature of technology evolution can provide 

additional value for the fields of knowledge and innovation management [18], design theory 

[19], and risk management [20].  
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The purpose of understanding the evolution of technology and predicting the potential 

directions of technology development is to minimize or eliminate surprises by having an insight 

into the possible outcomes of the development of a technology. Since there is a growing 

awareness that traditional models of forecasting the development of technologies, such as 

Moore’s Law [21] or Kryder's law, have been proved inaccurate in a contemporary context 

[22], there is a need for new models which would provide improved insight into the potential 

directions of technology development [22]. 

A key concept when studying the development of technology is “technology evolution”, the 

process of continuous improvement of technology over time [6]. The timeframe in which a 

technology evolves is referred to as its life cycle [23][24]. This technology life cycle consists 

of multiple stages, each having its own set of characteristics.  There are two main approaches 

to describing the principles governing the evolution of technology that can be found in the 

literature. The first one states that technology evolves incrementally, viewing the evolution of 

technology as a series of incremental improvements that accrue over time and result in 

significant technological advances [22][25][26]. An incremental new product is considered a 

refinement, adaptation, and enhancement of existing products [19]. The second theory of 

technology evolution proposes that a technology evolves in a continuous cycle of stagnation 

and radical improvements. Radical innovation facilitates the improvement of technologies, 

followed by periods of relative stagnation. This cycle then repeats during the technology’s life 

cycle [27][28][29]. An additional important concept in technology evolution, separate from the 

first two, covers the appearance of disruptive innovations, innovations that create a new market 

and value network, eventually disrupting an existing market, resulting in the displacement of 

established market leaders [9]. 

The motivation for conducting this research is based on the continuous need to better understand 

the way technologies evolve by exploring the rules governing the evolution of technology, 

thereby increasing the ability to predict the potential development of technology and 

consequently reducing uncertainty in technology management. Moreover, any results of this 

research should be based on formalized records of technology inventions, minimising the need 

for expert knowledge when examining a technology. The formalized records of invention used 

should be accessible, structured and objective, enabling the results of this research to be easily 

repeatable. For this reason patents are considered the primary source of data in this research 

[3]. While several methods exist for exploring the life cycle stage of a technology, there is a 

limited number of approaches that focus on using the citations between patents as the basis for 
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analysis. This is considered a significant gap as patents are considered among the most 

promising formalized written records of knowledge and have a history of being used as proxies 

for technical invention [2][30][31]. Additional research into patent citation may therefore 

provide new insight into how a technology domain evolves. Moreover, increasing the 

understanding of the correlation between patent citations and a technologies life cycle might 

provide researchers with a more profound insight into the underlying patterns of patent citations 

and consequently technology creation. 

Specifically, the literature review shows a noticeable lack of research studying patent co-

citations and the dynamics of their creation. This means that exploring patent co-citation could 

yield results that would provide a meaningful contribution to the broader field. Identifying an 

underlying intuition governing the creation of patent co-citations might further increase our 

understanding of how technologies evolve and potentially enable us to predict the future 

evolution of technology. Consequently, the dynamics of patent co-citation creation is one of the 

critical phenomena studied in this research. 

Ultimately, any additional insight into the rules governing the evolution of a technology serves 

to partially mitigate risk to decision-makers at both a project and strategic level. This is evident 

when previous technologies which failed catastrophically are observed, primarily due to a lack 

of foresight of development trends. Examples include the devastation of Swiss watch 

manufacturers by the transition from mechanical to electric and quarts movements in watches 

[32], which caused the decline of the share the of Swiss watch export market (by volume) from 

40 % in 1974 to just 10% in 1984. Because Swiss watch makers gathered in a watch cartel, they 

were insulated from the effect of inter-firm competition. However, they neglected external 

events and the introduction of a new technology by non-Swiss competitors. This crisis cost 

around two-thirds of the Swiss industry’s employees their jobs, falling from 90 000 to 28 000.   

Another example is Blackberry’s failure to predict the adoption of touchscreens and the 

inability of Nokia to imagine a use of mobile phones beyond simple communication devices 

[33]. This inability of Nokia to keep up with innovations in the mobile phone space, namely the 

introduction of Apple’s iPhone and Google’s Android, caused its global share of the smartphone 

market to drop from  39% to 29% in the span of two years (2008-2010), at the same time 

reducing operating profit by more than 50%, making the corporation as a whole unprofitable 

and ultimately resulting it the divestment of its entire mobile phone business unit to Microsoft 

in 2013 [34]. By then the number of employees fell from 125 829 in 2008 to 59 333 in 2013 

[34].  
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Timely knowledge of technology evolution patterns might help prevent potentially highly 

impactful strategic mistakes when choosing technologies to be developed.  This does not only 

apply to stakeholders operating at a strategic level, as stakeholders operating on a smaller, 

project-based scale might also benefit from this knowledge. 

Finally, stakeholders not directly involved in the development of technologies have a constant 

need for accurate evaluations of technology states. Primarily, these are stakeholders tasked with 

making high-level decisions, such as policy makers or venture capitalists. Even a minuscule 

reduction of uncertainty might enable these stakeholders to make better decisions. 

Understanding the current life cycle stage of a technology, as well as potential future 

development, might increase the ability of these stakeholders to introduce timely legislation 

governing the implementation of these technologies. Examples can be made of drone 

technology [35][36] and blockchain technology [37], both of which are highly disruptive 

technologies that policy makers did not predict, making their implementation into everyday life 

controversial as government policy attempts to keep up with innovation [35][38]. Stakeholders 

involved in venture capital (VC) funds are chasing optimal risk/reward opportunities. VC funds 

involved in the technology sector could have significant benefits from identifying technologies 

in stages suitable for investors and could also prevent potential losses by identifying 

technologies in the final stages of their life cycle [23]. 

1.1. Research Focus, Aim and Hypothesis 

The evolution of technology is a complex phenomenon consisting of and being influenced by 

a multitude of external and internal factors [39]. While some of these factors can be qualitatively 

and quantitatively described, specific external influences shaping the development of 

technologies, such as government regulations or unpredictable creating a need for new 

technologies, cannot be predicted. Consequently, models attempting to describe the evolution 

of technology usually only focus on a small number of phenomena related to a technology’s 

evolution. Examples include examining the rate of diffusion speed [40], external influence [41], 

development stage of technology [23], patterns of diffusion [42]  as well as various technology 

life cycle matrices (a more thorough overview of these studies is presented in Chapters 2 and 

3). An understanding of multiple phenomena should ideally enable the creation of a holistic and 

multifaceted model of technology change, incorporating contributions from different types of 

research, both quantitative and qualitative, in order to create a “bigger picture” overview of a 

technology’s evolution. 
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The research presented in this thesis focuses on exploring how knowledge flows within a 

technology domain correlated with the life cycle stages of the examined technology using 

formalized records of invention as proxies for technologies. Patents are the formalized records 

of innovation chosen to be used these proxies, with patent citations being the primary metadata 

contained in patents being used as the basis for research.  It is hypothesized that understanding 

the underlying phenomena related to the dynamics of patent co-citation might expand our 

understanding of the flow of knowledge within a technology domain, consequently enabling 

the exploration of potential future knowledge flow within a technology domain. This would 

further contribute to understanding the mechanisms governing the evolution of a technology 

domain.  

This research aims to create a methodology for analyzing a technology’s life cycle in a novel 

way, using formalized records of inventions. Moreover, based on the results of this analysis, an 

additional aim is to gain insight into previously undiscovered patterns governing the evolution 

of technology, exploring the intuition governing both mature and disruptive technologies and 

comparing the findings. Finally, it is explored whether the discovered intuition can be used to 

predict the future evolution of a technology. It is worth noting that a guiding principle in this 

research was the creation of a methodology that was as open and accessible as possible in all 

of its steps. This means that preference is given to tools and resources that are free to use, 

making the resulting methodology accessible to most researchers.  

Research aim: This research aims to develop a model of the evolution of technical inventions 

in a contemporary socio-technical context. An improved model to quantify the dynamics of 

evolution of technical innovation and technology implementation is to be used to explore 

potential future directions of the development of technology to reduce the uncertainty of 

decision-making in development projects. 

Hypothesis: The proposed research will verify the hypothesis that, based on the existing 

records of technical inventions, it is possible to model the dynamics of a technology domains 

development and gain insights into the potential future directions of technology development.   

1.2. Research Methodology  

Research in the field of knowledge and technology management involves the formulation of 

models and theories about phenomena in the environment, as well as the creation and validation 

of knowledge, methods and tools based on these models and theories with the aim of improving 

the process of modelling technology evolution and predicting the outcome of the development 
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of technical systems and technologies. The current trend of research combines qualitative and 

quantitative methods and synergizes these two approaches in a combined model that would 

meet the goal of research. In general, when defining the research methodology in this area, it is 

necessary to consider the fact that the nature of research of socio-technical phenomena is 

heuristic. The research methodology to be used during the making of this thesis follows an 

approach presented in the Design Research Methodology (DRM), a general research 

methodology devised for design science [43]. The research methodology can be characterised 

by four stages, namely the Research Clarification stage, Descriptive Study I, Prescriptive Study 

I and Descriptive study II. An overview of these stages, as well as the corresponding thesis 

chapters, is presented as follows:   

 

 

1) Research Clarification (Chapter 1) 

The first stage of the research methodology focuses on providing an overview of the research 

focus and goals, clarifying the research problems and stating the aim of the research as well as 

the research hypothesis. The clarification of research problems includes forming the line of 

argumentations from the state of the art to the research goal.  

2) Descriptive Study I (Chapter 2 and Chapter 3) 

Preliminary research and literature review. The beginning of research requires a review of 

existing scientific and professional literature in the research area. Based on the literature review, 

an initial description of the current situation will be established, as well as a description of the 

desired results, with the aim of defining the basic assumptions of the research. For a detailed 

description of the current situation and guidance for further research, empirical research will be 

conducted in the form of an analysis of the existing development of technical innovations. As 

a result of this step, the research objectives are defined (under research goals). Also, the main 

research problems, questions, and hypotheses are identified. Moreover, the relevant disciplines 

and areas that need to be included in a literature review and existing approaches are also defined.  

3) Prescriptive study (Chapter 4 and Chapter 5) 

Based on the review and understanding of existing knowledge related to the problem, this stage 

aims to propose new methods and models to predict the dynamics of technology development. 

The development of models and methods involves the inclusion and synthesis of the theoretical 
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principles of socio-technical systems, the development of technical systems, management of 

intellectual capital and the available empirical data. During this step, the main descriptive 

elements of intellectual property (patents) that can be used to model the development of 

technological innovation will be identified. The impact of the development of technical 

innovations on technology development will also be explored. Moreover, opportunities for 

improvement of existing models to predict the development of technologies and their 

applicability to the use of data obtained from patents will also be examined. Finally, rules and 

influential patterns discovered in the research so far will be identified, and their applicability in 

developing new models will be analysed. After that, the identification of impacts between 

individual indicators and the development of qualitative and mathematical a priori models will 

follow.  

4) Descriptive study II (Chapter 6, 7, 8 and 9) 

Initially, it is necessary to conduct a detailed patent analysis and an analysis of the history of 

the development of technical innovations in a particular technology domain. Furthermore, 

attention should turn to other potential sources of information such as scientific journals and 

white papers and their applicability to predict the development of technology should be 

assessed. Finally, we should not neglect data collection methods grouped in the category of 

“expert knowledge”, that gather data from experts in a particular area. 

Methods for data analysis will be applied to the data collected. As the research presented in this 

thesis focuses on exploring macro trends, it is assumed that the collected data samples will be 

extensive. Consequently, the applied data analysis methods should be suitable for the 

application on large sets of data. The data will also be modelled as a graph that will then be 

visualized and analysed. An analysis of changes in the value of data over time to define trends 

during technical innovations and technology development will also be conducted. The results 

of the research in theoretical and practical terms will be confirmed in the final step, and so will 

the accomplishment of the targeted theoretical and practical scientific contributions. By 

evaluating the research, achieved results will be compared with the research goals, and the 

advantages and disadvantages of the methods applied will be pointed out. The outcome of this 

phase will include proposals for improvements and implementation guidance for forecasting 

real technology development processes. Based on the conclusions and findings of the final 

research phase, guidelines for future research may be pointed out. Given that the topic of 

research is modelling the evolution of technical innovations, verifications of the model is only 
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possible by comparing predicted outcomes with the actual outcomes, which is hardly feasible 

as a part of this thesis  due to the time constraints. One solution to this problem is the application 

of the method of backtracking, which will be used in this research. 

 

1.3. Expected Contribution  

This research aims to contribute in both a theoretical and industrial/managerial context. The 

contribution in the theoretical context consists of expanding the theoretical fields of study 

related to the field of knowledge and technology management. This is accomplished by gaining 

new insight into how a technology domain evolves, first by deepening the understanding of 

how a technology’s life cycle can be determined based on formalized records of invention, 

namely patents, and then by exploring the intuition governing the flow of knowledge within a 

technology domain. Finally, the aim is to demonstrate that having a deeper understanding of 

this intuition enables researchers to explore the existing knowledge flow within a technology 

domain and predict the future flow of knowledge. 

The expected contribution in a managerial context consists of reducing uncertainty for different 

decision-makers and stakeholders. Companies involved in the creation of innovative products 

are the primary potential benefactors of this research, having a need for up-to-date information 

of technologies life cycles as well as the potential development of a technology domain, 

reducing uncertainty in decision making on both strategic and project levels. Determining the 

direction of the development of a technology domain can support strategic and long-term 

planning of the development of products, processes, and services as well as broader corporate 

strategy dealing with expanding a company’s knowledge portfolio, whether by internal research 

and development or by acquisitions of external intellectual property.  

The expected contribution in the theoretical context consists of expanding the current body of 

knowledge studying technology change, more specifically the field of studying technology 

change based on patent data. This is primarily accomplished by introducing a new method for 

exploring the life cycle of a technology domain based on patent citations, correlating the 

dynamics of patent citation network growth with technology domain life cycle stages. 

Moreover, a contribution is made in exploring the underlying intuition of knowledge flow 

within a technology domain by exploring the creation of patent co-citations within a technology 

domain. 
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The expected contribution of the proposed research, as part of this thesis, is manifested through:  

- The development of a model for quantifying the dynamics of evolution of technical invention 

and the implementation of technology.  

- The development of a tool, or tools, for simulating the potential future directions of the 

development of technology, that will be used for decision-making in development projects. 

1.4. Thesis structure  

This thesis is structured into nine chapters, and its outline is shown in Figure 1.  

 

Figure 1 Overview of thesis chapters 

Chapter 1 introduces the thesis problem statement, presents the research aims, expected 

contribution and the central thesis hypothesis. An overview of the research methodology used 

to conduct the study is also presented. 

Chapter 2 provides a review of literature, identifying the most important theoretical concepts 

related to studying the evolution of technology, as well as the fundamentals of patents theory. 

Key findings and concepts related to the field are presented, and a structured presentation of 
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the most crucial research and existing approaches is provided. The review of the state-of-the-

art literature is segmented into three main sections, each aimed at reviewing the literature from 

the main areas studied in this thesis, namely patent theory, technology evolution and technology 

forecasting. Gaps in the literature are identified, and the presented research is contextualized 

along with those gaps. 

Chapter 3 continues the review of literature, focusing on models and methodologies 

predominantly using patents to explore the evolution of technical inventions within a 

technology domain, provide insight into its current state and attempt to predict its future 

development. Based on the review of literature presented in Chapters 2 and 3, the research gaps 

are identified, and research questions are formulated. 

Chapter 4 provides a theoretical framework upon which this thesis is built. Theoretical concepts 

used in the research are defined, and prepositions hypothesized to be true are stated, 

contextualizing the research. The choice of each theory is elaborated, and its strengths and 

weaknesses compared to alternative approaches are presented. Finally, the relationships 

between the various elements and concepts within the model are described and visualized.  

Chapter 5 presents the design of the empirical research used to achieve the research aims. The 

process of collecting and sorting data is presented, as well as the related data engineering 

process used to prepare the data for further analysis. The approaches and tools presented in 

chapter 3 are expanded and presented in the context of a unified research methodology. The 

tools considered for forecasting are presented, and the methodology for choosing the tool to be 

used is described, as are the methods used to verify the results.  

Chapter 6 presents the setup and results of the first empirical analysis conducted based on the 

methodology outlined in chapter 4. The setup of the empirical study is shown first, first 

providing a short overview of the technology domain being studied followed by an overview 

of the collected patent dataset representing the studied technology domain highlighting key 

characteristics. The results of the empirical analysis are presented and contextualized within 

previous research. Insights from the results are presented and commented on.  

Chapter 7 presents the setup and results of the second empirical study, this one focusing on the 

technology domain of an emerging and disruptive technology. 

Chapter 8 discusses and relates the findings of the two empirical studies to the literature review 

and theoretical framework, contextualizing these results into the broader research. The results 
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of the two empirical studies are presented and contextualized within the research. Each of the 

research questions is addressed and discussed based on the presented results, and the extent to 

which the research questions have been clarified is used to confirm the guiding hypothesis of 

this research. 

Chapter 9 provides a conclusion, summarizing what was done in this thesis, what the 

discoveries were and the implications to the broader field of study. The answers to the research 

questions are given and the significance and implications of research findings are presented. 

The limitations of the study are discussed and questions and guidelines for future work are 

stated.  
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2. THEORETICAL BACKGROUND 

Chapter two provides the theoretical background of this research by presenting a review of the 

literature related to the fields of study. The fundamental concepts related to the exploration and 

prediction of the evolution of technology and the fundamentals of patent theory are reported. 

This is the first part of the review of literature, focusing solely on the theoretical background. 

A continuation of the review of literature is made in Chapter 3, focusing on presenting an 

overview of the methods and models used in the related research as well as defining the 

research gaps and research questions.  

This research is interdisciplinary in nature, combining theories from different fields of study, 

the synthesis of which allows for the creation of a theoretical framework on which the research 

will be based on. Figure 2 shows an Areas of Relevance and Contribution (ARC) diagram as 

described by Blessing and Chakrabarti [43]. This representation clarifies the foundation on 

which the presented research is based and areas of contribution of this research. Consequently, 

Figure 2 provides a visualization of the fields relevant to the topic of the research, their relative 

importance to the research as well as the areas of the researcher's contribution. 

 

Figure 2 ARC diagram  

As this research uses patents as the primary source of data and a proxy for inventions [2], a 

thorough overview of patent theory is made, focusing on the elements of the patent application 
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that can be used to study the evolution of technology and the architecture of patent applications 

themselves.  

An overview is also made of theories related to exploring the evolution of technology. The 

theoretical background of technology evolution is explored, presenting the most prominent 

theories which attempt to explain how technologies evolve. These theories are compared and 

their respective distinctions noted.  

Finally, a review is made on the state-of-the-art literature concerning forecasting the 

development of technology. The most popular methods for forecasting technology development 

are presented and an overview of the relevant research is made. Finally, a comparison of all of 

the presented methods is made and the gap in the literature is identified.  

Before proceeding with the literature review, it is essential to define the key concepts from the 

research fields influencing this study. The reason for this a noticeable discrepancy in the 

nomenclature and definitions of terms through multiple fields of study and even different 

researchers within the same field of study. Consequently, it is crucial to define the scope and 

definitions of important terms as they will be used in this thesis. Table 1 shows an overview of 

the key concepts used in this research as well as their definitions.   
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Table 1 Key concepts and their definitions 

Concept Definition 

Technology 

 

The definition of technology used in this research is the one given by Burgelman [44]: 

“Technology refers to the theoretical […] knowledge, skills, and artefacts that can be used to 

develop products and services as well as their production and delivery systems”. This 

definition is supplemented by Bunge, stating that the technology is applied scientific 

knowledge for the attainment of practical goals [45]. The distinction of this definition is the 

breadth of concepts it considers a technology. Moreover, it emphasizes the need of 

technology to be a facilitator of value creation and restricts it to explicit manifestations. 

 

Invention 

 

The creation of a product or introduction of a process for the first time [46]  

 

Innovation 

 

An improvement of significant contribution to an existing product, process or service. 

Innovation includes new technologies, transactions, and its stakeholders such as collaborators 

and customers [4]. As a rule, innovation flows from invention.  

 

Technical 

Invention 

 

An invention in a technical field, a new solution to a technical problem [47] 

 

  

Technology 

Domain 

 

Like technology, this term has multiple vaguely different definitions in literature. Moreover, 

different researchers use different terms to describe roughly the same concept (technology 

space [48], technology field [49], technology domain [50]). In this research, it is settled on 

using the term "technology domain" and this uses is consistent with its use in previously 

published research. The definition of technology domain as outlined by Boyack et al. [51] is 

used, viewing a domain as a sphere of knowledge. In the context of technology, a technology 

domain is considered a sphere of knowledge pertinent to that technology.  

 

Technology 

Evolution 

 

An organic analogy that explains the appearance and selection of novel artefacts in the 

technology space [25]. 

 

Technology 

Forecasting 

 

Exploring future changes in technology, such as its functional capacity, timing or 

significance, among other attributes [20] 

 

Technology Life 

Cycle 

 

A description of a technologies journey from initiation to its eventual decline consisting of 

stages, with each stage having some identifiable and unique attributes. Usually consisting of 

two dimensions, the competitive impact and integration in products or processes. [24] 
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2.1. Technology Evolution 

Technology evolution is an umbrella term covering a breadth of theories on how technology 

changes and improves over time. Taking inspiration from the process of biological evolution, 

it seeks to describe the development of technology using analogies of the same mechanisms 

which govern the evolution of living things in nature. There is a significant volume of research 

covering the evolutionary nature of technology change and attempting to model this change 

[52][53][54][22] [9]. From this literature, an established archetype of a technology evolution 

can be observed, describing generalized patterns and rules governing the evolution of a 

technology.  

The early emergence of a new technology is usually characterized by high technological 

turbulence as competing technologies vie for acceptance within a field. Also, this time sees a 

significant level of technical and market uncertainty [55]. Companies engage in trial-and-error, 

attempting to resolve this uncertainty, and eventually, a technology emerges as the new industry 

standard. This emergence is often influenced by legislative, economic, social and political 

forces [26] [56][57][58]. The initial period of uncertainty is followed by a period of incremental 

technology evolution. This period of incremental change is accompanied by a reduction of 

meaningful innovation and focus is placed on cost reduction and minor improvement to 

components or subsystems [59].  Nevertheless, this incremental innovation is punctured by 

technological discontinuities and radical technological changes facilitating radical industrial 

change [8][55][27][60]. 

Consequently, it can be argued that a technologies evolution consists of both incremental and 

discontinuous changes. This cycle of incremental and discontinuous technology evolution has 

been studied extensively and in multiple technology cases, both as discrete cases and as parts 

of a technology evolution cycle. 

There is a consensus among researchers studying the evolution of technology that technology 

evolution generally follows a Darwinian model of natural selection [61][8][9]. However, while 

the concept of technology evolution does take inspiration from biological evolution, certain 

researchers have noted that this Organic - Mechanical analogy is merely an approximation and 

has its limits [44]. Certain traits found in biological systems are not found in technology, 

primarily self-replication and survival of the fittest. While technologies compete for market 

dominance, it is the owners of the technologies, not the technologies themselves, who do the 

fighting. Moreover, several more key differences are noted by Albert [44] : 
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• Technologies have no "individuals", meaning they can only be observed as the results 

of a process. Consequently, technologies being developed in different institutions may 

cause evolutionary branches that are different in their development. 

• State changes in technologies may not be obvious by clearly observable events or 

transition phases. 

• In biological organisms (i.e. mammals), the time of death is intrinsic; it is not related to 

the life cycle of a descendent. However, there is a direct observable correlation between 

the decline of one technology and the emergence of a new one to supplant it. 

Nevertheless, the analogy of technology evolution is still a valuable illustration of the 

development of a technology [25]. 

Theories of technology evolution can generally be segmented into three groups, each describing 

a different underlying pattern of evolution. The first two theories are those of incremental 

evolution and radical evolution. Most researchers agree that the evolution cycle of a technology 

consists of alternating incremental and radical phases [22]. However, a third theory of 

technology evolution arises, that of disruptive evolution describing a special case of evolution 

that is highly unpredictable and causes a significant impact within a technology field and related 

industries. It should be noted that radical and disruptive theories are often labelled together as 

simply "radical" [26]. However, in this research these two theories, and their respective 

distinctions, are presented separately while acknowledging that they too share some 

characteristics, as it is assumed that a reduction of the two theories to a single theory would not 

provide an adequate representation of technology evolution theories.  

In the following subchapters, the three dominant theories of evolution will be presented in more 

detail and their most significant characteristics will be highlighted.  

2.1.1. Incremental evolution 

The incremental technology evolution theory views innovation as a gradual accumulation of 

slight variations over time that yields a novel innovation. Change is slow and inevitable, and 

there is no room for radical leaps [25] as technology architecture remains stable and companies 

place their focus on innovations related to the optimisation of the manufacturing process, cost 

reduction, component improvement and customer segmentations [59][61][27][62]. This type of 

evolution is still the most dominant in most industries representing a low-risk/low-reward 

approach to technology management and is marked by organizational, social and political 

stability [59]. A primary reason for this approach is the high risk associated with developing 



17 

 

radical products [19]. Iyer et al. [26] show that approximately 85% of new products fail, 

reinforcing the notion that incremental innovation represents lesser risk. 

Consequently, organizations focused on incremental innovations develop technology at a linear 

and steady pace, investing in incremental improvements of strategic technologies [4]. These 

improvements often mark a shift from product to process innovation, focusing on cost reduction 

and minor component and subsystem innovation [27], and the period of incremental evolution 

usually lasts until a radical change in invention or the introduction of a disruptive technology. 

The period of incremental change usually occurs in the later stages of a technologies life cycle, 

where a mature technology reaches a physical or economic application limit [63].  

The level of innovation decrease in the incremental period of the evolution of the technology is 

observable in the nature of inventions being created. While the initial stage of a technologies 

life cycle sees invention with a high level of novelty, incremental development sees minor new 

developments to existing technologies, as most new inventions are modifications of existing 

products [16] or recombinations of existing technologies [64] [65][31][25]. 

However, this type of approach at developing technologies has several drawbacks. Strong 

adherence to accepted beliefs and established technologies make companies less likely to create 

a radically new and innovative product [16]. Moreover, it makes companies susceptible to 

unpredictable leaps in technology evolution. There is a number of examples of companies 

facing problems as a result of disregarding technology leaps and focusing on incremental 

development of existing technologies [59].  

2.1.2. Radical (discontinuous, revolutionary evolution) 

Revolutionary innovations are innovations that are not the results of an incremental (linear) 

development [4]. They are a radical departure from the norm of incremental improvements and 

are therefore termed discontinuous. These technological discontinuities are technologies that 

have a definitive cost or quality advantage and strike at existing firms' foundations [27]. 

However, these discontinuities do not necessarily depend upon the emergence of a completely 

new technology, as a sufficient recombination of existing ideas, technologies, or knowledge 

artefacts may also result in technological discontinuities [65]. Hoisl et al. [28] state that 

technological discontinuities can be determined in two ways. One is externally determined, i.e. 

by a crisis or regulatory changes introduced by governments and standard-setting bodies. 

However, the more common ones are endogenous, i.e. determined by economic forces and 

consequently influenced by companies from a relevant industry.  
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Tushman et al. [66] state that technology evolves incrementally until this incremental change 

is punctuated by a significant advance. These advances cause a discontinuity in progress and 

are often reflected in the emergence of new product classes (automobiles), product substitution 

(transistors replacing vacuum tubes) or fundamental product improvement. However, a 

categorical distinction between incremental and radical innovation is often hard to determine, 

as the demarcation lines can be context-specific and unclear [67][68]. Nevertheless, there are 

enough differences between incremental and radical innovations to discern the two [4]. A period 

of radical innovations usually occurs at the start of a technologies life cycle [28], characterised 

by a significant number of original inventions [66], unlike incremental innovations, which 

mostly consist of recombination of existing technologies. However, radical innovations also 

occur in the other stages of a technologies life cycle, signifying a noteworthy shift in the 

technology field.  

Technological discontinuities caused by radical innovation can be classified as competence 

destroying or competence enhancing [66][29]. Competence destroying discontinuities, so-

called because they destroy the competence of existing firms within the industry, require new 

skills and abilities as the mastery of the new technology alters the set of necessary competencies 

within a product class. This type of discontinuities either create a new product class or create 

new substitutes for existing products. On the other hand, competence enhancing discontinuities 

offer significant price or performance improvements of a product class, building on existing 

know-how. 

Regarding the causes of radical innovations, Nemet studies the extent to which demand-pull 

policy measures, government policies that induce investees, stimulate discontinuous technology 

change [69]. However, he finds no evidence that demand-side policies encouraged 

discontinuous technical change. In fact, a negative relationship is suggested. In his description 

of a model that describes the way discontinuities occur, Funk [70] combines three arguments 

related to discontinuous innovation: The first two are how incremental improvements in the 

components of a product impact the performance and design of the product and how these 

incremental improvements can lead to discontinuities in product design through their impact on 

the design trade-off. The third argument is how these incremental components can combine to 

create entirely new products. The factors that cause discontinuities in a mature industry are also 

studied by Tripsas [55], claiming that discontinuities occur when products that are based on 

fundamentally different principles invade an industry, displacing products based on the prior 

technology. 
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2.1.3. Disruptive Evolution 

The idea of disruptive technologies was popularized by Christensen in his work The Innovator's 

Dilemma [9]. There, the author provides examples of disruptive technologies and defines them 

as “technologies that provide different values from mainstream technologies and are initially 

inferior to mainstream technologies along the dimensions of performance that are most 

important to mainstream customers”. In other words, it can be argued that disruptive 

innovations cater to undefined markets. Much like radical leaps in a technology’s evolution, 

disruptions are also products of technological discontinuities. However, while radical 

technologies simply signify a significant departure from a linear development, disruptive 

technologies by definition cause a disruption in the current technology space and transformation 

of the mainstream market. Therefore, for a discontinuous innovation to be disruptive, successful 

implementation is vital [71][72]. 

An issue when studying the theory of disruptive research is the scattered and conflicting nature 

of the relevant literature. Yu et al. [73] seek to rectify this by comparing the different research 

related to disruptive innovation and clarifying the basic concepts of disruptive innovation 

theory. Expanding on the definition provided by Christensen [9], they state disruptive 

innovation as “a powerful means of broadening and developing new markets and providing new 

functionality, which in turn, man disrupt existing market linkages.” 

Early in the development stages of a disruptive product, disruptive technologies serve only 

specific niches which have a need for its non-standard attributes [73]. As a disruptive 

technology further develops, it experiences further widespread adoption. Regardless, the 

performance of the disruptive technology still lacks behind the incumbent technology. The 

market disruption occurs when the new, disruptive product displaces the mainstream product 

in the mainstream market, despite its inferior performance on attributes valued by customers of 

the existing product. In order for this to occur, two conditions must be met: Performance 

overshoot on the principal mainstream attributes of the existing product and asymmetric 

incentives between existing healthy business and potentially disruptive business [74][71]. 

Examples of disruptive technologies include, but are not limited to, drone technology, 

autonomous robots, blockchain technology, neuromorphic hardware [75][38]. 
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2.2. Overview of Patents  

Patents are an instrument of protecting one's intellectual property (IP) [76][2]. Historically, 

patents have been the predominant form of intellectual property protection in the fields of 

mechanical, electrical and chemical engineering as well as the field of thermodynamics. 

Recently, biological patenting has also become increasingly important [76] with the rise of the 

field of biotechnology. The volume of knowledge contained in patents is immense and is 

constantly increasing, with there currently being over 6 million patents. This number increases 

by approximately 150 000 patents per year [3]. The study of technological change has 

traditionally been aggravated by a lack of relevant and accessible data. The use of patents seems 

to contribute to the solving of this problem and patent are widely considered as the best-

structured records of inventive activity, covering a breadth of innovation fields [3]. 

Patents add a number of advantages as technological indicators. Primarily, patents are publicly 

available information, providing an abundance of detailed information, both structured and 

unstructured [77]. Additionally, each patent produces an exceptionally structured document 

containing accurate information about the invention itself, the technological area it belongs to, 

the inventors and the organization to which the property right is assigned [3]. 

For a patent to be granted, the examination process must conclude that it is both novel, 

innovative and useful. A patent is intended to represent only one invention consisting of several 

closely related and integrated technologies that, acting in synergy, accomplish a particular task 

[78]. However, it is essential to note that not only granted patents are used as technological 

indicators in research, as patent applications (patents not yet granted) also contain knowledge 

about inventions, even though these inventions might not meet the criteria necessary for a patent 

to be granted.  

Patent applications consist of the following elements [76]:  

• Abstract – provides a summary of the technical information disclosed in the 

patent. 

• Specification – Provides the technical details of an invention as well as its 

novelty compared to previous inventions. It consists of three parts: The 

background, the description and the claims. 

• Background – provides an overview of the prior art related to the patent. Prior 

art is a description of all relevant technologies preceding the patent as well as 
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other pertinent information, showing work that the patent cites (both previous 

patents and previous scientific papers). It is crucial in determining the novelty 

of the patent, i.e. how it differs from prior inventions.  

• Description –provides a complete description of the patent and detail how it 

works. As defined by US patent law, a patent's description must be detailed 

enough "so that any person of ordinary skill in the pertinent art, science, or area 

could make and use the invention without extensive experimentation". 

• Claim – provides a very narrow, precise statement of what the invention is. It is 

arguably the most crucial part of the patent because it defines the scope or 

boundaries of the patent's invention. This scope in a patentable invention is 

specified with a series of numbered claims illustrating the patent's novelty. In 

technical and precise terms, the claim must state the subject matter of the 

invention, as well as its purpose, operation, properties, and methods it employs 

[78]. A single patent may contain several claims. 

• Drawings – most, but not all, patents contain drawings that illustrate all of the 

features declared in the claims section. 

• Declaration – a declaration by the inventor that he has disclosed all relevant 

information important for the patent application and that he is the original 

inventor. 

Another important piece of information contained in a patent is the classification codes used to 

classify the patent. Classification codes provide a hierarchical system of language independent 

symbols for the classification of patents and utility models according to the different areas of 

technology they pertain to. The classification codes themselves differ in different patent offices, 

although recently a new classification system, the Cooperative Patent Classification (CPC), has 

been introduced. In this harmonization process under the IP5 Common Hybrid Classification 

initiative, the United States Patent and Trademark Office (USPTO) and the European Patent 

Office (EPO) have agreed to work toward the development of a joint classification system based 

on the European Classification System (ECLA) and aligned with the WIPO classification 

standards and the IPC structure [79][80][81].  CPC also follow a hierarchical structure but has 

more subgroups than the IPC [82]. 

 Classification codes describe the set of technological abilities at a given time [78]. As patents 

by definition contain technological novelty, the examiner  assessing a new patent application 

must decide whether an existing code can be used to describe the patent or whether a new 
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classification code must be introduced. The introduction of a new code requires a backward 

reclassification of all patents which may contain the coded technology, meaning even older 

inventions will still be classified under the newly introduced code if applicable. Therefore, at 

any given time, the existing set of technology codes essentially provide a description of the 

current set of technological capabilities [64]. 

Table 2 shows the nine CPC sections with their respective definitions.  

Table 2 The nine CPC sections 

Code Name 

A Human necessities 

B Performing operations; transporting 

C Chemistry; metallurgy 

D Textiles; paper 

E Fixed constructions 

F Mechanical engineering; lighting; heating; weapons; blasting engines or pumps 

G Physics 

H Electricity 

Y Emerging Cross-Sectional Technologies 

 

The complete classification code contains information about a patents Section, Class, Subclass, 

Group ad Sub-Group. Figure 3 shows an example of a classification code and its breakdown.  

 

Figure 3 Complete patent classification symbol scheme [83]  
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In Figure 3, the label F02D 41/02 consists of section F, the class F02, the subclass F02D, the 

main group F02D41 and the subgroup F02D 41/02. 

Alongside classification codes, an element of patent applications suitable for analysis are the 

citations related to the patent. Patents include citations of previous patents (backward citations), 

which show how knowledge embedded in previous inventions influence new inventions [84] 

and also include patents that cite the examined patent (forward citations). As no other measure 

exists representing the influence from one invention on another, patent citation is a promising 

measure of knowledge flow [85].  Patent citations allow for the study of knowledge spillovers 

and the creation of indicators of the technological impact of individual patents [3].  

Patents as proxies for technical invention 

In the context of exploring the evolution of a technology, patents have a history of being used 

as proxies for innovation and technologies in research [2][86][31][87]. The underlying 

assumption is that most research and development activities generate innovations which are in 

turn protected by innovators as their intellectual property in the form of a patent. Consequently, 

patents can be considered proxies of innovation [88]. According to the work of Yoon et al. [18], 

patents can also be considered as a container of knowledge elements, with Phelps et al. [89] 

calling them "discrete knowledge artefacts", alongside other knowledge artefacts i.e. papers and 

products. Pereira et al. talk about the contents described in patents being an important source 

of information and basis for knowledge, containing technical details and particularities of the 

author's inventive intentions [2]. The citation information contained in patents captures the 

directed relationships between patents and clarifies technological antecedents and descendants 

[3]. At its core, citation-based analysis of the patents presumes a cumulative view of the process 

of the development of technology, with each inventor benefiting from the work of previous 

inventors and subsequently influencing the work of future inventors [3]. These directional 

relationships can illustrate the flow of information (or knowledge) from patent to patent, 

demonstrating the spillover of technology through clearly separated entities. In the context of 

knowledge management, a patent citing another implies that the cited patent contains a piece 

of existing knowledge that the citing patent builds upon [86]. The types of citations being 

analysed differ among researchers, with the most common being direct citations, co-citations 

and bibliographic coupling [90]. Direct citations are defined as an antecedent–descendent link, 

while co-citations are defined as linking patents being cited by the same patent and 

bibliographic couplings are defined as linking patents that cite the same patent [90]. 
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It has been demonstrated that patents are formalized records of technical inventions as well as 

containers of knowledge elements. Direct patent citations represent the generational flow of 

knowledge between patents, providing insight into how previous inventions influence future 

inventions, i.e. the knowledge relationship between antecedent and descendant patents. 

Therefore, a collection of patents from the same field can be said to form a representation of a 

technology domain, i.e. a collection of knowledge artefacts representing a knowledge domain. 

Consequently, it is demonstrated that patents can be used as proxies for technical inventions 

and increasing the understanding of the dynamics of their citations can provide insight into the 

dynamics of knowledge flow between technical inventions within a technology domain 

representing the evolution of the technology domain. Furthermore, based on the definition of 

technology used in this research, stating that technology is the application of scientific 

knowledge for practical purposes, patents can be used as proxies for new technologies as they 

by definition must be new and have a practical application. 

Some significant limitations of using patents as a source of data exist. Primarily, not all 

inventions are patented, whether because not all inventions meet the criteria for patentability 

(the invention has to be novel and nontrivial; the invention has to have commercial 

applicability) or the inventor chooses not to patent his invention. However, despite these 

drawbacks, patents are considered the best formalized records of technological invention. 

Moreover, in the context of this research, the mentioned limitations are assumed to have a 

negligible impact on the results, primarily because the large volume of patents being analyzed 

is deemed sufficient to extrapolate trends and patterns. The research also emphasizes exploring 

patterns of citations and co-citations, consequently making non patented inventions utterly 

irrelevant in the research context.  

 

2.3. Technology forecasting 

Technology forecasting is a set of methods and models that, focused on changes in technology, 

attempt to predict the future characteristics of a technology or technology domain and related 

procedures and techniques [20]. The term can, and often is, be used interchangeably with terms 

like "tech mining" [76], "technological forecasting" [91], "technical intelligence" [76], "impact 

assessment" [92], among others. While all are intended to enable better decision making, they 

differ in their targeted audience, problem conceptualization and methodology. However, in the 
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scope of this thesis, the term Technology forecasting will be used to cover all attempts to predict 

the future development of technology. 

Several approaches exist for classifying technology forecasting methods. Traditionally, 

technology forecasting methods were classified as either exploratory or normative [93]. 

Exploratory methods are outward bound methods for examining where present events and 

trends might take us in the future. On the other hand, normative methods are inward bound, 

beginning with an initial view of a possible future then working backwards to see if and how 

these futures might or might not develop from the present. While this distinction is useful, 

problems arise when methods cannot be clearly defined as either exploratory or normative. 

Thus, Porter and Rossini propose grouping forecasting methods into five families of methods 

[20]: 

• Monitoring 

• Expert opinion 

• Trend extrapolation 

• Modelling 

• Scenarios 

A further categorization of forecasting methods can be made depending on whether they are 

direct, correlative, or structural [20]. Direct methods are used to forecast the parameters that 

measure functional capacity or some other pertinent characteristic of a technology. Correlative 

methods relate a technology's development to the growth or change of one or several elements 

in its context considered to be analogous.  

The most often forecasted technology attributes are [20] : 

• Growth in functional capability, i.e. the ability of a company to manage technology 

efficiently   

• Rate of replacement of an old technology by a newer one 

• Market penetration 

• Diffusion of technology  

• Likelihood and timing of technological breakthroughs  

It should be noted that technology forecasting is, in principle, not deterministic, i.e. it does not 

attempt to predict a single future. Instead, it attempts to predict a number of possible futures as 

well as their respected likelihoods [20].  
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In this thesis, the classification of forecasting methods proposed by Porter and Rossini is used 

as a basis for structuring this part of the review of literature. 

2.3.1. Monitoring 

While not a strictly forecasting method, monitoring is a crucial part of the forecasting process 

as it is the method most used to gather information about the state of the technology being 

studied. The sources for this information are numerous, from academic journals and technical 

databases to less reputable information sources available on the internet [94]. This abundance 

of data sources is also the main drawback of this method, as it becomes increasingly challenging 

to filter useful data as the total volume of available data increases. Therefore, finding reputable 

sources for technology monitoring is a constant priority. However, even reputable sources of 

technical data, such as patent databases, might prove challenging as navigating these databases 

requires a certain amount of skill. 

2.3.2. Expert opinion 

These methods are fundamentally based on opinions given by a panel of experts. Expert opinion 

methods are based on the assumption that experts have insights into a technology field not 

available to outsiders. These experts are often academics researching the technology field, 

stakeholders in charge of managing products based on the technology field or R&D engineers 

involved in developing products based on the target technology [95]. However, historically, 

expert opinion methods have a very poor track record when predicting future technology, their 

predictions being especially susceptible to radical innovations and disruptions [96]. A major 

drawback of expert opinions is the expert's ingrained biases when dealing with a single expert. 

When dealing with a panel of experts, problems of groupthink are often manifested, as well a 

tendency of dominant individuals forcing the rest of the group to adjust their opinion [97]. 

Regardless, if conducted properly, the expert opinion method can be a valuable method for 

technology forecasting [94]. 

The most representative expert opinion method is the Delphi method, a structured approach to 

extracting a forecast from a group of experts, with an emphasis on producing an informed 

consensus view of the most probable future. It is a form of a survey intended to provide 

anonymity to participants, iterative responses, controlled feedback, estimates of the 

likelihood/timing of technological developments and statistical response measure. A large 

number of derivative methods exist, all expanding the Delphi method to a wide range of 

applications [58]. 



27 

 

Another popular expert opinion method is the Gartner Hype Curve [98] [99], used to 

characterise a typical progression of an emerging technology to its eventual position in a market 

or a domain. It consists of five stages and is designed to help stakeholders decide which 

companies are promising investments reinforcing the notion that companies should not invest 

a technology simply because it is “hyped” [99]. It should be noted that the Gartner Hype Cycle 

has been criticised for a lack of an underlying mathematical model [100]. 

2.3.3. Trend Analysis 

Trend Analysis is a method based on analysing a large volume of historical time series data and 

using this data to extrapolate future trends [101][102]. The underlying assumption is that the 

future represents a logical extension of the past and can therefore be inferred by extrapolating 

the appropriate trends from the available data. However, this requires a deep understanding of 

all relevant factors that influenced the past trends, as well as any disruptions and non-repeatable 

events, the lack of which might make trend extrapolation not feasible.  

2.3.4. Modelling  

Modelling assumes the sufficient availability of information to create a model that will lead to 

a forecast at some future point, occasionally referred to as a causal model [20]. This is 

comparable to developing and solving a set of equations in order to represent some physical 

phenomenon.  In their nature, models can be computer-based and judgement based. Computer-

based models usually use quantitative parameters, consequently often omitting important 

qualitative subtleties necessary to create an accurate prediction. Judgement based models are 

more expert oriented, relying on the forecaster's ability to make predictions. In any case, the 

specific forecast produced by the model is less relevant than the underlying trends governing 

the model or insight into how different combinations of input parameters influence the model's 

output.  

2.3.5. Scenarios 

At their core, scenarios are stories told about the future, or more accurately, about possible 

alternative futures [103]. First used by the RAND Corporation during the Cold War, scenarios 

have since been used in order to explore the development paths of technologies as well as the 

method of their introduction into the world. Creating scenarios requires an understanding of the 

underlying science behind a technology as well as external contributing factors which might 

influence its future appropriation, ranging from economic and geopolitical influences to 
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individual biases and needs [104]. One of the more popular scenario approaches is backcasting, 

where forecasters envision various possible future scenarios and then create paths that would 

lead to these scenarios. The distinction of this method is that, while other methods begin by 

analysing current trends and try to project the future, backtracking starts with a projection of 

the future and continues by going backwards. The purpose of the backcast is to identify 

signposts or tipping posts that might serve as leading indicators. In general, scenarios are an 

excellent way to communicate the results provided by other forecasting techniques. Moreover, 

the construction of a complete future scenario, or event leading to it, often reveal holes in a 

previous analysis. Therefore, they can be used to integrate quantitative data with qualitative 

information. 

2.3.6. Overview and Comparison of Forecasting Approaches 

Table 3 provides an overview of the presented approaches to forecasting the development of 

technology, stating their respective strengths and weaknesses.  

Table 3 Overview and comparison of technology forecasting method groups 

Group of 

methods 

         Summary Strength Weakness 

Monitoring 

[94] 

Gathering and 

organizing 

information about a 

technology 

Large volume of 

information 

Volume of 

information can be 

overwhelming 

Expert 

opinion [95] 

Experts give 

opinions about 

potential 

development of 

technology 

Experts often have 

unique insights 

Hard to identify 

experts; largely 

speculative 

Trend 

Analysis 

[101] 

Used to extend time 

series to the future 

Data based quantitative 

method 

Vulnerable to 

disruptions, 

requires a large 

amount of data 

Modeling 

[20] 

A simplified 

representation of 

reality 

Models can capture the 

essence of a problem, 

filtering out noise 

Sensitive to initial 

assumptions; bias 

toward 

quantifiable 

parameters 

Scenarios 

[103] 

A series of 

snapshots of paths 

leading from the 

present to the future 

 Highly speculative 
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Based on the insights from the review forecasting approaches, which are summarized in Table 

3, it is clear that no methods exist which will provide forecasting of the development of all of 

the technology characteristics outlined by Roper et al. [20]. Moreover, while a forecasting 

method can be either qualitative or quantitative, it can be assumed, based on Table 3, that an 

effective method should consist of both a quantitative and qualitative approach to forecasting, 

taking advantage of the strengths of both approaches. The following chapter further explores 

these approaches, where models for forecasting technology development will be presented. 

 

2.4. Summary of the State of the art 

This chapter provides the state of the art of the three main fields of study explored in this 

research. The theoretical background of patents is presented, demonstrating their use as proxies 

for technological inventions and representations of a technology domain (Chapter 2.2). The 

theoretical background related to the study of technology evolution is presented, describing the 

most popular approaches to studying the evolution of a technology. An overview of the three 

types of technology evolution recognized by the literature is made, and the main characteristics 

of each type of evolution are presented as well as their connection to the life cycle stages of a 

technology domain. Finally, an overview of technology forecasting methods is presented from 

a theoretical perspective, providing a systematization of approaches as defined by Roper et al. 

[20], along with the strengths and weaknesses of each theoretical perspective. To conclude, this 

chapter presents an overview of the theoretical part of the literature review, providing a 

theoretical context for the research presented in this thesis. The literature overview is continued 

in the following chapter, Chapter 3, which provides an overview of methods and models used 

to describe and predict the evolution of technology using patent applications as the primary 

source of data. 
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3. OVERVIEW OF MODELS AND METHODS  

Chapter three provides an overview of models and methods used to explore the evolution of 

technical inventions, provide insights into the current state of a technology domain and attempt 

to predict its future development. 

In this chapter, an overview of patent-based models for exploring the evolution of inventions 

within a technology domain is made. These models represent the application of the concepts 

outlined in Chapter 2 and are focused on exploring the development of a technology domain 

using patents as proxies for technical invention. It should be noted that some of the presented 

models, considered in this research to be relevant to the state of the art, are not patent-based but 

are nevertheless included in this review. 

Patent analysis is a collection of techniques, methods and tools for studying the knowledge 

contained in patents, and includes, but is not limited to, searching for relevant patents, extracting 

information for relevant patents and analyzing the extracted information. The importance of 

patent analysis has increased with the shift into a knowledge-based economy, where it is 

paramount to know whether a business depends on someone else’s patent [76]. Recently, the 

strategic importance of patent analysis in a high technology context is increased due to the more 

complex nature of the innovation process, the shortening of the innovation cycle and the 

increase in market demand volatility [102].  

In general, patent analysis methods can be segmented into two large groups of approaches: A 

micro approach, consisting of a detailed examination of a small number of patents, and a macro 

approach, studying a large number of patents [105]. On a micro level, patent analysis has 

primarily been used to study technological change on a single company basis, whether to 

develop technology plans [77], evaluate R&D investments [106] or monitor a company’s 

competitiveness [107]. On a macro level, patent analysis is used to explore large scale trends, 

exploring the link between technology development and economic growth [108][106], estimate 

technological knowledge flows and compare the performance of innovations in an international 

context [102].  

The research presented in this thesis focuses on studying trends on a macro scale, exploring 

how technical inventions evolve within a technology domain. Consequently, in creating an 

overview of models and methods, preference was given to patent analysis models and methods 
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exploring technology on a macro scale. These patent analysis methods are usually systemically 

grouped into three main groups. 

• Citation based models – use patent citations as a basis for analysis 

• Keyword/text mining based – use extracted keywords from patent abstracts/claims as a 

basis for analysis 

• Classification code based – use patent classification codes as a basis for analysis 

 Because a large number of methods combines keyword/text mining based methods with 

classification code based methods, the rest of this chapter sees the overview of methods 

segmented into two groups, the first one based on patent citations (Chapter 3.1) and the second 

one segmented into keywords/classification codes (Chapter 3.2). Finally, the final subchapter 

presents the identified gap in research and the research questions (Chapter 3.3). 

3.1. Patent Citation Based Methods 

The citation information contained in patents captures the direct relationships between patents 

and clarifies technological antecedents and descendants [3]. At its foundation, citation based 

analysis assumes the view that process of technological development is cumulative, with each 

inventor benefiting from the work of previous inventors and subsequently influencing the work 

of future inventors [3]. These directional relationships can illustrate the flow of knowledge from 

patent to patent, demonstrating the spillover of technology through clearly separated entities.  

The types of citations being analyzed differ among researchers, the most common being direct 

citations followed by co-citations and bibliographic coupling [90][109]. Direct citations are 

defined as an antecedent –descendent link, and co-citations are defined as linking patents being 

cited by the same patent. Bibliographic coupling is defined as linking patents that cited the same 

paper. Shibata [110] did a comparative study focused on investigating how these three types of 

citation networks performed with the goal of detecting emerging research fronts. When 

analyzing the citation relationships of a large number of patents, networks can be created where 

nodes represent patents and edges represent citations. A graphical representation of these 

networks is shown in Figure 4. 



32 

 

 

Figure 4 Visualization of direct citation network (left) and co-citation network (right) 

If patent P1 cites patent P2, then there is a direct citation between these two patents. If patents 

P2 and P3 are cited by patent P1, there is a co-citation between patents P2 and P3. If patents P2 

and P3 cite patent P1, there is bibliographic coupling between patent P2 and P3. Patent citations 

can have two directions: Forward and backward. Forward citations are citations received by 

later patents as prior art and are often considered indicators of an invention’s technological 

impacts. This relationship is illustrated in Figure 5.  Therefore, a larger number of forward 

citations may indicate a higher value of a patent [111]. Backward citations refer to patents that 

influenced the citing patent and are therefore cited as prior art.  

 

Figure 5 Visualisation of forward and backward patent citations 

It is worth noting that, when evaluating a technology field by the number of citations alone, the 

younger patents i.e. patents published more recently, have a smaller chance of being cited than 

the older ones, so this type of citation analysis may not be useful for younger technology fields 

[112]. Moreover, certain other drawbacks of citation-based analysis have been identified. First, 

citation analysis only indicates individual links between two particular patents, making it 
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difficult to understand the overall relationship among all the patents. Second, because citation 

analysis considers only citing/cited information, the scope of analysis and the depth of potential 

information are limited. Finally, it cannot consider the internal relationship between patents, 

taking only the existence or frequency of citations into account [102].  

 

Identifying technology trajectories 

A large volume of research studying patent citations focuses on the flow of knowledge and the 

creation of technology trajectories, i.e. the branches in the evolution of a technology. Duguet et 

al. [85] demonstrate the association of patent citations with the knowledge flow between new 

technologies. Fontana et al. [113] analyze the structure of connectivity of patent citation 

networks with the goal of reconstructing the main technological trajectories in a studied 

technology field. Huang et al. [114] combine tech mining, used to capture crucial atributes of 

technology, with the results of a patent citation network analysis to study the evolutionary 

trajectory of a new and emerging technology. Kim et al. [94] investigate the structure of the 

evolution of knowledge spillovers across technological domains measured by patent citations 

and explore the capability of link prediction for forecasting the evolution of cross-domain patent 

networks.  You et al. [115] propose a forecasting method for technology development based on 

a two-level model of knowledge transfer among patents and patent subclasses, based on a two-

level patent citation network. Patent subclasses with a higher development potential are 

identified, and the correlation between technology development opportunity and the topological 

structure of the patent citation network is discussed.  

Identifying technology convergence 

Other researchers focus more on exploring technology convergence, combining two or more 

elements of technology in order to create a novel system with radically improved functions. 

Kim et al. [116] attempt to understand the components of the convergence of technology by 

performing an analysis of citation links between patents in a technology network, using patent 

codes in order to identify key technologies which played a crucial role among the groups of 

convergence technologies and predict potential future technology convergence. Ko et al. [112] 

present a procedural method to analyze trends of industry-wide technology convergences based 

on knowledge flows of patents. A technological knowledge flow matrix is constructed, 

representing knowledge flow among technology classes. This is then extended to an industry 

wide knowledge flow matrix exploring the concordance between technology classes and 
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industrial sectors. A visual map is created showing trends of industrial technology convergence. 

Park et al. [14] propose a quantitative future-oriented approach to technological opportunity 

discovery for technology convergence based on predicting potential technological knowledge 

flows between heterogeneous fields.  These technological knowledge flows are predicted by a 

link prediction method applied to a directed network, with the network representing patent – 

citation relationships. 

Network analysis 

Lee et al. [117] use network properties (degree centrality, betweenness centrality and closeness 

centrality) to model global technology evolution. Moreover, a distance-based patent citation 

map is constructed by calculating relative distances and positions of patents in the patent 

citation network. Chen et al. [118] track the growth of communities detected within patent 

networks and evaluate which network properties predict the long-term growth of the 

communities. A network is constructed from patents belonging to a technology field, and a 

static clustering algorithm is applied to snapshots at certain time intervals. A dynamic tracking 

algorithm is applied in order to link discovered communities between successive years. A 

correlation between proposed metrics and growth rate is then checked. Takano et al. [119] 

propose a method for analysing technology fields by generating a cluster solution that includes 

unconnected and connected components of a direct citation network. They additionally analyse 

the change of these clusters by adding unconnected patents to the citation network. Ha et al. 

[120] use patent citations to identify core patents, patents that are especially influential in a 

technology field, combining it with data mining to capture keywords. Chang et al. [121] create 

a patent citation matrix and establish an indicator to calculate the lineal linkage between two 

patents with the goal of determining core patents (here referred to as basic patents) in a 

technology field. The hierarchical cluster analysis is used to classify these basic patents. Erdi 

et al. [86] also view the network of patents connected by citations as an evolving graph 

representing the innovation process. They identify clusters of patents representing technological 

branches and give predictions about the temporal changes of the structure of these clusters. 

Hung et al. [122] examine a patent citation network of radio frequency identification patents 

finding that a patent citation network can be considered a “small world” network, characterised 

by a high degree of clustering and short path length between any two nodes. Moreover, they 

find the patent citation network follows a power-law connectivity distribution.  
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Other patent citation based methods 

In a more traditional context of studying technology evolution, researchers use patent attributes 

as a basis for determining the life cycle stage of a technology. Fallah et al. [84] use the 

cumulative number of forward citations to measure the rate of technological innovation, 

suggesting a modified S – curve to model the technologies growth. Altuntas [56] use patent 

citation analysis for prioritizing the portfolio of investment projects. Patent data is used to 

construct an average initial direct-relation matrix, using citations between technology classes 

and assuming that the number of citations shows the degree of influence between the 

technologies.  

Marco et al. [123] use hazard estimation as means to separate patent quality from citation 

inflation, an attribute of patents where younger patents receive fewer citations than older ones. 

Kim et al. [94] propose a forecasting methodology for multi-technology convergence based on 

a patent-citation analysis, a dependency-structure matrix, and a neural network analysis.  

Table 4 provides an overview of the papers presented in this chapter covering the methods for 

exploring and analysing technology based on patent citations. The first column lists the author 

of the paper, the second lists the method used in the paper and the third lists the results of the 

method used. 

 

Table 4 Overview and comparison of patent citation methods 

Author Method Research aim 

Naoki Shibata, Yuya 

Kajikawa, Yoshiyuki 

Takeda, 2009 [90] 

Comparing three types of citation networks Detect emerging research front 

 

Duguet & MacGarvie, 2007 

[85] 

Comparing firms’ citations with survey results Validity of interpreting citations as a 

measure of knowledge flow 

Fontana, Nuvolari, & 

Verspagen, 2009 [113] 

Identifying key inventions; 

Analyze  structure of patent citation network 

Reconstruct main technological trajectories 

Identify pattern of technical change

  

Huang, Zhu, Guo, Porter, 

& Zhu, 2014 [114] 

Finding main paths of patent citation network Identification of technology 

trajectories 

E. Kim, Cho, & Kim, 2014 

[116] 

Network analysis of technology components 

Identify key technologies 

Betweenness centrality 

Understanding characteristics of 

technology convergence 

Ko et al., 2014 [112] Technological knowledge flow matrix Trends of industry-wide technology 

fusion 
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Park & Yoon, 2018 [14] Link prediction in a directed network Discovering opportunities for 

convergence 

J. Kim & Lee, 2017 Text mining 

Association rule mining 

Link prediction 

Identifying areas for concentric 

diversification 

You et al., 2017 [115] Two level citation network 

Time series modelling 

Forecasting technology development 

trends 

P. C. Lee, Su, & Wu, 2010 

[117] 

Network properties (degree Centrality, 

Betweenness Centrality, Closeness Centrality) 

Distance-based patent citation map 

Global technology evolution 

R. Chen, Park, & Smith, 

2014 [118] 

Community detection 

Tracking community growth over time 

Evaluating network properties 

Predict long – term growth of 

communities 

Takano, Mejia, & 

Kajikawa, 2016 [119] 

Unconnected component inclusion technique Increased understanding of technology 

landscape 

Ha, Liu, Cho, & Kim, 2015 

[120] 

Patent citation analysis; 

Identifying core patents; 

Data mining keywords  

 

Extracting core technologies 

Chang, Lai, & Chang, 2009 

[121] 

Relationship of patents withing patent citation 

matrix 

Establishing indicators for finding 

basic patents; 

Classification of basic patents 

Fallah et al., 2009 [84] Forward citations analysis 

Growth curve 

Rate of technological innovation 

Altuntas & Dereli, 2015 

[56] 

DEMATEL method Portfolio prioritisation of investment 

projects 

Marco, 2007 [123] Parametric and non-parametric hazard 

estimation 

Exploration of heterogeneity in the rate 

of patent citation 

J. Kim & Lee, 2017 [94] Patent – citation analysis; 

Dependency-structure matrix; 

Neural – network analysis; 

Forecasting multi-technology 

convergence. 

Erdi et al. 2012, [86] Network clustering Identification of patent clusters; 

Predicting changes to these clusters 

Huang et al. [122] Network analysis Small world characterisation of citation 

network; 

Power-law connectivity distribution 

 

3.2. Patent Keyword/Text and Classification Code Based Methods  

A potential drawback of citation-based methods is that while they provide insight into the 

relationships between patents and the resulting knowledge flows, they provide little insight into 

the contents of patents, i.e. the knowledge contained within patents. A key distinction of the 

methods covered in this chapter is that they use morphological patent analysis to analyze the 
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content of patents from free text by extracting keywords. So, while citation-based methods take 

a macro look at a technology field, since they are able to identify important and interrelated 

patents, keyword analysis is a micro approach, able to understand individual patents. Since the 

original patent documents are expressed in a natural language format, they have to be 

transformed into structured data. The process of keyword extraction is applied to identify 

keywords [102]. These keywords can then be used to construct a keyword network and gain a 

different perspective on a technology field than that provided by a citation network [124]. 

Kim et al. [125] used text mining to create an integrated patent – product database from US 

patents. Association rule mining is used to construct a product ecology network, and link 

prediction is used to identify potential areas for concentric diversification.  Lee et al. [126] also 

apply the association rule and link prediction to IPCs related to triadic patents with the goal of 

predicting technology convergence. Future convergence patterns are predicted by applying a 

link prediction method to the IPC co-occurrence network.  Feng et al. [127] combine text 

mining and morphological analysis in order to gain insight into both current and future patent 

technology. The morphological structure is created using a keyword selection method 

combining high-frequency keywords, amendatory mutual information measurement and 

artificial selection. Altuntas et al. [40] use IPC codes as proxies for examining technology 

scope, using the total number of different IPC codes as a measure of a technologies expansion 

potential and patent power where higher patent power leads to a higher spillover of technology 

between different fields. 

A specialized form of keyword base patent analysis are patent maps. Patent maps are “patent 

information collected for a specific purpose of use, and assembled, analyzed and depicted in a 

visual form of presentation such as a chart, graph or table” [128]. A patent map has the 

following features: 

• It is based on patent information 

• It has a clear purpose of use 

• It consists of appropriate patent information for the purpose of use 

• It contains organized patent information 

• It presents information visually  

Trappey et al. [129] combine patent content clustering with technology life cycle forecasting to 

evaluate possible market opportunities. Key phrases are extracted from which a key phrases 

correlation matrix is derived. This matrix is used as the input for the clustering algorithm (K – 
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means). Lee et al. [130] use principle component analysis to reduce the number of keywords 

extracted from patents and create a two–dimensional patent map. From the map, patent 

vacuums (areas in which patents have not been granted) are identified. Yoon et al. [131] also 

identify patent vacuums as well as patent hot spots (areas in which patents actively appear) by 

constructing dynamic patent maps, based on subject-action-object (SAO) structures extracted 

using NLP  from patent text, showing technological competition trends. Jeong et al. [132] 

propose identifying patent vacuums using a method for identifying essential patents (patents 

indispensable in producing a product) by using a patent map based on generative topographic 

mapping (GTM). Son et al. [133] also propose a generative topographic map (GTM) based 

patent map for identifying patent vacuums. 

Joung et al. [134] use text mining tools to identify technical keywords and construct a technical 

keyword–context matrix. Hierarchical clustering is then applied, enabling the monitoring of 

emerging technologies by identifying clusters of technical keywords. Suh et al. [135] evaluate 

emerging technologies for services by proposing a keyword-based three-dimensional patent 

map. Five values of the keyword are calculated and combined in order to get the priority value 

of an emerging technology. Chen et al. [136] divide a technology field into communities and 

track the evolving trajectories of these communities through a visualization where each 

community is drawn as a function of its size, average age and time. From these trajectories, the 

structure of a technology can be investigated as well as emerging subjects.  Kim et al. [137] 

cluster patent documents based on keywords collected from the patents from a technology field. 

A semantic network of keywords is then constructed based on the clustering results and a patent 

map is created by rearranging each keyword node of the semantic network according to its 

earliest filing date and frequency in patent documents. This enables the understanding of 

advances of emerging technologies and forecasting future trends. Yoon et al. [138] propose a 

self – organizing feature map based patent map that visualizes the complex relationships among 

patents and the pattern of technological advancement. They propose three types of patent maps 

(vacuum map, claim point map and portfolio maps) with the goal of monitoring technological 

change, developing new products and managing intellectual property. Huang et al. [139] apply 

co – classification analysis of patents to reveal the technical evolution process of a technical 

field, extract patterns and topics using co-word analysis and employ main path analysis to 

discover significant clues about technology hotspots. Zhang et al. [140] propose a unified 

framework, integrating different types of patent information, to generate a technology evolution 

tree for a given topic or patent classification code. This generated tree allows a variety of patent-
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related analyses, such as identifying prior art and detecting technology gaps. Wu et al. [141] 

use a self–organizing map to cluster patents into different quality groups based on previously 

defined quality indicators. Kernel principal analysis and the support vector machine are then 

used to enhance the patent quality classification model. Kim et al. [142] generate a patent 

development map by identifying the technological taxonomies of patents and visualizing the 

development paths among patents through sensuosity analyses based on semantic similarities. 

Yang et al. [143] use an NLP parser to extract conceptual graphs from patent claims using 

anchored relaxation labelling. In a later work [144], they use text mining (finite state machines, 

part-of speech tags) to convert a patent claim into a formally defined conceptual graph. The 

purpose of clustering is to segment elements into groups where elements inside a group are 

more similar to elements in the same group then elements within other groups. Yoon et al [102] 

extract keywords from patents and create an incidence matrix. The incidence matrix is used to 

generate a patent network. A series of quantitative measures is then applied on this network 

with the goal if identifying influential patens. Tseng et al. [145] describe a series of text mining 

techniques  for the creation of patents maps, proposing a novel approach for verifying the 

success of information extracted via text mining. Daim et al. [146] integrate bibliometrics and 

text analysis with other forecasting tools (scenario planning, growth curves and analogies) with 

the goal of forecasting emerging technologies.  

Table 5 provides an overview of the research presented in this chapter covering the methods 

for exploring and analysing technology based on text mining. The first column lists the author 

of the paper, the second lists the method used in the research and the third lists the results of 

the method used. 
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Table 5 Overview of text mining methods 

Author Method Research Aim 

Kim et al. 2017 [125] Association rule mining; 

Link prediction 

Identification of areas for concentric 

diversification  

Lee et al. 2015 [126] Association rule; 

Link prediction 

Predict pattern of technology convergence 

Feng et al. 2012 [127] Morphological analysis Insight in patented technology 

Altuntas et al. IPC codes Patent power 

Trappey et al. 2011 [129] Patent content clustering; 

Technology life cycle forecasting 

Forecast possible market opportunities 

Lee et al. 2009 [130] Text mining; Principal component analysis Identifying vacuum from patent map 

Yoon et al. 2013 [131] Subject – action – object based content 

analysis 

Identifying vacuums; 

Identifying hot spots 

Jeong et al. 2013 [132] Generative topographic mapping Find candidates for essential patents 

Son et al. 2011 [133] Generative topographic mapping-based patent 

map 

Identify vacuums 

Joung et al. 2017 [134]  Technical keyword – context matrix; 

Hierarchical clustering; 

Monitoring emerging technologies 

Suh et al. 2209 [135] Topic map of keywords; Clustering Service – oriented technology roadmap 

Chen et al. 2012 [136] Network snapshots; 

Girvan – Newman Clustering 

Visualisation of community evolution 

trajectories 

Kim et al. 2008 [137] K-means clustering, 

Semantic network of keywords 

Understanding advances of emerging 

technologies  

Yoon et al. 2002 [138] Principle component analysis; 

Self-organizing feature map 

Monitoring technological change; 

Developing new products; 

Managing intellectual property; 

Huang et al. 2017 [139] CO-classification analysis Technical evolution process; 

Emerging and key technical fields 

Topical analysis 

Zhang et al. 2014 [140] Steiner tree Technology evolution tree for a topic or 

classification code 

Wu et al. 2016 [141] Self-organizing maps; 

Kernel principal component analysis; 

Support vector machine 

Forecasting patent quality 

Kim et al. 2016 [142] Semantic patent topic analysis Patent development map generation 

Yang et al. 2008 [143] Anchored relaxation labelling Conceptual graph 

Yang et al. 2012 [144] Finite state machines; Part- of-speech tags; 

Dependency tree 

Conceptual graph 

Yoon et al. 2004 [102] Network analysis Identifying trends; 

Identifying venues for product development; 

Tseng et al. 2007[145] Text mining Create patent maps for topic analysis 

Daim, Rueda, Martin, & 

Gerdsri, 2006 [146] 

Bibliometric analysis 

Growth curves 

System Dynamic 

Forecasting emerging technology; 
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3.3. Research Gap and Research Questions 

Based on the overview of the theoretical background presented in chapter two and the overview 

of research presented in this chapter, research gaps are identified with the goal of defining the 

direction of this research and facilitate the illumination of research questions to be answered 

during the course of this research. Because this research uses patent as the primary source of 

data i.e. uses patent as proxies for technical invention, the exploration of research gaps focused 

on the drawbacks of patent-based methods for describing the life cycle stages of a technology 

and patent-based methods for exploring patterns in knowledge flow within a technology domain 

during its life cycle.  Consequently, in the overview of research, priority was given to models 

which use patents as a primary data source and study technology change. The identified gaps 

are presented in the following text and, based on the identified gaps, research questions that 

will be answered by the end of this thesis are defined. 

While it is demonstrated that there is a significant volume of research exploring the use of 

patents to study technology change, most of this research, in a technology evolution context, 

focuses on studying technology trajectories and convergence [113][114][116][112] However, 

there is limited research combining insights from research based on other resources (i.e. paper 

citations) and applied to patent networks. As patents are presently considered the most reliable 

structured records on inventive activity, this lack of research is considered a noticeable gap as 

studying patent citations as technological indicators might provide insight into the development 

of a technology domain. The review of the literature shows that the majority of patent analysis 

methods focus on exploring technology development trajectories by examining the direct patent 

citations. While this approach provides insight into the generational flow of knowledge, it 

provides little insight into how existing patents might combine and co-contribute to a future 

patent in the form of co-citations.  

This lack of diversity in patent-based approaches can further be observed when exploring how 

patents are used in exploring the life cycle stages of a technology domain. It is noticeable that 

the vast majority of adopted patent-based methods for technology life cycle analysis base 

themselves on models derivative of the basic S – Curve model, i.e. the cumulative value of 

some patent attribute value [84][147][24][40]. While these methods provide some insight into 

the life cycle stages of the examined technology, they provide little understanding of the 

underlying dynamics of patent attributes and how they correlate to the life cycle phase. 



42 

 

Finally, a review of literature related to forecasting the development of technology identifies a 

wide array of quantitative and qualitative approaches. Narrowing the focus on patent-based 

quantitative methods for exploring the future development of technology, it can be seen that the 

majority of these methods are based on expanding the same S – Curves used to describe the life 

cycle of a technology domain and extrapolating future trends. While other quantitative methods 

exist, primarily causal models covered in Chapter 2.3.4, these do not use patent data as a 

primary data source. Moreover, they give limited insight into future knowledge flows. 

Consequently, this lack of methods that use patents, especially patent co-citations, to provide 

insight into future knowledge flows is identified as a gap in the field. 

Based on these identified gaps, the following research questions are defined: 

RQ 1 Can the dynamics of patent citation creation be used to determine the life cycle stages of 

a technology domain? 

RQ 2 Can examining the occurrence of patent co-citations provide insight into patterns of 

knowledge flow within a technology domain? 

As this research uses link prediction to predict the occurrence of patent co-citations, the 

following additional research questions are defined: 

RQ 3 Can examining the occurrence of patent co-citations be used to identify which parts of a 

technology’s life cycle contribute the most to future inventions? 

RQ 4 When are the predicted co - citations, representing knowledge flow, created? 

The answers to these research questions will be used to assess the validity of the hypothesis 

outlined in Chapter 1.1. More specifically, research question 1 contributes to answering the first 

part of the thesis hypothesis, namely that it is possible to model the dynamics of a technology 

domains development based on the existing record of technical invention. Research questions 

2, 3 and 4 contribute to answering the second part of the thesis hypothesis, namely that insight 

can be gained into the potential future directions of technology development based on the 

existing records of technical inventions. 
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4. THEORETICAL FRAMEWORK FOR EXPLORING THE 

EVOLUTION OF TECHNICAL INVENTION WITHIN A 

TECHNOLOGY DOMAIN 

This chapter aims to present the theories, presumptions and concepts this thesis uses to explore 

the problems presented in Chapter 1 and answer the research questions stated in Chapter 3. 

Insights from the literature have been synthesized into a unified framework, combining 

knowledge from different fields.  The choice of the particular theories used is elaborated, as is 

their relation to the gap in the literature and their relation to the stated aims and hypothesis 

As has been demonstrated in Chapter 2 and Chapter 3, covering the review of literature, 

multiple theories and concepts exist related to the evolution of technology as well approaches 

attempting to explore the future innovation-driven development of technology. Because of the 

extensive breadth of approaches describing the evolution of technology, it is essential to 

contextualize the presented research within the confines of a single theoretical framework as a 

springboard for further research. Consequently, this chapter aims to present the most relevant 

theory from each field studied in this thesis, namely those studying patents and technology, 

studying the evolution of technology, and those studying technology forecasting. The outline 

and synthesis of the theories on which this research is based allows the introduction of certain 

presumptions that represent these theories condensed to their simplest expression. These 

presumptions, stated at the end of each subchapter, represent the core concepts that this research 

builds upon, using them to help achieve the research aims and solve research questions.  

To recap the space where this research sits, as well as the aims of the research, this research 

focuses on exploring how knowledge flows within a technology domain relate to the 

evolutionary stages of a technology domain using formalized records of technical invention as 

proxies for technology. This research aims to create a methodology for conducting an analysis 

of a technology’s life cycle in a novel way, using formalized records of inventions. Moreover, 

based on the results of this analysis, an additional aim is to gain insight into previously 

undiscovered patterns governing the evolution of technology. These patterns can be used for 

exploring the intuition governing both mature and disruptive technologies and comparing the 

findings, using these findings to predict the future evolution of a technology domain. In order 

to accomplish this, the theories related to the fields of study this research draws upon are defined 

in Chapters 4.1-4.3. The first subsection, 4.1, presents the theoretical arguments for choosing 
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patents as proxies for technologies to be used in this research, making comparison between 

patents and alternative data sources that might be used as proxies for technologies. The 

arguments for choosing patents are presented, as are the advantages and disadvantages of using 

patents as the primary data source. The second subsection, 4.2, presents the theory of 

technology evolution, which will be used and expanded on in this research. Some key features 

of this theory are presented, as well as some key existing research. The drawbacks of the 

existing research are presented and the contribution to the theory is stated. This is followed by 

the third subsection (Chapter 4.3), dealing with technology forecasting, which outlines which 

attribute of a technology’s evolution will be forecasted and presents the theoretical context of 

forecasting this attribute. Finally, the fourth subsection (Chapter 4.4) outlines the integration of 

the three propositions into a single unified theoretical framework, which the presented research 

will be based on.  

4.1. Patents and Technology 

This research uses patents as the primary source of data. More specifically, patent applications 

are compiled into datasets and specific metadata is then extracted from the patent applications 

to be used for further analysis. The reason patents were primarily considered as the primary 

source of data is because they are created from a technology/financial perspective rather than a 

general public/end-user/consumer perspective [44], making them suitable to be used in a 

technology management context. Nevertheless, several other data sources were considered as 

alternative proxies of technology, as a supplement to patent applications, namely scientific 

publications and web search queries. A comparison of these three sources is shown in Table 6. 

Table 6 Comparison of patents and alternative data sources 

Characteristic  Patents Scientific 

Publications 

Web 

Availability High Medium High 

Economic barrier Low High Low 

Language barrier Low Low Medium 

Structured High Low Low 

Level of knowledge  Expert level Expert level Highly variable 

Publish requirements High High Low 

Document detail High Medium Low 

Knowledge maturity Medium Very young Unreliable 
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Seven characteristics of sources were considered when determining the one most suitable for 

our research, based on the research of Albert [148]. The primary characteristic taken into 

account was openness; whether a barrier existed limiting the availability of the data. As one of 

the aims of this research was to make it as open as possible, a high barrier to acquiring data was 

considered a drawback. Three factors influence openness:  

• Availability, 

• Economic barrier, 

• Language Barrier. 

Availability explores whether an accessible repository of data exists, which enables for a 

relatively simple way of searching, filtering and sorting of data as well as its retrieval. The 

Economic barrier characteristic explores whether the repository is free to use or behind a 

paywall. The Language barrier explores whether a large part of the data is accessible in a 

globally common language (in our case, the English language).  

Another important characteristic was the structuredness of the data source. The structuredness 

of a source can range from low (continuous data without structure) to very high (clearly defined 

content; extensive metadata). Because of the large amount of raw data being analyzed, a highly 

structured data source is preferable to a lower structured one as a highly structured data source 

allows for more straightforward automation of a large dataset analysis. “Level of knowledge” 

clarifies the level of knowledge the document contains and is directly linked to the level of 

knowledge the author of the document needs in order to publish it. This creates a condition that 

disqualifies potential data sources with a high number of noisy data, i.e., low-quality data. 

Publishing requirements specify the level of institutionalised gatekeeping preventing the 

publishing of the data source. Document detail is ranked by how detailed an explanation of the 

technology a document contains. Knowledge maturity is ranked by the approximate maturity 

of the technology contained in the document.  

Of the three data sources considered, web search queries were disqualified almost immediately. 

The extremely low publishing requirements means there is almost no institutional quality 

control of the available data, meaning the level of noise in any created dataset would be very 

high. Moreover, the unstructured nature of this type of data makes any large-scale dataset 

creation difficult.   

Scientific literature showed to be a more promising source of data, however several drawbacks 

were identified. Primarily, a large volume of research is not publicly accessible but exist behind 
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a paywall, requiring special access to the publishers’ database, reducing the accessibility of the 

data source. Second, while scientific literature has some structure, it can differ significantly 

depending on the publisher. Moreover, a piece of scientific literature mostly consists of free 

text with limited metadata increasing the difficulty of extracting information.  Finally, the 

maturity of technology being described is very young, often at the theoretical or early 

conceptual phases. All of these reasons disqualified scientific literature as a viable data source 

in this research. 

Finally, the use of patent applications as the sole source of data was confirmed. Patent 

applications have significant advantages making them a viable data source for this research. 

First, they are publicly available, meaning the level of accessibility is very high. While 

specialized services exist, which offer advanced tools for manipulating patent databases, raw 

patent applications are open and easily available. Second, patent applications are highly 

structured documents with clearly marked subsections and a uniform structure. Therefore, it is 

reasonably easy to extract metadata from patents. Since it is general practice to apply patents 

in multiple jurisdictions, it is a reasonable assumption that the vast majority of inventions are 

patented in the USPTO, meaning they are available in the English language. Based on these 

reasons, patens are chosen as the primary source of data in this research. 

As has been mentioned in the review of the literature (Chapters 2 and 3), patents have a history 

of being used as proxies for technology and knowledge [88] [30][149][2][117][150]. The 

underlying assumption behind this use is that most research and development activities generate 

inventions, which are then protected by innovators as their intellectual property in the form of 

a patent. Consequently, patents can be considered proxies of invention [88]. According to the 

work of Yoon et al. [18] patents can be considered as containers of knowledge elements, while 

Phelps et al. [89] call them “discrete knowledge artefacts”, alongside other knowledge artefact 

papers and products.  

Patent citations are the primary metadata contained in patent applications that are used in this 

research. To reiterate, the citation information of patents capture the directed relationships 

between patents and define technological antecedents and descendants [3]. At its foundation, 

citation-based analysis presumes a view of the process of technological development that is 

cumulative, where each inventor benefits from the work of previous inventors and subsequently 

influences the work of future inventors [3]. These directional relationships can show the flow 

of information from patent to patent, demonstrating the spillover of technology through clearly 
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separated entities. In the context of knowledge management, a patent citing another patent 

implies that the cited patent contains a piece of knowledge that the citing patent builds upon 

[86]. The types of citations being analyzed differ among researchers, the most common being 

direct citations, co-citations and bibliographic coupling [49]. Direct citations are defined as an 

antecedent –descendent link. Co-citations are defined as linking patents being cited by the same 

patent. Bibliographic couplings are defined as linking patents that cited the same paper. 

Several drawbacks of using patents as a data source should be noted. First, there is a delay 

between the time a new patent is filed and the time a patent is granted due to the process of 

examining a patent application. This delay is between 12 and 18 months which is considered 

high by some researchers [44]. Second, patents are notoriously difficult to create datasets from, 

as individual patent applications can be intentionally worded in an unclear way in order to 

reduce their discoverability.  However, with the increase of the number of patents contained in 

a dataset, the omission of a small number of patents does not influence the quality of the datasets 

in a significant way. Nevertheless, a tested methodology for retrieving patents related to a 

technology domain should be used when creating datasets. Finally, not all inventions are 

patented. However, as these inventions are not publicly disclosed, their influence on the 

evolution of technology is limited. Moreover, as was argued when discussing incomplete 

datasets, the number of inventions not patented is small enough that it should not influence the 

quality of a dataset in a meaningful way.  

To summarize, patents are structured and formalized records of invention, which are free to 

access and have a history of being used as proxies for technologies. This makes them in line 

with the aims and objectives stated in Chapter 1 and confirms their potential to contribute to 

answering the research question stated in Chapter 3.3. Their highly uniform structure makes 

them the most suitable record for conducting analysis on a large scale. 

Presumption 1: 

Patents are records of technical invention and are a viable proxy for technology. Consequently, 

they can be used to explore the evolution of a technology domain.   
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4.2. Technology evolution 

Considering the different approaches to describing the evolution of a technology and the 

mechanisms governing it, as demonstrated in the review of the literature (Chapter 2.1 ), it is 

crucial to define the theory and approaches to exploring a technology’s evolution on which this 

research builds upon. In doing so, the most prominent theories and theoretical models will be 

compared and then contextualized within the scope of this research. It should be noted that 

these theoretical models do not specify indicators and instead resort to latent exogenous 

variables. Concepts from the chosen theory used in this research are identified and presented, 

contextualizing the presented research within an existing concept used to study the evolution 

of technology. This provides a measuring model of latent exogenous variables enabling a 

quantitative insight analysis of a technology domains evolution. 

Table 7 provides a summary of the key concepts from the field of technology evolution as well 

as their key characteristics, providing a summary of the theories and concepts outlined in 

Chapter 2.1. The text following the table presents the synthesis of these discrete theories and 

their implementation into the theoretical framework. 

Table 7 Key concepts of technology evolution 

Concept Characteristics 

Incremental evolution Gradual accumulation of small variations over time that 

yield a novel innovation [4] 

Radical evolution Radical departure from the norm of incremental 

improvement [46] [29] 

 

Disruptive  Significantly alters the way that consumers, industries of 

businesses operate [9] 

 

A difficulty arises when attempting to adopt a particular theory of technology evolution as there 

is not a clear demarcation separating different theories. This is demonstrated by the fact that 

while certain traditional theories contain discrete concepts, the majority of the state of the art 

approaches to modelling the evolution of technology combine the concepts presented in Table 

7. For example, while a researcher will claim that technology evolution is an exclusively 

incremental linear process, they will concede that this linearity is interrupted by sudden 
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development surges [22]. However, they will not call these surges “radical” or “disruptive”, 

merely an increase of the speed of linear evolution.  

Nevertheless, the research presented in this thesis subscribes to the theory of technology 

evolution most accepted at the present time, which states that a technologies evolution consists 

of a series of incremental improvements occasionally marked by radical innovations [8] 

[55][27][60]. Moreover, disruptive innovations are rare but possible and a separate 

phenomenon from radical innovations, so the exploration of disruptive technologies should be 

incorporated into the research.  

A concept familiar to most theories of technology evolution, and one widely accepted by 

researchers, is the S – curve based maturity assessment model, which is used to model the life 

cycle of a technology, segmenting it into four stages [24][23][151]. The S – curve model has a 

history of being used for exploring the evolution of technology and is based on the insight that 

some aspects of a technologies life cycle follow an S-shaped pattern [24]. The technology S-

curve is a visualization showing the progress of technology performance regarding some 

transient metric, whether the R&D – effort and expenses [63] or simply as a function of time 

[151]. The life cycle of a technology is commonly segmented into four stages: emergence, 

growth, maturation and stagnation. The emergence and growth stages are often grouped 

together as a single stage, especially when the research is focused on the later stages of a 

technologies life cycle [40][152]. In either case, these stages are artificial periods, transient in 

nature, introduced in order to ease the interpretation of different states of technology maturity 

and take appropriate action. The boundaries between these stages are not clear and often a 

certain amount of overlap exists. However, they are determined with a significant deal of 

accuracy by simple grouping periods of a technology’s life cycle requiring the same action. 

Table 8 shows a summary of the four life cycle stages and the characteristics of each stage. 

Moreover, it was noticed during the review of literature that the nomenclature marking life 

cycle stages is not uniform, and often varied depending on the researches. Therefore, Table 8 

also provides several common aliases to the life cycle stage names used in this literature. 

 

 

 



50 

 

Table 8 Overview of the life cycle stages of a technology domain 

Life cycle stage Alternative name Characteristics 

Emergence Invention, Initiation Pacing technology with low competitive impact 

and low integration in products [24][44] 

Growth Innovation Pacing technologies turn into key technologies; 

integrated into products; maintain high 

competitive impact [24][44] 

Maturation Maturity, 

Saturation 

Loss of competitive impact; base technology; 

might be replaced by new technology[24][44] 

Stagnation Decline, Saturation Reduced utility of technology, imminent 

replacement likely[24][44] 

 

Figure 6 shows a generalised illustration of an S – curve showing the performance of a 

technology over time. An overview of the attributes that can be used as performance indicators 

is presented in Table 9. The values on the abscissa are some measure of time, most commonly 

years [153]. The location of the four life cycle stages on the S – curve are marked, as described 

by previous research [24][151][153]. 

 

Figure 6 Generalised illustration of an S- Curve model of a TLC[24]  

Table 9 presents an overview of some of the indicators used to create an S – Curve model of 

the life cycle of a technology domain based on patent data as presented by Gao et al. [24]. 



51 

 

Table 9 Overview of patent based indicators [24] 

No. Indicator Indication description 

1 Application Number of patents by application year 

2 Priority Number of patents by priority year 

3 Corporate Number of corporates by priority year 

4 Non – corporate Number of non – corporates by priority year 

5 Inventor Number of inventors by priority year 

6 Literature citation Number of backward citations to literature by priority year 

7 Patent citation Number of backward citations to patents by priority year 

8 IPC Number of IPCs (4 – digit) by priority year 

9 IPC top 5 Number of patents of top 5 IPCs by priority year 

10 IPC top 10 Number of patents of top 10 IPCs by priority year 

11 MC Number of Manual Codes (MCs) by priority year 

12 MC top 5 Number of patents of top 5 MCs by priority year 

13 MC top 10 Number of patents of top 10 MCs by priority year 

 

Each of the indicators presented in Table 9 has a history of being used with varying levels of 

success to explore the TLC. The relatively large number of patent-based indicators provide 

certain advantages for researchers using patents to study the life cycle of a technology. There 

is an inherent modularity due to having the option to use multiple indicators, making this 

approach agnostic regarding the larger framework used. For example, a framework that is based 

on the number of patent applications by year can implement the corresponding S – curve model 

as a part of the framework. In the same way, a framework based on patent citation can 

implement an S -Curve model based on patent citations.  

The use of the S- curve model of the technology life cycle in this research is suitable for a 

number of reasons. Primarily, the presented research is based on exploring the evolution of 

technology using patent citations. As patent citations have a history of being used to create S – 

Curve models in past research [24][40], as seen in Table 9, it is assumed that the existing 

research can be expanded within this research. Moreover, the cumulative nature of S- Curve 

based models makes them compatible with the theory of technological evolution, which views 

technology evolution as a series of incremental improvements marked by radical leaps. These 

discontinuities in development can often be identified by discontinuities within the S – Curve 

[154].  
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One of the benefits of using the S – Curve to model the life cycle of a technology is that it 

enables the identification of the implementation potential of a technology. As is shown in the 

research presented by Albert [44], the life cycle stages of a technology can be connected with 

its strategic relevance categories, namely Base Technologies, Key Technologies and Pacing 

Technologies. The strategic relevance of a technology for an industry is the importance of that 

technology compared to other technologies for commercialization in that industry [148].  

The relationship between the life cycle stages identified on the S –curve and the strategic 

relevance of a technology is illustrated in Figure 7. 

 

Figure 7 Relationship between the Technology Life Cycle Stages and Strategic Relevance [148] 

Table 10 lists the categories of technology strategic relevance as well as the primary 

characteristics of each category. 
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Table 10 Technology strategic relevance categories and their definitions 

Strategic Relevance Categories Definition 

Basic Technologies Technologies that a firm has to master in order to 

participate in an industry; the technology on which 

most products in an industry are based on 

Low strategic value[155] 

Key Technologies Have a major impact on the competitiveness of a 

firm; competitors have not yet mastered them 

Influence critical performance parameters 

High strategic value[155] 

Pacing Technologies Still being developed; early maturity state 

Good chance of becoming key technologies[155] 

High strategic value 

 

Identifying the strategic relevance of a technology is useful in an industrial context. By 

analyzing a technologies position on the S – curve, it is possible to determine if a technology is 

worth investing in, as the strategic relevance of a technology depends on the exhaustion of its 

competitive potential in a particular industry [148]. For example, a technology in the maturation 

or saturation stage of its life cycle is most likely a basic technology. As such, it is not worth 

investing in as it there are limited opportunities for their use to gain a competitive advantage 

[23]. Consequently, its strategic relevance is low and fewer resources should be allocated in its 

development [40]. However, a technology at the growth stage of its life cycle is potentially a 

key technology, meaning it has a higher chance of successful commercialisation. This makes it 

a technology of high strategic value and consequently makes it a viable target of resource 

allocation [23]. 

To conclude this subchapter, this thesis subscribes to the theory of technology evolution, which 

states that technology evolves in incremental steps with occasional radical improvements and 

disruptions. The concept of technologies following four stages during their life cycle is adopted 

and built upon, as is the concept that certain attributes of technologies follow an S-shaped curve 

during their life cycle. This is in line with the aims of this research, one of which is introducing 

new ways of exploring the life cycle stages of a technology and determining its implementation 

potential. This concept organically builds upon the concepts introduced in Chapter 4.1, dealing 
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with patents as proxies for technologies, as the two have a history of working in synergy as a 

means for exploring a technologies evolution and determining its life cycle stages. 

Some drawbacks of using the S – curve model should be noted. One often mentioned drawback 

is that the S-curve model is based on technology – specific performance indicators, as opposed 

to standardized variables (those which remain the same, independent of the subject of 

observation). This increases the difficulty of comparing technologies that are not directly 

connected or do not share the same measurable attributes. Using patent applications as the basis 

for S – curve models solves this problem, as patent applications are proven to be consistent with 

the metadata they contain. These metadata can be used as standardized variables, making it 

possible to develop technology-agnostic models.  

Presumption 2: 

Technologies follow a 4-stage life cycle, with each stage having certain predetermined 

characteristics. The technology life cycle can be approximated by an S-curve which can be used 

to identify the life cycle stages of the technology. Finally, there is a correlation between the life 

cycle stages of a technology with the strategic relevance of that technology. Consequently, 

identifying the life cycle stages of a technology can provide insight into the implementation 

potential of technologies. 

4.3. Technology forecasting 

In this research, one of the aims is to predict the potential future directions of the development 

of a technology. More precisely, a focus is placed on exploring how knowledge will flow within 

a technology domain, using patent citations as a measure of knowledge flow. We base our 

approach on the fact that patent citations are associated with the knowledge flow of new 

technologies [85].  

The concept of using patent citations as a basis for exploring knowledge flow is based on the 

existing practice of researchers using citation analysis to study the flow of knowledge between 

different knowledge artefacts. While the citations between research papers were traditionally 

being explored [5][156][12][157], citations between patents have also been used to study 

knowledge diffusion [158][159][110][160]. However, while research exists exploring the use 

of patent citations as a way of studying changes in knowledge domains as well as research that 

uses patent citations to study technology trajectories and convergence, limited research exists 

which combines insights gained from examining paper citation with patent analysis. This is a 
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noticeable gap as patents are, as previously stated, considered to be among the most reliable 

structured records on inventive activity, covering a wide range of fields of innovation. 

Therefore, studying patent citations as technological indicators might provide insights into the 

development of a technology domain. The majority of patent analysis methods covered in the 

review of literature focus on using direct patent citations to explore technology trajectories. 

While this approach does provide insight into the general flow of knowledge (i.e. the flow of 

knowledge from older to newer patents), it provides little insight into how existing patents 

might co – contribute to a future patent in the form of co-citations.  

Three types of patent citations were considered for this research: direct citations, bibliographic 

coupling and co-citations. An overview of the three instances of patent citations is provided in 

Table 11 and the rationale for choosing a particular one for exploring the knowledge flow within 

a technology domain is presented in the text following the table.  

 

Table 11 Overview of the three instances of patent citation [86][158][161]  

Citation type Positive  Negative 

Direct citation Shows knowledge flow 

between ascendant and 

descendant patent 

It is not suitable for exploring the co-

contribution of technology  

Co-Citation Shows co-contribution of 

knowledge 

Provides limited direct knowledge flow over 

generations 

Bibliographic 

coupling 

Shows co-authorship of 

document 

Author dependent as opposed to technology 

dependent 

 

In this research, the focus is on the second way of representing patent citations, in the form of 

a patent co-citation network, when attempting to predict the future flow of knowledge within a 

technology domain, assuming these co-citations represent the flow of knowledge, i.e. co-

contributions of existing knowledge to new innovations. It is assumed that, by predicting the 

occurrence of new links in this network, we predict existing knowledge's co-contribution to 

future inventions. The dynamics of a patent co-citation network are thus explored, studying 

whether patent co-citations can be predicted, as well as when these predicted links occur and 

which patents contribute the most to future co-citations. While existing research focuses on 
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predicting the creation of new links in a patent citation network, it mainly focuses on exploring 

knowledge flow between different technology domains [15][126]. 

To conclude this chapter, in this research patent co-citations are used to represent the collective 

contribution of existing knowledge contained in patents, to future inventions. By successfully 

predicting links in a graph created from patent co-citation, the future flow of knowledge can be 

predicted. 

Presumption 3: 

Patent co-citations represent co-contributions of knowledge to new inventions. A network can 

be created from these co-citations where nodes represent patents and edges represent co-

citations. This network represents the knowledge co-contribution within a technology domain. 

Moreover, by predicting the creation of new edges within this network, insight can be made 

into the future co-contribution of existing knowledge to future inventions. 

 

4.4. Unified theoretical framework 

Based on the theories and concepts outlined in this chapter, a unified theoretical framework can 

be constructed. The constructed framework is to be used as the basis for the research presented 

in this thesis. A positive attribute of the theories and concepts making up the theoretical 

framework is their high level of compatibility, consequently simplifying the creation of a joined 

framework. There is an organic synergy within the framework, starting with dataset creation 

which is built upon by the analysis of a technology domain and ends with forecasting. Based 

on the literature review and the contextualization of the existing research within the space of 

this research, several theoretical presumptions are made upon which this research builds. These 

presumptions form the base of the theoretical framework. 

Figure 8 shows a visualization of the unified theoretical framework and the relationship of the 

component theories. Figure 8 consists of blocks representing different theories within the 

framework, sorting them by their contribution to the research methodology and illustrating their 

relation to the research questions and stage within the research (Data Gathering, Data Analysis 

I, Data Analysis II). Moreover, it illustrates their interdependence as flows of data and results. 

The unified theoretical framework is based on the notion that patents can be used as proxies for 

technologies (Presumption I). Consequently, a significant emphasis is placed on a method for 

the creation of patent datasets that accurately represent a chosen technology domain. Moreover, 
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emphasis is placed on understanding the nature of patents and the information they contain and 

identifying the exact relevant patent metadata to be used as the basis for further research. The 

second part of the theoretical framework, building on the first part, focuses on analysis, 

exploring the evolution of technical invention within a technology domain. This stage draws 

upon the standard four stage technology life cycle concept often explored by applying an S – 

Curve model to some technology attribute (Presumption II). The presented research expands 

on this field by introducing a novel way of exploring the technologies life cycle by using a 

dynamic analysis of patent metadata to determine the life cycle stages of a technology. This 

stage of the theoretical framework contributes to answering research question 1. Finally, 

building on the previous two parts of the theoretical framework, an attempt is made to predict 

the future development of an aspect of a technology’s evolution. To be more precise, this stage 

focuses on predicting future flows of knowledge within a technology domain based on patent 

metadata and draws upon existing research focusing on exploring knowledge flow by analysing 

citations (Presumption III).  This stage of the theoretical framework uses the results of the 

dataset creation stage of the theoretical framework as well as the results of the analysis 

conducted in the second stage of the theoretical framework in order to contribute to answering 

research questions 2, 3 and 4. 

 

 

Figure 8 Visualization of the Unified Theoretical Framework  
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Combining the theories from the three fields of study, summarized as Presumption I, II and II, 

allows for creating a unified theoretical framework, laying the foundation which will support 

the analysis and interpretation of results and help make broader generalizations.  

A few shortcomings of the proposed framework should be addressed. These are primarily 

manifested in the validation phase. In order to properly validate the framework, it should be 

applied to a variety of datasets representing numerous different types of technologies. However, 

that kind of validation would be out of scope of this thesis. A more detailed overview of the 

limitations of this research is presented in Chapter 9.1. 
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5. DESIGN OF THE EMPIRICAL PART OF RESEARCH   

This chapter presents the design of the second descriptive study conducted to help answer the 

research questions and verify the hypothesis. An outline of the data collection and dataset 

creation methods is provided, as are the methods and tools used to analyse the collected data.  

5.1. Introduction 

The empirical research conducted in this research consists of 5 stages illustrated in Figure 9 and 

correlates with stage 5 of the research methodology outlined in Chapter 1.2, namely the second 

descriptive study. Each stage of the empirical research applies a presumption defined in the 

theoretical framework presented in Chapter 4.4 to a technology domain with the goal of 

answering the research questions defined in Chapter 3.3 and verifying the hypotheses outlined 

in Chapter 1.1.  

 

 

Figure 9 Overview of the second descriptive study stages 

The descriptive study II, used to answer the thesis research questions and test the thesis 

hypothesis, consists of two parts, i.e. two studies.  In order to synthesise the results of each 

study, the hierarchy-of-hypotheses (HOH) approach of synthesis is used, where the general 
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hypothesis is mapped in relation to sub-hypotheses defined in each study [162], connecting 

them in a hierarchically nested fashion. The hierarchy-of-hypotheses is presented in Figure 10, 

illustrating the relationship between the two sub-studies, their respective sub-hypotheses, the 

thesis research questions and the central thesis hypothesis.

 

Figure 10 Hierarchy of hypotheses in this research (after Ryo et al. [162]) 

Each of the two substudies explores a different phenomena related to the evolution of a 

technology domain, with the goal of validifying its specific subhyptothesis. The results of these 

studies help answer the research questions which in turn help verify the thesis hypothesis.  

The first sub-study is a purely empirical study, tasked with observing and identifying the life 

cycle stages of a technology domain and testing the hypothesis that the life cycle stages of a 

technology domain can be identified by conducting a dynamic growth analysis of a patent 

citation network. This step attempts to answer research question 1 as outlined in Chapter 3.3 

and contribute to testing the governing hypothesis of this thesis. Table 12 provides a summary 

of the phenomenon being studied in this part of the empirical study and states the hypothesis 

being tested.  
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Table 12 Subhypothesis being tested by empirical study 

Phenomenon Explored Subhypothesis 

Technology Life Cycle 

Stages 

The growth analysis of a patent citation network can be 

used to identify the life cycle stages of a technology 

domain 

 

This empirical study observes the results of a dynamic growth analysis of a patent citation 

network superimposing the results to those of an established technology life cycle analysis 

methods proven to be accurate.  A more detailed overview of this empirical study is presented 

in Chapter 5.3.  

The second substudy of the empirical study consists of an experimental study testing the 

hypothesis that the dynamics of knowledge flow within a patent co-citation network can be 

modelled and predicted using an appropriate link prediction algorithm. This sub-study 

contributes to answering research questions 2, 3 and 4. 

Table 13 Subhypothesis being tested by experimental study 

Phenomenon Explored Subhypothesis 

Patent co-citations A link prediction algorithm can be used to describe the 

intuition governing the growth of a patent co-citation 

network and predict future co-citations. 

 

The experimental part of the study consists of two experiments, both based on the application 

of link prediction algorithms to a training dataset (The creation of these datasets is presented in 

Chapter 5.4). The first experiment sees the size of the training dataset constant while the applied 

link prediction algorithm is a variable. The goal of varying the applied link predication 

algorithm is to identify the link prediction algorithm best describing the underlying intuition 

behind the network growth. This part of the study attempts to answer research question 2. The 

second one sees the link prediction algorithm constant, while the training dataset changes. The 

goal of varying the training dataset is studying the dynamics of patent co-citation creation, 

exploring which training dataset contributes the most to the precision of the link predictions 

algorithm as well as when the predicted links occur. This part of the study attempts to answer 

research questions 3 and 4. In both cases, the measures of success used are the precision of the 
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link prediction algorithm and the area under the receiver operator characteristic curve (AUC). 

An expended overview of both of these metrices is presented in Chapter 5.4. 

Table 14 provides an overview of both experiments, highlighting what is constant and what is 

varied in each experiment, as well as the measures of success and aims of the experiment. 

Table 14 Overview of Experiments  

 Variable Constant Measure of 

success 

Aim 

Experiment 1 Link prediction 

algorithm 

 

Size of the 

training dataset 

The precision 

of results; 

AUC 

Identification of most 

precise link prediction 

algorithm 

Experiment 2 Size of the training 

dataset 

Link prediction 

algorithm 

The precision 

of results; 

AUC 

Identification of the 

training dataset  

providing the most 

precise results 

 

A more detailed plan of the experimental study is presented in Chapter 5.4. 

As outlined in Figure 12, the empirical research starts with the creation of a dataset consisting 

of patents representing the technology domain being studied. A life cycle analysis of the 

technology domain is conducted by applying one of the existing methods from the literature 

presented in Chapter 3, followed by a method introduced in this research. The technology 

domain life cycle analysis is based on the part of the theoretical framework synthesizing 

knowledge from the Technology Evolution field. Finally, an attempt is made to forecast the 

future dynamics of knowledge flow within the chosen technology domain by choosing a link 

prediction algorithm representing the underlying intuition governing the evolution of the chosen 

aspect of technology and applying it to the created dataset.  

Table 15 provides an overview of the design of the empirical research, emphasising how each 

stage of the empirical research builds upon the previously defined presumptions, as well as 

what research question each stage attempts to answer. 
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Table 15 Overview of the contribution of each stage 

Stage Presumption Research Question 

Dataset Creation Presumption 1  / 

Technology Domain Life Cycle 

Analysis – Empirical Study 

Presumption 2 RQ 1 

Patent co-citation analysis 

Experimental study –  

 

Presumption 3 

 

RQ 2 

RQ 3 

RQ4 

 

5.2. Dataset creation  

The first stage of the empirical research consists of creating a dataset comprised of patents 

representing the chosen technology domain. The dataset creation method used in this research 

is a modified version of the method devised by Benson and Magee [163]. Table 16 provides an 

overview of the steps for creating the dataset.  

Table 16 Method for the Retrieval of Patents Related to the Chosen Technology Domain 

Step Detail of Step 

Step 1. Choosing a technology 

domain 

Identifying a technology domain; 

Determining whether if it is within set constraints 

 

Step 2. Identifying keywords  Determining keywords based on expert insight; 

Review of written records describing the technology 

Step 3. Initial search of patent 

database 

Input of keywords; 

Set constraints: 

• Grouped by simple families 

• Sorted by date of application 

Step 4. Identifying classification 

codes  

Based on the review of written records; 

Based on analysis of patents retrieved in Step 3 

Step 5. Classification code based 

filtering 

Filtering out of patent classified using codes identified in                  

Step 4 

Step 6. Manual review Manual review of the created dataset; 

Manual review of patents which were filtered out 
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The first step of the dataset creation methodology consists of choosing a technology domain 

appropriate for this research. In choosing an appropriate technology domain for the empirical 

research, specific requirements had to be met:  

• The examined technology domain represents an engineering field; 

• The technology must be from a field that has a practice of patenting inventions;  

• The life cycle stage and the nature of the examined technology are known based on 

export knowledge or prior work.  

The first requirement ensures that the examined technology domain represents an engineering 

field as this is the field of study of this thesis. The second requirement stems from the fact that 

not all fields have the practice of patenting inventions. Moreover, some fields deliberately do 

not patent their inventions, strategically protecting their core technology [76]. While the act of 

choosing the appropriate technology domain might seem trivial, both an under-constrained or 

over-constrained technology domain, i.e. a technology domain with a too large or too small 

number of patents, would not be suitable for the empirical research as the number of relevant 

patents would be too large, in the case of an under-constrained technology domain. Therefore, 

the relevant patents would be too diverse to provide any meaningful insight in the context of 

this research. 

Similarly, an under-constrained technology domain would contain too few relevant patents 

making gaining any meaningful insight from the analysis impossible. Finally, the third 

requirement ensures that the examined technology domain's life cycle stage and nature are 

already known. This knowledge can come from expert knowledge in the form of white papers, 

reports or interviews with experts from the fields, or scientific papers and books exploring the 

technology domain. The importance of this is twofold. First, prior knowledge of the 

technologies technology life cycle stage allows for the easier contextualisation of the results of 

this research. Second, this research aims to study both mature and emerging technology 

domains, exploring the particularities of each type of technology and comparing the results. 

Consequently, prior knowledge of the type of technology is required in order to choose 

appropriate technology domains representing both types of technologies.  

The second step of dataset creation consists of identifying relevant keywords which accurately 

represent the chosen technology domain. The process of choosing appropriate keywords varies 

in its complexity depending on the technology domain being studied. Certain technology 

domains can be described by a simple set of keywords. However, technology domains 
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consisting of somewhat “niche” technologies require a degree of input from domain experts 

familiar with the intricacies of the studied technology. In either case, some prior domain 

knowledge is a requirement to properly define the keywords describing the technology domain. 

These keywords are then used for the initial search of a patent database for relevant patents 

(Step 3) [163][124][164].  The success of this step dramatically depends on the quality of the 

patent database being used. More accurately, it greatly depends on how the database parses 

queries and searches for patents matching the selected criteria. Support for Boolean operators 

(“AND”, “OR”, “NOT”…) is preferable as it enables creating more complex keyword 

combinations [163][76][88]. Consequently, in this research, a database supporting Boolean 

operators was used as the primary data source. 

The results of the initial keyword-based search often contain a large number of patents, a 

significant percentage of which are “false positives,” i.e. patents not related to the technology 

domain. This is because databases often parse not only patents titles but entire applications, 

which may contain technology domain keywords in their claims but are not related to the 

technology domain. Moreover, at this stage of the dataset creation, it is better to err by retrieving 

patents not relevant to the technology domain than by not retrieving patents relevant to the 

technology domain. Because of the retrieval of irrelevant patents, a filtering of the results must 

be made. This filtering process consists of using classification codes used to classify the patents 

in the dataset as the basis on which irrelevant patents are removed from the dataset.  

In Step 4 of the dataset creation, the classification codes used to classify the patents within the 

dataset are collected and ranked based on the frequency of their occurrence in the dataset and 

the most frequently used classification codes are identified. All of the collected classification 

codes are then manually examined, and their relevance as being representative of the technology 

domain is checked based on the information from Table 2 and Figure 3. Moreover, classification 

codes used to classify patents in the dataset which are not representative of the technology 

domain are also identified. A filtering process is then conducted (Step 5). Patents collected in 

the initial search based on keywords, but not classified using the appropriate classification codes 

for the technology domain, are identified and removed from the dataset.  

Finally, in Step 6, a manual curation of the created dataset is made. Patents not relevant to the 

technology domain that were not filtered based on their classification codes in Step 5 are 

identified and removed manually. After the filtering process, the entire dataset is manually 

examined with the goal of identifying any unforeseen errors. 
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In order to prepare the collected dataset for the empirical studies, some further processing of 

the collected data has to be performed. The dataset is split into two separate datasets, the first 

one containing all of the metadata contained in the retrieved patent applications. These metadata 

include, but are not limited to, classification codes, applicant, date of application, abstract and 

jurisdiction. The second data set consists of only the backward citations of the retrieved patents. 

This split of the retrieved patents is illustrated in Figure 11. This additional pre-processing step 

of creating two datasets is the consequence of the heavy reliance of this research on using patent 

citations as the basis for analysis, which requires patent citation information in a separate 

dataset, making subsequent steps of the empirical research easier to implement. 

 

Figure 11 Illustration of the splitting of the dataset containing the collected patents 

Several potential drawbacks of this approach should be noted. In addition to the known 

drawbacks incumbent to using patents as a source of data, this methodology has some additional 

potential drawbacks. Primarily, a danger always exists of certain patents being overlooked or 

added into the dataset by error. While the methodology used is reasonably accurate, errors are 

unavoidable. However, the number of patents added in error is deemed inconsequential 

compared to the size of the entire data set. Therefore, it is assumed that any errors have a 

negligible effect on the accuracy of the analysis. 

To conclude this stage of the overview of empirical research, it should be emphasised that an 

important attribute of the dataset creation methodology is that it was devised with the guiding 

principle of using only free and open tools and databases. Consequently, both the patent 

database used as the primary source of patent data as well as the tools used for the processing 
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of data and creation of datasets are all free to use. The databases used were the lens.org [165] 

database as well as google patents [166], while the scripting language Python was used for web 

scraping and data processing. 

5.3. Empirical study - Technology Life Cycle Analysis 

The second stage of the empirical research, as outlined in Figure 9, involves conducting a life 

cycle analysis of the selected technology domain.  

As the review of literature shows, a number of methods for exploring the life cycle stages of a 

technology exist. In this research, we aim to contribute to the family of methods for determining 

the life cycle stages of a technology based on patent information by introducing a new method 

based on the dynamic growth analysis of a backward patent citation network.  More specifically, 

it is explored whether the dynamic growth analysis of a patent citation network, created from 

patents from a technology domain, can be used to identify the life cycle stages of that 

technology domain. To reiterate, a backward citation network is a graph where nodes represent 

patents and edges represent citations, i.e. it is a network showing the relationships between 

antecedent and descendant patents.  Figure 12 illustrates the workflow of this stage of the 

empirical research. As mentioned at the end of Chapter 5.2., the retrieved patents dataset is split 

into two datasets, the patent citation dataset and the patent metadata dataset. Each of these 

datasets is then used to conduct a technology life cycle analysis, with one analysis being based 

on one of the established methods covered in Chapter 4.2. and the other analysis being 

introduced in this research.  
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Figure 12 Flowchart illustrating the first empirical study 

 

TLC analysis – Cumulative number of patents 

From the patent metadata dataset, a technology life cycle analysis is conducted. This is 

conducted using one of the established patent based life cycle analysis methods outlined by Gao 

et al. [24]. More precisely, the method based on the cumulative number of patents applied over 

time, falling into the S-shape group of models, is used to generate a visualization of this growth 

[167] as was demonstrated in Chapter 3  and Chapter 4.2, the visualisation of the technology 

life cycle of a mature technology usually takes the form of an S-shaped curve and can be used 

to identify the technologies life cycle stages. Figure 6 shows a generalized representation of 

this S – Curve.  

 

 



69 

 

 The reasoning behind conducting two life cycle analyses is that the established one serves as a 

verification and control method, the results of which will be compared to the results of the life 

cycle analysis method introduced in this thesis. This particular method, based on the cumulative 

number of patents, has been chosen as the control method for several reasons: a) multiple 

studies have demonstrated it as accurate for describing the life cycle stages of a technology 

[24][40][40][168], b) it is intuitive and straightforward to understand, c) it relies solely on the 

metadata contained in patent applications. 

TLC analysis – Dynamic growth analysis 

The second technology life cycle analysis is conducted on the patent citation dataset by applying 

a dynamic growth analysis on a network created from the patent citation dataset. This approach, 

used to conduct a dynamic network analysis, is adapted from the work of Štorga et al. [169]. 

The patent citation network is generated and continuously recalculated whenever a new patent, 

and its citations, are added. This allows for a visualization of the network’s growth over time, 

illustrating the dynamics and evolution of the new citation network as new patents are added. 

From examining the continued growth of the network, a chart can be made illustrating the 

dynamics of growth.  A generalization of this illustration is shown in Figure 13. 

 

Figure 13 Generalization of a dynamic growth analysis graph [169] 
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As is seen in Figure 13, the abscissa in the graph represents a time step in the growth of the 

network. The ordinate, denoted by 𝛿, represents the network's rate of growth. 

The algorithm of the growth analysis, as outlined by Cash et al. [170], is as follows: 

• For each step i in which a node was added or a nodal degree has increased, with respect 

to the corresponding total number of edges m or the total number of nodes n, the actual 

growth 𝛿 is measured with the following expression: 

 𝛿(𝑖) = 𝑚(𝑖) − 𝑛(𝑖) 

 

Eq. 1 

 

• The measure 𝛿𝑒 takes into account the total size of the network at the end of the study, 

which is then averaged over all steps i. This is performed with respect to the total 

number of steps i=p constituting the session as well as the total number of edges mp, 

and the total number of nodes np. Thus, for each step i the 𝛿𝑒 is defined by the following 

expression:  

 

 
𝛿𝑒(𝑖) = 𝑖 × (𝑚𝑝 − 𝑛𝑝)     

 

Eq. 2 

 

• Finally, the relative network growth indicator 𝛿𝑞 per step i is defined with respect of 

measures as given by equations (1) and (2): 

 

 
𝛿𝑞(𝑖) = 𝛿𝑒(𝑖) − 𝛿(𝑖)       

 

Eq. 3 

 

The results of the growth analysis provide insight into the network formation and growth 

dynamics, enabling the identification of different growth phases. In a generalized dynamic 

growth analysis of a network, a positive trend in the growth analysis graph corresponds to a 

period where more nodes than edges are added to the network. A negative trend corresponds to 

a period where more edges than nodes are being added.  In the context of the research presented 

in this thesis, a positive trend means more new patents than new citations are being added to 

the network, while a negative trend means the opposite.  
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Once both the dynamic growth analysis and the S-Curve analysis have been conducted, the 

hypothesis that the dynamics of patent citations can be used to determine the life cycle phases 

of a technology is tested (Table 12).  

5.4. Experimental study – Link prediction 

In the final stage of the empirical research, an attempt is made to understand the dynamics of 

knowledge flow within a technology domain. The assumption is that future knowledge flow 

may be predicted by understanding the underlying intuition governing the dynamics of 

knowledge flow within a technology domain. An experimental study is conducted, applying 

link prediction algorithms to a patent co-citation network with the goal of assessing the 

precision of the algorithm in predicting future patent co-citations. The goal of this experiment 

is to identify the link prediction algorithm which best describes the dynamic of the patent – co-

citation network growth and as well as explore the dynamic of the creation of the created links. 

The practice of using subsets is a common practice in research focused on comparing link 

prediction algorithms [15], as is the method for the evaluation of link prediction success 

[171][172][173]. Figure 14 illustrates the workflow used to conduct this stage of the empirical 

research.  

 

Figure 14 Flowchart of the second experimental study 
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Since the experiment is based on prediction in a time series problem, the dataset used to create 

the patent citation network in the previous stage of the empirical research must be divided into 

a training and testing set [174].  In order to prepare the training and testing sets for the 

experiment, more specifically, the application of the link prediction algorithm, the patent 

citation networks created from both sets must be converted into patent co-citation networks. 

Then, four link prediction algorithms are applied to a small subset of the training dataset, and 

the success of each algorithm is compared. The algorithm showing the highest level of success 

is chosen to be used in further research and applied to the rest of the training subsets. After a 

more detailed analysis is performed using the chosen algorithm, a detailed analysis and 

interpretation of results are made. 

Subset and co-citation network creation 

The forecasting part of this experimental study explores the dynamics of knowledge flow within 

a technology domain. More precisely, it explores how knowledge diffuses and combines to 

create new knowledge. These combinations of existing knowledge can be represented and 

visualized as a co-citation network, where nodes represent patents and edges represent links 

between co-cited patents.  

A link prediction algorithm is used to predict future co-citations. However, a co-citation 

network must be created before a link prediction algorithm can be applied. This network is 

created by converting the existing patent citation network from the previous stage of the 

empirical research into a co-citation network. Using the existing patent citation network 

provides several advantages. An obvious one is that converting an existing dataset eliminates 

the need for another data retrieval procedure. However, another advantage is that the patent 

citation network is a time series when written in a tabular form. This enables the creation of co-

citation network snapshots of different times in the technology’s life cycle. More accurately, it 

simplifies the creation of multiple training and testing subsets, therefore facilitating the ability 

to conduct a large amount of analysis.  

The process of converting the patent citation network into the patent co-citation network is done 

by applying an algorithm adapted from the work of Štorga et al. [169], and is demonstrated in 

the patent co-citation network creation algorithm, outlined in Table 17: 
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Table 17 Patent co-citation network creation algorithm in continuous time 

 

In order to assess the performance of the link prediction algorithms, historical network data is 

used. Since link prediction is a time-related activity, the dataset must be sequenced in a 

chronological order to separate the data. The patent citation dataset is segregated into a training 

dataset, marked Tt,t1 (V1, E1), consisting of a set of nodes V1 and edges E1 from time t to time t1, 

and testing dataset, marked Vt1,t2 (V2, E2 ) consisting of a set of nodes E2 and edges L2 from time 

t1 to time t2. The split point is determined by the technology life cycle analysis results from the 

previous stage of empirical research (Chapter 5.3.) For the mature technology domain, the point 

of the split is chosen at the time where the technology life cycle transitions from the growth 

stage to the maturation stage. The training and the testing sets are segmented into further 

subsets, marked Tn and Vn  (Figure 15), the largest subsets consisting of the entire 

training/testing set with each subsequent subset progressively smaller in size. For an emerging 

technology, it is assumed that the results of the technology life cycle analysis will not show 

clear distinctions between life cycle stages. Therefore, the split between training and testing 
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datasets is done as a sliding window, moving the split point in regular intervals Figure 16.

 

Figure 15 Visualisation of training and testing dataset and subset creation (mature technology 

domain) 

 

 

Figure 16 Visualisation of training and testing dataset and subset creation (emerging 

technology domain) 

The segmenting of both the training and testing datasets into subsets allows us to study the 

dynamics of patent co-citation network growth in more detail. The segmenting of the training 
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dataset enables us to study which part of the training dataset contributes the most to the 

precision of the link prediction algorithm. By applying the link prediction algorithm to each 

subset of the training dataset and comparing the respective precisions, a deeper understanding 

can be obtained of how each segment contributes to the precision of the algorithm. Translated 

into the context of studying knowledge flow, the influence of older vs newer knowledge on 

future inventions can be studied. The segmenting of the testing datasets into subsets enables us 

to study the time frame in which the predicted links will occur. Translated into the context of 

studying knowledge flow, it provides insight into how soon the predicted knowledge will occur. 

From each of the created subsets, a patent co-citation network is created. The created co-citation 

network is a dynamic network consisting of a set of edges, denoted u, and a set of vertices 

denoted v, which grows and changes over time with the addition of new nodes and edges. 

 

Link prediction 

It is assumed that the growth of the patent co-citation network follows some pattern that can be 

identified. Consequently, by identifying the pattern by which the patent co-citation network 

grows, it is assumed that the future growth can be predicted. Link prediction algorithms (often 

called similarity measure algorithms) are used as a tool for identifying this pattern. A 

computational problem underlying network evolution as defined by Liben-Nowell and 

Kleinberg [175] is studied: “Given a snapshot of a network at time t, we seek to accurately 

predict the edges that will be added to the network during the interval from time t to a given 

future time t’.” In the context of this research, the question is reframed and becomes: “Can we 

accurately predict the edges being added to a patent co-citation network, as well as the time 

when the predicted edges will be added?”. The link prediction problem is therefore the attempt 

of inferencing which new interactions are likely to occur in a network, given its snapshot [175]. 

The creation of a network and the adding of new edges between nodes are both dynamic events 

based on local interactions among nodes that shape the evolution of the network [176]. 

Therefore, link prediction algorithms aim to predict the likelihood of a link occurring between 

two nodes in a complex network. According to Zhou et al. [177], the link prediction problem 

can be stated as:  

Consider an undirected simple graph G (V, E), where V is the set of nodes and E is the set of 

edges. For each pair of nodes, 𝑢, 𝑣 𝜖 𝑉, 𝑒 = (𝑢, 𝑣)𝜖𝐸  represents a link between the two nodes. 

For every possible pair of nodes, a link prediction algorithm assigns a score, Sim(u,v), as a 
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measure of similarity between the two nodes. The non-existent links should be sorted in a 

descending order according to their scores, with the links on top most likely to be established. 

Generally speaking, link prediction problems occur in 3 instances, as demonstrated in Figure 

17: a) only the addition of new links within a network, b) only the removal of existing links 

from a network, and c) the simultaneous addition and removal of links at the same.  

 

Figure 17 Instances of link prediction problems 

In this research, the first type of link prediction problem is studied. Since the patent citations in 

patent applications are immutable, existing links cannot be removed from a co-citation network. 

Therefore, only additions can be made to a snapshot of a co-citation network. A set U is defined, 

containing all possible links within a network. Quantitatively, the number of links contained in 

set U, n(U), can be defined as 

 
𝑛(𝑈) =

|𝑉| × (|𝑉| − 1)

2
 

Eq. 4 

 

where |𝑉|  is the number of nodes in set V. Then, a set of non-existent links can be defined as 

the difference between all possible links U and the existing links in a set E. Quantitively, this 

set can be defined as: 

 𝑁𝐿 = 𝑈 − 𝐸 Eq. 5 
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Finally, it is assumed that there are some missing links (or links that will appear in the future) 

in the set NL. However, these missing links are not known as they have yet to occur. Therefore, 

to test the link prediction algorithm set E is divided into two subsets, a training one and a testing 

one EP, where the missing links are the links appearing in set E but not appearing is set ET: 

 

 𝑀𝐿 = 𝐸 − 𝐸𝑇 Eq. 6 

 

The goal of link prediction is to predict the links in set ML as successfully as possible.  

The output of a link prediction algorithm is a tuple consisting of three columns; the first two 

columns containing the ID of the nodes being connected by the predicted link and the third 

column containing the similarity measure, i.e. likelihood that the predicted link between the 

two nodes will occur. In principle, this tuple represents an ordered list of all non – observed 

links in the network or equivalently given each non-observed link a similarity measure score to 

quantify its existence likelihood [171].  Table 18 shows a generalisation of the output provided 

by the link prediction algorithm.  The predicted links are sorted by the value of the similarity 

measure. For most methods, a higher similarity measure value means a higher likelihood that 

the predicted link will appear in the future.  

Table 18 Generalisation of Link Prediction Output 

Node 1 Node 2 Similarity Measure 

Id..1 Id..2 Sim_value 1 

Id..1 Id..3 Sim_value 2 

Id..2 Id..4 Sim_value 3 

.... ... … 

Id..x Id..y Sim_ Value n 

 

This similarity measure ranges from 0 (no likelihood of a link occurring) to a maximal value, 

the maximal value varying from case to case and also depending on the link prediction 

algorithm being used. It should be noted that, when applying a link prediction algorithm to a 

network, the resulting tuple contains the similarity score for every possible combination of 

nodes (complete graph). Consequently, this tuple can grow quite large, especially in more 

extensive networks. Note that a complete graph has a number of edges equal to Eq. 4, where 
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|𝑉| is the number of nodes in set V, making the handling of the tuple quite unpractical. 

Therefore, a cut-off value is applied to the returned tuple, filtering out all of the predicted links 

beneath a certain threshold.  

Two standard metrics exist to quantify the accuracy of a link prediction algorithm [171]. These 

are the area under the receiver operating characteristic curve (AUC) [178] and precision 

[179][180][181]. The main difference between these two metrics is that the AUC evaluates the 

algorithms’ performance according to the entire list of predicted links, while the precision 

metric only focuses on the links with a precision above the cut-off values. A more detailed 

overview of these two metrics is as follows: 

a) AUC: Provided the similarity values of all non – observed links, the AUC value can be 

interpreted as the probability that a randomly chosen missing link is given a higher 

similarity value than a randomly chosen non-existent link. In an algorithmic 

implementation, the score of each non-observed link is calculated. Then, at each time a 

missing link and a non-existent link are randomly picked to compare their score. If 

among  n independent comparisons, there are n’ instances of the missing link having a 

higher score and n’’ times they have the same score, the AUC value is [171]: 

 

 AUC =
𝑛′ + 0.5𝑛′′

𝑛
 Eq. 7 

 

b) Precision: Precision is defined as the ratio of relevant items selected to the number of 

items selected. If, after applying the cut-off rate to the output of the link prediction 

algorithm, Ns predicted links remain, among which Nrs predicted link are correct (i.e. 

they occur in the testing set), then the precision of the algorithm is defined as [179]: 

 

 
P =

𝑁𝑟𝑠

𝑁𝑠
 Eq. 8 

 

In order to deepen the understanding of the dynamics of patent co-citation network growth, 

several different link prediction algorithms are compared in order to determine which one 

describes the dynamics of network growth with the highest precision. As the compared link 

prediction algorithms all have a different underlying intuition, it is hypothesized that the results 
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of the initial analysis will show one link prediction algorithm preforming significantly better 

than the others, meaning it is the best at describing the underlying intuition of network growth 

dynamics. 

Four link prediction algorithms are compared in this research with the goal of identifying the 

link prediction algorithm most successful in predicting the missing link in a patent co-citation 

network. An overview of these algorithms is provided in Table 19. 

Table 19 Overview of link prediction algorithms used 

Algorithm name Similarity measure definition Underlying intuition 

Resource allocation 

index [177] 
𝑆𝑖𝑚(𝑢, 𝑣) = ∑

1

|Γ(𝑤)|
𝑤∈Γ(𝑢)∩Γ(𝑣)

 
Common neighbours 

Jaccard coefficient  
𝑆𝑖𝑚(𝑢, 𝑣) =

|Γ(𝑢) ∩ Γ(𝑣)|

|Γ(𝑢) ∪ Γ(𝑣)|
 

Common neighbours, 

similarity of sample sets 

Adamic – Adar index 

[182] 
𝑆𝑖𝑚(𝑢, 𝑣) = ∑

1

log|Γ(𝑧)|
𝑧∈Γ(𝑢)∩Γ(𝑣)

 
Low-degree neighbour is 

more likely to indicate a 

future connection then a 

high-degree one 

Preferential 

attachment [183] 

𝑆𝑖𝑚(𝑢, 𝑣) = |Γ(𝑢)| ⋅ |Γ(𝑣)| Rich – get – richer  

 

In the empirical study covering the mature technology domain, each of the link prediction 

algorithms presented in Table 19 is applied to a subset of the training set closest to the point 

where the dataset was split into the training and testing set (Figure 15). To reiterate, this split 

point roughly coincides with the transition period between two technology life cycle stages, 

namely growth and maturation. The link prediction algorithm showing the highest precision is 

then applied to the rest subsets of the training set.  

In the empirical study covering the emerging technology domain, the four link prediction 

algorithms outlined in Table 19 are applied to the training and testing subsets as outlined in 

Figure 16.  Because of the unpredictable nature of the emerging technology domain, 

demonstrated in Chapter 2.1.3, it is assumed that there will be no clear delamination line 

between life cycle stages. Consequently, the link prediction algorithms are applied to a wider 

spectrum of training subsets in relation to the mature technology domain. 



80 

 

Identifying the appropriate link prediction algorithm which can be used to describe the growth 

dynamic of a patent co – citation network enables us to gain insight into the underlying intuition 

governing the diffusion of knowledge within a technology domain i.e. how existing knowledge 

combines to create new knowledge artefacts.   
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6. EMPIRICAL STUDY – MATURE TECHNOLOGY 

DOMAIN  

This chapter presents the results of the first empirical study focusing on exploring a mature 

technology domain. An overview of the selected technology is provided, as is the method for 

dataset creation. A life cycle analysis is conducted, and the results are compared to previous 

research. After the life cycle analysis, a link prediction algorithm is chosen and applied to a 

patent co-citation network with the goal of exploring the underlying intuition of network growth 

and predicting the future development of the technology. 

6.1. Technology background – Car Headlights 

The first empirical study presented in this thesis covers the technology domain of car headlights. 

This is a technology that has seen a continuous improvement since its inception in the 1880s. 

Because of its long history of being implemented in a commercial product, in the context of 

this thesis it is used as an example of a mature technology, i.e. a technology in the mature phase 

of its life cycle. This evaluation of the technologies life cycle stage is based on both expert 

knowledge and a review of the literature covering innovations from the automotive sector 

[184][185].  

While the earliest headlights were fuelled by acetylene or oil, modern incarnations use 

electricity as an energy source, with the most proliferated technology in use being tungsten-

halogen headlights. More advanced models do exist, including high-intensity discharge (HID) 

headlights, often called “xenon headlights” because they are filled with xenon gas. At present, 

the state of the art headlight technology used in vehicles are headlights that use light-emitting 

diodes (LED) as a light source.  Finally, laser-based high beam lamps are being introduced in 

some premium vehicle models. Table 20 shows an overview of key technologies in the car 

headlights technology domain and their approximate time of commercial introduction  

[184][185]. 
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Table 20 Key years in car headlights technology evolution 

Technology Approximate time of technology’s 

introduction 

Acetylene/Oil 1880 

Electric headlights 1900 

Sealed Beam (tungsten) 1940 

Tungsten + halogen 1960 

High-intensity discharge (HID) Mid 1990s 

Light-emitting diodes (LED) Early 2000s 

Lasers The mid-2010s 

  

6.2. Dataset creation 

A dataset consisting of patents from the car headlights technology domain is created as outlined 

in the dataset creation part of the chapter outlining the design of empirical research (Chapter 

5.2).  

Data retrieval 

The patents relevant to the technology domain were retrieved using a method based on the one 

outlined by Benson et al. [163]. The dataset creation process started by searching the chosen 

patent database using the keyword pair “car headlights”. An analysis was conducted on the 

preliminary results and the most frequent CPC codes relevant to the field used to classify the 

patents were identified. Table 21 shows the most frequent identified CPC codes as well as their 

definitions. A manual examination of the definitions of the identified CPC codes confirms their 

relevance to the examined technology domain. 

Table 21 The most frequent relevant CPC codes in the retrieved dataset 

CPC Code Definition 

B60Q1 Arrangements or adaptations of optical signalling or lighting 

devices 

F21S4 Lighting devices or systems using a string or strip of light 

sources 
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The identification of these classification codes enables the identification of patents retrieved 

based on the keyword search but not relevant to the studied technology domain. Patents not 

containing the identified classification codes were then filtered out, increasing the relevance of 

the patent dataset. Moreover, patents classified with classification codes unrelated to the 

technology domain were also filtered out and removed from the dataset. It should be noted that 

the patents filtered out were manually reviewed to ensure that no relevant patents were filtered 

out by mistake.  

After the cleaning of the dataset, 14 114 relevant patents remain. The oldest patent has the 

application year of 1902 while the youngest patent has the application year 2017. The dataset 

is stored in the form of a table, where the patents are listed sequentially in chronological order, 

from oldest to youngest. This table contains all of the metadata related to the patents except 

backward and forward citations. A separate table is created containing all of the retrieved 

patents as well as their backward citations. This split of data into two datasets is covered in 

Chapter 5.2, Figure 11.   

6.3. Empirical study - Technology Life Cycle analysis 

In this step, a life cycle analysis of the studied technology domain is conducted, based on the 

method outlined in Chapter 5.3. First, a technology life cycle analysis is conducted using an 

established method based on plotting the cumulative number of patent applications over time, 

and the technology domains life cycle stages are identified. Then, a dynamic growth analysis is 

conducted of the patent citation network. By superimposing the results from the two analyses, 

the dynamics of patent citation network growth can be contextualized within the phases of a 

technologies life cycle. These activities correspond to the stage of Empirical research presented 

in Figure 9 marked Empirical study.   

Life cycle analysis based on the cumulative number of patent application 

In determining the life cycle phase of the technology domain, we first employ one of the 

established methods for patent based life cycle analysis, presented in Chapter 4.2. This method 

uses the cumulative number of patent applications to plot a curve visualizing this change over 

time [24]. The data contained in the table with patent metadata are analyzed and the results of 

the analysis are visualized in Figure 18. 
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Figure 18 S - Curve of the car headlight technology domain based on the cumulative number 

of patents 

Figure 18 shows the cumulative number of applied patents on the Y-axis and the application 

year on the X-axis.  It is important to note the age of the examined technology domain, with the 

first patent occurring in 1899. While there was an increase in the number of applied patents 

from that time, Figure 18 makes it noticeable that the growth of the cumulative number of 

patents was relatively slow, at least in the first 70 years of the technologies life cycle. This is 

primarily due to the fact that inventions were very rarely patented until the final quarter of the 

twentieth century [186]. This is immediately observable by examining the cumulative number 

of patent applications from 1900 to 1980, with the cumulative number never exceeding 2000. 
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There is a noticeable change in the following period, with the period from 1980 to 2020 seeing 

an increase of the number of patent applications by a factor of 7.  

 

Figure 19 Curve of the car headlight technology domain based on the cumulative number of 

patents (focused)  

 

Figure 19 also shows the cumulative number of patent applications over time but focuses on 

the period between 1960 and 2020. This chart provides a more relevant insight into the life 

cycle stages of the examined technology domain, focusing on the period of a contemporary 

level of patent activity. The curve in Figure 19 describes the growth of the technology domain, 

providing insight into its maturity. There is a slow growth of the curve until roughly 1985 

indicating an initiation phase. This is followed by an increase in the curves growth rate, peaking 

at about 2005 and then starting to slow down. Even though the number cumulative number of 

patents continues to increase, the decrease of the rate of growth signals that the technology 

domain is losing momentum [76]. This loss of momentum, roughly starting at around the year 

2012, corresponds to the end of the growth stage and transition to the maturation stage.  

Life cycle analysis based on the dynamic growth analysis 

Using the method outlined in Chapter 5.3, a dynamic growth analysis of a patent citation 

network is conducted based on table containing backward patent citations with the goal of 

exploring whether a correlation exists between the dynamics of patent citation network growth 

and the stages of a technologies life cycle.  
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The patent citation network consists of nodes representing patents and edges representing direct 

citations. The network is generated and continuously recalculated after the addition of a new 

node and link. The whole patent citation network, at the end of its growth, consists of 53.910 

nodes and 73.946 edges. 

The growth analysis provides insight into the network formation and growth dynamics, 

enabling the identification of network’s different growth phases. A positive trend in the growth 

analysis corresponds to a phase where more nodes than edges are added to the network. In the 

context of this research, this means that more new patents than citations are added to the 

network. A negative trend corresponds to a phase where more edges than nodes are being added 

i.e. more citations than patents are being added.  

Figure 20 shows the results of the dynamic growth analysis of the patent citation network. A 

clear period of positive growth can be identified, followed by a shift to a negative trend. It 

should be noted that in this case, the step of the study represents the cumulative number of 

patents in the technology domain. 

 

Figure 20 Technology life cycle of examined technology based on the patent citation network 

analysis 

Figure 21 shows the results of the dynamic growth analysis of the patent citation network 

superimposed with the results of the S – Curve based life cycle analysis. The life cycle stages 

identified by the S – Curve growth are marked on the graph as well as the introduction time of 

significant technologies in the car headlight technology domain based on table one. 
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Figure 21  Growth analysis superimposed with results from S – Curve analysis 

Consequently, Figure 21  provides context to the results of the analysis of the dynamic of patent 

citation network growth. During the growth life cycle stage, more new patents than citations 

are introduced into the network resulting in a positive growth of the graph. During the 

maturation phase, a reduction in the slope of the curve can be observed, followed by a decrease 

in the slope resulting in a negative trend. This means the number of new patents in the 

maturation stage is roughly the same as the number of new citations, indicating that a negative 

trend will follow. Finally, the saturation phase sees a sharp decrease in the slope of the curve 

resulting in an even more pronounced negative trend. This means the saturation phase sees a 

significantly higher number of new citations than new patents. These results are in concordance 

with the most widely accepted theories of technology evolution [16][28][64]. During the growth 

phase of a technology domain, more novel inventions are being introduced, resulting in a higher 

number of patents. As a technology domain matures and starts to stagnate, new inventions are 

rarer and are often the results of the combinations of existing technologies, resulting in a 

relatively higher number of citations related to new patents. 

The first quantitative analysis presented in this subchapter, conducting a life cycle analysis 

based on the cumulative number of applied patents, confirms the findings of previous research 

stating that the number of cumulative patent applications plotted over time follows an S – Curve 

with discernible life cycle phases [40][24].  
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The second quantitative analysis conducts a dynamic growth analysis on a patent citation 

network. While citation data has been used to determine the life cycle stage of a technology, it 

was generally based on examining the number of forward and backward citations or other 

cumulative metrics of patent metadata [24][84][113]. Therefore, the presented approach 

represents a novel approach to exploring a technologies life cycle by exploring the correlation 

between the life cycle stages of a technology and the dynamic of patent citation network growth, 

taking into account both the change of the number of citations and patents.  

6.4. Experimental study – Link prediction 

In this stage of the empirical study, link prediction algorithms are applied to a patent co-citation 

network with the goal of identifying the link prediction algorithms showing the highest success 

in predicting missing links. The patent co-citation network is created based on the algorithm 

outlined in Chapter 5.4. The dataset is segmented into two sets: a training set, on which the link 

prediction algorithms will be applied, and a testing set, which will be used to evaluate the 

precision of the link prediction algorithm. The time where the subset will be split is determined 

based on the results of the technology life cycle analysis. Furthermore, both the training and 

testing sets are segmented into smaller subsets in order to provide further insight into which 

period of a technologies life cycle contributes the most to the accuracy of the link prediction 

algorithm as well as when the predicted missing links occur.  

The end of the growth stage/beginning of the maturation stage, which roughly corresponds to 

step 9000 of the study, is chosen as the split point between the testing and verification subsets. 

Based on the results of the technology life cycle analysis (Chapter 6.3.), it is observed that a 

change in the life cycle stage from growth to maturation corresponds with a change in the 

dynamic of patent citation network growth. To clarify, this period sees the start of the decline 

of growth, meaning more new edges than nodes are added to the network, which makes it a 

promising period to apply a link prediction algorithm. Moreover, to better understand the 

dynamics of the growth of the technology domain, both the training and testing data sets are 

split into smaller subsets, in line with Figure 15. The largest training subset consists of the entire 

training set, with each subsequent subset progressively smaller in size, resulting in nine training 

subsets in total. The testing subset was split into three subsets, each one progressively larger 

than the previous one. This progressive increase is assumed to be adequate to contribute to 

identifying the time frame in which the successfully predicted links occur. Both the training 
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subsets and testing subsets were coded for easier subsequent referencing (Table 22 and Table 

23).  

  

Table 22 Overview of training subsets with matching codes 

Step 

of 

Study 

0-

9000 

1000-

9000 

2000-

9000 

3000-

9000 

4000-

9000 

5000-

9000 

6000-

9000 

7000-

9000 

8000-

9000 

Code T1a T2a T3a T4a T5a T6a T7a T8a T9a 

 

Table 23 Overview of testing subsets with matching codes 

Step of 

Study 

9000-

11000 

9000- 

13000 

9000- 

14113 

Code V1a V2a V3a 

 

A patent co-citation network is created from each of the subsets using the algorithm outlined in 

Chapter 5.4 (Table 17). The four link prediction algorithms presented in Table 19 are applied 

to a patent co-citation network created from subset T8a representing the co-citations created 

from patents applied shortly before the peak of the growth stage. The four link prediction 

algorithms are tested as predictors for future links in a patent co-citation network. The reason 

four different link prediction algorithms are considered is because each describes a different 

underlying intuition of network growth. 

 The four link prediction algorithms are tested by applying each one to a small subset of the 

training dataset, T8a. The reasoning for choosing this particular subset was based on the 

intuitive hypothesis that the period encompassing the end of the growth and start of the 

maturation phase marks a period of a reduced pace of innovation [16][31][64], manifested in a 

patent co-citation network as a period where the number of newly created edges is higher than 

newly created nodes, making it a promising starting point for the application of a link prediction 

algorithm. 
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The precision of each link prediction algorithm, calculated as presented in Eq. 8., as well as the 

AUC, presented in Eq. 7, are shown in Table 24. 

Table 24 Precision of link prediction algorithms applied to T8 (20% cutoff) 

Algorithm Precision AUC 

Resource Allocation Index 0.52 0.64 

Jaccard 0.2 0.41 

Adamic – Adar 0.4 0.78 

Preferential Attachment 1 n/a 

 

Based on the results shown in Table 24, it is clear the preferential attachment link prediction 

algorithm shows the highest precision when applied to the co-citation network created from 

subset T8a. Note that because of a precision of 1, the AUC can not be calculated. Based on 

these results, the Preferential Attachment link prediction algorithm is chosen to be applied to 

the rest of the training subsets. To reiterate, the Preferential Attachment link prediction 

algorithm is a greedy algorithm devised based on the insight that, in most real networks, new 

edges are not created randomly but have a higher probability of connecting nodes that have a 

higher degree (higher number of connections) [176]. Similarly, in the context of this research, 

it is reasonable to assume that patents having a higher number of citations also have a higher 

chance of being cited again. The class of system might then be described by a model based on 

a preferential attachment mechanism, more commonly known as a rich – get–richer mechanism. 

To reiterate, the preferential attachment score of node u and node v is defined as: 

 

 𝑆𝑖𝑚(𝑢, 𝑣) = |Γ(𝑢)| ⋅ |Γ(𝑣)| Eq. 9 

where Γ(u) denotes the set of neighbours of node u and Γ(v) denotes the set of neighbours of 

node v. The basic premise is that the probability that a new edge involves node x is proportional 

to |Γ(x)|, the current number of neighbours of x. 

The Preferential Attachment link prediction algorithm is applied to the rest patent co-citation 

networks created from the training dataset subsets (T1a-T9a, Table 22). As mentioned in the 

chapter outlining the design of empirical research (Chapter 5.4), link prediction algorithms 

output very large datasets containing the similarity scores of all possible links that can occur 

within the network the algorithm was applied to. As a large percentage of those scores equals 
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zero, or are very low, a cut-off value is determined in order to verify the predicted links in a 

practical way [171].  In this research, the cut-off values are determined as percentages of the 

maximum calculated similarity value. For example, a cut-off rate of 80% would filter out all 

predicted links with a similarity measure value less than 80% of the maximum predicted 

similarity measure values. 

The results of the Preferential Attachment link prediction algorithm can be seen in Table 25 - 

Table 27. The link prediction algorithm was the most precise when applied to these three subsets 

(T7a-T9a). As the results of the preferential attachment link prediction algorithm applied to 

subsets T1a-T6a all showed a lower level of precision compared to T7a-T9a, only the results 

based on subsets T7a-T9a are presented in this chapter while the rest of the results can be found 

in the Appendix. The first subset showing noticeably high precision is T7a, demonstrating a 

high precision when the cut-off value is set to 90%, the precision then dropping when the cut-

off value is reduced (Table 25). However, the subset T8a demonstrates a noticeable increase in 

precision, reaching a value of 1 in the top 10% and top 20% of predicted links, and dropping to 

0.95 in the top 30% and top 40% of predicted links (Table 26). The precision decreases 

drastically in the T9a subset, never rising over 0.77 ( Table 27), which is an intuitive result 

since this training subset is half the size of the other training subsets, implying the sample size 

is not large enough for the link prediction algorithm to make accurate predictions.  Based on 

these results, it can be deduced that, in order to get accurate results, the preferential attachment 

link prediction algorithm needs to be applied to only the patents close to the end of the growth 

stage and the start of the maturation stage. This is a significant finding because the link 

prediction process is very resource and time intensive. Consequently, any reduction in the 

testing dataset size dramatically improves the performance of the algorithm.  

Table 25 Link prediction results for T7a 

Percentage of 

predicted links 

being verified 

Similarity 

measure 

value 

Number of 

predicted 

links 

Number of 

correctly 

predicted 

links 

Precision AUC 

Top 10 % 247 295 12 11 0.91 0.81 

Top 20 % 219 820 60 56 0.93 0.61 

Top 30 % 192 342 588 541 0.92 0.59 

Top 40 % 164 865 1 045 918 0.87 0.61 
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Table 26 Link prediction results for T8a 

Percentage of 

predicted 

links being 

verified 

Similarity 

measure 

value 

Number of 

predicted 

links 

Number of 

correctly 

predicted 

links 

Precision AUC 

Top 10 % 199 836 7 7 1 1  

Top 20 % 177 632 38 38 1 1  

Top 30 % 155 428 294 282 0.95 0.55 

Top 40 % 133 224 2 483 2 381 0.95 0.62 

 

Table 27 Link prediction results for T9a 

Percentage of 

predicted 

links being 

verified 

Similarity 

measure 

value 

Number of 

predicted 

links 

Number of 

correctly 

predicted 

links 

Precision AUC 

Top 10 % 99 014 633 490 0.77 0.87 

Top 20 % 88 012 2 409 1 058 0.43 0.58 

Top 30 % 77 011 8 732 1 980 0.22 0.82 

Top 40 % 66 009 51 281 2 149 0.04 0.93  

 

The results from Table 25 - Table 27 are summarised and presented in Figure 22, showing how 

the precision of the preferential attachment link prediction algorithm changes applied to the 

different training datasets and in relation to the change of the cut-off value.  
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Figure 22 Relationship between the cut-off value, precision and training dataset size 

Table 28 - Table 30 show the approximate time frame it takes for the predicted links to occur 

after the time point where the prediction algorithm was applied (the end of the growth stage). 

The occurrence of the predicted links is compared with the testing subsets outlined in Table 23. 

Based on the results, most of the predicted links are created in the near to mid future, while a 

small number of predicted links is created at a later time. 

Table 28 Occurrence time of predicted links for subset T7a 

Percentage of 

predicted links 

being verified 

Number of correct 

predictions in V1 

Number of 

correct 

predictions in V2 

Number of correct 

predictions in V3 

Top 10 % 6 6 6 

Top 20% 11 13 19 

Top 30% 25 31 50 

Top 40% 421 435 663 
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Table 29 Occurrence time of predicted links for subset T8a 

Percentage of 

predicted links 

being verified 

Number of correct 

predictions in V1 

Number of correct 

predictions in V2 

Number of correct 

predictions in V3 

Top 10 % 7 7 7 

Top 20% 32 38 38 

Top 30% 251 282 282 

Top 40% 2 164 2 379 2 381 

 

Table 30 Occurrence time of predicted link for subset T9a 

Percentage of 

predicted links 

being verified 

Number of correct 

predictions in V1 

Number of correct 

predictions in V2 

Number of correct 

predictions in V3 

Top 10 % 156 489 490 

Top 20% 348 1 056 1 058 

Top 30% 863 1 975 1 980 

Top 40% 902 2 140 2 149 

 

The results from Table 28 - Table 30 are illustrated in Figure 23 Occurrence of predicted links, 

a percent stacked bar chart displaying the distribution of the predicted links within the testing 

subsets V1a – V3a aggregated by training subset and cut-off value. For example, it is observable 

that in the case of applying the link prediction algorithm to dataset T7a and setting the cut–off 

value to the top 20% of results, roughly 60% of the predicted links occur in the V1a testing set, 

10% in the V2a testing set and 30% occur in the V3a testing set.  
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Figure 23 Occurrence of predicted links 

6.5. Highlights of the results of the first empirical study  

In this case study, the evolution of a mature technology domain is studied, and the ability to 

predict its future development is explored. The technologies maturity was determined based on 

a review of relevant literature and verified by talking with experts from the automotive field. 

The knowledge that the studied technology is in the mature stage of its life cycle allows for 

some presumptions based on the insights gathered from Chapter 2. 

The first part of the empirical analysis consisted of a life cycle analysis of the studied 

technology domain. This was done by plotting a curve showing the cumulative number of 

applied patents over time. The result was an S–shaped curve which is consistent with the 

insights from the theoretical background, which states that a technology follows an S-curve 

during its life cycle. As the studied technology domain is in the mature stage of its life cycle, 

the fact that the plotted curve roughly follows an S-shape aligns with previous knowledge. It 

should be noted that because of the extremely large timespan over which the cumulative number 

of patents was plotted (118 years), there was a significant long tail in the plotted curve. This is 

primarily because the frequency of patenting activity was significantly lower at the time when 

the technology domain was in its inception. Consequently, the cumulative number of patent 

applications did not significantly grow for a considerable period in the technology’s life cycle, 

which was noticeable in the visualisation of the cumulative number of patents over time (Figure 

18). This was rectified by creating a second visualisation of the cumulative number of patents 
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over time (Figure 19), with all of the patent applications before 1960 removed. The resulting 

curve presents a visualisation of the technology domain life cycle more relevant to this research 

and enables the identification of life cycle stages.  

The method for analysing the growth dynamic of a patent citation network, introduced in 

Chapter 5.3, was applied to the patent citation network created from the retrieved patents. The 

results of the dynamic growth analysis were then compared with those from the technology life 

cycle analysis based on the cumulative number of patents. Superimposing the results from both 

analyses, several distinctions can be identified. First, the growth analysis of the citation network 

based on the studied technology domain consists of two discrete phases. In the first phase, the 

growth curve follows a generally positive trend, which is followed by the second phase, where 

the growth curve follows a negative trend (Figure 20). To reiterate, a positive growth trend in 

the dynamic growth analysis means the number of new patents introduced in the network is 

greater than the number of citations, which can be interpreted as the average number of citations 

per patent being very low. A negative growth trend in the dynamic growth analysis means the 

number of new edges surpasses the number of new nodes, meaning the average number of 

citations per patent is high. It is important to note that the transition period in the dynamic 

growth analysis graph, where the growth trend of the curve changes from positive to negative, 

corresponds to the start of the maturation phase identified based on the results of the technology 

life cycle analysis visualising the cumulative number of patents over time (Figure 21). 

Consequently, these results demonstrate the existence of a correlation between the dynamics of 

the life cycle stage of a technology domain and the dynamic of patent citation network growth.  

The first half of a technologies life cycle covering the initiation and growth stage, designated 

in Figure 21 simply as “growth”, shows a trend where more new patents than citations are being 

introduced. Viewed in a technology evolution context, this means that the growth stage of a 

technologies life cycle consists of predominantly original and innovative inventions. This is not 

to say that these inventions are not based on previous work, simply that the patenting trend 

shows a higher level of innovations than the second part of the technologies life cycle. The 

second part of the technologies life cycle, consisting of the maturation and stagnation stage, 

shows an increase in the number of citations in relation to new inventions. In a technology 

evolution context, this means that the added inventions show a decreased level of innovation, 

being based in large part on prior inventions. These findings are consistent with previous 

research and the theoretical background related to qualitative insights regarding the evolution 

of technology which state that most technologies start as a series of radical inventions, showing 
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a high degree of innovativeness, manifested in our case as a phase of a relatively low number 

of citations per patent. As the technology matures, it becomes less innovative and more an 

incremental improvement of existing inventions. This reduction of innovativeness is manifested 

as a relative increase in the number of citations per patent. These results provide insights into 

the nature of the dynamic growth of patent citations over a technologies life cycle as well as 

affirm the dynamic growth analysis of a citation network as a method for determining a 

technologies life cycle phase.  

Following the results of the dynamic citation network growth analysis, the applicability of using 

link prediction algorithms to describe the growth of a patent co-citation network, and predict 

the future development of technology, was explored. The dataset containing patent citation data 

was segmented into two sets, a training set and a testing set. The time of the split was determined 

based on the results of the technology life cycle analysis. Both sets were segmented into smaller 

subsets and patent co-citation networks were created based on these subsets (Table 22 and Table 

23). Then, four link prediction algorithms were applied to the subset of the training set close to 

the transition between the growth and maturation stages with the goal of identifying the link 

prediction algorithm most successful in predicting missing links i.e. missing patent co-citations. 

Out of the four applied link prediction algorithms, only the Preferential Attachment algorithm 

had any meaningful success in predicting missing links promise. This algorithm is a greedy 

algorithm following a “rich get richer intuition”, meaning nodes with a larger number of edges 

have a higher probability of gaining even more edges. In the context of this research, this would 

mean that patents being cited more often have a higher chance of being cited again. Based on 

the algorithm’s success, it was applied to the co-citation networks created from the other 

training subsets with the goal of providing additional insights into the dynamics of patent co-

citation creation. Table 25 - Table 27, as well as Figure 22, show that newer patents have a 

greater chance of being co-cited following a rich-get-richer intuition. This build upon the work 

of Small et al. [158], who studied the citation dynamics of research papers and found that papers 

that are more recent, or have a higher number of citations, have a greater chance of being cited 

again. This quantitatively implies that new inventions often contain co-contributions from 

relatively recent knowledge, i.e. the knowledge flows from newer patents. Moreover, Table 28-

Table 30, as well as Figure 23, demonstrate that most of the predicted co-citations occur in the 

near future. This is again consistent with the findings of Small (Small, 2005), who shows that 

highly cited papers have a tendency to be cited again in the near future.  
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7. EMPIRICAL STUDY – EMERGING TECHNOLOGY 

DOMAIN 

This chapter presents the results of the second empirical study focused on exploring the 

evolution of an emerging technology. An overview of the technology is provided, as is the 

method for dataset creation. A life cycle analysis is conducted, and the results are compared to 

previous research. After the life cycle analysis, a link prediction algorithm is chosen and 

applied to a patent co – citation network with the goal of exploring the underlying intuition of 

network growth and predicting the future development of the technology. 

7.1. Technology background – Analog Neural Networks 

The second empirical study presented in this thesis explores the technology domain of 

Neuromorphic hardware. These are hardware systems that use electronic analogue circuits to 

mimic the neuro-biological architectures present in the nervous system. Analog Neural 

Networks implemented in VLSI (Very Large Scale Integration) systems is at present the only 

feasible alternative to modelling biological neural networks numerically [187]. Dedicated 

processing units emulate the behaviour of neurons directly in the hardware, and a web of 

physical interconnections allow for the rapid exchange of information. 

While the earliest introduction of the concept of neuromorphic engineering is difficult to 

identify (source state ranges from the mid-1970s to late 1980s [188]), the first examples of a 

programmable neural array occurred in 2006, with the majority of advances happening in the 

last decade. The relatively recent introduction of this technology, as well as its potentially 

disruptive effect, makes it an example of disruptive technology as defined in Chapter 2.1.3. The 

rationale for considering this technology domain as emerging and disruptive is reinforced by 

the existing literature, which views this technology as disruptive [189][190] and white papers 

and reports [191] written by domain experts who also view this technology as potentially 

disruptive.  

7.2. Dataset creation 

The dataset creation step is analogous to the dataset creation process described in Chapter 6.2, 

as well as in the chapter describing the design of empirical research (Chapter 5.2). However, a 

few caveats should be mentioned. The relatively recent time of the technology domains 

introduction means it is represented by a significantly fewer number of patents compared to a 
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mature technology. Furthermore, because of the emerging and disruptive nature of the 

technology domain, the nomenclature of the field is not yet standardized, meaning different 

terms are used to describe the same technology. Moreover, these terms are occasionally 

misused, describing technologies unrelated to the technology domain. This increased the 

difficulty of creating a representative dataset of relevant patents, consequently increasing the 

importance of conducting a manual examination of the retrieved patents. 

Data Retrieval 

The method based on the one outlined in Chapter 5.2  was used to retrieve patents relevant to 

the studied technology domain. The keyword pair “Neuromorphic Hardware” was used as the 

basis of the patent database search, followed by an analysis of the preliminary results and 

identification of the CPC codes most relevant to the field. Table 31 shows the most frequent 

CPC codes used to classify patents within the retrieved dataset and their definitions. 

Table 31 The most frequent CPC codes for the retrieved dataset 

CPC Code Definition 

GO6N3 Computer systems based on biological models. 

G11C Information storage based on relative movement between 

record carrier and transducer. 

 

The retrieved patent dataset was manually filtered, patents not related to the technology domain 

being filtered out. 

The dataset, after the filtering process, consists of 1000 patents. The oldest patent has the 

application year of 1989, while the youngest patent has the application year of 2019. Two tables 

are created from the retrieved patents, one containing all of the metadata related to the patents 

expect citations and the second one containing backward patent citations. This split of data is 

covered in Chapter 5.2  and illustrated in Figure 11.  

 

7.3. Empirical study - Technology Life Cycle analysis 

In this step, a life cycle analysis of the studied technology domain is conducted. As in Chapter 

6.3, a technology life cycle analysis is conducted based on the cumulative number of patents 

applications over time, followed by a dynamic growth analysis of a patent citation network. 
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TLC analysis based on the cumulative number of patent applications 

Figure 24 shows the results of the TLC analysis of the emerging technology based on the 

cumulative number of patents.  

 

Figure 24 Curve of the Neuromorphic hardware technology domain based on the cumulative 

number of patents 

It is immediately discernible that the TLC curve in Figure 24 does not follow the S-shaped 

pattern characteristic for mature technologies (Figure 19). In this study of an emerging 

technology domain, the TLC cure shows a period of almost non-existent growth followed by a 

sudden increase in the cumulative number of patents. This sudden exponential growth is 

characteristic for new technologies at the end of the emergence stage and growth stage of their 

life cycle [24] and reinforces the fact that the observed technology domain is emerging in 

nature. Unlike the chart in Figure 19 showing the TLC curve of a mature technology domain, 

Figure 24 does not show clear boundaries between life cycle stages.  

Life cycle analysis based on the dynamic growth analysis 

Using the method outlined in Chapter 5.3, a dynamic growth analysis is conducted on the patent 

citation network constructed based on the table containing patent citation data for the studied 

technology domain. The patent network at the end of the dynamic growth analysis consists of  

7280 nodes and 525087 edges. 

Figure 25 shows the results of the dynamic growth analysis of the patent citation network. 
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Figure 25 Technology life cycle curve of the examined technology domain based on the patent 

citation network growth analysis 

Examining the results shown in Figure 25, it is worth noting that the curve starts with a 

noticeable negative trend, followed by a sharp positive trend. A negative trend in the curve 

means more edges than nodes are being added in this time period. In the context of this research, 

this means that new inventions in this time period cite a lot of prior inventions. However, an 

increase in the curve slope illustrates a period of high innovation, as a positive slope of the 

curve means more new nodes than edges are being added. In the context of this research, this 

means more inventions than citations are being added, signalling a period where there is an 

increase in original inventions, i.e. inventions that do not significantly build upon previous 

work. 

Figure 26 shows the results of the S – curve-based life cycle analysis superimposed on the 

results of the growth analysis. The time identified in Figure 24 as the time at which the 

cumulative number of patents starts to rise exponentially is marked on the results of the dynamic 

growth analysis with the year corresponding to the time of the start of the growth.  
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Figure 26 Growth analysis superimposed with results from the S-Curve analysis 

Figure 26 provides context to the results of the dynamic growth analysis of the patent citation 

network. Superimposing Figure 24 and Figure 25 show us that the rapid increase in the 

cumulative number of patents corresponds with an increase in the ratio of new patents related 

to new citations. This could mean that this time marks the start of the growth phase of the 

emerging disruptive technology, which is in line with the theoretical background studying 

technology evolution presented in Chapter 2.1.3, covering disruptive evolution. There, the 

evolution of a disruptive technology is characterized by a rapid increase in the number of highly 

innovative inventions. The rapid increase of the number of inventions is demonstrated in Figure 

24, while the high level of the inventiveness of the invention is demonstrated in Figure 25.  

Contrasted with the results of the TLC analysis of the mature technology, outlined in Chapter 

6.3, Figure 26 does not show the occurrence of key technologies within the technology domain, 

primarily because of the emerging and disruptive nature of the technology domain which makes 

the identification of key technologies impossible at this time, i.e. no key technologies are 

considered “key”. Similarly, no life cycle stages are marked in Figure 26, as the sharp increase 

in the number of patent applications can be interpreted as both a part of the emergence stage as 

well as a transition between the emergence and growth stage. 

7.4. Experimental study - Link prediction 

The four link prediction algorithms outlined in Table 19 are applied to the training subsets as 

outlined in Chapter 5.4. Because the technology domain studied in this chapter is in its infancy, 
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it has no discernible boundaries of technology life cycle stages and consists only of the 

emergence stage of a technology’s life cycle. Consequently, unlike the previous study, 

presented in Chapter 6.4, which saw the splitting of the dataset into a single training and testing 

set, roughly at the transition from the growth stage to the stagnation stage, the results of the life 

cycle analysis shown in Figure 14 do not allow for the clear identification of life cycle stages, 

as is expected. Therefore, the segmentation of the dataset into a training and testing set is done 

in line with Figure 16. Nine training sets are created as well as nine testing sets, each training 

set increasing in size by 100 patents while each testing set decreasing in size by 100 patents. 

Consequently, the first training subset consists of the first 100 patents in the technology domain, 

with each subsequent subset increasing in size by an additional 100 patents (Table 32). 

Analogously, the first testing subset consists of the 900 patents from the technology domain not 

in the training subset, with each subsequent one decreasing in size by 100 (Table 33). Both the 

training subsets and testing subsets were coded for easier subsequent referencing (Table 32 and 

Table 33). 

Table 32 Overview of training subsets with matching codes 

Step of 

study 

0-100 0-200 0-300 0-400 0-500 0-600 0-700 0-800 0-900 

Code T1b T2b T3b T4b T5b T6b T7b T8b T9b 

 

Table 33 Overview of testing subsets with matching codes 

STEP 

OF 

STUDY 

100-

1000 

200-

1000 

300-

1000 

400-

1000 

500-

1000 

600-

1000 

700-

1000 

800-

1000 

900-

1000 

CODE V1b V2b V3b V4b V5b V6b V7b V8b V9b 

 

A patent citation network was created from each of the training and testing sets, and the patent 

citation networks were then converted into a patent co-citation network using the algorithm 

outlined in Chapter 5.4. 

Application of link prediction algorithm 

Each of the four link prediction algorithms was applied to the patent co-citation networks 

created from the training dataset subsets (T1b-T9b, Table 32), and the results were validated on 
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the patent co-citation network created from the testing subsets (V1b-V9b, Table 33). The 

summary of the results of each analysis are presented in Figure 27 - Figure 30, showing how 

the precision of each of the applied link prediction algorithms changes the applied different 

training datasets and in relation to the change of the cut-off value. Because of the large number 

of analyses that were made, the tables detailing the results of each analysis aren’t presented in 

this part of the thesis but are presented in Appendix A. Figure 27 - Figure 30 represent an 

overview of the tables presented in Appendix A. 

 

 

Figure 27 Relationship between the cutoff value, precision and training dataset size 

(preferential attachment) 

The results presented in Figure 27 significantly differ from those of the first empirical study. 

While the first empirical study saw a pronounced success of the Preferential Attachment link 

prediction algorithm, the other three link prediction algorithms showing a negligible level of 

precision, the second empirical study shows a reversal of results. As is observable in Figure 27, 

in this empirical study, the Preferential Attachment link prediction algorithm showed a 

minuscule level of precision across all training sets and cut-off values, peaking at a precision 

of 0.02 when applied to training subset T2b, but consistently staying at 0 for most of the training 

subsets. A more detailed over of the results of analyses using the Preferential Attachment link 

prediction algorithm is provided in Appendix A, Table A-34-Table A-42. 

Figure 28 shows the results of the Adamic/Adar index link prediction algorithm. Here it can be 

observed that the algorithm showed a drastic increase in performance compared to the 
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preferential attachment link prediction algorithm, Adamic/Adar index showed a higher 

precision. However, the precision also peaked when applied to dataset T1b with a maximal 

precision of 0.69. A steady decrease in the precision of the algorithm can be observed correlated 

with the increase of the training set size, culminating in a precision of 0 for training sets T6b 

and larger. In this algorithm, the common neighbour of a node pair with fewer neighbours 

contributes more to the similarity score than one with a larger number of neighbours. A more 

detailed overview of the analyses results using the Adamic/Adar link prediction algorithm is 

provided in Appendix A, Table A-7 - Table A-15. 

 

 

Figure 28 Relationship between the cutoff value, precision and training dataset size 

(Adamic/Adar index) 

 The performance of the Jaccard Coefficient link prediction algorithm is illustrated in Figure 

29. Similarly, to the results of the Adamic/Adar index link prediction algorithm, the precision 

of this algorithm peaks at the subset T1b with a maximal precision of 0.48. Also, similarly to 

the results of Adamic/Adar, this precision decreases correlated to the increase in the size of the 

training set, staying below a precision of 0.1. Jaccard treats all neighbours of a node as a set 

and the prediction is done by computing and ranking the similarity of the neighbour set of each 

node. A more detailed overview of the analyses results using the Jaccard Coefficient link 

prediction algorithm is provided in Appendix A, Table A-16 - Table A-24. 
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Figure 29 Relationship between the cutoff value, precision and training dataset size (Jaccard) 

 

Figure 30 Relationship between the cutoff value, precision and training dataset size (RAI) 

Finally, the precision of the Resource Allocation Index link prediction algorithm is presented 

in Figure 30. The Resource Allocation Index shows moderate precision, peaking when applied 

to dataset T1b with a maximal precision of 0.44, with the precision decreasing as the size of the 

training dataset increased. The Resource Allocation Index assumes that a node can send some 

resource to another node, with their common neighbours playing the roles of transmitters. Each 

transmitter has a unit of resource, and will averagely distribute it to all neighbours. A more 
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detailed overview of the analyses results using the Resource Allocation Index link prediction 

algorithm is provided in Appendix A, Table A-34 - Table A-42. 

Contrasted to Chapter 6.4, presenting the results of the empirical study of the mature 

technology, this study doesn’t present an overview of the time frame in which the predicted 

links occur. This is because the extremely low number of successfully predicted links in this 

study, as well as the low precision of results, mean pursuing further analysis of the results would 

not contribute to this research in a meaningful way. Further implications of these results are 

covered in the discussion chapter of this thesis (Chapter 8).  

7.5. Highlights of the results of the second empirical study 

In this case study, the evolution of an emerging technology is studied. The technology is studied 

according to the research methodology outlined in Chapter 5, the same as the previous case 

study. However, some insights gained from the previous case study are applied in this one.  

The first part of the empirical analysis consisted of a technology life cycle analysis based on 

the cumulative number of patents over time. The results of this analysis, shown in Figure 24, 

show a curve that starts out flat and then rises exponentially. These results are consistent with 

the theory describing both disruptive technologies and technologies in the emerging stage of 

their life cycle, which are characterized by a sharp increase in the number of introduced 

inventions. Moreover, it confirms that a technology life cycle analysis based on the cumulative 

number of patents can be used to identify technologies in the beginning of their life cycle. 

The method for analysing the growth dynamic of a patent citation network, introduced in 

Chapter 5.3, was applied to the citation network created from the table containing patent 

citations. The results from the dynamic growth analysis were then compared to those from the 

technology life cycle analysis based on the cumulative number of patents. Superimposing the 

results from both analyses, several distinctions can be identified. First, the growth analysis of 

the citation network based on a disruptive technology follows a “u” shaped pattern, starting 

with a negative trend followed by a positive growth trend. In the context of this research, a 

negative trend means the number of citations is greater than the number of new patents, while 

a positive trend means the opposite. It is important to note that superimposing the start of the 

exponential growth of the cumulative number of patents with the results of the dynamic growth 

analysis shows that the shift from a negative growth trend to a positive growth trend roughly 

corresponds to the start of an exponential growth of the cumulative number of patents. This is 

a significant insight as it confirms the findings from the first case study, which identified that 
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the growth phase of a technology domain is characterised by a higher ratio of newer inventions 

to citations. The initial negative growth rate in the dynamic growth analysis is explained by the 

fact that the first patents considered part of the technology domain still cite knowledge from 

incumbent technologies. Because the number of patents in this dataset is relatively small 

compared to that found in mature technologies, this phenomenon is easily identifiable. The 

technology starts becoming truly disruptive at the point where its cumulative number of patents 

starts to rise sharply and the ratio of inventions to citations increases.   

As outlined in the research methodology chapter (Chapter 5.4), four link prediction algorithms 

were applied to the training subsets created from the dataset (Table 32). As is demonstrated in 

Figure 27 - Figure 29, none of the link prediction algorithms achieved the precision the 

Preferential Attachment link prediction algorithm achieved in the previous study. The 

Adamic/Adar index showed moderate precision when applied to subset T1b followed by the 

Resource Allocation index link prediction algorithm and the Jaccard Coefficient link prediction 

algorithm. The Preferential Attachment link prediction algorithm showed a negligible level of 

precision in this study. These results are not surprising given the unpredictable nature of 

disruptive technologies, as covered in Chapter 2.1.3. It should be noted that the Preferential 

Attachment link prediction algorithm showed low precision when applied to subsets containing 

patents from the growth phase of the technology life cycle in the first case study.  
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8. DISCUSSION  

The eighth chapter of this thesis provides a discussion of the results of the two studies, 

contextualising them with the insights obtained from previous research. The goal of the 

discussion is to relate the findings with the review of literature and research questions, making 

an argument to confirm the thesis hypothesis and support the overall conclusion.  

In this research, formalized records of invention are used as proxies for technologies in order 

to study the flow of knowledge within a technology domain and its correlation to the life cycle 

stages of a technology.  This is done with the aim of expanding the theoretical fields of study 

related to the field of knowledge and technology management by gaining new insight into how 

a technology domain evolves, primarily by enhancing the understanding of how a technology’s 

life cycle can be determined based on formalized records of invention, namely patents, and then 

by exploring the intuition governing the flow of knowledge elements within a technology 

domain. Moreover, another aim is to demonstrate that having a deeper understanding of the 

nature of the phenomenon enables researchers to explore not only the existing knowledge 

element flow within a technology domain but also predict the future flow of knowledge 

elements. In a managerial context, this would also reduce uncertainty for different decision 

makers and stakeholders, as determining the potential direction of the development of a 

technology domain, can support strategic and long–term planning of the development of 

products, processes and services as well as broader corporate strategy related to a company’s 

knowledge portfolio 

The research questions stated in Chapter 1 are answered and the following chapters will 

contextualize the results of the conducted empirical studies within each of the thesis research 

questions. Based on the research question's answers, the hypothesis's validity stated in Chapter 

1 is discussed.  

 

8.1. Research Question 1 

Can the dynamics of patent citation creation be used to determine the life cycle stages of a 

technology domain? 

Patent applications have a history of being used to determine the life cycle stages of a 

technology [168][23][24]. In this thesis, the relationship between the dynamics of patent 
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citation creation and the life cycle stages of a technology domain is explored. An attempt is 

made to find a correlation between the results of a dynamic growth analysis of a citation 

network of patents representing a technology domain and the technology domains life cycle 

stages, i.e. if changes in the dynamics of patent citation network growth can be used to identify 

the life cycle stages of a technology domain. In order to answer the first research question, two 

empirical studies are conducted, the first one studying a mature technology domain, namely car 

headlights, and the second empirical study studying a disruptive technology domain, namely 

neuromorphic hardware. 

The dynamic growth analysis of the patent citation network created from the mature technology 

domain shows three distinct phases (Figure 20). First, the growth curve follows a pronounced 

positive trend, followed by a period of stagnation from step 8000 to 9000, and finally a 

pronounced negative trend from step 9000 until the end of study. These results are interesting 

when superimposed with the results of the life cycle analysis conducted based on plotting the 

cumulative number of patents over time, one of the more common patent based methods for 

determining the life cycle stages of a technology used [24]. The visualization of the results 

based on this method follows an S-shaped curve, which fits with previous research studying the 

life cycle stages of a technology [24][168] [129] as well as Presumption II of the theoretical 

framework. Based on the results of previous research [24][151], the midpoint of the S – curve 

roughly represents the period where the technology transitions from the growth stage to the 

maturation stage. Superimposing the results of the dynamic growth analysis and the analysis 

based on the cumulative number of patents, it can be observed that the step of study where the 

midpoint of the S–curve occurs roughly corresponds to the step of study where the trend of 

growth in the dynamic growth analysis changes from positive to negative (Figure 21). 

Consequently, it can be stated that the transition of a technology domain from a growth phase 

to a maturation stage correlates with a drastic change in patent citation patterns.  

These results are in line with the theoretical background and previous research. Focusing on the 

transition between growth and maturation, this period sees the transition from the introduction 

of predominantly key technologies to the introduction of predominantly pacing technologies 

[44]. The higher number of new patents in relation to the number of citations observed in the 

initiation and growth phases is in line with the knowledge that an invention introduced in these 

stages is more novel and innovative, focusing more on original inventions than those influenced 

by prior work [71][9]. However, the maturation and stagnation stages see a period in the 

technologies life cycle where true innovation becomes increasingly rare, and new inventions 
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are mostly recombinations of existing inventions within the field or are simple incremental 

improvements of existing technology [64][65]. Consequently, observing the shape of the 

growth curve, a positive trend in the initiation and growth phase followed by a negative trend 

in the maturation and stagnation phases, confirms the intuition that patents in the first half of a 

technology domains life cycle contain fewer citations than those in the maturation and 

stagnation phase.  

The results of the dynamic growth analysis of the patent citation network created from the 

emerging technology domain significantly differ from those created from the mature 

technology domain. It starts with a pronounced negative slope of the curve, bottoming out at 

around step 300 of the study. A reversal can then be observed, marked by a curve with a positive 

slope rising until the end step of the study (step 1000). The results of the life cycle analysis of 

the emerging technology based on the cumulative number of patents application also differs 

from those based on the mature technology. Unlike the results of the mature technology, which 

when visualized followed an S-shaped curve, the results of the emerging technology start with 

a barely noticeable growth of the curve whose slope starts increasing at roughly step 200 of the 

study and starts to exponentially rise at step 300. As is noted by Haupt et al. [168], this low 

number of patent applications is characteristic of the beginning of a new technologies life cycle, 

as the fundamental scientific and technological problems have yet to be resolved. The sudden 

increase in the cumulative number of patents is characteristic of the start of the growth stage of 

a technology domains life cycle [152]. While the results of both analyses significantly differ 

from the results based on the analysis of mature technology, superimposing the results of the 

dynamic growth analysis with that based on the cumulative number of patent applications 

demonstrates allows for an observance of a similar phenomenon as in the previous experiment 

(Figure 26). More specifically, superimposing the results of the two analyses shows the start of 

the growth phase, as identified in Figure 24, roughly corresponds with the change of curve slope 

from negative to positive in the dynamic growth analysis. Observing the dynamics of patent 

citation growth, a significant difference can be noticed when compared to the dynamics of the 

mature technology. While the mature technology sees a change in its citation trend at the 

transition from growth to maturation, here this transition happens at the start of the rapid 

increase in the number of the cumulative number of patent applications. Contextualized within 

the theory of technological evolution, this change of citation dynamics is intuitive and in line 

with the theoretical background [71][9]. The inventions occurring at the very beginning of a 

technology domain are probably a product of synthesizing knowledge from other technology 
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domains, as is often the case in the introduction of new technologies [64], or they may start as 

radical changes of incumbent technologies which then veer off and become disruptive [74]. 

True innovation starts with the exponential rise of the number of inventions within a technology 

domain, signalling a period of increased creativity and inventiveness. Therefore, this period 

sees a reduction of the number of citations related to the number of new inventions, as these 

inventions are presumed to be truly innovative, or in this case, disruptive.  

Still, it is a point of discussion as to why this change in the citation trend, occurring in the 

transition between the emergence and growth stages, is not observable in the growth curve 

exploring the mature technology domain. Several possible explanations can be offered. The 

most obvious one is that the extreme difference in the size of the datasets representing the two 

technology domains causes certain details visible in the analysis of the smaller dataset to be 

unnoticeable when analyzing the larger one. To be more precise, the dataset describing the 

emerging technology consists of 1000 patents, while the one describing the mature technology 

consists of 14 114 patents. Consequently, it is plausible to assume that the resolution of the 

growth curve describing the mature technology domain is simply too low to show slight changes 

in the patenting trend occurring at the start of the technology’s life cycle. Another possible 

explanation is that the mature technology domain has such an early time of inception, and the 

technology so fundamental, that there were no cross-domain citations at its inception.  

In either case, the results presented contribute to a clearer understanding of the relationship 

between the dynamics of patent citations and the life cycle stage of the technology domain by 

introducing a new method for studying the dynamic growth of a patent citation network. It is 

undoubtedly shown that a correlation exists between the life cycle stages of a technology 

domain and the dynamics of patent citation, providing an answer to Research Question 1. A 

summary of the discussion related to Research Question 1 is provided in Table 34. 
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Table 34 Summary of discussion related to RQ 1 

Study Implication Limitation Recommendation for 

future work 

Mature 

technology 

domain 

Patent citation 

growth chart consists 

of three stages: 

positive growth, 

stagnation and 

negative growth 

 

Change of chart slope 

correspond to change 

of life cycle stage 

from growth to 

maturation 

Single study Study a larger number of diverse 

technology domains to generalize 

results. 

Emerging 

technology 

domain 

Change of chart slope 

correspond to change 

of life cycle stage 

from initiation to 

growth 

Unclear if an increase in 

the cumulative number of 

patents denotes a change 

in life cycle stage 

Study a larger number of diverse 

technology domains to generalize 

results. 

 

Some limitations should be noted. A generalization of these results is limited by the nature of 

the technologies being studied, a single technology from each category being studied (mature 

and emerging). Further research should focus on applying the methods presented in this thesis 

on a wide and diverse number of technologies from different technology fields and different 

life cycle stages. This would contribute to understanding the particularities of citation patterns 

of a more comprehensive array of technology and contribute to further understanding the 

relationship between citation patterns and technology life cycle stages. 

 

8.2. Research Question 2 

Can examining the occurrence of patent co-citations provide insight into patterns of knowledge 

flow within a technology domain?  

As to provide an answer to research question 2, four link prediction algorithms were compared 

by testing their ability to predict missing links in patent co-citation networks created from 
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patents representing a mature and an emerging technology domain. Since each link prediction 

algorithm uses a different underlying intuition when predicting the occurrence of new links 

within a network, identifying a link prediction algorithm that is precise in predicting new co-

citations within a patent co-citation network consequently contributes to understanding the 

underlying intuition behind the growth of the network.  

Examining the results of the empirical study presented in Chapter 6, studying the mature 

technology domain, the Preferential Attachment link prediction algorithm was shown to be the 

most precise out of the four link prediction algorithms that were compared. This algorithm 

follows a rich – get – richer intuition, meaning nodes with more neighbours have a higher 

chance of establishing new links. In the context of this research, it would mean that patents that 

are cited by a larger number of other patents have a greater chance of being cited again. This 

popularity bias means that highly influential inventions, i.e. inventions that have been 

recombined a large number of times to create new inventions have a greater chance of 

contributing to more new inventions, at least at the beginning of the maturation phase. This is 

in line with the intuitive notion that by the end of the growth phase, established technologies 

exist within a technology domain and the future development of that technology domain 

primarily consists of various recombination’s of these technologies with incremental 

improvements [192][59][4]. It is also in line with previous research which studied the diffusion 

of knowledge using research papers as knowledge containers, finding that highly cited papers 

have a greater chance of being cited again [158]. Moreover, it confirms the results of Smojver 

et al. [167], who used a degree distribution analysis of a citation network, created from a mature 

technology domain, and found that this citation network grows following a popularity bias. The 

technologies influencing a larger number of subsequent inventions have a larger chance of 

influencing even more inventions.  

Applied to an emerging technology domain, the same link prediction algorithms showed 

significantly different results. Out of the four link prediction algorithms, the Adamic/Adar 

index showed the highest level of precision, albeit that precision was moderate to low. This 

algorithm belongs to the “common neighbours” group of algorithms and follows the intuition 

that common elements with large neighbourhoods are less significant when predicting a 

connection between two nodes compared with elements shared between a small number of 

nodes. Presented more simply, common neighbours of low degrees are taken more seriously 

following the Adamic/Adar score. The Jaccard’s Coefficient Index and the Resource Allocation 

index also showed low levels of precision, while the Preferential Attachment algorithm showed 
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a negligible level of precision. Focusing on the results of the Adamic/Adar score in the context 

of this research, the success of this algorithm contributes a clearer understanding of the growth 

of a co-citation network based on an emerging disruptive technology implying that the 

likelihood of a patent being co-cited decreases if that patent has a larger number of existing co-

citations as opposed to a patent with fewer co-citations. These differ significantly from the 

results of the study conducted on the mature technology. In fact, these results show that the 

growth of the co-citation network created from the emerging technology domain follows an 

intuition that is the opposite of the co-citation network created from the mature technology 

domain. While the results of the first empirical study imply that the chance of a patent being 

co–cited increases the more a patent has previously been co–cited, the second empirical study 

implies the reverse is true for an emerging technology at the beginning of its life cycle. The 

relative success of Adamic/Adar score implies that the chance of a patent being co-cited 

decreases as the number of prior co-citations increases, at least in the initial stages of a 

technology’s life cycle. To further contextualize these results within the field of technology 

evolution, this would mean that new inventions, occurring within the growth stage of a 

technology domains life cycle, build upon less popular inventions. This insight is in line with 

the theory describing disruptive technologies as it confirms that these inventions contain a 

higher level of innovation [36][9], distancing themselves from established technologies, i.e. 

inventions with a higher number of co-citations, choosing instead inventions with a lower state 

of diffusion. 

Discussing the results of the two empirical studies, it should be noted that while the most 

successful link prediction algorithm in the first empirical study showed a relatively high level 

of precision, the most successful link prediction algorithm in the second study showed only a 

moderate to low level of precision. This should be addressed in future research, as it should 

focus on applying both link prediction algorithm to a range of diverse technology domains and 

increase the number of positions within the technology domain life cycle where the link 

prediction algorithm will be applied. Nevertheless, the high precision of the algorithm in the 

first empirical study confirms presumption III, outlined in Chapter 4, as it shows that identifying 

the intuition based on which a co-citation network grows can be used to predict future co-

citations. 

This application of link prediction algorithms to a patent co-citation network is a novel approach 

to understanding how these networks grow. It differs from previous citation-based research 

which, in a technology evolution context, mainly focuses on constructing technology evolution 
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trajectories or pathways [113][114][142] and changes in clusters over time [30]. Moreover, as 

opposed to prior work, which uses link prediction in the context of knowledge flow between 

different technology domains [15][126],  this paper focuses on a single technology domain at a 

time and the flow of knowledge within that technology domain. Concerning research question 

2, it is shown that an underlying intuition exists behind the growth of a patent co-citation 

network. This intuition is pronounced at the end of a technology domains growth phase, and it 

can be stated with a relatively high degree of certainty that the growth of a patent co-citation 

network follows a popularity bias at this stage. Moreover, it can be stated that the growth of a 

patent co-citation network at the start of a technology domain life cycle also follows a certain 

underlying intuition, namely a long tail bias. However, this is less pronounced and cannot be 

stated with the same confidence level as the first statement related to the end of the growth 

stage.  

A summary of the discussion related to research question 2 is provided in Table 35. 

Table 35 Summary of discussion related to RQ 2 

Study Implication Limitation Recommendation 

Mature technology 

domain 

Co-citations at the end of 

the growth cycle follow a 

popularity bias 

None Segment training 

dataset in a different 

way and apply link 

prediction algorithm  

Emerging 

technology domain 

Co–citations at the 

beginning of a technologies 

life cycle follow a log tail 

bias 

Lower level of precision; 

questionable reliability of 

conclusion  

Apply the Adamic/Adar 

algorithm to a number 

of diverse disruptive 

technologies 

 

Similar to discussing the first research question, some limitations to the results related to the 

second research question should be noted. The limitation primarily focuses on the results of the 

second empirical study, focusing on the disruptive technology domain. As is demonstrated in 

Figure 27, while the Adamic/Adar link prediction algorithm did prove superior to the other 

three link prediction algorithms in describing the underlying intuition of co-citation network 

growth, it did so with a precision that is significantly lower than the results of the first study. 

While these results imply that an underlying intuition of co-citation network growth does exist, 

and are in line with insights provided in previous research, they should be confirmed by 

applying the Adamic/Adar link prediction algorithm in additional studies of disruptive 

technology domain.   



117 

 

8.3. Research Question 3  

Is it possible to identify which parts of a technology’s life cycle contribute the most to future 

inventions? 

Based on the data outlined in Table 25- Table 27, presenting the results of the empirical study 

of the mature technology, it is demonstrated that a co-citation network created from patents at 

the end of the technology’s growth phase and beginning of its maturation phase provides the 

most accurate results when the link prediction algorithm is applied at the beginning of the 

maturation phase (see Appendix for additional results). These results provide a new 

understanding of the dynamic of patent co-citations, as they show newer patents have a greater 

chance of being co-cited following a rich-get-richer intuition. This is in line with previous 

research studying the correlation of technology life cycle stages and the theory behind 

technology life cycle stages, finding that the transition between the growth and maturation 

phase signals the transition from pacing technologies to key technologies (Figure 7) [24], 

meaning pacing technologies, which appeared in the growth stage, are integrated into new 

products and processes becoming key technologies [24][148]. Moreover, the maturity phase 

primarily consists of incremental innovations [168], meaning most of the inventions created in 

this phase consists of minuscule improvements to previous inventions created in the growth 

phase. These results also positively correlate to the findings of Small [158], who studied co-

citation patterns of research papers and found that the more recent, or highly cited, research 

papers have a greater chance of being cited again. This quantitatively implies that new 

inventions often contain co-contributions from relatively recent knowledge, i.e. the knowledge 

flows from newer patents.  

Based on the data outlined in Figure 27- Figure 30 (and tables provided in Appendix), 

presenting the results of the experimental study of the emerging technology, it is demonstrated 

that the link prediction algorithms achieve the highest precision when applied to a co-citation 

network created from patents at the very start of the technologies life cycle (T1b), after which 

the precision of results starts to diminish. This is shown to be true for the Adamic/Adar index 

(Figure 28), Jaccard Coefficient (Figure 29), and the Resource Allocation Index (Figure 30). 

The Preferential Attachment algorithm showed a negligible level of precision (Figure 27). 

Consequently, it can be surmised that the earliest patents contribute the most to the precision of 

the link prediction algorithm for the emerging technology domain. In interpreting these results, 

it is crucial to reiterate that the link prediction algorithm, most successful in predicting missing 
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links, gives preference to patents with fewer co-citations. The fact that this link prediction 

algorithm shows the highest precision when applied only at the beginning of the emerging 

technology domains life cycle is disappointing, as it implies the intuition governing co-citation 

creation after this period, meaning the start of the growth stage, cannot be predicted. This 

implication, however, does confirm the unpredictable nature inherent to disruptive inventions 

[73][74][71]. Moreover, it is in line with previous research, which found that the time of radical 

innovation, marking the beginning of a technologies life cycle, produces a small number of 

highly innovative inventions, consisting of novel combinations of existing technologies 

[168].To conclude, the results of the second empirical study imply that emerging technology 

domains at the start of their life cycle tend to be influenced by inventions that influenced a 

smaller number of new inventions in the past. However, the relatively low precision of the link 

prediction algorithm brings the reliability of these results into question. 

Table 36 Summary of discussion related to RQ 3 

Study Implication Limitation Recommendation 

Mature 

technology 

domain 

At the end of the growth TLC 

stage, newer patents contribute 

more to future inventions than 

older ones  

Single study Generalise results by 

conducting multiple studies 

of different mature 

technologies 

Emerging 

technology 

domain 

At the beginning of a 

technologies life cycle, early 

patents contribute the most to 

future inventions 

The Small size of testing 

datasets brings the validity 

of results into question 

Conduct the same study of 

emerging technology domain 

containing a larger number of 

patents 

The reliability of the results of the second study are impacted by the relatively low precision 

shown by the link prediction algorithm. Moreover, due to the recent time of the technologies 

introduction, the size of training datasets is comparatively small, further placing the validity of 

the results into question. While emerging disruptive inventions are, by their definition, 

unpredictable, the results presented in this study should be confirmed by applying the same link 

prediction algorithm to a diverse collection of emerging and disruptive technology domains. 
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8.4. Research Question 4 

When are the predicted link, representing knowledge flow, created? 

Exploring the results of the first empirical study (Table 28-Table 30, Figure 23), it is 

demonstrated that most of the predicted missing link, i.e. patent co-citations occur in the near 

future after the time when the link prediction algorithm was applied. Similarly to the results 

related to RQ 3, this period of the technology domains life cycle (the transition for the growth 

to the maturation stage) sees the transition from pacing to key technologies [24]. As this period 

marks the slowdown of innovation and the start of increasingly incremental improvements to 

existing technologies [168], these results confirm the findings of previous research that these 

incremental improvements closely track the original technology [168][148][3]. These results 

are also consistent with the findings of Small [158], who demonstrated that highly cited papers 

have a tendency to be cited again in the near future. Since both papers and patents represent 

knowledge containers, a confirmation of Small’s findings contributes to understanding 

knowledge flows within a domain of knowledge.  In a theoretical context, this provides insight 

into the dynamics of patent co-citations and, by proxy, of knowledge flow dynamics. It 

demonstrates the predictability of short-term knowledge flow based on recent patents. This is 

significant in a forecasting context as it shows the methodology is useful for short term 

predictions of knowledge flow into new inventions. This could prove a valuable resource in an 

industrial context, enabling stakeholders to gain insight into the potential short-term technology 

domain development. 

Regarding the second empirical study, exploring the emerging technology domain, the previous 

part of the discussion has demonstrated that no relevant missing links were predicted, implying 

a very low reliability of the results of the link prediction. Consequently, contrasted to the study 

of the mature technology, no analysis of the time frame when the successfully predicted links 

occur was performed, as this would not contribute to the results of the thesis in a significant 

way. 
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Table 37 Summary of discussion related to RQ 4 

Study Implication Limitation Recommendation 

Mature 

technology 

domain 

 The flow of knowledge 

element, following a rich-get-

richer intuition, occurs in the 

near future after the 

application of the link 

prediction algorithm. 

Single study Generalise results by 

conducting multiple studies 

of different mature 

technologies 

Emerging 

technology 

domain 

Link prediction cannot be 

used to describe the intuition 

behind the flow on knowledge 

elements in an emerging 

technology 

Number of successfully 

predicted link insufficient 

to conduct analysis 

 

Conduct additional studies on 

emerging technologies 

 

8.5. Overview of discussion and relation to the hypothesis 

Based on the results of the two empirical studies, as well as the presented discussion related to 

the research questions, the following conclusions can be made. Based on these conclusions, the 

hypothesis stated in Chapter 1 will be validated. To reiterate, the thesis hypothesis states that: 

The proposed research will verify the hypothesis that, based on the existing records of technical 

inventions, it is possible to model the dynamics of a technology domains development and gain 

insights into the potential future directions of technology development.   

The discussion of the results related to RQ 1 indicates there is a correlation between the 

dynamics of patents citations creation and the life cycle stage of a technology domain 

manifested as a noticeable change in the relation of the number of new patents and the number 

of new citations. This change is apparent when viewing a graphical representation of the 

dynamic growth analysis of a patent citation network. In the case of a disruptive technology 

domain, the sudden increase of the cumulative number of patent applications correlates to a 

distinct change in the results of the dynamic growth analysis, observable as a reversal from a 

negative to a positive trend. In the case of a mature technology domain, the transition from the 

growth to the maturation stage correlates with a change in the results of a dynamic growth 

analysis, discernible by a sharp transition from a positive to a negative trend.  
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The discussion of the results related to RQ 2 - 4 contributes to the understanding of the dynamics 

of patent co-citation creation within a technology domain. The results of the first empirical 

study demonstrate that the dynamics of the growth of a  patent co-citation network, created 

from patents representing a mature technology domain, follows similar dynamics to those of 

research paper co-citations [158], indicating knowledge flow follows a similar dynamic in both 

knowledge containers, namely that patents also have a preferential bias when forming co-

citation. Recent patents, and those with a higher number of citations, have a greater chance of 

being cited again in the near future, at least in the transitional period from the growth stage to 

the maturation stage.  This is an interesting finding as patents, by their nature, contain a different 

type of knowledge than research papers being proxies for technical invention. Therefore, this 

is an important contribution to the field of knowledge management as it implies that other 

methods used to study knowledge flow in paper co-citations might be applied to patent co-

citations as well.  

The distinction of this research related to prior work should be emphasised. While previous 

research used patents to explore the evolution of technology by constructing technology 

evolution trajectories and pathways [113][114][142] and changes in clusters over time [30], this 

research studies the dynamics of patent citation and co-citation creation, using a dynamic 

growth analysis to study the dynamics of patent citation and link prediction to gain insight into 

the dynamics of patent co-citation creation. Moreover, as opposed to prior work, which uses 

link prediction in the context of knowledge flow between different technology domains [15] 

[126], this research focuses on a single technology domain and the flow of knowledge within 

it. The introduction of using a dynamic growth analysis of a patent citation network to determine 

the life cycle stage of a technology domain is a novel approach to studying the life cycle stages 

of a technology domain, compared to previous research, which primarily focused on using the 

S-curves to explore the life cycle stages of a technology domain [24]. Moreover, while the vast 

majority of methods studied only one indicator to determine the life cycle stage (number of 

patents, number of backward citations, number of classification codes…), this method 

simultaneously takes into account both the increase in the number of new patents as well as the 

increase of new citations. Segmenting the training and testing datasets into smaller subsets also 

provide a novel understanding of the dynamics of co-citation creation, i.e. the co-contribution 

of existing knowledge to future inventions. The splitting of the testing set into subsets differs 

from previous work studying the future development of technology, which often do not study 

the time frame in which the predicted technologies will occur [193][40][115]. The splitting of 
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the training datasets into subsets is also distinct from prior work, such as the work of [15], who 

separated the training set into subsets but did not explicitly explore which part of the training 

dataset contributes the most to the predicted links or the work of [126], who created three 

subsets of the training dataset but did not explore their individual contribution to the link 

prediction algorithms precision. Works more focused on exploring evolution trajectories 

[113][114] do not create subsets at all or use roughly created subsets strictly to analyse trends. 

As stated in Chapter 1, this research aims to contribute in both a theoretical and practical 

context. The first theoretical contribution comes from gaining a novel way of exploring the life 

cycle stages of a technology domain. To be more precise, a novel way of determining the life 

cycle stages of a technology domain is introduced based on the dynamic growth analysis of a 

patent citation network.  This is noteworthy because it is based on a formalized and open source 

of knowledge, namely patents, making the method itself both open (being based on a publicly 

disclosed knowledge source) and easily repeatable (being based of a knowledge source that is 

structured in its presentation). While methods for determining the life cycle stages of a 

technology based on patent metadata do exist [40][23][24][168], the method presented in this 

thesis is novel as it is based on a dynamic analysis of citation network growth, providing a 

unique insight to researchers. Consequently, a contribution is made in understanding how a 

technology evolves in a theoretical context as well as in providing an open data-based tool to 

reduce uncertainty for stakeholders in an industrial context. This is in line with the first expected 

contribution stated in Chapter 1.3, i.e. the development of a model for quantifying the dynamics 

of evolution of technical invention and the implementation of technology. The second 

theoretical contribution comes from providing insight into how knowledge elements flow 

within a technology domain. By discovering patterns of knowledge diffusion, the underlying 

intuition of knowledge element flow can be deduced. Consequently, this can be used to predict 

future knowledge diffusion. Moreover, additional study of the dynamics of knowledge element 

flow within a technology domain can provide insight into which technologies from a 

technologies life cycle influence future inventions the most, as well as the approximate time 

frame of the occurrence of these future inventions. This is in line with the second expected 

contribution stated in Chapter 1.3 i.e. the development of a tool for simulating the potential 

direction of the development of a technology. 

In a practical context, these results are applicable on both a micro and macro scale. On a micro 

scale, the methods presented in this research can be used in the ideation stage of product 

development. Applying the outlined link prediction method to a patent co-citation network 
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created from the technology domain being researched may provide the user with insight into 

possible co-contributions of patents. This approach expands the research of Youn et al. [194], 

who viewed inventions as a combinatorial process and patents as carriers of technology. The 

predicted links within a patent co-citation network could then be considered possible 

combinations of existing technologies which might contribute to the invention process.  

To conclude, the answers to the research questions presented in this chapter confirm the 

hypothesis stated in Chapter 1 and reiterated at the start of this chapter. It has been demonstrated 

that formalized records of invention, i.e. patents, can be used to model the dynamics of a 

technology domains development by providing insight into the dynamics of patents citation 

creation as well as the underlying intuition governing the creation of patent co-citations. This 

underlying intuition can be used to predict future patent co-citation, thereby providing insight 

into the potential future development of a technology domain.  
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9. CONCLUSION 

This chapter presents an overview of the main findings as well as recommendations. Answers 

to the research questions are provided and their relation to the thesis aims and objectives are 

explored. The significance and implication of the findings is discussed as well as the 

contribution of the findings. Finally, some limitations of the study are presented, and 

recommendations for future research are made. 

The research presented in this thesis aimed to create a novel methodology for studying a 

technology domains life cycle stages using patent citations as the primary source of data. 

Moreover, it aimed to identify previously undiscovered patterns of knowledge flow within a 

technology domain and exploring whether these patterns differ between different types of 

technology domains, namely those representing mature technologies and those representing 

disruptive technologies, and whether this intuition can be used to predict future knowledge flow 

within a technology domain. Finally, the dynamic of knowledge flow is studied by exploring 

which parts of the technology’s life cycle contribute the most to the precision of the prediction 

methodology as well as when the predicted knowledge flows occur.  

The results of the first research question show that there is a correlation between the dynamics 

of patent citation created and the life cycle stages of technology. Presuming that a technology 

follows a 4-stage life cycle, a study of both a mature technology domain and an emerging 

technology show that a change in the growth trend of the cumulative number of patents 

correlates with a change in the dynamics of patent citation growth, presented as a dynamic 

growth analysis of a patent citation network. Studying a mature technology, this correlation is 

prominent at the transition from the growth to the maturation stage of the TLC, characterised 

by a slowing down of the patenting activity in the technology domain. Observing the growth 

dynamics of patent citation creation sees a variation in the slope of the growth curve from 

positive to negative, signalling a reversal in the trend of citation activity. Specifically, this 

transition is made from a time where more patents than citations are introduced to a time where 

more citations than patents are introduced. Studying a disruptive technology, it is observed that 

the start of a rapid increase in the number of applied patents also correlates to a change in the 

growth dynamics of a patent citation network. However, in this case, a reversal of the growth 

curve is observed to be from negative to positive, signalling an increase in the number of new 

patents in relation to new citations. These results represent a significant contribution to the body 
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of knowledge as they imply a correlation between the changes in the dynamic of patent citation 

creation within a technology domain and the transition between the life cycle stages of a 

technology domain. Consequently, this makes the dynamic growth analysis of a patent citation 

network representing a technology domain, a viable method for determining the technology 

domains life cycle stage.  

The results of the second research question indicate that the underlying intuition governing the 

growth of a patent co-citation network can be modelled using the preferential attachment link 

prediction algorithm, at least when applied to a technology domain at the end of its growth stage 

and beginning of its maturation stage. However, a study of a disruptive technology domain 

resulted in less meaningful results, showing only moderate success when the Adamic/Adar 

Index, Jaccard Coefficient, and Resource Allocation index link prediction algorithms were 

applied to patent co-citation network representing a disruptive technology domain, and even 

then, only when applied to the smallest subset of the training dataset. Consequently, it can be 

deduced that while the underlying intuition of knowledge flow within a mature technology can 

be identified as following a preferential attachment intuition, no such claim can be made for a 

disruptive technology domain as the intuition governing the knowledge growth in a disruptive 

technology domain cannot be determined with a meaningful level of confidence, at least not 

using link prediction algorithms applied to a patent co-citation network. Nevertheless, the 

results of the first empirical study imply that the Preferential Attachment link prediction 

algorithm can be successfully applied to a patent co-citation network in order to predict future 

knowledge flow, at least when applied to a technology domain at the transition from the growth 

to the maturation stage of its life cycle. Considering that most technologies follow a standard 

four-phase life cycle, it is reasonable to expect these findings to be applicable to other 

technology domains. Furthermore, based on the answers to research questions 3 and 4, the 

research presented in this thesis contributes to the understanding of knowledge flow in the 

context of technology domain evolution. More precisely, it is demonstrated that, when applying 

the preferential attachment link prediction algorithm to a mature technology, a high level of 

precision can be achieved by taking into account only that patents that occur in a relatively short 

time before the end of the growth stage of the technology’s life cycle. These findings are 

significant because they confirm the intuitive claim that younger patents have a greater chance 

of influencing future technology than older one another contributions in the insight that most 

of the flow of knowledge occurs in a relatively short time period after the time of the technology 

domains life cycle where the Preferential Attachment link prediction algorithm was applied. 
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These findings are noteworthy as they are consistent with the results of previous research 

studying the dynamic of knowledge flow using scientific papers as knowledge artefacts, 

indicating that the same dynamic of knowledge flow might apply to the knowledge between 

other containers of knowledge alongside patents and research papers. The relatively short time 

between the time of the application of the link prediction algorithm and the occurrence of the 

predicted knowledge flow demonstrates the usefulness of these results in short term predictions 

and strategic planning. 

Finally, the results of the research in this thesis have several potential applications in a 

managerial/practical context. The results of the dynamic growth analysis of a patent citation 

network should prove valuable to stakeholders at all levels whose decisions are influenced by 

the life cycle stages of a technology, especially those involved in making decisions on a 

strategic level. A change in the growth trend of the dynamic growth curve correlates with a 

change in the stage of a technologies life cycle and consequently might signal a change in the 

strategic relevance of the examined technology. Consequently, insight into the implementation 

potential of the examined technology is made. Addressing the results of examining the growth 

of the patent co-citation network, the implication is that a firm’s short-term strategic planning 

should take into account the knowledge contained in the patents relevant to its field, reinforcing 

the notion that proper knowledge management is invaluable to firms aspiring to produce 

innovative products. By having insight into future potential co-citations of patents, a firm can 

leverage its existing patent portfolio or asses the acquisition value of patents or the companies 

owning them. Furthermore, the presented method might prove helpful in the product design 

process, facilitating exploratory innovative thinking by providing designers with potential 

combinations of knowledge previously not considered. Both of these contributions are seen as 

a potential starting point for further research, focusing on either the strategic application of the 

presented methods or their application as part of the design process.  

 

9.1. Limitations and Future work 

Certain limitations of the presented research should be noted. A limiting factor in this research 

was the creation of patent collections accurately representing technology domains. While the 

advantage of using patents as a source of data has been extensively covered in this thesis, the 

fact remains that there is no tool that is open for use and can effortlessly create representative 

collections of patents. Therefore, while this research used a modification of existing approaches 
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to creating patent collections, as a creation of an automated tool was out of the scope of this 

research, future research should focus on creating an innovative and automated tool capable of 

creating collections of patents accurately representing individual technology domains in 

conjunction with existing open patent databases. 

Moreover, this thesis analyses a single technology domain representing a mature technology 

and a single technology domain representing an emerging technology. Single case studies are 

limited in their applicability beyond their respective context and the research presented in this 

thesis is no exception. Even though two studies were conducted in the course of this thesis, each 

focuses on two radically different technologies. While the results of both studies are in line with 

previous research and the theoretical background describing both types of technologies, and 

while single case studies are not uncommon, future work should be expanded to cover multiple 

technology domains. The chosen technology domains should be diversified to test whether the 

results presented in this thesis can be generalised on a wide range of technology domains or are 

the presented results domain specific or specific to technology domains that share certain traits. 

In the latter case, the specific traits that make a technology domain viable for the application of 

the presented methodology should be identified. A specific limitation arises when examining 

the results of the second empirical study, studying the emerging and disruptive technology 

domain. While a dynamic growth analysis of the patent citation network did show promising 

results in line with previous research and the findings of the first empirical study, the application 

of a link prediction algorithm to the patent co-citation network showed a negligible level of 

success. While this could be due to the fact that the training sets created from patents 

representing the emerging technology domain were significantly smaller than those 

representing a mature technology, consequently not providing the link prediction algorithms 

with enough data, this is an unlikely culprit for the low accuracy. A more likely reason is the 

fact that emerging and disruptive technologies are by definition unpredictable, making the 

failure of the link prediction algorithms to achieve any meaningful precision expected. Future 

work should nevertheless venture to identify the intuition of co-citation growth in different 

instances of emerging and disruptive technologies. 

While it is demonstrated that future co-citations can be predicted, at least in a mature technology 

domain, the research presented in this thesis provides no insight into the information contained 

in the predicted co-cited patents. Consequently, while the results provided in this research 

contribute to understanding the dynamics of knowledge flow, they do not provide insight into 

the content of the knowledge. Future work should focus on providing additional context to the 
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predicted co–citations by analysing the content of the examined patents in order to gain a deeper 

understanding of the technical reason for the creation of the co-citation and examine the specific 

knowledge element being combined. These combined knowledge elements should be 

contextualised within the knowledge elements contained in the patent to which the co-cited 

patents contribute. This could be done by integrating the presented methodology for identifying 

potential future co-citations with a method that uses natural language processing to analyse the 

free text contained in a patent [195] or one that analyses the classification code contained in 

patents in order to gain additional insight into the technologies they represent [192]. 

Future work should also focus on implementing how unknown and unpredictable factors 

influence the development of technology, these unknown factors being unavoidable in societal 

design and can at best be speculated about. The human factor provides a consistent level of 

uncertainty in any prediction model as well as the influence of emerging disruptive technologies 

on collective societal characteristics and norms. Incorporating these unknown factors into a 

future iteration of the framework presented in this thesis should further improve its accuracy.  

Finally, while the framework presented in this thesis uses patents as the primary source of data, 

future work should incorporate knowledge exchange facilitated by open innovation, as this 

paradigm seems to increasing its importance in both academic research and industrial 

applications [196] 
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11. APPENDIX A: 

Table A-1 Link prediction results- PA algorithm applied to subset T1a 

Percentage of 

predicted links 

being verified 

Similarity 

measure value 

Number of 

predicted links 

Number of 

correctly 

predicted links 

Precision 

Top 10 % 339231 21 16 0.76 

Top 20 % 301539 80 58 0.72 

Top 30 % 263846 390 266 0.68 

Top 40 % 226154 1936 1263 0.65 

 

Table A-2 Link prediction results- PA algorithm applied to subset T2a 

Percentage of 

predicted links 

being verified 

Similarity 

measure value 

Number of 

predicted links 

Number of 

correctly 

predicted links 

Precision 

Top 10 % 339231 21 16 0.76 

Top 20 % 301539 80 58 0.72 

Top 30 % 263846 390 266 0.68 

Top 40 % 226154 1936 1263 0.65 

 

Table A-3Link prediction results- PA  algorithm applied to subset T3a 

Percentage of 

predicted links 

being verified 

Similarity 

measure value 

Number of 

predicted links 

Number of 

correctly 

predicted links 

Precision 

Top 10 % 339231 21 17 0.80 

Top 20 % 301539 80 60 0.75 

Top 30 % 263846 389 269 0.69 

Top 40 % 226154 1926 1264 0.65 
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Table A-4 Link prediction results- PA algorithm applied to subset T4a 

Percentage of 

predicted links 

being verified 

Similarity 

measure value 

Number of 

predicted links 

Number of 

correctly 

predicted links 

Precision 

Top 10 % 339231 20 17 0.85 

Top 20 % 301539 75 56 0.74 

Top 30 % 263846 373 261 0.69 

Top 40 % 226154 1556 962 0.61 

 

Table A-5Link prediction results- PA algorithm applied to subset T5a 

Percentage of 

predicted links 

being verified 

Similarity 

measure value 

Number of 

predicted links 

Number of 

correctly 

predicted links 

Precision 

Top 10 % 325442 21 16 0.76 

Top 20 % 289282 89 63 0.70 

Top 30 % 253122 385 266 0.69 

Top 40 % 216961 2282 1249 0.54 

 

Table A-6 Link prediction results- PA algorithm applied to subset T6a 

Percentage of 

predicted links 

being verified 

Similarity 

measure value 

Number of 

predicted links 

Number of 

correctly 

predicted links 

Precision 

Top 10 % 296465 21 19 0.90 

Top 20 % 263524 75 65 0.86 

Top 30 % 230584 711 607 0.85 

Top 40 % 197643 1722 1165 0.67 
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Table A-7 Link prediction results- Adamic/Adar Index algorithm applied to subset T1b 

Percentage of 

predicted links 

being verified 

Similarity 

measure value 

Number of 

predicted links 

Number of 

correctly 

predicted links 

Precision 

Top 10 % 29,1 542 376 0.69 

Top 20 % 25,9 830 376 0.45 

Top 30 % 22,4 830 376 0.45 

Top 40 % 19,4 830 376 0.45 

 

Table A-8 Link prediction results- Adamic/Adar Index algorithm applied to subset T2b 

Percentage of 

predicted links 

being verified 

Similarity 

measure value 

Number of 

predicted links 

Number of 

correctly 

predicted links 

Precision 

Top 10 % 54,59 6 2 0.33 

Top 20 % 48,52 8 2 0.25 

Top 30 % 42,45 83 26 0.31 

Top 40  36,39 1016 533 0.52 

 

Table A-9 Link prediction results- Adamic/Adar Index algorithm applied to subset T3b 

Percentage of 

predicted links 

being verified 

Similarity 

measure value 

Number of 

predicted links 

Number of 

correctly 

predicted links 

Precision 

Top 10 % 64,56 101 20 0.2 

Top 20 % 57,39 107 20 0.19 

Top 30 % 50,21 130 20 0.15 

Top 40 % 43,04 193 21 0.1 
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Table A-10 Link prediction results- Adamic/Adar Index algorithm applied to subset T4b 

Percentage of 

predicted links 

being verified 

Similarity 

measure value 

Number of 

predicted links 

Number of 

correctly 

predicted links 

Precision 

Top 10 % 67,68 95 14 0.15 

Top 20 % 60,16 97 14 0.14 

Top 30 % 52,64 124 14 0.11 

Top 40 % 45,12 159 14 0.09 

 

Table A-11 Link prediction results- Adamic/Adar Index algorithm applied to subset T5b 

Percentage of 

predicted links 

being verified 

Similarity 

measure value 

Number of 

predicted links 

Number of 

correctly 

predicted links 

Precision 

Top 10 % 67,5 95 14 0.15 

Top 20 % 60 97 14 0.14 

Top 30 % 52,5 124 14 0.11 

Top 40 % 45 159 14 0.09 

 

Table A-12 Link prediction results- Adamic/Adar Index algorithm applied to subset T6b 

Percentage of 

predicted links 

being verified 

Similarity 

measure value 

Number of 

predicted links 

Number of 

correctly 

predicted links 

Precision 

Top 10 % 67,32 525 0 0 

Top 20 % 59,84 635 0 0 

Top 30 % 52,36 652 0 0 

Top 40 % 44,88 697 0 0 
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Table A-13 Link prediction results- Adamic/Adar Index algorithm applied to subset T7b 

Percentage of 

predicted links 

being verified 

Similarity 

measure value 

Number of 

predicted links 

Number of 

correctly 

predicted links 

Precision 

Top 10 % 67,32 525 0 0 

Top 20 % 59,84 635 0 0 

Top 30 % 52,36 652 0 0 

Top 40 % 44,88 697 0 0 

 

Table A-14 Link prediction results- Adamic/Adar Index algorithm applied to subset T8b 

Percentage of 

predicted links 

being verified 

Similarity 

measure value 

Number of 

predicted links 

Number of 

correctly 

predicted links 

Precision 

Top 10 % 67,32 525 0 0 

Top 20 % 59,84 635 0 0 

Top 30 % 52,36 652 0 0 

Top 40 % 44,88 697 0 0 

 

Table A-15 Link prediction results- Adamic/Adar Index algorithm applied to subset T9b 

Percentage of 

predicted links 

being verified 

Similarity 

measure value 

Number of 

predicted links 

Number of 

correctly 

predicted links 

Precision 

Top 10 % 67,32 525 0 0 

Top 20 % 59,84 633 0 0 

Top 30 % 52,36 652 0 0 

Top 40 % 44,88 801 0 0 
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Table A-16 Link prediction results- Jaccard coefficient algorithm applied to subset T1b 

Percentage of 

predicted links 

being verified 

Similarity 

measure value 

Number of 

predicted links 

Number of 

correctly 

predicted links 

Precision 

Top 10 % 0,86 174 10 0,057 

Top 20 % 0,77 853 392 0,46 

Top 30 % 0,67 877 393 0,45 

Top 40 % 0,57 961 457 0,48 

 

Table A-17 Link prediction results- Jaccard coefficient algorithm applied to subset T2b 

Percentage of 

predicted links 

being verified 

Similarity 

measure value 

Number of 

predicted links 

Number of 

correctly 

predicted links 

Precision 

Top 10 % 0,88 425 136 0,32 

Top 20 % 0,78 978 311 0,32 

Top 30 % 0,68 1149 330 0,29 

Top 40 % 0,58 1407 466 0,33 

 

Table A- 18 Link prediction results- Jaccard coefficient algorithm applied to subset T3b 

Percentage of 

predicted links 

being verified 

Similarity 

measure value 

Number of 

predicted links 

Number of 

correctly 

predicted links 

Precision 

Top 10 % 0,9 108 13 0,12 

Top 20 % 0,8 695 164 0,24 

Top 30 % 0,7 927 164 0,18 

Top 40 % 0,6 1060 164 0,15 
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Table A-19 Link prediction results- Jaccard coefficient algorithm applied to subset T4b 

Percentage of 

predicted links 

being verified 

Similarity 

measure value 

Number of 

predicted links 

Number of 

correctly 

predicted links 

Precision 

Top 10 % 0,9 89 10 0,11 

Top 20 % 0,8 845 78 0,09 

Top 30 % 0,7 1151 78 0,07 

Top 40 % 0,6 1264 78 0,06 

 

Table A-20 Link prediction results- Jaccard coefficient algorithm applied to subset T5b 

Percentage of 

predicted links 

being verified 

Similarity 

measure value 

Number of 

predicted links 

Number of 

correctly 

predicted links 

Precision 

Top 10 % 0,9 89 10 0,11 

Top 20 % 0,8 860 14 0,02 

Top 30 % 0,7 1158 17 0,01 

Top 40 % 0,6 1286 17 0,01 

 

 

Table A-21 Link prediction results- Jaccard coefficient algorithm applied to subset T6b 

Percentage of 

predicted links 

being verified 

Similarity 

measure value 

Number of 

predicted links 

Number of 

correctly 

predicted links 

Precision 

Top 10 % 0,9 46 2 0,04 

Top 20 % 0,8 1602 2 0,001 

Top 30 % 0,7 2030 2 0,001 

Top 40 % 0,6 2222 2 0,001 
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Table A-22 Link prediction results- Jaccard coefficient algorithm applied to subset T7b 

Percentage of 

predicted links 

being verified 

Similarity 

measure value 

Number of 

predicted links 

Number of 

correctly 

predicted links 

Precision 

Top 10 % 0,9 107 0 0 

Top 20 % 0,8 1713 8 0,005 

Top 30 % 0,7 2030 8 0,004 

Top 40 % 0,6 2338 8 0,003 

 

Table A-23 Link prediction results- Jaccard coefficient algorithm applied to subset T8b 

Percentage of 

predicted links 

being verified 

Similarity 

measure value 

Number of 

predicted links 

Number of 

correctly 

predicted links 

Precision 

Top 10 % 0,9 189 0 0 

Top 20 % 0,8 1800 8 0,004 

Top 30 % 0,7 2232 8 0,004 

Top 40 % 0,6 2536 8 0,003 

 

 

Table A-24 Link prediction results- Jaccard coefficient algorithm applied to subset T9b 

Percentage of 

predicted links 

being verified 

Similarity 

measure value 

Number of 

predicted links 

Number of 

correctly 

predicted links 

Precision 

Top 10 % 0,9 195 0 0 

Top 20 % 0,8 1913 0 0 

Top 30 % 0,7 3093 185 0,06 

Top 40 % 0,6 4879 185 0,04 
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Table A-25 Link prediction results- RAI algorithm applied to subset T1b 

Percentage of 

predicted links 

being verified 

Similarity 

measure value 

Number of 

predicted links 

Number of 

correctly 

predicted links 

Precision 

Top 10 % 0,77 167 23 0,14 

Top 20 % 0,69 893 399 0,45 

Top 30 % 0,60 901 401 0,45 

Top 40 % 0,52 909 402 0,44 

 

Table A-26 Link prediction results- RAI algorithm applied to subset T2b 

Percentage of 

predicted links 

being verified 

Similarity 

measure value 

Number of 

predicted links 

Number of 

correctly 

predicted links 

Precision 

Top 10 % 0,99 4 1 0,25 

Top 20 % 0,88 7 2 0,29 

Top 30 % 0,77 589 152 0,26 

Top 40 % 0,66 1375 526 0,38 

 

Table A-27 Link prediction results- RAI algorithm applied to subset T3b 

Percentage of 

predicted links 

being verified 

Similarity 

measure value 

Number of 

predicted links 

Number of 

correctly 

predicted links 

Precision 

Top 10 % 0,95 90 20 0,22 

Top 20 % 0,85 110 20 0,18 

Top 30 % 0,74 307 20 0,07 

Top 40 % 0,64 584 20 0,03 
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Table A-28 Link prediction results- RAI algorithm applied to subset T4b 

Percentage of 

predicted links 

being verified 

Similarity 

measure value 

Number of 

predicted links 

Number of 

correctly 

predicted links 

Precision 

Top 10 % 1,1 1 0 0 

Top 20 % 0,98 5 0 0 

Top 30 % 0,85 103 14 0,14 

Top 40 % 0,73 300 14 0,05 

 

Table A-29 Link prediction results- RAI algorithm applied to subset T5b 

Percentage of 

predicted links 

being verified 

Similarity 

measure value 

Number of 

predicted links 

Number of 

correctly 

predicted links 

Precision 

Top 10 % 1,09 1 0 0 

Top 20 % 0,97 5 0 0 

Top 30 % 0,85 103 14 0,14 

Top 40 % 0,73 353 17 0,05 

 

 

Table A-30 Link prediction results- RAI algorithm applied to subset T6b 

Percentage of 

predicted links 

being verified 

Similarity 

measure value 

Number of 

predicted links 

Number of 

correctly 

predicted links 

Precision 

Top 10 % 1,071 1 0 0 

Top 20 % 0,952 1 0 0 

Top 30 % 0,833 458 0 0 

Top 40 % 0,714 1021 2 0,002 
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Table A-31 Link prediction results- RAI algorithm applied to subset T7b 

Percentage of 

predicted links 

being verified 

Similarity 

measure value 

Number of 

predicted links 

Number of 

correctly 

predicted links 

Precision 

Top 10 % 1,071 1 0 0 

Top 20 % 0,952 1 0 0 

Top 30 % 0,833 571 8 0,01 

Top 40 % 0,714 1104 8 0,007 

 

Table A-32 Link prediction results- RAI algorithm applied to subset T8b 

Percentage of 

predicted links 

being verified 

Similarity 

measure value 

Number of 

predicted links 

Number of 

correctly 

predicted links 

Precision 

Top 10 % 1,071 1 0 0 

Top 20 % 0,952 3 0 0 

Top 30 % 0,833 658 8 0,012 

Top 40 % 0,714 1191 8 0,007 

 

 

Table A-33 Link prediction results- RAI algorithm applied to subset T9b 

Percentage of 

predicted links 

being verified 

Similarity 

measure value 

Number of 

predicted links 

Number of 

correctly 

predicted links 

Precision 

Top 10 % 1,071 1 0 0 

Top 20 % 0,952 3 0 0 

Top 30 % 0,833 599 8 0,013 

Top 40 % 0,714 1132 0 0 
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Table A-34 Link prediction results- PA algorithm applied to subset T1b 

Percentage of 

predicted links 

being verified 

Similarity 

measure value 

Number of 

predicted links 

Number of 

correctly 

predicted links 

Precision 

Top 10 % 59427 103 1 0,01 

Top 20 % 52824 168 1 0,006 

Top 30 % 46221 18090 3 0,0002 

Top 40 % 39618 37333 385 0,01 

 

Table A-35 Link prediction results- PA algorithm applied to subset T2b 

Percentage of 

predicted links 

being verified 

Similarity 

measure value 

Number of 

predicted links 

Number of 

correctly 

predicted links 

Precision 

Top 10 % 221977 2 0 0 

Top 20 % 197313 10 0 0 

Top 30 % 172649 73 0 0 

Top 40 % 147985 1170 22 0,02 

 

Table A-36 Link prediction results- PA algorithm applied to subset T3b 

Percentage of 

predicted links 

being verified 

Similarity 

measure value 

Number of 

predicted links 

Number of 

correctly 

predicted links 

Precision 

Top 10 % 453033 2 0 0 

Top 20 % 402696 16 0 0 

Top 30 % 352359 1451 0 0 

Top 40 % 302022 12352 0 0 
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Table A-37 Link prediction results- PA algorithm applied to subset T4b 

Percentage of 

predicted links 

being verified 

Similarity 

measure value 

Number of 

predicted links 

Number of 

correctly 

predicted links 

Precision 

Top 10 % 498560 1 0 0 

Top 20 % 443164 3 0 0 

Top 30 % 387769 294 0 0 

Top 40 % 332373 2723 0 0 

 

Table A-38 Link prediction results- PA algorithm applied to subset T5b 

Percentage of 

predicted links 

being verified 

Similarity 

measure value 

Number of 

predicted links 

Number of 

correctly 

predicted links 

Precision 

Top 10 % 514587 2 0 0 

Top 20 % 457411 22 0 0 

Top 30 % 400234 1291 0 0 

Top 40 % 343058 7843 0 0 

 

Table A-39 Link prediction results- PA algorithm applied to subset T6b 

Percentage of 

predicted links 

being verified 

Similarity 

measure value 

Number of 

predicted links 

Number of 

correctly 

predicted links 

Precision 

Top 10 % 556102 4 0 0 

Top 20 % 494313 34 0 0 

Top 30 % 432524 1919 0 0 

Top 40 % 370735 13812 0 0 
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Table A-40  Link prediction results- PA algorithm applied to subset T7b 

Percentage of 

predicted links 

being verified 

Similarity 

measure value 

Number of 

predicted links 

Number of 

correctly 

predicted links 

Precision 

Top 10 % 556102 5 0 0 

Top 20 % 494313 36 0 0 

Top 30 % 432524 1923 0 0 

Top 40 % 370735 14237 0 0 

 

Table A-41 Link prediction results- PA algorithm applied to subset T8b 

Percentage of 

predicted links 

being verified 

Similarity 

measure value 

Number of 

predicted links 

Number of 

correctly 

predicted links 

Precision 

Top 10 % 556102 6 0 0 

Top 20 % 494313 37 0 0 

Top 30 % 432524 1923 0 0 

Top 40 % 370735 14295 0 0 

 

Table A-42 Link prediction results- PA algorithm applied to subset T8b 

Percentage of 

predicted links 

being verified 

Similarity 

measure value 

Number of 

predicted links 

Number of 

correctly 

predicted links 

Precision 

Top 10 % 558756 7 0 0 

Top 20 % 496672 49 0 0 

Top 30 % 434588 1763 0 0 

Top 40 % 372504 14727 0 0 
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12. APPENDIX B 

Appendinx B provides an overview of the 4 link prediction algorithms used in this research. 

The symbols u,v denote nodes, Γ(𝑢) and Γ(𝑣) denote the neighbour sets of these nodes, 

𝑆𝑖𝑚(𝑢, 𝑣) denotes the similarity value of these nodes, k denotes the average degree and N 

denotes the number of nodes in the network. The following link prediction algorithms are used: 

 

a)  Resource Allocation Index [177] – assumes that node u can send some resource to 

node y, with their common neighbors playing the roles of transmitters. Each 

transmitter has a unit of resource, and will averagely distribute it to all neighbors. 

The similarity between u and v can be defined as the amount of resource v received 

from u. The Resource Allocation index can be stated as: 

 

 
𝑆𝑖𝑚(𝑢, 𝑣) = ∑

1

|Γ(𝑤)|
𝑤∈Γ(𝑢)∩Γ(𝑣)

 

 

(4) 

 

b) Jaccard Coefficient – measures the probability that both u and v have a common 

neighbour, for a randomly selected neighbour that either u or v have. It is a static 

measure used for comparing the similarity of sample sets. The complexity of this 

algorithm is O(Nk2) The Jaccard Coefficient can be stated as: 

 

 
𝑆𝑖𝑚(𝑢, 𝑣) =

|Γ(𝑢) ∩ Γ(𝑣)|

|Γ(𝑢) ∪ Γ(𝑣)|
 

 

 

 

 

c) Adamic-Adar index [182] - refines the simple counting of common features by 

weighting rarer features more heavily formalizing the intuitive notion that a low-

degree neighbour is more likely to indicate a future connection then a high-degree 

one. Therefore, a common neighbour of a node pair with a smaller number of 

neighbours contributes more to the similarity value then a pair with a larger number 

of neighbours. The complexity of this algorithm is O(Nk2).  The Adamic-Adar index 

can be stated as (note z is the low-degree neighbor): 

𝑆𝑖𝑚(𝑢, 𝑣) = ∑
1

log|Γ(𝑧)|
𝑧∈Γ(𝑢)∩Γ(𝑣)
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d) Preferential Attachment [183] is an algorithm based on the rich-get-richer (aka 

power - law) intuition that nodes with many connections tend to create more new 

connection. How rich two nodes are is calculated by multiplying the number of 

neighbours they have. The complexity of this algorithm is O(N2k2).  The Preferential 

Attachment algorithm can be stated as: 

 

𝑆𝑖𝑚(𝑢, 𝑣) = |Γ(𝑢)| ⋅ |Γ(𝑣)| 
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